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Computing dynamical response functions in interacting lattice models is a long-standing challenge in

condensed matter physics. In view of recent results, the dc resistivity ρdc in the weak-coupling regime of the

Hubbard model is of great interest, yet it is not fully understood. The challenge lies in having to work with

large lattices while avoiding analytical continuation. The weak-coupling ρdc results were so far computed at

the level of the Boltzmann theory and at the level of the Kubo bubble approximation, which neglects vertex

corrections. Neither theory was so far rigorously proven to give exact results even at infinitesimal coupling,

and the respective dc resistivity results differ greatly. In this Letter we develop, cross-check and apply two

state-of-the-art methods for obtaining dynamical response functions. We compute the optical conductivity

at weak coupling in the Hubbard model in a fully controlled way, in the thermodynamic limit, and without

analytical continuation. We show that vertex corrections persist to infinitesimal coupling, with a constant

ratio to the Kubo bubble. We connect our methods with the Boltzmann theory, and show that the latter

applies additional approximations that lead to quantitatively incorrect scaling of ρdc with respect to the

coupling constant.

DOI: 10.1103/mm38-zttx

Strongly correlated electronic systems often display rich,

yet remarkably universal phase diagrams [1–10]. One of the

most puzzling universal phenomena is the strange-metallic

linear-in-temperature dc resistivity [9,11–19]. It appears in

unconventional and high-temperature superconductors, in

the regime where their critical temperature Tc is the highest

[1,11,12,16,19]. In other cases, strange metals are asso-

ciated with quantum critical points [9,17,20–22]. This

raises the question of whether there is an intimate con-

nection between criticality, transport properties, and the

magnitude of the superconducting Tc. To make sense of the

vast experimental data, one must be able to compute the

conductivity in interacting lattice models, which is a

difficult, long-standing task. The main challenge is to find

a way to obtain controlled results on the real frequency axis

and, at the same time, avoid finite lattice-size effects. Exact

diagonalization based methods [finite-temperature Lanczos

(FTLM) [23–25] ], linked cluster expansions [26–28], and

the density-matrix renormalization group [29] are all

inherently limited to small lattice sizes. Quantum

Monte Carlo methods, on the other hand, either require

analytical continuation [30–32] or are effectively limited to

atomic problems [33–37]. In the special case of Hall

resistivity, expansions in terms of thermodynamic quan-

tities allow for progress [38,39]. In this Letter, however, we

formulate a general and systematic way forward.

The workhorse model for the description of the cuprates

(and many other classes of correlated systems) is the

Hubbard model [2,7,10,14,21,40–43]. Early works [21]

have shown that the infinite-dimensional Bethe-lattice

Hubbard model roughly describes the normal phase resis-

tivity in LSCO at moderate to high temperature. However,

the physics at low temperature is expected to be dominated

by the dimensionality of the model, and thus of primary

interest is the Hubbard model on the 2D square lattice. At

very strong coupling and high temperature, small 2D

lattices become representative of the thermodynamic limit,

and FTLM was used to obtain numerically exact results

[23,24]. However, to address the questions of strange-

metallic behavior and its connection to quantum critical

points [1,12,13,16,18,20,22], one must be able to perform

computations at lower temperature and, perhaps, lower

coupling, a regime where small-cluster methods fail.

Recent works [32,44] have indicated that the ground-

state phase diagram of the (nearest-neighbor hopping)

square-lattice Hubbard model features a quantum critical

line, delineating an ordered stripe ground state. The

quantum critical line passes through zero coupling at zero

doping (i.e., half-filling). At this point, charge and spin

susceptibility diverge [45], and both the Boltzmann theory

[46,47] and the Kubo bubble [45] predict a linear-in-

temperature resistivity down to the lowest accessible

temperature. This finding is in line with numerous
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observations of linear resistivity in the vicinity of quan-

tum critical points [12,13,16,18,20,22]. Kiely and Muller

[46] have argued that the linear-resistivity strange metal

observed at half-filling and weak coupling is connec-

ted to the strange metal in the cuprates, corresponding to

the strong coupling and finite doping regime of the

Hubbard model.

However, our recent results [45] have shown a strong

quantitative disagreement between Boltzmann theory and

the Kubo bubble, casting doubt on whether either of the

theories captures correctly even the qualitative behavior of

resistivity. To resolve the phenomenology at weak cou-

pling, better methods are needed.

In this Letter, we address the conductivity in the square

lattice Hubbard model. We develop two state-of-the-art

methodologies and fully avoid finite-size effects and the

uncontrolled analytical continuation [24,31,48].

First, we make use of the real-frequency diagrammatic

Monte Carlo (RFDiagMC) [49–52], which relies on con-

structing a power-series expansion for a given physical

quantity; the resulting Feynman diagrams are computed up

to a given order and then the series is (re)summed. The

imaginary-time integrals in Feynman diagrams are solved

analytically (which circumvents analytical continuation),

while spatial degrees of freedom are summed over using

(quasi) Monte Carlo [36,53,54]. The thermodynamic limit

is treated directly.

Next, we devise three different nonequilibrium proto-

cols, where we perturb the system with small external fields

and compute the current response as a function of time; we

then use the results to reconstruct the optical and dc

conductivity in a manner of “inverse linear response

theory.” In practice, we solve the Kadanoff-Baym equations

to obtain the Green’s function, given an approximation for

the self-energy as input. We do this calculation for lattices

as large as 60 × 60 and confirm convergence of the results

with lattice size.

Our diagrammatic series expansion and the correspond-

ing non-equilibrium results are in excellent agreement,

which confirms the validity of both implementations. As

the coupling constant approaches zero, we observe that

vertex corrections to dc conductivity do not vanish, but

rather diverge with the same power-law scaling as the Kubo

bubble contribution, meaning that they remain quantita-

tively important even at infinitesimal coupling. Vertex

corrections are, however, not very big relative to the

Kubo bubble. Nevertheless, neither the Kubo bubble

approximation nor the Boltzmann equation yield quanti-

tatively correct results, even at infinitesimal coupling.

Model—We are treating the square lattice Hubbard

model. The Hamiltonian reads

H ¼ −t
X
hiji;σ

c†σ;icσ;j − μ
X
σ;i

nσ;i þU
X
i

n↑;in↓;i; ð1Þ

where i; j enumerate lattice sites, c†=c are creation or

annihilation operators, σ ¼ ↑;↓ denotes spin, t is the

nearest-neighbor hopping amplitude, set to t ¼ 0.25. The

particle-number operator is denoted nσ;i ¼ c†σ;icσi, and μ is

the chemical potential, which is used to tune the average

occupancy of the sites. The coupling constant is denotedU.

In practice, we absorb the Hartree shift in the chemical

potential, μ̃ ¼ μ −Uhni;σi, and thus μ̃ ¼ 0 corresponds to

half-filling. We assume ℏ ¼ e ¼ 1.

Nonequilibrium approach—We consider the time evo-

lution of the Hubbard model, which was in a thermal state

at times t < 0, and was then subjected to an external

perturbation starting from time t ¼ 0. Given an approxi-

mation for the self-energy, the Green’s function can be

computed by solving the Kadanoff-Baym equations [we

use the code package NESSi [55] and cross-check with our

own implementation; see Supplemental Material (SM) [56]

for details]. Kadanoff-Baym equations are formulated on

the three-piece time contour as [57]

Gðt; t0Þ½−i ∂
 

t0 − hðt0Þ� −

Z
C

dt̄Gðt; t̄ÞΣðt̄; t0Þ ¼ δC: ð2Þ

Here,G is the full Green’s function,Σ is the self-energy, andh
is the single-particle Hamiltonian, which introduces an

external electric field through the vector potentialA, namely

E ¼ −∂tA. We restrict ourselves to fields along the x
direction [assuming site positions to be ri ¼ ðxi; yiÞ, with
xi; yi ∈Z] and the corresponding longitudinal response [58].

The time-diagonal elements in the lesser component of

the Green’s function contain information about the uni-

form current, i.e., hjðtÞi ¼ −ði=NÞ
P

σ;k vk−AðtÞG
<
σ;kðt; tÞ

[57,59], and vk is the x component of the velocity of an

electron in the plane-wave state k.

On the other hand, the time evolution of the current

following application of a weak electric field can be

computed based on the knowledge of the retarded cur-

rent-current correlation function in equilibrium [60], Λ, as

hjðtÞi ¼

Z
t

−∞

dt0Λðt − t0ÞAðt0Þ − KAðtÞ; ð3Þ

with K ¼ −hEkini=2, i.e., minus the average kinetic energy

per site per spatial dimension. The first term is the para-

magnetic part of the current; the second term is the

diamagnetic part (see SM for details). Alternatively, if

one knows the optical conductivity σ, the current response

is computed as

hjðtÞi ¼

Z
t

−∞

dt0σðt − t0ÞEðt0Þ: ð4Þ

The current-current correlation function is related to the

optical conductivity through σðtÞ ¼ KθðtÞ −
R
t
0
dt0Λðt0Þ, or

∂tσ ¼ −Λ (for t > 0). The optical conductivities in time
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and frequency domains are connected via Fourier trans-

formation σðωÞ ¼
R
∞
−∞

dteiωtσðtÞ, and the dc conductivity

is simply σdc ≡ σðω ¼ 0Þ.
We devise nonequilibrium protocols that will allow us to

invert the linear response [Eqs. (3) and (4)] for ΛðtÞ and
σðtÞ, compute them based on the current response, and

reconstruct σðωÞ. The three protocols are (a) constant

electric field, (b) short pulse of electric field and (c) short

pulse of vector potential. The corresponding expressions

for the vector potential AðtÞ are given in Fig. 1. We use

weak fields and make sure we probe the linear response

regime (see SM for details).

Self-energy approximation—We compute the self-

energy perturbatively in powers of U, and truncate at

second order. The first-order self-energy in the Hubbard

model is instantaneous (the Hartree shift) and can be

absorbed in the single-particle Hamiltonian h. What

remains to be computed is a single Feynman diagram,

Σijðt; t
0Þ½G� ¼ U2Gijðt; t

0ÞGijðt; t
0ÞGjiðt

0; tÞ: ð5Þ

However, one may still choose to compute the diagram self-

consistently or not, i.e., the propagator appearing in the

self-energy diagram can be considered to be the fully

dressed propagator (G) or the bare propagator (G0). The

self-consistent approximation corresponds to an approxi-

mation of the Luttinger-Ward functional and is guaranteed

to respect charge and energy conservation laws. The two

approximations for the self-energy must become indistin-

guishable as U → 0, but at any finite U, they may yield

different results.

Results—Our nonequilibrium theory is illustrated in an

example in Fig. 1. We find that the three protocols yield

perfectly consistent results [e.g., in Figs. 1(a) and 1(c) we

show in red the comparison to the protocol (b) result].

However, the two self-energy approximations lead to

drastically different results. Most importantly, the Σ½G0�
approximation yields infinite conductivity. This manifests

differently in the three different protocols. In the case of

constant electric field, this means there is no stationary state

and the current keeps growing with time. In the short

electric field pulse case, the current does not decay to zero,

but to a finite constant instead [as shown on Fig. 1(a), the

constant is in perfect agreement with the slope of the linear

growth of the current in the protocol (a)]. This indicates that

the infinite conductivity is due to a finite charge stiffnessD,

which is when the optical conductivity can be separated in

two parts as σðtÞ ¼ σregðtÞ þDθðtÞ, with the regular part

σregðtÞ decaying to zero at long times [60,61]. In frequency

domain this means ReσðωÞ ¼ πDδðωÞ þ ReσregðωÞ. In the

short vector potential pulse case, the current does decay

to zero, but the charge stiffness can be deduced from

the obtained current-current correlation function based

on the relation
R
∞
0
dtΛðtÞ ¼ K −D. Regardless of the Σ

approximation, the optical sum rule σðt ¼ 0þÞ ¼ K ¼

ð1=πÞ
R
dωReσðωÞ is satisfied [Fig. 1(b), SM]. To confirm

that our results indicate charge stiffness, rather than a large

conductivity, we have studied how σðωÞ changes in the

presence of a small fermionic bath (see SM).

Cross-checking with RFDiagMC—To cross-check the

nonequilibrium results, we employ our new implementa-

tion of the RFDiagMC method for the computation of

correlation functions in equilibrium. To do this, we first

need to determine the diagrammatic content of the current-

current correlation function that we effectively compute in

our nonequilibrium calculations (in principle, in neither the

Σ½G0� nor the Σ½G� case will the diagrammatic content

correspond to the bold perturbation theory for the current-

current correlation function). Given an approximation for

the self-energy, one can express the generalized two-

particle susceptibility χ as a functional derivative of the

Green’s function with respect to an applied external field,

χ ¼ ðδG=δϕÞ [62]. In the case of the Σ½G� approximation,

this yields the self-consistent Bethe-Salpeter equation,

with χ appearing on both sides of the equation. In the

case of Σ½G0�, one finds a closed expression where the

FIG. 1. Example of nonequilibrium, inverse linear response theory. Plots show current responsevs time in three different nonequilibrium

protocols: (a) constant electric fieldE, (b) short pulse of electric field, and (c) short pulse of vector potentialA. Protocol (a) allows to extract
σdc; (b) and (c) yield the full σðtÞ [and thus σðωÞ]. Different curves correspond to different self-energy approximations, namely Σ½G� and
Σ½G0�. The red dashed lines in panels (a) and (c) are comparisonswith the protocol (b). In protocol (c), we show the paramagnetic part of the

current jp as only this part is relevant. All three protocols yield consistent results. In the Σ½G0� approximation, we observe a finite charge

stiffness D. The inset in panel (b) enlarges the long-time tail, showing clearly that σðt → ∞Þ ¼ D.
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noninteracting χ0 ¼ G0G0 appears on the rhs instead. The

current-current correlation function Λ is obtained by

connecting the legs of the generalized susceptibility χ to

two current vertices v. We see that in the case of Σ½G�, Λ
effectively contains infinitely many skeleton diagrams of

all even orders with all propagators being the full Green’s

functions. Up to second order, all nonzero bold-skeleton

diagrams are captured. However, odd orders are not

captured, and at order 4 and above not all skeleton diagrams

are captured. In the Σ½G0� case, one obtains only three

second-order diagrams, which are skeleton, but all propa-

gators except two are bare. See Fig. 2 and SM for details.

The Λ diagrams from Fig. 2 can be computed using

RFDiagMC, and we denote these theories as Σ½G� and
Σ½G0�. The comparison with nonequilibrium results is then

made by comparing σregðωÞ and D. Both can be computed

from Λ, namely Reσregðω ≠ 0Þ ¼ ImΛðωÞ=ω, σ
reg
dc ¼

½∂ ImΛðωÞ=∂ω�jω→0
and D ¼ K − ReΛðω ¼ 0Þ. The

results are presented in Fig. 3(a). We see excellent agree-

ment. In the case of Σ½G� effective Λ diagrams, it was

enough to do only second-order vertex correction diagrams

to reach agreement, which means that fourth and higher

order diagrams are all negligible. In the case of Σ½G�, the
charge stiffness was found to be below statistical error. In

the case of Σ½G0�, the charge stiffness entirely comes from

vertex corrections.

Perturbation theory for Λ—Now that we have estab-

lished the validity of our implementation, we can also use

RFDiagMC to solve the perturbation theory for the current-

current correlation function. We take a given self-energy

approximation, construct the dressed Green’s function, and

then compute all the bold-skeleton diagrams, up to a given

order (including the odd orders). We denote such theories

as Λ-pert. with a given Σ approximation. We find that third-

order diagrams are practically negligible at U ¼ 0.1 (see

SM), and the series is most likely converged already at

second order. Therefore, our Λ-pert. Σ½G� theory gives the

same result as the noneq. Σ½G� theory. However, the Λ-pert.
Σ½G0� approximation is different from the nonequilibrium

Σ½G0� theory because the vertex correction diagrams we

compute are different. The results for all three distinct

theories (as well as the Boltzmann theory) are compared in

Fig. 3(b).

Discussion and prospects for future work—We observe a

clear trend that Λ-pert. Σ½G0� and Σ½G� results become the

same as U → 0 [Fig. 3(b)]. This indicates that the Λ-pert.

FIG. 2. Diagrammatic content of the current-current correlation

function effectively computed in our nonequilibrium theory

based on different diagrammatic approximations for the self-

energy.

FIG. 3. Main results showing the comparison between different theories and the divergence of vertex corrections in the U → 0 limit.

(a) Cross-check between equilibrium and the corresponding nonequilibrium theories showing perfect agreement in terms of the regular

part of the dc conductivity σ
reg
dc (main panel), optical conductivity ReσregðωÞ (lower inset), and the charge stiffness D (upper inset). The

lower inset also shows the contribution of the vertex corrections to ReσregðωÞ (positive in Σ½G� approximation, negative in Σ½G0�
approximation, vanishing at high frequency). (b) Comparison between two possible Λ-perturbation (Λ-pert.) theories (brown and

green), the theory consistent with nonequilibrium (noneq.) Σ½G0� approximation (blue), and the Boltzmann theory(red), showing that

different Λ-pert. theories become indistinguishable as U → 0, while the noneq. Σ½G0� and the Boltzmann remain different. (c) Small-U
scaling of the results. Gray lines display the strict U → 0 scaling: the dashed gray line denotes the bubble computed in this limit, using

the approach explained in [45]; the full gray line is a fit to the total result (full green line); the dash-dotted line is inferred from the

previous two; the scaling of Boltzman results is taken from [46].
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series is not sensitive to the precise choice of the Σ

approximation—as our second-order Σ½G� and Σ½G0�
converge in the weak-coupling limit, so do the correspond-

ing low-order bold-skeleton perturbation theories for Λ.

However, we observe that (non)eq. Σ½G0� and Boltzmann

theory results remain different as U → 0.

To understand this, it is important to note that the Λ

diagrams that are effectively being computed in our noneq.

Σ½G0� theory do not form a proper low-order perturbation

theory. Even though Σ½G0� becomes exact as U → 0 (and is

even expected to perform best at low but finite coupling

[63,64]; see also SM), the current response one gets from it

is most likely never exact, no matter how low the value of

U. The vertex corrections introduced this way subtract from

σ
reg
dc , which is opposite to what is found in noneq. Σ½G� and

the previous work with FTLM [24]. The failure of Σ½G0� is
relevant for Ref. [48] where in a similar theory, at low

doping and high temperature, vertex corrections are also

found to suppress dc conductivity instead of enhance it

(see SM).

On the other hand, the Boltzmann theory is equivalent to

our noneq. Σ½G� theory, plus additional approximations.

Most importantly, the Green’s function appearing in the

collision integral and the second-order self-energy is

simplified by the quasiparticle approximation (leading to

expressions formally similar to our Σ½G0�; see SM for

details). Therefore, the Boltzmann theory cannot be more

accurate than our noneq. Σ½G� theory, and the additional

approximations likely lead to the quantitatively wrong

scaling we observe at U → 0.

Our main finding is that the vertex corrections to dc

conductivity do not vanish, even as U → 0. It appears that

both the bubble and the vertex corrections diverge at small

U as 1=U2, but with a different prefactor, meaning that, as

U is reduced, the ratio between the bubble and the vertex

corrections remains fixed. This happens despite the U2

prefactor in second-order vertex correction diagrams

(VC2). The reason is that the frequency dependence

ImΛ
VC2ðωÞ=U2 becomes singular at ω ¼ 0 as U → 0

(we have checked this by computing Λ diagrams with

the bare propagators; see SM). It is possible that a similar

scenario happens at higher orders as well, and that all

orders of perturbation contribute to σdc even at infinitesimal

coupling. Our results, however, suggest that third-order

vertex corrections to σdc at U ¼ 0.1 are at least 2 orders of

magnitude smaller than second order. At U ≈ 0.1–0.25, the

difference between Λ-pert. Σ½G� and Λ-pert. Σ½G0� results
appears to be only due to the difference in the self-energy,

not due to lack of convergence of the Λ series.

Our findings show that neither the Boltzmann theory nor

the Kubo bubble are exact in the weak-coupling limit. To

fully confirm the strange-metal phenomenology that these

two theories predict atU → 0 and half-filling [45], we need

to be able to do calculations at temperatures of order 0.001–

0.1. This will require further optimization in both our

RFDiagMC and noneq. Σ½G� theories, which are currently

limited to about T > 0.05. Our nonequilibrium approach

can be pushed to lower temperatures by using compression

methods [65,66], and the preliminary results are encour-

aging. With additional optimization outside of the scope of

the current Letter, we should also be able to push

RFDiagMC to lower temperatures and stronger coupling.

The path forward is clear, at least in principle: one should

attempt to converge the bare series for the equilibrium

Σ½G0�, then use it to dress the Green’s function, and then try
to converge the bold-skeleton series for Λ.

Computations were performed on the PARADOX super-

computing facility (Scientific Computing Laboratory,

Center for the Study of Complex Systems, Institute of

Physics Belgrade).
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I. KADANOFF-BAYM EQUATIONS

Here, we briefly discuss Kadanoff-Baym (KB) equations

and their numerical solution.

In order to calculate the non-equilibrium Green’s function

Gk in a given self-energy approximation Σk we solve the

Dyson equation on the L-shaped contour C (Fig. 1) in the com-

plex time plane

Gk = G0k +G0k ∗ Σk ∗Gk (1)

where ∗ represents contour convolution, and G0k is the bare

Green’s function given by

G−1
0k =

[

i∂t − εk(t)
]

δC (2)

where εk(t) is the time dependent dispersion relation, and δC
is the delta function on the contour C. We assume that the

eigenstates of the non-interacting Hamiltonian do not change

with time. By writing the Dyson equation in terms of contour

components of G one obtains Kadanoff-Baym equations1,2

[−∂τ − εk(0
−)]GM

k (τ)−

∫ β

0

dτ̄ ΣM
k (τ − τ̄)GM

k (τ̄) = δ(τ)

(3)

[i∂t − εk(t)]G
R
k (t, t

′)−

∫ t

t′
dt̄ΣR

k (t, t̄)G
M
k (t̄, t′) = δ(t− t′)

(4)

[i∂t − εk(t)]G
⌝
k(t, τ)−

∫ t

t0

dt̄ΣR
k (t, t̄)G

⌝
k(t̄, τ) = Q⌝

k(t, τ)

(5)

[i∂t − εk(t)]G
<
k (t, t

′)−

∫ t

t0

dt̄ΣR
k (t, t̄)G

<
k (t̄, t

′) = Q<
k (t, t

′)

(6)

with

Q⌝
k(t, τ) =

∫ β

0

dτ̄Σ⌝
k(t, τ̄)G

M
k (τ̄ , τ) (7)

Q<
k (t, t

′) =

∫ t′

t0

dt̄Σ<
k (t, t̄)G

A
k (t̄, t

′)− i

∫ β

0

dτΣ⌝
k(t, τ)G

⌜
k(τ, t

′).

(8)

The complex contour C describes a physical setup where at the

initial time t0 the system is in a thermal equilibrium state. Af-

ter the initial time, external fields may be applied to drive the

Figure 1. L-shaped contour C in the complex time plane.

system out of equilibrium. The evolution of the system after

the initial time is described by the real parts of the contour.

Every KB equation Eq. 3 - Eq. 6 has a conjugate version,

derived from the conjugate Dyson equation

Gk = G0k +Gk ∗ Σk ∗G0k. (9)

Finding the solution of the KB equations amounts to solv-

ing a system of coupled Volterra integral equations of the

second kind1–3. To do this calculation we use the NESSi

package1, and in some special cases we crosscheck the results

with our own implementation. NESSi implements a version

of the implicit Runge-Kuta method for solving Volterra equa-

tions where the global error scales as O(∆t5) with size of

the time step ∆t. The complexity of these methods scales as

O(N3
t ) with the number of time points Nt and asO(Nk) with

the number of k-points Nk due to translational invariance.

II. SELF-ENERGY

We will now discuss the calculation of the self-energy ap-

proximations used in this paper. As mentioned in the main

text, we use two different self-energy approximations both

represented by the expression

Σij [G](t, t′) = U2Gij(t, t
′)Gij(t, t

′)Gji(t
′, t) (10)

and differentiate between bold Σ[G] and bare Σ[G0] ap-

proximation depending on whether the propagator used is

fully dressed or bare. The fully dressed propagator is G
which solves the Dyson equation, while the bare propagator

is G0 given by Eq. 2. Since Σ[G] is calculated using the
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fully dressed propagator G this makes the KB equations self-

consistent and we apply an iterative procedure to solve them.

The self-consistent calculation of the bold Σ[G] approxima-

tion can be done in two different ways. In the first approach,

for one time step (ti, tj) a loop Σk[G] → Gk[Σ[G]] →
Gr → Σr[G] → Σk is iterated over until convergence is

reached. In this case convergence is determined by the con-

dition ∆G(ti, tj) = ∥G(l) − G(l − 1)∥ < ϵ, where l is the

iteration index and ϵ is a small number. For different time

steps (ti, tj) and (t′i, t
′
j) a different number of iterations might

be needed to reach the same level of convergence. At least

in principle, this allows one to reduce the overall number of

computational steps.

The other possible approach, that we use in this paper, is to

simply, in each iteration l, calculate Σk[G] → Gk[Σ[G]] →
Gr → Σr[G] → Σk on the entire contour, until conver-

gence is reached. In this way, the convergence criterion can

be changed to reflect physically relevant quantities: in our

case we are primarily interested in the current j, so we take

∆j = ∥j(l)− j(l − 1)∥ < ϵ as the condition.

For a given propagator Gij the calculation of the expres-

sion Eq. 10 obviously scales as O(N2
t ) with the number of

discrete time points Nt, and as O(N2
r ) with the number of

sites Nr. In order to obtain Σk from Σr and Gr from Gk,

we use fast Fourier transforms which scale as O(Nr logNr).
This is faster than using a k-space expression equivalent to

Eq. 10, because it scales as O(N3
k).

III. DERIVATION OF THE BOLTZMANN EQUATION FOR

LATTICE MODELS

In this section we present a derivation of the Boltzmann

equation starting from Kadanoff-Baym equations for lattice

models coupled to external electromagnetic fields.

Coupling (discrete) lattice models to electromagnetic fields

described by gauge potentials (ϕ,A) is done by the Peierls

substitution. This introduces a change in the one-particle

Hamiltonian

H(t) =
∑

ij,σ

hij(t)c
†
iσcjσ (11)

hij(t) = tije
iA(t)·(ri−rj) + δi,jϕ(ri) (12)

where tij is a non-local hopping amplitude and where the vec-

tor potential the vector potential A is assumed to be slowly

varying in space.

We start from the KB equation for the lesser component of the Green’s function and its conjugate version in site space

∑

l

[iδil
−→
∂ t − hil(t)]G

<
lj(t, t

′)−
∑

l

∫ t

t0

dt̄ΣR
il(t, t̄)G

<
lj(t̄, t

′) = Q<
ij(t, t

′) (13)

∑

l

G<
il (t, t

′)[−iδlj
←−
∂ t′ − hlj(t

′)]−
∑

l

∫ t′

t0

dt̄ G<
il (t, t̄)Σ

A
lj(t̄, t

′) = Q̃<
ij(t, t

′) (14)

with

Q<
ij(t, t

′) =
∑

l

∫ t′

t0

dt̄Σ<
il (t, t̄)G

A
lj(t̄, t

′)− i
∑

l

∫ β

0

dτΣ⌝
il(t, τ)G

⌜
lj(τ, t

′)

Q̃<
ij(t, t

′) =
∑

l

∫ t

t0

dt̄ GR
il(t, t̄)Σ

<
lj(t̄, t

′)− i
∑

l

∫ β

0

dτG⌝
il(t, τ)Σ

⌜
lj(τ, t

′).

Subtracting Eq. 14 from Eq. 13 we get

i∂tG
<
ij(t, t

′) + i∂t′G
<
ij(t, t

′) =
∑

l

hil(t)G
<
lj(t, t

′)−G<
il (t, t

′)hlj(t
′)

+
∑

l

∫ t

t0

dt̄
(

ΣR
il(t, t̄)G

<
lj(t̄, t

′)−GR
il(t, t̄)Σ

<
lj(t̄, t

′)
)

+
∑

l

∫ t′

t0

dt̄
(

Σ<
il (t, t̄)G

A
lj(t̄, t

′)−G<
il (t, t̄)Σ

A
lj(t̄, t

′)
)

− i
∑

l

∫ β

0

dτ(Σ⌝
il(t, τ)G

⌜
lj(τ, t)−G⌝

il(t, τ)Σ
⌜
lj(τ, t)).

(15)
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We focus on the first term on the right-hand side and introduce

Sij(t, t
′) =

∑

l

hil(t)G
<
lj(t, t

′)−G<
il (t, t

′)hlj(t
′) (16)

= (ϕ(ri)− ϕ(rj))G
<
ij(t, t

′)

+
∑

l

til(t)G
<
lj(t, t

′)−G<
il (t, t

′)tlj(t
′) (17)

where tij(t) = tije
iA(t)·(ri−rj).

Now we perform the Fourier transform Sk =
1
Nr

∑

ij Sij(t, t
′)eik·(ri−rj), and depending on the gauge

we obtain different expressions. In the ϕ-gauge defined by

ϕ(ri) = −E · ri, A = 0 we get

Sφ
k(t, t

′) = iE · ∇kG
<
k (t, t

′) (18)

In the A-gauge, defined by ϕ = 0, A(t) = −tE we get

SA
k (t, t

′) = (εk+A(t) − εk+A(t′))G
<
k (t, t

′) (19)

The two choices of the gauge are physically equivalent. The

standard Boltzmann equation is derived in the ϕ-gauge.

Since we are interested in finding the Boltzmann equation,

i.e. the equation of motion for the non-equilibrium distribu-

tion function ⟨nk⟩we concentrate on equal times t′ = t where

(

∂tiG
<
k (t, t

′) + ∂t′iG
<
k (t, t

′)
)∣

∣

∣

t′=t
= −∂t⟨nk(t)⟩ (20)

and

Sk(t, t) = −E · ∇k⟨nk(t)⟩. (21)

Putting this back into the equation Eq. 15 we get

∂tnk(t)−E · ∇knk(t) = −

∫ t

t0

dt̄
(

ΣR
k (t, t̄)G

<
k (t̄, t)−GR

k (t, t̄)Σ
<
k (t̄, t)

+ Σ<
k (t, t̄)G

A
k (t̄, t)−G<

k (t, t̄)Σ
A
k (t̄, t)

)

+ i

∫ β

0

dτ(Σ⌝
k(t, τ)G

⌜
k(τ, t)−G⌝

k(t, τ)Σ
⌜
k(τ, t)).

(22)

where we have dropped the average brackets ⟨..⟩ for the sake

of brevity. In order to further simplify this expression we con-

centrate on the limit of long times, i.e. times long after the

initial state, by taking t0 → −∞. In this limit, the mixed

terms vanish. Applying this and the relations

GR(t, t′) = θ(t− t′)
(

G>(t, t′)−G<(t, t′)
)

(23)

GA(t, t′) = θ(t′ − t)
(

G<(t, t′)−G>(t, t′)
)

(24)

in equation Eq. 22 we get the Boltzmann equation

∂tnk(t)−E · ∇knk(t) = −Ik(t) (25)

where

Ik(t) =

∫ t

−∞

dt̄
(

Σ>
k (t, t̄)G

<
k (t̄, t) +G<

k (t, t̄)Σ
>
k (t̄, t)

− Σ<
k (t, t̄)G

>
k (t̄, t)−G>

k (t, t̄)Σ
<
k (t̄, t)

)

(26)

is the collision integral.

A. Quasi-particle approximation for the collision integral in

the Hubbard model

Under the assumption of a stationary state, real time com-

ponents of the Green’s function and the self-energy depend

only on the time difference t−t′. The collision integral Eq. 26

becomes independent of time and can be further simplified

Ik =

∫ ∞

−∞

dt̄
(

G<
k (t̄)Σ

>
k (−t̄)−G>

k (t̄)Σ
<
k (−t̄)

)

(27)

where the integration variable in equation Eq. 26 has first been

shifted t̄→ t− t̄ and then for the first and third term a change

of variables t̄→ −t̄ was also made.

The quasi-particle approximation now assumes that the
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spectral function is a delta peak at ω = εk. Therefore,

G<
k (t) =

∫

dω

2π
e−iωtG<

k (ω) (28)

=

∫

dω

2π
e−iωtn(ω)Ak(ω) (29)

≈

∫

dω

2π
e−iωt2π⟨nk⟩δ(ω − εk) (30)

= nke
−iεkt. (31)

Similarly

G>
k (t) = (1− nk)e

−iεkt. (32)

Furthermore, if the self-energy is assumed to be given by the

second order diagram Σ[G] (as we assume in our calculations)

it can be expressed in momentum space as

Σ
≶
k (t) =

U2

N2

∑

k′,q

G
≶
k−q(t)G

≶
k′+q(t)G

≷
k′(−t). (33)

Plugging this back in the collision integral Eq. 27, and apply-

ing the QP approximation we get

IQP,φ
k =

2πU2

N2

∑

k′,q

δ(εk − εk−q − εk′+q + εk′)

×
[

nk(1− nk−q)(1− nk′+q)nk′

− (1− nk)nk−qnk′+q(1− nk′)
]

(34)

which is also known as the Fermi golden rule. The equation

Eq. 25 together with Eq. 34 is the starting point of the calcu-

lations in Ref. 4.

IV. DIAGRAMMATIC CONTENT OF NON-EQUILIBRIUM

THEORIES

Here we derive the diagrammatic content for the current-

current correlation function that we effectively compute in our

non-equilibrium theories based on a diagrammatic approxi-

mation for the self-energy. Linear response of the system to

external fields ϕ is obtained by considering a general four-

point correlation function χ5. For convenience, we introduce

a general source field ϕαβ(t, t
′) which can later be easily mod-

ified to represent a scalar or a vector potential.

All correlation functions of an interacting theory coupled to

the source filed ϕ can be obtained from the generating func-

tional

Z[ϕ] = Tr
[

TCe
−i

∫
C
dtH(t)e−i

∫∫
C
dt1dt2c

†
ᾱ(t1)φᾱβ̄(t1,t2)cβ̄(t2)

]

(35)

through its functional derivatives with respect to the source

field ϕ. Green’s function is then defined as

Gφ
ij(t1, t2) = −

δ lnZ[ϕ]

δϕji(t2, t1)
= −i⟨TCci(t1)c

†
j(t2)⟩φ. (36)

On the other hand, the Green’s function can be obtained from

the knowledge of the self-energy Σ, using the Dyson equation

G−1,φ
ij (t1, t2) = G−1

0ij(t1, t2)−ϕij(t1, t2)−Σ
φ
ij(t1, t2). (37)

The four-point correlation function χ is defined with the sec-

ond functional derivative of Z[ϕ]

χijkl(t1, t2, t4, t3) = −i
δGφ

ij(t1, t2)

δϕlk(t4, t3)
(38)

= −iGφ
kl(t3, t4)G

φ
ij(t1, t2)

+ i⟨c†l (t4)ck(t3)ci(t1)c
†
j(t2)⟩ (39)

Using a representation of the unit operator

G−1,φ
ij̄

(t1, t̄2)G
φ

j̄k
(t1, t̄2) = δi,kδ(t1 − t2) (40)

we can write

χijkl(t1,t2, t4, t3)

=−i
δGφ

im̄(t1, t̄5)

δϕkl(t4, t3)
G−1,φ

m̄n̄ (t̄5, t̄6)G
φ
n̄j(t̄6, t2) (41)

= iGφ
im̄(t1, t̄5)

δG−1,φ
m̄n̄ (t̄5, t̄6)

δϕkl(t4, t3)
Gφ

n̄j(t̄6, t2) (42)

=−iGφ
ik(t1, t4)G

φ
lj(t3, t2)

− iGφ
im̄(t1, t̄5)

δΣφ
m̄n̄(t̄5, t̄6)

δϕkl(t4, t3)
Gφ

n̄j(t̄6, t2). (43)

For bold Σ[G] approximation Eq. 43 is transformed by the chain rule to

χijkl(t1, t2, t4, t3) = −iG
φ
ik(t1, t4)G

φ
lj(t3, t2)

+Gφ
im̄(t1, t̄5)

δΣφ
m̄n̄(t̄5, t̄6)

δGφ
p̄q̄(t̄7, t̄8)

χp̄q̄lk(t̄7, t̄8, t4, t3)G
φ
n̄j(t̄6, t2)

(44)

which is the Bethe-Salpeter equation. The diagrammatic content of χ is then determined by the diagrammatic content of the

functional derivative δΣ/δG, which is also known as the irreducible vertex in the particle-hole channel, Γph. The diagrammatic

content of Γph can be obtained straightforwardly if the self-energy is approximated in terms of Feynman diagrams.
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In the case of a bare Σ[G0] approximation using the chain rule in Eq. 43 we get a different equation

χijkl(t1, t2, t4, t3) = −iG
φ
ik(t1, t4)G

φ
lj(t3, t2)

+Gφ
im̄(t1, t̄5)

δΣφ
m̄n̄(t̄5, t̄6)

δGφ
0p̄q̄(t̄7, t̄8)

χ0
p̄q̄lk(t̄7, t̄8, t4, t3)G

φ
n̄j(t̄6, t2)

(45)

where

χ0
p̄q̄lk(t7, t8, t4, t3) = −i

δGφ
0p̄q̄(t7, t8)

δϕkl(t4, t3)
= −iGφ

0p̄q̄(t7, t8)G
φ
0p̄q̄(t7, t8). (46)

Equation Eq. 45 represents a closed expression for calculating the correlation function χ.

A. Connection between σ, Λ, D, K and the f-sum rule

In order to obtain the optical conductivity σ we are in-

terested in computing the retared current-current correlation

function

Λ(t− t′) = i
〈

[j(t), j(t′)]
〉

θ(t− t′), (47)

where j(t) is the current density along the arbitrarily chosen

x direction

j(t) =
1

N

∑

r

jx(r, t). (48)

If the four-particle correlation function χ is known, the

current-current correlation function can be obtained by con-

necting the legs of χ to the current vertex v. For example, if

the coupling of the system to the electric field is described by

an additional term
∑

k

ϕk(t)vijkc
†
i cj (49)

in the Hamiltonian, then we can calculate the dynamical re-

sponse correlation function as

Λij(t1, t2) =
∑

i′,i′′,j′,j′′

vi,i′,i′′χi′,i′′,j′,j′′(t1, t
+
1 , t2, t

+
2 )vj,j′,j′′ .

(50)

For the explicit expression for the current vertex see Refs. 6

and 7.

The current-current correlation function determines the lin-

ear response to an applied field through the relation

⟨j(t)⟩ =

∫ ∞

−∞

Λ(t− t′)A(t′)dt′ −KA(t), (51)

where A(t) is the vector potential and K = − ⟨Ekin⟩
2 , with

⟨Ekin⟩ the average kinetic energy per site. With the knowl-

edge of Λ, the optical conductivity is obtained from

σ(ω) = −i
Λ(ω)−K

ω + iη
(52)

= P

(

Λ(ω)−K

iω

)

− πδ(ω) [Λ(ω = 0)−K] (53)

If we focus on the real part, we have

Reσ(ω) = P

(

ImΛ(ω)

ω

)

− πδ(ω) [Λ(ω = 0)−K] (54)

Here we have used the fact that Λ(ω = 0) is purely real.

From Eq. 54, we see that we can express the optical conduc-

tivity as the sum of a regular part and a Drude peak at ω = 0
(due to charge-stifness, D)

Reσ(ω) = Reσreg(ω) +Dπδ(ω), (55)

where

σreg(ω) = P

(

ImΛ(ω)

ω

)

(56)

D = K − Λ(ω = 0). (57)

This is compatible with a real-time expression for σ(t) read-

ing

σ(t) = σreg(t) +Dθ(t). (58)

Note that σ(t) is purely real.

The optical conductivity obeys the f-sum rule

∫ ∞

−∞

dω

2π
Reσ(ω) =

K

2
= −
⟨Ekin⟩

4
(59)

but this also implies the value of σ(t = 0+). This is because it

is sufficient to consider only the real part of σ(ω) in its Fourier
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transformation. Namely

σ(t) = F−1
[

σ(ω)
]

=

∫

dω

2π
e−iωtσ(ω)

=

∫

dω

2π
e−iωt (Reσ(ω) + iImσ(ω))

=

∫

dω

2π
e−iωtReσ(ω)

+ i

∫

dω

2π
e−iωtP

(

∫

dω′

π

Reσ(ω′)

ω − ω′

)

=

∫

dω

2π
e−iωtReσ(ω)

+ iP

(

∫

dω′

π
Reσ(ω′)e−iω′t

∫

dω

2π

e−i(ω−ω′)t

ω − ω′

)

=

∫

dω

2π
e−iωtReσ(ω)

+ sgn(t)P

(

∫

dω′

2π
Reσ(ω′)e−iω′t

)

= 2θ(t)F−1
[

Reσ(ω)
]

(60)

where F denotes the Fourier transform. Therefore, the f-sum

rule Eq.59 implies

σ(t = 0+) = 2

∫

dω

2π
e−iω0+Reσ(ω)

= 2

∫

dω

2π
Reσ(ω)

= K

(61)

where we have used the fact that Reσ(ω) decays faster than

ω−1.

Let us finally note that in the non-interacting case U = 0,

we have Λ = 0. The conductivity has no regular part, and it

reads

σ(ω) = i
K

ω + iη
, (62)

which means that D = K.

V. STUDY OF THE EFFECTS OF THE FERMIONIC BATH

ON ρdc

In this appendix we explore the effect on ρdc of coupling

our model to an external fermionic bath.

We take the bath to be an infinite non-interacting system

in equilibrium at temperature T . The full Hamiltonian of the

system coupled to a fermionic bath reads

H = Hsys +Hmix +Hbath (63)

4 3 2 1 0 1 2 3 4

0.10

0.05

0.00

0.05

0.10

R ba
th
(

) W

Re
Im

Figure 2. Our choice of the hybridization function ∆bath(ω) as de-

fined in Eq. 69.

where

Hmix = V
∑

i,p

(c†i bi,p + cib
†
i,p) (64)

describes the hybridization between the system and the bath,

and

Hbath =
∑

i,p

ϵpb
†
i,pbi,p (65)

is the bath Hamiltonian. With this, the Green’s function of the

bath is

Gbath(t− t′) = −i
∑

p

⟨TCbi,p(t)b
†
i,p(t

′)⟩bath. (66)

As the bath is in thermal equilibrium, the Green’s function

is fully defined from the knowledge of the retarded Green’s

function, which we choose as

GR
bath(ω) =

1

W

[

ln

∣

∣

∣

∣

∣

W
2 + ω
W
2 − ω

∣

∣

∣

∣

∣

− iπθ

(

W

2
− |ω|

)

]

. (67)

The bare Green’s function with the additional bath is

G−1
0k (t, t′) = G−1

0k (t, t
′)−∆bath(t− t′) (68)

where the hybridization function is

∆bath(t− t′) = V 2Gbath(t− t′). (69)

For convenience we introduce a coupling constant Γ = V 2

W
and keep W constant. Retarded component of the hybridiza-

tion function is presented in the Fig. 2.

We calculate ρdc for different values of Γ using the constant

electric field protocol A = −Etθ(t). For different self-energy

approximations the system behavior is drastically different,

see Fig. 3.

In the case of the bold Σ[G] approximation we can calculate

the Γ = 0 point because the system reaches a stationary state,

as illustrated in the main text.
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e 2

0

1

2

3

4

5

6

7

8

dc

~ 0.58

[G0] [G]  U= 0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re

[G0]
= 0.01
= 0.005
= 0.002
= 0, reg

10 3 10 2log

10 1

100

101

lo
g

dc

a) b)

T= 1,U= 1, = 0

Figure 3. a) ρdc vs. the bath coupling Γ for different theories; b) Reσ(ω) for different couplings Γ in the Σ[G0] approximation.

On the other hand, if we use the bare Σ[G0] approximation,

we cannot calculate ρdc for Γ = 0 because the current grows

indefinitely. Due to this, we compute the results at several

small values of Γ and then extrapolate to Γ = 0. The results fit

to a power law form, indicating ρdc(Γ = 0) = 0, see Fig. 3a.

This is in stark contrast with the Σ[G] approximation where

ρdc has a finite value at Γ = 0.

0.0 0.2 0.4 0.6 0.8 1.0
T

0.0

0.5

1.0

1.5

2.0

2.5

dc

U= 0.5, = 0
NESSi = 0.005
our implementation = 0.005
NESSi = 0.01
our implementation = 0.01

Figure 4. Comparison of ρdc(T ) for different implementations of

Kadanoff-Baym equations.

In Fig. 3b the optical conductivity Reσ(ω) in the bare ap-

proximation is presented. We explore the Γ→ 0 limit and we

see that σ develops a delta peak at ω = 0 for Γ = 0, elucidat-

ing the presence of charge stiffness in this approximation.

As an additional check, we created our own implementation

of the Kadanoff-Baym equations for this setup and compared

it to the NESSi implementation (Fig. 4) and the results are in

excellent agreement. In our implementation the initial thermal

state is at T = ∞. This approach is possible because the

system gets cooled down to temperature T due to the coupling

with the bath, and indeed we observe a stationary state in our

results.

In practice, because the initial state is at infinite tempera-

ture, β = 0, the imaginary part of the contour drops out, as

well as all the mixed terms. This leaves us with only two KB

equations, one for G< and the other one for G>. The sys-

tem then evolves to a stationary state at temperature T due to

the coupling with the bath. We solved KB equations using

the implicit Runge-Kutta method of the 4-th order where the

global error scales as O(∆t4). NESSi has better error scaling

O(∆t5), this did not make a difference in the final results.

VI. INVERSE LINEAR RESPONSE THEORY

In this appendix we will discuss our approach to using non-

equilibrium protocols for calculating ρdc.

As mentioned in the main text, we use three different non-

equilibrium protocols for calculating ρdc. They are presented

in Table I.

Table I. Non-equilibrium protocols to extract σ(ω)

a) Constant electric field A = −Et θ(t) σdc = ⟨j(t → ∞)⟩/E
b) Short pulse of elec. field A = −aθ(t) σ(t) = ⟨j(t)⟩/a
c) Short pulse of vec. pot. A = aδ(t) Λ(t) = ⟨j(t)⟩/a

We consider two equivalent linear response equations for

the uniform current8,9

⟨j(t)⟩ =

∫ t

−∞

dt′σ(t− t′)E(t′) (70)

⟨j(t)⟩ =

∫ t

−∞

dt′Λ(t− t′)A(t′)−KA(t), (71)

where K = − ⟨Ekin⟩
2 with ⟨Ekin⟩ the average kinetic energy

per site and E(t) the electric field. If we apply protocol b) to

Eq. 70 and protocol c) to Eq. 71 we get

⟨j(t)⟩ = aσ(t) (72)

⟨j(t)⟩ = aΛ(t). (73)

After solving KB Eqs. 3-6 in a given protocol we get the

current j(t), which we then use in Eqs. 72 and 73 to obtain

the correlation functions. In this way, we have inverted the

linear response Eqs. 70 and 71.

In the case of the constant electric field protocol a) we as-

sume a stationary state, and we can write

⟨j(t→∞)⟩ = E

∫ ∞

−∞

dt′σ(t− t′) (74)

= Eσdc. (75)
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A. Diamagnetic response in the protocol c)

In the Fig. 5 we present the paramagnetic and diamagnetic

parts of the current calculated in the protocol c). The para-

magnetic part is used in the calculation of the current-current

correlation function Λ (see Fig.1 in the main text). The dia-

magnetic part is non-zero only during the initial pulse of the

vector potential. In our calculations we use the duration of the

pulse ∆tpulse as the control parameter and show that there is

no dependence of the obtained results on ∆tpulse, see Section

VII.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

4

3

2

1

0jD

T= 1, U= 1, = 0, A= a (t)

0.000

0.005

0.010

0.015

jP

Figure 5. Diamagnetic jD and paramagnetic jP parts of the current

in the protocol c).

VII. BENCHMARKS

Here we will discuss the dependence of the results on the

numerical parameters.

Fig. 6 shows the dependence of the calculated current ⟨j(t)⟩
on the linear lattice size L and temperature T in different ap-

proximations in the b) protocol. We see the current displays

large finite size effects for both approximations.

In the Σ[G0] approximation, at a higher temperature T = 1
in Fig. 6a we can see that the current is strictly positive for all

lattice sizes, while this is not necessarily the case for the lower

temperature T = 0.1 (Fig. 6c). Also, it can be seen that the

charge stiffness does not decrease with increasing lattice size.

In the Σ[G] approximation the current changes sign due to

finite size effects regardless of the temperature, see Figs. 6b

and 6d. We see that in this case charge stiffness decreases with

linear lattice size L. In the insets of Fig.6 we show σreg
dc which

is obtained as 1
a

∫

dt(⟨j(t)⟩ −D). One can see that finite size

effects are not strong in terms of σreg
dc , even though σ(t) −D

does appear noticeably different; the reason is that there is a

cancellation of difference between shorter and longer times.

In the Σ[G0] approximation we also see ”revivals” occuring

for a long time after the field pulse, while in the Σ[G] approx-

imation no revivals are observed at any lattice size L.

Fig. 7a shows the current ⟨j(t)⟩ in the bare Σ[G0] approxi-

mation calculated using the b) protocol for different time steps

∆t.

0 20 40 60 80 100
t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

j/a

[G0]
L= 4
L= 8
L= 20
L= 48

0 20 40 60 80 100
t

[G]

20 40
0.1540

0.1545

0.1550

reg
dc (L)a) b)

T= 1, = 0, U= 1

0 25 50 75 100
t

0.05

0.00

0.05

0.10

0.15

j/a

[G0]
L= 4
L= 8
L= 20
L= 48

0 25 50 75 100
t

[G]

20 40L

1.85

1.90

re
g

dc

c) d)

T= 0.1, = 0, U= 1

Figure 6. j/a in the b) protocol as a function of the linear lattice size

L in different self-energy approximations and at different tempera-

tures.

Fig. 7b and 7c present ⟨j(t)⟩ in Σ[G] approximation cal-

culated using the b) and a) protocol for two different values

of the parameters a and E, respectively. Fig. 7d shows ⟨j(t)⟩
in the c) protocol for different durations of the applied pulse

∆tpulse. Note that in the b protocol we do not have a finite du-

ration of the applied field, but rather exactly ∆tpulse = 0; this

means we have no additional numerical parameter to control

the results with respect to.

In conclusion, the calculated currents do not depend signif-

icantly on the numerical parameters and we have reached a

linear regime.

VIII. LOCAL SELF-ENERGY

In the case of local approximations of the Luttinger-Ward

functional, the irreducible vertex δΣ/δG featured in the

Bethe-Salpeter equation Eq. 44 is fully local. On lattices that

preserve inversion symmetry this ensures that the vertex cor-

rections for the uniform current-current correlation function Λ
cancel out6,10. Therefore, as an additional check, we compare

non-equilibrium and Kubo bubble values of ρdc in the local

self-energy Σ[Gloc
0 ] approximation in Fig. 8. We see excellent

agreement between these theories.

IX. CHARGE STIFFNESS IN Σ[G0] APPROXIMATION

In this section we discuss the charge stiffness D that is

present in the non-equilibrium Σ[G0] approximation.

Charge stiffness develops at all the temperatures and at all

the couplings we examined, Fig. 9. We see that the charge
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Figure 7. a) j/a in the b) protocol for different time steps ∆t; b) j/a
in the b) protocol for different values of the parameter a; c) j/E in

the a) protocol for different E; d) j/a in the c) protocol for different

durations of the applied pulse ∆tpulse.
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Figure 8. Comparison of ρdc(T ) for the non-equilibrium Σ[Gloc
0 ]

approximation and the bubble approximation.

stiffness increases with smaller couplings, and at U = 0 we

have D = K. This is clearly understood, by taking into ac-

count that at U = 0, Λ(ω) = 0 (see Section XIII), and there-

fore the entire optical conductivity σ(ω) is contained in the

charge stiffness peak at ω = 0. We confirm that, at U = 0,

D = K, by looking at results of protocol b) with Σ = 0, and

comparing to K computed as

K = −
⟨Ekin(U = 0)⟩

2
= −

∑

k

nF (εk)εk. (76)

In the b) protocol, charge stiffness manifests as a non-
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Figure 9. Charge stiffness D in the Σ[G0] approximation. The U =
0 point is calculated using the short pulse of electric field protocol.

K is calculated according to Eq. 76. Colors on the plot indicate the

temperature T .

physical stationary state with constant current. In our Σ[G0]
approximation, we observe such a stationary state. The den-

sity distribution in the Brillouin zone ⟨nk⟩ in this state is

different from the initial equilibrium one, as can be seen in

Fig. 10. One can see that it does not have the full symmetry of

the lattice. Due to this, the contribution to the uniform current

of different k-points does not cancel out.

X. Σ[G](ω) AND Σ[G0](ω) COMPARISON

Here we compare two different self-energy approximations

used in the paper. We focus on thermal equilibrium state and

compute Σ[G0] using a separate well-optimized code imple-

mented in frequency domain11. We compute Σ[G] by solv-

ing the self-consistent KB equations, but without any external

fields. The resulting Σ is then Fourier transformed from time

domain to frequency domain. In Fig. 11 a comparison of the

bare Σ[G0] and the bold Σ[G] approximations is presented for

two different temperatures. In Fig. 12 we compare two dif-

ferent approximations for different values of U . In the limit

U → 0 we see that Σ[G] → Σ[G0]. We also see that Σ[G]
has in general a smoother frequency dependence and longer

high-frequency tails.

XI. LIMITATIONS OF SELF-ENERGY

APPROXIMATIONS

In this section we will discuss some limitations of self-

energy approximations that we used.

We expect both Σ[G] and Σ[G0] approximations to be valid

only for weak couplings. In Ref. 12 and Ref. 13 authors show

how for moderate couplings, our second order Σ[G0] is found

to be in better agreement with numerically exact results than

the second order Σ[G]. However, we document here that there

is a hard cutoff value of U beyond which Σ[G0] starts giving
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Figure 10. Characterization of the unphysical stationary state in case of the bare Σ[G0] approximation.
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Figure 11. Comparison of different self-energy approximations for two different temperatures.

unphysical results for the Green’s function. By contrast, the

Σ[G] approximation does not have such a limitation, albeit the

convergence of the iterative Σ[G] solution is not guaranteed at

strong couplings.

The limitation of the Σ[G0] approximation comes from the

fact that ImΣ(ω) always goes to exactly zero at some finite

(and not very large) frequency. At large U > Umax this leads

to the appearance of unphysical coherent states at certain wave

vectors. To understand this, we need to look at the expression

for the Green’s function

G(ω) =
1

ω + µ− εk − U2ReΣ̃k(ω)− iU2ImΣ̃k(ω)
(77)

where we have pulled the U2 factor out of the self-energy

Σ̃ ≡ Σ/U2. We see that the real part of the denominator can

have zeros ω∗ such that ImΣ(ω∗) = 0, yielding a delta peak

structure in the Green’s function, which would correspond to

an infinitely long lived state. This can lead to infinite conduc-

tivity, even if there is no charge stiffness. Fig. 13b illustrates

on one example the real part of the denominator of G and its

root ω∗. In can be seen that the root ω∗ is at a frequency where

ImΣ(ω∗) = 0. This is in contrast with the smaller value of U ,

see Fig. 13a, where there are no roots ω∗ for which ImΣ(ω∗)
vanishes. In Fig. 13c Umax is presented as a function of tem-

perature for different chemical potentials µ̃. We conclude that,

regardless of the accuracy of the second order Σ[G0] approx-
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imation in terms of describing the correct Σ at low frequency,

it cannot be safely used for the computation of spectral and

transport properties beyond about U ≈ 1.3.

XII. REAL-FREQUENCY DIAGRAMMATIC MONTE

CARLO (RFDIAGMC)

The basis for our RFDiagMC calculations is explained in

Ref. 14. The idea is that imaginary-time integrals in a general

Feynman diagram D can be solved analytically, to arrive at a

general expression of the form:

D(iωn) =
∑

l,p

Alp

(iωn − Elp)p
(78)

This is a sum of poles of various orders p, with amplitude A
at energy E . The analytical continuation is then trivially per-

formed, by replacing the Matsubara frequency by the com-

plex frequency iωn → z. We can then take z = ω + i0+ to

retrieve the contribution of the diagram to the retarded corre-

lation function, DR(ω). By binning the pole amplitudes on

a uniform real-frequency grid, we can ultimately avoid using

any broadening. The only numerical parameter in the calcula-

tion is the frequency resolution with which we accumulate the

results.

In this paper, we have performed two important generaliza-

tions of the algorithm, compared to our work in Ref. 14. First,

our algorithm is now general for an arbitrary physical quantity,

which allows us to compute both the self-energy diagrams and

the current-current correlation function diagrams. Second, the

propagators in the diagram can now be the dressed Green’s

functions, as is necessary for computation of bold skeleton

diagrams. Our algorithm can work with fully general propa-

gators of the form:

G(τ) = ηsτ

∫

dωρ(ω)nη(−sτω)e
−ωτ (79)

where η = ±1 for bosons/fermions, sτ is the sign of

τ ∈ [−β, β], with β the inverse temperature, and ρ(ω) =
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Figure 13. a) Real part of the denominator of G and imaginary part

of the self-energy for U < Umax; b) Real part of the denominator of

G and imaginary part of the self-energy for U > Umax; c) Umax at

different temperatures and chemical potentials. On all plots ImΣ is

given in arbitrary units (a.u.).

− 1
π
ImGR(ω) is the corresponding spectral function, obtained

from the retarded Green’s function GR. In practice, this

means that in the expressions that are being evaluated, now we

have additional frequency integrals to be solved numerically.

At this point, one must consider whether it is better to solve

the diagrams directly on the three-piece contour. When solv-

ing bold skeleton diagrams using our approach, one essen-

tially replaces a smaller number of time-integrals by a larger

number of frequency integrals. However, the frequency inte-

grals appear much easier to solve. The real-time integrands

are highly oscillatory, and the integration domain is infinite.

Real-time integrations are a difficult problem that has not yet

been solved in the lattice context. By contrast, the frequency

integrals do not contribute to the sign problem as ρ(ω) is pos-
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Figure 14. Benchmark of our algorithm for identifying the minimal set of diagrams: The results shown are the third order vertex corrections,

computed for a small lattice, using the bare propagator and the full momentum summation to eliminate any statistical errors. The results are

computed with and without making use of the particle-hole symmetry which reduces the number of diagrams from 7 to 2, and they show

perfect agreement.

itive definite (as long as we work in momentum basis) and the

integration domain is very restricted (ρ(ω) is sharply peaked

if the self-energy used to dress the propagator is small; the

problem thus becomes easier at weaker coupling). By using

the product of spectral functions ρ(ω) of all the propagators

in a diagram as Monte Carlo weight, we can successfully per-

form the frequency integration.

A. Specifics of numerical integration in the case of Λ diagrams

We start from the general expression for a Λ diagram

that we solve. At present, we restrict ourselves to the xx-

component of the uniform current-current correlation func-

tion. The diagram topology we denote Υ, and the order of the

diagram N . For the sake of simplicity of the presentation, we

assume there are no instantaneous self-energy insertions and

that the lattice is two-dimensional, but our code is not limited

in either sense. We label the diagram in imaginary time and

momentum space. Therefore, our starting point is the follow-

ing:

ΛΥ(τ) = (−1)N
Υ
bub(−U)N

N−1
∏

i=2

∫ β

0

dτi × (80)

×

∫

BZ

dk1

(2π)2
...

dkN

(2π)2
vxk1

vxk2

2N+2
∏

j=1

G(k̃j , τ̃j − τ̃ ′j)

We have N different imaginary times τ enumerated by i, but

τ1 and τN are the outer times. We can always set τi=1 to zero,

and then τN ≡ τ is the external time appearing on the l.h.s.

We have as many internal momenta as the interacting vertices

(N ), and 2N+2 propagators G, at momenta k̃j =
∑N

i=1 c
Υ
jiki

and attached to times τ̃j , τ̃
′
j ∈ {τ1, .., τN} (dependent on the

topology Υ). The overall sign of the diagram is determined

by the number of fermionic loops, NΥ
bub. When propagators

are dressed with dynamical self-energy, each propagator then

brings an additional integral over frequency, ωj . At any k, the

propagator is of the general form Eq. 79. The time integrals

(including over the external time to perform the Fourier trans-

form to Matsubara frequency) we perform analytically using

a symbolic algebra algorithm. This we can do on-the-fly, but

we have also devised an optimization procedure that relies on

performing the analytical integration in advance (we simplify

and store the resulting expressions in the form of highly opti-

mized, algorithmically generated code). The resulting analyt-

ical expression I is analytically continued by iωn → z. We

finally arrive at the expression that is numerically evaluated

ΛΥ(z) = (−1)N
Υ
bub(−U)N

2N+2
∏

j=1

∫

dωj × (81)

×

∫

BZ

dk1

(2π)2
...

dkN

(2π)2
vxk1

vxk2
ρk̃j

(ωj)I
Υ({ωj}, T ; z)

It turns out that it is very important that the momentum in-

tegrations are performed in a continuous BZ, i.e. in the true

thermodynamic limit. We have shown in our previous work14

that finite-size lattice calculations lead to noisy structures in

frequency spectra. We have observed similar behavior also

in the context of our current-current correlation function cal-

culations - yet, here we are here interested in the derivative

of ImΛ(ω) at ω = 0, where this function is nearly singular,

and rapidly changes slope in a very narrow frequency win-

dow. Any noise coming from finite lattice size could easily

affect our σdc estimates.

The propagator in our main RFDiagMC calculations is

dressed by the second order self-energy, either Σ[G] or Σ[G0].
The self-energy is computed in advance, on a large lattice.

During the Monte Carlo sampling, we interpolate Σ linearly

on-the-fly, as needed to construct the dressed propagator G
that enters the diagram. In the case of the Σ[G] approxima-

tion, we have computed the self-consistent self-energy in real

time (in absence of any field, with the lattice size 48×48), and

then performed the Fourier transform to real frequency. In the

case of the Σ[G0], we have performed the calculation in fre-

quency using a separate, highly accurate and efficient code we

had developed previously11 (with the lattice size 64×64).

We use Sobol sequence15 quasi Monte Carlo for the sum-

mation over inner momenta k, and for each given choice of
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momenta, we perform a weighted Monte Carlo over frequen-

cies (the integration over frequency is the inner loop; at or-

der 2 we have 6 propagataros, and therefore 6-dimensional

continuous-frequency-space to integrate over). The weighting

function here, as already indicated, is the product of the spec-

tral functions
∏

j ρk̃j
(ωj) corresponding to each of the prop-

agators, at the corresponding momenta (set in the outer loop).

The “update” step in the weighted Monte Carlo over frequen-

cies is a shift in one randomly selected frequency. The shift is

chosen randomly from the interval [−∆ωmax,∆ωmax]. The

Markov chain is thus trivially balanced.

The initial values of frequencies ωj for a given choice of

inner momenta ki are chosen to be the quasiparticle (qp) en-

ergies (i.e. the solution to ωj,init − εk̃j
− ReΣk̃j

(ωj,init) = 0

for each of the propagators; note that here we have absorbed

the Hartree shift and the chemical potential in the dispersion

εk). In the case of lower U the maximal shift ∆ωmax must be

taken smaller to avoid high rejection rates, because the spec-

tral weight is more concentrated around the qp energy. We

usually take 218 k-samples, and as many frequency samples

for each choice of momenta. This means we are in total taking

236 ≈ 6.8× 1010 samples.

B. Use of symmetries

The calculation of vertex correction diagrams is expensive.

We have used symmetries to reduce the overall number of dia-

grams to be computed. In general, the current-vertex symme-

try vk = −v−k will make contributions of certain diagrams

zero. Due to this symmetry all first order vertex correction

diagrams drop out. The bosonic symmetry of the correlation

function itself Λ(τ) = Λ(−τ) means that diagrams which are

topologically the same up to the exchange of terminals (cur-

rent vertices) will yield the same contribution, and it is suffi-

cient to compute only one of them. Finally, at half-filling, one

can use particle-hole symmetry to further reduce the number

of diagrams16. However, this will only hold for fully dressed

diagrams (not possible in the case of partially dressed dia-

grams one effectively obtains in our non-eq. Σ[G0] theory).

At half-filling, in total, we need to compute a single diagram

at order 2 (out of 4 possible diagrams), and 2 diagrams at order

3 (out of 11 possible diagrams).

To check the validity of our simplifications, we have per-

formed calculations of all diagrams and compared to the re-

sults obtained using the minimal set of diagrams, on examples

which are not numerically expensive. In Fig. 14 we show the

calculation of 3rd order vertex correction diagrams with the

bare-propagators, on a small 4×4 lattice, with and without the

use of ph-symmetry, and show how the results agree perfectly.

The momentum summations are here performed fully.

C. Accumulation of the results

We accumulate the pole amplitudes Al,p on a dense uni-

form frequency grid ωl = l∆ω. After the calculation is done,

we resample the amplitudes by merging adjacent bins, until
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Figure 15. Raw current-current correlation function results for dif-

ferent values of U . First row: Kubo bubble contribution, second and

third rows: second-order vertex corrections computed with the prop-

agator dressed with two different self-energy approximations. In the

left column, frequency axis has been rescaled by U2 for easier in-

spection. The σdc contribution is the angle at ω = 0, indicated by

the dashed line, and shown as a function of U in the insets.
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Figure 16. Vertex corrections to the current-current correlation func-

tion at second and third order, computed using bare propagators.

There is a discontinuity (jump) at ω = 0, which yields an infinite

contribution to σdc. This indicates that the bare series for Λ(ω ≈ 0)
is not convergent.
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Figure 18. Results at T = 0.1, showing that all of our conclusions

stand even at lower temperature. The agreement between Λ-pert

Σ[G0] and non-eq. Σ[G] at low U is excellent. It is interesting that

the Boltzman theory becomes worse at low temperature, and that the

vertex corrections become relatively smaller.

we get smooth curves. The imaginary part without any broad-

ening is obtained using the expression14

ImΛ(ωl + i0+) ≈
π

∆ω

∑

p

(−1)p

(p− 1)!
∂̃p−1
l Al,p (82)

and the real part ReΛ(ωl) is reconstructed using Kramers-

Kronig relations (in particular we need ReΛ(ω = 0) for the

estimate of charge stiffness).

XIII. VERTEX CORRECTIONS

In this section we discuss and show the raw results for

the bubble and vertex correction contributions to the current-

current correlation function Λ(ω).
In Fig. 15 we show our main ImΛ(ω) results. It is clear

that as U is reduced, the bubble vanishes, but at the same time

the slope at ω = 0 diverges. Ultimately, if we take exactly

U = 0 and compute the bubble with the bare propagators, we

get Λ(ω) = 0, as already mentioned in Appendix IX.

Similarly, the vertex correction diagrams become more and

more singular around ω = 0 as U → 0. We have checked

that, when vertex correction diagrams are computed with the

bare propagator, one observes a true discontinuity (jump) in

ImΛ(ω) at ω = 0, see Fig. 16,which means that contributions

of individual diagrams to σdc become of the form 0 × ∞ as

U → 0. If for diagrams at order k, the divergence is 1/Uk+2

or faster, these vertex correction diagrams will contribute even

at infinitesimal coupling. Of course, there is an overall pref-

actor which is expected to decrease with increasing k, and the

contribution of high orders may be small and even negligible.

The calculation of 3rd order vertex corrections to high

enough precision to extract σdc is currently not possible. We

find that ImΛv.c.3(ω) is overall 2 orders of magnitude smaller

than ImΛv.c.2(ω) (see Fig. 17). We believe it is highly un-

likely that v.c. of 3rd order (and higher) contribute signifi-

cantly. Further optimizations in our code will be necessary to

fully resolve this question.

We have checked that all the phenomenology we have ob-

served is qualitatively the same also at lower temperature (see

Fig. 18).

A. Sign of the vertex corrections

The common wisdom is that vertex corrections ought to in-

crease conductivity, because they account for scattering pro-

cesses which reduce the lifetime of quasiparticles (and thus

reduce the bubble contribution), but do not reduce the cur-

rent. However, these processes are mostly relevant in the dc

context. Indeed we see that the vertex corrections to optical

conductivity are positive at low frequency, become smaller

and change sign at intermediate frequency, and then vanish

at high frequency (see Fig.19, left panels). The same behav-

ior was observed in the previous publication of one of us17 at

strong coupling and high temperature. It is interesting that in

the Bose-Hubbard model, the ω-dependence of v.c. is very

similar, but with an overall opposite sign18. In our Σ[G0] the-

ory, the sign is also the opposite at low frequency, but we do

not observe the change of sign at intermediate frequency (see

Fig. 19, right panels).
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Quantum simulations are quickly becoming an indispensable tool for studying particle transport in correlated
lattice models. One of the central topics in the study of transport is bad-metal behavior, characterized by
the direct-current resistivity linear in temperature. In the fermionic Hubbard model, optical conductivity has
been studied extensively, and a recent optical lattice experiment demonstrated bad-metal behavior in qualitative
agreement with theory. Far less is known about transport in the bosonic Hubbard model. We investigate the
conductivity in the Bose-Hubbard model and focus on the regime of strong interactions and high temperatures.
We use numerically exact calculations for small lattice sizes. At weak tunneling, we find multiple peaks in
the optical conductivity that stem from the Hubbard bands present in the many-body spectrum. This feature
slowly washes out as the tunneling rate gets stronger. At high temperature, we identify a regime of T -linear
resistivity, as expected. When the interactions are very strong, the leading inverse-temperature coefficient in
conductivity is proportional to the tunneling amplitude. As the tunneling becomes stronger, this dependence
takes quadratic form. At very strong coupling and half filling, we identify a separate linear resistivity regime at
lower temperature, corresponding to the hard-core boson regime. Additionally, we unexpectedly observe that at
half filling, in a big part of the phase diagram, conductivity is an increasing function of the coupling constant
before it saturates at the hard-core-boson result. We explain this feature based on the analysis of the many-body
energy spectrum and the contributions to conductivity of individual eigenstates of the system.

DOI: 10.1103/PhysRevB.110.064501

I. INTRODUCTION

Cold atoms in optical lattices have provided a clean and
tunable realization of the Hubbard model [1]. The focus of
early experiments was on studying phase transitions within
the model, but various aspects of nonequilibrium dynamics
have also been explored in this setup. In particular, a lot of
effort has been invested in performing transport measurements
with cold atoms [2–4]. Transport measurements in optical
lattices are of great interest as they allow us to isolate the
effects of strong correlations from the effects of phonons and
disorder in a way that is not possible in real materials.

Particular attention is paid to linear-in-temperature resis-
tivity, which is believed to be related to the superconducting
phase and/or quantum critical points in cuprates and more
general strongly correlated systems [5–10]. This phenomenon
has been studied theoretically in different versions of the
Fermi-Hubbard model and in different parameter regimes
[11–17]. The onset of resistivity linear in temperature was
addressed in more general terms from the theoretical side in
Refs. [18–20]. In experiment with fermionic cold atoms in
optical lattices, the T -linear resistivity has also been observed
to span a large range of temperature, in qualitative agreement
with theory [4]. However, transport in bosonic lattice models
has been less studied from both theoretical and experimental
perspectives.

Bosonic transport in the strongly interacting regime of the
Bose-Hubbard model was addressed in a cold-atom setup by
investigating expansion dynamics induced by harmonic-trap
removal [21,22] and by studying center-of-mass oscillations
induced by trap displacement [23,24]. However these studies

did not focus on optical conductivity. Optical conductivity of
bosons at zero and low temperature was calculated in early pa-
pers [25–27]. The conductivity of two-dimensional hard-core
bosons was addressed in Refs. [28,29], and a large tempera-
ture range with linearly increasing resistivity was found. The
conductivity of strongly correlated bosons in optical lattices
in a synthetic magnetic field was obtained in Ref. [30]. The
regime of resistivity linear in temperature was recently investi-
gated for the Bose-Hubbard model at weak coupling [31]. The
dynamical response within the scaling regime of the quan-
tum critical point and universal conductivity at the quantum
phase transition were investigated theoretically in an attempt
to establish a clear connection with ADS-CFT mapping
[32,33]. In addition to cold-atom studies, bosonic transport
properties have been studied in the context of an emergent
Bose liquid [34–36]. Transport properties of nanopatterned
film arrays have been analyzed in terms of bosonic strange
metal featuring resistivity linear in temperature down to low
temperatures [37].

In this paper, we study conductivity in the Bose-Hubbard
model [1,25] in relation to optical lattice experiments with
bosonic atoms. We consider the strongly interacting regime
and focus on high temperatures, away from any ordering
instabilities. We consider small lattice sizes of up to 4 × 4
lattice sites and employ averaging over twisted boundary con-
ditions to lessen the finite-size effects. We control our results
by comparing different lattice sizes, as well as by checking
sum rules to make sure that charge stiffness is negligible. We
also use both the canonical and grand-canonical ensembles
and compare the results. To solve the model, we use exact
diagonalization and finite-temperature Lanczos method [38].
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We compute and analyze the probability distribution of the
eigenenergies (the many-body density of states), the spectral
function, and the optical and the direct-current (DC) conduc-
tivities, as well as some thermodynamic quantities. Where
applicable, we compare results to the hard-core limit and
the classical limit, as well as to the results obtained with
the bubble-diagram approximation. Our results show several
expected features. First, the many-body density of states,
spectral function, and optical conductivity all simultaneously
develop gaps and corresponding Hubbard bands as the cou-
pling is increased. Next, we clearly identify the linear DC
resistivity regime at high temperature and find the connection
between the slope and the tunneling amplitude, along the lines
of Ref. [20]. Furthermore, at lower temperatures and high
coupling, we identify a separate linear resistivity regime cor-
responding to hard-core-like behavior, which can be expected
on general grounds. We also find some unexpected features:
we observe nonmonotonic behavior in the DC conductivity
as a function of the coupling constant, which we map out
throughout the phase diagram.

This paper is organized as follows: In Sec. II, we briefly
describe our method of choice. In Sec. III we present our
results: In Sec. III A we address the many-body density of
states, and in Sec. III B we show some thermodynamic prop-
erties of the Bose-Hubbard model in the high-temperature
regime. In Sec. III C we calculate th optical conductivity for
finite interaction strength, and in Sec. III D we investigate the
dependence of the direct-current conductivity on microscopic
parameters of the Bose-Hubbard model and temperature. In
Sec. III E we explain the observed features using an analy-
sis of the Kubo formula from Ref. [20]. Then in Sec. III F
we compare our results for half filling with the results for
hard-core bosons [28]. We discuss the finite-size effects in
Sec. III G and compare the results obtained with the canonical
ensemble with the results obtained with the grand-canonical
ensemble in Sec. III H. In Sec. III I we compare our results
obtained for small lattices with the result of the often used
bubble-diagram approximation. Finally, we summarize our
findings in Sec. IV.

II. MODEL AND METHODS

Cold bosonic atoms in optical lattices are realistically de-
scribed by the Bose-Hubbard model [1]:

H = −J
∑

〈i j〉

(b†
i b j + H.c. ) +

U

2

∑

i

ni(ni − 1), (1)

where J is the tunneling amplitude between nearest-neighbor
sites of a square lattice and U is the on-site density-density
interaction. Unless stated differently, our units are set with the
choice U = 1. Throughout this paper, we set lattice constant
a = 1, h̄ = 1, and kB = 1. We also assume that the effective
charge of particles is q = 1.

The quantitative finite-temperature phase diagram of the
model on a square lattice was obtained in Ref. [39]. At integer
filling, a quantum phase transition between a Mott insulator
state and a superfluid is found [in particular, for filling n = 1
boson per site, the transition occurs at (J/U )c ≈ 0.0597]. At
finite temperature a Berezinskii-Kosterlitz-Thouless (BKT)

transition describes the loss of superfluidity [40]. In this
paper we work in the high-temperature regime, where we
expect only normal (noncondensed) states and short-range
correlations.

The Bose-Hubbard model represents only a low-energy
effective description of the full continuum Hamiltonian for
bosonic particles in a periodic potential [1]. For this rea-
son, the practicality of the high-temperature limit considered
throughout the paper is provisional. We assume that temper-
atures are high in comparison with the effective parameters J

and U but that they are small enough to keep all the higher
single-particle bands of the full model unoccupied. The appli-
cability of this condition will depend on actual experimental
parameters, such as the lattice constant and lattice depth.

