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The vibrational properties of 2H -TaSe2−xSx (0≤x≤2) single crystals were probed using Raman
spectroscopy and density functional theory calculations. The end members revealed two out of four
symmetry-predicted Raman active modes, together with the pronounced two-phonon structure,
attributable to the enhanced electron-phonon coupling. Additional peaks become observable due
to crystallographic disorder for the doped samples. The evolution of the E2

2g mode Fano parameter
reveals that the disorder has weak impact on electron-phonon coupling, which is also supported by
the persistence of two-phonon structure in doped samples. As such, this research provides thorough
insights into the lattice properties, the effects of crystallographic disorder on Raman spectra, and
the interplay of this disorder with the electron-phonon coupling in 2H -TaSe2−xSx compounds.

I. INTRODUCTION

Transition metal dichalcogenides, a well studied family
of quasi-2D materials, have attracted considerable atten-
tion in the recent years due to their rich phase diagrams,
thickness-dependent transport, unique optical properties
and collective electron phenomena (e.g. charge density
waves and superconductivity) [1–5]. Since the experi-
mental confirmation of the coexistence of superconduc-
tivity (SC) and charge density waves (CDW) transition
metal dichalcogenides have established themselves as the
ideal candidates for their investigation, given that these
phenomena arise at experimentally accessible tempera-
tures in them [6–8].

Previous experimental research has shown that at
room temperature both the 2H -TaS2 and the 2H -TaSe2
crystallize into the hexagonal structure, described by the
space group P63/mmc (D6h) [9, 10]. The opulent phase
diagram of 2H -TaSe2 includes numerous charge density
wave (CDW) phases at high temperatures – the incom-
mensurate CDW (ICCDW) phase at T1C = 122 K, the
single commensurate CDW (SCCDW) phase in the tem-
perature range from T↓2C = 112 K to T↑2C = 90 K, and
the triply commensurate (TCCDW) phase at T3C = 90
K [9–12]. As for 2H -TaS2, transition from the normal
(metallic) to the ICDW phase occurs at TCDW = 78 K
[13]. These materials exhibit unusually large Raman two-
phonon scattering cross section, often correlated with the
existence of CDW phase [10, 13–15]. Two-phonon fea-

ture in 2H -TaS2 was attributed to second-order scatter-
ing of acoustic and quasi-acoustic modes near the qCDW
∼= 2

3ΓM [16].
The latest experimental results indicate that the sub-

stitution of Se atoms with S atoms leads to a weak double
dome evolution of the superconducting critical tempera-
ture TSC . The TSC dependence coincides with the evo-
lution of crystallographic disorder, suggesting that the
crystalline disorder favors superconductivity while sup-
pressing the CDW phase [17]. Similarly, other types
of disorder generated by etching nanopores in mono-
layer TaS2 sheets [18], or by spontaneous filling of va-
cant sulfur sites by oxygen in few-layer 2H –TaS2 sam-
ples [19] enhance superconductivity in this system. In
addition, first-principles calculations have revealed that
the electron-phonon coupling within TaS2 sheets is dras-
tically boosted (by oxygenation up to 80%) [19], provid-
ing additional pathway to enhance superconductivity by
doping, while suppressing the CDW state.
In this work, we present a Raman spectroscopy study

of 2H -TaSe2−xSx (0≤x≤2) alloys. Obtained experimen-
tal results were found to be in good agreement with the
density functional theory (DFT) calculations. The ex-
perimental Raman spectra of the end compounds host
two out of the four symmetry-predicted Raman active
modes. Additionally, a low-intensity overtone peak O1

obeying pure A1g selection rules can be observed only in
the spectra of 2H –TaS2. The origin of the two-phonon
structure is attributed to enhanced electron-phonon cou-
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pling within phonon branches around the M - and L-
points. In the spectra of doped samples additional peak
and a dynamic evolution of the two-phonon structure are
observed due to crystallographic disorder. Our analysis
of the inverse Fano parameter 1/|q| of E2

2g mode indicates
a weak impact of crystallographic disorder on electron-
phonon coupling.

II. EXPERIMENTAL AND COMPUTATIONAL
DETAILS

The preparation of the single crystal 2H –TaSe2−xSx
alloys used in this study is described elsewhere [17].
The Raman experiment was performed using a Tri Vista
557 spectrometer with a 1800/1800/2400 grooves/mm
diffraction grating combination in a backscattering con-
figuration. As an excitation source, the 514 nm line of
a Coherent Ar+/Kr+ ion laser was used. The direction
of the incident (scattered) light coincides with the crys-
tallographic c axis. Laser beam focusing was achieved
through a microscope objective with 50× magnification.
During the measurements the samples were placed inside
of a KONTI CryoVac continuous helium flow cryostat
with 0.5 mm thick window. All samples were cleaved in
the air before being placed into the cryostat. The ob-
tained Raman spectra were corrected by the Bose factor
and presented with linear scale. The spectrometer reso-
lution is comparable to the Gaussian width of 1 cm−1.

FIG. 1: Schematic representation of crystal structure of
2H –TaSe2 (2H –TaS2) in various orientations.

