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Motion from measurement: The role of symmetry of quantum measurements
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In quantum mechanics, measurements are dynamical processes and thus they should be capable of inducing
currents. The symmetries of the Hamiltonian and measurement operator provide an organizing principle for
understanding the conditions for such currents to emerge. The central role is played by the inversion and time-

reversal symmetries. We classify the distinct behaviors that emerge from single and repeated measurements,
with and without coupling to a dissipative bath. While the breaking of inversion symmetry alone is sufficient to
generate currents through measurements, the breaking of time-reversal symmetry by the measurement operator
leads to a dramatic increase in the magnitude of the currents. We consider the dependence on the measurement

rate and find that the current is nonmonotonic. Furthermore, nondegenerate measurements can lead to current

loops within the steady state even in the Zeno limit.
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I. INTRODUCTION

One of the most exciting properties of quantum mechan-
ics is the ability to influence the dynamics and steady-state
properties of systems through measurement. Notable exam-
ples include the Zeno effect, where the dynamics of a system
under constant observation can be stalled or severely restricted
[1-4], the ability to use quantum measurements to entangle
qubits [5-9], control quantum computations [10,11] and dy-
namics [12—17], and induce currents [18-20]. More recently,
the remarkable possibility that measurements in quantum
circuits can induce phase transitions in the nature of the en-
tanglement has been pointed out [21-28].

Much of the above body of work relies on quantum mea-
surements disrupting the unitary evolution. However, a salient
feature which is typically ignored is the symmetries of the
measurement operator and their interplay with those of the
Hamiltonian. In this paper, we explore the ramifications of
symmetries for the question, “Can quantum measurements
induce currents, and, if so, how?” For instance, it is interest-
ing to ask whether a series of measurements of observables
with time-reversal symmetry can create currents due to the
irreversibility of the measurements or if explicit time-reversal
symmetry breaking is necessary.

Throughout the paper, we focus on local projective mea-
surements and consider the current averaged over an ensemble
of experiments without postselection. Although we focus on
a single particle, results on averaged behavior will also be
relevant for many-particle systems provided interactions are
negligible. For a many-particle system, it is necessary to carry
out multiple single-particle measurements to get a macro-
scopic current. Then, the resulting current is given by the
ensemble average over all possible outcomes of individual
measurements.
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To address this, we begin by identifying two distinct
sources of charge transfer. The first is the standard current
operator, which we dub the Hamiltonian current. The sec-
ond is the measurement charge displacement, which occurs
at the instant of measurement and is independent of the
Hamiltonian.

Considering first a single measurement applied to a system
in equilibrium, we find that a current can be produced only
if inversion is broken, either in the Hamiltonian H or the
observable A (for a measurement, a symmetry S is preserved
if and only if SAS™! = £A). Given that inversion symmetry is
broken, if time reversal is preserved then a current can be gen-
erated but it either oscillates or decays after the measurement.
In sharp contrast, measurements that break time-reversal sym-
metry lead to a dc current [29].

We then turn to investigate an isolated system subjected to
repeated measurements. In this case, the steady state is an infi-
nite temperature state, which we show not to support currents
or measurement charge displacements. This fate is avoided by
coupling the system to a thermal bath, which provides dissi-
pation and leads to a nontrivial steady state. Then, currents
develop provided that inversion symmetry is broken, and their
magnitude is a nonmonotonic function of the measurement
rate. Also, here the time-reversal properties of A play a central
role. If the measurement preserves time-reversal symmetry,
then the current requires strong dissipation to be sizable. By
contrast, if A breaks time reversal, a large steady-state current
develops, even for weak dissipation.

In the particular case where the measurement preserves
inversion, but the Hamiltonian does not, by analogy with
classical [30-36] and quantum [37—-40] ratchets, we describe
the currents as resulting from a quantum-measurement ratchet
effect. This is a unique type of ratchet effect, where an
inversion-preserving measurement, which acts as an unbiased
drive, nonetheless leads to a directed current.

Time-reversal symmetry also plays an important role in the
Zeno limit. It is often stated that a watched pot never boils
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FIG. 1. One-dimensional chain with two sites in a unit cell, with
alternating hopping amplitudes #; and f,, and with a staggered po-
tential V, which breaks inversion. A measurement consists of acting
with a 2 x 2 unitary U on all cells simultaneously, measuring the lo-
cation of the particle, and then acting with the inverse transformation
U'.

[41], referring to the fact that nondegenerate measurements
lead to frozen dynamics. Here, we interestingly find that local
current loops develop when the measurement breaks time-
reversal symmetry. In other words, a watched pot can convect.

Our analysis considers both stochastic Poisson measure-
ments and periodic ones. In the latter case, we find resonances
when the measurement period matches the natural dynamical
scales of the Hamiltonian.

To make the discussion concrete, we restrict our discussion
to one-dimensional lattice systems and demonstrate our re-
sults on a specific example—a single spinless particle hopping
on a dimerized chain with amplitudes #; # #, and staggered
potential V, with the Rice-Mele Hamiltonian (see Fig. 1)

N
H = Z |: - th;n—ICZVl - t2C;nc2n+1 + H.c.
n=1

vV . .
+ E(Cén_lc'Zn—l - CzinCZn)i|- (1)

Here, N is the number of unit cells in the chain, and
we assume periodic boundary conditions cz N = ¢ In-
version symmetry is broken provided V # 0. The eigen-
states of the Hamiltonian are fully specified by the

wave vector k and band index u € {+, —}, with energies

Ecp= ;L\/tl2 + 13 4 2111, cos(2k) + VTZ, where k=" n e
{0,1,...,N — 1}. When appropriate, we will also consider
coupling to a thermal bath.

We consider a measurement that determines the unit cell
that the particle occupies as well as the value of an operator
within the unit cell. This can be written as a single measure-

ment of an operator,

N S
=@ (+ ), @

n=1

where 1 is a unit vector that determines the specific mea-
surement and o, ,. are the Pauli matrices acting on the
two-dimensional Hilbert space within a unit cell. Note that for
m = &,, A corresponds to a measurement of the exact location
of the particle, where 2n distinguishes between different unit
cells and (o, — 1)/2 specifies the site within the unit cell.
For general m, A can be implemented, in practice, through
an associated 2 x 2 unitary transformation U which satisfies
U'o,U =t - ¢. The unitary U is applied simultaneously on
all the unit cells, as sketched in Fig. 1. The measurement of the
observable A is then a composite operation, consisting of the

unitary U, a measurement of location, and the inverse unitary
U, performed in rapid succession.

The paper is organized as follows. In Sec. II, we discuss
different kinds of charge displacements that can occur in
a quantum system with measurements. In Sec. III, we use
symmetry arguments to understand the characteristics of the
currents that occur when a measurement is performed starting
in thermal equilibrium. In Sec. IV, we consider the steady
state resulting from repeated measurements on a thermally
isolated system. In Sec. V, we couple the system to a thermal
bath using the Lindblad formalism and study the case of
random Poisson measurements. Finally, in Sec. VI we study
the complementary case of Floquet measurements.

II. CHARGE DISPLACEMENT IN A QUANTUM
SYSTEM WITH MEASUREMENTS

The current operator on a lattice can be defined from the
continuity equation, n(x) = j(x — 1) — j(x), where n(x) is
the density at site x and j(x) is the current from x to x + 1.
The center-of-mass velocity is equal to the time derivative of
the position operator £ = ) _x n(x). This is given by

dx

o= a0 =) i —jwl G

=Y jx)=1J, )

where J = ) j(x) is the current operator summed over all
space. The average charge displacement in the time interval
(t;, tr) is thus

Ax — / "ar . ®)

i

Here angular brackets denote an average with respect to the
density matrix, (J) = tr[pJ].

In a closed quantum system with unitary evolution gov-
erned by the Hamiltonian H, the velocity operator is given by
the Heisenberg equation of motion for X. Thus,

where we have added the subscript H to indicate that this is
the current resulting from the unitary dynamics. We call this
type of current the Hamiltonian current.

When quantum measurements are added to the mix, the
Hamiltonian current defined above is not enough to capture
all particle motion [42,43]. A projective measurement of an
observable A leads to a sudden change in the density matrix

p>p' = PupPu, )

a

where P, is the operator that projects to the eigenspace of A
with eigenvalue a. This represents averaging over all possible
outcomes of the measurement.

The sudden nature of projective measurements renders the
definition of a current unnatural. Therefore, we consider the
average displacement of the position of the particle as a result
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of this measurement, which is given by

Axy = tr[(p — p)i] = tr|:p (Z PP, — x)] 8)

This is the expectation value of the operator
Q=) PiP, —% )
a

in the premeasurement state p. We call O the measurement
charge displacement. It describes a charge transfer that is
sudden to the extent that the measurement is instantaneous.
In a system with unitary Hamiltonian dynamics interspersed
with measurements, the total charge motion can be obtained
from the integral of the Hamiltonian current over the periods
of unitary evolution, together with the charge displacement at
the instants of measurement.

In systems with periodic boundary conditions, the posi-
tion operator % is ill-defined, rendering the definition of the
measurement charge displacement operator problematic. To
sidestep this issue, O can be rewritten as

0= % Z (Pu[R, Pl — [R, P,IP,). (10)

This involves only the commutator of X with a local operator,
which is well-defined.

Note that the definition of O depends only on the choice of
measurement operator A, and is independent of the Hamilto-
nian. In the special case where the operator A is the position
itself, O vanishes exactly, since in that case P, commutes with
X in Eq. (9).

We emphasize that we are performing an average over
the initial density matrix of the system, over the possible
outcomes of the observable A, and over the possible values
of the measured displacement.

III. SYMMETRY CONSIDERATIONS
FOR A SINGLE MEASUREMENT

In this section, we will consider the creation of currents
by a single measurement starting from equilibrium. We will
discuss the restrictions that discrete symmetries place on the
charge displacements and currents discussed in the previous
section. We consider three symmetries: spatial inversion 1,
time reversal 7', and their product /7T (more commonly re-
ferred to as PT symmetry). The results will play an important
role later, when we discuss multiple measurements.

A. Symmetry transformations of the current
and displacement operators

Let us first recall the symmetry properties of the Hamil-
tonian current Jy = —i[H, x]. This current is odd under
time-reversal symmetry 7 and inversion /, provided that H
is invariant under these symmetries:

SJHSPl = —Jy,
STyS™' = Jy,

Se{l, T}

-1 _
sts~ =1 = | ST
Note that if H is not invariant under these symmetries, then

Jy will, in general, not have simple transformation rules.

We now turn to the measurement charge displacement Q.
For this, we must consider the transformation properties of the
measured observable A under the symmetry operations. Using
a common symbol § € {I, T, IT}, a special distinction occurs
for an observable A that has well-defined parity (either even
or odd) under the action of S. For such observables, we will
show that O transforms simply under S,

et
SAS“:j:A:>{SQS =-0, Se{lIT}

S=T. (12)

SOs™' =0,
so O is even under time reversal and odd under inversion and
IT symmetries. On the other hand, if A does not have well-
defined parity under these symmetries, then we cannot make
any general claim regarding the symmetry properties of the
measurement charge displacement operator.

To demonstrate Eq. (12), we note that, for an eigenstate |a)
of A with eigenvalue a, the symmetry-related eigenstate S |a)
satisfies

AS |a) = £SA |a) = £aS |a) (13)

so it belongs either to the same eigenspace with eigenvalue
a or the eigenspace with the complementary eigenvalue —a.
Equation (13) implies that the symmetry operator maps pro-
jectors onto projectors [44]:

SA571 =1A = SPaS71 = Py, (14)

Hence, for an S-even observable, the projector P, is invariant
under the symmetry transformation. For an S-odd observable,
the projector Py onto the subspace with zero eigenvalue a = 0
is invariant, whereas the projectors onto nonzero eigenvalues
a # 0 are mapped onto the complementary projectors P_,.

Since the definition of O, Eq. (9), involves a sum over
all projectors P,, this permutation of projectors leaves O
unchanged. Hence, the transformation properties of 0 are de-
termined directly by those of X, which is odd under inversion
and IT symmetries and even under time reversal. This implies
Eq. (12).

‘We comment that for the Rice-Mele model, the observable
A as defined in Eq. (2) does not have well-defined parity but
can be regarded as a composite operator combining a mea-
surement of the unit cell  and the observable i - ¢ within the
unit cell. Hence, the projectors P, are products of projectors
in the two subspaces P, = P,P,. The two parts can trans-
form differently under the action of symmetry. The unit cell
projectors always satisfy IP,/~' = P_, and TP, T~ = P,.
Assuming that S(fh - 0)S~! = 41 - o, the projectors P, are
either left invariant or permuted according to Eq. (14). Hence,
P, = P,P, are permuted by the action of the symmetries too,
and all the reasoning still holds. Therefore, it is enough to
consider the symmetry of i - . In what follows, we will write
SAS~! = +A as a shorthand for S(i1 - ¢)S~! = 411 - 0.

With the above insights, we now turn to discuss the role of
the symmetries in measurement-induced currents.

B. Currents require breaking of inversion symmetry

Inversion symmetry plays an important role in restricting
currents. Consider a Hamiltonian that is inversion symmetric,
IHI™' = H, and suppose that the observable A has well-
defined parity under inversion, JAI~! = +A. If the system
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starts in thermal equilibrium, then no currents or measurement
charge displacements will develop after a measurement of
A, even if multiple measurements of A are carried out in
succession at different times.

To see this, note that the equilibrium density matrix peq =
Q;H at temperature 7 = 1/8 is invariant under inversion,
1 pegl 1= Peq- The state immediately following a projective
measurement of A is

Lo = Zpapeqpa- (15)

If JAI™' = %A, then I leads to a permutation of projectors,
see Eq. (14), which leaves pg invariant. Furthermore, unitary
evolution by H preserves the inversion symmetry. We con-
clude that Ip()I~! = p(t) at all times. Since the Hamiltonian
current is odd under inversion, Eq. (11), this implies that

Ju) () = ey p(t)) = eIyl Tp)I ")
—tr(Jgp()) =0, (16)

i.e., the Hamiltonian current vanishes at all times. Similarly,
the measurement charge displacement Q is also odd under
inversion, see Eq. (12), and hence it also vanishes for all
measurements.

In the specific case where the observable is nondegenerate,
there is a simple intuition behind this result that follows from
keeping track of specific measurement outcomes. Inversion-
even observables collapse the system to states that do not
carry a Hamiltonian current [45]. Inversion-odd observables,
on the other hand, collapse the system to current-carrying
states. However, we are considering averages over measure-
ment outcomes and this leads to zero average current since
the measurement eigenstates come in complementary pairs.
These carry opposite currents and are equally likely to occur
in thermal equilibrium, leading to a vanishing expectation
value for the current.

This result implies that the generation of currents requires
the breaking of inversion symmetry, either by A or H. For the
former, we mean that A does not have a well-defined parity
under inversion. In the next subsection, we will assume that
inversion is broken, either by A or H. Finally, we note that the
conclusions are unchanged even for initial states that are not
thermal, as long as they are invariant under inversion.

C. dc currents require breaking of time-reversal symmetry

Since currents require time-reversal symmetry breaking,
one would naively think that 7' plays an equivalent role
to inversion symmetry in preventing currents. In particular,
one might expect currents to vanish if THT ' = H and
TAT ' = + A. However, as we show now, time reversal al-
lows currents but constrains their time dependence.

We will first show that time reversal implies the vanishing
of the current immediately after a measurement starting from
an equilibrium state. Recall that THT ' = H and assume
that TAT ~' = £A. Then, the equilibrium density matrix is
time-reversal invariant, 7 peqT ' = peq. Immediately after a
measurement, the density matrix remains time-reversal invari-
ant, since according to Eq. (14) T only permutes the projectors
in the sum in Eq. (15). This implies that the Hamiltonian

current immediately postmeasurement vanishes. The intuition
for this result is similar to that leading to the lack of cur-
rents for observables with a well-defined inversion parity. This
would not be the case if TAT ~!' # +A.

However, the current does not remain zero because the evo-
lution of the state after the measurement breaks time reversal,
as will be seen. This produces currents, but we now show that
they are either oscillating or decaying in nature, so the net
displacement after a long time is finite. To see this, we write
the density matrix as

p(t) =Y &GPk, a) k, Bl (17)

k,o,B

where |k, o) is an eigenstate of the Hamiltonian with energy
€.« Here k is a crystal momentum and o is a band index
arising from orbital degrees of freedom, so it is not changed
upon time reversal. Here, we have assumed translational sym-
metry, which ensures that p(¢) is diagonal in k. Immediately

following a measurement at t = 0, T p(0)T ~' = p(0) implies
that the coefficients satisfy
i?(0) = (¢*h(0)" = P50, (18)

where the second equality follows from Hermiticity of p.
This condition represents time-reversal symmetry for the
density matrix at r+ = 0. Time evolution leads to c,‘fﬂ t) =
czﬂ (0)e~"ras!  where wy op = €x.q — €k,p, Which disrupts this
condition.

The Hamiltonian current (Jy) (¢) = tr[p(¢)Jy] is then

i) 0) =Y PO " (k, BTy [k, @) (19)
k.o,B

To proceed, we distinguish between intraband (¢ = ) and
interband (o # B) terms in Eq. (19). The intraband terms are
time independent since wy o, = 0. They equal
1
Ui = 5 D [64(0) = 5O (k. el Jy k. @) . (20)

k,a

where TJyT~! = —Jy has been used to combine terms with
opposite momenta together. This is zero due to the balance of
the k and —k populations, as follows from the time-reversal
invariance, Eq. (18).

Turning our attention to the interband terms, o # 8, we
obtain

Ui bier @) = =i Y P () sinln apt] (k, BlJu Ik, @),

k,a#p
(21)
where we used Eq. (18) and (k,B|Jylk, )=
—{(—k,a|Jg |-k, B), as follows from time-reversal

symmetry. These terms are oscillating in nature. Hence,
for TAT ! = +A, currents are allowed, but they are either
oscillating in time or decaying, due to destructive interference
between different frequencies.

To elucidate the role of time-reversal symmetry in pre-
venting dc currents, consider the transition probability for the
system in state |y) to evolve unitarily for time 7, be measured,
evolve for time ¢’, and become |¢):

7Y% =3 | (ple M P ) |2 (22)
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TABLE 1. Constraints on currents arising from spatial inver-
sion and time-reversal symmetries, following a measurement starting
from the equilibrium state. The symbols ,/ and X indicate whether
the conditions on the leftmost column are satisfied. A value of 0 indi-
cates that a given quantity vanishes by symmetry, while # means it is
symmetry allowed. (J;) (0") is the Hamiltonian current immediately
after a measurement. The measurement charge displacement (0) is
permitted by symmetry if inversion symmetry is disrupted, either by
H or A. However, two exceptions are observed: () an observable that
is not an eigenoperator of / or T but has /7 symmetry will lead to

(Q) = 0. In addition, (Q) = 0 always for measurements of position

(-

IHI'=H Vi Vi Vv X X
JAI7" = +A Vi X X Vv v
TAT ' =4A any N X V4 X
(Ji) (0F) 0 0 # 0 #
Ju) () 0 # # # #
Ui ae 0 0 # 0 #
(0) 0 # #* # #

If THT ™' = H and TAT ! = £A, this is equal to the proba-
bility of the time-reversed process,

7077 =3 | (1 P ) 1, (23)

where |1ﬁ) and |q§) are time-reversed partners of states |y) and
|¢). Hermiticity of the projectors P = P, implies that, for ¢ =
t' =0, To‘ffoﬁ"’ = TO‘{’: V¥ This, combined with To’floﬁ‘z’ = TO‘{’(T v
implies that

i Una ]
Iyy " =Ty - 24)

As a consequence, if there is a balance of populations between
two time-reversed states before a measurement, the balance
will remain after the measurement. This implies the absence
of dc currents, see Eq. (20). If TAT ~! # +A, then in general
the rates in Eq. (24) would differ.

In sum, measurements of observables that are T eigenop-
erators cause oscillating or decaying currents when the initial
state is time-reversal even. On the other hand, measurements
that are not T eigenoperators can lead to dc currents.

Turning our attention to Q, time-reversal symmetry does
not prevent a measurement charge transfer since Q is even
under 7. On the other hand, IT symmetry does prevent it;
see Eq. (12). Below, this will be illustrated in the Rice-Mele
model.

As in the previous section, the limitations on the exis-
tence of currents are unchanged even if the initial state is not
thermal, as long as it is time-reversal symmetric and transla-
tionally invariant. In Appendix A, we show that in the special
case when A is time even and nondegenerate, the conclusions
remain valid regardless of the initial state.

D. Summary and numerical illustration

Table I summarizes the conclusions of the symmetry anal-
ysis for the current after a single measurement. Starting from
an equilibrium state, if the Hamiltonian is inversion symmet-

Total displacement after a single measurement

(a) (b)
0.2 4
SN 3
5 00 52
70.1 1
—0.2 0
10 30 50 10 30 50
(C) time (d) time

0.0 ; 1.0
—0.1
2 02 S 0.5
~0.3 0.0 %
50 :

10 30 10 30 50

time time

FIG. 2. Total displacement Ax as a function of time. The
measured observables and staggered potential for the graphs are
(@my, =0, mi=m, = %; V=0;0b)m=m,=m, = %, V =
0; (c)my=1, V=3;and (d) m, =0, my:—mzzﬁ, vV =3.
The dashed line shows the charge displacement at the instant of
measurement. In (a) and (b), the Hamiltonian has spatial inversion,
but the measured observable breaks it. The oscillating part of the
current is always present, while there is also a dc component in
(b) when time reversal is broken by the measured observable. In
(c) and (d), the Hamiltonian doesn’t have spatial inversion symmetry,
but observables do. If a time-reversal symmetric observable is mea-
sured [as in (c)], there is no dc component, while if it is broken as in

(d) it is present.

ric and the observable A is an inversion eigenoperator, then
no currents or measurement charge displacements develop.
Therefore, currents require breaking of inversion symme-
try in either H or A. When one of these occurs, then the
time-reversal properties of A determine whether there are dc
currents or not, and also whether the Hamiltonian current
immediately following a measurement vanishes or not.

We illustrate the role of symmetries in constraining the
currents using the Rice-Mele model. Figure 2 shows the total
displacement

mm=@+Ammm» 25)

as a function of time for a measurement starting from equilib-
rium. The first contribution, (Q), describes the measurement
displacement, i.e., the average particle displacement at the
instant of the projective measurement, computed as the ex-
pectation value of the operator Q with respect to the density
matrix immediately prior to the measurement. The second
contribution describes the integral of the average Hamiltonian
current for times following the measurement and is aver-
aged with respect to the projected density matrix after the
measurement.

Four different cases are considered. In Figs. 2(a) and 2(b),
the Hamiltonian is inversion invariant, /HI~' = H, while
IAI~! # £A. Conversely, in Figs. 2(c) and 2(d), IHI™' # H
while JAI"! = +A. In Figs. 2(a) and 2(c), TAT ! = £A,
whereas in Figs. 2(b) and 2(d), TAT ! # #A. It is important
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Hamiltonian current after the measurement (Ju) (07)

(a‘l) Teven F L-odd (a,Q)T-even Dynamic balance

4

I-even

T-odd

V=0 V=3
-0.03 0.00 0.03 -0.01 0.00 0.01
Measurement displacement (Q) -
IT-odd Position
(bl) zZ I-odd (b?) 2 | measurement

T
IT-even
-0.10 -0.05 0.00 0.05 0.10 -0.15 -0.10 -0.05 0.00

FIG. 3. Transferred charge for every bond observable repre-
sented on the Bloch sphere. The parameters of all plots are t; = 1,
t, = 0.5, while the spatial inversion is controlled by a staggered
potential V. For a Hamiltonian current immediately after the mea-
surement, the measurement of 7" and / eigenoperators leads to the
vanishing of the current [shown in (al)] if the Hamiltonian has
spatial inversion. In (a2), the nonzero staggered potential breaks
spatial inversion. Then, only time-reversal symmetry gives a simple
condition for zero current. The zero-current line shown in green is
a result of dynamic balance rather than symmetry. In (b1) and (b2),
we show similar results for the measurement displacement. If the
Hamiltonian has a center of symmetry as in (bl), the symmetries to
consider are spatial inversion and /7 symmetry. If the Hamiltonian
breaks this symmetry as in (b2), the only point at which displacement
is guaranteed to vanish corresponds to the measurement of position,
for which the displacement operator is identically zero.

to note that in all scenarios, a measurement displacement
occurs ((Q) # 0), which is succeeded by oscillatory currents.
These features are present despite having averaged over mea-
surement outcomes of the observable A. Furthermore, the
disruption of inversion symmetry by either H or A results
in similar behavior. However, a qualitative distinction ex-
ists between measurements that are not eigenoperators of
T and those that are: only measurements that are not 7T-
eigenoperators permit dc currents.

To see the dependence of current on the parameters, Fig. 3
shows the currents for a measurement starting from equilib-
rium, as a function of m on the Bloch sphere. Figure 3(al)
displays the Hamiltonian current immediately following the
measurement, {Jz)(0"), while Fig. 3(b1) shows the measure-
ment displacement, (Q), both in the case where no staggered
potential is present, V = 0. Then, the Hamiltonian has time-
reversal and inversion symmetries, as does the equilibrium
state. As a consequence, currents are only expected for
TAI™! # A, Time reversal T corresponds to complex conju-
gation in the position basis, thus changing the sign of oy while
leaving the other two matrices unchanged since they only have

real elements. On the other hand, inversion / exchanges the
left and right sites within a cell and is hence represented by
ox. IT symmetry is a combination of these two symmetries
and therefore can be represented as ox K, where K is a complex
conjugation operator. The current and measurement displace-
ment vanish along the planes and axes of these symmetries.

Figures 3(a2) and 3(b2) show (Jx)(0") and (Q) forV #0,
when the equilibrium state is not inversion invariant. The
locus of points that are 7 even or T odd still have vanish-
ing Hamiltonian currents {(Jg)(0") as shown in Fig. 3(a2).
However, inversion is no longer a useful guide to determine
the locations of zero current. In this case, the current vanishes
when the inversion breaking of the observable and that of the
staggered potential counteract each other. For the measure-
ment displacement in Fig. 3(b2), when inversion is broken,
IT symmetry is also broken as default. Then, the only point at
which the measurement displacement is guaranteed to vanish
is the position measurement m, = 1, for which the displace-
ment is identically zero.

IV. STEADY STATES OF A THERMALLY
ISOLATED SYSTEM

We now turn our attention to systems that are measured
repeatedly. We consider multiple measurements of the same
observable A that occur at a series of arbitrary times. If this
is continued for a sufficiently long time, then under fairly
generic conditions, the system reaches an infinite-temperature
steady state [22,46—49]. We show that currents vanish in this
state irrespective of symmetry considerations.

To see that the steady state of a measured quantum
system is an infinite-temperature state, we recall that a
projective measurement when averaged over all possible out-
comes causes the von Neumann entropy of a system S(p) =
—tr[p In p] to increase (or stay the same) [47,50]. The infinite-
temperature density matrix, being proportional to the identity
matrix, is a steady state of both unitary evolution (U1U " = 1)
and of projective measurements (>, P,1P, =1). Therefore,
to the extent that the dynamics is ergodic, the steady state un-
der repeated measurements has infinite temperature. This fate
can be avoided by two different mechanisms for nonergodic-
ity. First, if there exists a combination of eigenvectors of A and
a combination of eigenvectors of H that span the same proper
subspace, then the system can be trapped in this subspace
[51]. (see Ref. [52] for an experimental demonstration). This
occurs, for example, when the observable A commutes with
the Hamiltonian. Then, states with different eigenvalues of A
are prevented from mixing during the evolution. Second, when
measurements are performed infinitely fast, they effectively
freeze the unitary evolution between measurements, leading
to the quantum Zeno effect [53].

The tendency of measurements to lead the system toward
infinite temperature can be further clarified by looking at the
transition rates that are induced by it. For two energy eigen-
states |E|) and |E,), the transition probabilities caused by the
measurement of an observable A are identical:

D HEIPIE) P =) [(EaPJE)) P (26)

This implies that the steady state has equal occupation of
energy eigenstates, independent of their energy.

224305-6



MOTION FROM MEASUREMENT: THE ROLE OF SYMMETRY ...

PHYSICAL REVIEW B 111, 224305 (2025)

Absence of currents in infinite temperature

Given that the steady state is generically an infinite-
temperature state, we now show that currents vanish in this
state. There are well-known statistical mechanics systems,
such as the asymmetric simple exclusion process [54], which
support steady-state currents even with a uniform probability
distribution. In this case, the currents arise due to asymmetry
in the hopping amplitudes, and one may expect that inversion-
breaking measurements could also generate currents through
a similar mechanism. We now show that measurements cannot
lead to such currents.

We first consider the Hamiltonian current. Writing the
infinite-temperature density matrix as po, = ﬁ]l (here, NV is
the dimensionality of the Hilbert space), the expectation value
of the Hamiltonian current is

1 RN
H)oo = jT/tr(—l[H, i) =0, 27
as follows from the cyclic property of the trace.
We turn our attention to the measurement charge displace-
ment. In the infinite-temperature state, p = 1/N,

N 1 (. 1.
Q) = T <xza:PaPa> - Ntr(x), (28)

where we used the cyclic property of the trace. This is seen to
vanish identically, since Y, P? = " P, = 1. Hence, projec-
tive measurement cannot result in charge transfer at an infinite
temperature [55].

A natural way to avoid the infinite-temperature state is to
couple the system to a heat bath. This allows the system to
reach a nontrivial steady state that emerges as a consequence
of a balance between the bath that cools the system and the
measurement apparatus that heats it up. We consider this in
the next section.

V. COUPLING TO A THERMAL BATH

We model the dissipative dynamics through the Marko-
vian quantum master equation (Lindblad equation), where the
dynamics of an open quantum system is generated by the
Lindbladian L,

Lyplp] = —ilH, p] + Dlp], (29)

where D is the dissipator which accounts for the coupling to
a thermal bath:

P
Dipl=>) (LapL;, — 5L, p}). (30)

o

We choose jump operators L, so, in the absence of measure-
ments, they thermalize the system at a temperature 7. This
means that the steady state of this Lindbladian is a Gibbs state
Peq = e T /Z.

We now imagine that the system is being measured. We
start by considering measurements that occur at random un-
correlated times (a Poisson process) with a measurement rate
1/7 [56-58]. Later, in Sec. VI, we will consider time-periodic
measurements. In this case, the measurement process can be
described by introducing an additional term in the Lindbladian

(see Appendix B),
1
L= Lup + ;Em, (3D

where L, acts on the density matrix as

Lulpl =) (PapPa) — p. (32)

We observe that the Kraus map Pa[p] =), PapP,, corre-
sponding to measurements is a superprojector. We can define
the complementary projector Q4 =1 — Py, so PsQs =
0. The measurement term in the Lindbladian [Eq. (31)]
is %,Cm,o = —%QA p which causes any elements that are
off-diagonal in the measurement basis to decay with a char-
acteristic decay time t.

It is interesting to note that the same Lindbladian can be
obtained for a system under continuous weak measurement
of an observable A, see Ref. [57]. There, the measurement
strength takes on the role of the measurement rate 1/t in our
analysis. Therefore, our discussion of currents in the Poisson
measurement scheme is also relevant to such systems.

The steady state can be determined from the condition
£[)Ost] = 07 or

(Lm + 7Lup)pst] = 0. (33)

It is interesting to see how the Lindblad equation predicts an
infinite temperature state in the absence of dissipation. Then,
Eq. (33) becomes

—Qups — iT[H, ps] = 0. (34

Multiplying this by pg and computing the trace gives 0 =
—it trlpg[H, pyll = tr[py Qaps] = tr[(Qapy)’], where we
used tr[(Paps)(Qapst)] = 0. This implies Q4 p = 0, i.e., pg
commutes with A. If Q4pq = 0, then Eq. (34) implies that
pst commutes with H as well. For generic A and H, py must
therefore be the infinite temperature state.

We now turn to define and study the steady-state currents.

A. Currents in measured open quantum systems

In an open quantum system undergoing Lindblad dynam-
ics, the Hamiltonian current does not satisfy the continuity
equation. The presence of measurements and dissipation in
the master equation forces us to consider additional types of
currents that do not exist in closed quantum systems measure-
ment currents and dissipative currents. Only the total current,
which is the sum of all three, is conserved. As we will show
below, the measurement current is directly related to the mea-
surement charge displacement Q.

