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Importance of higher orders in opacity in quark-gluon plasma tomography
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We consider the problem of including a finite number of scattering centers in dynamical energy loss and
classical DGLV formalism. Previously, either one or an infinite number of scattering centers were considered in
energy loss models, while efforts to relax such approximations require a more conclusive and complete treatment.
In reality, however, the number of scattering centers is generally estimated to be 4–5 at the BNL Relativistic
Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC), making the above approximations (a
priori) inadequate and this theoretical problem significant for QGP tomography. We derived explicit analytical
expressions for dynamical energy loss and DGLV up to the fourth order in opacity, resulting in complex,
highly oscillatory, mathematical expressions. These expressions were then implemented into an appropriately
generalized DREENA framework to calculate the effects of higher orders in opacity on a wide range of high-p⊥
light and heavy flavor predictions. Results of extensive numerical analysis and interpretations of nonintuitive
results are presented. We find that, for both RHIC and the LHC, higher-order effects on high-p⊥ observables
are small, and the approximation of a single scattering center is adequate for dynamical energy loss and DGLV
formalisms.

DOI: 10.1103/PhysRevC.108.044905

I. INTRODUCTION

Quark-gluon plasma (QGP) [1–4] is a new form of mat-
ter consisting of quarks, antiquarks, and gluons that are no
longer confined. It has been created in landmark experiments
at the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) (so-called little bangs),
where heavy ions collide at ultrarelativistic energies [2,3].
Hard probes are one of the main tools for understanding and
characterizing the QGP properties [2], where hard processes
dominate interactions of these probes with QGP constituents.
These interactions are dominantly described by energy loss,
where radiative is one of the most important mechanisms at
high transverse momentum p⊥. The radiative energy loss can
be analytically computed through pQCD approaches, typi-
cally under the assumption of the optically thick or optically
thin medium [e.g., BDMPS-Z [5,6], ASW [7], (D)GLV [8,9],
HT and HT-M [10,11], AMY [12], dynamical energy loss
[13,14] and different applications and extensions of these
methods] and tested against the experimental data.

Optically thick medium corresponds to the approxima-
tion of a jet experiencing infinite scatterings with medium
constituents. While such an approximation would be ade-
quate for QGP created in the early universe (big bang), little
bangs are characterized by short, finite-size droplets of QCD
matter. Another widely used approximation is an optically
thin medium, assuming one scattering center. However, the
medium created in little bangs is typically several femtome-
ters in size (with mean free path λ ≈ 1 fm), so considering
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several scattering centers in energy loss calculations is needed.
Thus, it is evident that both approaches represent two extreme
limits to the realistic situations considered in RHIC and LHC
experiments, and relaxing these approximations to the case
of a finite number of scattering centers is necessary. Thus,
relaxing such an approximation is a highly nontrivial problem,
addressed in Ref. [8], with recently renewed interest [15–21].
Some of these approaches are analytically quite advanced,
e.g., providing full expressions for a gluon radiation spectrum
(or splitting functions) with relaxed soft-gluon approximation
in DGLV formalism [19,20] or derivation of gluon emission
spectrum with full resummation of multiple scatterings within
the BDMPS-Z framework [15,17,18]. However, in our view,
this issue requires a more conclusive and complete treat-
ment. Namely, the importance of including higher orders in
opacity effects on experimental observables is still not ad-
dressed. In relaxing this approximation, it is not only needed
to estimate these effects on, e.g., the energy loss and gluon
radiation spectrum, but also to implement these corrections
in the numerical frameworks needed to generate predictions
for high-p⊥ observables measured at RHIC and the LHC
experiments. Furthermore, most of these studies were done
in massless quarks and gluons limit and/or use the approxi-
mation of an uncorrelated medium (i.e., where the spacings
between collisions are considered to be mutually indepen-
dent, see Ref. [21] for more details). Since we, a priori, do
not know the magnitude of the effects of the inclusion of
multiple scattering centers, nor how the mentioned approxi-
mations can influence this magnitude, we find it questionable
to discuss higher-order corrections while ignoring the effects
which might potentially overshadow or alter the final effects.
For example, due to a finite-temperature medium, light quarks
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and gluons gain mass in QGP, which can significantly numer-
ically modify the importance of these effects on experimental
observables.

In this study, we start from our dynamical energy loss
formalism [13,14], computed under the approximation of an
optically thin QCD medium, i.e., one scattering center. We use
general expressions from Ref. [21] to relax this approximation
to the case of finite number of scattering centers, where ex-
plicit analytical expressions up to the fourth order in opacity
(scattering centers) are presented. These expressions are im-
plemented in our (appropriately modified) DREENA-C [22]
framework (which assumes a constant-temperature medium),
enabling us to more straightforwardly estimate the effects of
higher orders in opacity on high-p⊥ RAA and v2 observables.
Based on these results, we also provide estimates for the fully
evolving medium, while a rigorous study in this direction is
left for future work.

While the initial expressions taken from Ref. [21] were,
strictly speaking, derived in the approximation of static scat-
tering centers, we apply them here in the context of a dynamic
QCD medium. Namely, by careful calculation, we have shown
in Ref. [14] that—at least in the first order in opacity—the
generalization from the static to dynamic medium eventually
amounts to a mere appropriate replacement of the mean free
path and effective potential in the final expressions. Following
general arguments given in Ref. [8] and the expectations ex-
pressed in Ref. [21], we assume that the same prescription for
progressing from static to dynamic medium remains valid in
higher orders of opacity.

The outline of the paper is as follows: Sections II
and III present the outline of theoretical and numerical

frameworks used in this study, with more detailed analytical
results presented in the Appendixes. In the Results section,
we numerically analyze the effects of higher orders in opacity
on the gluon radiation spectrum and high-p⊥ RAA and v2

predictions. Intuitive explanations behind obtained results will
be presented. This section will also analyze a special case
of static QCD medium (extension of (D)GLV [8,9] to the
finite number of scattering centers). The main results will be
summarized in the last section.

II. THEORETICAL FRAMEWORK

In this study, we use our dynamical radiative energy loss
[13,14] formalism, which has the following features: (i) QCD
medium of finite size L and temperature T , which consists of
dynamical (i.e., moving) partons, in a distinction to models
with widely used static approximation and/or vacuum-like
propagators [5,7,8,10]. (ii) Calculations based on generalized
hard-thermal-loop approach [23,24], with naturally regulated
infrared divergences [13,14,25]. (iii) Generalization towards
running coupling [26] and finite magnetic mass [27].

However, as noted in the Introduction, this radiative energy
loss is developed up to the first order in opacity. Thus, to
improve the applicability of this formalism for QGP tomogra-
phy, it is necessary to relax this approximation. To generalize
the dynamical energy loss to finite number in scattering cen-
ters, we start from a closed-form expression—Eq. (46) from
Ref. [21] and Eq. (20) from Ref. [9]—derived for static
QCD medium [i.e., (D)GLV case [8,9]] but applicable for a
generalized form of effective potential and mean free path
λ [21]:

x
dN (n)

dx d2k
=

∫ L

0
dz1 · · ·

∫ L

zn−1

dzn

∫ n∏
i=1

(
d2qi

v2(qi ) − δ2(qi )

λ(z)

)

× CRαs
(
Q2

k

)
π2

(
−2 C(1···n) · Bn

[
cos

n∑
k=2

ω(k···n)�zk − cos
n∑

k=1

ω(k···n)�zk

])
, (1)

where |vi(qi )|2 is defined as the normalized distribution of
momentum transfers from the ith scattering center (i.e., “ef-
fective potential”), λ(i) is the mean free path of the emitted
gluon, CR is the color Casimir of the jet. Note that, for
consistency with our previous work, we denote transverse
two-dimensional (2D) vectors as bold p.

The running coupling is defined as in Ref. [26]:

αs(Q
2) = 4π

(11 − 2/3n f ) ln(Q2/�QCD)
, (2)

where Q2
k = (k2 + M2x2 + m2

g )/x, appearing in Eq. (1) above
is the off-shellness of the jet before gluon radiation [26].

ω(m...n) is the inverse of the formation time or the (longitu-
dinal) momentum,

ω(m...n) = χ2 + (k − qm − · · · − qn)2

2xE
, (3)

where n is the final scatter, while m varies from the first up
to the final scatter. χ2 ≡ M2x2 + m2

g, where x is the longitu-
dinal momentum fraction of the quark jet carried away by the
emitted gluon, M is the mass of the quark, mg = μE/

√
2 is the

effective mass for gluons with hard momenta [25], and μE is
the Debye mass (i.e., electric screening).

“Cascade” terms represent the shifting of the momentum of
the radiated gluon due to momentum kicks from the medium:

C(i1i2...im ) = (k − qi1 − qi2 − · · · − qim )

χ2 + (k − qi1 − qi2 − · · · − qim )2
. (4)

A special case of C without any momentum shifts is de-
fined as the “hard” term:

H = k
χ2 + k2

and Bi = H − Ci. (5)

In Refs. [13,14,27], we showed that, despite much more
involved analytical calculations, at first order in opacity the

044905-2



IMPORTANCE OF HIGHER ORDERS IN OPACITY IN … PHYSICAL REVIEW C 108, 044905 (2023)

radiative energy loss in a dynamical medium has the same
form as in the static medium, except for two straightforward
substitutions in mean free path and effective potential:

λstat → λdyn, (6)

where

λ−1
stat = 6

1.202

π2

1 + n f /4

1 + n f /6
λ−1

dyn,

while the “dynamical mean free path” is given by λ−1
dyn =

3αs(Q2
v )T [13,14], with Q2

v = ET [26]. Running coupling
αs(Q2

v ) corresponds to the interaction between the jet and the
virtual (exchanged) gluon, while E is the jet’s energy.[

μ2
E

π
(
q2+μ2

E

)2

]
stat

→
[

μ2
E − μ2

M

π
(
q2+μ2

E

)(
q2+μ2

M

)
]

dyn

, (7)

where μM is magnetic screening. Thus, we assume that Eq. (1)
can also be used in our case, with the above modification of
effective potential and mean free path. In Appendixes A and
B, we use this general expression to derive an explicit expres-
sion for the gluon radiation spectrum for first, second, third,
and fourth order in opacity (dN (1)

g /dx, dN (2)
g /dx, dN (3)

g /dx,
dN (4)

g /dx, respectively).

III. NUMERICAL FRAMEWORK

To generate the results presented in this work, we used our
(appropriately generalized, see below) DREENA-C frame-
work. For completeness, we here give a brief outline of
this framework, while a detailed description is presented in
Ref. [22]. The quenched spectra of light and heavy quarks are
calculated according to the generic pQCD convolution given
by

E f d3σ

d p3
f

= Eid3σ (Q)

d p3
i

⊗ P(Ei → E f ) ⊗ D(Q → HQ). (8)

Here, the indices i and f stand for “initial” and “final,”
respectively, while Q denotes initial high-energy parton (light
quarks, heavy quarks, or gluons). Eid3σ (Q)/d p3

i is the initial
momentum spectrum for the given parton, which is calculated
according to Ref. [28], P(Ei → E f ) represents the energy
loss probability for the given particle which was calculated
within the dynamical energy loss formalism [13,14], which
includes multigluon [29] and path-length fluctuations [22,30].
D(Q → HQ) represents the fragmentation function of light
and heavy partons into hadrons, where for light hadrons, D
and B mesons, we use the DSS [31], BCFY [32], KLP [33]
fragmentation functions, respectively. The geometry is aver-
aged over by using path-length distributions, i.e., probability
distributions of the path lengths of hard partons in Pb + Pb
collisions, in the same way as in the original DREENA-C
framework [22]. They are used as weight functions when
integrating over the path-length in our numerical procedure.

We use the following parameters in the numerical pro-
cedure: �QCD = 0.2 GeV and n f = 3. The temperature-
dependent Debye chromoelectric mass μE (T ) has been
extracted from Ref. [34]. For the mass of light quarks, we

take the thermal mass M ≈ μE/
√

6, and for the gluon mass,
we use mg = μE/

√
2 [25]. The mass of the charm (bottom)

quark is M = 1.2 GeV (M = 4.75 GeV). The magnetic and
electric mass ratio is 0.4 < μM/μE < 0.6 [35,36]. All the
results presented in this paper are generated for the Pb + Pb
collision system at

√
sNN = 5.02 TeV.

As DREENA-C [22] does not include suppression from
multiple scattering centers in the medium, we now upgrade
this framework to include the second and third order in opacity
contributions. We integrate the expressions obtained from (1)
analytically for zi (see Appendixes A and B), and then nu-
merically for momenta k and qi using the quasi-Monte Carlo
method to obtain dNg/dx up to third order in opacity. Also, to
test the importance of multiple scattering centers on radiative
energy loss, we exclude the collisional [37] contributions from
the DREENA-C framework and only generate predictions
for radiative energy loss. Appendixes A and B also include
expressions for the fourth order in opacity. We implemented
fourth order into DREENA-C, but as the resulting integrals
are highly oscillatory, we could not reach convergence for this
order using our available computational resources. Notably,
this numerical complexity is significantly higher, estimated
to be ≈2 orders of magnitude larger than for the third order
(e.g., for the first order, we needed ≈25 CPU h; for the second
order ≈2500 CPU h; for the third order ≈70 000 CPU h). Nev-
ertheless, at specific points where we reached a convergence,
we found the fourth-order contribution negligible, as expected
from the results presented in the next section.

IV. RESULTS

In Fig. 1, the effect of higher orders in opacity on dNg/dx
as a function of x is shown for typical medium length L =
5 fm. In each plot, we use double axes for clarity: the lower
axis corresponds to magnetic to electric mass ratio μM/μE =
0.6 (and the curves with the peak on the left side), while the
upper axis corresponds to μM/μE = 0.4 (and the curves with
the peak on the right side). Note that, in each case, maximum
is reached for low values of x. We see that the importance
of higher orders of opacity decreases with the increase of
jet energy and mass. They also decrease with decreasing the
size of the medium, as shown in Appendix C [equivalent
figures for L = 3 fm (Fig. 6, left) and L = 1 fm (Fig. 6,
right)]. For bottom quarks, higher-order effects are negligible
independently of the jet momentum. In contrast, these effects
are moderate for charm and light quarks and can influence the
jet observables, as discussed below. Note that, due to color
triviality, the results for light quarks show the (scaled) result
for gluons, too. This holds up to the fact that, due to the
indistinguishability of the radiated gluon from the gluon in
the jet, the limits for subsequent integration of dNg/dx with
respect to x is performed from xlower = 0 to xupper = 1/2 (as
opposed to xupper = 1 for light quarks).

In Fig. 2, we show the effect of higher orders in opacity on
radiative RAA observable. Our computations have shown that
the effect on v2 is similar to the one on RAA (see Fig. 8 in Ap-
pendix D). Thus, to avoid redundancy, we further concentrate
only on RAA.
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FIG. 1. Gluon radiation spectrum dNg/dx as a function of x, for the typical medium length of L = 5 fm and various jet momenta. Different
columns correspond to light, charm, and bottom quarks. Solid black curves show the first order in opacity results, red dashed curves show the
results up to the second order, while cyan dot-dashed curves up to the third order in opacity. Curves with the peaks on the left (right) side of
each of the plots correspond to the μM/μE=0.6 (μM/μE = 0.4) case, and the numerical values should be read off on the lower (upper) x axis.

We first observe that the effect on RAA is smaller for more
peripheral collisions. This is expected because the medium is
shorter on average, so including multiple scattering centers
becomes less important.

Furthermore, we find that higher orders in opacity are
negligible for B mesons, while these effects increase with
decreasing mass, as expected from Fig. 1. The reason behind
this is the decrease in the gluon formation time with increasing
jet mass. When the gluon formation time is short, the energy
loss approaches the incoherent limit, where it was previously
shown that the effects of higher orders in opacity are negli-
gible [9]. Thus, our results are consistent with the previous
findings. On the other hand, for large gluon formation time
(massless quark and gluon limit), the higher orders in opacity
effects become significant, also in general agreement with the
previous findings [15]. In finite-temperature QGP (considered
in this study), light quarks and gluons gain mass due to Debye
screening, reducing the effects of higher orders in opacity on
the energy loss, consistent with Fig. 2.

Unexpectedly, we also observe that, for different magnetic
mass limiting cases, these effects on RAA are opposite in sign:
for μM/μE = 0.6, the inclusion of higher orders in opac-
ity reduces energy loss (and, consequently, suppression). In

contrast, for μM/μE = 0.4, the effect is both opposite in sign
and larger in magnitude. What is the reason behind these
unexpected results?

To answer this question, we go back to the effective po-
tential [27] v(q) in dynamical QCD medium, which can be
written in the following form:

v(q) = vL(q) − vT (q), (9)

where vL(q) is longitudinal (electric), and vT (q) is transverse
(magnetic), contribution to the effective potential. The general
expressions for the transverse and longitudinal contributions
to the effective potentials are

vL(q) = 1

π

(
1(

q2 + μ2
pl

) − 1(
q2 + μ2

E

)
)

,

(10)

vT (q) = 1

π

(
1(

q2 + μ2
pl

) − 1(
q2 + μ2

M

)
)

,

where μE , μM , and μpl = μE/
√

3 are electric, magnetic, and
plasmon masses, respectively. As seen from Eq. (9), this po-
tential has two contributions: electric and magnetic, where the
electric contribution is always positive due to μpl < μE . On

044905-4



IMPORTANCE OF HIGHER ORDERS IN OPACITY IN … PHYSICAL REVIEW C 108, 044905 (2023)

FIG. 2. Radiative RAA results obtained within DREENA-C—the effects of different orders in opacity. The results are generated for the
Pb + Pb collision system at

√
sNN = 5.02 TeV, and all the other figures in the manuscript show the results for the same collision system and

energy. Different columns correspond to charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black
curves show the first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to
the third order in opacity. The upper (lower) boundary of each band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case.

the other hand, the magnetic contribution depends nontrivially
on the value of magnetic mass. That is, for μM > μpl , we see
that the magnetic contribution decreases the energy loss, while
for μM < μpl it increases the energy loss and consequently
suppression, as shown in Fig. 2, which may intuitively explain
the observed energy-loss behavior.

Furthermore, the Debye mass μE is well defined from
lattice QCD, where the perturbative calculations are also con-
sistent [34]. Thus, the electric potential is well defined in
dynamical energy loss, and we can separately test the effect
of higher orders in opacity on this contribution [by replacing
v(q) by vL(q) in the DREENA framework]. We surprisingly
find it to be negligible, as shown in Fig. 3. Thus, higher orders
in opacity essentially do not influence the electric contribution
in a dynamical QCD medium, which is an interesting and
intuitively unexpected result. That is, the higher orders mainly
influence the magnetic contribution to energy loss (keeping
the electric contribution unaffected), where the sign of the
effect depends on the magnetic mass value. For example,
as μM/μE = 0.4 is notably smaller than μpl/μE = 1/

√
3,

the higher orders in opacity are significant for this limit and
increase the suppression, in agreement with Fig. 2. On the

other hand, μM/μE = 0.6 is close to (but slightly larger than)
μpl/μE , so higher orders in opacity are small for this magnetic
mass limit and reduce the suppression, also in agreement with
Fig. 2. Additionally, note that the most recent 2 + 1 flavor
lattice QCD results with physical quark masses further con-
strain the magnetic screening to 0.58 < μM/μE < 0.64 [38].
Thus, for this range of magnetic screening, we conclude that
the effects of higher orders in opacity are small in a dynamical
QCD medium and can be safely neglected.

Furthermore, Fig. 3 raises another important question: as
is well known, only electric contribution exist in the static
QCD medium approximation [23,24] (although it has a dif-
ferent functional form compared to the electric contribution
in dynamical QCD medium). That is, the magnetic contri-
bution is inherently connected with the dynamic nature of
the QCD medium. As most existing energy loss calculations
assume (simplified) static QCD medium approximation, does
this mean that higher orders in opacity can be neglected under
such approximation?

We first note that this does not necessarily have to be the
case, because the effective potential for electric contribution is
significantly different in static compared with the dynamical
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FIG. 3. RAA results, obtained within DREENA-C when only electric contribution vL (q) to radiative energy loss is considered. Different
columns correspond to charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black curves show the
first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third order in
opacity.

medium. However, to address this question, we repeat the
same analyses as above, this time assuming the static medium
effective potential [left-hand side of Eq. (7)] and mean free
path λstat. Figure 4 shows the effects of higher orders in opac-
ity in static medium approximation. While larger than those
in Fig. 3, we see that these effects are still small (i.e., less
than 6%). Thus, for optically thin medium models with static
approximation, we show that including multiple scattering
centers has a small effect on the numerical results, i.e., these
effects can also be neglected.

Finally, we ask how the inclusion of evolving medium
would modify these results. Including higher-order effects in
evolving medium is very demanding and out of the scope of
this paper. However, it can be partially addressed by studying
how higher-order effects depend on the temperature, which
changes in the evolving medium. To address this, in Fig. 5,
we focus on D meson RAA, μM/μE = 0.6 (per agreement with
Ref. [38]) and study the effects of higher orders in opac-
ity for three different temperatures T = 200, 400, 600 MeV
(which broadly covers the range of temperatures accessible at
RHIC and the LHC). We find that the higher-order effects are
largely independent of these values. Thus, we do not expect
that including medium evolution will significantly influence

the results presented in this study, i.e., expect the effect of
multiple scattering centers to remain small.

