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Effect of uniaxial magnetic anisotropy on charge transport in a
junction with a precessing anisotropic molecular spin
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Anisotropic magnetic molecules can be employed to manipulate charge transport in molecular nanojunctions.
Charge transport through a molecular orbital connected to two leads and exchange-coupled with a precessing
anisotropic molecular spin in a constant magnetic field is studied here. The magnetic field and the uniaxial
magnetic anisotropy parameter of the molecular spin modulate the total precession frequency. The precessing
molecular magnetization drives inelastic tunneling processes between electronic quasienergy levels. The dc-
bias voltages allow to unveil the quasienergy levels, Larmor frequency, and the anisotropy parameter, through
characteristics of charge-transport measurements involving features such as steps, peaks, and dips. Quantum
interference effects between states connected with spin-flip events are reflected in the shot noise as peak-dip
(dip-peak) features, resembling Fano-like resonance profiles, and are controlled by the anisotropy parameter
and Larmor frequency. Under zero bias, the increase of the anisotropy parameter enables the decrease of the
precession frequency or alters the precession direction, and shot noise is reduced. Furthermore, it is possible to
adjust the anisotropy parameter to suppress the precession frequency, leading to the suppression of shot noise.
The results show that in the given setup, the charge current and shot noise can be controlled by the magnetic
anisotropy parameter of the molecular spin.

DOI: 10.1103/PhysRevB.111.165415

I. INTRODUCTION

Single-molecule magnets have gained much attention since
the beginning of the new century due to the possibility to
be used as constituent elements in spintronic devices for
high-density information storage and quantum information
processing [1–6]. The key role in these applications plays the
uniaxial magnetic anisotropy, characterized by parameter D,
which leads to the bistability of the molecular spin states, with
two degenerate ground states ±S, separated by an energy bar-
rier to spin reversal DS2 (for integer spins) at low temperatures
[2,3,7,8]. Depending on the sign of the anisotropy parameter,
there are two types of uniaxial anisotropy: easy-axis (D > 0)
and easy-plane (D < 0) anisotropy [2]. For successful appli-
cations in magnetic storage, the energy barrier needs to be
enhanced [9], but its increase cannot be accomplished by a
simultaneous increase of the anisotropy parameter D and the
ground state spin S, and the only way to control the barrier
height it to modulate the value of D [10–13]. On the other
hand, in-plane and small magnetic anisotropy is desirable for
applications in quantum information processing [14]. In order
to design magnetic molecules with desired characteristics,
learning to control and manipulate the magnetic anisotropy
parameter D is essential.

Charge transport through magnetic molecules has been
studied both theoretically [15–27] and experimentally
[28–35]. The studies have addressed various phenomena,
such as, e.g., Kondo effect [36–39], Pauli spin blockade
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[40–42], Coulomb blockade [28,43–45], molecular mag-
netization dynamics in tunnel junctions [17,46,47] or in
contact with a superconducting lead [48], and spin-dependent
Seebeck and Peltier effect [49–52]. The possibility to manip-
ulate molecular magnetization by charge current has already
been demonstrated experimentally [29–33,53]. It has been
theoretically predicted that exchange interactions between
molecular magnets can be electrically controlled [21,22].
Magnetic anisotropy can be varied and controlled by vari-
ous means such as electrical current [18,44,54–57], electric
field [44,58–61], molecular mechanical stretching [62], and
by ligand substitution [63]. High anisotropy barriers for spin
reversal were observed in some isolated metal complexes, but
due to their reactivity and instability, they are not suitable
candidates to be exploited in magnetic storage [64–67]. Also,
new optical techniques of spin readout in single-molecule
magnets have been investigated recently [68–70].

The nonequilibrium Green’s functions technique [71–73]
has been used to derive various characteristics of quan-
tum transport through single molecules and molecular
magnets, such as charge current, current-current correla-
tions, spin current, inelastic transport, heat current, etc.
[19,21–23,52,74–78]. Charge-current noise in transport junc-
tions arising from the discreteness of charge of conducting
electrons is an exciting topic in nanophysics, since it can
give us additional information about charge transport which
is hidden from the current measurements [79]. Within the
framework of nonequilibrium Green’s functions technique,
the effect of inelastic transport on shot noise has been studied
[74,80–83], as well as current fluctuations in the transient
regime [84]. It has been shown previously that a spin flip
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can lead to suppression [80,85] or enhancement [86,87] of
the shot noise. The shot noise has been employed to give
information on, e.g., energy of transmission channels [79],
fractional charges [88], and Cooper pairs [89]. Recently, the
nonequilibrium noise due to temperature gradient at zero-bias
voltage has become an active research topic [90–94].

The goal of this paper is to theoretically study charge trans-
port through a single electronic level that may be an orbital
of a molecular magnet or belong to a nearby quantum dot,
in the presence of a precessing anisotropic molecular spin
in a constant external magnetic field, connected to electric
contacts. The precession frequency is contributed by the Lar-
mor precession frequency and a term with uniaxial magnetic
anisotropy parameter of the molecular spin, and kept un-
damped by external means. The spin of the itinerant electron
in the electronic level and the molecular spin are coupled via
exchange interaction. The charge current and current noise are
calculated by means of the Keldysh nonequilibrium Green’s
functions technique [71–73]. The shot noise of charge current
is a result of the competition between correlations of currents
with the same spins and correlations of currents with the
opposite spins. Both elastic tunneling, driven by the dc-bias
voltage, and inelastic tunneling involving a spin flip of the
itinerant electrons, driven by the precessional motion of the
anisotropic molecular spin, contribute to the charge transport.
It is shown that by proper tuning of the uniaxial magnetic
anisotropy parameter, the charge current and shot noise can
be manipulated. The energies of the channels available for
electron transport are Floquet quasienergies, which are ob-
tained by the Floquet theorem [95–98]. They are dependent
on the magnetic anisotropy of the molecular spin and can be
varied accordingly. Both charge current and shot noise are
saturated for sufficiently large magnetic anisotropy parameter
at nonzero bias-voltage conditions. Similarly to our previ-
ous work where the precessing molecular spin was isotropic
[83], the peak-dip (dip-peak) features in the shot noise are
manifestations of the quantum interference [99,100] between
the states connected with inelastic tunneling, accompanied
with a spin flip, here involving absorption (emission) of an
energy which is linearly dependent on the uniaxial magnetic
anisotropy parameter. Finally, the results show that the shot
noise at zero-bias voltage conditions and zero temperature is
reduced for chemical potentials of the metallic leads that en-
able inelastic tunneling processes, if the magnetic anisotropy
parameter increases, leading to the decrease of the total pre-
cession frequency or reversed direction of the molecular spin
precession with respect to the external magnetic field. More-
over, the magnetic anisotropy parameter can suppress the
precession frequency of the molecular magnetization, leading
to zero shot noise.

The rest of the paper is arranged in the following way.
The model setup of the system is described in Sec. II. The-
oretical formalism used to derive the results is given in
Sec. III. The expressions for the charge current and the current
noise are calculated by means of the Keldysh nonequilibrium
Green’s functions technique [71–73]. The results are shown
and discussed in Sec. IV, where the effects of the uniaxial
magnetic anisotropy of the molecular spin on the charge-
transport properties at zero temperture are analysed. This

FIG. 1. Tunneling through a single molecular orbital with energy
ε0 coupled to the anisotropic spin �S(t ) of a molecular magnet via
exchange interaction with the coupling constant J , in the presence
of a magnetic field �B, connected to two metallic leads with chemical
potentials μL and μR. The applied bias voltage eV = μL − μR, with
tunnel rates �L and �R, and the uniaxial anisotropy constant of the
molecular magnet D. The spin of the molecule precesses around the
magnetic field axis with modified frequency ω = ωL − 2DSz.

section is followed by Sec. V in which the conclusions are
presented.

II. MODEL SETUP

The junction under consideration consists of a single
molecular orbital of a molecular magnet, in the presence
of a precessing anisotropic molecular spin in a constant
external magnetic field along z axis, �B = B�ez, coupled to
two noninteracting metallic leads (see Fig. 1). The leads
with chemical potentials μL (left) and μR (right) are unaf-
fected by the magnetic field. The Hamiltonian describing the
junction is given by Ĥ (t ) = ĤL + ĤR + ĤT + ĤMO(t ) + ĤS .
Here, the Hamiltonian of lead ξ = L, R can be written as
Ĥξ = ∑

k,σ εkξ ĉ†
kσξ

ĉkσξ . The subscript σ =↑,↓= 1, 2 = ±1
denotes the spin-up or spin-down state of the electrons. The
tunnel coupling between the molecular orbital and the leads
is introduced by ĤT = ∑

k,σ,ξ [Vkξ ĉ†
kσξ

d̂σ + V ∗
kξ d̂†

σ ĉkσξ ], with

matrix element Vkξ . Here, ĉ†
kσξ

(ĉkσξ ) and d̂†
σ (d̂σ ) denote the

creation (annihilation) operators of the electrons in the leads
and the molecular orbital. The Hamiltonian of the molecu-
lar orbital is given by ĤMO(t ) = ∑

σ ε0d̂†
σ d̂σ + (gμB/h̄)�̂s �B +

J �̂s�S(t ), where the first term is the Hamiltonian of the non-
interacting molecular orbital with energy ε0. The second
term describes the electronic spin in the molecular orbital,
�̂s = (h̄/2)

∑
σσ ′ ( �̂σ )σσ ′ d̂†

σ d̂σ ′ , in the presence of the magnetic
field �B. The vector of the Pauli matrices is given by �̂σ =
(σ̂x, σ̂y, σ̂z )T , while g and μB are the g factor of the electron
and the Bohr magneton. The third term in the Hamiltonian
of the orbital represents the exchange interaction between the
electronic spin and spin of the molecule, where J is the ex-

change coupling constant. The term ĤS = (gμB/h̄) �̂S �B − DŜ2
z

represents the Hamiltonian of the anisotropic molecular spin
�̂S = Ŝx�ex + Ŝy�ey + Ŝz�ez, where D is the uniaxial magnetic
anisotropy parameter. It is presumed that g factor of the molec-
ular spin equals that of a free electron.

Assuming that the spin of the molecular magnet is
large and that it can be considered as a classical vari-

able �S, with constant length S = |�S| � h̄, where �S = 〈�̂S〉
is the expectation value of the molecular spin operator, its
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dynamics is given by the Heisenberg equation of motion �̇S =
〈 ˙̂�S〉 = (i/h̄)〈[Ĥ, �̂S]〉. Neglecting the quantum fluctuations and
using external means, such as radio-frequency fields [101],
to compensate for the loss of the molecular magnetic energy
due to its interaction with the itinerant electrons, so that the
molecular spin dynamics remains unaffected by the exchange

interaction, the equation �̇S = (gμB/h̄) �B × �S − 2D�Sz × �S is
obtained [17]. The molecular spin precesses around z axis,
with frequency ω = ωL − 2DSz, where ωL = gμBB/h̄ is the
Larmor precession frequency in the external magnetic field �B,
while −2DSz is the contribution of the uniaxial anisotropy to
the precession frequency ω. The motion of the molecular spin
is then given by �S(t ) = S⊥ cos(ωt )�ex + S⊥ sin(ωt )�ey + Sz�ez,
where θ is the tilt angle between z axis and �S, S⊥ = S sin(θ )
and Sz = S cos(θ ). Although the motion of the molecular spin
is kept precessional externally [101], the molecular magnet
itself pumps charge current into the leads, thus affecting the
transport properties of the junction. In the rotating reference
frame attached to the end point of the molecular spin, the
Hamiltonian of the molecular orbital ˆ̃HMO is time-independent
and can be written as ˆ̃HMO = Û ĤMOÛ † + ih̄(∂tÛ )Û †, where
Û is the unitary operator Û (t ) = eiωt ŝz/h̄. The orbital Hamil-
tonian ˆ̃HMO can be further expressed as ˆ̃HMO = ∑

σ ε0d̂†
σ d̂σ +

(2D + J )Szŝz + JS⊥ŝx.
Separation between a molecular level and a localized

molecular spin can be obtained in, e.g., molecular magnets
containing atoms of transition metals or rare earth elements
[23,55,102], since the molecular spin here is composed of
localized d or f orbitals belonging to transition metal or rare
earth element. The s and p orbitals in the molecular ligands
form the localized molecular level, i.e., the highest occupied
or lowest unoccupied molecular orbital. If we take into ac-
count that the Coulomb interaction in the s and p orbitals
in the ligands can be considered negligible, then the on-site
Coulomb repulsion can be neglected.

III. THEORETICAL FORMALISM

A. Charge current

The charge-current operator of the contact ξ is given by the
Heisenberg equation [72,73]

Îξ (t ) = −e
dN̂ξ

dt
= −e

i

h̄
[Ĥ , N̂ξ ], (1)

where N̂ξ = ∑
k,σ ĉ†

kσξ
ĉkσξ represents the charge occupation

number operator of the contact ξ , while [ , ] denotes the
commutator. The average charge current from the lead ξ to
the molecular orbital is then given by

Iξ (t ) = −e

〈
d

dt
N̂ξ

〉
= −e

i

h̄
〈[Ĥ, N̂ξ ]〉. (2)

Using the Keldysh nonequilibrium Green’s functions tech-
nique, the charge current can be calculated as [72,73]

Iξ (t ) = 2e Re
∫

dt ′Tr
{
Ĝr (t, t ′)	̂<

ξ (t ′, t )

+ Ĝ<(t, t ′)	̂a
ξ (t ′, t )

}
, (3)

in units in which h̄ = e = 1. The retarded, advanced, lesser
and greater self-energies from the tunnel coupling be-
tween the molecular orbital and contact ξ are denoted
by 	̂r,a,<,>

ξ (t, t ′). Their matrix elements are diagonal in
the electron spin space with respect to the basis of the
eigenstates of ŝz, with nonzero matrix elements given
by 	r,a,<

ξ (t, t ′) = ∑
k Vkξ gr,a,<,>

kξ
(t, t ′)V ∗

kξ , where gr,a,<,>
kξ

(t, t ′)
represent the retarded, advanced, lesser and greater Green’s
functions of the electrons in the lead ξ . The Green’s func-
tions of the electrons in the molecular orbital are given by
Ĝr,a,<,>(t, t ′), with matrix elements Gr,a

σσ ′ (t, t ′) = ∓iθ (±t ∓
t ′)〈{d̂σ (t ), d̂†

σ ′ (t ′)}〉, while G<
σσ ′ (t, t ′) = i〈d̂†

σ ′ (t ′)d̂σ (t )〉 and
G>

σσ ′ (t, t ′) = −i〈d̂σ (t )d̂†
σ ′ (t ′)〉, with the anticommutator de-

noted as {·, ·}. Applying the double Fourier transformations
in Eq. (3), one obtains

Iξ (t ) = − 2e�ξ Im
∫

dε

2π

∫
dε′

2π
e−i(ε−ε′ )t

× Tr

{
fξ (ε′)Ĝr (ε, ε′) + 1

2
Ĝ<(ε, ε′)

}
, (4)

where the tunnel coupling between the molecular orbital and
contact ξ , �ξ (ε) = 2π

∑
k |Vkξ |2δ(ε − εkξ ), is energy inde-

pendent in the wide-band limit and considered constant. The
Fermi-Dirac distribution of the electrons in the lead ξ is given
by fξ (ε) = [e(ε−μξ )/kBT + 1]−1, with kB the Boltzmann con-
stant and T the temperature.

