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In 2D materials, electronic band contacts often make a non-trivial contribution to a mate-
rial’s topological properties. Besides band contacts at high-symmetry points (HSPs) in the
Brillouin zone (BZ), like those in graphene, there are nodal lines that form various patterns
in the reciprocal space. In this paper we have found all movable nodal lines, whose shape
depends on the model, that pass through HSPs in the presence of time-reversal symmetry.
Cases with and without spin—orbit coupling are included by studying all 80 layer groups and
their double extensions. Eight single and six double groups, including three symmorphic,
necessarily host Dirac and Weyl nodal lines that extend through the whole BZ, respectively.
Our research might be of interest in designing new materials with interesting physical prop-
erties.

Subject Index 190, 195

1. Introduction

The physics of 2D materials has become one of the focal points of solid-state science since
the electric field effect was reported in atomically thin graphene in 2004. The Brillouin zone
(BZ) of 2D materials is an even-dimensional manifold, and topological invariants are used in
explaining the properties of 2D materials, such as the integer quantum Hall effect. A non-zero
topological charge originates from singularities of electron wave functions in the reciprocal
space, and these singularities appear at BZ points where two or more electron bands touch [1].

In two dimensions, bands can touch at isolated points or lines. Band touchings can be essential
[2,3] or accidental [4]. The former are induced by the crystal and time-reversal symmetry (TRS),
they are pinned to a high-symmetry point (HSP) or line (HSL), and they remain intact by
symmetry-preserving perturbations. Accidental band contacts change their position in the BZ
by perturbations that keep the symmetry, they cannot be removed if protected by topology,
and can be removed in the opposite case (truly accidental band contacts). So far, the existence
of such movable but unavoidable nodal points (MNPs) and lines (MNLs) has been almost
exclusively linked to non-symmorphic symmetries of a crystal [5S-9]. We show below that MNLs
exist in some symmorphic groups too.

Nodal lines are further classified according to dispersion in the directions perpendicular to the
line. For higher-order nodal lines, the splitting is of order higher than one. In 3D non-magnetic
materials with spin—orbit coupling (SOC) such nodal lines are of order two and three [10]. Weyl
(WNLs) and Dirac nodal lines (DNLs) have linear splitting, with twofold and fourfold degen-
eracy on the line, respectively. The existence of WNLs or DNLs in bulk band structure leads
to interesting physical properties, such as drumhead edge states, which are nearly dispersionless
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and hence exhibit strong electron correlations [11,12]. The existence of nodal lines in three di-
mensions is connected with a particular symmetry element [13-18], and can also be analyzed
by the use of point groups [19], all 230 space groups [20], and 3D magnetic groups [21]. These
publications are augmented with exhaustive tables of all possible quasiparticles in 3D magnetic
and non-magnetic crystals [22-26].

In two dimensions, WNLs are predicted in the GaTel family [27] and in ferromagnetic layers
[28-30]. For determination of the properties of 2D materials using symmetry, characters or
irreducible (co)representations of layer groups are necessary. Those are tabulated for double
layer little groups [31], for generators of single layer groups [32], and for maximal symmetry
of hexagonal materials [33]. Recently, a full tabulation of layer groups, single and double, gray
and ordinary, has been published [34]. We used Ref. [34] together with tables for (3D) space
groups from the Bilbao Crystallographic Server [35,36] as a starting point for our research.

Here we present all MNLSs that pass through HSPs in layer groups with TRS, with and with-
out SOC. We show that these MNLs are unavoidable for crystals belonging to eight layer groups
(describing systems without SOC) and six double layer groups (for crystals with SOC). We give
dispersions and effective Hamiltonians near the mentioned HSPs and illustrate our theory with
a few examples. An interesting curiosity are three symmorphic layer groups that support MNLs
when SOC is included. Finally, we compare our results with those published in the literature
on related topics.

2. Method

With k¢ being a BZ point (an HSP), q a small wave vector, R the allowed irreducible
(co)representation of the little group Gy, of ko, and g = {/l;‘ t,;} an element (in Seitz notation)
of Gy,, the following formula holds [37]:

H (ko +9)= RN @ T (ko +7q) R(2), (1a)

where 7/’ is the operator reduction of 7'to 2D BZ. If, in addition, —kg belongs to the star of ko,
then TRS (denoted by 0) gives:

A" (@) = R' (0g) ' (~Ha) R(0g,). (1b)

where 7'(q) = H (ko +q) — H(ko), g = |
lattice vector. By differentiating these relations with respect to q at ¢ = 0 once, twice, etc., we
obtain relations between Hamiltonian derivatives and derive dispersions in the vicinity of the
HSP. We have considered Hamiltonians including the second (third) order for the case without
(with) SOC. We obtained groups and HSPs that are not located at HSLs and that have line-
like solutions for vanishing splitting terms. In all such cases, two-component Hamiltonians
contain only one Pauli matrix (in addition to the unit matrix), which we choose to be ;. Since
the nth-order Hamiltonian derivatives transform as [F%PV] ® R* ® R, and since, in all cases
of interest (except for the double group 74” at the BZ center), 'S5, = 4Tappy (or ey =
2I"; + 3T yppy, for 74P at the BZ center), we can exclude the possibility that some higher-order
derivatives couple with any other Pauli matrix, except the ones already contained in the linear
or quadratic (linear, quadratic, or cubic for 74? at the BZ center) terms in the Taylor expansion
of the Hamiltonian, which would cause energy splitting. I';ppy denotes the 2D polar-vector
representation that acts in 2D reciprocal space and I'; is the unit representation, while [F%PV]
is the symmetrized nth power of I';ppy. It turns out that the four-component Hamiltonians

t;k} and Zsko differs from —k, by a reciprocal
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that do not correspond to the fortune-teller (FT) dispersion [38,39] do not support MNLs.
Since gray single and double layer groups have little group correpresentations of dimensions
two and four (besides 1D), our method exhausts all possibilities.

We now prove that, if an MNL exists in the vicinity of an HSP, it must continue further. With
ko now being the touching point of two bands located near an HSP, its little group contains
only the horizontal reflection plane as a non-trivial element. Both bands can be approximated
by E1 = p1q1 + p2q> and E; = ¢1q; + c2q» respectively, so that p; # ¢; and py # ¢, (at q = 0 two
bands touch by the initial assumption; ko is now not an HSP but lies close to it). Now E| = E»
has the solution ¢, = ¢1(p1 — ¢1)/(c2 — p2), which means that the line continues. We can repeat
the same reasoning for another point close to kg and so on. In other words, MNLs cannot be
interrupted.

Finally, guided by the result described in the previous paragraph, we have included groups
that host FT states described in Refs. [38] and [39] for non-SOC and SOC cases, respectively, and
that are also experimentally observed [40]. Among the conclusions of the previous paragraph is
that FT states cannot be the only features at the Fermi level. This holds no matter if the Chern
number of FT states is integer or not.

3. Results

In what follows, ¢ denotes a real parameter, while ¢; and ¢, are projections of q to orthonormal
basis vectors e; and e,, respectively. The orientation of the basis vectors is arbitrary since no
little group of HSPs in question contains a horizontal rotation axis or vertical reflection plane,
except for groups hosting FT dispersion. However, depending on the parameters of the model,
sometimes it is more convenient to switch to another orthonormal basis e}, €/, which will be
defined below. In these cases, projections of q to this new basis are denoted by ¢ and ¢,. Finally,
V/(iz (Vlfz,n) are the second- (third-)order derivatives of certain components of the Hamiltonian.
These are real parameters, symmetric under any permutation of indices, but with no additional
symmetry. The superscript D denotes a double group, which is the symmetry of the system with
SOC.

Groups and HSPs hosting MNLs when SOC is neglected are shown in Table 1, those with
SOC in Table 2. For groups 5, 7, 36, 48, 52 (points (0, £1/2), ( & 1/2, 0)), 4P, 5P, 357, and 74"
(points (0, +1/2), ( £ 1/2, 0), £(1/2, 1/2)), the Hamiltonian and dispersion are:

2 2
H=E+ > V2qu |60+ [an+an+ Y VD digua | 5. (2a)
I, m=1 1,m,n=1
2 2
Ea=Ey+ Y VOaqagn*|ag+agn+ Y. VS qiguds - (2b)
I,m=1 I, m,n=1

For the new basis given by:

, cie; + e
el -,
/.2 2
Cl + Cz
—Ce] +cre
/
o = Gt ae (20)

/2 2
cl—l—c2

the Hamiltonian and dispersion are:
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Table 1. Single layer groups hosting unavoidable accidental nodal lines through HSPs. The notation
for the layer and space groups as well as the primitive basis vectors is according to Refs. [42] and [43],
respectively. The coordinates of the HSPs in the last column are in the primitive basis {b;, by} of the
reciprocal 2D lattice.

Single layer group Corresponding space group Diperiodic plane HSP
5 pllb 7 Plcl C? y=0 (0, £4)
(+1.4)
7 p112/b 13 P12/c1 G, y=0 (0, 1)
(1)
33 pb2ia 29 Pca2, G, y=0 (:I:%,:I:%)
36 cm2e 39 Aem?2 Ch x=0 (0, £4)
(+1.0)
43 p2/b2la2la 54 P2i/c2lc2la D}, y=0 (£1.+1)
45 p21/b21/m2la 57 P2/b2i/c2i/m D)} x=0 (£1.£1)
48 c2/lm?2im2le 67 C2/m2Im?2le D3} z=0 (0, £1)
(+3,0)
52 pain 85 P4in G, z=0 (0, %)
(+£3.0)
(%3 %3)

Table 2. Double layer groups hosting unavoidable accidental nodal lines through HSPs. The notation
for the layer and space groups as well as the primitive basis vectors is according to Refs. [42] and [43],
respectively. The coordinates of the HSPs in the last column are in the primitive basis {b;, by} of the
reciprocal 2D lattice.

Double layer group  Corresponding double space group Diperiodic plane HSP
4P pllm 6P Plml C! y=0 0, 0)
(£3.0)
(0. +3)
(£3.+3)
5P pllb 7P Plcl C? y=0 (0,0)
(£3.0)
299 pb2im 267 Pmc2, c3, x=0 (0, +1)
(+3.43)
330 pb2ia 29P Pca2 cs, y=0 (0, +1)
35P cm2m 380 Amm?2 i x=0 (0, £1)
(£3.0)
74P p6 174P P6 Cl, z=0 (0,0)
1
(+3.0)
(0. %)
+(3.3)
2
¥ (2 ~ o~
H=\E+ Y V%, |6+ +3 (g +cds) 5. (2d)

I,m=1
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2
Eva=Eo+ Y V044, £,/ +3|a + s

[,m=1

(2¢)
withcg = (V5) =336V S) + 313V E) — AVED /(&3 + ). Since ¢ + cogs = 0has one so-
lution, one MNL passes through q = 0. In Egs. (2d) and (2e), we neglect energy splitting terms
that contain products of ¢} with ¢}, in comparison to ¢;. Such HSPs were mentioned in Ref.
[41] as having linearity rank equal to one.

For group 52 near BZ corners, the following relations hold:

H= (Eo + cq®) 50 + (147 + 29192 — 143) 1, (3a)
Eip = Ey+ cq’ £ |eig] + 2140 — 1) - (3b)
In the new basis,
e/ _ €] + )"eZ

VT+22

—ie| + e
€)= — =, (3¢)

POV R

where A = (¢2 +,/¢5 +4¢7)/(2¢1), the following holds:

H = (Eo + cq/z) G0 — /3 + 4clq| ghon, (3d)
Ei» _Eo—l—cq’z:I:,/c2+4c1 |q1q2 (3e)

Since ¢} ¢, = 0 has two solutions, two MNLs intersect at a right angle for q = 0.
For group 74” near the BZ center (ko = 0) the Hamiltonian and energies are:

H = (Ey+ cq®) 60 + (141 (6} = 363) + 202 (63 — 341)) G, (4a)

E]z—Eo—i—Cq :E|C1q1 ( —3q2)+czq2( —3q1)| (4b)

The new basis is given by:

, e + ¢ Bey

el - )
VGt B
—c1Be| + cer
¢, = A58 T 0® (4¢)

VG + B

where B=1+2,/14 3/c3cos[(1/3)arccos(1/,/1+ c3/c3)] is a real solution of the cubic
equation (ci/c2)?B* — 3(ci/c2)*B*> — 3B + 1 = 0. In the new basis the Hamiltonian and dis-
persion are:

C%(B2 —2B)—¢3

24 (45 — 347) G, (4d)
JG3+ AB?

(B> —2B)— 3

1/(:2 + c282

Here we note that ¢7(B> —2B) — ¢5 > 0. Since ¢5(¢5 — 3¢7) = 0 has three solutions, three
MNLs intersect at q = 0 at angles of 7/3.

ﬁ = (E() + Cq/z) o0 —

Eip=Ey+cq?+ 2> (45 = 3q7)|- (4e)
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(a) .

Fig. 1. Tight-binding model for p112/b: (a) crystal structure (all nuclei are of the same type; black and
gray circles denote nuclei above and below the drawing plane, respectively; visualization by VESTA [44]);
(b) electronic band structure for fo, f1, f>, and f3 equal to 4.2, 1.3, 0.9, and 0.5 in arbitrary units (a.u.),
respectively (red arrows denote MNLs); (c) position of MNLs in the reciprocal space, (d) same as (c) for
f0, /1, /2, and f3 equal to 3.6, 3.1, 2.7, and 0.9 a.u., respectively. In (c) and (d) numbers in brackets denote
coordinates of special points in the reciprocal basis (blue and black circles). Mutually equivalent points
are denoted by circles of the same color.

Groups 33, 43, 45, 29”2, and 33 host fortune-teller (FT) dispersion, which is described in
more detail in Refs. [38,39]. Here we only give the dispersion:

Ej = jledlqil + lelgall, (7,1 € {+, =), ()

where ¢ and ¢, are (only in this equation) positive quantities. The bands are ordered in the
following way: E_ < E_ _ < E, _ < E, ;. It follows that MNLs E_ _ = E, _ are given
by c1q1 = ¢2¢» and ¢1q; = —c2q>. Two MNLs intersect at ¢ = 0 at an angle that depends on
c1 and ¢,. Those MNLs arising from FT dispersion are at constant energy only in the linear
approximation. When quadratic corrections to the Hamiltonian are accounted for, the MNLs
remain unsplit, but the overall energy shift is quadratic in ¢ (the wave vector along the MNL).

4. Illustrative examples

We first consider the tight-binding model composed of the s-orbitals, without SOC, on the
structure shown in Fig. 1(a), which belongs to layer group p112/b(No. 7). The occupied Wyckoff
position is 2d with z = 1.3 A. The Hamiltonian and its eigenvalues are:

fo+2ficos(k-ap) De~tkm (fz cos (1k - ay)

B = +/f3cos (k-a; — 3k - as) > | 6a)

PYELE (f2 cos (3k - a;)
+fgcos(k-al — %k-az)) fo+2ficos(k-ap)

Ei> (k)= fo+2ficos(k-a;)+2|frcos (%k-az) + f3cos (k~31 — %k-az)‘. (6b)
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Fig. 2. Tight-binding model for symmorphic p11m: (a) crystal structure (nuclei of both types are located
on one plane; visualization by VESTA [44]); (b) electronic band structure for £, f1, z1, z2, and z3 equal
to2,3,4+ 2i,3 — 6i,and 1 + 2ia.u., respectively (red arrows denote MNLSs); (c) position of MNLs in
the reciprocal space; (d) same as (c) for fy, f1, z1, z2, and z3 equal to 4.2, 1.3, —2.4 + 1.24, 3.4 — 5.6i, and
6.1 + 1.2ia.u., respectively. In (c) and (d) numbers in brackets denote coordinates of special points in
the reciprocal basis (blue, orange, green, and black circles). Mutually equivalent points are denoted by
circles of the same color.

Here fo, f1, f>, and f3 are real hopping parameters for the zeroth, first, second, and third neigh-
bors, respectively. The two energies coincide for:

S+ f3cos(k- al)) . 2mn}

S3sin(k - a;) ’
where m is any integer. Equation (6¢) is well defined for all possible values of hopping param-
eters. The full band structure for particular values of parameters is shown in Fig. 1(b), where
band touching lines are clearly visible. The positions of the lines in the reciprocal space are
shown in Fig. 1(c). By varying the parameters, the shape of the lines changes, but the lines al-
ways pass through points (0, 1/2) and (1/2, 1/2), and through ones equivalent to them, as shown
in Table 1 and Figs. 1(c), (d).

We next consider the tight-binding model on the structure shown in Fig. 2(a), which belongs
to the symmorphic (double) layer group p11m (4°). We choose basis functions |s11), |s1{), [s271),
|s24), where s1, 5o are s-orbitals for atoms 1 and 2, respectively, while 1 and | denote spinors
for up and down spins, respectively. Since the horizontal reflection plane is the symmetry of
the system, the up and down states are decoupled from each other, so that the Hamiltonian is
block-diagonal:

k-a e {—2 arctan ( (6¢)

~ (H, 0
with
H = H; = Jo zje WA 4 7y 4 Zyelk @)
Hy(k) = H{(=k) = (ZTeik-al + 24+ e e@—an) 2 . (7b)
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Here f( and gy are real, on-site hopping parameters for sites 1 and 2, respectively, while z;, z,
and z3 are complex hopping parameters for the first, second, and third neighbors, respectively.
The full band structure is:

1 . .
B0 = L8 = o e o g e (70)
1 . .
ElT’i(k) — fO ~2Fgo _ 5\/(f0 _ go)z + 4|21€:F’k'a1 +2+ Z3ei’k'(32_a1)|2. (7d)
Both nodal lines EIT = Ef and E2T = Ej are given by:
hysin(k - ay) + hysin(k - ap) + /4y sinfk - (a; —a;)] =0, (7e)
where hy = —i(z323 — 2223), hy = —i(z{z3 — z1z}) and hy = —i(z}z, — z)z}) are real parameters.

Equation (7¢) has the following solution:

h h
k-a) e {dD — arcsin (h—3 sin d)) + 2mm, ® + arcsin <h—3sind>) + 2m + l)n} , (71)
1 1

with m being any integer and
hl Sil’l(k : al)/h3

S+ I2) 78+ 2y cos (- an) /2
i cos (k- 1) /hs + ha/hy

\/(h% + h3) /13 + 2hihy cos (k - ay) /h?

The argument of arcsin in Eq. (7f) has modulus less or equal to one except if (4/h3)*> and
(ha/h3)? are both less than one. In that case, —1 < cos(k - a;) < t, or t; < cos(k - a;) < 1 must
hold (#1, = —hihy /13 £ \/(1 — h?/h3)(1 — h3/h3)). The band structure shown in Fig. 2(b) for
particular values of parameters confirms the existence of MNLs. In this case /47 and 43 are both
less than h%, while in the case shown in Fig. 2(d) this does not hold, with a clear difference in

the accidental degeneracy pattern. In any case, MNLs pass through HSPs as shown in Table 2
and in Figs. 2(c), (d).

sin (®) = (7g)

cos (®) = (7h)

5. Discussion and conclusions

We compare our results with those on related topics published in the literature. Analysis of
all 3D crystallographic double point groups, for systems with SOC, that shows in which cases
movable or unmovable nodal lines exist has been reported [45]. These results can be used for
symmorphic little groups, since allowed representations are then just a product of point group
irreducible representations with the phase factors that represent translations. Point groups QD
and Q?h hosts one and three MNLs, respectively [45]. This is in accordance with our results in
Table 2 (the little group for 74” in the BZ center is gfh; for the remaining symmorphic groups
itis Q? ). On the other hand, the HSPs for non-symmorphic 29” and 33” from Table 2 host two
intersecting MNLs, while Ref. [45] predicts one nodal line along the axis of order two for C5.
This difference is because 29” and 33” are non-symmorphic and because band degeneracy at
HSPs hosting FT states is four, while Ref. [45] considers two-band models.

The origin of doubly degenerate nodal lines that connect time-reversal invariant momenta in
3D crystals with SOC is reported in Ref. [46]. The list of symmorphic 3D space groups that host
such lines [46] contains all corresponding symmorphic space groups in Table 2, which supports
our findings. Compound PbTaSe; is a symmorphic 3D metal with SOC that exhibits nodal lines
in experiments [47], as predicted in Ref. [46]. To avoid Kramer’s degeneracy in the whole BZ,
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the authors of Ref. [46] considered non-centrosymmetric 3D crystals. They show that a nodal
line through an HSP exists if its little groups have at least one improper rotation (symmetry
element with determinant —1). In our cases this is always fulfilled, since at least the horizontal
plane must be present in order to avoid band repulsion due to the non-crossing rule.

To illustrate their own results, the authors of Ref. [48] used a tight-binding model with SOC
on a structure that belongs to group 74” (p6). Three nodal lines intersect symmetrically at the
BZ center and also pass through the middle of the BZ edges, thus confirming our prediction.
Numerical calculations [49] suggest that a boron bilayer adopts a structure with the symmetry
6. Since boron is a light element, the reported band structure lacks SOC [49]. Future research
could show whether it is possible to enhance SOC using bilayered boron as a starting material.

Group theoretical conditions for semi-Dirac dispersion in non-magnetic 2D materials with
negligible SOC are reported [50]. All groups and HSPs from Ref. [50] are here included in Ta-
ble 1. The tight-binding model for group ¢ 2/m 2/m 2/e gives a line of degeneracy that depends on
the numerical values of the tight-binding parameters [50]; hence it isan MNL as predicted here.
Moreover, the dispersion near the (0, 1/2) point in Ref. [50] matches that for group ¢ 2/m 2/m2/e
given here in Eq. (2e). Similarly, the tight-binding model for group p 1 1 b, published in Ref.
[51], exhibits MNLs across the whole BZ with the same dispersion near the HSPs indicated
in Table 1. Lines of accidental degeneracy, noticed in Ref. [S1], have gained a full explanation
in the present work. Group c¢m 2 e is omitted in Ref. [50], due to a bug in the REPRES pro-
gram on the Bilbao Crystallographic Server, which was fixed recently. According to Ref. [50],
the authors used REPRES [35] for finding allowed representations of layer groups via their
corresponding space groups. Finally, one can point out that groups from Ref. [50] give semi-
Dirac dispersion (quadratic in one direction of the BZ that splits linearly in the perpendicular
direction) while the bands do not form cones. The formation of semi-Dirac cones requires a
Hamiltonian of the form ¢¢15; + ¢2¢430; (or, in the more general case, ¢1¢16; + c2q507), with
two different Pauli matrices (j # /) and with n-natural number greater than one. We have omit-
ted the term with the unit matrix o), since it does not lead to band splitting. In this case the
band splitting is +,/c2¢? + 343 (in the more general case it is +,/c2¢? + ¢3¢3"), with q = 0 as
the only touching point. Detailed analysis of all HSPs of all gray single or double layer groups
does not give any HSPs with semi-Dirac cones [41].

In summary, we have determined all layer groups that host nodal lines through high-symmetry
BZ points, and whose shapes depend on the model parameters (MNLs). In our analysis we have
included both cases without and with SOC in the presence of TRS. Although we did not restrict
our search to Weyl or Dirac nodal lines only, it turns out that all the MNLs that we found are
either DNLs (in cases without SOC) or WNLs (in cases with SOC). Since little group represen-
tations responsible for MNLs are the only allowed ones in listed HSPs, the existence of MNLs
is guaranteed by the layer groups from Tables 1 and 2. On the other hand, it is not guaranteed
that MNLs are at constant energy, nor that they lie close to the Fermi level, although such
cases are not necessarily excluded. Our finding extends the knowledge of band degeneracies
in 2D materials and might be useful for designing 2D materials whose sensitivity to external
conditions like temperature, pressure, strain, etc. is yet to be studied.
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Dirac-like electronic states are the main engines powering tremendous advancements in the research of

graphene, topological insulators and other materials with these states. Zero effective mass, high carrier

mobility and numerous applications are some consequences of linear dispersion that distinguishes Dirac

states. Here we report a new class of linear electronic bands in two-dimensional materials with zero elec-

tron effective mass and sharp band edges, and predict stable materials with such electronic structures uti-
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1. Introduction

Electrons can move in certain materials as if they have no mass.
Massless fermions in solid state materials have played an increas-
ingly important role since the discovery of graphene," a material
where zero electron effective mass is caused by linear Dirac-like
dispersion. While the first mapping of the electronic structure of
graphene to the Dirac equation was an interesting theoretical
curiosity,” the true significance of the Dirac-like states in solid
state systems became apparent upon identification of many
physical, measurable consequences of the linear dispersion.® For
instance, the existence of massless fermions in graphene yields
extraordinarily high electron and hole mobilities® with revolu-
tionary implications in electronics. Other implications include,
and are not limited to, Klein tunneling in single- and bi-layer gra-
phene,” and the quantum Hall® and fractional quantum Hall”
effects at room temperature. The two-dimensional (2D) nature of
graphene and related materials brings numerous additional
advantages including mechanical flexibility, optical transpar-
ency,® and possibilities for engineering heterostructures with the
desired properties by stacking of two or more 2D materials.’
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tElectronic supplementary information (ESI) available: Group-theoretical deri-
vations, the effective mass and density of states calculation as well as the outline
of the algorithm used in ab initio calculations. See DOI: 10.1039/C7NR07763G
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lizing symmetry group analysis and an ab initio approach. We make a full classification of completely
linear bands in two-dimensional materials and find that only two classes exist: Dirac fermions on the one
hand and fortune teller-like states on the other hand. The new class supports zero effective mass similar
to that of graphene and anisotropic electronic properties like that of phosphorene.

There is a whole plethora of various 2D materials beyond gra-
phene with a linear dispersion in their band structure,' includ-
ing topological insulators'" and semimetals.">

Although the behavior of electrons in the vicinity of K and K’
points of graphene’s 2D Brillouin zone (BZ) is actually described
by the Weyl equation, such points are, for historical reasons,
called 2D Dirac points (occasionally, 2D Weyl points)."* Their
generalizations to 3D bulk single crystals are called (spin-1/2)
Weyl points. According to the fermion doubling theorem, Weyl
points (fermions) must appear in pairs of opposite chirality in
the BZ. Two such Weyl fermions appearing at the same point in
the BZ are called a 3D Dirac point,"* while a pair of 3D Dirac
points at the same k-vector forms a double Dirac point."® Note
that at a band crossing, a Weyl point (3D Dirac point, double
Dirac point) is two-fold (four-fold, eight-fold) degenerate.
Generalizations for higher pseudo-spins are possible. Recent
ab initio calculations show spin-1 Weyl and spin-3/2 Rarita-
Schwinger-Weyl fermions in transition metal silicides,"® such
as RhSi."” An additional type of Dirac point appears in antiferro-
magnetic (AFM) 2D layers.'®'® Here the crossing point is four-
fold degenerate, the corresponding Chern number of each band
is zero and such crossings can appear as a single point in the
BZ. Quasiparticles in solids can even go beyond their Weyl and
Dirac counterparts as shown by the classification of linear and
quadratic three-, six- and eight-band crossings in 3D crystals
with a strong spin-orbit coupling (SOC).*° Other studies also
discuss three-,'® six-,'®"” and eight-fold"® degenerate fermions.
Different types of electronic dispersions are intricately linked to
symmetry, as also exemplified with cone engineering by sym-
metry manipulation,*® whereas new 2D Dirac cones have been
generated in graphene under an external periodic potential.>*
Maiies has used space group representations to find sufficient
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conditions for the existence of spin-1/2 Weyl points in the BZ of
3D single crystals, and enumerated the possible T-symmetric
corepresentations of such points for spinless systems (single
groups).>® Recently, a set of symmetry conditions that guaran-
tees 2D Dirac-like dispersion in the vicinity of high symmetry
points in the BZ of any non-magnetic 2D material with negli-
gible SOC has been reported.”*** Also, the existence of 2D Dirac
fermions in bilayer non-honeycomb crystals using symmetry
analysis has been indicated.?® It has recently been shown that
certain non-symmorphic symmetries induce new band hour-
glass-like dispersion at the surface of some 3D single crystals.>”
Non-symmorphic symmetries also cause a similar dispersion in
2D (layer) systems with SOC.**?° Topologically protected band
touchings (TPBT) were found on the BZ surface of a SnTe 3D
material class®® and the A,B; family of materials.>" Note that
such band touchings®>”***! are located away from the high-sym-
metry points of the BZ, and that they can be moved but cannot be
removed by the change of model parameters used to calculate
the band structure. Surprisingly, the existence of classes of
massless fermions other than 2D Dirac-like, in 2D non-mag-
netic, time-reversal symmetric (TRS), materials with negligible
SOC has not been addressed yet.

Here we report that combined TRS and certain crystal non-
symmorphic symmetries of 2D materials lead to the emer-
gence of peculiar massless linearly dispersive bands which we
call fortune teller (FT) states. The geometries of these FT states
in reciprocal space are pyramidal and paper fortune teller-
like, unnoticed in solid state matter before. Our analysis indi-
cates that these states and the Dirac cones are the unique pos-
sibilities for essential linear dispersive bands in all diperiodic
directions of non-magnetic 2D materials without SOC. Our
results are based on the analysis of all eighty layer single
groups, which are all possible symmetries of non-magnetic 2D
materials with negligible SOC. Inclusion of SOC would require
an analysis of eighty layer double groups. These are distinct
mathematical entities, and the results for the SOC-case do not
apply to the non-SOC-case or vice versa. For this reason we
treat here the non-SOC-case and leave analogous analysis for
the SOC-case for future research. Similar search for Dirac-like
and other (unconventional) quasiparticles has already been
performed in the SOC-case.'*?%*%2° Finally, we predict stable
2D materials with our new massless fermions using DFT and
our own-developed software. The ab initio calculations have
confirmed the existence of the predicted electronic dispersion
and quantitatively determined structural and electronic pro-
perties, which can be utilized in further experimental realiz-
ations of the new class of 2D materials.

2. Classification of linear states in 2D
materials

We consider all possible symmetry groups of non-magnetic
crystals with negligible SOC, which are periodic in two spatial

directions and finite in the perpendicular direction. These are
the so-called layer single groups (or diperiodic groups). This
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implies that spinful degeneracy of a band is twice the spinless
(orbital) degeneracy. Representation-protected band spinless
degeneracy at the wave vector k, in the 2D BZ, for bands
belonging to the allowed*” (relevant,* small**) irreducible rep-
resentation (irrep) R of the group of the wave vector (little
group) G(ko), is given by the dimension of R. For all eighty
layer single groups irreps R are either one- or two-dimen-
sional.***> TRS either doubles spinless band-degeneracy at
given k, or leaves it unchanged.?® Therefore, possible essential
spinless band-degeneracies are one, two or four.

Since the orbitally (spinless) non-degenerate band is
smooth, its second derivative is finite and the effective mass,
being inversely proportional to the second derivative,*” is
nonzero. Therefore, the bands carrying zero effective mass are
possible only in the vicinity of points in the BZ where the elec-
tron energy is orbitally (spinless) degenerate. We show in the
ESIF that in the vicinity of a spinless double degenerate point,
2D Dirac bands are the only possible massless bands.

