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By employing the formalism of hydrodynamics, we derive novel analytic predictions for the Doppler
effect in superfluids with broken Galilean invariance and hosting persistent currents at zero temperature.
We consider two scenarios: when Galilean invariance is broken explicitly (by external potentials) and
spontaneously, as it happens in a supersolid. In the former case, the presence of a stationary current affects
the propagation of sound via an anomalous Doppler term proportional to the density derivative of the
superfluid fraction. In supersolids, where, according to Goldstone theorem, distinct sounds of hybrid
superfluid and crystal nature can propagate, the Doppler effect can be very different for each sound.
Quantitative estimates of the Doppler shifts are obtained for Bose-Einstein condensed atomic gases,
described by Gross-Pitaevskii theory. The estimates are obtained both calculating the thermodynamic
parameters entering the hydrodynamic results and from full time-dependent simulations.
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In a classical fluid moving at a small velocity vf, the
sound speed c0 is modified by the kinematic Doppler shift
as c ¼ c0 � vf, depending on whether the sound prop-
agates parallel (þ) or antiparallel (−) to the velocity vf. The
Doppler effect has been predicted to be different in a
superfluid due to the relative velocity between the normal
and the superfluid component.
This problem was first addressed a long time ago by

Khalatnikov [1] for superfluid helium at finite temperature,
where the motion of the liquid is described by Landau’s
two-fluid hydrodynamics. Stimulated by early experimen-
tal results on the Doppler effect in the propagation of fourth
sound in helium [2], further theoretical studies have pointed
out the occurrence of nontrivial, anomalous Doppler shifts
in 4He [3–5], 4He-3He mixture [6], as well as in superfluid
3He [7]. To our knowledge, however, a clear experimental
confirmation of the anomalous Doppler effect in liquid
helium is still missing.
In this Letter, we demonstrate the possibility of a zero-

temperature Doppler effect in ultracold gas superfluids [8–
10], which, different from liquid helium, allow for a
microscopic treatment based on Gross-Pitaevskii theory.
We focus on density-modulated configurations, where the
superfluid density can differ significantly from the average
density even at zero temperature. Density-modulated
phases in ultracold atomic gases can be the result of an
external periodic potential (optical lattices [11]) or of the
spontaneous breaking of translational symmetry, yielding
supersolidity [12]. The propagation of sound and the
occurrence of collective oscillations, in the absence of

steady currents, have already been the subject of exper-
imental investigations in both cases (see [13–15] and [16–
18], respectively). Furthermore, the Doppler effect was
observed in a uniform Bose-Einstein condensed gas con-
fined in a ring, where it was used to measure the quanta of
circulation characterizing the velocity of the superfluid
flow [19].
In the presence of an external periodic potential, the

normal component of the fluid is locked, and only the
superfluid component can move. Instead, in supersolid
configurations, both superfluid and normal (crystal) com-
ponents can move. As predicted in the seminal paper by
Andreev and Lifshitz [20], Goldstone modes of hybridized
crystalline and superfluid nature are expected to occur in a
supersolid (see also [21]). These modes are expected to
react differently to the presence of a relative motion
between the two components.
We provide general analytical results for Doppler shifts

at zero temperature within a hydrodynamic approach,
which, in the case of a supersolid, have never been obtained
before. Considering ultracold gas platforms, we use Gross-
Pitaevskii theory to confirm the validity of the hydro-
dynamic predictions and to determine the parameters
entering the hydrodynamic equations. In particular, con-
cerning supersolids, we consider the dipolar gas platform
[22–26] (see also [12] and references therein).
In the following, for the sake of simplicity, we consider a

linear tube geometry of length L, with periodic boundary
conditions, where we can use one-dimensional hydro-
dynamic theories. In cold atomic gases, quasi-one-
dimensional configurations hosting permanent currents
can be experimentally realized using ring-shaped trapping
potentials with sufficiently large radii.*Contact author: alessio.recati@ino.cnr.it
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Doppler shift of fourth sound—One peculiar sound that
propagates in superfluid helium occurs when the normal
component is at rest due to viscous drag in porous media
[27] or in a narrow channel [28]. This mode is usually
referred to as fourth sound. An analog mode—hereafter
also called fourth sound—propagates at low temperature in
a Bose-Einstein condensed atomic gas in the presence of a
periodic external potential, which causes the pinning of the
normal component.
Doppler effect in fourth sound was observed in helium in

a superleak [2,29]. In these pioneering experimental works,
it was suggested that the Doppler shift has a kinematic
nature and is fixed by the fluid velocity vf ¼ vsρs=ρ, given
by the current divided by the mass density ρ, with ρs and vs
the superfluid density and the superfluid velocity, respec-
tively. However, a more detailed analysis based on two-
fluid hydrodynamics showed that this prediction is, in
general, not correct [5]. The correct result for the Doppler
effect of fourth sound at zero temperature can be derived
within the Hamiltonian formalism for two-fluid hydro-
dynamics [30]. Assuming that the stationary superfluid
velocity is small, the energy density of the system, in the
frame where the normal component is at rest, is given by
the expansion ϵðρ; vsÞ ¼ ϵ0ðρÞ þ ð1=2Þρsv2s , where ϵ0 is
the energy at rest. The superfluid velocity is irrotational and
can be written as vs ¼ ℏ∂xϕ=m, where the macroscopic
phase ϕ is canonically conjugated to the density [31]. The
Hamiltonian equations of motion for ρ and vs then take the
form of the following (collisionless) hydrodynamic (HD)
equations:

∂tρþ ∂xðρsvsÞ ¼ 0; ð1Þ

∂tvs þ ∂x

�
μ0 þ

1

2

∂ρs
∂ρ

v2s

�
¼ 0; ð2Þ

where μ0ðρÞ ¼ ∂ϵ0=∂ρ is the chemical potential calculated
at vs ¼ 0. The two HD equations correspond to the atom
number conservation and to the presence of superfluid
long-range order.
Sound propagation—corresponding to the superfluid

Goldstone mode—is described by linearizing the above
equations around the uniform equilibrium values ρ0,
ρ0s , and v0s , as ρðx; tÞ ¼ ρ0 þ δρðx; tÞ, ρsðx; tÞ ¼ ρ0sþ
ð∂ρs=∂ρÞδρðx; tÞ, and vsðx; tÞ ¼ v0s þ δvsðx; tÞ. In this
way, we find that the excitations obey the phononic
dispersion relation ωðqÞ ¼ cjqj, with q the wave vector
of the sound wave and c the speed of sound. The latter is
given by c� ¼ c0 � Δc, where c0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
fsκ−1

p
is the zero-

temperature value of the fourth sound velocity in the
absence of current, with fs ¼ ρs=ρ the superfluid fraction
and κ−1 ¼ ρ∂ρμ0 the inverse compressibility [32]. Finally,
the Doppler shift reads

Δc ¼ ∂ρs
∂ρ

v0s ¼
�
fs þ ρ

∂fs
∂ρ

�
v0s : ð3Þ

Therefore, due to the density dependence of the superfluid
fraction, the Doppler shift differs, in general, from the
kinematic expectation fsv0s . The expressions given by
Eqs. (1)–(3) hold at zero temperature for both Bose and
Fermi superfluids, provided the superfluid velocity is small
enough, namely, v0s ≪ c0. Similar results were obtained in
[3] in the case of superleak helium configurations, with
special focus on finite size effects, and in [33,34] in the case
of atomic Bose-Einstein condensates in optical lattices,
after linearization of the time-dependent Gross-Pitaevskii
equation (GPE). The superfluid fraction in these latter
works has to be interpreted in terms of effective tunneling
or effective mass.
The result of Eq. (3) can be easily generalized to

the case of an optical lattice moving with velocity v0n,
by a simple Galilean transformation, i.e., Δc ¼ v0nþ
ð∂ρs=∂ρÞðv0s − v0nÞ ¼ ð∂ρs=∂ρÞv0s þ ð∂ρn=∂ρÞv0n, with ρn ¼
ρ − ρs the normal density, thereby revealing that anomalous
Doppler shifts take place only if the two fluids move with
different velocities.
We verify the validity of the hydrodynamic result (3),

when applied to a Bose-Einstein condensed gas, by numeri-
cally solving the time-dependent GPE in the presence of an
optical lattice. The two approaches are expected to be
consistent in the phonon long wavelength limit. We
consider realistic parameters for a gas of N ¼ 2 × 105

87Rb atoms confined in a tube of length L ¼ 96 μm along
the x axis, subject to periodic boundary conditions, and
radially confined by a harmonic potential of the form
1=2mω2⊥r2, with r2 ¼ y2 þ z2, ω⊥ ¼ 2π × 150 Hz, withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
≪ L. The gas is subjected to an external perio-

dic potential along x of the form Vext ¼ sER cosðqxÞ,
where ER ¼ ℏ2q2=2m is the recoil energy, and the dimen-
sionless parameter s gives the strength of the external
potential. At zero temperature, the gas forms a Bose-
Einstein condensate, characterized by a healing length
ξ ¼ ℏ=ð ffiffiffiffiffiffiffiffiffiffiffi

2mμ0
p Þ, which represents the length scale on

which the condensate can react to an external potential.
We choose the period of the lattice d ¼ 2π=q ¼ 4 μm to be
much larger than the healing length: d ≈ 16.7ξ. In the
opposite regime, d ≪ ξ, the superfluid fraction becomes
density independent and the kinematic Doppler shift is
recovered [35]. An example of the transversely integrated
GPE ground state density ρGPðxÞ is reported in Fig. 1(a).
A permanent current, providing a superfluid velocity
v0s ¼ 47.8 μm=s, satisfying the proper boundary condition,
is applied to the system. Following a previously proposed
method for probing excitations [19,36], the system is
prepared in a stationary state in the presence of a small
additional potential λ cosðkxÞ, which is suddenly removed.
Since we are interested in the lowest energy modes, we take
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the smallest possible value k ¼ 2π=L, corresponding to a
wavelength much larger than the transverse size of the gas.
Within linear response theory, the time evolution of the
average hcosðkxÞi contains the frequencies of the modes
excited by the perturbation. In the absence of current, the
signal contains a single frequency ω, from which the speed
of sound is determined as c ¼ ω=k. The current induces a
mode splitting (ωþ ≠ ω−), from which the Doppler shift
2Δc ¼ ðωþ − ω−Þ=k can be extracted.
In Fig. 1(b), we report the Doppler shift of fourth sound

predicted by time-dependent GPE (dots), along with the
HD prediction Eq. (3) (solid line), as well as with the
kinematic estimate Δc=v0s ¼ fs (dashed line). The quan-
tities entering the HD equations are coarse grained and
correspond to averages over the distances characterizing the
microscopic density modulations of the system. A typical
example of a coarse-grained average is the Leggett upper
bound for the superfluid density [37,38]: Lρ−1s ¼R
dx=ρGPðxÞ. It provides a very accurate estimate for ρs

in the present configuration (see, e.g., [39]). The quantity
∂ρs=∂ρ entering Eq. (3) is obtained by determining the
ground state of the system and extracting the superfluid
density using Leggett’s upper bound for different atom
numbers. For the chosen parameters, we see that there
exists a broad region in the lattice depth s where the
kinematic shift substantially underestimates the Doppler
effect.
Doppler effect in a supersolid—Supersolids are systems

that present both superfluid and crystalline long-range
order, which, consequently, show two classes of phononic
(Nambu-Goldstone) modes [21], due to the simultaneous

and spontaneous breaking of U(1) symmetry and Galilean
invariance hereafter called first (c1) and second (c2) sounds.
With respect to the case of fourth sound, the HD theory of
supersolid includes additional equations for the current
(following from momentum conservation) and for
ux ≔ ∂xu, where u is the lattice displacement (following
from crystalline long-range order) (see, e.g., [40–43] and
Supplemental Material [44]),

∂tρþ ∂xj ¼ 0; ð4Þ

∂tjþ ∂x

�
pþ ρnv2n þ ρsv2s

�
¼ 0; ð5Þ

∂tvs þ ∂xðvnvs þ μÞ ¼ 0; ð6Þ

∂tux þ ∂xðvnux − vnÞ ¼ 0; ð7Þ

where we remind the reader that ρn, vn (ρs, vs) are the
normal (superfluid) density and velocity in the two-fluid
model, ρ ¼ ρn þ ρs is the total density, and j ¼ ρnvn þ
ρsvs is the total current. The quantities p and μ are the
pressure and the chemical potential in the presence of
stationary flow [45]. Since we are interested in the linear
expansion of the HD equations, the constitutive relations
can be written as [43,48]

