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Dipole representation of composite fermions in graphene quantum Hall systems
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The even denominator fractional quantum Hall effect has been experimentally observed in graphene in the
fourth Landau level (N = 3). This paper is motivated by recent studies regarding the possibility of pairing and
the nature of the ground state in this system. By extending the dipole representation of composite fermions, we
adapt this framework to the context of graphene’s quantum Hall systems, with a focus on half-filled Landau
levels. We derive an effective Hamiltonian that incorporates the key symmetry of half-filled Landau levels,
particularly particle-hole symmetry. At the Fermi level, the energetic instability of the dipole state is influenced
by the interplay between topology and symmetry, driving the system toward a critical state. We explore the
possibility that this critical state stabilizes into one of the paired states with well-defined pairing solutions.
However, our results demonstrate that the regularized state which satisfies boost invariance at the Fermi level
and lacks well-defined pairing instabilities emerges as energetically more favorable. Therefore, we find no well-
defined pairing instabilities of composite fermions in the dipole representation in the half-filled fourth Landau
level (N = 3) of electrons in graphene. Although the theory of composite fermions has its limitations, further
research is required to investigate other possible configurations. We discuss the consistency of our results with
experimental and numerical studies and their relevance for future research efforts.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect
(FQHE) [1] represents a significant breakthrough in the study
of topological states of matter, introducing a rich landscape
of quantum phases driven by electron correlations in two-
dimensional electron systems (2DESs) [2]. Among the most
intriguing manifestations of the FQHE is the observation of
a quantized Hall plateau at the filling factor ν = 5/2 [3],
indicating the FQHE at the half-filled second Landau level
(n = 1). The observation of even-denominator FQHE states is
astonishing, considering that the fermionic statistics of elec-
trons suggest the denominator of the fraction should be an odd
number. These significant discoveries have inspired intensive
theoretical and experimental efforts to decode the underlying
physics and implications of these states.

The concept of composite fermions (CFs), introduced by
Jain [4,5], has provided an insightful framework for com-
prehending various aspects of quantum Hall phenomena,
primarily for the half-filled second LL (n = 1). CFs are quasi-
particles formed by attaching an even number of quantized
vortices to electrons.

In recent years, advancements in noncommutative field
theory in high-energy physics inspired Dong and Senthil [6]
to revisit longstanding problems in quantum Hall physics.
In particular, this includes the problem of the LL at ν = 1
for bosons, initially formulated by Pasquier and Haldane [7]
and further developed by Read [8]. This problem involves an
additional degree of freedom, namely, the vortex degree of
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freedom, where each boson is associated with a single flux of
the magnetic field, and since vortices are fermionic and the
resulting composite quasiparticles are neutral, resembles CFs.
Furthermore, CFs experience a zero average effective mag-
netic field, similar to electrons at ν = 1/2. Unlike previous
approaches that relied on an averaged field energy, Dong and
Senthil [6] introduced the concept of intrinsic dipole energy.
The application of noncommutative field theory to quantum
Hall systems has since led to significant advancements, with
recent studies extending these concepts to various quantum
Hall states [9–14].

Moreover, fractional quantum Hall (FQH) states with ad-
ditional half-integer filling factors have been observed in
various materials, including graphene—a monolayer of car-
bon atoms arranged in a hexagonal lattice. Graphene’s unique
electronic and topological properties make it an ideal platform
for studying exotic quantum phenomena, including the FQHE.
Notably, a recent experimental study by Kim et al. [15] iden-
tified FQHE states at half filling in the fourth Landau level
(N = 3) of monolayer graphene.

Additionally, research by Sharma et al. [16] investigated
CF pairing in monolayer graphene, using alternative pair-
ing functions and numerical simulations on a torus within
the Bardeen-Cooper-Schrieffer (BCS) framework. The micro-
scopic CF-BCS theory has been highly successful in capturing
many known pairing instabilities, particularly in 2DESs
such as GaAs at filling factors ν = 1/2 and ν = 5/2 [17].
Remarkably, the CF-BCS approach has also effectively de-
scribed instabilities in wide quantum wells at filling factors
ν = 1/2 and ν = 1/4 [18]. In the case of graphene, the
authors in Ref. [16] concluded that the BCS variational state
for CFs reveals an f -wave pairing instability in the N = 3
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LL. Furthermore, they suggested the possibility of a p-wave
instability for the N = 2 LL, where FQHE has not been ex-
perimentally observed. However, these findings are in contrast
with numerical studies on the sphere, which have not observed
such pairing instabilities [15]. The disparity between these re-
sults highlights the need for further investigation. In addition,
topological pairing, particularly p wave and f wave, is crucial
for quantum computing applications due to its non-Abelian
statistics, which enable robust qubits and fault-tolerant
quantum operations [19].

The dipole representation of FQHE states, introduced in
Ref. [10], is particularly relevant to this paper. In this rep-
resentation, dipoles are neutral composite objects formed by
an electron and its correlation hole. These dipoles possess
moments proportional to their momentum in an external mag-
netic field. This effective theory has proven to be robust,
capturing the microscopic description of several problems
and aligning with previous experimental and numerical stud-
ies. In particular, it yielded results consistent with numerical
and experimental studies of 2DESs, where the Pomeranchuk
instability is observed in higher half-filled LLs. A recent
study [20] even provided an explanation for the mechanism
of p-wave pairing of CFs at half filling in the second LL
(n = 1) of electrons in 2DESs and in the fully filled first LL
(n = 0) of bosons, further underscoring the importance of this
representation.

In this paper, we aim to explore the potential for CF pair-
ing in monolayer graphene using the BCS framework, also
utilizing the dipole representation. The half-filled LL system
possesses an additional feature, the particle-hole (PH) symme-
try [10], which implies that the density of holes corresponds
to the density of composite holes. Consequently, this state is
energetically unstable with respect to repulsive interactions,
leading to a critical state. Through analytical studies, we
demonstrate that in the fourth LL (N = 3) of a graphene
monolayer, this critical state is not stabilized by selecting one
of the two possible symmetry-broken paired states; instead,
it stabilizes into a regularized nonpaired state, which cannot
support gapped pairing solutions due to the absence of mass.
Our findings are consistent with numerical studies conducted
on spherical geometries [15].

This paper is organized as follows: In Sec. II, we introduce
the necessary formalism and key concepts of the dipole repre-
sentation and apply them to the half-filled LLs of electrons
in graphene. In particular, we discuss the model, and the
effective Hamiltonian in the dipole representation. Section III
explores the possibility and mechanism of paired states within
the context of the dipole representation and analyzes their
stability. Finally, in Sec. IV, we conclude with a discussion
of our findings and their implications for future research.

II. IMPLEMENTING BOOST INVARIANCE AND STATE
REGULARIZATION IN GRAPHENE’S LANDAU LEVELS

A. The model

Graphene exhibits unique electronic properties, includ-
ing a relativistic quantum Hall effect due to its charge
carriers, which behave as massless Dirac fermions [21,22].
In graphene, electrons are arranged in a honeycomb lattice

composed of two sublattices, A and B, and their behavior can
be described by a two-dimensional Dirac equation [23]. In a
tight-binding model, we consider only the nearest-neighbor
hopping parameter t between sites A and B. The low-energy
properties of graphene are captured by a two-band model
labeled as λ = ±, where the dispersion is linear. The valence
band λ = + and the conduction band λ = − touch each other
at the two inequivalent corners K+ and K− (referred to as
valleys) of the Brillouin zone [23,24].

When an external magnetic field is applied, the Hamil-
tonian for low-energy states around the K+ valley is given
by [25,26]

H = v

(
0 π†

π 0

)
, (1)

where v =
√

3
2

at
h̄ is the velocity, and the operators π† and

π , in the Landau gauge, coincide with the LL creation and
annihilation operators, respectively [26].

Here we focus on spinless electrons confined to the N th
LL, where only intra-LL excitations are considered.

The spinor states in the λ−band, obtained from the two-
dimensional Dirac equation, can be expressed as

ψ
ξ

λN ,m = 1√
2

(
|N − 1, m 〉
λ|N , m 〉

)
(2)

for N �= 0, and

ψ
ξ

N=0,m =
(

0
|0, m 〉

)
(3)

for N = 0, in terms of the harmonic oscillator states |N , m 〉
and the guiding-center quantum number m. These spinors
describe states within the N th LL in the band λ. The first
component of the spinor represents the amplitude on the A
sublattice at the point K+ (ξ = +) and the amplitude on the B
sublattice at point K− (ξ = −).

B. The Pasquier-Haldane-Read construction
for half-filled LL of electrons in graphene

In this section, we extend the traditional Pasquier-Haldane-
Read (PHR) construction [7,8] to describe the complex
excitations in half-filled LLs of electrons in graphene. The
Pasquier-Haldane approach reformulates the theory by using
an expanded Hilbert space of composite fermions, rather than
the original Hilbert space of bosons, to represent the GMP
algebra. Unlike the original model, which was formulated
for fully filled LLs of bosons, our approach adapts the PHR
construction to systems where LLs are half-filled of electrons.
In this paper, we employ an expansion of the Hilbert space
by incorporating correlation holes, which are positive charges
that pair with electrons to form neutral dipoles. This represen-
tation is crucial for describing systems with PH symmetry, a
key characteristic of half-filled LLs, and for maintaining the
topological properties of the quantum Hall states.

We begin by representing the basis states in a LL as

{|o1〉, |o2〉, . . . , |oNφ/2〉, |m1〉, |m2〉, . . . , |mNφ/2〉}, (4)

where |oi〉 and |mi〉 represent the states, which form the
foundation for describing the system in our enlarged Hilbert
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space, which accommodates both electrons and correlation
holes [10]. Here, Nφ represents the number of orbitals.

In this expanded space, we define creation and annihilation
operators that satisfy the algebra:

{cmo, c†
o′m′ } = δmm′δoo′ , {cmo, co′m′ } = 0,

{c†
mo, c†

o′m′ } = 0. (5)

CFs operators cmo and c†
mo in the LL have double in-

dices, where m and n label physical electrons and correlation
holes, respectively. Using these operators, we define the
Fourier components of the physical (left) and unphysical
(right) densities in the N th LL, incorporating the form factor
FN (| �q|) :

ρL
N (�q) = FN (| �q|)

∑
o, o′

∑
m

〈o|τ−�q|o′〉c†
moco′m, (6)

ρR
N (�q) = FN (| �q|)

∑
m, m′

∑
o

〈m|τ−�q|m′〉c†
mocom′ . (7)

Here, τ�q = ei �q �R is the translation operator, where �R =
(X,Y ) represents the guiding center coordinates of a
CF [27–29] in the external magnetic field �B = −B�ez, with
components obeying the commutation relation:

[X,Y ] = il2
B. (8)

Here, lB is the magnetic length. In what follows, we will
set lB ≡ 1. This framework ensures that the neutral CFs are
accurately described within the context of the LL dynamics.

The Fourier components of the form factor in the N th
LL are given in terms of Laguerre polynomials LN in the
following way:

F (N )(q) =
{

1 if N = 0
1
2

[
LN−1

( q2

2

) + LN
( q2

2

)]
if N �= 0.

(9)

For N = 0, the form factor for graphene coincides with that
of a 2DES, such as GaAs. However, for higher N it can be
viewed as an average of the two form factors of those for
2DES [30].

Furthermore, the annihilation operator can be written in re-
lation to its momentum space representation in the following
way:

cmo =
∫

d�k
(2π )2

〈m|τ�k|o〉c�k . (10)

By substituting Eq. (10) into the equations for the left and
right density operators, Eqs. (6) and (7), we obtain

ρL
N (�q) = FN (�q)

∫
d2�k

(2π )2
e

i
2
�k×�qc†

�k−�qc�k, (11)

ρR
N (�q) = FN (�q)

∫
d2�k

(2π )2
e− i

2
�k×�qc†

�k−�qc�k . (12)

Using the relations Eq. (5), it is easy to show that
these densities obey the Girvin-MacDonald-Platzman (GMP)

algebra [31]:

[
ρL

0 (�q), ρL
0 (�q′)

] = 2i sin

( �q × �q′

2

)
ρL

0 (�q + �q′),

[
ρR

0 (�q), ρR
0 (�q′)

] = −2i sin

( �q × �q′

2

)
ρR

0 (�q + �q′),

[
ρL

0 (�q), ρR
0 (�q′)

] = 0. (13)

This is induced by the commutation relation Eq. (8) and re-
striction to the single LL. The realization of the GMP algebra
using the canonical CF variables facilitates the application of
mean- field methods [8].

C. The effective Hamiltonian
in dipole representation in graphene

To accurately describe the system within the dipole rep-
resentation, it is essential to impose a specific constraint.
These constraints serve several purposes. First, the constraint
ensures that the number of degrees of freedom in the effective
model aligns with the microscopic description of the physical
problem. Furthermore, the constraint also defines the physical
subspace within the enlarged Hilbert space, which includes
additional degrees of freedom such as correlation holes. Sec-
ond, the imposed constraint must preserve the PH symmetry,
a fundamental characteristic of the half-filled LL, ensuring
that the model accurately reflects the physical properties of
the system.

We introduce the following constraint:

ρL
NN + ρR

NN = 1. (14)

This constraint acts as a null operator in momentum space:

ρL
�q + ρR

�q = 0. (15)

It is important to highlight that this constraint incorpo-
rates both physical and unphysical quantities, treating them
as mutually dependent. Since the right degrees of freedom
(additional degrees of freedom) represent correlation holes in
the enlarged space, this constraint effectively ensures, in the
long-distance limit, that the density of correlation holes equals
the density of real holes.

Furthermore, when defining the problem in the enlarged
space, operators, including the Hamiltonian, may map phys-
ical states into superpositions of physical and unphysical
states. To ensure that physical states remain within the
physical subspace, the Hamiltonian must commute with the
constraint.

The effective Hamiltonian in this framework must reflect
the dipole representation within N th LL. Additionally, it must
preserve PH symmetry, meaning it remains invariant under
the exchange of particles and holes. The Hamiltonian is care-
fully constructed to satisfy these conditions, and we impose
a constraint that ensures the resulting Hamiltonian has a PH
symmetric form [10]:

Heff = 1

8

∫
d2 �q

(2π )2
V (N )(�q)

(
ρL

0 (�q) − ρR
0 (�q)

)(
ρL

0 (−�q)

− ρR
0 (−�q)

)
. (16)
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Here, V (N )(�q) = 2πe2

ε| �q| e−q2/2(F (N ) )2 represents the effective
interaction, which takes into account states within the N th
LL. The form factor mimics the LL characteristics. Moreover,
it should be noted that υ (�q) = 2πe2

ε| �q| defines the Fourier trans-
form of the Coulomb interaction potential.

Using mean-field approximation and Hartree-Fock (HF)
calculations, one easily finds that dispersion relation for
graphene for the N th LL has the following form:

ε(N )(�k) = ε
(N )
0 (�k) + ε

(N )
HF (�k), (17)

where

ε
(N )
0 (�k) = 1

2

∫
d2 �q

(2π )2
V (N )(| �q|) sin2

( �k × �q
2

)
(18)

represents single-particle energy and

ε
(N )
HF (�k) = −

∫
d2 �q

(2π )2
V (N )(|�k − �q|) sin2

( �k × �q
2

)
nq (19)

represents the HF contributions. Here, nq is the Fermi (step)
function with nq = 1 for q inside a circular Fermi surface
of radius qF , and zero otherwise. This result aligns with
Ref. [32], with the difference that here V (| �q|) represents the
Coulomb interaction in the graphene system in the N th LL,
and includes an additional factor of 1/4 that reduces the
strength of the Coulomb interaction. Furthermore, the single-
particle energy ε

(N )
0 can be obtained in a closed analytical

fashion as detailed in Appendix A. Moreover, in Appendix A
we also give the complete data of the corresponding energies
for the lowest fourth LL (N = 0, 1, 2, 3). On the other hand,
we obtained the energy of interaction of this particles ε

(N )
HF via

numerical integration.
The interaction of electrons within a single LL can be fully

described by its Haldane pseudopotentials Vm [33], which
quantify the interaction energies of two electrons with relative
angular momentum m. For the nth Landau level, the Haldane
pseudopotentials are expressed as

V (n)
m =

∫
d2 �q

(2π )2
F (n)(q)e−q2

Lm(q2), (20)

where F (n)(q) is the form factor associated with the nth LL. In
this paper, we focus on two approximate effective interactions,
VToke and VPark [34,35], which are defined in real space as

VToke(r) = 1

r
+

6∑
i=0

ci ri e−r, (21)

VPark(r) = 1

r
+ a1 e−α1 r2 + a2 r2 e−α2 r2

, (22)

respectively. It can be concluded that the effective interaction
can be represented as the Coulomb interaction 1/r combined
with short-range functions to account for deviations at short
distances. Thus, in addition to the Coulomb interaction, we
will also utilize the Toke and Park interactions in the subse-
quent analysis. The coefficients ci (i = 0, 1, 2, 3, 4, 5, 6) for
VToke and a1, a2, α1, α2 for VPark are determined by matching
the effective interactions VToke(q) and VPark(q), operating in the
the lowest LL (LLL), to the first seven (m = 0, 1, 2, 3, 4, 5, 6)
and four (m = 0, 1, 2, 3) pseudopotentials of the Coulomb

TABLE I. Values of coefficients ci, ai, αi of the effective interac-
tions for n = 1, and n = 3 LL in graphene.

Coefficient n = 1 n = 3

c0 −6.631 492.524
c1 13.298 −976.021
c2 −8.997 692.713
c3 2.934 −235.342
c4 −0.499 41.446
c5 0.0426 −3.645
c6 −0.00143 0.126
a1 0.0107017 11.8887
a2 0.109467 −9.64883
α1 0.038443 0.247147
α2 0.446909 0.479972

interaction V (n)
2m−1, respectively, in the second LL (n = 1) and

the fourth LL (n = 3). The Fourier transforms of the effective
interactions are obtained as

Veff(q) =
∫

d2�r Veff(r)e−i �q·�r . (23)

The coefficients obtained through the symbolic solution of the
corresponding system of equations for both interactions are
listed in Table I.

D. Boost invariance and state regularization in graphene

In this section, we derive the Hamiltonian from the con-
straint previously established, ensuring that our effective
theory maintains a valid microscopic description, at least at
the Fermi level. As we noted above, the FQHE systems at
half filling in LLL exhibit the emergence of a Fermi liquid
(FL) state of composite quasiparticles (CFs, for example). The
Hamiltonian described in Eq. (16), which governs the dipole
representation, incorporates a finite (bare) mass for single-
particle energies as a consequence of the dipole structure.
To achieve a well-defined FL state description within the LL
framework [10], it is essential for the Hamiltonian to exhibit
boost invariance, which imposes a condition on the (bare)
mass at the Fermi level.

To begin, we introduce an interaction term that is null
within the physical space:

H0 = CN
∫

d2 �q
(2π )2

V (N )(�q)
(
ρL

0 (�q) + ρR
0 (�q)

)(
ρL

0 (−�q)

+ ρR
0 (−�q)

)
. (24)

Therefore, the resulting Hamiltonian has the following form:

Hres = Heff + H0. (25)

Furthermore, we denote the constant CN such that the energy
ε1 denoting the single energy of the resulting Hamiltonian in
Eq. (25) fulfills the condition

1

m∗ = ∂2ε0(�k)

∂k2

∣∣∣∣
k=kF

= 0, (26)

where m∗ is the effective mass. Therefore, the resulting
Hamiltonian in Eq. (25) has no terms k2

m∗ , which contribute to
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the kinetic energy. The regularized state represents a FL-like
(FLL) state, as is the case in the half-filled LLL of electrons.

III. DIPOLE REPRESENTATION OF COMPOSITE
FERMIONS IN GRAPHENE

As discussed earlier, a key feature of the Hamiltonian in
the dipole representation of CFs is its inherent symmetry, par-
ticularly PH symmetry. This symmetry means that the system
remains unchanged when particles are exchanged with real
holes or when the densities ρL(�q) and ρR(�q) are swapped,
where ρR(�q) corresponds to the density of correlation holes.

In the context of the Coulomb interaction, it is energetically
favorable for these correlation holes to move away from the
electrons, allowing real holes to surround the electrons in-
stead. We have previously shown that the density of these cor-
relation holes is equal to the density of real holes, and that the
size of the resulting dipoles is determined by a translation op-
erator. As a result, at the Fermi level k = kF , the electrons are
positioned far from the holes, making this FLL state energeti-
cally unstable and prone to become a critical FLL state [20].

Breaking the symmetry between the left (L) and right
(R) components of the system is equivalent to breaking the
symmetry between particles and real holes. Therefore, states
that break this symmetry are likely to be more energetically
favorable. It is worth noting that at half filling, most of the
paired states that emerge (such as the Moore-Read Pfaf-
fian, anti-Pfaffian, and f-wave states) spontaneously break this
symmetry.

Motivated by the aim to explore a well-defined state of
CFs within the dipole representation that stabilizes the critical
state, we derive an effective Hamiltonian. This is achieved
by revisiting the Hamiltonian in Eq. (16) and subsequently
subtracting (or adding) the following term:

H1 = 1

8

∫
d2 �q

(2π )2
V (N )(�q)

(
ρR

0 (−�q) + ρL
0 (−�q)

)(
ρR

0 (�q)

− ρL
0 (�q)

)
, (27)

which effectively represents zero in the physical space.
Consequently, the resulting effective Hamiltonians take the
following forms:

H(1)
res = 1

4

∫
d2 �q

(2π )2
V (N )(�q)ρR

0 (−�q)
(
ρR

0 (�q) − ρL
0 (�q)

)
(28)

and

H(2)
res = 1

4

∫
d2 �q

(2π )2
V (N )(�q)ρL

0 (−�q)
(
ρL

0 (�q) − ρR
0 (�q)

)
. (29)

The dipole representation of these Hamiltonians plays a cru-
cial role in defining a single energy, which is essential for
obtaining paired solutions. Additionally, they can also be
interpreted as symmetry-breaking modifications of the Hamil-
tonian in Eq. (16), stabilizing the system into one of two
paired states [20].

To explore potential paired solutions, we apply the HF
approach to the relevant part of the Hamiltonian in Eq. (28),
yielding

H(N )
HF =

∫
d2�k

(2π )2
ξN (�k) c†

�kc�k + 1

4

∫
d2 �q

(2π )2

∫
d2 �k1

(2π )2

∫
d2 �k2

(2π )2
υ(| �q|)F 2

N (| �q|)(1 − ei�k×�q)

· (〈
c†

�k1+�qc†
�k2−�q

〉
c�k1

c�k2
+ c†

�k1+�qc†
�k2−�q

〈
c�k1

c�k2

〉 − 〈
c†

�k1+�qc†
�k2−�q

〉 〈
c�k1

c�k2

〉)
, (30)

where ξN (�k) = εN (�k) − εN (�kF ), with εN (�k) representing the dispersion relation given by

εN (�k) = 1

4

∫
d2 �q

(2 π )2
υ(| �q|)F 2

N (| �q|)(1 − ei�k×�q) − 1

2

∫
d2 �q

(2 π )2
υ(|�k − �q|)F 2

N (|�k − �q|)(1 − ei�k×�q). (31)

Furthermore, we define

�N (�k) = − 1

4

∫
d2 �q

(2π )2
υ(|�k − �q|)F 2

N (|�k − �q|)(1 − e−i�k×�q) · 〈c�k1
c�k2

〉 (32)

Finally, using standard BCS transformations to diagonalize the Hamiltonian in Eq. (28), we obtain the total energy,

E (N )
paired =

∫
d2�k

(2 π )2
(ξN (�k) − EN (�k)) +

∫
d2�k

(2 π )2

|�N (�k)|2
2EN (�k)

, (33)

where the Bogoliubov quasiparticle energy is given by EN (�k) =
√

ξ 2
N (�k) + |�N (�k)|2. In the BCS treatment, we obtain the

pairing instability is described by the order parameter �(�k) self-consistently:

∣∣�(l )
N (�k)

∣∣ = 1

4

∫
d2 �q

(2π )2
υ(|�k − �q|)F 2

N (|�k − �q|)(1 − e−i�k×�q)
�

(l )
N (�q)

2EN (�q)
. (34)

Here, the gap function takes the following form: �(l )(�k) =
eilθl |�(�k)|, where θ is the angular coordinate of k, with
l = 0,±1,±3 representing different pairing channels. Details
regarding the numerical solutions of the self-consistent equa-
tion in Eq. (34) are provided in Appendix B. We note that we

obtain the same solutions for l = 1 in Hamiltonian Eq. (29) as
we do for l = −1 in Hamiltonian Eq. (28).

In the previous section, we regularized the state of the
Hamiltonian in Eq. (25) by eliminating the quadratic term,
which contributes to the kinetic energy. Consequently, the
regularized state cannot support gapped pairing solutions due
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FIG. 1. The solutions for �(�k) calculated self-consistently using Eq. (34) for different pairing channels l in the lowest four LLs
(N = 0, 1, 2, 3) for the Coulomb interaction.

to the absence of (bare) mass. While the critical state can be
stabilized among the paired states, it can also be stabilized
within the regularized state. To investigate in which of these
states the critical state is stabilized, we define the energy of
the regularized state of CFs in the dipole representation using
a mean-field approach as follows:

E (N )
FLL =

∫
d2�k

(2π )2

(
ε

(N )
0 (�k) + 1

2
ε

(N )
HF (�k)

)
. (35)

In calculating the total energy, we apply a cutoff when
necessary, using the radius of a circle in momentum space
Q = √

2 kF , which denotes the volume of available states in
the LL. Furthermore, the only viable cutoff value for the
regularized FLL state being kF , as it is designed to accu-
rately describe the physics at the Fermi surface kF . We have
carefully used the cutoff Q = √

2 kF for the paired state, but
we have also ensured that our findings do not depend on
the choice of the cutoff value. In spherical coordinates, this
corresponds to Q = √

2 kF .
We illustrate in Fig. 1 the self-consistently obtained mean-

field parameter �(�k) in the fourth LL N = 0, 1, 2, 3 for the
Coulomb potential, and Fig. 2 for the Toke and Park poten-
tials. Here, it can be noticed that nonzero pairing solutions
also appear in the LLL, which might suggest that pairing could
persist in the thermodynamic limit. However, this stands in
contrast to numerical studies, which consistently find the FLL
state to be the most stable configuration. The definitive confir-
mation about the presence or absence of pairing lies in direct
comparison of the total energies between a paired state and a

regularized FLL state. Additionally, we plotted in Fig. 3 the
total energy Epaired of the different pairing solutions compared
to the normal state energy to determine the energetically most
favorable l in the case of Coulomb and Haldane potentials.
In Fig. 4, we compare the results for EFLL and Epaired in the
case of graphene for the four lowest LLs (N = 0, 1, 2, 3)
for the Coulomb, Toke, and Park interactions to investigate
the possibility of pairing instability. We would like to note
that here we calculated Epaired to compare the energy for
the self-consistent solution that minimizes the energy value.
We find that the critical state is stabilized within the regu-
larized state, which is energetically more favorable than the
paired states. In the following sections, we will discuss these
findings in more detail for each of the four lowest LLs (N =
0, 1, 2, 3), emphasizing how our results align with previous
experiments and numerical studies.

In the lowest LL (N = 0), considering the short-range,
repulsive Coulomb interaction V (| �q|) = q2, which describes
a two-body interaction between dipoles, the three-body
Hamiltonian can be derived using the Chern-Simons ap-
proach [36,37] as follows:

H(e)
eff =

∑
〈i jk〉

∇2
i δ2(�xi − �x j )δ

2(�xi − �xk ), (36)

which aligns with the commonly used interaction model for
the Pfaffian [38]. In the lowest LL (N = 0), the effective
interaction between CFs (and therefore the physics in general)
in monolayer graphene is the same as in a 2DES, such as GaAs
quantum wells with zero width. Here, numerical experiments
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FIG. 2. Self-consistently calculated solutions for �(�k) for different pairing channels l in the second (N = 1) (left) and fourth (N = 3)
(right) Landau levels (LLs). These results correspond to the Toke and Park interactions.

indicate that the Fermi-liquid-like state is the most stable in
the half-filled first LL (N = 0).

In the half-filled second LL (n = 1), nontrivial topol-
ogy is identified via Majorana edge states in the case of a
2DES. In this LL, well-defined p-wave solutions in the 2DES
are present, particularly l = 1 (l = −1) wave pairing in the
Hamiltonian as described in Eq. (29) [Eq. (28)], but with
form factors characteristic of the 2DES [20]. This corresponds

FIG. 3. Comparison of the total energy for various pair-
ing solutions, expressed as Epaired(l ) − Epaired(l = 0) for Coulomb
interactions (upper), Toke, and Park interactions (lower). The inter-
action strength is given by V0 = 2πe2/lB.

to the Pfaffian topological order [38]. The PH conjugate of
the Pfaffian, the anti-Pfaffian, can be obtained by switching
the sign of the particles [39,40]. We would like to point out
here that a well-defined paired state can only exist if the
effective dipole physics at the Fermi level, driven by the

FIG. 4. Comparing total energies of the pairing solutions Epaired

and the regularized state EFLL in the four lowest LLs in the case of
Coulomb interactions (upper), Toke, and Park interactions (lower).
Here, we calculated Epaired for l = −1, which minimizes the energy
value and is therefore the most energetically favorable. The interac-
tion strength is defined by V0 = 4πe2/lB.
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nontrivial topology of the LL, is present. However, in mono-
layer graphene, in the second LL (N = 1) the regularized
state dominates over the paired state, which is consistent with
earlier studies indicating that the lowest energy state is a Fermi
sea of CFs with no pairing instabilities [41].

In the half-filled third LL (N = 2) of graphene, the FQHE
has not been observed [42,43]. However, in numerical ex-
periments on a torus using a BCS variational state for CFs,
the authors in Ref. [17] identified the presence of pairing
instability, which most likely corresponds to p-wave pairing.
This may result in the observation of pairing solutions in the
thermodynamic limit, which is well represented in numerical
experiments on a torus. In contrast with this numerical study
constructed on a torus, we propose that the regularized state
is energetically more favorable, which does not exhibit well-
defined pairing solutions.

Finally, in a previously mentioned study [17], it was pro-
posed that the Fermi sea of CFs may be unstable to f -wave
pairing in the half-filled fourth LL (N = 3) of graphene. This
particular LL is significant due to the experimental observa-
tion of the FQHE [15]. However, numerical studies conducted
on a spherical geometry reveal that neither the anti-Pfaffian
nor the PH symmetric Pfaffian [44] states exhibit a strong
overlap with the exact ground state near the pure Coulomb
interaction point. Additionally, various spin and valley singlet
states were examined, yet none showed significant overlap
with the ground state in the N = 3 LL. Although the 221-
parton state [45] demonstrates a notable similarity to the pure
Coulomb interaction across a wide parameter range, its valida-
tion still requires further theoretical and experimental studies.
Our findings suggest that the critical state in the fourth LL
(N = 3) is not stabilized among the paired states, such as
the Pfaffian. Instead, the regularized state, which lacks well-
defined pairing instabilities, emerges as energetically more
favorable. This suggests the absence of well-defined pairing
instabilities within the dipole representation of CFs in this
context. Therefore, our results are consistent with numeri-
cal studies conducted on spherical geometry. To conclusively
validate the nature of the ground state and fully elucidate
the pairing mechanism, particularly in higher LLs, additional
theoretical and experimental research extending beyond the
framework of CFs is essential. Strong short-range repulsive
interaction is crucial for defining CFs in lower LLs, where the
effects of this interaction are dominant [see Eq. (36)].

IV. CONCLUSIONS

In this paper, we have derived the dipole representation
of CFs in graphene’s quantum Hall systems, focusing par-
ticularly on the half-filled LLs. Our investigation extended
the Pasquier-Haldane-Read construction to describe the ex-
citations in half-filled LLs of electrons in graphene, and we
derived an effective Hamiltonian within the dipole framework
that respects the key symmetry of these systems, including PH
symmetry. We demonstrated that this symmetry, inherent in
the effective Hamiltonian, can be broken and stabilized either
in the phase of paired states or in a regularized state without
bare mass at the Fermi level.

We discussed the relationship of paired states to the Pfaf-
fian state. Furthermore, our analysis of the pairing mechanism

shows that the regularized state, which lacks well-defined
pairing instabilities, emerges as the energetically favored state
over the paired states with p-wave and f-wave pairing. This
finding suggests that, within the dipole representation, the
ground state in the half-filled fourth LL (N = 3) of graphene
is not characterized by pairing instabilities.

We also discussed the consistency of our results with
experimental and numerical studies. Furthermore, we high-
lighted the limitations of the dipole representation framework.
Additionally, going beyond the mean-field theory and includ-
ing fluctuations might be crucial in accurately describing the
true nature of the ground state.

We hope this paper will inspire further investigations of
these states, including the pairing mechanism and the origin
of the ground state. Notably, the experimental observation of
FQHE in bilayer graphene systems [46] suggests that similar
approaches could be applied to understand these phenomena
in other layered or structured graphene systems.
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APPENDIX A: ANALYTICAL DERIVATION
OF SINGLE-PARTICLE ENERGIES

FOR THE LOWEST FOUR LANDAU LEVELS

The Hamiltonian in the dipole representation, as described
by Eq. (16), is given by

Heff = 1

8

∫
d2 �q

(2π )2
V (n)(�q)(ρL(�q) − ρR(�q))(ρL(−�q)

− ρR(−�q)). (A1)

The energy dispersion relation for graphene in the nth LL is
expressed as

ε(�k) = ε0(�k) + εHF(�k), (A2)

where

ε
(n)
0 (�k) = 1

2

∫
d2 �q

(2π )2
V (n)(| �q|) sin2

( �k × �q
2

)
(A3)
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represents the single-particle energy and

ε
(n)
HF(�k) = −

∫
d2 �q

(2π )2
V (n)(|�k − �q|) sin2

( �k × �q
2

)
n (A4)

represents the HF contributions.
In this Appendix, we analytically derive the single-particle energies for the first four Landau levels. We begin by utilizing the

identity cos(a) = 1
2 (eia + e−ia), which allows us to express the single-particle energy as

ε
(0)
0 (k) =

∫ ∞

0

dq

8π
e− q2

2 −
∫ ∞

0

∫ 2π

0

dqdφ

32π2
e− q2

2 (eikq sin(φ) + e−ikq sin(φ) ). (A5)

The equality erf(x) = 2√
π

∫ x
0 e−t2

dt motivates us to introduce the substitution u = q√
2
, which transforms the expression into

ε
(0)
0 (k) =

∫ ∞

0

du

8
√

2
√

π

2√
π

e−u2 −
∫ ∞

0

∫ 2π

0

dqdφ

32π2
e− 1

2 k2 sin2(φ)
(
e− 1

2 (q−ik sin(φ))2 + e− 1
2 (q+ik sin(φ))2)

. (A6)

Next, by introducing the substitutions v1 = 1√
2
(q − ik sin(φ)) and v2 = 1√

2
(q + ik sin(φ)), we obtain

ε
(0)
0 (k) = 1

8
√

2
√

π
−

∫ 2π

0

dφ

16
√

2π
√

π
e− 1

2 k2 sin2(φ). (A7)

Finally, utilizing the identity sin2(φ) = 1 − cos2(φ), we derive the final expression for the single-particle energy,

ε
(0)
0 (k) = 1

8
√

2
√

π

(
1 − e− 1

4 k2
I0

(
k2

4

))
, (A8)

where I0(k) is the modified Bessel function of the first kind.
Analogously, we obtain the single-particle energies for the other LLs:

ε
(1)
0 (k) = 1

256
√

2π

(
22 − e− k2

4

(
(22 + 2k2 + k4)I0

(
k2

4

)
− k2(4 + k2)I1

(
k2

4

)))
, (A9)

ε
(2)
0 (k) = 1

4096
√

2π

(
290 − e− k2

4

(
(290 − 12k2 + 28k4 − 2k6 + k8)I0

(
k2

4

)
+ k2(56 + 30k2 + k6)I1

(
k2

4

)))
, (A10)

ε
(3)
0 (k) = 1

147456
√

2π

(
9270 − e− k2

4 (9270 − 1458k2 + 1809k4 − 360k6 + 114k8 − 14k10 + k12)I0

(
k2

4

)

+ e− k2

4 k2(1836 + 1563k2 − 192k4 + 92k6 − 12k8 + k10)I1

(
k2

4

))
. (A11)

APPENDIX B: NUMERICAL METHODS

In this Appendix, we describe the numerical methods used
to solve the self-consistent equation [Eq. (34)] using the trape-
zoidal rule algorithm. The integral on the right-hand side of
Eq. (34) is computed by discretizing the momentum space us-
ing a uniform grid. For each grid point, the integral is approxi-
mated by summing the contributions from neighboring points,
weighted by the trapezoidal rule. The integration is performed
iteratively, starting with an initial guess for the mean-
field parameter �(�k) (for example, �(�k) = 10−5 for all k)
and updating it until the convergence criterion is satisfied. The
criterion for convergence is set as

maxk

∣∣�new
k − �old

k

∣∣
maxk

∣∣�new
k

∣∣ < 10−3. (B1)

It typically takes between 11 and 70 iterations to meet the
convergence criterion.

We perform the integration on the right-hand side of
Eq. (34) using the trapezoidal rule. The trapezoidal rule for

a two-dimensional integral over a grid can be expressed as

∫ b

a

∫ d

c
f (x, y) dx dy

≈
Nx−1∑
i=1

Ny−1∑
j=1

�x �y

4
[ f (xi, y j ) + f (xi+1, y j )

+ f (xi, y j+1) + f (xi+1, y j+1)], (B2)

where �x and �y are the grid spacings in the x and y direc-
tions, respectively, and Nx and Ny are the number of grid points
in each direction.

This numerical approach ensures that the results are ac-
curate and independent of the specific choice of numerical
parameters, providing a robust solution to the self-consistent
equation.
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The Quantum Hall Bilayers (QHB) at filling factor ν = 1 represents a competition between Bose-Einstein
condensation (BEC) at small distances between layers and fermionic condensation, whose influence grows with
distance and results in two separate Fermi liquid states for the underlying quasiparticles at very large (or infinite)
distances. The question that can be raised is whether, at intermediate distances between layers, a distinct phase
exists or if a singular transition occurs, with the possibility that this happens at infinite distances. Here, using
a dipole representation for fermionic quasiparticles, we find support for the latter scenario: Within a large and
relevant range of distances, BEC condensation, identified as Cooper s-wave pairing of dipole quasiparticles,
prevails over both Cooper p-wave pairing and s-wave excitonic pairing of the same quasiparticles.