The matrix elements of the retarded Green’s function
Ĝr (t, t ′) of the electrons in the molecular orbital, can be
obtained by applying Dyson’s expansion and analytic contin-
uation rules [73],

Ĝr (t, t ′) = Ĝ0r (t − t ′) +
∫

dt1Ĝ0r (t − t1)Ĥ ′(t1)Ĝr (t1, t ′).

(5)

Here, Ĝ0r (t − t ′) is the retarded Green’s function of the
electrons in the orbital in the presence of only the static
component of the molecular spin Sz along the axis of the
external magnetic field. It can be found using the equation of
motion technique [103], and after applying the Fourier trans-
formations, one obtains Ĝ0r (ε) = [ε − ε0 − 	r − σ̂z(gμBB +
JSz )/2]−1 [17,104], where 	r,a = ∓i�/2 and � = ∑

ξ �ξ . In

the second term of Eq. (5), Ĥ ′(t ) = γ (e−iωt d̂†
↑d̂↓ + eiωt d̂†

↓d̂↑)
is the off diagonal part of the Hamiltonian, representing the
exchange interaction between the electronic spin in the orbital
and the rotational component of the molecular spin, with γ =
JS⊥/2. The double Fourier transforms of the matrix elements
of Ĝr (t, t ′) read [104,105]

Gr
σσ (ε, ε′) = 2πδ(ε − ε′)G0r

σσ (ε)

1 − γ 2G0r
σσ (ε)G0r−σ−σ (εσ )

, (6)

Gr
σ−σ (ε, ε′) = 2πγ δ(εσ − ε′)G0r

σσ (ε)G0r
−σ−σ (εσ )

1 − γ 2G0r
σσ (ε)G0r−σ−σ (εσ )

, (7)

where the abbreviation εσ = ε − σω = ε − σ (ωL − 2DSz ) is
used. Applying the double Fourier transformations to the
Keldysh equation [73]

Ĝ<,>(t, t ′) =
∫

dt1dt2Ĝr (t, t1)	̂<,>(t1 − t2)Ĝa(t2, t ′), (8)
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the lesser and greater Green’s functions can be calculated as
Ĝ<,>(ε, ε′) = ∫

dε′′Ĝr (ε, ε′′)	̂<,>(ε′′)Ĝa(ε′′, ε′)/2π , where
	<(ε) = i

∑
ξ �ξ fξ (ε), 	>(ε) = i

∑
ξ �ξ ( fξ (ε) − 1) and

Ĝa(ε, ε′) = [Ĝr (ε′, ε)]†.
Finally, using Eqs. (4)–(8), the average charge current from

the contact ξ can be written as

Iξ = e�ξ�ζ

h̄

∫
dε

2π
[ fξ (ε) − fζ (ε)]

×
∑
σσ ′

σ �=σ ′

∣∣G0r
σσ (ε)

∣∣2[
1 + γ 2

∣∣G0r
σ ′σ ′ (ε + σ ′ωL−2σ ′DSz )

∣∣2]∣∣1 − γ 2G0r
σσ (ε)G0r

σ ′σ ′ (ε + σ ′ωL − 2σ ′DSz )
∣∣2 ,

(9)

with ξ �= ζ . Using the spin-resolved charge currents Iσ
ξ , the

charge current can be written as Iξ = I↑
ξ + I↓

ξ . In the limit
DSz 
 ωL, Eq. (9) reduces to the previously calculated ex-
pression for the charge current [83].

B. Density of states in the molecular orbital

The positions of the resonant transmission channels avail-
able for electron transport in the molecular orbital can be
obtained from the density of states in the orbital

ρ(ε) = − 1

π

∑
σ=±1

Im

{
G0r

σσ (ε)

1 − γ 2G0r
σσ (ε)G0r−σ−σ (εσ )

}
. (10)

Taking into account that the Hamiltonian of the molecular
orbital is a periodic function of time ĤMO(t ) = ĤMO(t + T ),
with T = 2π/ω, the energies of the molecular levels at which
the resonant transmission channels are located, can be cal-
culated as Floquet quasienergies εi, i ∈ {1, 2, 3, 4}, using the
Floquet theorem [95–98]. They are given by

ε1,3 = ε0 − ωL

2
+ DSz ±

√
D(D + J )S2

z +
(

JS

2

)2

, (11)

ε2,4 = ε0 + ωL

2
− DSz ±

√
D(D + J )S2

z +
(

JS

2

)2

. (12)

The derivation of the Floquet quasienergies is presented in the
Appendix. Note that ε2 = ε1 + ω and ε4 = ε3 + ω. Some of
the spin-flip absorption and emission processes are shown in
Fig. 2, for ω > 0. In the molecular orbital, an electron with
energy ε1(ε2) or ε3(ε4) can absorb (emit) an energy equal to
one energy quantum ω and flip its spin, due to the exchange
interaction with the precessing component of the anisotropic
molecular spin, ending up in the quasienergy level with energy
ε2(ε1) or ε4(ε3), and then tunneling into either lead, so that
the ↓ state with quasienergy ε1(ε3) is coupled with the ↑
state with quasienergy ε2(ε4). An inelastic spin-flip process is
presented in Fig. 2(a). Here, an electron tunnels from the left
lead into the ↓ level ε1 (or ε3) of the molecular orbital, flips its
spin and absorbs an energy quantum ω. Then it tunnels into
either lead.

C. Noise of charge current

Additional properties of the charge transport in the junction
can be obtained by analyzing the charge-current noise. In view

FIG. 2. Inelastic spin-flip processes between quasienergy levels
of the molecular orbital in the presence of the precessing anisotropic
molecular spin with frequency ω = ωL − 2DSz, for different posi-
tions of the levels with respect to chemical potentials μL and μR.
Different processes are represented with different colors. In (d) and
(e), the elastic tunneling processes are represented with horizontal
black arrows. For ω > 0, a spin ↓ (↑) electron absorbs (emits) an
energy quantum ω and flips its spin due to the exchange interaction
with the precessing component of the molecular spin.

of the fact that the nonzero commutator in Eq. (1) is generated
by the tunneling Hamiltonian ĤT , the charge current operator
Îξ (t ) can be written as

Îξ (t ) = e
i

h̄

∑
σ

Îξσ (t ), (13)

with the operator component Îξσ (t ) given by

Îξσ (t ) =
∑

k

[Vkξ ĉ†
kσξ

(t )d̂σ (t ) − V ∗
kξ d̂†

σ (t )ĉkσξ (t )]. (14)

The fluctuation operator of the charge current in contact ξ is
given by

δÎξ (t ) = Îξ (t ) − 〈Îξ (t )〉. (15)

The correlation between fluctuations of currents in leads ξ and
ζ , known as nonsymmetrized charge-current noise is written
as [73,79]

Sξζ (t, t ′) = 〈δÎξ (t )δÎζ (t ′)〉, (16)

while the symmetrized noise is defined as [73,79]

SξζS (t, t ′) = 1
2 〈{δÎξ (t ), δÎζ (t ′)}〉. (17)

With the help of Eqs. (13)–(15), one obtains the nonsym-
metrized noise as

Sξζ (t, t ′) =
∑
σσ ′

Sσσ ′
ξζ (t, t ′), (18)

with Sσσ ′
ξζ (t, t ′) = (−e2/h̄2)〈δÎξσ (t )δÎζσ ′ (t ′)〉 representing the

correlation between fluctuations of spin-resolved charge cur-
rents Iξσ and Iζσ ′ . Applying Wick’s theorem [106] and
Langreth analytical continuation rules [107], the correlation
functions Sσσ ′

ξζ (t, t ′) introduced in Eq. (18) can be calculated
[73,84]. Using the Fourier transforms of Green’s functions
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Gr,a,<,>
σσ ′ (ε, ε′) and self-energies 	r,a,<,>

ξ (ε), the formal ex-
pression for the nonsymmetrized noise of charge current in

standard coordinates t and t ′, obtained previously [73,83,84],
becomes

Sξζ (t, t ′) = − e2

h̄2

∑
σσ ′

{ ∫
dε1

2π

∫
dε2

2π

∫
dε3

2π

∫
dε4

2π
e−i(ε1−ε2 )t ei(ε3−ε4 )t ′

× {[
Gr

σσ ′ (ε1, ε3)	>
ζ (ε3) + 2G>

σσ ′ (ε1, ε3)	a
ζ

][
Gr

σ ′σ (ε4, ε2)	<
ξ (ε2) + 2G<

σ ′σ (ε4, ε2)	a
ξ

]
+ [

	>
ξ (ε1)Ga

σσ ′ (ε1, ε3) + 2G>
σσ ′ (ε1, ε3)	r

ξ

][
	<

ζ (ε4)Ga
σ ′σ (ε4, ε2) + 2G<

σ ′σ (ε4, ε2)	r
ζ

]
+ 4	r

ξ	
a
ζ G>

σσ ′ (ε1, ε3)G<
σ ′σ (ε4, ε2)

} − δξζ δσσ ′

∫
dε1

2π

∫
dε2

2π

∫
dε3

2π

× {e−i(ε1−ε3 )t ei(ε2−ε3 )t ′
G>

σσ ′ (ε1, ε2)	<
ξ (ε3) + e−i(ε1−ε3 )t ei(ε1−ε2 )t ′

	>
ξ (ε1)G<

σ ′σ (ε2, ε3)}
}
. (19)

The resulting nonsymmetrized noise depends only on the time
difference τ = t − t ′, and its power spectrum is given by

Sξζ (�) =
∫

dτei�τ Sξζ (τ ), (20)

while the symmetrized noise spectrum reads

SξζS (�) = 1
2 [Sξζ (�) + Sζ ξ (−�)]. (21)

The individual noise components, Sσσ ′
ξζ (�) and symmetrized

Sσσ ′
ξζS (�) = 1

2 [Sσσ ′
ξζ (�) + Sσ ′σ

ζξ (−�)] can be calculated using
Eqs. (18)–(21), and represent correlations between fluctua-
tions of charge currents with the same spins for σ = σ ′, or
different spins for σ �= σ ′. The charge current given by Eq. (9)
is conserved, implying that the zero-frequency (� = 0) noise
power satisfies the relations SLL(0) = SRR(0) = −SLR(0) =
−SRL (0). In experimental configurations zero-frequency noise
power is standardly measured. In the remainder of this paper,
the noise power SLL = SLL(0) = SLLS (0) at zero temperature
will be discussed, as in this particular case it is contributed
only by the shot noise, while thermal noise vanishes. The
elastic tunneling events are induced by the bias voltage. The
inelastic tunneling events, each involving a spin flip and ab-
sorption (emission) of an energy quantum ω, are induced by
the exchange interaction between the spins of the conduction
electrons and the precessing component of the anisotropic
molecular spin. The second term in Eq. (19) involving δσσ ′

vanishes for σ �= σ ′. Hence, the shot noise SLL is the result
of the competition between positive correlations of currents
with the same spins S↑↑

LL = S↑↑
LLS and S↓↓

LL = S↓↓
LLS , and negative

correlations of currents with opposite spins, induced by spin-
flip events, S↑↓

LL and S↓↑
LL , which are a complex conjugate pair

S↓↑
LL = (S↑↓

LL )∗, with S↑↓
LLS = S↓↑

LLS .

IV. RESULTS

Now we analyze the behavior of the charge current IL, zero-
frequency noise power SLL, and Fano factor F = SLL/e|IL|
as functions of the uniaxial magnetic anisotropy parameter
D, bias voltage eV = μL − μR, and Larmor frequency ωL

(magnetic field B), focusing on the influence of tuning the
anisotropy parameter D on charge transport properties of the
system. In particular, it will be shown that the anisotropy
parameter D can contribute to controlling and reducing the

noise power, especially via quantum interference effects, that
occur at resonant conditions μξ = εi, and manifest themselves
as Fano-like peak-dip (dip-peak) features in the noise SLL.