δμ ¼ 1

ρκ
δρþ γux þ

ρ0s
2
δw2 −

1

2
δv2n; ð8Þ

δp ¼
�
1

κ
− γ

�
δρþ ðγρ − λÞux þ

ρn − ρρ0n
2

δw2; ð9Þ

δρn ¼ ρ0nδρþ ρunux; ð10Þ

where we introduce the relative velocity w≡ vn − vs, γ as
the strain-density constant, and λ as the elastic constant. For
the sake of notation, we define ρ0i ≔ ∂ρi=∂ρ, with i ¼ n, s,
and ρun ≔ ∂ρn=∂ux. The dependence of ρn on the velocity
difference w is quadratic and can be consequently neglected
at the linear order. In order to calculate the speeds of sound,
we linearize Eqs. (4)–(7) around their stationary values
fn0; v0s ; v0n; u0x ¼ 0g and determine the dispersion relation
to the lowest order in the stationary velocities. We find four
phononic modes ω�

1;2 ¼ c�1;2jqj, where the speeds of sound
can be written as c�1;2 ¼ c01;2 � ðv0s þ w0δ1;2Þ. The expres-
sions for the two speeds of sound at rest c01;2 in the
supersolid phase have been already derived in a number
of previous works [43,49–51] (see below). When w0 ¼ 0,
i.e., the superfluid and normal components move together
as a single fluid, both sounds are simply shifted by the
kinematic Doppler effect, fixed by the fluid velocity
v0s ¼ v0n. When w0 ≠ 0, we instead find the additional
contribution w0δ1;2, with

FIG. 1. (a) Example of a transversely integrated fluid density in
an optical lattice of strength s ¼ 3. (b) Doppler shift relative to v0s
of fourth sound in an optical lattice as a function of the strength
parameter s. Numerical results of time-dependent GPE (points) are
compared with the hydrodynamic prediction from Eq. (3) (solid
line) and with the kinematic estimate Δc=v0s ¼ fs (dashed line).

PHYSICAL REVIEW LETTERS 134, 226001 (2025)

226001-3



δ1;2 ¼
ρun
2ρn

h
ðc01;2Þ2 − c2κ þ γ

i
þ 2ðc01;2Þ2 − ð1þ fsÞc2κ − ρ0nβ þ γ

h
1þ ρ0n

ρn
ðρ − 2ρnÞ

i
2ðc01;2Þ2 − c2κ − β þ 2γ

; ð11Þ

where cκ ¼ κ−1=2 and β ¼ λ=ρn, and the speeds of sound at
rest are ðc01;2Þ2 ¼ ðA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B

p
Þ=2 with A ¼ c2κ þ β −

2γ and B ¼ fsðβcκ − γ2=fnÞ, where fn ¼ 1 − fs [44]. In
the limit of an incompressible lattice, i.e., as β → ∞, the
Doppler shift approaches the value ρ0sv0s þ ρ0nv0n, which
coincides with the result obtained above for fourth sound.
Moreover, approaching the crystal phase, i.e., ρn → ρ
(ρun → 0; ρ0n → 1), one finds δ1;2 → 1, confirming the in-
tuitive result that, in the crystal phase, the sound speed
simply feels a kinematic Doppler shift, given by the normal
velocity v0n.
In general, Eq. (11) predicts that the Doppler effect

affects differently the two sound speeds. This result
corresponds to the zero-temperature analog of the predic-
tions obtained for the first and second sound velocities in
superfluid 4He [1,4].
We explore the HD prediction for the Doppler effect in

the case of a Bose-Einstein condensed gas of atoms
interacting with dipolar forces, where successful experi-
mental achievements of supersolid configurations have
been obtained in the last few years (see, e.g., [12] and
references therein). Theoretically, the supersolid phase in
such systems is stabilized by the inclusion of the so-called
Lee-Huang-Yang correction to the mean-field approach,
yielding an extended version of the GPE [52], which has
been already employed to predict the sound velocities in the
absence of persistent currents. Within such a formalism, the
speeds of sound can be extracted following the protocol
previously described for the fourth sound of a Bose-
Einstein condensate in an optical lattice. In the absence
of a persistent current, we already successfully applied the
protocol to the supersolid phase of ultracold dipolar gases
in [36].
In particular, we consider N ¼ 1.6 × 105 164Dy atoms

confined, as before, in a tube of length L ¼ 96 μm with
periodic boundary conditions and with a transverse poten-
tial given bymω2⊥r2=2, where ω⊥ ¼ 2π × 100 Hz. Dipoles
are aligned by an external magnetic field along the z
direction. The phase diagram of dipolar gases is charac-
terized by the ratio ϵdd between the dipolar and contact two-
body interaction strengths. Depending on its value, the
system can be in a homogeneous superfluid, supersolid, or
independent cluster phase, in which the superfluid long-
range order along x is lost (see, e.g., [24–26,53]). Fixing the
value of ϵdd, we prepare the initial state of the system by
evolving the extended GPE in imaginary time in the
moving frame with velocity V. We change the reference
frame by adding the term −VPx to the extended GPE
Hamiltonian, where Px is the momentum operator along x.

One can prove that such an approach unequivocally
determines both the superfluid and the normal velocities
[44]. In particular, the velocity of the normal component
coincides with the velocity of the moving frame (v0n ¼ V),
while the appearance of the supercurrent is dictated by the
energy minimization condition in the same moving frame.
The quantized superfluid velocity exhibits the first jump to
a finite value v0s ¼ 2πℏ=ðmLÞ at the critical value Vcr ¼
vcrn ¼ ℏπ=ðmLÞ ¼ 12.7 μm=s (see also [54,55] for the
current generation in a ring).
It is worth noticing that both v0n and v0s could be, in

principle, fixed in an independent way, by properly
modifying the phase pattern ϕ with imprinting techniques.
The value of the superfluid velocity is determined by the
phase winding at the boundaries of the configuration, while
the velocity of the normal component is determined by the
space variations of the phase at a microscopic scale, fixed,
in the case of a supersolid, by the interdroplet distance (see
Supplemental Material [44]). However, such a state would
not, in general, correspond to an equilibrium configuration
in the moving frame.
In Fig. 2(a), we report the transversely integrated density

ρGPðxÞ and the phase pattern ϕðx; 0; 0Þ along the center of
the tube for v0n ¼ vcrn and v0s ¼ 0. As mentioned above, one
can see that the phase of a supersolid shows spatial
modulations, whose gradients are related to the velocity
of the normal component [44]. In Fig. 2(b), we show the
values of v0s , with its characteristic jump, as a function of
the reference frame velocity V (for completeness also v0n ¼
V is shown) [44].
The supersolid phase at rest exhibits two phononic

modes, each of which splits into two in the presence of
a current. As a consequence, as predicted by HD theory of
supersolids (see discussion above), four different frequen-
cies with linear dispersion ω ¼ cjqj ¼ c × 2π=L are
expected to occur. An example of Doppler splitting of
the two sound modes c1;2 in the supersolid phase is
presented in Figs. 2(c) and 2(d). Both sounds experience
an abrupt change of their speed at V=vcrn ¼ 1, i.e., when the
phase of the order parameter starts hosting a quantum of
circulation. Let us also notice that, remarkably, the Doppler
shift for the sound speed c2 can be negative, i.e., the
velocity cþ2 of the phonon copropagating with the current is
smaller than c02 [shaded region in Fig. 2(d)]. Formally, the
negative Doppler shift occurs for v0n=v0s < 1 − 1=δ2 [44].
In order to make a quantitative comparison between the

GPE and the predictions of the linearized hydrodynamic
equations, we need to calculate the parameters entering the
HD result (11). The parameters entering the speeds of
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sound in the absence of permanent currents (fs, κ, β, and γ)
have been discussed in previous works [36,51] (see also
Supplemental Material [44]). In particular, the strain-
density coupling γ has been shown to be very small for
the supersolid phase of a dipolar gas [51] and will be
neglected in our analysis. The new parameters ρ0n and ρ0s are
determined numerically by marginally changing the total
atom number N, while the derivative ρun, quantifying the
change in the normal density with respect to ∂xu, is
calculated by varying the interdroplet distance [44].
To test the hydrodynamic predictions, we extract the

anomalous Doppler term δi [see Eq. (11)] from the differ-
ence 1

2
ðcþi − c−i Þ calculated in the time-dependent GPE

simulation. In Fig. 3, we show the comparisons between the
HD theory (lines) and the numerical results (symbols). The
good agreement between the hydrodynamic and time-
dependent GPE predictions confirms the highly nontrivial
form of the Doppler effect in supersolids. The effect is
especially pronounced close to the superfluid-supersolid
phase transition.

Conclusions—We have provided analytic and numerical
predictions for the zero-temperature Doppler effect exhib-
ited by ultracold atomic gases in the presence of density
modulations caused by external periodic potentials, as well
as by the spontaneous breaking of translational symmetry
(supersolids). Analytic results are derived by linearizing the
hydrodynamic theory of superfluids and supersolids and
compared with dynamic simulations based on the numeri-
cal solution of the GPE. We have shown that in single
component superfluids anomalous Doppler shifts, follow-
ing from the occurrence of a relative motion between the
superfluid and normal velocities, can take place even at
zero temperature, thanks to the breaking of Galilean
invariance, causing the appearance of the normal compo-
nent. In the presence of an optical lattice, only fourth sound
can propagate, and the Doppler effect takes a particularly
simple form fixed by the density derivative of the superfluid
density. For supersolids, where there exist sounds of hybrid
superfluid and crystalline nature, Doppler shifts exhibit
highly nontrivial features, and for certain values of the
parameters the shift can even have a negative sign. We have
considered the case of very elongated configurations that
could be experimentally implemented, confining the atomic
gas in a ring geometry and where one-dimensional hydro-
dynamic theory can be safely applied.
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FIG. 2. (a) Transversely integrated density of a supersolid at
ϵdd ¼ 1.398 and its phase pattern at the tube’s center (color scale)
moving with v0n ¼ vcrn and v0s ¼ 0. (b) Normal and superfluid
velocities and their difference w0 in a stationary state as a function
of reference frame velocity V. Shapes of all three curves are
independent of ϵdd. Bottom panels present splitting of the (c) first
and (d) second sound into four phonon modes for the system
presented in (a). Within the shaded area, the Doppler shift of the
second sound becomes negative.

FIG. 3. Anomalous Doppler shift of the first and second sound
in the supersolid phase. Results of time-dependent simulations
(markers) are compared with the hydrodynamic model (solid
lines). The gray vertical line marks the superfluid-supersolid
transition point.
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[8] D. F. Società Italiana, Bose-Einstein Condensation in
Atomic Gases (IOS Press, Amsterdam, NY, 1999).

[9] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[10] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
and Superfluidity (Oxford University Press, Oxford, 2016).

[11] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold
Atoms in Optical Lattices (Oxford University Press,
London, England, 2016).

[12] A. Recati and S. Stringari, Supersolidity in ultracold dipolar
gases, Nat. Rev. Phys. 5, 735 (2023).

[13] C. Fort, F. S. Cataliotti, L. Fallani, F. Ferlaino, P. Maddaloni,
and M. Inguscio, Collective excitations of a trapped Bose-
Einstein condensate in the presence of a 1d optical lattice,
Phys. Rev. Lett. 90, 140405 (2003).

[14] G. Chauveau, C. Maury, F. Rabec, C. Heintze, G. Brochier,
S. Nascimbene, J. Dalibard, J. Beugnon, S. M. Roccuzzo,
and S. Stringari, Superfluid fraction in an interacting
spatially modulated Bose-Einstein condensate, Phys. Rev.
Lett. 130, 226003 (2023).

[15] J. Tao, M. Zhao, and I. B. Spielman, Observation of
anisotropic superfluid density in an artificial crystal, Phys.
Rev. Lett. 131, 163401 (2023).

[16] L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti,
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We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein condensed
gas confined in a ring geometry. By abruptly removing an applied periodic modulation proportional to
cosðφÞ, where φ is the azimuthal angle, we explore the resulting oscillations of the gas by solving the
extended Gross-Pitaevskii equation. The value of the two longitudinal sound velocities exhibited in the
supersolid phase are analyzed using the hydrodynamic theory of supersolids at zero temperature, which
explicitly takes into account both the superfluid and the crystal nature of the system. This approach allows
for the determination of the layer compressibility modulus as well as of the superfluid fraction, fS, in
agreement with the Leggett estimate of the nonclassical moment of inertia.