V. SUMMARY

In this paper, we generalized our dynamical energy loss and
DGLV formalisms towards finite orders in opacity. For bottom
quarks, we find that higher orders in opacity are insignificant
due to short gluon formation time, i.e. the incoherent limit. For
charm and light quarks, including second order in opacity is
sufficient, i.e., the third order numerical results almost overlap
with the second. Surprisingly, we also find that for limits
of magnetic screening, μM/μE = 0.4 and μM/μE = 0.6, the
effects on the RAA are opposite in sign. That is, for μM/μE =
0.6 (μM/μE = 0.4), higher orders in opacity decrease (in-
crease) the energy loss and subsequently suppression. The
intuitive reason behind such behavior is the magnetic contri-
bution to the dynamical energy loss. That is, while electric
contribution remains almost insensitive to increases in the
order of opacity, magnetic screening larger (smaller) than the
plasmon mass value decreases (increases) the energy loss and
suppression, in agreement with theoretical expectations. We
also show that in the static QCD medium approximation, in
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FIG. 4. Radiative RAA results obtained within DREENA-C under the static medium approximation. Different columns correspond to
charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black curves show the first order in opacity
results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third order in opacity.

which (per definition) only electric contribution remains, the
effects of higher orders in opacity on high-p⊥ observables
are small and can be safely neglected. Thus, for static QCD

FIG. 5. D meson radiative RAA results obtained within DREENA-
C for different temperatures. The left panel corresponds to 0%–5%
centrality, while the right panel corresponds to 40%–50% centrality.
The values of temperature are T = 200 MeV (the uppermost curves),
400 MeV (the middle curves), and 600 MeV (the lowest curves).
The solid black curves show the first order in opacity results, while
cyan dot-dashed curves show the results up to the third order in
opacity. The chromomagnetic and chromoelectric mass ratio is fixed
at μM/μE = 0.6.

medium, the first order in opacity is an adequate approxima-
tion for finite-size QCD medium created at RHIC and the
LHC. For dynamical energy loss, both the sign and the size
of the effects depend on the magnetic screening, as outlined
above. However, for most of the current estimates of magnetic
screening [38], these effects remain less than 5%, so they can
also be safely neglected.

The analyses presented here are obtained for a constant-
temperature medium (and adequately generalized DREENA-
C framework). However, we also tested how the effects of
including multiple scatterers depend upon temperature and
found this influence to be also small (affecting the radiative
RAA for less than 5%). Thus, we expect that including higher
orders in opacity in the evolving medium will not change
the qualitative results obtained here, but this remains to be
rigorously tested in the future.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR dNg/dx: GENERAL FORM

The gluon radiation spectrum up to the fourth order in opacity contains the following terms, which are here given in detail:(
dNg

dx

)
=

(
dN (1)

g

dx

)
+

(
dN (2)

g

dx

)
1

−
(

dN (2)
g

dx

)
2

+
(

dN (3)
g

dx

)
1

−
(

dN (3)
g

dx

)
2

−
(

dN (3)
g

dx

)
3

+
(

dN (3)
g

dx

)
4

+
(

dN (4)
g

dx

)
1

−
(

dN (4)
g

dx

)
2

−
(

dN (4)
g

dx

)
3

+
(

dN (4)
g

dx

)
4

−
(

dN (4)
g

dx

)
5

+
(

dN (4)
g

dx

)
6

+
(

dN (4)
g

dx

)
7

−
(

dN (4)
g

dx

)
8

. (A1)

Numerical integrations with respect to the momentum k are performed over 0 < |k| < 2Ex(1 − x), and the ones with respect
to momenta qi are performed over 0 < |qi| <

√
4ET [39]. The integrations with respect to angles ϕi are performed over

0 < ϕi < 2π . Under the constant-T approximation considered in this manuscript, the expressions presented below can be
analytically integrated over zi, significantly simplifying subsequent numerical calculations (see Appendix B).

In the expressions below, the following equations hold for i, j ∈ {1, 2, 3, 4}:
k · qi = |k||qi| cos ϕi, (A2)

qi · q j = |qi||q j | cos(ϕi − ϕ j ). (A3)

The first order in opacity term is given by(
dN (1)

g

dx

)
= 4CR

πx

∫ L

0
dz1

∫
d2k
π

∫
d2q1

π
αs

(
Q2

k

) 1

λdyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

)
× χ2[q1 · (q1 − k)] + (q1 · k)(k − q1)2

(χ2 + k2)[χ2 + (k − q1)2]2
sin2

(
χ2 + (k2 − q1)2

4xE
z1

)
. (A4)

After integration with respect to z1, this expression reduces to the expression used to obtain dNg/dx in the original DREENA-
C framework [22].

The second order in opacity contains two terms, which are given by(
dN (2)

g

dx

)
1

= 4CR

πx

∫ L

0

∫ L

z1

dz1dz2

∫
d2k
π

∫∫
d2q1

π

d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)

× χ2[q2 · (q1 + q2 − k)] + (q2 · k)(k − q2)2 + (k · q1)[q2 · (q2 − 2k)] + k2(q2 · q1)

(χ2 + k2)[χ2 + (k − q2)2][χ2 + (k − q1 − q2)2]

× sin

(
χ2 + (k − q1 − q2)2

4xE
z1

)
sin

(
χ2 + (k − q1 − q2)2

4xE
z1 + χ2 + (k − q2)2

2xE
z2

)
, (A5)

(
dN (2)

g

dx

)
2

= 4CR

πx

∫ L

0

∫ L

z1

dz1dz2

∫
d2k
π

∫
d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q2 − k)] + (q2 · k)(k − q2)2

(χ2 + k2)[χ2 + (k − q2)2]2
sin

(
χ2 + (k − q2)2

4xE
z1

)
sin

[
χ2 + (k − q2)2

2xE

( z1

2
+ z2

)]
. (A6)

The third order in opacity contains four terms, which are given by(
dN (3)

g

dx

)
1

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q3

π

×αs
(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q1 + q2 + q3 − k)] + (q3 · k)(k − q3)2 + [k · (q1 + q2)][q3 · (q3 − 2k)] + k2[q3 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q2 − q3)2]

× sin

(
χ2 + (k − q1 − q2 − q3)2

4xE
z1

)

× sin

(
χ2 + (k − q1 − q2 − q3)2

4xE
z1 + χ2 + (k − q2 − q3)2

2xE
z2 + χ2 + (k − q3)2

2xE
z3

)
, (A7)
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(
dN (3)

g

dx

)
2

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫∫
d2q1

π

d2q3

π

×αs
(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q1 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q1)[q3 · (q3 − 2k)] + k2(q3 · q1)

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q3)2]

× sin

(
χ2 + (k − q1 − q3)2

4xE
z1

)
sin

(
χ2 + (k − q1 − q3)2

4xE
z1 + χ2 + (k − q3)2

2xE
(z2 + z3)

)
, (A8)

(
dN (3)

g

dx

)
3

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫∫
d2q2

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q2 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q2)[q3 · (q3 − 2k)] + k2(q3 · q2)

(χ2 + k2)[χ2 + (k − q3)2](χ2 + (k − q2 − q3)2)

× sin

(
χ2 + (k − q2 − q3)2

4xE
z1

)
sin

[
χ2 + (k − q2 − q3)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q3)2

2xE
z3

]
, (A9)

(
dN (3)

g

dx

)
4

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫
d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q3 − k)] + (q3 · k)(k − q3)2

(χ2 + k2)[χ2 + (k − q3)2]2
sin

(
χ2 + (k − q3)2

4xE
z1

)
sin

[
χ2 + (k − q3)2

2xE

(
z1

2
+ z2 + z3

)]
.

(A10)

The fourth order in opacity is given by eight terms, which are given by(
dN (4)

g

dx

)
1

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫∫
d2q1

π

d2q2

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q1+q2+q3+q4 − k)]+(q4 · k)(k−q4)2+[k · (q1+q2+q3)][q4 · (q4−2k)]+k2[q4 · (q1+q2 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q3 − q4)2]

× sin

(
χ2 + (k − q1 − q2 − q3 − q4)2

4xE
z1 + χ2 + (k − q2 − q3 − q4)2

2xE
z2 + χ2 + (k − q3 − q4)2

2xE
z3

+ χ2 + (k − q4)2

2xE
z4

)
sin

(
χ2 + (k − q1 − q2 − q3 − q4)2

4xE
z1

)
, (A11)

(
dN (4)

g

dx

)
2

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q1 + q2 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q2)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q4)2]

× sin

(
χ2 + (k − q1 − q2 − q4)2

4xE
z1 + χ2 + (k − q2 − q4)2

2xE
z2 + χ2 + (k − q4)2

2xE
(z3 + z4)

)

× sin

(
χ2 + (k − q1 − q2 − q4)2

4xE
z1

)
, (A12)
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(
dN (4)

g

dx

)
3

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q1

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q3 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q3)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q3 − q4)2]

× sin

(
χ2 + (k − q1 − q3 − q4)2

4xE
z1 + χ2 + (k − q3 − q4)2

2xE
(z2 + z3) + χ2 + (k − q4)2

2xE
z4

)

× sin

(
χ2 + (k − q1 − q3 − q4)2

4xE
z1

)
, (A13)

(
dN (4)

g

dx

)
4

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q1

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q1)[q4 · (q4 − 2k)] + k2(q4 · q1)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q4)2]

× sin

(
χ2 + (k − q1 − q4)2

4xE
z1

)
sin

(
χ2 + (k − q1 − q4)2

4xE
z1 + χ2 + (k − q4)2

2xE
(z2 + z3 + z4)

)
, (A14)

(
dN (4)

g

dx

)
5

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q2

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q2 + q3 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q2 + q3)][q4 · (q4 − 2k)] + k2[q4 · (q2 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q2 − q3 − q4)2]

× sin

[
χ2 + (k − q2 − q3 − q4)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q3 − q4)2

2xE
z3 + χ2 + (k − q4)2

2xE
z4

]

× sin

(
χ2 + (k − q2 − q3 − q4)2

4xE
z1

)
, (A15)

(
dN (4)

g

dx

)
6

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q2

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q2 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q2)[q4 · (q4 − 2k)] + k2(q4 · q2)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q2 − q4)2]

× sin

(
χ2 + (k − q2 − q4)2

4xE
z1

)
sin

[
χ2 + (k − q2 − q4)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q4)2

2xE
(z3 + z4)

]
, (A16)
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(
dN (4)

g

dx

)
7

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q3 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q3)[q4 · (q4 − 2k)] + k2(q4 · q3)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q3 − q4)2]

× sin

(
χ2 + (k − q3 − q4)2

4xE
z1

)
sin

[
χ2 + (k − q3 − q4)2

2xE

(
z1

2
+ z2 + z3

)
+ χ2 + (k − q4)2

2xE
z4

]
, (A17)

(
dN (4)

g

dx

)
8

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫
d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

) χ2[q4 · (q4 − k)] + (q4 · k)(k − q4)2

(χ2 + k2)[χ2 + (k − q4)2]2

× sin

(
χ2 + (k − q4)2

4xE
z1

)
sin

[
χ2 + (k − q4)2

2xE

(
z1

2
+ z2 + z3 + z4

)]
. (A18)

APPENDIX B: ANALYTICAL EXPRESSIONS FOR dNg/dx WITHIN DREENA-C

Within the DREENA-C framework, under the assumption of constant medium temperature, we can explicitly perform analytical
integrations for zi, where (i = 1, 2, 3, 4). ω(m...n) coefficients are defined in the Theoretical Framework section. The expression
for the first order in opacity then became

(
dN (1)

g

dx

)
= 2CR

πx

∫
d2k
π

∫
d2q1

π
αs

(
Q2

k

) L

λdyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) χ2[q1 · (q1 − k)] + (q1 · k)(k − q1)2

(χ2 + k2)[χ2 + (k − q1)2]2

(
1 − sin(Lω(1) )

Lω(1)

)
,

(B1)

The expressions for higher orders in opacity became

(
dN (2)

g

dx

)
1

= 2CR

πx

∫
d2k
π

∫∫
d2q1

π

d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q1 + q2 − k)] + (q2 · k)(k − q2)2 + (k · q1)[q2 · (q2 − 2k)] + k2(q2 · q1)

(χ2 + k2)[χ2 + (k − q2)2][χ2 + (k − q1 − q2)2]

× 1

ω(2)

(
ω(2) cos[(ω(2) + ω(12))]

(ω(2) + ω(12))ω(12)
+ L sin (Lω(2) ) − (ω(2) − ω(12)) cos (Lω(2) )

ω(2)ω(12)
− ω(12)

ω(2)(ω(2) + ω(12))

)
, (B2)

(
dN (2)

g

dx

)
2

= 2CR

πx

∫
d2k
π

∫
d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q2 − k)] + (q2 · k)(k − q2)2

(χ2 + k2)[χ2 + (k − q2)2]2

sin (Lω(2) )[Lω(2) − sin (Lω(2) )]

ω2
(2)

, (B3)

(
dN (3)

g

dx

)
1

= 2CR

πx

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q1 + q2 + q3 − k)] + (q3 · k)(k − q3)2 + [k · (q1 + q2)][q3 · (q3 − 2k)] + k2[q3 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q2 − q3)2]

×
{

ω(3)ω(123) + 2ω(23)ω(123) − ω2
(23) − ω(3)ω(23)

ω2
(23)(ω(3) + ω(23))2ω(123)

sin[L(ω(3) + ω(23))] − ω(123) sin (Lω(3) )

ω(3)ω
2
(23)(ω(23) + ω(123))

+ sin[L(ω(3) + ω(23) + ω(123))]

ω(123)(ω(23) + ω(123))(ω(3) + ω(23) + ω(123))
− L cos[L(ω(3) + ω(23))]

ω(23)(ω(3) + ω(23))

}
, (B4)
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(
dN (3)

g

dx

)
2

= CR

πx

∫
d2k
π

∫∫
d2q1

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)

× χ2[q3 · (q1 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q1)[q3 · (q3 − 2k)] + k2(q3 · q1)
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APPENDIX C: dNg/dx RESULTS FOR L = 3 AND L = 1

In this section, we show dNg/dx as a function of x for medium lengths L = 3 f m [Fig. (6)] and L = 1 f m [Fig. (7)].

FIG. 6. Gluon radiation spectrum dNg/dx as a function of x, for the medium length of L = 3 fm and various jet momenta. The panel on
the left (right) side shows the result for μM/μE = 0.4 (0.6). The figure caption is the same as for Fig. 1.

FIG. 7. Gluon radiation spectrum dNg/dx as a function of x, for the medium length of L = 1 fm and various jet momenta. The panel on
the left (right) side shows the result for μM/μE = 0.4 (0.6). The figure caption is the same as for Fig. 1.
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FIG. 8. v2 results obtained within DREENA-C – the effects of different orders in opacity. Different columns correspond to charged hadrons,
D, and B mesons, while different rows show different centrality classes. Only radiative energy loss is taken into account. Solid black curves
show the first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third
order in opacity. The lower (upper) boundary of each band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case.

APPENDIX D: v2 RESULTS UP TO THIRD ORDER IN OPACITY

We here show the results for v2 up to the third order in opacity (Fig. 8). Note that here the lower (upper) boundary of each
band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case (opposite with respect to RAA results). We observe the same behavior
as for RAA.
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We explore to what extent, and how, high-p⊥ data and predictions reflect the shape and anisotropy of 
the QCD medium formed in ultrarelativistic heavy-ion collisions at LHC energies. To this end, we use 
our recently developed DREENA-A framework, which can accommodate any temperature profile within 
the dynamical energy loss formalism. We show that the ratio of high-p⊥ v2 and (1 − R A A) predictions 
reaches a well-defined saturation value, which is directly proportional to the time-averaged anisotropy of 
the evolving QGP, as seen by the jets.
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1. Introduction

Quark-gluon plasma is a new form of matter created in ultra-
relativistic heavy ion collisions. The main goal of relativistic heavy 
ion physics [1–4] is to explore the properties of this new form 
of matter [5,6], which will in turn lead to a fundamental under-
standing of QCD matter at its basic level. In the QGP tomography 
approach that we advocate, the energy loss of rare high energy 
partons traversing the medium is used to map its properties.

We previously argued [7] that, at large enough values of trans-
verse momentum (high-p⊥), the ratio of the elliptic flow v2 and 
1 − R A A , where R A A is the nuclear suppression factor, saturates, 
and reflects the initial geometry of the system. However, this ar-
gument was based on analytic considerations and a simple 1-
dimensional expansion [8,9], where the geometry does not depend 
on time. To see how the evolving shape of the collision system af-
fects the high-p⊥ observables, and subsequently the v2/(1 − R A A)

ratio, we here study the behaviour of this ratio in a system that 
expands both in longitudinal and transverse directions.

Furthermore, there is experimental evidence for such satura-
tion. As shown in Fig. 1, at high values of transverse momentum 
v2 and 1 − R A A are directly proportional, which is equivalent to 
a p⊥-independent ratio of v2 and 1 − R A A . We study whether 
state-of-the-art fluid-dynamical calculations tuned to reproduce 
the low-p⊥ data, can reproduce such proportionality, and whether 
we can relate this proportionality to a physical property of the sys-
tem, namely to the anisotropy of its shape.

* Corresponding author.
E-mail address: magda@ipb.ac.rs (M. Djordjevic).
https://doi.org/10.1016/j.physletb.2022.137501
0370-2693/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
As is the standard approach in the study of ultrarelativistic 
heavy-ion collisions, we assume the collision system to behave as 
a locally thermalised dissipative fluid. The transverse expansion of 
such a system largely depends on the initial gradients of the sys-
tem, i.e., the initial state, and also on the equation of state (EoS) 
and dissipative properties of the fluid. Thus, to provide more gen-
eral conclusions about the asymptotic behaviour of v2/(1 − R A A), it 
is necessary to explore not only one, but several, different scenar-
ios of fluid-dynamical evolution. On the other hand, it is known 
that at low-p⊥ the elliptic flow parameter v2 is proportional to 
the initial anisotropy of the system ε2,2, but the proportional-
ity constant depends on the parameters of the calculation, say, 
the freeze-out temperature. To avoid similar ambiguity we prefer 
not to randomly vary the parameters of the initialisation model, 
but constrain the calculation to reproduce the low-p⊥ data, and 
explore the universality of our results by using several different 
initialisation models, collision energies and systems. In particular, 
to initialise Pb+Pb collisions at 

√
sNN = 5.02 TeV collision energy, 

we employ optical Glauber, TRENTo, IP-Glasma and EKRT initiali-
sations, whereas we explore the sensitivity to collision energy and 
colliding nuclei by using optical Glauber initialisation for Pb+Pb 
collisions at 

√
sNN = 2.76 TeV and Xe+Xe collisions at 

√
sNN = 5.44

TeV.
We will see that the temperature evolution in different evolu-

tion scenarios is different enough to lead to observable differences 
in high-p⊥ v2 and 1 − R A A , and the ratio of these observables 
is directly related to a suitably defined measure of the system 
anisotropy. The differences in high-p⊥ v2 and 1 − R A A mean that 
constraining the calculation to reproduce the low-p⊥ data does not 
guarantee the reproduction of the high-p⊥ data. Simultaneous re-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. v2 vs 1 − R A A for p⊥>10 GeV data from 5.02 TeV Pb+Pb ALICE [10,11] (red 
triangles), CMS [14,15] (blue squares) and ATLAS [18,19] (green circles) experiments. 
The data is shown for the 40-50% centrality bin, while similar relation is obtained 
for other centralities. Each collaboration’s datapoints correspond to different values 
of p⊥ , with both v2 and 1 − R A A decreasing with increasing p⊥ .

production of both is not an aim of this study, but left for future 
work.

2. Methods

2.1. Medium evolution

Our starting point and reference we used for all collision ener-
gies and systems is a simple optical Glauber model based initiali-
sation. In Pb+Pb collisions at full LHC energy (

√
sNN = 5.02 TeV) we 

used initial times τ0 = 0.2, 0.4, 0.6, 0.8, and 1.0 fm, whereas the 
lower energy (

√
sNN = 2.76 TeV) Pb+Pb and Xe+Xe (

√
sNN = 5.44

TeV) calculations were carried out for τ0 = 0.2, 0.6, and 1.0 fm. 
The initialisation and code used to solve viscous fluid-dynamical 
equations in 3+1 dimensions are described in detail in Ref. [22], 
and parameters to describe Pb+Pb collisions at 

√
sNN = 5.02 TeV 

in Ref. [23]. In particular, we use a constant shear viscosity to en-
tropy density ratio η/s = 0.12 (Pb+Pb) or η/s = 0.10 (Xe+Xe), and 
the EoS parametrisation s95p-PCE-v1 [25].

Different initial state models lead to slightly different shapes of 
the initial state. To find if our findings are a feature of the Glauber 
model, or have broader significance, we did the Pb+Pb calculations 
at the full LHC energy using several different initial state mod-
els. The first option in this extended set, Glauber + Free streaming, 
is to use the Glauber model to provide the initial distribution of 
(marker) particles, allow the particles to stream freely from τ = 0.2
to 1.0 fm, evaluate the energy-momentum tensor of these parti-
cles, and use it as the initial state of the fluid. We evolve the fluid 
using the same code as in the case of pure Glauber initialisation. 
The EoS is s95p-PCE175, i.e., a parametrisation with Tchem = 175
MeV [26], and temperature-independent η/s = 0.16. For further 
details, see Ref. [23].

As more sophisticated initialisations, we employ EKRT, IP-
Glasma and TRENTo. The EKRT model [27–29] is based on the 
NLO perturbative QCD computation of the transverse energy and a 
gluon saturation conjecture. We employ the same setup as used in 
Ref. [30] (see also [26]), compute an ensemble of event-by-event 
fluctuating initial density distributions, average them, and use this 
average as the initial state of the fluid dynamical evolution. We 
again use the code of Molnar et al., [22], but restricted to boost-
invariant expansion. The shear viscosity over entropy density ratio 
is temperature dependent with favoured parameter values from 
the Bayesian analysis of Ref. [30]. Initial time is τ0 = 0.2 fm, and 
the EoS is the s83s18 parametrisation from Ref. [30].

IP-Glasma model [31,32] is based on Color Glass Conden-
sate [33–36]. It calculates the initial state as a collision of two 
colour glass condensates and evolves the generated fluctuating 
2

gluon fields by solving classical Yang-Mills equations. The cal-
culated event-by-event fluctuating initial states [37] were fur-
ther evolved [38] using the MUSIC code [39–41] constrained to 
boost-invariant expansion. We subsequently averaged the evalu-
ated temperature profiles to obtain one average profile per cen-
trality class. In these calculations, the switch from Yang-Mills to 
fluid-dynamical evolution took place at τswitch = 0.4 fm, shear vis-
cosity over entropy density ratio was constant η/s = 0.12, and 
the temperature-dependent bulk viscosity coefficient over entropy 
density ratio had its maximum value ζ/s = 0.13. The equation of 
state was based on the HotQCD lattice results [42] as presented in 
Ref. [43].