We use the generalized definition of current between sites
x and y for a quantum master equation [43],

1(. dp,) 1(. dP
Y = = an_) - A Pv_x ) 35
/ 2{ dr } 2{ Tt } 33)

where P, and P, are projectors onto x and y and {, } is the
anticommutator. The current is defined so it explicitly satisfies
the continuity equation. The current, integrated over all space,
is then

J=Y -0/ (36)

x<y
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where the factor of (y — x) takes into account the distance
traveled by a particle in the transition from x to y [59]. Equa-
tion (35) is a Heisenberg picture expression, written in terms
of the time derivatives of the projectors P,. A more explicit
expression for the current can be obtained using [43]

d B

—P, = L[], 37

T [P:] 37
where L is the adjoint Lindbladian:

L[O]=i[H, O] + - (Z(P@P)— )

i Lo
+ Xa: (La®La — SiLiLe. @}). (38)

Replacmg Fy = by L1[P,] (and similarly for P)) in Eq. (35)
gives the express10ns for the Hamiltonian, measurement, and
dissipative currents, depending on which term of the adjoint
Lindbladian is used.

The Hamiltonian part of the evolution leads to the Hamilto-
nian current discussed in Sec. II. The space-integrated current
takes the form

w=—iy PHP(y—x)=

X,y

—i[%, H]. (39)

The measurement part of the Lindbladian L, gives the
measurement current:

1
I =57 2 (P PPPY = (x < y). (40)

Integrating over space gives

Jmeas = (Z P,XP, — )C) =

where Q is defined in Eq. (9). This relation describes the fact
that charge displacements occur, on average, at a rate 1/7.

Finally, the last term in Eq. (38) is a source of a dissipative
current that comes from thermal bath jump operators [43].
This gives

, (41)

<

Jgis = Z Ja " m = n)

, |-
- Z [L;cha - E{fc, L;La}].

The second equality relies on the locality of j} ™. For the
Hamiltonian and measurement currents, locality is guaran-
teed by the short-range interactions and local measurements.
By contrast, to ensure equilibration it is often convenient to
work with a bath that spans the whole system, rendering the
definition of dissipative currents problematic. For this reason,
we focus on a sufficiently weak dissipation rate, compared to
the Hamiltonian scale and to the measurement rate 1/t. Then,
the dissipative current can be neglected. We comment that the
use of a Lindblad master equation to describe the coupling to
a thermal bath is only justified in this limit [60].

(42)

B. Measurement-induced steady-state currents
in the Rice-Mele model

We will demonstrate the existence and properties of
steady-state currents on the Rice-Mele model defined in the
Introduction. As will become clear, much of the intuition
comes from the single-measurement results. We model the
thermal bath by choosing jump operators that connect energy
eigenstates,

er - Lk,u;q,v = & Vk,u;q,vczﬁﬂcq,v» (43)
with the decay rates chosen to satisfy detailed balance at

temperature 7':

1o for E;, <E,
Vi gy = /Z _ Eepu—Eqv g o (44)
N@

r for Ek,/L > Eq,\n

where k and g are wave vectors, ; and v band indices, and
1o sets the overall timescale of relaxation. The factor 1/A is
added since we allow transitions between all pairs of energy
levels. This ensures that the relaxation rate of the system
remains finite as N' — oo. The dissipation is inversion sym-
metric if the Hamiltonian is, so we do not have to consider its
symmetry properties independently.

The steady state of the Lindbladian—consisting of
the Hamiltonian dynamics together with dissipation and
measurements—is found numerically. Throughout, we as-
sume a weak dissipation rate compared to the Hamiltonian
scale, yp < ||H]].

Figure 4(a) shows the total (Hamiltonian plus measure-
ment) current for an inversion-odd observable, as a function
of t. The current is obtained from the expectation value of
the corresponding operators with respect to the steady-state
density matrix. The presence of steady-state currents is a
demonstration of the quantum-measurement ratchet effect,
where the combination of an inversion-invariant measurement
and an inversion-breaking Hamiltonian give rise to currents.
The ratchet effect occurs only for V # 0 since a non-zero
staggered potential (ratchet potential) is necessary to break
the inversion symmetry. In addition, changing the sign of the
potential reverses the direction of the current.

By contrast, Fig. 4(b) shows the total current for an ob-
servable that is not an inversion eigenoperator, m, = m, =

—m, = 1/+/3. Here, a current is created even in the absence
of a staggered potential, and the current is not odd in V.

The currents in Fig. 4 display a pronounced peak at
T ~ 1/, which is the typical equilibration time of the bath.
To understand the origin of this peak, we begin from the rare
measurement limit T 3> 1/y,. There, the current is expected to
approach zero, since the system is only rarely perturbed from
equilibrium. Then, the currents are given by the cumulative
displacement following a single measurement before return-
ing to equilibrium, divided by the time between measurements
T.

In this context, it is important to distinguish between mea-
surements that are time-reversal eigenoperators, TAT ~' =
+A, and those that are not. In the latter case, measurements
starting from equilibrium give rise to dc currents, Jq.. Due to
dissipation, such currents decay on a timescale of order 1/yy.
Hence, the cumulative displacement per measurement is ~
Jac/v0, and the average current in the rare-measurement limit
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FIG. 4. Steady-state currents as a function of average measure-
ment time. In (a), the measured observable is inversion-odd and
is given by my =m, =1/ V2, and m, = 0. Note that the T axis is
logarithmic in all plots. The total current dependence is shown for
three values of the staggered potential as the staggered potential V
is varied. The relaxation scale, T & 1/, is marked by dashed lines,
where ¥ = 1073, The current changes direction when the staggered
potential is tilted in the opposite direction (V — —V). This is clearly
not the case when the measured observable is not an inversion eigen-
operator, as seen in (b), where the measured observable is given by
my=my =—m, =1/ /3. In the insets, we plot the dependence of
total current on staggered potential for T = 1/yp. In (c), we show
how the location of the peaks matches the relaxation timescale 1/yy
where the total current is plotted for different values of j, and
V = —3.0. The plot is given for the same inversion-odd observable
as the one in (a). The parameters of all the plots are r; = 1.0,17, = 0.5,
T =0.1,and N = 3.

is &~ Jac /(YoT). As T is decreased from the rare measurement
limit, significant heating occurs as a result of the measure-
ments, as will be shown below. This heating suppresses the
currents, an effect that becomes important when measure-
ments are closer together than the relaxation time 7, = 1/yp.
The net effect is that a peak in the current is obtained at T ~ t,
whose height is & J4. /(Y9 T;) = J, which is independent of y,
as seen in Fig. 4(c).

By contrast, for T AT ! = +A, no dc currents are created
starting from equilibrium. This implies that, in the rare mea-
surement limit, the charge displacement between each pair of
measurements is of order 1, and that the average current is of
order 1/t. Then, the current for T = 7, is of order 1/7, = yy,
which is negligible for weak dissipation. Furthermore, as 7 is
decreased below t;, the heating is found to prevent currents
from developing. For this reason, to induce sizable steady-
state currents in the weak dissipation limit, measurements
must not be time-reversal eigenoperators.

Irrespective of the heating, the current is also expected
to approach zero in the Zeno limit, T < 1z, where 17 =
vo/||H||? is the Zeno onset scale, derived in Appendix C.
Here, ||H|| is the characteristic energy scale of the system.
The emergence of the Zeno onset scale can also be understood
intuitively. When A is measured twice in close succession, the
system is with high probability determined to remain in the
same state. The Zeno effect comes about since the Born rule
implies a quadratic timescaling of the effective evolution—
which is of order ||[H||?>t? [53]. The dissipation, on the other
hand, evolves the density matrix according to classical prob-
ability, which means that it has a usual linear scaling yyt.
For sufficiently small 7, the dissipation always wins in this
competition, and the Hamiltonian evolution is irrelevant. The
turnaround point is at tz which is the mean measurement time
at which the two scales become comparable. For larger times,
the evolution is dominated by the Hamiltonian, which together
with the measurements drive the system toward the infinite-
temperature state since the dissipation can be neglected. Then
the conclusions of Sec. IV apply.

In the Zeno limit, currents are small because rapid local
measurements tend to freeze particle motion, as will be ana-
lyzed in detail in the following section.

To further understand the suppression of currents below
the peak at T & 1/yy, it is useful to study the von Neumann
entropy S of the steady-state density matrix as a function of t;
see Fig. 5(a). For rare measurements, t >> 1/yy, the system
has time to equilibrate to the bath temperature, which is low
in our simulation. Hence, the entropy becomes small. As 7 is
decreased, when the measurement time becomes comparable
to the relaxation time 1/yy, S rises rapidly. For 77 < 7 <
1/y0, the bath struggles to remove the entropy created by
the measurements, and therefore the entropy plateaus close
to the infinite temperature value In(2N). This is the origin
of the current suppression, since the current is guaranteed to
vanish in the infinite-temperature state; see Sec. IV. Finally,
for 7 « 17, the system enters the Zeno limit, in which the
Hamiltonian has no effect and the steady state is determined
by the interplay between measurements and dissipation. Then,
the entropy saturates below the infinite temperature entropy at
a value that is independent of yj.

Note that as the dissipation is made weaker, the high-
entropy plateau in Fig. 5(a) becomes broader. This is
consistent with the fact that, in the absence of dissipation,
the steady state is an infinite temperature state, as discussed
in Sec. IV. At a finite value of yy, the range of the plateau
extends from 7 to 1/yy, as argued above. The distance to the
infinite temperature state can be seen more clearly from the
normalized difference between the von Neumann entropy of
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FIG. 5. The von Neumann entropy as a function of average mea-
surement time. The measured observable is given by m, =m, =
1/+/2, and m, = 0. In (a), we show the entropy as a function of
measurement time t. The maximal entropy Sy.x of an infinite-
temperature state is almost saturated near the middle of the plot. In
(b), the relative distance of the entropy from the maximal entropy
[Eq. (45)] is plotted on the log-log scale. The parameters of the plots
are the same as in Fig. 4.

the system § and the maximum entropy Spax = In(2N). The
normalized difference,

As = M, (45)

Smax

is plotted as a function of measurement time T on a log-log
scale in Fig. 5(b). We see that the steady-state entropy reaches
a maximum at ¥, which is of order 1/||H|| and independent
of yy. On either side of t*, the maximum entropy displays a
power-law behavior over a large window, with As oc 72 for
1, K T L t*and As o« T2 for T* « T < 1/yp. An analytic
derivation for this behavior is given in Appendix C.

C. The Zeno limit and local current loops

In the Zeno limit, measurements are fast relative to the
Hamiltonian and dissipative timescales [61]. Then the system
stays very close to the measurement subspace (the space of
density matrices that are block-diagonal in the measurement
basis). Therefore, if measurements are local and nonover-
lapping in space, charge cannot escape the measurement
subspace, thus forbidding global currents. Interestingly, we
will show that the Hamiltonian and measurement charge dis-
placements do not individually vanish but their sum does.
Furthermore, despite the absence of charge displacements,
we will show that in the Zeno limit steady-state currents can
form loops within each measurement subspace, even when the
measurement subspace is nondegenerate. These current loops
show that motion can occur when a system is continually

observed, in a counterpoint to the Zeno effect. While the Zeno
effect implies only that transitions between states are very
slow, a current of order one is still found.

For simplicity, throughout we assume that the measure-
ment operator A is nondegenerate. When this is not the case,
one may expect interesting dynamics within the degenerate
Zeno subspaces [3,12-14,53,62], which we do not consider
here.

In the Zeno limit, the density matrix will be nearly diagonal
in the basis of measurement outcomes. The probabilities of
the outcomes are determined by balancing transitions between
them by the coupling to the bath. To represent this analytically,
we treat the measurements as the dominant part of the Lind-
bladian and the unitary evolution and the coupling to the bath
as perturbations. Then, using the perturbation theory derived
in Appendix C and in Ref. [63], we find that to zeroth order
inT,

p = "w la) (al, (46)

where w(?) is the occupation of the eigenstate |a). This is given
by the balance equation

0 ! 0 ’
Dowy T = w Y T (47)
a'#a a'#a

where T¢7¢ = > 1H{d | Lyla) |> is the transition rate from
state |a) to state |a’), and L, are the quantum jump operators;
see Eq. (30). Note that even though the dissipation is weak,
it determines the steady state in the strict Zeno limit, whereas
the Hamiltonian appears only at higher orders in 7.

1. Hamiltonian and measurement currents in the Zeno limit

Since the density matrix in Eq. (46) is diagonal in the mea-
surement basis, it is unaffected by measurements. Therefore,
the expectation value of the measurement current with respect
to the zeroth order density matrix vanishes, (Jieas) P = 0.

The first contribution to (Jyeas) then arises from ps(tl) , which
is linear in 7, and is given by [see Appendix C, Eq. (C24)]

Umeas) 0 = tr(=ilH, p" Vineas)T, (48)

up to corrections of order yy/||H || which can be neglected for
weak dissipation. The measurement current operator, Eq. (40),
has an overall factor of 1/t in its definition, making this
contribution of the same order as the Hamiltonian current at
zeroth order, (Jy) o0 = tr(,oi? )Ju). For a generic observable,
we find that both currents are nonzero individually. However,
their sum cancels

(Jmeas)p;l) + (JH)p;?) =0 (49)

up to corrections of order yy/||H]||, as proven in Appendix D.
This follows intuitively since we perform measurements that
are local and nonoverlapping in space. Then, in the strict Zeno
limit, particles cannot leave the domain over which the local
measurements act, e.g., one of the unit cells in the Rice-Mele
model, and therefore the total current must be zero. This
cancellation is born out by numerical results in the Rice-Mele
model, as seen in Fig. 6. This cancellation is discussed in more
detail in Appendix E.
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FIG. 6. Hamiltonian, measurement, and total current dependence
on measurement time t. The t axis is logarithmic. The parameters of
the plotaret; = 1.5,, =1.0,V =3.0, % =0.01,7T =0.1, N =3,
and the measured observable is specified by m, = m, = —m,. When
7 is very small, we are in the Zeno limit, and the measurement current
compensates for the Hamiltonian current.

2. Local current loops in the Zeno limit

Thus far, we have focused on dimerized Hamiltonians
with bond measurements. It is also interesting to consider
Hamiltonians with a three-site unit cell acted on by three-site
measurements. Here we consider

N
H = Z |:(_th§n2C3n—l - tZC;n,163n - t3C;nC3n+1 +H.c.)

n=1
V. i ¥
+ 3(63,,,263,1_2 - 63,,03n)}. (50)

The model is pictorially represented in Fig. 7(a). Each unit
cell contains two bonds with hopping integrals #; and #, and
the bond connecting two cells has hopping integral #;. We
choose the measured observable as a nondegenerate operator
whose eigenstates are restricted within the unit cell. Following
the argument for the Rice-Mele model, the net charge transfer
has to vanish in the Zeno limit. However, this does not prohibit
current loops within each unit cell, as shown in Fig. 7(b).

To show that loop currents can emerge we choose, for con-
creteness, a measurement operator whose eigenstates within
the unit cell are

L
V3

W1 (@) = —=(I1) + € 12) +13)), D

FIG. 7. Illustration of the three-site model. The measurements of
an observable are performed on three-site unit cells, shown as dashed
boxes in (a). Particles hop between sites with amplitudes 7, 3. In
the Zeno limit, measurements prohibit charge transfer between the
unit cells. This implies that the net current vanishes. However, as
illustrated in (b), this does not prohibit the existence of loop currents
within the unit cell (drawn in red).

W2 (a)) = %(Il) — e 2)), (52)
1 .
|W3(a)) = —=(I1) + € [2) — 23)). (33)

NG

If the parameter « is not an integer multiple of 7, complex
phases are present. Then, the measured observable is not
even under time reversal, and currents are not prohibited by
symmetry.

The steady-state currents are computed in Appendix E.
There, it is found that the currents between sites satisfy

j172 = 223 = —j123 — j, where
Jo=&l—( +20)3u” (@) - 2)
+3(t — 1) Au® (@)] sin(a). (54)

Here u® and Au'® are population parameters determined by
solving the balance equation, Eq. (47), and which depend on
o. Hence, the integrated total current vanishes for any value
of «, jIHZ + jZH3 + 2jIHS = 0, as expected. However, the
nonvanishing of j, signals the presence of loop currents in the
Zeno limit, as advertised.

VI. FLOQUET MEASUREMENTS

‘We now consider a Floquet measurement scheme in which
measurements are performed periodically in time with a fixed
period t [12,13]. In contrast to the Poisson measurement
scheme, the system now lacks a true steady state. Instead,
the steady state is stroboscopic, with a time-periodic density
matrix with period . As we now show, this allows Floquet
measurements to probe the dynamics of the current following
a measurement.

Figure 8 shows the total current for Floquet measure-
ments of an inversion-preserving and time-reversal breaking
observable in a system with broken inversion symmetry
(V #0). The results were calculated by numerically evolv-
ing the density matrix and evaluating the expectation value
of the Hamiltonian current once the system reaches a stro-
boscopic steady state. Figure 8(a) shows the current in the
rare-measurement limit t, 3> 1/y0. In this limit, the system
has time to relax to equilibrium between measurements. Then,
the evolution of the current created by the measurement is
revealed to oscillate on a timescale controlled by the Hamilto-
nian parameters and to decay with a rate of order yy. There is a
net charge transfer which we show by integrating the current
over time, as seen in the inset of the figure. This indicates a
nonzero average current, Jy, defined as the integrated charge
transfer divided by the measurement period 7:

T

Jg = l/ dt tr[p(t)Jy]. (55)
T Jo

Figure 8(b) shows the Hamiltonian current near the Zeno

limit. Similar to the Poisson case, in the Zeno limit, the Hamil-

tonian current is compensated by the measurement charge

displacement to give net zero displacement.

Figure 9(a) shows the current as a function of 7 and com-
pares it to the Poisson measurement protocol. In both the
Zeno and rare measurement limits, the two protocols con-
verge to each other. Both schemes display a broad peak at
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FIG. 8. Expectation value of the Hamiltonian current as a func-
tion of time in the Floquet measurement scheme. The measured
observable is given by m, =m, =1/ V2, and m, = 0. The parame-
ters of the plotare r; = 1.0,1, = 0.5,V =1.5,T =0.2, N =4, and
o = 0.5. In (a), the time between measurements is T = 20, which is
large compared to the relaxation time of the system and the system
has enough time to relax until close to thermal equilibrium between
measurements. In the inset, we show that for the given parameters,
the particle moves to the left, on average, by time integrating the
Hamiltonian current and adding the measurement displacement. In
(b), T = 0.05 and the evolution time dependence of the Hamiltonian
current can be well approximated by taking low orders of expansion
in 7. Near the Zeno limit, the measurement charge displacement, not
shown, is roughly compensated by the Hamiltonian current.

T & 1/yy. However, the Floquet measurement scheme reveals
a series of narrow resonances which, as shown in Fig. 9(b),
are almost periodic in 7. The origin of these resonances is
the current oscillations induced by measurements, as seen in
Fig. 8. This suggests that Floquet measurements might be used
as a method for probing the dynamics of quantum systems.

VII. DISCUSSION

Our paper provides a framework for analyzing currents
in monitored quantum systems. We showed that, beyond the
usual Hamiltonian current, there is a measurement current,
which can be comparable in magnitude. The central topic has
been the interplay of the symmetries of the Hamiltonian and
the measurement observable, which dictates whether currents
can exist, and their magnitude. In particular, currents can
be generated whether the measurement operators are time-
reversal symmetric or not, due to the irreversibility of the
system. However, time-reversal breaking observables give rise
to enhanced currents. It would be interesting to investigate to
what extent these differences based on symmetry survive in
more general systems, such as ones including interactions for
example. Similar considerations about symmetry may influ-

0.000
—0.005
§~().()1(]
%—0.015
—0.020
—0.025} [=Floquet
: —— Poisson |
10°° T1 10°
(b)
—0.005
£—0.010
&
8
—0.015
— F'loquet
—0.020 } |=—Poisson

2 4 6 8 10

FIG. 9. Dependence of current on measurement timescale t.
Floquet and Poisson measurement schemes are compared. The plot
parameters are t; = 1.0, t, =0.5, V. =3.0, T =0.1, N =3, and
o = 0.01. For Floquet measurements, Jy is shown. Measurements
are of my =m, =1/ V2, and m, = 0. Note that the Floquet mea-
surement scheme displays resonances when the measurement period
matches some of the internal system frequencies, as shown in (b),
which focuses on a small window of (a) but on a linear scale.

ence other properties of monitored quantum systems, beyond
currents. In particular, monitoring a particle in this way could
be an interesting way of generating quantum active matter
[64-67T].
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APPENDIX A: NONDEGENERATE T-EVEN
OBSERVABLES

In Sec. III C, we showed that a measurement operator A
that is either even or odd under the action of time reversal
(TAT ' = 4A) does not give rise to dc currents, provided the
measurement is done on a state that is time-reversal symmet-
ric. In this Appendix, we show that, in the special case that
A is nondegenerate and time-reversal even, TAT ! = A, then
there are no dc currents after the measurement, regardless of
the initial state.

When these conditions are satisfied, then each measure-
ment induces a state that is time-reversal invariant, thereby
precluding the occurrence of dc currents. To see this, observe
that, in this scenario, the eigenstates of A are also eigenstates
of T, T |a) = |a). These eigenstates therefore have no current
initially, and as in Sec. III C, they also do not carry any dc
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currents because they have balanced occupation numbers at k
and —k. Thus, even if the system starts out in a state that is
carrying a current, the measurement switches off the current
by forcing the system into a time-reversal symmetric state.
The current vanishes in this case for every measurement of A,
without the need to average over outcomes.

APPENDIX B: DERIVATION OF THE MEASUREMENT
LINDBLADIAN

We derive the Lindbladian for a system that undergoes
repeated measurements of an observable A at random and
uncorrelated times with a rate 1/7.

We begin by discretizing time into short intervals Az and
consider how the density matrix changes between t, and
thr1 =t, + At. In the small time Ar, the density matrix
evolves with the Lindbladian Lyp [defined in Eq. (29)] into
e~ [ 5(1,)]. At the end of the interval, it is measured with
probability % causing it to change as in (7), or not measured,
with probability 1 — %. (The measurement may be regarded
as occurring at the end of the interval since the order in which
the measurement and the rest of the evolution occurs does not
matter for a short interval of time, since they both involve
infinitesimal changes to p, so they commute to first order.)
The density matrix at t,,1; = t,, + At is

A
Io(til+1) == (1 - %)eﬁﬁDAt[p(tn)]

+ %PA[eﬁﬁDA’[p(rnm +OMR). (B
In the limit At — 0, one finds
dp(t) i

L0 = Lanlp@) + —[Palp®)] = p0). (B2)

This equation describes the evolution of the density matrix
averaged over all measurement histories. It retains the canon-
ical Lindblad form with additional jump operators that are
projectors P, onto eigenstates of the measured observable
A. When the measured observable acts on a two-site unit
cell, the projectors for the specific cell can be written as
P. = %(1 + Uo,U"). The term in the measurement part of the
Linbladian for this cell is then %(UUZUT,O(I)UGZUT — p(1)).
This has the form of a decohering bath with the decoherence
rate 1/27. In this sense, the measurement apparatus is an
engineered bath that picks a preferred basis and eliminates the
coherences within it.

APPENDIX C: PERTURBATION THEORY
FOR THE STEADY STATE

In this Appendix, we develop a perturbation theory to com-
pute the steady state for the Lindbladian

L=Ly+V,

where V is a small perturbation relative to £y. The perturba-
tion theory presented here is an application to Lindbladians of
Brillouin-Wigner perturbation theory of quantum mechanics
[68]. The reason for using this approach rather than more
straightforward perturbation theory is that the unperturbed £y
that we will choose has more than one steady state. The steady

(ChH

state of the Lindbladian £, which is unique, will be obtained
approximately from an effective Lindbladian acting within the
space of steady states of Ly that lifts the degeneracy.

The choice of Ly and V' depends on the regime under
consideration. The full Lindbladian in our system is

L=H+Ln+D. (623

Here H[p] = —i[H, p] generates the unitary evolution, D is
the coupling to the bath, and £, is the measurement, L, =
—%QA, where Qa[p]l=p — >, P.pP, is a projector onto
density matrices that have vanishing diagonal elements in the
basis of the measurement observable A. We denote the char-
acteristic scale of the Hamiltonian by ||H ||, which is also the
scale of H. The scale of D is the dissipation rate yy, which is
assumed to be weak, yy < ||H|]. In the limit of slow measure-
ments (t||H|| > 1), we take Lo = H and V = —%QA + D.
For fast measurements (% > ||H]||), we take Ly = —%QA and
V = H + D. Similar approaches have been used previously
to study strongly monitored quantum systems, where classical
Markov dynamics are found to emerge beyond the strict Zeno
limit [63,69].

To develop the perturbation theory, it is useful to think
about £ as a superoperator that acts on the vector space of
operators, including the density matrix p. The steady-state
condition is then written as Loy = 0. Define P as a projector
that fixes any steady state of L, while taking any eigenvector
of Ly with a nonzero eigenvalue to 0, so

PLy= LyP =0. (€3)

Let @ = 1 — P be the complementary projector. We will split
the steady state of the full Lindbladian into components in the
two complementary spaces, ps = pp + pg, Where pp = Ppg
and pg = Qpy. Then, the steady state condition is

0= Lpg = (Lo + V) (op + po) =Vpop + (Lo + V)pg,
(C4)

using Eq. (C3). This can be divided into two conditions by
projecting it with P and Q. The latter gives

Q(Ly +V)Qpg = —QVpp (C5)
and can be used to determine p in terms of pp:
po = —QIQ(Ly +V)Q1™' QVpp. (C6)

While O[Ly + V]Q is noninvertible, as it has the same kernel
as Q; the notation Q[Q(Ly + V)Q]~'Q indicates that the
inverse is computed only within the complementary space.
Projecting Eq. (C4) with P gives PV pp 4+ PV pgo = 0 which,
combined with Eq. (C6), becomes

PVpr — PVAIQ(Ly +V)QI ' QVpp = 0. (€7
Hence, pp is a steady state of the effective Lindbladian:
Leit = PVP — PVQIQ(Lo +V)QI 'QVP.  (C8)

Once pp is known (based on this effective Lindbladian), pg
can be obtained from it using Eq. (C6) to obtain py = pp +
po- To second order in V), the effective Lindblad operator is

Leg =~ PVP — PVQ(Ly) ' QVP. (C9)
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FIG. 10. Schematic depiction of the different dynamical regimes.
Different dynamical scales are shown as a function of measurement
time 7. They are the Hamiltonian scale (||H ||z or ||H||*t? depending
on whether measurements are fast or slow), the dissipative scale
(y7), and the measurement scale (constant in t), all normalized by
the measurement rate. Both axes are logarithmic. In the Zeno (Z)
regime, the Hamiltonian dynamics is negligible and the steady state
is determined by the interplay of measurements and dissipation. In
the near-equilibrium (NE) regime, the dissipation has enough time to
equilibrate the system between measurements. In the high entropy
(HE) regime, the dissipation is the weakest scale and the system
approaches an infinite temperature state. The parameters in the plot
are [[H|| =1,y = 107*.

Perturbation theory is justified provided that there is a gap
from the zero eigenvalues of Ly to the nonzero eigenvalues.

We will next apply this formalism in the limits of fast and
slow measurements, in turn. We will find various dynamical
regimes as the measurement time is varied, which are summa-
rized in Fig. 10.

1. Fast measurement limit ||H ||t < 1

When measurements are fast relative to the Hamiltonian
timescale, ||H||T < 1, we take £y = —%QA as the dominant
term in the Lindbladian, and V = ‘H + D as the perturbation.
In this case, the projector onto the steady states of L is
P4 =1 — Qq, whose action on p is P4[p] = )", P,pP,. This
is highly degenerate, as any density matrix that is diagonal in
the measurement basis,

p =) wala)lal,

is a steady state of Ly, regardless of the value of the
occupations w,. The perturbation V lifts this degeneracy.
Equation (C9) gives

Lett = PAVPa + TPAVOAVP,.

(C10)

(C11)

The unitary evolution vanishes at leading order, PAH P, = 0,
as can be seen by acting on a general density matrix p,

PaHPalpl =) P <—i[H, > PprbDPa (C12)
a b

= —i ) [PHPu PupPs] =0, (C13)

a

which vanishes for a nondegenerate observable A. Therefore,
‘H contributes to Ler starting at second order. To leading

nonvanishing order in yy and ||H||:
Lett = Pa(D + tH>)Pa.

The condition Lerpp = 0 next fixes the steady-state occu-
pations w, in the measurement basis, pp. The off-diagonal
elements of py in the measurement basis, pg, are then given
by Eq. (C6). They are subdominant in tV relative to the
diagonal elements.

The form of ps depends on which of the terms in
Eq. (C14) is larger. There is thus a crossover as a function
of T at 7z = yy/||H||?. For ultrafast measurements, T < Tz,
the steady-state occupations are determined by the condition
PaDPy ,0510 ) = 0, which yields the balance equation

Z w((l?)Ta’—>a — wﬁ(JO) Z Ta—)a”

a'#a a'+#a

(C14)

(C15)

where 7979 = > 1H{d | Lyla) | is the transition rate from
state a to a’. The subscript (0) indicates that these are the
occupations to zeroth order in t. The von Neumann entropy
in this case saturates to a value that is independent of both y
and 7. This is what we refer to as the Zeno limit.

On the other hand, for 7; < t <« 1/||H]||, the Hamiltonian
plays a dominant role over the dissipation in Eq. (C14). If the
dissipation is fully neglected, then according to the arguments
in Sec. V, the steady state will be an infinite temperature state,
Poo = %/. Adding the dissipation D prevents the system from
reaching this state. Let

pp = Poc + 8pp, (C16)

where §pp is proportional to yy. The correction can be found
by solving L. pp = 0 to first order in yy for § pp. This gives

1
Spp = —;PA@AHZPA)”PADM (C17)

which is of order yy/(t||H||?). The complementary part of the
density matrix, pp = Qapy. is found to be smaller:

Po = TQu(H + D)(poo + pp)
~ QuDT P — QaHPA(PAH*PA) ' PaDpo.

These terms are smaller than §pp by factors of (t||H||)* and
(t||H]|), respectively, so they can be neglected in the fast
measurement limit.

We turn our attention to the von Neumann entropy:

Slos] = —tr[(pso + 80) In (poo + 50)].

Expanding In(pee + 8p) = In((1L + N8p)/N) =
2

—InN +Nép — AT[(S,OZ + O(yoz) then, since §p is traceless,

the entropy is to order yoz:

(C18)

(C19)

N
Slpe] = In N — ?tr[S,oz]. (C20)
The relative entropy as defined in Eq. (45) is then
N
As = ———tr[8p]. C21
s 21n(./\f)r['0] (C2D)
Since 8p is of order yy/(t||H||?), As scales with T as
2
Yo
— C22
[|H|[*7? (2
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in the regime yy/||H||> < © < 1/||H||, explaining the scal-
ing seen numerically in Sec. V B.

In Appendix D, we compute currents in the Zeno limit. The
measurement current is nonzero only in the complement of the
measurement subspace:

<Jmeas)7DA[p] =0. (C23)

Therefore, we need the off-diagonal entries of the density
matrix when 7 < %o' Using Eq. (C6), we find

Qupl) = T1QAHPAPY
= —l"L'[H, p(o)],

st

(C24)

where we have neglected terms of order tyy, and where the
superscript (1) indicates linear order in 7. In the second line,
we used Q4 = 1 — Pa, PaH P4 = 0 and the expression for H
as the commutator with H.

2. Slow measurement limit z||H|| > 1

In the opposite limit, when measurements are slow rela-
tive to the Hamiltonian timescale, we take Lo = H and V =
Ln+D= —%QA + D. Any diagonal density matrix in the
Hamiltonian basis is a steady state of £y. The projector onto
the space of steady states is Py, whose action on density
matrices is Py[p] = Dz PepPe. Here, Pg is a projector into
the subspace of states with energy E. Equation (C9) then gives

Lot = P (—% 01+ D) Pa. (25)
where the terms above are nonvanishing and hence the leading
order contributions in V. The condition L.gps = O fixes the
steady-state occupations in the Hamiltonian basis. There is a
crossover as a function of 7 at tr = 1/y. For 7 > 1R, the
steady-state occupations are given by Py D Py pg = 0, which
yields the equilibrium state at the temperature of the bath.