In Fig. 3, the average charge current from the left lead IL

and autocorrelation shot noise SLL are presented as functions
of the magnetic anisotropy parameter D, for five different tilt
angles θ , while the Fano factor F is shown in Fig. 4. The
current and noise in Fig. 3 show the molecular quasienergy
spectrum, with each dip, dip-peak, peak-dip, or step-like fea-
ture denoting the anisotropy parameter D corresponding to
the matching between level εi and chemical potential μξ .
The fano factor F < 1, so the noise is sub-Poissonian. Both
elastic tunneling, and inelastic processes involving absorption
(emission) of an energy ω with longer electron dwell time
on the molecular orbital, contribute to sub-Poissonian noise.
We see that the current, shot noise and consequently the
Fano factor are constant for θ = 0 (orange, dotted lines) and
θ = π/2 (pink, dashed lines). If we look at the expression for
the current, given by Eq. (9), we notice that for θ = 0, γ = 0
as well, and the charge current dependence on D vanishes.
On the other hand, Sz = 0 for θ = π/2, hence the current
does not depend on the anisotropy parameter D either. For
the tilt angle θ = π/3 (green line in Figs. 3 and 4) and D =
−0.01312 ε0 (grid line), corresponding to μL = ε2 = 2.5 ε0

and ε1 = 0.69 ε0, there is a dip-peak feature in the current,
and a peak-dip feature in the shot noise and Fano factor. The
position of the quasienergy levels εi with respect to μξ for this
set of parameters corresponds to Fig. 2(d), where we see the
available tunneling processes between levels with energies ε1

and ε2, and 2(i) where the tunneling processes between levels
with energies ε3 = −0.5 ε0 and ε4 = 1.31 ε0 are shown. There
are two available spin-flip processes for electrons tunneling
into ↓ level ε1(ε3) from the left lead [green curved arrows in
Figs. 2(d) and 2(i)], and one elastic tunneling process [black
horizontal arrow in Fig. 2(d)]. For an electron from the left
lead entering ↑ level with energy ε2, one spin-flip process
is available in Fig. 2(d) (magenta curved line), while one
electron can jump into the left lead from ↑ level ε2, and elastic
tunneling to ↑ level ε2 (ε4) is available [black horizontal arrow
in Fig. 2(d)]. As a result I↑

L < I↓
L > 0.

Similarly as in the Fano effect [99,100], the peak-dip (dip-
peak) features are manifestations of the quantum interference
between the states connected with spin-flip events, accompa-
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FIG. 3. (a) Charge current IL and (b) autocorrelation shot noise SLL as functions of the uniaxial magnetic anisotropy parameter D for
different tilt angles θ , at zero temperature, with �B = B�ez. The chemical potentials of the leads are equal to μL = 2.5 ε0 and μR = 0. The other
parameters are set to � = 0.05 ε0, �L = �R = �/2, ωL = 0.5 ε0, J = 0.01 ε0, and S = 100. Grid lines for θ = π/3 (green line) are positioned
at D = −0.01312 ε0 (μL = ε2), −0.00625 ε0 (μR = ε3), 0.00875 ε0 (μR = ε4), and 0.01406 ε0 (μL = ε1).

nied by an energy change ω. Namely, e.g., in Fig. 2(d) an
electron from the left lead can tunnel through a ↑ state via
an elastic tunneling process (black horizontal arrow), or via
inelastic spin-flip process from ↓ to ↑ state, with absorption of
an energy ω, before it tunnels out of the orbital (green curved
lines). The electron can alternatively tunnel through a ↓ state
elastically (black horizontal line), or via spin flip from ↑ to ↓
state, with emission of an energy ω (pink curved lines). The
superposition of two electron wave functions along the two
tunneling pathways, one elastic and the other inelastic, ending
in the same final ↑ or ↓ state leads to constructive (peaks)
or destructive (dips) quantum interference, manifested in the
shot noise. The asymmetric line shape in SLL resembles the
shape of the asymmetric Fano resonance profile, described
by the Fano formula [99,100]. Around a resonant anisotropy
parameter Dres, for μξ = εi, with destructive interference cor-
responding to a minimum (dip) at Dmin, and constructive
interference corresponding to a maximum (peak) at Dmax, the

FIG. 4. Fano factor F as a function of the uniaxial anisotropy
parameter D. The plots are obtained for different tilt angles θ at zero
temperature, with �B = B�ez. The chemical potentials of the leads are
equal to μL = 2.5 ε0 and μR = 0. The other parameters are set to � =
0.05 ε0, �L = �R = �/2, ωL = 0.5 ε0, J = 0.01 ε0, and S = 100.

shot noise SLL matches the Fano-like shape given by

σS (D) = C + A
(D − Dres + q�res/2)2

(D − Dres)2 + (�res/2))2
, (22)

where q = ±1 is the asymmetry parameter. For ω > 0, q =
−1, whereas for ω < 0, q = 1. The width of the resonance
is �res = |Dmax − Dmin|, C represents the shot noise at Dmin,
C = SLL(Dmin), while A is half of the amplitude of the Fano-
like shape, A = [SLL(Dmax) − SLL(Dmin)]/2. The asymmetry
parameter q, represents the ratio of the probabilities of elastic
and inelastic tunneling interfering pathways. Since |q| = 1,
both elastic and inelastic processes are equally probable, and
Dres is located at equal distance from Dmin and Dmax.

As the anisotropy parameter D increases, the quasienergy
level ε3 moves up the energy scale and enters the bias-voltage
window around D = −0.00625 ε0 for θ = π/3 (another grid
line in Figs. 3 and 4), with μR = ε3 = 0, leading to the in-
crease of the Fano factor since new quasienergy level becomes
available for elastic or inelastic processes [see Figs. 2(g) and
2(h)]. Now, all levels satisfy μR < εi < μL, leading to the
enhancement of the current after its minimum value, with
I↑
L ≈ I↓

L > 0, and the most prominent peak-dip feature in SLL

and F , where the dips represent their minimum values. The
Fano-like shape of the resonance profile, σS (D), given by
Eq. (22), corresponding to SLL with θ = π/3 [green line in
Fig. 3(b)] for Dres = −0.00625 ε0 and Dres = 0.00875 ε0 is
presented in Fig. 5. The noise SLL resembles the Fano-like res-
onance profile σS , around resonant anisotropy parameters Dres,
SLL ≈ σS (blue line around Dres = −0.00625 ε0 and red line
around Dres = 0.00875 ε0 in Fig. 5). For Dres = −0.00625 ε0,
the parameters of the Fano-like profile σS are the follow-
ing: q = −1, Dmin ≈ −0.0059 ε0, Dmax ≈ −0.0066 ε0, �res ≈
0.0007 ε0, C ≈ 1.1154 × 10−2 ε0, and A ≈ 4.5312 × 10−4 ε0.
The inset shows individual contributions of two interference
profiles to Fano-like shapes in SLL. The interference of elec-
tron waves propagating, one elastically through ↑ level (ε4)
and the other inelastically with absorption of an energy ω, and
a spin flip from ↓ level (ε3) to ↑ level (ε4) [see Fig. 2(h)], is
presented in the contribution S↑↑

LLS + S↑↓
LLS (pink line, inset in

Fig. 5). The interference of pathways involving ↓ state (ε3)
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FIG. 5. Fano-like shape of the resonance profile σS as a function
of the uniaxial anisotropy parameter D, corresponding to noise SLL

for θ = π/3 in Fig. 3(b) (green line), for two resonant anisotropy
parameters Dres = −0.00625 ε0 (blue line), and Dres = 0.00875 ε0

(red line). Around Dres the shot noise SLL matches σS . The inset shows
contributions of S↑↑

LLS + S↑↓
LLS (pink line) and S↓↓

LLS + S↓↑
LLS (purple line)

to the resulting shapes of the resonance profiles in SLL . The other
parameters are the same as in Fig. 3.

and a spin flip from ↑ state (ε4) to ↓ state (ε3) accompanied by
the emission of an energy ω is presented in S↓↓

LLS + S↓↑
LLS (pur-

ple line, inset in Fig. 5). In both lines q = −1, showing equal
probabilities of elastic and inelastic spin-flip processes involv-
ing absorption (pink line) or emission (purple line), with the
ratio of amplitudes of their resonance profiles around 1.186.

With further increase of the parameter D, IL and SLL ap-
proach constant values, and F ≈ 0.49 [108], in the region
between second and third grid lines, until D = 0.00875 ε0

[green line in Fig. 3(b)], since all levels εi lie within the bias-
voltage window. The quasienergy level ε4 moves down the
energy scale with the increase od D, and for D = 0.00875 ε0

(grid line in Figs. 3 and 4), μR = ε4 = 0, leading to a decrease
of IL, with I↑

L > I↓
L > 0 [tunneling processes in Figs. 2(g) and

2(h)] and a dip peak in SLL. Around Dres = 0.00875 ε0, SLL

resembles the Fano-like resonance shape given by Eq. (22)
(red line in Fig. 5). The asymmetry parameter is now q = 1
as a consequence of the reversed direction of the effective
magnetic field �Beff = (ω/gμB)�ez (ω < 0). The ↓ level with
energy ε3 lies above ↑ level with energy ε4 for ω < 0, ε3 > ε4.
The contribution of the interference between elastic tunneling
pathway through ↑ level (ε4) and inelastic emission pathway
with a spin flip from ↓ level (ε3) to ↑ level (ε4), against the
direction of the effective magnetic field �Beff (Beff < 0, B > 0)
is negligible (pink line, inset in Fig. 5), while the interference
between elastic process through ↓ level (ε3) and inelastic
absorption process accompanied with spin flip from ↑ level
(ε4) to ↓ level (ε3) almost entirely participates in the formation
of the Fano-like resonance profile (purple line, inset in Fig. 5).

As the parameter D increases, the level ε4 leaves the bias-
voltage window. At D = 0.01406 ε0, for θ = π/3 (grid line
in Figs. 3 and 4), μL = ε1, before the level ε1 leaves the bias-
voltage window with further increase of D, resulting in the
final decrease in IL, with I↑

L > I↓
L > 0, [tunneling processes

in Figs. 2(d) and 2(i)] and a dip-peak in SLL. All the plots
in Fig. 3, except for θ = 0 and θ = π/2, show that both IL

and SLL have minimum values around the value of D that
corresponds to the entrance of all εi into the bias-voltage
window. Both IL and SLL are saturated at high anisotropy
|D| � ωL/2Sz, and F ≈ 0.49. In this case only two levels, ε1

and ε4 (for D < 0, ω > 0), or ε2 and ε3 (for D > 0, ω < 0),
lie between μL and μR, and more energy is needed to flip an
electron spin to the direction of the effective magnetic field,
so that its spin flip is energetically unfavourable. Besides, an
electron dwell time on the molecular orbital during a spin-
flip process also increases. Therefore, at a high anisotropy,
|D| � ωL/2Sz, the dominant tunneling processes are elastic,
with spin-resolved charge currents I↑

L ≈ I↓
L and correlations

of currents with the same spins, S↑↑
LL ≈ S↓↓

LL , while the proba-
bility of electron spin flip decreases, so that the contribution
of the correlations of currents with opposite spins to noise
S↑↓

LL + S↓↑
LL → 0.

The average charge current IL as a function of the applied
bias voltage eV at zero temperature is plotted for six different
values of anisotropy parameter D in Fig. 6(a), where the bias
voltage is varied such that μL,R = ±eV/2. As the bias volt-
age increases, a new channel available for electron transport,
with an energy εi enters the bias-voltage window, resulting
in a step increase in the current. Since the positions of the
quasienergy levels εi depend on molecular spin anisotropy,
for different values of D, the staircase current function will
show steps at different values of eV . The shot noise of charge
current SLL and Fano factor F as functions of eV are shown
in Figs. 6(b) and 7. The peak-dip (dip-peak) features, which
occur due to the quantum interference, and steplike features
in SLL and F , correspond to resonances μξ = ±eV/2 = εi.
Hence, they change their positions with the change of the
magnetic anisotropy parameter D. For the set of parameters:
ωL = 0.5ε0, θ = π/3, and D = 0.005ε0 in Fig. 6 (blue, dot-
dashed line), one obtains ω = ωL − 2DSz = 0, with only two
transport channels, with energies ε = 0.34ε0 and ε′ = 1.66ε0,
available for the elastic tunneling, denoted by the steps at
±eV/2 = ε and ±eV/2 = ε′. In this case, the Fano factor
is Poissonian, F = 1, for |eV | < 2ε (blue dot-dashed line in
Fig. 7), since the transmission probability is very low, de-
pending on the level broadening �, and the currents remain
uncorrelated until the first channel available for electron trans-
port appears. For ω �= 0, the average current IL is equal to zero
at eV = 0, but the noise SLL is contributed by the inelastic
processes in which an electron flips its spin and absorbs an
energy ω, leading to the divergence of the Fano factor (see
Fig. 7). The noise becomes sub-Poissonian (F < 1) as soon as
one of the levels εi enters the bias-voltage window, since the
transmission probability increases. After all the levels εi enter
the bias-voltage window [tunneling processes in Fig. 2(g)],
the Fano factor becomes constant F = 1/2 [108].

The average charge current IL and noise SLL as functions
of the Larmor frequency ωL at zero temperature, for several
different values of the magnetic anisotropy parameter D, are
shown in Figs. 8(a) and 8(b). The corresponding Fano factor
F is presented in Fig. 9. Here, the bias voltage is varied as
eV = μL − μR, with μR = 0, while μL = 2.5 ε0, except for
the blue dot-dashed lines where μL = 1.125 ε0. All steps in
the current IL, as well as steps and dip-peak features in the
noise SLL, correspond to a resonance μξ = εi. At ωL = 0, for
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FIG. 6. (a) Charge current IL and (b) autocorrelation shot noise SLL as functions of the applied bias voltage eV = μL − μR with
μL,R = ±eV/2 and �B = B�ez, for different uniaxial magnetic anisotropy parameters D at zero temperature. The other parameters are set
to � = 0.05 ε0, �L = �R = �/2, ωL = 0.5 ε0, J = 0.01 ε0, S = 100, and θ = π/3. All energies are given in the units of ε0. The peak-dip
(dip-peak) features in the shot noise SLL as manifestations of the quantum interference effect, and steps in the charge current function IL and
shot noise SLL correspond to resonances μξ = εi, with ξ = L, R and i = 1, 2, 3, 4.

D = −0.00625 ε0 and μL = 1.125 ε0 (blue dot-dashed lines
in Fig. 8), both IL and SLL increase, since μL = ε1, while ε2 =
1.75 ε0, ε3 = 0.25 ε0 and ε4 = 0.875 ε0. The spin-resolved
charge currents I↑

L > 0 and I↓
L > 0. In Fig. 8(b), around

ωL = 0.5ε0 (grid line), one observes a small peak-dip for D =
0.00875 ε0 (pink line), as ε4 = μR and quantum interference
occurs between channels with energies ε3 and ε4, with ε3 > ε4

(ω < 0), while for the anisotropy parameter D = −0.01312 ε0

[green line in Fig. 8(b)] there is a dip-peak feature, as μL = ε2,
showing the impact of the quantum interference effect be-
tween channels with energies ε1 and ε2 [tunneling processes
for all levels in Figs. 2(d) and 2(i)]. In both cases, the Fano
factor is sub-Poissonian, F < 1. Again, one can see that F →
1/2 if all the quasienergy levels lie within the bias voltage
window [108], e.g., for D = 0.005 ε0 and ωL � 1.18 ε0, where
ωL = 1.18 ε0 corresponds to ε3 = μR (orange line in Fig. 9).