In the cold-atom realization of Bose-Hubbard models, the
constituent particles are charge neutral. However, the current
can be induced and the conductivity can be probed either by
implementing a linear potential or by using artificial gauge
fields to introduce a time-dependent vector potential, which
would correspond to a constant electric field [41,42]. We
consider the retarded current-current correlation function at
finite temperature T = 1/β,

Cxx(t ) = −iθ (t )〈[Jx(t ), Jx]〉β, (2)

where the current operator is given by

Jx = −iJ
∑

〈i j〉x

(b†
i b j − H. c.), (3)

with the summation only over nearest neighbors along the
x direction. The partition function is Z (β ) = Tr(e−βH ), and
averaging is performed as

〈X 〉β =
1

Z (β )
Tr(e−βH X ). (4)

In the linear response regime, the conductivity is given by the
Kubo formula [43,44]:

σxx(ω) =
i

ω

[〈

− E x
kin

〉

β
+ Cxx(ω)

]

, (5)

where Cxx(ω) =
∫ ∞
−∞ dteiωtCxx(t ) and 〈E x

kin〉β is the average
kinetic energy along the x direction. Note that for the real
conductivity from Eq. (5), we need the imaginary part of
the correlation function ImCxx(ω). The DC conductivity is
obtained as σDC = Re σxx(ω → 0).

In the following we rely on numerically exact approaches
for small lattice sizes. We use exact diagonalization to obtain
the eigenenergies En and eigenstates |n〉 of the Hamiltonian H

and calculate

Re σxx(ω) =
π

Z (β )ω

∑

n,m

|〈n|Jx|m〉|2(e−βEn − e−βEm )

× δ(ω + En − Em). (6)

For larger lattice sizes, we apply the finite-temperature Lanc-
zos method [38]. We employ averaging over twisted boundary
conditions to lessen the finite-size effects [45,46]. This is done
by introducing in the model an external homogeneous gauge
field (vector potential). Formally, this amounts to setting the
same complex phase for each of the hopping amplitudes
in a given direction. In particular, for the hopping along
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the x direction to the first neighbor on the right we use
Ji j = J exp(iθx/Lx ), and for the hopping to the left we use
Ji j = J exp(−iθx/Lx ). The same is done for the y direction.
Physically, this corresponds to switching to a moving (iner-
tial) reference frame. Note that the expression for the current
operator from Eq. (3) in this case reads [47]

Jx = −i
∑

〈i j〉x

(Ji jb
†
i b j − H. c.). (7)

We randomly sample values of θx and θy in the range (0, 2π )
and perform averaging over the obtained eigenstates for these
different values of total flux in Eq. (6).

Due to the expected onset of charge stiffness in finite
systems and, more generally, longer-range correlations at low
temperature, we expect our method to be limited to the regime
of high temperature and relatively strong interactions (cor-
responding to a smaller ratio J/U ). For a crosscheck of the
validity of our numerical approaches, we rely on a comparison
of different lattice sizes (Sec. III G) and the sum rule [48]

∫ ∞

0
dω Re σxx(ω) =

π

2

〈

−E x
kin

〉

β
. (8)

Indeed, we find that the sum rule is satisfied at temperatures
T/U � 1 and tunneling J/U � 0.2. In this regime we find
that the results no longer significantly change with increasing
lattice size (Sec. III G); thus, our results are expected to be
reasonably representative of the thermodynamic limit.

Finally, we control the results with respect to the choice of
the statistical ensemble. A comparison of the results obtained
with the grand-canonical and canonical ensembles is given
in Sec. III H. We do not find a substantial difference in the
results between the two statistical ensembles; thus, we choose
to work in the canonical ensemble, as it allows us to consider
larger lattices. Unless stated differently, the results presented
in this paper are for the canonical ensemble.

III. RESULTS

A. Eigenstate spectrum

We first consider the many-body density of states of the
model (1) defined by

g(E ) =
∑

n

δ(E − En). (9)

We show our numerical results for fillings n = 1/2 and n = 1
in Fig. 1(a).

The classical limit J = 0 is simple to understand.
The many-body spectrum features energies E J=0

n = nU, n =
0, 1, . . ., with huge degeneracies. The Hilbert space dimen-
sion is dim H = (L + Np − 1

Np
), where L is the number of lattice

sites and Np is the number of particles. For Np < L, there are
( L
Np

) states with zero energy, (L
1)( L − 1

Np − 1) states (a single site
occupied by two bosons) with energy En = U , and so on.
The number of different energy levels is set by the system
size that we consider. As the ratio J/U increases from zero,
these macroscopic degeneracies are slowly resolved, and the
bands obtain a finite width. This is precisely what we observe
in the numerical data, as shown in Fig. 1(a), but we find
that separate many-body bands do persist up to a finite value
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FIG. 1. The normalized many-body density of states defined in
Eq. (9) for (a) n = 0.5, Lx = 4, Ly = 3, and Np = 6 and (b) n = 1,
Lx = 3, Ly = 3, and Np = 9. The black solid line in (a) gives the
corresponding density of states for the case of hard-core bosons. We
use 100 random realizations of the twisted boundary conditions. In
(c) we plot the height of the peak at energies E = 2U (for half filling)
and E = 4U (for unit filling). The black solid lines give the fitted
(J/U )−1 dependence.

of J/U ≈ 0.05, regardless of filling. Around this value, the
peaks in g(E ) (found around E = nU ) have heights roughly
proportional to 1/J [see Fig. 1(c)]. As J increases further,
the density of states turns into a wide, bell-shaped curve, as
shown in Fig. 1(b) for unit filling at J/U = 0.2. This particular
feature of the spectrum has been considered for a related
one-dimensional model in Ref. [49]. We also observe that
for n = 1/2, the lowest many-body band can be reasonably
approximated by hard-core bosons.

B. Thermodynamic properties

We investigate thermodynamic properties for T/U � 1,
as this regime has not been discussed in much detail in the
literature. Our numerical results indicate that in this regime,
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FIG. 2. (a) Interaction energy, Eq. (10), as a function of tem-
perature. (b) Kinetic energy, Eq. (15), as a function of temperature.
(c) The coefficient α(Np) from Eq. (15) as a function of system size.
System size Lx = 4, Ly = 3; number of particles Np = 12.

thermodynamic quantities approach the results of the atomic
limit J = 0. In particular, the interaction energy

〈Eint〉β =
U

2

〈

∑

i

ni(ni − 1)

〉

β

(10)

is very weakly dependent on the tunneling J/U , as shown
in Fig. 2(a), for the tunneling range that we consider 0 �

J/U � 0.2 and close to the single-site J = 0 value. From the
numerical results, we find that the average value of the kinetic
energy

〈Ekin〉β =

〈

−J
∑

〈i j〉

b
†
i b j + H.c.

〉

β

(11)

can be reasonably approximated by the leading order in the
high-temperature expansion

〈Ekin〉β ≈
Tr(1 − βH )Ekin

Tr(1 − βH )
(12)

≈ −β
TrE2

kin

dimH
(13)

= −α(Np)NpJ2/T, (14)

α(Np) =
1

dimH

∑

〈i j〉

Trni(n j + 1), (15)
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FIG. 3. Optical conductivity Re σxx (ω) as a function of fre-
quency. Parameters are (a) J/U = 0.04, (b) J/U = 0.1, and (c)
J/U = 0.2; Lx × Ly = 4 × 3; and Np = 6.

where Np is the number of particles in the system and dimH

is the dimension of the Hilbert space. The coefficient α(Np) is
size dependent [see Fig. 2(c)].

C. Optical conductivity

We present numerical results for the optical conductivity
in Fig. 3 for bosons with J/U = 0.04, 0.1, 0.2 and temper-
atures T/U = 2, 5, 10. We check that within this range of
physical parameters the sum rule given in Eq. (8) is satisfied
with accuracy better than 1%. For the weak tunneling am-
plitude J/U = 0.04 we observe that the conductivity exhibits
multiple peaks at ω ∼ nU, n = 1, 2, 3, . . . that stem from the
energy bands of the Hubbard model, as shown in Fig. 1.
As temperature is lowered, the higher-energy peaks become
smaller relative to the low-energy peaks, which is clearly
expected. However, in absolute terms, the optical conductivity
gets smaller with increasing temperature at all frequencies. As
the tunneling gets stronger the peaks merge, but the multipeak
structure is still visible at intermediate hopping J/U = 0.1.
Finally, for J/U = 0.2 the conductivity takes a simpler form

064501-4



CONDUCTIVITY IN THE BOSE-HUBBARD MODEL AT … PHYSICAL REVIEW B 110, 064501 (2024)

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2 4 6 8 10

(a)

(b)

FIG. 4. Imaginary part of the current-current correlation function
ImCxx (ω) multiplied by temperature T for a better comparison as a
function of frequency ω. Parameters are (a) Np = 6 and (b) Np = 12,
J/U = 0.1, and Lx × Ly = 4 × 3.

[see Fig. 3(c)]. In Fig. 4 we show that at low frequency, the
current-current correlation function scales with temperature in
a simple way, but the behavior is more complicated at higher
frequencies.

D. DC limit and T -linear resistivity

We now focus on the range of small ω. We have seen that
the strong interaction U introduces gaps in the many-body
spectrum that translate into peaks in the optical conductivity.
In order to address the role of tunneling J in more detail,
we replot numerical data in Fig. 5 by showing the current-
current correlation ImCxx(ω)/J2 as a function of ω/J . The
rescaling by J2 is motivated by the basic definition of the
current-current correlation function from Eq. (2). We find that
for up to J/U ≈ 0.08 numerical data overlap near ω = 0 and
are very weakly dependent on J/U . We further analyze and
explain this feature in Sec. III E.

In order to extract the DC conductivity σDC from the
current-current correlation function, we consider small but
finite ω and perform a linear fit, limω→0 ImCxx(ω)(T ) ≈
σDC(T ) × ω. For numerical purposes we perform the fitting
in the range ω ∈ (0, J ).

In Fig. 6 we plot the DC conductivity as a function of
inverse temperature β. Overall, we find that the normalized
conductivity σDC/Np decreases with filling from n = 1/2 to
n = 1 in this strongly interacting regime. This is easily under-
stood because, at integer fillings, the model is expected to have
maximal resistivity (at integer filling, low temperature, and
strong enough coupling, the model is in the Mott insulating
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FIG. 5. Imaginary part of the current-current correlation function
ImCxx (ω) as a function of frequency, T/U = 10. Parameters are
(a) Lx × Ly = 4 × 3 and Np = 6 and (b) Lx × Ly = 3 × 3
and Np = 9.

FIG. 6. DC conductivity σDC as a function of inverse temperature
β for (a) J/U = 0.04, (b) J/U = 0.1, and (c) J/U = 0.2. System size
Lx × Ly = 4 × 3. The solid lines give fits according to Eq. (16), and
the dashed lines give the leading linear dependence in β.
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FIG. 7. The coefficient c1 introduced in Eq. (16) versus tunneling
amplitude J/U . The solid lines give linear fits, and the dashed lines
present quadratic functions.

phase). More importantly, we observe at high temperature a
clear linear regime σDC ∼ β, i.e., ρDC ∼ T .

In general, it is expected that a finite-size system with a
bounded spectrum exhibits resistivity linear in temperature in
the limit T → ∞ (or σDC linear in the inverse temperature
β) [18,20]. When working within the canonical ensemble in
the strongly interacting limit, the upper bound of the Bose-
Hubbard model is close to Np(Np − 1)U/2, where Np is the
number of particles, and all the bosons occupy the same site.
Within the grand-canonical ensemble we control the average
density by reducing the chemical potential μ, and in this way
we effectively limit the highest-energy state.

The key question is how far down in the temperature range
resistivity linear in temperature persists. In particular, for
hard-core bosons it has been shown that higher-order correc-
tions become strong only at low temperatures in the vicinity of
the BKT phase transition [28]. To determine where quadratic
corrections to σDC ∼ β start to play a role, we fit our result to

σDC(β ) ≈ c1β + c2β
2 (16)

in the range βU ∈ (0.1, 0.2). We find that this approximation
works well even for a wider range βU ∈ (0.1, 0.5). For weak
hopping J/U � 0.1, in agreement with the observation from
Fig. 5, we find that c1 ∼ J , or

σDC ∼ J/T . (17)

A closely related result for the fermionic model was de-
rived using a high-temperature expansion in Ref. [13]. For
stronger hopping it holds that c1 ∼ J2, as shown in Fig. 7.
The subleading term c2 becomes more prominent as the ratio
J/U gets stronger.

E. The analysis of the Kubo formula

We explain the numerically identified features of the
conductivity using the framework introduced in Ref. [20].
Starting from the Kubo formula, Eq. (6), we consider small
enough ω → 0. Following the previous numerical analysis,
in the following we use small but finite ω. We approximate
the Dirac delta function from Eq. (6) as δ(x) ≈ θ (
ω/2 −
|x|)/
ω, where θ is the Heaviside function and the bin width

ω is chosen to accommodate a reasonably large number of
energy levels of our finite-size system. By rewriting Eq. (6)

and taking the limit ω → 0, we obtain

σDC = lim
ω→0

π (1 − e−βω )

ωZ (β )

∑

n,m

δ(En − Em − ω)|〈n|Jx|m〉|2e−βEn

=
πβ

Z (β )
lim

ω→0,
ω→0

1


ω

∑

n,m:|En−Em−ω|<
ω/2

|〈n|Jx|m〉|2e−βEn

=
β

Z (β )

∑

n

lim
ω→0

fn(ω)e−βEn , (18)

where

fn(ω) = lim
ω→0,
ω→0

π


ω

∑

m:|En−Em−ω|<
ω/2

|〈n|Jx|m〉|2. (19)

Using the high-temperature expansion in Eq. (18), we find
approximate results for the coefficients c1 and c2 introduced
in Eq. (16),

c1 ≈ 〈 fn(ω)〉n ≡
1

dimH

∑

n

fn(ω), (20)

c2 ≈ 〈 fn(ω)〉n〈En〉n − 〈 fn(ω)En〉n, (21)

where 〈An〉n ≡ 1
dimH

∑

n An. By a numerical inspection, we
find that estimates for the coefficients c1 and c2 obtained in
this way do match numerical data. Based on the approxima-
tion in Eq. (20), we infer that c1 ∼ J behavior is related to
the presence of bands in the many-body spectrum. The bands’
density of states is inversely proportional to J (see Fig. 1),
and consequently, the number of available states within a
frequency bin 
ω in Eq. (19) is inversely proportional to
the tunneling J . For stronger J a quadratic dependence c1 ∼
(J/U )2 appears as the band structure is washed out (Fig. 7).
Following Ref. [20], we perform coarse graining of the coef-
ficients fn(ω) from Eq. (19),

f (E , ω) =
1

g(E )

∑

n

δ(En − E ) fn(ω), (22)

where g(E ) is the many-body density of states, Eq. (9). An
almost flat line, an indicator of the invariance of f (E , ω) with
energy E , ensures resistivity linear in temperature far down in
T , as shown in Ref. [20]. In Fig. 8(a) we present the coarse-
grained coefficients f (E , ω) for J = 0.1 and U = 2 and U =
4. In both cases the many-body spectrum consists of bands
centered around 0,U, 2U, . . .. Within each band f (E , ω) is
roughly constant and weakly dependent on U . As U gets
weaker, the gaps between bands are closed, and the function
f (E , ω) acquires more features; see Fig. 8(b) for U = 1.
Because the function f (E , ω) deviates from an averaged flat
line throughout the spectrum, at first glance resistivity linear
in temperature is found only at high temperatures. This obser-
vation is in agreement with the data presented in Fig. 6, where
the regime of linear resistivity is found roughly at T � 5U

(β � 0.2). However, in the next section we discuss another
regime of linear resistivity found at lower temperatures when
the hard-core description becomes relevant.

F. Comparison with hard-core bosons

Conductivity of hard-core bosons at half filling was inves-
tigated in Ref. [28]. It was found that a Gaussian function
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FIG. 8. The function f (E , ω) as defined in Eq. (22) for J = 0.1
and U = 4 and (a) J = 0.1 and U = 2, (b) J/U = 0.1 and U = 1,
and (c) hard-core bosons with J = 0.1. Parameters are Lx × Ly =
4 × 3, Np = 6, ω/J = 0.35, and 
ω/U = 0.01. The horizontal lines
show averaged values of f (E , ω) over the full spectrum.

approximates well optical conductivity as a function of fre-
quency. In order to reach the limit of hard-core bosons here
we consider bosons at half filling (n = 1/2 bosons per lattice
site). We keep fixed hopping rate J = 0.1 and change the
value of local interaction U . In Fig. 9(a) we show that for a
low enough ratio T/U , for example, for U = 4 and T = 1,
our results for the optical conductivity at half filling approach
the result for hard-core bosons for ω/U < 1 as expected.
The contribution of higher Hubbard bands is absent in the
hard-core model.

The same applies to the DC conductivity, as shown in
Fig. 9(b). Reference [28] showed that the resistivity of hard-
core bosons is linear in temperature down to very low
temperatures close to the BKT transition. Our considerations
from the previous section are in line with this conclusion, as
we find that the hard-core bosons exhibit a nearly constant
function f (E , ω) [see Fig. 8(c)], which closely corresponds
to the function f (E , ω) of the lowest band of the full model.
As expected, when the temperature is low enough with respect
to U , only the lowest band of the full model is occupied, and
bosons can be described as hard-core particles. Consequently,
the DC conductivity starts off as a linear function of the
inverse temperature β, exhibits a transitional behavior for a
range of intermediate β values, and changes into a linear
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FIG. 9. (a) The conductivity Re σxx (ω) vs frequency ω for half
filling at T = 1 for hard-core bosons, U = 2 and U = 4. (b) The
DC conductivity as a function of inverse temperature β. The dot-
dashed lines give the leading-order high-temperature result σDC ≈
c1 × β for U = 4 and U = 2. Parameters are J = 0.1, Lx × Ly = 4 ×
3, and Np = 6.

function corresponding to hard-core-boson behavior at large
β (low T ).

Now we investigate in more detail how the DC conduc-
tivity of hard-core bosons is reached by varying parameter
U of the full model and temperature T . We present data
for the DC conductivity as a function of temperature T and
interaction U in Fig. 10. As we plot the DC conductivity
multiplied by temperature T , for hard-core bosons we find
an almost perfect constant within the considered temperature
range [see Fig. 10(a)]. This constant is reached for U = 8
at T = 2 and for U = 4 at T = 1. What we find surprising
is the U dependence of the conductivity: we find that σDCT

exhibits a minimum at some finite U before reaching the
hard-core-boson result [see Fig. 10(b)].

This behavior can be traced back to the result from
Fig. 8(c), where we saw that the average value of f (E , ω →
0) of hard-core bosons overestimates the result of the full
model. We rewrite Eq. (18) as

σDC T =
1

∑

n e−βEn

∑

n

lim
ω→0

fn(ω)e−βEn (23)

and consider the strongly interacting limit where the function
fn(ω → 0) can be approximated by a sum of rectangular func-
tions centered around 0,U, 2U, . . ., as presented in Fig. 8(a).
From Fig. 8(a) we observe that from the several lowest Hub-
bard bands, it is the lowest band that has the highest value
of f (E , ω → 0). From Eq. (23) we infer that at fixed tem-
perature, as we increase the interaction strength U , both the
numerator and the denominator of the last expression are
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VASIĆ AND VUČIČEVIĆ PHYSICAL REVIEW B 110, 064501 (2024)

0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33

1 2 3 4 5 6 7 8 9 10

HCB

0.22

0.24

0.26

0.28

0.3

0.32

0.34

1 2 3 4 5 6 7 8

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0 0.5 1 1.5 2 2.5 3 3.5 4

1 2 3 4 5 6 7 8

U

1
2
3
4
5
6
7
8
9

10

T

0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3
0.31
0.32
0.33

HCB limit

(a)

(b)

(c)

(d)

FIG. 10. The DC conductivity multiplied by temperature T as a
function of (a) temperature T , (b) interaction U , and (c) the ratio
T/U . The large blue circles in (b) give the value of the coefficient c1

introduced in Eq. (20) as a function of U . (d) The color map gives the
DC conductivity multiplied by temperature T . The limit of hard-core
bosons is reached in the bottom right corner of the plot. The yellow
circles in (d) give the location of minima in σDCT as a function of
U . The solid line is a guide to the eye. Parameters are J = 0.1, Lx ×
Ly = 4 × 3, and Np = 6.

reduced. Yet the partition function Z (β ) decays faster because
each term e−βEn ∼ e−βnU in the numerator is multiplied by a
factor fn < 1 (and gets smaller with increasing n), while in
the denominator it is multiplied by 1. Therefore, the conduc-
tivity increases with increasing U , and we reach the limit of
hard-core-boson conductivity from below. This is a striking
and highly counterintuitive observation. We have checked that
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FIG. 11. The current-current correlation function vs frequency
ω for unit filling and three different system sizes: Lx × Ly = 4 × 2,
Lx × Ly = 3 × 3, and Lx × Ly = 4 × 3. Parameters are J/U = 0.1
and (a) T/U = 10, (b) T/U = 5, and (c) T/U = 2.

this feature persists even when calculations are done in the
grand-canonical ensemble and when the size of the lattice is
changed, but it still might be an artifact of the finite size of the
system.

G. Finite-size effects

While that lattice sizes that we consider are too small
to quantitatively predict results in the thermodynamic limit,
we expect that the main features of the optical con-
ductivity that we observe remain valid. For example, at
high temperature we do expect DC conductivity to take
the form σ th

DC ∼ J/T , yet the exact values of the tun-
neling J and temperature T where this behavior changes
into a more complex dependence are possibly system size
dependent.

In Fig. 11 we compare the current-current correlation
functions for three different lattice sizes at several values
of temperatures. Overall, the results show good agreement,
and the main discrepancies are found close to ω → 0. By
comparing the results for the two largest available lattice sizes
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FIG. 12. The current-current correlation function ImCxx (ω) vs
frequency ω for half filling and J/U = 0.04 (left column) and J/U =
0.2 (right column). Parameters are (a) and (b) T/U = 10, (c) and (d)
T/U = 5, and (e) and (f) T/U = 2. Lattice size Lx × Ly = 4 × 3,
and Np = 6. The thin lines give results for each of the 100 boundary
conditions separately. The thick line is the averaged value.

and assuming that finite-size results approach the thermody-
namic limit as σDC(Np) ≈ σ th

DC + const/Np, we estimate the
relative errors of σDC with respect to the result in the ther-
modynamic limit σ th

DC to be roughly of the order of 10%. In
particular, for Np = 8 and Lx × Ly = 4 × 4, 
σDC/σDC ≈ 3%
at J/U = 0.04 and T/U = 10, 
σDC/σDC ≈ 12% at J/U =
0.04 and T/U = 1, and 
σDC/σDC ≈ 15% at J/U = 0.2 and
T/U = 10. Another way to claim that finite-size effects are
under control is to explore in more detail the role of boundary
conditions. In our study we implement the so-called twisted
boundary conditions, as introduced in [45,46]. We emphasize
that the dependence of the results on the choice of the gauge
is a measure of finite-size effects. The variance of the results
with respect to a random choice of the gauge field being small
is a good indication that the results are well representative of
the thermodynamic limit.

As we typically implement 100 twisted boundary con-
ditions [45,46,50], in Fig. 12 we plot the results for the
imaginary part of the current-current correlation function for
all the different boundary conditions separately, together with
their averaged value. At high T we find very weak dependence
on the boundary conditions already for lattice size Lx × Ly =
4 × 3, as can be seen in the top row of Fig. 12. However,
the dependence gets stronger with decreasing temperature, as
shown in the bottom row of Fig. 12, and it increases with the
ratio J/U .
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FIG. 13. (a) The partition function in different particle sec-
tors, ZN = Tr exp[−β(H − μN )]. The chemical potential is set by
the requirement 〈N〉/(Lx × Ly ) = 1. The imaginary part of the
current-current correlation function for J/U = 0.04 at (b) T/U = 2,
(c) T/U = 5, and (d) T/U = 10. Lattice size Lx × Ly = 4 × 2, with
no twisted boundary conditions.

H. The grand-canonical ensemble

Here we consider the grand-canonical ensemble and intro-
duce chemical potential μ,

Hμ = H − μN, (24)

where N is the number of particles. The value of the chemical
potential μ is set as usual by requiring a certain filling. In
Fig. 13 we compare the results obtained in this way with the
results within the fixed particle-number sector. We consider
a small lattice Lx × Ly = 4 × 2 and up to 20 particles. We
find that there are some quantitative differences, while the
main qualitative features of the correlation function remain
unchanged. The contribution of conductivity peaks found at
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FIG. 14. Spectral functions for (a) J/U = 0.04 and (c) J/U = 0.1. Optical conductivity Re σxx (ω) as a function of frequency ω for
(b) J/U = 0.04 and (d) J/U = 0.1. Parameters are Lx × Ly = 3 × 2, βU = 0.2, and μ/U ≈= −1.97, such that 〈N〉 = 1.

ω = nU is stronger at high temperatures when we take into ac-
count particle-number fluctuations within the grand-canonical
ensemble.

I. Comparison with the bubble-diagram approximation

Here we use the bubble-diagram approximation, which has
been extensively used for the calculation of the conductivity
within the Fermi-Hubbard model [11,12,14,15,17,47,51–54].
We find that for small lattices the bubble-diagram approxima-
tion works well only at high frequencies. A similar relation
between the full result and the bubble-diagram approximation
was observed in the fermionic Hubbard model [14] and, more
recently, even in the context of the Holstein model [55]. By
contrast, however, here vertex corrections appear to reduce
conductivity, rather than increase it.

Within the grand-canonical ensemble we first calculate the
single-particle Green’s function,

Gk(ω + iδ) =
1

Tre−β(H−μN )

∑

m,n

e−β(En−μNn ) − e−β(Em−μNm )

ω + iδ + En − Em + μ

× 〈n|bk|m〉〈m|b†
k|n〉, (25)

where bk = 1√
LxLy

∑

r eikrbr and r are vectors labeling lattice

sites. The eigenenergies En and Em and eigenstates |n〉 and |m〉
are obtained in two different particle sectors with Nn and Nm =
Nn + 1 particles. From here we obtain the spectral function:

Ak(ω) = −
1

π
ImGk(ω + iδ). (26)

The current operator from Eq. (3) is given by Jx =
∑

k ∂kx
εkb

†
kbk/

√

LxLy, where εk = −2J (cos kx + cos ky) is
the noninteracting dispersion relation on a two-dimensional
lattice. The current-current correlation function used in Eq. (5)
involves four bosonic operators. By using the imaginary time
τ and Matsubara frequencies ωn = 2πn/β, where n is an

integer, we find [43]

σxx(iω) =
1

LxLy

1

ω

∑

k,q

∂kx
εk ∂qx

εq

∫ β

0
dτeiωτ

× 〈b†
k(τ )bk(τ )b†

qbq〉. (27)

To estimate the last expectation value we decouple the four-
particle operator by using the Wick theorem. In this way, we
obtain an approximate expression for the conductivity:

σ bubble
xx (iω) =

1

LxLy

1

ωβ

∑

k

(∂kx
εk )2

∑

ωn

Gk(iωn)

× Gk(iωn + iω). (28)

By using the spectral representation Gk(iωn) =
∫

dω 1
iωn−ω

Ak(ω) and by performing a summation over ωn we
arrive at the bubble-diagram approximation for conductivity:

Re σ bubble
xx (ω) = π

1

LxLy

∑

k

∫

dω1
(

∂kx
εk

)2
Ak(ω1)

× Ak(ω1 + ω)
nB(ω1) − nB(ω1 + ω)

ω
, (29)

where nB(x) = 1/[exp(βx) − 1] is the Bose-Einstein distribu-
tion. The same approach has often been used in the study of
the conductivity of the Fermi-Hubbard model. All the details
can be found in Ref. [47]. A closely related calculation for
bosons is given in Ref. [30]. In comparison with Ref. [30],
here we work at finite temperature and use exact numerical
results for the single-particle Green’s function in Eq. (29).

We perform a numerical test of the accuracy of this approx-
imation by comparing results obtained from Eq. (29) with the
full result from Eq. (5). We find that for small system sizes the
approximation works well at higher frequencies ω, but it fails
to reproduce numerical data in the limit ω → 0, as shown in
Fig. 14. For J/U = 0.04 we find that the spectral function fea-
tures separate peaks close to ωn ≈ −μ + nU , n = 0, 1, 2, . . ..
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From Eq. (29) it follows that the peaks in optical conductiv-
ity emerge when the two peaks in A(k, ω1) and A(k, ω1 +
ω) overlap, as for ω = 0,U, 2U, . . ., as discussed in
Sec. III C.

IV. CONCLUSION AND DISCUSSION

In this paper we investigated the optical conductivity of the
Bose-Hubbard model in the high-temperature regime. Based
on the numerically exact calculation for small lattice sizes,
we identified multiple peaks in optical conductivity stem-
ming from the Hubbard bands at weak tunneling J/U . As
the tunneling rate gets stronger, these peaks merge, and the
conductivity takes a simpler form. We analyzed the regime
with resistivity linear in temperature and found that the pro-
portionality constant is inversely proportional to the tunneling
rate J in the limit J/U → 0. Additionally, in some cases we
observed two separate linear regimes with different slopes:
one at lower temperature corresponding to hard-core-boson
behavior and one at high temperature corresponding to the
leading order in the β expansion. Finally, we found a strik-
ing and unexpected nonmonotonic dependence of σDC on the
coupling constant. At half filling and fixed temperature T ,
above some value of U , σDC grows with increasing U , and
eventually, it approaches the hard-core-boson conductivity.
Further work is necessary to confirm that this feature of our
results survives in the thermodynamic limit.

We expect that these results can be probed in cold-atom
experiments, along the lines of Ref. [4]. Because the Bose-
Hubbard model is only the low-energy effective description
of lattice bosons, the regime of intermediate temperature
T/U ∼ 1 may be the most realistic for making quantitative
comparisons with experiments. For this purpose, it may turn
out that additional Hamiltonian terms describing bosons in
optical lattices should be taken into account in addition to
the Bose-Hubbard model. Moreover, processes beyond the
linear-response regime may play a role [42]. In order to extend
these calculations to larger system sizes, beyond-mean-field
approximations [56–60] could be considered.
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VASIĆ AND VUČIČEVIĆ PHYSICAL REVIEW B 110, 064501 (2024)

[24] A. Dhar, C. Baals, B. Santra, A. Müllers, R. Labouvie, T. Mertz,
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At optimal doping, different cuprate compounds can exhibit vastly different critical temperatures for super-

conductivity (Tc), ranging from about 20 to about 135 K. The precise properties of the lattice that determine the

magnitude of the Tc are currently unknown. In this paper, we investigate the dependence of the optimal doping Tc

on the parameters of the Emery (d-p) model for the CuO2 planes in the cuprates. We show that the best scaling

is obtained not with the parameters of the model written in the real (d/p-orbital) space but rather written in

the space of effective Wannier orbitals. In this basis, one obtains a model of three sublattices coupled through

all possible four-point interactions. We identify multiple predictor variables that fit the experimental Tc to about

±4–5 K and that remarkably depend on the leading attractive coupling constants in the transformed Hamiltonian.

DOI: 10.1103/PhysRevB.109.L081115

Finding ways to increase the superconducting critical tem-

perature in cuprate compounds is one of the central goals in

condensed matter physics [1–4]. The record Tc remains at

about 135 K for already more than two decades [5,6] (if we

only consider systems at atmospheric pressure [7,8]). One of

the reasons for the lack of progress is that there is no clear

understanding of what to look for in a crystal structure, if one

is to identify a high-Tc candidate. Many works focused on how

Tc correlates with the tight-binding parameters [9–26]. The

role of phonons [27–31] and disorder [32–34] have been con-

sidered as well. In more recent machine learning approaches

[35–38], a large number of different quantities was consid-

ered systematically. Even though the Coulomb interaction is

widely believed to be responsible for superconductivity in

the cuprates, no works to our knowledge have attempted to

systematically link ab initio computed coupling constants to

the experimentally measured Tc for multiple compounds.

Studies so far have mostly looked at correlations between

the Tc and the parameters of two kinds of models: single-band

and three-band. In the single-band picture, the main idea was

that longer range hopping (t ′) frustrates the antiferromagnetic

(AFM) correlations, which are believed to act as the pairing

glue in the cuprates [22,39–44]. However, the experimen-

tally observed trend in Tc(t ′/t ) [11,13,18] was not reproduced

in single-band calculations [12,14,16,19,24–26,45], thus sug-

gesting that the single-band models (both Hubbard and tt ′J)

do not capture all the mechanisms that determine the Tc in

the cuprates. In the three-band d-p (Emery) model picture,

some works considered the charge-transfer gap (CTG, the

difference in energy between copper d and oxygen p orbitals

[18,44,46], or defined by the gap in the local spectral func-

tion [44,47]) as the relevant energy scale that determines the

strength of the effective AFM coupling, and thus the Tc. At

least some trends of how the experimental Tc depends on

the tight-binding parameters computed for the Emery model

can be reproduced by many-body calculations (see Ref. [18]

and compare to Ref. [15]). More recently, experimentally ob-

served trends of how Tc depends on the density of holes on the

copper and oxygen sites separately [48] was also reproduced

in calculations for the d-p model [47]. These findings seem to

indicate that the Emery model is more relevant for the descrip-

tion of the Tc magnitude in the cuprates. However, the attempt

[18] to quantitatively correlate the tight-binding parameters of

the Emery model to the experimentally measured Tc yielded

only poor fits, with large standard deviation of about 30 K.

This still leaves open the question of the practical relevance

of the CTG and the Emery model.

In this paper, we show that the experimentally measured

Tc can indeed be described by a simple function of three

Emery-model tight-binding parameters (computed for each

compound using ab initio methods), with a small standard

deviation of about 7 K. Furthermore, we show that the in-

terplay between interaction and geometry plays an essential

role, and that even better fits can be obtained if one considers

not only the tight-binding parameters, but also the coupling

constants. The effective onsite repulsion on copper sites Udd

is unlikely to depend strongly on the specifics of the lattice

structure; However, if one transforms the Hamiltonian in such

a way that the e-e coupling and the kinetic energy become

entangled, the resulting coupling constants can be strongly

material dependent. By using one such (exact) transformation,

we formally obtain a model of three separate square lattices,

coupled through all possible four-point interactions between

two electrons. Among the coupling constants, some are pos-

itive (repulsive), and some are negative (attractive). We find

that the experimentally measured Tc can be fit to within about

5 K, by using a linear function of only two parameters of

our transformed Hamiltonian, one of them being the leading

attractive interaction. We explore the correlations of Tc with

the parameters of our transformed model in a systematic and
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FIG. 1. Illustration of the Hamiltonian transformation. A lattice

model of d and p orbitals with only local density-density interactions

on the d orbitals is exactly transformed into a model of three square

lattices with longer range hoppings and a zoo of four-point interac-

tions, some of which are attractive.

unbiased way. Our results indicate the presence of additional

pairing (or pair-breaking) mechanisms in the cuprates, which

might strongly affect the magnitude of Tc. These mechanisms

do not have a simple interpretation in terms of the d and p

orbitals, but are apparently related to density-assisted hop-

ping processes between certain spatially extended states, as

captured by the Hamiltonian terms in our transformed model.

This is particularly interesting in the view of the recent pub-

lication of Jiang et al. [49] which showed in a many-body

calculation that such coupling terms can indeed strongly affect

the Tc.

Model. The Emery model [18,47,50] (illustrated on Fig. 1)

has a unit cell that contains a copper d orbital and two oxy-

gen p orbitals (denoted with l = 0, 1, 2 ≡ d, px, py). The d

orbitals form a square lattice, and the p orbitals are found in

between the neighboring d orbitals. The hopping amplitude

between d and p orbitals is ±tpd , depending on the direction,

and, similarly, between the px and py orbitals the hopping

amplitude is ±tpp. The hopping between the nearest px (py)

orbitals is t ′
pp.

The noninteracting part of the Hamiltonian can be diago-

nalized by switching to the basis of appropriate Bloch waves

d
†
α,σ,k|0〉 (see Ref. [51])

Ĥ0 =
∑

σ,α,k

Eα,kd
†
α,σ,kdα,σ,k, (1)

where α = 0, 1, 2 enumerates the eigenbands in the order of

ascending energy, and k is a wave-vector in the first Brillouin

zone. The spin projection (↑,↓) is denoted σ .

In terms of the original local orbitals (denoted l), the inter-

acting part of the Hamiltonian, as considered in Refs. [18,47]

can be written in two spin-symmetric ways

Ĥint =
1

2

∑

l,σ,r

Ul c
†
l,σ,r

cl,σ,rc
†
l,σ̄ ,r

cl,σ̄ ,r (2)

=
1

2

∑

l,σσ ′,r

Ulc
†
l,σ,r

cl,σ,rc
†
l,σ ′,rcl,σ ′,r −

∑

l,σ,r

Ul

2
c

†
l,σ,r

cl,σ,r

(3)

with Ul = Uδl,0, and σ̄ denotes the spin projection opposite

of σ . The real-space position of the unit cell is denoted r.

The expressions (2) and (3) are equivalent. However, the

choice of one or the other will make a difference for the

final form of the Hamiltonian that we reach, following our

(exact) transformation: the values of the constants in front of

different Hamiltonian terms that we obtain, as well as their

physical meaning, will depend on how we initially formulate

the interacting part. The quadratic term in Eq. (3) will be

absorbed in the noninteracting part, and will amount to a shift

εd → εd − U/2. More importantly, only the choice Eq. (3)

will yield a formulation with a spin-rotational symmetry. We

will refer to the formulation based on Eq. (2) [Eq. (3)] as

model A (model B).

We now rewrite the entire Hamiltonian in the eigenbasis of

the noninteracting part and then further perform the (inverse)

Fourier transformation: we express the Hamiltonian in terms

of the operators d†
α,σ,r = 1√

N

∑
k e−ik·rd

†
α,σ,k. There is a phase

ambiguity associated with the definition of the operators d
†
α,σ,k

[52] which we discuss in more detail in Ref. [51]. The choice

of the phase we make ensures that, in the final form of the

Hamiltonian, all hopping amplitudes and coupling constants

are purely real and are consistent with the symmetries of the

original lattice. We obtain

Ĥ =
∑

σ,α,rd

tα,dd†
α,σ,rdα,σ,r+d

+
1

2

∑

σσ ′,αβγ δ
rdd′u

V
αβγ δ

dd′u d†
α,σ,rdβ,σ,r+dd

†
γ ,σ ′,r+u−d′dδ,σ ′,r+u,

(4)

where tα,d is the inverse Fourier transform of Eα,k, and it has

full square-lattice symmetry. For the precise definition of the

coupling constants V
αβγ δ

dd′u see Ref. [51].

The transition from Eqs. (1) and (3) to Eq. (4) is exact, and

is illustrated in Fig. 1. Starting from Eqs. (1) and (2) instead,

the only formal difference is the absence of the σ = σ ′ terms

in the interacting part in Eq. (4), but tα,d and V
αβγ δ

dd′u values

will also be different (due to the absence of the shift εd →
εd − U/2).

Dataset. We revisit the dataset compiled by Weber et al.

[18,53], where Emery model parameters were evaluated from

density functional theory (DFT) band-structures for 16 dif-

ferent cuprates (stoichiometric, parent compounds). For two

three-layer compounds, parameters were computed separately

for the inner and outer layers, which makes the total number

of data points in the dataset 18. The data includes the four

parameters of the quadratic part of the Hamiltonian written

in real-space (onsite energies and hopping amplitudes), as

well as the ratio of the next-nearest and the nearest neighbor

hoppings t ′/t in an effective single-band model that We-

ber et al. derived based on the d-p model parameters. The

density-density interaction was only assumed to exist on the

d-orbitals, and was considered to be the same for all com-

pounds, 8 eV.

Weber et al. only fitted Tc to individual model parameters.

The fits were rather poor [see Ref. [51] and Fig. 2(a)]. The Tc

was found to correlate with εd − εp (the CTG) in the expected

L081115-2
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(a) (b)

(d)(c)

(e) (f)

FIG. 2. Test of different predictors of Tc. The standard deviation

of each fit is denoted σ . The black line is the linear fit, the width of

the gray shading corresponds to ±σ .

way, but only weakly. In our opinion, one should not expect

that a single Hamiltonian term controls the Tc in its entirety.

One should rather expect a competition (or cooperation) be-

tween different processes encoded in the Hamiltonian. Most

generally, if the Emery model is correct for the cuprates, the

Tc should in general be a single-valued function of all the

parameters, Tc(εd − εp, tpd , tpp, t ′
pp). This was not checked in

Weber et al., and based on their analyses, one cannot give a

clear assessment of the relevance of the Emery model for the

cuprates. We provide such a check on Fig. 2(e) (see also Ref.

[51]). We demonstrate that a linear combination of three of

the Emery model parameters, namely ǫd − ǫp, tpp, and t ′
pp is a

solid predictor of Tc, to within ±7.4 K in the whole range of

Tc, except for three apparent outliers (see the explanations in

the next section). The remaining variance of our fit could be

attributed to tpd , but we find that adding this parameter to the

linear combination does not bring much improvement: Tc is

not a linear function of tpd . The remaining variance could also

be due to parameters not included in the Emery model. How-

ever, Tc does fit linearly and with an even smaller standard

deviation to the parameters of our transformed Hamiltonian,

as we show in the following: this presents strong evidence

that the Emery model indeed captures the mechanisms that

dominantly determine the Tc.

Strategy and results. For each entry in the Weber et al.

dataset (given in Ref. [51]), we evaluate the dispersions and all

the parameters of the Hamiltonian in Eq. (4). We then compute

from these values about 50 variables that we expect might cor-

relate with Tc (these include the bandwidths of each band Dα ,

short-distance hoppings tα ≡ tα,d=(1,0), t ′
α ≡ tα,d=(1,1), t ′′

α ≡
tα,d=(2,0), as well as various short-distance components and

extremal values of V
αβγ δ

dd′u ).

We first look at the correlation with the Tc of each in-

dividual variable, by doing a linear fit and estimating the

standard deviation, σ . We find that the best predictor is t ′
α=2

(in model B formulation), yielding a fit with σ = 26.2 K. This

is slightly better than the t ′/t for the effective single band put

forward by Weber et al., but t ′/t is, indeed, a close second

with σ = 27.5 K (see Fig. 2 top row). We readily see that

the data points (1), (6), and (11b) are outliers for both of the

best predictors. In our other attempts at fitting the Tc, these

three points were consistently presenting a limiting factor in

obtaining a small σ . Both points (1) and (6) have a very low

Tc—the point (6) has even the lowest Tc (it was also found

to be an outlier in Ref. [9]), while the point (1) is extreme in

terms of many of the model parameters, so we exclude both

points from further analysis. The point (11b) represents the

parameters for the inner layer of a three-layer material, and it

may be that the outer layer paramaters, given by the data point

(11a), are more relevant, so we exclude the point (11b), as

well. In total, we are left with 15 data points, for 14 different

compounds. We then redo the fits with respect to individual

parameters, and we see that σ for the t ′/t fit has dropped to

about 25 K, while the σ for the t ′
α=2 fit has dropped to 16.7 K.

In our subset of data which excludes the apparent outliers, t ′
α=2

is by far the best single-parameter predictor of Tc. This holds

even in the case of model A.

We now construct all possible linear combinations of

any two and three variables, P(p1, p2[, p3]) = c1 p1 + c2

p2[+c3 p3], and we keep fixed
∑

i c2
i = 1. For each of the

∼1200 pairs (p1, p2) and ∼40 000 triplets (p1, p2, p3), we

pinpoint the minimum in σ ({pi}; {ci}) using the Nelder-Mead

algorithm. We then rank different pairs and triplets accord-

ing to the minimum standard deviation that we can obtain,

min{ci} σ ({pi}; {ci}). Finally, we count the number of times

each variable appears in the top 100 triplets, to gain insight

into which parameters might be most relevant. Our results are

summarized in Table I (see also Ref. [51]).

We observe a general trend in our results, regardless of

the choice of the formulation of the interaction part [Eq. (2)

or (3)]—good predictors are the linear combinations of a

L081115-3
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TABLE I. Summary of the best predictors of Tc. In the first column, we restrict to only the original 4 parameters of the model and the t ′/t

for the effective single-band model computed in Weber et al. In the second and third columns, we include the parameters of models A and B,

respectively, and variables computed from those parameters.

category Original parameters and t ′/t σ (K) Model A σ (K) Model B σ (K)

one-param. best t ′/t 24.97 t ′
α=2 21.70 t ′

α=2 16.72

two-param. best εd − εp, tpp 12.67 t ′′
α=1, minV

αβγ δ

dd′u 5.42 t ′
α=1, V 0000

(1,1),(−1,−1),0 5.74

three-param. best εd − εp, tpp, t ′
pp 7.37 Dα=1, t ′′

α=1, t ′
α=2 4.47 t ′

α=0,
t ′′
α=0

tα=0
, V 2222

(1,1),0,0 4.01

tree-param. second best εd − εp, tpp, t ′/t 9.74 Dα=1, t ′′
α=1, V 2222

0,0,0 4.55 t ′
α=0, minV 0000

dd′u , V 2222
(1,1),0,0 4.03

hopping amplitude and one or two coupling constants, in

many cases the attractive ones, and in most cases those acting

within or between the bands α = 0 and 2, which are precisely

the bands having an appreciable amount of d character.

The best two-parameter predictor we find is the linear com-

bination of the overall most attractive component of V
αβγ δ

dd′u and

the hopping amplitude t ′′
α=1 (obtained in the model A formu-

lation), yielding σ = 5.4 K. The most attractive component in

both model A and B formulations is the local density-assisted

hybridization from band α = 0 to band α = 2, V 0020
0,0,0 .

The best result that we have obtained in our unbiased

search is given in Fig. 2(f). A linear combination of V 2222
(1,1),0,0,

t ′
α=0 and t ′′

α=0/tα=0, obtained in model B, yields a fit of Tc

with σ = 4.01 K. The coupling constant V 2222
(1,1),0,0 is negative

and corresponds to an assisted hopping term in the α = 2

band, say nα,↑,rd
†
α,↓,rdα,↓,r+(1,1) (similar to the terms consid-

ered in Jiang et al.). The parameters V 2222
(1,1),0,0, t ′

α=0 appear the

most times in the top 100 three-parameter predictors based

on model B, in total 65 times. It is interesting that t ′′
α=0/tα=0

correlates closely with V 0000
(2,0),0,0, which is, at the same time,

the most attractive interaction in the α = 0 band. Indeed, the

linear combination of V 2222
(1,1),0,0, t ′

α=0 and minV 0000
dd′u is our close

second best result, with σ = 4.03.

Finally, we find that the local density-density interaction

in the α = 2 band, V 2222
000 , might be very relevant. In model

A, it appears the most times in the top 100 three-parameter

predictors, and in model B it is in this sense ranked sixth. In

all linear combinations in which it appears, V 2222
000 enters with

a negative coefficient. Intuitively, a weaker local repulsion

could mean a higher Tc. The best single-parameter predictor,

t ′
α=2, indeed, highly (anti)correlates with V 2222

000 (see Table I

and Ref. [51] for details).

Discussion and prospects for future work. Our results

provide strong evidence that the Emery model well cap-

tures the mechanisms that determine the magnitude of Tc in

the cuprates. We identify multiple terms in the Hamiltonian

which appear particularly relevant for the Tc, and propose

that these correspond to additional pairing and pair-breaking

mechanisms that are in competition. These processes can be

understood only in terms of the spatially extended, effective

Wannier orbitals in the Emery model, which were not consid-

ered in earlier works.

In addition, we obtain a large set of predictor variables

that can be computed cheaply, and thus used practically in

high-throughput [54–56] searches for novel high-Tc candidate

structures. For practical use, the main question is whether the

simple relation between Tc and our predictor variables holds

outside the region of the parameter-space that is covered by

the Weber et al. data points. The best strategy is then to look

at crystal structures inside or close to that region, and focus on

points for which multiple predictors agree. We have scanned

the parameter space, and we find a case where each of the four

parameters of the Emery model is inside the range of values

for the existing cuprates, and for which our top 100 predictor

variables (based on model B) predict Tc ≈ 195 ± 5 K. Going

only slightly away from the range of Emery model parameters

covered by the data points, we find cases which correspond to

Tc of even more than 250 K (see Ref. [51] for details).

As was the case with previous similar works, the main

limitation of our approach lies in the ambiguity of the DFT

calculations [57,58] and the downfolding procedures [49,59],

especially when it comes to the choice and computation of

Coulomb tensor elements; our work ultimately highlights the

necessity of a careful and systematic work in that direction.
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I. MODEL HAMILTONIAN, TRANSFORMATION TO WANNIER SPACE, AND SYMMETRIES

A. Non-interacting part

We start from the Hamiltonian written in the basis of d, px, py-orbitals (denoted by l = 0, 1, 2, respectively). For the sake of

convenience, we define a row-vector of creation operators

Ψ
†
σ,r = (c†l=0,σ,r, c

†
l=1,σ,r, c

†
l=2,σ,r) (1)

where r denotes the position of the unit cell (set to the position of the d-orbital within the unit cell) and σ is the spin projection.

The non-interacting part of the Hamiltonian reads

Ĥ =
∑

σ,rr′

Ψ
†
σ,rhrr′Ψσ,r′ (2)

where

hrr′ =





εdδrr′ tpd(δrr′ − δr+ex,r′) tpd(δrr′ − δr+ey,r′)
tpd(δrr′ − δr−ex,r′) εpδrr′ + t′pp(δr+ex,r′ + δr−ex,r′) tpp(δrr′ − δr+ey,r′ − δr−ex,r′ + δr−ex+ey,r′)
tpd(δrr′ − δr−ey,r′) tpp(δrr′ − δr−ey,r′ − δr+ex,r′ + δr+ex−ey,r′) εpδrr′ + t′pp(δr+ey,r′ + δr−ey,r′)





(3)

and we define the unit vectors ex = (1, 0) and ey = (0, 1), in units of the lattice spacing (distance between neigboring Cu

nuclei). We can now apply the Fourer fransform over the unit cells to bring the Hamiltonian into a block-diagonal form. This

can be done in multiple ways, as there is a gauge freedom of choosing a k-dependent phase in front of c†l,σ,k operators. We take

the following convention:

c†l,σ,k =
ϕl,k√
N

∑

r

eik·rc†l,σ,r, cl,σ,k =
ϕ∗
l,k√
N

∑

r

e−ik·rcl,σ,r (4)

c†l,σ,r =
1√
N

∑

k

ϕ∗
l,ke

−ik·rc†l,σ,k, cl,σ,r =
1√
N

∑

k

ϕl,ke
ik·rcl,σ,k (5)

with

ϕl,k =











1, l = 0
i exp

(

−ikx

2

)

, l = 1

−i exp
(

−i
ky

2

)

, l = 2
(6)

This choice corresponds to doing the sum over the actual real-space positions of the given d, px or py orbitals, which are found

at r, r− ex/2 and r− ey/2, respectively. The Fourier transformation Eq. 5 of each operator a priori leads to the following form

Ĥ =
∑

σ,kk′

Ψ
†
σ,khkk′Ψσ,k′ . (7)
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Note that the sums over r, r′ have been absorbed into the matrix hkk′ , so that it only depends on k,k′, corresponding to the

momenta of the creation and annihilation operators to the left and to the right of the matrix. Let’s evaluate each of the matrix

elements of hkk′ .

[hk,k′ ]l=0,l′=0 =
εd ϕ0,kϕ

∗
0,k′

N

∑

rr′

δrr′e
ik·re−ik′·r′

= εd
1

N

∑

r

ei(k−k′)·r

= εdδkk′ (8)

[hk,k′ ]l=0,l′=1 =
tpd ϕ0,kϕ

∗
1,k′

N

∑

rr′

eik·re−ik′·r′(δrr′ − δr+ex,r′)

= tpd ϕ∗
1,k′(1− e−ik′

x)
1

N

∑

r

ei(k−k′)·r

= tpd (−i)(eikx/2 − e−ikx/2)δkk′

= 2tpd sin
kx
2
δkk′ (9)

[hk,k′ ]l=1,l′=1 = εpδkk′ + t′pp
ϕ1,kϕ

∗
1,k′

N

∑

rr′

eik·re−ik′·r′(δr−ex,r′ + δr+ex,r′)

= εpδkk′ + t′pp(e
ikx + e−ik′

x)
ϕ1,kϕ

∗
1,k′

N

∑

r

ei(k−k′)·r

= (εp + 2t′pp cos kx)δkk′

[hk,k′ ]l=1,l′=2 = tpp
ϕ1,kϕ

∗
2,k′

N

∑

rr′

eik·re−ik′·r′(δrr′ − δr+ey,r′ − δr−ex,r′ + δr−ex+ey,r′)

= tpp ϕ1,k ϕ∗
2,k(1− e−iky − eikx + eikx−iky )δkk′

= tpp ie−ikx/2ieiky/2(1− e−iky )(1− eikx)δkk′

= −4tpp sin
kx
2

sin
ky
2
δkk′ (10)

The rest of the terms can be obtained completely analogously. As all of the terms are proportional to δkk′ , we can drop the

second index in hkk′ , so we get

Ĥ0 =
∑

σ,k

Ψ
†
σ,khkΨσ,k (11)

with Ψ
†
k = (c†l=0,σ,k, c

†
l=1,σ,k, c

†
l=2,σ,k), and we have

hk =





εd 2tpd sin
kx

2 −2tpd sin
ky

2

H.c. εp + 2t′pp cos kx −4tpp sin
kx

2 sin
ky

2
H.c. H.c. εp + 2t′pp cos ky



 . (12)

We can now diagonalize each block of the non-interacting Hamiltonian, to arrive at Eq.1 from the main text:

Ĥ0 =
∑

σ,α,k

Eα,kd
†
α,σ,kdα,σ,k (13)

where α denotes the eigenbands, and the connection with previously defined operators is given in terms of the (transposed)

basis-change matrix Ak

d†α,σ,k =
∑

l

[Ak]α,lc
†
l,σ,k, c†l,σ,k =

∑

α

[A−1
k ]l,αd

†
α,σ,k (14)

Here note that we use the transpose of the basis change matrix P
⊺

k ≡ Ak only for the sake of convenience. The basis change is

in general performed by Ψ
†
σ,khkΨσ,k → (Ψ†

σ,kPk)(P
−1
k hkPk)(P

−1
k Ψσ,k), but it must hold P

−1
k = (P⊺)∗k because one must

have dα,σ,k = (d†α,σ,k)
†, and we check that it does.
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Figure 1. An example of the basis-transformation matrix Ak. Note that on this plot we discretize the Brillouin zone with only 30×30 points,

so that the edge cases are more easily inspected. To compute the hopping amplitudes we have used 360× 360 points.

There is a gauge freedom associated with the definition of d†α,σ,k - eigenstates are defined only up to an overall phase. We

make sure that all elements of [Ak]α,l are purely real, by subtracting any phase from the result we obtain in the following way:

[Ak]α,l → [Ak]α,le
−i arg[Ak]α,l=α (15)

where the labelling α = 0, 1, 2 is ordered by increasing Eα,k. In our implementation, special care to ensure smoothness of

[Ak]α,l was only needed for ky = 0 components, where [Ak]α,l=α = 0 and arg[Ak]α,l=α is undefined. Additionally, the point

k = (0, 0) is special because the eigenstates α = 1 and α = 2 are degenerate there - then any linear combination of these

eigenstates is also an eigenstate. We resolve this by imposing that [Ak]α,l is smooth passing through k = (0, 0) along the

kx = ky direction. This gives us

[Ak=(0,0)]α,l =
(−1)δα,2δl,1

√
2

(16)

Finally, we can Fourier tranform the operators acting on the eigenbands, and express the entire Hamiltonian in terms of

d†α,σ,r =
1√
N

∑

k

e−ik·rd†α,σ,k, dα,σ,r =
1√
N

∑

k

eik·rdα,σ,k (17)

with the inverse transformation being

d†α,σ,k =
1√
N

∑

r

eik·rd†α,σ,r, dα,σ,k =
1√
N

∑

r

e−ik·rdα,σ,r (18)
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Figure 2. An example of the the hopping amplitudes for the 3 bands, computed with 360 × 360 points in the Brillouin zone (Model A

formulation).

The non-interacting part now becomes:

Ĥ0 =
∑

α,σ,rr′

d†α,σ,rdα,σ,r′
1

N

∑

k

e−ik·(r′−r)Eα,k (19)

=
∑

α,σ,rd

tα,dd
†
α,σ,rdα,σ,r+d

where

tα,d =
1

N

∑

k

e−ik·dEα,k (20)

is the hopping matrix corresponding to the band α. The term d = 0 has the physical meaning of the onsite energy of the Wannier

orbital α.

The connection between the original d, px, py orbitals (|l, σ, r⟩ = c†l,σ,r|0⟩) and the Wannier orbitals (|α, σ, r⟩ = d†α,σ,r|0⟩) is

the following

|α, σ, r⟩ =
1√
N

∑

k

e−ik·r|α, σ,k⟩ (21)

=
1√
N

∑

k

e−ik·r
∑

l

[Ak]α,l|l, σ,k⟩ (22)

=
1√
N

∑

k

e−ik·r
∑

l

[Ak]α,l
ϕl,k√
N

∑

r′

eik·r
′ |l, σ, r′⟩ (23)

=
∑

r′,l

(

1

N

∑

k

e−ik·(r−r′)[Ak]α,lϕl,k

)

|l, σ, r′⟩ (24)

=
∑

r′,l

Fα,l,r−r′ |l, σ, r′⟩ (25)

where Fα,l,r is the inverse Fourier transform of the quantity [Ak]α,lϕl,k.
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Figure 3. An example of the the Wannier orbitals corresponding to the 3 bands, given in terms of the d, px, py orbitals (Model A formulation).

The area of the point is the amplitude of Fα,l,−r′ , the color is the phase (Fα,l,−r′ is purely real, so the color here denotes the sign).

B. Interacting part

Let’s consider the interacting part (density-density interaction on each orbital l):

Ĥint =
1

2

∑

l,σ,r

Ulc
†
l,σ,rcl,σ,rc

†
l,σ̄,rcl,σ̄,r (26)

=
1

2

∑

l,σ

Ul

∑

k1...k4

ϕ∗
l,k1

ϕl,k2
ϕ∗
l,k3

ϕl,k4
c†l,σ,k1

cl,σ,k2
c†l,σ̄,k3

cl,σ̄,k4

1

N2

∑

r

e−i(k1−k2+k3−k4)·r (27)

=
1

2N

∑

l,σ

Ul

∑

kk′q

ϕ∗
l,k+qϕl,kϕ

∗
l,k′ϕl,k′+qc

†
l,σ,k+qcl,σ,kc

†
l,σ̄,k′cl,σ̄,k′+q (28)

We now introduce Fkk′q,l ≡ ϕ∗
l,k+qϕl,kϕ

∗
l,k′ϕl,k′+q and transform into the eigenbasis of the non-interacting part:

Ĥint =
1

2N

∑

σ,αβγδ

∑

kk′q

d†α,σ,k+qdβ,σ,kd
†
γ,σ̄,k′dδ,σ̄,k′+q

∑

l

Ul[A
−1
k+q]l,α[A

−1
k ]∗l,β [A

−1
k′ ]l,γ [A

−1
k′+q]

∗
l,δFkk′q,l (29)

The above expression is fully general, but we remind the reader that in our case [A−1
k ] is purely real. Also, in the case that is

relevant to us, Ul = δl,0U , and the corresponding Fkk′q,l=0 = 1.

We can now introduce

V αβγδ
kk′q ≡

∑

l

Ul[A
−1
k+q]l,α[A

−1
k ]l,β [A

−1
k′ ]l,γ [A

−1
k′+q]l,δFkk′q,l (30)

and finally we Fourier transform to real (i.e. Wannier) space

Ĥint =
1

2N

∑

σ,αβγδ

∑

kk′q

V αβγδ
kk′q d†α,σ,k+qdβ,σ,kd

†
γ,σ̄,k′dδ,σ̄,k′+q (31)

=
1

2N3

∑

σ,αβγδ

∑

r1..r4

d†α,σ,r1dβ,σ,r2d
†
γ,σ̄,r3dδ,σ̄,r4

∑

kk′q

ei(k+q)·r1e−ik·r2eik
′·r3e−i(k′+q)·r4V αβγδ

kk′q (32)

=
1

2

∑

σ,αβγδ

∑

r1..r4

d†α,σ,r1dβ,σ,r2d
†
γ,σ̄,r3dδ,σ̄,r4

1

N3

∑

kk′q

e−ik·(r2−r1)e−ik′·(r4−r3)e−iq·(r4−r1)V αβγδ
kk′q (33)

We introduce the coupling constant in real space

V αβγδ
dd′u =

1

N3

∑

kk′q

e−ik·de−ik′·d′

e−iq·uV αβγδ
kk′q (34)
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with the identification d = r2 − r1, d = r4 − r3, and u = r4 − r1 and finally write

Ĥint =
1

2

∑

σ,αβγδ

∑

rdd′u

V αβγδ
dd′u d†α,σ,rdβ,σ,r+dd

†
γ,σ̄,r+u−d′dδ,σ̄,r+u (35)

The interactions in Eq. 35 are all possible 4-point interactions between two electrons of opposing spins. We list below the

physical meaning of some couplings:

• V αβγδ
000 local coupling.

• V αααα
000 local density-density coupling in the band α.

• V αααα
dd′u intraband coupling.

• V ααβγ
dd′u assisted interband hybridization (assisted by an operator in α-band; hybridization is from γ to β band).

• V ααββ
0,0,u density-density coupling

• V ααββ
d,0,0 density-assisted hopping in the α band (assisted by the density in the β band).

• V αααα
d,d,d (intraband) pair-hopping

• −V αααα
d,−d,0 xy-plane spin-spin interaction. This can be understood by commuting the operators

∑

σ d
†
α,σ,rdα,σ,r+dd

†
α,σ̄,r+ddα,σ̄,r = −∑σ d

†
α,σ,rdα,σ̄,rd

†
α,σ̄,r+ddα,σ,r+d = −(S+

α,rS
−
α,r+d + S−

α,rS
+
α,r+d) =

−2(Sx
α,rS

x
α,r+d + Sy

α,rS
y
α,r+d), where Sx = 1

2 (S
+ + S−) and Sy = 1

2i (S
+ − S−).

C. Symmetries

The first sanity check for the coupling constant comes from the requirement that the Hamiltonian is Hermitan. The coupling

constant must satisfy:

V αβγδ
dd′u = V δγβα

−d′,−d,−u (36)

and we check that it does.

We now restrict to Ul = δl,0U . Under this assumption, with the shift εd → εd − U/2, we can fully equivalently rewrite the

interacting term as

Ĥint =
1

2

∑

σσ′,αβγδ

∑

rdd′u

V αβγδ
dd′u d†α,σ,rdβ,σ,r+dd

†
γ,σ′,r+u−d′dδ,σ′,r+u (37)

Because of the shift in εd, the coupling constant V αβγδ
dd′u (as well as tα,d) will be different. However, this rewriting of the

Hamiltonian is manifestly spin-rotationally invariant. The rotation of the reference frame for the spin projection is in general

performed by the following transformation

c†σ =
∑

σ′

[e
i
2
θση

]σ,σ′c†σ′ = aσ↑,ηθc
†
↑ + bσ↓,ηθc

†
↓, cσ = a∗σ↑,ηθc↑ + b∗σ↓,ηθc↓ (38)

where σ
η are the Pauli matrices, η = x, y, z is the axis of rotation, and θ is the angle of rotation. We have checked numerically

that a Hamiltonian term of the form

∑

σσ′

c†i,σcj,σc
†
k,σ′cl,σ′ (39)

is invariant under transformations of the form Eq. 38, regardless of the orbital indices i, j, k, l. Similar can be shown for the

hopping terms of the form

∑

σ

c†i,σcj,σ. (40)
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Figure 4. Illustration of the effect of the εd → εd − U/2 shift on the non-interacting Hamiltonian and the effective Wannier orbitals, data

point (11a). Left: Model A, no shift, corresponding to Eq. 35 formulation of the interacting part; Right: Model B, with the shift, corresponding

to Eq. 37 formulation of the interacting part.

Therefore, the Hamiltonian written as Eq.37 (with the corresponding shift εd → εd − U/2 in the non-interacting part) is

rotationally invariant, term by term. This cannot be said for the writing in terms of Eq.35 and the original εd. The original

Hamiltonian is spin-rotationally invariant (when rotation is applied to c†l,σ,r and cl,σ,r), but, because of the non-local nature

of the interaction Eq.35, when rotations are applied to d†α,σ,r and dα,σ,r, this might yield same-spin interaction terms: the

Hamiltonian written as Eq.35 is not spin-rotationally invariant. We refer to the non-spin-symmetric Hamiltonian as the Model

A, and to the spin-symmetric Hamiltonian as the Model B.

We finally look at the spatial symmetries of the coupling constant. We check how the coupling constant V αβγδ
dd′u changes when

square-lattice symmetry operations are applied to the arguments dd′
u. There are 8 symmetry operations for the square lattice,

that we denote Rm(r). The symmetry operations are x → −x, y → −y, x ↔ y and any combination of these. We find that

V αβγδ
dd′u = ±V αβγδ

Rm(d),Rm(d′),Rm(u). (41)

The minus sign only appears in off-diagonal interactions involving the band α = 1, more precisely the assisted hybridizations

into or from the band α = 1. It turns out that the coupling constants V αβγδ
dd′u with (δα,1 + δβ,1 + δγ,1 + δδ,1) mod 2 = 1 exhibit

d-wave symmetry, i.e. they change sign upon π/2 rotation (around the z-axis) of the spatial indicies d,d′,u. The change of

sign upon rotation or swapping axes can be formulated as

V αβγδ
dd′u = (−1)δα,1+δβ,1+δγ,1+δδ,1V αβγδ

(±dy,±dx),(±d′

y,±d′

x),(±uy,±ux)
. (42)

The absence of full square-lattice symmetry in our coupling constant is not surprising. The original model also does not have

full lattice symmetry. This is already clear from the Hamiltonian Eq.3. This has an effect on correlators of the form ρll′,r−r′ =

⟨c†l,σ,rcl′,σ,r′⟩. Indeed, the single-particle density matrix has full square-lattice symmetry only for l = l′. With l = 1, l′ = 2,

ρll′,r has d-wave symmetry. This is reflected in the coupling constants in our rewriting of the Emery model. However, the

non-interacting part (i.e. tα,d) in our rewriting has full square-lattice symmetry, and so do all the intraband interactions V αααα
dd′u .

It is only a particular subset of the coupling constants that exhibits d-wave symmetry.

Finally, we observe numerically that

V αααα
d,−d,0 = V αααα

0,0,d = V αααα
d,d,d . (43)

Some examples of spatial dependence of the interaction are given in Figures 5 and 6.

II. RESULTS

We start from the Table 1 published in the Supplemental Material of Ref. 1 (i.e. Ref. 2) where Emery model parameters are

summarized for 16 different compounds. For two 3-layer compounds, the parameters are given separately for the inner and outer

layer. We list the parameters in Table I.

For the diagonalization of the non-interacting part and our rewriting of the Hamiltonian, only the difference εd − εp matters,

not the two parameters independently. However, the values of εd must be additionally shifted to avoid double counting of
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Figure 5. Illustration of the symmetry of V αβγδ

dd′u
, in Model A formulation. Most of the components have full square lattice-symmetry. The

components representing assisted hybridization into and out of the band α = 1 have d-wave symmetry. All interactions are computed on a

12 × 12 lattice. Some interactions have a longer range than is the size of the lattice, and in our analyses, we only focus on the short-distance

components. Throughout the work, V αβγδ

dd′u
is expressed in the units of U .

Table I. The Table with Emery model parameters for different compounds that is the basis for this work (taken from Ref.2).

index Compound εd − εp [eV] tpd [eV] tpp [eV] t′pp [eV] Tc [K]

(1) La2CuO4 2.61 1.39 0.64 0.103 38

(2) Pb2Sr2YCu3O8 2.32 1.3 0.673 0.16 70

(3) Ca2CuO2Cl2 2.21 1.27 0.623 0.132 26

(4) La2CaCu2O6 2.2 1.31 0.644 0.152 45

(5) Sr2Nd2NbCu2O10 2.1 1.25 0.612 0.144 28

(6) Bi2Sr2CuO6 2.06 1.36 0.677 0.153 24

(7) YBa2Cu3O7 2.05 1.28 0.673 0.15 93

(8) HgBa2CaCu2O6 1.93 1.28 0.663 0.187 127

(9) HgBa2CuO4 1.93 1.25 0.649 0.161 90

(10) Sr2CuO2Cl2 1.87 1.15 0.59 0.14 30

(11a) HgBa2Ca2Cu3O8(outer) 1.87 1.29 0.674 0.184 135

(11b) HgBa2Ca2Cu3O8(inner) 1.94 1.29 0.656 0.167 135

(12) Tl2Ba2CuO6 1.79 1.27 0.63 0.15 90

(13) LaBa2Cu3O7 1.77 1.13 0.62 0.188 79

(14) Bi2Sr2CaCu2O8 1.64 1.34 0.647 0.133 95

(15) Tl2Ba2CaCu2O8 1.27 1.29 0.638 0.14 110

(16a) Bi2Sr2Ca2Cu3O10(outer) 1.24 1.32 0.617 0.159 108

(16b) Bi2Sr2Ca2Cu3O10(inner) 2.24 1.32 0.678 0.198 108

correlation effects. We follow the prescription from Ref. 1, where a fixed double-counting shift Edc = 3.12 eV was subtracted

from εd, independently of compound (and, in their calculations, independently of doping).

Based on the model parameters from the Table I, we compute the following, for each of the compounds:

• the total bandwidth D = maxk,α Eα,k −mink,α Eα,k

• the bandwiths of each band Dα = maxk Eα,k −mink Eα,k

• the overlap/gap between the bottom two bands O = maxk Eα=0,k −mink Eα=1,k
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Figure 6. Illustration of the spatial dependence of relevant interaction components (Model A formulation).

• the gap between α = 0 and α = 1 bands at k-points (0, 0) and (π, π)

• the gap between α = 1 and α = 2 bands at k = (0, π)

• the short-distance hoppings tα ≡ tα,d=(1,0), t
′
α ≡ tα,d=(1,1), t

′′
α ≡ tα,d=(2,0)

• the ratios t′α/tα and t′′α/tα

• the total amount of d-character in the α = 2 band, 1
N

∑

k |[Ak]α=2,l=0|2

• the total amount of p-character in the α = 0 band, 1
N

∑

l=1,2

∑

k |[Ak]α=0,l|2

• the maximum and the minimum value in V αβγδ
dd′u

• the minimum intraband coupling constant for each band, mindd′u V αααα
dd′u

• the local density-density interaction in each band V αααα
000

• the nearest (d = (1, 0)) and the next-nearest neighbor (d = (1, 1)) assisted hopping V αααα
d,00 and the spin-spin interaction

V αααα
d,−d,0 in each of the bands

Throughout the paper, we give V αβγδ
dd′u in units of U (the estimate is U = 8 eV for all compounds), while the rest of the parameters

are given in units of eV.

After computing the above parameters, we do a linear fit of Tc to each of the parameters individually, and compute the std.

deviation. The results are summarized in Table II. We compare the results for the non-spin-symmetric (Model A, corresponding
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to Eq. 35; see Table II.A) and spin-symmetric Hamiltonians (Model B, corresponding to Eq. 37 and a shift εd → εd − U/2; see

Table II.B). We also show the difference in results depending on whether points (1),(6) and (11b) are excluded or not (Table II.A.1

vs. Table II.A.2, and Table II.B.1 vs. Table II.B.2).

Table II. Top list of best single-parameter predictors of Tc.

Table II.A. Model A (non spin-rotationally symmetric Hamiltonian).

Table II.A.1. All data points included.

rank parameter std. dev. σ
1 t′/t 27.4927

2 t′α=2 27.5412

3 tα=1 29.5241

4 V 0000
(1,0),(−1,0),0 29.6248

5 t′′α=1 29.9415

6 Dα=1 30.2950

7 t′pp 30.5228

8 V 0000
(1,0),0,0 30.8614

9 t′α=2/tα=2 31.4597

10 Eα=1
k=(0,0) − Eα=0

k=(0,0) 31.7394

Table II.A.2. Points (1),(6) and (11b) excluded.

rank parameter std. dev. σ
1 t′α=2 21.7034

2 t′′α=2 23.3602

3 tα=1 23.6241

4 t′′α=1 24.0605

5 Dα=1 24.8676

6 t′/t 24.9718

7 V 0000
(1,0),(−1,0),0 26.9649

8 tpp 27.0259

9 V 0000
(1,0),0,0 27.5327

10 t′pp 28.1611

Table II.B. Model B (spin-rotationally symmetric Hamiltonian).

Table II.B.1. All data points included.

rank parameter std. dev. σ
1 t′α=2 26.1661

2 t′/t 27.4927

3 Dα=1 30.2950

4 tα=1 30.4133

5 t′pp 30.5228

6 Eα=1
k=(0,0) − Eα=0

k=(0,0) 31.7394

7 t′′α=2/tα=2 32.8284

8 t′′α=1 33.0235

9 t′′α=0 33.0360

10 εd − εp 33.1773

Table II.B.2. Points (1),(6) and (11b) excluded.

rank parameter std. dev. σ
1 t′α=2 16.7233

2 Dα=1 24.8676

3 tα=1 24.8911

4 t′/t 24.9718

5 D 26.6340

6 t′′α=2 26.7989

7 t′′α=1 26.9456

8 tpp 27.0259

9 t′pp 28.1611

10 t′α=1 28.2256

Next, we look at all possible linear combinations of two parameters, P (p1, p2) = c1p1 + c2p2, with c21 + c22 = 1. For each

pair (p1, p2) we minimize the std. deviation σ w.r.t. c1 and c2, and sort the pairs according to the minimal σ. The results are

given in Table III.

Finally, we look at all possible linear combinations of three parameters, P (p1, p2, p3) = c1p1+c2p2+c3p3, with c21+c22+c23 =
1, and repeat the optimization procedure. The top lists of best 3-parameter predictors, based on the models A and B, are given

in Table IV. We note that there are about 30 3-parameter predictors based on model B parameters that are better than the best

3-parameter predictor based on model A parameters. Finally, we identify the parameters which appear the most in the linear

combinations which constitute the top 100 predictors. The results for model A and B, separately, are given in the Table V.

The results are illustrated in Fig. 7. We note that the two best 3-parameter predictors (in both Model A and Model B) differ

by only one parameter, and yield a very similar σ. The parameters that differ, therefore, must correlate well, which we check in

the bottom row.

We now restrict to the original parameters of the Emery model, i.e. εd − εp, tpd, tpp and t′pp, and the t′/t discussed in Weber

et al.. We show corresponding fits in Fig. 8. The two best 2-parameter predictors and the best 3-parameter predictor are given

in the bottom row. In the panel g, we show how the std. deviation depends on the choice of coefficients c1..3, for the linear

combination of εd − εp, tpp and t′pp, which yields the best fit of Tc. The collapse of the data points that we can obtain this way

is noticeably worse than what we can do with the parameters of the models A or B.

In the end, we want to estimate the probability that the scaling with Tc we get for some parameters and their linear combina-

tions is due to pure chance. We repeat the entire procedure with all parameters and variables (except Tc) replaced by random

numbers between 0 and 1. We also exclude the points (1),(6) and (11b). We get the following results:

• best single-parameter predictor: σ ≈ 27K

• best two-parameter linear-combination: σ ≈ 19K ≈ 27/
√
2

• best three-parameter linear-combination: σ ≈ 15K ≈ 27/
√
3
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Table III. Best linear combinations of two parameters.