On the other hand, for 1/||H|| Kt <K R, Leff &
—%PH QOaPy, whose steady state is the infinite temperature
state (since it is simultaneously diagonal in the Hamiltonian
and measurement bases). The dissipation D prevents the sys-
tem from reaching infinite temperature. Writing pg; = P00 +
8 p for the steady state of Eq. (C25), we find that 6 p is of order
yoT. Plugging this into Eq. (C22) yields

As o yit?, (C26)

which is the scaling of the relative entropy with 7 in the regime
/IH|| € T < TR.

APPENDIX D: NO CHARGE TRANSFER
IN THE ZENO LIMIT

Using the results from Appendix C, we show that the total
current vanishes in the Zeno limit. By Eq. (39), the total
Hamiltonian current is —i[X, H] and its expectation value for
the density matrix of the Zeno limit, Eq. (46), is

U)o =iy ww((H, £1P,). (D)

The measurement current is nonzero only in the com-
plement of the measurement subspace, (Jmeas)p,[,) = 0 [see

Eq. (41)]. Therefore, we evaluate the expectation value with
respect to pp. This part of the density matrix is smaller by a
factor of t||H||. However, its contribution to the total current
is of the same order as the Hamiltonian current at leading
order, since the measurement current has an overall factor of
1/7 in its definition; see Eq. (40). By Eq. (C24):

Qupy’ = —i[H, p"]t + O(y)

=i Y [ P+ 0. PP

The expectation value of the integrated measurement current
for this density matrix is

Umeas) 0 = i Y WOt ((H, P& — PuiPy)).

a,a

(D3)

The first term cancels the Hamiltonian current since
tr[H, P,]x = —tr[H, X]P,. Thus, the current will vanish if the
last term is zero. The last term is

—iy wu(H, PPyiPy)

a,a’

= —i Y wtwr(HP,PykPy — PsHPyPy)
a,a

= —i ) wPtw(HPP, — PBHPEP,) = 0

a

(D4)

from the projector identity P,Py = 8, 4P, and the cyclic prop-
erty of the trace.

APPENDIX E: TWO-SITE AND THREE-SITE
MEASUREMENTS IN THE ZENO LIMIT

We will now consider local currents in the Zeno limit. In
this limit, for the dynamics we consider (see Fig. 1), mea-
surements destroy coherence between unit cells. The lack of
coherence between unit cells prevents Hamiltonian currents
from developing between unit cells. Since measurements do
not connect unit cells, no measurement currents will develop
either. Therefore, in what follows, we study the dynamics
within a unit cell.

To ease notation, given an operator O, we define the oper-
ator O°,

0° = NP,OP,, (E1)

where P, is the projector onto a specific unit cell n. The
factor N takes into account the fact that the particle can be
in any of the N unit cells and ensures proper normalization.
In particular, the density matrix in the Zeno limit is a sum
over unit cells, so no information is lost by considering p°¢
for a specific cell. Consequently, in the calculation of the
currents, e.g., the Hamiltonian current (Ji) =i tr py[H, %],
the Hamiltonian may also be replaced by H¢.

1. Two-site measurements

If the measurement subspace is two-dimensional, as in
Sec. V B, the density matrix projected onto a unit cell can be
written as

pS = [1+ 2w - 1)k - o], (E2)
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where w(LO) is the occupation probability of the left site after
the control U is applied. It is determined by Eq. (C15),

1
(0)
Wy = ——=> (E3)
k 1+ %

where T'72 = 3" | 2JUL,U"|1) |* is the transition proba-
bility between state U’ |1) and UT|2), where |1) and |2)
are the position eigenstates. Consider a general form for the
Hamiltonian projected into the two-site unit cell:

H® = hyop +h -0, (E4)

where oy is the identity matrix and the vector h specifies the
subspace Hamiltonian. Then the operator for the Hamiltonian
current, i[H¢, X] = i[H¢, —%], can be written as

Jy=Mhx2%)-o0. (E5)

The expectation value of the Hamiltonian current is then
¢ o 1 A .
()= |w — 3 tr[(h x 2) - o( - 0)]

- _2<w£°) - %)(h x 1), (E6)

The effective two-site measurement current operator can
be found by inserting the projectors onto the measured states
P, = %(1 4 1 - ¢) into the general measurement current ex-
pression [Eq. (41)]. We find

Foas = 5o, = mGh o)), (E7)
The measurement current expectation value is zero within the
measurement subspace, and the dominant contribution comes
from QA,O;t]) [Eq. (C24)]. By projecting to the measurement
subspace, we get that the expectation value of the measure-

ment current is
U = ~S1el(o, =m0 o[, 1))

= (wi(” - %)tr[(az — m(ih - 0))(h x 1) - o]

= 2<w£0) - %)(h x )., (E8)

where in the last line we used (h x m) - i = 0 and tr(o;) = 0.
Note that the Hamiltonian current is exactly compensated by
the measurement current.

Despite the cancellation, it is interesting to look at the
Hamiltonian and measurement currents separately. In the
Zeno limit, the steady-state currents for the Rice-Mele model
(h=—1@, + %&)are

i)y = = (meas) 0 = 201 (wf” = 1/2)my. (E9)

Figure 11 illustrates these currents. Note that each current
vanishes separately on the great circle m, = 0, corresponding
to T-even observables. It also vanishes for measurements of

the bond current itself, m, = 1, when wio) = %

Hamiltonian current Measurement current
Z z

-0.25 0.00 0.25

FIG. 11. Hamiltonian and measurement currents are plotted on
the Bloch sphere in the Zeno limit. The observable that is measured
in Fig. 6 is marked by the white dot. In that figure, it can be seen that
these two currents cancel out in the Zeno limit and that this cancella-
tion doesn’t persist to larger measurement times. The parameters are
the same as in Fig. 6.

2. Three-site measurements and loop currents

In analogy to the Rice-Mele Hamiltonian, we use a similar
Hamiltonian, but with three sites in the unit cell instead of
two:

N
H = Z |:(—l1€§,,_203n1 - lzcgn_lch

n=1

o H Vi o
13¢3,C3n41 + .c.)+ 2(C3n_zc3n—2 C3nc3n) .
(E10)

We perform measurements within the three-dimensional unit
cell. The measurement subspace Hamiltonian can be written
in the Gell-Mann basis as

V{1 J3
2\2 2

H® = —tjA — g + — —)»3+—)»8>, (E11)

where A;-s are Gell-Mann matrices. Similarly, we write the
expression for the Hamiltonian current:

JS = tihy + g, (E12)

To obtain nonzero currents, the measurements should act
on the three sites of the unit cell. This allows the density ma-
trix to have coherences between all three sites in the unit cell,
allowing for currents between all pairs of sites so a circular
current can form. Moreover, for the current to be nonzero,
the measured eigenstates should not have a well-defined par-
ity under time reversal, indicating that complex amplitudes
must be involved. An example of a vector that satisfies these
requirements is

1
V3

where « is a phase that is not an integer multiple of 7. We
choose the two other eigenvectors to be

1 .
— (1) — i1 ,
ﬁ(l ) —e"12)

|W3(@)) = %(Il) +e12) = 213)).

W1 (@) = —=(I1) + € [2) + 13)), (E13)

|Wa(a)) = (E14)

(E15)
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Measurement of the nondegenerate observable A®(x) =
Z?:] a; |¥;(a)) (¥;(ar)|, where each a; is unique, will yield
these eigenvectors. For instance, if « = 7 the projectors onto
these three eigenstates, P;(«) = |WV;(«)) (W(a)|, are

T 1
P‘(E) = (14t ko =), (E16)
T 1 V3 3
pz(E) =3 (1 ks 5x2>, (E17)
T 1 V3 A2
p3(5) = 5(1 —ha— ket S +A7). (E18)

Using the discrete translational symmetry of the problem,
we write the steady-state density matrix as

. 1 u® + Au®
pe(a) = §|:1 - Tpl(a)
u©® — ALO
- TPz(fx) + M(O)Ps(a)}, (E19)

where u® and Au® are parameters that can be determined by
solving the balance equation, Eq. (47).
The expectation value of the Hamiltonian current is

¢y ey — L ©) O i
() (@) = §[3(2t2 +t)u — (5t; — 2t;) Au*"] sin ().
(E20)
On the other hand, the expectation values of the measurement
currents between any of three possible pairs of sites come out
to be [after calculating the traces of the products of matrices

in Eq. (40)]

1
(JE cas) 152 (=152 —12)u O +(4t; + 1) Au] sin (@),
(E21)

1
(Jmeas)2>3 (@) = ﬁ[(l‘l —dt2)u® — (t; + 1) Au] sin (),
(E22)

1
(Jineas) 13 (@) = E[—(ﬁ 4 26)u O (1) — 1) Au'P]sin (@).
(E23)

If we calculate the total measurement current (jg ..}, +
(Jreas) 253 T 2 (Jfeas) 13> We see that the charge transferred
by measurement is exactly compensated by the charge trans-
ferred via the Hamiltonian current:

(E24)

(Jrcneas + JICJ) = 0'
However, the current between pairs of sites does not vanish.
The Hamiltonian contains only nearest-neighbor couplings,
which means that (j§),_ 5 is zero. This is evidently not the
case for the measurement current between these two sites, as
seen in Eq. (E23). This indicates that a steady-state current
flows in a loop that encompasses the three sites. In fact, if
the Hamiltonian current is divided into currents between pairs
of sites, one finds that (j§,..c + ji) 12 = Uteas T Ji)2ss =
(Jieas T Ji)3— # 0. This is seen using the expression for
the Hamiltonian current j,; ~ = i(P.HP, — P,HP,) between
pairs of sites.
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We study Cooper pairing in the Dirac composite fermion (CF) system. The presence of the mass term in the
Dirac CF description (which may simulate Landau level mixing), i.e., breaking of particle-hole (PH) symmetry
in this system, is a necessary condition for the existence of a PH Pfaffian-like topological state. In the scope
of the random-phase approximation (RPA) and hydrodynamic approach, we find some signatures of pairing at
finite frequencies. Motivated by this insight, we extend our analysis to the case of a different but still Dirac
quasiparticle (CF) representation, appropriate in the presence of a mass term, and discuss the likelihood of PH
Pfaffian and Pfaffian pairings in general. On the basis of gauge field effects, we find for a small Dirac mass, an
anti-Pfaffian or Pfaffian instability depending on the sign of mass, while for large mass (Landau level mixing),
irrespective of its sign, we find a PH Pfaffian-like instability.

DOI: 10.1103/PhysRevB.98.115107

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] is a
remarkable effect of electrons confined to two dimensions. In
the presence of a strong, perpendicular to the plane magnetic
field, the phase space of the strongly correlated system is
further confined into Landau levels (LLs) and quantized.
At special fillings of LLs, when the system is described by
special ratios of the number of electrons per number of flux
quanta, highly entangled states of FQHE are established. In
experiments, the effect is seen by measuring the fractionally
quantized Hall conductance, which stays constant, at the
particular value of fractional filling factor, as the magnetic
field or density is varied.

The Laughlin state [2] with its generalizations describes
the effect at odd denominator filling factors. A surprise came
with the experimental detection of FQHE at filling factor
5/2, i.e., half-filling of the second LL (SLL) [3]. The Cooper
pairing was invoked to explain the effect. Assuming spinless
(frozen spin) electrons, at half-filling of active (second) LL,
in the regime of experiments, the most natural BCS pairing
function in the real space, which can be associated with an
antisymmetric matrix, is a Pfaffian wave function [4]. Thus we
expect Cooper pairing due to phase-space constraints—gauge
field effects in a field theory description, in the presence of the
repulsive Coulomb interaction.

However, the realization of the pairing correlations even
for spinless fermions is not unique. We may envision a the-
oretical construct, an isolated half-filled LL with the exact
particle-hole symmetry that can be explored in numerical
experiments. The early pairing proposal—Pfaffian or Moore-
Read state [4]—does not possess the particle-hole symmetry,
and, under particle-hole exchange the Pfaffian transforms into
an anti-Pfaffian state [5,6]. The Pfaffian and anti-Pfaffian
equally participate in the ground state of the half-filled SLL
with Coulomb interaction [7]. The system with the particle-
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hole symmetry requires for its field-theoretical description
a special Dirac composite fermion (DCF) representation of
constitutive classical electrons and their strong correlations
[8]. On the basis of this representation a proposal was made
for a special Pfaffian that respects the particle-hole symmetry,
the so-called PH Pfaffian [8].

Arguments were given in Refs. [9—13] that the PH Pfaffian
in the particle-hole symmetric setting, i.e., half-filled LL is
an unstable, critical state. Arguments based on numerics were
first given in Ref. [12]. Nevertheless, the PH Pfaffian type of
pairing seems relevant from the experimental point of view,
as argued in Ref. [14], despite LL mixing (absence of the
particle-hole symmetry) and disorder effects.

Inspired by the recent experiment described in Ref. [15]
that measured the thermal Hall conductance of the paired
state at filling 5/2, and found that the measured value is
consistent with the conductance of PH Pfaffian, we would
like to check if a PH Pfaffian-like state may be realized in
the absence of the PH symmetry, i.e., in the presence of LL
mixing, but without disorder. The possibility for PH Pfaffian
physics due to disorder effects is considered in Refs. [14,16—
18], see also Ref. [19], while in Ref. [20], a proposal is
made that the result of the experiment may be still consistent
with the anti-Pfaffian state, due to an insufficient equilibration
of edge modes. Very recently, this proposal is criticized in
Ref. [21].

In this work we discuss the effective Cooper pairing chan-
nel of the system at half-filling in the scope of the DCF theory
with a mass term. The mass term of the DCF theory represents
a term that breaks the particle-hole symmetry of electrons
confined in an LL and represents an LL mixing.

The paper is organized as follows. In Sec. II, we review
arguments for the criticality of the PH Pfaffian in a particle-
hole symmetric setting, and argue why a symmetry-breaking
mass in the DCF theory is necessary to stabilize the PH
Pfaffian. In Sec. III, we discuss the effective Cooper pairing

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.115107&domain=pdf&date_stamp=2018-09-05
https://doi.org/10.1103/PhysRevB.98.115107

ANTONIC, VUCICEVIC, AND MILOVANOVIC

PHYSICAL REVIEW B 98, 115107 (2018)

channel in the DCF theory in the presence of a mass term, and
recover only some finite frequency pairing correlations. This
is followed by a discussion in Sec. IV, which uses a different
form of the DCF theory to analyze the Cooper pairing of
modified CFs, in which a usual BCS problem emerges from
a gauge field description of constraints. The Pfaffian family
solutions of the problem are described and conclusions can be
found in Sec. V.

II. PH PFAFFIAN AS A CRITICAL STATE IN A
HALF-FILLED LANDAU LEVEL

A. PH Pfaffian as a critical state in a (particle-hole symmetric)
half-filled Landau level

In this section, we will review arguments given in Ref. [11]
for the critical nature of the PH Pfaffian state, and, in addition,
relate the PH Pfaffian physics in a half-filled Landau level to
the critical behavior and transition between Pfaffian and anti-
Pfaffian [5], and discuss how general the arguments for the
critical nature of PH Pfaffian are.

In the following, we will denote by a PH Pfaffian state,
a FQHE state, at filling factor 1/2 (half-filled Landau level)
with Pfaffian (p-wave pairing) correlations that is invariant
under particle-hole (PH) transformation. The correlations are
expected to be in the opposite sense of rotation with respect
to the one set by external magnetic field. [This is corroborated
by available constructions based (a) on the Laughlin-Jastrow
ansatz, Eqs. (1) and (2) below, at the PH symmetric filling
factor on sphere, and (b) on the DCF theory.] On the other
hand, we will denote by PH Pfaffian, a state with Pfaffian
correlations in the opposite sense of rotation with respect to
the one set by an external magnetic field that may or may not
have the PH symmetry. The PH Pfaffian is a generalization
of PH Pfaffian. A Pfaffian state with the PH symmetry was
mathematically defined as an s-wave pairing instability of
an effective description by Dirac composite fermions at half-
filling. That is known in the literature as the Son’s proposal
for the PH (symmetric) Pfaffian [8].

Based on a mean-field analysis, we will argue that the
PH Pfaffian and its PH Pfaffian extensions, in the presence
of the PH symmetry (i.e., in a system with PH symmetric
Hamiltonian), describe critical states and thus they can not
describe gapped topological phase(s) in half-filled LLs.

First, we will examine the underlying physics behind the
states with the so-called negative flux insertion, either macro-
scopically (the number of the inserted negative flux quanta
is of the order of the size of the system) as in Ref. [22],
or microscopically (the number of the inserted negative flux
quanta is of the order of one) as in Ref. [14], that induces
p-wave pairing in the opposite sense of the rotation with
respect to the one set by the external field. These states can
be described as PH Pfaffian states. As long as we are not
sure of the fate of the PH symmetry in these constructions
we will consider them as PH Pfaffians. Here we should
note that for the states in Egs. (1) and (2) below, which we
classify as the PH Pfaffian constructions, recent numerical
investigations demonstrate high degrees of the PH symmetry
[12,13].

A negative flux Pfaffian (a PH Pfaffian), which is also a
lowest LL (LLL) wave function, was introduced in Ref. [22]
as

Y, = PLLL[S{H(Z?] - 271)2 X H(Z?Z - 2;2)2}

< [T -7 (1)

where {z; = x; +iy;,i = 1,..., N,} are the electron coordi-
nates, we omitted the Gaussian factors, Py projects to the
lowest LL, and the symmetrizer S symmetrizes between two
groups, 1 and 2, in which the particles are equally distributed.
This is a state with the number of flux quanta equal to Ny =
3N, —3—-2(N,/2—1)=2N, — 1, i.e., with a PH symmet-
ric shift. An algebraic procedure introduced in Ref. [23] may
be followed to generate possible edge states, i.e., a sector, if
the system is incompressible. Namely, the proposition applied
in the procedure is that if we consider bulk quasihole coherent
state constructions, we can use them to generate edge states
of an incompressible state. The method proved successful in
the Pfaffian case especially so because, in that case, the edge
states can be defined as those that make energy zero subspace
of a model interaction for which the ground state—Pfaffian
model wave function—is also a zero-energy state. In the case
of the state in (1), we are not aware of the existence of a model
interaction, and, furthermore, we do not know if the state is
incompressible. Nevertheless, we may examine which states
well-known, well-motivated quasiparticle bulk constructions
can generate as low-momentum states. If the state is incom-
pressible, these states we expect will make the edge sector.
The analysis was done in Ref. [24], and the states recovered
in this way, under the assumption of the incompressibility,
would make a counterpropagating Majorana edge branch,
together with the charged boson edge branch. The analysis
missed a neutral copropagating neutral boson, whose states
can be described as insertions in the antiholomorphic part of
the wave function, of holomorphic differences of symmetric
polynomials belonging to two groups of particles under a sym-
metrizer. (The antiholomorphic differences, i.e., their linearly
independent combinations under symmetrization, make the
states of the counterpropagating Majorana edge branch.)

Next to the construction in (1) we can consider a PH
Pfaffian state:

1
Wyzp=PuL| Pf{—+ -y |, @
ZF LLL|: f{(z?‘—z?)}n(z" Zl):| @)

which was introduced in Ref. [14]. Here,

N/2

1
Pf!(zf—zj)} N;Sgnpn

il (173(21'71) - Z}F)(zz’))

1

3)

In this case, an analysis of the edge states can include only
antiholomorphic Majorana (neutral fermion) constructions
described in the Moore-Read (holomorphic Pfaffian) case in
Ref. [23]. Thus next to the charged boson we have only a
single counterpropagating Majorana.

At this stage, it is interesting to note that in one of the
papers that introduced the anti-Pfaffian physics, in Ref. [5],
two out of three states that may appear at the transition
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between Pfaffian and anti-Pfaffian, have the same edge
physics as described here for the states in (1) and (2).

In the following, we will demonstrate that the states in (1)
and (2), which may describe electrons in half-filled LLs, are
in fact critical states, i.e., gapless and unstable states. For that
we will consider a simplified (mean field) version of the Son’s
theory—the DCF theory [8]—that describes the Fermi-liquid-
like state of Dirac CFs, in a half-filled, i.e., PH symmetric,
Landau level. Thus we consider a massless Dirac fermion, at
finite density, with s-wave pairing among spinor components,
and neglect the presence of the gauge field, i.e., its fluctuations
around zero value. In the chirality basis, i.e., in the basis of
Dirac eigenstates without pairing, see Ref. [11] for details, we
can express the pairing term. which pairs spinor components
a and b as

Y, (k)W (—k)

1 ks
:_57[%(1()%( k) + v (VY (-k)], @)

where k = |k| and ky = k, + ik,. The fermion fields W, and

W_ represent definite chirality (eigenstates of %) particle
(positive energy) and hole (negative energy) states. As the
relevant low-energy physics is around a finite chemical po-
tential, for the description of the pairing physics we may use
the following low-energy, decoupled from higher modes, BCS
Hamiltonian,

Hpcs =

> k= W, (k)
k

+) {%%Asm(k)%(—k) + Hc} Q)
k

We arrived to the usual form of the p-wave spinless fermion

pairing Hamiltonian as can be found in Ref. [25] except that

here we have linearly dispersing fermions, and not a fully

specified A function in the pairing part. With respect to the

notation of Ref. [25], the pairing function can be identified as

ky

Ap = ——A,. 6

K X (6)

The algebra of the Bogoliubov problem (Ref. [25]) leads to
the following expression for the Cooper pair wave function:

- _ / dk exp(lkr)(k—ék) %
Ay

where & = k — u, and Eﬁ = Elf + |Ax|?. We are interested
in the long-distance behavior, and thus the behavior of Ak
for small momenta around k = 0. For . > 0, finite chemical
potential and density of the system that we consider here, the
long distance behavior is determined by the behavior of Ay,
i.e., Ay [see Eq. (6)] for small k. In the small k limit, we are
motivated to consider two cases:

1
(a)lim Ay — const., when g, ~ — (8)
k—0 z|z|
and
. 1
(b)lim A; ~ k = |k|, when g, ~ —. ©)
k—0 Z

For the usual choice of the direction of the magnetic field
B =B é,, B <0 (instead of B > 0 as is implicit in the DCF
theory because the density of Dirac CFs is proportional to B)
we would have in (49) and (9), instead of z, in fact z*. Thus,
in the long-distance limit, when we can neglect the projection
to a definite LL, the case (9) corresponds to wave functions in
(1) and (2), because [26]

S{l—[(z;"l - z;‘-l)2 X l_[(z,’»‘z — zj‘-z)z}
1

and thus the pairing with the Cooper pair wave function, g, ~
1*, is present in both wave functions. Thus we can conclude
that in order to reproduce the pairing encoded in the wave
functions (1) and (2) we need nonanalytic behavior in the
small k limit, lim;_, o A; ~ k = |K]|.

Thus, for the states in Eqgs. (1) and (2), we cannot have
a Landau-Ginzburg type of description (together with the
fermionic part, see below), as we would expect to have for a
well-defined, stable pairing phase. A question may be raised,
whether in this argument for the critical nature of these states,
we are allowed to use the region around |k| = 0 to describe
the pairing instabilities of Dirac CFs, with the understanding
that the Dirac description is only well-defined near k| =
kr. However, a complete theory (description) of a pairing
instability involves both regions; the one around |k| = kr and
the one around [k| = 0, associated with the long-wavelength,
low-energy description with a bosonic variable (an order
parameter Ay in the mean-field description) associated with
the pairing.

On the other hand, the introduction of an analytical s-
wave pairing in the DCF theory would lead to the following
Lagrangian density:

L=igy" @, +ia)x + (igAr)xoyx +Hc.)
~ ~ vV -~
+|<au—2iaH)As|2—u|As|2—5|As|“. an

The theory is invariant under C P (charge conjugation +
parity) transformation

CPX()(CP) " = o x(), 12)

where r = (x, y) and v’ = (x, —y), though the pairing term
up to a gauge transformation. This invariance corresponds
to the invariance under the PH transformation of real elec-
trons [8]; the introduced s-wave pairing constitutes the Son’s
proposal for the PH Pfaffian. With the usual s-wave pairing
behavior, lim;_.o Ay — Const., and neglecting the influence
of gauge field, as before, we can arrive to the following
characteristic long-distance behavior:

1 ; 1
g~ —|1e,— ), (13)
z|z| Z*|z|

which should enter the Pfaffian part of the PH Pfaffian,

Wpy = PLLL[Pf{m} [ @ - :|

(14)
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We will list two reasons why this state can be considered only
as a gapless (critical) state. (a) If we attempt to generate an
edge Majorana sector using Wpy, and the method of Ref. [23],
we will not be able to separate (bulk) charge modes from
the usual Majorana counterpropagating edge modes, because
this is possible only for the peculiar form of the Cooper

pair wave function with g, ~ i* (b) The universal, long-
| ,

distance behavior g, ~ e is also a characteristic behavior
of the critical system of classical (nonrelativistic) fermions at
the transition from weak to strong coupling as described in
Ref. [25].

Though we commented in the beginning that we are apply-
ing the mean-field approach and neglect gauge field fluctua-
tions, our approach is in fact quite general, and can reach con-
clusions that are not biased. Namely, once we assume PH Pfaf-
fian pairing instabilities, by the very assumption of the pairing
order parameters of the underlying Dirac composite fermions,
we expect, due to the Anderson-Higgs mechanism, that the
gauge field (that couples to the fermions) will be expelled
from the low-energy physics, and therefore our assumption
and approach concerning the nature of PH Pfaffian is justified.
The arguments, in this section, are given in the long-distance
limit, when the magnetic length can be neglected with respect
to distances considered and thus the projection to the LLL
in Egs. (1), (2), and (14) can be omitted. The limit charac-
terizes the universal, low-energy physics, which we argue is
gapless, and this should be valid even when the projection is
included and the system is characterized as a whole in a half-
filled LL.

Thus the state with a manifest PH symmetry, the PH
Pfaffian in the half-filled LL, can be only a critical state. This
state may correspond to the (third) state that characterizes
the transition between Pfaffian and anti-Pfaffian state in Ref.
[5]. According to the analysis of Ref. [5] we may expect that
this state is the lowest energy state at the transition between
Pfaffian and anti-Pfaffian state, i.e., a “real” critical state,
while other two states, in (1) and (2), may represent excited
states at the point of the transition with an exact particle-hole
symmetry. [The two states in (1) and (2), correspond to the
other two states of the same reference, due to their edge
spectrum.]

B. Particle-hole symmetry breaking and the
criticality of PH Pfaffian

It is interesting to introduce a mass, i.e., a particle-hole
symmetry breaking term in the previously discussed descrip-
tion of the pairing instabilities in a fixed Landau level. We
will assume the analytic (limg_.o Ay ~ const) description,
discussed in the previous section. At the particle-hole sym-
metric point, m(mass) = 0. Away from this point, for A; = 0,
we have a simple Dirac description of the Hamiltonian with
the following 2 x 2 matrix,

m  k_
H= [k+ _m], (15)
for the following choice for gamma matrices y° = 03, ! =
io,, and yz = —io, and we set the Dirac velocity, vy = 1. In

this case,
1
v, (k) = m[(lﬂ + E)W, (k) +k_¥,(k)] (16)
and
1
V_(k) = m[(’" — EYW, (k) + k_W,(k)], (17)

where E = /|k|? + m?2. We find that

k
o)Wy (k) = — WL ()W (k)

m k+
-z H‘h(k)‘lf—(—k)

ke
+ 7E v_(k)W_(—K). (18)
We immediately see that in this case, with respect to the
Eq. (4), we do not have nonanaliticity for k =0 (if Ay is a
constant in that limit). Thus, for m # 0, we have a description
similar to the ordinary p wave in Ref. [25], that reproduces
Pfaffian pairing in the opposite direction with respect to the
one set by the external magnetic field, as discussed in the
previous section, but with a mixing term ~W (K)¥_(—k).
A straightforward solution of the Bogoliubov (BCS) prob-
lem gives a BCS ground state, where W, degrees of freedom
pair as g ~ %, while interband correlations are described with

&r ™~ ﬁ Thus the implied ground-state wave function in the
effective long-wavelength description is

1
Wppr = Pf{m} H(Zk — )% (19)
i T

This leads to the conclusion that the particle-hole symmetry
breaking mass term may stabilize the PH Pfaffian -like state
in (19). This is a very interesting, counterintuitive conclusion,
which was originally suggested in Ref. [11], in the context
of singlet and triplet pairings of spinor components, in the
presence of a mass term. Here we showed that the same
conclusion can be reached by considering only the s-wave
(singlet) pairing [Eq. (18)] in the presence of a mass term.
Although this simple scenario seems quite plausible, the
numerical investigations of the second Landau level (SLL)
(for which we expect that is dominated by the Pfaffian
physics) imply that the physics around the particle-hole sym-
metric point is dominated by a nonuniversal influence of the
short-range part of the Coulomb interaction, which is hard to
capture by field theoretical means. Namely, the investigation
in Ref. [7] clearly shows the (Schroedinger cat) mixing of
Pfaffian and anti-Pfaffian at the particle-hole symmetric point,
and their relevance for the nearby physics. The most recent
investigations in Refs. [12,13] point out that the state in Eq. (2)
is likely an excited state in the half-filled SLL (compare with
our identification above), and has very high overlap with the
composite Fermi liquid (CFL) wave function [27,28]. Thus,
although the DCF theory seems a very good description of the
half-filled LLL, it has to be modified to capture the nonuni-
versal physics in the SLL. But, by modifying the Coulomb
interaction in the SLL, one may increase the overlap of the
exact ground state with the state in (2) or stabilize the CFL
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state [13]. Thus a relevant question may be whether a mass
term in the DCF theory may induce pairing irrespective of
the details of the projected to an LL Coulomb interaction.
Therefore we are motivated to study the DCF theory in the
presence of a mass term in order to see if this may induce
pairing correlations and a pairing instability of the PH Pfaffian
kind [Eq. (19)].

III. THE DIRAC COMPOSITE FERMION THEORY WITH
A PARTICLE-HOLE SYMMETRY BREAKING TERM

In this section, we will consider the usual formulation of
the DCF theory, with a mass term, in the RPA approximation
in order to find the effective Cooper channel and examine pair-
ing correlations. A different formulation of the same theory
we will discuss in the next section.

A. The Dirac composite fermion theory with a particle-hole
symmetry breaking term: an introduction

We start by examining the DCF theory in the presence
of PH symmetry breaking mass term. The generalized La-
grangian can be found in Ref. [29] and is given by the
following expression,

- 1 1 -
L=iyy" @, +ia)y + —adA+ —AdA —myy,
4 8
(20)

where x is the Dirac CF field, a, is an emergent U(1)
gauge field, the Chern-Simons terms are abbreviated as
" A,0,A; = AJA, n=0,x,y, and we have omitted the
Coulomb interaction and higher order terms. As a conse-
quence, we have the following equations, by differentiating
with resect to A,

dA  da
T 4n o 4n
where J, is the electron density current, and, by differentiating
with resect to a,,

Je 2y

dA
VT 4
where Jy, is the Dirac composite fermion density current.