DOI: 10.1103/PhysRevLett.132.146001

A key consequence of the spontaneous breaking of
continuous symmetries is the occurrence of Goldstone
modes, which, in the presence of finite range interactions,
take the form of gapless excitations in the long wavelength
limit. The identification and the experimental observation of
the Goldstone modes, then, represents a question of central
interest in various fields of science, including elementary
particle physics, magnetism, superfluidity, and supercon-
ductivity. The recent realization of supersolidity has raised
the question of the identification of the corresponding
Goldstone modes, which are the consequence of the sponta-
neous and simultaneous breaking of phase symmetry and
translational invariance, ensuring the nonintuitive coexist-
ence of superfluid and crystal features. From the theoretical
side, the study of the Goldstone modes in supersolids has a
long history, starting from the pioneering work of Andreev
and Lifshitz [1] (see also [2–6]), and more recent papers
based on numerical simulations on atomic Bose gases
interacting with soft-core potentials [7–9], spin orbit
coupled gases (see the recent reviews [10,11] and reference
therein), condensation inmultimode cavity [12], and dipolar
gases [13] (see also the recent perspective [14] and refer-
ences therein). First experimental evidence for the occur-
rence of dispersive Goldstone modes in a supersolid has
been recently reported in the case of a dipolar gas confined in
a harmonic trap, where the modes take the form of
discretized oscillations and in particular with the emergence
of novel crystal-like oscillations as soon as one enters the
supersolid phase [15–17].
The use of harmonic trapping potentials, inducing the

nonhomogeneity of the gas, together with the appearance of
a number of droplets that form the nonsuperfluid (crystal)
component of the gas, limits, however, the possibility to
fully appreciate the rich dynamics of the dipolar gas as a

bulk supersolid. Theoretically, the speeds of sounds for
soft-core [7,8] and dipolar [13,18] gases in the thermo-
dynamic limit have already been the object of numerical
simulations in the supersolid phase, based on the use of
proper periodic boundary conditions. In particular, in the
very recent work [18], which appeared while completing
our work, a detailed analysis of the two longitudinal sounds
along an infinite tube has been reported as a function of the
relevant interaction parameters. Experimentally, reaching
the thermodynamic limit in a dipolar gas is, however,
strongly inhibited if one uses box potentials because of the
tendency of the dipoles to accumulate near the borders of
the wall, giving rise to typical edge effects [19,20].
For the above reasons, in this Letter we propose to use a

ring potential, which naturally fulfills the periodic boun-
dary conditions along the azimuthal angle direction,
allowing for an efficient way to approach the thermody-
namic limit. Ring traps provide a simple realization of
matter wave circuits, with important perspectives in the
emerging field of atomtronics [21,22]. The longitudinal
Goldstone modes of the ring trapped dipolar gas are then
excited by suddenly removing a periodic annular pertur-
bation and the resulting values of the sound velocities are
analyzed using the hydrodynamic theory of supersolids.
Supersolid hydrodynamics actually provides fundamental
new insights on the origin of the two sound modes. In
particular, employing the calculated values of the sound
velocities, we determine for the first time the layer
compressibility modulus and confirm the prediction for
the superfluid fraction of a dipolar gas in the supersolid
phase based on the nonclassical moment of inertia and its
concurrence with Leggett’s estimation [23].
The model and its quantum phases.—In a dilute dipolar

Bose gas, the atoms interact by a delta-contact potential
VcðrÞ¼gδðrÞ, with the coupling constant g¼4πℏ2a=m>0
fixed by the atomic massm and the s-wave scattering length
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a; and by the dipolar potential VddðrÞ ¼ ðμ0μ2=4πÞ½ð1 −
3cos2θÞ=jrj3� with θ the angle between r and the direction z
of the externally applied magnetic field, which aligns the
atomic magnetic dipole moments μ. The most important
parameter to determine the zero temperature phase dia-
gram of the gas is the ratio between the strengths of the
contact and the dipolar interactions, ϵdd ¼ add=a with
add ¼ μ0μ

2=12πℏ2, the so-called dipolar length. For small
enough ϵdd the system forms a Bose-Einstein condensate
(BEC), while by increasing it beyond a certain threshold, in
three-dimensional uniform configurations, the system col-
lapses due to the attractive nature of the dipolar interaction.
Confining the gas along the z direction prevents this
collapse, and three distinct phases occur: (i) a homo-
geneous BEC (superfluid phase), (ii) a supersolid phase
in a very small interval of ϵdd, and (iii) a droplet crystal
phase, i.e., independent droplets arranged in a crystal
structure. In the present Letter we consider moreover that
the gas is confined in the x-y plane by a ring-shaped
potential Vextðr⊥; zÞ ¼ m

�
ω2⊥ðr⊥ − R0Þ2 þ ω2

zz2
�
=2 with

r⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, of radius R0 ¼ 7.64 μm and trap frequen-

cies ωz ¼ ω⊥ ¼ 2π × 100 Hz, leading to the three phases
reported in Fig. 2, calculated for N ¼ 80 000 164Dy atoms,
corresponding to add ¼ 132a0, where a0 is the Bohr radius.
We obtain a ring-shaped cloud of length L ≈ 49 μm [24]
and width FWHMXY changing from 1.41 μm in the super-
fluid to 0.7 μm approaching the crystal phase (see Fig. 2).
Because of magnetostriction, the cloud is elongated in the
third direction with FWHMZ ≈ 4 μm. The system is
numerically studied within the so-called extended Gross-
Pitaevskii equation [25], which in the last few years has
been systematically employed to describe the equilibrium
and dynamic properties of dipolar supersolids in reasonably
good agreement with the experimental findings.
The protocol.—We first determine the state of the gas by

applying a small static perturbation of the form −V0 cosφ,
where φ is the azimuthal angle along the ring, which
produces stationary density modulations. We then suddenly
set V0 ¼ 0, resulting in the excitation of the longitudinal
phonon modes propagating along the ring. Similar proto-
cols have been already applied to investigate the Doppler
effect due to the presence of quantized vortices in a ring
[26] and, more recently, to investigate the effect of super-
fluidity on the propagation of sound in a dilute Bose gas
confined in a box in the presence of an external periodic
potential [27].
An easy analysis of the response of the system can be

obtained considering sufficiently large ring sizes for which
the ring can be mapped in a linear tube configuration with
imposed periodic boundary conditions. In particular, we
assume that the length L of the ring is much larger than its
width, so that one can safely identify cosðφÞ with cosðqxÞ,
where q ¼ 2π=L is the wave vector of the longitudinal
excitation and the variable x, with 0 ≤ x ≤ L, is the
longitudinal coordinate along the tube. According to linear

response theory, the quantity FðtÞ ¼ hcosφiðtÞ should
show, in the supersolid phase, a beating of two modes
(see inset in Fig. 3),

FðtÞ ¼ V0

X
i¼�

χiðqÞ cosðωiðqÞtÞ; ð1Þ

with ωiðqÞ approaching, for sufficiently small q (and hence
large L), the linear phonon dispersion ωiðqÞ ≃ ciq, with cþ
and c− hereafter called upper and lower sound velocities,
respectively. The quantities χiðqÞ, i ¼ �, define the con-
tributions of the two modes to the static response and hence
to the compressibility sum rule according to

χðqÞ ¼ χþðqÞ þ χ−ðqÞ ¼
Z

∞

0

dω
Sðq;ωÞ

ω
¼
q→0

Nκ

2
; ð2Þ

with κ the compressibility of the system (hereafter, we set
ℏ ¼ m ¼ 1, with m the atomic mass), while Sðq;ωÞ is the
dynamic structure factor. From the analysis of the meas-
urable signal FðtÞ of Eq. (1) one can then determine the
sound velocities cþ and c−, and the relative contribution

R≡ χ−
χ

¼ c2þ − c2κ
c2þ − c2−

ð3Þ

of the lowest (lower sound) mode to the compressibility
sum rule, where we have defined cκ ¼

ffiffiffiffiffiffiffi
κ−1

p
. Analogously,

the contribution of lower sound to the f sum rule m1 ¼R
∞
0 dω Sðq;ωÞω ¼ Nq2=2 is given by

mð−Þ
1

m1

¼ c2−
c2κ

c2þ − c2κ
c2þ − c2−

: ð4Þ

However, in the vicinity of the superfluid-supersolid
phase transition, within the supersolid region, we find that
our perturbation excites additional modes and Eqs. (3) and
(4), based on the two-mode approximation, are less
accurate.
Hydrodynamic model for supersolidity.—Since the two

sound modes are the Nambu-Goldstone bosons due to the
spontaneous breaking of translational symmetry and the
Uð1Þ symmetry related to the conserved particle number,
the low-energy dynamics of a supersolid exhibits universal
features and can be described by hydrodynamics [1–4,28].
In the following we will use the hydrodynamic approach to
supersolidity recently elaborated by Hofmann and Zwerger
[6], inspired by the work of Yoo and Dorsey [5]. This
formulation, applicable to Galilean invariant systems, is
particularly suitable to investigate the behavior of longi-
tudinal phonons in the presence of a layer structure. This is
reasonably well realized in highly elongated configurations
of a dipolar supersolid, where the droplets effectively play
the role of the layers. Neglecting the effects of the strain
density coupling included in the general formulation of
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supersolid hydrodynamics [5,29], the approach, in this
minimal hydrodynamic formulation, provides the follow-
ing expression for the two sound velocities [6]:

c2� ¼ c2κ
2

�
1þ βκ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ βκÞ2 − 4fSβκ

q �
; ð5Þ

which depends on three fundamental parameters: the
velocity cκ, fixed by the compressibility parameter κ; the
renormalized layer compressibility modulus β ¼ B=ρn,
given by the layer compressibility modulus B [30] divided
by the normal density ρn ¼ ρ̄ − ρs; and the superfluid
fraction fS ¼ ρs=ρ̄, with ρ̄ the average 1D density. In our
one-dimensional structure, B is the only elastic constant,
corresponding to the energy cost due to the change in the
separation between the peaks. The relevant parameters βκ
and fS can be expressed in terms of the upper and
lower sound velocities according to the relations βκ ¼
ðc2þ þ c2−Þ=c2κ − 1 and fSβκ ¼ c2þc2−=c4κ , which directly
follow from Eq. (5).
Let us now discuss the consequences of the hydro-

dynamic model in different phases of dipolar Bose gases.
(i) Superfluid phase (fS ¼ 1 and β ¼ 0): Only the

upper solution (upper sound) of Eq. (5) is relevant and
cþ ¼ cκ.
(ii) Supersolid phase (0 < fs < 1 and β ≠ 0): In this

most interesting case the deviations of the sound speeds
from cκ are determined by the dimensionless combination
βκ and by the superfluid fraction fS. In particular, near the
transition to the crystal phase, where the superfluid fraction
is expected to vanish, the sound velocities approach the
values

cþ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βκ −

fSβκ
1þ βκ

s
cκ; c− →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fS

βκ

1þ βκ

s
cκ; ð6Þ

while the ratio R given by Eq. (3) approaches the value
βκ=ð1þ βκÞ. It is worth noticing the close analogy between
Eq. (6) and the dependence of the second sound velocity
on the superfluid density predicted by Landau’s two-
fluid hydrodynamic theory at finite temperature [31] (see
also [32]).
It is also interesting to note that when the combination βκ

becomes very large the lower sound velocity takes the form
c− ¼ ffiffiffiffiffi

fS
p

cκ in the whole supersolid phase, it exhausts the
compressibility sum rule, while its relative contribution to
the f-sum rule [see Eq. (4)] exactly coincides with the
superfluid fraction fS. These results are consistent with the
behavior of a superfluid in the presence of an optical lattice,
where translational invariance is not broken spontaneously
and the upper mode ωþ ¼ cþq is replaced by a gapped
excitation.
(iii) Crystal phase (fs ¼ 0 and β ≠ 0): Only the upper

solution survives in this case and the sound velocity takes

the simple expression cþ ¼ cκ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βκ

p
. Notice however

that, differently from what happens in the superfluid phase,
the upper sound mode, while exhausting the f-sum rule,
does not exhaust the compressibility sum rule, revealing the
occurrence of a diffusive mode at zero frequency. Such a
mode represents the natural continuation of the lower sound
mode beyond the transition to the crystal phase [33] and
corresponds to the diffusive permeation mode of a smectic-
A liquid crystal [6,33]. The evolution of the lower mode
from a propagating to a diffusive one, is analogous to the
fate of second sound in a uniform fluid above the superfluid
critical temperature (see, e.g., [34,35]).
Results.—The compressibility κ of the gas can be

extracted from the knowledge of the density changes
caused by the static perturbation −V0 cosðφÞ according
to linear response theory [see Eq. (2)]. Another option,
which would not require the actual knowledge of V0, is to
measure the relative contribution R [see Eq. (3)] of the
lower sound mode to the compressibility sum rule through
the weights of the beating signal of Eq. (1).
Our protocol actually measures the static response

function χðqÞ=N [see Eqs. (1) and (2)], which coincides
with the compressibility κ only in the long-wavelength
limit q → 0. Because of the finite size of the ring, the
lowest accessible value is q ¼ 2π=L, and it is conse-
quently important to control the difference between
χðq ¼ 2π=LÞ=N and the compressibility parameter κ ¼
ðρ̄∂μ=∂ρ̄Þ−1, where μ is the chemical potential. In our case
the difference turns out to be about 15% in the superfluid
phase and up to 30% close to the crystal phase. For
consistency, we have used the values of κ given by the
“measured” values χðq ¼ 2π=LÞ. On the other hand, we
verified that the superfluid fraction fS, obtained by apply-
ing the hydrodynamic model to the results of the extended
Gross-Pitaevskii simulation employing our protocol, is
much less sensitive to finite size effects.
To illustrate the potential of the proposed protocol, in