TRENTo [44] is a phenomenological model capable of inter-
polating between wounded nucleon and binary collision scaling, 
and with a proper parameter value, of mimicking the EKRT and 
IP-Glasma initial states. As with the EKRT initialisation, we cre-
ate an ensemble of event-by-event fluctuating initial states, sort 
them into centrality classes, average, and evolve these average ini-
tial states. Unlike in other cases, we employ the version of the 
VISH2+1 code [45] described in Refs. [46,47]. We run the code us-
ing the favoured values of the Bayesian analysis of Ref. [47]; in 
particular, allow free streaming until τ = 1.16 fm, the minimum 
value of the temperature-dependent η/s is 0.081, and the maxi-
mum value of the bulk viscosity coefficient ζ/s is 0.052. The EoS 
is the same HotQCD lattice results [42] based parametrisation as 
used in Refs. [46,47].

It is worth noticing that the initial nuclear configuration in 
all these cases is similar Woods-Saxon parametrisation of nuclear 
matter density, which is either assumed to be continuous (optical 
Glauber), or Monte-Carlo sampled to create ensembles of nucleons 
(EKRT, IP-Glasma, TRENTo). The differences in the fluid-dynamical 
initial state depend on the initial particle production, and sub-
sequent evolution before fluid-dynamical stage (none, Yang-Mills, 
free streaming).

All these calculations were tuned to reproduce, in minimum, 
the centrality dependence of charged particle multiplicity, p⊥ dis-
tributions and v2(p⊥) in Pb+Pb collisions at both collision ener-
gies, and the centrality dependence of charged particle multiplicity 
and v2{4} in Xe+Xe collisions.

2.2. Energy loss: DREENA-A

To calculate high-p⊥ R A A and v2, we used our DREENA-A 
framework [48], where ‘DREENA’ is a shorthand for “Dynamical 
Radiative ENergy Loss Approach”. ‘A’ stands for Adaptive, mean-
ing that arbitrary temperature profile can be included as input 
in the framework. The underlying dynamical energy loss formal-
ism [49,50], which is implemented in DREENA-A, has several im-
portant properties necessary for reliable high-p⊥ predictions [51]: 
i) Contrary to widely used static approximation [52–55], the QGP 
is modelled as a finite size and temperature medium, consisting 
of dynamical (i.e., moving) partons. ii) Generalised Hard-Thermal-
Loop approach [56] is used, through which infrared divergences are 
naturally regulated [49,50,57]. iii) The same theoretical framework 
is applied to both radiative [49] and collisional [50] energy loss cal-
culations. iv) Calculations are generalised to include running cou-
pling [58], and non-perturbative effects related to chromo-electric 
and chromo-magnetic screening [59,60]. The framework does not 
have free parameters in the energy loss, i.e., all the parameters are 
fixed to standard literature values. Consequently, it can fully utilise 
different temperature profiles as the only input in DREENA-A. R A A

and v2 predictions, generated under the same formalism and pa-
rameter set (and calculated in a conventional way, see e.g. [48]), 
can thus be systematically compared to experimental data to map 
out the bulk properties of QGP.
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Fig. 2. Light red (light blue) shaded areas represent the temperatures along the paths of high-p⊥ partons when traversing the medium in the in-plane (out-of-plane) direction. 
For every scenario, we show 1250 in-plane and out-of-plane trajectories. The temperature profiles are from fluid-dynamical calculations of √sNN = 5.02 TeV Pb+Pb collisions 
in the 30-40% centrality class, utilising the Glauber model (with τ0 = 1.0 fm), Glauber + free streaming (FS), IP-Glasma, and EKRT initialisations. Dark red (dark blue) curves 
represent the average temperature experienced by the particles in the in-plane (out-of-plane) directions.
While the model has several unique features in describing 
parton-medium interactions, it could still be improved by includ-
ing, e.g., flow velocity of the bulk medium and transverse gradients 
of temperature and density (see e.g., [61–64]). However, such im-
provements are in their infancy in any framework, and implement-
ing them into dynamical energy loss model while keeping all ex-
isting ingredients is challenging. Nevertheless, such improvements 
might somewhat influence the quantitative results presented in 
this manuscript, and quantifying such effects is an important fu-
ture goal.

2.3. Experimental data

We compared our predictions with data from the Pb+Pb colli-
sions at 

√
sNN = 2.76 and 5.02 TeV analysed by the LHC experi-

ments ALICE [10–13], CMS [14–17], and ATLAS [18–21]. We used 
v2 measurement obtained with the scalar product method. Since 
we are interested in the high p⊥ region, we considered data with 
p⊥ > 10 GeV. The p⊥ bins are chosen as in the v2 measure-
ments, and the R A A distributions are interpolated to the chosen 
binning. Since CMS experiment used coarser granularity in cen-
trality for R A A measurements, i.e. 10-30% and 30-50%, we assigned 
the values obtained from 10-30% (30-50%) to both 10-20% and 20-
30% (30-40% and 40-50%). Finally, combined uncertainties on the 
v2/(1 − R A A) are calculated assuming that v2 and R A A are corre-
lated.

3. Results and discussion

To gain an intuitive insight into how different initialisations 
influence high-p⊥ predictions, we show in Fig. 2 temperatures 
encountered by partons in 

√
sNN = 5.02 TeV Pb+Pb collisions as 

a function of traversed distance using four different temperature 
profiles. These plots are produced by generating initial high-p⊥
partons’ positions according to binary collision densities. Then 
these partons traverse the medium in the in-plane (red) or out-
of-plane (blue) directions, and the temperature they experience is 
plotted as a function of their path until they leave QGP. The larger 
the temperature that partons experience while traversing the QGP, 
the larger the suppression in high-p⊥ observables. Similarly, a 
larger difference between in-plane or out-of-plane temperatures is 
related to a larger high-p⊥ v2.

From Fig. 2, we observe that partons travelling in the in-plane 
and out-of-plane directions experience different temperatures in 
different scenarios, and this leads to the different behaviour of 
high-p⊥ particles. For example, based on the maximum temper-
ature encountered, we expect the largest suppression (i.e., the 
smallest R A A ) for ‘EKRT’, while ‘Glauber + FS’ are expected to lead 
3

to the largest R A A . On the other hand, from the difference in in-
plane and out-of-plane temperatures, we expect the largest v2 for 
‘Glauber, τ0 = 1 fm’, followed by ‘IP-Glasma’, while v2 for ‘EKRT’ 
should be notably smaller. The ordering of R A A and v2 is thus 
different for different evolution scenarios, and therefore it is a pri-
ori unclear what the ordering of v2/(1 − R A A) might be. In this 
section, we aim to address the following questions: i) Is the satu-
ration in v2/(1 − R A A) at high-p⊥ still observed for these different 
profiles, as expected from our previous analytical arguments and 
simple 1D Bjorken expansion [7]? ii) If yes, does this saturation 
carry information about the anisotropy of the system, and iii) What 
kind of anisotropy measure corresponds to the high-p⊥ data?

To start addressing these questions, we show in Fig. 3 how 
v2/(1 − R A A) depends on p⊥ in Pb+Pb collisions at 

√
sNN = 2.76

and 5.02 TeV using different temperature profiles.1 As seen, the 
ratio is almost independent of p⊥ above p⊥ ≈ 30 GeV, although 
IP-Glasma shows some p⊥ dependence even above this limit. We 
also confirmed that the saturation is obtained for other hydrody-
namic calculations outlined in Subsection 2.1 (not shown). Thus, 
the phenomenon of v2/(1 − R A A) saturation is indeed robust, i.e., 
holds for a variety of different transversely expanding systems.

We also observe that some profiles lead to better agreement 
with the data compared to the others. The general trend is that 
the later the transverse expansion begins (fluid dynamical or oth-
erwise), the better the fit to data. We have discussed some impli-
cations of this finding in Ref. [23], but in this paper we concentrate 
on exploring how the differences in the medium evolution are 
reflected through high-p⊥ data, and leave further comparison be-
tween predictions and the data to later studies.

To find out whether the saturation values of v2/(1 − R A A) are 
correlated with the system geometry, we evaluate the average path 
length of partons, 〈L〉, and its anisotropy

�L

〈L〉 = 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 , (1)

where 〈Lin〉 and 〈Lout〉 refer to the average path-length of high-p⊥
particles in the in-plane and out-of-plane directions. For every 
temperature profile, 〈Lin〉 and 〈Lout〉 are calculated using the Monte 
Carlo method to generate an initial hard parton position in the XY 
plane according to the binary collision densities. The parton then 
traverses the medium in the φ = 0 (or φ = π/2) direction, until 
the temperature at parton’s current position drops below critical 
temperature Tc . We use Tc=160 MeV, which is within the uncer-
tainty of the lattice QCD critical temperature of 154 ± 9 MeV [24]. 

1 To avoid cluttering the figure, at √sNN = 5.02 TeV we concentrate on the same 
four profiles as shown in Fig. 2.
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Fig. 3. Calculated and experimentally observed v2/(1 − R A A) ratio as a function of transverse momentum p⊥ in √sNN = 5.02 (upper) and 2.76 (lower) TeV Pb+Pb collisions. 
The calculations within DREENA-A framework were carried out using four different temperature profiles (Glauber with τ0 = 1.0 fm, Glauber + free streaming (FS), IP-Glasma, 
and EKRT) at √sNN = 5.02 TeV, and three at √sNN = 2.76 TeV (Glauber with initial times τ0 = 0.2, 0.6 and 1.0 fm). The data are by ALICE [10–13] (red triangles), CMS [14–17]
(blue squares) and ATLAS [18–21] (green circles) collaborations. Each panel corresponds to a different centrality (10-20%, 20-30%, 30-40%, 40-50%). The bands correspond to 
the uncertainty in the magnetic to electric mass ratio. The upper (lower) boundary of each band corresponds to μM/μE = 0.4 (0.6).
Fig. 4. Charged hadron v2/(1 − R A A) as a function of path-length anisotropies �L/L, 
for different collision systems and energies (Pb+Pb at √sNN = 2.76 and 5.02 TeV and 
Xe+Xe at √sNN = 5.44 TeV), various centrality classes and temperature profiles. For 
every profile, the point with the lowest �L/L corresponds to the 10-20% centrality 
class, the next one corresponds to 20-30%, and so on, up to 40-50% (except IP-
Glasma, where the highest centrality is 30-40%). The value of transverse momentum 
is fixed at p⊥ = 100 GeV.

We then obtain 〈Lin〉 and 〈Lout〉 by averaging the in-plane and out-
of-plane path lengths over many different partons.

In Fig. 4 we have plotted the values of v2/(1 − R A A) evalu-
ated at 100 GeV for different initialisations, collision energies and 
systems vs. the corresponding path-length anisotropies �L/〈L〉. Ex-
cept for IP-Glasma, each case is presented with four points corre-
sponding to the centrality classes 10-20%, 20-30%, 30-40%, 40-50%. 
4

We have omitted the 40-50% class of IP-Glasma since the average 
profile for this centrality class was not smooth enough to produce 
reliable v2 and R A A results.

Fig. 4 shows a surprisingly simple relation between v2/(1 −
R A A) and �L/〈L〉, independently on the collision system and en-
ergy, where the dependence is linear with a slope of almost 1. The 
saturation value is therefore dominated by the geometry of the 
system, although at small values of �L/〈L〉 there is a deviation 
from the linear proportionality. It is worth noticing that here the 
values of �L/〈L〉 are much smaller than in our earlier 1D study [7]. 
Also, even if the values of �L/〈L〉 are very different for different 
initialisations, the initial anisotropies, ε2,2, are not so different. The 
general trend is that the earlier the transverse expansion begins 
(fluid dynamical or otherwise), the smaller the �L/〈L〉 in the same 
centrality class. The time it takes the parton to reach the edge of 
the system is almost independent of τ0, but small τ0 means that 
by the time the parton reaches the edge, the system has evolved 
longer, and the initial anisotropy has been diluted more. Thus, the 
earlier the expansion begins, the lower the �L, and �L/〈L〉 depicts 
the mentioned sensitivity to the time when expansion begins.

�L/〈L〉 depends on the shape of the system, and how the shape 
evolves, but it is difficult to see how the evolution affects it. To 
change the point of view from individual jets and their paths to the 
shape of the bulk medium and its evolution, we devised a mea-
sure similar to the conventional measure of the spatial anisotropy, 
εm,n: We evaluate the average of temperature cubed encountered 
by partons propagating with angle φ with respect to the reaction 
plane:

jT (τ ,φ) ≡
∫

dxdy T 3(x + τ cosφ, y + τ sinφ,τ )n0(x, y)∫
dxdy n0(x, y)

, (2)

where n0(x, y) is the density of the jets produced in the primary 
collisions, i.e., the density of the binary collisions. This distribu-
tion is not azimuthally symmetric, and we may evaluate its second 
Fourier coefficient:
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Fig. 5. The figure on the left shows the values of v2/(1 − R A A) of charged hadrons as a function of the average jet-perceived anisotropy 〈 jT2〉 for different collision systems 
and energies (Pb+Pb at √sNN = 2.76 and 5.02 TeV and Xe+Xe at √sNN = 5.44 TeV), various centrality classes and temperature profiles. For every profile, the point with the 
lowest 〈 jT2〉 corresponds to the 10-20% centrality class, the next one corresponds to 20-30%, and so on, up to 40-50% (except IP-Glasma, where the highest centrality is 
30-40%). The value of transverse momentum is fixed at p⊥ = 100 GeV. The figure on the right shows v2/(1 − R A A) and 〈 jT2〉 ratio for every point from the figure on the 
left as a function of the centrality class.
jT2(τ ) =
∫

dxdy n0(x, y)
∫

dφ cos 2φ T 3(x + τ cos φ, y + τ sinφ, τ )∫
dxdy n0(x, y)

∫
dφ T 3(x + τ cos φ, y + τ sinφ, τ )

.

(3)

Moreover, a simple time-average of jT2,

〈 jT2〉 =
∫ τcut
τ0

dτ jT2(τ )

τcut − τ0
, (4)

where τcut is defined as the time when the centre of the fireball 
has cooled down to critical temperature Tc , is directly proportional 
to the ratio v2/(1 − R A A) as shown in Fig. 5 (without an off-shift 
observed for low values of v2/(1 − R A A) in Fig. 4).

We call this measure the average jet-perceived anisotropy of the 
system. We evaluate the ratio of v2/(1 − R A A) and 〈 jT2〉 in the p⊥
range where the v2/(1 − R A A) ratio has saturated for all models 
(p⊥ > 80 GeV), and average over all the cases shown in Fig. 5 to 
obtain

v2/(1 − R A A)

〈 jT2〉 = 1.08 ± 0.09. (5)

As shown in the right panel of Fig. 5, deviations from this be-
haviour are modest and random. This indicates that 〈 jT2〉 de-
scribes the leading term in the process creating high-p⊥ v2/(1 −
R A A), and therefore this ratio carries direct information of the sys-
tem geometry, and its anisotropy. Since unity is within one stan-
dard deviation from the average, for practical purposes we can use 
an approximation v2/(1 − R A A) = 〈 jT2〉.

The above analysis was performed on h± . However, if v2/(1 −
R A A) indeed reflects the anisotropy 〈 jT2〉, then the Eq. (5) should 
be independent of flavor. Due to large mass, R A A and v2 of heavy 
flavor particles depend on p⊥ differently from charged hadrons’ 
R A A and v2. To test whether the v2/(1 − R A A) ratio of heavy flavor 
particles also saturates at high p⊥ , and whether Eq. (5) is valid 
for them, we performed the same analysis on R A A and v2 of D 
and B mesons. We obtained that v2/(1 − R A A) indeed saturates at 
p⊥ > 20 GeV for B mesons and at p⊥ > 80 GeV for D mesons, and 
that, after saturation, the Eq. (5) is robust for all types of flavor 
(results not shown). This further supports that v2/(1 − R A A) at 
high-p⊥ directly carries information on the medium property, as 
revealed through this extensive analysis.
5

Fig. 6. Constraints to jet-perceived anisotropy (〈 jT2〉, shown on y-axis) evaluated 
from high-p⊥ > 20 GeV R A A and v2 experimental data using 〈 jT2〉 = v2/(1 − R A A)

(see Eq. (5)), for four different centrality regions (shown on x-axis): 10-20%, 20-30%, 
30-40%, 40-50%. 5.02 TeV Pb+Pb ALICE [10,11] (red triangles), CMS [14,15] (blue 
squares) and ATLAS [18,19] (green circles) data are used. For each centrality, the 
experimental constraints are compared with the average jet-perceived anisotropy 
〈 jT2〉 for various evolution scenarios, indicated on the legend.

Finally, we evaluated the favoured 〈 jT2〉 range from the ex-
perimentally measured R A A(p⊥) and v2(p⊥) for h± at different 
centralities. The 〈 jT2〉 values are obtained by fitting v2(p⊥)/(1 −
R A A(p⊥)) data shown in Fig. 3 with a constant function for p⊥ >

20 GeV using MINUIT [65] package within ROOT [66] code, taking 
uncertainties into account. The fitted ratio was then converted to 
〈 jT2〉 by assuming their equality. As shown in Fig. 6, all three ex-
periments lead to similar values of 〈 jT2〉, though the uncertainty 
is still large.

We also note that 〈 jT2〉 is a bulk-medium property, which 
can be directly evaluated from bulk-medium simulations through 
Eqs. (2)–(4), independently of high-p⊥ data. Thus, experimen-
tal data can be used to restrict the value of this quantity. In 
Fig. 6, we see that none of the evolution scenarios tested in this 
manuscript is in good agreement with the data (despite the above 
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mentioned large uncertainty), i.e., lead to smaller jet-perceived 
anisotropy than experimentally favoured. We thus show that jet-
perceived anisotropy provides an important constraint on bulk-
medium simulations, and that future bulk-medium calculations 
should be tuned to reproduce the experimentally constrained 〈 jT2〉
as well. Moreover, in the high-luminosity 3rd run at the LHC, the 
error bars for R A A(p⊥) and v2(p⊥) are expected to be signifi-
cantly reduced, which will subsequently lead to a notably better 
experimental constraint of 〈 jT2〉, also enabling better constraint 
on bulk-medium simulations.

4. Summary

In this study, we used our recently developed DREENA-A frame-
work to explore how the temperature evolution of the QGP droplet 
influences high-p⊥ v2/(1 − R A A) predictions. The framework does 
not use any free parameter within the energy loss model and con-
sequently allows to fully explore these profiles as the only input 
in the model. We showed that saturation in v2/(1 − R A A), clearly 
seen in the experimental data, is robustly obtained for the compre-
hensive set of fluid-dynamical calculations covered in this study, 
as well as different types of flavor, collision energies and collision 
systems, supporting the generality of our findings. Also, by fold-
ing spatial coordinates and temperature, we further revealed that 
this saturation value corresponds to a property of the system we 
defined as average jet-perceived anisotropy 〈 jT2〉. We also showed 
how to relate 〈 jT2〉 to experimental data, providing a new impor-
tant constraint on bulk-medium simulations. None of the evolution 
scenarios that we tested here was in good agreement with experi-
mentally inferred 〈 jT2〉 values, which argues that it is important to 
accordingly tune the bulk-medium simulations, particularly with 
the high-luminosity 3rd run at the LHC. Our approach demon-
strates the utility of the QGP tomography, i.e., the potential for 
extracting the bulk QGP properties jointly from low and high-p⊥
data.
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We show that high-p⊥ RAA and v2 are sensitive to the early expansion dynamics, and that the high-p⊥
observables prefer delayed onset of energy loss and transverse expansion. To calculate high-p⊥ RAA and v2,
we employ our newly developed DREENA-A framework, which combines state-of-the-art dynamical energy
loss model with (3+1)-dimensional hydrodynamical simulations. The model applies to both light and heavy
flavor, and we predict a larger sensitivity of heavy flavor observables to the onset of transverse expansion. This
presents the first time when bulk QGP behavior has been constrained by high-p⊥ observables and related theory,
i.e., by so-called QGP tomography.
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Quark-gluon plasma (QGP) [1,2] is an extreme form of
matter that consists of interacting quarks, antiquarks, and
gluons. This state of matter is formed in ultrarelativistic
heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) and the Large Hadron Collider (LHC). When analyz-
ing the heavy-ion collision data, the particles formed in these
collisions are traditionally separated into high-p⊥ (rare hard
probes) and low-p⊥ particles (bulk, consisting of 99.9% of
particles formed in these collisions).

The QGP properties are traditionally explored by low-p⊥
observables [3–6], while rare high-p⊥ probes are, almost
exclusively, used to understand the interactions of high-p⊥
partons with the surrounding QGP medium. High-p⊥ physics
had a decisive role in the QGP discovery [7], but it has
been rarely used to understand bulk QGP properties. On the
other hand, some important bulk QGP properties are diffi-
cult to constrain by low-p⊥ observables and corresponding
theory/simulations [8–11]. We are therefore advocating QGP
tomography, where bulk QGP parameters are jointly con-
strained by low- and high-p⊥ physics.

During the last few years, our understanding of the very
early evolution of QGP has evolved a lot. In particular
the discovery of the attractor solutions of the evolution of
nonequilibrated systems [12–14], and models based on effec-
tive kinetic theory [15,16] have been significant milestones.
However, the exact dynamics of early evolution and hydro-
dynamization of the medium, i.e., the approach to the state
where the system can be described using fluid dynamics, are
not settled yet. Furthermore, to our knowledge, there are no
reliable methods to calculate jet energy loss in a medium
out of equilibrium. Instead of microscopic calculation of the
early-time dynamics, we take a complementary approach in
this Letter. We calculate the high-p⊥RAA and v2 in a few

*pasi@ipb.ac.rs
†magda@ipb.ac.rs

straightforward scenarios, and show how the comparison to
high-p⊥ data constrains the early evolution.