FIG. 7. Fano factor F as a function of the applied bias volt-
age eV = μL − μR with μL,R = ±eV/2 and �B = B�ez, for different
uniaxial magnetic anisotropy parameters D at zero temperature.
The other parameters are set to � = 0.05 ε0, �L = �R = �/2, ωL =
0.5 ε0, J = 0.01 ε0, S = 100, and θ = π/3. All energies are given in
the units of ε0.

For D = −0.00625 ε0, around ωL = 0.5 ε0, the double reso-
nance occurs: μR = ε3 and μL = ε4, with ε1 = 0.875 ε0 and
ε2 = 2 ε0 [see tunneling processes for all levels in Figs. 2(a)
and 2(e)], resulting in a dip with higher magnitude in the noise
SLL as a sign of destructive quantum interference between
channels with energies ε3 and ε4, connected with spin-flip
events [blue dot-dashed line in Fig. 8(b)]. The charge cur-
rent IL shows a steplike decrease with I↑

L < 0 and I↓
L > 0,

whereas in the Fano factor F a step increase occurs around
ωL = 0.5 ε0, leading to super-Poissonian noise, with F > 1
(blue dot-dashed line in Fig. 9). For D = −0.0625 ε0, and
ωL > 0.5 ε0, the spin-resolved currents I↑

L < 0 and I↓
L > 0.

In Fig. 8(b), note that around ωL corresponding to μξ =
εi, SLL either increases, or if the quantum interference oc-
curs, decreases around Fano-like line shapes (except around
ωL = 0.5 for D = −0.00625). Accordingly, for each value
of D, around ωL such that one remaining quasienergy level
εi within the bias-voltage window is in resonance with the
chemical potential of one of the leads, one notices the final
step decrease in the current IL, and the final step increase
or a dip-peak feature in SLL (see Fig. 8). For instance, at
ωL = 2.25 ε0 and D = −0.00625 ε0 (blue dot-dashed line),
the remaining level within the bias-voltage window, ε1 = μR

[see tunneling processes for all levels in Figs. 2(b) and 2(c)],
whereas, for D = −0.01312 ε0 and ωL = 2.87ε0 (green line
in Fig. 8), the energy of the only level within the bias-voltage
window equals ε4 = μL [tunneling processes in Figs. 2(c)
and 2(f)]. With further increase of ωL, all four levels εi lie
out of the bias-voltage window, two below μR: ε1 < μR and
ε3 < μR, and two above μL: ε2 > μL and ε4 > μL. Hence, the
average current IL drops to zero, with nonzero spin-resolved
currents I↑

L = −I↓
L < 0, while SLL becomes a constant, due to

the spin-flip absorption processes, and F > 1, indicating the
super-Poissonian noise.

In Fig. 10, the dependence of the autocorrelation noise SLL

on frequency ωL is plotted for several values of the anisotropy
parameter D and equal chemical potentials of the leads, μL =
μR = μ = 0.25ε0, at zero temperature. Here, only absorp-
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FIG. 8. (a) Charge current IL and (b) autocorrelation shot noise SLL as functions of the Larmor frequency ωL for different uniaxial magnetic
anisotropy parameters D. All plots are obtained at zero temperature with �B = B�ez. The chemical potentials of the leads are equal to μR = 0
and μL = 2.5 ε0, except for D = −0.00625 ε0, where μL = 1.125 ε0. The other parameters are set to � = 0.05 ε0, �L = �R = �/2, J =
0.01 ε0, S = 100, and θ = π/3. All energies are given in the units of ε0. All steps in the current IL , and the corresponding steps and dip-peak
features in the noise SLL , denote a resonance μξ = εi, with ξ = L, R. A distinct dip in the noise SLL and a significant drop of the corresponding
current appear for D = −0.00625 ε0 (blue dot-dashed line) around ωL = 0.5 ε0 (grid line), due to the double resonance: μR = ε3 and μL = ε4.

tion processes between levels connected with spin-flip events
occur. For isotropic molecular spin with D = 0 (red line in
Fig. 10), the shot noise SLL is an even function of ωL at zero-
bias conditions eV = 0, SLL(ωL ) = SLL(−ωL ) [83], whereas
if the molecular spin is anisotropic (D �= 0), the shot noise is
an even function of the frequency ω, SLL(ω) = SLL(−ω). In
all the plots each steplike increase or decrease corresponds
to μ = εi (not all are shown). For instance, if we take Lar-
mor frequency ωL = 0.5 ε0 (marked by a vertical grid line),
there is a step-like increase for the magnetic anisotropy pa-
rameter D = 0 (red line) since the chemical potential μ is
in resonance with quasienergy level ε3, μ = ε3. Similar step
for D = 0.002 ε0 occurs around ωL = 0.586 ε0, where μ = ε3

FIG. 9. Fano factor F as a function of the Larmor frequency
ωL for different uniaxial magnetic anisotropy parameters D. All
plots are obtained at zero temperature with �B = B�ez. The chemical
potentials of the leads are equal to μR = 0 and μL = 2.5 ε0, ex-
cept for D = −0.00625 (blue dot-dashed line), where μL = 1.125 ε0.
The other parameters are set to � = 0.05 ε0, �L = �R = �/2, J =
0.01 ε0, S = 100, and θ = π/3. All energies are given in the units of
ε0.

(purple line in Fig. 10). For ωL = 0.5 ε0 and D = 0.005 ε0, the
resulting ω = 0, with only two molecular levels, positioned
above μ, at ε = 0.34 ε0 and ε′ = 1.66 ε0, and neither elastic
nor spin-flip processes occur. The shot noise SLL monoton-
ically decreases around ωL = 0.5 ε0, drops to zero at ωL =
0.5 ε0 (intersection between grid line and black line), since
spin-resolved correlations Sσσ ′

LL = 0, and then monotonically
increases. Similarly, the charge current noise SLL is equal to
zero at ωL = 0.6 ε0, for D = 0.006ε0 (green line), at ωL =
0.8 ε0, for D = 0.008 ε0 (orange line), and at ωL = ε0, for
D = 0.01 ε0 (blue dot-dashed line). For D = 0.006 ε0, μ = ε4

at ωL = 0.5ε0 and one observes a step-like decrease (intersec-
tion between grid line and green line in Fig. 10). With further

3

FIG. 10. Shot noise of charge current SLL as a function of the
Larmor frequency ωL for different uniaxial magnetic anisotropy
parameters D at zero-bias voltage. All plots are obtained at zero
temperature with �B = B�ez. The chemical potentials of the leads
are equal: μL = μR = 0.25 ε0. The other parameters are set to � =
0.05 ε0, �L = �R = �/2, J = 0.01 ε0, S = 100, and θ = π/3. All
energies are given in the units of ε0. The noise SLL is suppressed for
ω = 0, i.e., D = ωL/2Sz.
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FIG. 11. Shot noise of charge current SLL at zero bias-voltage
conditions, as a function of the chemical potential of the leads
μ = μL = μR, for different uniaxial magnetic anisotropy parame-
ters D. All plots are obtained at zero temperature with �B = B�ez.
The other parameters are set to � = 0.05 ε0, �L = �R = �/2, J =
0.01 ε0, S = 100, ωL = 0.5 ε0, and θ = π/3. All energies are given
in the units of ε0. The shot noise SLL is positive between levels con-
nected with spin-flip absorption events for ω �= 0, i.e., D �= ωL/2Sz.

increase of the magnetic anisotropy parameter D, the noise
SLL decreases (cyan line in Fig. 10), and for a sufficiently large
D, drops to zero, as S↑↓

LL + S↓↑
LL → 0 and S↑↑

LL = S↓↓
LL → 0.

The autocorrelation shot noise SLL as a function of chem-
ical potential of the leads at zero-bias voltage conditions
μ = μL = μR, when the average charge current is equal to
zero, for several values of the magnetic anisotropy parameter
D, at zero temperature, is shown in Fig. 11. The Larmor
frequency ωL = 0.5 ε0 and the tilt angle θ = π/3. Since the
contribution of the correlations between currents with the
same spin Sσσ

LL is dominant, the noise SLL takes positive val-
ues for ω �= 0, i.e., for D �= ωL/2Sz in the regions between
quasienergy levels connected with spin-flip absorption pro-
cesses, taking into account the level broadening �. The grid
line in Fig. 11 at μ = 0.25 ε0, corresponding to the grid
line in Fig. 10 at ωL = 0.5 ε0, intersects with all the plots
showing that the autocorrelation noise SLL is reduced with
the increase of the magnetic anisotropy parameter D. The
noise can vanish at zero-bias voltage conditions for ω = 0,
and that is satisfied for D = ωL/2Sz = 0.005 ε0 (black line in
Fig. 11). In that case the spin-resolved correlations Sσσ ′

LL = 0.
With further increase of the magnetic anisotropy parameter
D, the frequency ω < 0, i.e., the direction of the precession
is altered, the anisotropy parameter D > ωL/2Sz, and the shot
noise SLL takes positive low values between quasienergy lev-
els connected with spin-flip events (green, orange, and blue
dot-dashed lines in Fig. 11), compared to the one at the highest
positive frequency ω = ωL, for the isotropic molecular spin
(red line in in Fig. 11). In order to reduce the shot noise
SLL at zero-bias voltage conditions, one needs to increase the
magnetic anisotropy parameter D and either slow down the
precession of the molecular spin, or reverse the direction of
the spin precession with respect to the Larmor precession.
With further increase of the magnetic anisotropy parameter,
for a sufficiently large anisotropy parameter D, the shot noise
SLL becomes entirely suppressed and drops to zero.

V. CONCLUSIONS

In this paper, the characteristics of charge transport through
a single molecular orbital in the presence of a precessing
anisotropic molecular spin in a magnetic field, connected to
two noninteracting metallic leads, was theoretically studied.
The Larmor frequency is modified by a term with the uniaxial
magnetic anisotropy parameter of the molecular spin, and the
resulting precession is externally kept undamped. The expres-
sions for charge current and current noise were obtained using
the Keldysh nonequilibrium Green’s functions technique.

The results show rich transport characteristics at zero
temperature. The quantum interference effects between the
states connected with precession-assisted inelastic tunneling
processes, involving absorption (emission) of an energy ω

and a spin flip, manifest themselves as peaks (construc-
tive interference) and dips (destructive interference) in the
shot noise, matching the Fano-like line shapes, controlled
by the anisotropy parameter and Larmor frequency. Each
resonance between a chemical potential and an anisotropy
dependent quasienergy level is visible in a transport measure-
ment through characteristics such as steps, peaks and dips,
and can be varied by tuning the anisotropy. The correlations
between the same-spin (opposite-spin) currents are positive
(negative), and are particularly interesting at zero-bias con-
ditions since the resulting shot noise is positive for chemical
potentials between quasienergy levels, which are connected
by the inelastic absorption processes accompanied with a spin
flip. Here, with the increase of the anisotropy parameter, the
precession frequency decreases or the precession direction
becomes altered, and the noise is reduced. Additionally, the
anisotropy parameter can be adjusted to suppress the preces-
sion frequency, so that the resulting shot noise vanishes. It was
shown that the charge current and shot noise can be controlled
by a proper adjustment of the anisotropy parameter of the
molecular magnet and reach their saturation if the anisotropy
is large at nonzero bias voltage.

Taking into account that the charge transport in the given
setup with the anisotropic magnetic molecule can be manip-
ulated by the uniaxial magnetic anisotropy parameter of the
molecular spin, and other parameters, the results of this study
may be useful in the field of single-molecule electronics and
spintronics. It might be useful for magnetic storage applica-
tions to study the charge- and spin-transport properties using
a setup with a molecular spin modelled as a quantum object in
the future.
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APPENDIX: DERIVATION OF FLOQUET
QUASIENERGIES

Here, the derivation of the Floquet quasienergies given
by Eqs. (11) and (12) is presented. A periodic Hamiltonian
Ĥ (t ) = Ĥ (t + T ), with a period T = 2π/ω can be written as
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a Fourier series

Ĥ (t ) =
∞∑

n=−∞
Ĥ (n)einωt . (A1)

According to the Floquet theorem [95–98], the so called
quasienergy states

|ψα (t )〉 = e−iεαt |φα (t )〉, (A2)

with quasienergies εα and time-periodic functions |φα (t )〉 =
|φα (t + T )〉, represent solutions of the Schrödinger equation

Ĥ (t )|ψ (t )〉 = ih̄
∂

∂t
|ψ (t )〉. (A3)

Substituting Eq. (A2) into Eq. (A3), one obtains [95–98]

Ĥ(t )|φα (t )〉 = εα|φα (t )〉, (A4)

where Ĥ(t ) = Ĥ (t ) − i∂/∂t . Using an orthonormal basis
{|α〉} for the Hilbert space in which the Hamiltonian Ĥ (t ) can
be represented, the quasienergy state |ψα (t )〉 can be expanded
as a Fourier series, while the quasienergies εα can be calcu-
lated as the eigenvalues of the Floquet Hamiltonian ĤF,

det|ĤF − ε Î| = 0. (A5)

The matrix elements of ĤF in the orthonormal basis {|αn〉},
with |αn〉 = |α〉 ⊗ |n〉 representing products |α〉einωt , with n ∈
Z, are given by [96]

〈αn|ĤF|βm〉 = 〈α|Ĥ (n−m)|β〉 + nωδαβδnm, (A6)

which can be further expressed as

HF
αn,βm = H (n−m)

αβ + nωδαβδnm. (A7)

The infinite number of quasienergies, εα + nh̄ω can be ob-
tained for each quasienergy state |ψα (t )〉, so that one only
needs to calculate quasienergies within one interval, e.g.,
[0, ω).