DOI: 10.1103/PhysRevB.108.155129

I. INTRODUCTION

The QHB [1,2] is a fractional quantum Hall effect (FQHE)
system with an additional layer degree of freedom: Two lay-
ers of two-dimensional electron gases at distance d from
each other are pierced by a strong magnetic field, B, per-
pendicular to the layers. The total density of the system,
nT , matches the density of available states in the (lowest)
Landau level (LL), (eB)/h, in which electrons live. Thus
the total filling factor is νT = nT (2π l2

B) = 1, with the char-
acteristic length of the system, lB = √

h̄/(cB), the magnetic
length.

Therefore, each layer is half-filled, i.e., it represents a
system of electrons that occupy half of the available states
in the lowest LL (LLL), and thus νT = ν↑ + ν↓, νσ = 1/2,
σ =↑,↓, where the up and down signs refer to a specific layer.
At long distances, d � lB, the layers are almost independent,
at least much less intertwined, and at d � lB, they are strongly
coupled and an excitonic binding between a hole in one layer
and a particle in the opposite one dominates. Thus, a dis-
tance, d̄ ∼ lB, may represent a characteristic distance for the
transition from a strong-coupling to a weak-coupling regime
for the system of two layers, and a question can be raised:
What happens at these intermediate, d ∼ lB distances? A new
intermediate phase, a single transition between two phases
(connected with two extremes, small and large distances),
or a crossover with no phase transition? Various scenarios
appeared in the literature and in this work we will address
this question using a special formalism.

The first proposals for multicomponent FQHE systems
and studies of the QHB in Refs. [3–6] were followed by
experiments [7,8] that confirmed the integer QHE for small
distances between the layers in the case of the QHB. Further
development of the theoretical understanding of the system
at d � lB, as an excitonic condensate or an ordered state of
the pseudospin of electrons [9–12], was followed by experi-
ments [13,14] that revealed the new ordered state and phase at

small distances. On the other hand, there is an expectation that
at large distances (d � lB), we have well-separated layers,
each in a compresssible state [15] of a single layer at filling
factor 1/2 [16,17].

Many theoretical, analytical, and numerical studies have
been done [9–12,18–51] in order to understand the evolution
of the QHB with distance; in particular with the assumption
of the projection of the physics into the LLL in the absence
of disorder. The modeling and understanding of the FQHE is
based on the composite excitations—particles which are often
identified as composite fermions (CFs) [52–54].

In the case of the single-layer at filling factor 1/2, and
under assumption that all electrons are in the LLL, composite
fermion can be viewed as a composite of electron and its
correlation hole, which represents a unit of a positive charge.
Thus CF is an overall neutral fermionic object which can
make a Fermi sea of CFs (and we may expect a compressible
behavior of the system). If we apply a classical analogy, such
an overall neutral composite, in an external magnetic field, B,
then it must have its momentum proportional to its dipole mo-
ment, and at and near Fermi surface we have dipoles [55–57].
This dipole picture is a direct consequence of the projection
into a LL [55–57].

Nevertheless, there is an additional feature of the system of
electrons that fill half of available states in a LL: The physics
should be invariant under exchange of particles and holes,
i.e., we have a particle-hole (PH) symmetry and, together
with CFs, we should also consider and incorporate composite
holes (CHs) in our description to have the PH symmetry
manifestly represented. To include the PH symmetry, a two
component Dirac-type description was introduced in Ref. [58]
for the description of half-filled LL. But, to describe, in a
Fermi-liquid (FL) framework, a half-filled LL of electrons,
we may also consider a variant of the dipole construction in a
one-component fermion formalism, as introduced in Ref. [59].
This construction is a generalization of the dipole, i.e., CF
representation in the case of bosons at filling factor ν = 1 in
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the LLL [60,61], and it is applicable in the low-energy limit
(of the effective FL description).

In this work, we applied the variant of the dipole rep-
resentation that we developed [59], in order to understand
the evolution of the QHB with distance. We identified, at
all distances between layers, the presence of a single phase
that can be described as an s-wave Cooper pairing of dipole
quasiparticles. The underlying physics of this pairing is the
excitonic attraction between electrons in one layer and holes
in the opposite layer, and thus the phase that is well under-
stood at small distances continues to exist at large distances.
This scenario was proposed in Ref. [49], on the basis of the
Dirac description [58] of the physics in each layer, and was
numerically supported in a recent work [50] by modeling
the system on a sphere. This work modeled the underlying
physics as an attraction (Cooper pairing) between CF in one
layer and CH in the other, opposite layer. In our study, using
the formalism of Ref. [59], the nature of the dominant phase
is further elucidated, as is the competition among other can-
didates for the ground state of the system as the distance d is
varied. The s-wave Cooper pairing of dipoles prevails over a
Cooper p-wave pairing and s-wave excitonic pairing of dipole
quasiparticles. The excitonic pairing would represent a topo-
logical, incompressible phase inside an LLL. Our formalism
and the BCS treatment of its setup are more accurate in the
weak-coupling regime, and the confirmation at intermediate
and large distances of the same phase (that is dominant in the
strong-coupling regime at small distances) is, in this sense,
reliable and supports the extension to all d’s.

In the dipole formalism that we applied, in the case
of bilayer, the dipole quasiparticles [which are neither CFs
nor CHs but are symmetric objects that are consistent with
the PH symmetry] enable a representation that has mani-
fest symmetry under the exchange of particles and holes
is done simultaneously in both layers. The dipole repre-
sentation has additional, artificial degrees of freedom -
correlation holes, which are identified with holes in the elec-
tron system(s). This unusual constraint, which we have to
incorporate into the description, comes from the projection
into a single LL of the states of fermionic quasiparticles
that reside near the Fermi level (and most significantly influ-
ence the physics). To incorporate the constraint and use the
mean-field method, we need to deal with effective Hamil-
tonians which are adapted to the use of the method by
explicit inclusion of the constraint (as null operators) in their
description. We focus (narrow possibilities) on small num-
ber of effective Hamiltonians which explicitly represent, in
their forms, physics of potential phases. We solve them (in
the mean-field approximation) and compare the energies of
different Hamiltonians to find the most stable solution at
distance d .

The paper is organized as follows. Section II provides
a review of the dipole representation in a single layer. We
discuss the key concepts and principles underlying the dipole
representation and its relevance to our study. In Sec. III,
we investigate the implications of the dipole representation
in the QHB case and present results on the competition
among phases and the resulting phase diagram. Finally, in
Sec. IV, we summarize our findings and provide concluding
remarks.

II. DIPOLE REPRESENTATION FOR HALF-FILLED LL

The dipole representation for half-filled LL is an extension
of the formalism introduced for the description of the CF
quasiparticles for a system of bosons at a filling factor ν = 1
in an isolated LL [60,61]. In an enlarged space the CF annihi-
lation operator, cmn, is introduced as an operator with double
indices, where each index corresponds to a state in a LL,
n, m = 1, 2, . . . , Nφ , the left (L, physical) index is associated
with a state of an elementary boson, and the right (R, artificial)
index is associated with the state of the corresponding corre-
lation hole. In the context of FQHE the correlation hole can
be defined by a (local) insertion of flux quanta in the system
and represents a well-defined object with charge and statistics.
In the system of bosons, the many-body hole is fermionic,
and the resulting composite object is a fermion, i.e., boson
+ correlation hole = CF. We may introduce the physical and
artificial (of additional degrees of freedom) densities,

ρL
nn′ =

∑
m

c†
mncn′m, (1)

and

ρR
mm′ =

∑
n

c†
mncnm′ , (2)

and their forms in the inverse space,

ρL
q =

∫
dk

(2π )2
c†

k−qck exp

(
i
k × q

2

)
, (3)

and

ρR
q =

∫
dk

(2π )2
c†

k−qck exp

(
−i

k × q
2

)
, (4)

which have the same form as the projected densities of
systems of elementary particles into a single LL; they are
nonlocal and obey the Girvin-MacDonald-Platzmann algebra.
The collapse from the two-particle to a single-particle index
k is physically enabled by the existence of the well-defined
dipole object (CF) which momentum (k) in the (external)
magnetic field is proportional to its dipole moment.

To complete the description of the system we need to im-
pose constraints in order to have as many degrees of freedom
as required by the definition of the problem. It is not hard to
see (due to the fact that the total number of CFs is equal to
the number of bosons and due to their fermionic statistics)
that we need to have ρR

nn = 1 for each n, or ρR
q = 0 when

q �= 0, in inverse space. In the case of the half-filled LL of
electrons, details can be found in Ref. [59], we may formally
proceed with the same constructions as in the previous case,
but now the correlation holes have bosonic statistics. To have
a well-defined description we need to impose ρL

nn + ρR
nn = 1

for each n or ρL
q + ρR

q = 0 when q �= 0 (which requires that
correlation holes are hard-core bosons). But these constraints
include the densities of the physical sector and thus have
nontrivial influence on the physical degrees of freedom: The
correlation holes are on the positions of the real (fermionic)
holes. This is an unexpected constraint that opposes the usual
interpretation of the correlation hole as a potential well for an
elementary particle. Nevertheless, the constraint corresponds
to the physics of the CFs near the Fermi level, i.e., to the most
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important, effective physics of the problem: The magnitude of
the momentum of these CFs is |k| ∼ kF = 1/lB (lB is the mag-
netic length), and due to the projection to a fixed LL [55–57],
this implies that the correlation hole is shifted, distanced from
the electron for the same amount, |k|l2

B ∼ lB. Furthermore, we
consider the Hamiltonian of the problem in a PH symmetric
form, one that is symmetric under exchange of particles and
holes, i.e., L and R densities,

H = 1

2

∫
dq

(2π )2
Ṽ (|q|) [ρL(−q)− ρR(−q)]

2

[ρL(q)− ρR(q)]

2
.

(5)

Because of the constraint and the implied PH symmetry, we
may refer to the composite object not as a CF but simply as a
dipole, i.e., a symmetric object which is neither CF nor CH.

III. THE QUANTUM HALL BILAYER IN DIPOLE
REPRESENTATION

We begin with the Hamiltonian for the QHB in the second
quantization, with electron density operators, ρσ (q), σ =↑,↓
(↑ and ↓ refer to the two different layers):

He =
∫

dq
(2π )2

{∑
σ

1

2
V (|q|) : ρσ (q) ρσ (−q) :

+V↑↓(|q|) ρ↑(q) ρ↓(−q)

}
. (6)

In the enlarged space formalism, the bilinears ρσ (q) become

ρL
σ (q) =

∫
dk

(2π )2
c†
σ (k − q)cσ (k) exp

(
i
k × q

2

)
, (7)

where formally we have, instead of electron annihilation
and creation operators, the quasiparticle operators, cσ (k)
and c†

σ (k). Quasiparticles in the long-distance approxi-
mation can be interpreted as fermionic dipoles. In the
Hamiltonian we recognize the intrainteraction terms with
V (|q|) = (1/|q|) exp(−|q|2/2) and the interinteraction term
with V↑↓(|q|) = V (|q|) exp(−d|q|), where d denotes the dis-
tance between the layers. We then proceed by using the dipole
representation, which we find optimal for exploring the influ-
ence of the fermionic quasiparticles and physics that grows
with distance. This representation allows the inclusion of the
PH symmetry of the system (under exchange of all electrons,
irrespective of index, and holes) in a manifestly invariant way
in the Hamiltonian. We then proceed to utilize the dipole rep-
resentation, which we find optimal for exploring the influence
of the fermionic quasiparticles and the physics that evolves
with distance.

By imposing the constraints,

ρL
σ (k) + ρR

σ (k) = 0 σ =↑,↓, (8)

that define the dipole representation in each layer, we place
correlation holes where holes are, and thus the PH exchange
is followed by the density exchange:

ρL
σ (k) ↔ ρR

σ (−k) σ =↑,↓ . (9)

Therefore, the Hamiltonian can be written (by using the con-
straints) in an explicitly invariant form under this exchange:

H0 =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]

× [
ρL

σ (q) − ρR
σ (q)

] + V↑↓(|q|)
4

[
ρL

↑ (−q) − ρR
↑ (−q)

]

× [
ρL

↓ (q) − ρR
↓ (q)

]}
. (10)

Note the absence of normal ordering due to the requirement
that the constraints commute with the Hamiltonian in the
physical space. This induces single particle terms (beside
purely interacting) with effective mass M (due to the in-
tralayer interaction) [62,63]. By treating the constraints as
null operators (in the physical space), which we can include
in the Hamiltonian, we reach forms of the Hamiltonian that
are adapted to the mean-field approach, as they offer obvious
interpretation which phase in the mean-field approach they
support.

In the QHB case we can add and subtract (product of)
constraints and define the following (effective) Hamiltonians:

H1 =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]

× [
ρL

σ (q) − ρR
σ (q)

] + V↑↓(|q|)
2

× [ − ρL
↑ (−q)ρR

↓ (q) − ρR
↑ (−q)ρL

↓ (q)
]}

, (11)

and

H2 =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]

× [
ρL

σ (q) − ρR
σ (q)

] + V↑↓(|q|)
2

× [
ρL

↑ (−q)ρL
↓ (q) + ρR

↑ (−q)ρR
↓ (q)

]}
. (12)

The form of H1 emphasizes the excitonic attraction between
densities from opposite layers (electron-hole attraction),
which we expect to dominate physics at small distances. On
the level of effective dipoles - composite particles (c’s) this
will translate to a strong instability to a Cooper pair formation
between c’s from different layers. On the other hand, the form
of H2 is suggestive of excitonic pairing between c’s from op-
posite layers. Indeed, in a mean-field treatment of H1 and H2,
these instabilities can be identified as shown in Fig. 1. Details
of the mean-field treatment are provided in the Appendix. For
all distances considered, the s-wave (l = 0) Cooper pairing
between layers has lower energy than the p-wave (l = 1)
Cooper pairing and s-wave (l = 0) excitonic pairing. The
s-wave excitonic phase of quasiparticles is similar to the one
proposed in Ref. [45], which describes an interlayer correlated
CF liquid (ICCFL). However, in our work, we operate within
an LL, and the quasiparticles involved are (neutral) dipoles.
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FIG. 1. The total energies of the ground states of effective Hamil-
tonians H1 and H2 as functions of the distance between layers; s-wave
Cooper pairing of H1 in black, p-wave Cooper pairing of H1 in green,
s-wave exciton pairing of H2 in red, and p-wave exciton pairing of
H2 in blue.

In calculating total energies we applied a short-distance
“cutoff” if necessary (if we encountered divergences). Though
consistently defined on the whole k plane [61], the enlarged
space description must be supplied with a natural “cutoff”
(due to an intrinsic “lattice constant” lB for this system): radius
k = √

2/lB of a circle in the k space, i.e., a volume of the
available states in a single LL. In most cases the presence
of Gaussians allows the extension of the integration over the
whole space.

The exciton instability in the plotted range d ∈ [0, 3lB]
can be described as an occupation of a single, lower band
that is associated with the symmetric superposition: [c↑(k) +
c↓(k)]/

√
2. Thus a single, large Fermi sea exists in this range

according to the mean-field calculation. Related to this is the
excitonic binding of c’s implied by H0 (with a dipole-dipole
interaction that screens the bare Coulomb interaction) with
the gap parameter, �k ∼ |k|2 (not a constant as in the case of
H2). The total energy of this solution is negligible and may
be relevant only for very large d when a transition to two
decoupled Fermi seas takes place, i.e., for an equal population
of symmetric and antisymmetric bands.

We applied the mean-field approach to the effective Hamil-
tonians and thus we may expect that our results are more
reliable for larger d , i.e., weak coupling between layers. The
weak-coupling assumption is completely justified for d ∼ 3lB
[see Fig. 1, weak attraction (pairing amplitudes), i.e., weak
coupling can be recognized in small differences in total ener-
gies with respect to the asymptotic value, i.e., the free-fermion
limit], and we may ask whether (at all, because of the strong
coupling for d � lB) a conclusion for the state of the system at
any d can be drawn. But the nature of the predicted phase for
d � lB (in the strong-coupling regime) in our formalism is the
same as the one that is firmly confirmed in many calculations
and approaches, a binding of the density of electrons with
the density of holes in the opposite layers (opposite charge
binding), and given that this phase (in our formalism) persists
to large d (weak-coupling regime where the approach is fully
reliable), we can conclude (assuming continuity, i.e., that a
reentrant scenario is unlikely) that one and the same phase is
present for all relevant distances including d � lB.

In our approach, the binding of charges from opposite
layers is described (effectively) as s-wave binding of dipoles
of momenta k and −k and thus involves opposite dipole
moments from opposite layers. This is similar to the binding
described in Ref. [50], where a CF in one layer binds to a CH
in the other one. The underlying physics of pairing is the same,
and the descriptions should correspond to the same phase [64].

We did not include a requirement for the boost invariance
(K invariance [63,65]) as in the single-layer case [59], because
in this case, a real increase of the energy of the system is possi-
ble due to a relative motion between layers. In the mean field,
the dispersion of the Goldstone mode is ωk ∼ √

�s/M, where
�s is the BCS gap and M is the mass of quasiparticles due
to the Coulomb interaction between the same layer particles.
The boost invariance should be ensured in the limiting cases,
d = 0 and d = ∞, but at intermediate distances, we may rely
on the mean-field estimates.

IV. DISCUSSION AND CONCLUSIONS

Thus, we may conclude that within the scope of dipole
representation and mean-field method, there is no transition
in the QHB at finite distance between layers; the excitonic
phase of electrons (or Cooper s-wave pairing of fermionic
quasiparticles and dipoles in the long-distance approximation)
dominates the physics at relevant distances. On the other
hand, the suppressed yet competing, s-wave excitonic phase
of quasiparticle inside LLL can be described as a large Fermi
sea of quasiparticles (with no layer index, i.e., with symmetric
superpositions). An intermediate state in the QHB has been
identified and described by exact diagonalization on a torus in
Ref. [46]. In our description the Fermi sea of (neutral) dipoles,
in the absence of the boost invariance (or K invariance),
leads to the incompressibility in the charge channel [63,65]
of the competing phase, and that is consistent with findings of
Ref. [46] (and distinct from the ICCFL phase of Ref. [45]).
The exciton condensation induces a gapped, topological be-
havior in the neutral channel, just as in the case of the ICCFL
phase (of Ref. [45]) and consistent with findings of Ref. [46].

Based on previous analyses [47,48], one may expect that
the inclusion of LL mixing will lead to the formation of
the p-wave pairing state of CFs (from opposite layers, i.e.,
interpairing). This state can be found in an unprojected (to a
fixed LL) Chern-Simons field-theoretical description. A Dirac
type of the gauge theory leads to the conclusion that the
p-wave Cooper pairing of CFs from opposite layers describes
the system at any distance between layers [49] (except at
d = ∞). The no-transition scenario continues to exist under
LL mixing [51]. The results of our work, within the LLL, and
the results of Ref. [51], with no projection in a Chern-Simons
treatment, are in correspondence. This continuous (one and
only for all distances) phase can be simulated by selecting an
appropriate shift (i.e., bias) in the spherical geometry, inside
the LLL, as described in Ref. [50].

In short, we have demonstrated the usefulness of the dipole
representation in the case of the long-standing problem of
the QHB, with potential to be used for half-filled problems
of general Chern bands. Inside an LLL, the QHB physics
is dominated by a single phase: the Cooper s-wave pairing
of effective dipoles. While for the system of electrons in a
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single layer that occupy half of the available states in a LL
a compressible behavior is only possible [69], here we find
that a nontrivial double, a nontrivial superposition of two such
systems with incompressible, topological behavior based on
the noncommutative nature of projection(s) inside LL(s) is
in a competition with a compressible phase, but again the
compressible (in the neutral channel) phase is realized.
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APPENDIX: MEAN-FIELD APPROACH TO EFFECTIVE
HAMILTONIANS

In this Appendix, we give a brief account of the mean-
field treatment of the Hamiltonians, H1, (11), and H2, (12).
Due to the attractive nature of the effective interaction in
H1, and the repulsive nature of the effective interaction in
H2, we introduce a mean-field reduction of the Hamiltoni-
ans, assuming the pairing in the Cooper channel of H1, i.e.,
〈c†

k,↑c†
−k,↓〉 = �bcs

k �= 0, and the excitonic pairing of H2, i.e.,

〈c†
k,↑ck,↓〉 = �exc

k �= 0.
In the BCS case, we need to solve self-consistently the

following equation, for the order parameter �bcs
q :

�bcs
k =

∫
dq

(2π )2
V↑↓(|q − k|)�

bcs
q

2Eq
, (A1)

where Eq =
√

ξ 2
q + |�bcs

q |2 and ξq = εq − εqF
, with qF = 1

(a half-filled condition for each layer). Also εq represents

the single-particle energy of quasiparticles in each layer that
is calculated using the Hartree-Fock method, applied to the
single-layer part of the Hamiltonian that describes the in-
tralayer interaction. See below an explicit formula in (A5).
The (total) ground-state energy of the system is

Ebcs
0 =

∫
dq

(2π )2
(ξq − Eq) +

∫
dq

(2π )2

∣∣�bcs
q

∣∣2

2Eq
. (A2)

In the excitonic case, we need to self-consistently solve the
following equation, for the order parameter �exc

q :

�exc
k =

∫
dq

(2π )2
V↑↓(|q − k|) �exc

q

2
∣∣�exc

q

∣∣ [nα (q) − nβ (q)], (A3)

where nα (q) and nβ (q) denote the occupations of the states
with momentum q, in the band with energies Eα (q) = εq −
|�exc

q |, and in the band with energy Eβ (q) = εq + |�exc
q |, re-

spectively. In solving (A3), we have to keep the density of the
system constant, i.e., the occupation of the lower and upper
band, described by appropriate Fermi momenta, qF

+ and qF
−,

should satisfy the following equation: (qF
+)2 + (qF

−)2 = 2.

The (total) ground-state energy of the system is

E exc
0 =

∫
dq

(2π )2

[(
ξq − ∣∣�exc

q

∣∣/2
)
nα (q)

+ (
ξq + ∣∣�exc

q

∣∣/2
)
nβ (q)

]
, (A4)

where, as before, ξq = εq − εqF
, with qF = 1 (a half-filled

condition for each layer).
The following equation describes the single-particle energy

obtained after the application of the (Hartree-)Fock procedure
to the intralayer part of the Hamiltonian:

εk = 1

2

∫
dq

(2π )2
Ṽ (|q|)

[
sin

(
i
k × q

2

)]2

−
∫

dq
(2π )2

Ṽ (|q − k|)
[

sin

(
i
k × q

2

)]2

n(q). (A5)

The occupation n(q) describes the filled Fermi sphere with
radius qF = 1. The first contribution comes from the normal
ordering of the density-density form of the intralayer term and
may represent the self-energy of a dipole [62], and the second
term represents a Fock contribution.
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We introduce a variant of a dipole representation for composite fermions in a half-filled Landau level, taking
into account the symmetry under an exchange of particles and holes. This is implemented by a special constraint
on a composite fermion and a composite hole degree of freedom (of an enlarged space), which makes the
resulting composite particle (dipole) a symmetric object. We study an effective Hamiltonian that commutes
with the constraint on the physical space and fulfills the requirement for boost invariance on the Fermi level. The
calculated Fermi liquid parameter F2 is in good agreement with numerical investigations in Phys. Rev. Lett. 121,
147601 (2018).
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is a phe-
nomenon of strongly correlated electrons that is amenable to
quasiparticle pictures and modeling. The presence of a strong
magnetic field very often leads to dominance of the physics
inside a Landau level (LL) (a subspace of the Hilbert space of
the half-filled LL problem), and it justifies approaches that as-
sume that the description of the problem can be confined to an
isolated LL. The half-filled LL problem (relevant for systems
at half-filling factors) is very interesting because it contains an
additional symmetry that is not present in experiments or any
other fillings of LLs, namely the symmetry of the exchange of
particles (electrons) and holes, i.e., particle-hole (PH) symme-
try. On the other hand, systems at half-filling contain physics
that are specific for the FQHE, including the formation of a
Fermi-liquid state of composite quasiparticles (fermions) that
reside in the lowest LL (LLL) [1,2], and the incompressible
half-integer filling factor, 5/2, for electrons in the second LL
[3]. Moreover, it is widely believed that the physics at 5/2 is
connected with a Cooper pairing of underlying quasiparticles
that form so-called Pfaffian states [4]. The LL mixing (the
influence of other LLs on the effective physics in the base LL)
is very important for the physics of Pfaffian states because
it selects and stabilizes a unique Pfaffian state among three
possibilities: Pfaffian, anti-Pfaffian, and PH Pfaffian. On the
other hand, the LL mixing is not that important for the physics
of electrons in the LLL. Moreover, we are interested to know
what will happen to the PH symmetry that is present if we
assume that the Hilbert space of the system is an isolated
LL. The state in the experiments may correspond to the spon-
taneous PH symmetry breaking state of a Hamiltonian that
contains PH symmetry.

Even if we confine our description to the isolated LL, the
problem at half-filling is still a strongly correlated one. Our
hope is that by selecting appropriate quasiparticles, and by
applying approximate methods (usually mean-field methods),
we can arrive at an effective description of the system that is
consistent with numerical and real experiments.

The Fermi liquid (FL) concept for the physics of composite
quasiparticles, i.e., composite fermions, was introduced in
the seminal work of Halperin, Lee, and Read (HLR) [1] on
the basis of the Chern-Simons field-theoretical description,
which does not include a projection to the LLL. To achieve
a detailed description and understanding of the Fermi-liquid
state inside the LLL, Pasquier and Haldane [5], and later Read
[6], analyzed a related system of bosons at filling factor 1,
with an exact representation of the composite fermion (CF)
quasiparticles in an enlarged space of the half-filled LL prob-
lem. On the other hand, Shankar and Murthy [7] advanced
a field-theoretical description of the dipole-CF representation
of the problem [8]. In recent years, the concept of a Dirac,
i.e., a two-component quasiparticle, was introduced by Son
[9] for the description of the half-filled LL, i.e., a system that
features PH symmetry. In Ref. [10], a microscopic derivation
of such a theory was given in which the two components were
connected to the two possibilities for quasiparticles, i.e., CFs
and CHs (composite holes).

Here we propose an extension of the quasiparticle view of
the physics inside an isolated LL based on a one-component
fermion, namely a dipole. Our description does not distinguish
between CFs and CHs. We employ the enlarged-space formal-
ism [5–7], but with a special constraint that incorporates PH
symmetry, in the system of electrons that fill half of an isolated
LL. The special constraint and demand for the boost invari-
ance defines an effective Hamiltonian and FL description, in
agreement with numerical experiments [11].

The paper is organized as follows. In Sec. II, the enlarged-
space formalism for the system of bosons at filling factor 1
is reviewed before the exposition of our proposal in the same
section. At the end of the section, we discuss the FL descrip-
tion based on that proposal. In Sec. III, in order to further
understand the nature of the introduced quasiparticles, the
problem of the bilayer, i.e., two half-filled LLLs, is analyzed
in the new representation. In Sec. IV, we discuss an additional
implementation of our approach, i.e., a quantum Boltzmann
equation based on the dipole picture that incorporates the
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boost invariance and PH symmetry, and we end with con-
clusions. In Appendix A, the invariance under the change of
basis, i.e., the SU(N ) invariance for the proposed formalism,
is described, and in Appendix B we provide details concerning
the derivation of the quantum Boltzmann equation.

II. DIPOLE REPRESENTATION IN AN ISOLATED
LANDAU LEVEL

We study an extension of the formalism for CFs that was
developed in [5,6] for the case of bosons at filling factor 1
to the case of electrons in an isolated LL that is half-filled.
Although an extension of the CF formalism to the case of half-
filled LL of electrons has to incorporate bosonic correlation
holes (i.e., artificial degrees of freedom in the setup), we will
show that with a hard-core constraint in an enlarged space, we
can delineate a physical subspace and reach a faithful descrip-
tion. In the following, we will review the basic formalism for
the system of bosons at filling factor 1.

A. Bosons at filling factor ν = 1

1. Review of the CF formalism for bosons at filling factor ν = 1

In this section, we will briefly review the CF formalism that
was introduced in [5] and further developed in [6] for bosons
at filling factor ν = 1. The CF is a composite quasiparticle
of an underlying system of bosons (or electrons) that consists
of a boson (an electron) and its (associated) correlation hole
in the incompressible or weakly compressible (like the FL
state of CFs) FQHE states. For the case of bosons at filling
factor ν = 1, we have one boson on average per state �n

in an isolated LL, n = 1, . . . , Nφ . Nφ denotes the number of
flux quanta through the system. Thus n enumerates states in a
chosen basis of the relevant LL.

The Laughlin solution of the FQHE at ν = 1/3 of
electrons—an excellent description of the ground-state wave
function, which incorporates basic correlations among par-
ticles that are solely interaction-driven in an isolated LL,
motivates the introduction of the composite quasiparticles. In
the regime of the FQHE, we can easily envision a structure of
a neutral quasiparticle: an underlying boson (or an electron)
and its associated correlation hole, which we can express
and regard as (Laughlin) quasihole excitation (eigenstate) of
the system with quantized charge and statistics [or nearly
quantized and localized, almost an eigenstate in a weakly
compressible systems (like the FL state of CFs)].

In the case of bosons at filling factor ν = 1 of an isolated
LL, and by following the Laughlin ansatz, we can easily find
out that the most natural assignment for the statistics of the
correlation hole is fermionic (so that the statistics of CFs is
fermionic and counterbalances the Vandermonde determinant
fermionic correlations, and produces overall bosonic correla-
tions and wave functions), and that it represents a deficiency
of a unit of charge (a hole). Thus we are inclined to consider a
composite fermionic object (CF) and associate an annihilation
operator with two indices m and n, cnm, where n and m refer
to two states of a chosen basis in a LL: the left index, n,
describes the state of an (underlying, elementary) boson, and
the right index, m, describes the state of its correlation hole—
an artificial (additional) degree of freedom. In this way, we

are enlarging the space that we associate with the system’s
description; we introduce also creation operators, c†

mn, so that

{cnm, c†
m′n′ } = δn,n′δm,m′ , (1)

and we consider states in the enlarged space,

c†
mn · · · c†

pq|0〉. (2)

The physical subspace of this enlarged space can be delineated
by projecting out artificial, nonphysical degrees of freedom,
i.e., “vortices” (correlation holes), that possess fermionic
statistics:

|n1, . . . , nN 〉 =
Nφ∑

m1,...,mN

εm1···mN c†
m1n1

· · · c†
mN nN

|0〉, (3)

where εm1···mN is the Levi-Civita symbol.
We may notice that this construction is invariant under an

SU(N ) transformation, i.e., a change of basis in the LL in the
R sector only, i.e.,

c†
mn →

Nφ∑
m′

Umm′c†
m′n, (4)

where Umm′ is an SU(N ) matrix. (The physical states are spin-
singlets under this transformation.)

In the CF representation, one can consider ρL
mm′ and ρR

mm′ ,
density operators for physical (L) and unphysical (holelike,
R) degrees of freedom:

ρL
nn′ =

∑
m

c†
mncn′m (5)

and

ρR
mm′ =

∑
n

c†
mncnm′ . (6)

Also the following decomposition [of the basic state (n, m) of
the composite object] can be considered:

cnm =
∫

dk

(2π )
3
2

〈n|τk|m〉ck, (7)

with τk = exp(ik · R), where R is a guiding-center coordinate
of a single particle in the external magnetic field,

[Rx, Ry] = −i. (8)

We took lB (magnetic length) = 1, and {|n〉} are single-particle
states (orbitals) in a fixed LL.

The parameter k denotes the momentum of the composite
object, i.e., a CF. Physically, the state of the CF with vortex
orbital m and electron orbital n can be described by a superpo-
sition of the (commutative) momentum k states, the weights
of which depend on the effective distance between orbitals
(the size of the dipole), |keff |, because τk = exp(ik · R) is the
translation operator.

The introduced decomposition implies the following ex-
pressions for the L and R densities in the inverse space:

ρL
nn′ =

∑
m

c†
mncn′m =

∫
dq
2π

〈n′|τq|n〉ρL
q , (9)
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where

ρL
q =

∫
dk

(2π )2
c†

k−qck exp

(
i
k × q

2

)
. (10)

Note the inverse order of indices, n and n′, on the left- and
right-hand sides of (9). Similarly,

ρR
mm′ =

∑
n

c†
mncnm′ =

∫
dq
2π

〈m|τq|m′〉ρR
q , (11)

where

ρR
q =

∫
dk

(2π )2
c†

k−qck exp

(
−i

k × q
2

)
. (12)

The density ρL
q satisfies the GMP algebra,

[
ρL

q , ρL
q′
] = 2i sin

(
q × q′

2

)
ρL

q+q′ , (13)

while ρR
q , as a density of “holes,”

[
ρR

q , ρR
q′
] = −2i sin

(
q × q′

2

)
ρR

q+q′ , (14)

i.e., GMP algebra for particles with opposite electric charge.
Thus we can realize the basic algebra of the electron den-

sity projected to a LL as an algebra of the same density
expressed via operators that represent overall neutral objects
(dipoles), i.e., CFs. We expect that the CF representation will
capture the basic physics of the problem, and already at the
mean-field level will give meaningful results (stable FL if we
apply Hartree-Fock [6]).

2. Hamiltonian and constraints

The basic Hamiltonian in the second-quantized notation,

H = 1

2

∑
m1,...,m4

Vm1,m2;m3,m4 a†
m1

a†
m2

am4 am3 , (15)

can be represented by the following Hamiltonian in CF repre-
sentation [6]:

H = 1

2

∑
m1,...,m4

n1,n2

Vm1,m2;m3,m4 c†
n1m1

c†
n2m2

cm4n2 cm3n1 . (16)

That this is possible can be seen because by mapping bilinear
a†

paq into
∑

k c†
kpcqk , we are preserving the basic algebra of

fermionic (electron) bilinears, but what may happen is that
new (in the enlarged space) operators (including the Hamilto-
nian) can map physical states into superpositions of physical
and unphysical states. Thus we have to ensure that physical
states are mapped into physical (sub)space: the Hamiltonian
has to commute with the constraint(s) (that determine the
physical subspace of the enlarged space). From (3) we see
that in this case the constraint that defines the physical space
is ρR

nn = 1 and [H, ρR
nn] = 0. In the inverse space [6],

H = 1

2

∫
dq

(2π )2
Ṽ (|q|) : ρL(q)ρL(−q) :, (17)

we have [ρL
q , ρR

q′] = 0, and thus [H, ρR
q ] = 0, as required for

the constraint ρR
q = 0. In the following section, where we

study electron systems at half-fillings, the constraints will not

be so simple, and we have to ensure the commutation with H
at least in the physical subspace (with the help of constraints).

B. Electron system of (an isolated) half-filled Landau level

1. Physical states

In the case of the electron system at half-filling, the corre-
lation hole, i.e., the superposition of two Laughlin quasihole
constructions, if considered as an independent and well-
defined degree of freedom, should carry bosonic statistics.
This is a departure from the simple introduction of the un-
physical degrees of freedom in the case of the bosonic system
at filling factor 1. These degrees of freedom, in that case, carry
fermionic statistics and are entering the description via the
simple constraint ρR

nn = 1 that ensures easy implementation
of the SU(N ) invariance; we can transform the basis only
in the R sector, and the physical state will be invariant with
respect to that particular transformation. Thus, as expected
and required, if we are transforming a physical state, we have
a usual, unitary implementation of SU(N ), and only L degrees
of freedom are affected.

We may wonder if it is possible at all to implement the
SU(N ) invariance if we have bosonic unphysical (additional)
degrees of freedom that enter the CF description. If we do not
consider CFs and CHs (to account for the PH symmetry in a
half-filled Landau level) and a Dirac-type theory [10], we can
attempt a description that is similar to that in the bosonic ν =
1 case by considering only CFs, more precisely single-particle
operators with two indexes, cmn, but only of one kind, and the
following associated physical states (Slater determinants) in
the enlarged space:

|�phy〉= |n1, . . . , nNφ/2〉 =
′∑

σ∈SNφ/2

c†
σ (m1 )n1

· · · c†
σ (mNφ/2 )nNφ/2

|0〉,

(18)

where the prime over the sum means that the sum
is over permutations of distinct states, m1 �= m2 �= · · · �=
mNφ/2, i.e., indexes connected with a basis in a LL:
{|n1〉, |n2〉, . . . , |nNφ/2〉, |m1〉, |m2〉, . . . , |mNφ/2〉}. In (18) we
have electrons that occupy states from subspace V =
{|n1〉, |n2〉, . . . , |nNφ/2〉}, i.e., half of the available states in a
LL. The second half, V⊥ = {|m1〉, |m2〉, . . . , |mNφ/2〉} (states
from the orthogonal subspace), are occupied by “hard-core”
bosonic correlation holes.

We may consider both bosonic correlation holes and real
(associated with a Chern band, i.e., an LL) fermionic holes.
When we talk about PH symmetry, we refer to fermionic
holes. But due to the implied constraint, in Eq. (18), on the
density and occupation by correlation holes, their densities
(occupation numbers) are constrained to be equal, and in that
sense the PH symmetry (active exchange of electrons and
real holes) can be associated with the exchange of L and R
(correlation hole) in the Hamiltonian and constraint(s) that are
expressed via densities.

In Appendix A we discuss how the SU(N ) invariance
can be implemented if one consider simultaneous transfor-
mation(s) on L and R; a transformation on only one type of
index is nontrivial (nonunitary). In an isolated half-filled LL
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we have PH symmetry, and in that case we may expect that the
change of basis affects both L (particle) and R (hole), because
of the intertwined physics of particles and (real) holes. This
is unavoidable, and it is the only option we have both in the
Dirac (manifestly invariant PH symmetric with CFs and CHs)
or CF-only representation and the description of the problem
discussed here.

