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transverse invariant intensity distributions 
and continuously modulated phase dis-
tributions are suited. The class of nondif-
fracting beams has attracted considerable 
interest and features not only applications 
in optics, but also in solid state and atom 
physics.[7–11] A detailed understanding 
of their energy flows therefore is of high 
importance in many communities. How-
ever, the energy flow of continuously mod-
ulated nondiffracting beams withstands a 
direct observation because it is hidden for 
the case of linear propagation in homo-
geneous media. The transverse intensity 
distribution stays invariant and the energy 
flow is continuously redistributed.

Four nondiffracting beam families exist 
as solutions of the paraxial as well as the 
nonparaxial Helmholtz equation in dif-
ferent coordinate systems:[12–17] Discrete 
beams in Cartesian, Bessel beams[8] in 
spherical, Mathieu beams in elliptic, and 

Weber beams in parabolic coordinates. Among these diverse 
families, Mathieu beams[9,10,18,19] may be interpreted as a gener-
alized beam class, capable to interpolate between Cartesian and 
spherical coordinates. In contrast to parabolic Weber beams, 
their transverse spatial intensity distributions can form closed 
paths on ellipses, with spatially structured orbital angular 
momenta[6,20] showing periodic boundaries.

Mathieu beams are highly appealing to access fundamental 
physical effects in elliptical coordinates.[21] In several studies, 
they have been beneficially used for particle manipulation,[5] 
and served as lattice-writing light,[22–26] featuring the nonlinear 
propagation of (vortex) solitons in these previously linearly 
induced elliptic lattices. However, the self-action of Mathieu 
beams in nonlinear media was not investigated until now.

Scalar even and odd Mathieu beams exhibit only real-valued 
field distributions. Their transverse Poynting vector there-
fore vanishes. In contrast, the complex superposition of even 
and odd Mathieu beams leads to generalized elliptic Mathieu 
beams, showing outstanding continuously modulated spatial 
phase distributions, i.e., OAM.[5,6,20] Thus, for these beams a 
transverse energy flow is present. Until today, only a few works 
have addressed the energy flow in these complex spatially 
modulated beams with its unique OAM characteristics, e.g., 
using the OAM structure of Mathieu beams to transfer orbital 
angular momentum to particles that start to rotate.[5,6,20]

With this work, we present an approach to visualize the 
energy flow of light at the example of elliptic Mathieu beams. 
We demonstrate experimentally and numerically that the 

Exploiting the energy flow of light fields is an essential key to tailor complex 
optical multistate spin and orbital angular momentum (OAM) dynamics. 
With this work, the energy flow is identified and quantified by a novel 
approach that is based on the symmetry breaking induced by nonlinear 
light–matter interaction of OAM carrying beams at the example of Mathieu 
beams, showing transverse invariant intensity distributions. These complex 
scalar nondiffracting beams exhibit outstanding transverse energy flows on 
elliptic paths. Although their energy is continuously redistributed during 
linear propagation in homogeneous media, the beams stay nondiffracting. 
This approach to visualize the energy flow of light is based on the nonlinear 
self-action in a nonlinear crystal. By this, the sensitive equilibrium is per-
turbed and accumulation of rotating high-intensity spots is enabled. Intensity 
distributions on elliptic, chiral paths are demonstrated as a manifestation of 
the energy flow. Furthermore, the formation of corresponding refractive index 
modulations that may be implemented as chiral waveguides, is controlled via 
the beam power and structure size.
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Chiral Photonic Structures

1. Introduction

The energy flow of light is determined by both, its spin angular 
momentum and its orbital angular momentum (OAM), and 
is generally described by the Poynting vector.[1] Controlling 
the spatial polarization and phase structure of light, the com-
bination of binary spin states and multistate orbital angular 
momentum dynamics is an essential key to further establish 
modern high-dimensional singular optics. These abilities ena-
bled breakthrough research in the areas of spatial polarization 
modulation,[2] classical entanglement,[3] high-density signal 
transmission,[4] or optical micromanipulation.[5,6]

In order to investigate two-dimensional energy flows in 
the transverse plane, in particular nondiffracting beams with 
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ABSTRACT

We investigate light propagation in a two-dimensional aperiodic refractive index lattice realized using the interference of multiple
Mathieu–Gauss beams. We demonstrate experimentally and numerically that such a lattice effectively hinders linear light expansion and
leads to light localization, compared to periodic photonic lattices in a photorefractive crystal. Most promisingly, we show that such an aperi-
odic lattice supports the nonlinear confinement of light in the form of soliton-like propagation that is robust with respect to changes in a
wide range of intensities.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013174