In the attractor solutions, the final evolution is fluid dy-
namical even if the initial state is quite far from equilibrium.
This allows us to entertain the notion that even if the early
state is not in local equilibrium, we could use fluid dynam-
ics to describe its evolution from very early times [17], say
from τ0 = 0.2 fm, where τ0 is the initial time of fluid dy-
namical evolution. Correspondingly, we may argue that the
temperature entering fluid dynamical evolution controls also
jet energy loss, and we may start the jet energy loss at the
same time, τq = 0.2 fm. On the other hand, we had studied the
preequilibrium energy loss in various scenarios [18], and seen
that even if the data could not properly distinguish these sce-
narios, Bjorken-type temperature evolution at very early times
tended to push RAA too low. This may suggest that applying
the equilibrium jet-medium interactions to the preequilibrium
stage (even if close enough to fluid dynamical) overestimates
the energy loss. Due to this, we here, for simplicity, assume
an opposite limit, where we start the energy loss later than the
fluid dynamical evolution: τq = 1.0 fm and τ0 = 0.2 fm.1

Frequently used toy model to study the effects of early
nonequilibrium evolution is the free-streaming approach
[19,20], where (fictional) particles are allowed to stream freely
until the initial time of fluid dynamical evolution τ0. As our
third scenario, we allow free streaming until τ0 = 1.0 fm.
Consistently with the assumed absence of interactions in the
bulk medium, we assume no jet-medium interactions during
the out-of-equilibrium stage, so that τ0 = τq = 1.0 fm. For
comparison’s sake, we also explore the old-fashioned scenario
where nothing happens before the fluid dynamical initial time
τ0 = τq = 1.0 fm, i.e., we start the fluid-dynamical evolution
at τ = 1.0 fm with zero transverse flow velocity.

1Similar scenario was suggested and studied in Ref. [66].
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When calculating how the high-p⊥ observables depend
on our different scenarios we have to ensure that the QGP
medium evolution is compatible with the observed distribu-
tions of low-p⊥ particles. We describe the medium evolution
using the (3+1)-dimensional viscous hydrodynamical model
[21]. For simplicity, we choose a constant shear viscosity to
entropy density ratio η/s = 0.12 for the cases without pre-
hydro transverse flow, and η/s = 0.16 for the free-streaming
initialization. In all the cases the initial energy density profile
in transverse plane is given by the binary collision density nBC

from the optical Glauber model:

e(τ0, x, y, b) = Ce(τ0)
(
nBC + c1n2

BC + c2n3
BC

)
. (1)

The parameters Ce, c1, and c2 are tuned separately for each
scenario, to approximately describe the observed charged
particle multiplicities and v2{4} in Pb+Pb collisions at√

sNN = 5.02 TeV. For the longitudinal profile, we keep the
parametrization used for

√
sNN = 2.76 Pb+Pb collisions [21].

The equation of state is s95p-PCE-v1 [22]. We use freeze-
out temperatures Tchem = 150 MeV and Tdec = 100 MeV for
cases without pre-hydro flow, but with free streaming we use
Tchem = 175 MeV [23] to mimic bulk viscosity around Tc

required to fit the pT distributions, and Tdec = 140 MeV.
In the free-streaming initialization massless particles

stream freely from τ = 0.2 fm to τ0 = 1.0 fm, where the
energy-momentum tensor based on the distributions of these
particles is evaluated. The energy momentum tensor is
decomposed to densities, flow velocity, and dissipative cur-
rents, which are used as the initial state of the subsequent
fluid-dynamical evolution. The switch from massless nonin-
teracting particles to strongly interacting constituents of QGP
causes large positive bulk pressure at τ0. In our calculations
bulk viscosity coefficient is always zero, and the initial bulk
pressure will approach zero according to Israel-Stewart equa-
tions.

The transverse momentum distributions of charged par-
ticles are shown in Fig. 1, and p⊥-differential elliptic flow
parameter v2{4}(p⊥) in the low momentum part (p⊥ < 2
GeV) of the bottom panels of Fig. 2. As seen, the overall
agreement with the data is acceptable.

To be able to use the high-p⊥ sector to study the bulk
behavior we need a framework that incorporates both state-
of-the-art energy loss and bulk medium simulations. With this
goal, we recently developed a fully optimized modular frame-
work DREENA-A [25], which can incorporate any, arbitrary,
temperature profile within the dynamical energy loss for-
malism (outlined below). Consequently, “DREENA” stands
for Dynamical Radiative and Elastic ENergy loss Approach,
while “A” stands for Adaptive. The framework does not have
fitting parameters within the energy loss model, allowing to
fully exploit different temperature profiles (as the only input in
the DREENA-A framework), systematically compare the data
and predictions obtained by the same formalism and parame-
ter set, and consequently constrain the bulk QGP properties
from jointly studying low- and high-p⊥ theory and data.

The initial quark spectrum is computed at next-to-leading
order [26] for light and heavy partons. To generate charged
hadrons, we use DSS [27] fragmentation functions. For D and
B mesons, we use BCFY [28] and KLP [29] fragmentation

FIG. 1. Transverse momentum spectrum of charged particles in
five centrality classes in Pb+Pb collisions at

√
sNN = 5.02 TeV,

with two initial times τ0 = 0.2 and τ0 = 1.0 fm, and free streaming
initialization (FS). ALICE data from Ref. [24].

functions, respectively. In the presence of QCD medium, the
vacuum fragmentation functions should be modified along
with parton energy loss as described by the multiscale models
[30,31]. However, for high-p⊥ > 10 GeV, which is the mo-
mentum region covered in our study,2 such modification is
small, justifying the use of vacuum fragmentation [30].

The dynamical energy loss formalism [32,33] has sev-
eral unique features: (i) QCD medium of finite size and
temperature consisting of dynamical (i.e., moving) partons;
this in distinction to medium models with widely used
static approximation and/or vacuumlike propagators [34–37].
(ii) Calculations based on generalized hard-thermal-loop ap-
proach [38], with naturally regulated infrared divergences
[32,33,39]. (iii) Calculations of both radiative [32] and colli-
sional [33] energy loss in the same theoretical framework. (iv)
Generalization towards running coupling [40], finite magnetic
mass [41]. We also recently advanced the formalism towards
relaxing the widely used soft-gluon approximation [42]. All
of these features are necessary for accurate predictions [43],
but utilizing evolving temperature profiles is highly nontrivial
within this complex energy loss framework.

We use the same parameter set to generate high-p⊥ pre-
dictions as in our earlier studies within DREENA-C [44] and
DREENA-B [45] frameworks. In particular, we use �QCD =
0.2 GeV and effective light quark flavors n f = 3. For light
quark mass, we assume to be dominated by the thermal mass
M = μE/

√
6, and for the gluon mass, we take mg = μE/

√
2

[39]. The temperature-dependent Debye mass μE is obtained
by applying procedure from Ref. [46], which leads to results
compatible with the lattice QCD [47]. The charm (bottom)
mass is M = 1.2 GeV (M = 4.75 GeV). Magnetic to electric
mass ratio is 0.4 < μM/μE < 0.6 [48–51], but for simplicity

2As the assumptions in the dynamical energy loss break down
below 10 GeV, we consider our predictions to be reliable in the region
p⊥ > 10 GeV.
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FIG. 2. Charged hadron DREENA-A RAA (top panels) and v2 (bottom panels) predictions, generated for different τ0, τq, and initialization
(see the legend, FS stands for free streaming), are compared with ALICE [24,52], CMS [53,54], and ATLAS [55,56] data. Four columns, from
left to right, correspond to 10–20 %, 20–30 %, 30–40 %, and 40–50 % centralities at

√
sNN = 5.02 TeV Pb+Pb collisions at the LHC. At low

p⊥ (p⊥ < 2 GeV) v2 is 4-cumulant v2{4}, whereas at high p⊥ (p⊥ > 5 GeV) we evaluate v2 as v2 = (1/2) (Rin
AA − Rout

AA)/(Rin
AA + Rout

AA ).

μM/μE = 0.5, leading to the uncertainty of up to 10% for
both RAA and v2 results.

The resulting DREENA-A predictions for charged hadron
RAA and v2 in four different centrality classes, and four scenar-
ios of early evolution, are shown in Fig. 2, and compared with
experimental data. As one can expect, the later the energy loss
begins, the higher the RAA, and evaluating the energy loss as
in thermalized medium already at τq = 0.2 fm is slightly dis-
favored. Furthermore, early free-streaming evolution leads to
larger RAA than fluid-dynamical evolution. On the other hand,
the behavior of v2 is different. First, if the early expansion
is fluid dynamical, we see that delaying the onset of energy
loss hardly changes v2 at all. Second, early free-streaming
evolution does not lead to better reproduction of the data, but,
in peripheral collisions, the fit is even worse. The only case
when our v2 predictions approach the data, is when both the
jet energy loss and the transverse expansion are delayed to
τ = 1 fm.

As shown in Fig. 3, heavy quarks are even more sensitive to
the early evolution. For bottom probes, the data are largely not
available, making these true predictions. For charm probes,
the available experimental data are much more sparse (and
with larger error bars) than the charged hadron data. However,
where available, comparison of our predictions with the data
suggests the same preference towards delayed energy loss
and transverse expansion as charged hadrons. These results
are important, as consistency between light and heavy flavor
is crucial (though highly nontrivial, as, e.g., implied by the
well-known heavy flavor puzzle [62]) for studying the QGP
properties.

To investigate the origin of the sensitivity of RAA and
v2 to the early evolution, we evaluate the temperature along

the paths of jets traveling in-plane (φ = 0) and out-of-plane
(φ = π/2) directions, and average over all sampled jet paths.
In Fig. 4 we show the time evolution of the average of temper-
atures in in- and out-of-plane directions, and their difference

FIG. 3. Predicted D (full curves) and B meson (dashed curves)
RAA (top panels) and v2 (bottom panels) in Pb+Pb collisions at√

sNN = 5.02 TeV. The predictions for D mesons are compared with
ALICE [57,58] (red triangles) and CMS [59] (blue squares) D meson
data, while predictions for B mesons are compared with CMS [60]
(green circles) nonprompt J/� data.
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FIG. 4. Average temperature along the jet path traversing the
system (top panel) and the difference of average temperatures in
out-of-plane and in-plane directions (bottom panel) for τ0 = 0.2 and
1.0 fm and free-streaming initialization at 10–20 % and 30–40 %
centrality classes. The average is over all sampled jet paths, and the
path ends at TC ≈ 160 MeV [61].

in 10–20 % and 30–40 % central collisions for τ0 = 0.2 and
1.0 fm, and the free-streaming initialization. The behavior
of RAA is now easy to understand in terms of average tem-
perature: Larger τq, i.e., delay in the onset of energy loss,
cuts away the large temperature part of the profile decreasing
the average temperature, and thus increasing the RAA [44,45].
Similarly, for late start of transverse expansion, i.e., τ0 = 1.0
fm, the temperature is first slightly larger and later lower
than for τ0 = 0.2 fm, and thus the RAA in τ0 = τq = 1.0 fm
and τ0 = 0.2 with τq = 1.0 cases is almost identical. On the
other hand, due to the rapid expansion of the edges of the
system, free-streaming initialization leads to lower average
temperature than any other scenario, and thus to the largest
RAA.

High-p⊥ v2, on the other hand, is proportional to the
difference in temperature along in-plane and out-of-plane
directions, and to lesser extent to the average temperature.
Delaying the onset of transverse expansion to τ0 = 1.0 fm
leads to larger difference than either early fluid-dynamical or
free-streaming expansion, and thus v2 is largest in that case.
As well, delaying the onset of energy loss by increasing τq

hardly changes v2, since at early times the temperature seen
by jets in in- and out-of-plane directions is almost identical,
and no v2 is built up at that time. Early free streaming and
early fluid-dynamical expansion lead to similar differences in
temperatures. The slightly larger difference in the 10–20 %
centrality class is counteracted by slightly lower temperature,
and thus final v2 is practically identical in both cases. In the
more peripheral 30–40 % class the differences in temperature
are almost identical, but the lower average temperature leads
to lower v2 for free streaming.

The delay in transverse expansion affects the average tem-
perature along the jet in two ways. First, smaller τ0 means
larger initial gradients, faster buildup of flow, and faster dilu-
tion of the initial spatial anisotropy. Similarly, free-streaming
leads to even faster buildup of flow and dilution of spatial
anisotropies than early fluid-dynamical expansion. Second,
since the initial jet production is azimuthally symmetric, and
jets travel along eikonal trajectories, at early times both in-
and out-of-plane jets probe the temperature of the medium
almost the same way. Only with course of time will the
spatial distribution of in- and out-of-plane jets differ, and the
average temperature along their paths begins to reflect the
anisotropies of the fluid temperature. This qualitative under-
standing indicates that the obtained conclusions are largely
model independent.

The idea of using high-p⊥ theory and data to explore
QGP is not new, see, e.g., Refs. [63–73]. While some of
these approaches can achieve a reasonable agreement with the
data (see, e.g., [73–75]), this agreement relies on adjusting
fitting parameter(s) in the energy loss model, which prevents
them from constraining the bulk medium properties. These
models thus largely concentrate on investigating the nature
of parton interactions (e.g., a new phenomenon of magnetic
monopoles is systematically introduced in Ref. [73]) rather
than exploring which dynamical evolution better explains the
data. In contrast, the goal of our approach is to constrain the
bulk QGP behavior. The major advantage of our framework is
that it does not use fitting parameters in the energy loss model,
enabling us to explore the effects of different bulk medium
evolutions. We can even use RAA to make conclusions about
the bulk properties of the system, where our RAA results imply
that the energy loss during the very early evolution is weaker
than energy loss in a fully thermal system.

Furthermore, our study shows that not only is early energy
loss suppressed [64,66], but the early buildup of transverse
expansion must be delayed as well. It is not sufficient to delay
cooling as suggested in Ref. [64], but the initial anisotropy
must be diluted at much slower rate than given by either free
streaming or by fluid dynamics. We do not expect current
more sophisticated approaches to preequilibrium dynamics,
such as KøMPøST based on effective kinetic theory [15,16],
to resolve this issue. As seen in Ref. [76], except in most
peripheral collisions, both KøMPøSTing and free streaming
lead to very similar final distributions. Thus we may expect
that at the time of switching to fluid dynamics, they both have
lead to very similar flow and temperature profiles (and thus
anisotropies).

Alternatively, the initial spatial anisotropies could be much
larger than considered here. It is known that both IP-Glasma
and EKRT approaches lead to larger eccentricities than
Glauber, but we have tested that they both lead to too low
high-p⊥ v2, if the fluid dynamical evolution begins as usually
assumed in calculations utilizing IP-Glasma or EKRT ini-
tializations. Event-by-event fluctuations may enhance spatial
anisotropies as well, and by generating shorter scale struc-
tures, they may enhance the sensitivity of high-p⊥ v2 to
spatial anisotropies. However, for these additional structures
to enhance the high-p⊥ v2, they should be correlated with the
event plane, which is not necessarily the case. While we have
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postponed a study of event-by-event fluctuations to a further
work, our preliminary results do not indicate substantial influ-
ence on high-p⊥ predictions.

In summary, we presented (to our knowledge) the first ex-
ample of using high-p⊥ theory and data to provide constraints
to bulk QGP evolution. Specifically, we inferred that exper-
imental data suggest that at early times both the energy loss
and transverse expansion of the system should be significantly
weaker than in conventional models. We emphasize that the
assumption that no energy loss nor transverse expansion takes
place before τ0 = 1.0 fm is unrealistic. We are not advocating
such a scenario, but note that the only way available to us to
test our hypothesis that the early energy loss and expansion
should be suppressed was to take the limit of no energy
loss nor transverse expansion at all. Doing this significantly
improves the agreement with the data, thus supporting our
hypothesis. While our finding of delayed onset of energy loss

and transverse expansion has yet to be physically understood,
there have been several anomalies in the history of heavy-ion
physics, and our result is one more of them.

Furthermore, heavy flavor observables show large sensi-
tivity to the details of early evolution, so our conclusion
will be further tested by the upcoming high luminosity
measurements. Our results demonstrate inherent interconnec-
tions between low- and high-p⊥ physics, strongly supporting
the utility of our QGP tomography approach, where bulk
QGP properties are jointly constrained by low- and high-p⊥
data.
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Grant No. ERC-2016-COG: 725741, and by the Ministry of
Education, Science and Technological Development of the
Republic of Serbia, under Projects No. ON171004 and No.
ON173052.
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Shape of the quark gluon plasma droplet reflected in the high-p⊥ data
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We show, through analytic arguments, numerical calculations, and comparison with experimental data, that the
ratio of the high-p⊥ observables v2/(1 − RAA) reaches a well-defined saturation value at high p⊥, and that this
ratio depends only on the spatial anisotropy of the quark gluon plasma (QGP) formed in ultrarelativistic heavy-
ion collisions. With expected future reduction of experimental errors, the anisotropy extracted from experimental
data will further constrain the calculations of initial particle production in heavy-ion collisions and thus test our
understanding of QGP physics.
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Introduction. The major goal of relativistic heavy-ion
physics [1–4] is understanding the properties of the new form
of matter called quark gluon plasma (QGP) [5,6], which, in
turn, allows the understanding of properties of QCD matter at
its most basic level. Energy loss of rare high-momentum par-
tons traversing this matter is known to be an excellent probe
of its properties. Different observables such as the nuclear
modification factor RAA and the elliptic flow parameter v2 of
high-p⊥ particles, probe the medium in different manners, but
they all depend not only on the properties of the medium, but
also on the density, size, and shape of the QGP droplet created
in a heavy-ion collision. Thus drawing firm conclusions of
the material properties of QGP is very time consuming and
requires simultaneous description of several observables. It
would therefore be very useful if there were an observable, or
combination of observables, which would be sensitive to only
one or just a few of all the parameters describing the system.

For high-p⊥ particles, spatial asymmetry leads to different
paths, and consequently to different energy losses. Conse-
quently, v2 (angular differential suppression) carries informa-
tion on both the spatial anisotropy and material properties
that affect energy loss along a given path. On the other hand,
RAA (angular average suppression) carries information only
on material properties affecting the energy loss [7–10], so one
might expect to extract information on the system anisotropy
by taking a ratio of expressions which depend on v2 and
RAA. Of course, it is far from trivial whether such intuitive
expectations hold, and what combination of v2 and RAA one
should take to extract the spatial anisotropy. To address this,
we here use both analytical and numerical analysis to show
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that the ratio of v2 and 1 − RAA at high p⊥ depends only on
the spatial anisotropy of the system. This approach provides
a complementary method for evaluating the anisotropy of the
QGP fireball, and advances the applicability of high-p⊥ data
to a new level as, up to now, these data were mainly used to
study the jet-medium interactions, rather than inferring bulk
QGP parameters.

Anisotropy and high-p⊥ observables. In [10,11], we
showed that at very large values of transverse momentum
p⊥, the fractional energy loss �E/E (which is very complex,
both analytically and numerically, due to inclusion of multiple
effects, see Numerical results for more details) shows asymp-
totic scaling behavior

�E/E ≈ χ (p⊥)〈T 〉a〈L〉b, (1)

where 〈L〉 is the average path length traversed by the jet, 〈T 〉
is the average temperature along the path of the jet, χ is a
proportionality factor (which depends on initial jet p⊥), and a
and b are proportionality factors which determine the temper-
ature and path-length dependence of the energy loss. Based on
Refs. [12–15], we might expect values like a = 3 and b = 1 or
2, but a fit to a full-fledged calculation yields values a ≈ 1.2
and b ≈ 1.4 [11,16]. Thus the temperature dependence of the
energy loss is close to linear, while the length dependence is
between linear and quadratic. To evaluate the path length we
follow Ref. [17]:

L(x, y, φ) =
∫ ∞

0 dλ λ ρ(x + λ cos(φ), y + λ sin(φ))∫ ∞
0 dλ ρ(x + λ cos(φ), y + λ sin(φ))

, (2)

which gives the path length of a jet produced at point (x, y)
heading to direction φ, and where ρ(x, y) is the initial density
distribution of the QGP droplet. To evaluate the average path
length we take average over all directions and production
points.

If �E/E is small (i.e., for high p⊥ and in peripheral
collisions), we obtain [7,10,11]

RAA ≈ 1 − ξ 〈T 〉a〈L〉b, (3)
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where ξ = (n − 2)χ/2, and n is the steepness of a power-
law fit to the transverse momentum distribution, dN/d p⊥ ∝
1/p⊥n. Thus 1 − RAA is proportional to the average size and
temperature of the medium. To evaluate the anisotropy we
define the average path lengths in the in-plane and out-of-
plane directions,

〈Lin〉 = 1

�φ

∫ �φ/2

−�φ/2
dφ 〈L(φ)〉,

〈Lout〉 = 1

�φ

∫ π/2+�φ/2

π/2−�φ/2
dφ 〈L(φ)〉, (4)

where �φ = π/6 [18] is the acceptance angle with respect to
the event plane (in-plane) or orthogonal to it (out-of-plane),
and 〈L(φ)〉 the average path length in the φ direction. Note
that the obtained calculations are robust with respect to the
precise value of the small angle ±�φ/2, but we still keep a
small cone (±π/12) for Rin

AA and Rout
AA calculations, to have

the same numerical setup as in our Ref. [10]. Now we can
write 〈L〉 = (〈Lout〉 + 〈Lin〉)/2 and �L = (〈Lout〉 − 〈Lin〉)/2.
Similarly, the average temperature along the path length can
be split to average temperatures along paths in in- and out-of-
plane directions, 〈Tin〉 = 〈T 〉 + �T and 〈Tout〉 = 〈T 〉 − �T .
When applied to an approximate way to calculate v2 of high-
p⊥ particles [19], we obtain1

v2 ≈ 1

2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ 〈Tout〉a〈Lout〉b − ξ 〈Tin〉a〈Lin〉b

4

≈ ξ 〈T 〉a〈L〉b

(
b

2

�L

〈L〉 − a

2

�T

〈T 〉
)

, (5)

where we have assumed that ξ 〈T 〉a〈L〉b � 1, and that �L/〈L〉
and �T/〈T 〉 are small as well.