The behavior of the bands near four-fold orbitally (spinless)
degenerate points in non-magnetic 2D materials with no SOC
has not been examined thus far and we perform this task as
described in the next section. Before that, we comment on why
we think that four-fold spinless degeneracies can only be
caused by combined TRS and crystal symmetry. It is well-
known that some crystal non-symmorphic symmetries com-
bined with certain topological properties can lead to touching
of two bands somewhere on high symmetry lines in the BZ.
We call this topologically protected band touchings (TPBT). In
such TPBT, band degeneracy is larger than required by dimen-
sionality of irreps of the corresponding little group. Such an
approach started with Zak’s introduction of elementary band
representations®® (EBR) and culminated with the recent classi-
fication of all possible 10403 band structures in double space
groups.®” Essentially, the presence of TPBT can be established
by investigation of compatibility relationships of irreps along
certain closed loops in the BZ."® Alternative formulation is in
terms of non-symmorphic symmetry eigenvalues.”®° It some-
times happens that a band belongs to different irreps at two
end points in the symmetry line and consequently must have
touched another band an odd number of times (most probably
once). The method cannot determine where exactly in the sym-
metry line two bands touch. Such a position depends on the
model used to calculate the band structure. In layer single
groups irreps of little groups for symmetry lines are one-
dimensional inside BZ. BZ edges have either several one-
dimensional irreps or only one two-dimensional irrep or two
one-dimensional irreps related by TRS.?** Corresponding three-
fold (four-fold etc.) spinless degeneracy would require TPBT of
three (four etc.) bands at the same point in the BZ which we
assume is unlikely. In addition, all these three (four etc.)
bands would have to belong to different irreps of the little
group, which at some point becomes impossible. On the other
hand, two double-degenerate bands at the edge of the BZ
belong to the same irrep and therefore cannot touch.”* For
these reasons, we assume that TPBT can lead at most to
double spinless degeneracy and to Dirac-like dispersion. The
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same assumption holds even for band touchings that are not
protected by topology but are model-dependent (accidental
band touchings). Note that above arguments do not apply to
the SOC case. For example, TPBT of two two-fold spinful
degenerate bands exist in some layer double groups.>®

3. Fortune teller states

In the following, the functional form of the new linear dis-
persion relation that corresponds to the vicinity of four-fold
spinless degeneracy will be presented and compared to 2D
Dirac-like dispersion. As before, we assume that q is a wave
vector of small modulus, t a real 2D vector, u,;, u, positive
quantities and ¢,, g, projections of q along certain, mutually
orthogonal directions. If k, is a point that hosts a pair of 2D
Dirac cones, then the Taylor expansion of the electron energy
around this point reads:

Eio(ko+q) = Ey+t-q+ Jurqi? + uaqa?. (1)

For u; = u,, 2D Dirac cones are isotropic and for t # 0, the
cones are tilted.*>** The new electronic dispersion presented
in this paper is:

Einzako+q) = Ey + |ualg1] = wlqa||- (2)

While the 2D Dirac band has the geometric form of a
simple cone with a circular or elliptical cross section, the geo-
metry of dispersion (2) consists of two different geometric
forms. The plus sign under the absolute value yields the geo-
metry of a four-sided pyramid, whereas the minus sign corres-
ponds to a more complex geometry, which looks like the paper
origami called paper fortune tellers [Fig. 2(b)]. Since both
forms always appear together, we label dispersion (2) using
one name - the fortune teller (FT) dispersion.

Next, we state the conditions that lead to four-fold essential
spinless degeneracy. According to Herring,*® there are, in prin-
ciple, two possibilities for achieving this. The first one is:

O;: ko is equivalent to its inverse —k,

O,: R is two-dimensional,

O3: R is pseudo-real or complex.

The second one is: k, is not equivalent to —k,, =k, is in the
star of ko, R is two-dimensional, R;, = R1G is pseudo-real or
complex (R, is the representation of the whole layer single
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conditions O;-O3 are the only essential four-fold spinless
degeneracies in such systems.

Now we show how the linear dispersion (2) is connected to
TRS and crystal symmetry. A general matrix form of the Taylor
expansion of a four-component Hamiltonian around a given k,
point of BZ is:

H(ko +q) = Eoly + H', (3)
where
B =Wl ®13)), (4)
and
W= Ké‘ﬁ(ko + q)} . (5)
dq q=0

I, is a four-dimensional unit matrix, ® denotes the
Kronecker product, (d/dq| is the transposed gradient at q = 0,
hence W is a four-by-eight matrix. We can combine the repre-
sentation R and its complex conjugate R* to obtain one four-
dimensional, physically irreducible, real representation D in
the following way: D = R@R*. It follows that we can choose the
basis functions {¢s, ..., ¢4} for D to be real at k, so that TRS
imposes the following (* denotes complex conjugation):>*

H*(ko +q) = H(ko — q). (6)

Taking the first order derivative of this equation with
respect to q, at q= 0 gives the following condition for W:

W* = —Ww. (7)

Taking into account in addition the hermicity of the
Hamiltonian, we obtain for A’ the following:

0 vVi-q V- q V3 -q
=il V14 0 Varq  Vs5-q 7 (8)
—V2-q —Vg-q 0 Ve - q
—=Vz3-(qQ —Vs-qQ —Veg-Qq 0

where v; are real 2D vectors. Since H' is purely imaginary, for
every eigenstate y;, corresponding to energy E;, there exists an
eigenstate y, that corresponds to the energy —E;. Therefore,
eigenvalues of A’ come in pairs (Ej, —E;) and the Hamiltonian
H' obeys the particle-hole symmetry. The eigenvalues of H(k,) +
H' given by eqn (9) confirm our statement:

6

> vi-q)® £

Jj=1

1
Ei1334 =FEy = 75 ,

J

group G, obtained by induction from R). Detailed case-by-case
study of representations of layer single groups® shows, by
exhaustion, that the second possibility never occurs in 2D non-
magnetic materials with negligible SOC. A more detailed dis-
cussion on the conditions for four-fold spinless degeneracy
and the classification of all massless bands in non-magnetic
2D materials with weak SOC is given in the ESI.f Therefore

This journal is © The Royal Society of Chemistry 2017

(v - (DZ}

2

—4[(vi - q)(ve - q) — (v2- q)(v5 - q) + (v3 - q) (v - q)]*. (9)

Note that particle-hole symmetry is not accidental, but it is
a consequence of the fact that complex conjugation is a
symmetry operation. More precisely, in our case the
combination of TRS, reality of representation D and the fact
that k, is time-reversal invariant momentum leads to
purely imaginary A, and to particle-hole symmetry with
respect to Ej,.
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To further simplify eqn (9) we use the following identity>*
valid for every element (in Seitz notation) (%|z;, + R) of the little

group G(ko):
A(ko +q) = D*((Rlr; + R)H (ko + 'q)D((A|z;, + R)), (10)

where D((k|z;, + R)) is the matrix of the representation D that
corresponds to the element (i|z;, + R) and 7’ is the reduction
(as an operator) of & to two-dimensional k-space. After differ-
entiating (10) with respect to q, at q = 0 we obtain (T denotes
transposition):

W =D((h

7, + R)W[D((hlz; + R)) @ A" (11)

Eqn (11) is a consequence of crystal symmetry. If we write
the matrix W as a column-vector |W), eqn (11) becomes:

[D((Rlz;, +R)) @ D((Alz; +R)) @ R)|W) = [W).  (12)

It follows that the matrix W belongs to the totally symmetric
part of the representation DQD®I ,ppy, Where I'ppy is a two-
dimensional polar-vector representation. For all groups that
satisfy conditions O;-O; we have, using Wigner’s method of
group projectors, found the form that symmetry imposes on
the matrix W and consequently on vectors v;, and inserted the
result in eqn (9). In all cases, the equation for eigenvalues (9)
reduces to the dispersion (2). More details on the application
of group projectors are given in the ESL.{

It turns out that only three out of eighty layer single groups
have allowed representations satisfying the conditions O;-0O5;.
Groups allowing the dispersion (2) are listed in Table 1. All
three groups are non-symmorphic and belong to the rectangu-
lar system. The component g, can be chosen as projection of q
along a direction that is parallel to any screw axis 2,, ¢, is a
projection along the perpendicular direction. The points k,
hosting the dispersion (2) are located at the corners (xr/a,
+n/b) of the rectangle that presents the BZ border. The corres-
ponding space group from Table 1 denotes the space group
that is obtained by periodic repetition of layer groups’
elements along the axis perpendicular to the diperiodic plane.
The diperiodic plane in Table 1 denotes the position of the
layer single group plane within the corresponding 3D space
group. The effective mass of both dispersions (1) and (2) is
zero, as shown in the ESIT using the usual formula for ..’

Analogous four-fold degeneracies are present in bulk 3D
systems,"®'” on the surface of 3D systems®" or in 2D AFM crys-
tals."®'? These are all spinful degeneracies in the presence of
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SOC. Dispersion of Rarita-Schwinger-Weyl fermions'® is pro-
portional to S;\/q.> + q,® + ¢.%, where S, is a projection of
pseudo-spin S = 3/2 along the z-axis, while the unconventional
fermion at the BZ center of RhSi is a combination of two S =
1/2 and two S = 3/2 states with a similar dispersion.'” In 2D
AFM systems the dispersion +,/gx>+¢y> is double
degenerate,'®'® and the same holds for surface Dirac fer-
mions.*" The dispersion (2) differs from these Dirac-like dis-
persions, it is a property specific to 2D materials and conse-
quently falls into the range of nanophysics.

Orbital wave functions must belong to an allowed irrep at a
given point in the BZ. This statement is valid irrespective of
strength of electronic correlations, since the Coulomb repul-
sion between electrons has the same transformation properties
as the rest of the Hamiltonian. The allowed irreps of the
groups listed in Table 1 are the only ones at these points of the
BZ, hence the electronic correlations cannot change the form
of the dispersion (2) as long as TRS and crystal symmetries are
preserved. Even if the band picture fails the energy of all elec-
trons in the crystal has dispersion (2). If one acts simul-
taneously by a space group element to radius vector of every
electron in the crystal the many-body wave function has the
same symmetry as the single-particle wave function of the
corresponding non-interacting model. On the other hand, a
combination of SOC and Hubbard interaction can result in an
AFM order, which then breaks TRS.*®*” The same effect might
occur even without SOC.*® Our analysis does not refer to such
cases so a detailed ab initio investigation of particular material
should show whether transition to the AFM order occurs.

Symmetry of the crystal lattice is responsible for (an)iso-
tropy of single crystals.*® For example, isotropy of the electric
susceptibility tensor in silicon is caused by the cubic sym-
metry, while the in-plane isotropy of graphene is caused by the
hexagonal symmetry. In our cases, crystal axes are maximally
of the second order, the irreps of the corresponding point
groups are all one-dimensional and the materials belonging to
layer groups listed in Table 1 are expected to be anisotropic.

From the analysis of irreps of layer double groups®® we con-
clude that in the presence of SOC, originally eight-fold, spinful
degeneracy splits into four doubly spinful degenerate levels for
Dg33 and two four-fold spinful degenerate levels for Dg43 and
Dg45. Since Dg43 and Dg45 contain inversion, bands are at
least spinful double-degenerate, so the four-fold spinful degen-
erate level cannot split into four non-degenerate ones along
e.g. the BZ-diagonal. On the other hand, layer double group

Table 1 Layer single groups hosting the dispersion (2) in the vicinity of the BZ corners: ko = (+xn/a, +r/b). The notation for layer- and space-groups
are according to Kopsky and Litvin** and Hahn,*> respectively. The x-, y- and z-axes are along a-, b- and c-directions of the orthorhombic 3D unit
cell, respectively. The notation for allowed representation in the last column is according to the Bilbao Crystallographic Server.>?> Symbol < denotes
equivalence between representations. In all three cases the little group G(ko) is the whole layer single group

Layer single group Corresponding space group Diperiodic plane irreps R at k
Dg33 ph2.a 29 Pca2, Cy’ y=0 Uy & U,
Dg43 p2/b24/a2la 54 P2,/c2/c2/a D,p® y=0 Uy, Uy & U,
Dg45 Dp24/b2,/m2/a 57 P2/b24/c2,/m Dop"! x=0 T, T, < T,
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Dg33 does not support four-fold degeneracy at the BZ corners,
which is necessary for FT dispersion. We conclude that SOC
destroys FT dispersion at BZ corners of layer groups from
Table 1. This result is valid irrespective of the strength of SOC.
The four-fold orbital, and therefore eight-fold spinful degener-
acy in layer single groups from Table 1 leads to electron band
filling of 8n (n =1, 2, 3, ...), as a necessary condition for bands
to be either completely filled or completely empty.’>>* This
requirement remains even in the SOC case.”® In fact Dg33,
Dg43 and Dg45 are the only layer double groups with band
filling 8n necessary for insulating systems.® In contrast to
layer single groups from Table 1, essential eight-fold spinful
degeneracy does not exist in their double group counterparts.>
Instead, four spinful double-degenerate bands are tangled
together in an hourglass manner in double-Dg43 and Dg45,
while in non-centrosymmetric double-Dg33, eight non-degen-
erate bands form a “cat’s cradle” structure.*® Analysis of band
connectivity”® for double-Dg33, Dg43 and Dg45 confirms our
prediction of SOC splitting for bands at the corners of the BZ
for groups from Table 1.

Since there is only one FT dispersion in the first BZ of each
group from Table 1, it is interesting to investigate if band topo-
logy requires appearance of additional dispersions somewhere
else in the first BZ. According to Chern, the following integral
must be an integer C,:

i

C,=—
" on

J.J;ﬁ 7 Vg X (¥ (q)|Vaya(q)) - ds, (13)

where y, is the eigenstate of n'™ level, C,, is the Chern number,
while iVq * (w,(q)|Vqwn(q)) is the Berry curvature."** In the
case of graphene, each Dirac point gives contribution of 1/2 to
the C, and consequently, the number of Dirac points in the
first BZ must be even. This is a 2D version of the Fermion dou-
bling theorem. In contrast to graphene, our dispersion leads
to zero Berry curvature for each of four states in each of the
three groups. Consequently, the Berry phase is zero along any
closed contour in the BZ, which gives C, = 0 forall n = 1, 2, 3,
4. It follows that topology does not forbid FT to be the only dis-
persion at the Fermi level. Similar conclusion holds for e.g.
AFM Dirac cone, where the contact point is also four-fold
degenerate.'®

Next we discuss the behavior of FT dispersion under strain.
Application of strain that deforms the rectangular primitive
cell into an oblique one, lowers the symmetry from a Dg33 to a
Dg5 layer group, i.e. from Dg43 and Dg45 to Dg7. Since both
Dg5 and Dg7 necessarily host the semi-Dirac dispersion,>® FT
dispersion splits into two pairs of semi-Dirac cones. The
Chern number of semi-Dirac dispersion is zero, so such bands
are topologically trivial. It follows that any linear combination
of single band Chern numbers, such as mirror Chern number
or spin Chern number, is also zero in this case. For strain that
does not deform the rectangular primitive cell, the behavior of
FT dispersion is determined by translationengleiche subgroups
of Dg33, Dg43 and Dg45. As detailed analysis of band degen-
eracies in all layer single groups shows, breaking of horizontal
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glide plane symmetry of Dg33, splits an FT point into two spin-
less double-degenerate points, both belonging to double spin-
less degenerate lines. Such splitting occurs also in Dg43 and
Dg45, when one breaks any symmetry element of their sub-
group Dg33. On the other hand, breaking of any element
belonging to Dg43 or Dg45 but not to Dg33 gives the final
group Dg33 and FT states are robust against such
deformations.

Density of states (DOS) per unit area/volume for the n™
energy band is given by the following formula:
pule) = (1/21)"™ [ [10p, 6(e — €a(q))d”mq. Here, the dimen-
sionality D, is equal to three (two) for 3D (2D) systems. For
Dirac dispersion +v|q| in 3D (in 2D), it is convenient to change
to spherical (polar) coordinates. DOS is proportional to
;’Zb gPm~15(e — vq)dq, where the BZ border bzb depends on
the azimuthal and polar angles. For a sufficiently small energy
e measured from the bands contact point, we obtain, after
including the particle-hole symmetry, p,(¢) ~ |¢| for 2D, ie.
pn(€) ~ € for 3D Dirac dispersion. In both cases, DOS becomes
vanishingly small in the vicinity of contact points of the cones.
This result refers, among other cases, also to four-fold spinful
degenerate fermions in 3D."®'” On the other hand, change to
polar coordinates does not help in calculating DOS for dis-
persion (2). It is more convenient to introduce linear trans-
formations of ¢q; and g, such that expression under the Dirac
delta function contains only one variable of integration.
Details of calculations are given in the ESILf while the final
result is:

3 1 1
o)~ 5 [ 5] (14)

with degeneracy due to the spin included. Here a and b are
lattice constants while v, and v, are Fermi velocities along
a and b. It is worth noting that DOS of FT is constant around
Er in contrast to DOS of Dirac states in graphene. This unique
coexistence of zero electron effective mass and non-zero DOS
at E, might have consequences on e.g. charge transport pro-
perties. For example, a smaller sensitivity of conductance is
expected when charged impurities are introduced in materials
with FT states.

4. Ab initio search for realistic
materials

Next we report examples of (meta)stable 2D materials with the
desired layer groups predicted using ab initio calculations. We
have developed and utilized software that automatically
searches for materials with a given group, analyzes their stabi-
lity and band structure. The outline of the algorithm is listed
in the ESLj Since the atomic SOC strength increases as the
fourth power of the atomic number,"® we limited our search
only to light elements of the periodic table. For the sake of
demonstration of the new electronic dispersion in real
materials, we have searched for stable crystals with the above
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stated symmetry groups among a few light elements, including
B, C, Si and P. These are known to build stable 2D materials of
various crystal symmetries and have negligible SOC. Note that
the materials presented here are for demonstration purposes
only, without intent to be a complete list. More elemental crys-
tals with given symmetries are possible, while the list exponen-
tially grows when compounds of two or more elements per
unit cell are considered. Our symmetry arguments do not
determine the position of FT states on the energy scale, so it is
not guaranteed that the Fermi level will cross the energy near
E,. We have applied band filling theory*®*"** to our groups
and found that the number of valence electrons per primitive
cell must be an odd multiple of four, for FT states to touch
exactly at Er and that no other bands cross the Fermi level. The
simplest structures satisfying these necessary (but non-
sufficient) conditions have four identical nuclei in the primi-
tive cell and belong to Dg45. The structures are listed in
Table 2.

Note that we mean the structural stability here when we
write about stability. Our DFT calculations have been con-
ducted for the materials in an absolute vacuum. This has been
a common approach in related papers.'> '%2%273031 Here we
propose a new class of materials which may include dozens of
materials. Their chemical stability, ie. stability in the atmo-
sphere and reactivity with oxygen and other chemicals depend
on the particular material’s chemical composition, hence the
chemical stability varies among materials in the class. For
instance, phosphorene (double layer) has a Dg45 symmetry
group (hence it belongs to the new class), while its reactivity
with hydrogen, oxygen and fluorine has been analyzed in
detail.>® Questions of chemical stability of other found and yet
to be found materials in the new class are to be answered in
future research.

A stable structure with FT contact points positioned exactly
at the Fermi level [P(Dg45), marked with bold letters in
Table 2] is shown in Fig. 1(a). It consists of zig-zag chains of P
atoms placed alternately at two parallel planes. The potential
energy surface (PES) of elemental phosphorus has multiple
local minima, ie. many allotropes have been recently pre-
dicted,’® hence there are numerous (meta)stable phases of
phosphorus with different symmetries. P(Dg45) is a new one,
placed at the distinct local minimum of PES in the configur-
ation subspace with the Dg45 group and 4-fold multiplicity of
Wyckoff positions [Fig. 1(b)]. Its stability is further confirmed
by molecular dynamics simulations at 100 K.
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LY side view [bl

Fig. 1 Example of a stable structure with FT states at Er. Top and side
views of the optimized geometry of P(Dg45) is shown in panel (a). An
elementary unit cell is marked with a green rectangle together with
lattice vectors. Potential energy surface (atomization energy is given in
eV per atom) in the configuration space constrained by the Dg45 group
and 4-fold multiplicity of Wyckoff positions is shown in (b). The lattice
parameters are given in Angstroms. Calculations are not done in the
white region of panel (b) since the search algorithm predetermined
instability of the crystal in this region.

The band structure of P(Dg45) along lines between high
symmetry points is shown in Fig. 2(a). At Y-R-Z section of the
BZ, four states touch at Er (both upper and lower states are
doubly spinless degenerate), yielding 4-fold spinless degener-
acy at the point of contact (Eg). Constant and non-zero DOS in
the vicinity of Er confirms our prediction given by eqn (14).
The bands around R point obey the electron-hole symmetry,
in agreement with our discussion related to eqn (9). The Fermi
velocities of these states in the Y-R and R-Z directions are
1.08 x 10° m s~ and 0.46 x 10° m s~*, which are in the range
of the Fermi velocity of graphene.

The Fermi velocity of P(Dg45) is highly anisotropic.
Therefore anisotropic electronic properties are expected to be
similar to those of doped phosphorene.>” The 2-fold spinless
degeneracy of both lower and upper bands at R is lifted along
the diagonal direction (/-R). Note another set of bands
between Z and I', with 2-fold spinless degeneracy below Eg.
More geometry details of the states around R are visible in
Fig. 2(b). These states look exactly the same as the symmetry
analysis predicted above: the FT states consisting of two
pyramid-like and two paper fortune teller-like bands that
touch at their tips and two lines, respectively. Sharp edges of
the dispersion are unique among the electronic structure of

Table 2 Examples of stable 2D crystals with the Dg45 group. Mult. is multiplicity of Wyckoff position. E,; is atomization energy, b and c are lattice
parameters. Coordinates of only one atom are given for each element. Other coordinates can be obtained from Wyckoff positions. AEr = Egr — Ef —

energy difference between the Fermi level and nearest FT states. Group velocities v, and v, are calculated using v; =

%w where index

k;

Jj corresponds to b or c lattice directions. A corresponding stable structure for carbon was not found

Element E [eV per atom] b[A] c[A] Coordinates [A] AEg [eV] v, [10° m s7"] v, [10° m s
B —-6.51 3.12 2.97 (0.390 0.387 0.743) —-0.65 1.22 1.52
Si -5.56 3.74 4.64 (0.765 0.583 1.160) —-2.30 0.91 0.79
P —6.03 3.22 5.24 (0.780 0.708 1.310) 0.00 1.08 0.40
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Fig. 2 The band structure of P(Dg45). (a) Electronic band structure along the lines between high-symmetry k-points (left panel) and the corres-
ponding density of states (right panel). (b) FT states consisting of pyramidal (green) and paper fortune teller-like (blue) bands at point R. Energies are
in units of eV relative to Eg, k-points are in units of 2r/|b| and 2r/|c|. Coordinates of the R-point are (0.5, 0.5), while the R—Z direction (R-Y direction)

is parallel to the k, (kc) axis.

any known crystal, and particularly in contrast to the smooth
features of Dirac cones.

In order to image experimentally the sharp edges as the
unique signature of the FT state, angle-resolved photoemission
spectroscopy (ARPES)’® can be utilized. ARPES can probe the
momentum-dependent electronic band structure of 2D
materials providing detailed information on the band dis-
persion and Fermi surface. Importantly for the fine structural
feature of edges, recent progress of this technique allows
ARPES measurements with a precision of roughly 1 meV
energy resolution and 0.1 degree angular resolution. Prior to
application of ARPES the material should be doped to move
the Fermi level from the contact point and reach a doped
Fermi surface with edges. Doping can be achieved by electron
transfer between the target material and a substrate which acts
as a donor or an acceptor of electrons. In order to preserve the
symmetry, the donor/acceptor should be sputtered to both sur-
faces of the target material. The contact between the substrate
and only one face of the sample would reduce the symmetry of
the system and open a gap. The same holds for gating, when
an electric field is applied perpendicularly to the sample.
These symmetry arguments explain e.g. the gap opening in
bilayer graphene under gating.>® On the other hand, adding
dopant elements to the target material in a way that preserves
the original symmetry does not affect the FT dispersion. Even
though preserving symmetry in highly doped systems is a for-
midable task, a light doping, in percent or even ppm ranges,
would be sufficient for shifting of the Fermi level from the
contact points, depending on a particular material. Light
doping is still negligible for breaking of crystal symmetry.
Other than ARPES, inverse photoemission spectroscopy can be
used to probe the unoccupied states in the electronic band
structure. In addition to the edges as a very unique feature of

This journal is © The Royal Society of Chemistry 2017

the novel FT state, transport measurements would address the
anisotropic electronic nature of the states.

5. Conclusions

In conclusion, we have established a full classification of states
with linear dispersions in non-magnetic, time-reversal sym-
metric 2D materials with a negligible spin-orbit coupling,
based on group theory analysis, and found that only one
additional massless state to the Dirac one is possible. These
states have not only unique and interesting geometric forms,
but they also can open new horizons for both fundamental
research and applications. For instance, these fermions in 2D
materials do not have a counterpart in elementary particle
physics, in analogy to some new fermions predicted for the 3D
space groups.’>'7?° The sharp edges in the electronic bands
have been neither predicted nor measured before, so their
existence in the FT states may spawn new phenomena in solid
state materials. Materials with FT bands can be competitive to
the popular phosphorene due to the importance of anisotropy
of its electronic structure.’” Our unified classification of line-
arly dispersive bands paves the way to engineer new materials
with Dirac and FT states. We hope that findings presented
here will be of great motivation for experimental groups to
bring these materials into existence.
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Classification of linear states in 2D

We first show that in the vicinity of spinless double degenerate point, 2D Dirac bands
are the only possible massless bands. Eigenvalues of any two-component, k-dependent

Hamiltonian A (k) are:

Eno() = fy(k0) + [SIL[f00T (S1)

where
(vj = 03)f;(k) = S Tr[H (k)] (S2)

are real functions and 6,3 (G,) are the Pauli matrices (is the unit matrix). If ko is

crossing point of two bands and ¢ is a wave vector of small modulus then f;(ky) =

fo(ky) = f3(ky) = 0 and:

E1,2(k0 +q) = fo(ko +q) £ \/qunl + vq;’” (S3)

In Eq. (S3), u and v are positive quantities, n; and n, are natural numbers and ¢; and ¢»
are projections of ¢ along certain, mutually orthogonal directions. Since the expression
under the square root in Eq. (S3) cannot be negative, the powers on ¢, g» must be even.
Eq. (S3) is obtained by the Taylor expansion of f;, (j=1, 2, 3) around the point k. In order

to obtain the effective mass we need second order derivatives with respect to g, ¢» at



¢=0. If x denotes g, or ¢, the second derivative of |x|™ (n=2,3.,4,..) depends on whether n

is even (n=2s, s=1,2,3,..):
& |x|* = 2s(2s — 1)x*72
dx? i
or odd (n=2s+1):
2
% |x|?5%1 = 25(2s — 1)|x|*571 + 4525710 (x) + 2x255(x).

Here O(x)=1 (O(x)=-1) for x>0 (x<0) and oJ(x) is Dirac delta-function. For n=2 second
derivative at x=0 is a positive constant, which gives rise to finite effective mass. For n>2
second derivative is zero at x=0 and the contribution to the effective mass comes from
second derivatives of f, in Eq. (S3). Again, the effective mass is finite. The only
remaining case n;=n,=1 gives zero effective mass and corresponds to 2D Dirac-like

dispersion (see Eq. (1) of the main text and this text below).

Next, we classify all possibilities for linear dispersions in the band structure of 2D
materials. In order to achieve this aim we define a set of parameters, which values
determine possible existence of linear dispersions in 2D crystals. If G (k) is the group of
the wave vector k, and R is allowed [32] (relevant [33], small [34]) irreducible

representation (irrep) of G (k;), then the set of parameters consists of
-equivalence of k and its inverse —k,,
-dimensionality of representation R,

-reality of representation R.



We consider all possible symmetry groups of crystals which are periodic in 2 spatial
directions and finite in the perpendicular direction. These are the so called layer groups
(or diperiodic groups). Layer groups have only 1D or 2D allowed irreps [32, 35], while
they can be real on one hand or pseudo-real or complex on the other hand. When
complex conjugation is a symmetry operation, reality of irreps determines if it causes
additional degeneracy. For single crystals the corresponding theory was developed in
1937 [36]. Therefore, each of these parameters can obtain one of two options; hence there

are 8 possible combinations, as illustrated in figure S1.

(b)

Figure S1. Full classification of linearly dispersive electronic bands in non-magnetic 2D
materials based on symmetry conditions. Panel (a) corresponds to the case k, ¢ —k,
and panel (b) to the case ky & —k,. 2-deg. w/o comp. Dirac. disp. means doubly-

degeneracy without complete Dirac dispersion, non-deg. means a non-degenerate state.



Firstly, we consider the case k, <» —k, (figure Sla). The wave vector k, must have a
locally maximal symmetry, otherwise linear dispersion cannot appear, due to either too
many band contacts [S1] or none at all. If R is two-dimensional, and the irrep R;, of the
whole layer group G, which is obtained by induction from R (R;, = R1G) is real, Dirac-
like dispersion appears [24] (orange upper left section). If R;, is not real, —k, is not in the
star of k [32] than the additional degeneracy due to TRS does not appear. This case also
leads to Dirac dispersion [24] (orange upper right section). In the last two cases double
degeneracy at Dirac point is caused by the crystal symmetry. For R one-dimensional and
R;, real (left panel blue section), the energy level E, at k, is non-degenerate preventing
Dirac dispersion in the vicinity of k,. For R one-dimensional and R;, pseudoreal or
complex (blue-orange section) there are two possibilities. If —k is not in the star of k,
E)y is non-degenerate while in the opposite case TRS causes Ej to be double degenerate
with a complete Dirac-like dispersion around k, [25]. Next we consider the case
k, & —k, (figure S1b). If R is one-dimensional and real, the energy level E, at k, is
non-degenerate and linear dispersion cannot appear (right panel blue section). If R is one-
dimensional and not real (right panel green section down), TRS causes Ej to be double
degenerate, but complete linear Dirac-like dispersion is not possible since the TRS causes
u,=0 (u, s a coefficient in the expression for Dirac dispersion [24], see the expression (1)
in the main text). The same statement holds for two-dimensional, real R (right panel
green section up). The remaining case in which R is two-dimensional and pseudoreal or

complex will be treated in more detail in the main text (right panel red section).



Group-theoretical derivations

We show more details in obtaining the dispersion relation (2) of the manuscript. For
obtaining irreps R of layer single groups we used Bilbao Crystallographic Server [32] for
space groups that correspond to the layer single groups of interest. Obtained matrices are

given in Tables S1-S3.

Table S1 Matrices of representation U; and 2DPV corresponding to Dg33. Diperiodic

plane is xz.

T [ (La)

“G Y

G GD | G

Table S2 Matrices of representation U; and 2DPV corresponding to Dg43. Diperiodic

plane is xz.
PTE | (offa) | (i) | (lie-1a)
N R R R
e GG 6
0| oo L) (o 30| (o 22
CHGCD] Go | GD G
O o) N e I O O B O Pl




Table S3 Matrices of representation 7; and 2DPV corresponding to Dg45. Diperiodic

plane is yz.
Dgd5 | (E[0) (¢5 %a3) (e %az+%a3) (¢ %az)
E N GO B O B I G
I T G G
Dgd5 | (i0) (%—%&3) (axz_%az_%a3 (&yz—%az)
R N G I T s R B Gy B I ()
PO . (o 7)

We obtain the matrices of representation D = R@GR* from matrices in Tables S1-S3 in

the following way. If functions ¥; and ¥, belong to irreps R from Tables S1-S3, then ]

and 5 belong to irrep R so functions ¢, = (¥, + Y1) /2, @, = (Y, — P1)/(20),

@3 = Y, +3)/2 and @, = (Y, —YP3)/(2i) transform according to the representation

D. The final result is given in Tables S4-S6.

Table S4 Matrices of representation D corresponding to Dg33. Diperiodic plane is xz,

while 1 = —1.
Do33 AR 11, 1, |1, 1,
&g (E|0) (CZZ Ea3) (O-xz Eal) O-yz Eal +Ea3)
D 1 0 0 0 0100 001 0 0 0 01
0100 1 0 0 0 0 0 0 1 0 010
0 010 0 0 0 1 1 0 0 0 0100
0 0 01 0 010 0100 1.0 0O




Table S5 Matrices of representation D corresponding to Dg43. Diperiodic plane is xz,

while 1 = —1.
D43 < N R 1. 1,
& (E|0) (CZZ al) (ZyEa3> (sz Ea3—5a1)
D 1 0 0 0 1 0 0 0 0 0 1 0 0 01 0
01 00 01 00 0 0 0 1 0 0 0 1
0 010 0 071 0 1.0 00 1 0 00
0 0 0 1 0 00 1 0100 0100
Dg43 ilo O ] 1. |1, 1,
¢ (t0) (8o]=3) | (80| 3a) | (|58 —58)
D 0 0 0 1 0 0 01 0100 01 00
00 1 0 0 010 1 0 0 0 1 0 00
0100/ \0100 0001 0001
100 0 1.0 00 0 010 0 01 0

Table S6 Matrices of representation D corresponding to Dg45. Diperiodic plane is yz,

while T = —1.
Dg45 i N 1. 1. 1.
0| () (¢]z8) | (@lza+38) | ()7%)
D 1 0 0 0 0100 0 1 0 0 1 0 0 0
01 0 0 10 0 0 10 00 0100
0 010 0 0 0 1 0 0 0 1 0 010
0 0 0 1 0 01 0 0 01 0 0 0 01
Dg45 ilo .| 1. . 1, 1, | 1.
LW (g | (6a]-5d-3a) | (el-32)
D 0 010 0 0 0 1 0 0 0 1 0 01 0
0 0 0 1 0 0 1 0 0 010 0 0 0 1
1 0 00 0100 01 0 0 1 0 00
01 0 0 100 0 10 00 0100

Group projector to the totally symmetric irreducible representation is given by:




1

TS|

> DD R
where the sum is over little group elements G (k). In our three cases this included the

whole layer single group. Obtained projection operator is 32-dimensional. By applying P

to general 32-component vector consistent with TRS-constrained matrix W

0 (vl (va| (w5l
N B U R CA N
—(ol =l 0 (| )
—(v3| —(vs| —(vs] 0
we get symmetry constrained vectors v;. Final result is given in the Table S7.

