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Recent quantum simulation by Google [Nature 612, 240 (2022)] has demonstrated the formation of
bound states of interacting photons in a quantum-circuit version of the XXZ spin chain. While such bound
states are protected by integrability in a one-dimensional chain, the experiment found the bound states to
be unexpectedly robust when integrability was broken by decorating the circuit with additional qubits, at
least for small numbers of qubits (≤ 24) within the experimental capability. Here we scrutinize this result
by state-of-the-art classical simulations, which greatly exceed the experimental system sizes and provide a
benchmark for future studies in larger circuits. We find that the bound states consisting of a finite number of
photons are indeed robust in the nonintegrable regime, even after scaling to the infinite-time and infinite-
system size limit. Moreover, we show that such systems possess unusual spectral properties, with level
statistics that deviates from the random matrix theory expectation. On the other hand, for low but finite
density of photons, we find a much faster onset of thermalization and significantly weaker signatures of
bound states, suggesting that anomalous dynamics may only be a property of dilute systems with zero

density of photons in the thermodynamic limit. The robustness of the bound states is also influenced by
the number of decoration qubits and, to a lesser degree, by the regularity of their spatial arrangement.

DOI: 10.1103/PRXQuantum.5.010316

I. INTRODUCTION

Recent advances in quantum simulators based on ultra-
cold atoms, trapped ions, and superconducting circuits
[1–8] have opened a window to studying far-from-
equilibrium dynamics and thermalization in isolated
many-body systems [9–12]. The behavior of generic ther-
malizing systems is described by the eigenstate thermal-
ization hypothesis (ETH) [13–15], which seeks to explain
the process of thermalization at the level of the system’s
energy eigenstates. In certain systems, the ETH can break
down, allowing for new types of dynamical behavior and
phases of matter to emerge [16]. One of the most striking
manifestations of ergodicity breakdown occurs in finely
tuned one-dimensional systems [17], which fail to thermal-
ize due to their rich symmetry structure known as quantum
integrability [18,19].

A paradigmatic quantum integrable system is the spin-
1/2 XXZ model, which describes the low-energy physics
of certain ferromagnetic materials [20]. In one spatial

*z.papic@leeds.ac.uk

Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license. Fur-

ther distribution of this work must maintain attribution to the

author(s) and the published article’s title, journal citation, and

DOI.

dimension, the model’s tour de force analytic solution in
the isotropic limit was presented by Bethe in the 1930s
[21]. One remarkable consequence of that solution was a
special class of eigenstates that can be viewed as bound
states of magnons—the elementary quasiparticle excita-
tions, whose signatures were observed in spectroscopic
experiments [22–24]. However, due to the challenges of
probing bound states via conventional techniques such as
inelastic neutron scattering, it has been proposed [25] that
local quenches [26–32] may provide deeper insight into
the physics of bound states [33–39]. Dynamical signa-
tures of bound states were indeed observed in systems
of 87Rb atoms in an optical lattice, realizing an effective
Heisenberg model [40].

While previous studies mostly focused on systems with
continuous dynamics governed by a static Hamiltonian,
it is also possible to construct equivalent Floquet mod-
els defined as a product of unitary matrices. Such mod-
els, whose quantum dynamics is intrinsically discrete, are
better suited for quantum devices, which operate as a
sequence of unitary gates. Quantum circuit models that
correspond to the spin-1/2 Heisenberg model in the high-
frequency limit were studied in Refs. [41,42]. Remarkably,
the Floquet circuit realization was shown to be integrable
for arbitrary parameters and not only in the small time-step
limit where it reduces via Troterrization to the Hamiltonian
model [41–43].
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The Floquet XXZ model was recently experimentally
realized using a ring of superconducting qubits connected
by high-fidelity fSim quantum logic gates [44]. These
qubits interact with each other by superconducting currents
and can host excitations in the form of trapped photons.
This setup has allowed for the preparation and observation
of bound states of a few interacting photons, which were
predicted and analytically studied in Ref. [45]. One of the
advantages was the possibility of controllably breaking the
integrability by attaching extra qubits to the main chain and
thus changing the geometry of the system. In contrast with
the expectation that the bound states are protected by inte-
grability, it was experimentally observed that these states
survive even in the non-integrable regime, as previously
suggested for the Hamiltonian version of the model [25].
However, the robustness of the bound states was not stud-
ied in detail and the question of which mechanism protects
it in the nonintegrable case remains open.

In this work, we use classical simulations, based on
exact diagonalization (ED) and matrix product states
(MPS), to gain understanding of the experiment in
Ref. [44]. Specifically, we study the statistical properties
of the Floquet spectrum in order to detect the transition
from the integrable to the nonintegrable regime. We also
employ time-evolving block decimation (TEBD) simula-
tions to investigate the evolution of bound states and their
robustness. In this way, we are able to reach far larger
system sizes, photon numbers, and timescales compared
to the quantum hardware [44]. In contrast to the experi-
ment, which has limitations due to the unwanted leakage of
photons, the photon number is conserved in our study. We
find that sectors with small but fixed photon number have
nonthermalizing spectral properties, which affect both their
level statistics and quantum dynamics. Additionally, we
confirm the experimental finding that the bound states in
these sectors persist beyond the integrable regime. While
this effect is pronounced in dilute systems containing small
photon numbers, it appears to be restricted to zero density

of excitations in the thermodynamic limit. By contrast, sec-
tors with small but finite excitation density are found to
thermalize rapidly as the photon number is increased, in
parallel with the fast decay of bound states.

The remainder of this paper is organized as follows. In
Sec. II we introduce the Floquet XXZ model that will be
the main object of our study. In Sec. III we identify anoma-
lous properties in the statistics of the Floquet quasienergy
levels, including the average ratio of consecutive gaps and
the density of states. These results are complemented by
the spectral form factor, which captures the signatures of
anomalous spectral features at an intermediate Thouless
time scale, relevant to transport. In Sec. IV we study the
evolution of bound states and their robustness to inte-
grability breaking. We perform extrapolations to infinite
system size and compare the data against the diagonal
ensemble predictions, which provides information about

the infinite-time limit. In Sec. V we discuss several cases
beyond those studied in experiment, in particular systems
with a constant filling factor and different decoration pat-
terns, including nonsymmetric ones. We summarize our
results and discuss their implications in Sec. VI. Appen-
dices provide more details about the corresponding con-
tinuous XXZ model, effects of different parameters, the
origin of peaks in the density of states, and the properties
of Floquet modes, such as their localization in the Fock
space.

II. MODEL

The experiment in Ref. [44] realized a decorated ring
of superconducting qubits, schematically illustrated in
Fig. 1(a). If the occupancy is limited to zero or one photon
per qubit, the photons can be modeled as hard-core bosons.
Since we are considering a ring of qubits, we will impose
periodic boundary conditions (PBCs) in our ED calcula-
tions, unless stated otherwise. The fundamental building
block of the circuit is a two-qubit fSim gate acting on pairs
of adjacent qubits,

fSim(θ , φ, β) =

⎛

⎜
⎜
⎝

1 0 0 0
0 cos θ ieiβ sin θ 0
0 ie−iβ sin θ cos θ 0
0 0 0 eiφ

⎞

⎟
⎟
⎠

, (1)

where θ and β determine the nearest-neighbor hopping
amplitude and phase, while φ represents the strength of
interactions between neighboring qubits. The parameter
β mimics the external magnetic flux threading the ring.
In the following, we will primarily consider the case
fSim(θ , φ, β = 0) = fSim(θ , φ).

Figure 1(a) is a sketch of the model with decorations
attached to every other site as in Ref. [44]. The number
of photons will be denoted by N and the total number of
sites by L = Lsites + Ldecor, which includes both the sites

(a) (b)

FIG. 1. (a) Sketch of the XXZ circuit model with L = 14 + 7
sites (7 unit cells). Filled dots denote a bound state of N = 3 pho-
tons. Here, the integrability-breaking decorations are attached to
every other site. (b) An example of the corresponding quantum
circuit with L = 4 + 2 sites. The circuit consists of fSim (boxes)
and SWAP gates (vertical lines). The alternating layers of gates
acting on even or odd bonds and decorations are denoted by blue,
red, and green color, respectively, matching the unitaries Ueven,
Uodd, and Udec in (a). Our classical MPS simulations in iTensor
[46] follow this diagram and assume open boundary conditions.
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on the ring Lsites and the extra sites Ldecor. The sketch also
depicts a state with N = 3 adjacent photons, which will
typically be used as the initial state in our simulations.
Note that there is another, similar configuration of three
adjacent photons, that is simply shifted by one lattice site.
This configuration is inequivalent to the one in Fig. 1(a)
because it is connected to two decorations instead of one.
As specified below, we will occasionally find it useful to
average the results over these two initial states. In addition
to the layout shown here, in Sec. V we will also consider
other decoration patterns. In general, we find the dynami-
cal properties are highly sensitive to the number of photons
and the decoration pattern.

Figure 1(b) shows the corresponding quantum circuit,
which consists of fSim and SWAP gates. The states of the
even, odd, and decoration qubits are denoted by |ei〉, |oi〉,
and |di〉, respectively. Our classical TEBD simulations fol-
low the layout in Fig. 1(b) and, for convenience, assume
open boundary conditions (OBCs). We emphasize that
the results below are insensitive to the choice of bound-
ary conditions, as we will demonstrate good agreement
between TEBD with OBCs and ED with PBCs. The circuit
is defined by first applying fSim gates across all odd bonds,
then across all even bonds. Since the even and odd bonds
are thus not equivalent, the system is invariant to trans-
lation by two lattice sites of the main chain. Additional
gates which couple to the integrability-breaking extra sites
|di〉 are subsequently applied, which can further reduce the
symmetry of the full system depending on the pattern of
arrangement of the extra sites. The coupling parameter θ ′

is used to tune between the integrable and nonintegrable
regimes, while the interaction strength φ = φ′ is the same,
both along the main chain and between the chain and the
decorations. The one-cycle unitary operator is then

ÛF =
∏

extra bonds

fSim(θ ′, φ)

︸ ︷︷ ︸

Ûdec

×
∏

even bonds

fSim(θ , φ)

︸ ︷︷ ︸

Ûeven

∏

odd bonds

fSim(θ , φ)

︸ ︷︷ ︸

Ûodd

. (2)

As shown in Appendix A, the Hamiltonian of the XXZ
model corresponds to the Trotter-Suzuki expansion of this
unitary in the φ, θ , θ ′ → 0 limit.

The isotropic XXX version of the model in Eq. (2) was
first proposed in Ref. [41], while the Floquet XXZ model
was formulated in Ref. [42] and analytically studied in
detail in Ref. [45]. The latter used the Bethe ansatz to
derive the dispersion of bound states containing an arbi-
trary number of photons. These bound states are formed
by stable magnon quasiparticles, and there are two different
phases depending on the ratio of θ and φ: (1) gapped phase

φ > 2θ , where bound states of any photon number exist for
any momentum, and (2) gapless phase φ < 2θ where the
bound states are only present for a finite range of momenta.
The maximal group velocity was found to decrease with
the number of photons in the bound state. Quantum sim-
ulations [44] have later confirmed the analytical relations
between the velocity of quasiparticles and their momen-
tum. However, analytical solutions are not available for
the nonintegrable case, where the integrability is broken
either by adding certain perturbations or by changing the
geometry of the system. We will use classical simulations
to numerically study this regime.

A. Circular orthogonal ensemble

Before we analyze in detail the Floquet spectrum of
Eq. (2), we must understand the relevant symmetries of
the model as they affect the random matrix theory ensem-
ble describing the spectrum after breaking the integrability
[47]. For example, the undecorated model with PBCs is
invariant under translation by two sites, due to the even
and odd layers of fSim gates being applied separately. Such
a circuit is also invariant under spatial inversion. How-
ever, attaching extra qubits to some of the sites reduces
the symmetry of the full system. Regular patterns with
decorations on every nth site will preserve some form of
translation invariance, although with a larger unit cell. Fur-
thermore, the system can be inversion symmetric only if
the decoration pattern itself is also inversion symmetric.
However, in some cases, such as that with decorations on
every other site, the inversion of the decorations can be
incompatible with the inversion of the main ring due to
different reflection axes, so the full system only has trans-
lation symmetry, even though the decoration pattern is still
inversion-symmetric. This will be discussed in more detail
in Sec. V B.

For a general unitary matrix ÛF , the level statistics
is expected to conform with the circular unitary ensem-
ble (CUE). However, as will be apparent in Secs. III A
and V B, in most cases studied here we obtain the circular
orthogonal ensemble (COE) statistics instead. COE would
trivially ensue if ÛF = ÛT

F , however this is not the case
here for any arrangement of decorations. Our calculations
show that the necessary conditions for COE level statistics
are an inversion-symmetric decoration pattern and equal
parameters for the fSim gates on the even and odd bonds
along the ring, as defined in Eq. (2). Additionally, the
mirror axis for inversion needs to be centered on a site,
not on a bond between two sites. If R̂ is the inversion-
symmetry operator, which reflects the qubits along this
axis, we then have R̂ÛoddR̂ = Ûeven, R̂ÛevenR̂ = Ûodd, and
R̂ÛdecR̂ = Ûdec. For simplicity, we define a modified one-
cycle unitary operator

Û ′
F =

√

ÛdecÛevenÛodd

√

Ûdec. (3)
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The operators ÛF and Û ′
F have the same spectrum, since

they differ only by a time shift. It is now easy to see
that Û ′

F = R̂Û ′T
F R̂. This can be understood as an additional

symmetry, which relates the evolution operator and its
transpose, resulting in COE level statistics. Our situation is
reminiscent of Ref. [48], where the Floquet spectrum was
shown to have COE instead of CUE statistics if there is a
transformation which connects the two steps of the Floquet
unitary.

Another possibility is when the mirror axis is between
two adjacent sites, leading to R̂ÛoddR̂ = Ûodd and
R̂ÛevenR̂ = Ûeven. We then have Û ′

F = R̂Û ′
F R̂, meaning that

R̂ is simply another symmetry of Û ′
F which needs to be

resolved. The level statistics in the sector where R̂ has
eigenvalue +1 is then CUE. The only deviations from this
expectation are found for small numbers of decorations
such as two or four adjacent decorations, where the level
statistics after resolving the R̂ symmetry is somewhere
between COE and CUE. However, it seems to increase
towards CUE as the density of decorations or the number
of photons is increased. There are also special cases, which
are inversion symmetric in respect to both types of mirror
axes, such as the pattern with decorations on every third
site. In those cases, the level statistics stays COE even after
resolving the R̂ symmetry. In contrast, all nonsymmetric
decoration arrangements were found to exhibit CUE level
statistics.

III. SPECTRAL PROPERTIES

In this section we analyze the spectrum of our unitary
circuit model in Eq. (2). This model does not have a Hamil-
tonian representation in general, since the mapping to the
XXZ model (Appendix A) is only valid in the dt → 0 limit.
As a consequence, the system does not have eigenstates
in the usual sense. However, we can instead compute the
eigenstates of the one-cycle evolution operator ÛF Eq. (2),
which are known as the Floquet modes. The corresponding
Floquet quasienergy spectrum is periodic, with periodic-
ity 2π/T, where T is the time length of one cycle. We set
the units such that T = 1. We will investigate properties
of the Floquet modes and quasienergies by studying their
level statistics and the density of states, which tell us about
the behavior of the system at very late time scales corre-
sponding to the Heisenberg time. We follow these results
by studying the spectral form factor, which reveals similar
information at the intermediate Thouless time, relevant for
transport.

A. Level statistics

In order to determine whether our model Eq. (2) is inte-
grable or chaotic, we study the statistics of its quasienergy
levels ǫn. In particular, we examine the level statistics
ratio, r = min(sn, sn+1)/ max(sn, sn+1), characterizing the
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FIG. 2. Statistics of the Floquet quasienergies. Average ratio
of consecutive energy gaps 〈r〉 for different values of θ ′ with
fixed θ = π/6, φ = 2π/3, β = 0. The horizontal dashed lines
are 〈r〉P ≈ 0.386 and 〈r〉COE ≈ 0.527. (a) N = 3 photons for dif-
ferent system sizes indicated in the legend. The relevant Hilbert-
space dimensions range from dimL=20+10 = 406 to dimL=80+40 =
7021. The vertical lines A, B, C, D, and E mark several values of
θ ′/π (0.10, 0.35, 0.65, 0.75, and 0.95, respectively) that will be
studied later in more detail. Inset: linear extrapolation to L→∞.
(b) The case of N = 4 photons and N = 5 photons (inset), with
the largest Hilbert-space dimensions dimL=40+20 = 24405 and
dimL=20+10 = 14253, respectively. In all the plots, we resolve
the translation symmetry and consider only the k = 0 momentum
sector.

spacing of adjacent quasienergy gaps sn = ǫn+1 − ǫn [49].
When computing 〈r〉, we omit any exact degeneracies,
although such degeneracies are typically absent as long
as θ ′ 	= 0. An integrable system is expected to follow the
Poisson distribution with the average value 〈r〉P ≈ 0.386,
while in the chaotic regime the expected distribution for
our case, as explained in Sec. II A above, is the circular
orthogonal ensemble (COE) with 〈r〉COE ≈ 0.527 [47,50].
We vary the hopping amplitude θ ′ between the main chain
and the extra sites from 0 to π and plot the corresponding
〈r〉(θ ′). Figure 2(a) shows the results for N = 3 photons
for various chain lengths, while the extrapolation to an
infinitely large system L→∞ is plotted in the inset. This
result should be contrasted against the results for N = 4
and N = 5 photons in Fig. 2(b).

Turning on the coupling to the decorations is expected
to break integrability, which can indeed be observed in
Fig. 2, where the value of 〈r〉(θ ′) rapidly jumps towards
〈r〉COE as soon as θ ′ 	= 0. For N ≥ 4 photons, as soon
as θ ′ � 0.05π , the level statistics remains pinned to the
COE value, in agreement with the usual expectation for
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integrability breaking in Hamiltonian systems [51]. How-
ever, the case with N = 3 photons shows a visible depar-
ture from these expectations, exhibiting pronounced dips
towards the Poisson value at special values of θ ′—see
Fig. 2(a). Furthermore, we find that the positions of the
dips in 〈r〉 depend on the main chain hopping amplitude θ ,
but not on the interaction strength φ or the flux through the
ring β, see Appendix C. No emergent symmetry, which
would explain the dips at certain values of θ ′, could be
identified. Instead, below we will relate the presence of
dips with special structures in the density of states of the
quasienergy spectrum.

We note that in all cases plotted in Fig. 2, the value of
〈r〉(0) lies below the Poisson line, even though the model
is known to be integrable at θ ′ = 0. This is simply due to a
large number of degeneracies that arise in the Floquet spec-
trum due to the disconnected decorations, which produces
a strong peak in the probability distribution at zero level
spacing. Namely, even though there is no hopping to the
extra sites when θ ′ = 0, there are still states where one or
more photons are frozen in these additional sites. A state
with all photons outside the main chain has zero energy,
as do some states with two separate photons on the main
chain and all other photons outside. We found that com-
pletely removing the extra sites brings 〈r〉(0) closer to 〈r〉P,
as expected. We also note that, while the hopping ampli-
tudes inside the main chain and between the chain and the
extra sites are different, θ 	= θ ′, the nearest-neighbor inter-
action strength is equal in both cases φ = φ′. This means
that the photons frozen in the decorations can still interact
with other photons.

The intriguing features in the level statistics observed
in Fig. 2(a) can be understood from the density of states
(DOS). The intuition is that sharp peaks in DOS signal
a large number of degeneracies in the spectrum, which
can decrease the value of 〈r〉. In Fig. 3(a), we plot the
normalized DOS curves for N = 3 and N = 5 photons at
several values of θ ′ that were marked by A–E in Fig. 2(a).
Both photon numbers exhibit a peak at ǫ = 0 when θ ′ =
0, which is explained by the previously discussed large
number of zero modes due to the extra sites. This zero-
energy peak is much more prominent for N = 3 and its
relative height decreases with N . The results for N = 4
(not shown) are in between those for N = 3 and N = 5,
with more peaks than N = 5, but still overall flatter than
N = 3. As θ ′ is increased, the DOS curves become more
flat. However, several other notable peaks are present for
N = 3. Although these peaks are visible at all θ ′, they are
particularly sharp at those values where 〈r〉 deviates from
〈r〉COE (e.g., θ ′ ∈ [0.25π , 0.45π ] and θ ′ ∈ [0.75π , 0.85π ]),
see Figs. 2(a) and 3(a), signaling high nonuniformity in the
quasienergy spectrum. The peaks in DOS are not present
for the nonsymmetric patterns of extra sites, such as a
single or three decorations, which will be discussed in
Sec. V B.

(a)

(b)
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FIG. 3. (a) Density of states (DOS) for different values of θ ′,
normalized by the average over the entire quasienergy spectrum
[the labels A–E are defined in Fig. 2(a), while 0 denotes the
integrable case θ ′ = 0]. The main panel corresponds to N = 3
photons in a system size L = 80 + 40, while the inset shows
N = 5 in L = 20 + 10. In both cases, θ = π/6, φ = 2π/3. (b)
Distribution of the 1000 smallest quasienergy gaps (i.e., about
15% of all levels) throughout the Floquet spectrum, normalized
by the local DOS. Data is for N = 3 photons in system size
L = 80 + 40 at θ = π/6, φ = 2π/3, θ ′ = 0.35π , i.e., for the
point labeled B in (a).

At θ ′ = 0, the peaks in DOS correspond to exact and
near degeneracies in the spectrum. Since DOS is prob-
ing aggregated features of the spectrum, at finite θ ′ the
peaks do not necessarily demonstrate the presence of near
degeneracies between neighboring energy levels that are
required for 〈r〉 to anomalously reduce. However, we find
that the smallest gaps between quasienergies are indeed
disproportionately concentrated in the towers. In Fig. 3(b),
we see that the 1000 smallest quasienergy gaps (normal-
ized by the local DOS) at point B align closely with the
location of the towers. Further discussion of the origin
of peaks in DOS based on the quasiparticle dispersion
relation can be found in Appendix B.

B. Spectral form factor

The level statistics quantities considered above derive
from the properties of eigenvalues of the Floquet uni-
tary, hence they describe the behavior of the system at
late times. In order to gain information about intermediate
times, we study the spectral form factor (SFF) [52]:

K(t) =
∑

m,n

eit(ǫn−ǫm), (4)
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which is defined in terms of two-point correlations
between the Floquet quasienergies, ǫn. As we set the time
period of one unitary cycle to T = 1, the time in the above
equation is equal to the number of cycles, t = nc.

SFF is known to exhibit starkly different behavior in
integrable and chaotic systems, see Refs. [53–56] for some
recent examples. In both cases, the SFF at short times
is governed by microscopic details of the system and
therefore it is nonuniversal. After this initial transient,
in integrable systems (Poisson ensemble) the SFF stays
approximately constant KP(t) ≈ H, around the value equal
to the Hilbert space dimension H. In nonintegrable sys-
tems, SFF first reaches a global minimum and, around the
Thouless time tTh, it starts to grow approximately linearly,
according to the predictions of random matrix theory, until
it saturates by the Heisenberg time tH ∼ H. The level
statistics and the DOS studied above naturally pertain to
the times of order tH, where the discreteness of the Floquet
quasienergy spectrum is resolved.

SFF is typically noisy and suffers from a lack of self-
averaging [57,58]. In order to smoothen its time depen-
dence, we chose to average it over the flux through the
ring β. This parameter does not qualitatively affect the
level statistics, as confirmed in Appendix C. Addition-
ally, after averaging over 100 values of β ∈ [0, π ], we also
compute the moving average at each time point by taking
into account the nearest 60 points, which finally results in
relatively smooth curves. The averaged SFFs for N = 3
photons, L = 60 + 30 sites and different values of θ ′ are
shown in the inset of Fig. 4(a). After an initial period

of nonuniversal behavior, the SFF for θ ′ = 0 assumes an
approximately constant value, confirming that the system
is integrable. In contrast, a clear linear ramp followed by
saturation emerges for all studied values of θ ′ > 0, con-
sistent with broken integrability. We note that the SFF for
θ ′ = 0 saturates at a higher value than θ ′ > 0, where the
plateau is exactly as expected at H. The reason for this is
a large number n0 of zero modes in the integrable case,
which increases the late-time value of the SFF to H + n2

0
(at θ ′ = 0).

Furthermore, the Thouless time tTh can be extracted
from the SFF data. This time gives us the onset of the
linear ramp, i.e., the universal behavior described by the
random matrix theory. The COE prediction for SFF in the
time window 0 < t < H is [47]

KCOE(t) = 2t − t ln(1 + 2t/H), (5)

as shown by the dashed black curve in Fig. 4. In principle,
the Thouless time could be defined as the smallest time
for which K(t) = KCOE(t). However, since K(t) is typi-
cally not smooth enough even after averaging, in practice
we use the following criterion to determine the Thouless
time [59]:

ln(K(tTh)/KCOE(tTh)) = 0.4. (6)

The precise value of the filtering parameter 0.4 is unim-
portant, as long as it is finite but not too small. In Fig. 4,
we plot the extracted Thouless time together with the

(a) (b)

FIG. 4. (a) Comparison of the level statistics ratio 〈r〉 and the Thouless time extracted from the spectral form factor (SFF) for N = 3
photons, L = 60 + 30. The labels A, B, C, D, and E mark the special values of θ ′ from Fig. 2. Inset: SFF time series for several values
of θ ′ indicated in the main panel. The data was averaged over β and smoothened by a moving average (see text). Note the logarithmic
scale on both the x and y axis. The horizontal dashed lines mark the saturation values, H and H + n2

0, while the vertical line at nc = H

is the Heisenberg time. The dashed black curve is the COE prediction for the linear ramp. The agreement with COE becomes better
as N increases. (b) Same as panel (a) but for N = 5 and L = 14 + 7, which shows a much clearer linear ramp in the SFF and better
agreement with the random matrix theory at late times.

010316-6



INTEGRABILITY BREAKING AND BOUND. . . PRX QUANTUM 5, 010316 (2024)

average level-spacing ratio 〈r〉 for N = 3 and varying θ ′.
Interestingly, the two curves exhibit very similar features,
which means that the previously observed deviations in the
level statistics for N = 3 leave an imprint on the trans-
port properties. The latter—as defined by the Thouless
time—occurs later in systems that are farther away from
the nonintegrable case, as defined by 〈r〉.

The agreement of SFF with the random matrix-theory
prediction KCOE is not particularly good for N = 3 pho-
tons. This supports our previous observation that the
energy spectra in small photon-number sectors have spe-
cial properties, e.g., as seen in fluctuations of the level
statistics and the nonmonotonic DOS. The agreement with
COE becomes better as the number of photons N increases,
as can be seen for N = 5 in Fig. 4(b). The number of zero
modes at θ ′ = 0 is now much smaller than the Hilbert-
space dimension, so the dashed horizontal lines at H and
H + n2

0 are visually indistinguishable. There is also less
variance in K(t) curves for different values of θ ′ > 0,
which is reflected in the almost constant value of the
extracted Thouless time, as shown in the same figure. This
is in line with the level-spacing ratio 〈r〉, which shows
no oscillation with θ ′ for this photon number but instead
remains approximately constant around 〈r〉COE.

C. Summary

In this section, we have studied the spectral properties
of the Floquet unitary in Eq. (2). We confirmed that inte-
grability is generally broken by θ ′ 	= 0 in large system
sizes. However, at special values of θ ′, for N = 3 photons
we also observed a pronounced tendency towards restora-
tion of the Poisson level statistics, see Fig. 2(a). We have
related these features in the level statistics to the peaks in
the DOS in Fig. 3(a), resulting from an interplay between
the geometry of the decorations and the small photon clus-
ters forming the bound states. As these properties derive
from the quasienergy spectrum of the Floquet operator,
they implicitly relate to the behavior of the system at the
very late Heisenberg time. Nevertheless, the study of the
SFF showed that similar signatures at these special val-
ues of θ ′ can also be observed at the intermediate Thouless
time. A natural question, addressed next, is how these fea-
tures relate to the dynamics from the special subset of
initial conditions associated with bound states of photons.

IV. DYNAMICS OF BOUND STATES

Thus far, we have focused on generic aspects of ther-
malization at the level of the entire Floquet spectrum of
the decorated XXZ circuit in Eq. (2). However, one of the
motivations behind the experiment [44] to study this par-
ticular model is the fact that its integrable version hosts
a special class of ballistically propagating bound states.
While such bound states are here protected by integrabil-
ity, they represent only a fraction of all eigenstates and

therefore it is not hard to imagine that they may persist,
due to some other protective mechanism, after integrability
is broken. We now examine in detail the stability of such
states after decorating the circuit to break its integrability.

In the Ising limit of the Hamiltonian version of the XXZ
model, Jz ≫ J , an N -particle bound state corresponds to
N adjacent spins being flipped [25],

|000.. 1 · · · 1
︸ ︷︷ ︸

N

..000〉. (7)

Even far from the Ising limit when Jz ≥ J , the behavior of
an N -particle bound state can be understood by starting
from such an initial state, which is no longer an eigen-
state. The same is true for the Floquet XXZ circuit, with
the Hamiltonian Ising limit corresponding to φ ≫ θ .

Starting from the initial state (7), the “bound-state prob-
ability” (BSP) after nc cycles is given by

B =
nT

nT + nS

, (8)

where nT = 〈ψ(nc)|
∑

j

∏j +(N−1)

i=j n̂i|ψ(nc)〉 is the proba-
bility of finding photons in N adjacent sites, where the
indices i and j label the sites on the main chain. Con-
versely, the probability of any other N -photon configura-
tion was denoted nS.

The BSP was experimentally measured in Ref. [44] and
found to gradually decay over time even at θ ′ = 0. This
decay was due to experimental imperfections rather than
an intrinsic property of the model. For an ideal implemen-
tation of the XXZ circuit, the BSP drops rapidly before
fluctuating around a steady finite value, as will be shown
below. However, once integrability breaking terms are
introduced into the circuit, there is no requirement for
the N -photon bound states to continue to be stable at
late times. Below, we focus on understanding the effect
of integrability breaking on BSP dynamics using TEBD
simulations implemented in iTensor [46].

The BSP dynamics for N = 3, 4, and 5 photon bound
states is presented in Figs. 5(a)–5(c) for various strengths
of the integrability breaking θ ′. By increasing θ ′ from 0 to
π/2, the decorations become more strongly coupled to the
main chain and the bound states are eventually destroyed.
However, at intermediate θ ′ the BSP does not decay to
zero, even after many cycles. This is true even when θ ′

is comparable in size to the natural energy scale along the
chain, θ ′ ≈ θ . For larger bound states, θ ′ introduces large,
slow oscillations into the BSP that are independent of sys-
tem size. The origin of these oscillations will be explained
in Appendix F.

Typically, an infinitesimally small perturbation is suffi-
cient to destroy integrability in the thermodynamic limit
L→∞ and infinite time limit t→∞. We access these lim-
its by extrapolating the numerical data for the BSP via
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(a)

(d) (e)

(b) (c)

FIG. 5. (a)–(c) Dynamics of the bound-state probability (BSP) with θ = π/6, φ = 2π/3, for N = 3 photons (a), N = 4 (b), and N =
5 (c), at fixed system size L = 300 + 150. Data is obtained using TEBD with bond dimension χ = 256 and open boundary conditions.
(d) Time average of the BSP over 100 cycles using TEBD and extrapolated to L→∞. We also averaged over two inequivalent
initial states (7). The extrapolation errors are smaller than the size of the symbols in the plot. Inset: average BSP for different photon
numbers N at fixed L = 300 + 150. Data was averaged over 150 cycles and obtained using TEBD with bond dimension χ = 320
for 3 ≤ N ≤ 12, θ = π/6, φ = 2π/3 and varying θ ′. (e) Diagonal ensemble prediction for the probability to remain in a bound
state, averaged over two possible initial configurations. Data in this panel is obtained using ED with PBCs, on system sizes N = 3,
L = 30 + 15 (with Hilbert-space dimension dim = 14189); N = 4, L = 20 + 10 (dim = 27404); N = 5, L = 14 + 7 (dim = 20348);
N = 6, L = 12 + 6 (dim = 18563). Inset: extrapolation to infinite system size for translation invariant initial configurations, averaged
over states with k = 0 and k = π/2 momenta.

two methods: time averaging the TEBD results and eval-
uating the diagonal ensemble predictions from ED data.
The latter directly takes the t→∞ limit by assuming that
the off-diagonal elements of the density matrix average out
to zero [15,50]. These two methods have different advan-
tages and limitations. While the TEBD method allows
us to study dynamics in very large systems, these sim-
ulations become computationally more expensive as the
evolution time increases, which limits the total number of
cycles. On the other hand, the diagonal ensemble predic-
tion provides information about the BSP at infinite time.
This avoids the problems associated with long time scales
for decay, which have been observed in quenches involv-
ing low density of quasiparticle excitations [60]. However,
the diagonal ensemble requires a computation of the com-
plete eigenspectrum using ED, which limits the maximal
system size. The total Hilbert-space size is constrained by
the amount of RAM available for diagonalization, while
our implementation relies on 128-bit integers to represent
basis configurations, which limits the maximal number
of sites L ≤ 128, irrespective of the photon number N .

In principle, the latter restriction can be lifted using a
more flexible encoding of the basis states, at the cost of
sacrificing some of the computation efficiency.

For the TEBD time average of the BSP, we consider
100 cycles between cycle nc = 20 and cycle nc = 120 for
a variety of system sizes ranging from L = 20 + 10 to L =
300 + 150. In this way, we exclude the data at very short
times, which may be impacted by nonuniversal effects. By
fitting the average BSP at each system size according to
BSP(L, θ ′) = α(1/L) + BSP∞ we extrapolate to L → ∞
and obtain the result plotted in Fig. 5(d). This procedure
was repeated for several photon numbers N . In each case,
the initial state was chosen according to Eq. (7), which
is not translation invariant. As discussed in Sec. II, there
are two such inequivalent configurations and our results
are averaged over both. We find that the bound states are
robust for a finite range of θ ′, which decreases as the size
of the bound states increases.

We also address how the robustness changes as the
bound states increase in size, but continue to be dilute rel-
ative to the total system size, N/L ≪ 1. We calculate the
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BSP for bound states between sizes N = 3 and N = 12,
averaged over nc = 150 cycles, to find BSP(N , θ ′). The
results for a fixed number of sites L = 300 + 150 are plot-
ted in the inset of Fig. 5(d), where it can be seen that the
BSP(N , θ ′) curves are starting to converge for larger val-
ues of N . These results suggest that large but dilute bound
states continue to be robust.

The diagonal ensemble results, which directly access
the infinite time limit t→∞ of the BSP, can be seen in
Fig. 5(e). These results are consistent with the extrapolated
TEBD results, suggesting small bound states are robust for
a finite range of θ ′. In particular, the N = 3 bound states
appear to be robust up to values of the integrability break-
ing that are comparable to the on-chain hopping terms.
As N becomes larger the bound states appear to become
less robust, however, both Figs. 5(e) and 5(d) suggest the
N = 4, N = 5, and N = 6 bound states are robust for a
finite range of θ ′.

For our diagonal ensemble calculations in Fig. 5(e)
we also averaged over two inequivalent initial configura-
tions (7). Since these states break translation invariance,
we have to work in the full Hilbert space and therefore
cannot obtain enough data points for reliable system-size
scaling. However, if we form a translation-invariant ini-
tial state, we can restrict to a particular momentum sector
and reach much larger system sizes. This allows us to
extrapolate the diagonal ensemble value for BSP to L→∞,
as shown in the inset of Fig. 5(e), where we have aver-
aged over the k = 0 and k = π/2 sectors. We chose these
two values of momenta because we found that they cap-
ture the extremal behavior of BSP at small θ ′: the latter
is particularly robust for k = 0 and decays most rapidly
for k = π/2, hence their average qualitatively captures the
behavior of BSP obtained by averaging over all momen-
tum sectors in the main panel of Fig. 5(e). We empha-
size that the observed sensitivity to the momentum sector
at N = 3 is found to rapidly diminish in larger photon
sectors.

In summary, we have shown that the regular decoration
pattern, chosen in Ref. [44], gives rise to robust signa-
tures of bound states beyond the integrable regime of
the XXZ circuit for photon numbers N ≤ 5. At long but
finite times, these signatures are well converged in sys-
tem size, as confirmed by TEBD simulations. Moreover,
similar conclusions are obtained by considering finite-size
scaling of the diagonal ensemble results, pertaining to
infinite time, that can be accessed in ED simulations. In
Appendix E we show that other observables can reveal a
signature of bound states by probing the memory of the
initial configuration in Eq. (7) as the system evolves in
time. Furthermore, the dynamics of BSP studied above is
also reflected in the properties of Floquet eigenstates, in
particular their localization in the Fock space and their
overlap on the initial state in Eq. (7), which is discussed
in Appendix F.

V. FINITE DENSITY OF EXCITATIONS AND

OTHER DECORATION PATTERNS

Up to this point, we have mostly focused on the exper-
imental setup of Ref. [44], restricting to the case with
integrability-breaking decorations on every other site and
small numbers of photons N≤6. In this section, we con-
sider other cases that were not studied previously. In par-
ticular, we will now fix the filling factor instead of fixing
the total photon number, which will allow us to investigate
convergence to the thermodynamic limit by growing both
the system size and the number of excitations, as conven-
tionally done in the literature. Moreover, we will explore
other decoration patterns, including those with decorations
on every nth site where the system still retains translational
invariance, as well as completely random patterns, which
break all the symmetries.

A. Fixed filling factor

When we extrapolate systems with small but fixed pho-
ton numbers to the infinite number of sites, they become
infinitely dilute. By contrast, the thermodynamic limit
is conventionally taken by keeping the density constant.
Thus, we introduce the filling factor ν = N/Lsites and
study properties of our circuit as both N and Lsites are
simultaneously increased such that ν remains constant.

As done previously for fixed N , we average the BSP (8)
over a certain number of cycles and investigate its depen-
dence on θ ′. In particular, the averaging was done between
cycles nc = 100 to nc = 200, after the initial drop in bound
state survival. The time-averaged value is then extrapo-
lated to the thermodynamic limit, while keeping ν fixed,
using a quadratic fit in 1/L, see Fig. 6. Here we set the fill-
ing factor to ν = 1/10, but the results for other ν values

FIG. 6. Time-averaged BSP extrapolated to infinite system
size. Filling factor is fixed to ν = N/Lsites = 1/10. For com-
parison, we also replotted the case of fixed N = 3 from Fig. 5.
Inset: BSP dynamics for L = 1000 + 500 and N = 100. All data
is obtained by TEBD with bond dimension χ = 256.
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are similar. In contrast to dilute systems with fixed photon
numbers, the average BSP now drops to very small values
already at θ ′ ≈ 0.05π . Due to a very slow decay rate of the
BSP for very weak integrability breaking θ ′ � 0.05π , we
expect Fig. 6 to provide only an upper bound, as the extrap-
olated value of the BSP would likely be smaller with an
access to a longer time window. However, the TEBD cal-
culations become significantly more time consuming with
increasing number of cycles, which is a limiting factor in
very large systems.

In the inset of Fig. 6 we show the evolution of BSP for
N = 100 photons in system size L = 1000 + 500, and sev-
eral values of θ ′ obtained using TEBD. Unlike the case of
fixed but small photon numbers, the large-N bound states
are less resilient to integrability breaking by coupling to
the extra sites. The BSP quickly decreases with the num-
ber of cycles, as can be seen in the inset, where we show
only the relatively small coupling strengths θ ′ ∈ [0, 0.1π ].
The extrapolated values in Fig. 6 point to the conclusion
that very small photon-number sectors we studied up to
this point have unconventional properties, which are not
shared by thermodynamically large sectors with nonzero
filling factor ν.

B. Other decoration patterns

In this section, we consider the level statistics and BSP
dynamics for different patterns of decorations. In Fig. 7
we show the average level-spacing ratio 〈r〉(θ ′) for N = 3
photons and five different types of decoration arrange-
ments. The first one [Fig. 7(a)] is only a single decoration,
while the second one [Fig. 7(b)] consists of three decora-
tions attached to sites 2, 4, and 6. Both of these patterns
break translation symmetry, which limits the system sizes
we can reach. Unlike the level statistics in Fig. 2(a), where
〈r〉 was oscillatory for N = 3, here we observe no such
oscillations. Instead, 〈r〉 first increases to the COE value
and then starts to decrease around θ ′ ≈ 0.3π . The decrease
is not present in larger photon numbers, with the 〈r〉(θ ′)

curve becoming flat already at N = 4. Thus, we conclude
that N = 3 displays anomalous level statistics properties,
irrespective of the decoration pattern.

We have also examined the DOS for the patterns of
extra sites in Figs. 7(a) and 7(b). The DOS distribution
in these cases differs from Fig. 3(a) in that it loses the
sharp peaks, but the overall shape stays approximately the
same and becomes flatter with increasing number of pho-
tons (data not shown). The peaks likely disappear because
the new decoration pattern is no longer translation invari-
ant, and the eigenstates, which were previously degenerate
are no longer related by symmetry, hence they generally
have different energies.

Note that the 〈r〉 plateau is more pronounced and closer
to the COE value for three decorations compared to a
single decoration. This trend continues as we add more

(a)

(b)

(c)

(d)

(e)

FIG. 7. Level statistics for different decoration patterns (both
translation symmetric and nonsymmetric). Data is for N = 3
photons, θ = π/6, φ = 2π/3, and various system sizes spec-
ified in legends. The horizontal dashed lines are expectations
for the relevant ensembles, 〈r〉P ≈ 0.386, 〈r〉COE ≈ 0.527, and
〈r〉CUE ≈ 0.597. (a) One decoration on site 2. (b) Three decora-
tions on sites 2, 4, and 6. (c) Random nonsymmetric patterns. (d)
Decorations on every site, in the momentum k = 0 and inversion-
symmetric I = +1 sector. (e) Decorations on every third site,
k = 0, I = +1 sector.

decorations. In Fig. 7(c) we show several random patterns
where the number of extra sites is equal to half the number
of sites inside the ring. We again observe similar behavior,
with an initial plateau followed by a decrease in 〈r〉. How-
ever, the plateau is now at the CUE value 〈r〉CUE ≈ 0.597
instead of 〈r〉COE ≈ 0.527. As explained in Sec. II A, this
is due to all of the studied random patterns breaking inver-
sion symmetry, unlike the previous cases of one and three
decorations. It might seem surprising that 〈r〉 is nonmono-
tonic with system size in Fig. 7(c), but this is simply due to
choosing completely different patterns for each system size
and could be avoided by averaging over several random
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patterns for each L. The DOS distribution for the cases in
Fig. 7(c) again has no peaks for θ ′ 	= 0 and is noticeably
flatter than the previously considered patterns.

We have also considered two examples of periodic pat-
terns, one with decorations attached to every site of the
main ring [Fig. 7(d)] and the other with decorations on
every third site [Fig. 7(e)]. The first case is invariant to
translations by two sites and inversion, which swaps the ith
site (decoration) with (Lsites − i)th [(Ldecor − i)th], so these
symmetries must be resolved in order to obtain the correct
level statistics. We note that the full system is not inversion
symmetric for the usual periodic pattern with decorations
on every other site, even though the arrangement of deco-
rations itself is. This is due to first applying the fSim gates
on odd bonds and then on even bonds, Eq. (2). There is
no reflection axis, which simultaneously preserves both the
decoration pattern and the order of even and odd fSim gate
layers. Similar to previous results in Fig. 2(a), for N = 3
we again observe deviations from 〈r〉COE at certain values
of θ ′. However, the 〈r〉(θ ′) curve is now symmetric around
θ ′ = π/2 with an integrable point in the middle. This is
similar to the case in Fig. 12(a) in Appendix C, where
〈r〉(θ ′) is symmetric around θ = π/2. As can be seen from
Eq. (1), this value of the hopping amplitude corresponds to
a photon moving to the neighboring site with probability
1, so it is not surprising that this is a special case.

For the second periodic pattern [Fig. 7(e)], the sym-
metries of the full system are translation by six sites and
inversion, which preserves this arrangement of decora-
tions. In this case, we also observe oscillations in 〈r〉(θ ′),
but the local minima and maxima are at different values of
θ ′ compared to the other patterns. As before, all oscilla-
tions disappear for N = 4 or more photons. For all studied
periodic patterns with decorations on every nth site, the
DOS still exhibits pronounced peaks for N = 3 and to
some extent for N = 4.

In summary, none of the considered patterns that break
translation invariance exhibit oscillations in 〈r〉(θ ′) that
were visible in Fig. 2(a). Instead, 〈r〉 first reaches a plateau
and then starts to slowly decay at larger values of θ ′. The
plateau is at 〈r〉COE for inversion-symmetric patterns and
at 〈r〉CUE for nonsymmetric ones. For the patterns, which
preserve some form of translation symmetry, the level
statistics shows similar properties to the experimental case
of decorations on every other site, with deviations from
〈r〉COE for N = 3, albeit with minima and maxima in 〈r〉 at
different locations. Any observed anomalies disappear in
larger numbers of photons N ≥ 4.

Finally, we have also investigated the robustness of
bound states for various decoration patterns. In Fig. 8 we
plot the averaged BSP for N = 3 photons, Lsites = 300
sites on the main chain averaged over nc = 100 cycles
between cycles nc = 50 and nc = 150. For a decoration
on every second site we average over the two possible
N = 3 photon initial states around the center of the chain.
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FIG. 8. Time-averaged BSP over 100 cycles for different dec-
oration patterns in the N = 3 excitation sector for Lsites = 300.
The fixed parameters are θ = π/6, φ = 2π/3, and χ = 256. In
the case of decorations on every second (third) site the results
were averaged over two (three) nonequivalent initial bound-
state configurations. The random pattern results were averaged
over five different patterns with decorations on half of the sites,
Ldecor/Lsites = 1/2.

We perform a similar averaging over the three possible ini-
tial states for the case of a decoration on every third site.
For randomly allocated decorations we instead average
over five different random patterns with the initial bound
state at the center of the chain. These results suggest the
robustness of the bound states is more dependent on the
density of decorations Ldecor/Lsites than on the actual pat-
tern. The bound states survive for larger values of θ ′ when
the number of decorations is smaller. The average BSP
decays over a similar range of θ ′ for random patterns with
Ldecor/Lsites = 1/2 and for the periodic case of the same site
density. For the case of decorations on every site there is
a peak at θ ′ = π/2, which corresponds to the near inte-
grable point as seen in Fig. 7(d). As before, the bound
states become increasingly less robust as the number of
photons grows.

VI. CONCLUSIONS AND DISCUSSION

We have performed systematic classical simulations of
the Floquet XXZ circuit on a 1D chain with integrabil-
ity breaking decorations. This study was motivated by
the recent Google experiment [44], which realized the
same model on a ring of superconducting qubits and
investigated the dynamics of its bound states. Surpris-
ingly, the bound states were observed to be resilient to
integrability-breaking perturbations in the form of extra
qubits attached to the ring. We have analyzed the level
statistics of this model and simulated the dynamics of
bound states, confirming that some of these states indeed
survive in certain parts of the nonintegrable regime, even
for an infinite number of qubits and at infinite time. In
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contrast to much previous work, the focus of Ref. [44]
and our own was on dilute systems containing few exci-
tations. Such models have been studied in the context of
“weak” quenches [60,61], the onset of quantum chaos in
few-body systems [62], and meson bound states [63–69].
As we have demonstrated, the latter are amenable to clas-
sical simulations in large numbers of qubits, providing
useful benchmarks for future studies on improved quantum
hardware.

One of our most significant findings is that small but
fixed photon-number sectors show unusual properties in
several respects. In particular, the robustness of bound
states depends on the photon number, with larger states
decaying more rapidly as the coupling to the integrability-
breaking extra sites is increased. Moreover, the energy
spectrum for N = 3 photons has unusual level statistics,
which deviates from the expectation for a chaotic system
even for strong couplings to the integrability-breaking dec-
orations. As discussed in more detail in Appendices B
and D, this can be attributed to the presence of spe-
cial eigenstates in the energy spectrum. These eigenstates
have a relatively simple structure, which is related to one-
photon and two-photon states, while the rest of the photons
are located in the decorations. The proportion of such
states is large enough only in sufficiently dilute systems.
When the decoration pattern is periodic, some of these
eigenstates are related by translation and are therefore
degenerate in energy, which results in prominent peaks
in the DOS and affects the level statistics. The devia-
tions in level statistics were shown to leave an imprint
in the dynamics of bound states by slowing down the
thermalization.

Additionally, we have investigated systems with
constant filling factors and their extrapolation to the
thermodynamic limit. Such systems are no longer dilute
and our findings indicate that they do not support stable
bound states when integrability is broken. This is in stark
contrast with the bound states in very dilute systems with
small photon numbers, such as the one studied in exper-
iment [44]. Moreover, we have explored other decoration
patterns, including both periodic and nonperiodic ones. A
brief summary of all considered systems is given in Table I.
Our calculations suggest that the peaks in the density of
states disappear when the pattern is not periodic, which
destroys the translation symmetry of the full system. This
is likely a consequence of certain eigenstates no longer
being degenerate. We also find that the inversion symmetry
of the decoration patterns (or lack of it) influences the level
statistics. In particular, inversion-symmetric patterns are
consistent with COE and nonsymmetric with CUE statis-
tics in the chaotic regime. Deviations from these values
were observed only for N = 3 photons and were found to
diminish as the number of photons is increased. However,
our results do not indicate a link between the irregularities
in the level statistics and the robustness of bound states,
although both properties are most prominent in dilute sys-
tems. For example, nonperiodic decoration patterns result
in level-spacing ratios consistent with random matrix the-
ory, implying that the integrability is indeed fully broken,
while the few-photon bound states remain robust in that
regime.

One advantage of the classical simulations performed in
this work is direct access to the system’s properties at finite
energy densities. Thus, the model considered here would

TABLE I. Brief summary of different systems studied in this work. N is the number of photons, Lsites is the number of sites on the
main chain, and Ldecor the number of decorations, while ν = N/Lsites is the filling factor. Periodic patterns are those with decorations
on every single, second, third, fourth, or fifth site.

N Ldecor/Lsites pattern robust bound states level statistics DOS Figs.

1 7(d)
1/2 2(a), 3

3 1/3 periodic � oscillating 〈r〉(θ) sharp peaks 7(e)
1/4
1/5

3 single decoration non-periodic � 〈r〉COE plateau then decrease no peaks 7(a)
three decorations 7(b)

3 1/2 random � 〈r〉CUE plateau then decrease no peaks 7(c)

1
4 and 5 1/2 periodic � 〈r〉COE for θ ′ � 0.05π relatively flat 2(b), 3(a)

1/3

4 and 5 single decoration non-periodic � 〈r〉COE for θ ′ � 0.05π relatively flat not shown
three decorations

4 and 5 1/2 random � 〈r〉CUE for θ ′ � 0.05π relatively flat not shown

ν = 1/10 1/2 periodic ✗ not computed not computed 6
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be useful for benchmarking quantum algorithms that target
states at a finite energy density [70]. Moreover, it would be
interesting to explore other models that host bound states,
e.g., the chiral Hubbard model [45], and investigate if such
models exhibit similar behavior in relation to the density
of excitations and integrability breaking by changing the
geometry of the system, as described in this work.
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Note added.—Recently, we became aware of Ref. [71],
which also studied the stability of bound eigenstates in the
special case of N = 3 photons and decorations on every
second qubit. Based on perturbative arguments and the
scaling of inverse participation ratio, Ref. [71] concluded
that N = 3 eigenstates slowly lose their bound-state char-
acter in the L→∞ limit. Our finite-size scaling analysis
above suggests that the bound state probability remains
finite in this limit for N = 3, however this cannot rule
out the possibility of a much larger length scale, at which
all dynamical signatures of bound states would ultimately
disappear at infinite time.