2. Hamiltonian and constraints

The realization of the SU(N ) symmetry and the quasiparti-
cle description relies on the requirement that

ρL
nn + ρR

nn = 1, (19)

i.e., the hard-core constraint that we introduced at the begin-
ning of the subsection in the description of the basic physical
states (18). The constraint is part of the formulation of the
problem; it specifies the half-filling condition. What is special
with respect to the previous introduction of the additional
degrees of freedom that should represent correlation holes is
that here correlation holes describe hole degrees of freedom of
the half-filled problem. In that sense, our approach can be con-
sidered as only effective, not microscopic, considering how
the quasiparticle description is introduced (with respect to the
bosonic case at ν = 1). But once the constraint is assumed,
we can build our description, i.e., an effective Hamiltonian, by
requiring that the Hamiltonian commutes with the constraint,
as we will describe shortly. On the other hand, there are
reasons why such a constraint is appropriate. First, it includes
particle and hole degrees of freedom (CFs and CHs) in such a
way that the PH symmetry is accounted for. Second, it leads to
a PH symmetric form of the Hamiltonian, which is known as
a dipole representation of the underlying quasiparticle physics
introduced by Shankar and Murthy, but with an additional
factor of 4 that reduces the strength of the Coulomb inter-
action. That factor is likely the one that was missing in the
interpretation of surface acoustic wave experiments by the
HLR theory and the dipole-based theory [8]. An additional
and important reason for the form of the constraint, as we
will show in the following, is that the constraint can be used
to obtain a final form of the Hamiltonian that features the
boost invariance. The boost invariance should characterize an
effective description at least at the Fermi level as an invariance
in the system that does not have (bare) mass (i.e., a kinetic
term) in its microscopic description. As we will show, the
calculated Fermi liquid parameter, F2, on the basis of that
Hamiltonian and constraint, is in very good agreement with
the numerical experiment of Ref. [11].

To get the form of the Hamiltonian that satisfies these
requirements, we start with the microscopic form of the
Hamiltonian [the same as for bosons in (17)] where we
abandon the requirement for normal ordering and make the
following substitution:

ρL(q) → ρL(q) − ρR(q)

2
. (20)

Therefore,

H = 1

8

∫
dq

(2π )2
Ṽ (|q|)[ρL(−q)

− ρR(−q)][ρL(q) − ρR(q)]. (21)

Here Ṽ (|q|) = 1
|q| exp(−|k|2

2 )[Ln( |k|2
2 )]2, where Ln represents

the Laguerre polynomial for a fixed LL index n. Thus we mod-
ified the Hamiltonian in the particle representation to the one
that features PH symmetry in such a way that the exchange
ρL(q) ↔ ρR(q) does not change the form of the Hamiltonian.
Also,

[H, [ρL (q) + ρR(q)]]|[ρL (k)+ρR (k)]=0 = 0, (22)

i.e., the constraint commutes with the Hamiltonian in the
physical space, as required.

The Hamiltonian in (21) possesses a single-particle term,
H1 [12],

H = H1+ : H :, (23)

next to the purely interacting term, : H :. If we interpret the
mass in H1 at kF as the effective mass, m∗, of a FL description,
we need an additional interaction, a term next to the bare one,
i.e., : H : in order to achieve (a) the FL description of the
system, and (b) the description that is also invariant under
boosts, i.e., whose Hamiltonian is purely interacting at the
Fermi level. We will come back to these requirements with
more explanations below the final form of the Hamiltonian in
Eq. (27).

To implement this, we may add a term that needs to repre-
sent an interaction, but at the same time be equal to zero in the
physical space (not to add or spoil energetics encoded in H
based on the bare, Coulomb interaction). In the inverse space,
that term may be of the following form:∫

dq
(2π )2

C(|q|) exp

(
−q2

2

)[
Ln

(
q2

2

)]2

× [ρL(−q) + ρR(−q)][ρL(q) + ρR(q)]. (24)

On the other hand, in the space of the LL orbitals, we may
consider the following term:∑

n,n′
δn,n′

(
ρL

nn + ρR
nn

)(
ρL

n′n′ + ρR
n′n′

)
, (25)

based on the constraint expressed on the space of orbitals
{|n〉}, which is not zero but, due to the constraint, simply
a constant in the physical space, i.e., a constant equal to
the number of orbitals. By comparing two expressions that
constrain the form of the required interaction term, we can
conclude that C(|q|) in (24) should be a constant, independent
of q. Namely, if we regularize the expression in (25) in the
thermodynamic limit by omitting the terms that do not con-
serve momentum in the inverse space, and may represent local
single-particle potentials, we find that the remaining term that
represents an interaction invariant under translation is

HC = C
∫

dq
(2π )2

exp

(
−q2

2

)[
Ln

(
q2

2

)]2

× [ρL(−q) + ρR(−q)][ρL(q) + ρR(q)], (26)

i.e., a δ-function interaction projected into an isolated LL.
This term is equal to zero in the physical space.

The complete Hamiltonian that describes the low-energy
physics at the Fermi level and incorporates the boost
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invariance is

HC = H + HC, (27)

where the constant C is chosen such that the second derivative
with respect to momentum of the total single-particle disper-
sion in the single-particle term of HC at the Fermi level is
equal to zero.

In short, the FL assumption and assertion is that the ef-
fective physics can be expressed via quasiparticle excitations
near the Fermi surface with energy,

ε̃(p) = p2

2m∗ +
∫

d p′

(2π )2
f (p, p′)n(p′), (28)

where m∗ is the effective quasiparticle mass, f is the effective
interaction among quasiparticles, and n(p) is the occupation
number at momentum p of quasiparticles. To identify f in
the scope of our approximation, we will consider for f the
interaction based on the Fock approximation and approach to
HC (which will coincide with the bare interaction). Further-
more, as usual in the FL description, we are concerned with
excitations near the Fermi surface, and we assume that f is
only a function of the directions of p and p′. Thus we consider
FL parameters,

Fl = m∗ fl

2π
, (29)

where

fl = 1

2π

∫ 2π

0
dθ f (θ ) exp(ilθ ). (30)

The very important aspect of the FL description is the connec-
tion between the bare mass of underlying particles mb ≡ me

and the quasiparticle description. We may use the Galilean
invariance under boost by momentum q, which induces the
change in the energy density equal to ne

|q|2
2mb

, and we equate
this energy to that implied by the FL description, to obtain
(see, for example, [8])

1

mb
= 1

m∗ + f1

2π
. (31)

Thus, in a FL description, to have a consistent theory, we need
to have a special (additional) interaction defined by f1 that will
compensate for the renormalization of the mass by interaction
(from mb to m∗) in order to reach a quasiparticle picture. Fur-
thermore, in our case, in the microscopic underlying (electron)
description, there is no single-particle term (and bare mass mb)
in the solely interacting (microscopic) Hamiltonian defined
inside a LL. To ensure the boost invariance in the purely
interacting theory, we need

0 = 1

m∗ + f1

2π
(i.e., F1 = −1). (32)

Thus the mass m∗ is expressed and defined solely by the
Landau interaction (parameter). Concretely, in our case, the
introduced HC is necessary to complete the effective FL de-
scription near the Fermi surface. It plays the role of f1, an
extra, necessary interaction. As already emphasized, it also
(by a definite value of constant C) eliminates the (total) mass
term at the Fermi level in the Fock approximation. Thus, in

FIG. 1. Fermi liquid parameter F2 as defined in Eq. (34) with
(35), in the case of the LLL (blue), the second LL (black), and the
third LL (red). The inset shows the calculated values for F2 if the
interaction with Cη is absent in (35).

our case, the Landau interaction f is given in the Fock ap-
proximation by the interaction defined by the normal ordering
of HC for the interacting particles at the Fermi level.

To probe the FL description implied by HC , we consider a
generalized Coulomb interaction [11],

Vη(q) = 1

|q| exp(−|q|η), (33)

which models the effect of the finite thickness of samples in
experiments, but also stabilizes FL behavior [11]. The calcu-
lated F2—the FL parameter at angular momentum l = 2—on
the basis of the effective Hamiltonian HC (in the Fock approx-
imation) is given in Fig. 1. We calculated

F2 = −
∫

dθ cos(2θ ) f (θ )∫
dθ cos(θ ) f (θ )

, (34)

where f (θ ) is defined by the total interaction at q = p − p′,
for which |p| = |p′| = kF = 1, p′ = êx, p · p′ = cos(θ ), and
thus |q| = 2| sin( θ

2 )| with

f (θ ) =
[
Vη(|q|) sin2

(
sin(θ )

2

)
+ 8Cη cos2

(
cos(θ )

2

)]

× exp

(
−q2

2

)[
Ln

(
q2

2

)]2

, (35)

where Cη is the value of C at a particular η necessary to
eliminate the mass term at kF . The calculated F2 (Fig. 1) is in
an agreement with the trends of the numerical experiment of
Ref. [11]; it predicts the absence and presence of the Pomer-
anchuk instability in the LLL and third LL, respectively, for
the pure Coulomb interaction, as in Ref. [11], but it does not
predict one in the second LL, which exists according to the
analysis in [11]. In the inset of Fig. 1, the values of F2 are given
for the usual Hamiltonian H in the dipole representation, in
the absence of the single-particle term, i.e., for :H :. We can
see that they differ considerably from the expectations based
on HC and the results of the numerical experiment in [11]; the
inclusion of the C-interaction together with the requirement
for boost invariance is essential to get an agreement with the
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FIG. 2. Fermi liquid parameter F3 as defined in Eq. (34) with
(35), in the case of the LLL (blue), the second LL (black), and the
third LL (red). The inset shows the calculated values for F3 if the
interaction with Cη is absent in (35).

results of Ref. [11]. In Figs. 2 and 3 we present the values of
Fermi liquid parameters, F3 and F4.

III. THE BILAYER CASE: PAIRING BETWEEN TWO LLLs

To get a better understanding of the underlying
quasiparticle—a dipole in the new representation—we
consider the quantum bilayer problem, i.e., the problem with
two half-filled LLLs. The bilayer consists of two layers. Each
layer represents a half-filled LLL, but with no PH symmetry,
because of the interlayer interaction. The two-component
physics can be represented inside a single LLL by the
following Hamiltonian with electron density operators, ρσ (q),
σ =↑,↓:

He =
∫

dq
(2π )2

{∑
σ

1

2
V (|q|) : ρσ (q) ρσ (−q) :

+ V↑↓(|q|) ρ↑(q) ρ↓(−q)

}
. (36)

FIG. 3. Fermi liquid parameter F4 as defined in Eq. (34) with
(35), in the case of the LLL (blue), the second LL (black), and the
third LL (red). The inset shows the calculated values for F4 if the
interaction with Cη is absent in (35).

We begin the description of the system in the new representa-
tion with the following Hamiltonian:

H =
∫

dq
(2π )2

{∑
σ

1

8
V (|q|)[ρL

σ (−q) − ρR
σ (−q)

]
× [

ρL
σ (q) − ρR

σ (q)
]

+ V↑↓(|q|)
4

[
ρL

↑ (−q) − ρR
↑ (−q)

][
ρL

↓ (q) − ρR
↓ (q)

]}
,

(37)

with constraints [ρL
σ (k) + ρR

σ (k)] = 0; σ =↑,↓.
We chose the form of the Hamiltonian as the one that

will conform to the requirements, [H, [ρL
σ (q) + ρR

σ (q)]] =
0; σ =↑,↓, that hold if the constraints [ρL

σ (k) + ρR
σ (k)] =

0; σ =↑,↓ are applied. The constraints define physical spaces
in two layers, and they also constrain the form of the Hamil-
tonian in the description with enlarged space(s). Just as in the
single-layer case, we can add the terms that are zero on the
physical space of the form of HC in each layer to ensure the
boost invariance of the system at the Fermi level. Our main
interest is the effect of the interlayer interaction. To get a
transparent representation of the underlying physics, within
the physical space, we can add effectively zero terms, and
transform the operators that define the interlayer interaction
in the following way:[

ρL
↑ (−q) − ρR

↑ (−q)
][

ρL
↓ (q) − ρR

↓ (q)
]

− [
ρL

↑ (−q) + ρR
↑ (−q)

][
ρL

↓ (q) + ρR
↓ (q)

]
= −2

[
ρL

↑ (−q) ρR
↓ (q) + ρR

↑ (−q) ρL
↓ (q)

]
. (38)

Now the effective form of the interlayer interaction represents
a view of the underlying physics: excitonic binding of elec-
trons and holes, i.e., CFs and CHs as emphasized in the recent
work in Ref. [13], which we know is a completely justified
view of the physics at small distances. But here we have
only one effectively neutral quasiparticle operator “c” which
is CF and CH at the same time—a simple dipole; the excitonic
pairing that is implied by (38) is effectively Cooper pairing of
the underlying quasiparticles “c” from each layer. Indeed, in
the BCS mean-field treatment, we have an obvious instability
described by the order parameter �k,

�k =
∫

dq
(2π )2

V↑↓(|q − k|) �q

2Eq
, (39)

where

V↑↓(q) = exp (−qd )

q
exp

(
−q2

2

)
, (40)

and Eq is the Bogoliubov quasiparticle energy, defined con-
sidering the complete Hamiltonian that contains the boost
invariance, and d is the distance between the layers.

In Fig. 4, solutions for �k at k = kF for s, p, and d waves
are plotted as a function of distance. For a large interval of d ,
the results are in qualitative agreement with the most recent
numerical results of Ref. [13], done on the sphere, when we
identify CF-CH (excitonic) pairing of the same reference with
the s-wave Cooper pairing of dipoles in the representation
that we presented here. Nevertheless, a question can be raised
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FIG. 4. The solutions for �k calculated self-consistently using
(39), in the case of s (blue), p (red), and d (black) wave at k = kF .

whether for larger (or even intermediate, d ∼ lB) distances, an
effective description given by the Hamiltonian in (37) is more
appropriate, because at very large distances we expect two
decoupled Fermi liquids, for which a dipole representation,
with dipole densities ρL

σ (q) − ρR
σ (q), σ =↑,↓ that are inter-

acting, seems quite appropriate (according to our reasoning
and comments in Sec. II B). Then the mean-field solutions �s

k
for the dominant s-wave excitonic instability, for this setup,
will necessarily behave near k = 0 as �s

k ∼ |k|2, and thus they
will exemplify an anomalous behavior and may lead to the
prediction of a new (intermediate) phase detected in numerical
experiments on a torus [14,15].

IV. DISCUSSION AND CONCLUSIONS

To further gauge the FL nature of our system (in the pro-
posed formalism), we can consider the quantum Boltzmann
equation for the Wigner function,

ν(k, r) =
∫

ds exp (iks)Tr

{
ρ�†

(
r + s

2

)
�

(
r − s

2

)}
,

(41)
where ρ is the density matrix of the system, and �,�†

are second-quantized operators that are defined, in the long-
distance approximation (in the usual way) on the space of
commuting coordinates, as

�(x) =
∫

dk
(2π )2

exp (ikx)ck,

�†(x) =
∫

dk
(2π )2

exp (−ikx)c†
k. (42)

Applying i ∂ρ

∂t = [HC, ρ], i.e., the von Neumann equation, we
arrive at the following equation for ν(k, r):

i
∂ν(k, r)

∂t
=

∫
ds exp (iks)Tr

{
ρ

[
�†

(
r + s

2

)
�

×
(

r − s
2

)
,HC

]}
. (43)

By considering shifts in r in single-particle correlators to
linear order, we can derive an effective expression presented
in Appendix B. Only in the small-momentum limit, i.e., the

limit in which the change of momentum (that couples with
the r coordinate) is small, does the expression take the form
of the usual quantum Boltzmann equation for a description of
a FL with a boost invariance,

∂ν

∂t
+ ∂rν∂kε − ∂kν∂rε

= additional (negligible insmall-momentum transfer)

terms. (44)

Here

ε = −
∫

dq exp

(
−q2

2

)(
V (q)

4
− 2C

)
(q × k)2ν(k + q),

(45)

i.e., the Fock contribution to the quasiparticle dispersion that
also includes the C-interaction contribution, i.e., the interac-
tion defined in (26). The C-interaction ensured that no term
with a finite mass (= 1

M k∇rν) appears in the quantum Boltz-
mann equation and on the Fermi level to the order that was
considered. Overall, the description based on the dipole rep-
resentation is in accordance with Ref. [16] and the quantum
Boltzmann equation for CFs in the absence of the projection to
a LL (based on the Chern-Simons field-theoretical approach),
if we associate the processes behind smooth variations of the
Fermi surface with small-momentum transfer variations in the
dipole representation that lead to FL behavior. We leave a
detailed comparison and analysis of the quantum Boltzmann
equation for future work.

Thus the C-interaction ensures the boost invariance even
if we go beyond the ordinary (Hartree)-Fock mean-field ap-
proach. Our description incorporates also the PH symmetry,
and it does not contain a potential bias to CFs like the use
of the Rezayi-Read state [17] in [11]. Thus the discrepancy
between our prediction for the absence of the Pomeranchuk
instability in the second LL with respect to Ref. [11] may
come from the explicit PH symmetry breaking in their anal-
ysis. The PH symmetry breaking can be associated with LL
mixing, which may drive the Pomeranchuk instability and also
stabilize p-wave at larger distances in the bilayer system.

Our proposal maintains the PH symmetry with the appli-
cation of the constraint in (19). At the same time, it places
correlation holes in the place of real holes, which seems to
be an unusual circumstance—correlation holes should bind to
particles (or vice versa). But this is a reflection of the effective
physics at the Fermi level where particles are shifted from
their correlation holes by an amount proportional to kF l2

B = lB,
i.e., on the order of the average distance between LL orbitals.
This is an important consequence of the projection to a fixed
LL of the Fermi sea correlations among quasiparticles [17].

Therefore, our proposal takes into account the require-
ments for the boost invariance and PH symmetry in the theory
that captures the effective physics at the Fermi level of dipole
quasiparticles.
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APPENDIX A: THE SU(N) INVARIANCE
IN THE HALF-FILLED CASE

In this Appendix, we will discuss the action of the SU(N )
symmetry in the theory for the half-filled LL. The symmetry
must exist, but, as we will describe, not as an independent
transformation on L and R indexes. An arbitrary, fixed SU(N )
transformation on one type of index only is not unitary.
However, we show that, in principle, we can complete a trans-
formation, defined by the same SU(N ) matrix on the other
index, and after a projection to the physical space we can reach
a unitary realization of the SU(N ) symmetry. In describing
this action, we want to show how the transformations on both
sectors, i.e., the indexes, are intertwined, and we provide a
description of the unitary realization of the SU(N ) symmetry
on the physical space described by Eq. (A9). On the other
hand, we can regard (A9) as an expected, natural (unitary)
realization of the SU(N ) symmetry on the space defined by
Eq. (18), in which only one set of indexes (L or R) is indepen-
dent and defines the other.

We may ask, “How can the SU(N ) invariance be imple-
mented on the states defined in Eq. (18)?” First, let us consider
an artificial but instructive problem of electrons at ν = 1 in a
CF representation. The unique physical state can be defined in
an enlarged space by a trace on bosonic, artificial degrees of
freedom,

|�phy〉ν=1 =
′∑

σ∈SNφ

c†
σ (m1 )n1

· · · c†
σ (mNφ

)nNφ

|0〉, (A1)

and m1 �= m2 �= · · · �= mNφ
. Thus bosonic (artificial) degrees

of freedom enter as hard-core bosons into the description. The
requirement is a necessary condition for the implementation
of the SU(N ) invariance, and it reflects a physical expecta-
tion that correlation holes for a fermionic system should not
overlap. Namely, by introducing

c†
mn →

Nφ∑
m′

Umm′c†
m′n, (A2)

we may notice that under the hard-core constraint, the SU(N )
transformation in the R sector will act locally, i.e., it will
induce the permanent number of the SU(N ) matrix that will
be multiplied by the same state:

ĝR|�phy〉ν=1 = �(g)|�phy〉ν=1. (A3)

The SU(N ) invariance exists if its action is unitary under
simultaneous transformations in the R and L sectors. Thus
by allowing a nonunitary (in general) action on L degrees of

freedom,

ĝL|�phy〉ν=1 = 1

�(g)
|�phy〉ν=1, (A4)

we can reach the invariance:

ĝSU(N )|�phy〉ν=1 = ĝLĝR|�phy〉ν=1 = |�phy〉ν=1. (A5)

The previous case is artificial and of no physical im-
portance, but it suggests how the SU(N ) invariance can be
accommodated in the system of interest, namely a half-filled
LL of electrons (if we first apply an independent transforma-
tion on the indexes on one of the sectors). We may begin with
the usual transformation on R indexes as in (A2). As a result
of the hard-core constraint among holes, we have

|�phy〉R =
∑

{m′
1 �=m′

2 �=···�=m′
Nφ/2}

∑
σ∈SNφ/2

×
[ ′∑

p∈SNφ/2

U p(m1 )σ (m′
1 ) · · ·U p(mNφ/2 )σ (m′

Nφ/2 )

]

× c†
σ (m′

1 )n1
· · · c†

σ (m′
Nφ/2 )nNφ/2

|0〉, (A6)

where the first sum is over all possible distinct collections of
Nφ/2 numbers, i.e., basis vectors. We can denote the number
in square brackets by [· · · ] = �({m′

i}) = K ({n′
i}), where {n′

i}
denote basis states from the subspace orthogonal to the one
spanned by {m′

i}. (|�phy〉 is defined by the set of {ni}′s [or
{mi}′s; see Eq. (18)] and they fix �′s.) The number �({m′

i})
is symmetric under permutations of {m′

i} and can be pulled
out of the sum over σ permutations. Thus

ĝR|�phy〉 ≡ |�phy〉R

=
∑

{m′
1 �=m′

2 �=···�=m′
Nφ/2}

�({m′
i})

×
∑

σ∈SNφ/2

c†
σ (m′

1 )n1
· · · c†

σ (m′
Nφ/2 )nNφ/2

|0〉, (A7)

where the resulting state may not be in the physical space,
which is spanned by vectors in Eq. (18). Now if we define an
SU(N ) transformation on the L indexes, in such a way that for
each term {ni} → {n′

i} in the generated expansion we divide
by K ({n′

i}), i.e.,

ĝL|�phy〉 ≡ |�phy〉L

=
∑

{n′
1 �=n′

2 �=···�=n′
Nφ/2}

1

K ({n′
i})

U n′
1n1 · · ·U n′

Nφ/2nNφ/2

×
∑

σ∈SNφ/2

c†
σ (m1 )n′

1
· · · c†

σ (mNφ/2 )n′
Nφ/2

|0〉, (A8)

it follows, under application of all hard-core constraints that
define the physical space in the enlarged space, which action
we will denote by Phc, that

ĝSU(N )|�phy〉 = Phc(ĝLĝR|�phy〉)

=
∑

{n′
1 �=n′

2 �=···�=n′
Nφ/2}

U n′
1n1 · · ·U n′

Nφ/2nNφ/2

×
∑

σ∈SNφ/2

c†
σ (m′

1 )n′
1
· · · c†

σ (m′
Nφ/2 )n′

Nφ/2
|0〉. (A9)
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Any change of basis in enlarged space (that acts on R and L indexes) is represented in physical states by the unitary
implementation (A9), as required and expected. The implementation is unitary and represents an expected expansion on physical
states, but it cannot be described as a simple action on L indexes.

APPENDIX B: QUANTUM BOLTZMANN EQUATION

The explicit expression for the right-hand side of Eq. (43) to linear order in shifts in single-particle correlators is

i
∂ν(k, r)

∂t
=

∫
dq

(2π )2

Ṽ (q)

4
{(q × k)(iq × ∇r)[ν(k, r, t )ν(k + q, r, t )] − 1

4
[i∇k(iq × ∇r)ν(k, r, t )][∇r(iq × ∇r)

× ν(k + q, r, t )] + 1

4
[∇r(iq × ∇r)ν(k, r, t )][i∇k(iq × ∇r)ν(k + q, r, t )]

+ i(q × k)2[∇rν(k, r, t )∇kν(k + q, r, t ) − ∇kν(k, r, t )∇rν(k + q, r, t )]

+ (q × k)(iq × z)[ν(k, r, t ) ∇rν(k + q, r, t ) − ∇rν(k, r, t ) ν(k + q, r, t )]}

×
∫

dq
(2π )2

(−2C){(q × k)(iq × ∇r)[ν(k, r, t )ν(k + q, r, t )] + i(q × k)2[∇rν(k, r, t )∇kν(k + q, r, t )

− ∇kν(k, r, t )∇rν(k + q, r, t )] − i

8
[∇kν(k, r, t )∇r(q × ∇r)2ν(k + q, r, t ) + ∇k(q × ∇r)2ν(k, r, t )∇rν(k + q, r, t )]

+ i

8
[∇rν(k, r, t )∇k(q × ∇r)2ν(k + q, r, t ) + ∇r(q × ∇r)2ν(k, r, t )∇kν(k + q, r, t )]

+ i

4
[ν(k + q, r, t )(q × k)(q × ∇r)ν(k, r, t ) − ν(k, r, t )(q × k)(q × ∇r)ν(k + q, r, t )]}. (B1)

If we neglect (q × ∇r) with respect to (q × k) and contributions higher in ∇r, and also calculate the overall contribution to the
mass term (∼ k∇r) in the small-q limit, we arrive at the simple form in (44).
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Recent experimental results suggest that a particular hydrodynamic theory describes charge fluctuations at
long wavelengths in the square-lattice Hubbard model. Due to the continuity equation, the correlation functions
for the charge and the current are directly connected: the parameters of the effective hydrodynamic model thus
determine the optical conductivity. Here we investigate the validity of the proposed hydrodynamic theory in the
full range of parameters of the Hubbard model. In the noninteracting case, there is no effective hydrodynamics,
and the charge fluctuations present a rich variety of nonuniversal behaviors. At weak coupling, the optical
conductivity is consistent with the hydrodynamic theory: at low frequency one observes a Lorentzian-shaped
Drude peak, but the high-frequency asymptotics is necessarily different; the high-temperature limit for the
product of the two hydrodynamic model parameters is also in agreement with numerical data. At strong coupling,
we find that a generalization of the proposed hydrodynamic law is consistent with our quantum Monte Carlo,
as well as the finite-temperature Lanczos results from literature. Most importantly, the temperature dependence
of the hydrodynamic parameters as well as the dc resistivity are found to be very similar in the weak- and the
strong-coupling regimes.

DOI: 10.1103/PhysRevB.107.155140

I. INTRODUCTION

Strange metallic behavior is one of the central subjects for
the theory of strong electronic correlations [1]. It appears to be
a universal phenomenon, observed in many different systems,
often in close proximity to a superconducting phase [2–5], or
quantum critical points [6–8]. In this regime, the dc resistivity
is linear in temperature, in a very broad range of tempera-
ture. The origin of this behavior is unclear, but numerical
investigations converge to the conclusion that the Hubbard
model captures the underlying mechanisms [9–15]. Very re-
cently, a variational solution of the semiclassical Boltzmann
equation revealed a T -linear dc resistivity regime at high tem-
perature, extending towards zero temperature as half-filling is
approached [16]. This finding of Kiely and Mueller bares an
important implication that strange metallicity is not necessar-
ily a strong correlation phenomenon, even in cases when it
extends to very low temperature (see also Ref. [17] highlight-
ing the role of van Hove singularities at the Fermi level).

In the high-temperature limit, a simple and quite universal
understanding of the linear resistivity was proposed in terms
of the effective hydrodynamics that is expected to arise at long
wavelengths in interacting systems. Diffusive transport should
under very general circumstances lead to σdc = χcD, where
σdc is the dc conductivity, χc is the charge compressibility,
and D is the diffusion constant. In Refs. [11,12], it was argued
that, at high temperature, D approaches a constant, while
quite generally χc ∼ 1/T , which thus leads to ρdc ∼ T . In a
subsequent optical lattice simulation of the Hubbard model by
Brown et al. [18], the assumption of hydrodynamic behavior
was exploited to extract values for the dc resistivity and the
width of the Drude peak. In almost quantitative agreement

with the best available numerical method (finite-temperature
Lanczos, FTLM [19,20]), the experiment found linear resistiv-
ity in a broad range of temperature. However, the width of the
Drude peak � was greatly overestimated in the experiment,
which brings into question the quality of the ρdc estimates
and the underlying assumptions. The interpretation of exper-
imental results relied on a specific hydrodynamic ansatz for
the charge-charge correlation function, proposed to be valid
in the long-wavelength limit. On the other hand, the fits to the
direct measurement data were performed at relatively short
wavelengths: Any discrepancy between the ansatz and the
actual behavior at these wavelengths (and correspondingly
higher frequencies) could have led to the apparent bias in the
estimates of �, but perhaps even in the estimates of ρdc.

In this paper we investigate the validity of the hydro-
dynamic theory proposed in Ref. [18]. We first discuss
its analytical properties and find that the high-frequency
asymptotics is manifestly nonphysical. We propose a mod-
ified hydrodynamic law, which corrects the high-frequency
behavior, and ultimately allows for a comparison with
Matsubara-axis data we obtain from quantum Monte Carlo.
We derive the equation of motion for the current, which must
present a microscopic basis for the hydrodynamic theory. We
are unable to rigorously connect the hydrodynamic param-
eters to Hubbard model parameters, but we find evidence
that D� ≈ 2t2 (here t is the hopping amplitude), which is
consistent with numerical results at both weak and strong cou-
pling. Moreover, at weak coupling, D� = 2t2 can be derived
rigorously as the high-temperature limit of the hydrodynamic
theory, only based on the knowledge of the exact asymptotics
of the charge-charge correlation function.
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We perform numerical calculations for the square-lattice
Hubbard model and cover a wide range of parameters. We
start with the noninteracting limit where the hydrodynamic
theory is not expected to hold and find multiple interesting
examples of charge-fluctuation spectra. At weak coupling we
use second-order perturbation theory for the self-energy, and
compute optical conductivity and the charge-charge correla-
tion function from the bubble approximation. We confirm the
recent findings of Kiely and Mueller [16] that the dc resistivity
is linear at half-filling and, more generally, at high temper-
ature. At stronger couplings, we use the numerically exact
continuous-time quantum Monte Carlo (CTINT [21,22]) on
a finite 10 × 10 lattice, and control for the lattice size. We
show that a modified hydrodynamic law is consistent with
the Matsubara-axis results for the charge-charge and current-
current correlation functions, as well as with the FTLM result
for optical conductivity. The hydrodynamic model parameters
extracted from FTLM at strong coupling display strikingly
similar behavior to what we find from the bubble approxima-
tion at weak coupling.

The paper is organized as follows. In Sec. II we introduce
the two-dimensional (2D) Hubbard model and the hydro-
dynamic theory proposed to govern its charge and current
fluctuations at long wavelengths. In Sec. III we show our
numerical results, separated in three subsections based on the
coupling strength. In Sec. IV we discuss our findings in the
context of existing literature and give concluding remarks in
Sec. V. In Appendixes A–E we give detailed derivations of
equations used in this paper, and outline the fast algorithm
we used for computing the second-order self-energy. In Ap-
pendix F we show and discuss static charge susceptibility data
in the noninteracting limit.

II. MODELS

A. Square-lattice Hubbard model

We solve the Hubbard model given by the Hamiltonian

H = −t
∑

σ,〈i, j〉
c†
σ,icσ, j + U

∑
i

n↑,in↓,i − μ
∑
σ,i

nσ,i, (1)

where σ ∈ {↑,↓}, i, j enumerate lattice sites, t is the hopping
amplitude between the nearest-neighbor sites 〈i, j〉, U is the
onsite coupling constant, and μ is the chemical potential. We
absorb the chemical potential in the bare dispersion, which is
thus given by

εk = −2t (cos kx + cos ky) − μ. (2)

We will switch between the site notation and real-space no-
tation whenever convenient (Ai ≡ Ar, with r = ri, which is
the real-space position of the site i). The density operator
is denoted nσ,i = c†

σ,icσ,i. Throughout the paper we use the
half-bandwidth 4t as the unit of energy. We only consider
paramagnetic solutions. In equilibrium we assume full lattice
symmetry.

B. Hydrodynamic model

In Ref. [18] it was proposed that a hydrodynamic model
describes the fluctuations of current and charge at long wave-

lengths in the Hubbard model. The hydrodynamic model reads
as

∂t n = −∇ · j, (3)

∂t j = −�(D∇n + j), (4)

where n and j are scalar and vector fields, respectively, depen-
dent on time and space. The parameters of the model are the
momentum-relaxation rate � and the diffusion constant D.

The first equation [Eq. (3)] is the continuity equation, and it
is certainly valid in the Hubbard model for the time-dependent
operators in the Heisenberg picture. However, on the square
lattice, the spatial derivatives must be discretized, and the
actual continuity equation reads as

∂t nr = −
∑

η∈{x,y}
( jηr − jηr−eη

) (5)

which simply means that any increase in the particle density
at a site r must be due to a disbalance between the currents
entering and exiting the given site. The current operator is
given by

jηr = it
∑

σ

(c†
r+eη,σ

cr,σ − c†
r,σ cr+eη,σ ), (6)

where eη denotes the lattice vector in the direction η. A deriva-
tion of Eq. (5) is presented in Appendix A, but can be found
elsewhere [23]. Since the operators are connected instanta-
neously, the charge and current fluctuate synchronously. The
corresponding charge-charge and current-current correlation
functions must be connected directly, as well. Following the
derivation presented in Appendix B, one obtains in the entire
complex plane

z2χq(z) =
∑

η∈{x,y}

∑
k

	
η

k,q(〈nk+q〉 − 〈nk〉)

+
∑

η,η′∈{x,y}
(1 − eiqη − e−iqη′ + ei(qη−qη′ ) )
η,η′

q (z),

(7)

where 	
η

k,q = −2t[cos(kη + qη ) − cos kη], and nk = ∑
σ c†

σ,k
cσ,k. We define in imaginary time and site space

χi j (τ ) = 〈ni(τ )n j (0)〉 − 〈n〉2 (8)

and



ηη′
i j (τ ) = 〈 jηi (τ ) jη

′
j (0)〉 (9)

the charge-charge and current-current correlation functions,
respectively, calculated in thermodynamic equilibrium. The
standard Fourier transform to Matsubara frequencies gives
χ (z) and 
(z) at a discrete set of points along the imagi-
nary axis; a spatial Fourier transform gives the corresponding
quantities in reciprocal space. We are ultimately interested in
retarded quantities which correspond to taking z = ν + i0+

and we denote them as χq(ν) and 

ηη′
q (ν). Here, ν is real

frequency and q is momentum. We have checked numerically
that Eq. (7) holds in the noninteracting limit, for any q and
in any parameter regime of the model (data not shown). In
general, the transversal components 
η,η′ �=η play a role in
Eq. (7). However, the expression greatly simplifies for the

155140-2



CHARGE FLUCTUATIONS, HYDRODYNAMICS, AND … PHYSICAL REVIEW B 107, 155140 (2023)

imaginary part on the real axis at small q in the x direction,

lim
q→0

Imχq=(q,0)(ν) = q2

ν2
Im
xx

q=(q,0)(ν), (10)

which is the same expression one obtains in the continuum
limit, directly from Eq. (3).

The second equation [Eq. (4)] is the so-called constitutive
equation [24] of a hydrodynamic theory, needed to close the
system of equations, as the continuity equation itself does not
fully fix n and j. In the stationary regime, Eq. (4) reduces to
Fick’s law of diffusion j = −D∇n. Equation (4) is not nec-

essarily satisfied in the Hubbard model, and is an underlying
assumption of the work presented in Ref. [18]. It is precisely
the aim of this work to investigate whether the hydrodynamics
encoded in Eq. (4) truly emerges in the Hubbard model at the
longest wavelengths and. if yes, under which conditions.

1. Microscopic constitutive equation for the hydrodynamics
in the Hubbard model

We start by deriving a microscopic expression for the time
derivative of the current operator. The derivation presented in
Appendix C yields

∂t jηr = −t2
∑

σ

⎧⎨
⎩2nσ,r+eη

− 2nσ,r +
∑

u∈{−eη,eη̄ ,−eη̄}
(c†

σ,r+ucσ,r+eη
− c†

σ,rcσ,r+eη−u + H.c.)

⎫⎬
⎭

− tU
∑

σ

(nσ̄ ,r+eη
− nσ̄ ,r )(c†

σ,rcσ,r+eη
+ c†

σ,r+eη
cσ,r ), (11)

where we used σ̄ =↑ if σ =↓, and vice versa; similarly
η̄ = y if η = x, etc. We immediately recognize the lattice
version of the local gradient of charge in the direction of
the current nσ,r+eη

− nσ,r. If we are interested in the time-
dependent averages, we can split the terms in the second row
in the disconnected and connected parts 〈nc†c〉 = 〈n〉〈c†c〉 +
〈nc†c〉conn. Assuming that we are close to and approaching
equilibrium, one can further split the averages in the equilib-
rium value and the time-dependent part. Taking into account
the lattice symmetries satisfied in equilibrium, the constant
appearing in front of the gradient of charge has the terms
2t2 + 2tU 〈c†

σ,r+eη
cσ,r〉eq, and will therefore decay towards 2t2

as T → ∞ or U → 0. Identifying this with the term D�∇n
in the hydrodynamic theory [Eq. (4)], one could expect that at
high temperature D� ≈ 2t2. In Sec. III B, we analyze numer-
ical data and indeed find such behavior. However, in Eq. (11)
there are also time-dependent factors that multiply the gradi-
ent of charge, and other terms which correspond to neither ∇n
or j. It is unclear under which conditions the remaining terms
conspire to give rise to the effective Eq. (4), even if only in the
long-wavelength, low-frequency, and linear-response limit. In
Appendix C, we present Eq. (11) also in momentum space, but
find no clear simplifications in the q → 0 limit (the Fourier
transform to the frequency domain would be analogous).