Table S7 Form of vectors v; (j = 1,2, ...,6) required by symmetry, for the layer single

groups Dg33, Dg43 and Dg45. Components of vectors are along a- and c-axes for groups
Dg33 and Dg43, and b- and c-axes for group Dg45 respectively. The a-, b- and c-axes are

orthorhombic axes for corresponding space groups 29, 54 and 57 respectively.

Dg33 | Dgd3 | Dg4s

)G O
G | O | ()
(o2
(o2
()

©

"] ()
V3¢
) )




If we insert values for v; into the Eq. (9) of the main text, we get the dispersion (2). Note
that the form of Hamiltonian A’ required by the Table S7 is valid only in the basis that
belongs to the representation D given in Tables S4-S6. On the other hand, eigenvalues of
H' are invariant, and are therefore the same in every basis.

The effective mass calculation

Next we show that the dispersion (2) leads to zero effective mass. We take the dispersion
for E;(q), obtained from Eq. (2) of the main manuscript by taking plus signs, as an

example. The proof for other bands, including Dirac-like (1) is analogous. Let us define

the matrix:
62
X (a (@a,)? E1(q1,0) [aq 94, E;(q1, QZ)]
S(ql' QZ) = 62
55 El(QLQZ)]ql:O oo )ZEl(O q2)
The matrix element E1( 1 2) means that firstly we take the derivative with
41,9

respect to ¢», than take g>=0, and then take derivative with respect to ¢, (and analogously

for the other off-diagonal element). The matrix $ in terms of Dirac delta function reads:

~ _ 2u,6(qq) 0
5(q1,92) = < 0 2u25(q2))'

Function E; (g4, q2) has minimum for g; = g, = 0, so the effective mass tensor is:

- A -1
Mefr = h? [S(QL QZ)] |q1=q2=0'

Using the interpretation of delta-function as being infinite at zero, we get e = 0.



The density of states calculation
Here we show how one obtains the density of states (DOS) for FT dispersion, starting

from the general definition of DOS. First we define:

& = |u1|q1| +U2|CI2||,

E_ = |u1|q1| —U2|CI2||-

The definition for DOS reads:

pi(e) =—

472 dq, dq; 6(e — €+(q1,92)) =

—_
[

al:\\m:\
cf:\ S

= %foadch fOEdCIZ 6(8 - gi(qlt CIz))a

where we have reduced integration to the first quadrant. We introduce the substitution:

1 1
=-—X+—Y,
ql 211.1 211.1 y
_ .1
qz o 2u2 2u2 y’

with the corresponding modulus of Jacobian determinant [J| = ﬁ The range of
142

integration in new variables becomes:

YA YA

< < — —

O_x_u1a+u2b,
Tu, Tuq
—_—zt < < —
b =V = a

10



It follows:

Tuq

pi(e) = mf0u15+u23 dx f_?ﬂ dyd(e —x) =
b

(;(ﬂ+@);0<g<ﬂ+m

2uquamT \ a b a b

G ()
4uquT \ a b

k 0;e<0

which, after taking in account the particle-hole symmetry for bands +¢,, gives:

I e )
p1(e )—Zuluzn(a + b),

for sufficiently small |e|. Similarly, we get for _:

Tuq

p_(e) = [ra™ v dx [ &, dy 8(e— [yl) =
b

Zuunz

: (ul ) O<e<mm{ e uzn}
{uluzn a b a b

2uquamT \ a b
k 0;e<0

Particle-hole symmetry for bands +&_ implies, for sufficiently small |&|:

’02(8) T uzn(%_i_%)'

After the inclusion of spin degeneracy, and using u; = hv,, u, = hv,, the total DOS for

small |&| reads, in terms of Fermi velocities:

(8) (a117b + b_117a)

11



Algorithm used in ab initio search

1. One chemical element is chosen from the main groups of the periodic table
(ITITA, IVA and VA). Particularly we considered B, C, Si or P.

2. Setup of initial parameters. Initial fractional coordinates of a single atom,
lattice vectors and one of diperiodic groups, Dg33, Dg43 or Dg45, are chosen.
The initial lattice vectors and coordinates are chosen such that bond lengths in the
system are as close as possible to typical bond lengths between atoms of a given
element. This is done manually. Set up the initial value of variable current
minimal energy to a large value, i.e. DBL MAX (predefined value in the C++
language standard). Set up the initial scaling factors for lattice vectors. Value of
0.8 was a usual choice.

3. Scale lattice vectors by the current scaling factors.

4. Atomic positions of remaining atoms in a unit cell are generated based on
Wyckoff equivalent positions for the chosen group.

5. Screening of possibly stable geometries. The generated crystal structure (from
combination of fractional coordinates and scaled lattice vectors) is checked if it is
likely stable by analyzing eventual clustering of its atomic positions to disjoined
set of clusters. The structure is assumed as unstable and disregarded for further
calculations if it has more than 2 disjoined clusters. Two clusters are considered
disjoined, if distance between two atoms closest to each other, but belonging to
different clusters, is larger or smaller by more than n A than the sum of their

covalent radii. n = 0.3 A was usually used for most of elements. Larger values of

12



10.

nup to 0.5 A are used for carbon, for which it is known to make a larger range of
possible bond lengths. This step is done in order to speed up the search of stable
structures.

Symmetry-constrained geometry optimization. If the given structure is not
disregarded at the step 5 as an unsuitable initial geometry, a geometry
optimization is conducted with constrained diperiodic group, i.e. its
corresponding space group. Otherwise, go to the step 9. Density functional theory
(DFT)-based software Siesta [S2] is used for calculations of energies and atomic
forces during the group-constrained geometry optimization.

Can the symmetry be preserved? Full unconstrained structural optimization is
conducted using the Siesta code. Initial geometry for the optimization is the
geometry obtained at the step 6. The optimized geometry is checked for eventual
breaking of the symmetry (the diperiodic group, i.e. its corresponding space
group) after the full structural optimization. Also check the structural stability of
the crystal using the same method described at the step 5.

If the symmetry is preserved and the structural stability is confirmed at the step 7,
compare total energy with the current minimal energy. 1f it is a smaller one then
promote it to the current minimal energy, and save atomic coordinates of this
structure.

Increase scaling factors by 0.02. If they are smaller than 1.2 return to the step 3.
Otherwise continue to the step 10.

Calculate electronic band structure for the most stable system (current minimal)

using the Siesta code and analyze the band structure.

13



All ab initio calculations were done using DFT as implemented in the Siesta code [S2].
Space groups from Table 1 were used, which correspond to diperiodic groups, when unit
cells were constructed. Lattice vector perpendicular to diperiodic plane was always 15 A
We utilized the Perdew-Burke-Ernzerhof form of the exchange-correlation functional
[S3]. The behavior of valence electrons was described by norm-conserving Troullier-
Martins pseudopotential [S4]. We used a double-zeta polarized basis. The mesh cutoff
energy of 250 Ry was used, which was sufficient to achieve a total energy convergence
of better than 0.1 meV per unit cell during the self-consistency iterations of all
calculations. Structures were considered as optimized when maximal force on atoms
dropped below 0.04 eV/A. In the search algorithm a 8 x 8 k-point Monkhorst-Pack mesh
in plane of BZ corresponding to the plane of 2D materials was employed and only
gamma point was used in the perpendicular direction. A denser k-point mesh of 12 x 12
was used for further optimization and calculation of band structure and density of states
of the most stable structures obtained by the search algorithm.

Bands in Fig. 2(b) were obtained on 300 x 300 k-point grid around the corner of BZ

(point R).

Molecular dynamics simulation, which confirmed the structural stability of P (Dg45)
system, was conducted for 5 ps in 5000 steps of 1fs. Temperature was fixed at 100 K
using the Nosé-Hoover thermostat. A super-cell comprising 3 x 3 x 1 repetition of a unit

cell containing 36 P atoms was employed in the simulation.
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Abstract

While considering the appearance of Dirac cones in spin—orbit coupled two-dimensional
materials, Young and Kane (Phys Rev Lett 115:126803, 2015) have found that, in the
absence of other symmetries, spatial-, time-reversal and vertical glide plane (or horizontal
screw rotation) symmetry give four-fold degenerate Dirac point at the time-reversal invari-
ant momentum along the fractional translation. Here we show in which cases additional
symmetries lead to Dirac line instead of Dirac cone in the band structure. We found three
centrosymmetric, non-symmorphic layer double groups with line-like degeneracies instead
of nodal points. We show that besides these Dirac lines, no other band contacts occur,
including the accidental ones. Our results are illustrated using a tight binding example aris-
ing from s-orbitals on two atoms in the primitive cell. Finally, we discussed ways towards
realistic materials where such features in the electronic dispersion are expected to appear.

Keywords Dirac cones - Dirac lines - Two-dimensional materials - Spin—orbit coupling -
Non-symmorphic symmetry

1 Introduction

Dirac cones near the Fermi level in the electronic band structure of two- (2D) and three-
dimensional (3D) materials contribute to interesting physical properties. These include
high electron mobility, well defined chirality or non-zero quantum Hall conductance in the
magnetic field (Feng et al. 2021; Armitage et al. 2018; Gao et al. 2019). In that context,
especially interesting are materials in which non-negligible spin—orbit coupling (SOC)
does not open a gap.

Group theoretical techniques were widely applied in Quantum mechanics in the time
span of almost one century and are increasingly used nowadays. Group theoretical anal-
ysis of vibrations (Wigner 1930; Dresselhaus et al. 2007), extension of spin groups con-
cept to quasi one-dimensional systems (Lazi¢ et al. 2013; Lazi¢ and Damnjanovi¢ 2014;
Lazi¢ 2016) and explanation and prediction of electronic dispersions near points in the
Brillouin zone (BZ) of 3D materials (Mafies 2012; Bradlyn et al. 2016) are among many
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examples. In that sense, it was shown that non-symmorphic symmetry leads to nodal
points or lines in the band structure due to formation of hourglass dispersion (Young
and Kane 2015) (n-hourglass dispersion in 3D crystals with screw symmetries greater
than two Zeng et al. 2020), which (among many other things) led to complete list of
band contacts in (hexagonal Zhang et al. 2018, orthorhombic Leonhardt et al. 2021 and
tetragonal Hirschmann et al. 2021) 3D crystals (Wu et al. 2020). In 2D materials, in
the absence of other symmetries, strong SOC, presence of time-reversal (TRS), space-
inversion and vertical glide plane (or horizontal screw rotation) ensure Dirac cone at the
BZ boundary point along the only fractional translation (Young and Kane 2015). Ques-
tion remains if and in which cases additional symmetries transform the Dirac cone into
something else?

Here we show that in three layer groups, Dirac lines appear instead of Dirac cones. By
using non-crossing rule, we further show that no other band contacts appear, besides these
Dirac lines. We use the complete set of electronic dispersions (shown graphically) in non-
magnetic materials near high-symmetry BZ points (HSPs) and lines (HSLs) (Damljanovié
and Lazi¢ 2023) in our search. Results of Damljanovi¢ and Lazi¢ (2023) were not obtained
by the method of Young and Kane (2015) but using allowed (co)representations (correps)
of all groups of wave vector in all layer groups. Complete list for all single- and double-,
ordinary or gray layer groups is available on the internet (nanolab.rs) (Nikoli¢ et al. 2022).
Results of Damljanovi¢ and Lazi¢ (2023) are confirmed in many experimental and numeri-
cal band structures of 2D materials, such as a-Bismuthene (Kowalczyk et al. 2020) and
HfB, (Liu et al. 2019), which corroborate their validity.

2 Method

Our method starts with the search of band structures from Damljanovi¢ and Lazi¢ (2023)
among all centrosymmetric, non-symmorphic layer double groups without horizontal glide
planes. After omitting groups with Dirac cones predicted in Young and Kane (2015), the
remaining groups are then analyzed for appearance of accidental band contacts. This was
done in two ways: by application of the non-crossing rule (Landau and Lifshitz 1981) (von
Neumann—Wigner theorem 1929, 2000) and by subducing results for 3D space groups
(Leonhardt et al. 2021; Hirschmann et al. 2021) onto layers. Adding pure vertical transla-
tion to layer group gives corresponding space group. On the other hand, from correspond-
ing space group one gets original layer group by identifying the direction in which only
pure translations act (z-axis direction in the layer group notation of Kopsky and Litvin
(2002)). One compares symmetry elements of corresponding space group and the original
layer group and identifies crystallographic axes of space group (Hahn 2005), with the ones
(including z-direction) of the original layer group (Kopsky and Litvin 2002). In some space
groups (e.g the tetragonal ones) z-axis determination is simple, while it can be much more
complicated in orthorhombic groups, where there is no preferred direction and where it
can even happen that one space group corresponds to two different layer groups. Recent
upgrade in C2DB database (Fu et al. 2024), gives a layer group and the corresponding
space group (the space group of AA-stacking) of all 2D materials in it, which significantly
simplifies application of existing abstract group theoretical results to realistic 2D materials.

For the tight-binding model we recall the fine structure Hamiltonian (Berestetskii
et al. 1982):
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~ 2 4 2 2
H(r) = <—§TnA + V(r) - ﬁAz + h—AV(r)>30 + 4ih—28 - [(VV(r)) x V],
(H

8m?2c? m2c
where 6, is two-dimensional, unit matrix and ¢ = Z;zl o;€; is the vector of Pauli matri-
ces. The terms in the Hamiltonian (1) are: the kinetic energy of the electron, the potential
energy of the electron, the relativistic correction to the kinetic energy, the Darwin term and
the spin—orbit coupling term, respectively. The Hamiltonian (1) without SOC term has the
symmetry of V(r), while only the last term acts non-trivially in the spin space.
The Hamiltonian (1) has the following symmetry properties (Cornwell 1984):

A({aIR}'r) =7 @HA®AR). @

H*(r) = 6] H(1)3,, 3)

where {§|R} is an element (in Seitz notation) of the symmetry group of material and
ia/2 iy /2 ﬁ/z —ia/2 iy /2 o; ﬁ/z

A e'*=e>cos e e’ =sin A

u(g) = < e/t 25inf /2 /2=t 2cosf 2 represents proper part of the rotation g

in the spin space (a, f and y are the Euler angles). Formulas (2) and (3) are used for finding

which of the hoping integrals are mutually equal, which simplifies the tight-binding
Hamiltonian.

3 Results

A closer look at Damljanovié and Lazié (2023) gives that the following layer groups (with-
out horizontal glide plane) exhibit Dirac lines rather then points: 40° (p 2,/m2/a 2/m),
44 (p2,/b2,/a2/m) and 63P (p4/m?2,/b2/m). The layer group numbers are
according to Kopsky and Litvin (2002), superscript D denotes double group. To these
layer groups correspond the following space groups: 51° (P 2,/m2/m2/a, y = 0), 55
(P2,/b2,/a2/m, z=0) and 127° (P 4/m2,/b2/m, z = 0). The space group numbers
are according to Hahn (2005). For each space group, plane parallel to the original layer is
also given.

Next we investigate if accidental band contacts in the interior of BZ, which could lead
to additional Dirac cones, are possible. Note that double degeneracy of bands across the
whole BZ makes such a possibility difficult to achieve. Indeed, inspection of allowed extra
representations of the little group of wave vector, for corresponding space groups at Bil-
bao Crystallographic Server Elcoro et al. (2017), shows that it is not possible to avoid
band repulsion. In planes of symmetry, Kramers pairs are +i, —i meaning that the acci-
dental band contact should be with another such pair. The bands from each pair, that cor-
responds to the same extra irrep of the group C? would repel each other. On the other hand,
lines of symmetry contain only one two-dimensional, extra irrep which is not sufficient
to support accidental band contacts. This is in agreement with the results of Zhang et al.
(2023) (published simultaneously with Damljanovi¢ and Lazi¢ (2023)), where both essen-
tial and accidental band contacts of all (magnetic) layer groups are given in the exhaustive

@ Springer



1262 Page 4 of 8 V. Damljanovi¢

supplemental material in tabular form, as was done for magnetic space groups published
earlier (Tang and Wan 2021; Yu et al. 2022; Liu et al. 2022; Zhang et al. 2022; Tang and
Wan 2022).

The same result is obtained from the list of accidental band contacts for 3D orthorhom-
bic (Leonhardt et al. 2021) and tetragonal (Hirschmann et al. 2021) space groups. The sub-
duction to layer groups, from the corresponding space groups, gives only essential band
contacts determined by the dimensionality of allowed correps.

Finally, to illustrate our findings, we give the tight binding model for layer group
40P. The crystal structure of the model is shown in Fig. 1 (visualization with the
help of program VESTA Momma and Izumi 2011). The Hamiltonian in the basis

{Is1 1) ]2 1) |s1 1) |s, 1)} arising from s-orbitals and up and down spinors is:

~ Hx 0
Hk)=( "1 ~ ,
® ( 0 Hk > @
where
H,k) = H,®)
_ ¢y + 2¢,cos(k - b) 2c0s(%k . a)e_ék'a(cl + c3e‘ik'b) (&)
2c0s(%k . a)eék'a(cl + c;e’*P) ¢y +2cycos(k - b) ’

and with ¢, ¢, ¢,, c; being the real hopping parameters between the parallel spins for the
zeroth, the first, the second and the third neighbor, respectively. The electronic band struc-
ture, within this model, is:

E},(k) = E} ,(K) = E; ,(K)

1
k- )
COS( a

(6)

=y +2cycos(k-b) +2 \/C% + c§ + 2c,c5cos(k - b).

(] o (4] c [+ ]
[+] [+ [+ ] m 0'}/
2 ' Ll &
! m
o e, I o @& o
° o b o
21 a ! o
o [+] [+ o
o o o o

Fig. 1 The crystal structure for the tight-binding model belonging to layer group 40”. All nuclei are of the
same type, they occupy the same horizontal plane and the Wyckoff position 2¢ with y = 0.39. Lattice con-
stants |a| and |b| are 6.4 and 4 Angstréms, respectively. Green symbols denote symmetry elements: 2 (2,)
- axis (screw axis) of order two, m (a) - plane (glide plane). Vertical axis of order two and spatial inversion
are also present (not shown). Blue arrows illustrate hopping parameters
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Fig.2 Band structure of the tight-binding model for ¢, ¢, ¢, and c; equal to 2.1, 1.5, 1.1 and 0.8eV respec-
tively (left panel). The positions of four-fold degenerate line nodes E; = E, are denoted by red lines in the
reciprocal space (right panel). Black rectangle denotes BZ

Since [cy| > |c;| > |cy| > |c3), the only touching of these two double degenerate bands, is
for cos %k -a) =0. This equation corresponds to nodal lines: i%ka (k,-a=2m,
k, - b = 0), not to nodal points. The band structure is shown in Fig. 2 for particular values of
hopping parameters. Double degeneracy of bands across the whole BZ is in accordance with
Kramers theorem applied to centrosymmetric crystals.

The four-fold degeneracy of Dirac lines comes from the very construction of correps of
(magnetic) little groups Gf(” . For Gf(” = H + 0sH, where 0 is TRS and s—a symmetry element
of the layer group (s € H), correps of fo are obtained from irreducible representations of H
in a way that depends on the sum S = ), _, v ((Gsh)z) /|H| (y-character of the particular irre-
ducible representation A of the group H of order |HI) (Bradley and Cracknell 2010). For S = 1
the dimension of the correp D is as A. For S € {-1,0}, the matrices are:
~ A 0 ~ 0 A 2 ~ A A~
O s 1 , D, (6sh) = 0 A(©s1) Y | D*(h). Here T (0) are unit

0 A*((0s)"'hos) I 0
(zero) quadratic matrices having the same dimension as A, while h € H (Wigner 1959;
Damnjanovi¢ 2014). In the case from Fig. 1, H is the semi-direct product of translations and
C?V and it’s only extra, allowed irrep is two-dimensional: K({E IR}) = uwd,,
3({C§|a/2 +R}) = —iuwd,, &({o-th}) = —iuws, and &({ayzla/Z +R}) = —iuwt,
(Elcoro et al. 2017). Here w = exp(—ik - R), k belongs to the Dirac line (away from HSP) and
u=1 (u=-1) for unbarred (barred) double group elements. One can choose
s = {(80, —?3)|0} (unbarred spatial inversion) so that Os = {(821( s —/1\3)|0} (K-complex con-
jugation, /1\3-unit three-dimensional matrix). Since S=O0, the correp is four-dimensional with
(Os)"hos = h and R((0s)?) = 3({(—80,?3)|0}) - &({Em}) — —5,. For construction
of allowed irreps of little groups (without TRS) one can consult e.g. Cornwell (1984). Repre-
sentation matrices of symmetry operators for 40P in the rectangular basis can be found at the
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nanolab.rs web page (Nikoli¢ et al. 2022) and on Bilbao Crystallographic Server (via corre-
sponding space group 51°).

4 Discussion and conclusion

Besides layer groups treated here, groups 43P and 45° also possess Dirac nodal lines
(Damljanovi¢ and Lazi¢ 2023; Zhang et al. 2023), which is in accordance with Young and
Kane (2015) since they have horizontal glide plane and hence are out of the scope of this
paper. Additional fixed (Damljanovi¢ and Lazi¢ 2023) and movable (Leonhardt et al. 2021)
Dirac points in 43” and 45 are also caused by group-theoretical and topological laws. Com-
patibility relations near HSPs and irrep change along HSL connecting them, give the result
that e.g. accidental band contacts somewhere at the XU/XS line (Zhang et al. 2023) are not
only possible but are unavoidable (and movable), as explained in Hirschmann (2021), for
example.

For layer groups of our investigation (40P, 44” and 63”) among others, the features in the
electronic band structure are caused by symmetry alone. This points towards realization by
search of various materials databases (Haastrup et al. 2018; Gjerding et al. 2021; Mounet et al.
2018) according to the layer or corresponding space group. Particular attention could be payed
to layered single crystals whose synthesis has already been reported (Gjerding et al. 2021;
Mounet et al. 2018). The Fermi energy (Eg), on the other hand, cannot be determined by using
group theory alone. Still, since nodal lines occupy a finite energy range, it should be less diffi-
cult to make them cross Ey than some nodal point. Also, the same layer group can be achieved
in many different nuclear arrangements in the same primitive cell, which opens the possibility
to avoid reactive, radio-active or toxic chemical elements. Future investigations could show
how difficult is to realize 2D materials with prescribed symmetry in practice.
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Abstract
Unmovable nodal points (UNPs) and lines (UNLs) are band crossings whose
positions in the Brillouin zone are unaltered by symmetry preserving perturba-
tions. Not only positions but also the band structure in their vicinity are determ-
ined by the little group of wave vectors and its irreducible (co)representations.
In this paper, we give the full set of electronic dispersions near all UNPs
and UNLs in non-magnetic quasi two-dimensional (2D) materials, both with
and without spin—orbit coupling (SOC). Analysis of all layer gray single and
double groups gives nineteen different quasiparticles, the great majority of
which are unavoidable for a 2D material that belongs to a certain layer group.
This includes Weyl and Dirac nodal lines, dispersions with quadratic or cubic
splitting, anisotropic Weyl and Dirac cones, whose orientation can be varied
by e.g. strain efc. We indicated quasiparticles that are robust to SOC. For con-
venience, our results are concisely presented graphically—as a map, not in
a tabular, encyclopedia form. They may be of use as checkpoints and/or for
fitting experimentally (via e.g. ARPES) and numerically obtained electronic
band structures data, as well as for deeper theoretical investigations.

Keywords: two-dimensional materials, linear dispersions,
quadratic dispersions, cubic dispersions, symmetry
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1. Introduction

The Fermi—Dirac distribution dictates that most of the material properties depend on the elec-
tronic dispersions’ shape near the Fermi energy in the Brillouin zone (BZ). On the other hand,
these shapes are solely determined by the crystal symmetry and, for non-magnetic materials,
the time-reversal symmetry (TRS). Presence of Dirac cones around the BZ K-points of the
honeycomb lattice is the most notable example. Experimental discovery of the electric field
effect in graphene, fabrication of graphene’s three-dimensional (3D) analogue accompanied
with the explanation of certain band structure properties using topological laws, brought topo-
logical materials into the focus of solid-state science [1-3]. Non-trivial band topology, such as
the non-zero Berry phase, originates from singularities of eigenvectors in the reciprocal space.
Such singularities often appear at points where two or more bands touch.

In two-dimensional (2D) materials, bands can touch at isolated points or at lines. Band
touchings caused by the increased dimensionality of corepresentation (correp) of a little group
do not move if the Hamiltonian parameters change, as long as the symmetry is preserved. Such
touchings we call unmovable nodal points (UNPs) and lines (UNLs). Weyl/Dirac nodal lines
(WNLs)/(DNLs) are examples of UNL, whose presence in a band structure leads to interesting
physical properties [4-7]. These include graphene-like density of states (DOSs) [8, 9] and
drumhead states whose flat bands may cause strong electron correlations [5, 10].

The explanation of band degeneracies by use of crystal symmetry and TRS appeared almost
one century ago [11-13]. It was extended beyond high-symmetry points (HSPs) and lines
(HSLs) in the BZ by Zak and coworkers using elementary band representations [14, 15]. Yang
and Kane brought some of the band crossings in connection with the appearance of Dirac
cones in 2D materials with SOC [16]. In 3D, WNL and DNL are determined by achiral gray
double space groups [17], by 230 ordinary/gray single/double space groups [18], by certain
black-and-white magnetic space groups [19], and in the presence and absence of spin—orbit
coupling (SOC) [20]. Guo et al 21, 22] report DNL in the presence of SOC in 2D. On the other
hand, full enumeration of layer groups’ UNPs hosting fully linear dispersion in non-magnetic
2D materials is a completed task [23]. In Damljanovié et al [23-25] the Hamiltonians are
distinguished from each other by the form of their eigenvalues. The term Dirac was reserved
for four-component Hamiltonians with graphene-like, isotropic or anisotropic eigenvalues [23,
26, 27]. There are several physical reasons for this distinction, e.g. the non-vanishing DOS of
some dispersions [24, 25] near zero energy. On the other hand, analysis of all dispersions,
besides the linear, in 2D materials has not been reported thus far [28]. Recently published
reports for (3D) space groups [29-32] could be (in principle) used for layer groups, if one
subduces the results for corresponding space groups to 2D BZ. This idea is indeed applied in
[33], published a few months after the submission of the present paper. In [34] all massless
excitations in 2D and 3D were classified.

In this paper, we calculated the exact shapes of electronic bands near all HSPs and HSLs in
the BZ of all layer groups, including cases without and with SOC, in the presence of TRS. It
turns out that in the Taylor expansion of Hamiltonians, the relevant terms are up to maximally
third order in momentum. We found in total nineteen quasiparticles. Some of them are known
(like Dirac cones in graphene), while the remaining are yet to be explored. Our results are
presented graphically, as an atlas (map) rather than in a tabular, encyclopedia form, and fit into
two figures and a few pages of text/formulas. For all symmetry-constrained Hamiltonians, the
eigenvalues are given. We single out quasiparticles that are not destroyed by the inclusion of
SOC.
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2. Method

To find all possible HSPs and HSLs with multidimensional correps, one has to search through
all little groups of all gray layer groups—80 for spinless and 80 for spinful cases. Correps of
space groups were tabulated and made available a long time ago [35, 36]. Regarding layer
groups, [37] tabulates little groups characters of layer double groups, [38] tabulates irrep
matrices for generators of layer single groups, while [39] gives irrep characters of all ele-
ments of graphene’s layer single group. Exhaustive information on layer groups, their little
groups (both single and double, without and with TRS) and their (co)rreps, became publicly
available recently [40]. Nikoli¢ et al [40] was a starting point of our search.

Symmetry adapted low-energy Hamiltonians were derived from the following formula
[23, 41]:

H(ko+q) = D () i (ko +'q) D(g), M

where kq denotes HSP or belongs to HSL, g = {fz’ T;,} is an element (in Seitz notation) of the

little group Gy, (h'Ko is equivalent to ko), 4 is an operator reduction of /1 to 2D BZ and D (g) is
the irrep matrix that corresponds to g. If —k( belongs to the star of kg, the full symmetry group

of ko is Gy, + 0g0Gy,, where 0 denotes time-reversal and the element go = {ﬁo Tho does not

belong to Gy,, if K is not the time reversa} invariant momentum (izéko is equivalAent to —Ko).
The additional constraint on contribution H " appearing in the Taylor expansion H (kg + q) ~
H (ko) +H'(q) is [23, 41]:

i (q) = R (0g0) i’ (—hia) R (00). @

where R is correp matrix (linear part—without complex conjugation) that corresponds to fg.
As opposed to dispersions, which are invariants uniquely determined by the symmetry, the
Hamiltonians can be changed by a different choice of basis wave-functions. However, once
the particular Hamiltonian H(q) in the vicinity of ko is chosen, the Hamiltonian H,(q) near

k, = Ik from the star of Ko, is fixed by the following formula:

H,(q) =k(g;lg)ﬁ</3‘lq) R (g,'s), 3)

where g, = {fzp\T,,} is the representative of the coset that contains the element g = {fz|7} of

the layer group, and R is the correp matrix of the little group of ko. In (3) one has to use the
very same correp that gives H(q) near ko, not just an equivalent one. Similarly, for dispersions
around k,:

E,(hq) = E(q). “)

Also, dispersions around two points in the reciprocal space that differ by a vector from the
reciprocal lattice are identical. All necessary matrices are available in POLSym code [42] in
addition to the web page [40].

Here we focus on eigenvalues of low-energy Hamiltonians, i.e. their functional dependence
on ¢, since they are measurable and invariant (independent on the choice of particular basis),
unlike Hamiltonians themselves. The only criterion for classification is if the eigenvalues of
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two Hamiltonians have identical functional dependence on q. To avoid unnecessary complic-
ation, we do not list here all Hamiltonians that correspond to each particular correp from [40],
since many of them can be transformed into each other by the similarity transformation. If two
n-component Hamiltonians H, and H,, have all eigenvalues the same, then H, = UH,U', with
U=3"",|¥) (®] being an unitary matrix and |W,) (|®;)) the normalized eigenvector of H; (
H)) that corresponds to the eigenvalue E;, (I = 1,2,...,n). The proof for this statement uses the
spectral form of Hamiltonian: UH Ut = Y"1, [W)) (@4 37 E; |€;) (@41 300 [ @) (V| =
S it B 10) 61385 m (Um| = D7 Ej W) (¥ = H,. Therefore, of all Hamiltonians having
the same eigenvalues, only one representative is shown. In other words we proved, by exhaus-
tion, that any k - p Hamiltonian generated by small correp of gray magnetic layer group can
be reduced to one of the forms given below (with the same eigenvalues) by a proper unitary
transformation.

To distinguish the anisotropic Dirac and Weyl dispersions whose orientations depend on the
parameters of the model and the ones with fixed orientation, we use the following theorem.
The quadratic form f = ¢,¢} 4 c3q192 + c2¢5 = (q] A |q), can be reduced to f = A\1q/2 + Aagi?,
where g/ = (); |q), while ); and |);) are eigenvalues and eigenvectors of the matrix A=

(&} C3 / 2
( C3 / 2 (5
The cross-section of f is an ellipse whose orientation (in principle) depends on parameters cy,
¢y and c3. The orientation of the ellipse is fixed if eigenvectors are independent on ¢y, ¢ and
¢3. This is the case if either c3 =0 or:

,(j =1,2). The \; and |\;) are well known and will not be presented here.
(J ) J J p

¢y — €1 = ucs, (5)

where u is a real constant, independent of ¢y, ¢; and cs.

Although in the presence of TRS, the total Chern number of a band must vanish, it can still
be instructive to calculate the topological charge of a particular band crossing (more precisely,
of the representative Hamiltonian). For this reason, we have calculated C, which is defined
as a factor multiplying Dirac delta function in the expression for the trace of a curvature:

Tr (Q(q)) = 27 C§(q). The trace of curvature is given by Tr(Q(q)) = Tr(Vq x A), where

the Berry connection is A,(,)m =1i(n|0/0q;|m), 1 =1,2 and m,n count orthonormalized states

that can be degenerate for some (-values which belong to a contour around q = 0 in the recip-
rocal space. Precisely, whenever the contour cannot be chosen to avoid these degeneracies, the
eigenstates of two or more bands need to be involved in calculation. Note however, that we
have calculated C for the minimal model, i.e. assuming that no other bands exist, other than the
ones described by the effective Hamiltonians given below. For bigger models, the described
method may give other values for C.