APPENDIX A: CONTINUOUS MODEL

For simplicity, here we assume a decoration pattern
where one extra site is attached to every even site of the
main ring with PBCs. The continuous XXZ Hamiltonian,
which corresponds to the unitary circuit from Eqs. (1)
and (2) in the dt → 0 limit is

HXXZ =

Lsites∑

i=1

J (eiβσ i
+σ i+1

− + e−iβσ i
−σ i+1

+ ) + Jz(σ
i
zσ

i+1
z )

+

Ldecor∑

i=1

J ′(eiβσ 2i
+ σ

ei
− + e−iβσ 2i

− σ
ei
+ ) + J ′

z(σ
2i
z σ ei

z )

+

Lsites∑

i=1

hz(i)σ
i
z +

Ldecor∑

i=1

he
zσ

ei
z , (A1)

where ei are the integrability-breaking extra sites attached
to even sites 2i. The local field is hz(2i + 1) = −2Jz on
odd sites, hz(2i) = −3Jz on even sites and he

z = −Jz on
extra sites. Additionally, if we impose OBCs and an even
number of sites, the local field is hz(1) = −Jz on the first
site and hz(L) = −2Jz on the last site. The corresponding
unitary circuit parameters are θ = 2Jdt, φ = 2Jzdt, θ ′ =
2J ′dt, and φ′ = 2J ′

zdt. This continuous model can be easily
generalized to an arbitrary decoration pattern by changing
the local fields.

APPENDIX B: ORIGIN OF PEAKS IN THE

DENSITY OF STATES

The sharp peaks in DOS can be attributed to the exis-
tence of special eigenstates with a relatively simple struc-
ture obtained by combining single-photon and two-photon
states. Analytical expressions for the dispersions of a sin-
gle photon or N -bound photons in the integrable (non-
decorated) circuit are known [45]. Adding the decorations
with θ ′ = 0 results in an additional zero-energy band in
the single-photon dispersion, since all the photons in the
extra sites are frozen. This means that, for example, single-
photon and two-photon eigenstates are still present in the
three-photon spectrum at θ ′ = 0, since we can just move
the remaining photons to the decorations, where they will
have zero energy.

In Fig. 9(a), we compare the actual two-photon Flo-
quet spectrum (dots) with the states constructed from two
single-photon states (crosses). The color scale represents
the deviation from the nearest analytically constructed
state. The agreement is remarkably good, which is not
surprising given that the system is very dilute and only
nearest-neighbor interactions are present. The two bands
at the bottom of the plot are two-photon bound states,
which are also in agreement with analytical expressions
from Ref. [45]. Figure 9(a) is for the integrable case with
no extra sites. Adding the decorations leads to the appear-
ance of two additional bands, see Fig. 9(b) and compare
with (a). The first one is a bound-state band, which cor-
responds to one photon in the main chain and another in
adjacent decoration and is completely flat. The second one
is a wider band of single-photon states corresponding to
one photon inside and the other in a nonadjacent deco-
ration. This wider band is centered around zero and has
high DOS on its edges, which coincides with the peaks
around ±π/3 in three-photon DOS from Fig. 3(a). Another
smaller peak in DOS around −0.75π comes from the flat
band of two bound photons.

We can conclude from the previous discussion that the
three-photon DOS is strongly influenced by special single-
and two-photon eigenstates. This effect is not so prominent
in DOS for four or more photons. This is because the num-
ber of special states is much smaller compared to the total
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(a)

(b)

FIG. 9. (a) Comparison of the actual dispersion of two-photon
states for the integrable case θ ′ = 0 with no extra sites (dots) and
the theoretical prediction for two separate noninteracting photons
(crosses) and two bound photons (dashed lines). The color scale
corresponds to the deviation between each dot and the closest
cross. (b) Same as (a) but with added extra sites, while θ ′ = 0.

Hilbert-space size but also due to the special states becom-
ing more uniformly distributed through the quasienergy
spectrum. In Appendix D we quantify this and show that
the proportion of special states for a fixed photon number
N becomes asymptotically independent of the system size
L. However, the saturation value still strongly depends on
N , e.g., the special states comprise as many as 70% of all
states for N = 3 but only 1% for N = 8.

This previous analysis can now be extended to finite
values of θ ′. Analytical expressions for the single-photon
dispersion are not available in this case, but can be eas-
ily numerically computed for different coupling strengths
θ ′. There are still three different bands, since each unit
cell contains three sites. We then construct three-photon
bands by taking combinations of the single-particle bands,
neglecting the interactions between the particles. This is a
good approximation in a dilute system, even with nonzero
interaction strength. For three photons we obtain ten dif-
ferent bands, one for each combination of the three bands.
We label the combination in which all photons come from
the first band 111, two photons in first and one in second
112, one photon in the first, second, and third 123, etc. The

(a)

(b)

FIG. 10. (a) Bands of special states constructed by taking lin-
ear combinations of numerically obtained single-photon bands
for θ ′ ∈ [0, π ]. Here we consider the case of N = 3 separate pho-
tons. The bands are labeled by three numbers, stating if each
photon is in the first (1), second (2), and third (3) single-photon
band. (b) Corresponding DOS. The bright regions can be related
to the peaks in Fig. 3. The vertical lines A, B, C, D, and E mark
special values of θ ′ from Fig. 2.

dependence of these bands of special states on θ ′ is shown
in Fig. 10(a). As θ ′ is increased, the bands move and cross
each other.

The DOS is typically higher near the edges of the bands,
so we expect the DOS to be amplified when two bands
cross. The edges of 222 and 123 bands overlap around θ ′ =
0.35π , which is where the level-spacing ratio deviates the
most from 〈r〉COE. Several other bands also overlap around
this point. The DOS plot for the special bands shown in
Fig. 10(b) roughly corresponds to the peaks in Fig. 3(a).
Therefore, as in the θ ′ = 0 case, the peaks in DOS at θ ′ 	=0
are also explained by the special states, which comprise
a large proportion of the Hilbert space in systems with
smaller numbers of photons, such as N = 3. However, it
is not obvious from Fig. 10(b) in which θ ′ regions the
level statistics deviates the most from the value expected in
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chaotic systems. In particular, there are three very promi-
nent peaks around θ ′ = 0.65π , where the level-spacing
distribution is actually very close to COE. We conjecture
that these peaks are not narrow enough to lead to a suf-
ficient number of degeneracies that could affect the level
statistics. One might expect that the specially constructed
states are a better approximation for a noninteracting sys-
tem and that the 〈r〉(θ ′) dependence would look different at
smaller values of the interaction strength φ. This, however,
is not the case, as shown in Appendix C, where it can be
observed that the level statistics barely changes with φ.

APPENDIX C: EFFECT OF PARAMETERS θ , φ,

AND β

Throughout this paper, we have mostly considered the
parameters θ = π/6, φ = 2π/3, and β = 0, which were
used in the experiment from Ref. [44]. In this Appendix,
we explore the effects of changing these parameters. First
we perform a scan of the parameter space over a range
of interaction strengths φ and couplings to the extra sites
θ ′ while keeping the hopping amplitude inside the ring
fixed to π/6. The BSP for an initial state of N = 3 bound
photons, Eq. (7), averaged over the first nc = 50 uni-
tary cycles, is shown in Fig. 11. Here we also average
over two nonequivalent initial configurations, although
the plot looks very similar without averaging. The results
are symmetric to reflection around the φ = π and θ ′ = π

axes, which is unsurprising as these reflections result only
in minus signs in certain matrix elements from Eq. (1)
[sin(2π − θ ′) = − sin(θ ′) and ei(2π−φ) = e−iφ].

The region of interest is the bottom part of this figure,
with intermediate φ and small θ ′. There is a minimal
value of interaction strength required for the survival of

FIG. 11. Bound-state probability averaged over nc = 50
cycles and two different initial configurations. L = 40 + 20, N =
3, θ = π/6, β = 0, θ ′ ∈ [0, 2π ], and φ ∈ [0, 2π ].

bound states, φmin ≈ π/3 ≈ 2θ . This is in line with pre-
vious analytical results, which state that the bound states
exist for any momentum in the gapped regime φ>2θ

[45]. The maximal decoration coupling, which supports the
bound states, is around θ ′ = π/3 and does not significantly
depend on φ. There are also additional regions where the
bound states remain stable, such as around φ = π/3 and
θ ′ = π . However, the θ ′ = π line is a special case since
there is no hopping from the main chain to the extra sites,
see Eq. (1). We therefore did not focus on these regions of
the phase diagram. We have also investigated the cases of
N = 4 or more photons in the initial bound state and these
plots show similar features to N = 3. The main difference
is that the region with robust bound states shrinks in the θ ′

direction with increasing N , which is consistent with our
results from Figs. 5(d) and 5(e).

In Fig. 12 we plot the average level-spacing ratio 〈r〉(θ ′)

for several values of the parameters θ , φ, and β. As can
be observed in Fig. 12(a), the oscillations in 〈r〉(θ ′) are
visible for all values of the hopping amplitude θ , but the
exact positions of the local minima and maxima depend on
θ . The most distinctive case is θ = π/2, where the level
statistics is close to Poisson for most values of θ ′. Accord-
ing to Eq. (1), this is a special case where the hopping
probability on the main chain is 1 in each cycle. Addition-
ally, we note that the 〈r〉(θ ′) curve is the same for θ and
π − θ .
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FIG. 12. Level statistics for different values of parameter θ (a),
φ (b), and β (c). The only parameter that significantly affects the
results is the hopping amplitude θ . We note that θ = π/2 is a
special case where the probability of hopping to the neighboring
site is 1 in each cycle, see Eq. (1). It is therefore not surprising
that this case is close to being integrable.
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In contrast to θ , the other two parameters φ and β have
almost no effect on the level statistics. The dependence
on the nearest-neighbor interaction strength φ is shown in
Fig. 12(b). This further supports the conclusion that the
deviations from 〈r〉COE are mainly a consequence of three
separate photon states whose energies do not depend on φ.
The magnetic flux through the ring β has even less influ-
ence on the results, see Fig. 12(c). However, it does change
the actual energy levels. For this reason, the parameter β

was very useful for averaging the spectral form factor in
Sec. IV.

APPENDIX D: DENSITY OF EXCITATIONS

We have previously attributed the deviations from the
chaotic level statistics and sharp peaks in DOS to the
existence of special eigenstates in Sec. B. These features
were more pronounced for small photon numbers such as
N = 3. In Fig. 13 we show the proportion of some simple
basis configurations in total Hilbert spaces of systems with
different fixed numbers of photons N and increasing num-
ber of sites L. In particular, these are the configurations
with all photons outside the main chain, just one photon
inside, two separate photons inside, and two bound pho-
tons inside. The special eigenstates that affect the spectral
statistics are superpositions of such configurations. They
are highly degenerate in energy, due to diluteness of the
system and large number of possible configurations of pho-
tons in the extra sites, which results in peaks in DOS and
deviations in the average ratio of consecutive energy gaps.

For all photon numbers considered, the proportion satu-
rates at some constant value as the size increases and the
system becomes sufficiently dilute. Indeed, the saturation
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FIG. 13. Proportion of special configurations for different pho-
ton numbers N and system sizes L = Lsites + Ldecor. The dec-
orations are on every other site. These simple states can be
constructed by combining single-photon and two-photon config-
urations with photons in the extra sites.

value is much larger for N = 3 (approximately 70%) than
it is in cases of more photons (e.g., around 1% for N = 8).
This explains why the special states have much stronger
effects on the spectra of systems with small photon num-
bers. Such states are still present in large-N systems, but
their proportion is negligible and thus has practically no
influence on the energy spectrum. We note that the pro-
portion of special states depends on the ratio between the
number of decorations and the number of sites Ldecor/Lsites,
which is equal to 1/2 in the case shown here. More
decorations would result in a larger proportion of these
states.

APPENDIX E: MEMORY OF THE INITIAL STATE

The BSP is not the only local observable that reveals
the unusual behavior of the bound initial states at finite
θ ′. Persistent nonthermalizing behavior can also be seen in
the site occupation, ni = 〈n̂i〉. Since the integrability break-
ing decorations make up one third of the total sites on the
chain, we would expect a third of the photons to be located
on them after a short time when the system has sufficiently
thermalized. Instead, we find that this is only true at larger
θ ′ � π/3. The fraction of photons located on the decora-
tions as θ ′ is varied shows very similar behavior for bound
states of different sizes.

In the integrable case, larger bound states propagate
more slowly due to their small group velocity [44,45]. This
behavior appears to persist in the nonintegrable model. A
large fraction of photons in the bound state remain in the
vicinity of their initial sites even after many cycles. In

FIG. 14. Continued occupation of sites initially occupied by
an N = 12 photon bound state after nc cycles. Data is obtained
by TEBD for a system size L = 300 + 150, bond dimension χ =
320 for θ = π/6, φ = 2π/3 and a few values of θ ′ indicated in
the legend. Inset: ninit/N for bound states of sizes N = 3 to N =
12 at different values of θ ′. Data is obtained by TEBD for 150
cycles and the same parameters as in the main plot.
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Fig. 14, we show ninit =
∑

i∈initial sites ni for an N = 12 pho-
ton bound state for different θ ′, demonstrating this robust
nonthermalizing behavior. The average of ninit for different
size bound states can be seen in the inset of Fig. 14. From
this perspective, the bound states appear to grow more
robust as they increase in size. This at first seems to be in
contradiction with the BSP results from Fig. 5. However,
the BSP measures the overlap with the N -photon bound
state as a whole, while ninit also captures the case when
the bound state loses photons from the edges while its core
stays robust and does not move away significantly from its
initial position. This is precisely what happens for large-N
bound states. Since we are considering hardcore bosons,
the photons from the middle of the bound state can only
hop to the decorations and back, while the photons at the
edge can move further away along the chain and become
detached from the rest.

APPENDIX F: PROPERTIES OF FLOQUET

MODES

In Sec. IV, we demonstrated the robustness of the bound
states in the dynamics. These results are naturally reflected
in the anomalous properties of special eigenstates associ-
ated with bound states, which we investigate in detail in
this Appendix. As a generic measure of eigenstate local-
ization in the Fock space, it is customary to study the
inverse participation ratio (IPR). For a (normalized) eigen-
state |ψi,k〉 of the Floquet unitary ÛF with momentum k,
we define the IPR as

IPRk =
∑

n

|〈ψi,k|kn〉|
4, (F1)

where, for convenience, we take |kn〉 to be the momen-
tum basis states. For sufficiently small θ ′, the eigenstates
with largest support on the bound state can be uniquely
identified with the aid of the BSP in Eq. (8). In a fixed
momentum sector, there are four bound eigenstates cor-
responding to the largest BSP: two which have all the
excitations on the main chain, and two where one of the
excitations is on a decoration. A natural question is how
localized these eigenstates are in the Fock space, e.g.,
whether their IPR asymptotically converges to a constant
or decays as a power law, L−α

sites, in the limit Lsites → ∞.
In Fig. 15 we plot the averaged IPR of the four bound

eigenstates for θ ′ = 0.1π and different system sizes in
the N = 3 sector. We find the IPR has strong fluctuations
between different system sizes, even after averaging over
the four bound states in the given momentum sector. Con-
trasting the linear plot against the log-log plot shown in the
inset of Fig. 15, it is difficult to ascertain the asymptotic
behavior of IPR, in particular for larger values of θ ′ such
as 0.3π , where power-law decay remains a possibility. For
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FIG. 15. Finite-size scaling of IPR, Eq. (F1), for three values
of θ ′. We plot the average IPR for the four bound eigenstates in
k = 0 momentum sector. Inset shows the same data on a log-log
scale.

this reason, in the main text we focused on the dynam-
ical properties, which show smoother convergence while
(at finite times) are also readily accessible in experiment.

A finer characterization of the Floquet modes is obtained
by plotting their overlap with the bound initial state (7),
against the number of pairs of neighboring occupied sites
on the main chain, 〈ψ |

∑

i n̂in̂i+1|ψ〉, in each Floquet
mode. This is shown in Figs. 16(a) and 16(b), for the
case of N = 3 photons, contrasting the integrable case with
that of θ ′ = 0.2π . For N = 3, the number of neighbor-
ing occupied sites can be at most 2, corresponding to a
three-photon bound state. Alternatively, the value 1 corre-
sponds to two neighboring and one separate photon, while
0 implies three separate photons. The integrable case, θ ′ =
0, in Fig. 16(a) displays three separate sectors, one of
which contains the bound states (red points). The energies
of these sectors overlap, but there is no mixing between the
states. The overlapping energies are a consequence of the
periodic Floquet spectrum, while in the Hamiltonian XXZ
model these sectors are separated by energy gaps. As θ ′ is
increased, the system becomes nonintegrable and the sec-
tors start to mix. At θ ′ = 0.2π , Fig. 16(b), the bound states
have almost merged with the bulk, but still remain visible.
This is no longer the case after θ ′ = 0.3π , which is con-
sistent with the results of Figs. 5(d) and 5(e) where it was
shown that the bound states are robust only up to this point.

The overlap plots for larger numbers of photons display
similar features to N = 3. At θ ′ = 0, there are N sepa-
rate sectors, which are defined by the number of pairs of
adjacent photons. The bound Floquet modes slowly mix
with the other sectors as the coupling to the decorations in
increased. The case of N = 5 and θ ′ = 0.1π is shown in
Fig. 16(c). Here we see three prominent towers of states,
which are related to the oscillations in the BSP in Fig. 5(c).

010316-17



HUDOMAL, SMITH, HALLAM, and PAPIĆ PRX QUANTUM 5, 010316 (2024)

(a) (b) (c)

FIG. 16. Overlap of the initial state with the eigenstates of the one-cycle evolution operator. (a),(b) N = 3 photons in system size
L = 30 + 15 for θ ′ = 0 and θ ′ = 0.2π , respectively. (c) N = 5 photons in system size L = 14 + 7 with θ ′ = 0.1π . The color scale is
the number of pairs of adjacent occupied sites on the main chain (see text).

These oscillations can be attributed to photons from the
bound-state hopping onto the extra sites and back. The
towers appear as soon as θ ′ 	=0 and persist until approx-
imately θ ′≈0.3π . The distance between the towers and
therefore the oscillation frequency depends approximately
linearly on θ ′. Moreover, the shape and height of the tow-
ers depend on the number of decorations attached to the
initially occupied sites.

Intriguingly, we find that the towers are more prominent
for the five-photon initial bound state with two decora-
tions on the second and fourth site [Fig. 16(c)] than for
the state with three decorations on the first, third, and fifth
site. Upon closer inspection, some towers of high-overlap
states can also be discerned for N = 3 in Fig. 16(b). How-
ever, they are not as well differentiated as for N = 5, and
do not appear to be equally spaced in energy, which is
the reason why the oscillations in BSP at θ ′ = 0.2π are
irregular, see Fig. 5(a). Interestingly, the towers do not
become better resolved with increasing the photon num-
ber and the case of N = 5 actually features the sharpest
towers and corresponding oscillations in BSP and various
local observables, such as the number of photons in the
extra sites. As a side note, similar looking towers of states
are often found in systems that host “quantum many-body
scars” [72–74], however, it is not clear whether similar
physics occurs in the present case.
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Quantum dynamics in certain kinetically-constrained systems can display a strong sensitivity to the initial
condition, wherein some initial states give rise to persistent quantum revivals—a type of weak ergodicity
breaking known as “quantum many-body scarring” (QMBS). Recent work [Yao, Pan, Liu, and Zhai, Phys. Rev.
B 105, 125123 (2022)] pointed out that QMBS gets destroyed by tuning the system to a quantum critical point,
echoing the disappearance of long-range order in the system’s ground state at equilibrium. Here we show that
this picture can be much richer in systems that display QMBS dynamics from a continuous family of initial
conditions: As the system is tuned across the critical point while at the same time deforming the initial state,
the dynamical signatures of QMBS at intermediate times can undergo an apparently smooth evolution across the
equilibrium phase transition point. We demonstrate this using the PXP model—a paradigmatic model of QMBS
that has recently been realized in Rydberg atom arrays as well as ultracold bosonic atoms in a tilted optical
lattice. Using exact diagonalization and matrix product state methods, we map out the dynamical phase diagram
of the PXP model with the quenched chemical potential. We demonstrate the existence of a continuous family
of initial states that give rise to QMBS and formulate a ramping protocol that can be used to prepare such states
in experiment. Our results show the ubiquity of scarring in the PXP model and highlight its intriguing interplay
with quantum criticality.

DOI: 10.1103/PhysRevB.107.235108

I. INTRODUCTION

Quantum many-body scarring (QMBS) is a form of weak
ergodicity breaking in which a small number of states retain
memory of their initial wavefunction despite the rest of the
system thermalizing (see recent reviews [1–4]). The set of
models hosting QMBS states has rapidly expanded in recent
years [5–20], including experimental realizations in several
cold atom platforms [21–25]. At the same time, the underlying
origin of memory-retaining initial states remains the subject of
ongoing work. Some recently identified mechanisms giving
rise to such phenomena include proximity to an integrable
model [19,26,27], dynamical symmetry [5,28–32], and eigen-
state embedding constructions [33].

Signatures of QMBS were initially observed in experi-
ments on Rydberg atom arrays [21], where energy cost due to

Published by the American Physical Society under the terms of the
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van der Waals interactions strongly disfavors two neighboring
atoms occupying excited states—a form of kinetic constraint
called the Rydberg blockade [34]. When the Rydberg block-
ade is strong, the atoms are described by an effective “PXP”
model [35,36]. This is a one-dimensional (1D) chain of
spin-1/2 degrees of freedom, where the spin-up state |1〉 cor-
responds to a Rydberg atom occupying an excited state (and,
similarly, for the spin-down state |0〉, which denotes an atom
in the ground state). Thus, the number of up spins translates
into the number of Rydberg excitations, and we will use such
nomenclature interchangeably. The PXP Hamiltonian for N

atoms takes the form (in units h̄ = 1)

HPXP(μ) = �

N−1
∑

j=0

Pj−1X jPj+1 + μ

N−1
∑

j=0

Q j, (1)

where X = |1〉 〈0| + |0〉 〈1| is the Pauli-X operator describing
the Rabi flipping of each atom. Below we will set the Rabi
frequency to � = 1. The projector P = |0〉 〈0| implements
the constraint by preventing the Rabi flip from generating
any neighboring excitations. The complementary projector,
Q = 1 − P = |1〉 〈1|, counts the number of excitations in the
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system and thus defines the chemical potential term μ. We
will consider two types of boundary conditions for the Hamil-
tonian in Eq. (1): For analytical considerations and exact
diagonalization simulations, we will use periodic boundary
conditions (PBCs), which are implicit in Eq. (1) after identi-
fying site j + N ≡ j. For matrix product state simulations in
large systems, we will instead use open boundary conditions
(OBCs), where the first and the last flip term are taken to be
X0P1 and PN−2XN−1, respectively.

In the absence of chemical potential (μ = 0), the PXP
model displays nonthermalizing dynamics when initialized in
the Néel state, |ψ (0)〉 = |Z2〉 ≡ |1010...10〉 [21]. Evolving
this state with the Hamiltonian in Eq. (1), one observes that the
return probability periodically reaches values close to unity
[6]. By contrast, other initial states exhibit fast equilibration,
as expected in a chaotic system. Conversely, this atypical
dynamics is also reflected in ergodicity breaking amongst a
subset of eigenstates of the PXP model [27,37,38], even in
the presence of perturbations [39,40] or in energy transport at
infinite temperature [41].

The chemical potential term plays a central role in this
paper. When the chemical potential is tuned to μc ≈ −1.31,
the PXP ground state undergoes an Ising phase transition
[35,42], associated with a spontaneous breaking of Z2 sym-
metry [43–46]. The signatures of this transition have been
observed in programmable Rydberg atom quantum simula-
tors [47]. This equilibrium phase transition (referred to as
“EPT” throughout this paper) is in the same universality
class as the one induced by varying the quark mass in the
Schwinger model of quantum electrodynamics in (1 + 1)-
dimension [48]. The lattice formulation of the latter, known as
the U(1) quantum link model, exactly maps to the PXP model
in Eq. (1) for the case of spin-1/2 degrees of freedom [49].

The effect of chemical potential on scarring in the PXP
model has also been the subject of much attention. On the
one hand, Ref. [37] studied the effect of μ on the revivals
of |Z2〉 state, finding that μ �= 0 restores thermalizing be-
havior. On the other hand, suitable periodic modulations of
μ can enhance scarring and have been studied extensively
[50–56]. In particular, a recent study [24] has found that new
QMBS regimes can emerge for μ > 0, even in the absence
of a periodic drive. One example is the polarized state, |0〉 =
|000....0〉. While in the absence of chemical potential the |0〉
state is believed to thermalize [21], at moderate values of the
chemical potential, it starts to revive, much like the Néel state.
This raises the question about the existence of a larger family
of scarred initial states in the PXP model in the presence of a
chemical potential.

Another natural question concerns the interplay between
criticality and QMBS. While the EPT has a profound effect
on the low-energy physics of the PXP model, it is not obvious
that it should directly impact QMBS, which manifests in the
quench dynamics at infinite temperature. Nevertheless, Ref.
[57] recently argued that there is a link between this EPT and
QMBS. Namely, when tracing the eigenstates responsible for
the quantum revival of the |Z2〉 state, Ref. [57] found that
these states merge with the thermal bulk of the energy spec-
trum as the EPT is approached. On the contrary, upon moving
away from the EPT towards μ → −∞, the degenerate ground
states acquire high overlap with the |Z2〉 state and its partner

translated by one site, |Z̄2〉 ≡ |0101 . . .〉. Thus, the |Z2〉 state
can only thermalize as one approaches the EPT, suggesting
a connection between QMBS and criticality. This was also
demonstrated experimentally in the Bose-Hubbard quantum
simulator [58]. Moreover, by investigating the quantum Ising
model in transverse and longitudinal fields, Ref. [59] argued
that QMBS from the |Z2〉 state is smoothly connected to in-
tegrability by continuously turning off the constraint, induced
by the longitudinal field.

In this paper, we map out the dynamical phase diagram of
the PXP model corresponding to global quenches of the chem-
ical potential from some initial value μi to an arbitrary final
value μf. This provides a means of probing out-of-equilibrium
dynamics from more complex initial states beyond |Z2〉 or
|0〉, which had been accessed in previous experiments by tak-
ing the limits μi → ±∞. We identify QMBS regimes in the
dynamical phase diagram based on signatures of ergodicity
breaking, such as the deviation of observable expectation val-
ues from the canonical ensemble predictions and the presence
of quantum revivals. Our results show that the previously
known scarring regimes, associated with |Z2〉 and |0〉 states,
indeed break down when approaching the EPT, either via
μi → μc or μf → μc, in agreement with Refs. [57,58]. How-
ever, we also find a new QMBS regime corresponding to the
initial state being the ground state near the EPT. Using the
time-dependent variational principle (TDVP) framework for
QMBS, developed in Ref. [60], we identify a semiclassical
picture behind QMBS dynamics. Across much of the phase
diagram away from the EPT point, the QMBS dynamics can
be understood in terms of a periodic trajectory that passes
through the |0〉 state, with the radius of the trajectory con-
trolled by the chemical potential. Allowing for a continuous
family of initial states—the ground states of HPXP(μi)—we
find surprisingly robust QMBS signatures at intermediate
times that smoothly bridge across the EPT. We work out
a ramping protocol for the preparation of such states, pro-
viding a recipe for probing the dynamical phase diagram in
experiment.

The remainder of this paper is organized as follows. We
start by presenting the results of numerical simulations of
the dynamical phase diagram of the PXP model for global
quenches of the chemical potential in Sec. II. In Secs. III–V
we analyze in detail the various regimes of this phase diagram.
Section III contains a brief introduction to the TDVP formal-
ism that will be useful for the semiclassical interpretation of
the results. In Sec. IV we focus on QMBS regimes of the phase
diagram, while Sec. V discusses the special case when the sys-
tem is initialized in the ground state near the EPT. In Sec. VI,
we show how the dynamical phase diagram can be probed
in experiment by preparing the desired ground states using a
ramping protocol. Our conclusions are presented in Sec. VII,
while Appendices contain details of the TDVP formalism,
finite-size scaling analysis, and additional characterizations of
the phase diagram.

II. DYNAMICAL PHASE DIAGRAM OF THE PXP MODEL

In this paper we are interested in the following out-of-
equilibrium probe of the PXP model in Eq. (1): start from
the ground state of HPXP(μi) and then evolve with the same
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Hamiltonian but generally different chemical potential value
HPXP(μf). We assume a closed system evolving under uni-
tary Schrödinger dynamics. Since the energy level spacings
in the PXP model are expected to obey the Wigner-Dyson
distribution for all values of μ [6,35], the nonequilibrium
dynamics induced by quenching μ should be described by
random matrix theory [62]. In particular, quenching the chem-
ical potential by a large amount ∼O(1) should initialize the
system in a generic high-temperature state, which is expected
to lead to rapid thermalization according to the eigenstate
thermalization hypothesis (ETH) [63–65]. This means that
the expectation value of any local observable should converge
towards the value predicted by the canonical ensemble within
any symmetry-resolved sector of the many-body Hilbert
space. Deviation from this prediction, i.e., ergodicity break-
ing, can be detected through a number of probes, two of which
we utilize.

One probe of ergodicity breaking, convenient in the context
of QMBS, is quantum fidelity or return probability of the
wavefunction to its initial value,

F (t ) = |〈ψ (0)|ψ (t )〉|2. (2)

For a thermalizing initial state, F (t ) rapidly drops to a value
close to zero and remains exponentially small in system size
at late times. Therefore, if the average fidelity over a time
interval ≫�−1 is much larger than ∼O( exp(−N )), we ex-
pect nonergodic behavior. However, one should exclude trivial
cases such as μi ≈ μf when the ground state of HPXP(μi) is
approximately an eigenstate of HPXP(μf), as this would lead
to the system getting “stuck” in an eigenstate, with fidelity
F (t ) ≈ 1 and potentially never decaying. To avoid such cases,
we compute the difference δF between minimal fidelity and
maximal fidelity over a time window t ∈ [t0, t1], with t0 = 1
and t1 = 20. This window is large enough to exceed the ini-
tial relaxation on the scale ��−1 (thus excluding the high
fidelity near t = 0), yet small enough (t1 � N/�) to be free of
the boundary effects. The obtained δF in the μi − μf plane
is shown in Fig. 1(a). The fidelity has been evaluated in a
system of N = 51 atoms using matrix product state (MPS)
[66] simulations based on the algorithm in Ref. [61], and
we have checked that the results agree closely with exact
diagonalization for systems with N < 30 atoms. We note that
t0 = 1 in Fig. 1(a) was chosen to be just slightly longer than
the initial relaxation period, as modulating μ alters the period
of the fidelity revivals. Setting t0 > 1 results in a qualitatively
similar phase diagram, but with a reduced overall scale for δF ,
as the window with larger t0 may miss the first (and typically
the largest) revival peak.

Before we comment on the interesting regimes of the phase
diagram, we note that we have also computed the deviation of
an observable expectation value from the thermal ensemble
prediction, shown in Fig. 1(b). This provides a complemen-
tary probe of ergodicity breaking that is more amenable to
experimental measurements. For the observable, we chose
the density of excitations in the system, n = (1/N )

∑N
j=1 Q j ,

which is readily available in existing experimental setups
[21,24]. After quenching the system, we compute the inte-
grated mean-square deviation of the excitation density from
the thermal value over the time window between t0 = 10 and

FIG. 1. Dynamical phase diagram for global quenches starting
in the ground state of HPXP(μi) and evolving with HPXP(μf). (a) The
difference between maximal and minimal revival fidelity δF over
time interval 1 � t � 20 following the quench. Regions with strong
fidelity revivals have been enumerated (see the text for details).
(b) Same as (a) but the color bar showing the deviation of the exci-
tation density from the thermal value, Eq. (3). Data is obtained using
MPS simulations [61] for a chain of N = 51 atoms with OBCs, max-
imum bond dimension χ = 128 and time step δt = 0.025. Dashed
lines mark the EPT at μc ≈ −1.31. In both plots, the cross marks
the point (μi = −0.76, μf = 1.60) that will be analyzed in Sec. IV.
The diamond marks the optimal reviving point in the μi = μc plane,
which will be discussed in Sec. V.

t1 = 20,

MSD(n) =
1

t1 − t0

∫ t1

t0

|〈ψ (t )|n|ψ (t )〉 − nth|2 dt . (3)

The thermal value is defined as

nth = Tr(ρthn), (4)

where the thermal density matrix is given by the usual
Boltzmann-Gibbs expression, ρth = exp(−βH )/Z , with
the partition function Z = Tr exp(−βH ) and the inverse
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temperature β determined from the condition

〈ψ (0)|HPXP(μf)|ψ (0)〉 = Tr(ρthHPXP). (5)

The plot of MSD(n) is shown in Fig. 1(b), where the bright
nonergodic regions match those of high fidelity in Fig. 1(a).
The color contrast is stronger in the fidelity plot due to the
exponential sensitivity of that quantity. A few distinct regimes
where fidelity displays large-amplitude oscillations have been
marked by (1)–(7) in Fig. 1(a). These regions will be analyzed
in detail in the subsequent sections. There, we will argue that
regions (1), (2), and (3) can be identified as QMBS regimes.
Regions (1) and (3) fall under the “universality class” of |Z2〉
and |0〉 QMBS behavior, as we explain in Sec. III. On the other
hand, while the dynamics in region (2) has some similarities
with regions (1) and (3), in Sec. IV we will highlight the
distinctions of this QMBS regime. As it turns out, regions (4),
(5), (6), and (7) have a simple origin, which will be explained
briefly in Appendix A.

A few comments are in order. The QMBS fidelity appears
to vary smoothly between regions (1) and (2) in Fig. 1(a),
while they are separated by the EPT (indicated by the dashed
line). In fact, we find the most robust revivals correspond to
the ground state precisely at the EPT point (highlighted by
the diamond in Fig. 1). That is to say, although δF may be
smaller than other regions, the revivals decay more slowly
over time, and this behavior persists with increasing N . This
intriguing case will be addressed in detail in Sec. V. Here we
note that we have confirmed the existence of QMBS across the
critical point in much larger systems (N � 400 spins) using
MPS numerics. This is in contrast to the μf = μc case, where
we see no ergodicity breaking in Fig. 1(a), as also expected
from Refs. [57,58].

III. TIME-DEPENDENT VARIATIONAL PRINCIPLE AND

PERIODIC ORBITS FOR MANY-BODY SCARRING

Without chemical potential, quantum dynamics from the
|Z2〉 state in the PXP model can be visualized as a classical pe-
riodic orbit [60,67,68]. This is accomplished in the framework
of the time-dependent variational principle (TDVP) [69–71],
which we briefly review in this section. TDVP establishes a
parallel between many-body dynamics in the PXP model and
the analogous dynamical phenomena of a single particle in a
stadium billiard, in which the wavepackets are anomalously
long-lived when prepared along the periodic orbits of the
corresponding classical billiard [72,73]. TDVP will provide
a natural semiclassical language for interpreting the essential
features of the dynamical phase diagram in Fig. 1.

A. A brief overview of TDVP formalism

The starting point of TDVP is to specify a variational
manifold of states M, parameterized by some continuous
variable, and then project the Schrödinger dynamics into that
manifold in a way that manifestly conserves the energy. The
nature of states belonging to M determines to what extent
we can interpret the dynamics as “semiclassical”. For exam-
ple, it would be simplest to consider a manifold spanned by
tensor products of spin-coherent states. This would yield a
“mean-field” description for the dynamics, where each atom

precesses independently. However, the Rydberg blockade in-
trinsically builds in local correlations into the system, due
to the fact that any neighboring excitations, |. . . 11 . . .〉, are
projected out of the Hilbert space. Ordinary spin-coherent
states clearly violate this blockade condition.

Another way of defining a manifold, which naturally ac-
commodates the Rydberg blockade constraint, is to take the
span over MPS states with bond dimension χ controlling
the amount of correlations necessary to capture the projected
dynamics [71]. To simplify matters as much as possible, we
will consider the dynamics to be spatially periodic with a
(infinitely repeated) unit cell of size K (below we will be
primarily interested in small unit cells with K = 1, 2). For a
1D chain of size N , the resulting MPS ansatz is given by

|ψMPS({x})〉 =
∑

{σ }

Tr

(

N/K−1
∏

m=0

Aσ1+Km (x1)Aσ2+Km (x2)

× AσK+Km (xK )

)

|σ1σ2σ3 · · · σN 〉. (6)

Here Aσ (xi) are (χ × χ )-dimensional matrices that depend
on variational parameters xi = (θi, φi ), where the angles θi, φi

are akin to the Bloch sphere angles of each spin in the unit
cell. The physical degree of freedom σi = 0, 1 labels the basis
states of a single spin. Following Refs. [60,74], in order to
make things analytically tractable, we will restrict to χ = 2
and chose

A1(θi, φi ) =
(

0 e−iφi

0 0

)

, A0(θi, φi ) =
(

cos θi 0
sin θi 0

)

. (7)

Due to A1A1 = 0, this ansatz ensures that configurations with
neighboring spin-up are forbidden, thus our manifold M =
span{|ψMPS(x)〉 |∀x} is consistent with the Rydberg blockade.

With the choice of ansatz in Eqs. (6) and (7) and setting
K = 1, we are left with only two variational degrees of free-
dom, (θ, φ). Choosing (0,0) recovers the state |0〉 ≡ |000 . . .〉,
while (π/2, π/2) corresponds to the equal-weight superposi-
tion of the two Néel states,

|Z+〉 ≡
1

√
2

(|Z2〉 + |Z̄2〉). (8)

Note that with K = 1 unit-cell periodicity, the states |Z2〉,
|Z̄2〉 do not individually belong to the manifold. Instead, if we
extend the ansatz to K = 2, then (θ1, θ2) = (0, π/2) recovers
the |Z2〉 state. Thus, our manifold with bond dimension χ = 2
captures the initial product states that we expect to play an
important role for QMBS dynamics in the PXP model.

After defining the manifold, the next step is to minimize
the difference between exact Hamiltonian dynamics and its
projection to the manifold,

min
{x}

∥

∥

∥

∥

ih̄
∂

∂t
|ψMPS({x})〉 − H |ψMPS({x})〉

∥

∥

∥

∥

. (9)

This results in the Euler-Lagrange equations of motion for the
classical variables x [71]. In the case of the PXP model, this
step can be performed analytically in the limit of N → ∞ to
obtain the equations of motions for the θ and φ angles, see
Appendix B for K = 1 and Refs. [60,74] for some K = 2
and K = 3 examples. Integrating this system of differential
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FIG. 2. Sketch of the TDVP manifold M for the PXP model with chemical potential μ. Red regions represent areas of high leakage where
the TDVP approximation breaks down, as quantified by Eq. (10). The Néel state is denoted by |Z2〉 ≡ |1010 . . .〉 and its translated partner—the
anti-Néel state is |Z̄2〉 ≡ |0101 . . .〉, while |Z+〉 = (|Z2〉 + |Z̄2〉)/

√
2. The polarized state is |0〉 ≡ |0000 . . .〉. (a) For a two-site unit cell K = 2

and μ = 0, the |Z2〉 state lies on a periodic trajectory identified in Ref. [60]. We also illustrate the trajectory of the |0〉 state, which is predicted
by TDVP to evolve to |Z+〉; however, this point lies within a region of high leakage where the TDVP dynamics does not accurately describe
the quantum evolution. This is consistent with the |0〉 state thermalizing at μ = 0. (b) Taking K = 1 we focus on the evolution of the |0〉 state
trajectory as μ is varied. For μ = 0, the trajectory is periodic but passes through a region of high leakage. When μ �= 0, the trajectory shrinks,
whilst gradually exiting the high leakage area, and QMBS dynamics starts to emerge in the full system. In this regime, the QMBS dynamics
can be seen as an oscillation between |0〉 and a new state |0̄(μ)〉 defined in Eq. (11). Finally, in the extreme μ → ±∞ limit, the orbit shrinks
to a point.

equations yields the trajectory in M taken by |ψMPS({θ,φ})〉
during the course of quantum evolution. Figure 2 shows a
pictorial representation of the manifold and the projection of
exact dynamics into it, for the cases of interest in the PXP
model perturbed by the chemical potential.

Importantly, beyond equations of motion, it is possible
to estimate “quantum leakage”: the difference between exact
quantum evolution and its projection into the manifold [60].
Quantum leakage γ is defined as the instantaneous rate at
which the exact wave function leaves M,

γ 2 = lim
N→∞

1

N

∥

∥

∥

∥

iH |ψMPS(x)〉 +
∑

j

ẋ j∂x j
|ψMPS(x)〉

∥

∥

∥

∥

2

. (10)

Red regions in Fig. 2 indicate areas of large γ 2. In these
high-leakage regions, the instantaneous TDVP dynamics is
expected to poorly capture the exact dynamics. Consequently,
trajectories passing through such regions will generally be of
limited accuracy. On the other hand, as first noted in Ref.
[60], the special property of the PXP phase space is that it
has regions of remarkably low leakage, such as the region
traversed by the semiclassical orbit associated with the |Z2〉
state. This is depicted in Fig. 2(a) where the orbit is sketched,
lying within a region of low leakage. Note that, in general,
there can exist multiple periodic orbits within the same mani-
fold [67].

B. TDVP interpretation of the dynamical phase diagram

Much of the PXP dynamical phase diagram in Fig. 1 can be
understood by considering the trajectory of the polarized state
in the TDVP manifold introduced above. Figure 2(b) sketches
this trajectory for three different values of the chemical poten-
tial μ. Within TDVP, a periodic orbit exists even for μ = 0.
However, the orbit passes through the superposition of the two
Néel states |Z+〉, which is located in the high-leakage region.
The TDVP dynamics is therefore not a good approximation in
this case, which accounts for the absence of revivals observed
in the full quantum dynamics.

The addition of a finite chemical potential μ contracts the
trajectory and pushes it into a low-leakage region, as shown in

the middle panel of Fig. 2(b), effectively allowing the revivals
from the polarized state to emerge. As we will explain in
Sec. IV, in this intermediate range of μ, the ground state
of HPXP(μ′) (where μ �= μ′) occupies an antipodal position
on the orbit, corresponding to a chemical-potential dependent
state we label |0̄(μ)〉, given by Eq. (7) for unit-cell size K = 1,

|0̄(μ)〉 = |ψMPS(θmax, φmax)〉, (11)

with angles (θmax, φmax) denoting the antipodal point in the
TDVP orbit of the initial polarized state, see Fig. 2(b). As μ

has the effect of deforming the trajectory, the antipodal angles
also depend on μ, as will be specified in Eq. (16) below. Note
that the sign of μ has no effect on the deformation of the
particular orbit discussed here, as we explain in Appendix C.
Finally, in the extreme limit μ → ±∞, the trajectory is re-
stricted to the vicinity of the initial state and the dynamics is
effectively frozen, as shown in the right panel of Fig. 2(b).

IV. SCARRING IN GAPPED REGIMES

OF THE PHASE DIAGRAM

In this section we focus on regions (1), (2), and (3) of the
phase diagram in Fig. 1, in particular for the values of the
chemical potential away from the EPT. Based on the discus-
sion of TDVP in Sec. III and Fig. 2, the origin of regions
(1) and (3) can be understood by examining the form of the
PXP ground state in the presence of chemical potential. When
μi → −∞, excitations are favored and the ground state is
(for PBCs) a superposition of the two Néel states |Z+〉 in
Eq. (8). By contrast, μi → ∞ penalizes excitations, therefore
the ground state is the polarized state |0〉. The superposition
state |Z+〉 is known to display revivals when quenched to
μf = 0 [37], while the polarized state revives when quenched
with μf �= 0 as shown more recently in Refs. [24,55]. By
continuity, these limiting cases explain the mechanism behind
revivals in regions (1) and (3) of Fig. 1. In the remainder of this
section, we focus on the more interesting region (2) where the
prequench initial state is an entangled state with low overlap
on both |0〉 and |Z2〉 states.
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FIG. 3. Dynamics of quantum fidelity and entanglement entropy,
following a global quench of the chemical potential, μ∗

i = −0.76 →
μ∗

f = 1.6, corresponding to the point marked by the cross in Fig. 1(a).
Quantum fidelity for the initial state |ψ (0)〉 defined as the ground
state of the PXP model with μ∗

i . Also shown is the projection of
the time-evolved state on the |Z2〉 and |0〉 states. While the overlap
with the |Z2〉 state is low throughout the evolution, the overlap with
|0〉 reaches relatively high values between the main revival peaks.
(b) Growth of entanglement entropy SE (t ) for the same initial state
|ψ (0)〉 as in (a), as well as for a random state |σRandom〉 and |Z+〉
state. The initial state |ψ (0)〉 has strongly suppressed entanglement
growth compared to the other cases. Data is for system size N = 28
obtained using exact diagonalization with PBCs.

A. Scarring in region (2) of the phase diagram

We focus on region (2) of the phase diagram in Fig. 1 and
pick (μ∗

i , μ
∗
f ) = (−0.76, 1.60) as an illustrative point in this

region, marked by the cross in Figs. 1(a) and 1(b). QMBS
dynamics at this point was first noted in Ref. [24] and here
we will characterize it in detail and explain its origin. The
evolution of fidelity and overlap with the polarized and Néel
state are shown in Fig. 3(a), where persistent fidelity revivals
can be observed while the overlap with |Z2〉 remains neg-
ligible throughout the evolution. Curiously, while the initial
state at μ∗

i has low overlap with |0〉, the evolved state does
develop a relatively high overlap with |0〉 state, approximately
half way between the main revival peaks—see the green line
in Fig. 3(a). This is reminiscent of the |Z2〉 state, which in
the pure PXP model undergoes state transfer to |Z̄2〉 at half
the revival period [60], implying that the ground state of
HPXP(μ∗

i ) is related to the polarized state.
Another tell-tale signature of QMBS is a slower growth of

entanglement entropy SE (t ) for special initial states. The en-
tanglement entropy is defined as the von Neumann entropy of
the reduced density matrix, ρA = TrB|ψ (t )〉〈ψ (t )|, obtained
by tracing out degrees of freedom belonging to one half of the
chain (denoted B). We plot the dynamics of SE (t ) in Fig. 3(b).
Compared to both |Z+〉 and a random state in the constrained
Hilbert space |σRandom〉, the entropy growth from the ground
state of HPXP(μ∗

i ) is strongly suppressed. Moreover, for the
latter state, we observe clear oscillations in the time series of
SE (t ), reminiscent of entropy dynamics in the PXP model in
the absence of chemical potential [6].

We emphasize that the special point (μ∗
i , μ

∗
f ) is represen-

tative of the entire region (2) in the phase diagram, where
similar QMBS phenomenology is numerically observed. In
the remainder of this section, we use TDVP to garner a further

understanding of this QMBS regime from a semiclassical
point of view.

B. TDVP analysis of scarring in region (2)

Before we apply TDVP to extract the semiclassical de-
scription of the dynamics in Fig. 3, we need to make sure that
the PXP ground state in the presence of chemical potential is
represented within the manifold spanned by states in Eq. (6).
In a recent paper [75], a method of “optimal steering” has
been devised to smoothly prepare a class of PXP ground
states based on the minimization of quantum leakage along
the trajectory. To show that the detuned PXP ground states are
captured in the TDVP manifold, here we follow a simpler ap-
proach of optimizing the overlap |〈ψMPS({x})|ψ (μi)〉|2, where
|ψ (μi)〉 is the ground state of the PXP model in Eq. (1). For
a unit cell size K = 1, we performed exhaustive numerical
sampling at system size N = 20 and found that most states
belonging to the TDVP manifold (>90% of them) can be
approximated with better than 98% accuracy by a ground
state of Eq. (1). Conversely, we numerically find that PXP
ground states with nonzero μ can be well captured by low
bond dimension MPS states. Intuitively, this is expected due to
the area-law entanglement scaling of the gapped PXP ground
state. As a side note, we mention that in order to prepare
the states in the TDVP manifold with unit cell K � 2, we
need to make two modifications to the preparation procedure:
(i) we need to allow chemical potential to be different for
different atoms within the unit cell; (ii) we need to include
a unit-cell modulated pulse in the z direction. As explained in
Appendix D, after these generalizations, one can also success-
fully prepare TDVP states with K � 2. While we do not have
a general proof, this provides a numerical confirmation of the
representability of the ground states of the PXP model with
a suitably-defined generalization of the chemical potential
within the TDVP manifold.

Having established that our prequench ground state at ar-
bitrary μi can be approximately mapped to an MPS state in
the K = 1 TDVP manifold for some variational parameters
(θ, φ), we now proceed to describe the dynamics from this
initial state using the classical dynamical system defined by
(θ (t ), φ(t )). From Eq. (9), one can derive the TDVP equa-
tions of motion for K = 1 and arbitrary chemical potential μ

(see Appendix B for details),

θ̇ = − cos θ cos φ(1 + sin2 θ ), (12)

φ̇ = μ +
sin φ

sin θ
(1 − 4 sin2 θ − sin4 θ ). (13)

Unlike the special case μ = 0, where φ variables can be set
to zero in the flow-invariant subspace [60], for general values
of μ one must consider both θ and φ variables simultaneously
[67].

Integrating Eqs. (12) and (13), we plot the phase space θ, φ

portrait for the chemical potential value μf = 1.6 in Fig. 4(a).
The grayscale background indicates the quantum leakage at
any given point in the manifold,

γ 2 =
sin6θ

1 + sin2θ
, (14)
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FIG. 4. (a) Phase space portrait of quantum dynamics within the K = 1 TDVP manifold for the PXP model with μf = 1.6. Grey shading
indicates quantum leakage (darker regions represent larger leakage). The trajectory of the |0〉 state for the given value of μf is highlighted in
red, while colored symbols indicate the location of the PXP ground states corresponding to various μi indicated on the color bar. The ground
states with μi≈−0.76 can be seen to lie close to the point, which is antipodal to the |0〉 state in its trajectory. With changing μf, this trajectory
either expands or compresses, meaning all ground states will lie on this antipodal point for some μf. (b) In region (2) of the phase diagram, for
a given μf , |0̄(μf )〉 state is well approximated by a detuned PXP ground state with some μi. Color bar shows the highest overlap between the
|0̄(μf)〉 state, given by Eq. (16) for a range of fixed μf ∈ [−5, 5], and the family of ground states of HPXP(μi). Dashed lines denote the EPT.
For negative chemical potentials, especially relevant for region (1) of the phase diagram, the mapping requires an additional phase pulse, as
described in Appendix D. (c) Matching the detuned PXP ground state with a |0̄〉 state becomes progressively more difficult at the critical point
(dashed line) as system size N is increased. In contrast to panel (b), here we fix the PXP ground state at μi and vary μf to find the optimal
|0̄(μf)〉 state with the highest overlap. All plots are obtained using exact diagonalization with PBCs and system size N = 20 in panels (a) and
(b).

which only depends on θ variable (see Appendix B). By inte-
grating the equations of motion for μf = 1.6, starting from the
polarized state |ψMPS(0, 0)〉, we obtain the trajectory plotted
in red color in Fig. 4(a). Generally, for any |μf| �= 0, the polar-
ized state has a periodic orbit within TDVP. When μf is large,
the orbit is pinned around θ = 0. Decreasing |μf| stretches the
orbit until the maximal point in the trajectory eventually tends
towards the |Z+〉 superposition state, (θ, φ) ≡ (π/2, π/2).
Due to the quantum leakage gradient, the |Z+〉 point is not
reached for any finite time, consistent with the lack of revivals
from the polarized state in the full quantum dynamics for
sufficiently small values of μf. Thus, we conclude that the
orbit corresponding to the cross in Fig. 1(a) is a compro-
mise between two competing effects: the orbit is sufficiently
stretched so that it has nontrivial dynamics, while at the same
time, by being not stretched too much, it can avoid the large
leakage in the vicinity of |Z+〉 state.

To verify this picture across the entire region (2), we study
the projection of the PXP ground state at μi, |GS(μi)〉, to
the TDVP manifold. We numerically maximize the overlap
|〈ψMPS(θ, φ)|GS(μi)〉|2, with the MPS state given in Eq. (6).
We plot the resulting (θ, φ) phase space coordinates for a
variety of μi in Fig. 4(a), where the colored dots correspond
to the ground states from our phase diagram in Fig. 1(a).
As expected, some of the ground states are “distant” from
|Z+〉 or |0〉 but tend towards either in their respective limits.
All successfully optimized ground states lie on the same φ

plane in Fig. 1(a), such that the deformation of the trajectory
means they will correspond to some maximum point μf on the
polarized state trajectory, denoted by the state |0̄〉. By analogy
with the Néel state, whose translation partner—the anti-Néel
state—displays identical scarring behavior [19], here we have
a similar relation between |0〉 and |0̄(μf)〉 states. The main
difference with the anti-Néel state is that |0̄〉 state depends on
the value of μf.

