

Transport coefficients and comparison of the QGP evolution in transport and hydro approach

Olga Soloveva

P. Moreau, L. Oliva, V. Voronyuk,

V. Kireyeu, T. Song,

E. Bratkovskaya

Exploring Quark-Gluon Plasma through soft and hard probes

30 May, 2023

Properties of QGP: transport coefficients

One has to specify transport and microscopic properties as well as EoS for theoretical simulations of HICs (hydro / transport approaches) Au+Au $\sqrt{s_{NN}}$ = 27GeV 0-5%

Hybrid simulations:

vHLLE/Music+UrQMD/SMASH

lu.A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher PRC 91 (2015), 064901.

CORE-CORONA – EPOS (K. Werner talk), DCCI(Y. Kanakuba)

MUFFIN – next talk

Transport simulations with QGP phase:

Catania transport – QuasiParticle Model F. Scardina, S. K. Das, V. Minissale, S. Plumari, and V. Greco,

PHSD 5.2 - μ_p

PHSD 5.2 - μ_p=0

PRC 96, 044905 (2017). AMPT – PNJL EoS (Mean field potentials) K.J. Sun, C. M. Ko, and Z.-W. Lin, PRC 103(2021)

 off-shell transport approach derived from Kadanoff-Baym many-body theory (Quantumm Boltzmann) with hadronic and QGP phase – 2PI Dynamical QuasiParticle Model

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919

P. Moreau, O. S., L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019), 014911; O. S, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020)

Properties of QGP: Terra incognita

On practice: effective models for QGP

extraction of transport coefficients

EoS(ε ,n) $\sigma(\sqrt{s}, m_q, m_q, T, \mu_B)$ m(T, μ_B)

QPM enables to estimate simultaneously of the EoS and transport coefficients also including jet and charm coefficients (talk by I Grishmanovskii)

O.S., A. Palermo, E. Bratkovskaya in preparation

Properties of QGP: transport coefficients

same EoS but different transport coefficients

Transport coefficients can serve a bridge for comparison transport and hydro

Evolution of QGP:

Dynamical Quasi-Particle Model

The QGP phase is described in terms of strongly-interacting quasiparticles - quarks and gluons with Lorentzian spectral functions: $\rho_j(\omega, \mathbf{p}) = \frac{\gamma_j}{\tilde{E}_i} \left(\frac{1}{(\omega - \tilde{E}_i)^2 + \gamma_i^2} - \frac{1}{(\omega + \tilde{E}_i)^2 + \gamma_i^2} \right)$ o(ω,p) [GeV⁻² 10 $\equiv \frac{4\omega\gamma_j}{\left(\omega^2 - \mathbf{p}^2 - M_{\perp}^2\right)^2 + 4\gamma_{\perp}^2\omega^2}$ ω [GeV] resummed propagators: $\Delta_i(\omega, \mathbf{p}) = \frac{1}{\omega^2 - \mathbf{p}^2 - \Pi_i}$ & self-energies: $\Pi_i = m_i^2 - 2i\gamma_i\omega$ Re Π_i : thermal mass (M_q, M_q) Im Π_i : interaction width (γ_g, γ_q) $\gamma_j(T,\mu_{\rm B}) = \frac{1}{3} C_j \frac{g^2(T,\mu_{\rm B})T}{8\pi} \ln\left(\frac{2c_m}{q^2(T,\mu_{\rm B})} + 1\right)$ $m_{q(\bar{q})}^{2}(T,\mu_{\rm B}) = C_{q} \frac{g^{2}(T,\mu_{\rm B})}{4} T^{2} \left[1 + \left(\frac{\mu_{B}}{3\pi T}\right)^{2} \right]$ quark mass quark width 80.0 [GeV] 0.04 17 1GeV) CO.0 TIT 0.10