In the Hilbert space spanned by the eigenvectors of
operator ŝz, | ↑〉 = |1〉 and | ↓〉 = |2〉, the time-periodic
Hamiltonian of the molecular orbital ĤMO(t ) = ĤMO(t +
2π/ω) reads

ĤMO(t ) = λ1|1〉〈1| + λ2|2〉〈2| + JS⊥
2

e−iωt |1〉〈2|

+ JS⊥
2

eiωt |2〉〈1|, (A8)

with λ1 = ε0 + (ωL + JSz )/2, λ2 = ε0 − (ωL + JSz )/2 and
ω = ωL − 2DSz. The Hamiltonian of the molecular orbital
expressed as a Fourier series

ĤMO(t ) =
∞∑

n=−∞
Ĥ (n)

MOein(ωL−2DSz )t , (A9)

has the following nonzero components, calculated using
Eq. (A7):

Ĥ (0)
MO = λ1|1〉〈1| + λ2|2〉〈2|, (A10)

Ĥ (−1)
MO = JS⊥

2
e−i(ωL−2DSz )t |1〉〈2|, (A11)

Ĥ (1)
MO = JS⊥

2
ei(ωL−2DSz )t |2〉〈1|. (A12)

According to Eq. (A7) the matrix elements of the Floquet
Hamiltonian can be calculated as

HF
1n,1m = [λ1 + n(ωL − 2DSz )]δnm, (A13)

HF
1n,2m = JS⊥

2
δn,m−1, (A14)

HF
2n,1m = JS⊥

2
δn,m+1, (A15)

HF
2n,2m = [λ2 + n(ωL − 2DSz )]δnm. (A16)

Since the Floquet Hamiltonian is block diagonal, it is enough
to write one block,⎛
⎝λ1 + (n − 1)(ωL − 2DSz ) JS⊥/2

JS⊥/2 λ2 + n(ωL − 2DSz )

⎞
⎠. (A17)

The Floquet quasienergies ε1 and ε3 are the eigenvalues of the
block for n = 0, given by

ε1,3 = ε0 − ωL

2
+ DSz ±

√
D(D + J )S2

z +
(

JS

2

)2

, (A18)

while the quasienergies ε2 = ε1 + ω and ε4 = ε3 + ω are the
eigenvalues of the neighboring block with diagonal matrix
elements shifted by ω.
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The subject of this study is spin transport through a molecular orbital connected to two leads, and
coupled via exchange interaction with a precessing anisotropic molecular spin in a constant magnetic
field. The inelastic spin-flip processes between molecular quasienergy levels are driven by the molec-
ular spin precession. By setting the Larmor frequency, the tilt angle of molecular magnetization
with respect to the magnetic field, and the magnetic anisotropy parameter, one can modulate the
spin current and noise, spin-transfer torque and related torque coefficients. Moreover, the dc-spin
current and spin-transfer torque components provide the quasienergy level structure in the orbital.
Quantum interference effects between states connected with spin-flip processes manifest themselves
as dips (minimums) and peaks (maximums) in spin-current noise, matching Fano-like resonance
profiles with equal probabilities of interfering elastic and spin-flip pathways. By proper adjustment
of the anisotropy parameter and magnetic field, the precession is suppressed and the torque van-
ishes, allowing to reveal the anisotropy parameter via a dc-spin current or torque measurement. The
results of the study show that spin transport and spin-transfer torque can be manipulated by the
anisotropy parameter even in the absence of the magnetic field.

I. INTRODUCTION

Due to small size and uniaxial magnetic anisotropy
which leads to magnetic bistability, single-molecule
magnets are potential candidates for magnetic stor-
age and information processing.1–15 Since energy bar-
rier to molecular spin reversal depends on the mag-
netic anisotropy parameter,2,3,16,17 it is important to
find ways to control it, e.g., via charge current or elec-
tric field.8–10,18–24 For the potential applications in spin-
tronics, various phenomena in magnetic structures have
been subject of research, such as spin relaxation,25–29
spin fluctuations,30–32 geometrical spin torque,33,34 self-
induced torque35 and dynamics of magnetization driven
by external means.36–48 The control of magnetization in
junctions by spin-polarized current was first theoretically
suggested49,50 and then experimentally confirmed.51,52
By applying spin torque, the magnetization dynamics can
be manipulated,49 and as a back action the spin pump-
ing occurs.53,54 It is possible to reverse magnetization via
current-induced spin-transfer torque (STT).36,55–60 For
instance, using spin-polarized current through a single-
molecule magnet connected with ferromagnetic elec-
trodes, its spin states can be switched.17,61–64 It has been
shown that the anisotropic molecular spin can be reversed
even in the absence of a magnetic field by turning on a
bias voltage for one ferromagnetic and one paramagnetic
lead.65 Spin-polarized currents exert STTs on the magne-
tization of magnetic nanostructures in the form of field-
like or damping torques.36,66–72 The effect of supercon-
ductivity on the magnetization dynamics has also been
studied since the beginning of the new century.44,73–79

The nonequilibrium Green’s functions (NEGF)
formalism80–82 has been employed in molecular spintron-
ics in investigations of e.g., spin pumps,83,84 quantum
interference,85 spin-flip inelastic tunneling,86–89 and
magntic skyrmion dynamics.90–92 NEGF technique

has also been used in the theoretical calculations of
spin-current shot noise.93–95 While investigating trans-
port through single-molecule magnets, many effects
were analysed such as Kondo effect,96–100 spin-Seebeck
effect,101–103 STT,104,105 and spin blockade.65,106,107
In molecular spintronics experimental studies of spin
polarized currents,108,109 spin interactions,110,111 spin
valves,112 and spin-flip inelastic electron tunneling
spectroscopy8,113 have been done.

The classical magnetization dynamics is usually
described by the Landau-Lifshitz-Gilbert (LLG)
equation.114–116 Even thermal effects on the mag-
netization dynamics have been studied using LLG
equation.117–119 The contribution of STT due to spin-
polarized currents can be included in LLG equation,36,67
and has been derived for molecular magnets,41,119–121
and other magnetic systems such as spin-valves or mag-
netic multilayers,49 magnetic domain walls,122 slowly
varying magnetization,123 and magnetic skyrmions.92,124
In quantum transport calculations, the semiclassical
approach is often used, where the local magnetization
of a magnetic nanostructure is treated as classical
and its dynamics is described by LLG equation, while
the spin of the conduction electrons is considered as
quantum.34,121,125–130 It is assumed that the spin-
polarized currents are carried by electrons that are fast
in comparison to the local magnetization dynamics.

The aim of this article is to theoretically study the
spin transport through a single molecular orbital of a
molecular magnet with a precessing anisotropic spin in
a constant magnetic field. The precession frequency
of the molecular spin involves Larmor frequency and
a term with the uniaxial magnetic anisotropy param-
eter. The spin in the orbital and molecular spin are
coupled via exchange interaction. The orbital is con-
nected to two normal metal leads, leading to spin tun-
neling. An STT is then exerted onto the molecular
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spin by the inelastic spin currents. As a back action,
the molecular spin pumps spin currents into the leads.
Using external means to compensate the effect of STT
on the molecular spin dynamics, the spin precession re-
mains steady. The spin currents, noise of z-polarized spin
current, and STT are calculated using the the Keldysh
NEGF technique.80–82 The initially single molecular or-
bital results in four quasienergy levels dependent on the
magnetic anisotropy parameter,131 obtained by the Flo-
quet theorem.132–135 The elastic spin currents are driven
by the bias voltage. The inelastic spin currents, driven
by the molecular spin precession, contribute to the STT.
They involve electron spin-flip events accompanied by an
energy change that depends on the anisotropy parame-
ter. The setup can be used to generate and control spin
currents and STT by adjusting the anisotropy param-
eter, the tilt angle of the molecular spin from the mag-
netic field and the Larmor frequency. Furthermore, if the
anisotropy contribution to the precession frequency coin-
cides with the Larmor frequency, the precession is sup-
pressed, and consequently, the STT vanishes. Similarly
to charge-current noise,95,131 the peaks and dips in spin-
current noise, resembling Fano-like line shapes,136,137 oc-
cur due to quantum interference between the states con-
nected with spin-flip events. The spin-current and noise,
STT, and torque coefficients vanish for large anisotropy
parameter, and can be controlled by the anisotropy pa-
rameter in the absence of magnetic field as well.

The remainder of the article is organised as follows.
The model setup is introduced in Section II. The theoret-
ical framework based on the Keldysh NEGF technique,
used to calculate expressions for spin currents, noise of
z-polarized spin current and STT is presented in Sec-
tion III. The results are discussed in Section IV, where
the properties of the z-polarized spin current, the cor-
responding autocorrelation noise, STT and the torque
coefficients are analyzed at zero temperature. The con-
clusions are given in Section V.

II. MODEL SETUP

The junction consists of a single orbital of an
anisotropic magnetic molecule in a magnetic field, con-
nected to two noninteracting metallic leads (see Fig. 1).
The magnetic field is constant, directed along z-axis,
~B = B~ez, and does not affect the leads (left and right)
with chemical potentials µξ, with ξ = L,R. The system
Hamiltonian is given by Ĥ = ĤL+ĤR+ĤT +ĤMO+ĤS .
The first two terms represent Hamiltonians of the leads,
Ĥξ =

∑
k,σ εkξ ĉ

†
kσξ ĉkσξ, with σ =↑, ↓= 1, 2 = ±1 denot-

ing the electron spin state (up or down). The third term
in the Hamiltonian, ĤT , represents the tunnel coupling
between the orbital of the molecule and the leads, and can
be written as ĤT =

∑
k,σ,ξ[Vkξ ĉ

†
kσξd̂σ + V ∗kξd̂

†
σ ĉkσξ], with

matrix element Vkξ, and creation (annihilation) operators
of the electrons in the leads and orbital ĉ†kσξ(ĉkσξ) and

FIG. 1: (Color online) Spin tunneling through a single molec-
ular orbital with energy ε0, coupled to the molecular spin ~S(t)
with anisotropy parameter D, via exchange interaction with
the coupling constant J , in the presence of a magnetic field
~B, connected to two leads with chemical potentials µL and
µR, eV = µL −µR, with tunnel rates ΓL and ΓR. The molec-
ular spin ~S(t) precesses around the magnetic field axis with
frequency ω = ωL − 2DSz. The spin-transfer torque ~T (t) is
exerted on the spin ~S(t) by the spin currents from the leads.

d̂†σ(d̂σ). The Hamiltonian of the molecular orbital ĤMO

consists of three terms, one representing the noninteract-
ing orbital with energy ε0, the second one representing
the spin of the electron in the orbital in the presence of
the magnetic field, and the third term representing the
exchange interaction between the spin of the electron in
the orbital and molecular spin, with the exchange cou-
pling constant J , ĤMO =

∑
σ ε0d̂

†
σd̂σ+(gµB/~)~̂s ~B+J~̂s~S.

The spin of the electron in the molecular orbital is given
by ~̂s = (~/2)

∑
σσ′(~̂σ)σσ′ d̂†σd̂σ′ , with the vector of the

Pauli matrices ~̂σ = (σ̂x, σ̂y, σ̂z)
T . The constants g and

µB are the gyromagnetic ratio of the electron, which is
assumed to be equal to the one of the molecular spin, and
the Bohr magneton. The last term in the model Hamilto-
nian describes the Hamiltonian of the anisotropic spin of
the molecule, ĤS = (gµB/~) ~̂S ~B −DŜ2

z , with molecular

spin operator ~̂S = Ŝx~ex+ Ŝy~ey+ Ŝz~ez. Here, the uniaxial
magnetic anisotropy parameter is given by D and ~ej is
the unit vector along the axis j, with j = x, y, z.

The spin of the magnetic molecule is large and re-
garded as a classical variable ~S, with constant length
S = |~S| � ~, neglecting the quantum fluctuations. The
vector ~S is the expectation value of the previously men-
tioned molecular spin operator, ~S = 〈 ~̂S〉, with the dy-
namics expressed by the Heisenberg equation of motion
~̇S =

〈 ˙̂
~S
〉

= (i/~)
〈[
Ĥ, ~̂S

]〉
. In order to keep the molecu-

lar spin dynamics unaffected by the loss of the magnetic
energy due to the exchange interaction with the spin of
the tunneling electrons, one needs to use external means,
e.g., radiofrequency fields.138 Taking into account the
Larmor precession frequency around the magnetic field
axis, ωL = (gµB/~)B, the equation ~̇S = (gµB/~) ~B× ~S−
2D~Sz× ~S is obtained,121 showing that the molecular spin
precesses around z-axis with frequency ω = ωL − 2DSz.
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The dynamics of the molecular spin can be expressed
as ~S(t) = S⊥ cos(ωt)~ex + S⊥ sin(ωt)~ey + Sz~ez, with
S⊥ = S sin θ and Sz = S cos θ, where θ is the tilt an-
gle between the positive direction along z-axis and ~S.
While the precession of the molecular spin is kept un-
damped, i.e., the exerted STT by the flow of electron
spins from the leads is externally compensated,138 the
precessing spin affects spin of the itinerant electrons dur-
ing the exchange interaction, as a back action. Thus, the
molecular spin pumps spin currents into the leads, having
an impact on spin-transport properties of the junction.

In molecular magnets realized by transition metals
or rare earth elements, the Coulomb interaction in
the s and p orbitals in the molecular ligands can be
neglected.19,43,139 They form the highest occupied or low-
est unoccupied molecular orbital, which can be consid-
ered as a localized molecular level. The molecular spin is
formed of localized d or f orbitals from transition metal
or rare earth element, thus allowing separation between
the molecular level and localized molecular spin.