Next, we have performed density functional theory
(DFT) calculations as implemented in the ABINIT pack-
age [20]. We have used the Perdew-Burke-Ernzerhof
(PBE) functional, an energy cutoff of 50 Ha for the
plane-wave basis, and included spin-orbit coupling by
means of fully relativistic Goedecker pseudo-potentials
[21, 22], where Ta-5d36s2, S-3s23p4, and Se-4s24p4 states
are treated as valence electrons. The crystal structure
was relaxed so that forces on each atom were below
0.05 meV/Å and the total stress on the unit cell be-
low 0.1 bar. This relaxation yields lattice parameters
a = 3.39 Å, c = 14.00 Å for TaS2, and a = 3.51 Å,
c = 14.37 Å for TaSe2. Subsequently, the phonons and

the electron-phonon coupling (EPC) were obtained from
density functional perturbation theory (DFPT) calcula-
tions, also within ABINIT [23]. Here, we have used a
16×16×6 k-point grid for the electron wave vectors and
an 8 × 8 × 3 q-point grid for the phonon wave vectors.
For the electronic occupation we employed Fermi-Dirac
smearing with broadening factor σFD = 0.01 Ha (suffi-
ciently high to exclude unstable phonon modes related
to the low-temperature CDW phases).
The phonon-wave-vector(q)- and mode(ν)-resolved

electron-phonon coupling, plotted in Fig. 2, was eval-
uated as

λqν =
2

NFωqν

∑
k,n,m

∣∣gνkn,k+qm

∣∣2 δ (εkn − εF ) δ (εk+qm − εF ) ,

where NF is the electronic density of states at the Fermi
level (εF ), ωqν are the phonon frequencies, gνkn,k+qm the
electron-phonon coupling matrix elements obtained from
DFPT calculations, with n and m electronic band in-
dices, and εkn (εk+qm) the electronic eigenvalue for band
n (m) and electronic wave vector k (k+q) obtained from
DFT calculations.

III. RESULTS AND DISCUSSION

A. 2H–TaSe2 and 2H–TaS2

All single crystal alloys of 2H –TaSe2−xSx (0≤x≤2)
crystallize into P63/mmc crystal structure (Fig. 1) [9,
10]. Wyckoff positions of atoms and their contributions
to the Γ-point phonons together with corresponding Ra-
man tensors for the two end compounds are listed in Ta-
ble I.
In total, the symmetry analysis predicts four Raman-

active modes (A1g + E1g + 2E2g) for the two end com-
pounds of 2H –TaSe2−xSx. According to the Raman ten-
sors presented in Table I, A1g modes can be observed only
in parallel polarization configuration, whereas E2g modes
can be observed in spectra measured both in parallel and
crossed polarization configurations. For our backscatter-
ing configuration, where laser beam is focused along the
c-axis onto ab plane, the E1g mode is unobservable.
Raman spectra of the two end compounds 2H –TaSe2

and 2H –TaS2 measured at T = 150 K are presented in
Fig. 2 (a) and (c), respectively. This particular temper-
ature has been chosen because it is significantly higher
than the critical temperature of the CDW phase transi-
tions. The Raman spectra of the pristine samples exhibit
two prominent peaks, assigned as A1g and E2

2g symmetry
modes, accompanied by a broad structure and an addi-
tional peak in the case of 2H -TaS2. For clarity, Raman-
active modes observed in 2H –TaS2 spectra are marked
with asterisk. Theoretically predicted modes are first an-
alyzed, after which we address the origin and nature of
additional peak and broad structure.
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FIG. 2: (a) and (c) Raman response of 2H –TaSe2 and 2H –TaS2 for parallel polarization configuration at T = 150 K.
The blue solid line represents the cumulative fit consisting of electronic continuum (dashed line) and phonon modes.
The electronic continuum was modeled using simplified approach as described in [24], utilizing the following function:

R
′′

χ(ω, T ) = a(T ) · tanh ω
c(T )+b(T ) · ω

c(T ) . Here a(T ), b(T ) and c(T ) are temperature dependent parameters determined

for each sample. Phonon modes were fitted using Fano line profile. Parts of spectra not covered by cumulative fit
were identified to originate from two-phonon scattering. The contributions of the Ta (orange) and Se/S atoms (blue)
to the calculated PDOS are shown as insets. First Brillouin zone with indicated points and lines of high symmetry
is also shown in the inset of (a). (b) and (d) The calculated phonon dispersion of corresponding pure samples in the
normal phase, with the value of electron-phonon coupling constant (λ) indicated through the color scale.

The Raman responses of both samples were analyzed
with a cumulative fit to include electronic continuum and
discrete single-phonon excitations. The Breit-Wigner-
Fano profile was used to model single-phonon excitations,
due to visible asymmetry of the E2

2g modes. For sim-
plicity, the A1g modes were fitted with constant Fano
parameter |q| = 50, as they are highly symmetric. The
phonon energies obtained in this way, alongside the cal-
culated ones are listed in Table II. The lower frequency
E1

2g modes are related to shear (S) movements of the lay-

ers, with frequencies of ∼ 5 cm−1 for both compounds,

whereas B1
1g modes represent the layer breathing (LB)

and are expected at frequencies ∼ 10 cm−1.
As can be seen in Table II, the discrepancy in experi-

mental and theoretical phonon energy is less than 10 %
for all observed modes. The E1

2g modes were not ob-
served in the investigated energy region in accordance to
our numerical calculations and are not in the focus of
this study. The phonon dispersions, obtained from the
DFPT calculations, are shown in Fig. 2 (b) and (d), to-
gether with the calculated values of the EPC constant
λ. These indicate the presence of non-zero EPC in E2

2g
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TABLE I: Wyckoff positions of atoms and their contri-
butions to the Γ-point Raman active phonons for the
P63/mmc space group of 2H –TaSe2 (and 2H –TaS2) to-
gether with the corresponding Raman tensors.

