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Ab-initio calculations of temperature dependent
electronic structures of inorganic halide
perovskite materials†

Milan Jocić and Nenad Vukmirović *

Despite wide interest in halide perovskite materials, it is still challenging to accurately calculate their

electronic structure and its temperature dependence. In this work, we present ab-initio calculations of the

temperature dependence of the electronic structure of CsPbX3 materials (X = Cl, Br or I) in the cubic form

and of the zero temperature electronic structure of the orthorhombic phase of these materials. Phonon-

induced temperature dependent band energy renormalization was calculated within the framework of

Allen–Heine–Cardona theory, where we exploited the self-consistent procedure to determine both the

energy level shifts and their broadenings. The phonon spectrum of the materials was obtained using the

self-consistent phonon method since standard density functional perturbation theory calculations in

harmonic approximation yield phonon modes with imaginary frequencies due to the fact that the cubic

structure is not stable at zero temperature. Our results suggest that low energy phonon modes mostly

contribute to phonon-induced band energy renormalization. The calculated values of the band gaps at

lowest temperature where the material exhibits a cubic structure are in good agreement with experimental

results from the literature. The same is the case for the slope of the temperature dependence of the band

gap for the CsPbI3 material where reliable experimental data are available in the literature. We also found

that phonon-induced temperature dependence of the band gap is most pronounced for the conduction

band minimum and valence band maximum, while other bands exhibit a weaker dependence.

1 Introduction

Halide perovskite materials emerged in the last decade as
revolutionary materials for applications in solar cells,1–4

lasers,5 light-emitting diodes,6,7 photodetectors,8,9 detectors of
ionizing radiation,10,11 thermoelectric12 and other devices.13 To
understand the characteristics of these devices and to design
improved materials and devices, it is essential to be able to
predict the electronic structure of the material. Despite great
interest in understanding the electronic structure of halide
perovskites and numerous developments of the methods for
electronic structure calculations and the software for performing
such calculations, it is still rather challenging to accurately
determine the electronic structure of halide perovskites.

It is currently well understood that in electronic structure
calculations of halide perovskites one has to take into account
the effects of spin–orbit interactions due to the presence of

heavy atoms such as lead.14–16 As in the case for many other
semiconductors, standard local or semilocal approximations to
density functional theory (DFT) underestimate the material band
gap14–16 and more sophisticated approaches, such as the use of
GW approximation17–19 or hybrid functionals,20,21 are necessary.

A group of challenges arises when it comes to predicting the
electronic structures of halide perovskites at room or higher
temperatures which are relevant for application in the men-
tioned devices. Temperature effects on the band gap and the
overall electronic structure of perovskites are rather
pronounced22–28 and one cannot simply consider the electronic
structure calculated for fixed atoms in a crystal lattice as the
electronic structure at higher temperatures.

The most successful theory for determining the temperature
effects on the electronic structure of semiconductors is the
Allen–Heine–Cardona theory.29–31 Within this theory, one
expands the Hamiltonian up to second order terms in atomic
displacements from the equilibrium position and perturbatively
evaluates the change in band energies. In conjunction with the
methods for the electronic structure calculation for fixed atomic
positions, this theory was used to study the temperature depen-
dence of the band gap and zero temperature band gap renormaliza-
tion in a variety of semiconductors.31–36 However, this theory can be
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straightforwardly applied to a particular material only if its crystal
structure at a given temperature is the same as at zero temperature.

The last condition is not fulfilled in halide perovskite materials.
Inorganic halide perovskite materials CsPbX3 (X = Cl, Br or I) that
are of main interest in this work exhibit a cubic structure at high
temperatures only.37–42 As the temperature is lowered, they trans-
form into a tetragonal structure and finally to an orthorhombic
structure.37–40 Therefore, the cubic structure is not a stable struc-
ture at zero temperature. When one attempts to calculate the
phonon dispersion in the material by assuming a cubic structure
at zero temperature, phonon modes of imaginary frequencies are
obtained40,43–45 and it is not clear how to treat such phonons
within the Allen–Heine–Cardona theory.

Previous studies on the effects of temperature on halide
perovskite semiconductors have not addressed other bands than
the conduction band minimum (CBM) and the valence band
maximum (VBM). While these two bands are most relevant for
the determination of the band gap of the material, there is
significant interest in knowing the energies of the other bands.
These are important, for example, to understand the optical
response of the material in the ultraviolet spectral range relevant
for ultraviolet detectors.9 On the theoretical side, the knowledge
of band energies at characteristic points in the Brillouin zone is
necessary to construct multiband Hamiltonians46–49 that can
further be used to predict the electronic states in halide per-
ovskite nanostructures. While the renormalization of energies of
the other bands can in principle be obtained in the same way as
for CBM and VBM within Allen–Heine–Cardona theory, certain
issues, related to the energy level broadening parameter d, arise.
On the one hand, band renormalization for other bands con-
verges linearly with respect to d when d - 0 in contrast to
Lorentzian convergence of CBM and VBM,32 which makes it
more challenging to obtain the convergence of other bands. On
the other hand, other bands typically exhibit larger broadening
of energy levels compared with the CBM and VBM. Conse-
quently, it is questionable if one should evaluate the d - 0
limit for other bands at all. Preferably, the broadening of the
energy levels should be evaluated simultaneously with the band
energy renormalization.

In this work, we perform electronic structure calculations of
the temperature dependence of the band gap and band energies
for halide perovskite materials CsPbX3 (X = Cl, Br or I) in a cubic
crystal structure. Electronic structure calculations (without the
effects of phonon-induced band renormalization) are performed
using a hybrid functional that satisfies the Koopmans condition.
The challenge of treating phonons within the Allen–Heine–
Cardona theory is overcome by performing phonon band struc-
ture calculations at a finite temperature within the framework
of self-consistent phonon (SCPH) theory, where all phonon
modes remain stable. The challenge of the choice of energy
level broadening is overcome by performing the calculation in
which energy levels and their broadening are determined self-
consistently. We compare the obtained temperature dependence
of the band gap for the cubic structure to experimental results
from the literature. We also perform calculations of the ortho-
rhombic structure at zero temperature and comment on the

overall temperature dependence of the band gap of CsPbX3

materials from zero to high temperatures.
This paper is organized as follows. In Section 2, we present

the main methods that were used in this work. Allen–Heine–
Cardona theory is briefly reviewed in Section 2.1 along with the
description of the two approaches that were used to calculate
phonon-induced band energy renormalization within this theory.
The SCPH method is reviewed in Section 2.2. In Section 3 we
present the results obtained and the details of the calculations.
We start with the results obtained using standard density func-
tional theory (DFT) calculations with semilocal functionals that
are presented in Section 3.1. In Section 3.2 we present the results
obtained using a hybrid functional that gives improved values of
the material band gap. Density functional perturbation theory
(DFPT) based calculations of the phonon spectrum are reported in
Section 3.3, while SCPH calculations of the phonon spectrum are
presented in Section 3.4. In Sections 3.5 and 3.6 we present the
main results of this work for the temperature dependence of
renormalization of band energies, while we compare the results
obtained with experiments in Section 3.7. We close the paper with
a discussion and conclusions in Section 4.

2 Methods
2.1. Allen–Heine–Cardona theory

In this section, we briefly review the Allen–Heine–Cardona theory
that describes phonon-induced band gap renormalization in semi-
conductor materials and present the procedure for self-consistent
calculation of phonon-induced renormalization of band energies
and their broadenings. The Hamiltonian of the system is given as

H = Hel + Hph + Hel–ph. (1)

The first term

Hel ¼
X
kn

eknĉ
y
knĉkn; (2)

describes the electrons, where ĉykn and ĉkn are creation and annihi-
lation operators, respectively, of an electron with wave vector k and
electronic band n whose energy is ekn. The second term

Hph ¼
X
qn

�hoqn âyqn âqn þ
1

2

� �
(3)

describes the phonons, where âyqn and âqn are phonon creation and

annihilation operators, respectively, of a phonon with wave vector q
and phonon mode n whose angular frequency is oqn. The third
term Hel–ph is the Hamiltonian of the electron–phonon interaction.
By including the terms up to second order with respect to atomic
displacements, it takes the form

Hel-ph ¼ 1

N
1=2
q

X
knm

X
qn

gFannm;nðk; qÞĉ
y
kþqmĉknðâ

y
�qn þ âqnÞ

þ 1

Nq

X
knm

X
qq0nn0

gDW
nm;nn0 ðk; q; q0Þĉ

y
kþqþq0mĉkn

� ðây�qn þ âqnÞðây�q0n0 þ âq0n0 Þ;

(4)
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where gFannm,n(k,q) and gDW
nm;nn0 ðk; q; q

0Þ are first order Fan and second

order Debye–Waller matrix elements of electron–phonon inter-
actions and Nq is the number of points in reciprocal space. The
first order Fan matrix element is given as:

gFannm;nðk; qÞ ¼
X
ka

�h

2Mkoqn

� �1=2

� kþ qnh j @VSCF

@RkaðqÞ
kmj ixka;nðqÞeiq�Rk

(5)

where
@VSCF

@RkaðqÞ
and xka,n(q) are the perturbation of the Kohn–Sham

potential due to nuclear displacement and the phonon eigenvector,
respectively, describing the displacement of atom k with mass Mk

at position Rk in Cartesian direction a corresponding to phonon
vector (mode) q (n). The self-energy stemming from the first term in
eqn (4) reads

SFan
kn ðo;TÞ ¼ 1

Nq

X
m;qn

gFannm;nðk;qÞ
��� ���2

� nqnðTÞþ1� fkþqm

o�ekþqm�oqnþ id
þ nqnðTÞþ fkþqm

o�ekþqmþoqnþ id

� �

(6)

where nqn(T) is the Bose–Einstein occupation factor at a tempera-
ture T, fk+qm is the Fermi–Dirac occupation factor and d is a positive
infinitesimal. The self-energy from the second term in eqn (4) takes
the form

SDW
knmðTÞ¼ 1

Nq

X
qn

gDW
nm;nnðk;q;�qÞð2nqnðTÞþ1Þ; (7)

where the second order electron–phonon matrix elements gDWnm,nn

(k, q, �q) from eqn (7) can be expressed in terms of first order
electron–phonon matrix elements by making use of translational
invariance and rigid-ion approximation.29,50

The renormalization of energy levels can be calculated from
the self-energies. Within the so-called on-the-mass-shell
(OTMS) approximation,51 the renormalized energy of band n
at point k in the Brillouin zone is

Ekn(T) = ekn + ReSFan
kn (ekn,T) + ReSDW

kn (T). (8)

As discussed in the Introduction, there are challenges in
obtaining converged results for band energy renormalization
for bands other than VBM and CBM using eqn (6), (7) and (8).
The convergence with respect to energy level broadening para-
meter d as d - 0 is a slow linear convergence32 and hence one
needs to use rather small d, which in turn requires a large
number of q-points in the summation. The broadening of the
energy levels obtained from the imaginary part of the self-energy
is on the order of 100 meV or more. It is therefore questionable if
the d - 0 limit is relevant at all. It is certainly more appropriate
to self-consistently determine the renormalization and broad-
ening of the energy levels. This can be achieved as follows. We

note first that the terms
1

o� ekþqm � oqn þ id
in eqn (6) repre-

sent the retarded Green’s function of a bare electron G(0)
k+qm(o �

oqn), while eqn (6) is the self-energy in the so-called Migdal
approximation. A more accurate approximation is the self-
consistent Migdal approximation where the bare Green’s func-
tion G(0) is replaced with the dressed Green’s function G. Eqn (6)
then takes the form

SFan
kn ðoÞ ¼ 1

Nq

X
m;qn

gFannm;nðk; qÞ
��� ���2

� ðnqnðTÞ þ 1� fkþqmÞGkþqmðo� oqnÞ
�

þ ðnqnðTÞ þ fkþqmÞGkþqmðoþ oqnÞ
�
:

(9)

One can in principle determine the Green’s function, the self-
energy, the spectral function and hence the energy level renor-
malization and broadening by self-consistently solving eqn (9)
and the Dyson equation. However, this requires evaluation of all
these quantities at wave vectors throughout the whole Brillouin
zone in each step of the self-consistent procedure, which is a
highly demanding computational task. A significant simplifica-
tion that decouples different kn states can be made as follows.
We first note that the Green’s function in eqn (9) is given as

GkþqmðoÞ ¼
1

o� ekþqm � SkþqmðoÞ
: (10)

We then make a replacement Sk+qm(o) - Skn(o) in the
previous equation (where Skn(o) = SFan

kn (o) + Skn
DW). This replace-

ment is justified by the fact that the dominant contribution to
the sum in eqn (9) comes from the terms in the sum that have
m = n and a small value of q. For such terms Sk+qm(o)E Skn(o).
It is therefore appropriate to replace the self-energy for all
terms in the sum with the self-energy of the dominant terms.
The expression for SFan

kn then reads

SFan
kn ðoÞ ¼ 1

Nq

X
m;qn

gFannm;nðk; qÞ
��� ���2

� nqnðTÞ þ 1� fkþqm

o� ekþqm � oqn � Sknðo� oqnÞ

�

þ nqnðTÞ þ fkþqm

o� ekþqm þ oqn � Sknðoþ oqnÞ

�
:

(11)

It is important to note that eqn (11) does not contain the
self-energies of the states other than kn, which is a conse-
quence of the approximation used for Sk+qm(o). The self-energy
SFan
kn (o) can now be obtained using a self-consistent procedure

as follows. One starts with an initial guess for Skn(o) and
evaluates SFan

kn (o) using eqn (11) and the total self-energy as
the sum of the Fan and the Debye–Waller term. A new value of
SFan
kn (o) is then calculated again using eqn (11) and the proce-

dure is repeated until the convergence of SFan
kn (o) is reached.

The spectral function is then obtained as

AknðoÞ ¼ �1

p
Im

1

o� ekn � SknðoÞ
(12)

and the renormalized energy Ekn is obtained as the energy omax

at which the spectral function reaches a maximum. The spec-
tral function Akn(o) represents the probability density that an
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electron of momentum k in band n has the energy o. We note
that our procedure for evaluation of renormalized energies is
similar in spirit to the procedure suggested in ref. 50 (Eq. 166
therein), where approximations that also lead to decoupling of
different kn states were used. The difference between these
procedures is that we consider the full frequency dependence of
self-energies rather than the energy of the renormalized state
and its broadening only.

In Section 3, we will present the results obtained using both
of the mentioned approaches. The results obtained from
eqn (8) with self-energies given by eqn (6) and (7) will be
referred to as OTMS results, while the results obtained using
eqn (12) and self-consistent solution of eqn (11) will be referred
to as the self-consistent procedure (SCP) results.

We note that it is rather challenging to treat the electron–
phonon interaction in real materials beyond the approximations
mentioned. These approximations all contain the assumption
that the electron–phonon interaction is not too strong. Full
nonperturbative treatment of electron–phonon interactions has
so far only been performed for model Hamiltonians, such as the
Holstein or Fröhlich model. In a recent study of the Holstein
model52 it was shown that for relatively weak electron–phonon
coupling the spectral functions in the Migdal and self-consistent
Migdal approximation are similar to the spectral functions
obtained using more advanced approaches, such as the cumu-
lant expansion method and the dynamical mean field theory.
Moreover, self-consistent Migdal approximation performs over-
all only somewhat worse than the cumulant expansion method,
which is not the case for the Migdal approximation that gives
inaccurate results starting from moderate values of electron–
phonon coupling. Based on the knowledge gained from the
Holstein model, we can infer about the accuracy of the OTMS
and SCP results for real perovskite materials. It is expected that
the SCP results which are based on the self-consistent Migdal
approximation should in principle be more accurate than the
OTMS results which are based on the Migdal approximation. On
the other hand, it will be shown in Section 3 that OTMS and SCP
results are not too different. This suggests that we are in the
regime where electron–phonon coupling is relatively weak,
where it is appropriate to apply either the Migdal or the self-
consistent Migdal approximation.

We also note that in both the OTMS and SCP approach,
as typically done in the literature,50 we were evaluating only
the diagonal (intraband) self-energies Skn(o) and not the off-
diagonal (interband) self-energies Sknm(o) (with n a m). In the
case of the OTMS approach one is actually interested in diagonal
self-energies only because they directly determine the band
energy renormalization, see eqn (8). On the other hand, intro-
duction of off-diagonal self-energies in the SCP approach would
strongly increase the computational burden of the whole proce-
dure. On physical grounds, it should be noted that band energy
renormalization due to interband electron–phonon scattering
processes is already described by the diagonal self-energies
[via the man terms in the sum in eqn (6)]. Hence, inclusion
of non-diagonal self-energies would represent only a higher
order effect.

2.2. The self-consistent phonon method

Since the standard approach based on the use of harmonic
approximation and DFPT is not sufficient to describe phonons
in cubic CsPbX3 materials, a more sophisticated approach is
needed. We therefore use the self-consistent phonon method
following the methodology and the implementation of ref. 53.
In this section, we briefly review the main ideas of the method
and its implementation.

In the Born–Oppenheimer approximation, the dynamics of
lattice ions is described by the Hamiltonian H = T + U, where T is
their kinetic energy, while U is the potential energy which is a
function of the displacements from the equilibrium position.
The potential energy can be expanded as U = U0 + U2 + U3 + U4+
. . ., where the term Un is of n-th order with respect to atomic
displacements and the term U1 is missing because it contains
forces which are zero in equilibrium. Keeping the terms U0 and
U2 only is the standard harmonic approximation. In this case,
phonon frequencies are obtained from diagonalization of the
corresponding dynamical matrix.

To obtain the phonon frequencies in a general case when
the terms beyond U2 are included, one can make use of many
body Green’s function theory. The Hamiltonian is divided into
H = H0 + H1 where H0 = T + U0 + U2 is the harmonic part of the
Hamiltonian whose solution is known, while the anharmonic
terms H1 = U3 + U4 + . . . constitute the interaction part. The
phonon Green’s function G0 for the Hamiltonian H0 is known,
while the Dyson equation relates G0, the phonon Green’s func-
tion G of the Hamiltonian H and the self-energy S. The Dyson
equation has to be complemented with the equation for self-
energy. The self-energy is in principle given by a diagrammatic
expansion involving an infinite number of Feynman diagrams.

Fig. 1 Comparison of experimental and theoretical results for the elec-
tronic gap for CsPbX3 (X = Cl, Br or I) calculated without taking tempera-
ture effects into account. The line x = y represents the experimental results
for the lowest temperature of the cubic structure. The symbols denote
calculated values for the cubic structure using the PBE (PBEsol) functional
for CsPbI3 (CsPbCl3 and CsPbBr3) (inverted triangles) and PBE0 functional
modified to satisfy the Koopmans condition (diamonds).
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In practice one selects only the most relevant diagrams for the
problem at hand. To obtain the renormalized phonon frequen-
cies, it turns out that the most relevant diagram is the loop
diagram originating from the quartic term U4 (shown in Fig. 1(a)
in ref. 53). The Green’s function and the self-energy can then be
found self-consistently and the renormalized phonon frequency
is determined from the pole of the Green’s function.

To perform the calculation within the SCPH method, one also
has to obtain all relevant force constants that appear in the Un

terms in the expansion of U. The second order force constants are
obtained from supercell density functional theory calculations
and the finite displacement method. While the finite displace-
ment method can in principle be used to obtain higher order
force constants, a different strategy yields more stable results
for the force constants. Namely, finite-temperature ab-initio
molecular dynamics calculations are performed to obtain various
atomic configurations and the corresponding total energy and
forces in these configurations. The force constants that appear in
anharmonic terms in U are then fitted to the data obtained, where
great care has to be taken to avoid overfitting the data. Details of
the full calculation protocol are reported in Section 3.4.