To substantiate this further, we analytically derive the
phase-space coordinates corresponding to |0̄(μf)〉. Using
Eq. (12), we see that the turning point in the gradient of θ

along the trajectory is governed by cos φ. A sign flip therefore
must occur when φ = ±π/2. Because energy is exactly con-
served along a TDVP trajectory, |0̄(μf)〉 must have the same
energy as the polarized state. For states belonging to K = 1
TDVP manifold, the energy density is given by

E (θ, φ)/N =
sin θ

1 + sin2 θ
(μf sin θ + 2 cos2 θ sin φ). (15)

For the polarized state, E (0, 0) = 0 and, setting φmax = π/2,
allows us to determine the θmax coordinate of the |0̄(μf )〉
turning point,

sin θmax =
(

|μf| −
√

μ2
f + 16

)

/4. (16)

In Fig. 4(b) we test the overlap of the state |0̄(μf)〉, with the
MPS angles given by Eq. (16), against the family of ground
states of HPXP(μi). We scan through a set of values μf ∈
[−5, 5] and, for each μf , plot the maximum overlap obtained
by maximizing over μi. Although μf < 0 is not particularly
relevant for region (2), we note that the optimization fails
there. This, however, can be fixed by including an additional
phase pulse, as explained in Appendix D. Comparing Fig. 4(b)
to Fig. 1(a), we see a striking correspondence between the
successful optimization and region (2) in the phase diagram,
which confirms that the QMBS phenomena in region (2) are
indeed associated with |0̄(μf)〉 state.

Finally, in Fig. 4(c) we study the system size scaling of
the mapping between the PXP ground state with chemical
potential and states in the TDVP manifold. We scan for the
maximal overlap of the ground state at some μi with the set of
all |0̄(μf)〉 states in the interval μf ∈ [−20, 20]. Remarkably,
for the vast majority of region (2) when μi > 0, we see a
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near perfect overlap between the ground state and |0̄(μf)〉,
independent of system size—suggesting that the TDVP state
captures well the PXP ground state in region (2). Nevertheless,
in Fig. 4(c) we also observe a breakdown of the mapping at
the EPT point μi = μc. This is expected since the ground
state at the critical point develops a diverging entanglement
entropy and the χ = 2 MPS approximation must deteriorate
as system size is increased, since an area-law state cannot
capture the critical ground state in the thermodynamic limit.
This naturally leads to the question: Is the observed scarring
in the critical ground state an artefact of finite size and what is
its origin?

V. INTERPLAY BETWEEN SCARRING AND CRITICALITY

We now focus on the nature of QMBS regime when
quenching from the critical ground state at μi = μc. Despite
the complexity of this state, we find robust signatures of er-
godicity breaking. Long-time memory retention from states
in energy close to an EPT has previously been observed in
the LMG model [76,77]. We find similar behavior between
regions (1) and (2) in Fig. 1(a). For example, by fixing μi =
μc and scanning μf to determine the largest δF , we find the
most robust revivals occur at μf = 0.633—a point marked by
the diamond in Fig. 1. This turns out to be one of the best
reviving points in all of regions (1), (2), and (3), including
the |Z2〉 and |0〉 initial states. As discussed above, the TDVP
semiclassical formalism is not well suited for describing this
case as it cannot capture the diverging entanglement entropy
of the initial state. This immediately raises the question if the
observed QMBS behavior is a finite-size effect and whether
one should rather expect a sharp boundary between regions
(1) and (2) in Fig. 1 in the thermodynamic limit.

To probe the robustness of QMBS revivals in the thermo-
dynamic limit, we simulated the quench μi = −1.31 → μf =
0.6 in large systems up to N = 401 using MPS in Fig. 5. The
fidelity, plotted in Fig. 5(a), demonstrates that revivals exist
in all accessible system sizes. The fidelity is not an intensive
quantity, therefore it is generically expected to decay in the
N → ∞ limit, as indeed can be observed in Fig. 5(a). Thus,
to compare different system sizes, we take the fidelity at the
first revival peak F1 and plot its density − log(F1)/N against
1/N , in the inset of Fig. 5(a). This serves as an indicator
of ergodicity breaking at a finite time that can be properly
scaled to the thermodynamic limit. For a random state in the
constrained Hilbert space of the PXP model, whose dimension
grows asymptotically as ∼φN , where φ = (1 +

√
5)/2 is the

golden ratio [36], the fidelity density at late times asymp-
totically approaches the value log φ ≈ 0.48, with O(1/N2)
corrections. Contrary to this expectation, the fidelity density
in Fig. 5(a) continues to decrease as N → ∞ and extrapolates
to a value smaller than 0.01, signaling nonergodicity in the
thermodynamic limit at a finite time scale t ∼ 5/�, which is
well beyond the initial relaxation.

In Fig. 5(b) we observe a slow growth of entanglement
entropy following the same quench. In contrast to previous
QMBS cases in the literature, where the system was initialized
in a product with zero entropy, here we start from a critical
ground state whose entropy is expected to diverge logarith-
mically with system size according to the Cardy-Calabrese

FIG. 5. Fidelity and entanglement entropy dynamics for the
quench from the critical ground state with μi = −1.31 to μf = 0.6.
(a) Fidelity revivals persist up to the largest system size N = 401.
While the fidelity decays with N , the fidelity density of the first
revival peak − log(F1)/N , plotted against inverse system size 1/N ,
extrapolates to a value close to 0 (inset), indicating nonergodic be-
havior in the thermodynamic limit at a finite time. (b) Dynamics of
the half-chain entanglement entropy SE (t ) for the same quench. We
scale the entropy by the critical value given by the Cardy-Calabrese
formula with central charge c = 1/2 [78], which collapses the data to
1 at t = 0 (inset shows the unscaled entropy). The growth of entropy
is seen to be linear, with pronounced oscillations. Data is obtained
by MPS simulations with OBCs, bond dimension χ = 300, and time
step δt = 0.025.

formula, Scrit = (c/6) log(N/π ) [78]. The universal prefactor
is determined by the central charge c of the conformal field
theory, which is c = 1/2 for our critical point in the Ising
universality class. Scaling the data by Scrit indeed yields a
good collapse at time t = 0. At later times, the entropy grows
linearly with time. On top of linear growth, we observe promi-
nent oscillations that are typically found in QMBS systems,
e.g., the |Z2〉 initial state in the PXP model [6]. The ampli-
tude of these oscillations is roughly independent of system
size, as can be seen in the inset of Fig. 5(b). At much later
times, which are inaccessible to MPS methods, we expect the
entropy to saturate to a value proportional to the volume of
the subsystem. Apart from the diverging entropy of the initial
state, the overall picture from Fig. 5 is broadly similar to
previous studies of QMBS dynamics [1]. What remains to be
explained is why the critical ground state is poised towards
QMBS-like dynamics.

To identify the microscopic origin of this robust ergodicity
breaking in the vicinity of μf = 0.633, we plot the overlap
of the initial critical ground state with the eigenstates of the
postquench Hamiltonian in Fig. 6. The overlap exhibits clear
towers of eigenstates, which are emblematic of QMBS. While
these features are present throughout the spectrum, the dom-
inant contributions to the initial state come from low-energy
eigenstates. In order to approximate their characteristics, we
can treat them as magnons with a given momentum k on top
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FIG. 6. Overlap between the ground state at the critical point
μi = μc = −1.31 and the eigenstates of the PXP model with μf =
0.633. The color indicates the density of datapoints. The red dashed
lines indicate multiples of the energy of a k = π excitation on top
of the ground state. This matches well with the scarred towers in the
relevant part of the spectrum. The inset shows the first set of excited
states, with the grey dashed lines indicating the expected energy for
noninteracting pairs of excitations with momenta k and −k. Due to
the flatness of the band near k = π and k = 0, the lines are denser
near the scarred states, leading to sharper towers and better revivals
(see further analysis of the magnon dispersion in Fig. 7 below). Data
is obtained by exact diagonalization for system size N = 28 with
PBCs.

of the ground state. For μf = 0, this has been shown to give
a good approximation of scarred states even at relatively high
energies when using magnons with momentum k = π [79].
Similarly, we find this to be true in our case near μf = 0.6,
where much of the low-energy spectrum can be approximately
reconstructed from pairs of noninteracting magnons with mo-
menta k and −k, see the dashed lines in Fig. 6 and inset.
Note that the PXP model is gapped for μf = 0.633, hence
the ground state and the first tower in Fig. 6 are separated
by a finite energy that is independent of N in sufficiently large
systems.

A detailed analysis of the magnon dispersion as a function
of chemical potential is presented in Fig. 7. The dispersion
relation for several values of μf is shown in Fig. 7(a). For μf <

0.6, the single-magnon band merges with the two-magnon
continuum, causing the downward slope near k = 0. Near
μf = 0.6, the band becomes remarkably flat for small k, co-
inciding with the one-magnon and two-magnon bands barely
touching. At that point, the energies of the first excited states
at k = 0 are well approximated by twice the energies of the
single-magnon states, indicating that they correspond to a pair
of two noninteracting magnons with momenta k and −k. This
is illustrated in Fig. 7(b) and the inset of Fig. 7(a). This simple
picture of noninteracting excitations allows us to predict the
energies of the low-energy excited states based solely on the
dispersion relation of the single-magnon states. In particular,
the flatness of the band near k = 0 and k = π means that
the eigenstates near the scarred ones have approximately the
same energy. This implies that tower of states will be sharper,
and that the effective energy spacing, which determines the
dynamics at intermediate times, is the spacing between the
towers. In turn, the fact that magnons are very weakly inter-

FIG. 7. (a) Dispersion relation of the low-lying excitations of the
PXP model for several values of the chemical potential μf, shown
in different colors. When μf ≈ 0.6, the dispersion becomes visibly
flat near both k = 0 and k = π momenta. Inset shows the difference
between the actual energies of the first excited states in the spectrum
and their approximation by a pair of two noninteracting excitations.
For all momenta k, the best agreement between the approximation
and exact energy is attained at μf ≈ 0.6. (b) Low-energy spectrum
of the PXP model with μf = 0.6 – the value with the best revivals
when quenching from the critical ground state. The ground state and
first excited states are indicated, along with energies corresponding
to a noninteracting pair of excitations with momenta k and −k. In this
instance, we see the approximate excitations and exact energy levels
lie close to each other. Data is obtained by exact diagonalization for
system size N = 24 with PBCs.

acting means that the spacing between these towers will be
approximately equal.

In summary, we showed that QMBS in the critical ini-
tial state can persist due to (i) the postquench Hamiltonian
HPXP(μf ) having a gapped spectrum with a sufficiently
flat band of the low-lying magnon excitations and (ii) the
magnons are weakly interacting and their multiplets give rise
to regularly spaced QMBS-like towers in the spectrum. While
this scenario is reminiscent of Ref. [80], where quantum
revivals in some nonintegrable models were related to the
low-lying quasiparticle states, in our case the chemical po-
tential needs to be finely tuned to a value μf ≈ 0.6 to meet
the conditions (i) and (ii). Indeed, as seen in Fig. 1, varying
μf around this value leads to a sharp decay of QMBS revivals.
In contrast to the PXP model with μi = 0 and the |Z2〉 initial
state, the QMBS eigenstates in the μi = μc case are clearly
skewed towards the low-energy part of the spectrum; however,
this allows the QMBS revivals to persist in large systems,
despite the highly entangled initial state.
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VI. EXPERIMENTAL PROTOCOL

Finally, in this section we address the experimental obser-
vation of the phase diagram in Fig. 1. The key step is the
preparation of the PXP ground state in Eq. (1). The protocol
below is directly applicable to Rydberg atom arrays [22];
however, it can also be adapted to ultracold bosons in a tilted
optical lattice, where the chemical potential μ maps to the en-
ergy mismatch between the Hubbard interaction and electric
field, which induces a tilt potential [24].

Ground-state preparation is accomplished via a “ramping”
procedure utilized in related experiments [21,45,47,81,82].
This assumes fine control of the chemical potential that is
varied in time, μ = μ(t ). Taking the chemical potential very
large, μ → ±∞, one can prepare |0〉 and |Z2〉 states. Starting
in one of these states, one can then ramp to a desired ground
state in the interior of our phase diagram in Fig. 1 by evolving
with a time-dependent PXP Hamiltonian HPXP(μ(t )), where
μ(t ) is appropriately parameterized for adiabatic evolution,
as specified below. The adiabaticity implies that the ramping
will not be able to prepare the critical ground state after
a finite time in the thermodynamic limit. Therefore, with
finite resources, we can only hope to approach the critical
point from different gapped regions of the phase diagram. We
start the ramp either in |Z2〉 or |0〉, depending on whether
we are in a ordered (μ < μc) or disordered (μ > μc) phase,
respectively.

Specifically, we make use of the following ramp:

μ(t ) =
A

(t − B)2
−

A

(t − C)2
+ μc, (17)

where A, B, and C are tunable parameters. One particularly
successful choice was found to be A = ∓40, when ramping
from |0〉 or |Z2〉, respectively, B = 30, and C = −0.1. An ex-
ample of this ramping curve is plotted in the inset of Fig. 8(b).
We include μc due to the need for a much slower ramp as the
gap between the ground state and first excited state closes in
the vicinity of the EPT.

After specifying the ramp and the initial state, we evolve
by the PXP Hamiltonian in the presence of chemical potential,
Eq. (17), until some time t . The evolution time is determined
by numerically minimizing 1 − |〈ψ (t )| GS(μtarget )〉|2, where
|GS(μtarget )〉 is the state we are trying to prepare. Figure 8(a)
illustrates the success of the ramping procedure. For system
sizes ranging from N = 6 to N = 14, we have ramped to pre-
pare the ground states from μ = ±6, in increments δμ = 0.5,
towards the critical point, μc = −1.31. Figure 8(b) shows the
time that the ramp took for each ground state. We see the ramp
time is insensitive to system size in gapped regions of the
phase diagram, while it sharply increases near μc and exhibits
strong fluctuations with N . For fixed ramp parameters, we
expect it will take an infinite amount of time to prepare the
critical ground state in the N → ∞ limit.

Finally, to verify our preparation scheme in large sys-
tems, we repeated the preparation of the detuned PXP ground
states for system sizes of N = 51, 75, and 101 using MPS
simulations with bond dimension χ = 128 and the ramping
protocol in Eq. (17), with the same A, B, C parameters. The
inset of Fig. 8(a) demonstrates that the ramping continues
to successfully reproduce the desired ground state with high

FIG. 8. (a) The success of preparing the PXP ground state at
chemical potential μ by ramping the chemical potential according
to Eq. (17). The total ramp time is varied for each point to maximize
the overlap, which is plotted on the y axis. For μ > μc, the initial
state is |0〉 (square symbols), while for μ < μc we start the ramp
in the |Z2〉 state (triangles). Separate optimizations were performed
for different system sizes N , shown in the same plot. Black dashed
line (in all the panels) denotes the critical point μc. Inset: Using
the optimal parameters and average ramping time determined in
smaller sizes in the main panel, we prepare the ground states for
the same values of μ in much larger system sizes N = 51, 75, 101.
The preparation in this case was done using the MPS method with
time step δt = 0.025 and maximum bond dimension χ = 128. While
in the gapped phases the preparation remains successful, there is a
visible drop near the critical point. (b) Total ramp time tramp returned
by the optimizations in the main panel (a). Inset shows the ramping
curve μ(t ) in Eq. (17). We observe an increase of the ramp time and
strong finite-size fluctuations at the critical point. The data in the
main panels (a) and (b) was computed using exact diagonalization
in k = 0 momentum and p = +1 inversion symmetry sector with
PBCs.

fidelity, with the exception of the critical point where we see
a clear drop in overlap with the target state. This suggests
the ramping procedure is a viable method for generating de-
sired ground states even in large systems. With this in hand,
along with the already existing capabilities to quench with
a detuned PXP Hamiltonian and conduct measurements of
local observables [21,22], all the tools are, in principle, avail-
able to reconstruct the dynamical phase diagram in Fig. 1.
In particular, local fidelity measurements [24] can be used
to approximate the numerically computed global fidelity in
Fig. 1(a). This would allow to experimentally verify the per-
sistence of QMBS across the phase diagram and its robustness
near the critical point.

VII. CONCLUSIONS AND DISCUSSION

We have mapped out the dynamical phase diagram of the
PXP model, based on ergodicity breaking in its dynamics
following the global quench of the chemical potential. We
have demonstrated the existence of extended regions, which
harbor QMBS phenomena, either associated with the pre-
viously studied initial conditions, such as |Z2〉 and |0〉, or
with new entangled states such as |0̄(μ)〉. The mechanisms
giving rise to these QMBS phenomena, in particular the
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underlying periodic trajectories, were identified within the
TDVP framework. We have analyzed in detail the robust-
ness of QMBS when the system is tuned to the EPT point,
arguing that this is not an obstacle for QMBS, provided
that the postquench Hamiltonian is tuned in such a way that
the low-lying quasiparticle excitations are weakly interacting
and possess a flat energy-momentum dispersion. This enables
different QMBS regions in the dynamical phase diagram to
connect smoothly, bridging across the EPT. Finally, we have
also outlined an adiabatic preparation scheme that allows to
map out the same phase diagram in experiments on Rydberg
atoms and ultracold bosons in tilted optical lattices, both of
which have recently realized the PXP model in the presence of
a tunable chemical potential. In light of these experiments, our
discussion of the phase diagram above was restricted to finite
times; however, in Appendix F we discuss the corresponding
phase diagram for time t → ∞. We note that the existence of
a continuous family of QMBS states, tunable by the chemi-
cal potential, is of independent interest in quantum-enhanced
metrology, for which QMBS states were shown to be
advantageous [83–85].

One motivation behind this work is the open problem of
identifying all initial conditions associated with QMBS. For
the pure PXP model it had originally appeared that only the
|Z2〉 and |Z3〉 = |100100...100〉 states are special in this re-
gard [21]; however, more recent explorations of the chemical
potential [24] have revealed that the latter can also stabilize
QMBS from a different initial state |0〉. In this paper, we
have shown that these two product states share the semi-
classical description and belong to a larger family, which
also includes some other weakly-entangled states such as
|0̄(μ)〉 state. While we have numerically related these initial
states and their quench dynamics, it is not obvious how to
relate them at the level of a spectrum-generating su(2) al-
gebra, which has provided an elegant description of revivals
from the |Z2〉 state in the pure PXP model [29]. Moreover,
our investigation focused on the dynamics with periodicity
K = 1 and it would be interesting to extend it to K � 2.
For example, it is known that |Z3〉 = |100100100 . . . 100〉
state also exhibits revivals in the pure PXP model model
[37]. However, this state necessitates a TDVP description
with K = 3 unit cell, which already gives rise to an intri-
cate phase space at the semiclassical level [67]. It would be
interesting to understand the dynamical phase diagram asso-
ciated with such states that have larger unit cells, either in the
PXP model or analogous models for larger Rydberg blockade
radii.

Finally, our results for the initial state at the critical point
suggest that QMBS dynamics is not necessarily associated
with preparing the system in a product state or even an
area-law entangled state, but in principle allows for highly-
entangled initial states. In this case, QMBS dynamics is more
strongly temperature dependent, as the initial state has domi-
nant support on the relatively low-lying energy eigenstates of
the postquench Hamiltonian. The key ingredient for making
this work was to suppress the interaction between quasiparti-
cles and flatten their energy dispersion. It would be interesting
to understand how to engineer such conditions in other models
and thereby realize similar dynamics from highly-entangled
initial states.
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APPENDIX A: OTHER REGIONS

OF THE PHASE DIAGRAM

Several regions of the phase diagram in Fig. 1 exhibit fi-
delity revivals that have a simple origin that can be understood
without invoking QMBS. Here we explain in more detail these
regions labeled (4), (5), (6), and (7). It is useful to consider
the inverse participation ratio (IPR), one of the traditional
measures of ergodicity of the eigenfunctions introduced in the
context of Anderson localization [86]. The IPR is defined as

IPR =
1

∑

E |〈E |ψ〉|4
, (A1)

and it intuitively tells us about how many basis states |E〉 the
state |ψ〉 has support on. For example, if |ψ〉 is a basis state,
its IPR will be 1, while if |ψ〉 is homogeneously spread over
the entire Hilbert space, the IPR will be equal to the Hilbert
space dimension. Note that IPR is a basis-dependent quantity
and, in our case, we have a natural choice of eigenstates |E〉
of HPXP(μf) as the basis states.

The logarithm of IPR for μi ground states with respect to
μf eigenstates is plotted in Fig. 9. This allows us to further
distinguish between different regions. For conventional |Z2〉
scarring we expect the IPR to be on the order of system size
N , since the |Z2〉 state has high overlap with a band of N + 1
scarred eigenstates of HPXP(0) but low overlap with the rest.
This is evidenced in region (1) of Fig. 9. On the other hand,
the band of scarred eigenstates associated with |0〉 state in the
detuned PXP model is “tilted” to one edge of the spectrum, so
we expect the IPR to be smaller. In general, the regions with
high IPR are expected to be ergodic, while the least interesting
regimes are characterized by very low IPR, such as around the
μi = μf diagonal and in regions (5) and (6). The IPR is not as
low in parts of regions (4) and (7) visible in this figure, but it
decreases with increasing |μi| and |μf| as the ground state of
HPXP(μi) approaches an eigenstate of HPXP(μf).
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FIG. 9. Logarithm (base 10) of the IPR of the ground state of
HPXP(μi) with respect to the eigenstates of HPXP(μf). All the labels
have the same meaning as in Fig. 1. Data is obtained using exact
diagonalization in the sector with k = 0 momentum and p = +1
inversion symmetry for size N = 26 with PBCs.

Large |μf| leads to the number of excitations in the sys-
tem becoming effectively conserved, splitting the Hamiltonian
into several sectors with an energy difference proportional to
|μf|. The dynamics in these sectors also becomes more regu-
lar, and even integrable at |μf| → ∞ [35]. Additionally, initial
states with a number of excitations close to the minimum
(maximum) effectively have overlap with very few eigenstates
in the low (high) energy spectrum, leading to oscillations. For
example, region (4) [i.e., μi > 0, −μf ≫ 1] roughly corre-
sponds to the polarized state in the strongly detuned regime,
since the initial ground state has significant overlap with |0〉
for μi > 0. In the μi → ∞ limit, it is expected to become the
exact mirror image of region (3), given that the polarized state
has the same dynamics for ±μf (see Appendix C). Similarly,
region (7) [μi < 0, μf ≫ 1] has a simple explanation in terms
of |Z+〉 state in the strongly detuned regime.

The origin of revivals in region (5) [μf < μi < −1.3] is
perhaps not immediately obvious, since the initial state in
that case does not have high overlap with one of the pre-
viously studied states such as |0〉 or |Z+〉. We now briefly
investigate this region. The fidelity and the average number
of excitations after quenching from μi = −2.5 to μf = −6
can be seen in Figs. 10(a) and 10(b). The quenched state
maintains high overlap with the |Z+〉 state, with peaks in
the middle between the fidelity revivals, see Fig. 10(a). This
situation is reminiscent of the |0̄〉 state in region (2), which
periodically evolves to |0〉 and back. Although it oscillates,
the overlap with |Z+〉 never drops to zero. In contrast, the
overlap with |0〉 is constantly zero. In Fig. 10(b) we also see
that the average occupation is remarkably stable, fluctuating
only slightly around ≈0.47. As explained above for regions
(4) and (7), such behavior arises due to the fact that in the
large-μ limit states with near-extremal number of excitations
only have support on a small number of eigenstates at the
edge of the spectrum. This can be seen in Fig. 10(c), which
shows the overlap of the initial state and the eigenstates. The
splitting of eigenstates into sectors, effective conservation of

FIG. 10. Dynamics and eigenstate properties of the PXP model
quenched from μi = −2.5 to μf = −6, corresponding to region (5)
of the phase diagram in Fig. 1. (a) Fidelity of the initial state |ψ (0)〉,
i.e., the ground state of HPXP(−2.5), as well as the overlap with both
the polarized state |0〉, and superposition state |Z+〉. (b) The average
number of excitations remains nearly constant in time. (c) The over-
lap of the initial state with eigenstates of HPXP(−6) reveals that the
latter split into sectors based on the value of n̂, leading to |ψ (0)〉 only
having support on the low-energy spectrum. Data obtained by exact
diagonalization for N = 28 with PBCs.

n̂ and high overlap with the ground state are all apparent.
Further evidence comes from the inverse participation ratio
(IPR), which we find to be very low in this region, indicat-
ing overlap with only a small number of eigenstates, as will
be shown below. Finally, region (6) [μi < μf < −1.3] has a
similar phenomenology to its mirroring region (5).

In summary, we have argued that regions (4), (7), and part
of (5) correspond to regimes where μf has a large absolute
value, leading to a simple oscillatory dynamics due to Hilbert
space becoming disconnected, while in regions (5) and (6),
μf ≈ μi causes the initial state to be close to an eigenstate of
the postquench Hamiltonian.

APPENDIX B: DERIVATION OF TDVP EQUATIONS

OF MOTION AND QUANTUM LEAKAGE

In this section we first derive the TDVP equations of mo-
tion and then compute the instantaneous leakage rate. These
derivations follow Appendices A and C of Ref. [67].

1. Equations of motion

The TDVP equations of motion can be derived as the
saddle point equations for the following Lagrangian [69,71]:

L =
i

2
(〈ψMPS|ψ̇MPS〉 − 〈ψ̇MPS|ψMPS〉) − 〈ψMPS|H |ψMPS〉,

(B1)

where it will be convenient to split our Hamiltonian into
two terms, H = HPXP + Hμ. Unlike Ref. [67], we restrict to
K = 1, which greatly simplifies the calculation. Throughout
this section we will consider mixed MPS transfer matrices,
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denoted by

T B
C =

∑

σ

B̄σ ⊗ Cσ , (B2)

where B and C are arbitrary MPS tensors. The MPS transfer
matrix for the PXP ansatz chosen in the main text takes the
form

T A
A = T =

⎛

⎜

⎜

⎝

cos2 θ 0 0 1
cos θ sin θ 0 0 0
cos θ sin θ 0 0 0

sin2 θ 0 0 0

⎞

⎟

⎟

⎠

. (B3)

The dominant left and right eigenvalues of the transfer matrix
are equal to 1, and the corresponding eigenvectors are

|R) =

⎛

⎜

⎜

⎝

1
cos θ sin θ

cos θ sin θ

sin2 θ

⎞

⎟

⎟

⎠

, (L| = (1 0 0 1), (B4)

which obey (L|R) = 1 + sin2 θ . We also introduce the fol-
lowing shorthand for a three-site local Hamiltonian term
contracted with MPS tensors on every site:

H = H
A,A,A
A,A,A =

∑

σi

Āσ1 Āσ2 Āσ3 hσ1,σ2,σ3
σ4,σ5,σ6

Aσ4 Aσ5 Aσ6 . (B5)

Using the mixed transfer matrix expression, it is straightfor-
ward to compute

f = −iN

(

L
∣

∣T
∂φA

A

∣

∣R
)

(L|R)
= N

2 sin2 θ

cos 2θ − 3
, (B6)

with T
∂φA

A =

⎛

⎜

⎜

⎝

0 0 0 −i

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

. (B7)

Next we compute the expectation value of the Hamiltonian.
We find the two terms are

〈ψ |HPXP|ψ〉 = N
(L|HPXP|R)

(L|R)
= N

2 cos2 θ sin θ sin φ

1 + sin2 θ
,

(B8)

and

〈ψ |Hμ|ψ〉 = N
(L|Hμ|R)

(L|R)
= Nμ

sin2 θ

1 + sin2 θ
. (B9)

The total expectation value is given by 〈ψ |H |ψ〉 =
〈ψ |HPXP|ψ〉 + 〈ψ |Hμ|ψ〉, which yields the energy density,
Eq. (15) in the main text.

To get the equations of motion for θ and φ, we need to
compute

η = ∂θ f = −4N
sin 2θ

(cos2 θ − 3)2
. (B10)

From there the equations of motion are given by

θ̇ =
1

η
∂φ〈ψ |H |ψ〉, φ̇ = −

1

η
∂θ 〈ψ |H |ψ〉, (B11)

which lead to Eqs. (12) and (13) in the main text.

2. Instantaneous leakage

The instantaneous leakage is given by

�2(θ ) = ‖|ψ̇〉 − iH |ψ〉‖2

= 〈ψ |H2|ψ〉c − 2θ̇ Im (〈∂θψ |H | ψ〉c)

+ (θ̇ )2 Re (〈∂θψ | ∂θψ〉c) − 2φ̇ Im(〈∂φψ |H | ψ〉c)

+ (φ̇)2 Re(〈∂φψ | ∂φψ〉c) + 2φ̇θ̇ Re(〈∂φψ | ∂θψ〉c).

(B12)

Due to the gauge choice, the leakage depends on connected
correlators defined as

〈∂θψ |∂θψ〉c = 〈∂θψ |∂θψ〉 − 〈∂θψ |ψ〉〈ψ |∂θψ〉.

In order to evaluate these connected correlators, we introduce
the projector on the dominant subspace, P = |R)(L|/(L|R),
and its complement Q = 1 − P . We also introduce T , which
is obtained by re-summing the contribution of the nondomi-
nant subspace of T in

∑∞
q=0 T q and is defined from T −1 =

Q(1 − QTQ)−1Q.
Let us now evaluate the various terms involved in the

instantaneous leakage. Taking each term one by one, we find
that

〈∂θψ | ∂θψ〉c =
N

(L | R)

(

L
∣

∣ T
∂θ A
∂θ A + T A

∂θ AT
−1T

∂θ A
A

+ T
∂θ A

A T −1T A
∂θ A − T A

∂θ APT
∂θ A

A

∣

∣ R
)

, (B13)

which after a straightforward calculation evaluates to

〈∂θψ |∂θψ〉c =
N

1 + sin2 θ
. (B14)

Turning our attention to the term 〈∂θψ |H |ψ〉c, we find that
this evaluates to

N

(L | R)

(

L
∣

∣H∂θ A + HT −1T A
∂θ A + T A

∂θ AT
−1H − 3HPT A

∂θ A

∣

∣R
)

.

(B15)

This yields

〈∂θψ |H |ψ〉c = −iN cos θ cos φ + N
cos θ sin θ

(1 + sin2 θ )2
φ̇. (B16)

As we are only interested in the imaginary part, we can discard
the second term and are left with

Im (〈∂θψ |H |ψ〉c) = −N cos θ cos φ =
N

1 + sin2 θ
θ̇ . (B17)

The expressions containing the derivatives with respect to φ

can be calculated similarly. Starting with 〈∂φψ |∂φψ〉c which
we compute as

N

(L | R)

(

L
∣

∣T
∂φA

∂φA + T A
∂φAT

−1T
∂φA

A

+ T
∂φA

A T −1T A
∂φA − T A

∂φAPT
∂φA

A

∣

∣R
)

. (B18)

Evaluating this term, we find

〈∂φψ |∂φψ〉c = N
cos2 θ sin2 θ

(1 + sin2 θ )3
. (B19)
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The next term to compute is the cross term

〈∂φψ |∂θψ〉c =
N

(L | R)

(

L
∣

∣T
∂φA

∂θ A + T A
∂θ AT

−1T
∂φA

A

+ T ∂φAT −1T∂θ A − T∂θ APT ∂φA
∣

∣R
)

. (B20)

The result after evaluating Eq. (B20) is

〈∂φψ |∂θψ〉c = −iN
cos θ sin θ

(1 + sin2 θ )2
; (B21)

however, because its real part is identically zero, we get no
contribution from this term. We now compute 〈∂φψ |H |ψ〉c as

〈∂φψ |H |ψ〉c =
N

(L | R)

(

L
∣

∣H∂φA + HT −1T A
A∂φA

+ T A
∂φAT

−1H − 3HPT∂φA

∣

∣R
)

. (B22)

We find this can be expressed as

〈∂φψ |H |ψ〉c = N cos θ cos φ + iN
cos2 θ sin2 θ

(1 + sin2 θ )3
φ̇. (B23)

We now move onto the terms involving the square of the
Hamiltonian, H2. The connected correlator in this case is

〈ψ |H2|ψ〉c = N
(L|H(2) + 2HT −1H − 5HPH|R)

(L | R)
, (B24)

where H(2) is the product of two overlapping local Hamil-
tonian terms. As the local Hamiltonian spans three sites, the
two terms will both act upon one, two, or three shared sites.
Evaluating this expression, we obtain

〈ψ |H2|ψ〉c =
N sin6 θ

1 + sin2 θ
+

N cos2 θ sin2 θ (φ̇)2

(1 + sin2 θ )3

+
N (θ̇ )2

1 + sin2 θ
. (B25)

Substituting each of these into the equation for the leakage,
we finally arrive at

�2 = N
sin6 θ

1 + sin2 θ
.

Rescaling this by the system size yields the intensive expres-
sion for the leakage γ 2, Eq. (14), quoted in the main text.

APPENDIX C: RELATION BETWEEN µ AND −µ

It is interesting to note that for μ and −μ the eigenstates
are simply related by the application of the operator � =
∏N

j=1 Z j , with Z = Q − P. The same operator maps a state
with energy E to −E . This can be easily seen by considering
an eigenstate |E〉 of HPXP(μ) with energy E . First let us
consider the commutation relation between HPXP and �. As
Z commutes with P and Q but anticommutes with X , it means
that

�HPXP(μ) = −HPXP(−μ)�. (C1)

As a consequence

HPXP(−μ)(� |E〉) = −�HPXP(μ) |E〉 =−E (� |E〉), (C2)

showing that � |E〉 is an eigenstate of HPXP(−μ) with energy
−E . This means that the spectral properties are the same for

±μ and that the ceiling state of HPXP(μ) becomes symmetry-
breaking for μ > 1.31.

Similarly, it is important to further note the relation be-
tween μ and −μ with respect to the TDVP equations of
motion, Eqs. (12) and (13). In general, flipping the sign of μ

may not result in identical dynamics; however, this is not the
case when considering the dynamics of the polarized state. As
|0〉 has TDVP angles (0,0), at this point φ̇ = μ. On the other
hand, θ̇ has no μ dependence and so is unaffected by the a
sign flip and the only dependence on φ comes from the cos(φ)
term, which has the property cos(φ) = cos(−φ). Because of
this, a sign flip of μ does not affect the dynamics of θ and
simply flips Eq. (13). This means that the dynamics of |0〉 are
symmetric under the sign flip and the shrinking of the orbit in
Fig. 2 occurs for both ±μ.

APPENDIX D: PREPARATION OF STATES

IN THE TDVP MANIFOLD

Here we demonstrate that the states belonging to the TDVP
manifold with K = 1, 2 unit cell can be represented as ground
states of the PXP model with a suitably generalized chemical
potential term. To show this correspondence, we numerically
optimize the overlap |〈ψMPS({x})|�(w)〉|2, where |�(w)〉 is
the ground state of the PXP model with a K-site periodic
density modulation,

H (w) =
N−1
∑

j=0

Pj−1X jPj+1 +
N−1
∑

j=0

w jQ j, (D1)

where w = (w1,w2, . . . ,wK ) is a generalization of the chem-
ical potential term that is periodic (with period K) but takes
different values for different atoms within the unit cell. The
Hamiltonian H (w) reduces to the PXP Hamiltonian with uni-
form chemical potential in Eq. (1) for K = 1.

Furthermore, in order to prepare the states in larger TDVP
manifolds with unit cells K � 2, we found it necessary to act
on the ground state of Eq. (D1) with a unit-cell modulated
phase pulse,

�(γ ) =
N/K−1
∏

j=0

e−iγK ZK j+(K−1) · · · e−iγ2ZK j+1 e−iγ1ZK j , (D2)

where Zi denotes the usual Pauli-Z matrix on site i and
γ1, . . . , γK are variational parameters in addition to w.

Our extensive numerical sampling in system sizes N � 18
confirms that the ansatz in Eqs. (D1) and (D2) allows for an
accurate approximation of states in the TDVP manifold after
optimizing for (w, γ ). As this is performed at relatively small
system sizes, here we verify that these results can be extended
to larger systems. As a test case, we choose a particularly
interesting TDVP trajectory, which starts at (θ1, θ2, φ1, φ2) =
(1.25π , 2.985, 0.166, 0.188). This trajectory was derived in
Ref. [67] within a K = 2 TDVP ansatz and it belongs to a
regular region of the manifold, giving rise to fidelity oscilla-
tions in the full quantum dynamics. We choose this trajectory
to show that the ansatz can capture trajectories of interest in
larger manifolds. We optimize for 30 states evenly spaced
along this TDVP trajectory between time t = 0 and t = 6 in
system sizes ranging from N = 6 to N = 18. The optimization
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FIG. 11. Preparing the states along a particular K = 2 TDVP
trajectory (defined in the text) using the ansatz in Eqs. (D1) and
(D2). A set of states on the trajectory up to time t = 6 are variation-
ally approximated in system sizes N = 6 − 18, finding the optimal
parameters w, γ . The optimized parameters are then extrapolated
to size N = 22 and the resulting overlap with the TDVP states is
plotted, illustrating the success of the optimization (overlap is >97%
along the entire trajectory). Inset shows the scaling of the overlap for
the most poorly approximated point on the trajectory as a function of
system size N . The overlap decays slowly and its extrapolation yields
high overlap for this point even in large systems (e.g., overlap ∼90%
at size N ∼ 50).

yields an overlap close to 1 for all the points on the trajectory
and yields a set of optimal (w1,w2) and (γ1, γ2) for different
N . Over the range of N , we found γ changes little so we do
not re-optimize this in larger N but simply take the average
from smaller sizes. On the other hand, we find w for different
values of N fits well the empirical formula w j = aebN+c + d ,
where a, b, c, and d are fitting parameters depending on w1

and w2. With this information, we can calculate (w1,w2),
(γ1, γ2) for larger system sizes via extrapolation. The resulting
overlap in system size N = 22 is shown in Fig. 11. We see
that the ansatz successfully captures the entire trajectory (up
to 97% overlap in this system size). In the inset of Fig. 11
the minimum overlap found along the trajectory is plotted as
a function of system size, showing that it decays very slowly
and allows to prepare the TDVP states on the trajectory with
accuracy of 90% or better in large systems N ∼ 50.

APPENDIX E: SINGLE MODE APPROXIMATION

In Sec. V we have discussed the revivals from the critical
ground state based on the structure of the low energy spec-
trum at μf = 0.633. In this section we provide more details
of this analysis, in particular on the range of μ that it can
be applied to. Ref. [79] showed that for μf = 0, the scarred
states throughout the spectrum could be well approximated as
a collection of magnons with momentum π . Here, we show
that this analysis also holds for μf ≈ 0.6, especially in the
low-energy part of the spectrum. In turn, the ground state
at μi = μc = −1.31 can be understood as mainly being a
superposition of these multimagnon states.

In Fig. 12 one can see the low-energy spectrum resolved by
momentum for three different values of μf. The data for the
overlap of the same eigenstates with the ground state at μf =

FIG. 12. Low-energy spectrum of the PXP model for three
values of μ. The red crosses correspond to the energies of a non-
interacting pair of excitations with momenta k and −k. For μ = 0.1,
the first band merges with the two-magnon continuum. For μ = 1.2,
the first excited state with k = 0 has an energy that differs from that
of two noninteracting magnons. Data is for system size N = 24 with
PBCs.

μc = −1.31 is also plotted in Fig. 13. Note that, as this ground
state has k = 0, only the eigenstates with the same momentum
value will have a nonzero overlap. For too small values of μ,
the one-magnon states merge into the two-magnon continuum

FIG. 13. Overlap between the ground state at μi = μc = −1.31
and the low-energy eigenstates of the PXP model with various values
of μ for N = 24 and PBCs. The states are the same as in Fig. 12
with k = 0, and panels correspond to μf = 0.1, 0.6, and 1.2 respec-
tively (from left to right). The red lines correspond to the expected
energy of two and four magnons with momentum π on top of the
ground state. The grey line correspond to the expected energy of two
magnons with momentum k and −k on top of the ground state. Due to
the flatness of the band and the weak interactions between magnons,
the towers of states are sharper around μ = 0.633.
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near k = 0, causing the band to bend downwards. As a conse-
quence, the noninteracting magnon pairs approximation is less
accurate for k �= π , and the critical ground state has increased
overlap with them. On top of this, the band being far from flat
at the edges means that the towers of states are not sharp, i.e.,
states near the top of the towers have a non-negligible energy
difference. As their energy separation from the ground state is
roughly twice that of a single-magnon with momentum k, the
flatter the band the more similar in energy the states will be.

For μf ≈ 0.6, the single-magnon band barely touches
the two-magnon continuum. The magnon-pair approximation
now holds well for all values of k. Consequently, one can see
that the overlap of the critical ground state with two-magnon
states built out of magnons with momentum k �= π is very
low. Among these, the states with the highest overlap are the
ones made from magnons with momentum close to 0 or π .
As the band is flat near these points, they have approximately
the same energy as the scarred states and so do not lead to
dephasing until late times.

Finally, when μf becomes too large, the nature of the ex-
citations changes and the π magnons no longer describe the
elementary excitations in the system. Indeed, for μf ≫ 1, the
ground state is simply the polarized state and the excitations
are just a single flipped 1 on top of the background of 0.
So the first excited state with k = 0 is simply a symmetric
superposition of the state |100 · · · 0〉 and its translations. As
any kind of excitation with k = π will need at least one 1 site,
adding two of them that are noninteracting will never lead to
the correct excited state at k = 0. This can already be seen
for μf = 1.2 in the bottom panel of Fig. 12, as the lowest red
cross—corresponding to the expected energy of two nonin-
teracting magnons—is far above the actual first excited state
with k = 0. This again impacts the sharpness of the towers
of states, especially the spacing between the first and second
excited state, which grows with μf.

APPENDIX F: DYNAMICAL PHASE DIAGRAM

IN THE INFINITE-TIME LIMIT

In the main text, we explored the dynamical phase diagram
using two probes based on the dynamics at intermediate time
scales: fidelity revivals and the deviation of average density of
excitations from its thermal value. Here we directly address
the long-time behavior of the system using the latter quantity.
We study the average density of excitations evaluated in the
diagonal ensemble,

n̄ = lim
T →∞

1

T

∫ T

0
〈ψ (t )|n|ψ (t )〉dt =

∑

j

|c j |2n j, j, (F1)

where c j = 〈E j | |ψ (0)〉 and n j,k = 〈E j | n |Ek〉. The initial state
|ψ (0)〉 is the PXP ground state at some μi, while E j , |E j〉
are the eigenvalues and eigenstates of the quench Hamilto-
nian HPXP(μf). In the second equality of Eq. (F1), we have
assumed that the off-diagonal elements average out to zero
in the infinite-T limit. This is true in the absence of spectral
degeneracies, as integrating off-diagonal contributions over
time corresponds to integrating e−irt with r �= 0 being essen-
tially a random number. Thus, each contribution will give a
finite number that will go to zero as it is multiplied by 1/T

FIG. 14. The norm of the scaled difference of the number of
excitations between the diagonal and canonical ensembles when
quenching the initial ground state of HPXP(μi) to HPXP(μf). All the
labels are the same as in Fig. 1. Data is obtained using exact diago-
nalization in the momentum k = 0 and p = +1 inversion symmetry
sector for system size N = 28 with PBCs.

and the limit T → ∞ is taken. The quench Hamiltonian is
generally nondegenerate after resolving the momentum and
inversion symmetries (our calculations are mostly performed
in the sector with k = 0 and p = +1). An exception to this
occurs at μf = 0 where the spectrum contains an extensive
number of “zero modes” [37,87]. In that case, the off-diagonal

FIG. 15. Scaled difference of the expectation values between the
diagonal and canonical ensembles. (a) For μi = μc = −1.31, there
is a large difference around μf = 0.5 that does not vary much with
system size. Notably, we also see that to the left of that point the dif-
ference between the ensembles increases with system size. (b) Cross
cuts through the phase diagram with a fixed value of μi indicated
on the color bar. The middle peak corresponds to region (1), while
the two negative peaks on the bottom right correspond to regions
(2) and (3), from left to right respectively. Data is obtained by exact
diagonalization for system size N = 26 with PBCs.
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contributions between all eigenstates with E = 0 must also be
counted.

After evaluating n̄, we compute the difference between
the diagonal and canonical ensembles, δn = n̄ − nth, where
nth was defined in Eq. (4). This allows to quantify ergodic-
ity breaking via the deviation from the thermal value in the
infinite-time limit, as shown in Fig. 14. Comparing this with
the original phase diagram in Fig. 1, we see that the main
regions (1), (2), and (3) associated with QMBS still show
visible signatures. In other regions, such as region (5), the
diagonal and canonical ensemble averages happen to be equal
but this does not imply thermalization—rather, the difference
between ensembles is small because the dynamics is reduced
to a superposition of only a few eigenstates. Similarly, we
notice that region (2) and region (3) are intersected by a flat
line where |δn| ≪ n̄, which is completely insensitive to the
initial state (i.e., independent of μi). This line passes through
the vicinity of the diamond point, discussed in Sec. V, where
we emphasized that the relevant dynamics occurs at lower
effective temperatures than the other parts of region (1) and
(2). Consequently, we expect |δn|/n̄ to be suppressed. Indeed,

as we discuss in Fig. 15 below, this apparent discontinuity
between regions (1) and (2) is related to the fact that δn takes
opposite signs in the two regions, thus it crosses zero at their
interface.

Figure 15(a) shows that at the critical point there is still a
sizable difference between the two ensembles in various sys-
tem sizes. The maximum difference is closer to μf = 0.5 than
to the fidelity maximum of 0.633. The latter is a compromise
between the flatness of the band and the level of interactions of
the magnons. As the long-time behavior should not depend on
the spacings of the towers, it is not surprising that the optimal
μf is much closer to 0.5, where the level of interactions of the
magnons seems the lowest. Figure 15(b) shows a cut through
the phase diagram at fixed μi values shown on the color bar.
The change of sign between region (1) versus regions (2) and
(3) is clearly visible, hence there has to be a point where δn

passes through zero. This crossing appears to be unrelated to
thermalization as the deviation from the canonical ensemble is
still pronounced on either side of the crossing. This could be
caused by the particular choice of the observable, and it is pos-
sible that other observables may not exhibit such a behavior.
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[31] M. Medenjak, B. Buča, and D. Jaksch, Isolated Heisenberg
magnet as a quantum time crystal, Phys. Rev. B 102, 041117(R)
(2020).

[32] K. Bull, J.-Y. Desaules, and Z. Papić, Quantum scars as embed-
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As a paradigm of weak ergodicity breaking in disorder-free nonintegrable models, quantum many-body scars

(QMBS) can offer deep insights into the thermalization dynamics of gauge theories. Having been first discovered

in a spin- 1

2
quantum link formulation of the Schwinger model, it is a fundamental question as to whether QMBS

persist for S > 1

2
since such theories converge to the lattice Schwinger model in the large-S limit, which is the

appropriate version of lattice QED in one spatial dimension. In this work, we address this question by exploring

QMBS in spin-S U(1) quantum link models (QLMs) with staggered fermions. We find that QMBS persist at

S > 1

2
, with the resonant scarring regime, which occurs for a zero-mass quench, arising from simple high-energy

gauge-invariant initial product states. We furthermore find evidence of detuned scarring regimes, which occur

for finite-mass quenches starting in the physical vacua and the charge-proliferated state. Our results conclusively

show that QMBS exist in a wide class of lattice gauge theories in one spatial dimension represented by spin-S

QLMs coupled to dynamical fermions, and our findings can be tested on near-term cold-atom quantum simulators

of these models.

DOI: 10.1103/PhysRevB.107.L201105

Introduction. Quantum many-body scars (QMBS) form

an intriguing paradigm of ergodicity breaking in interacting

systems that are typically expected to thermalize due to their

nonintegrability and spatial homogeneity [1–8]. QMBS com-

prise eigenstates of low entanglement entropy [9,10], many

of which reside in the middle of the spectrum, and are often

separated roughly equally in energy [11,12]. These eigenstates

are nonthermal, forming a “cold” subspace that is weakly con-

nected to the rest of the Hilbert space. Consequently, quenches

starting in initial states with high overlap with these non-

thermal states do not show typical thermalization, but instead

exhibit long-lived coherent dynamics [13,14]. This behavior

is of particular interest to fundamental investigations of the

eigenstate thermalization hypothesis (ETH) [15–20], as it has

been linked to novel mechanisms for avoiding thermalization

in closed quantum systems based on spectrum generating

algebras [21–24] and embedding of nonthermal eigenstates

[25] (see recent reviews [26,27]). Moreover, given that QMBS

constitute high- or even infinite-temperature states, when the

system is initially prepared in them it will not dephase its
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information, which is pertinent to applications in quantum

memory and information processing [28–31].

QMBS are also relevant to gauge theories [32–36], which

describe the interactions of elementary particles mediated by

gauge bosons through an extensive set of local constraints

[37–39]. A paradigmatic example of the latter is Gauss’s law

in quantum electrodynamics (QED), where the distribution of

charged matter strictly specifies the allowed configurations of

the surrounding electromagnetic field [40]. Recently, a con-

certed experimental effort has emerged for the implementation

of gauge theories in synthetic quantum matter (SQM) devices

[41–51]. This has been facilitated in large part due to the great

progress achieved in the precision and control of SQM setups

[52,53], making the quantum simulation of gauge theories a

realistic endeavor [54–60]. Due to the complexity of these ex-

periments, the implementations often focus on quantum link

formulations of gauge theories, where spin-S operators model

the gauge fields, which in QED span an infinite-dimensional

Hilbert space [61]. This has allowed the first large-scale re-

alization of the spin- 1
2

U(1) quantum link model (QLM) in

1 + 1 dimensions [(1 + 1)D] using ultracold atoms [50,51].

The first experimental observation of QMBS was achieved

in a Rydberg-atom setup implementing the PXP model [1], a

paradigm of QMBS which maps to the spin- 1
2

U(1) QLM [33].

Such a mapping breaks down at S > 1
2
, and it remains an open

question whether QMBS persist at larger link spin lengths in

the QLM formulation of QED, and, if they do, what their form

will be. In this Letter, we show that QMBS are ubiquitous in
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lattice gauge theories for all values of spin S �
5
2

accessible

in numerical simulations. For a zero-mass quench, QMBS

arise when the system is prepared in the extreme vacua of the

spin-S U(1) QLM, which are the most highly excited vacuum

states of lattice QED. Furthermore, we find that preparing

the system in the physical (least excited) vacua or in the

charge-proliferated state can still lead to detuned scarring

behavior for certain massive quenches, similar to the case of

S = 1
2

that has recently been demonstrated experimentally in

a tilted Bose-Hubbard optical lattice [7]. The nonthermalizing

dynamics due to QMBS provides a useful benchmark for the

upcoming realizations of larger-S lattice gauge theories in

cold-atom quantum simulators and the exploration of their

out-of-equilibrium properties [48,57].

U (1) quantum link model. The Schwinger model, or QED

in 1 + 1 dimensions, is possibly the simplest gauge theory

with dynamical matter that shows nontrivial phenomena like

confinement [62,63]. A discrete version of the Schwinger

Hamiltonian on a lattice is provided by the Kogut-Susskind

formulation, which is also reached in the large-S limit of the

QLMs being studied here. The (1 + 1)D spin-S U(1) QLM is

given by the Hamiltonian [64,65]

Ĥ =
L

∑

j=1

[

J

2a
√

S(S + 1)
(σ̂+

j ŝ+
j, j+1σ̂

−
j+1 + H.c.)

+
μ

2
(−1) j σ̂ z

j +
g2a

2

(

ŝz
j, j+1

)2

]

. (1)

Here, J = 1 sets the energy scale, μ is the fermionic mass,

and g2 is the gauge coupling strength. Throughout this work,

we will set the lattice spacing to a = 1 and employ periodic

boundary conditions, with L denoting the number of lattice

sites. The matter field on site j is represented by the Pauli

operator σ̂ z
j , and the electric (gauge) field at the link between

sites j and j + 1 is represented by the spin-S operator ŝ
z(+)
j, j+1.

The generator of the U(1) gauge symmetry of Hamiltonian (1)

is

Ĝ j =
σ̂ z

j + (−1) j

2
+ ŝz

j−1, j − ŝz
j, j+1, (2)

which can be interpreted as a discretized version of Gauss’s

law relating the matter occupation on site j to the electric-field

configuration on its neighboring links. We will work in the

physical sector of Gauss’s law: Ĝ j |φ〉 = 0, ∀ j.

Due to the gauge symmetry imposed by the generator (2),

one can integrate out the matter fields in the Hamiltonian

(1), resulting in a constrained spin system. For S = 1
2
, this

corresponds to the PXP model [33]. For larger S, the resulting

model differs from generalizations of the PXP model already

explored in the literature [13,66]. In the companion article

[67], we derive the relevant constrained spin-S model corre-

sponding to the spin-S U(1) QLM for any value of S [68].