Fig. 1 we report the dispersion for larger values of q, within
the superfluid phase, obtained by applying a perturbation

FIG. 1. Dispersion relation obtained using the proposed
protocol for three values of ϵdd approaching the superfluid-
supersolid phase transition. The roton minimum softens near
k ¼ ffiffiffi

2
p

=lz, where lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
is the harmonic oscillator

length along the confined direction [37].
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proportional to cosðnφÞ with n ¼ 1; 2;…, giving access to
the phonon-maxon-roton dispersion, for which experimen-
tal evidence was reported in a superfluid dipolar gas using
Bragg spectroscopy [36]. The figure clearly shows that the
roton minimum becomes more pronounced as one
approaches the transition to the supersolid phase, which
in our configuration occurs for ϵdd ¼ 1.387.
In Fig. 2 we show the density profiles in the ring

geometry calculated in the superfluid, supersolid, and
crystal phases [38]. In our simulations, based on the
extended Gross-Pitaevskii equation, we have considered
configurations with the same number of droplets (equal to
14) in both the supersolid and crystal phases. Actually,
exact energy minimization would predict a decrease of the
number of droplets when one approaches the transition to
the crystal phase, leading to the small discontinuities in the
resulting values of the observed quantities, which do not
however affect the main conclusions of our work. The
pinning of the number (and position) of droplets can be
achieved by introducing a small additional periodic poten-
tial during the initial stage of the supersolid state prepa-
ration. During the time evolution, once the periodic
potential is removed, we observe that the number of
droplets remains constant.
Figures 3 and 4 report the main results of our work,

based on the combined application of the protocol and of
the hydrodynamic model of supersolids. In Fig. 3 we show
the calculated upper and lower sound velocities as a
function of ϵdd, together with the value of cκ, which
coincides with the sound velocity in the superfluid phase.
The figure clearly reveals the decrease of the lower sound
velocity as one approaches the transition to the crystal
phase. Similar features have been reported in [18] obtained
for an infinite tube, confirming that our mesoscopic system
correctly approaches the thermodynamic limit. We include
also the lowest order expressions for the two sound speeds
when fs → 0, Eq. (6) (red and green continuous lines),
which are seen to be in good agreement with the calculated
values also when the superfluid density is not that small.

FIG. 2. Density plots of N ¼ 80 000 164Dy atoms in the
superfluid, supersolid and crystal phase (left, middle, and right
panel, respectively), integrated over the z axis, along which the
magnetic field B⃗ is aligned. Red contours mark 1% of the relative
density jΨðrÞj2=max jΨðrÞj2. FIG. 3. Sound velocities cþ and c− determined with the

protocol (green hexagons and red circles respectively) across
the superfluid-supersolid phase transition. The blue squares
correspond to cκðq ¼ 2π=LÞ. Both sound speeds are well
captured by Eq. (6) (green and red solid lines) even far from
the crystal phase. For completeness we also report the valuesffiffiffiffiffi
fS

p
cκ (gray solid line) found for an incompressible lattice (see

text). The inset presents the time evolution of F for two values of
ϵdd marked with solid lines of corresponding colors. The data
points are fitted with one (two) cosines in the superfluid
(supersolid) phase with excellent quality.

(a)

(b)

(c)

FIG. 4. Panel (a) displays dimensionless parameters κβ calcu-
lated using the hydrodynamic model (green squares), and the ratio
R ¼ χ−=χ (light blue diamonds) extracted from the time evolution
of Eq. (1). In panel (b) we show the emergence of finite layer
compressibility modulus B. In panel (c) we compare the extracted
value of superfluid fraction fS (purple diamonds) using the
hydrodynamic relations Eq. (5), with the value determined via
the nonclassical fraction ofmoment of inertia Eq. (7) (orange line).
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For comparison we also show the prediction c− ¼ ffiffiffiffiffi
fS

p
cκ

(gray continuous line), which would hold in the presence of
an optical lattice (B → ∞) and which badly reproduces the
actual values of c− in the supersolid phase. The standard
hydrodynamic expression c ¼ ffiffiffiffiffi

fS
p

cκ was actually suc-
cessfully employed by Tao et al. [40] and Chauvaeau et al.
[27] to extract the value of fS of a BEC gas in the presence
of an optical lattice (not a supersolid).
In Fig. 4(a) we report the results for the relevant

parameter βκ of the hydrodynamic model and the ratio R.
An interesting outcome of our analysis is that while the
speeds of sound, the compressibility, and the dimensionless
parameter βκ show a jump at the superfluid-supersolid
transition, the contribution of lower sound to the com-
pressibility sum rule, R, goes smoothly to zero. The same
continuous vanishing is observed for the layer compress-
ibility modulus B, as shown in Fig. 4(b). In Fig. 4(c)
we report the value of the superfluid fraction fS,
predicted by the analysis of the sound velocities:
fS ¼ c2þc2−=c2κðc2þ þ c2− − c2κÞ. As already pointed out
above, we have verified that this value of fS is very weakly
sensitive to finite size effects. Furthermore, repeating the
simulations with a larger value of the phonon wave vector,
q ¼ 4π=L, rather than 2π=L, we find that fS is modified
only by a few percent. Since the oscillation frequency has
also almost doubled, this would allow working on shorter
timescales, thereby reducing the consequences of the finite
lifetime of the system.
Moment of inertia and superfluid fraction.—Both the

layer compressibility and the superfluid fraction can, in
principle, be calculated from Gross-Pitaevskii theory (see,
for example, Josserand et al. [29]). In fact, the superfluid
fraction has been the object of several calculations based on
extended Gross-Pitaevskii theory (see, e.g., [13,18,41]) for
dipolar gases showing one-dimensional periodic configu-
rations. In our narrow ring configuration, the superfluid
fraction essentially coincides with the nonclassical fraction
of the moment of inertia

fS ≃ 1 −
Θ
Θrig

; ð7Þ

which is reported in Fig. 4(c) (orange line) for the
comparison with the value extracted from the calculated
sound velocities. The moment of inertia Θ is fixed by the
value hJzi of the angular momentum induced by a rota-
tional constraint of the form−ΩJz, according to the relation
Θ ¼ limΩ→0hJzi=Ω, while Θrig ¼ Nhx2 þ y2i is the
classical rigid value [42]. We also verified that fS from
Eq. (7) practically coincides with the rigorous Leggett’s
upper bound 2π

�
ρ̄
R
2π
0 dφ=ρðφÞ�−1 ≥ fS, where ρðφÞ is the

transverse integrated density along the ring [43].
The good agreement between the two predictions

shown in Fig. 4(c) reveals the consistency of the extended
Gross-Pitaevskii theory with the hydrodynamic model of
supersolidity.

In conclusion, we have suggested (i) a protocol to
determine the Goldstone modes of a supersolid dipolar
gas confined in a ring and (ii) a way to identify the relevant
parameters of the hydrodynamic theory of supersolids.
Our work, in particular, paves the way for an exper-

imental determination of the layer compressibility modulus
and of the superfluid fraction, based on the measurement of
sound velocities. On the theory side, our findings can be
used to extract the supersolid hydrodynamic parameters in
the thermodynamic limit by using the available estimations
of the sound speeds in infinite systems [13,18].
Finally, it is worth noticing that our protocol for the

extraction of the speed of sound and of the hydrodynamic
parameters is not limited to the dipolar supersolid platform
we discuss in this Letter. It can be equally applied to dipolar
mixtures, which are expected to show longer lifetimes than
single-component dipolar gases [44–47], and whose spec-
trum has been very recently addressed in [48]. Another very
interesting system for the application of our protocol are
semiconductor dipolar excitons, where ring configurations
naturally occur (see, e.g., [49,50] and references therein),
and cluster crystallization has been observed [51,52].
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We study quantized vortices in dipolar supersolids at the transition between the superfluid and the supersolid
phase. We present an approach to the nucleation of vortices and their observation, based on the quenching of the
s-wave scattering length across the phase transition. Starting from a slowly rotating, vortex-free configuration in
the superfluid phase, we predict vortex nucleation as the system enters the supersolid phase, due to the strong
reduction of the critical angular velocity in the supersolid. Once a vortex is created, we show that it is robustly
preserved when the condensate is brought back to the superfluid phase, where it may be readily observed. These
results may have a significant impact on ongoing experiments, given that the observation of quantized vortices
would constitute a key probe of the superfluid character of dipolar supersolids.

DOI: 10.1103/PhysRevA.106.L061303

Quantized vortices constitute a key hallmark of superflu-
idity [1]. They are topological defects of the order parameter,
and therefore robust with respect to perturbations in the U(1)
broken symmetry phase. Ultracold gases are an ideal plat-
form for the study of vortices. In these gases, vortices are
typically created either by stirring the cloud with a laser, or
by rotating a slightly deformed trap. Vortices are detected,
after a condensate expansion, by the observation of the density
holes corresponding to the vortex cores. Vortices have been
observed both in Bose-Einstein condensates (BECs) [2–4] and
in superfluid spin-1/2 Fermi gases [5]. The angular momen-
tum and its quantization in the presence of a vortex can be
inferred by exploiting the lift in the degeneracy of quadrupole-
mode frequencies due to broken time-reversal symmetry [6],
as observed in condensates [7,8].

Supersolids constitute a particularly intriguing phase in
which superfluidity coexists with a modulated density [9].
In the last few years, supersolidity has attracted major at-
tention in ultracold gases. Experiments on BECs in optical
cavities have revealed supersolidlike properties [10]. Conden-
sates with an imposed one-dimensional spin-orbit coupling
have been shown to present a supersolid stripe phase [11,12].
Recent experiments on BECs of magnetic atoms have revealed
the creation of supersolids of ultradilute droplets maintained
by the interplay between attractive mean-field interactions and
the effective repulsion induced by quantum fluctuations [13].
Dipolar supersolids have attracted quickly growing interest,
and successful experiments in droplet arrays have studied
the phase coherence [14–17], the appearance of Goldstone

*Corresponding author: alessio.recati@ino.it
†Corresponding author: santos@itp.uni-hannover.de

modes in the excitation spectrum [18–20], and the peculiar
dynamics related to scissors modes [21–24]. Very recently,
two-dimensional supersolid configurations have been also re-
alized [25,26].

Recent theoretical works have investigated quantum vor-
tices in dipolar supersolids [27,28]. Quantum vortices in a
supersolid were first discussed in Ref. [29] in the context of a
hypothetical supersolid phase of helium. There it was shown,
in the context of a mean-field Gross-Pitaevskii formalism
employing a repulsive soft-core interaction, that vortices may
be nucleated in the supersolid by an obstacle. It was suggested
as well that vortices could be robust when crossing back and
forth the superfluid-to-supersolid transition. A peculiar fea-
ture pointed out in Ref. [27] in the case of supersolid dipolar
gases is that vortices are, both energetically and dynamically,
more favored in the supersolid phase than in the superfluid
one. The low-density regions surrounding the droplets of the
supersolid phase help in reducing the energetic barrier for
a vortex to enter the system, and in pinning the vortices in
the interstitials between droplets [27]. Even a very slow rota-
tion of the trapping potential can then trigger the dynamical
instability that drives vortex nucleation [27]. However, the
direct detection of vortices formed in the interstitials is largely
inhibited because, even in the absence of vortices, this region
is characterized by a very low density.