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365; H. Berrehrah, E. Bratkovskaya, T. Steinert, W. Cassing, Int. J. Mod. Phys. E 25 (2016), 164200; P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019), 014911;

$$\eta^{\text{RTA}}(T,\mu_B) = \frac{1}{15T} \sum_{i=q,\bar{q},g} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}^4}{E_i^2} \tau_i(\mathbf{p},T,\mu_B) d_i(1\pm f_i) f_i$$

$$egin{aligned} &\langle \mathcal{O}
angle^{ ext{on}} = &rac{1}{2E_i} \sum_{j=q,ar{q},g} d_j f_j \int rac{d^3 p_j}{(2\pi)^3 2E_j} \ & imes \int rac{d^3 p_1}{(2\pi)^3 2E_1} \int rac{d^3 p_2}{(2\pi)^3 2E_2} \ & imes (1\pm f_1)(1\pm f_2)\mathcal{O} |\overline{\mathcal{M}}|^2 (2\pi)^4 \delta^{(4)}(p_i+p_j-p_1-p_2) \end{aligned}$$

- $\mathcal{O} = 1$ to the scattering rate Γ ,
- $\mathcal{O} = (p_T^2 p_T'^2)$ jet transport coefficient \hat{q} ,
- $\mathcal{O} = (E E')$ energy loss $\Delta E = dE/dx$,
- $\mathcal{O} = (p_L p'_L)$ drag coefficient \mathcal{A} ,

O. S., P. Moreau and E. Bratkovskaya, PRC 101 (2020), 045203

• Good agreement with IQCD predictions and Bayesian estimates

 $2 \leftrightarrow 2$ scatterings

- Light increase with μ_B in the crossover region for viscosities and electric conductivity

s - channel

- channel

 $\tau_i(\mathbf{p}, T, \mu_B) = \frac{1}{\Gamma_i(\mathbf{p}, T, \mu_B)}$

quarks

channel

chants

u – channel

0.0

t - channel

- Good agreement with IQCD predictions and Bayesian estimates
- Light increase with μ_B in the crossover region for viscosities and electric conductivity

$$\sigma q q'(T, \mu_q) = \frac{1}{3T} \sum_{i=q,\bar{q}} q_i \int \frac{d^3 p}{(2\pi)^3} \frac{\mathbf{p}^2}{E_i^2} \tau_i(\mathbf{p}, T, \mu_q) \times \left(\frac{E_i n_{q'}}{\epsilon + p} - q'_i\right) d_i (1 \pm f_i) f_i$$

- Light increase with μ_B in the crossover region for shear and bulk viscosities and electric conductivity
- Electric conductivity consist mostly of quark sector!

- Light increase with μ_B in the crossover region for shear and bulk viscosities and electric conductivity
- Baryon diffusion coefficients decrease with μ_B

Specific shear viscosity at high μ_B

PNJL vs DQPM 10¹ μ_q [GeV] $N_c = 3$: PNJL DQPM 1PT 1st order $\cdots \mu_{a}=0$ 0.4 10^{2} phase transition $\mu_{o} = 0.17 \text{ GeV}$ CEP 0.32 crossover 0.3 10 **10**⁰ s/h 0.2 10^{0} $\eta/s_{KSS} = 1/4\pi$ **10**⁻¹ **10**⁻¹ 1.5 2.5 1.0 1.5 2.0 2.5 2.0 1.0 $T/T_{c}(\mu_{n})$ $T/T_{c}(\mu_{o})$

O. S., D. Fuseau, J. Aichelin and E. Bratkovskaya, PRC 103 (2021) no.5, 054901

- > CEP: (T, μ_B) = (110,960) MeV, μ_B/T = 8.73
- \succ 1st order PT at high μ_B
- same symmetries for the quarks as QCD

Chiral masses (M_l, M_s)

Drastic change of T-dependence for all transport coefficients after 1st order phase transition

Modelling HICs: PHSD

QGP out-of equilibrium ←→ HIC

Parton-Hadron-String-Dynamics (PHSD)

Non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3;;
P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019), 014911;
O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020), 178-192;....