Exact diagonalization (ED) techniques resolving the trans-

lation and spatial-inversion symmetries have been employed

to study the eigenstates of these models. Time-evolution re-

sults are obtained either directly from the ED results or by

time evolving the initial state using sparse matrix exponential

techniques.

FIG. 1. Quantum many-body scars in the spin-S U(1) QLM:

Overlap of the extreme vacuum |0−〉 with the eigenstates of the

quench spin-S U(1) QLM Hamiltonian (1) at μ = g = 0. At all

considered values of S, distinctive towers of eigenstates arise that

are equally spaced in energy (see insets). These are a hallmark of

quantum many-body scars. These results are obtained by exact diag-

onalization calculations, where L denotes the number of matter sites,

and periodic boundary conditions are employed. The color indicates

the density of data points, with yellow color representing higher

density. In all cases, the Hilbert space has more than 4×105 states,

with at least 2.5×104 states belonging to the relevant symmetry

sectors of the extreme vacua.

Resonant scarring. The physical vacuum of Ĥ is its ground

state at µ→ ∞ and g2 > 0. In the case of half-integer S,

there are two doubly degenerate physical vacua. These can

be defined on a two-site two-link unit cell using as quan-

tum numbers the eigenvalues σ z
j and sz

j, j+1 of the matter and

electric field operators σ̂ z
j and ŝz

j, j+1, respectively, explicitly

reading as |σ z
1 , sz

1,2, σ
z
2 , sz

2,3〉 = |+1,± 1
2
,−1,± 1

2
〉. For inte-

ger S, the physical vacuum is nondegenerate, and reads as

|σ z
1 , sz

1,2, σ
z
2 , sz

2,3〉 = |+1, 0,−1, 0〉. Henceforth, we will de-

note |0+〉 = |+1,+ 1
2
,−1,+ 1

2
〉 for half-integer S and |0+〉 =

|+1, 0,−1, 0〉 for integer S, with the subscript denoting the

sign of g2.

On the other hand, the extreme vacua of Ĥ are

high-energy states that can be realized as doubly degen-

erate ground states of Eq. (1) at µ→ ∞ and g2 < 0:

|σ z
1 , sz

1,2, σ
z
2 , sz

2,3〉 = |+1,±S,−1,±S〉. Henceforth, we will

denote |0−〉 = |+1,+S,−1,+S〉, with the subscript again in-

dicating the sign of g2.

We will further consider the charge-proliferated state,

which is the ground state of Eq. (1) at µ→ −∞ and g2 >

0. For half-integer S, it is nondegenerate and reads as

|CP〉 = |−1,− 1
2
,+1,+ 1

2
〉. For integer S, we obtain two dou-

bly degenerate ground states: |CP〉 = |−1,−1,+1, 0〉 and

|−1, 0,+1,+1〉.

L201105-2
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FIG. 2. Dynamics of the fidelity in the wake of a quench by the

spin-S U(1) QLM (1) at µ= g = 0 starting in either the extreme

vacuum |0−〉 (solid blue curve), the physical vacuum |0+〉 (dashed

red curve), or the charge-proliferated state |CP〉 (dashed-dotted black

curve). The qualitative conclusion is that regardless of the value of

S, prominent revivals appear in the fidelity dynamics only when

the initial state is the extreme vacuum, whereas for other states the

dynamics is thermal. Note that for S = 1

2
, the physical and extreme

vacua are identical.

With respect to the eigenstates of Hamiltonian (1) at µ=
g = 0, we find through ED that only |0−〉 exhibits the overlap

behavior indicative of scarring for general S (see Fig. 1). Just

as in the known case of S = 1
2
, we also see at other values

of S signatures of 2SL + 1 towers equally spaced in energy

(see insets), exhibiting large overlap with |0−〉, particularly

in the middle of the spectrum. The overlap of the top band

of states can be further enhanced by considering a truncated

version of the QED gauge field [67]. Note how for all values

of S that we consider, there is a prominent zero-energy mode

with the largest overlap. The presence of these eigenstates is

evidence of weak ergodicity breaking in the model. Due to

the scaling term 1/
√

S(S + 1), the ground-state energy E0 is

approximately independent of S at µ= g2 = 0, and we find

numerically that E0 ≈ −0.32L. As the spectrum is symmet-

ric around zero, we can use this along with the number of

towers to get the approximate energy spacing between towers

as �E ≈ −2E0/(2SL) ≈ 0.32/S. We note that the various

approximation schemes for scarred eigenstates in the PXP

model also show good results for QLMs with larger S [67].

The presence of scarred eigenstates can be detected using

the global quench: the system is prepared in some initial state

|ψ (0)〉 and let to evolve under unitary dynamics, |ψ (t )〉 =
e−iĤt |ψ (0)〉, generated by the Hamiltonian Ĥ . The state

|ψ (0)〉 is a highly nonequilibrium state, i.e., it is a super-

position of a large number of eigenstates of Ĥ , resulting

in complex dynamics that we characterize using the fidelity,

F (t ) = | 〈ψ (0)〉 ψ (t )|2. In the case of S = 1
2
, |0+〉 = |0−〉, as

the last term of Eq. (1) is an inconsequential energy constant

since (ŝz
j, j+1)2 = 1. Quenching this vacuum state with Ĥ at

µ= 0 is known to lead to scarring behavior for S = 1
2

[1,33],

and this is exhibited in the revivals of the fidelity, shown in the

FIG. 3. Dynamics of the mid-chain entanglement entropy for the

same quench and initial states considered in Fig. 2. For all considered

values of the link spin length S, an anomalously low and slowly

growing entanglement entropy arises when the initial state is the ex-

treme vacuum. Preparing the system in the charge-proliferated state

or the physical vacuum leads to a fast growth in the entanglement

entropy except for the case of S = 1

2
, where the physical and extreme

vacua are the same.

top left panel of Fig. 2. For comparison, we have included the

fidelity dynamics for |ψ (0)〉 = |CP〉, which shows no revivals,

in agreement with what is established in the literature for this

quench when S = 1
2

[26].

However, once the link spin length is S > 1
2
, we find

that the fidelity dynamics exhibits revivals only when

the system is initialized in the extreme vacuum |ψ (0)〉 =
|0−〉, whereas neither the physical vacuum |0+〉 nor the

charge-proliferated state |CP〉 give rise to scarring behav-

ior; see Fig. 2 for S = 1, 3
2
, 2. We have checked that

the other vacua |σ z
1 , sz

1,2, σ
z
2 , sz

2,3〉 = |+1,±M,−1,±M〉 with
1
2

< M < S and higher-energy charge-proliferated states are

also not scarred states [67]. From the previous estimate of

the energies of scarred towers, we expect the revival period to

be T ≈ 6.25πS. However, in practice the energy spacing be-

tween towers varies throughout the spectrum. So the relevant

energy spacing is the one near E = 0, where the scarred states

have the higher overlap with |0−〉. This provides an estimate

of T ≈ 5.13πS, which agrees much more accurately with the

numerical data.

We explore the effect of scarring on the dynamics of the

mid-chain entanglement entropy SL/2(t ), shown in Fig. 3 for

S = 1
2

to 2. SL/2 is defined as the von Neumann entropy for the

reduced density matrix describing one half of the chain. In all

cases, starting in the extreme vacuum leads to an anomalously

low SL/2(t ) exhibiting significantly slower growth, whereas

preparing the system in the charge-proliferated state leads to

a rapid increase of the entanglement entropy. Except for the

case of S = 1
2

where the extreme and physical vacua are the

same, starting in the physical vacuum leads to qualitatively

similar behavior to that of the charge-proliferated state, with

a rapid growth in SL/2(t ). These findings are consistent with

L201105-3
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FIG. 4. Dynamics of the electric flux (3) in the TL for a resonant

quench (μ = g = 0) starting in the extreme vacuum for different

values of S. Inset shows the difference between −1 and the first

minimum of the normalized electric flux, plotted as a function

of S.

nonthermal scarred dynamics only when the initial state is

prepared in the extreme vacuum.

We now investigate the fate of scarring in the thermody-

namic limit (TL). Using infinite matrix product states [69],

which work directly in the TL, we calculate the dynamics of

the electric flux

E (t ) =
1

L

L
∑

j=1

〈ψ (t )| ŝz
j, j+1 |ψ (t )〉 , (3)

which is an order parameter associated with the global Z2

symmetry of the Hamiltonian (1). The corresponding results

are shown in Fig. 4. Due to the computational cost of these

simulations, where convergence is achieved at a maximal

bond dimension of 550 and a time step of 0.0005/J , we

can only reach relatively short times. Nevertheless, scarred

revivals in E (t ) are clearly visible in Fig. 4 at all accessible

values of S.

To quantify ergodicity breaking, in the inset to Fig. 4 we

plot the deviation of the first minimum in E (t ) from −1 as a

function of S. For sufficiently large S, we expect the data to

saturate to some well-defined value between 0 (perfect scar-

ring) and 1 (full thermalization). While the available values

remain far from 1, the deviation clearly grows with S, indicat-

ing a weakening of scarring towards the Kogut-Susskind limit

S → ∞. At the same time, there is no convergence of the data

with respect to S, implying that larger values of S are needed

in order to reach a reliable conclusion about the existence of

ergodicity breaking in the S → ∞ limit.

As such, we have demonstrated that for a quench at µ=
g = 0, the spin-S U(1) QLM (1) exhibits scarring behavior

when the system is initially prepared in an extreme vacuum.

The underlying scarring mechanism is precession of a “large”

spin of magnitude SL [70]. The relation between scarring and

the Hilbert space constraint can be firmed up by studying

the structure of the adjacency graph of the Hamiltonian [67].

These extreme vacua are product states that can be naturally

explored in SQM experiments [50,51] even though they are

otherwise inaccessible in lattice QED.

Detuned scarring. In a recent study [7], it has been shown

theoretically and demonstrated experimentally that there are

scarring regimes beyond the resonant one discussed above.

This was demonstrated in the spin- 1
2

U(1) QLM by starting

FIG. 5. The spin-S U(1) QLM also exhibits detuned scarring [7],

where the physical vacuum |0+〉 and the charge-proliferated state

|CP〉 can lead to scarred dynamics when quenched by Hamiltonian

(1) at small nonzero values of μ and g2. Here, we set μ = 0.486J

and g2 = 0.6J , and the overlap of each of |0+〉 and |CP〉 with the

corresponding eigenstates of Hamiltonian (1) are shown for L = 20

and S = 3

2
. Towers of eigenstates equally spaced in energy emerge,

indicating the presence of QMBS. We confirm this picture by cal-

culating the dynamics of the fidelity in the wake of this quench.

For all accessible evolution times, we find consistent revivals in the

fidelity, strongly indicative of scarred dynamics. The color indicates

the density of data points, with yellow color representing higher

density.

in the charge-proliferated state and performing a quench at

finite mass (detuning).

Motivated by the question as to whether QMBS persist

in lattice QED for physically relevant initial states, we ex-

plore these detuned scarring regimes in the spin- 3
2

U(1) QLM

starting in either the physical vacuum |0+〉 or the charge-

proliferated state |CP〉. As shown in Fig. 5, the overlap of

these initial states with the eigenstates of the quench Hamilto-

nian (1) at µ= 0.486J and g2 = 0.6J shows distinctive towers

equally spaced in energy, similar to the known case of S = 1
2

[7]. Also displayed in Fig. 5 is the fidelity dynamics for each

of |0+〉 and |CP〉 upon quenching them with this Hamiltonian,

where we see persistent revivals up to all considered evolution

times. We also arrive at a similar picture for other values of

S, and in fact we find a wide range of values of (μ, g2) over

which scarring behavior emerges [67].

Given that |0+〉 and |CP〉 are both physically relevant in

lattice QED in one spatial dimension, and since the latter has

been shown to be achieved at relatively small values of S both

in [68,71,72] and out of equilibrium [73], our results suggest

that QMBS may play a role for understanding dynamics in

physically interesting regimes as well.

Summary. In conclusion, we have demonstrated an abun-

dance of QMBS in the paradigmatic spin-S U(1) QLM, a

staple of modern SQM experiments on lattice gauge theo-

ries. We have shown that the regime of resonant scarring for

quenches at zero mass, prevalent in the literature in the case of

S = 1
2
, is also present in the case of S > 1

2
when the system is

initially prepared in an extreme vacuum, where the local elec-

tric field takes on its largest possible eigenvalue. This has been

demonstrated by ergodicity-breaking properties of many-body

eigenstates, obtained using ED, as well as by showing the

existence of quantum revivals in local observables in the TL

L201105-4



WEAK ERGODICITY BREAKING IN THE SCHWINGER … PHYSICAL REVIEW B 107, L201105 (2023)

using infinite matrix product state method. The extreme vacua

associated are not physical as ground states in lattice QED,

but they are product states easily implementable in SQM

experiments [48,57]. These experiments, in particular, could

provide key insight into the persistence of ergodicity break-

ing upon approaching the limit S → ∞, which our classical

simulations cannot reliably access.

We have also presented evidence of detuned scarring in the

spin-S U(1) QLM arising from quenches at small nonzero

mass and electric-field coupling, when the system is ini-

tially prepared in either the physical vacuum, where the local

electric field takes on its lowest possible eigenvalue, or the

charge-proliferated state. While the scarring phenomenology

is similar to the resonant case, the initial states associated with

detuned scarring are physically relevant as low-energy states

in lattice QED. Given that recent works have shown conver-

gence to the latter limit in and out of equilibrium already at

S � 3
2
, our results suggest that this detuned scarring regime

may already exist in lattice QED.

In compliance with EPSRC policy framework on research

data, this publication is theoretical work that does not require

supporting research data.
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Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain:

Entanglement, breakdown of thermalization, and stability to

perturbations, Phys. Rev. B 98, 155134 (2018).

[15] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E

50, 888 (1994).

[16] J. M. Deutsch, Quantum statistical mechanics in a closed sys-

tem, Phys. Rev. A 43, 2046 (1991).

[17] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and

its mechanism for generic isolated quantum systems, Nature

(London) 452, 854 (2008).

[18] J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-

body systems out of equilibrium, Nat. Phys. 11, 124

(2015).

[19] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From

quantum chaos and eigenstate thermalization to statistical me-

chanics and thermodynamics, Adv. Phys. 65, 239 (2016).

[20] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog.

Phys. 81, 082001 (2018).

[21] D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure

for exact towers of scar states in the Affleck-Kennedy-

Lieb-Tasaki and other models, Phys. Rev. B 101, 195131

(2020).

L201105-5

https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevLett.124.160604
https://doi.org/10.1103/PhysRevLett.127.150601
https://doi.org/10.1126/science.abg2530
https://doi.org/10.1038/s41567-022-01651-7
https://doi.org/10.1103/PhysRevResearch.5.023010
https://doi.org/10.1038/s41567-022-01784-9
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevLett.122.173401
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nphys3215
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1103/PhysRevB.101.195131


JEAN-YVES DESAULES et al. PHYSICAL REVIEW B 107, L201105 (2023)

[22] S. Moudgalya, N. Regnault, and B. A. Bernevig, η-pairing

in Hubbard models: From spectrum generating algebras

to quantum many-body scars, Phys. Rev. B 102, 085140

(2020).

[23] N. O’Dea, F. Burnell, A. Chandran, and V. Khemani,

From tunnels to towers: Quantum scars from Lie algebras

and q-deformed Lie algebras, Phys. Rev. Res. 2, 043305

(2020).

[24] K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R. Klebanov,

Many-Body Scars as a Group Invariant Sector of Hilbert Space,

Phys. Rev. Lett. 125, 230602 (2020).

[25] N. Shiraishi and T. Mori, Systematic Construction of Coun-

terexamples to the Eigenstate Thermalization Hypothesis, Phys.

Rev. Lett. 119, 030601 (2017).

[26] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body
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Quantum Kibble–Zurek mechanism and critical dynamics on a

programmable Rydberg simulator, Nature (London) 568, 207

(2019).

[45] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P.

Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P.

Zoller, Self-verifying variational quantum simulation of lattice

models, Nature (London) 569, 355 (2019).

[46] F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M.

Messer, and T. Esslinger, Realization of density-dependent

Peierls phases to engineer quantized gauge fields coupled to

ultracold matter, Nat. Phys. 15, 1161 (2019).

[47] C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E.

Demler, N. Goldman, I. Bloch, and M. Aidelsburger, Floquet

approach to Z2 lattice gauge theories with ultracold atoms in

optical lattices, Nat. Phys. 15, 1168 (2019).

[48] A. Mil, T. V. Zache, A. Hegde, A. Xia, R. P. Bhatt, M. K.

Oberthaler, P. Hauke, J. Berges, and F. Jendrzejewski, A scal-

able realization of local U(1) gauge invariance in cold atomic

mixtures, Science 367, 1128 (2020).

[49] N. Klco, M. J. Savage, and J. R. Stryker, SU(2) non-Abelian

gauge field theory in one dimension on digital quantum com-

puters, Phys. Rev. D 101, 074512 (2020).

[50] B. Yang, H. Sun, R. Ott, H.-Y. Wang, T. V. Zache, J. C. Halimeh,

Z.-S. Yuan, P. Hauke, and J.-W. Pan, Observation of gauge in-

variance in a 71-site Bose–Hubbard quantum simulator, Nature

(London) 587, 392 (2020).

[51] Z.-Y. Zhou, G.-X. Su, J. C. Halimeh, R. Ott, H. Sun, P. Hauke,

B. Yang, Z.-S. Yuan, J. Berges, and J.-W. Pan, Thermalization

dynamics of a gauge theory on a quantum simulator, Science

377, 311 (2022).

[52] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with

ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[53] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,

A quantum gas microscope for detecting single atoms in

a Hubbard-regime optical lattice, Nature (London) 462, 74

(2009).

[54] U.-J. Wiese, Ultracold quantum gases and lattice systems:

Quantum simulation of lattice gauge theories, Ann. Phys.

(Berlin) 525, 777 (2013).

[55] M. C. Bañuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac,

M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein, S.

L201105-6

https://doi.org/10.1103/PhysRevB.102.085140
https://doi.org/10.1103/PhysRevResearch.2.043305
https://doi.org/10.1103/PhysRevLett.125.230602
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1103/PRXQuantum.2.020330
https://doi.org/10.1103/PhysRevLett.129.020601
https://doi.org/10.1103/PhysRevB.107.035123
https://doi.org/10.1103/PhysRevLett.120.030601
https://doi.org/10.1103/PhysRevX.10.021041
https://doi.org/10.1103/PhysRevLett.126.220601
https://doi.org/10.1103/PhysRevB.106.L041101
https://doi.org/10.21468/SciPostPhys.12.5.148
https://doi.org/10.1038/nature18318
https://doi.org/10.1088/1367-2630/aa89ab
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41567-019-0615-4
https://doi.org/10.1038/s41567-019-0649-7
https://doi.org/10.1126/science.aaz5312
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1038/s41586-020-2910-8
https://doi.org/10.1126/science.abl6277
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nature08482
https://doi.org/10.1002/andp.201300104


WEAK ERGODICITY BREAKING IN THE SCHWINGER … PHYSICAL REVIEW B 107, L201105 (2023)

Montangero, C. A. Muschik, B. Reznik, E. Rico, L.

Tagliacozzo, K. Van Acoleyen, F. Verstraete, U.-J. Wiese, M.

Wingate, J. Zakrzewski, and P. Zoller, Simulating lattice gauge

theories within quantum technologies, Eur. Phys. J. D 74, 165

(2020).

[56] Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr,

F. T. Chong, B. DeMarco, D. Englund, E. Farhi, B. Fefferman,

A. V. Gorshkov, A. Houck, J. Kim, S. Kimmel, M. Lange, S.

Lloyd, M. D. Lukin, D. Maslov, P. Maunz, C. Monroe et al.,

Quantum computer systems for scientific discovery, PRX

Quantum 2, 017001 (2021).

[57] M. Aidelsburger, L. Barbiero, A. Bermudez, T. Chanda, A.

Dauphin, D. González-Cuadra, P. R. Grzybowski, S. Hands,

F. Jendrzejewski, J. Jünemann, G. Juzeliūnas, V. Kasper, A.
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Z. Papić, M. Serbyn, M. D. Lukin, and D. A. Abanin, Emergent

SU(2) Dynamics and Perfect Quantum Many-Body Scars, Phys.

Rev. Lett. 122, 220603 (2019).

[71] B. Buyens, S. Montangero, J. Haegeman, F. Verstraete, and K.

Van Acoleyen, Finite-representation approximation of lattice

gauge theories at the continuum limit with tensor networks,

Phys. Rev. D 95, 094509 (2017).

[72] M. C. Bañuls and K. Cichy, Review on novel methods for lattice

gauge theories, Rep. Prog. Phys. 83, 024401 (2020).

[73] J. C. Halimeh, M. V. Damme, T. V. Zache, D. Banerjee,

and P. Hauke, Achieving the quantum field theory limit in

far-from-equilibrium quantum link models, Quantum 6, 878

(2021).

L201105-7

https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1103/PRXQuantum.2.017001
https://doi.org/10.1098/rsta.2021.0064
https://doi.org/10.1098/rsta.2021.0069
https://doi.org/10.1088/1361-6633/ac58a4
https://doi.org/10.1103/PhysRevB.104.085138
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1088/1367-2630/aa54e0
https://doi.org/10.1103/PhysRevResearch.3.033201
https://doi.org/10.1103/PhysRevB.107.205112
https://doi.org/10.1103/PhysRevD.106.L091502
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.122.220603
https://doi.org/10.1103/PhysRevD.95.094509
https://doi.org/10.1088/1361-6633/ab6311
https://doi.org/10.22331/q-2022-12-19-878


PHYSICAL REVIEW B 107, 205112 (2023)

Editors’ Suggestion

Prominent quantum many-body scars in a truncated Schwinger model

Jean-Yves Desaules ,1 Ana Hudomal ,1,2 Debasish Banerjee ,3,4 Arnab Sen ,5 Zlatko Papić ,1 and Jad C. Halimeh 6,7,*
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The high level of control and precision achievable in current synthetic quantum matter setups has enabled

first attempts at quantum-simulating various intriguing phenomena in condensed matter physics, including those

probing thermalization or its absence in closed quantum systems. In the companion Letter to this article [J.-Y.

Desaules et al., Phys. Rev. B 107, L201105 (2023)], we have shown that quantum many-body scars, special low-

entropy eigenstates that weakly break ergodicity in nonintegrable systems, arise in spin-S quantum link models

that converge to (1 + 1)-dimensional lattice quantum electrodynamics (Schwinger model) in the Kogut-Susskind

limit S → ∞. In this work, we further demonstrate that quantum many-body scars exist in a truncated version

of the Schwinger model, and are qualitatively more prominent than their counterparts in spin-S quantum link

models. We illustrate this by, among other things, performing a finite-S scaling analysis that strongly suggests

that scarring persists in the truncated Schwinger model in the limit S → ∞. Although it does not asymptotically

converge to the Schwinger model, the truncated formulation is relevant to synthetic quantum matter experiments,

and also provides fundamental insight into the nature of quantum many-body scars, their connection to lattice

gauge theories, and the thermalization dynamics of the latter. Our conclusions can be readily tested in current

cold-atom setups.

DOI: 10.1103/PhysRevB.107.205112

I. INTRODUCTION

Recent advances in the development of synthetic quan-

tum matter platforms that possess high levels of control and

precision at the single-atom level [1] have revolutionized the

study of exotic quantum phenomena [2,3]. There is a ma-

jor ongoing effort in the scientific community to utilize this

technological advancement to address various problems on

analog and digital quantum simulators [4–7]. Of particular

interest in this endeavor are quantum simulations probing the

eigenstate thermalization hypothesis (ETH) that shed light on

the nature of thermalization or lack thereof in closed quantum

systems [8–13]. This has led to experimental observations of

(pre)thermalization and out-of-equilibrium phase transitions

in nonintegrable quantum many-body models [14–19].

Paradigms of strong ergodicity breaking such as many-

body localization (MBL) [20–22] have also received major
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experimental attention in recent years [23–30]. In MBL

systems, sufficiently strong quenched disorder leads to lo-

calization in the dynamics of observables over all practically

relevant evolution times. This disorder-induced MBL violates

ETH in a way not so different from integrable models [31].

The strong disorder in the system gives rise to an extensive

number of local integrals of motion [32,33], which can in-

definitely delay thermalization. However, strong ergodicity

breaking can also occur without any disorder, for example,

when a constant electric field is introduced in a chain of

interacting spinless fermions [34]. This Stark MBL has re-

cently been demonstrated experimentally [35]. Moreover, it

has recently been shown that in Stark-MBL systems there

exist quasilocalized dynamical l-bits, which are exponentially

stable in time and prohibit thermalization [36]. Yet another

example of strong ergodicity breaking has appeared in the

context of gauge theories [37–46], where quenches from an

initial state forming a superposition over an extensive number

of gauge superselection sectors lead to localized dynamics.

This disorder-free localization is caused by an effective dis-

order emerging over the different background charges of the

underlying superselection sectors.

More recently, a new concept of weak ergodicity break-

ing, dubbed quantum many-body scars, has received much

attention [47,48]. Scarring involves the presence of special
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nonthermal eigenstates existing at equal energy intervals over

the entire spectrum of a nonintegrable, usually disorder-

free, interacting model [49–55]. A characteristic signature of

scarred eigenstates is their anomalously low bipartite entan-

glement entropy, even when they exist in the middle of the

spectrum [56,57]. As such, these eigenstates span a “cold”

subspace, weakly connected to the rest of the Hilbert space

[51]. When a system is prepared in this cold subspace and

subsequently quenched, the dynamics will take significantly

longer to “leak out” into the rest of the Hilbert space, thus

delaying the thermalization of the system. This manifests as

persistent oscillations in certain local observables, reminis-

cent of single-particle chaotic systems [58]. Scarred dynamics

was first observed in a Rydberg-atom system [59,60]. More

recently, various signatures of weak ergodicity breaking have

also been observed in several other ultracold-atom platforms

[61–64].
Interestingly, the Ising-type quantum spin model realized

in the experiment of Ref. [59] was later shown to map onto the
spin- 1

2
U(1) quantum link model (QLM), which is a quantum

link formulation [65,66] of (1+1)-dimensional [(1 + 1)D]
quantum electrodynamics on a lattice, known as the lattice
Schwinger model. This, along with other works proving the
existence of quantum many-body scars in various discrete
lattice gauge theories [67–69] and the necessity of gauge-
symmetry stability for their robustness [70], has led to the
natural question of whether scars are an inherent feature of
“standard” lattice gauge theories with a continuous configu-
ration space. In the companion Letter to this article [71], we
have shown that quantum many-body scars persist at larger
link spin lengths S > 1

2
in the spin-S U(1) QLM in the form

of resonant scarring when the initial state is an extreme
vacuum, defined as the most highly excited vacuum state.
We have additionally presented evidence of detuned scarring,
recently demonstrated experimentally for S = 1

2
[64], also for

S > 1
2

when starting in the physical vacuum or the charge-
proliferated state. This all indicates that scarring behavior in
the U(1) QLM is quite rich also beyond S = 1

2
. But is this

richness directly related to the specific quantum link formu-
lation that begets the U(1) QLM from the lattice Schwinger
model, or can other, perhaps cruder, representations of the
latter also yield equally rich scarring behavior?

In this work, we address the previous question by contrast-

ing the spin-S U(1) QLM with the spin-S truncated Schwinger

model (TSM), in which the gauge field is a crude truncation

of its counterpart in the lattice Schwinger model. We show

that the TSM exhibits qualitatively more pronounced scarring

behavior than the spin-S U(1) QLM. Furthermore, through a

finite-S scaling analysis, we argue that scarring in the TSM

is likely to persist in the Kogut-Susskind limit S → ∞. The

QLM, on the other hand, is shown to exhibit scarring signa-

tures for any S � 4 amenable to numerical analysis. At the

same time, the QLM also exhibits much stronger finite-size

fluctuations compared to the TSM, which ultimately preclude

a reliable extrapolation to S → ∞.

The rest of the paper is organized as follows: In Sec. II, we

first present the mappings used to obtain the two constrained

spin models [the spin-S U(1) QLM and TSM] that we inves-

tigate in this work from the lattice Schwinger model, and we

showcase their scarring behavior. In Sec. III, we show how

these models differ from the generalized PXP model studied

in Ref. [58], and that they have a different semiclassical limit.

In Sec. IV, we investigate the fate of scarring in the limit S →
∞, and contrast the TSM and QLM results. Finally, in Sec. V,

we summarize our findings and discuss their implications. The

Appendixes contain further information and (numerical and

analytical) details supporting the main results of the paper.

II. SPIN-S U(1) QUANTUM LINK MODEL AND

TRUNCATED SCHWINGER MODEL

We now consider the spin-S U(1) QLM and the TSM, both

of which are directly relevant to modern experiments prob-

ing quantum electrodynamics in synthetic quantum matter.

The lattice Schwinger model, which is quantum electrody-

namics in (1 + 1) dimensions, includes gauge fields with an

infinite-dimensional local Hilbert space. Whereas the spin-S

U(1) QLM substitutes these operators with spin-S matrices,

retrieving the lattice Schwinger model asymptotically in the

limit S → ∞, the TSM involves explicitly truncating these

operators. In contrast to the case of the QLM, this forbids

an asymptotic approach to the lattice Schwinger model as

S → ∞ in the case of the TSM. Nevertheless, both the QLM

and TSM are lattice gauge theories, and can therefore pro-

vide deep insights into the connection between the underlying

gauge symmetry and the corresponding scarring behavior.

A. Mapping to a constrained spin model

Let us now take advantage of the gauge symmetry of the

spin-S U(1) QLM and the TSM in order to map them into spin

models that are invariant under translation. To achieve this, we

follow a procedure similar to the one used in Ref. [72] to map

to the PXP model. We start in the lattice Schwinger model,

described by the Hamiltonian

Ĥ =
J

2a

L
∑

j=1

(φ̂†
jÛ j, j+1φ̂ j+1 + H.c.)

+ μ

L
∑

j=1

(−1) j φ̂
†
j φ̂ j +

a

2

L
∑

j=1

(Ê j, j+1)2, (1)

where a is the lattice spacing and μ is the fermionic mass.

We henceforth set a = 1 throughout this work. Matter fields

are represented by the staggered fermionic operators φ̂
(†)
j at

lattice site j, while the gauge and electric fields Û j, j+1 and

Ê j, j+1 reside on the link between lattice sites j and j + 1, and

satisfy the commutation relations

[Û j, j+1, Û
†
l,l+1] = 0, (2a)

[Ê j, j+1, Ûl,l+1] = gδ j,lÛ j, j+1. (2b)

The lattice Schwinger model is a U(1) gauge theory, and

Gauss’s law is given by Ĝ j |phys〉 = 0, ∀ j, where |phys〉 is

a physical state and the local gauge-symmetry generator is

Ĝ j = Ê j, j+1 − Ê j−1, j − g

[

φ̂
†
j φ̂ j −

1 − (−1) j

2

]

, (3)

and g is the gauge coupling.
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In the quantum link formulation, the gauge and electric

fields are represented by finite-dimensional spin-S operators:

Û j, j+1 →
ŝ+

j, j+1√
S(S + 1)

, (4a)

Ê j, j+1 → gŝz
j, j+1, (4b)

where the factor 1/
√

S(S + 1) ensures the correct scaling

with S [73]. This can be checked by substituting (4) into the

commutation relations (2) to get

[Û j, j+1, Û
†
l,l+1

] →
1

S(S + 1)
[ŝ+

j, j+1, ŝ−
l,l+1]

=
2δ j,l

S(S + 1)
ŝz

j, j+1, (5a)

[Ê j, j+1, Ûl,l+1] →
g

√
S(S + 1)

[

ŝz
j, j+1, ŝ+

j, j+1

]

= gδ j,l

ŝ+
j, j+1√

S(S + 1)
. (5b)

Whereas Eq. (2b) is automatically satisfied at any S through

Eq. (5b), we find that Eq. (2a) is achieved through Eq. (5a)

asymptotically in the limit S → ∞.

In order to obtain a Hamiltonian that is invariant under

translation, we directly incorporate the particle-hole transfor-

mation

φ̂ j →
1 + (−1) j

2
φ̂ j +

1 − (−1) j

2
φ̂

†
j . (6)

This has the consequence of taking

φ̂
†
j φ̂ j →

1 − (−1) j

2
+ (−1) j φ̂

†
j φ̂ j, (7)

due to the fermionic anticommutation relations. For our field

operators, this particle-hole transformation takes the form

Û j, j+1 →
1 − (−1) j

2
√

S(S + 1)
ŝ+

j, j+1+
1 + (−1) j

2
√

S(S + 1)
ŝ−

j, j+1, (8a)

Ê j, j+1 → g(−1) j+1ŝz
j, j+1, (8b)

rendering Hamiltonian (1) in the form

Ĥ =
J

2
√

S(S + 1)

L
∑

j=1

(φ̂ j ŝ
+
j, j+1φ̂ j+1 + H.c.)

+ μ

L
∑

j=1

φ̂
†
j φ̂ j +

g2

2

L
∑

j=1

(

ŝz
j, j+1

)2
. (9)

The generator of Gauss’s law can now be rewritten in the

simple form

Ĝ j = (−1) j+1g
(

ŝz
j, j+1 + ŝz

j−1, j + φ̂
†
j φ̂ j

)

. (10)

As φ̂
†
j φ̂ j can only be equal to zero or 1, this means

that ŝz
j, j+1 + ŝz

j−1, j must always be equal to zero or −1,

respectively, in the physical sector Ĝ j |phys〉 = 0, ∀ j. Re-

stricting to this sector and employing periodic boundary

conditions (PBC), we can therefore replace the mass term by

−μ
∑

j (ŝz
j, j+1 + ŝz

j−1, j ) = −2μ
∑

j ŝz
j, j+1. By then integrat-

ing out the fermionic degrees of freedom, we end up with the

translation-invariant Hamiltonian

ĤQLM = JS P̂

(

∑

j

ŝx
j

)

P̂ − 2μ
∑

j

ŝz
j +

g2

2

∑

j

(

ŝz
j

)2
, (11)

where P̂ is a projector that annihilates all states outside of the

physical sector, and JS = J/
√

S(S + 1).

However, this is not the only way to obtain a finite-

dimensional model for which we recover the lattice Schwinger

model at infinite S. One can also replace Û j, j+1 in Eq. (1)

not by a spin-S operator but by the [(2S + 1) × (2S + 1)]-

dimensional operator τ̂+
j, j+1. This operator has the same

structure as the ŝ+
j, j+1, with the exception that each of the lat-

ter’s nonzero matrix elements is replaced by 1. In other words,

τ̂+
j, j+1 is merely the [(2S + 1) × (2S + 1)]-dimensional trun-

cated version of Û j, j+1 at its center. The field operator can

then be represented by the matrix τ̂ z
j, j+1 = ŝz

j, j+1, and we thus

identify our fields as

Û j, j+1 → τ̂+
j, j+1, (12a)

Ê j, j+1 → gτ̂ z
j, j+1. (12b)

The commutation relations (2) then become

[Û j, j+1, Û
†
l,l+1] → [τ̂+

j, j+1, τ̂
−
l,l+1] = δ j,l�̂ j, j+1 = δ j,l

⎛

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0 0

0
...

0

0

0
...

0

0 0 · · · 0 −1

⎞

⎟

⎟

⎟

⎟

⎠

j, j+1

, (13a)

[Ê j, j+1, Ûl,l+1] → g
[

τ̂ z
j, j+1, τ̂

+
j, j+1

]

= gδ j,l τ̂
+
j, j+1. (13b)

Similarly to the case of the QLM, the commutation relation

(2b) is satisfied through Eq. (13b) for any S. However, Eq. (2a)

is satisfied through Eq. (13a) only strictly at infinite S, rather

than approach it asymptotically as in the case of the QLM.

Indeed, the commutation relation (13a) is always equal to

�̂ j, j+1, which is a (2S + 1) × (2S + 1) matrix with zeros ev-

erywhere except in entries (1,1) and (2S + 1, 2S + 1), which

are, respectively, plus and minus unity.

By employing the particle-hole transformations (7) to set

Û j, j+1 →
1 − (−1) j

2
τ̂+

j, j+1+
1 + (−1) j

2
τ̂−

j, j+1, (14a)

Ê j, j+1 → g(−1) j+1τ̂ z
j, j+1, (14b)

and utilizing Gauss’s law to integrate out the fermionic de-

grees of freedom as done before in the case of the QLM, we
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obtain

ĤTSM = P̂

(

∑

j

τ̂ x
j

)

P̂ − 2μ
∑

j

τ̂ z
j +

g2

2

∑

j

(

τ̂ z
j

)2
, (15)

where τ̂ x
j = (τ̂+

j + τ̂−
j )/2 is the tridiagonal matrix with en-

tries of 0 along the principal diagonal and entries of 1
2

along

both the subdiagonal and superdiagonal. Note that as τ̂ z
j, j+1 =

ŝz
j, j+1, Gauss’s law goes through the same transformation as

for the QLM, and the global projector P̂ is the same in the

two models. As a consequence, the Hilbert space is also the

same. However, due to the difference in the matrix elements

of the Hamiltonian, the two models are only equivalent (up to

an overall multiplicative factor) for S = 1
2

and S = 1, which

are the only cases where the spin operator ŝx
j has equal matrix

elements.

The difference on how the TSM and QLM approach the

Kogut-Susskind limit (S → ∞) can be highlighted by looking

at the 2-norms of the commutators (5a) and (13a). As both

operators are diagonal, the 2-norm is simply the largest abso-

lute value of any diagonal entry. In the case of the TSM, the

commutator in Eq. (13a) will always have a 2-norm of unity

for any finite S no matter how large S is. In the case of the

QLM, the commutator of Eq. (5a) has a 2-norm of 2/(S + 1).

Consequently, the QLM asymptotically approaches the lattice

Schwinger model as S → ∞, while the TSM does not. We

emphasize that this result does not depend on the choice of the

norm. As an example, even if we choose the Frobenius norm

we get in the case of the TSM a norm of
√

2 at any S, while in

the case of the QLM it is equal to 2
√

(2S + 1)/[3S(S + 1)].

This is the main reason why from a gauge-theory perspec-

tive the QLM is favored over the TSM, as one can employ

the QLM and controllably study the approach to the Kogut-

Susskind limit of quantum electrodynamics. Nevertheless, it is

important to emphasize that here we are interested in scarring

behavior, and as we will show in this work, the TSM has more

prominent scars than the QLM. Therefore, from a quantum

many-body scars perspective and given its experimental feasi-

bility, the TSM is fundamentally as relevant for our purposes

as the QLM is.

For S = 1
2
, both Eqs. (11) and (15) reduce to the well-

known PXP model [74,75] (although with a slightly different

prefactor in front). However, we stress that for S > 1
2

these

models are different from the generalized spin-S PXP model

in Ref. [58], and we address these differences in Sec. III.

Before delving into the properties of the QLM and TSM,

we mention a few states that have physical significance for

any value of S. The first one is the vacuum state (i.e., with

no matter present in the Schwinger model), with the highest

possible value of the electric field, which we shall hence-

forth refer to as the extreme vacuum. This state corresponds

to the ground state of the TSM or QLM with μ → ∞ and

g2 < 0. Correspondingly, we will denote it by |0−〉, with the

subscript denoting the fact that g2 is negative. This state is

doubly degenerate for any value of S, and, working in the

basis of the ŝz, we set |0−〉 = |S,−S, . . . , S,−S〉 and |0′
−〉 =

|−S, S, . . . ,−S, S〉. For a more physical set of parameters, we

can have the ground state at μ → ∞ but with g2 positive. We

call this state the physical vacuum and denote it by |0+〉. The

physical vacuum state is |0+〉 = |0, 0 . . . 0, 0, 0〉 for integer

S. For half-integer S, it is doubly degenerate and given by

|0+〉 = | 1
2
,− 1

2
, . . . , 1

2
,− 1

2
〉 and |0′

+〉 = |− 1
2
, 1

2
, . . . ,− 1

2
, 1

2
〉.

In this formulation, it is immediately clear that for the PXP

case (i.e., S = 1
2
) the extreme and physical vacua are identical,

which is expected as the electric field coupling term is just an

inconsequential energetic constant. We also are interested in

the ground state of the TSM and QLM for μ → −∞ and g2

positive. In that case the presence of fermions is energetically

favorable, and so the ground state is the charge-proliferated

state with the maximal matter occupation, which we denote

by |CP〉. For integer S, this state is doubly degenerate with

the two states being |CP〉 = |0,−1, . . . , 0,−1〉 and |CP′〉 =
|−1, 0, . . . − 1, 0〉. For half-integer S, it is nondegenerate and

given by |CP〉 = |− 1
2
,− 1

2
, . . . ,− 1

2
,− 1

2
〉. This state corre-

sponds to the polarized state in the PXP model.

To probe dynamics, below we study the system’s response

to a global quench: we prepare the system in the ground

state for some values of μ and g2, and then suddenly quench

these parameters to different values. The initial state is no

longer the ground state, or even an eigenstate, of the post-

quench Hamiltonian. Instead, it is a highly excited state and

we are effectively probing the out-of-equilibrium dynamics.

Note that any small perturbation would lift the degeneracy of

the ground-state manifold, hence, we always select a single

state in that manifold instead of a superposition of all of them.

To obtain the eigenstates and eigenenergies of the post-

quench Hamiltonian, below we make use of the standard

exact diagonalization method, implementing the symmetries

of the system as well as the kinetic constraint due to Gauss’s

law. To simulate time evolution, we resort to sparse matrix

techniques which allows us to access dynamics in system sizes

for which full diagonalization is not possible. Specifically, we

use the algorithm developed in Ref. [76] as implemented in

the function expm_multiply of the Python package SCIPY to

compute the action of e−iHt on a pure state.

B. Resonant scarring: Quenches to µ = g = 0

In the spin- 1
2

QLM, the scarred states are the two vacua

|0−〉 = |0+〉 and |0′
−〉 = |0′

+〉 for the quench Hamiltonian with

μ = g = 0 (resonant scarring). Numerical simulations show

that for any S > 1
2

only the extreme vacua |0−〉 and |0′
−〉 ex-

hibit scarring [71] (see Appendix A for results on the physical

vacuum |0+〉). A typical signature of scarring is high overlap

of the scarred state with a small set of eigenstates that are ap-

proximately equally spaced in energy. We have demonstrated

this for the spin-S U(1) QLM in Ref. [71] for the extreme

vacua. However, this can be seen even more clearly for the

TSM, as shown in the top panels of Fig. 1 for the overlap

of the extreme vacuum with the eigenstates of the TSM at

μ = g = 0 for S = 3
2

and 2. A top band with 2SL + 1 states

is well separated from the bulk of states. Note that for S = 1
2

and 1, the TSM and QLM are identical, which is why we do

not show results for these values of S as they can already be

found in Ref. [71].

The band of high-overlap eigenstates defines the set of

nonthermal eigenstates that lead to scarring when an initial

state is prepared in their subspace. These eigenstates are ex-

pected to exhibit nonthermal properties such as anomalously
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FIG. 1. Overlap between the extreme vacuum |0−〉 and the

energy eigenstates |E〉 (top) and entanglement entropy of the eigen-

states SL/2 (bottom) in the spin-S TSM at μ = g = 0. The top band

of scarred eigenstates is clearly visible for all S, and the states in

it have anomalously low entanglement entropy. The color indicates

the density of data points, where yellow color implies higher density.

In all cases, the Hilbert space has more than 4×105 states, with at

least 2.5×104 states belonging to the relevant symmetry sector of the

extreme vacua.

low bipartite entanglement entropy. For a pure state |ψ〉, the

entanglement entropy is defined as the von Neumann entropy

SL/2 = −trρL/2 ln ρL/2, (16)

of the reduced density matrix ρL/2 = trL/2+1,...,L|ψ〉〈ψ |, ob-

tained by partitioning the chain in the middle and tracing out

one half of it (denoted by trL/2+1,...,L). The bottom panels

of Fig. 1 show the entanglement entropy SL/2 evaluated for

each eigenstate in the spectrum of the TSM with S = 3
2

and

S = 2. The distribution of entanglement entropies in Fig. 1 is

unusually broad for a thermalizing system, with some states

possessing much lower entropy than other states at roughly

the same energy density, even near the middle of the spectrum.

This is reminiscent of previous examples of quantum many-

body scars in the literature, including the PXP model [77] and

constrained quantum clock models [78]. In contrast, for the

QLM at S > 1, the distribution of entanglement entropies is

much narrower (see Fig. 2) and resembles that of the Affleck-

Kennedy-Lieb-Tasaki model, which also hosts scarred states

[50]. In this case, the outliers with anomalous low entropy are

not clearly visible, apart from a single eigenstate with energy

E = 0.

We attribute the difference in the distribution of the en-

tanglement entropy of eigenstates in the TSM and QLM

models to the “dilution” of scarring among a larger number of

eigenstates in the second model. Indeed, the overlap between

|0−〉 and the eigenstates of the QLM does not show a single

well-separated band of states with high overlap, but rather a

FIG. 2. Entanglement entropy of the eigenstates of the QLM for

S = 1

2
to S = 2. In contrast to the TSM, the scarred eigenstates away

from the edges of the spectrum have high entanglement entropy in

this case, close to that of the eigenstates belonging to the bulk of

the spectrum, except for a single outlier with energy E = 0. The

color indicates the density of data points, where yellow color implies

higher density.

set of 2SL + 1 towers rising above the bulk of states [71].

Thus, instead of having one scarred eigenstate per tower

with highly atypical behavior, we have a larger number of

eigenstates sharing this atypicality. This is similar to what

is observed in the PXP model in the largest numerically ac-

cessible system sizes [77], where certain scarred eigenstates

were observed to hybridize with their neighbors belonging to

the same tower. Due to hybridization, the entropy of the top

scarred eigenstate is typically increased, as the state becomes

slightly more “thermal,” while the other state involved in the

hybridization becomes slightly more “atypical.” As a result

of this, near the middle of the spectrum in the QLM there

is no single eigenstate with very low entanglement entropy.

Instead, there are several outliers just below the band of ther-

mal states. Similar phenomenology has been observed in other

models where scars are not protected by an exact dynamical

symmetry [79,80]. As S is increased, the towers seem to

get denser, without any clear state at the top even relatively

close to the edges of the spectrum. As a consequence, the

outliers with low entanglement entropy get pulled increas-

ingly closer to the thermal states in the case of the QLM.

This is in contrast with the TSM, where both in the over-

lap and entanglement entropy, the scarred eigenstates remain

clearly separated from their thermal counterparts up to the

largest system sizes accessible numerically. The only excep-

tion for the QLM is the presence of a single low-entangled

state with energy E = 0. This energy has a macroscopic

degeneracy due to an interplay of the symmetries of the

model, similar to Ref. [77]. It is therefore expected that some

low-entropy states can be obtained by forming appropriate

linear combinations of degenerate states, as demonstrated in

Refs. [67,81].
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FIG. 3. Dynamics of the chiral condensate (18) in the wake of

a quench with the QLM Hamiltonian (11) at μ = g = 0 for initial

states |0−〉, |0+〉, and |CP〉. Local observables show persistent oscil-

lations up to all accessible times when the initial state is prepared in

the extreme vacuum, a characteristic of scarred dynamics. In all other

cases, the chiral condensate quickly thermalizes. We note again the

exception for the case of S = 1

2
, where the physical vacuum is itself

the extreme vacuum.

In Ref. [71], we have shown that zero-mass zero-g

quenches in the QLM starting in |0−〉 lead to revivals in the

fidelity,

F (t ) = |〈ψ0|ψ (t )〉|2, (17)

where |ψ0〉 is the initial state and |ψ (t )〉 = e−iĤt |ψ0〉 with Ĥ

being the quench Hamiltonian. These quenches also reveal an

anomalously low and slowly growing entanglement entropy.

We now introduce another useful quantity to probe the ergod-

icity of quench dynamics. The chiral condensate

C(t ) =
1

2
+

1

2L

L
∑

j=1

(−1) j 〈ψ (t )| σ̂ z
j |ψ (t )〉 , (18)

and it is a measure of the spontaneous breaking of the chiral

symmetry corresponding to fermions in the model. Quenching

with the QLM Hamiltonian at μ = g = 0 for different initial

conditions, we plot the chiral-condensate dynamics in Fig. 3

for S = 1
2

to 2. The results show strikingly nonthermal behav-

ior for quenches starting in |0−〉. Indeed, over the simulated

timescales there are persistent oscillations in the signal and

no equilibration, in agreement with experimental results for

the spin- 1
2

U(1) QLM [59,64]. On the other hand, systems

prepared in |0+〉 (for S > 1
2
) or |CP〉 show relatively fast

thermalization, where oscillations are quickly suppressed in

the dynamics, consistent with the ETH. For the extreme vacua,

the leading frequency of the oscillations of C(t ) is twice that

of F (t ). The reason behind this is that the dynamics after a

quench from |0−〉 consists of a series of state transfers to |0′
−〉

and back. So after one full revival period the state comes back

close to |0−〉, but at half of that period it is close to |0′
−〉. The

fidelity revival is only high in the first case, but as both states

are vacua, the chiral condensate value is close to zero at both

times. Smaller oscillations at a faster frequency can also be

seen; see Sec. IV for more details.

FIG. 4. Dynamics of the fidelity, chiral condensate, and bipartite

entanglement entropy for the TSM with S = 3

2
and S = 2 after a

zero-mass quench. For all these quantities, the extreme vacuum |0−〉
shows anomalous dynamics whereas |0+〉 and |CP〉 are thermalizing,

as expected.

For the TSM, we find qualitatively the same behavior as

in the QLM. This is true for fidelity, entanglement entropy,

and chiral condensate, as shown in Fig. 4. Just as in the case

of the QLM, scarring dynamics occurs only when starting in

|0−〉 and the quench Hamiltonian is that of the TSM (15)

at μ = g = 0. This is evident in the prominence of fidelity

revivals when starting in |0−〉, while starting in |0+〉 or |CP〉
leads to the fidelity exhibiting fast decay without revivals,

which is typical of a thermalizing system. Quantitatively, we

find better revivals in the case of the TSM than the QLM

[71] when starting in |0−〉. This is surprising because unlike

a free-spin model Ĥ = ŝx, the unconstrained version of the

TSM, Ĥ = τ̂ x, does not lead to perfect revivals for larger

values of S. Indeed, the latter can be mapped to a single

particle with uniform hopping on a one-dimensional chain

with 2S + 1 states, for which it has been proven that perfect

state transfer or revivals are not possible beyond S = 1 when

starting at one end of the chain [82].

For the TSM, we also find a different scaling of the re-

vival period TTSM with S compared to the QLM. Unlike the

QLM where we observed numerically that TQLM ≈ 5.13πS

scales linearly with S [71], in the TSM the scaling is closer

to
√

S(S + 1). In particular, we find that the revival period

can be approximated as TTSM ≈ 11.5
√

S(S + 1)/J , which is

relatively accurate for small S. As in the case of the QLM, the

revival frequency is set by the energy spacing of scarred states

near the middle of the spectrum.
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FIG. 5. Difference between the maximum and minimum ampli-

tudes of the fidelity revival when quenching from the state |0+〉 for

L = 16 and various values of μ and g2 in the spin-S QLM. The

revival pattern is different for half-integer vs integer S, but in both

cases we find regions in the phase diagram with clear revivals.

Turning to local observables such as the chiral condensate,

we find persistent oscillations in the latter over all investigated

evolution times when the quench starts in |0−〉, but not in

|0+〉 and |CP〉 where the oscillations are quickly damped,

indicative of thermalization. Moreover, in the case of |0−〉
initial state, we find more pronounced oscillations in the case

of the TSM compared to the QLM [71].

Further confirming the existence of scarring for zero-mass

zero-g quenches in the TSM and |0−〉 initial state, we find

an anomalously slow growth of entanglement entropy in the

time-evolved state, in sharp contrast to the quench starting in

|0+〉 or |CP〉 where SL/2(t ) immediately shows fast growth,

typical of ergodic dynamics. In agreement with our obser-

vations for the fidelity and chiral condensate, when starting

in |0−〉 and quenching with the TSM Hamiltonian (15) at

μ = g = 0, we find that the entanglement entropy is even

lower than for the corresponding quench in the case of the

QLM [71].