3. Results and calculation details
3.1. Density functional theory calculations with semilocal
functionals

As a first step, we performed density functional theory calcula-
tions of the electronic structure of the CsPbX3 materials using
the semilocal PBEsol54 functional in the case of CsPbCl3 and
CsPbBr3, while the PBE functional55 was used in the case of
CsPbI3. Calculations were performed using the plane-wave code
Quantum Espresso.56,57 Norm-conserving fully relativistic
pseudopotentials58,59 were used to treat the effect of core elec-
trons. The effects of spin–orbit interaction were included. The
wave functions were represented on a 4 � 4 � 4 reciprocal space
k- point grid with a kinetic energy cutoff of 50 Ry for CsPbCl3 and
CsPbBr3 and a cutoff of 40 Ry for CsPbI3. We note that a different
functional was used for CsPbI3 because the gap obtained using
the PBEsol functional at the optimized lattice constant obtained
from this functional is nearly zero, which prevents the use of this
functional in further DFPT calculations.

The optimized lattice constants for the cubic structure
obtained from the calculations are respectively 10.6 a0, 11.1 a0
and 12.1 a0 (in units of first Bohr radius a0 for CsPbCl3, CsPbBr3
and CsPbI3). We note that the lattice constants obtained for
CsPbCl3 and CsPbBr3 are in excellent agreement with the
experimental lattice constant at the lowest temperature where
the material exhibits a cubic structure (which are 10.59 a0 at
320 K for CsPbCl3 and 11.10 a0 at 403 K for CsPbBr3, see ref. 42).
This agreement is reasonable in the case of CsPbI3 (experimental
lattice constant is 11.67 a0 at 300 K, see ref. 60) and would be
better if the PBEsol functional, which gives the lattice constant of
11.8 a0, was used. However, as noted before, the use of PBEsol
functional for CsPbI3 closes the gap of the material and hence
this functional was not used for CsPbI3. While the agreements

obtained are somewhat fortuitous because standard DFT calcu-
lations are performed at zero temperature, the lattice constants
obtained were used in further calculations because they are in
good agreement with experimental lattice constants. The direct
band gaps at the R-point obtained for CsPbCl3, CsPbBr3 and
CsPbI3 are respectively 0.59 eV, 0.22 eV and 0.21 eV. These gaps
are well below the experimental band gaps, see Fig. 1. This is
expected because it is well known that semilocal functionals
underestimate the band gap.61

We also performed calculations for the orthorhombic structure
of the CsPbX3 material that is stable at zero temperature. The
coordinates of the initial structure were taken from The Materials
Project website62 as structures numbered 675524, 567629, and
1120768 for CsPbCl3, CsPbBr3 and CsPbI3, respectively, and were
further relaxed (cif files for the initial and relaxed structures are
included in the ESI†). The CsPbCl3 orthorhombic structure corre-
sponds to space group number 38 (Amm2) with 10 atoms per
primitive cell, while CsPbBr3 and CsPbI3 orthorhombic structures
both correspond to space group number 62 (Pmna) with 20 atoms
per primitive cell. The same density functionals, k-point grid
dimension, and the plane wave kinetic energy cutoff were used
as in the case of the cubic structure. We used the PBEsol
functional for optimization of atomic coordinates and dimen-
sions of the unit cell for all three materials (since the gap of
orthorhombic CsPbI3 does not close when the PBEsol functional
is used in the calculation). The calculations were performed using
the Quantum Espresso code56,57 with variable cell relaxation
option. The band gaps obtained for orthorhombic CsPbCl3,
CsPbBr3 and CsPbI3 are respectively 1.1 eV, 0.83 eV and 0.62 eV.

3.2. Hybrid functional calculations

To overcome the band gap problem of semilocal functionals, we
performed the electronic structure calculation using a hybrid
functional. In particular, wemake use of the PBE0 functional63,64

whose parameter a is chosen to satisfy the Koopmans condition.
We used the values of a for CsPbX3 materials that were calcu-
lated in ref. 65. Hybrid functional calculations were also per-
formed using the Quantum Espresso code.56,57,66 The calculation
parameters common to standard semilocal DFT calculation were
set to the same values. In addition, for cubic structures a 4� 4 �
4 reciprocal q- points grid was used to sample the Fock operator
and the Gygi-Baldereschi method67 was used to treat the singu-
larity at q - 0. For orthorhombic structures that have a larger
unit cell than cubic structures, 3 � 3 � 2 k- and q-points grids
were used in the case of CsPbBr3 and CsPbI3, while we used 4 �
4 � 4 k- and q-points grids for CsPbCl3.

In hybrid functional calculations, we obtain the values of
2.4 eV, 1.5 eV and 0.96 eV for the band gap of cubic CsPbCl3,
CsPbBr3 and CsPbI3. These values are closer to experimental
values than the values obtained from semilocal functionals.
However, these values are still smaller than the experimental
band gaps, see Fig. 1. This result indicates that temperature
effects might play a significant role and that it is important to
investigate them.

In the case of orthorhombic structures, we obtain band gaps
of 3.0 eV, 2.4 eV and 1.5 eV, respectively for CsPbCl3, CsPbBr3
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and CsPbI3. These results are in good agreement with experi-
mental gaps of the low-temperature orthorhombic structures,
which are 3.056 eV for CsPbCl3 (ref. 68), 2.25 eV for CsPbBr3
(ref. 69) and 1.72 eV for CsPbI3 (ref. 70).

3.3. Density functional perturbation theory calculations of the
phonon band structure

To take into account the effect of temperature on the electronic
band structure, it is necessary to calculate the phonon frequencies
and eigenvectors and the electron–phonon coupling constants.
For this reason, we perform DFPT calculations of phonons in
harmonic approximation. The same density functional, kinetic
energy cutoff and the reciprocal space k-point grid were used as in
DFT calculations. The calculations were performed using the
ABINIT code.71–74

The phonon band structures obtained from calculations for
cubic CsPbX3materials are presented in Fig. 2 (dashed line), where
phonons with imaginary frequencies are presented using negative
values. Since the cubic structure is not stable at zero temperature,
there is a significant number of phonon modes with imaginary
frequencies. It is therefore a challenge to include such modes in
the calculation of phonon-induced band renormalization.

3.4. Calculation of phonon band structure within the
self-consistent phonon method

Standard DFPT calculations of the phonon band structure
assume zero temperature and the harmonic approximation.
As discussed in Section 3.3, this leads to phonon modes with
imaginary frequencies for the cubic structure. To overcome this
issue, one has to take into account the anharmonic effects and
the effects of temperature. This can be naturally accomplished
using the self-consistent phonon method.53,75

The calculations based on the SCPH method were per-
formed using the following protocol. The calculations were
performed using the ALAMODE code,53,76 while DFT calcula-
tions and ab-initio molecular dynamics simulations were per-
formed using the Quantum Espresso code.56,57 One first has to
obtain all relevant force constants. (i) Harmonic force constants
were obtained by performing the DFT calculation of 2 � 2 � 2
cubic supercells, where a shifted 4 � 4 � 4 k-point grid was
employed. Other parameters of the DFT calculation are the
same as in Section 3.1. An atom is displaced by 0.01 Å in a
certain direction and new atomic forces are calculated. The
harmonic force constants are then obtained from these forces
using a least squares fit implemented in the ALAMODE code.
(ii) To obtain anharmonic force constants, we first generate
representative atomic structures which will be used for evalua-
tion of forces and subsequent force constant fitting. We per-
form 2000 steps of NVT ab-initio molecular dynamics at a
temperature of 500 K with a timestep of 2 fs for a 2 � 2 � 2
cubic supercell. To gain computational speed in this calculation
we reduce the kinetic energy cut-off to 30 Ry and we use the
k-point grid consisting of the G point only. This is justified in
this place, since the goal is only to obtain configurations where
atoms are displaced from their equilibrium positions, rather
than to extract physical quantities from the molecular dynamics

simulation. We then select 30 snapshots from the simulation
which are equally spaced from timestep 500 to timestep 2000.
(iii) For the snapshots obtained, we additionally displace each
atom by up to 0.1 Å in each direction. For these 30 snapshots, we
accurately compute the atomic forces from DFT by using 50 Ry
kinetic energy cutoff and a shifted 4 � 4 � 4 k-point grid. (iv)
With the forces obtained we perform fitting of the force con-
stants using the adaptive LASSO method, following ref. 53 and
77. In the fitting, we put a restriction that fourth order force
constants are zero beyond third neighbor atoms, that the fifth
and sixth order constants are nonzero for nearest neighbors only
and that higher order constants are equal to zero. (v) The force
constants obtained in the previous step are used as an input for
the SCPH method calculation. In the SCPH method calculation,
we neglect the off-diagonal elements of the self-energy and use a
4 � 4 � 4 grid to represent the self-energy in reciprocal space.

The phonon band structure obtained from the SCPH method
is presented in Fig. 2. We obtain phonon frequencies that are
non-negative throughout the whole Brillouin zone. We also find
that with an increase of temperature, a small but non negligible
shift in frequencies is present. These shifts are negative for the
three highest bands and positive for the rest. We will see in
Section 3.5 that these shifts are large enough to have a signifi-
cant contribution to the renormalization of electronic bands.

3.5. Band energy renormalization calculations using the
OTMS approach

In this section, we present the results for band energy renor-
malization calculations of cubic CsPbX3 materials obtained
using the OTMS approach. The calculations, in this and in
the following section, were performed using our own code
which takes DFPT results from the ABINIT code.71 These results
include variations of the Kohn–Sham potential with respect to
ionic displacements and the interatomic force constants, that
are then used to calculate first and second order matrix
elements of electron–phonon interaction. In all band energy
renormalization calculations bare band energies that appear in
eqn (6) and (7) were taken from DFT calculations reported in
Section 3.1.

To make sure that the results obtained are reliable one has
to take enough q-points in the summations in eqn (6) and (7)
and one has to check the sensitivity of the results to the value of
the parameter d in eqn (6). It has been shown in ref. 32 that the
band energy renormalization for polar materials converges as
1

Nq
with the number of points Nq and that a Lorentzian type

convergence for CBM and VBM energies of polar materials is
obtained while decreasing d.

In ref. 22 phonon modes obtained within the harmonic
approximation were used, however, the phonon modes with
imaginary frequencies were simply disregarded. In this
approach it remains unclear whether one should disregard
only the phonons at certain q-points where their frequency
becomes imaginary or one should disregard the whole phonon
mode that produces an imaginary frequency in at least one
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point in the Brillouin zone. To understand whether the approach
where imaginary phonon frequencies are discarded can provide
reasonably good results, we performed the convergence tests
with respect to Nq and d in three cases: (i) assuming phonon
frequencies from DFPT and disregarding the contribution from
phonons with imaginary frequencies; (ii) assuming phonon
frequencies from DFPT and disregarding the contribution from
the whole phonon bands that exhibit imaginary frequencies at
any q-point; (iii) assuming phonon frequencies obtained from
the SCPH method. These three cases will be referred to as cases
(i), (ii) and (iii) in what follows.

In Fig. 3 we present the results for band gap renormalization
obtained using the OTMS approach in each of these cases.
We see that in case (i) the behavior with respect to Nq is not
convergent and one obtains unphysically large band gap renor-
malizations. In this case several phonon bands cross zero energy
at several different points in the Brillouin zone (see the left
column in Fig. 2), which leads to divergence of Fan matrix
elements due to the oqn term in the denominator, see eqn (5).
The convergence is better in case (ii) when such phonon bands
are simply disregarded, however one obtains band gap renorma-
lization which is underestimated with respect to case (iii). In case
(iii), we obtain convergence with respect to d and Nq.

In Fig. 4 we decompose the CBM and VBM renormalization
into contributions from phonons of different energies. Most of the
contributions come from the region where the density of phonon
states is the highest and these contributions come mostly from
lower bands. Lower energy phonons also tend to have larger
electron–phonon coupling matrix elements due to the oqn term
in the denominator in eqn (5). This fact also contributes to
prevalent contribution of lower energy phonons to band energy
renormalization. Since most of these lower energy phonons turn

into imaginary frequency phonons within the DFPT calculation,
the results obtained in case (ii) are underestimated in comparison
to the results in case (iii). We also analyzed the contributions of the
first order Fan and second order Debye–Waller terms in eqn (8) to
band energy renormalization. In line with previous literature
results for other materials,29,78 we find that these two terms have
opposite signs and that both of these terms have significant
absolute values, see Fig. S22 in the ESI.† For these reasons,
accurate calculation of each of these terms is necessary to obtain
reliable final results for band energy renormalization.

Next, we discuss the linearity of the temperature dependence
of the band gap renormalization. One can notice from eqn (8)
[with self-energies given by eqn (6) and (7)] that the temperature
dependence originates only from the Bose term in these equa-
tions. When phonon energies are small the temperature depen-
dence of the Bose term is linear. As a consequence, the
temperature dependence of band energy renormalization is also
linear in case (ii), as can be seen in Fig. 4. On the other hand, in
case (iii) the phonon frequencies also depend on temperature
and the temperature dependence of the band gap is determined
by the ratio of the Bose term (which contains temperature
dependent phonon frequency) and the phonon frequency [which
comes from the Fan matrix element, see eqn (5) and (6)]. The
Bose term increases the gap with temperature as in case (ii),
however, most of the temperature dependent frequencies (espe-
cially the ones where the density of phonon states is the largest)
increase with temperature. They then tend to decrease the
renormalization, which leads to nonlinear dependence in case
(iii), as seen in Fig. 4.

Our final result for temperature dependence of the band gap
of the investigated materials using the OTMS approach is
among the results presented in Fig. 5. For the reasons

Fig. 2 Phonon dispersion (left column) and phonon density of states (in arbitrary units) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) obtained
using the SCPH method at T = 400 K (solid line) and T = 700 K (dot-dashed line), as well as using DFPT with harmonic approximation (dashed line).
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Fig. 3 Dependence of band gap renormalization obtained using the OTMS approach on the number of q-points Nq and on the small parameter d
(whose value is specified in the legend) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) materials at T = 400 K. The column labeled as PHCUT0
denotes the result obtained assuming phonon frequencies from DFPT and disregarding the contribution from phonons with imaginary frequencies [case
(i) discussed in the text], while the column labeled as PHCUT6 denotes the results obtained assuming phonon frequencies from DFPT and disregarding
the contribution from the whole bands that exhibit imaginary frequencies at any q-point [case (ii) in the text]. The column labeled as SCPH denotes the
result obtained by taking phonon frequencies from the SCPH method [case (iii) in the text].

Fig. 4 Contributions from phonons of different frequencies to VBM (left column) and CBM (middle column) renormalization at T = 400 K and
temperature dependent gap renormalization (right column) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) obtained using the OTMS approach.
The results in case (ii) are shown as filled bins, while the results in case (iii) are shown as transparent bins. The value of each bin b(oi) represents the
contribution of all phonons with frequencies from the range (oi � Do/2, oi + Do/2) to band energy renormalization, so that DEkn = Sib(oi). Filled circles in
the right column correspond to case (ii), while empty deltoids correspond to case (iii).
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previously discussed, these results and all subsequent results
were obtained by taking the phonon frequencies obtained from
the calculation based on the SCPH method. In all calculations
reported in this and the next section renormalized band energies
were obtained by adding the phonon-induced renormalization to
the band energies calculated using the hybrid functional as
described in Section 3.2. The results at temperatures lower than
the temperatures where the cubic structure exists are blurred.

The OTMS approach can be used in principle to determine
the renormalization of bands other than the CBM and the VBM.
As discussed in the introduction and Section 2.1, band renor-
malization for other bands exhibits a slow linear convergence
with respect to d when d - 0 in contrast to Lorentzian
convergence of CBM and VBM. As a consequence, one has to
go to rather small values of d to reach convergence. However, for
small values of d, large values of Nq are needed, which introduces
a large computational burden. We illustrate this behavior in
Fig. S1, Fig. S9 and Fig. S14 in the ESI,† for the cases of
CsPbCl3, CsPbBr3, and CsPbI3, respectively. For larger values of
d (100 meV and 50 meV in the figure) good convergence with
respect toNq is achieved but the result still depends on d and one
therefore needs to go to smaller d to achieve convergence with
respect to d. However, for smaller values of d (10 meV and
1 meV), convergence with respect to Nq could not be achieved
with grids up to 20 � 20 � 20. As also discussed in the
introduction and Section 2.1, it is questionable whether the
limit d - 0 of the energy level broadening parameter gives
accurate results given the fact that the energy levels of higher
bands can exhibit significant broadening. For all these reasons,
it is more desirable to self-consistently determine the energy
level broadening. These results are the subject of Section 3.6.

3.6. Band energy renormalization calculations using the SCP
approach

We now present the results for band energy renormalization
obtained using the SCP approach. The frequency dependence of
the self-energy and the spectral function for several bands at the
R point in the case of the CsPbBr3 material at T = 400 K is
presented in Fig. 6 (the same results for CsPbCl3 and CsPbI3 are
presented respectively in Fig. S4 and S17 in the ESI†). We denote
the bands in ascending order of energies at the R point as VBM4
(2�), VBM3 (4�), VBM2 (2�), VBM1 (4�), VBM (2�), CBM (2�),
CBM1 (4�), CBM2 (2�), CBM3 (2�), and CBM4 (4�), where the
numbers in brackets denote their degeneracy. The spectral
functions of the CBM and VBM are relatively narrow and
symmetric, while the spectral functions of other bands (CBM1
and VBM1 in Fig. 6 and CBM2-4 and VBM2-4 in Fig. S10 and S12
in the ESI† in the case of CsPbBr3, see also Fig. S2, S4 and S6
(ESI†) for CsPbCl3, as well as Fig. S15, S17 and S19 (ESI†) for the
CsPbI3 material) are wider and somewhat asymmetric. This
result confirms that it was necessary to go beyond the OTMS
approach in the d - 0 limit to obtain accurate results for bands
other than the CBM and VBM. There is even a difference between
the OTMS and SCP result for CBM and VBM which leads to a
band gap difference between the two approaches on the order of
100 meV at T = 400 K (see Section 3.7 for more details).

In Fig. 7 we demonstrate that convergence with respect to Nq

was achieved with a 20 � 20 � 20 grid. Convergence is achieved
both for the real part of self-energy that corresponds to band
energy renormalization and for the imaginary part of the self-
energy that is related to energy level broadening. As expected, it
is easier to reach convergence for energy levels that exhibit
larger broadening, that is, for states other than the CBM and
VBM (Fig. 7 and Fig. S11 and S13 in the ESI,† see also Fig. S3, S5
and S7 (ESI†) for the CsPbCl3 material, as well as Fig. S16, S18
and S20 (ESI†) for the CsPbI3 material). The CBM and VBM
states exhibit the lowest broadening due to the fact that single
phonon emission processes from these states are not possible.
Hence the total scattering rate from these states, which is
related to energy level broadening, is determined by phonon
absorption processes only. On the other hand, for bands higher
than the CBM (lower than the VBM), there is always a nearby
other band below (above) it to which phonon emission is also
possible. Hence, these states exhibit higher electron–phonon
scattering rates than the CBM and VBM, which leads to larger
broadening of these states.