In this Letter, we first explore in detail the robustness of
vortices in dipolar BECs when crossing the superfluid-to-
supersolid transition, showing that the conservation of angular
momentum results in a peculiar dynamic behavior, since the
value of the angular momentum per particle associated to
a vortex is markedly different in the superfluid and in the
supersolid phase. Using the difference in the vortex properties
in both phases, we propose a dynamic protocol based on the
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quench of a slowly rotating dipolar condensate from the su-
perfluid into the supersolid phase. A vortex is nucleated in the
supersolid due to the strongly reduced critical angular veloc-
ity, and a subsequent quench back allows for straightforward
vortex imaging in the superfluid phase. Our protocol could
provide not only the experimental proof of vortex nucleation
in a dipolar supersolid, but also allows for directly probing
the modified vortex properties in that phase [27], as, e.g., the
reduction of the critical angular velocity for vortex nucleation.
It has the advantage of avoiding the nucleation of vortices
starting from the equilibrium configuration in the supersolid
phase, whose implementation is notoriously more difficult due
to three-body collisions.

Model. We consider a BEC of atoms with mass m and
magnetic dipole moment μ aligned along the z axis, trapped in
a harmonic potential of the form Vext(r) = mω2

⊥[(1 − ε)x2 +
(1 + ε)y2 + λ2z2]/2.

At zero temperature the physics of the system is
well described by the extended Gross-Pitaevskii equa-
tion (eGPE) [30,31],

ih̄
∂�(r, t )

∂t
=

[
− h̄2∇2

2m
+ Vext(r) + g|�(r, t )|2

+
∫

dr′Vdd (r − r′)|�(r′, t )|2 + γ |�(r, t )|3
]

× �(r, t ), (1)

where g = 4π h̄2a/m > 0 is the coupling constant fixed by
the s-wave scattering length a, and Vdd (r) = μ0μ

2

4π
1−3 cos2 θ

|r|3 is
the dipole-dipole interaction, with θ the angle between r and
the z axis. The last term in Eq. (1) is given by the repulsive
Lee-Huang-Yang (LHY) correction induced by quantum fluc-
tuations, with

γ = 32ga3/2

3
√

π
Re

[∫ 1

0
du[1 + εdd (3u2 − 1)]5/2

]
, (2)

where εdd = μ0μ
2/3g characterizes the relative strength of

the dipolar interaction with respect to the contact one. The
eGPE has been systematically employed in the last few years
to investigate quantum droplets and supersolidity in dipolar
BECs [13].

For small-enough εdd , the system behaves as a standard
condensate (superfluid phase). By decreasing the scattering
length, and hence increasing the value of εdd , the role of the
attractive part of the dipolar force becomes more important,
and the LHY term starts playing a crucial role in determining
the equilibrium solution. The LHY term ensures the stabil-
ity of the system against collapse and eventually favors the
formation of a periodic structure, which can be regarded as a
series of dense droplets connected by a dilute superfluid gas
(supersolid phase) [14–16]. A further increase of εdd leads
to a state where the droplets are independent and mutually
incoherent, and the system does not show any extended super-
fluidity (independent droplet phase).1

1Notice, however, that each droplet is still superfluid.

The supersolid phase can host quantized vortices [27]. As
already anticipated in the Introduction, vortex nucleation is
significantly favored by the reduced density in the interdroplet
regions, but vortices nestle in those interstitials, making their
experimental observation much more problematic than in the
superfluid phase. Below, we first discuss the robustness of
vortices when quenching the system across the superfluid-
to-supersolid transition. We then exploit such a robustness to
design a protocol that first allows for an alternative mechanism
for the nucleation of vortices in the supersolid phase and,
second, for probing their existence by imaging them in the
superfluid phase, where they are more easily detectable, also
owing to the large increase of their core size as compared
to condensates with only contact interactions. This second
step resembles the procedure used in the pioneering work of
Ref. [5], where the vortices created in a strongly interacting
Fermi gas were imaged by quenching from the BCS to the
BEC regime, where their visibility was better ensured after
gas expansion. In the case of dipolar gases the procedure is
more challenging because the two regimes, supersolid and
superfluid, are separated by a first-order phase transition and
not connected by a continuous crossover.

Crossing the superfluid-to-supersolid transition. We con-
sider a BEC of 4 × 104 164Dy atoms, confined in an axially
symmetrical trap (ε = 0) with ω⊥ = 2π × 60 Hz and λ = 2.
Under these conditions, the superfluid-to-supersolid transition
occurs at the value acrit = 94.6a0 (a0 is the Bohr radius) cor-
responding to εdd = 1.395.

Ground states of the system are calculated using
imaginary-time evolution in the rotating frame, obtained by
adding the constraint −�Lz to the eGPE (1), where � is
the angular velocity, and Lz the z component of the angular
momentum operator.2 Above some critical angular velocity
�c, vortical solutions become energetically favorable. It is im-
portant to notice that �c is significantly smaller than the one
required for the dynamical vortex nucleation [27], associated
with a quadrupolar instability, as we discuss later.

We first consider a vortex in the superfluid phase, ob-
tained for a = 105a0 > acrit , and � = 0.22ω⊥ > �c [see
Fig. 1(a)(i)]. In the superfluid phase the vortex is characterized
by an angular momentum h̄ per particle. Starting from this
ground-state configuration,3 we ramp down in 100 ms the
s-wave scattering length to a value a = 94a0 < acrit , which
would correspond at equilibrium to the supersolid phase.
Indeed, once the transition is crossed, a strong density mod-
ulation emerges on a very short timescale, leading to the
formation of droplets. After a certain waiting time the sys-
tem acquires a configuration close to the ground-state shape
with a vortex in the supersolid phase [Fig. 1(a)(iii)]. It is,
however, interesting to notice that in most cases we find a
transient regime [see Fig. 1(a)(ii)] where the number of peaks
is larger (four droplets) than in the final, ground-state-like
configuration (three droplets). Despite the occurrence of small

2The critical value acrit increases slightly by increasing �. Such a
change is, however, less than 0.5% for the angular velocities used in
this text.

3All the time-dependent simulations presented in this Letter are
performed in the laboratory reference frame.
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FIG. 1. Density and phase profiles in the z = 0 plane. (a) Vortex
through the superfluid-to-supersolid crossing at t = 0, 0.5, and 2.1 s.
The vortex is initially created in the superfluid regime (�/ω⊥ =
0.22, a = 105a0), and a is then linearly ramped in 100 ms down to
94a0, within the supersolid phase. (b) Vortex through the supersolid-
to-superfluid crossing for the same times. At t = 0, the vortex is in
the supersolid phase (�/ω⊥ = 0.16, a = 94a0). Then a is ramped
in 100 ms up to 105a0, within the superfluid regime. In all cases,
ω⊥ = 2π × 60 Hz, λ = 2, and ε = 0.

oscillations caused by the crossing of the first-order transition,
the vortex survives at the trap center, with its characteristic
phase pattern. Since angular momentum is conserved during
the ramping of the scattering length, and since in the super-
solid the angular momentum per particle carried by the vortex
is smaller than h̄ due to the reduced global superfluidity [27],
the remaining angular momentum is carried by the droplets,
whose centers of mass rotate in the laboratory frame with an
angular velocity larger than �.

Crossing the supersolid-to-superfluid transition. We carry
out the same analysis in the opposite direction, following the
fate of a quantized vortex initially present in the supersolid
phase, an especially relevant case for the protocol discussed
below. As discussed in Ref. [27], the angular velocity �c, for
which the vortex becomes energetically favorable, is much
smaller than the one in the superfluid phase. In Fig. 1(b)(i),
we consider a configuration with a = 94a0 and � = 0.16ω⊥,
slightly higher than the critical value �c. The created vortex is
characterized by an angular momentum per particle of 0.87h̄.
After ramping in 100 ms the scattering length up to a = 105a0

to reach the superfluid phase, we find that the vortex remains

clearly visible [Figs. 1(b)(ii) and 1(b)(iii)]. Note, however,
that the density profile preserves some density modulations,
which are the residue of the original droplets characterizing
the supersolid phase. Moreover, since the overall angular mo-
mentum must be preserved, the larger angular momentum
associated with the vortex in the superfluid phase (h̄) is com-
pensated by the rotational motion of the density modulations,
and by the occurrence of antivortices located near the border
of the atomic cloud, as well as, in some cases, by a slight
displacement of the vortex core from the center of the trap.

Protocol for vortex nucleation and detection. We are now
ready to discuss our protocol which combines the favor-
able nucleation mechanism of quantized vortices exhibited by
the supersolid phase with their topological robustness when
the supersolid-to-superfluid phase transition is crossed. Our
starting point is a slowly rotating trapped dipolar gas in the su-
perfluid phase (a = 105a0), obtained by a sudden introduction
of rotation to the superfluid ground state in a slightly deformed
trap in the xy plane, and letting it equilibrate for 200 ms
[see Fig. 2(a)]. In the laboratory frame this corresponds to
choosing a harmonic potential of the form

Vext(t ) = m

2
ω2

⊥{(1 − ε)[x cos(�t ) + y sin(�t )]2

+ (1 + ε)[−x sin(�t ) + y cos(�t )]2 + λ2z2}. (3)

We choose a slightly deformed trap (ε = 6.6%) and an
angular velocity (� = 0.3ω⊥) such that the system is unable
to nucleate vortices in the superfluid phase, as the quadrupole
dynamical instability occurs at 0.45ω⊥.4 The parameters are
instead large enough for vortex nucleation once the system
enters the supersolid phase. Therefore we reduce the value of
the scattering length with a linear ramp in 100 ms down to a =
94a0. After entering the supersolid phase, first droplets are
formed [Fig. 2(b)] and, after a while, a vortex is nucleated in
the center [Fig. 2(c)]. Notice that the timescale for this process
is slow in the present simulation. We expect, however, that in a
real experimental situation the timescale will be much faster,
as a consequence of thermal noise, which is not accounted
for in our calculations. When the vortex is formed [Fig. 2(c)]
we restore the isotropy of the trap (ε = 0) in order to ensure
the robustness of the topological configuration associated with
the vortex and the conservation of angular momentum. We
ramp the scattering length back to its initial value (following
a similar ramp) and after a while [Fig. 2(d)] the system enters
again the superfluid phase. We then recover a very similar
configuration as that of Fig. 1(b)(iii).

The same protocol may be employed for the nucleation of
more than one vortex when increasing the angular velocity
� of the rotating trap. In Fig. 3, we show our results for
different angular velocities in our protocol. The upper panel
shows the atomic cloud in the supersolid phase right before
inverting the ramping of the scattering length. The lower panel
depicts the final density distribution after ramping back the
scattering length. The case with � = 0 is important, since it
clearly shows that despite the strong density modulation in the
supersolid regime, once moving back into the superfluid no

4This value remains almost constant in the whole superfluid region.
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FIG. 2. Density and phase profiles in the z = 0 plane, showing vortex nucleation employing the protocol discussed in the text. (a) Initial
vortex-free superfluid with a scattering length a = 105a0, confined in a slightly deformed harmonic trap (ω⊥ = 2π × 60 Hz, λ = 2, ε = 6.6%),
rotating with an angular velocity � = 0.3ω⊥. (b) The scattering length is linearly ramped in 100 ms down to as = 94a0, resulting in a transition
to the supersolid phase. (c) After some time a vortex is nucleated at the center of the trap. (d) The isotropy of the trap is restored (ε = 0) and
the scattering length is linearly ramped in 100 ms up to the initial value, resulting in a superfluid with a readily detectable vortex core.

core appears, the final density remains smooth and character-
ized by a maximum in the center, very similar to the initial
equilibrium configuration. By increasing � we eventually
observe one vortex nucleated in the center using � = 0.3ω⊥
[same as Figs. 2(c) and 2(d)], two vortices using � = 0.35ω⊥,
and three vortices using � = 0.4ω⊥. Note that in all cases
the vortices are nucleated in the supersolid phase, since the

angular velocity is not large enough to create vortices in the
superfluid.