Space group: P63/mmc (194)

Atoms Irreducible representations

Ta (2b) E2g

Se/S (4f) A1g + E1g + E2g

Raman tensors

A1g =

a 0 0
0 a 0
0 0 b


1E1g =

0 0 0
0 0 c
0 c 0

 2E1g =

 0 0 −c
0 0 0
−c 0 0


1E2

2g =

d 0 0
0 −d 0
0 0 0

 2E2
2g =

 0 −d 0
−d 0 0
0 0 0



TABLE II: Phonon symmetries and phonon energies
(in units of cm−1) at Γ and their degeneracies for the
P63/mmc structure of 2H –TaS2 and 2H –TaSe2. The
experimental values were determined at 300K with ex-
perimental uncertainty of 0.3 cm−1. The DFPT calcula-
tions were performed at zero temperature. In case of the
lowest two modes, ‘S’ stands for shear and ‘LB’ for layer
breathing.

2H –TaS2 2H –TaSe2

Symm. Deg. Calc. Exp. Calc. Exp.

E1
2g (S) 2 4.9 5.5

B1
1g (LB) 1 10.4 10.7

E2u 2 208.0 125.4

E1g 2 208.1 125.4

E2
2g 2 271.3 288.8 189.1 207.7

E1u 2 271.3 189.2

A2u 1 341.6 241.8

B2
1g 1 348.0 245.1

B1u 1 368.0 216.9

A1g 1 368.5 402.9 217.7 234.7

scattering channel, giving rise to asymmetric line pro-
files. On the other hand in the A1g channel no EPC was
found, thus they should have symmetric profiles, as we
have observed.

In addition to the observed Raman-active modes, the
spectra of 2H –TaS2 in the parallel polarization config-
uration host the O1 peak, with energy at about ∼ 490
cm−1. This peak cannot be explained in terms of the
first-order Raman scattering as its energy is well beyond

the phonon energy range (see Fig. 2 (d)). Despite this,
we have included this peak in the cumulative fit in order
to track its energy. Previously reported large two-phonon
scattering cross section in this material [10, 13–16] indi-
cates a second-order Raman scattering, which might oc-
cur due to defect and/or enhanced EPC. The absence of
additional first-order peaks at energies with the highest
phonon density of states (PDOS) values contradicts the
expectations for defect-induced peaks [25]. Considering
that one of the PDOS maxima (∼ 250 cm−1) is located
near the energies that correspond to the half energy of
O1 peak (Fig. 2 (c)), we believe that this peak is an over-
tone in nature and is observable due to enhanced EPC.
To determine the validity of this assumption, the phonon
dispersion curves and electron-phonon coupling constant
λ (Fig. 2 (d)) were further examined. If the O1 peak is,
indeed, observable due to electron-phonon coupling, we
would expect that optical phonon branches around ener-
gies ωO1

/2 express high values of λ. As it is indicated
in Fig. 2 (d), several optical branches along the lines of
high symmetry, at energies just below 250 cm−1, meet
this condition thus supporting our assumption.
The broad structures in the spectra of 2H –TaSe2 and

2H –TaS2, with energies at about ∼ 130 cm−1 and ∼ 160
cm−1, respectively, are centered in the gap of the theo-
retical PDOS, thus not a result of the first-order Raman
scattering. Considering previous discussion on the origin
of the O1 peak in 2H –TaS2 spectra and applying simi-
lar analysis, these structures can likewise be explained as
a two-phonon processes, predominantly overtones in na-
ture but also with combinations contribution (as can be
deduced from Fig. 5), also originating from the enhanced
electron-phonon coupling. As shown in Fig. 2, peaks in
PDOS values can be found in the ω2phon/2 energy ranges.
By examining the phonon dispersion curves of 2H –TaS2
and 2H –TaSe2 (Fig. 2), several phonon branches with
enhanced EPC are in the appropriate energy range for
the two-phonon process. In the case of 2H –TaS2, these
branches fall within the energy range of 100 - 150 cm−1,
while for 2H –TaSe2, they lie in the range of 50 - 100
cm−1. It was reported in a previous study [16] that the
origin of two-phonon structure in 2H –TaS2 is in the vicin-
ity of the CDW wave vector qCDW

∼= 2
3ΓM, where strong

EPC exists. We argue that the origin of large scatter-
ing cross section for the two-phonon process is enhanced
EPC in a much larger phase space that is required to
reproduce the high Raman cross-section of the observed
structures.
The phonon branches along (and in the vicinity) the lines
of high symmetry: Γ−M , A−L, and L−M (illustrated
in Fig. 2), demonstrate the highest values of the electron-
phonon coupling constant, and we believe that these re-
gions of phase space contribute to the two-phonon pro-
cess. As anticipated, these branches closely coincide with
energy levels that correspond to ω2phon/2, since the ma-
jor contribution lies in the A1g symmetry corresponding
to the overtones (see Appendix A). This provides a strong
argument to support our assumptions, regarding the na-
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FIG. 3: Raman spectra of 2H –TaSe2−xSx measured at
150 K in parallel polarization configuration. Additionally
to the A1g, A

∗
1g, E

2
2g and E2∗

2g modes, one peak assigned
as P1 and PDOS projection onto two-phonon structure
arise in the spectra of doped materials. With dashed
lines are marked places of PDOS maxima in both pure
samples. Spectra contain offset in y-direction for clarity.

ture and the origin of the two-phonon structures. Sig-
nificantly higher intensity of the two-phonon structure in
2H –TaS2, compared to the O1 peak, can be attributed to
the stronger EPC observed in the corresponding phonon
branches, as supported by our DFT calculations.

