Speaker
Description
We study equilibrium as well as out-of-equilibrium properties of the strongly interacting QGP medium under extreme conditions of high temperature T and high baryon densities or baryon chemical potentials μB within a kinetic approach. We present the thermodynamic and transport properties of the QGP close to equilibrium in the framework of effective models with Nf=3 active quark flavors such as the Polyakov extended Nambu-Jona Lasinio (PNJL) and dynamical quasiparticle model with the CEP (DQPM-CP). Considering the transport coefficients and the EoS of the QGP phase, we compare our results with various results from the literature.
Moreover, we find a good agreement between resulting transport coefficients at μB=0 to the predictions from the lattice QCD and estimates from a Bayesian analysis by the JETSCAPE Collaboration.
Furthermore, out-of-equilibrium properties of the QGP medium and in particular, the effect of a μB- dependence of thermodynamic and transport properties of the QGP are studied within the Parton-Hadron-String-Dynamics (PHSD) transport approach, which covers the full evolution of the system during HICs. We compare our results with the hybrid approaches taking into account the values of transport coefficients. We find that bulk observables and flow coefficients for strange hadrons as well as for antiprotons are more sensitive to the properties of the QGP, in particular to the μB - dependence of the QGP interactions.