Conclusions. We have studied vortices in a dipolar con-
densate when crossing the superfluid-to-supersolid transition.
We have proposed in particular a protocol that should
permit under realistic conditions to nucleate and detect quan-
tized vortices in a dipolar supersolid, a major hallmark of

FIG. 3. Density profiles in the z = 0 plane. Results for the dynamical protocol for different angular velocities: �/ω⊥ = 0 (a), 0.3 (b), 0.35
(c), and 0.4 (d). The parameters and procedure are the same as in Fig. 2. The upper row corresponds to the configurations in the supersolid
phase at t = 2.1 s, before inverting the ramp of the scattering length. The lower row corresponds to the final configuration in the superfluid
phase (at t = 2.4 s) after ramping back the scattering length. Note that imaging in the superfluid phase should easily reveal the presence of no
vortex, one, two, and three vortices, respectively. The final angular momentum per particle (once the isotropy of the xy trapping is restored) is
(a) L = 0, (b) L = 1.03h̄, (c) L = 1.85h̄, and (d) L = 2.42h̄.
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superfluidity. The method is based on a controlled ramp of
the scattering length across the superfluid-to-supersolid tran-
sition, employing the very nature of the supersolid to induce
vortex nucleation. Although vortex detection is difficult in the
supersolid since vortices gather in regions of very low density,
a ramp back into the superfluid permits an easy imaging of the
vortex core, even more so than in contact-interacting conden-
sates due to the significantly larger vortex size in a dipolar
BEC. Very recently, quantized vortices have been actually
observed in the superfluid phase of a dipolar gas [32,33].
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A simple and robust tool for spatio-temporal overlap of THz and XUV pulses

in in-vacuum pump–probe experiments is presented. The technique exploits

ultrafast changes of the optical properties in semiconductors (i.e. silicon) driven

by ultrashort XUV pulses that are probed by THz pulses. This work

demonstrates that this tool can be used for a large range of XUV fluences

that are significantly lower than when probing by visible and near-infrared

pulses. This tool is mainly targeted at emerging X-ray free-electron laser

facilities, but can be utilized also at table-top high-harmonics sources.

1. Introduction

Intense THz pulses combined with synchronized X-ray pulses

enable investigation of the dynamics of the light–matter

interaction, non-linear response of materials and control of

the properties of matter selectively on femtosecond time

scales. Therefore, achieving the temporal overlap between

pump and probe pulses in the femtosecond range is essential.

Certain pump–probe schemes, e.g. THz streaking (Frühling

et al., 2009; Schmid et al., 2019), are comparatively tolerant

against the spatial overlap between XUV and THz pulses and

the actual focal position of the THz beam. The observable, i.e.

the kinetic energy of the photoelectrons, is furthermore of

considerable magnitude and can be utilized for further opti-

mization of the pump–probe signal. This is almost never the

case in pump–probe experiments on solid-state samples,

utilizing one of the XUV probing techniques [e.g. X-ray

magnetic circular dichroism (XMCD) (Pfau et al., 2012;

Willems et al., 2015) and resonant inelastic X-ray scattering

(Dell’Angela et al., 2016)]. There, the spatio-temporal overlap

between THz and XUV and in particular diffraction-limited

focusing of the THz beam have to be achieved with the aid of

versatile in-vacuum diagnostics.

The so-called plasma-switch, the transient change of optical

constants in the visible (VIS) and near-infrared (NIR) spectral

ranges by X-ray and XUV pulses, has been used for the

temporal characterization of these pulses (Harmand et al.,

2012; Gahl et al., 2008; Krupin et al., 2012; Riedel et al., 2013;

Danailov et al., 2014). Transient changes of optical properties

in the THz range, driven by femtosecond laser pulses, have

been used for pickup of individual pulses from MHz trains at

infrared free-electron lasers (FELs) (Schmidt et al., 2015) as

well as for THz spectral shaping at table-top THz sources

(Cartella et al., 2014; Mayer et al., 2014).
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As shown in Fig. 1, for lower probing frequencies the effect

of the plasma switch is more efficient because lower electron

density is required to change the material reflectivity. In this

work we present a technique to establish the temporal overlap

between XUV and THz pulses, based on the transient change

of optical properties of a silicon target in the THz spectral

range, induced by the intense femtosecond XUV pulse.

The presented method can be applied in facilities employing

THz radiation for time-resolved XUV–THz pump–probe

experiments where it is necessary to temporally overlap XUV

and THz pulses on a sub-picosecond level.

2. XUV driven THz plasma switch: theoretical
background

The process of electronic excitation of materials by an intense

XUV pulse happens on an ultrafast time scale, within a few

femtoseconds (Gahl et al., 2008; Riedel et al., 2013), and is

governed by the photoionization of the electrons in the

material: photoabsorption of the bound electrons within the

valence band, secondary processes as elastic and inelastic

scattering of free electrons, Auger decay, and electron pair

creation. Other processes may contribute to the photo-

ionization depending on the energy of the incoming photon

and the material (Medvedev & Rethfeld, 2010). Previous

theoretical studies have shown that the density of the created

free electrons follows the photon flux of the XUV pulse

linearly (Riedel et al., 2013) in a wide intensity range, below

fluences required for the sample melting, ablation and plasma

formation.

Optical properties of the photo-excited material strongly

depend on the density of free electrons and can be modelled

[e.g. via the continuity equation (Mezentsev et al., 2007)] and

expressed in terms of relative permittivity. According to the

Drude model, free electrons in a material can be treated as

free-electron plasma with a corresponding plasma frequency

!p (Ashcroft & Mermin, 1976). We assume that the damping

can be neglected in our case (refer to Appendix A for a short

discussion on this topic) and the relative permittivity " in this

case can be presented as a function of the incoming frequency

! and the plasma frequency !p,

"ð!Þ ¼ 1�
!2

p

!2
:

This indicates that light with a higher frequency than the

plasma frequency, ! > !p, can penetrate the plasma whereas

light with lower frequency, ! < !p, will be reflected. Taking

into account the oscillatory motion of the electron, the critical

electron density, ne, required to make the sample reflective to

light with a certain frequency can be presented as

ne ¼
"0 me

e2
!2

p;

where "0 is the vacuum permittivity, e is the charge and me is

the mass of an electron.

In our experiment, the critical electron density for the

probing pulse at a wavelength of 8 mm (37.5 THz) is

ne 8mm = 1.8 � 1019 cm�3, and at wavelengths over 100 mm

(<3 THz) it is less than ne 100mm = 1.1 � 1017 cm�3.

3. Description of the setup

The experiment was performed with the pump XUV wave-

length at 13.5 nm (91.8 eV) and two different probing condi-

tions: (i) a THz pulse with a central wavelength of 8 mm, and

(ii) a broadband THz pulse with a wavelength >100 mm. The

expected pulse duration for THz was �300 fs and �3 ps,

respectively, and the XUV pulse duration was 160 fs, esti-

mated by electron bunch length measurements by a transverse

deflecting RF-structure (Düsterer et al., 2014).

The THz beam is collimated using five toroidal mirrors in

order to keep the beam size within the range of the beam

transport and optics. This additional folding of the THz beam

results in a �6.5 m longer optical path with respect to the

XUV beam. In order to overlap the XUV and THz pulses in

time, an additional delay for the XUV is introduced: pulses

travel 3.25 m longer distance and then are refocused by a

mirror with 3.5 m focal length back to the experiment (Pan et

al., 2019). The scheme of the experiment is presented in Fig. 2.

The THz and XUV pulses are collinearly focused and

spatially overlapped in the experimental chamber on a

400 mm-thick Si sample at a 45� incident angle. The trans-

mitted and reflected portions of the THz beam are picked up

and collimated using parabolic mirrors. Then they are focused

through ZnSe vacuum windows (5 mm thick) on two 2 mm �

2 mm pyro detectors (InfraTec LME-301) located outside of

the experimental chamber in air �5 mm from the window.

The detectors were custom-designed by collaboration of the

DESY FLA group and InfraTec to reduce internal THz

interferences (Wesch, 2012). The detectors are without optical

windows, which makes them suitable for measurements along

a broad spectral range and sensitive to XUV radiation. ZnSe
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Figure 1
Calculation of the critical electron density for the THz range (red line).
Transmission of the 5 mm-thick ZnSe vacuum window and the bandpass
filter (at 8 mm wavelength) used in the experiment are presented as the
shadowed areas.



vacuum windows have good transmission in the VIS to IR

range as well as in the long-THz wavelength range (see Fig. 1).

Pulse energies of the XUV, measured with the gas-monitor

detector (GMD), were 110 mJ � 20 mJ (r.m.s.) (Tiedtke et al.,

2009) and 0.5 mJ � 0.1 mJ (r.m.s.) for the THz beam measured

with a calibrated pulse energy meter (Zapolnova et al., 2018;

Pan et al., 2019).

The estimated XUV pulse energy through the beamline

(Tiedtke et al., 2009) after the refocusing mirror and through

attenuation filters was 700 nJ � 10 nJ (refer to Table 1 for

details), yielding a final intensity on the sample of 6.76 �

109 W cm�2 and 2.65 � 109 W cm�2, for the two measured

XUV beam sizes (see Section 4 for details). By measuring

both transmitted and reflected intensities of the THz beam

and assuming that absorption in the excited Si layer is negli-

gible, we are able to correct the pulse-to-pulse energy fluc-

tuations of the THz beam (3.6% RMS at 100 mm, 14% RMS

at 8 mm).

4. THz and XUV 2D beam profile

The THz and XUV beams were characterized by 2D profile

measurements in the focal position. A pyro detector with a

100 mm pinhole was mounted on an xy positioner, facing the

incoming THz and XUV beams at normal incidence, and was

moved through the focus of the beam with defined steps along

the z axis. The pyro detector also showed a good response for

XUV radiation, and therefore it was used for both the THz

and XUV beam profile characterizations.

The results of 2D scans are presented in Fig. 3. The THz

beam in focus has an ellipsoidal profile, elongated in the

vertical direction, because of imperfect alignment of the off-

axis parabolic mirror for the THz beam. The full width at half-

maximum (FWHM) diameter of the THz beam with the THz

undulator set at a 100 mm nominal wavelength was 400 �

20 mm � 1470 � 30 mm, and at 8 mm it was 180 � 15 mm �

320 � 15 mm. In an attempt to match the XUV and THz beam

sizes we inserted a pinhole (3 mm diameter) in the XUV

beam, 30 m upstream of the experiment, to optimize the ratio

between beam sizes. The FWHM diameters of the XUV beam

with and without a pinhole were 230 � 30 mm and 140 �

20 mm, respectively. The ratio between the areas of the THz

and XUV beams was 1:9 for the THz beam at 100 mm and

2:3 at 8 mm.

5. Transient reflectivity and transmission

Results of time-dependent reflectivity measurements

[presented as (R � R0)/R0, where R0 is the equilibrium

reflectivity] are presented in Fig. 4. Once the probing THz

pulse arrives following the XUV pulse, a portion of the THz

pulse, which spatially overlaps with the XUV pulse, is reflected

more because of the plasma created by the XUV pulse. The

observed duration of the transition (slope) ���THz
is the

convolution of the pulse durations of the THz ��THz and

XUV pulses ��XUV, the jitter ��jitter between them, and the

timescale of the free carrier excitation process ��excitation, and

can be described as
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Figure 2
Scheme of the XUV-driven plasma switch experiment for the THz beam. The THz and XUV beams are collinearly focused and spatially overlapped on a
400 mm-thick Si sample at a 45� incidence angle. Transmitted and reflected THz beams are picked up by off-axis parabolic mirrors and further focused on
the corresponding pyro detectors through 5 mm-thick ZnSe vacuum windows.

Table 1
Transmission of XUV at 13.5 nm.

XUV pulse energy via GMD 112 mJ � 17 mJ
Beamline transmission 78%
Refocusing mirror 62%
Si3N4 500 nm filter transmission 1.3%
Total transmission 700 nJ � 10 nJ



���THz
¼ ��2

THz þ��2
XUV þ��2

jitter þ��2
excitation

� �1=2
:

For a THz wavelength of �100 mm, the observed slope width

is ��100mm = 2.2 ps and for 8 mm wavelength it is ��8mm = 1.2 ps

(calculated as the time between the points corresponding to

the 10% and 90% levels of total amplitude of the signal).

The XUV and THz pulses are naturally synchronized in this

experiment, with jitter smaller than 5 fs (RMS) (Frühling et al.,

2009), and its contribution is negligible. We assume that the

excitation of the free carriers is much faster than other time-

scales in the experiment so we neglect it as well.