III. THEORETICAL FRAMEWORK

A. Spin current

The spin-current operators of the lead ξ are given by
the Heisenberg equation

Îξj(t) =
~
2

dN̂ξj
dt

=
i

2
[Ĥ, N̂ξj ], (1)

where j = x, y, z denotes the component of the spin cur-
rent with electronic spins oriented along the given spa-
tial direction, [ , ] symbolizes the commutator, whereas
N̂ξj =

∑
k,σ,σ′ ĉ

†
kσξ(σ̂j)σσ′ĉkσξ denotes the spin occupa-

tion number operator of the lead ξ, with matrix elements
of the Pauli oparators (σ̂j)σσ′. The average spin current,
as a flow of spins oriented along j direction from the con-
tact ξ to the molecular orbital, can be written as

Iξj(t) =
1

2

〈
d

dt
N̂ξj

〉
=
i

2

〈[
Ĥ, N̂ξj

]〉
, (2)

in units in which ~ = e = 1. Employing the Keldysh
NEGF technique,81,82 the components of the spin current
can be calculated as

Iξj(t) =− Re

∫
dt′Tr

{
σ̂j [Ĝ

r(t, t′)Σ̂<ξ (t′, t)

+ Ĝ<(t, t′)Σ̂aξ (t′, t)]
}
. (3)

Here, Ĝr,a,<,>(t, t′) denote the retarded, advanced,
lesser, and greater Green’s functions of the spin car-
riers in the molecular orbital. The matrix elements
of the Green’s functions are given by Gr,aσσ′(t, t′) =

∓iθ(±t∓t′)〈{d̂σ(t), d̂†σ′(t′)}〉, G<σσ′(t, t′) = i〈d̂†σ′(t′)d̂σ(t)〉
and G>σσ′(t, t′) = −i〈d̂σ(t)d̂†σ′(t′)〉, where {·, ·} symbolizes

the anticommutator. The self-energies from the tunnel
coupling between the orbital and lead ξ are represented
by Σ̂r,a,<,>ξ (t, t′), with diagonal matrix elements in the
electron spin space with respect to the basis of the eigen-
states of ŝz. Their nonzero matrix elements can be ex-
pressed as Σr,a,<ξ (t, t′) =

∑
k Vkξg

r,a,<,>
kξ (t, t′)V ∗kξ, with

gr,a,<,>kξ (t, t′) denoting the Green’s functions of the elec-
trons in the lead ξ. Applying the double Fourier trans-
formations in Eq. (3), it can be further simplified as

Iξj(t) = ΓξIm

∫
dε

2π

∫
dε′

2π
e−i(ε−ε

′)t

× Tr

{
σ̂j

[
fξ(ε

′)Ĝr(ε, ε′) +
1

2
Ĝ<(ε, ε′)

]}
, (4)

with the tunnel coupling between the orbital and lead ξ,
Γξ(ε) = 2π

∑
k|Vkξ|2δ(ε− εkξ), which is energy indepen-

dent and constant in the wide-band limit. The Fermi-
Dirac distribution of the spin carriers in the lead ξ is
given by fξ(ε) = [e(ε−µξ)/kBT +1]−1, where T and kB are
the temperature and the Boltzmann constant.

The retarded Green’s function of the electrons in
the orbital of the molecule can be calculated applying
Dyson’s expansion and analytic continuation rules.82 Its
double-Fourier transformed matrix elements can be ex-
pressed as89,131,140

Grσσ(ε, ε′) =
2πδ(ε− ε′)G0r

σσ(ε)

1− γ2G0r
σσ(ε)G0r

−σ−σ(εσ)
, (5)

Grσ−σ(ε, ε′) =
2πγδ(εσ − ε′)G0r

σσ(ε)G0r
−σ−σ(εσ)

1− γ2G0r
σσ(ε)G0r

−σ−σ(εσ)
, (6)

with εσ = ε− σω = ε− σ(ωL − 2DSz), γ = JS sin(θ)/2.
The Fourier transformed retarded Green’s function of
the electrons in the molecular orbital in the presence
of the static molecular spin, S = Sz, calculated us-
ing the equation of motion technique,141 is given by
Ĝ0r(ε) = [ε − ε0 − Σr − σ̂z(gµBB + JSz)/2]−1,121,140
where Σr,a = ∓iΓ/2 and Γ =

∑
ξ Γξ. The

Green’s functions Ĝ<,>(ε, ε′) can be obtained using the
double-Fourier transformed Keldysh equation, expressed
as Ĝ<,>(ε, ε′) =

∫
dε′′Ĝr(ε, ε′′)Σ̂<,>(ε′′)Ĝa(ε′′, ε′)/2π,82

with lesser self-energy Σ<(ε) = i
∑
ξ Γξfξ(ε), greater self-

energy Σ>(ε) = i
∑
ξ Γξ(fξ(ε)− 1) and advanced Green’s

function Ĝa(ε, ε′) = [Ĝr(ε′, ε)]†.
The spin current given by Eq. (4) can be calculated

using the above expressions for the Green’s functions
Ĝr(ε, ε′) and Ĝ<(ε, ε′). As a result, the time-dependent
spin-current components Iξx(t) and Iξy(t) read

Iξx(t) =Iξx(D)e−i(ωL−2DSz)t + I∗ξx(D)ei(ωL−2DSz)t, (7)

Iξy(t) =Iξy(D)e−i(ωL−2DSz)t + I∗ξy(D)ei(ωL−2DSz)t, (8)

while Iξz is time-indnpendent. The expressions for Iξz
and the complex functions Iξx(D) and Iξy(D), are pre-
sented by Eqs. (A1)–(A3) in the Appendix. For the
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isotropic molecular spin (D = 0), they reduce to the
expressions obtained before.89.

In the presence of the precessing anisotropic molecular
spin ~S(t) and the external magnetic field ~B, the initial
single resonant transmission channel with energy ε0, re-
sults in four channels available for spin transport. They
are located at Floquet quasienergies131

ε1,3 = ε0 −
ωL
2

+DSz ±

√
D(D + J)S2

z +

(
JS

2

)2

, (9)

ε2,4 = ε0 +
ωL
2
−DSz ±

√
D(D + J)S2

z +

(
JS

2

)2

, (10)

obtained using the Floquet theorem,132–135 since the
Hamiltonian of the molecular orbital is a periodic func-
tion of time ĤMO(t) = ĤMO(t + 2π/ω). As a re-
sult of the exchange interaction between the spin of the
molecule and the itinerant electron spin, the ↓ state
with quasienergy ε1(ε3) is coupled to the ↑ state with
quasienergy ε2(ε4) = ε1(ε3) + ω = ε1(ε3) + ωL − 2DSz.
Namely, periodic motion of the molecular spin leads to
the absorption (emission) of an energy quantum ω by the
spin-carrying electron in the orbital, accompanied by a
spin-flip.

B. Noise of z-polarized spin current

In order to obtain further characteristics of spin trans-
port, one can study spin-current noise. The noise of spin
current polarized along the z-direction is calculated here,
as a complement to previously studied charge-current
noise.131 Since only the tunneling Hamiltonian ĤT con-
tributes to the commutator in Eq. (1), the resulting spin-
current operator Îξz(t) is given by

Îξz(t) =
i

2

∑
σ

(−1)σ Îξσ(t), (11)

where the operator component Îξσ(t) reads

Îξσ(t) =
∑
k

[Vkξ ĉ
†
kσξ(t)d̂σ(t)− V ∗kξd̂†σ(t)ĉkσξ(t)]. (12)

The spin-current fluctuation operator δÎξz(t) in lead ξ
can be written as

δÎξz(t) = Îξz(t)− 〈Îξz(t)〉. (13)

The nonsymmetrized noise of z-polarized spin current,
defined as correlation between fluctuations of z-polarized
spin currents in contacts ξ and ζ, is given by93,142

Szzξζ (t, t′) = 〈δÎξz(t)δÎζz(t′)〉, (14)

whereas, the symmetrized noise can be written as

SzzξζS(t, t′) =
1

2
〈{δÎξz(t), δÎζz(t′)}〉. (15)

According to Eqs. (11) and (13), the nonsymmetrized
noise of z-polarized spin current equals93,142

Szzξζ (t, t′) = −
∑
σσ′

(−1)δσσ′Sσσ
′

ξζ (t, t′), (16)

with Sσσ
′

ξζ (t, t′) = (−1/4)〈δÎξσ(t)δÎζσ′(t′)〉. Implement-
ing the Wick’s theorem143 and Langreth analytical con-
tinuation rules144 to the correlation function Sσσ

′

ξζ (t, t′) in
Eq. (16), and using the Green’s functions of the molec-
ular orbital and the self-energies from the tunnel cou-
plings between the orbital and the leads, one obtains the
expression for the noise of z-polarized spin current.95 Em-
ploying the Fourier transforms of the Green’s functions
Gr,a,<,>σσ′ (ε, ε′) and self-energies Σr,a,<,>ξ (ε), this expres-
sion can be transformed into

Szzξζ (t, t′) =
1

4

∑
σσ′

(−1)δσσ′
{∫

dε1
2π

∫
dε2
2π

∫
dε3
2π

∫
dε4
2π

e−i(ε1−ε2)tei(ε3−ε4)t′

×
{

[Grσσ′(ε1, ε3)Σ>ζ (ε3) + 2G>σσ′(ε1, ε3)Σaζ ][Grσ′σ(ε4, ε2)Σ<ξ (ε2) + 2G<σ′σ(ε4, ε2)Σaξ ]

+ [Σ>ξ (ε1)Gaσσ′(ε1, ε3) + 2G>σσ′(ε1, ε3)Σrξ][Σ
<
ζ (ε4)Gaσ′σ(ε4, ε2) + 2G<σ′σ(ε4, ε2)Σrζ ]

+ 4ΣrξΣ
a
ζG

>
σσ′(ε1, ε3)G<σ′σ(ε4, ε2)

}
− δξζδσσ′

∫
dε1
2π

∫
dε2
2π

∫
dε3
2π

×
{
e−i(ε1−ε3)tei(ε2−ε3)t′G>σσ′(ε1, ε2)Σ<ξ (ε3)

+ e−i(ε1−ε3)tei(ε1−ε2)t′Σ>ξ (ε1)G<σ′σ(ε2, ε3)
}}

. (17)

Since the noise Szzξζ (t, t′) depends only on the time differ-
ence τ = t− t′, its power spectrum equals

Szzξζ (Ω) =

∫
dτeiΩτSzzξζ (τ). (18)

The symmetrized noise spectrum is given by

SzzξζS(Ω) =
1

2
[Szzξζ (Ω) + Szzζξ (−Ω)], (19)
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with Sσσ
′

ξζS(Ω) = 1
2 [Sσσ

′

ξζ (Ω) + Sσ
′σ

ζξ (−Ω)]. As it is of ex-
perimental interest, the zero-frequency noise power of z-
polarized spin-current SzzLL = SzzLL(0) = SzzLLS(0) at zero
temperature will be analyzed and discussed.

C. Spin-transfer torque

In the presence of the anisotropic molecular spin ~S(t),
interacting with the incoming flow of electron spins from
the leads via exchange interactions, the transfer of spin
angular momentum to the molecular spin occurs, result-
ing in the STT ~T (t) exerted on the molecular spin. As

already mentioned, the STT is compensated by exter-
nal means, so that the molecular spin precession remains
unaffected. Considering that the total spin angular mo-
mentum is conserved, the spin of the molecule gener-
ates a torque −~T (t) acting on the spin currents from the
leads,36,49,50,67

−~T (t) = ~IL(t) + ~IR(t), (20)

where ~Iξ(t) =
∑
j Iξj(t)~ej , while ~T (t) =

∑
j Tj~ej . Em-

ploying Eqs. (7), (8), (20) and Eqs. (A1)–(A3) given in
the Appendix, the spatial components of the STT, Tj ,
can be expressed as

Tx(t) = −
∫

dε

2π

∑
ξζ

ΓξΓζ
Γ

[fξ(ε− ωL + 2DSz)− fζ(ε)]× Im

{
γG0r

11(ε)G0a
22(ε− ωL + 2DSz)

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2

×[1− γ2G0a
11(ε)G0r

22(ε− ωL + 2DSz)]e
−i(ωL−2DSz)t

}
, (21)

Ty(t) = −
∫

dε

2π

∑
ξζ

ΓξΓζ
Γ

[fξ(ε− ωL + 2DSz)− fζ(ε)]× Re

{
γG0r

11(ε)G0a
22(ε− ωL + 2DSz)

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2

×[1− γ2G0a
11(ε)G0r

22(ε− ωL + 2DSz)]e
−i(ωL−2DSz)t

}
, (22)

Tz = −
∫

dε

2π

∑
ξζ

ΓξΓζ [fξ(ε− ωL + 2DSz)− fζ(ε)]×
γ2|G0r

11(ε)G0r
22(ε− ωL + 2DSz)|2

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2
. (23)

For the isotropic molecular spin with D = 0, Eqs. (21)–
(23) reduce to the previously calculated expressions for
the spatial components of the STT.89 If the magnetic
field is turned off (ωL = 0), then ~T (t) = 0 for D = 0,89

whereas ~T (t) 6= 0 for D 6= 0 according to Eqs. (21)–(23).
Both Tx(t) and Ty(t) can be written as Tx(t) =

Tx cos(ωt+ φx) and Ty(t) = Ty cos(ωt+ φy). The phase
difference φx−φy = π/2, whereas Tx and Ty are the am-
plitudes. Since the amplitudes are equal, it is convenient
to introduce the in-plane torque component, orthogonal
to the z-axis, ~T⊥(t) = ~Tx(t) + ~Ty(t), while

~T (t) = ~T⊥(t) + ~Tz(t). (24)

The in-plane component of the STT, ~T⊥(t), precesses
around the end point of the molecular spin ~S(t) in the
xy plane (see Fig. 1), and has a constant magnitude
|~T⊥(t)| = T⊥ = Tx = Ty.