2. Experimental quench setup and CDW amplitude evolution:
The ballistic and diffusive regimes

One can combine Eqs. (3) and (4) to obtain a differential
equation governing the time evolution of the amplitude of a
charge density wave nq (on the lattice, this field corresponds
to the operator nq = ∑

σ,k c†
σ,k+qck + H.c.):

∂2
t nq + �∂t nq + �Dq2nq = 0. (12)

Consider a setup where a charge density wave was first ther-
malized by applying an external density-modulating field V
[H → H + V

∫
dr sin xn(r)] for a long time, and was then

let to evolve after abruptly switching off V . This time evolu-

tion is the solution of Eq. (12) with the boundary condition
∂t nq(t = 0) = 0, nq(t = 0) = n0. If n0 is small, this behavior
should also be described by the linear-response theory

nq(t ) =
∫ t

−∞
χq(t − t ′)θ (−t ′)dt ′

=
∫ ∞

t
χq(t ′)dt ′, (13)

assuming the knowledge of the charge-charge correlation
function in real time, obtained as the Fourier transform
from the retarded χq(ν) as χq(t ) = ∫

dν e−itνχq(ν). One can
show [18] that the solution of Eq. (12) is equal to Eq. (13) with
the retarded charge-charge correlation function of the form

χq(ν) = χc

1 − iν
q2D − ν2

q2D�

, (14)

where χc is the charge compressibility, which connects n0

with the strength of the density modulating field at t < 0,
but does not affect the dynamics of Eq. (12). This correlation
function has the important property χq→0(ν �= 0) = 0. This
indicates the conservation of the total number of particles,
which is a prerequisite for the continuity equation. This is easy
to understand as nq=0 equals the total number of particles Ntot ,
and therefore Imχq→0(ν) describes the fluctuations of Ntot .

At any given q, one can rewrite the frequency-dependent
part of Eq. (14) in a more revealing way. In the upper
half-plane, the dynamic charge susceptibility (14) can be rep-
resented as a sum of two poles in the lower half-plane:

χ tp(z+) = A

[
1

z+ − z1
− 1

z+ − z2

]
(15)

with A=−χc/r, r =√
4b − a2, a= 1

q2D , b= 1
q2D�

, z1 = r−ia
2b ,

z2 = −r−ia
2b . It is clear that there are two distinct regimes:

one where r is purely real, hence the two poles appear at
Rez1 = −Rez2 and Imz1 = Imz2 = −a; the other one is when
r is purely imaginary, and the two poles appear at Rez1 =
Rez2 = 0, Imz1 = Imz2 + 2 Imr. The latter is the “diffusive
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regime,” which is realized whenever 4b < a2, i.e.,

q < qD ≡
√

�

4D
. (16)

To understand why 4b < a2 represents the diffusive behavior,
and 4b > a2 ballistic behavior, we investigate the correspond-
ing solutions of Eq. (12). The linear-response theory (13) can
be solved analytically in the case when χ = χ tp. One has

χ tp(t ) ∼ e−itz1 − e−itz2 (17)

and, therefore, under the assumption that neither z1 or z2 are
purely real, one gets

nq(t ) ∼ e−itz1

z1
− e−itz2

z2
. (18)

We see that nq(t ) will be zero whenever

z2

z1
= e−it (z2−z1 ). (19)

In the ballistic regime, z1 = E − iη and z2 = −E − iη, and
the condition (19) means

t = 1

2iE
ln

(−E − iη

E − iη

)
. (20)

At a fixed η and a finite E , there are infinitely many solutions
to the above equation: the amplitude of the CDW presents
damped oscillations after turning off the external field V .
In the other case (4b < a2), the poles are placed along the
imaginary axis, say z1 = −iη1, and z2 = −iη2, η2 > η1 and r
is purely imaginary. One thus has nq(t ) ∼ e−tη1

η1
− e−tη2

η2
which

can never be zero if η1 �= η2. This means that the amplitude of
the CDW will “crawl” towards zero, signaling an overdamped,
or diffusive, regime. The correlator χq(ν) [Eq. (14)] and the
corresponding solutions for nq(t ) [Eq. (12) or, equivalently,
Eq. (13)] are illustrated in Fig. 1.

3. Asymptotic behavior and the connection
between hydrodynamics and transport

The hydrodynamic form for the charge-charge correlation
function [Eq. (14)] directly implies the form of the current-
current correlation function. Inverting Eq. (10) (which is a
direct consequence of the continuity equation) one obtains

Im
xx
q=(q,0)(ν) = χcD

q4D2

ν3 + 1
ν

(
1 − 2q2 D

�

) + ν
�2

. (21)

At any finite q, the behavior at small ν goes as ∼ν3. At
precisely q = 0 one gets

Im
xx
q=0(ν) = χcD

1
ν

+ ν
�2

(22)

which at small ν goes as ∼ν. Having in mind that the conduc-
tivity is obtained as [14,25]

σηη′
q (ν) = 1

ν
Im
ηη′

q (ν), (23)

this model clearly predicts that σ xx
dc,q = 0 for any finite q in the

x direction, which is precisely what is expected on physical

FIG. 1. Illustration of the hydrodynamic theory from Ref. [18],
defined by Eqs. (3) and (4), with parameters taken to be D = 0.8,
� = 0.3, χc = 1. Top: the imaginary part of the charge-charge corre-
lation function as a function of momentum and frequency [Eq. (14)].
Middle: the time evolution of relaxing charge density waves at wave
vectors denoted by matching-color x ticks in the top panel; 〈nq(t )〉
[computed through Eq. (18)] is normalized to the initial amplitude
〈nq(t = 0)〉. Bottom: frequency dependence of the imaginary part of
the charge-charge correlation function at the same wave vectors.

grounds. At q = 0, which is the most relevant case, one gets a
Lorentzian-shaped Drude peak

σ xx
q=0(ν) = χcD

1 + (
ν
�

)2 (24)
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indicating σ xx
dc,q=0 ≡ σ xx

q=0(ν = 0) = χcD, which is the well-
known Nernst-Einstein equation.

It is important to note that, a priori, the forms (21), (22)
and (24) of 
 and σ are unphysical. The scaling with high
frequency

Im
q=0(ν → ∞) ∼ 1

ν
(25)

cannot be obtained from a correlation function in imagi-
nary time 
q=0(τ ) that has the correct symmetries. The
Lorentzian Drude peak σ ∼ 1

ν2 must be restricted to some fi-
nite frequency. In general, one expects that at high-frequency,
Imχ (ν) and Im
(ν) decay exponentially. In the noninter-
acting case, there is even a sharp cutoff: both charge and
current fluctuations are bounded in frequency from above,
with a bound that depends on q (see Sec. III A). In any case,
on the Matsubara axis one must have χ (iν → i∞) ∼ 1/ν2

and 
(iν → i∞) ∼ 1/ν2. The hydrodynamic ansatz for the
charge fluctuations [Eq. (14)] does not violate this, as on the
upper half of the Matsubara axis

χq(iν) = χc

1 + ν
q2D + ν2

q2D�

, (26)

but, through the continuity equation, it does imply a nonphys-
ical asymptotic behavior 
q=0(iν → i∞) ∼ 1

ν
. To be able to

compare the hydrodynamic theory with Matsubara-frequency
results for the charge-charge and current-current correlation
functions, we thus propose a modified hydrodynamic form.
The details are given in Sec. III C.

The imaginary-axis form (26) may still be useful in the
U → 0 limit. The high-frequency asymptotics on the imag-
inary axis is determined by the entirety of the function on the
real axis. As the coupling constant is decreased, the weight
of the function χq→0 on the real axis will be contained in
an increasingly small range of low frequencies. If we assume
that the hydrodynamic theory holds in some low-frequency
range, say |ω| < |ωmax|, and that ωmax saturates to a finite
constant as U → 0, then we can conclude that the imaginary-
axis asymptotics of χq→0 will tend to Eq. (26) as U → 0.
Clearly, nonuniversal features at high real frequencies will
still be there, but they will not contribute significantly to the
imaginary-axis asymptotics. Other scenarios are also possible,
but in the following we work out the consequences of our
expectation that the hydrodynamic law holds in a finite range
of frequency in the U → 0 limit. We start with Eq. (7), which
implies the long-wavelength asymptotics of the charge-charge
correlation function of the form (see Appendix B for details)

Reχq→0(iν → i∞) = − 2t

ν2

∑
η={x,y}

∑
k

qη sin kηq · ∇〈nk〉.

(27)
This form is not necessarily isotropic. Nevertheless, one can
take q = (q, 0) and, then, assuming a finite ωmax and U → 0,
equate the right-hand side of Eq. (27) with the iν → i∞ limit
of Eq. (26) to obtain

D� = − 1

χc

∑
k

vx
k∂kx 〈nk〉 (28)

with vx
k = 2t sin kx. Under the current assumption of the

weak-coupling limit, we can write further

D� = − 1

χc

∑
k

(
vx

k

)2
[2n′

F(εk )]. (29)

At high temperature T = 1/β → ∞, the first derivative
of the Fermi distribution n′

F(ω) ∼ −β/4, and χc = ∂〈n〉
∂μ

=
− ∫

dε ρ(ε)2n′
F(ε) ∼ 2β

4

∫
dε ρ(ε) = β/2. We also have

1
(2π )2

∫
dk sin kx = 1

2 . We conclude that in the weak-coupling
limit and high temperature, the effective hydrodynamic theory
formulated by Eqs. (3) and (4) for the square-lattice Hubbard
model [Eq. (1)], if valid in a finite range of real frequency,
must satisfy

lim
U→0
T →∞

D� = 2t2. (30)

Thus, the equation of motion (11) provides some microscopic
support for the effective hydrodynamic theory. As already
mentioned, Eq. (30) indeed coincides with numerical results,
and is roughly satisfied in a broad range of temperatures,
even at strong coupling (see Sec. III B). Finally, we note
that the imaginary-axis asymptotics [Eq. (27)] combined with
σdc = χcD [Eq. (24)] reveals that the hydrodynamic theory
[Eq. (26)], taken to be valid at any frequency, is consistent
with the Boltzmann expression for the dc conductivity

σdc = − 1

�

∑
k

vx
k∂kx 〈nk〉. (31)

III. RESULTS

A. Noninteracting limit

We are interested in calculating two-particle correlation
functions, in particular for the charge and current. In the non-
interacting limit, these can be obtained numerically exactly, to
a high accuracy, from the general (Kubo) bubble formula

Qq[ϕ, φ](τ ) = 2
∑

k

ϕk,qG0,k(τ )G0,k+q(−τ )φk+q,−q. (32)

The factor 2 in front is due to summation over σ . We denote
G0 the bare propagator, which is, at a finite temperature T =
1
β

, defined in the imaginary-time window τ ∈ [−β, β] as

G0,k(τ ) = −sign(τ )e−εkτ nF[−sign(τ )εk] (33)

with nF(ω) = 1
eβω+1 the Fermi-Dirac distribution function.

The “vertex factors” ϕ and φ correspond to the operators
for which the correlation function is calculated (in gen-
eral, Oq = ∑

σ,k ϕk,qc†
σ,k+qcσ,k). We then simply have χq =

Qq[ϕ = 1, φ = 1], and 

η,η′
q = Qq[ϕ = vη, φ = vη′

], with
v

η

k,q = it (e−i(kη+qη ) − eikη ). In the entire complex frequency
plane, one can then write

Qq[ϕ, φ](z) = 2
∑

k

ϕk,qφk+q,−q
nF(εk+q) − nF(εk )

z − (εk − εk+q)
. (34)

We now consider the long-wavelength limit for the charge-
charge correlation function χ . At small enough q, one can
write further: εk+q = εk + q · ∇εk and nF(εk+q) = nF(εk ) +
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FIG. 2. Noninteracting case, half-filling. Left: imaginary part of the charge-charge correlation function along a high-symmetry path in the
BZ. Right: frequency dependence in the long-wavelength limit, for waves in the x direction. The spectral weight drops off abruptly at ν/q = 1

2 ;
the apparent finite slope comes from the finite-frequency resolution in our numerics.

(q · ∇εk )n′
F(εk ). These yield

χq→0(z) = 2
∑

k

(q · ∇εk )n′
F(εk )

z + q · ∇εk
. (35)

We see that at small q ≡ |q|, the frequency dependence
no longer depends on q. In the denominator, q multiplies the
number which determines the position of a pole on the energy
axis. Therefore, q sets the energy scale, which means that with
a proper rescaling of the ν axis, χ results for different small q
along a given direction can be collapsed onto a single curve.
In the special case q = (q, 0), the gradient of the dispersion
will simply yield the velocity vx

k ≡ vx
k,q=0 = 2t sin kx, and

one arrives at

lim
q→0

χq=(q,0)(z) = 2
∑

k

vx
kn′

F(εk )

z/q + vx
k

. (36)

On the most general physical grounds, it is not expected
that in the noninteracting limit an effective hydrodynamics
governs the charge fluctuations at however long the wave-
lengths. The diffusive motion of carriers at length scales
λ > 2π/qD ultimately comes from a finite-lasting memory the
electrons have of momentum; in the noninteracting case, the
momentum eigenstates are infinitely long lived. It is clear that
no identification between Eqs. (36) and (14) is possible. In
fact, the noninteracting case presents strongly nonuniversal,
parameter-dependent, and even anisotropic behavior that we
illustrate in the following.

We obtain the χq(ν) along a high-symmetry path in the
Brillouin zone (BZ) using a 6000×6000 site lattice, and
adaptive frequency grids to ensure sufficient frequency res-
olution at all q vectors. We color plot Imχq(ν) and show the
frequency-dependent part at small q in Figs. 2–5.

In Fig. 2 we show results for the half-filled case μ = 0,
T = 0.02. In the long-wavelength limit, we observe a sharp
peak at the edge of the spectrum, at ν ∼ q. The peak is highly
asymmetric, as the spectral weight drops off abruptly on the
higher-frequency side. The single-peak structure at ν ∼ q is
the expected linear zero-sound mode [23].

As the system is doped away from half-filling, we start to
observe a two-peak structure at long wavelengths (Fig. 3).
This can be understood by analyzing Eq. (36). In Fig. 3 we
illustrate how the contributions to Imχq=(q,0)(ν) at a given

energy ν comes from a line in the Brillouin zone (BZ) where
−vx

k = ν/q. The amplitude of a contribution at a given k is
given by vx

kn′
F(εk ), which roughly selects the Fermi surface.

Therefore, one gets a peak at frequencies where vx
k is maxi-

mal, but also where the Fermi surface is parallel to the ky axis.
This calculation resembles a histogram of a one-dimensional
(1D) function, and thus the spectrum resembles a typical den-
sity of states of a 1D tight-binding chain.

On Fig. 4 we illustrate the great level of anisotropy, by
comparing the q → 0 limit for q = (q, 0) and q = 1√

2
(q, q).

It is interesting that, as the temperature is increased, the
anisotropy at low frequency becomes somewhat reduced.

Doping all the way to the near-empty limit, one observes a
completely different behavior (see Fig. 5). The charge fluctu-
ation spectrum closely resembles the electron dispersion. This
indicates that in the single-particle limit, due to the irrelevance
of the Fermi-Dirac statistics, the charge and the electron be-
come the same.

1. CDW amplitude evolution

It is of interest to understand these χq(ν) results in the
context of the quench setup studied in Ref. [18] and already
mentioned in Sec. II B. Namely, we wish to investigate the
time evolution of the amplitude of a relaxing charge density
wave (CDW). If the initial CDW is weak, we can work within
the linear-response theory, which can be solved numerically,
by plugging Eq. (34) with ϕ, φ = 1 in Eq. (13). The Fourier
transform needed for this step is performed analogously to
Eq. (17). Then, to perform the integral in Eq. (13) analytically,
it is necessary to regularize the integrand function, first. As
is always done when working with retarded quantities, we
take that the poles are located slightly below the real axis. We
obtain

〈nq(t )〉 ∼
∑

k

nF(εk+q) − nF(εk )

εk − εk+q
e−it (εk−εk+q ). (37)

We show several examples of this calculation in Fig. 6. We
find numerous categories of solutions, and we illustrate some
of them on the panels of Fig. 6, left to right:

(i) power-law damped oscillations,
(ii) power-law damped oscillations with a breathing

amplitude,
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FIG. 3. Noninteracting case, various moderate dopings. Left: frequency dependence of the imaginary part of the charge-charge correlation
function in the long-wavelength limit, for waves in the x direction. Vertical blue and red dashed lines denote frequencies of two apparent
peaks. Right: explanation for the appearance of two peaks. Top row: the electron velocity. Blue and red dashed lines denote the momenta
where vx

k = −ν/q, where ν is the frequency of the two peaks in the spectra on the left. Bottom row: the intensity plots (black and white scale)
of the amplitude of the contribution to the charge-charge correlation function coming from different k vectors in the BZ. The blue and red
dashed lines denote the contributions to the two peaks in the spectra on the left.

(iii) power-law damped oscillations with a decaying
nonoscillatory component,

(iv) power-law decaying nonoscillatory behavior.
The behavior at q = (π, π ) is drastically different from

the behavior at long wavelengths. At (π, π ) there is no
clear peak in the spectrum, i.e., no characteristic frequency
to produce oscillatory behavior. In particular, as T → 0, the

FIG. 4. Noninteracting case, moderate doping, various tempera-
tures. Blue and red curves correspond to the long-wavelength limit
of the imaginary part of the charge-charge correlation function for
waves in the x and x = y directions.

charge-charge correlation function (which is in the nonin-
teracting limit equal to the spin-spin correlation function)
approaches the form of a second-order pole ∼1/z2, which
signals the instability towards order. One therefore finds only
a nonoscillatory decay of the initial CDW amplitude, some-
what reminiscent of the diffusive regime of the hydrodynamic
theory.

2. Beyond linear response

To cross-check these results and to be able to access the
regime beyond the linear response (corresponding to ini-
tial density wave of a bigger amplitude) we perform the
corresponding Kadanoff-Baym three-piece contour calcula-
tion [26].

The external field couples to the density wave at the wave
vector q = (q, 0),

H[V ] = H0 − V
∑
σ,r

cos(q · r)nσ,r

= H0 − V

2

∑
σ,k

(c†
σ,k+qcσ,k + H.c.) (38)

= H0 − V

2
(nq + n−q), (39)

where V is the strength of the field. We assume the field
was turned on slowly at t = −∞, and that by the time t = 0,
the system is already thermalized. Then, at t = 0, the field is
turned off abruptly. Therefore,

H (t < 0) = H[V ], H (t > 0) = H0. (40)

In general, the expectation value of an operator O at time t
following the quench of the field V is given by

〈O(t )〉 = Tr[e−βH [V ]eiH0tOe−iH0t ]

Tr[e−βH [V ]]
. (41)

After the quench, the Hamiltonian has the diagonal form

H0 =
∑
kσ

εkc†
σ,kcσ,k, (42)
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FIG. 5. Noninteracting case, nearly empty limit. Left and right: same as Fig. 2. Cyan line on the left: electron dispersion. Red line on the
right: fit to the frequency-dependent part of the hydrodynamic theory χ tp as defined in Eq. (15); best fit corresponds to the damped oscillations
(or ballistic) regime (r purely real).

whereas before the quench, the diagonal form is

H[V ] =
∑
k̃xVky

∑
σ

ε(k̃xVky )σ c†
(k̃Vky )σ

c(k̃Vky )σ . (43)

Because of the symmetry-breaking field, there is a reduction
of the Brillouin zone, i.e., k̃x ∈ [0, 2π/λ), where λ = 2π/q
is the wavelength, or the number of sites in the unit cell; the
additional quantum number arising due to the reduction of the
BZ is V .

The time evolution of density at a given point in space r =
(x, 0) [the translational symmetry is not broken along the y
axis: nothing changes if we take a more general r = (x, y)] is
given by

〈nr(t )〉 ≡
〈∑

σ

c†
rσ (t )crσ (t )

〉

= 2

N

∑
k̃x,ky∈RBZ

∑
c,c′∈[0,λ)

∑
V

eix(c−c′ )qe−i(εk−εk′ )t

×〈k̃xVky|k′
xky〉〈kxky|k̃xVky〉nF(εk̃xVky

), (44)

where we take kx = k̃x + cq, k′
x = k̃x + c′q. The eigenstates of

H0 are denoted |kxky〉, and the eigenstates of H[V ] are denoted
|k̃xVky〉. The amplitude of the charge density wave nq is given
by the deviation of nr from the lattice-averaged density, at the
antinode of the wave, say r = (0, 0).

We find perfect agreement between the results of Eq. (44)
with V taken small and Eq. (37) which is in the strict V → 0
limit. The full Kadanoff-Baym calculation is clearly more
computationally expensive, but it allows us to set V to stronger
values and investigate the behavior starting from CDWs of
finite amplitude. This is shown in Fig. 7. In the two panels on
the right, we see that regular damped oscillations are replaced
by a superposition of multiple waves as V → ∞. This can

FIG. 6. Noninteracting case, various dopings, and temperatures. CDW amplitude vs time at various wave vectors, calculated within linear-
response theory, normalized to the initial amplitude of the CDW. Text boxes show the fitting function and its main parameters. The insets in
the two plots on the left show the amplitude of damped oscillations vs time, and the corresponding fit. The insets in the two plots on the right
show the background, i.e., nonoscillatory components and the corresponding fits. Full lines are data, dotted-dashed lines are fits.
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FIG. 7. Noninteracting case, half-filling, moderate temperature. CDW amplitude vs time at various wave vectors along the x axis, calculated
within linear-response theory and from the full Kadanoff-Baym three-piece contour formalism, assuming different amplitudes of the density-
modulating field V at t < 0. CDW amplitude is normalized to the initial amplitude of the CDW. Insets: density profile of the initial CDW at
different strengths of the field V . See text for details.

be understood by looking at the density profile nr at t < 0
(shown in the insets of Fig. 7). One cannot place more than
two electrons on a single site, which means that at strong
values of V , the CDW is no longer harmonic; as V → ∞
it becomes similar to the step function. This density profile
corresponds to having multiple CDWs at the same time, at q,
3q, 5q, etc. All these CDWs will oscillate at different frequen-
cies, but one also expects interactions between the waves. It
is not easy to explain the detailed structure of nq(t ) beyond
the linear-response regime. However, in the long-wavelength
limit, the characteristic frequency of CDWs is proportional
to q, and we are able to roughly fit the resulting 〈nq(t )〉 to a
superposition of waves ∼ ∑

l=1,3,5,... t al cos(lωt + Cl ). This is
shown in Fig. 8. However, the two panels on the left in Fig. 7

FIG. 8. Noninteracting case, half-filling, moderate temperature.
Fit to the CDW amplitude vs time, starting from a saturated CDW
with a short wave vector.

show that at shortest wavelengths, one observes no change in
behavior as V is increased. This is because the density profile
nr(t < 0) cannot change: there are no shorter waves to be
excited by the increasing field.

B. Weak-coupling theory

1. Self-energy

We start by calculating the self-energy up to the second
order in the coupling constant:

�k(z) = U 〈nσ̄ 〉 + U 2�̃k(z), (45)

�̃k(z) =
∑
k′,q

∑
s=±1 nF (−sεk′ )nF (sεk′+q)nF (sεk−q)

z − εk−q − εk′+q + εk′
. (46)

The first term is the instantaneous Hartree shift, and the sec-
ond term is the dynamic part, described by the second-order
Feynman diagram illustrated in Fig. 9. The calculation of �̃

is expensive. In Appendix E we describe a fast algorithm we
used for this calculation, which allowed us to scan the phase
diagram in considerable detail.

FIG. 9. Illustration of our weak-coupling theory. Left: second-
order self-energy diagram comprising the dynamical part of the
self-energy, formulated in terms of the bare fermionic propagator
[Eq. (33)]. Right: generalized (Kubo) bubble approximation for two-
particle correlation functions, formulated in terms of the “dressed”
Green’s function [Eq. (47)].
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FIG. 10. Moderate coupling, moderate doping, various temperatures. Self-energy at the level of second-order perturbation theory, and the
corresponding Green’s functions. Third column: blue line is the local self-energy; blue shading is the k spread, i.e., the range of values of Im�k

at the given real frequency ω; red line DMFT (NRG) result for local self-energy; gray shading is the thermal window, denoting ω ∈ [−T, T ].
Rightmost column: the local density of states.

As we will see, for the practical calculations of conduc-
tivity in the limit U → 0, the Hartree shift vanishes. At a
finite U , we absorb the Hartree shift in the chemical poten-
tial, i.e., μ → μ − U 〈nσ 〉. This means that at a finite U , we
compute the second-order self-energy diagram with Hartree-
shifted propagators. Therefore, the frequency dependence of
the dynamical part of the self-energy does not change with
increasing U , if μ̃ = μ − U 〈nσ 〉 is kept fixed. In practice, we
compute the occupancy a posteriori, and infer μ from U 〈nσ 〉
and μ̃. The other possibility is to compute the self-energy
diagram using bare propagators. The difference between the
two approaches disappears when higher-order diagrams are
also computed (under the condition that both series converge),
as well as in the U → 0 limit.

We show examples of the self-energy results in Fig. 10. It is
interesting that at low temperature, the frequency dependence
of the self-energy generally features two peaks, while at high
temperature, it features a single peak. At the highest tempera-
tures, the peak follows the shape of the electron dispersion.

In Fig. 11 we zoom in on the low-frequency part, along a
high-symmetry path in the BZ. We see that the scaling with
ω around ω = 0 takes different forms depending on k and
parameters of the model. The most interesting is the half-
filling case, where we see that k = (π, 0) and k = ( π

2 , π
2 )

are special points where in the T → 0 limit one approaches
Im�̃(ω → 0) ∼ |ω|α with α ≈ 4

5 and α = 1, respectively.
More precisely, the linear scaling α = 1 is observed along the
path connecting (0, π ) and (π, 0), but is modified abruptly
to α ≈ 4

5 at those points. The linear scaling has been noted

before [27]. However, the apparent T → 0 limit of our
second-order self-energy should only apply in the strict U →
0 limit. At any finite coupling and low enough temperature,
higher perturbation orders will play a role, and produce an
insulating state [28–31].

We also note a large number of kinks in the frequency
dependence of Im�̃. The prominent peaks that appear at high
temperature are not smooth: at the maximum no derivatives
appear to be well defined.

2. Green’s function and compressibility

Once we have the self-energy, we can plug it in the expres-
sion for the Green’s function

Gk(ω) = 1

ω − εk − �k(ω)
. (47)

Examples of the Green’s function are shown in Fig. 10, as well
as for the local density of states − 1

π

∑
k ImGk(ω). We observe

that the sharp structures in the self-energy at intermediate
temperature lead to a splitting of the peak in the single-particle
spectrum at k ≈ (π, π ).

Ultimately, from the Green’s function we get the average
density 〈n〉 = − 2

π

∫
dω

∑
k ImGk(ω)nF(ω), and from it, the

charge compressibility χc = ∂〈n〉
∂μ

, which will be needed to
estimate the diffusion constant. At finite U , in practice, what
enters the calculation is μ̃ = μ − U 〈nσ 〉. It is then easiest to
compute the quantity χ̃c = ∂〈n〉

∂μ̃
. To get to the physical charge

compressibility, one uses χc = (χ̃−1
c + U/2)−1.
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FIG. 11. Half-filling, various temperatures. Second-order self-energy along a high-symmetry path in the BZ; zoom in on low frequencies.

3. Bubble approximation for two-particle correlation functions

It is of great interest to see how the long-wavelength behav-
ior of the charge-charge (or equivalently the current-current)
correlation functions changes due to weak interactions. The
simplest approach is to just calculate the bubble approxima-
tion for χ or 
 (illustrated in Fig. 9). The bubble expression
is simply the real-frequency formulation of Eq. (34), with
the replacement G0 → G. One obtains (under assumption that
ϕk,qφk+q,−q is purely real)

ImQq[ϕ, φ](ν)

= 2

π

∑
k

ϕk,qφk+q,−q

∫
dω

× ImGk(ω)ImGk+q(ω+ν)[nF(ω)−nF(ω+ν)], (48)

where 2 in front comes from the summation over spin, and
1
π

= 1
π2 π comes from the double Hilbert transform, and tak-

ing the delta-peak part of the integral (for detailed derivation
in a more general case see Ref. [32]). We have implemented
this calculation and show results below.

However, the bubble approximation is not sufficient to
properly address the question of whether the hydrodynamic
form for χ [Eq. (14)] or 
 [Eq. (21)] is valid at small q.
By construction, the bubble does not satisfy the continuity
equation. The reason for this is simple: the bubble expression
is formally an exact solution for a noninteracting system cou-
pled to an external fermionic bath, the hybridization being the
dynamical part of the self-energy. The bubble approximation
for χq(ν) will therefore be manifestly wrong at q = 0, as one
will get χq=0(ν �= 0) �= 0. Similarly, the bubble approxima-
tion for Im
q(ν) will be manifestly wrong at q �= 0, ν → 0,
as it will scale as ∼ν, and thus signal a finite conductivity.
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Clearly, if the system is open, a static wave of the electric
field will scatter the incoming particles and maintain a current
wave. The bubble approximations for χ and 
 do not satisfy
Eq. (7), and are not connected in a simple way. To restore
physical properties, one needs to include vertex corrections,
even at tiny couplings.

On the other hand, the bubble approximation for
Im
xx

q=0(ν) will not be a priori unphysical, and can be con-
sidered a reasonable approximation for this object at low
couplings. The parameters of the hydrodynamic model are
encoded in Im
xx

q=0(ν) or, equivalently, in σ xx
q=0(ν). One can

check whether Im
xx
q=0(ν) satisfies Eq. (22). However, one

has to keep in mind that different theories may reduce to
the same form of 
xx at q = 0. Even if Im
xx

q=0(ν) satisfies
Eq. (22) to a good degree, this cannot serve as proof that
the hydrodynamic theory is valid. Nevertheless, assuming that
the hydrodynamic theory is valid, one could use Im
xx

q=0(ν)
[or σ xx

q=0(ν)] to extract the parameters for the hydrodynamic
model, and investigate how they change with the microscopic
parameters, which is what we will present in the following.

4. Optical conductivity in the weak-coupling limit

We distinguish here between the general weak-coupling
regime (say U < 1) and the strict U → 0 regime, i.e., the
weak-coupling limit. To have a finite conductivity it is nec-
essary to have scattering, so one cannot simply take U = 0,
but must rather consider an infinitesimal U . In the weak-
coupling limit, the bubble calculation for σ xx

q=0(ν) simplifies.
In this way, one obtains the scaling of quantities in terms of
U in the U → 0 limit. In the following, we will distinguish
between the simplified, weak-coupling bubble, and the full
bubble calculations. The latter is computed for a finite U ,
using Eq. (48). The weak-coupling bubble is inexpensive and
we use it to cover the entire phase diagram. We also perform
some full bubble calculations at U = 0.75 and 1.0 and show
results below.

The weak-coupling limit simplification of the bubble can
be understood as follows. If U is sufficiently small, then the
peaks in the spectral function start to resemble Lorentzians
centered at ω = εk:

Gk(ω ≈ εk;U → 0) = 1

ω − εk − i Im�k(εk )
. (49)

The shifts coming from Re�k(ω) can be neglected, and
Im�k(ω) can be considered to be constant at the scale of the
width of the peak. Away from ω ≈ εk, ImG(ω) can be consid-
ered zero. Furthermore, the optical conductivity is expected
to be nonzero only at tiny frequencies, which also simplifies
the Fermi-Dirac factor. We are ultimately able to employ the
integral∫

dx Im
1

x ± iy
Im

1

x ± � ± iy
= π

2y

1(
�
2y

)2 + 1
(50)

which in the limit � = 0 reduces to π
2y . In total we obtain

σ xx
q=0(ν) =

∑
k

(
vx

k

)2
n′

F (εk )

Im�k(εk )

[(
ν

2 Im�k(εk )

)2

+ 1

]−1

.

(51)

It is important to compare this expression to the Boltzmann
expression for the dc conductivity (31). The two expressions
do coincide, but only under the assumption that Im�k(εk )
does not depend on k, in which case one would have � =
−2 Im�k(εk ). However, Im�k(εk ) retains considerable k de-
pendence even at infinite temperature as limT →∞ Im�̃k(εk ) =
−π

4

∑
k′q δ(εk − εk+q − εk′+q + εk′). The expression (51)

presents a sum of Lorentzians of different heights and widths,
and the end result might not fit well to the Lorentzian shape.
Our weak-coupling theory does not a priori reduce to Eq. (31)
or the hydrodynamic equation (24). At infinite temperature,
the D and � we might extract from our results are a priori
separate objects: their product D� will depend on the precise
form of the self-energy.

We now pull the U 2 factor out of the self-energy to obtain

σ̃ xx
q=0(ν̃) ≡

∑
k

(
vx

k

)2
n′

F (εk )

Im�̃k(εk )

[(
ν̃

2 Im�̃k(εk )

)2

+ 1

]−1

(52)

with the definitions

σ (ν = ν̃U 2) = σ̃ (ν̃)

U 2
. (53)

At low frequency, we can now equate the hydrodynamic
form (24) with the above equation, to reach the following:

D̃ = σ̃ xx
q=0(ν̃ = 0)

χc
, D = D̃

U 2
, (54)

�̃ = δ

(
1 − σ̃ xx

q=0(ν̃ = 0)

σ̃ xx
q=0(ν̃ = δ)

)− 1
2

, � = �̃U 2, (55)

where we take δ small.
This result gives us the estimate of how � and D behave as

functions of U 2, at low coupling. Additionally, one can con-
clude that the diffusive regime extends to shorter wavelengths
as coupling is increased, i.e.,

qD =
√

�

4D
= U 2

√
�̃

4D̃
≡ U 2q̃D. (56)

The coefficients D̃ and �̃ depend on the microscopic parame-
ters, and we extract them from σ̃ xx

q=0(ν̃), calculated by Eq. (52).
Even though σ̃ (ν̃) might not have the shape of a

Lorentzian, the property σ̃ (ν̃ → 0) ∼ σ̃dc(1 − ν̃2) is guaran-
teed. Therefore, the form (24) is bound to hold at least at the
lowest frequencies, and one can certainly extract the effective
�̃ via Eq. (55). It is interesting to see in what range of frequen-
cies will the hydrodynamic equation (24) be valid.

5. Results for dc resistivity

We first focus on the ρ̃dc = 1/σ̃dc results. The color plot of
ρ̃dc as a function of doping and temperature is given in Fig. 12.
We show the T dependence at different dopings in the upper
part of Fig. 13. We see the following trends. At half-filling one
observes ρ̃dc ∼ T in the full range of accessible temperatures.
The high-temperature limit of Eq. (52) can be easily com-
puted for the half-filled case based on the high-temperature
asymptotic form of �̃k(εk ). One obtains ρ̃dc(T ) = 13.08T .
This appears to be the high-temperature asymptotic behavior
at least at moderate dopings, as well. As one dopes away from
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FIG. 12. Summary of weak-coupling results: doping-
temperature phase diagram. Color plots of dc resistivity,
diffusion constant, momentum-relaxation rate in the U → 0
limit, extracted from the weak-coupling bubble calculation (52), and
the corresponding noninteracting compressibility.

half-filling, a ρ̃dc ∼ T 2 (Fermi liquid, FL) regime emerges
at ever higher temperatures, while the ρ̃dc ∼ T is pushed to
higher T . Starting from around 〈nσ 〉 = 0.3, the low-T regime
transforms into ρ̃dc ∼ T 1.9. At 〈nσ 〉 = 0.15 we no longer ob-
serve ρ̃dc ∼ T in the accessible range of temperature, but
further doping continuously reduces the exponent in the FL-
like regime. At very low fillings, we again see ρ̃dc ∼ T in the
full range of T . The effective exponent α of the T dependence
of resistivity can be obtained as α = ∂ ln ρdc(T )

∂ ln T |〈n〉 [33] and is
color coded in the bottom part of Fig. 13.

It is interesting to inspect the case of fixed μ = −1: this
means that strictly kF = 0 and all occupancy comes from
thermal excitations. There we observe roughly ρ̃dc → 0.4 as
T → 0 (see Fig. 14). This can be understood as follows: at
low temperature, the contribution will come from an increas-
ingly small vicinity of k = 0. We observe that Im�k=0(ω =
0) ∼ T . On the other hand, the velocity of electrons will
decrease as temperature is lower. Ultimately, the amplitude
of contributions will reduce to the integral

∫
dk k2

x e−βk2 ∼∫ ∞
0 dk k3e−βk2 ∼ T . This means that the increased coherence

of the electrons will be canceled exactly by their decreasing
velocity, and the resistivity will converge to a constant as
T → 0. At μ slightly above −1 one expects the resistivity to
go to 0, whereas for μ slightly below, one expects it to go to
infinity.

6. Results for hydrodynamic parameters

The results for D̃ and �̃ are summarized on Fig. 12. It
is apparent that roughly D̃ ∼ 1/�̃. This can be understood
intuitively: the more coherent the quasiparticles, the bigger the

FIG. 13. Weak-coupling bubble dc resistivity results. Upper pan-
els: temperature dependence at different dopings. Lower panel:
effective exponent of the temperature dependence, color plotted in
the doping-temperature plane; black crosses are actual data points:
the rest are obtained by interpolation.

dc conductivity and the narrower the Drude peak. However,
the inverse proportionality coefficient, i.e., D� value is a
priori unclear. We plot D� in Fig. 15 and find that results
approach 2t2 at high temperature. This is in agreement with
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FIG. 14. Weak-coupling bubble (U → 0 limit) dc resistivity re-
sults at a fixed chemical potential. Horizontal line denotes 0.4, which
is the value ρdc apparently converges to at μ = −1 and T → 0.

the loose expectation based on Eq. (11), but also in agreement
with the hydrodynamic theory [Eq. (30)]. We also plot the
corresponding result from FTLM computed at a moderate
and a strong value of coupling (strong-coupling data were
reconstructed from Ref. [18]), and find a similar result. It is
striking that D� is within ≈20% of 2t2 in a large range of
temperature and even at strong coupling.