By combining Eqs. (3) and (5), we obtain

v2

1 − RAA
≈

(
b

2

�L

〈L〉 − a

2

�T

〈T 〉
)

. (6)

This ratio carries information on the anisotropy of the system,
but through both spatial (�L/〈L〉) and temperature (�T/〈T 〉)
variables. From Eq. (6), we see the usefulness of the (approx-
imate) analytical derivations, since the term (1 − RAA) in the
denominator could hardly have been deduced intuitively or
pinpointed by numerical trial and error. Figure 1 shows a lin-
ear dependence �L/〈L〉 ≈ c�T/〈T 〉, where c ≈ 4.3, with the
temperature evolution given by one-dimensional (1D) Bjorken
expansion, as sufficient to describe the early evolution of the
system. Equation (6) can thus be simplified to

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς,

where ς = 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1

2

(
b − a

c

)
≈ 0.57, (7)

1Note that the first approximate equality in Eq. (5) can be shown to
be exact if the higher harmonics v4, v6, etc., are zero, and the opening
angle where Rin

AA and Rout
AA are evaluated is zero [cf. definitions of

〈Lout〉 and 〈Lin〉, Eq. (4)].

FIG. 1. �T/〈T 〉 vs �L/〈L〉 in Pb+Pb collisions at
√

sNN =
5.02 TeV collision energy at various centralities [7,10]. The more
peripheral the collision, the larger the values. The red solid line
depicts linear fit to the values.

when a ≈ 1.2 and b ≈ 1.4. Consequently, the asymptotic
behavior of observables RAA and v2 is such that at high p⊥,
their ratio is dictated solely by the geometry of the fireball.
Therefore, the anisotropy parameter ς can be extracted from
the high-p⊥ experimental data.

Regarding the parametrization used to derive Eq. (7) (con-
stants a, b, and c), we note that a and b are well established
within our dynamical energy-loss formalism and follow from
RAA predictions that are extensively tested on experimental
data [11,16] and do not depend on the details of the medium
evolution. Regarding c, it may (to some extent) depend on
the type of implemented medium evolution, but this will not
affect the obtained scaling, only (to some extent) the overall
prefactor in Eq. (7).

Numerical results. To assess the applicability of the analyt-
ically derived scaling in Eq. (7), we calculate v2/(1 − RAA)
using our full-fledged numerical procedure for calculating the
fractional energy loss. This procedure is based on our state-of-
the-art dynamical energy-loss formalism [20,21], which has
several unique features in the description of high-p⊥ parton
medium interactions: (i) The formalism takes into account
a finite-size, finite-temperature QCD medium consisting of
dynamical (that is, moving) partons, contrary to the widely
used static scattering approximation and/or medium models
with vacuum-like propagators (e.g., [12–15]). (ii) The calcu-
lations are based on the finite-temperature generalized hard-
thermal-loop approach [22], in which the infrared divergences
are naturally regulated [20,21,23]. (iii) Both radiative [20]
and collisional [21] energy losses are calculated under the
same theoretical framework, applicable to both light and
heavy flavor. (iv) The formalism is generalized to the case
of finite magnetic [24] mass and running coupling [25] and
towards removing the widely used soft-gluon approximation
[26]. The formalism was further embedded into our recently
developed DREENA-B framework [10], which integrates ini-
tial momentum distribution of leading partons [27], energy
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loss with path-length [17] and multigluon [28] fluctuations
and fragmentation functions [29], in order to generate the
final medium modified distribution of high-p⊥ hadrons. The
framework was recently used to obtain joint RAA and v2

predictions for 5.02 TeV Pb+Pb collisions at the LHC [10],
showing a good agreement with the experimental data.

We have previously shown [30] that all the model ingredi-
ents noted above have an effect on the high-p⊥ data, and thus
should be included to accurately explain it. In that respect,
our model is different from many other approaches, which
use a sophisticated medium evolution, but an (over)simplified
energy-loss model. Our previous work, however, shows that
for explaining the high-p⊥ data, an accurate description of
high-p⊥ parton-medium interactions is at least as important
as an advanced medium evolution model. For example, the
dynamical energy-loss formalism, embedded in 1D Bjorken
expansion, explains well the v2 puzzle [10], i.e., the inability
of other models to jointly explain RAA and v2 measure-
ments. To what extent the dynamical energy-loss predic-
tions will change when embedded in full three-dimensional
evolution is at the time of this writing still unknown, but
our previous results nevertheless make it plausible that cal-
culations employing simple one-dimensional expansion can
provide valuable insight into the behavior of jets in the
medium.

Our results for the longitudinally expanding system (1D
Bjorken) and the corresponding data are shown in Fig. 2. The
gray band shows our full DREENA-B result (see above) with
the band resulting from the uncertainty in the magnetic to
electric mass ratio μM/μE [31,32]. The red line corresponds
to the 0.57ς limit from Eq. (7), where ς is the anisotropy of
the path lengths used in the DREENA-B calculations [7,10].
Importantly, for each centrality, the asymptotic regime—
where the v2/(1 − RAA) ratio does not depend on p⊥, but is
determined by the geometry of the system—is already reached
from p⊥ ≈ 20–30 GeV; the asymptote corresponds to the
analytically derived Eq. (7), within ±5% accuracy. It is also
worth noticing that our prediction of asymptotic behavior was
based on approximations which are not necessarily valid in
these calculations, but the asymptotic regime is nevertheless
reached, telling us that those assumptions were sufficient to
capture the dominant features. If, as we suspect, the high-
p⊥ parton-medium interactions are more important than the
medium evolution model in explaining the high-p⊥ data, this
behavior reflects this importance and the analytical derivations
based on a static medium may capture the dominant features
seen in Fig. 2.

Furthermore, to check if the experimental data support
the derived scaling relation, we compare our results to the
ALICE [33,34], CMS [35,36], and ATLAS [37,38] data for√

sNN = 5.02 TeV Pb+Pb collisions. The experimental data,
for all three experiments, show the same tendency, i.e., the in-
dependence on the p⊥ and a consistency with our predictions,
though the error bars are still large. Therefore, from Fig. 2, we
see that at each centrality both the numerically predicted and
experimentally observed v2/(1 − RAA) approach the same
high-p⊥ limit. This robust, straight line, asymptotic value
carries information about the system’s anisotropy, which is,
in principle, simple to infer from the experimental data.

FIG. 2. Theoretical predictions for v2/(1 − RAA) ratio of charged
hadrons as a function of transverse momentum p⊥ compared with
5.02 TeV Pb+Pb ALICE [33,34] (red triangles), CMS [35,36] (blue
squares), and ATLAS [37,38] (green circles) data. Panels correspond
to 10–20%, 20–30%, 30–40%, and 40–50% centrality bins. The gray
band corresponds to the uncertainty in the magnetic to electric mass
ratio μM/μE . The upper (lower) boundary of the band corresponds to
μM/μE = 0.4 (0.6) [31,32]. In each panel, the red line corresponds
to the limit 0.57ς from Eq. (7).
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Ideally, the experimental data (here from ALICE, CMS,
and ATLAS) would overlap with each other, and would more-
over have small error bars. In such a case, the data could
be used to directly extract the anisotropy parameter ς by
fitting a straight line to the high-p⊥ part of the v2/(1 − RAA)
ratio. While such direct anisotropy extraction would be highly
desirable, the available experimental data are unfortunately
still not near the precision level needed to implement this.
However, we expect this to change in the upcoming high-
luminosity third run at the LHC, where the error bars are
expected to be significantly reduced, so that this procedure
can be directly applied to experimental data.

It is worth remembering that the anisotropy parameter ς ,
which can be extracted from the high-p⊥ data, is not the
commonly used anisotropy parameter ε2,

ε2 = 〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (8)

where ρ(x, y) is the initial density distribution of the QGP
droplet. We may also expect, that once the transverse ex-
pansion is included in the description of the evolution, the
path-length anisotropy ς reflects the time-averaged anisotropy
of the system, and therefore is not directly related to the
initial-state anisotropy ε2. Nevertheless, it is instructive to
check how the path-length anisotropy in our simple model
relates to conventional ε2 values in the literature. For this
purpose we construct a variable

ε2L = 〈Lout〉2 − 〈Lin〉2

〈Lout〉2 + 〈Lin〉2
= 2ς

1 + ς2
. (9)

We have checked that for different density distributions ε2 and
ε2L agree within ≈10% accuracy.

We have extracted the parameters ς from the DREENA-B
results shown in Fig. 2; the corresponding ε2L results are
shown as a function of centrality in Fig. 3 and compared to
ε2 evaluated using various initial-state models in the literature
[39–42]. Note that conventional (EKRT [40], IP-Glasma [41])
ε2 values trivially agree with our initial ε2 (not shown in the
figure), i.e., the initial ε2 characterize the anisotropy of the
path lengths used as an input to DREENA-B, which we had
chosen to agree with the conventional models.2 It is, however,
much less trivial that through this procedure, in which we
calculate the ratio of v2 and 1 − RAA through full DREENA
framework, our extracted ε2L almost exactly recovers our
initial ε2. Note that ε2 is indirectly introduced in RAA and
v2 calculations through path-length distributions, while our
calculations are performed using full-fledged numerical pro-
cedure, not just Eq. (1). Consequently, such direct extraction
of ε2L and its agreement with our initial (and consequently
also conventional) ε2 is highly nontrivial and gives us a
good deal of confidence that v2/(1 − RAA) is related to the
anisotropy of the system only, and not its material properties.

2Binary collision scaling calculated using optical Glauber model
with additional cutoff in the tails of Woods-Saxon potentials, to be
exact.

FIG. 3. Comparison of ε2L (red band) obtained from our method,
with ε2 calculated using Monte Carlo (MC)-Glauber [39] (gray
band), EKRT [40] (purple band), IP-Glasma [41] (green dot-dashed
curve), and MC-KLN [42] (blue dotted curve) approaches. MC-
Glauber and EKRT results correspond to 5.02 TeV, while IP-Glasma
and MC-KLN correspond to 2.76 TeV Pb+Pb collisions at the LHC.

Summary. High-p⊥ theory and data are traditionally used to
explore interactions of traversing high-p⊥ probes with QGP,
while bulk properties of QGP are obtained through low-p⊥
data and the corresponding models. On the other hand, it
is clear that high-p⊥ probes are also powerful tomography
tools since they are sensitive to global QGP properties. We
here demonstrated this in the case of spatial anisotropy of the
QCD matter formed in ultrarelativistic heavy-ion collisions.
We used our dynamical energy-loss formalism to show that a
(modified) ratio of two main high-p⊥ observables, RAA and v2,
approaches an asymptotic limit at experimentally accessible
transverse momenta, and that this asymptotic value depends
only on the shape of the system, not on its material properties.
However, how exactly this asymptotic value reflects the shape
and anisotropy of the system requires further study employing
full three-dimensional expansion, which is our current work
in progress. The experimental accuracy does not yet allow the
extraction of the anisotropy from the data using our scheme,
but once the accuracy improves in the upcoming LHC runs,
we expect that the anisotropy of the QGP formed in heavy-ion
collisions can be inferred directly from the data. Such an
experimentally obtained anisotropy parameter would provide
an important constraint to models describing the early stages
of heavy-ion collision and QGP evolution, and demonstrate
synergy of high-p⊥ theory and data with more common
approaches for inferring QGP properties.
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The suppression of high-p⊥ particles is one of the main signatures of parton energy loss during its passing
through the quark-gluon plasma medium, and is reasonably reproduced by different theoretical models. However,
a decisive test of the reliability of a certain energy-loss mechanism, apart from its path length, is its temperature
dependence. Despite its importance and comprehensive dedicated studies, this issue is still awaiting more
stringent constraints. To this end, we here propose a novel observable to extract the temperature-dependence
exponent of a high-p⊥ particle’s energy loss, based on RAA. More importantly, by combining analytical argu-
ments, full-fledged numerical calculations, and comparison with experimental data, we argue that this observable
is highly suited for testing the long-standing �E/E ∝ L2T 3 paradigm. The anticipated significant reduction of
experimental errors will allow direct extraction of temperature dependence, by considering different centrality
pairs in A + A collisions (irrespective of the nucleus size) in the high-p⊥ region. Overall, our results imply that
this observable, which reflects the underlying energy-loss mechanism, is very important to distinguish between
different theoretical models.

DOI: 10.1103/PhysRevC.103.024908

I. INTRODUCTION

The main goal of the ultrarelativistic heavy-ion program
[1–4] at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC) is inferring the features of the
created novel form of matter—quark-gluon plasma (QGP)
[5,6]—which provides an insight into the nature of the hottest
and densest known medium. Energy loss of rare high-p⊥
partons traversing the medium is considered to be one of the
crucial probes [7] of the medium properties, which also had a
decisive role in QGP discovery [8]. Comparison of predictions
stemming from different energy-loss models with experimen-
tal data tests our understanding of the mechanisms underlying
the jet-medium interactions, thereby illuminating the QGP
properties. Within this, an important goal involves a search
for adequate observables for distinguishing the energy-loss
mechanisms.

Connected to this, it is known that the temperature (T )
dependence of the energy-loss predictions may be related
to the underlying energy-loss mechanisms; e.g., pQCD ra-
diative energy loss (Baier-Dokshitzer-Mueller-Peigne-Schiff
(BDMPS) and Armesto-Salgado-Wiedemann (ASW) [9–11],
Gyulassy-Levai-Vitev (GLV) [12], light-cone path integral
(LCPI) [13] and Arnold-Moore-Yaffe (AMY) [14], higher-
twist (HT) [15], and some of their extensions [16–20]) is
typically considered to have cubic T dependence (T 3, stem-
ming from entropy, or energy density dependence), while
collisional energy loss [7,21–23] is generally considered to be
proportional to T 2. Additionally, anti-de Sitter/conformal field

*magda@ipb.ac.rs

theory (AdS/CFT)-motivated jet-energy-loss models [24,25]
display even quartic (T 4) dependence on temperature. The
different functional dependences on T found in these mod-
els are the results of the considered energy-loss mechanism
(elastic or inelastic), different treatment of the QCD medium
(finite or infinite size), and inclusion or omission of finite
temperature effects (i.e., application of temperature-modified
or vacuumlike propagators). Therefore, assessing the accurate
temperature dependence is important for disentangling rele-
vant effects for adequate description of leading parton energy
loss, and consequently for understanding the QGP properties.

For a comprehensive study on temperature (and path-
length) dependence of different energy-loss models we refer
the reader to Ref. [18]. However, even this systematic study
could not single out local T dependence, as the attempt to
simultaneously describe high-p⊥ RAA and v2 data within these
models requires some more rigorous physical justifications.
Moreover, the current error bars at the RHIC and the LHC are
still too large to resolve between different energy-loss models.
Having this in mind, we here propose a novel observable to
extract the scaling of a high-p⊥ particle’s energy loss on the
local temperature. Note that, for extracting the exact value
of the temperature-dependence exponent, this new observable
relies on the previously extracted value of the path-length
dependence coefficient [26]. We expect that this observable
will allow direct extraction of T dependence from the data in
the upcoming high-luminosity third run at the LHC, where the
error bars are expected to notably decrease.

We also propose high-p⊥ h± as the most suitable probe
for this paper, as the experimental data for h± RAA are more
abundant and with smaller error bars, compared to heavier
hadrons for all centrality classes, where this is also expected
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to hold in the future. Therefore, in this paper, we concentrate
on h± in 5.02-TeV Pb + Pb collisions at the LHC, with the
goal to elucidate this new observable, and test its robustness
to medium evolution and colliding system size. By combin-
ing full-fledged numerical predictions and scaling arguments
within our dynamical radiative and elastic energy-loss ap-
proach (DREENA) [27,28] framework, this new observable
yields the value of the temperature-dependence exponent,
which is in accordance with our previous estimate [29]. More
importantly, we utilize this observable to question the long-
standing �E/E ∝ L2T 3 paradigm, used in a wide range of
theoretical models [9–12,15–20].

II. THEORETICAL FRAMEWORK

In this paper, we use our state-of-the-art dynamical
energy-loss formalism [30–32], which includes several unique
features in modeling jet-medium interactions: (1) calculations
within the finite temperature field theory and generalized
hard-thermal-loop approach [33] (contrary to many models

which apply vacuumlike propagators [9,10,12,15]), so that
infrared divergences are naturally regulated in a highly non-
trivial manner; (2) finite size of created QGP; (3) the QCD
medium consisting of dynamical (moving) as opposed to
static scattering centers, which allows the longitudinal mo-
mentum exchange with the medium constituents; (4) both
radiative [30,31] and collisional [32] contributions calculated
within the same theoretical framework; (5) the inclusion of
a finite parton’s mass [34], making the formalism applicable
to both light and heavy flavor; and (6) the generalization
to a finite magnetic mass [35], running coupling [36], and
beyond soft-gluon approximation [37]. Note, however, that in
Ref. [37] we obtained that the effect of relaxing the soft-gluon
approximation on (fractional radiative energy loss and) RAA is
negligible, and thus can be omitted without losing the relia-
bility of the obtained results. Therefore, to avoid unnecessary
involvement of already complex expressions we here apply
their soft-gluon equivalents.

The analytical expression for the single gluon radiation
spectrum reads [27,30,35,36]

dNrad

dxdτ
= C2(G)CR

π

1

x

∫
d2q
π

d2k
π

μ2
E (T ) − μ2

M (T )

[q2 + μ2
E (T )][q2 + μ2

M (T )]
T αs(ET )αs

(
k2 + χ (T )

x

)

×
[

1 − cos

(
(k + q)2 + χ (T )

xE+ τ

)]
2(k + q)

(k + q)2 + χ (T )

[
k + q

(k + q)2 + χ (T )
− k

k2 + χ (T )

]
, (1)

where k and q denote transverse momenta of radiated and ex-
changed gluons, respectively; C2(G) = 3 and CR = 4/3 (CR =
3) for the quark (gluon) jet; while μE (T ) and μM (T ) are
electric (Debye) and magnetic screening masses, respectively.
The temperature-dependent Debye mass [27,38] is obtained
by self-consistently solving Eq. (5) from Ref. [27]. αs is the
(temperature-dependent) running coupling [27,36,39], E is

the initial parton energy, while χ (T ) = M2x2 + m2
g(T ), where

x is the longitudinal momentum fraction of the initial parton
carried away by the emitted gluon. M is the mass of the
propagating parton, while the gluon mass is considered to be
equal to its asymptotical mass mg = μE/

√
2 [40].

The analytical expression for collisional energy loss per
unit length is given by the following expression [27,32]:

dEcoll

dτ
= 2CR

πv2
αs(ET )αs

(
μ2

E (T )
)∫ ∞

0
neq(|�k|, T )d|�k|

×
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0
d|�q|

∫ v|�q|

−v|�q|
ωdω +

∫ |�q|max

|�k|/(1+v)
d|�q|

∫ v|�q|

|�q|−2|�k|
ωdω

]

×
[
|�L(q, T )|2 (2|�k| + ω)2 − |�q|2

2
+ |�T (q, T )|2 (|�q|2 − ω2)[(2|�k| + ω)2 + |�q|2]

4|�q|4 (v2|�q|2 − ω2)

]
, (2)

where neq(|�k|, T ) = N
e|�k|/T −1

+ Nf

e|�k|/T +1
is the equilibrium mo-

mentum distribution [22] including gluons, quarks, and
antiquarks. k is the four-momentum of the incoming medium
parton, v is the velocity of the initial jet, and q = (ω, �q) is the
four-momentum of the exchanged gluon. |�q|max is provided in
Ref. [32], while �T (q, T ) and �L(q, T ) are effective trans-
verse and longitudinal gluon propagators given by Eqs. (3)
and (4) from Ref. [27].

Despite the very complicated temperature dependence of
Eqs. (1) and (2), in Ref. [29] it was obtained that our dy-
namical energy-loss formalism [36] (which accommodates

some unique jet-medium effects mentioned above) has an
exceptional feature of near linear T dependence. That is,
while T 3 dependence for radiative energy loss is widely used
[9–12,14–20], from Eq. (1) it is evident that this simplified
relation is reproduced with approximations using vacuum
gluon propagators (leading to the absence of mg(T ) from the χ

expression) and neglecting running coupling. It is straightfor-
ward to show that in that case leading T dependence is �Erad

E ∝
μ2

E T ∝ T 3 (μE ∝ T ). However, Eq. (1) clearly demonstrates
that a more realistic T dependence is far from cubic, where
in Ref. [29] it was shown that asymptotic T dependence
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of our full radiative energy loss is between linear and
quadratic.

Additionally, commonly overlooked (due to being smaller
compared to radiative at high p⊥) collisional energy loss must
not be neglected in suppression predictions [41]. Moreover,
widely used dominant T 2 dependence of collisional energy
loss [7,21–23] can also be shown to be a consequence of
(i) using tree-level diagrams, and consequently introducing
artificial cutoffs to nonphysically regulate ultraviolet (and in-
frared) divergencies (e.g., in Ref. [7]) in the hard momentum
transfer sector [22]; or (ii) considering only soft momentum
exchange [21]. That is, it is straightforward to show that
Eq. (2) recovers leading T 2 dependence from Ref. [21] if
(1) only the soft gluon sector is considered, with the upper
limit of integration artificially set to |�q|max; (2) only forward
emission is accounted for (ω > 0); and (3) running coupling
is neglected. Accordingly, in Ref. [29] it was demonstrated
that complex T dependence of our collisional energy loss
(Eq. (2)) reduces not to commonly considered quadratic, but
rather to nearly linear dependence for asymptotically large
p⊥. Therefore, a state-of-the-art energy-loss model leads to a
much slower growth of the energy loss with temperature com-
pared to the common paradigm, where the widely assumed
faster growth can be reproduced only through quite drastic
simplifying assumptions.

Since the goal of this paper is the extraction of the
temperature-dependence exponent of the energy loss, this
paper will furthermore provide an opportunity to test our
dynamical energy-loss formalism on a more basic level.