In relation to the molecular spin vector ~S(t), the STT
can be reformulated as

~T (t) =
α

S
~̇S(t)× ~S(t) + β ~̇S(t) + η~S(t). (25)

The Gilbert damping component of the torque is given

by the first term in Eq. (25) , with α, the Gilbert damp-
ing coefficient. It tends to align the anisotropic molecu-
lar spin ~S(t) anti(parallel) to the direction of the effec-
tive magnetic field ~Beff = ~B − (2D/gµB)~Sz and dissi-
pate(add) magnetic energy. The second term with coef-
ficient β tends to change the precession frequency of the
molecular spin ~S(t), and the direction of the molecular
spin precession for β < 0. The contribution in the third
therm is characterized by the coefficient η. The Carte-
sian representation of the STT given by Eq. (25) results
in spatial components

Tx(t) = S⊥

(
α

S
ωSz + η

)
cos(ωt)− βωS⊥ sin(ωt), (26)

Ty(t) = S⊥

(
α

S
ωSz + η

)
sin(ωt) + βωS⊥ cos(ωt), (27)

Tz = −α
S
ωS2
⊥ + ηSz, (28)

where ~̇S(t) = ωS⊥[− sin(ωt)~ex + cos(ωt)~ey] for the pre-
cessing molecular spin. Combining expressions given by
Eqs. (21)–(23) and (26)–(28), the resulting torque coeffi-
cients α and β can be written as
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FIG. 2: (Color online) (a) Spin current ILz and (b) auto-correlation spin-current shot noise Szz
LL, as functions of the uniaxial

magnetic anisotropy parameter D for different tilt angles θ, at zero temperature. The magnetic field ~B = B~ez and Larmor
frequency ωL = 0.5 ε0, except for a zero magnetic field where ωL = 0 (orange line). The chemical potentials of the leads are
equal: µL = µR = 0.1 ε0. The other parameters are set to: Γ = 0.05 ε0, ΓL = ΓR = Γ/2, J = 0.01 ε0, and S = 100. Grid lines
for θ = π/3 and ωL = 0.5 ε0 (green line), are positioned at D = −0.00431 ε0 (µL = µR = ε3), D = 0.00766 ε0 (µL = µR = ε4),
and D = 0.005 ε0 (ω = 0).

α = − 1

(ωL − 2DSz)S

∫
dε

2π

∑
ξζ

ΓξΓζ [fξ(ε− ωL + 2DSz)− fζ(ε)]

× (JSz/2Γ)Im{G0r
11(ε)G0a

22(ε− ωL + 2DSz)} − γ2|G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2
, (29)

β = − J

ωL − 2DSz

∫
dε

4π

∑
ξζ

ΓξΓζ
Γ

[fξ(ε− ωL + 2DSz)− fζ(ε)]

× Re{G0r
11(ε)G0a

22(ε− ωL + 2DSz)} − γ2|G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2
, (30)

while the coefficient η can be expressed in terms of Tz
and Gilbert damping coefficient α as

η =
Tz
Sz

+
4γ2(ωL − 2DSz)

J2SSz
α. (31)

In the limit |D| � |ωL/2Sz|, the effect of the uniaxial
magnetic anisotropy on the STT can be neglected, and
Eqs. (29)–(31) are in agreement with the coefficients α, β
and η obtained for the isotropic molecular spin.89 Finally,
the magnitude of the in-plane torque component T⊥ can
be expressed using α, β and Tz as follows

T⊥ =
2|γ(ωL − 2DSz)|

J

√
β2 +

1

S2
z

[
Sα+

Tz
(ωL − 2DSz)

]2

.(32)

For a static molecular spin with ω = 0, ~̇S(t) = 0, and
D = ωL/2Sz, according to Eqs. (21)–(23) and (31), the
STT vanishes, ~T (t) = ~0, and η = 0. This is expected
since the exchange of spin angular momentum occurs due
to the exchange interaction of electron spins with the

rotational component of the molecular spin.88,89 Using
Eqs. (29) and (30) one obtains nonzero coefficients α and
β in the limit ω → 0, given by Eqs. (A4) and (A5) in the
Appendix.

IV. RESULTS AND DISCUSSION

In this section, the properties of the z-polarized spin
current ILz and autocorrelation zero-frequency noise
power SzzLL at zero temperature are discussed. Then, the
characteristics of the STT generated on the anisotropic
molecular spin by the spin currents from the leads, and
torque coefficients, are analyzed as functions of the uni-
axial magnetic anisotropy parameter D, bias voltage
eV = µL − µR and Larmor frequency ωL.

In Fig. 2, the spin current ILz and auto-correlation
noise SzzLL are plotted as functions of the anisotropy pa-
rameter D, for different tilt angles θ, at zero tempera-
ture and zero-bias conditions, with chemical potentials
of the leads µ = µL = µR = 0.1 ε0. For a static molec-
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FIG. 3: (Color online) Spin-current shot noise Szz
LL as a func-

tion of the magnetic anisotropy parameter D at zero temper-
ature, for θ = π/3, µL = 0.65 ε0, and µR = 0, with ~B = B~ez.
Around the resonant anisotropy parameter Dres = 0.00129 ε0
(grid line) the spin-current noise Szz

LL (black line) matches
the Fano-like shape of the resonance profile σz

S (red line).
The inset shows contributions of S↑↑

LLS − S↑↓
LLS (pink line)

and S↓↓
LLS − S↓↑

LLS (purple line) to the resulting shape of the
resonance profile in Szz

LL. The other parameters are set to:
Γ = 0.05 ε0, ΓL = ΓR, ωL = 0.5 ε0 J = 0.01 ε0, and S = 100.

ular spin with θ = 0 and γ = 0 (purple dotted lines in
Fig. 2), the spin current ILz = 0 and SzzLL = 0. In the
case of θ = π/2 (pink dashed lines in Fig. 2), the spin
current ILz and noise SzzLL are independent of D, since
Sz = 0. For θ = π/3 and ωL = 0.5 ε0 (green lines in
Fig. 2) one notices maximums in ILz and SzzLL around
D = −0.00431 ε0, corresponding to µL = µR = ε3, while
a minimum in ILz and local maximum in SzzLL around
D = 0.00766 ε0 correspond to µL = µR = ε4 (grid lines).
For −0.00431 ε0 < D < 0.00766 ε0 all four quasienergy
levels εi, with i ∈ {1, 2, 3, 4}, lie above the chemical po-
tentials µ, so that both ILz and SzzLL drop to zero, taking
into account the level broadening Γ. The spin current
ILz and noise SzzLL vanish at D = ωL/2Sz when ω = 0,
as without molecular spin precession at zero-bias con-
ditions, elastic and inelastic tunneling processes do not
occur (see e.g., green line in Fig. 2 at D = 0.005 ε0). The
spin current ILz > 0 for D < ωL/2Sz (ω > 0) since ↓
level ε3 and ↑ level ε4 satisfy ε3 < ε4, leading to positive
↑ component of spin current I↑Lz = −I↓Lz > 0, and as µ
approaches ↓ level ε3 with the increase of D both ILz and
SzzLL increase. Similarly, for D > ωL/2Sz (ω < 0), ↓ level
ε3 lies above ↑ level ε4, ε3 > ε4 leading to I

↑
Lz = −I↓Lz < 0,

and hence ILz < 0. In the absence of the magnetic field,
ωL = 0 (orange line in Fig. 2), and the molecular spin
precesses around the z-axis with frequency ω = −2DSz.
Hence, ILz ≥ 0 for D ≤ 0, and ILz < 0 for D > 0. Af-
ter reaching resonances between µ and levels ε3 and ε4,
while ε1 > µ and ε2 > µ, both ILz and SzzLL decrease
with further increase of |D|, as more energy is needed to
flip an electron spin which is already in lower quasienergy
level, and for |D| � ωL/2Sz they vanish. Besides, tak-

ing into account the tunneling rate Γ, for |D| � Γ, the
precession frequency |ω| � Γ, so that the probability of
exchange of spin angular momentum between molecular
and a tunneling electron spin is low.

In Fig. 3, the spin-current shot noise SzzLL is presented
as a function of the magnetic anisotropy parameter D,
for θ = π/3, with chemical potentials µL = 0.65 ε0 and
µR = 0, at zero temperature. As in the Fano effect,136,137
a dip-peak feature can be observed at the resonance
µL = ε4. It is a manifestation of the quantum inter-
ference between the ↑ state with energy ε4 and ↓ state
with energy ε3 ≈ 0.279 ε0. An electron spin from the left
lead can perform elastic tunneling through the ↑ state
with energy ε4, or it can tunnel via a spin flip from ↓
state with energy ε3 to ↑ state with energy ε4, involving
absorption of an energy ω ≈ 0.371 ε0. Similarly, the elas-
tic tunneling can occur via the ↓ state with energy ε3, or
via a spin flip from ↑ state with energy ε4 to ↓ state with
energy ε3, involving emission of an energy ω. The two
tunneling pathways, one elastic and the other involving a
spin flip, ending up in the same final ↑ state with energy
ε4, or ↓ state with energy ε3, destructively (dip) or con-
structively (peak) interfere. The asymmetric line shape
in SzzLL (black line in Fig. 3) mimics the asymmetric Fano
resonance profile.136,137 For µL = ε4, the corresponding
resonant anisotropy parameter equals Dres ≈ 0.00129 ε0
(see grid line in Fig. 3). The destructive quantum inter-
ference corresponds to the dip (interference minimum)
at Dmin ≈ 0.00101 ε0, while the constructive interfer-
ence corresponds to the peak (interference maximum)
at Dmax ≈ 0.00157 ε0. Around Dres, the spin-current
noise SzzLL matches the Fano-like shape σzS(D) (red line
in Fig. 3) expressed as

σzS(D) = C +A
(D −Dres + qΓres/2)2

(D −Dres)2 + (Γres/2)2
, (33)

where Γres = |Dmax − Dmin| ≈ 0.00056 ε0 is the width
of the resonance. The asymmetry parameter q = 1
shows that elastic and spin-flip processes occur with
equal probability, so that Dres = (Dmin + Dmax)/2.
Half of the amplitude of the Fano-like shape is given by
A = [SzzLL(Dmax) − SzzLL(Dmin)]/2 ≈ 0.000194 ε0, while
C = SzzLL(Dmin) ≈ 0.00229 ε0. The inset in Fig. 3 de-
picts individual contributions of two interference profiles
around Dres to the Fano-like shape in SzzLL. One profile
that includes interference of elastic and spin-flip path-
ways ending in ↑ state with energy ε4 is presented in
S↑↑LLS − S

↑↓
LLS (pink line, inset in Fig. 3). The other pro-

file with interfering elastic and spin-flip pathways ending
in ↓ state with energy ε3 is given by the contribution
S↓↓LLS −S

↓↑
LLS (purple line, inset in Fig. 3). The asymme-

try parameter q = 1 in both interference profiles, showing
equal probabilities of elastic and spin-flip processes in-
volving energy absorption (pink line) or emission (purple
line).

The spin current ILz and shot noise SzzLL as functions of
the chemical potential µ = µL = µR at zero temperature
are presented in Figs. 4(a) and 4(b), for several values of
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FIG. 4: (Color online) (a) Spin current ILz, (b) auto-correlation spin-current shot noise Szz
LL, as functions of the chemical

potential of the leads µ = µL = µR, and (c) auto-correlation spin-current shot noise Szz
LL as a function of the applied bias

voltage eV = µL − µR with µL,R = ±eV/2, for different uniaxial magnetic anisotropy parameters D, with ~B = B~ez, at zero
temperature. The other parameters are set to: Γ = 0.05 ε0, ΓL = ΓR = Γ/2, ωL = 0.5 ε0, J = 0.01 ε0, S = 100, and θ = π/3.
All energies are given in the units of ε0. For µL = µR and D = ωL/2Sz = 0.005 ε0, ILz = 0 and Szz

LL = 0 (purple dotted lines).

the magnetic anisotropy parameter D. Since I↑Lz=−I
↓
Lz

at zero-bias conditions, the corresponding charge current
equals zero, with positive charge-current noise in the re-
gions between levels connected with spin-flip events.131
In the same regions, the shot noise of spin-current SzzLL is
positive, while the spin current ILz takes positive (neg-
ative) values for D < ωL/2Sz (D > ωL/2Sz). With
the decrease of |ω|, the magnitudes of ILz and SzzLL de-
crease. In Fig. 4(c) the dependence of spin-current shot
noise SzzLL on the bias voltage eV = µL − µR, with
µL,R = ±eV/2, is plotted for different values of the
anisotropy parameter D at zero temperature. The posi-
tions of steps and dip-peak features in SzzLL at values of eV
such that ±eV/2 = µξ = εi denote Floquet quasienergy
levels εi available for spin transport and, thus, depend
on the anosotropy parameter D. For large values of |eV |
spin-current noise SzzLL is saturated.

The Gilbert damping coefficient α, the coefficient β,
the magnitude of the in-plane torque component T⊥ and
the torque along z direction, Tz, are shown as functions
of the magnetic anisotropy parameter D in Fig. 5, for
five different tilt angles θ, at zero temperature. Starting
with θ = 0, when S = Sz (purple dotted lines in Fig. 5),
one notices that α has two local maximums and two local
minimums around values of D that correspond to reso-
nances µξ = εi. The coefficient β has four minimums
at the same values of D. Taking into account that the
spin of the molecule is static for θ = 0, with ~̇S(t) = 0,
and γ = 0, according to Eqs. (23) and (32), the torque
components Tz = 0 and T⊥ = 0. Note the presence of
the elastic spin currents here, ILz = −IRz [see Eq. (A3)
in the Appendix]. On the other hand, for θ = π/2, the
molecular spin is perpendicular to z-axis, Sz = 0, and α,
β, T⊥ and Tz are independent of D (pink dashed lines
in Fig. 5). Grid lines in Fig. 5 are related to θ = π/3,
ωL = 0.5 ε0 (green lines) and the values of parameter D,
such that µξ = εi. Around D = −0.01312 ε0 correspond-
ing to µL = ε2 (grid line), one notices a local maximum
in α and T⊥, a local minimum in β, while Tz has a mini-
mum negative value. For this set of parameters, ↓ level ε1