Stages of collisions in PHSD

W. Cassing, EPJ ST 168 (2009) 3

PHSD5: extraction of T and µ^B

For each space-time cell of the PHSD:

 $T^{\mu\nu}(x) = \sum_{i} \int_{0}^{\infty} \frac{d^{3}p_{i}}{(2\pi)^{3}} f_{i}(E_{i}) \frac{p_{i}^{\mu}p_{i}^{\nu}}{E_{i}} \longrightarrow \text{Diagonalize in LRF} \longrightarrow \epsilon^{\text{PHSD}}$

- 1. Calculate the local energy density ϵ^{PHSD} and baryon density n_{B}^{PHSD}
- 2. use IQCD relations (up to 6th order): $\begin{bmatrix} \frac{n_B}{T^3} \approx \chi_2^B(T) \left(\frac{\mu_B}{T}\right) + \dots \\ \Delta \epsilon/T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T)\right) \left(\frac{\mu_B}{T}\right)^2 + \dots \end{bmatrix}$

Use baryon number susceptibilities χ_n from IQCD Obtain T, μ_B by solving sistem of coupled eqs using ϵ , nB

for details see P. Moreau, O. S., L. Oliva, T. Song, W. Cassing, E. Bratkovskaya arXiv:1903.10157, PRC 100 (2019) no. 1, 014911

PHSD: QGP evolution in HICs

Evolution of QGP: still big difference

PHSD

P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019), 014911; O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020), 178-192

Results for ($\sqrt{s_{NN}} = 200 \text{ GeV} - 7 \text{ GeV}$)

- No visible effects on p_T -spectra, dN/dy of μ_B -dependence
- Small effect of the angular dependence of $d\sigma/dcos\theta$

P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019), 014911; O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020), 178-192

Directed flow ($\sqrt{s_{NN}} = 200 \ GeV \ vs \ 27 \ GeV$)

 $v_1 = \left\langle \frac{p_x}{p_T} \right\rangle$

- Influence of the QGP dynamics on final particles observables
 - Weak μ_B dependence small fraction of QGP or low μ_B

Elliptic flow ($\sqrt{s_{NN}} = 200 \ GeV \ vs \ 27 GeV$)

- Weak **µ**_B -dependence
- Small effect of the angular dependence of $d\sigma/dcos\theta$

Particles 3 (2020) no.1, 178-192

1.5

 $v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_T^2} \right\rangle$ Strong flavor dependence 27GeV, 10-40% PHSD4 200GeV, 10-20% PHSD5 - μ_B=0 HENIX D 0.15 PHSD 4.0 PHSD5 - µ - PHSD 5.0 - μ_s=0 **>**[™] 0.10 PHSD 5.0 - μ p+p 0.05 0.00 0.15 ٨ **>**^{∾0.10} 0.05 \pm 0.00 ∟ 0.0 1.0 1.5 **p_⊤ [GeV/c]** 2.0 0.5 2.5 1.0 p_T [GeV/c] 0.5 **Channel decomposition :** Au+Au √s_{NN}= 200 GeV Min.Bias total weighted

Evolution of QGP: comparison pA

Summary

Transport properties of the strongly-interacting QGP matter at finite **T** and μ_B have been investigated. Influence of an order of a phase transition on thermodynamic and transport properties has been studied.

• Sizable bulk viscosity should be considered for hydro simulation in order to reproduce better experimental observables at RHIC and LHC

Evolution of the QGP matter created in HICs and the sensitivity of the bulk and flow observables on the QGP interactions and transport properties have been explored by the simulations within the PHSD transport approach

- High- μ_B regions are probed at low $\sqrt{s_{NN}}$ or high rapidity regions Moreover, QGP fraction is small at low $\sqrt{s_{NN}}$: small effect seen in observables
- μ_B -dependence of QGP interactions is more pronounced in observables for strange hadrons and antiprotons

Thank you for your attention!