As discussed in Ref. [29], transport coefficients like the Hall
conductance can be found from the implied form of currents,

(22)

Je = Lé(E —e) (23)
4
and
. L,
Jy = EGE, (24)

where € is the unit antisymmetric tensor with components
€' =0,eY = —e’ =1, together with the relationship that
we have to extract from the theory,

1
Jy = Eﬁoe, (25)

where 6p represents the Dirac composite fermion conduc-
tance tensor. To find 6p, we need to find the polarization

tensor I1,,,
jY =Ty a", (26)

which may be identified in the RPA treatment of the theory:
the expansion of the effective action to second order in a”,
after the integration of fermion fields in the functional formal-
ism, or directly calculating

" = —itr[y"Se(x, y)y"Sr(y, x)1, 27)

where

iSp(x, y) = Ty )P M), (28)

i.e., the composite fermion propagator (7 is the time ordering
and the expectation value is with respect to the ground state
of noninteracting fermions). In calculating (27), we encounter
(ultraviolet) divergences, which come from the presence of the
infinite sea of negative energy solutions. There are two ways
to regularize the theory: (a) dimensional and (b) Pauli-Villars
regularization. The physical meaning of these two possibil-
ities, when considering Berry curvature contributions of the
positive and negative energy band to the Hall conductance,
is that in the dimensional regularization we combine (add)
the contributions, while in the Pauli-Villars regularization
we consider the contribution only from the positive band.
(For the Berry curvature contributions of the two bands see
Ref. [29].) The dimensional regularization at the neutrality
point [p(chemical potential) = 0], and in the presence of
a mass gives an unphysical prediction for the Hall conduc-
tance (=%eh—z), i.e., a half integral quantum Hall effect of
noninteracting fermions. But at a finite chemical potential,
and in the absence of mass the Hall conductance is zero.
This result or consequence is at the basis of the DCF theory
(that is defined at a finite chemical potential), which results
in the precise value of the Hall conductance of electrons

= %eh—z, dictated by the particle-hole symmetry, even in the
presence of disorder. Thus the dimensional regularization is
the assumed regularization in the DCF theory. On the other
hand, the Pauli-Villars regularization gives a so-called parity
anomaly, a half of the unit of the Hall conductance even in
the absence of a mass. Later, we will explore the role of
the Pauli-Villars regularization, when we consider a smooth
connection between the DCF theory and the HLR theory
[30]. Thus this type of regularization is important when we
switch the quasiparticle representation from the one based
on the Read’s construction [31] (the DCF theory) to the one
based on the usual Chern-Simons construction [32] (the HLR
theory [33]).

We obtained the polarization tensor IT*V(Kk, w), in the
hydrodynamic approximation, i.e., when |k| < kg, in the
presence of the mass term. The results can be found in
Appendix A.

B. The Cooper channel in the Dirac composite fermion theory
with a particle-hole symmetry breaking term

In this section, we will extend the approach applied in
Refs. [9,10] to the case with the particle-hole symmetry
breaking mass term. Namely, in Ref. [9], in order to study the
possibilities for pairing within the DCF theory, the Coulomb
interaction was considered as an additional term in the theory
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described by Eq. (20) with m = 0. An effective Coulomb
interaction was found by a projection of fermion operators
to the low-energy sector around |k| = kg of positive en-
ergy solutions. The BCS interaction or Cooper channel of
the effective interaction for the p-wave (PH Pfaffian) pair-
ing was found to be repulsive and in no way conducive
for the pairing. The investigations in Refs. [9,10] included,
at the RPA level, modifications of the effective interaction due
to the fluctuations of the gauge field (a, ), but the conclusion
was the same. In this section, we would like to find out the
effective Cooper channel, within the RPA approach, in the
presence of a mass term.

To investigate the possibility for a stable pairing phase, we
will look for the expression of the effective interaction in the
imaginary time formalism, but fix 7 (temperature) = 0. In the
Euclidean space-time, we have

Lr=Pey®(d: +al) Ve + Ve(—iy)(V +iap)yg
— ey e + mypye, (29)

where we consider the situation with a constant magnetic field
and, thus, the Fermi system at a finite chemical potential 1.
We can get (29) from (20) by a naive analytical continua-
tion T = it. We may introduce Euclidean gamma matrices
ye = ¥ and yr = (—i)y, but to make an easier contact with
previous calculations and literature, we will keep a Minkowski
set: Yo = 03 and y = io. We introduce the gauge field propa-
gator by the functional integration over fermionic degrees of
freedom,

/DlZ/EDI//E exp{—fdrdx[EE]}

@;j
= exp —/dxfdyT(x—y)a“ma”(y) . (30)
Therefore

Do(x —y) =ty Ge(x, YGp(y. 0, (1)

where

Ge(x,y) = —(Te[Ye) (), (32)

and x and y are points in the Euclidean space-time. We
present explicit expressions for D, in the hydrodynamic
approximation, in Appendix B.

With the addition of the Coulomb interaction to Lg
[Eq. (29)], its contribution to the propagator of the vector
potential a;, i = x, y can be found by considering

fdq [dw1 (q X a(—q)) 2me? (q X a(q))
SLEg = - .
@) 2 4 €q 47

(33)

To get the effective interaction among fermions, at the RPA
level, we integrate out gauge fields in the transverse gauge
(V - a = 0). If we define the fermion density-current as

_ = j/’«, (34)

Salg
for the effective four-fermion interaction, we get

Vin(x = y) = =3 Dy (x = NTH)T"(y),  (35)

where by D,,, we denoted the gauge-field propagator with the
Coulomb interaction contribution. The propagator D,,, can be
found in Appendix B.

To find the second quantized expressions for the currents
and the interaction, we use the following expansion for the
fermionic operator,

ik_ 1 .
‘IJE(X)— ; I:E_m]mexp{lkx} ck+ -,

(36)

where we did not write the negative energy contribution.
To describe the Cooper channel we project all momenta to
the Fermi circle, i.e., k4 = k, =ik, = kr exp{£i6}. Starting
from the defining expression

Jo(x) = Bp()yWp(x) = WE(x)WE(x), (37
we find an effective expression for the density operator,

O e I e

m . [(G—0)]] 4
+1i ; sin {T Ck, Cky - (38)
Defining the transverse part of the current operator by

Jr(ki —ky) = ig x Vp(k))y¥e(ky), (39

where q = k; — k; § = %, we find the effective expression
to be

k 6, —0 sin | ©=0)
jT(kl—kz)zi—Fexp{i(zz l)}x {5}
"

Note the presence of the sine function which ensures the
hermiticity of the operator [\7; (q) = Jr(—q)]. This part is
missing in Ref. [9].

If we denote the components of D~! by

-1 _ 1QIOO ﬁOT
D (qv (l)) - I:ﬁOT ﬁTT} ) (41)

the effective interaction potential is
Vim (qﬂ CL))

1 A
= — = — - H j _ j
[MgoIlrr — (I'IOT)2][ 7 Jo(=a)Jo(q)

+ oo Jr (=) Tr (@) — 2Flor To(—@)Tr ()], (42)

We can find the effective Cooper channel, by taking expres-
sions for the components of the gauge field propagator (B3)—
(B5) with ky = iw, where w is real, inserting the components
in the expression for the effective interaction in (42), and
choosing momenta to describe a Cooper pair scattering.
Before a closer look at the effective Cooper channel, we
may note that always ﬁoo(iw, k) <0 and fITT(iw, k) >

0. In the static limit (w = 0), we have go(0,k) = —£,
ﬁTT(O, k) :0‘(4‘5‘)2’ and fIOT(O, k) = 0. In this case, the
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Cooper channel is

Cooper(q p— k = 0)

1nt

1 O — 6, O — 0,) 77
i |:COS(k p)—l—iﬁsin(k p):|
ITgo(0, q) 2 7 2

1 ("F)z , Pt
+ — | — exp{i(6k — Op)}crcpcl i C—p-
7700, @) \ 1 PATKTPE KR

(43)

In the scope of the hydrodynamic approximation, i.e., 6 ~
Op, we find repulsive behavior and no cause for a Cooper
instability even in the massive case.

The second limit we want to consider is a finite frequency
limit o 3> arlk|]. We have ITg(w, k)~ —4& “’Fa')"') ~ 0,
77 (w, k) ~ = +a(4ﬂ)2, and o7 (w, k) & —‘G%lkL The
effective Cooper channel can be described with two terms: (a)
density-current part,

VSt (q = p -k, 0)
47 sin Bt O—0p) , .m . (O —0p)
= e Gt 2 o sin
s BB 12 T
x expf{i (6 — GP)}clicpcikc,p; (44)
(b) density-density part,
C r _
Vo, P @ =p -k o)

k2 (B —6p)
_ <47T/~'L)2 4 (471)2 (2kF)|SIH k 5 ’
- 2

m (2kp)2|sm —(9"20") ’
2
X | cos M + lﬂ Sin M
2 I 2
x expli (B — Bp)}etcpc e p. (45)

In the density-density part, we have extremely singular re-
pulsive interaction present at finite frequencies, i.e., a repul-
sive singular interaction that describes the physics of excited
states. We do not see any cause for a real Cooper instability,
except that in the density-current part we can recognize some
pairing correlations. This motivates a search for a different
quasiparticle representation in which the pairing correlations
may be better captured and exposed.

IV. PAIRING CORRELATIONS WITHIN A DIFFERENT
QUASIPARTICLE REPRESENTATION

In this section, we will consider a different formulation
of the DCF theory with a mass term. This will enable us,
on the level of equations of motion, to deduce the effective
Cooper channel of different Dirac quasiparticles from the ones
discussed in the preceding section. The channel, derived from
purely gauge field effects, supports the Pfaffian family of
instabilities, and we will examine the ensuing phase diagram
as a function of the Dirac mass.

We may also consider the addition of the mass term to
the Dirac composite fermion theory by adopting the following

form of the Lagrangian [30]:

1
L=ixy" (0, —Haﬂ)x—i- dA—i—S—AdA
m 1
———ada —mj¥x. 46)
|m| 87

Note the presence of the Chern-Simons term for gauge field
a™. In this case (to recover the identical results for the re-
sponse with respect to the previous formulation), we have to
adopt the Pauli-Villars way of regularizing the theory. Why we
discuss this, to say, a redundant formulation? It is important
to notice that with a simple redefinition of the gauge field in
(46), and in the large mass limit, we can recover the HLR or
anti-HLR [35] theory depending on the sign of mass [30]. See
Appendix D for details.

By differentiating with resect to A,, the Lagrangian density
in (46), we get

7 dA  da A7
=i tar @7

where J, is the electron density-current, and, by differentiat-
ing with resect to q,,,

= |m| 47’ (48)
where J, is the Dirac composite fermion density-current.
Thus the Dirac composite fermion density-current in this
case is determined, on the classical level, by the fluctuations
of the gauge field, just as in usual Chern-Simons theories
[32,33]. These theories are based on the quasiparticle (com-
posite fermion) constructions via “flux tube”—unitary trans-
formations of the original electrons, and not with “vortex”—
Laughlin quasihole constructions [31] of quasiparticles. The
usual Chern-Simons theories (at the RPA level) can recover
the Jastrow-Laughlin correlations [32] as a part of magneto-
plasmon (cyclotron energy) dynamics, while in the “vortex”
constructions they are, in a way, frozen and built in quasi-
particles. This distinction may be important when discussing
the presence of pairing correlations. In the DCF limit, at the
RPA level, both formulations give the same response, because
they describe the response of “vortex” construction, using
different regularization schemes. However, at the classical
level [Eqs. (22) and (48)], their predictions may differ, be-
cause the distinction between the quasiparticle perspectives
is preserved. Thus, although, at the RPA level, we find the
absence of pairing correlations for “vortex” constructions
(Sec. III), the fact that some pairing correlations are present in
the high-energy, i.e., the high-frequency sector in the density-
current part of the interaction, gives us an expectation that
by adopting different quasiparticle representation, we may
recover the pairing correlations in the low-frequency or static
limit.

The problem, as described by Eq. (48), is formally identical
to the problem discussed in Ref. [34] in the context of the
graphene Dirac electrons in FQHE regime. Following the
analysis of Ref. [34], for a fixed valley, definite spin, Dirac
electrons, of the gauge field a” induced interaction between
current and density of Dirac particles in the presence of a mass
term, we can arrive at the effective form of the pairing channel,
Eq. (25) in Ref. [34].
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Let us discuss the details that lead to the p-wave pairing
channel or attractive interaction for a definite, negative sign
of the mass, m < 0. The equality in Eq. (48) will lead to
the following integral expression for the gauge field a”,
a =ay +iay,

/
a(r) =2 / dr'i—~—=_5p,(r'), (49)
Ir —r|?

where 8p, (r') represents the fermion density with respect to
the constant value given by the fixed strength of the external
magnetic field that we assume. In the following, we will
analyze the statistical interaction defined as the one between
the current of Dirac fermions and the field a;;i = x, y:

Ve = Xy aix. (50)
We work in the following representation of y matrices:
YV=o03, y'=io, y*=—io. (51

In this representation, we have the following expression for
the statistical interaction:
-7

o 0 =
Vy = —i2 / dr'sp, (x| (r)[_ o T }x(r), (52)
[r—r'|2

and §p, (r') = xT(@)x (@) — 5, where 5 is a constant (ex-
ternal flux density). The constant part gives no contribution
to Vy;.

On the other hand, the presence of the mass term in the
Dirac system leads to the following eigenproblem,

m—e€ k_
ki —m — €

]X(k) =0, (53)

where a positive eigenvalue € = /|k|> + m? = E, corre-
sponds to the following eigenstate:

xe = [’" ’ E“}; (54)
L ks JV2ERGEGEm)

As we consider relevant only (positive energy) states around
kr, we will keep only these states in the expansion over k
eigenstates of field x (r), and, further, only consider the BCS
pairing channel in Vy,. Thus

x(r) = \/%_v ¥exp{ikr}xb~<k>ak +ee, (59)

and

2 . 1
BCS 2 : T T
. = — a, dpd_, d_
st 8V — KPP By Ep(m + Ex)(m + Ep)

ﬁ [m + Ep:|
0 D+
x [(m + Ex)m + Ep) +k_pi]. (56)

We used fdr% exp{ikr} = ii—f. The terms with the coeffi-
cient k_p, give a p-wave channel contribution (for spinless
fermions),

0
x[m+ E; k_] )
Tk —p_

k_p
m{em + Ex + E,)(m + Ex)(m + E,)
—|pI*(m + Ey) — |kI*(m + E,)}. (57)

These terms give the following contribution:
2
BCS Tt
Vp = mﬁ Zakapafka,p
k.p

kI pl

_— 58
Ek'Eplk_p|2 ( )

x exp{—i (6 — 0,)}
where we see that because of the assumed sign of the mass,
m < 0, we have an attractive pairing channel. We will discuss
in more detail the effective interaction and possible pairing
solutions below, but in the following we will make a few
general comments. We see from Eq. (58) that only for nonzero
mass we can have pairing. Also the chirality of the induced
p-wave pairing can be identified. Notice the different phase
factors in VBCS with respect to Ref. [34]. That comes from
a different overall phase in eigenstates that we used in the
fermion field expansion in Eq. (55) and the one used in
Ref. [34]. Both representations lead to a special chirality
pairing function g(r):

|r1|iinoog(r) ~ f(ll‘l)i—'- (59)

The function f(|r|) depends on the details of the small k
behavior of the order parameter. The self-consistent equa-
tion for the pairing function, A} = 2& (a;iaT_k), where Elf =
(Ex — )* + | Axl?, implied by Eq. (58), with the assumption
that |Ag| is the largest around |k| = kp, gives us the small
k behavior, Af ~ k,, and thus g(r) ~ f However, again
we have to take into account that the assumed direction of
the external magnetic field in the Son’s formalism is B =
Bé., B>0, becﬁause }he uniform Dirac composite fermion
density is p, =V x A = B > 0. For the usual setup, with
B < 0, the analysis implies g(r) ~ %, i.e., Pfaffian pairing
of the opposite chirality with respect“to the one given by the
external field. The same conclusions, i.e., an attractive pairing
channel with special PH Pfaffian chirality pairing hold true
for m > 0 as can be easily checked. Thus, for large enough
mass, we may expect that the interaction term due to the
gauge field [Eq. (58)] can lead to the PH Pfaffian-like pairing
instability, but for very large m, the pairing interaction is
suppressed. [For large m, in the scope of the HLR theories as
shown in Appendix D, any pairing (Pfaffian and anti-Pfaffian)
correlations that come from the current-density interaction are
obstructed by a three-body interaction, and do not give a clear
scenario that comes from the constrained dynamics of the
system.]

A more careful examination of the Cooper channel interac-
tion in Eq. (58), which we may begin by angular integration in
a BCS self-consistent equation, shows that the pairing interac-
tion is extremely singular and would overcome any repulsive,
short-range or Coulomb, interaction. Also the interaction in
Eq. (58) does not correspond exactly to the statistical interac-
tion that is usually connected with the Pfaffian physics as de-
scribed in Ref. [36]. Thus we need to examine more carefully
all the terms that follow from Eq. (56). A complete discussion
can be found in Appendix C. The picture that emerges from
the detailed analysis in Appendix C is very simple: for large
|m|, irrespective of the sign of mass, we may expect a PH
Pfaffian-like state, but for small |m|, depending on its sign,
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we have anti-Pfaffian, for m > 0, and Pfaffian state form < 0.
Due to considerable numerical support for anti-Pfaffian under
LL mixing in the SLL [37], we may identify the case with
the positive mass to the one of the SLL. Furthermore, the
identification of Pfaffian and anti-Pfaffian for opposite sign
of m, i.e., particle-hole symmetry breaking that is not large is
consistent with the numerics (in the SLL) [7].

However, we should be aware of the absence of pairing
in the LLL, and that our analysis based on the gauge field
description only, is not sufficient for the explanation of the
physics in the LLL. We need to include Coulomb repulsive
interactions among electrons. This inclusion in the Chern-
Simons theories, especially the DCF theory is not an easy task,
because a part of the influence of the interactions is built in
the gauge dynamics. We may try to include a bare Coulomb
interaction with densities that correspond to those of the Dirac
quasiparticles [of the theory in the Eq. (46)] as a consequence
of Egs. (47) and (48). The singular behavior of the Coulomb
law can suppress any pairing correlations that follow from
the gauge field description and constraints. Thus we need to
include the interactions in a way that reflects the physics of
a fixed LL to explain the dichotomy of the physics in the
LLL and SLL, i.e., a Fermi-liquid-like state, and topological
paired state, respectively, i.e., to include more intra-Landau
level physics in the DCF theory. The way to achieve that is to
include a term that represents the interaction of the effective
dipoles of the Read’s construction with an electric field as
discussed in Refs. [38,39]. As explained in Ref. [39], the
inclusion of this physics amounts to a change in the expression
of the Coulomb interaction of the form

o o

—_—— (60)
lal gl + F5alql?

where we assumed a static case, i.e., no external fields except
for the uniform, constant magnetic field B, and m* represents
an effective parameter (mass) in the long distance limit. In
the following, we briefly recapitulate how we can reach the
modified interaction in (60). First, we note that in a functional
formulation we can introduce a scalar field ¢ that decouples
the Coulomb term in the inverse space as

2na
8L, = —|q—|5,0(—q)5,0(Q)

S p(—q)do(Q) + 2'i'¢>(—q)¢><q). 61)
T

The scalar represents a potential that a particle experiences
due to other particles. On the other hand, Galilean invariance
allows an extra term in the kinetic part of the DCF theory [38],

8L, = iuix 3 x, (62)

where u; is the local drift velocity, u; = €;; %, i =x,y. This

term represents an interaction between the (local) electric field
and dipoles of the composite fermion quasiparticles, which are
propotional to quasiparticle momenta [38]. If we introduce a
mass parameter, m*, to relate the momenta of quasiparticles to
their (local) velocity u, we may represent (62), in the inverse
space, as

mul’p _ . P
2 2B?

8L, = lql*¢(—q)p(q),  (63)

where p = ﬁ with Ip = 1/kp, the magnetic length, is the
density of the system. Integrating field ¢ in the functional
representation of the theory, with £, and 8L, included, we
reach (60). Thus the BCS channel in Eq. (C3) with a modified
Coulomb interaction in Eq. (60) may represent a good starting
point for the investigation of the pairing instabilities at half-
filling in the presence of the PH symmetry breaking mass m.

The role of the modified Coulomb interaction is crucial
for the existence of paired states. For m* finite, we have
to deal with a singular repulsive interaction at this level of
approximation, which will preclude any pairing as is the case
in the LLL. For m™ infinite, the effects of the interaction will
be obliterated, and we will have the pairing scenario as is the
case in the SLL. Moreover, in this case, for |m| (LL mixing)
large, we may expect the PH Pfaffian-like state, which is
stabilized with |m| in a uniform system and a consequence
of the constrained gauge field description. Nevertheless, we
should note that the PH Pfaffian effective (attractive) interac-
tion scales as N‘%‘ (with respect to those of Pfaffian and anti-
Pfaffian for small |m|), and thus it is suppressed in magnitude
with large |m|.

We may ask ourselves what is the physical meaning of the
m* infinite limit in the SLL. In this case, the local drift velocity
should go to zero and thus the potential that other particles
make for a given one is flat, i.e., the correlation hole does
not exist and particles are free to pair. That this indeed may
be the case in the SLL, we have indications from numerical
experiments that find larger size of hole excitations in the SLL
than in the LLL in the FQHE regime at filling factors 1/3 and
7/3 [40,41].

The numerical solutions of the BCS self-consistent
equation:

Ak
Ap=-— ij Yo (64)

for channels I = 1, 3, —1, with A} = | Ag|e'!%, are described
in Fig. 1. Details concerning Eq. (64) and its solutions can be
found in Appendix E. The parameter m in Fig. 1 is measured
in units of energy, (Avr)kr, and this dimensionless quantity
along x axis on the right-hand side of Fig. 1, can be described
in the following way. First, we rewrite the quantity with the
Fermi velocity and explicit physical constants:

mDv%
hvpkr  h

mpvr C mp

B = EvFﬁs

where mp is the mass of DCFs, Ig =,/ f—g is the magnetic

length, and kp = i On the other hand, the coefficient of the
LL mixing is the ratio of the characteristic Coulomb energy
and cyclotron energy:

(65)

V. e moec  esJec m,

- = , 66
how. lp eB iR VB (66)

where m, is the mass of electron. Thus the plotted (dimension-
less) parameter m may be identified with LL mixing if mp =

%mg, i.e., the mass of DCF is the electron mass multiplied

. , 2 .
with a “fine-structure constant” of DCFs, ;TF characteriz-

ing the relative strength of the Coulomb interaction. The
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FIG. 1. The solutions of the self-consistent BCS problem. (Left column) Radial direction k-dependent pairing amplitude for various values
of m. Channel [/ = 1 solution only depends on |m|, while / = 3 and [ = —1 channel solutions are symmetric with the sign flip of m (see
Appendix E 3). (Upper right) Dependence of the maximum of the pairing amplitude on m (always found at the Fermi level kr). (Lower right)
Total energy of the different pairing solutions compared to the normal state energy. Gray vertical lines denote the transition between different /
channels. Color in the background corresponds to the energetically favorable channel at the given m. We identify [ = 3 and —1 channels with
an anti-Pfaffian and Pfaffian state, respectively, and / = 1 channel with a PH Pfaffian-like state.

identification seems plausible, although we do not have an
explicit proof; we expect that the prediction of the phase
diagram that follows from the theory, up to physical constants,
depends solely on the unique parameter of the system, Iz =
77> and thus the dimensionless parameter in Fig. 1 should
represent LL mixing.

The LL mixing in experiments is of order 1, although it
can be large as 4-8 [42,43], and with the above identification
we may expect the anti-Pfaffian (/ = 3) to be the dominant
instability in the SLL from the phase diagram in Fig. 1, though
the critical m [for the transition into the PH Pfaffian-like state
(I = 1)], may be estimated to be m, = 1.2, and thus the role
and possibility for the development of a PH Pfaffian-like state,
at sufficiently large LL mixing in a uniform system should not
be underestimated or excluded.

We have confidence in our predictions, because the global
features of the phase diagram in Fig. 1 are in agreement
with numerical experiments in the SLL. (a) At m =0, a
Schrodinger cat superposition of Pfaffian and anti-Pfaffian
is present as in Ref. [7], and depending on the sign of the
mass for m # 0 we have Pfaffian or anti-Pfaffian. (b) The

PH Pfaffian-like state is continuously connected to the excited
composite FL state at m = 0 in an agreement with Ref. [13].
However, this does not mean that with an absolute certainty
we can expect a PH Pfaffian-like state at large enough LL
mixing in the SLL. This is because we do not possess the
precise knowledge of the phenomenological parameter m™* as
a function of the Dirac mass, m. The parameter m* enters
Eq. (60) and controls the effectiveness of the pair breaking
due to the repulsive Coulomb interaction. We expect that for
smaller values of Dirac mass, the parameter m™ is infinite and
pairing is present, but, for some large m, the parameter m™ will
become finite and an HLR-type of CFL will be established. As
we do not know the precise value of m for which this drastic
change will occur, we can not say beyond which large enough
m the pairing scenario of Fig. 1 will not be realized.

V. DISCUSSION AND CONCLUSIONS

We showed that a complete DCF theory (introduced in
Refs. [38,39]) may describe both the paired and FL state
of the SLL and LLL, respectively, if we treat the parameter
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m* in (60) as a phenomenological long-distance parameter,

which (in the scope of our treatment) is necessarily infinite
in the paired states. The m™* is necessarily finite in the limit
of large Dirac mass, m, (HLR theory) and in that region
we should expect known results (no pairing). For small m,
in the SLL, m* must be infinite to allow for pairing of the
(anti-)Pfaffian type consistent with numerics (see Fig. 1). But
interestingly enough, we reveal (Fig. 1) a strong competition
between an anti-Pfaffian and a PH Pfaffian-like state for
intermediate Dirac mass m although we can not claim the
absolute relevance of the PH Pfaffian-like state because we
do not know the behavior of m* in that region. However,
it seems likely and the results of Fig. 1 are suggestive
that a PH Pfaffian-like state [Eq. (19)] may play a role in
experiments.

In this work, we discussed the effective Cooper pairing
channel of the system at half-filling in the scope of the DCF
theory with a mass term. The mass term of the DCF theory
represents a term that breaks the particle-hole symmetry of
electrons confined in an LL and represents an LL mixing.
Solely on the basis of a gauge field description, we find
for small Dirac mass an anti-Pfaffian or Pfaffian instability

J

. d*p
iSr(x,y) = 0(x" - yO)/ @2 2p0

d2
(vp +mB(P° — wyexp(—ip(x — y)} — 60 — x°) / P

depending on the sign of the mass, consistent with numerical
investigations of the SLL [7], while for large mass (LL mix-
ing), irrespective of the mass sign, we find a PH Pfaffian-like
instability.
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APPENDIX A: THE POLARIZATION TENSOR

The derivation of the polarization tensor (K, ko) in the
massive case, in the hydrodynamic approximation, can be
done following and generalizing the procedure described in
the massless case in Ref. [44]. We start from the fermion
propagator in Eq. (28) as described in Ref. [45],

1
(27)? 2py

. d’p .
X (yp +m)f(n — po)exp{—ip(x — y)} —6(° —x°) / s>—(yp —m)explip(x — y)}, (Al
(27)* 2po
where py = /p? +m?2, px = pox® — px, and yp = y°py — yp. Using the theta function representation,
d _ 0_ ,0
0" — y0) = — _a).exp{ za)(x. yOl (A2)
2mi w—+in
we arrive at
iSp(x —y) = / / ——— exp{—io(x’ — y) +ip(x —y)}
(2m)
! 0 +}
X |iy p Hiv ———Q |, (A3)
[ w — po+in@(po—pn) — 6 — po)) “ w+po—in P
[
where statistics inside integrals for |k| < kp) is
Q=1<1+y_m m> (A4) G( | +k|2+ 2 )
P Po po ) q " ’
and ~ 0 \/|q|2+m2—u~|—|k|¢cos¢
lql* + m?
1 m
Q= 5(1 _yp_+ ypyp) (A5) ~ 0(/|q? + m? —
0 0

To get the form of the fermion operator in Ref. [44], we can
shift the frequency variable w as w — @ + . To find

" = —itr[y"Sp(x, y)y"Sr(y, x)l, (A6)
we need to generalize the trace calculations, frequency, and
momentum integrals. The main approximation in the momen-
tum integrals for the external momentum Kk, |k| <« kp, u, and
internal momentum q, |q| ~ kg (constrained by the Fermi

+ K| S(VIql* +m* — pycosd, (A7)

kr
JkE +m?

where kr = /u? — m?, and ¢ is the angle between vectors
k and q. Here an important difference with respect to the

massless case is the appearance of the factor k’;"' =.
Ftm

detailed analysis leads to a conclusion that to get I[T*" in the
massive case we have to rescale the external momenta k in the
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kr

massless case with a factor oy = ie., Kk — ark. In

particular,

% (ko, k) = 1% (ko, a k), (A8)

% (ko, k) = ap T (ko, rk)
k m

ikjm
TOi\T T T2

Hij (k07 k) = a%«“ lj (k()v Ole),

—I 1190k, aFk)) (A9)

(A10)

where by [, u,v=0,i, j we denoted the components of
the polarization tensor in the massless case, and, furthermore,
we can see the antisymmetric (Hall conductance) contribution
in 1%, due to the presence of the mass term.

The components of the polarization tensor in the massless
case, f[“"(ko, k), can be found in Ref. [44], and they are

l"’—[()()(ko’ k) = Hl(ko’ k)’

K
1% (ko, k) = ko—~— IT;(ko, k),

k|2
o kK kik/ k2
MY (kg, k) = [ 8" — — ko, —_— ko, K),
(ko, k) ( |k|2) IT; (ko, k) + K[ k2 I1;(ko, k)
(Al1)
where
k2 k2
ko, k) = —— | 02,22 — 1 — io(—k?), [ —2 |, (A12)
2 —k2
" 2
I, (ko, k) = —1I1;(ko, k Al3
1(ko, k) T 1(ko, k), (A13)
and k? = k} — |k|*.

The antisymmetric contribution in Eq. (A9) is expected
from the Berry curvature contributions in the scope of the
relativistic quantum mechanics [29], and here the Hall con-
ductance can be recovered to be gy = — - m

4m A/ k%--&-mz ’

It is important to comment that due to the infinite Dirac
sea, we have divergent contributions to the polarization tensor
(when doing the calculation according to the definition). As
discussed in the main text, the DCF theory as defined in
Eq. (20) requires dimensional regularization in order to re-
cover finite [T*". We used the version of the DCF theory given

J

m 2w 1

BCS T
a, dpa a_py—————————=
k9pd_kd-p

o Ex - Eplk —p|?

st T |m|w

X {—Iplz(m + Ey) — [k[*(m + E,) +4mk_p, +

in Eq. (46) and the associated Pauli-Villars regularization to
recover IT"".

APPENDIX B: THE PROPAGATOR OF THE GAUGE FIELD

To find @;& defined in Eq. (31), we need to switch from
Minkowski to Euclidean space-time. According to the defini-
tion of Dw}, we need only to take into account the change in
the fermion propagator, which amounts to taking i instead
of w at T (temperature) = O in the Fourier transform of the
fermion propagator described in Eqs. (A3)—(AS). Thus we
have to repeat the steps that we took to calculate IT*¥ taking
into account this change. The components of D! are formally
equal to the expressions in Eqgs. (A8)—(A11) and (A13), i.e.,
13;3 (ko, k) = I, (ko, k), with IT,; (ko, k) equal to

, 7 1
Hl(k()sk):g —1+W )
1— o5
ko

(BI)

where ky is purely imaginary.

In the transverse gauge, Va = 0, and if we denote by o =
27:—?2, the Coulomb coupling constant, the inverse of the gauge
field propagator is

_ lQIOO lAIOT
D (koK) = | ~ LT B2
(ko, k) |:1_[or HTTi| (B2)
where
Moo = I1;(ko, ark), (B3)
1 m N
for = —4——|k| > K1 ko, oK), (B4)
T 2u
. k2 k2 — o2 |K|? . 1
Mpr = —£ — 20 —F"" ,(ky, ark k| ——.
A v T 1(ko, ark) + | |(47t)2
(B5)

Here we defined the transverse component of the gauge field
to be ar = ik x a(k) and it is understood that k is purely
imaginary.

APPENDIX C: THE EFFECTIVE COOPER CHANNEL
AND POSSIBLE PAIRINGS

We can rewrite the Cooper channel interaction in Eq. (56),
taking into account both possibilities for the sign of mass,

(k_py )2

W(Ek +E, +2m)(Ey —m)(E, — m)}.

(CDH

We expect that in a self-consistent BCS equation the most important contribution will come from the region in which k ~ p, due
to the denominator in the equation above. To explore this limiting behavior, we can divide terms in curly brackets as follows:

[—lplz(m + E) — [k’ (m + Ep) + 2m(k_py + ki po) +

(Ex + E, + 2m)(Ey

(Ex + Ep +2m)(Ey

—m)(E, —m)

—m)(E, —m)

YT ((k—p1)* + (k+p_)2)}

2m(k_py —kop_
+[ mk_py —kip_)+ TEE

((k_p4)* — <k+p>2)}. (C2)
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The first part in the square brackets is an even function of (6, — ;) and as k — p the part is of the order of (6, — 6r)?. The
second part is leading and dominant because in the same limit it is of the order of (6, — 6;). The Cooper channel can be cast in
the following form:

2 1 i sin(0, — 6k) m isin2(6, — 6y)
VS = =D aapala- {— | = = (B o Ep o+ 2m)(Eg = m)(Ep = m)——
’ 8ka1;” P E Ep k—pP  m] ' ’ k —pl?
A—-1) cos(, —6r) — 1 m cos2(0, —6;) — 1
+ 4|m||Kk||p| — Alm||K||p| —————F—— = (Ex + Ep, + 2m)(Ex —m)(E, —m) )
lk —p? k —p|? |m| ! g lk —p|?
(€3)
where 5 = KCHPE The following analysis of the effective Cooper channel in Eq. (C3) is based on considerations similar to

2[K|[p|
those described in the case of classical composite fermions Pfaffian pairing in Ref. [36].