and ↑ levels ε2 and ε4 lie within the bias-voltage window,
while ↓ level ε3 < µR. This means that there are more
inelastic tunneling pathways, involving electron spin-flip,
available for ↓ electrons than for ↑ electrons. Namely, a
tunneling electron in the ↓ level ε3 can flip its spin and
enter the ↑ level ε4 within the bias voltage window, be-
fore it tunnels off the orbital, but the ↑ electron from the
level ε4 cannot flip its spin and enter ↓ level ε3, since ε3
lies below the bias voltage window. As a consequence,
more ↓ electrons participate in inelastic spin transport,
resulting in the negative torque component Tz. With
further increase of D, for θ = π/3 and ωL = 0.5 ε0,
the torque Tz < 0 until around D = −0.00625 ε0, cor-
responding to µR = ε3 (grid line), taking into account
the level broadening Γ. Now all levels εi lie within the
bias-voltage window, and Tz has another local negative
minimum and a step-like increase towards zero, while α
has a local maximum and a step-like decrease towards
zero. On the other hand, T⊥ has a maximum value at
D = −0.00625, while β has another local minimum. As
the increase of the anisotropy parameter D continues,
the Gilbert damping coefficient α and Tz remain zero
until around D = 0.00875ε0, corresponding to µR = ε4
(grid line). Here, ~Tz changes its direction with Tz in-
creasing towards a local maximum, while α reaches its
maximum, β has its minimum value, and T⊥ has a local
maximum. With further increase ofD, levels ε1, ε2 and ε3
lie within the bias-voltage window, while ↑ level ε4 < µR,
and ε3 > ε4 since ω < 0. Hence, there are more inelastic
tunneling pathways available for ↑ particles, and the re-
sulting Tz > 0. Around D = 0.01406 ε0, corresponding to
µL = ε1 (grid line), the coefficient α, the magnitude T⊥,
and Tz have a local maximum, while β has a local mini-
mum for θ = π/3 and ωL = 0.5 ε0 (green line in Fig. 5).
Note that T⊥ decreases from its maximum value to zero
in the region −0.00625 ε0 < D < 0.005 ε0, (ω > 0), and
increases for 0.005 ε0 < D < 0.00875 ε0 (ω < 0). At
D = 0.005 ε0, the total frequency ω = ωL − 2DSz = 0
for θ = π/3 and ωL = 0.5 ε0, and the direction of the
precession changes, while T⊥ = 0. Similarly, for θ = π/9
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FIG. 5: (Color online) (a) Gilbert damping coefficient α, (b) coefficient β, (c) magnitude of the in-plane component of the STT,
T⊥ and (d) spatial component of the torque along z-direction Tz, as functions of the uniaxial magnetic anisotropy parameter
D for different tilt angles θ, at zero temperature. The magnetic field ~B = B~ez and Larmor frequency ωL = 0.5 ε0, except for
a zero magnetic field where ωL = 0 (orange line). The chemical potentials of the leads are equal to: µL = 2.5 ε0 and µR = 0.
The other parameters are set to: Γ = 0.05 ε0, ΓL = ΓR = Γ/2, ωL = 0.5 ε0, J = 0.01 ε0, S = 100. Grid lines for θ = π/3 (green
line), are positioned at D = −0.01312 ε0 (µL = ε2), D = −0.00625 ε0 (µR = ε3), D = 0.00875 ε0 (µR = ε4), and D = 0.01406 ε0
(µL = ε1).

and θ = π/4, the torque T⊥ = 0 at D = ωL/2Sz, while
α and Tz vanish for the values of D such that each εi
satisfies µR ≤ εi ≤ µL, with respect to level broadening
Γ [red and blue dot-dashed lines in Fig. 5]. In the ab-
sence of the magnetic field (ωL = 0), for θ = π/3, the
magnitude T⊥ = 0 at D = 0 [orange line in Fig. 5(c)]. At
a high anisotropy, |D| � ωL/2Sz, the elastic tunneling
processes are dominant and consequently α, β, T⊥ and
Tz approach zero.

The torque coefficients α and β, the magnitude T⊥, and
Tz, are presented as functions of the applied bias-voltage
eV in Fig. 6, for several different magnetic anisotropy
parameters D at zero temperature. The bias voltage is
varied according to µL,R = ±eV/2. For D = ωL/2Sz =
0.005 ε0, the molecular spin is static (ω = 0), and only
elastic spin transport occurs through two available trans-
port channels, so that α, β and ~T vanish (purple dotted
lines in Fig. 6). For D 6= 0.005 ε0, one notices that α
and Tz approach constant values for chemical potentials

µξ positioned between quasienergy levels εi connected
with spin-flip events. With the decrease of D, for D <
ωL/2Sz, these values of α and Tz decrease [pink dashed,
red, blue dot-dashed lines in Figs. 6(a) and 6(d)], vanish
for ω = 0, and arise again for D > ωL/2Sz [green lines in
Figs. 6(a) and 6(d)]. Note that Tz > 0 for D < ωL/2Sz,
and Tz < 0 for D > ωL/2Sz. Moreover, the width of the
bias-voltage regions where the inelastic tunneling events
occur depends onD as w = 2ω = 2ωL−4DSz, taking into
account the level broadening Γ. Within these regions,
the coefficient β increases(decreases) from a local mini-
mum(maximum) to a local maximum(minimum), so that
the torque β ~̇S tends to oppose(enhance) the rotational
motion of the molecular spin ~S, for negative(positive) β.
All peaks in T⊥ correspond to µξ = εi. Their values de-
crease with the increase of D for ω > 0, drop to zero for
ω = 0, and arise again for ω < 0 [see Fig. 6(c)]. For the
values of eV such that β = 0, while α and |Tz| approach
their maximums, the magnitude T⊥ has local minimums.
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FIG. 6: (Color online) (a) Gilbert damping coefficient α, (b) coefficient β, (c) magnitude of the in-plane component of the
STT, T⊥ and (d) spatial component of the torque along z-direction Tz, as functions of the applied bias voltage eV = µL − µR

with µL,R = ±eV/2 and ~B = B~ez, for different uniaxial magnetic anisotropy parameters D at zero temperature. The other
parameters are set to: Γ = 0.05 ε0, ΓL = ΓR = Γ/2, ωL = 0.5 ε0, J = 0.01 ε0, S = 100, and θ = π/3. All energies are given in
the units of ε0. For D = ωL/2Sz = 0.005 ε0, α = 0, β = 0, and ~T = 0 (purple dotted lines).

In Fig. 7 the coefficients α and β, the magnitude of
the in-plane torque component, T⊥, and Tz, are plotted
as functions of the Larmor frequency ωL at zero temper-
ature, for four different values of the magnetic anisotropy
parameterD. The bias voltage is varied as eV = µL−µR,
with µL = 2.5 ε0 and µR = 0. The positions and values of
all local maximums in α, steps in Tz, peaks and dips in β,
and peaks in T⊥ depend on the parameterD. They corre-
spond to resonances µξ = εi. For the anisotropic molec-
ular spin, α, β and T⊥ are even functions, while Tz is an
odd function of ω (ωL for D = 0)88. Around ωL = 0.5 ε0
(grid lines), a maximum value for D = 0.00875 ε0 and
a local maximum for D = −0.00625 ε0 can be observed
in α due to resonances µR = ε4 and µR = ε3, while
β shows negative minimums, T⊥ local maximums, and
Tz step-like decreases [blue dot-dashed and green lines
in Fig. 7]. Looking at ωL > 0 for D = −0.00625 ε0
(green lines in Fig. 7), one notices that for ωL < 0.5 ε0 all
quasienergy levels εi lie within the bias-voltage window.
With the increase of ωL they leave the bias-voltage win-
dow after reaching a resonance with µR or µL: ε3 = µR

at ωL = 0.5 ε0, ε2 = µL at ωL = 1.5 ε0, ε1 = µR at
ωL = 2.25 ε0, and ε4 = µL at ωL = 3.25 ε0. If we take
into account the level broadening Γ, all quasienergy lev-
els εi leave the bias-voltage window around ωL = 3.25 ε0,
with ε2(4) > µL, and ε1(3) < µR. With further increase
of ωL, α and β vanish, while T⊥ and Tz become satu-
rated due to spin-flip processes, involving electron spins
from the leads, entering ↓ levels ε1 or ε3, and absorbing
energy ω during the interaction with the molecular spin
(note that saturated Tz < 0 for ωL > 0). At ωL = 2DSz,
the STT vanishes. E.g., at ωL = 0.5 ε0 for D = 0.005 ε0,
T⊥ = 0 and Tz = 0 [intersection between grid line and
pink-dashed line in Figs. 7(c) and 7(d)].

V. CONCLUSIONS

In this paper, the properties of spin transport through
a junction consisting of a single orbital of a magnetic
molecule with precessing anisotropic spin in a constant
magnetic field was theoretically studied. The orbital is
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FIG. 7: (Color online) (a) Gilbert damping coefficient α, (b) coefficient β, (c) magnitude of the in-plane component of the STT,
T⊥ and (d) spatial component of the torque along z-direction Tz, as functions of the Larmor frequency ωL for different uniaxial
magnetic anisotropy parameters D. All plots are obtained at zero temperature with ~B = B~ez. The chemical potentials of the
leads are equal to: µR = 0 and µL = 2.5 ε0. The other parameters are set to: Γ = 0.05 ε0, ΓL = ΓR = Γ/2, J = 0.01 ε0, S = 100,
and θ = π/3. All energies are given in the units of ε0. For a suppressed precession, with ω = 0, ωL = 2DSz, the STT vanishes,
T⊥ = 0 and Tz = 0 (intersection between grid line and pink dashed line).

connected to two Fermi leads. The precession is kept
undamped by external means and the precession fre-
quency involves two contributions, one is Larmor fre-
quency and the other is a term involving the uniax-
ial magnetic anisotropy parameter. Using the Keldysh
NEGF technique, the spin currents, noise of z-polarized
spin current, STT with the Gilbert damping coefficient
and other torque coefficients were derived.

The results were discussed and analysed at zero tem-
perature. The observed spin-transport characteristics
such as steps, peaks and dips are related to resonances
between chemical potentials of the leads and molecular
quasienergy levels which depend on the uniaxial magnetic
anisotropy parameter of the molecular spin. The inelas-
tic tunneling of an electron spin that involves a spin-flip
and absorption(emission) of an energy that depends on
the magnetic anisotropy occurs due to exchange interac-
tion with the precessing anisotropic molecular spin. Dur-
ing that process, the STT is exerted on the spin of the
molecule and compensated by external means. The op-

posite torque is exerted by the molecular spin onto the
spin currents, thus affecting the spin-transport proper-
ties of the junction. Both torque coeficients α and β, as
well as the magnitude of the in-plane torque T⊥ are even
functions, while Tz is an odd function of the total preces-
sion frequency, taking into consideration the contribution
of the magnetic anisotropy to the precession.

By adjusting the uniaxial magnetic anisotropy param-
eter with respect to the Larmor precession frequency and
the tilt angle between the magnetic field and the molec-
ular spin, one can control the spin current and noise,
the STT, the Gilbert damping and the other torque
coefficients. The quantum interference effects between
the states connected with spin-flip processes are mani-
fested in the spin-current noise as peaks and dips, resem-
bling the Fano-like resonance profiles, controlled by the
anisotropy parameter and Larmor frequency. Further-
more, it might be possible to perform a measurement
of the dc-spin current and STT components, since they
reveal the quasienergy level structure in the molecular
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orbital. All spatial components of the STT vanish for
the anisotropy contribution to the precession frequency
that matches the Larmor frequency, when the precession
is suppressed, thus allowing to determine the anisotropy
and other parameters. Also, large magnetic anisotropy
parameter leads to vanishing of the spin current, spin-
current noise, and STT.

Taking into account that the spin currents and noise,
and magnitude, direction and sign of the STT can be
manipulated by the uniaxial magnetic anisotropy and
other parameters, even if the magnetic field is turned
off, the obtained results might be useful in spintronic
applications using molecular magnets. Since magnetic
anisotropy parameter is important for applications of
molecular magnets in magnetic storage, it might be suit-

able to study noise of STT to obtain additional charac-
teristics of spin-transport, and use quantum-mechanical
description of the anisotropic molecular spin in tunnel
junctions with normal or ferromagnetic leads.
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Appendix: Expressions for the spin-current spatial components and zero frequency limit of the torque
coefficients

The expressions for complex functions Iξx(D) and Iξy(D) introduced by Eqs. (7) and (8), and spin-current com-
ponent Iξz, are presented here in terms of the Green’s functions Ĝ0r(ε) and Ĝ0a(ε) = [Ĝ0r(ε)]†. They can be written
as

Iξx(D) =− i
∫

dε

4π

{
ΓξΓη

Γ
[fξ(ε)− fη(ε)]

[
γG0r

11(ε+ ωL − 2DSz)G
0r
22(ε)

|1− γ2G0r
11(ε+ ωL − 2DSz)G0r

22(ε)|2

+
2iγIm{G0r

11(ε)}G0a
22(ε− ωL + 2DSz) + γ3|G0r

11(ε)G0r
22(ε− ωL + 2DSz)|2

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2

]

+
∑

λ,ζ=L,R

ΓλΓζ
Γ

[fλ(ε− ωL + 2DSz)− fζ(ε)]

×
[
δζξ − δλξγ2G0a

11(ε)G0r
22(ε− ωL + 2DSz)

] γG0r
11(ε)G0a

22(ε− ωL + 2DSz)

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2

}
, η 6= ξ, (A1)

Iξy(D) = iIξx(D), (A2)

and Iξz =

∫
dε

4π

{
ΓξΓη

Γ
[fξ(ε)− fη(ε)]

[
2Im{G0r

11(ε)}
|1− γ2G0r

11(ε)G0r
22(ε− ωL + 2DSz)|2

− 2Im{G0r
22(ε)}

|1− γ2G0r
11(ε+ ωL − 2DSz)G0r

22(ε)|2

]

+
∑

λ,ζ=L,R

ΓλΓζ [fλ(ε− ωL + 2DSz)− fζ(ε)](δλξ + δζξ)
γ2|G0r

11(ε)G0r
22(ε− ωL + 2DSz)|2

|1− γ2G0r
11(ε)G0r

22(ε− ωL + 2DSz)|2

}
, η 6= ξ. (A3)

In the limit ω → 0, i.e., D → ωL/2Sz, considering that fξ(ε − ω) − fξ(ε) → −ω∂εfξ(ε), the expressions for the
spin-torque coefficients α and β given by Eqs. (29) and (30) result in

lim
ω→0

α =
Γ

S

∫
dε

2π

∑
ξ

Γξ[∂εfξ(ε)]
(JSz/2Γ)Im{G0r

11(ε)G0a
22(ε)} − γ2|G0r

11(ε)G0r
22(ε)|2

|1− γ2G0r
11(ε)G0r

22(ε)|2
, (A4)

lim
ω→0

β =J

∫
dε

4π

∑
ξ

Γξ[∂εfξ(ε)]
Re{G0r

11(ε)G0a
22(ε)} − γ2|G0r

11(ε)G0r
22(ε)|2

|1− γ2G0r
11(ε)G0r

22(ε)|2
. (A5)
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