The final results for temperature dependence of band energies
and the imaginary part of self-energies (that are related to energy
level broadening) at the R point for the CsPbBr3 material are
presented in Fig. 8. The same results for CsPbCl3 and CsPbI3 are
presented in Fig. S8 and S21, respectively, in the ESI.† The results
indicate that the temperature dependence of band energies is
most pronounced for the CBM and the VBM and that it is much
weaker for the other bands. The energy level broadenings increase
as the temperature increases and this dependence is nearly linear
for most bands.

The temperature dependence of the band gap calculated
within the SCP approach is presented in Fig. 5. The results

Fig. 5 Temperature dependence of the calculated band gap of CsPbX3
materials (X = Cl, Br or I, from top to bottom). The calculated band gap of
orthorhombic structures at zero temperature is represented by hexagons,
while the band gaps of the cubic structure calculated using the SCP
(OTMS) approach are represented by full (dotted) lines and two color
squares (circles). Experimental results are represented by single color
squares with the values of 2.85 eV (ref. 79), 2.36 eV (ref. 80), and 1.67 eV
(ref. 81) respectively, at temperatures of 320 K, 403 K and 300 K,
respectively, for CsPbCl3, CsPbBr3 and CsPbI3, respectively. Dashed lines
are used as a guide to the eye to connect the zero temperature result for
the band gap of the orthorhombic structure with the result at the lowest
temperature where the material exhibits a cubic structure.
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suggest that the gap renormalization and the band gap are
somewhat smaller in the SCP approach than in the case of the
OTMS approach. The largest difference between the two
approaches is at the highest temperatures. This difference
originates from the fact that the spectral function within the
SCP approach takes a relatively broad asymmetric shape at these
temperatures, while the OTMS approach inherently assumes a
narrow symmetric Lorentzian spectral function. A comparison of
the temperature dependence of the band gap within the SCP
approach with experiments will be discussed in Section 3.7.

To gain insight into the effect of temperature on band
energies throughout the Brillouin zone, we also performed
SCP calculations of the spectral function and band energy
renormalization at points G, X and M in the Brillouin zone
for the three investigated materials. The results are presented
in Fig. S23–S85 in the ESI.† All energy levels at X and M points
are twofold degenerate, while the degeneracy of the bands at G
is as follows: VBM4 (4�), VBM3 (2�), VBM2 (4�), VBM1 (2�),
VBM (4�), CBM (2�), CBM1 (4�), CBM2 (2�), CBM3 (2�), and
CBM4 (4�). We can see (Fig. S29, S36, S43, S50, S57, S64, S71,
S78, and S85 in the ESI†) that in most cases the real and the
imaginary part of the self-energy are smooth and continuous
when the temperature changes. The exceptions are VBM2 for
CsPbCl3 between T = 50 K and T = 100 K, and VBM1 for CsPbBr3

and CsPbI3 between T = 550 K and T = 600 K, all three at the X
point (Fig. S50, S57, and S64 in the ESI,† respectively). In these
cases, the spectral function has two competing maxima (see
Fig. S87–S89 in the ESI†) that are well inside the range of its
half-width and the change in temperature changes the domi-
nant maximum. It should be noted that for all of the examined
points, the changes in state energies are such that the band gap
remains determined by the R point VBM and CBM. However, an
increase in the temperature can change the ordering of the
bands: at certain points in the Brillouin zone some neighbour-
ing bands below (above) the VBM1 (CBM1) will swap places
with respect to their order obtained from the PBE0 functional
calculations. Nevertheless, for simplicity, we label the bands
based on their ordering obtained from zero temperature PBE0
functional calculations. When it comes to energy level broad-
ening, it turns out that it is lowest for the VBM and CBM bands
(with the imaginary part of the self-energy well below 100 meV
for these states and significantly above 100 meV for the other
states), as in the case of the R point. The CBM and VBM states
at these points are well separated in energy from the other
bands (see the material band structures in Fig. S86 in the ESI†)
which restricts the phase space for electron scattering. The
exception to this behaviour is the VBM state at the G point
which is rather broad. In this case, there are several bands that

Fig. 6 The frequency dependence of the self-energy and the spectral function for bands VBM1, VBM, CBM and CBM1 at the R point in the case of the
CsPbBr3 material at T = 400 K.

Fig. 7 The dependence of the real and imaginary part of self-energy at the renormalized energy on the size of the q-points grid. The results are
presented for the CsPbBr3 material at T = 400 K for bands VBM1, VBM, CBM and CBM1 at the R point.
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are close in energy to the VBM state at G. The hole can scatter to
these bands which contributes to the increase of energy level
broadening.

3.7. Comparison of temperature dependence of the band gap
with experiments

In this section, we compare the results for the band gap and its
temperature dependence with available experimental results
from the literature.

In the case of CsPbBr3 we obtain the band gap of 2.08 eV and
2.20 eV from SCP and OTMS, respectively, at a temperature of
400 K. This result is close to the experimental value of 2.36 eV
from ref. 80, obtained at 403 K. Our calculation gives the band
gap of CsPbCl3 of 3.01 eV and 3.07 eV from SCP and OTMS,
respectively, at a temperature of 320 K. This result is in good
agreement with experimental value of 2.85 eV from ref. 79.
For the CsPbI3 material we obtain the band gaps of 1.35 eV and
1.45 eV from SCP and OTMS, respectively, at a temperature of
300 K, which is in reasonable agreement with experimental
values of 1.67 eV (ref. 81) and 1.73 eV (ref. 82).

Next, we discuss the slope of the temperature dependence of
the band gap. In the range of temperatures where the material
is in the cubic form, the calculated temperature dependence
is nearly linear. Therefore, for the purpose of comparison with
experiments, it is sufficient to discuss its slope. In the case of

CsPbBr3, we obtain the slope
dEg

dT

� �
ph

of 0.50 meV K�1 and

0.80 meV K�1 from SCP and OTMS, respectively, in the tempera-
ture range from 400 K to 700 K. For CsPbCl3, the calculation
yields the slope of 0.68 meV K�1 and 0.96 meV K�1 from SCP and

OTMS, respectively, in the temperature range from 320 K to

700 K. Finally, for CsPbI3 we obtain the slope
dEg

dT

� �
ph

of

0.41 meV K�1 and 0.77 meV K�1 from SCP and OTMS, respec-
tively, in the temperature range from 300 K to 700 K.

To compare the slope of the temperature dependence to
experiments, one also has to take into account the effect of
thermal expansion, which is not included in the calculation
with a fixed lattice constant. The slope of the temperature
dependence of the band gap from the effect of thermal expan-
sion is given as

dEg

dT

� �
TE

¼ dEg

da

� �
da

dT

� �
; (13)

where
dEg

da
is the slope of the dependence of the band gap on

the lattice constant and
da

dT
is the slope of the temperature

dependence of the lattice constant, which is related to linear
thermal expansion coefficient as

a ¼ 1

a

da

dT
: (14)

We estimate
dEg

da
by calculating the gap dependence of the

lattice constant using DFT with the same semilocal functional
used in Section 3.1. We obtain respectively the values of 2.1, 2.4
and 1.1 eV Å�1 for CsPbBr3, CsPbCl3 and CsPbI3. Literature
values of linear thermal expansion coefficients are respectively
0.26 � 10�4 K�1, (0.22–0.30) � 10�4 K�1 and (0.39–0.40) �
10�4 K�1 for CsPbBr3, CsPbCl3 and CsPbI3 (ref. 83). From
eqn (13) and (14) we then obtain that (dEg/dT)TE is respectively

Fig. 8 Temperature dependence of the band energy and the imaginary part of the self-energy for VBM and VBMx (CBM and CBMx) bands (where x = 1,
2, 3, 4) calculated using the SCP approach. The results are shown for CsPbBr3 at the R point. Vertical and horizontal dotted lines represent the
temperature of the phase transition to cubic structure Tc = 403 K and band energy from PBE0 calculations, respectively.
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equal to 0.32 meV K�1, 0.35 meV K�1 and 0.29 meV K�1 for
CsPbBr3, CsPbCl3 and CsPbI3. The results suggest that the
contribution from thermal expansion is smaller than the con-
tribution from phonon-induced band gap renormalization for
all the materials studied.

The total slope of the temperature dependence of the band
gap can be estimated by adding contributions from phonon-
induced band gap renormalization and from thermal expansion

dEg

dT
¼ dEg

dT

� �
TE

þ dEg

dT

� �
ph

: (15)

We then obtain
dEg

dT
of 0.81 meV K�1 (1.12 meV K�1),

1.02 meV K�1 (1.31 meV K�1), and 0.70 meV K�1 (1.06 meV K�1)
from SCP (OTMS) results, respectively, for CsPbBr3, CsPbCl3 and
CsPbI3.

Experimental data for the temperature dependence of the
band gap of the cubic structure and its slope are relatively
scarce. In ref. 84 the slope of (0.85 � 0.05) meV K�1 was
reported for CsPbI3 based on the measurements in the tem-
perature range from 570 K to 620 K. This value is in the range
between our results from SCP and OTMS for the same material.
The slope of 0.341 meV K�1 was reported for CsPbBr3 in ref. 27
in the temperature range from 380 K to 435 K where the
material exhibits a phase transition from tetragonal to cubic
structure. This slope is significantly smaller than our estimated
slope. It is however questionable if the comparison of these
slopes is meaningful given the fact that experimental data cover
only a very small initial part of the temperature range where the
material is cubic. For the CsPbCl3 material, we are not aware of
any literature data with temperature dependence of the band
gap in the cubic phase. Overall, further experimental measure-
ments of the temperature dependence of the band gap in a
broader temperature range in the cubic phase are certainly
desirable.

Finally, we briefly discuss the temperature dependence of
the band gap at lower temperatures when the materials exhibit
an orthorhombic or a tetragonal structure. Experimental results
at these temperatures generally indicate that temperature
dependence of the band gap is rather weak. For example, it
was reported in ref. 70 that the band gap of CsPbBr3 (CsPbI3)
increases by about 60 meV (80 meV) from 0 K to 300 K. In ref. 79
a similar result was obtained for CsPbBr3, while in the case of
CsPbCl3 the changes in the band gap in this temperature range
were smaller than 20 meV. In ref. 85–87, a comparably weak
temperature dependence of the gap was observed for nanocrys-
tals based on CsPbX3 materials in the same temperature range.
For all three materials, the band gap at zero temperature is only
slightly (by less than 100 meV) lower or even slightly larger than
at the lowest temperature where the materials exhibit a cubic
structure, see the reference to the values of experimental band
gaps at the end of Section 3.2 for the orthorhombic structure
and the beginning of this section for the cubic structure. Our
calculations of the band gap of the orthorhombic structure
at zero temperature and of the cubic structure are in line
with such behavior (see the dashed lines in Fig. 5). Since the

orthorhombic and tetragonal structure have a larger unit cell
than the cubic structure, we did not perform temperature
dependent electronic structure calculations of these structures
due to larger computational cost and the fact that experimental
results indicate a rather weak temperature dependence in this
range of temperatures.

4 Discussion and conclusions

Next, we discuss previous computational studies where the
effects of temperature on the electronic structure of halide
perovskites were investigated. In ref. 23, the effects of tempera-
ture were included by performing finite temperature ab-initio
molecular dynamics with a sufficiently large supercell and by
calculating the average band gap change from many molecular
dynamics snapshots. Excellent agreement with experimental
band gaps of cubic inorganic halide perovskites at the lowest
temperature where the material exhibits a cubic structure was
obtained. On the computational side, this approach is rather
demanding as it would require a separate molecular dynamics
simulation at each temperature to obtain the temperature
dependence of the band gap. This approach inherently
assumes classical phonons which is likely good approximation
at room temperature because the dominant phonon modes
that determine electronic structure renormalization have ener-
gies which are significantly smaller than thermal energy kBT at
room temperature. In ref. 45 and 88 the effects of temperature
were also included by taking an average over many different
configurations with atoms displaced from their equilibrium
positions. In ref. 24 and 25 the authors exploited the special
displacements method89,90 which enables calculation of the
band gap at a given temperature from a single calculation of a
large supercell with atoms displaced from their equilibrium
positions in accordance with a particular pattern. In ref. 22,
Allen–Heine–Cardona theory, the finite difference approach, as
well as the approach with an average over many different
atomic configurations sampled using a Monte Carlo approach
were used to study the temperature dependence of the band gap
of cubic methylammonium lead iodide perovskite. However, the
Allen–Heine–Cardona theory was applied by simply excluding
imaginary phonon modes, while we find that this procedure
does not give reliable results in the case of the inorganic halide
perovskites that we investigated.

We finally note several advantages, as well as shortcomings,
of the approach based on the Allen–Heine–Cardona theory over
other approaches. To obtain temperature dependence of the
electronic structure, the most demanding steps of the procedure
– DFPT calculations and extraction of force constants for appli-
cation of the SCPH method – need to be performed only once,
that is, they do not have to be repeated for each temperature. On
the other hand, in all approaches based on atomic displace-
ments (sampled either from molecular dynamics, Monte Carlo
or using the special displacements) the whole computational
procedure has to be repeated at each temperature. Within the
Allen–Heine–Cardona approach it is straightforward to obtain
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renormalization of states other than the CBM or VBM, while in
the methods based on supercell calculations this is either impos-
sible or one has to exploit a certain type of unfolding procedure,
such as the one used in ref. 89. It should be mentioned that the
approach based on the Allen–Heine–Cardona theory certainly has
its limitations. Being based on expansion up to second order
terms with respect to atomic displacements, it is not expected to
be highly accurate in conditions when this expansion is not
sufficient. On the other hand, the approaches based on atomic
displacements usually do not have such a limitation.

In conclusion, we performed ab-initio calculations of the
temperature dependent electronic structure of inorganic halide
perovskite materials CsPbX3. The challenge that comes from the
fact that cubic structure is not stable at zero temperature and that
one obtains phonon modes with imaginary frequencies in a
standard DFPT calculation was overcome by using the SCPH
method that gives the phonon spectrum with real non-negative
frequencies. The challenge of obtaining the energies of bands
other than the CBM and the VBM in the calculations based on the
Allen–Heine–Cardona theory was addressed by exploiting a self-
consistent procedure for evaluation of relevant self-energies and
spectral functions. We obtain the band gaps at the lowest
temperature where the materials exhibit a cubic structure in good
agreement with experiments. We also find good agreement of
calculated and experimental temperature dependence of the band
gap for the CsPbI3 material where reliable experimental data are
available in the literature. Our results also suggest that the band
gaps at the lowest temperature where the materials exhibit a cubic
structure are similar to the band gaps at zero temperature where
the materials exhibit an orthorhombic structure. This finding is
consistent with experimental data that suggest a rather weak
temperature dependence at lower temperatures where the materi-
als exhibit an orthorhombic or a tetragonal structure. Finally, we
find that the temperature dependence of band energies at the R
point is most pronounced for the CBM and the VBM, while it is
less pronounced for higher and lower bands.
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ABSTRACT: Silver−bismuth iodide (Ag−Bi−I) rudor�tes are
chemically stable and non-toxic materials that can act as a possible
lead-free replacement for methylammonium lead halides in
optoelectronic applications. We report on a simple route for
fabricating Ag−Bi−I colloidal nanoplatelets approximately 160 nm
in lateral dimensions and 1−8 nm in thickness via exfoliation of
Ag−Bi−I rudor�te powders in acetonitrile. The valence band
electronic structure of isolated Ag−Bi−I nanoplatelets was
investigated using synchrotron radiation to perform X-ray aerosol
photoelectron spectroscopy (XAPS). The ionization energy of the
material was found to be 6.1 ± 0.2 eV with respect to the vacuum
level. UV−vis absorption and photoluminescence spectroscopies of
the Ag−Bi−I colloids showed that the optical properties of the
nanoplatelets originate from I 5p to Bi 6p and I 5p to I 5p transitions, which is further confirmed by density functional theory (DFT)
calculations. Finally, calculations based on the DFT and k · p theoretical methods showed that the quantum confinement e3ect is
very weak in the system studied.

■ INTRODUCTION

Hybrid perovskite materials have attracted extensive research
interest in recent years as they exhibit optical and semi-
conducting properties favorable for the fabrication of
optoelectronic devices such as solar cells, light-emitting diodes,
and photodetectors.1−5 Among them, lead-based halide
perovskites are the most studied systems since their application
as absorbers in solar cells has resulted in the highest value of
power conversion e�ciency (PCE) of 25%.6,7 The exceptional
performance of this type of material arises from its large
absorption coe�cient, low e3ective masses, and high mobility
of charge carriers. It has been proposed that these properties
originate mainly from the partially oxidized Pb2+ state with
6s26p0 configuration.8 However, lead-based perovskite materi-
als are unstable and easily degrade after exposure to high
temperatures, electromagnetic radiation, moisture, and oxy-
gen.9−12 Our previous study also showed that low-energy
electrons can a3ect the structural and chemical properties of
methylammonium lead iodide (MAPbI3).

13 Furthermore, lead
toxicity is a serious predicament for large-scale applications.14

Thus, continuous research e3orts are seeking to develop more
stable and less toxic perovskite materials.
Transition metal cations, such as Bi3+, Sn2+, Ge2+, and Sb3+,

also have stable, partially oxidized states, with the same ns2np0

configuration as the lead ion. Consequently, these elements
could act as suitable replacements for lead in emergent solar

cell absorber materials. Compared to tin-, germanium-, and
antimony-based materials, bismuth-based halide perovskites
appear to be the most chemically stable and the least toxic.
Incorporating an Ag+ or Cu+ cation in the bismuth−halide
lattice can lead to the formation of a new type of material with
edge-shared [AX6] and [BiX6] octahedra (A = Ag, Cu, X = I,
Br) named rudor�tes.15 These metal halides may appear in
many compositions that vary depending on the number of
occupied sites in the cation sublattice. Several methods for
fabricating silver−bismuth iodide (Ag−Bi−I) have been
proposed.15−22 Most of these procedures were oriented toward
the synthesis of bulk material. For example, Ag−Bi−I powders
were produced by heating a mixture of the precursor powders
at temperatures above 600 °C under vacuum,15,18,23 while the
thin films can be fabricated via spin-coating or dynamic hot-
casting of precursor solutions in organic solvents.16,21,24−26 In
our previous study, we fabricated Ag3BiI6 spherical nano-
particles in the form of aerosols and investigated their
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electronic properties via synchrotron radiation X-ray aerosol
photoelectron spectroscopy (XASP).27

The band structure of 2D perovskite materials may depend
on the size of the particles and structural modification induced
by various factors.28−37 For example, Kanatzidis and co-
workers28 used organic spacer cations to create separation
between adjacent layers in Ag−Bi−I particles. It was shown
that the optical properties depended on the type of spacer
cations used, i.e., the changes in the distances between the
layers. Also, previous studies on layered semiconducting
colloidal nanoparticles showed a strong e3ect of size reduction
on their optical properties due to the confinement e3ect,38−41

which initiated the same type of research in layered perovskite
nanomaterials. It was observed that Pb- and Sn-based
nanoplatelets also display a strong quantum confinement
e3ect with optical properties that depend on the particle
thickness, i.e., the number of layers.29−33 Conversely, in the
most-studied 2D lead-free systems Cs2AgBiX6 (X = Cl, Br, or
I), the quantum confinement is rather weak.34,36,42 Pal et al.37

also showed that Rb3Bi2I9 2D colloidal nanoparticles have the
same band structure characteristics as their bulk counterparts.
In this work, we present a simple method for the preparation

of colloidal 2D layered Ag−Bi−I rudor�te nanostructures
based on the exfoliation of Ag−Bi−I powders. The study
focused on the optical properties and valence band electronic
structure of the resulting nanoplatelets. The valence band
structure of isolated Ag−Bi−I nanoplatelets was studied using
synchrotron radiation XASP. Obtained electronic spectra were
discussed and interpreted with the results from density
functional theory calculations.