For m > 0 and m large, the Cooper channel can be approximated as

o i sin(0, — 6;)
BCS . T taoal - e o
VB ~ Zakapa_kafp 2m| { A —cos(8, — 6k) 1}.

(C4)

Thus, as previously discussed, the implied angular momentum pairing is Ay ~ (alaik) ~ ¢'% i.e., a PH Pfaffian-like pairing.

For m > 0 and m small, the Cooper channel can be approximated as
2 1 m expi2(0, —6;) — 1
BCS Tt P p — Yk
Vi~ v kE akapa_ka,pEk.Ep — | |(Ek+Ep+2m)(Ek —m)(E, —m) k—pP2

(C5)

By doing the angular integration first in the implied BCS self-consistent equation, we find that the pairing A} ~ e'% is
suppressed, and that Ay ~ ¢3% is the dominant pairing. The pairing in the same direction of PH Pfaffian, with angular
momentum equal to 3, can be identified as an anti-Pfaffian instability. For m < 0 and |m| small, the sign of the effective Cooper
channel in Eq. (C5) is switched. This changes the chirality of the implied pairing, and we find that now A} ~ e~ is the
dominant pairing, which we can identify with a Pfaffian instability. For m < 0 and |m| large, the effective channel is

2 . 1 i sin(6, — 6 expi2(6, —6r) — 1
VIS~ 25 Y alapalyay —2|m|{ fsinp 00, (expi20p — ) )}, (C6)
8V o Ex - Ep A —cos(8, — k) A —cos(6, — 6)
and we recover again a PH Pfaffian-like instability, A} ~ e/%:.
[
APPENDIX D: CLASSICAL HLR FERMIONS AT where ¢ represents the deviation from the uniform magnetic
HALF-FILLING AND PAIRING INSTABILITIES field configuration of the CS gauge field a,: ¢, = a, + A,
It is interesting to probe the large |m| limit of the La- such that
grangian glvenr: by Eq. (46). In th}S limit and after redefinitions Spy = —V xc. (D3)
a, = a, + WA > the Lagrangian becomes 4
m In this nonrelativistic case, the effective statistical density-
Lot = |—|8—ada + <l do + ap + ﬁAo>I/f current interaction is given by
2 - cj
m V. =——c[ iVy) — (Vv ]——. (D4
—Z W( +ai+mA,»)w = = g S AV = (VYT = S (D4
= Using Eq. (D3), in parallel to Egs. (48) and (8) in the relativis-
(1 - ‘Z—‘) 1 tic case, we can express the interaction as
+ —— —AdA. (D1)
2 4n x —x'
. /
If m > 0, we have the usual Lagrangian of HLR (up to a Va = 2m| / r’|2 TP Jy18p(r). (D3)

Coulomb interaction term that we omitted), which, based )
on the mean-field approximation, leads to the description  If e introduce momentum space states,
of composite fermion liquid (CFL). On the other hand, for
m < 0, we have exactly the Lagrangian of Ref. [35], which Y(r) = L Zexp{ikr} Ck, (D6)
in the same approximation describes anti-CFL, i.e., a Fermi Vv
liquid of composite holes. . 1 ) ;
The HLR theory (m > 0 case) is described by the follow- k) = is / dr exp{—ikr} j(r)
ing kinetic term of the Hamiltonian density:
— Z(Zq — k) ¢} ckiq. (D7)

Kzﬁ( iV 4OV + ey, (D2) UV ”
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Thus

%
ArVa(r) = ml 2= laP

qxp ;

Cp Cp—q clT Clyq- (D8)

We get the BCS channel by taking 1 = —p. If we let p — k
and q — k — p, we have

- —iV x k
Z Va(K) = Z II’) B ck Cp cT_k C_p. (DY)
k
Now we should note that
k_ — p_k
pxk="2% _2ip * (D10)

Direct comparison of Eq. (D9) with Eq. (58) shows that a
p wave of opposite chirality with respect to the one of PH
Pfaffian, i.e., a Pfaffian p wave, is the statistical interaction
implied BCS pairing instability of classical HLR CFs.

The diamagnetic term in Eq. (D2), i.e., the term ~c¢? ¢y
makes an interesting three-body interaction in the real space:

7 rp—ri3 rI;—r3
/dl’aVst(I‘s) ~ /drl/drzfdr3 > -
[ry — r3]* [ry —r3|

X 8p(r1)dp(r2)p(r3), (D11)

whose sign is fluctuating and this interaction represents a
disordering factor.

We can easily repeat the analysis in the anti-CFL case
and find that the current-density statistical interaction favors
opposite chirality pairing with respect to the Pfaffian but of
composite holes. This special pairing state of composite holes
can be identified with an anti-Pfaffian [35]. However, again
the additional, fluctuating sign three-body interaction, next to
the attractive channel exists.

APPENDIX E: BCS SELF-CONSISTENT PROBLEM AND
ITS SOLUTIONS

We start with the relevant parts of BCS mean-field the-
ory and follow the notation of Ref. [25]. The effective
Hamiltonian is

1
Keir = Z {&C;r(ck + §<A*C—k0k + AClCT_k)}, (E1)

k
VIK|? + m?2. The

and in our case & = E; — u, with E; =
Bogoliubov transformation is

Qg = UKCk — UkCT_k, (E2)
with
w_ =& —&)
Uk - Ai’; ’
il = (1 4 gk) (E3)
Ek
1 &k
2
=-(1-
|kl 2( 5k>
and & = VE + | Axl*.

On the other hand, if we start with a Cooper channel
interaction and do the BCS mean-field decomposition with

bl = c;[(cT .

Y Vig b by =D Vip(bl)bp + Y Vighf(bp)
k,p k,p k.p
— > Vi (b)) (by). (E4)
K,
and specify u_x = ux = uy and v_y = —vy, then

*
P
7 Z Vkp CkC

= Z Vkp((ukak + v ) (—vgok + ukaT_k)% (ES)
k

ie.,
* A*
P _ * _ _ k
= ; ViU = ; Vo(D)ye  (EO)
and thus Eq. (64) in the main text.

1. BCS equation in polar coordinates k — (k, 6;)

We simplify the expression in Eq. (C3) to obtain

2 1

isin(0, — 6;)
8V E.-E,

p
[

— |:11—|(Ek + E, + 2m)(Ex — m)(E, — m)
expli2(8, — 60} — 1]
lk — pl?

kp —

(E7)

For a fixed angular momentum channel, A} = | Ak e, we
do first the integration over the angular variable, 6 —6,,
in Eq. (64) [or Eq (E6) and after the change from sum to
integral: Y-, — 75 [ dk]. We use

2 : :
0 sin 6
I, =/ d@slnmﬁ —2r(A— /A2 —1)", (ES)
0

—cos 6

m=1, 2, 3, with A = k;,:; to get
1 2w )
Vi, = 7 / d(O — 0,)e" Vi, (E9)
0
forl =1, 3, —

In particular, for [ = 1 in (E9), we use (E8) to express the
following integral:

2T . .
o —isin(6 — 6
/ (6 — 6,000 ~1SO 6
0

A —cos(By —6,) (E10)
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and

2 —i2(6:—6,) _ 27 —i(0—0,) _ ,i(6x—0,)
e ’ 1 e »—e »
/ d(Ox — 0,)e' % 910— / d(6 —6)) =0,
0 0

—cos(Ox — 6,) A —cos(B — 6,)
(E11)
for ! = 3 in (E9), we have
2 ) —isin(@, — 6
/ dO — gp)eﬁ(@r@p)M = I (E12)
0 A —cos(Gx —0),)
and
2 e i20c—0,) _ | 2 ) e~ iO—=0p) _ ,i(0:=0,)
/ d(6 — 6,)e %) = / d (6 — 6,)e! >0 =20, (E13)
0 A —cos(6y —6,) 0 A —cos(O —6,)
and similarly for / = —1. In this way, we can get the following expressions for Vk’p, =1, 3, —1:
2
I _
Vip = SE—E[—ZImI(?» — Va2 =1, (E14)
2 E,— E E,+E 2
Vi = g | 2l — Vi - - eSS BRI e )
P SEp Ek P k
and
2 E E,+E 2
o = 2ml( — /32— 1) 4 2 L I E I Ey £ Bt 2m) el (i)
F 8E, Ex |m pk
Note that we take

3

k
, P <

A — )\2—1={

2 2_ 2 2
2 —1= \/W% —1= \/k4+ﬁ2{pzzk2 2 NP A¢ this point, we choose /(k2 — p?)? = |k*> — p?|, which then

2kp
leads to Eq. (E17). Other choices lead to an unphysical V that does not decay to zero with large k and p and diverges at k = 0
or p = 0. The general expression for V in the three cases of interest/ = 1, 3, —1 is given by

=7 (E17)

e | =

2z 1l (Ep, —m)(Exy —m)(E, + Ey +2m)
= m[— 2sgn(l) [m| ry, — (1 = &.1)sgn(l)sgn(m)—L Yy Ter |- (E18)
[
where &, , is the Kronecker delta, equal 1 when x =y and and thus
otherwise 0. Finally, we need to solve
Eo = (QKef|€2) — ZVkp
|Ak|=—i/w dp p v, 20l (E19)
2 Jo t 51) ’ _ _Z & — (Ek ") _ Z (E22)
pz 5k 2 5,,’

with Vklp defined in Eq. (E18). Note that |Ak| only depends

on k. In the second term (after the infinite volume limit), we need to

integrate over 6; and 6. Because Af A, = |Ag||Aple! @60,
a change of variables, 6, =6+ 6, and 6_ =6 —6,, is
appropriate to apply. The function under integral f (6, 6,) ~
For the BCS ground state [€2) for which o [$2) = 0, aftera  »/1@=0,)y;  has a periodicity under translations for (multiples

2. Ground-state energy

simple algebra, we have of) 27 of 6 and of 0,,. After a short analysis of mappings, we
can conclude
(QUKr|Q) ==Y = g 5 | (E20) 2 2
: | an [ do,r00.0,
To make assessment of the implied ground-state energies we 4n 2
first note that / do. / do_f(6-)
i Ak
(by) = ——=. (E21) =2r d9 f-). (E23)
2 gk 0
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Therefore the ground-state energy density for a fixed angular

momentum / instability, A} = [ Ak e, is
1 E — — 1 0
El = — ak k= Em ) / dp p
2n) 2 @2m)? Jo
| Akl [Apl
dk k Vi, — 2 E24
. /0 w2628, (E29
3. Proof of symmetry between / = —1 and 3 channels
The two pairing channels corresponding to / = —1 and 3
satisfy a symmetry relation
Vi m) = Vi (—m) (E25)

and therefore the solutions for these two channels are equal up
to a sign-flip of m. Here we present the proof of Eq. (E25).

J

(a—m)b—m)a+b+2m)=

= a’b + b*a + 2mab — ma* — mab — 2m*a — mab — mb*

First, we note that Ey(m) = Ex(—m), as E, = ~/k% + m?.
Therefore E; is an implicit function of |m|. For the sake
of clarity, we introduce Ay,(m)= 8;—”51 and Ay,(m) =
Ayp(—m). We also introduce a = E; and b = E,,. We focus
here on the case k < p but an analogous proof can be easily

given for the case k > p,

k3
Vklp 2<p(m) = Akp(m)li_2|m|F

(a—m)b—m)a+b+2m) k2:|
— sgn(m) —

pk p2]l
(E26)

We now separate the second term into parts which are even
and odd with respect to m:

(ab — am — bm +m*)(a + b + 2m)

—2m?*b + m?a + m*b + 2m®

= a’b + b*a — m*(a + b) — m(a* + b*> — 2m>). (E27)
Now we perform a change of variables i1 = —m:
(a—m)(b—m)(a+b+2m)=a’b+b*a—im*(a+b)+ma®+b*—2n?)
= (a —m)(b —i)(a + b+ i) + 2m(a* + b* — 2im>). (E28)
We now use sgn(x) = —sgn(—x), and sgn(x)x = |x| to obtain
k3 (a —m)(b—m)a+b+2m) k> a’ + b> —2m?* k?
=A —2|m|— 7 — 2| ———|. (E29
Vi (—i) k,,<m>[ |5 -+ sgn(ii) i o+ 2 pz] (E29)
We rewrite the additional term using k, p, and 7:
a’ 4+ b* =2 = k* + m® 4 p? +m* — 2m* = k* + p? (E30)
and
K>+ p? k2 Bk
E =@+ )=+~ (E31)
kp p p P
The terms cancel and we finally obtain
- - _ k _ (a—m)(b—m)a+b+2m)k? —
Vi p(—ii) = Akp(m)l:2|m|; + sgn(i) ok } Vi s, (). (E32)

4. Numerical solution

We solve Eq. (E19) numerically, using the forward-
substitution algorithm. We start from an initial guess for |Ay|
(in practice |Ai| = 1073, Vk) and then recalculate it from the
RHS of Eq. (E19) iteratively until it converges. We take as the
criterion for convergence

maxy | AP — A21d|

1073k
maxk|A26W| <107k

(E33)

It takes 30—130 iterations to satisfy the convergence criterion.
We keep kr = 1 to set the unit.

We perform the integration on the RHS of Eq. (E19) using
the trapezoid rule. The integrand function on the RHS is very

(

sharply peaked around kp. To properly resolve the integrand
function, we discretize k using a logarithmic grid,
]Ej — eamin+NL.k(amux7amin)

Jj €10, Ni) (E34)

with N = 500, amin = —30, and amax = 4. The logarithmic
grid is placed on both sides of kp, to include all points
given by

1+k; > 0.

We add the k = 1 point by hand. Therefore our grid can
resolve peaks at kr that have a width >e~3, which is
near the limitation of double precision numeric type. The
logarithmic grid is particularly important for the [ = 1 case
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FIG. 2. Integrand function in the final iteration for / = 1, m = 0.4, and kr = 1. Examples are given for three different k. The sharp peak
at kx has a width ~10~° and is properly resolved using a logarithmic grid.

at low m, where the integrand is most sharply peaked. We
illustrate our grid and the integrand function in Fig. 2. We

have checked that the results do not depend on the numerical
parameters.
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In this review, the physics of Pfaffian paired states, in the context of fractional quan-
tum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are
prime examples of topological (p-wave) Cooper pairing and are characterized by non-
Abelian statistics of their quasiparticles. Here we focus on conditions for their realization
and competition among them at half-integer filling factors. Using the Dirac composite
fermion description, in the presence of a mass term, we study the influence of Landau
level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are
selected when Landau level mixing is not strong, and can be taken into account pertur-
batively, the particle-hole (PH) Pfaffian state requires non-perturbative inclusion of at
least two Landau levels. Our findings, for small Landau level mixing, are in accordance
with numerical investigations in the literature, and call for a non-perturbative approach
in the search for PH Pfaffian correlations. We demonstrated that a method based on the
Chern—Simons field-theoretical approach can be used to generate characteristic interac-
tion pseudo-potentials for Pfaffian paired states.

Keywords: Fractional quantum Hall effect; half-integer filling factor; Pfaffian paired
states.
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1. Introduction

The fractional quantum Hall effect (FQHE)! is a strongly correlated phenomenon of
electrons that is observed when they are confined to two dimensions and subjected
to a strong magnetic field perpendicular to the two-dimensional plane, in which
electrons live and interact. At special filling factors, i.e. ratios between the number
of electrons and the number of flux quanta piercing the two-dimensional plane,
experiments reveal highly entangled topological states of electrons with fractionally
quantized Hall conductance, for intervals of magnetic field (or density). Almost
exclusively the denominator of these fractions is an odd number, which can be
traced and connected to the fermionic statistics of electrons. A surprise came when
an even-denominator FQHE, at filling factor 5/2, was discovered.? This introduced a
new paradigm in our understanding of (even-denominator) FQHE states: they may
be Bardeen—Cooper—Schrieffer (BCS) paired states of underlying quasiparticles. If
we neglect the role of spin in high magnetic fields, the most natural choice for
a pairing in a fixed Landau level (LL) is the unconventional, p-wave pairing of
spinless quasiparticles proposed in Ref. 3. The resulting state, Moore—Read state
is also called Pfaffian due to the necessary antisymmetrization of a collection of
pairs of quasiparticles — identical fermions, which do not possess any additional
characteristic like spin.

The underlying quasiparticles at even-denominator fractions beside the possi-
bility of having the BCS pairing correlations in a paired state, may in principle
exist in its parent, Fermi-liquid-like (FLL) state.* Indeed such a state was probed
and detected at filling factor 1/2,% and firstly theoretically described in Ref. 6. The
theoretical assessment of even-denominator FLL state(s) may lead also to further
understanding of the physics of the BCS pairing of underlying quasiparticles. An
important direction in this effort is the understanding of the FLL state that occurs
at a half-integer (denominator 2) filling of the system, and, at the same time, in
an artificial circumstance of a precisely half-filled LL. Namely, a LL is singled out
and half-filled. This mathematical limit of the physical system is highly relevant
for the understanding of the real system. Our understanding of FQHE phenomena
and real circumstances of FQHE experiments call for the concept of the projection
to a single LL. Very often the physics of FQHE is confined to a single LL, and
we can neglect the LL mixing — the influence of other LLs. Thus if the system
is at half(-integer) filling, it nearly possesses the particle-hole (PH) symmetry —
the symmetry under exchange of electrons and holes that a half-filled LL has. The
Halperin-Lee-Read (HLR) theory® of the FLL state at half-filling does not possess
this symmetry (because it is a theory that does not include a projection to a fixed
LL), but a phenomenological, effective theory with Dirac quasiparticles, proposed in
Ref. 7 is manifestly invariant under exchange of electrons and holes, and describes
the artificial system of electrons that is confined to a single LL.

On the other hand, the Pfaffian paired state is not invariant under exchange
of electrons and holes. When the PH symmetry operation is applied to the
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Pfaffian, a new topological state is generated, Pfaffian’s conjugated partner, known
as anti-Pfaffian.® Here we may ask whether a state exists, that is a collection of
p-wave Cooper pairs and respects the PH symmetry. Indeed one may argue that
the Dirac theory of the half-filled LL offers a distinct possibility” known as PH
Pfaffian (PH symmetric Pfaffian). Before the proposal of the Dirac theory, studies
that were examining possibilities of additional, negative-flux pairing, in which an-
gular momentum of p-wave has opposite sign with respect to the one in Pfaffian,
also proposed the PH Pfaffian.!0:11

While the relevance of Pfaffian and especially anti-Pfaffian for the explanation
of the FQHE at 5/2 is firmly established in numerical experiments confined to a
fixed LL with LL mixing (perturbatively) included via additional, three-body inter-
actions,'2 we do not have a support for PH Pfaffian when numerical experiments are
confined to a fixed LL.!3 But a recent experiment'¢ on thermal Hall conductance
is consistent with a PH Pfaffian scenario at 5/2. That the PH Pfaffian correlations
and topological order may be relevant even in the absence of the PH symmetry
(as is the case in experiments) may be shown by careful examination of various
experimental probes as discussed in Ref. 15.

Thus the question is whether for sufficiently strong LL mixing, that cannot
be treated perturbatively (as it is done in all numerical experiments confined to a
single LL), we can reach a regime in a uniform system when PH Pfaffian correlations
prevail. Or, is disorder needed to install the effective PH Pfaffian correlations?16-17
In any case LL mixing may play decisive role in selecting a specific kind of Pfaffian
state in experiments. In the following sections, Secs. 3 and 4, we will review our
work!8:19 that used Dirac and Chern—Simons (CS) field-theoretical description to
examine the role of LL mixing and explore pairing at half-integer fillings, in general.

In Sec. 2, we will review the Dirac theory of the FLL state of underlying quasi-
particles — composite fermions at a half-filled LL, and select and describe a version
of the theory that is best fitted for a description of Pfaffian paired states. The mass
term in this theory mimics LL mixing (for small LL mixing has the role of those
additional (three-body) interactions in the electron representation), and the lim-
iting behavior of large mass may be identified with the usual HLR picture of the
FLL state of FQHE at half-filling.

In Sec. 3, within this version of the Dirac theory, we will probe the question of
topological pairing instabilities in a mean-field approximation (as usual in topolog-
ical explorations when we assume that topological characterization is immune to
the neglect of fluctuations). Instabilities will originate from the minimal coupling
term, i.e. the coupling with the CS gauge field, and we will be disregarding the
remaining influence of the Coulomb interaction, which has a pair-breaking effect.
Our interest will be to find which kind of Pfaffian will prevail at certain LL mixing,
if we assume a pairing instability.

In Sec. 4, we will discuss which model Hamiltonians for electrons, i.e. ef-
fective interaction pseudo-potentials (PPs) in fixed LLs lead to Pfaffian states.
Using CS field-theoretical description we recover dominant, already known PPs for
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Pfaffian and anti-Pfaffian in a fixed LL, and discuss the necessity to include non-
perturbatively at least one more LL to establish PH Pfaffian correlations, and list
pertinent PPs.1? Section 5 is reserved for a discussion and conclusions.

2. Theoretical Approaches to the Physics at a Half-Integer Filling
2.1. Wave-function approach

The basic explanation of the FQHE rests on the Laughlin wave function — the
ground state wave function for the most prominent effect at filling 1/3.2° The wave
function captures the basic correlations of electrons in a constrained space of an
isolated LL. To introduce the Laughlin wave function, we start with the single-
particle Hamiltonian,

(p—A)?
2Mme

H = 5 (1)
of a particle in a constant magnetic field, B = Bz, with A, = —(B/2)y and
A, = (B/2)z, in a rotationally symmetric gauge. We fixedc=1,e =1, and i = 1.
The physics of FQHE is largely confined to a fixed LL and in the case of filling
factor 1/3, to the lowest LL (LLL). In the rotationally symmetric gauge and in the
LLL, the appropriate basis is given by the following single particle wave functions,

1 . 1
0,(6) = "o { - (g ) 1P} ®
\/ 2752 ann) B

where Ip = \/g, and n = 0,1,2... is the guiding center angular momentum
number. Apart from the exponential factor, these wave functions depend only on
the coordinate z = z+1iy, i.e. they make a holomorphic description, when we neglect
the factor which is the same for each ¥, (r). Thus many-body wave functions of
frozen spin electrons become polynomials in the z coordinate(s) in the LLL, as in

the following expression,

N,
1 .

U(ry,ro,...,rN,) P(zl,ZQ,...,zN)exp{ (412> E |z,~|2} . (3)
B/ =1

The Laughlin wave function at filling factor 1/3 is specified by the Laughlin-Jastrow
choice for P,

Pr_y(z1,22,. . 2n,) = [ [ (2 — 2)™, (4)
i<j
with m = 3. In this polynomial, the highest power of any z;; i = 1,2,..., N, is
Ny, = m(N. — 1) and this number also specifies the number of (single-particle)
states available to the system, i.e. the number of flux-quanta piercing the system,
Ny = Np, + 1. Thus the ratio N./N, becomes 1/3 in the thermodynamic limit
when m = 3.
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For monotonically decreasing with distance repulsive interactions like Coulomb,
we may expect an extreme capacity of the wave-function to minimize the interaction
energy. Namely, as a function of a fixed electron coordinate, the wave function has
all (N,,) zeros on the other electrons, m = 3 per electron, though only one zero is
required by Fermi statistics. Equivalently, we may say that the zero on any other
electron is of the m'™ order as we study the limiting behavior when a fixed electron
approaches any other in (4).

Following the same logic, we may attempt the same construction at filling factor
1/2, but, because m = 2 in (4), in this case, we need additional factors that will
ensure that the wave function is antisymmetric. These additional factors should
not contribute or change the value of N,, in the thermodynamic limit (mN), and
thus, as additional factors in the total wave function, may be considered as its
“neutral part” — the part that does not see the macroscopic flux. (The Laughlin—
Jastrow part (4) would represent the charged part.) The neutral part may describe
a collection of fermionic quasiparticles (that do not see any macroscopic flux, i.e.
external magnetic field), and they may be in the first approximation non-interacting
(make a FLL state), or they may come in BCS pairs (make a bosonic condensate and
possibly a gapped state). Indeed experiment and theory are equivocal that the state
at filling factor 1/2 (in GaAs structures) is a FLL state of underlying quasiparticles,
and the state at filling factor 5/2 (in GaAs?) is effectively a gapped state of half-
filled second LL of frozen-spin (spinless) electrons, in which quasiparticles may pair.
The exact topological nature of the paired state at filling factor 5/2 is still under
debate.

But we may say that the most theoretically appealing (the most simple and
natural BCS pairing) guess for the gapped state at the half-integer filling factors
(in various experimental set-ups) is proposed in Ref. 3, and goes under name Moore—
Read state or Pfaffian (state). The Pfaffian wave function in the LLL is

qufzgsgna{( L ! HIG-a2. 6

Zo(1) ~ Z0(2)) (20(N.—1) = Zo(N.)) P

where the sum is over all permutations of N, objects where N, is an even number.
We omitted the exponential factors and the expression is unnormalized. In math-
ematics, if A = {a,;} is N x N antisymmetric matrix, and N is even, its Pfaffian
is
N/2
pf(aij) =pf(A) = 2N/2 N/2 )! Z sgno H A5 (2i—1)0(2i) » (6)

and pf(A)? = det(A). In more physical terms, we see that the sum in the Moore—
Read wave function describes the antisymmetrization of a collection of Cooper
pairs, where each pair wave function, g(r), where r is the relative coordinate of a
pair, can be described as

TOES ™)
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This special algebraic decay is the hallmark of the Pfaffian (Moore-Read) wave
function, and expresses a special kind of topological, long-range entanglement in
this function that represents a p-wave pairing. The construction is given in the
LLL, but can be easily generalized and considered in the second LL, i.e. in any
isolated LL.

The highest power of any z; in the Pfaffian wave function is N, = 2N, — 3,
i.e. Ny, = 2N, — S, where § = 3 is so-called shift — a topological number that
characterizes a state of a FQHE system on a curved background, such as a sphere.
If a state is PH symmetric, the shift should be invariant under the PH exchange.
We require N, + N, = N,,, + 1, i.e. the number of electrons, N, plus the number of
holes, Ny, should be equal to the number of available single-particle states. Thus
the state that we get by applying the PH transformation on Pfaffian, is a distinct
state, anti-Pfaffian, with shift equal to —1. This anti-Pfaffian state, that has distinct
topological features with respect to Pfaffian, was firstly described in Refs. 8 and 9.

We may wonder whether we may still have a p-wave pairing (the smallest angular
momentum pairing of spinless electrons) in a many-body wave function that is
invariant under PH exchange. It is not hard to see that in this case we must have
N,, = 2N, — 1, and this implies some kind of a microscopic negative flux or simply
reversed p-wave pairing as in

1
gon(r) ~ - ®)
The naive guess would be that by doing the projection to the LLL, in the first

approximation, we have

gpn(r) ~ 2. (9)

But, because for any set of complex numbers z;, ¢ = 1,2,...,N,; N even, and
N > 2,

pf(z; — 2;) =0, (10)

this does not lead to a non-trivial state in the LLL. Thus the question is whether a
half-filled isolated LL with special interactions can support a gapped state with PH
symmetry, i.e. PH (symmetric) Pfaffian. In the case of Pfaffian and anti-Pfaffian,
special interactions exist in an isolated LL2! (and they do not respect the PH sym-
metry). Furthermore, the negative flux pairing expression in (8) calls for inclusion
of other LLs, and maybe only with significant LL mixing, when the PH symmetry
is broken, we can stabilize the pairing correlations in (8). Even in this case, we will
call this exotic state PH Pfaffian.

2.2. Field-theoretical approach
2.2.1. Quasiparticles in the FQHE and the HLR theory at half-filling

We may separate the phase part from the rest of the Laughlin wave function at
filling factor 1/m, where m = 3, or from the Laughlin—Jastrow part of a ground
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state wave function at half-filling, when m = 2, and, then, define a decomposition
into two parts of any many-electron wave-function, W, as

(zi — z)"
\IJe(rl,rQ, N 7I‘]\IE) = H W\qu(rl,rz, ey rNe) . (11)
i< P T A
The wave function Wy, (rq,re,...,ry,) represents a wave function of quasiparti-

cles after the unitary transformation defined by the phase factor: in the Laughlin
(m = 3) case quasiparticles are bosons, and at half-filling (m = 2) they are fermions.
This defines a CS transformation, or what we will refer to as a Zhang’s construction
of quasiparticles.?? In the field-theoretical terms, quasiparticles induce field a —
they are the sources of an artificial (internal) magnetic field b that also acts as an
additional field on quasiparticles,

1Vxa 1

——b. 12
m 27 m (12)

Pap =

In (12) pgp is the quasiparticle density. We will discuss the CS field-theoretical
approach to the system at half-filling, i.e. the HLR theory with more mathematical
details below. Here we will note that in a mean-field picture the internal field will
cancel the external field. As a first approximation to the half-filling problem, we
will find that the ground state in the quasiparticle representation is simply a Slater-
determinant of free waves that are filling a Fermi sphere in the inverse space in two
dimensions, i.e. it represents a gas of fermionic quasiparticles. (The amplitude part
of the Laughlin—Jastrow factor can be recovered in the field-theoretical approach
by the random phase approximation (RPA) treatment of the density harmonic
fluctuations.)

Therefore, in the Zhang’s quasiparticle construction to each electron at position
w is attached the following phase factor:

| fe—s (13)

(zi —w)™’

a flux tube. The ensuing quasiparticle sees two gauge fields: external and internal —
it is a quasiparticle that possesses charge, and the density of quasiparticles is equal
to the density of electrons.

On the other hand in the Read’s construction??® of quasiparticles, we start with
the notion of fluxes (flux quanta or vortices) that can be introduced by external
field in the system, and can be described by the following construction,

[z —wm, (14)
1
i.e. by insertion of m Laughlin quasiholes. We can make this object neutral by
adding a unit of charge, more precisely an electron, to it, and in this way define
the Read’s quasiparticles as neutral objects, number of which is proportional to
the number of external field flux quanta piercing the system. This view is in a
way a dual approach (equivalent description of the same theory from a different
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point of view) that was initially applied to bosonic systems where the description
in terms of elementary particles — bosons was traded for the description in terms
of excitations — vortices.24

In any case both approaches take into account the precise commensuration
between the number of electrons and the number of flux quanta in a system at a
fixed filling factor, in our case 1/2.

The CS approach at 1/2, based on the Zhang’s construction of quasiparticles,
begins with the following Lagrangian (density),
¥p—A-—a)Ply 11

In (15), W represents a fermionic (Grassmann quasiparticle) field, and the CS term
is defined by ada = e‘“”\aua,,a)\, v, A = 0,1,2 (denote one time and two spatial
coordinates), the summation over repeated indices is understood, and a,, = (ao, a) is
a three-vector. The cf stands for composite fermions, a general name for underlying
quasiparticles.

ﬁ = \I/Zf(lat — AO — CL())\I/Cf —

Considering the classical equations of motion, from gTEO =0, we get
1V xa
P — T 16
cf *cf 2 27_( ( )

(Above V x a denotes the z component of the vector, and can be considered as

a scalar in this two-dimensional theory.) In the mean-field, when we assume that

Vxa
27 0

the density of quasiparticles is uniform, the internal field, exactly cancels the

uniform external field at half-filling,

V x A

2

— 2UE0, = 20F Uy, (17)

where U* W, stands for the uniform electron density.

The Lagrangian in (15) is the basis or starting point for the HLR theory, which
describes the physics at 1/2 as a FLL state of (fermionic) quasiparticles. We may
notice, from the form of the Lagrangian, that the electron density—current vector
is equal to the one of quasiparticles,

oL _ .
*m:ﬁ:]é- (18)

2.2.2. Dirac quasiparticle description of half-filled LL and at half-filling

In this section, we will first review the Dirac theory for a half-filled LL proposed
in Ref. 7 and then consider its extension in the presence of a mass term that is
relevant for the general case (with LL mixing) at half-filling.