In summary, we have shown that the TSM exhibits scarred

dynamics similar to that of the QLM, but with two major dif-

ferences: (i) the scarred eigenstates of the quench Hamiltonian

show qualitatively more nonthermal behavior in the overlap

with the extreme vacuum and in the bipartite entanglement

entropy (see Fig. 1), and (ii) scarring dynamics is quantita-

tively more prominent in the TSM compared to the QLM,

as can be seen in stronger fidelity revivals, larger chiral con-

densate oscillations, and lower entanglement entropy in the

former model at all investigated evolution times starting from

the extreme vacuum. We further compare the prominence of

scarring between the QLM and TSM in Secs. III and IV.

FIG. 6. Difference between the maximum and minimum ampli-

tudes of the fidelity revival when quenching from the state |CP〉 for

L = 16 and various values of μ and g2 in the QLM. For half-integer

spin, we find detuned scarring for all S, similar to the spin- 1

2
PXP

model [64].

C. Detuned scarring: Quenches to finite values of µ and g2

For μ = g = 0, only the extreme vacua are scarred (see

Appendix A). However, as in the case of the spin- 1
2

PXP

model, quenching to some specific values of μ and g can lead

to nonthermal behavior when starting in the physical vacuum

or the charge-proliferated state [64]. In this section we char-

acterize this behavior for a wider range of these parameters in

the QLM. We study the difference between the maximal and

minimal fidelity revival amplitude after a quench for the states

|0−〉, |0+〉, and |CP〉. A large difference indicates good re-

vivals separated by intervals of low fidelity, as is typical when

scarring is present. For the |0−〉 state, we see revivals for finite

values of μ and g2, however, these revivals are due to Hilbert

space fragmentation at the resonance point μ = g2(2S − 1)/4,

μ, g2 ≫ J/
√

S (see Appendix B). For the |0+〉 and |CP〉 states,

the pattern is relatively similar but their behavior is switched

for integer and half-integer S (Figs. 5 and 6). The best revivals

occur for integer S in the case of |0+〉 and for half-integer S in

the case of |CP〉. This corresponds to the case where the state

is not degenerate.

In Ref. [71], we show an example of a quench leading to

detuned scarring in a system with L = 20 and S = 3
2
. Both

states investigated, |0+〉 and |CP〉, show similar behavior, with

the presence of towers of states in the overlap plots and clear

revivals in the fidelity with a very slow decay. It is important

to note that there are revivals from these two states in a regime

where all the terms in the Hamiltonian are of equal strength.

These oscillations do not have a trivial explanation in terms of

conservation of mass or electric energy. The nongenerality of

this behavior is highlighted in Fig. 7, which shows quenches

from random basis states. For all states shown except |0+〉 and
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FIG. 7. Fidelity dynamics for quenches in the QLM starting in

the |0−〉, |0+〉, and |CP〉 states as well as from random basis states

for L = 20, S = 3

2
, μ = 0.486J , and g2 = 0.6J . While several states

show some oscillations at short times, only |0+〉 and |CP〉 show

this behavior persisting at a longer timescale, indicative of detuned

scarring.

|CP〉, revivals either decay rapidly or they are not present at

all, as expected in a thermalizing system.

III. COMPARISON WITH THE SPIN-S PXP MODEL

In Sec. II, we have shown that both the QLM and TSM

display scarring for zero-mass zero-g quenches starting in the

extreme vacuum |0−〉. This is the same state showing scarring

in the PXP model at S = 1
2

[77]. For S > 1
2
, the PXP model

has been generalized as [58]

ĤPXP = 

∑

j

P̂−S
j−1ŝx

jP̂
−S
j+1, (19)

with P̂−S
j the local projector on the lowest weight spin state

with eigenvalue −S. This model has been studied in Ref. [58]

for S > 1
2

and revivals have been found. Here, we show that

the generalized PXP model (19) is fundamentally different

from the QLM and TSM because of the form of their re-

spective constraints, which results in different Hilbert space

structures and, as a consequence, in different classical limits.

A. Hilbert space structure

In order to characterize the constraint in the TSM and

QLM, it is informative to look at the asymptotic quantum

dimension. This quantity tells us how fast the Hilbert space

dimension D grows with the number of sites L, i.e., D = αL,

with α the quantum dimension. For an unconstrained spin-S

model, we simply have α = 2S + 1. However, for constrained

systems we generally have αS < 2S + 1. For example, in the

PXP model with S = 1
2
, it was shown that α = φ < 2, where

φ is the golden ratio since the Hilbert space dimension scales

according to the Fibonacci or Lucas numbers [51]. In Ap-

pendix C we show analytically that the quantum dimension

for both the QLM and TSM is given by

αS = 2 cos

(

π

4S + 3

)

, (20)

TABLE I. Quantum dimension for the various constrained spin

models investigated in this work. For the QLM and TSM, the quan-

tum dimension converges towards 2 for S → ∞, while for the PXP

and the unconstrained models it is unbounded.

S 1/2 1 3/2 2 5/2 3

Unconstrained 2 3 4 5 6 7

QLM/TSM 1.6180 1.8019 1.8794 1.9190 1.9419 1.9563

PXP 1.6180 2 2.3028 2.5616 2.7913 3

which converges to 2 as S → ∞; see Table I for examples.

This has a clear physical cause: if the value of the leftmost

site is m, we can only glue to it a site with spin value −m

or −m − 1 without violating Gauss’s law. For a finite S, we

encounter a further limitation when m = S, as −S − 1 is not

a possible spin eigenvalue. However, for infinite S this is not

an issue and there are always two different ways of adding a

new site. Hence, going from L to L + 1 doubles the number

of states and the quantum dimension is 2.

For the generalized PXP model (19), it can be ana-

lytically shown that the quantum dimension is αS = (1 +√
1 + 8S)/2 (see Ref. [58] and Appendix C for details).

In contrast to the TSM/QLM, the Hilbert space dimen-

sion of the spin-S PXP model becomes infinite as S →
∞ and can be well approximated as

√
2S, which is close

to the square root of the expected 2S + 1 for an uncon-

strained spin-S paramagnet. Again, the physical interpretation

is straightforward. In that limit, most of the Hilbert space is

taken up by states of the form |m1,−S, m3,−S, m4, . . .〉 and

|−S, m2,−S, m4,−S, . . .〉, where the mi can take any value

between −S and +S. The number of these states scales as

2(2S + 1)L/2 − 1, giving a quantum dimension of
√

2S + 1.

In the large-S limit, we recover αS ≈
√

2S, in agreement with

the exact expression.

This difference highlights that the QLM and TSM are

fundamentally different from the generalized PXP model, es-

pecially as S becomes large. This difference in the Hilbert

space structure can be revealed further by looking at the

adjacency graph of the Hamiltonian. In the spin- 1
2

PXP

model, the graph structure consists of two hypercubes of

dimension L/2 joined at a single vertex (the state |CP〉 =
|− 1

2
,− 1

2
, . . . ,− 1

2
〉), with the rest of the Hilbert space acting

as bridges between these two cubes (see Fig. 8). At the op-

posite corners of each cube, we find one of the two extreme

vacua |0−〉 (usually called the Néel states in the PXP model).

A single hypercube possesses perfect revivals on its own as

long as all the hopping strengths are identical, and two stitched

hypercubes also have finite revivals in the thermodynamic

limit [83,84]. As such, it has been proposed that the revivals

in the spin- 1
2

PXP model can be understood as due to its

proximity to this toy model of two joined hypercubes [83].

The dynamics can then be thought of as state transfer from the

Néel state to the shared vertex in the first hypercube, and then

from it to the other Néel state and back. For the generalized

PXP model in Eq. (19), as S is increased these two hypercubes

turn into two hypergrids of order 2S + 1 and dimension L/2,

so equivalent to the graph of a free paramagnet with spin

S and L/2 sites (see Fig. 8). The state shared between the
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FIG. 8. Adjacency graph of the PXP model with S = 1

2
(top left),

of the QLM/TSM with S = 1 (top right), and of the PXP model with

S = 1 (bottom), all for L = 6. The black vertices show the largest

hypercubes and hypergrids in the graphs. The red vertices show the

best reviving states.

two hypergrids is always |−S,−S, . . . ,−S〉, and the opposite

corners in each hypergrid are the same as the extreme vacua:

|S,−S, . . . , S,−S〉 and |−S, S, . . . ,−S, S〉. These two states

are also the ones displaying revivals in that model, and the

picture of consecutive state transfer in each hypergrid still

holds.

In contrast, for the spin-S QLM and TSM, as S is in-

creased we still have hypercubes of dimension L/2, but their

number increases. Indeed, instead of two hypercubes there

are 4S of them in a line pattern, as shown in Fig. 8. Each

hypercube shares states with two neighbors, except for the

two hypercubes at the ends of the chain. The “unpaired” states

at the corners of these cubes are the extreme vacua. The state

located in the middle of the chain is always nondegenerate and

corresponds to either the physical vacuum (for integer spin) or

the physical charge-proliferated state (for half-integer spin).

In any case, all the vacua, except the two extreme ones, and

charge-proliferated states are always located at the intersec-

tion of two hypercubes. For the TSM and QLM models, the

simple picture of dynamics being consecutive state transfer

along the chain of hypercubes works as well. It also explains

why we get revivals in the TSM despite the unconstrained

version of the same model showing no revivals for higher S.

Due to the constraint, the relevant dynamics happens in the

hypercubes, which mimic the effective systems with spin 1
2
.

In the special case S = 1
2
, the unconstrained TSM also has

perfect revivals.

This difference in the graph structure further amplifies the

dissimilarities between the PXP model on one hand, and the

QLM and TSM on the other. It also implies that the phys-

ical interpretation of the relevant classical limit is different

for PXP and for the QLM and TSM, as we will show be-

low. Nevertheless, there are still some striking similarities

between them. The main similarity is the same number of

special towers of eigenstates, which is equal to 2SL + 1. This

number simply corresponds to the distance in the graph be-

tween the two extreme vacua plus one. In all models, these

FIG. 9. Comparison of the PXP, QLM, and TSM for L = 16 and

S = 3

2
. For the PXP model, we set 
 = 1/

√
S(S + 1) to match the

QLM. Even if all three models exhibit 2SL + 1 = 49 towers of states,

their characteristics differ greatly. These differences translate to the

revivals from the |0−〉 state. The color indicates the density of data

points, with yellow color representing higher density.

special eigenstates can be well approximated by the forward

scattering approximation proposed in Ref. [51]. As shown in

Appendix D, the revivals can be further enhanced by adding a

perturbation whose form is inspired by the forward scattering,

as previously done in Refs. [85,86] for the PXP model.

However, even if the number of towers of states is the same

in all three models, there are significant differences in their

structure, as we illustrate in Fig. 9. Indeed, for the PXP model

the towers are dense, but very narrow in energy and extending

far above the bulk of the spectrum in terms of overlap with the

initial state. For the QLM, this is not the case, as the spread in

energy among the states in the same tower is much larger. This

leads to a faster dephasing and decay of the fidelity revivals.

Finally, the TSM shows a picture closer to the one of the PXP

model with S = 1
2
: the towers of states are relatively sparse,

with a single eigenstate at the top which is well separated from

the rest.

B. Classical limit

The graph representation in Fig. 8 is helpful for construct-

ing the classical limit of scarred dynamics. For the PXP

model, it was shown that there is a classical periodic orbit

corresponding to the trajectory of the extreme vacua [58].

The mapping to a classical dynamical system was obtained

using the time-dependent variational principle (TDVP) [87].

The ansatz proposed in Ref. [58] simply corresponds to setting

coherent spin states |(θ, φ)〉 = eiφSeiφŝz

e−iθ ŝx |−S〉 on odd and

even sites separately and projecting that wave function into

the constrained Hilbert space. The ansatz incorporates the

kinetic constraint and it was shown that it has a compact

representation in terms of a matrix product state with bond

dimension equal to 2, regardless of the magnitude of spin. The

intuitive picture behind the ansatz is that each sublattice acts

as a big spin, whose evolution is dependent on the value of
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the spin corresponding to the other sublattice [88]. These spin

coherent states naturally describe each hypergid on its own

(which corresponds to having excitations on only one sublat-

tice), while the constraint incorporates the coupling between

them.

For the QLM and TSM, however, this two-angle descrip-

tion is not sufficient to capture the dynamics. Indeed, as hinted

by the graph structure, we do not have two big spins SL

coupled together, but instead there are 4S spins with magni-

tude L/2. Hence, in order to describe the evolution of this

system, we conjecture that we would have to keep track of

8S angles, i.e., two per big spin, or alternatively 4S per sub-

lattice. While this already makes the definition of a classical

limit that could expand all the way to the Schwinger model

basically impossible, the bond dimension needed will also be

problematic. Indeed, unlike for the generalized PXP model,

there is no simple way to encode the constraint into a fixed

bond dimension MPO for any S. In Appendix E, we present

an argument that for the TSM and QLM, the minimum bond

dimension required to encode the constraint grows linearly

with S. This shines light on the profound difference of the

constraint between the PXP model and the QLM, and shows

that obtaining a classical limit using a TDVP ansatz quickly

becomes intractable as S increases.

Thus, developing a classical limit using TDVP for S > 1

for the QLM and TSM appears to be a nontrivial task due

to the form of the constraint. However, we can still use a

“mean-field-like” approximation that confines the dynamics

to the span of the desired TDVP manifold. This was done

for the PXP model with S = 1
2

using the symmetric subspace

approximation [88]. While in the TDVP ansatz each sublattice

is characterized by an angle that sets the probability of having

m = + 1
2

on any site, in the quantum versions we simply

create a basis where each state is a symmetric superposition

of all states having a set number ni of site m = + 1
2

on each

sublattice. Each state in the basis is then characterized by

the pair (n1, n2), and we obtain a basis of the span of the

TDVP manifold. It was additionally shown that the dynamics

in that symmetric subspace K corresponds to “requantizing”

the semiclassical TDVP dynamics [88].

Here, we expand this approximation to the PXP model with

higher S by using coherent spin states, as was done in the

corresponding TDVP ansatz of Ref. [58]. We form a basis

of these constrained coherent states, where each basis state

is characterized by two numbers. These are directly related

to the θ angles in the TDVP ansatz (see Appendix F). We

next obtain the subspace K2 spanned by these basis states

and project the Hamiltonian into this subspace, comparing

the evolution within the subspace with the one in the full

Hilbert space. The subspace yields a very good description

of the dynamics from the |0−〉 state, as can be seen in

Fig. 10. We emphasize that this is highly nontrivial as the

projection into the subspace corresponds to a reduction of

the effective dimension of the Hilbert space from 40 477

states (taking into account only the relevant translation and

reflection sectors) down to 238 states. On the other hand, this

completely fails to capture the dynamics in both the TSM

and QLM, even though the initial Hilbert space dimension is

much smaller with only 1866 (symmetry resolved) states. In

order to get a decent approximation of the dynamics in these

FIG. 10. Dynamics of the fidelity after a zero-mass zero-g

quench from the |0−〉 state in the PXP, QLM, and TSM with L = 16

and S = 3

2
. The solid line corresponds to exact diagonalization data,

while the dashed and dashed-dotted lines correspond to the dynamics

in the two different symmetric subspaces. The smaller subspace K2

already captures the behavior of the PXP model quite well but fails

to do so for the QLM and TSM. Meanwhile, the larger subspace K4S

gives good results for all three models.

models, we have to expand our approximation to keep more

information.

As mentioned previously, in the TDVP ansatz for these

models we want to capture the dynamics of 4S effective spins

L/2 corresponding to the hypercubes in the graph. In order to

do this, we devise a larger subspace in which we keep track

of the number of each spin eigenvalue m = −S to m = S for

each sublattice (see Appendix F). We end up with a total of

4S numbers characterizing each basis state of our subspace.

This is exactly half of the number of angles in the conjectured

TDVP ansatz, as we do not need to incorporate the phase

angles φ into our basis since they can evolve freely during

the quantum evolution. The results of the dynamics projected

into this new subspace K4S can now be compared with the true

dynamics in the full Hilbert space (see Fig. 10). We see that

the behavior much more closely matches the actual fidelity for

the TSM and QLM. This also gives a good result for the PXP

model, however, this is expected as K2 ⊂ K4S .

This demonstrates that a low-dimensional subspace that

captures the relevant dynamics from a zero-mass zero-g

quench can be devised simply by studying the adjacency

graph structure of the Hamiltonian. This structure could also

theoretically be used to obtain a classical limit for these con-

strained models using the corresponding TDVP ansatz. These

constructions then show that for the PXP model, the relevant

classical limit is much simpler than for the QLM and TSM.

In summary, we have argued in this section that the spin-

S PXP model is fundamentally different from its TSM and

QLM counterparts. Nevertheless, we can still utilize tools

developed for the PXP model in order to better understand

the TSM and QLM, and to even enhance their scarring be-

havior. For further details, see Appendix D for results on

the forward scattering approximation and enhanced scarring

through algebra-correcting perturbations in the case of spin-1

QLM and TSM (recall that for S = 1, the QLM and TSM are

identical).
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FIG. 11. Dynamical properties for zero-mass zero-g quenches

from the extreme vacuum |0−〉 for L = 20 and various values of S

in the QLM. The solid lines show integer S, while the dashed lines

denote half-integer S. No clear distinction can be made between these

two cases, with both the fidelity revival amplitude and the differ-

ence of the chiral condensate from the equilibrium value decreasing

monotonically with S.

IV. KOGUT–SUSSKIND LIMIT (S → ∞)

In Sec. II B, we have shown that the extreme vacua exhibit

persistent revivals in both the TSM and QLM for various

values of S. Here we study the scaling of these revivals as

S is varied. Figures 11 and 12 show how various quantities

change with S when the system size is fixed to L = 20. In

both models, the scarring signatures get weaker as S increases.

The revivals in the fidelity and chiral condensate become less

pronounced for larger S, while entropy growth becomes faster.

This is not surprising since the fraction of states spanning the

scarred subspace within the total Hilbert space decreases with

S. Comparing these quantities between the two models also

shows clearer scarring in the TSM.

These results also show an interesting behavior in the

dynamics of the chiral condensate for both the TSM and

QLM. In-between the main oscillations at twice the revival

frequency, we also see oscillations with smaller amplitudes

in the chiral condensate. These can be explained by consid-

ering the wave function propagation along the hypercubes

forming the “backbone” of the graph (see Sec. III for de-

tails). We can thus visualize the dynamics as sequential state

transfer through each of the hypercubes before finally reach-

ing the opposite vertex of the graph. This is, of course, a

very crude description as it ignores large parts of the Hilbert

space. However, it helps us understand the intermediate states

between the extreme vacua. As all states have a two-site peri-

odicity, we will describe them by the value on the first two

sites, i.e., |M1, M2〉 = |M1, M2, M1, M2, . . . , M1, M2〉. Start-

FIG. 12. Dynamical properties for quenches from the extreme

vacuum |0−〉 for L = 20 and various values of S in the TSM, with

JS = J/
√

S(S + 1). The solid lines show integer S, while the dashed

lines denote half-integer S. The results are qualitatively the same

as in the QLM, however, all three quantities indicate much stronger

scarring in the TSM.

ing from |0−〉 = |S,−S〉, we have (approximate) state transfer

to |S − 1,−S〉, then to |S − 1, 1 − S〉, then |S − 2, 1 − S〉,
and so on until we reach the other end of the chain with

|0′
−〉 = |−S, S〉. These intermediate states with periodicity

two alternate between vacua and charge-proliferated states,

leading to the oscillations in the chiral condensate. As the

wave function is not perfectly peaked on these states but it is

spread amongst states in the same “slice” of the graph (i.e., at

the same distance from the two extreme vacua), we get smaller

amplitude deviations of the chiral condensate. Nonetheless,

this sequential state transfer picture allows us to predict the

number of these lower-amplitude oscillations. As there are

4S − 1 states between the extreme vacua, we expect to see the

same number of local extrema in C(t ). Out of these, 2S should

be maxima and 2S − 1 should be minima. This perfectly

matches the dynamics of the chiral condensate and shows

that this simple picture of propagation along the backbone of

the graph is a good approximation of the dynamics from the

extreme vacua.

While the scarring behavior getting weaker with S is ex-

pected, an important question is whether it disappears as S →
∞ or if the two models will still display ergodicity breaking

in that limit. The scaling with S is only meaningful if we

can access sufficiently large system sizes L that are devoid

of finite-size effects. Moreover, the scaling must be done on

quantities that converge to a well-defined value in the limit

L → ∞, and we will use two such quantities: (i) the fidelity

density, defined as f0 = ln(F0)/L with F0 the fidelity ampli-

tude at the first revival; (ii) the value of the chiral condensate

C0 at its first revival (which happens after a half-period of
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FIG. 13. Fidelity density f0 = ln(F0)/L and chiral condensate

C0 value at their first respective revival peak after a quench from

the extreme vacuum for various values of S and L. The solid lines

show integer S, while the dashed lines denote half-integer S. For

the TSM, both quantities eventually converge with L, allowing us

to make predictions about the behavior in infinite systems. For the

QLM, the chiral condensate for large spins S > 5

2
has clearly not

reached convergence, indicating strong finite-size effects.

the fidelity revival). For a fully ergodic dynamics we expect

fast thermalization to an infinite-temperature ensemble, which

gives C0 = 0.5 independent of S. Similarly, during ergodic

dynamics, the wave function should spread evenly across the

entire Hilbert space, giving a fidelity of 1/D = α−L, with D

the Hilbert space dimension and α the quantum dimension.

Thus, for a fully ergodic system we expect the fidelity density

to approach f0 = ln(α−L )/L = − ln(α), which converges to

f0 = − ln(2) ≈ −0.6931 in the limit S → ∞, as derived in

Sec. III.

Figure 13 shows the dependence of the fidelity density and

chiral condensate on system size L, for different values of

S in both the TSM and QLM. For the fidelity density, the

convergence in L is quite fast for both models, allowing us to

use the data for all spin values between S = 1
2

to 4. However,

somewhat surprisingly, for the observable C0 the convergence

is seen to be much slower, especially in the QLM, and we can

only perform thermodynamic-limit extrapolations for S �
5
2
.

For the TSM, both quantities are relatively well approx-

imated by a power-law scaling of the form a + b/(c + x)γ

with 1 < γ < 3; see Fig. 14. While we are not aware of any

predicted scaling that would fix γ , we note that the extrapo-

lated value at S → ∞ is fairly insensitive to γ . We find that

the absolute value of the fidelity density is smaller than the

thermal expectation by an order of magnitude as S → ∞,

indicating ergodicity breaking. While the chiral condensate

also appears to extrapolate to a nonthermal value, this extrap-

olation is based on fewer data points and thus it likely suffers

from a larger uncertainty. Nevertheless, the data for the TSM

are consistent with ergodicy-breaking signatures persisting in

the S → ∞ limit.

FIG. 14. Extrapolation of the fidelity density and chiral conden-

sate value at their first respective revivals. The data are fitted with

the function a + b/(c + x)γ , with γ = 3

2
for f0 and γ = 2 for C.

Varying γ between 1 and 3 does not lead to a significant change

for the infinite-S value. These results suggest that the TSM displays

ergodicity breaking in the limit S → ∞. On the other hand, for QLM

the extrapolated fidelity density is close to the expected ergodic value

ln 2 in the S → ∞ limit. However, the chiral condensate C0 shows no

sign of saturation with S, indicating that the QLM data are affected

by strong finite-size effects and precluding a reliable extrapolation to

the Kogut-Susskind limit.

The scaling behavior of the QLM is different from that

of the TSM. Indeed, for the fidelity density the extrapolated

value in the QLM is close to the ergodic value, within the error

bars of the extrapolation. The available data for the chiral con-

densate C0 show a rapid increase with S towards the thermal

value 0.5. Physically, we do not expect the value of the chiral

condensate to rise above 0.5, but rather to saturate to it from

below. Our data in Fig. 14 show no evidence of this saturation,

implying that finite-size effects are strong and larger values of

S are needed to perform a meaningful extrapolation. We note

that we have observed a similar behavior in Ref. [71] where

the dynamics of the electric flux was simulated directly in the

thermodynamic limit using the infinite matrix product state

(iMPS) method. The iMPS data show clear scarring signatures

in the QLM model in the numerically tractable cases (S �
5
2
).

However, similar to the above results, the iMPS data showed

no convergence as a function of S within the range of spin

values studied, precluding the extrapolation to S → ∞ limit.

V. CONCLUSIONS AND OUTLOOK

In this work, we have investigated the spin-S QLM and

TSM, two different constrained spin models based on the

lattice Schwinger model. In both models, we have demon-

strated clear signatures of quantum many-body scarring when

quenching from the extreme vacua to zero mass and gauge

coupling strength. We have also shown that both the physical

vacua and the charge-proliferated states can exhibit detuned

scarring for finite values of the mass and gauge coupling.
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Both resonant and detuned scarring have been previously

observed in the spin- 1
2

PXP model [51,59,64], which is re-

covered from both the TSM and QLM for S = 1
2
. However,

for any other value of S, these models are different from the

generalized spin-S PXP model previously studied [58]. We

explained this difference by investigating the structure of the

adjacency graph of the corresponding Hamiltonians. Using

this approach, we have also proposed a procedure to construct

a classical limit for the QLM and TSM, which again differs

from the one used for the PXP model. While for the TSM and

QLM this classical limit is more complicated to implement,

we have shown that its structure captures the resonant scarring

phenomenology through a simpler quantum approximation.

Our simulations also show that for any S � 4, the TSM

exhibits stronger scarring than the QLM in all the metrics

used. These differences become more pronounced as S in-

creases. Based on a finite-S scaling analysis, we expect that

the TSM shows signs of weak ergodicity breaking for S →
∞, while the scaling to the Kogut-Susskind limit cannot be re-

liably performed for the QLM with the existing computational

resources. The different scaling behavior of the TSM and

QLM also highlights one limitation of the graph-theoretical

approach. As it does not directly take into account the strength

of the matrix elements nor their structure outside of the dom-

inant hypercubes, the graph method falls short of predicting

different behaviors for the TSM and QLM as S increases.

Understanding the source of these differences between the

TSM and QLM models would be an interesting goal for future

work, as it requires the understanding of the graph structures

beyond the dominant subgraphs.

Another question raised by our work is the fate of

quantum many-body scars in models corresponding to higher-

dimensional versions of U(1) lattice gauge theories with

dynamical matter. As the coordination number of the lattice

increases, the number of configurations allowed by Gauss’s

law rapidly becomes larger. Thus, the constraint should get

weaker and the graph structure associated with it should

also change drastically. As a consequence, it is currently not

known if these models also possess scarring behavior, or if the

latter is only a feature present in low-dimensional cases. Given

the massive current drive in implementations of lattice gauge

theories on synthetic quantum matter setups [19,89–99], our

work provides insights into how to potentially realize scarring

in such experimental platforms.

In compliance with EPSRC policy framework on research

data, this publication is theoretical work that does not require

supporting research data.
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APPENDIX A: QUENCHES FROM OTHER VACUA AND CP

INITIAL STATES

In the main text, we have shown the results of zero-mass

zero-g quenches from the extreme vacua, the physical vacua,

and the charge-proliferated state for the TSM. Similar results

for the QLM are available in Ref. [71]. For all values of S and

L investigated, only the extreme vacua showed signatures of

resonant scarring. However, as S is increased there are more

and more vacua and charge-proliferated states corresponding

to different values of the field. In the spin language, all the

vacua have the structure |M,−M〉, and the charge-proliferated

states |M − 1,−M〉. We can quantify these states by their

proximity �0− to the extreme vacuum |0−〉 = |S,−S〉. The

extreme vacuum then has �0− = 0, the charge-proliferated

state with maximum electric field |S − 1,−S〉 has �0− = 1,

the vacuum state |S − 1, 1 − S〉 has �0− = 2 and so on. Fig-

ures 15 and 16 show that the extreme vacuum is the only state

FIG. 15. Dynamical properties for zero-mass zero-g quenches

starting in various vacua (solid line) and charge-proliferated states

(dashed lines) for S = 5

2
and L = 20 in the QLM. �0− quantifies

their proximity to the extreme vacuum |0−〉, the only state showing

clear revivals. The entanglement entropy growth also suggests that

thermalization happens faster as �0− increases.
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FIG. 16. Dynamical properties for zero-mass zero-g quenches

starting in various various vacua (solid lines) and charge-proliferated

states (dashed lines) for S = 5

2
and L = 20 in the TSM, with JS =

J/
√

S(S + 1). �0− quantifies their proximity to the extreme vacuum

|0−〉, the only state showing clear revivals. The results are qualita-

tively very similar to the one in the QLM.

showing revivals in the wave function for a zero-mass zero-g

quench in both the QLM and TSM. However, the growth of

entanglement entropy seems to increase monotonically with

�0− , hinting that states in the middle of the graph (far away

form the extreme vacua) thermalize faster.

APPENDIX B: DETUNED QUENCHES FROM THE

EXTREME VACUA

In this Appendix we investigate the fate of scarring when

quenching from the extreme vacua to finite values of μ and

g2. As in the main text, to probe this we study the dif-

ference between the maximal and minimal fidelity revival

after a quench. The results are presented in Fig. 17, where

the most striking feature for each S is the main diagonal

(red dashed) line showing close-to-perfect revivals. This line

corresponds to μ = (2S − 1)g2/4. Indeed, when this condi-

tion is satisfied and we also have μ, g2 ≫ J/
√

S, the Hilbert

space fractures [100–102] and the |0−〉 state and its translated

counterpart both find themselves in a fragment of the Hilbert

space that can be mapped to free spin- 1
2

paramagnets with

L/2 spins. We now demonstrate this by starting in |0−〉 =
|S,−S, S,−S, . . .〉. The total energy of that state is equal to

Lg2S2/2. At first, the only move allowed in the constrained

Hilbert space is taking any of the sites with spin eigenvalue S

to S − 1. This also conserves the total energy. Indeed, this op-

FIG. 17. Difference between the maximum and minimum ampli-

tudes of the fidelity revival when quenching from the state |0−〉 for

L = 16 and various values of μ and g2 in the QLM. The red dashed

line in each plot shows the resonance condition μ = (2S − 1)g2/4

for which the Hilbert space fractures when μ, g2 ≫ J/
√

2(S + 1).

eration creates two fermions that lead to an increase in energy

of 2μ = g2(2S − 1)/2, thus counteracting the decrease of

g2[S2 − (S − 1)2]/2 = g2(2S − 1)/2 in electromagnetic en-

ergy. Hence, every other site can freely flip between S and

S − 1. However, the next allowed step would be to take a site

with spin eigenvalue −S to 1 − S. This leads to a large energy

change as it both destroys fermions and reduces the electro-

magnetic energy. If this energy change is much larger than the

hopping energy, which is roughly equal to J/
√

S near the end

of the chain, this move is greatly suppressed, hence these sites

are frozen at −S. We thus have a system that is equivalent to a

set of L/2 noninteracting two-level systems. The same is true

when starting in the state |−S, S,−S, S, . . .〉, but the odd and

even sites are now flipped. It is important to distinguish these

perfect revivals from scarring, as they emerge here as a sole

consequence of Hilbert space fragmentation. Every product

state located entirely within one of these two noninteracting

disconnected subspaces will show perfect revivals with the

same frequency.

APPENDIX C: QUANTUM DIMENSION

We now derive the quantum dimensions for the TSM/QLM

and the generalized PXP model. By grouping states in equiv-

alence classes depending on the value of their leftmost site, it

is possible to get a transfer matrix that relates the class sizes

for system sizes L and L − 1. The quantum dimension is then

simply the dominant eigenvalue of this transfer matrix.

For the QLM (and equivalently, the TSM, as the constraint

is the same for both), we simply need to keep track of the state

of the leftmost site and the transfer matrix is of size (2S +
1) × (2S + 1). We can order the spin values by “compatibil-
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ity,” which means for integer spin 0,−1, 1,−2, 2, . . . ,−S, S

and for half-integer − 1
2
, 1

2
,− 3

2
, 3

2
, . . . ,−S, S. The advantage

of this ordering is that, due to Gauss’s law, a value is only

compatible with the one before or after it, except the first one

which is also compatible with itself. This allows us to write

the transfer matrix as

TQLM(S) =

⎛

⎜

⎜

⎜

⎝

1 1 0 0

1 0
. . . 0

0
. . . 0 1

0 0 1 0

⎞

⎟

⎟

⎟

⎠

, (C1)

which has the form of a tridiagonal matrix with unity entries

on the superdiagonal and subdiagonal, and zeros everywhere

else except at the (1,1) entry, which also carries a value of 1.

The number of states in the case of PBC is given by

DQLM(S, L) = Tr[(TQLM(S))L] =
2S+1
∑

j=1

λL
j →

L→∞
λL

2S+1, (C2)

where the λ j are the eigenvalues of TQLM(S) sorted by in-

creasing modulus. For large L, the dominant eigenvalue is the

only one contributing significantly and so its value sets the

quantum dimension. Let d = 2S + 1, then the characteristic

polynomial of the transfer matrix is

PQLM(S, λ) = λd +
d

∑

i=1

(−1)⌈i/2⌉λd−i

(

d − ⌈i/2⌉
⌊i/2⌋

)

, (C3)

where the
(

n

k

)

are the binomial coefficients. For exam-

ple, PS=1/2 = λ2 − λ
(

1

0

)

−
(

1

1

)

= λ2 − λ − 1 and PS=1 = λ3 −
λ2

(

2

0

)

− λ
(

2

1

)

+
(

1

1

)

= λ3 − λ2 − 2λ2 + 1. The quantum di-

mension is the largest root of this polynomial, which is given

by Eq. (20) in the main text, and which clearly becomes 2 at

S → ∞. Table I in the main text shows its values for selected

values of S. Note that in Ref. [103], this quantum dimension

was also calculated as

αS,L = 2

[

2S+1
∑

j=1

cosL

(

jπ

4S + 3

)

]
1
L

(C4)

for finite systems, which in the thermodynamic limit L → ∞
converges to our result.

For the generalized PXP model [58], the procedure is even

simpler. In that case, we can split the states into two equiv-

alence classes: states with the leftmost site equal to −S and

other states. The resulting transfer matrix is

TPXP(S) =
(

1 2S

1 0

)

. (C5)

The characteristic polynomial is easy to compute as

PPXP(S, λ) = λ2 − λ − 2S, giving a dominant eigenvalue of

λ = (1 +
√

1 + 8S)/2, matching the result in Ref. [58].

APPENDIX D: DETAILED STUDY OF THE S = 1 CASE

The case of S = 1 in the TSM and QLM is the simplest

example that is different from the PXP model (19). Here, we

show that the other approaches developed to investigate the

PXP model and enhance its revivals also work for the spin-1

U(1) QLM and TSM, which are identical to each other for

S = 1.

For S = 1, the Hamiltonians in Eqs. (11) and (15) are equal

and can be written with local constraints as

Ĥ =
J

√
8

L
∑

j=1

[

P̂−1
j−1

(

ŝ+
j P̂

0
j

)

P̂−1
j+1

+ P̂0
j−1

(

P̂0
j ŝ+

j

)

P̂0
j+1 + H.c.

]

− 2μ
∑

j

ŝz
j +

g2

2

∑

j

(

ŝz
j

)2
, (D1)

where P̂M is the projector on the state with spin

eigenvalue M.

1. Forward scattering approximation

As in the case of S = 1
2
, for S = 1 we can use the forward

scattering approximation (FSA) to approximate the scarred

eigenstates [51]. First, we need to decompose the off-diagonal

part of the Hamiltonian into raising and lowering operators

Ĥ+ and Ĥ−, such that Ĥ+ takes us away from the initial

reviving state |0−〉 = |1,−1, 1,−1, . . . , 1,−1〉 while Ĥ− =
(Ĥ+)

†
. It is straightforward to derive the exact form of these

expressions as

Ĥ+ =
1

√
8

L/2
∑

j=1

[

P̂0
2 j−1

(

ŝ−
2 jP̂

0
2 j

)

P̂0
2 j+1

− P̂−
2 j−1

(

P̂0
2 j ŝ

−
2 j

)

P̂−
2 j+1

+ P̂0
2 j−2

(

P̂0
2 j−1ŝ+

2 j−1

)

P̂0
2 j

− P̂−
2 j

(

ŝ+
2 j−1P̂

0
2 j−1

)

P̂−
2 j

]

. (D2)

Using this raising operator and starting from the state

|F0〉 = |0−〉 = |1,−1, 1,−1, . . . , 1,−1〉, we can build the

FSA states |Fn〉 = (1/N )(Ĥ+)
n |F0〉 for n = 0 to 2L, with

N denoting a normalization factor. It is useful to note that

|F2L〉 = |−1, 1,−1, 1 . . . − 1, 1〉 and Ĥ+ |F2L〉 = 0. Project-

ing the Hamiltonian to this set of 2L + 1 states leads us to

a tridiagonal matrix with off-diagonal elements βn,n+1:

〈Fm| Ĥ |Fn〉 = βn,n+1δm,n+1 + β∗
n−1,nδm,n−1. (D3)

As for the spin- 1
2

PXP model, the eigenstates in this low-

dimensional subspace have energies very close to the ones of

the actual scarred eigenstates [51]. This is demonstrated in

Fig. 18. The main difference between the FSA states and the

exact scarred eigenstates lies in their number. Indeed, in the

FSA we obtain exactly 2SL + 1 states, whereas in reality the

model has 2SL + 1 towers of states. Thus, the FSA only gives

one scarred state per tower. As a result, the FSA eigenstates

are very atypical, having a very low entanglement entropy.

In the full model, this atypicality is in fact spread amongst

many eigenstates in each tower, leading to individual states

with larger entanglement entropy.

2. Algebra-correcting perturbation for S = 1

As for the PXP model with spins 1
2

[85,86], the accuracy

of the FSA implies that there is an approximate su(2) algebra

structure in the scarred subspace. We can derive a perturbation

to “correct” this algebraic structure by following the prescrip-

tion in Ref. [104]. We consider Ĥ+ and Ĥ− to be the raising
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FIG. 18. Overlap of the |0−〉 state with the eigenstates (top) and

half-chain entanglement entropy (bottom) in the QLM/TSM with

S = 1 and L = 20. The FSA results closely reproduce the exact

diagonalization results, in particular for the overlaps with |0−〉. In

contrast, the entanglement entropy of scarred eigenstates in the mid-

dle of the spectrum is less accurately reproduced, due to the strong

mixing of states within the towers.

and lowering operators of that algebra. We can derive the

effective Ĥ z operators as

Ĥ z = 2[Ĥ+, Ĥ−]

=
1

√
8

L/2
∑

j=1

[

P̂0
2 j−1

(

P̂0
2 j − P̂−1

2 j

)

P̂0
2 j+1

+ P̂−1
2 j−1

(

P̂1
2 j − P̂0

2 j

)

P̂−1
2 j+1

− P̂0
2 j−2

(

P̂0
2 j−1 − P̂−1

2 j−1

)

P̂0
2 j

− P̂−1
2 j

(

P̂1
2 j−1 − P̂0

2 j−1

)

P̂−1
2 j

]

. (D4)

From there, we compute the commutators

[Ĥ z, Ĥ+] = Ĥ+ + δ̂+
1 , (D5a)

[Ĥ z, Ĥ−] = −Ĥ− + δ̂−
1 , (D5b)

which obey the expected su(2) commutation rules, up to error

terms denoted by δ̂±
1 . The latter are given by

δ̂+
(1) = −

1

4
√

2

L/2
∑

j=1

[

2P̂0
2 j−2

(

ŝ−
2 j−1P̂

0
2 j−1

)

P̂0
2 j

+ 2P̂0
2 j−1

(

P̂0
2 j ŝ

+
2 j

)

P̂0
2 j+1

+ P̂−1
2 j−1

(

ŝ+
2 jP̂

0
2 j

)

P̂−1
2 j+1P̂

0
2 j+2

+ P̂0
2 j−2P̂

−1
2 j−1

(

ŝ+
2 jP̂

0
2 j

)

P̂−1
2 j+1

+ P̂−1
2 j−2

(

P̂0
2 j−1ŝ−

2 j−1

)

P̂−1
2 j P̂

0
2 j+1

+ P̂0
2 j−3P̂

−1
2 j−2

(

P̂0
2 j−1ŝ−

2 j−1

)

P̂−1
2 j

]

, (D6)

and δ̂−
(1) = −[δ̂+

(1)]
†
. We can then partially cancel the unwanted

error terms by introducing the following perturbation to the

FIG. 19. Revivals in the QLM/TSM for S = 1 and L = 18 with

different strengths of the perturbation δĤ(1). For λ = 0.325, the re-

vivals become close to perfect.

model:

δĤ(1) = δ̂−
(1) − δ̂+

(1)

=
1

4
√

2

L
∑

j+1

[

2P̂0
j−1

(

P̂0
j ŝ+

j

)

P̂0
j+1

+ P̂−1
j−1

(

ŝ+
j P̂

0
j

)

P̂−1
j+1P̂

0
j+2

+ P̂0
j−2P̂

−1
j−1

(

ŝ+
j P̂

0
j

)

P̂−1
j+1 + H.c.

]

. (D7)

We add this perturbation to the Hamiltonian Ĥ → Ĥ + λ ·
δĤ(1), and look for the value λ that gives the best revivals

for the extreme vacua. From Fig. 19 we see that we can get

a substantial improvement of the revivals for λ ≈ 0.325, with

the revivals being close to perfect in that case. This procedure

can be carried out in the same way for arbitrary spin length S.

However, the number of local terms in Ĥ+ increases linearly

with S and the derivation becomes increasingly tedious.

APPENDIX E: BOND DIMENSION OF THE CONSTRAINT

FOR THE QLM AND TSM

We argue that to represent the constraint in the QLM and

TSM models as a matrix-product operator (MPO), we need

a bond dimension scaling as 2S + 1. This is in stark contrast

with the generalized PXP model where the bond dimension is

equal to 2 for any S [58].

The first step is to write the global constraint P as a sum

of products of local two-site constraints P =
∏

i Pi,i+1. Each

local constraint can be expressed as

Pi,i+1=P̂−S
i P̂S

i+1 +
S

∑

m=1−S

(

P̂m
i P̂−m

i+1 + P̂m
i P̂−m−1

i+1

)

, (E1)

where P̂m
i = |m〉 〈m| is the projector on the spin eigenstate

with magnetization m along the z direction. Already, this sum

of 4S local terms contrasts with the PXP constraint which

can be written as P̂−S
i P̂−S

i+1 + Q̂iP̂
−S
i+1 + P̂−S

i Q̂i+1 for any S, with

Q̂ = 1 − P̂−S .

To find the minimal bond dimension, we need to represent

the constraint as an MPO. A common approach is to write

it as a state machine [105,106], where each transition must be
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FIG. 20. State machine representing the local two-site constraint

for (a) the generalized PXP model and (b) the QLM and TSM. For

the PXP model, the state machine can be easily reduced to a total

of two states by grouping together all states having the same rules.

This is not the case for the QLM and TSM as all states have different

rules.

between operators that can be placed next to each other. This is

straightforward and the result is shown in Fig. 20. While both

states can be written to have 2S + 1 states, one can see that for

the PXP model all states with m �= −S have exactly the same

rules and so can be grouped together. For the QLM, all states

have different rules and so there is no simple way to merge

them. From the state machine one can then write the MPO as

an operator-valued matrix where the element (i, j) is equal to

P̂−S+i−1 if the transition P̂−S+i−1 to P̂−S+ j−1 is allowed and 0

otherwise. The resulting MPO are then

ŴPXP =

⎛

⎜

⎜

⎜

⎝

P̂−S P̂1−S . . . P̂S

P̂−S 0 0 0
... 0 0 0

P̂−S 0 0 0

⎞

⎟

⎟

⎟

⎠

→
(

P̂−s Q̂

P̂−s 0

)

,

ŴQLM =

⎛

⎜

⎜

⎜

⎝

P̂0 P̂−1 0 0

P̂0 0
. . . 0

0
. . . 0 P̂S

0 0 P̂−s 0

⎞

⎟

⎟

⎟

⎠

, (E2)

where we assumed integer spin for the QLM. For half-integer

spin we obtain the same structure but with P̂−1/2 in the left-

most column instead of P̂0. These matrices have exactly the

same structure as the transfer matrices used in Appendix C.

This is of course not a coincidence, as they encode the same

constraint. However, in the present case they are operator-

valued matrices.

It is important to note here that for the PXP model, even if

we write it with all P̂ operators explicitly, the MPO always has

rank 2. For the QLM, the matrix has full rank 2S + 1. While

it is still possible that the bond dimension could be reduced

using a nontrivial global gauge transformation, the simple

recipe used for PXP is not valid for that model and it is likely

that the bond dimension cannot be reduced below 2S + 1. This

would make any analytical TDVP approach cumbersome for

larger S in the case of the TSM/QLM.

APPENDIX F: SYMMETRIC SUBSPACE FOR HIGHER S

Here, we provide further details about the generalization of

the symmetric subspace introduced in Ref. [88] to constrained

models with higher spin. We develop two different subspaces

K2 and K4S , where the subscript denotes the number of values

characterizing each basis state in the subspace.

For K2, we first group all states based on the total number

of excitations on each sublattice (encompassing all odd and

even sites, respectively). By “excitations” we mean the num-

ber of times the spin raising operator was applied on top of

the lowest spin states. For example, we can consider the case

of S = 3
2

and the state |− 1
2
,− 3

2
, 3

2
, 1

2
〉. On the first sublattice

we need one application of ŝ+ to go from − 3
2

to − 1
2

and three

applications to go from − 3
2

to 3
2
. Hence, there are 3 + 1 = 4

excitations on it. On the second sublattice, there are 0 + 2 = 2

excitations. This state will then belong to the equivalence class

(n1 = 4, n2 = 2). Each n j takes values between 0 and SL, and

so the number of classes scales as O(S2L2), which is much

slower than the full Hilbert space.

We can then define the basis of K2 by creating one basis

state per equivalence class. Following the TDVP ansatz in

[58], we want our basis states to span a subspace formed

by coherent spin states that do not violate the Hilbert space

constraint. For the latter part, this means simply discarding

any state that would violate the constraint. For the former, we

have to make sure that our basis states can reproduce the spin

coherent states defined on a single site as

|(θ, φ)〉 = eiφ(ŝz+S)e−iθ ŝx |−S〉

=
2S

∑

k=0

√

(

2S

k

)

eik(φ−π/2)

× cos2S−k

(

θ

2

)

sink

(

θ

2

)

|k − S〉 . (F1)

The main prefactor to look for here is the square root of the

binomial coefficient. Indeed, if we now consider a state with

spin coherent states on multiple sites we have to multiply all

prefactors. So on a single sublattice, if we have a total of n

excitations spread onto k sites, we will end up with a total

prefactor of

ein(φ−π/2) cos2kS−n

(

θ

2

)

sinn

(

θ

2

) k
∏

j=1

√

(

2S

S−m j

)

, (F2)

where we could remove the sine, cosine, and exponential

terms from the product because their final exponent only

depends on the total number of excitations, which we know

is equal to nS. Since these three prefactors are the same for

all states in an equivalence class, they do not need to be

incorporated into the basis. However, this is not the case for

the binomial coefficient, as those vary from state to state.
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Hence, the basis states of our subspace K2 take the form

|n1, n2〉 =
1

N

∑

|φ〉∈(n1,n2 )

⎛

⎝

L
∏

j=1

√

(

2S

S + m j

)

⎞

⎠ |φ〉 , (F3)

where the sum is over all basis states in the equivalence class

(n1, n2), N is a normalization factor, and the m j are the spin

eigenvalues of the individual sites for the state |φ〉. If there

were no constraint, this would just be the set of global spin co-

herent states on each sublattice. However, as the equivalence

classes only contain states that do not violate the constraint,

they are nontrivial.

We now give some details on how to construct the basis

of the larger subspace K4S . The goal of this subspace is to

describe the state of the big spin formed by each of the 4S

hypercubes in the QLM graph. Each of them corresponds

to having one sublattice with all sites at a fixed spin eigen-

value m, and the other sublattice flipping freely between −m

and −m − 1. As a consequence, we have to keep track of

the number of sites having the spin eigenvalue m on each

sublattice for all m. As such, for each sublattice we have

2S numbers characterizing each state, corresponding to the

number of sites with spin eigenvalue m. Here we only deal

with hypercubes, corresponding to sets of spins 1
2
, and we

do not need to incorporate the prefactor as for the coherent

states with higher spin in K2. So each basis state is simply a

symmetric superposition of all states with the same population

distribution (the same number of sites with spin eigenvalue

m for each m) in both sublattices. For example, for S = 1

and L = 4 the state |n0
1 = 1, n1

1 = 2, n0
2 = 0, n1

2 = 2〉 would

be defined as

∣

∣n0
1=1, n1

1=0, n0
2=0, n1

2=2
〉

=
1

√
2

(|0, 1,−1, 1〉

+ |−1, 1, 0, 1〉). (F4)

Note that K4S = K2 for S = 1
2
, and for higher S we have K2 ⊂

K4S . Indeed, as the population distribution in every basis state

of K4S is the same, all of the states in it would get the same

prefactor in Eq. (F2). As such, every single basis state of K2

is in K4S , while the opposite is not true.
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scars and weak breaking of ergodicity, Nat. Phys. 17, 675

(2021).

[48] S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum

many-body scars and Hilbert space fragmentation: A review

of exact results, Rep. Prog. Phys. 85, 086501 (2022).

[49] S. Moudgalya, S. Rachel, B. A. Bernevig, and N. Regnault,

Exact excited states of nonintegrable models, Phys. Rev. B 98,

235155 (2018).

[50] S. Moudgalya, N. Regnault, and B. A. Bernevig, Entanglement

of exact excited states of Affleck-Kennedy-Lieb-Tasaki mod-

els: Exact results, many-body scars, and violation of the strong

eigenstate thermalization hypothesis, Phys. Rev. B 98, 235156

(2018).

[51] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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The ongoing quest for understanding nonequilibrium dynamics of complex quantum systems underpins the

foundation of statistical physics as well as the development of quantum technology. Quantum many-body

scarring has recently opened a window into novel mechanisms for delaying the onset of thermalization by

preparing the system in special initial states, such as the Z2 state in a Rydberg atom system. Here we realize

many-body scarring in a Bose-Hubbard quantum simulator from previously unknown initial conditions such as

the unit-filling state. We develop a quantum-interference protocol for measuring the entanglement entropy and

demonstrate that scarring traps the many-body system in a low-entropy subspace. Our work makes the resource

of scarring accessible to a broad class of ultracold-atom experiments, and it allows one to explore the relation

of scarring to constrained dynamics in lattice gauge theories, Hilbert space fragmentation, and disorder-free

localization.

DOI: 10.1103/PhysRevResearch.5.023010

I. INTRODUCTION

Coherent manipulation of quantum many-body systems far

from equilibrium is key to unlocking outstanding problems in

quantum sciences including strongly coupled quantum field

theories, exotic phases of matter, and development of en-

hanced metrology and computation schemes. These efforts,

however, are frequently plagued by the presence of interac-

tions in such systems, which lead to fast thermalization and

information scrambling: the behavior known as quantum er-

godicity [1–3]. A twist came with recent advances in synthetic

quantum matter, which enabled detailed experimental study

of thermalization dynamics in isolated quantum many-body

systems, leading to the observation of ergodicity-violating

phenomena in integrable [4] and many-body localized sys-

tems [5,6].

More recently, quantum many-body scarring has emerged

as another remarkable ergodicity-breaking phenomenon,
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where preparing the system in special initial states effectively

traps it in a “cold” subspace that does not mix with the ther-

malizing bulk of the spectrum [7,8]. Such behavior hinders

the scrambling of information encoded in the initial state and

suppresses the spreading of quantum entanglement, allowing

a many-body system to display persistent quantum revivals.

Many-body scarring was first observed in the Rydberg atom

experimental platform [9,10], and subsequent observations

of weak ergodicity breaking phenomena have attracted much

attention [11–13]. On the other hand, theoretical works have

unearthed universal scarring mechanisms [14–17], pointing to

the ubiquity of scarring phenomena in periodically driven sys-

tems [18–20] and in the presence of disorder [21,22]. Given

that many-body scarring in Rydberg atom systems has pre-

viously been reported in a single initial state, the Z2-ordered

state, many questions remain about the overall fragility of this

phenomenon and its sensitivity to the initial condition. It is

thus vital to extend the realm of scarring to a greater variety

of experimental platforms and more accessible initial condi-

tions, which would empower a fundamental understanding of

nonergodic dynamics in various research areas ranging from

lattice gauge theories to constrained glassy systems.