■ EXPERIMENTAL SECTION

Materials. Bismuth(III) iodide (BiI3, purity: 99%), silver
iodide (AgI, purity: 99%), and sodium citrate tribasic dihydrate
(C6H5Na3O7·2H2O) were purchased from Sigma Aldrich and
used as received. Dimethyl sulfoxide (DMSO) and acetonitrile
were used as solvents.
Synthesis. Ag−Bi−I nanopowder was prepared from 234

mg of AgI and 295 mg of BiI3 powders (molar ratio of AgI/BiI3
= 2:1) mixed and ground with a mortar until the mixture
became light gray. The resulting powder was dissolved in 50
mL of DMSO (0.01 M). Subsequently, 10 mL of sodium
citrate (0.3 M DMSO solution) was added to the solution as a
stabilizing agent. The solution was stirred for 15 min, cast in a
Petri dish, and heated to 120 °C in a vacuum oven to
evaporate the solvent. The prepared nanopowders were
characterized either in the dry state or dispersed in acetonitrile
(0.6 mg/mL) to obtain the colloids. Photographs of the Ag−

Bi−I powder and the Ag−Bi−I colloid are shown in
Supporting Information Figure S1. For comparison with Ag−

Bi−I, BiI3 nanopowders and colloids were fabricated using the
same procedure.
Characterization. X-ray di3raction (XRD) measurements

of the samples deposited on an oriented Si wafer were
performed using a Rigaku SmartLab system using Cu Kα

radiation (1.5406 Å, 30 mA, 40 kV) and operated in the 2θ
range from 10 to 50°.
Scanning electron microscopy (SEM) analyses of powdered

samples were performed with a JEOL JSM-6390 LV instru-
ment using a 30 kV acceleration voltage. Before analysis, the
samples were deposited onto an adhesive carbon tape and
coated with a thin gold layer. Transmission electron
microscopy (TEM) was carried out with a JEOL JEM-1400

operating at 120 kV. For the analyses, the colloidal samples
were deposited onto a carbon-coated copper grid with 300
mesh and dried in vacuum.
Surface topography investigations were performed using a

Quesant atomic force microscope (AFM). Colloids were
deposited on freshly cleaved mica substrates by spin-coating
(3500 rpm, 1 min) and investigated immediately. Measure-
ments were made in AFM tapping mode at room temperature,
using standard silicon probes Q-WM300 (force constant 40
N/m).
The UV−vis di3use reflectance and absorption spectra of

the nanopowders and dispersed colloid samples were measured
with a Shimadzu UV-2600 (Shimadzu Corporation, Japan)
spectrophotometer equipped with an integrating sphere (ISR-
2600 Plus) over the 220−800 nm range. Photoluminescence
spectra (PL) of the colloidal samples were recorded with a
PerkinElmer LS45 fluorescence spectrophotometer.
Surface X-ray photoelectron spectroscopy (XPS) measure-

ments were carried out on an ambient pressure SPECS Surface
Nano Analysis GmbH X-ray photoelectron spectrometer with
a monochromatic Al Kα X-ray source (1486.6 eV). For the
analysis, the acetonitrile dispersions were deposited onto a
glass substrate following the procedure described in the
literature by Sansom et al.23 High-resolution spectra were
recorded with a pass energy of 20 eV, which gave a full width at
half-maximum of ∼0.5 eV for the Au 4f7/2 peak. The binding
energy was calibrated with respect to the Fermi level by
adjusting the position of the adventitious C 1s peak to 284.8
eV.23

X-ray aerosol photoelectron spectroscopy (XAPS) was
performed at the PLEIADES beamline of the SOLEIL
synchrotron using the Multi-Purpose Source Chamber
(MPSC) and the Scienta hemispherical electron analyzer. A
detailed description of the experimental setup is provided in
our previous study.27 For these measurements, the Ag−Bi−I
aerosols were generated from acetonitrile dispersions of Ag−

Bi−I nanoparticles using a TSI 3076 atomizer. Carried by 2.5
bar of Ar gas, the aerosols were transported through a metallic
tube, heated to a temperature of ∼80 °C, and then cooled to 0
°C via a cold trap to remove excess acetonitrile. Subsequently,
the free aerosols were introduced through a pressure-limiting
orifice (250 μm in diameter) into an aerodynamic lens system
and placed inside the di3erentially pumped stage of the MPSC.
The aerodynamic lens focused the nanoparticle beam into the
high-vacuum interaction region of the photoelectron spec-
trometer through a skimmer (1.5 mm diameter). The particle
beam was ionized with 100 eV monochromatic synchrotron
radiation. Gas-phase XPS spectra were recorded using a wide-
angle-lens VG-Scienta R4000 electron energy analyzer. The
overall resolution of the valence electron spectra was about 170
meV. Spectra were calibrated relative to the vacuum level using
the binding energy of 3p3/2 Ar carrier gas at 15.76 eV1,43 with
an overall uncertainty of less than 0.2 eV.
Calculation Methods. Density Functional Theory Cal-

culations with the PBE Functional. Density functional theory
(DFT) calculations were performed by modeling the
exchange-correlation functional using the Perdew−Burke−
Ernzerhof (PBE) generalized gradient approximation
(GGA).44 Norm-conserving fully relativistic pseudopoten-
tials45,46 were used to model the e3ect of core electrons, and
the e3ects of spin-orbit interaction were fully included. A
Quantum Espresso code,47,48 which is based on the
representation of wave functions in the basis of plane waves,
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was used to perform these calculations. The kinetic energy
cuto3 for the plane-wave representation of wave functions was
50 Ry. Relaxation of lattice parameters and atomic coordinates
were performed until the atomic forces were smaller than 10−3

Ry/bohr.
Density Functional Theory Calculation with the Hybrid

PBE0 Functional. Since local and semilocal functionals in DFT
(such as the PBE functional) do not result in accurate values of
the band gap,49 we also performed the calculation of bulk band
structure using the hybrid PBE0 functional.50,51 This functional
modeled the correlation energy as the PBE correlation energy,
while the exchange energy was modeled as the sum of three-
fourths of the PBE exchange energy and one-fourth of the
Hartree−Fock exchange energy. It is known that the
calculations with this functional yield band gap values that
correlate significantly better with experimental band gaps of
semiconducting materials than those carried out with the PBE
functional (see for example refs 52 and 53). However,
calculations based on the PBE0 functional are computationally
significantly more demanding since they also request
calculations of the Hartree−Fock exchange energy. For this
reason, we used this functional only to perform bulk band
structure calculations of a given bulk atomic structure. The
calculation was performed using the Quantum Espresso code,
where the adaptively compressed exchange operator approach
for calculating exchange energy54 is implemented.
k · p Calculations of the Electronic Structure. To calculate

larger nanoplatelets (quantum wells), we constructed the k · p
Hamiltonian following the approach presented in ref 55, where
its parameters are determined by ab initio calculations (using
either DFT/PBE or the hybrid PBE0 functional methods) of
bulk material. k·p calculations are numerically very cheap and
can therefore easily be applied to larger nanoplatelets for which
DFT/PBE calculation is computationally very demanding and
hybrid functional calculation is practically impossible to
perform. Additional details related to k·p calculations are
presented in the Supporting Information.
Determination of Absolute Positions of Bulk Energy

Levels with Respect to Vacuum. DFT calculations with plane-
wave basis and periodic boundary conditions do not yield the
absolute value of the position of the energy levels with respect
to vacuum. These positions were determined by performing
the calculation of the interface of the material slab with
vacuum as described in more detail in the Supporting
Information. All the energies that we subsequently report are
with vacuum as the zero energy.

■ RESULTS AND DISCUSSION

Characterization of the Ag−Bi−I Nanoplatelets. The
results of the X-ray di3raction measurements of the Ag−Bi−I
powders are presented in Figure 1a. The XRD pattern of the
sample shows di3raction maxima at 2θ angles of 12.7, 23.9,
25.1, 25.6, 29.2, 32.0, 41.4, 42.2, and 43.5°, which correspond
to the CdCl2-type rhombohedral structure of a silver-rich Ag−

Bi−I rudor�te system.15,19,56 In addition, low-intensity peaks
at 22.3, 23.7, 39.2, and 46.3° indicate a small contribution of
the γ-AgI phase.20 Similar di3raction patterns were observed in
various other types of Ag−Bi−I structures, for example,
Ag3BiI6 nanoparticles produced in the gas phase from iodide
precursors,27 Ag−Bi−I nanoparticles fabricated from nitrate
salts,57 Ag−Bi−I thin films produced by the dynamic hot-
casting method,21 and Ag−Bi−I thin films produced on a
TiO2/FTO/glass substrate.58 The appearance of the AgI phase

in the sample is expected since in the Ag-rich Ag−Bi−I solids,
the excess of Ag ions are delocalized and occupy the sites
between the (Ag/Bi)I6 octahedral layers.

19 The XRD measure-
ments were performed on a precipitate of the Ag−Bi−I sample
in order to check its structure after dispersion in acetonitrile.
This sample is prepared by drying the colloid in the dark under
ambient conditions. The XRD pattern of the precipitate
(Figure 1a, blue line) shows that in addition to the increase in
the AgI content, the sample retained its Ag−Bi−I phase.
Changes in morphology were also investigated by SEM, and
the images of two samples are shown in Figure 1b,c. These
analyses showed that exfoliation of Ag−Bi−I sheets upon
dispersion in acetonitrile takes place, which is consistent with
an increase in the intensity of (0 0 3) di3raction maximum
relative to the (1 0 4) peak in the di3ractogram of the
precipitate. In addition, the presence of the bismuth oxyiodide
(BiOI) phase in the di3raction pattern can be seen, resulting
from drying the sample in air. This result indicates that
oxidation occurs at the outmost layers of the exfoliated
particles.
Further analyses of the size and morphology of the

dispersed-phase Ag−Bi−I particles were carried out by
transmission electron microscopy on the colloidal samples
dried in a vacuum. Typical TEM images of the sample are
presented in Supporting Information Figure S2. For compar-
ison, the results for BiI3 particles, prepared using the same
procedure, are also given. The micrographs show that the Ag−

Bi−I particles have a plate-like morphology with average lateral
dimensions of ∼160 nm. A similar morphology was also
observed for BiI3 nanoparticles; however, their lateral
dimensions were in the 40−60 nm range. The observed
morphology is characteristic of binary metal iodides (such as
BiI3

41,59) and occurs because of a relatively large di3erence in
distance between cations in edge-sharing octahedra and the
distance between cations in adjacent layers. In rudor�te
Ag2‑3xBixI2 (x = 0.33−0.60) ternary halides, Ag and Bi ions
occupy similar edge-sharing octahedral sites (Ag/Bi)I6,

15,19

which results in the formation of the Ag−Bi−I nanoplatelets.
The HRTEM/EDS mapping of Ag−Bi−I nanoplatelets
(Supporting information Figure S2c) showed that the elements
were uniformly distributed in the particles. The distribution of
the thicknesses of the nanoplatelets was determined from their

Figure 1. (a) XRD patterns of Ag−Bi−I powder (red line) and the
precipitate sample obtained by drying Ag−Bi−I acetonitrile
dispersion under ambient conditions (blue line). The black line
represents the Ag3BiI6 reference pattern.

56 The asterisks and triangles
mark the 2θ angles corresponding to the di3raction maxima of the AgI
phase20 and the BiOI phase,58 respectively. SEM images of (b) Ag−

Bi−I powder and (c) precipitate samples.
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height profiles obtained by AFM. The AFM image of the Ag−

Bi−I sample and the particle height distribution are presented
in Figure 2a,b, respectively, while the details of the height
profile analyses are given in the Supporting Information
(Figure S3). The average thickness of the nanoplatelets was
found to be 3.9 ± 0.2 nm. Taking into account that the
thickness of the monolayer is ∼0.66 nm, the nanoplatelets, on
average, have six layers.
The chemical environment of the ions in the Ag−Bi−I

nanoplatelets was investigated by surface X-ray photoelectron
spectroscopy. High-resolution XPS spectra of the Ag 3d, Bi 4f,
and I 3d core levels of the Ag−Bi−I nanoplatelets are
presented in Figure 3. The survey scan of the sample is given in
Supporting Information Figure S4. For comparison, the results
for the BiI3 sample are also shown. For the Ag−Bi−I sample,
Ag 3d3/2 and Ag 3d5/2 levels are observed at 374.0 and 368.0
eV, respectively (Figure 3a). These values match the binding
energies obtained for Ag 3d levels in AgI.60 For Bi, 4f levels
(Figure 3b) are assigned to peaks at 164.2 and 158.9 eV,
corresponding to Bi 4f5/2 and Bi 4f7/2 levels. The spectrum
shows additional peaks at lower binding energies that are not
present for the BiI3 sample. These features were previously
reported for the Ag−Bi−I films prepared by thermal
evaporation61 as well as for the oriented BiI3 single crystals
in contact with Pd and Pt.62 The peaks were assigned to
bismuth ions that are not in a complete 6I+ coordination and
therefore approach binding energies characteristic for metallic

bismuth. The binding energies of I 3d3/2 and I 3d5/2 levels are
observed at 630.3 and 618.7 eV (Figure 3c). It should be
noticed that the I 3d levels in the Ag−Bi−I sample are slightly
broader than in the BiI3 sample, suggesting possible e3ects of
changes in the chemical environment. The XPS results suggest
that a redox solid-state reaction between Ag and BiI3 is taking
place in the system, resulting in the formation of Ag−Bi−I and
AgI phases, as well as metallic Bi (which can proceed to the
formation of BiOI in the presence of oxygen), noticed in the
XRD pattern (Figure 1). A similar redox reaction was observed
at the interfaces between Ag and Bi2Se3 single crystals.63

Electronic Properties of the Ag−Bi−I Nanoplatelets.
To study the electronic properties of Ag−Bi−I nanoplatelets in
the valence region, we used a similar approach as in our
previous study of MAPbBr3 nanoparticles.

1 Two complemen-
tary X-ray photoemission spectroscopy techniques were
employed. For XPS measurements, the colloids were deposited
onto a Si substrate. The XAPS measurements were carried out
on isolated Ag−Bi−I particles, where synchrotron radiation
was used as the X-ray source.
The photoemission spectrum of Ag−Bi−I nanoplatelets

obtained by the XAPS technique is presented in Figure 4, while
the corresponding spectrum of the BiI3 sample is given in the
Supporting Information (Figure S5a). Contrary to XPS
measurements, where the band energies are referenced with
respect to the Fermi level (EF), all energies in the XAPS
technique are measured with respect to the vacuum level (E0).

1

Figure 2. (a) AFM image of Ag−Bi−I nanoplatelets and (b) corresponding distribution of particles’ heights. The number of Ag−Bi−I monolayers
in the nanoplatelets was estimated assuming a monolayer thickness of 0.66 nm.

Figure 3. High-resolution XPS spectra of (a) Ag 3d, (b) Bi 4f, and (c) I 3d core levels of Ag−Bi−I (top) and BiI3 (bottom) colloidal nanoplatelets.
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The ionization energy of Ag−Bi−I nanoplatelets determined
by XAPS is 6.1 ± 0.2 eV relative to E0. This is in good
agreement with the ionization energies reported for 3D Ag3BiI6
aerosol particles27 and Ag3BiI6 thin films58 as well as those
reported for rhombohedral Ag0.65Bi0.45I2 materials.19 This
indicates a negligible influence of the size and morphology of
Ag−Bi−I particles on the position of the valence band maxima.
The ionization energy is also in good agreement with our
calculated value of −5.95 eV for the valence band maximum.
The ionization energy obtained by surface XPS was 1.4 ± 0.2
eV relative to EF (Supporting Information Figure S5b). By
comparing the values of the ionization energies obtained by
these two techniques, the estimated value of the work function
(ϕ) of Ag−Bi−I nanoplatelets was found to be 4.7 eV. It
should be noted, however, that in the XAPS of isolated
nanoparticles, the near-surface vacuum level cannot be
perfectly defined, which results in additional uncertainty in
the determination of the ionization energy.64,65

The optical properties of the Ag−Bi−I powder and the
colloidal dispersion in acetonitrile are presented in Figure 5.
The di3use reflectance spectrum of the Ag−Bi−I powder
samples (dashed black line) displays an onset of absorption at
732 nm (∼1.7 eV), which is a typical value for the band gap of
Ag−Bi−I thin films and powder samples.15,21,23 After
exfoliation, the UV−vis absorption spectrum of the Ag−Bi−I

colloid (solid red line) shows three bands at 288 nm (4.30 eV),
360 nm (3.44 eV), and 457 nm (2.71 eV). The bands in the
spectra of the Ag−Bi−I colloid originate mainly from I 5p to Bi
6p and I 5p to I 5p transitions in (BiI6)

3− octahedra. It should
be noted that the absorption spectra obtained for BiI3 powder
and its dispersion in acetonitrile are similar to those obtained
for corresponding Ag−Bi−I samples (Supporting Information
Figure S7). The absorption spectrum of the BiI3 powder
(Figure S7) exhibited a slightly lower band gap value, which is
in accordance with the results presented in the literature.61 On
the other hand, the absorption spectrum of the BiI3 dispersion
has similar features as the spectrum of the Ag−Bi−I colloid,
although the absorption peaks appear at slightly di3erent
energies. It seems that the changes induced by the additional
element in the structure a3ect I 5p to Bi 6p and I 5p to I 5p
transitions to a certain extent. A recent study by Kanatzidis et
al.28 may support this conclusion. They showed that the optical
properties of 2D Ag−Bi−I layered materials significantly
depend on both the distance between the layers and the
arrangement and orientation of (AgI6)

5− and (BiI6)
3−

octahedra.
Recently, Premkumar et al. synthesized Ag−Bi−I quantum

dots and noticed that they exhibited blueshifted absorption
with respect to the bulk material.66 The observed shift is
attributed to the size confinement e3ect. However, because the
e3ective masses of the charge carriers in Ag−Bi−I material are
relatively large,58 it can be expected that the quantum
confinement e3ects in the Ag−Bi−I nanoplatelets are relatively
weak. Indeed, our calculations (see Figure 7 below) showed
that the nanoplatelet band gap changes by only about 50 meV
in the range of thicknesses from 2 to 5 nm. This suggests that
the three peaks at 2.71, 3.44, and 4.30 eV are the internal
transitions already present in the bulk sample as well, which
become more pronounced after exfoliation. To check this, we
made a rough calculation of the optical absorption for the bulk
Ag−Bi−I (see Supporting Information Figure S6). The
theoretical absorption curve in Figure S6 exhibits a similar
trend as the experimental absorption spectrum of Ag−Bi−I
colloid in the UV−vis range.
The photoluminescence spectra of the Ag−Bi−I nano-

platelets dispersed in acetonitrile, recorded with 260 nm
(purple solid line) and 330 nm (brown solid line) excitations,
are also presented in Figure 5. The emission bands at around
326, 430, and 530 nm are Stokes-shifted with respect to the
band observed in the absorption spectrum. The excitation of
the colloids by the light of di3erent wavelengths did not a3ect
the position of the emission bands (Supporting Information
Figure S8). Notably, the emission at the photon energy of the
band gap was not detected in either powder or colloid samples.
DFT was used to calculate the electronic structure of Ag−

Bi−I nanoplatelets. The calculations of the electronic structure
of the platelets with larger lateral dimensions were performed
by the k · p method, and the Hamiltonian parameterization
was carried out using the results obtained by the DFT. As a
model for the atomic structure of the Ag−Bi−I material, we
used the rhombohedral AgBiI4 configuration. The details about
its atomic structure, corresponding lattice parameters, and
atomic positions are given in the Supporting Information.
The electronic band structure of bulk AgBiI4 obtained from

DFT/PBE calculations is presented in Figure 6a. A direct band
gap can be observed at the Y2 point in the Brillouin zone with a
band gap energy of 0.33 eV was found. As expected, the DFT/
PBE calculation yields a significantly lower value of the band

Figure 4. Valence region photoemission spectrum of Ag−Bi−I
nanoplatelets measured by XAPS using 100 eV photon energy. The
inset shows the zoom-in region around the ionization energy value.