Diffraction is a fundamental feature of wave dynamics in any
branch of physics that involves waves: optics, acoustics, quantum
mechanics, etc. However, in many applications, propagation-invariant
transverse intensity distributions, referred to as nondiffracting beams,
are needed. Nondiffracting beams are exact solutions of the Helmholtz
equation, which exist in different coordinate systems:1 superposition
of plane waves in Cartesian, Bessel beams in circular cylindrical,2

Mathieu beams in elliptic cylindrical,3 and parabolic beams in para-
bolic cylindrical coordinates.4

The potential of nondiffracting structures is well recognized in
modern photonic research.5–9 Among them, the propagation of light
through tailored refractive index modulations optically fabricated in
photosensitive media by propagation-invariant intensity profiles
became the subject of extensive theoretical and experimental investiga-
tions since the resulting refractive index structure represents a pure 2D
material.10–14 This field of linear and nonlinear optics in photonic latti-
ces typically uses simple nondiffracting Cartesian beam configurations,
often hexagonal light structures, to modulate the refractive index since
this allows mimicking features of 2D graphene,15 its famous bandgap
structure,16 or its nonlinear light matter interaction, leading to spatial
soliton formation.17 In a few recent studies, solitons, elliptically shaped
vortex solitons, or even vortex necklaces are observed in optically
induced photonic lattices by nondiffracting Mathieu beams.12,18–20

Moreover, the superposition of this kind of elliptic nondiffracting beam
allows the formation of different aperiodic photonic structures.21

Although the physics of periodic photonic systems is of funda-
mental interest, deviation from periodicity is important as it leads to
higher complexity. One such deviation in optics results in the realiza-
tion of photonic quasicrystals,8 structures with a reduced degree of
order between periodic and disordered ones.

The localization of waves is an intriguing research subject
observed in a variety of classical and quantum systems,22,23 including
light waves,24–27 Bose–Einstein condensates,28 and sound waves.29

Although the transverse expansion properties in periodic photonic
lattices,30–33 as well as in disordered ones,34–36 have been investigated
extensively, light localization and transverse expansion in photonic
quasicrystals37,38 is still an open question.

In this paper, we investigate the effects of light propagation in
aperiodic photonic structures created by synthesized Mathieu–Gauss
(MG) beams in a photorefractive crystal,21 experimentally and
numerically. We investigate how various input beam positions
influence the diffraction and compare them with appropriate peri-
odic waveguide arrays. We find that our approach effectively sup-
presses the beam expansion depending on the refractive index
modulation Dn. Most importantly, in the nonlinear regime, we
find localized states that are robust with respect to changes in the
probing light intensities and propagation distance. Such stable soli-
tary states are, thus, much more appealing for applications than
typical spatial solitons, especially gap solitons, which react sensi-
tively on changes in the strength of the nonlinearity.39
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Discrete optical gratings are essential components to custom-
ize structured light waves, determined by the band structure
of the periodic potential. Beyond fabricating static devices,
light-driven diffraction management requires nonlinear
materials. Up to now, nonlinear self-action has been limited
mainly to discrete spatial solitons. Discrete solitons, how-
ever, are restricted to the eigenstates of the photonic lattice.
Here, we control light formation by nonlinear discrete dif-
fraction, allowing for versatile output diffraction states.
We observe morphing of diffraction structures for discrete
Mathieu beams propagating nonlinearly in photosensitive
media. The self-action of a zero-order Mathieu beam in a
nonlinear medium shows characteristics similar to discrete
diffraction in one-dimensional waveguide arrays. Mathieu
beamsof higher orders showdiscrete diffraction along curved
paths, showing the fingerprint of respective two-dimensional
photonic lattices. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.001592

Manipulating waves by customizing their interaction with
functional materials enables a variety of photonic applications,
e.g., tailored diffraction at gratings to discretize the waves’ spec-
tral components [1,2]. Waves in periodically structured media
show dynamics that cannot be realized in homogeneous media,
determined by the media’s band structure. Propagation of light
in dielectric media with a periodically varying refractive index
can mimic the spatio–temporal characteristics that are typically
encountered in discrete systems, and the underlying field evo-
lution effectively becomes “discretized” [1]. Most importantly,
the vision to control light with light is realizable only by exploit-
ing nonlinear materials as mediators [3]. Thus, shaping the peri-
odically varying refractive index structure allows for diffraction
management to control in turn the light distribution [4].