III. NUMERICAL FRAMEWORK

In this paper, the predictions are generated within our fully
optimized DREENA [27,28] numerical framework, com-
prising (i) initial parton momentum distribution [42]; (ii)
energy-loss probability based on our dynamical energy-loss
formalism [30–32] (discussed in the previous section), which
includes multigluon [43] and path-length fluctuations [44],
where the path-length fluctuations are calculated according
to the procedure provided in Ref. [45] (see also Ref. [28]);
and (iii) fragmentation functions [46]. In this paper, we will
primarily use two implementations of this framework: (i)
DREENA-C, where C corresponds to constant temperature
medium; and (ii) DREENA-B, where B corresponds to one-
dimensional (1D) Bjorken QGP evolution [7].

In the first part of our paper, using the DREENA-C frame-
work, the average temperature is obtained according to the
procedure described in Refs. [28,47], which we briefly out-
line here. For each centrality region in 5.02-TeV Pb + Pb
collisions, the average temperature is estimated through T 3 ∼

dNg
dy

A⊥L [12,48], where A⊥ is the overlap area. dNg

dy is gluon ra-
pidity density, and is shown to be directly proportional to
charged particle multiplicity dNch

dη
, which is measured for all

relevant centralities in 5.02-TeV Pb + Pb collisions at the

LHC [49]. Thus, the required expression reads T = c(
dNch

dη

A⊥L )
1
3
,

where constant c can be fixed by effective temperature for
0–20% 2.76-TeV Pb+Pb collisions at LHC [50], leading to,
e.g., the average medium temperature of 348 MeV [47,50] in
most central 5.02-TeV Pb + Pb collisions at the LHC.

In the second part of this paper, where we use the
DREENA-B framework to test the sensitivity of the obtained
results, the initial temperature (T0) for each centrality is esti-
mated in accordance with Ref. [27]. That is, for each centrality

class, T0 is determined in accordance with T0 ∼ (
dNch

dη

A⊥
)

1
3

[51].
As a starting point, T0 = 500 MeV in most central 5.02-TeV
Pb + Pb collisions at the LHC is estimated from the average
medium temperature of 348 MeV [47,50] in these collisions
(see above), and a QCD transition temperature of Tc ≈ 155
MeV [52]. By knowing T0 in the most central 5.02-TeV Pb +
Pb collision, based on the expression above, it is straightfor-
ward to obtain T0s for different centralities. In both studies, the
average path lengths (L) for different centrality classes have
been calculated by integrating the path-length distributions
[28] which were obtained by following the procedure outlined
in Ref. [45], with an additional hard-sphere restriction r < RA

in the Woods-Saxon nuclear density distribution to regulate
the path lengths in the peripheral collisions.

In generating numerical predictions, all the parameters cor-
respond to standard literature values, i.e., we use no fitting
parameters. We consider a QGP with n f = 3 and 	QCD =
0.2 GeV. For the light quarks we assume that their mass is
dominated by the thermal mass M ≈ μE/

√
6. The magnetic

to electric mass ratio is assumed to be 0.4 < μM/μE < 0.6
[53,54].

IV. RESULTS AND DISCUSSION

In this section, we first address the choice of the suitable
observable for extracting energy-loss temperature depen-
dence. For this purpose, an observable which is sensitive only
to the details of jet-medium interactions (to facilitate extrac-
tion of T dependence), rather than the subtleties of medium
evolution (to avoid unnecessary complications and ensure ro-
bustness), would be optimal. RAA has such features, since it
was previously reported that it is very sensitive to energy-loss
effects [41] and the average medium properties, while being
practically insensitive to the details of medium evolution (as
opposed to v2) [26–28,55,56]. Therefore, it is plausible that
the appropriate observable should be closely related to RAA.

Our theoretical and numerical approaches described above
(where the dynamical energy loss explicitly depends on T )
are implemented in a fully optimized DREENA framework
[27,28], which makes it suitable for this paper. To more easily
interpret the obtained results, we start from a constant T
medium, i.e., DREENA-C [28]. In this framework, the local
temperature becomes the average (constant) temperature—
this makes the extraction of the temperature dependence
straightforward, which is the main advantage of that frame-
work. To confirm that, through such procedure, we indeed
extracted the local temperature dependence, we will use
DREENA-B [27] as a crosscheck, as this more complex model
incorporates medium evolution through 1D Bjorken longitu-
dinal expansion [7]. We here exploit that DREENA-C and
DREENA-B are analytically tractable, allowing us to derive
the appropriate scaling behavior. Finally, as a check of sensi-
tivity of our proposed observable to the details of the medium
evolution we employ our DREENA-A framework (“A” stands
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for “adaptive”), which employs state-of-the-art full three- plus
one-dimensional (3+1D) hydrodynamical evolution.

With the intention of extracting simple functional depen-
dence on T (of the otherwise analytically and numerically
quite complex dependence of the fractional energy loss; see
Eqs. (1) and (2)), we first provide the scaling arguments within
the DREENA-C [28] framework. These scaling (analytical)
arguments will then be followed by a full-fledged numerical
analysis. Namely, in Refs. [26–28,43] it was shown that, at
very large values of transverse momentum p⊥ and/or in pe-
ripheral collisions, the following estimates can be made:

�E/E ≈ ηT aLb,

RAA ≈ 1 − ξT aLb,
(3)

where η denotes a proportionality factor, depending on initial
parton transverse momentum and its flavor, while ξ = (n −
2)η/2, where n is the steepness of a power-law fit to the initial
transverse momentum distribution, i.e., dσ/d p2

⊥ ∝ p−n
⊥ . T

and L denote the average temperature (of the QCD medium)
along the jet path and the average path length traversed by
the energetic parton. The scaling factors for temperature and
path-length energy-loss dependence are denoted as a and b,
respectively.

We next formulate the quantity RT
AA, with the goal to isolate

the temperature dependence:

RT
AA = 1 − RAA

1 − Rref
AA

, (4)

which presents the (1 − RAA) ratio for a pair of two different
centrality classes. The centrality class that corresponds to Rref

AA
(i.e., the quantity in the denominator) is denoted as the referent
centrality, and is always lower (corresponding to a more cen-
tral collision) than centrality in the numerator. We term this
new quantity, given by Eq. (4), as a temperature-dependent
suppression ratio (RT

AA), which we will further elucidate be-
low.

Namely, by using Eq. (3), it is straightforward to isolate
average T and average path-length dependence of RT

AA:

RT
AA = 1 − RAA

1 − Rref
AA

≈ ξT aLb

ξT a
refL

b
ref

=
(

T

Tref

)a( L

Lref

)b

, (5)

which in logarithmic form reads

ln
(
RT

AA

) = ln

(
1 − RAA

1 − Rref
AA

)
≈ a ln

(
T

Tref

)
+ b ln

(
L

Lref

)
. (6)

However, the remaining dependence of the newly defined
quantity on the path length is undesired for the purpose of this
paper. So, in order to make use of the previous equation, we
first test how the two terms on the right-hand side of Eq. (6)
are related. To this end, in Fig. 1 we plot ln(L/Lref ) against
ln(T/Tref ) for several combinations of centralities, as denoted
in the caption of Fig. 1.

Conveniently, Fig. 1 shows a linear dependence
ln(L/Lref ) ≈ k ln(T/Tref ), with k ≈ 1.86. This leads to a
simple relation:

ln
(
RT

AA

) ≈ (a + kb) ln

(
T

Tref

)
, (7)

FIG. 1. ln(L/Lref ) vs ln(T/Tref ) in 5.02-TeV Pb+Pb collisions at
the LHC for various centrality pairs. The referent centralities (for
quantities in denominators) acquire one of the values 5–10, 10–20,
20–30, 30–40, or 40–50%, while the centralities in the numerator are
always higher (the highest one being 50–60%). The solid red line
corresponds to the linear fit to the calculated points.

so that with f = a + kb

RT
AA ≈

( T

Tref

) f
, (8)

where this simple form facilitates extraction of a.
In Eq. (8), RT

AA depends solely on T and effectively the
temperature-dependence exponent a (as k and b [26] are
known), which justifies the use of the “temperature-sensitive”
term with this new quantity. Therefore, here we propose RT

AA,
given by Eq. (4), as a new observable, which is highly suitable
for the purpose of this paper. Note, however, that this coupled
dependence of RT

AA on a and b exponents has its advantage,
since it allows using this new observable to shed light on
the underlying energy-loss mechanisms, by differentiating
between various energy-loss models on both their T and L
dependences.

The proposed extraction method is the following: We use
our full-fledged DREENA-C numerical procedure to gener-
ate predictions for RAA and thereby for the left-hand side
of Eq. (8). Calculation of average T is already outlined in
the previous section and described in detail above. We will
generate the predictions with a full-fledged procedure, where
we expect asymptotic scaling behavior (given by Eq. (8)) to be
valid at high p⊥ ≈ 100 GeV. Having in mind that values of k
and b parameters have been extracted earlier, the temperature-
dependence exponent a in the very high-p⊥ limit can then be
estimated from the slope ( f ) of a ln(RT

AA) vs ln(T/Tref ) linear
fit, done for a variety of centrality pairs.

However, before embarking on this task, we first verify
whether our predictions of RT

AA for different centrality classes,
based on the full-fledged DREENA-C framework, are con-
sistent with the available experimental data. In Fig. 2 we
compare our RT

AA vs p⊥ predictions for charged hadrons with
corresponding 5.02-TeV Pb + Pb LHC data from A Large Ion
Collider Experiment (ALICE) [57], Compact Muon Solenoid
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FIG. 2. Charged hadron RT
AA for different pairs of centrality classes as a function of p⊥. The predictions generated within our full-fledged

suppression numerical procedure DREENA-C [28] (black curves with corresponding gray bands) are compared with ALICE [57] (red
triangles), CMS [58] (blue squares), and ATLAS [59] (green circles) data. The lower (upper) boundary of each band corresponds to
μM/μE = 0.6 (μM/μE = 0.4). Centrality pairs are indicated in the upper-left corner of each plot.

(CMS) [58], and A Toroidal LHC ApparatuS (ATLAS) [59],
for different centrality pairs as indicated in the upper-left
corner of each plot. Despite the large error bars, for all cen-
trality pairs we observe consistency between our DREENA-C
predictions and experimental data, in the p⊥ region where our
formalism is applicable (p⊥ � 10 GeV). Moreover, we also
notice the flattening of each curve with increasing p⊥ (≈100
GeV), confirming that the expecting saturating (limiting) be-
havior is reached.

Furthermore, based on the analytical relation provided by
Eq. (7), we expect linear functional dependence between
ln RT

AA and ln(T/Tref ), which we test in Fig. 3. Note that
all quantities throughout the paper are determined at p⊥ =
100 GeV, and by calculating RT

AA for various centrality pairs

(see figure captions) within the full-fledged DREENA pro-
cedure. Remarkably, from Fig. 3, we observe that ln(RT

AA)
and ln(T/Tref ) are indeed linearly related, which confirms the
validity of our scaling arguments at high p⊥ and the proposed
procedure.

Linear fit to calculated points in Fig. 3 leads to the propor-
tionality factor f = a + kb = 3.79 ≈ 4. This small value of f
would lead to k smaller than 1 if (commonly assumed) a = 3
and b = 2 are used. Such k value seems, however, implausi-
ble, as it would require (T/Tref ) to change more slowly with
centrality compared to (L/Lref ).

More importantly, the temperature exponent can now be
extracted (b ≈ 1.4 as estimated in Ref. [26]), leading to a ≈
1.2. This indicates that temperature dependence of energetic
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FIG. 3. ln(RT
AA) vs ln(T/Tref ) relation. ln(RT

AA) and ln(T/Tref ) are
calculated from the full-fledged DREENA-C framework [28], for h±

at p⊥ = 100 GeV in 5.02-TeV Pb+Pb collisions at the LHC for
different centrality pairs. The referent centrality values are 10–20,
20–30, 30–40, and 40–50%, while their counterpart values are al-
ways higher, with the highest being equal to 50–60%. The red solid
line corresponds to the linear fit to the values. Remaining parameters
are the same as in Fig. 2.

particle energy loss (at very high p⊥) is close to linear (see
Eq. (3)), that is, certainly not quadratic or cubic, as commonly
considered. This is in accordance with previously reported
dependence of fractional dynamical energy loss on T some-
where between linear and quadratic [29], and as opposed to
commonly used pQCD estimate a = 3 for radiative [9–12,14–
20] (or even a = 2 for collisional [7,21–23]) energy loss.

The extraction of T dependence, together with previously
estimated path-length dependence [26], within the DREENA
framework, allows utilizing this new observable RT

AA in dis-
criminating between energy-loss models, with the aim of
better understanding QGP properties. To this end, in Fig. 4,
we (i) test sensitivity of RT

AA on different medium evolutions
(constant temperature, 1D Bjorken [60], and full 3+1D hy-
drodynamics [61]) and (ii) compare the asymptote derived
from this study ((T/Tref )1.2(L/Lref )1.4), with the commonly
used estimate of (T/Tref )3(L/Lref )2.

Several conclusions can be drawn from Fig. 4.
(i) With respect to different models of QGP expansion, we

see that, as expected, obtained RT
AA results are similar, i.e., not

very sensitive to the details of the medium evolution. As in
DREENA-C (and DREENA-B; see the next subsection) the
temperature dependence can be analytically tracked (which
is, however, not possible in more complex DREENA-A), this
result additionally confirms that the DREENA-C framework
is suitable for the extraction of energy-loss temperature de-
pendence.

(ii) Ideally, the T dependence exponent could be directly
extracted from experimental data, by fitting a straight line
to the very high-p⊥ part (≈100 GeV) of RT

AA for practically
any centrality pair (upon L the dependence exponent is de-
termined following Ref. [26]). However, the fact that data
from different experiments (ALICE, CMS, and ATLAS) are
not ideally consistent, and that the error bars are quite sizable,

currently prevents such direct extraction. The error bars in the
upcoming high-luminosity third run at the LHC are, however,
expected to significantly decrease, which would enable the
direct extraction of the exponent a from the data.

(iii) Finally, Fig. 4 also indicates that widely considered
energy-loss dependence T 3L2 may be inconsistent with the
experimental data. Future increase in measurements precision
could provide confidence in this observation and resolve the
exact form of these dependencies from the data, through our
proposed observable. This discriminative power of the RT

AA
quantity highlights its importance in understanding the under-
lying energy-loss mechanisms in QGP.

A. Effects of medium evolution

While in Fig. 4 we showed that RT
AA results are robust with

respect to the medium evolution, the analytical procedure for
extracting temperature dependence is different in DREENA-C
and DREENA-B frameworks. A comparison of scaling fac-
tors extracted from these two procedures can be used to test
reliability of the proposed procedure. In this subsection, we
consequently utilize the DREENA-B framework [27], where
medium evolution is introduced through Bjorken 1D hydrody-
namical expansion [60], i.e., there is the following functional
dependence of T on path length:

T = T0

(τ0

l

)1/3
, (9)

where T0 and τ0 = 0.6 fm [62,63] denote initial temperature
and thermalization time of the QGP.

Proceeding in a similar manner as in constant medium
case, RT

AA (given by Eq. (4)) in the evolving medium (for cou-
pled local T and l , where l stands for traversed path length)
reads

RT
AA =

∫ L
0 T alb−1dl∫ Lref

0 (Tref )a(lref )b−1dlref

= T a
0 τ

a/3
0

∫ L
0

lb−1

la/3 dl

T a
0,refτ

a/3
0

∫ Lref

0
(lref )b−1

(lref )a/3 dlref

=
(

T0

T0,ref

)a( L

Lref

)b− a
3

, (10)

where we used Eq. (9). Again, we assess whether there is
a simple relation between logarithms of the (now initial)
temperature ratio and average path-length ratio for different
centrality pairs. Similarly to the constant T case, from Fig. 5
we infer linear dependence between these two quantities,
where the slope coefficient now acquires the value κ ≈ 1.3.
Thus, we may write

L

Lref
=

(
T0

T0,ref

)κ

⇒ T0

T0,ref
=

(
L

Lref

)1/κ

, (11)

which ensures that the RT
AA quantity has a very simple form,

depending only on average path length and exponents a, b,
and κ:

RT
AA =

(
L

Lref

) a
κ
+b− a

3

. (12)

If we substitute the value of a ≈ 1.2 obtained in the con-
stant T medium case, previously estimated b ≈ 1.4 [26], and
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FIG. 4. The discriminative power of the RT
AA quantity in resolving the energy-loss mechanism. Four panels in Fig. 2 are extended to include

comparison of our asymptotic scaling behavior (T/Tref )1.2(L/Lref )1.4 (gray dashed horizontal line) with common assumption (T/Tref )3(L/Lref )2

(gray dot-dashed horizontal line). The figure also shows comparison of RT
AAs obtained by three different numerical frameworks: constant

temperature DREENA-C (black curve), 1D Bjorken expansion DREENA-B [27] (cyan curve), and full 3+1D hydrodynamics evolution [61]
DREENA-A (magenta curve). The remaining labeling is the same as in Fig. 2.

FIG. 5. ln(L/Lref ) vs ln(T0/T0,ref ) for various pairs of centralities
in evolving medium. The assumed centrality pairs are the same as in
Fig. 1. The red solid line corresponds to the linear fit to the values.

here inferred κ ≈ 1.3, we arrive at the following estimate:

RT
AA =

(
L

Lref

)1.93

⇒ ln(RT
AA) = 1.93 ln

(
L

Lref

)
. (13)

This equation is quite suitable for testing the robustness of
the procedure for extracting the exponent a to inclusion of
the evolving medium. Namely, value 1.93 in Eq. (13) stems
from coefficient a, which is extracted from the constant T
medium case. On the other hand, if we plot ln(RT

AA), generated
by full-fledged DREENA-B calculations (i.e., in the evolving
medium) which are fundamentally different from DREENA-
C, against ln(L/Lref ) for a variety of centrality pairs, again
we observe a linear dependence (see Fig. 6). Furthermore, a
linear fit to the values surprisingly yields the exact same slope
coefficient value of 1.93 (see also Table I).

Consequently, the procedure of extracting the temperature-
dependence exponent, introduced first in the case of the
constant T medium, is applicable to the expanding medium as
well. Moreover, the fact that the same coefficient a is obtained
through two different procedures leads us to conclude that
(i) for the purpose of this paper the DREENA-C framework
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FIG. 6. Testing the validity of our procedure for temperature-
dependence extraction in the case of the expanding QCD medium.
ln(RT

AA) vs ln(L/Lref ) for h± at p⊥ = 100 GeV for different pairs
of centrality classes is plotted. Suppression predictions are obtained
from full-fledged DREENA-B [27] calculations. Referent centrality
values are 5–10, 10–20, 20–30, 30–40, 40–50, and 50–60%, while
their counterpart values are always higher, with the highest being
60–70%. The red solid line corresponds to the linear fit to the values.

(assuming a constant temperature medium) is sufficient and
(ii) the same energy-loss scaling holds in an evolving medium
(i.e., for local temperature) as well. The displayed consistency
of the results provides confidence in the general applicability
of our procedure (suggesting robustness to the applied model
of the bulk medium) and supports the reliability of the value
of extracted T dependence exponent a ≈ 1.2.

It is worth noting that the definition of RT
AA relies on the fact

that we assume that RAA = 1 if no energy loss is encountered.
Related to this, we do not study the effect of (nuclear) parton
distribution function differences on RAA, as it is generally
studied under initial-state effects. However, it is known that
initial-state effects have a sizable impact only on the low- and
moderate-p⊥ sector (lower than 6 GeV) [64–70]. Since our
numerical predictions are generated above 8–10 GeV and the
temperature dependence is extracted at very high-p⊥ values
(p⊥ ∼ 100 GeV), these effects will be negligible in this p⊥
region, and should not influence the results obtained in our
paper.

B. Effects of colliding system size

We below extend our analysis to smaller colliding systems
in order to assess generality of the conclusions presented

TABLE I. Inferred temperature-dependence exponent across dif-
ferent frameworks.

Framework Temperature dependence exponent

DREENA-C a ≈ 1.2
DREENA-B Consistent with a ≈ 1.2
DREENA-A Not analytically tractable

above. Smaller colliding systems, such as Xe + Xe, Kr +
Kr, Ar + Ar, and O + O, are important to gradually re-
solve the issue of QGP formation in small systems (such as
pA), and (except Xe + Xe, which is already in a run) are
expected to be a part of the future heavy-ion program at the
LHC [71].

As already discussed in Ref. [26], for this analysis within
the DREENA-C framework [28] (which we employ here
for simplicity, since the robustness of the procedure to the
evolving medium was demonstrated above) note that RAA de-
pends on (i) initial high-p⊥ parton distribution, (ii) medium
average T , and (iii) path-length distribution. For different
colliding systems (probably at slightly different

√
sNN = 5.44

TeV compared to the Pb + Pb system) we employ the same
high-p⊥ distributions, since in Ref. [29] it was shown that
for almost twofold increase of the collision energy (from 2.76
to 5.02 TeV) the change in corresponding initial distributions
results in a negligible change (approximately 5%) in suppres-
sion.

Regarding the average temperature, one should note that
T is directly proportional to the charged particle multiplicity,
while inversely proportional to the size of the overlap area
and average medium size [26,28,47,48], i.e., T ∝ ( dNch/dη

A⊥L )1/3.
The transition to smaller colliding systems, for a certain
fixed centrality class, leads to the following scaling: A⊥ ∝
A2/3, L ∝ A1/3 [72,73], and dNch/dη ∝ Npart ∝ A [74,75],
where A denotes atomic mass. This leads to T ∼ ( A

A
2
3 A

1
3

)1/3 ∼
const, that is, we expect that average temperature does not
change, when transitioning from large Pb + Pb to smaller
systems, for a fixed centrality class. Lastly, path-length dis-
tributions for smaller systems and each centrality class are
obtained in the same manner as for Pb+Pb [28], and are
the same as in Pb + Pb collisions up to a rescaling factor
of A1/3.