Figure 5. UV−vis absorption (red line) and photoluminescence (PL)
(purple and brown lines) spectra of Ag−Bi−I nanoplatelets dispersed
in acetonitrile and the di3use reflectance spectrum of Ag−Bi−I
powders (dashed black line).
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gap than the energy value established in the experiment. For
this reason, an additional approach was considered, and the
calculation was performed using the hybrid PBE0 functional.
In this calculation, the band gap energy of 1.3 eV was obtained,
which is much closer to the experimental result of 1.7 eV. The
calculated densities of electronic states are presented in Figure
6b. The results suggest that the highest states in the valence
band (in the energy interval of ∼3 eV below the valence band
maximum) originate from p-orbitals of the I atom, while the
lowest states in the conduction band (in the energy interval of
∼2.5 eV above the conduction band minimum) originate from
p-orbitals of the Bi and I atoms. This result is in agreement
with the previous reports23,28 and supports the claim that the
optical transitions in Ag−Bi−I are dominated by I 5p to Bi 6p
and by I 5p to I 5p transitions in the (BiI6)

3−.
Since the lateral dimensions of the Ag−Bi−I nanoplatelets

are much larger than vertical dimensions (Figure 2), they were
modeled as quantum wells infinite in the xy plane with width L
in the z-direction. The procedure for constructing their atomic
structure is presented in the Supporting Information. Three
di3erent methods were employed to calculate the electronic
structure of AgBiI4 quantum wells: (i) DFT/PBE; (ii) k · p
method with parameterization based on DFT/PBE calcula-
tions of bulk AgBiI4; (iii) k · p calculations with parameter-
ization based on hybrid PBE0 functional calculations of bulk
AgBiI4.
The results obtained by using method (i) are presented in

the Supporting Information. This method cannot give accurate
values of the band gap, but it is still useful for gaining insight
into the overall role of quantum confinement e3ects. The
results indicate that these e3ects are quite weak. In the range of
well widths of 2 to 5 nm (corresponding to the range of the
heights of the nanoplatelets that were observed), the band gap
changes for about 50 meV only (see Figure S12 in the
Supporting Information). The comparison of the band
structures of quantum wells with di3erent widths (Figures
S13 and S14 in the Supporting Information) also suggests that
the electronic structure is only weakly dependent on the well
width. Therefore, within a reasonably good approximation, it
follows that the electronic structure of the nanoplatelet is
rather similar to the electronic structure of the bulk material.
The calculations using method (ii) were used to confirm

that the k · p method is reliable for the calculation of electronic
states in quantum wells. Details of this calculation are reported
in the Supporting Information. The results suggest that k · p

and DFT/PBE yield essentially the same results for well widths
above 2 nm, which implies that k · p can be safely used then.
Finally, method (iii) was employed to calculate the band

gap, conduction band minimum (CBM), and valence band
maximum (VBM) of the quantum wells of various sizes. The
results (Figure 7) indicate a rather weak dependence of

electronic states energies on the well width, consistent with
previous conclusions obtained by using less accurate methods.
It was also estimated that the dielectric contrast between the
nanoplatelet and the solvent does not a3ect the energy levels of
the nanoplatelet to a significant extent (see the Supporting
Information for details).

■ CONCLUSIONS

In summary, we report a simple procedure for the chemical
exfoliation of sliver/bismuth iodide powders into Ag−Bi−I
nanoplatelets dispersible in acetonitrile together with results of
characterization and electronic structure determination.

Figure 6. (a) Electronic band structure of AgBiI4 obtained from DFT/PBE calculations. The blue horizontal line represents the valence band
maximum energy. The choice of the path in the Brillouin zone was made using the SeeK-path tool.67 (b) Density of electronic states (total density
of states and orbital projected density of states) of AgBiI4 obtained from hybrid PBE0 functional calculations. The vertical dashed line denotes the
energy of the valence band maximum. The reported energy values in figures (a) and (b) are given with respect to the vacuum level.

Figure 7. The dependence of CBM, VBM, and energy gap (Eg) on
quantum well width. The results were obtained from the k·p
Hamiltonian parameterized using the data from hybrid PBE0
functional calculations of bulk Ag−Bi−I. Horizontal dashed lines
denote the bulk values.
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The XRD results showed that the material prepared is
composed of a rhombohedral Ag-rich rudor�te phase with
minor traces of the γ-AgI phase. The results of the
morphological characterization revealed that the material is
in the form of layered two-dimensional nanoplatelets with
lateral dimensions of ∼160 nm and thicknesses in the 1−8 nm
range, indicating that the prepared nanoplatelets consist of 1−

10 Ag−Bi−I monolayers. XPS analyses of the Ag 3d, Bi 4f, and
I 3d core levels suggested that the Ag−Bi−I rudor�te phase is
being formed by a redox reaction between Ag and BiI3, which
also results in the formation of γ-AgI and metallic Bi phases.
The valence band electronic structure of isolated Ag−Bi−I
nanoplatelets was investigated by synchrotron radiation X-ray
aerosol photoelectron spectroscopy. An ionization energy of
6.1 ± 0.2 eV was obtained with respect to the vacuum level.
The value of the ionization energy was found to be 1.4 ± 0.2
eV with respect to the Fermi level by standard XPS. We
therefore estimated the work function of Ag−Bi−I nano-
platelets to be 4.7 eV. The band gap value of Ag−Bi−I powder
was estimated to be ∼1.7 eV based on the di3use reflectance
spectrum. The UV−vis absorption spectroscopy of the Ag−

Bi−I colloids showed that the optical properties of the
nanoplatelets originate mainly from I 5p to Bi 6p and I 5p to I
5p transitions, which is further confirmed by DFT calculations.
To interpret the electronic properties of the Ag−Bi−I
nanoplatelets with larger lateral dimensions, we performed
electronic structure calculations using the density functional
theory and k · p methods. The DFT results showed weak
dependence of the ionization energy and the band gap values
of Ag−Bi−I nanoplatelets on their thickness.
This work demonstrates a simple and innovative route for

the preparation of colloidal 2D layered Ag−Bi−I nanomateri-
als. In addition, the study o3ers a deeper insight into the
understanding of the electronic structure of the Ag−Bi−I
nanoplatelets, which were further correlated with the particle
size.
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Ab initio construction of symmetry-adapted k · p Hamiltonians for the electronic
structure of semiconductors
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While k · p Hamiltonians are frequently used for the description of electronic states in quantum nanostruc-
tures, a method is lacking to obtain them in their symmetrized form directly from ab initio band structure
calculations of bulk material. We developed a method for obtaining the parameters and the symmetry-adapted
form of the k · p Hamiltonian from the output of an ab initio band structure calculation. The method consists of
(i) evaluation of momentum matrix elements between the wave functions obtained from band structure
calculation; (ii) identification of the unitary transformation that transforms these wave functions to the symmetry-
adapted basis; (iii) transformation of the k · p Hamiltonian to the symmetry-adapted basis. We illustrate the
methodology by obtaining k · p Hamiltonians that describe the band structure of zinc-blende CdSe and then we
use the Hamiltonians obtained to calculate the electronic states in CdSe quantum wells. Excellent agreement
between density functional theory and k · p is obtained for the electronic structure, even for quite thin wells.

DOI: 10.1103/PhysRevB.102.085121

I. INTRODUCTION

Semiconductor materials and nanostructures based upon
them are at the heart of the operation of almost all electronic
and optical devices. For this reason, there is a significant
interest in understanding the electronic states in these ma-
terials. The progress in developments of methodologies for
ab initio electronic structure calculations has led us to the
point where it is relatively straightforward to perform band
structure calculations of bulk semiconducting materials. Den-
sity functional theory (DFT) calculations based on local or
semilocal approximations for the exchange-correlation func-
tional give band gaps that are significantly smaller than experi-
mental band gaps [1]. However, improved treatments based on
the use of hybrid functionals [2,3] or many body perturbation
theory in GW (where G stands for the Green’s function and
W for screened Coulomb interaction) approximation [4] give
rather accurate band gaps and band structure of the bulk
material [5–7]. On the other hand, it is rather difficult to per-
form ab initio calculations of semiconductor nanostructures
because the calculation needs to be performed for a supercell
containing a very large number of atoms.

The method that proved to be both practical and successful
in treating the electronic states in semiconductor nanostruc-
tures is the k · p method [8–11]. It is based on the represen-
tation of the single-particle wave function in terms of Bloch
functions of the bulk material at a certain point in the Brillouin
zone (typically the � point) and slowly varying envelope
functions. The k · p Hamiltonian for a nanostructure is then
an operator that acts on the column of envelope functions
corresponding to each of the bulk bands.

*milan.jocic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

Despite the success in using the k · p method for de-
scription of bulk band structure around a certain point in
the Brillouin zone (usually the � point) and for treating the
semiconductor nanostructures, there is still no systematic way
to construct the k · p Hamiltonian for a given material and
obtain the parameters of the Hamiltonian. The parameters of
most conventional k · p Hamiltonians (such as the eight-band
Hamiltonian [10,12,13]) for a few most common classes of
semiconductors can be found in the literature [14,15] and
were obtained from the band gap and effective masses in the
valence and conduction band. Parameters of k · p Hamilto-
nians with larger number of bands (such as, for example,
the 30-band Hamiltonian [16–20]) and recently introduced
atomistic k · p [21] are typically obtained by fitting to the
calculated band structure of the material or to experimental
data. However, given a relatively large number of fitting pa-
rameters, it is questionable if the fit gives unique parameters.
It is also not clear what part of the Brillouin zone should be
used in the fitting procedure, since it is not expected that the
k · p method describes the bulk band structure throughout the
whole Brillouin zone.

Given the fact that new classes of semiconductor materials
and nanostructures based upon them emerge or find new
applications quite often, it would be of significant interest
to develop the procedure for construction of desired k · p
Hamiltonians. Since all parameters of the k · p Hamiltonian
are related to momentum matrix elements between single-
particle wave functions of the bulk, it is in principle possible
to obtain them from electronic structure calculation of the
bulk material. This is indeed done when k · p is used as a
method for interpolation of ab initio calculated band structure
to a more dense grid of k points [22–25]. However, there
is a certain shortcoming of this approach when it comes to
the construction of k · p Hamiltonians that should be used
in future applications. Namely, due to the symmetry of the
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crystalline material the energy levels in characteristic points
in the Brillouin zone are degenerate and for this reason
the choice of Bloch wave functions from the Hilbert space
spanned by the degenerate states is not unique. As a con-
sequence, one may end up with different forms of the final
k · p Hamiltonian depending on the particular choice of Bloch
functions from this space. The number of Hamiltonian param-
eters in these forms might be significantly larger than the true
number of parameters imposed by the symmetry of the crystal.

In this work, we develop the procedure for construction of
the k · p Hamiltonian in the symmetrized form with a minimal
number of parameters imposed by crystal symmetry. In Sec. II
we give a brief overview of the k · p method and present our
approach for the construction of the Hamiltonian. In Sec. III
we illustrate the method by applying it to bulk zinc-blende
CdSe and to CdSe quantum wells.

II. THEORETICAL APPROACH

A. k · p equation

We start this section by briefly reviewing the k · p method
to set the stage for description of our procedure for construc-
tion of k · p Hamiltonian. We start with the equation for an
electron in the periodic crystal that reads[

p2

2m0
+ U + Trk + HD + Hsoc

]
|�nk〉 = En(k)|�nk〉, (1)

where p2/(2m0) = −h̄2∇2/(2m0) is the kinetic energy opera-
tor and m0 is the free electron mass, U is the periodic crystal
potential (including nuclei, core and valence electrons), while
En(k) and |�nk〉 are the corresponding energy and wave func-
tion for the electron in band n at wave vector k in the Brillouin
zone. When the effects of spin-orbit interaction are included,
|�nk〉 is a two-component spinor. The last three terms in
brackets are the relativistic corrections accounting for kinetic
energy Trk = −p4/(8m3

0c2), fine structure through the Darwin
term HD = h̄2∇ · ∇U/(8m2

0c2) and spin-orbit coupling (SOC)
Hsoc = h̄(σ × ∇U ) · p/(4m2

0c2), where σ = (σx, σy, σz ) de-
notes a vector with Pauli matrices as its components.

For an electron in a periodic potential, the Bloch theorem
holds, by which the components of |�nk〉 are of the form

�
(a)
nk (r) = eik·ru(a)

nk (r), (2)

where u(a)
nk (r) are periodic Bloch functions satisfying the

condition u(a)
nk (r + R) = u(a)

nk (r), with R being the direct
lattice vector. Inserting Eq. (2) into Eq. (1), we obtain the
one-electron equation in terms of periodic Bloch functions:

[
H + h̄2k2

2m0
+ T ′

rk (k) + h̄k · psoc

m0

]
|unk〉 = En(k)|unk〉, (3)

where H = p2/(2m0) + U + Trk + HD + Hsoc is the initial
Hamiltonian from Eq. (1), psoc = p + h̄(σ × ∇U )/(4m0c2) is
the momentum modified with the SOC part and T ′

rk (k) is given
as

T ′
rk (k) = − 1

8m3
0c2

[4(h̄k · p)p2 + 4(h̄k · p)2

+ 4(h̄k)2(h̄k · p) + 2(h̄k)2 p2 + (h̄k)4]. (4)

We further express |uak〉 in the basis of orthonormal functions
|umk0〉:

|uak〉 =
∑

m

B(a)
m (k)|umk0〉, (5)

which are solutions of eigenproblem given by Eq. (3) at a
certain k0 with eigenvalues En(k0). Inserting Eq. (5) into
Eq. (3), multiplying from the left by 〈unk0 | and exploiting the
orthonormality condition we arrive at the equation

∑
m

[(
En(k0) + h̄2(k2 − k2

0 )

2m0

)
δnm

+ h̄(k − k0)

m0
· 〈unk0 |p|umk0〉

]
B(a)

m (k)

= E (a)(k)B(a)
n (k). (6)

We have omitted T ′
rk (k, k0) that would appear in Eq. (6)

because its contribution depends directly on the distance
between k and k0 and becomes significant at distances far
greater than the one where k · p theory is applicable. We have
performed a numerical check of this claim in case of zinc-
blende CdSe and we have shown that the influence of this term
on bulk eigenenergies is smaller than 0.3 meV throughout the
whole Brillouin zone. For similar reasons, we neglected SOC
modification to momentum (i.e., we take psoc ≈ p). We note
that SOC is fully included in our approach unlike in many
theoretical treatments where it is treated as a perturbation. We
further rewrite Eq. (6) in somewhat more convenient form by
exploiting the relation

〈�nk0 |p|�mk0〉 = h̄kδnm + 〈unk0 |p|umk0〉. (7)

We then obtain

∑
m

[(
En(k0) + h̄2(k − k0)2

2m0

)
δnm

+ h̄(k − k0)

m0
· 〈�nk0 |p|�mk0〉

]
B(a)

m (k)

= E (a)(k)B(a)
n (k), (8)

which takes the form of an eigenproblem:
∑

m

H (1)
nm B(a)

m = E (a)B(a)
n , (9)

where H (1)
nm is given by the term in square brackets in Eq. (8).

The indices m and n in Eq. (9) go over the bands that were
included in the expansion in Eq. (5). The accuracy of k · p
Hamiltonian can further be improved by adding the effect
of remote bands [the bands not included in the expansion in
Eq. (5)] perturbatively using the Löwdin’s perturbation theory
[11,26]. This yields additional term in the k · p Hamiltonian
which reads

H (2)
nm = h̄2

m2
0

∑
l

〈unk0 |K · p|ulk0〉〈ulk0 |K · p|umk0〉
[En(k0) + Em(k0)]/2 − El (k0)

, (10)

with K = k − k0 and the summation goes over the bands l
that were not included in the expansion in Eq. (5).
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B. Construction of symmetrized k · p Hamiltonian

The expression (8) can be, in principle, used to construct
the k · p Hamiltonian directly from ab initio calculation of
band structure of bulk. Namely, all Hamiltonian matrix ele-
ments can be calculated from band energies En(k0) at point
k0 and momentum matrix elements 〈�nk0 |p|�mk0〉 between
the wave functions at k0. However, an issue arises regarding
the uniqueness of the constructed Hamiltonian matrix as a
consequence of the fact that some of the eigenstates |�nk0〉
are degenerate. A typical choice for the k0 point is some high
symmetry point where band dispersions exhibit minima or
maxima (such as for example the � point) and the group Gk0

of the wave vector k0 is some high symmetry point group.
For this reason, there is a degeneracy between the eigenstates
at k0, where the degree of degeneracy is determined by the
dimensions of irreducible representations (irreps) of the group
Gk0 corresponding to each of the states. For example, in the
case of zinc-blende CdSe material used as an example in this
work, the top valence band is threefold degenerate and the
bottom conduction band is nondegenerate when spin degrees
of freedom are not taken into account and the effect of spin-
orbit interaction is not included. When spin-orbit interaction
is included, the bottom conduction band is twofold degen-
erate, while two top valence bands are twofold and fourfold
degenerate.

Let d be the degeneracy of the set of eigenstates
|φ1〉, |φ2〉, . . . , |φd〉 at k0 at let Hd be the Hilbert space
spanned by these states. The states |φ1〉, |φ2〉, . . . , |φd〉 form
an orthonormal basis of Hd but any other orthonormal basis
may well have been chosen. With the use of different basis, the
momentum matrix elements in Eq. (8) would be different and
the k · p Hamiltonian would have a different form. Moreover,
it might even appear that the Hamiltonian has a different
number of parameters. Our goal is to overcome this issue by
fixing the choice of the degenerate states and obtaining the
k · p Hamiltonian in the form where it has a minimal number
of parameters imposed by the symmetry group Gk0 of the
wave vector k0.

The set |φ1〉, |φ2〉, . . . , |φd〉 is obtained from DFT and they
form d × d matrices �(g) of the irrep of group Gk0 that are
given as

�mn(g) = 〈φm|P(g)|φn〉, (11)

where g is an element of the group Gk0 and P(g) is the
operator that applies the symmetry operation g on the given
wave function. The matrices �(g) are then obtained by directly
calculating the matrix elements in Eq. (11). We then calculate
the characters of � to match it with one of the equivalent
conventional irreps �′ of the point group Gk0 . The matrices
of irreps �′ can be found in databases of irreps of point
groups, for example in Bilbao crystallographic data server
[27]. The matrices �(g) and �′(g) are connected via a unitary
transformation

U †�(g)U = �′(g), (12)

which is satisfied for each g ∈ Gk0 . Therefore, to obtain the
basis of states in Hd which is adapted to conventional ma-
trices �′(g) in databases of irreps, one has to make a unitary

transformation of the basis

|ψ j〉 =
d∑

i=1

Ui j |φi〉. (13)

Now, the representation of the operator P(g) from Eq. (11)
in the new basis set |ψ j〉 is the conventional representation
�′. In the |ψ j〉 basis, the k · p Hamiltonian has a convenient,
symmetry-adapted form, in which relevant parameters of the
Hamiltonian can be straightforwardly identified.