6. Dependence on the XUV fluence

Fig. 5 shows a comparison of the transient THz reflectivity

change for different fluences of the pump XUV pulse. We used

different combinations of the attenuation filters: Si3N4 350 nm

(red line), Si2N4 350 nm + Nb 405 nm (orange line) and Si3N4

500 nm (green line). The effect of the plasma switch in

the THz spectral range is very efficient and can be clearly

observed even at XUV fluences as low as 45 mJ cm�2.

7. Quantitative estimate of the effect

The amplitude of the reflectivity change for a broadband THz

beam >100 mm is around 6.4% and for 8 mm is around 6.0%.

Using the details of the actual THz and XUV beam sizes
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Figure 4
Transient optical reflectivity curves for the THz undulator set at 100 mm
and 8 mm wavelengths for a 13.5 nm XUV pump wavelength.

Figure 5
Transient THz reflectivity curves as a function of the THz/XUV pulse
delay for three different fluences of the XUV pulse on the sample.

Figure 3
Measured 2D profiles of the THz and XUV beams. (a) THz beam profile
at 100 mm with an FWHM of 400 � 20 mm � 1470 � 30 mm. (b) XUV
beam at 13.5 nm wavelength through a 3 mm pinhole placed �30 m
upstream of the experiment with an FWHM of 230 � 30 mm. (c) THz
beam profile at 8 mm wavelength with an FWHM of 180� 15 mm� 320�
15 mm. (d) XUV beam at 13.5 nm wavelength with a 10 mm pinhole at the
same position as in (b) with an FWHM of 140 � 20 mm.



from the 2D profile measurements, we can estimate the actual

switched fraction of the THz pulse. Comparing total areas of

the beams and assuming that the electron density follows the

intensity envelope of the XUV beam linearly, we can assume

that, if the XUV beam size matches the size of the THz beams

for a 100 mm wavelength (400 mm FWHM beam size) and for a

8 mm wavelength (180 mm FWHM beam size), the overall

effect on the reflectivity change would be 9 times higher

(�57.6%) and 1.5 times higher (�10%) than observed.

8. Summary

We have developed a tool for temporal and spatial overlap of

XUV and THz pulses in pump–probe experiments, based on

an XUV plasma switch for the THz range on an Si sample.

During several pump–probe experiments at FLASH, it was

demonstrated that the arrival time of XUV and THz pulses

can be established down to at least the pulse duration of the

THz pulse.

The experiment has been performed at different XUV

fluences from 0.045 mJ cm�2 up to 0.95 mJ cm�2 for 8 mm

wavelength and for the broadband >100 mm wavelength of the

probe pulse. The observed change of the transient normalized

reflectivity (R� R0)/R0 of THz beam due to the plasma switch

is approximately 6% from the initial level.

Since this effect uses low XUV fluences, far below the

damage threshold, and uses room-temperature broadband

THz detectors, it is robust and simple. This technique can

be further applied at facilities employing XUV–THz pump–

probe experiments, and enables a straightforward and efficient

method for temporal overlap of XUV and THz pulses on the

picosecond time scale.

APPENDIX A
Comparison of the excited-layer thickness with the
penetration depth of THz radiation

The frequency-dependent dielectric constant, according to the

simple Drude model, where damping is independent of the

free electron energy, can be expressed as (Van Exter &

Grischkowsky, 1990)

"ð!Þ ¼ "ð1Þ �
!2

p

!ð!þ i�Þ
;

where !p is the plasma frequency, � = 1/�c is the damping

frequency and �c is the average free-electron collision time.

From the literature, we estimate the average free-electron

collision time to be between 1 fs and 100 fs (Ashcroft &

Mermin, 1976; Temnov et al., 2006; Van Exter & Grisch-

kowsky; 1990; Riedel et al., 2013). Finally, this gives us the

estimated minimum penetration depth for probing THz

frequencies (2–40 THz) in XUV-excited plasma in silicon to

be �2 mm.

For an XUV wavelength of 13.5 nm impinging at a 45� angle

of incidence, the thickness of the excited area in silicon is

400 nm, as determined by the penetration depth (Henke et al.,

1993). The XUV pulses from FLASH, used in this work (as

presented in Fig. 5), result in free-electron densities in the

range from 1.2 � 1017 cm�3 up to 2.8 � 1018 cm�3.

This leads to the conclusion that only a small fraction of the

probing THz radiation (<20%) is absorbed in the investigated

sample excited by the XUV pulse.
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Wabnitz, H., Yurkov, M. V. & Feldhaus, J. (2009). New J. Phys. 11,
023029.

Wesch, S. (2012). Dissertation. DESY, Hamburg, Germany.
Willems, F., Smeenk, C. T. L., Zhavoronkov, N., Kornilov, O., Radu, I.,

Schmidbauer, M., Hanke, M., von Korff Schmising, C., Vrakking,
M. J. J. & Eisebitt, S. (2015). Phys. Rev. B, 92, 220405.

Zapolnova, E., Golz, T., Pan, R., Klose, K., Schreiber, S. & Stojanovic,
N. (2018). J. Synchrotron Rad. 25, 39–43.

research papers

16 Zapolnova et al. � Spatio-temporal overlap tool for XUV–THz pump–probe experiments J. Synchrotron Rad. (2020). 27, 11–16

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ys5103&bbid=BB24


PHYSICAL REVIEW E 98, 060101(R) (2018)
Rapid Communications

Periodic three-body orbits in the Coulomb potential

Marija Šindik,1 Ayumu Sugita,2 Milovan Šuvakov,3 and V. Dmitrašinović3,*
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We numerically discovered around 100 distinct nonrelativistic collisionless periodic three-body orbits in
the Coulomb potential in vacuo, with vanishing angular momentum, for equal-mass ions with equal absolute
values of charges. These orbits are classified according to their symmetry and topology, and a linear relation is
established between the periods, at equal energy, and the topologies of orbits. Coulombic three-body orbits can
be formed in ion traps, such as the Paul, or the Penning one, where one can test the period vs topology prediction.

DOI: 10.1103/PhysRevE.98.060101

The Newtonian three-body problem is one of the outstand-
ing classical open questions in science. After more than 300
years of observation, only two topologically distinct types of
periodic three-body systems, or orbits, have been observed in
the skies [1]: (1) the so-called hierarchical systems, such as the
Sun-Earth-Moon one, to which type belong more than 99%
of all observed three-body systems; (2) Lagrangian three-
body systems, such as Jupiter’s Trojan satellites, to which the
remaining �1% belong.

There has been some significant theoretical progress on the
subject over the past few years: several hundred new, topolog-
ically distinct families of periodic solutions have been found
by way of numerical simulations [2–16], and unexpected reg-
ularities have been observed among them [9,13,15,16] relating
the periods, topologies, and linear stability of orbits.

Of course, one would like to observe at least some of
the new orbits and test their properties in an experiment, but
such a test would be impeded by a number of obstacles: (1)
only stable orbits have a chance of actually existing for a
sufficiently long time to be observed; (2) stability depends on
the ratio(s) of masses, and on the value of angular momentum,
neither of which can be controlled in astronomical settings;
(3) even if an orbit is stable in a wide range of mass ratios and
angular momenta, there is no guarantee that such a system
will have been formed sufficiently frequently and sufficiently
close to Earth, that it may be observed by our present-day
instruments.

All of the above prompted us to look for alternative three-
body systems that share (at least) some of the same properties
with Newtonian three-body systems. The Coulombic potential
shares one basic similarity with the Newtonian gravity—
its characteristic 1/r (homogeneous) spatial dependence—as
well as several important differences: (1) the (much) larger
coupling constant; (2) both attractive and repulsive nature; (3)
naturally identical (quantized) electric charge(s); (4) ions with
opposite charges may have masses equal to one part in a few

*Author to whom correspondence should be addressed: dmi-
trasin@ipb.ac.rs

thousand; (5) ions have a finite probability of elastic scattering
in head-on collisions; and (6) Coulombic bound states can be
formed in table-top ion-trap experiments [17]. For these rea-
sons we turn to the study of periodic three-body orbits bound
by Coulombic potential. The application of only the Coulomb
interaction amounts to a nonrelativistic approximation, which
is good only in the low-velocity limit [18].

In this Rapid Communication we present the results of a
search that led to around 100 distinct collisionless orbits, only
four of which are stable, and around 80 isosceles quasicollid-
ing (free-fall, or “brake”) ones. We use the collisionless orbits
to display a new regularity, akin to Kepler’s third law, in the
form of a linear dependence

T |E|3/2 ∼ N, (1)

between the scale-invariant period T |E|3/2, where T is the
period, and E is the energy of an orbit, on one hand, and the
orbit’s topological complexity N , expressed as the number of
collinear configurations (“syzygies”) encountered during one
cycle (see the text below), on the other. This prediction ought
to be tested in ion-trap experiments.

We used the same search method as in the Newtonian
gravity three-body problem [5]. There are 12 independent
variables that define the initial state of this system; for each
body there are the x and y coordinates of the body, and
the vx and vy components of their velocity. Adopting the
center-of-mass reference frame reduces this number (12) to
eight. Fixing the value of angular momentum (L = 0) re-
duces this further to six. Using the scaling rules [19] for
the solutions and the fact that periodic solution must pass
through at least one syzygy (collinear configuration) during
one period, yields a four-dimensional search space for all
zero-angular-momentum periodic solutions. We search for
solutions in the two-dimensional subspace of orbits that pass
through the Euler configuration, defined as the symmetric
collinear configuration wherein the positively charged particle
with velocity (−2vx,−2vy ) passes through the origin (0, 0),
i.e., exactly between the two negatively charged particles,
which, in turn, pass through the points (−1, 0) and (1, 0), both
with velocity equal to (vx, vy ).
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FIG. 1. Negative logarithm of return proximity function as a
function of the initial velocity components vx and vy on the x and
y axes, respectively. Bright areas correspond to high values of the
negative logarithm. Inset: zoom-in of the “boxed-in” region.

In order to search for periodic solutions numerically, we
have discretized the search window in this two-dimensional
subspace and calculated the return proximity function (RPF)
dT0 (vx, vy ) that measures how close to the initial condition the
trajectory returns (see [20]) up to some predefined upper limit
on the integration time T0, at each grid point. The negative
logarithm of the computed RPF is shown in Fig. 1. Local
minima of RPF are used as candidates for periodic solutions.
After applying the gradient descent algorithm starting at each
candidate point, we have declared as periodic the solutions
with RPF of O(10−8) and smaller.

We have followed the example set by three-body orbits
in Newtonian gravity [5,13], and classified the newly found
Coulombic orbits according to their topologies, studied their
stability, and organized them into sequences some of which,
although fewer in number, appear very similar to the New-
tonian ones. Each orbit has a well-defined topology which
can be algebraized in at least two different ways (see [20]
and Refs. [21,22]). Here we use Montgomery’s method [21]
wherein each solution is associated with [the conjugacy class
(see [5]), of] an element of the two-generator (a, b, A = a−1,
B = b−1) free group F2(a, b).

There are important distinctions among the 100-odd or-
bits: (1) the orbits can be separated into two classes, using
their symmetry: class A consists of orbits that are sym-
metrical under two perpendicular reflections, and class B
of orbits with a point reflection symmetry; (2) each of
the classes can be further separated into sequences, defined
by their free-group elements, as follows. For both class A
and class B, sequence (I): w

(I)
n,k = [(AB)n(ab)n]k with in-

tegers n, k = 1, 2, 3, . . .; and for class A only, sequence
(II): w

(A.II)
m,n,k = [(AB)m(ab)n]kA[(BA)m(ba)n]kB, with m, n, k =

1, 2, 3, . . .; and sequence (III): w(III)
n = [(ab)2ABA(ba)2BAB]n,

with n = 1, 2, 3, . . ..

Note that the 100-odd collisionless Coulombic orbits are
substantially fewer than roughly 200 collisionless Newtonian
orbits with similar search parameters, and that there are only
four linearly stable solutions in contrast to more than 20 in the
Newtonian case.

All of this is a consequence of just one sign change in
the potential: one pair of charged particles must experience
repulsion, contrary to Newtonian gravity, where all pairs are
attractive. Therefore, no choreographic solution, i.e., permuta-
tionally symmetric solution with all three particles following
the same trajectory, such as the famous “figure-8” orbit, may
exist in the Coulombic case. Moreover, at least one orbit, sim-
ilar to Orlov’s [4] colliding “S orbit” (in Newtonian gravity)
still exists in the Coulombic case, but it is not stable anymore,
and consequently does not produce an infinite sequence of
periodic orbits (see [13]).