In Fig. 16 we cross-check our weak-coupling ρdc result
based on Eq. (51) with the corresponding full bubble cal-
culation [Eq. (48)] at U = 1. As expected, the agreement
is better at lower temperature and lower coupling (for the
latter, the data are not shown), i.e., in cases where scatter-
ing rates Im�̃k(εk ) are smaller. We also compare our full
bubble result to dynamical mean field theory (DMFT) [34]
calculation at U = 1 (implemented with the numerical
renormalization group, NRG, real-frequency impurity solver
[14,15,32,35–38]) and surprisingly, find excellent agreee-
ment. Our second-order self-energy �̃ is clearly nonlocal (and
remains nonlocal up to infinite temperature; see Fig. 10), yet
the nonlocal part does not seem to play a big role in the value
of dc resistivity. We check this explicitly by computing the
bubble with only the local part of our self-energy: we find
a very similar result. Moreover, the agreement with DMFT
suggests that the local part of our second-order self-energy
agrees well with DMFT. We confirm this in Fig. 10, espe-
cially in the thermal window ω ∈ [−T, T ], which is the range
of frequencies relevant for the conductivity calculation. We
also compute the full bubble on a small 4×4 lattice. In the
previous work of some of us [14], it was shown that finite-size
effects subside at high temperature, and that the (4×4)-lattice
FTLM calculation was correct at T � 0.3. However, this was
at the value of coupling U = 2.5; we now see similar lack
of finite-size effects even at U = 1, which is somewhat unex-
pected (at a lower U the relevant correlation lengths should
be greater, and the systematic errors due to finite system size
more pronounced). Comparing our full bubble result for ρdc

at U = 1 with the FTLM result at U = 1.25 we can conclude
that the vertex corrections are still sizable, and affect the result
in a similar fashion as at U = 2.5, i.e., the vertex corrections
present a roughly constant shift towards lower resistivity.

We compare D and � obtained from the weak-coupling
bubble at U = 0.65 [Eqs. (54) and (55)] to the FTLM result
at U = 1.875 and 1.25 and find surprising similarity (see
Fig. 17). As was already apparent from Refs. [14,18], the
bubble approximation tends to overestimate ρdc (i.e., under-
estimate D) and overestimate �. This explains the apparent
agreement between the weak-coupling bubble approximation
and the numerically exact result at strong coupling. However,
up to a prefactor, even our weak-coupling bubble results for
D̃(T ) and �̃(T ) display a shape very similar to the FTLM
result at U = 1.875. The behavior of the hydrodynamic pa-
rameters does not seem to change drastically going from
weak to rather strong coupling. At a fixed temperature T =
0.5, the weak-coupling � ∼ U 2 and D ∼ 1/U 2 trends slow
down at stronger coupling, so that the difference in � and
D between U = 1.25 and 1.875 results is rather small. The
full bubble computed at U = 0.75 improves the result of the
weak-coupling bubble. It appears that in the strong-coupling
limit, D → 2t , and roughly � → t , which is consistent with
limU→∞ D� ≈ 2t2.

7. Deviations from the Lorentzian Drude peak

As for the frequency range of the validity of Eq. (24),
i.e., the hydrodynamic form for the current-current correlation
function (22): it strongly depends on the microscopic param-
eters. At high temperature the agreement is excellent up to
the peak of Im
(ν), but, as expected, the high-frequency tail
has a different scaling. This is shown in Fig. 18 where we
compare a fitted equation (22) with the result of the full bubble
calculation (48).

8. Critical wavelength for diffusive behavior

Finally, we go back to the simple prediction (56) that the
characteristic wavelength for diffusive behavior will become
shorter with increasing coupling. We check this directly in
our χq(ν) results. As already mentioned, the bubble approx-
imation is unsuitable for the investigation of χ at very long
wavelengths, but one might still want to inspect the results at
somewhat bigger q. In Fig. 19 we show the Imχq(ν) results
at a fixed q = (0.159, 0)π , and vary the coupling. The corre-
sponding 〈nq(t )〉 results calculated via Eq. (13)are presented
on the panel on the right. For the occupancy 〈nσ 〉 ≈ 0.4125
and T = 0.2, our weak-coupling bubble calculation yields
q̃D =

√
�̃

4D̃
≈ 0.15π , which means that the behavior should

become diffusive at wave vector q ≈ (0.15π, 0) at around
U = 1. This is in excellent agreement with the result we
obtain directly from the full bubble approximation for χ ,
as evidenced by Fig. 19, panel on the right. Here we have
plugged the full bubble result for χq(ν) in the linear-response
theory expression for the CDW amplitude nq(t ) [Eq. (13)].

C. Strong coupling

We focus now on quantum Monte Carlo (QMC) results for
the charge-charge and current-current correlation functions.
We make use of the continuous-time interaction-expansion
QMC, CTINT [21]. This method is numerically exact for a
given lattice size. We calculate the intersite χi j (iν) on the
Matsubara frequency axis for a cyclic lattice of size L×L and
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FIG. 15. Weak-coupling bubble (U → 0 limit) in comparison with moderate and strong coupling. At weak coupling, D and � are computed
using Eqs. (55) and (54) at various dopings. At moderate and strong coupling, FTLM result is the best available result. At strong coupling,
data are reconstructed from Ref. [18], but only for a single doping.

then perform a periodization procedure, where we promote
the intersite components to the real-space components of an
infinite lattice, and thus obtain χr(iν) of a finite range (com-
ponents at r : rη > L/2 are considered 0). We then Fourier
transform to obtain χq(iν) with arbitrary resolution in the BZ.
However, very short q vectors corresponding to wavelengths
much greater than L remain inaccessible. Nevertheless, we are
able to obtain solid results for wavelengths up to 20 lattice
spacings and that way cover the range of wavelengths studied
in the cold-atom experiment by Brown et al. [18]. We perform
the exact same procedure for 
xx as well.

FIG. 16. Moderate coupling U = 1, moderate doping, results for
dc resistivity. Dashed blue: weak coupling bubble. Blue line and
dots: full bubble calculation. Orange dashed and squares: full bubble
calculated with only the local component of self-energy. Red with
crosses: full bubble with the local DMFT(NRG) self-energy result.
Lime dotted with diamonds: full bubble computed on a 4×4 lattice
with the full k-dependent second-order self-energy. Green stripe:
FTLM 4×4 result at a larger coupling U = 1.25 (including the vertex
corrections).

We perform a finite-size scaling analysis and observe that
no obvious trends with L are apparent in the results already
between L = 4 and 10 (data not shown). This is consistent
with the estimates from the recent Ref. [39] where it was
shown in a thermodynamic limit DiagMC calculation that the
charge correlations are short ranged, with values becoming
very small already at distances of about 5 lattice spacings. In
our calculations, we consider the statistical errors to be the
leading uncertainty, and use the L = 10 results to perform
analyses.

As already mentioned, it would make no sense to compare
the hydrodynamic law to imaginary-axis data because the hy-
drodynamic law predicts an unphysical asymptotic behavior
of the current-current correlation function. To be able to com-
pare the hydrodynamic theory with our Matsubara-frequency
results, we propose a modified hydrodynamic form

Imχmh
q (ν) = Imχhyd

q (ν)[1 + L(ν; a, b, c)]nF(ν − C; βart ),

(57)

where χhyd denotes the form in Eq. (14), L(ν; a, b, c) =
a exp[−(ln ν − b)2/c2] is the log-normal distribution, and
nF(ω; β ) = 1

eβω+1 is the Fermi-Dirac distribution function.
The 1 + L part here is necessary to introduce high-frequency
excitations to and from the upper Hubbard band, which are
expected in the doped Mott insulator regime. The Fermi-Dirac
distribution function facilitates the exponential cutoff at high
frequency. This modified hydrodynamic form thus has five
additional parameters: a, b, c are the amplitude, position, and
width of the Hubbard peak, respectively, and C and βart are the
cutoff frequency and the artificial temperature determining the
rate at which the spectral weight is exponentially suppressed
at cutoff. We make sure that βart is small enough so that
nF (−C, βart ) ≈ 1. Our choice of Imχmh

q (ν) ensures ∼1/ν2

Matsubara-axis asymptotic behavior for 
xx. The prefactor
of the asymptotic behavior will in general depend on the
parameters a, b, c,C, βart .

We now check whether the modified hydrodynamic form
(57) is consistent with the available CTINT and FTLM data.
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FIG. 17. Left panel: Temperature dependence of D and � in the weak-, moderate-, and strong-coupling regimes. Right panel: Coupling
dependence of � and D, as obtained from the weak-coupling bubble, full bubble, and FTLM. The orange lines are guides for the eye, a possible
scenario connecting results in the weak- and moderate- to strong-coupling regimes.

We first hand-pick the parameters so that the FTLM result for
the optical conductivity is reproduced. It is noteworthy that
we can get a very good fit to FTLM data, and that the shape of
the high-frequency peak is roughly a log-normal distribution.
We then compare the resulting χmh

q (iν) and the corresponding

xx,mh [obtained via Eq. (10)] to CTINT data. We find solid
agreement, as shown in the upper part of Fig. 20.

In the lower part of Fig. 20 we illustrate how fitting the
Matsubara data to a hydrodynamic law without the high-
frequency peak will yield wrong results for D and �, even if a

FIG. 18. Moderate coupling, moderate doping. Full lines: full
bubble result [Eq. (48)] for the uniform (q = 0) longitudinal current-
current correlation function. Dashed lines: hydrodynamic form (22)
fitted at ν → 0.

proper high-frequency cutoff is used. We do a fully unbiased
fit of χmh

q (iν) (with a, b, c = 0 and βart fixed to 0.3, D, � χc,C
free), to reproduce at the same time χ and 
 CTINT results at
five small q vectors. We get an excellent fit, but we get com-
pletely wrong values for D and �. The optical conductivity
contains two peaks, and fitting with only a single peak will
compensate by making this one peak wider and shorter, thus
underestimating D and overestimating �. Figure 20 nicely
illustrates the difficulty of analytical continuation: the fit func-
tion on the imaginary axis is almost indistinguishable between
the top and bottom rows, yet corresponds to drastically differ-
ent optical conductivity.

In Fig. 21 we show the 〈nq(t )〉 curves, corresponding to
χmh parameters from the upper part of Fig. 20. Comparing to
the corresponding pure hydrodynamic law χhyd [Eq. (21)], we
find no visible difference: the inability of the hydrodynamic
law to describe high-frequency features of χ are unlikely to
have affected the fitting procedure in Ref. [18].

IV. DISCUSSION AND PROSPECTS

Our work builds on the milestone study of charge fluctua-
tions in the Hubbard model by Hafermann et al. [23]. In that
work, the noninteracting charge-charge correlation function
was calculated, but only at half-filling, and with a relatively
low resolution: the striking two-linear-modes feature that we
observe at finite doping was, therefore, overlooked. More
importantly, the Matsubara data were fitted to a law which
only allows for a linear mode at long wavelengths, which
may not be appropriate. In light of more recent experimental
evidence, and on general physical grounds, the emergence
of diffusive behavior and a quadratic mode around q = 0
is expected. Furthermore, in the work by Hafermann et al.,
vertex corrections had unlimited range, but were calculated
as a diagrammatic extension of DMFT [40], which introduces
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FIG. 19. Weak to moderate coupling, moderate doping, moderate temperature. Left: full bubble calculation [Eq. (48)] for the charge-charge
correlation function at a fixed wave vector at different values of coupling. Right: corresponding CDW amplitude vs time curves [Eq. (13)].
Prediction based on Eq. (56) for this doping and temperature is that qD(U = 1) ≈ 0.15π , in agreement with the data in the plot on the right.

systematic errors. By using CTINT at 10×10 lattice size, we
capture complete vertex corrections up to a medium range,
yet the finite-size effects in our theory are unlikely to have
introduced significant systematic error. Finally, Hafermann
et al. have derived numerous useful identities relevant for
charge-charge and current-current correlation function. How-
ever, the fully general equation (7) may have been overlooked
so far.

Our weak-coupling calculation is complementary to the
semiclassical Boltzmann equation approach of Kiely and
Mueller [16]. It is not clear that either of the two approaches
yield exact results, even in the U → 0 limit, thus it is im-
portant to cross-check the results and look for robust, shared
features. Indeed, our results at low dopings are in excellent
qualitative agreement with the Boltzmann equation: we ob-
serve linear resistivity at half-filling and an emerging T 2 at
low temperature as one dopes away from half-filling. How-
ever, there is a significant quantitative difference in the values
of ρ̃dc. The Boltzmann equation predicts the high-temperature
asymptotic behavior ρ̃dc = 0.076(T/t ) = 0.304(T/4t ) while
our Kubo bubble theory yields ρ̃dc = 13.08(T/4t ). The dif-
ference is nearly two orders of magnitude. Comparing to
numerically exact FTLM result at U = 1.25, it is clear that
our extrapolated U → 0 theory strongly overestimates ρdc at
high temperature (see Fig. 16). However, the coefficient for
the linear high-T asymptotics is overestimated by a factor of
2–3, at most. Furthermore, we can compute the bubble result
at a finite coupling to obtain much better results, the relative
error unlikely being more than 30%–40% in the relevant range
of temperature. The Boltzmann theory result extrapolated to
U = 1.25, on the other hand, would be barely visible on the
scale of Fig. 16. Our bubble theory appears to give results
in significantly better agreement with the reference FTLM
solution. There is also a striking qualitative difference in the
ρdc(T ) at large doping. At 〈nσ 〉 = 0.1 Kiely and Mueller ob-
serve an exponential drop of resistivity at low temperature, in
sharp contrast to our observations. Their finding was argued
to be due to frustration of umklapp scattering. It is possible

that, in our approach, vertex corrections are needed to observe
this phenomenon. Further work is necessary to fully resolve
the origin of this discrepancy. Finally, our approach allows
us to compute the full optical conductivity, and estimate D and
� as separate objects, which, to the best of our understanding,
could not have been done in their work. To our understanding,
� was extracted from D, assuming the validity of the Boltz-
mann expression for conductivity [Eq. (31)]. The analysis
based on the asymptotic behavior of χq→0(iν) that shows that
the hydrodynamic theory [Eqs. (3) and (4)] is consistent with
Eq. (31) may have been previously overlooked.

Our analysis of the equation of motion for the current
[Eq. (11)], as well as our numerical results displaying D� =
2t2 at weak coupling and high temperature (Fig. 15) provide
some microscopic evidence for the validity of the hydrody-
namic theory proposed in Ref. [18]. Also, our Fig. 19 provides
some support for qD = √

�/4D which is a specific property
of the hydrodynamic theory [Eqs. (3) and (4)]. However, the
definite answer to the questions raised in this paper will have
to come from more sophisticated methods. It is essential to
formulate the theory in real frequency and at the same time
treat the thermodynamic limit and the vertex corrections. The
recently developed real-frequency diagrammatic Monte Carlo
(RFDiagMC) [41–45] is a clear candidate, and our Kubo bub-
ble and second-order self-energy theory is the first step in this
approach. Very recently, RFDiagMC was used to calculate
the charge-charge correlation function in a slightly different
model, at very weak coupling [46]. Pushing RFDiagMC to
stronger coupling [45,47–50] and higher resolution necessary
to investigate the hydrodynamic behavior in the regime rele-
vant for cold-atom experiments is a difficult task that we leave
for future work.

Finally, it is important to view our T -linear-resistivity re-
sult in the U → 0 limit in light of the very recent work by Xu
et al. [51]. In this work, a quantum critical line is observed
to pass through U = 0, 〈nσ 〉 = 0.5, separating two distinct
ordered phases in the ground-state (δ,U ) phase diagram of
the Hubbard model. This is in line with our observation that
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FIG. 20. Strong coupling, moderate doping, and temperature. Upper panels: modified hydrodynamic law with parameters hand-picked to
reproduce FTLM result for optical conductivity (rightmost panel, gray stripe, and black dot); two panels on the left: comparison of the modified
hydrodynamic law the with corresponding CTINT results for the Matsubara-axis charge-charge and current-current correlation functions; third
panel: corresponding real-frequency charge-charge correlation function. Lower panels: unbiased fit of the modified hydrodynamic law without
the high-frequency peak to the CTINT charge-charge and current-current correlation functions, simultaneously. The result has a strong bias for
the values of D and �.

FIG. 21. CDW amplitude vs time curves, corresponding to the
modified hydrodynamic law from the upper panels of Fig. 20, com-
pared to the original hydrodynamic law [Eq. (14)] with the same D
and �.

the charge-charge and spin-spin susceptibilities diverge at
q = (π, π ) as T → 0 at U = 0, μ = 0 (see Appendix F). The
hypothesis considered in many works [8] is that linear resis-
tivity is expected above quantum critical points. The linear
resistivity that we observe may, indeed, be intimately linked to
instability towards order, i.e., a degeneracy of the ground state
at U → 0 at half-filling. The van Hove singularity at the Fermi
level perhaps does not play the essential role here, in contrast
to the conclusions in Ref. [17]. Whether resistivity remains
linear all the way down to zero temperature when Fermi level
is at a van Hove singularity in the density of states, regardless
of any ordering instabilities, is currently unclear.

V. CONCLUSIONS

We have studied charge fluctuations and transport in the
Hubbard model. In the noninteracting limit, charge fluctua-
tions are anisotropic, and can have multiple linear modes at
long wavelengths. Near the empty limit, the charge spectral
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function resembles that of the electron. At weak coupling, the
self-energy presents several peculiar behaviors, including an
abundance of kinks in the frequency dependence. At low tem-
perature we generally find two peaks in Im�k(ω) at any k. At
half-filling and T → 0, we find Im�k=(0,π )(ω) ∼ |ω|4/5 and,
along the Fermi surface, Im�k=(0,π )↔(π,0)(ω) ∼ |ω|, the latter
being in agreement with previous work [27]. As temperature
is raised, a sharp peak in Im�k(ω) rises at low frequency,
splitting the quasiparticle peak in ImGk(ω) at around k =
(π, π ). At high temperature, we find that self-energy has a
single peak as a function of frequency at around ω = εk, and
it is not smooth. We observe that the dc resistivity is linear at
half-filling and at high temperature, in agreement with recent
findings [16]. Surprisingly, nonlocal self-energy components
are found to have little effect on dc resistivity. Precisely at the
band insulator transition, our bubble approximation predicts
a finite resistivity at T → 0, coming as a consequence of
perfect cancellation of the reducing velocity and scattering
rate, both scaling as T . We observe that the hydrodynamic pa-
rameters (diffusion constant and momentum relaxation rate)
are roughly inversely proportional, in the bubble approxima-
tion at weak coupling, as well as in the numerically exact
FTLM result at strong coupling. Their product appears to be
D� ≈ 2t2, which coincides with one term in the microscopic
equation of motion for the current, indicating that other terms
might play less of a role. This supports the hydrodynamic
theory, for which we show that it must satisfy D� = 2t2 at
weak coupling and high temperature. Finally, we propose a
modified hydrodynamic law that has correct behavior at high
frequency, and find that it is consistent with both the numer-
ically exact FTLM and the numerically exact CTINT. Our
results provide some evidence that the hydrodynamic theory
is correct, but further work with better methods is needed to
fully resolve this issue.
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APPENDIX A: CONTINUITY EQUATION
ON THE LATTICE

We start by noting the general expression for the time
derivative of a bosonic operator O in the Heisenberg picture

∂tO(t ) = ∂t e
itHOe−itH

= i[H,O]. (A1)

We will also need the general expression for commutators
of the following general form, with a†, b, c†, d fermionic cre-
ation and annihilation operators

[a†b, c†d] = δbca†d − δad c†b. (A2)

This can be proven simply by using [AB,C] = A[B,C] +
[A,C]B, [A, BC] = B[A,C] + [A, B]C, and therefore
[AB,CD] = A(C[B, D] + [B,C]D) + (C[A, D] + [A,C]D)B.

Using these we can then show

∂t nr(t ) = i[Hkin, nr] = −it

⎡
⎣ ∑

σ ′,r′,s∈{1,−1},η∈{x,y}
c†
σ ′,r′cσ ′,r′+seη

,
∑

σ

c†
σ,rcσ,r

⎤
⎦

= −it
∑

σ,s∈{1,−1},η∈{x,y}
([c†

σ,rcσ,r+seη
, c†

σ,rcσ,r] + [c†
σ,r−seη

cσ,r, c†
σ,rcσ,r])

= −it
∑

σ,s∈{1,−1},η∈{x,y}
(−c†

σ,rcσ,r+seη
+ c†

σ,r−seη
cσ,r ) = −

∑
η∈{x,y}

( jηr − jηr−eη
) (A3)

with the definition jηr = it
∑

σ (c†
σ,r+eη

cσ,r − c†
σ,rcσ,r+eη

). The expression
∑

η∈{x,y}( jηr − jηr−eη
) is the lattice version of the

divergence of current.

We can express the continuity equation in momentum
space by Fourier transform of both sides

∂t nq = i[H, nq] = −
∑

η∈{x,y}
(1 − eiqη ) jηq, (A4)

where nq = ∑
r eiq·rnr = ∑

k c†
k+qck. Notice that we distin-

guish between nk = c†
kck and nq solely by the choice of the

symbol in the subscript.
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APPENDIX B: CONNECTION BETWEEN THE
CHARGE-CHARGE AND CURRENT-CURRENT

CORRELATION FUNCTIONS

Here we make use of the general equation of motion

z2〈〈A; B〉〉z =−z〈[A, B]〉−〈[[A, H], B]〉+〈〈[A, H]; [H, B]〉〉z,

(B1)

where we denote with 〈〈A; B〉〉z the correlator of operators A
and B as a function of complex frequency z. The full deriva-
tion of Eq. (B1) is given in Appendix D.

If we replace A = nq and B = n−q, and using [A, H] =
−[H, A] and 1/i = −i we get

z2〈〈nq; n−q〉〉z = −z〈[nq, n−q]〉 + i
∑

η∈{x,y}
(1 − eiqη )〈[ jηq, n−q]〉

+
∑

η,η′∈{x,y}
(1 − eiqη − e−iqη′ + ei(qη−qη′ ) )

×〈〈 jηq ; jη
′

−q〉〉z. (B2)

Let us work out the two commutators

[nq, n−q] =
∑

σ

[∑
k

c†
σ,k+qcσ,k,

∑
k′

c†
σ,k′cσ,k′+q

]

=
∑

σ

∑
k

[c†
σ,k+qcσ,k, c†

σ,kcσ,k+q]

=
∑

σ

∑
k

(nσ,k+q − nσ,k )

=
∑

σ

(nσ,r=0 − nσ,r=0)

= 0. (B3)

Therefore, the first term drops out.
For the second term one gets

[ jηq, n−q] =
[∑

k

v
η

k,qc†
σ,k+qcσ,k,

∑
k′

c†
σ,k′cσ,k′+q

]

=
∑

σ

∑
k

v
η

k,q(nσ,k+q − nσ,k ), (B4)

where v
η

kq = it (e−i(kη+qη ) − eikη ). The overall prefactor is
purely real for each k:

i2t (1 − eiqη )(e−i(kη+qη ) − eikη )

= −t (e−i(kη+qη ) − eikη − e−ikη + ei(kη+qη ) )

= −2t[cos(kη + qη ) − cos kη]

≡ 	
η

k,q. (B5)

This leads us to the fully general expression (7), and here we
write it separately for the real and imaginary parts:

z2Reχq(z) (B6)

=
∑

η={x,y}

∑
k

	
η

k,q(〈nk+q〉 − 〈nk〉)

+ Re
∑

η,η′∈{x,y}
(1 − eiqη − e−iqη′ + ei(qη−qη′ ) )
η,η′

q (z),

z2Imχq(z)

= Im
∑

η,η′∈{x,y}
(1 − eiqη − e−iqη′ + ei(qη−qη′ ) )
η,η′

q (z). (B7)

Notice that the constant shift in Eq. (B6) is crucial to allow
that both χ and 
 scale as 1/ν2 at high Matsubara frequency,
which is expected on grounds of symmetry of these correlators
in imaginary time. At large ν we get for the real part ν2 const

ν2 =
const + 1/ν2 which reduces to const = const as ν goes to in-
finity. This expression also reveals the high-frequency scaling
which must hold in general:

Reχq(iν → i∞) = − 1

ν2

∑
η={x,y}

∑
k

	
η

k,q(〈nk+q〉 − 〈nk〉).

(B8)

APPENDIX C: CONSTITUTIVE EQUATION

In the following we derive the time derivative of current operator in the Heisenberg picture. The derivation boils down to
working out the following commutators:

∂t jηr = i[H, jηr ] = i([Hkin, jηr ] + [Hint, jηr ] + [Hchem, jηr ]). (C1)

The commutator with kinetic energy reads as

i[Hkin, jηr ] = i

⎡
⎣−t

∑
r′,σ ′,s∈{1,−1},η′∈{x,y}

c†
σ ′,r′cσ ′,r′+seη′ , it

∑
σ

(c†
σ,r+eη

cσ,r − c†
σ,rcσ,r+eη

)

⎤
⎦

= −t2
∑

σ

{
[c†

σ,r+eη
cσ,r, c†

σ,rcσ,r+eη
] − [c†

σ,rcσ,r+eη
, c†

σ,r+eη
cσ,r]

+
∑

u∈{−eη,eη̄ ,−eη̄}
([c†

σ,r+ucσ,r, c†
σ,rcσ,r+eη

] + [c†
σ,r+eη

cσ,r+eη−u, c†
σ,rcσ,r+eη

]

− [c†
σ,rcσ,r+u, c†

σ,r+eη
cσ,r] − [c†

σ,r+eη−ucσ,r+eη
, c†

σ,r+eη
cσ,r])

}
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= −t2
∑

σ

{
2c†

σ,r+eη
cσ,r+eη

− 2c†
σ,rcσ,r +

∑
u∈{−eη,eη̄ ,−eη̄}

(c†
σ,r+ucσ,r+eη

− c†
σ,rcσ,r+eη−u + H.c)

}
. (C2)

The first two terms comprise the lattice version of the gradient of charge in the direction of current. The other terms are longer-
range hoppings.

The commutator of the current with the total number of particles has to be zero, and we leave out the explicit derivation of
[Hchem, jηr ]. The commutator with the local Hubbard interaction, on the other hand, is nontrivial:

i[Hint, jηr ] = i

[
U

∑
r′

c†
↑,r′c↑,r′c†

↓,r′c↓,r′ , −it
∑

σ

(c†
σ,rcσ,r+eη

− c†
σ,r+eη

cσ,r )

]

= tU
∑

σ

{nσ̄ ,r([c†
σ,rcσ,r, c†

σ,rcσ,r+eη
] − [c†

σ,rcσ,r, c†
σ,r+eη

cσ,r])

+ nσ̄ ,r+eη
([c†

σ,r+eη
cσ,r+eη

, c†
σ,rcσ,r+eη

] − [c†
σ,r+eη

cσ,r+eη
, c†

σ,r+eη
cσ,r])}

= tU
∑

σ

{nσ̄ ,r(c†
σ,rcσ,r+eη

+ c†
σ,r+eη

cσ,r ) − nσ̄ ,r+eη
(c†

σ,rcσ,r+eη
+ c†

σ,r+eη
cσ,r )}

= −tU
∑

σ

(nσ̄ ,r+eη
− nσ̄ ,r )(c†

σ,rcσ,r+eη
+ c†

σ,r+eη
cσ,r ). (C3)

The terms we get are all assisted hopping terms.
The final expression reads as

∂t jηr = −t2
∑

σ

⎧⎨
⎩2nσ,r+eη

− 2nσ,r +
∑

u∈{−eη,eη̄ ,−eη̄}
(c†

σ,r+ucσ,r+eη
− c†

σ,rcσ,r+eη−u + H.c)

⎫⎬
⎭

−tU
∑

σ

(nσ̄ ,r+eη
− nσ̄ ,r )(c†

σ,rcσ,r+eη
+ c†

σ,r+eη
cσ,r ). (C4)

A straightforward Fourier transformation of both sides yields

∂t jηq = −t2
∑

σ

⎧⎨
⎩2(eiqη − 1)nσ,q +

∑
u∈{−eη,eη̄ ,−eη̄}

(
(e−iq·u − 1)

∑
k

eik·(eη−u)c†
σ,k+qcσ,k + H.c.

)⎫⎬
⎭

+ tU
∑

σ

∑
k,q′

(e−ikη + ei(kη+qη−q′
η ) )(1 − eiq′

η )nσ̄ ,q′c†
σ,k+q−q′cσ,k. (C5)

It is interesting to consider the limit q = 0,

∂t jηq=0 = tU
∑

σ

∑
k,q′

(e−ikη + ei(kη−q′
η ) )(1 − eiq′

η )nσ̄ ,q′c†
σ,k−q′cσ,k

= iU
∑

σ

∑
k,q′

(vη

k−q′ − v
η

k )nσ̄ ,q′c†
σ,k−q′cσ,k, (C6)

which clearly shows that scattering events that do not transfer momentum do not contribute to the decay of current; more
precisely, only the scattering events that change the velocity of an electron in the direction of the current contribute to the decay
of the current. In principle, this expression can be used to express the optical conductivity via higher-order correlation functions
using Eq. (B1).

APPENDIX D: EQUATION OF MOTION

Here we derive Eq. (B1). We start with the standard defini-
tion of the correlator in real time

〈〈A; B〉〉t = iθ (t )〈[A(t ), B(0)]〉, (D1)

where A and B are bosonic operators, thus we adopt the
definition without the minus sign in front.

The equations of motion are obtained by taking time
derivatives. The first derivative yields

d

dt
〈〈A; B〉〉t = iθ (t )〈[Ȧ(t ), B(0)]〉 + iδ(t )〈[A, B]〉. (D2)

We now perform the Laplace transform with respect to t :

〈〈A; B〉〉z =
∫ ∞

0+
dt eizt 〈〈A; B〉〉t . (D3)
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Now for f (t ) = 〈〈A; B〉〉t , we integrate per parts∫ ∞

0+
dt eizt d

dt
f (t ) = eizt f (t )|+∞

0+ − iz
∫

dt eizt f (t )

= −i〈[A, B]〉 − iz〈〈A; B〉〉z. (D4)

Note that the δ is not included in the integration domain.
The second term comes directly from the definition of the
Laplace transform (D3). Equating this result with the Laplace
transform of the right-hand side of Eq. (D8) we get

−i〈[A, B]〉 − iz〈〈A; B〉〉z = 〈〈i[H, A]; B〉〉z (D5)

which, up to the factor i, is the equation of motion in its usual
form.

We will want the second derivative to apply to the operator
B, thus, we first perform a time shift

d

dt
〈〈A; B〉〉t = iθ (t )〈[Ȧ(0), B(−t )]〉 + iδ(t )〈[A, B]〉 (D6)

and only then apply the second time derivative

d2

dt2
〈〈A; B〉〉t = iθ (t )〈[Ȧ(0),−Ḃ(−t )]〉

+ iδ(t )〈[Ȧ, B]〉 + iδ′(t )〈[A, B]〉. (D7)

For convenience, we shift back in time

d2

dt2
〈〈A; B〉〉t = −iθ (t )〈[Ȧ(t ), Ḃ(0)]〉

+ iδ(t )〈[Ȧ, B]〉 + iδ′(t )〈[A, B]〉. (D8)

The integration by parts once more leads to∫ ∞

0+
dt eizt d2

dt2
f (t )

= d

dt

(
eizt ḟ (t )

)|+∞
0+ − iz

∫
dt eizt d

dt
ḟ (t )

= −i〈[Ȧ, B]〉 − iz(−i〈[A, B]〉 − iz〈〈A; B〉〉z )

= −i〈[Ȧ, B]〉 − z〈[A, B]〉 − z2〈〈A; B〉〉z, (D9)

where the second and third terms come directly from Eq. (D5).
Equating this result with the Laplace transform of the right-
hand side of Eq. (D8) (there note the minus sign in front of
the first term, and note that ȦḂ = −[H, A][H, B]):

−i〈[Ȧ, B]〉 − z〈[A, B]〉 − z2〈〈A; B〉〉z = 〈〈[H, A]; [H, B]〉〉z.

(D10)

We rearrange the result

z2〈〈A; B〉〉z = −i〈[Ȧ, B]〉 − z〈[A, B]〉 − 〈〈[H, A]; [H, B]〉〉z

(D11)

and finally obtain

z2〈〈A; B〉〉z

= −〈[[A, H], B]〉 − z〈[A, B]〉 + 〈〈[A, H]; [H, B]〉〉z

(D12)

which is the expression used in the derivation in Appendix B.

FIG. 22. Static susceptibility in the noninteracting limit as a
function of momentum, at different fillings and temperatures.

APPENDIX E: CALCULATION OF SECOND-ORDER
SELF-ENERGY

The optimal way to compute the second-order self-energy
(46) it is to first evaluate the “triple density of states” by a
three-dimensional (3D) histogram on a dense energy grid

ρ3,k(ε1, ε2, ε3) = 1

N2�ω3

∑
k′,q

δε1,εk−qδε2,εk′+q
δε3,εk′ , (E1)

where �ω is the step in the energy grid. This calculation only
needs to be performed once, for μ = 0, and it does not depend

FIG. 23. Static susceptibilities in the noninteracting limit, at half-
filling, as a function of temperature. The values at q = (π, π ) and
q = (π/2, π/2) appear to diverge as T → 0.
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on T . Then for a given (μ, T ) we accumulate pole amplitudes
for the self-energy on the same energy grid as

Im�̃k(ω)

= − π

�ω

∫
dε1dε2dε3 ρ3,k(ε1, ε2, ε3)δω+μ−ε1−ε2+ε3

×
∑
s=±1

nF [s(ε1 − μ)]nF [s(ε2 − μ)]nF [−s(ε3 − μ)].

(E2)

The real part of the self-energy can then be obtained via the
standard Kramers-Kronig relation.

In our calculations we consider lattices L×L, up to L =
256. When calculating histograms, the optimal number of bins
is the square root of the number of the data points. Therefore,
in Eq. (E1) the number of energy bins per axis should be equal

to
√

N2
1/3 = L2/3, but for the sake of numerical simplicity, we

take the number of energy bins (per axis) to be L. This means
that, up to the overhead of evaluating Eq. (E1) once, we have
reduced the complexity of the calculation from L4 [Eq. (46)]
to L3 [Eq. (E2)], which is a huge speedup.

APPENDIX F: DIVERGENCE OF STATIC
SUSCEPTIBILITY AT U = 0, T → 0

In this Appendix we show results for the static suscepti-
bility Reχq(ν = 0), in the noninteracting limit. The results
are obtained by setting φ, ϕ = 1, z = 0 in Eq. (34) and us-
ing a 6000×6000 lattice. In Fig. 22 we observe that there
are peaks at q = (0, 0), q = (π, π ), and q = (π/2, π/2), but
the highest peak is at q = (π, π ). As one dopes away from
half-filling, the peaks split. At μ = −0.5, the peaks are at
q = (0, π ) and the symmetry related q = (π, 0). In the nearly
empty limit, the only peak is at q = (0, 0). As expected, the
peaks become less pronounced as one increases temperature.
In Fig. 23 we further observe that the value at q = (π, π )
and q = (π/2, π/2) appears to diverge as T → 0, indicating
competing instabilities towards charge order. It is important to
note that in the noninteracting limit, spin and charge suscep-
tibilities are equal. Therefore, any instability towards charge
order is accompanied by instability towards spin order. As
soon as interaction is turned on, the degeneracy between
charge and spin order is lifted.

[1] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.
Zaanen, Nature (London) 518, 179 (2015).

[2] R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M.
Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi,
C. Proust, and N. E. Hussey, Science 323, 603 (2009).

[3] A. Legros, S. Benhabib, W. Tabis, F. Laliberté, M. Dion,
M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li, P.
Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Colson, L.
Taillefer, and C. Proust, Nat. Phys. 15, 142 (2018).

[4] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda,
K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero,
Phys. Rev. Lett. 124, 076801 (2020).
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Building on previous work [N. Read, Phys. Rev. B 58, 16262 (1998); Z. Dong and T. Senthil, Phys. Rev. B 102,
205126 (2020)] on the system of bosons at filling factor ν = 1, we derive the Dirac composite fermion theory for
a half-filled Landau level from first principles and apply the Hartree-Fock approach in a preferred representation.
On the basis of the microscopic formulation, in the long-wavelength limit, we propose a noncommutative field-
theoretical description, which in a commutative limit reproduces the Son’s theory, with additional terms that may
be expected on physical grounds. The microscopic representation of the problem is also used to discuss pairing
instabilities of composite fermions. We find that a presence of a particle-hole symmetry breaking leads to a weak
(BCS) coupling p-wave pairing in the lowest Landau level, and strong coupling p-wave pairing in the second
Landau level that occurs in a band with nearly flat dispersion, a third power function of momentum.

DOI: 10.1103/PhysRevB.104.115150

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) can be ex-
plained by focusing on a strongly correlated problem of
particles (electrons) in two dimensions when there is a
commensuration between the number of particles and the
number of flux quanta of the applied, orthogonal to the two-
dimensional plane magnetic field. Many phenomenological
questions can be answered by assuming that the most impor-
tant physics takes place in a fixed Landau level (LL) with the
precise commensuration of the number of particles and the
number of orbitals in a fixed LL (and other LLs are inert). That
is why a mathematical, idealized problem of an isolated LL is
so useful and relevant for the understanding of the FQHE.

Some of the most interesting experimental phenomena oc-
cur at filling factors (ratio of the number of electrons and
the number of flux quanta) ν = 1

2 and 5
2 , even-denominator

fractions. The gapless system at ν = 1
2 is believed to be in

a Fermi-liquid state of underlying quasiparticles [composite
fermions (CFs)], as proposed and described in [1] early on,
while it is believed that incompressible (gapped) FQHE at
ν = 5

2 can be associated with some kind of p-wave pairing of
CFs in the second LL (sLL), as proposed in [2]. To understand
more closely these systems, one may start by focusing on an
isolated half-filled LL, the lowest LL (LLL) at ν = 1

2 in the
case of the CF liquid (CFL), and sLL at ν = 5

2 in the case of
the gapped system.

One of the most interesting theoretical developments as-
sociated with the physics in an isolated, half-filled LL is the
proposal in [3] for the description of the CFL state that is

*Corresponding author: milica.milovanovic@ipb.ac.rs

based on an assumption that the underlying quasiparticles:
CFs can be effectively described as Dirac CFs, using an effec-
tive Dirac theory in two dimensions. This can be of general
interest: a system of interacting fermions on a noncommuta-
tive (NC) space of an isolated LL, in which they fill half of
the allowed, countable states, can be described by an effective
Dirac theory.

The proposed Dirac CF theory is a phenomenological the-
ory, based on the assumption that an effective theory of an
isolated, half-filled LL must be manifestly invariant under
the particle- (electron-) hole transformation. Certainly, there
is a need for a microscopic derivation of the Dirac CF the-
ory, which can serve as a base for further understanding of
this strongly correlated system. In this paper we develop a
microscopic support for the Dirac CF theory, and provide a
framework for a more detailed investigations.