Different types of periodic photonic structures, including
arrays of evanescently coupled optical waveguides [5], optically
induced lattices in photorefractive materials [6], and photonic
crystals [7], have been employed to engineer and control

fundamental properties of wave propagation. Arrays or lattices
of evanescently coupled waveguides are prime examples of
structures in which discrete diffraction [2,5,8] can be observed.
These arrays consist of equally spaced identical waveguide
elements or sites, possessing all essential characteristics of a pho-
tonic crystal structure (Brillouin zones, band structure, etc.).
In such a physical setting, light couples between waveguides
through tunneling, showing its diffraction characteristics.
When low intensity light is injected into one or a few neigh-
boring waveguides, it couples to more and more waveguides,
broadening its spatial distribution. Fundamentally new physics
occur in contrast to diffraction in homogeneous media. High-
intensity light producing nonlinear responses in the refractive
index is capable of forming discrete spatial solitons [9]. A
renewed interest in nonlinear light–matter interaction goes be-
yond soliton formation. It is devoted to physical systems with
dimensionality morphing, e.g., the continuous transformation
of the lattice structure from 1D to 2D [10–12].

Nondiffracting beams, having propagation-invariant inten-
sity distributions, allow creating 1D and 2D photonic lattices
in photosensitive media. Particularly in the areas of optics and
atom physics, these beams enable novel applications [13–16].
Among the variety of different nondiffracting beams, Mathieu
beams [15,17] solve the Helmholtz equation in elliptic cylin-
drical coordinates [18]. They are used for a new type of optical
lattice-writing light [19–23] allowing solitons or even ellipti-
cally shaped vortex solitons, and are beneficially used for
particle manipulation [24]. However, their elliptical character-
istics allow going far beyond soliton investigations and extend-
ing applications of nonlinear self-action.

In this Letter, we exploit Mathieu beams as lattice-writing
light to fabricate discrete waveguide structures and investigate
their nonlinear self-action in these structures, leading to
morphing discrete diffraction. We investigate Mathieu beams
of different orders in a photorefractive crystal, experimentally
and numerically. We link linear discrete diffraction with non-
linear self-effects and demonstrate gradual transition from one
to two dimensions. We use the term morphing diffraction to
describe the nonlinear behavior similar to discrete diffraction.
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We demonstrate unusual kinds of discrete vortex beams, elliptical necklaces, realized by Mathieu photonic
lattices. Varying the order of the Mathieu lattices and their ellipticity, we can control the shape and size of such
necklaces. Besides stable vortex states, we observe oscillatory dipole states or dynamical instabilities and study
their orbital angular momentum. Dynamical instabilities occur for higher beam power and higher-order vortices.
Also the decay of higher-order phase singularities and their separation is observed in dependence on the ellipticity.

DOI: 10.1103/PhysRevA.97.033848

I. INTRODUCTION

An optical vortex that possesses a phase singularity and a
rotational flow around the singular point in a given direction
can be found in physical systems of different nature and scale,
ranging from water whirlpools and atmospheric tornadoes
to quantized vortices in superfluids and quantized lines of
magnetic flux in superconductors [1]. The study of optical
vortices and associated localized vortex states is important for
both fundamental and applied physics, leading to applications
in many areas that include optical data storage, distribution
and processing, optical interconnects between electronic chips
and boards, and free-space communication links [2–4]. They
also have potential uses in optical tweezers [5], optical ma-
nipulation and trapping [6,7], microscopy [8], and quantum
information processing [9,10].

The evolution of nonlinear excitations in systems whose
properties are modulated is especially interesting and in optics
can be realized when an intense laser beam propagates in the
material with a suitable transverse refractive index modula-
tion that can be fabricated in nonlinear materials including
semiconductors, liquid crystals, fused silica, polymers, and
photorefractive media [11–18]. The combination of diffrac-
tive and nonlinear effects with transverse refractive index
modulation in photonic lattices opens the possibility to pro-
duce spatially localized states of light [19,20]. To optically
induce two-dimensional photonic lattices it is appropriate to
use nondiffracting light beams that are exact solutions of the
Helmholtz equation in different coordinate systems [21,22]:
plane waves in Cartesian, Bessel beams in circular cylindrical
[23], Mathieu beams in elliptic cylindrical [24], and parabolic
beams in parabolic cylindrical coordinates [25].