In this paper, we observe many-body scarring in a large-

scale Bose-Hubbard quantum simulator, where we employ a

tilted optical lattice to emulate the PXP model, a canonical

model of many-body scarring [23–26]. We demonstrate that

many-body scarring can result from a larger set of initial
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states, including the unit-filling state at finite detuning, hith-

erto believed to undergo fast thermalization [9]. Furthermore,

we demonstrate that periodic driving can be used to enhance

scarring behavior. Taking advantage of spin-dependent optical

superlattices, we measure the system’s entanglement entropy

by interfering identical copies in the double wells. We show

the average entropy of single-site subsystems to be a good

approximation of half-chain bipartite entropy, revealing a key

property of scarring: the “trapping” of the quantum system in

a low-entropy subspace, which prevents its relaxation into the

exponentially large Hilbert space.

The remainder of this paper is organized as follows. In

Sec. II we introduce our experimental setup and show how

it can realize the PXP model. In Sec. III we benchmark our

quantum simulation by observing many-body scarring from

the previously known Z2 initial state. We also demonstrate the

enhancement of scarring under periodic driving. In Sec. IV we

present our measurements of entanglement entropy, providing

deeper insight into the slow thermalization dynamics associ-

ated with scarred initial states. Finally, in Sec. V we extend

the scarring phenomenon to a regime at moderate detuning for

the unit-filling initial state. Our conclusions are presented in

Sec. VI, while Appendixes A–D contain the derivation of the

PXP mapping, further details on state preparation and mea-

surement techniques, and a numerical study of other scarred

initial conditions.

II. MAPPING THE PXP MODEL ONTO

THE BOSE-HUBBARD MODEL

The PXP model [27,28] describes a kinetically constrained

chain of spin-1/2 degrees of freedom. Each spin can exist in

two possible states, |◦〉 and |•〉, corresponding to the ground

state and excited state, respectively. An array of N such spins

is governed by the Hamiltonian

ĤPXP = �

N
∑

j=1

P̂j−1X̂ jP̂j+1, (1)

where X̂ = |◦〉〈•| + |•〉〈◦| is the Pauli x matrix, describing lo-

cal spin precession with frequency �. The projectors onto the

ground state, P̂ = |◦〉 〈◦|, constrain the dynamics by allowing

a spin to flip only if both of its neighbors are in the ground

state.

A remarkable property of the PXP model is that it is quan-

tum chaotic and yet it exhibits persistent quantum revivals

from a highly out-of-equilibrium |Z2〉 ≡ |•◦•◦ · · ·〉 initial

state [23,29–31]. The presence of revivals from a special

initial state in an overall chaotic system was understood to

be a many-body analog of the phenomena associated with a

single particle inside a stadium billiard, where nonergodicity

arises as a “scar” imprinted by a particle’s classical periodic

orbit [16,32,33]. In many-body scarred systems, eigenstates

were shown to form tower structures [23]. These towers are

revealed by the anomalously high overlap of eigenstates with

special initial states, and their equal energy spacing is re-

sponsible for quantum revivals. While previous experiments

on Rydberg atoms [9,10] have primarily focused on the |Z2〉
initial state, we will demonstrate that the PXP model can

effectively emerge in the Bose-Hubbard model, allowing us to

identify scarred revivals from a larger set of initial conditions,

including the polarized state |0〉 ≡ |◦◦◦ · · ·〉.
Our experiment begins with a 87Rb Bose-Einstein conden-

sate, which is compressed in the z direction and loaded into

a single layer of a pancake-shaped trap. We then perform

the superfluid-to-Mott-insulator phase transition with optical

lattices in the x-y plane. In both x and y directions, we have

a superlattice that is formed by superimposing the “short”

lattice, with as = 383.5 nm spacing, and the “long” lattice,

with al = 767 nm spacing [34,35], each of which can be indi-

vidually controlled. We realize independent one-dimensional

(1D) Bose-Hubbard systems in the y direction by ramping

up the short-lattice depth in the x direction over 40Er , with

Er = h2/8ma2
s being the short-lattice recoil energy, where h

is the Planck constant and m is the 87Rb atomic mass. The

short lattice in the y direction makes an approximately 4◦

angle with gravity, which results in a static linear tilt per

site of �g = 816 Hz; see Fig. 1(a). An external magnetic

field gradient �B may be further added to create a tunable

linear tilting potential �=�g+�B. The effective Hamiltonian

describing our simulator is

Ĥ = −J

L−1
∑

i=1

(b̂†
i b̂i+1 + b̂

†
i+1b̂i ) + Û + �̂, (2)

where J is the hopping amplitude, b̂ and b̂† are the standard

Bose annihilation and creation operators, the interaction en-

ergy is Û = (U/2)
∑L

i=1 n̂i(n̂i − 1), and the tilt potential is

�̂ = �
∑L

i=1 in̂i. L denotes the number of sites in the chain

with open boundary conditions, and we restrict ourselves to a

total filling equal to 1, i.e., with the same number of bosons as

lattice sites.

In order to realize the PXP model in the Bose-Hubbard

quantum simulator, we tune the parameters to the resonant

regime U ≈ � ≫ J [36,37], which has been studied exten-

sively in the context of quantum Ising chains [38–40]. In

this regime, three-boson occupancy of any site is strongly

suppressed, and doublons can only be created by moving a

particle to the left, e.g., · · · 11 · · · → · · · 20 · · · , or destroyed

by moving a particle to the right. The states of the PXP model

are understood to live on the bonds of the Bose-Hubbard

model. An excitation in the PXP model • j, j+1, living on the

bond ( j, j + 1), corresponds to the creation of a doublon

2 j0 j+1 on site j in the Bose-Hubbard chain. We identify the

unit-filling state |111 · · ·〉 with the PXP polarized state, |0〉.
Any other configuration of the PXP model can be mapped to

a Fock state in the Bose-Hubbard model by starting from the

unit filling, identifying the bonds that carry PXP excitations

and replacing the corresponding sites in the Mott state with

11 → 20. Applying this rule across the chain allows us to

map any basis state of the PXP model to a corresponding Fock

state in the Bose-Hubbard model; for example, the |Z2〉 state

maps to the Fock state |· · · 2020 · · ·〉. Figure 1(b) illustrates

the profound change in the connectivity of the Fock space near

the resonance U ≈ � ≫ J , with an emergent dynamical sub-

space isomorphic to the PXP model in the sector containing

the |Z2〉 state. For a detailed derivation of the mapping, see

Appendix A.
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(a)

(b)

FIG. 1. Realizing the PXP model in a Bose-Hubbard quantum

simulator. (a) A schematic of the optical lattice. Deep lattice po-

tential in the x direction forms isolated chains in the y direction,

where the linear tilting potential is applied. Spin-dependent super-

lattices consisting of two standing waves in each direction can be

individually controlled for state preparation and measurement. At

the resonance U ≈ � ≫ J , the dominant hopping process is 11 ↔
20. The PXP excitations, •, live on the bonds between the lattice

sites. The doublon configuration 20 in the Bose-Hubbard model

maps to an excitation in the PXP model, while all other config-

urations are mapped to an empty site, ◦. For example, the given

state |· · · ◦•◦•◦◦◦• · · ·〉 maps to the Fock state |· · · 120201120 · · ·〉.
(b) Emergence of the PXP subspace in the Bose-Hubbard model at

the resonance U ≈ � ≫ J . Dots represent Fock states of the tilted

Bose-Hubbard model with five bosons on five sites (restricting our-

selves to at most three bosons on any site). Lines denote the allowed

hopping processes. The color scale shows the sum of interaction and

tilt energies 〈Û + �̂〉 for each Fock state, and this value is conserved

by resonant processes. The PXP dynamical subspace and its Fock

states are explicitly labeled.

III. OBSERVATION OF Z2 QUANTUM MANY-BODY SCARS

To prepare the initial states, we first employ an entropy

redistribution cooling method [34] with the superlattice in

the y direction to prepare an n̄ = 2 Mott insulator in the left

(odd) sites, while removing all atoms on the right (even) sites

via site-dependent addressing [35]. This gives us the initial

state |ψ0〉 = |Z2〉 = |2020 · · ·〉 (see Appendix B). In the re-

gion of interest, we have prepared 50 copies of the initial

state |ψ0〉 isolated by the short lattice along the x direction.

Each copy extends over 50 short lattice sites along the y

direction.

We quench the system out of equilibrium by abruptly

dropping the y-lattice depth to 11.6Er , which corresponds to

switching J from 0 to 51(1) Hz. This is done while simul-

taneously adjusting the lattice depth in the x and z directions

accordingly, such that the interaction strength matches the lin-

ear tilt with U = � = �g ≈ 16J . After evolution time t , we

freeze the dynamics by ramping up the y-lattice depth rapidly

and read out the atomic density on the left (〈n̂Left〉) and right

(〈n̂Right〉) sites of the double wells formed by the y superlat-

tice successively [35,41]. This provides access to the density

imbalance, 〈M̂z〉 = (〈n̂Left〉 − 〈n̂Right〉)/(〈n̂Left〉 + 〈n̂Right〉), an

observable corresponding to the staggered magnetization in

the PXP model; see Fig. 2(a). Another observable is the

density of excitations in the PXP model, which is measured

by projecting out the even atomic number occupancy on

each site, then reading out the average odd particle density

〈P̂n̂∈odd〉(1) [41]. Due to highly suppressed multiboson occu-

pancy, we have 〈P̂|•〉〉 = 〈n̂doublon〉(1) ≈ (1 − 〈P̂n̂∈odd〉(1))/2.

Away from the resonance, the dynamics is ergodic, and

the staggered magnetization present in the initial |Z2〉 state

quickly decays with time; see Fig. 2(b). In contrast, by tuning

to the vicinity of the resonance, � = U , we observe distinct

signatures of scarring: The system approximately undergoes

persistent oscillations between the |Z2〉 ≡ |•◦•◦ · · ·〉 config-

uration and its partner shifted by one site, |Z̄2〉 ≡ |◦•◦• · · ·〉,
as can be seen in the staggered magnetization profile and the

density of excitations in Fig. 2(b). The density of excitations

does not distinguish between |Z2〉 and |Z̄2〉 states; hence

there is a trivial factor of 2 difference between the oscillation

frequencies of 〈P̂|•〉〉 and 〈M̂z〉.
The scarred oscillations in Fig. 2(b) are visibly damped

with a decay time τ = 49.6 ± 0.8 ms. Nevertheless, as shown

in Ref. [10], by periodically driving the system it is possible

to “refocus” the spreading of the many-body wave function in

the Hilbert space and thereby enhance the scarring effect, as

we demonstrate numerically in Fig. 2(c) and experimentally

in Fig. 2(d). Our driving protocol is based on modulating

the laser intensity of the z lattice, which translates into peri-

odic modulation of the interaction energy, U (t ) = � + U0 +
Um cos(ωt ), while � is kept fixed. This results in a modulation

of the density of doublons in the chain, acting as the analog of

the chemical potential in the PXP model.

Numerical simulations of the PXP model with the driven

chemical potential, shown in Fig. 2(c), demonstrate the dy-

namical stabilization of the Hilbert space trajectory. We

visualize the trajectory by plotting the average sublattice oc-

cupations, 〈n̂Left〉 and 〈n̂Right〉, normalized to the interval [0,1].

The |Z2〉 and |Z̄2〉 states are located at the coordinates (1,0)

and (0,1), which are the lower right and upper left corners

of this diagram, respectively. The polarized state |0〉 is at the

origin (0,0).

In the undriven case [left panel of Fig. 2(c)], the trajec-

tory at first oscillates between |Z2〉 and |Z̄2〉 states, while

passing through a region with a lower number of excitations.

However, as the time passes, the trajectory drifts, exploring

progressively larger parts of the Hilbert space. By contrast,

when the driving is turned on [right panel of Fig. 2(c)], the
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(a)

(b)

(c)

(d)

FIG. 2. Observation of Z2 quantum many-body scars in a Bose-Hubbard quantum simulator. (a) Starting from the state |ψ0〉 =
|· · · 2020 · · ·〉—the analog of the |Z2〉 state in the PXP model—we utilize gravity to provide linear tilt � = �g. We characterize quench

dynamics by measuring density imbalance and the number of doublons, corresponding to staggered magnetization 〈M̂z〉 and density of

excitations 〈P̂|•〉〉 in the PXP model. In the detuned regime � − U ≈ −2J , the dynamics is ergodic, and the system has no memory of the initial

state at late times. (b) Tuning to U ≈ �, we observe persistent oscillations in both 〈M̂z〉 and 〈P̂|•〉〉. This memory of the initial state is a signature

of weak ergodicity breaking due to quantum many-body scars. (c) and (d) Periodic modulation of the interaction U (t ) = � + U0 + Um cos(ωt )

with U0 = 1.85J , Um = 3.71J , and ω = 3.85J leads to an enhancement of scarring. (c) shows the numerically computed trajectory in the

sublattice occupation plane for the PXP model with N = 24 sites, with and without driving. The sublattice occupancies 〈n̂Left〉 and 〈n̂Right〉 are

normalized to the interval [0,1]. The driving is seen to strongly suppress the spreading of the trajectory. In (d), experimental measurements on

the driven Bose-Hubbard model show robust scarred oscillations at all accessible times. In both the static and driven cases, experimental data

for 〈M̂z〉 and 〈P̂|•〉〉 are in excellent agreement with TEBD numerical simulations shown by gray and red solid curves. The gray curve in the

lowest panel shows the modulation U (t ).

trajectory approximately repeats the first revival period of

the undriven case, even at late times. Thus the driving sta-

bilized the scarred revivals without significantly altering their

period.

Experimental measurements on the driven Bose-Hubbard

model in Fig. 2(d) find a strong enhancement of the amplitude

of the oscillations in staggered magnetization with the decay

time τ increasing to 208 ± 10 ms, while the period remains

nearly the same as in the static case. Optimal driving param-

eters were determined numerically using a combination of

simulated annealing and brute-force search; see Supplemental

Material [42].

We note that the experimental measurement of 〈M̂z〉 damps

slightly faster than the theory prediction, shown by a curve

in Fig. 2(b), at late times (t > 60 ms). We attribute this to

an inherent residual inhomogeneity across the lattice, which

results in dephasing between different parts of the system,

as well as possible decoherence induced by scattering of the

lattice lasers. To avoid the effect of these undesired dephasing

or decoherence effects, in the following we limit our investi-

gation to times up to 60 ms.

IV. UNRAVELING THE DETAILS OF SCARRED

DYNAMICS VIA QUANTUM INTERFERENCE

Entanglement entropy is key for characterizing scarring

behavior. Entropy provides a window into the evolution of

the system’s wave function and the spreading of quantum

entanglement. For a system trapped in a scarred subspace,

thermalization is inhibited, and the system exhibits suppressed

entropy growth and periodic fidelity revivals. Measuring these

observables usually requires brute-force state tomography, but

for our 50-site Bose-Hubbard system with a Hilbert space

dimension exceeding 1028, this approach is generally impos-

sible.

However, the superlattice in the x direction allows us to

probe entanglement entropy by interfering identical copies

in the double wells, analogous to the 50 : 50 beam splitter

(BS) interference employed in photonics experiments [43];

see Fig. 3(a). This is done by freezing the dynamics along

the chains in the y direction after evolution time t ; then we

interfere copies of |ψ (t )〉 in the double wells formed by

the x superlattice (see Appendix C). After the interference,

a parity projection helps read out the average odd particle
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(a)

(b)

FIG. 3. Probing many-body scarred dynamics via quantum in-

terference. (a) After evolution time t , we freeze the dynamics in

the y direction, and then by interfering two identical copies in the

double wells along the x direction, we obtain the second-order Rényi

entropy. (b) The entropy for a single site, S(1), is seen to have robust

oscillations with the same frequency as in Fig. 2(b), indicating a

lack of thermalization. The slow growth of entropy in the absence

of driving (upper panel) is strongly suppressed when we drive the

system using the same parameters as in Fig. 2(d) (lower panel). In

both cases, the single-site entropy is a good approximation to the

half-chain entropy, SL/2, evaluated numerically using TEBD (gray

curve).

density 〈P̂BS
n̂∈odd〉(1), which gives us access to the second-order

Rényi entropy [44]. We measure the entropy of single-site

subsystems S(1) = −ln(Tr(1)[ρ̂(t )2]) = −ln(1 − 2〈P̂BS
n̂∈odd〉(1)),

where ρ̂(t ) = |ψ (t )〉 〈ψ (t )| is the density matrix. Entangle-

ment entropy S(1), shown in Fig. 3(b), grows much more

slowly than expected in a thermalizing system. The growth

is accompanied by oscillations with the same frequency as

〈P̂|•〉〉 in Fig. 2(b), implying that the system returns to the

neighborhood of product states |Z2〉 and |Z̄2〉. Furthermore,

the entropy growth becomes almost fully suppressed by peri-

odic driving, indicating that the scarred subspace disconnects

from the thermalizing bulk of the spectrum. Numerical time-

evolving block decimation (TEBD) simulations confirm that

this lack of thermalization at the single-site level provides a

good approximation for the behavior of larger subsystems, as

demonstrated by the half-chain bipartite entropy SL/2 plotted

in Fig. 3(b). This shows that scarring traps the system in a van-

ishingly small corner of an exponentially large Hilbert space.

V. EMERGENCE OF DETUNED SCARRING

IN THE POLARIZED STATE

Up to this point, we have provided extensive benchmarks

of our quantum simulator against the previously known case

of Z2 quantum many-body scars [9]. In this section we

demonstrate that our quantum simulator also hosts distinct

scarring regimes for initial states other than |Z2〉, which are

enabled by detuning and further stabilized by periodic drive.

We highlight this finding by observation of scarring behavior

in the polarized state |0〉, previously not associated with scars.

We first prepare the unit-filling state |1111 · · ·〉 by trans-

ferring |2, 0〉 to |1, 1〉 states in the superlattice [34], which

maps to the polarized state in the PXP model (see also Ap-

pendix B). In the absence of detuning or periodic drive, we

observe fast relaxation: Both the density of excitations and

single-site entropy rapidly relax, with no visible oscillations

beyond the timescale ∼1/J; see Fig. 4(a). Interestingly, when

we bias the system by a static detuning, U0 = −2.38J , we

observe the emergence of oscillations in all three observ-

ables, accompanied by a slight decay; see Fig. 4(b). Finally,

if we also periodically modulate the interaction with ampli-

tude Um = 1.54J and frequency ω = 4.9J × 2π , we find a

dramatic enhancement of scarring [Fig. 4(c)]. In particular,

entropy now shows pronounced oscillations, signaling robust

scar-induced coherence at all experimentally accessible times.

The intuitive picture behind our observations is summa-

rized as follows. In the absence of detuning or periodic drive,

the system initialized in the polarized state undergoes chaotic

dynamics and rapidly explores the entire Hilbert space. By

biasing the system via static detuning, thermalization can be

suppressed over moderate timescales. Finally, by periodically

driving the system it is possible to “refocus” the spreading of

the many-body wave function in the Hilbert space and thereby

enhance the scarring effect, similar to the findings of Ref. [10]

for the |Z2〉 state. In the remainder of this section, we present

our theoretical analysis of the experiment that supports this

interpretation of the dynamics.

Figure 5 shows the results of exact diagonalizations of

the PXP model in Eq. (1) in the presence of static detuning,

Ĥ (μ) = ĤPXP + μ0

∑

i n̂i, where n̂i takes a value equal to 1 if

site i contains an excitation and 0 otherwise. The static chemi-

cal potential μ0 is proportional to the Bose-Hubbard detuning

parameter U0 in Fig. 4. Figure 5(a) plots the overlap of all

energy eigenstates |E〉 of the pure PXP model (μ0 = 0) with

the polarized state |ψ0〉 = |0〉. As expected, we do not see any

hallmarks of scars, such as ergodicity-violating eigenstates

with anomalously enhanced projection on |0〉. Moreover, the

lowest-entropy eigenstates, denoted by squares in Fig. 5(b),

are the known Z2 scarred eigenstates [31] which are hidden

in the bulk of spectrum when the overlap is taken with the |0〉
state.

On the other hand, when we add the static chemical po-

tential μ0 = 1.68�, corresponding to the detuning value in

Fig. 4, a band of scarred eigenstates with anomalously large

overlap with |0〉 emerges; see Fig. 5(c). The band of scarred

eigenstates, highlighted by star symbols in Fig. 5(c), spans

the entire energy spectrum, but their support on |0〉 is biased

towards the ground state due to the breaking of particle-hole

symmetry by detuning. The detuned scarred states also have

anomalously low entanglement entropy, as seen in Fig. 5(d).

A few comments are in order. We note that exact di-

agonalization confirms that the PXP model remains chaotic

for the value of detuning used in Fig. 5(c), and this de-

tuning is not large enough to trivially fragment the entire

spectrum into disconnected sectors with the given numbers

of excitations [42]. Moreover, we confirmed that the scarred

eigenstates in Fig. 5(c) are distinct from the ones associated

with the |Z2〉 state in Fig. 5(a). Thus it remains to be under-

stood if these eigenstates can be described within the su(2)
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(a) (b) (c)

FIG. 4. Emergence of many-body scarring in the polarized state. (a) Fast thermalization from the unit-filling state in the Bose-Hubbard

chain at U = � resonance. (b) Emergence of scarred dynamics in the presence of static detuning. (c) Dynamical stabilization of scarred

dynamics in the presence of both detuning and periodic driving. The top and bottom rows show the experimental measurements of the density of

excitations and second Rényi entropy, respectively. The ergodic case shows fast growth of the half-chain entropy compared with the single-site

entropy, while for the scarred dynamics, the single-site entropy approximates well the half-chain entropy, with or without periodic driving.

The static detuning is U0 = −2.38J , and the modulation parameters are Um = 1.54J and ω = 4.9J × 2π . The curves are the results of TEBD

simulations.

spectrum-generating algebra framework developed for the

|Z2〉 state in Ref. [45].

Nevertheless, similar to the |Z2〉 case, the scarring from

the |0〉 state can be further enhanced by periodic modulation

of the PXP chemical potential, μ(t ) = μ0 + μm cos(ωt ). By

evaluating the corresponding Floquet operator, we find that

a single Floquet mode develops a very large overlap with

the |0〉 state [42]. The existence of a single Floquet mode,

whose mixing with other modes is strongly suppressed, gives

rise to robust oscillations in the dynamics well beyond the

experimentally accessible timescales.

To probe the ergodicity of the dynamics from the polar-

ized state, we compare the difference between the predictions

of the diagonal and canonical ensembles for an observable

such as the average number of excitations; see Fig. 6(a).

These two ensembles are expected to give the same re-

sult if the strong eigenstate thermalization hypothesis (ETH)

holds [46] and all eigenstates at a similar energy den-

sity yield the same expectation value for local observables.

Figure 6(a) shows that the discrepancy between the two

ensembles is the strongest around μ0 ≈ 1.68�, where we ob-

serve strong scarring. For μ0/� close to 0, the polarized state

(a) (c)

(b) (d)

FIG. 5. Eigenstate properties of the detuned PXP model. (a) Overlaps of all eigenstates of the PXP model with the polarized state |ψ0〉 =
|0〉. (b) Bipartite entanglement entropy of the eigenstates in (a). The squares mark the previously known Z2 scarred eigenstates. (c) and (d) Same

as (a) and (b) but for the PXP model with the static chemical potential μ0 = 1.68�, approximately corresponding to the experimental value

of detuning in Fig. 4. The stars denote the detuned scar eigenstates, which have high overlap with the |0〉 state as well as low entropy. All data

are obtained by exact diagonalization of the PXP model on a ring with N = 32 sites in the zero-momentum and inversion-symmetric sector.
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FIG. 6. Nonergodic dynamics from the polarized state in the

detuned PXP model. (a) Difference between the expectation values

of the diagonal and canonical ensembles for the average number

of excitations. The discrepancy is maximized around μ0/� ≈ 1.68.

(b) The average number of excitations at μ0/� = 1.68 following the

quench from the |0〉 state shows good agreement between the exact

quantum dynamics and TDVP approximation. The exact dynamics is

for system size N = 32 spins. (c) Trajectory in the TDVP manifold

for different values of μ0/�. The color scale denotes quantum leak-

age γ , defined in the text, which bounds the accuracy of the TDVP

approximation. The markers are spaced in time by �t = 0.15/�.

For the optimal value μ0 = 1.68�, identified in (a) and also used

in experiment, the trajectory avoids the high-leakage region and

approximates well the quantum dynamics, while it is not limited to a

small corner of the many-body Hilbert space.

thermalizes quickly towards the thermal value expected for a

state whose expectation value of the energy is near the middle

of the many-body spectrum. For very large μ0/�, we enter a

trivial regime where the polarized state is close to the ground

state and only a few eigenstates at low energies are relevant

for the dynamics. Hence, in this regime, quenching from the

polarized state is similar to quenching from a thermal state at

a very low temperature, and the agreement between the two

ensembles is again very good. However, in this regime, only a

very small part of the many-body Hilbert space is explored by

the dynamics. This is not the case in the scarred regime that

we investigate experimentally, and this can be demonstrated

by studying the relevant classical limit, as shown next.

In the single-particle case, scarred quantum dynamics

originates from an unstable periodic orbit in the classical

limit h̄ → 0 [47]. In a many-body system, one approach to

establishing a quantum-classical correspondence is to project

the Schrödinger dynamics into a variational manifold, e.g.,

spanned by matrix product states [48], a method known as the

“time-dependent variational principle” (TDVP). It was shown

that the scarred dynamics of the |Z2〉 state in the PXP model is

well captured by the TDVP approach, allowing one to identify

a classical orbit [16]. In Figs. 6(b) and 6(c) we utilize the

TDVP approach to gain a semiclassical understanding of the

detuned scarred dynamics from the |0〉 state. We parametrize

the TDVP manifold using translation-invariant, spin-coherent

states compatible with the Rydberg blockade constraint [49].

The states are defined by the Bloch sphere angles θ and φ,

where sin(θ ) is proportional to the density of excitations,

while φ describes the phase. In the thermodynamic limit, we

can obtain classical equations of motion for θ and φ (see

Ref. [50] for a detailed derivation). Figure 6(b) demonstrates

that this classical dynamical system provides an excellent

approximation of the quantum trajectory for sufficiently large

values of μ0, including μ0 = 1.68�.

To quantify the accuracy of the TDVP approach in cap-

turing the quantum dynamics, we use “quantum leakage”: the

instantaneous norm of a component of the state vector that lies

outside the TDVP manifold, γ 2 ≡ (1/N )|| |ψ̇〉 − iĤ |ψ〉 ||2
[16]. For the initial state |0〉, the leakage has a simple analytic

expression γ 2 = �2 sin6 θ/(1 + sin2 θ ) [50]. The leakage is

higher as θ is increased, corresponding to a larger density

of excitations. In this regime, i.e., for small values of μ0/�,

the PXP constraint has a strong effect, and the spin-coherent

state ansatz does not faithfully capture the dynamics. On the

other hand, for large values of μ0/�, the leakage is low, but

θ is confined to values near zero; thus the trajectory does

not explore much of the Hilbert space. This corresponds to

the trivial case where the dynamics is confined to very low

densities of excitations, rendering the constraint unimportant.

Finally, in the intermediate regime of μ0/� where we observe

the scarring, the TDVP dynamics is able to “avoid” the high-

leakage area, as seen in Fig. 6(c), while at the same time θ

is not pinned to zero and the dynamics is not confined to one

corner of the Hilbert space.

VI. DISCUSSION AND OUTLOOK

We performed a quantum simulation of the paradigmatic

PXP model of many-body scarring using a tilted Bose-

Hubbard optical lattice. We demonstrated the existence of

persistent quantum revivals from the |Z2〉 initial state and their

dynamical stabilization, opening up a route for the investiga-

tion of scarring beyond Rydberg atom arrays. By harnessing

the effect of detuning, we observed a scarring regime as-

sociated with the polarized initial state. As the latter state

is spatially homogeneous, its preparation does not require a

superlattice, which makes further investigations of scarring

phenomena accessible to a large class of ultracold-atom ex-

periments.

Moreover, we have demonstrated that periodic driving can

lead to a striking decoupling of the scarred subspace from the

rest of the thermalizing bulk of the spectrum, as revealed by

the arrested growth of entanglement entropy. The mechanism

of this enhancement is a subject of ongoing investigations. On

the one hand, Ref. [51] used a kicked toy model to argue that

the scarring enhancement originates from a discrete time crys-

talline order. On the other hand, Ref. [52] studied the cosine
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drive employed in experiment, finding two distinct regimes

with long-lived scarred revivals. In the regime corresponding

to the parameter values in Fig. 2 above, the driving parameters

need to be fine-tuned to match the intrinsic revival frequency

of the undriven scarred system. Moreover, the stabilization

was no longer possible when the system was perturbed by

terms which destroy scarring in the undriven case. This sug-

gests that driving indeed acts as an enhancement mechanism,

preventing dynamics from “leaking” into the thermalizing

bulk.
Our demonstration of scarring in the |0〉 state highlights the

importance of energy density. While the |Z2〉 has predominant
support on the eigenstates in the middle of the spectrum, i.e.,
it constitutes an “infinite temperature” ensemble, the support
of the |0〉 state is biased towards one end of the spectrum as
a result of particle-hole symmetry breaking via the detuning
potential. This suggests that, depending on the effective tem-
perature, one can realize scarring from a much larger class of
initial states with a suitable choice of detuning and periodic
driving protocols. We illustrate this in Appendix D by simu-
lating the quench of the chemical potential in the PXP model
(see also Ref. [50]).

The versatility of optical lattice platforms allows one to
directly probe the link between many-body scarring and other
forms of ergodicity-breaking phenomena, such as Hilbert
space fragmentation and disorder-free localization, as the lat-
ter can be conveniently studied in our setup by varying the
tilt. In this context, we note that Ref. [12] has recently used
the tilt potential to demonstrate Hilbert space fragmentation
in the Fermi-Hubbard optical lattice. By contrast, in this pa-
per we explored ergodicity breaking due to many-body scars
occurring within a single fragment of the Hilbert space. While
many-body scarring can be induced in the Fermi-Hubbard
model by tuning to a similar resonance condition [53], the
underlying mechanism is an approximate dimerization of the
chain, which is conceptually different from the PXP-type scar-
ring considered here.

In future work, it would be interesting to explore realiza-
tions of new scarring models by tuning to other resonance
conditions and other types of lattices, including ladders and
two-dimensional arrays. Indeed, it is known that the U(1)
quantum link model (QLM) [54,55] can be exactly mapped to
the PXP model [56]. As such, recent large-scale experiments
realizing the U(1) QLM [57,58] can in principle also probe
our results. A proposal has recently been introduced to extend
these setups to (2 + 1)D [59], where a mapping between the
U(1) QLM and PXP model does not hold, which would allow
one to probe how the scarring regimes discovered in this
paper would behave in higher spatial dimensions. Finally, the
observation of long-lived quantum coherence due to scarring
and its controllable enhancement via periodic modulation lays
the foundation for applications such as quantum memories
and quantum sensing [60,61].
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APPENDIX A: MAPPING THE TILTED 1D

BOSE-HUBBARD ONTO THE PXP MODEL AT � ≈ U

RESONANCE

The Hamiltonian describing our 1D Bose-Hubbard model
is given in Eq. (2) of the main text, with J denoting the hop-
ping amplitude, ĤU denoting the corresponding interaction
term, and Ĥ� denoting the tilt potential. We denote by L the
number of lattice sites and assume open boundary conditions
(OBCs). Unless specified otherwise, we fix the filling factor
to ν = 1, i.e., the number of bosons is equal to the number of
sites in the chain.

In the U,� ≫ J limit, the energy spectrum of the Hamil-
tonian in Eq. (2) splits into bands with approximately constant
expectation value of the diagonal terms, 〈ĤU + Ĥ�〉 ≈ const,
and the Hilbert space becomes fragmented. At the U ≈ � ≫
J resonance, the only process which conserves 〈ĤU + Ĥ�〉 is
11 ↔ 20, i.e., doublons can only be created by moving a parti-
cle to the left and destroyed by moving a particle to the right.
In the connected component of the Fock state |111 · · · 111〉,
the system in the resonant regime is described by an effective
Hamiltonian

Ĥeff = −J

L−1
∑

i=1

(b̂†
i b̂i+1n̂i(2−n̂i )n̂i+1(2−n̂i+1)+H.c.), (A1)

which results from the first-order Schrieffer-Wolff transforma-
tion applied to Eq. (2) [62]. In the Supplemental Material [42]
we discuss the effect of higher-order terms in the Schrieffer-
Wolff transformation.

In the remainder of this Appendix, we show that the Hamil-

tonian (A1) is equivalent to the PXP Hamiltonian [27,28] (see

also Ref. [36] for the original derivation of the mapping and a

recent review [37]). The connected component of the Hilbert

space contains only certain types of two-site configurations

(20, 11, 12, 02, 01), while all other two-site configurations are

forbidden (22, 21, 10, 00). If we consider the configuration 20

to be an excitation, all allowed configurations can be mapped

to those of the PXP model as follows:

· · · 20 · · · ↔ ◦ • ◦,
· · · 11 · · · ↔ ◦ ◦ ◦,
· · · 12 · · · ↔ ◦ ◦ •, (A2)

· · · 02 · · · ↔ • ◦ •,
· · · 01 · · · ↔ • ◦ ◦.
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Note that excitations live on the bonds between sites and this

mapping also includes links to the two surrounding sites. For

example, the configuration · · · 2020 · · · maps to ◦ • ◦ • ◦ and

not to ◦ • ◦ ◦ •◦. On the other hand, the configuration 2020

with OBCs on both sides maps to • ◦ •, as there are no bonds

across the boundaries.

The effective Hamiltonian (A1) can be rewritten as

Ĥeff = −J

L−1
∑

i=1

⎛

⎜
⎜
⎝

b̂
†
i b̂i+1δn̂i,1δn̂i+1,1

︸ ︷︷ ︸√
2P̂j−1σ̂

+
j P̂j+1

+ b̂
†
i+1b̂iδn̂i,2δn̂i+1,0

︸ ︷︷ ︸√
2P̂j−1

ˆ̂σ−
j P̂j+1

⎞

⎟
⎟
⎠

. (A3)

In this equation, the index i labels the sites, while j labels

the bonds between sites. The Kronecker delta functions have

been expressed in terms of projectors, P̂j = |◦ j〉〈◦ j |, and the

bosonic hopping terms correspond to the spin raising and

lowering operators, σ̂±
j , on the bond j. We can use delta

functions because there are no configurations with more than

two particles per site in this connected component and the

only possible values of n̂i(2 − n̂i ) are 0 and 1. Moving a

particle to the neighboring site on the left corresponds to

creating an excitation, and moving to the right corresponds

to annihilating, while delta functions act as constraints.

Finally, the effective Hamiltonian is equivalent to the PXP

Hamiltonian

ĤPXP = �

N
∑

j=1

(P̂j−1σ̂
+
j P̂j+1 + P̂j−1σ̂

−
j P̂j+1)

= �

N
∑

j=1

P̂j−1X̂ jP̂j+1, (A4)

when we set � = −
√

2J and N = L − 1, with X̂ j ≡
|◦ j〉〈• j | + |• j〉〈◦ j | denoting the usual Pauli x matrix. In the

case of OBCs, the two boundary terms become X̂1P̂2 and

P̂N−1X̂N . Note that the effective bosonic model in Eq. (A3)

for a system size L is equivalent to the PXP model for size

N = L − 1 since the number of bonds is the number of sites

minus 1.

In the PXP model, the initial states which lead to pro-

nounced quantum revivals are the two states with the maximal

number of excitations: the Néel states, |•◦•◦· · ·•◦〉 and

|◦•◦•· · ·◦•〉 [23,31]. The equivalent states in the tilted Bose-

Hubbard model are |2020 · · · 201〉 and |12020 · · · 20〉, for odd

system sizes, and |2020 · · · 20〉 and |120 · · · 201〉 for even

sizes. In our experimental setup, it is not possible to exactly

prepare the |2020 · · · 201〉 state due to the inability to inde-

pendently control single sites. Instead, our experiment realizes

the |2020 · · · 20〉 state, which corresponds to the Néel state

|•◦•◦· · ·•◦•〉 in the PXP model with an odd number of sites

and OBCs.

Figure 7 numerically demonstrates the mapping between

the tilted Bose-Hubbard model in Eq. (2) and the PXP model

in Eq. (1) in a lattice size L = 9. The figure shows the

overlap of eigenstates with the Néel state as a function of

energy, for the choice of parameters U = � = 12 and J = 1.

The energy spectrum is split into bands with approximately

constant expectation value of the sum of interaction and tilt

FIG. 7. Numerical demonstration of the mapping between the

PXP and tilted Bose-Hubbard models. The overlap of the state

|202020201〉 with the eigenstates of the tilted Bose-Hubbard model

in Eq. (2) for J = 1 and U = � = 12 (in units of h̄ = 1) is shown.

The color indicates the expectation value of the diagonal part of

the Hamiltonian, 〈ĤU + Ĥ�〉, for each eigenstate. The black crosses

correspond to the effective model in Eq. (A3), shifted by the en-

ergy E = 〈202020201|Ĥ |202020201〉 = 432. The inset shows the

top part of the band with the highest overlap, where a band of

scarred eigenstates analogous to that in the PXP model can be

seen.

terms 〈ĤU + Ĥ�〉, as indicated by different colors. The inset

shows the top part of the highest-overlap band, around the

energy E = 〈202020201|Ĥ |202020201〉 = 432. This band is

described by the effective Hamiltonian (A1), which preserves

the expectation value 〈ĤU + Ĥ�〉 and is equivalent to the PXP

Hamiltonian. A band of scarred eigenstates is magnified in the

inset, and indeed resembles similar plots for the PXP model

[31]. As the two Néel states have the maximal number of dou-

blons at filling factor ν = 1, this type of dynamics also leads

to oscillations in doublon number, which was experimentally

measured in Fig. 2.

APPENDIX B: STATE PREPARATION AND DETECTION

Our experiment starts out with a two-dimensional Bose-

Einstein condensate of 87Rb atoms prepared in the hyperfine

state |↓〉 = 5S1/2 |F = 1, mF = −1〉. By applying a mi-

crowave pulse, atoms can be adiabatically transferred to the

state |↑〉 = 5S1/2 |F = 2, mF = −2〉, which is resonant with

the imaging laser and thus can be detected. The atoms are ini-

tially confined to a single layer of a pancake-shaped trap with

3 µm period. In both x and y directions, we have an optical su-

perlattice that can be controlled separately. Each superlattice

potential is generated by superimposing two standing waves

with laser frequency λs = 767 nm and λl = 1534 nm, which

can be described by

V (x) = V x
s cos2(kx) − V x

l cos2(kx/2 + θx ),

V (y) = V y
s cos2(ky) − V

y

l
cos2(ky/2 + θy), (B1)
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(a)

(b)

FIG. 8. Quantum interference. (a) Interfering |1, 1〉 product

states in the double wells. (b) Interfering |2, 0〉 product states in the

double wells. Solid curves are TEBD simulations. Experimental data

are shifted forward at earliest times due to the 50 µs ramping time of

the lattice potential.

where V
x(y)

s(l )
is the depth of the short (long) lattice in the x

(y) direction, k = 2π/λs is the short-lattice wave number, and

θx(y) is the relative phase between the short and long lattices

in the x (y) direction.

We first perform a cooling technique by loading the atoms

into a staggered superlattice in the y direction at θy = π/4,

meanwhile ramping up only the short lattice in the x direction.

We tune the y-superlattice potential to create a Mott insulator

with n̄ = 2 filling in odd sites, while even sites form a n̄ = 1.5

superfluid, serving as a reservoir for carrying away the thermal

entropy [34].

Atoms at even sites are removed by performing site-

selective addressing. This is done by first setting θy = 0 to

form double wells and then tuning the polarization of the

short-lattice laser along the y direction to create an energy

splitting between even and odd sites for the |↓〉-to-|↑〉 tran-

sition. We transfer the atoms at even sites to |↑〉 and remove

them with the imaging laser [35]. In this way we have pre-

pared the initial |Z2〉 state |2020 · · ·〉. The same site-selective

addressing procedure is also utilized to read out atomic

density on even and odd sites separately in experiment. Inside

each isolated double-well unit, we can perform state engineer-

ing that transfers the state |2, 0〉 to |1, 1〉 [34]. This results

in the unit-filling state |1111 · · ·〉 which corresponds to the

polarized state |0〉 in the PXP model.

APPENDIX C: QUANTUM INTERFERENCE

IN THE DOUBLE WELLS

The beam splitter (BS) interference is realized in the

balanced double wells formed by the superlattices in the x

direction, expressed in Eq. (B1) by setting θx = 0. In the

noninteracting limit, indistinguishable bosonic particles com-

ing into the interference at t = 0 interfere according to the

bosonic bunching. Therefore having equal numbers of atoms

coming into the two ports at t = 0 results in 〈P̂BS
n̂∈odd〉 = 0

at tBS, while having different numbers of atoms interfering

results in 〈P̂BS
n̂∈odd〉 = 0.5. Each copy of atoms coming into

the interference is prepared individually, and hence there is

no global phase between them, resulting in the equivalence

between the two output ports [44].

To implement the quantum-interference protocol, we

quench the x-lattice potentials to V x
s = 6Er and V x

l = 5Er ,

resulting in the intra-double-well tunneling at J ≈ 740 Hz

and inter-double-well tunneling J ′ ≈ 35 Hz. Simultaneously,

we lower the lattice depth in the x direction to 25Er and

trapping frequency in the z direction to 1.4 kHz, achieving

an interaction of U ≈ 360 Hz. Two examples are shown here

in Fig. 8, where we interfere product states |1, 1〉 [Fig. 8(a)]

or |2, 0〉 [Fig. 8(b)] in the double wells and read out the

average odd particle density. At tBS = 0.14 ms we identify

the beam splitter operation, where |1, 1〉 gives 〈P̂BS
n̂∈odd〉(1) =

0.01(3), while |2, 0〉 gives 〈P̂BS
n̂∈odd〉(1) = 0.48(3). We simulate

the interference dynamics with a 20-site chain consisting of

ten double-well units. We find good agreement at later times,

FIG. 9. Emergence of many-body scarring by quenching the

chemical potential in the PXP model from μi = −0.76� to μf =
1.6�. (a) The dynamics of quantum fidelity (blue solid curve) is sim-

ilar to that of the polarized state for the same value of μf (red dashed

curve). The overlap between the time-evolved state and |0〉 (black

dash-dotted curve) shows that a significant state transfer occurs be-

tween them. (b) The overlap of the prequench ground state with the

eigenstates of Ĥ (μf ) displays characteristic scar tower structures.

Red crosses denote the highest overlaps with the |0〉 state in each

scarred tower. The overlap of the prequench ground state with |0〉 and

|Z2〉 states is given in the inset. All data are for N = 32 spins in the

zero-momentum, inversion-symmetric sector of the Hilbert space.
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while the earlier times are affected by the finite time in the

lowering and raising of lattice potentials, which takes 50 µs.

The finite interaction strength and inter-double-well tunneling

together result in about 1% error in the beam splitter operation

in the simulation, but this is beyond the precision of our

absorption imaging.

APPENDIX D: OTHER SCARRED STATES

In addition to the |Z2〉 and |0〉 states, we find other re-

viving states in the PXP model with static detuning, Ĥ (μ),

introduced in Sec. V. These initial states are the ground states

of Ĥ (μi), and they exhibit revivals when the detuning is

quenched to a different value, Ĥ (μi) → Ĥ (μf ). This setup

generalizes the quench protocols studied in the main text. For

example, setting μi→−∞, the prequench ground state is sim-

ply the |Z2〉 state, and then quenching to μf = 0 (pure PXP

model) gives rise to scarred many-body revivals. Conversely,

if we set μi→∞, the ground state is |0〉, and quenching to

μf = 1.68� also leads to scarring, as this value corresponds

to the Bose-Hubbard detuning value in Fig. 4.

We numerically identify similar scarring phenomenology

in a larger set of initial conditions by varying the parameters

μi and μf . In Fig. 9 we present an illustrative example for

μi = −0.76� and μf = 1.6�. Unlike the |Z2〉 and |0〉 states,

the ground state of Ĥ (μi), for general values of |μi| < 2, is

not a product state. Nevertheless, such ground states have low

entanglement entropy and can be prepared experimentally,

while at the same time they are nearly orthogonal to the |Z2〉
and |0〉 states (the overlap with the latter is on the order 10−5).

We emphasize that this does not require fine-tuning: We find

large regions of μi and μf leading to scarring.

The dynamics in Fig. 9 is similar to that of the polarized

state evolved with Ĥ (μ = 1.68�). During the evolution, the

state periodically transfers to the polarized state and then

returns to itself. The frequency of revivals is approximately

the same as that for the polarized state evolved with the same

static detuning μf , but the revivals are more prominent. The

overlap of the Ĥ (μi) ground state with all the eigenstates of

Ĥ (μf ) is shown in Fig. 9(b). These overlaps exhibit a similar

pattern to the overlap of eigenstates with the polarized states

(red crosses). Furthermore, the atypical eigenstates appear to

be the same in the two cases, up to a difference in phase.

This is similar to what we find for the |Z2〉 and |Z̄2〉 states

at μf = 0: Both states have the same magnitude of overlap

with each eigenstate, while the phases are different.
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Periodic driving has been established as a powerful technique for engineering novel phases of matter and

intrinsically out-of-equilibrium phenomena such as time crystals. Recent paper by Bluvstein et al. [Science

371, 1355 (2021)] has demonstrated that periodic driving can also lead to a significant enhancement of quantum

many-body scarring, whereby certain nonintegrable systems can display persistent quantum revivals from special

initial states. Nevertheless, the mechanisms behind driving-induced scar enhancement remain poorly understood.

Here we report a detailed study of the effect of periodic driving on the PXP model describing Rydberg atoms

in the presence of a strong Rydberg blockade—the canonical static model of quantum many-body scarring. We

show that periodic modulation of the chemical potential gives rise to a rich phase diagram, with at least two

distinct types of scarring regimes that we distinguish by examining their Floquet spectra. We formulate a toy

model, based on a sequence of square pulses, that accurately captures the details of the scarred dynamics and

allows for analytical treatment in the large-amplitude and high-frequency driving regimes. Finally, we point

out that driving with a spatially inhomogeneous chemical potential allows to stabilize quantum revivals from

arbitrary initial states in the PXP model, via a mechanism similar to prethermalization.

DOI: 10.1103/PhysRevB.106.104302

I. INTRODUCTION

Quantum many-body scarring (QMBS) [1] has recently

been added to the growing list of ergodicity-breaking phe-

nomena, previously actively studied in integrable models [2]

and many-body localization [3,4]. In conventional ergodic

systems, even in the absence of a coupling to a thermal

bath, the interactions between constituent degrees of freedom

lead to fast thermalization [5–7]. A distinguishing feature of

QMBS systems is that ergodicity is broken by a relatively

small subset of the system’s energy eigenstates, which coexist

with the thermalizing bulk of the spectrum [1,8]. Experi-

mentally, QMBS can be detected by preparing the system

in special initial states that have predominant support on the

ergodicity-breaking eigenstates. Such initial states are found

to display persistent quantum revivals, in contrast to other

“generic” initial states whose dynamics is featureless [9,10].

The investigations of such “weak” ergodicity breaking phe-

nomena continue to attract much attention, both in terms of

new experimental realizations [11–13] as well as universal

mechanisms [14–19] for violating the eigenstate thermaliza-

tion hypothesis (ETH) [5,6]. Theoretical studies continue to

identify large classes of models that exhibit various aspects of

QMBS phenomena. Some notable examples include various

nonintegrable lattice models [20–27], models of correlated

fermions and bosons [28–36], frustrated magnets [37,38],

topological phases of matter [39,40], lattice gauge theories

[41–45], and periodically-driven systems [46–52].
Recent experiments [10] on QMBS utilising Rydberg atom

arrays in various geometries, both one-dimensional and two-
dimensional, have shown that periodic driving can stabilize
the revivals that occur in the static system [53–55]. Similar
effect was also observed in experiments on a Bose-Hubbard
quantum simulator [36], where QMBS phenomenon was iden-
tified in a larger class of initial states. In both cases, the
optimal driving frequency was empirically found to be related
to the frequency of revivals in the static model. Although
the driving protocol is relatively simple, the mechanism be-
hind it remains to be understood. Previous work in Ref. [56]
provided an important insight that the experimental driving
protocol can be approximated by a simpler two-step (kicked)
driving scheme. Such a toy model is easier to treat analytically
and it captures some of the observed phenomenology. How-
ever, its relation to the experimental driving protocol is not
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transparent, in particular there is no direct mapping between
the parameters of the two protocols (except for the driving
frequency, which is equal in the two cases).

Moreover, further questions naturally arise. For example,

the only two initial states whose revivals were stabilized by

periodic driving (the Néel and polarized states) are precisely

the ones that exhibit QMBS in the static version of the same

model (the polarized state becomes scarred in the presence

of static detuning [36]). This suggests that there are funda-

mental limitations to the driving, which only “works” for

such special states. If the enhancement mechanism is indeed

related to QMBS, it would imply that it should be possible

to improve the revivals in a variety of other QMBS models

that have been studied theoretically. Another question is how

to predict the optimal driving parameters without performing

a computationally-costly brute force search. To this end, Ref.

[10] has identified a window of driving frequencies centered

around twice the frequency of revivals in the static model.

A subharmonic response to driving was observed in this

frequency regime, suggesting a relation to the discrete time

crystal, which also warrants further investigation.

In this paper we numerically and analytically study the

effects of driving on the PXP model describing Rydberg atoms

in the regime of strong Rydberg blockade. In Sec. II we intro-

duce the model and investigate in detail the spatially-uniform

cosine driving scheme that was used in recent experiments.

We identify two regimes with distinct properties (dubbed

Type-1 and Type-2). In Sec. III we focus on the optimally

driven Néel and polarized state. In Sec. IV we introduce a

toy model based on the square pulse driving protocol. We

show that this protocol better approximates the cosine-drive

dynamics than the previously studied kicked drive [56]. The

square-pulse protocol is amenable to analytical treatment in

certain limits, as we demonstrate for the high-amplitude and

high-frequency drive regimes. Finally, in Sec. V we discuss

the implications of our results on the relation between QMBS

and the enhancement by periodic driving, suggesting that

QMBS is a necessary ingredient in the Type-1 (typically

low-amplitude) regime, while Type-2 driving (typically high-

amplitude) can be also applied to nonscarred models. We

summarize our findings and identify some future directions

in Sec. VI. Appendices A–D provide additional information

on system size scaling, a modified (spatially inhomogeneous)

cosine driving protocol that can generate revivals from any

initial product state, high-frequency expansion for the Floquet

Hamiltonian, and an alternative way to visualize the trajectory

of a state in Hilbert space.

II. PXP MODEL AND COSINE DRIVE

The PXP model [57,58] describes a kinetically constrained

chain of spin-1/2 degrees of freedom. The chain serves as a

model for the system of Rydberg atoms, each of which can

exist in two possible states, |◦〉 and |•〉, corresponding to the

ground state and the excited state, respectively. An array of N

such atoms is governed by the Hamiltonian

HPXP = �

N
∑

j=1

Pj−1X jPj+1, (1)

where X j = |◦ j〉〈• j | + |• j〉〈◦ j | is the Pauli x matrix on site

j, describing local Rabi precession with frequency �. The

projectors onto the ground state, Pj = |◦ j〉〈◦ j |, constrain the

dynamics by allowing an atom to flip its state only if both of its

neighbors are in the ground state. Unless specified otherwise,

we use periodic boundary conditions (PBC) and set the PXP

term strength to � = 1.

Before introducing the driving scheme, we briefly review

some pertinent properties of the static PXP model. The PXP

model is quantum chaotic [53]. However, it was found that

preparing the system in the Néel or |Z2〉 ≡ | • ◦ • ◦... • ◦〉
state, which has an excitation on every other site, leads

to persistent quantum revivals [54,59,60]. Analogously, the

translated Néel state, |Z′
2〉 ≡ | ◦ • ◦ •... ◦ •〉, also displays re-

vivals. In a conventional thermalizing system, the revivals are

not expected as the |Z2〉 initial state has predominant support

on the energy eigenstates in the middle of the many-body

spectrum, thus it corresponds to “infinite” temperature. The

presence of revivals in a special initial state in an overall

chaotic system was understood to be a many-body analog

of the phenomena associated with a single particle inside a

stadium billiard, where nonergodicity arises as a “scar” im-

printed by a particle’s classical periodic orbit [55,61,62]. In

QMBS systems, the eigenstates were shown to form tower

structures [53], resulting from the anomalously high overlap

of eigenstates with the |Z2〉 initial state, and the equal energy

spacing between the towers leads to quantum revivals. We

mention that the scarring in the PXP model was also shown

to persist in higher dimensions [10,63,64] and in the presence

of certain perturbations [54,65,66], including disorder [67].