B. 2H–TaSe2−xSx (0≤x≤2)

Raman spectra of the 2H –TaSe2−xSx (0≤x≤2) sin-
gle crystals measured in parallel polarization configura-
tion at T = 150 K are presented in Fig. 3. The two
modes that are present in the spectra of pristine 2H –
TaSe2 - A1g and E2

2g, can also be observed in the spectra
of the doped samples. The A1g symmetry mode per-
sists in the spectra up to 2H –TaSeS. As x increases
further we cannot be certain that the existing feature
in spectra is A1g mode, because of low Se content and
possible 2H –TaS2 PDOS contributions. Converesly, E2

2g

vanishes for x = 0.84, while A∗
1g and E2∗

2g modes can
last be found in the spectra of 2H –TaSe1.16S0.84 and
2H –TaSe0.5S1.5, respectively. Considering that E2

2g and

E2∗
2g arise from the out-of-phase in-plane oscillations of

Ta and Se/S atoms, the dependence on sulfur content
x exhibits a discontinuous behavior. For the A1g mode
(out-of-plane movement of Se/S atoms) we observe con-
tinuous change with doping alongside simultaneous co-
existence of A1g and A∗

1g peaks in samples where Se/S
concentration ratio is around unity. In the specific case of
2H –TaSeS, at the nanoscale level, localized regions may
emerge where either Se or S atoms predominate. Al-
though these regions possess a sufficient size to generate
detectable signals, they are significantly smaller in com-
parison to the laser spot (∼ 5 µm2), resulting in the inclu-
sion of a considerable number of such clusters of atoms
within the laser’s spatial coverage. Consequently, the
resulting Raman spectrum displays discernible contribu-
tions from both elements. The concentrations at which
the E2

2g mode vanishes directly correlate with disorder
reaching its maximum value. Given that doping modi-
fies the bond lengths of Ta-S and Ta-Se atoms, which, in
conjunction with the accompanying lattice disorder, has
a detrimental effect on the E2

2g mode.
The gradual substitution of the selenium atoms with

sulfur in the 2H –TaSe2 crystals introduces crystallo-
graphic disorder, giving rise to new scattering channels
that result in additional peak observed in the Raman
spectra of doped materials. This new peak with energy
at about 342 cm−1, assigned as P1 is observed exclu-
sively in doped spectra measured in parallel polarization
configuration, therefore obeying A1g symmetry rules. It
is presumably an overtone mode, as its energy closely
matches double that of the location where the highest
PDOS value of the 2H –TaSe2 is situated.

To further investigate the effects of crystallographic
disorder, we have inspected the evolution of phonon pa-
rameters with the sulfur content x, depicted in Fig. 4. As
in the case of pure samples, all phonon lines were fitted
using Fano profiles. No asymmetry was observed for the
A1g modes and they were fitted with the value of Fano
parameter q being fixed at 50. All modes but E2

2g harden
with the increase in the sulfur concentration in the mea-
sured crystals. Given the difference in the atomic mass
of Se and S and a reduction of the unit cell volume [17],
one would expect that the E2

2g mode also hardens with in-

creasing x [26–28]. The unexpected behavior of E2
2g mode

might be attributed to the enhanced EPC, which poten-
tially overcompensates previously mentioned effects. All
Raman modes broaden due to increased crystallographic
disorder. Considering that the Fano profiles are used to
describe the line shape originating from coupling between
phonon and electronic continuum, and that the Fano pa-
rameter depends on the interaction strength between the
phonon and the continuum, the inverse value of Fano
parameter 1/|q| can be used as a direct measure of the
strength of EPC [29–32]. The interference of two-phonon
structure in the fitting procedure produces large uncer-
tainty (see Figs. 4(c)), preventing a clear assertion about
the EPC, other than it persists through growing disor-
der. This result falls within the range of the potential
increase in disorder-induced EPC [17].
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Crystallographic disorder also has a significant impact
on the evolution of two-phonon structure. Changing the
sulfur content to x = 0.09, the broad structure in pristine
2H –TaSe2 spectra centered at around 130 cm−1 under-
goes a further broadening accompanied by pronounced
evolution of the shoulder at around ∼ 110 cm−1, likely
due to more pronounced evolution of the EPC in the re-
lated phonon branches. Raising the sulfur content to 0.25
and thus further increasing disorder restores the struc-
ture to a solitary broad peak. However, the most drastic
change is observed in the spectra when x = 0.84, where
four first order peaks are superimposed onto a broad two-
phonon structure. As discussed previously, the additional
peaks might become observable in Raman experiment
due to defect scattering and are related to the regions
where the PDOS reaches its maximum: at∼ 90 cm−1 and
∼ 110 cm−1 for 2H –TaS2, at ∼ 80 cm−1 and ∼ 175 cm−1

for 2H –TaSe2 (see Fig. 2). These correspond rather well
with the energies of the newly observed phonon modes.
Raising the concentration of sulfur to x = 1 results in
a wholly diluted structure consisting of two broad peaks
at around ∼ 80 cm−1 and ∼ 160 cm−1. In the spectra
with sulfur content x = 1.65, structure resembles that of
the x = 0.84, albeit of less clarity among peaks. From
these observations, we can see that the primary impact
of disorder on the two-phonon structure is manifested by
the broadening of peaks and the projection of the PDOS.
Furthermore, the persistence of the two-phonon structure
across doped samples suggests that disorder does not hin-
der the electron-phonon coupling. This corollary aligns
with previous observations regarding the 1/|q| parameter
of the E2