In this paper we report on the existence of elliptical necklace
beams in photonic lattices optically induced by Mathieu
nondiffracting beams, using vortices as a probe beam. These
necklace beams show discrete intensity spots on elliptical
curves, associated with discrete phase vortices. We investigate
the conditions for their existence as well as their properties,
both experimentally and theoretically. Changing the lattice el-
lipticity and choosing Mathieu lattices of appropriate order, we
control the shape and the size of an elliptical necklace, as well

as the number of the “pearls” in the necklace. We investigate
the breakup of higher-order vortices (topological charge CT =
2,3,4) into CT = 1 vortices and their rate of separation during
propagation. Phase singularity distances increase with CT ,
higher lattice ellipticity, and propagation distance. Further, we
study the stability of such elliptic necklaces. Supported by the
strong nonlinearity, we show the formation of oscillating dipole
states in the intensity distribution for very long propagation
distances and discuss our results by investigating additionally
the transfer of orbital angular momentum (AM) to the lattice.
Finally, a high intensity of the probe beam leads to nonlinear
dynamical instabilities observable in the intensity distribution
of the necklaces.

II. EXPERIMENTAL METHOD AND MODELING OF
VORTEX BEAM PROPAGATION IN MATHIEU LATTICES

Figure 1 shows the experimental setup to realize elliptical
necklaces. A frequency-doubled, expanded, and collimated
Nd:YVO4 laser with wavelength λ = 532 nm is split into
two separate beams: an ordinary polarized writing and an
extraordinary polarized probe beam. Both are spatially tailored
in intensity and phase by a phase-only spatial light modulator
Holoeye Pluto VIS. For this purpose, special Fourier filters
(FF1 and FF2) are required [26]. The structure beam opti-
cally induces refractive index modulations in the 15-mm-long
photorefractive Strontium Barium Niobate crystal doped by
Cerium (SBN:Ce), thereby addressing the weaker electro-
optic coefficient r13 = 47 pm/V. The birefringent crystal has
refractive indices no = 2.325 and ne = 2.358 and is externally
biased with an electric field Eext = 1600 V/cm aligned along
the optical c = x axis, perpendicular to the direction of propa-
gation (z axis). Probing the artificial photonic structure is done
with the extraordinary polarized probe beam that addresses
the stronger electro-optic coefficient r33 = 237 pm/V. An
imaging system consisting of a microscope objective and
camera detects transverse intensity distributions at the back
of the crystal.

We model our experiment by solving the nonlinear
Schrödinger equation for an initial scalar electric field A(r)
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We demonstrate a kind of aperiodic photonic structure realized using the interference of multiple Mathieu-
Gauss beams. Depending on the beam configurations, their mutual distances, angles of rotation, or phase
relations we are able to observe different classes of such aperiodic optically induced refractive index structures.
Our experimental approach is based on the optical induction in a single parallel writing process.

DOI: 10.1103/PhysRevA.96.023840

I. INTRODUCTION

Since nondiffracting beams have been introduced in the late
1980s [1,2] as light structures, only recently these structures
have drawn considerable attention in various topics such as
trapping of colloidal and in vivo particles in biophysics [3],
atom optics [4], applications of optical lattices in quantum
computing [5], as well as quantum optics [6], optical tweez-
ing [7,8], and nonlinear optics [9–11]. Such nondiffracting
structures are coming from the well-known classes of simple
nondiffracting light beams that are exact solutions of the
Helmholtz equation in different coordinate systems [12]: plane
waves in Cartesian, Bessel beams in circular cylindrical [2],
Mathieu beams in elliptic cylindrical [13], and parabolic beams
in parabolic cylindrical coordinates [14].

A simple and robust implementation of optical micro-
manipulation technologies—optical tweezers—based on non-
diffracting beams, has become a standard tool in biological,
medical, and physics research laboratories [15]. Another trend
in optical manipulation is the use of synthesized optical beams
rather than single beams only; such beams enable a much
greater freedom in object manipulation than conventional
Gaussian beams [16].

The potential of nondiffracting structures is of significant
importance for advances in discrete and nonlinear modern
photonics [17–21]. Although the physics of periodic photonic
systems are of fundamental importance, deviations from
periodicity are of importance as they may result in higher
complexity. One such deviation in optics results in the
realization of photonic quasicrystals [20,22], the structures
that lie between periodic and disordered one. They show
sharp diffraction patterns that confirm the existence of wave
interference resulting from their long-range order. Recently,
a new serial approach for the generation of aperiodic de-
terministic Fibonacci and Vogel spirals as refractive index
structures was presented [23,24]. In particular, the Fourier
spectra of tailored aperiodic lattices can be customized to
range from discrete to continuous [25], thus featuring unique
light propagation as well as localization properties in aperiodic
photonic lattices. Of particular interest are also flat-band
lattices with a dispersionless energy band composed of entirely
degenerate states, so that any excitation of these states yields
nondiffracting waves. Such flat band systems have been
studied in a number of lattice models including quasi-one-,

two-, or three-dimensional settings, diamond ladder, Lieb, or
kagome lattices [26–28].