To describe the physics of an isolated half-filled LL, we
generalize the approach to bosons in an isolated LL at filling
factor one, of Pasquier and Haldane [4], and later developed
by Read [5], and more recently by Dong and Senthil [6]. This
approach introduces additional, vortex degrees of freedom
to efficiently capture Laughlin-Jastrow correlations. In the
case of bosons, the vortex (holelike, unphysical) degrees of
freedom are fermionic, and combine with elementary bosons
to make quasiparticles of the problem, CFs. Due to their
fermionic nature, the vortex degrees of freedom are uniformly
distributed in the LL and make a uniform background. (This
feature also guarantees a necessary independence of physics
under transformations in the unphysical sector.) We generalize
this description to the case of the half-filled LL of electrons,
by assuming a uniform distribution of two kinds of unphysical
degrees of freedom: holelike and electronlike. There are hole-
like vortices as many as particlelike (electronlike) vortices,
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and they behave as hard-core bosons among themselves, mak-
ing a uniform background. To ensure the uniform background
we need to introduce constraints in the description. Because
of two kinds of unphysical degrees of freedom, the holelike
vortices combine with electrons to make CFs, and the parti-
clelike vortices combine with holes to make composite holes
(CHs). We can choose either electrons or holes as physical
degrees of freedom of the half-filled LL, but if we want to
capture particle-hole (PH) symmetry (i.e., the symmetry un-
der exchange of particles and holes), we should treat them
on an equal footing. Thus, we need to include additional
constraints that will preclude the simultaneous presence of
a hole and an electron in an orbital of the fixed LL, and
therefore describe them as dependent (not two independent)
degrees of freedom. The requirement of the PH symmetry also
justifies our assumption on the manner in which unphysical
(vortexlike) degrees of freedom enter the description. In this
way, on the basis of two sets of constraints, we are able to
formulate the problem of the half-filled LL, that is explicitly
invariant under exchange of particles and holes. Furthermore,
within this framework, which explicitly includes the addi-
tional vortex degrees of freedom, we are able to consider the
“preferred (form of) Hamiltonian” in the language of CFs and
CHs, natural quasiparticles that, on the level of Hartree-Fock
treatment, can effectively capture the physics of the system.
Thus, a two-component fermion description, with the CF and
CH fields, necessarily and naturally appears as a consequence
of the demand for the PH symmetry, and we show that the
description is of the Dirac type (when the constraints are
taken into account). This provides a microscopic derivation
of the Dirac description and explains the Dirac nature of the
fermionic quasiparticle excitations of the low-energy physics.

On the basis of this microscopic formulation, in the
long-wavelength limit, we propose a noncommutative field-
theoretical description, which in a commutative limit repro-
duces the Son’s theory, with additional terms that may be
expected on physical grounds. We also discuss pairing in-
stabilities within the developed microscopic framework, and
provide a physical understanding of the p-wave pairing in-
stability in the LLL, and in the sLL. The pairing in the LLL
is of the BCS, weak coupling kind, and this may explain the
scarcity of the pairing phenomena in the LLL. On the other
hand, the pairing in the sLL is of the strong coupling (weak
pairing) kind as proposed and discussed in [7], though we find
that the Dirac CF band dispersion ε(k) is flatter: it obeys a
third-power law, i.e., ε(k) ∼ k3.

The section that follows is a review of the bosonic prob-
lem at ν = 1, in which we also introduce a point of view
of the formalism developed in [4,5], that will be useful for
the half-filled problem of electrons. Sections III and IV con-
sider a (simpler) system, closely related to the one of the
half-filled LL, a special-bilayer system with two kinds of
particles, parallel to the existence of electrons and holes in the
half-filled LL. A transformation into holes of just one kind of
particles in the special-bilayer system enables a formulation
of the half-filled LL problem in Sec. V, with all necessary
constraints. Following the usual approach [8] to a formu-
lation with constraints [that enables a Hartree-Fock (HF)
treatment] we discuss a “preferred” form of the Hamiltonian
in Sec. VI, and in Sec. VII a Dirac form of the Hamiltonian

in the HF approximation. In Sec. VIII we describe how in
the long-wavelength limit of the microscopic formulation we
can reach a field-theoretical description with gauge fields
next to the Dirac composite fermions. In Secs. IX and X
we discuss the description of possible pairing instabilities.
The structure of the proposed NC field theory is described in
Appendix A, while Appendix B concerns some specific as-
pects of the relevant covariant derivatives. Conclusions are
summarized in Sec. XI.

II. REVIEW OF THE ν = 1 BOSON SYSTEM
AND INTRODUCTORY REMARKS

A CF is a composite object, a bound state of an under-
lying elementary particle with a whole number of vortices;
a vortex represents an excitation of the FQHE system due
to an insertion of one flux quantum that induces a depletion
of charge. At filling factors ν = 1/q, where q is an integer,
a composite fermion is a neutral object; a composite of an
electron (fermion) and a hole (more precisely a depletion of
charge) associated with q flux quanta, when q is even, and
a composite of a boson and a hole associated with q flux
quanta, when q is odd. To simplify the terminology, we will
always call the excitation with q flux quanta a vortex. These
introductory remarks serve just to remind the reader of the
physical picture of the CF, and for an elaborate introduction to
the CF formulation the reader may consult [5]. We conclude
that it may be expected and natural that an operator describing
annihilation or creation of CF will carry two indices, one for
the state of the elementary particle and the other for the state
of the hole in an orthonormal basis. In the following we will
introduce the two-index formalism that was first proposed in
[4] and further elaborated in [5] and [6].

We start from an enlarged space with (composite) fermion
c†

mn with two indices, each corresponding to an orbital in the
LLL (fixed LL): m, n = 1, . . . , Nφ ≡ N such that

{cnm, c†
m′n′ } = δn,n′δm,m′ . (1)

Each cnm fermion represents a composite object. We define
physical subspace of bosonic states in the LLL by

|n1, . . . , nN 〉 =
Nφ∑

m1,...,mN

εm1···mN c†
m1n1

· · · c†
mN nN

|0〉, (2)

where εm1···mN is the Levi-Civita symbol. In this way, bosonic
physical states have a property, defined by

ρR
mm′ =

∑
n

c†
mncnm′ , (3)

that

ρR
mm|n1, . . . , nN 〉 = 1 |n1, . . . , nN 〉, (4)

expressing a single occupancy of each unphysical orbital
m. The physical states are defined by this property so that
unphysical orbitals make a uniformly occupied background.
They furnish a spin-singlet representation of SU(N ) group,

m �= m′, ρR
mm′ |n1, . . . , nN 〉 = 0, (5)
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which is in agreement with the requirement that the physics
should not depend on the choice of basis in the unphysical
sector R.

But, we may reformulate this requirement by demanding
that (1) ρR

mm = 1 and that (2) “unphysical” particles (objects),
which are uniformly distributed in the LLL, are fermions. This
will automatically lead to (5). In other words, introducing a
certain type of statistics in the unphysical sector is a way
of specifying physical states together with the demand for
ρR

mm = 1. In the following we would like to further this view
and introduce an approach, which will make a basis for our
description of the ν = 1

2 problem, and contrast it with respect
to the previous construction of the bosonic ν = 1 state.

First, we will recapitulate the Pasquier-Haldane construc-
tion, and the way vortex statistics enters the description. The
Pasquier-Haldane enlarged space consists of states

c†
m1n1

. . . c†
mN nN

|0〉, (6)

which describe the presence of N composite objects. To each
object we associate two single-particle LL states, the state
ni of the elementary, physical particle, boson, and state mi

of vortex. By exchanging states ni ↔ n j or mi ↔ mj , we do
not get the same state up to a sign, i.e., we cannot speak
about definite statistics. But if we trace out one of the (two)
degrees of freedom, like by tracing out in an antisymmetric
way vortices in (2), we can speak about definite statistics; we
have to do an ordinary (symmetric) trace in all n indices to get
a state with definite statistics in the unphysical sector, a single
Slater (Vandermonde) determinant of fermionic vortices in
this ν = 1 case.

This motivates our approach: we consider an enlarged
space (a subspace of the Pasquier-Haldane space) in which all
m’s (in the unphysical sector) are different (i.e., mi �= mj for
i �= j; i, j = 1, . . . , N). Physically, we may understand this
as a modeling of a uniformly distributed vortex background.
The SU(N ) invariance in the R sector is present, and acts
trivially, because each generator (3) with m �= m′ will map out
of this restricted space, and thus effectively (considering the
necessary projection) annihilate state in the restricted space.
If we further require that the states of the restricted space have
definite (fermionic) statistics of vortices we will have a unique
realization of the SU(N ) symmetry, given by (2). Thus, we do
not constrain the unphysical degrees of freedom by a single
symmetry requirement (as in the approach to the bosonic
ν = 1 in [6], and which is possible, allowed in that system),
but primarily by a physical requirement of the uniform vortex
(unphysical degrees of freedom) density. Thus, we consider
a description with an (additional but necessary) constraint in
the unphysical sector, which is present automatically in the
bosonic ν = 1 case, because of the fermionic statistics of the
unphysical degrees of freedom. The constraint of the uniform
vortex density is a way to introduce bosonic vortices into a
theory, and still maintain the SU(N ) invariance in the unphysi-
cal (vortex) sector, i.e., invariance of the physics under change
of basis (transformations) in the unphysical sector. We will
consider examples of this at the end of this section and in the
following section when we discuss a special bilayer problem
as a preparation for the half-filled LL problem. Furthermore,
we will see that in the half-filled LL problem, unphysical
degrees of freedom are associated with both L and R sectors,

and thus we see that in that case also, the requirement of
the uniform density of the unphysical degrees of freedom
is the most natural to constrain these degrees of freedom,
and maintain the invariance under change of basis [not by a
spin-singlet realization of SU(N ) symmetry in one (R) sector].
Therefore, we can specify physical states by demanding the
uniform distribution of unphysical degrees of freedom in the
states that enter description of the physical states. These states
form a space that is effectively invariant under SU(N ) trans-
formations. The demand for a definite statistics of unphysical
degrees of freedom in these states leads to physical states.

Thus, in principle, we can discuss a possible physical sec-
tor (system) in an enlarged theory for which ρR

mm = 1, but
with the unphysical particles being (“hard-core”) bosons, and
the physical sector being a ν = 1 fermionic system. The old
requirement (5) would be fulfilled effectively (= under the
necessary projection) in a restricted space for which ρR

mm = 1,
i.e., space defined by hard-core vortex configurations (of N
of vortices). The physical space is defined by a hard-core
configuration of vortices that correlate as bosons. In this case

|n1, . . . , nN 〉 f =
Nφ∑

m1,...,mN

sm1...mN c†
m1n1

. . . c†
mN nN

|0〉, (7)

where sm1...mN = 1 only if no index is equal to any other index,
but otherwise zero. But as we know, this would not lead to a
plausible Hartree-Fock description, i.e., a good representation
in which the Hartree-Fock approach to the system of compos-
ite fermions cnm would make a good starting point for more
refined descriptions.

Therefore, in principle, we can consider both bosonic and
fermionic realizations of the SU(N ) group (that works in the
unphysical sector), by considering the theory with CFs as
building blocks of the effective description, at a particular
fraction, and only one will realize as a physical theory. [We
should choose composite bosons (CBs) in the system in which
the CF realization fails.] The single occupancy in the unphysi-
cal sector will lead to definite statistics (fermionic or bosonic)
in the unphysical sector because the algebra of the density
operators (that the theory is built on), in a LL basis, is

[
ρR

mm′ , ρ
R
ll ′

] = ρR
ml ′δm′,l − ρR

lm′δm,l ′ , (8)

i.e., the algebra of SU(N ) generators that can be realized either
by fermions or bosons. The constant density and demand
for fermionic statistics will coincide with a simple SU(N )
invariance: the group action will map the state in (2) into itself.
The constant density requirement and demand for bosonic
statistics will coincide with a special SU(N ) invariance (a
maintenance of the symmetry under the projection to the
constant density): the group action will map the state in (7)
into the same state up to a number (a coefficient because of
the projection) and only the symmetric group Sn, for n = N ,
a subgroup of SU(N ), represented by signed permutation ma-
trices, will map the state into itself, up to a sign. Thus, by
fixing the density, we will have either fermionic or bosonic
realization in the unphysical sector, and in the following we
will emphasize which realization (statistics) we choose.
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III. TOWARDS ν = 1
2 FERMIONS:

A SPECIAL BILAYER SYSTEM

As a preparation for a setup of the ν = 1
2 (i.e., the

half-filled LL) problem in the language of composite quasi-
particles, we will discuss a setup for a special quantum Hall
bilayer system. The special bilayer is characterized by two
layers of electrons, each at filling factor ν = 1

2 of a fixed LL,
but what is special is that an electron in one layer cannot be
in the same (LL) orbital with an electron from the other layer.
Thus, we may speak about two kinds of composite objects,
composite fermions c and d , which are overall neutral objects
consisting of elementary particle electron of a given layer, and
unphysical (vortex) object of opposite charge. Therefore, we
consider two CFs, c†

mn and d†
mn, for the two layers, and an

enlarged space with states

c†
m1n1

. . . c†
mN/2nN/2

d†
m′

1n′
1
. . . d†

m′
N/2n′

N/2
|0〉, (9)

i.e., always there are N/2 c fermions and N/2 d fermions,
where N , as before, is the number of available orbitals in
the LL.

The density of the unphysical objects, vortices (of the op-
posite charge with respect to electrons), may be expressed in
the analogous way as in the previous section:

ρ
R(c)
mm′ =

∑
n

c†
mncnm′ (10)

and

ρ
R(d )
mm′ =

∑
n

d†
mndnm′ . (11)

Following the discussion in the previous section, we re-
quire

ρR(c)
mm + ρR(d )

mm = 1, (12)

i.e., we uniformly distribute particles in the unphysical sec-
tor. Furthermore, we choose them to be bosons and mutual
bosons. The requirement (12) may be associated with special
(identical for both c fermions and d fermions) transformations
of the LL basis in the unphysical sector, which we denote by
SUR

c (N ) (where c stands for charge), a transformation that
is realized identically on both c fermions and d fermions
by affecting their unphysical index. These transformations
would leave the physical states unchanged if we work in the
restricted subspace with (unphysical) hard-core bosons

m �= m′,
(
ρ

R(c)
mm′ + ρ

R(d )
mm′

)|n1, . . . , nN/2n′
1, . . . , n′

N/2〉 = 0,

(13)
where the equality is the result of the projection to the
restricted state, and thus by assuming (12) and bosonic cor-
relations in the unphysical sector, we have that

|n1, . . . , nN/2, n′
1, . . . , n′

N/2〉

=
N∑

m1,...,mN/2,m′
1,...,m

′
N/2

sm1...mN/2m′
1,...,m

′
N/2

× c†
m1n1

. . . c†
mN/2nN/2

d†
m′

1n′
1
. . . d†

m′
N/2n′

N/2
|0〉, (14)

where sm1...mN/2m′
1,...,m

′
N/2 is nonzero, equal to one only if no

index is equal to any other index.

In (14) we have not only required that the unphysical
bosonic degrees of freedom are uniformly distributed (12),
but that they correlate mutually in a symmetric way. Thus,
we chose a sector of definite statistics in the enlarged space.

If N = 2, we have the following candidates for physical
states:

|n, n′〉 = (c†
1nd†

2n′ + c†
2nd†

1n′ )|0〉, (15)

where n, n′ = 1, 2. Additionally, as a part of the definition, we
require that in the special bilayer system, i.e., two half-filled
LL system, LL orbitals in the physical states cannot be doubly
occupied. Thus, what is needed is to suppress the unwanted
states [those with (n, n′) = (1, 1) or (2, 2) in the N = 2 ex-
ample] of double occupancy (with an eye on the half-filled
problem). Therefore, we need also

ρL(c)
nn + ρL(d )

nn = 1. (16)

This leads to |phy〉, physical states for which

n �= n′,
(
ρ

L(c)
nn′ ± ρ

L(d )
nn′

)|phy〉 = 0. (17)

We may associate the plus combination with SUL
c (N ), and

the minus combination with SUL
s (N ) “spin” transformations

which are inverse in the d sector with respect to the ones in
the c sector. Together, (16) and (17) with the plus sign lead to
conclusion that |phy〉 states are spin singlet(s) under SUL

c (N ).
On the other hand, in the physical states, the generators of
SUL

s (N ) transformations

ρL(c)
nn − ρL(d )

nn (18)

may have expectation values from the interval [−1, 1]. At the
beginning, before the requirement (16), operator sets {ρL(c)

nn′ }
and {ρL(d )

nn′ }, with the constraints
∑

ρL(c)
nn = ∑

ρL(d )
nn = N/2,

furnished two adjoint representations of SU(N ) group. How-
ever, with the hard-core constraint (16), we have only one
nontrivial representation of SU(N ) group, SUL

s (N ). The phys-
ical states are invariant under global Us(1) transformation
because ∑

n

ρL(c)
nn =

∑
n

ρL(d )
nn = N/2, (19)

and so are the unphysical (R-sector) states∑
n

ρR(c)
nn =

∑
n

ρR(d )
nn = N/2, (20)

by definition.
This completes a constraint [(12), (16), (19), (20)] plus

statistics setup for the description in an enlarged space of the
problem that concerns a special bilayer at νtot = 1 with two
kinds of electrons, i.e., composite c fermions and d fermions,
which cannot occupy the same orbital in the restricted space
of a fixed LL.

IV. SPECIAL BILAYER SYSTEM AND ITS
TRANSFORMATION INTO THE HALF-FILLED SYSTEM

We may consider the previous formulation of the special
bilayer as a starting point for the formulation of the half-filled
problem. To reach the half-filled problem, one kind of electron
(in one of the layers) should transform, i.e., become (elemen-
tary, physical) holes. If we consider a layer with composite
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d fermion, under the special electrons into holes transfor-
mation, what was the density of “physical” electrons ρL(d )

should become the description of the density of unphysical
vortices, quasielectrons, and be a part of the constraints and
description in the unphysical sector, i.e., ρR(d ) → ρL(d ). And
similarly, what was the density of unphysical vortices (with
charge opposite to the one of electron) ρR(d ) should become
the description of the density of “physical” holes, and be a
part of constraints and description in the physical sector, i.e.,
ρL(d ) → ρR(d ).

Thus, by making a PH transformation, i.e., charge conjuga-
tion in one of the layers, described by composite object d , it
is appropriate to call this object composite hole because now
the physical degree of freedom is a hole.

We may make this discussion more concrete by consider-
ing the special bilayer description in the inverse space and
fixing the notation that will be in place also for the half-filled
case. Also, we will discuss possible particle-hole transforma-
tions in the special bilayer case and derive again the necessary
transformations that transform the special bilayer problem
into the one of the half-filled LL.

We consider a representation of c and d composite
fermions of the special bilayer in the inverse (momentum)
space. Following the previous studies on the ν = 1 bosonic
problem, we introduce the following decompositions:

cnm =
∫

dk

(2π )
3
2

〈n|τk|m〉ck (21)

and

dnm =
∫

dk

(2π )
3
2

〈n|τk|m〉dk, (22)

with τk = exp(ik · R), where R is a guiding-center coordinate
of a single particle in the external magnetic field,

[Rx, Ry] = −i, (23)

we took lB (magnetic length) = 1, and {|n〉} are single-particle
states (orbitals) in a fixed LL.

With these decompositions we find that

ρ
L(c)
nn′ =

∑
m

c†
mncn′m =

∫
dq
2π

〈n′|τq|n〉ρL(c)
q , (24)

where

ρL(c)
q =

∫
dk

(2π )2
c†

k−qck exp

(
i
k × q

2

)
, (25)

and similarly for ρ
L(d )
nn′ ,

ρ
L(d )
nn′ =

∑
m

d†
mndn′m =

∫
dq
2π

〈n′|τq|n〉ρL(d )
q , (26)

where

ρL(d )
q =

∫
dk

(2π )2
d†

k−qdk exp

(
i
k × q

2

)
. (27)

Note the inverse order of indices n and n′, on the left- and
right-hand sides of (24) and (26). Similarly,

ρ
R(c)
mm′ =

∑
n

c†
mncnm′ =

∫
dq
2π

〈m|τq|m′〉ρR(c)
q , (28)

where

ρR(c)
q =

∫
dk

(2π )2
c†

k−qck exp

(
−i

k × q
2

)
, (29)

and analogously for ρ
R(d )
nn′ ,

ρ
R(d )
mm′ =

∑
n

d†
mndnm′ =

∫
dq
2π

〈m|τq|m′〉ρR(d )
q , (30)

where

ρR(d )
q =

∫
dk

(2π )2
d†

k−qdk exp

(
−i

k × q
2

)
. (31)

Note the positions of indices m and m′ on the left- and right-
hand sides of (28) and (30).

We have
[
ρL

q , ρL
q′
] = 2i sin

(
q × q′

2

)
ρL

q+q′ (32)

and
[
ρR

q , ρR
q′
] = −2i sin

(
q × q′

2

)
ρR

q+q′ , (33)

i.e., Girvin-MacDonald-Plazmann (GMP) algebra for two
kinds of particles, particles with opposite electric charge.

We may introduce a particle-hole transformation in the d
sector by taking

dk → d†
−k (d†

k → d−k). (34)

This implies

dmn → d†
mn (d†

mn → dmn), (35)

and also for

ρ
L(d )
nn′ =

∑
m

d†
mndn′m, n �= n′ (36)

we have

ρ
L(d )
nn′ →

∑
m

dmnd†
n′m = −

∑
m

d†
n′mdmn = −ρ

R(d )
n′n . (37)

In the inverse space this implies

ρL(d )(q) → −ρR(d )(q), (38)

which is consistent with our expectation of what a particle-
hole transformation should imply on the physical density in
the d sector; it should induce a density of particles of opposite
charge in the magnetic field (L → R) (and a minus sign that
is always accompanied with such a transformation). We can
reach the same result by considering ρL(d )(q) for q �= 0,

ρL(d )(q) =
∫

dk
(2π )2

d†
k−qdq exp

(
i
k × q

2

)
, (39)

and applying the transformation dk → d†
−k (d†

k → d−k).
Therefore, this transformation may be identified to be the

one that corresponds (in the enlarged space) to the particle-
hole transformation on the elementary (fundamental) degrees
of freedom ed , the second kind of electrons in the special bi-
layer: ed → h†

d , e†
d → hd (where ed , e†

d , hd , h†
d are annihilation

and creation operators).
Above we introduced the effect of the particle-hole trans-

formation (on electrons ed ) in the d sector on composite
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fermion operators, while putting aside the question of the
diagonal terms ρL(d )

nn and the necessary existence of a constant
term, equal to N , due to the anticommutation relation of dmn’s.
This would imply an additional delta-function contribution
[∼δ2(q)] in the inverse space for the particle-hole transfor-
mation of ρL(d )(q).

To comply with the restrictions of physical spaces in the
enlarged spaces of composite fermion operators dnm and cnm

of the half-filled and special bilayer problem, we expect

ρL(d )
nn → 1 − ρR(d )

nn (40)

because the summation on n on both sides, and the restrictions
∑

n

ρL(d )
nn =

∑
n

ρR(d )
nn = N

2
(41)

would be consistent with the particle-hole (single-layer) sym-
metry of the physical system and restrictions on the special
bilayer system.

Thus, in order to project the transformation dmn → d†
mn on

the physical spaces of half-filled and special bilayer problems
we demand

ρL(d )
nn → 1 − ρR(d )

nn , (42)

which requires an additional subtraction of a constant term
(N − 1) after the dmn → d†

mn (d†
mn → dmn) transformation, in

order to project out the unphysical degrees of freedom. In the
inverse space this affects the delta-function contribution; thus,
for q �= 0 we still have ρL(d )(q) → −ρR(d )(q).

In the following we would like to examine how this
particle-hole transformation affects the constraints imposed
on the bilayer system in order to see how they look like in
the (enlarged) space of the special bilayer system. The two
“hard-core” constraints ρR(c)

nn + ρR(d )
nn = 1 in (12) and ρL(c)

nn +
ρL(d )

nn = 1 in (16) become

ρR(c)
nn = ρL(d )

nn (43)

and

ρL(c)
nn = ρR(d )

nn , (44)

respectively, which is consistent with the view that now the
d sector is described by hole degrees of freedom. On the
other hand, the operator ρL(c)

nn − ρL(d )
nn transforms into ρL(c)

nn +
ρR(d )

nn − 1, i.e., ρL(c)
nn + ρR(d )

nn acquires expectation values in
the physical states ranging from 0 to 2. Thus, we introduced
the hole view in the d sector and this increased the allowed
occupancy of c particles and d holes of a single site to 2. But,
we want to introduce a description in terms of holes not in the

FIG. 1. An illustration of the particle-hole transformation in the
special bilayer problem. The transformation is done in the layer with
particles (electrons) 2 and thus also on the associated composite d
fermion.

FIG. 2. An illustration of the “active” particle-hole transforma-
tion, i.e., the particle-hole conjugation on particles (electrons) 2
which become holes. In this way the special bilayer problem is
transformed into the half-filled LL problem.

way of change of variables but in the way of a real change in
the d sector: where there are particles there should be holes
and vice versa. Thus, ρL(d ) → ρR(d ) and ρR(d ) → ρL(d ) in ac-
cordance with the discussion at the beginning of this section.
In this way the operator ρL(c)

nn − ρL(d )
nn becomes ρL(c)

nn − ρR(d )
nn

and describes fluctuating charge of the half-filled LL. Also,
the following action on operators dmn and d†

mn is implied:

dmn → dnm (d†
mn → d†

nm) (45)

[compare the definitions of the density operators in (26) and
(30), in L and R sectors]. Figures 1 and 2 illustrate the dif-
ference between the particle-hole transformation as a change
of variables, and one that is an active transformation that
transforms the special bilayer problem into the one of the
half-filled LL.

V. FORMULATION OF THE HALF-FILLED PROBLEM

On the basis of the discussion in the previous section, we
can conclude that the charge fluctuations around mean density
1
2 ( 1

2π l2
B

), where lB is the magnetic length, can be expressed by

(ρL(c)
nn − ρR(d )

nn )/2. Thus, the Hamiltonian that can be consid-
ered together with the hard-core constraints ρR(c)

nn + ρL(d )
nn = 1

and ρL(c)
nn + ρR(d )

nn = 1 is

H = 1

2

∫
dqV (|q|)

× ρL(c)(q) − ρR(d )(q)

2

ρL(c)(−q) − ρR(d )(−q)

2
. (46)

The charge operator [ρL(c)(q) − ρR(d )(q)]/2 does not satisfy
the GMP algebra because of the doubling of the degrees of
freedom (extra 2 in the GMP algebra). But together with the
constraint ρL(c)(q) + ρR(d )(q) = 0 it does because [ρL(c)(q) −
ρR(d )(q)]/2 becomes ρL(c)(q) [or −ρR(d )(q) due to the PH
symmetry] with the constraint, and represents the physical
charge that satisfies the GMP algebra, expressed as a change
of the electron density ρL(c)(q) or a negative change in the
hole density −ρR(d )(q).

In the form of the Hamiltonian in (46) we incorporated
the PH symmetry, by including both particles and holes with
equal weights (on an equal footing) in the description of
the change of the physical (electric) charge from the mean
value. The Hamiltonian is manifestly invariant under the
transformation ρL(c) → ρR(d ) and ρR(d ) → ρL(c), which rep-
resents an effective PH transformation. It consists of a charge
conjugation, which transforms CFs, i.e., c’s into CHs, i.e., d’s,
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and vice versa, and an antiunitary, i.e., time-reversal trans-
formation that transforms phases into complex-conjugated
ones (R → L and R → L). Also, the transformation incorpo-
rates the reversal of momenta k → −k that can be associated
with the time reversal, and thus ρL(c)(q) → ρR(d )(−q) and
ρR(d )(q) → ρL(c)(−q). The charge conjugation and time re-
versal constitute the usual definition of the PH transformation
in the presence of the magnetic field, under which the physics
should be invariant. We should note that the charge conjuga-
tion in our case is not uniquely defined on c’s and d’s and we
get the same transformations of ρL(c) and ρR(d ) by considering
ck → αd−k and dk → βc−k, where α and β are constants, and
|α| = |β| = 1.

We will recapitulate the necessary constraints in the formu-
lation of the half-filled LL problem. We summarize that

ρR(c)
nn + ρL(d )

nn = 1, (47)

together with the definite statistics requirement in the unphys-
ical sector, and

ρL(c)
nn + ρR(d )

nn = 1, (48)

with global constraints∑
n

ρL(c)
nn =

∑
n

ρR(d )
nn = N/2 (49)

and ∑
n

ρR(c)
nn =

∑
n

ρL(d )
nn = N/2 (50)

form a set of constraints that define the half-filled LL problem.
In this case physical states are

|n1, . . . , nN/2, n′
1, . . . , n′

N/2〉

=
N∑

m1,...,mN/2,m′
1,...,m

′
N/2

sm1...mN/2m′
1,...,m

′
N/2

× c†
m1n1

. . . c†
mN/2nN/2

d†
n′

1m′
1
. . . d†

n′
N/2m′

N/2
|0〉, (51)

where sm1...mN/2m′
1,...,m

′
N/2 is nonzero, equal to one only if no

index is equal to any other index. Compare with (14), and the
discussion and (45) at the end of the previous section. Also, in
(51), ni �= n′

j for any i, j = 1, . . . , N/2.

VI. PREFERRED FORM OF THE HAMILTONIAN

The most natural binding in H is the Cooper pair binding
〈ckd−k〉 �= 0 in the s-wave channel. In a Hartree-Fock treat-
ment, the mean-field description would have kinetic terms
with quadratic dispersions, for c and d degrees of freedom,
but this description of these objects does not conform to our
expectation that they are dipoles, distinct dipole objects that
pair, and that their dispersion comes from the polarization
energy due to their dipole moments in a Hartree contribution
as emphasized in [6]. In this way, we see a reason why the so-
called PH Pfaffian, connected with s-wave pairing, is absent
in a fixed LL [9–12].

As in the ν = 1 bosonic case we may wonder whether there
exists a “preferred” form of the Hamiltonian, i.e., the Hamil-
tonian with some of constraints included in its formulation but
with the same description (and action) as the original one in

the physical space. The “preferred” form should capture the
basic physics in the most efficient way, enabling the descrip-
tion of the basic physics in a Hartree-Fock treatment.

It is not hard to see that a unique low-momentum possi-
bility for a kinetic (nonpairing) term can be reached by an
addition of the following term:

H → H + 1

2

∫
dq V (|q|)

× ρR(c)(q) + ρL(d )(q)

2

ρR(c)(−q) + ρL(d )(−q)

2
, (52)

which uses the following constraint,

ρR(c)(q) + ρL(d )(q) = 0, (53)

in the physical sector for the unphysical degrees of freedom
that directly follows from the requirement (47).

In this way, we removed the cause for the s-wave Cooper
pairing and modified the relevant term from

∼
∫

dq[−ρL(c)(q)ρR(d )(−q)]V (|q|) (54)

to

∼
∫

dq[−ρL(c)(q)ρR(d )(−q) + ρR(c)(q)ρL(d )(−q)]V (|q|)

∼
∫

dq
∫

dk1

∫
dk2 c†

k1−qck1 d†
k2+qdk2

× [i(k1 + k2) × q]V (|q|). (55)

Clearly, this term in the Hartree-Fock treatment can lead only
to a 〈c†

kdk〉 �= 0 instability and a Dirac-type description of the
low-momentum physics.

VII. DIRAC THEORY FROM THE MEAN FIELD

Thus, we apply the Hartree-Fock approach to the relevant
part of the Hamiltonian (we neglect the quadratic contribu-
tions from the other terms)

HD =
∫

dq
4

V (|q|)[−ρL(c)(q)ρR(d )(−q)+ρR(c)(q)ρL(d )(−q)]

≈
∫

dq
∫

dk1

∫
dk2

V (|q|)
4(2π )4

[i(k1 + k2) × q]

× [〈c†
k1−qdk2〉d†

k2+qck1

+ c†
k1−qdk2〈d†

k2+qck1〉 − 〈c†
k1−qdk2〉〈d†

k2+qck1〉
]

=
∫

dk
(2π )2

(�∗
kd†

k ck + �kc†
kdk) + C, (56)

where C is a constant and

�k = |k|
∫

dq
V (|q|)
2(2π )2

(ik̂ × q)〈d†
k+qck+q〉. (57)

We diagonalize HD by introducing αk and βk operators[
ck

dk

]
= 1√

2

[
1 − exp{−iδk}

exp{iδk} 1

][
αk

βk

]
, (58)

where δk is defined by �k = |�k| exp{−iδk}.
The very important question is how we choose the occu-

pation of the momentum k states in the ground state that is
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subjected to the constraints

ρ
R(c)
nn′ + ρ

L(d )
n′n = δnn′ (59)

and

ρ
L(c)
nn′ + ρ

R(d )
n′n = δnn′ . (60)

In a mean-field treatment we expect that at least the global
constraints∫

dk
(2π )2

c†
kck =

∫
dk

(2π )2
d†

k dk = ρ̄e = 1

2

1

2π l2
B

(61)

will be satisfied.
In the αk, βk language this implies∫

dk(e−iδkα
†
kβk + eiδkβ

†
kαk) = 0. (62)

This is a complex constraint and we may try to satisfy the re-
quirement on α’s and β’s, by demanding that also the number
of α’s and β’s is conserved. We might expect∫

dk
(2π )2

α
†
kαk =

∫
dk

(2π )2
β

†
kβk = ρ̄e. (63)

This seems a very crude “translation” of (62), but it incorpo-
rates the basic idea of our approach: to treat the particles and
holes in an equal way, with their dynamics not independent
but constrained, and in this way duplicated in a theory. The
constraint implies two sectors, α and β, in the ground-state
configuration: half-filled α sector and half-empty β sector.
In this we implicitly assumed the finiteness of the available
volume of k: the number of available k’s is N , the number
of orbitals in the fixed LL. We expect that the description is
duplicated by treating particles and holes in an equal way and,
in the first (mean-field) approximation, the dynamics of α and
β are separate and independent, and we may consider one or
the other sector as a description of the problem.

Thus, for �k we get, by self-consistency,

�k = |k|e−iφk

∫
|q|�qF

dq
V (|q|)
4(2π )2

(ik̂ × q)e−iφk+q+iφk , (64)

where qF = 1/lB(= 1). In this expression for �k, because
of the Gaussian in V (|q|), and the long-wavelength |k| ∼ 0
approximation, the contribution of the α sector is taken into
account and we neglected the contribution from the β sector.
We choose δk to describe a definite momentum state δk = φk,
where φk is the phase of the complex variable k = kx + iky. It
follows that

|�k| = |k| π

4(2π )2

∫ qF

0
dq q2V (q). (65)

The strength of the amplitude is zero for higher angular mo-
menta (other than angular momentum one).

Thus, by applying the Hartree-Fock approach to the pre-
ferred form of the Hamiltonian (53), we reached a low-energy
description of the problem in terms of

HD =
∫

dk
(2π )2

(�∗
kd†

k ck + �kc†
kdk), (66)

where �k = (kx − iky)� with � = π
4(2π )2

∫ qF

0 dq q2V (q), at
the finite density of the Dirac system.

The system that is described by the Dirac Hamiltonian, at
finite density, represents a Fermi liquid. The time reversal in
this system transforms a state at momentum k into a one with
momentum −k. Concretely, the state with momentum k,

1√
2

[
exp{−iφk}

1

]
, (67)

where φk is the phase of k+ = kx + iky, is transformed under
the time-reversal transformation U = −iσyK , where σy is the
Pauli matrix, and K denotes the complex conjugation, into

1√
2

[ −1
exp{iφk}

]
, (68)

i.e., the state of the same energy but opposite momentum −k.
In the language of the basic PH transformation on the system
(that acts on elementary particles, electrons, and holes), more
precisely its realization on the particular description of the
problem that we introduced, the time-reversal transforma-
tion, in the Dirac description, corresponds to the following
transformation on c’s and d’s: ck → −d−k and dk → c−k (or
ck → d−k and dk → −c−k, compare with the description in
Sec. V).

VIII. INCLUSION OF THE GAUGE INVARIANCE
IN THE EFFECTIVE DIRAC THEORY

The original SU(N ) gauge invariance (i.e., invariance un-
der a change of basis in the fixed LL) is broken down [6] to
U(1) in the mean-field (Hartree-Fock, averaged) description
in (66). As we already detailed, in the microscopic approach
the SU(N ) gauge invariance is realized by the following two
constraints,

ρR(c)
nn + ρL(d )

nn = 1, (69)

i.e., equal charge distribution of unphysical degrees of free-
dom, and

ρL(c)
nn + ρR(d )

nn = 1, (70)

i.e., the exclusion of the double occupancy between particles
and holes (extra unphysical degrees of freedom).

To include fluctuations beyond the Hartree-Fock (mean-
field) level in the long-wavelength domain, Dong and Senthil
reinstated the SU(N ) invariance in the description of the boson
problem in terms of CFs by introducing composite fermion
fields on noncommutative (deformed) space,

c(R, τ ) =
∫

d2k

(2π )
3
2

exp (ik · R)ck,τ , (71)

where R is the noncommutative (guiding center) coordinate,
and τ is imaginary time. The connection with the microscopic
description is the following:

cnm = 〈n|c(R, τ )|m〉 =
∫

d2k

(2π )
3
2

〈n|τk|m〉ck,τ . (72)

Physically, the state of the CF with vortex orbital m and
electron orbital n can be described by a superposition of
the (commutative) momentum k states, the weights of which
depend on the effective distance between orbitals (the size of
the dipole), |keff |, because τk = exp(ik · R) is the translation
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operator. For more details see [6]. In this way, the L and R
transformations on cnm,

cnm → U L
n′ncnmU R

mm′ , (73)

can be represented by noncommutative Moyal-Weyl star prod-
uct of fields on ordinary commutative space,

c(x, τ ) → U L(x, τ ) � c(x, τ ) � U R(x, τ ), (74)

the star product being defined by

a(x, τ ) � b(y, τ ) = e
− i

2 l2
Bεi j ∂

∂xi
∂

∂y j a(x, τ )b(y, τ )|y→x. (75)

Two-dimensional Levi-Civita (i, j = 1, 2) is defined by ε12 =
−ε21 = 1. See Appendix A for a more elaborate account.