3. Results

All groups and all BZ points and lines hosting electronic dispersions in the absence of SOC are
shown in figure 1, those with SOC are shown in figure 2. Dispersions are denoted with different
symbols, as indicated in the captions and explained in the subsections below. Dispersions of
the same type but with different parameters are denoted with the same symbols of different
size. We used equation (4) for graphical presentation of dispersions in the whole BZ. Primitive
vectors of the reciprocal lattice are k; and k;. For oblique and rectangular-p groups with all
non-symmorphic elements having fractional translations parallel to one direction (for group

4
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Figure 1. Dispersions near UNP and UNL in the BZ of layer groups without SOC (nota-
tion as in [43]). Dispersion acronyms in the lowest panel and the corresponding subsec-
tions in the main text are: DNL—Dirac nodal line—3.1.2, FT—fortune teller—3.2.4,
IDD—isotropic Dirac—3.2.8, CQ—corner quadratic—3.3.1, ICQ—isotropic corner
quadratic—3.3.2, QD—quadratic—3.3.3, IQD—isotropic quadratic—3.3.4 and SB—
simple band—3.3.5. The green color denotes more than one possibility for a dispersion
around a given BZ point. Other colors denote spinful degeneracy at q = 0: red (4-fold)
and yellow (8-fold).

45), k| is perpendicular to that direction (to the symmorphic reflection plane). For rectangular-
c groups 35” and 36°, WNL is along symmorphic axis of order two. For groups 27 and 34
(32, 33 and 43), k; is along axis (screw axis) of order two. This convention is of use when
directions along k; and k, differ significantly by hosted dispersions. For rectangular-c groups
in figure 2, BZ is shown for the angle between primitive vectors greater than /2. The results
are equally valid if that angle is sharp, just the BZ border would be rotated. Groups not shown
in figure 1 (figure 2) do not have UNP and/or UNL in the case without (with) SOC.

The studies are performed for linear, quadratic and, when it is relevant, for the third order in
q, and all together we single out 19 types of dispersions. In the following, they are described in
more detail. Letters a and b denote real numbers, z denotes complex numbers, the superscript
D denotes layer double group, &y, &7, 63 (6¢) are Pauli matrices (is the 2D unit matrix), while
q1 and ¢, are projections of q along orthonormal vectors e; and e, respectively.

5
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Figure 2. Dispersions near UNP and UNL in the BZ of layer groups with SOC (super-
script D is omitted, notation as in [43]). Dispersion acronyms in the lowest panel and the
corresponding subsections in the main text are: WNL—Weyl nodal line—3.1.1, DNL—
Dirac nodal line—3.1.2, IWD—isotropic Weyl—3.2.1, AWDv-anisotropic Weyl with
variable orientation—3.2.2, AWDf—anisotropic Weyl with fixed orientation—3.2.3,
FT—fortune teller—3.2.4, PF-poppy flower—3.2.5, ADDv—anisotropic Dirac with
variable orientation—3.2.6, ADDf -anisotropic Dirac with fixed orientation—3.2.7,
IDD—isotropic Dirac—3.2.8, CQ—corner quadratic—3.3.1, ICQ—isotropic corner
quadratic—3.3.2, SB—simple band—3.3.5, CD—cubic—3.4.1 and TC—triangular
cubic—3.4.2. The green color denotes more than one possibility for a dispersion around
a given BZ point. Other colors denote spinful degeneracy at q = O: blue (2-fold) and red
(4-fold).
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3.1. Nodal line dispersions

3.1.1. Weyl nodal line (WNL). ~ WNL is a line of double spinful degeneracy which splits lin-
early in the direction perpendicular to the line. It appears only in SOC case and it is denoted
with blue lines in figure 2. The dispersion and the Hamiltonian are:

Eip=Ey+aq)£clqL], (6a)

3
H= (E0+QICIH)&0+QJ_ij&j7 (6b)
=1

where ¢ = 4/ Z?:l bj2 > 0and g (q))) is projection of q perpendicular to (along) the line. For
groups 207, 217, 24P 25P 54P 56", 58P and 60P, b = 0. For groups 277, 28°, 29P(WNLs
perpendicular to k), 30°, 317, 327, 33” (WNL perpendicular to k,), 342, 357, 36”, 78” and
79P, b3 = by = 0. For points in the middle and at both ends of WNL, if not occupied by any
other dispersion, the following substitution should be made in the last two equations above:
Eo+aiq) — Eo+ alqﬁ- In these points, one of the bands achieves extremum at q = 0 with
0 0

0 mH
direction perpendicular to the WNL.

the effective mass: mesr = >, which means that excitations are massless along the

3.1.2. Dirac nodal line (DNL). DNL is a line of 4-fold spinful degeneracy, which splits into
two double degenerate bands in the direction perpendicular to the line. DNL appears both in
SOC and non-SOC case and it is denoted by a red line. Dispersion is:

Eip34=Eo+aq|*clqy], (7a)

where g, (g))) is projection of q perpendicular to (along) the line. For layer single groups,
the total Hamiltonian is Hi = 60 ® H, with H given by (6b), while E] = Et = E| = E;,
E} =Ef=E;=Esand c = /3 _, b2 For groups 15, 16, 17, 20, 21, 24, 25, 40, 43 (DNLs

j=17j
perpendicular to ki), 44, 45 (DNLs perpendicular to k;), 54, 56, 58, 60 and 63, b3 = 0. For
groups 28, 30, 31, 32, 33 (DNLs perpendicular to k), 34, 38, 39, 41, 42, 43 (DNLs per-
pendicular to k;), 45 (DNLs perpendicular to k»), 46, 62 and 64, b3 = b, = 0. For points in
the middle and at both ends of DNL, if not occupied by any other dispersion, the follow-
ing substitutions should be made in the equations for Hamiltonian (6b) and dispersion (7a):

Ey+aiq) — Eo+a 1q|2| and b, = bz = 0. For layer double groups, the Hamiltonian is:
b 0 Z 0
~ - 0O -b 0 —z
H=(Eo+aq)ls+qi| . o 5 o |
0 —z¢ 0 b

(7b)

with ¢ = y/b? + |z|2. For points in the middle and at both ends of DNL, if not occupied by any
other dispersion, the following substitutions should be made in (7b): Eo + a1q — Eo +a 1q|2|

(endpoints of 43” and 45°) and (in addition) b = 0 (for remaining such points).

3.2. Linear dispersions

3.2.1. Isotropic Weyl dispersion (IWD). IWD consists of two spinful non-degenerate iso-
tropic cones touching each other at q = 0 and it appears only in the case with SOC. IWD is

7
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denoted by a blue circle in figure 2 (when no other dispersion is possible around that point), by
a green ring with a dot inside (when simple band (SB) described latter is an alternative), or by
a green square (when cubic dispersion (CD) described latter is an alternative). The dispersion
and Hamiltonian are:

Eip=Eo*|7|q|, (8a)

- . 0 z2(q1 — iq2)
H=E . : 8b
OUO+( 2 (q1 + iqn) 0 (8)

for groups 54°, 567, 58”2, 60”, z = (1 — i)by, for groups 677, 697, z = (1 +iv/3)b, for the
remaining groups z = by, except for 492, 50P, 657, 730, where z remains a complex number.

3.2.2. Anisotropic Weyl dispersion with variable orientation (AWDv).  AWDwv consists of two
anisotropic, spinful non-degenerate cones and appears only when SOC is included. The cross
section of the cones is an ellipse whose orientation (major axis direction) changes when the
parameters of the dispersion change. It is represented by a blue ellipse in figure 2, such that its
orientation is neither strictly horizontal, nor strictly vertical nor along a BZ edge. This is just a
symbol indicating that the orientation of AWDwv is not pinned to any particular direction. The
actual orientation can be different than the one adopted in figure 2, although equation (4) is
used for presenting AWDyv on the same star of the wave-vector. Dispersion and Hamiltonian
are:

Eip=Eyx\/cigi + g3 + 3192, 9a)

; . bigi+bxqx 2191 + 2292
H=FEyoy+ N ; 9
0% ( G +292 —bigr —brgn ©b)

where ¢; = b} + |z1]?, c2 = b3 + |22|?, ¢3 = 2b1by + 2125 + 2} 2. For groups 32,220 267,497
50P and 73°, b; = b, = 0. The parameters cj, ¢; and c3 do not satisfy equation (5).

3.2.3. Anisotropic Wey! dispersion with fixed orientation (AWDf).  AWDf consists of two
anisotropic, spinful non-degenerate cones, whose orientation is unaltered by the symmetry
preserving perturbations. It appears only when SOC is included and it is presented by a blue
ellipse whose orientation is strictly vertical, strictly horizontal, along the BZ edge or perpendic-
ular to it. Again, in actual orientation major and minor axes may interchange, and equation (4)
is used for presentation in figure 2. The dispersion can be reduced to:

Ei2=Ey+t\/c14? + c2q3. (10)

Hamiltonians of interest can be derived from (9b). For groups 8, 92, 107, 117, 12P,
13P, 312, 320, 33D and 34P, b, =0 and z; =0 so that ¢; = b? and ¢, = |z,|%. For groups
192, 200, 22P, 230 24P 26P 530 55P, 57P and 59°, by =b, =0, z; = ib3 and 7o = by
so that ¢; = b% and ¢, = bi. For groups 21” and 25", b, =0, z; =0 and z, = ib; so that
¢1 = b? and ¢, = b3. For groups 67°, 687, 69P and 70”, by = v/3b, and z, = —/3z so that
Eip=Ey+ \/|zl 2(g1 —V/3¢2)* + b3(q2 + /3q1)2. For groups 76° and 77°, b = b, = 0 and

2 =7, /V3—iV3z sothat Ey , = Eo + \/(z’i)Z(ql —V3¢2)? + (2})%(q1 + g2/+/3)2. Last two
dispersions are examples where equation (5) applies with u = 1/+/3.

8
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3.2.4. Fortune teller dispersion (FT).  FT appears both in SOC and non-SOC cases, with the
degeneracies being doubled in the latter [24, 25]. It is denoted by the quad arrow, yellow for
non-SOC and red for SOC case. The dispersion is:

Eip34=Eo£||big2] £clqi]]. (11a)

For layer double groups the Hamiltonian is:

baqi ib1g> 0 2q1
; P —ibigy  b2gi —zq1 0
H=Eol, + ¢ . : 11b
0% 0 —'q1  —byq1 ibiq (115)
Zq 0 —ibigy  —byqi

so that c = 4/ |z|2 +b3>0and 14 is the unit matrix. For layer single groups the total Hamilto-

nian is Hy = 6o @ H, with H given by (11b) and (Vj € {1,2, 3,4})EjT = E]i = E;. For groups
43 and 45, b, = 0. '

3.2.5. Poppy flower dispersion (PF).  PF appears only in some non-centrosymmetric groups
when SOC is included [25]. It is represented in figure 2 by a red double-ellipse. Degeneracy
at q = 0 is 4-fold (spin included) and it splits into spinful non-degenerate bands away from
g1 = 0 and ¢, = 0 lines. Dispersion and Hamiltonian are:

Ei234=EgE\/c14? + 243 £ c3lq192]. (12a)
For groups 21” and 25°:

bigi b  zqu 24>

- P byqy —bigi 292 —zuq
H=Eoy + , 12b
o dqa B —biqi —baq (126)

592 —Zq1 —bygy  biqy

here c3 = \/4D2| 222 +4b3|21 |2 — (2125 — 25 22)? — 4biba (2125 + 2(22), ca=b3+ 2% 1 =
b? + |z1|*. For groups 287, 307, 327 and 34”:

biq1 + bag» 0 2191 + 2292 0
; 5 0 biq1 — bq» 0 2191 — 2242
H=Eol, + : 12¢
074 ZTCII +Z§q2 0 *blql — bqu 0 ( )
0 91— 0 —b1q1 +brgr

here ¢; = b3 +|z1|%, c2 = b3 + |22|?, ¢3 = |2b1by + 2125 + 2} 72]. For groups 5472, 567, 587 and
60P:

H=Eol,
0 (1 =0)bi(q1 —iq2) (g1 +ig2) 0
(I+0)bi(q1 +iq2) 0 0 (g2 +iqu)
z(q1 — iq2) 0 0 (1=0)bi(q2 —iqn)
0 2(q2 — iq1) (I+i)bi(g2 + iq1) 0

(12d)
here ¢; = ¢y =2b3 + 7%, c3 = 4+/2|byz| (called isotropic PF in [25]).

9
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3.2.6. Anisotropic Dirac dispersion with variable orientation (ADDv). ~ ADDyv is analogous to
AWDv with degeneracy of each band doubled. It appears only in SOC case. ADDyv is rep-
resented by a red ellipse with the same convention as for AWDv described in section 3.2.2.
Dispersion and Hamiltonian are:

Ei234=E)* \/CIQ%+CZQ%+C3QI¢]L (13a)
0 biqi+byqy 191 +22q2 0
- P biq1 +byq» 0 0 2191 + 2292
H=Edy+ | 21T 2 , 136
o A9+ 0 0 —bi1q1 — byq> (135)
0 G +25q —bigi —bp 0

here ¢; = b + |z1|%, c2 = b3 + |22|*, €3 = 2b1by + 2125 + 2} 20

3.2.7 Anisotropic Dirac dispersion with fixed orientation (ADDf).  ADDf is analogous to
AWDf with degeneracy of each band doubled. It appears only in SOC case and it is represented
by a red ellipse. The convention follows the one for AWDf in section 3.2.3. Dispersion and
Hamiltonian are:

Eip34=Eo*\/ci1q] + g3 (14a)

For groups 15°, 16” and 177:
b2q2 iblql 92 0

- 5 —ibiqr —byq» 0 )
H=E,l . , 14b
o4t ¢ 0 —brgy  ibiq (145)

0 —*qx  —ibiq1  byg»

here ¢; = b3, ¢ = b3 + |z|?. For groups 38?2, 39 (points (£ /a;,0) and (0,47/az)), 417,
42P 43P 45P 46P (points (£ /a;,0) and (0,47 /ay)), 62P (points (£ /a,0) and (0, +7/a))
and 64 (points (+7/a,0) and (0,7 /a)), b, = 0. For groups 39” (BZ-corners) and 46° (BZ-
corners), z=0.

3.2.8. Isotropic Dirac dispersion (IDD).  IDD is analogous to IWD with degeneracy of each
band doubled. It appears in cases with and without SOC. An example of IDD is dispersion near
K-points in graphene. IDD is represented by a red circle (when no other dispersions near this
point are possible) or by a green ring (when SB is an alternative). Dispersion and Hamiltonian
are:

Eip34 =Eo % |z]|q]. (15a)
For group 52P:
0 0 z2(q1 —iq2) 0
i — Eo] 0 0 0 2(q1 —ig2)
H=Eyl . 15b
B g +ig) 0 0 0 ) (15b)
0 = (q1 +iqo) 0 0

for groups 622 and 642, z = ib,. For layer single groups Hy, = 6 ® H, with H given by (8b)
and ET = Ef =FE, =E,, Eg = E% = E5 = E,. For layer single groups z = b; except for 66, 73
and 75.
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3.3. Quadratic dispersions

3.3.1. Corner quadratic dispersion (CQ). CQ appears at BZ corners of rectangular groups
where two DNL meet. It appears both in SOC and non-SOC cases and it is denoted by a red
rectangle. The 4-fold spinfull degenerate band at q = 0, splits into two double degenerate bands
for q # 0 and away from DNLs. The splitting causing term is of the second order (quadratic)
in q. The dispersion is:

Ein34=Eo+aiq} +axqgs +clqiqa).- (16a)
For layer single groups ET = Ef =E| =E, E; = E% = E3 = E, and the Hamiltonian is:
H=60® [(Eo+aiq} + a293)60 + q192 (0161 + b262)] (16b)
so that ¢ = \/m For groups 32, 34, 39, 42, 46, b, = 0. For layer double groups:
0 iby 0 Z
—ib 0 -z 0

0 -z 0 —=iby |’
z* 0 ib] 0

H=(Ey+a1q} + ap3)li+ q142 (16¢)

so that ¢ = /b7 + |z|2.

3.3.2. Isotropic corner quadratic dispersion (ICQ).  Inthe BZ corners of square groups where
two DNL meet, the axis of order four imposes a; = a; in CQ and gives ICQ. The term isotropic
denotes that dispersions along q; = 0 and ¢, = 0 are identical. ICQ appears in both SOC and
non-SOC cases and it is marked by a red square. The dispersion is:

Eip34=Eo+aq +c|qiqal. (17a)
For layer single groups ET = Ef =FE| =E», E; = E% = E3 = E, and the Hamiltonian is:
H=060® [(Eo+aq’)60 +q142 (0161 +b262)] , (17b)

so that ¢ = +/ b% + b%. For correps that remain irreducible when TRS becomes broken, b, = 0.
For layer double group 63%, a; = a, = a and b; = 0 in (16¢) so that ¢ = |z|.

3.3.3. Quadratic dispersion (QD). QD appears near isolated BZ points only in non-SOC
case [44]. It is denoted by the green star in figure 1, since SB can appear instead. The splitting
in all directions away from the point is quadratic, as indicated by dispersion and Hamiltonian:

E},=E{,=E +aq + \/[b3(Q? - q3) + biq1g2)* + [ba(qi — 43) + b q2)?, (18a)

H=60® {(Eo +aq*)60+ [b3(q — @3) + birq1ga)61 + [ba(qF — ¢3) —|—b2g1612]5rz} ) (18b)

Except for groups 49, 50, 51 and 52, in (18a) and (18b) by = by = 0. If by1by = byb3, two
lines of accidental degeneracy intersect at ¢ = 0 symmetrically under rotation by /2, so that
q = 0 is not an isolated point any more.
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3.3.4. Isotropic quadratic dispersion (IQD).  1QD is QD which is fully isotropic. It appears
only in non-SOC case [44] and it is indicated with a green snowflake, since the appearance of
SB is other possibility. Dispersion and Hamiltonian are:

El,=Ef,=E+ (a +£1/03 + b%) 7, (19a)

H=60® {(Ey+aq®)60+ [2b2q19> + b1 (q1 — 43)161 + [b2(q7 — 43) — 2b1q1q0]62}, (19D)

with b, = 0 except for groups 65, 66, 73, 74 and 75. Unlike QD, IQD cannot be turned into a
line of degeneracies by suitable choice of non-zero parameters.

3.3.5. Simple band (SB).  SB is a band (spinful non-degenerate, with SOC and double spin-
ful degenerate in non-SOC case) which disperses quadratically near q = 0 without any splitting
(i.e. it is neither UNP nor UNL). It is introduced here only when it appears as an alternative to
other dispersions. These cases are denoted by green symbols in figures 1 and 2. The dispersion
and Hamiltonian are:

E| = Ey+aq’, (20a)

H=Ey+aq*. (20b)
For layer single groups Hyo = (Eo + ag®)éo and E]T = Ef =FE;.

3.4. Cubic dispersions

3.4.1. Cubic dispersion (CD).  CD appears only when SOC is included. It consists of spinful
double degenerate band at q = 0 which splits cubically away from this point. It is denoted
with a green square, since IWD is other dispersion possible at groups/BZ points form figure 2.
Dispersion and Hamiltonian are:

Ei, =Ey+alq
2
i\/|Z1q1(61%—3q%)+zwz(q§—361?)| + [b1g1 (4% — 343) + bag2 (45 — 34%))?, (2la)

H = (Eo+alq*)0
n ( biqi(q}

Ziq1(q?

NSRS TSNS

—3@3) +baqa (5 —347)  z1q1(q] —393) +2292(¢5 — 34}) ) (21b)

V+25a2(43 —3q3)  —big1(q7 —343) — bag2 (43 — 343)

If vectors {(z],25)", (2}, 25)"} are linearly dependent and vectors {(z],25), (b1,b2)" } are
also linearly dependent, then three accidental nodal lines intersect symmetrically under rota-
tion by 7/3 at q = 0, so that q = 0 is not an isolated point any more. For groups 67°, 687, 69
and 70, by = 0 and z, = 0. For group 73%, b; = b, = 0. For groups 76” and 77°,b; = b, =0,
z1 = ibz and 7 = by.

3.4.2. Triangular cubic dispersion (TC).  TC appears only in SOC case, when three WNL
intersect at a single point. It is denoted by a blue triangle in figure 2. The splitting is caused
by cubic terms in the Taylor expansion of Hamiltonian. Dispersion and Hamiltonian are:

Ein=Eo+aq” £|bl|q2(q5 — 341)|, (22a)
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H = (Ey+aq*)50 +bqr (g3 — 3¢3)53. (22b)

TC appears in Hexagonal groups 78" and 79 .

For clarity, the results are also summarized in table 1, where dispersion description names,
abbreviations, and icons are listed. In the column C, the calculated topological charge for each
type (Hamiltonian) is given. Total number of bands is presented in the form n + n, whenever
n bands (the half of the total number 2 n of bands) touch in a way that cannot be avoided by
a suitable choice of contour surrounding q = 0. For example, both FT and PF dispersions in
SOC case consist of four bands, except that for FT all four bands are connected by degeneracy
lines that extend through whole BZ, while for PF two connected pairs of bands are separated
from each other except at q = 0. Thus, the contour cannot be chosen to avoid g-values for
which 4, and 2 bands touch for FT and PF dispersions, respectively, while, in the case of PF, it
avoids touching point q = O of pairs of bands. For this reason, the number of bands involved
is represented in table 1 as 4 for FT and 2+2 for PF. It turned out that in all cases of the type
n+ n, the topological charge C is equal for the two bundles.

4. Discussion and conclusions

Comparison of figures 1 and 2 allows conclusions on how e.g. inclusion of SOC affects disper-
sions. Dispersions in groups 40, 44 and 63 are unaltered, up to numerical values of parameters,
by the inclusion of SOC. In groups 43 and 45, DNLs perpendicular to k; are also preserved
when SOC is included. On the other hand, SOC induces DNL to split into two WNLSs in groups
9,12,20,21,24,25,28,29, 30, 32 (DNL perpendicular to k;), 33 (DNL perpendicular to k),
34 (DNL perpendicular to k), 54, 56, 58 and 60. In groups 21 and 25, SOC induces transition
from CQ to PF, while in square groups 54, 56, 58 and 60, SOC turns ICQ to isotropic PF.
Other SOC-induced transitions are CQ to ADDf (groups 39 and 46) and ICQ to IDD in groups
62, 64. SOC induced splitting at HSP in non-magnetic layers are also discussed in [23].

Regarding topological properties, dispersions (more precisely, Hamiltonians) AWDyv,
AWDf, IWD, ADDyv, IDD, PF (for Hamiltonian (12d)), QD, IQD and CD have a non-zero
topological charge C. We note again that C given here is for minimal Hamiltonians required
by symmetry. For bigger models, C may be different since the eigenvectors have more com-
ponents. Although the Chern number of the whole band is invariant (up to a sign), this does
not hold for topological charges of individual band crossings. Therefore, it may happen that
in some groups the topological charges given in table 1 do not add up to an integer.

The dispersions presented in section 3 are exact, in the sense that if we knew how to solve
the one-electron Schrodinger equation for a single crystal exactly, we would get the very same
formulas (with the numerical values of parameters as additional results). The dispersions are
unaltered as long as electron correlations are weak enough to preserve the quasiparticle pic-
ture. For these reasons, each dispersion presented here can be a research topic of its own. The
synthesis of new 2D materials with the right placement of the Fermi level would likely trigger
new research directions.

Besides band contacts treated here, there are accidental band contacts that appear along
HSLs or away from them in the BZ. Some of these contacts are guaranteed to exist by
the topological laws. Such guaranteed contacts can be moved but not removed by the sym-
metry preserving perturbations and are tabulated for (3D) hexagonal [45], tetragonal [46] and
orthorhombic [47] space groups. These results could be used for layer groups, by subduction
from corresponding space groups to 2D BZ. On the other hand, truly accidental band contacts
can be destroyed by a perturbation that keeps the symmetry, which in real materials can be

13
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Table 1. Summary of quasiparticles near UNPs and UNLs in gray layer groups. SB
denotes simple band (section 3.3.5). For single groups: C = C' = C*. For dispersion
consisting of two bundles of bands (+ and —), C=C" =C".

Full name Abbreviation Icon Number of bands C Section

Isotropic IWD . 1+1 % 3.2.1

Weyl D 1+1 1 3.2.1
(or CD)

dispersion @ 1+1 % 3.2.1
(or SB)

Anisotropic

Weyl

dispersion

with. ..

...variable AWDv 1+1 1sgn(zizh —42) 322

orientation

.. fixed AWDf 141 1sgn(zizy — 2jh) 3.2.3

orientation

Fortune teller FT ‘ 4 0 324

dispersion

(with SOC)

(without SOC ) FT i; 8 0 324

Poppy flower  PF . 242 sgn(|z|? —2b2), (12d) 3.2.5

dispersion 0, (the rest)

Anisotropic

Dirac

dispersion

with. ..

...variable ADDv 242 sgn(zizh — 2425) 326

orientation

.. .fixed ADDf 242 0 327

orientation

Isotropic Dirac  IDD . 242 1 328

dispersion o 242 % 3.2.8
(or SB)

Corner CQ 4 0 3.3.1

quadratic

dispersion

(Continued.)

caused by a change in temperature, pressure, strain efc. Four-fold spinless degenerate points
that belong to HSL treated in [48—50] are examples of truly accidental band contacts.

Experimental realization of a 2D material with prescribed layer symmetry is far from trivial,
so one could search across a database of 3D materials that have already been synthesized and
can be easily exfoliated into layers [S1]. It contains materials of almost all 3D symmetries
obtained by periodic repetition of layers perpendicularly. Dispersions presented in section 3
are of significance if in a 2D material, the Fermi level crosses bands near E. Although this

14
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Table 1. (Continued.)

Full name Abbreviation Icon Number of bands C Section
Isotropic 1CQ 4 0 332
corner .

quadratic

dispersion

Quadratic QD 242 sgn(babs —bibs) 3.3.3
dispersion *(OI‘ SB)

Isotropic 1QD 242 —1 334
quadratic '(or SB)

dispersion

Cubic CD D 141 2sgn(Zjzh —zi7y) 341
dispersion (Or IWD)

Triangular TC 2 0 342
cubic A

dispersion

Weyl nodal WNL I 2 — 3.1.1
line

Dirac nodal DNL I 4 — 3.1.2
line

cannot be guaranteed solely by group-theoretical arguments, there are some symmetry-based
results which are helpful. References [52—-54] give the electron fillings necessary for a crystal
belonging to a certain space or layer group to be insulating. When this condition is not fulfilled,
the crystal is metallic (or insulating if the electron-electron interaction is strong). For example,
if in a 2D material belonging to layer group 33, the sum of atomic numbers of all nuclei in the
primitive cell is not divisible by eight, the material is a metal [52-54]. It would be possible then
to dope the material with electrons or holes by e.g. gating, especially if the material belongs
to a layer group that is also a symmetry of a surface (a wallpaper group).
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Abstract

Symmetry imposed restrictions to the Hamiltonian are systematized and applied
to all of 80 clusters of single/double ordinary/gray groups (320 groups in
total), to single out linear (in all directions) band crossings and correspond-
ing effective Hamiltonians in high-symmetry Brillouin zone points of layered
materials. The resulting dispersion types are isotropic or anisotropic forms
of: single cone (with double degenerate crossing point and non-degenerate
branches, or four-fold degenerate crossing point with double degenerate coni-
cal branches), poppy-flower (four-fold degenerate crossing point with two pairs
of non-degenerate mutually rotated conical branches), and fortune teller (with
nodal lines). Further, we describe the nontrivial patterns of dispersions’ behav-
ior in high symmetry points when symmetry is varied within a cluster. Namely,
Clebsch—Gordan series of the products of spin representation with the integer
ones are relevant when spin—orbit coupling is included, and clarify observed
scenarios (gap closing, gap opening, cone preserving, cone splitting etc). Anal-
ogously, analysis of behavior of dispersions in transition from ordinary to gray
group enlightens the role of time reversal symmetry. The results refine and
expand data existing in literature, and interesting or even unexpected cases are
singled out in discussion.
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1. Introduction

Interplay between symmetry and topology of band structures is among the most attractive
topics in contemporary condensed matter physics. Besides topological insulators (TIs), nodal
semimetals take a notable role, being a material realization of relativistic Dirac, Weyl, and
Majorana particles [1-3], or lead to the emergence of unconventional quasiparticles [4—7].
Characterized by band crossings (touching) points (lines) at Fermi level, with energies dis-
persing linearly, they have various interesting properties: Dirac points represent the interphases
between topologically different insulating phases, Weyl points lead to semimetals with chiral
anomaly, Fermi arc surface states etc. Protected by crystal symmetries [§—16], these crossing
points are robust with respect to various symmetry-preserving perturbations. Energy of the
crossing cannot be predicted by symmetry alone; particularly important are those on Fermi
level: when placed at (special) high symmetry points (HSPs) in Brillouin zone (BZ), the
material is known as a symmetry-enforced semimetal.

Leaving accidental degeneracy aside, the band crossings are within group theory related
to the multi-dimensional allowed irreducible representations (IRs) of underlying symme-
tries. Geometrical transformations are gathered into ordinary crystallographic groups. When
time reversal (TR) symmetry (either pure for paramagnetic systems, or combined with spa-
tial symmetries for anti/ferromagnets) is included, gray or black-and-white magnetic groups
[17, 18] are obtained; these are represented by irreducible corepresentations (colRs), which
have, besides unitary, additional anti-unitary operators. When spin space is included (spinfull
case) to consider spin—orbit (SO) interaction, half-integer irreducible (co)representations of
double groups are assigned to electron bands.

The raising interest in exploring bands topology [19-21], including its symmetry based
aspects, points out the necessity to systematize numerous particular studies, and fill in existing
gaps. In particular, layer groups have been intensively used to predict Dirac and beyond-
Dirac topological semimetals [11, 14, 22—-30], but still there is no complete overview of such
symmetry-enforced band structures of layered materials, unlike space groups [31, 32]. Our
thorough and systematic presentation will facilitate both numerical and experimental search for
the materials with preferred symmetry and desirable band topology, as well as sub-dimensional
analysis of 3D crystals [33].

In this paper all band crossings with dispersion equations linear in all BZ directions around
HSPs in quasi-2D crystals are singled out, with the corresponding effective low-energy Bloch
Hamiltonians. We utilize allowed (co)IRs (calculated by POLSym code [34], and recently made
available online [35]) of the symmetry groups of HSPs obtained by the action of layer (LGs),
double layer (DLGs), and corresponding gray magnetic groups (gray LGs and gray DLGs) in
BZ. It turns out that possible dimensions of (co)IRs, and therefore of the effective Hamiltonian
models, are 1, 2, and 4. Among them, two-dimensional ones may correspond to the Hamilto-
nians with completely linear band crossings hosting non-degenerate conical dispersion (1DC),
while four-dimensional (co)IRs support two-degenerate conical (2DC), poppy flower (PF), or
fortune teller (FT) shape of energy. The conical and PF dispersions may characterize semimet-
als, while the presence of FT indicates nodal line metal (where equienergetic lines cross in
HSP). In addition, precise usage of (co)IRs (Clebsch—Gordan series, Wigner’s types), enables
to consider relations between single and double, or ordinary and gray groups enlightening
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the impact of spin—orbit interaction or TR on the dispersions in HSPs. Results on the band
crossings patterns (groups, HSPs, types, effects of spin and TR) are tabulated and discussed,
stressing out the cases complementing or correcting those in literature.

The paper is structured as follows. Establishing basic concepts and notation, section 2
is a brief review of the group-theoretical apparatus within k - p theory. Then in section 3
we single out relevant HSPs in BZ of quasi-2D crystals, model Hamiltonians and the cor-
responding linear dispersions related to HSPs. Besides this, the robustness of the cross-
ings (whether they are essential or not) is addressed in section 4, analyzing impact of spin
and TR.

2. Symmetry of effective Bloch Hamiltonian

Following standard approach, we consider single-particle Hamiltonian H invariant under sym-
metry group G being one of the four types: ordinary group G = L, without TR symmetry 6,
is either purely geometrical layer group, or its double extension (to include spin space and
SO interaction), while with 6 it becomes (single or double) gray layer group G = L + 0L (for
nonmagnetic systems).

On momentum k from BZ L acts by isogonal point group P;. In this way LG makes strati-
fication of BZ, singling out generic stratum, and special lines and points, each of them being
fixed by characteristic little group (stabilizer) L (a subgroup in L) of a representative momen-
tum point k. Coset representatives & from Lagrange partition L = | J, hLi generate star of k,
and the set of representative points of all stars is irreducible domain (ID). Also, due to the
trivial action of translations in BZ, all translations are in L, turning it into a (double) layer
group.