Table III.A. Model A.

rank p1 p2 c1 c2 std. dev. σ

1 minV αβγδ

d,d′,u
= V 0020

0,0,0 t′′α=1 -0.422894 0.906179 5.4231

2 minV αβγδ

d,d′,u
= V 0020

0,0,0 tα=1 -0.894717 0.446634 5.7230

3 Dα=1 minV αβγδ

d,d′,u
= V 0020

0,0,0 0.060565 -0.998164 5.7304

4 V 2222
0,0,0 t′′α=2 -0.178606 -0.983921 6.1861

5 tpp V 2222
(1,0),0,0 0.012569 -0.999921 6.2400

6 V 2222
0,0,0 t′α=0 -0.668412 0.743791 6.5120

7 1
N

∑
k
|[Ak]α=2,l=0|

2 t′′α=2 -0.101612 -0.994824 6.8141

8 1
N

∑
k
|[Ak]α=2,l=0|

2 t′α=0 -0.452919 0.891552 7.2931

9 minV αβγδ

d,d′,u
= V 0020

0,0,0 t′α=1 -0.774502 -0.632572 7.4161

10 t′α=1/tα=1 t′′α=2 0.346422 -0.938079 7.4191

Table III.B. Model B.

rank p1 p2 c1 c2 std. dev. σ
1 V 0000

(1,1),(−1,−1),0 t′α=1 -0.999998 -0.001861 5.7407

2 Eα=1
k=(π,π) − Eα=0

k=(π,π) t′α=2 0.006267 0.999980 6.2854

3 V 0000
(1,1),0,0 t′α=1 -0.997331 -0.073015 6.4198

4 V 0000
(1,1),(−1,−1),0 t′′α=2 -0.999992 -0.004007 6.4207

5 V 0000
(1,1),(−1,−1),0 t′′α=1 -0.999994 0.003484 6.8968

6 V 0000
(1,1),0,0 t′′α=2 -0.987743 -0.156088 6.8977

7 V 0000
(1,1),0,0 t′′α=1 -0.990743 0.135753 7.3100

8 εd − εp maxEα=0
k −minEα=1

k -0.799401 0.600798 7.5377

9 εd − εp t′α=2 -0.007130 0.999975 8.0288

10 εd − εp tα=1 -0.054257 0.998527 8.1007

Table IV. Top lists of 3-parameter predictors.

Table IV.A. Model A.

rank p1 p2 p3 c1 c2 c3 std. dev. σ
1 Dα=1 t′′α=1 t′α=2 -0.027127 0.997861 0.059480 4.4696

2 Dα=1 V 2222
0,0,0 t′′α=1 -0.024756 -0.034964 0.999082 4.5503

3 Dα=2 t′α=0 tα=2 -0.103772 0.355220 -0.929005 4.5828

4 Dα=2 t′′α=2 t′′α=2/tα=2 -0.014299 -0.942122 -0.334964 4.6311

5 Dα=1 t′α=0 t′′α=1 -0.024244 -0.043401 0.998764 4.6446

6 V 2222
0,0,0 tα=1 t′′α=1/tα=1 -0.070622 0.051866 0.996154 4.6573

7 V 2222
0,0,0 t′′α=1 t′′α=1/tα=1 -0.076054 0.243175 0.966996 4.6784

8 mind,d′,uV
2222
d,d′,u = V 2222

(1,1),0,0 t′′α=0/tα=0 t′α=2 -0.996019 0.031442 0.083417 4.7134

9 V 2222
0,0,0 mind,d′,uV

0000
d,d′,u t′α=1 -0.021006 0.999127 -0.036103 4.7267

10 V 2222
0,0,0 t′′α=1 t′α=2/tα=2 -0.335834 0.930401 0.146868 4.7306

Table IV.B. Model B.

rank p1 p2 p3 c1 c2 c3 std. dev. σ
1 V 2222

(1,1),0,0 t′α=0 t′′α=0/tα=0 0.999856 0.016821 0.002042 4.0065

2 mind,d′,uV
0000
d,d′,u V 2222

(1,1),0,0 t′α=0 0.115210 0.993193 0.017135 4.0265

3 V 1111
(1,0),0,0 V 2222

(1,1),0,0 t′α=0 0.999946 0.010371 0.000194 4.0770

4 V 2222
(1,1),0,0 V 0000

(1,1),(−1,−1),0 t′α=0 0.313155 -0.949673 0.007395 4.0836

5 V 2222
(1,1),(−1,−1),0 t′α=0 t′′α=2/tα=2 -0.999999 0.001642 -0.000130 4.0942

6 Eα=2
k=(0,π) − Eα=1

k=(0,π) V 2222
(1,1),(−1,−1),0 t′α=0 0.000010 -0.999999 0.001553 4.1090

7 tpd V 2222
0,0,0 V 0000

(1,1),0,0 0.004709 -0.368569 0.929589 4.1152

8 Dα=2 V 2222
(1,1),(−1,−1),0 t′α=0 0.000009 -0.999999 0.001444 4.1644

9 V 2222
0,0,0 tα=0 t′α=0/tα=0 -0.994567 0.093453 0.045869 4.1822

10 V 2222
(1,1),(−1,−1),0 t′α=0 tα=2 -0.999999 0.001434 -0.000071 4.2076

Comparing to our best results (σ = 16K, σ = 5.4K and σ = 4.0K in the three categories, respectively), we conclude that our

results are highly unlikely to be obtained by pure chance, and that the quality of scaling we obtain must be indicative of actual
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Figure 7. Top row: best 2-parameter predictors. Middle two rows: best and second best 3-parameter predictors. In both cases, only one

parameter is different between the best and the second best. We check in the bottom row that these parameters correlate well. The best

single parameter predictor t′α=2 correlates closely with V 2222
000 , which, on the other hand, appears most times in the top 100 best 3-parameter

predictors based on Model A. Note that V αβγδ

dd′u
is throughout the paper given in units of U , while the rest of the parameters are given in units

of eV.

correlations between Tc and variables that we study.

III. SCAN OF THE PARAMETER SPACE - IDENTIFYING HIGH-Tc CANDIDATES

In this section we scan the parameter-space of the Emery model. For each parameter we cover the range of values spanned by

the data points (1)-(16b), expanded by 33% in both directions. We discretize each parameter by 6 equidistant points, which gives
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Table V. Top list of parameters, ranked by the number of times they appear in the top 100 3-parameter predictors (Nappear.).

Table V.A. Model A.

rank parameter Nappear.

1 V 2222
0,0,0 40

2 t′α=0 30

3 t′′α=1 23

4 t′α=1 21

5 t′′α=1/tα=1 17

6 tα=1 15

7 minV αβγδ

d,d′,u
= V 0020

0,0,0 15

8 Dα=1 15

9 mind,d′,uV
0000
d,d′,u 12

10 t′′α=2 11

Table V.B. Model B.

rank parameter Nappear.

1 t′α=0 37

2 V 2222
(1,1),0,0 28

3 V 2222
(1,1),(−1,−1),0 26

4 V 0000
(1,1),(−1,−1),0 25

5 t′′α=1 19

6 V 2222
0,0,0 18

7 Dα=0 15

8 tpd 14

9 t′′α=2 11

10 tα=0 11
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Figure 8. a)-d) The fit of Tc to original parameters of the model. e)-f) the two best 2-parameter predictors based on the original parameters

and t′/t from Weber et al.. g)-h) The best 3-parameter fit based on the original parameters and t′/t. g) shows how the quality of the fit depends

on the coefficients of the linear combination.

us in total 64 = 1296 points to work with. Then, for each point we evaluate the Tc-prediction, given by the top 100 3-parameter

predictors based on parameters of model B (the 100th best has σ = 5.02 K). We then compute the average Tc-prediction,

⟨Tc⟩ =
∑

P Tc(P )/NP , and the std. deviation, σ =
√
∑

P (Tc(P )− ⟨Tc⟩)2/NP , where different predictors are denoted P , and

NP = 100.

On Fig. 9 we plot ⟨Tc⟩ vs. σ. We see that, in general, different predictors are correlated in a large portion of the parameter

space that we study. There is plenty of cases where different predictors agree to within ±10 K. We also see that there are points

inside the 4D box spanned by the Weber et al. dataset, where Tc is predicted to be very large. In particular, if we take the

minimal εd − εp and the maximal tpd, tpp and t′pp from the Weber et al. dataset, the Tc is predicted to be 194.9±4.5 K. This is

in sharp contrast with the analysis presented in Weber et al., where one could only conclude that Tc for this choice of parameters

would be around 105±30 K. In the Table VI we list 10 high-Tc candidates, where Tc > 150 K, and all parameters are inside the

range spanned by the data points in the Weber et al. dataset.
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Figure 9. The scan of the parameter space spanned by the data points, enlarged by 33% in both directions, for each parameter. On the plot

we show the average Tc as predicted by the top 100 3-parameter predictors based on Model B, vs. the corresponding standard deviation. The

gray rectangle denotes the window of opportunity: where different predictors agree well and the predicted Tc is high.

Table VI. List of high-Tc candidates in the parameter space spanned by the data points in the Weber et al. dataset. The Tc estimate ⟨Tc⟩ is

obtained by averaging predictions of the top 100 3-parameter predictors based on the parameters of the (spin-symmetric) model B, and σ is

the corresponding std. deviation. Note that the convention for εd − εp is the same as in the original table in Weber et al., i.e. we do not include

here the Edc shift of εd that is, nevertheless, used in our calculation.

εd − εp [eV] tpd [eV] tpp [eV] t′pp [eV] ⟨Tc⟩ [K] σ [K]

1.240 1.390 0.678 0.135 154.1 3.1

1.240 1.390 0.678 0.166 174.7 3.1

1.240 1.390 0.678 0.198 194.9 4.5

1.697 1.217 0.678 0.198 151.1 4.5

1.240 1.303 0.649 0.198 158.2 5.0

1.697 1.390 0.678 0.198 162.8 4.9

1.240 1.303 0.678 0.166 165.0 7.7

1.240 1.303 0.678 0.198 182.9 7.2

1.697 1.303 0.678 0.198 160.2 2.1

1.240 1.390 0.649 0.198 169.2 5.5

IV. RELATIONSHIP TO SUPERCONDUCTIVITY IN THE ORIGINAL MODEL

Let us assume a d-wave superconductivity living on the copper d-orbitals, and let’s assume that the instantaneous anomalous

correlator has the following form

⟨c†l,↑,rc
†
l′,↓,r′⟩ = ∆δl,0δl′,0(δr−r′,ex

+ δr−r′,−ex
− δr−r′,ey

− δr−r′,−ey
) (44)

In terms of our Wannier orbitals, the anomalous propagator is then given by

⟨d†α,↑,rd
†
β,↓,r′⟩ =

∑

lr′′,l′r′′′

Fα,l,r−r′′Fβ,l′,r′−r′′′⟨c†l,↑,r′′c
†
l′,↓,r′′′⟩ (45)

=
∑

lr′′,l′d∈{±ex,±ey}

Fα,l,r−r′′Fβ,l′,r′−r′′−d⟨c†l,↑,r′′c
†
l′,↓,r′′+d⟩ (46)

=
∑

r′′,d∈{±ex,±ey}

Fα,0,r−r′′Fβ,0,r′−r′′−d(−1)δd,ey+δd,−ey∆ (47)

We compute ⟨d†α,↑,rd
†
β,↓,0⟩ (Figure 10) and see that the dominant values are for α, β = 0, 2, r = (0, 1), and they have d-

wave symmetry. There is also a weak s-wave component in the pairing between α = 1 and α = 0, 2 bands. Overall, the

superconductivity of d-orbitals is not very different from the superconductivity in the α = 0 and α = 2 orbitals. This provides
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some understanding of why it is mostly the interactions acting inside or between the bands α = 0 and α = 2 that correlate with

Tc.

= 0 = 0

= 0 = 1

= 0 = 2

= 1 = 0

= 1 = 1

= 1 = 2

= 2 = 0

= 2 = 1

= 2 = 2

Figure 10. The correlator ⟨d†α,↑,rd
†
β,↓,0⟩ under the assumption of the standard, nearest-neighbor d-wave pairing on the d-orbitals, given by

Eq. 44, with ∆ = 1. The example is data point (4). Area of points is the amplitude, color is the phase.
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Recent experimental results suggest that a particular hydrodynamic theory describes charge fluctuations at
long wavelengths in the square-lattice Hubbard model. Due to the continuity equation, the correlation functions
for the charge and the current are directly connected: the parameters of the effective hydrodynamic model thus
determine the optical conductivity. Here we investigate the validity of the proposed hydrodynamic theory in the
full range of parameters of the Hubbard model. In the noninteracting case, there is no effective hydrodynamics,
and the charge fluctuations present a rich variety of nonuniversal behaviors. At weak coupling, the optical
conductivity is consistent with the hydrodynamic theory: at low frequency one observes a Lorentzian-shaped
Drude peak, but the high-frequency asymptotics is necessarily different; the high-temperature limit for the
product of the two hydrodynamic model parameters is also in agreement with numerical data. At strong coupling,
we find that a generalization of the proposed hydrodynamic law is consistent with our quantum Monte Carlo,
as well as the finite-temperature Lanczos results from literature. Most importantly, the temperature dependence
of the hydrodynamic parameters as well as the dc resistivity are found to be very similar in the weak- and the
strong-coupling regimes.

DOI: 10.1103/PhysRevB.107.155140

I. INTRODUCTION

Strange metallic behavior is one of the central subjects for
the theory of strong electronic correlations [1]. It appears to be
a universal phenomenon, observed in many different systems,
often in close proximity to a superconducting phase [2–5], or
quantum critical points [6–8]. In this regime, the dc resistivity
is linear in temperature, in a very broad range of tempera-
ture. The origin of this behavior is unclear, but numerical
investigations converge to the conclusion that the Hubbard
model captures the underlying mechanisms [9–15]. Very re-
cently, a variational solution of the semiclassical Boltzmann
equation revealed a T -linear dc resistivity regime at high tem-
perature, extending towards zero temperature as half-filling is
approached [16]. This finding of Kiely and Mueller bares an
important implication that strange metallicity is not necessar-
ily a strong correlation phenomenon, even in cases when it
extends to very low temperature (see also Ref. [17] highlight-
ing the role of van Hove singularities at the Fermi level).

In the high-temperature limit, a simple and quite universal
understanding of the linear resistivity was proposed in terms
of the effective hydrodynamics that is expected to arise at long
wavelengths in interacting systems. Diffusive transport should
under very general circumstances lead to σdc = χcD, where
σdc is the dc conductivity, χc is the charge compressibility,
and D is the diffusion constant. In Refs. [11,12], it was argued
that, at high temperature, D approaches a constant, while
quite generally χc ∼ 1/T , which thus leads to ρdc ∼ T . In a
subsequent optical lattice simulation of the Hubbard model by
Brown et al. [18], the assumption of hydrodynamic behavior
was exploited to extract values for the dc resistivity and the
width of the Drude peak. In almost quantitative agreement

with the best available numerical method (finite-temperature
Lanczos, FTLM [19,20]), the experiment found linear resistiv-
ity in a broad range of temperature. However, the width of the
Drude peak Ŵ was greatly overestimated in the experiment,
which brings into question the quality of the ρdc estimates
and the underlying assumptions. The interpretation of exper-
imental results relied on a specific hydrodynamic ansatz for
the charge-charge correlation function, proposed to be valid
in the long-wavelength limit. On the other hand, the fits to the
direct measurement data were performed at relatively short
wavelengths: Any discrepancy between the ansatz and the
actual behavior at these wavelengths (and correspondingly
higher frequencies) could have led to the apparent bias in the
estimates of Ŵ, but perhaps even in the estimates of ρdc.

In this paper we investigate the validity of the hydro-
dynamic theory proposed in Ref. [18]. We first discuss
its analytical properties and find that the high-frequency
asymptotics is manifestly nonphysical. We propose a mod-
ified hydrodynamic law, which corrects the high-frequency
behavior, and ultimately allows for a comparison with
Matsubara-axis data we obtain from quantum Monte Carlo.
We derive the equation of motion for the current, which must
present a microscopic basis for the hydrodynamic theory. We
are unable to rigorously connect the hydrodynamic param-
eters to Hubbard model parameters, but we find evidence
that DŴ ≈ 2t2 (here t is the hopping amplitude), which is
consistent with numerical results at both weak and strong cou-
pling. Moreover, at weak coupling, DŴ = 2t2 can be derived
rigorously as the high-temperature limit of the hydrodynamic
theory, only based on the knowledge of the exact asymptotics
of the charge-charge correlation function.
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We perform numerical calculations for the square-lattice
Hubbard model and cover a wide range of parameters. We
start with the noninteracting limit where the hydrodynamic
theory is not expected to hold and find multiple interesting
examples of charge-fluctuation spectra. At weak coupling we
use second-order perturbation theory for the self-energy, and
compute optical conductivity and the charge-charge correla-
tion function from the bubble approximation. We confirm the
recent findings of Kiely and Mueller [16] that the dc resistivity
is linear at half-filling and, more generally, at high temper-
ature. At stronger couplings, we use the numerically exact
continuous-time quantum Monte Carlo (CTINT [21,22]) on
a finite 10 × 10 lattice, and control for the lattice size. We
show that a modified hydrodynamic law is consistent with
the Matsubara-axis results for the charge-charge and current-
current correlation functions, as well as with the FTLM result
for optical conductivity. The hydrodynamic model parameters
extracted from FTLM at strong coupling display strikingly
similar behavior to what we find from the bubble approxima-
tion at weak coupling.

The paper is organized as follows. In Sec. II we introduce
the two-dimensional (2D) Hubbard model and the hydro-
dynamic theory proposed to govern its charge and current
fluctuations at long wavelengths. In Sec. III we show our
numerical results, separated in three subsections based on the
coupling strength. In Sec. IV we discuss our findings in the
context of existing literature and give concluding remarks in
Sec. V. In Appendixes A–E we give detailed derivations of
equations used in this paper, and outline the fast algorithm
we used for computing the second-order self-energy. In Ap-
pendix F we show and discuss static charge susceptibility data
in the noninteracting limit.

II. MODELS

A. Square-lattice Hubbard model

We solve the Hubbard model given by the Hamiltonian

H = −t
∑

σ,〈i, j〉

c
†
σ,icσ, j + U

∑

i

n↑,in↓,i − μ
∑

σ,i

nσ,i, (1)

where σ ∈ {↑,↓}, i, j enumerate lattice sites, t is the hopping
amplitude between the nearest-neighbor sites 〈i, j〉, U is the
onsite coupling constant, and μ is the chemical potential. We
absorb the chemical potential in the bare dispersion, which is
thus given by

εk = −2t (cos kx + cos ky) − μ. (2)

We will switch between the site notation and real-space no-
tation whenever convenient (Ai ≡ Ar, with r = ri, which is
the real-space position of the site i). The density operator
is denoted nσ,i = c

†
σ,icσ,i. Throughout the paper we use the

half-bandwidth 4t as the unit of energy. We only consider
paramagnetic solutions. In equilibrium we assume full lattice
symmetry.

B. Hydrodynamic model

In Ref. [18] it was proposed that a hydrodynamic model
describes the fluctuations of current and charge at long wave-

lengths in the Hubbard model. The hydrodynamic model reads
as

∂t n = −∇ · j, (3)

∂t j = −Ŵ(D∇n + j), (4)

where n and j are scalar and vector fields, respectively, depen-
dent on time and space. The parameters of the model are the
momentum-relaxation rate Ŵ and the diffusion constant D.

The first equation [Eq. (3)] is the continuity equation, and it
is certainly valid in the Hubbard model for the time-dependent
operators in the Heisenberg picture. However, on the square
lattice, the spatial derivatives must be discretized, and the
actual continuity equation reads as

∂t nr = −
∑

η∈{x,y}

( jηr − j
η
r−eη

) (5)

which simply means that any increase in the particle density
at a site r must be due to a disbalance between the currents
entering and exiting the given site. The current operator is
given by

jηr = it
∑

σ

(c†
r+eη,σ

cr,σ − c†
r,σ cr+eη,σ ), (6)

where eη denotes the lattice vector in the direction η. A deriva-
tion of Eq. (5) is presented in Appendix A, but can be found
elsewhere [23]. Since the operators are connected instanta-
neously, the charge and current fluctuate synchronously. The
corresponding charge-charge and current-current correlation
functions must be connected directly, as well. Following the
derivation presented in Appendix B, one obtains in the entire
complex plane

z2χq(z) =
∑

η∈{x,y}

∑

k

	
η

k,q(〈nk+q〉 − 〈nk〉)

+
∑

η,η′∈{x,y}

(1 − eiqη − e−iqη′ + ei(qη−qη′ ))
η,η′

q (z),

(7)

where 	
η

k,q = −2t[cos(kη + qη ) − cos kη], and nk =
∑

σ c
†
σ,k

cσ,k. We define in imaginary time and site space

χi j (τ ) = 〈ni(τ )n j (0)〉 − 〈n〉2 (8)

and



ηη′

i j (τ ) = 〈 j
η

i (τ ) j
η′

j (0)〉 (9)

the charge-charge and current-current correlation functions,
respectively, calculated in thermodynamic equilibrium. The
standard Fourier transform to Matsubara frequencies gives
χ (z) and 
(z) at a discrete set of points along the imagi-
nary axis; a spatial Fourier transform gives the corresponding
quantities in reciprocal space. We are ultimately interested in
retarded quantities which correspond to taking z = ν + i0+

and we denote them as χq(ν) and 

ηη′

q (ν). Here, ν is real
frequency and q is momentum. We have checked numerically
that Eq. (7) holds in the noninteracting limit, for any q and
in any parameter regime of the model (data not shown). In
general, the transversal components 
η,η′ �=η play a role in
Eq. (7). However, the expression greatly simplifies for the
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imaginary part on the real axis at small q in the x direction,

lim
q→0

Imχq=(q,0)(ν) =
q2

ν2
Im
xx

q=(q,0)(ν), (10)

which is the same expression one obtains in the continuum
limit, directly from Eq. (3).

The second equation [Eq. (4)] is the so-called constitutive
equation [24] of a hydrodynamic theory, needed to close the
system of equations, as the continuity equation itself does not
fully fix n and j. In the stationary regime, Eq. (4) reduces to
Fick’s law of diffusion j = −D∇n. Equation (4) is not nec-

essarily satisfied in the Hubbard model, and is an underlying
assumption of the work presented in Ref. [18]. It is precisely
the aim of this work to investigate whether the hydrodynamics
encoded in Eq. (4) truly emerges in the Hubbard model at the
longest wavelengths and. if yes, under which conditions.

1. Microscopic constitutive equation for the hydrodynamics

in the Hubbard model

We start by deriving a microscopic expression for the time
derivative of the current operator. The derivation presented in
Appendix C yields

∂t jηr = −t2
∑

σ

⎧

⎨

⎩

2nσ,r+eη
− 2nσ,r +

∑

u∈{−eη,eη̄,−eη̄}

(c†
σ,r+ucσ,r+eη

− c†
σ,rcσ,r+eη−u + H.c.)

⎫

⎬

⎭

− tU
∑

σ

(nσ̄ ,r+eη
− nσ̄ ,r )(c†

σ,rcσ,r+eη
+ c

†
σ,r+eη

cσ,r ), (11)

where we used σ̄ =↑ if σ =↓, and vice versa; similarly
η̄ = y if η = x, etc. We immediately recognize the lattice
version of the local gradient of charge in the direction of
the current nσ,r+eη

− nσ,r. If we are interested in the time-
dependent averages, we can split the terms in the second row
in the disconnected and connected parts 〈nc†c〉 = 〈n〉〈c†c〉 +
〈nc†c〉conn. Assuming that we are close to and approaching
equilibrium, one can further split the averages in the equilib-
rium value and the time-dependent part. Taking into account
the lattice symmetries satisfied in equilibrium, the constant
appearing in front of the gradient of charge has the terms
2t2 + 2tU 〈c†

σ,r+eη
cσ,r〉eq, and will therefore decay towards 2t2

as T → ∞ or U → 0. Identifying this with the term DŴ∇n

in the hydrodynamic theory [Eq. (4)], one could expect that at
high temperature DŴ ≈ 2t2. In Sec. III B, we analyze numer-
ical data and indeed find such behavior. However, in Eq. (11)
there are also time-dependent factors that multiply the gradi-
ent of charge, and other terms which correspond to neither ∇n

or j. It is unclear under which conditions the remaining terms
conspire to give rise to the effective Eq. (4), even if only in the
long-wavelength, low-frequency, and linear-response limit. In
Appendix C, we present Eq. (11) also in momentum space, but
find no clear simplifications in the q → 0 limit (the Fourier
transform to the frequency domain would be analogous).

2. Experimental quench setup and CDW amplitude evolution:

The ballistic and diffusive regimes

One can combine Eqs. (3) and (4) to obtain a differential
equation governing the time evolution of the amplitude of a
charge density wave nq (on the lattice, this field corresponds
to the operator nq =

∑

σ,k c
†
σ,k+qck + H.c.):

∂2
t nq + Ŵ∂t nq + ŴDq2nq = 0. (12)

Consider a setup where a charge density wave was first ther-
malized by applying an external density-modulating field V

[H → H + V
∫

dr sin xn(r)] for a long time, and was then
let to evolve after abruptly switching off V . This time evolu-

tion is the solution of Eq. (12) with the boundary condition
∂t nq(t = 0) = 0, nq(t = 0) = n0. If n0 is small, this behavior
should also be described by the linear-response theory

nq(t ) =
∫ t

−∞
χq(t − t ′)θ (−t ′)dt ′

=
∫ ∞

t

χq(t ′)dt ′, (13)

assuming the knowledge of the charge-charge correlation
function in real time, obtained as the Fourier transform
from the retarded χq(ν) as χq(t ) =

∫

dν e−itνχq(ν). One can
show [18] that the solution of Eq. (12) is equal to Eq. (13) with
the retarded charge-charge correlation function of the form

χq(ν) =
χc

1 − iν
q2D

− ν2

q2DŴ

, (14)

where χc is the charge compressibility, which connects n0

with the strength of the density modulating field at t < 0,
but does not affect the dynamics of Eq. (12). This correlation
function has the important property χq→0(ν �= 0) = 0. This
indicates the conservation of the total number of particles,
which is a prerequisite for the continuity equation. This is easy
to understand as nq=0 equals the total number of particles Ntot,
and therefore Imχq→0(ν) describes the fluctuations of Ntot.

At any given q, one can rewrite the frequency-dependent
part of Eq. (14) in a more revealing way. In the upper
half-plane, the dynamic charge susceptibility (14) can be rep-
resented as a sum of two poles in the lower half-plane:

χ tp(z+) = A

[

1

z+ − z1
−

1

z+ − z2

]

(15)

with A=−χc/r, r =
√

4b − a2, a= 1
q2D

, b= 1
q2DŴ

, z1 = r−ia
2b

,

z2 = −r−ia
2b

. It is clear that there are two distinct regimes:
one where r is purely real, hence the two poles appear at
Rez1 = −Rez2 and Imz1 = Imz2 = −a; the other one is when
r is purely imaginary, and the two poles appear at Rez1 =
Rez2 = 0, Imz1 = Imz2 + 2 Imr. The latter is the “diffusive
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regime,” which is realized whenever 4b < a2, i.e.,

q < qD ≡
√

Ŵ

4D
. (16)

To understand why 4b < a2 represents the diffusive behavior,
and 4b > a2 ballistic behavior, we investigate the correspond-
ing solutions of Eq. (12). The linear-response theory (13) can
be solved analytically in the case when χ = χ tp. One has

χ tp(t ) ∼ e−itz1 − e−itz2 (17)

and, therefore, under the assumption that neither z1 or z2 are
purely real, one gets

nq(t ) ∼
e−itz1

z1
−

e−itz2

z2
. (18)

We see that nq(t ) will be zero whenever

z2

z1
= e−it (z2−z1 ). (19)

In the ballistic regime, z1 = E − iη and z2 = −E − iη, and
the condition (19) means

t =
1

2iE
ln

(

−E − iη

E − iη

)

. (20)

At a fixed η and a finite E , there are infinitely many solutions
to the above equation: the amplitude of the CDW presents
damped oscillations after turning off the external field V .
In the other case (4b < a2), the poles are placed along the
imaginary axis, say z1 = −iη1, and z2 = −iη2, η2 > η1 and r

is purely imaginary. One thus has nq(t ) ∼ e−tη1

η1
− e−tη2

η2
which

can never be zero if η1 �= η2. This means that the amplitude of
the CDW will “crawl” towards zero, signaling an overdamped,
or diffusive, regime. The correlator χq(ν) [Eq. (14)] and the
corresponding solutions for nq(t ) [Eq. (12) or, equivalently,
Eq. (13)] are illustrated in Fig. 1.

3. Asymptotic behavior and the connection

between hydrodynamics and transport

The hydrodynamic form for the charge-charge correlation
function [Eq. (14)] directly implies the form of the current-
current correlation function. Inverting Eq. (10) (which is a
direct consequence of the continuity equation) one obtains

Im
xx
q=(q,0)(ν) =

χcD

q4D2

ν3 + 1
ν

(

1 − 2q2 D
Ŵ

)

+ ν
Ŵ2

. (21)

At any finite q, the behavior at small ν goes as ∼ν3. At
precisely q = 0 one gets

Im
xx
q=0(ν) =

χcD
1
ν

+ ν
Ŵ2

(22)

which at small ν goes as ∼ν. Having in mind that the conduc-
tivity is obtained as [14,25]

σ ηη′

q (ν) =
1

ν
Im
ηη′

q (ν), (23)

this model clearly predicts that σ xx
dc,q = 0 for any finite q in the

x direction, which is precisely what is expected on physical

FIG. 1. Illustration of the hydrodynamic theory from Ref. [18],
defined by Eqs. (3) and (4), with parameters taken to be D = 0.8,
Ŵ = 0.3, χc = 1. Top: the imaginary part of the charge-charge corre-
lation function as a function of momentum and frequency [Eq. (14)].
Middle: the time evolution of relaxing charge density waves at wave
vectors denoted by matching-color x ticks in the top panel; 〈nq(t )〉
[computed through Eq. (18)] is normalized to the initial amplitude
〈nq(t = 0)〉. Bottom: frequency dependence of the imaginary part of
the charge-charge correlation function at the same wave vectors.

grounds. At q = 0, which is the most relevant case, one gets a
Lorentzian-shaped Drude peak

σ xx
q=0(ν) =

χcD

1 +
(

ν
Ŵ

)2 (24)
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indicating σ xx
dc,q=0 ≡ σ xx

q=0(ν = 0) = χcD, which is the well-
known Nernst-Einstein equation.

It is important to note that, a priori, the forms (21), (22)
and (24) of 
 and σ are unphysical. The scaling with high
frequency

Im
q=0(ν → ∞) ∼
1

ν
(25)

cannot be obtained from a correlation function in imagi-
nary time 
q=0(τ ) that has the correct symmetries. The
Lorentzian Drude peak σ ∼ 1

ν2 must be restricted to some fi-
nite frequency. In general, one expects that at high-frequency,
Imχ (ν) and Im
(ν) decay exponentially. In the noninter-
acting case, there is even a sharp cutoff: both charge and
current fluctuations are bounded in frequency from above,
with a bound that depends on q (see Sec. III A). In any case,
on the Matsubara axis one must have χ (iν → i∞) ∼ 1/ν2

and 
(iν → i∞) ∼ 1/ν2. The hydrodynamic ansatz for the
charge fluctuations [Eq. (14)] does not violate this, as on the
upper half of the Matsubara axis

χq(iν) =
χc

1 + ν
q2D

+ ν2

q2DŴ

, (26)

but, through the continuity equation, it does imply a nonphys-
ical asymptotic behavior 
q=0(iν → i∞) ∼ 1

ν
. To be able to

compare the hydrodynamic theory with Matsubara-frequency
results for the charge-charge and current-current correlation
functions, we thus propose a modified hydrodynamic form.
The details are given in Sec. III C.

The imaginary-axis form (26) may still be useful in the
U → 0 limit. The high-frequency asymptotics on the imag-
inary axis is determined by the entirety of the function on the
real axis. As the coupling constant is decreased, the weight
of the function χq→0 on the real axis will be contained in
an increasingly small range of low frequencies. If we assume
that the hydrodynamic theory holds in some low-frequency
range, say |ω| < |ωmax|, and that ωmax saturates to a finite
constant as U → 0, then we can conclude that the imaginary-
axis asymptotics of χq→0 will tend to Eq. (26) as U → 0.
Clearly, nonuniversal features at high real frequencies will
still be there, but they will not contribute significantly to the
imaginary-axis asymptotics. Other scenarios are also possible,
but in the following we work out the consequences of our
expectation that the hydrodynamic law holds in a finite range
of frequency in the U → 0 limit. We start with Eq. (7), which
implies the long-wavelength asymptotics of the charge-charge
correlation function of the form (see Appendix B for details)

Reχq→0(iν → i∞) = −
2t

ν2

∑

η={x,y}

∑

k

qη sin kηq · ∇〈nk〉.

(27)
This form is not necessarily isotropic. Nevertheless, one can
take q = (q, 0) and, then, assuming a finite ωmax and U → 0,
equate the right-hand side of Eq. (27) with the iν → i∞ limit
of Eq. (26) to obtain

DŴ = −
1

χc

∑

k

v
x
k∂kx

〈nk〉 (28)

with v
x
k = 2t sin kx. Under the current assumption of the

weak-coupling limit, we can write further

DŴ = −
1

χc

∑

k

(

v
x
k

)2
[2n′

F(εk )]. (29)

At high temperature T = 1/β → ∞, the first derivative
of the Fermi distribution n′

F(ω) ∼ −β/4, and χc = ∂〈n〉
∂μ

=
−

∫

dε ρ(ε)2n′
F(ε) ∼ 2β

4

∫

dε ρ(ε) = β/2. We also have
1

(2π )2

∫

dk sin kx = 1
2 . We conclude that in the weak-coupling

limit and high temperature, the effective hydrodynamic theory
formulated by Eqs. (3) and (4) for the square-lattice Hubbard
model [Eq. (1)], if valid in a finite range of real frequency,
must satisfy

lim
U→0
T →∞

DŴ = 2t2. (30)

Thus, the equation of motion (11) provides some microscopic
support for the effective hydrodynamic theory. As already
mentioned, Eq. (30) indeed coincides with numerical results,
and is roughly satisfied in a broad range of temperatures,
even at strong coupling (see Sec. III B). Finally, we note
that the imaginary-axis asymptotics [Eq. (27)] combined with
σdc = χcD [Eq. (24)] reveals that the hydrodynamic theory
[Eq. (26)], taken to be valid at any frequency, is consistent
with the Boltzmann expression for the dc conductivity

σdc = −
1

Ŵ

∑

k

v
x
k∂kx

〈nk〉. (31)

III. RESULTS

A. Noninteracting limit

We are interested in calculating two-particle correlation
functions, in particular for the charge and current. In the non-
interacting limit, these can be obtained numerically exactly, to
a high accuracy, from the general (Kubo) bubble formula

Qq[ϕ, φ](τ ) = 2
∑

k

ϕk,qG0,k(τ )G0,k+q(−τ )φk+q,−q. (32)

The factor 2 in front is due to summation over σ . We denote
G0 the bare propagator, which is, at a finite temperature T =
1
β

, defined in the imaginary-time window τ ∈ [−β, β] as

G0,k(τ ) = −sign(τ )e−εkτ nF[−sign(τ )εk] (33)

with nF(ω) = 1
eβω+1 the Fermi-Dirac distribution function.

The “vertex factors” ϕ and φ correspond to the operators
for which the correlation function is calculated (in gen-
eral, Oq =

∑

σ,k ϕk,qc
†
σ,k+qcσ,k). We then simply have χq =

Qq[ϕ = 1, φ = 1], and 

η,η′

q = Qq[ϕ = v
η, φ = v

η′
], with

v
η

k,q = it (e−i(kη+qη ) − eikη ). In the entire complex frequency
plane, one can then write

Qq[ϕ, φ](z) = 2
∑

k

ϕk,qφk+q,−q

nF(εk+q) − nF(εk )

z − (εk − εk+q)
. (34)

We now consider the long-wavelength limit for the charge-
charge correlation function χ . At small enough q, one can
write further: εk+q = εk + q · ∇εk and nF(εk+q) = nF(εk ) +
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FIG. 2. Noninteracting case, half-filling. Left: imaginary part of the charge-charge correlation function along a high-symmetry path in the
BZ. Right: frequency dependence in the long-wavelength limit, for waves in the x direction. The spectral weight drops off abruptly at ν/q = 1

2 ;
the apparent finite slope comes from the finite-frequency resolution in our numerics.

(q · ∇εk )n′
F(εk ). These yield

χq→0(z) = 2
∑

k

(q · ∇εk )n′
F(εk )

z + q · ∇εk

. (35)

We see that at small q ≡ |q|, the frequency dependence
no longer depends on q. In the denominator, q multiplies the
number which determines the position of a pole on the energy
axis. Therefore, q sets the energy scale, which means that with
a proper rescaling of the ν axis, χ results for different small q

along a given direction can be collapsed onto a single curve.
In the special case q = (q, 0), the gradient of the dispersion
will simply yield the velocity v

x
k ≡ v

x
k,q=0 = 2t sin kx, and

one arrives at

lim
q→0

χq=(q,0)(z) = 2
∑

k

v
x
kn′

F(εk )

z/q + v
x
k

. (36)

On the most general physical grounds, it is not expected
that in the noninteracting limit an effective hydrodynamics
governs the charge fluctuations at however long the wave-
lengths. The diffusive motion of carriers at length scales
λ > 2π/qD ultimately comes from a finite-lasting memory the
electrons have of momentum; in the noninteracting case, the
momentum eigenstates are infinitely long lived. It is clear that
no identification between Eqs. (36) and (14) is possible. In
fact, the noninteracting case presents strongly nonuniversal,
parameter-dependent, and even anisotropic behavior that we
illustrate in the following.

We obtain the χq(ν) along a high-symmetry path in the
Brillouin zone (BZ) using a 6000×6000 site lattice, and
adaptive frequency grids to ensure sufficient frequency res-
olution at all q vectors. We color plot Imχq(ν) and show the
frequency-dependent part at small q in Figs. 2–5.

In Fig. 2 we show results for the half-filled case μ = 0,
T = 0.02. In the long-wavelength limit, we observe a sharp
peak at the edge of the spectrum, at ν ∼ q. The peak is highly
asymmetric, as the spectral weight drops off abruptly on the
higher-frequency side. The single-peak structure at ν ∼ q is
the expected linear zero-sound mode [23].

As the system is doped away from half-filling, we start to
observe a two-peak structure at long wavelengths (Fig. 3).
This can be understood by analyzing Eq. (36). In Fig. 3 we
illustrate how the contributions to Imχq=(q,0)(ν) at a given

energy ν comes from a line in the Brillouin zone (BZ) where
−v

x
k = ν/q. The amplitude of a contribution at a given k is

given by v
x
kn′

F(εk ), which roughly selects the Fermi surface.
Therefore, one gets a peak at frequencies where v

x
k is maxi-

mal, but also where the Fermi surface is parallel to the ky axis.
This calculation resembles a histogram of a one-dimensional
(1D) function, and thus the spectrum resembles a typical den-
sity of states of a 1D tight-binding chain.

On Fig. 4 we illustrate the great level of anisotropy, by
comparing the q → 0 limit for q = (q, 0) and q = 1√

2
(q, q).

It is interesting that, as the temperature is increased, the
anisotropy at low frequency becomes somewhat reduced.

Doping all the way to the near-empty limit, one observes a
completely different behavior (see Fig. 5). The charge fluctu-
ation spectrum closely resembles the electron dispersion. This
indicates that in the single-particle limit, due to the irrelevance
of the Fermi-Dirac statistics, the charge and the electron be-
come the same.

1. CDW amplitude evolution

It is of interest to understand these χq(ν) results in the
context of the quench setup studied in Ref. [18] and already
mentioned in Sec. II B. Namely, we wish to investigate the
time evolution of the amplitude of a relaxing charge density
wave (CDW). If the initial CDW is weak, we can work within
the linear-response theory, which can be solved numerically,
by plugging Eq. (34) with ϕ, φ = 1 in Eq. (13). The Fourier
transform needed for this step is performed analogously to
Eq. (17). Then, to perform the integral in Eq. (13) analytically,
it is necessary to regularize the integrand function, first. As
is always done when working with retarded quantities, we
take that the poles are located slightly below the real axis. We
obtain

〈nq(t )〉 ∼
∑

k

nF(εk+q) − nF(εk )

εk − εk+q

e−it (εk−εk+q ). (37)

We show several examples of this calculation in Fig. 6. We
find numerous categories of solutions, and we illustrate some
of them on the panels of Fig. 6, left to right:

(i) power-law damped oscillations,
(ii) power-law damped oscillations with a breathing

amplitude,
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FIG. 3. Noninteracting case, various moderate dopings. Left: frequency dependence of the imaginary part of the charge-charge correlation
function in the long-wavelength limit, for waves in the x direction. Vertical blue and red dashed lines denote frequencies of two apparent
peaks. Right: explanation for the appearance of two peaks. Top row: the electron velocity. Blue and red dashed lines denote the momenta
where v

x
k = −ν/q, where ν is the frequency of the two peaks in the spectra on the left. Bottom row: the intensity plots (black and white scale)

of the amplitude of the contribution to the charge-charge correlation function coming from different k vectors in the BZ. The blue and red
dashed lines denote the contributions to the two peaks in the spectra on the left.

(iii) power-law damped oscillations with a decaying
nonoscillatory component,

(iv) power-law decaying nonoscillatory behavior.
The behavior at q = (π, π ) is drastically different from

the behavior at long wavelengths. At (π, π ) there is no
clear peak in the spectrum, i.e., no characteristic frequency
to produce oscillatory behavior. In particular, as T → 0, the

FIG. 4. Noninteracting case, moderate doping, various tempera-
tures. Blue and red curves correspond to the long-wavelength limit
of the imaginary part of the charge-charge correlation function for
waves in the x and x = y directions.

charge-charge correlation function (which is in the nonin-
teracting limit equal to the spin-spin correlation function)
approaches the form of a second-order pole ∼1/z2, which
signals the instability towards order. One therefore finds only
a nonoscillatory decay of the initial CDW amplitude, some-
what reminiscent of the diffusive regime of the hydrodynamic
theory.

2. Beyond linear response

To cross-check these results and to be able to access the
regime beyond the linear response (corresponding to ini-
tial density wave of a bigger amplitude) we perform the
corresponding Kadanoff-Baym three-piece contour calcula-
tion [26].

The external field couples to the density wave at the wave
vector q = (q, 0),

H[V ] = H0 − V
∑

σ,r

cos(q · r)nσ,r

= H0 −
V

2

∑

σ,k

(c†
σ,k+qcσ,k + H.c.) (38)

= H0 −
V

2
(nq + n−q), (39)

where V is the strength of the field. We assume the field
was turned on slowly at t = −∞, and that by the time t = 0,
the system is already thermalized. Then, at t = 0, the field is
turned off abruptly. Therefore,

H (t < 0) = H[V ], H (t > 0) = H0. (40)

In general, the expectation value of an operator O at time t

following the quench of the field V is given by

〈O(t )〉 =
Tr[e−βH [V ]eiH0tOe−iH0t ]

Tr[e−βH [V ]]
. (41)

After the quench, the Hamiltonian has the diagonal form

H0 =
∑

kσ

εkc
†
σ,kcσ,k, (42)
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FIG. 5. Noninteracting case, nearly empty limit. Left and right: same as Fig. 2. Cyan line on the left: electron dispersion. Red line on the
right: fit to the frequency-dependent part of the hydrodynamic theory χ tp as defined in Eq. (15); best fit corresponds to the damped oscillations
(or ballistic) regime (r purely real).

whereas before the quench, the diagonal form is

H[V ] =
∑

k̃xVky

∑

σ

ε(k̃xVky )σ c
†
(k̃Vky )σ

c(k̃Vky )σ . (43)

Because of the symmetry-breaking field, there is a reduction
of the Brillouin zone, i.e., k̃x ∈ [0, 2π/λ), where λ = 2π/q

is the wavelength, or the number of sites in the unit cell; the
additional quantum number arising due to the reduction of the
BZ is V .

The time evolution of density at a given point in space r =
(x, 0) [the translational symmetry is not broken along the y

axis: nothing changes if we take a more general r = (x, y)] is
given by

〈nr(t )〉 ≡

〈

∑

σ

c†
rσ (t )crσ (t )

〉

=
2

N

∑

k̃x,ky∈RBZ

∑

c,c′∈[0,λ)

∑

V

eix(c−c′ )qe−i(ǫk−ǫk′ )t

×〈k̃xVky|k′
xky〉〈kxky|k̃xVky〉nF(εk̃xVky

), (44)

where we take kx = k̃x + cq, k′
x = k̃x + c′q. The eigenstates of

H0 are denoted |kxky〉, and the eigenstates of H[V ] are denoted
|k̃xVky〉. The amplitude of the charge density wave nq is given
by the deviation of nr from the lattice-averaged density, at the
antinode of the wave, say r = (0, 0).

We find perfect agreement between the results of Eq. (44)
with V taken small and Eq. (37) which is in the strict V → 0
limit. The full Kadanoff-Baym calculation is clearly more
computationally expensive, but it allows us to set V to stronger
values and investigate the behavior starting from CDWs of
finite amplitude. This is shown in Fig. 7. In the two panels on
the right, we see that regular damped oscillations are replaced
by a superposition of multiple waves as V → ∞. This can

FIG. 6. Noninteracting case, various dopings, and temperatures. CDW amplitude vs time at various wave vectors, calculated within linear-
response theory, normalized to the initial amplitude of the CDW. Text boxes show the fitting function and its main parameters. The insets in
the two plots on the left show the amplitude of damped oscillations vs time, and the corresponding fit. The insets in the two plots on the right
show the background, i.e., nonoscillatory components and the corresponding fits. Full lines are data, dotted-dashed lines are fits.
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FIG. 7. Noninteracting case, half-filling, moderate temperature. CDW amplitude vs time at various wave vectors along the x axis, calculated
within linear-response theory and from the full Kadanoff-Baym three-piece contour formalism, assuming different amplitudes of the density-
modulating field V at t < 0. CDW amplitude is normalized to the initial amplitude of the CDW. Insets: density profile of the initial CDW at
different strengths of the field V . See text for details.

be understood by looking at the density profile nr at t < 0
(shown in the insets of Fig. 7). One cannot place more than
two electrons on a single site, which means that at strong
values of V , the CDW is no longer harmonic; as V → ∞
it becomes similar to the step function. This density profile
corresponds to having multiple CDWs at the same time, at q,
3q, 5q, etc. All these CDWs will oscillate at different frequen-
cies, but one also expects interactions between the waves. It
is not easy to explain the detailed structure of nq(t ) beyond
the linear-response regime. However, in the long-wavelength
limit, the characteristic frequency of CDWs is proportional
to q, and we are able to roughly fit the resulting 〈nq(t )〉 to a
superposition of waves ∼

∑

l=1,3,5,... tal cos(lωt + Cl ). This is
shown in Fig. 8. However, the two panels on the left in Fig. 7

FIG. 8. Noninteracting case, half-filling, moderate temperature.
Fit to the CDW amplitude vs time, starting from a saturated CDW
with a short wave vector.

show that at shortest wavelengths, one observes no change in
behavior as V is increased. This is because the density profile
nr(t < 0) cannot change: there are no shorter waves to be
excited by the increasing field.

B. Weak-coupling theory

1. Self-energy

We start by calculating the self-energy up to the second
order in the coupling constant:

�k(z) = U 〈nσ̄ 〉 + U 2�̃k(z), (45)

�̃k(z) =
∑

k′,q

∑

s=±1 nF (−sεk′ )nF (sεk′+q)nF (sεk−q)

z − εk−q − εk′+q + εk′
. (46)

The first term is the instantaneous Hartree shift, and the sec-
ond term is the dynamic part, described by the second-order
Feynman diagram illustrated in Fig. 9. The calculation of �̃

is expensive. In Appendix E we describe a fast algorithm we
used for this calculation, which allowed us to scan the phase
diagram in considerable detail.

FIG. 9. Illustration of our weak-coupling theory. Left: second-
order self-energy diagram comprising the dynamical part of the
self-energy, formulated in terms of the bare fermionic propagator
[Eq. (33)]. Right: generalized (Kubo) bubble approximation for two-
particle correlation functions, formulated in terms of the “dressed”
Green’s function [Eq. (47)].
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FIG. 10. Moderate coupling, moderate doping, various temperatures. Self-energy at the level of second-order perturbation theory, and the
corresponding Green’s functions. Third column: blue line is the local self-energy; blue shading is the k spread, i.e., the range of values of Im�k

at the given real frequency ω; red line DMFT (NRG) result for local self-energy; gray shading is the thermal window, denoting ω ∈ [−T, T ].
Rightmost column: the local density of states.

As we will see, for the practical calculations of conduc-
tivity in the limit U → 0, the Hartree shift vanishes. At a
finite U , we absorb the Hartree shift in the chemical poten-
tial, i.e., μ → μ − U 〈nσ 〉. This means that at a finite U , we
compute the second-order self-energy diagram with Hartree-
shifted propagators. Therefore, the frequency dependence of
the dynamical part of the self-energy does not change with
increasing U , if μ̃ = μ − U 〈nσ 〉 is kept fixed. In practice, we
compute the occupancy a posteriori, and infer μ from U 〈nσ 〉
and μ̃. The other possibility is to compute the self-energy
diagram using bare propagators. The difference between the
two approaches disappears when higher-order diagrams are
also computed (under the condition that both series converge),
as well as in the U → 0 limit.

We show examples of the self-energy results in Fig. 10. It is
interesting that at low temperature, the frequency dependence
of the self-energy generally features two peaks, while at high
temperature, it features a single peak. At the highest tempera-
tures, the peak follows the shape of the electron dispersion.

In Fig. 11 we zoom in on the low-frequency part, along a
high-symmetry path in the BZ. We see that the scaling with
ω around ω = 0 takes different forms depending on k and
parameters of the model. The most interesting is the half-
filling case, where we see that k = (π, 0) and k = ( π

2 , π
2 )

are special points where in the T → 0 limit one approaches
Im�̃(ω → 0) ∼ |ω|α with α ≈ 4

5 and α = 1, respectively.
More precisely, the linear scaling α = 1 is observed along the
path connecting (0, π ) and (π, 0), but is modified abruptly
to α ≈ 4

5 at those points. The linear scaling has been noted

before [27]. However, the apparent T → 0 limit of our
second-order self-energy should only apply in the strict U →
0 limit. At any finite coupling and low enough temperature,
higher perturbation orders will play a role, and produce an
insulating state [28–31].

We also note a large number of kinks in the frequency
dependence of Im�̃. The prominent peaks that appear at high
temperature are not smooth: at the maximum no derivatives
appear to be well defined.

2. Green’s function and compressibility

Once we have the self-energy, we can plug it in the expres-
sion for the Green’s function

Gk(ω) =
1

ω − εk − �k(ω)
. (47)

Examples of the Green’s function are shown in Fig. 10, as well
as for the local density of states − 1

π

∑

k ImGk(ω). We observe
that the sharp structures in the self-energy at intermediate
temperature lead to a splitting of the peak in the single-particle
spectrum at k ≈ (π, π ).

Ultimately, from the Green’s function we get the average
density 〈n〉 = − 2

π

∫

dω
∑

k ImGk(ω)nF(ω), and from it, the

charge compressibility χc = ∂〈n〉
∂μ

, which will be needed to
estimate the diffusion constant. At finite U , in practice, what
enters the calculation is μ̃ = μ − U 〈nσ 〉. It is then easiest to
compute the quantity χ̃c = ∂〈n〉

∂μ̃
. To get to the physical charge

compressibility, one uses χc = (χ̃−1
c + U/2)−1.
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FIG. 11. Half-filling, various temperatures. Second-order self-energy along a high-symmetry path in the BZ; zoom in on low frequencies.

3. Bubble approximation for two-particle correlation functions

It is of great interest to see how the long-wavelength behav-
ior of the charge-charge (or equivalently the current-current)
correlation functions changes due to weak interactions. The
simplest approach is to just calculate the bubble approxima-
tion for χ or 
 (illustrated in Fig. 9). The bubble expression
is simply the real-frequency formulation of Eq. (34), with
the replacement G0 → G. One obtains (under assumption that
ϕk,qφk+q,−q is purely real)

ImQq[ϕ, φ](ν)

=
2

π

∑

k

ϕk,qφk+q,−q

∫

dω

× ImGk(ω)ImGk+q(ω+ν)[nF(ω)−nF(ω+ν)], (48)

where 2 in front comes from the summation over spin, and
1
π

= 1
π2 π comes from the double Hilbert transform, and tak-

ing the delta-peak part of the integral (for detailed derivation
in a more general case see Ref. [32]). We have implemented
this calculation and show results below.

However, the bubble approximation is not sufficient to
properly address the question of whether the hydrodynamic
form for χ [Eq. (14)] or 
 [Eq. (21)] is valid at small q.
By construction, the bubble does not satisfy the continuity
equation. The reason for this is simple: the bubble expression
is formally an exact solution for a noninteracting system cou-
pled to an external fermionic bath, the hybridization being the
dynamical part of the self-energy. The bubble approximation
for χq(ν) will therefore be manifestly wrong at q = 0, as one
will get χq=0(ν �= 0) �= 0. Similarly, the bubble approxima-
tion for Im
q(ν) will be manifestly wrong at q �= 0, ν → 0,
as it will scale as ∼ν, and thus signal a finite conductivity.
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Clearly, if the system is open, a static wave of the electric
field will scatter the incoming particles and maintain a current
wave. The bubble approximations for χ and 
 do not satisfy
Eq. (7), and are not connected in a simple way. To restore
physical properties, one needs to include vertex corrections,
even at tiny couplings.

On the other hand, the bubble approximation for
Im
xx

q=0(ν) will not be a priori unphysical, and can be con-
sidered a reasonable approximation for this object at low
couplings. The parameters of the hydrodynamic model are
encoded in Im
xx

q=0(ν) or, equivalently, in σ xx
q=0(ν). One can

check whether Im
xx
q=0(ν) satisfies Eq. (22). However, one

has to keep in mind that different theories may reduce to
the same form of 
xx at q = 0. Even if Im
xx

q=0(ν) satisfies
Eq. (22) to a good degree, this cannot serve as proof that
the hydrodynamic theory is valid. Nevertheless, assuming that
the hydrodynamic theory is valid, one could use Im
xx

q=0(ν)
[or σ xx

q=0(ν)] to extract the parameters for the hydrodynamic
model, and investigate how they change with the microscopic
parameters, which is what we will present in the following.

4. Optical conductivity in the weak-coupling limit

We distinguish here between the general weak-coupling
regime (say U < 1) and the strict U → 0 regime, i.e., the
weak-coupling limit. To have a finite conductivity it is nec-
essary to have scattering, so one cannot simply take U = 0,
but must rather consider an infinitesimal U . In the weak-
coupling limit, the bubble calculation for σ xx

q=0(ν) simplifies.
In this way, one obtains the scaling of quantities in terms of
U in the U → 0 limit. In the following, we will distinguish
between the simplified, weak-coupling bubble, and the full

bubble calculations. The latter is computed for a finite U ,
using Eq. (48). The weak-coupling bubble is inexpensive and
we use it to cover the entire phase diagram. We also perform
some full bubble calculations at U = 0.75 and 1.0 and show
results below.

The weak-coupling limit simplification of the bubble can
be understood as follows. If U is sufficiently small, then the
peaks in the spectral function start to resemble Lorentzians
centered at ω = εk:

Gk(ω ≈ εk;U → 0) =
1

ω − εk − i Im�k(εk )
. (49)

The shifts coming from Re�k(ω) can be neglected, and
Im�k(ω) can be considered to be constant at the scale of the
width of the peak. Away from ω ≈ εk, ImG(ω) can be consid-
ered zero. Furthermore, the optical conductivity is expected
to be nonzero only at tiny frequencies, which also simplifies
the Fermi-Dirac factor. We are ultimately able to employ the
integral

∫

dx Im
1

x ± iy
Im

1

x ± � ± iy
=

π

2y

1
(

�
2y

)2 + 1
(50)

which in the limit � = 0 reduces to π
2y

. In total we obtain

σ xx
q=0(ν) =

∑

k

(

v
x
k

)2
n′

F (εk )

Im�k(εk )

[

(

ν

2 Im�k(εk )

)2

+ 1

]−1

.

(51)

It is important to compare this expression to the Boltzmann
expression for the dc conductivity (31). The two expressions
do coincide, but only under the assumption that Im�k(εk )
does not depend on k, in which case one would have Ŵ =
−2 Im�k(εk ). However, Im�k(εk ) retains considerable k de-
pendence even at infinite temperature as limT →∞ Im�̃k(εk ) =
−π

4

∑

k′q δ(εk − εk+q − εk′+q + εk′). The expression (51)
presents a sum of Lorentzians of different heights and widths,
and the end result might not fit well to the Lorentzian shape.
Our weak-coupling theory does not a priori reduce to Eq. (31)
or the hydrodynamic equation (24). At infinite temperature,
the D and Ŵ we might extract from our results are a priori

separate objects: their product DŴ will depend on the precise
form of the self-energy.

We now pull the U 2 factor out of the self-energy to obtain

σ̃ xx
q=0(ν̃) ≡

∑

k

(

v
x
k

)2
n′

F (εk )

Im�̃k(εk )

[

(

ν̃

2 Im�̃k(εk )

)2

+ 1

]−1

(52)

with the definitions

σ (ν = ν̃U 2) =
σ̃ (ν̃)

U 2
. (53)

At low frequency, we can now equate the hydrodynamic
form (24) with the above equation, to reach the following:

D̃ =
σ̃ xx

q=0(ν̃ = 0)

χc

, D =
D̃

U 2
, (54)

Ŵ̃ = δ

(

1 −
σ̃ xx

q=0(ν̃ = 0)

σ̃ xx
q=0(ν̃ = δ)

)− 1
2

, Ŵ = Ŵ̃U 2, (55)

where we take δ small.
This result gives us the estimate of how Ŵ and D behave as

functions of U 2, at low coupling. Additionally, one can con-
clude that the diffusive regime extends to shorter wavelengths
as coupling is increased, i.e.,

qD =
√

Ŵ

4D
= U 2

√

Ŵ̃

4D̃
≡ U 2q̃D. (56)

The coefficients D̃ and Ŵ̃ depend on the microscopic parame-
ters, and we extract them from σ̃ xx

q=0(ν̃), calculated by Eq. (52).
Even though σ̃ (ν̃) might not have the shape of a

Lorentzian, the property σ̃ (ν̃ → 0) ∼ σ̃dc(1 − ν̃2) is guaran-
teed. Therefore, the form (24) is bound to hold at least at the
lowest frequencies, and one can certainly extract the effective
Ŵ̃ via Eq. (55). It is interesting to see in what range of frequen-
cies will the hydrodynamic equation (24) be valid.

5. Results for dc resistivity

We first focus on the ρ̃dc = 1/σ̃dc results. The color plot of
ρ̃dc as a function of doping and temperature is given in Fig. 12.
We show the T dependence at different dopings in the upper
part of Fig. 13. We see the following trends. At half-filling one
observes ρ̃dc ∼ T in the full range of accessible temperatures.
The high-temperature limit of Eq. (52) can be easily com-
puted for the half-filled case based on the high-temperature
asymptotic form of �̃k(εk ). One obtains ρ̃dc(T ) = 13.08T .
This appears to be the high-temperature asymptotic behavior
at least at moderate dopings, as well. As one dopes away from
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FIG. 12. Summary of weak-coupling results: doping-
temperature phase diagram. Color plots of dc resistivity,
diffusion constant, momentum-relaxation rate in the U → 0
limit, extracted from the weak-coupling bubble calculation (52), and
the corresponding noninteracting compressibility.

half-filling, a ρ̃dc ∼ T 2 (Fermi liquid, FL) regime emerges
at ever higher temperatures, while the ρ̃dc ∼ T is pushed to
higher T . Starting from around 〈nσ 〉 = 0.3, the low-T regime
transforms into ρ̃dc ∼ T 1.9. At 〈nσ 〉 = 0.15 we no longer ob-
serve ρ̃dc ∼ T in the accessible range of temperature, but
further doping continuously reduces the exponent in the FL-
like regime. At very low fillings, we again see ρ̃dc ∼ T in the
full range of T . The effective exponent α of the T dependence
of resistivity can be obtained as α = ∂ ln ρdc(T )

∂ ln T
|〈n〉 [33] and is

color coded in the bottom part of Fig. 13.
It is interesting to inspect the case of fixed μ = −1: this

means that strictly kF = 0 and all occupancy comes from
thermal excitations. There we observe roughly ρ̃dc → 0.4 as
T → 0 (see Fig. 14). This can be understood as follows: at
low temperature, the contribution will come from an increas-
ingly small vicinity of k = 0. We observe that Im�k=0(ω =
0) ∼ T . On the other hand, the velocity of electrons will
decrease as temperature is lower. Ultimately, the amplitude
of contributions will reduce to the integral

∫

dk k2
x e−βk2 ∼

∫ ∞
0 dk k3e−βk2 ∼ T . This means that the increased coherence

of the electrons will be canceled exactly by their decreasing
velocity, and the resistivity will converge to a constant as
T → 0. At μ slightly above −1 one expects the resistivity to
go to 0, whereas for μ slightly below, one expects it to go to
infinity.

6. Results for hydrodynamic parameters

The results for D̃ and Ŵ̃ are summarized on Fig. 12. It
is apparent that roughly D̃ ∼ 1/Ŵ̃. This can be understood
intuitively: the more coherent the quasiparticles, the bigger the

FIG. 13. Weak-coupling bubble dc resistivity results. Upper pan-
els: temperature dependence at different dopings. Lower panel:
effective exponent of the temperature dependence, color plotted in
the doping-temperature plane; black crosses are actual data points:
the rest are obtained by interpolation.

dc conductivity and the narrower the Drude peak. However,
the inverse proportionality coefficient, i.e., DŴ value is a

priori unclear. We plot DŴ in Fig. 15 and find that results
approach 2t2 at high temperature. This is in agreement with
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FIG. 14. Weak-coupling bubble (U → 0 limit) dc resistivity re-
sults at a fixed chemical potential. Horizontal line denotes 0.4, which
is the value ρdc apparently converges to at μ = −1 and T → 0.

the loose expectation based on Eq. (11), but also in agreement
with the hydrodynamic theory [Eq. (30)]. We also plot the
corresponding result from FTLM computed at a moderate
and a strong value of coupling (strong-coupling data were
reconstructed from Ref. [18]), and find a similar result. It is
striking that DŴ is within ≈20% of 2t2 in a large range of
temperature and even at strong coupling.

In Fig. 16 we cross-check our weak-coupling ρdc result
based on Eq. (51) with the corresponding full bubble cal-
culation [Eq. (48)] at U = 1. As expected, the agreement
is better at lower temperature and lower coupling (for the
latter, the data are not shown), i.e., in cases where scatter-
ing rates Im�̃k(εk ) are smaller. We also compare our full
bubble result to dynamical mean field theory (DMFT) [34]
calculation at U = 1 (implemented with the numerical
renormalization group, NRG, real-frequency impurity solver
[14,15,32,35–38]) and surprisingly, find excellent agreee-
ment. Our second-order self-energy �̃ is clearly nonlocal (and
remains nonlocal up to infinite temperature; see Fig. 10), yet
the nonlocal part does not seem to play a big role in the value
of dc resistivity. We check this explicitly by computing the
bubble with only the local part of our self-energy: we find
a very similar result. Moreover, the agreement with DMFT
suggests that the local part of our second-order self-energy
agrees well with DMFT. We confirm this in Fig. 10, espe-
cially in the thermal window ω ∈ [−T, T ], which is the range
of frequencies relevant for the conductivity calculation. We
also compute the full bubble on a small 4×4 lattice. In the
previous work of some of us [14], it was shown that finite-size
effects subside at high temperature, and that the (4×4)-lattice
FTLM calculation was correct at T � 0.3. However, this was
at the value of coupling U = 2.5; we now see similar lack
of finite-size effects even at U = 1, which is somewhat unex-
pected (at a lower U the relevant correlation lengths should
be greater, and the systematic errors due to finite system size
more pronounced). Comparing our full bubble result for ρdc

at U = 1 with the FTLM result at U = 1.25 we can conclude
that the vertex corrections are still sizable, and affect the result
in a similar fashion as at U = 2.5, i.e., the vertex corrections
present a roughly constant shift towards lower resistivity.

We compare D and Ŵ obtained from the weak-coupling
bubble at U = 0.65 [Eqs. (54) and (55)] to the FTLM result
at U = 1.875 and 1.25 and find surprising similarity (see
Fig. 17). As was already apparent from Refs. [14,18], the
bubble approximation tends to overestimate ρdc (i.e., under-
estimate D) and overestimate Ŵ. This explains the apparent
agreement between the weak-coupling bubble approximation
and the numerically exact result at strong coupling. However,
up to a prefactor, even our weak-coupling bubble results for
D̃(T ) and Ŵ̃(T ) display a shape very similar to the FTLM
result at U = 1.875. The behavior of the hydrodynamic pa-
rameters does not seem to change drastically going from
weak to rather strong coupling. At a fixed temperature T =
0.5, the weak-coupling Ŵ ∼ U 2 and D ∼ 1/U 2 trends slow
down at stronger coupling, so that the difference in Ŵ and
D between U = 1.25 and 1.875 results is rather small. The
full bubble computed at U = 0.75 improves the result of the
weak-coupling bubble. It appears that in the strong-coupling
limit, D → 2t , and roughly Ŵ → t , which is consistent with
limU→∞ DŴ ≈ 2t2.

7. Deviations from the Lorentzian Drude peak

As for the frequency range of the validity of Eq. (24),
i.e., the hydrodynamic form for the current-current correlation
function (22): it strongly depends on the microscopic param-
eters. At high temperature the agreement is excellent up to
the peak of Im
(ν), but, as expected, the high-frequency tail
has a different scaling. This is shown in Fig. 18 where we
compare a fitted equation (22) with the result of the full bubble
calculation (48).

8. Critical wavelength for diffusive behavior

Finally, we go back to the simple prediction (56) that the
characteristic wavelength for diffusive behavior will become
shorter with increasing coupling. We check this directly in
our χq(ν) results. As already mentioned, the bubble approx-
imation is unsuitable for the investigation of χ at very long
wavelengths, but one might still want to inspect the results at
somewhat bigger q. In Fig. 19 we show the Imχq(ν) results
at a fixed q = (0.159, 0)π , and vary the coupling. The corre-
sponding 〈nq(t )〉 results calculated via Eq. (13)are presented
on the panel on the right. For the occupancy 〈nσ 〉 ≈ 0.4125
and T = 0.2, our weak-coupling bubble calculation yields
q̃D =

√
Ŵ̃

4D̃
≈ 0.15π , which means that the behavior should

become diffusive at wave vector q ≈ (0.15π, 0) at around
U = 1. This is in excellent agreement with the result we
obtain directly from the full bubble approximation for χ ,
as evidenced by Fig. 19, panel on the right. Here we have
plugged the full bubble result for χq(ν) in the linear-response
theory expression for the CDW amplitude nq(t ) [Eq. (13)].

C. Strong coupling

We focus now on quantum Monte Carlo (QMC) results for
the charge-charge and current-current correlation functions.
We make use of the continuous-time interaction-expansion
QMC, CTINT [21]. This method is numerically exact for a
given lattice size. We calculate the intersite χi j (iν) on the
Matsubara frequency axis for a cyclic lattice of size L×L and
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FIG. 15. Weak-coupling bubble (U → 0 limit) in comparison with moderate and strong coupling. At weak coupling, D and Ŵ are computed
using Eqs. (55) and (54) at various dopings. At moderate and strong coupling, FTLM result is the best available result. At strong coupling,
data are reconstructed from Ref. [18], but only for a single doping.

then perform a periodization procedure, where we promote
the intersite components to the real-space components of an
infinite lattice, and thus obtain χr(iν) of a finite range (com-
ponents at r : rη > L/2 are considered 0). We then Fourier
transform to obtain χq(iν) with arbitrary resolution in the BZ.
However, very short q vectors corresponding to wavelengths
much greater than L remain inaccessible. Nevertheless, we are
able to obtain solid results for wavelengths up to 20 lattice
spacings and that way cover the range of wavelengths studied
in the cold-atom experiment by Brown et al. [18]. We perform
the exact same procedure for 
xx as well.

FIG. 16. Moderate coupling U = 1, moderate doping, results for
dc resistivity. Dashed blue: weak coupling bubble. Blue line and
dots: full bubble calculation. Orange dashed and squares: full bubble
calculated with only the local component of self-energy. Red with
crosses: full bubble with the local DMFT(NRG) self-energy result.
Lime dotted with diamonds: full bubble computed on a 4×4 lattice
with the full k-dependent second-order self-energy. Green stripe:
FTLM 4×4 result at a larger coupling U = 1.25 (including the vertex
corrections).

We perform a finite-size scaling analysis and observe that
no obvious trends with L are apparent in the results already
between L = 4 and 10 (data not shown). This is consistent
with the estimates from the recent Ref. [39] where it was
shown in a thermodynamic limit DiagMC calculation that the
charge correlations are short ranged, with values becoming
very small already at distances of about 5 lattice spacings. In
our calculations, we consider the statistical errors to be the
leading uncertainty, and use the L = 10 results to perform
analyses.

As already mentioned, it would make no sense to compare
the hydrodynamic law to imaginary-axis data because the hy-
drodynamic law predicts an unphysical asymptotic behavior
of the current-current correlation function. To be able to com-
pare the hydrodynamic theory with our Matsubara-frequency
results, we propose a modified hydrodynamic form

Imχmh
q (ν) = Imχhyd

q (ν)[1 + L(ν; a, b, c)]nF(ν − C; βart ),

(57)

where χhyd denotes the form in Eq. (14), L(ν; a, b, c) =
a exp[−(ln ν − b)2/c2] is the log-normal distribution, and
nF(ω; β ) = 1

eβω+1 is the Fermi-Dirac distribution function.
The 1 + L part here is necessary to introduce high-frequency
excitations to and from the upper Hubbard band, which are
expected in the doped Mott insulator regime. The Fermi-Dirac
distribution function facilitates the exponential cutoff at high
frequency. This modified hydrodynamic form thus has five
additional parameters: a, b, c are the amplitude, position, and
width of the Hubbard peak, respectively, and C and βart are the
cutoff frequency and the artificial temperature determining the
rate at which the spectral weight is exponentially suppressed
at cutoff. We make sure that βart is small enough so that
nF (−C, βart ) ≈ 1. Our choice of Imχmh

q (ν) ensures ∼1/ν2

Matsubara-axis asymptotic behavior for 
xx. The prefactor
of the asymptotic behavior will in general depend on the
parameters a, b, c,C, βart .

We now check whether the modified hydrodynamic form
(57) is consistent with the available CTINT and FTLM data.

155140-15
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FIG. 17. Left panel: Temperature dependence of D and Ŵ in the weak-, moderate-, and strong-coupling regimes. Right panel: Coupling
dependence of Ŵ and D, as obtained from the weak-coupling bubble, full bubble, and FTLM. The orange lines are guides for the eye, a possible
scenario connecting results in the weak- and moderate- to strong-coupling regimes.

We first hand-pick the parameters so that the FTLM result for
the optical conductivity is reproduced. It is noteworthy that
we can get a very good fit to FTLM data, and that the shape of
the high-frequency peak is roughly a log-normal distribution.
We then compare the resulting χmh

q (iν) and the corresponding

xx,mh [obtained via Eq. (10)] to CTINT data. We find solid
agreement, as shown in the upper part of Fig. 20.

In the lower part of Fig. 20 we illustrate how fitting the
Matsubara data to a hydrodynamic law without the high-
frequency peak will yield wrong results for D and Ŵ, even if a

FIG. 18. Moderate coupling, moderate doping. Full lines: full
bubble result [Eq. (48)] for the uniform (q = 0) longitudinal current-
current correlation function. Dashed lines: hydrodynamic form (22)
fitted at ν → 0.

proper high-frequency cutoff is used. We do a fully unbiased
fit of χmh

q (iν) (with a, b, c = 0 and βart fixed to 0.3, D, Ŵ χc,C

free), to reproduce at the same time χ and 
 CTINT results at
five small q vectors. We get an excellent fit, but we get com-
pletely wrong values for D and Ŵ. The optical conductivity
contains two peaks, and fitting with only a single peak will
compensate by making this one peak wider and shorter, thus
underestimating D and overestimating Ŵ. Figure 20 nicely
illustrates the difficulty of analytical continuation: the fit func-
tion on the imaginary axis is almost indistinguishable between
the top and bottom rows, yet corresponds to drastically differ-
ent optical conductivity.

In Fig. 21 we show the 〈nq(t )〉 curves, corresponding to
χmh parameters from the upper part of Fig. 20. Comparing to
the corresponding pure hydrodynamic law χhyd [Eq. (21)], we
find no visible difference: the inability of the hydrodynamic
law to describe high-frequency features of χ are unlikely to
have affected the fitting procedure in Ref. [18].

IV. DISCUSSION AND PROSPECTS

Our work builds on the milestone study of charge fluctua-
tions in the Hubbard model by Hafermann et al. [23]. In that
work, the noninteracting charge-charge correlation function
was calculated, but only at half-filling, and with a relatively
low resolution: the striking two-linear-modes feature that we
observe at finite doping was, therefore, overlooked. More
importantly, the Matsubara data were fitted to a law which
only allows for a linear mode at long wavelengths, which
may not be appropriate. In light of more recent experimental
evidence, and on general physical grounds, the emergence
of diffusive behavior and a quadratic mode around q = 0
is expected. Furthermore, in the work by Hafermann et al.,
vertex corrections had unlimited range, but were calculated
as a diagrammatic extension of DMFT [40], which introduces
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FIG. 19. Weak to moderate coupling, moderate doping, moderate temperature. Left: full bubble calculation [Eq. (48)] for the charge-charge
correlation function at a fixed wave vector at different values of coupling. Right: corresponding CDW amplitude vs time curves [Eq. (13)].
Prediction based on Eq. (56) for this doping and temperature is that qD(U = 1) ≈ 0.15π , in agreement with the data in the plot on the right.

systematic errors. By using CTINT at 10×10 lattice size, we
capture complete vertex corrections up to a medium range,
yet the finite-size effects in our theory are unlikely to have
introduced significant systematic error. Finally, Hafermann
et al. have derived numerous useful identities relevant for
charge-charge and current-current correlation function. How-
ever, the fully general equation (7) may have been overlooked
so far.

Our weak-coupling calculation is complementary to the
semiclassical Boltzmann equation approach of Kiely and
Mueller [16]. It is not clear that either of the two approaches
yield exact results, even in the U → 0 limit, thus it is im-
portant to cross-check the results and look for robust, shared
features. Indeed, our results at low dopings are in excellent
qualitative agreement with the Boltzmann equation: we ob-
serve linear resistivity at half-filling and an emerging T 2 at
low temperature as one dopes away from half-filling. How-
ever, there is a significant quantitative difference in the values
of ρ̃dc. The Boltzmann equation predicts the high-temperature
asymptotic behavior ρ̃dc = 0.076(T/t ) = 0.304(T/4t ) while
our Kubo bubble theory yields ρ̃dc = 13.08(T/4t ). The dif-
ference is nearly two orders of magnitude. Comparing to
numerically exact FTLM result at U = 1.25, it is clear that
our extrapolated U → 0 theory strongly overestimates ρdc at
high temperature (see Fig. 16). However, the coefficient for
the linear high-T asymptotics is overestimated by a factor of
2–3, at most. Furthermore, we can compute the bubble result
at a finite coupling to obtain much better results, the relative
error unlikely being more than 30%–40% in the relevant range
of temperature. The Boltzmann theory result extrapolated to
U = 1.25, on the other hand, would be barely visible on the
scale of Fig. 16. Our bubble theory appears to give results
in significantly better agreement with the reference FTLM
solution. There is also a striking qualitative difference in the
ρdc(T ) at large doping. At 〈nσ 〉 = 0.1 Kiely and Mueller ob-
serve an exponential drop of resistivity at low temperature, in
sharp contrast to our observations. Their finding was argued
to be due to frustration of umklapp scattering. It is possible

that, in our approach, vertex corrections are needed to observe
this phenomenon. Further work is necessary to fully resolve
the origin of this discrepancy. Finally, our approach allows
us to compute the full optical conductivity, and estimate D and
Ŵ as separate objects, which, to the best of our understanding,
could not have been done in their work. To our understanding,
Ŵ was extracted from D, assuming the validity of the Boltz-
mann expression for conductivity [Eq. (31)]. The analysis
based on the asymptotic behavior of χq→0(iν) that shows that
the hydrodynamic theory [Eqs. (3) and (4)] is consistent with
Eq. (31) may have been previously overlooked.