In this paper, we demonstrate a powerful approach for
the creation of two-dimensional (2D) aperiodic photonic
lattices in a single writing process in parallel. It is based
on synthesizing two or more nondiffracting Mathieu-Gauss
(MG) beams [29]. By coherently superimposing MG beams
with different orders, positions, and relative phases we realize
transverse invariant propagating intensity distributions capable
of optically inducing corresponding refractive index lattices in
photosensitive media. Our approach features the fabrication of
versatile aperiodic lattices with controllable properties as well
as quasi-one-dimensional structures.

II. CHARACTERIZATION OF SYNTHESIZED
MATHIEU-GAUSS BEAMS

For the experimental realization of synthesized MG beams
we use the experimental setup shown in Fig. 1. We use a
frequency-doubled Nd:YVO4 laser, expand the laser beam, and
illuminate as a plane wave a phase-only spatial light modulator
“Holoeye Pluto VIS.” The reflected light field is modulated
in both amplitude and phase. This is possible by addressing a
precalculated hologram to the SLM containing the information
of the complex light field encoded with an additional blazed
grating. By applying an appropriate Fourier filter, the tailored
complex light field is realized [30,31]. Additionally, the
telescope L1-L2 scales down the SLM size by a factor of
10. This extraordinary polarized “structure beam” is used to
optically inscribe refractive index modulations in the 15 mm
long photorefractive SBN:Ce crystal which is externally biased
with an electric dc field of Eext = 2000V cm−1 aligned along
the optical c = x axis, perpendicular to the direction of
propagation (z axis).

We simulate the nonlinear light propagation in a photonic
structure by numerically solving the nonlinear Schrödinger
equation:

i∂zA(r) + 1
2�⊥A(r) + 1

2�E(|A(r)|2)A(r) = 0, (1)

where � = k2
0w

2
0n

4
o,er13,33, k0 = 2π/λ is the wave number and

defined by the wavelength λ = 532 nm, no = 2.325 is the
ordinary, ne = 2.358 is the extraordinary bulk refractive index,
r13 = 47 pm/V, r33 = 237 pm/V are the corresponding
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We investigate light propagation along one-dimensional quasi-periodic Fibonacci waveguide array optically
induced in Fe:LiNbO3 crystal. Two Fibonacci elements, A and B, are used as a separation between waveguides.
We demonstrate numerically and experimentally that a beam expansion in such arrays is effectively reduced
compared to the periodic ones, without changing beam expansion scaling law. The influence of refractive index
variation on the beam expansion in such systems is discussed: more pronounced diffraction suppression is
observed for a higher refractive index variation. © 2015 Optical Society of America

OCIS codes: (050.5298) Photonic crystals; (190.5330) Photorefractive optics.
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1. INTRODUCTION

The discovery of quasi-crystals in condensed matter by
Shechtman et al. [1] and their theoretical analysis by Levine
and Steinhardt [2] has inspired a new field of research in optics
and photonics.

Examples in the field of optics are photonic quasi-crystals
with dielectric multilayers forming the Fibonacci sequence as
proposed by Kohmoto et al. [3], and realized in [4–6], as well
as other deterministic aperiodic structures with long-range
order [7,8]. Photonic quasi-crystals have peculiar optical prop-
erties. Namely, they lie between periodic and disordered struc-
tures and exhibit unique and rich symmetries in Fourier space
that are not possible within periodic lattices. The large variety
of aperiodic structures is very important and could provide sig-
nificant flexibility and richness when engineering the optical
response of devices [9].

The localization of waves is a ubiquitous phenomenon ob-
served in a variety of classical and quantum systems [10–12],
including light waves [13–16], Bose–Einstein condensates
[17,18], and sound waves [19]. Although stated more than
50 years ago [11], Anderson localization is still one of the most
appealing approaches in optical wave manipulation. In this re-
gard, a transverse localization of light in waveguide lattices turns
out to be a particularly interesting concept [13,14]. As the
transverse expansion properties in periodic photonic lattices
[20–23], as well as in disordered ones [14,24–26], have been
investigated extensively, the quasi-periodic photonic lattices
emerged as a further attractive research field. The light locali-
zation in the Aubry–André model of a quasi-periodic lattice is

observed [27], but the transverse expansion in many other
models of photonic quasi-crystals [28] is still an open question.