Bonus: ML for HEP

Theory:

- Classify phases of matter phase transitions in QCD
- Properties of dense matter :
- Exploring QCD matter in extreme conditions with Machine Learning (recent review: https://arxiv.org/abs/2303.15136)

Jet flavour identification:

- <u>https://arxiv.org/abs/1407.5675</u> CNN, Josh Cogan et al;
- > https://arxiv.org/abs/1603.09349 DNN for jets, Pierre Baldi et al;
- <u>https://arxiv.org/abs/1701.05927</u> GAN for jets, Luke de Oliveira et al;
- <u>https://arxiv.org/abs/1702.00748</u> RNN for jets, Gilles Louppe et al;

And much more in

Living Review of ML for Particle Physics ->

https://github.com/iml-wg/HEPML-LivingReview

Uncertanties in viscosities of QGP

Model predictions: from first principles to effective models – quest for consistency

Effective models of QGP using the same EoS predict completely different transport coefficients

Evolution of QGP: MUSIC setup

MUSIC:

$$M(x,y) = \int \tau_0 d\eta_s e(x,y,\eta_s) \cosh(\eta_s - y_{\rm CM}) \quad (12)$$
$$0 = \int \tau_0 d\eta_s e(x,y,\eta_s) \sinh(\eta_s - y_{\rm CM}). \quad (13)$$

We choose a symmetric rapidity profile parameterization w.r.t $y_{\rm CM}$ for the local energy density [11],

$$e(x, y, \eta_s; y_{\rm CM}) = \mathcal{N}_e(x, y)$$

$$\times \exp\left[-\frac{(|\eta_s - y_{\rm CM}| - \eta_0)^2}{2\sigma_\eta^2}\theta(|\eta_s - y_{\rm CM}| - \eta_0)\right].(14)$$

$f_{n_B}^A(\eta_s) = \mathcal{N}_{n_B} \left\{ \theta(\eta_s - \eta_{B,0}) \exp\left[-\frac{(\eta_s - \eta_{B,0})^2}{2\sigma_{B,\text{out}}^2}\right] + \theta(\eta_{B,0} - \eta_s) \exp\left[-\frac{(\eta_s - \eta_{B,0})^2}{2\sigma_{B,\text{in}}^2}\right] \right\}$ (17)

and

$$f_{n_B}^B(\eta_s) = \mathcal{N}_{n_B} \left\{ \theta(\eta_s + \eta_{B,0}) \exp\left[-\frac{(\eta_s + \eta_{B,0})^2}{2\sigma_{B,\text{in}}^2}\right] + \theta(-\eta_{B,0} - \eta_s) \exp\left[-\frac{(\eta_s + \eta_{B,0})^2}{2\sigma_{B,\text{out}}^2}\right] \right\}.$$
(18)

$\sqrt{s_{\rm NN}}$ (GeV)	$\tau_0 \; (\mathrm{fm}/c)$	η_0	σ_{η}	$\eta_{B,0}$	$\sigma_{B,\mathrm{in}}$	$\sigma_{B,\mathrm{out}}$
Au Au & d Au @ 200	1.0	2.5	0.6	3.5	2.0	0.1
Au Au & d Au @ 62.4	1.0	2.25	0.3	2.7	1.9	0.2
AuAu & dAu @ 39	1.3	1.9	0.3	2.2	1.6	0.2
AuAu@27	1.4	1.6	0.3	1.8	1.5	0.2
Au Au & d Au @ 19.6	1.8	1.3	0.3	1.5	1.2	0.2
AuAu@14.5	2.2	1.15	0.3	1.4	1.15	0.2
AuAu@7.7	3.6	0.9	0.2	1.05	1.0	0.1
PbPb@17.3	1.8	1.25	0.3	1.6	1.2	0.2
PbPb@8.77	3.5	0.95	0.2	1.2	1.0	0.1