It remains to define a procedure for obtaining the unitary
matrix U that connects the two representations � and �′.
Such a procedure has recently been developed in Ref. [28]
and we outline it here. One first obtains a set of coefficients
rab as

rab =
√

n�

|G|

⎛
⎝∑

g∈G

�aa(g)�′
bb(g−1)

⎞
⎠

1/2

, (14)

where �aa(g) and �′
bb(g−1) are known matrix elements for

symmetry operation (group element) g and its inverse g−1,
respectively, |G| is the order of group G while n� is the
dimension of representations � and �′. Then, one chooses the
pair (a, b) for which rab > 0. The existence of such a pair has
been proven in Ref. [28]. The matrix U is then given as

Ui j = 1

rab

n�

|G|
∑
g∈G

�ia(g−1)�′
b j (g). (15)

With this, we complete our procedure for construction of
symmetrized k · p Hamiltonian. For clarity, we review all
steps of the procedure here:

(i) Perform ab initio calculation of band structure for bulk,
using DFT with local functionals, hybrid functional DFT, or
by including quasiparticle energy correction within the GW
approximation.

(ii) Choose the point k0 in the Brillouin zone, that is most
suited for k · p expansion and extract band energies En(k0)
and their eigenstates |�nk0〉 from desired ab initio method.

(iii) Identify the groups of degenerate states at k0 and the
symmetry point group Gk0 . Select the groups of degenerate
states (usually those around the gap) that will form the k ·
p Hamiltonian. Extract these groups of degenerate states |φi〉
from ab initio eigenstates |�nk0〉.

(iv) For each of selected groups of degenerate states
calculate the matrices �(g) of corresponding irrep � using
Eq. (11). Using characters of �(g), match � to the equivalent
conventional representation �′ found in databases of irreps of
point groups.

(v) For each of selected groups of degenerate states, cal-
culate the unitary matrices U using sets of matrices �(g) and
�′(g) as inputs for Eqs. (14) and (15).

(vi) Proceed with calculation of the new, symmetry-
adapted basis, consisting of selected groups of degenerate
states |ψ j〉 using matrices U , obtained from the previous
step, and corresponding groups of degenerate states |φi〉 with
Eq. (13).

(vii) Evaluate the momentum matrix elements in the
new basis using Eqs. (7) (8), (9), and (10) which then
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give all parameters of the symmetrized k · p Hamiltonian
Hnm = H (1)

nm + H (2)
nm .

It is important to note that these steps constitute a well-
defined and straightforward procedure that gives the desired
k · p Hamiltonian starting from output of an ab initio calcu-
lation. It does not involve any kind of fitting which would
introduce certain arbitrariness.

Next, we discuss the form of the Hamiltonian that we
obtain and its relation to the form of the Hamiltonian that
would be obtained using Luttinger’s method of invariants
[11,29]. The form of the Hamiltonian that we obtain consists
of blocks B(�′

a, �
′
b), where each block originates from two

groups of states: the states |ψ (a)
1 〉, . . . , |ψ (a)

da
〉 that transform

in accordance with the representation �′
a of dimension da

and the states |ψ (b)
1 〉, . . . , |ψ (b)

db
〉 that transform in accordance

with the representation �′
b of dimension db. The Hamiltonian

consists of the terms quadratic in electronic momentum K ,
the terms linear in K and the terms that do not contain K .
Luttinger’s method of invariants [11,29] gives a systematic
way to obtain the form of each B(�′

a, �
′
b) for terms of given

order in K . For this reason, our procedure yields the same
form of the Hamiltonian as Luttinger’s method of invariants
applied to obtain the terms up to second order in K . By its
construction, Luttinger’s method fully exploits the point group
symmetry and yields the Hamiltonian in the form where a
minimal number of parameters appears. On the other hand,
it is clear that Luttinger’s method cannot give the values
of these parameters, since it exploits the symmetry of the
system only and does not consider other details of the sys-
tem. Our procedure in some sense links Luttinger’s method
from 1950’s to modern ab initio calculations as it enables to
obtain the form of the Hamiltonian that would be obtained
using Luttinger’s method and additionally gives the values of
these parameters starting from ab initio wave functions and
energies.

In Sec. III we apply our procedure to zinc-blende CdSe
crystal whose point group at the � point is the Td group.
However, we note that our procedure is by no means limited
to this particular crystal symmetry. It can be used for crystals
of any kind of symmetry, at any point k0 in the Brillouin
zone. Of course, benefits of this method will be greater if the
symmetry point group Gk0 at k0 is of higher order. Having a
symmetry-adapted form of the Hamiltonian also gives great
advantage when it comes to calculation of nanostructures.
Numerical codes for calculating nanostructures using k · p
Hamiltonians could be easily adapted to another material of
the same symmetry by just changing the numerical values of
the parameters, that can be straightforwardly obtained using
ab initio calculation for bulk material and the procedure
described in the paper.

Finally, we briefly discuss on the conventions for matrices
of the representations �′. In all examples in this work we have
taken the matrices from Bilbao crystallographic data server
[27] and consequently we used the conventions used therein.
Unfortunately, this is not the only convention in the literature.
The discussion on the effect of the choice of the convention
for �′ on the form of basis states |ψi〉 and the form of k ·
p Hamiltonian is given at the end of Secs. II B and II C of
Ref. [30].

III. RESULTS

In this section, we apply the methodology described in
Sec. II to bulk zinc-blende CdSe crystal and to zinc-blende
CdSe quantum well. We apply the methodology to obtain the
form and the parameters of the 8 × 8 (4 × 4) and 26 × 26
(13 × 13) symmetry adapted k · p Hamiltonian with (without)
spin-orbit interaction included for CdSe in the zinc-blende
structure. We will refer to the 8 × 8 (4 × 4) Hamiltonian as the
standard Hamiltonian, while 26 × 26 (13 × 13) Hamiltonian
will be referred to as the extended Hamiltonian.

The band energies and wave functions were obtained
from DFT where exchange-correlation energy was modeled
using the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation revised for solids (PBEsol) [31]. Calculations
were performed using the Quantum Espresso code [32,33].
Core electrons were modeled using fully relativistic opti-
mized normconserving Vanderbilt pseudopotentials [34,35].
The 10 × 10 × 10 grid in reciprocal space of the Brillouin
zone was used, while the kinetic energy cutoff of the plane
waves used to represent the wave functions was 90 Ry. The
lattice constant of a = 6.096 Å, obtained by minimization
of the energy of the structure, was used in all subsequent
calculations.

Since local and semilocal approximations in DFT do not
give accurate values of the band gap [1], we have also
performed the band structure calculation using many-body
perturbation theory in the GW approximation [4]. Within
this approach, the electron self-energy is approximated us-
ing the expression containing the Green’s function G and
the screened Coulomb interaction W. In this work, we used
the G0W0 variant of GW approximation in which the self-
energy is obtained from Green’s function G0 of an electron
in DFT Kohn-Sham potential, without further iterations. The
calculations were performed using the YAMBO code [36,37],
with input Kohn-Sham wave functions obtained from a pre-
vious DFT calculation on the 4 × 4 × 4 grid in reciprocal
space. Plasmon-pole approximation was used to account for
the frequency dependence of the dielectric function. Kinetic
energy cutoff used for the calculation of dielectric function
in G0W0 calculation was 50 Ry. The corresponding number
of bands was 400 (800), while the number of bands used in
the evaluation of self-energy was 300 (600) in the case when
spin-orbit interaction is omitted (included). We estimate that
these values yield numerical accuracy of 20 meV or better for
band energy corrections.

A. Bulk zinc-blende CdSe

We used the procedure described in Sec. II to obtain
the standard and extended k · p Hamiltonian in symmetry-
adapted form. � point was chosen as the point k0 in our
procedure, since zinc-blende CdSe exhibits a direct gap at
the � point. The corresponding group Gk0 is then the point
symmetry group of the crystal, which is the Td group in the
case of zinc-blende structures. We will denote irreps of this
group using the convention of Ref. [38].

We will refer to the states that are included in the standard
k · p Hamiltonian as the main states, while remaining states
included in the extended Hamiltonian will be referred to as
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FIG. 1. The form of k · p Hamiltonian obtained when spin-orbit interaction is (a) omitted; (b) included. Each block of the matrix contains
the terms that originate from matrix elements between the states that transform according to irrep specified on the left and above the matrix.
The superscripts v, m, and c denote the lower valence band states, the main states, and the higher conduction band states. The central square
marked with thick black lines denotes the standard Hamiltonian.

lower valence band and higher conduction band states. When
spin-orbit interaction is omitted, main states used to construct
the standard Hamiltonian are the threefold degenerate �4 and
nondegenerate �1 states that lie below and above the gap,
respectively, giving a total of four states. Extended Hamil-
tonian is constructed by adding the twofold degenerate �3

and threefold degenerate �4 valence states and �4 and �1

conduction states, yielding a total of 13 states. When spin-
orbit interaction is included, the states transform according
to irreps of the double Td group. The states corresponding
to �4 will split into fourfold �8 and twofold degenerate
�7 state, the states corresponding to �3 become fourfold
degenerate �8 and the states corresponding to �1 become
twofold degenerate �6 states. The characters of the irreps of
the single and the double point group Td are given in Sec. I of
Ref. [30].

In Fig. 1, we show the form of both extended and standard
Hamiltonian, in cases when the effects of spin-orbit interac-
tion are omitted and included. The Hamiltonian is divided
into blocks, where each block originates from two groups of
degenerate states with the corresponding irrep shown on the
left and above the matrix. These blocks can be absolutely
diagonal (connecting same irreps from same states), irrep-
diagonal (connecting same irreps from different states) and
off-diagonal. When our procedure is applied, each block is
obtained in the form with smallest number of parameters
in the block, determined by the point group of the crystal.
Analytical expressions for the elements of all blocks of the
k · p Hamiltonian are given in Sec. II of Ref. [30]. We have
checked that the same form of the blocks of the Hamiltonian
is obtained when Luttinger’s method of invariants [11,29] is
applied. Numerical values of each parameter appearing in the
blocks of the Hamiltonian are given in Sec. III of Ref. [30]. We
note that the standard four-band Hamiltonian that we obtain
coincides with the second-order four-band Kane Hamiltonian
[11]. The standard eight-band Hamiltonian that we obtain
coincides with Weiler eight-band Hamiltonian [11,12] after
an appropriate unitary transformation is made. The details of
this unitary transformation are given in Sec. II B of Ref. [30].

To better illustrate the advantage of using a symmetry-
adapted form of the k · p Hamiltonian (that is obtained from
symmetrized wave functions |ψi〉) rather than the form of the
k · p Hamiltonian that would be obtained directly from DFT
wave functions |φi〉, we compare the number of parameters
in the two forms of the Hamiltonian. The two forms of the
four-band Hamiltonian are presented in Sec. II C of Ref.
[30]. The number of parameters of the symmetrized form
is significantly smaller (1 versus 9 parameters for the terms
linear in k and 5 versus 46 parameters for the terms quadratic
in k), which clearly shows its advantage in terms of simplicity
for further use in the study of nanostructures.

In Fig. 2 we plot the band structure of zinc-blende CdSe
obtained from DFT calculation and by diagonalizing the
standard and extended k · p Hamiltonian in cases with and
without the effects of spin-orbit interaction. As expected,
extended Hamiltonian gives results that are qualitatively and
quantitatively closer to full DFT than the standard one. It
should be noted that it is preferable to add the states in
extended Hamiltonian symmetrically around the main states.
We found that expanding the standard Hamiltonian by a
noneven number of valence and conduction states can lead
to closing of the gap at points far away from � point. This
was more prone to happen if the number of conduction states
added was greater than number of valence states added. The
presence of such spurious states then prevents the application
of the k · p Hamiltonian to the nanostructure. Our choice of 13
(26) bands used to construct the extended Hamiltonian was
therefore a compromise between (i) the goal to accurately
describe the band structure within the part of the Brillouin
zone which is as large as possible; (ii) the desire to use the
number of bands (and therefore the number of parameters
of the k · p Hamiltonian) that is not extremely large; (iii)
the aim to avoid the appearance of spurious states that close
the gap. To quantify in more detail the ability of derived
k · p Hamiltonians to reproduce the ab initio calculated band
structure, we plot in Fig. 3 the maximal difference between
k · p and DFT results within the sphere of radius kr (which is
centered at the � point) for main bands. We find that standard
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(a) (b)

FIG. 2. Band structure of zinc-blende CdSe calculated using DFT and using standard and extended k · p Hamiltonian when the effects of
spin-orbit interaction are (a) omitted; (b) included.

(extended) k · p results differ no more than 4 eV (1.75 eV)
inside the sphere inscribed in the first Brillouin zone, with a
difference not greater than 45 meV (35 meV) inside a sphere
of radius kr = 0.2 in units of 2π/a, where a is the lattice
constant. Figure 3 shows that in the reasonable vicinity of �

point, in any direction, extended k · p Hamiltonians produce
a band structure that is significantly closer to DFT results,
than the standard k · p Hamiltonians. The use of extended
Hamiltonians is necessary in many practical cases. If one
wishes to study only the low field electrical properties or the
optical properties at photon energies just above the band gap,
the standard Hamiltonians are usually sufficient. However, if
one is interested in optical properties in a wider energy range
(which is relevant, for example, for solar cells) or transport
at larger electrical fields (which is relevant in field-effect
transistors) extended Hamiltonians are required to properly
describe all relevant electronic states.

For the results presented so far, the k · p Hamiltonian was
constructed starting from the wave functions and energies of
Kohn-Sham orbitals obtained from DFT using the PBEsol

functional. It is well known that the DFT band gap is typ-
ically significantly smaller from experimental gap and for
this reason the same applies to k · p band structure obtained
starting from DFT wave functions and energies. The method-
ology that we described is by no means limited to using the
DFT wave functions and energies. To demonstrate this, we
have calculated the self-energy corrections to energies En(k0)
within the G0W0 approximation. The G0W0 calculation gives
the band gap values of 1.77 and 1.60 eV without and with
inclusion of spin-orbit interaction, respectively. These results
are in good agreement with experimental value of 1.71 eV
[39]. As expected, this is a great improvement over DFT,
which underestimates the gap at 0.47 eV (without spin-orbit
interaction) and 0.40 eV (with spin-orbit interaction).

The energies En(k0) obtained from G0W0 calculation were
then used in Eqs. (10) and (8) to construct the standard
and extended k · p Hamiltonian. The parameters of these
Hamiltonians are given in Secs. III G and III H of Ref. [30],
while the band structure obtained from diagonalization of
these Hamiltonians is presented in Fig. 4.
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FIG. 3. Maximal absolute difference 	E between the band energy obtained from DFT and k · p within the region of the Brillouin zone in
the shape of a sphere of radius kr centered at � when the effects of spin-orbit interaction are (a) omitted; (b) included. The difference is shown
for main bands where the results obtained using standard k · p Hamiltonian are shown using empty symbols, while the results obtained using
the extended k · p Hamiltonian are shown using filled symbols. Insets show a zoom of the same graph in the region around kr = 0.
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FIG. 4. Band structure of zinc-blende CdSe calculated using
standard and extended k · p Hamiltonian parametrized starting from
band energies obtained in G0W0 calculation. DFT results are given
for comparison.

B. CdSe quantum well

We finally demonstrate the usefulness of the procedure
developed and the Hamiltonians derived by applying them to
calculate the electronic states in zinc-blende CdSe quantum
wells of various well widths. We perform the calculation both
using the k · p method and using DFT and we compare the
results that we obtain using the two approaches.

Within DFT, we perform the calculation of electronic states
of a quantum well by considering the slab of CdSe material
whose surfaces are perpendicular to the [001] direction. We
terminate the slab with Cd layer at both surfaces and add
pseudohydrogen atoms of charge 1.5 to passivate the dangling
bonds at surfaces. Pseudohydrogen atoms are positioned at
a distance of 1.58 Å from the corresponding Cd atom. For
slabs of the width � 6a (>6a), the vacuum region of the
width equal to 3a (half of the slab width) was added on both
sides of the quantum well, to avoid the interaction of the
quantum well with its images caused by periodic boundary
conditions in the calculation. The calculation was performed
for quantum wells containing from 1 to 18 CdSe unit cells.
We define the quantum well width as the distance between
the two pseudohydrogen passivating layers. We performed
the calculation without the effect of spin-orbit interaction
included to lower the computational cost and therefore extend
the range of well widths for comparison of DFT and k · p
results.

In the case of a quantum well whose plane is perpendicular
to the z direction, electronic states within the k · p model can
be obtained by solving the eigenvalue problem

∑
n

Hmn

(
kx, ky,−i

d

dz

)
� (a)

n (z) = E (a)� (a)
m (z), (16)

where Hmn(kx, ky,−i d
dz ) is the k · p Hamiltonian of the bulk

with kz component of the wave vector replaced by the differ-
ential operator −i d

dz , � (a)
n (z) is the envelope function corre-

sponding to the state (a) of band n, while E (a) is the energy
of that state. We solve the eigenvalue problem using the plane
wave expansion method [40–45]. The well is embedded in the
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FIG. 5. Dependence of zinc-blende CdSe quantum well band
gap on well width. The results obtained from DFT without the
effects of spin-orbit coupling and from standard 4 × 4 and extended
13 × 13 k · p models are presented. The inset shows the zoom of the
same dependence to the narrower range in the figure. The horizontal
dashed line denotes the bulk DFT band gap.

region of length Lz and the envelope functions are expanded
into a linear combination of plane waves

� (a)
n (z) = 1√

Lz

Nz∑
nz=−Nz

c(a)
n,nz

ei 2π
Lz

nzz
, (17)

where c(a)
n,nz

are expansion coefficients that have to be deter-
mined and Nz is an integer that defines the total number of
plane waves. After substitution of Eq. (17) into Eq. (16) we
obtain the eigenvalue problem of the Hermitian matrix that
we diagonalize using standard numerical routines to obtain the
coefficients c(a)

n,nz and the energies E (a). For a fair comparison
with DFT calculation of CdSe slab in vacuum, we perform the
calculation for a quantum well inside a large energy barrier.
We therefore model the region outside the quantum well as
an artificial material whose all parameters are the same as
CdSe parameters except the band energies at the � point. In
this artificial material, we increase all energies of conduction
bands by 	E with respect to corresponding energies in CdSe
and decrease all energies of valence bands by the same
amount 	E . In the calculation we use the values 	E = 5 eV,
Lz = 20 nm and Nz = 50. We have checked that these are
sufficiently large values whose further increase would not
affect the results.