Our analysis of the equation of motion for the current
[Eq. (11)], as well as our numerical results displaying DŴ =
2t2 at weak coupling and high temperature (Fig. 15) provide
some microscopic evidence for the validity of the hydrody-
namic theory proposed in Ref. [18]. Also, our Fig. 19 provides
some support for qD =

√
Ŵ/4D which is a specific property

of the hydrodynamic theory [Eqs. (3) and (4)]. However, the
definite answer to the questions raised in this paper will have
to come from more sophisticated methods. It is essential to
formulate the theory in real frequency and at the same time
treat the thermodynamic limit and the vertex corrections. The
recently developed real-frequency diagrammatic Monte Carlo
(RFDiagMC) [41–45] is a clear candidate, and our Kubo bub-
ble and second-order self-energy theory is the first step in this
approach. Very recently, RFDiagMC was used to calculate
the charge-charge correlation function in a slightly different
model, at very weak coupling [46]. Pushing RFDiagMC to
stronger coupling [45,47–50] and higher resolution necessary
to investigate the hydrodynamic behavior in the regime rele-
vant for cold-atom experiments is a difficult task that we leave
for future work.

Finally, it is important to view our T -linear-resistivity re-
sult in the U → 0 limit in light of the very recent work by Xu
et al. [51]. In this work, a quantum critical line is observed
to pass through U = 0, 〈nσ 〉 = 0.5, separating two distinct
ordered phases in the ground-state (δ,U ) phase diagram of
the Hubbard model. This is in line with our observation that
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FIG. 20. Strong coupling, moderate doping, and temperature. Upper panels: modified hydrodynamic law with parameters hand-picked to
reproduce FTLM result for optical conductivity (rightmost panel, gray stripe, and black dot); two panels on the left: comparison of the modified
hydrodynamic law the with corresponding CTINT results for the Matsubara-axis charge-charge and current-current correlation functions; third
panel: corresponding real-frequency charge-charge correlation function. Lower panels: unbiased fit of the modified hydrodynamic law without
the high-frequency peak to the CTINT charge-charge and current-current correlation functions, simultaneously. The result has a strong bias for
the values of D and Ŵ.

FIG. 21. CDW amplitude vs time curves, corresponding to the
modified hydrodynamic law from the upper panels of Fig. 20, com-
pared to the original hydrodynamic law [Eq. (14)] with the same D

and Ŵ.

the charge-charge and spin-spin susceptibilities diverge at
q = (π, π ) as T → 0 at U = 0, μ = 0 (see Appendix F). The
hypothesis considered in many works [8] is that linear resis-
tivity is expected above quantum critical points. The linear
resistivity that we observe may, indeed, be intimately linked to
instability towards order, i.e., a degeneracy of the ground state
at U → 0 at half-filling. The van Hove singularity at the Fermi
level perhaps does not play the essential role here, in contrast
to the conclusions in Ref. [17]. Whether resistivity remains
linear all the way down to zero temperature when Fermi level
is at a van Hove singularity in the density of states, regardless
of any ordering instabilities, is currently unclear.

V. CONCLUSIONS

We have studied charge fluctuations and transport in the
Hubbard model. In the noninteracting limit, charge fluctua-
tions are anisotropic, and can have multiple linear modes at
long wavelengths. Near the empty limit, the charge spectral
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function resembles that of the electron. At weak coupling, the
self-energy presents several peculiar behaviors, including an
abundance of kinks in the frequency dependence. At low tem-
perature we generally find two peaks in Im�k(ω) at any k. At
half-filling and T → 0, we find Im�k=(0,π )(ω) ∼ |ω|4/5 and,
along the Fermi surface, Im�k=(0,π )↔(π,0)(ω) ∼ |ω|, the latter
being in agreement with previous work [27]. As temperature
is raised, a sharp peak in Im�k(ω) rises at low frequency,
splitting the quasiparticle peak in ImGk(ω) at around k =
(π, π ). At high temperature, we find that self-energy has a
single peak as a function of frequency at around ω = εk, and
it is not smooth. We observe that the dc resistivity is linear at
half-filling and at high temperature, in agreement with recent
findings [16]. Surprisingly, nonlocal self-energy components
are found to have little effect on dc resistivity. Precisely at the
band insulator transition, our bubble approximation predicts
a finite resistivity at T → 0, coming as a consequence of
perfect cancellation of the reducing velocity and scattering
rate, both scaling as T . We observe that the hydrodynamic pa-
rameters (diffusion constant and momentum relaxation rate)
are roughly inversely proportional, in the bubble approxima-
tion at weak coupling, as well as in the numerically exact
FTLM result at strong coupling. Their product appears to be
DŴ ≈ 2t2, which coincides with one term in the microscopic
equation of motion for the current, indicating that other terms
might play less of a role. This supports the hydrodynamic
theory, for which we show that it must satisfy DŴ = 2t2 at
weak coupling and high temperature. Finally, we propose a
modified hydrodynamic law that has correct behavior at high
frequency, and find that it is consistent with both the numer-
ically exact FTLM and the numerically exact CTINT. Our
results provide some evidence that the hydrodynamic theory
is correct, but further work with better methods is needed to
fully resolve this issue.
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APPENDIX A: CONTINUITY EQUATION

ON THE LATTICE

We start by noting the general expression for the time
derivative of a bosonic operator O in the Heisenberg picture

∂tO(t ) = ∂t e
itH

Oe−itH

= i[H,O]. (A1)

We will also need the general expression for commutators
of the following general form, with a†, b, c†, d fermionic cre-
ation and annihilation operators

[a†b, c†d] = δbca†d − δad c†b. (A2)

This can be proven simply by using [AB,C] = A[B,C] +
[A,C]B, [A, BC] = B[A,C] + [A, B]C, and therefore
[AB,CD] = A(C[B, D] + [B,C]D) + (C[A, D] + [A,C]D)B.

Using these we can then show

∂t nr(t ) = i[Hkin, nr] = −it

⎡

⎣

∑

σ ′,r′,s∈{1,−1},η∈{x,y}

c
†
σ ′,r′cσ ′,r′+seη

,
∑

σ

c†
σ,rcσ,r

⎤

⎦

= −it
∑

σ,s∈{1,−1},η∈{x,y}

([c†
σ,rcσ,r+seη

, c†
σ,rcσ,r] + [c†

σ,r−seη
cσ,r, c†

σ,rcσ,r])

= −it
∑

σ,s∈{1,−1},η∈{x,y}

(−c†
σ,rcσ,r+seη

+ c
†
σ,r−seη

cσ,r ) = −
∑

η∈{x,y}

( jηr − j
η
r−eη

) (A3)

with the definition j
η
r = it

∑

σ (c†
σ,r+eη

cσ,r − c†
σ,rcσ,r+eη

). The expression
∑

η∈{x,y}( j
η
r − j

η
r−eη

) is the lattice version of the
divergence of current.

We can express the continuity equation in momentum
space by Fourier transform of both sides

∂t nq = i[H, nq] = −
∑

η∈{x,y}

(1 − eiqη ) jηq, (A4)

where nq =
∑

r eiq·rnr =
∑

k c
†
k+qck. Notice that we distin-

guish between nk = c
†
kck and nq solely by the choice of the

symbol in the subscript.
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VUČIČEVIĆ, PREDIN, AND FERRERO PHYSICAL REVIEW B 107, 155140 (2023)

APPENDIX B: CONNECTION BETWEEN THE

CHARGE-CHARGE AND CURRENT-CURRENT

CORRELATION FUNCTIONS

Here we make use of the general equation of motion

z2〈〈A; B〉〉z =−z〈[A, B]〉−〈[[A, H], B]〉+〈〈[A, H]; [H, B]〉〉z,

(B1)

where we denote with 〈〈A; B〉〉z the correlator of operators A

and B as a function of complex frequency z. The full deriva-
tion of Eq. (B1) is given in Appendix D.

If we replace A = nq and B = n−q, and using [A, H] =
−[H, A] and 1/i = −i we get

z2〈〈nq; n−q〉〉z = −z〈[nq, n−q]〉 + i
∑

η∈{x,y}

(1 − eiqη )〈[ jηq, n−q]〉

+
∑

η,η′∈{x,y}

(1 − eiqη − e−iqη′ + ei(qη−qη′ ))

×〈〈 jηq ; j
η′

−q〉〉z. (B2)

Let us work out the two commutators

[nq, n−q] =
∑

σ

[

∑

k

c
†
σ,k+qcσ,k,

∑

k′

c
†
σ,k′cσ,k′+q

]

=
∑

σ

∑

k

[c†
σ,k+qcσ,k, c

†
σ,kcσ,k+q]

=
∑

σ

∑

k

(nσ,k+q − nσ,k )

=
∑

σ

(nσ,r=0 − nσ,r=0)

= 0. (B3)

Therefore, the first term drops out.
For the second term one gets

[ jηq, n−q] =

[

∑

k

v
η

k,qc
†
σ,k+qcσ,k,

∑

k′

c
†
σ,k′cσ,k′+q

]

=
∑

σ

∑

k

v
η

k,q(nσ,k+q − nσ,k ), (B4)

where v
η

kq = it (e−i(kη+qη ) − eikη ). The overall prefactor is
purely real for each k:

i2t (1 − eiqη )(e−i(kη+qη ) − eikη )

= −t (e−i(kη+qη ) − eikη − e−ikη + ei(kη+qη ))

= −2t[cos(kη + qη ) − cos kη]

≡ 	
η

k,q. (B5)

This leads us to the fully general expression (7), and here we
write it separately for the real and imaginary parts:

z2Reχq(z) (B6)

=
∑

η={x,y}

∑

k

	
η

k,q(〈nk+q〉 − 〈nk〉)

+ Re
∑

η,η′∈{x,y}

(1 − eiqη − e−iqη′ + ei(qη−qη′ ))
η,η′

q (z),

z2Imχq(z)

= Im
∑

η,η′∈{x,y}

(1 − eiqη − e−iqη′ + ei(qη−qη′ ))
η,η′

q (z). (B7)

Notice that the constant shift in Eq. (B6) is crucial to allow
that both χ and 
 scale as 1/ν2 at high Matsubara frequency,
which is expected on grounds of symmetry of these correlators
in imaginary time. At large ν we get for the real part ν2 const

ν2 =
const + 1/ν2 which reduces to const = const as ν goes to in-
finity. This expression also reveals the high-frequency scaling
which must hold in general:

Reχq(iν → i∞) = −
1

ν2

∑

η={x,y}

∑

k

	
η

k,q(〈nk+q〉 − 〈nk〉).

(B8)

APPENDIX C: CONSTITUTIVE EQUATION

In the following we derive the time derivative of current operator in the Heisenberg picture. The derivation boils down to
working out the following commutators:

∂t jηr = i[H, jηr ] = i([Hkin, jηr ] + [Hint, jηr ] + [Hchem, jηr ]). (C1)

The commutator with kinetic energy reads as

i[Hkin, jηr ] = i

⎡

⎣−t
∑

r′,σ ′,s∈{1,−1},η′∈{x,y}

c
†
σ ′,r′cσ ′,r′+seη′ , it

∑

σ

(c†
σ,r+eη

cσ,r − c†
σ,rcσ,r+eη

)

⎤

⎦

= −t2
∑

σ

{

[c†
σ,r+eη

cσ,r, c†
σ,rcσ,r+eη

] − [c†
σ,rcσ,r+eη

, c
†
σ,r+eη

cσ,r]

+
∑

u∈{−eη,eη̄,−eη̄}

([c†
σ,r+ucσ,r, c†

σ,rcσ,r+eη
] + [c†

σ,r+eη
cσ,r+eη−u, c†

σ,rcσ,r+eη
]

− [c†
σ,rcσ,r+u, c

†
σ,r+eη

cσ,r] − [c†
σ,r+eη−ucσ,r+eη

, c
†
σ,r+eη

cσ,r])

}
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= −t2
∑

σ

{

2c
†
σ,r+eη

cσ,r+eη
− 2c†

σ,rcσ,r +
∑

u∈{−eη,eη̄,−eη̄}

(c†
σ,r+ucσ,r+eη

− c†
σ,rcσ,r+eη−u + H.c)

}

. (C2)

The first two terms comprise the lattice version of the gradient of charge in the direction of current. The other terms are longer-
range hoppings.

The commutator of the current with the total number of particles has to be zero, and we leave out the explicit derivation of
[Hchem, j

η
r ]. The commutator with the local Hubbard interaction, on the other hand, is nontrivial:

i[Hint, jηr ] = i

[

U
∑

r′

c
†
↑,r′c↑,r′c

†
↓,r′c↓,r′ , −it

∑

σ

(c†
σ,rcσ,r+eη

− c
†
σ,r+eη

cσ,r )

]

= tU
∑

σ

{nσ̄ ,r([c†
σ,rcσ,r, c†

σ,rcσ,r+eη
] − [c†

σ,rcσ,r, c
†
σ,r+eη

cσ,r])

+ nσ̄ ,r+eη
([c†

σ,r+eη
cσ,r+eη

, c†
σ,rcσ,r+eη

] − [c†
σ,r+eη

cσ,r+eη
, c

†
σ,r+eη

cσ,r])}

= tU
∑

σ

{nσ̄ ,r(c†
σ,rcσ,r+eη

+ c
†
σ,r+eη

cσ,r ) − nσ̄ ,r+eη
(c†

σ,rcσ,r+eη
+ c

†
σ,r+eη

cσ,r )}

= −tU
∑

σ

(nσ̄ ,r+eη
− nσ̄ ,r )(c†

σ,rcσ,r+eη
+ c

†
σ,r+eη

cσ,r ). (C3)

The terms we get are all assisted hopping terms.
The final expression reads as

∂t jηr = −t2
∑

σ

⎧

⎨

⎩

2nσ,r+eη
− 2nσ,r +

∑

u∈{−eη,eη̄,−eη̄}

(c†
σ,r+ucσ,r+eη

− c†
σ,rcσ,r+eη−u + H.c)

⎫

⎬

⎭

−tU
∑

σ

(nσ̄ ,r+eη
− nσ̄ ,r )(c†

σ,rcσ,r+eη
+ c

†
σ,r+eη

cσ,r ). (C4)

A straightforward Fourier transformation of both sides yields

∂t jηq = −t2
∑

σ

⎧

⎨

⎩

2(eiqη − 1)nσ,q +
∑

u∈{−eη,eη̄,−eη̄}

(

(e−iq·u − 1)
∑

k

eik·(eη−u)c
†
σ,k+qcσ,k + H.c.

)

⎫

⎬

⎭

+ tU
∑

σ

∑

k,q′

(e−ikη + ei(kη+qη−q′
η ))(1 − eiq′

η )nσ̄ ,q′c
†
σ,k+q−q′cσ,k. (C5)

It is interesting to consider the limit q = 0,

∂t j
η

q=0 = tU
∑

σ

∑

k,q′

(e−ikη + ei(kη−q′
η ))(1 − eiq′

η )nσ̄ ,q′c
†
σ,k−q′cσ,k

= iU
∑

σ

∑

k,q′

(vη

k−q′ − v
η

k )nσ̄ ,q′c
†
σ,k−q′cσ,k, (C6)

which clearly shows that scattering events that do not transfer momentum do not contribute to the decay of current; more
precisely, only the scattering events that change the velocity of an electron in the direction of the current contribute to the decay
of the current. In principle, this expression can be used to express the optical conductivity via higher-order correlation functions
using Eq. (B1).

APPENDIX D: EQUATION OF MOTION

Here we derive Eq. (B1). We start with the standard defini-
tion of the correlator in real time

〈〈A; B〉〉t = iθ (t )〈[A(t ), B(0)]〉, (D1)

where A and B are bosonic operators, thus we adopt the
definition without the minus sign in front.

The equations of motion are obtained by taking time
derivatives. The first derivative yields

d

dt
〈〈A; B〉〉t = iθ (t )〈[Ȧ(t ), B(0)]〉 + iδ(t )〈[A, B]〉. (D2)

We now perform the Laplace transform with respect to t :

〈〈A; B〉〉z =
∫ ∞

0+
dt eizt 〈〈A; B〉〉t . (D3)
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Now for f (t ) = 〈〈A; B〉〉t , we integrate per parts
∫ ∞

0+
dt eizt d

dt
f (t ) = eizt f (t )|+∞

0+ − iz

∫

dt eizt f (t )

= −i〈[A, B]〉 − iz〈〈A; B〉〉z. (D4)

Note that the δ is not included in the integration domain.
The second term comes directly from the definition of the
Laplace transform (D3). Equating this result with the Laplace
transform of the right-hand side of Eq. (D8) we get

−i〈[A, B]〉 − iz〈〈A; B〉〉z = 〈〈i[H, A]; B〉〉z (D5)

which, up to the factor i, is the equation of motion in its usual
form.

We will want the second derivative to apply to the operator
B, thus, we first perform a time shift

d

dt
〈〈A; B〉〉t = iθ (t )〈[Ȧ(0), B(−t )]〉 + iδ(t )〈[A, B]〉 (D6)

and only then apply the second time derivative

d2

dt2
〈〈A; B〉〉t = iθ (t )〈[Ȧ(0),−Ḃ(−t )]〉

+ iδ(t )〈[Ȧ, B]〉 + iδ′(t )〈[A, B]〉. (D7)

For convenience, we shift back in time

d2

dt2
〈〈A; B〉〉t = −iθ (t )〈[Ȧ(t ), Ḃ(0)]〉

+ iδ(t )〈[Ȧ, B]〉 + iδ′(t )〈[A, B]〉. (D8)

The integration by parts once more leads to
∫ ∞

0+
dt eizt d2

dt2
f (t )

=
d

dt

(

eizt ḟ (t )
)

|+∞
0+ − iz

∫

dt eizt d

dt
ḟ (t )

= −i〈[Ȧ, B]〉 − iz(−i〈[A, B]〉 − iz〈〈A; B〉〉z )

= −i〈[Ȧ, B]〉 − z〈[A, B]〉 − z2〈〈A; B〉〉z, (D9)

where the second and third terms come directly from Eq. (D5).
Equating this result with the Laplace transform of the right-
hand side of Eq. (D8) (there note the minus sign in front of
the first term, and note that ȦḂ = −[H, A][H, B]):

−i〈[Ȧ, B]〉 − z〈[A, B]〉 − z2〈〈A; B〉〉z = 〈〈[H, A]; [H, B]〉〉z.

(D10)

We rearrange the result

z2〈〈A; B〉〉z = −i〈[Ȧ, B]〉 − z〈[A, B]〉 − 〈〈[H, A]; [H, B]〉〉z

(D11)

and finally obtain

z2〈〈A; B〉〉z

= −〈[[A, H], B]〉 − z〈[A, B]〉 + 〈〈[A, H]; [H, B]〉〉z

(D12)

which is the expression used in the derivation in Appendix B.

FIG. 22. Static susceptibility in the noninteracting limit as a
function of momentum, at different fillings and temperatures.

APPENDIX E: CALCULATION OF SECOND-ORDER

SELF-ENERGY

The optimal way to compute the second-order self-energy
(46) it is to first evaluate the “triple density of states” by a
three-dimensional (3D) histogram on a dense energy grid

ρ3,k(ε1, ε2, ε3) =
1

N2�ω3

∑

k′,q

δε1,εk−q
δε2,εk′+q

δε3,εk′ , (E1)

where �ω is the step in the energy grid. This calculation only
needs to be performed once, for μ = 0, and it does not depend

FIG. 23. Static susceptibilities in the noninteracting limit, at half-
filling, as a function of temperature. The values at q = (π, π ) and
q = (π/2, π/2) appear to diverge as T → 0.
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on T . Then for a given (μ, T ) we accumulate pole amplitudes
for the self-energy on the same energy grid as

Im�̃k(ω)

= −
π

�ω

∫

dε1dε2dε3 ρ3,k(ε1, ε2, ε3)δω+μ−ε1−ε2+ε3

×
∑

s=±1

nF [s(ε1 − μ)]nF [s(ε2 − μ)]nF [−s(ε3 − μ)].

(E2)

The real part of the self-energy can then be obtained via the
standard Kramers-Kronig relation.

In our calculations we consider lattices L×L, up to L =
256. When calculating histograms, the optimal number of bins
is the square root of the number of the data points. Therefore,
in Eq. (E1) the number of energy bins per axis should be equal

to
√

N2
1/3

= L2/3, but for the sake of numerical simplicity, we
take the number of energy bins (per axis) to be L. This means
that, up to the overhead of evaluating Eq. (E1) once, we have
reduced the complexity of the calculation from L4 [Eq. (46)]
to L3 [Eq. (E2)], which is a huge speedup.

APPENDIX F: DIVERGENCE OF STATIC

SUSCEPTIBILITY AT U = 0, T → 0

In this Appendix we show results for the static suscepti-
bility Reχq(ν = 0), in the noninteracting limit. The results
are obtained by setting φ, ϕ = 1, z = 0 in Eq. (34) and us-
ing a 6000×6000 lattice. In Fig. 22 we observe that there
are peaks at q = (0, 0), q = (π, π ), and q = (π/2, π/2), but
the highest peak is at q = (π, π ). As one dopes away from
half-filling, the peaks split. At μ = −0.5, the peaks are at
q = (0, π ) and the symmetry related q = (π, 0). In the nearly
empty limit, the only peak is at q = (0, 0). As expected, the
peaks become less pronounced as one increases temperature.
In Fig. 23 we further observe that the value at q = (π, π )
and q = (π/2, π/2) appears to diverge as T → 0, indicating
competing instabilities towards charge order. It is important to
note that in the noninteracting limit, spin and charge suscep-
tibilities are equal. Therefore, any instability towards charge
order is accompanied by instability towards spin order. As
soon as interaction is turned on, the degeneracy between
charge and spin order is lifted.
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[45] J. Vučičević, P. Stipsić, and M. Ferrero, Phys. Rev. Res. 3,

023082 (2021).
[46] B. D. E. McNiven, H. Terletska, G. T. Andrews, and J. P. F.

LeBlanc, Phys. Rev. B 106, 035145 (2022).
[47] W. Wu, M. Ferrero, A. Georges, and E. Kozik, Phys. Rev. B 96,

041105(R) (2017).
[48] F. Šimkovic and E. Kozik, Phys. Rev. B 100, 121102(R) (2019).
[49] R. Rossi, F. Šimkovic, and M. Ferrero, Europhys. Lett. 132,

11001 (2020).
[50] A. J. Kim, N. V. Prokof’ev, B. V. Svistunov, and E. Kozik,

Phys. Rev. Lett. 126, 257001 (2021).
[51] H. Xu, H. Shi, E. Vitali, M. Qin, and S. Zhang, Phys. Rev. Res.

4, 013239 (2022).
[52] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko,

L. Messio, and P. Seth, Comput. Phys. Commun. 196, 398
(2015).

155140-24

https://doi.org/10.1103/PhysRevX.11.011058
https://doi.org/10.1103/PhysRevB.104.205101
https://doi.org/10.1103/PhysRevB.88.075143
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevB.21.1003
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRevB.79.085106
https://doi.org/10.1103/PhysRevResearch.4.043201
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/PhysRevB.99.035120
https://doi.org/10.1103/PhysRevB.101.075113
https://doi.org/10.1103/PhysRevB.101.125109
https://doi.org/10.1103/PhysRevB.102.045115
https://doi.org/10.1103/PhysRevResearch.3.023082
https://doi.org/10.1103/PhysRevB.106.035145
https://doi.org/10.1103/PhysRevB.96.041105
https://doi.org/10.1103/PhysRevB.100.121102
https://doi.org/10.1209/0295-5075/132/11001
https://doi.org/10.1103/PhysRevLett.126.257001
https://doi.org/10.1103/PhysRevResearch.4.013239
https://doi.org/10.1016/j.cpc.2015.04.023


PHYSICAL REVIEW B 111, 079903(E) (2025)

Erratum: Charge fluctuations, hydrodynamics, and transport in the square-lattice
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J. Vučičević , S. Predin, and M. Ferrero

(Received 31 January 2025; published 20 February 2025)

DOI: 10.1103/PhysRevB.111.079903

We have identified two bugs in the code that affected some of the results shown in Figs. 12–18 of the original publication.

The results affected were the U → 0 bubble ρdc and the quantities extracted from it, as well as the frequency-dependent current-

current correlation function at high frequency. We have corrected the code and reproduced the results. The changes in the results

are only quantitative, and do not affect any conclusions in the paper. On the contrary, the corrected Fig. 15 better confirms that

at weak coupling, DŴ ≈ 2t
2, which is one of the main results of our paper. The correct versions of the original Figs. 12–18 are

shown in Figs. 1–7 of this Erratum.

A quantitative difference is present in Fig. 14, where ρdc saturates to 0.65 (instead of 0.4) as T → 0, but the overall behavior

is not qualitatively different.

Also, the high-temperature asymptotic behavior in Fig. 13 is ρdc ∼ 13.8U
2
T (rather than ρdc ∼ 13.08U

2
T ). We also note

that in the corrected results, there is a more pronounced “knee” in the ρdc(T ) curve at half-filling, leading to two separate linear

regimes—one at low and one at high temperature, with slightly different prefactors.

In addition, we have made a mistake in converting the units when comparing our results to the Boltzmann theory results from

Ref. [1]. The correct conversion is ρdc = 0.076(T/t )(U/t )2
= 4.864(T/D)(U/D)2. Our conclusion that there is a significant

difference between Boltzmann theory and the Kubo bubble results remains correct, but the difference is half an order of

magnitude, rather than two orders of magnitude as stated in the original publication.

FIG. 1. Correct version of Fig. 12 in original publication. The χc results were not affected.
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FIG. 2. Correct version of Fig. 13 in the original publication. The red dashed line in the upper panels is the high-temperature asymptotic

behavior at half-filling, ρdc ∼ 13.8U
2
T , not shown in the original publication.
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FIG. 3. Correct version of Fig. 14 in the original publication. As T → 0, ρdc saturates at around 0.65 (rather than 0.4, as was stated in the

original publication).

FIG. 4. Correct version of Fig. 15 in the original publication. Only the first panel was affected. The correct results better confirm our

expectation that DŴ ≈ 2t
2.

FIG. 5. Correct version of Fig. 16 in the original publication. Only the U → 0 bubble results (blue dashed) were affected.
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FIG. 6. Correct version of Fig. 17 in the original publication. Only the red curves were affected, and we have slightly changed the choice

of parameters for those curves. The qualitative picture remains the same.

FIG. 7. Correct version of Fig. 18 in the original publication. A small difference is visible at high frequency in the leftmost panels (T =

0.1).

[1] T. G. Kiely and E. J. Mueller, Phys. Rev. B 104, 165143 (2021).
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ABSTRACT

Ultracold-atom simulations of the Hubbard model provide insights into the character of charge and spin correlations in and out of equi-
librium. The corresponding numerical simulations, on the other hand, remain a significant challenge. We build on recent progress in the
quantum Monte Carlo (QMC) simulation of electrons in continuous space and apply similar ideas to the square-lattice Hubbard model. We
devise and benchmark two discrete-time QMC methods, namely the fermionic-propagator QMC (FPQMC) and the alternating-basis QMC
(ABQMC). In FPQMC, the time evolution is represented by snapshots in real space, whereas the snapshots in ABQMC alternate between
real and reciprocal space. The methods may be applied to study equilibrium properties within the grand-canonical or canonical ensemble,
external field quenches, and even the evolution of pure states. Various real-space/reciprocal-space correlation functions are also within their
reach. Both methods deal with matrices of size equal to the number of particles (thus independent of the number of orbitals or time slices),
which allows for cheap updates. We benchmark the methods in relevant setups. In equilibrium, the FPQMCmethod is found to have an excel-
lent average sign and, in some cases, yields correct results even with poor imaginary-time discretization. ABQMC has a significantly worse
average sign, but also produces good results. Out of equilibrium, FPQMC suffers from a strong dynamical sign problem. On the contrary,
in ABQMC, the sign problem is not time-dependent. Using ABQMC, we compute survival probabilities for several experimentally relevant
pure states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133597

I. INTRODUCTION

The last two decades have witnessed remarkable develop-
ments in laser and ultracold-atom technologies that have enabled
experimental studies of strongly correlated electrons in and out
of equilibrium.1,2 Ultracold atoms in optical lattices2,3 and opti-
cal tweezers arrays4–6 have been used as quantum simulators for
paradigmatic models of condensed-matter physics, such as the Hub-
bard model.7,8 Recent experiments with fermionic ultracold atoms
have probed the equation of state,9 charge, and spin correlation
functions,10–13 as well as transport properties (by monitoring charge
and spin diffusion14–17).

These experimental achievements pose a significant challenge
for the theory. The level of difficulty, however, greatly depends
on whether one computes instantaneous (equal-time) correlations

or the full time/frequency dependence of dynamical correlators.
The other factor is whether one considers thermal equilibrium or
out-of-equilibrium setups.

Instantaneous correlators in equilibrium are the best-case
scenario. The average density, double occupancy, and correla-
tions between particle or spin densities on adjacent sites are still
very important. They serve as a thermometer: the temperature in
cold-atom experiments cannot be measured directly and is often
gauged in comparison with numerical simulations.11,14 For this
kind of application, current state-of-the-art methods18–43 are often
sufficient. Equal-time multipoint density correlations are also of
interest, as they hold information, e.g., about the emergence of
string patterns13,44,45 or the effect of holes on antiferromagnetic
correlations.46–48 However, measuring density at a larger number
of points simultaneously is more difficult in many algorithms. For
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example, in the Hirsch–Fye (HF) algorithm,24,49 one cannot do
this straight-forwardly, as the auxiliary Ising spins only distinguish
between singly occupied and doubly occupied/empty sites.

Of even greater interest and much greater difficulty are the
time-dependent correlations in equilibrium. These pertain to stud-
ies of transport and hydrodynamics at the level of linear response
theory.50–52 The limitations of current state-of-the-art methods here
become starkly apparent. If one is interested in long-wavelength
behavior (as is precisely the case in the study of hydrodynamic
properties52), the lattices treated in the simulation need to be suffi-
ciently large. The finite-temperature Lanczos method53,54 can only
treat up to 20 lattice sites50,55 and is unsuitable for such appli-
cations. Quantum Monte Carlo (QMC) methods can treat up to
300 sites,29,30 but only under certain conditions: doping away from
half-filling leads to a significant sign problem, which becomes
more severe as the lattice size, inverse temperature, and coupling
constant are increased. Moreover, QMC methods are formulated
in imaginary time and require ill-defined analytical continuation
to reconstruct optical conductivity or any other real-frequency
spectrum.51

Direct real-time calculations, regardless of proximity to the
equilibrium, are the most difficult.31,56–69 These present an alterna-
tive to analytical continuation in equilibrium calculations but are
necessary to describe non-equilibrium regimes, e.g., in external field
quenches.16 In the corresponding Kadanoff–Baym–Keldysh three-
or two-piece contour formalism, QMC computations are plagued
by the dynamical sign problem, which has so far been overcome
in only the smallest systems.61 The time-dependent density matrix
renormalization group70–72 produces practically exact results, how-
ever, only in one-dimensional63,64 or ladder systems.73 Simulations
based on the nonequilibrium Green’s functions formalism74 are also
possible but not numerically exact. They can, however, treat much
larger systems over much longer time scales than other real-time
approaches.64,75–77

The main goal of this work is to construct a numerically exact
way to compute spatially resolved densities in setups relevant for
optical lattice experiments. This includes general multipoint corre-
lators in real space and momentum space, and we focus on densities
of charge and spin. We are interested in both the equilibrium
expectation values and their time dependence in transient regimes.
(The latter can formally be used to access temporal correlations in
equilibrium as well.)

We take a largely unexplored QMC route78–80 toward the com-
putation of correlation functions in the square-lattice Hubbard
model. Current state-of-the-art methods, such as the continuous-
time interaction-expansion (CT-INT),31–33 the continuous-time
auxiliary field (CT-AUX),31,34 and HF,24,49 rely on the computa-
tion of large matrix determinants, which, in many cases, presents
the bottleneck of the algorithm. In CT-INT and CT-AUX, the size
of the matrices generally grows with coupling, inverse temperature,
and lattice size. In the HF, which is based on the Suzuki–Trotter
decomposition (STD), the matrix size is fixed, yet presents a mea-
sure of the systematic error: the size of the matrix scales with
both the number of time slices and the number of lattice sites. A
rather separate approach is possible, where the size of the matri-
ces scales only with the total number of electrons. This approach
builds on the path-integral MC (PIMC).81,82 In PIMC, the trajecto-
ries of individual electrons are tracked. In continuous-space models,

PIMC was used successfully even in the calculation of dynamical
response functions.83,84 The downside is that the antisymmetry of
electrons feeds into the overall sign of a given configuration, thus
contributing to the sign problem. A more sophisticated idea was
put forward in Refs. 85–87. Namely, the propagation between two
time slices can be described by a single many-fermion propagator,
which groups (blocks) all possible ways the electrons can go from
one set of positions to another—including all possible exchanges.
The many-fermion propagator is evaluated as a determinant of a
matrix of size equal to the total number of electrons. This scheme
automatically eliminates one important source of the sign problem
and improves the average sign drastically. Such permutation blocking
algorithms have been utilized with great success to compute ther-
modynamic quantities in continuous-space fermionic models.88–96

Here, we investigate and test analogous formulations in the lattice
models of interest and try generalizing the approach to real-time
dynamics.

We develop and test two slightly different QMC methods. The
Fermionic-propagator QMC (FPQMC) is a real-space method sim-
ilar to the permutation-blocking and fermionic-propagator PIMC,
respectively, developed by Dornheim et al.90 and Filinov et al.96 for
continuous models. On the other hand, the alternating-basis QMC
(ABQMC) method is formulated simultaneously in both real and
reciprocal space, whichmakesmeasuring distance- andmomentum-
resolved quantities equally simple. Themotion of electrons and their
interactions are treated on an equal footing. Both methods are based
on the STD and are straight-forwardly formulated along any part
of or the entire Kadanoff–Baym–Keldysh three-piece contour. This
allows access to both real- and imaginary-time correlation functions
in and out of equilibrium. Unlike CT-INT, CT-AUX, and HF, our
methods can also be used to treat canonical ensembles as well as
the time evolution of pure states. Our formulation ensures that the
measurement of an arbitrary multipoint charge or spin correlation
function is algorithmically trivial and cheap.

We perform benchmarks on several examples where numeri-
cally exact results are available.

In calculations of instantaneous correlators for the 2D Hub-
bard model in equilibrium, our main finding is that the FPQMC
method has a rather manageable sign problem. The average sign is
anti-correlated with coupling strength, which is in sharp contrast
with some of the standard QMC methods. More importantly, we
find that the average sign drops off relatively slowly with the lattice
size and the number of time slices—we have been able to con-
verge results with as many as eight time slices, or as many as 80
lattice sites. At strong coupling and at half-filling, we find the aver-
age sign to be very close to 1. In the temperature range relevant
for optical-lattice experiments, we find that the average occupancy
can be computed to a high accuracy with as few as two time slices;
the double occupancy and the instantaneous spin–spin correlations
require somewhat finer time discretization, but often not more than
six time-slices in total. We also document that FPQMC appears to
be sign-problem-free for Hubbard chains.

However, in calculations of the time-evolving and spatially
resolved density, we find that the FPQMC sign problem is
mostly prohibitive of obtaining results. Nevertheless, employing the
ABQMC algorithm, we are able to compute survival probabilities of
various pure states on 4 × 4 clusters—in the ABQMC formulation,
the sign-problem is manifestly independent of time and interaction
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strength, and one can scan the entire time evolution for multiple
strengths of interaction in a single run. The numerical results reveal
several interesting trends. Similarly to observations made in Ref. 97,
we find in general that the survival probability decays over longer
times when interactions are stronger. At shorter times, we observe
that the behavior depends strongly on the type of the initial state,
likely related to the average density.

The paper is organized as follows: The FPQMC and ABQMC
methods are developed in Sec. II and applied to equilibrium and
out-of-equilibrium setups in Sec. III. Section IV discusses the
FPQMC and ABQMC methods in light of other widely used QMC
algorithms. Section V summarizes our main findings and their
implications, and discusses prospects for further work.

II. MODEL AND METHOD

A. Hubbard Hamiltonian

We study the Hubbard model on a square-lattice cluster con-
taining Nc = NxNy sites under periodic boundary conditions (PBC).
The Hamiltonian reads as

H = H0 +Hint. (1)

The noninteracting (single-particle) part H0 of the Hamiltonian
describes a band of itinerant electrons

H0 = −J ∑
⟨r,r′⟩σ

c
†
rσ cr′σ =∑

kσ

εk nkσ , (2)

where J is the hopping amplitude between the nearest-neighboring
lattice sites r and r′, while the operators c†rσ (crσ) create (destroy) an
electron of spin σ on lattice site r. Under PBC, H0 is diagonal in the
momentum representation; the wave vector kmay assume any of the
Nc allowed values in the first Brillouin zone of the lattice. The free-
electron dispersion is given by εk = −2J(cos kx + cos ky). The density
operator is nkσ = c

†

kσ ckσ with ckσ = ∑r⟨k∣r⟩crσ . The Hamiltonian of
the on-site Hubbard interaction (two-particle part) reads as

Hint = U∑
r

nr↑ nr↓, (3)

where U is the interaction strength, while nrσ = c
†
rσ crσ .

If the number of particles is not fixed, Eq. (1) additionally
features the chemical-potential term −μ∑rσ nrσ = −μ∑kσ nkσ that
can be added to either H0 or Hint. Here, since we develop a
coordinate-space QMCmethod, we add it to Hint.

B. FPQMC method

Finding viable approximations to the exponential of the form
e−αH is crucial to many QMC methods. With α = 1/T (T denotes
temperature), this is the Boltzmann operator, which will play a role
whenever the system is in thermal equilibrium. In the formulation
of dynamical responses, the time-evolution operator will also have
this form, with α = it, where t is the (real) time. One possible way to
deal with these is the lowest-order STD98

e
−αH
≈ (e−ΔαH0e

−ΔαHint)Nα

, (4)

where the interval of length ∣α∣ is divided into Nα subintervals of
length ∣Δα∣ each, where Δα = α/Nα. The error of the approximation
is of the order of ∣Δα∣2∥∥H0,Hint∥∥, where the norm ∥∥H0,Hint∥∥may
be defined as the largest (in modulus) eigenvalue of the commutator∥H0,Hint∥.80 The error can in principle be made arbitrarily small by
choosing Nα large enough. However, the situation is complicated by
the fact that the RHS of Eq. (4) contains both single-particle and
two-particle contributions. The latter are diagonal in the coordinate
representation, so that the spectral decomposition of e−ΔαHint is per-
formed in terms of totally antisymmetric states in the coordinate
representation, aka the Fock states,

∣Ψi⟩ =∏
σ

Nσ

∏
j=1

c
†

rσj σ
∣∅⟩ (5)

that contain Nσ electrons of spin σ whose positions rσ1 , . . . , r
σ
Nσ

are ordered according to a certain rule. We define εint(Ψi)
≡ ⟨Ψi∣Hint∣Ψi⟩. On the other hand, the matrix element of e−ΔαH0

between many-body states ∣Ψ′i⟩ and ∣Ψi⟩ can be expressed in terms
of determinants of single-electron propagators

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∏
σ

det S(Ψ′i ,Ψi,Δα, σ), (6)

[S(Ψ′i ,Ψi,Δα, σ)]j1 j2 = ⟨r′σj1 ∣e−ΔαH0 ∣rσj2⟩. (7)

We provide a formal proof of Eqs. (6) and (7) in Appendix A. The
same equations lie at the crux of conceptually similar permutation-
blocking90 and fermionic-propagator96 PIMC methods, which are
formulated for continuous-space models. When Δα is purely real
(purely imaginary), the quantity on the right-hand side of Eq. (7)
is the imaginary-time (real-time) lattice propagator of a free particle
in the coordinate representation.80 Its explicit expressions are given
in Appendix B.

Further developments of the method somewhat depend on
the physical situation of interest. We formulate the method first
in equilibrium and then in out-of-equilibrium situations. To facil-
itate discussion, in Figs. 1(a)–1(d), we summarize the contours
appropriate for the different situations we consider.

1. FPQMC method for thermodynamic quantities

The equilibrium properties at temperature T = β−1 follow
from the partition function Z ≡ Tr e−βH , which may be computed
by dividing the imaginary-time interval ∥0,β∥ into Nτ slices of
length Δτ ≡ β/Nτ , employing Eq. (4), and inserting the spectral
decompositions of e−ΔτHint . The corresponding approximant for Z
reads as

Z ≈∑
C

Dβ(C,Δτ)e−Δτεint(C ). (8)

The configuration

C = {∣Ψi,1⟩, . . . , ∣Ψi,Nτ ⟩} (9)

resides on the contour depicted in Fig. 1(a) and consists of Nτ Fock
states ∣Ψi,l⟩ in the coordinate representation. Dβ(C,Δτ) depends
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FIG. 1. Contours appropriate for computing (a) thermodynamic quantities at tem-
perature T = 1/β, (b) time-dependent quantities after quantum quench in which
the Hamiltonian is suddenly changed from H(0) at t < 0 to H at t > 0, (c) time-
dependent quantities during evolution from a pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩, (d) the
survival probability of the initial pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩. In (a) and (b), the ver-
tical part is divided into Nτ identical slices of length Δτ. In (b)–(d), each horizontal
line is divided into Nt identical slices of length Δt. Within the FPQMC method, a
many-body state in the coordinate representation ∣Ψi,l⟩ [Eq. (5)] is associated with
each slice l. Within the ABQMC method, in addition to ∣Ψi,l⟩, each slice l features
a many-body state in the momentum representation ∣Ψk,l⟩ [Eq. (29)].

on the temperature and imaginary-time discretization through the
imaginary-time step Δτ

Dβ(C,Δτ) ≡ Nτ

∏
l=1

⟨Ψi,l⊕1∣e−ΔτH0 ∣Ψi,l⟩

=

Nτ

∏
l=1
∏
σ

det S(Ψi,l⊕1,Ψi,l,Δτ, σ) (10)

and is a product of 2Nτ determinants of imaginary-time single-
particle propagators on a lattice (this is emphasized by adding
the subscript β). The cyclic addition in Eq. (10) is the standard
addition for l = 1, . . . ,Nτ − 1, while Nτ ⊕ 1 = 1. The symbol εint(C)
stands for

εint(C) ≡ Nτ

∑
l=1

εint(Ψi,l). (11)

By virtue of the cyclic invariance under trace, the ther-
modynamic expectation value of an observable A can be
expressed as

⟨A⟩ = 1
Nτ

Nτ−1

∑
l=0

1
Z
Tr{(e−ΔτH)lA(e−ΔτH)Nτ−l}. (12)

The FPQMC method is particularly suitable for observables diago-
nal in the coordinate representation (e.g., the interaction energyHint

or the real-space charge density nrσ). Such observables will be dis-
tinguished by adding the subscript i. Equation (12), combined with
the lowest-order STD [Eq. (4)], produces the following approximant
for ⟨Ai⟩ :

⟨Ai⟩ ≈ ∑C Dβ(C,Δτ) e−Δτεint(C ) 1
Nτ
∑Nτ

l=1Ai(Ψi,l)
∑C Dβ(C,Δτ) e−Δτεint(C ) , (13)

where

Ai(Ψi,l) ≡ ⟨Ψi,l∣Ai∣Ψi,l⟩. (14)

Defining the weight w(C,Δτ) of configuration C as

w(C,Δτ) ≡ ∣Dβ(C,Δτ)∣e−Δτεint(C ), (15)

Eq. (13) is rewritten as

⟨Ai⟩ ≈ ⟨sgn(C)
1
Nτ
∑Nτ

l=1Ai(Ψi,l)⟩
w⟨sgn(C)⟩

w

, (16)

where ⟨⋅ ⋅ ⋅⟩w denotes the weighted average over all C with respect
to the weight w(C); sgn(C) ≡ Dβ(C,Δτ)/∣Dβ(C,Δτ)∣ is the sign of
configuration C, while ∣⟨sgn⟩∣ ≡ ∣⟨sgn(C)⟩w ∣ is the average sign of the
QMC simulation.

By construction, our FPQMC approach yields exact results for
the noninteracting electrons (ideal gas, U = 0) and in the atomic
limit (J = 0). In both limits, due to ∥H0,Hint∥ = 0, the FPQMC
method with arbitrary Nτ should recover the exact results. How-
ever, the performance of the method, quantified through the average
sign of the simulation, deteriorates with increasing Nτ . For Nτ = 1,
the FPQMC algorithm is sign-problem-free because it sums only
diagonal elements ⟨Ψi,1∣e−βH0 ∣Ψi,1⟩ of the positive operator e−βH0 .
The sign problem is absent also for Nτ = 2 because Dβ(C,β/2) is a
square of a real number.

An important feature of the above-presented methodology
is its direct applicability in both the grand-canonical and canon-
ical ensemble. The grand-canonical formulation is essential to
current state-of-the-art approaches31 (e.g., CT-INT or CT-AUX)
relying on the thermal Wick’s theorem, which is not valid in
the canonical ensemble.99 In the auxiliary-field QMC,22,23,25,27,28

the Hubbard–Stratonovich transformation100 decouples many-body
propagators into sums (or integrals) over one-body operators
whether the particle number is fixed or not. Working in the grand-
canonical ensemble is then analytically and computationally more
convenient because the traces over all possible fermion occupations
result in determinants.23,101 In the canonical ensemble, the compu-
tation of traces over constrained fermion occupations is facilitated
by observing that the Hubbard–Stratonovich decoupling produces
an ensemble of noninteracting systems101 to which theories devel-
oped for noninteracting systems in the canonical ensemble, such as
particle projection102,103 or recursive methods,104,105 can be applied.
While such procedures may be numerically costly and/or unsta-
ble,101 a very recent combination of the auxiliary-field QMC with
the recursive auxiliary partition function formalism105 is reported
to be stable and scale favorably with the numbers of particles and
available orbitals.106 In contrast to all these approaches, the for-
mulation of the FPQMC method does not depend on whether the
electron number is fixed or not. However, the selection of MC
updates does depend on the ensemble we work with. In the canonical
ensemble, the updates should conserve the number of electrons; in
the grand-canonical ensemble, we also need to include the updates
that insert/remove electrons. Our MC updates, together with the
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procedure used to extract MC results and estimate their statistical
error, are presented in great detail in Sec. SI of the supplementary
material.

2. FPQMC method for time-dependent quantities

Ideally, numerical simulations of quench experiments such as
those from Refs. 14, 16, and 17 should provide the time-dependent
expectation value ⟨A(t)⟩ of an observable A at times t > 0 after the
Hamiltonian undergoes a sudden change from H(0) for t < 0 to H
for t > 0. Again, in many instances,14,17 the experimentally measur-
able observableA is diagonal in the coordinate representation, which
will be emphasized by the subscript i. The computation proceeds
along the three-piece Kadanoff–Baym–Keldysh contour1

⟨Ai(t)⟩ = Tr(e−βH(0) eiHt Ai e
−iHt)

Tr(e−βH(0) eiHt e−iHt) , (17)

where one may employ the above-outlined fermionic-propagator
approach after dividing the whole contour into a number of slices,
see Fig. 1(b). While H is the Hubbard Hamiltonian given in
Eqs. (1)–(3), H(0) describes correlated electrons whose charge (or
spin) density is spatially modulated by external fields.

The immediate complication (compared to the equilibrium
case) is that there are now three operators (instead of one) that need
to be decomposed via the STD. A preset accuracy determined by the
size of both Δτ and Δt will, therefore, require a larger number of
time-slices. In turn, this will enlarge the configuration space to be
sampled and potentially worsen the sign problem in theMC summa-
tion. Even worse, the individual terms in the denominator depend
on time, so that the sign problem becomes time-dependent (dynam-
ical). The problem is expected to become worse at long times t, yet
vanishes in the t → 0 limit.

To simplify the task and yet keep it relevant, we consider the
evolution from a pure state ∣ψ(0)⟩ that is an eigenstate of real-
space density operators nrσ , so that its most general form is given by
Eq. (5). Such a setup has been experimentally realized.5,6,14,17 Replac-
ing e−βH(0)

→ ∣ψ(0)⟩⟨ψ(0)∣ in Eq. (17) leads to the expression for the
time-dependent expectation value of the observable Ai

⟨Ai(t)⟩ = ⟨ψ(0)∣eiHt Ai e
−iHt ∣ψ(0)⟩

⟨ψ(0)∣eiHt e−iHt ∣ψ(0)⟩ . (18)

Here, the STD should be applied to both the forward and backward
evolution operators, see Fig. 1(c), which requires a larger number of
time-slices to reach the desired accuracy (in terms of the systematic
error). Nevertheless, Eq. (18) is the simplest example in which the
applicability of the real-time FPQMCmethod to follow the evolution
of real-space observables may be examined.

Generally speaking, the symmetries of the model should be
exploited to enable as efficient as possible MC evaluation of Eq. (18).
Recent experimental15 and theoretical107 studies have discussed the
dynamical symmetry of the Hubbard model, according to which the
temporal evolution of certain observables is identical for repulsive
and attractive interactions of the same magnitude. The symmetry
relies on specific transformation laws of the Hamiltonian H, the

initial state ∣ψ(0)⟩, and the observable of interest Ai under the com-
bined action of two symmetry operations. The first is the bipartite
lattice symmetry, or the π-boost15 operation, which exploits the
symmetry εk = −εk+(π,π) of the free-electron dispersion and is rep-
resented by the unitary operator B. The second is the time reversal
symmetry represented by the antiunitary operator T (TiT = −i)
that reverses electron spin and momentum according to Tc

(†)
rσ T

= (−1)δσ,↓c(†)
rσ

and Tc(†)kσ T = (−1)δσ,↓c(†)
−k,σ . In Appendix C, we formu-

late our FPQMCmethod to evaluate Eq. (18) in a way that manifestly
respects the dynamical symmetry of the model (each contribution to
the MC sums respects the symmetry). Here, we only cite the final
expression for the time-dependent expectation value of an observ-
able Ai that satisfies TBAiBT = Ai when the evolution starts from a
state ∣ψ(0)⟩ satisfying TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩

⟨Ai(t)⟩ ≈ ∑C Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥
∑C Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥ . (19)

Here, the configuration resides on the contour depicted in Fig. 1(c),
which is divided into 2Nt slices in total, and contains 2Nt − 1
independent states. We assume that states ∣Ψi,l⟩ for l = 1, . . . ,Nt(l = Nt + 1, . . . , 2Nt) lie on the forward (backward) branch of the
contour, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. Ai(Ψi,Nt+1) is defined as in Eq. (14),
while

Δεint(C) ≡ Nt

∑
l=1

∥εint(Ψi,l+Nt
) − εint(Ψi,l)∥. (20)

The symbol D2t(C,Δt) stands for the following combination
of forward and backward fermionic propagators (which is also
emphasized by the subscript 2t):

D2t(C,Δt) = 2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣eiH0Δt ∣Ψi,l⟩ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩. (21)

The bipartite lattice symmetry guarantees that D2t(C,Δt)
= D2t(C,−Δt), see Eq. (C9). The numerator and denominator of the
RHS of Eq. (19) are term-by-term invariant under the transforma-
tions Δt → −Δt and Δεint(C)→ −Δεint(C) that respectively reflect
the transformation properties under the time reversal symmetry and
the fact that the dynamics of ⟨Ai(t)⟩ are identical in the repulsive
and the attractive model. Defining w(C) ≡ ∣Re{D2t(C,Δt)}∣ and
sgn(C) ≡ Re{D2t(C,Δt)}/∣Re{D2t(C,Δt)}∣, Eq. (19) is recast as

⟨Ai(t)⟩ ≈ ⟨Ai(Ψi,Nt+1) sgn(C) cos∥Δεint(C)Δt∥⟩w⟨sgn(C) cos∥Δεint(C)Δt∥⟩w . (22)

The sign problem in the MC evaluation of Eq. (22) is dynam-
ical. It generally becomes more serious with increasing time t and
interaction strength ∣U∣. Moreover, w(C) also depends on both t
and U, meaning that MC evaluations for different ts and Us should
be performed separately, using different Markov chains. It is thus
highly desirable to employ further symmetries in order to improve
the performance of the method. Particularly relevant initial states
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∣ψ(0)⟩, from both an experimental14,17 and theoretical108 viewpoint,
are pure density-wave-like states. Such states correspond to extreme
spin-density wave (SDW) and charge-density wave (CDW) patterns,
which one obtains by applying strong external density-modulating
fields. The SDW-like state can be written as

∣ψSDW(G)⟩ =∏
r1∈G

c
†

r1↑ ∏
r2∈U/G

c
†

r2↓
∣∅⟩, (23)

where G denotes the multitude of sites on which the electron spins
are polarized up, while set U contains all sites of the cluster stud-
ied. The electron spins on sites belonging to U/G are thus polarized
down. Such states have been experimentally realized in Ref. 17. The
CDW-like states have also been realized in experiment,14 and they
read as

∣ψCDW(G)⟩ =∏
r∈G

c
†

r↑c
†

r↓∣∅⟩. (24)

The sites belonging to G are doubly occupied, while the remain-
ing sites are empty. The state ∣ψCDW(G)⟩ can be obtained from the
corresponding ∣ψSDW(G)⟩ state by applying the partial particle–hole
transformation that acts on spin-down electrons only

∣ψSDW(G)⟩ =∏
r∈U

(c†r↓(1 − nr↓) + cr↓ nr↓)∣ψCDW(G)⟩, (25)

see also Refs. 109 and 110. By combining the partial particle–hole,
time-reversal, and bipartite lattice symmetries, the authors of
Ref. 108 have shown that the time evolution of spatially resolved
charge and spin densities starting from states ∣ψCDW(G)⟩ and∣ψSDW(G)⟩, respectively, obey

⟨ψCDW(G)∣eiHt(nr↑ + nr↓ − 1)e−iHt ∣ψCDW(G)⟩
= ⟨ψSDW(G)∣eiHt(nr↑ − nr↓)e−iHt ∣ψSDW(G)⟩. (26)

Equation (26) may be used to acquire additional statistics by com-
bining the Markov chains for the two symmetry-related evolutions.
The procedure is briefly described in Appendix C and applied to all
corresponding computations presented in Sec. III B.

3. ABQMC method for time-dependent quantities

In this section, we develop the so-called alternating-basis QMC
method, which is aimed at removing the dynamical character of the
sign problem in real-time FPQMC simulations. Moreover, using the
ABQMC method, the results for different real times t and different
interactions U may be obtained using just a single Markov chain, in
contrast to the FPQMC method, which employs separate chains for
each t and U.

Possible advantages of the ABQMC over the FPQMC method
aremost easily appreciated on the example of the survival probability
of the initial state ∣ψ(0)⟩

P(t) = ∣⟨ψ(0)∣e−iHt ∣ψ(0)⟩∣2, (27)

which is the probability of finding the system in its initial state after
a time t has passed. Evaluating Eq. (27) by any discrete-time QMC

method necessitates only one STD, see Fig. 1(d). The survival prob-
ability is thus the simplest example on which the applicability of
anyQMCmethod to out-of-equilibrium setups can be systematically
studied.

The FPQMC computation of P(t)may proceed via the ratio

R(t) = ⟨ψ(0)∣e−iHt ∣ψ(0)⟩⟨ψ(0)∣e−iH0t ∣ψ(0)⟩ (28)

of the survival-probability amplitudes in the presence and absence
of electron–electron interactions. However, the average sign of the
MC simulation of Eq. (28) is proportional to the survival-probability
amplitude of the noninteracting system, which generally decays very
quickly to zero, especially for large clusters.62 This means that the
dynamical sign problem in the FPQMC evaluation of Eq. (28) may
become very severe already at relatively short times t.

Instead of expressing the many-body free propagator⟨Ψ′i ∣e−iH0Δt ∣Ψi⟩ as a determinant of single-particle free propagators
[Eqs. (6) and (7)], we could have introduced the spectral decom-
position of e−iH0Δt in terms of Fock states ∣Ψk⟩ in the momentum
representation. In analogy with Eq. (5), such states are defined as

∣Ψk⟩ =∏
σ

Nσ

∏
j=1

c
†

kσj σ
∣∅⟩. (29)

The state ∣Ψk⟩ contains Nσ electrons of spin σ whose momenta
kσ1 , . . . ,k

σ
Nσ

are ordered according to a certain rule and we define
ε0(Ψk) ≡ ⟨Ψk∣H0∣Ψk⟩. In this case, the final expression for the sur-
vival probability of state ∣ψ(0)⟩ that satisfies TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩
reads as

P(t) ≈ ∣∑C Re{D (C )} cos∥ε0(C )Δt∥ cos∥εint(C )Δt∥
∑C Re{D (C )} ∣2. (30)

A derivation of Eq. (30) is provided in Appendix D. The MC eval-
uation of Eq. (30) should sample a much larger configuration space
than the MC evaluation of Eq. (28). The configuration C in Eq. (30)
also resides on the contour depicted in Fig. 1(d), but comprises
2Nt − 1 states in total:Nt Fock states ∣Ψk,l⟩ (l = 1, . . . ,Nt) andNt − 1
Fock states ∣Ψi,l⟩ (l = 2, . . . ,Nt) (again, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩). D(C) is the
product of 2Nt Slater determinants

D(C) = Nt

∏
l=1

⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩ (31)

that stem from the sequence of basis alternations between the
momentum and coordinate eigenbasis. Using the notation of
Eqs. (5) and (29), the most general Slater determinant ⟨Ψi∣Ψk⟩
entering Eq. (10) is given as

⟨Ψi∣Ψk⟩ =∏
σ

det S̃(Ψi,Ψk, σ), (32)

[̃S(Ψi,Ψk, σ)]j1 j2 = ⟨rσj1 ∣kσj2⟩ =
exp(ikσj2 ⋅ rσj1)√

Nc
, (33)

where 1 ≤ j1, j2 ≤ Nσ . The symbol ε0(C) stands for [cf. Eq. (11)]
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ε0(C) ≡ Nt

∑
l=1

ε0(Ψk,l). (34)

We note that each term in Eq. (30) is invariant under transfor-
mations ε0(C)→ −ε0(C) and Δt → −Δt, which reflect the action
of the bipartite lattice symmetry and the time reversal symmetry,
respectively. Being term-by-term invariant under the transforma-
tion εint(C)→ −εint(C), Eq. (30) explicitly satisfies the requirement
that the dynamics of P(t) for repulsive and attractive interactions of
the same magnitude are identical. Defining w(C) ≡ ∣Re{D(C)}∣ and
sgn(C) ≡ Re{D(C)}/∣Re{D(C)}∣, Eq. (30) is recast as

P(t) ≈ ∣ ⟨sgn(C ) cos∥ε0(C )Δt∥ cos∥εint(C )Δt∥⟩w⟨sgn(C)⟩
w

∣2. (35)

This choice for w is optimal in the sense that it minimizes the vari-
ance of ⟨sgn(C)⟩w ,111 whose modulus is the average sign of the
ABQMC simulation. The sign problem encountered in the MC eval-
uation of Eq. (35) does not depend on either time t or interaction
strength U, i.e., it is not dynamical. The weight w(C) in Eq. (35)
does not depend on either Δt or any other property of configuration
C (ε0, εint). Therefore, the MC evaluation of Eq. (35) may be per-
formed simultaneously (using a single Markov chain) for any U and
any t. This presents a technical advantage over the FPQMCmethod,
which may be outweighed by the huge increase in configuration
space when going from FPQMC to ABQMC. To somewhat reduce
the dimension of the ABQMC configuration space and improve
the sampling efficiency, we design the MC updates so as to respect
the momentum conservation law throughout the real-time evolu-
tion. The momentum conservation poses the restriction that all the
momentum-space states ∣Ψk,l⟩ have the same total electron momen-
tum K ≡ ∑kσk⟨Ψk,l∣nkσ ∣Ψk,l⟩ [modulo (2π, 2π)]. The MC updates
in the ABQMC method for the evaluation of the survival proba-
bility are presented in great detail in Sec. SII of the supplementary
material.

By relying on the partial particle–hole and bipartite lattice
symmetries, in Appendix D we demonstrate that the dynamics of
the survival probabilities of states ∣ψSDW(G)⟩ and ∣ψCDW(G)⟩ are
identical, i.e.,

∣⟨ψSDW(G )∣e−iHt ∣ψSDW(G)⟩∣2 = ∣⟨ψCDW(G )∣e−iHt ∣ψCDW(G)⟩∣2.
(36)

Evaluating Eq. (35), additional statistics can be acquired by
combining theMarkov chains for the P(t) calculations starting from
the two symmetry-related states ∣ψCDW(G)⟩ and ∣ψSDW(G)⟩. The
procedure is similar to that described in Appendix C, and we apply
it to all corresponding computations presented in Sec. III C.

III. NUMERICAL RESULTS

We first apply the FPQMC method to equilibrium situations
(the particle number is not fixed), see Sec. III A, and then to time-
dependent local densities during the evolution of pure states, see
Sec. III B. Section III C presents our ABQMC results for the sur-
vival probability of pure states. Our implementation of the ABQMC
method on the full Kadanoff–Baym–Keldysh contour [Eq. (17)] is
benchmarked in Sec. SVII of the supplementary material.

A. Equilibrium results: Equation of state

We start by considering the Hubbard dimer, the minimal
model capturing the subtle interplay between electron delocalization
and electron–electron interaction.112 We opt for moderate temper-
ature T/J = 1 and interaction U/J = 4, so that the expected num-
ber of imaginary-time slices needed to obtain convergent FPQMC
results is not very large. Figure 2 presents the equation of state
(i.e., the dependence of the electron density ρe = ⟨N̂↑ + N̂↓⟩/Nc on
the chemical potential μ) for a range of μ below the half-filling.
Here, N̂↑ and N̂↓ are the operators of the total number of spin-
up and spin-down electrons, respectively. Figure 2 suggests that
already Nτ = 2 imaginary-time slices suffice to obtain very good
results in the considered range of μ, while increasing Nτ from 2
to 4 somewhat improves the accuracy of the FPQMC results. It
is interesting that, irrespective of the value of Nτ , FPQMC sim-
ulations on the dimer are manifestly sign-problem-free. First, the
one-dimensional imaginary-time propagator defined in Eq. (B2) is
positive, I(JΔτ, l) = [eJΔτ + (−1)le−JΔτ]/2 for both l = 0 and 1. Sec-
ond, the configuration containing two electrons of the same spin is
of weight cosh2(JΔτ) − sinh2(JΔτ) ≡ 1, implying that the weights of
all configurations are positive. Furthermore, our results on longer
chains suggest that FPQMC simulations of one-dimensional lattice
fermions do not display a sign problem. While similar statements
have been repeated for continuum one-dimensional models of both
noninteracting85,86 and interacting fermions,87 there is, to the best
of our knowledge, no rigorous proof that the sign problem is
absent from coordinate-space QMC simulations of one-dimensional
fermionic systems. While we do not provide such a proof either,
Fig. 3 is an illustrative example showing how the FPQMC results
for the double occupancy ∑r⟨nr↑ nr↓⟩/Nc of the Hubbard chain at
half-filling approach the reference result (taken from Ref. 113) as the
imaginary-time discretization becomes finer. For allNτs considered,
the average sign of FPQMC simulations is ∣⟨sgn⟩∣ = 1.

We now apply the FPQMC method to evaluate the equation
of state on larger clusters. We focus on a 4 × 4 cluster, which may
already be representative of the thermodynamic limit at T/J ≳ 1.50
We compare our ρe(μ) results with the results of the numerical
linked-cluster expansion (NLCE) method.40–42 The NLCE results
are numerically exact and converged with respect to the control
parameter, i.e., the maximal cluster-size used. NLCE is commonly

FIG. 2. Equation of state ρ
e
(μ) for the Hubbard dimer with T/J = 1, U/J = 4.

Full red circles (green squares) are the results of FPQMC simulations employing
Nτ = 2 (Nτ = 4) imaginary-time slices, while the solid black line is computed
using the exact diagonalization. The estimated statistical error of the FPQMC data
is in all cases smaller than the symbol size.
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FIG. 3. Double occupancy of the Nc = 20-site Hubbard chain at half-filling
(μ = U/2, ρ

e
= 1) as a function of the number Nτ of imaginary-time slices. The

remaining parameters are U/J = 3 and T/J = 1. The dotted line connecting full
symbols (FPQMC results) serves as a guide to the eye. The reference result is
taken from Ref. 113. The relative deviation of the FPQMC result with Nτ = 6 from
the reference result is around 2%. The statistical error bars of the FPQMC results
are smaller than the symbol size.

used to benchmark methods and understand experimental data.9,10

Again, we keep U/J = 4, but we take T/J = 1.0408 to be able to
compare results to the data of Ref. 41. Figure 4(a) reveals that the
FPQMC results with only Nτ = 2 imaginary-time slices agree very
well (within a couple of percent) with the NLCE results over a wide
range of chemical potentials. This is a highly striking observation,
especially keeping in mind that the FPQMC method with Nτ = 2 is
sign-problem-free, see Fig. 4(b). It is unclear whether other STD-
based methods would reach here the same level of accuracy with
only two imaginary-time slices (and without the sign problem). This
may be a specific property of the FPQMCmethod. Finer imaginary-
time discretization introduces the sign problem, see Fig. 4(b), which
becomes more pronounced as the density is increased and reaches
a plateau for ρe ≳ 0.8. Still, the sign problem remains manageable.
Increasing Nτ for 2 to 6 somewhat improves the agreement of the
density ρe [the inset of Fig. 4(a)] and considerably improves the
agreement of the double occupancy [Fig. 4(c)] with the referent
NLCE results. Still, comparing the insets of Figs. 4(a) and 4(c), we
observe that the agreement between FPQMC (Nτ = 6) and NLCE
results for ρe is significantly better than for the double occupancy.
The systematic error in FPQMC comes from the time-discretization
and the finite size of the system. At Nτ = 6, it is not a priori clear
which error contributes more, but it appears most likely that the
time-discretization error is dominant. In any case, the reason why
systematic error is greater for the double occupancy than for the
average density could be that the double occupancy contains more
detailed information about the correlations in the system. This
might be an indication that measurement of multipoint density cor-
relations will generally be more difficult—it may require a finer time
resolution and/or greater lattice size.

The average sign above the half-filling, ρe = 1, mirrors that
below the half-filling. The particle–hole symmetry ensures that
ρe(μ) = 2 − ρe(U − μ), but that it also governs the average sign is not
immediately obvious from the construction of the method. A formal
demonstration of the electron-doping–hole-doping symmetry of the
average sign is, however, possible (see Appendix E). Note that we
restrict our density calculations to ρe < 1 because, in this case, the
numerical effort to manipulate the determinants [Eqs. (7) and (10)]

FIG. 4. (a) Equation of state ρ
e
(μ) for the Hubbard model on a 4 × 4 cluster

with the following values of model parameters: U/J = 4, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρ

e,FPQMC of the electron density

for different values of Nτ . The dashed lines are guides for the eye. (c) The double
occupancy ∑r⟨nr↑ nr↓⟩/Nc as a function of the FPQMC estimate ρ

e,FPQMC of the

electron density for different values of Nτ . In (a) and (c), full symbols represent
FPQMC results, the solid line shows the NLCE data taken from Ref. 41, while
the insets show the relative deviation of FPQMC results from the reference NLCE
results. The estimated statistical error of the FPQMC data is in all cases smaller
than the symbol size.

is lower (size of the corresponding matrices is given by the num-
ber of particles of a given spin). The performance of the FPQMC
algorithm to compute ρe(μ) (average time needed to propose/accept
an MC update and acceptance rates of individual MC updates) is
discussed in Sec. SIII of the supplementary material.

We further benchmark our method in the case of very strong
coupling, U/J = 24 and, again, T/J = 1.0408. Figure 5(a) com-
pares the FPQMC results on a 4 × 4 cluster using Nτ = 2, 4, and 6
imaginary-time slices with the NLCE results. At extremely low fill-
ings ρe ≲ 0.1, the relative importance of the interaction term with
respect to the kinetic term is quite small, and taking onlyNτ = 2 suf-
fices to reach a very good agreement between the FPQMC andNLCE
results, see the inset of Fig. 5(a). As the filling is increased, the inter-
action effects become increasingly important, and it is necessary to
increase Nτ in order to accurately describe the competition between
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FIG. 5. (a) Equation of state ρ
e
(μ) for the Hubbard model on a 4 × 4 cluster

with the following values of model parameters: U/J = 24, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρ

e,FPQMC of the electron density

for different values of Nτ . (c) Nearest-neighbor spin correlations∑rδ⟨S
z
rS

z

r+δ⟩/Nc

as a function of the FPQMC estimate ρ
e,FPQMC of the electron density for Nτ = 4

and 6. In (a) and (c), full symbols represent FPQMC results, the solid line shows
the NLCE data taken from Ref. 41, while the insets show the relative deviation of
FPQMC results from the reference NLCE results. The dashed or dashed-dotted
lines connecting the symbols serve as guides to the eye. The estimated statistical
error of the FPQMC data are in all cases smaller than the symbol size.

the kinetic and interaction terms. In the inset of Fig. 5(a), we see that
Nτ = 6 is sufficient to reach an excellent (within a couple of percent)
agreement between FPQMC and NLCE results over a broad range of
fillings. At very high fillings ρe ≳ 0.9 and forNτ = 6, our MC updates
that insert/remove particles have very low acceptance rates, which
may lead to a slow sampling of the configuration space. It is for this
reason that FPQMC results withNτ = 6 do not significantly improve
overNτ = 4 in this parameter regime. ForNτ = 6, an inefficient sam-
pling near the half-filling also renders the corresponding results for
the nearest-neighbor spin correlations ∑rδ⟨SzrSzr+δ⟩/Nc inaccurate,
so that they are not displayed in Fig. 5(c). Here, vector δ connects
nearest-neighboring sites, while Szr = (nr↑ − nr↓)/2 is the operator of
z projection of the local spin. At lower fillings, ρe ≲ 0.8, the agree-
ment between our FPQMC results withNτ = 6 and the NLCE results
is good, while decreasing Nτ from 6 to 4 severely deteriorates the
quality of the FPQMC results.

At this strong coupling, the dependence of the average sign on
the density is somewhat modified, see Fig. 5(b). The minimal sign is
no longer reached around half-filling but at quarter-filling, ρe ∼ 0.5,
around which ∣⟨sgn⟩∣ appears to be symmetric. Comparing Fig. 5(b)
to Fig. 4(b), we see that the average sign does not become smaller
with increasing interaction, in sharp contrast with interaction-
expansion-based methods, such as CT-INT32,33 or configuration
PIMC.89

To better understand the relation between the average sign and
the interaction, in Fig. 6(a) we plot ∣⟨sgn⟩∣ as a function of the
ratio U/(4J) of the typical interaction and kinetic energy. We
take Nτ = 6 and adjust the chemical potential using the data from
Ref. 41 so that ρe ≈ 0.5. We see that ∣⟨sgn⟩∣ monotonically increases
with the interaction and reaches a plateau at very strong interactions.
This is different from interaction-expansion-based QMC methods,
whose sign problem becomes more pronounced as the interaction is

FIG. 6. (a) The average sign as a function of the ratio between the typical interac-
tion and kinetic energies. Full symbols are results of FPQMC computations on a
4 × 4 cluster with Nτ = 6, the temperature is fixed to T/J = 1.0408, and the chem-
ical potential at each U is chosen such that ρ

e
≈ 0.5. (b) The average sign as a

function of the cluster size Nc for the values of model parameters summarized in
the figure. The FPQMC results (full symbols) are obtained using Nτ = 4 and 6. (c)
Average sign as a function of Nτ . The FPQMC results (full symbols) are obtained
on a 4 × 4 cluster for the values of model parameters summarized in the main
part of the figure. The inset shows how the FPQMC result for double occupancy
approaches the referent NLCE result as the imaginary-time discretization becomes
finer.
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increased. Moreover, for weak interactions, the performance of the
FPQMC method deteriorates at high densities, see Fig. 4(b), while
methods such as CT-INT become problematic at low densities. The
FPQMCmethod could thus become a method of choice to study the
regimes ofmoderate coupling and temperature, which are highly rel-
evant for optical lattice experiments. Figure 6(b) shows the decrease
of the average sign with the cluster size Nc in the weak-coupling and
moderate-temperature regime at filling ρe ≈ 0.8. We observe that for
both Nτ = 4 and Nτ = 6, the average sign decreases linearly with Nc.
For Nτ = 6, we observe that the decrease for Nc ≲ 40 is somewhat
faster than the decrease for Nc ≳ 40. We, however, note that the
acceptance rates of our MC updates strongly decrease with Nc and
that this decrease is more pronounced for finer imaginary-time dis-
cretizations. That is why we were not able to obtain any meaningful
result for the 10 × 10 cluster with Nτ = 6. At fixed cluster size and
filling, the average sign decreases linearly with Nτ , see the main part
of Fig. 6(c), while the double occupancy tends to the referent NLCE
value, see the inset of Fig. 6(c).

In Sec. SIV of the supplementary material, we provide an
implementation of the ABQMC method in the equilibrium setup.
Figures 7(a) and 7(b), which deal with the same parameter regimes
as Figs. 4 and 5, respectively, clearly illustrate the advantages of the
fermionic-propagator approach with respect to the alternating-basis
approach in equilibrium. The average sign of ABQMC simula-
tions with only two imaginary-time slices is orders of magnitude
smaller than the sign of FPQMC simulations with three times
finer imaginary-time discretization. Since the FPQMC and ABQMC
methods are related by an exact transformation, they should produce

FIG. 7. Average sign as a function of the electron density in ABQMC simulations
with Nτ = 2 (open circles) and FPQMC simulations with Nτ = 6 (full squares) for
T/J = 1.0408 and (a) U/J = 4 and (b) U/J = 24. The inset in panel (a) compares
ABQMC (open circles) and FPQMC (full circles) results for the double occupancy
as a function of ρ

e
(both methods employ Nτ = 2). The inset in panel (b) shows

the average sign of ABQMC simulations with Nτ = 2 as a function of cluster size
Nc at low density (ρ

e
≈ 0.06, μ/J = −5).

the same results for thermodynamic quantities (assuming that Nτ is
the same in both methods). This is shown in the inset of Fig. 7(a) on
the example of the double occupancy. The inset of Fig. 7(b) suggests
that the average sign decreases exponentially with the cluster size
Nc. Overall, our current implementation of the ABQMC method in
equilibrium cannot be used to simulate larger clusters with a finer
imaginary-time discretization.

B. Time-dependent results using FPQMC method:
Local charge and spin densities

1. Benchmarks on small clusters

In Figs. 8(a) and 8(b), we benchmark our FPQMC method for
time-dependent local densities on the example of the CDW state of
the Hubbard tetramer, see the inset of Fig. 8(b).We follow the evolu-
tion of local charge densities on initially occupied sites for different
ratios U/D, where D is the half-bandwidth of the free-electron band
(D = 2J for the tetramer). For all the interaction strengths consid-
ered, taking Nt = 2 real-time slices on each branch (four slices in
total) is sufficient to accurately describe the evolution of local densi-
ties up to times Dt ∼ 2, see full symbols in Fig. 8(a). At longer times,
2 < Dt ≤ 4, taking Nt = 3 improves results obtained using Nt = 2,
compare empty to full symbols in Fig. 8(a). Nevertheless, for the
strongest interaction considered (U/D = 1), 6 real-time slices are
not sufficient to bring the FPQMC result closer to the exact result
at times 3 ≤ Dt ≤ 4. The average sign strongly depends on time, and
it drops by an order of magnitude upon increasing Nt from 2 to 3,
see Fig. 8(b). Despite this, the discrepancy between the Nt = 3 result

FIG. 8. (a) Time-dependent population of sites occupied in the initial CDW state
of a tetramer for different interaction strengths. Solid lines represent exact results,
full symbols connected by dashed lines are FPQMC results using Nt = 2 real-time
slices, while empty symbols connected by dotted lines are FPQMC results using
Nt = 3 real-time slices. The initial CDW state is schematically depicted in panel
(b). (b) Time-dependent average sign of the FPQMC simulation using Nt = 2 (full
symbols connected by dashed lines) and Nt = 3 (empty symbols connected by
dotted lines) for different interaction strengths. In (a) and (b), FPQMC simulations
using Nt = 3 real-time slices are carried out only for 2 < Dt ≤ 4.
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and the exact result for U/D = 1 cannot be ascribed to statistical
errors but rather to the systematic error of the FPQMCmethod (the
minimum Nt needed to obtain results with certain systematic error
increases with both time and interaction strength).