We start with an isolated LL (of classical electrons) that is half-filled. It has
the PH symmetry — the symmetry under exchange of electrons and holes. The
low-energy physics of a zeroth LL of Dirac electrons in the weak coupling limit
should correspond to the low-energy physics of isolated LL (of classical electrons).”
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Thus we consider the Dirac problem in an external (magnetic) field, which is a
background field (no dynamics):

Lp= i@v“D;‘\I’ + interactions = W (y°D; + ~ - D)W + interactions  (19)

where D; = %+iAO and D = V—4¢A, and v*, p = 0,1,2 are 2 X 2 gamma matrices
for the Dirac description in two spacial dimensions, and ¥ is a two-component
Grassmann field.

The Dirac system is a neutral system and there is no Hall conductance. To make
up for this, i.e. to continue to discuss an isolated LL (of classical electrons), which
has 1/(4) of the units (e?/h) of Hall conductance, we consider

— ADA
L =iUy"D)V — —, T interactions. (20)
T
If we define the density—current of electrons as
oL
o
Jel = SA® ’ (21)
it follows that for densities,
V x A
el — . 22
Pel = pD + . ( )

Because, pp (average density of the Dirac system) = 0, we have a non-zero density
of electrons

pcl 1
Fel _ 23
P = 2, (23)
where B = VQXWA is the uniform external magnetic field. Also
. . . E
Jel =JD + GE ; (24)
where € is a 2 X 2 matrix, €;y = —€y, = 1, €30 = €yy = 0. Thus, with pp = 0 and

jp = 0, we are at half-filling, and the Hall conductance is equal to ﬁ(%)

Following Ref. 7, in a dual picture, we postulate a new Lagrangian, £, with new
dual Dirac field x:

0A  AJA
=ixy* D% — - —— 4 2
L=ixy"Dix +a - ———+ (25)
where --- denotes higher order terms. (We will ignore these higher order terms

below and consider classical equations of motion in the framework of the linear
response theory.) Why would we expect this Lagrangian in a dual picture? We
provide an analysis with more details below, but here we may note that the Dirac
(two-component) formalism is expected also in a dual picture, because it makes
possible that the PH symmetry is manifestly included as demonstrated in Ref. 7.
Also note that the dual fermion is not directly coupled to the external field, and,
as we show below, the Lagrangian describes a Dirac system at a finite density, in
agreement with our expectation that the system is in a FLL state of quasiparticles.
For further details on the dual approach see Refs. 25 and 26.
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(i)

(iii)

It seems that x’s represent Read’s quasiparticles. Indeed, if we consider the
following equation of motion,

oL V x A

0=——=—
5CLO Px 47 ’

(26)
we can conclude that the density of x depends on the number of flux quanta.
On the other hand,

B 57£_ an+V><A
Pel = 5Ay 4 A

(27)

and, at half-filling, in the mean-field approximation, V x a = 0. Thus, x’s do
not experience any uniform, non-zero gauge field, b = V2fra, that couples x’s
indirectly to the external field. Therefore, x’s are, in the first approximation,
neutral objects, but with the Dirac’s singularity in the inverse space at k = 0.
In this way, they have a non-analytical feature that we do not expect from a

description that is based on Read’s quasiparticles. We find that the effective

theories based on the description with the Dirac’s quasiparticle are very useful
when considering the pairing physics, as they capture the time-reversal and
parity breaking (that is essential for the pairing physics) as we will explain
later in this section.

We expect that the effective theory of a half-filled LL should describe a Fermi-
liquid of quasiparticles (if we do not consider the BCS instability). Indeed, in
the mean-field approximation, in the first approximation, the internal field ()
is zero, and the theory describes a Dirac Fermi-liquid.

If we vary a in £ we find

Also,
oL E-e

=é

Jel:_(SiA P

(29)

where e is the electric field due to the potential a*. Next, we assume that even
in the presence of disorder, the PH symmetry is respected, and in the linear
response we have,

jD = a—Dea (30)

D

where 0,

_ 4D o di D _ D _
= o, # O represents a longitudinal conductance, and o, = 7, = 0

(the Hall conductance is zero). The zero Hall conductance is an expression of
the PH symmetry and a property of Dirac fermions. These three equations,

(28), (29), and (30), combined lead to the conclusion that the Hall conductance

of electrons is %(%), which we expect to be the case in the theory of the system

with classical electrons that respects the PH symmetry.2?
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It is important to notice that o2 = o), = 0 is not an only natural “choice” for
the response of the non-interacting Dirac system (conus) to a perturbation due to
a gauge (internal a*) field. To get the Hall conductance, we assume the presence of
the mass term in the non-interacting Dirac description,

Lp = ixy"Djx —mXxx - (31)

The Ugy can be found by integration of Berry curvature in the inverse (k) space,7-28

by choosing a specific gauge for eigenstates, and integrating over occupied states.
In this way, we can get contributions (in units e*/h):

1 m]
sgn(m)— 1 — ———— |, 32
gu(m) ( W) (32)
from the positive-energy states that are filled for 0 < |k| < kp, and
1
—sgn(m)—, (33)

4
from the negative-energy states. There are two natural ways to take into account
these two contributions: (1) to add them,

m

D

O' = - 5 34

b= (34)

i.e. adopt a “dimensional regularization,” or (2) to consider only the contribution
from the positive energy solutions:

1 |m|
D
wy = SgN 1
o sgn(m) ( R m2> , (35)

i.e. adopt a “Pauli—Villars regularization.” It is obvious that in order to get an
appropriate response in the Dirac theory (of the half-filled LL) we need to assume
and apply the dimensional regularization in the field-theoretical treatment.

We can also conclude that by choosing an appropriate singular gauge (phase)
transformation on the negative energy eigenstates, we can switch from the dimen-
sional regularization to the Pauli-Villars regularization (and vice versa). This trans-
formation can be understood as an adoption of a new quasiparticle picture and a
new Lagrangian (here without higher order terms):

ada 0A AJA
[ — ivWP~H Dayap . 227 —_— . 36
XX 8 +a47r 8T (36)

To find the same response as before, we have to adopt Pauli—Villars regularization
(when integrating out fermions and generating quadratic terms in a) with a positive
mass to cancel the second term in L. Physically we indeed switched to a new
quasiparticle picture of Zhang’s type. To see that let’s consider the full theory with
a positive (m > 0) mass term:

ada 0A A0A

L = ix®P D, P — mydPy® — =2 hetalaledelall 37
X X mxXTX 8 +a47r 8 (37)
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(i) From the equations of motion,

oL da 0A
_sap.p _ bl
dar Ix A7 Ar’ (38)

and

oL 0A Oa
oL 0A Jda
Je1 = SAH  Am Ax’ (39)
it follows that, ji = JyP-#, as usual in the CS theory, i.e. the theory directly
relates to the Zhang’s quasiparticle construction.
(ii) If we let m — oo the effective Lagrangian becomes the HLR after the shift

a* — at + A+ 29

We can conclude that the Lagrangian in (37), with m = 0, describes the physics
of an isolated (PH symmetric) LL using the Zhang’s quasiparticle picture. The
introduction of non-zero m represents LL mixing, i.e. a measure of the inclusion of
other LLs, so that for large m we can recover the HLR theory that does not reduce
the effective physics of the electron system to a single LL.

3. Pfaffian Paired States at Half-Integer Filling

In this section, we will adopt the Dirac quasiparticle picture that is given by the
Lagrangian in (37) for a FQHE system at a half-integer filling factor. Thus, the
starting Lagrangian is

- @ _ m ada 0A AJA
L =ixy"Dyx — mxx — | (40)

il 8 T T R
where for simplicity we omitted qp letters when writing x fields with respect to
(37), but we should be aware that for any probes (perturbative expansions) the
Pauli-Villars regularization is understood. We generalized the Lagrangian in (37)
for both signs of mass m (to cancel the additional contribution due to the assumed
Pauli—Villars regularization, the first term in (35)). It follows that

m Oda O0A

p__maa, 94 41
Ix |m|4r 47’ (41)
and
. da 8A
Ja=—p+ - (42)

as a generalization of (38) and (39) to both signs of mass. Exactly at half-filling,
i.e. when in a uniform, constant magnetic field we have on average one electron per

two flux quanta, we may solve (41) in the Coulomb gauge, V -a = 0. The solutions
22
re

—2—/(1“ ,|25px( v, (43)

m|
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and
a,(r) = \m| /drz /|2 dpy (1), (44)

and dp, (r') = xT(r')x(r") — p, where p is a constant (external flux density). We
would like to analyze the effect on pairing of the interaction term,

Vint = —axvyx- (45)
In the following, representation of v matrices,
V=03, A =ioy, = —ioy, (46)
where 0;,i = 1,2, 3 are Pauli matrices, we have
Vine = —ax"ox. (47)
In this representation, we have the following expression for the interaction:
0 z—7
[r — 1|2
Ving = — Tl /dr 5py (r')x"(r) L x(r). (48)
e T 0
[r — 1|2

On the other hand, the presence of the mass term in the Dirac system leads to the

following eigenproblem,

m—e€ k_

x(k) =0, (49)
ky —m—e

where k_ = k, —ik, and k4 = k, +ik,. The positive eigenvalue, € = \/|k|? + m? =

FEJ, corresponds to the following eigenstate,

m+ Fyx

k.

1

2B\ (Ex +m) (50)

XE =

As we consider relevant only (positive energy) states around kp, we will keep only
these states in the expansion over k-eigenstates of field x(r), and, further, only
consider the BCS pairing channel in Vj,¢. Thus (in the second-quantized notation)

x(r) = \/%T/ gexp{ik ‘rixp(K)ag+ -, (51)

and
B0 = m%zmaax !
M ml 8V SRR T BB (m + Ex)(m + Ep)

xA{(m+ Ey)(m + Ep) + k-py }

X [m + Ey, —k,]
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We used: [ drlexp{ikr} = 22—1 We may rewrite this expression (taking into ac-
count the antisymmetry of the fermionic operators) as

Vi > = Z VkpaLapaT_ka_p ) (53)
k,p
where
27 1
> T RV E, - B,
isin(0, —0x) m
x |—4|m|kp———L—, — —(Ep + E, +2m)(E, — m)(E, —m
exp{i2(0, — )} — 1}

X . 54
k—p? 59

Now we will adopt the mean-field BCS approximation, in an expectation that the
topological characterization of pairing instabilities, will stay unchanged under this
approximation. In the following, we will review the relevant parts of the BCS mean-
field theory. We will follow the notation of Ref. 30. The effective Hamiltonian is
1 *
Keg =Y {skaiak + 5 (Moo + AkaLa*k)} 7 (55)
k

and in our case & = Ey—pu, with Ey = 1/|k|?2 + m2. The Bogoliubov transformation

is
ok = UkQk — vkaik , (56)

with
v _ —(& —fk)7 |2 = 1 <1+ fk) ’

Uk Ai’;

o _1(_&
[ _2<1 &)

and & = /& + |Ax|?.

On the other hand, if we start with a Cooper channel interaction and do the

BCS mean-field decomposition with bL = aLaT_k

> Vip b bp = D Vipblbp + > Vipbk (bp) — > Vip(bl)(bp) . (58)
k,p k,p k,p k,p

(57)

and specify u_x = ux = uy, and v_x = —vy, then
A*
TP = Z Vkp<a£aik>
k
= Vip((uxof, + via 1) (~vion + weal ), (59)
k
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ie.
P _ * _ k
5 = Ek Vicpvp uk = E Lkp(—)ﬁ- (60)

In our case Vip is given in (54). The numerical solutions of the BCS self-
consistent equation, when the parameter kr is kept fixed, but mass m is varied, for
channels | = 1,3, —1, with A = |Ag|exp{ilfk} are described in Fig. 1. We find
that A} = |Ax|exp{—ilfk}, | = 1,3, -1 are solutions if we switch gauge for the
eigenstates of the Dirac equation, i.e. instead of (50) we take

K 1

p— —_— . 61
X B~ m| V2B (B —m) (61

0.54

i 071
: — |m|=0.80 —— [=1
oal | —— |m|=1.30 06 —o =3
' —— |m|=1.60 s —— I=-1
= ! —— |m|=3.00 S
S * i —— |m|=28.00 — 0.4
1 —
- : —— |m| =20.00 g o
i 0.2 ! g
i |=1 g o2
0.1 1
i 01
i
0.0 i 0.0 =
081 i — |m|]=0.02 0.000 = = = o o om m e el = e e e ]
0.7 i —— |m|=0.60
o -0.0251
064 — |m|=1.30 I
,_I'._‘ —— |m]=3.00 E —0.050 A
05
S —— |m|=8.00 é —0.075 ]
T 04y |[m|=12.00 5
o _ |
i 031 ul" 0.100
024 © ~0.1251
014 ~0.150 1
0.0+ -0.175 . . . . ! }
0 1 2 3 4 5 6 8 -6 -4 -2 0 2 4 6 8
k/kF m

Fig. 1. (Color online) The solution of the self-consistent BCS problem. Left column: radial direc-
tion k-dependent pairing amplitude for various values of m. Channel | = 1 solution (PH Pfaffian)
only depends on |m|, while [ = 3 (anti-Pfaffian) and | = —1 (Pfaffian) channel solutions are
symmetric with the sign-flip of m. Upper right panel: dependence of the maximum of the pairing
amplitude on m (always found at the Fermi level kr). Lower right panel: total energy of the
different pairing solutions compared to the normal state energy. Gray vertical lines denote the
transition between different channels. Color in the background corresponds to the energetically
favorable channel at the given m: a measure of LL mixing. The color of lines: Pfaffian: green,
anti-Pfaffian: orange, PH Pfaffian: blue. Reprinted with permission from Ref. 18 (©) the American
Physical Society.
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Thus we get two sets of solutions, because the effective theory does not possess
the knowledge of the direction of the external magnetic field. Despite this, we
have a clear prediction that for small m, LL mixing, depending on the sign of
m we have Pfaffian or anti-Pfaffian, and for large m the PH Pfaffian solution is
possible. Thus, in principle, the PH Pfaffian is possible in this effective theory of
quasiparticle pairing. The nature of this state, whether it is gapped or gapless
state of electrons, needs further investigations (though we see that the Bogoliubov
quasiparticle spectrum is gapped).

These predictions on topological pairing, when the LL mixing (mass m) is small,
are in accordance with numerical experiments (a) in the second LL, because for
m = 0 there is a Schrodinger cat superposition of Pfaffian and anti-Pfaffian 3132
and depending on the LL mixing (sign of PH breaking mass) we have Pfaffian or
anti-Pfaffian, and (b) in the LLL, where a PH Pfaffian wave function has a large
overlap with the composite fermion Fermi-liquid wave function,'333
with Fig. 1 where the PH Pfaffian-like state is continuously connected to the excited
composite fermion Fermi-liquid state at m = 0 and cannot represent a gapped state
in an isolated LL.

The dimensionless m in the theory is a measure of the PH symmetry breaking
and LL mixing, although the precise relation between m and

in accordance

92

E,:lB
= =l 62
" hw, (62)

i.e. the ratio between the characteristic interaction energy and cyclotron energy,

known as a LL mixing coefficient, we do not know. In (62), ¢, is the dielectric
constant of the background material, Aw, = ﬁfﬁ , and my, is the electron band mass.

i.e. kr fixed, from the mathematical limit

T = 15
of the PH symmetric case when m = 0, we reach various systems (experimental
settings) by changing the interaction strength (dielectric constant e,.). Thus m,
in principle, can be connected with k, which can be considerable in experiments.
(According to Ref. 41 the parameter « is given by 2.6/v/B, 14.6/v/B, 16.7/\V/B,
22.5/+/B, in n-doped GaAs, p-doped GaAs, n-doped ZnO, and n-doped AlAs, with

B measured in Tesla.)

As we keep the density, p =

4. Model Interactions for Pfaffian Paired States

It is important to know model interactions for model wave functions in order to
probe their stability and nature. In the case of bosons, the Pfaffian state at filling
factor 1 is

IR Y (R

Za(l) - 20(2)) (Z”(Ne_l) - Z”(Ne))

X H(Zk — Zl) . (63)

k<l
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The model interaction for which this state is an exact, densest state of zero energy>*
is

—0252 2 — 2j)0% (2 — k) (64)

(ijk)

where v > 0 and the sum is over all distinct triples of particles. Thus if three
bosons meet (come as close as possible) this will cost repulsive energy. In the case
of fermions at filling factor 1/2, the Pfaffian model interaction is a generalization
of the boson interaction to the one that, if three fermions come as close as possible,
again, only this will cost energy. The lowest angular momentum wave function of
three electrons in the LLL can be described as

W(ry,ra,T3) ~ Y SBNOZ2 (1) %0 (570 3) exp{ 15 —— (211> + |22f* + |23] )} (65)

We may conclude that if M (angular momentum) = 3 for three electrons this will
cost interaction energy. Indeed, it can be argued, just as in the case of the Laughlin
state and two-body PPs,3® that in the case of Pfaffian we need to specify only a
truncated series of three-body PPs with definite three-body angular momenta. At
filling factor 1/2, only non-zero three-body PP is the one for M = 3. (For bosouns,
at filling factor 1, the only non-zero three-body PP is for M = 0.)

These model interactions are highly artificial if we want to model and probe real
physical systems. In the FQHE, we can always specify the base LL from which most
of correlations originate, but should also consider the effects of LL mixing. Beside
the Coulomb (two-body) interaction at a half-integer filling factor, we may take
into account perturbatively the effects of LL mixing, by considering special three-
body interactions.?” 4! In this way we may find a characteristic series of three-body
PPs for Pfaffian state, when considering the specific problem of the second LL and
associated LL mixing contribution. A PP is a certain characteristic energy, Vi,
associated with a three-body state at total angular momentum M. (The dimension
of the subspace of a fixed angular momentum for three particles may be larger
than one for higher M, and Vj; may be a matrix.) In the case of Pfaffian, the
dominant, first three values of three-body PPs, for M = 3,5,6 are negative and
“jM 5 ~ 0.4 and VM Var=e ~, (0.7.41 We may ask what would be a characteristic series
for PH Pfaffian, 1f We assume that the PH Pfaffian state or phase exists, and expect
that some kind of three-body interaction will be relevant also in this case.

To answer this question we may consider again the CS formalism, not directly
connected with considerations in Sec. 3. We will recall®* the effective derivation
of the Pfaffian physics, by a part of the kinetic term in the non-relativistic CS
description. (Thus these considerations will not relate to the solution in Sec. 3, in
the large m limit, when we take into account the complete kinetic term.) We will
use this formal derivation to propose a method for recovering model interactions
for Pfaffian and PH Pfaffian. (By using the PH exchange we can reach a model
interaction also for anti-Pfaffian.)
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To get (formally) the Pfaffian pairing solution we may consider the kinetic en-
ergy part of the (non-relativistic) CS approach in (15), i.e. the part of the Hamil-
tonian given by
\ij(p —A—a)’Uy

2m
with B = Bz, with A, = —(B/2)y and A, = (B/2)z , as before, and

a;(r) = /drz| ,I|25pcf( ", (67)

H = : (66)

and
ay(r) = /dr z|/|/25pcf( ", (68)

as before, in the Coulomb gauge V -a = 0, and dps = \I'Cf\I/Cf — p, where p is the
average density. We consider the following part of the implied interaction,

Va = _ajcf7 (69)
with
) 1
Jef = %[\Ij;;(plpcf) - (P‘P:})‘I’cf] ) (70)
more specifically its Cooper channel part.
After simple steps,!? we arrive at the Cooper channel part,

4r 1 zsm (O —6p)
Vlgt = Z k| 7k|2a};apaika_p : (71)

Note that in this case (followmg the mean-field equations and derivation in Ref. 30,
or in Ref. 19) we find that the Cooper pair wave function behaves as,

lim g(r) ~ ! . (72)

|r|—o0 z

This implies the Pfaffian construction (after the unitary CS transformation into the
electron representation), if we recall that the choice of A in (66) implies a holomor-
phic Laughlin—Jastrow factor (more precisely a phase factor after the unitary CS
transformation) that is associated with the usual description of the Pfaffian state
in (5). If we had an extra minus sign in (71), this would lead to the antiholomorphic
pairing, i.e. the PH Pfaffian pairing.

To derive the model interactions for Pfaffian and PH Pfaffian, we assume that
we can use an effective non-relativistic CS description to describe the pairing of
underlying quasiparticles (composite fermions). On the basis of the previous con-
sideration ((69) and (71)), we consider an effective Hamiltonian,

1 .
Hiles = %\Ilif(p)2\llcf + Adajes , (73)

where da = A + a, and the coupling A is negative in the Pfaffian case and positive
in the PH Pfaffian case. Thus we assumed that a complete (non-relativistic) CS
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description that includes all effects of interactions can be reduced to the effective
form if a pairing occurs. By using the non-relativistic CS description we take into
account PH symmetry breaking necessary to stabilize these pairing states.

If we apply the CS transformation in reverse,!? going from the composite fermion
representation to an electron one, we arrive at the following effective Hamiltonian
for electrons,

1 1 1
Hijos = 5—WT(p = A)*W — —(02)"W1W + (14 A)dade + (14 \)—(da)*¥T¥,
(74)
where
Jo = %\Iﬁ(v HiA)T — [(V +iA)T)T0 (75)

is the (gauge invariant) electron current.
We concentrate on the effective three-body (electron) interaction that is present
in the Hamiltonian,

Vios(A) = (1/2—1—)\)% S(a)? Ut (76)

The three-body interaction in coordinate representation is

(r3 —r1)(r3 —r2)

V(ri,r2,r3) = (1/2+>\>m|r3—1‘1| 2y — o2

(77)

To describe the relevant matrix elements for LL(s), we will choose our base LL to
be the LLL, which is the most natural choice when we consider a CS description; the
very CS transformation is based on the Laughlin—Jastrow correlations in the LLL.
Thus, for example, we will relate the effective PPs that we know for the Pfaffian
state, based on the perturbation theory, in the second LL, with here calculated
PPs, based on the CS description, in the LLL.

To describe relevant three-body PPs (V) in the LLL, we introduce rescaled
matrix elements, Ayr—ok31,

VM:/drl/drg/drgV(rl,r2,r3)|\I!k,l(r1,r2,r3)|2:(1/2+/\)‘4/m~AM:2k+3l,

where Wy, ; are normalized, fully antisymmetric wave functions for three electrons,*2

classified by integers k£ > 0;1 > 1, and the total angular momentum of the state is
M = (2k + 3l). The calculated Ajs are shown in the Table 1.

The matrix elements are illustrated by their rescaled values Vy = (1/24 ) -
Ajpr—ok+3l, in the cases when A = —1 and A = 0 in Fig. 2. What is remarkable is
that according to the Table 1, VM e = 0.5, and VM e = 0.7, and are quite close
to the ratios of the relevant matrlx elements from the perturbation theory in the
second LL, ~ 0.4, and ~ 0.7, respectively, that favor the Pfaffian physics.*3

Thus the CS description is able to capture the sign — a negative one of necessary
PPs when A < —1/2, and their relative magnitude for relevant, those first three PPs
in the Pfaffian case. Therefore, we are encouraged to probe the PH Pfaffian case
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Table 1. Matrix elements in the LLL. Reprinted with permission from Ref. 19 (© the American
Physical Society.

L v [ 38 [ s [ 6 [ 7 [ s | 9 |
221/10080 1/(240+/21
Ayr 1/24 | 1/48 | 7/240 | 1/80 2/105 / / )
1/(240v21) | 1/120
Ans ~0.526 | ~0.022
1 0.5 0.7 0.3 ~ 0.475
Apr=3 ~0.022 | 02
0,000~ 5 6 7 8 9 0
-0,005|
<E
2\-o,o1o-
+
Q 0,015
—
N
-0,020
0,020
= 0,015
<
T 0,010 A=0
Q
—
< 0,005
0,000 M
3 5 6 7 8 9 10

Fig.2. (Color online) Matrix elements of three body PPs in the LLL for A = —1 (above) and A = 0
(bottom). (We plotted two values, diagonal matrix elements in the two-dimensional subspace, in
the case when M = 9.) Reprinted with permission from Ref. 19 (C) the American Physical Society.

for certainly A > 0. (We can identify the A = 0 case with composite fermion Fermi
liquid case.) But we have to be aware that in the effective description by Hgg,
the estimate that we can make for LL mixing parameter (in general the ratio of
characteristic interaction energy and cyclotron energy) is |[A41/2|, and that for any
considerable A 2 1/2 for which PH Pfaffian correlations are relevant, we have to
include higher LL(s) (i.e. not only the base LL — the LLL in the CS description).
Thus in the PH Pfaffian case, we have to include (three-body) PPs for at least
one more LL. The calculated PPs (more precisely their rescaled (m/4)Vys values)
for two LLs when A = 1 are illustrated in Fig. 3. While calculating these PPs, we
had to include the natural cut-off [ in the field-theoretical description, to suppress
divergences in the second LL. We can conclude from Fig. 3 that in the case of PH
Pfaffian, there is an abrupt decrease in the positive values of three-body PPs at
M = 7 in the base (LLL) level and also at M = 5, when two of three electrons are in
the higher (second) LL. This can be compared with the usual (truncated) model for
Pfaffian with only non-zero, positive potential Vj;—3; there is no three fermion state
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0,05
0,04
0,03
0,02

(1/242) A,

0,01
0,00
0,05
0,04
0,03
0,02

(1/242) A,

0,01
0,00
0,05+
0,04
0,03
0,02
0,01

(1/241) A,

0,00
3 5 6 7 8 9 0 M

Fig. 3. (Color online) Three-body PP matrix elements for A = 1 (PH Pfaffian case) in the second
LL (top), for states with two particles in the second LL and one in the LLL (middle), and (all
three) in the LLL (bottom). Reprinted with permission from Ref. 19 (© the American Physical
Society.

with M = 4, and the V5 PP that is connected with the characteristic three-body
angular momentum for Pfaffian in the LLL, M = 5, is zero.3% In the case of the
PH Pfaffian, the characteristic angular momentum is M = 7 in the LLL, and thus
the abrupt decrease(s) in the values of three-body PPs that we may associate with
the PH Pfaffian pairing correlations. The (almost) monotonic decrease of PPs when
all three particles are in the second LL suggests that the space of two LLs may be
necessary, but also sufficient for the realization of the PH Pfafian correlations. The
important question, which needs further investigation, is whether these correlations
are associated with a gapped state. The most recent suggestion for the realization
of PH Pfaffian is in Ref. 44.

5. Conclusions and Outlook

In this review, we have demonstrated that the CS field-theoretical approach can
be useful and informative in the description of Pfaffian and anti-Pfaffian states —
well-established candidate states for the explanation of gapped states at half-integer
filling factors in the FQHE. It can capture the pairing nature of these states, when
the basic gauge-field constraints are taken into account in a generalized Dirac ef-
fective description of the problem. The effective Dirac description originates from
the physics inside a base LL, which, when isolated (in the case of the Coulomb
problem) possesses PH symmetry. To stabilize Pfaffian or anti-Pfaffian, we have to
break this symmetry by a mass (of definite sign) term in the Dirac theory.
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The physics of an isolated base LL in the Dirac effective description suggests
a possible existence of a PH symmetric Pfaffian state.” We find that this solution
is relevant only when a significant PH breaking (mass) is included in the Dirac
description. Considering a non-relativistic limit of the description we find that
interaction parameters that describe the influence from the higher (second) LL
must be non-perturbatively included in a model interaction for PH Pfaffian (beside
the ones from the base (lowest) LL). This may be helpful in the effort to stabilize
and detect PH Pfaffian correlations in numerical experiments.
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We study the response of a spin to two crossed magnetic fields: a strong and fast transverse
field, and a weak and slow longitudinal field. We characterize the sideband response at the sum
and the difference of driving frequencies over a broad range of parameters. In the strong transverse
driving regime, the emission spectrum has a characteristic volcano lineshape with a narrow central
transparency region surrounded by asymmetric peaks. Next, we couple the spin to a nonlinear

cavity that both drives and measures it.

In a sufficiently slow longitudinal field, the emission

spectrum exhibits anomalous behavior, where the resonances in both the right and left sidebands lie
on the same side of the central resonance. The theoretical results are compared to the experimental
measurement of the emission of substitutional nitrogen P1 and nitrogen-vacancy NV~ defects in

diamond.

I. INTRODUCTION

In typical magnetic resonance experiments, the system
is driven and measured at the same frequency, making it
difficult to detect weak response signals amid the strong
driving. Another challenge appears under strong driving,
where power broadening renders the spectrum feature-
less. In contrast, the sideband method probes the system
at a frequency different from that used for driving, which
enables implementing spectral filtering in the readout to
eliminate the interference of the driving tone. We con-
sider a setup that combines a strong and fast transverse
drive at angular frequency w; with a weak and slow lon-
gitudinal drive at w; (throughout the paper, the letter w
is used to denote angular frequencies). We will show that
when w) is larger than the decoherence rate vo = 1/T5,
power broadening does not wash out the sideband spec-
tra at w¢ = wy, but produces distinct features that we
characterize.

In a seminal paper by Redfield [1], the response to
crossed fast transverse and weak longitudinal fields was
studied in spin systems [1]. Since the oscillating longitu-
dinal field leads to the reduction of magnetic polarization,
the effect was named rotary saturation. It was extended
to optical systems [2, 3], and has potential applications in
magnetic resonance imaging in medicine [4, 5]. The longi-
tudinal field is known to affect the Rabi frequency [6-13],
which is the rate of population oscillations in a trans-
versely driven two-level system.

In this work, we present an experimental and theo-
retical study of the response of spin systems to crossed
fields. We perform experimental measurements on two
types of diamond defect: the negatively charged nitrogen-
vacancy NV~ center and the substitutional nitrogen Ng

* lukaantonicx@gmail.com

defect (also known as the P1 center or C-center). The
NV center consists of the substitutional nitrogen and a
neighboring vacancy in place of two carbon atoms, as
shown in Fig. 1(a). The center has been extensively stud-
ied both theoretically and experimentally [14-16], and
it is significant for emerging quantum technologies [17].
By contrast, the P1 center, shown in Fig. 1(b), appears
when one of the carbons is exchanged with the nitrogen.
This defect has a spin-1/2 and it was initially detected
in electron-spin resonance experiments [18].

In the experiment, a static magnetic field Bpc induces
Zeeman splitting of the spins. On top of this field, we
apply a weak, low-frequency longitudinal field at w; par-
allel to the dc field, as well as a strong, high-frequency
transverse field with angular frequency wy perpendicular
to it. Under this two-tone driving, the spin oscillates
at the sum and difference of the frequencies, acting as a
frequency mixer. The oscillating spin emits radiation at
central frequency w; and at sideband frequencies wy & wy,
which we then measure as the emission spectrum. We
show that the sideband spectrum exhibits a more com-
plex response than the central resonance, resolving sys-
tem details more clearly, with promising applications in
quantum sensing.

We complement our experimental measurements with
a theoretical analysis of the sideband response. Specif-
ically, we solve the dynamical equations of motion non-
perturbatively in the strong transverse field, while treat-
ing the weak longitudinal field within linear response.
This approach enables us to characterize the sideband
spectrum across a range of regimes as the longitudinal
frequency w) and transverse amplitude B; are varied.
When w is smaller than the decoherence rate 1/T5, the
spectrum is power-broadened and featureless. As w; ex-
ceeds 1/T5, distinct spectral regimes emerge, exhibiting
rich structure absent in the power-broadened central res-
onance under strong driving. At intermediate transverse
field amplitudes, the sideband reveals Rabi resonances
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FIG. 1. NV center (a) and P1 center in diamond (b).
centers are subjected to DC magnetic field in the [001] direc-
tion, drawn as the z-axis in the figures. This field sets the
quantization axis. The slow radio frequency (RF) field (wi)
is applied parallel to this axis, while the fast microwave field
(wt) is perpendicular. Both centers have C3,-symmetry.

Both

that occur when the longitudinal field matches the Rabi
frequency of the oscillating spin [19-21]. At very high
amplitudes, a new spectral structure emerges: an asym-
metric volcano lineshape with a narrow central dip, which
we term the volcano transparency.