The initial conditions of all 100-odd orbits and their corre-
sponding topological and kinematical properties can be found
in [20]; in Fig. 2 and Table I we have shown six representative
solutions.

Next we show that Eq. (1), the (striking) property of orbits
that was first observed in Newtonian three-body systems [9],
also features in the Coulombic three-body systems. This rela-
tion between topological and kinematical properties of New-
tonian three-body systems was first reported in [9] and later
studied in more detail in Refs. [11,13,15,16]. Equation (1)
is a (simple) linear dependence of the scale-invariant period
T |E|3/2 on the topological complexity N . The topological
complexity N can be measured in at least two different ways:
(1) we used the length Nw of the free-group element (word)
describing the orbit’s topology, which, due to symmetry in
our case, is equal to the number of asymmetric syzygies, i.e.,
collinear configurations wherein the two equal-charge parti-
cles are next to each other, over one period; (2) the number
Ne of all syzygies (collinear configurations) was considered
in Refs. [9,13] as the measure of topological complexity N of
Newtonian orbits.

In Fig. 3 one can see that Eq. (1) holds for three-body
orbits in the Coulomb potential: (1) with N = Nw, a linear fit
yields a slope equal to 1.8252, with asymptotic standard error
of 0.08% and an average relative deviation of points from fit
values that equals 0.63%; (2) with N = Ne the number of all
syzygies (collinear configurations), in the Coulomb case, the
situation is slightly different (see inset in Fig. 3): the slope of
this fit is 1.0208, the asymptotic standard error is 0.36%, but
with a significantly larger (2.6%) average relative deviation of
points from fit values.

As mentioned earlier, only four solutions are linearly sta-
ble. We solved the equations for an infinitesimal deviation
from the exact periodic solution along each periodic orbit to
find the eigenvalues of the monodromy matrix (see [20]). Due
to the symmetry of the equations of motion, these eigenvalues
appear as two (i = 1, 2) quadruples (λi , λ∗

i , 1/λi , 1/λ∗
i ). For

only four orbits listed in Table II both eigenvalues λi have
moduli equal to unity |λi | = 1, within their respective margins
of error, which means that the corresponding three-body orbit
is linearly stable.

Thus we have shown that some of the phenomena first
observed in Newtonian three-body orbits, such as the linear
dependence of the scale-invariant period on the topology
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FIG. 2. Trajectories of orbits A.4, with topology (AB)2(ab)2; A.12.a and A.12.b, both with topology [(AB)2(ab)2]3, in class A (upper row);
and orbits B.4, with topology (AB)2(ab)2, and B.12.a and B.12.b, both with topology [(AB)2(ab)2]3, in class B (lower row), respectively. Note
the independent symmetries of the class A (upper row) trajectories with respect to the reflections about the horizontal and the vertical axis,
whereas the class B (lower row) trajectories have only this symmetry under combined reflections. Black lines correspond to the positively
charged particle while red and blue lines correspond to the negatively charged ones.

of the orbit, and the emergence of sequences [23] exist in
Coulombic three-body orbits, and are not features of New-
tonian gravity alone. The homogeneity [19] of the Coulom-
bic, Newtonian, and the strong Jacobi-Poincaré potentials is
common to all three known cases of manifestation of this
regularity [9,13,25]. This supports indirectly the explanation
offered in Refs. [13,25].

Our next concern ought to be the observation of some of
these orbits in an experiment. The trajectories of a number
(ranging between 1 and 32) of positively charged particles
moving in a Paul trap have been photographically recorded as
early as 1959 [17,26]. The challenge to actually confine and

photograph a few oppositely charged macroscopic particles
in an ion trap has remained unanswered to the present day,
to our knowledge. It is well known that Paul and/or Penning
traps can lead to binding of pairs of identical ions, including
periodic orbits as well as their chaotic motions [27,28], when
the circumstances (such as the frequency and amplitudes of
the applied electric and/or magnetic fields) are right. Such
periodic orbits are impossible in free space, however, as there
the identical ions experience only Coulomb repulsion [29].
So, before one observes any periodic three-body orbits in an
ion trap, and declares them genuine Coulomb orbits, one must
know which periodic three-body orbits exist in free space—

TABLE I. Initial conditions of six orbits, depicted in Fig. 2, that belong to the sequence described by the free-group elements [(AB)2(ab)2]k,
with k = 1, 2, 3, . . ., and four linearly stable orbits, Table II. The columns correspond to solution label, name of the sequence that the solution
belongs to, initial velocities [ẋ1(0) and ẏ1(0)], period, negative energy, scaled period, free-group element, number of letters in free-group
element (equal to the number of asymmetric syzygies), and the total number of syzygies over a period. For initial conditions of all other found
solutions, see [20].

Label Seq. ẋ1(0) ẏ1(0) T −E T |E|3/2 Free-group element Nw Ne

A.4 I 0.191764 0.330958 13.4332 1.06108 14.6826 (AB)2(ab)2 8 14
A.12.a I 0.147917 0.323693 37.1599 1.12003 44.0473 [(AB)2(ab)2]3 24 42
A.12.b I 0.246251 0.335527 45.3784 0.980345 44.0472 [(AB)2(ab)2]3 24 42
B.4 I 0.111427 0.305087 11.3981 1.18352 14.6755 (AB)2(ab)2 8 14
B.12.a I 0.327539 0.337033 57.4554 0.83738 44.0266 [(AB)2(ab)2]3 24 42
B.12.b I 0.345214 0.344247 63.0644 0.786962 44.0266 [(AB)2(ab)2]3 24 42
A.15.b II 0.108065 0.323579 44.7536 1.15086 55.2534 (ab)2ABA(ba)2bABA

×(ba)2BAB(ab)2aBAB 30 52
A.18 III 0.105224 0.336995 55.6513 1.12609 66.5019 (ab)2ABA(ba)2(BA)2bab

×(AB)2aba(BA)2(ba)2BAB 36 62
A.20.b I 0.126494 0.315968 59.3293 1.15249 73.4049 [(ab)2(AB)2]5 40 70
A.24.a II 0.249577 0.291337 80.2223 1.0585 87.364 [(ab)2(AB)2A]2(ba)2b

×(AB)2[(ab)2a(BA)2B]2 48 86

060101-3



MARIJA ŠINDIK et al. PHYSICAL REVIEW E 98, 060101(R) (2018)

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160

data
fit f(x)=1.8252x

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250

data
fit f(x)=1.0208x

FIG. 3. Dependence of the scale-invariant period T |E|3/2 on the
number of asymmetric syzygies Nw (collinear configurations with
two particles of the same charge on one side) during an orbit. Inset:
dependence of the scale-invariant period T |E|3/2 on the number of
all syzygies Ne.

information that we have provided here. With the present
work we have prepared the terrain for future numerical, and
we hope also experimental studies of three-ion motions in
traps [17].

Naturally, the orbits that are (linearly) stable in free space
are also expected to exist in a trap; that is not to say that the
unstable orbits cannot be stabilized by appropriate trapping
fields, or that new kinds of periodic orbits cannot be formed in
a trap. Moreover, ions have a nonzero elastic head-on collision
cross section, unlike the stars and/or planets, so one may
even observe some “colliding” orbits [31] in ion traps. This
gives one an opportunity to observe hitherto experimentally
unobserved orbits and to study some of their unprecedented
properties.

At any rate, trap-induced corrections will have to be calcu-
lated for each three-ion orbit in any trap where experiments
are conducted, before an interpretation is given. With this
Rapid Communication we hope to start a discussion of trap-
induced corrections for periodic three-ion orbits: in order to
calculate such corrections, one needs the (initial conditions of)
free-space periodic orbits, of which we have provided around
100, which ought to suffice for a starting point.

There are no records, to our knowledge, of searches for
periodic Coulombic three-body systems with equal masses

TABLE II. Stability coefficients λj , νj , with j = 1, 2, of linearly
stable (double elliptic) orbits, where λj = exp(2πiνj ).

Name Re(λi ) Im(λi ) |λi |2 νi Nw

A.15.b 0.510145 0.860102 1.000023 0.164797 30
A.15.b − 0.11507 0.993357 0.999999 0.268355 30
A.18 − 0.002025 0.999961 0.999926 0.250322 36
A.18 − 0.820340 0.571882 1.000007 0.403107 36
A.20.b 0.009875 0.998966 0.998031 0.248427 40
A.20.b 0.94189 0.339728 1.002572 0.055094 40
A.24.a − 0.988601 0.174067 1.007631 0.472261 48
A.24.a 0.993975 0.116863 1.001643 0.018627 48

and equal charges, which are the closest to the equal-mass
Newtonian system that was studied in Refs. [4–12,14–16]. As
we wished to compare the closest analog of the Coulombic
and Newtonian three-body systems, we had to repeat a search
for periodic collisionless orbits at the present mass and charge
ratios.

To be sure, we are not the first ones who have studied
Coulombic periodic three-body motion: the subject has a long
history (see, e.g., Refs. [32,33]), with a revival in the 1980s,
since when a number of studies have been published: [34–44].
A numerical discovery of more than 8000 collinear collid-
ing periodic orbits with He atom mass ratios was reported
in Ref. [39], and of somewhat fewer collisionless ones in
Ref. [40]. The initial conditions were not published, so one
could not simply retrieve these previously discovered orbits
and use them here.

With this Rapid Communication we also hope to induce
practitioners to consider experimental searches, particularly in
view of the fact that, at least in the case of past periodic-orbit
discoveries, the theory did not precede experiment [17].
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We study quantized vortices in dipolar Bose-Einstein condensates at the transition between the 
superfluid and the supersolid phase [1]. Recently, ultracold atomic gases have revealed unique features 
of supersolidity, an intriguing state of matter which presents simultaneously crystalline order and 
superfluidity [2-4]. However, the experimental observation of quantized vortices in these systems 
remains an open issue, since their observability in dipolar supersolids is largely prevented by the strong 
density depletion caused by the formation of droplets [5]. 
 
We propose a novel approach to the nucleation of vortices and their observation, based on the quenching 
of the s-wave scattering length across the phase transition. Starting from a slowly rotating, vortex-free 
configuration in the superfluid phase, quenching into the supersolid phase drives the vortex nucleation, 
due to the strong reduction of the critical angular velocity in the supersolid, as illustrated in Fig. 1. Once 
a vortex is created, it is robustly preserved when the condensate is brought back to the superfluid phase, 
where it may be readily observed. These results may have a significant impact on ongoing experiments, 
given that the observation of quantized vortices would constitute a key probe of the superfluid character 
of dipolar supersolids. 
 

 
 

Figure 1. Step-by-step illustration of the protocol process.  
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Experiments on dipolar Bose-Einstein condensates have recently reported the 
observation of supersolidity. Although quantized vortices constitute a key probe of 
superfluidity, their observability in dipolar supersolids is largely prevented by the 
strong density depletion caused by the formation of droplets. We present a novel 
approach to the nucleation of vortices and their observation, based on the quenching 
of the s-wave scattering length across the superfluid-supersolid transition. Starting 
from a slowly rotating, vortex-free, configuration in the superfluid phase, we predict 
vortex nucleation as the system enters the supersolid phase, due to the strong 
reduction of the critical angular velocity in the supersolid. Once a vortex is created, 
we show that it is robustly preserved when the condensate is brought back to the 
superfluid phase, where it may be readily observed. 
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We study the formation of quantum droplets in dipolar Bose-Einstein condensates in a ring-shaped 

geometry using numerical techniques. A condensate is initially prepared in a stable ground state of the 

system, and droplet formation is triggered by a sudden quench of the contact interaction. We investigate 

how the number of the obtained droplets depend on the total number of atoms in the system, as well as 

on the strength of the contact and the dipole-dipole interaction. These results can be used in experiments 

to fine-tune parameters of the system in order to produce droplets of desired size. Furthermore, we study 

the emergence of supersolidity in the system, when droplets are formed due to the contact interaction 

quench, but the common phase is still preserved among spatially separated droplets. The quasi-1D 

geometry imposes additional constraints in the system, in particular when the particle density is higher, 

such that quantum fluctuation effects become more prominent. We use the Bogoliubov-Popov theory 

for dipolar Bose systems, including the dipolar analogue of the Lee-Huang-Yang correction, and take 

into account the condensate depletion due to quantum fluctuations. 

 

 

 
 

Figure 1. Density distribution in case of a) isolated droplets, b) supersolid state. 
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