2g mode.
Our results reveal the origin of two-phonon structures

in the 2H –TaSe2−xSx compounds. It is also evident that,
although disorder does not directly influence the strength
of the EPC (in the range from x = 0.25 to x = 1.65), it
affects the phenomena that share EPC as a seemingly
common origin differently. While the CDW is destroyed,
SC and the two-phonon structure survive [17] suggesting
that strong EPC alone is insufficient to sustain the CDW
in a disordered lattice. It is interesting to note that these
materials simultaneously and independently experience
the effects of disorder and EPC.

IV. CONCLUSIONS

In this study, we conducted a Raman scattering analy-
sis of 2H -TaSe2−xSx (0≤x≤2) alloys. The Raman spec-
tra of the end compounds host two out of the three
symmetry-expected Raman active modes for backscat-
tering configuration and an additional peak O1 of A1g

symmetry, present only in the 2H –TaS2 spectra. This
O1 peak is a result of second-order Raman scattering,
overtone in nature, observable due to the prominent
EPC, characteristic for CDW materials. The broad
two-phonon structures observed in pristine samples were
linked to enhanced EPC in the corresponding phonon
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(dark red) dependence on the sulfur content x (obtained
from electrical resistivity measurments presented in Ref.
[17]), together with the electronic phase diagram (shaded
red) of 2H –TaSe2−xSx reflect the evolution of crystallo-
graphic disorder.

branches, as obtained from our first-principles calcula-
tions. The gradual substitution of Se atoms with S atoms
results in crystallographic disorder, introducing new scat-
tering channels – in the form of an additional peak P1 of
A1g symmetry, as well as PDOS projection and broaden-
ing of all phonon modes. Dependence on sulfur content
showed hardening of all modes, except for E2

2g mode.

Softening of the E2
2g mode and its discontinuous depen-

dence were attributed to strong EPC. Coexistence of A1g

peaks in intermediate doping levels arises probably due
to nanoscale clusters comprised mainly of either Se or S
atoms. In spectra where disorder reaches its maximum,
four single-phonon peaks accompanied the background
two-phonon structure, with energies corresponding to the
region of PDOS maxima. The negligible influence of dis-
order on the EPC was supported by the continued pres-
ence of the two-phonon structure and the behavior of the
1/|q| parameter associated with the E2

2g mode. Thus,
in the absence of changes in either electron-electron [17]
or EPCs, significant rise of TSC in doped alloys is only
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due to disorder-induced CDW suppression. Our findings
provide insights into the intricate relationship between
disorder and EPC, shedding light on their combined in-
fluence in governing the vibronic and collective electronic
behavior of 2H –TaSe2−xSx compounds.
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Appendix A: Mode assignation and nature of
additional peaks
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FIG. 5: Raman response of 2H –TaSe2, 2H –TaSe1.5S0.5,
2H –TaSe1.91S0.09 and 2H –TaS2 for parallel (black) and
crossed (gray) polarization configurations at T = 300 K.
The possible overtone modes O1 and P1 are only present
in parallel polarization configuration.

Raman spectra of all samples were measured in par-
allel and crossed polarization configurations in order to
correctly assign theoretically predicted modes as well
as the unexpected and additional peaks and structures.
From the Raman spectra presented in Figure 5 theoreti-
cally predicted A1g and E2

2g modes were easily identified.
Given that the O1 and P1 peaks are only present in par-
allel polarization configuration, they obey pure A1g sym-
metry rules. Two-phonon structure is present in both
polarization configurations, but with significantly higher
intensity in A1g channel. Additional features in two-
phonon structure in the spectra of 2H –TaSe1.5S0.5 are
only present in parallel polarization configuration, thus
they are possibly overtones in nature or single-phonon

excitations of A1g symmetry.
Appendix B: Fitting details

All peaks were fitted using both asymmetric Fano pro-
files and symmetric Voigt profiles. Since the line widths
of the analyzed phonon modes were much greater than
the resolution of spectrometer σ, the real width of the
peaks could be obtained without the need to use Fano
profiles convoluted with a Gaussian function, where ΓL

= σ. The comparison between the obtained fits are pre-
sented in Figure 6. As it can be seen, peaks E2

2g and

E2∗
2g show clear asymmetric line shape, whereas the A1g

symmetry peaks do not. Therefore, the latter were fitted
with Fano parameter value |q| being fixed at 50. Ac-
quired phonon parameters as a function of sulfur content
x are presented in Figures 4.
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FIG. 6: Raman response as a function of the Raman
shift. Quantitative analysis of the E2

2g, E2∗
2g , A1g and

A∗
1g modes at T = 150 K. The blue and green solid lines

represent Fano and Voigt profiles fitted to the experimen-
tal data, respectively. Experimental data is represented
by open squares.