In our analysis, we demonstrate that, for a broad class
of linear theories, the right and left sidebands should be
identical, apart from an overall inversion in the wi—Bpc
plane. For instance, if the right sideband spectrum is
blue-shifted relative to the frequency of the cavity used
to drive the system, then the left sideband spectrum must
necessarily be red-shifted. This, however, is not observed
experimentally. Instead, both sidebands are simultane-
ously blue-shifted, a phenomenon we refer to as the side-
band anomaly. This anomaly serves as a sensitive in-
dicator of nonlinearity in the system dynamics [22]. To
illustrate this theoretically, we demonstrate that the side-
band anomaly can occur in systems with Kerr nonlinear-
ity. However, we note that Kerr nonlinearity is relatively
weak in our system, and the source of the observed side-
band anomaly remains unidentified.

Our paper is organized as follows. We first describe
the experiment in Sec. II and introduce its theoretical
description in Sec. III. In Section IV we study the spin
response at the dual driving by the strong and fast trans-
verse magnetic field and weak and slow longitudinal field.
In Section V, we show that sideband symmetry is guar-
anteed in the linear model. In Section VI we extend
the model by adding a cavity with Kerr nonlinearity,
demonstrating how it shifts the spectrum, where the shift
strongly depends on the ratio of the longitudinal fre-
quency and the cavity decay rate. We find that, if the
longitudinal driving is slow, the sidebands get more blue-
shifted than the central spectral line, and the right and
left sidebands have different shifts if the cavity nonlin-
earity is strongly excited.
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FIG. 2. (a) A sketch of the experimental setup with solenoids.
(b) Top-down view of the central part of the setup. (c) Elec-
trical and optical diagram with components described in Sec-
tion IT A. Black and gray lines label electrical connections,
and red and green lines label optical connections.

II. THE EXPERIMENT
A. Experimental setup

Figure 2 shows the experimental layout inside the cryo-
stat at a temperature of about 3.4K. A [110] diamond
wafer, with NV-defect concentration of 1.23 x 10'7e¢m =3,
is glued to a sapphire wafer. This wafer supports a nio-
bium superconducting spiral resonator having frequency
of we/ (2m) = 3.772 GHz [23, 24], and cavity width v, ~
8.5MHz determined by fitting data to the Lorentzian
function. A superconducting DC solenoid (see inset of
Fig. 2 a) generates the static magnetic field, while an RF
solenoid, with its axis parallel to the DC coil, provides
the longitudinal drive at an angular frequency which we
denote w;. The diamond crystal direction [001] is aligned
to be nearly parallel to the static magnetic field. A loop
antenna (LA) that is placed beneath the spiral resonator
is employed for applying transverse driving in the mi-
crowave (MW) band, whose frequency we denote as w.
The role of the spiral resonator is twofold; it serves as a
bandpass filter that passes frequencies close to the fun-
damental mode, but it also amplifies the signal from the
loop antenna and from the defects.

The static field Bpc affects the Zeeman splitting of the
defects. Although both centers have four possible orien-
tations, applying the field along a (100) direction, which
corresponds to angle 6y = arccos (1/v/3) relative to (111)
bonds, causes identical response for all four orientations,



see Fig. 1.

Two multi-mode optical fibers, F1 and F2 in Fig. 2(a),
are coupled to the diamond sample. Laser light at 532 nm
(which is delivered to the sample by fiber F1) gives rise
to optically induced spin polarization [25, 26]. The ex-
perimental setup allows implementing both methods of
optical detection of magnetic resonance (ODMR) and
cavity-based detection of magnetic resonance (CDMR).
The photoluminescence (PL) emitted from the diamond,
which is delivered by the multi-mode fiber F2, is probed
using a long pass filter (LPF) and a photo detector
(PD). The PD signal is measured using a lock-in ampli-
fier (LIA). The MW signal generator, which is employed
for applying transverse driving with the LA, is amplitude
modulated (AM) using a low-frequency signal generated
by the LIA.

The scheme of the sideband spectroscopy setup is
shown in the upper part of Fig. 2(b). A directional
coupler (DC) is employed for delivering incoming and
outgoing LA signals. The incoming signal, which has the
frequency wy, is generated by an MW function generator.
An amplifier and a spectrum analyzer (SA) are used to
probe the signal outgoing from the LA. An RF signal gen-
erator having frequency wj is employed for applying lon-
gitudinal driving to the RF solenoid. The defect’s non-
linear response mixes transverse and longitudinal driv-
ing tones, producing the sideband peaks at frequencies
wy £ nwiy, where n is an integer. We record the sideband
amplitudes with SA and, throughout the paper, we focus
only on the first right and left sidebands with n = +1.

B. Measurements on P1 centers

Figure 3 presents the measurements on the P1 center.
The transverse field is amplified by the spiral resonator at
frequency w./ (2m) = 3.772 GHz (discussed in more detail
in Sec. IT A). The resonator also amplifies the radiation
emitted from the spin, enhancing the sideband signal.
We resolve the hyperfine splitting induced by the interac-
tion of the electron spin with the spin-1 nitrogen nucleus.
This results in three volcano-shaped transparencies in the
top row, which correspond to the three hyperfine transi-
tions displayed schematically in Fig. 1(b) (see Appendix
D for more details). While the defect’s signature is weak
in the central response, it emerges as a well-defined line-
shape in the sideband spectrum. The peaks surrounding
the central transparency are asymmetric (one is higher
than the other), and this asymmetry is reversed between
the left and right sidebands. In Sec. IV, we show theo-
retically how this spectral line emerges through the com-
petition between Rabi resonances and power broadening.

The bottom row of Fig. 3 displays measurements per-
formed at various transverse frequencies w;. The black
line marks the cavity frequency. One expects the posi-
tions of the resonances in the right and left sidebands
to be shifted in opposite directions relative to the cavity
frequency. Instead, both sideband signals are strongest

at a blue shift from the cavity frequency. We call this
phenomenon the sideband anomaly.

C. Measurements on NV centers

In Figure 4, we show measurements on NV centers.
The horizontal axis is the transverse driving frequency,
wy, and the vertical axis is the RF coil voltage, which
controls the strength of the longitudinal drive B;. The
top row displays the left-sideband signal, while the bot-
tom row shows the right sideband. Each column contains
both sidebands for a specific longitudinal frequency, w;.
The signals are more pronounced with increasing lon-
gitudinal driving. Such behavior is expected when the
driving is weak and justifies our later analysis, where we
treat the longitudinal drive in linear response. By con-
trast, for strong longitudinal drive, the sideband signal
is expected to become non-monotonic and follow a more
complicated dependence involving Bessel functions [27].

The NV data confirm the sideband anomaly seen in
P1l-center measurements. A vertical black line marks the
cavity frequency, and in all cases, both sidebands lie to
its right. In Section V, we demonstrate that a purely
linear system would place the left and right sidebands on
opposite sides of the cavity frequency (indicated by the
black lines in the figure).

Furthermore, as w; increases, the left and right side-
bands show asymmetric behavior. As shown in Sec. VI,
Kerr nonlinearity gives rise to similar behavior. This il-
lustrates that nonlinearity can indeed cause the sideband
anomaly. However, in the current experiment, Kerr non-
linearity is far too small to explain the observed anomaly,
and its origin remains unexplained.

III. THEORETICAL MODEL

We now introduce the theoretical spin-cavity model
used to describe the experimental setup of the preceding
section. The spin is placed in a constant magnetic field
Bpc = BpcZ, leading to a Zeeman splitting ws. The
spin is driven by a weak and slowly oscillating longitu-
dinal (parallel to Z) field. At the same time, the cavity
is driven by a strong and fast oscillating field. Due to
the spin-cavity interaction, the fast cavity oscillations are
transferred to the spin, which therefore feels the effects
of both drives. Then, as a result of frequency mixing, the
spin emits radiation at the sum and difference of the two
driving frequencies. The emitted radiation is amplified
by the cavity. The resulting spectrum, which is a func-
tion of two frequencies, reveals a rich structure that we
wish to explore.

We introduce the Hamiltonian:

H = Hy+ H, + Hyyy - (1)
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(b) central peak at wt, and (c) right sideband, wy 4+ wi. The horizontal axis corresponds to the static magnetic field magnitude
Bpc, and the vertical axis corresponds to the microwave driving frequency ws/(27). The RF drive frequency is set to 1 MHz.
The overlaid black lines in the lower figures mark the cavity frequency, which is also the frequency at which the upper lineshapes

are extracted. Red dashed lines mark the approximate positions of the sideband resonances. The three volcanoes correspond
to three different hyperfine transitions.
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FIG. 4. The sideband measurements of the NV center as a function of the longitudinal drive strength B; (corresponding to
the voltage on the RF coil Virr) and the transverse driving frequency wy for different longitudinal driving frequencies wi. The
top row represents the left sideband data (at the frequency wy — wi), and the bottom row are the right sideband data (at the
frequency wy +wi). The black vertical line is the cavity frequency we as obtained from the experimental measurements. The red
dashed lines show the frequency w; where the maximal signal, averaged over all B values, is observed. The sideband anomaly
occurs for all of the longitudinal frequencies, but the distance between the sideband resonances increases with the increasing
wi (which also occurs with the Kerr nonlinearity, see Sec. VI).

The spin part of the Hamiltonian is quency w; and it has a Kerr nonlinearity,
ws + Bj cos (wlt) H, = wCaTa + ﬁaTaTaa + gp (a’re*iwtt + aei‘“ft) (3)
= 2 72 (2) 1 2 ’

where a is the cavity annihilation operator. The spin
where o, is Pauli matrix. The cavity is driven at fre- couples to the cavity through a Jaynes-Cummings inter-



action,
Hine = Q (a'o_ +aoy +d'oy +ao_) . (4)

This interaction provides the feedback mechanism be-
tween the spin and cavity as it transfers energy between
them. Due to the form of the interaction, the cavity drive
at frequency wy is transferred to the spins as a field that
is transverse to Z.

We can simplify the Hamiltonian by working in the
rotating frame. The unitary operator that transforms
the system into this frame is

P(t) = eir(ala=s(=on))t (5)

The Hamiltonian that evolves states and operators in the
new frame is

H'(t) = P(YH ()P () — iP(t)(0:PY(t) . (6)

while the time-dependent observable A’(t) in the rotating
frame is related to the observable A in the original frame
through

A'(t) = P(t)AP'(t) . (7)

The third and fourth terms in the expression for Hi,; are
rotating fast in the direction opposite to the frame, and
they will be neglected in the equations of motion. The
Hamiltonian is then, up to constant terms,

H' = Addla+ Kealataa + 9713 (a+ aT)

A +B OS (W (
S C ( ) 52( )

Here, we introduced two parameters,

Ac = We — W, (9)
Ay = ws — wy, (10)

which quantify the detuning of the transverse drive from
the cavity and the spin, respectively. We study the emis-
sion spectrum as function of these two parameters.

In addition to unitary evolution, the system experi-
ences dissipation, which we model by the following relax-
ation parameters: 7. for the cavity, v for the spin deco-
herence rate, and y; for the spin dissipation rate, which
tends to relax it to the equilibrium spin polarization o,9.
In experiments that use optical spin polarization, the ef-
fective dissipation parameters can be very different from
the intrinsic dissipation parameters of the system [24].

We write the equations of motion for the expectation
values of o, o, and a':

idi? =20 ((a){(oy) — {a') (o)) —im ((o,) — 059),
(11a)
zd<§t+> = —(As + Bicos (wit) + iv2) (o) + Q(a") (o),

(11b)

aT .
idizt> = — (Ac+ i) (ah) =Kl (@h)[*ah) =Ns(o) =T
(11c)

The corresponding equations for ¢_ and a can be ob-
tained from the above by complex conjugation, by us-
ing (0,) = (0,)%, (0-) = (04)* and (a) = (al)*. In
these equations, we used the mean-field approximation
(AB) = (A)(B), where A and B are spin or resonator
operators.

Note that in the last equation we introduced a new pa-
rameter, Ng, representing the number of spins that are
simultaneously coupled to the cavity. In contrast, the
second equation that describes the evolution of the spin
operator o4 lacks this factor. This reflects the follow-
ing asymmetry: each spin senses the cavity individually,
while the cavity is driven collectively by all spins. In
reality, the strength of the driving is different for each
spin, and the consequences of this are discussed in the
Supplementary Material [28].

In what follows, we will study the steady-state response
of the system. If the longitudinal amplitude B, is suffi-
ciently small, we can expand all variables to linear order
as

(0(1)) = (0) O +(O) Vet - (0) Ve, (12)

where O represents any of the five operators of the model.
Note that the equations are written in the rotating ref-
erence frame. If we were to rotate the operators back to
the laboratory frame, the transverse spin operators and
cavity operators would actually be oscillating at these
three frequencies: the central frequency wy, the left side-
band frequency wy —wi, and the right sideband frequency
wy +wy. As we show in the Supplementary Material [28],
the sideband emission spectrum is given by <a>(i1), up
to overall factors.

IV. SIDEBANDS OF A DRIVEN SPIN

We now turn to a theoretical computation of the
sideband response. To set the stage for the full two-
dimensional response in the Ag — A. plane, we begin
by working with fixed A, and analyzing the steady-state
features as a function of Ag only. If the spin-cavity feed-
back is not strong, we can treat the cavity, which acts as
a nonlinear band-pass filter, as a source for spin trans-
verse driving having amplitude By. For given A, ., and
K. we determine the steady-state amplitude of this field
|(a™)|2, by finding the positive solution [29] to

(Ac+ i) {ah) + Kl P + T =0 (13)
which corresponds to setting the left-hand side of
Eq. (11c) to zero and neglecting the feedback of the spin.

The analysis presented in this section, in one form or
another, has appeared elsewhere in the literature [2, 3].
However, for completeness, we derive the main result and



examine each regime in detail, in particular, character-
izing the regimes relevant to the experiment. Nonlinear
response to a strong longitudinal field underpins Lan-
dau—Zener interferometry [30, 31]. An oscillating longi-
tudinal field can be treated as a phase modulation of
the transverse drive [3, 32-34], yielding a characteris-
tic Bessel-function dependence on the ratio of longitudi-
nal amplitude to frequency [35]. In that framework, the
transverse drive effectively contains infinitely many tones
at frequencies wt + nw), where n is an integer, and one
typically applies a rotating-wave approximation (RWA)
that retains only the kw tone of interest while discarding
n # k tones. That approximation fails when B; becomes
arbitrarily large, but in the linear regime in B; we can
obtain the full solution in By by truncating the Floquet
sectors to kK = 0,£1 only.

If we write the effective transverse field as By = Q{a').
We can reduce the number of equations to three,

zd<gt+> = — (Ag + Bicos (wit) +iv2){oy) + Bi{o,\14)
Z-d<datz> = 2(B{f{oy) — Br(o_)) —im ((0,) — 059) (15)
J

(o)D) = — BB, A —iy2 =

2(As —wi+ i) (A2 +13 +422|B,J2)

with the derivation given in Appendix A. In what fol-
lows, we restrict our attention to situations in which
wy > y2 > 71, although the expression (17) is more gen-
erally applicable.

The sideband spectrum depends strongly on the trans-
verse drive amplitude B;. To understand how the spec-
trum evolves, we begin with the weak-driving limit, when
B, < 1. Starting from Eq. (17), the linear response in
B4 is easily read-off to be

—B|Biot4
(1) _ 1D0t0, 2
o = - - +O(B7) . (18
(7+) 2 (As —w +172) (Ag + iv2) (B) . (18)

The spectrum has two resonances, at Ag = 0 and Ay =
wi, as seen in Fig. 5(a). These arise from the two pro-
cesses shown in Fig. 6(b): the resonance condition is met
when the level splitting of the spin, ws, matches either the
transverse field frequency, wy, or the sum of frequencies,
Wi + wi.

If we increase the transverse driving the spectrum
changes qualitatively. The first effect comes from power
broadening, arising from the factor 4 (y2/71)|Bs|? in
Eq. (17). This factor becomes important at |Bg| =
%\/W and it simultaneously broadens and suppresses
the resonance at Ag = 0, as shown in Fig. 5(b).

The effects of increasing the driving further are most

where the equation for (o_) is the complex conjugate of
the first equation. When cavity parameters are fixed,
emission intensity is determined by (o)1) expectation
values, since they are proportional to the cavity expecta-
tion values as shown in the Supplementary Material [28].
We continue the analysis by focusing on the reduced sys-
tem of equations before going back to the original system
to analyze the full two-dimensional spectrum.

The unitary part of the evolution in the reduced system
of equations (14) and (15) can be seen to come from the
simpler Hamiltonian,

Oz

H = (A + Bjcos (wit)) 5

+ (B:UJr + BtO'f) . (16)
We are concerned with the limit where the longitudinal
field is treated in the linear response regime.

First, we focus on emission at the right sideband fre-
quency w¢ + wy. The intensity of the emission spectrum
is then proportional to the square of the absolute value
of (o)1), as shown in the Supplementary Material [28].
The full solution for the right sideband, exact in By and
expanded to linear order in By, is:

4| B¢ A (wy — 2i7y2)

(@ = i) (A2 = (@ = 72)°) + 4IBiJ? (w1 — i72)
(17)

[
easily understood from the approximate expression,

(04)D) ~ —BiBi0, As (As +w1)
! 2(A2 +422[B*)(AZ + 4|B|? — o)’

(19)

which is obtained from Eq. (17) by ignoring the decay
rates v and 72, but not their ratio 75 /7;. This expression
can be justified in the aforementioned limit w; > o >
~1, with the caveat that the width of some resonances
may need to be regulated by the decay rates. From this
expression, we can extract two regimes, depending on the
relative magnitude of |Bi| and wy:

Rabi regime: When (/7172 < 2|By| < wy, Eq. (19) con-
tains two sharp resonances at

Ay = £\ /w? — 4| B2 (20)

These resonances, shown in Fig. 5(d) are reached when
the longitudinal driving w; matches the generalized Rabi
frequency /A2 + 4|B¢|?. The width of these resonances
is controlled by relaxation rates that appear in the ex-
act expression (17). The two resonances are asymmetric
due to the factor of (Ag + wj) in the numerator, which
suppresses the resonance with the negative sign.

Volcano regime: When |Bi| > w;/2, the condition (20)
can no longer be satisfied. Then, Eq. (19) no longer con-
tains any sharp resonances. Instead, a volcano-shaped
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FIG. 5. The square of the absolute value of (o) com-
puted in the wy > v2 > 1 limit as By is gradually increased.
Throughout the figure, we keep values w; = 5, and ~; is varied
in each plot with values given in the legend in (a). B goes
through values: 0.01, 0.1, 0.5, 2, 3, and 30 from (a) to (f),
given in units of 72. The red dashed lines show the positions
of A¢ = 0 and As = w resonances, while the gray dashed
lines show the positions of the Rabi resonances. In the (f)
plot the vertical lines are drawn in the positions of the peaks,

ie. £2|Bi|{/22. Note that this last plot is drawn on a much

wider scale than the other plots. The intensity (y-axis) varies
significantly between the plots.

spectrum emerges, as shown in Fig. 5(f), reflecting the
interplay between broad resonances centered at Ay = 0
and the factor Ag(Ag + w) in the numerator, which cre-
ates a transparency region near Ay = 0. The width of
the volcano is of order 24/72/v1|Bi|, while the width of
the central transparency region is 2|B;|. As in the Rabi
regime, the factor of (Ag + wy) gives rise to asymmetry
between the two peaks of the volcano. The location of
the peaks of the volcano can be found from the local
maxima of Eq. (19). This leads to the quintic equation
from which the peak positions can be estimated, and in
the limit w) < 2|By| they are

Y2 o w 24! w1
S5 B (14 [F) o (),
1Bl T 8< Yo | B |?

where Apax is the detuning at which two broad peaks
reach their maximum intensity.
In addition, the spectrum displays crossovers at the in-
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FIG. 6. Diagram of the processes that determine the linear
response in By for (a) the left sideband, and (b) the right
sideband.

terface between the different regimes. At the crossover
between weak-field and Rabi regimes [Fig. 5(c)], for
VY2 < 2|Bg| < 72, only the right Rabi resonance is
visible. On the other hand, at the crossover between the
Rabi and volcano regimes [Fig. 5(e)], for 2|B;| = w, the
Rabi peaks are not sharp, but they have not been suffi-
ciently broadened for the volcano structure to emerge.
We call these crossovers I and II, respectively. The
crossover II between the Rabi and the volcano regime is
illustrated through the analysis of the motion of complex
poles of the response function in App. B.

Figure 7 shows the different regimes in the Bi-w plane.
Here, we also show the spectrum in the slow longitudinal
field limit w; < 79, which is generically seen to only con-
tain a single peak regardless of the value of B; (except
for certain fine-tuned parameters, where a richer struc-
ture can be obtained). The width of this peak tends to
increase with By due to power broadening.

This broadening, which comes from the By—dependent
resonance that multiplies brackets in expression (17) is
a common obstacle in spectroscopy. It also appears in
the central frequency response, as it can be seen from
Eq. (A1), where it leads to a featureless spectrum. How-
ever, as we showed, in the sideband response, when w;
is larger than 7o, the spectrum develops many interest-
ing features that are not limited by power broadening.
In the other limit, if we let w; tend to 0, we recover the
central frequency power-broadened response. When wy is
very small but finite, most of the changes to the spectrum
will still be washed out by this broadening.

Thus far, we have focused exclusively on the right side-
band response. We now turn our attention to the left
sideband, whose spectrum is given by the absolute value
of (0,)=Y. In the reduced model that we use in this
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FIG. 7. Different regimes of the sideband response. When
wr > 72, as By is increased we encounter three different
regimes separated by crossover regions I and II that are
shaded in the figure. The crossover II between the Rabi and
the volcano regimes lies around the wy = 2B solid line. In
the slow field limit (w1 < 72), the spectrum evolves smoothly
without a clear separation between different regimes.

section, (o, )(~1) is simply obtained by replacing w; with
—w in the expression for (o4 )™ in Eq. (17). This re-
placement is equivalent to the transformation that con-
sists of complex conjugation combined with the replace-
ment of Ay by —Ag. Since the spectrum only depends
on the absolute value, the complex conjugation can be
ignored. Hence, the left sideband spectrum is the mirror
image of the right sideband spectrum, under the reflec-
tion Ay — —A,.

V. SPIN-CAVITY SIDEBANDS

We return to the original problem of a coupled spin-
cavity system [see Sec. III], with two external drives: the
spin is driven by the longitudinal field at frequency w; and
the cavity is driven at frequency w;. The cavity transfers
oscillations to the spin at the latter frequency through an
effective magnetic field By = Q(a?)(®). This field is not
treated as an external parameter, as in Sec. IV, but it is
determined by a single-mode driven nonlinear cavity with
natural frequency w,. Since the spin sees two drivings, an
external driving at frequency w; and an effective cavity
driving at frequency wy, it can act as a frequency-mixer to
produce radiation at the sum and the difference of these
two frequencies. This sideband radiation, in turn, drives
the cavity at wy £+ wi, and we can read out the sideband
response of the spin from the cavity oscillations.

V ’Yl“{z '\D 2Bt

0
Aslya

— A

FIG. 8. 2D right sideband response given by |(a')® | without
the cavity nonlinearity and the spin feedback. The strength of
the cavity driving is weak in (a) where gp is 0.1, and strong
in (b), where gp = 100.0. The slices along which the one-
dimensional response is shown are indicated by the horizontal
dashed lines. They are at the positions Ac = 0, +w; in (a).
The signal is amplified when A, = w; for the right sideband
and this fact is reflected in the plots. However, when A, =0
the spin driving is the strongest and near the linear response
regime (a) we see the signal at this point. The strong field
leads to power broadening and this is the reason why we see
only one of two resonances. In (b) we see the transition from
the volcano to the Rabi regime as A, is varied. The volcano
spectrum is enhanced near A; = w;. Even though the Rabi
regime is far from the amplification region, we can still see the
peaks because they are much sharper than the broad volcano.
The rest of the parameters of the plots are given in units of
Y2: wy = 5.0, y1 = 0.01, 7. = 1.0, and ©Q = 0.01.

The simplified description that we have given ignores
the higher-order spin-cavity feedback effects. In actual-
ity, the effective cavity driving at wy is renormalized by
the spin oscillations themselves. However, the effect of
this feedback on the sideband spectrum is negligible if
the spin-cavity coupling strength is weak. In addition to
this, we will assume at first that the cavity is linear. We
use this as a basis from which we will later show how
making the cavity nonlinear brings about novel effects.

A. The Right Sideband

We now study the right sideband spectral intensity
function in the two-dimensional Ag — A, plane. In other
words, in Sec. IV we presented the Ag-dependence of the
response by fixing the cavity parameters, and now we
want to study the A.-dependence as well. In the Supple-
mentary Material [28] we show that the intensity of the
right sideband is determined by the |(af)|? expecta-
tion value. Within the limits mentioned earlier, in which
the Kerr nonlinearity and feedback effects are neglected,



the steady state solution for the cavity equation (Eq.
11c) reduces to the damped Lorentzian oscillator solu-
tion, (af)©) = a5 Therefore, the effective trans-
verse field that each spin feels is

—gp§)
Bi= ——"—— 22
CT2(A + i) (22)

The amplitude of the field is highest when the external
driving is resonant with the cavity (A. = we — wy = 0)
and its value is gzp—f. As the external driving is detuned
from the cavity, the amplitude falls off with the width
set by the decay rate .. The right sideband steady state

solution for the cavity is then

NsQ

V) — TSR
a =
< > Ac_wl+i’70

(o4) D (By) > (23)

— —9p
Bi=st@ctie

with the derivation given in Appendix C.

Equation (23) reflects the twofold role of the cavity
on the sideband response. First, the cavity provides an
effective transverse drive to the spins whose amplitude
is given in Eq. (22). This drive is strongest when the
cavity is at resonance with the transverse frequency wy.
Second, the cavity acts as an antenna that measures the
response itself. This gives rise to the amplification factor
in front of Eq. (23), which is maximal when the cavity is
at resonance with the sideband frequency w +w;. While
Eq. (23) ignores feedback effects, we have checked explic-
itly that it captures the full solution to the mean field
equations (C1) to an excellent approximation whenever
the cavity-spin coupling is small.

When the cavity is weakly driven (gp < 1) we obtain
from the linear response solution in Eq. (18),

—gp NsQ?0 g

1Ay — o+ 172) (B + i72) (Bo 1 i70) (Do — o + ma4‘)
This response shows four resonances. The two resonances
at Ag = 0 and Ay = w; were discussed in Sec. I'V. The res-
onance at A, = 0 comes from the fact that near the linear
response regime, the spectral intensity is proportional to
the magnitude of By, which assumes its maximum value
near A. = 0. The last resonance occurs when A, = wy,
and it describes the amplification of the signal by the
cavity.

If the cavity driving strength gp is increased, the effec-
tive magnetic field felt by the spin increases, and power
broadening suppresses the Ay = 0 resonance. Since the
magnetic field is highest near the A, = 0 resonance we
expect this suppression to occur first near this resonance.
This scenario is shown in Fig. 8(a). Out of the four reso-
nances in the Ag;— A, plane, the first one to be suppressed
isat Ag = A, =0.

After an additional increase in cavity driving strength
we obtain the spectrum shown in Fig. 8(b). This fig-
ure demonstrates the transition between the Rabi and
the volcano regimes, which can be seen for a fixed set of

parameters. Near A, = w) the effective field amplitude
(22) is large (|Bgy| > wi), corresponding to the volcano
regime. Although the spectral weight of the volcano is
spread out, the signal is amplified by the cavity and it
is therefore clearly visible in the spectrum. On the other
hand, for large A. the amplification of the sideband ra-
diation is much weaker, and one would expect not to see
significant response. However, when w; > 2|By| we enter
the Rabi regime, in which the resonances are very sharp.
This leads to visible peaks even though the amplification
is weak. Which of these two features, volcano and Rabi,
is more visible depends on the relative sizes of vo and ~.:
o sets the width of the Rabi resonances, while 7. sets
the width of the amplification region.

B. The Sideband Symmetry

In Sec. IV we showed that the left sideband response
can be obtained from the right sideband by replacing Ag
with —Ag, but keeping By constant. A natural question
to ask is whether this symmetry extends to the full two-
dimensional spectrum. In App. C we show that the sym-
metry condition can be generalized: the left sideband is
obtained from the right sideband by simultaneously re-
placing Ag with —Ag and A, with —A.. This can be
seen as a composition of two reflections in the Ay — A,
plane or, equivalently, as a m-angle rotation of the plane.
The symmetry is present even when the spin-cavity feed-
back is not ignored. One consequence of the symmetry
is that the left sideband is most strongly amplified near
A. = —w;. The relation between the left and the right
sideband spectra is illustrated in Fig. 9(a).

This symmetry relation is clearly violated in the exper-
imentally obtained spectra shown in the bottom row of
Fig. 3. The general symmetry-based principle excludes a
large class of linear models and points to a nonlinear ori-
gin of the asymmetry. Although the exact details of the
experimental conditions in the complex diamond-defect
setup are not known, we illustrate here how Hamilto-
nian nonlinearity can give rise to this counterintuitive
response. By introducing Kerr nonlinearity to the cavity
subsystem, we break the symmetry relation. This nonlin-
earity enables the cavity to mix frequencies in an asym-
metric way between the left and the right sidebands. The
breaking of the symmetry relation between sidebands is
shown in Fig. 9(b). We will next analyze the effects
arising from such cavity nonlinearity.

VI. CAVITY NONLINEARITY AND THE
SIDEBAND ANOMALY

Nonlinearity of the resonator gives rise to an
amplitude-dependent shift of its resonant frequency. As
an example, the Duffing resonator with a cubic nonlin-
ear term in the equations of motion exhibits a blue shift
for positive nonlinearity coefficient and a red shift for
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FIG. 9. Comparison between the 2D-spectra of the theoreti-
cally computed left and the right sideband. (a) In the absence
of nonlinearity, when n = 0, the right sideband spectrum is
obtained by m-rotation (A; — —Ag, and Ay — —Ag) of the
left sideband spectrum. (b) When Kerr nonlinearity is added
(n = 1), the symmetry between sidebands is broken. The pa-
rameters in units of v2 are w; = 1.5, y1 = 0.01,~v. = 2.0, gp =
200.0, 2 =0.01, Ns =1, and o3¢ = —1.

negative coefficient. The Kerr nonlinearity of the cav-
ity similarly gives rise to the cubic term in the optical
Bloch equations. However, the nonlinearity can also mix
frequencies and consequently modify the emission spec-
trum.

We show that if the resonator is driven to its non-
linear regime, the symmetry between the two sidebands
is broken. We demonstrate our results with the exam-
ple of the Kerr nonlinearity. First, we recall that the
nonlinearity leads to the blue-shifted tilted central spec-
tral line in the response (when the Kerr coefficient K. is
positive). We show that the influence on the sidebands
is more complicated. The magnitude of the blueshift is
a non-monotonic function of the longitudinal frequency
and the spectral response can exhibit many complicated
features. This hypersensitivity of the nonlinear response
to the physical parameters points to its usefulness as a
gauge of the internal dynamics of quantum systems.

The cavity is a dynamical system that both drives
and measures the spins. The effects of the Kerr non-
linearity on the response are mediated through the spin-
cavity feedback and become particularly visible in the
sidebands. Throughout the section, we treat the nonlin-
earity and the spin-cavity feedback perturbatively. The
perturbative solution restricts the response to be outside
of the bistability region, which requires a strongly ex-
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cited nonlinearity. This is the region with the two stable
steady-state solutions for the Duffing resonator.

The Kerr nonlinearity with K. > 0 blueshifts the cav-
ity frequency. This can be seen in Fig. 13(c), where the
spectral line is slanted to the left. As shown in App. C2,
parameter

g K.
4v3 7

n= (25)

determines the strength of the Kerr nonlinearity. To the
cubic order in 7, and away from the spin resonance where
the spin-cavity feedback becomes prominent, the position
of the maximum of the central resonance is shifted to

AD Iase0 = =17 + O (7). (26)

This shift of the resonant detuning to the left corresponds
to the blue shift of the cavity frequency. As 7 is varied
in panel (c) of Fig. 13, the maximum of the resonance
closely follows this simple approximate result. It is worth
noting that a further increase of n would lead the cavity
to the optical bistability region.