The two constraints in our problem, (69) and (70), imply,
in the effective description, simultaneous SU(N ) transforma-
tions in L and R sectors to which we may associate gauge
fields a(1)

μ and a(2)
μ . We may also consider a (background)

field Aμ that is associated with physical degrees of freedom
(particles and holes) ρL(c)

nn − ρR(d )
nn .

Thus, we expect the corresponding covariant derivatives of
the following form:

Dμc = ∂μc − i
(
a(1)

μ + Aμ

)
� c − ic � a(2)

μ , (76)

Dμd = ∂μd − ia(2)
μ � d − id �

(
a(1)

μ − Aμ

)
(77)

in the noncommutative description of the low-energy physics,
following the considerations in [6] for the ν = 1 system of
bosons.

But, there is a problem with this proposal for a non-
commutative description: the structure of these derivatives is
not consistent with unitarity of gauge transformations (see
Appendix B for details).

We have to step back to understand why this problem
occurs. The formulation of the half-filled LL with constraints
(69) and (70) is different from the case of bosons at ν = 1
filling, in which there is a clear distinction between L and
R, physical and unphysical sector, The formulation of the
half-filled LL system is more intricate since it includes an ex-
change of L and R sectors, which complicates the distinction
between them.

Having this in mind, we may reconsider the question
of constraints and gauge invariance in an effective, long-
wavelength theory that we are looking for, a theory that will
nevertheless include some noncommutative aspects of the
physical system. In order to get a gauge-invariant description,
we will also apply the long-wavelength limit on the con-
straints (not just in the derivation of the Hamiltonian). In the
ensuing long-wavelength description there is no distinction
between physical (particles or holes) and unphysical (quantum
of flux excitation) degrees of freedom, constraints (69) and
(70) become one [compare (25) and (29) in the small-q limit,
etc.]. We may also expect that Aμ (background field) couples
symmetrically to the unphysical and physical sector. Thus, we
may define covariant derivatives Dμc and Dμd in a way that
ensures gauge invariance of the theory:

Dμc = ∂μc − iAμ � c − ic � (aμ − Aμ), (78)

Dμd = ∂μd − iAμ � d − id � (aμ − Aμ). (79)

The R gauge field is introduced in a decomposed way aμ−Aμ,
that will be natural in the commutative limit.

The change that we introduced by going from (76) and
(77) to (78) and (79) is certainly drastic; the change is a
departure from the microscopic description that we found
based on the view of quasiparticles as neutral composites.
In the case of bosons at filling factor one, Dong and Senthil
showed that, on the basis of the Hartree-Fock description that
is modified to include the SU(N ) invariance, in the manner
of noncommutative field theory, an approximate commutative
field theory description can be reached (via Seiberg-Witten
map) in the form of Halperin-Lee-Read (HLR) [1] description
with a Chern-Simons term. This description cannot be viewed
as a HLR theory (although of the same form), but as one that
is based on the neutral composites (CFs) and limited to a LL,
a description that is analogous to the description by composite
bosons of the Laughlin case in [13]. In the case of electrons,
in the half-filled LL, for which the Son’s theory is relevant,
one expects that, due to the requirement for the PH symmetry,
a microscopic description will not generate a Chern-Simons
term in an effective description. We encountered difficulties in
the application of the program proposed by Dong and Senthil
to maintain the gauge invariance we consider constraints in the
long-wavelength limit, which certainly implies changes in the
microscopic physics, i.e., ultraviolet domain. We will find that
the ensuing field theory will have a Chern-Simons term, but
one may argue that now Pauli-Villars type of regularization
is associated with the field theory, i.e., we have to treat the
high-energy physics in a different way as opposed to the
version of the Son’s theory that was first proposed by Son, and
assumes the dimensional regularization. Therefore, although
we have done a drastic change in the microscopic domain, the
theory may still make sense as a theory based on another kind
of quasiparticle [12,14] and give a version of the Son’s theory
described in [15–17].

The covariant derivatives (78) and (79) can define an NC
description, and it should be checked whether in the commu-
tative limit via Seiberg-Witten map we can recover the Son’s
theory to the linear order in the small parameter θ = −l2

B.
Because of the simultaneous presence of small-θ and long-
wavelength expansions, we will seek an effective description
by considering only lowest-order terms. To find the first cor-
rection to the commutative limit we start with the (Euclidean)
NC action of the form

SNC =
∫

dτ d2x (c† � Dτ c + d† � Dτ d + c† � (iDx + Dy)d

+ d† � (iDx − Dy)c + i(a0 − A0)ρ̄e). (80)

In SNC we have a constraint term, linear in NC field a0 − A0,
that fixes the total number of c and d fermions. Recall that our
description is for 0 � |k| in the upper half of Fig. 3, and thus
we have

∫
d2k

(2π )2
(c†

kck + d†
k dk)|upper half = ρ̄e. (81)

In Appendix A we detail the small-θ expansion in terms of
commutative fields ĉ, d̂, âμ, Âμ (denoted by a hat symbol). We
find SNC = S(0) + S(1) + · · · , where the classical limit (θ = 0)
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FIG. 3. A schematic illustration of the implementation of the
global constraint in (61) via (63), i.e., half-filled positive-energy
sector and half-empty negative-energy sector.

is simply

S(0) =
∫

dτ d2x (ĉ†Dτ ĉ + d̂†Dτ d̂

+ ĉ†(iDx + Dy)d̂ + d̂†(iDx − Dy)ĉ + i(â0 − Â0)ρ̄e),

(82)

and the linear NC correction reads as (see Appendix A for
details)

S(1) = iρ̄eθ

2
εαβγ

∫
dτ d2x (âα − Âα )∂β (âγ − Âγ )

+ θ

∫
dτ d2x

[
ĉ†

(
1

2
f̂12 − F̂12

)
Dτ ĉ

−ĉ†

(
1

2
f̂10 − F̂10

)
Dyĉ + ĉ†

(
1

2
f̂20 − F̂20

)
Dxĉ

]

+ θ

∫
dτ d2x

[
d̂†

(
1

2
f̂12 − F̂12

)
Dτ d̂

−d̂†

(
1

2
f̂10 − F̂10

)
Dyd̂ + d̂†

(
1

2
f̂20 − F̂20

)
Dxd̂

]
,

(83)

where we introduced classical (commutative) gauge field
strengths

F̂μν = ∂μÂν − ∂ν Âμ, (84)

f̂μν = ∂μâν − ∂ν âμ, (85)

and εαβγ is the Levi-Civita symbol.
The classical action S(0) and the Chern-Simons term in

S(1) give the description of a version of the Son’s theory [3]
of the Dirac composite fermion [15–17] that assumes the
Pauli-Villars type of regularization [12,14] because of the
presence of the Chern-Simons term for field aμ. Note that

the CS term has the correct coefficient 1
8π

. Also, in the linear
NC correction S(1) the Dirac momentum density couples to the
external electric field as expected from the Galilean invariance
[4,18]. On the other hand, the presence of a coupling to the
internal electric field âμ is quite natural and expected given
the influence of other particles on a selected one. Also, we find
that the presence of internal and external (i.e., departure from
the uniform) magnetic field induces a change in the coefficient
of the kinetic terms ĉ†∂τ ĉ and d̂†∂τ d̂ . Thus, we can conclude
that the NC formulation, up to the first order in θ , recovers
known results but also systematically adds terms that we may
expect on physical grounds.

Although we reproduced the version of the Son’s theory
from a conjectured NC field theory that is partially based on
the microscopic approach, we may wonder whether there is a
formulation of an NC field theory that can reproduce, via the
Seiberg-Witten map, the original version of the Son’s theory.
In that case, there would be no terms that are not invariant
under the PH transformation, like the CS term for gauge field
aμ, and we would not have to assume that their effect will be
erased or canceled by a particular way of regularization.

With the experience of the previous derivation that re-
sulted in Eqs. (78) and (79) for covariant derivatives
[and action (80)], we may ask ourselves how Eqs. (76) and
(77) can be modified in a way that they still express the micro-
scopic constraints, but represent valid covariant derivatives. A
way to do that is by including a symmetry between physical
and unphysical sectors by assuming that the background field
Aμ couples to both sectors.

Thus, we consider

Dμc = ∂μc − i
(
a(1)

μ + Aμ

)
� c − ic �

(
a(2)

μ − Aμ

)
, (86)

Dμd = ∂μd − i
(
a(2)

μ + Aμ

)
� d − id �

(
a(1)

μ − Aμ

)
. (87)

Note that, as before, in the course of the implementing micro-
scopic constraints (69) and (70), where each one constrains
densities both in R and L sectors, the implied gauge fields con-
nect, i.e., transform, at the same time, in the R and L sectors
of fields c and d . We warn the reader that, as it stands, in the
proposed covariant derivatives, only fields b(1)

μ,± ≡ a(1)
μ ± Aμ

and b(2)
μ,± ≡ a(2)

μ ± Aμ are assumed to transform canonically
(see Appendix B for details), and fields a(1)

μ , a(2)
μ , and Aμ,

that enter their decompositions (as they refer both to R and
L sectors) do not. The complete setup of the new NC theory
is given in terms of b(1)

μ,± and b(2)
μ,± only. In Appendix B we

explain why necessarily b(1)
μ,± = b(2)

μ,± = bμ,±, i.e., a(1)
μ = a(2)

μ ,
and we have an emerging symmetry between the unphysical
and physical sectors. The fields aμ = bμ,+ + bμ,− and Aμ =
(bμ,+ − bμ,−)/2 will assume their expected U(1) gauge field
roles in the commutative limit of the new theory in which we
get the original version of the Son’s theory that incorporates
the PH symmetry (CP or CT in [3]). The resulting NC action
up to first order is given by

SNC =
∫

dτ d2x(ĉ†Dτ ĉ + d̂†Dτ d̂ + ĉ†(iDx + Dy)d̂ + d̂†(iDx − Dy)ĉ + iâ0ρ̄e) + i

4π
εαβγ

∫
dτ d2x Aα∂βaγ

+ θ

∫
dτ d2x(ĉ†F̂12Dτ ĉ − ĉ†F̂10Dyĉ + ĉ†F̂20Dxĉ + d̂†F̂12Dτ d̂ − d̂†F̂10Dyd̂ + d̂†F̂20Dxd̂ ). (88)

115150-10



MICROSCOPIC DERIVATION OF DIRAC COMPOSITE … PHYSICAL REVIEW B 104, 115150 (2021)

Thus, we obtained an effective (long-wavelength) NC field
theory that consistently reproduces the Son’s theory in the
commutative limit. The introduced formalism and NC setup
can be used to systematically generate corrections in small
parameter θ . The achieved NC descriptions need further un-
derstanding and analysis especially concerning the questions
of regularization and scaling of gauge fields [3,17,19]. At first
glance, it seems that our approach does not have the scaling
problem.

IX. INCLUSION OF PAIRING

We have eliminated unphysical degrees of freedom in a
way of constraint (47), although in the case of the half-filled
Landau level we also had to impose additional bosonic corre-
lations of the unphysical degrees of freedom to fix a unique
subspace of physical states: we called it spin-singlet sector of
the SU(N ) gauge symmetry of unphysical degrees of freedom.
[Subsequently, we also had to impose (48) to eliminate hole
degrees of freedom.]

We may search for another such state for unphysical de-
grees of freedom by imposing other constraint(s), such as

ρ
R(c)
nn′ = ρ

L(d )
n′n . (89)

In the inverse space this corresponds to

ρR(c)(q) − ρL(d )(q) = 0. (90)

This choice seems natural as a requirement that will equalize
and uniformly distribute the electric charge of the unphysical
degrees of freedom (similarly to the special bilayer system).

The Hamiltonian that we can consider now is

Hp = H − 1

2

∫
d2qV (|q|)

× ρR(c)(q) − ρL(d )(q)

2

ρR(c)(−q) − ρL(d )(−q)

2
, (91)

which contains the same relevant two-body part for the Dirac
physics as in the previous inclusion of constraints (53), but
now we have the diagonal terms in the c and d sectors, like

∼
∫

d2q
[
ρL(c)(q)ρL(c)(−q) − ρR(c)(q)ρR(c)(−q)

]
V (|q|)

∼
∫

d2q
∫

d2k1

∫
d2k2 c†

k1−qck1 c†
k2+qck2

× i[(k1 − k2) × q]V (|q|), (92)

in the c sector, that can lead to p-wave (Pfaffian in the c sector
and anti-Pfaffian in the d sector) instabilities.

We will assume a PH symmetry breaking and an effective
Hartree-Fock-BCS Hamiltonian of the following form:

HBCS =
∫

d2k
(2π )2

(�∗
kd†

k ck + �kc†
kdk)

+
∫

d2k
(2π )2

(�̃∗
kc−kck + �̃kc†

kc†
−k). (93)

Here, �k is defined in (57) and

�̃∗
k = |k|

∫
d2q

V (|q|)
4(2π )2

(ik̂ × q)〈c†
k−qc†

−k+q〉. (94)

We project to the α sector by taking

ck → 1√
2

αk (95)

and

dk → 1√
2

eiφkαk. (96)

Thus,

Hα
BCS =

∫
d2k

(2π )2

[
|�k|α†

kαk +
(

�̃∗
k

2
α−kαk + H.c.

)]
.

(97)
Equations [7] that follow and need to be solved self-
consistently are

|�k| = |k|
∫

d2q
V (|q|)
8(2π )2

|q| sin2(φq)

(
1 − |�k+q| − |�qF |

Ek+q

)

(98)

and

|�̃k| = |k|
∫

d2q
V (|q|)

16(2π )2
|q| sin2(φq)

|�̃k+q|
Ek+q

, (99)

where E2
q = (|�q| − |�qF |)2 + |�̃q|2. In this way, by speci-

fying V (|q|) that will include factors due to the projection
to a fixed Landau level, we can find amplitudes in �̃k =
|�̃k| exp{−iφk} and �k = |�k| exp{−iφk}.

X. PAIRING SOLUTIONS

The effective interaction in a fixed LL, m = 0, 1, 2, . . ., is
given by the following expression:

V (|q|) = Vc(|q|)e− |q|2
2

[
Lm

( |q|2
2

)]2

, (100)

where

Vc(|q|) = V0

|q| (101)

represents the Coulomb interaction lB = 1, and Lm denotes
the Laguerre polynomial associated with a fixed LL with the
quantum number m.

In the LLL, Eqs. (98) and (99) lead to self-consistent
solutions with the following amplitudes in the kinetic part
|�k| = �|k| where � ≈ 0.017 086 V0, and in the pairing part
|�̃k| = �̃|k| where �̃ ≈ 0.001 414 V0. The self-consistent so-
lution is numerically obtained using Mathematica with error
estimation to 5×10−7. Obviously, this represents a weak cou-
pling case in which the kinetic part dominates. In Fig. 4 is
illustrated solutions of Eqs. (98) and (99) with corresponding
self-consistent solution.

In the sLL, we found that Eqs. (98) and (99) do not support
a coexistence of (nonzero) kinetic and pairing amplitudes, and
thus if only pairing is present it leads to a gapless (critical)
p-wave state at this level of approximation. We considered
the question of coexistence when a cubic term is generated in
the expansion (56), in the kinetic part. The resulting equations
are slightly modified equations (98) and (99) (V → V

3! , etc.),
and lead to a solution that describes a coexistence of pairing
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FIG. 4. The red line and the blue line represent solutions of
Eqs. (98) and (99), respectively. The black dot marks the correspond-
ing self-consistent solution.

|�̃k| = �̃|k| where �̃ ≈ 0.002 337 V0, and now |�k| = �|k|3
where � ≈ 0.000 591 V0 (lB = 1). The numerically obtained
solution using Mathematica is shown in Fig. 5. The error is
estimated to 1×10−6. Thus, this is a strong coupling, weak
pairing case that can be identified with the usual Pfaffian-state
case in which all composite fermions are paired in the same
way of a p wave.

FIG. 5. The red line and the blue line illustrate solutions of
modified equations (98) (with V → V

3! , etc.) and (99), respectively.
The black dot shows the corresponding self-consistent solution with
pairing |�̃k| = �̃|k|, and |�k| = �|k|3.

XI. CONCLUSIONS

To conclude, we presented a microscopic derivation of the
Dirac CF theory and proposed an effective (long-wavelength)
noncommutative field-theoretical description. The developed
formalism can serve as a base for a deeper understanding
of the strongly correlated physics of the half-filled LL. The
microscopic formulation is used to describe (in a mean-
field approach) pairing instabilities of the half-filled LL. The
description is consistent with the known experimental and
numerical phenomenology and provides further insights into
the nature of pairing instabilities.

APPENDIX A: BASIC STRUCTURE OF
NONCOMMUTATIVE GAUGE FIELD THEORY

Noncommutative (NC) spaces are geometric structures for
which the notion of a point loses its meaning. They arise
naturally in physics, the most famous example being the
“quantum” phase space of generalized coordinates and mo-
menta, understood as mutually noncommuting (incompatible)
observables that satisfy Heisenberg’s uncertainty relations
[qi, p j] = ih̄δi

j . Another important example of NC space is
realized by a single particle moving in the LLL; the guiding
center coordinates of such a particle satisfy the following
nontrivial commutation relation [Rx, Ry] = −il2

B. Finally, in
the context of quantum gravity, the idea of NC geometry
is applied to the structure of space-time itself. In this case,
the degree to which space-time coordinates fail to commute
is usually taken to be proportional to the square of the
Planck length. For a more comprehensive review see, for
example, [20].

Here we give a short review of the basic structure of a non-
commutative gauge field theory based on the Seiberg-Witten
(SW) construction, first presented in the context of string
theory [21]. An NC field theory is a field theory defined on
a noncommutative space-time, i.e., a space-time described by
mutually noncommuting coordinates [xμ, xν] �= 0. One way
to implement this NC structure is to deform the algebra of
functions (fields) on ordinary (commutative) space-time by
introducing an NC star product, the simplest of which is the
Moyal-Weyl star product

f (x) � g(y) = e
i
2 θμν ∂

∂xμ
∂

∂yν f (x)g(y)|y→x. (A1)

The deformation parameters θμν make a constant antisymmet-
ric matrix (hence the term constant noncommutativity). Note
that the first term in the expansion (in powers of θ ) is just
the ordinary commutative product of functions; higher-order
terms represent NC corrections. When applied to coordinate
functions themselves, the above formula gives us

[xμ, xν] = xμ � xν − xν � xμ = iθμν, (A2)

which is the simplest form of noncommutativity. Other types
of noncommutativity are related to different star products (see
[22]), but we will be working only with the Moyal-Weyl star
product. A more comprehensive account on various aspects of
NC geometry and NC gauge field theory can be found in [23].

Let {TA} be a set of generators of a gauge group G. Infinites-
imal SW gauge variation (NC gauge transformation) of an NC
field � transforming in the fundamental representation of the
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gauge group (e.g., a matter field) is defined by

δSW
� � = i� � �, (A3)

where � stands for an NC gauge parameter. This transfor-
mation rule is analogous to the familiar one in ordinary,
commutative gauge field theory, except for the noncommu-
tative Moyal-Weyl star product.

There is a notorious problem concerning the closure ax-
iom for SW gauge transformations. Namely, assuming that
NC gauge parameter is Lie algebra valued, � = �ATA, the
commutator of two SW transformations is given by[

δSW
1

�, δSW
2

]
� = (�1 � �2 − �2 � �1) � �

= 1
2

([
�A

1
�, �B

2

]{TA, TB} + {
�A

1
�, �B

2

}
[TA, TB]

)
� �. (A4)

Due to the appearance of anticommutator {TA, TB}, infinites-
imal SW transformations do not in general close in the Lie
algebra of a gauge group. A way to surmount this difficulty
is to assume that NC gauge parameter � belongs to the
universal enveloping algebra (UEA), which is always infinite
dimensional [24]. This, however, leads to an infinite tower of
new degrees of freedom (new fields), which is not a preferable
property. To see this, consider a SW variation of the covariant
derivative

δSW
� Dμ� = i� � Dμ�, (A5)

with Dμ� = ∂μ� − iVμ � � (here we only consider “left”
gauge field; the case of “right” gauge field is treated in a
similar manner). This implies the following transformation
rule for the NC gauge potential

δSW
� Vμ = ∂μ� + i[� �, Vμ], (A6)

meaning that it is also an UEA-valued object, which leaves us
with an infinite number of new fields in the theory (one for
each basis element of UEA).

SW map resolves this issue by demanding that NC fields
can be expressed in terms of the NC parameter θμν , commuta-
tive gauge parameter λ = λATA, commutative gauge potential
vμ = vA

μTA, and their derivatives,

� = �(θ, λ, vμ; ∂λμ, ∂vμ, . . . ), (A7)

Vμ = Vμ(θ, vμ, ∂vμ, . . . ), (A8)

where the ellipses stand for higher derivatives. In this way,
NC theory is defined by the corresponding commutative one.
There are no new degrees of freedom, just new interaction
terms in the NC action.

NC gauge transformations are now induced by the corre-
sponding commutative ones,

δSW
λ � = �(vμ + δλvμ) − �(vμ), (A9)

δSW
λ Vμ = Vμ(vμ + δλvμ) − Vμ(vμ), (A10)

with δλvμ = ∂μλ + i[λ, vμ].
From (A4) and (A7) follows a consistency condition for

NC gauge parameter,

�1 � �2 − �2 � �1 + i
(
δSW

1 �2 − δSW
2 �1

) = i�−i[λ1,λ2],

(A11)

which can be solved perturbatively (this makes sense because
the star product is also defined perturbatively). To this end, we
represent the NC gauge parameter as an expansion in powers
of the NC parameter θ , with coefficients built out of fields
from the commutative theory,

� = λ + �(1) + �(2) + · · · . (A12)

The first term in the expansion (zeroth order in θ ) is the
commutative gauge parameter λ = λATA.

An NC gauge parameter, up to first order in θαβ , is given
by

� = λ − 1
2θαβvα∂βλ + O(θ2), (A13)

where θαβ (α, β = 0, 1, 2) is a constant antisymmetric matrix
of deformation parameters. In our case, θαβ = θεαβ where
θ = −l2

B and εαβ is defined by ε0i = 0 (i = 1, 2) and ε12 =
−ε21 = 1. Note that we work in 2 + 1 dimensions and that
the definition of εαβ implies that noncommutativity is realized
only between spatial coordinates; it does not involve the time
coordinate. Generalization to an arbitrary number of dimen-
sions is straightforward.

Using the expansion (A13) and the transformation rule
(A3) we readily obtain

� = φ − θαβ

2
vα∂βφ + iθαβ

4
vαvβφ + O(θ2). (A14)

Also, from (A6) follows the transformation law for the NC
gauge field:

Vμ = vμ − θαβ

2
vα (∂βvμ + Fβμ). (A15)

In connection to our model, with left (L) and right (R) NC
U(1) gauge transformations acting on NC CF fields c and d ,
it is convenient to combine the two CFs into a two-component
spinor,

� =
(

c
d

)
. (A16)

Under an NC gauge transformation it changes as

� → � ′ = UL � � � UR, (A17)

where UL/R = ei�L/R . The NC gauge parameters �L/R have a
special form given by

�L/R =
(

�c
L/R 0
0 �d

L/R

)
. (A18)

Infinitesimally, we get

δ� = i(�L � � + � � �R). (A19)

Covariant derivative of � is defined by

Dμ� = ∂μ� − iV L
μ � � − i� � V R

μ , (A20)

where we introduced left V L
μ and right V R

μ NC gauge potential.
One can show that Dμ� transforms covariantly,

(Dμ�)′ = UL � (Dμ�) � UR, (A21)
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provided that NC gauge potentials V L
μ and V R

μ transform in the
following way:

(
V L

μ

)′ = UL � V L
μ � U †

L − i∂μUL � U †
L ,(

V R
μ

)′ = U †
R � V R

μ � UR − iU †
R � ∂μUR. (A22)

The NC action (in Euclidean signature) reads as

SNC =
∫

dτ d2x
[
�† � τμDμ� + i

(
V L

0 + V R
0

)
ρ̄e

]
, (A23)

where we have

τ 0 =
(

1 0
0 1

)
, τ 1 =

(
0 i
i 0

)
, τ 2 =

(
0 1

−1 0

)
. (A24)

In terms of components, the action is

SNC =
∫

dτ d2x
(
c† � Dτ c + d† � Dτ d

+ c† � (iDx + Dy)d + d† � (iDx − Dy)c

+ i
(
V L

0 + V R
0

)
ρ̄e

)
. (A25)

The SW map allows us to represent NC fields in terms of
ordinary fields from the corresponding commutative theory;
these commutative fields will be denoted by a hat symbol. NC
fields are organized as perturbation series in powers of the
deformation parameter, and they reduce to ordinary fields in
the θ = 0 limit.

SW expansions of NC gauge parameters �L/R (up to first
order) are (note the sign difference) given by

�L = �̂L − θ

2
εαβV̂ L

α ∂β�̂L,

�R = �̂R + θ

2
εαβV R

α ∂β�̂R. (A26)

Likewise, SW expansions of L and R NC gauge potentials
are (again, note the sign difference)

V L
μ = V̂ L

μ − θ

2
εαβV̂ L

α

(
∂βV̂ L

μ + F̂ L
βμ

)
, (A27)

V R
μ = V̂ R

α + θ

2
εαβV̂ R

α

(
∂βV̂ R

μ + F̂ R
βμ

)
, (A28)

with (commutative) gauge field strengths

F̂ L
αβ = ∂αV̂ L

β − ∂βV̂ L
α ,

F̂ R
αβ = ∂αV̂ R

β − ∂βV̂ R
α . (A29)

Finally, the SW expansion of the NC matter field reads as

� = �̂ − θ

2
εαβ

((
V̂ L

α − V̂ R
α

)
∂β�̂ − iV̂ L

α V̂ R
β �̂

)
. (A30)

In particular, if we take V L
μ = Aμ and V R

μ = aμ − Aμ (both
V L/R

μ act as scalars), we get covariant derivatives (78) and (79),
and the previous equation becomes

� = �̂ + θ

2
εαβ ((âα − 2Âα )∂β�̂ − iâαÂβ�̂ ). (A31)

In general, to compute a first-order NC correction for
a product of two NC fields, we apply the following

formula:

(A � B)(1) = A(1)B̂ + ÂB(1) + i

2
θαβ∂αÂ∂β B̂, (A32)

where A(1) and B(1) are first-order NC corrections of A and B,
respectively.

Thus, we can readily compute the NC covariant derivative

Dμ� = ∂μ� − iV L
μ � � − i� � V R

μ

= Dμ�̂ + θ

2
εαβ[(âα − 2Âα )∂βDμ�̂

− iâαÂβDμ�̂ − ( f̂αμ − 2F̂αμ)Dβ�̂], (A33)

with commutative field strengths f̂μν = ∂μâν − ∂ν âμ and
F̂μν = ∂μÂν − ∂νÂμ. Commutative covariant derivative is
simply Dμ�̂ = ∂μ�̂ − iâμ�̂.

Inserting (A27), (A28), (A31), and (A33) into the NC
action (A23) and applying the rule (A32), we obtain the
commutative action (82) and its first-order (in θ ) NC
correction (83).

In a similar fashion, if we consider covariant derivatives
(86) and (87), i.e.,

Dμc = ∂μc − i
(
a(1)

μ + Aμ

)
� c − ic �

(
a(2)

μ − Aμ

)
, (A34)

Dμd = ∂μd − i
(
a(2)

μ + Aμ

)
� d − id �

(
a(1)

μ − Aμ

)
, (A35)

and require a(1)
μ = a(2)

μ = 1
2 aμ (a full symmetry between phys-

ical and unphysical sectors), by the same procedure we obtain
action (88) that reproduces the Son’s theory at the commuta-
tive level.

APPENDIX B: STRUCTURE OF NC
COVARIANT DERIVATIVES

Let us assume that the structure of NC covariant derivatives
is given by Eqs. (76) and (77), i.e.,

Dμc = ∂μc − i
(
a(1)

μ + Aμ

)
� c − ic � a(2)

μ , (B1)

Dμd = ∂μd − ia(2)
μ � d − id �

(
a(1)

μ − Aμ

)
, (B2)

as consistent with the microscopic constraints.
If we want both (B1) and (B2) to transform covariantly,

i.e.,

Dμc → U c
L � Dμc � U c

R, (B3)

Dμd → U d
L � Dμd � U d

R , (B4)

we get two separate transformation laws for the gauge field
a(2)

μ (in the c case it acts from the right and in the d case from
the left):

a(2)
μ → U c†

R � a(2)
μ � U c

R − iU c†
R � ∂μU c

R, (B5)

a(2)
μ → U d

L � a(2)
μ � U d†

L − i∂μU d
L � U d†

L . (B6)

Consistency of the two demands the following constraints:

U d
L = U c†

R , (B7)

U c†
R � ∂μU c

R = U d
L � ∂μU d†

L = ∂μU d
L � U d†

L . (B8)
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The second equation implies that (∂μU d
L ) � U d†

L − U d
L �

(∂μU d†
L ) = 0, which is not consistent with U d

L being unitary.
Thus, we must change the structure of the derivatives.

Now consider the case when two covariant derivatives have
the same structure,

Dμc = ∂μc − iAμ � c − ic � bμ, (B9)

Dμd = ∂μd − iAμ � d − id � bμ, (B10)

with two gauge fields: the external background field Aμ

(which is L gauge field for both fields c and d) and bμ =
aμ − Aμ (which is R gauge field for both fields c and d). They
transform under gauge transformations in the following way:

Aμ →UL � Aμ � U †
L − i(∂μUL ) � U †

L , (B11)

bμ →U †
R � bμ � UR − iU †

R � (∂μUR). (B12)

In the commutative limit, these become simple U(1) gauge
transformations

Aμ → Aμ + ∂μϕA, (B13)

bμ → bμ + ∂μϕb. (B14)

The relevant field aμ = bμ + Aμ represents an independent
U(1) gauge field with respect to Aμ.

In the setup implied by (86) and (87), i.e.,

Dμc = ∂μc − i
(
a(1)

μ + Aμ

)
� c − ic �

(
a(2)

μ − Aμ

)
, (B15)

Dμd = ∂μd − i
(
a(2)

μ + Aμ

)
� d − id �

(
a(1)

μ − Aμ

)
, (B16)

we have to consider four different gauge fields b(1)
μ,± ≡ a(1)

μ ±
Aμ and b(2)

μ,± ≡ a(2)
μ ± Aμ. Their transformation laws are given

by

b(1)
μ+ → U c

L � b(1)
μ+ � U c†

L − i∂μU c
L � U c†

L , (B17)

b(1)
μ− → U d†

R � b(1)
μ− � U d

R − iU d†
R � ∂μU d

R , (B18)

b(2)
μ+ → U d

L � b(2)
μ+ � U d†

L − i∂μU d
L � U d†

L , (B19)

b(2)
μ− → U c†

R � b(2)
μ− � U c

R − iU c†
R � ∂μU c

R . (B20)

However, these four fields are not mutually independent,
b(1)

μ,+ − b(1)
μ,− = b(2)

μ,+ − b(2)
μ,−, because aside from the external

field, the theory can have only two more independent gauge
fields, connected with two kinds of constraints. If we require
that the difference of gauge fields transforms as a gauge field,
we will have U c

L = U d†
R and U c

L/R = U d
L/R, i.e., possibilities for

independent gauge transformations, independent gauge fields,
will be reduced to just one, but this would contradict our
beginning setup. That is why we need to take a(1)

μ = a(2)
μ ,

and have two independent gauge transformations and fields
aμ = 2a(1)

μ = 2a(2)
μ and Aμ in the commutative limit.
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Pairing Instabilities and Critical States in
Graphene Quantum Hall Systems

Sonja Predin

Scientific Computing Laboratory, Center for the Study of Complex Systems,Institute of Physics
Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Abstract. The even-denominator fractional quantum Hall effect (FQHE) in graphene, observed in
the fourth Landau level (N = 3) [1], motivates our study of pairing and ground state properties
in this system. Composite fermions, formed by electrons binding magnetic flux quanta, provide
a key framework for understanding FQHE in conventional systems at half-filled Landau levels.
Using the dipole representation of composite fermions [2], we derive an effective Hamiltonian for
half-filled Landau levels, emphasizing particle-hole symmetry. At the Fermi level, the interplay of
topology and symmetry drives the system toward a critical state. While we explore the possibility
of paired states with well-defined solutions, our results show that the energetically favored state
is a regularized, boost-invariant configuration without pairing instabilities [3]. This finding holds
for the half-filled fourth Landau level (N = 3) in graphene. We discuss the consistency of our
results with experiments and simulations, highlighting the need for further research into alternative
configurations in quantum Hall systems.
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TT 31: Topology: Quantum Hall Systems

Time: Wednesday 15:00–16:45 Location: H31

Invited Talk TT 31.1 Wed 15:00 H31
Quantum Skyrmion Hall Effect — ∙Ashley Cook — MPI-PKS,
Dresden, Germany
Motivated by recent discovery of additional topologically non-trivial
phases of matter in lattice models beyond established classification
schemes, we generalise the framework of the quantum Hall effect
(QHE) to that of the quantum skyrmion Hall effect (QSkHE). This
involves one key generalisation: considering particles on a two-sphere,
which see a U(1) monopole, one can project to the lowest Landau level
(LLL). Upon performing such a projection, the position coordinates
become proportional to SU(2) generators by quenching of kinetic en-
ergy. An almost point-like LLL corresponds to matrix representation
size for the SU(2) generators of N by N, with N small. The key gen-
eralisation is that such an almost point-like LLL with small orbital
degeneracy can still host an intrinsically 2+1 dimensional topologi-
cally non-trivial many-body state. Equivalently, in regimes in which
spin has previously been treated as a label (small N), spin encodes
some finite number of spatial dimensions, in general. This many-body
state can play the role, in the QSkHE, that a charged particle plays in
the QHE.

TT 31.2 Wed 15:30 H31
Electric Field Induced Second-Order Anomalous Hall Trans-
port in an Unconventional Rashba System — ∙Ankita Bhat-
tacharya and Annica Black-Schaffer — Uppsala University, Swe-
den
Nonlinear responses in transport experiments may unveil information
and generate new phenomena in materials that are not accessible at
linear order due to symmetry constraints. While the linear anomalous
Hall response strictly requires the absence of time-reversal symmetry,
the second order, thus nonlinear, Hall response needs broken inversion
symmetry. Recently, much effort has been made to obtain a second-
order Hall voltage in response to a longitudinal ac driving current,
both to obtain information about band geometric quantities and for
its useful technological applications in rectification and frequency dou-
bling. Typically, additional material engineering is required in noncen-
trosymmetric systems to obtain second-order responses since it obeys
a stringent crystallographic symmetry constraint. To circumvent this,
an alternative route is to apply a dc electric field. In our work, we
uncover an electric field induced second-order anomalous Hall effect in
an inversion-broken system possessing unconventional Rashba bands.
We establish that the quantum metric, a geometrical feature of elec-
tronic wave functions providing information on non-trivial structure of
Bloch bands, is responsible for providing the nonlinear Hall response.
We are able to find a highly tunable electric field induced second-order
anomalous Hall transport in probably the simplest system in 2D, which
should be uncomplicated to verify experimentally due to multiple ma-
terials already being proposed.

TT 31.3 Wed 15:45 H31
Topological Thermal Hall Effect in the Geometrically Frus-
trated Magnet Gd2PdSi3 — ∙Parisa Mokhtari1,2, Daiki
Yamaguchi1, Rinsuke Yamada1, Akiko Kikkawa3, Philipp
Gegenwart2, Yasujiro Taguchi3, Yoshinori Tokura1,3, and
Max Hirschberger1,3 — 1Department of Applied Physics and
Quantum-Phase Electronics Center, The University of Tokyo, Bunkyo-
ku, Tokyo 113-8656, Japan — 2Experimental Physics VI, Center for
Electronic Correlations and Magnetism, University of Augsburg, 86135
Augsburg, Germany — 3RIKEN Center for Emergent Matter Science,
Wako, Saitama 351-0198, Japan
Geometrical frustrated Skyrmion lattices exemplify nontrivial topo-
logical states with non-zero scalar spin chirality and a finite Berry
curvature in real space. In 2019, T. Kurumaji et al. reported a large
topological Hall effect in the skyrmion phase in Gd2PdSi3 related to
the spin chirality of the ground state [1].

In this talk, I will present the thermal Hall conductivity of the frus-
trated triangular-lattice magnet Gd2PdSi3. By entering the skyrmion
lattice ground state, the field-dependent thermal Hall effect sharply
increases against the adjacent incommensurate phases, similar to the
electric Hall conductivity behaviour. Eventually, I will investigate the

relationship of Hall entropy to the charge current and discuss the non-
dissipativity of topological quantum transport in the geometrically
frustrated magnet Gd2PdSi3.

[1] T. Kurumaji et al., Science 365, 914 (2019).

TT 31.4 Wed 16:00 H31
Orbital Magnetization of Dirac Electrons on Curved Surfaces
— ∙Maximilian Fürst — Universität Regensburg
Orbital magnetic response of 2D, (almost) free electrons has exten-
sively been studied in the past, starting from the discovery of Lan-
dau levels of Schrödinger [1]/(massless) Dirac [2] electrons with a lin-
ear/squareroot dispersion in the field strength B. Apart from Landau
diamagnetism, this leads to De-Haas-van-Alphen type oscillations of
the susceptibility, that are periodic in 1/B [3]. Confining (massless)
Dirac electrons on a curved surface predominantly leads to unusual os-
cillations of the susceptibility with periodicity in B. We discuss three
example surfaces (Sphere, Cone, Pseudosphere) in a coaxial magnetic
field.
[1] L. Landau, Z. Phys. A 64, 629 (1930).
[2] J. W. McClure, Phys. Rev. 104, 666 (1956).
[3] L. Heße, K. Richter, Phys. Rev. B 90, 205424 (2014).