2. Results on larger clusters

Figure 9(a) summarizes the evolution of local charge den-
sities on initially occupied sites of a half-filled 4 × 4 cluster, on
which the electrons are initially arranged as depicted in the inset of
Fig. 9(b). This state is representative of a CDW pattern formed by
applying strong external density-modulating fields with wave vec-
tor q = (π, 0). The FPQMC method employs four real-time slices
in total, i.e., the forward and backward branches are divided into
Nt = 2 identical slices each. On the basis of the Nt = 2 results in
Fig. 8(a), we present the FPQMC dynamics up to the maximum
time Dtmax = 2. The extent of the dynamical sign problem is shown
in Fig. 9(b).

At the shortest times, Dt ≲ 1, the results for all the interactions
considered do not significantly differ from the noninteracting result.
The same also holds for the average sign. As expected, the decrease
of ∣⟨sgn⟩∣ with time becomes more rapid as the interaction U and
time discretization Δt = t/Nt are increased. The oscillatory nature of⟨sgn⟩ as a function of time [see Eq. (22)] is correlated with the dis-
continuities in time-dependent populations observed in Fig. 9(a) for
U/D ≥ 0.5. Namely, at the shortest times and for all the interactions
considered, ⟨sgn⟩ is positive, while for sufficiently strong interac-
tions, it becomes negative at longer times. This change is indicated
in Fig. 9(b) by placing the symbols “+” and “−” next to each relevant
point. We now see that the discontinuities in populations occur pre-
cisely around instants at which ⟨sgn⟩ turns from positive to negative
values. Focusing on U/D = 1, in Figs. 9(c1)–9(c3) we show the MC
series for the population of initially occupied sites at instants before

TABLE I. Schematic representations of the initial states of small systems on which
the ABQMC method for P(t) is benchmarked.

system ∣ψCDW⟩ ∣ψSDW⟩
Dimer

Tetramer

[(c1)] and after [(c2), (c3)] ⟨sgn⟩ passes through zero. The corre-
sponding series for ⟨sgn⟩ are presented in Figs. 9(d1)–9(d3). Well
before [Figs. 9(c1) and 9(d1)] and after [Figs. 9(c3) and 9(d3)] ⟨sgn⟩
changes sign, the convergence with the number of MC steps is excel-
lent, while it is somewhat slower close to the positive-to-negative
transition point, see Figs. 9(c2) and 9(d2). Still, the convergence at
Dt = 1.4 cannot be denied, albeit the statistical error of the popu-
lation is larger than at Dt = 1.2 and 1.6. At longer times Dt ≥ 1.5,
when ⟨sgn⟩ is negative and of appreciable magnitude, the popula-
tion again falls in the physical range [0, 2]. Nevertheless, at such long
times, the systematic error may be large due to the coarse real-time
discretization.

In Sec. SV of the supplementary material, we discuss FPQMC
results for the dynamics of local charge densities starting from some
other initial states.

C. Time-dependent results using ABQMC method:
Survival probability

1. Benchmarks on small clusters

We first benchmark our ABQMC method for the survival
probability on Hubbard dimers and tetramers. The initial states

FIG. 9. (a) Time-dependent population of
sites occupied in the initial CDW state
of a 4 × 4 cluster, which is schemati-
cally depicted in the inset of panel (b).
FPQMC results using Nt = 2 real-time
slices (four slices in total) are shown for
five different interaction strengths (sym-
bols) and compared with the noninter-
acting result (solid line). (b) Magnitude
of the average sign as a function of
time for different interaction strengths.
The color code is the same as in panel
(a). For U/D = 0.5, 0.75, and 1 and Dt

≥ 1.2, symbols “+” and “−” next to each
point specify whether ⟨sgn⟩ is positive
or negative. (c) MC series for the pop-
ulation of initially occupied sites for U/D
= 1 and (c1) Dt = 1.2, (c2) Dt = 1.4, and
(c3) Dt = 1.6. (d) MC series for ⟨sgn⟩
for U/D = 1 and (d1) Dt = 1.2, (d2)
Dt = 1.4, and (d3) Dt = 1.6. Note the
logarithmic scale on the abscissa in (c)
and (d).
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are schematically summarized in Table I. In both cases, we are at
half-filling.

Figures 10(a1)–10(e2) present the time evolution of the survival
probability of the initial CDW-like and SDW-like states depicted in
Table I for the dimer (left panels, D = J) and tetramer (right pan-
els, D = 2J) for different values of U/D starting from the limit of a
weakly nonideal gas (U/D = 0.05) and approaching the atomic limit(U/D = 20). The results are obtained using Nt = 2 (full red circles)
and Nt = 4 (blue stars) real-time slices and contrasted with the exact
result (solid black lines). The ABQMC results with Nt = 2 agree
both qualitatively (oscillatory behavior) and quantitatively with the
exact result up to tmax ∼ 1/U. Increasing Nt from 2 to 4 may help
decrease the deviation of the ABQMC data from the exact result
at later times. Even when finer real-time discretization does not
lead to better quantitative agreement, it may still help the ABQMC
method qualitatively reproduce the gross features of the exact
result. The converged values of ∣⟨sgn⟩∣ for the dimer and tetramer

TABLE II. Modulus of the average sign for ABQMC simulations of P(t) on dimer and
tetramer with Nt = 2, 3, and 4.

System Nt = 2 Nt = 3 Nt = 4

Dimer 1/2 1/4 1/8
Tetramer 1/8 2.4 × 10−2 3 × 10−3

for Nt = 2, 3, and 4 are summarized in Table II. For the dimer,
increasing Nt by one reduces ∣⟨sgn⟩∣ by a factor of 2. In contrast,
in the case of the tetramer, increasing Nt by one reduces ∣⟨sgn⟩∣ by
almost an order of magnitude.

2. Results on larger clusters

We move on to discuss the survival probability dynam-
ics of different 16-electron and eight-electron states on a 4 × 4

FIG. 10. Time dependence of the sur-
vival probability of the initial state ∣ψCDW⟩
or ∣ψSDW⟩ (see Table I) for the dimer
[(a1)–(e1)] and tetramer [(a2)–(e2)] for
five different interaction strengths start-
ing from the noninteracting limit and
approaching the atomic limit: U/D
= 0.05 [(a1) and (a2)], U/D = 0.25 [(b1)
and (b2)], U/D = 1 [(c1) and (c2)],
U/D = 5 [(d1) and (d2)], and U/D
= 20 [(e1) and (e2)]. The ABQMC results
with Nt = 2 (red full circles) and Nt

= 4 (blue stars) are compared with
the exact result (black solid lines). The
dotted/dashed lines connecting subse-
quent circles/stars are guides to the
eye. In most cases, the MC error bars
are smaller than the linear size of the
symbols.
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cluster. Figures 11(a) and 11(b) present P(t) for 16-electron states
schematically depicted in their respective insets. These states are rep-
resentative of CDW patterns formed by applying strong external
density-modulating fields with wave vectors q = (π, 0) in Figs. 11(a)
and q = (π,π) in Fig. 11(b). Figures 11(c) and 11(d) present P(t) for
eight-electron states schematically depicted in their respective insets.
The ABQMC method employs Nt = 2 real-time slices. The results
are shown up to the maximum time Dtmax = 2.5, which we chose on
the basis of the results presented in Fig. 10(c2).

As a sensibility check of our ABQMC results, we first com-
pare the exact result in the noninteracting limit, see solid lines
in Figs. 11(a)–11(d), with the corresponding ABQMC prediction,
see full circles in Figs. 11(a)–11(d). While the exact and ABQMC
results agree quite well in Figs. 11(b) and 11(c), the agreement in
Figs. 11(a) and 11(d) is not perfect. Since no systematic errors are
expected in ABQMC at U = 0, the discrepancy must be due to sta-
tistical error. We confirm this expectation in Fig. 12 where we see
that the obtained curve tends to the exact one with the increasing
number of MC steps. The average sign cited in Fig. 11(d) suggests
that more MC steps are needed to obtain fully converged results.
Even though the converged average sign in Figs. 11(a)–11(c) is
of the same order of magnitude, we find that the rate of conver-
gence depends on both the number and the initial configuration of
electrons.

In Figs. 11(a)–11(d), we observe that weak interactions (U/D
≲ 0.5) do not cause any significant departure of P(t) from the cor-
responding noninteracting result. On the other hand, the effect of
somewhat stronger interactions on P(t) depends crucially on the
filling. In the 16-electron case, the increasing interactions speed up
the initial decay of P, see Figs. 11(a) and 11(b), while in the eight-
electron case interactions have little effect at Dt < 1, see Figs. 11(c)
and 11(d). This we attribute to the essential difference in the over-
all electron density and the relative role of the interaction term
in the Hamiltonian. In the 16-electron case, starting from the
moderate coupling U/D ∼ 1, there is a clear revival of the initial

FIG. 12. (a) Average sign as a function of the number of MC steps in the
ABQMC simulation of P(t) for the 16-electron initial state schematically depicted
in Fig. 11(a). (b) Time dependence of the survival probability for U = 0 extracted
using the first 1/30 of the total number of MC steps completed (1.29 × 109

steps, full red circles), the first 1/3 of the total number of MC steps completed
(1.29 × 1010 steps, full blue squares), and all the MC steps completed (3.87 × 1010

steps, full green up-triangles). These results are compared to the exact result in
the noninteracting limit, which is represented by the solid line. The vertical lines in
(a), whose colors match the colors of the symbols in (b), denote the ending points
of the simulations.

state in Fig. 11(a), while no such a revival is observed in Fig. 11(b).
Furthermore, the memory loss of the initial density-wave pattern is
more rapid in Fig. 11(a) than in Fig. 11(b), even atU = 0. The revival
of the initial state is observed in the eight-electron case as well: at

FIG. 11. Survival-probability dynamics of
the 16-electron states [in (a) and (b)]
and 8-electron states [in (c) and (d)]
that are schematically depicted in the
respective insets. The ABQMC results
are shown for five different interaction
strengths (symbols) and compared with
the noninteracting result (solid line). We
cite the converged value of the average
sign ∣⟨sgn⟩∣, as well as the total number
NMC of MC steps completed.
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t < 1/D there is barely any effect of the interaction, yet at longer
times it boosts P. However, in contrast to the 16-electron case, the
results in Figs. 11(c) and 11(d) exhibit a weaker dependence of the
survival-probability dynamics on the initial density-wave pattern.
Indeed, the exact results in the noninteracting case are identical for
both patterns in Figs. 11(c) and 11(d). Except in the case of the (π,π)
wave, the interactions lead to a persistence of the initial pattern at
longer times, t > 1/D. The precise form of temporal correlations that
develop due to interactions apparently depends on the initial spatial
arrangement of the electrons.

Section SVI of the supplementary material presents additional
ABQMC results for the time-dependent survival probability.

IV. RELATION TO OTHER ALGORITHMS

As mentioned in the introduction, a variant of the FPQMC
method was first proposed by De Raedt and Lagendijk in the
1980s.78–80 They, however, explicitly retain permutation operators
appearing in Eq. (A5) in their final expression for Z, see, e.g., Eq. (3)
in Ref. 78 or Eqs. (4.13) and (4.14) in Ref. 80. On the other hand,
we analytically perform summation over permutation operators,
thus grouping individual contributions into determinants. This is
much more efficient [as the factorial number of terms is captured in
only O(N3) steps, or even faster] and greatly improves the average
sign (cancellations between different permutations are already con-
tained in the determinant, see Fig. 7). The approach followed by De
Raedt and Lagendijk later became known as permutation-sampling
QMC, and the route followed by us is known as antisymmetric-
propagator QMC,85,86 permutation-blocking QMC,90 or fermionic-
propagator QMC.96 The analytical summation over permutation
operators entering Eq. (A5) was first performed by Takahashi and
Imada.85

Our FPQMC method employs the lowest-order STD [Eq. (4)],
which was also used in the permutation-sampling QMC method of
De Raedt and Lagendijk.78–80 The maximum number of imaginary-
time slices Nτ they could use was limited by the acceptance rates
of MC updates, which decrease quickly with increasing Nτ and
the cluster size Nc. In our present implementation of FPQMC,
we encounter the same issue, and our sampling becomes pro-
hibitively inefficient when the total number of time slices is greater
than 6–8, depending on the cluster size. To circumvent this issue,
the fermionic-propagator idea was combined with higher-order
STDs98,114–116 and more advanced sampling techniques117,118 to sim-
ulate the equilibrium properties of continuummodels of interacting
fermions in the canonical90,92 and grand-canonical96 ensembles.
More recent algorithmic developments enabled simulations with as
much as 2000 imaginary-time slices,119 which is a great improve-
ment. Whether similar ideas can be applied to lattice systems to
improve the efficiency of sampling is currently unclear. Generally,
more sophisticated STD schemes have been regarded as not use-
ful in lattice-model applications.120 It is important to note that
the success of the antisymmetric-propagator algorithms in con-
tinuous systems relies on weak degeneracy. This corresponds to
an extremely low occupancy regime in lattice models, and it is
precisely in this regime that our FPQMC method has an aver-
age sign close to 1 [see Figs. 4(b) and 5(b)], and the sampling is
most efficient [see Sec. SIII of the supplementary material]. Near
half-filling, lattice models present a fundamentally different physics,

which may ultimately require a substantially different algorithmic
approach.

We further emphasize that the low acceptance rates and the
resulting inefficiency of sampling that we encounter are directly
related to the discrete nature of space in our model. Some strategies
for treating the analogous problem in continuous-space models may
not be applicable here. For example, in continuous-space models,
acceptance rates of individual updates can be adjusted by mov-
ing electrons over shorter distances, so that the new configuration
weight is less likely to be substantially different from the old one.
In contrast, in lattice models, electronic coordinates are discrete,
and the minimum distance the electrons may cover is set by the
lattice constant; in most cases, moving a single electron by a sin-
gle lattice spacing in a single time slice is sufficient to drastically
reduce the configuration weight. There is no general rule on how
electrons should be moved to ensure that the new configuration
weight is close to the original one. This is particularly true for the
updates that insert/remove a particle, and the problem becomes
more pronounced with increasing Nτ . When each of the Nτ states∣Ψi,l⟩ [see Eq. (9)] is changed to ∣Ψ′i,l⟩, the chances that at least one
of ⟨Ψ′i,l⊕1∣e−ΔτH0 ∣Ψ′i,l⟩ is much smaller than ⟨Ψi,l⊕1∣e−ΔτH0 ∣Ψi,l⟩ [see
Eq. (10)] increase with Nτ . Our configuration weight is appreciable
only in small, mutually disconnected regions of the configuration
space, the movement between which is difficult. In Sec. V, we touch
upon possible strategies to improve sampling of such a structured
configuration space.

It is also important to compare our methods to the HF QMC
method,24,49 which is a well-established STD-based method for the
treatment of the Hubbardmodel. The HFmethod is manifestly sign-
problem-free but only at particle–hole symmetry. The sign problem
can become severe away from half-filling, or on lattices other than
the simple square lattice with no longer-range hoppings. On the
other hand, our FPQMC method is nearly sign-problem-free at
low occupancy, but also near half-filling, albeit only at strong cou-
pling [see Figs. 4(b) and 5(b)]. The other important difference is
that matrices manipulated in HF are of the size NcNτ , while in
FPQMC, the matrices are of the size <2Nc, i.e., given by the num-
ber of particles. Algorithmic complexity of the individual MC step
in FPQMC scales only linearly with Nτ , while in HF, the MC step
may go as O(N2

τ ) [determinant is O(N3), but fast updates O(N2)
are possible when the determinant is not calculated from scratch49].
Low cost of individual steps in FPQMC has allowed us to perform
as many as ∼1010 MC steps in some calculations. This advantage,
however, weighs against an increased configuration space to be sam-
pled. In HF the number of possible configurations is 2Nc Nτ (space is
spanned by NcNτ auxiliary Ising spins), while in FPQMC it is 4Nc Nτ

(although, symmetries can be used to significantly reduce the num-
ber of possible configurations). The ABQMC method manipulates
matrices of the same size as does FPQMC, but with twice the num-
ber, and the configuration space is a priori even bigger (16Nc Nτ). Our
methods also have the technical advantage that the measurements
of multipoint charge and spin correlation functions are algorithmi-
cally trivial and cheap. Especially in ABQMC, the densities in both
coordinate andmomentum space can be simply read off the configu-
ration. This is not possible in HF, where the auxiliary Ising spin only
distinguishes between singly occupied and doubly-occupied/empty
sites. Most importantly, the ABQMC/FPQMC methods can be
readily applied to canonical ensembles and pure states, which may
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not be possible with the HF method. However, the HF is commonly
used with tens of time slices for lattice sizes of orderNc = 100–200; in
FPQMC, algorithmic developments related to configuration updates
are necessary before it can become a viable alternative to the HF in a
wide range of applications.

Finally, we are unaware of any numerically exact method for
large lattice systems, which can treat the full Kadanoff–Baym–
Keldysh contour, and yield real-time correlation functions. Our
ABQMC method represents an interesting example of a real-time
QMC method with manifestly no dynamical sign problem. How-
ever, the average sign is generally poor. To push ABQMC to larger
number of time slices (as needed for calculation of the time-
dependence of observables) and lattices larger than 4 × 4 will require
further work, and most likely, conceptually new ideas.

V. SUMMARY AND OUTLOOK

We revisit one of the earliest proposals for a QMC treat-
ment of the Hubbard model, namely the permutation-sampling
QMC method developed in Refs. 78–80. Motivated by recent
progress in the analogous approach to continuous space models, we
group all permutations into a determinant, which is known as the
antisymmetric-propagator,85 permutation-blocking,90 or fermionic-
propagator96 idea. We devise and implement two slightly different
QMC methods. Depending on the details of the STD scheme, we
distinguish between (1) the FPQMC method, where snapshots are
given by real-space Fock states and determinants represent anti-
symmetric propagators between those states, and (2) the ABQMC
method, where slices alternate between real and reciprocal space rep-
resentation and determinants are simple Slater determinants. We
thoroughly benchmark both methods against the available numer-
ically exact data and then use ABQMC to obtain some new results in
the real-time domain.

The FPQMC method exhibits several promising properties.
The average sign can be close to 1 and does not drop off rapidly with
either the size of the system or the number of time slices. In 1D,
the method appears to be sign-problem-free. At present, the lim-
iting factor is not the average sign but rather the ability to sample
the large configuration space. At discretizations finer thanNτ = 6–8,
further algorithmic developments are necessary. Nevertheless, our
calculations show that excellent results for instantaneous correlators
can be obtained with very few time slices and efficiently. Average
density, double occupancy, and antiferromagnetic correlations can
already be computed with high accuracy at temperatures and cou-
pling strengths relevant for optical-lattice experiments. The FPQMC
method is promising for further applications in equilibrium setups.
In real-time applications, however, the sign problem in FPQMC is
severe.

On the other hand, the ABQMC method has a significant
sign problem in equilibrium applications but has some advantages
in real-time applications. In ABQMC, the sign problem is manifestly
time-independent, and calculations can be performed for multiple
times and coupling strengths with a single Markov chain. We use
this method to compute time-dependent survival probabilities of
different density-modulated states and identify several trends. The
relevant transient regime is short, and based on benchmarks, we esti-
mate the systematic error due to the time discretization here to be
small. Our results reveal that interactions speed up the initial decay

of the survival probability but facilitate the persistence of the initial
charge pattern at longer times. Additionally, we observe a charac-
teristic value of the coupling constant, U ∼ 0.5D, below which the
interaction has no visible effect on time evolution. These findings
bare qualitative predictions for future ultracold-atom experiments,
but are limited to dynamics at the shortest wave-lengths, as dictated
by the maximal size of the lattice that we can treat. We finally note
that, within the ABQMCmethod, uniform currents, which are diag-
onal in the momentum representation, may be straightforwardly
treated.

There is room for improvement in both the ABQMC and
FPQMC methods. We already utilize several symmetries of the
Hubbard model to improve efficiency and enforce some physi-
cal properties of solutions, but more symmetries can certainly be
uncovered in the configuration spaces. Further grouping of con-
figurations connected by symmetries can be used to alleviate some
of the sign problem or improve efficiency. Also, sampling schemes
may be improved along the lines of the recently proposed many-
configuration Markov chain MC, which visits an arbitrary number
of configurations at everyMC step.121 Moreover, a better insight into
the symmetries of the configuration space may make deterministic,
structured sampling (along the lines of quasi-MC methods122–124)
superior to the standard pseudo-random sampling.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) a detailed description
of MC updates within the FPQMC method, (ii) a detailed descrip-
tion of MC updates within the ABQMCmethod for time-dependent
survival probability, (iii) details on the performance of the FPQMC
method in equilibrium calculations, (iv) discussion on the applica-
bility of the ABQMC method in equilibrium calculations, (v) addi-
tional FPQMC calculations of time-dependent local densities, (vi)
additional ABQMC calculations of time-dependent survival prob-
ability, and (vii) formulation and benchmarks of ABQMC method
in quench setups (on the full three-piece Kadanoff–Baym–Keldysh
contour).
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APPENDIX A: MANY-BODY PROPAGATOR
AS A DETERMINANT OF SINGLE-PARTICLE
PROPAGATORS

The demonstration of Eqs. (6) and (7) can be conducted for
each spin component separately. We thus fix the spin index σ and
further omit it from the definition of the many-fermion state ∣Ψi⟩
[Eq. (5)]. Since H0 is diagonal in the momentum representation, we
express the state ∣Ψi⟩ in the momentum representation

∣Ψi⟩ =∑
{kj}

( N

∏
l=1

⟨kl∣rl⟩c†kl)∣∅⟩ (A1)

and similarly for ∣Ψ′i⟩. While the positions r1, . . . , rN are ordered
according to a certain rule, the wave vectors k1, . . . ,kN entering
Eq. (A1) are not ordered, and there is no restriction on the sum over
them. We have

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∑
{k′

l
}

∑
{kl}

e
−Δαεk1 . . . e

−ΔαεkN

× ⟨r′N ∣k′N⟩ . . . ⟨r′1∣k′1⟩⟨k1∣r1⟩⟨kN ∣rN⟩
× ⟨∅∣ck′N . . . ck′1c†k1 . . . c†kN ∣∅⟩. (A2)

The sums over {k′l} are eliminated by employing the identity80

⟨∅∣ck′N . . . ck′1c†k1 . . . c†kN ∣∅⟩
=∑

P

sgn(P) δ(k′1,kP(1)) . . . δ(k′N ,kP(N)), (A3)

where the permutation operator P acts on the set of indices{1, . . . ,N}, while sgn(P) = ±1 is the permutation parity. We then
observe that

N

∏
l=1

⟨r′l ∣kP(l)⟩ = N

∏
l=1

⟨r′P −1(l)∣kl⟩, (A4)

which permits us to perform the sums over individual kls indepen-
dently. Combining Eqs. (A2)–(A4) and changing the permutation
variable P ′ = P −1 we eventually obtain

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∑
P ′

sgn(P ′) N

∏
l=1

⟨r′P ′(l)∣e−ΔαH0 ∣rl⟩
= det S(Ψ′i ,Ψi,Δα), (A5)

where matrix S(Ψ′i ,Ψi,Δα) (here without the spin index) is defined
in Eq. (7).

APPENDIX B: PROPAGATOR OF A FREE PARTICLE
ON THE SQUARE LATTICE

Here, we provide the expressions for the propagator of a free
particle on the square lattice in imaginary [Δα = Δτ in Eq. (7)] and
real [Δα = iΔt in Eq. (7)] time. In imaginary time,

⟨r′∣e−ΔτH0 ∣r⟩ = I(2JΔτ, r′x − rx)I(2JΔτ, r′y − ry), (B1)

where the one-dimensional imaginary-time propagator (l is an
integer)

I(z, l) = 1
N

N−1

∑
j=0

cos(2πjl
N
) exp(z cos(2πj

N
)) (B2)

is related to the modified Bessel function of the first kind Il(z) via
lim
N→∞

I(z, l) = 1
π∫

π

0
dθ cos(lθ) ez cos θ

= Il(z). (B3)

In real time,

⟨r′∣e−iΔtH0 ∣r⟩ = J (2JΔt, r′x − rx)J (2JΔt, r′y − ry), (B4)

where the one-dimensional real-time propagator (l is an integer)

J (z, l) = 1
N

N−1

∑
j=0

cos(2πjl
N
) exp(iz cos(2πj

N
)) (B5)

is related to the Bessel function of the first kind J l(z) via
lim
N→∞

J (z, l) = 1
π∫

π

0
dθ cos(lθ) eiz cos θ

= i
l
Jl(z). (B6)

For finite N, J (z, 2l) is purely real, while J (z, 2l + 1) is purely
imaginary.

APPENDIX C: DERIVATION OF THE FPQMC
FORMULAE THAT MANIFESTLY RESPECT
THE DYNAMICAL SYMMETRY
OF THE HUBBARD MODEL

Here, we derive the FPQMC expression for the time-dependent
expectation value of a local observable [Eq. (18)] that manifestly
respects the dynamical symmetry of the Hubbard model.

We start by defining the operation of the bipartite lattice sym-
metry, which is represented by a unitary, hermitean, and involutive
operator B (B†

= B = B−1) whose action on electron creation and
annihilation operators in the real space is given as
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Bc
(†)
rσ B = (−1)rx+ryc(†)rσ . (C1)

In the momentum space, B is actually the so-called π-boost15

Bc
(†)
kσ B = c

(†)
k+Q,σ (C2)

that increases the electronic momentum by Q = (π,π). The time
reversal operator T is an antiunitary (unitary and antilinear), involu-
tive, and hermitean operator whose action on electron creation and
annihilation operators in the real space is given as

Tc
(†)
r↑ T = c

(†)
r↓ , Tc

(†)
r↓ T = −c

(†)
r↑ , (C3)

while the corresponding relations in the momentum space read as

Tc
(†)
k↑ T = c

(†)
−k↓, Tc

(†)
k↓ T = −c

(†)
−k↑. (C4)

Using Eqs. (C1)–(C4), consequently

BH0B = −H0, BHintB = Hint, TH0T = H0,

THintT = Hint.
(C5)

In Sec. II B 2, we assumed that the initial state ∣ψ(0)⟩ is an eigen-
state of local density operators nrσ , which means that B∣ψ(0)⟩
= eiχB ∣ψ(0)⟩, see Eq. (C1).

The denominator of Eq. (18)

Aden(t) = ⟨ψ(0)∣eiHt e−iHt ∣ψ(0)⟩ (C6)

is purely real, Aden(t) = Aden(t)∗, so that

Aden(t) ≈ 1
2
⟨ψ(0)∣(eiH0Δte

iHintΔt)Nt (e−iH0Δte
−iHintΔt)Nt ∣ψ(0)⟩

+
1
2
⟨ψ(0)∣(eiHintΔte

iH0Δt)Nt (e−iHintΔte
−iH0Δt)Nt ∣ψ(0)⟩.

(C7)

We thus obtain

Aden(t) ≈∑
C

{Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥
− Im{D2t(C,Δt)} sin∥Δεint(C)Δt∥}, (C8)

where configuration C consists of 2Nt − 1 independent states∣Ψi,2⟩, . . . , ∣Ψi,2Nt ⟩, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩, while D2t(C,Δt) and Δεint(C) are
defined in Eqs. (21) and (20), respectively. The denominator is also
invariant under time reversal, Aden(t) = Aden(−t), which is not a
consequence of a specific behavior of the initial state under time
reversal but rather follows from Aden(t) ≡ ⟨ψ(0)∣ψ(0)⟩. In other
words, Eq. (C8) should contain only contributions invariant under
the transformation Δt → −Δt. Using the bipartite lattice symmetry,
under which B∣Ψi,l⟩ = eiχl ∣Ψi,l⟩, we obtain

D2t(C,−Δt) = 2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣BBe−iH0ΔtBB∣Ψi,l⟩

×

Nt

∏
l=1

⟨Ψi,l⊕1∣BBeiH0ΔtBB∣Ψi,l⟩

=

2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣eiH0Δt ∣Ψi,l⟩ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩
= D2t(C,Δt). (C9)

Equation (C8) then reduces to

Aden(t) =∑
C

Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥. (C10)

We now turn to the numerator of Eq. (18)

Anum(t) = ⟨ψ(0)∣eiHt Ai e
−iHt ∣ψ(0)⟩, (C11)

which is also purely real, Anum(t) = Anum(t)∗, so that
Anum(t) ≈∑

C

Ai(Ψi,Nt+1){Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥
− Im{D2t(C,Δt)} sin∥Δεint(C)Δt∥}. (C12)

In the following discussion, we assume that the time reversal oper-
ation changes ∣ψ(0)⟩ by a phase factor, T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩. This,
combinedwith B∣ψ(0)⟩ = eiχB ∣ψ(0)⟩, gives the assumption on ∣ψ(0)⟩
that is mentioned before Eq. (19). We further assume that TBAiBT
= Ai. Under these assumptions, the numerator is invariant under
time reversal, Anum(−t) = Anum(t), meaning that Eq. (C12) should
contain only contributions invariant under the transformation
Δt → −Δt. Using Eq. (C9), Eq. (C12) reduces to

Anum(t) ≈∑
C

Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥, (C13)

and Eq. (22) follows immediately.
An example of the initial state ∣ψ(0)⟩ and the observableAi that

satisfy TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩ and TBAiBT = Ai are the CDW state∣ψCDW⟩ [Eq. (24)] and the local charge densityAi = ∑σ nrσ .While the
time-reversal operation may change a general SDW state [Eq. (23)]
by more than a phase factor, Eq. (C13) is still applicable when the
observable of interest is the local spin densityAi = nr↑ − nr↓. This fol-
lows from the transformation law T(nr↑ − nr↓)T = nr↓ − nr↑ and the
fact that the roles of spin-up and spin-down electrons in the state
T∣ψSDW⟩ are exchanged with respect to the state ∣ψSDW⟩.

We now explain how we use Eq. (26) to enlarge statistics
in computations of time-dependent local spin (charge) den-
sities when the evolution starts from state ∣ψSDW⟩ in Eq. (23)
[∣ψCDW⟩ in Eq. (24)]. Let us limit the discussion to the spin
(charge) density at fixed position r. Suppose that we obtained
Markov chains (of length NCDW) {N CDW

1 (t), . . . , N CDW
NCDW
(t)}

and {DCDW
1 , . . . ,DCDW

NCDW
} for the numerator and denominator.

Suppose also that we obtained Markov chains (of length NSDW){N SDW
1 (t), . . . , N SDW

NSDW
(t)} and {D SDW

1 , . . . ,D SDW
NSDW
} for the

numerator and denominator. Using these Markov chains, we
found that the best result for the time-dependent local spin
(charge) density is obtained by joining them into one Markov
chain {N SDW

1 (t), . . . , N SDW
NSDW
(t), N CDW

1 (t), . . . , N CDW
NCDW
(t)} of

length NSDW +NCDW for the numerator, and another Markov chain
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{D SDW
1 , . . . ,D SDW

NSDW
,DCDW

1 , . . . ,DCDW
NCDW
} of length NSDW +NCDW

for the denominator. If individual chain lengths NCDW and NSDW

are sufficiently large, the manner in which the chains are joined is
immaterial; here, we append the CDW chain to the SDW chain, and
we note that other joining possibilities lead to the same final result
(within the statistical error bars). To further reduce statistical error
bars, we also combine SDW + CDW chains at all positions r that
have the same spin (charge) density by the symmetry of the initial
state.

APPENDIX D: DERIVATION OF THE ABQMC FORMULA
FOR THE SURVIVAL PROBABILITY

We start from the survival-probability amplitude

AP(t) = ⟨ψ(0)∣e−iHt ∣ψ(0)⟩⟨ψ(0)∣ψ(0)⟩ , (D1)

whose numerator can be expressed as

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈ 1
2
⟨ψ(0)∣(e−iH0Δte

−iHintΔt)Nt ∣ψ(0)⟩ + 1
2
⟨ψ(0)∣(e−iHintΔte

−iH0Δt)Nt ∣ψ(0)⟩
= ∑

Ψi,2...Ψi,Nt

Re{ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩}e−iεint(C )Δt

= ∑
Ψi,2...Ψi,Nt

∑
Ψk,1...Ψk,Nt

Re{ Nt

∏
l=1

⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩e−iε0(C )Δt}e−iεint(C )Δt

=∑
C

{Re{D(C)} cos∥ε0(C)Δt∥ + Im{D(C)} sin∥ε0(C)Δt∥}e−iεint(C )Δt. (D2)

In going from the second to the third line of Eq. (D2), we
introduced spectral decompositions of Nt factors e

−iH0Δt . The con-
figuration C entering the last line of Eq. (D2) consists of Nt − 1
independent states ∣Ψi,2⟩, . . . , ∣Ψi,Nt ⟩ in the coordinate representa-
tion and Nt independent states ∣Ψk,1⟩, . . . , ∣Ψk,Nt

⟩ in the momentum
representation, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. D(C) and ε0(C) are defined in
Eqs. (31) and (34), respectively. By virtue of the bipartite lattice sym-
metry, under which D(C) remains invariant, while ε0(C) changes
sign, the summand containing sin∥ε0(C)Δt∥ in Eq. (D2) vanishes, so
that

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈∑
C

Re{D(C)} cos∥ε0(C)Δt∥ e−iεint(C )Δt. (D3)

This form should be used, e.g., when ∣ψ(0)⟩ is the SDW state defined
in Eq. (23). When the initial state is the CDW state defined in
Eq. (24), T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩, ⟨ψ(0)∣e−iHt ∣ψ(0)⟩ is purely real, so
that

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈∑
C

Re{D(C)} cos∥ε0(C)Δt∥ cos∥εint(C)Δt∥.
(D4)

Equation (30) then follows by combining Eq. (D4) with⟨ψ(0)∣ψ(0)⟩ = ∑C Re{D(C)}.
We now provide a formal demonstration of Eq. (36). The

partial particle–hole transformation is represented by a unitary, her-
mitean, and involutive operator P (P†

= P = P−1), whose action
on electron creation and annihilation operators in real space is
given as109,110

Pcr↑P = cr↑, Pc
†

r↑P = c
†

r↑, (D5)

Pcr↓P = (−1)rx+ryc†r↓, Pc
†

r↓P = (−1)rx+rycr↓. (D6)

The interaction Hamiltonian Hint thus transforms under the par-
tial particle–hole transformation as PHintP = UN̂↑ −Hint. The action
of the partial particle–hole transformation in the momentum space
reads as ∥Q = (π,π)∥

Pck↑P = ck↑, Pc
†

k↑P = c
†

k↑, (D7)

Pck↓P = c
†

Q−k,↓, Pc
†

k↓P = cQ−k,↓. (D8)

The kinetic energy, therefore, remains invariant under the par-
tial particle–hole transformation, i.e., PH0P = H0. Equations (D5)
and (D6) imply that P∣∅⟩ =∏r∈Uc

†

r↓∣∅⟩. We then find that P∣ψCDW⟩
= ∣ψSDW⟩, i.e., the partial particle–hole transformation transforms
the CDW state defined in Eq. (24) into the SDW state defined
in Eq. (23) and vice versa.108 The states ∣ψCDW⟩ and ∣ψSDW⟩
have the same number of spin-up electrons, while their num-
bers of spin-down electrons add to Nc. Using the combination of
the partial particle–hole transformation P and the bipartite lattice
transformation B defined in Appendix C, one obtains

⟨ψCDW∣e−iHt ∣ψCDW⟩ = e−iN↑(ψ)Ut⟨ψSDW∣e−iHt ∣ψSDW⟩∗, (D9)

where N↑(ψ) = ⟨ψCDW∣N̂↑∣ψCDW⟩ = ⟨ψSDW∣N̂↑∣ψSDW⟩ is the total
number of spin-up electrons in CDWand SDW states. Equation (36)
then follows immediately from Eq. (D9).

A similar procedure to that described in Appendix C is used
to combine Markov chains for the survival probabilities of the
CDW and SDW states related by the dynamical symmetry in
Eq. (D9).
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APPENDIX E: USING THE PARTICLE–HOLE SYMMETRY
TO DISCUSS THE AVERAGE SIGN OF THE FPQMC
METHOD FOR CHEMICAL POTENTIALS μ AND U − μ

The (full) particle–hole transformation is represented by a uni-
tary, hermitean, and involutive operator P f (P†

f
= P f = P

−1
f ) whose

action on electron creation and annihilation operators in real space
is defined as109,110

P f crσ P f = (−1)rx+ryc†rσ. (E1)

The corresponding formula in the momentum space reads as

P f ckσ P f = c
†

Q−k,σ. (E2)

Let us fix J,U,T, and Nτ and compute the equation of state ρe(μ)
using Eq. (13) in which Ai(Ψi,l) = ∥N↑(C) +N↓(C)∥/Nc. It is con-
venient to make the μ-dependence in εint(C,μ) explicit. In the sums
entering Eq. (13) we make the substitution

C→ C
′
= {∣Φi,l⟩ = P f ∣Ψi,l⟩∣l = 1, . . . ,Nτ} (E3)

under which

Dβ(C,Δτ) = Dβ(C ′,Δτ), (E4)

εint(C,μ) = εint(C ′,U − μ) + (U − 2 μ)Nτ Nc, (E5)

Nσ(C ′) = Nc −Nσ(C). (E6)

It then follows that

∑C Dβ(C,Δτ) e−Δτεint(C,μ)∥N↑(C) +N↓(C)∥/Nc

∑C Dβ(C,Δτ) e−Δτεint(C,μ)
= 2 −

∑C′ Dβ(C′,Δτ) e−Δτεint(C′ ,U−μ)∥N↑(C′) +N↓(C′)∥/Nc

∑C′ Dβ(C′,Δτ) e−Δτεint(C′ ,U−μ) .

(E7)

The FPQMC simulations of the ratios in the last equation are
performed for chemical potentials μ and U − μ, which are symmet-
ric with respect to the chemical potentialU/2 at the half-filling. Since
εint(C,μ) and εint(C ′,U − μ) differ by a constant additive factor, the
corresponding configuration weights differ by a constant multiplica-
tive factor, and the average signs of the two FPQMC simulations are
thus mutually equal.
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SI. FPQMC METHOD: MONTE CARLO UPDATES

Here, we present the Monte Carlo updates we use to move through the configuration space of our FPQMC method.
The configuration space is sampled through Markov chains starting from an, in principle arbitrary, configuration

C0. The Metropolis–Hastings algorithm is used to determine the probability of transferring from configuration Cn
at Monte Carlo step n to configuration Cn+1 at the subsequent Monte Carlo step n + 1. The transition probability
Wn→n+1 is

Wn→n+1 =W prop
n→n+1W

acc
n→n+1 (S1)

whereW prop
n→n+1 is the probability of proposing the update from configuration Cn to configuration Cn+1, whileW

acc
n→n+1

determines the probability with which such a proposal is accepted. The Metropolis–Hastings acceptance rate reads
as

W acc
n→n+1 = min{1, Rn→n+1} (S2)

where the acceptance ratio Rn→n+1 = 1/Rn+1→n depends on the weights of the configurations involved, as well as
on the proposal probabilities in both directions Cn ↔ Cn+1 in the following manner

Rn→n+1 =
w(Cn+1)W

prop
n+1→n

w(Cn)W
prop
n→n+1

. (S3)

A. Updates that conserve the number of particles

1. change r local

We randomly choose one real-space state |Ψn
i,l0

⟩ [in all the time-dependent computations we perform, l0 ̸= 1 due

to |Ψn
i,1⟩ ≡ |ψ(0)⟩ at each Monte Carlo step n] and move an arbitrarily chosen electron (spin σ, position rσj ) to

a new position sσj under the condition that the state (σ, sσj ) is unoccupied in |Ψn
i,l0

⟩.

The inverse move proceeds in the same manner as described above. The ratio of proposal weights is
W prop

n+1→n

W prop
n→n+1

= 1.

This move ensures that we sample configurations with different real-space electron patterns.

2. change r global

We randomly choose one real-space state |Ψn
i,l0

⟩ [in all the time-dependent computations we perform, l0 ̸= 1

due to |Ψn
i,1⟩ ≡ |ψ(0)⟩ at each Monte Carlo step n] and replace it by a new state |Ψn+1

i,l0
⟩ ̸= |Ψn

i,l0
⟩. While the

effects of this “global” move can be mimicked by multiple applications of its “local” version change r local, we
found this move very useful in evenly sampling the configuration space, especially in time-dependent FPQMC
simulations.

3. spin flip—used only in equilibrium FPQMC simulations because it does not separately conserve the number of

spin-up and spin-down electrons, yet it conserves the total electron number

We randomly choose spin σ and attempt to increase/decrease the number of electrons of spin σ/σ by one.
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In each imaginary-time slice l = 1, . . . , Nτ , we choose an electron of spin σ at position r from the real-
space state |Ψn

i,l⟩ and construct the real-space state |Ψn+1
i,l ⟩ by changing the electron’s position r → s

and spin σ → σ. The ratio of the proposal probabilities in the real space can be directly computed as(
W prop

n+1→n

W prop
n→n+1

)

i,l

=
Nσ(Nc −Nσ)

(1 +Nσ)(Nc −Nσ + 1)
, where Nσ and Nσ are numbers of electrons of spin σ and σ in |Ψn

i,l⟩.

This move is very useful once the FPQMC starts sampling configurations whose total electron number (the
sum of the numbers of spin-up and spin-down electrons) fluctuates around the value predicted by the fixed
temperature and chemical potential. One value of the total electron number may be realized via many different
combinations of numbers of spin-up and spin-down electrons, and it is precisely this move that enables efficient
sampling through all these combinations.

B. Updates that do not conserve the number of particles

The updates add particle and remove particle are used only in equilibrium FPQMC simulations, when the
number of particles fluctuates according to the fixed chemical potential and temperature.

The move add particle/remove particle adds/removes one electron from the configuration. These two moves are
inverses of one another and their acceptance rates are mutually equal. The spin σ of the electron added to/removed
from the imaginary-time slice l = 1 fixes that an electron added to/removed from the remaining imaginary-time slices
l = 2, . . . , Nτ must have the same spin σ.

Let Nσ denote the number of electrons of spin σ in state |Ψn
i,l⟩ (before the update). In the first imaginary-time slice

l = 1, an electron can be added to any of Nc −N↑ +Nc −N↓ empty single-particle states, while an electron can be
removed from any of N↑+N↓ occupied single-particle states. Concerning the inverse move, an electron can be removed
from any of N↑ +N↓ + 1 occupied single-particle states, while an electron can be added to any of 2Nc −N↑ −N↓ + 1
empty single-particle states. We thus have

(
W prop

n+1→n

W prop
n→n+1

)add

i,l=1

=
2Nc −N↑ −N↓

N↑ +N↓ + 1
,

(
W prop

n+1→n

W prop
n→n+1

)rmv

i,l=1

=
N↑ +N↓

2Nc −N↑ −N↓ + 1
. (S4)

In all other imaginary-time slices l = 2, . . . , Nτ , we have

(
W prop

n+1→n

W prop
n→n+1

)add

i,l≥2

=
Nc −Nσ

Nσ + 1
,

(
W prop

n+1→n

W prop
n→n+1

)rmv

i,l≥2

=
Nσ

Nc −Nσ + 1
. (S5)

C. Fast determinant updates

The determinant Dβ(C,∆τ) is a product of 2Nτ determinants of imaginary-time single-particle propagators on a
lattice. Since all the updates can be seen as a single row/column change or addition/removal of a single row/column,
changes in individual determinants may be efficiently computed using the formulae for fast determinant updates.
These formulae, which provide the determinant ratio before and after the update, deal with the inverses of the
corresponding matrices. We store these inverses in memory and recompute them from scratch each time a Monte
Carlo update is accepted.

D. Extraction of Monte Carlo results

The average sign of FPQMC simulations is relatively large, so that, after the initial equilibration phase, the physical
quantities we compute depend quite weakly on the number of Monte Carlo steps completed. All relevant quantities
are measured at every Monte Carlo step, and the individual-step data are grouped into bins of length Lb, where
Lb ∼ 104 − 105, depending on the total number of steps completed. To provide the best possible estimate of a
quantity, we discard the first 80% of the simulation. The average of the binned data in the last 20% of the simulation
is taken as the Monte Carlo estimate of the quantity of interest. The statistical error is estimated as the root-mean-
square deviation of the binned data in the final 20% of the simulation from the above-computed average value. Such
an estimate of the error is appropriate for statistically independent data. While we have not performed a systematic
binning analysis, we may expect that the bin length we chose is sufficiently large that the data from different bins
may be considered as statistically independent.
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SII. ABQMC METHOD IN REAL TIME: MONTE CARLO UPDATES

Here, we present the Monte Carlo updates we use to move through the configuration space of our real-time ABQMC
method to compute the survival probability of an initial (pure) state. We only need updates that conserve the number
of particles of each spin orientation.
Within the alternating-basis method, which employs both coordinate-space and momentum-space many-body states,

we perform individual Monte Carlo updates on one of the two sets of states. The updates changing coordinate-space
states are the updates change r local and change r global that we present in Sec. SI. The updates that change
momentum-space states are designed so as to respect the momentum-conservation law. While the proposal proba-
bilities W prop

n→n+1 for coordinate-space updates can be determined relatively straightforwardly (even analytically), see
Sec. SI, their determination for the momentum-space updates may be quite challenging due to the explicit momentum
conservation. For all such moves, we can give no analytical expression for W prop

n→n+1, and we have to devise computer
algorithms capable of precisely enumerating all possible propositions that comply with the momentum (and also
particle-number) conservation.

1. add q

The momentum K of each of the states |Ψn
k,l⟩, l = 1, . . . , Nτ/t, is increased by a randomly chosen momentum

q ̸= 0, thereby obtaining new states |Ψn+1
k,l ⟩, l = 1, . . . , Nτ/t, with momentum K + q. The real-space states

are not changed, i.e., |Ψn
i,l⟩ = |Ψn+1

i,l ⟩. In each momentum-space state, momentum q is added to an electron of

spin σ that carries momentum kσ
j,l under the condition that the state (σ,kσ

j,l + q) is unoccupied in |Ψn
k,l⟩. All

possible momentum-accepting states (σ,kσ
j,l) have to be explicitly enumerated and their number is denoted as

p+q

l .

The inverse move starts from states |Ψn+1
k,l ⟩, l = 1, . . . , Nτ/t, with momentum K+ q, and adds momentum −q

to each of them. All possible momentum-accepting states in |Ψn+1
k,l ⟩ have to be explicitly enumerated and their

number is denoted as p−q

l .

The ratio of the proposal probabilities is then
W prop

n+1→n

W prop
n→n+1

=
∏

l

p+q

l

p−q

l

.

This move ensures that we sample configurations from sectors featuring different electronic momenta.

2. exchange q

We randomly choose one momentum-space state |Ψn
k,l0

⟩ in which we select two electrons of spins σ1 and σ2
and momenta k

σ1

j1
and k

σ2

j2
, which are ordered so that kj1,y + Nykj1,x > kj2,y + Nykj2,x. The momenta are

subsequently changed using k
σ1

j1
→ k

σ1

j1
+ q, kσ2

j2
→ k

σ2

j2
− q (q ̸= 0). As a consequence, the net momentum

of |Ψn
k,l0

⟩ remains unchanged. Obviously, the move may be realized only when the states (σ1,k
σ1

j1
+ q) and

(σ2,k
σ2

j2
− q) are both unoccupied in |Ψn

k,l0
⟩.

We note that enumerating all possible momenta q ̸= 0 that may be transferred between the electrons is relatively
simple for σ1 ̸= σ2 (σ2 = σ1), when the two electrons can be distinguished by their spins. It is then enough
to go through all empty states (σ1,k

′) to which the electron (σ1,k
σ1

j1
) can be moved and to determine the

corresponding momentum transfer q = k′ − k
σ1

j1
. We then ask if the state (σ1,k

σ1

j2
− q) is empty; in the

affirmative case, we memorize the current q as one possible momentum transfer. The inverse move proceeds in
a completely analogous manner by explicitly enumerating possible back-transfers.

On the other hand, two electrons of the same spin are indistinguishable, and special care should be exercised
to avoid double counting. For given kj1 and kj2 (we now omit σ1 = σ2), possible values of q follow from the
construction that is schematically summarized in Fig. S1. We make use of the periodic boundary conditions to
construct a new unit cell (in the momentum space) such that the electron of momentum kj1 is in its “center”,
while its vertices are at kj2 and its periodic copies kj2 +2π(1, 0), kj2 +2π(0, 1), and kj2 +2π(1, 1). The “central
point” and the four vertices partition the unit cell into four rectangular regions that are colored yellow (bottom
left), green (top left), cyan (top right), and magenta (bottom right). The vectors q that may be added to kj1 and
subtracted from kj2 are to be selected so that the final states kj1+q and kj2−q belong to just one half of each of
the regions, the two halves being separated by the line connecting the “central” point and the vertices. The halves
from which possible final states kj1+q, and thus possible momentum transfers q, are selected is shaded. Choosing
the momentum transfer such that the final state kj1 + q belongs to the other (unshaded) half is equivalent to
assigning momentum kj1 to the blue electron and kj2 to the red electron, i.e., to exchanging momentum labels
kj1 and kj2 , which produces the setup equivalent to that presented in Fig. S1. The momentum transfer q
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Figure S1. Construction used to correctly enumerate all possible momenta q ̸= 0 that can be exchanged between two electrons
of equal spins that carry momenta kj1 and kj2 . The momenta q that may be added to kj1 (and subtracted from kj2) are such
that the final state kj1 + q is found in one of the four shaded triangles, while kj2 − q is found in one of the four unshaded
triangles.

along the edges of the four shaded triangles should be counted only once because of the periodic boundary
conditions. For example, if we enumerate possible qs along the vertical edge of the green shaded triangle, then
we should not enumerate possible qs along the vertical edge of the cyan shaded triangle. Moreover, if any of
the lines connecting the “center” and the four edges contains any other lattice point, possible qs along that
line are subjected to the condition |q| ≤ |kj1 − kj2 − 2π(ax, ay)|/2, where (ax, ay) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.
While this construction is appropriate for kj1,x ̸= kj2,x and kj1,y ̸= kj2,y, further discussion is needed when
either kj1,x = kj2,x or kj1,y = kj2,y. In the inverse move, we start from the two electrons carrying momenta
k′
j1

= kj1 + q and k′
j2

= kj2 − q, we order them so that k′j1,y + Nyk
′
j1,x

> k′j2,y + Nyk
′
j2,x

, and repeat the
above-described procedure.

This move ensures that we sample configurations belonging to the sector of the chosen total electron momentum.
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SIII. DETAILED PERFORMANCE OF THE FPQMC METHOD APPLIED TO EVALUATE THE EQUATION OF STATE

A. U/J = 4, T/J = 1.0408
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Figure S2. Acceptance rates of individual moves as a function of the chemical potential. FPQMC simulations are performed on
a 4× 4 square-lattice cluster using (a) Nτ = 2, (b) Nτ = 4, and (c) Nτ = 6 imaginary-time slices. The remaining parameters
are: U/J = 4, T/J = 1.0408. Acceptance rates generally decrease with Nτ and with the filling (chemical potential).
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Figure S3. Average time needed to propose (full symbols connected by solid lines) and accept (empty symbols connected
by dashed lines) a Monte Carlo update as a function of the chemical potential. FPQMC simulations are performed on a
4 × 4 square-lattice cluster with different numbers of imaginary-time slices Nτ . The remaining parameters are: U/J = 4,
T/J = 1.0408.
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B. U/J = 24, T/J = 1.0408
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Figure S4. Acceptance rates of individual moves as a function of the chemical potential. FPQMC simulations are performed on
a 4× 4 square-lattice cluster using (a) Nτ = 2, (b) Nτ = 4, and (c) Nτ = 6 imaginary-time slices. The remaining parameters
are: U/J = 24, T/J = 1.0408. Acceptance rates generally decrease with Nτ and with the filling (chemical potential).
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Figure S5. Average time needed to propose (full symbols connected by solid lines) and accept (empty symbols connected by
dashed lines) an MC update as a function of the chemical potential. FPQMC simulations are performed on a 4×4 square-lattice
cluster with different numbers of imaginary-time slices Nτ . The remaining parameters are: U/J = 24, T/J = 1.0408.
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SIV. ABQMC METHOD APPLIED TO EQUILIBRIUM SITUATIONS

Here, we derive the ABQMC method in equilibrium situations (Sec. SIVA) and present our implementation of the
method (Sec. SIVB). Since the ABQMC method is equally adept at calculating quantities in real and momentum
space, we complement the results presented in Fig. 7 of the main text by presenting the momentum distribution at
different fillings (Sec. SIVC). We conclude in Sec. SIVD by discussing acceptance rates and proposal/acceptance
times of MC updates introduced in Sec. SIVB.

A. ABQMC method in equilibrium: Basic equations

Dividing the imaginary-time interval [0, β] into Nτ slices of length ∆τ ≡ β/Nτ , employing the lowest-order STD,
and inserting the spectral decompositions of H0 and Hint, we find the following ABQMC approximant for the partition
function at temperature T = 1/β:

Z ≈
∑

C

D(C)e−∆τε(C). (S6)

The configuration

C = {|Ψk,1⟩, . . . , |Ψk,Nτ
⟩, |Ψi,1⟩, . . . , |Ψi,Nτ

⟩} (S7)

resides on the contour depicted in Fig. 1(a) of the main text and consists of Nτ Fock states |Ψk,l⟩ (l = 1, . . . , Nτ ) in
the momentum representation and Nτ Fock states |Ψi,l⟩ in the coordinate representation. D(C) is the product of 2Nτ

Slater determinants

D(C) ≡

Nτ∏

l=1

⟨Ψi⊕1,l|Ψk,l⟩⟨Ψk,l|Ψi,l⊖1⟩ (S8)

that stem from the sequence of basis alternations between the momentum and coordinate eigenbasis. The symbol
ε(C) stands for

ε(C) ≡

Nτ∑

l=1

[ε0(Ψk,l) + εint(Ψi,l)] . (S9)

The equilibrium expectation value an observable Aa diagonal in either coordinate (a = i) or momentum (a = k)
representation reads as

⟨Aa⟩ ≈
1

Z

∑

C

D(C)e−∆τε(C) 1

Nτ

Nτ∑

l=1

Aa(Ψa,l), (S10)

where

Aa(Ψa,l) ≡ ⟨Ψa,l|Aa|Ψa,l⟩. (S11)

The evaluation of Eq. (S10) using the importance-sampling MC procedure is complicated by the fact that D(C) is a
complex number defined by its modulus and phase. While the modulus can be included in the weight of configuration
C, the phase gives rise to the so-called phase problem, which is generally much harder to curb than the ordinary sign
problem. However, since the STD preserves the equality Z = Z∗,1 Eq. (S6) can be replaced by

Z ≈
∑

C

Re{D(C)} e−∆τε(C), (S12)

and we remain with the ordinary sign problem. Equation (S10) should then be replaced by

⟨Aa⟩ ≈

∑
C Re{D(C)} e−∆τε(C) 1

Nτ

∑Nτ

l=1 Aa(Ψa,l)∑
C Re{D(C)} e−∆τε(C)

. (S13)
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Defining the weight w(C) of configuration C as

w(C) ≡ |Re{D(C)}|e−∆τε(C), (S14)

Eq. (S13) is rewritten as

⟨Aa⟩ ≈

〈
sgn(C) 1

Nτ

∑Nτ

l=1 Aa(Ψa,l)
〉

w

⟨sgn(C)⟩w
(S15)

where ⟨. . . ⟩w denotes the weighted average over all C with respect to the weight w(C); sgn(C) ≡ Re{D(C)}/|Re{D(C)}|
is the sign of configuration C, while |⟨sgn⟩| ≡ |⟨sgn(C)⟩w| is the average sign of the ABQMC simulation.

B. ABQMC method in equilibrium: Monte Carlo updates

Apart from previously introduced updates change r local and change r global in real space (Sec. SI) and add q

and exchange q in momentum space (Sec. SII), we need updates that insert/remove a particle, which are different
from their counterparts in Sec. SI.
The ABQMC move add particle/remove particle adds/removes one electron from the configuration. These

two moves are inverses of one another. While analogous moves are relatively simply implemented in the FPQMC
algorithm, here, special care is to be exercised because of the particle-number and momentum conservation. In more
detail, the spin σ of the electron added to/removed from the imaginary-time slice l = 1 fixes that an electron added
to/removed from the remaining imaginary-time slices l = 2, . . . , Nτ must have the same spin σ. Furthermore, the
momentum q of the electron added to/removed from the imaginary-time slice l = 1 fixes that momentum change
upon addition/removal of an electron in the remaining imaginary-time slices l = 2, . . . , Nτ must be precisely q. This
requirement may be realized in many different ways. One trivial possibility is to add/remove the electron to/from
the state (σ,q) if this state is empty/occupied. On the other hand, we may add/remove the electron to/from state
(σ,k), in which case we should find another electron (σcomp,kcomp) (of arbitrary spin σcomp) to compensate for the
difference in the momentum change from ±q, where +/− sign is for electron addition/removal. The electron in the
state (σcomp,kcomp) that may receive the momentum difference ±(q− k) will be termed the compensating electron.
The situation is relatively simple when the spin of the compensating electron is σ because the added electron and the
compensating electron may be distinguished by their spins. When the spins of the added and compensating electrons
are both equal to σ, these two electrons cannot be distinguished in the sense that their roles (added/compensating)
may be reverted. Special care should thus be taken to avoid double counting. An elaborate analysis reveals that the
double counting is avoided by ordering the momenta of:

(add) the added electron k and the compensating electron kcomp + q− k after the compensation;

(rmv) the removed electron k and the compensating electron kcomp before the compensation.

The ordering is the same as in the update exchange q.
While the above discussion regards the momentum-space states |Ψn

k,l⟩ → |Ψn+1
k,l ⟩, the situation with the real-space

states |Ψn
i,l⟩ → |Ψn+1

i,l ⟩ is far less complicated because only the particle-number conservation should be satisfied. The

spin of the electron to be added to/removed from from each |Ψn
i,l⟩ is determined by the spin of the electron added

to/removed from |Ψn
k,0⟩. The ratio of the backward and forward proposal probabilities for the real-space parts of the

configuration may be directly computed as:

(add)

(
W prop

n+1→n

W prop
n→n+1

)

i,l

=
Nc −Nσ

1 +Nσ
,

(rmv)

(
W prop

n+1→n

W prop
n→n+1

)

i,l

=
Nσ

Nc −Nσ + 1
,

where Nσ is the number of electrons of spin σ in all the states |Ψn
i/k,l⟩ (before the update).

There are also some differences in the move spin flip, in which we randomly choose spin σ and attempt to
increase/decrease the number of electrons of spin σ/σ by one.

In each imaginary-time slice l = 1, . . . , Nτ , we explicitly enumerate the momentum states (σ,k) ∈ |Ψn
k,l⟩ such

that (σ,k) /∈ |Ψn
k,l⟩. This is the simplest possible update that changes the spin of an electron and yet keeps the



11

total momentum of the configuration fixed. The state |Ψn+1
k,l ⟩ is then obtained from the state |Ψn

k,l⟩ by removing the

electron in the state (σ,k) and adding the electron in the state (σ,k). The inverse move proceeds in an analogous
manner: we explicitly enumerate momentum the states (σ,k′) ∈ |Ψn+1

k,l ⟩ such that (σ,k′) /∈ |Ψn+1
k,l ⟩.

In each imaginary-time slice l = 1, . . . , Nτ , we choose an electron of spin σ at position r from the real-space state
|Ψn

i,l⟩ and construct the real-space state |Ψn+1
i,l ⟩ by changing the electron’s position r → s and spin σ → σ. The ratio

of the proposal probabilities in the real space can be directly computed as

(
W prop

n+1→n

W prop
n→n+1

)

i,l

=
Nσ(Nc −Nσ)

(1 +Nσ)(Nc −Nσ + 1)
,

where Nσ and Nσ are numbers of electrons of spin σ and σ in |Ψn
i/k,l⟩.

C. ABQMC method in equilibrium: Numerical results

Within the ABQMC method, coordinate and momentum bases are treated symmetrically, meaning that the method
should be equally adept at calculating quantities diagonal in these two bases. As an example applications in the
momentum space, in Fig. S6 we show the momentum distribution, 1

2

∑
σ⟨nkσ⟩, in the same setup as in Fig. 4 of the

main text (U/J = 4, T/J = 1.0408).
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Figure S6. Momentum distribution, 1
2

∑
σ
⟨nkσ⟩, for different fillings ρe (half filling is ρe = 1) computed using the equilibrium

ABQMC approach on a 4 × 4 square-lattice cluster. Model parameters are U/J = 4, T/J = 1.0408, while µ/J is varied from
2 to −5. The pathway through the irreducible Brillouin zone is summarized in the inset. Cited values of ρe are from Ref. 2.
Dotted lines serve as guides to the eye. Statistical error bars are generally smaller than symbol size.
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D. ABQMC method in equilibrium: Acceptance rates and proposal/acceptance times

1. U/J = 4, T/J = 1.0408
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Figure S7. Average time needed to propose (black circles) and accept (red squares) one Monte Carlo update as a function
of the ABQMC electron density. The averaging is performed over all updates used in ABQMC simulations to evaluate the
equation of state: add particle, remove particle, spin flip, add q, exchange q, change r local, and change r global.
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Figure S8. Acceptance rates of individual Monte Carlo updates as a function of the ABQMC electron density. Being inverses
of one another, the acceptance rates of moves add particle and remove particle are mutually equal. The acceptance rates of
moves add particle, remove particle, spin flip, add q, and exchange q exhibit weak dependence on the filling, while moves
involving changes in the real-space part of configurations tend to be accepted less frequently as the filling is increased.
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2. U/J = 24, T/J = 1.0408
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Figure S9. Average time needed to propose (black circles) and accept (red squares) one Monte Carlo update as a function
of the ABQMC electron density. The averaging is performed over all updates used in ABQMC simulations to evaluate the
equation of state: add particle, remove particle, spin flip, add q, exchange q, change r local, and change r global.
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Figure S10. Acceptance rates of individual Monte Carlo updates as a function of the ABQMC electron density. Being inverses
of one another, the acceptance rates of moves add particle and remove particle are mutually equal. The acceptance rates of
moves add q and exchange q exhibit weak dependence on the filling, while moves add particle, remove particle, spin flip,
change r local, and change r global tend to be accepted less frequently as the filling is increased.
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SV. FPQMC METHOD FOR TIME-DEPENDENT DENSITIES: ADDITIONAL RESULTS

Figure S11(a) summarizes the evolution of charge densities on initially unoccupied sites of a half-filled 4×4 cluster,
on which the electrons are initially arranged as summarized in the inset of Fig. S11(b) [the so-called (π, π) density
wave]. Figure S11(b) summarizes the extent of the dynamical sign problem, which appears to be somewhat more
severe than in the case of the (π, 0) density wave discussed in Figs. 8(a) and 8(b) of the main text.
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Figure S11. (a) Time-dependent population of sites occupied in the initial CDW state of a 4× 4 cluster, which is schematically
depicted in the inset of panel (b). FPQMC results using Nt = 2 real-time slices (4 slices in total) are shown for five different
interaction strengths (symbols) and compared with the noninteracting result (solid line). (b) Magnitude of the average sign as
a function of time for different interaction strengths. Color code is the same as in panel (a).
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In equilibrium and in the weak-interaction regime, we concluded that the sign problem becomes more pronounced
with the filling, see Fig. 4(b) of the main text. Motivated by this finding, we finally study the dynamics of local
densities at a smaller filling, see Figs. S12(a1)–S12(b2), which permits us to perform FPQMC simulations on an 8× 4
cluster. While the average sign displayed in Fig. S12(a2) is somewhat enhanced with respect to the values reported
in Fig. S11(b) and Fig. 8(b) of the main text, the simulated dynamics retains the above-described problems. The
average sign decreases with the cluster size, compare the average signs for the noninteracting electrons in Figs. S12(a2)
and S12(b2).
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Figure S12. (a1) and (b1) Time-dependent population of sites occupied in the initial state of a 4×4 (a1) and 8×4 (b1) cluster,
which is schematically depicted in the inset of panels (a2) and (b2), respectively. FPQMC results using Nt = 2 real-time slices
(4 slices in total) are shown for five different interaction strengths (symbols) and compared with the noninteracting result (solid
line). (a2) and (b2) Time-dependent average sign of the FPQMC simulation for different interaction strengths. Color code is
the same as in (a1) and (b1), respectively. Statistical errors are generally smaller than the symbol size.
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SVI. ABQMC METHOD FOR TIME-DEPENDENT SURVIVAL PROBABILITY: ADDITIONAL RESULTS

A. Applicability of the ABQMC method to a 4× 4 cluster with Nt = 4 real-time slices

This section addresses the applicability of the ABQMC method to compute the survival probability of the 16-
electron CDW-like/SDW-like state depicted in Fig. 10(a) of the main text when the number of real-time slices is
increased from Nt = 2 to Nt = 4. In Fig. S13 we compare the behavior of the average sign for Nt = 2, when we make
3.87 × 1010 steps, and Nt = 4, when we make 1.16 × 1010 steps. Increasing the number of real-time slices from 2 to
4 decreases |⟨sgn⟩| after 1010 MC steps by an order of magnitude. With Nt = 4, the stabilization of the average sign
takes much more than 1010 MC steps, and its overall decrease as the simulation proceeds may be very well described
by a power law with the exponent of −1/2, see the dashed line in Fig. S13.
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Figure S13. Magnitude of the average sign as a function of the number of MC steps during the ABQMC simulation of the
survival probability of the 16-electron CDW/SDW state on a 4 × 4 square-lattice cluster using Nt = 2 and Nt = 4 real-time
slices. The overall behavior of |⟨sgn⟩| for Nt = 4 may be fitted very well by the function 5/

√
NMC that is shown by the dashed

line.
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B. Applicability of the ABQMC method to an 8× 4 cluster with Nt = 2 real-time slices

This section addresses the applicability of the ABQMC method to compute the survival probability of a 16-electron
initial state on an 8× 4 cluster with Nt = 2 real-time slices. The initial CDW-like state is schematically depicted in
Fig. S14(a), while Fig. S14(b) shows the evolution of the average sign during the MC simulation. We perform 1010

MC steps, during which the magnitude of the average sign shows no signals of stabilization, but steadily decreases in a
power-law fashion with the exponent −1/2, see the dashed line in Fig. S14(b). Even though the final stages of our MC
simulation may suggest that |⟨sgn⟩| stabilizes on the level of ∼ 4×10−5, a very noisy behavior of |⟨sgn⟩| throughout the
simulation casts doubts on such a conclusion. We observe in Fig. S14(b) that |⟨sgn⟩| displays pronounced dips whose
duration may be as long as a couple of billions of steps, which is in stark contrast with the rather smooth decrease
of |⟨sgn⟩| observed, e.g., in Fig. S13. These dips suggest that there may be problems with the configuration-space
sampling. The dimension of the configuration space of our ABQMC method is much larger than the dimension of
the Hilbert space of the model, which is astronomically large for the Hubbard model on an 8× 4 cluster. To further
illustrate the last point, in Fig. S14(c) we present the survival probability of the initial state in the noninteracting
case. In contrast to the 4×4 cluster, for which perfect collapses and revivals in P (t) are observed already on relatively
short time scales, there is no such a regular behavior on the 8 × 4 cluster, see Fig. S14(c). On general grounds, the
noninteracting system is bound to display perfect collapses and revivals in P (t), while the time scale on which the
pattern in P (t) repeats itself is inversely proportional to the dimension of the system’s Hilbert space.
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Figure S14. (a) Schematic view of the 16-electron initial state on an 8 × 4 square-lattice cluster whose survival probability is
computed. (b) Magnitude of the average sign as a function of the number of MC steps during the ABQMC simulation of the
survival probability of the initial state depicted in (a). Nt = 2 real-time slices are used. The overall behavior of |⟨sgn⟩| may be
fitted very well by the function 2/

√
NMC that is shown by the dashed line. (c) Time dependence of the survival probability of

the initial state depicted in (a) in the noninteracting case U = 0. The dimensionality of the system’s Hilbert space is so large
that no perfect revival in P (t) (which is bound to occur since U = 0) is observed up to Dt = 250.
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C. ABQMC results for the survival probability near the atomic limit

Figure S15 shows P (t) for the 16-electron initial state schematically depicted in Fig. 10(a) of the main text in
regimes that are close to the atomic limit. In these regimes, the natural energy unit is U , so that the time is measured
in units 1/U . The time range is chosen on the basis of the results in Figs. (d1)–(e2), which suggest that the ABQMC
method with Nt = 2 real-time slices produces a qualitatively correct behavior of P (t) up to times Ut ≈ 6. P (t)
exhibits oscillations whose amplitude decreases in time. There is almost no difference between P (t) for D/U = 0.05
and 0.1 during the first oscillation, while P (t) for D/U = 0.2 is at all times below P (t) for stronger U . While for
the strongest U the maxima reached by P (t) are always close to 1, the maxima for weaker U are smaller than 1 and
decrease with time. All these observations can be rationalized by an increased importance of the kinetic over the
interaction term as U/D is decreased.
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Figure S15. (Color online) Survival-probability dynamics of the 16-electron initial state schematically depicted in Fig. (a) for
three values of the interaction strength that are close to the atomic limit.
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SVII. ABQMC METHOD TO EVALUATE TIME-DEPENDENT EXPECTATION VALUES ALONG THE
KELDYSH–KADANOFF–BAYM CONTOUR

We start from

⟨Aa(t)⟩ =
Tr

(
e−βH(0) eiHt Aa e

−iHt
)

Tr
(
e−βH(0)

) (S16)

where H is the Hubbard Hamiltonian, while H(0) additionally contains terms that modulate charge or spin density.
For example, to simulate the response recorded in Ref. 3, the following H(0) may be appropriate:

H(0) =
∑

kσ

ε̃k nkσ + U
∑

r

nr↑nr↓

︸ ︷︷ ︸
H

−
∑

rσ

vrnrσ (S17)

where vr is the external harmonic potential that modulates electron density, e.g.,

vr = V0 cos(q · r). (S18)

Inspired by Ref. 3, we assume that q = qex, i.e., we assume that the electron density is modulated along one direction
with the wavelength λ = 2π/q. We also assume that λ ≤ Nx and that Nxmodλ = 0, i.e., the cluster’s linear dimension
along x axis is spanned by an integer number of wavelengths.
There are at least two manners in which the ABQMC method in the presence of external density-modulating

potential (at t < 0) can be formulated. They differ by the choice of the contributions that are diagonal in the
coordinate and momentum representations.

1. The part diagonal in the momentum representation is

[H(0)]mom =
∑

k

εknkσ,

while the part diagonal in the coordinate representation

[H(0)]coord = U
∑

r

nr↑nr↓ −
∑

rσ

µrnrσ

contains position-dependent chemical potential µr = µ + vr. Such a decomposition provides exact results in
the atomic limit (J = 0) and is expected to provide reasonable results when the electron–electron interaction
dominates over the electronic hopping.

2. The part diagonal in some momentum representation is

[H(0)]mom =
∑

kσ

ε̃k nkσ −
V0
2

∑

kσ

(
c†(kx+q,ky)σ

c(kx,ky)σ + c†(kx−q,ky)σ
c(kx,ky)σ

)

while the part diagonal in the coordinate representation is

[H(0)]coord = U
∑

r

nr↑nr↓.

Such a decomposition provides exact results in the noninteracting limit (U = 0) and is expected to provide
reasonable results when the electronic hopping dominates over the electron–electron interaction. Our further
developments will be focused on this decomposition.

The external harmonic potential introduces the coupling between different k states which results in a reduction of the
Brillouin zone along x axis by a factor of λ. The wave vector k in the full Brillouin zone [0, 2π)× [0, 2π) is not a good

quantum number anymore. Its role is taken by the wave vector k̃ in the reduced Brillouin zone [0, 2π/λ) × [0, 2π),

whose x projection k̃x may assume any of the nq = Nx div λ allowed values in the interval [0, 2π/λ) (p × 2π/Nx,

where p = 0, . . . , nq − 1) and whose y projection k̃y may assume any of the Ny allowed values in the interval [0, 2π)

(p × 2π/Ny, where p = 0, . . . , Ny − 1). In addition to k̃, there is another degree of freedom that will be denoted by
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νx and that may assume values 0, . . . , λ − 1. The Hamiltonian Hmom has a block-diagonal structure and the blocks

defined by the wave vector k̃ can be diagonalized separately. There are nqNy such blocks and the dimension of each
of them is λ× λ.

The Hubbard Hamiltonian H appears in combination eiHt . . . e−iHt, meaning that the chemical-potential term
−µ

∑
rσ nrσ = −µ

∑
kσ nkσ is not effective (we assume that Aa conserves the total particle number, which is a

reasonable assumption) and there is no ambiguity regarding the part Hmom or Hcoord to which it should be associated.
Therefore, the partition of the Hubbard Hamiltonian in parts that are diagonal in the momentum and coordinate
representation is the same as in the main body of the paper

Hmom =
∑

kσ

εknkσ, Hcoord = U
∑

r

nr↑nr↓.