While TR symmetry acts trivially on a position vector, it changes the sign of a momen-
tum. Therefore, the addition of TR to the symmetry of layered systems in general changes
stratification of the BZ, and three types of stabilizers Gy (as subgroups in G = L + 6L) may
occur. For a TR invariant momentum (TRIM) k the stabilizer is (i) gray group Gy = Ly + 60Ly;
otherwise, if k is not TRIM, Gy is either (ii) black-and-white Gy, = Ly + 6hL; (if there is an
non-identity element 4 such that hk = —k), or (iii) ordinary Gy = Ly (either single or double)
group. Notably, only in the latest case (iii) the star is doubled due to the TR symmetry, while
otherwise it remains the same (cases (i) and (ii)).

Commuting with the translational subgroup, the Hamiltonian reduces into the Bloch spaces.
If g belongs to Gy, meaning that g stabilizes momentum k up to the vector of inverse lattice,
then

[D(g), H(k)] = 0, D

where D(Gy) is representation of stabilizer Gy in the Bloch space and H(k) is the Bloch Hamil-
tonian. The TR is antilinear operation in the state space, and therefore linear-antilinear repre-
sentations D(Gy) of magnetic little groups are considered: D(Ly) = d(Ly) are linear operators,
while the other elements are represented by antilinear operators D(0hLy) = d(60hLy)K, where
d(OhLy) are linear factors and K is the complex conjugation. Only matrix parts d(Ly) and d(6h)
of all elements constitute co-representations. For gray groups, / is the identity element, and
d2(9) = wl, where w is 1 for spinless, and —1 for spinfull cases (/ is identity matrix). Obvi-
ously, rewritten in the terms of co-representation for the antilinear coset the relation (1) is
d(g~")H(k)d(g) = H*(k) (for g € OhLy).

Consequently, symmetry provides that the corresponding Bloch Hamiltonian and the stabi-
lizer representation are reduced in |«|-dimensional subspaces, where |« is the dimension of
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the allowed irreducible linear(-antilinear) representation D**(Gy,). Eigenvectors |k, «; a) of
Bloch Hamiltonian:

Hk) |k, o;a) = e, (k) |k, ; a), )

are assigned by quantum numbers (k, «) of linear(-antilinear) IRs (and allowed representa-
tions), meaning [36] that:

D(g)lk,cza) = > DI (g)|k, aza). 3)

Expansion of the Bloch Hamiltonian in the vicinity of HSP k is

H(ko+ k) =>_ H" (ko + k),

n=0
1 0"H (ko)

HYky+ k) = — ek, ks 4)
n!p1 ,,,, - Okp, ...0k,, & P

where p; = 1,2. Gathering terms with n > 0 within perturbation H'(ko + k), an effective
Hamiltonian is obtained with help of projector P, = Zﬂl\ ko, c;a )( ko, ;a | composed
of the eigenvectors of unperturbed Hamiltonian H® (ko) = H(ko) (matrix with zero order term
n = 0). In the first perturbation order, the effective Hamiltonian is H/ (k) = P,H'(k)P,, and

the symmetry conditions (1) for each effective term H' of the expansion (4) becomes:
Do) (@ H P (ko + kyD*0) (g1 = HY (ko + gh). 5)

As before, depending on the type of a considered system, D*® = g% is a unitary integer
(spinless) or a half-integer (spinfull) IR of a (double) layer group, or, a linear-antilinear rep-
resentation composed of the unitary matrix of coIR d*® (multiplied by operator of complex-
conjugation on the coset accompanied by TR) for a magnetic little group. In all these cases of
layer groups the dimensions of IRs are 1, 2 or 4.

Stabilizer Gy, 1« of a representative momentum ko + k from the generic stratum (dense in
BZ) is a subgroup of Gy, and the subduced (co)representation obeys compatibility relations

d* (G ) Gk = Bifid® T (Gry 1t ©

where f; is frequency number of the irreducible component d*0+%2) For the elements of
Giy+k the symmetry condition (5) becomes commutation causing that the energy branches in
the vicinity of ko have degeneracies (1 or 2) of (co)representations d(k0+k"”)(Gk0+k), while
the degeneracy of the energy at crossing point ko coincides with the dimension (2 or 4) of
(co)representation d*0%)(Gy, ).

3. Linear dispersions

3.1. Effective Hamiltonian

At first, the forms of the effective Hamiltonians having completely linear dispersions in BZ
around HSPs will be derived. According to (4), the matrix elements of the effective low-energy
Hamiltonian linear (n = 1) in momentum are [H{" (ko + k)]s = >, wh,k,, where parameters
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w? = O[H,(ko)la»/ Ok, are constrained by symmetry conditions (5) and hermiticity (w?, =
w}’,’;) The conditions (5) can be rewritten in the super-operator form as:

{d(k""“)(g) 2 d*0°) (g) ® v(g)}w =w, forg € Ly (7
[d(""’“)(g) @ d* ) (g) @ Iz} w' =w, forg=0h, ®)

where w is a column of parameters w”, , which is looked for. The group action in 2D BZ is intro-
duced by usual two-dimensional polar-vector representation v(Ly,) of subgroup, and v(6h) =
I>. Since a linear effective Hamiltonian is bi-uniquely related to a non-vanishing column w,
from (7) it follows that w is a fixed point for subgroup representation dko) g qlkoe)” g v,
i.e. linear terms exist if [21] vector representation v(Ly,) appears in d(ko) ® d(koa)’ (Ly,); for
magnetic groups there is additional condition (8) for the antiunitary coset.

Linearly independent columns wg, = (w}lb,wflb)T define linearity rank: number of BZ
directions along which energies are linear in k. Obviously, completely linear dispersions have
linearity rank 2. Since it is beyond the scope of the paper, herein the details about the dispersions
are not studied, we only note in section 4 which groups have linearity rank 1 (the vanishing
linear term could be either nodal line when all higher order terms cancel, or of higher order
dispersion). Linearity rank O refers to Hamiltonians without linear terms.

Instead of using absolute basis and parameters w’,, it is more convenient to give the effec-
tive Hamiltonians in the basis of Hermitian matrices. With Pauli matrices o; (i = 1,2,3)
and identity matrix oy = I, the effective 2D and 4D Hamiltonians (1D does not yield band
crossing) are:

32
Hy, = Z Z v'k,oi, )

i=0 p=1
32

H4 = Z Z’Uipjkp(a'i ® Uj). (10)

i,j=0 p=1

Clearly, real parameters v/ and v]; are bi-uniquely related to w; and w}), respectively. For
each HSP and its allowed (co)IRs [35] of dimension 2 and 4, the symmetry allowed param-
eters v/ and vf} are to be found. The task is performed assuming that layer is perpendicular
to the z-axis. All calculations follow notation from [34, 35] (labels of HSPs, IDs), including
(co)IRs.

Orthogonal part of any Euclidean transformation from arbitrary layer group leaves both
the xy-plane and the z-axis invariant, having thus block-diagonal 2 x 2 4+ 1 x 1 form. Action
in 2D BZ is defined by the upper block. As a result, there is 10 different isogonal groups
[35] composed of these 2 x 2 matrices, which, due to torus topology, yield 14 IDs of 2D
BZ. IDs are the same for LG and DLG, while adding TR changes ID of noncentrosymmetric
groups. Ordinals of the IDs are associated to the ordinary (gray) groups in the row ID (ID’) in
figure 2.

There are seven special points (figure 1): T' = (0,0), X = (1/2,0), Y =(0,1/2), S =
(1/2,1/2), M =(1/2,0), K=(1/3,1/3) and L = (2/3,—1/3), with coordinates given in
primitive basis {b;,b,}. They are distributed over 10 IDs: ID1 and ID3-ID5 have no HSPs;
ID2 and ID8 have I', X, Y, and S; ID9 has I, Y, and S; ID7 and ID13 have I, X, and S; ID6 and
ID12 have I', K, and L; ID10 and ID14 have I', M, and K; ID11 has I" and K. For oblique and
rectangular-p groups with all non-symmorphic elements having fractional translations parallel

5
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N A

b2 bz P

(SY) (7,8,1§

b4

-

Figure 1. HSPs. Each point is shown only in ID (equivalent copies from BZ are
missing). Ordinals of IDs [35] are listed in brackets; IDs are associated to groups in
figure 2. Left panel: oblique and c-centered rectangular (|b;| = |b2|) groups; middle
panel: rectangular-p and square (|b;| = |b,|) groups; right panel: hexagonal groups.

to one direction (for group 45), b, is perpendicular to that direction (to the symmorphic reflec-
tion plane). For group 34 (32, 33, 43) b, is along axis (screw axis) of order two. This notation
differs from [37] in the following way (notation in brackets corresponds to [37]): for oblique
groups X(Y), Y(B), S(A); for rectangular-c Y(S), S(Y); for square Y(X), S(M); for rectangular-p
groups 8, 11, 12, 16, 17, 20, 24, 31, 32, 33, 34, 38, 40, 41, 43, 45 X(Y), Y(X). For other cases
the two notations are the same.

All of the HSPs are TRIM except K and L. Therefore, the stabilizer of I', X, Y, S, M is a gray
group, while for K it is either a black-and-white (in hexagonal gray LGs: 66, 67, 69, 71-73,
75-78, 80) or an ordinary group (in the hexagonal gray LGs: 65, 68, 70, 74,79). Stabilizers of
L are ordinary, as it is the HSP only in ordinary groups (68, 70 and 79). In the most of the cases
the stabilizer is the whole group, exceptions are points Y in ID9, K in ID11 and ID14, and X in
ID13 where it is a halving subgroup, and point M in ID14 where the stabilizer is index-three
subgroup.

Altogether we found 42 different effective Hamiltonians with completely linear dispersions
at HSPs: 21 for 2D and 21 for 4D Hamiltonians are presented in tables 1 and 2. Number of
nonzero coefficients vf’ and vipj may be 6,4, 3,2 or 1, as emphasized; the other vanish due to the
symmetry. In particular, this includes those responsible for slope, which manifests that neither
of the dispersions is tilted.

The results for all of 80 layer group clusters are summarized in figure 2. All HSPs hosting
linearity rank 2 dispersions are listed, once for each of the associated allowed representa-
tions assigning/supporting such dispersions, with indicated effective model (subscript). The
list of linear dispersions systematized in this way may be used for various analyzes, and in the
following sections some of them will be performed.

3.2. Dispersion types

Band crossings of the presented Hamiltonian models have linearity rank 2 with conical, PF
(both can be realized in isotropic or anisotropic forms) or FT shape of dispersion. A conical dis-
persion corresponds to compatibility relations (6) with dimensions 2 — 1 ¢ 1 (1DC), or 4 —
2 & 2 (2DC), while the both PF and FT are related to splitting dimensions4 — 1 & 14 16 1.
The cases with 1DC and 2DC are usually referred to as Weyl and Dirac fermions respectively.
PF consists of two mutually rotated non-degenerate anisotropic cones (some authors consider
PF as generalized Dirac dispersion [25, 39]), while FT is composed of locally flat bands, with
equienergetic nodal lines.
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Table 1. Two-dimensional effective Hamiltonian forms. Non-vanishing symmetry
adapted parameters v! in (9) are defined in terms of independent constants ¢; (obtain-
ing values in concrete problems). Symbol in column S is used in figure 2 to identify
model, while the number of the independent parameters, and corresponding dispersion
equation are in columns Par. and equation; all energy branches are non-degenerate. Two
coefficients v(l, and vé, vanishing in all models, are omitted.

S vl vl vl v? v3 v3 Par.  Equation
a 0 0 c 0 c 0 2 (11b)
b 0 0 c c 0 0 2 (11b)
c 0 0 cy c c3 0 3 (11b)
d 0 —c 0 c 0 0 1 (11c)
e 0 cy 0 cy 0 0 1 (11c)
f 0 c 0 0 0 c 2 (11b)
g 0 c 0 c 0 0 2 (11b)
h c 0 0 0 c 0 1 (11¢)
i c 0 0 0 c 0 2 (11b)
j C —C1 0 —C1 —C1 0 1 (11C)
k cy cy 0 —c cy 0 1 (11c)
1 V3e —c 0 ¢ V3¢ 0 1 (11c)
m ¢ -3¢ 0 —V/3¢i —ci 0 1 (11c)
n V3ey -3¢, 0 ¢ 3¢, 0 2 (11a)
0 c1 —C) 0 o) c1 0 2 (11c)
p cy c 0 1) —cy 0 2 (11c)
q Cy c3 0 c c4 0 4 (11a)
r ) c3 0 0 0 cy 3 (11b)
S V3es V3e3 V3¢ c c3 —3cy 3 (11a)
t V3es —V3¢3 V3¢ —3¢; 3c3 cy 3 (11a)
u c3 Cs Cl Cy Ce C 6 (1 la)

For completeness, a brief overview of all types of dispersions (of linearity rank 2) are given,
despite some of them have been already studied [11, 23, 24, 28, 29]. For each model (row of the
tables 1 and 2) the Hamiltonian matrix is formed according to (9) or (10) with non-vanishing
vip and vipj; it is expressed in terms of independent coefficients cy, . . ., c¢ (given in the row).
As eigenvalues of these k-dependent matrices, the obtained dispersions are parametrized by
coefficients ¢;. For example cl(\/§k1 + ky)o — cz(\/§k1 — 3ky)o, is the matrix for the two
dimensional Hamiltonian in 14th row in table 1 (symbol n).

General anisotropic 1DC dispersion is

Ei(kl,kz) =+ ak% + bklkz + Ck%, (lla)
where a, b, c are c;-related parameters with ranges providing real energies. Equienergetic
. . . . - L2
curves on this cone are ellipses with semi-axes ¢’ and ¢’ (4 = <2 4 32 6 =M@ 4
2 a/2 C/Z 2 a/2

cos2 o b

ST 2 = 2 cos ¢ sin cp(a% — C,%)), which are rotated with respect to the k;k,-coordinate

system for the angle ¢ between axes @' and k;. To illustrate, the Hamiltonian n (table 1)
from the above example has dispersion (11a), with a = 3(c? + ¢3), b = V12(c} — 3¢3) and
¢ = ¢ + 9¢3. For b = 0 the dispersion is still an anisotropic 1DC (but not rotated)

ex(ky, ky) = :I:\/ak% + Ckz, (11b)



Table 2. Four-dimensional effective Hamiltonian forms. Non-vanishing symmetry adapted parameters Uf; in (10) are defined in terms of independent
constants ¢; (obtaining values in concrete problems). Symbol in column S is used in figure 2 to identify model, while the number of the independent
parameters, corresponding dispersion equation, and the degeneracy of the branches are in columns Par, equation, and Deg. Ten coefficients véo, vél,
vls, Vi, 13y, V3,5 v, v3,, v3, and v3,, vanishing in all models, are omitted.

S ”62 ”11 o v 11 1 v 11 2 ”11 3 U%o ’Uél ”212 U53 ”310 ”311 U313 U(z)z U%o U%l ”%3 ”%0 7’% 1 ”%3 U,%o U% 1 U§3 Par. Equation Deg.
A 0 O O 0 o0 0 0 0 0 0 0 ¢ O 0 0 o) 0 0 c3 0 0 0 3 (11b) 2
B 0 O O O O 0 0 0 0 0 0 ¢ O c 0 0 3 0 0 0 0 0 3 (11b) 2
c 0 O o o0 o 0 0 0 0 0 0 ¢ O 3 0 0 cy4 0 0 0 I 0 4 (11b) 2
D O 0O O 0 o0 0 0 0 0 0 ¢ 0 O ) 0 0 3 0 0 0 0 0 3 (11b) 2
E 0 O O 0 0 —cy 0 0 0 0O 0 0 O c 0 0 0 0 0 0 0 0 1 (11¢) 2
F 0 0 0 0 o0 -2f2 o o <2 0 0 0 0 <2 o 292 o0 0 0 0 0 0 2 (1240 1
G 0 0 0 0 o 0 0O 0 —¢ O O 0 O 0 0 0 0 0 0 0 0 c 3 (11b) 2
H 0 0 0 0 ¢ 0 0 0 cy4 0 0 ¢ ¢ 0 0 0 0 0 0 0 0 0 4 (11b) 2
I 0O 0 0 0 «c3 0 0 0 Cs 0 0 ¢ O 0 C4 0 0 Ce 0 0 I 0 6 (12a) 1
J 0 0 0 ¢ O 0 0 ¢ 0 0 0 0 o 0 0 0 0 0 0 0 0 0 3 (12¢) 1
K 0 0 0 ¢ O 0 0 0 ¢t 0 0 ¢ 0 0 0 0 0 0 0 0 0 4 (12¢) 1
L 0 0 ¢ O O 0 ¢ O 0 0 ¢ 0 0 3 0 0 Cs 0 0 c 0 0 6 (12a) 1
M 0 ¢ 0 0 O — 0 0 0 0O 0 0 O I 0 0 C 0 0 0 0 0 2 (11c) 2
N 0 ¢ 0 0 0 3 0 0 0 o 0 0 O 0 0 0 0 0 0 0 c 0 3 (11b) 2
O 0 ¢ 0 0 o0 Cy4 0 0 0 ci 0 0 ¢ 0 0 0 0 0 0 0 0 0 4 (12¢) 1
P O ¢ O O O cs 0 0 0 0 ¢ 0 O cy4 0 0 Co 0 0 0 [ 0 6 (11a) 2
Q O ¢ O 0 O cs 0 0 0 cgc 0 0 O 0 0 cy4 0 0 Co 0 0 ¢ 6 (12a) 1
R C1 C 0 0 Cc3 —C3 0 0 C 0 C1 0 Cl (&) 0 —C3 —C3 0 —C2 0 —C1 0 3 (12b) 1
S ¢ 0 0 0 0 0 0 0 0 0O 0 0 O 0 0 0 0 0 0 0 c 0 2 (11b) 2
T ¢ 0 0 0 O 0 0 0 0 0O 0 0 O 0 0 o) 0 0 cy4 0 0 ¢ 4 (11b) 2
U ¢ 0 0 0 0 0 0 0 0 0O 0 0 O I 0 0 cy4 0 0 c 0 0 4 (12¢) 1

20eszee (2202) S 1oayL “yre v 'shyd
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Figure2. HSPs (see figure 1) hosting completely linear dispersions obtained by action of
LG, DLG, and their gray extensions in 2D BZ for each cluster C; ordinals are according
to [38]. Dimensions of the allowed (co)IRs are distinguished by colors: blue stands for
2D, while green corresponds to 4D (co)IRs. The subscript is the label of the Hamiltonian
model in tables 1 and 2. The superscripts correspond to the labels of SO transitions from
the tables 3 and 4. Also, the first column H is holoedry (with lattice type) and isogonal
groups P; are given in the second one. Those groups with inversion symmetry included
are orange colored, while non-symmorphic groups are singled out by red in column C.
In the column ID and ID’ are ordinals of IDs of (gray) LGs according to [35].

which isohypses are ellipses with semi-axes € /y/a and € /+/c. Finally, isotropic 1DC is obtained
bya=c:
6i(k1,k2) = :I:a|k| (11C)

As for 4D, general anisotropic PF dispersion [29] is:

exu(ki ko) = £y/ak} + ublkiko| + ck3, u= +1. (12a)

Substituting a = c the isotropic PF is obtained:

€iyu(k1,k2) = 4+/ak? + ub|k1k2\, u==+l1, (12b)

while (12a) for b* = 4ac becomes nodal line FT dispersion [28]:

exulki, ko) = £|Valki| + uv/clks|

. u==+l. (12¢)

Effective model Hamiltonian F from table 2 describes also isotropic PF but slightly modified:

2 2 k2 k2 2 2 k2_k2
6i,u(k1,k2)=:i:\/(cl+cz)( 1+ K3) + ulef — G||k] — k3| — 41 (12d)

) )
substitution k; &£ k, — k. reduces it to the form (12b). Here, positive £, (as well as negative
€_,) branches are touched along the lines k; = =£k,. The rest of the 4D Hamiltonians result in
2DC (double degenerate cones described by equations discussed in 2D case). All dispersions
are given in figure 3.



J. Phys. A: Math. Theor. 55 (2022) 325202 N Lazi¢ et al

B omi k=3 cn??—_.__

pt2a): (120) for kyshoohi

Figure 3. Fully linear dispersions in the vicinity of HSPs in quasi-2D systems. For each
type the equation number is given; the value of parameters are settoa = 1,b =3,c =7,
unless it is specified otherwise. All the cases can be obtained from the two most general
marked cases; this is denoted by the arrows.

4. Analysis

Having at disposal all possible completely linear dispersions in the HSPs of layered systems,
we analyze their interrelations. In this context the roles of SO coupling and TR symmetry are
examined. In the group-theoretical language inclusion of spin can be seen as transition from
single to double group, while TR relates ordinary and gray group.

4.1. Spin-orbit interaction

SO interaction is taken into account through the relation between integer and half-integer rep-
resentations. Total space is tensor product of the orbital space with two-dimensional spin-half
space, the later carrying spin representation u(Gy,) € SU(2). Since composed of SU(2) matri-
ces, u can be either irreducible or reducible u = u; & u, (u; are irreducible). Hence, each integer
irreducible (allowed) co-representation d(k"*“)(GkO) is multiplied by u(Gy,), yielding a half-
integer representation, either irreducible itself d*0¥(Gy,) (with frequency number f® = 1 in
the decomposition below), or decomposed onto irreducible components (associated to ko and
counted by &):

d* 0 (Gy,) @ u(Gy,) = Daf*d* D (Gy,). (13)

However, not all completely linear band crossings remain such when spin space is added.
Besides (13), this depends also on compatibility relation (6) between HSP and generic point
stabilizer (co)IRs. Namely, the tensor product of the both sides of (6) by the spin representation

10
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u can be found: obvious rule u(Gy, | Giy+x) = u(Gy,+k) gives (d*0(Gr,) ® u(Gr))) | Gry+k =
®; fi(d(k0+k*(lf)(Gk0+k) ® u(Gyy+x))- Then right and left sides are reduced in Clebsch—Gordan
series.

As an illustration of mechanism how band splitting (the degeneracy of branches around a
crossing point) is changed after the SO inclusion, let us consider the u-reducible case. The com-
ponents u; (j = 1, 2) are one-dimensional, and remain irreducible when subduced onto generic
domain. Clearly, following the relation (13), each integer (orbital) (co)IR is decomposed
onto two half-integer (co)IRs d%0%/)(Gy,) of the same dimension, equivalent to d*0(Gy,) ®
uj(Gy,), giving essentially two independent energies. Applying further the compatibility
relation leads to (4% (Gy,) ® uj(Gi ) Grgrx = . FU@0H% (G 41) @ (G, 1£)), which
determines the degeneracy of branches around HSP for each group of bands counted by j when
SO is considered.

We calculated the decompositions (13) for the both cases without and with TR symmetry.
Results with crossing bands are presented in the table 3 for ordinary groups and table 4 for gray
groups, together with linearity rank. Extracting the data from these tables, i.e. analyzing (13)
for all possible dimensions (1, 2, and 4) of (co)IRs, different ways how SO may affect band

. . . SO . . . .
crossings are listed below, where notation |a] — @5|&| is used to explicate the dimensions
of the allowed representations in spinless and spinful cases. Non-crossing cases correspond to
linearity rank 0.

e 1 2252 SO induces transition from an orbital nondegenerate band (no crossing) to a
band crossing, with one of the following dispersions:

(x) 1DC;
(f) Linearity rank 1.

o2 & 4. Transitions from 2D integer (co)IR are:

(y) A two-fold orbital band (no crossing) becomes four-degenerate point with (modified)
PF or 2DC;

(8) 2D crossing point of linearity rank 1 yields four-degenerate band crossing with PF,
FT or 2DC;

(€) 2D crossing point of linearity rank 1 becomes 4D crossing with linearity rank 1.

o2 2%,2%2 When 2D integer (co)IR produces two 2D half-integer (co)IRs, possible
patterns are:

(¢) Single two-fold orbital band (no crossing) yields two 1DC (differing in energy);

(m) Single two-fold orbital band (no crossing) becomes a 1DC and a two-fold band
(without crossing);

(8) Single two-fold orbital band (no crossing) gives two two-degenerate crossings of
linearity rank 1;

(1) Two-degenerate point of linearity rank 1 gives two 1DC;

(k) Two-degenerate point of linearity rank 1 gives two two-degenerate linearity rank 1
crossings;

(A) Spinless 1DC yields two 1DC;

(1) Spinless 1DC transforms into two two-fold band (gap opening pattern).

e 2 2% 24 1 @ 1. Transition from a spinless 1DC crossing to:

(v) 1DC and two non-degenerate bands (cone preserving).

1
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Table 3. Influence of SO coupling to the type of the splitting without TR symmetry:
each row denotes a particular type (label in the column T is used as superscript in figure
2) of transition from spinless case (described s by degeneracy |«| at the crossing point
and linearity rank L,) to the spinfull case (characterized by frequency f® in decompo-
sition (13), crossing point degeneracy |G/, and linearity rank Lz). In the last column are
corresponding groups with hosting HSPs (also specified in figure 2).

T |a| Lo f* |&| La

..., Group HSP; HSP;..., ...

al 01 2 2

19SXYT', 20XT", 2181, 228T, 235X YT, 24XT", 258T°, 2681, 53SXT", 54T, 55SXT,
578XT", 58ST°, 59SXT", 60ST", 671", 68KLI", 691", T0KLI", 71K 72K, T6KMT', TTKMT’
565T"

62S,64S

398,468, 53ST", 5481, 558", 5681, 5781, 58ST°, 5981, 60ST*

76,771

78,7Y,48Y,52X

388Y,39XY,418Y,42XY 435Y,455Y,46XY, 62X, 64X

158Y,16S8Y,17XY

nw o2 2

408Y, 43X, 44XY, 45X, 63X, 781", 79KLT", 80K

—_
S}
[\

0 67I',68KLI",691', 70KLI", 71K, 72K, 76K, 771K

T
[\S]
[\
—_— = = =
—_— = = =
S O o O

208Y,21XY,24S8Y,25XY, 54X, 56X, 58X, 60X

2 %% @ 1 & 1 & 1: another gap opening pattern, where a spinless 1DC splits into

(&) Four non-degenerate bands (no crossing).

o 4% 49 4: one way to split spinless FT dispersion (4D allowed integer representation)

is to

(o) Two four-fold crossings of the linearity rank 1.

o4 % 0gp20202: also, spinless FT dispersion may be transformed into

(7t) Four 2D crossings of linearity rank 1.
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Table 4. Influence of SO coupling to the type of the splitting with TR symmetry: each
row is a particular type (label in the column T is used as superscript in figure 2) of
transition from spinless case (described by degeneracy |«| at the crossing point, linearity
rank L,, and a number W, of the subgroup IR) to the spinfull case (characterized by
frequency f& in decomposition (13), crossing point degeneracy |&|, linearity rank L
and Wigner’s kind of subgroup IR Wj). In the last column are corresponding groups
with hosting HSPs (also specified in figure 2).

T |a| Lo W f% |G| Ls Wi

..., Group HSP; HSP;..., ...

a1 01 1 2 2 —1 ISXYT,10Y,13Y,65M
a1 01 1 2 2 0 3SXYT,8SXYT,9XT, 10ST, 11SXYT, 12XT, 13ST', 22, 26Y, 49SXT,
50SXT', 65T, 67M, 68M, 69M, T0M, T3KMT
a1 01 1 2 2 1 I9SXYT,20XT,21T,22ST, 23SXYT, 24XT, 25T, 26ST', 53SXT', 54T, 55SXT,
56T, 58T, 59SXT', 60T, 671", 68KT', 69T, 70KT, 76KMT', 7TKMT
57SXT
B 101 1 2 1 0 4SXYT,5XT,35Y,74M
B 1 0 1 1 2 1 1 27SXYT,28XT,29XT,30XT,31XT, 32T, 33T", 34T, 355T', 365T", 78M 79M
Y200 1 4 2 —1 215258
Y200 1 42 0 545,568, 588,608
Yy 201 1 4 2 0 3954685, 528,545,565, 58S, 60S
v 201 1 42 1 625648
§ 210 1 4 2 —1 285Y,295Y,30SY, 32X, 33X, 34X
§ 21 1 1 4 2 —1 7SY,158Y,16SY, 17XY, 48Y,52X
§ 21 1 1 4 2 0 385Y,39XY,41SY,42XY,43Y,45Y,46XY, 62X, 64X
e 21 1 1 4 1 0 40SY,43X,44XY,45X,63X
1
200 495T", 50ST
1
122 1
¢201 | 33T S4LSSST 6T, STST, S81°, 59T, 601
120 -1
n200 65T
1 0
120
n200 73T
12

(continued on next page)
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Table 4. Continued.

T |Oé| L(} W(yfa ‘5&‘ L(] W( N Group HSP] HSPz,
1 200
n2 01 670, 681", 691", 70I"
1
1 1
n2 01 761,770
1 2 1
1 21
02 01 328,348
1 1
1 —1
¢t 2 10 58Y,36Y
122 -1
1 2 2
¢ 2 11 318Y,32Y,33Y,34Y
1
121 -1
k2 10 98Y, 128Y
1 1 -1
1 21
k2 11 208Y,21XY,248Y,25XY, 54X, 56X, 58X, 60X
1 21
1 20 -1
nw2 20 66K
1 0 0
1 200
nw2 20 75K
1 200
1 200
p2 21 71K, 72K
1 2 01
1 01
p2 21 79K, 80K
1 201
1 2 0
v2 20 73K
2 1 1
11 1
vr2 21 11 1 68K,70K,76K,77K
1 2 1
1 1 -1
o4 20 438,458

-1

14
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Table 4. Continued.

T‘Oz|La W, f& |5/‘L5L Ws ...,GTOUpHSPl HSPz...,...

2
2
T4 2 —1 338
2
2

—_— e
—_ = = =

4.2. Time-reversal symmetry

The role of TR symmetry is clarified through the transition from ordinary L to gray groups G.
This involves magnetic (black-and-white, as well) little groups, and possibly new strata (with
change of the ID), including HSPs of G not characterizing the corresponding L. An enlarged
stabilizer of a momentum k may give rise to an enlarged degeneracy of the energy in k, while
enlarged star necessarily enlarges the dimension of the associated colR. In fact, the impact of
TR symmetry is essentially encoded in the algorithm for co-representations construction. Irre-
ducible co-representations [17, 18] of Gy are derived from IRs of Lj: each real IR (Wigner’s
I kind) of Ly is extended to co-IR of G, a quaternion IR (II kind, equivalent to its conjugate,
but without equivalent real IR) gives co-IR of the double dimension, while two mutually con-
jugate complex IRs give one co-IR of the double dimension. Hence, besides the case of an
ordinary stabilizer Gy = L, TR symmetry preserves the HSP degeneracy also for crossings
hosted by HSP invariant under magnetic group, but with allowed colR determined by a real
subgroup IR. On the other hand, the HSP degeneracy may be doubled for magnetic stabilizers
with quaternion or complex subgroup IR. However, even when HSP degeneracy remains the
same, the dispersion need not stay completely linear, and its shape may be not preserved. The
enlarged group by TR imposes new conditions on Hamiltonian parameters and also affect the
compatibility relations.

For this purpose to each of the stabilizer’s (co)IR we assign the number [18]
W= flkZ/%e 1, X((Bh6)?), which shows whether it is composed of two (mutually
non-equivalent W = 0, kind III, or equivalent W = —1, kind II) or one (W =1, kind I)
subgroup IR. It is given as the last entry in the tables 3 and 4 to enable tracking the role of
TR symmetry. To illustrate, let us consider, for example, the transition 1 & 2 (o) to 1DC
described in the subsection 4.1. In the table 4 this appears in 3 rows mutually differing by the
last entry (column Wj;). In the third case, when both integer and half-integer colRs carry the
value W, = W; = 1, the corresponding groups appear also in table 3; this means that this
type of transition is preserved under TR symmetry. On the contrary, the remaining two cases
(with last entries 0 and —1 for half-integer colRs) do not appear in table 3. This is expected
since herein a conical dispersion in gray DLG is hosted by the half-integer colR composed
of two 1D subgroup half-integer IRs. Thus, breaking TR symmetry in these cases leads to
non-crossing bands. The both situations are sketched in figure 4.

One can further similarly analyze relations between ordinary and gray groups case-by-case.
In this way, combining the results from the both tables 4 and 3, different cluster processes can
be found. Some of them are illustrated in figure 4; recall that all the crossings are symmetry
enforced (thus no avoided crossing can appear). The skipped cases are with linearity rank 1
either in spinless or in spinfull case.
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Figure 4. Manifestations of SO coupling and TR symmetry. Each figure describes tran-
sitions within a cluster at HSP (cluster and HSP are indicated at the bottom): horizontal
arrows are for transitions from single to double groups (with the Greek letter indicating
type from tables 3 and 4), while vertical ones are from ordinary to gray (with indicated
kind of hosting colR from table 4). Color of the bands is degeneracy in orbital-spin
space: red, blue and green are for degeneracy 1, 2 and 4.
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5. Discussion and conclusions

The linear dispersions at HSPs and underlying effective models allowed by integer and half-
integer 2D and 4D (co)IRs are studied. Different dispersion types linear in all directions are
classified and listed, completing thus the results existing in literature. Having these data at
disposal, it was possible to analyze influence of SO coupling and TR symmetry to interrelate
dispersions within the same cluster of the single/double ordinary/gray layer groups.