The increase in doping leads to the significant decrease
in the relative intensity of E2

2g Raman active modes,
therefore the obtained phonon parameters have slightly
higher error bar compared to the A1g modes. Fits ob-
tained using Fano profiles in the energy range of peaks
E2

2g and E2∗
2g are presented in Figure 7. The two-phonon

structure interferes with the lower energy side of the
peaks in the spectra of all doped samples, contributing
to the mentioned error.
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FIG. 7: Raman response as a function of the Raman
shift. Quantitative analysis of the E2

2g and E2∗
2g modes

for indicated sulfur content x in the measured crystals.
The blue lines represent Fano profiles fitted to the exper-
imental data.
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Transitional metal dichalcogenides have attracted a lot of attention due to their rich phase 

diagrams, thickness-dependent transport, distinctive optical characteristics, and the 

emergence of collective electron phenomena (e. g. charge density waves - CDW and 

superconductivity) which can co-exist, contrary to what was predicted by previous 

theoretical studies. Given that both superconductivity and CDW phase have been 

experimentally confirmed in the crystal alloys of 2H-TaSe2-xSx, these materials represent 

perfect candidates to investigate an intricate connection between these two phenomena. 

Additionally, it was recently shown that in the metallic single crystal alloys of 2H-TaSe2-xSx 

the crystalline disorder favours superconductivity while suppressing CDW phase. In this 

study, Raman spectroscopy was used to investigate the lattice dynamics of 2H-TaSe2−xSx (0 

≤ x ≤ 2) alloys. Experimental results were compared to density functional theory (DFT) and 

density functional perturbation theory (DFPT) calculations. In the Raman spectra of pristine 

samples two out of three symmetry predicted Raman active modes were observed, with the 

missing mode being unobservable in the used backscattering geometry. Experimental values 

of phonon energies are in good agreement with theoretical calculations. The temperature 

dependence of phonon energies and line widths directly reflects existing CDW transitions. 

The Raman spectra of doped materials were compared to those of pure samples in order to 

inspect how the electron-phonon interaction and crystallographic disorder affect the phonons. 

Additional peaks and a dramatic development of the two-phonon structure are detected in the 

Raman spectra of the doped samples. A signature of the crystallographic disorder can also be 

identified in the sulfur content dependence of phonon energies, line widths and Fano 

parameter. 
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Transition metal dichalcogenides, as a well studied family of quasi-2D materials,
have attracted considerable attention in recent years due to rich phase diagrams,
thickness-dependent transport, unique optical properties and collective electron
phenomena which occur at experimentally accessible temperatures. Additionally, it
was recently shown that in the metallic single crystal alloys of 2H-TaSe 2−xS x the
crystalline disorder promotes superconductivity, while suppressing charge density
wave (CDW) order. In this work, the lattice dynamics of TaSe 2−xS x (0 ≤ x ≤ 2)
alloys was probed using Raman spectroscopy and results were compared to den-
sity functional theory (DFT) calculations. In order to investigate whether crystallo-
graphic disorder affects the phonons, spectra of doped materials were compared to
the ones belonging to the end alloys. The Raman spectra of the end compounds (
x = 0 and x = 2) host two out of three symmetry-expected Raman active modes for
backscattering configuration. Calculated phonon energies agree well with the ex-
perimental ones. In Raman spectra of the doped samples additional peaks, though
of low intensity, can be easily identified. These additional peaks most likely arise
from the crystalline disorder. Dependence of phonon energies and linewidths on
sulfur content x also reveals a clear fingerprint of crystallographic disorder.
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Abstract. Quasi-2D materials have gained a significant attention in the last few years because of 
their unique physical properties. The family of transition metal dichalcogenides is particularly 
intriguing due to their complex phase diagrams, characteristic optical properties and possibility to 
observe collective electron phenomena at higher temperatures. A strong correlation was observed 
between the electron-phonon interaction and the CDW phase in materials that display such states. 
Recent study has revealed that crystalline disorder promotes superconductivity while 
simultaneously suppresses CDW phase in metallic single crystal alloys of 2H-TaSe2-xSx.  

Raman spectroscopy was used to investigate the effect of defects on lattice dynamics and electron-
phonon coupling in these materials, and the results were compared to theoretical calculations. In 
our scattering configuration two out of four Raman active modes predicted by symmetry for parent 
compounds are identified. Additionally, in the spectra of pure samples broad two-phonon 
structures are observed, emerging as a consequence of strong electron-phonon coupling in related 
phonon branches. By substituting Se with S atoms, extra peak obeying A1g selection rules, 
overtone in nature, appears in spectra along with an intriguing evolution of two-phonon structure. 
The Raman spectra of the x = 0.84 sample shows single-phonon excitations that are superimposed 
on already existing structure. These excitations correspond to PDOS maxima projected due to 
significant crystallographic disorder. Symmetry predicted A1g modes expectedly harden with 
doping as unit cell volume decreases, whereas E2g modes exhibit anomalous behavior attributed 
to enhanced electron-phonon coupling. The analysis of E2g mode Fano parameter indicates that 
disorder has a minor impact on electron-phonon interaction. 
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Recent research has highlighted transition metal dichalcogenides (TMDs) for their fascinating 

electronic and quantum properties. These materials are unique in that their phase transitions 

can be finely tuned through pressure, doping, or layer thickness, making them ideal for 

investigating phenomena such as charge ordering, spin-orbit coupling, and potential 

topological phases. This adaptability creates exciting opportunities for advancements in 

quantum materials and device technologies. Notably, experiments have demonstrated the 

coexistence of superconductivity (SC) and charge density waves (CDWs) with findings in 2H-

TaSe₂₋ₓSₓ suggesting that disorder promotes SC while suppressing the CDW phase. In this 

study, we used Raman spectroscopy and density functional theory to explore the vibrational 

properties of 2H-TaSe₂₋ₓSₓ (0≤x≤2) single crystals. In undoped samples, two symmetry 

predicted Raman modes and a prominent two-phonon feature linked to strong electron-phonon 

coupling (EPC) were observed. Doping with sulfur atoms leads to the appearance of additional 

peaks due to crystallographic disorder. The evolution of 𝐸2𝑔
2  mode Fano parameter and the 

persistence of the two-phonon structure suggest that disorder has negligible effect on EPC. 