Let us now exploit symmetries to develop as efficient as possible ABQMC algorithm to evaluate Eq. (S16). Since
H(0) is not invariant under the bipartite lattice symmetry, we use only the time-reversal symmetry, according to
which ⟨Aa(−t)⟩ = ⟨Aa(t)⟩. Furthermore, we note that both the numerator and the denominator of Eq. (S16) are
purely real. Using the strategy described in the main text, one may derive the ABQMC counterpart of Eq. (S16)

⟨Aa(t)⟩ =

∑
C Re{D(C)} e−∆τεM(C) cos {[∆ε0(C) + ∆εint(C)]∆t} Aa(Ψa,la)∑

C Re{D(C)} e−∆τεM(C)
(S19)

The configuration C consists of 2Nt +Nτ many-body states |Ψk,l⟩ (l = 1, . . . , 2Nt +Nτ ) composed of single-particle
momentum eigenstates and 2Nt + Nτ many-body states |Ψi,l⟩ composed of single-particle coordinate eigenstates.
While momenta of states |Ψk,1⟩, . . . , |Ψk,2Nt

⟩ are defined in the full Brillouin zone, states |Ψk,2Nt+1⟩, . . . , |Ψk,2Nt+Nτ
⟩

have their momenta defined in the reduced Brillouin zone. The symbols D(C), ∆ε0(C), and ∆εint(C) are defined as in
the main text, while εM(C) is the sum of energies of 2Nτ states along the Matsubara part of the contour, i.e.,

εM(C) =

2Nt+Nτ∑

l=2Nt+1

[ε0(Ψk,l) + εint(Ψi,l)] . (S20)

The slice on which the expectation value Aa(Ψa,la) = ⟨Ψa,la |Aa|Ψa,la⟩ is evaluated depends on the representation
a = i, k in which the observable Aa is diagonal, so that li = Nt + 1 and lk = Nt.
The structure of Eq. (S19) is intuitively clear as it is a combination of the ABQMC formula for thermodynamic

quantities [Eq. (17) of the main text] and the ABQMC formula for the time-dependent expectation value along
the Keldysh contour [Eq. (26) of the main text]. However, since we cannot exploit the bipartite lattice symme-
try in this setup, the time-dependent part of the numerator in Eq. (S19) is cos {[∆ε0(C) + ∆εint(C)]∆t} instead of
cos[∆ε0(C)∆t] cos[∆εint(C)∆t]. Configuration weight may be chosen as w(C) = |Re{D(C)}| e−∆τεM(C) and Eq. (S19)
is recast as

⟨Aa(t)⟩ =
⟨sgn(C) cos {[∆ε0(C) + ∆εint(C)]∆t} Aa(Ψa,la)⟩w

⟨sgn(C)⟩w
. (S21)

Markov-chain MC evaluation of Eq. (S21) suffers from the sign problem that does not depend on time t (it is
not dynamical). Still, it becomes more pronounced when the cluster size Nc or the number of slices (Nt and Nτ )
are increased. Similarly to equilibrium ABQMC calculations, the weight w(C) depends on all model parameters
(U, T, µ, V0, t). Therefore, the calculations for different values of these parameters have to be performed using
different Markov chains, which is different from the computation of P (t) or ⟨Aa(t)⟩ starting from a pure state |ψ(0)⟩.
The application of conservation laws on the Kadanoff–Baym contour is somewhat more involved than on simpler

contours studied in the main body of the paper. The particle-number conservation demands that all the many-body
states constituting configuration C have the same number of spin-up and spin-down electrons. We discuss the mo-
mentum conservation under the assumption that the observable Aa is diagonal in the coordinate representation (e.g.,
Ai =

∑
σ nrσ). From the main text, we know that the momentum conservation along the horizontal parts of the con-

tour (Keldysh branch) is broken into two conservation laws that are satisfied separately on the forward and backward
branch. In other words, the momenta (in the full Brillouin zone!) of Nt momentum-space states |Ψk,1⟩, . . . , |Ψk,Nt

⟩ on
the forward branch are all equal to Kfwd, while the momenta of Nt momentum-space states |Ψk,Nt+1⟩, . . . , |Ψk,2Nt

⟩
on the backward branch are all equal to Kbwd. In contrast to the situation encountered in the main text, Kfwd and
Kbwd are not completely independent because states |Ψk,1⟩ and |Ψk,2Nt

⟩ are “in contact” with states |Ψk,2Nt+Nτ
⟩

and |Ψk,2Nt+1⟩ on the Matsubara branch. Therefore, the relation between Kfwd and Kbwd is determined by the
momentum-conservation law along the Matsubara branch, which is formulated in the reduced Brillouin zone. Namely,
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the momenta (in the reduced Brillouin zone!) of Nτ momentum-space states |Ψk,2Nt+1⟩, . . . , |Ψk,2Nt+Nτ
⟩ are all equal

to K̃M. The momenta Kfwd, Kbwd, and K̃M are related as follows:

Kfwd · ey = Kbwd · ey = K̃M · ey,

Kfwd · ex
2π/Nx

mod
Nx

λ
=

K̃M · ex
2π/Nx

,
Kbwd · ex
2π/Nx

mod
Nx

λ
=

K̃M · ex
2π/Nx

Due to the more complicated momentum-conservation law, MC updates presented in Sec. SI have to be amply
modified. Instead of describing modified MC updates in detail, we demonstrate the correctness of our implementation
by benchmarking it on small clusters. Motivated by Ref. 3, we limit the discussion to the electron occupation dynamics
on individual sites.
We start from the noninteracting electrons, where already Nτ = 1 imaginary-time slice and 2Nt = 2 real-time slices

(2Nt +Nτ = 3 slices in total) are expected to reproduce the exact result. Trivial as they may seem, the benchmarks
on the noninteracting case are quite important, because densities of individual sites are expected to display nontrivial
oscillatory behavior. The fact that our ABQMC results reproduce these oscillations quite accurately strongly suggests
that our implementation is correct. In Fig. S16 we present results for the Hubbard dimer initially subjected to the
external density-modulating field vrx = V0 cos(πrx) with rx = 0, 1. Figure S17 displays results for the Hubbard
tetramer initially subjected to the external density-modulating field of wavelength λ = 4, vrx = V0 cos(πrx/2), with
rx = 0, 1, 2, 3. Figure S18 displays results for the Hubbard tetramer initially subjected to the external density-
modulating field of wavelength λ = 2, vrx = V0 cos(πrx), with rx = 0, 1, 2, 3.
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Figure S16. Time-dependent site populations of the Hubbard dimer with the following values of model parameters: µ/D =
1.3, V0/D = 2, U = 0, T/D = 0.57. The external potential at t < 0 is vrx = V0 cos(πrx) with rx = 0, 1.
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Figure S17. Time-dependent site populations of the Hubbard tetramer with the following values of model parameters: µ/D =
0.65, V0/D = 1, U = 0, T/D = 0.285. The external potential at t < 0 is vrx = V0 cos(πrx/2) with rx = 0, 1, 2, 3.

0 2 4 6 8 10
Time (1/D)

0

0.5

1

1.5

2

E
le

c
tr

o
n
 p

o
p
u
la

ti
o
n

r
x
=0 and r

x
=2

r
x
=1 and r

x
=3

symbols: ABQMC
lines: exact results

Figure S18. Time-dependent site populations of the Hubbard teteramer with the following values of model parameters: µ/D =
0.65, V0/D = 1, U = 0, T/D = 0.285. The external potential at t < 0 is vrx = V0 cos(πrx) with rx = 0, 1, 2, 3.

We conclude this section by applying the ABQMC algorithm to interacting electrons. We first discuss the Hubbard
dimer in the canonical ensemble, where we can obtain converged results with as many as 2Nt+Nτ = 12 slices in total
at half-filling (N↑ = N↓ = 1). The results are presented in Fig. S19. We observe that ABQMC results qualitatively
reproduce the exact result in the whole time window considered. The quantitative agreement is reasonable up to
Dt ≈ 2. Figure S20 presents results for the Hubbard tetramer in the grand-canonical ensemble, where we obtain
converged results using only Nt = 1 and Nτ = 2. Further increase in Nt reduces the average sign by orders of
magnitude: for Nt = 1, Nτ = 2 we obtain |⟨sgn⟩| = 1.2 × 10−2, while for Nt = 2, Nτ = 2 we find |⟨sgn⟩| ∼ 10−4.
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While Nτ = 2 is enough to reproduce equilibrium populations in the external field at t = 0, a single real-time slice
leads to the quantitative agreement between the ABQMC and exact results only at shortest times.
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Figure S19. Dynamics of electron populations on individual sites of the Hubbard dimer that at t < 0 is subjected to the
density-modulating potential vrx = V0 cos(πrx) with rx = 0, 1. We work in the canonical ensemble with N↑ = N↓ = 1. The
model parameters assume the following values: V0/D = 1, U/D = 0.6, T/D = 0.45.
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Figure S20. Dynamics of electron populations on individual sites of the Hubbard tetramer that at t < 0 is subjected to the
density-modulating potential vrx = V0 cos(πrx) with rx = 0, 1, 2, 3. We work in the grand-canonical ensemble with Nt = 1,
Nτ = 2 (2Nt +Nτ = 4 slices in total), and the following values of model parameters: µ/D = −0.325, V0/D = 0.5, U/D = 0.5,
T/D = 0.5.
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Most Mott systems display a low-temperature phase coexistence region around the metal-insulator transition.
The domain walls separating the respective phases have very recently been observed displaying unusual
properties both in simulations and in experiments. First, they often cover a significant volume fraction, thus
cannot be neglected. Second, they resemble neither a typical metal nor a standard insulator, displaying unfamiliar
temperature dependence of (local) transport properties. Here we take a closer look at such domain wall matter
by examining an appropriate unstable solution of the Hubbard model. We show that transport in this regime is
dominated by the emergence of “resilient quasiparticles” displaying strong non-Fermi liquid features, reflecting
the quantum-critical fluctuations in the vicinity of the Mott point.

DOI: 10.1103/PhysRevB.106.L161102

Introduction. The Mott metal-insulator transition [1,2]
remains a subject of much controversy and debate, with dis-
agreement even concerning the physical mechanism [3] that
dominates its vicinity. One popular viewpoint [4] regards it
as a (strictly) second-order phase transition at T = 0, where
the dominant degrees of freedom are the intersite spin singlets
(e.g. the “spinon” excitations) arising in the vicinity of the
Mott insulating state. A complementary dynamical mean-field
theory (DMFT) perspective [5] builds on the seminal ideas of
Hubbard and Mott, focusing on local Kondo-like processes
that govern the condensation [6] of the strongly correlated
Fermi liquid on the metallic side. The latter viewpoint predicts
that the “evaporation” of the electron liquid at the transition
bears some analogy to conventional liquid-gas transitions,
with a phase coexistence region arising at low temperatures
[5]. While many experiments [7,8] indeed reported the pre-
dicted first-order transition within the paramagnetic phase,
other experiments [9,10] reported behavior consistent with
quantum criticality, which sometimes has been interpreted in
terms of the former picture [4].

Resolving this important issue in the context of real ma-
terials is further complicated by the emergence of various
magnetic, charge, or orbital orders in the vicinity of the Mott
point [2], which can often mask the basic underlying mech-
anism. Recent experimental work, however, has successfully
identified [11] a simpler class of model systems, where no
broken symmetry phases have been observed anywhere in the
phase diagram. This situation is best documented in “spin-
liquid” organic materials [12], where careful and precise
experiments are starting to paint a clearer picture of the gen-
uine Mott point. Most remarkably, experiments here provided
[13] clear evidence for quantum critical scaling [14] of the
resistivity curves at intermediate temperatures, with some evi-
dence for a resistivity jump at T < Tc ∼ 30K , consistent with

the DMFT prediction of a weekly first-order transition [15].
Still, direct evidence of the phase coexistence has emerged
only in the recent reports of a colossal enhancement of the
dielectric response [16] and the previous near-field infrared
imaging [17].

In parallel with the experimental progress, recent theo-
retical work provided complementary insight into the nature
of the metal-insulator coexistence region [18]. Surprisingly
“thick” domain walls were observed [19], which are likely
to play a central role in governing the observable response
in experiments. Indeed, the local transport properties of such
domain walls were found [18,19] to display a variety of un-
usual features, with properties not akin to either those of the
conventional metal nor of the insulator. To obtain clear and
precise insight into the physical nature of such domain wall
matter (DWM), we present in this paper model calculations
within the framework of the DMFT picture. We argue that,
similarly to conventional Landau theories for domain walls,
the central region of a domain wall corresponds to a “saddle
point” (unstable solution) of the spatially uniform DMFT
equations, at the top of the free-energy barrier separating the
two competing phases [20,21]. In dramatic contrast to the
conventional Landau theory (e.g., for the Ising model), here
the two solutions are not related by symmetry and display very
different physical behavior [22–24]. One is a Fermi liquid
metal with coherent quasiparicles (QP) and T 2 resistivity,
whereas the other is a Mott insulator with completely inco-
herent activated transport. What, then, should be the physical
properties of the unstable solution separating them? Should it
resemble more closely a metal or a Mott insulator? What are
the thermal properties of transport in this unfamiliar regime?
As a matter of fact, it is almost impossible to guess. Previous
studies of the unstable solution were restricted only to the near
vicinity of the critical end point (T ∼ Tc) [25–27], but they did
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not provide clear insight as to what happens through the phase
coexistence region.

In this paper we present a clear and yet somewhat sur-
prising answer to all these important questions, in a setup
which can be considered as a (numerically) exact solution of
one of the simplest toy models of strong correlations. Based
on a reliable numerical solution of the corresponding DMFT
equations we establish that (1) transport in DWM assumes
resilient quasiparticle (RQP) character [28,29] throughout the
coexistence region; and (2) the relevant RQPs display sur-
prising non-Fermi liquid T -dependence of the QP parameters
(see below). These results firmly establish that DWM is a
qualitatively different form of matter, which we associate with
quantum critical fluctuations around the Mott point.

Model calculations. To describe the Mott metal-insulator
transition (MIT), while suppressing all forms of magnetic
orders, we focus on the maximally frustrated Hubbard model
[5,14,30], given by the Hamiltonian,

H = −
∑

〈i, j〉σ

ti j (c
†
iσ c jσ + H.c.) + U

∑

i

ni↑ni↓, (1)

where c
†
iσ and ciσ are the electron creation and annihilation

operators, niσ = c
†
iσ ciσ , ti j are the hopping elements with

zero average and variance 〈t2
i j〉 = t2/

√
N , and U is the onsite

Coulomb potential. The energy unit is set to the half band
width, D = 2t . Similarly to the popular Sachdev-Ye-Kitaev
(SYK) model [31], such an infinite-range model can be ex-
actly solved in the limit where the number of sites N → ∞. In
this case, this is performed through self-consistently solving
an Anderson impurity model using the DMFT framework
[5]. To solve the impurity problem, we utilize well-known
continuous time quantum Monte Carlo (CTQMC) methods as
well as iterative perturbation theory (IPT) as impurity solvers
[32,33]. The analytical continuation to the real-frequency
axis is done using the maximum entropy method (MEM),
the fifth-order polynomial fitting for CTQMC, and the Padé
approximant for IPT [34,35]. The use of an appropriate N-
dimensional optimizer [26] is essential for the convergence to
the local saddle point of the free-energy functional (the unsta-
ble solution). In addition, an appropriate free-energy analysis
[23,36] allows us to identify the first-order transition line, as
well as the location of the unstable solution.

The DMFT phase diagram (obtained from IPT), Fig. 1(a),
features a second-order critical end point at T = Tc ∼ 0.045.
Below Tc, there emerges a phase coexistence region confined
by two spinodal lines Uc1(T ) and Uc2(T ), marking the re-
spective instabilities of the Mott insulator and the metallic
solutions. At T = 0, the first-order transition line merges with
the spinodal line Uc2(T ), and the insulating solution becomes
marginally unstable exactly at T = 0 [36]. Above Tc, Uc1(T )
and Uc2(T ) merge to form a single Widom line, determined
from the minimum of the Landau free energy [14].

Finding the unstable solution. In order to understand the
behavior of all three solutions of our DMFT theory (metal,
insulator, and unstable), we employ the Landau free-energy
functional method [23,36], which provides information about
the form of the free-energy landscape. Within DMFT, the
free energy can be considered as a functional of the local
Green function, G(iωn), which for our model assumes the

FIG. 1. (a) DMFT phase diagram for the half-filled Hubbard
model and the trajectories studied (see text). (b) Evolution of the
free-energy functional [36] as T varies for the fixed-U trajectory
(U = 2.83). Here l = 0 and l = 1 correspond to the insulating and
metallic solutions, respectively. The arrows mark the position of the
unstable solutions.

form F [G] = Fimp[G] − t2T
∑

n G2(iωn), where Fimp[G] is
the free-energy functional of the associated impurity problem.
When solving the DMFT equations by the standard iteration
method, one finds convergence [36] to a given local minimum
of the free-energy functional, depending on the initial guess
for G(iωn). Within the coexistence region, two stable solutions
separated by the unstable solution (saddle point) are found. To
illustrate this, we follow a “phase space path” [36] connecting
the two solutions, which can be parameterized as G(l ) =
(1 − l )Gins(iω) + lGmetal(iω) with a parameter l ∈ [0, 1]. The
corresponding variation of the free energy can be calculated
[36] by evaluating the line integral �F (l ) = t2T

∫ l

0 dl ′el ·
δG[G(l ′)], where el = (Gins − Gmet)/|Gins − Gmet| and δG =
Gimp(G) − G. Here, the dot product denotes a trace over Mat-
subara frequencies and Gimp is the impurity Green function
dependent on the initial condition of G.

The unstable solution we seek exists anywhere within the
phase coexistence region. To be concrete, however, we exam-
ine its evolution following two specific trajectories: (1) along
the first-order transition line (where the two stable solutions
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have the same free energy); and (2) a trajectory where we
vary T at constant U , Fig. 1(a). For illustration, in Fig. 1(b)
we follow Ref. [36] and plot the free energy along trajectory
(2) (constant U ). Here we observe how the unstable solution
shifts towards the insulating solution as we lower the temper-
ature and finally merges with the insulating solution at T = 0.
This confirms that the insulating solution becomes unstable
precisely at T = 0 throughout the phase coexistence region.

To be able to precisely converge to the desired unstable
solution, we should keep in mind that the standard iterative
method (essentially a “steepest descent” method) can only
find local minima of the free energy, i.e., only the stable
solutions. Instead, we use the Broyden method, which can
converge to any extremum of a given functional (including
saddle points) [26], if the initial guess is sufficiently close
to the given extremum. Indeed, we find that this method can
efficiently converge even to the unstable solution within only
a moderate number of iterations. We should stress that the
unstable solution found in this way is generally not restricted
to lie exactly on the phase space path connecting the two
stable solutions, except very close to T = Tc. Still, Broyden-
converging to the proper unstable solution is greatly facilitated
by using the phase space path to estimate an appropriate initial
guess for the root search.

Resistivity calculations and quasiparticle transport. To
study the transport properties, we utilize the Kubo formula
[29] for the DMFT-based DC conductivity,

σ = σ0

∫

dǫ�(ω)
∫

dω

(

−
∂ f (ω)

∂ω

)

A(ǫ, ω)2, (2)

where the spectral function A(ǫ, ω) = −(1/π )Im[ω + μ −
ǫ − 
(ω)]−1, �(ω) = �(0)[1 − (ω/D)2]3/2, σ0 = 2πe2/h̄,
and f (ω) is the Fermi distribution function. Here 
(ω) is ob-
tained on the real axis using standard MEM for CTQMC and
the Padé approximant for IPT. The resistivity is ρ = 1/σ . To
normalize the resistivity, we use the Mott-Ioffe-Regel (MIR)
limit ρMIR = h̄D/e2�(0), which represents the scale where
the scattering process becomes incoherent and the mean free
path is comparable to the Fermi wavelength.

The resistivity calculation, based on Eq. (2), dramat-
ically simplifies in the quasiparticle regime [28], where
transport is dominated by only the leading low-energy ex-
citations. Here the Green function can be approximated as
G(ω, ǫ) ≃ Z

ω−Zǫ+iŴQP
, with the quasiparticle weight Z = (1 −

∂Re
(ω)
∂ω

)−1
ω=0 and scattering rate ŴQP = −ZIm
(ω = 0). A

further Sommerfeld approximation can be performed in sit-
uations where ŴQP < T and T < ZD, and the conductivity
can be expressed in terms of only two parameters: Z and
Ŵ = ŴQP/Z , viz.,

σ

σMIR
≈

1

Ŵ
tanh

(

Z

2T

)

. (3)

We explicitly checked that these conditions are indeed obeyed
throughout the coexistence region, not only by our metallic
solution, but also by the unstable solution. As we explicitly
show below, the results obtained from numerically evaluating
the conductivity using our full DMFT solution and Eq. (2)
demonstrate remarkable qualitative and even semiquantita-
tive agreement with our QP approximation. This important

FIG. 2. The resistivity for the metallic (black circles), insulat-
ing (red squares), and unstable (green squares) solutions along the
first-order transition line in a logarithmic ρ scale for (a) CTQMC
and (b) IPT. The Sommerfeld approximations to the resistivities
[Eq. (3)] are shown in the corresponding dashed and dotted lines with
different analytic continuation methods (MEM for CTQMC and Padé
approximant for IPT). (c) The quasiparticle weight Z for the metallic
and unstable solutions analytic continued by MEM (black and green
symbols). (d) The scattering rate Ŵ, for the metallic and the unstable
solutions, obtained from MEM (black and green symbols).

result demonstrates the resilient quasiparticle character [29]
of transport even for our unstable solution, despite the very
unusual behavior of the QP parameters in question.

Following the first-order transition line. To investigate
how our three solutions evolve when approaching the
zero-temperature critical point Uc2(T = 0), we study the
transport properties along the first-order transition line con-
necting the two critical points, Uc(T = Tc) and Uc2(T =
0). In Figs. 2(a) and 2(b) we show the results ob-
tained from CTQMC and IPT, respectively. At the critical
end point T = Tc, the three solutions merge as expected,
and the resistivity is of the order of the MIR limit. Below
Tc, the three solutions trifurcate into different trajectories. The
unstable solution (green diamonds) displays higher resistivity
than the metallic solution (black circles), with values of the or-
der of the MIR limit, ρ ∼ ρMIR, indicating bad metal behavior
[37]. The insulating solution has much higher resistivity due
to standard activated transport.

Close to the zero-temperature critical point Uc2(T = 0)
the three solutions do not merge, in contrast to the situation
around the critical end point (T ∼ Tc). Instead, while the
resistivity of the metallic solution drops at low temperatures,
that of the unstable solution remains comparable to the MIR
limit, suggesting incoherent transport, despite these trends
being well captured by the QP approximation [see Figs. 2(a)
and 2(b)]. To better understand this behavior, in Fig. 2(c)
we show the quasiparticle weight Z for the unstable (green
diamonds) and metallic (black circles) solutions. The unstable
solution has significantly lower Z than the metal, displaying

L161102-3
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a more pronounced decrease at low temperatures, reminis-
cent of resilient quasiparticles [29]. Note that the increase
followed by the decrease of Z in the metallic solution may
be attributed to the position of the first-order transition line
in the coexistence region, which shifts towards the insulating
phase with lowering the temperature. Similar behavior is seen
in Fig. 2(d), where we display the behavior of the scattering
rate Ŵ, which for the unstable solution (green diamonds)
remains appreciable down to the lowest temperatures, again
signaling poorly developed (resilient) quasiparticles. Remark-
ably, such non-Fermi Liquid (NFL) behavior here persists
down to the lowest temperatures, in contrast to previously
identified examples of RQPs [29], which emerged only at
temperatures intermediate between the conventional Fermi
liquid metal at the lowest T and a fully incoherent conductor
at high T .

Constant U trajectory. In order to further understand the
behavior of the unstable solution in the entire coexistence
regime, we also study the resistivity as a function of T

along a constant U trajectory. From the free-energy analysis,
Fig. 1(b), we anticipate that the unstable solution gradually
shifts towards the insulator as T is reduced at fixed U , even-
tually merging with it at T = 0. In contrast, in Figs. 3(a)
and 3(b), we observe the metallic and insulating solutions
displaying conventional Fermi liquid and activated behaviors,
respectively. On the other hand, for the unstable solution,
we find that the resistivity (green diamonds) increases as
the temperature decreases, reaching values as much as two
orders of magnitude larger than the MIR limit. Nevertheless,
as shown in Figs. 3(c) and 3(d), we observe that the unstable
solution’s density of states (DOS) at the lowest temperature
still features a very small quasiparticle peak at the Fermi
level. This suggests that the unstable solution still retains
some metallic character, even though the resistivity is much
larger than the MIR limit. In some sense, this situation could
be characterized as an extreme example of bad metal (BM)
behavior [37], albeit in a setup which is dramatically different
than the familiar high-T BM behavior in correlated matter.
And indeed, the standard RQP-Sommerfeld approximation
again captures remarkably well all the transport trends, even
in this extreme high-resistivity regime.

To even more precisely characterize such RQP-NFL be-
havior, we next examine the corresponding QP parameters
and their evolution as a function of T . In Fig. 3(e) we show
the quasiparticle weight for Z for metallic (black circles)
and unstable (green diamonds) solutions. The metal has a
normal behavior with Z saturating at low temperatures, con-
sistent with the expected FL behavior. In dramatic contrast,
Z corresponding to the unstable solution decreases rapidly
with temperature, displaying power-law behavior Z ∼ T 2. Re-
markably, a similar but much weaker decrease of the form
Z ∼ 1/| log T |, dubbed a ‘marginal Fermi liquid” (MFL) [38],
was proposed as the key signature of the breakdown of Fermi
liquid theory in optimally doped cuprates. The behavior found
here is not even marginal. By analogy, it can be described as
“fully developed NFL” behavior, the like of which is seldom
seen in correlated matter. Analogously, the unstable solution’s
scattering rate increases at low temperatures [Fig. 3(f)], again
in power-law fashion Ŵ ∼ 1/T 2, well exceeding the MIR limit
and consistent with transport.

FIG. 3. The resistivity for the metallic (black circles), insulating
(red squares), and unstable (green diamonds) solutions along the
constant U trajectory in logarithmic ρ scale for (a) CTQMC and
(b) IPT. The Sommerfeld approximations to the resistivities [Eq. (3)]
are shown in the corresponding dashed and dotted lines with differ-
ent analytic continuation methods (MEM and polynomial fitting for
CTQMC and Padé approximant for IPT). The density of states at low
temperatures (c) T = 0.01 and (d) T = 0.019 near the spinodal line
Uc2 computed from the CTQMC impurity solver and MEM analytic
continuation. (e) The quasiparticle weightZ for the metallic and the
unstable solutions. (f) The scattering rate Ŵ for the metallic and the
unstable solutions.

Conclusions. In this paper, we identified what may be
a new state of correlated electronic matter, characteriz-
ing the domain walls within the metal-insulator coexistence
region around the Mott point. We showed that its low-
energy excitations display a number of unusual properties
which qualitatively differ from either a conventional metal
or an insulator. This paints a physical picture of ex-
otic quasiparticles barely persisting at the brink of an
insulating state. Conceptually, such non-Fermi liquid be-
havior can be viewed as reflecting the quantum critical
fluctuations associated with the metal-insulator transition
region.

Our solution was obtained within the framework of single-
site DMFT theory, which physically represents the limit
of large frustration, where all possible symmetry-breaking
fluctuations are suppressed. The MIT coexistence region,
however, is presently known [16] to persist in real physical
systems such as quasi-two-dimensional Mott organics, where
intersite spin correlations could also play a role [39]. The
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effects of such perturbations can be systematically studied
within cluster-DMFT theories [36,40], with indications that
the phase coexistence region can be significantly influenced.
Nevertheless, we expect the short-range correlation effects
will only modify quantitatively the behavior of the unstable
solutions revealed in this work. Interesting modifications can
also arise by introducing extrinsic disorder due to impurities
and defects, which in some cases can significantly reduce
the size of the entire coexistence region [41,42]. How these
perturbations will affect the stability and the relevance of the
domain wall matter we discussed here is a fascinating open
problem which remains a challenge for future experiments as
well as theory.
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In this Supplemental Material, we review, in Sec. I, the Ginzburg-Landau theory and the φ 4 theory for dynamical mean-

field theory (DMFT) following Refs. [1–3] and the domain-wall solutions in the inhomogeneous Ginzburg-Landau theory. In

Sec. II, we provide a detailed comparison of different analytic continuation results for the quasiparticle parameters and transport

properties.

I. GINZBURG-LANDAU THEORY FOR DYNAMICAL MEAN-FIELD THEORY

We start from the Ginzburg-Landau free energy functional for DMFT [1]
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k ≡ (k, iωn) is the momentum and frequency index, and F
(1)
GL = 0 from the DMFT self-consistency condition.

A. φ 4-model for dynamical mean-field theory

The DMFT Ginzburg-Landau functional can be mapped to a φ 4-model around the critical point [2, 3]. We write

∑
k2

Γ
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]
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γ
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λ ,p, (6)

where Ψλ ,k1 p and γ
(2)
λ ,p is the eigenbasis and the eigenvalues of Γ

(2)
k1k2

, respectively, and λ labels the eigenmodes. We then

introduce the φλ ,p defined by

δGk = ∑
λ ,p

Ψλ ,kpφλ ,p, (7)
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such that the Ginzburg-Landau free energy can be written in the eigenbasis as
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where P ≡ (λ , p) and
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As pointed out in Refs. [1–3], the critical behavior is dominated by the soft eigenmode so we can project the free energy

functional to this specific eigenbasis. Focusing on the static and uniform part of the free energy function, we can write down the

φ 4-model for DMFT

FGL

T
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B. Domain-wall solution

To interpret the domain-wall solution, we write the Ginzburg-Landau free energy in the real space

FGL

[
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dx
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4
φ(x)4
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, (13)

where the cubic term in Eq. 12 can be eliminated by properly shifting the field φ [2, 3]. The Euler-Lagrange equation of FGL is

γ(2)φ(x)+ γ(4)φ(x)3 −κ∇2φ(x) = 0. (14)

For simplicity we consider the domain-wall forms along the x-direction, so the Euler-Lagrange equation becomes

γ(2)φ(x)+ γ(4)φ(x)3 −κφ ′′(x) = 0. (15)

with the boundary condition φ(x →−∞) =−φ0 and φ(x → ∞) = φ0 and φ0 =
√

−γ(2)/γ(4). Note that the uniform saddle-point

solution φ0 can be related to the double occupancy or the density of states at the Fermi level, where the positive and negative

values of φ0 correspond to the metallic and the insulating solutions, respectively [2]. One can show that the inhomogeneous

domain-wall solution is [4]

φ(x) = φ0tanh
[ x√

2ξ

]

, (16)

where ξ =
√

−κ/γ(2) is the correlation length. We can see that the domain-wall solution at φ(x) = 0 corresponds to the local

maximum of the uniform Landau free energy

f [φ ] =
1

2
γ(2)φ 2 +

γ(4)

4
φ 4 (17)

shown schematically in Fig. 1.
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FIG. 1. (a) Schematic Landau free energy f [φ ] as a function of φ . (b) Schematic domain-wall solution profile φ(x) as a function of x.

II. COMPARISON OF MAXIMUM ENTROPY METHOD AND POLYNOMIAL FITTING ANALYTIC CONTINUATION

In this section, we compare the quasiparticle and transport properties obtained from two analytic continuation approaches:

maximum entropy method (MEM) and fifth-order polynomial fitting.
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FIG. 2. The resistivity for the metallic (black circles), insulating (red squares), and unstable (green squares) solutions along the first-order

transition line in a logarithmic ρ scale for (a) CTQMC and (b) IPT. The Sommerfeld approximations to the resistivities (Eq. (3)) are shown

in the corresponding dashed and dotted lines with different analytic continuation methods (MEM and polynomial fitting for CTQMC and

Padé approximation for IPT). (c) The quasiparticle weight, Z, for the metallic and unstable solutions analytic continued by MEM (black and

green symbols) and by polynomial fitting (black and green dashed lines). (d) The scattering rate Γ, for the metallic and the unstable solutions,

obtained from MEM (black and green symbols) and from polynomial fitting (black and green dashed lines).

First, we discuss the results along the first-order transition line. Figure 2(a) shows the resistivities computed from the Som-
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merfeld approximation (Eq. (3) in the main text) using MEM and polynomial fitting analytic continuations. We see that the two

analytic continuations agree at low temperatures. However, around Tc, the two methods show significant differences. This be-

havior is also observed in the quasiparticle weight Z (Fig. 2(c)) and the scattering rate Γ ((Fig. 2(d)). The difference between the

two analytic continuation methods stems from the breakdown of the polynomial fitting around Tc, where the polynomial fitting

of the first few Matsubara points of the self-energy does not yield reliable quasiparticle parameters Z and Γ. Therefore, around

Tc, one should trust the MEM results. On the other hand, the polynomial fitting should be more reliable at low temperatures,

where the first few Matsubara points are enough to determine the quasiparticle parameters, whereas the MEM is noisier.

We now discuss the results of different analytic continuation approaches along a constant U trajectory. In Fig. 3(a), we show

the resistivity calculated from the Sommerfeld approximation (Eq. (3) in the main text) using MEM and polynomial fitting

analytic continuation. We observe that the two analytic continuation approaches give semi-quantitatively similar behavior. In

Fig. 3(c), we show the quasiparticle weight Z calculated from the two analytic continuation approaches. We observe that the

two analytic continuations give the same behavior for the metallic solutions quantitatively. Note that the polynomial fitting is

expected to give a more reliable analytic continued Z at low temperature. On the other hand, for the unstable solutions, we see

that the two analytic continuation approaches yield different powers where the polynomial fitting gives Z ∼ T 1.5 and MEM gives

Z ∼ T 2. Both differ significantly from the Fermi-liquid saturation behavior shown in the metallic solutions. Finally, in Fig. 3(d),

we show the scattering rate Γ calculated from the two analytic continuation approaches. We observed that the two approaches

give semi-quantitatively the same behavior with similar power, Γ ∼ T 2 for the metallic solutions and Γ ∼ T−2 for the unstable

solutions. We note that the polynomial fitting is expected to yield more reliable analytic continued Γ for the metallic solutions

at low temperatures.
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FIG. 3. The resistivity for the metallic (black circles), insulating (red squares), and unstable (green diamonds) solutions along the constant U

trajectory in logarithmic ρ scale for (a) CTQMC and (b) IPT. The Sommerfeld approximations to the resistivities are shown in the correspond-

ing dashed and dotted lines with different analytic continuation methods (MEM and polynomial fitting for CTQMC and Padé approximation

for IPT). (c) The quasiparticle weight, Z, for the metallic and the unstable solutions. (d) The scattering rate Γ for the metallic and the unstable

solutions.
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Using the dynamical mean field theory we investigate the magnetic field dependence of dc conductivity
in the Hubbard model on the square lattice, fully taking into account the orbital effects of the field
introduced via the Peierls substitution. In addition to the conventional Shubnikov–de Haas quantum
oscillations, associated with the coherent cyclotron motion of quasiparticles and the presence of a well-
defined Fermi surface, we find an additional oscillatory component with a higher frequency that
corresponds to the total area of the Brillouin zone. These paradigm-breaking oscillations appear at
elevated temperature. This finding is in excellent qualitative agreement with the recent experiments on
graphene superlattices. We elucidate the key roles of the off-diagonal elements of the current vertex and the
incoherence of electronic states, and explain the trends with respect to temperature and doping.

DOI: 10.1103/PhysRevLett.127.196601

Quantum oscillations (QOs) are a fundamental phe-
nomenon in solid state physics. The Lorentz force affects
electrons in such a way that all the system properties vary
periodically with the inverse of the magnetic field [1].
Conventionally, QOs are observable at low temperatures T
and in absence of strong incoherence, and provide detailed
information about the topology and shape of the Fermi
surface [1,2]. Yet, QOs are surprisingly ubiquitous. They
also appear in non-Fermi liquids [3–5] and even in gapped
systems such as Kondo insulators [6]. They were observed
in graphite [7,8], graphene [9,10], organics [11], cuprates
[12–14], perovskite heterostructures [15,16], iron-pnictide
superconductors [17], and moiré systems [18].
In moiré systems, huge superlattice spacing allows

access to regime of large flux per unit cell Φ. Precisely
in this regime, recent experiments [19–22] have uncovered
a new, peculiar type of QOs of conductivity: peaks at Φ
equal to simple fractions of the flux quantum, i.e., Φ ¼
Φ0p=q with p, q coprime integers, and p and q small [21].
These Brown-Zak (BZ) oscillations are clearly distinct
from the conventional Shubnikov–de Haas (SdH) oscilla-
tions: BZ QOs appear at elevated temperatures [20], and
their frequency does not depend on the electron density n
(in 2D, SdH QOs have a frequency proportional to n).
Some understanding of this phenomenon was reached by
noting that the conductivity is high whenever the non-
interacting density of states consists of a small number (q)
of wide energy bands (magnetic “minibands”) [20,21].
States in wider bands should have a higher velocity, and
therefore conduct better. However, this heuristic picture
cannot explain the totality of experimental observations. In

this Letter we present a microscopic theory of conductivity
in the Hubbard model and unexpectedly recover a phe-
nomenology strikingly similar to that observed in the
experiments of Refs. [20] and [21]. Our analysis elucidates
the essential role of incoherence for the BZ oscillations, and
explains the temperature, doping and interaction trends in a
systematic manner.
We employ the recently developed extension of the

dynamical mean field theory (DMFT) [23] to finite
magnetic fields [24–26]. In absence of the magnetic field,
the DMFT solution of the Hubbard model was previously
shown to describe the transport properties of various
materials [27–31] and cold atoms in optical lattices
[32,33]. The DMFT approximates the self-energy by a
local quantity, and becomes exact in the limit of infinite
coordination number. In a separate accompanying publi-
cation Ref. [26], we prove that the vertex corrections for the
longitudinal conductivity cancel at the level of DMFT,
regardless of the magnetic field (see also Refs. [34] and
[25]); this makes it possible to calculate conductivity by the
Kubo bubble without any additional approximations. Our
approach fully takes into account local correlations due to
electron-electron (e-e) interaction, and is formally appli-
cable at any T, coupling strength U and field B.
Our conductivity results exhibit oscillations that clearly

correspond to the BZ QOs observed in experiment. The
oscillations have a frequency p=q ¼ 1 (corresponding to
maxima at p=q ¼ 1=q) and appear at relatively high T
where the SdH oscillations are getting thermally washed
out. BZ either coexist with the SdH oscillations or appear as
the sole oscillatory component. As T is lowered, higher
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harmonics of BZ oscillations become more pronounced
(peaks become sharper, and additional maxima at p=q ¼
2=q; 3=q;… appear). Ultimately, at very low T, regular BZ
oscillations give way to fractal behavior which does not
yield any pronounced peaks in the Fourier spectrum. It
turns out that the essential ingredient for the regular
(sinusoidal) BZ oscillations are the incoherent electronic
states. Incoherence allows for conduction processes that
involve tunneling between two eigenstates of the
Hamiltonian, and it is precisely the contribution of those
processes that oscillates at frequency p=q ¼ 1. Our numeri-
cal data suggest that in strongly correlated regimes, regular
BZ oscillations should appear at very low temperature.
Model and method.—We consider the Hubbard model

on the square lattice with nearest-neighbor hopping t,
coupling U, and band filling per spin nσ, with n ¼P

σ nσ. We use D ¼ 4t as the unit of energy. The field
is included through Peierls phases for rational flux values
Φ=Φ0 ¼ p=q to obtain commensurate magnetic cell [35].
We do not include the Zeeman term [36,37], as it does not
affect the QO frequencies, only their amplitudes [1]. We
solve the problem within the DMFT with numerical
renormalization group solver. Full details of our calcula-
tions are given in Ref. [26].
Results.—Figure 1(a) shows the conductivity for mod-

erate doping and interaction (nσ ¼ 0.4, U ¼ 1) over a
broad range of temperature and field (flux). At low T, we
clearly see prominent oscillations. The onset of nonmono-
tonic behavior is marked with the white line: it indicates the
value of B where the first extremum in σxxdc is encountered
for a given T. In Fig. 1(b) we close in on a narrow field
range and plot σxxdc as a function of 1=B at several T. At low
T, we see large dips in conductivity for p=q ¼ nσ=i (red
lines; i is integer), corresponding to occurrences of a large

gap in the density of states at the Fermi level. These are the
SdH oscillations with a frequency related to the area of the
Fermi sea AFS by the Onsager relation F ¼ Φ0=ð2πÞ

2AFS,
AFS ¼ ð2πÞ2nσ. In between the sharp SdH dips, one can
observe a weak but highly nonmonotonic behavior of σxxdc
with high-frequency oscillatory features exceeding the
resolution of our calculations. With increasing T, the
amplitude of the SdH oscillations is reduced in line with
the Lifshitz-Kosevitch theory [2,26], and the behavior in
between the SdH dips becomes simpler: one gets spikes
coinciding with small-pmoderate-q values of flux (denoted
with blue lines: full line is p ¼ 1, dashed line is p ¼ 2).
Ultimately, only regular sinusoidal oscillations of period 1
remain, with maxima at p=q ¼ 1=q. Increasing T further
erases all nonmonotonic behavior.
Figure 1(c) shows the oscillation spectra obtained by

Fourier transforming σxxdcðB
−1 ∼ q=pÞ on the range

p=q ∈ ½0.03; 0.15�. At the lowest temperature we see strong
peaks at p=q ¼ nσ and its higher harmonics, corresponding
to (sharp) SdH oscillations. The fractal behavior in between
the SdH dips seen in Fig. 1(b) does not produce a clear
oscillatory signal [26]. As T is increased, the peaks at
p=q ¼ 1 and p=q ¼ 2 appear, while at the highest T one is
left only with the peak at p=q ¼ 1.
In Figs. 1(d)–1(f) we plot the conductivity in the ðnσ; BÞ

plane. At low T, the SdH oscillation fans out from the (0,0)
point, clearly indicating the nσ dependence of the oscil-
lation frequency. At a higher T, SdH oscillations become
weaker; horizontal (i.e., nσ-independent) stripes corre-
sponding to fractal BZ oscillations become visible, and
are particularly pronounced at small p values. At the
highest T shown, only the BZ oscillations remain.
We summarize our observations by presenting in

Figs. 2(a) and 2(b) the two relevant Hubbard model phase

(a) (b) (c) (d) (e) (f)

FIG. 1. DMFT results for conductivity in the Hubbard model for U ¼ 1D. (a) Conductivity as a function of temperature and field at
band filling nσ ¼ 0.4. Color code is logarithmic: black means log10 σ

xx
dc ≈ −7.95, white means log10 σ

xx
dc ≈ 2.12. White line: onset points

of the nonmonotonic behavior of σxxdcðBÞjT . (b) Conductivity as a function of inverse magnetic field. Bottom to top:
T ¼ 0.0012; 0.0049; 0.0109; 0.024D; lines are plotted on the log scale, and offset for the sake of clarity. (c) Frequency spectrum
of conductivity in the range p=q ∈ ½0.03; 0.15� at different temperatures. Bottom to top: T ¼ 0.001; 0.009; 0.016; 0.029; 0.064D. Each
spectrum is normalized to 1 and shifted for the sake of clarity. (b),(c) Vertical lines: peaks due to SdH oscillations (red), and BZ
oscillations (blue). (d)–(f) Conductivity with respect to band filling and field at T ¼ 0.005; 0.03; 0.1D, respectively. Color code: white
means −8.22, −3.57, −3.12, black means 2.14, 1.77, 1.03, respectively.
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diagrams, showing the dominant type of (regular) oscil-
lations, based on the Fourier spectrum of σxxdcðq=pÞ in the
field range p=q ∈ ½0.03; 0.15�. We also indicate the onset
field for the nonmonotonic behavior (gray scale color
coding and the black contours). Clearly, the onset field
depends strongly on U and n; the nonmonotonic behavior
is stronger and requires less strong fields in more coherent
regimes (lower U and/or higher doping away from half-
filling δ ¼ 1 − n). Another notable trend is that the BZ
oscillations start at a lower temperature in less coherent
regimes (lower δ at fixed U; stronger U at fixed δ).
To elucidate the role of incoherence we perform calcu-

lations within the finite-lifetime approximation (FLA) [26],
where a lifetime of electronic states is set by hand by fixing
the (local) self-energy to ΣðωÞ ¼ −iΓ. We determine the
phase diagram of FLAwith respect to the two parameters of
this toy model, the scattering rate Γ, and temperature T

[Fig. 2(c)]. There appears to be a well-defined upper cutoff
value of Γ for the observation of any QOs. For the
observation of SdH oscillations, there is a relatively
well-defined upper cutoff T. The region of dominant
regular BZ oscillations is additionally limited by lower
cutoff Γ and T. Below Γ ≈ 5 × 10−5, fractal behavior is
observed, with or without the SdH oscillations, depending
on temperature. At moderate Γ, increasing the temperature
alone does not wash out the BZ oscillations, and they
persist up to infinite temperature.
We superimpose on the FLA phase diagram the DMFT

results by identifying Γ ¼ −ImΣðω ¼ 0Þ. In DMFT the
self-energy has frequency dependence and depends on both
U and T. The gray scale lines represent the DMFT result for
ΓðTÞ for different U values. The upper cutoff Γ for QOs
(lime points) holds in good agreement with FLA results, as

well as the upper cutoff T for SdH oscillations (blue
diamonds). At lowU, the lower cutoff T for BZ oscillations
is also in agreement with FLA. However, at high U, the
discrepancy from FLA is significant: the sinusoidal BZ
oscillations appear at much lower T than one would expect
based on a simple FLA toy model where Σ has no
frequency dependence. At very strong U, there rather
seems to be a well-defined lower cutoff Γ for regular BZ
QOs extending to very low T (this lower Γ cutoff being a bit
higher than the one at high T). The observation of BZ
oscillations at very low T is therefore a clear indication of
strong electronic correlations that go beyond simple inco-
herence effects.
Discussion.—The trends related to incoherence and

temperature can be understood from the linear-response
transport theory underlying our calculations. The Kubo
bubble for conductivity is illustrated in Fig. 3(a). At
the level of the DMFT where the self-energy does not
depend on the momentum, the product of two velocities
v
k̃;m;m0v

k̃;m0;m can be rewritten as a single factor with two
kinetic-energy arguments, vðϵ; ϵ0Þ. Depending on temper-
ature, effective scattering rate, and chemical potential,
different ðϵ; ϵ0Þ domains play a role [26]. In particular,
only ðϵ; ϵ0Þ such that jϵ − ϵ0j < Γ and ϵð0Þ − μ < T give
significant contributions. At low T, we observe that the
SdH effect is already contained in vðϵ; ϵ0Þ. The oscillation
spectrum for vðϵ; ϵ0 ≈ ϵ ≈ μÞ, exhibits a peak that moves
with μ and coincides with nσ. As the thermal window
becomes larger, a wider range of vðϵ; ϵ0 ≈ ϵÞ enter the
calculation, yet oscillate with different frequencies, depend-
ing on ϵ. This leads to dephasing and washing out of the
SdH oscillations. By contrast, the BZ oscillation is mild
at any given ϵ, but it always has the same frequency

(a) (b) (c)

FIG. 2. Phase diagrams showing the type of QOs observed in the range of field p=q ∈ ½0.03; 0.15�. (a) DMFT results in ðδ; TÞ plane,
(b) DMFT results in ðU; TÞ plane, (c) FLA results in ðΓ; TÞ plane. Red: SdH only. Purple: both SdH and BZ, but SdH dominant. Blue:
BZ dominant (p=q ¼ 1 peak stronger than p=q ≈ nσ peak). Black shading and contours in (a),(b) denote the value of the field where
nonmonotonic behavior starts in 1=σxxdcðBÞjT (analogous to the white line in Fig. 1). Above the lime dashed line, no oscillations are
detectable at any field strength. In (c), lines and symbols correspond to DMFT results, shading to FLA results. Lines are ΓðTÞ for various
values of U. Purple squares indicate where the BZ oscillations start with increasing T, blue diamonds where the BZ becomes dominant,
and lime circles where all QOs cease [corresponding to the top edge of blue and purple regions in (b)].
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(p=q ¼ 1), thus its contribution accumulates with increas-
ing T and can become the dominant effect, as illustrated in
Fig. 3(b). The domain of v that turns out to oscillate with
the BZ frequency is found at moderate jϵ − ϵ0j. Therefore,
as the scattering rate Γ is increased, those values enter the
calculation and the BZ oscillations become visible in
σxxdcðq=pÞ. The values of vðϵ; ϵ0Þ at large jϵ − ϵ0j do not
oscillate with any particular frequency. As those get
included at large Γ, all oscillations are ultimately overcome

by the nonoscillatory contributions, as illustrated in
Fig. 3(c). The velocity v is the only source of BZ
oscillations in the Kubo bubble, as Green’s function and
the self-energy do not have an oscillatory component at the
frequency of BZ oscillations [26].
In previous works [20,21], the BZ oscillations were

connected with the velocity of the magnetic minibands,
calculated as v ¼ ∂ϵ

k̃;m=∂k̃x. Nevertheless, it is important
to note that the eigenstates of the noninteracting
Hamiltonian do not have a well-defined velocity in the
presence of the field. Rather, the velocity v

k̃;m;m0 is a matrix
in the miniband spacem,m0. In previous works this was not
taken into account and the results were interpreted in terms
of only the intraband processes (diagonal elements of v).
This would be well justified only in the limit of coherent,
long-lived quasiparticle states. However, increasing T even
at weak coupling leads to decoherence of electron states,
which activates the contribution of off-diagonal velocity
components and even makes them fully dominant [26].
This corresponds to m ≠ m0 (or ε ≠ ε0) terms in the Kubo
bubble in Fig. 3(a). For these interband processes, the
amplitude is determined by the probability of tunneling

between two minibands upon measurement of velocity. We
illustrate the relative contributions of interband and intra-
band processes to overall dc conductivity in Fig. 3(d) in five
different regions of parameters of the FLA toy model.
These plots reveal that the diagonal components of the
velocity cannot account for the regular sinusoidal BZ
oscillations, but only for the fractal behavior that is
observed at low Γ. It is interesting to note that even at
very high Γ, the intraband processes still exhibit strong
fractal behavior, while the overall conductivity is already
devoid of any apparent QOs. This indicates that the regular
BZ oscillations are not a simple “smoothing” of the fractal
behavior due to widened peaks in the (fractal) spectral
function. Rather, this is a separate phenomenon, ultimately
due to oscillations in the tunneling amplitudes v

k̃;m;m0≠m.
Relation to experiment.—Both the fractal behavior

(peaks in σxxdc up to p=q ¼ 4=q) and the regular BZ
oscillations have been observed in experiment [20,21].
The T-trend observed in Figs. 1(d)–1(f) is in qualitative
agreement with the experimental findings of Ref. [20].
Note that the lattice in this moiré system is different from
that in our model, and that the dominant interaction in
graphene at high T is likely of the electron-phonon (e-ph)
type, while our Hamiltonian only includes e-e repulsion.
The agreement despite such differences indicates a signifi-
cant level of universality in these phenomena.
Notwithstanding, the doping trend at the highest temper-
ature is in apparent contrast to the measurements in
Ref. [20]. In our Fig. 1(f), BZ oscillations are regular
(sinusoidal) close to half-filling; closer to the empty band
limit a stronger fractal behavior remains in place. In the
corresponding high-T experimental result in Ref. [20]
[Figs. 2(b) and 2(c)], only the regular oscillations are

(a)

(b)

(d)

(c)

FIG. 3. (a) Diagrammatic representation of the Kubo bubble.
Left: in general; right: at the level of the DMFT. ðk̃; mÞ denotes
eigenstates of the noninteracting Hamiltonian (see [26] for
details). Red or lime triangles are the velocity vertices, in DMFT
rewritten as a single factor depending on two kinetic energies,
vðε; ε0Þ. (b),(c) White panels: oscillation spectra of vðε; ε0Þ at a
given ðε; ε0Þ. Gray panels: oscillation spectra of v integrated over
the relevant ðε; ε0Þ domain, depending on model parameters (T
and Γ), as indicated by the large curly bracket; (b) trend with
respect to temperature. (c) Trend with respect to the scattering
rate. (d) Field dependence of conductivity and the contributions
of interband (ϵ ≠ ϵ0) and intraband (ϵ ≈ ϵ0) processes in FLA in
four different parameter regimes.
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observed, and no oscillations at all are observed close
to the “neutrality point” (corresponding to the empty band
limit in our calculations). This discrepancy appears to be
due to the difference in the scattering mechanism: the e-e
scattering rate goes to zero as the band empties, but the
e-ph scattering rate does not. The FLA calculation [26]
where Γ is fixed regardless of the doping clearly reproduces
the doping trend observed in the experiment. Similarly,
at low temperature in the Hubbard model, one observes
both the SdH oscillations and fractal behavior [Fig. 1(b)].
In experiment, there are cases where only SdH oscilla-
tions are observed at low temperature. This discrepancy is,
again, likely due to the difference in scattering mecha-
nisms. In the Hubbard model the scattering rate goes down
with temperature [Fig. 2(c)]. If the scattering rate is
kept fixed at a moderate value (as in FLA), at low T

one only observes the SdH effect [see bottom panel in
Fig. 3(d)].
Conclusion.—We have studied the magnetic quantum

oscillations of longitudinal dc conductivity in the 2D
Hubbard model. We observe three types of nonmonotonic
behavior in σxxdc: (1) Shubnikov–de Haas oscillations with
frequency p=q ¼ nσ (and higher harmonics), at low tem-
perature; (2) fractal behavior of conductivity with peaks
at Φ=Φ0 ¼ 1=q; 2=q; 3=q;…, in the coherent regimes;
(3) sinusoidal p=q ¼ 1–frequency oscillations, in moder-
ately incoherent regimes (the Brown-Zak oscillations, BZ).
Our findings are in striking agreement with recent experi-
ments on graphene superlattices. The discrepancies from
experiment can be traced back to a difference in inter-
actions present in the system. The oscillation phenomenol-
ogy crucially depends on the scattering rate, and can thus be
used in experiment as a characterization tool for scattering
mechanisms. The fractal behavior is ultimately a manifes-
tation of the Hofstadter butterfly, and is an indication of a
low scattering rate; in contrast, the BZ oscillations indicate
a higher scattering rate, and when observed at very low
temperature are an indication of a strong e-e coupling. Our
results present clear predictions for future experiments
where the dependence on coupling strength and doping
might be investigated.
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Calculation of conductivity in the Hubbard model is a challenging task. Recent years have seen much progress
in this respect and numerically exact solutions are now possible in certain regimes. In this paper we discuss the
calculation of conductivity for the square-lattice Hubbard model in the presence of a perpendicular magnetic
field, focusing on orbital effects. We present the relevant formalism in all detail and in full generality, and then
discuss the simplifications that arise at the level of the dynamical mean field theory (DMFT). We prove that the
Kubo bubble preserves gauge and translational invariance, and that in the DMFT the vertex corrections cancel
regardless of the magnetic field. We present the DMFT results for the spectral function and both the longitudinal
and Hall conductivities in several regimes of parameters. We analyze thoroughly the quantum oscillations of the
longitudinal conductivity and identify a high-frequency oscillation component, arising as a combined effect of
scattering and temperature, in line with recent experimental observations in moiré systems.

DOI: 10.1103/PhysRevB.104.205101

I. INTRODUCTION

Strong correlations in electronic systems have a profound
effect on conductivity, and lead to a range of unconventional
behaviors which are at the center of interest in condensed
matter theory. One such behavior is the linear temperature
dependence of resistivity, observed in the cuprate supercon-
ductors [1–3]. The linear resistivity has been reproduced by
numerical simulation of the Hubbard model [4–13], as well
as with ultra-cold-atom simulations [14]. It is viewed as an
effect of proximity to the Mott transition [8,15,16] or quantum
critical points [6,17–19], as well as a generic high-temperature
feature of correlated materials which are well approximated
by a single-band model [9].

External magnetic fields are also known to affect the
transport properties of electronic systems [20], sometimes
drastically: in the context of the two-dimensional electron gas,
magnetic field leads to the well-known quantum Hall effect
(QHE), where conductivity displays intricate dependence on
the magnetic field [21–24]. The effect of the Coulomb inter-
action is here essential for the understanding of the fractional
QHE [25,26]. In conventional metals, resistivity is an oscilla-
tory function of the magnetic field, which is the well-known
Shubnikov–de Haas effect (SdH) [27,28]. However, the SdH
effect is often observed even in states which are assumed to be
correlated and are not yet fully understood [29–31]. In such
cases, an effective Fermi-liquid description of the material is
often invoked to analyze the experimental data, and to map
out the geometry of the Fermi surface. It is, therefore, of great
importance to understand the interplay of strong coupling and
magnetic fields in lattice systems. The study of magnetore-
sistance in correlated lattice models has been so far limited

to perturbative approaches, either for weak fields [32–34] or
weak interactions [22,35,36]. To the best of our knowledge,
the only nonperturbative calculations of magnetotransport
were limited to the transversal conductivity [37–39]. Nonper-
turbative calculations were also performed for the effective
Fermi-liquid parameters (quasiparticle weight, scattering rate,
and density of states at the Fermi level) [38,40,41], which can
be considered relevant for longitudinal conductivity.

In this paper we study the effect of magnetic field on both
the longitudinal and transversal conductivity in the square-
lattice Hubbard model in several parameter regimes: from
weak to strong coupling, low to high temperature, and in the
full range of the magnetic field.

We first lay out the general formalism for the calculation
of conductivity in the presence of the magnetic field and
then describe the simplifications that arise at the level of the
dynamical mean field theory (DMFT), as previously imple-
mented in Refs. [38,41]. Most importantly, we show that the
Kubo bubble is gauge invariant and that the vertex corrections
to the current-current correlation function cancel, analogously
to the zero-field case. The latter is done by rederiving the
well-known zero-field proof from Ref. [42] in real space, and
then generalizing it to the case of external magnetic fields.
Cancellation of vertex corrections at the level of DMFT was
previously shown only for the transversal conductivity [38],
and here we give a different, fully general proof.

We perform extensive DMFT calculations to cover a large
part of the phase diagram. Our numerical results show that
the oscillatory behavior of conductivity is restricted to a fi-
nite range of temperature which is mainly determined by
the amount of dynamic correlations (which are promoted
by interactions, yet hindered by doping). The amplitude of
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oscillations decays exponentially with temperature, as ex-
pected from the Lifshitz-Kosewich theory [43]. Above a
certain characteristic temperature, no nonmonotonic behav-
ior can be induced no matter how strong the magnetic field
is. We also observe that in a big range of magnetic fields
and interaction strengths, the conductivity follows a scaling
law, with the temperature scale set by the coupling strength.
Most importantly, the T -linear dependence of resistivity in the
high-temperature regime is not qualitatively modified by the
magnetic field.

We investigate transverse conductivity in the noninter-
acting limit, and observe exponential decay of σ xy with
temperature, and a power-law divergence as Bz → 0. The
analytic behavior at Bz = 0 is restored by interactions, which
led to a smooth decay of σ xy as the magnetic field is gradually
turned off.

Finally, we investigate the oscillatory behavior of conduc-
tivity in weak-to-moderate magnetic fields. In all the cases
we studied, the longitudinal conductivity turns out to be
dominated by the current-vertex factors, rather than the local
density of states at the Fermi level or the effective scatter-
ing rate. This leads to an important simplification: one can
reliably calculate conductivity at an arbitrary field by us-
ing the zero-field DMFT calculation for the self-energy. We
further observe that at high temperature, moderate-to-high
interactions, and moderate fields, the oscillation occurs at two
separate frequencies: one that corresponds to the area of the
Fermi sea, as in the Shubnikov–de Haas effect, and the other
which corresponds to the full area of the two-dimensional
Brillouin zone (BZ), and is therefore of higher frequency and
independent of the doping level. This finding is in excellent
qualitative agreement with the recent experimental observa-
tions in graphene superlattices [44–47]. The full discussion
of the observed phenomenology of quantum oscillations of
conductivity in the Hubbard model is presented in a separate
publication, Ref. [48], while here we present the raw data
and describe the basic mechanism behind the onset of the
high-frequency oscillations.

The paper is organized as follows. We first describe the for-
malism: the Hamiltonian, the gauge choice, reciprocal-space
formulation, gauge-invariant Green’s function, current opera-
tors and the correlation function, DMFT approach, calculation
of the conductivity tensor, and vertex factors. We then present
and discuss the results. For the benefit of the reader and for
easy rederivation and validation of the results presented in
this work, we provide very detailed proofs of all steps in the
derivations in the Appendices. For reasons of clarity and to
facilitate dimensional analysis we maintain all constants (e, h̄,
kB, and lattice constants a in c) in the equations.

II. FORMALISM

A. Model

We study the Hubbard model on the square lattice with
lattice constant a, defined by the Hamiltonian

H = H0 + Hint, (1)

where the noninteracting part H0 is the tight-binding (TB)
model that we discuss in the following sections, while the
interacting part Hint is the local density-density coupling, i.e.,

the Hubbard interaction

Hint = U
∑

i

ni,↑ni,↓, (2)

where i indexes the lattice sites, ni,σ are the density operators,
and U is the coupling constant. The electron spin is denoted
σ =↑,↓.

1. Orbital space

The lattice sites are assumed to lie in the z = 0 plane;
where convenient, we will treat the system as a three-
dimensional stack of such planes separated by the lattice
constant c in the perpendicular direction.

The effect of the external magnetic field B in the TB model
is twofold: it couples to the electrons’ spin degree of freedom
(Zeeman term), as well as the momentum. The latter is ap-
proximated on the lattice by means of the Peierls substitution
[49,50]. The resulting Hamiltonian is

H0 = −μ
∑

i,σ

ni,σ + gμB

∑

i

B(ri ) · Si −
∑

i, j,σ

ti je
i fi j c

†
i,σ c j,σ ,

(3)

where μ is the chemical potential, g is the gyromagnetic
factor, μB is the Bohr magneton, the position vector of site
i is ri, and the operator of the electron SU(2) spin is

S
η

i =
1

2
(c†

i,↑, c
†
i,↓)σ̂ η

(

ci,↑
ci,↓

)

, (4)

where σ̂ η are the Pauli matrices, and η enumerates the spatial
directions x, y, z. The ti j is the hopping amplitude between the
sites i and j. The Peierls substitution introduces a phase shift
fi j that is picked up by an electron on the path from site i to
site j:

fi j =
e

h̄

∫ r j

ri

A(r) · dr. (5)

Here A is the vector potential, e the elementary charge, and
h̄ the reduced Planck’s constant. In matrix notation in site
space, the effect of the gauge field corresponds to element-
wise multiplication of the bare Hamiltonian:

H0[A] = H0[A = 0] ◦ eif , (6)

where eif is simply a matrix constructed out of ei fi j elements.
We are interested in the effects of a uniform magnetic

field perpendicular to the two-dimensional (2D) lattice: B =
(0, 0, Bz ). The vector potential A is not uniquely determined
by B. There are two obvious choices: the Landau gauge

A(r) = (0, xBz, 0), (7)

and the symmetric gauge

A(r) =
(

−
y

2
Bz,

x

2
Bz, 0

)

. (8)

Throughout this paper, we work in the Landau gauge.
In the rest of the paper, we define lattice site coordinates

xi and yi as integers, and define ri = (xi, yi, 0). The physical
position vector of the lattice site i is then ari and we give
spatial indices in terms of r as, e.g., Ar ≡ A(ar).
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Plugging the Landau gauge field A [Eq. (7)] in the expres-
sion for the Peierls phase [Eq. (5)] one obtains [41,48] (see
Appendix A for proof)

fi j ≡ fri,r j

=
e

h̄
(Bza

2)
(y j − yi )(xi + x j )

2

= 2π
�

�0

(y j − yi )(xi + x j )

2
, (9)

where �0 = h/e is the unit flux, and � = Bza
2 is the flux per

lattice plaquette.
To be able to define a finite-sized (commensurate) mag-

netic unit cell, the values of Bz must satisfy
e

h̄
(Bza

2) = 2π
p

q
, (10)

where p and q are coprime integers. q is then the size of the
unit cell in the x direction (for proof see Appendix B). In the
other direction the size of the unit cell is 1, as the translational
invariance is not broken along the y axis; this is obvious as fi j

depends only on the difference yi − y j .
The effect of Bz on the kinetic energy term is periodic.

As Bz enters the kinetic energy through e
2π i

p

q
(y j−yi )(xi+x j )/2,

if (y j − yi )(xi + x j )/2 is an integer for all (i, j) connected
by hopping (as is the case with nearest-neighbor hopping),
increasing p/q by an integer makes no difference. Therefore,
the effect of p

q
is the same as that of p+mq

q
, with m integer.

The inversion symmetry of the lattice implies that the effect
of p

q
is the same as that of q−p

q
. When it comes to the kinetic

energy term, all physically discernible magnetic fields [that
satisfy Eq. (10)] can be mapped onto the range 0 � p/q �

1
2 .

The field p/q = 1 is then a characteristic value of the field, the
lowest one (other than zero) that does not couple with electron
motion.

In numerics, we will consider a finite L × L cyclic lattice,
which must fit an integer number of magnetic unit cells of size
q × 1. We can rewrite the condition (10) as

e

h̄
(Bza

2) = 2π
p

q
= 2π

n

L
(11)

with the size of magnetic unit cell being L or smaller, as given
by L/gcd(L, n), where “gcd” denotes the greatest common
divisor, and n is an arbitrary integer. In fact, the relation
between the finite and infinite lattice is simply

q = L/gcd(L, n), p = n/gcd(L, n).

The size of the lattice L determines the resolution of p/q that
one can achieve in scanning the strength of the field in the
model.

Under the assumption of only the nearest-neighbor hop-
ping, we now rewrite the full Hamiltonian as

H0 = −μ
∑

i,σ

ni,σ +
1

2
gμBBz

∑

i,σ=↑,↓

(−1)δσ,↓ni,σ

− t
∑

i,u∈{ex,ey},σ

ei ea2

h̄
xiBzu·ey c†

ri,σ
cri+u,σ + H.c. (12)

Numeric scales. The importance of the Zeeman splitting
depends on the ratio of the Zeeman energy over the band-
width. Both g and the bandwidth are material specific. A quick

estimate for cuprate compounds, under the assumption of g =
2 and half-bandwidth of around 105 K, gives that Bz of about
50 T corresponds to a Zeeman energy of about ≈3 × 10−3D,
where D = 4t is the half-bandwidth. While the effect of Zee-
man splitting is interesting to study on its own, throughout this
paper we restrict to only the gauge-field effects and set g = 0.

The effect of the gauge field is determined by the lattice
spacing. Assuming a ∼ 5 × 10−10 m which is relevant for
cuprates, we see that the characteristic p/q = 1

2 field corre-
sponds to Bz = π h̄

ea2 ≈ 8 × 103 T. At Bz = 50 T, we therefore
have p/q ≈ 1

300 , and we need at least the lattice size L = 300
to describe this regime. Clearly, the bigger the lattice spacing,
the bigger the phase picked up upon traveling between the
lattice sites, and the bigger the effect of the coupling to the
gauge field. The regime of large p/q is therefore relevant for
systems with a larger lattice spacing (as in moiré heterostruc-
tures [51]), or where high gauge fields can be introduced
artificially (as in optical lattices [52,53]).

2. Momentum space

Rewriting the kinetic energy in momentum space leads
to the Harper equation [54,55]. By applying to the kinetic
energy term the Fourier transformation of the creation and
annihilation operators,

c
†
i =

1
√

N

∑

k

e−ik·ri c
†
k, ci =

1
√

N

∑

k

eik·ri ck, (13)

where N = L2 is the number of sites in the lattice, one obtains

Hkin = −t
∑

i,u∈{ex,ey},σ

ei2π n
L

xiu·ey c†
ri,σ

cri+u,σ + H.c.

= −2t
∑

k,σ

cos kxnk,σ − t
∑

k,σ

eiky c
†
k,σ

ck−2π n
L

ex,σ + H.c.

(14)

For a detailed proof see Appendix C.
There is a coupling between the different k states which

results in a reduction of the Brillouin zone (BZ) by a factor
of q = L/gcd(L, n), where q is the size of the magnetic unit
cell. We define k̃ as k within the reduced BZ (RBZ). Now,
k̃x ∈ [0, 2π/q), while k̃y ∈ [0, 2π ). k̃ is a good quantum num-
ber, but there is now an additional degree of freedom that we
denote l such that l ∈ [0, q). A single-particle state is fully
determined by a triplet (k̃, l, σ ), with ck̃,l,σ ≡ ck=k̃+l 2π

q
ex,σ

.

On a finite cyclic lattice, the momentum space is discrete,
with a step of the size 2π/L. If gcd(L, n) = 1 there is only
one k̃x value in the RBZ (equal to 0), and for each momentum
there are q = L different values of l .

The Hamiltonian has a block-diagonal structure. For a
given (k̃, σ ), the Hamiltonian in the space of l is given by
the Harper equation

[H0,k̃,σ ]l,l ′ =
(

−μσ − 2t cos

(

k̃x + l
2π

q

))

δl,l ′

− t (eik̃yδl,l ′⊕p + e−ik̃yδl ′,l⊕p), (15)

where ⊕ denotes the cyclic addition modulo q defined as

l ⊕ l ′ ≡ l + l ′ − q div(l + l ′, q), (16)
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and p = n/gcd(L, n). We also introduced μσ = μ −
(−1)δσ,↓gμBBz/2.

Each block of the Hamiltonian can be diagonalized to yield
the eigenenergies εk̃,σ,m, with m ∈ [0, q). The basis change
matrix elements are defined by

c
†
k̃,l,σ

=
∑

m

[αk̃,σ ]l,mc
†
k̃,m,σ

. (17)

Note that throughout this work, we distinguish between dif-
ferent operators (ci,σ ≡ cri,σ , ck,σ , ck̃,l,σ , ck̃,m,σ , etc.) only by
the choice of the symbols in the subscript (e.g., ck̃,l,σ is not
equal ck̃,m,σ even if l = m), and similarly for other functions.

The blocks of the Hamiltonian have several symmetries.
One can invert the x axis

[

H0,(k̃x,k̃y ),σ

]

l,l ′
=

[

H0,(−k̃x,k̃y ),σ

]∗
q−l,q−l ′

, (18)

which means that
[

α(k̃x,k̃y ),σ

]

l,m
=

[

α(−k̃x,k̃y ),σ

]∗
q−l,m

(19)

and that the eigenenergies remain the same upon inverting the
x axis.

One can also invert the y axis
[

H0,(k̃x,k̃y ),σ

]

l,l ′
=

[

H0,(k̃x,−k̃y ),σ

]∗
l,l ′

. (20)

Again, inverting ky does not affect the eigenenergies, but
merely flips the chirality of the eigenstates

[

α(k̃x,k̃y ),σ

]

l,m
=

[

α(k̃x,−k̃y ),σ

]∗
l,m

. (21)

Inverting both axes at the same time therefore means
[

H0,(k̃x,k̃y ),σ

]

l,l ′
=

[

H0,(−k̃x,−k̃y ),σ

]

q−l,q−l ′
(22)

and

[αk̃,σ ]l,m = [α−k̃,σ ]q−l,m. (23)

There is an additional periodicity along the y axis

εk̃,σ,m = εk̃+(2πC/q)ey,σ,m (24)

and

[αk̃,σ ]l p mod q, m = e
iC 2π

q
l [αk̃+(2πC/q)ey,σ

]l p mod q, m (25)

with C integer. This symmetry is important on a finite lattice,
where ky takes values of the form C2π/L. If L = q [i.e.,
gcd(n, L) = 1], this means that the density of states and other
relevant quantities can be obtained by considering only the
block k̃ = (0, 0). Otherwise, ky values up to 2π/q need to be
considered. For a proof see Appendix D.

B. Gauge-invariant Green’s function

A uniform magnetic field does not break physical transla-
tional invariance. However, at the formal level, the inclusion
of the appropriate vector potential means that all correlators
connecting two or more points in space depend not only on the
relative positions, but also on the absolute positions. The spa-
tial dependence of correlators can depend on the gauge choice.
Nevertheless, physical observables preserve both translational
and gauge invariance.

The quantity of primary interest is the Green’s function. It
is defined as a function of imaginary time

Gi j,σ (τ ) = −〈Tτ ci,σ (τ )c†
j,σ (0)〉. (26)

As a function of complex frequency z, and as a matrix in the
site space, one can always write

Gσ (z) = [h̄zI − H0 − �(z)]−1, (27)

where �(z) is the self-energy. The diagonal elements of the
Green’s function with z = ω + i0+ determine the local spec-
tral function which is a physical observable. As such, the
local Green’s function is uniform in space. Nevertheless, the
off-diagonal elements do not exhibit translational invariance
Gi j = Gri−r j

, but rather this equality is satisfied only up to a
phase.

It can be shown that the quantity

Ḡi j,σ (z) ≡ e−i fi j Gi j,σ (z) (28)

is gauge invariant, and preserves the full symmetry of the

lattice. We reproduce here a proof from Ref. [56] which is
valid in the noninteracting case, but is completely analogous
in the case of a fully local and spatially uniform self-energy.
In orbital space we have

G = [Ih̄z − H0[A] − I�(z)]−1,

G−1 = [Ih̄z − H0 ◦ eif − I�(z)],

I = [Ih̄z − H0 ◦ eif − I�(z)]G. (29)

It is also easy to verify that I ◦ eif = I so we can further write

I ◦ eif = ([Ih̄z − H0 − I�(z)] ◦ eif )G,

I ◦ eif = ([Ih̄z − H0 − I�(z)] ◦ eif )(Ḡ ◦ eif ). (30)

We now write the scalar form

δi je
i fi j =

∑

k

[Ih̄z − H0 − I�(z)]ikei fik Ḡk je
i fk j ,

δi j =
∑

k

[Ih̄z − H0 − I�(z)]ikḠk je
i fik ei fk j e−i fi j ,

δi j =
∑

k

[Ih̄z − H0 − I�(z)]ikḠk je
i fik ei fk j ei f ji . (31)

The expression ei fik ei fk j ei f ji is simply the magnetic flux pass-
ing through the triangle defined by the lattice sites i, j, and k.
This quantity is gauge invariant. As Eq. (31) is a defining rela-
tion for Ḡi j , it means that Ḡi j is gauge invariant. Furthermore,
the quantity [Ih̄z − H0 − I�(z)]ik has full lattice symmetry,
thus Ḡi j does as well.

However, it is interesting to consider the case of a general
(possibly nonlocal and nonuniform) self-energy �. In that
case, the step performed between Eqs. (29) and (30) reads as

[Ih̄z − H0 ◦ eif − �(z)] = [Ih̄z − H0 − �(z) ◦ e−if ] ◦ eif .

(32)
The proof can proceed from there completely analogously, but
only if the quantity �̄(z) ≡ �(z) ◦ e−if is gauge invariant and
preserves the full lattice symmetry.

A proof for the gauge invariance and lattice symmetry
of �̄ can be given in terms of Feynman diagrams for a
special case of local density-density interactions, as follows.
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Each diagram’s contribution is a product of a certain number
of fermionic loops. In case of local density-density interac-
tions, a single Green’s function loop is just the density, and
this quantity is gauge invariant. Then, we have a loop of
arbitrary size N :

G0,i1i2 G0,i2i3 . . . G0,iN i1 = Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN i1

× ei fi1 i2 ei fi2 i3 . . . ei fiN i1 , (33)

which is gauge invariant for the same reason as we had above
[note that for the bare propagator Ḡ0, gauge invariance and
symmetries have already been proven by Eq. (31)]. The closed
fermionic loops are multiplied with the fermionic line con-
necting the terminals of the self-energy. Say, in case of �i1,iN ,

G0,i1i2 G0,i2i3 . . . G0,iN−1iN = Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN−1iN

× ei fi1 i2 ei fi2 i3 . . . ei fiN−1 iN . (34)

Clearly, if we multiply now both sides with e−i fi1 ,iN , we get on
one side �̄i1,iN , and on the other

Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN−1iN ei fi1 i2 ei fi2 i3 . . . ei fiN−1 iN e−i fi1 ,iN

= Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN−1iN ei fi1 i2 ei fi2 i3 . . . ei fiN−1 iN ei fiN ,i1

(35)

and again the right-hand side is gauge invariant. This proves
that the contribution to �̄i j of each Feynman diagram individ-
ually is gauge invariant. Moreover, �̄ is expressed solely in
terms of objects with full lattice symmetry, thus, it must itself
exhibit full lattice symmetry.

Efficient calculation of Ḡ

A straightforward calculation of Ḡ performed in site space
would involve an inverse of the N × N matrix

Ḡ(z) = e−if ◦ [h̄zI − H0[A] − �(z)]−1. (36)

[Note that here the Peierls phase needs to be taken as Eq. (A2),
see Appendix A]. This operation scales as O(N3) and the size
of the lattice one can treat this way is limited to N ∼ 1000. A
more efficient approach can be formulated, and especially so
in the noninteracting case, and the case when the self-energy
is fully local, i.e., whenever the Green’s function is fully diag-
onal in the eigenbasis of H0, i.e., G(k̃,m),(k̃′,m′ ) = δk̃,k̃′δmm′Gk̃,m.
This is precisely the case relevant for our DMFT calculations.
We will make use of the basis change matrix elements to go
from eigenbasis |k̃, m, σ 〉 to orbital basis |i, σ 〉:

|i, σ 〉 =
1

√
N

∑

k

e−ik·ri |k, σ 〉

=
1

√
N

∑

k̃,l

e
−i(k̃+l 2π

q
ex )·ri |k̃, l, σ 〉

=
1

√
N

∑

k̃,l

e
−i(k̃+l 2π

q
ex )·ri

∑

m

[αk̃,σ ]l,m|k̃, m, σ 〉. (37)

Therefore,

Gr,r′,σ (z) =
1

N

∑

k̃,m

W ∗
k̃,m,r,σ

Wk̃,m,r′,σ Gk̃,m,σ (z) (38)

with

Wk̃,m,r,σ =
∑

l

e
−i(k̃+l 2π

q
ex )·r[αk̃,σ ]l,m. (39)

Calculation of [αk̃,σ ] scales as O(q3). As there is N/q

different k̃ to consider, the first step scales as O(Nq2), with
q � L, i.e., at most O(N2). Then the calculation of Wk̃,m,r,σ

scales as O(q) but there is N different k̃, m to consider, and
we need N different r, which is in total O(N2q), i.e., at
most O(N2L), which is the bottleneck in the calculation. The
calculation of each Gr,r′,σ (z) then scales as O(N ), but only if
G is diagonal in k̃, m; if it is only diagonal in k̃ but not in
m, this scales as O(Nq). As Ḡr,r′ = Ḡr−r′ , we only need to
calculate N different elements of the G matrix rather than all
N2 of them:

Ḡr = e−i fr,r′=0 Gr,r′=0. (40)

In total, this scales as O(N2). Again, if G is diagonal in k̃ (as
we expect it to be in the absence of translational symmetry
breaking), but not in m, then the scaling is O(N2q), which is
still better than the direct matrix inverse. When there is no
translational symmetry (e.g., there is disorder), then the scal-
ing is O(N4), which is worse than the direct matrix inverse.
In that case Ḡ is still gauge invariant, but is not translationally
invariant, and all N2 r, r′ components need to be calculated.