The revivals in the PXP model are not perfect, in particular

the wave function fidelity,

F (t ) ≡ |〈ψ (t )|ψ0〉|2, (2)

with the initial state chosen to be |ψ0〉 = |Z2〉, visibly decays

over moderate times [54]. Reference [10] showed that the

decay timescale can be significantly extended by introducing

a cosine modulation �(t ) of the chemical potential,

H (t ) = HPXP − �(t )
∑

i

ni, �(t ) = �0 + �m cos(ωt ), (3)

where ni = |•i〉〈•i| is the density of excitations on site i, �0

is the static detuning, �m modulation amplitude and ω the

driving frequency.

The periodic modulation of the chemical potential in

Eq. (3) was shown to stabilize and enhance the revivals in

the quantum fidelity, both in numerical simulations and in

experiments on quantum simulators [36]. The enhancement

was achieved for two different initial states, the previously

mentioned |Z2〉 state, as well as the polarized state, which

has no excitations, |0〉 ≡ |◦◦◦ . . . ◦◦◦〉. The optimal driving

frequency for the Néel state was found to be close to twice

the frequency of revivals in the pure PXP model [�(t ) = 0];

for the polarized state, the optimal frequency was instead

close to the frequency of revivals in the detuned PXP model

[�(t ) = �0]. The optimal values of �0 and �m were found

empirically and have different values for these two states.

In order to determine more precisely the optimal driving

parameters, we scan the parameter space (�0, �m, ω) for the
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highest average fidelity between the times t = 0 and t = τ ,

〈F 〉t =
1

τ

∫ τ

0

F (t )dt, (4)

where we set τ = 100. In Figs. 1(a) and 1(b) we plot the

average fidelity as a function of �0 and �m at the fixed

frequency ω, for the Néel and polarized initial state. In this fig-

ure we restrict to the case �m � 0 since 〈F 〉t (�0,�m, ω) =
〈F 〉t (−�0,−�m, ω). This symmetry comes from the fact that

the dynamics of the system is exactly equal for ±�(t ). Chang-

ing the sign of �(t ) only changes the sign of the quasienergy

spectrum and multiplies the corresponding Floquet modes by

the operator
∏

j Z j (with Z j being the Pauli z matrix on site

j), which commutes with the driving term and anticommutes

with the PXP term. The frequency is fixed to a value close

to the revival frequency of the static model, i.e., we choose

ω = 2.72 in (a) and ω = 3.71 in (b). These two figures have

many similarities, such as parallel diagonal lines consisting

of “butterfly-shaped” peaks. However, a closer look reveals

an important difference. The Néel state plot contains several

additional peaks, which are very narrow and typically located

between the bright diagonal lines. For example, one of these

peaks is approximately around the point (�0, �m) = (1.15,

2.67) and corresponds to an interesting optimal parameter

regime for the Néel state, which will be studied below. We

will call these narrow peaks “Type-1” peaks.

The other bright regions present in both Figs. 1(a) and

1(b) will be dubbed “Type-2 peaks” (excluding |�0| ≫ 1 and

�m � |�0|). These parameter regions are broader, i.e., the

parameters do not have to be finely tuned, and they typically

occur at higher driving amplitudes than Type-1 peaks. Like

Type-1, their position depends on the driving frequency, but

the mechanism of revival stabilization is different. We will

discuss Type-2 peaks below in relation to the polarized initial

state.

It is important to note that the Néel and polarized state are

two special cases. The cross sections in Figs. 1(a) and 1(b)

look very different for other initial product states, with low

and very narrow peaks of the cost function instead of Type-

2 peaks, while the Type-1 peaks are completely absent. One

such example is shown in Fig. 16(a) in Appendix B.

Finally, Fig. 1(c) shows three illustrative cross sec-

tions taken at different frequencies, ω ∈ {1, 2, 3}. The initial

state is the Néel state and the color scale corresponds to

the value of the average fidelity cost function. We see that

this cost function has many peaks (bright regions), which

move and deform as ω is varied. The position of the fidelity

peaks in (�0, �m) space depends approximately linearly on

the driving frequency. In all three cases, there are two large

bright regions in the |�0| ≫ 1 and �m � |�0| regime. When

the static detuning �0 is large, the energy spectrum splits

into disconnected bands. This means that the wave function

cannot spread through the entire Hilbert space and the fidelity

remains relatively high during the evolution, never dropping

down to zero. These trivial regimes do not correspond to

typical QMBS behavior, hence we exclude those where the

minimal fidelity from t = 0 to t = 100 is nonzero. The opti-

mal parameter regimes that will be discussed in detail below

are summarized in Table I.

FIG. 1. Average revival fidelity 〈F (t )〉t over time interval

[0, 100] for the PXP model with � = 1 and cosine drive at system

size N = 20. The Type-1 peaks are encircled in red, while the re-

gions containing Type-2 peaks are denoted by cyan lines. (a) Néel

initial state at fixed frequency ω = 2.72. (b) Polarized initial state

at fixed frequency ω = 3.71. (c) Néel initial state for three different

frequencies, ω ∈ {1, 2, 3}, �0 ∈ [−10, 10], �m ∈ [0, 16].

Next we determine the optimal window of driving fre-

quencies. In order to do this, we choose one of the narrow

peaks of the cost function in Fig. 1 and follow it as we
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TABLE I. Optimal driving parameters (cosine drive).

Initial state �0 �m ω Floquet spectrum

Néel 1.15 2.67 2.72 two arcs

Polarized 1.68 −0.5 3.71 one arc

Polarized 0.64 7.55 2.90 multiple arcs

vary the frequency ω. The driving parameters �0 and �m are

reoptimized for each frequency. When we leave the optimal

frequency window, the peak disappears, but other peaks may

become more prominent, as summarized in Fig. 2. We note

that even though the original peak is no longer clearly visible,

there is still a local maximum of the cost function and we are

able to track it outside of the optimal frequency window. In

order to characterize the quality of revivals, in Fig. 2 we used

the following cost function:

Cl =
1

M

M
∑

n=1

[F (lnT ) − F (l (n − 1/2)T )], (5)

where T is the driving period and M denotes the number

of revivals averaged over. The integer l defines the order of

the response, e.g., l = 1 for the harmonic and l = 2 for the

subharmonic responses we will study below. In both cases we

average over lM = 40 driving periods. The value of Cl cor-

responds to the difference between average maximum fidelity

and average minimum fidelity over the first M revivals, with

the value of 1 corresponding to perfect revivals. In Fig. 2 we

use Cl instead of the previously introduced average fidelity

because it gives better results when comparing different fre-

quencies. Namely, as the driving frequency is increased, the

revivals become more dense and the width of an individual

FIG. 2. Optimal values of �0 and �m depending on the driving

frequency ω. The color represents the value of Ck in Eq. (5), with

k = 2 for the top panels (subharmonic response) and k = 1 for the

bottom panels (harmonic response). The shadowed regions mark the

optimal frequency windows (Ck higher than 90% of its maximal

value). Top row: Néel state. (a) “Main” Type-1 peak (maximum

around ω = 2.72). (b) Another Type-1 peak (maximum around ω =
2). Bottom row: Polarized state, Type-2 peaks. (c) Low amplitude.

(d) High amplitude.

revival increases in comparison with the revival period, which

then results in increased average fidelity. Therefore, decay-

ing revivals at higher frequencies can lead to higher average

fidelity than stabilized and constantly high revivals at lower

frequencies. The new cost function does not suffer from this

problem and can accurately estimate the quality of revivals

independently of the frequency. However, we still use the first

cost function for fixed frequency scans, such as those in Fig. 1,

since the average fidelity can capture all types of revivals (e.g.,

harmonic, subharmonic, or even incommensurate with the

driving frequency), without the need to specify their expected

frequency.

In Fig. 2(a) we plot the data for the peak that passes

through a set of Néel state optimal parameters (�0 = 1.15,

�m = 2.67, ω = 2.72). We look at M = 20 revivals in eval-

uating the cost function C2 in Eq. (5). The dependence of �0

and �m on ω is seen to be approximately linear. In Fig. 2(a)

we see that there is indeed a window of optimal frequencies,

approximately 2.5 < ω < 3.5, where we can obtain a good

subharmonic response to periodic driving. This window is

centered at a frequency slightly higher than twice the bare

revival frequency of the Néel state in the pure PXP model

(ω0 ≈ 2.66). In Appendix A, we study the system size scaling

of this optimal driving frequency, see Fig. 13. For N � 10, the

optimal frequency window for the Néel state barely changes

with increasing system size. Note that there is a minimal

frequency in Fig. 2(a) bellow which it is impossible to obtain

revivals. On the other hand, it is possible to enhance the

revivals in the high-frequency regime, but the lifetime of these

revivals is finite and decreases with increasing frequency.

We can repeat the same procedure for other Type-1 peaks,

see Fig. 2(b) for one example. In this case we start from the

optimal parameters that correspond to the “one-loop” trajec-

tory, which will be studied in more detail in Sec. V B (�0 =
−1.17, �m = 4.81, ω = 2.00). The dependence of optimal

�0 and �m on ω is again linear, but the optimal frequency

window is now more narrow and centered around ω = 2,

which significantly deviates from ω0 ≈ 2.66. The results for

other Type-1 peaks are found to be similar (data not shown).

Finally, this procedure can also be adapted to the harmonic

response, e.g. for the polarized and other initial states with

the cost function C1. The results for the polarized state and

M = 40 in the low- and high-amplitude regime (parameters

from Table I) are shown in Figs. 2(c) and 2(d), respectively. In

both regimes, the optimal frequency window is much wider

than for the Néel state.

III. NÉEL AND POLARIZED STATE REVIVALS

In this section we investigate in more detail the optimally

driven Néel and polarized initial states.

A. Néel state

Using the procedure described in Sec. II—scanning the pa-

rameter space for the highest average fidelity—we found the

following optimal parameters for the Néel state: �0 = 1.15,

�m = 2.67, ω = 2.72. This is the lowest-amplitude Type-1

peak in Fig. 1(a). In addition to brute force scanning, we also

employed the simulated annealing optimization algorithm,
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FIG. 3. Driven Néel state (�0 = 1.15, �m = 2.67, ω = 2.72). (a) Quantum fidelity F (t ) for system size N = 24. (b) Entanglement entropy

SA for a subsystem with NA = 12 sites. (c) Entanglement entropy of the Floquet modes for system size N = 20. Color scale shows the average

number of excitations 〈
∑

i ni〉 in each Floquet mode.

which produced similar optimal values. We note that our driv-

ing parameters slightly differ from those considered in Ref.

[10], �0 = 1.00 and �m = 2.00, which were obtained at the

fixed frequency ω = 2.66.
Figure 3(a) shows the evolution of quantum fidelity for

the optimal parameters quoted above. In contrast to the un-
driven case, the revivals are clearly enhanced and remain
stable over long times. Note that the revival frequency is
half the driving frequency. This is an example of period dou-
bling (subharmonic response), which was related to a discrete
time crystal in Ref. [10]. The growth of the bipartite von
Neumann entanglement entropy SA is strongly suppressed by
driving, as shown in Fig. 3(b). To evaluate SA, we partition the
chain into two equal halves and evaluate the reduced density
matrix for one of the subsystems, ρA(t ) = trB|ψ (t )〉〈ψ (t )|,
by tracing out the other (B) subsystem. This yields
SA = −tr ρA ln ρA.

Furthermore, we numerically construct the one period evo-

lution operator of the optimally driven system and diagonalize

it in order to obtain the corresponding Floquet modes. The

bipartite entanglement entropy versus the quasienergy of all

the Floquet modes is plotted in Fig. 3(c). The color represents

the expectation value of the number of excitations 〈
∑

i ni〉 for

each mode. This entropy plot has an interesting “two arc”

structure. The origin of these two arcs will be explained in

Sec. III C below. The two lowest-entropy modes (marked by

the red circles) also have the highest overlap with the Néel

state. These two modes are said to be π paired, since they

are separated by �ǫ ≈ ω/2 = π/T in quasienergy. Such two

π -paired Floquet modes were also observed in Ref. [56],

where the cosine drive was approximated by a delta function

pulsed drive, as well as in other systems, which exhibit time-

crystalline behavior but no scarring [68]. We find that the

two modes are approximately (|Z2〉 + |Z′
2〉)/

√
2 and (|Z2〉 −

|Z′
2〉)/

√
2, which explains the observed period doubling [36].

However, the subharmonic response becomes harmonic if we

work in the momentum k = 0 sector and choose a translation

invariant initial state (|Z2〉 + |Z′
2〉)/

√
2. In that case, there

will still be two arcs in the entropy plot, but only one high-

overlap Floquet mode.

In addition to (�0,�m) = (1.15, 2.67) parameters, there

are several other Type-1 peaks in the cost-function scan at

fixed frequency ω = 2.72 that we have seen in Fig. 1(a).

The entanglement entropy plots of their Floquet modes also

display the distinct “two arcs” structure. These other Type-1

peaks also lead to enhanced revivals, although with a finite

lifetime at this particular driving frequency. However, some

of those peaks are higher at other frequencies and can lead to

completely stabilized revivals, see for example Fig. 2(b) and

the discussion in Sec. V B. The number, position, and height

of Type-1 peaks depends on the driving frequency, while the

driving amplitude of peaks that result in stable revivals is

typically lower than that of Type-2 peaks.

B. Polarized state

For the polarized initial state, particularly in the low-

amplitude driving regime, the optimal frequency value is

found to be more sensitive to the cost function (〈F 〉t or C1)

used for the optimization. In particular, the C1 cost func-

tion results in a larger value of the driving amplitude, see

Fig. 2(c). Below we will use a set of parameters close to the

low-amplitude edge of the optimal frequency window. These

parameters were also used to drive the polarized state in a

recent experiment on the Bose-Hubbard quantum simulator

of the PXP model [36].

Although the fully polarized state |0〉 shows no QMBS

behavior and quickly thermalizes in the pure PXP model,

it was shown that this can be changed by applying a static

detuning term and then further enhanced by periodic driving

[36]. Figure 4(a) shows the evolution of quantum fidelity for

the polarized state in the pure PXP model (black), with static

detuning (red), and with periodic driving (blue). Similar to

the Néel state, the growth of entanglement entropy is strongly

suppressed by the static detuning and even more so with peri-

odic driving, see Fig. 4(b). The entanglement entropies and the

numbers of excitations for all Floquet modes of the optimally

driven system (�0 = 1.68, �m = −0.50, ω = 3.71) can be

observed in Fig. 4(c). This driving frequency approximately

matches that of revivals in a static system with detuning �0 =
1.68 [red line in Fig. 4(a)], where QMBS for the polarized

state has been previously observed [36]. However, unlike the

Néel state, there is now only one arc and a single Floquet

mode that has high overlap with the polarized state (≈64%,

encircled in red).

Apart from this set of driving parameters, which were stud-

ied in Ref. [36], there are also other sets of driving parameters

that lead to robust revivals from the polarized state. One such

104302-5



ANA HUDOMAL et al. PHYSICAL REVIEW B 106, 104302 (2022)

FIG. 4. Driven polarized state. Top row: “low-amplitude” driving regime (�0 = 1.68, �m = −0.50, ω = 3.71). (a) Quantum fidelity,

system size N = 24. (b) Entanglement entropy for the subsystem size NA = 12. (c) Entanglement entropy of Floquet modes, N = 26 in zero

momentum sector. Color scale shows the average number of excitations 〈
∑

i ni〉 in each Floquet mode. Bottom row: Same as the top row, but

for “high-amplitude” driving regime (�0 = 0.64, �m = 7.55, ω = 2.90).

example is shown in Figs. 4(d)–4(f) (�0 = 0.64, �m = 7.55,

ω = 2.90). Upon first glance, this situation is completely dif-

ferent from Figs. 4(a)–4(c). In the latter case, the revivals

essentially stem from static detuning, which creates scarring,

and the driving further stabilizes them. By contrast, in the

former case, the revivals are generated by periodic driving.

The optimal driving frequency was found using simulated

annealing and it does not appear to correspond to any special

frequency in the static system. Moreover, the Floquet mode

entanglement entropy plot also has a different structure, as

can be observed in Fig. 4(e). There are now multiple arcs

(N/2 + 1 of them), each with a well-defined excitation num-

ber. This suggests that the Floquet Hamiltonian is fragmented

in this parameter regime (see further discussion in Sec. III C

below). There is a single Floquet mode that has near-unity

overlap (>90%) with the polarized state, which accounts for

the revivals. The mode belongs to its own one-dimensional

excitation number sector, since the polarized state is the only

state that contains no excitations. The mode is furthermore

separated from the neighboring 〈
∑

i ni〉 = 1 sector by a gap

�ǫ, which practically does not depend on the system size—

see Fig. 12 in Appendix A.

Based on these insights, in Appendix B we present a modi-

fied, spatially inhomogeneous cosine driving scheme, which

can enhance the revivals from any initial product state, in-

cluding generic states that do not display QMBS. The main

idea is to change the driving protocol in such a way that

the desired initial state becomes the ground state of the

new time-dependent term. Driving with optimal parameters

then results in similar phenomenology to the polarized state

in the high-amplitude regime [Fig. 4(d)–4(f)], including the

fragmentation of the Floquet Hamiltonian into sectors with

different quantum numbers.

We note that both of the driving regimes presented in Fig. 4

belong to what we referred to as Type-2 peaks. In these cases,

the optimal parameters do not require particular fine tuning,

i.e., there is a fairly broad range of parameter values for

which the driving stabilizes QMBS revivals, unlike the Type-1

peaks where such regions are more narrow and finding opti-

mal parameters requires more careful optimization. It was not

possible to produce a subharmonic response for the polarized

state, which is expected since it does not have a translated

partner state, such as Z2 and Z
′
2. Since the two Néel states

also belong to their own excitation number sector in Fig. 4(f),

it is also possible to use the �0 = 0.64, �m = 7.55, ω = 2.90

parameters to stabilize the revivals from these states, as will

be explained in Sec. V.

C. Origin of “multiple arcs” structure

In order to explain the structure of entanglement entropy

plots in Figs. 3 and 4, we treat the PXP term in Eq. (3) as

a perturbation. First we consider the � = 0 case when the

Hamiltonian is diagonal but still time periodic. The Floquet

modes are then product states and their quasienergies depend

only on the value of static detuning �0 and their number

of excitations 〈
∑

i ni〉, while the quasienergy spectrum has

periodicity ω,

ǫ =
〈

∑

i

ni

〉

�0 mod ω. (6)

As the number of excitations increases, the Floquet modes are

winding around the spectrum. Different ratios of �0/ω will

result in different structures. When the PXP term is turned on,

these states start to hybridize. However, only those states that

are close in excitation number can hybridize, since the PXP
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term can only change this number by ±1. They also need to

be close in quasienergy, but what is “close enough” depends

on the magnitude of the PXP term in the Floquet Hamilto-

nian. Since the cosine drive is difficult to treat analytically,

especially for the Néel state optimal parameters, which are

in the nonperturbative regime, in the following Sec. IV we

introduce a more tractable square pulse approximation of the

cosine driving protocol.

In the parameter regime optimal for the Néel state (Type-

1), the � = 0 Floquet modes form two diagonal lines (even

and odd excitation numbers). Only the states belonging to the

same diagonal will mix when � > 0, which will result in two

separate structures at � = 1. This is the origin of the two arcs

in Fig. 3(c). Note that the Floquet modes in the two arcs no

longer consist of the states with only even or only odd number

of excitations. No symmetry that distinguishes between the

two arcs could be identified.

The situation is different for the polarized state high-

amplitude optimal parameters (Type-2). At � = 0, the

Floquet modes that are close in quasienergy are far apart in

excitation number, and the magnitude of the PXP term in the

Floquet Hamiltonian is small for these parameters, so there is

no mixing between the sectors even when � = 1. This results

in N/2 + 1 separate sectors as shown in Fig. 4(f), each con-

taining only the modes with a certain number of excitations.

The low-amplitude regime from Fig. 4(c) is a special case

where the smaller arcs merge into one large arc, while the

Floquet modes are still arranged according to their numbers of

excitations and the 〈
∑

i ni〉 = 0 sector is sufficiently separated

from the rest.

IV. SQUARE PULSE DRIVE

The cosine drive in Eq. (3) is difficult to treat analytically.

Therefore, it is desirable to find a simpler model that accu-

rately captures the dynamics, at least at the qualitative level.

Previous papers [10,56] have considered the following delta

function pulse driving model:

�(t ) = θ
∑

n∈Z

δ(t − nT ), (7)

where T = 2π/ω is the driving period and θ is a parameter

of the drive. This driving protocol results in perfect revivals

from any initial state when θ = π due to a special symmetry

property of the Floquet operator in that case [56]. However,

the Néel state is seen to be special when θ is varied away from

π : while the revival from other initial states sharply decays,

the Néel revival stays robust over a finite range of θ in the

vicinity of π . Although this model has been well understood,

its relation to the cosine driving scheme is not completely

transparent.

We will now show that a simple square pulse model is a

better approximation for the cosine drive. The square pulse

protocol is defined by

�(t ) = �0 + �m(t ),

�m(t ) =

⎧

⎨

⎩

�m, 0 � t � T/4

−�m, T/4 < t � 3T/4

�m, 3T/4 < t � T,

(8)

FIG. 5. (a) Cosine drive (black) vs square pulse drive (red).

(b) Red: Cosine drive fidelity, F (t ) = |〈ψ (0)|ψ (t )〉|2. Black

(dashed): Delta function pulse fidelity, F ′(t ) = |〈ψ (0)|ψ ′(t )〉|2.

Blue: Comoving fidelity Fc(t ) = |〈ψ (t )|ψ ′(t )〉|2. Néel state, L = 20,

optimal driving parameters. (c) Same for square pulse instead of delta

function pulse. (d) System size scaling of comoving fidelity averaged

over the first driving period for the square (red) and delta function

pulse (blue). Optimal driving parameters: Néel state (squares), po-

larized state low-amplitude (circles), polarized state high-amplitude

(triangles).

as illustrated in Fig. 5(a). We note that similar driving schemes

were previously considered in Refs. [50,51], however, our

square pulse model differs from those by a quarter of driv-

ing period time shift, which results in very different Floquet

dynamics.

A comparison of the delta pulse in Eq. (7) and the square

pulse in Eq. (8) is shown in Figs. 5(b) and 5(c), where we plot

the quantum fidelity F (t ) for the exact evolution under cosine

drive, as well as the fidelity for the system driven by the delta

or square pulse. Moreover, we directly evaluate and plot the
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comoving fidelity, Fc(t ) = |〈ψ (t )|ψ ′(t )〉|2, which represents

the overlap between the wave function evolved using the co-

sine driving protocol, |ψ (t )〉, and the one evolved using the

approximate protocol, |ψ ′(t )〉 (delta or square pulse). Here,

the initial state is the Néel state and the driving parameters

are set to their optimal values (�0 = 1.14, �m = 2.08, ω =
2.72 for the square pulse). We note that the optimal driving

frequency and static detuning are approximately the same

for both the cosine and square pulse drive, but the driving

amplitude has to be reoptimized and is approximately 20%

lower in the latter case. For the delta function pulse, we use

θ = π and the same frequency as the cosine drive.

The comoving fidelity is seen to be much higher for the

square pulse drive, compare Figs. 5(b) and 5(c). This signals

that the square pulse driving protocol is a much better approx-

imation for the cosine drive than the delta function pulse. In

particular, while the delta pulse is highly accurate near the

revival points, the square pulse remains accurate throughout

the evolution, including away from the revival points. This

difference becomes more pronounced in larger system sizes,

as can be observed in Fig. 5(d), where we plot the scaling of

the co-moving fidelity, averaged over the first driving period

with the system size N . In general, the agreement between

the cosine drive and square pulse is better when the driv-

ing frequency is high and amplitude low. For example, the

agreement is particularly good for the polarized state in the

low-amplitude regime, where the comoving fidelity is almost

equal to 1 over many driving periods. In addition to accurately

capturing the dynamics of the cosine drive, the square pulse

drive also reproduces the two special Floquet modes and a

“two arc” entanglement entropy spectrum resembling the one

in Fig. 3(c). Finally, knowing the optimal driving parameters

for the square pulse allows us to estimate the parameters for

the cosine drive by simply using the same driving frequency

and static detuning while increasing the amplitude by 25%.

The optimal driving parameters identified for the Néel state

(�0 = 1.15, �m = 2.67, ω = 2.72) and for the polarized state

(�0 = 1.68, �m = −0.50, ω = 3.71) are all of the same order

of magnitude as � = 1, the characteristic energy scale of the

static Hamiltonian. Thus, the stabilization of revivals in these

cases due to periodic driving appears to be a nonperturbative

effect. Nevertheless, for the square pulse protocol, we can

obtain useful analytical insights into the mechanism of the

revival stabilization in two extreme limits: the limit of high

amplitudes and the limit of high driving frequency. In the

remainder of this section, we discuss separately these two

cases.

A. High-amplitude regime

When the driving amplitude �m is high, the square pulse

allows us to describe the dynamics perturbatively. At first

order in the small parameter λ± ≡ �/(�m ± �0) ≪ 1, it

straightforward to obtain the Floquet Hamiltonian using the

Pauli algebra. We start from the Hamiltonian

H (t ) = −
�(t )

2

∑

j

(I j + Z j ) − �
∑

j

X̃ j, (9)

where X̃ j ≡ Pj−1X jPj+1 denotes the Pauli x matrix dressed by

projectors, and �(t ) is given by the square pulse in Eq. (8).

We ignore the energy shift −�(t )/2 and assume �m ± �0 ≫
� > 0.

The evolution operator from t = 0 to t = T/4 and from

t = 3T/4 to T is denoted U+ and from t = T/4 to t = 3T/4

by U−. At first order λ± ≪ 1, we can factorize these evolution

operators

U+ ≈
∏

j

ei(λ+X̃ j+Z j )
T
4 , (10)

U− ≈
∏

j

ei(λ−X̃ j+Z j )
T
2 , (11)

since the commutator between λX̃ j + Z j and λX̃ j′ + Z j′ on

different sites j and j′ is second order in λ. We can then ex-

pand the exponentials using the properties of Pauli operators

(Z2 = I as well as X̃ 2 = I) in terms of sine and cosine func-

tions, and evaluate the total evolution operator for one period

U = U+U−U+. At first order in λ, the final expression can be

easily converted back into exponential form, from which the

first-order Floquet Hamiltonian can be directly read off. While

the algebra is tedious, the calculation is straightforward and

results in the following first-order Floquet Hamiltonian:

H
(1)
F = −

�0

2

∑

i

gT,�0,�m
Pi−1XiPi+1 + Zi,

gT,�0,�m
=

2�

�2
m − �2

0

{[

1 + 2
sin (�m−�0 )T

4

sin �0T
2

]

�m − �0

}

.

(12)

The first-order Floquet Hamiltonian contains a PXP term

whose magnitude is controlled by the prefactor g, which de-

pends on the values of driving parameters �0, �m and the

drive period T = 2π/ω.

The g prefactor explains several features of the fidelity

phase diagram, as can be seen in Fig. 6. When g is small,

the Floquet Hamiltonian is almost diagonal and the Floquet

modes are close to product states, which have well-defined

numbers of excitations. As long as g is small enough [bright

regions in Fig. 6(a)], there is no mixing between different

excitation-number sectors. This leads to fragmentation and

the polarized state ends up in its own one-dimensional sector,

while the two Néel states belong to another two-dimensional

sector. These states are therefore close to a Floquet mode

and keep reviving in the driven system, which leads to high

average fidelity [bright regions in Fig. 6(b)]. This explains the

origin of Type-2 peaks.

Conversely, when g is large (for example around the diago-

nals �0 = ±�m) the sectors are mixed and the Floquet modes

have large variance of the excitation number, meaning that

they are superpositions of many product states with different

excitation numbers. We do not expect revivals in these regions

and Fig. 6(b) confirms that this is mostly the case. However,

the optimal driving parameters for the Néel state (Type-1

peaks) are actually in the dark region along the diagonal.

Some features of the phase diagram in Fig. 6(b) cannot

be explained only by Eq. (12). Irrespective of the value of g,

there are dark lines (no revivals) around �0 = nω/2, where
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FIG. 6. Analytical versus numerical results. Néel state, ω = 2.

(a) 1 − |gT,�0,�m
|. Note that some values are outside of [0,1] interval.

(b) Average fidelity 〈F (t )〉t .

n is an integer (this is more visible for the cosine drive in

Fig. 1). The explanation is related to the quasienergies of

the Floquet modes when the PXP term is turned off (� = 0),

see the discussion in Sec. III C. In this case, the Hamiltonian

is diagonal and the Floquet modes are product states. Their

quasienergies depend only on the value of static detuning �0

and the Floquet spectrum has periodicity ω, see Eq. (6). When

�0 = nω, all � = 0 modes have the same quasienergy ǫ = 0.

For � = 1, any finite value of g will lead to mixing between

all sectors. Consequently, no single mode will be close to a

product state and there will be no revivals. This underlines the

importance of nonzero static detuning. The situation is similar

when �0 = (2n + 1)ω/2, but in this case the � = 0 Floquet

modes split into two groups with same quasienergies (even

and odd numbers of excitations). Finite g then causes mixing

within these two groups, leading to the appearance of two arcs

in the entanglement entropy plots [similar to Fig. 3(c)].

In conclusion, the square pulse drive provides analytical

understanding of a large part of phase diagram correspond-

ing to high driving amplitudes. However, we note that the

agreement between the square pulse and cosine drive is not as

good in the high-amplitude regime for the polarized state with

parameters �0 = 0.64, �m = 7.55, ω = 2.90, recall Fig. 5(d).

Nevertheless, the square pulse still accurately captures the

revivals and the comoving fidelity is higher than for the delta

function pulse protocol.

B. High-frequency regime

Although the optimal set of parameters for the Néel state is

deeply in the nonperturbative regime with � = 1, �0 = 1.15,

�m = 2.67 and ω = 2.72 of the same order of magnitude, in

Fig. 2 we have seen that it is also possible to somewhat stabi-

lize the revivals by driving with relatively high frequencies. If

FIG. 7. Quality of the subharmonic response, C2 in Eq. (5),

for the Néel initial state and ω = 10. (a) Third-order Floquet

Hamiltonian in the high-frequency regime H
(3)
F,ω. (b) Time-dependent

Hamiltonian H (t ) with the square pulse driving scheme.

we follow the same peak by reoptimizing the static detuning

and amplitude while increasing the frequency, as in Fig. 2(a),

the resulting driving parameters still result in a subharmonic

response and its Floquet modes are split into two arcs. This

suggests that we can obtain useful insights into the revival

stabilization mechanism by studying the dynamics using the

high-frequency expansion.

In Appendix C we derive the following third-order Floquet

Hamiltonian for the square pulse driving protocol in the limit

of high driving frequency:

H
(3)
F,ω = �

[

1 +
�mT 2(3�0 − �m)

96

]

∑

i

Pi−1XiPi+1

−�0

∑

i

ni +
�2�mT 2

16

∑

i

Pi−1ZiPi+1

+
�2�mT 2

16

∑

i

Pi−1(σ+
i σ−

i+1 + σ−
i σ+

i+1)Pi+2.

(13)

In addition to the renormalized PXP term and time-averaged

detuning �0, this Hamiltonian also contains a diagonal PZP

term and constrained nearest-neighbor hopping terms. Note

that the Floquet Hamiltonian only describes stroboscopic

evolution at times t = nT , where n is an integer. We have

numerically confirmed that the first three orders are enough

to correctly reproduce the dynamics of the first few revivals at

ω = 10. Further increase in frequency makes the agreement

even better.

In Fig. 7 we plot the subharmonic cost function, Eq. (5),

for the Néel state at ω = 10, and compare the evolution using

H
(3)
F,ω and the actual square pulse driving protocol. The high-

frequency Floquet Hamiltonian correctly reproduces most

features of this phase diagram and approximately locates the

narrow Type-1 optimal parameter regime (around �0 ≈ 5,

�m ≈ 13). At the optimal parameters, the dominant term in

H
(3)
F,ω is the static detuning, while PZP and hopping are rel-

atively small. The energy spectrum thus resembles that of

a strongly detuned PXP model, with several disconnected

energy bands defined by their numbers of excitations and the

gaps between them approximately equal to �0. If we want to

obtain a subharmonic response, this gap should be half the

driving frequency, so we expect the optimal detuning to be
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around �0 = ω/2, which is indeed the case here. The best re-

vivals will be obtained when the energy bands are very narrow,

which will make the eigenstates that have the highest overlap

with the Néel state almost exactly equidistant. The widths

of individual bands are controlled by the other three terms.

Assuming that PXP, PZP and Pσ±σ∓P are approximately

of the same order of magnitude and minimizing the sum of

their coefficients, T 2(3�0�m − �2
m + 12�m)/96, at � = 1

and fixed T and �0, results in the optimal driving amplitude

�m = 3�0/2 + 6, (14)

which gives ≈13.5—close to the numerically obtained opti-

mal value.

We can reproduce Fig. 2(a) for the square pulse drive

(not shown) and compare the dependence of optimal �0 and

�m on the driving frequency with our analytical predictions

from the previous paragraph. The optimal static detuning

indeed closely follows the relation �0(ω) = ω/2, even at

relatively low frequencies (ω � 5). As expected since the

high-frequency expansion is no longer valid in that regime,

there are some deviations from this rule at lower frequen-

cies, for example �0 ≈ 0.42ω at ω = 2.72. Regarding the

relation for the optimal driving amplitude �m(ω) = 3ω/4 +
6 in Eq. (14), the numerical results start to approach this

line at higher frequencies, ω > 10. Since we have already

established that the optimal values of static detuning are ap-

proximately equal for the cosine drive and square pulse, while

the driving amplitude is around 20% lower for the square

pulse, we can use these analytical results to estimate the Type-

1 optimal driving parameters for the cosine driving protocol.

V. RELATION TO QUANTUM MANY-BODY SCARS

Finally, we come to the important set of questions con-

cerning the relation between QMBS and the enhancement of

fidelity revivals by periodic driving. We focus on two ques-

tions in particular: (i) Is it still possible to stabilize the revivals

from some initial state if the PXP part of the Hamiltonian in

Eq. (3) is replaced by some other, fully ergodic Hamiltonian?

(ii) How do we prove that the optimally-driven system is

“scarred”? The second question, in particular, is nontrivial

as many probes of QMBS in static systems do not directly

translate to the driven case. For example, QMBS are typically

diagnosed as a band of atypical eigenstates at equidistant en-

ergies. Since the driven model is time dependent, the Floquet

modes assume the role of the eigenstates. However, in all the

cases studied here, there is no band of special Floquet modes

in the quasienergy spectrum of the Floquet Hamiltonian. In-

stead, there is only one or in some cases two special modes,

which have unusually low entanglement entropy and very high

overlap with the initial state. Also, it could be said that these

modes are typically located at the edges of the quasienergy

spectrum rather than the middle of it, see Fig. 3(c). However,

one must keep in mind it is hard to rigorously define the

“edge” when the quasienergy spectrum is periodic. In light of

this difference between driven and static systems, it is perti-

nent to ask if the dynamics in the driven case is still “scarred”

in the sense that it represents merely an enhancement of the

effect already present in the static case. In this section we

address these questions.

A. The effect of perturbation

QMBS can be destroyed by applying suitable perturba-

tions to the PXP model [54]. The destruction of QMBS was

found to coincide with the overall level statistics of the model

converging faster to the Wigner-Dyson distribution, signaling

faster thermalization. Here we study the PXPXP perturbation

and apply the usual spatially homogeneous cosine driving

protocol, Eq. (3), to the perturbed PXP Hamiltonian,

H ′
PXP(W ) = HPXP + W

∑

i

Pi−1XiPi+1Xi+2Pi+3, (15)

H ′(t ) = H ′
PXP(W ) − �(t )

∑

i

ni. (16)

The PXPXP perturbation is off-diagonal, thus it changes the

connectivity of the Hilbert space.

In Fig. 8 we scan the (�0,�m) parameter space for three

different perturbation strengths, while the driving frequency

is fixed at ω = 2. Similar to Fig. 1, the color corresponds to

the average fidelity 〈F (t )〉t between t = 0 to t = 100, such

that the bright regions correspond to parameter regimes where

we expect robust revivals. The perturbation destroys some

of the optimal parameter regimes, mostly those close to the

diagonals �0 = ±�m. For example, the main Type-1 optimal

regime for the Néel state belongs to this region, as shown

in Fig. 1(a) for ω = 2.72. The higher-amplitude optimal pa-

rameter regions (Type-2) are affected by the perturbation and

their position, shape and size all depend on the perturbation

strength. However, these bright regions are still present even

when the perturbation is fairly strong (W = 0.5). Those re-

gions are related to Hilbert space fragmentation, see Fig. 4.

This allows us to conclude that the Floquet Hamiltonian frag-

mentation mechanism is not specific to the PXP model, which

is in line with the discussion from Sec. III C. However, a

possibility remains that the original, weakly nonergodic PXP

model is in some way important for the revival enhancement

in the low-amplitude driving regime for the Néel state (Fig. 3).

Similar behavior was also observed with different types

of perturbations, such as next-nearest-neighbor interac-

tion W1

∑

i nini+2, or constrained nearest-neighbor hopping

W2

∑

i Pi−1(σ+
i σ−

i+1 + σ−
i σ+

i+1)Pi+2. It is, however, interesting

to note that, while destroying scars for the Z2 state, the next-

nearest-neighbor interaction can actually create scars for the

polarized state, which is reminiscent of the effects of static

detuning [36]. The stabilization of revivals from the polarized

state using periodic driving works even better (quantified by

higher C1) in a certain range of nonzero values of W1 that

coincides with the existence of quantum many-body scars for

this state in the static system.

B. Trajectory in the Hilbert space

Another way to relate the reviving dynamics in the driven

system with QMBS in the static case is to examine the Hilbert

space trajectory of the Néel state, with and without driving.

We can visualize this trajectory by plotting the expectation

values of the (normalized) numbers of excitations on the even

and odd sublattice, 〈nA〉 and 〈nB〉 respectively, see Fig. 9. The

two Néel states only have excitations on one of the sublattices,

so they correspond to the bottom right (1,0) and top left (0,1)

corner, while the polarized state with no excitations is in the
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FIG. 8. PXP model perturbed by PXPXP perturbation from Eq. (15). The color scale shows the average fidelity 〈F (t )〉t in a time window

[0,100] for the initial Néel state. The driving frequency is fixed to ω = 2. (a) W = 0.1. (b) W = 0.3. (c) W = 0.5.

bottom left corner (0,0). All other states on the main diagonal

or above it are forbidden due to the PXP blockade constraint.

Up to this point, for the Néel state we have mostly used

the driving frequency ω = 2.72, which is approximately twice

the frequency of revivals in the static PXP model (ω ≈ 2.66).

Similarly, the optimal driving frequency for the polarized

state in the low-amplitude regime is close to the frequency

of revivals in the detuned PXP model. However, we were also

able to stabilize the revivals at driving frequencies that are not

particularly close to the original revival frequency. Upon first

glance, this fact does not seem to support the claim that the

driven system hosts QMBS, however we will show bellow that

driving with frequencies close to ω = 2.72 leads to Hilbert

space trajectories with some special properties.

FIG. 9. Trajectory in the Hilbert space. Néel state without (blue)

and with optimal driving (red). N = 24. The maximal number of

excitations per sublattice is nmax = N/2. (a) ω = 1.00, �0 = −0.65,

�m = 8.31. (b) ω = 2.00, �0 = −1.17, �m = 4.81. (c) ω = 2.72,

�0 = 1.15, �m = 2.67. (d) ω = 5.00, �0 = 2.34, �m = 6.85.

It is possible to obtain high and long-lived revivals from the

Néel state at frequencies significantly below ω = 2.72. Two

examples of such trajectories are shown by the red lines in

Figs. 9(a) and 9(b), for driving frequencies ω = 1 and ω = 2

respectively, while the trajectory in the static model is plotted

in blue. For comparison, the trajectory for ω = 2.72 is shown

in Fig. 9(c). In this special case, the trajectory precisely re-

peats the approximate first revival period of the undriven case.

It could therefore be said that driving with optimal parameters

stabilizes the scarred dynamics of the pure PXP model. This

suggests that the true optimal driving frequency is indeed

related to quantum many-body scars in the static model. The

most significant difference between this trajectory and the

previous two is that the low-frequency trajectories contain

loops. The number of loops grows as the driving frequency de-

creases. Although the trajectory can still be made to oscillate

between the two Néel states at lower frequencies, the interme-

diate dynamics differs from that in the static PXP model.

However, the revivals cannot be stabilized for any arbi-

trarily chosen driving frequency. When the frequency is too

high, for example ω = 5 in Fig. 9(d), the revivals decay and

the trajectory explores only one corner of the Hilbert space,

staying in the vicinity of the initial state. This could be bet-

ter understood using the square pulse approximation of the

driving protocol from Sec. IV. Close to integer multiples of

the driving period, the drive is in the high-detuning regime

(�0 + �m) where the spectrum is split into bands and the

Néel state is approximately one of the eigenstates. Frequent

returning to this regime therefore prevents the wave function

from moving away from the Néel state. The intermediate

low-detuning regime (�0 − �m) needs to be long enough in

order for the trajectory to reach the other side of the Hilbert

space, and its detuning low enough so that the system is closer

to the pure PXP model. In other words, the frequency needs to

be low enough for the driven system to oscillate between the

two Néel states.

Two remarks are in order. First, driving with high-

amplitude optimal parameters for the polarized state can also

produce high revivals from the Néel state. This is not sur-

prising since in this case there are two Floquet modes with

high overlap with the Néel states [see Fig. 4(f)], but the

wave function is in that case “stuck” in one corner of the

Hilbert space. The trajectory is similar to Fig. 9(d), albeit more
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FIG. 10. Overlap of the Floquet modes with the initial state, N = 10. (a) Bare PXP model (Néel, ω = 2.72). Floquet modes (color) versus

eigenstates (black circles). The shaded area marks the [−ω/2, ω/2] interval of the Floquet spectrum. (b) Same, but with static detuning

�0 = 1.15. (c) Same, but optimally driven (�0 = 1.15, �m = 2.67). The eigenstates of the bare PXP model are shown for comparison.

(d) Interpolation between bare and detuned (Néel). (e) Interpolation between detuned and optimally driven (Néel). (f) Interpolation between

detuned and optimally driven (polarized, high amplitude, �0 = 0.64, �m = 7.55, ω = 2.90). (g) Interpolation between detuned and optimally

driven (polarized, low amplitude, �0 = 1.68, �m = −0.50, ω = 3.71).

narrow. Second, representing the Hilbert space trajectory in

the 〈nA〉-〈nB〉 plane is not suitable for the polarized state, since

both that state and the full (uniformly driven) Hamiltonian

are symmetric with respect to the two sublattices, thus 〈nA〉 =
〈nB〉 at all times, i.e., the trajectory starting from the polarized

state always stays on the diagonal. In Appendix D we discuss

an alternative way to plot the trajectory for the polarized state.

C. From scarred eigenstates to Floquet modes

Finally, we would like to explore the connection between

scarred eigenstates in the static PXP model and the two π -

paired Floquet modes that have high overlap with the Néel

state. To this end, we interpolate between the static [�(t ) = 0]

and optimally driven system [�(t ) = �0 + �m cos(ωt )] by

first increasing the static detuning from 0 to �0 while keeping

�m = 0, and then increasing the driving amplitude to its opti-

mal value. The driving frequency is kept constant throughout

this process (ω = 2.72). The Floquet modes can be formally

computed even in the �m → 0 limit. In this case the Floquet

modes should be exactly equal to the eigenstates of the static

system. However, the Floquet quasienergy spectrum is peri-

odic with periodicity ω, and we therefore need to “unfold” it

in order to match the Floquet modes with their corresponding

eigenstates. This situation is shown in Fig. 10(a) where we

plot the overlap of the PXP eigenstates and Floquet modes

with the Néel state. For clarity, we use a small system size

N = 10. The shaded region marks the original [−ω/2, ω/2]

interval of the Floquet spectrum, which is translated by ω

several times so that the full energy spectrum is covered.

Next, the Floquet modes are computed for various values

of static detuning �′
0 and their quasienergies and overlap with

the Néel state are plotted in Fig. 10(d). The highest overlap

states of the bare PXP model are continuously deformed into

the highest-overlap states of the detuned model at �0 = 1.15,

which are also shown in Fig. 10(b). Similarly, these two states

are then transformed into the two special Floquet modes by

increasing the driving amplitude �′
m from 0 to �m = 2.67, see

Fig. 10(e). To summarize, it is possible to establish a connec-

tion between the scarred eigenstates of the static PXP model

[for example, ǫ = 0 and ǫ ≈ ω/2 at �′
0/�0 = 0 in Fig. 10(d)]

and the π -paired modes that are responsible for near-perfect

revivals in the optimally driven model [two highest-overlap

modes at �′
m/�m = 1 in Fig. 10(e)]. Driving leads to scarred

Floquet modes, which are more separated from the bulk than

in the original bare PXP model, see Fig. 10(c). The π pairing

was already present in the static model and was never broken

during the interpolation procedure.
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The interpolation between the detuned and optimally

driven system was repeated for the polarized state and the

results are shown in Figs. 10(f) and 10(g). Unlike for the Néel

state, it is not possible to continuously deform the eigenstate

of the static detuned model into the the high-overlap Floquet

mode of the driven system in the high-amplitude regime, see

Fig. 10(f). However, as shown in Fig. 10(g), the low-amplitude

driving regime is different. In that case, one of the scarred

eigenstates indeed transforms into the highest-overlap Floquet

mode.

VI. CONCLUSIONS

In this paper we studied the periodically driven PXP model

in order to gain a better understanding of how driving can

enhance the revivals that are present in the static model due

to QMBS. We introduced a square pulse approximation for

the cosine driving protocol that was used in earlier experi-

ments, and demonstrated that this approximation much more

accurately reproduces the dynamics of the cosine drive than

the previously studied delta function pulse drive, while still

being amenable to analytical treatment. This allowed us to

analytically predict the optimal driving parameters in the

high-amplitude and high-frequency regimes. We were also

able to modify the cosine driving protocol in such a way that

any initial product state can be made to revive until late times.

We identified two distinct classes of optimal parameter

regimes, which were dubbed Type-1 and Type-2. The second

class is related to the splitting of the Floquet Hamiltonian into

disconnected sectors, where a single Floquet mode belongs

to a one-dimensional sector and has high overlap with one of

the product states. The sectors consist only of Floquet modes

with a certain number of excitations, thus the drive, being the

largest energy scale, produces an emergent U(1) symmetry,

similar to prethermalization scenario [69]. Type-2 mechanism

of revival creation and stabilization is well understood, rel-

atively trivial, and likely not connected with QMBS. The

optimal driving parameter regimes were found for completely

arbitrary initial product states, and were shown to be insensi-

tive to perturbations that destroy quantum many-body scars in

the original PXP model.

The other class of optimal driving parameters (Type-1)

is more interesting, but also more challenging to study ana-

lytically due to it being in the nonperturbative regime. This

revival enhancement mechanism was so far only observed

for the Néel state and is destroyed by perturbations that also

destroy QMBS. Visualising the trajectory of the evolved state

in the Hilbert space and comparing the static and driven cases

reveals that optimal driving stabilizes this trajectory—the sys-

tem is made to precisely repeat the dynamics of the first

revival period of the undriven model. When the system is

initialized in one of the two Néel states, the response to driving

is subharmonic, meaning that the revival frequency is half the

driving frequency [56]. However, the subharmonic response

becomes harmonic when the initial state is a translation-

invariant superposition of the two Néel states. The origin of

the subharmonic response is related to the presence of two

π -paired Floquet modes in the quasienergy spectrum of the

optimally driven system. These two atypical modes have very

high overlap with the Néel states and can be thought of as

equivalents of scarred eigenstates in a periodically driven sys-

tem.

An interesting direction for future work is the extension

of driving protocols to other models that host inexact QMBS

states and revival dynamics. This would involve finding a

suitable driving term whose ground state is the scarred initial

state. While Type-2 parameters (high-amplitude regime) are

expected to trivially work even in the absence of scars, a more

interesting question is whether Type-1 phenomenology exists

beyond the PXP model.
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APPENDIX A: SYSTEM SIZE SCALING

In this Appendix we examine the system size scaling of

several important quantities. We fix the driving frequency

and scan the (�0,�m) parameter space in the vicinity of

two Type-1 peaks, (�0,�m, ω) = (−1.17, 4.81, 2.00) and

(�0,�m, ω) = (1.15, 2.67, 2.72), for different system sizes

N . The results are presented in Figs. 11(a)–11(d), showing

that the optimal driving parameters are relatively stable for

N � 10. Additionally, we plot the maximal average fidelity

〈F 〉t as a function of system size in Figs. 11(e) and 11(f).

Based on these results, we predict that the same parameters

will still be optimal and produce revivals of finite height in

relatively large systems. Such system sizes are out of reach

of numerical simulations based on exact diagonalization, but

could be realized experimentally. For example, a recent exper-

iment has realized the PXP model with approximately 50 sites

using a Bose-Hubbard quantum simulator [36].

In Fig. 4(f) we showed the quasienergy spectrum of the

Floquet modes that correspond to the optimally driven po-

larized state in the high-amplitude regime. This spectrum is

split into separate bands according to the number of exci-

tations, with a single Floquet mode approximately equal to

the polarized state belonging to a one-dimensional sector (0

excitations) and separated from the neighboring sector (1 ex-

citation) by a gap �ǫ. In Fig. 12 we show that this gap is

almost independent of system size. The inset zooms in on

the data points in order to show that weak exponential decay
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FIG. 11. System size scaling of the optimal driving parameters and the average fidelity for the Néel state. Left: ω = 2.00 (one-loop

trajectory). Right: ω = 2.72 (ideal trajectory). [(a),(b)] Static detuning �0. [(c),(d)] Driving amplitude �m. [(e),(f)] Average fidelity from

t = 0 to t = 100, 〈F 〉t .

is nevertheless present. If this trend continues, we estimate a

finite gap even at sizes N ≈ 300, implying that it would still

be possible to create fidelity revivals in such large systems

by applying the same driving parameters found in smaller

systems.

We also investigated the dependence of the optimal fre-

quency on system size. We use the same procedure as in Fig. 2

and plot the cost function C2 as a function of driving frequency

in Fig. 13. The optimal frequency window is quite stable for

N � 10, although it becomes slightly narrower as the system

size increases.

APPENDIX B: SPATIALLY INHOMOGENEOUS DRIVE

Based on previous results, we now introduce a generalized

driving protocol, which can stabilize revivals from any prod-

uct state. A key observation is that the two initial states whose

revivals can be stabilized by driving (Néel and polarized)

FIG. 12. System size scaling of the quasienergy gap between

the two lowest entropy Floquet modes. Optimal parameters for the

polarized state (�0 = 0.64, �m = 7.55, ω = 2.90). The inset shows

the same data with a different y-axis range.

are the ground and the highest-excited state of the spatially

homogeneous driving term in Eq. (3), since these two states

have the highest and lowest possible number of excitations

allowed by the blockade. In order to achieve a similar scenario

for other states, the driving term should be chosen as spatially

dependent,

H (t ) = HPXP + �(t )
∑

i

(−1)n0i ni, (B1)

where n0i = 〈ψ (0)|ni|ψ (0)〉 is determined by the initial state.

In this protocol, each site is driven by ±�(t ), where the sign

depends on whether the site initially contains an excitation or

not, see Fig. 14 for an illustration. In this way, the initial state

becomes the (nondegenerate) ground state of the driving term.

Using the inhomogeneous driving protocol, we were able

to generate very high and long-lived revivals for any initial

state, even randomly chosen ones with no symmetries. The

driving parameters �0, �m, and ω need to be separately opti-

mized for each initial state. To this end, we use the simulated

FIG. 13. Cost function C2 in Eq. (5) with M = 20 as a function

of frequency for different system sizes. “Main” Type-1 peak, which

passes through the point (�0, �m, ω) = (1.15, 2.67, 2.72).
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FIG. 14. Modified driving protocol for an arbitrary product state.