In Fig. 5 we present the dependence of the band gap on
well width obtained within DFT and within the k · p model.
For a fair comparison, the results of DFT calculation without
the effects of spin-orbit interaction were compared with k · p
models without spin-orbit interaction; the 4 × 4 and the 13 ×
13 model. The agreement between DFT and k · p results and
between the results of the two k · p models is excellent. For
quantum well widths of three lattice constants and larger the
band gap differences are smaller than 20 meV. The agreement
is quite satisfactory even for rather thin wells of 1 and 2 unit
cells, where one might not have expected that k · p performs
so well. It is also important to note that the calculation of
electronic structure of the quantum well using the k · p ap-
proach takes only up to a few seconds on a single-core desktop
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(d)(a)

(e)

(f)

(b)

(c)

FIG. 6. The wave-function moduli squared of quantum well
states obtained from DFT without the effects of spin-orbit cou-
pling and the four-band k · p model. The DFT wave functions
are presented by performing the in-plane average of wave-function
moduli squared. The k · p wave functions are presented by a sum∑

n |�n(z)|2. The wave functions that are presented in the figure
correspond to the following states: (a) VBM-4, (b) degenerate VBM-
3 and VBM-2, (c) degenerate VBM-1 and VBM, (d) CBM, (e)
CBM + 1, (f) CBM + 2, where VBM (valence band maximum)
denotes the highest energy state in the valence band, while CBM
(conduction band minimum) denotes the lowest energy state in the
conduction band.

computer, regardless of the width of the quantum well. DFT
calculations, however, take minutes or hours depending on
the width of the quantum well on a computing cluster with
several nodes. For example, our calculation times range from
approximately 3 min (using 32 cores) to 21 h (using 64 cores)
for narrowest and widest quantum wells calculated by DFT,
respectively. In the case of nanostructures confined in all three
spatial directions, such as quantum dots, the advantages of
k · p over DFT become even more pronounced. Due to a
lack of periodicity in any direction, one needs to calculate
supercells with quite a large number of atoms in DFT and the
problem becomes computationally intractable for DFT. On the
other hand, k · p is almost routinely used to study quantum
dots, see for example, Refs. [40–45].

We next discuss the origin of somewhat surprisingly good
agreement between DFT and k · p for thin wells. Within k · p
the atomistic wave function (shown in Fig. 6 in full lines) is
represented in terms of the product of slowly varying envelope
functions (shown in Fig. 6 in dashed lines) and rapidly varying
bulk Bloch functions, while the only additional approximation
in k · p with respect to the atomistic method (DFT in our case)
comes from truncation of the wave-function expansion to a
limited set of bands. For this reason, we believe that excellent
agreement between k · p and DFT results for wide wells is
expected because basis functions used in k · p provide a good
basis set in this case. In the case of very thin wells, one could
argue that the representation of the wave function in terms of
the product of envelope functions and bulk Bloch functions
for a few bands only cannot be a good representation because
the system is rather different from bulk and therefore the basis
formed from bulk Bloch functions cannot be a good basis.
Our results for CdSe wells confirm that such an argument is
certainly valid to some extent because the agreement between
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FIG. 7. Well width dependence of zinc-blende CdSe quantum
well band gap calculated using the k · p method. The parameters
of the k · p Hamiltonian were extracted from G0W0 calculation of
bulk band structure. The results obtained with and without the effects
of spin-orbit interaction are shown, respectively, in full and empty
squares. The results obtained from k · p Hamiltonians parametrized
from DFT are shown for comparison in full (the case with spin-
orbit interaction) and empty (the case without spin-orbit interaction)
circles.

DFT and k · p becomes somewhat worse for quite thin wells.
Nevertheless, we find that the agreement between DFT and
k · p is quite satisfactory even then and we note that it would
be quite interesting to investigate in the future if this is also
the case for other materials. It should be noted as well that the
use of pseudohydrogen surface passivation also contributes
in making the wave functions of thin wells closer to wave
functions of bulk material.

We finally present the results of the calculation of CdSe
quantum well electronic states, using the k · p Hamiltonians
parametrized from G0W0 calculation of bulk band structure
(the parameters of these Hamiltonians are given in Secs. III F
and III H of Ref. [30]). To obtain an accurate quasiparticle
band gap, we add to the band gap obtained from k · p Hamil-
tonian the correction which takes into account the dielectric
mismatch between the quantum well and the vacuum, i.e., the
image charge effect. The correction was added using the ana-
lytical formula presented in Ref. [46], which was also recently
applied in a DFT study of CdSe nanoplatelets [47]. The results
obtained are presented in Fig. 7 along with the results obtained
from k · p Hamiltonians parametrized from DFT, which are
given for comparison. As expected, we obtain significantly
larger band gaps using k · p Hamiltonians parametrized from
G0W0 calculation of bulk. We note that we focused in this
work on single particle energies and the reported gaps are the
quasiparticle band gaps. To obtain the optical gap, one would
additionally need to consider excitonic effects, which was also
recently done for CdSe nanoplatelets in Ref. [47].

IV. CONCLUSION

In conclusion, we presented the method that allows
automatic construction of k · p Hamiltonians in their
symmetry-adapted form starting from output of ab initio band
structure calculation of bulk material. We then presented
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the application of the method to construct the k · p Hamil-
tonians for zinc-blende CdSe material. These Hamiltonians
were subsequently used to calculate the electronic states in
CdSe quantum wells. Interestingly, excellent agreement was
obtained between the results obtained from k · p and DFT
calculations of quantum wells, even for rather thin wells.
While construction and parametrization of k · p Hamiltonians
is usually believed to be a rather difficult and time consuming
task, we expect that the method that we presented will change
this situation and that it will be straightforward in the future
to obtain k · p Hamiltonians for new materials and apply
them to study electronic properties of nanostructures based

on these materials without the need to perform any kind of
fitting.
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Abstract. We calculated the electronic structure of CsPbBr3 quantum wells using the k•p 
model with parameters extracted from hybrid functional based DFT calculations 
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quantum well. The results show that the temperature dependence in quantum wells is 
similar to the one found in bulk phase for all sizes of the well that were considered. 
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1. INTRODUCTION  

Since most electronic and optical devices consist of semiconductor materials, there is a 
great significance in knowing the properties of these materials. Over the years, general 
improvements of these devices made them smaller in size and more power efficient. 
Reducing the size from a bulk phase, that can be as small as few micrometers, down to a 
nanostructure that has a scale of a few dozen nanometers or less introduces a change in 
electronic properties of the material. This makes it possible to tune the electronic properties, 
like the band gap of a material, to desired values, allowing us to replicate the electronic 
properties of a much more expensive or less durable material with a material that is cheaper to 
produce or more durable. Working with nanostructures whose electronic properties change with 
their size introduces new challenges for investigating and modeling semiconductor materials. 

For the past few decades, density functional theory (DFT) has been routinely used for 
modeling the properties of the bulk phase of semiconductors with much success, while 
their nanostructures would prove to be challenging since the required computational 
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resources are increasing with the size of the nanostructure, and in some cases they become 
infeasible. Relying on the k•p method, alongside DFT, the computational resources 
required to obtain the electronic structure can be significantly reduced. One disadvantage 
of the k•p is that it considers only several selected bands of interest, while the rest of them 
are treated perturbatively (like in Löwdin, 1951.). The energy of these bands and their 
wave-functions have to be extracted from DFT calculation. Another disadvantage is that it 
can be a good approximation only in a relatively small vicinity around the point in the 
Brillouin zone from which DFT results are extracted. Since our main interest is the band 
gap of a nanostructure device, these disadvantages come at an acceptable cost. On the other 
hand, DFT provides information about all bands in the whole Brillouin zone which is more 
than sufficient in this case. 

Once we determine the size dependent electronic properties of the nanostructure for the 
desired device, we have to take into account various external conditions that such device 
would operate under like the surrounding temperature. Both k•p and DFT, however, by 
themselves do not take into account any temperature effects that such devices might be 
exposed to, and since in practice they are expected to perform at a wide range of outside 
temperature conditions, these effects should be taken into account as well. 

Regarding ab initio modeling of nanostructures, in our previous work (Jocić and 
Vukmirović 2020.) we provided, among other, a detailed explanation and comparison of 
DFT and k•p methods for bulk and quantum well (QW) nanostructures of CdSe. We have 
shown that the k•p method is in excellent agreement with DFT, even for rather thin QWs, 
using standard 8×8 (H8) and extended 26×26 (H26) k•p Hamiltonians which take into 
account the effects of spin-orbit coupling (SOC), which is necessary in the case of heavy 
ions such as lead. 

To determine the effects of temperature on the electronic structure, in our recent paper 
(Jocic and Vukmirovic 2023.) we proposed a method that combines hybrid PBE0 functional 
based calculation in DFT with the Allen-Heine-Cardona (AHC) theory that provides 
temperature dependent self-energy correction of electronic bands. Because this self-energy 
has its origin in electron-phonon interactions it was necessary to obtain proper phonon 
frequencies, which are also temperature dependent and were obtained using the self-
consistent phonon (SCPH) method. Self-energies are then obtained within the AHC theory 
using the on-the-mass-shell (OTMS) approximation. We also introduced a self-consistent 
procedure (SCP), which improves upon OTMS approximation, which evaluates these self-
energies using interacting Green’s functions and extracts the results from the corresponding 
spectral function. We performed this for several bands below and above the band gap at key 
points in the first Brillouin zone (1BZ). These methods allowed us to obtain good agreement 
of the band gap with the available experimental data for CsPbCl3, CsPbBr3 and CsPbI3 at zero 
temperature and the temperature at which transition to cubic phase takes place. 

In this work, we turn our attention to perovskite crystal CsPbBr3, and calculate the 
temperature dependent gap of quantum wells (QW) made from this material. It was 
observed that CsPbBr3 has two phase transitions as temperature increases. At low 
temperatures it forms an orthorhombic crystal structure that transforms to a tetragonal 
structure for a narrow range of temperatures, and then transforms to a cubic structure at a 
temperature of T = 403 K. Since CsPbBr3 has recently found application in solar cells, the 
most interesting region would be the one of high temperatures of the cubic structure at 
which these solar cells would operate. 
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In this paper, we combine the method from our previous (Jocić and Vukmirović 2020.) 
and results from our recent (Jocić and Vukmirović 2023.) work in order to obtain the 
temperature dependence of band gaps for CsPbBr3 QW nanostructures. The structure of 
the paper is as follows: In Theory section, we first provide a brief theoretical overview of 
the k•p method for QW nanostructures using a plane wave (PW) basis and discuss the 
ordering of the bands that go into H8 and H26 Hamiltonians for the cubic structure of 
CsPbBr3. In the Results section, we first demonstrate the procedure for obtaining the 
convergence of the results with respect to necessary numerical parameters used in k•p 
method for QWs. We then present band structure with a more accurate band gap that is 
obtained from k•p, using hybrid DFT and temperature corrections for bulk, and a band 
structure for QW of fixed size using the same parameters. Finally, we show the temperature 
dependence of the electronic bands and band gaps for QW sizes ranging from around 2 nm 
to around 18 nm for temperature range from 400 to 700 K. 

2. THEORY  

Constructing a k•p Hamiltonian for nanostructures requires rewriting equations for 
bulk in a new form that is suitable for that case. Since the periodicity of the crystal is 
violated, in the general case, the electron momentum k is not a good quantum number 
anymore and we have to introduce envelope functions ψm alongside Bloch unit cell 
functions um in the expression for the wave-function Ψ: 

Ψ =  ∑ 𝜓𝑚𝑢𝑚
𝑚

. (1) 

In the case of a cubic CsPbBr3 lattice, the QW is periodic in the (x, y) plane, and its size 
can be determined by counting the number of bulk unit cells along the z-direction. We 
choose the coordinate system in such a way that the QW is located in the region from l1 to 
l2 (0 < l1 < l2 < L) and the surrounding material is in the region from 0 to L. 
We expand envelopes in PW basis as𝜓𝑚(𝑧) = ∑ 𝑊𝑚𝑞  𝑎𝑞𝑞 , where 𝑎𝑞(𝑧) = 𝐿−1/2 exp (𝑖𝑘𝑞𝑧) 
are a set of basis functions, and 𝑘𝑞 = 2𝜋𝑞/𝐿 , with 𝑞 = 0, ±1, ±2, ±3, … ± 𝑁PW , where 
2𝑁PW + 1 is the number of plane waves. This makes the envelope function periodic in 
space as 𝜓𝑚(𝑧) =  𝜓𝑚(𝑧 + 𝐿). Using the condition that 𝜓𝑚(𝑟) are smooth, continuous, 
infinitely differentiable and slowly varying functions, whose plane-wave expansion is 
restricted to the 1BZ and 𝑢𝑚(𝑟) are a complete set of orthogonal Bloch functions at k0, 
periodic over the whole structure, with the periodicity of Bravais lattice (Lew Yan Voon 
and Willatzen, 2009. ), we arrive at k•p equations for QWs: 

∑ ⌈
ℏ2

2𝑚0

(𝐤 − 𝐤0)2
(𝑥,𝑦)

 𝛿𝑠𝑞 +
ℏ2

2𝑚0

𝑘𝑞
2 𝛿𝑠𝑞 + 𝐼𝑠𝑞(𝐸𝑚)⌉

𝑚,𝑞
𝛿𝑛𝑚 𝑊𝑚𝑞  

(2) + ∑ ⌈
ℏ

𝑚0

(𝐤 − 𝐤0)(𝑥,𝑦) ⋅ 𝐩𝑛𝑚 𝛿𝑠𝑞 +
ℏ

𝑚0

𝑘𝑞𝐞𝑧 ⋅ 𝐩𝑛𝑚⌉
𝑚,𝑞

 𝑊𝑚𝑞  

+ ∑ 𝐻𝑛𝑚
(2)

𝑚,𝑞
(𝑠, 𝑞) 𝑊𝑚𝑞  =   𝐸 𝑊𝑛𝑠  ,  

where 𝐩𝑛𝑚  and 𝐸𝑚  are momentum matrix elements and band energies obtained as k•p 
parameters in bulk for k0, m0 is the electron mass, and: 
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Δ𝑘𝑠𝑞 = 2𝜋(𝑠 − 𝑞) 𝐿⁄  , 

(3) 

𝐼𝑠𝑞(𝐸) = (𝐸 − 𝐸𝐵)𝐼𝑠𝑞(𝐸) |𝑙2

𝑙1    ,   𝐸𝐵 = 𝐸 ± Δ𝐸𝐵 ,    

𝐼𝑠𝑞(𝐸) |𝑙2

𝑙1  =
1

𝐿
 ∫ 𝑒−𝑖Δ𝑘𝑠𝑞𝑧 𝑑𝑧

𝑙2

𝑙1

=  
𝑙1 − 𝑙2

𝐿
  𝛿𝑠𝑞 +

𝛿𝑠𝑞 − 1 

𝑖𝐿Δ𝑘𝑠𝑞

 (𝑒−𝑖Δ𝑘𝑠𝑞𝑙1 − 𝑒−𝑖Δ𝑘𝑤𝑞𝑙2). 

The second-order perturbation band term 𝐻𝑛𝑚
(2)

(𝑠, 𝑞), which accounts for remote bands r 
that are not present in the first-order Hamiltonian are: 

𝐻𝑛𝑚
(2)(𝑠, 𝑞) =  ∑

1

𝐿
 

𝑟
∫ 𝑑𝑧  𝑒−𝑖𝑘𝑠𝑧

(ℏ𝐊 ⋅ 𝐩𝑛𝑟)(𝐩𝑟𝑛 ⋅ ℏ𝐊)

𝑚0
2[(𝐸𝑛 + 𝐸𝑚)/2 − 𝐸𝑟] 

 𝑒𝑖𝑘𝑞𝑧 
 (4) 

                   =  ∑
1

𝐿
 

𝛼,𝛽
∫ 𝑑𝑧  𝑒−𝑖𝑘𝑠𝑧  

ℏ 𝐾𝛼

𝑚0

𝑃𝑛𝑚,𝛼𝛽

ℏ𝐾𝛽

𝑚0

  𝑒𝑖𝑘𝑞𝑧 

where ℏK = (ℏk − ℏk0)(x,y) + pz ez , pz = −𝑖ℏ∂z is the momentum operator, and 𝑃𝑛𝑚,𝛼𝛽 is the 
second-order k•p momentum tensor. We used n,m for band indices in bulk and α, β indices 
for directions x, y, z . 

We assume that the surrounding material has the same parameters as the QW, except 
for the valence and conduction band energies, that are respectively shifted by −∆EB and 
+∆EB with respect to the QW parameters, where ∆EB is the absolute shift of the bands. This 
shift is chosen to be large enough to ensure that the wave functions are located in the QW 
and was set to 10 eV for all our calculations. 

Size of the well (surrounding material) is a product of the size of the unit cell in z-
direction a and some integer N (NB), l = Na (L = NBa). NPW and L/l are the parameters that 
need to be studied in more detail, and we will show how to determine them in the next 
section. 

In the limit where k is a good quantum number, eqn. (2) transforms to the case of bulk 
by removing every integration over z-components and PWs from envelope function 
expansion, reducing to: 

∑ [
ℏ2

2𝑚0

(𝐤 − 𝐤0)2 + 𝐸𝑚] 𝛿𝑛𝑚 𝑊𝑚
𝑚

 

(5)                + ∑ [
ℏ

𝑚0

(𝐤 − 𝐤0) ⋅ 𝐩𝑛𝑚 + 𝐻𝑛𝑚
(2)

]  𝑊𝑚 = 𝐸 𝑊𝑚
𝑚

 ,  

𝐻𝑛𝑚
(2)

=  ∑
ℏ (𝐤 − 𝐤0)𝛼

𝑚0

𝑃𝑛𝑚,𝛼𝛽

ℏ(𝐤 − 𝐤0)𝛽

𝑚0

  .
𝛼,𝛽

  

Eqn. (2) and eqn. (5) show us how to construct the Hamiltonian, but not which bands 
and which k-point should be used for unperturbed results from DFT. Most of the electronic 
properties are governed by the symmetry of the crystal and most of the information about 
the current carriers can be obtained by considering points with the greatest probability for 
their detection. Extremal states in the electron structure are most likely to have current 
carriers: holes in the valence band maximum (VBM), and electrons in the conduction band 
minimum (CBM). Historically, these points and their symmetry have been the center of 
interest when DFT calculations were not yet computationally feasible, so the electronic 
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structure was mostly studied by analytical methods in combination with available 
experimental data. A good overview of these analytical methods can be found in a book by 
Bir and Pikus, 1974. 

The point group of the bulk cubic CsPbBr3 crystal is Oh, and the band gap is located at 
the R-point in the 1BZ. Point group Oh transforms to a double group, that describes bands 
when SOC in included, by multiplying all irreducible representations by a spinor 
representation Γ+

6. Fig. 1 illustrates this for bands around the gap in the bulk CsPbBr3. 
When SOC is not included, VBM at R-point is non-degenerate band corresponding to Γ−

2 
irreducible representation that transforms to 2-fold degenerate band Γ−

7 when SOC is 
included. CBM is 3-fold degenerate band at R-point, corresponding to Γ+

5 when SOC is 
omitted, and transforms by splitting into a 2-fold Γ+

7 with lower energy, now CBM, and 4-
fold Γ+

8 band with higher energy, now CBM1. These 8 bands in total make the H8 
Hamiltonian. 

The larger H26 Hamiltonian is formed when along these 8, we include 3 more valence 
bands, counting with decreasing energies from VBM: 4-fold Γ−

8, 2-fold Γ−
7, and 4-fold Γ−

8, 
respectively, and 3 more conduction bands, counting with increasing energies from CBM1: 
2-fold Γ+

6, 2-fold Γ+
7, and 4-fold Γ+

8, respectively. 
Both H8 and H26 have a unique set of k•p parameters that consist of energies Em, 

momentum matrix elements 𝐩𝑛𝑚 and second-order momentum tensors 𝑃𝑛𝑚,𝛼𝛽. Using the 
same parameters for bulk, we construct the H26 Hamiltonian for QW from eqn. (2), taking 
note that the periodicity is now valid only in the (x, y) plane. 