Obtained classification of the effective Hamiltonians may give some insight to band topol-
ogy. One natural invariant is winding number, along paths around HSP hosting linear disper-
sion, as this point is a sort of singularity. For illustration, we calculated it for Hamiltonian (9),
with result for each of the two bands w = sgn(vivy — viv).

Summarizing results, firstly note that the LG clusters 2, 6, 14, 18, 37,47, 51, 61, all of them
being centrosymmetric, do not support linear band crossing in HSPs at all, while 4, 27, 35 and
74 do not support fully linear (with linearity rank 2), but have linearity rank 1 band crossings
(see table 4). Further, as visible in table 2, the only fully linear 2D band crossing model in
HSPs is 1DC. Notably, these are hosted at TRIM and non-TRIM points in ordinary single, as
well as in ordinary and gray double groups in both symmorphic and non-symmorphic cases.
In the remaining (gray single) groups, 1DC occurs only in K (thus not TRIM) point of some
(symmorphic) groups [23, 24].

As for 4D models, inclusion of spin gives four-fold degenerate point with PF in two double
groups (LG 62 and LG 64), while TR gives rise to FT dispersion [28] in 3 gray LGs. The
presence of both spin and TR give rise to 4D colRs in 27 gray double layer groups. Only 3
of them (7, 48, 52) are without special lines; their special points are surrounded by generic
points with 2D allowed colRs, enabling only 2DC dispersions. In all other 4D cases, besides
2DC cases (for 2D generic allowed colRs), nondegenerate generic colRs enable also four-
band dispersion structures, but special lines with degenerate colRs impose touching of pairs
of bands, restricting linear rank 2 dispersions to PF and FT types. PF and FT types appear in
noncentrosymmetric gray DLGs with a non-symmorphic symmetry: FT in 2 groups, and PF in
10 groups in total [29]. Degeneracy of the generic allowed representations in centrosymmetric
gray DLGs admits 2DC dispersions, as it was proposed [11]; actually, this is realized in 15 of
these groups, as in the remaining 3 (40, 44 and 63, nonsymmorphic) the dispersion is linear
along a single direction, while the second one is special line (at BZ edge) with single 4D
allowed colR, thus becoming four-fold degenerate nodal line. In particular, concerning IDs,
2DC is found in three HSPs X, Y, S (gray DLGs 39, 46), in two HSPs X, § (52, 62, 64), in two
HSPs Y, S (7, 15, 16, 38, 41), in two HSPs X, Y (17, 42), and single point Y (gray DLGs 43,
45, 48). In the groups 43 and 45 additional HSPs with four-fold band crossings, as required by
fermion doubling theorem [15], are at X and S, but have linearity rank 1 (table 4). Concerning
the whole BZ, note that for the groups 48, 52, 62, and 64 points X and Y are symmetry related.
Thus, for engineering Dirac semimetals, it is particularly important to single out group 48,
since effectively one need to tune band contacts only at a single point, i.e. for filling 4n + 2,
both (symmetry related) cones in BZ are on the Fermi level, if there are no additional electron
or hole pockets.

It is interesting that simultaneously 2D and 4D completely linear dispersions are hosted
only by the gray DLGs 21, 25, 32, 33, 34, 54, 56, 58, 60 (note that in these groups there are
also HSPs with linearity rank 1). Note further, our results indicate that fermion doubling is
not a general rule; namely, in some groups FT (e.g. gray LG33, LG43, LG45) and 2DC (e.g.
double gray LG39 and LG46) are the only linear dispersions and appear in odd number of
HSPs. More complex situation is with 1DC and PF, since whenever there are odd number of
these dispersion, there are also other dispersion types.
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Inclusion of the spin—orbit interaction causes various effects on the HSPs’ dispersions,
including gap closing («, v, 17), gap opening (§), cone preserving (), cone splitting (\) scenar-
ios (discussion about the cases with the linearity rank 1 is skipped). For example, an isotropic
1DC in gray LGs [23, 24], which is preserved () by SO perturbation also in gray DLG, is at K
point in symmorphic cluster 68, 70, 73, 76, 77. Similar analysis reported in [30] omitted sym-
morphic gray DLG 73. Concerning the TR symmetry breaking, we found also that the cone
persists at K point in corresponding LGs and DLGs 68, 70, 76, 77, except in the group LG and
DLG 73, where the vanishing TR symmetry opens a gap.

Besides spinless to spinfull transition, we examined influence of TR symmetry to disper-
sion at crossing point. Addition of TR symmetry may preserve or double the degeneracy in
HSP. Concerning the preserved double degeneracy, our results single out the cases where 1DC
appears both with and without TR symmetry, as well as those when TR even prevent linearity
of dispersion. On the other hand, TR symmetry in centrosymmetric groups 62 and 64, although
does not change four-fold degeneracy, modifies the dispersion type: in ordinary double groups
two generic nondegenerate allowed IRs enable two positive (and two negative) bands touch-
ing along special lines (with single degenerate allowed IR); TR symmetry joins these IRs in a
single 2D allowed colR, transforming PF to 2DC dispersion.

Focusing on TR symmetric materials without and with SO from the literature, we further
discuss applicability of our results. The frequently elaborated honeycomb lattice belongs to LG
80 with K point hosting Dirac cone being gaped by SO. That is symmetry prediction confirmed
by DFT calculations in honeycomb lattices of C, Si, Ge, Sn or Pb elements [40, 41]. Buckled
honeycomb lattice belongs to LG 72 with the same behavior of bands near K as in LG 80.
Tight binding model on Si, Ge and Se elemental lattices [42] and DFT band structure of As;X;
(X = C1, E I, Br) monolayers [43] confirm our predictions. Similarly, Dirac cones split by SO
near K point shows LG 66 with nonmagnetic high buckled Co,CsH,, as DFT-example [44].
On the other hand LG 77 supports Dirac cones at K both without and with SO, with monolayer
FeB,; [45] and HfB, [46] as DFT-examples. Square LG 64 supports Dirac cones at X and S only
in the presence of SO interaction; this is confirmed by DFT band structure of MX compounds
M =Sc,Y; X=S8,Se, Te) [47] as well as in X point (S point was not discussed since the
corresponding energies are too far from the Fermi level) in ARPES experiments and DFT
calculations in synthesized layered 3D ZrSiS [48] and numerically in monolayer HfGeTe [49].
Experimentally synthesized a-bismuthene belongs to LG 42 and hosts spinfull Dirac cones at
X and Y points, as confirmed by micro-ARPES technique and DFT calculations [50].

Among already reported structures with PF or FT dispersions are monolayer GaXY (X =
Se, Te; Y = Cl, Br, I), with non-centrosymmetric symmetry LG 32 providing SO caused Dirac
cones at X point and PF at Y point. Indeed, fourfold degeneracy at Y point (called Dirac point
in [51]) splits linearly away from it, as justified numerically [51] (dispersion near X point was
not discussed more closely). DFT band structure of monolayer Ta3SiTes and Nb;SiTeg [52]
requires some attention. Corresponding structure with space group Pmc2; (SG 26 in notation
[53]) is obtained by periodic distribution of monolayers along vertical axis. The monolayers
may be of the symmetry either LG 28 or LG 29; these two groups are similar, both with the
horizontal screw axis of order two, and two planes, the vertical one is mirror and the horizontal
glide in LG 28, while in LG 29 the vertical is glide and the horizontal is mirror. LG 28 should
host PF dispersions at the points Y and S, with low energy effective six-parameters Hamiltonian.
However, monolayers Ta;SiTes and Nb3SiTes have horizontal symmorphic mirror plane [52],
and their symmetry group is LG 29, with FT dispersions (special case of PF) at Y and S points,
and effective Hamiltonian having four independent real parameters. Indeed, linear dispersion
in Y and § points are reported [52] (instead of minimal 4 parameters authors use 6 as for LG
28, which can not affect the result).
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Since surfaces of (semi-infinite) 3D single crystals are also periodic in two directions, some
layer groups are also wallpaper groups being the symmetries of surfaces. Those contain sym-
metry elements that do not flip the surface-normal: perpendicular (to the surface) rotational axes
of order two, three, four, or six, and perpendicular mirror, or glide planes. It may happen that
surface reconstruction or adding atoms at surface in regular manner can lower the symmetry.
Such is the case for thin layer consisting of odd number of silicon (110)-sheets, where FT dis-
persion was found experimentally [54]. FT dispersion was caused by the Coulomb interaction
(described by gray LGs) rather than by the relativistic corrections (described by gray DLGs)
so linear dispersion is maintained over wide energy range. In addition, BZ of reconstructed
surface shrinks, so that another FT dispersion at the center of rectangular surface BZ might be
obtained by intersection from FT bands originating from the corners. This might explain why
FT dispersion at X of Si(110)-surface BZ, seen in ARPES [54], remained intact by different
surface reconstruction types.

3D TIs are known [19] to have large SO coupling that causes Dirac cones at surface states.
Our results apply also to TIs with the remark that only surface states that fall within the bulk
gap are investigated in the literature, since they give rise to surface conductivity. The surface
states with the energy within the bulk gap, are identified by analysis of topological properties
of bulk bands (via bulk-boundary correspondence) and cannot be predicted by group theory
alone. 3D compounds Bi,Ses, Bi,Tes, SbyTe; and Sb,Ses belong to the SG 166 (R3m) with
(111) surface with symmetry gray DLG 69 so Dirac cones are expected in I' and M of the
surface BZ. DFT calculations show that first three materials have surface Dirac cone at I" within
the bulk gap, while states near M fall far out of the bulk gap and were not shown. On the
other hand the last compound Sb,Se; does not have surface states in the gap and it is not TI
[55]. Surface low energy effective Hamiltonian near I' has one real parameter, in accordance
with our results. Surface Dirac cone in T’ has been seen in ARPES experiments in Bi,Te;
and Sb,Tes [56]. Similarly, 3D compound LaBi crystallizes in SG 225 (Fm3m) with (001)
surface having symmetry LG 55. SOC Dirac cones are expected to appear on S, I', and X
points of the BZ. ARPES experiments supported by DFT calculations show Dirac cones at I’
and S in the bulk gap, while bands near X were outside the gap [57]. Theoretically proposed 3D
compound Sr,Pbs, that belongs to SG 127 (P4 /mbm) and its (001) surface to LG 56 (wallpaper
group 12 in notation [53]), is expected to be non-symmorphic TI [15]. Our result show that
SO causes Dirac cone at I' and PF at M point for LG 56. DFT band structure show linear
dispersions from fourfold degenerate energy at M [15]. Their effective low energy Hamiltonian
has two independent real parameters and suggests that the dispersion is Dirac-like (2DC in our
notation). Necessary splitting that causes bands along M-I to be non-degenerate (as required
by symmetry) was attributed to quadratic corrections to the effective Hamiltonian [15]. Our
analysis indicates that the dispersion at M should be PF, with three-parameters Hamiltonian
and with bands along M-I being non-degenerate already in the linear approximation.

The presented theoretical framework is straightforwardly extendable to (ferro/anti-ferro)
magnetic systems invariant under black-and-white ordinary or double groups. Also, it can be
used on an equal footing to analyze higher order dispersion terms, dispersions in the vicinity
of special lines which occur in 2D BZ of layer materials, as well as to clarify the cases with
single linear direction in energy.
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Increased interest in physics of graphene and other two-dimensional materials boosted investigations of band
structure near nodal points and lines. In contrast, group theoretical explanation of simple bands (that do not
touch other bands), is sporadically present in the literature. This paper presents electronic dispersions up to
fourth order in momentum, near Brillouin zone (BZ) high symmetry points of all eighty layer groups. The
method applies to non magnetic materials both with or without spin—orbit coupling. Particular attention is

devoted to Mexican-hat dispersion, showing that it can appear only at BZ center of hexagonal layer groups.
Presented symmetry adapted Taylor expansion of bands can be used to fit ab-initio or experimental band
structures, or for analytical calculation of crystal properties. The results presented here might serve also as a
guiding tool for design of new two-dimensional materials.

1. Introduction

Discovery of electric field effect in atomically thin graphene in-
creased investigations on two-dimensional (2D) materials. When placed
in a vertical magnetic field topological properties of bands become
physically measurable. In that sense, most attention is devoted to var-
ious type of band crossings, many of which are imposed by symmetry
laws [1-4].

On the other hand, simple bands (SB), i.e. parts of band struc-
ture that do not contain nodal points or lines, also lead to fascinat-
ing physics. Two dimensional materials having Mexican-hat dispersion
(MHD) are predicted to be multiferroic due to presence of van Hove sin-
gularity of the 1/ \/E - type [5]. Furthermore, MHD gives that effective
mass on two bands extrema changes sign so that originally repulsive
electron—electron interaction becomes attractive, giving quasi-bound
electron states [6,7]. In addition, materials with MHD have large figure
of merit, which makes them suitable for thermoelectric applications [8,
9]. For these reasons it would be useful if a general prescription on
how to search materials with MHD would exist, and group theory is a
powerful tool in this respect.

In 2D, no publications deal with exhaustive symmetry treatment
of SB, to best of author knowledge, although three of them treat
low-energy Hamiltonians and dispersions [10], ie. effective Hamilto-
nians without dispersions [11,12], in the vicinity of nodal points and
lines. On the other hand, encyclopedia type papers on dispersions in
3D [13-18] cannot be used easily for 2D in many cases. While it is
straightforward task in crystals with axis of order three, four or six,
going back from AA stacking to original layer can be complicated in

E-mail address: damlja@ipb.ac.rs.
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orthorhombic crystals. Fortunately, recent upgrade in C2DB base [19]
helps in solving this problem.

In this paper, we have used group-theoretical tools to find dis-
persions of SB in the vicinity of high-symmetry points (HSPs) in the
reciprocal space. We have adapted the Taylor expansion to the un-
derlying symmetry up to polynomial of fourth degree. All HSPs of
all eighty layer groups, both without and with spin-orbit coupling
(SOC) are covered. The results are applicable to non-magnetic layers
where the time-reversal (TRS) alone is symmetry of the system. We
have illustrated our results using one-band tight-binding model on a
structure having the same symmetry as graphene (which belongs to
layer group 80).

2. Method

Let k, be a HSP in the BZ. For k = ky+q (|q| is small), the electronic
dispersion E(q) has the following properties: E(gq) = E(q) and, if k,
is time-reversal invariant momentum (TRIM), E(—q) = E(q). Here ¢
is rotation/improper rotation from the point group of the wave vector
G, (ko) reduced to two-dimensional reciprocal space (gk, differs from k
by a reciprocal lattice vector). In that sense, e.g. spatial inversion is rep-
resented by —6,, while the Pauli matrix 63, represents xz-(symmorphic
or glide) reflection plane. TRS in the reciprocal space acts as spatial
inversion i, so that the effective little group is G, (ky)+1G,(ky), if G (ko)
does not already contain i. The point groups obtained from G (k) by
adding 7 are given in Table 1.

In other words, Geff(ko) is equal to G, (kp) if —k, does not differ
from k, by a reciprocal lattice vector (k, is not TRIM), or if k, is TRIM
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Table 1

Correspondence between group G, (k,) and the one with spatial inversion added.
G, (ko) Gk ®C, G, (ky) Gyky)®C, G, (k) Gk ®C,
< < <, Cu D,, D,,
<, o G Con D, D,
G o b, b,, Dy, Dy,
[er S D, b, D,, b,
D, b,, D, Dy, Dy, Dy,
S Dy, o b, S, Can
Gy, Dy, Co Dy, S5 Ss
g}h g()h gZh gZh g: gl
D,, Dy, Can Can Cen Con

but G (k) contains spatial inversion. In the case k, is TRIM and G, (k)
is not centrosymmetric then ng T (k) = G, (kp) + G (k).

If E(q) is simple band, one can expand E(q) in Taylor series. The
coefficients of the expansion (partial derivatives of E) are obtained by
Wigner method of group projectors (® denotes the Kronecker product):

5 1
b=—"t— Y ie-wi
eff
|Q0 ko)l gegf)ff(ko)\‘n’—z

One acts with the projector P, on trial vector of dimension 2" (n =
1,2,3,...). The trial vector must be general but has to reflect sym-
metry under permutation of coordinates in partial derivatives. For
example trial vector for second order derivatives is |trial2) =(3*E /aqf,
0%E/0q,045,0° E/04,0q,,0* E /0g2)" = (u,v,0,w)". In e.g. group C; ele-
ments are identity (£), rotation by 2z/3 (C;) and rotation by 47 /3 (C?).
In two-dimensional, orthonormal basis those elements are represented
in the following way:

-(4 Dems(3 )e-i( )

From here we found the group projector for second order derivatives:

1 0 0 1

. o1lo 1 -1 0

B=3lo 21 1 o
1 0 0 1

which acts on trial vector in the following way:

1 0 0 1 u u+w
1o 1 -1 off o] 1| o
210 -1 1 0 v |72 o

1 0 0 1 w u+w

Going back to polynomial, we get for the second order: aq% +0q,9, +
04,4, + aq? = a(g? + q3) = aq®, where we have included the factor 1/2
arising from second order Taylor expansion into coefficients u, v and
w, while a = (1/2)(u + w) is a new real constant.

We have applied the method for all HSPs of all eighty layer groups
to find invariant Taylor polynomials up to fourth order in ¢;,q,. The
results are shown in the following section. The HSPs of layer groups
hosting simple bands are derived by omitting unmovable nodal lines
and points given in [10] and movable but unavoidable nodal lines
through BZ HSPs given in [20]. When little group of a wave vector
contains both one-dimensional and multidimensional allowed irreps,
both simple bands and band crossings are possible at this HSP. All types
of essential band crossings are described in [10] and here they will be
given only by dispersion, where may appear instead of simple bands.
Reader interested in band crossings can consult [10] for more detailed
description.

In the case of band contacts in two dimensions, minimal cutoff order
that induces splitting is equal to two (three) for the case without (with)
SOC in non-magnetic case (type II/gray magnetic layer single or double
groups) [10,11]. This is smaller than for three-dimensional magnetic
space groups where the cutoff order is at most six [11]. For expansion
beyond these orders no additional splittings occur. In addition, the

existence of SBs near HSPs is governed by the dimensionality of little
group’s correps. Simple bands are belonging to one-dimensional correps
or, in case with SOC, two-dimensional correps if the crystal is invariant
under spatial inversion. In the latter case, Kramers’ theorem ensures
that the two bands stick together across the whole BZ. Therefore, we
are sure that expansion of SBs beyond fourth order would not induce
splitting.

3. Results

We found in total seven dispersion formulas. For effective little
groups C, Do, C¢, C¢,» D¢, S, and D,, one gets the following
dispersion (g, b, ¢, E, are real parameters, q,, g, are coordinates of
rectangular system):

E(q) ~ Ey + aq” + bq*. @

For ab < 0, Eq. (1) presents the MHD for a < 0, i.e. inverted MHD for
a > 0. Groups D, ,, C, , D, and D,, give (g, is along horizontal axis of
order two, i.e. vertical reflection plane):

E(Q) ~ Ey+ aq® + b, (4} + ;) + b,q, 05, )
groups C,, C,, and S, give:
E(Q) ~ Eo +aq® + by(q} + 43) + brq1 43 + b3(0} 0, — 4143). 3)

groups D,, D,,, C3 ~and g‘;‘;i”“‘a] give (g; is along horizontal axis of

order two, i.e. vertical reflection plane):
E(Q ~ Ey + alq|2 + azq§ + bl‘ﬁ + b3q§ + bquzq; @

groups C,, C7 and C7, give:

2 2
E(Q) ~ EO + Z aj,lqqu + Z bj,I,n,mqquqnqm’ (5)
Jl=1 J.l,nm=1

groups C, and C,, give:

E(Q) » Ey+aq® + ¢|(q; = 3q143) + ca(q3 — 3q797) + ba*, (6)

while groups D, C, and D,, give (¢, is along horizontal axis of order
two, i.e. vertical reflection plane):

E(Q) ~ Ey +aq* + ¢, (q; - 3q,q3) + bq". @

With these knowledge we obtain dispersions in all layer gray (single
and double) groups. The results are shown in Fig. 1, for SOC not
included and Fig. 2, for the case with SOC. The orientation of the
basis vectors in the reciprocal space is the following: for all oblique
and rectangular groups having fractional translations parallel to one
direction, the vector k; is orthogonal to that direction.

Inclusion of SOC gives the same form of SBs with just altered
coefficients, provided that SB appears both without and with SOC at
a given point of the BZ. With inclusion of SOC four possibilities exist:
nodal structure splits into two SBs, as at K-points of graphene; SB
remains doubly degenerate SB/splits into two non-degenerate SBs; SB
becomes nodal point/line or finally, SB is absent both without and with
SOC. Since all HSPs are at the same time TRIM, except for the K-points
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Fig. 1. Positions of simple bands in k-space for all gray layer groups without SOC. IDD — isotropic Dirac dispersion: E,,;4(q) = E, * alq|, QD — quadratic dispersion:

2 2 1/2
E ,34(Q = E, +aq’ + { [b;(qf = q%) + bl‘h‘h] + [ba(lﬁ - IJ%) + bz‘hﬂz] } s
these dispersions.

of hexagonal groups, SB would split into nodal point/line with inclusion
of SOC except if the system is centrosymmetric. Indeed, all groups
given in Fig. 2 include spatial inversion except for hexagonal groups 65,
67-70, 73-74, 76-79. For centrosymmetric systems, Kramers’ theorem
ensures that spin up and spin down coefficients in SBs are mutually
equal, giving rise to double (spinful) degeneracy.

As an example we consider layer group 80 at the I'-point for
SOC included. Group of the wave vector is Qél)h which has six extra
irreducible representations [21]. All six of them are pseudoreal [21],
which means that TRS does not induce additional degeneracy. Since
all six of them are two-dimensional and the group is centrosymmetric
we conclude that SB exists around the I'-point. Calculation by group
projectors described in section Method gives that the simple band is
given by Eq. (1).

For further illustration we consider one site tight-binding model
belonging to gray single layer group 80. The crystal structure is shown

1QD — isotropic quadratic dispersion: E, ,5,(q) =

E, +(a+b)q®. See [10] for more detailed description of

in Fig. 3 (visualization by use of VESTA [22]). The Hamiltonian is one
dimensional and the band structure is:

Ek) = E,+2t {cos(k -ap)+cos(k-ay) +coslk-(a; + az)]} . 8)

Near BZ center (point group of the wave vector D¢;,) we have k =0+q
so that the dispersion is:

Er(q) = Ey + 6t — %tazq2 + %ta“q“. 9

For ¢t > 0 (¢t < 0) Eq. (9) presents MHD (inverted MHD).
Around M-point (point group of the wave vector D,,) we have
k =b,/2+q so that:

Ep(q) ~ Eg— 2t + —ta2(3q1 - - —ta4(9q1 +184°g3 - 743). (10)



V. Damljanovi¢

Physica E: Low-dimensional Systems and Nanostructures 170 (2025) 116224

k k
i m/a ? T/a,
T/a, m/a,
—0- 0
k, k,
15,(16, 38,
14,37 40,141
k k
/a, 4
k
/a, 2
@
k,
39, 48 ke
17,142 45,
k ]
’ ky T/a
/a
F .
b kl
52 62,163, 64
e -eq. (1)
66, 75
65, 67, 69, ° ;e:; ((23))
74,78 i
@ -¢q.(5)
— @ -<q. (6)

M -cq. (6) or IWD

:‘ -eq. (7) or IWD

' -eq. (7)

Fig. 2. Positions of simple bands in k-space for all gray layer groups with SOC. Superscript D for double groups is omitted. IND — isotropic Weyl dispersion: E,, = E, + al|q|.

See [10] for more detailed description of this dispersion.

Around K-point (point group of the wave vector D3;) we have (k =
(b +by)/3+q):

3
Ex(q) ~ Ey— 3t + %ta2q2 - %za%qf ~34,43) - %m“q“. an
The Egs. (9), (10) and (11) are another confirmations of the theory
presented here. Note that inclusion of SOC would give the same results
with just altered coefficients E; and .

4. Discussion
The signs of parameters in formulas (1)-(7) cannot be determined

using group theory alone, so e.g. in formula (1) it is not guaranteed that
ab < 0, the necessary condition for MHD/inverted MHD. However, in

multiband cases, for the lowest lying band, the second order perturba-
tion theory gives a < 0, which is the first prerequisite for MHD. Also, if
in some 2D material, it turns out that ab > 0, application of symmetry
preserving strain may give ab < 0. In addition, Figs. 1 and 2 show
that the symmetry forbids appearance of MHD outside of BZ centers of
hexagonal groups. Existence of MHD at the I'-point is experimentally
confirmed in hexagonal GaSe grown on GaAs by molecular beam
epitaxy [23]. The MHD and high electron mobility are numerically
predicted in single layers of y — SnX (X = O, S, Se, Te), which are also
hexagonal materials, by first principles investigation [24]. Similarly,
hexagonal lattices of group-VA elements, having symmetry of graphene,
are shown analytically to exhibit MHD with magnetic instability and
unique thermoelectric properties [25]. First principle calculations show
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inverted MHD at BZ center in Janus y — Ge,xy (X/Y =S, Se, Te) mono-
layers having symmetry p3ml (layer group 69) [26]. The inverted MHD
remains feature in the band structure also when vertical electric field
is applied. This effect can be explained having in mind that group p3m1
is also a wallpaper group, so it does not contain elements that flip
the surface of 2D material. When homogeneous electric field is applied
perpendicularly to the sample, the symmetry group remains the same.

Formulas other then (1) are also used in the literature for fitting.
Penta-graphene belongs to layer group pZZlm (layer group 58), so that
its isogonal group is D,, which is non-centrosymmetric [27]. After
adding spatial inversion the group becomes D,,, which requires Eq. (2)
for fitting bands around BZ center. This exact equation is used in [27]
under the name tetragonal MHD.

Sometimes it is necessary to go beyond fourth order invariant
polynomials. Hexagonal gallium chalcogenides belong to layer group
78 (png) and the band structure is fitted with polynomial of order six
in [28]. Instead of giving full polynomial of order six, for comparison
with the results of [28] here we only calculate the number of real
coefficients. Using general formula for symmetrized nth power of a
representation [29], we get: [Fz%ﬁpv] =2A, + Ay, +2E,, in the group
D¢, (Ippy is the operator reduction of polar vector representation
to 2D reciprocal space). The number of parameters is equal to two,
which is in accordance with formula for fitting in [28]. On the other
hand, the formula four in [30], used for fitting of hexagonal GaS
band structure around I'-point, cannot be justified by symmetry since
it is anisotropic already in quadratic approximation. Deviations from
completely isotropic dispersion in the vicinity of BZ center are due
to higher order terms in the Taylor expansion of electronic energy, as
already suggested by [28]. On the other hand, truncation of electronic
energy to first few terms in Taylor expansion has physical origin in
Fermi-Dirac distribution which, even around room temperature, devi-
ates only slightly from its step-like form at absolute zero. States around
Fermi momenta are important in investigations of e.g. charge transport
properties. In the case of graphene, electronic energy obeying massless
Dirac dispersion is a good approximation although higher order terms
induce anisotropy.

5. Conclusions

In summary we have determined dispersions of simple bands in
the vicinity of special points in the reciprocal space for non-magnetic
two-dimensional materials without and with spin-orbit coupling. Our
results can be used for fitting of experimental (e.g. via ARPES) or nu-
merical band structures and for deeper theoretical analysis. Application
to real materials requires only layer group determination which can be
done using freely available program [19], once the crystal structure is
known. Further research is necessary to clarify cases when TRS alone
is broken. This can be the case of magnetic layers, where extension of
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© 0 O

Fig. 3. Lattice structure for the tight-binding model. Black parallelogram denotes primitive unit cell. Hopping parameter t between nearest neighbors is indicated in green color.

spin group concepts from e.g. quasi one-dimensional materials [31-33],
would be appropriate.

Our results are presented in graphical form, not in encyclopedia
manner, which might ensure easier usage. The problem of finding new
materials is reduced, in this particular case of simple bands, to problem
of synthesis of 2D materials with prescribed symmetry. In that sense,
available data bases of numerically stable and real materials might
be useful [34-36]. The last point for crystal growers would be the
right placement of the Fermi level, which cannot be addressed using
symmetry alone, although electron filling conditions for symmetry
groups of insulating systems can be helpful [37-39]. If the total atomic
number of all nuclei in the primitive cell does not satisfy criteria given
in [37-39], some bands will cross the Fermi level for systems with
weak electronic correlations. Although originally given for electronic
dispersions, the results in non-SOC case given in Fig. 1 can be used for
analyzing phononic bands too.
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Abstract — In two-dimensional (2D), non-magnetic materials, a single Dirac cone at high-
symmetry point (HSP) of the Brillouin zone (BZ), akin to the one in graphenes’ band structure,
cannot appear as the only quasiparticle at the Fermi level. Here we found two layer groups with
time-reversal symmetry, among all possible both without and with spin-orbit coupling, that host
one Dirac cone at HSP and we show which additional dispersions appear: a pair of Dirac lines on
opposite BZ edges and a pair of Dirac cones that can be moved but not removed by symmetry
preserving perturbations, on the other two BZ edges. We illustrate our theory by a tight-binding
band structure and discuss real 2D materials that belong to one of the two symmetry groups.
Finally, we single out smaller or bigger discrepancies among the published papers on the same or

related topic.

Copyright © 2024 EPLA

Introduction. — Two-dimensional (2D) materials be-
came focal point of intensive research due to their
mechanical and electrical properties suitable for both
fundamental research and applications. Materials’ 2D
Brillouin zone (BZ) allows application of topology in the
explanation of their physical properties. Electron wave
functions near band contacts, like Dirac cones in graphene,
gain additional significance when a 2D material is placed
in the vertical magnetic field. The absence of back-
scattering and the high electron conductivity near mate-
rials edges giving rise to Quantum Hall effect, are some of
the examples [1,2].

The crystal and time-reversal symmetry (TRS) ex-
plain both band contacts and dispersion in their vicin-
ity. Group-theoretical methodology relies on tables of irre-
ducible (co)representations ((co)reps) of underlying sym-
metry groups. For dispersions in three-dimensional (3D)
crystals, space group representations are firstly used for
prediction of bulk chiral fermions [3], and finalized in a
complete list of excitations near high-symmetry points
(HSPs) and lines (HSLs) in gray and black-and-white
space groups [4-7].

Regarding subperiodic groups, computer program POL-
Sym [8] contains (co)reps for all families of line- and
layer groups and was used by [9-11] to develop spin-group
theory for quasi-one-dimensional systems. On the other

(2)E-mail: damlja@ipb.ac.rs (corresponding author)

hand, all types of (co)reps of all gray and ordinary layer
groups are available recently [12]. Dispersions near all
HSPs and HSLs in non-magnetic 2D materials are re-
ported in [13], which explained published numerical and
experimental band structures (e.g., in [14,15]), and can
be used as a starting point in designing new 2D materials
with physical properties given in advance. Magnetic layer
and rod groups are treated in [16] (without dispersions
—Hamiltonian eigenvalues), which was published at about
the same time as [13].

Topological laws forbid one twofold Dirac cone (also
called Weyl fermion, since it arises by the crossing of two
non-degenerate bands), like those in spinless band struc-
ture of graphene, to be the only feature at a given energy
(including the Fermi level) in non-magnetic 2D materi-
als. This is a consequence of fermion doubling due to
condensed-matter realization of parity anomaly in mag-
netic field [17] and also in zero field [18]. In the spin-orbit
coupling (SOC) case for materials with C,, vertical rota-
tion axis (n = 2,4,6), the number of twofold Dirac cones
must be a multiple of 2n, which gives even stronger restric-
tion on the number of twofold Dirac cones [19]. A fourfold
Dirac cone, obtained by the crossing of two, spinful doubly
degenerate bands also cannot appear as the only feature
at a given energy in the presence of TRS [20,21]. Fermion
doubling for fourfold Dirac fermions is analyzed in the con-
text of a half 2D topological insulator state [22,23], but
explanation presumably originating from quantum field
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theoretic concepts is still lacking. In that respect the
question arises: in a given symmetry group, if it imposes a
fourfold Dirac cone at one BZ HSP, what other band con-
tacts must appear? Are those contacts essential degenera-
cies or are there also accidental band contacts (ABCs)? If
so, are these ABCs protected by topology or are they truly
accidental (can be gapped by symmetry preserving pertur-
bations)? The present paper aims to give answers to these
questions.