The effect of the Kerr nonlinearity on sidebands is sub-
tler, and it is treated in detail in App. C 3. However, the
most direct effect is the shift of the spectral lines. We
focus on the case when K. > 0, which leads to the blue
shift of the spectrum. The results can be straightfor-
wardly generalized to the case of the negative Kerr coef-
ficient (K. < 0), though this requires higher-order terms
to stabilize the Hamiltonian. As it is shown in Appendix
C, the resonances that govern the amplification of the
sideband signals appear. The positions of the resonance
centers are to cubic order in 7,

e
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The positions of the central resonance and the two side-
bands as functions of the longitudinal frequency w; are
shown in Fig. 10(a).

The first term in Eq. (27) exists in the absence of
the Kerr nonlinearity (n = 0). It is a simple condition
Ac. = we — wy = *w) for the sideband light to hit the
cavity resonance. The second term creates the blue shift
when the longitudinal frequency is small compared to the
cavity width .. Importantly, it shifts the right and the
left sidebands in the same direction. When w; < v, this
shift is dominant and it comes with a non-trivial factor
of 2. This factor is a consequence of the frequency mix-
ing that occurs due to the nonlinear cavity term K.afala
from Eq. (11c¢). As w is increased significantly beyond
the cavity width ~., this effect becomes less significant
since the off-resonant sidebands cannot excite the cavity

AFED = 40 — 27

c, res

(27)
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FIG. 10. The positions of the central resonance, Aﬁ?)res, and the sideband resonances, Aéﬂés, depending on the frequency of
the longitudinal field w are shown in (a). The strength of the Kerr nonlinearity is n = 0.7, and that is enough to lead to an
anomalous behavior when wy is comparable to 4.. The 2D spectra for the central line and the sidebands (b1-3) are drawn when
w1 = 0.57c. In this region, both of the sidebands are shifted to the left of the central resonance. The rest of the parameters of
the plots are gp = 50.0, 2 =0.01, Ng =1, o054 = —1.0, 71 = 0.01, and ~. = 1.0.

nonlinearity strongly. In the limit when w; > 7. the po-
sition of the resonance can be primarily understood as a
simple resonant amplification of sideband radiation if the
sideband frequency matches the bare cavity frequency w...
The intermediate region is resolved through an interplay
of the resonant sideband amplification when the sideband
photons hit the cavity resonance and the excitation of the
Kerr nonlinearity, which leads to frequency mixing.

It can be read out from expression (27) that when
w) < 7. the shift of the resonance of both of the sidebands
is twice the shift of the central resonance (Eq. (26)). The
right sideband is to the left of the resonance, and the
stdeband anomaly always occurs at very slow longitu-
dinal fields. However, when w; is sufficiently small the
sideband signals are indiscernible because of the broad-
ening effects. Therefore, we look at the condition for
the anomaly at a finite w;. We define the nonlinearity
strength Manom (w1/7c) as the condition for the onset of
the anomaly,

A((:,l)res {nanom <UJ1>} = Ag?)res {nanom (M>] - (28)
Ve Ve
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the anomaly Kerr strength K2"°™ for the onset of the

The solution of the equation for napom = gives

sideband anomaly,
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(29)

In Figure 10(a), the nonlinearity strength 7 is large
enough that the order of the right and the left side-
bands becomes inverted at low w;. This effect comes from
the quadratic term in Eq. (27). One should be careful
when considering these analytic results; the nonlinear-
ity strength becomes large enough to render the approx-
imate results qualitative. With this cautionary remark,
we write the expression for the distance between the side-
bands,

4 2
Avg,l)res - Ag,_lrle)s = 20&)1 1- 7gPKC 3
32 (wf +12)

>+(’)(773).
(30)

When the term in the brackets vanishes, the order of the
left and the right sideband is inverted. This happens at
the inversion Kerr strength,
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FIG. 11. The regions of the right-sideband anomaly (RSA)
and the left-sideband anomaly (LSA) shown in the diagram
with the nonlinearity strength 7 on the y-axis and the nor-
malized longitudinal frequency wi/7. on the xz-axis. The line
separating two anomalous regions from the region without the
anomaly (normal region) is calculated in Eq. (29) and drawn
in red. Note that there is no sharp transition here, and the
shifts close to the line and in the normal region can still be
very large. The blue line going through anomalous regions
separates parameters for which the order of the right and the
left sideband is inverted and those for which it is not. As || is
increased, the cavity is very nonlinear and one may see dou-
ble resonances and higher-order nonlinearities, among other
phenomena. An additional increase leads to the appearance
of two solutions, which define the bistability region. In very
slow longitudinal fields, the sidebands become invisible due
to broadening (the red area).

The conclusions of the section are summarized in
Fig. 11. The figure sketches different regimes as a func-
tion of the cavity nonlinearity strength 1 and the nor-
malized frequency of the longitudinal drive w;/7.. The
results were generalized to the case of a negative Kerr
coefficient (n < 0). The figure is mirror-symmetric with
respect to the n-axis. While we restricted the prior anal-
ysis to 77 > 0, none of the equations rely on that assump-
tion. The difference is that when n < 0 the cavity fre-
quency is red-shifted and not blue-shifted. The anoma-
lous behavior here is that the left sideband in Fig. 10(a)
is to the right of the central resonance. We call this the
left-sideband anomaly to differentiate it from the case of
a positive Kerr coefficient where we call the effect the
right-sideband anomaly.

The red and blue lines in Fig. 11 represent the con-
ditions (29) and (31), respectively. The lines are drawn
as dashed for high || to indicate that the approximation
of small |n| used in this section starts to break down.
In the region of strong nonlinearity (the blue area), the
spectrum would be significantly altered even before the
onset of bistability. Not only do the higher-order terms in
7 become important, but the structure of the spectrum is
not well-described by simple resonance conditions. One
would have to return to the full analysis of dynamical
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equations, some of which is presented in App. C. If the
cavity is driven to the nonlinear regime by strong driv-
ing gp, the higher-order nonlinearities might also become
excited and should be included in the Hamiltonian. The
region of small wj is drawn in red and easily matches the
condition for the anomaly in Eq. (29). However, this re-
gion is not experimentally accessible since for small w;
it becomes impossible to distinguish between the central
resonance at wy and the sidebands at wy =+ wy.

VII. OUTLOOK

Throughout the paper, we treated dissipation in an ad
hoc way, which is justified in certain limits [36]. However,
more systematic treatment through a Lindblad equation
as in Ref. [13] (or alternatively a non-Markovian quan-
tum master equation) might uncover novel details. This
relies on a better microscopic understanding of the dissi-
pation in diamond defects. The analysis in the dressed-
atom picture should give an intuitive description near the
Rabi regime [13], as well as provide us with a proper ex-
tension of the theory with the full quantum treatment of
electromagnetic radiation [37, 38].

We modeled the cavity nonlinearity as a Kerr nonlin-
earity due to its relevance for many quantum resonators
in solid-state physics. However, we believe that the side-
band sensitivity to cavity nonlinearities is more general,
and these details remain to be characterized.
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Appendix A: Driven spin model

The steady-state solution for the central frequency
does not have corrections in linear response,

(A% +13) of9
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After enough time passes, the spin will settle to oscillate
at +w; frequencies in the rotating frame. We can per-
form calculations for one of the sideband,s and the other
can be obtained by changing w; to —wj. Picking up the
terms that oscillate at w; we get the following system of
equations:

d{oy ) .
Z% = — (A —wi +i79) (o)
B
+ Bi(o,) - 71<0+>(0)7
d{o_)V .
= (A — (@
= ( B+ w) — 1y2) (o) (A2)
= Bl (o) M + o),
d(o,)) .
Z% = (w1 —im) (o)

+2 (B§<a+>(1) - Bt<a_>(1)) .

The steady-state solution of the system of equations has
two contributions,

(o)) = o )0+ Bt<az>(1)>

(A3)
The first term in the equation contains two resonances
that correspond to two different processes in the linear
response regime, where one of the resonances becomes
power-broadened (shown in Fig. 5). The other term
comes from the fact that the ground and excited state
populations start oscillating with w; frequency. The so-
lution is given in the main part of the paper.

1 Bl<
Ag — w) + iy 2

Appendix B: Response function poles

In this appendix, we present an alternative descrip-
tion of the transition between the Rabi and the volcano
regimes. If we make an analytic continuation of Ag to the
complex plane, we can track the motion of poles of the
response function in the complex plane. There are four
poles in the approximate response, Eq. (19), two Rabi

poles that are at ++/w — 4|B;|?, and two poles from the

power-broadened part, 427 %\Bd, that always lie on

the imaginary axis. The actual positions of the poles are
slightly shifted relative to these values, due to the decay
rates appearing in the exact expression, Eq. (17).

As shown in Fig. 12, the transition from the Rabi to
the volcano regime can be seen as movement of the Rabi
resonances in the complex plane away from the real axis
as wy is decreased. In the Rabi regime, 2|Bi|/w) < 1, the
resonances (red dots near the real axis in Fig. 12(a)) are
responsible for most of the weight of the spectrum and
they are visible as sharp peaks in the spectrum. They
never intersect the real axis, because they always have an
imaginary part set by decay rates. As can be seen from
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Eq. (19), the response has zeros at Ay = 0 and Ay = —wy.
Since the resonance with the negative real part is close
to the zeros it is suppressed relative the other resonance.
As the ratio of transverse driving to longitudinal fre-
quency |Bg|/w) is increased, both resonances move to-
wards the origin, Ay = 0, leading to the crossover 11
region [Fig. 12(b)]. As |Byi|/w; is further increased, the
resonances start moving away from each other, mainly
along the imaginary axis: now the Rabi condition, (20),
is satisfied but for imaginary frequencies. In the volcano
regime (shown in 12(c)), the imaginary Rabi resonances
create a broad peak, and the zeros (blue dots in the fig-
ure) create the central transparency region. In addition,
the power-broadening resonances that lie further away
on the imaginary axis provide weight to the tails of the
spectrum and set the overall width of the volcano.

Appendix C: Driven spin-cavity model

The system of equations for the five operators of the
coupled spin-cavity system is:

d y . .

;t+ = —(As + Bjcos (wit) + 'L"‘}/Q)a'z’_ + QG,TO'; +Fi,

d .
i% = (As + B cos (wlt) 272) _ an. + ]_-z

da ; ; . . .

dt = 20) (aO'Jr — aT(ji) -7 (O—Z _ U;Q) + ]:Z7
i@:—(A z’yp) KaJF Taszz Q£+FT

dt =+ 7L,
Zdj (Ac —i’Yc)a+KCaTaa+ngi + g + Fa

dt — - 5 ,

(C1)

where we added the Langevin forces (F;) to the equa-
tions, with the effect that the Lie algebra structure is
preserved. The quantum correlations between the cavity
and the spin are neglected ((AB) ~ (A)(B)). It is clear
that every spin within this approximation is equivalent
and we can write the equations for an average spin op-
erator components (o, = N ZZ L 0l). The system of
equations for expectation values can be written in terms
of dimensionless variables and parameters defined in the
following way:

~ A ~ A
AC:J’ AS:J) '3/1 71 ~c*ﬂ)/c7
Ve V2 V2 V2
_ gl%KC NgQ2ged g%,ﬂ2
4y3 Y2Ye V17273
i (C2)
P P R
= g5 » Oz Pl 0+ = gp Q0T
2% ? 2727c
~ B . w
B=—, 0 =—
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FIG. 12. Logarithmic intensity plot of poles associated with resonances (red dots) and zeros (blue dots) as they move through
the complex frequency plane. The parameters are: v1 = 0.05, |B;y| = 15.0, and w; goes through values 40.0, 30.0, 3.0 from a)
to ¢). Note that in the crossover region in b), where wy = 2B; the two resonances hide the zero at the origin.

The system of equations with these new variables and
parameters is

idéf = — (AS -+ Bl CcOos ((:)11?) + Z) o4+ Aa—za (CS)

dt
'L%d;%z :%(A*5'+—A5'—)_Z(&z_1)v (04)
Ldd _ (AC + z) A—n|APA-vG, —1, (C5)

where time is measured in units of Ty = ,%2

1. Steady-state sideband symmetry

In the absence of cavity nonlinearity (n = 0) there is a
symmetry that connects the left and the right sideband.
To study the sidebands we are going to write the steady
state equations for the +w; Fourier component,

— A5 AW 4 BisO)

(a;l A, - Z) ’
(al vA, - z)
§ (4@50 - 4060 1 450 - 406

s = )

zZ (:) .
(5 -7)
7

~(1) _
gy’ =

ag

)

A(l) . I/O’+ ’
)
A1) vol)
(F-5)

(C6)

Index in brackets specifies the Fourier component of the
variables, 0 standing for the central frequency and +1 for
the right and left sideband frequencies +wj. If we reverse
the signs of the detuning parameters (Ay — —Ag and
A. — —A.) and change the signs of the variables we can
move from one sideband to the other. Transformations

allow us to find the left sideband from the right sideband.
If we are looking at the absolute expectation values of the
operators, the transformation reduces to switching the
signs of detunings. Turning on the cavity nonlinearity by
making 77 # 0 is one possible way to break this symmetry,
which leads to a different response for the left and the
right sideband.

2. The central resonance

We perform the analysis in the dimensionless system of
units which elucidates a clear separation between differ-
ent effects. The frequencies and the rates are expressed
in units of the decoherence rate v, and the cavity width



707
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Aczia As_ia 71_27
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The rescaled variables ¢; and A correspond to the spin
and the cavity, respectively, where

(@) . (o) . )
A= 90 0 Oz = P 04 = g Qo (09)
2% ‘ 272%c

The system of equations with new parameters is:

dé L

i%% = — (Ag+ Bicos (if) +1) &4 + A5, (C10a)
1 do, &, .. - o
71 7 3 (A"6, —Ac_)—i(6,—-1), (C10b)
1 dA
% e (A + z) A—nlAPA—-vé, —1. (Cl0c)

The dimensionless parameters 7,
strengths of different effects,

v, and £ set the

_ gl%K _ Ns§220§q gl%Q2

v C11
4ry3 Y2 Ve (C11)

Y1727e
The parameter n determines the amplitude of the cavity
(Kerr) nonlinearity, while v determines the strength of
the the spin-cavity feedback. Parameter £ determines the
scale of the power broadening.

We first review the effect of the nonlinearities on the
central resonance of the cavity at angular frequency wy
and proceed to discuss the results for the nonlinear re-
sponse at sideband frequencies wy, £ wy.

The central resonance is obtained by looking at the
zero-frequency component of equations (C10). When a
linear cavity (n = 0) is uncoupled from the spin (v = 0) it
settles to a steady state where the number of photons in
the cavity is determined by how strongly it is driven (set
by gp and A.) and how fast it is losing photons (7). The
nonlinearities have the effect of changing the shape of the
spectral line and renormalizing the resonant frequency
of the cavity. The central-resonance steady state of the
cavity is the solution of the polynomial equation,

-1
Ac+i+nAO)2 +

A0) —

=) (C12)

THAZTEAO 2

If both the spin and the Kerr nonlinearity are com-
bined, we need to solve for the roots of the quintic equa-
tion, obtained by taking a modulus of Eq. (C12). The
numerical solution is displayed in Fig. 13( ) where the
central resonance intensity is plotted in the A=A, plane.

The spin-cavity feedback changes spectral properties of
the cavity near the spin resonance with the appearance of
the characteristic S-shape in the dependence of the spec-
tral intensity on the spin detuning Ag. The parameter v
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FIG. 13. The effect of both nonlinearities on the central res-
onance is presented in panel (a) as a two-dimensional plot in
the A; — A, plane for parameters shown in the plot. The
S-shaped spectral line as a function of spin detuning A is
shown in panel (b) at A, = —2.0 for different values of £. In
(c), the spin-cavity feedback is ignored (v = 0), and A, = 3.0.
The maximum of the resonance is shown to closely follow an
approximate result —n for different values of 7.

determining the strength of this effect is proportional to
the number of spins Ng interacting with the cavity. If a
lot of spins interact with the cavity, they visibly alter the
spectrum near Ay = 0. The dependence of the S-shaped
response on the parameter £ is shown in Fig. 13(b). As
¢ is increased, due to the increasing power of the drive,
the spins effectively decouple from the cavity, since the
sharp resonance near Ay is washed out.

Without nonlinearities, the cavity is a simple
Lorentzian,
AOR = L B — o)) - 2
IR 182 +72)
(C13)

where Q|(at(®)| acts as an effective magnetic field, as
shown by the system of equations in (C1). Nonlineari-
ties may induce instabilities, which appear in Eq. (C12)
when the quintic polynomial for |A(®)|? acquires multiple
positive roots. Although we study the cavity beyond the
linear regime, we will not address the instability region.

Since the spin nonlinearity is localized near the spin
resonance (Ag = 0), far away from this resonance (Ag >
1) there is only a Kerr nonlinearity and the central fre-
quency solution is approximately given as

1

A2
(Ac+nlaop)

, when A, — oo

(C14)



The physically relevant solution is the real root of this
cubic equation and there is only one real root for any A,
below 1 ~ 1.54. The position of the peak is the solution
of:

Ac+ A2 =0, (C15)
To cubic order in 1 the position of the center is shifted
to

AO)

c, res

Avsoo = —1+O(0°), (C16)

On the other hand, without the Kerr nonlinearity (n =
0), the central frequency response is a solution to another
cubic equation,

-1
D(Asf’i)
1+AZHE|AO)2

|A@2 = , asn— 0. (C17)

Ac+i+

When the spin’s feedback into the cavity is weak, the
solution linear in v remains a good approximation,

) 2v (AA 1)
AV ~ 1- - -
(1+Ag) (1+Ag) :

1+ A2
(C18)
If both of these are combined, we need to solve for the

roots of the quintic equation. The results are presented
in Fig. 13.

3. Sidebands

Assuming v and 7 are small, we start the analysis of the
sideband response, including the cavity nonlinearity. We
show that the sideband spectral lines exhibit large sensi-
tivity to the nonlinear effects, where a dramatic change
of the spectrum results even from a moderately strong
nonlinearity. Arguably, the most peculiar effect, which
we call the sideband anomaly, is the possibility that both
of the sidebands emerge on the same side of the central
resonance.

We look at the cavity steady-state expectation value
component that oscillates at the right sideband frequency
(wy + w1). To the first order in the longitudinal field
amplitude, the steady state, obtained from Eq. (C10c),
is given by

vt 4 m A AW 4 g (A©@)? 4x()
(@ Al z)
A
where the absolute value |A®")| determines the cavity am-
plitude at the right sideband frequency wy + w.

The expression in Eq. (C19) encapsulates many effects.
Before we turn to the analysis of the second term in the

AN —

, (C19)

+0 (7).
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numerator, i.e. 2n|A®2AM  we discuss the meaning of
other terms. We assume that the spin-cavity feedback is
weak (v < 1).

The term in the denominator is a resonance that oc-
curs when the sideband frequency hits the cavity reso-
nance (A = wy). The first term in the numerator, V&S_l),
represents the spin that drives the cavity at the right-
sideband frequency. The expectation value of the spin

operator &Srl) at the right sideband frequency is

Ly Big — 4050 — 405
0'+ = = .

C20
o — Ay —i (C20)

One of the effects of the Kerr nonlinearity is felt in the
fact that the central resonance A is modified by the
Kerr nonlinearity, as shown in Appendix C. Furthermore,
the term fAU)&iO) indicates that the cavity now drives
the spin at the sideband frequency. However, when the
spin-cavity feedback is negligible this term can be ig-
nored.

A more impactful consequence of the Kerr nonlinearity
comes from the last term in the numerator of Eq. (C19).
It connects the right sideband amplitude A equation
with its conjugate. In other words, it “mixes” the right
and the left sideband solution. This term does not affect
the positions of the sideband resonances, but only their
detailed shape.

4. The sideband anomaly

To find the steady-state solutions for the sidebands, we
need to pick up all the terms in the system of equations
in Eq. (C1) that oscillate at frequency w). The cavity
equations for the right sideband are:

- (A<o>)2 A0 _ s — g
) (C21)
(“’1 LA, Z) A 9 402 45D

The previous two equations can be combined into the
expression

where we introduced the notation for the complex fre-
quencies,



2y =+ o AO12 14, (C23)
i

C
The resonance that multiplies the rest of the expression
that we denote by R reduces to

1 Ve

R — —= - = -
0 A F L+ AcFwtive

(C24)

in the limit 7 — 0. The expression describes an amplifi-
cation of the sideband radiation when the outgoing light
hits the cavity resonantly.

As n is increased, the existing resonance is shifted and
a new resonance appears. Since we are working inside
the stability region, the expression is evaluated for small
7. R can be written as

c AC, —) ’
n?*AO
+ s — 2| AOP,
% —1
(C25)
and for small 77, one of the resonances is dominant,
n?| A
2(2— 1
R~ — 1-= (% )2A(o)4 ~ 2[A(0) (4 °
Ao —z + 1 | \ A n?| |

T EE) I T )

(C26)
The center of the resonance is the solution of the equa-
tion,

21 4(0) |4 &1
n°|A «
| Ye — O

Ve @) 2
2<1+(%))

Since A© is a function of both A, and 7, this is a poly-

nomial equation whose real root is the center of the res-

onance. By performing a similar analysis for the left-
sideband solution, we write the general result as

(C27)
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Appendix D: The experiment with P1 and NV
centers in diamond

2\ 3

/N
?12"51

(C28)

We present experimental measurements of the
sideband-emission spectrum of the P1 center. We first
discuss the discovery of the volcano transparency flanked
by asymmetric peaks as seen in Fig. 3. We also show
that the cavity-based experiment displays a left sideband
anomaly both in the P1 and in the NV center.

+0 (%) .
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FIG. 14. Diagram of the hyperfine structure of the P1 center
in diamond. The external static field Bpc sets the Zeeman
splitting ws. The interaction with the nucleus introduces ad-
ditional structure to the energy-level diagram with the hyper-
fine splitting wy. ms is the spin quantum number and m;g is
the nuclear spin number. The allowed transitions are marked
with the red arrows in the diagram.

1. Substitutional nitrogen (P1) defect

In P1 or the substitutional nitrogen defect, a carbon
atom is substituted by nitrogen. The unpaired electron
forms the defect with one of the four possible neighboring
carbon atoms. The spin of the defect lies within a rel-
atively large diamond band gap [39] and interacts with
the nitrogen spin-1 nucleus which leads to a hyperfine
splitting. The effective Hamiltonian for the isolated spin
is

Hpy = v.Bpc (S, cos 0 + S, sin 6)

+ A S L + Ay (oI + Syly) , (D1)
where A and A, are parameters that give the strength
of the hyperfine coupling parallel and perpendicular to
the hyperfine axis, respectively [40]. Here, S; and I; are
spin-1/2 and spin-1 operators, respectively, the z-axis is
aligned with the defect, and 6 is the angle between the
DC field and the defect axis. If the DC magnetic field is
applied along one of the cubic axes of the crystal, then it
makes an equal angle 6y = arccos (1 / \/g) with respect to
all four possible orientations of the defect [see Fig. 1(b)].
In that case, the response is uniform for all defects.

The DC magnetic field sets the scale of the energy split-
ting between the hyperfine triplets, ws = Y.Bpc. The
strong high-frequency magnetic field acts perpendicular
to the DC field and the low-frequency field acts parallel
to it. We move to the frame rotating with the transverse
frequency wy about the axis of Bpg. The Hamiltonian in
the rotating-wave approximation and large ws compared
to the hyperfine terms is

gpl = (AS + B cos (wlt)) Sy + BySyr +wnSy Ly, (DZ)

where the primed axes are aligned with the DC field,
Ag = wg — wy is the detuning of the spin from the trans-



verse drive. The frequency wy = \/ Aﬁ cos? § + A% sin” 0

sets the scale of the hyperfine splitting within a triplet.
For the specific symmetric angle 6 this frequency
is the same for all four possible directions, w, =

\/Aﬁ/?) + (24%) /3. The three transitions allowed by se-

lection rules have frequencies wg, and wg £ wy,, as shown
in Fig. 14.

The defect Hamiltonian effectively splits into three
driven non-interacting spin subspaces. The six-
dimensional Hilbert space is written as the block-
diagonal Hamiltonian,

Hpy= P HT (AL + nwy). (D3)

ne{0,+1}

Each block is the Hamiltonian HST from Eq. (16) with
spin energies ws, ws + wp, and ws — wy. Although these
three transitions are independent, the transverse driving
field can excite them simultaneously. The intensity of
the emitted light is the square of the sum of electromag-
netic fields emitted from the defect. Since this field is
proportional to the o operator, we write

7 x Z <O'+ (As + nwh»
ne{0,£1}

(D4)

This allows for the interference between fields that arise
from different hyperfine transitions.

Experimentally, we find three volcano-like lineshapes
as predicted by theory [see Fig. 3]. However, one of the
volcanoes in each sideband has the opposite asymmetry.
We argue that this occurs due to the interference effect
described by Eq. (D4). We consider a phenomenological
model where the longitudinal field causes the target equi-
librium polarization in Eq. (14) to be time-dependent,

Tr (aze’ﬁﬁpl(t))

o4 (t) = -
©=5 (o)

(D5)

where 8 = 1/kpT is an effective inverse temperature.
The details of the model are discussed in Appendix D 3.

For the data in Fig. 3, the optical laser discussed in
Sec. IT A is used for cooling, the microwave input power
is —40dBm, and the RF peak-to-peak amplitude is 10
V (24dBm). The electron-spin resonance at frequency
ws/(27) is split due to interaction with the nuclear spin
into three resonances. The splitting extracted from the
measurement is wy,/(27) &~ 90 MHz. The splitting is sig-
nificantly better resolved in the sidebands compared to
the main peak data [see the top row of Fig. 3].

As we see in the experimental data, both sidebands
lie to the right of the central resonance frequency
we/(2m) & 3.772 GHz. This corresponds to a right-
sideband anomaly.

As we discussed in Sec. V B, this is prohibited in the
simple linear spin-cavity model. Therefore, we proposed
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introducing nonlinearity to break the symmetry between
the right and the left sideband. In Sec. VI we demon-
strated a mechanism by which Kerr nonlinearity can lead
to this behavior. However, the experiments were per-
formed outside of the region where the cavity nonlinear-
ity is significantly excited, and this anomalous behavior
remains to be explained. We now present the sideband
data for the NV center that further explores the anomaly.

2. Nitrogen-vacancy (NV ™) defect

In an NV~ defect, the nitrogen that is in place of car-
bon couples to the vacancy at one of the four possible
neighboring positions [see Fig. 1 (a)]. Nitrogen provides
two electrons and three carbons contribute each with one
electron. The sixth electron that makes the defect neg-
atively charged comes from the environment (possibly
from the substitutional nitrogen) [15, 41]. The ground
state is a spin triplet since the two holes at the defect
prefer to form a spatially antisymmetric state to lower
their Coulomb energy. The triplet is further split by the
dipole-dipole spin interaction, where the spin-0 projec-
tion is lower in energy [for details see [14]]. The splitting
of the two other levels can be adjusted by the DC mag-
netic field.

When the defect is driven by two crossed fields and the
transverse field is tuned close to the resonance between
states with spin projection S, = +1, then the S, = 0
state can be neglected, and we can effectively treat the
defect as a single doubly-driven spin-1/2 system.

The measurements of the NV center are presented in
Fig. 4. We show the left and the right sideband spec-
tra for different longitudinal frequencies w;. The optical
laser for OISP is on and the microwave input power is
—60dBm. The measurements are performed for various
longitudinal peak-to-peak amplitudes (Vgr in the figure)
and transverse driving frequencies w;. All of the sideband
resonances lie on the right side of the main peak, which
means that they exhibit a right-sideband anomaly, as was
found for the P1 centers. As wj is increased the distance
between the right and the left sideband increases. We
obtained the same result in the theoretical calculation
with Kerr nonlinearity in Sec. VI.

As the longitudinal frequency is increased, the side-
band signal becomes weaker and harder to discern from
noise. As the RF amplitude increases (which corresponds
to increasing By) the signal becomes stronger. In the ex-
periment, the RF field remains in the linear regime such
that higher-order sidebands are not observed.

3. Volcano transparency in P1 centers

The volcano asymmetry for one of the hyperfine tran-
sitions in the experimental data in Fig. 3 is opposite to
what is expected from theory. Therefore, we propose
a modification to the Bloch equations [see Eq. (14)] in



which we treat the equilibrium polarization as a time-
dependent quantity. Since the Hamiltonian oscillates
with a slow longitudinal frequency w), we consider re-
laxation with a constant rate towards a time-dependent
polarization, o(t), given by the instantaneous thermal
equilibrium of the Hamiltonian at time ¢, see Eq. (D5).

We do not provide the microscopic basis for the phe-
nomenological model of Eq. (D5). This is in part be-
cause we do not understand well the relaxation processes
in diamond defects with the OISP technique even in the
absence of the longitudinal field. The model that we use
cannot be derived microscopically in the form of the Lind-
blad equation, which uses the secular approximation. It
is desirable to derive the Bloch equations from the master
equation in Linbdlad form since the evolution is guaran-
teed to be trace-preserving and completely positive. The
Lindblad equation generalizations beyond the secular ap-
proximation (which excludes the oscillating terms) were
proposed recently [42-45], as well as generalizations for
driven [46], and Floquet systems [47, 48]. Alternatively,
one can look at the Bloch-Redfield equation [49], al-
though this equation breaks positivity. While the Marko-
vian property may be broken with time-dependent rates,
for sufficiently small oscillations around the constant
rates, this property still holds [50, 51].

With this caveat, we now look at how Bloch equations
get modified if Eq. (D5) is assumed. In the presence of
the optical laser and driving, T is assumed to be an ef-
fective temperature parameter and not the ambient tem-
perature.

4. Oscillating equilibrium

If we assume the time-dependence of the equilibrium
polarization as in Eq. (D5), 5% (¢) is to linear order in
B

,iwlt) + O (BIQ) .

(D6)
If this expression is inserted into the Bloch equations the
right sideband solution is modified according to

e __ eq eq it eq
Uzq (t)*UZ,O+B1( zle ' +0—z,71€

() = ()W + (o) ok (D7)

1) —im1 By (Ag + wi — iy2) 033

<U+>corr = (Wl 7 171)(A§ _

The P1 right-sideband spectrum with three hyperfine
transitions is calculated with the modified expression as

(ool = > (o) (Ay+ k)
k={0,£1}

(D8)

where wy, is the hyperfine splitting as seen in Fig. 14. The
P1 spectra calculated using this expression are shown
in Fig. 15. The modified Bloch equations lead to the
inversion of asymmetry of one of the volcanoes in the
same manner as in the experimentally obtained spectra
in Fig. 3.

(w1 = i72)%) + 4 Be[* (w1 — iv2)
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FIG. 15. The analytically obtained P1 spectra. The asymme-
try of one of the volcanoes is modified because of the inter-
ference between the different hyperfine emission lineshapes.
The rightmost volcano of the left sideband has the asymme-
try opposite to the other two volcanoes, and the same holds
for the leftmost volcano of the right sideband. The plots were
calculated using Eqs. (D7) and (D8). The parameters used
in the plot are By = 0.75, wy = 1.5, 71 = 0.03, wn = 90, and
T = 1000, all in units of 2.

Lastly, we present the calculation of o£%(¢). The expo-
nential of the Hamiltonian can be expanded in the basis
of Pauli matrices as

e IR _ cosh (B|H|) 1 —sinh (B|H|)h-o, (D9)

where |H| is the instantaneous eigenvalue of the Hamil-
tonian, and h is the unit vector in the Pauli basis,

\H|(t) 1\/A 4+ Bycos (wit))® +4|B.J2,  (D10)
s Hi(t)
h(t) = 10 (D11)

Using the properties of the Pauli matrices, we write
Eq. (D5) as a function of the previous two parameters,

054(t) = —tanh (B|H|(t))h,, (D12)
where h, = (As+ Bjcos(wit))/(2|H|). We expand
034(t) to linear order in B) to obtain

As BQR Bl
ed (4) — _ 2R ) 21
o (t) On tan ( 5 ) o cos (wit)
4| By |? Q A2
| ;I tanh (B R) + bA ,
Oy 2 20 cosh? (mTR)
(D13)

where Qr = /A2 +4|B2| is the generalized Rabi fre-
quency. In the experiments where Qg is in the MHz
range, the thermal energy is much higher than Qg, ex-
cept for very low effective temperatures. The approxi-
mate expression in this limit is

oti(t) ~ !

- — Ag + By cos (wit)) .
( e QkBT< 1 cos (wit))

(D14)
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