 
Fig. 1 Ordering of the bands around the gap and their transformation when SOC is 

included. Distance between the bands does not scale with energy distance 
between them. Notation for the irreducible representations that was used here 
follows the one found in Bradley and Cracknell, 2010. 
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3. RESULTS AND DISCUSSIONS  

Depending on the size of the k•p Hamiltonian, a small change of numerical parameters 
L/l and NPW can have a significant effect on the result. This is especially true for smaller 
wells, while large wells that approach bulk in terms of size are less sensitive to those 
changes. For this reason, we inspect the convergence with respect to those parameters as 
follows. First, we fix some l, and gradually increase the size of the surrounding material L 
and number of plane waves NPW until we achieve convergence. This process is repeated for 
every l. 

 
Fig. 2 Energy of VBM as a function of NPW, in QWs. The results were obtained using H26 

(solid lines) and H8 (dotted lines) Hamiltonians, respectively, for QWs of the size 
l=2a, l=4a, l=6a, l=12a, l=26a, l=30a in units of the lattice constant a. The size of 
the surrounding material is L =3l (diamonds), L=5l (squares), and L=10l (circles). 

 
Fig. 3 Energy of CBM as a function of NPW, in QWs. The results were obtained using H26 

(solid lines) and H8 (dotted lines) Hamiltonians, respectively, for QWs of the size 
l=2a, l=4a, l=6a, l=12a, l=26a, l=30a in units of the lattice constant a. The size of 
the surrounding material is L =3l (diamonds), L=5l (squares), and L=10l (circles). 
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We will focus on H8 and H26 k•p Hamiltonians, both of which we first construct for 
bulk from DFT results using PBEsol functional as described in Jocić and Vukmirović 2020. 
and eqn.(2). For DFT calculation we used a 4×4×4 k-grid for electron states, electron 
kinetic energy cutoff of 50 Ry, and a total of 240 bands for cubic phase of CsPbBr3 with a 
lattice constant of a = 11.1 a0 (where a0 is the first Bohr radius). DFT calculations were 
performed with included SOC. Since we are most interested in the position of VBM and 
CBM, and therefore the band gap, we will focus our convergence tests on these bands. 

In Fig. 2 (Fig. 3) we present the energy of the VBM (CBM), as a function of NPW, 
respectively. The resulting band gap is presented in Fig. 4. All three figures show results 
for small (l = 2a and l = 4a), intermediate (l = 6a and l = 12a) and large (l = 26a and l = 30a) 
QWs, respectively. 

Although the k•p method for QWs itself does not require much computational resources 
and it can be done, on a single-core desktop computer, it is important to estimate, for every l, 
at which point increasing L/l and NPW does not change the results of the band gap by more 
than 10 meV. For H8 one usually needs a smaller ratio of L/l, and for L/l = 3, the NPW of 10, 
20, 30, 40 and 40, for l = 2a, l = 4a, l = 12a, l = 26a, and l = 30a, respectively, was sufficient. 
For H26 one usually needs a larger L/l ratio for smaller wells, while larger wells that approach 
bulk can have acceptable results for a smaller size of the surrounding material. For l = 2a and 
l = 4a, it was sufficient to use NPW = 16 and NPW = 30, respectively with L/l = 10. For l = 6a 
and l = 12a, it was sufficient to use NPW = 20 and NPW = 40, respectively with L/l = 5. For l 
= 26a and l = 30a, it was sufficient to use NPW = 30 and L/l = 3. 

For small QWs, the results for band gaps obtained from H8 and H26 can differ as much 
as 150 meV (see Fig. 4), with H8 overestimating the band gap with respect to H26. For 
intermediate and large QWs, difference in band gaps between H8 and H26 is still present, 
although it is much smaller and does not exceed 15 meV and 2 meV, respectively. 

 
Fig. 4 Energy of the band gap as a function of NPW, in QWs. The results were obtained 

using H26 (solid lines) and H8 (dotted lines) Hamiltonians, respectively, for 
QWs of the size l=2a, l=4a, l=6a, l=12a, l=26a, l=30a in units of the lattice 
constant a. The size of the surrounding material is L =3l (diamonds), L=5l 
(squares), and L=10l (circles). 
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Fig. 5 The band structure of bulk CsPbBr3 obtained using H26 Hamiltonians, 

replacing 𝐸𝑚 with 𝐸𝑚
𝑃𝐵𝐸0 (solid line with diamonds) and with 𝐸𝑚

𝑃𝐵𝐸0 + Σm(𝑇) 
correction from SCP calculations at T = 400 K (dash-dot line with circles) and 
T = 700 K (dotted line with crosses), respectively. 

 
Fig. 6 The band structure of CsPbBr3 QW of size l = 6a obtained using H26 

Hamiltonians replacing 𝐸𝑚  with 𝐸𝑚
𝑃𝐵𝐸0 (solid line with diamonds) and with 

𝐸𝑚
𝑃𝐵𝐸0 + Σm(𝑇) correction from SCP calculations at T = 400 K (dash-dotted 

line with circles) and T = 700 K (dotted line with crosses), respectively. 
 

In eqn. (2), we restrict envelope functions to the expansion on plane-waves only in the 
1BZ. Therefore, in the general case, one would expect some kind of divergence for both 
H8 and H26, when NPW > L/a or equivalently when NPW > NB. However, due to having 
much less parameters than H26, H8 seems to be stable even when NPW > NB unlike H26 
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which shows divergence in this case, as seen in Fig. 2, Fig. 3 and Fig. 4. We also note that 
H8 always converges before NPW exceeds the limits of the 1BZ. However, for large wells, 
both H8 and H26 require less plane-waves than are needed to fill the whole 1BZ, in order 
to calculate the band gap. For these reasons, we can also check the convergence, by fixing 
the NPW = NB to always include all plane-waves in the 1BZ, while only increasing the size 
ratio of the surrounding material and the QW L/l, and then checking if the resulting band 
gap changes with reduction of NPW. 

Since DFT has a well-documented problem that it typically underestimates the band 
gaps (Perdew, 1985.), we can improve our k•p results by replacing DFT bulk PBEsol 
energies with the ones obtained using PBE0 (Perdew, 1996.) to obtain a more accurate gap. 
To include the temperature correction, we add the electron self-energy correction Σ𝑚(𝑇) 
that comes from the electron-phonon interaction. When calculating PBE0 energies 𝐸𝑚

𝑃𝐵𝐸0, 
we used the same numerical parameters as previously mentioned for PBEsol, with the 
addition of 4×4×4 q-grid for sampling the required Fock operator and we used the Gygi-
Baldereschi method to treat the singularity at q → 0. Results for Σ𝑚(𝑇) were used from 
our recent paper (Jocić and Vukmirović 2023.), where we used the maxima of the spectral 
function from SCP method to obtain band energy corrections. The results are available for 
temperatures from T = 400 K to T = 700 K. 

In eqn. (5), we replace all 𝐸𝑚 with 𝐸𝑚
𝑃𝐵𝐸0, for H26 without temperature correction, and 

with 𝐸𝑚
𝑃𝐵𝐸0 + Σm(𝑇) for T = 400 K and T = 700 K, respectively, to include temperature 

effects in bulk. The resulting band dispersion plot is presented in Fig. 5. As expected from 
our recent work the biggest shift in energies is observed for VBM and CBM (when 
comparing against other bands that form H26), which effectively gives the band gap of 
2.08 eV and 2.23 eV at T = 400K and T = 700K, respectively, and 1.5 eV without the 
Σ𝑚(𝑇). Inserting the same parameters in eqn. (2), we obtained the band gaps of 1.67 eV, 
2.21 eV and 2.35 eV, respectively for QW of size l = 6a with its band dispersion shown in 
Fig. 6. 

 
Fig. 7 Energies of VBM, CBM and band gaps for CsPbBr3 QW as a function of the 

size of the QW l, obtained using H26 Hamiltonian (solid lines) and H8 (dotted 
lines) when 𝐸𝑚 is replaced by 𝐸𝑚

𝑃𝐵𝐸0 + Σm(𝑇), at temperatures of T = 400 K 
(diamonds), T = 500 K (squares), T = 600 K (circles), T = 700 K (crosses). 
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Fig. 8 Energies of VBM, CBM and band gaps for CsPbBr3 QW as a function of 

temperature T , obtained using H26 Hamiltonian (solid lines) and H8 (dotted 
lines) when 𝐸𝑚 is replaced by 𝐸𝑚

𝑃𝐵𝐸0 + Σm(𝑇), respectively for several sizes of 
QWs l = 4a (diamonds), l = 6a (squares), l = 12a (circles), l = 26a (crosses) in 
units of lattice constant a. 

 
Finally, we present the temperature dependence of QW band gaps using H26 and H8 

Hamiltonians. We calculated how energies of VBM, CBM, and the band gap change with 
the size of the QW and temperature, respectively. The E = 0 level is the one VBM takes 
for the bulk phase with 𝐸𝑚

𝑃𝐵𝐸0 energy set. Consistent with the previous figures, H26 and 
H8 give almost identical results for intermediate and large QWs, while they show a slight 
discrepancy for small QWs. 

Fig. 7 shows energies of VBM, CBM, and band gaps, respectively, as a function of QW 
size l, starting from l = 2a and going to l = 30a for several temperatures that range from 
400 to 700 K. From this figure we can conclude that the energies of the bands and therefore 
the gap change significantly with the increase of the QW size until certain point (around 8 
nm), after which the results very slowly approach the same ones found in the bulk phase. 

Fig. 8 shows energies of VBM, CBM, and band gaps, respectively, for temperatures 
from T = 400 K to T = 700 K for several QW sizes of l = 4a, l = 6a, l = 12a, and l = 26a. 
From this figure we can see that the relative change of energies with temperature is similar 
for all sizes of QWs and again similar for bulk when compared to results from Jocić and 
Vukmirović 2023. 

4. CONCLUSION  

In this work, we demonstrated a procedure for obtaining convergence with respect to 
numerical parameters used for H8 and H26 k•p Hamiltonians for QWs like the size ratio 
of the surrounding material and the QW of width L/l and the number of plane waves in the 
envelope function expansion NPW, relying on the procedure used in Jocić and Vukmirović 
2020. We demonstrated that even when H8 shows no divergence for NPW > NB, the results 
do not change from the ones that take all plane-waves in the 1BZ. The H26 produces 
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diverging results whenever NPW > NB, but for large QWs a good result can be obtained 
when NPW < NB. We obtained a band dispersion with improved value for the band gap for 
bulk and QW, using H26 and replacing PBEsol energies 𝐸𝑚 with PBE0 energies 𝐸𝑚

𝑃𝐵𝐸0 
and then introducing the temperature effects from electron self-energy corrections Σ𝑚(𝑇), 
obtained from spectral function maxima, as in Jocić and Vukmirović 2023. Finally, we 
obtained results for the temperature dependence of band gaps for QWs using the k•p 
method. Band gap results were obtained for wells in the range from l = 2a to l = 30a, and 
for the temperatures from 400 K to 700 K. This way, we showed how the band gap of the 
QWs changes with size and temperature in the case of perovskite CsPbBr3 in cubic form. 
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TEMPERATURSKA ZAVISNOST ELEKTRONSKOG 
ENERGETSKOG PROCEPA KVANTNIH JAMA CsPbBr3 

DOBIJENIH POMOĆU k•p METODA  
Izračunali smo elektronsku strukturu CsPbBr3 kvantne jame pomoću k•p modela korišćenjem 

parametara iz DFT proračuna na bazi hibridnih funkcionala sa dodatkom korekcija za self-energije 
koje potiču od elektron-fonon interakcije. Dobili smo temperatursku zavisnost procepa za različite 
veličine kvantne jame. Rezultati pokazuju da je temperaturska zavisnost u kvantnim jamama, za sve 
veličine jama koje su uzete u obzir, slična onoj koja se dobija za balk fazu. 

Ključne reči: nanostrukture, temperaturska zavisnost, kvantne jame, k•p metod. 
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Temperature dependence of band gaps of inorganic halide perovskites 
 

M. Jocić1, N. Vukmirović1 
 

1Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia 
 
 
Recently, halide perovskites have been praised for their low-cost and high performance capabilities. 
However, in order to give reliable and accurate predictions on their performance and stability using ab-initio 
methods, one should first provide an adequate description of their electronic structure. 
 
Reasonably accurate band gaps can be obtained using conventional DFT with local or semi-local functionals 
but this is a result of error cancellation due to the neglect of spin-orbit coupling (SOC) effects. Using hybrid 
functionals with full SOC treatment still yields an underestimated value of the band gap. In order to get 
correct results of the band gap, temperature effects caused by electron-phonon interaction must also be 
included. 
 
We propose a combination of DFT with hybrid PBE0 functional, combined with Allen-Heine-Cardona 
(AHC) method, and the evaluation of anharmonic phonon frequencies using self-consistent phonon method 
[1]. We also propose a way to account for energy level renormalization and broadening at the same time by 
utilizing a procedure based on self-consistent Migdal approximation. Obtained results for CsPbX3 (X=Cl, Br, 
I) halide perovskite band gaps for bulk crystals cover a wide range of temperatures which can be compared 
with experimental data, as seen in Figure 1. 

 
Figure 1: Band gaps of CsPbX3 (X=Cl, Br, I) obtained using DFT with PBE0 hybrid functional and AHC 
correction for temperature effects compared with experimental values (disconnected squares). Results are 
obtained using on-the-mass-shell (OTMS) approximation (circles) and more refined self-consistent 
procedure (SCP) based on self-consistent Migdal approximation (connected squares). Zero temperature 
calculations were performed on an orthorhombic structure (hexagons), while temperature corrections were 
added on results with cubic phase. Lines and symbols at temperatures above (below) the formation of the 
cubic phase are shown as opaque (transparent) for each material. 
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Inorganic metal-halide perovskites have drawn much attention as candidates for producing low cost high-
performance solar cells having efficiency reported as high as 20% in single-junction architecture. Their elec-
tronic and structural properties have been the case of intense study in both experimental setups and com-
putational simulations. Since solar cells are expected to perform outside of such laboratory conditions, it is
important to have an understanding of how their performance will be affected by their surroundings. Tem-
perature is the main parameter which governs both the crystal and the electronic structure of inorganic metal-
halide perovskites. Theoretical approaches that rely on either Monte-Carlo sampling of vibrational states [1]
or classical molecular dynamics [2] have been successful to some extent. However, quantum mechanical ab-
initio studies that yield accurate temperature dependence of band gaps of inorganic halide perovskites are
still lacking.

In this work, we perform such studies for CsPbC3, CsPbBr3 and CsPbI3. First, we use the density func-
tional theory (DFT) with PBEsol exchange-correlation functional to obtain a decent starting estimate at zero
temperature. Such an approach has a well-known error of underestimating the band gap. To overcome this,
we employ the PBE0 hybrid functional whose parameters are chosen to enforce Koopman’s condition for lo-
calized defect states [3]. Second, we include the effects of electron-phonon interaction that depend on the
temperature of the material using the Allen-Heine-Cardona (AHC) theory [4]. Phonon modes are obtained
from density functional perturbation theory, that in the present case produces unphysical imaginary frequen-
cies in the phonon spectrum due to the harmonic approximation. We overcome this issue by calculating the
phonon spectrum using the self-consistent phonon method that accounts for the effects of anharmonicity [5].
We obtain the electronic band gaps for the cubic phase ofCsPbCl3,CsPbBr3, andCsPbI3, at temperatures
of 320, 403, and 300 K, respectively, of 3.07, 2.30, and 1.70 eV. These results differ by no more than 0.25 eV
from the experimental ones found in the literature.
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Construction of Symmetry-adapted k.p Hamiltonians  

for  semiconductor  nanostructures 
 

Milan Jocić, Nenad Vukmirović 
Institute of Physics Belgrade, University of Belgrade,  

Pregrevica 118, 11080 Belgrade, Serbia 
 

Using ab-initio methods like DFT for nanostructures is computationally very expensive, even 
with modern supercomputers. However, we will show that an accurate quantitative picture 
can be obtained with a k.p method by starting with Kohn-Sham (KS) states obtained from 
ab-initio calculations for bulk structure. We demonstrate this by comparing k.p with DFT 
calculations for the case of CdSe quantum wells. We obtain the analytical form and 
numerical parameters of well-studied 4x4 and 8x8 k.p Hamiltonians found in literature, for 
the case where spin-orbit coupling is omitted and included, respectively. Also, we 
demonstrate an improvement over 4x4 and 8x8 Hamiltonians, by expanding the number of 
states from 4(8) to 13(26), which yields more accurate excited states. Another improvement 
can be made, by using the GW approximation within the many-body perturbation theory, 
thus correcting the DFT electronic structure. This method can give more accurate bulk band 
gaps, which in turn yields improved results for nanostructures.  
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2-7 June, 2019

San Sebastian, Spain



Dear colleagues,

Welcome to 16th ETSF Young Researchers’ Meeting, San Sebastian 2019. The
Young Researchers’ Meeting (YRM) of the European Theoretical Spectroscopy Fa-
cility (ETSF) is an annual meeting of the first stage researchers (MSc and PhD
students and Postdoctoral researchers) who work on the novel theoretical and com-
putational approaches to study electronic and optical properties of materials. This
meeting provides researchers in beginning of their careers opportunity to share their
work, introduce themselves with state-of-the-art theoretical methods for describing
properties of materials, exchange ideas and make connections with other researchers
at similar point of career.

YRM 2019 will have five oral sessions. Topics of all the sessions will be on
ab-initio approaches of modelling material properties. First session will be on the
ground state of the system and second will be on excited states of atomic, molecular
and solid state systems. Third session will be on vibrational properties of materials.
Fourth session will be on multi-scale simulation and fifth session will be on highly-
correlated systems.

Conference will also host poster session where some of the participants will have
opportunity to show their work in graphical representation and to explain it to other
researchers in less formal way. Industry session is also scheduled where people who
transferred from academia to industry will tell participants their experiences and
provide them with insight in needs and expectations of industry regarding physicists
and material scientists.
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Construction of symmetry adapted k · p Hamiltonian from
DFT calculations

Milan Jocić, Nenad Vukmirović

Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of
Physics Belgrade,University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Electronic structure of semiconductors and their nanostructures can be described
using the well known k · p perturbation theory of Kane for bulk materials and Burt
for heterostructures. Corresponding Hamiltonians are represented in a basis of Bloch
wave-functions and parameters of the Hamiltonian are related to momentum ma-
trix elements between the basis states. Due to crystal symmetry some of these
matrix elements vanish, while some have the same value and consequently the k ·
p Hamiltonian has a relatively simple form with a limited number of parameters.
However, there is still no automatic way to obtain the k · p Hamiltonian in this
standard symmetrical form from ab-initio electronic structure calculation. In this
work, we established the procedure to achieve this. The first step of the procedure
is to perform density functional theory calculation of material band structure and
obtain the Kohn-Sham wave-functions. Next, for each of these wave-functions we
determine the corresponding irreducible representation of the symmetry group and
transform them to a standard symmetry-adapted basis. We then calculate the mo-
mentum matrix elements in this basis which leads to the parameters of desired k · p
Hamiltonian. We illustrate the method by applying it to cubic lead-based perovskite
CsPbBr3 as seen in Figure below.
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Figure 7: Calculated band structure of CsPbBr3 near the band-gap (point R) ob-
tained from DFT (squares) and from symmetry-adapted k· p Hamiltonian (full line).
Valence and conduction states at R correspond to irreducible representations Γ

′
2 and

Γ
′
25 , respectively. Alternative labels for irreducible representations, their partners

and their product as well as an example of momentum matrix element are shown
in the top inset. The symmetry-adapted k · p Hamiltonian is shown in the bottom
inset.
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