C. Shen, S.Alzhrani, PRC 102 (2020) 1, 014909

DQPM: EoS

Entropy and baryon density in the quasiparticle limit (G. Baym 1998, Blaizot et al. 2001): edqp _ $n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3}$ $-\int \frac{d\omega}{2\pi} \frac{d^3 p}{(2\pi)^3} \left[d_g \frac{\partial n_B}{\partial T} \left(\operatorname{Im}(\ln - \underline{\Delta}^{-1}) + \operatorname{Im} \underline{\Pi} \operatorname{Re} \underline{\Delta} \right) \right]$ $+\sum_{q=u,d,s} d_q \; \frac{\partial n_F(\omega-\mu_q)}{\partial T} \left(\operatorname{Im}(\ln-\underline{S_q^{-1}}) + \operatorname{Im}\Sigma_{\underline{q}}\operatorname{Re}S_{\underline{q}} \right) \qquad \left| \sum_{q=u,d,s} d_q \; \frac{\partial n_F(\omega-\mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln-\underline{S_q^{-1}}) + \operatorname{Im}\Sigma_{\underline{q}}\operatorname{Re}S_{\underline{q}} \right) \right|$ $+\sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_{F}(\omega+\mu_{q})}{\partial T} \left(\operatorname{Im}(\ln-S_{\bar{q}}^{-1}) + \operatorname{Im}\Sigma_{\bar{q}}\operatorname{Re}S_{\bar{q}} \right) \right] + \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_{F}(\omega+\mu_{q})}{\partial \mu_{q}} \left(\operatorname{Im}(\ln-S_{\bar{q}}^{-1}) + \operatorname{Im}\Sigma_{\bar{q}}\operatorname{Re}S_{\bar{q}} \right) \right]$ $\bar{q} = \bar{u}.\bar{d}.\bar{s}$ 3.5 DQPM $N_{f} = 2 + 1$ Input: entropy density as a f(T, $\mu_B = 0$) 3.0 $\mu_{\rm B} = 0 \text{ DQPM2015}$ $g^2(s/s_{SB}) = d\left((s/s_{SB})^e - 1\right)^f$ 2.5 fix the parameters ິ 2.0 ອ $s^{DQPM}(\Pi, \Delta, S_q, \Sigma) = s^{lattice}$ 1.5 Scaling hypothesis for the crossover region at finite μ_B 1.0 $g^{2}(T/T_{c},\mu_{B}) = g^{2}\left(\frac{T^{*}}{T_{c}(\mu_{B})},\mu_{B}=0\right)$ with $T^{*} = \sqrt{T^{2} + \mu_{q}^{2}/\pi^{2}}$ 0.5 0.0 2 3 6 7 8 9 10 $T/T_{c}(\mu_{B})$

Speed of sound

EoS : for $\mu_B/T < 2$ agreement with IQCD for $\mu_B/T > 6$ agreement with pQCD

O. S., J. Aichelin and E. Bratkovskaya, PRD 105 (2022) 054011

Shear and bulk viscosities near the CEP

DQPM: EoS – crossover region

4

How to evaluate transport coefficient?

 Kubo formalism: transport coefficients are expressed through correlation functions of stress-energy tensor

used in lattice QCD, transport approaches(hadrons), effective models

Kinetic theory:

• Relaxation time approximation(RTA): consider relaxation time $\frac{df_a^{eq}}{dt} = C_a = -\frac{f_a^{eq}\phi_a}{\tau_a}$

G.S. Rocha, M. N. Ferreira, G. S. Denicol and J. Noronha, PRD 106 (2022) no.3, 036022

• Chapman-Enskog: expand the distribution in terms of the Knudsen number J. A. Fotakis et al, PRD 101 (2020) 7, 076007 (HRG)

And more!

Holographic models: AdS/CFT correspondence

D. T. Son and A. O. Starinets, JHEP 0603, 052 (2006)
M. Attems et al , JHEP 10 (2016), 155.
J. Grefa, M. Hippert, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti and R. Rougemont, PRD 106 (2022) no.3, 034024 <- near CEP and across the first-order line

Jet transport coefficient – significant E-dependence $2 \rightarrow 2$ and $2 \rightarrow 3$ partonic scatterings

$$egin{aligned} \langle \mathcal{O}
angle^{ ext{on}} &= & rac{1}{2E_i} \sum_{j=q,ar{q},g} d_j f_j \int rac{d^3 p_j}{(2\pi)^3 2E_j} \ & imes \int rac{d^3 p_1}{(2\pi)^3 2E_1} \int rac{d^3 p_2}{(2\pi)^3 2E_2} \ & imes (1\pm f_1)(1\pm f_2) \mathcal{O} |\overline{\mathcal{M}}|^2 (2\pi)^4 \delta^{(4)}(p_i+p_j-p_1-p_2) \end{aligned}$$

$$\mathcal{O} = |\vec{p_T} - \vec{p_T}'|^2 \to \langle O \rangle = \hat{q}$$
$$\mathcal{O} = (E - E') \to \langle O \rangle = dE/dx$$