By denoting all quantities related to smaller systems with a
tilde, with Pb + Pb quantities denoted as before, it is straight-
forward to show that the temperature sensitive suppression
ratio for smaller systems satisfies

R̃T
AA = 1 − R̃AA

1 − R̃ref
AA

≈ T̃ aL̃b

T̃ a
refL̃

b
ref

≈ T aLb

T a
refL

b
ref

(Ã/A)b/3

(Ã/A)b/3

= 1 − RAA

1 − Rref
AA

= RT
AA, (14)

where we used T̃ = T and L̃/L = (Ã/A)1/3.
To validate equality of RT

AAs for different system sizes,
predicted by analytical scaling behavior (Eq. (14)), in Fig. 7
we compare our full-fledged RT

AA predictions for h± in the
Pb + Pb system with those for smaller colliding systems.
We observe that, practically irrespective of system size, RT

AA
exhibits the same asymptotical behavior at high p⊥. This
not only validates our scaling arguments, but also demon-
strates the robustness of the new observable RT

AA to system
size. Consequently, since for fixed centrality range T should
remain the same for all these colliding systems, we ob-
tained that temperature-dependence exponent a should be the
same independently of the considered colliding system (see
Fig. 3). Therefore, the proposed procedure for extracting the
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FIG. 7. Dependence of RT
AA on a system size as a function of

p⊥. Predictions for h± generated within the full-fledged DREENA-C
[28] suppression numerical procedure are compared for different
colliding systems: Pb+Pb, Xe + Xe, Kr + Kr, Ar + Ar, and O
+ O (for lines specification see legend). For clarity, the results are
shown only for three centrality pairs, as specified in the plot, although
checked for all available centrality classes. The magnetic to electric
mass ratio is fixed to μM/μE = 0.4.

temperature dependence of the energy loss is also robust to
the collision system size. As a small exception, the O + O
system exhibits a slight departure from the remaining systems
at high p⊥, which might be a consequence of the fact that this
system is significantly smaller than other systems considered
here.

V. CONCLUSIONS AND OUTLOOK

One of the main signatures of the high-p⊥ particle’s energy
loss, apart from its path length, is its temperature dependence.
Although extensive studies on both issues were performed,
not until recently was the path-length dependence resolution
suggested [26]. Here we proposed a new simple observable for
extracting temperature dependence of the energy loss, based
on one of the most common jet quenching observables—the
high-p⊥ suppression. By combining full-fledged numerical
calculations with asymptotic scaling behavior, we surprisingly
obtained that temperature dependence is nearly linear, i.e., far
from quadratic or cubic, as commonly assumed. Further, we
verified its robustness and reliability on colliding system size
and evolving QGP medium. Moreover, we demonstrated that
the same observable, due to its joint dependence on T and L
exponents, can be utilized to discriminate between different
energy-loss models on both their temperature and path-length
dependence bases. Comparison with the experimental data
also indicated a need for revising the long-standing �E/E ∝
L2T 3 paradigm.

As an outlook, the expected substantial decrease of error
bars in the upcoming third run measurements at the LHC will
allow direct extraction of the temperature-dependence expo-
nent from high-p⊥ data of this observable. This will provide a
resolving power to temperature/path-length [26] dependence
of the energy loss and test our understanding of the underlying
QGP physics.
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a novel and effective approach in revealing 
infection progression mechanisms that 
may be a valuable alternative to detailed 
numerical simulations.

We start by introducing our COVID-19 
dynamics model.  We then extract 
COVID-19 count data[7] and select those 
countries that systematically trace not 
only confirmed cases and fatalities, 
but also active cases (Andorra, Austria, 
Czechia, Croatia, Cuba, Germany, Israel, 
New Zealand, Switzerland and Turkey), 
which allows tight constraint of numer-
ical analysis. We observe three charac-
teristic growth regimes in confirmed 
case counts, show that our model is well 
constrained by these regimes for a wide 
range of countries, and provide an intui-
tive explanation behind the emergence 
of such regimes. Our analytical results 

for the characteristic (inflection and maximum) points of 
the infective curve will allow to i) explain the nearly constant 
value of the scaling exponent in the superlinear regime of 
confirmed counts; ii) understand the relation between the 
duration of this regime and strength of social distancing; iii) 
pinpoint changes in the reproduction number from outburst 
to extinguishing the infection, and iv) constrain the main 
parameter quantifying the effect of social distancing by ana-
lyzing scaling of the infection growth with time in the sub-
linear regime. The obtained constraints provide a basis for 
successful analysis of countries that did not continuously 
track the active cases (here demonstrated for France, Italy, 
Spain, United Kingdom, and Serbia). We will finally present 
the key infection parameters inferred through combined ana-
lytical and numerical analysis.

We develop a mechanistic model (nonlinear and nonhomoge-
neous), which takes into account gradual introduction of social 
distancing (as relevant for most countries’ response), in addi-
tion to other important infection progression mechanisms. We 
start from standard compartments for epidemiological models, 
that is, susceptible (S), exposed (E), infective (I), and recov-
ered (R).[2–4] To account for social distancing and observable 
quantities, we introduce additional compartments: protected  
(P)—where individuals effectively move from susceptible 
category due to social distancing; total number of diagnosed 
(confirmed and consequently quarantined) cases (D), active cases  
(A), and fatalities (F). D, A, and F correspond to directly observ-
able (measured) quantities, but are indirect observables of I, as 
only part of infective individuals gets diagnosed, due to a large 
number of mild/asymptomatic cases.[8]

Widespread growth signatures in COVID-19 confirmed case counts are 
reported, with sharp transitions between three distinct dynamical regimes 
(exponential, superlinear, and sublinear). Through analytical and numerical 
analysis, a novel framework is developed that exploits information in these 
signatures. An approach well known to physics is applied, where one looks 
for common dynamical features, independently from differences in other 
factors. These features and associated scaling laws are used as a powerful 
tool to pinpoint regions where analytical derivations are effective, get an 
insight into qualitative changes of the disease progression, and infer the 
key infection parameters. The developed framework for joint analytical and 
numerical analysis of empirically observed COVID-19 growth patterns can 
lead to a fundamental understanding of infection progression under strong 
control measures, applicable to outbursts of both COVID-19 and other 
infectious diseases.

© 2021 The Authors. Global Challenges published by Wiley-VCH GmbH. 
This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited.

COVID-19 pandemic introduced unprecedented worldwide 
social distancing measures.[1] While interventions such as 
quarantine or vaccination have been extensively studied in 
quantitative epidemiology, effects of social distancing are 
not well understood,[2–4] and when addressed, they have been 
studied only numerically. Unique opportunity to understand 
these effects has been provided by COVID-19 tracing through 
confirmed case counts, active cases and fatalities, in a variety 
of countries with different demographic and environmental 
conditions.[5,6] We here show that focusing on analytical and 
numerical derivations in distinct epidemics growth regimes, is 

Global Challenges 2021, 5, 2000101
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We implement the model deterministically, as COVID-19 
count numbers are very high wherever reasonable testing 
capacities are employed. This makes model analytically trac-
table, and allows robust parameter inference through com-
bination of analytically derived expressions and tightly con-
strained numerical analysis, as we show below. Our analysis 
is applied separately to each country, as the effect of social 
distancing, initial numbers of infected and exposed cases, 
diagnosis/detection efficiency and transmission rates may 
be different. However, within a given country, we do not take 
into account different heterogeneities−demographic, spatial, 
population activity, or seasonality effects.[2,9,10] Alternatively, 
global dynamical properties of the outbreak can be analyzed 
in a probabilistic framework employing partial differential 
equations in an age-structured model.[11,12] These can readily 
be included in our model, but would lead to model structure 
which is not analytically tractable, so these extensions are left 
for future work.

Given this, the model equations are:

d /d / d /d ; d /d /(1 ( / ) )0β α= − − = +S t IS N P t P t t t Sn � (1)

d /d / ; d /d ; d /dβ σ σ γ εδ γ= − = − − =E t IS N E I t E I I R t I� (2)

εδ εδ= = − − =d /d ; d /d ; d /dD t I A t I hA mA F t mA � (3)

where N  is the total population number; β-the transmis-
sion rate; σ -inverse of the latency period; γ -inverse of the 
infectious period; δ-inverse of the detection/diagnosis  
period; ε-detection efficiency; h—the recovery rate; m-the 
mortality rate. Social distancing is included through Equation 
(1) (second equation), which represents the rate at which the 

population moves (on average) from susceptible to protected 

category. The term 1 ( / )0

α
+ t t n  corresponds to a sigmoidal depend-

ence (similar to Fermi–Dirac function, in quantitative biology 
known as the Hill function[13]). Time 0t  determines the half-
saturation, so that well before 0t  the social distancing is negli-
gible, while well after 0t  the rate of transition to the protected 
category approaches α . Parameter n  (the Hill constant) deter-
mines how rapidly the social distancing is introduced, that is, 
large n  leads to rapid transition from OFF to ON state, and 
vice versa.[13] Equation (3) considers that only a fraction of the 
infected is diagnosed, so that εδI  takes into account the diag-
nosis and the subsequent quarantine process.

To make the problem analytically tractable, we approxi-
mate the Hill function in the first relation of Equation (1) by 
unit step function, so that after 0t  the second term in Equa-
tion (1) becomes α− S and dominates over the first term, that 
is, ( ) ≈ α−S t e t. We checked that this approximation agrees 
well with full-fledged numerical simulations (Figure 1D and 
Supporting Information). In all comparisons with analyt-
ical results, numerical analysis is done with the full model, 
allowing an independent check of both analytical deriva-
tions and employed approximations. Under this assumption, 
Equations (1) and (2) reduce to:

d ( )

d
( )

d ( )

d
[ ( ) ( )] ( ) ( )

2

2 0
( )

0
0γ εδ σ σ β θ θ γ εδ{ }+ + + = − + − − +α− −I t

t

I t

t
t t e t t I tt t

	
	 (4)

We next introduce two time regions: I) 0≤t t  and II) 0>t t  
and solve Equations (4) separately within these regions, where 
corresponding solutions are denoted as ( )II t  and ( )III t . As in 
the above expressions γ εδ+  always appear together, we further 
denote γ εδ γ+ → .

Global Challenges 2021, 5, 2000101

Figure 1.  Comparison of the model (dashed blue curves) with the data in the case of Germany (grey circles) for A) confirmed case counts, B) active 
cases, C) fatalities. D) Exponential, superlinear, and sublinear fit to confirmed case data, is shown. Arrows “weak” and “strong” indicate, respectively, 
the regions with a small and large magnitude of social distancing. The full grey curve denotes susceptibles ( ( )S t ), where the dashed grey curve shows 
an approximation to ( )S t . The dashed green curve denotes the number of infectious cases ( ( )I t ), where the dashed blue curve is ( )′I t , whose maxima 
indicate ( )I t  inflection points. The confirmed case counts in the three regimes are shown on E) log–linear, F) log–log and G) linear–log scale.
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For ( )II t , we take ( 0) 0= ≡I t I , and restrict to dominant  
(positive) Jacobian eigenvalue, leading to the exponential 
regime:

( )I 0

1
2

[ ( ) ( ) 4 ]2

=
γ σ γ σ βσ− + + − +

I t I e
t� (5)

By shifting 0− →t t t, ( )III t  is determined by

d ( )

d
( )

d ( )

d
( ) ( )

2
II

2
II

IIγ σ σ β γ+ + = −α−I t

t

I t

t
e I tt � (6)

Equation  (6) is highly nontrivial, due to variable coefficient 

(σβ α−e t). By substituting variable 
2

2
βσ

α
→ = − α−

t x
i

e
t

 it can be 

shown that Equation (6) reduces to transformed form of Bessel 
differential equation:[14]

d
d

(1 2 )
d
d
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whose general solution for noninteger ν  is given by:

( ) , ,1 1 2 1
1 1 1ν β ν β( ) ( )= + − 

α γ γy x x C J x C J x � (8)

where ( , )νJ x  represents Bessel function of the first kind, and 
,1 2C C  are arbitrary constants. In our case 

1α γ σ
α= + , 11 1γ β= = , 

while ν γ σ
α= −  is indeed noninteger. If we return to t  variable, 

taking into account the following relation between standard 
and modified ( ( , )νI x ) Bessel functions of the first kind:[15,16] 
( , ) ( , )ν ν= ν−I x i J ix , the general solution of Equation (6) reads:
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To determine 1C , 2C , we use the following boundary condi-
tions: (0) ( )II I 0=I I t  and (0) ( )II I 0=′ ′I I t , where the first derivative 
in region II has the following expression:
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In obtaining the expression above, the following identities 
were frequently used:[15,16]

d ,

d
1, , ; 1, 1,

2 ,ν ν ν ν ν ν ν ν( ) ( ) ( ) ( ) ( ) ( )= − − − − + =I x
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I x

x
I x I x I x

I x

x
	(11)

After derivations, where the following relation[16]
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2sin( )ν ν ν ν πν

π
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x
� (12)

together with sin(( 1) ) sin( )ν π νπ± = −  and the identity 
relating modified Bessel function of the first and second kind 

( , )
2
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= − −

K x
I x I x

 are used,[15,16] we finally obtain a 

surprisingly simple result:
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where ( , )νK x  is the modified Bessel function of the 
second kind.

At maximum and inflection points, 0II =′I  and 0II =′′I , 
respectively. After extensive simplification of the results, this 
leads to ( 0,free= α−y R e t, where /0,free β γ=R  is the basic reproduc-
tion number in the absence of social distancing:[6,17])
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Equations  (14) and  (15) have to be solved numerically, but, 
as γ  and σ  are constants, we, interestingly, obtain that solu-
tions will depend only on α . Since, for the analysis of super-
linear and sublinear regimes, only the left inflection point and 
the maximum are important, we will further omit the second 
solution of Equation (15) (Equation (14) has one solution), and 
denote ( ) ( )1 α α= ≡y f fi i i , ( )m m α=y f  (these two solutions are 
presented as upper and lower curves on Figure  2C, respec-
tively), so that the effective reproduction numbers at inflection 
and maximum points ( e,iR  and e,mR ) are:
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From this follows the length of superlinear regime (between 
inflection and maximum points):
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We further Taylor expand ( )III t  around the inflection point:
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In the superlinear regime ( ) ( )s≈ − υD t t t , where υ  is the 
scaling exponent and st  marks the beginning of this regime. By 
Taylor expanding ( )D t  around it , using Equations (18) and (3):
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which is always larger than 1, as expected for the superlinear 
regime. As ti  is localized toward the beginning of the regime, 
we estimate − ≈ ∆

i st t t
k

, where 3,4≈k .
Finally, to provide analytical constrain on α , we Taylor 

expand ( )I tII  around the maximum:
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As ( ) 0m α <f , we see that the quadratic term in Equation (20) 
is always negative, that is, ( )D t  curve enters sublinear 
regime around maximum of the infection. By fitting ( )D t  

to ( ) ( )m m
3+ − − −c d t t f t t  in this regime, and by using 

Equation (20) together with Equation (3), we obtain:

γσ α= −f

d
f

6
[1 ( )]m � (21)

which allows to directly constrain α.
We first numerically analyze outburst dynamics in the coun-

tries that continuously updated[18] three observable categories  
(D, A , and F). For a large majority of countries active cases were 
either not tracked or were not continuously updated, so the 
analysis is done for ten countries listed in the outline above.

In the exponential regime, the analytical closed-form solu-
tion is given by Equation  (5). From this, and the initial slope 
of ln( )D  curve (once the number of counts are out of the 
stochastic regime), β  can be directly determined, while the 
corresponding eigenvector sets the ratio of 0I  to 0E . The inter-
cept of the initial exponential growth of D  at 0=t  sets the 
product of 0I  and εδ . h  and m  can also be readily con-
strained, as from Equation (3), they depend only on integrals of 
the corresponding counts; here note that − − =d( )/dD A F t hA. 
Also,[17,19,20] 1/3σ =  day 1−  and 1/4γ =  day 1− , characterize fun-
damental infectious process, which we assume not to change 
between different countries.

Only parameters related with the intervention meas-
ures ( , , ,0α εδt n ) are left to be inferred numerically, leading 
to tightly constrained numerical results. For this, we indi-
vidually performed joint fit to all three observable quantities 
( , ,A D F) for each country. The errors are estimated through 
Monte-Carlo[21,22] simulations, assuming that count numbers 
follow Poisson distribution.

Representative numerical results are shown in Figure  1 for 
Germany, while other countries are shown in the Supporting 

Global Challenges 2021, 5, 2000101

Figure 2.  The dependence on the effective social distancing strength (α ) of A) ∆t, the duration of the superlinear regime, B) υ , the scaling exponent 
of the superlinear regime, C) Re , effective reproduction number at the left inflection point (Re,i) and the maximum (Re,m) of I t( ). α∆ ≈t 1/  indicates 
that the time, in which the change from Re,i  to Re,m  is exhibited, is approximately inversely proportional to α . “ →exp sub” indicates the region of α  
where we predict a direct transition from exponential to sublinear growth. D) Comparison of α  constrained from analytical derivations (the grey bands) 
and numerical analysis, with countries indicated on the horizontal axis by their abbreviations. Results obtained by independent numerical analysis are 
presented by red dots with corresponding errorbars.
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Information. In Figure 1A–C (and Supporting Information) we 
see a good agreement of our numerical analysis with all three 
classes of the case counts. In Figure  1D, we see sharp transi-
tions between the three growth patterns indicated in the figure: 
i) exponential growth, observed as a straight line in log–linear 
plot in Figure 1E; ii) superlinear growth, a straight line in log–
log plot in Figure  1F; iii) sublinear growth, a straight line in 
linear–log plot in Figure 1G.

Transition between the growth patterns can be qualitatively 
understood from Equation (3), and ( )I t  curve in Figure  1D. 
The exponential growth has to break after the inflection point 
of ( )I t , that is, once the maximum of its first derivative ( ( )′I t  
in Figure 1D) is reached. In the superlinear regime, confirmed 
counts case ( ( )D t ) curve is convex ( ( ) 0′′ >D t ), so this regime 
breaks once ( )′I t  (dashed blue curve) becomes negative. Equiv-
alently, ( )D t  curve becomes concave (enters sublinear regime) 
once the maximum of the ( )I t  is reached. Note that the growth 
of ( )D t  can reemerge if the social distancing measures are alle-
viated. Our model can account for this by allowing transition 
from protected back to susceptible category, which is out of 
the scope of this study, but may improve the agreement with 
the data at later times (see Figure  1A–C). In addition to this 
numerical/intuitive understanding, we also showed that we 
analytically reproduce the emergence of these growth regimes 
(Equations  (6), (14), (15)). Can we also analytically derive the 
parameters that characterize these regimes?

The exponential regime is straightforward to explain, as 
described above. The superlinear regime is in between the 
left inflection point and the maximum of ( )I t , so that infec-
tive numbers grow, but with a decreasing rate. While the 
derivations are straightforward in the exponential regime, 
they are highly non-trivial during the subsequent subexpo-
nential (superlinear and sublinear) growth. As the superlinear 
regime spans the region between the left inflection point  
( , ( ) 0i i′′ =t I t ) and the maximum ( , ( ) 0m m′ =t I t ), its duration 
is ∆ = −t t tm i  given by Equation  (17), with 1/α≈  depend-
ence, so that weak measures lead to protracted superlinear 
growth (see Figure  2A). This tendency is also confirmed by 
independent numerical analysis in Figure  2A, where for each 
individual country we numerically infer α  and extract the 
length of the superlinear regime. Therefore, the duration of 
the superlinear regime indicates the effectiveness of introduced 
social distancing.

The scaling exponent υ  of the superlinear regime is given 
by Equation  (19), and shown in Figure  2B, where we predict 
that all countries are roughly in the same range of 1.2 1.5υ< <  
(surprisingly, weakly dependent on α ), despite significant dif-
ferences in the applied measures, demographic and environ-
mental factors. This result is (independently from our model) 
confirmed from case count numbers (the slope in Figure  1F, 
and equivalently for other countries, see Figure 2B).

How the effective reproduction number eR  changes during 
this regime, that is, between the left inflection point and the 
maximum of ( )I t ? eR  quantifies the average number of sec-
ondary cases per infectious case, so that 1e >R  signifies disease 
outburst, while for 1e <R  the disease starts to be eliminated 
from the population.[17] The Equation (16) provides expressions 
for e,iR  (at the inflection point) and e,mR  (at the maximum). 
Interestingly, from Figure  2C, we observe that e,iR  and e,mR  

do not depend on 0,freeR  and are, respectively, significantly larger 
and smaller than  1, which shows that transition from infec-
tion outburst to extinguishing happens during the superlinear 
growth. Consequently, the steepness of eR  change over the 
superlinear regime significantly increases (larger change over 
smaller time interval, see Figure 2C) with the measure strength.

Finally, in the sublinear regime, in a wide vicinity of ( )I t  
maximum (which marks the beginning of the sublinear 
growth) leading non-linear term of ( )D t  is cubic ( 3≈ t , with neg-
ative prefactor). This is consistent with the expansion of ( )I t  
around mt , which has leading negative quadratic ( 2t ) depend-
ence (see Equations (3) and (20)). The ratio between the prefac-
tors in ( )D t  expansion is given by Equation (21), from which we 
see that α  can be directly constrained, as shown in Figure 2D. 
For the ten countries with consistent tracking of ,D A, and F ,  
we independently numerically determined α  and compared 
it with analytical results coming from Equation (21), obtaining 
an excellent agreement between our derivations and numerical 
results. The obtained α  values should be understood as an 
effective epidemic containment measure—that is, estimating 
the true result of the introduced measures, which can be used 
to evaluate the practical effectiveness of the official policies.

To demonstrate how constraining α  can aid numerical anal-
ysis in the cases when A  is not continuously tracked, we next 
analyze five additional countries listed in the outline above, 
so that altogether our study covers majority of COVID-19 hot-
spots, which (at the time of this analysis) are close to satura-
tion in confirmed counts. Furthermore, in the specific cases of 
UK and Italy, where we analytically obtained both very low and 
very constrained α  (0.01 0.04α< < ), we chose five times larger 
parameter span in α  in the numerical analysis, to confirm 
that these low values are indeed preferred by the exhaustive 
numerical search. For example, the finally obtained α  for Italy 
(0.033 0.005)±  and UK (0.025 0.005± ), together with previously 
obtained agreements shown in Figure 2A–C, strongly confirm 
that the observed growth patterns provide invaluable informa-
tion for successful analysis of the infection progression data.