Method. — A list of UNPs and UNLs is given in [13],
for spinless and spinful electrons in the presence of TRS.
The position of UNPs and UNLs is given by the dimen-
sionality of the allowed correp of the little group. The
matrices of correps can be used to find an effective Hamil-
tonian in the vicinity of UNPs and UNLs, and hence the
dispersions (Hamiltonian eigenvalues). We search band
structures near unmovable nodal points published in [13],
to identify layer groups having one fourfold Dirac cone
in the BZ. Next, additional dispersions near UNPs and
UNLs that must be present are identified. For investiga-
tion of accidental band contacts the non-crossing rule is
applied [24-26]. Although there are exceptions from the
non-crossing rule [27], we will work with centrosymmetric
groups with SOC, thus avoiding theories for crossings of
two bands [19] and linked nodal lines in centrosymmetric
groups without SOC [28-30]. For the tight-binding model,
we use the fine structure Hamiltonian H(r), obtained
from the Dirac equation by expansion up to (1/c)? [31].
More precisely, the following symmetry properties are
used [32]: Hi(g7'r) = 0f(go)His(r)i(go), where a(go)
represents the rotational part of the layer symmetry el-
ement ¢ in the spin space and can be found at Bilbao
Crystallographic Server [33]. In addition, TRS implies
ﬁf*s(r) = &gfffs(r)&g, with &9 being the Pauli matrix.
These symmetry properties of ﬁfs(r) significantly simplify
the tight-binding Hamiltonian in highly symmetric layers,
allowing an analytical solution of the eigenvalues problem.

Results. — A closer look at dispersions near all HSPs
and HSLs [13] for the SOC case gives that centrosymmetric
layer double groups 43° (p 2/b 21/a 2/a) and 45°
(p 21/b 29/m 2/a) host one fourfold Dirac point at
BZ HSP. To these groups corresponds the following
space groups: 54 (P 2,/c 2/c 2/a; y = 0) and 57"
(P 2/b 21/c 21/m; x = 0), respectively (plane parallel
to the diperiodic one is also given, the notation for layer
and space groups is according to [34] and [35], respec-
tively). Besides the fourfold Dirac point there is also a
fourfold Dirac line at one edge of the BZ for each of the
two groups [13].

We next investigate if additional band contacts are
possible or even unavoidable. We use allowed, extra
irreps from the Bilbao Crystallographic Server [33] for
corresponding space groups. For group 577, the high-
symmetry line H has four one-dimensional irreps be-
ing paired by TRS in the following way: (Ha, H5) and

r x s r S
— T~
E) - @—‘—OZJ e |
rx sy r s
d) Y S
» L]
Q)
=
B ®
£, r X
e
» L]

r-x S Yy T

Fig. 1: (a) Crystal structure adopted for the tight-binding
model. Black (white) nuclei are above (below) the drawing
plane; (b), (c¢): band structure along high-symmetry lines.
Fourfold Dirac cones are enclosed with red ellipses; (d) areas in
the reciprocal space (indicated in red color) where E2> — E1 <
0.6 eV (left panel; the same picture is for E4 — F3 < 0.6 eV),
i.e., B3 — E3 < 0.6 eV (right panel). Black rectangles denote
BZ. Parameters fo, f1, f2, c1, c2 are equal to 2.1, 1.6, 1.1, 1.4,
0.9 €V ((c) and (d)), s.e., 1.8, 1.6, 0.7, 1.8, 1.4 eV (b), respec-
tively; (e), (f): band structure without SOC. Yellow rectangles
enclose fortune teller dispersion at the point S. ﬁ), ]?1 and
fo are 1.7, 1.8 and 0.8 eV (e), i.e., 1.4, 2.1 and 0.4 eV (f),
respectively.

(Hy4, H3). The screw axis of order two is represented by
(—ie'™ ie'™) for both pairs of irreps (u = 1/2 corre-
sponds to BZ corner). Near end points of line H both
pairs are (—i,4) and (1, —1), respectively. However, at the
point Y (u = 0) irreps (Y3,Y ) are (—2i,2i), while those
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at the BZ corner are (T3, T4) = (0,0). Since compatibility
relations near point Y are not satisfied, two double degen-
erate zones must touch an odd number of times somewhere
on the line H (most probably once). For the remaining
parts of the Brillouin zone, accidental band contacts are
forbidden by the non-crossing rule. A similar analysis ap-
plies to space group 54° with the same result. The main
conclusion of this paragraph is that, for layer groups 43"
and 457 there are 2(2n — 1) additional fourfold Dirac
cones somewhere at the BZ edge (the one that does not
host the fourfold Dirac line), with n most probably being
one. These additional fourfold Dirac cones can be moved
along the BZ edge, but cannot be gapped by symmetry
preserving perturbations.

We illustrate our findings using a tight-binding example
on the structure having symmetry 45, shown in fig. 1
(visualization by VESTA [36]). The eight-dimensional
tight-binding Hamiltonian in the basis of s-orbitals and
up and down spinors {[s1 1),[s2 1), |s3 1), [sa 1), |51 {),
s2.4),[s3 1), |54 1)} is

(A B9
10 = (30 e )

() (1)

with A and B given by
see eq. (2) above

Here fy, f1, fo are real hopping parameters between ze-
roth, the first and the second neighbors (parallel spins),
i.e., c1, co are real hopping parameters between the first
and the second neighbors (antiparallel spins). The elec-
tronic band structure, within this model is

see eq. (3) above

with each of the four bands from (3) being doubly
degenerate, as expected from Kramers’ theorem for
centrosymmetric systems with SOC. Four doubly degen-
erate bands are obtained by four possible combinations of

+ and — in (3). Bands E, Es, E3, E4 are ordered accord-
ing to non-decreasing energy for each k in the following
way: (—+) < (=, —) < (+,—) < (+,+). The fourfold
degeneracy is obtained for

c2sin?(k - b) + 4 fZcos? (k2a> cos? <k2b) =0, (4)

which is valid at k - b = &7 (unmovable fourfold Dirac
lines).
Along lines k - a = £7 dispersions (3) become

k-b . (k-b
facos (2> ’ =+ |cgsin (2>

which gives k-b = 0 (unmovable fourfold Dirac points) and
k - b = +2arctg(f2/c2), as positions of movable fourfold
Dirac points from touching of two inner, doubly degener-
ate bands.

To investigate dispersions near touching points closer,
we write k = kg + q and expand (3) for small |q|. Disper-
sions become

Ei934=fo£2 ‘ , (5)

Evaaa(a) ~ fo+ 2 fol £/ f2(a-a)? + Ba b2 (6)

near unmovable fourfold Dirac points, i.e.,

Byala) = fo+/cha a2 + (3 + )@ b2 (7)
near movable fourfold Dirac points. The absence of other
contacts between bands across the reciprocal space is il-
lustrated in fig. 1, which is in accordance with the non-
crossing rule. It also follows from fig. 1 that all four,
doubly degenerate bands are tangled together so that an
insulator with such a band structure must have a total
number of electrons per primitive cell divisible by eight.
This is in accordance with the filling factor for layer group
457 [37], i.e., its corresponding space group [38,39]. The
same filling factor is reported for layer groups 43” and
330 [37-39]. In the case of strong electron correlations,
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for filling factors other than 8n, systems with these three
layer groups will either remain gapless for all strengths
of electronic correlations (even if the band structure pic-
ture is no longer valid), become gapped by spontaneously
breaking the symmetry, or become gapped with the same
symmetry achieving spin-orbital liquid with long-range en-
tanglement and topological order [37-39].

Discussion and conclusions. — We discuss our re-
sults in relations to the existing literature and in a broader
context of this research area. The positions of movable
nodal points and lines published for 3D hexagonal [40], or-
thorhombic [41] and tetragonal [42] space groups could be
used for layer groups, too, via corresponding space groups.
Movable band contacts for groups 43” and 45” found here
are reported for their 3D analogs 54° and 577 [41]. When
the third dimension to k-space is added, the band contacts
remain point-like for 547, but become part of a movable
nodal line for 570 [41].

Using a tight-binding model, the authors of [20] classify
band touchings in non-magnetic materials into four possi-
ble cases. All four cases are obtained by breaking symme-
try elements in layer group 642 [20]. The groups 43 and
457 arise by further breaking symmetry of case I (two
symmetry equivalent fourfold Dirac points), from [20].
The group-subgroup chain is 437 < 487 < 64° and
450 < 48P < 647, so these groups are not maximal sub-
groups of 64° [43,44]. This case is not included in the
classification of [20]. The same holds for centrosymmet-
ric, non-symmorphic groups 407, 44° and 637, hosting
fourfold Dirac lines instead of cones.

Regarding physical properties expected for 2D materi-
als belonging to groups 43 and 45%, the most prominent
feature is that they are anisotropic. Anisotropy in, e.g.,
graphene can be achieved by applying uniaxial strain or
periodically modulated potential. The crystal structure
of 2D materials belonging to 43° and 457 itself, liber-
ates researchers of additional efforts to artificially induce
anisotropy as in the case of graphene. Anisotropy leads
not only to renormalization of tensor components (of, e.g.,
electrical conductivity) but also to new effects, like hyper-
bolic plasmons and excitons [45]. On the other hand, it is
predicted that the appearance of fourfold Dirac lines might
lead to light-induced anomalous Hall conductivity with
applications in phototransistors [46]. In groups 43" and
457 the shift of the Fermi level Ex can switch between
properties arising from fourfold Dirac lines and anisotropic
fourfold Dirac cones.

For experimental realization of materials belonging to
layer groups given in advance, one can search the database
of 2D materials [47,48] and layered 3D materials which
were synthesized in the past [49]. Recent upgrade of C2DB
database includes the layer and corresponding space group
(obtained from the layer group by AA stacking) of 2D
materials in it, which makes closer connections between
abstract group-theoretical results and realistic 2D mate-
rials [50]. Material KAsOy belongs to the layer group

45, with synthesis of its 3D layered analog described be-
fore [51]. The 2D version is a non-magnetic insulator with
a band gap of around 4 eV [47]. Further investigations
would be necessary to show if it would be possible to
shift its Fermi level by, e.g., doping. On the other hand,
band connectivity of groups 43” and 45 (and their com-
mon subgroup 337), which is the highest among all layer
groups, forbids their realization by small deformations of a
material belonging to any of their supergroups. Deforma-
tions, however small they may be, are supposed to close a
finite gap at some BZ point, which we think is unlikely.

Groups 40P, 43P and 457 are reported [52] to host
semi-Dirac fermions (SDF), which disperse linearly in one
direction in k-space and quadratically in the orthogo-
nal direction. Indeed, tight binding dispersions (3) be-
come Fy 234 ~ hy + hi(q-a)? + ha|(q-b)|, with hy =
fo£2/d + G+ ff, b =F(cf + 1)/ (4 E+ S+ 17,
ha = |fa|\/c3 + f2/\/c3 + 2 + f} (near points (0, £7/b)),
ie., he = fo£2leal, by = *(c} + f2)/(Aleal), ha = |2
(near points (+m/a, £7/b)); only upper (only lower) signs
are combined in hy, hli. However, the list of groups and
BZ points hosting SDF in [52] is incomplete. As shown
n [13], SDFs appear also at the midpoints of BZ borders
of groups 44" and 63" and at the BZ corners of group
43P, Also, the symmetry-adapted low-energy Hamilto-
nian derived in [52], gives point-like, instead of line-like
degeneracies required by symmetry. The term SDF is used
for line-nodes extrema (as found in [53]), which differs
from semi-Dirac dispersion around point-like degeneracy
as introduced in [54,55]. In other words, SDF have the
following dispersion: E1 2 = Eg + ag? & b|ga|, while semi-
Dirac cones have Ey 5 = Eg &+ \/ag? + bg;. SDF treated
in [52], [13] and [53] and also discussed here, are pinned
to HSP and are intact by symmetry preserving perturba-
tions, in a similar manner as fourfold Dirac dispersion at
HSP treated in this paper.

When SOC is neglected, the hopping parameters be-
tween states with opposite spins vanish, while those with
the parallel spins slightly change. The dispersions (3) be-
come E1 934 = fo £ 2||ficos(k - a/2)| £ | facos(k - b/2)||,
which give fortune teller states (FT) near BZ corners
Erpsa = fo£|lfi(a-a)| £ |f2(q - b)||, as predicted be-
fore for layer (single) groups 33, 43 and 45 [56]. Non-
zero density of states (DOS) of 2/(rmax{b| f1|, a| f2|}) near
bands contact, distinguish FT dispersion from other lin-
ear dispersions. The formula for DOS presented here does
not include doubly degeneracy of bands and corrects the
inessential numerical error in [56]. Eightfold spinful de-
generacy for electrons (i.e., fourfold degeneracy for, e.g.,
phonons) at BZ corners, together with FT dispersion, is
guaranteed by mere belonging of a 2D material to one of
these three groups [56]. Later it was pointed out that in
some layer single groups, fourfold degeneracy (eightfold,
for electrons with spin) might appear also on some high-
symmetry lines [57,58] by truly accidental band contacts
(TABC). Although being an interesting idea, such TABC
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can be destroyed by symmetry preserving perturbations
and are assumed to appear rarely in real materials in [56].
In other words, even if present by chance, TABC could
be gapped by change of temperature, pressure, humidity
etc., which could cause a potential device designed by use
of TABC to malfunction. The absence of (eightfold de-
generate) TABC on BZ edges in our tight-binding model
without SOC (shown in fig. 1(e) and (f)), in ab initio band
structure of a silicone monolayer in [56] and measured by
ARPES [59], is another confirmation of our statements.
Note that part of table I of [60] (apart from the materials
mentioned in it) that deals with Dirac phonons at HSPs,
repeats group-theoretical results published five years be-
fore in table I of [56] for unmovable, fourfold (spinless) de-
generate band contacts. The other part (Dirac phonons on
HSLs [60]), contains seven groups that might host TABC,
six of which were reported and one originally omitted
in [57,58].

Reference [61] study phonons in Ptl; and LiBiOs mono-
layers belonging to layer groups 33 and 45, respectively.
The k - p Hamiltonian derived in [61] around the BZ cor-
ner of group 45, does not reduce to zero at BZ corner
and has four real parameters, instead of three required by
symmetry [56]. The number of real independent parame-
ters in a low-energy Hamiltonian derived from symmetry
is invariant, unlike its form which depends on the basis,
and could be used as a crosscheck. Group theory was used
for finding which gray layer groups host Dirac cones both
without and with SOC [62]. Group 73 is missing in the
results of [62], as can be seen by comparing cases with
and without SOC in [13]. Gray layer groups without SOC
hosting Dirac cones listed much earlier in [63,64], might
be a useful starting point of analysis performed in [62].
Here we add that eleven groups being the main group-
theoretical result summarized in table I of [65], are the ex-
act eleven groups published seven years before in [63,64].
The group-theoretical treatment of Dirac points of elec-
trons without SOC (treated in [63,64]) and that of lin-
ear Weyl points of phonons (treated in [65]) are identical.
Similarly, the group-theoretical results of [66], reporting
electronic dispersions near fourfold degeneracies in non-
centrosymmetric materials with SOC, are repeated with-
out citation in [67]. The k - p Hamiltonian near the M
point of the wallpaper group p4g (which is also the layer
group 56) has two real parameters and leads to doubly de-
generate bands as if the group was centrosymmetric [68].
This is not in accordance with the earlier publication [66],
where the Hamiltonian near BZ corners of layer group 56
has three parameters and gives doubly degeneracy only
along HSLs, as required by symmetry.

Finally, we mention that our group-theoretical treat-
ment of dispersions holds for fixed nuclei and should not
be transferred directly to dynamical Hamiltonians, such
as the electron-phonon Hamiltonian relevant for the ex-
planation of conventional superconductivity. For dynami-
cal problems, symmetry analysis of phonons (like the one
for graphene [69]), could be useful. Also, a single four-

fold Dirac cone at HSP as the only quasiparticle at the
Fermi level, appears in some black-and-white layer groups
describing antiferromagnetic ordering [70], where time re-
versal alone is not a symmetry.
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Abstract
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Symmetry indicates that low energy spectra of materials could be richer than well-known
Dirac, semi-Dirac, or quadratic, hosting some unusual quasiparticles. Performing the
systematic study of exact forms of low energy effective Hamiltonians and dispersions in
high-symmetry points with fourfold degeneracy of bands, we found new, previously
unreported dispersion, which we named poppy flower (PF) after its shape. This massless
fermion exists in non-magnetic two-dimensional (2D) crystals with spin—orbit coupling
(SOC), which are invariant under one of the proposed ten noncentrosymmetric layer groups.
We suggest real three-dimensional (3D) layered materials suitable for exfoliation, having
layers that belong to these symmetry groups as candidates for realization of PF fermions. In
2D systems without spin—orbit interaction, fortune teller (FT)-like fermions were theoretically
predicted, and afterward experimentally verified in the electronic structure of surface layer of
silicon. Herein, we show that such fermions can also be hosted in 2D crystals with SOC,
invariant under additional two noncentrosymmetric layer groups. This prediction is confirmed
by density functional based calculation: layered BilOy4, which has been synthesized already as
a 3D crystal, exfoliates to stable monolayer with symmetry pb2,a, and FT fermion is observed
in the band structure. Analytically calculated density of states (DOS) of the PF shows
semimetallic characteristic, in contrast to metallic nature of FT having non-zero DOS at the
bands contact energy. We indicate possibilities for symmetry breaking patterns which
correspond to the robustness of the proposed dispersions as well as to the transition from Dirac

centrosymmetric semimetal to PF.

Keywords: electronic dispersions, spin—orbit coupling, symmetry, new fermions

(Some figures may appear in colour only in the online journal)

1. Introduction

Electronic dispersion essentially determines crystal properties
and it is well known that it is assigned by quantum num-
bers of the underlying symmetry group. These are space,
layer (including wallpaper) or line groups, referring respec-
tively to dimensionality of crystals: 3D, quasi-2D (Q2D),
or quasi-1D. Probably the most famous example of a low-
dimensional material is graphene (there are also related single
layers, such as borophene [1], borophosphene [2], graphynes

3 Author to whom any correspondence should be addressed.

1361-648X/20/485501+8$33.00

[3], etc), which hosts Dirac like (linear in quasi-momentum)
dispersion in the vicinity of high symmetry Dirac points. Such
shape of energy bands, besides being responsible for some
intriguing phenomena, provides material realization of rel-
ativistic electron. This triggered numerous investigations of
the connection between symmetry of materials and appear-
ance of Dirac and Weyl points in their band structures. These
points are attributed to existence of rotational [4], nonsymmor-
phic [5], mirror [6], space-time inversion [7, 8], time-reversal
plus fractional translation [9], and generalized chiral symme-
try [10]. There are also results on the search for Weyl and Dirac

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. PF (up) and FT (bottom) dispersions (given by
equations (3.1)): from left to right are all bands, bands E+ 1, bands
E. _; and horizontal sections of the bands (iso-energetic lines).

points according to group theoretical criteria in Brillouin zones
(BZs) of all space [11], layer [12—14] or wallpaper groups
[15].

In addition, geometrical symmetries impose conditions that
lead to the emergence of unconventional quasiparticles in con-
densed matter systems. In 3D materials, enforced by space
groups, double Dirac points [16], three-component [17, 18]
or hourglass fermions [19] are found, inspiring further theo-
retical and experimental research [20-25]. Concerning Q2D
systems, besides Dirac (as in graphene [26]), there are also
semi-Dirac (Dirac-like in one direction, and quadratic in the
orthogonal one, as in black phosphorus [27]), quadratic (as in
molybdenum disulphide [28]), and fortune teller (FT) disper-
sions [29], which corresponds to the coexistence of a nodal
point and lines. Namely, symmetry analysis of the possible
completely linear dispersions in non-magnetic, Q2D materials
with negligible spin—orbit coupling (SOC) has shown that only
completely massless fermions appearing in layers are Dirac
and FT [29]. Recently, FT dispersion has been experimentally
confirmed in a surface layer of silicon [30].

A question arises whether new types of fermions are possi-
ble in Q2D materials by inclusion of SOC? With help of layer
double groups (LDGs) and time-reversal symmetry (TRS)
(i.e. gray LDG), we made a quite general search for linear
dispersions in the vicinity of high symmetry points (HSPs);
since no reference to nonsymmorphic symmetries is made,
the topological (hour-glass like) band crossing mechanisms
are not a priori assumed, as it is usual. Indeed, it turns out
that there are two peculiar types (figure 1) featuring twelve
nonsymmorphic and noncentrosymmetric groups: two groups
support previously predicted FT, and the remaining ones
poppy flower (PF) dispersion (generalizing both FT and Dirac
types).

After a brief overview of necessary group-theoretical meth-
ods, the obtained results are discussed on the basis of effec-
tive low-energy model, calculated densities of states and
symmetry breaking patterns. Also, a list of material can-
didates supporting the new dispersions is provided. The
predicted effect is justified by density functional based
relaxation and band structure calculation in BilO4 mono-
layer. Synthesis of this layered 3D material was reported
around a decade ago [31]. Numerical band structure con-

firms our group theoretical prediction, which may be the
motivation for future laboratory synthesis of this material as
monolayer.

2. Method

Symmetry determines Bloch Hamiltonian in the vicinity
of high-symmetry BZ wave vector through the allowed
irreducible representations (IRs) of the little group [32].
Allowed IRs of LDGs are subduced from the correspond-
ing space groups IRs (found on Bilbao Crystallographic
Server [33]), and also independently constructed by POL-
Sym code [34]. Concerning LDGs with TRS, the dimen-
sions [33, 35] of the allowed IRs (actually co-representations)
are 1, 2 or 4, and for generic ones, giving bands degener-
acy, this is 1 or 2. Here we focus on the band structures
near quadruple points at high-symmetry momenta. Further,
we do not consider generically degenerate bands, giving dou-
ble degenerate Dirac dispersion (precisely, it consists of two
double spinfull degenerate cones meeting at one fourfold
degenerate point); this automatically excludes centrosymmet-
ric crystals, as Kramers degeneracy in them forbids non-
degenerate bands [36]. Among the remaining groups, only
twelve are with special points with four-dimensional allowed
(co)representation.

Analysis of all allowed IRs R of little groups G (k¢) of
HSPs ko in LDG lacking the inversion symmetry gives the
following conditions for quadruple point: k¢ is time-reversal
invariant momentum, R is two-dimensional, either real or
complex IR. Therefore, we consider H(k) being Hamilto-
nian of the system Hj (including spin—orbit) in the basis
{]91),]0,),]00,),|0,)}, where the spinors |¥;) = |U;(k))
(i = 1,2 counts two bands touching each other at ky also in
the absence of TRS) belong to R at ky and € is an anti-unitary
operator of TRS, for which we used 0% = —6, since spin-
full case is considered. Throughout the text &y is two-by-
two unit matrix, and &4, 6,, 03 are Pauli matrices. Denoting
the little group elements by ¢ = (h|r; + b), where & is crys-
tallographic double point group element, while r; and b are
fractional and lattice translation, respectively, one gets the con-
ditions imposed by time-reversal and geometrical symmetries
on H(ky + q) in the vicinity of ky (therefore, the wavevector ¢
is small):

H(ko +q) = T'H(ko — @)T, (2.1)

H(ko + q) = D'(0)H(ko + I q)D(0). (2.2)

Here, D = diag(R, R*), and /1 isan operator reduction of vector
representation /1 to 2D BZ, while T = —ié, ® &, represents
the action of 6 on the basis of spinors.

To focus on the terms linear in ¢, Hamiltonian is expanded
in the form Hlko +q) ~ > ,_,, q,-‘m(g%”)
is conveniently shifted such that H(ko) = 0). To incorporate
symmetry, the matrix elements of the Hamiltonian gradient
are arranged into the four-by-eight matrix W, which entries

= (w! w? irs i = Hpgkote)
Wpg = (wy, wp,) are pairs wy,, = =50 ;. The form

lq=0 (energy scale
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Table 1. Groups providing dispersions (3.1). Notations for layer (columns 1 and 2) and space groups (columns 4, 5 and 6) are
according to [37, 38] respectively. IR notation in the eighth column is as in Bilbao Crystallographic Server [33]. Effective
Hamiltonian is indicated in the last column by the nonzero parameters (and their interrelations) of (2.5). For the last four

groups a = ¢ while Mg and M are conjugated pair of IRs.

Layer double group Corresponding space double group
Group IR Group Plane IR Dispersion Nonzero v;')q
21 121212 Ss 18  P2,22 D3 z=0 Ss (3.1a) vls, Vs, vdss V3, V3, 03
25 pba?2 Ss 32 Pba2 C3 z=0 Ss (3.1a) vly, U3, Uls, V3, 03, 03
28 pm2.b Ys, Ss 26 Pmc2, C3, y=0  Zs5, Us (3.1a) vly, v, vl 03, V3, %
29 pb2im Ys, Ss 26 Pmc2, C3, x=0 Zs5,Ts (3.1b) vhy, v3y, 13y, V3
30 pb2b Ys,Ss 27 Pcc2 G, x=0 Z5Ts (3.1a) vl vl v, vd, v3, V3,
32 pm2n Ys 31 Pmn2; C} y=0 Zs (3.1a) vls, vds, v, V3, 3, V3,
33 phb21a ¥s 29 Pca2, C5, y=0 Zs (3.1b) vl v, 3, 03,
34 pb2n Ys 30 Pnc2  CS, x= Zs (3.1a) Vi3, U3, Ud3, 03, V3, %
_ _ 1 _ 2 o1 _ 2
54 pa2,2 (Mg, M7) 90 P42,2 Di z=0 (Mg, M7) (3.1a) Vo2 = Vo2 = V31 = U3
56 pibm (Mo, My) 100 Pdbm  Ci z=0 (Mo Gl Ll a gl o
58 pd2m (Mg, M7) 113 P&2m D, z=0 (MeM7) (3.1a)
60 pab2  (Me,M;) 117 Pa2 DI, =0 (Me,M7) (3.1a) vl = —vj3 = —v) = —v3
wy Wi Wi W14 of the system obtained by periodic repetition of the layer along
W wi, wpn  wi wy 23) axis perpendicular to it (column plane) according to Bilbao
T why owl, —wn —wi, ‘ Crystallographic Server is also given (second part), where the
wi, wh —wp —wx directions x, y and z are along axes of orthorombic/tetragonal

%

follows from the relation (2.1), together with w!,, = w", ,
responding to the requirement that Hamiltonian H is a Hermi-
tian operator. Note that the form (2.3) of W leads to the trace-
less Hamiltonian: it excludes the scalar term (which imposes
the tilt of the bands). The geometrical symmetries are incorpo-
rated by (2.2), which is rewritten [11, 29] as an efficient fixed
point condition

on the column vector (32 x 1) form ‘VAV>

cor-

‘vAv> —bebD ok (2.4)

of W. The

equation (2.4) is solved with help of the group projection oper-
ators for all of the twelve noncentrosymmetric groups hosting
quadruple points at high symmetry momenta; in this way, the
symmetry determines form of W. To explicate this, it is more
convenient to use another general expansion of the effective
low energy Hamiltonian,

3 2
Hg =Y qwh, 6,5,

p.q=0 i=1

(2.5)

and find the constraints imposed by symmetry on the real

coefficients v;q (simply interrelated with w;q).

3. Results and discussion

3.1. Symmetry adapted Hamiltonians and dispersions

Groups hosting new dispersions are listed in table 1. Besides
intrinsic layer group notation (the first part), the space group

3D primitive unit cell. On the other hand, in POLSym approach
we used convention that layers are in xy-plane. Orthogonal lat-
tice vectors @; and a, span primitive rectangular/square 2D
unit cell, while reciprocal lattice vectors k; and k, satisfy
aj-k; =2ndj; and g, q, are projections of ¢ along k; and
k,. Relevant BZs are in figure 2.

Effective Hamiltonians allowed by symmetry group in the
special points of Brillouin’s zone are presented in the last col-
umn of the table 1: the nonzero real coefficients v;',q in the
expansion (2.5) are specified, together with the constraints
among them. The listed forms correspond to the group settings
(lattice vectors and coordinate origin) and double valued irre-
ducible co-representations obtained by POLSym code. In fact,
this enabled flexibility in the choice of generators (coordinate
system and translational periods), which finally results in the
form of irreducible co-representations. These are chosen such
to get the same form of the effective Hamiltonian whenever
it is possible (for different groups). Equivalent (but different)
settings (and co-representations) produce different (still equiv-
alent with respect to dispersions) Hamiltonian forms. Clearly,
the exact values of the nonzero coefficients v  (listed in the
last column of the table 1) are material dependent. The groups’
generators and their representative matrices in the allowed
co-representations associated to the specified high-symmetry
points are in the table 2. It should be remarked that in all the
considered cases this point is fixed by the whole gray group,
i.e. the little group is the gray (double) group, and the allowed
co-representations of the little group are simultaneously the
irreducible co-representations of the gray group. The matri-
ces of the relevant co-representations are four-dimensional.
In all the cases time-reversal corresponds to the matrix T;
all other generators are represented by the block-diagonal
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, oS
Lg21
Lg25
Le28 A G D
-z/a Le29 P ‘Qal
Lg30 r > X K
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Lg34
-7/ ap

k>
Xlzla Y M

Lg54 G
Lg56
A
Lg58 ¥
Lg60
—rla 7la _
r k;
—rla

Figure 2. BZs of the groups (listed in table 1) supporting dispersions (3.1). For layer groups 28, 29, 30, 32, 33 and 34 vector k; is along

(screw) axis of order two.

matrices D = diag(R, R*), with mutually conjugated 2 x 2
blocks. Therefore, only this block, IA?, is given in the table 2.

The described technique leads to two new types of disper-
sions (figure 1; crossings are taken at E = 0). The first one is
PF, with four bands (obtained for u, v = +1):

E,.(q) = v\/aq% + cq5 + ublq1qa]. (3.1a)
The expression under the square root is non-negative since
a, b and ¢ are positive quantities (functions of v;',q) such that
b* — 4ac < 0. For quadratic layer groups (54, 56, 58, 60)
¢ =a, and above dispersion degenerates to the isotropic
one E,, =v+\/aq*+ublqiq|. Two groups, 29 and 33,
enforce b*> — 4ac = 0, hosting thus FT dispersions (with bands
counted by u,v = £1):

Eu@)=v|f g +uglell (3.1b)

with f, g positive quantities, also functions of v;q. Note that
on the other side, the limit » — 0T gives Dirac dispersion.

3.2. Density of states

Dispersions (3.1), differing from the well-known Dirac, semi-
Dirac or quadratic, impose specific physical properties. In this
context, one must take into account the range of validity of
these forms, describing the realistic band structures only in the
vicinity of high-symmetry point. In particular, corresponding
density of states (DOS) near E = 0 are:

2|E|
SOC
= 3.2a
Per m/4ac — b? ( )
L
SOC ~ (3.2b)

PFT N74772 /7f2+g2.

Unlike to PF, but similarly to 3D nodal semimetals [39],
exact calculation of DOS of FT is prevented due to the non-
circular iso-energetic lines (figure 1). Thus, the last expression
corresponds to realistic situations where the horizontal parts
of band crossing lines are of the length L (this is an effective

range of approximation). In non-SOC case calculation of DOS
gives doubled results (3.2), since each energy is spin degener-
ate, which is then decoupled from the orbital one. Non zero
DOS of FT near E = 0 is in contrast to DOS of Dirac or PF
dispersions being proportional to |E|, as well as to semi-Dirac
which is proportional to \/ﬁ . This affects many properties,
to mention only charge and spin transport. Further, it can be
shown that the electron effective mass, obtained from band
curvatures, for all dispersions (3.1) vanishes. Let us empha-
size that the higher order terms, neglected in derivation can-
not change the obtained band topology (figure 1), though may
distort bands slightly.

3.3. Symmetry breaking

Despite the obtained dispersions are essential, i.e. resistant to
symmetry preserving perturbation, an interesting additional
insight is gained by considering symmetry breaking. Herein,
taking into account group—subgroup relations, we discuss the
possibilities of robustness or switching between various dis-
persions at the same BZ-point by lowering the symmetry, e.g.
due to strain. It is expected that decreasing the number of sym-
metry elements leads to relaxing the constraints imposed on
Hamiltonians, and consequently increasing (or preserving) the
number of independent parameters. In this context, taking into
account the number of non-zero parameters v;,q of (2.5) given
in table 1, it is meaningful to consider the transitions from FT
to anisotropic PF, as well as from isotropic PF to FT, when the
symmetry is lowered. Precisely, the allowed four-band model
Hamiltonian diagonalizing in PF dispersion have six real inde-
pendent parameters, which are reduced to three for quadratic
groups; similarly, there are 4 real independent Hamiltonian
parameters for FT. Before proceeding, let us take a brief look
into the robustness of FT and PF.