In this paper, we extend these concepts to the beam expan-
sion in quasi-periodic Fibonacci waveguide arrays, considering
light propagation along waveguides. We fabricate the array of
identical waveguides (identical refractive index profile). The
distance between successive waveguides is modulated in the
Fibonacci manner. This means that the sequence of separations
consists of two elements, A and B, lined in such a way to make a
Fibonacci word. We consider how various input beam posi-
tions (incident positions) influence diffraction, and compare
them with appropriate periodic waveguide arrays. In general,
we find the beam expansion is slowed in quasi-periodic
Fibonacci waveguide arrays. Increasing the refractive index
variation, the effect is more pronounced.

2. EXPERIMENTAL SETUP AND THEORETICAL
BACKGROUND

For the experimental realization of the Fibonacci waveguide
array we use LiNbO3 crystal, doped with 0.05% of iron.
Dimensions of the crystal are 3mm × 0.5mm × 10mm, with
the optical axis along the z direction (10 mm). Waveguides are
fabricated using an in-house developed laser writing system
with a CW laser at 473 nm and a precise two-axis positioning
platform. The platform can move the crystal in the x–z plane.
The laser beam propagates along the y axis and it is focused by
the 50× microscope objective slightly below the upper surface
of the crystal. In this way, the laser makes a controllable local
change of the refractive index. By moving the sample along the
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Localization of Light in Mathieu Aperiodic Photonic Lattices
Jadranka M. Vasiljević 
Institute of Physics, University of Belgrade, Serbia

We demonstrate a kind of aperiodic photonic structure realized using the interference of multiple Mathieu 
beams. Depending on the beam configurations, their mutual distances, angles of rotation, or phase 

relations we are able to observe different classes of such aperiodic optically induced refractive index structures. 
Our experimental approach is based on the optical induction in a single parallel writing process. 

We study light propagation in a two-dimensional aperiodic photonic lattice realized using the interference 
of multiple Mathieu beams. We demonstrate experimentally and numerically that such a lattice effectively 
hinders linear light expansion and leads to light localization. Most promisingly, we show that such an aperiodic 
lattice supports the nonlinear confinement of light in the form of soliton-like propagation that is robust with 
respect to changes in a wide range of intensities. The additional level to control the diffraction of light is to 
add disorder in the aperiodic Mathieu lattice. We realized disordered Mathieu aperiodic lattices and investigate 
light propagation in them. We observed disorder-enhanced light transport and light localization in disordered 
aperiodic M.u lattices.

Biography

Dr. Jadranka Vasiljević studied the Faculty of Science at Kragujevac University, Serbia, and graduated as 
MS in 2014. Since then she joined the research group of Dr. Dragana Jović Savić at the Institute of Physics, 
University of Belgrade, Serbia. She is part of nonlinear photonics laboratory at the Institute of Physics, 
University of Belgrade, Serbia. She received her Ph.D. degree in 2020 at the Faculty of Physics at Belgrade 
University, Serbia. She has published 6 research articles in SCI(E) journals.
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Chirality and discrete diffraction in nonlinear Mathieu lattices 
 

M. Rimmler1, A. Zannotti1, J. M. Vasiljevic2, D. V. Timotijevic2,3, D. M. Jovic Savic2, and C. Denz1 

1Institute of Applied Physics and Center for Nonlinear Science (CeNoS), University of Münster, 48149 Münster, Germany 

2Institute of Physics, University of Belgrade, P.O. Box 68, 11001 Belgrade, Serbia 
3Science Program, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar 

 

Non-diffracting beams are highly relevant in optics and atom physics, particularly because their transverse 

intensity distributions propagate unchanged for hundreds of diffraction lengths. Thus, they feature applications in 

free-space wireless communications, optical interconnections, long-distance laser machining, and surgery. Four 

different fundamental families of propagation invariant light fields exist. They distinguish in the underlying real 

space coordinate system: Discrete, Bessel, Weber, and Mathieu non-diffracting beams. Latter ones obey the 

Helmholtz equation in elliptic cylindrical coordinates and are therefore best suited to address physical effects in 

elliptical coordinates. 