To further illustrate this, the synergy of analytical deriva-
tions and numerical analysis presented above enables us to, 
directly from the publicly available data, infer key infection 
parameters necessary to assess epidemics risks (provided in 
Table S1, Supporting Information). We estimate these param-
eters by the same model/analysis, for a number of diverse 
countries, allowing their direct comparison. In Figure  3, we 
show together case fatality rate (CFR), infected fatality rate 
(IFR) and infection attack rate (AR).[17,24] CFR is the number 
of fatalities per confirmed cases. CFR can, in principle, be 
inferred directly from the data, but since different coun-
tries are in different phases of infection, we project forward 
the number of confirmed cases until a saturation is reached 
for each country, from which we calculate CFR. IFR (crucial 
parameter for assessing the risks for infection progression 
under different scenarios) is the number of fatalities per total 
number of infected cases, which is a genuine model esti-
mate, due to the unknown total number of infected cases. 
AR (necessary for understanding the virus recurrence risk) 
is also determined from our model and provides an estimate 
of the fraction of the total population that got infected and 
possibly resistant.

Global Challenges 2021, 5, 2000101
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From Figure  3, we see that CFR takes very different values 
for different countries, from below 2%  (New Zealand) to above 
20%  (France). On the other hand, IFR is consistent with a con-
stant value (the dashed red line in the figure) of 0.3 0.4%≈ − . 
In distinction to IFR, AR also takes diverse values for different 
countries, ranging from 1%≈  to as high as 15%≈  (though 
with large errorbars). Although diverse, these AR values are 
well bellow the classical herd immunity threshold of 60–70%

To summarize, we here developed a novel quantitative frame-
work through which we showed that: i) The emergence of three 
distinct growth regimes in COVID-19 case counts can be repro-
duced both analytically and numerically. ii) Typically, a brief 
superlinear regime is characterized by a sharp transition from 
outburst to extinguishing the infection, where effective reproduc-
tion number changes from much larger to much smaller than 
one; more effective measures lead to shorter superlinear growth, 
and to a steeper change of the effective reproduction number. iii) 
Scaling exponent of the superlinear regime is surprisingly uni-
form for countries with diverse environmental and demographic 
factors and epidemics containment policies; this highly non-trivial 
empirical result is well reproduced by our model. iv) Scaling pref-
actors in the sublinear regime contain crucial information for 
analytically constraining infection progression parameters, so 
that they can be straightforwardly extracted through numerical 
analysis. Interestingly, we found that the number of COVID-19 
fatalities per total number of infected is highly uniform across 
diverse analyzed countries, in distinction to other (highly variable) 
infection parameters, and about twice higher than commonly 
quoted for influenza (0.3–0.4% compared to 0.1–0.2%), which 
may be valuable for direct assessment of the epidemics risks.

While state-of-the-art approach in epidemiological modeling 
uses computationally highly demanding numerical simu-
lations, the results above demonstrate a shift of paradigm 
toward simpler, but analytically tractable models, that can both 
explain common dynamical features of the system and be used 
for straightforward and highly constrained parameter infer-
ence. This shift is based on a novel framework that relates uni-
versal growth patterns with characteristic points of the infec-
tive curve, followed by analytical derivations in the vicinity 
of these points, in an approach akin to those in a number of 

physics problems. The framework presented here can be, in 
principle, further extended toward, for example, including sto-
chastic effects or different heterogeneities such as age-struc-
ture. However, these are non-trivial tasks, and it remains to 
be seen to what extent the analytical results can be obtained 
in those more complex models. Overall, as our approach does 
not depend on any COVID-19 specifics, the developed frame-
work can also be readily applied to potential outbursts of 
future infections.
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Figure 3.  CFR, IFR, and AR, inferred for countries whose abbreviations are indicated on the horizontal axis, are denoted, respectively, by blue, grey, and 
green dots, with errorbars indicated by corresponding bands. The dashed red horizontal line stands for IFR consistent with a mean value (indicated in 
the legend). Values for PRC are from ref. [23].
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We show that high-p⊥ RAA and v2 are way more sensitive to the initial
time of fluid-dynamical expansion τ0 than the distributions of low-p⊥ par-
ticles, and that the high-p⊥ observables prefer relatively late τ0 ∼ 1 fm/c.
To calculate high-p⊥ RAA and v2, we employ our DREENA-A framework,
which combines state-of-the-art dynamical energy loss model with 3+1-
dimensional hydrodynamical simulations. Elliptic flow parameter v2 is also
more sensitive to τ0 than RAA. This presents an example of applying QGP
tomography to constrain a bulk QGP parameter with high-p⊥ observables
and related theory.

DOI:10.5506/APhysPolBSupp.16.1-A156

1. Introduction

Quark–gluon plasma (QGP) is a new form of matter that consists of
interacting quarks, antiquarks, and gluons. It is formed in ultrarelativis-
tic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and
the Large Hadron Collider (LHC). In these experiments, the bulk proper-
ties of QGP are usually explored by low-p⊥ observables. Rare high-energy
probes are, on the other hand, almost exclusively used to understand the
interactions of high-p⊥ partons with the surrounding QGP medium. We
are advocating high-p⊥ QGP tomography, where bulk QGP parameters are
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jointly constrained by low- and high-p⊥ physics. For instance, we have pre-
viously demonstrated how the anisotropy of the QGP formed in heavy-ion
collisions is reflected in the high-p⊥ observables [1].

In these proceedings, we analyse how high-p⊥ RAA and v2 depend on the
initial time τ0, i.e. the time of onset of fluid-dynamical expansion, comple-
menting the more detailed study provided in Ref. [2]. The dynamics before
thermalisation, and τ0, and, therefore, the associated energy loss phenom-
ena, are not established yet. To avoid speculation and to provide a baseline
calculation for further studies, we assume free streaming of high-p⊥ parti-
cles before τ0 and neglect the pre-equilibrium evolution of the medium (we
explore the effects of pre-equilibrium evolution elsewhere [2]). After τ0, the
QCD medium is described as a relativistic viscous fluid and high-p⊥ probes
start to lose energy through interactions with this medium. Consequently,
the initial time τ0 is an important parameter, which affects both the evolu-
tion of the system and interactions of the high-p⊥ particles with the medium.

We describe the medium evolution by the 3+1-dimensional viscous hy-
drodynamical model from Ref. [3] and we use the optical Glauber model for
the initial state (see [2] for more details). The model parameters are tuned
so that the transverse momentum distributions of charged particles for six
different τ0 values in the range from 0.2 fm/c to 1.2 fm/c agree with exper-
imental data (see Fig. 1 in [2]), which is also true for p⊥-differential elliptic
flow parameter v2(p⊥) (shown in the low-momentum part (p⊥ < 2 GeV) of
the lower panels of Fig. 1).

Fig. 1. Charged hadron DREENA-A RAA (upper panels) and v2 (lower panels)

predictions, generated for six different τ0 (indicated on the legend), are compared

with ALICE [4, 5], ATLAS [6, 7], and CMS [8, 9] data. Four columns, from

left to right, correspond to 10–20%, 20–30%, 30–40%, and 40–50% centralities at√
sNN = 5.02 Pb+Pb collisions at the LHC.



Initial Time τ0 Constrained by High-p⊥ Data 1-A156.3

To evaluate the high-p⊥ parton energy loss, we use our recently devel-
oped DREENA-A framework, the details of which are outlined in [10]. The
resulting predictions for charged hadron RAA in four different centrality
classes, and for τ0 in the range of 0.2–1.2 fm, are shown in the upper panel
of Fig. 1, and compared with experimental data. In the lower panel of Fig. 1,
we show a similar comparison of predicted high-p⊥ v2 to data. In distinc-
tion to the low-p⊥ distributions, we see that high-p⊥ predictions can be
resolved against experimental data, and that the later onset of fluid dynam-
ics is clearly preferred by both RAA and v2. This resolution is particularly
clear for v2 predictions, which approach the high-p⊥ tail of the data, as τ0
is increased. It also increases for higher centralities, as analysed below.

What is the reason behind such sensitivity? One proposal [11] was that
jet quenching may start later than the fluid dynamical evolution. We test
this scenario by introducing a separate quenching start time τq ≥ τ0. In
Fig. 2 (A) we show the high-p⊥ RAA and v2 in 20–30% centrality for τ0 =
0.2 fm, and τq values in the range of 0.2–1.2 fm. The sensitivity to τq is
similar in other centralities, for larger τ0 and for heavy flavour. RAA shows
similar sensitivity to τq as to τ0; compare Figs. 2 (A) and 1. The v2 is
surprisingly insensitive to τq, and way below the data, not supporting this
scenario.

Fig. 2. (A) DREENA-A predictions for charged hadron RAA (left) and v2 (right)

in 20–30% centrality class of
√
sNN = 5.02 TeV Pb+Pb collisions at the LHC,

generated for τ0 = 0.2 fm and six different τq. The predictions are compared with

ALICE [4, 5], ATLAS [6, 7], and CMS [8, 9] data. (B) The average temperature

along the jet path traversing the system in out-of-plane and in-plane directions.
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We next investigate if the origin of the sensitivity is due to the difference
in the temperature profiles. For this, we evaluate the average temperature
along the paths of jets travelling in-plane and out-of-plane directions. In
Fig. 2 (B), we show the resulting temperature evolution in 10–20% and 30–
40% centrality for τ0 = 0.2 and 1.2 fm. As τ0 is increased, the differences
between in-plane and out-of-plane temperature profiles also increase. Since
v2 is proportional to the difference in suppression along in-plane and out-of-
plane directions, a larger difference along these directions leads to larger v2,
and causes the observed dependency on τ0. As well, for fixed τ0, increasing
τq hardly changes v2 since at early times, the average temperature in- and
out-of-plane directions is almost identical, and no v2 is built up at that time
in any case. Furthermore, the more peripheral the collision, the larger the
difference in average temperatures, which leads to higher sensitivity of v2
to τ0 as seen in the lower panels of Fig. 1. Consequently, the temperature
profile differences are a major contributor to such sensitivity.

We here presented how high-p⊥ theory and data can be used to constrain
a parameter weakly sensitive to bulk QGP evolution. We used high-p⊥ RAA

and v2 to infer that experimental data prefer late onset of fluid dynamical
behaviour. v2 shows a higher sensitivity to τ0 than RAA, and we showed
that v2 is affected by τ0 due to differences in the in- and out-of-plane tem-
perature profiles. This demonstrates inherent interconnections between low-
and high-p⊥ physics, supporting our proposed QGP tomography approach.

This work is supported by the European Research Council, grant ERC-
2016-COG: 725741, and by the Ministry of Science and Technological De-
velopment of the Republic of Serbia.
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Abstract
High p⊥ theory and data are commonly used to study high p⊥ parton interactions with QGP, while low p⊥ data and
corresponding models are employed to infer QGP bulk properties. On the other hand, with a proper description of
high p⊥ parton-medium interactions, high p⊥ probes become also powerful tomography tools, since they are sensitive
to global QGP features, such as different temperature profiles or initial conditions. This tomographic role of high p⊥
probes can be utilized to assess the spatial anisotropy of the QCD matter. With our dynamical energy loss formalism,
we show that a (modified) ratio of RAA and v2 presents a reliable and robust observable for straightforward extraction of
initial state anisotropy. We analytically estimated the proportionality between the v2/(1−RAA) and anisotropy coefficient
ε2L, and found surprisingly good agreement with full-fledged numerical calculations. Within the current error bars, the
extraction of the anisotropy from the existing data using this approach is still inaccessible. However, with the expected
accuracy improvement in the upcoming LHC runs, the anisotropy of the QGP formed in heavy ion collisions can be
straightforwardly derived from the data. Such a data-based anisotropy parameter would present an important test to
models describing the initial stages of heavy-ion collision and formation of QGP, and demonstrate the usefulness of
high p⊥ theory and data in obtaining QGP properties.

Keywords: Quark-gluon plasma, High p⊥ probes, Initial anisotropy

1. Introduction

Understanding the properties of the new form of matter named Quark-Gluon Plasma (QGP) is the major
goal of relativistic heavy ion physics [1, 2]. However, to explore the properties of QGP, one needs good
probes. With regards to that, it is commonly assumed that high p⊥ theory and data are good probes for
exploring the high p⊥ parton interactions with QGP, while low p⊥ theory and data are considered as good
probes for bulk QGP properties. Contrary to this common assumption, the goal of this contribution is to
demonstrate that high p⊥ particles can also be useful independent probes of bulk QGP properties.

To put it simply, the main idea is that when high p⊥ particles transverse QGP, they lose energy, where
this energy loss is sensitive to bulk QGP properties, such as its temperature profiles or initial conditions.
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Consequently, with a realistic and sophisticated high p⊥ parton energy loss model, high p⊥ probes can
indeed become powerful tomographic tools. So, in this contribution, we will present how we can use these
probes to infer some of the bulk QGP properties, i.e., for precision QGP tomography. Note that only the
main results are presented here; for a more detailed version, see [3], and references therein.

2. DREENA framework

To achieve the goal of utilizing high p⊥ theory and data for inferring the bulk QGP properties, as pre-
viously implied, a reliable high p⊥ parton energy loss model is necessary. With this goal in mind, we de-
veloped a dynamical energy loss formalism [4, 5], which takes into account some more realistic and unique
features, such as: i) The calculations are performed within finite temperature field theory and generalized
Hard-Thermal-Loop [6] approach, in which the infrared divergences are naturally regulated, excluding the
need for artificial cutoffs. ii) The formalism assumes QCD medium of finite size and finite temperature,
consisting of dynamical partons (i.e., energy exchange with medium constituents is included), in distinction
to commonly considered static scatterers approximation and/or models with vacuum-like propagators. iii)
Both radiative [4] and collisional [5] energy losses are calculated within the same theoretical framework,
and are equally applicable to light and heavy flavors. iv) The formalism is generalized to include a finite
chromomagnetic mass [7], running coupling, and to relax the widely used soft-gluon approximation [8].
Finally, the formalism is integrated in a numerical framework DREENA (Dynamical Radiative and Elastic
ENergy loss Approach) [9, 10], to provide predictions for high p⊥ observables.

Within this framework, we generated a wide set of high p⊥ predictions using 1D Bjorken expansion [11]
(i.e., DREENA-B framework [10]). Thus we obtained a good joint agreement with a wide range of high p⊥
RAA and v2 data, by applying the same numerical procedure, the same parameter set, and no fitting param-
eters in model testing. That is, there is no v2 puzzle [12] within our model, which then strongly suggests
that the model provides a realistic description of high p⊥ parton-medium interactions. Moreover, our pre-
liminary findings suggest that, within our formalism, moving from 1D Bjorken to full 3D hydrodynamical
expansion does not significantly affect the agreement of our predictions with high p⊥ RAA and v2 data [13].
Consequently, in order to adequately address the high p⊥ measurements, a proper description of high p⊥
parton interactions with the medium appears to be much more important than an advanced medium evo-
lution description. Furthermore, we have also analyzed the sensitivity of high p⊥ RAA and v2 to different
initial stages, giving an additional insigth in the usefulness of both high p⊥ observables in the precision QGP
tomography [14].

3. Inferring QGP anisotropy through high p⊥ theory and data

As one example of QGP tomography, in this contribution, we will address how to infer the QGP
anisotropy from high p⊥ RAA and v2 data. The initial state anisotropy is one of the main properties of
QGP and a major limiting factor for precision QGP tomography. However, despite its essential impor-
tance, it is still not possible to directly infer the initial anisotropy from experimental measurements. Several
theoretical studies [15, 16, 17, 18] have provided different methods for calculating the initial anisotropy,
leading to notably different predictions, with a notable effect in the resulting predictions for both low and
high p⊥ data. Therefore, approaches for inferring anisotropy from the data are necessary. Optimally, these
approaches should be complementary to existing predictions, i.e., based on a method that is fundamentally
different from models of early stages of QCD matter.

To this end, we here propose a novel approach to extract the initial state anisotropy. Our method is based
on inference from high p⊥ data, by using already available RAA and v2 measurements, which will moreover
be measured with much higher precision in the future. Such an approach is substantially different from the
existing approaches, as it is based on the inference from experimental data (rather than on calculations of
early stages of QCD matter) exploiting the information from interactions of rare high p⊥ partons with the
QCD medium. This also presents an improvement/optimization in utilizing high p⊥ data as, to date, these
data were mostly constrained on studying the parton-medium interactions, rather than assessing bulk QGP
parameters, such as spatial asymmetry.
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In the literature, the initial state anisotropy is quantified in terms of eccentricity parameter ε2

ε2 =
〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (1)

where ρ(x, y) denotes the initial density distribution of the formed QGP. Regarding high p⊥ observables, we
note that v2 is sensitive to both the anisotropy of the system and its size, while RAA is sensitive only to the
size of the system. Therefore, it is plausible that the adequate observable for extracting eccentricity from
high p⊥ data depends on both v2 and RAA, and the question is how.

To address this question, we will use the dynamical energy loss formalism, and DREENA-B framework
outlined above. For high p⊥, the fractional energy loss scales as [3] ΔE/E ∼ χ〈T 〉a〈L〉b, where 〈T 〉 stands
for the average temperature along the path of high p⊥ parton, 〈L〉 is the average path-length traversed by the
parton, χ is a proportionality factor that depends on the initial parton transverse momentum, and a and b are
exponents which govern the temperature and path-length dependence of the energy loss. Within our model,
a ≈ 1.2 and b ≈ 1.4, which is contrary to simpler models, and consistent with a wide range of experimental
data [19, 20]. From this simple scaling argument, we can straightforwardly obtain the following expressions
for RAA and v2 (for more details we refer the reader to [3]):

RAA ≈ 1 − ξ(χ)〈T 〉a〈L〉b, v2 ≈ 1
2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ(χ)〈T 〉a〈L〉b
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
, (2)

where we see that ξ(χ)〈T 〉a〈L〉b corresponds to 1− RAA. Therefore, if we divide v2 by (1− RAA), we see that
this ratio is given by the following simple expression:

v2

1 − RAA
≈
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
. (3)

Note that, while this ratio exposes the dependence on the asymmetry of the system (through spatial (ΔL/〈L〉)
and temperature (ΔT/〈T 〉) parts), the dependence only on spatial anisotropy is still not isolated. However,
by plotting together spatial and temperature anisotropy, we obtain a linear dependence [3], with a propor-
tionality factor given by c ≈ 4.3. Therefore, v2/(1 − RAA) reduces to the following expression:

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς, where ς =

〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1
2

(b − a
c

) ≈ 0.57. (4)

Consequently, the asymptotic scaling behavior of observables v2 and RAA, at high p⊥, reveals that their
(moderated) ratio is determined only by the geometry of the initial QGP droplet. Therefore, the anisotropy
parameter ς could, in principle, be directly obtained from the high p⊥ experimental data.

Fig. 1. A) Comparison of theoretical predictions for charged hadron v2/(1 − RAA) as a function of p⊥ with 5.02 TeV Pb + Pb
CMS [21, 22] (blue squares), ALICE [23, 24] (red triangles) and ATLAS [25, 26] (green circles) data. Each panel corresponds to
different centrality range, as indicated in the upper right corners, while red lines denote the limit 0.57ς from Eq. (4). B) Comparison
of ε2L (red band) extracted from our full-fledged calculations, with ε2 obtained from MC-Glauber [15] (gray full curve), EKRT [16]
(cyan dashed curve), IP-Glasma [17] (green dot-dashed curve) and MC-KLN [18] (blue dotted curve) models. MC-Glauber and EKRT
curves correspond to 5.02 TeV, whereas IP-Glasma and MC-KLN curves correspond to 2.76 TeV Pb + Pb collisions at the LHC.

To test the adequacy of the analytical estimate given by Eqs. (2)-(4), Fig. 1A is displayed, which
comprises our v2/(1 − RAA) predictions (gray bands), stemming from our full-fledged recently developed
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DREENA-B framework (outlined in the previous section), the ALICE, CMS and ATLAS data, and analyt-
ically derived asymptote 0.57ς (red lines). Importantly, for each centrality range and for p⊥ � 20 GeV,
v2/(1 − RAA) is independent on p⊥, and approaches the asymptote, i.e., is determined by the geometry of
the system - depicted by the solid red line, up to 5% accuracy. Moreover, the experimental data for all three
experiments also display the independence on the p⊥ and agree with our predictions, although the error bars
are rather large. Therefore, we conclude that our scaling estimates are valid and that v2/(1 − RAA) indeed
carries the information about the anisotropy of the fireball, which can be simply (from the straight line fit to
data at high p⊥ limit) and robustly (in the same way for each centrality) inferred from the experimental data.

However, note that the anisotropy parameter ς is not the widely-considered anisotropy parameter ε2
(given by Eq. (1)). To facilitate comparison with ε2 values in the literature, we define ε2L =

〈Lout〉2−〈Lin〉2
〈Lout〉2+〈Lin〉2 =

2ς
1+ς2 , and in Fig. 1B compare it with the results from different initial-state models [15, 16, 17, 18]. First, we
should note that as a starting point, our initial ε2, through which we generate our path-length distributions,
agrees with EKRT and IP-Glasma. However, what is highly non-trivial is that, as an outcome of this proce-
dure, in which v2/(1 − RAA) is calculated (based on the full-fledged DREENA-B framework), we obtain ε2L

which practically coincides with our initial ε2 and also with some of the conventional initial-state models.
As an overall conclusion, the straightforward extraction of ε2L and its agreement with values of the prevail-
ing initial-state models’ eccentricity (and our initial ε2) is highly non-trivial and supports v2/(1 − RAA) as a
reliable and robust observable for anisotropy. Additionally, the width of our ε2L band is smaller than the dif-
ference in the ε2 values obtained by using different models (e.g., MC-Glauber vs. MC-KLN). Therefore, our
approach provides genuine resolving power to distinguish between different initial-state models, although
it may not be possible to separate the finer details of more sophisticated models. This resolving power,
moreover, comes from an entirely different perspective, i.e., from high p⊥ theory and data, supporting the
usefulness of utilizing high p⊥ theory and data for inferring the bulk QGP properties.
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