The protocol is now site dependent, i.e., each site is driven by a term

(−1)n0i �(t ) whose sign depends on whether or not the site initially

hosts an excitation.

annealing optimization algorithm, which limits the system

sizes we can reach. However, when the initial state is suffi-

ciently symmetric, for example Z2, Z3, Z4 and combinations

of such states, it is sufficient to find the optimized parameters

in a smaller system and the same driving parameters can be

applied to the same state in larger systems, as was the case for

Z2 with uniform driving.

Some optimal parameter values obtained by simulated an-

nealing are listed in Table II. It is interesting to note that these

values are similar in most cases, with |�0| < 1, �m ≫ 1 and

ω ≈ 2. From these values, we see that the phenomenology

is similar to the polarized state in the high-amplitude driving

regime [cf. Figs. 4(d)–4(f)]: the quasienergy spectrum is split

into sectors with different values of 〈
∑

i(−1)n0i ni〉 and there

is a single Floquet mode that has very high overlap with the

initial state. Ultimately, the mechanism of scar enhancement

in this case is very special case of prethermalization [69]: �m

assumes the role of the large energy scale, which gives rise

to an approximate U(1) symmetry. The initial state belongs

to a one-dimensional sector and its mixing with other states is

suppressed over long times, in accordance with general results

in Ref. [69].

To illustrate the spatially inhomogeneous drive in Eq. (B1),

we consider a completely random state |•◦•◦◦◦◦◦•◦◦•◦◦◦◦〉.
This state has no special properties and quickly thermalizes

in the pure PXP model, but driving with optimal parameters

results in stable revivals, see Fig. 15(a). It might be hard

to see due to a large number of different sectors and rela-

tively small system size, but the quasienergy spectrum is also

fragmented in this case. As can be observed in Fig. 15(b),

there is again a single high-overlap mode, which belongs to

a one-dimensional sector, since it is the only product state that

has the minimal possible value of 〈
∑

i(−1)n0i ni〉. The driving

amplitude is the largest energy scale (�m = 6.36).

TABLE II. Optimal driving parameters. Z2 (Néel), Z3 and Z4 are

the states with an excitation on the every second, third and fourth

site, respectively. Z2Z3 is |•◦•◦◦•◦•◦◦ . . . •◦•◦◦〉 (alternating Z2

and Z3), while the randomly chosen state is |•◦•◦◦◦◦◦•◦◦•◦◦◦◦〉.

Initial state �0 �m ω Floquet spectrum

Z2 −1.61 1.83 2.83 three arcs

Z2 0.45 5.89 2.16 multiple arcs

Z3 −0.26 4.14 2.24 one arc

Z3 0.70 5.43 1.82 multiple arcs

Z4 0.48 5.64 2.21 multiple arcs

Z2Z3 0.71 5.73 1.90 multiple arcs

random 0.60 6.36 2.33 multiple arcs

FIG. 15. Inhomogeneously driven random state

|•◦•◦◦◦◦◦•◦◦•◦◦◦◦〉 (�0 = 0.60, �m = 6.36, ω = 2.33).

(a) Quantum fidelity. (b) Overlap of the initial state with all

the Floquet modes. The color corresponds to 〈
∑

i(−1)n0i ni〉 for each

mode.

Finally, in Fig. 16 we scan the average fidelity cost func-

tion over the parameter space for the same randomly chosen

state and fixed driving frequency ω = 2. For comparison, in

Fig. 16(a) we use the homogeneous driving protocol from

Eq. (3). In this case, there are no significant peaks in the cost

function, unlike for the Néel and polarized state in Fig. 1.

However, as shown in Fig. 16(b), the inhomogeneous driving

FIG. 16. Average fidelity 〈F (t )〉t over time interval [0, 100] for a

driven random state |•◦•◦◦◦◦◦•◦◦•◦◦◦◦〉, ω = 2. (a) Homogeneous

drive, Eq. (3). (b) Inhomogeneous drive, Eq. (B1).
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scheme from Eq. (B1) results in a similar plot as those in

Fig. 1. As for the polarized state, it contains only Type-2 peaks

(no subharmonic response).

APPENDIX C: HIGH FREQUENCY EXPANSION

Here we calculate the effective Floquet Hamiltonian, which

governs the stroboscopic dynamics for the three-step square

pulse protocol in Eq. (8) under the assumption of high driving

frequency (T ≪ 1). To this end, we perform the expansion

in powers of T using the Baker-Campbell-Hausdorff (BCH)

series. We have numerically confirmed that higher frequency

Type-I peaks can be well captured by a finite-order expan-

sion. Motivated by this, we analytically calculate the Floquet

Hamiltonian up to third order in BCH series.

We start by writing down the BCH series for the multipli-

cation of three exponential matrices ez = exeyew, which gives

the expansion of z as follows:

z = z(1) + z(2) + z(3) + · · · ,

z(1) = x + y + w,

z(2) = 1
2
(−wx − wy + xw + xy + yw − yx),

z(3) = 1
12

(w2x + w
2y + wx2 − 2wxw − 2wxy

+wy2 − 2wyw + 4wyx + x2
w

+x2y + xw2 − 2xwx − 2xwy + xy2

+4xyw − 2xyx + y2
w + y2x + yw2

−2ywx − 2ywy + yx2 − 2yxw − 2yxy). (C1)

In fact, in our case w = x [see Eq. (8)], which results in some

simplifications,

z(1) = 2x + y,

z(2) = 0,

z(3) = 1
6
(−x2y + xy2 + 2xyx + y2x − yx2 − 2yxy)

= 1
6
([[x, y], x] + [[x, y], y]),

z(4) = 0. (C2)

In particular, all even order terms vanish (z(2n) = 0).

We can now substitute x = −iH+T/4, y = −iH−T/2, and

z = −iHF T , where

H± = �
∑

i

Pi−1XiPi+1 − (�0 ± �m)
∑

i

ni. (C3)

Now we have

e−iHF T = e−iH+
T
4 e−iH−

T
2 e−iH+

T
4 ,

−iHF T =
(

−2iH+
T

4
− iH−

T

2

)

+
1

6

(

iT 3

32
[[H+, H−], H+] +

iT 3

16
[[H+, H−], H−]

)

.

(C4)

Using the expression for the commutator,

[H+, H−] = −2i��m

∑

i

Pi−1YiPi+1, (C5)

after some algebra, we obtain

[[H+, H−], H±] = −4�2�m

∑

i

Pi−1ZiPi+1

− 4�2�m

∑

i

Pi−1(σ+
i σ−

i+1 + σ−
i σ+

i+1)Pi+2

+ 2��m(�0 ± �m)
∑

i

Pi−1XiPi+1, (C6)

which finally leads to the expression Eq. (13) in the main

text. We see from Eq. (C6) that, in addition to the PXP and

detuning terms, two new terms are generated in the third-order

expansion: a diagonal PZP term and an off-diagonal hopping

term. The “time-crystal-like” dynamics from the Néel state

is generated by the interplay of such terms. The resulting

Hamiltonian is sufficiently local and captures the subharmonic

fidelity revival quite well.

At higher frequencies, the agreement between BCH expan-

sion and full dynamics under H (t ) is systematically improved.

At lower frequencies, one needs to go higher order in the

expansion to ensure a good agreement. We note that although

new nonlocal terms (with support over larger clusters of sites)

will proliferate at higher orders, the terms in Eq. (C6) will

also occur repetitively, thus renormalizing their strength. For

example, if we expand the high-amplitude expression of H
(1)
F

FIG. 17. Visualising the Hilbert space trajectory using the 2-site

reduced density matrix eigenvalues. System size N = 16, without

driving [�(t ) = 0, blue], with static detuning [�(t ) = �0, green],

and with optimal cosine drive (red). (a) Polarized state, �0 = 1.68,

�m = −0.50, ω = 3.71. (b) Polarized state, �0 = 0.64, �m = 7.55,

ω = 2.90. (c) Néel state, �0 = 1.15, �m = 2.67, ω = 2.72. (d) Néel

state, �0 = −1.17, �m = 4.81, ω = 2.00.
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from Eq. (12) we get

�0

2�
g =

�0

�2
m − �2

0

{[

1 + 2
sin (�m−�0 )T

4

sin �0T
2

]

�m − �0

}

= 1 +
�mT 2(3�0 − �m)

96

+
�mT 4

(

75�3
0 − 7�2

0�m − 15�0�
2
m + 3�3

m

)

92160

+O(T 6). (C7)

Note that the first two terms are exactly same as in Eq. (13).

Thus to get a better Floquet effective Hamiltonian, one can

just resum the terms in Eq. (13). Numerically, one can

tune the coefficients of the terms in Eq. (13) manually to

obtain a better matching between the fidelity dynamics cal-

culated using HF and H (t ). Ultimately, however, the BCH

expansion is expected to diverge at lower frequencies, which

is at odds with the numerics that shows the existence of

long-lived subharmonic response at frequencies ω ∼ 1. We

leave the interesting question how to adapt the BCH ex-

pansion to describe this nonperturbative regime for future

work.

APPENDIX D: A DIFFERENT WAY OF VISUALISING THE
HILBERT SPACE TRAJECTORY

In the main text, we analyzed the trajectory of a driven

QMBS system in the Hilbert space by evaluating the average

number of excitations of the two sublattices for the |Z2〉 initial

state. This method is less useful for the |0〉 state since in this

case the Hilbert space trajectory in just a diagonal line 〈nA〉 =
〈nB〉. A more generic method for visualising the trajectory is

to compute the reduced density matrix for a small subsystem,

e.g., ρ2 for a 2-site subsystem, and plot its eigenvalues. Due

to the PXP constraints, there are only three possible con-

figurations for two sites (•◦, ◦◦ and ◦•), thus ρ2 has three

eigenvalues λi. However, only two of those are independent

since tr(ρ2) = 1, which allows us to plot the trajectory in

2D.

The trajectories of the polarized state in two different opti-

mal driving regimes can be observed in Figs. 17(a) and 17(b).

Here we use the largest and the smallest eigenvalue of ρ2 and

compare the cases without driving (bare PXP model), with

static detuning only, and with periodic driving. The polarized

state is located at the (1,0) point (bottom right corner), since

its reduced density matrix corresponds to a pure state (λ1 = 1,

λ2 = λ3 = 0). Similar to the Néel state, the driven trajectory

approximately repeats the first part of the static trajectory.

There are no revivals from the polarized state in the bare PXP

model, so the trajectory at later times ends up in the region

where all three eigenvalues are of approximately equal magni-

tudes, implying thermalization. In the low-amplitude regime,

the static detuning alone is enough to produce revivals, as

evidenced by the trajectory, which periodically returns to the

vicinity of the initial state, while periodic driving further

stabilizes the detuned trajectory, see Fig. 17(a). In the high-

amplitude regime, the revivals are created purely by driving.

In that case the driven trajectory is even more narrow and

returns closer to the initial state, see Fig. 17(b).

For comparison, we use the same method to plot the tra-

jectories for the Néel state in Figs. 17(c) and 17(d). In these

two figures we use two different sets of driving parameters,

one of which corresponds to the ideal trajectory with no loops

in Fig. 9(c) and the other to a “one-loop” trajectory from

Fig. 9(b). However, it is now much harder to see the difference

between these two cases. In both cases the largest eigenvalue

stays close to 1.
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Motivated by recent observations of ergodicity breaking due to Hilbert space fragmentation in 1D Fermi-

Hubbard chains with a tilted potential [Scherg et al., arXiv:2010.12965], we show that the same system

also hosts quantum many-body scars in a regime U ≈ Δ ≫ J at electronic filling factor ν ¼ 1. We

numerically demonstrate that the scarring phenomenology in this model is similar to other known

realizations such as Rydberg atom chains, including persistent dynamical revivals and ergodicity-breaking

many-body eigenstates. At the same time, we show that the mechanism of scarring in the Fermi-Hubbard

model is different from other examples in the literature: the scars originate from a subgraph, representing a

free spin-1 paramagnet, which is weakly connected to the rest of the Hamiltonian’s adjacency graph. Our

work demonstrates that correlated fermions in tilted optical lattices provide a platform for understanding

the interplay of many-body scarring and other forms of ergodicity breaking, such as localization and Hilbert

space fragmentation.

DOI: 10.1103/PhysRevLett.126.210601

Introduction.—Recently, there has been much interest in

understanding how closed many-body quantum systems

evolve in time when taken out of their equilibrium state.

While many such systems rapidly return to their equilib-

rium state, in accordance with fundamental principles of

quantum statistical mechanics [1], much of recent work has

focused on systems that fail to do so as a consequence of

ergodicity breaking [2,3], either due to the special math-

ematical structure known as integrability or very strong

disorder which leads to (many-body) localization. Both of

these paradigms of behavior are actively investigated in

experiments on cold atoms, trapped ions, and supercon-

ducting qubits [4–7].

The inability of nonergodic systems to act as heat

reservoirs for their smaller parts has been traditionally

known to affect the entire spectrum of the system. Recently,

however, there has been a flurry of interest in weak

ergodicity breaking phenomena [8]. The latter refers to

the emergence of a dynamically decoupled subspace within

the many-body Hilbert space, in general without any

underlying symmetry, spanned by ergodicity-breaking

eigenstates. This behavior was first theoretically estab-

lished in the Affleck-Kennedy-Lieb-Tasaki (AKLT) model

[9,10], followed by the discovery of similar phenomenol-

ogy in other nonintegrable lattice models [11–18], models

of correlated fermions and bosons [19–25], frustrated

magnets [26,27], topological phases of matter [28,29],

and periodically driven systems [30–34]. In these exam-

ples, the ergodicity-breaking eigenstates are either explic-

itly embedded into a many-body spectrum via the

mechanism due to Shiraishi and Mori [35], or they form

a representation of an algebra [36–38].

A well-known example of weak ergodicity breaking in

single-particle systems is the phenomenon of quantum

scars in chaotic stadium billiards [39]. In this case, the

particle’s eigenfunctions exhibit anomalous concentration

in the vicinity of an unstable periodic orbit in the classical

limit ℏ → 0 [40–42], leading to observable consequences

in many physical systems [43–46]. In recent experiments

on interacting Rydberg atom arrays [47], weak ergodicity

breaking was observed via persistent revivals following the

global quench of the system, prompting the name “quan-

tum many-body scarring” [48–50] by analogy with stadium

billiards [51,52]. Recently, quantum many-body scarring

has been shown to occur in higher dimensions [53–55] and

in the presence of certain kinds of perturbations [56–58]

including disorder [59].

On the other hand, it has also been shown that ergodicity

breaking can occur due to a fracturing of the Hilbert space

into dynamically disconnected components [60–63]. This

typically occurs by the interplay of local interactions with a

higher-moment symmetry such as charge dipole conserva-

tion, which nontrivially intertwines spatial and internal

symmetries. Recent work [64] has demonstrated that

Hilbert space fragmentation can be experimentally realized

via a magnetic field gradient applied to the Fermi-Hubbard

(FH) model in a 1D optical lattice. Apart from offering a

new platform to investigate the link between fragmentation

and the so-called Stark many-body localization [65–67], an

immediate question presents itself: can the tilted FH model

realize quantum many-body scars?

In this Letter, we show that quantum many-body scars

arise in the limit U ≈ Δ ≫ J in the tilted FH model, and

that they can be detected using the quench from a specific
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initial state at a different filling factor from the one

considered in Ref. [64]. We derive an effective model

for this setup, which can be mapped to a spinful generali-

zation of the fractional quantum Hall effect on a thin torus

[23], allowing for a practical experimental realization.

While the phenomenology of quantum many-body scars

is shown to be largely similar to their realization in Rydberg

atom systems [47], including in particular an extensive set

of eigenstates which violate the eigenstate thermalization

hypothesis (ETH) [68,69], the origin of scars is different in

the two systems and can be intuitively understood from a

graph-theoretic viewpoint.

Large-tilt limit of the FH model.—The 1D FH model is

given by the Hamiltonian

Ĥ ¼
X

j;σ¼↑;↓

− Jĉ†j;σ ĉjþ1;σ þ H:c:þ Δjn̂j;σ þ U
X

j

n̂j;↑n̂j;↓;

ð1Þ

where ĉ†j;σ denotes the usual electron creation operator on

site jwith spin projection σ, n̂j;σ ≡ ĉ†j;σ ĉj;σ , J and U are the

hopping and on-site interaction terms, respectively. Tilt of

the optical lattice is parametrized by Δ, which we take to be

spin independent [64]. Note that tilting has the structure of

a dipole term, ∼jn̂j. Below we impose open boundary

conditions on the model in Eq. (1), and restrict to the

electron filling factor ν ¼ 1, i.e., with N=2 fermions with

spin ↑ and N=2 fermions with spin ↓ on a chain of N sites

(assumed to be even). We also set J ¼ 1 for simplicity. We

label the Fock states using ↑ to denote a fermion with spin

up and ↓ with spin down, while 0 stands for an empty site

and ↕ denotes a doublon.

We focus on the regime Δ ≈U ≫ J. In this case the sum
of the dipole moment and the number of doublons is

effectively conserved. The dominant contribution to the

Hamiltonian (using a Schrieffer-Wolff transformation at

first order [70]) is then given by

Ĥeff ¼ −J
X

j;σ

ĉ†j;σ ĉjþ1;σn̂j;σ̄ð1 − n̂jþ1;σ̄Þ þ H:c:

þ ðU − ΔÞ
X

j

n̂j;↑n̂j;↓: ð2Þ

In this effective Hamiltonian, hopping to the left (which

decreases the total dipole moment by 1) is only allowed if it

increases the number of doublons by the same amount (σ̄

denotes opposite spin from σ).

The action of the Hamiltonian Eq. (2) within the ν ¼ 1

sector fragments the Hilbert space beyond the simple

conservation of U þ Δ. In this work we focus on the

largest connected component, which is the one containing

the state with alternating ↑ and ↓ fermions. In addition to

the symmetries of the full model in Eq. (1), i.e., SU(2) spin

symmetry and spin reversal [71], the Hamiltonian Eq. (2)

projected to the largest sector has an additional symmetry

related to spatial inversion and particle-hole exchange [72].

After resolving these symmetries, we find the level sta-

tistics parameter hri [73] to be close to 0.53 for all

symmetry sectors with large numbers of states (≳103)

[72]. From these values which coincide with the Wigner-

Dyson statistics [74], we expect the model in Eq. (2) to be

chaotic. We next outline an intuitive approach for identify-

ing many-body scars in this model.

Embedded hypergrid subgraph.—A practical diagnostic

of quantum many-body scars is the existence of weakly

correlated states which undergo robust revivals under quench

dynamics, while the majority of other initial states thermalize

fast and do not display revivals. In the Rydberg-blockaded

chains [47], the reviving Néel state of atoms is the densest

configuration compatible with the blockade constraint, and it

is an extremal vertex of the Hamiltonian adjacency graph

[48]. In this graph each vertex corresponds to a basis state,

and two vertices are connected by an edge if the Hamiltonian

matrix element between their respective basis states is

nonzero. We next show, by examining the adjacency graph

of the model in Eq. (2), that we can identify a subgraph,

weakly coupled to the rest of the Hilbert space, which

contains the reviving initial states and leaves a strong imprint

on the scarred eigenstates. This leads to a transparent

manifestation of scarring in the original Fock basis, in

contrast with Rydberg atoms. In the latter case, the subspace

which is weakly coupled to the rest of the Hilbert space has a

much more complicated structure, leading to the wave

function spreading across the entire adjacency graph [56]

before refocusing onto the Néel state.

In Fig. 1 we plot the adjacency graph of the Hamiltonian

in Eq. (2) for a small system. For the effective model in

Eq. (2), it is possible to gauge away the fermionic minus

signs [72], resulting in an unweighted, undirected graph.

As the Hamiltonian Eq. (2) (for U ¼ Δ) has no diagonal

elements and the spectrum is symmetric around zero, all

product states are effectively in the infinite temperature

ensemble and are expected to thermalize quickly. As we

confirm numerically below, there are two important

exceptions.

FIG. 1. Adjacency graph of the effective model in Eq. (2) for

N ¼ 6. Red vertices denote the states belonging to the hypergrid,

with the black vertices corresponding to j −þi, j þ −i states

defined in the text. Green vertices are the isolated states j↓2↑i,
j↑2↓i which live on the tails of the graph. For this graph, the

hypergrid contains 27 vertices out of 63.
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First, as highlighted in red color in Fig. 1, there is a

regular subgraph which has the form of the hypergrid—a

Cartesian product of line graphs (in our case, of length 3),

i.e., the hypergrid is isomorphic to an adjacency graph of a

free spin-1 paramagnet. This mapping can be understood

by looking at the state j↓↑↓↑↓↑…i. Each cell of two sites

can take the values − ≔ ↓↑, 2 ≔ ↕0 orþ ≔ ↑↓, leading to
a three level system. Note that the configuration 0↕ is

omitted, as doublons can only be formed by hopping to the

left. On the other hand, hopping between two neighboring

cells will break this mapping and take the system out of the

hypergrid subgraph. Inside the hypergrid, we identify two

states for which the cell alternates between − and þ. These

are the state j −þi ≔ j−þ −þ…i ¼ j↓↑↑↓↓↑↑↓…i
and its spin-inverted partner, j þ −i ¼ jþ −þ −…i ≔
j↑↓↓↑↑↓↓↑…i. The states j −þi and j þ −i for N ¼ 6

are shown in black color in Fig. 1. These two states are the

only corners of the hypergrid (state with only þ and −

cells) with no edges going out of it. As we show below,

either of these states shows persistent oscillations in quench

dynamics, undergoing robust state transfer to their spin-

inverted counterpart. While other corners of the hypergrid

also show revivals, they are much smaller in amplitude and

decay faster due to the leakage out of this substructure. The

second example of a reviving state is j↓2↑i ≔
j↓↓…↓↕0↑↑…↑i (and its spin-reversed partner j↑2↓i),
which is situated on a tail-like structure of length 3

(independent of system size) with minimal connectivity

to the rest of the Hilbert space (green points in Fig 1).

Similar tail-like structures occur in constrained spin

models [75].

Many-body scarred dynamics and eigenstates.—Having

identified candidate states for revivals, we now scrutinize

their quench dynamics using large-scale exact diagonaliza-

tion simulations of the effective model in Eq. (2). Making

use of various symmetries present in the model, we have

been able to exactly simulate dynamics for up to N ¼ 22

electrons. For convenience, the simulations were performed

in the spin representation of the model [72].

Figure 2(a) shows the time dependence of the entangle-

ment entropy SentðtÞ when the system is quenched from

various initial product states, such as j −þi, j↓2↑i and a

few randomly chosen product states. Sent is defined as the

von Neumann entropy of the reduced density matrix for one

half of the chain. In all cases, entropy grows linearly in

time, consistent with thermalization of the system.

However, the coefficient of linear growth is visibly different

for j −þi and j↓2↑i states, and it is smaller than that of

random states, indicating nonergodic dynamics. The long-

time value of the entropy is also different for the j −þi
state [72], hinting that the wave function is still not

completely spread into the whole Hilbert space. The

hallmark of many-body scars is the oscillations

superposed on top of the linear growth, as seen in the

scarred dynamics in Rydberg atom chains [48]. Rapid

growth of entropy at short times is a consequence of the

bipartition being located in the middle of a two-site

effective cell.

Entropy oscillations mirror those of the wave function

return probability, jhψ0je−iĤtjψ0ij2, in Fig. 2(b). For the

isolated state j↓2↑i, only a single revival is clearly visible

as the return probability decays rapidly once the wave

function leaks out of the tail of the graph. Because of the

low connectivity of the tail, the first revival is still visible on

the scale of Fig. 2(b). The revival time can be accurately

estimated by assuming the tail is completely disconnected,

leading to the period π=
ffiffiffi

2
p

. In contrast, the state j −þi
displays several revivals with the sizable weight of the wave

function ∼40% returning to its initial value. The fidelity

density, 1=N ln jhψ0je−iĤtjψ0ij2, shown in the inset, con-

verges as 1=N to a value of −0.058. In contrast, the inverse

Hilbert space dimension, D−1, expected for a random state

leads to a fidelity density of −0.855—an order of magni-

tude higher. The scarred dynamics in this case can be

visualized as the state bouncing within the hypergrid

between j −þi and its partner j þ −i, illustrated by the

dotted line in Fig. 2(b). From the hypergrid analysis, we

expect the revival period to be
ffiffiffi

2
p

π, coming from the 2π

(a)

(b)

(c)

FIG. 2. Dynamics in the effective model Eq. (2) for N ¼ 18 for

j −þi, j↓2↑i and randomly chosen initial states. (a) Entangle-

ment entropy Sent for an equal bipartition of the system. Entropy

grows linearly in time for all states, consistent with thermalizing

dynamics, but it shows oscillations due to many-body scarring.

jϕi ∉ HG and jϕi ∈ HG denote the average over 10 random

product states outside or within the hypergrid, respectively, and

the shading represents standard deviation. (b) Fidelity dynamics

for the same initial states as in (a). Inset shows the finite-size

scaling of the fidelity density 1=N ln jhψ0je−iĤtjψ0ij2 at the first
revival for j −þi state, demonstrating a value much higher than

1=N lnð1=DÞ (with D the dimension of the Hilbert space),

expected for a random state. Blue dotted line shows the amplitude

of state transfer between j −þi and j þ −i states. (c) Probability
to remain within the hypergrid over time is much higher for

j −þi than other states.
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period of free precession and the spin-1 matrix elements
ffiffiffi

2
p

. This prediction closely matches the revival period

observed in Fig. 2(b).

The importance of the hypergrid for scarred dynamics is

illustrated in Fig. 2(c) which plots the probability to remain

in the hypergrid, PHGðtÞ ¼ hψ0jeiĤtP̂HGe
−iĤtjψ0i, where

P̂HG is the projector onto the subspace spanned by product

states belonging to the hypergrid. For the initial state

j −þi, we observe that the wave function remains con-

centrated inside the hypergrid, even at late times. This is in

stark contrast with the PXP model which describes a chain

of Rydberg atoms in the blockade regime [56], where the

wave function spreads across the entire graph by the time it

undergoes the first revival. Furthermore, even at the first

revival peak the fidelity is lower than PHG. This shows that

the wave function does not exactly return to itself but gets

more spread even within the hypergrid. Finally, for this

initial state after a long time PHG converges to a non-zero

value which is higher than expected from the relative size of

the hypergrid in the Hilbert space [72], hinting that the

subgraph could have additional structure that prevents

states from leaking out. The fact that this long-time value

is much lower for random states in the hypergrid than for

j −þi confirms that this is not simply due to low

connectivity between the hypergrid and the rest of the

Hilbert space, but that the special eigenstates indeed play an

important role.

Properties of eigenstates of the model Eq. (2) are

summarized in Fig. 3. The projection of eigenstates onto

the j −þi state, shown in panel (a), displays prominent

tower structures reminiscent of other scarred models [13,48].

The existence of towers implies that eigenstates tend to

concentrate around certain energies in the spectrum, causing

an ETH violation. The separation between the towers is

approximately ΔE ≈
ffiffiffi

2
p

, as expected from the embedded

hypergrid. Note that the eigenstates have been classified

according to the conserved total value of spin S; in contrast,

the j −þi state is not an eigenstate of S2. One can show that

for this state, hS2i ¼ N=2, thus j −þi is predominantly

supported by S ¼ 1 and S ¼ 2 eigenstates at the given

system size. The S ¼ 1 eigenstates are indicated by red

points in Fig. 3.

Similar violation of the ETH can be seen in the large spread

in entanglement entropy of eigenstates in Fig. 3(b), showing

that eigenstates of similar energy have very different amounts

of entanglement. Part of this spreading, however, can be

attributed to the eigenstates belonging to different spin sectors

S, giving rise to multiple bands that do not fully overlap at the

system size shown in Fig. 3(b) [72]. The distribution of

entropy in the S ¼ 1 sector [red points in Fig. 3(b)] is

relatively narrow apart from two “outliers” shown at energy

E ≈�
ffiffiffi

2
p

, which sit at the top of the tower for their sector in

Fig. 3(a). The states at the top of each tower are indicated by

squares, but unlike the PXP model [56] these states are not

well separated from other states in the same tower.

Experimental implications.—The effective model stud-

ied above is exact for U ¼ Δ → ∞. For experimental

realizations, it is important to ascertain that the same

physics persists for accessible values of U, Δ and that it

can be detected using local measurements. We demonstrate

this in Fig. 4 for the full model in Eq. (1) focusing on the

regime U;Δ < 10. Panel (a) shows the dynamics of

imbalance on the even and odd sublattices,

I ¼ ðNo − NeÞ=ðNo þ NeÞ, where Ne=o is the total num-

ber of fermions on the even or odd sites. The imbalance is

bounded between −1 and 1. We see robust oscillations in I

with the frequency matching half the wave function revival

frequency in Fig. 2(b). The amplitude of the imbalance

revival remains close to the infinite-limit value for

U ¼ Δ≳ 6. As further evidence that the hypergrid is the

cause of nonergodicity, we devised a local perturbation

FIG. 3. Eigenstate properties of the effective model Eq. (2).

(a) Overlap of eigenstates with the j −þi state as a function of

their energy E. (b) Entanglement entropy Sent of the eigenstates.

Data is for system sizeN ¼ 16. Red dots correspond to eigenstates

with total spin S ¼ 1, while the blue ones mark all other spin

values. The squares indicate the eigenstates sitting at the top of

each tower of states. These towers have an energy separation of

approximately
ffiffiffi

2
p

, as expected for the spin-1 hypergrid.

(a) (b)

FIG. 4. (a) Occupation imbalance in the full model [in Eq. (1)]

withN ¼ 12 for various values ofU ¼ Δ for the initial state j −þi,
and for U ¼ Δ ¼ 6 for the initial states jϕ0i ¼ j↑↓↑↓ � � �↑↓i
(within the hypergrid) and jϕ1i ¼ j↓↕0↑↕0↕0↓↕0↑i (outside of

it). (b) U − Δ phase diagram showing the scarring regime near the

diagonal (dashed line). The colour scale represents the value of the

first peak of the imbalance for N ¼ 12.
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which effectively disconnects the hypergrid, leading to the

improvement of revivals in the full model [72].

Conclusions and discussion.—We have proposed an

experimental realization of quantum many-body scars in

the regime U ¼ Δ of the tilted FH model. We have

identified product states j −þi, j þ −i at filling factor

ν ¼ 1 which give rise to scarred dynamics and reveal

towers of ergodicity-breaking many-body eigenstates,

allowing us to investigate the interplay of many-body

scarring with other facets of weak ergodicity breaking

such as localization and Hilbert space fragmentation. In

addition to the filling factor ν ¼ 1, we have also studied the

filling ν ¼ 1=2 used in Ref. [64]. In the latter case, taking

the large-tilt limit Δ ≫ U, J and using a Schrieffer-Wolff

transformation up to third order, we found analogous

signatures of scars [72], provided we neglect the diagonal

terms in the effective Hamiltonian. Under these assump-

tions, the resulting model can be viewed as a spinful

generalization of the fractional quantum Hall effect on a

thin torus [23]. By contrast, the approach presented here for

ν ¼ 1 is considerably simpler as it allows us to conven-

iently eliminate the undesirable diagonal terms.
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We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge

insulator (FCHI) constructed by Gutzwiller projection of two noninteracting second-order topological insulators

with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize

the model states via the entanglement entropy and charge-spin fluctuations. We show that the FCHI possesses

fractional chiral hinge modes characterized by a central charge c = 1 and Luttinger parameter K = 1/2, like

the edge modes of a Laughlin 1/2 state. The bulk and surface topology is characterized by the topological

entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE,

we show that the gapped surfaces host an unconventional two-dimensional topological phase. In a clear departure

from the physics of a Laughlin 1/2 state, we find a TEE per surface compatible with (ln
√

2)/2, half that of

a Laughlin 1/2 state. This value cannot be obtained from topological quantum field theory for purely two-

dimensional systems. For the sake of completeness, we also investigate the topological degeneracy.

DOI: 10.1103/PhysRevB.103.L161110

I. INTRODUCTION

Strong interactions in condensed-matter systems can lead

to fascinating emergent phenomena. In two-dimensional (2D)

systems, strong interactions may lead to the emergence of

topological order (TO), such as that experimentally observed

in the fractional quantum Hall effect. Features of TO in two

dimensions include a nontrivial ground state degeneracy on

certain surfaces and the appearance of itinerant excitations

with fractional quantum numbers and braiding statistics. It

has long been an active field of study to extend this rich

physics to three-dimensional (3D) strongly interacting sys-

tems, where the emergent physics can be even more diverse,

including systems with fractonic excitations [1,2]. Whereas

many microscopic models based on interacting spin systems

have been proposed to exhibit TO in three dimensions, such as

the 3D toric code [3] and 3D Kitaev models [4–7], and there

are treatments of 3D fractional topological insulators using

effective field theory [8,9], there is a scarcity of electronic or

realistic examples that could be experimentally relevant.

Among the 3D electronic topological insulators (TIs), an

entirely new class was recently discovered: Certain TIs pro-

tected by crystalline symmetries, now dubbed higher-order

TIs [10–25], possess a much richer bulk-boundary correspon-

dence than conventional, or first-order, TIs. For example, a 3D

chiral hinge insulator (CHI) exists whose gapped surfaces are

connected by gapless chiral hinge modes [12]. Higher-order

TIs in two and three dimensions have been experimentally

observed in materials [26], mechanical [27], acoustic [28,29],

photonic [30–33], and electrical [34,35,38] systems. Two-

dimensional higher-order TIs have also been studied in the

strongly interacting regime [36,37].
In this Letter, we provide a first stepping stone in the

realization of a full-fledged electronic 3D fractional TI by
building a 3D fractional chiral hinge insulator (FCHI) model
wave function. Indeed, the hinge modes of the noninteracting
CHI are of the same nature as the edge modes of a Chern insu-
lator, two copies of which at fractional filling and with strong
interactions form a fractional Chern insulator (FCI) hosting
fractional quantum Hall physics [39–41]. Therefore, we may
speculate that under similar conditions the FCHI will also
display nontrivial topology with fractionalized excitations at
least at the hinges or surfaces.

Numerical computations and especially exact diagonaliza-

tions for interacting electronic systems in three dimensions are

notoriously difficult due to the spatial dimensionality. To par-

tially circumvent this challenge, we will rely on a model wave

function, a fruitful approach for TO, to capture the FCHI.

This approach has been extensively applied in the realm of

the fractional quantum Hall effect [42,43] and FCIs [44]. In

order to define the FCHI wave function, we will make use

of Gutzwiller projection, a systematic method to construct

interacting model wave functions starting from copies of non-

interacting ground states. Large-scale variational Monte Carlo
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(MC) simulations then allow us to analyze this wave function

for bigger system sizes than possible with other methods.

To probe the topological content of the wave function,

we will study the entanglement entropy (EE), which can be

evaluated in MC simulations [44–48] and follows an area

law with characteristic subleading corrections [49]. In two

dimensions there are logarithmic corrections for gapless edge

modes [50–52] which along with the constant topological

entanglement entropy (TEE) correction to the bulk area law

[53,54] provide information on the system’s topology. In three

dimensions, corrections to the bulk area law include the TEE

and possible size-dependent corrections for fractonic systems

and layered constructions [55–57]. In particular, we study

the hinge modes in an open system and show that they are

fractionalized excitations characterized by a central charge

c = 1 and Luttinger parameter K = 1/2, like the FCI edge

modes. Next, we study the TEE of the bulk system and that

of the gapped surfaces. Whereas our computations indicate a

vanishing bulk TEE, we show that the gapped surfaces host

a nontrivial two-dimensional topological phase with a TEE

per surface compatible with half that of a Laughlin 1/2 state.

For completeness, we then study the linear independence of

different interacting wave functions obtained by changing the

boundary conditions for the underlying fermions.

II. MODEL WAVE FUNCTION

We consider an interacting model wave function obtained

by Gutzwiller projection of the ground state of a noninter-

acting 3D second-order TI with chiral hinge modes. The

CHI model is described by a local Hamiltonian for spinless

fermions with four sites per unit cell [12] [see Fig. 1(a) for a

sketch of the model]. The ground state |ψ〉 of the CHI model

lies at filling ν = 1/2 of the lattice. With open boundary

conditions (OBC) in the x and y directions, each of the four

hinges of the CHI parallel to the z axis supports a single chiral

mode localized at the hinge. Each hinge mode corresponds to

a free bosonic mode with central charge c = 1 and Luttinger

parameter K = 1 akin to the edge modes of a Chern insulator

[58]. Since the CHI model is noninteracting, it does not have

TO or a nontrivial ground state degeneracy with periodic

boundary conditions (PBC).

In order to define the interacting model wave function |�〉,
we take two copies |ψs〉 of the ground state of the CHI model

at half filling, to which we assign different values s ∈ {↑,↓}
of a spinlike degree of freedom. The interacting wave function

is obtained as the Gutzwiller projection

|�〉 = PG[|ψ↑〉 ⊗ |ψ↓〉] (1)

of the product of the two noninteracting wave functions. With

n̂s,i denoting the particle number operator for fermions of spin

s on the lattice site i, the Gutzwiller projection operator is

expressed as

PG =
∏

i

(1 − n̂↑,in̂↓,i ). (2)

It forbids simultaneous occupancy of any lattice site i by both

a particle with spin ↑ and a particle with spin ↓. Therefore,

it simulates the effect of a very large on-site Hubbard interac-

tion. Since each copy of the ground state of the CHI model has

FIG. 1. (a) Local real-space model for a 3D second-order TI

with chiral hinge states. The Hamiltonian is defined on a cubic

lattice with a unit cell of four sites lying in the xy plane. In this

plane, sites in the same unit cell are connected by a nearest-neighbor

hopping M marked by black lines (−M for dashed black lines). In

the xy plane, sites in adjacent unit cells are connected by a nearest-

neighbor hopping �1 marked by violet lines (−�1 for dashed violet

lines). In the z direction, adjacent unit cells are connected by a real

next-nearest-neighbor hopping −�2/2 marked by light blue lines

(�2/2 for dashed light blue lines). In addition, there is a purely

imaginary nearest-neighbor hopping between adjacent unit cells in

the z direction with a value of −i�2/2 in the direction of the green

arrows. We study the model for parameter values M = �1 = �2 =
1, where the correlation length is close to its minimal value [58].

(b) Three-dimensional system with OBC and Nx, Ny unit cells in the

x, y directions and periodic boundaries and Nz sites in the z direction.

The subsystem ANx ,Ny,Nz,A
consists of Nx, Ny unit cells in the x, y

directions and Nz,A unit cells in the z direction.

a filling νψ↑ = νψ↓ = 1/2, the Gutzwiller projection enforces

that the interacting wave function lies at filling ν� = 1/2 with

exactly one particle per lattice site (each lattice site having a

spin degree of freedom which can take two values). Hence,

charge fluctuations are completely frozen, and the only rele-

vant degree of freedom in the interacting wave function is the

spin s.

III. CHARACTERIZATION OF HINGE MODES

With OBC in the x and y directions, the interacting model

wave function |�〉 is expected to possess one gapless chiral

mode at each of the four hinges parallel to the z axis, inherited

from the hinge modes of the noninteracting CHI. Like the

edge modes of chiral topologically ordered phases in two

dimensions, we expect the hinge modes of |�〉 to be described

by a chiral conformal field theory (CFT). Moreover, since |�〉
is interacting, we expect its hinge CFT to be possibly different

from the trivial free-boson CFT describing the hinge modes of

the noninteracting CHI.

In order to characterize the chiral hinge modes, we adapt

the methods that were previously employed for 2D chiral

phases [51,52,59] to the 3D setting: We study the second

Rényi entropy S(2) and spin fluctuations of |�〉, in focus-

ing on the critical contributions stemming from the physical

hinges. We evaluate these observables for the interacting wave

function |�〉 in large-scale MC simulations using the SWAP-

operator technique [60] with sign-problem refinement [58,61].

We consider the geometry sketched in Fig. 1(b): a total

system with Nx × Ny × Nz unit cells, OBC in the xy plane,

and PBC in the z direction to ensure that the only gapless

excitations are the four hinge states. We consider a series of

L161110-2



FRACTIONAL CHIRAL HINGE INSULATOR PHYSICAL REVIEW B 103, L161110 (2021)

FIG. 2. Second Rényi entropy and spin fluctuations of the inter-

acting model wave function |�〉 for a series of subsystems ANx ,Ny,Nz,A

[58]. We plot MC data obtained for two different systems sizes

2 × 2 × 20 (in blue) and 3 × 2 × 20 (in orange). (a) Scaling of the

second Rényi entropy, fit to the prediction of Eq. (3). (b) Scaling of

the spin fluctuations, fit to the prediction of Eq. (6).

subsystems ANx,Ny,Nz,A
with Nx, Ny unit cells in the x, y direc-

tions and Nz,A ∈ {1, . . . , Nz − 1} unit cells in the z direction,

marked in red in Fig. 1(b). ANx,Ny,Nz,A
bisect each of four

physical hinge modes into a part of length Nz,A contained in

ANx,Ny,Nz,A
and the remaining part outside of the subsystem.

Hence, we expect that the EE and spin fluctuations with re-

spect to ANx,Ny,Nz,A
will contain signatures from the hinges.

Specifically, if the hinge modes are described by a chiral

CFT with central charge c, the second Rényi entropy S(2) of

|�〉 with respect to ANx,Ny,Nz,A
for different Nz,A at fixed Nx

and Ny is expected to scale as

S
(2)
ANx ,Ny ,Nz,A

(Nz,A) = α + 4 × S
(2)
crit(Nz,A; Nz ). (3)

Here, α is a constant independent of Nz,A. It includes the

area law contributions from the virtual surfaces at z = 0, Nz,A

which scale proportional to NxNy and are therefore indepen-

dent of Nz,A in the thermodynamic limit, and any potential

corner contributions. In Eq. (3),

S
(2)
crit(Nz,A; Nz ) =

c

8
ln

[

Nz

π
sin

(

πNz,A

Nz

)]

(4)

is the second Rényi entropy of a periodic one-dimensional

chiral critical mode with central charge c and total system size

Nz restricted to a single interval of length Nz,A [50]. The factor

of 4 in Eq. (3) takes into account the four hinge modes, which

contribute equally to the EE.

The scaling of the second Rényi entropy of |�〉 as com-

puted from MC is shown in Fig. 2(a) for two different system

sizes, 2 × 2 × 20 and 3 × 2 × 20. For computational reasons,

we choose Nx and Ny to be much smaller than Nz [58].

Due to the short correlation length of the CHI, equal to one

lattice spacing [58], we may expect that the characteristic

parameters approach their thermodynamic limit even for small

Nx, Ny. The logarithmic scaling from the hinge states is clearly

visible, and numerical values for c and α can be extracted

by fitting the data to Eq. (3). The numerical value for the

central charge is c = 1.19 ± 0.07 for 2 × 2 × 20 and c =
1.03 ± 0.14 for 3 × 2 × 20. This provides strong evidence

that the hinge modes of the interacting model wave function

|�〉 are described by a chiral free-boson CFT with central

charge c = 1.

Free-boson CFTs with c = 1 are characterized by their

Luttinger parameter K . For such Luttinger liquids, the vari-

ance of the U(1) current integrated over a subsystem scales

proportionally to the EE, where the proportionality constant

allows the extraction of K [59]. Since charge fluctuations are

completely frozen in the wave function |�〉, the relevant U(1)

symmetry stems from the spin degree of freedom, and we need

to consider the fluctuations of the number MA of particles with

spin ↑ in a subsystem A. Concretely, we consider the variance

Var
(

MANx ,Ny ,Nz,A

)

≡
〈

M2
ANx ,Ny ,Nz,A

〉

−
〈

MANx ,Ny ,Nz,A

〉2
, (5)

which is expected to scale as [59]

Var
(

MANx ,Ny ,Nz,A

)

= 2
K

π2
ln

[

Nz

π
sin

(

πNz,A

Nz

)]

+ α′ (6)

with the Luttinger parameter K and a constant α′ independent

of Nz,A.

The scaling of the spin fluctuations in the wave function

|�〉 as computed from MC is shown in Fig. 2(b) for two

different system sizes, 2 × 2 × 20 and 3 × 2 × 20. Remark-

ably, even for these small sizes, the numerical value for K

extracted by fitting the data to Eq. (6) is K = 0.49 ± 0.02

for 2 × 2 × 20 and K = 0.49 ± 0.03 for 3 × 2 × 20. This

provides strong evidence that the Luttinger parameter for

the chiral hinge modes of the interacting higher-order TI is

K = 1/2, similar to the edge modes of a FCI.

IV. TOPOLOGICAL DEGENERACY AND TOPOLOGICAL

ENTANGLEMENT ENTROPY

In two dimensions, fractionalized excitations such as those

of the edge modes of an FCI are an indication of bulk TO.

Above, we showed that the FCHI has fractional hinge modes.

It is therefore natural to investigate whether it also possesses

nontrivial topology in the bulk and on the surfaces. Two-

dimensional topologically ordered systems are characterized

by a nonzero TEE and a nontrivial topological degeneracy on

surfaces with a genus greater than zero. In three dimensions,

TEE and topological degeneracy remain important signatures

of nontrivial topology. We now study these signatures for the

FCHI model.

a. Topological entanglement entropy. In order to compute

the TEE of the FCHI, we use the Kitaev-Preskill construction

[53] extended to 3D systems [55]. As sketched in Fig. 3(a),

the system is divided into four regions, A, B, C, and D, which

are translation invariant in the z direction and whose cross

sections with the xy plane form the pattern required for the

usual 2D Kitaev-Preskill cut. The EE of these regions and

their unions can be collected into the linear combination

−γ = S
(2)
ABC

− S
(2)
AB

− S
(2)
BC

− S
(2)
AC

+ S
(2)
A

+ S
(2)
B

+ S
(2)
C

, (7)

which cancels all contributions from the virtual surfaces and

hinges. The remaining quantity, denoted γ , could contain two

contributions, γ = γ3D + Nzγ2D. The constant γ3D is the 3D

TEE [55]. γ2DNz would occur for layered constructions of 2D

L161110-3
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FIG. 3. (a) Subsystems A, B, C, and D for the extraction of the

bulk TEE using a Kitaev-Preskill cut. Note that the subsystems are

translation invariant in the z direction. (b) Scaling of the eigenvalues

λi with i = 0, . . . , 7 of the overlap matrix O of the FCHI on the

isotropic three-torus with N × N × N unit cells.

topological orders perpendicular to the z direction with 2D

TEE γ2D [55] or in some fractonic systems [1,2].

We have computed γ for the FCHI on the three-torus in

large-scale variational MC computations. For the geometry

sketched in Fig. 3(a), we were able to study the FCHI with 3 ×
3 × 2 unit cells, for which we found γ = −0.08 ± 0.04, and

with 3 × 3 × 3 unit cells, for which we found γ = −0.06 ±
0.11. In both cases, the subsystem A is of size 1 × 2 × Nz unit

cells, and the subsystems B and C are of size 1 × 1 × Nz unit

cells [62]. Because of the intrinsic anisotropy of the FCHI,

we also considered a second geometry obtained by rotating

the subsystems in Fig. 3(a) along the y axis such that they

are translation invariant in the x direction while leaving the

insulator unchanged. Here, we computed γ for a system of

2 × 3 × 5 unit cells [63] and found γ = −0.009 ± 0.102. All

these values are consistent with γ = 0 (up to small finite-size

effects for 3 × 3 × 2) irrespective of the orientation of the cut.

We stress that γ is several orders of magnitude smaller than

any of the EEs appearing in Eq. (7), excluding the existence

of both a nonvanishing 3D TEE γ3D and a nonzero γ2D.

Since we have not been able to find any clear signature

of a true nontrivial bulk topology, we now probe the nature

of the gapped surfaces perpendicular to the x direction [64].

Since the vertical hinges host fractionalized one-dimensional

modes like those of an FCI, we may speculate that the vertical

surfaces host some nontrivial TO [65]. To characterize it, we

compute γ according to Eq. (7) for the geometry obtained

by rotating the subsystems in Fig. 3(a) as described above,

OBC in the x direction, and PBC in the y and z directions. We

have performed this computation for a system with 2 × 3 × 5

unit cells and found γ = 0.31 ± 0.16 [66]. Since the same

computation with PBC in x yields a vanishing result for γ

as discussed above, this nonzero value is due entirely to the

two surfaces at x = 0 and x = Nx − 1 and confirms that the

vertical surfaces host a nontrivial 2D TO. Indeed, each surface

contributes with γ 2D
FCHI = γ /2 to the TEE. The value of γ 2D

FCHI

is consistent with (ln
√

2)/2, a clear departure from the TEE

of a single 2D FCI in the Laughlin 1/2 phase.

b. Topological degeneracy. In order to study the topologi-

cal degeneracy of the FCHI we closely follow a well-known

approach established for 2D projected wave functions such as

the FCI. On the 2D torus, one defines four interacting wave

functions by choosing PBC or antiperiodic boundary condi-

tions (APBC) for the underlying fermions in each direction

of the torus. For the FCI, these four states yield two linearly

independent wave functions, as expected in the phase of the

Laughlin wave function with filling ν = 1/2 [58].

For the FCHI, we consider eight independent ansatz states

on the 3D torus obtained by Gutzwiller projection of the

noninteracting CHI wave function with PBC or APBC in

each direction. The ground state degeneracy is then given

by the rank of an eight-dimensional overlap matrix O con-

taining the normalized overlaps of these ansatz states [58].

Note that the topological degeneracy could, in principle, be

larger than 8. In such a case, the rank of the overlap matrix

considered here would still be, at most, 8, and our approach

would fail to measure the full ground state degeneracy.

We have studied the topological degeneracy of the FCHI

on isotropic three-tori with N × N × N unit cells up to N = 4

using variational MC simulations [58]. The results are shown

in Fig. 3(b). For these system sizes, we observe a separation

of the eigenvalues of the overlap matrix O into a group of

two larger eigenvalues and a group of six smaller eigenvalues.

However, there is no clear trend indicating that the former

would converge to a finite value and the latter to zero in the

thermodynamic limit. The finite-size effects due to the numer-

ical limitation to small system sizes therefore do not allow

us to draw clear conclusions about the asymptotic topological

degeneracy from these results.

Since we have observed a nontrivial surface topology from

the TEE, we want to investigate whether these modes con-

tribute a topological degeneracy. For that purpose, we have

also studied the degeneracy of the FCHI with OBC in the

x direction, meaning each surface mode is defined on a 2D

torus. In this geometry, four ansatz states are generated by

changing the boundary conditions for the underlying CHI in

the two periodic directions. We have found behavior very

similar to the full-PBC case, namely, two larger eigenvalues

but no clear evidence of a reduction of the bulk degeneracy

in the thermodynamic limit [58]. Finally, we mention that

we have also analyzed the topological degeneracy for very

anisotropic three-tori with Nz much larger than Nx = Ny. An

extensive discussion is given in the Supplemental Material

[58].

V. DISCUSSION AND CONCLUSION

We have studied a model wave function for a 3D chiral

hinge insulator with strong interactions at fractional band

filling using extensive MC simulations. By studying the EE

and spin fluctuations in an open geometry, we showed that

the hinges host fractional gapless modes which have the same

characterization as the edge modes of an FCI in the Laugh-

lin 1/2 phase. We have also studied the system’s topology

through the topological degeneracy and the TEE. While the

results for the topological degeneracy remain inconclusive due

to the small number of numerically accessible system sizes,

our results point to the absence of a bulk TEE. However, we

found clear signatures of a nontrivial 2D topological order on

the vertical surfaces. Interestingly, the TEE contribution per

surface is consistent with γ 2D
FCHI = (ln

√
2)/2, in other words

L161110-4
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half of the TEE of an FCI. This result cannot be explained

using a quantum dimension since a TEE of (ln
√

2)/2 would

correspond to a total quantum dimension 21/4, whereas any

nontrivial total quantum dimension has to be larger than or

equal to
√

2. This suggests the emergence of a highly uncon-

ventional surface topology that cannot be realized in a strictly

2D system, with a nontrivial relation to the hinge modes

[65]. In this Letter, we have restricted our analysis to the

gapped surfaces and their gapless edges. It would be highly

interesting, but very numerically challenging, to consider the

top and bottom surfaces, which host single Dirac cones in the

noninteracting CHI. Their fate in the interacting system is yet

unknown and beyond the scope of the present work, but it

should be the focus of further study.
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