 

Mathieu beams are classified according to their symmetry properties as even and odd. Their transverse discrete 

intensity distributions in elliptical or hyperbolical geometries can be shaped by their order and an ellipticity 

parameter. These real-valued beams have only discrete spatial phase distributions. In contrast, so called elliptical 

and helical Mathieu beams are obtained as complex superpositions of appropriate even and odd Mathieu beams, 

thus showing outstanding continuously modulated spatial phase distributions that act as orbital angular momenta, 

associated with a transverse energy flow. 

 

In our contribution we investigate and control the nonlinear optical induction of photonic Mathieu lattices in 

photosensitive media. As flexible material we chose a photorefractive SBN crystal, showing a non-local, 

anisotropic nonlinearity.  

 

Focusing on elliptic Mathieu beams, during linear propagation their transverse energy redistribution along 

elliptic paths is compensated in each point, enabling for an invariant transverse intensity distribution. However, 

this energy flow withstands a direct observation. We demonstrate that their nonlinear self-action in SBN breaks 

this sensitive equilibrium. Consequently, a new type of rotating beam formation arises with high intensity 

filaments corresponding to the energy flow in an enforced preferential direction. This process is beneficially 

applied to realize chiral twisted photonic refractive index structures with a tunable ellipticity. 

 

Further, we present our studies on the nonlinear dynamics of discrete Mathieu beams in SBN, showing examples 

of appropriate fundamental even Mathieu beams in order to realize one- and two-dimensional transverse lattices. 

The nonlinear optical induction process leads to the formation of discrete refractive index lattices and a self-

interaction of the writing Mathieu beams with the realized photonic structure, capable of altering the writing 

beams’ propagation similar to the well-known linear discrete diffraction. Controlling the strength of the 

nonlinearity allows tailoring the degree of diffraction. Moreover, probing the lattice linearly with Gaussian 

beams and tunable incident angles reveals the signature of discrete and anomalous diffraction. This allows to 

control the strength of diffraction, such that under certain tilts, the probing beams may cross the lattice 

diffractionless.  

 

Our investigations both represent individual contributions towards the realization of advanced complex 

waveguiding in photorefractive crystals.  
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Waveguiding in Mathieu photonic lattices 
 

J. M. Vasiljević1, A. Zannotti2, D. V. Timotijević1, C. Denz2 and D. M. Jović Savić1 

1Institute of Physics, University of Belgrade, P.O. Box 68, 11001 Belgrade, Serbia 
2Institute of Applied Physics and Center for Nonlinear Science (CeNoS),  
Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany 
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Nondiffracting beams are highly applicable in optics, photonics and atom physics, peculiar 
because their transverse intensity distributions propagate unchanged for hundreds of diffraction 
lengths and allow creating 1D and 2D photonic lattices in photosensitive media [1]. Among the 
variety of different nondiffracting beams [2-5], Mathieu beams solve the Helmholtz equation in 
elliptic cylindrical coordinates [4, 6-7]. Mathieu beams are classified according to their symmetry 
properties as even and odd and their transverse discrete intensity distributions can be shaped by 
their order and an ellipticity parameter. These real-valued beams are characterized by only 
discrete spatial phase distributions. By complex superposition of appropriate even and odd 
Mathieu beams, elliptical Mathieu beams are obtained, showing remarkable continuously 
modulated spatial phase distributions that possess orbital angular momenta, associated with 
transverse energy flow. 
 
We exploit Mathieu beams as lattice-writing light to fabricate discrete waveguide structures and 
investigate their nonlinear self-action in these structures, leading to morphing discrete diffraction. 
We investigate Mathieu beams of different orders in a photorefractive SBN crystal, 
experimentally and numerically. We link linear discrete diffraction with nonlinear self-effects and 
demonstrate a gradual transition from one to two dimensions [8]. The self-action of a zero-order 
Mathieu beam in a nonlinear medium shows characteristics similar to discrete diffraction in one-
dimensional waveguide arrays. Mathieu beams of higher orders show discrete diffraction along 
curved paths, showing the fingerprint of respective two-dimensional photonic lattices. 
 