Most energy loss implementations don't take this dependence into account

Grishmanovskii, T. Song, O.S., C. Greiner and E. Bratkovskaya, PRC 106 (2022) no.1, 014903

QGP in the Polyakov extended NJL model

- PNJL allows for prediction of macroscopic properties of QGP at finite \bm{T} and $\,\mu_{\bm{B}}$
- & QGP transport coefficients for $0 \le \mu_B \le 1.2$ GeV

> CEP: (T, μ_B) = (110,960) MeV, μ_B/T = 8.73

- ightarrow 1st order PT at high μ_B
- same symmetries for the quarks as QCD

Chiral masses
$$(\boldsymbol{M}_{l}, \boldsymbol{M}_{s})$$

 $m_{i} = m_{0i} - 4G\langle\langle \bar{\psi}_{i}\psi_{i}\rangle\rangle + 2K\langle\langle \bar{\psi}_{j}\psi_{j}\rangle\rangle\langle\langle \bar{\psi}_{k}\psi_{k}\rangle\rangle$

Improved thermodynamics by NNLO in Ω and Polyakov loop J. M. Torres-Rincon, J. Aichelin PRC 96 (2017) 4 045205 D. Fuseau, T. Steinernert, J. Aichelin PRC 101 (2020) 6 065203

PNJL relaxation times

Relaxation times(PNJL vs NJL)

4 point interaction -> meson exchange(π , σ , η , η , κ ,.. for s,t,u channels)

$$\Box \equiv \equiv \Rightarrow \equiv \exists = (i\gamma_5)\tau^{(-)}\frac{-ig_{\pi qq}^2}{k^2 - m_{\pi}^2}(i\gamma_5)\tau^{(+)}$$

meson propagator $\mathscr{D} = \frac{2ig_m}{1 - 2g_m \Pi_{ff'}^{\pm}(k_0, \vec{k})}$

Effective interaction in RPA

PNJL relaxation times

QGP in the Polyakov extended NJL model

PNJL model based on effective Lagrangian with the same symmetries for the quark dof as QCD

$$\begin{aligned} \mathscr{L}_{PNJL} &= \sum_{i} \bar{\psi}_{i} (iD - m_{0i} + \mu_{i} \gamma_{0}) \psi_{i} \\ &+ G \sum_{a} \sum_{ijkl} \left[(\bar{\psi}_{i} \ i\gamma_{5} \tau_{ij}^{a} \psi_{j}) \ (\bar{\psi}_{k} \ i\gamma_{5} \tau_{kl}^{a} \psi_{l}) + (\bar{\psi}_{i} \tau_{ij}^{a} \psi_{j}) \ (\bar{\psi}_{k} \tau_{kl}^{a} \psi_{l}) \right] \\ &- K \det_{ij} \left[\bar{\psi}_{i} \ (-\gamma_{5}) \psi_{j} \right] - K \det_{ij} \left[\bar{\psi}_{i} \ (+\gamma_{5}) \psi_{j} \right] \\ &- \mathcal{U}(T; \Phi, \bar{\Phi}) \qquad \text{Polyakov-loop effective potential fitted} \\ &\text{to the YM} \end{aligned}$$

Improvements:

Next to leading order in Nc(0(1/Nc)⁰) of the grand-canonical potential : presence of the mesons below Tc

$$\begin{split} \Omega_{\text{PNJL}}(T,\mu_i) &= \Omega_q^{(-1)}(T,\mu_i) + \sum_{M \in J^{\pi} = \{0^+,0^-\}} \Omega_M^{(0)}(T,\mu_M(\mu_i)) + \mathcal{U}_{glue}(T) \ , \\ \text{J. M. Torres-Rincon, J. Aichelin PRC 96 (2017) 4 045205} \\ \text{D. Fuseau, T. Steinernert, J. Aichelin PRC 101 (2020) 6 065203} \\ \end{split}$$

Modification of the gluon potential due to the presence of the quark

Specific shear viscosity to conductivity