This study offers valuable insights into the lattice properties, the influence of crystallographic 

disorder on Raman spectra and its interplay with EPC in 2H-TaSe₂₋ₓSₓ compounds. 
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In recent years, quasi-low-dimensional materials have attracted significant attention due to 

their distinctive properties and possible applications in nanoeletronics and spintronics. The 

material of a specific interest within this group is InSiTe₃. Unlike related compounds, such as 

CrSiTe₃ and CrGeTe₃, research results InSiTe₃ are limited, most likely due to the unclear 

nature of its crystal structure. Detailed experimental and theoretical investigation was 

conducted to determine the crystal structure of InSiTe3. Inelastic light scattering experiment 

performed on the InSiTe3 reveals presence of six (3A1g + 3Eg) out of eight and seven (5Ag + 

2Eg) out of ten Raman active modes for proposed P3̅1m and P3̅ space groups, respectively. 

These findings suggest a coexistence of two trigonal crystal phases: a high symmetry one 

corresponding to P3̅1m and athe lower symmetry one that corresponds to P3̅ space group. 

Additional exitations were detected in parallel scattering configuration; two broad features in 

the gap of PDOS that can be a consequence of to two-phonon processes and a third one, at 

about 500 cm-1 that might indicate local symmetry breaking at nano scale. Temperature 

dependent measurements from 80 K to 300 K show monotonous decrease in energy and 

increase in linewidth up to 200 K at which point discontinuities appear across all analyzed 

modes. However, this anomaly overcomes the scope of this research and remains an open 

question. 
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P2 
Interplay of disorder and electron-phonon coupling in 2H-TaSe₂-
ₓSₓ (0≤x≤2) investigated by Raman Spectroscopy 
Jovan Blagojević, Institute of Physics Belgrade 

The quasi-2D nature of layered transition metal dichalcogenides introduces 
novel phenomena not observed in bulk materials. Features such as complex 
phase diagrams, diverse electronic and optical properties, temperature-driven 
transitions, and strong spin-orbit and electron-phonon coupling have driven 
significant research interest in these materials. Recent studies reveal a 
correlation between electron-phonon coupling and the charge density wave 
(CDW) phase. In doped alloys such as 2H-TaSe2-xSx, where sulfur doping 
induces lattice disorder, the CDW phase is effectively 
suppressed, while superconductivity is enhanced. 

In this study, we investigated the lattice dynamics of 2H-TaSe2-xSₓ (0≤x≤2) 
alloys using Raman spectroscopy, supported by density functional theory 
(DFT) calculations. The Raman spectra of undoped samples reveal two of the 
four symmetry-predicted Raman-active modes and a broad two-phonon 
structure, indicative of strong electron-phonon coupling. In doped samples, 
disorder introduces new scattering channels, resulting in additional peaks. 
Our analysis shows that disorder has a negligible effect on electron-phonon 
coupling, suggesting that the CDW phase is more susceptible to structural 
changes, while the robust superconducting order persists due to the 
enduring electron-phonon coupling. This research provides insights into the 
effects of crystallographic disorder and electron-phonon coupling on Raman 
spectra and lattice dynamics of 2H-TaSe2-x Sₓ compounds. 
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Abstract. Zirconium pentatelluride (ZrTe₅) has attracted considerable attention in the condensed 

matter community due to its temperature-dependent band gap variations. Additionally, it has 

been proposed that ZrTe₅ lies near a phase boundary between strong (STI) and weak topological 
insulator (WTI) phases, as well as undergoing an electronic topological (Lifshitz) transition. 

Depending on the sample and synthesis conditions, the Lifshitz transition temperature varies 

between 50 and 150 K [1–3]. In this study, we performed Raman spectroscopic analysis of ZrTe₅ 

single crystals over a temperature range of 76 to 300 K. The measurements were carried out in 

symmetry-resolved scattering geometries using parallel and cross polarization configurations 

along the principal crystallographic directions. In this setup, only phonon modes of Ag and B2g 

symmetries are allowed in the respective configurations. The results reveal pronounced 

temperature-dependent behavior, including variations in phonon linewidths and peak positions. 

Notably, at lower temperatures, certain phonon modes exhibit asymmetric line shapes that are 

well described by the Fano profile. As the temperature increases, these features gradually evolve 

into symmetric peaks. This behavior indicates a strong coupling between lattice vibrations and 
electronic excitations in ZrTe₅. Our Raman scattering results provide valuable insight into the 

phonon dynamics and electron–phonon coupling in ZrTe₅, contributing to a deeper 

understanding of its fundamental properties. 
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Abstract.  