Linear propagation of elliptic Mathieu beams enables a nondiffracting transverse intensity 
distribution with transverse energy redistribution along elliptic paths compensated in each point. 
In contrast, their nonlinear self-action in SBN breaks this sensitive equilibrium. We demonstrated 
a new type of rotating beam formation arises with high-intensity filaments corresponding to the 
energy flow in an enforced preferential direction [9]. This process is beneficially applied to realize 
chiral twisted photonic refractive index structures with a tunable ellipticity. 
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Realizing aperiodic photonic lattices by synthesized Mathieu-Gauss beams 
 

J. M. Vasiljević1, Alessandro Zannotti2, D. V. Timotijević1,3, Cornelia Denz2, D. M. Jović Savić1 
1Institute of Physics,University of Belgrade, P.O. Box 68, 11001 Belgrade, Serbia 

2 Institute of Applied Physics and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 

48149 Münster, Germany 
3Science Program, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar 

e-mail: jadranka@ipb.ac.rs  

 

 

Over the years, non-diffracting wave configurations have drawn considerable attention, particularly in the 

areas of optics, atom physics, biophysics, as well as optical tweezing [1], and nonlinear optics [2, 3]. The 

interest in such optical waves is due to the fact that, their transverse intensity distributions propagate 

unchanged for hundreds of diffraction lengths. The potential of non-diffracting structures is of significant 

importance for advances in discrete and nonlinear modern photonics [4, 5]. One prominent class of non-

diffracting waves is given by Mathieu beams, which appear as translationally invariant solution of the 

Helmholtz equation in elliptic cylindrical coordinates. 

Synthesizing two or more non-diffracting Mathieu-Gauss (MG) beams, we demonstrate a powerful new 

approach for the creation of two-dimensional (2D) aperiodic photonic lattices, in a single writing process in 

parallel. Depending on the beam configurations of coherently superimposed MG beams, their mutual 

distances, angles of rotation or phase relations we are able to realize transverse invariant propagating intensity 

distributions capable to optically induce corresponding refractive index lattices in photosensitive media. Our 

approach features the fabrication of versatile aperiodic lattices with controllable properties as well as quasi 

one-dimensional structures. Our results and methods enable further investigations of light propagating in such 

aperiodic photonic lattices, and could find applications in modern optical information processing. 
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We have also found a PBG fiber and a gas configuration whose characteristics permit the 
propagation of such stable solitons. Nevertheless, the linear gain, that is possible because 
the gas is only confined in the hollow core but not in the cladding holes, brings 
background instability. 
 
Here, we systematically address the configurations of gases confined in PBG fibers that 
are more suitable for stable dissipative solitons, studying the dependence of sign and 
magnitude of the equation parameters with the experimental conditions. Moreover, we 
will obtain a propagation equation in fourth order which introduces a delayed Raman 
scattering term. This new term creates a new branch of solutions that exist and are stable 
in a limited range of the parameter space for which there is linear loss, so that, the 
background is stable. 
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During the 1980s quasi-crystallographic structures in solid state physics fundamentally 
amazed the scientific community [1], and inspired a new field of research in optics and 
photonics. Owing to the analogy of photonic lattices to solid state systems, the first 
optical experiments were implemented analyzing aperiodic media [2]. Irregular photonic 
lattices are of great interest as these structures offer proper band gaps where propagation 
is forbidden while translation invariance and thus the general scheme of Bloch wave 
propagation within periodic arrangements are broken. Asking for aperiodic structures 
rapidly the nomenclature of Fibonacci grating came up for this often is referred to as the 
embodiment of irregularity [3,4]. Generally spoken, the research field of aperiodic lattices 
is a fertile topic [5] as these structures offer the possibility of light localization in 
deterministic disordered structures that are settled between periodic and disordered 
systems [6]. Light localization in quasi-periodic photonic lattices is observed in Aubry 
André model and also realized experimentally in AlGaAs substrate [7]. 
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We extend these concepts to quasi-periodic Fibonacci waveguide arrays, considering light 
propagation along waveguides. We fabricate the array of identical waveguides (identical 
refractive index profile) in Fe:LiNbO3 crystal. The distance between successive 
waveguides is modulated in Fibonacci manner. This means that the sequence of 
separations consists of two elements, A and B, lined in such a way to make Fibonacci 
word. We have analyzed experimentally and numerically how various incident beam 
positions influence propagation and localization characteristics and compare it with 
appropriate periodic waveguide arrays. In general, we find the beam expansion is slowed 
down in quasi-periodic Fibonacci waveguide arrays, and localization properties in such 
lattice are closer to a random than periodic lattice. However, with a modification of the 
refractive index variation, the localization effects are observed for shorter propagation 
distances by increasing refractive index variation.  
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We construct solitonic solutions for the system of two optical beams propagating in 
opposite directions [1, 2] in parity-time (PT) symmetric [3, 4] photonic lattices by using 
modified Petviashvili method [5]. Our system support PT symmetric fundamental 
solitons, as well as solitary vortices. We propagate them and investigate their basic 
characteristics. We report power transfer between counterpropagating beams and 
symmetry breaking (or split-up) transition. 
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