Finally, we are interested in the spatial Fourier transform

Ḡk =
∑

r

eik·rḠr, (41)

which will be discussed in Sec. III A 2.
We note that other approaches might be possible for the

efficient calculation of Ḡ, e.g., the recursive scheme from
Ref. [57].

C. Current density operator and the current-current

correlation function

1. Orbital space

We will be interested in the direct current conductivity
with respect to an infinitesimal uniform electric field. Such
electric field E = ∂t A

ext can be introduced with an additional
vector potential Aext pointing uniformly in a given direc-
tion, and growing linearly with time. For the purposes of a
linear-response calculation, the current couples to such vec-
tor potential instantaneously through −

∫

j(r) · Aext(r)d3r =
−vcell

∑

i jri
· Aext

ri
, where vcell = a2c is the volume of the unit

cell. The additional Peierls phase coming from a Aext can
therefore be safely rewritten within the slowly varying field
approximation

e

h̄

∫ ar j

ari

Aext(r) · dr ≈
ea

h̄
Aext · (r j − ri ). (42)

In the case when we have just the nearest-neighbor hoppings
[as in Eq. (12)], the kinetic term in the Hamiltonian can be
rewritten as

Hkin = −t
∑

i,u∈{ex,ey},σ

e
i( fri ,ri+u+ ea

h̄
Aext

ri
·u)c†

ri,σ
cri+u,σ + H.c.

(43)
without any additional approximation.
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We can now derive the expression for the current density operator (with units of A/m2) in the absence of electric field, by
employing

jr = −
1

vcell

∂H

∂Aext
r

∣

∣

∣

∣

Aext→0

(44)

= it
1

ac

e

h̄

∑

u∈{ex,ey},σ

uei fri ,ri+u c†
ri,σ

cri+u,σ + H.c. (45)

The vector component η can be written as

jηr = it
1

ac

e

h̄

∑

σ

γ η(r) c†
ri,σ

cri+eη,σ + H.c. (46)

with γ (r) = (1, ei ea2

h̄
Bzx ).

The current is an observable and it should be zero even in the presence of a magnetic field. Commonly, one separates the
current into the paramagnetic and diamagnetic parts. In magnetic field they may be nonzero even in thermal equilibrium, but
they must cancel. See Appendix E for details.

For the sake of generality, we define the current-current correlation function without assuming zero persistent currents:

�
ηη′

r,r′ (τ ) =
〈

jηr (τ ) j
η′

r′ (0)
〉

−
〈

jηr
〉〈

j
η′

r′

〉

= −t2 1

a2c2

e2

h̄2

∑

σ,σ ′

∑

b,b′∈{0,1}

(−1)b+b′
Cb[γη(r)]Cb′

[γη′ (r′)]

×
〈

c
†
r+beη,σ

(τ+)cr+(1−b)eη,σ (τ )c†
r′+b′eη′ ,σ ′ (0+)cr′+(1−b′ )eη′ ,σ ′ (0)

〉

−
〈

jηr
〉〈

j
η′

r′

〉

, (47)

where C[. . .] is the operator of complex conjugation, and
C0 = 1.

We are interested in calculating the Kubo bubble, i.e., the
disconnected part. The disconnected part will have a static and
a dynamic term. The static one cancels the persistent current
part, and the dynamic term can be expressed in terms of the
Green’s function as

�
ηη′,disc
r,r′ (τ )

= t2 1

a2c2

e2

h̄2

∑

σ

∑

b,b′∈{0,1}

(−1)b+b′
Cb[γη(r)]Cb′

[γη′ (r′)]

× Gr′+(1−b′ )eη′ ,r+beη,σ (−τ )Gr+(1−b)eη,r′+b′eη′ ,σ (τ ). (48)

We can now rewrite this expression in terms of Ḡ. In the case
of the longitudinal component

�
xx,disc
r,r′ (τ )

= t2 1

a2c2

e2

h̄2

∑

σ

[

Ḡr′−r+ex,σ (−τ )Ḡr−r′+ex,σ (τ )

+ Ḡr′−r−ex,σ (−τ )Ḡr−r′−ex,σ (τ )

−2 cos

(

ea2Bz

h̄
(y − y′)

)

Ḡr′−r,σ (−τ )Ḡr−r′,σ (τ )

]

.

(49)

We see that the expression only depends on the distance which
means that it preserves translational symmetry, and is only
expressed in terms of gauge-invariant quantities. We have
checked explicitly that exactly the same expression is also
obtained in the symmetric gauge. Furthermore, this expres-
sion has all the expected spatial symmetries. A completely

analogous calculation for �
yy,disc
r,r′ (τ ) yields the expression

with x, y → y, x. A general proof of the gauge invariance of
�

η,η′,disc
r,r′ (τ ) is given in Appendix F.

2. Momentum space

As we have shown that the current-current correlation
function satisfies all the desired spatial symmetries, we can
proceed to discuss the uniform current-current correlation
function in a straightforward manner by performing the spatial
Fourier transform. We have

�
ηη′

q=0(τ ) = vcell

∑

r

�r,r′=0(τ ). (50)

This is followed by the Fourier transform in imaginary time to
finally obtain

�
ηη′

q=0(iν) = vcell

∑

r

1

2h̄

∫ β h̄

−β h̄

dτ eiντ�r,r′=0(τ ). (51)

We can rewrite this expression more conveniently using the
uniform current operator as

�
ηη′

q=0(iν) =
V

2h̄

∫ β h̄

−β h̄

dτ
〈

j
η

q=0(τ ) j
η′

q=0(0)
〉

, (52)

where V is the total volume V = Nvcell and

j
η

q=0 =
1

N

∑

r

jηr . (53)

Note that we have here defined the uniform current operator as
the average current (density) operator, rather than the spatial
Fourier transform of the current operator. Using the creation
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and annihilation operators in the eigenbasis of the noninter-
acting Hamiltonian, we can write

j
η

q=0 =
it

N

1

ac

e

h̄

∑

σ

∑

k̃,m,m′

v
η

k̃,m,m′,σ
c

†
k̃,m,σ

ck̃,m′,σ (54)

with

v
x

k̃,m,m′,σ
=

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′

[

eik̃x e
il 2π

q − e−ik̃x e
−il 2π

q

]

(55)

and

v
y

k̃,m,m′,σ
=

∑

l

[αk̃,σ ]l,m

[

eik̃y [αk̃,σ ]∗l⊖p,m′ − e−ik̃y [αk̃,σ ]∗l⊕p,m′

]

.

(56)

The proof for the above expressions is given in Appendix G.
Assuming no persistent currents, the uniform current-current
correlation function is therefore

�
ηη′

q=0(iν)

= −
t2e2

ch̄2

1

N

∑

σ1,σ2

1

2h̄

∫ β h̄

−β h̄

dτ eiντ

×
∑

k̃1,m1,m
′
1

∑

k̃2,m2,m
′
2

v
η

k̃1,m1,m
′
1,σ1

v
η′

k̃2,m2,m
′
2,σ2

×
〈

c
†
k̃1,m1,σ1

(τ+)ck̃1,m
′
1,σ1

(τ )c†
k̃2,m2,σ2

(0+)ck̃2,m
′
2,σ2

(0)
〉

.

(57)

The disconnected part written as a function of bosonic
Matsubara frequency reads as (see Appendix H for proof)

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄2

1

N

∑

σ

∑

k̃,m1,m
′
1,m2,m

′
2

× v
η

k̃,m1,m
′
1,σ

v
η′

k̃,m2,m
′
2,σ

×
1

β

∑

iω

Gk̃,m′
2,m1σ

(iω)Gk̃,m′
1,m2,σ

(iω + iν).

(58)

D. Method

1. DMFT

In dynamical mean field theory (DMFT), the lattice prob-
lem is mapped onto a set of self-consistent local impurity
problems on each lattice site i, defined by the action [58–61]

S
imp
i =

∑

σ

∫

dτ dτ ′c+
i,σ (τ )

[

− G
−1
0,i

]

(τ − τ ′)ci,σ (τ ′)

+U

∫

dτ c+
i,↑(τ )ci,↑(τ )c+

i,↓(τ )ci,↓(τ ). (59)

The bare propagator G0,i in the impurity problem i is deter-
mined self-consistently, so that the Green’s function in each
impurity problem is equal to the local Green’s function on the
site of the impurity problem, assuming that the self-energy on
the lattice is local and on each site equal to the self-energy

of the corresponding impurity problem. This self-consistency
condition can be written as

G0,i(z) = 1/
(

[G−1]ii(z) + �
imp
i (z)

)

, (60)

where �
imp
i (z) is the self-energy calculated in the impurity

problem at site i, and the lattice Green’s function is calculated
as a matrix in the site space as

G(z) = [Ih̄z − H0[A] − diag(�imp(z))]−1, (61)

where diag(�imp) is a diagonal matrix, with �
imp
i (z) entries

on the diagonal. This construction is general and can be used
in the presence of translational symmetry breaking fields,
disorder, and even used to probe spatially ordered phases. The
DMFT approximation notably becomes exact in the limit of
infinite coordination number, where the self-energy can be
shown to be fully local [58], at least in the absence of magnetic
fields.

We see that in the calculation of the bare propagator for
the impurity problems, only the local Green’s function plays
a role, and this quantity is gauge invariant and spatially uni-
form. Therefore, even in the presence of the uniform magnetic
field, all impurity problems are equivalent, and we may solve
only one impurity problem and calculate the lattice Green’s
function as

G(z) = [Ih̄z − H0[A] − I�imp(z)]−1. (62)

This leads to further simplifications. First, a local and spatially
uniform self-energy is diagonal in the noninteracting eigenba-
sis (�σ,i j = δi j�σ �⇒ 〈k̃, σ, m|�|k̃′, σ, m′〉 = δk̃,k̃′δm,m′�σ ,
see Appendix I for proof) which means that the lattice Green’s
function is diagonal as well:

Gk̃,m,m′,σ (z) = δmm′Gk̃,mm,σ (z), (63)

thus, we can drop the second eigenstate index and simply
calculate the lattice Green’s function as

Gk̃,m,σ (z) =
1

h̄z − εk̃,m,σ − �σ (z)
. (64)

The local Green’s function can then be obtained at low nu-
merical cost from the knowledge of the local density of states
ρ0(ε) as (see Appendix J for proof)

Gii,σ (z) =
∫

dε
ρ0(ε)

h̄z − ε − �σ (z)
. (65)

Therefore, the DMFT calculation for the Hubbard model in
the magnetic field proceeds as the standard DMFT, and all
the effects of the gauge field are contained in the noninteract-
ing density of states [41]. In all our calculations we employ
the numerical renormalization group (NRG) impurity solver
[62–65] which works directly in real-frequency space, so no
analytical continuation is needed to perform calculations of
conductivity. The NRG solver has been previously thoroughly
cross checked in Refs. [7,11,13].

2. Calculation of conductivity in DMFT

The fact that the Green’s function is diagonal in the non-
interacting eigenbasis leads to a simplification in the Kubo
bubble [Eq. (57)]. One is left with only two summations over
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eigenstates m:

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄2

1

N

∑

σ

∑

k̃,m,m′

1

β

∑

iω

× v
η

k̃,m,m′,σ
v

η′

k̃,m′,m,σ
Gk̃,m,σ (iω + iν)Gk̃,m′,σ (iω).

(66)

Furthermore, because the self-energy is local, the Green’s
function only depends on the energy of the eigenstate, so we
can define G(εk̃,m,σ , iω) ≡ Gk̃,m,σ (iω) and rewrite

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄2

∑

σ

1

β

∑

iω

∫

dε

∫

dε′

× v
η,η′

σ (ε, ε′)G(ε, iω + iν)G(ε′, iω) (67)

with

v
η,η′

σ (ε, ε′) ≡
1

N

∑

k̃,m,m′

δ(ε − εk̃,m,σ )

× δ(ε′ − εk̃,m′,σ )vη

k̃,m,m′,σ
v

η′

k̃,m′,m,σ
. (68)

In Landau gauge, one has the symmetry v
x

k̃,m,m′,σ
=

−(vx

k̃,m′,m,σ
)∗ (see Appendix G), and therefore

v
x

k̃,m,m′,σ
v

x

k̃,m′,m,σ
= −|vx

k̃,m′,m,σ
|2, which means v

xx
σ (ε, ε′)

is purely real. On the contrary, as already noted in Ref. [38],
v

xy
σ (ε, ε′) is purely imaginary.

The sheet conductance is related to the current-current
correlation function through

σ ηη′
(ν) = c

�ηη′
(ν) − �ηη′

(ν = 0)

i ν
. (69)

The z-axis lattice constant c cancels out c from vcell = a2c and
its value is irrelevant. In the following we will discard the dif-
ference between the sheet conductance and the conductivity,
and refer to σ as conductivity, even though it is actually sheet
conductance and the units of the two quantities are different
[(�m)−1 vs �−1, respectively]; this is common practice in the
field.

After several lines of algebra aimed at the analytical contin-
uation to the real-axis frequency (see Appendix K), we obtain

Reσ xx,disc
q=0 (ν = 0) = t2 e2

h̄

1

π

∑

σ

∫

dε

∫

dε′
v

xx
σ (ε, ε′)

∫

dω

× ImG(ε, ω)ImG(ε′, ω)n′
F(ω), (70)

where n′
F(ω) = −β h̄eβ h̄ω/(1 + eβ h̄ω )2 is the derivative of the

Fermi function.
For Hall conductivity one obtains [38]

Reσ xy,disc
q=0 (ν = 0)

= −t2 e2

h̄

1

π2

∑

σ

∫

dε

∫

dε′Imv
xy
σ (ε, ε′)

∫

dω

∫

dω′

× ImG(ε, ω)ImG(ε′, ω′)
nF(ω) − nF(ω′)

(ω − ω′)2
. (71)

An additional simplification is possible in the case of Hall
conductivity when U = 0. In that case we have [22]

Reσ xy,disc
q=0 (ν = 0;U = 0)

= −t2 e2

h̄

∑

σ

∫

dε

∫

dε′Imv
xy
σ (ε, ε′)

nF(ε) − nF(ε′)

(ε − ε′)2
.

(72)

Finally, the resistivity is obtained as a matrix inverse
(

ρxx ρxy

ρyx ρyy

)

=
(

σ xx σ xy

σ yx σ yy

)−1

. (73)

3. Vertex corrections in DMFT

Finally, to calculate the full current-current correlation
function, one should in principle also compute the vertex
corrections. At the level of the DMFT, in the absence of an
external magnetic field, the vertex corrections cancel due to
the well-known argument due to Khurana [42]. As we show
in the following, a generalized Khurana argument holds even
in the presence of the magnetic field. In the following we
first derive the Khurana argument in real space, and then
generalize it to the case of nonzero magnetic fields.

We start first by writing the vertex corrections in orbital
space, in the most general way:

�
ηη′,conn
q=0 (τ − τ ′)

= t2 e2

a2c2 h̄2

∑

σ,σ ′

∑

b,b′∈{0,1}

(−1)b+b′

×
1

N2

∑

r,r′

Cb[γη(r)]Cb′
[γη′ (r′)]

×
∑

r1,r2,r3,r4

∫

dτ1dτ2dτ3dτ4

× Gr1,r+beη,σ (τ1 − τ )Gr+(1−b)eη,r2,σ (τ − τ2)

× F ((r1, τ1), (r2, τ2), (r3, τ3), (r4, τ4))

× Gr′+(1−b′ )eη′ ,r3,σ ′ (τ ′ − τ3)Gr4,r′+b′eη′ ,σ ′ (τ4 − τ ′),
(74)

as illustrated in Fig. 1(a). In the absence of external magnetic
field or spontaneous symmetry breaking, Gr,r′ has full lattice
symmetry and depends only on the difference Gr−r′ . However,
there is no symmetry operation which guarantees cancellation
of all terms. There is only one symmetry operation that leaves
the Green’s functions intact and flips the overall sign, but it
does change the full vertex. It can be formulated either for
internal variables r1, r2, b or for r3, r4, b′, and we illustrate the
latter case in Fig. 1(b). The transformation can be formulated
as follows:

r′ → −r′ + r3 + r4 − eη′ , b′ → 1 − b′,

(r3, τ3) ↔ (r4, τ4). (75)

The flip of b′ changes the overall sign, but the exchange of
terminals of the full vertex function changes its value in no
obvious way, and there is no cancellation in the general case.
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FIG. 1. Real-space diagrammatic representation of a contribu-
tion to the connected part of the current-current correlation function.
F is the full vertex, red segments indicate a term in the current
operator connecting two nearest-neighbor sites in the x direction;
swapping the direction of the red arrow changes its sign. Top panels:
for generic case [left, Eq. (74)] and DMFT [right, Eq. (76)]. Bottom
panels: after the transformation in Eqs. (75) (left) and (77) (right).

However, in DMFT there is an additional simplification
that the full vertex F depends on only two spatial indices:

�
ηη′,conn
q=0 (τ − τ ′)

= t2 e2

a2c2h̄2

∑

σ,σ ′

∑

b,b′∈{0,1}

(−1)b+b′

×
1

N2

∑

r,r′

Cb[γη(r)]Cb′
[γη′ (r′)]

∑

r1,r2,

∫

dτ1dτ2dτ3dτ4

× Gr1,r+beη,σ (τ1 − τ )Gr+(1−b)eη,r1,σ (τ − τ2)

× F ((r1, τ1), (r1, τ2), (r2, τ3), (r2, τ4))

× Gr′+(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)Gr2,r′+b′eη′ ,σ ′ (τ4 − τ ′).

(76)

In that case, a transformation

r′ → −r′ − eη′ + 2r2, b′ → 1 − b′ (77)

keeps both the Green’s functions and the full vertex intact,
while changing the overall sign. Then the two symmetry-
connected terms together read as (up to a prefactor)

Gr′+(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)Gr2,r′+b′eη′ ,σ ′ (τ4 − τ ′)

− G−r′+2r2−(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)

× Gr2,−r′+2r2−b′eη′ ,σ ′ (τ4 − τ ′). (78)

When the lattice preserves inversion symmetry, one has
Gr,r′ = Gr−r′ = Gr′−r, and the above two terms always
cancel. This is the real-space version of the Khurana
argument.

However, when there is magnetic field, there are additional
complications. Nevertheless, the full vertex is a gauge-
invariant quantity, as the irreducible vertex in the particle-hole
channel Ŵph is fully local and therefore gauge invariant and
spatially uniform Ŵ

ph
i jkl

= δi jδ jkδklŴ
ph. This comes as DMFT

is the local approximation of the Luttinger-Ward functional
[58,66], and Ŵ

ph
i jkl

= ∂2�[G]
∂Gi j∂Gkl

|G=Gexact ≈ ∂2�DMFT[{Gii}i]
∂Gi j∂Gkl

|G=GDMFT .
Therefore, we have

Fii, j j = δi jŴ
ph + ŴphGi jG jiŴ

ph

+
∑

l

ŴphGil GliŴ
phGl jG jlŴ

ph + · · ·

= δi jŴ
ph + ŴphḠi jḠ jiŴ

ph

+
∑

l

ŴphḠil ḠliŴ
phḠl jḠ jlŴ

ph + · · · (79)

and F is clearly expressed entirely with gauge-invariant quan-
tities. Here we have omitted spin and temporal arguments and
the corresponding sums and integrals for the sake of brevity,
as they do not play a role in the proof.

In the presence of the magnetic field, the Green’s function
does not satisfy Gr,r′ = Gr−r′ = Gr′−r and it is not a priori

clear that the terms in Eq. (78) cancel. We can, however,
rewrite them in terms of Ḡ:

e
i fr′+(1−b′ )e

η′ ,r2 Ḡr′+(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)

× e
i fr2 ,r′+b′e

η′ Ḡr2,r′+b′eη′ ,σ ′ (τ4 − τ ′)

− e
i f−r′+2r2−(1−b′ )e

η′ ,r2 Ḡ−r′+2r2−(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)

× e
i fr2 ,−r′+2r2−b′e

η′ Ḡr2,−r′+2r2−b′eη′ ,σ ′ (τ4 − τ ′). (80)

As Ḡ satisfies Ḡr,r′ = Ḡr−r′ = Ḡr′−r, the products of Ḡ are
the same in both terms, thus, what determines whether there
is cancellation or not is

e
i fr′+(1−b′ )e

η′ ,r2 e
i fr2 ,r′+b′e

η′ − e
i f−r′+2r2−(1−b′ )e

η′ ,r2 e
i fr2 ,−r′+2r2−b′e

η′ .

(81)

In Landau gauge and for, say, η′ = x, we get

ei
ea2Bz

2h̄
(y2−y′ )[x′+x2+(1−b′ )]ei

ea2Bz
2h̄

(y′−y2 )(x′+x2+b′ )

− ei
ea2Bz

2h̄
(−y2+y′ )[3x2−x′−(1−b′ )]ei

ea2Bz
2h̄

(−y′+y2 )(−x′−b′+3x2 )

= ei
ea2Bz

2h̄
(y2−y′ )(1−2b′ ) − ei

ea2Bz
2h̄

Bz (−y2+y′ )(−1+2b′ )

= 0. (82)

This means that the vertex corrections cancel. This proof is
immediately valid for both �xx and �yx. Having in mind a
completely analogous transformation of r and b, this proof
holds also for �xy (a different proof was given for �xy in
Ref. [38]). However, we also want to check what happens
with η′ = y, which is relevant for �yy. In that case, the
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transformation affects also Cb′
[γy(r′)] so we need to take that into account:

ei(1−2b′ ) ea2

h̄
Bzx′

e
i fr′+(1−b′ )e

η′ ,r2 e
i fr2 ,r′+b′e

η′ − e−i(1−2b′ ) ea2

h̄
Bz (−x′+2x2 )e

i f−r′+2r2−(1−b′ )e
η′ ,r2 e

i fr2 ,−r′+2r2−b′e
η′

= ei(1−2b′ ) ea2

h̄
Bzx′

ei
ea2Bz

2h̄
[y2−y′−(1−b′ )](x2+x′ )ei

ea2Bz
2h̄

(y′+b′−y2 )(x2+x′ ) − e−i(1−2b′ ) ea2

h̄
Bz (−x′+2x2 )

× ei
ea2Bz

2h̄
[y′−y2+(1−b′ )](3x2−x′ )ei

ea2Bz
2h̄

(−y′+y2−b′ )(−x′+3x2 )

= ei(1−2b′ ) ea2

h̄
Bzx′

ei
ea2Bz

2h̄
(−1+2b′ )(x2+x′ ) − e−i(1−2b′ ) ea2

h̄
Bz (−x′+2x2 )ei

ea2Bz
2h̄

[(1−2b′ )(3x2−x′ )]

= ei
ea2Bz

2h̄
[2(1−2b′ )x′−(1−2b′ )(x2+x′ )] − ei

ea2Bz
2h̄

[2(1−2b′ )x′−4(1−2b′ )x2+(1−2b′ )(3x2−x′ )]

= ei
ea2Bz

2h̄
(x′−2b′x′−x2+2b′x2 ) − ei

ea2Bz
2h̄

(x′−2b′x′−x2+2b′x2 )

= 0. (83)

Indeed, the vertex corrections for �yy cancel as well. As we
have shown that the Kubo bubble is gauge invariant (see
Appendix F), and having that the full correlation function
needs to be gauge invariant as it relates to observables, the
proof given here is fully general, even though it is formulated
in Landau gauge. The proof also does not depend on whether
there is Zeeman term in the Hamiltonian or not.

III. RESULTS

A. Density of states and spectral function

1. Noninteracting density of states

In the DMFT, the magnetic field enters through the
noninteracting density of states ρ0(ω). The magnetic field
dependence of ρ0(ω) (the famous Hofstadter butterfly [55])
is shown in Fig. 2. This result was obtained with lattice size
L = 1999, and about 4000 energy bins, which sets the res-
olution and the minimal size of an energy gap that one can
observe.

2. Translation-invariant spectral function

As we have already proven, on a finite lattice L × L

and L = q, there is no dependence of the Hamiltonian on

FIG. 2. Noninteracting density of states, as a function of fre-
quency and magnetic field (the Hofstadter butterfly [55]).

ky. A straightforward basis change of the Green’s function
to the original k states in the full BZ yields a meaning-
less result for the spectral function with no ky dependence
whatsoever. Moreover, this result is gauge dependent, as
the choice of a slightly different gauge A ∼ (−y, 0) would
yield a spectral function result with no kx dependence
instead.

One is therefore interested in the translationally invariant
Ḡ, as it has all the lattice symmetries, and can ultimately
be Fourier transformed into momentum space. We show this
result in the noninteracting case in Fig. 3. We have used a
small broadening �(z) = −i sgn(Imz)η, η = 0.02, to regular-
ize the results. We observe that the result for the imaginary
part of Ḡ is not necessarily negative, which is a signature of
a breaking of causality, and thus the result is not a proper
physical spectral function. As expected, the nonphysical fea-
tures subside as the magnetic field is taken to zero. Note
also that Ḡloc = Gloc, so the causality of the resulting lo-
cal Green’s function is restored upon the summation over
momenta.

3. Local spectra from DMFT

In Fig. 4 we present the DMFT(NRG) results for
ImGloc(ω), at different values of magnetic field, and fixed
U = 2.5D, n = 0.85, and T = 0.025D, which corresponds to
the regime of the doped Mott insulator. On the left panel we
show the full frequency range, while on the right panel we
focus on the quasiparticle part of the spectrum. Increasing
the magnetic field appears to affect an ever growing range
of frequencies around ω = 0, but up to the highest fields the
effect is restricted to the quasiparticle peak and no significant
change is observed in the Hubbard bands, apart from the
lower Hubbard band getting flatter. No apparent change at
all is observed below p/q = 0.1 for these values of model
parameters.

B. Conductivity

1. Longitudinal dc conductivity σxx(ν = 0)

We start by inspecting the effect of the magnetic-field de-
pendence of the self-energy on the conductivity. In the upper
panel of Fig. 5 we show 1/σ xx(ν = 0) calculated with the
self-energy obtained from the DMFT(NRG) calculation for

205101-10



ELECTRICAL CONDUCTIVITY IN THE HUBBARD MODEL: … PHYSICAL REVIEW B 104, 205101 (2021)

FIG. 3. Spectrum of the translation-invariant Green’s function
ImḠk(ω). The examples are given for U = 0 with a broadening
η = 0.02D, and at three different values of p/q, as indicated in panel
titles. The spectrum is not negative definite, and is therefore not
indicative of the physical spectral function.

the given Bz (black curve), and compare it to the one obtained
with the self-energy obtained in the Bz = 0 calculation; in that
case the magnetic-field enters the calculation only through
the current vertex v

xx

k̃,m,m′,σ
. Here, we can choose to fix the

chemical potential to the one corresponding to the Bz = 0
calculation, which will lead to some density variation as the
magnetic field is increased (red curve); otherwise, we can
correct the chemical potential for each given Bz so that the
overall occupancy is fixed (lime curve).

We see that there is excellent agreement between all three
curves. The parts of the black curve that are missing are
due to our inability to properly converge the DMFT(NRG)
calculation at those values of Bz. As finite-Bz DMFT(NRG)
calculations are difficult and require significant computational
time, it is a very important observation that we can obtain
solid finite Bz results by using the self-energy from the Bz = 0
calculation. This way, the bottleneck of our calculation be-
comes the calculation of the conductivity, rather than the
DMFT solver. In the regime of the main interest, this does not
present a significant additional approximation. Therefore, in
the remainder of the paper we fix � = �(Bz = 0) and correct
μ at each Bz so that the overall density is fixed, unless stated
otherwise.

In the bottom panel of Fig. 5 we present the density of
states at the Fermi level [∼ImG(ω = 0], as well as the effec-
tive scattering rate [∼Im�(ω = 0)]. The oscillations in these
two quantities as functions of the magnetic field appear syn-
chronous. However, the oscillations in the conductivity follow
a completely different pattern. The oscillations in the density
of states and the scattering rate can be readily connected
with the Shubnikov–de Haas effect, where the period of os-
cillations in the space of inverse magnetic field is inversely
proportional to the surface area of the Fermi sea (roughly the
density 〈nσ 〉), while the oscillations of the conductivity appear
to correspond to the full area of the BZ. This mismatch in the
oscillation frequencies of the spectral and transport properties
is, however, restricted to only certain parameter regimes. The
high-frequency oscillations have been previously identified
in the experiment [44–47] and dubbed the Brown-Zak (B-Z)
oscillations. We discuss this phenomenon in more detail in
Sec. III B 3, and in Ref. [48] which is devoted to this very
topic. In Appendix L we check that no p/q = 1 oscillations
are present in thermodynamic potentials.

We also cross-check the results of our finite Bz calcu-
lation against the reference Bz = 0 results, in the limit of
low field. As the results are obtained numerically in rather
different ways, this is a stringent test of our formalism and
implementations. In Fig. 6 we show the DMFT results at U =
2.5D, at four different levels of doping (n = 1 is half-filling),
at Bz = 0 and at three smallest possible fields in a finite Bz

calculation with L = q = 1999. At high temperatures, small
field does not significantly affect the result, and finite-field
results are on top of the zero-field result, thus validating our
numerics. At low temperature, the effect of the field becomes
observable, but the results do tend towards the Bz = 0 result
as the field is decreased.

Next, we inspect the effect of the magnetic field on the
temperature dependence of σ−1

xx (ν = 0) on Fig. 7. At low
temperature, the behavior drastically depends on the precise
choice of the magnetic field. At high temperature the behav-
ior is weakly modified, and one still observes roughly linear
dependence. At very high fields, the values appear increased
by a constant prefactor, which means that the slope of the
linear dependence is also increased. This can be more easily
confirmed by looking at the linear scale plots in Fig. 8. The
effect of the magnetic field appears somewhat insensitive to
the strength of the interaction, and the overall trend appears
similar in all three panels on the left side of Fig. 7. We are able
to roughly collapse the curves at three different values of U by
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FIG. 4. Local density of states as a function of magnetic field. Left: full frequency range. Right: quasiparticle part of the spectrum. The
result is obtained with the DMFT(NRG). The parameters are U = 2.5D, 〈nσ 〉 = 0.425, T = 0.025D/kB. The calculation was performed with
L = q = 997.

simply rescaling the temperature T → T/T ∗(U ), with T ∗(U )
roughly a linear function of U . The scaling appears partic-
ularly valid between U = 2.5 and U = 4, while the U = 1
curves somewhat deviate.

Finally, in Fig. 9 we present the magnetic-field dependence
of the conductivity, at a fixed temperature and doping. At low
temperature one observes increasingly strong oscillations as
magnetic field is increased. At low fields, the oscillations are
relatively small and regular, which corresponds to the SdH
regime, while at strong fields the oscillations cover multi-
ple orders of magnitude, and exhibit no simple pattern as
a function of the magnetic field. (This is the quantum limit
dominated by the lowest Landau levels).

2. Hall conductivity and resistivity

In Fig. 10 we show results for direct current σ xy, 1/σ xx as
well as ρxy and ρxx. We see that σ xy exhibits a nonmonotonic
dependence on the magnetic field, and also some oscillation,
similar to σ xx. The difference appears to be that when σ xx has

a local maximum, σ xy has a local extremum in the value of its
first derivative. The results presented in this plot correspond
to the high-frequency oscillation regime, where the maxima
in σ xx coincide with p/q = 1/q. This behavior is in line with
the experimental observations in Ref. [45]. We also see that, as
expected, σ xy tends to zero as magnetic field is decreased. The
effect of σ xy on ρxx is not negligible, and one clearly has ρxx �=
1/σ xx. Nevertheless, the oscillatory behavior of ρxx appears
very similar to that of 1/σ xx and in phase with it.

We further study the behavior of σ xy in the limit of U = 0
where the calculation can be performed at low numerical cost.
The results are presented in Fig. 11. First we look at the
temperature dependence (upper panel). We see that σ xy falls
off exponentially with increasing temperature. At T = 0 the
result corresponds to the Chern number of the topological
insulator, whenever the chemical potential falls in an energy
gap. We see that decreasing field produces gaps with ever
larger Chern numbers. On the middle panel we look at this
dependence more closely, and see that at a given chemical
potential, the Chern number grows in a power-law fashion
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FIG. 5. Upper panel: conductivity obtained with the full
DMFT(NRG) calculation (black line), and the simplified calculation
where the self-energy is taken from the zero-field DMFT(NRG)
calculation, and the chemical potential is either corrected to fix the
overall density (lime line) or not (red line). Vertical lines indicate
p/q = 1/i with i integer, which coincides with the dips in the inverse
conductivity. Lower panel: dependence on the magnetic field of the
density of states at the Fermi level (lime line) and the scattering
rate (black line). Vertical lines indicate p/q = 〈nσ 〉/i, which roughly
coincides with the dips in both the scattering rate and the density of
states at the Fermi level.

FIG. 6. Cross-check between the zero-field formalism and the
finite-field formalism at weak fields. Solid lines are the Bz = 0
DMFT(NRG) result, obtained within the zero-field formalism, at
different values of density. We keep U = 2.5D fixed. Dashed lines
with symbols are obtained within finite Bz formalism, at three lowest
values of the field, at L = q = 1999.

FIG. 7. Left panels: the T dependence of the inverse conductivity
at different values of the field and fixed coupling and density. Right
panel: the same results with rescaled temperature T → T/T ∗(U ).
T ∗(U ) is given in the inset.

with 1/Bz. It is clear that this law does not have a well-defined
limiting behavior at Bz = 0, as in the absence of magnetic field
there are no gaps and strictly σ xy = 0. This is an indication
of the fractal structure of the density of states at low fields:
the gaps become smaller and smaller, but more and more nu-
merous, and fully disappear only strictly at Bz = 0. However,
this ill-defined behavior is corrected at finite values of the
interaction (Fig. 10), and one observes a downturn of σ xy at
a finite value of the field, and σ xy tends to zero smoothly as
Bz → 0.

Finally, we study the dependence of σ xy on the chemical
potential, at several different values of the field and T = 0,
in the bottom panel of Fig. 11. One has σ xy(μ) = −σ xy(−μ).
The plateaus in the value of Hall conductivity are indications
of gaps in the density of states and are always found at integer
values. We benchmark our implementation with the data in
Ref. [38] in Appendix M.

3. Quantum oscillations of 1/σxx

As already noted in Sec. III B 1, the conductivity dis-
plays oscillatory behavior as a function of magnetic field. We
start by inspecting the region of the phase diagram where
notable oscillatory behavior is present. We define a charac-
teristic (p/q)∗(T ; n,U ) (denoted by shaded circles in Fig. 9)
as the value of magnetic field at which the first extremum in
1/σ xx(Bz ∼ p/q) occurs (1/σ xx initially grows, so the first
extremum is always a maximum). Oscillations in the slope
of 1/σ xx(Bz ∼ p/q) might survive even below this character-
istic value of the field [or inversely at temperatures higher
than T ((p/q)∗)]; the amplitude of oscillations dies out with
temperature exponentially, as in Lifshitz-Kosewich law [43]
(see Fig. 12; the oscillatory part of 1/σ xx(p/q) is extracted
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FIG. 8. Inverse conductivity on the linear scale. Columns are different dopings, rows are different values of interaction. Different curves
are different values of the field.

FIG. 9. Magnetic-field dependence of the inverse conductivity at
two values of coupling constant, and various temperatures. Shaded
circles correspond to the first extremum (p/q)∗ (see text).

by subtracting from the full result the average value in the
range [p/q − f (p/q), p/q + f (p/q)], where f ∼ p0.7). The
quantity T ((p/q)∗) is presented in Fig. 13. We denote the
doping with δ = 1 − n.

We see that there is always roughly a plateau in T ((p/q)∗),
followed by a kink and a near saturation of (p/q)∗(T ) at
high temperature. This is because above a certain temperature,
no oscillations are present at any value of magnetic field,

FIG. 10. Different components of the conductivity and resistivity
tensors, showing the effect of the Hall component on the relation
between the longitudinal resistivity ρxx and the inverse longitudinal
conductivity 1/σ xx .
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FIG. 11. Hall conductivity at U = 0. Top: temperature depen-
dence of the Hall conductivity for a selection of magnetic fields. Gray
lines indicate the value at T = 0, which is the Chern number for the
corresponding topological insulator. Center: field dependence of the
Hall conductivity at zero temperature. Bottom: chemical potential
dependence of the Hall conductivity for a selection of magnetic
fields.

and there remains at most a single maximum below p/q =
0.5. The maximum can persist at a roughly fixed p/q up to
some temperature, and then ultimately moves to p/q = 1

2 . The
shape of (p/q)∗(T ) appears nearly universal for all δ,U . We

FIG. 12. Zoom-in on the oscillatory part of the magnetic-field
dependence of inverse conductivity, in a range of weak fields. Differ-
ent curves are different temperatures. Lime and black points denote
the apparent antinodes of the wave, i.e., the amplitude of oscillation,
up to a sign. Inset: dependence of the amplitude of oscillation vs
temperature, on the logarithm scale, revealing exponential decay
with T .

are able to roughly collapse all the curves on the left panel in
Fig. 13 by rescaling the temperature as T → T × U c(δ) (right
panel), with c(δ) given in the inset. It is clear that the bigger
the doping and the lower the interaction, the oscillations will
persist up to a higher temperature, and start at a lower value
of the field. It is interesting that roughly (p/q)∗ ∼ T 2/3 in the
regime where multiple oscillation periods are observed.

The oscillations have a fixed period when σ xx is plotted
as a function of inverse magnetic field. When this period is
inversely proportional to the surface area of the Fermi sea,
this corresponds to the well-known Shubnikov–de Haas ef-
fect. However, in our results, we observe in some regimes of
parameters an additional oscillation frequency. This is docu-
mented in Fig. 14 where we present the Fourier transform of
(σ xx )−1(B−1

z = q/p). The presented part of each oscillation
spectrum is normalized to 1. In the left panel we show the tem-
perature dependence of the oscillation spectrum as a function
of temperature, at fixed doping and coupling constant. At low
temperature one observes peaks at roughly integer multiples
of the density 〈nσ 〉 which corresponds to the SdH effect.
However, at intermediate temperature, there is an additional
frequency corresponding to the full area of the BZ, and its
higher harmonics [48]. At even higher temperature, before the
oscillatory behavior is erased by thermal effects, the p/q = 1
peak in the spectrum becomes dominant. In the right panel we
inspect the effect of doping on the oscillation spectrum, at a
fixed temperature. The SdH peak is present at all dopings, and
is always found at p/q ≈ 〈nσ 〉. The doping appears to reduce
the p/q = 1 peak, which is no longer the dominant peak at
δ > 0.2. At very low doping, it is not possible to distinguish
between the p/q = 1 peak and the second harmonic of the
SdH peak, as 〈nσ 〉 approaches 0.5. However, it is unexpected
in the SdH effect that the second harmonic is stronger than the
first harmonic (fundamental), which indicates a presence of a
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FIG. 13. The (Bz, T ) phase diagram for the quantum oscillations. The diagram indicates the minimal magnetic field for observing
significant quantum oscillations (nonmonotonic behavior) at a given temperature. Left: results for a set of model parameters. Right: rescaled
results showing reasonable overlap.

separate mechanism which contributes to the amplitude of the
peak at p/q = 1. In the next section, we are able to trace the
origin of these high-frequency oscillations; the full descrip-
tion of the observed phenomenology and its relationship to
experiments is presented in a separate publication (Ref. [48]).

4. Oscillations of the current vertex

At the level of the DMFT, the magnetic field enters the
calculation of conductivity through the self-energy and the
current vertex v. As we have concluded in Sec. III B 1, the
dependence of conductivity on the self-energy is of secondary
importance, and cannot possibly account for the observed
p/q = 1 frequency oscillations, as the self-energy oscillates
with the frequency p/q = 〈nσ 〉. The p/q = 1 oscillations then
must come from the current vertex. This was already sug-
gested in previous experimental works [45,46], where the

p/q = 1 frequency oscillations have been linked to periodic
changes in the velocity of magnetic minibands, featuring
spikes at p/q = 1/q.

We first discuss which part of v
xx(ε, ε′) plays a role at

a given choice of parameters. First, by inspecting Eq. (70)
we see that the ω integrand will generally have two
peaks, centered around ω∗/ω∗′ such that ω∗(′) + μ − ε(′) −
Re�(ω∗(′)) = 0. The width of those peaks is roughly propor-
tional to Im�(ω∗(′)). When the two peaks are further apart
than is their width, the contribution of the integral will be
very small. Additionally, if they fall outside of the thermal
window, they will not contribute. Assuming in a most simple
way ω∗(′) = μ − ε(′), and that the contribution is negligible if
|ε − ε′| > Ŵ, with Ŵ playing the role of the width of the peaks
[say roughly Ŵ ≈ −Im�(ω = 0)], and taking that the thermal
window is a hard cutoff |ω∗(′)| < T , we can isolate the relevant
values of v

xx(ε, ε′), which determine the value of the overall

FIG. 14. Fourier spectra of the oscillatory component of the inverse dc conductivity. All spectra are normalized to 1. Left: temperature
dependence at fixed electron density. Right: density dependence at fixed temperature. Both panels: vertical red dashed lines correspond to
SdH frequency p/q = 〈nσ 〉 and its higher harmonics; vertical blue dashed lines correspond to p/q = 1 oscillation frequency and its higher
harmonics.
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FIG. 15. Oscillation spectra of the current vertex (as quantified by Y ) at various Ŵ, T . Spectra are colored gray where no pronounced peaks
are observed, red where the standard SdH p/q = 〈nσ 〉 peaks and its higher harmonics are observed, purple where we also observe the p/q = 1
peaks, but the SdH peaks are dominant, and blue where p/q = 1 peak is stronger than p/q = 〈nσ 〉 peak.

integral. We define a quantity

Y (μ, T, Ŵ; Bz ) =
∫

dε

∫

dε′
v

xx(ε, ε′; Bz )θ (Ŵ − |ε − ε′|)

× [θ (T − |ε − μ|) + θ (T − |ε′ − μ|)]
(84)

and inspect its oscillation spectrum as a function of B−1
z . The

results are presented in Fig. 15. We see that at low T and
low Ŵ, the oscillations resemble the SdH effect. However,
increasing Ŵ leads to an onset of p/q = 1 oscillations, which,
with an increase of T , eventually become dominant. To better
understand this behavior, in Fig. 16 we show the spectrum
as a function of μ, at a fixed low temperature. We see how
p/q = 〈nσ 〉 peak and its harmonics move with changing μ, as
expected. On the contrary, the p/q = 1, 2, 3 . . . peaks (when
present in the spectrum), do not move with changing μ. The
main insight is that roughly Y (μ, T + δT ) ≈ Y (μ, T, . . .) +
Y (μ + δμ, T, . . .) + Y (μ − δμ, T, . . .). At high temperature,

the contributions from different μ will interfere destructively,
and the p/q = 〈nσ 〉 peak will wash out. On the other hand,
the p/q = 1 will accumulate, and become the dominant peak,
which is precisely what we find.

5. Conductivity in the finite-lifetime approximation (FLA)

In the previous sections we have concluded that the
high-frequency (Brown-Zak, B-Z) oscillations of conductivity
originate from the current vertex. Therefore, it is expected that
B-Z oscillations are observed even in the most simple models
that feature no variability in the self-energy whatsoever. In
this section we calculate conductivity in the finite-lifetime ap-
proximation (FLA), where the self-energy is assumed to be a
local, frequency-independent, and purely imaginary quantity,
i.e.,

�FLA
i j (ω + i0+) = −iŴδi j, (85)

where Ŵ is the scattering rate. At a fixed μ = −0.1D,
we construct the Green’s function, and evaluate the Kubo

FIG. 16. Evolution of the oscillation spectrum of the current vertex (as quantified by Y ) with chemical potential, for two values of Ŵ.
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FIG. 17. Longitudinal dc conductivity within FLA: the total result and the contributions from interband and intraband processes. Left:
different plots correspond to different temperatures at a fixed scattering rate. Right: different plots correspond to different Ŵ′s at a fixed
temperature.

bubble (70). We are in particular interested in the trends
with respect to temperature and scattering rate, and we wish
to inspect the relative contributions of ε ≈ ε′ and ε �= ε′

terms in the double integral. We split the contributions by
d = |ε − ε′|: the contributions with d > 0.0003 we consider
“interband” contributions, where the particle and the hole of
the particle-hole pair reside in different bands; the contribu-
tions with d < 0.0003 we consider “intraband” contributions,
where the particle and the hole reside either in the same
band, or two different bands which are very close in energy.
The choice for the threshold value 0.0003 is made based
on the finite-energy resolution that we can achieve and the
systematic error made in energy levels due to finite lattice
size.

The results are shown in Fig. 17 as a function of inverse
magnetic field, i.e., q/p. On the plots on the left, we take a
small value for the scattering rate Ŵ ≈ 3 × 10−5, and show
the two contributions to conductivity as well as the total result
at several different temperatures. At low temperature, the dips
in conductivity roughly coincide with q/p = 0.407/i, with i

integer (denoted with vertical gray dashed lines). This clearly
corresponds to SdH oscillations, and signals that the occu-
pancy at μ = −0.1D is about 〈nσ 〉 = 0.407. It is immediately
clear that with increasing temperature, the SdH oscillations
subside, and what is left is apparently a fractal-like behavior
which cannot be fully resolved with our current resolution.

At low temperature, both intraband and interband processes
contribute, while at high temperature, the intraband processes
are dominant.

On the plots on the right in Fig. 17, we take a high
temperature T ≈ 0.215 and show results for different values
of Ŵ. As Ŵ is increased, the interband processes contribute
increasingly, and ultimately become fully dominant; the frac-
tal behavior is replaced by regular oscillations, with maxima
coinciding with q/p = q/1. These are the high-frequency (or
B-Z) oscillations, which appear only when the scattering rate
is sufficiently high.

We illustrate the trends with respect to temperature and
the scattering rate on Fig. 18(a) where we plot the oscillation
spectra obtained by the Fourier transform of the data in the
range of the field p/q ∈ [0.03, 0.15]. The results show clearly
that at low Ŵ, high-frequency oscillations are never observed,
but that at sufficiently high Ŵ, they are observed above some
threshold temperature, but up to indefinite temperature: note
that the highest temperature that we show is 10 in units of half-
bandwidth, with no sign of weakening of the high-frequency
oscillations. In contrast, the SdH oscillations subside sim-
ply due to increasing temperature. All oscillations disappear
at very high scattering rate, and there seems to be a well-
defined upper cutoff Ŵ for the observation of any oscillations.
These findings are summarized in the rough phase diagram of
the FLA model in Fig. 18(b).
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FIG. 18. (a) Oscillation spectra of longitudinal dc conductivity obtained within the FLA, at different Ŵ and T . Coloring is analogous to
Fig. 15. (b) The phase diagram of the FLA toy model. Grayscale color coding in the background and the black contours correspond to the
onset field for the nonmonotonous behavior (p/q)∗.

It is also interesting to compare the doping dependence of
the quantum oscillation phenomenology in FLA and DMFT.
On Fig. 19 we show the color plot of log10 σ xx(ν = 0) in the
doping-field plane, at a high temperature where SdH oscilla-
tions are already thermally washed out. We see opposite trends
in the two plots: in FLA, the oscillations are the strongest
close to half-filling (μ = 0), while in DMFT, the oscillatory
features become stronger in the empty-band limit (〈nσ 〉 → 0).
The difference must be due to the fact that in the Hubbard
model, the scattering rate is maximal at half-filling and van-
ishes as the number of electrons goes to zero. In FLA, the
scattering rate is simply held fixed at all dopings. The FLA
result on Fig. 19 is in solid agreement with the experimental
results in Ref. [45]. This indicates that the scattering rate
in experiment is not vanishing with doping, as one would
have in the pure Hubbard model. The additional scattering in
experiment probably comes from phonons, or even impurities.

IV. CONCLUSIONS AND PROSPECTS

In this paper we have identified several important features
of the DMFT results for conductivity in the square-lattice
Hubbard model in a perpendicular magnetic field. First, the
T -linear resistivity at high temperature is not strongly affected
by magnetic field. At high temperature, varying the interaction

also does not strongly affect the resistivity, but rather sets
the temperature scale in a linear fashion. Next, we observe
that the effect of the magnetic field comes mainly through
the current-vertex factor (which only contains kinetic effects),
and not the self-energy (which involves dynamic effects and
defines the energy and momentum windows with significant
contribution in the integration). We are able to reproduce the
SdH effect and observe quantum oscillations in 1/σ xx(B−1)
with the expected frequency Bz ∼ p/q = 〈nσ 〉. However, we
also observe oscillations on a different, higher frequency
Bz ∼ p/q = 1, independently of doping. For this behavior, the
prerequisites appear to be moderate scattering rate, moderate
temperature and relatively high magnetic field flux per unit
cell. Our observations are in line with the experimental results
of recent experiments on moiré (graphene superlattice) sys-
tems [44–46].

For the future work it will be necessary to investigate
how much of the observed phenomenology is representative
of the exact solution, and how much is an artifact of the
DMFT approximation. At the level of DMFT the two im-
portant simplifications are (1) the self-energy is fully local
(which means that the Green’s function is diagonal in the
eigenbasis of the noninteracting Hamiltonian), and (2) the
vertex corrections cancel. This question can in principle be
addressed with cluster DMFT calculations [67], but these may
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FIG. 19. The doping-field dependence of longitudinal dc con-
ductivity within FLA and DMFT. Color code is logarithmic: white is
−2.40 and −3.12, respectively; black is 0.98 and 1.03, respectively.

not be trivial to formulate or execute. Additionally, analytical
continuation of self-energy data might be difficult [or an exact
diagonalization (ED) solver might be used, which introduces
additional systematic error]. Finally, calculation of vertex
corrections in cluster DMFT schemes is notoriously difficult
[68–72]. Another possibility is to use recently developed Di-
agMC technique which requires no analytical continuation
[73–77], and can access the thermodynamic limit directly. As
the observed phenomena are not restricted to very high values
of the coupling and can already be observed at U = 0.5 − 1D,
a DiagMC calculation with only several orders could be suffi-
cient to work out the generic effect of self-energy nonlocality
and vertex corrections.
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APPENDIX A: PEIERLS PHASE IN LANDAU GAUGE

[PROOF OF EQ. (9)]

For the following derivation, we introduce r(α) =
a(x(α), y(α)) = a[ri + α(r j − ri )] and dr = ad dα, with d =
r j − ri, while keeping ri = (xi, yi ) dimensionless and xi, yi

integers. The Peierls phase for the uniform magnetic field per-

pendicular to the lattice B = (0, 0, Bz ), in the Landau gauge
(7) can be expressed as

fi j =
e

h̄

∫ r j

ri

A(r) · dr

=
ea

h̄

∫ 1

0
dα A(r(α)) · d

=
ea2

h̄
Bz

∫ 1

0
dα x(α)ey · d

=
ea2

h̄
Bz(y j − yi )

∫ 1

0
dα(xi + αdx )

=
ea2

h̄
Bz(y j − yi )

[

xi + dx

∫ 1

0
dα α

]

=
ea2

h̄
Bz(y j − yi )

[

xi + dx

α2

2

∣

∣

∣

∣

∣

1

0

]

.

We finally have

fi j =
ea2

h̄
Bz(y j − yi )

[

xi +
x j − xi

2

]

=
ea2

h̄

Bz

2
(y j − yi )(xi + x j ). (A1)

When doing real-space calculations on a finite cyclic lattice,
it is necessary to always consider the shortest distance be-
tween the sites and take instead the following periodicized
expression:

fi j
fin. latt.=

ea2

h̄
Bz(y j ⊖ yi )

[

xi +
x j ⊖ xi

2

]

, (A2)

where ⊖ denotes the shortest distance on a finite cyclic lattice.

APPENDIX B: PROOF OF UNIT-CELL SIZE

We prove now that in the Landau gauge, the size of the
unit cell in the x direction is q. Consider that we shift both
ri and r j by qex = (q, 0) [we remind the reader that we use
dimensionless ri = (xi, yi ) as arguments of f ]. We must show
that the additional phase shift must be an integer number times
2π :

fri+qex,r j+qex
=

ea2

h̄

Bz

2
(y j − yi )(xi + q + x j + q)

= fri,r j
+

ea2

h̄

Bz

2
(y j − yi )2q. (B1)

We now apply Bz = 2π
p

q
( ea2

h̄
)−1:

fri+qex,r j+qex
= fri,r j

+
2π

p

q

2
(y j − yi )2q

= fri,r j
+ 2π p(y j − yi ). (B2)

As p(y j − yi ) is an integer, the condition (10) indeed satisfies
periodicity along the x direction.
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APPENDIX C: PROOF OF EQ. (14)

Here we rewrite in momentum space the kinetic term in the Hamiltonian (12) to reach Eq. (14):

Hkin,σ = −t
1

N

∑

k,k′

∑

i,u∈{ex,ey}

ei2π n
L

xiu·ey e−ik·ri c
†
k,σ

eik′·(ri+u)ck′,σ + H.c.

= −2t
∑

k,σ

cos kxnk,σ − t
1

N

∑

k,k′

∑

i

ei2π n
L

xi e−ik·ri c
†
k,σ

eik′·(ri+ey )ck′,σ + H.c.

= −2t
∑

k,σ

cos kxnk,σ − t
1

N

∑

k,k′

∑

i

ei2π n
L

ri ·ex e−ik·ri c
†
k,σ

eik′·(ri+ey )ck′,σ + H.c.

= −2t
∑

k,σ

cos kxnk,σ − t
1

N

∑

k,k′

eik′·ey c
†
k,σ

ck′,σ

∑

i,σ

eiri ·(k′−k+2π n
L

ex ) + H.c.

= −2t
∑

k,σ

cos kxnk,σ − t
∑

k,k′

eik′
y c

†
k,σ

ck′,σ δk′,k−2π n
L

ex
+ H.c.

= −2t
∑

k,σ

cos kxnk,σ − t
∑

k,σ

eiky c
†
k,σ

ck−2π n
L

ex,σ + H.c. (C1)

APPENDIX D: PERIODICITY WITH ky

We prove here the periodicity of the noninteracting eigen-
problem along the ky axis, as stated in Eqs. (24) and (25).
We start by reordering rows and columns of the Hamilto-
nian (15): one can achieve that by redefining |k̃, l, σ 〉 ≡ |k +
2π l

p

q
, σ 〉, or simply |k̃, l p mod q, σ 〉 → |k̃, l, σ 〉. In that

case, the Hamiltonian reads as

[H̃0,k̃,σ ]l,l ′ =
(

−μσ − 2t cos

(

k̃x + 2π l
p

q

))

δl,l ′

− t (eikyδl,l ′⊕1 + e−ikyδl⊕1,l ′ ). (D1)

This transformation does not affect the eigenvectors and
eigenvalues.

Now, we apply a unitary transformation defined by
[Uk̃]ll ′ = δll ′e

−ilky and apply it to the Hamiltonian as

H̆0,k̃,σ ≡ Uk̃H̃0,k̃,σ U†
k̃
. (D2)

The transformed Hamiltonian H̆0,k̃,σ has the same eigenvalues
as H0,k̃,σ , and the original eigenvectors can be obtained from
the eigenvectors of H̆0,k̃,σ as |m, k̃, σ 〉 = U†

k̃
|m̆, k̃, σ 〉. As Uk̃

is diagonal, the element-wise equation for H̆k̃,σ reads as

[H̆0,k̃,σ ]ll ′ = [Uk̃]ll [H̃0,k̃,σ ]ll ′ [Uk̃]∗l ′l ′ . (D3)

The diagonal elements remain unchanged, and we must con-
sider two special cases for the off-diagonal elements: (a) |l −
l ′| = q − 1, and (b) |l − l ′| = 1. The two cases correspond to
whether the hopping between momenta winds around the BZ
or not. In the latter case, we have for

[H̆0,k̃,σ ]l>1,l ′=l−1 = e−ilky eiky ei(l−1)ky

= ei(1−l )ky ei(l−1)ky

= 1

= [H̆0,k̃,σ ]l<q−1,l ′=l+1. (D4)

But in the case when there is winding around the BZ, we get

[H̆0,k̃,σ ]l=q−1,l ′=0 = e−i(q−1)ky e−iky

= e−iqky

= [H̆0,k̃,σ ]∗l=0,l ′=q−1. (D5)

These are the only elements of the matrix that depend on k̃y,
which means that the blocks of the Hamiltonian are invariant
under a transformation

k̃ → (k̃x, k̃y + 2πC/q), (D6)

where C ∈ Z.
For the basis-change matrix elements, this periodicity

means

H0,k̃,σ , [αk,σ ]l p mod q,m

permute−−−−→ H̃0,k̃,σ , [αk,σ ]l,m

unitary tr.−−−−−→ H̆0,k̃,σ , e−ikyl [αk,σ ]lm

translate−−−−→ H̆0,k̃+(2πC/q)ey,σ
, e−ikyl [αk,σ ]lm

inv. unit. tr.−−−−−−→ H̃0,k̃+(2πC/q)ey,σ
, e−ikyl [αk,σ ]lmei(ky+2πC/q)l

= ei(2πC/q)l [αk,σ ]lm

permute back−−−−−−→ H0, ˜k+(2πC/q)ey,σ
, ei(2πC/q)l [αk,σ ]l p mod q, m.

(D7)

APPENDIX E: DECOMPOSITION INTO DIAMAGNETIC

AND PARAMAGNETIC CURRENTS

The current operator can be divided into the paramagnetic
and diamagnetic parts

jr = jr,P + jr,D, (E1)
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where we use Eq. (46) with

γr,P = (1, 1), (E2)

γr,D = γr − γr,P. (E3)

Because the inversion symmetry is preserved along the x axis,
the diamagnetic part of jx is going to be zero. This does not
hold along the y axis, so there will be nonzero paramagnetic
and diamagnetic parts in jy, but 〈jr,P〉 = −〈jr,D〉 so that the
total current is zero. This must hold as the total current is
a physical observable, and thus a gauge-invariant quantity.
Using the gauge-invariant Green’s function, this can be easily
proven: up to the constant prefactor, the thermal average of
the paramagnetic part is simply

〈jr,P〉 = iGr+ey,r(τ = 0−) − iGr,r+ey
(τ = 0−)

= i(ei fr+ey ,r − e−i fr+ey ,r )Ḡr,r+ey
(τ = 0−)

= i
(

e−i ea2

h̄
Bzx − ei ea2

h̄
Bzx

)

Ḡr,r+ey
(τ = 0−), (E4)

and similarly

〈jr,D〉 = i
(

ei ea2

h̄
Bzx − e−i ea2

h̄
Bzx

)

Ḡr,r+ey
(τ = 0−) = −〈jr,P〉.

(E5)

APPENDIX F: PROOF OF GAUGE INVARIANCE OF THE

KUBO BUBBLE

We start with the expression for the site-space matrix (op-
erator) for the current coupled to a vanishing external gauge
field Aext, and in the presence of a rotary gauge field A de-
scribing a perpendicular magnetic field. The total gauge field
is Atot = Aext + A. The corresponding contributions to the
Peierls phase (which is additive as well) yield f tot = fext + f :

jηr = −
∂Hkin

∂A
ext,η
r

∣

∣

∣

∣

Aext→0

= −
∂ (eif tot ◦ Hkin[Atot = 0])

∂A
ext,η
r

∣

∣

∣

∣

Aext
r →0

= −
∂eif tot

∂A
ext,η
r

∣

∣

∣

∣

Aext→0

◦ Hkin[Atot = 0]

= −i
∂fext

∂A
ext,η
r

∣

∣

∣

∣

Aext→0

◦ eif ◦ Hkin[Atot = 0]. (F1)

Expressed in terms of second-quantized operators, for the
general TB Hamiltonian

jηr = −
∑

u

tr,r+u

∂ f ext
r,r+u

∂A
ext,η
r

∣

∣

∣

∣

Aext→0

× (iei fr,r+u c†
rcr+u − ie−i fr,r+u c

†
r+ucr ), (F2)

where the sum over u goes over all sites, and we have omitted
the spin indices and the sum over spin for the sake of brevity.

The current-current correlation function is then

�
η,η′

r,r′ (τ )

=
∑

u,u′

tr,r+utr′,r′+u′
∂ f ext

r,r+u

∂A
ext,η
r

∣

∣

∣

∣

Aext→0

∂ f ext
r′,r′+u′

∂A
ext,η′

r′

∣

∣

∣

∣

∣

Aext→0

×
∑

b,b′∈{0,1}

(−1)b+b′+1ei(−1)b fr,r+u ei(−1)b′ fr,r+u

∑

σ,σ ′

× 〈c†
r+bu,σ

(τ )cr+(1−b)u,σ (τ )c†
r′+b′u′,σ ′ (0)cr′+(1−b′ )u′,σ ′ (0)〉.

(F3)

The dynamic and disconnected part is

�
η,η′

r,r′ (τ )

=
∑

u,u′

tr,r+utr′,r′+u′
∂ f ext

r,r+u

∂A
ext,η
r

∣

∣

∣

∣

Aext→0

∂ f ext
r′,r′+u′

∂A
ext,η′

r′

∣

∣

∣

∣

∣

Aext→0

×
∑

b,b′∈{0,1}

(−1)b+b′+1ei(−1)b fr,r+u ei(−1)b′
fr′ ,r′+u′

×
∑

σ

[−Gr+(1−b)u,r′+b′u′,σ (τ )]Gr′+(1−b′ )u′,r+bu,σ (−τ ),

(F4)

where the Green’s functions are obtained with Aext = 0. We
now rewrite in terms of the gauge-invariant Green’s function

�
η,η′

r,r′ (τ ) =
∑

u,u′

tr,r+utr′,r′+u′
∂ f ext

r,r+u

∂A
ext,η
r

∣

∣

∣

∣

Aext→0

∂ f ext
r′,r′+u′

∂A
ext,η′

r′

∣

∣

∣

∣

∣

Aext→0

×
∑

b,b′∈{0,1}

(−1)b+b′
ei(−1)b fr,r+u ei(−1)b′

fr′ ,r′+u′

× ei fr+(1−b)u,r′+b′u′ ei fr+bu,r′+(1−b′ )u′

×
∑

σ

Ḡr+(1−b)u,r′+b′u′,σ (τ )Ḡr′+(1−b′ )u′,r+bu,σ (−τ ).

(F5)

The sum over b, b′ yields four terms with exponential prefac-
tors,

b = 0, b′ = 0 : ei fr,r+u ei fr′ ,r′+u′ ei fr+u,r′ ei fr′+u′,r ,

b = 0, b′ = 1 : ei fr,r+u ei fr′+u′,r′ ei fr+u,r′+u′ ei fr′ ,r ,

b = 1, b′ = 0 : ei fr+u,r ei fr′ ,r′+u′ ei fr,r′ ei fr′+u′,r+u ,

b = 1, b′ = 1 : ei fr+u,r ei fr′+u′,r′ ei fr,r′+u′ ei fr′ ,r+u (F6)

and each factor above is gauge invariant. Therefore, what
determines whether the Kubo bubble is gauge invariant are the

factors of the type
∂ f ext

r,r+u

∂A
ext,η
r

|Aext→0 which clearly do not depend
on the choice of the gauge for A. A vanishing uniform electric
field E = ∂t A

ext, can be achieved by letting Aext(r, t ) → Aext,
i.e., by having a constant and uniform vector potential. The
only gauge freedom for the external electric field then cor-
responds to choosing the inertial reference frame, which is a
trivial transformation that our calculation is certainly invariant
to; the slowly varying field approximation holds, and we have

∂

∂A
ext,η
r

∫ r+u

r

Aext(r̃) · d r̃ =
∂

∂A
ext,η
r

(Aext · u) = uη (F7)

which clearly does not depend on the precise choice of the
uniform Aext. We therefore conclude that for the calculation
of the linear response to a spatially uniform q = 0 electric
field, the Kubo bubble (47) is gauge invariant.

We also emphasize that the bubble for the charge-charge
correlation function is trivially gauge invariant because
Gi jG ji = Ḡi jḠ ji.
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APPENDIX G: CURRENT OPERATOR IN MOMENTUM SPACE

Here we derive the current operator in momentum space. The general form is

j
η

q=0 =
it

N

e

ach̄

∑

σ

∑

k̃,m,m′

v
η

k̃,m,m′,σ
c

†
k̃,m,σ

ck̃,m′,σ . (G1)

The goal of this section is to get expressions for the vertex factors v
η

k̃,m,m′,σ
. We start with the current along the x direction. The

local contribution is given in Eq. (46). After plugging this in Eq. (53) and applying the basis transformation from Eq. (37), we
obtain

jx
q=0 =

it

N

e

ach̄

∑

σ

∑

k̃,m,k̃′,m′

c
†
k̃,m,σ

ck̃′,m′,σ

∑

l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m′
1

N

∑

r

e
−i(k̃+l 2π

q
ex )·r

e
i(k̃′+l ′ 2π

q
ex )·(r+ex ) + H.c.

=
it

N

e

ach̄

∑

σ

∑

k̃,m,k̃′,m′

c
†
k̃,m,σ

ck̃′,m′,σ

∑

l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m′e
i(k̃′+l ′ 2π

q
ex )·ex δk,k′δl,l ′ + H.c.

=
it

N

e

ach̄

∑

σ

∑

k̃,m,m′

c
†
k̃,m,σ

ck̃,m′,σ

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′e
i(k̃+l 2π

q
ex )·ex + H.c.

=
it

N

e

ach̄

∑

σ

∑

k̃,m,m′

c
†
k̃,m,σ

ck̃,m′,σ eik̃x

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′e
il 2π

q + H.c.

=
it

N

e

ach̄

∑

σ

∑

k̃,m,m′

[

c
†
k̃,m,σ

ck̃,m′,σ eik̃x

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′e
il 2π

q − c
†
k̃,m′,σ

ck̃,m,σ e−ik̃x

∑

l

[αk̃,σ ]∗l,m[αk̃,σ ]l,m′e
−il 2π

q

]

. (G2)

We are free to swap m and m′ in the last term:

jx
q=0 =

it

N

e

ach̄

∑

σ

∑

k̃,m,m′

[

c
†
k̃,m,σ

ck̃,m′,σ eik̃x

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′e
il 2π

q − c
†
k̃,m,σ

ck̃,m′,σ e−ik̃x

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′e
−il 2π

q

]

=
it

N

e

ach̄

∑

σ

∑

k̃,m,m′

c
†
k̃,m,σ

ck̃,m′,σ

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′

[

eik̃x e
il 2π

q − e−ik̃x e
−il 2π

q

]

, (G3)

and we can simply read off Eq. (55).
Along the y direction, similarly we have

N
ach̄

e
j
y

q=0 = it
∑

σ

∑

k̃,m,k̃′,m′

c
†
k̃,m,σ

ck̃′,m′,σ

∑

l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m
1

N

∑

r

e
2iπ

p

q
r·ex e

−i(k̃+l 2π
q

ex )·r
e

i(k̃′+l ′ 2π
q

ex )·(r+ey ) + H.c.

= it
∑

σ

∑

k̃,m,k̃′,m′

c
†
k̃,m,σ

ck̃′,m′,σ

∑

l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m
1

N

∑

r

e
i(k̃′+l ′ 2π

q
ex−k̃−l 2π

q
ex+p 2π

q
ex )·r

e
i(k̃′+l ′ 2π

q
ex )·ey + H.c.

= it
∑

σ

∑

k̃,m,k̃′,m′

eik̃′
y c

†
k̃,m,σ

ck̃′,m′,σ

∑

l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,mδk̃,k̃′δl ′,l⊖p + H.c.

= it
∑

σ

∑

k̃,m,m′

eik̃y c
†
k̃,m,σ

ck̃,m′,σ

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l⊖p,m′ + H.c.

= it
∑

σ

∑

k̃,m,m′

[

eik̃y c
†
k̃,m,σ

ck̃,m′,σ

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l⊖p,m′ − e−ik̃y c
†
k̃,m′,σ

ck̃,m,σ

∑

l

[αk̃,σ ]∗l,m[αk̃,σ ]l⊖p,m′

]

= it
∑

σ

∑

k̃,m,m′

c
†
k̃,m,σ

ck̃,m′,σ

[

eik̃y

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l⊖p,m′ − e−ik̃y

∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l⊕p,m′

]

(G4)

and we can immediately recognize Eq. (56).
We can use the property of the basis change matrix elements (23) to work out a symmetry of v

x with respect to momentum
inversion:

v
x

−k̃,m,m′,σ
=

∑

l

[α−k̃,σ ]l,m[α−k̃,σ ]∗l,m′

[

e−ik̃x e
il 2π

q − eik̃x e
−il 2π

q

]

(G5)

=
∑

l

[αk̃,σ ]q−l,m[αk̃,σ ]∗q−l,m′

[

e−ik̃x e
il 2π

q − eik̃x e
−il 2π

q

]

. (G6)
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We now make a change of variables, l ′ = q − l , l = q − l ′:

v
x

−k̃,m,m′,σ
=

∑

l ′

[αk̃,σ ]l ′,m[αk̃,σ ]∗l ′,m′

[

e−ik̃x e
i(q−l ′ ) 2π

q − eik̃x e
−i(q−l ′ ) 2π

q

]

=
∑

l ′

[αk̃,σ ]l ′,m[αk̃,σ ]∗l ′,m′

[

e−ik̃x e
−il ′ 2π

q − eik̃x e
il ′ 2π

q

]

. (G7)

Therefore,

v
x

−k̃,m,m′,σ
= −v

x

k̃,m,m′,σ
. (G8)

Furthermore, by noting that v can be more simply written as

v
x

k̃,m,m′,σ
= −2i

∑

l

[αk̃,σ ]l ′,m[αk̃,σ ]∗l ′,m′ sin

(

k̃x + l
2π

q

)

, (G9)

we can easily prove

v
x

k̃,m,m′,σ
= −

(

v
x

k̃,m′,m,σ

)∗
. (G10)

The matrix [vx
k,σ ]mm′ is hence anti-Hermitian, which also implies Revx

k̃,m,m
= 0. Also, by using Eq. (21), it is easily proven that

v
x

(k̃x,−k̃y ),m,m′,σ
= v

x

(k̃x,k̃y ),m′,m,σ
. (G11)

APPENDIX H: DERIVATION FOR �
η,η′,disc

q=0 (iν)

The disconnected part of Eq. (57) reads as

�
ηη′,disc
q=0 (iν) =

1

2h̄

∫ β h̄

−β h̄

dτ eiντ t2e2

ch̄2

1

N

∑

σ

∑

k̃,m1,m
′
1,m2,m

′
2

v
η

k̃,m1,m
′
1,σ

v
η′

k̃,m2,m
′
2,σ

Gk̃,m′
2,m1σ

(−τ )Gk̃,m′
1,m2,σ

(τ ). (H1)

We now apply inverse Fourier transform to the Green’s functions

G(τ ) =
1

β

∑

iω

e−iωτ G(iω), (H2)

to obtain

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄2

1

N

∑

σ

∑

k̃,m1,m
′
1,m2,m

′
2

v
η

k̃,m1,m
′
1,σ

v
η′

k̃,m2,m
′
2,σ

1

β2

∑

iω,iω′

Gk̃,m′
2,m1σ

(iω)Gk̃,m′
1,m2,σ

(iω′)
1

2h̄

∫ β h̄

−β h̄

dτ ei(ν+ω−ω′ )τ , (H3)

where
∫ β h̄

−β h̄
dτ ei(ν+ω−ω′ )τ = 2β h̄δν+ω−ω′ , which immediately yields Eq. (58).

APPENDIX I: PROOF THAT DMFT SELF-ENERGY IS DIAGONAL IN THE NONINTERACTING EIGENBASIS

The following shows that a local self-energy is also diagonal in the basis of |k̃, m, σ 〉 states. We have

[�k̃,σ (z)]ll ′ = 〈k̃, l, σ |�σ |k̃, l ′, σ 〉 =
∑

i

[wσ ]∗(k̃,l ),i[wσ ](k̃,l ′ ),i�ii,σ (z) = �σ (z)
∑

i

[wσ ]∗(k̃,l ),i[wσ ](k̃,l ′ ),i = �σ (z)δll ′ , (I1)

where wσ is the basis change matrix, for the transformation from site space to k̃, l space. We can, therefore, write

[�k̃,σ (z)]mm′ = 〈k̃, m, σ |�σ |k̃, m′, σ 〉 =
∑

l

[

α−1
k̃,σ

]∗
m,l

[

α−1
k̃,σ

]

m′,l
�ll,σ (z) = �σ (z)δmm′ , (I2)

which immediately yields Eq. (63).

APPENDIX J: CALCULATION OF LOCAL GREEN’S FUNCTION IN DMFT USING THE NONINTERACTING

DENSITY OF STATES

Here we prove Eq. (65):

Gii,σ (z) = 〈i, σ |Gσ (z)|i, σ 〉

=
1

N

∑

k̃,m

∑

l,l ′

e
−i(k̃+l 2π

q
ex )·ri e

i(k̃+l ′ 2π
q

ex )·ri [αk̃,σ ]l,m[αk̃,σ ]∗l ′,m〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉

=
1

N

∑

k̃,m

∑

l,l ′

e
−i((l−l ′ ) 2π

q
ex )·ri [αk̃,σ ]l,m[αk̃,σ ]∗l ′,m〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉. (J1)
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Because we know that Gii(z) must be uniform, we can define

Gloc,σ (z) =
1

N

∑

i

Gii,σ (z)

=
1

N2

∑

k̃,m

∑

l,l ′

[αk̃,σ ]l,m[αk̃,σ ]∗l ′,m
∑

i

e
−i((l−l ′ ) 2π

q
ex )·ri〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉

=
1

N2

∑

k̃,m

∑

l,l ′

[αk̃,σ ]l,m[αk̃,σ ]∗l ′,mNδll ′〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉

=
1

N

∑

k̃,m

〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉
∑

l

|[αk̃,σ ]l,m|2

=
1

N

∑

k̃,m

〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉. (J2)

Therefore, we can identify

Gii,σ (z) =
1

N

∑

k̃,m

1

h̄z − εk̃,m,σ − �σ (z)
=

∫

dε
ρ0(ε)

h̄z − ε − �σ (z)
. (J3)

APPENDIX K: CONDUCTIVITY EXPRESSION IN DMFT: PROOF OF EQS. (70) AND (71)

Starting from Eq. (67), we first perform the Hilbert transform of the Green’s function

G(iω) = −
1

π

∫

dε
ImG(ε + i0+)

iω − ε
, (K1)

where ε and iω have the units of frequency. We obtain

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄2π2

∑

σ

1

β

∑

iω

∫

dε

∫

dε′
v

ηη′

σ (ε, ε′)
∫

dω

∫

dω′ ImG(ε, ω)

iω + iν − ω

ImG(ε′, ω′)

iω − ω′ . (K2)

Now we apply the partial fraction expansion 1
z−a

1
z−b

= 1
a−b

( 1
z−a

− 1
z−b

):

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄2π2

∑

σ

1

β

∑

iω

∫

dε

∫

dε′
v

ηη′

σ (ε, ε′)
∫

dω

∫

dω′ImG(ε, ω)ImG(ε′, ω′)

×
1

−iν + ω − ω′

[

1

iω + iν − ω
−

1

iω − ω′

]

. (K3)

We apply 1
β

∑

iω
1

h̄(iω−z) = nF(z):

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄π2

∑

σ

∫

dε

∫

dε′
v

ηη′

σ (ε, ε′)
∫

dω

∫

dω′ImG(ε, ω)ImG(ε′, ω′)
1

−iν + ω − ω′ [nF(−iν + ω) − nF(ω′)].

(K4)

The bosonic frequency does nothing in the argument of nF so we can rewrite

�
ηη′,disc
q=0 (iν) =

t2e2

ch̄π2

∑

σ

∫

dε

∫

dε′
v

ηη′

σ (ε, ε′)
∫

dω

∫

dω′ImG(ε, ω)ImG(ε′, ω′)
1

−iν + ω − ω′ [nF(ω) − nF(ω′)]. (K5)

Formal continuation to the real axis is performed by replacing iν → ν:

�
ηη′,disc
q=0 (ν) =

t2e2

ch̄π2

∑

σ

∫

dε

∫

dε′
v

ηη′

σ (ε, ε′)
∫

dω

∫

dω′ImG(ε, ω)ImG(ε′, ω′)
1

−ν + ω − ω′ [nF(ω) − nF(ω′)]. (K6)
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As we are interested in the real part of the conductivity, and having in mind Im�η,η′
(ν = 0) = 0, we get

Reσ ηη′,disc
q=0 (ν) = c

Im�
ηη′,disc
q=0 (ν)

ν

=
t2e2

h̄π2

∑

σ

Im
∫

dε

∫

dε′
v

ηη′

σ (ε, ε′)
∫

dω

∫

dω′ImG(ε, ω)ImG(ε′, ω′)
1

−ν + ω − ω′
[nF(ω) − nF(ω′)]

ν
.