Unconventional superconductivity often arises in materials with complex interactions, where 

competing ordered states such as magnetism, nematicity, and superconductivity, interact and 

sometimes overlap, making their nature elusive. Among iron-based superconductors, the 

isostructural FeSe and FeS may appear similar but they differ significantly in their physical 

properties. While FeSe undergoes a nematic and structural phase transition, FeS shows no 

structural transition even at the lowest temperatures, with its critical temperature (Tc) halved 

compared to FeSe. Interestingly, substituting selenium with sulfur in FeSe suppresses the nematic 

transition temperature to zero near a quantum critical point (QCP), which coincides with a 

significant drop in Tc. It has been suggested that while spin-fluctuations dominate below the QCP 

and significantly affect electron-phonon interactions, nematic fluctuations become prominent 

above the QCP. Here, we present a detailed Raman scattering study of FeSe under uniaxial strain 

applied along two high-symmetry crystallographic directions, ⟨110⟩ and ⟨100⟩, to investigate how 

symmetry-breaking perturbations affect its lattice dynamics. Our results reveal a pronounced 

anisotropy in the phonon response to strain: orthorhombic distortion along the ⟨110⟩ direction 

leads to a moderate narrowing of the temperature window over which phonon anomalies occur, 

while strain along ⟨100⟩ which introduces rhombohedral distortion, results in a significant 

broadening of the temperature range over which phonon mode splitting, and energy and linewidth 

anomalies are observed. We find that the fully symmetric A1g phonon mode is particularly sensitive 

to symmetry-breaking perturbations, while the B1g phonon mode remains largely unaffected. 
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Abstract. The dye contaminated wastewater is adversely affecting human health and the 

environment around the world. The issue can be resolved by photocatalytic degradation, which 

converts dyes into non-toxic compounds without producing secondary waste. In this work, we 

investigate the ability of MoS2 nanotubes (NT) to decompose the rhodamine B (RhB) dye. MoS2 

NT synthesized by chemical vapor transport have high specific surface area, numerous S vacancies 

and favourable energy gap for visible light decomposition [1-2]. However, the initial degradation 

tests yielded poor results. The inert surface of MoS2 NT was etched with O2/Ar plasma which 

increased a number of catalytically active sites and introduced Mo-O bonds. UV-Vis and Raman 

spectroscopy, imaging techniques such as SEM, TEM and STM as well as the KPFM work 

function measurements verified the alteration. Simple MoO3-MoS2 system is formed, in which the 

reducibility of electron in the conductive band of MoS2 increases, while the oxidability of hole in 

the valance band of MoO3 also increases (Figure 1). We report over 90 % degradation efficiency, 

with the majority decomposing in the first 15 min of LED irradiation.  

 
FIGURE 1.  Shematic representation of photodegradation of RhB on MoS2-MoO3 NT. 
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Abstract. Layered transition metal dichalcogenides (TMDs) possess remarkable electronic and 
optical properties, largely due to their quasi-two-dimensional structures. These materials display 
complex phase diagrams and temperature-driven transitions [1]. In these compounds charge 
density wave (CDW) and superconductivity (SC) are shown to coexist at certain temperatures - 
illustrating the delicate balance and inherent competition between these two phases [2]. 

Isoelectronic substitution such as sulfur doping in 2H-TaSe2-xSx, primarily introduces disorder, 
which disrupts the CDW phase and enhances superconductivity [3]. Tuning properties through 
doping and structural changes highlights the potential of TMDs for future quantum materials and 
devices.  
In this work, we examined the lattice dynamics of 2H-TaSe2-xSx single crystals (0≤x≤2) using 
Raman spectroscopy alongside density functional theory (DFT) calculations. For the undoped 

samples, the Raman spectra show two out of the four symmetry-allowed modes and a broad two-
phonon feature, which is correlated with strong electron–phonon coupling (EPC). With sulfur 
doping, the induced disorder opens new scattering channels, giving rise to extra peaks. Our 
results indicate that disorder minimally affects the EPC, suggesting that while the CDW phase is 
sensitive to structural changes, the SC state remains robust. Overall, our study sheds light on 
how crystallographic disorder and EPC shape the Raman response and lattice dynamics in these 

compounds. 
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Abstract. Layered van der Waals materials have gained considerable interest for their unique 

physical properties, yet InSiTe3 remains largely unexplored due to uncertainties surrounding its 

crystal structure. In this work, we present a comprehensive experimental and theoretical 

investigation of InSiTe3, confirming a rhombohedral structure with P3̅ space group symmetry via 

single-crystal X-ray diffraction. Polarization-resolved Raman scattering reveals nine out of ten 

Raman-active modes expected for this symmetry, further validating the structural assignment. 

Beyond conventional phonon behavior, we identify strong anharmonicity and the emergence of a 

self-organized coherent phonon state associated with a high-energy 𝐴𝑔 mode near 500 cm-1. 

Analysis of phonon-phonon coupling parameters indicates that 𝐴𝑔 modes exhibit coupling 

strengths up to eight times greater than 𝐸𝑔 modes. Temperature-dependent Raman measurements 

from 80 to 300 K reveal notable changes in 𝐴𝑔 mode intensities around 200 K and the appearance 

of broad spectral features in the phonon gap region, attributed to overtone excitations. 

Our findings point to an intrinsic lattice instability in InSiTe3, driven by strong anharmonic 

interactions. However, further studies are required to fully uncover the microscopic origin of these 

instabilities and their implications for the material’s physical properties. 
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