TT 31.5 Wed 16:15 H31
Probing Fractional Statistics through Aharonov-Bohm Oscil-
lations in Hanbury-Brown-Twiss Geometry — ∙Felix Puster,
Matthias Thamm, and Bernd Rosenow — Institut für Theoretische
Physik, Universität Leipzig, Brüderstraße 16, 04103 Leipzig, Germany
Since the theoretical prediction of anyonic excitations in the fractional
quantum Hall effect, experimental evidence for their fractional statis-
tics has been highly sought. In recent years, experiments have de-
termined fractional braiding phases, providing clear evidence for frac-
tional exchange phases. However, the braiding phase fixes the exchange
phase of the particles only up to modulo Pi, leaving ambiguity in its ex-
act value. Therefore, experiments capable of determining the exchange
phase unambiguously are desired. To this end, we revisit the Hanbury-
Brown-Twiss (HBT) geometry in the fractional quantum Hall regime.
Our calculations extend previous theoretical work by incorporating an
Aharonov-Bohm (AB) phase, finite temperature, and a finite distance
between the tunneling points. We compute the current and current-
current correlation functions and find that the anyonic exchange phase
enters the AB oscillations in both quantities as an additive shift. While
this shift is expected for the current-current correlations due to two-
particle interference, for the current we interpret it as another example
of time domain braiding of anyons – a phenomenon previously reported
in geometries with tunneling of anyons across a quantum point contact.

TT 31.6 Wed 16:30 H31
Dipole Representation of Composite Fermions in Graphene’s
Quantum Hall Systems — ∙Sonja Predin — Scientific Comput-
ing Laboratory, Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, 11080 Belgrade, Serbia
The even-denominator fractional quantum Hall effect has been ob-
served in graphene’s fourth Landau level (N = 3) [1]. Motivated by
recent studies [2] on pairing and the nature of the ground state in this
system, we extend the dipole representation of composite fermions
to adapt it to graphene’s quantum Hall systems, focusing on half-
filled Landau levels. We derive an effective Hamiltonian incorporating
particle-hole symmetry. At the Fermi level, the energetic instability
of the dipole state is driven by the interplay between topology and
symmetry, pushing the system towards a critical state. While paired
states are considered, our findings demonstrate that a boost-invariant
state lacking well-defined pairing instabilities is energetically favorable
stable state, suggesting the absence of pairing instabilities in this sys-
tem.
[1] Y.Kim,A.C.Balram,T.Taniguchi,K.Watanabe,J.K.Jain, J.H.Smet,
Nat. Phys. 15, 154 (2019).
[2] A.Sharma, S.Pu, A.C.Balram, J.K.Jain, PRL 130, 126201 (2023).
[3] S.Predin, A.Knežević, M.V.Milovanović, PRB 107, 155132 (2023).
[4] S. Predin, arXiv:2408.10375.
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Agent Based Modelling for Sustainable Public Transport 
Planning 

 

Sonja Predin1,2 and Richard Göbel1 
 

1Institute of Information Systems, Hof University, Alfons-Goppel-Platz 1, 95030 Hof, Germany 
2Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics 
Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, sonja@ipb.ac.rs 

Abstract. Peripheral regions in Germany are facing significant negative demographic changes, including 
aging and population decline due to negative natural growth and relocation to industrial centers. Planning 
urban transport in peripheral regions is a challenging task, as the costs for municipal authorities are high, 
and despite these costs, users face infrequent and limited departures, long waiting times, and indirect 
routes. The aim of the Mobidig project, which was financed by the German Ministry of Transport and 
Digitalization, was to improve transport in these regions. We used demand forecasts and simulations to 
record and study the mobility needs of the people in the region. Using machine learning and statistical 
methods we analyzed data on topics such as population distribution, destinations, movements of vehicles 
and mobile devices, use of means of transport, and basic geodata, and created a virtual image of the region. 
Based on these analyses, we developed traffic simulation of the city of Hof, which allows us to predict the 
use of buses under various conditions. This simulation, as a digital twin of traffic, has shown very good 
alignment with the data used in real traffic. These project results already form the basis for further projects 
outside and within the region to create an economical and comprehensive public transport system in rural 
regions. 

Keywords: Agent-oriented simulation, Demand generation, MATSim, Neural network, Probability method 
 

  



Fractional Quantum Anomalous Hall Effect and
Fractional Chern Insulators

Posters will be presented in two poster sessions - Monday, 5th February, 17:30 - 18:30
(focus on odd poster numbers) and Tuesday, 6th February, 19:00 - 20:00 (focus on
even poster numbers) - the poster numbers.

For each poster contribution there will be one poster wall (width: 97 cm, height: 250 cm)
available. Please do not feel obliged to fill the whole space. Posters can be put up for the
full duration of the event.

POSTER

Entanglement smectic and stripe order

Chakraborty, Nilotpal

Spontaneous symmetry breaking and more recently entanglement are two
cornerstones of quantum matter. We introduce the notion of anisotropic
entanglement ordered phases, where the spatial profile of spin-pseudospin
entanglement spontaneously lowers the four-fold rotational symmetry of the
underlying crystal to a two-fold one, while the charge density retains the full
symmetry. The resulting phases, which we term entanglement smectic and
entanglement stripe, exhibit a rich Goldstone mode spectrum and set of phase
transitions as a function of underlying anisotropies. We discuss experimental
consequences of such anisotropic entanglement phases distinguishing them from
more conventional charge or spin stripes. Our discussion of this interplay between
entanglement and spontaneous symmetry breaking focuses on multicomponent
quantum Hall systems realizing textured Wigner crystals, as may occur in graphene
or possibly also in moire systems, highlighting the rich landscape and properties of
possible entanglement ordered phases.



The Landscape of Tight-Binding models

Dagnino, Andrea Kouta

Tight-binding models are ubiquitous in condensed matter physics. Fundamental
properties of many materials can be understood from simple toy models of
electrons hopping between orbitals on a lattice. In particular, crystallographic
symmetries are crucial in determining the degeneracies of band structures at high
symmetry points in the Brillouin zone. These degeneracies fundamentally affect the
properties of the material that is being modelled, ranging from the allowed optical

https://www.pks.mpg.de/fileadmin/user_upload/MPIPKS/Events/Workshops_and_Seminars/Conference_Pages/2024/fqah24_posters_list.pdf
https://www.pks.mpg.de/
https://www.pks.mpg.de/


transitions to symmetry-indicated topological invariants. Getting a full list of crystal
symmetries of a material is therefore crucial when trying to predict or understand its
physical properties. In this poster, we systematically study the symmetries of lattices
in 3 dimensions and their implications for the corresponding tight-binding models.
We uncover a landscape of tight-binding models related by crystal symmetries, and
apply these findings to understand the recently uncovered altermagnetic nature of
RuO2 and MnTe.



Higher Chern number ideal bands of helical twisted trilayer graphene in
magnetic fields

Datta, Anushree

Helical twisted trilayer graphene (HTTG), characterized by three layers of graphene
with same successive twists, is an unique tunable platform for realizing a variety of
correlated and topological phases. It exhibits a supermoire with domains centered
around stacking points ABA or BAB, where two well separated low energy bands
appear with Chern numbers +/-(2, -1) forming a Chern mosaic. When the twists are
tuned to a ’magic-angle’, these bands flatten perfectly at the chiral limit, with large
degeneracies at the zero energy. We show that HTTG retains such precise flatness of
the low energy bands in the chiral limit even when a perpendicular magnetic field is
applied. By a mapping of the zero-energy wavefunctions with those of the lowest
Landau level, we identify the analytical forms of the zero-modes at finite magnetic
fields. Furthermore, we find topological phase transitions involving gap closings and
openings, at fields corresponding to unit and half-flux per unit cell, leading to higher
Chern number bands. Such transitions happen at the supermoire scale which alter
with each other when the direction of the field is reversed. Due to large moire length
scale, these transitions at strong flux limit can become experimentally accessible.



E-T Duality of type-II Composite Fermion Wigner Solid in Two Dimensional Hole
Gas

Dong, Yu-Jiang

Two-dimensional hole gas (2DHG) system exists the competition of quantum Hall
effect (QHE) liquid and Wigner solid (WS) solid under high magnetic field (B) and
low temperature (T). We report non-linear differential conductance around ν=1 and
nu=1/3 states in GaAs/AlGaAs quantum well (QW) 2DHGs, which in accord with the
feature of type-II CFWS. Particularly, the applied electric field affects the
magnetoconductance diagram in a way similar to the temperature, which is known
as “E-T duality”. According to our analysis, this “E-T duality” is consistent with the
Berezinskii-Kosterlitz-Thouless (BKT) theory, which is well-known in two-dimensional
phase transitions.



Continuum Hamiltonians for non-abelian spin liquids

Feuerpfeil, Andreas

The bosonic fractional Chern insulator is intricately connected to quantum spin
liquids. Thus, we investigate the Read-Rezayi fractional quantum Hall states for k = 2
(Moore-Read) and k = 3. The non-abelian excitations of the k = 3-state are Fibonacci
anyons and thus provide a platform for universal quantum computing. Following the
analogy of the Calogero-Sutherland model, we construct parent continuum



Hamiltonians for these states. Based on the identification of fractional quantum Hall
states with correlation functions of CFTs, we use the Belavin–Polyakov–
Zamolodchikov equation for the corresponding primary fields to find destruction
operators with the ground state in their kernels and combine them to form parent
Hamiltonians.



Strain-induced pseudo-magnetic field beyond graphene

Guo, Huaiming

Quantum Monte Carlo simulations are applied to study quantum antiferromagnets
on a hexagonal lattice under three-axis stress. We consider the triangular geometry,
where strain induces dimerization of the exchange couplings around the three
corners of the triangle, thereby disrupting the antiferromagnetic order. The
antiferromagnetic regions continuously shrink with increasing strain, and for the
same strain intensity, the precise numerical results yield much smaller
antiferromagnetic regions than predicted by linear spin-wave theory. We also extract
the local magnetization using numerical analytical continuation for the Heisenberg
case and find no evidence of pseudo-Landau levels. However, it is currently unclear
whether the absence of pseudo-Landau levels is a consequence of the numerical
analytical continuation itself. Therefore, the existence of pseudo-Landau levels for
magnons generated by three-axis strain in the Heisenberg Hamiltonian remains an
open question. Our theoretical results are closely related to two-dimensional van der
Waals antiferromagnets and hold promise for experimental realization.



Fractional Chern Insulator in Twisted Bilayer MoTe2

He, Yuchi

A recent experiment has reported the first observation of a zero-field fractional
Chern insulator (FCI) phase in twisted bilayer MoTe2 moiré superlattices. The
experimental observation is at an unexpected large twist angle 3.7◦ and calls for a
better understanding of the FCI in real materials. In this work, we perform large-
scale density functional theory calculation for the twisted bilayer MoTe2, and find
that lattice reconstruction is crucial for the appearance of an isolated flat Chern
band. The existence of the FCI state at ???? = −2∕3 is confirmed by exact
diagonalization. We establish phase diagrams with respect to the twist angle and
electron interaction, which reveal an optimal twist angle of 3.5◦ for the observation
of FCI. We further demonstrate that an external electric field can destroy the FCI
state by changing band geometry and show evidence of the ???? = −3∕5 FCI state in
this system. Our research highlights the importance of accurate single particle band
structure in the quest for strong correlated electronic states and provides insights
into engineering fractional Chern insulator in moiré superlattices.



Laughlin topology in fractal lattices without area law

Jha, Mani Chandra

Laughlin states have recently been constructed on fractal lattices, and the charge
and braiding statistics of the quasiholes were used to confirm that these states have
Laughlin-type topology. Here we investigate density, correlation, and entanglement
properties of the states on a fractal lattice derived from a Sierpinski triangle with the
purpose of identifying similarities and differences compared to two-dimensional



systems and with the purpose of investigating whether various probes of topology
work for fractal lattices. Similarly to two-dimensional systems, we find that the
connected particle-particle correlation function decays roughly exponentially with
the distance between the lattice sites measured in the two-dimensional plane, but
the values also depend on the local environment. Contrary to two-dimensional
systems, we find that the entanglement entropy does not follow the area law if one
defines the area to be the number of nearest-neighbor bonds that cross the edge of
the selected subsystem. Considering bipartitions with two bonds crossing the edge,
we find a close to logarithmic scaling of the entanglement entropy with the number
of sites in the subsystem. This also means that the topological entanglement
entropy cannot be extracted using the Kitaev-Preskill or the Levin-Wen methods.
Studying the entanglement spectrum for different bipartitions, we find that the
number of states below the entanglement gap is robust and the same as for
Laughlin states on two-dimensional lattices. Reference: PHYSICAL REVIEW B 105,
085152 (2022)



Nagaoka ferromagnetism and spin-hole fractionalization in hole-doped Kitaev
spin liquids

Kadow, Wilhelm

The dynamical response of a quantum spin liquid upon injecting a hole is a pertinent
open question. In experiments, the hole spectral function, measured momentum-
resolved in angle-resolved photoemission spectroscopy (ARPES) or locally in
scanning tunneling microscopy (STM), can be used to identify spin liquid materials.
In this study, we employ tensor network methods to simulate the time evolution of a
single hole doped into the Kitaev spin-liquid ground state and reveal two
fundamentally different scenarios. For ferromagnetic spin couplings, the spin liquid
is highly susceptible to hole doping: a Nagaoka ferromagnet forms dynamically
around the doped hole, even at weak coupling. By contrast, in the case of
antiferromagnetic spin couplings, the hole spectrum demonstrates an intricate
interplay between charge, spin, and flux degrees of freedom, best described by a
parton mean-field ansatz of fractionalized holons and spinons. Moreover, we find a
good agreement of our numerical results to the analytically solvable case of slow
holes. Our results demonstrate that dynamical hole spectral functions provide rich
information on the structure of fractionalized quantum spin liquids.



D2 or dDsC van der Waals corrections for twisted MoTe2 Comparison of many-
body phase diagrams

Li, Jiangxu

We investigate the global many-body phase diagram in twisted bilayer MoTe2, using
continuum model multiband exact diagonalization. From previous large-scale first-
principles calculations, two groups of continuum model parameters have been
proposed from D2 and dDsC corrections, respectively. Compared to the
experimental phase diagram, we note the dDsC continuum model well captures the
υ=1integer, υ=-2/3 fractional quantum anomalous Hall states, and υ=-1/3 charge
density wave states simultaneously. While for the continuum model from D2
correction, we observe a Mott ferroelectric state at υ=1 for dielectric constant ϵ<10
at experimental twist angles 〖3.0〗^∘<θ<〖4.0〗^∘. More importantly, in the D2
continuum model, υ=-1/3 and υ=-2/3 are both fractional quantum anomalous Hall
states at ϵ=10, and charge density wave states at ϵ=5.





Broken Symmetry in Ideal Chern Bands

Liu, Hui

Recent observations of the fractional anomalous quantum Hall effect in moir\'e
materials have reignited the interest in fractional Chern insulators (FCIs). The chiral
limit in which analytic Landau level-like single particle states form an "ideal" Chern
band and local interactions lead to Laughlin-like FCIs at 1/3 filling, has been very
useful for understanding these systems by relating them to continuum Landau
levels. We show, however, that, even in the idealized chiral limit, a fluctuating
quantum geometry leads to strongly broken symmetries and a phenomenology very
different from that of Landau levels. In particular, particle-hole symmetry is strongly
violated and e.g. at 2/3 filling an emergent interaction driven Fermi liquid state with
no Landau level counterpart is energetically favoured.



Lattice relaxation, electronic structure and continuum model for twisted bilayer
MoTe2

Mao, Ning

Our study delves into the effect of lattice relaxation on the moiré band structures of
twisted bilayer MoTe2 , implemented by large-scale first-principles calculations and
transfer learning neural network. Throughout our study, we have incorporated two
van der Waals correction methods: the Grimme D2 method and a density-
dependent energy correction. Notably, the latter method demonstrates a
continuous evolution of bandwidth with respect to twist angles. Our findings reveal
the critical role of in-plane lattice displacements, which generate substantial
pseudomagnetic fields, reaching up to 250 T. Building on these insights, we have
developed a comprehensive continuum model with a single set of parameters for a
wide range of twist angles, providing a useful starting point for many-body
simulation.



Kagome chiral spin liquid in transition metal dichalcogenide moiré bilayers

Motruk, Johannes

While electronic topological phases in moiré heterostructures of transition metal
dichalcogenides (TMDs) have been confirmed experimentally, exotic magnetic
orders have not been reported so far. In this work, we investigate TMD moiré
bilayers at n = 3/4 filling of the moiré flat band, where they can develop a kagome
charge order. We derive an effective spin model for the resulting localized spins and
find that its further neighbor spin interactions can be much less suppressed than the
corresponding electron hopping strength. Using density matrix renormalization
group simulations, we study its phase diagram and, for realistic model parameters
relevant for WSe2/WS2, we show that this material can realize the exotic chiral spin

liquid phase and the highly debated kagome spin liquid. Our work thus
demonstrates that the frustration and strong interactions present in TMD
heterobilayers provide an exciting platform to study spin liquid physics.



Fractional quantum Hall effect on fractals

Nielsen, Anne



The Laughlin and Moore-Read states can be formulated as infinite-dimensional-
matrix product states. The construction allows us to generalize the Laughlin and
Moore-Read states to arbitrary lattices embedded in two dimensions and to find
few-body, non-local, exact parent Hamiltonians for the states. We numerically and
analytically study the properties of the Laughlin state on fractal lattices with different
Hausdorff dimensions. We find that the states support anyons with fractional
statistics as expected for the Laughlin state, but the states do not necessarily follow
the area law. Finally, we optimize local Hamiltonians to have maximal ground state
overlap with the Laughlin state. References: Phys. Rev. Research 2, 023401 (2020)
Phys. Rev. B 105, 085152 (2022) J. Stat. Mech. 2023, 053103 (2023) Phys. Rev. A 107,
063315 (2023)



Braiding Laughlin quasi-holes in ultracold atoms using Ramsey interferometry

Palm, Felix

Braiding non-Abelian anyons in topologically ordered systems has been proposed
as a possible route towards topologically protected quantum computing. While
recent experiments based on various platforms have made significant progress
towards this goal, coherent control over individual anyonic excitations has still not
been achieved today. At the same time, progress in cold-atom quantum simulators
resulted in the realization of a two-boson ν = 1/2-Laughlin state, a paradigmatic
fractional quantum Hall state hosting Abelian anyonic quasi-holes. Here we show
that cold atoms in quantum gas microscopes are a suitable platform to create and
manipulate these quasi-holes. First, we show that a Laughlin state of eight bosons
can be realized by connecting small patches accessible in experiments. Next, we
demonstrate that two cross-shaped pinning potentials are sufficient to create two
quasi-holes in this Laughlin state. Starting with these two quasi-holes we numerically
perform an adiabatic exchange procedure, and reveal their semionic braiding
statistics for various exchange paths, thus clarifying the topological nature of these
excitations. Finally, we propose an experimentally feasible interferometry protocol to
probe the braiding phase in quantum gas microscopes, using a two-level impurity
immersed in the fractional quantum Hall fluid. We conclude that braiding
experiments of Abelian anyons are now within reach in cold-atom quantum
simulators, providing a crucial step towards the long-standing goal of non-Abelian
anyon braiding with local coherent control.



Probing chirality in Weyl and Dirac semimetals with a non-linear Hall response

Peshcherenko, Nikolai

We suggest a simple chirality probe in TR invariant Weyl and Dirac semimetals by
nonlinear Hall response. Chiral anomaly effect arising in parallel electric and
magnetic fields causes Weyl cones of different chirality to become shifted in energy
space with respect to each other which leads to chirally asymmetric intranode
relaxation times. Due to this asymmetry, electrical currents excited by external
electric field do not perfectly compensate each other. We predict that this effect
could be also observed in circular dichroism measurements.



Floquet engineering of the toric-code Hamiltonian

Petiziol, Francesco



We present a hybrid Floquet-Trotter approach for the quantum simulation of Kitaev's
toric-code Hamiltonian, implementable in superconducting circuits. Our method
exploits the commutativity of different terms in Kitaev’s Hamiltonian and achieves
the required four-spin interactions in a nonperturbative way. Building on this result,
we further present protocols for preparing topologically ordered ground states with
high fidelity and to simulate the transition into the spin liquid phase. We discuss
opportunities to use periodic driving to mimic non-Abelian behaviour in the Abelian
model.



Dipole representation of half-filled Landau level: quantum Hall and its bilayers

Predin, Sonja

The formalism for composite fermions, initially developed for bosons at filling factor
ν = 1 [1, 2], has been a cornerstone in understanding the fractional quantum Hall
effect (FQHE). We derive the Dirac composite fermion theory for a half-filled Landau
level from first principles [3]. In this talk, we introduce a variant of dipole
representation for composite fermions in a half-filled Landau level, taking into
account the symmetry under exchange of particles and holes. This is implemented
by a special constraint on composite fermion and composite hole degree of
freedom (of an enlarged space), that makes the resulting composite particle, dipole,
a symmetric object. Our investigation focuses on an effective Hamiltonian that
commutes with the constraint in physical space while preserving boost invariance at
the Fermi level. Our calculations [4] of the Fermi liquid parameter F2 demonstrate
remarkable agreement with previous numerical investigations [5]. Furthermore, the
quantum Hall bilayer at filling factor ν=1 represents a competition of Bose-Einstein
condensation (BEC) at small distances between layers and fermionic condensation,
which influence grows with distance and results in two separate Fermi liquid states
of underlying quasiparticles at very large (infinite) distance. The most intriguing
question is whether at intermediate distances between layers a special, distinct
phase exists, or a single transition occurs, with possibility that this happens at infinite
distance. Here, using a dipole representation of fermionic quasiparticles, we find a
support for the latter scenario: for a large, relevant interval BEC condensation,
identified as a Cooper s-wave pairing of dipole quasiparticles, wins over Cooper p-
wave pairing and s−wave excitonic pairing of the same quasiparticles [6]. [1] N. Read,
Phys. Rev. B 58, 16262 (1998). [2] Z. Dong and T. Senthil, Phys. Rev. B 102, 205126
(2020). [3] D. Gočanin, S. Predin, M. D. Ćirić, V. Radovanović, and M. Milovanović,
Phys. Rev. B 104, 115150 (2021). [4] S. Predin, A. Knežević, and M. V. Milovanović,
Phys. Rev. B 107, 155132 (2023). [5] K. Lee, J. Shao, E.-A. Kim, F. D. M. Haldane, and
E. H. Rezayi, Phys. Rev. Lett. 121, 147601 (2018). [6] S. Predin, and M. Milovanovic, S.
Predin and M. V. Milovanovic, Phys. Rev. B 108, 155129, (2023).

Rashba spin-orbital coupling enhanced excitonic topological order in InAs/GaSb
bilayer system

Qiao, Weiliang

In the last few decades, the coupling between layers in two-dimensional correlated
electronic system has been one of the most interesting topics in the field of
condensed matter physics [1-3]. InAs/GaSb quantum well (QW) is one of the most
interesting layer-layer correlated systems. Thanks to the unique inverted band
structure, InAs/GaSb bilayer systems can simultaneously hosts spatially closed 2DEG
and 2DHG in InAs and GaSb QW, respectively. In recent years, many exotic quantum



phases have been observed in this system [4-6]. Particularly, excitonic topological
order found in InAs/GaSb system is of great interest, since the excitons carry 1/2
fractional topological charge similar to composite fermion in fractional quantum Hall
system [6]. The moat band dispersion of exciton is a prerequisite for excitonic
topological order. Besides imbalanced carrier density of electrons and holes [6],
theoretical analysis found that Rashba spin-orbital coupling can also help to form
moat band of excitons [7]. In this work, we show some preliminary experiment results
that the Rashba spin-orbital coupling can stabilize excitonic topological order in
InAs/GaSb bilayer system. References: [1] J. Eisenstein and A. MacDonald, Nature
432, 691 (2004). [2] X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim,
Nature Physics 13, 746 (2017). [3] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T.
Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018). [4] L. Du, I. Knez,
G. Sullivan, and R.-R. Du, Physical Review Letters 114, 096802 (2015). [5] L. Du, X. Li,
W. Lou, G. Sullivan, K. Chang, J. Kono, and R.-R. Du, Nature Communications 8,
1971 (2017). [6] R. Wang, T. A. Sedrakyan, B. Wang, L. Du, and R.-R. Du, Nature 619,
57 (2023). [7] C. Wu, Modern Physics Letters B, 23, 1 (2009)



Topological protection of transport in fast Thouless pumps in the presence of
disorder

Sidorenko, Anna

Quantized dynamics is essential for natural processes and technological applications
alike. It has been shown that quantized particle transport in Thouless pumps is not
restricted to the limit of slow driving in non-Hermitian Floquet systems [1]. The
degree of topological protection provided by non-Hermiticity in such systems is of
great interest. Here we conduct a comparative study of the robustness of directional
transport in the presence of static random disorder in two periodically driven
systems – quantum ratchet [2] and fast Thouless pumps [1]. In the case of the
ratchet, quantized transport relies on a resonant effect that requires fine-tuning of
driving parameters. On the contrary, directional transport in Thouless pumping is of
a topological origin and observed for a range of driving frequencies considering the
closed cycle in parameter space. Our experimental implementation of the models is
realized by evanescently coupled dielectric-loaded surface-plasmon polariton
waveguide arrays based on the mathematical identity between the coupled mode
theory equations and the discrete Schrödinger equation in the tight-binding
approximation. In the present joint experimental and theoretical study, we analyzed
the effect of topological protection on directional transport by gradually introducing
identical on-site disorder distribution to both systems. We demonstrated that
topologically protected directional transport in the case of a Thouless pump is able
to sustain static disorder while in the case of a quantum ratchet, the high-strength
disorder results in a complete directionality breakdown. References [1] Z. Fedorova,
H. Qiu, S. Linden, J. Kroha, Observation of topological transport quantization by
dissipation in fast Thouless pumps, Nat Commun 11, 3758 (2020). [2] Z. Fedorova, C.
Dauer, A. Sidorenko, S. Eggert, J. Kroha, S. Linden, Dissipation engineered
directional filter for quantum ratchets, Phys. Rev. Research 3(1), 013260 (2021).



Topological multipoles probed by magnetic fields

Tada, Yasuhiro

Multipoles are fundamental quantities in the context of (higher order) topological
insulators. However, it is known that definitions of bulk multipoles have some
difficulties in general dimensions. Indeed, the well-known Resta formula for dipoles



gives vanishing dipole moments in higher dimensions. Also, a similar formula for
quadrupoles does not work for thermodynamically large systems even in two
dimensions. In this study, we propose new many-body multipole indices which have
several advantages over the previously proposed ones [1]. Our argument is based
on an introduction of appropriate magnetic fields and point group symmetries. The
magnetic fields can twist the spatial symmetries and thus probe anomalous
responses to point group operations, which leads to the multipole indices in
interacting systems. With the new indices, we can prove the bulk-boundary
correspondence (or the filling anomaly) in presence of interactions. These analytical
discussions are fully supported by numerical calculations. [1] Yasuhiro Tada and
Masaki Oshikawa, "Many-body multipole index and bulk-boundary
correspondence", arXiv:2302.00800, to be published in Phys. Rev. B.



Non-universal Behaviours of Thermal Hall Conductance in Fractional Quantum
Hall States

Tan, Fei

The fractional quantum Hall (FQH) effect has become one of the most studied
phenomena in condensed matter physics for the past 40 years. One classic approach
studying these systems is to compute their thermal Hall conductance (THC) since it
can be a quantized quantity for certain FQH states and they do not depends on the
details of the system. The quantized value of THC, which is an integer or fractional

value in units of K0 (K0 =
π2k2B
3h ), can be used to determine whether the FQH states is

Abelian or non-Abelian states. This quantization however can only be robust if the
edge of the system is modelled by using the chiral Luttinger liquid (χLL) under the
linear dispersion. In experiments, this model may break down due to the nonlinearity
of the confinement potential and the finite temperature effect. In this work, we
analytically derive the THC of FQH states (i) with finite-size/low-temperature
correction and (ii) under general dispersion relation. This can be accomplished by
proper mathematical tools including integer partition generating function, Mellin
transformation and asymptotic expansion. We conjectured that the THC can only be
a universal quantity if the system is under linear dispersion. The non-universal
corrections can provide guidance for a reasonable error range of THC
measurements in realistic experiments.



Deformed Fredkin model for the  Moore-Read state on thin cylinders

Voinea, Cristian

We propose a frustration-free model for the Moore-Read quantum Hall state on
sufficiently thin cylinders with circumferences ≲ 7 magnetic lengths. While the
Moore-Read Hamiltonian involves complicated long-range interactions between
triplets of electrons in a Landau level, our effective model is a simpler one-
dimensional chain of qubits with deformed Fredkin gates. We show that the ground
state of the Fredkin model has high overlap with the Moore-Read wave function and
accurately reproduces the latter's entanglement properties. Moreover, we
demonstrate that the model captures the dynamical response of the Moore-Read
state to a geometric quench, induced by suddenly changing the anisotropy of the
system. We elucidate the underlying mechanism of the quench dynamics and show
that it coincides with the linearized bimetric field theory. The minimal model
introduced here can be directly implemented as a first step towards quantum

ν = 5/2



simulation of the Moore-Read state, as we demonstrate by deriving an efficient
circuit approximation to the ground state and implementing it on IBM quantum
processor.



The MT Protected Topological States and Local Symmetry in 2D
Antiferromagnetic SrMn2Bi2

Wang, Hao

Antiferromagnetic topological insulators (AFMTIs) with gapless edge states
represent a novel class of topological states for spintronics applications.
Understanding principles behind symmetry protection and exploring AFMTIs with
desirable properties, manipulable by external stimuli, are crucial. In this study,
through first-principles calculations and symmetry analysis, we investigate the
topological properties of monolayer SrMn2Bi2, demonstrating their sensitivity to the
magnetic configuration. When the system is an out-of-plane antiferromagnetic
ground state, we observe a gapless helical edge state protected by the mirror plane
combined with time reversal symmetry. In the ferromagnetic state, the system
resides in the quantum anomalous Hall phase, and the topology is trivial for the in-
plane magnetization. We show that the topological properties can be efficiently
manipulated by strain. Additionally, we emphasize that constructing proper Wannier
functions which obey symmetry constraints in key for avoiding the prediction of
spurious states in the surface spectra. Our work not only provides an ideal candidate
for AFMTIs, but also guides the symmetry analysis of magnetic topological materials
using Wannier functions.



Thermal transport of excitonic topological state in InAs/GaSb heterojunctions

Wang, Xinghao

Recently, a new time-reversal-symmetry breaking excitonic ground state with long-
range quantum entanglement called ETO state has been discovered in shallow
inverted InAs/GaSb electron-hole bilayer systems. It is attributed to frustration
induced by imbalance of electron/hole density or spin polarization and a bosonic
moat band with exotic topological order at zero magnetic field. Theoretically, moat
band structure is likely to result in (fractional) quantum anomalous Hall effect (FQAH)
or the so-called fractional Chern insulators, which is very encouraging in this field.
After thorough low-temperature electrical transport experiment of this new state, we
suggest that only thermal transport can distinguish this FQAH state from other
topological order because excitons do not carrier charges but carry energy. Its
thermal conductance is predicted to be the same as that of 1/2 bosonic FQH state.
Our future experiment is going to explore the thermal transport nature of ETO state.



Graviton modes in Fractional Quantum Hall Fluid

Wang, Yuzhu

Neutral excitations in a fractional quantum Hall droplet define the incompressibility
gap of the topological phase. In this project, we derived a set of analytical results for
the energy gap of the graviton modes with two-body and three-body Hamiltonians
in both the long-wavelength and the thermodynamic limit. These allow us to
construct model Hamiltonians for the graviton modes in different FQH phases and
to elucidate a hierarchical structure of conformal Hilbert spaces (null spaces of



model Hamiltonians) with respect to the graviton modes and their corresponding
ground states. Numerical results of the Laughlin ν = 1/5 and the Gaffnian ν = 2/5
phases confirm that for gapped phases, low-lying neutral excitations can undergo a
"phase transition" even when the ground state is invariant. The compressibility of
the Gaffnian phase, the possibility of multiple graviton modes, the transition from
the graviton modes to the "hollow-core" modes, and the chirality of graviton modes
are discussed in detail, as well as their experimental consequences.



Maximally Localized Wannier Orbitals, Interaction Models and Fractional
Quantum Anomalous Hall Effect in Twisted Bilayer MoTe2

Xu, Cheng

We investigate the moir\'e band structures and the strong correlation effects in
twisted bilayer MoTe2 for a wide range of twist angles, employing a combination of

various techniques. Using large-scale first principles calculations, we pinpoint
realistic continuum modeling parameters, subsequently deriving the maximally
localized Wannier functions for the top three moir\'e bands. Simplifying our model
with reasonable assumptions, we obtain a minimal two-band model, encompassing
Coulomb repulsion, correlated hopping, and spin exchange. Our minimal
interaction models pave the way for further exploration of the rich many-body
physics in twisted MoTe2. Furthermore, we explore the phase diagrams of the

system through Hartree-Fock approximation and exact diagonalization. Our two-
band exact diagonalization analysis underscores significant band-mixing effects in
this system, which enlarge the optimal twist angle for fractional quantum anomalous
Hall states.



Quantum geometry, particle-hole asymmetry and their application in Moire
materials

Yang, Kang

Topological bands with a flat dispersion host strongly correlated states with or
without intrinsic topological orders. The kinetic part of the system is trivial and the
system is dominated by the interaction. At a first glance, electrons do not have any
preference to occupy in the Brillouin zone. Despite the featureless kinetic dispersion,
topological bands are usually equipped with nontrivial band geometry. We show
that the nonuniform band geometry gives rise to emergent Fermi surfaces and it
leads to a general particle-hole asymmetry. The electrons tend to fill regions in the
Brillouin zone where their quantum distance is shorter. The emergent Fermi surface
transforms the strongly interacting problem to a weakly interacting one. This
dictates the low-energy physics and serves as a guiding principle for potential
symmetry-breaking states. We show that in moiré materials, the quantum distance
can be well approximated by a local quantity called the quantum metric. From this
simple quantity, we can deduce what phases are favoured in different moiré systems
at fractional fillings.



Quantum quenches and emergent hydrodynamics in a Landau Level

Zerba, Caterina



Fractional quantum Hall states are stabilized in two-dimensional systems with
applied magnetic field. They are promising platforms for realizing kinetically
constrained dynamics. Particles restricted to one Landau level behave as if they were
on a one-dimensional lattice with effective dipole-conserving interactions. In this
work, we investigate the rich quantum dynamics of this system on a torus. We find
that in the thick torus limit, the system relaxes with hydrodynamic tails governed by
subdiffusive fracton hydrodynamics. When decreasing the thickness of the torus, the
dynamics slow down and display long prethermalization behaviors. We propose to
use these signatures to characterize the dynamics of fractional quantum Hall states
in quantum simulators of ultra-cold atoms. A key experimental signature of their
hydrodynamics behavior can be found in the fluctuations of the number of particles
in a subregion of the system. Furthermore, we provide a connection with
experiments, by studying the full (non-projected) evolution in the basic constituent
of our model. Our analysis shows that quantum dynamics of fractional quantum Hall
states is particularly rich due to an effective dipole conservation, entailing Hilbert
space fragmentation and fracton hydrodynamics.



Gate-Tunable Fractional Chern Insulators in Twisted Double Bilayer Graphene

Zhou, Yi Han

Fractional Chern insulators (FCIs) generalize the conventional fractional quantum
Hall effect from continuum two-dimensional electron gases to lattice setups. We
propose twisted double bilayer graphene (TDBG) as a versatile platform for the
realization of FCIs without the need of a magnetic field. The conduction band of
TDBG can carry Chern number C = 1 and C = 2, which is readily controlled by tuning
the vertical gate potential and the twist angle. By extensive exact diagonalization,
we explore the many-body phase diagram of the system at band filling ν = 1/3, 2/5,
and 1/5. Remarkably, we find compelling numerical evidence of various FCIs in
different regions of band Chern number, including spin-valley polarized states and
spin singlet Halperin states. We try to understand the stability of these states by
considering the energetics and quantum geometry of the topological flat band.





Workshop on correlated condensed quantum matter 
Correlations in Novel Quantum Materials 

The formalism for composite fermions, initially developed for bosons at filling factor ν = 1 [1, 
2], has been a cornerstone in understanding the fractional quantum Hall effect (FQHE). We 
derive the Dirac composite fermion theory for a half-filled Landau level from first principles [3]. 
In this talk, we present novel insights into this phenomenon by employing a dipole 
representation for composite fermions that incorporates the symmetry under particle-hole 
exchange. By imposing a unique constraint on the degrees of freedom of composite fermions 
and composite holes within an enlarged space, we ensure that the resulting composite 
particles, known as dipoles, possess symmetric characteristics. Our investigation focuses on 
an effective Hamiltonian that commutes with the constraint in physical space while preserving 
boost invariance at the Fermi level. Remarkably, our calculations [4] of the Fermi liquid 
parameter F2 demonstrate remarkable agreement with previous numerical investigations [5]. 
Furthermore, we investigate the phase diagram of the quantum Hall bilayer (QHB) system at 
total filling factor ν = 1, where physics at small interlayer distances is understood in terms of 
Bose-Einstein condensation (BEC), while at large distances, physics is mostly understood in 
terms of fermionic condensation. We have now shown that composite fermions offer an 
accurate description of the system for all distances [6]. 
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Abstract. The fractional quantum Hall effect is a phenomenon of strongly correlated electrons that is 

amenable to quasiparticle pictures and modeling. The presence of a strong magnetic field very often 

leads to the dominance of the physics inside a Landau level (LL) and it justifies approaches that assume 

that the description of the problem can be confined to an isolated LL. We will introduce a variant of a 

dipole representation for composite fermions in a half-filled LL, which takes into account the symmetry 

under an exchange of particles (electrons) and holes. This is implemented by a special constraint on a 

composite fermion and a composite hole degree of freedom (of an enlarged space), which makes the 

resulting composite particle (dipole) a symmetric object. We will analyze an effective Hamiltonian that 

commutes with the constraint on the physical space and fulfills the requirement for boost invariance on 

the Fermi level. The calculated Fermi liquid parameter  is in good agreement with numerical 

investigations in K. Lee et al., which predicted  Pomeranchuk instabilities in higher LLs. 
 

 

                          

FIGURE The calculated Fermi liquid parameter  for a generalized Coulomb interaction : 

the lowest LL - blue, the second LL- black, and the third LL – red.  The Pomeranchuk instability is 

expected for  Inset:  with an incomplete account of the boost invariance. From S. Predin et 

al.  
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