(K7)

For the longitudinal conductivity specifically, v
ηη is purely real, so the imaginary part comes from the delta-peak part of the

ω,ω′ integrals through
∫

dx 1
x−y+i0− = P

∫

dx 1
x−y

+ iπδ(x − y). In the limit ν → 0 we get Eq. (70).
For Hall conductivity the imaginary part comes from the principal part of the integral, and one can estimate it through [38]

P
∫

dω
∫

dω′ 1
ν

1
−ν+ω−ω′ = P

∫

dω
∫

dω′ 1
ν

−ν+ω−ω′

(−ν+ω−ω′ )2 = −
∫

dω
∫

dω′ 1
(−ν+ω−ω′ )2 +

∫

dω
∫

dω′ 1
ν

ω−ω′

(−ν+ω−ω′ )2 . In the limit ν → 0
the second term cancels exactly due to the antisymmetry of the integrand with respect to the exchange ω ↔ ω′, and we get
Eq. (71).

APPENDIX L: OSCILLATIONS IN THERMODYNAMIC

PROPERTIES

With the NRG impurity solver, it is possible to directly
calculate the thermodynamic properties of the lattice problem
(i.e., without any integrations over parameters such as T or
μ, which is error prone). This is based on Eq. (46) from
Ref. [58], which relates the lattice grand potential (Landau
free energy) � = F − μNtot = E − T S − μNtot (Ntot is total
number of particles) and the impurity grand potential �imp =
Fimp − μnimp:

�

N
= �imp − kBT

∑

iω,σ

(

∫ +∞

−∞
dǫ ρ0(ǫ)

× ln{[iωh̄ + μ − �σ (iω) − ǫ]Gσ (iω)}

)

, (L1)

FIG. 20. Dependence of total free energy and its components on
the magnetic field.

where Gσ is the local Green’s function. This may be analyti-
cally continued to the real axis to give [78,79]

�

N
= �imp +

1

π

∑

σ

∫ +∞

−∞
dǫ ρ0(ǫ)

∫ +∞

−∞
dω

× Im ln {[h̄ω + μ − �σ (ω) − ǫ]Gσ (ω)}nF(ω), (L2)

with the Fermi-Dirac distribution nF(ω) = 1/(1 +
exp[h̄ω/T kB]). The impurity free energy can be directly
calculated in the NRG using the full-density-matrix approach.

We consider the case shown in Fig. 5 which exhibited
significant transport oscillations at the high frequency, while
the self-energy and the Green’s function showed instead os-
cillations at the SdH frequency. In fact, at this temperature,
the Fourier transform of the oscillatory part of the inverse
conductivity shows no component at the SdH frequency, it is
already thermally washed out. Indeed, we find no remnants
of the SdH/dHvA oscillations in the thermodynamic proper-
ties either. In Fig. 20 we plot three elements that enter the
full thermodynamic potental: impurity free energy Fimp, the
chemical potential μ (which enters as −μnimp with constant
nimp = n = 0.85), and the lattice contribution from the double
integration �lattice. None of these show any clear oscillations;

FIG. 21. Benchmark with the data from Markov et al. [38]. Our
data: DMFT(NRG solver). Reference data: DMFT(exact diagonal-
ization solver with five bath sites)+Padé analytical continuation used
to obtain continuous spectra.
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if they exist, they are below the numerical uncertainty. We
only observe a weak quadratic dependence on the magnetic
field in all three contributions. This confirms yet again that
the high-frequency quantum oscillations show up exclusively
in the transport properties through the vertex factors, thus they
are, in this sense, a purely kinetic effect.

APPENDIX M: BENCHMARK

To benchmark our formalism and implementation, we
cross-check our σ xy(ν = 0) results with the data from
Ref. [38]. We perform a chemical potential scan at a fixed U =

3D and T = 0.025D/kB, which corresponds to the (doped)
Mott insulator regime. The results are shown in Fig. 21.
The agreement is solid. Neither of the curves fully satisfy
σ xy(ν = 0; μ) = −σ xy(ν = 0; −μ), which reveals the extent
of the systematic error bars. The biggest difference is the
position of the two peaks in the curves, which can be attributed
to the difference in the impurity solvers used (we have used
NRG [62–65], directly on the real axis; in Ref. [38] they used
exact diagonalization with five bath sites, and Padé analytical
continuation to obtain continuous spectra). We reproduce the
change of sign of σ xy(ν = 0) as chemical potential crosses the
edge of the Hubbard band into the Mott gap (at around μ = 1
and 2), which appears to be a robust feature of the solution.
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Recent years have seen a revived interest in the diagrammatic Monte Carlo (DiagMC) methods for interacting
fermions on a lattice. A promising recent development allows one to now circumvent the analytical continuation
of dynamic observables in DiagMC calculations within the Matsubara formalism. This is made possible by sym-
bolic algebra algorithms, which can be used to analytically solve the internal Matsubara frequency summations
of Feynman diagrams. In this paper, we take a different approach and show that it yields improved results. We
present a closed-form analytical solution of imaginary-time integrals that appear in the time-domain formulation
of Feynman diagrams. We implement and test a DiagMC algorithm based on this analytical solution and show
that it has numerous significant advantages. Most importantly, the algorithm is general enough for any kind
of single-time correlation function series, involving any single-particle vertex insertions. Therefore, it readily
allows for the use of action-shifted schemes, aimed at improving the convergence properties of the series. By
performing a frequency-resolved action-shift tuning, we are able to further improve the method and converge the
self-energy in a nontrivial regime, with only 3–4 perturbation orders. Finally, we identify time integrals of the
same general form in many commonly used Monte Carlo algorithms and therefore expect a broader usage of our
analytical solution.

DOI: 10.1103/PhysRevResearch.3.023082

I. INTRODUCTION

Finding controlled solutions of the Hubbard model is
one of the central challenges in condensed matter physics
[1–4]. Many common approaches to this problem rely on the
stochastic (Monte Carlo) summation of various expansions
and decompositions of relevant physical quantities. How-
ever, Monte Carlo (MC) algorithms are often plagued by
two notorious problems: the fermionic sign problem and the
analytical continuation of frequency-dependent quantities in
calculations based on the Matsubara formalism [5–8] (alter-
natively, the dynamical sign problem in the Kadanoff-Baym
and Keldysh formalism calculations [9–23]). In diagrammatic
Monte Carlo (DiagMC) methods [24–38] (as opposed to
determinantal methods such as continuous-time interaction-
expansion quantum Monte Carlo (CTINT) or, auxiliary-field
quantum Monte Carlo (CTAUX) [39–42]), an additional prob-
lem is often the slow (or absence of) convergence of the series
with respect to the perturbation order. In recent years, sev-
eral works have started to address the problems of obtaining

Published by the American Physical Society under the terms of the
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real-frequency quantities [43–51] and series convergence in
DiagMC [52–57].

In Refs. [43,52], it has been shown that a convenient trans-
formation of the interaction-expansion series can be used to
significantly improve its convergence and sometimes allows
one to converge the electronic self-energy with only a few
perturbation orders where it would have otherwise been im-
possible. The method relies on a transformation of the action
which affects the bare propagator at the cost of an additional
expansion, i.e., more diagram topologies need to be taken into
account. Alternatively, this transformation can be viewed as a
Maclaurin expansion of the bare propagator with respect to
a small chemical potential shift. The resulting convergence
speedup comes from an increased convergence radius of the
transformed series.

In a separate line of work, DiagMC methods have been
proposed that are based on the Matsubara formalism that do
not require an ill-defined analytical continuation [47]. Such
methods have so far been implemented for the calculation
of the self-energy [48,49] and the dynamical spin suscep-
tibility [50]. The algorithms differ in some aspects, but all
rely on the symbolic algebra solution of the internal Matsub-
ara frequency summations appearing in Feynman diagrams.
However, this approach has some downsides. First, numeri-
cal regulators are needed to properly evaluate Bose-Einstein
distribution functions and diverging ratios that appear in the
analytical expressions, and also poles on the real axis (effec-
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J. VUČIČEVIĆ et al. PHYSICAL REVIEW RESEARCH 3, 023082 (2021)

tive broadening of the real-frequency results). In the case of
finite cyclic lattice calculations, multiple precision algebra is
needed in order to cancel divergences even with relatively
large regulators [48]. Most importantly, in the Matsubara
summation algorithm, applying the series transformation from
Refs. [43,52] would require a separate analytical solution for
each of the additional diagram topologies, which are very
numerous, and the calculation would become rather imprac-
tical. More generally, treating any distinct diagram requires
that the Matsubara frequency summations be performed algo-
rithmically beforehand. This makes it difficult to devise MC
sampling algorithms that go to indefinite perturbation orders,
unless the Matsubara summation part is sufficiently optimized
so that it no longer presents a prohibitive performance penalty
if performed at the time of the Monte Carlo sampling.

In this paper, we show that it can be advantageous to start
from the imaginary-time domain formulation of Feynman
diagrams. A diagram contribution then features a multiple
imaginary-time integral, rather than sums over Matsubara
frequencies. The multiple integral can be solved analytically
and we present a general solution. This analytical solution,
although equivalent to the analytical Matsubara summation,
has a simpler and more convenient form that does not feature
Bose-Einstein distribution functions or diverging ratios. As
a result, numerical regulators are not needed and the need
for multiple precision arithmetic may arise only at very high
perturbation orders. The numerical evaluation yields a sum of
poles of various orders on a uniform grid on the real axis. The
ability to separate contributions of poles of different orders
allows one to formally extract the real-frequency result with-
out any numerical broadening. Finally, the analytical solution
is general and applies to all diagram topologies that would
appear in the transformed series proposed in Refs. [43,52]
or any other diagrammatic series for single-time correlation
functions. This paves the way for real-frequency diagram-
matic algorithms formulated in real space that are not a priori

limited to small perturbation orders (similarly to CTINT or
CTAUX [42]).

In this work, we apply the analytical time integral to the
momentum-space DiagMC for the calculation of the self-
energy, and implement and thoroughly test the method. We
reproduce the self-energy results from Ref. [52] and sup-
plement them with real-axis results, free of the uncontrolled
systematic error that would otherwise come from the ana-
lytical continuation. Furthermore, we show that even if a
full convergence is not possible with a single choice of the
action-tuning parameter, one can choose the optimal tuning
parameter for each frequency independently [46]. Such a
frequency-resolved resummation can be used to improve the
solution and in some cases systematically eliminate the non-
physical features that appear in the result due to the truncation
of the series at a finite order.

The paper is organized as follows. In Sec. II, we define
the model and the basic assumptions of our calculations. In
Sec. III, we introduce our method in detail. First, in Sec. III A,
we present the analytical solution of the general multiple-time
integral that appears in the time-domain formulation of Feyn-
man diagrams and discuss the numerical evaluation of the
final expression. Then, in Sec. III B, we show the analytical
solution for the Fourier transform of the Maclaurin expansion

of the bare propagator, which is essential for our DiagMC al-
gorithm. In Sec. III C, we discuss in detail how our analytical
solutions can be applied in the context of DiagMC for the self-
energy. In Sec. IV, we discuss our results and benchmarks and
then give closing remarks in Sec. V. Additional details of the
analytical derivations and further benchmarks and examples
of the calculations can be found in the appendices.

II. MODEL

We solve the Hubbard model given by the Hamiltonian

H = −
∑

σ,i j

ti jc
†
σ,icσ, j + U

∑

i

n↑,in↓,i − μ
∑

σ,i

nσ,i, (1)

where σ ∈ {↑,↓}, i, j enumerate lattice sites, ti j is the hop-
ping amplitude between the sites i and j, U is the on-site
coupling constant, and μ is the chemical potential. We only
consider the Hubbard model on the square lattice with the
nearest-neighbor hopping t and next-nearest-neighbor hop-
ping t ′. The bare dispersion is given by

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky. (2)

We define D = 4t , which will be used as the unit of energy
unless stated otherwise. We restrict to thermal equilibrium and
paramagnetic phases with full lattice symmetry.

III. METHODS

The idea of DiagMC algorithms is to stochastically com-
pute the coefficients of a perturbation series describing some
physical quantity. We will focus on expansions in the cou-
pling constant U and a shift in the chemical potential δμ.
The calculation of each coefficient involves the evaluation
of many Feynman diagrams expressed in terms of the bare
propagator, in our case taken as a function of momentum
and two imaginary times. The evaluation of a diagram then
boils down to a sum over multiple momentum variables and a
multiple imaginary-time integral that is always of the same
generic form. The goal of this section is to find a general
analytical solution for these time integrals and reformulate the
perturbation series as a function of a complex frequency z.

A. Analytical solution of time integrals

We are interested in analytically solving (N − 1)-fold inte-
grals over {τi=2...N } of the form

IX(i�η ) =

N
∏

i=2

∫ τi+1

0
dτi τ

li
i eτi (i�ηδr,i+ωi ), (3)

where the parameters of the integrand are given by

X = (r, {l2...lN }, {ω2...ωN }). (4)

The argument r is an integer and determines which of the
times τi is multiplied by the external Matsubara frequency
i�η in the exponential. The frequency i�η can be any Mat-
subara frequency, either fermionic or bosonic, depending on
η; i�η=−1 ≡ iω ≡ i(2m + 1)πT and i�η=1 ≡ iν ≡ 2imπT ,
with m ∈ Z. The integer powers of τi outside of the exponent
are given by li � 0, and the parameters ωi may be complex.
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The limit of the outermost integration is the inverse tempera-
ture τN+1 ≡ β. We denote by δx,y the Kronecker delta (it will
be used throughout this paper, also in the shortened version
δx ≡ δx,0). The reason for our choice to label times starting
from 2 will become clear later.

The main insight is that upon applying the innermost inte-
gral, one gets a number of terms, but each new integrand has
the same general form ∼τ neτ z. The solution therefore boils
down to a recursive application of

∫ τf

0
τ neτ zdτ =

n+1
∑

k=0

(−)kCnk

τ
n+1−k−Bnk

f eBnkzτf

zk+Bnk
, (5)

with Bnk = 1 − δk,n+1 and Cnk = n!
(n−k+δk,n+1 )! (for the proof,

see Appendix D), and

lim
z→0

∫ τf

0
τ neτ zdτ =

τ n+1
f

n + 1
. (6)

The number of terms obtained after each integration is ap-
parently 1 + (1 − δz )(n + 1), and we can enumerate all terms
obtained after the full integration by a set of integers, {ki=2...N },
where ki � 0 denotes the choice of the term of the integral i

(over dτi).
For a given choice of {ki}, the propagation of exponents

[n and z in Eqs. (5) and (6)] across successive integrals can
be fully described by a simple set of auxiliary quantities. We
denote the exponent of e in the integration i as z̃i, and it is
given by

z̃i ≡ zi + bi−1z̃i−1, z̃2 ≡ z2, (7)

zi ≡ δi,r i�η + ωi, (8)

where we introduced bi ≡ Bni,ki
. The meaning of bi can be

understood by looking at Eq. (5): The exponent of e that
enters the integral on the left-hand side survives in all but
the last term (k = n + 1) on the right-hand side. Therefore,
bi = 1 means that the exponent propagates from integration i

to integration i + 1, while bi = 0 means it does not, and the
calculation of the recursive z̃i is reset with each bi = 0. The
auxiliary quantity ni are the exponents of τi and is specified
below.

We will need to obtain a more convenient expression for
the exponent z̃i, where i�η appears explicitly. Straightfor-
wardly, we can write

z̃i = i�ηhi + ω̃i, (9)

with auxiliary quantities

ω̃i ≡ ωi + bi−1ω̃i−1, ω̃2 ≡ ω2, (10)

and

hi ≡

⎧

⎨

⎩

0, i < r

1, i = r

bi−1hi−1, i > r.

(11)

To be able to determine whether the exponent in the integrand,
z̃i, is zero and then employ Eq. (6) if needed, we can now use

δz̃i
=

{

1, hi = 0 ∧ ω̃i = 0
0 otherwise.

(12)

It is important to note that at the time of integration, i�η

is unspecified and whether z̃i is zero cannot be tested by
numerical means, unless i�η does not appear in z̃i. With the
convenient rewriting of Eq. (7) as Eq. (9), one can tell whether
i�η appears in z̃i by looking at hi. If i�η does appear in z̃i

(i.e., hi = 1), we cannot use Eq. (6) even if one can find such
i�η that cancels ω̃i. This is because we are working towards
an analytical expression which ought to be general for all
possible i�η.

The exponent of τ that will be carried over from integration
i to integration i + 1 depends on the choice of the term from
the integral i, and is given by Pos(ni − ki ), where Pos denotes
the positive part of the number [Pos(x) = (x + |x|)/2]. ni

denotes the maximum exponent that can be carried over from
integration i, and is obtained as

ni =

{

δz̃i
+ li + Pos(ni−1 − ki−1), i > 2

δz̃i
+ li, i = 2.

(13)

In the case of Eq. (5), the maximal exponent that can be
carried over to the next integration coincides with the expo-
nent that entered the integral [the integral given by Eq. (5)
does not raise the power of τ ], so the definition of ni coincides
with the meaning of n in Eq. (5). In the case of the integral
given by Eq. (6), ni rather denotes the exponent after the
integration, i.e., n + 1.

After the last integration, it can happen that i�η appears
in the exponent of e (this is signaled by hN bN = 1). We can
then use the property ei�ηβ = (−1)δη,−1 to eliminate it from
this exponent. Then, the solution for the integral can be con-
tinued to the whole of the complex plane i�η → z, and can
be written as (introducing the additional superscript η because
the fermionic/bosonic nature of the expression can no longer
be inferred from the external Matsubara frequency)

I
η

X(z) =
∑

{bi∈[δz̃i
,1]}i=2...N

ebN βω̃N

∑

{ki∈[0,(1−δz̃i
)ni]}i:bi=1

×
∏

i:δz̃i
=1

1

ni

×(−1)bN hN δη,−1+
∑N

i=2 ki × βnN +1−bN −kN

×
∏

i:hi=0∧ω̃i 
=0

Cni,ki

ω̃
ki+bi

i

∏

i:hi=1

Cni,ki

(z + ω̃i )ki+bi
. (14)

Note that we have expressed the sum over {ki} as a sum over
{bi} and a partial (inner) sum over {ki}. This is not necessary,
being that bi is a function of ki. Each bi is fully determined by
ki, but not the other way around, so the inner sum over ki in
Eq. (14) goes over values that are allowed by the correspond-
ing bi. We present this form of Eq. (14) to emphasize that the
factor ebN βω̃N depends only on {bi}, and can thus be pulled out
of the inner {ki} sum. The notation “i : bi = 1” means that we
only consider indices i such that bi = 1. We therefore only
sum over those ki for which the corresponding bi = 1. The
remaining ki are fixed to ni + 1, which is the only possibility if
bi = 0. The notation is applied analogously in other products
over i.
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TABLE I. Illustration of the calculation of a single term in Eq. (14). Rows correspond to successive integrations over dτi. The second to
fourth columns are parameters of the integrand. The choice of the term is colored red. The remaining columns are auxiliary quantities, the
integrand before and after each integration. The prefactors that are “collected” after each integration are written in blue. The full contribution
is written in the last column and then simplified to the form of a term in Eq. (16).

i δr,i li ωi ki bi ni ω̃i hi δz̃i
Integrand Integral Total

2 0 0 1 0 1 0 1 0 0 eτ21 1
1 eτ31 − 1

1 1

3 0 1 2 1 1 1 3 0 0 τ3eτ3 (2+1) 1
3 τ4eτ43 − 1

32 eτ43 + 1
32 1

4 1 0 1 1 0 0 4 1 0 eτ4 (i�η+1+3) 1
i�η+4 eτ5 (i�η+4) − 1

i�η+4 1 1
1 (− 1

32 )(− 1
i�η+4 ) 1

1
1
4 βeβ4

5 0 0 0 0 1 1 0 0 1 eτ50 1
1 τ 1

6 →
βe4β /36

[z−(−4)]1

6 0 0 4 0 1 1 4 0 0 τ6eτ64 1
4 βeβ4 − 1

42 eβ4 + 1
42 1

The only remaining step is to expand the product of poles
in Eq. (14) into a sum of poles (see Ref. [48] for more details),

∏

γ

1

(z − zγ )mγ
=

∑

γ

mγ
∑

r=1

1

(z − zγ )r

×(−1)mγ −r
∑

C{pγ ′ 
=γ ∈N0}:
∑

γ ′ 
=γ pγ ′ =mγ −r

×
∏

γ ′ 
=γ

(mγ ′ + pγ ′ − 1)!

pγ ′!(mγ ′ − 1)!

1

(zγ − zγ ′ )mγ ′+pγ ′
,

(15)

and the final expression has the form

I
η

X(z) =
∑

j,p∈N

A j,p

(z − Z j )p
. (16)

In order to illustrate our solution, we present in tabular
form (Table I) a summary of all intermediate steps, integrand
parameters, and auxiliary quantities that are used in calculat-
ing the contribution for a single choice of {ki}, in an example
with N = 6 and r = 4.

Also note that if r /∈ [2, N] (no Matsubara frequency ap-
pearing in any exponent), the result of the integral is a number,
rather than a frequency-dependent quantity. In that case, the
integral can be straightforwardly generalized to the case of
real time, where integrations go to some externally given time
t (instead of β), and the resulting expression is a function of
that time. The step given by Eq. (15) is then not needed. See
Appendix A for details.

Numerical evaluation of the analytical expression

and relation to other algorithms

The implementation of Eq. (14) is rather straightforward
and much simpler than the algorithmic Matsubara sum-
mations in our previous work [48]. Indeed, most of the
calculations just require the numerical evaluation of an an-
alytical expression and it is not necessary to implement a
dedicated symbolic algebra to manipulate the expressions.
The only exception is the last step, Eq. (15). This transfor-
mation was the centerpiece of the algorithm in Ref. [48]
and was applied recursively many times, leading to com-
plex bookkeeping and data structures. Ultimately, the result
was a symbolic expression that was stored, and a separate

implementation was needed for the comprehension and nu-
merical evaluation of such a general symbolic expression. In
the present context, however, Eq. (15) is applied only once to
produce numbers, and is simple to implement.

The other important point is that we analytically treat
cases with δz̃i

= 1 by employing Eq. (6). With the frequency-
summation algorithms [48,49], one cannot take into account
possible cancellations of the ωi terms in Eq. (10) without
computing a large number of separate analytical solutions.
When untreated, these cancellations yield diverging ratios in
the final expressions, which need to be regularized. On the
contrary, in Eq. (14), the ratio 1/ω̃

ki+bi

i cannot have a van-
ishing denominator and its size will, in practice, be limited
by the energy resolution. This will also allow us to have the
final result in the form of a sum of poles on an equidistant
grid on the real axis, and extract the real-axis results with-
out any numerical pole broadening (see Sec. III C 2 and
Appendix B).

It is interesting to compare the computational effort for the
numerical evaluation of our analytical solution to the straight-
forward numerical integration. In the most straightforward
integration algorithm, one would discretize the imaginary-
time interval [0, β] with Nτ times, and then perform the
summation which has the complexity O(NN−1

τ ) for each ex-
ternal τ , so that overall O(NN

τ ). With our algorithm, we do not
have to go through all of the configurations of internal times,
but we do need to go through all of the possible permutations
of the internal times, and for each permutation there is at least
2N−1 terms to be summed over. So the number of terms one
has to sum grows at least as O[(N − 1)!2N−1]. At sufficiently
high N , this number is bound to outgrow the exponential NN

τ ,
whatever the Nτ . This will happen, however, only at very large
N . For example, if Nτ = 30, the analytical solution becomes
slower at around N = 40. Moreover, one actually needs a
much larger Nτ , especially at low temperature. In any case, the
additional computational effort can be understood as coming
from the difference in the information content of the result,
which is a lot more substantial in the case of the analytical
solution.

At orders N < 6 (within context of DiagMC), we find that
the implementation of our algorithm is significantly more
efficient than our current implementation of the Matsubara
summations from Ref. [48], and at N = 6, they are about
equally efficient. However, we anticipate that further opti-
mizations will be possible at the level of Eq. (14).

023082-4



ANALYTICAL SOLUTION FOR TIME INTEGRALS IN … PHYSICAL REVIEW RESEARCH 3, 023082 (2021)

B. Expansion of the bare propagator

The central quantity is the Green’s function defined in
Matsubara formalism as

Gσk(τ − τ ′) = −〈Tτ cσk(τ )c†
σk(τ ′)〉

=

{

−〈cσk(τ )c†
σk(τ ′)〉, τ > τ ′

〈c
†
σk(τ ′)cσk(τ )〉, τ ′ > τ,

(17)

where τ, τ ′ ∈ [0, β]. The noninteracting Green’s function (or
the bare propagator) in the eigenbasis of the noninteracting
Hamiltonian has a very simple general form,

G0(ε, iω) ≡
1

iω − ε
, (18)

and for the plane wave k, the propagator is G0,k(iω) =

G0(εk − μ, iω).
As we will discuss below, the diagrammatic series for

the self-energy will, in general, be constructed from different
powers of the bare propagator,

Gl
0(ε, iω) ≡

1

(iω − ε)l
. (19)

Indeed, these powers naturally arise after expanding the bare
propagator in a Maclaurin series, 1

z+x
=

∑∞
n=0

(−x)n

zn+1 , around a
small chemical potential shift,

G0(ε, iω) =

∞
∑

l=1

(−δμ)l−1Gl
0(ε + δμ, iω). (20)

This series converges (for all iω) if δμ is smaller in amplitude
than the first Matsubara frequency: |δμ| < πT . Nevertheless,
this expression will become a part of a larger series with addi-
tional expansion parameters, which may result in a modified
convergence radius of the overall series with respect to δμ.

We anticipate that the Feynman diagrams will be formu-
lated in the imaginary-time domain, so it is essential to work
out the Fourier transform of Gl

0(ε, iω). We present the full
derivation in Appendix E and here only write the final solu-
tion,

Gl
0(ε, τ − τ ′)

= sτ,τ ′e−ε(τ−τ ′ )nF(sτ,τ ′ε)
l−1
∑

ζ=0

l−ζ−1
∑

ς=0

c
sτ,τ ′

lζς
(ε) τ ζ τ ′ς , (21)

with sτ,τ ′ = sgn(τ ′ − τ ). In our notation, l in Gl
0 is a su-

perscript index, rather than the power of G0 [although these
meanings coincide in the case of Gl

0(ε, iω)]. The Fermi func-
tion is defined as nF(ε) = 1/(eβε + 1) and the coefficients that
go with the τ ζ τ ′ς terms are

c−
l,ζ ,ς (ε) =

l−ς−ζ−1
∑

n=0

n!(−1)l+ς−1[−nF(ε)]nβ l−ς−ζ−1

(l − ς − ζ − 1)!(ς + ζ )!

×

{

l − ς − ζ − 1

n

}(

ς + ζ

ζ

)

, (22)

and c+
l,ζ ,ς

(ε) = (−1)l−1c−
l,ς,ζ

(−ε). Here we make use of bino-

mial coefficients
(

n

k

)

= n!
k!(n−k)! and the Stirling number of the

second kind,
{

n

k

}

=
∑k

i=0
(−1)i

k!

(

k

i

)

(k − i)n.

C. Application to DiagMC

In the following, we apply the analytic time integral and the
expansion of the bare propagator in the context of DiagMC.
We discuss two kinds of self-energy series (Hartree shifted
and bare) and the corresponding implementation details. Note
that some symbols will be redefined with respect to previous
sections.

1. Hartree-shifted series

In this section, we discuss the construction of the self-
energy series, where all tadpolelike insertions are omitted in
the topologies of the diagrams. Rather, the full Hartree shift
is absorbed in the bare propagator. The diagrams are therefore
expressed in terms of the Hartree-shifted bare propagator,

GHF
0,k(iω) = G0(ε̃k, iω), (23)

with the Hartree-shifted dispersion defined as

ε̃k = εk − μ + U 〈nσ 〉, (24)

where 〈nσ̄ 〉 is the average site occupation per spin.
After constructing the tadpoleless topologies, we are free to

expand all propagators that appear in the diagrams according
to Eq. (20):

GHF
0,k(iω) =

∞
∑

l=1

(−δμ)l−1Gl
0(ε̃k + δμ, iω). (25)

In the frequency domain, this step can be viewed as in-
troducing new topologies: we now have diagrams with any
number of single-particle-vertex (δμ) insertions on any of
the propagator lines. Each arrangement of these additional
single-particle vertices on the diagram does require a separate
solution by the symbolic algebra algorithm, as presented in
Refs. [48,49]. Nevertheless, as a δμ vertex cannot carry any
momentum or energy, the formal effect of it is that it just raises
the power l of the propagator that passes through it. In the
imaginary-time domain, it turns out that the contribution of
the δμ-dressed diagrams is readily treatable by the analytical
expression (14) and we no longer have to view the δμ inser-
tions as changes to topology, but rather as additional internal
degrees of freedom to be summed over. This is illustrated in
Fig. 1.

Up to the Hartree shift, the self-energy expansion can
now be made in powers of the interaction U and the small
chemical-potential shift δμ,

�
(HF)
k (τ ) =

∑

N

(−U )N

×

∞
∑

l1,...,l2N−1=1

(−δμ)
∑

j (l j−1)
∑

ϒN

DϒN ,k,{l j },δμ(τ ),

(26)

where j enumerates the propagators, of which there are
Nprop = 2N − 1, N is the perturbation order in U , each l j

goes from 1 to ∞, ϒN enumerates distinct topologies of the
diagram at order N (without any δμ or Hartree insertions), and
D is the contribution of the diagram. The general form of the
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FIG. 1. Illustration of the use of the Gl
0(ε, τ − τ ′) propagator. The entire series of diagrams with all possible δμ insertions can be captured

by a single diagram with additional degrees of freedom.

diagram contribution is

DϒN ,k,{l j },δμ(τ )

= (−1)Nbub

N−1
∏

i=2

∫ β

0
dτi

∑

k1...kN

2N−1
∏

j=1

G
l j

0

(

ε̄k̃ j
, τ̃ j − τ̃ ′

j

)

, (27)

with ε̄k ≡ ε̃k + δμ. We denote Nbub as the number of closed
fermion loops in the diagram; τ1...τN−1 are internal times,
and we fix τi=1 = 0; τ is the external time, k is the external
momentum, k1...kN are the independent internal momenta,
j indexes the propagator lines, and k̃ are the corresponding

linear combinations of the momenta k̃ j ≡
∑N

λ=0 s̃ jλkλ, where
s̃ jλ ∈ {−1, 0, 1}, and we index with 0 the external momentum
k0 ≡ k. τ̃ j and τ̃ ′

j are the outgoing and incoming times for the
propagator j, and take values in {τ1...τN }, where we denote
with index N the external time τN ≡ τ . The coefficients s̃ jλ,
times τ̃ j, τ̃

′
j , and the number Nbub are implicit functions of the

topology ϒN . Throughout the paper, we assume normalized k

sums,
∑

k ≡ 1
Nk

∑

k, where Nk is the number of lattice sites.
We can perform the Fourier transform of the external time

to obtain the contribution of the diagram in the Matsubara-
frequency domain,

DϒN ,k,{l j },δμ(iω) = (−1)Nbub

N
∏

i=2

∫ β

0
dτie

iωτN

∑

k1...kN

2N−1
∏

j=1

G
l j

0

(

ε̄k j
, τ̃ j − τ̃ ′

j

)

. (28)

The Green’s function Gl
0(ε, τ − τ ′) is discontinuous at τ = τ ′, so to be able to perform the τ integrations analytically, we

first need to split the integrals into ordered parts,

∫ β

0
dτ2...

∫ β

0
dτN =

∑

(τp2 ...τpN
)∈P ({τ2...τN })

∫ β

0
dτpN

∫ τpN

0
dτpN−1 ...

∫ τp4

0
dτp3

∫ τp3

0
dτp2 , (29)

where P denotes all (N − 1)! permutations of the time indices. p labels the permutation and pi is the permuted index of vertex i.
Let us rewrite the contribution of the diagram, with propagators written explicitly using the expression (21),

DϒN ,k,{l j },δμ(iω) = (−1)Nbub
∑

k1...kN

∑

(τp2 ...τpN
)∈P ({τ2...τN })

(−1)Nfwd (p)
∏

j

nF
(

s j ε̄k̃ j

)

l j−1
∑

ζ j=0

l j−ζ j−1
∑

ς j=0

c
s j

l j ,ζ j ,ς j

(

ε̄k̃ j

)

∏

j∈Ji(i=1)

δζ j

∏

j∈Jo(i=1)

δς j

×

∫ β

0
dτpN

∫ τpN

0
dτpN−1 ...

∫ τp4

0
dτp3

∫ τp3

0
dτp2 eiωτN

N
∏

i=2

τ

∑

j∈Ji (i) ζ j+
∑

j∈Jo (i) ς j

i e
τi (

∑

j∈Jo (i) ε̄k̃ j
−

∑

j∈Ji (i) ε̄k̃ j
)
, (30)

where Ji/o(i) is the set of incoming/outgoing propagators j of the vertex i, which depends on the topology ϒN . We also
introduced shorthand notation s j = sτ̃ j ,τ̃

′
j
. Practically, s j depends on whether p(i( j)) > p(i′( j)) or the other way around, where

i( j)/i′( j) is the outgoing/incoming vertex of propagator j in the given permutation p. The total number of forward-facing
propagators is Nfwd(p) =

∑

j δ−1,s j
, which depends on the permutation and the topology. The products of δζ j

and δς j
are there to

ensure that the time τ1 = 0 is not raised to any power other than 0, as such terms do not contribute.
Now we can apply the analytic solution for the time integrals [Eq. (14)] to arrive at the final expression:

DϒN ,k,L,δμ(z) = (−1)Nbub
∑

{l̃ j�0}:
∑

j l̃ j=L

∑

k1...kN

∑

(τp2 ...τpN
)∈P ({τ2...τN })

(−1)Nfwd (p)

×
∏

j

nF
(

s j ε̄k̃ j

)

l̃ j
∑

ζ j=0

l̃ j−ζ j
∑

ς j=0

c
s j

l̃ j+1,ζ j ,ς j

(

ε̄k̃ j

)

∏

j∈Ji (i=1)

δζ j

∏

j∈Jo(i=1)

δς j
I

η=−1
X (z),

X =

⎛

⎝p(N ),

⎧

⎨

⎩

∑

j∈Ji (i(pi′ ))

ζ j +
∑

j∈Jo(i(pi′ ))

ς j

⎫

⎬

⎭

i′=2...N

,

⎧

⎨

⎩

∑

j∈Jo(i(pi′ ))

ε̄k̃ j
−

∑

j∈Ji(i(pi′ ))

ε̄k̃ j

⎫

⎬

⎭

i′=2...N

⎞

⎠, (31)
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where i(pi′ ) is the vertex index i of the permuted index pi′ and
we have introduced a new expansion variable L =

∑

j (l j − 1)

and a convenient variable l̃ j = l j − 1, so that

�
(HF)
k (z) =

∞
∑

K=2

K
∑

N=2

K−N
∑

L=0

(−U )N (−δμ)L
∑

ϒN

DϒN ,k,L,δμ(z),

(32)

which is the series that we implement and use in practice.
The meaning of K is the number of all independent (internal
and external) times in the diagram. Note that in D, we per-
form only N − 1 integrations over time. Those are the times
associated with N interaction vertices, minus the one that is
fixed to zero. The integrations of the times associated with
δμ insertions have already been performed in Eq. (21), and
there are L such integrals. Overall, the number of independent
times is K = N + L. Ultimately, we group contributions by
the expansion order K and look for convergence with respect
to this parameter.

2. Numerical implementation of DiagMC and relation to other

algorithms

The expression (31) is very convenient for numerical eval-
uation. First, we restrict the values of ε̄k to a uniform grid on
the real axis with the step �ω (ε̄k = j�ω). These appear in
ω2, ..., ωK as terms with integer coefficients, which means that
{ωi} entering IX will also be restricted to the same uniform
grid. The final result therefore has the form

DϒN ,k,L,δμ(z) =
∑

j∈Z,p∈N

A j,p

(z − j�ω)p
. (33)

This form allows us to reinterpret the finite-lattice results as
that of the thermodynamic limit and extract DϒN ,k,L,δμ(ω +

i0+) without any numerical broadening (see Appendix B for
details).

In our present implementation, we perform a flat-weight
(uniform) MC sampling over internal momenta {ki}, do
a full summation of all the other sums, and accumulate
the amplitudes A j,p. There are, however, other options.
For example, one may sample {ki}, {pi}, {bi} and use P ≡
∏

j nF(s j ε̄k̃ j
)ebN βω̃N as the weighting function. We have thor-

oughly checked that the factor P closely correlates with
the contribution to A j,p coming from a given choice of the
{ki}, {pi}, {bi} variables (with other variables summed over),
and thus P could be a good choice for a weighting function.
However, this requires additional operations related to move
proposals and trials, and we have not yet been able to make
such an algorithm more efficient than the flat-weight MC.
Nevertheless, it is apparent that our approach offers more flex-
ibility than the algorithmic Matsubara summations (AMS). In
AMS, no convenient weighting function can be defined for the
Monte Carlo, so one either does the flat-weight summation
[48] or uses the whole contribution to the result as the weight,
which comes at the price of having to repeat the calculation for
each frequency of interest [49] (on the contrary, in Ref. [48],
as well as in this paper, the entire frequency dependence of
the self-energy is obtained in a single MC run). At present, it
is unclear which scheme is best—whether one should evaluate

D(z) one z at a time or capture all z at once as we do here. This
choice, as well as the choice of the weighting function, likely
needs to be made on a case-by-case basis, as it is probable
that in different regimes, different approaches will be optimal.
In that sense, the added flexibility of our time-integration
approach in terms of the choice of the weighting function may
prove valuable in the future.

Concerning floating-point arithmetic, it is important that
the factor ebN βω̃N stemming from IX can always be absorbed
into the product of nF functions in the second row of Eq. (31).
This can be understood as follows. A given ε̄k̃ j

can, at most,
appear twice as a term in ω̃N , once with sign +1 and once
with sign −1, corresponding to the incoming τ̃ ′

j and outgoing
τ̃ j ends of the propagator j. In that case, the exponent cancels.
The other possibility is that it appears only once, in which case
it must correspond to the later time in the given permutation.
If the later time is the outgoing end of the propagator, then the
propagator is forward facing and the sign in front is s = −1; if
it is the incoming end, then the propagator is backward facing
and the sign in front is s = 1. In both cases, we can make use
of

esβεnF(sε) = nF(−sε). (34)

Therefore, no exponentials will appear in the final expression.
A product of nF functions is, at most, 1 and the coeffi-
cients c are not particularly big. Then, the size of the pole
amplitudes that come out of Eq. (14) is determined by the
energy resolution (1/�ω) and temperature (βnN +1−bN −kN ).
In our calculations so far, the amplitudes remain relatively
small. Our approach ensures that we do not have very large
canceling terms, such as we had in Ref. [48]. Indeed, we
have successfully implemented Eq. (31) without the need for
multiple-precision floating-point types.

Compared to the Matsubara-frequency summation algo-
rithm [47–49], Eq. (31) presents an improved generality.
Equation (31) is valid for any number and arrangement of in-
stantaneous (i.e., frequency-independent) insertions, i.e., any
choice of {l̃ j}. In contrast, the algorithmic Matsubara summa-
tion has to be performed for each choice of {l̃ j} independently,
and the resulting symbolic expressions need to be stored. For
example, at N = 4, we have 12 ϒN topologies. Therefore, at
L = 0, the number of analytical solutions to prepare is 12.
However, at L = 2, this number is 336, i.e., 28-fold bigger (we
can place L = 2 insertions on 2N − 1 = 7 fermionic lines in
7 × 6/2 + 7 = 28 ways, times 12 ϒN topologies, i.e., 336).

3. Bare series

We are also interested in constructing a bare series where
tadpole insertions are present in diagram topologies. Tadpole
(or Hartree) insertions are instantaneous and an evaluation
of their amplitudes can be done relatively simply by vari-
ous means. At the level of the Hubbard model, the Hartree
insertions factor out: For each Hartree diagram, the internal
momentum summations and time integrations can be per-
formed beforehand and only once, leading to a significant
speedup.

In the expression (31), there is no difference between a
Hartree insertion and a chemical-potential vertex insertion.
Therefore, the inclusion of the Hartree insertions can be en-
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FIG. 2. Top: Illustration of possible Hartree diagrams, without
any δμ insertions. Middle: Amplitude of a Hartree diagram with a
single δμ insertion. Bottom: An example of a diagram dressed with
both Hartree and δμ insertions, and the values of the parameters
N, L, {ML′

i }, K that it falls under (with M
L′ 
=1
i 
=1 = 0).

tirely accounted for in the resummation of the DϒN ,k,L,δμ(z)
contributions from the previous section, with the replacement

ε̄k ≡ εk − μ + δμ (35)

(i.e., full Hartree shift excluded).

Note that the expansion of the propagators in δμ is per-
formed in Hartree insertions as well, so we need to account for
possible additional δμ insertions inside the Hartree diagrams.
As before, our expansion order will be K , which is the total
number of independent times, with each time associated to
a single interaction or a δμ vertex, including those within
Hartree insertions.

We will for now focus on the series up to K = 5. As the
number of interactions in ϒN is at least two, we can have, at
most, three interaction vertices in a Hartree insertion. There
are only five such Hartree diagrams (Fig. 2). We can evaluate
these five amplitudes with very little effort by making use of
spatial and temporal Fourier transforms.

Before we proceed with the calculation of the amplitudes
D of possible Hartree insertions relevant for the series up to
K = 5, we define some auxiliary quantities. We first define the
bare density,

nl̃
0 =

∑

k

Gl=1+l̃
0 (ε̄k, τ = 0−), (36)

and the real-space propagator,

Gl=1+l̃
0,r =

∑

k

eik·rGl=1+l̃
0 (ε̄k, τ = 0−). (37)

We will also need the polarization bubble diagram,

χ
l̃1,l̃2
0,r (τ ) = G

l=1+l̃1
0,r (τ )Gl=1+l̃2

0,−r (−τ ), (38)

χ
l̃1,l̃2
0,q=0(iν = 0) =

∑

r

∫

dτχ
l̃1,l̃2
0,r (τ ), (39)

and the second-order self-energy diagram (up to the constant
prefactor),

�
l̃1,l̃2,l̃3
2,r (τ ) = G

l=1+l̃1
0,r (τ )χ l̃2,l̃3

0,r (τ ), (40)

which can be Fourier transformed to yield �
l̃1,l̃2,l̃3
2,k (iω).

We can now calculate the amplitudes of the possible
Hartree insertions with a number L of δμ insertions on them,
in any arrangement

DL
1 = (−)nL

0 , (41)

DL
2 = (−)2

∑

l̃1, l̃2, l̃3
l̃1 + l̃2 + l̃3 = L

n
l̃1
0 χ

l̃2,l̃3
0,q=0(iν = 0), (42)

DL
3 = (−)3

∑

l̃1, ..., l̃5
∑

i l̃i = L

n
l̃1
0 χ

l̃2,l̃3
0,q=0(iν = 0)χ l̃4,l̃5

0,q=0(iν = 0), (43)

DL
4 = (−)3

∑

l̃1, ..., l̃3
∑

i l̃i = L

(

2 + l̃3

2

)

n
l̃1
0 n

l̃2
0 n

2+l̃3
0 , (44)

DL
5 = (−)2

∑

l̃1, ..., l̃5
∑

i l̃i = L

T
∑

iω

e−iω0−
∑

k

G
l=1+l̃1
0,k (iω)� l̃2,l̃3,l̃4

2,k (iω)Gl=1+l̃5
0,k (iω). (45)

As we are restricting to K � 5 calculations, the DL
3...5 insertions can only be added once, and only with L = 0. We now define

ML
i as the number of insertions of DL

i tadpoles, and we define Ni as the number of interaction vertices contained in the tadpole
Di (regardless of L, we have N1 = 1, N2 = 2, N3 = N4 = N5 = 3).
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(a) (b) (c)

(d) (e) (f)

FIG. 3. DiagMC solution for the Hubbard model on a square lattice. Parameters of the model are t ′ = −0.3t , μ = 0, U = 1D, and T =

0.125D, which corresponds to 〈nσ 〉 ≈ 0.3625. Top row: Imaginary part of self-energy at k = (π/4, π ) on the real axis (with broadening
η = 0.3D) obtained with three different series, up to perturbation order K . Bottom row: Illustration of convergence with respect to perturbation
order K , using values of the imaginary part of the self-energy at the lowest four Matsubara frequencies, iωn=0...3. Full lines are our result,
dash-dotted lines with crosses are the analogous result with a numerical τ -integration algorithm from Ref. [52], and horizontal dashed lines
are the determinantal QMC result on a 16 × 16 lattice from Ref. [52].

The series can now be resummed as

�
(HF)
k (z) =

∞
∑

K=2

K
∑

N=2

K−N
∑

L=0

K−N−L
∑

{ML′

i } = 0
N + L +

∑

i,L′ ML′

i (Ni + L′ ) = K

(−U )N+
∑

i,L′ ML′

i Ni (−δμ)L+
∑

i,L′ ML′

i L′
∏

i,L′

(

DL′

i

)ML′

i
�

(

L,
{

ML′

i

})

×
∑

ϒN

D
ϒN ,k,L+

∑

i,L′ ML′

i
(z), (46)

where �(L, {ML′

i }) is the combinatorial prefactor which
counts all the possible ways the selected single-particle ver-
tices δμ, {Di} can be arranged. This corresponds to the
number of permutations of the multisets,

�
(

L,
{

ML′

i

})

=

(

L +
∑

i,L′ ML′

i

)

!

L!
∏

i,L′ ML′

i !
. (47)

We emphasize that Eq. (46) is fully general, but at orders K �

5, additional Hartree insertions D [compared to Eqs. (41)–
(45)] need to be considered.

Finally, we stress that our analytical time-integral solution
and action-shift tuning scheme in DiagMC are not restricted
to the treatment of the Hubbard Hamiltonian. See Appendix F
for a discussion of DiagMC in the case of a general Hamilto-
nian with two-body interactions.

IV. RESULTS

A. Convergence speedup with δµ expansion in the bare series

Here we focus on supplementing the results from Ref. [52]
with real-frequency self-energies calculated without any nu-
merically ill-defined analytical continuation.

The model parameters are t ′ = −0.3t , μ = 0, U = 1.0D,
T = 0.125D, and 〈nσ 〉 = 0.3625. In Ref. [52], the calculation
was performed with the Hartree-shifted series with δμ = 0,
as well as with the bare series, with two values of δμ, namely,
0.15D and 0.3825D. We repeat these calculations with our
method. We use lattice size 32 × 32, and project the disper-
sion onto a uniform energy grid, as described in Ref. [48] and
discussed in Sec. III C 2. In Fig. 3, we show our results and
compare them with the results of Ref. [52].

In the upper row of Fig. 3 are the real-frequency self-
energies calculated up to order K � 5. We are keeping a finite
broadening η = 0.3D to smoothen the curves. As discussed in
Appendix B, in our method, numerical pole broadening is not
a formal necessity. However, there is still a significant amount
of statistical noise in our real-frequency result (although the
imaginary-frequency result is already very well converged).
It is important to note that some of the noisy features in our
real-frequency result may be artifacts of the finite-lattice size
that would not vanish with increasing number of MC steps.
However, by comparing the result with a 256 × 256 lattice
calculation (Appendix C), we check that already at η = 0.2D,
no such artifact should be visible. It appears that for the given
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external k and broadening η = 0.2D, increasing the lattice
size further from 32 × 32 brings no new information, but it
also does not present an additional cost: at η = 0.2D, our
256 × 256 lattice calculation appears equally well converged
as the 32 × 32 lattice calculation, with the equal number of
MC steps and a similar runtime, and yields a result that is on
top of the 32 × 32 calculation.

In the bottom row of Fig. 3, we show the change in the
imaginary part of the self-energy at the first four Matsubara
frequencies, as a function of the maximal order K . Full-line
and dots are the result of our calculations. The dash-dotted
lines with crosses are data points taken from Ref. [52]. The
horizontal dashed lines are the 16 × 16-lattice determinantal
QMC result, also from Ref. [52].

The excellent agreement with the results from Ref. [52]
serves as a stringent test of our implementation. In the δμ =

0.3825D calculation, even on the real axis, the self-energy
does appear well converged by order K = 5, although there
is some discrepancy between K = 4 and K = 5 at around
ω = 1.5D.

B. ω-resolved resummation

We can now go one step further by resumming the series
presented in Figs. 3(a) and 3(c) for each ω individually, using
an ω-dependent optimal shift δμ∗(ω). The results are shown
in Figs. 4 and 5.

We determine the optimal δμ∗(ω) by minimizing the
spread of the Im�(ω + iη) results between orders K = 3
and K = 5. This spread as a function of ω and δμ is color
plotted in Figs. 4 and 5. We have results for a discrete set of
δμ ∈ {δμi}, so the optimal δμ∗(ω) is a priori a discontinuous
curve. As this is clearly nonsatisfactory, we smoothen the
curve (shown with the blue line on the top panels in Figs. 4 and
5). However, we do not have results for each precise value of
this optimal δμ∗(ω). One could take, for each ω, the available
δμi that is closest to δμ∗(ω), but this would, again, result in
a discontinuous curve. To avoid this, we average the available
results as

�(ω) =

∑

i �δμi�(ω; δμi )w(δμ∗(ω), δμi )
∑

i �δμiw(δμ∗(ω), δμi )
, (48)

where �δμi is the size of the δμ step in the available results at
the ith value (allows for nonuniform grids). We use a narrow
Gaussian weighting kernel,

w(δμ∗(ω), δμi ) = e−(δμi−δμ∗(ω))2/W 2
. (49)

The width of the kernel W is chosen such that it is as narrow
as possible, while still encompassing at least 3–4 δμi points,
so that the final result is reasonably smooth as a function of ω;
W is therefore determined according to the resolution in δμ.
We use W = 0.05 and �δμi ≈ 0.02 and have checked that the
results are insensitive to the precise choice of this numerical
parameter.

The results of the averaging around the optimal δμ∗(ω) are
shown in the middle and bottom panels of Figs. 4 and 5. In
both cases, the ω-resolved resummation helps to converge the
result. In the case of the bare series, the convergence is now
almost perfect, and already order K = 3 is on top of the exact
result. In the case of the Hartree-shifted series, the results are

(a)

(b)

(c)

FIG. 4. Results of the Hartree-shifted series with ω-resolved re-
summation, to be compared to Figs. 3(a) and 3(d) (all parameters
are the same). Top panel: Color plot of the spread of the imaginary
part of the self-energy at a given ω + iη between orders K = 3 and
5, in a calculation with a given δμ. The blue line smoothly connects
the minima of the spread (at each ω), and defines the ω-dependent
optimal shift δμ∗(ω) used in the resummation. Middle and bottom
panels are analogous to Figs. 3(a) and 3(d). In the bottom panel, the
dash-dotted and dashed lines are the same as in Fig. 3(d).

not perfectly converged at ω < 0, yet the K = 5 calculation
is practically on top of the exact result on the imaginary axis,
and presents an improvement to the δμ = 0 series in Fig. 3(a).
Note that the improvement in convergence is seen on the
imaginary axis, as well.

C. Removing nonphysical features

In this section, we focus on the parameters case dis-
cussed in Ref. [48]. We calculate the Hartree-shifted series
with parameters of the model t ′ = 0, μ − U 〈nσ 〉 = −0.1D,
T = 0.1D, and employ various δμ shifts. The lattice size is
again 32 × 32 and we focus on the self-energy at k = (0, π ).
Note that in Hartree-shifted series, the quantity that enters the
calculation is μ − U 〈nσ 〉, rather than μ. If 〈n〉 is calculated,
μ can be estimated a posteriori. In our calculation, we fix
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(a)

(b)

(c)

FIG. 5. Results of the bare series with ω-resolved resummation,
to be compared to Figs. 3(c) and 3(f) (all parameters are the same).
The top panel is analogous to Fig. 4(a). The horizontal orange dashed
line denotes the value of δμ used in Figs. 3(c) and 3(f) to best con-
verge the imaginary-axis result. The middle and bottom panels are
analogous to Figs. 3(c) and 3(f). In the bottom panel, the dash-dotted
and dashed lines are the same as in Fig. 3(f).

μ − U 〈nσ 〉, and 〈nσ 〉 is then U dependent. Roughly, as given
in Ref. [48], at U = 1, we have 〈nσ 〉 ≈ 0.455.

FIG. 7. Analogous to Fig. 4(a), for the parameters of the model
corresponding to Fig. 6. The blue line is the optimal δμ∗, to be used
in Fig. 8.

The results are presented in Fig. 6 for three values of U .
At low U , the series is well converged by K = 5, and the
result is entirely insensitive to the choice of δμ, as expected.
At intermediate and high U , the result can be strongly δμ

sensitive. The δμ dependence of the result, however, strongly
varies with ω. It appears that for a given ω, there are ranges of
the δμ value where the result (at fixed order K) is insensitive
to the precise choice of δμ. This presents an alternative way
of choosing an optimal δμ (a similar idea was employed in a
different context in Ref. [58]).

The striking feature at large U is the causality violations at
|ω| ≈ 2 that were previously discussed in Ref. [48] (note that
the broadening somewhat masks the extent of the problem).
The dips in the self-energy spectrum appear to happen only
at certain values of δμ: at ω = −2, the problem is present at
δμ large and negative, and at ω = 2, at δμ large and positive.
In particular, at ω = 2, the result appears to vary uniformly
with δμ, and one cannot select an optimal δμ based on the
sensitivity of the result to the δμ value. We therefore repeat
the procedure from the previous section and select the optimal
δμ∗(ω) based on the level of convergence between orders K =

4 and K = 5. The spread of the results and a smooth choice of
δμ∗(ω) are presented in Fig. 7.

In Fig. 8, the results of the averaging are shown and
compared to the δμ = 0 results at the highest available
orders K = 4 and K = 5, at three values of U . The conver-
gence is visibly better around our δμ∗ than with δμ = 0 at
problematic frequencies |ω| ≈ 2. More importantly, the non-
physical features are clearly absent. At U = 1, in the δμ = 0

(a) (b) (c)

FIG. 6. Imaginary part of the self-energy on the real axis (with broadening η), at different values of coupling constant U , obtained with
our method at K = 5 using different chemical-potential shifts δμ. The parameters of the calculation are the same as in Ref. [48], i.e., t ′ = 0,
μ − U 〈nσ 〉 = −0.1D, T = 0.1D. The self-energy is calculated at k = (0, π ). Passing of the curves above the gray dashed line indicates
breaking of causality.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Imaginary part of self-energy, real-frequency results
(with broadening η). Right column: obtained with the ω-resolved
resummation for the model parameters from Fig. 6, using the op-
timal δμ∗(ω) from Fig. 7; to be compared to the standard δμ = 0
calculation in the left column. Purple dashed lines in the top row are
the K = 6 calculation with δμ = 0.

calculation, the causality is not yet violated, but the dip at
ω = 2 is already starting to appear, which is clearly an artifact
of the series truncation which should be removed systemati-
cally. It is important that the intermediate frequency behavior
that we obtained by averaging results around the optimal δμ

is indeed the correct one, and it will not change much further
with increasing orders. We show in the top panels the K = 6,
the δμ = 0 result of which has been benchmarked against a
fully converged imaginary-axis result in Fig. 9 (the converged
result was obtained with the �Det method [59,60] at order

FIG. 9. Matsubara-frequency self-energy result, with model pa-
rameters as in Fig. 6. Crosses are the real part, pluses are the
imaginary part, and lines are eye guides. Solid lines are the Hartree-
shifted series with δμ = 0 at different maximal K . The same result
was obtained with both the algorithm presented in this work and the
algorithmic Matsubara summation method from Ref. [48] (the two
methods were compared diagram by diagram). Black dashed lines
are the �Det result at maximal order N = 8.

8). Clearly, the improved convergence between orders 4 and
5 that we have achieved by choosing δμ appropriately does
indeed mean an improved final result. However, our proce-
dure does not improve the result at around ω = 0, where the
optimal δμ does appear to be close to 0. The K = 6, δμ = 0
result shown in the upper panels of Fig. 8 is still a bit different
from the K = 5, δμ ≈ δμ∗(ω) results around ω = 0.

In the case of U = 1D, it is interesting that a large negative
δμ does bring the ω ≈ 0 result at order K = 5 much closer to
the exact value. This can be anticipated from Fig. 6, where we
show the corresponding results for U = 0.8D and U = 1.2D.
Also, by looking at the color plot in Fig. 7, we see that at
ω = 0, there is indeed a local minimum in the spread at around
δμ = −0.2, which could be used as the optimal δμ∗. This
minimum, however, cannot be continuously connected with
the other minima that we observe at ω < 0, so we chose a dif-
ferent trajectory in the (ω, δμ) space. It would be interesting
for future work to inspect the behavior at even more negative
δμ, where another continuous trajectory δμ∗(ω) might be
found.

V. DISCUSSION, CONCLUSIONS, AND PROSPECTS

In this paper, we have derived an analytical solution for
the multiple-time integral that appears in the imaginary-time
Feynman diagrams of an interaction series expansion. The
solution is general for any diagram with a single external
time or no external times. We find this generality to be a
great advantage compared to the recently proposed algo-
rithmic solutions of the corresponding Matsubara-frequency
summations. Our analytical solution allowed us to develop
a very flexible DiagMC algorithm that can make use of the
possibility to optimize the series with shifted actions. As
a result, we were able to almost perfectly converge a real-
frequency self-energy in just 3–4 orders of perturbation, in
a nontrivial regime and practically in the thermodynamic
limit.

More importantly, the fact that one does not have to prepare
a solution for each diagram topology individually opens the
possibility to develop algorithms more akin to CTINT and
allow the MC sampling to go to indefinite perturbation orders.
In fact, upon a simple inspection of CTINT and continuous-
time hybridization-expansion quantum Monte Carlo in the
segment picture (segment-CTHYB) equations [42], it be-
comes clear that our solution can, in principle, be applied
there, so as to reformulate these methods in real frequency.
This would, however, come at the price of having to break
into individual terms the determinant that captures all the
contributions to the partition function at a given perturbation
order. In turn, this may lead to a more significant sign prob-
lem, and an effective cap on the perturbation orders that can
be handled in practice. On the other hand, it is not entirely
clear how much of the sign problem comes from summing
the individual terms and how much from the integration of
the internal times, and we leave such considerations for future
work. In any case, DiagMC algorithms based on hybridization
expansion have been proposed before (see Refs. [23,28,61]),
where our analytical solution may be applied.

Our solution also trivially generalizes to real-time inte-
grals and may have use in Keldysh and Kadanoff-Baym [9]
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calculations, where the infamous dynamical sign problem
arises precisely due to oscillating time integrands. There have
been recent works [62,63] with imaginary-time propagation
of randomized walkers where our solution may also find ap-
plication.

Finally, we emphasize that avoiding analytical continuation
could be beneficial at high temperature where the Matsub-
ara frequencies become distant from the real axis, and thus
noisy imaginary-axis correlators contain little information
[64,65]. The high-temperature regime is particularly relevant
for optical lattice simulations of the Hubbard model [66].
In that context, we anticipate our method will find appli-
cation in the calculation of conductivity and other response
functions.
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APPENDIX A: REAL-TIME INTEGRATION

Let us consider the following special case of the integral
given by Eq. (3), which is relevant for real-time integrations
featuring integrands of the form eitE :

Ĩ{l2...lN },{E2...EN }(t ) =

N
∏

i=2

∫ ti+1

0
dti t

li
i eitiEi , (A1)

with tN+1 ≡ t . This corresponds to the case r /∈ [2, N] in
Eq. (3), and ωi = iEi, and we will define Ẽi analogously to ω̃i.
The result is then obtained straightforwardly from Eq. (14),

Ĩ{l2...lN },{E2...EN }(t ) =
∑

{bi∈[δz̃i
,1]}i=2...N

eit ẼN bN

∑

{ki∈[0,(1−δz̃i
)ni]}i:bi=1

× (−1)
∑N

i=2 ki

∏

i:δz̃i
=1

1

ni

× tnN +1−bN −kN

∏

i:Ẽi 
=0

Cni,ki

(iẼi)ki+bi

, (A2)

which has the following general form:

Ĩ(t ) =
∑

j;p∈N0

Zp, jt
peitE j . (A3)

APPENDIX B: EXTRACTING REAL-AXIS RESULTS

WITHOUT POLE BROADENING

In this section, we show how the results on the real axis can
be extracted without any numerical broadening of the poles.
Rather, we make use of the pole amplitudes by interpreting
the result as being representative of the thermodynamic limit,
where poles on the real axis merge into a branch cut, and thus
we consider that the pole amplitude is a continuous function
of the real frequency. We extract the imaginary part of the
contribution [ImD(ω)], and then the Hilbert transform can be
used to reconstruct the real part.

The procedure relies on the following construction: A func-
tion f (z) which is analytic everywhere in the upper half of the
complex plane (z+ = x + iy with y > 0) and decays to zero
with |z+| satisfies the relation

f (z+) = −
1

π

∫

dx′ Im f (x′ + i0+)

z+ − x′
. (B1)

After applying the pth derivative with respect to x (i.e., the
real part of z+) on both sides of the equation, one obtains

∂ p
x f (z+) = −

1

π

∫

dx′∂ p
x

Im f (x′ + i0+)

z+ − x′

= −
1

π

∫

dx′(−1)p(p + 1)!
Im f (x′ + i0+)

(z+ − x′)p+1
. (B2)

We can now move the constant prefactors to the left-hand side
and rename p + 1 → p. Just above the real axis, we have

(−1)pπ

p!
∂ p−1

x f (x + i0+) =

∫

dx′ Im f (x′ + i0+)

(x − x′ + i0+)p
. (B3)

We can now discretize the expression on a uniform x grid with
the step �x, say, x j = j�x, and we see that the right-hand side
has the form of a sum of poles of order p, equidistant along
the real axis, and with amplitudes A j = Im f (x j + i0+),

(−1)pπ

p!
∂̃

p−1
j A j ≈ Im

∑

j′

�x
A j′

(x j − x j′ + i0+)p
, (B4)

where ∂̃ is the finite-difference approximation for the deriva-
tive along the x axis. Clearly, the imaginary part of the entire
sum of p-order poles at a certain point x j can be estimated by
looking only at the (p − 1)th derivative of the amplitudes of
these poles at x j , as given in the above expression.

The expression (B4) can be readily applied in our case
[Eq. (33)] where the real axis is the frequency axis ω, with step
�ω and ω j = j�ω, and the sum of the poles determines our
diagram contribution D. In general we have poles of various
orders, but we can group the poles by order and treat their
contributions separately. We therefore have

ImD(ω j + i0+) ≈
π

�ω

∑

p

(−1)p

p!
∂̃

p−1
j A j,p. (B5)

In the case of simple poles only, the contribution at any ω j is
simply proportional to the amplitude of the pole A j,1. Other-
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FIG. 10. Illustration of a η = 0+ result obtained from Eq. (31)
without any numerical broadening, based only on pole amplitudes.
The diagram used is the second-order diagram (illustrated in the top
panel), with L = 2. In the propagators, we take δμ = 0. The rest of
the parameters are μ − U 〈nσ 〉 = −0.1D, T = 0.1D, and the external
momentum is k = (0, π ). The top three panels are contributions
from first-, second-, and third-order poles, respectively. The bottom
panel is the total result. Lines with η > 0 are obtained with numerical
broadening. The crosses on the η = 0 result denote the available
frequencies (in between, we assume linear interpolation).

wise, the procedure requires that the pole amplitudes form a
reasonably smooth function of the real frequency. Addition-
ally, the energy resolution is a measure of the systematic error
made in this procedure.

To avoid statistical noise and noisy features coming from
the finite size of the lattice (see next section), we test our
method on the example of a N = 2, L = 2 diagram, which
we can solve with the full summation of Eq. (31), on a lattice

FIG. 11. Comparison of the real-frequency imaginary self-
energy result for a single fifth-order diagram (illustrated in the
bottom-left corner), for the lattice sizes 32 × 32 and 256 × 256,
at three different levels of broadening. The calculation is in both
cases performed with the same number of MC steps and took sim-
ilar time. The parameters are L = 0, δμ = 0, μ − U 〈nσ 〉 = −0.1D,
T = 0.1D, and the external momentum is k = (0, π ).

of the size 96 × 96. This diagram produces poles up to order
3. The result is shown in Fig. 10. In the first three panels, we
show the contribution from the poles of each order, and in the
bottom panel, we show the total result.

APPENDIX C: CONVERGENCE WITH LATTICE SIZE

In this section we discuss the convergence of the result with
respect to the lattice size. In Fig. 11, we compare the results
for a single N = 5, L = 0 diagram on the lattices of size 32 ×

32 and 256 × 256. We observe that the result is almost exactly
the same at broadening level η = 0.2, which brings further
confidence in the results in the main part of the paper.

In Fig. 12, we illustrate how the size of the lattice de-
termines the highest energy resolution that one can have,
under requirement that the results form a continuous curve
on the real axis and are, therefore, representative of the ther-
modynamic limit. We perform the full summation for the
second-order diagram with L = 0, with various sizes of the
lattice and various resolutions. Clearly, the bigger the lattice,
the higher the energy resolution one can set without affecting
the smoothness of the results.

The numerical parameters of the calculation are there-
fore the size of the lattice, the energy resolution, and the
broadening (the resolution and the broadening can be tuned
a posteriori), and one can tune them to get the optimal ratio
between performance and the error bar. If the pole amplitudes
A j p are a relatively smooth function of j, no broadening is
then needed at all.
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FIG. 12. Real-frequency result (η = 0+) for the contribution of the lowest-order diagram (illustrated in the rightmost panel) at various
lattice sizes and frequency resolutions, obtained with full summation (gray code). The step of the uniform energy grid is denoted �ω. The
parameters are L = 0, δμ = 0, μ − U 〈nσ 〉 = −0.1D, T = 0.1D, and the external momentum is k = (0, π ).

APPENDIX D: DERIVATION OF EQ. (5)

After applying n times the partial integration over the integral from the left-hand side of Eq. (5), we get
∫ τ f

0
τ neτ zdτ =

1

zn+1

∫ zτ f

0
τ neτ dτ

=
1

zn+1

[

ezτ f (zτ f )n − nezτ f (zτ f )n−1 + · · · + (−1)nn!
∫ zτ f

0
τ 0eτ dτ

]

=
1

zn+1

[

n!

(n − 0)!
(−1)0ezτ f (zτ f )n−0 + (−1)1 n!

(n − 1)!
ezτ f (zτ f )n−1 + · · · + (−1)n n!

(n − n)!

∫ zτ f

0
τ 0eτ dτ

]

=
1

zn+1

[

n!

(n − 0)!
(−1)0ezτ f (zτ f )n−0 + (−1)1 n!

(n − 1)!
ezτ f (zτ f )n−1 + · · · + (−1)n n!

(n − n)!
(zτ f )0(ezτ f − 1)

]

=
1

zn+1
ezτ f

n
∑

k=0

(−1)k (zτ f )n−k n!

(n − k)!
− (−1)n n!

zn+1
, (D1)

which can be readily identified with the right-hand side of Eq. (5).

APPENDIX E: DERIVATION OF EQ. (21)

We are looking for a solution of the Fourier transform

Gl
0(ε, τ ) =

1

β

∑

i�η

e−i�ητ

(i�η − ε)l
. (E1)

For any τ , we can express the sum above as a contour integral,
and we find

Gl
0(ε, τ ) = −Resz=ε

e−zτ

(z − ε)l

η⌊ τ
β ⌋e⌊

τ
β ⌋βz

1 − ηe−βz
dz

= −
η⌊ τ

β ⌋

(l − 1)!

d l−1

dzl−1

e
−βz{ τ

β
}

1 − ηe−βz

∣

∣

∣

∣

z=ε

, (E2)

where ⌊...⌋ denotes the integer part (floor function), and {x} ≡

x − ⌊x⌋ denotes the fractional part.
We see that it will be useful to have an expression for

derivatives of (1 − ηez )−1. They have the general form

dk

dzk

1

1 − ηez
=

k
∑

n=0

Ck
n

(ez )n

(1 − ηez )n+1
. (E3)

By deriving this expression on both sides, one obtains a recur-
sion for the coefficients Ck

n ,

Ck+1
n = nCk

n + ηnCk
n−1, (E4)

with holds for k > −1 and n > 0 with C0
0 = 1. That can be

rewritten

ηn

n!
Ck+1

n = n
ηn

n!
Ck

n +
ηn−1

(n − 1)!
Ck

n−1. (E5)

If we define Sk
n =

ηn

n! C
k
n , we have the recursion Sk+1

n = nSk
n +

Sk
n−1, which is the recursion for the Stirling numbers of the

second kind. This allows one to have the following important
result:

dk

dzk

1

1 − ηez
=

k
∑

n=0

ηnn!

{

k

n

}

(ez )n

(1 − ηez )n+1

=

k
∑

n=0

ηnn!

{

k

n

}

e−z

(e−z − η)n+1
. (E6)
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With this, one obtains the following expression:

Gl
0(ε, τ ) = −e

εβ(1−{ τ
β })η⌊ τ

β ⌋+1(−β )l−1

×

l−1
∑

m=0

l−m−1
∑

n=0

n!

(l − m − 1)!m!

{

l − m − 1

n

}

×

(

1

ηeεβ − 1

)n+1{
τ

β

}m

, (E7)

which already satisfies the (anti)periodicity properties of the
Green’s function.

To make use of the result given by Eq. (E7), we need to
express Gl

0(ε, τ ) as a function of two times Gl
0(ε, τ, τ ′) ≡

Gl
0(ε, τ − τ ′), with τ, τ ′ ∈ [0, β]. We first consider τ � τ ′.

By substituting (τ − τ ′)m =
∑m

ζ=0(−1)m−ζ
(

m

ζ

)

τ ζ τ ′m−ζ into
Eq. (E7) and substituting m − ζ with ς , we get

Gl
0(ε, τ − τ ′) = ηeε(τ ′−τ )nη(−ε)

l−1
∑

ζ=0

l−ζ−1
∑

ς=0

c−
l,ζ ,ς (ε)τ ζ τ ′ς ,

(E8)
with c−

l,ζ ,ς
(ε) as defined in Eq. (22). The result for τ < τ ′ can

then be easily obtained by proving the property Gl
0(ε, τ ) =

(−1)l Gl
0(−ε,−τ ),

Gl
0(ε,−τ ) =

1

β

∞
∑

n=−∞

ei�ητ

(i�η − ε)l

=
1

β

∞
∑

n=−∞

e−i�ητ

(−i�η − ε)l

= (−1)l 1

β

∞
∑

n=−∞

e−i�ητ

(i�η + ε)l

= (−1)lGl
0(−ε, τ ),

which implies that in the definition (21), we must have

c+
l,ζ ,ς (ε) = (−1)l−1c−

l,ς,ζ (−ε). (E9)

APPENDIX F: GENERAL HAMILTONIAN CASE

It is important to show that our method is not restricted
to a specific choice of Hamiltonian. The local density-density
interaction and the single band of the Hubbard Hamiltonian
bring many simplifications, but none of them are necessary for
our imaginary-time integral solution or the chemical-potential
tuning scheme.

Consider the general Hamiltonian

H =
∑

α

(εα − μ) +
∑

α1α2α3α4

Uα1α2α3α4 c†
α1

cα2 c†
α3

cα4 . (F1)

The α are the eigenstates of the noninteracting Hamil-
tonian, e.g., a combined momentum, band, and spin
index. The self-energy can be now expressed as a

series,

�
(HF)
α,α′ (τ ) =

∑

N

∑

ϒN

2N−1
∏

j=1

∞
∑

l j=1

∑

α j,1...α j,l j

l j−1
∏

n=1

∑

V j,n

× [V j,n]α j,nα j,n+1

N
∏

i=1

Uα j1 (i)α j2 (i)α j3 (i)α j4 (i)

×

N−1+
∑

j (l j−1)
∏

m=1

∫ β

0
dτm G0

(

ε̄α j,n
, τ̃ j,n − τ̃ ′

j,n

)

.

(F2)

Similarly as before, ϒN enumerates topologies without any
instantaneous insertions (Hartree or chemical potential) at
perturbation order N (the number of interaction vertices).
The fermionic lines in the ϒN topology are enumerated with
j. On each fermionic line, we make any number l j − 1 of
instantaneous insertions with amplitudes V j,n (interaction am-
plitudes in Hartree insertions are included in V; n enumerates
the insertions at the fermionic line j). In general, Hartree
insertions may contain off-diagonal terms in the α basis and
are therefore a matrix in the α space. However, it is necessary
that chemical-potential shifts are diagonal in this basis, as
we want to have the bare propagator diagonal in this basis
as well. Otherwise, the form of G0 from Eq. (18) would
no longer hold. Nevertheless, one may still have a separate
chemical-potential shift for each state, δμα . After making
insertions, the number of fermionic lines increases to

∑

j l j .
The fermionic lines are now enumerated with j, n, and the
corresponding states are α j,n. The index i enumerates the in-
teraction vertices outside of any Hartree insertions. We denote
α j1...4 (i) as the single-particle states at four terminals of each
interaction vertex. The interaction vertices at incoming (i = 1)
and outgoing (i = N) terminals of the self-energy diagram
are α j1 (i = N ) = α, α j2 (i = 1) = α′. With m, we enumerate
all times to be integrated over. With each interaction vertex
i > 1, we associate one time, and there is a time associated to
each instantaneous insertion of which there are

∑

j (l j − 1).
We assume that the incoming time corresponding to the vertex
i = 1 is 0. The times on the terminals of each bare propa-
gator j, n are τ̃ j,n and τ̃ ′

j,n and they take on values from the
set {τm}m=0...N−1+

∑

j (l j−1), with the external incoming time
fixed, τ0 ≡ 0. τ̃ j,n, τ̃

′
j,n, and α j1...4 (i) are implicit functions of

topology ϒN . Finally, ε̄α j,n
≡ εα j,n

− μ + δμα j,n
. We can now

focus only on the time-integral part and proceed completely
analogously to Eqs. (27)–(31).

It is worth noting that with general interactions, pulling
the coupling constant in front of the diagram contribution is
impossible, as the frequency dependence of the contribution
of each diagram will depend on the precise form of Uα1α2α3α4 .
In the most general case, one must set specific values for
Uα1α2α3α4 and δμα before performing the Monte Carlo summa-
tion. One can then choose the variables that will be sampled
stochastically and the ones that will be fully summed over.
In the end, the contributions can be easily grouped by total
number of independent times (K), including those in Hartree
insertions. The integration of times in Hartree insertions can
always be performed beforehand. Therefore, in the fully
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general case, the number of integrations to be performed at
the time of Monte Carlo sampling is N − 1 +

∑

j (l j − 1).
In the case of purely density-density interactions (as is the
case in the Hubbard model) or spin-spin interactions in the
absence of external magnetic fields, this simplifies further
because instantaneous insertions lead to expressions of the
type 1

(iω−ε)l for which we can work out the temporal Fourier
transform analytically [Eq. (21)] and the remaining number of
integrations to perform is N − 1 [as we do in Eq. (31)]. In the
general case, when Hartree insertions are not diagonal in the α

basis, one has expressions of the type 1
iω−ε1

1
iω−ε2

· · · 1
iω−εl

. In

principle, one could prepare the analytical Fourier transforms
for a general function of this form, but it might be increasingly
involved at large l , so we assume one would do these integra-
tions at the level of the Monte Carlo, when ε1...l are already
specified.

We finally emphasize that even more general construc-
tions are possible, even in bases other than the noninteracting
eigenbasis. In such cases, the G0’s are nondiagonal and
may have a continuous real-frequency dependence, instead
of being a single pole. We leave such considerations for
future work.
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