Regarding groups 29 and 33 supporting FT dispersion,
symmetry reduction in which either nonsymmorphic glide
plane or screw axis (but not both) is retained causes that FT at
the Y point splits into two non-degenerate conical dispersions.
Opposite out-of-plane shifts of the adjacent nuclei positioned
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Table 2. Allowed irreducible co-representations: for each group and .
corresponding HSP, the generators are listed, and the block-diagonal part R of
double valued co-representation D representing these generators (in the same
order). Here, C,; is rotation for 27 /n around axis 71 (which is %, ¥, z, or

¢ = iz(ic + ¥)), mj; is vertical mirror plane which contains 71 axis, my, is
horizontal mirror plane, and S,, = C,;zmy,.

Group HSP Generators R

21 S (Cxl50)  (Cx05) & 4

25 S (mg30)  (m5[05) 63 6

28 Y (1‘10) (Czy‘O%) ny 5’0 —6'3 —iﬁ'z

28 S a0y (Cxl0D) my —60 63 —iGs

29 Y (1‘10) (Czy‘O%) ny 5’0 —6'3 —iﬁ'z

29 S a0y (Cx0D)  my —60 63 —iGs

30 Y  d|10)  (m[05) Cy b6y —03 —i6,

30 S o)y mlod)y €y —60  —063 —i6,

32 Y (1]10) (my|33)  my G0 —63 —i6,

33 Y (m|30)  (Cy[03) 63 6

34 Y 1) (m|id) Gy 6y 03 —i6s

54 Mo 0)  (Cullly G -Gy —iey e T diag(l,i)
56 Mo A1) mlll) Ce —6y —i6n e T diag(l,i)
58 M {l0)  (mlil) Sy -6y —i6 e diag(l,i)
60 M (l0)  (Cxlthy Sy =60 —iga T diag(l,i)

in the mirror plane, transforms mirror into a glide plane, while
doubling the lattice constant; this in turn halves primitive vec-
tor k; of the reciprocal lattice. Group 29 reduces to 33 and
the S point in 29 becomes Y point in 33. Consequently, FT
in Y and S points in 29 are robust against lowering the sym-
metry to group 33. Similarly, concerning the PF, any homoge-
nous stretching along a; or a, axis deforms square primitive
cell to rectangular, reducing the symmetries of layer groups
54 and 58 (56 and 60) to the group 21 (25) and causes PF
to change from isotropic to anisotropic form, which implies
direction-dependent electronic and related properties.

Since PF is a generalized form of FT, one could expect that
the parameters of these dispersions can be interrelated by tun-
ing. However, continuous transformation from FT to PF at the
same point of the BZ is not possible, since neither of groups
supporting FT is a subgroup of any of groups allowing PF, nor
vice-versa. The expression (3.2a) for DOS of PF shows that the
changing parameters such that PF approaches to FT results in a
singularity at zero energy. In the other words, if opposite would
hold, arbitrarily small displacements of nuclei, being sufficient
to lower the symmetry, would cause a jump of (graphene-like)
negligible DOS of PF to a finite and constant DOS of FT,
which we found unlikely. At the same time, such obstruction
from DOS does not forbid the transition between Dirac (dou-
ble degenerate cones with four-fold degenerate point) and PF,
nor it forbids splitting of FT and PF into two non-degenerate
conical dispersions (with double degenerate point).

Following the above arguments, it is expected that transition
from Dirac cone to PF may be realized by lowering the sym-
metry, since Dirac dispersions has less independent parameters
than PF. According to [5] Dirac semimetals in time-reversal
invariant two-dimensional systems with strong SOC are pos-
sible in nonsymmorphic groups with inversion symmetry. E.g.
let us consider the layer group 46 (pmmn), hosting Dirac cones

at X, Y and S HSPs (the BZ is the same as this one given on
the left panel in figure 2). It is expected that the violation of the
inversion symmetry leads to Weyl points or node [5]. However,
listing all subgroups, it turns out that the two of the subgroups,
32 and 21, actually host PF in the points Y and S, respec-
tively. Indeed, in [46], using spinfull tight-binding model with
four sites (with s-orbitals) per unit cell, authors show that at
fillings 2, 6, system invariant under double layer group 21 is
semimetal, which hosts one fourfold degenerate and four Weyl
points. A plethora of such cases, where groups allowing PF
from the table 1 are subgroups of symmetry groups of Dirac
semimetals, indicates candidates for transitions between cen-
trosymmetric and noncentrosymmetric crystals with protected
four-fold band crossing point. Moreover, the existence of such
essential fourfold degenerate point simultaneously with double
degenerate Weyl points in the same system, makes that the lay-
ers from our list represent possible two-dimensional materials
suitable for the study of their interplay.

3.4. Material realization

Despite the fabrication of freestanding layers is not always
feasible, the above theoretical predictions required material
realizations, or at least numerical simulations. To find realis-
tic material with layer groups from table 1 we searched the
list [41] of 3D layered materials, synthesis of which has been
reported in the literature. In the table 3 we listed potential
material candidates with symmetry groups allowing the pre-
dicted peculiar dispersions. These are laboratory fabricated
3D crystals with layered structures, which could be easily or
potentially exfoliated into layers.

It is interesting to single out our group-theoretical findings
indicated that dispersions (3.1) are not preserved when SOC is
neglected, except for the LDG 33, which supports FT disper-
sion also in that case [29]. Inclusion of SOC moves FT from
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Table 3. Material candidates: layered systems with symmetry groups hosting
the dispersions (3.1). Layer and corresponding space groups are listed for
materials given by a formula and materials project ID. Abbreviations EE and PE
stand for easily and potentially exfoliable, respectively, according to [41].

Layer group Space group Formula ID EE/PE
21 p212,2 18 P2,2,2 As»SO¢ mp-27230 EE
MgMoTeOg¢ mp-1210722 EE
25 pba2 32 Pba?2 Au;ySe, O mp-28095 EE
R6252013—I mp—974650 EE
28 pm2,b 26 Pmc2, TIPs mp-27411 EE
KO,H4F mp-983327 PE
NaGe;P; mp-1104707 PE
29 pb2\m 26 Pmc2, WO, Cl, mp-32539 EE
32 pm2in 31 Pmn2, CuCOCl1 mp-562090 EE
33 pb2ia 29 Pca2, BilO4 mp-1191266 PE
KPSeq mp-18625 EE
58 pA2im 113 P42,m LiReO,F4 mp-554108 EE
ay — (a) -08
E
Q
8 a2f
14
r Y S r X Y
(b) -08
Figure 3. Crystal structure of BilO4 mono-layer: elementary cell
(left) and a part of layer (right). S
Q
>
BZ corners to the Y-point. The material BilO4 belongs to cor- =
responding space group 29 and has layers parallel tothey =0  § 2 %
plane. Consequently, it should exfoliate to layer group 33 so
we choose it for further DFT investigations, as an example of
achievements of our theory. Since IRs from table 1 are the only s Y S

extra IRs in these BZ points, the dispersions (3.1) are unavoid-
able for crystals with symmetry of these groups. On the other
hand, the position of Fermi level cannot be determined solely
by symmetry arguments, nor it can be guaranteed that no other
bands cross or touch the Fermi level.

We determined crystal (figure 3) and band structure
(figure 4) of BilO4 mono-layer configuration using DFT cal-
culations: full relaxation and bands calculations were per-
formed by QUANTUM ESPRESSO software package [42],
full relativistic PAW pseudopotentials [43, 44], with the
Perdew—Burke—Ernzerhof exchange—correlation functional
[45]. The energy cutoff for electron wavefunction and charge
density of 47 Ry and 476 Ry were chosen, respectively. The
band structures were found in 500 k-points on selected path,
and 2500 k-points for 2D band structure plots in the vicinity of
HSPs.

Crystal structure of mono-layer is shown in figure 3. It
belongs to rectangular lattice of the group 33, with nearly equal
a; = 0.566nm and a, = 0.575nm. Band structure of BilO4

Figure 4. Band structure of BilO4 mono-layer without SOC (top)
and with SOC (bottom), with insets showing magnified FT and split
FT dispersions. The Fermi level is set to zero eV.

mono-layer with and without SOC is shown in figure 4. It
turns out that the system is insulating in undoped and ungated
regime. The closest to Fermi level FT state is at —0.9 eV.
When SOC is neglected energy at the point § is eightfold
degenerate (including spin), which gives electron filling of 8n
that is necessary for insulating systems [40]. With inclusion of
SOC the eightfold spinfull degeneracy at S is lifted, but sets
of eight non-degenerate bands each, form cat’s cradle struc-
ture along I'X line, as predicted in reference [46]. This gives
again electron filling of 8n [46, 47]. Our electron filling of 184,
derived from DFT calculations, is indeed divisible by 8. Elec-
tron filling for DLG 33 prevents FT to be the only dispersion at
the Fermi level, while for remaining groups in table 1 the filling
condition necessary for Fermi surface consisting of isolated
points is v = 4n + 2.
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Figure 5. Band structures of BilO4 mono-layer without and with
SOC near points S and Y. Inclusion of SOC turns FT dispersion into
nodal lines in S, and degenerate Dirac line into FT in Y.

Behavior of FT states with inclusion of SOC is shown in
figure 5. In non-SOC case, two pairs of Dirac lines meet at the
point S and form the FT states. SOC splits eightfold degenerate
band at S into four double degenerate ones. Near point ¥, SOC
splits fourfold spinfull degenerate Dirac line into one FT state.
Since SOC strength is proportional to the fourth power of the
atomic number [48], heavy elements in the material induced
observable splitting.

4. Conclusions

Characterized by band crossings (touching) points (lines)
at Fermi level from which energies disperse linearly, nodal
metals/semimetals take an important role in investigations
of various topological properties of crystals. Among them,
symmetry-enforced ones represent a class of materials host-
ing such dispersions in HSPs due to increased degeneracy.
In the language of group theory, while the spinless case
is described by the ordinary group of geometrical trans-
formations, the spinfull situation, when system is robust
on spin—orbit perturbation, needs double groups. Additional
inclusion of TRS leads to gray magnetic ordinary or dou-
ble group. The increased degeneracy of energy is enabled by
higher dimensional allowed irreducible (co)representations of
the corresponding underlying crystal symmetry.

New fermions in 2D materials revealed by application
of full gray double layer group symmetry contribute to the
interesting physical phenomena of layered systems: two new
types of dispersions beyond Dirac, PF and FT, accompany the
fourfold degeneracy of bands in high-symmetry points. Our
findings single out list of twelve nonsymmorphic and non-
centrosymmetric layer groups that support such unusual lin-
ear electronic dispersions. As the method is not based on the
topological mechanism (invoking nonsymmorphic symmetry),
the result is general, verifying a posteriori the necessity of
nonsymmorphic elements for the considered dispersions. Pro-
viding this list, numerical simulations aimed to find material
realizations of the peculiar dispersions are facilitated, which is
of a great importance to achieve corresponding physical prop-
erties. PF dispersion occurs in ten groups; in particular, there

are single isolated HSP hosting it in the groups p2,2,2, pba2
(point S), pm2n, pb2n (Y), and p42,2, pdbm, p2121m, pzle
(M), while the groups pm2b and pb2b have two such points
(Y, S). On the other hand, the FT type of dispersion in the group
pb2,a is hosted in single (Y), and in the group pb2;m in two
HSPs (Y, S).

Particularly interesting are groups pb2,a, supporting FT
dispersion both with and without SOC, as well as pba2 and
pAbm, which are also wallpaper groups, preserved even when
perpendicular, homogenous electric field is applied (e.g. due to
gating). Moreover, coexistence of degenerate point and lines
at the same energy in FT dispersion may lead to some new
phenomena. FT dispersion has constant contribution to DOS,
manifested as a plateau nearby zero energy in FT. This may be
important in technological applications, especially when elec-
tron and/or spin transport are looked for, like materials for solar
cells [49], spintronic etc. On the contrary, PF dispersion, simi-
larly to Dirac ones, contributes by linear DOS with no states on
zero energy. It has both isotropic and anisotropic forms which
may be continuously transformed into each other by crystal
deformations.

Our numerical calculations show that layered BilO4 3D
crystal, exfoliates to stable mono-layer having a symmetry
group from our list. Band structure of BilO4 mono-layer con-
firms theoretical prediction, but further efforts are necessary in
order to place the Fermi level at right energy.
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Abstract

In the physics of two-dimensional materials, notion semi-Dirac dispersion denotes elec-
tronic dispersion which is Dirac-like along one direction in the reciprocal space, and quad-
ratic along the orthogonal direction. In our earlier publication (Damljanovi¢ and Gaji¢ in J
Phys Condens Matter 29:185503, 2017) we have shown that certain layer groups are par-
ticularly suitable for hosting semi-Dirac dispersion in the vicinity of some points in the
Brillouin zone (BZ). In the present paper we have considered tight-binding model up to
seventh nearest neighbors, on a structure belonging to layer group Dg5. According to our
theory, this group should host semi-Dirac dispersion at A and B points in the BZ. The struc-
ture has four atoms per primitive cell, and it is isostructural with sublattice occupied by
phosphorus atoms in the layered material SnPSe;. While the first order perturbation theory
of double degenerate level gives two pairs of semi-Dirac cones and correctly reproduces
dispersion in the Dirac-like direction, exact diagonalisation of four-by-four tight-binding
Hamiltonian shows node lines caused by accidental degeneracy in the band structure. We
discuss these degeneracies in the context of von Neumann—Wigner theorem, and conclude
that although dispersion remains semi-Dirac in the exact diagonalisation method, the band
structure does not necessarily form cones. In order to get full picture of behavior of bands
in the vicinity of semi-Dirac points, first order perturbation theory may not be sufficient
and one may need higher order corrections.

Keywords Semi-Dirac dispersion - Two-dimensional materials - Layer groups - Tight-
binding model
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1 Introduction

Two-dimensional (2D) materials are materials that are periodic in two spatial directions
but finite in the third, orthogonal direction. These materials gain particular attention
after discovery of graphene, a one atom thick layer of carbon atoms arranged in a honey-
comb lattice. In contrast to graphene, in which all atoms belong to a single plane, buckled
silicene and germanene for example, occupy Wyckoff positions with unequal z-coordinates.
Existence of massless electrons whose dynamics is described by Dirac (Weyl) equation is
among notable properties of graphene and related, so called Dirac, materials.

Besides Dirac materials, there is another class of 2D materials in which electronic
dispersion is Dirac-like (linear) along some direction in the 2D Brillouin zone (BZ), and
quadratic along the orthogonal direction. Such semi-Dirac dispersion supports both mass-
less and massive electrons at the same point of the BZ, thus giving rise to highly aniso-
tropic material properties. Using density functional theory (DFT), semi-Dirac dispersion
has been predicted in TiO,/VO, nanostructures (Pardo and Pickett 2009, 2010), in silicene
oxide (Zhong et al. 2017) and in square selenene and tellurene (Xian et al. 2017). A tight-
binding model show semi-Dirac dispersion in phosphorene under strain for certain critical
values of hopping parameters (Duan et al. 2016). First experimental realization of mate-
rial with semi-Dirac dispersion was reported in 2015. It was demonstrated that few-layer
black phosphorus doped with potassium posses semi-Dirac dispersion at the BZ center for
certain level of doping (Kim et al. 2015). The behavior of semi-Dirac fermions in external
magnetic field and consequences that this dispersion imposes on Klein tunneling is exam-
ined in more detail in Banerjee et al. (2009) and Banerjee and Pickett (2012). Evolution of
Hofstadter spectrum on a square lattice with the application of an on-site uniaxial staggered
potential shows merging of two Dirac points into a semi-Dirac one (Deplace and Montam-
baux 2010). Analysis of semi-Dirac systems based on DFT show that in some cases, spin-
orbit coupling (SOC) can open a small gap and can lead to topologically non-trivial bands,
which contribute to non-zero total Chern number (Huang et al. 2015). Such systems are
then suitable for demonstration of quantum Hall effect. Analogous conclusion is derived
for semi-Dirac systems under laser light illumination (Saha 2016). On the other hand,
Narayan (2015) concluded that for semi-Dirac semimetals circularly polarized light does
not open a band gap. The influence of electronic correlations on semi-Dirac systems was
also investigated. It was found by renormalization group theory, that interplay of Coulomb
interaction between electrons and disorder can drive the semi-Dirac system to non-Fermi-
liquid behavior (Zhao et al. 2016). Similarly, approximate solution of Schwinger—-Dyson
equation show that moderate Coulomb interaction can induce excitonic gap opening in
semi-Dirac band structure (Wang et al. 2017). Anisotropic properties of semi-Dirac materi-
als have potential applications in electronics (Mannhart and Schlom 2010). For example,
a p—n junction made from such material would have negative differential conductance for
certain bias voltage (Saha et al. 2017).

Group theory is a powerful tool in predicting various types of electronic dispersions.
In some cases mere belonging of a crystal to some space groups, leads unavoidably to
certain dispersion. For example, Maiies (2012) has found sufficient conditions for exist-
ence of bulk chiral fermions in 3D single crystals and has provided a list of space groups
that host such dispersion in the vicinity of given points of the BZ. The non-symmorphic
space group P2,2,2; (No. 19 in notation of Hahn 2005) belongs to Maifies list. Geilhufe
et al. (2017) have searched the Organic Materials Database and have found six compounds
that belong to this space group and in addition have only Dirac points at the Fermi level.
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Another search was performed within reported DFT crystal structures collected in Mate-
rials Project database (Cheon et al. 2017). This search was for 3D crystal structures that
consist of weakly interacting layers and hence, are suitable for obtaining 2D forms by e.g.
exfoliation. Recently a list of four layer (diperiodic) groups that host semi-Dirac dispersion
was given (Damljanovi¢ and Gaji¢ 2017). The corresponding theory was formulated for
non-magnetic, 2D materials with negligible SOC.

In this paper we have searched a list of layered 3D materials (Cheon et al. 2017), for
structures that consist of layers belonging to layer group p11b (Dg5 in notation of Kopsky
and Litvin 2002), with layers periodically repeated along the z-axis. The layer group p11b
hosts semi-Dirac dispersion at A and B points of the BZ (Damljanovi¢ and Gaji¢ 2017).
In what follows, we have considered a tight-binding model from s-orbitals on a system
isostructural to phosphorus sublattice in the single layer of material SnPSe; that belongs to
the list (Cheon et al. 2017).

2 Method and results

Space group Plcl (No. 7) is obtained by periodic repetition of layer group Dg5 along the
axis that is perpendicular to diperiodic plane. On the other hand, diperiodic plane is per-
pendicular to the y-axis in the space group Plcl. For these reasons we have searched 3D
layered materials given in Cheon et al. (2017), belonging to the space group Plcl, such
that layers are parallel to the unique glide plane. We have found following five materials
whose structures satisfy these requirements: Al,CdClg; (Materials Project No. mp-28361
Bergerhoff et al. 1983; Staffel and Mayer 1987), Cr(PO;)s (mp-705019 Bergerhoff et al.
1983; Jain et al. 2011; Hautier et al. 2011; El-Horr and Bagieu Beucher 1986), LiTi(POs)s
(mp-684059 Bergerhoff et al. 1983; Jain et al. 2011; Hautier et al. 2011; El-Horr and Bag-
ieu Beucher 1986), SnPSe; (mp-570370 Bergerhoft et al. 1983; Israel et al. 1998) and
SnPS; (mp-13923 Bergerhoff et al. 1983; Dittmar and Schaefer 1974). If one would neglect
SOC one would get semi-Dirac dispersion in these materials, irrespectively of the method
used to calculate the band structure, as long as the approximation used is sufficiently fine
(Damljanovi¢ and Gaji¢ 2017). The inclusion of SOC would require analysis of double
groups and it may be a topic of future research.

As an illustration, we will investigate electronic dispersion within a tight-binding model
on a structure that belongs to layer group Dg5. In order to make the structure more real-
istic, we choose it to be isostructural with the sublattice of phosphorus ions in SnPSe;, a
material whose stability was confirmed by DFT calculations (Bergerhoff et al. 1983; Israel
et al. 1998). The crystal structure and corresponding BZ is shown on Fig. 1. The lattice
parameters are 6.996 and 12.006 A, while the oblique angle is 124.6°. The Wyckoff posi-
tion 2a is occupied twice, with nuclei having (fractional) coordinates (0.12600, 0.56620,
2.83 A) and (0.87540, 0.43600, 1.17 A). The positions of other nuclei are determined by
symmetry (Kopsky and Litvin 2002). Although our system is isostructural with phospho-
rus sublattice of SnPSe;, we do not assume that it is made from phosphorus atoms. We
consider a tight-binding (LCAO MO) model from s-orbitals, in order to make the model
simple. The internuclear distances and hopping integrals are given in the Table 1. The
tight-binding Hamiltonian is (x denotes complex conjugation):
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Fig. 1 a Crystal structure belonging to Dg5 for the tight-binding model. Black parallelogram denotes prim-
itive unit cell. All nuclei are of the same type. Height of nuclei above the drawing plane is denoted by
colors: blue + 2.83 A, black + 1.17 A, gray — 1.17 A, turquoise — 2. 83A. b Corresponding Brillouin zone
with basis vectors of the reciprocal lattice and positions of A and B points that host semi-Dirac dispersion.

(Color figure online)

Table 1 Internuclear distances

. . Pair of nuclei Internuclear distance (A) Hopping
and corresponding hopping integral
parameters for the structure from
Fig. 1 I, I 0 7

I3, I3 0 733
r,r;—b-a 2.2677 713
r, T, 6.0619 on
I3, I, 6.4446 V34
r;,r,+b 6.4446 V34
r,r;—b 6.4794 13
r;,r,—a 6.5389 Y
r;,r,+a+b 6.5389 Yia
r,r,—a 6.9012 Y14
r,r +a 6.9960 "
r,r,—a 6.9960 m
r,r;+a 6.9960 ¥is
r;,r;—a 6.9960 Vi

Other distances (higher neighbors of r, or r;) are bigger than 7.8 A
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We are interested in the electronic band structure in the vicinity of points
k, = (-k, + k;)/2 and k; = k;,/2. The band structure for certain ratios of hopping inte-
grals is shown on Fig. 2. We can see in the vicinity of point (0, 0) the presence of disper-
sion which is Dirac-like along one direction in the BZ and quadratic along the perpendicu-
lar direction. In addition, we see that the band structure contains double spinless degenerate
line (one line per each pair of bands) which is not caused by the TRS nor crystal symmetry.

To determine more precisely the exact type of dispersion in the vicinity of given BZ
points, we calculate analytically the band structure, first by the perturbation theory of
degenerate energy level and later exactly, by solving quartic equation. In order to simplify
calculations we assume y|, = y3, = 7|, = ¥, = V3, = 0 and, although not required by sym-
metry, y;; = y33(= 7). The energies at both A and B points are Ey =y, — 1/7}, +r;, and

Ej=y,+4/ y123 + y124. Both E, and E are doubly degenerate. For the A-point we write

Hk, + q) = H(k,) + H’ and apply first order perturbation theory of degenerate levels E,

(b)

40 |
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Fig.2 The electronic band structure in the vicinity of A (a) and B (b) points of the BZ for y,5/ y]’ =18,
y14/}/{1 =105, }'34/}'Il =38, }’{3/}'{1 =6.5, }'54/7{1 =45, 714/},{1 =25, 75,3/7;1 =05 and
(r33 = r11)/v, = —0.5. q is in units 1 / b in the direction parallel to b/b, and in units 1/(acos(34.6°)) in the
direction perpendicular to b/b. Coordinates of the A point in panel a, i.e. B point in panel b, are (0, 0)
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and Ej, with H" = H(k, + q) — H(k,) being perturbation. We do the same for the B-point.
The final result for the B-point is:

E ,~ E(’) - —C2q2 35 \/ ”26]/,2 + VzQ?a 3)

1
Esy~Ey+ = C1q2 +5 Ui q; +v,4;, “4)
while for the A-point we obtain:
E,~E _C]q2 \/Mlql +V1612, 5)
1
EyymEy+ o Cz‘lg 3 rqF + vl (6)

Here q is a vector of small modulus, ¢,, g,, q’1 and q’2 are the projections of q along vectors
e, e,, e; and e,, respectively. In addition:

2
V13714 Y13Y14
Ujp = a+ Frup|, @)
\/713 +7h \/713 +7
_axbyiriy,
T A ®
12013 TV
2.2 2.2
C. = (axb)7yy, Y13714 2
b 2 2 \ 15 +71 e ©)
ul’2 y13 + y14 13 14
Y137 Y137
e = —h # =734 b, (10)
2 2
7/13 + Y14 Yist Vi
2 Y137 Y137
€e; = ? B # + 734 |b, (11)
[ 2
7/13 +714 Yis TV
o = € ;X (axb) 12)
247 Jaxb|

Since u;, u,, v, and v, are all greater than zero, the obtained dispersion is of semi-Dirac
type as predicted by Damljanovi¢ and Gaji¢ (2017), but the accidental double degeneracy
is missed.
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Exact solution, based on solving quartic characteristic equation, gives the following condi-
tion for double degeneracy:

(7/123 + y124)y324sin2(q . b/Z) = }’123}/124Sil’l2(a ‘q+b- (]/2), (13)
which has solution for sufficiently small |q/, irrespectively of relations between y,5, y,, and
734. The Taylor expansion of the exact energy around q =0 (B-point) gives

3
E1,2NE61(1/2)\/”2 q/l CI;

tion perpendicular to e;. Similarly, E;, ~ Ey %+ (1/2)4/u;|q,| in the direction e; and
Es, ® Ey £ (1/2)w|q,|", in the direction perpendicular to e;. Here:

2,2
_ laxbl®> 713714734 < Y1374 2>

W2 = 3/2 2 2 /34
3uy, N RS Yzt

For the A-point we make substitution y,; — —7 5 in the above formulas. It follows that the
first order perturbation theory gives correct BZ-direction of Dirac-like dispersion and cor-
rect behavior of band structure in this direction. For the orthogonal direction as well as
behavior of bands in complete vicinity of A, B-points the first order perturbation theory is
not sufficient and higher order corrections are needed.

Regarding line of accidental spinless degeneracy found in exact solution of four-com-
ponent Hamiltonian, one has to note that similar degeneracy occurs in the tight-binding
example for layer group Dg48 of Damljanovi¢ and Gaji¢ (2017). In this case the degen-
eracy is a consequence of the fact that model Hamiltonian is two-component and that third
order polynomial has at least one real zero. By studding the compatibility relations of all
four layer single groups found in Damljanovi¢ and Gaji¢ (2017) in the vicinity of k, we get
that two-dimensional irrep decomposes into two nonequivalent, one-dimensional irreps:
I (Gky)) = I'p(G(ky + @) + I',,(G(k, + q)), where q is small, jet non-zero wave vec-
tor. According to von Neumann—Wigner theorem, two bands touching at k, do not repel
each other at nearby points and may cross there too (Landau and Lifshitz 1981).

, in the direc-

, in the direction e;, and E, , = Ej, + (1/2)w,

(14)

3 Conclusions

In summary, we have investigated electronic dispersion on a structure belonging to layer
group Dg5, using tight-binding model from s-orbitals. We applied two methods for obtain-
ing electronic dispersion: the first order perturbation theory of doubly degenerate level
and exact diagonalization based on solving quartic equation. The first order perturbation
method gives correct behavior in the Dirac-dispersion direction, while for other directions
one needs higher order corrections. Accidental node line present in the exact method does
not appear in the first order perturbation method. Further investigation should show if e.g.
band topology cause these lines to always appear in four groups from Damljanovi¢ and
Gaji¢ (2017).

In addition, we have pointed out that in the literature there have already been reported
numerically stable 3D structures, which consist of weakly interacting layers belonging to
Dg5. Closer ab initio electronic band structure investigations of single layers of these struc-
tures, could give more insight into the particular types of semi-Dirac dispersion that are
expected to appear.
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Abstract Volume diffraction gratings were created holographically on a dichromated
pullulan (polysaccharide doped with chromium). Specific and very rare multi-peak struc-
ture in the reflection spectra is observed. It was found that multiple peaks are consequence
of non-ideal structure of volume diffraction grating. Theoretical analysis and numerical
simulations confirm that the observed behavior arise from a slight randomness of grating
parameters: refractive index, grating period, film thickness. The results of calculation are in
agreement with experimental results.

Keywords Holographic diffraction grating - Reflection spectra - Bifurcation -
Polysaccharide

1 Introduction

Reflection volume hologram gratings, fabricated using a single-beam method, usually
have only one Bragg peak in the spectrum. Wang et al. (2006) noted the appearance
of multiple peaks in the spectrum of volume diffraction grating recorded in dichro-
mated gelatin, phenomenon that looks like bifurcation within the Bragg plateau. We
also observed bifurcation phenomena in the reflection spectrum of diffraction gratings
recorded in dichromated pullulan (DCP), which is a polysaccharide doped with chro-
mium. Compared to dichromated gelatin, the DCP material is simpler to prepare and
process, it is weakly sensitive to humidity, thus retaining high resolution and diffraction
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efficiency (Pantelic et al. 1998; Savic et al. 2002; Savic-Sevic and Pantelic 2007). The
typical number of peaks in the spectrum is between two and four. We have extended the
research presented in (Wang et al. 2006) by taking into account that the grating param-
eters depend also on X, y coordinates.

In order to understand multi-peak structure of diffraction gratings, experimental results
were compared with theory. The corresponding model investigates effects of several impor-
tant parameters: absorption of radiation within the photosensitive layer, non-uniform thick-
ness of layers, refractive index modulation and non-uniform spatial period of the grating.
Reflection spectra of volume Bragg gratings were calculated using method of characteristic
matrix (Born and Wolf 1980). Our model suggests that multi peak structures are produced
by uneven modulation of Bragg layers inside the volume hologram. The results of calcu-
lation are in agreement with experimental results. Such behavior of reflection spectra is
important for effect of broadening bandgaps of photonic crystals. Understanding mecha-
nism of their formations and appearance can help us to establish standard procedure for
fabrications of such spatially non uniform volume gratings.

2 Fabrication and optical characterization of volume holographic
gratings

The results presented below were obtained by the following preparation procedure for
DCP. Holographic photosensitive material was prepared by mixing 10% aqueous solution
of pullulan (from Sigma—Aldrich) and 10% of the ammonium dichromate. DCP solution
was stirred and warmed to 50 °C to achieve homogeneity. The solution was coated onto a
thoroughly cleaned glass slides placed on the flat horizontal surface. Film was dried over-
night under normal laboratory conditions. The thicknesses of the dried layers, was 14 pm.

The experimental setup is shown in Fig. 1. Periodic structures in a DCP were fabri-
cated using a single-beam method schematically shown in Fig. l1a. Hologram recording
was achieved by exposing DCP to a single longitudinal mode, diode pumped Nd-YAG laser
(Verdi) at 532 nm. The laser beam was expanded and pullulan layer was exposed at normal
incidence with 200 mW/cm? of optical power, for 120 s. After propagation through emul-
sion, the beam was reflected back from a mirror behind the holographic plate. The two
counter-propagating beams interfere, creating a standing wave pattern within an emulsion.

Plates were chemically processed, after the exposure. Processing involves washing
the plates in a mixture of water and isopropyl alcohol (3:1 ratio) for 120 s, and drying
for 60 s in pure isopropyl alcohol. Periodic structure formed below the surface during
the processing is revealed in cross-sectional view of the DCP grating, Fig. 2.

To measure reflection, and transmission spectra, of the DCP, light from the halogen
lamp was collimated and directed onto the DCP plate using set-ups given in Fig. 1b, c,
respectively. Spectra were measured using fiber type spectrometer (Ocean Optics).

The photonic structure obtained under usual experimental conditions looks uniform,
as in Fig. 3a. However, magnified part of the same sample shows that the structure is not
ideally uniform across the layer of the DCP, Fig. 3b. In Fig. 3c we show several trans-
mission spectra of the same DCP grating. Spectra were measured using the microscope
attached to the spectrometer, as schematically presented in Fig. 1c. Transmission spec-
tra were measured at several positions and each spectrum corresponds to area which is
approximately 50 pm in diameter, with 1 mm distance between two adjacent areas.

@ Springer
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Fig. 1 Experimental setup for a
generating holographic diffrac-
tion gratings in DCP; and for
measuring reflection and trans-
mission spectra b macroscopi-
cally; and ¢ microscopically

Fig. 2 SEM picture of the cross
- section of DCP volume diffrac-
tion grating
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Transmittance [%] 2

Fig. 3 a Image of the DCP sample, the scale bar is 5 mm; b zoomed part of the image a obtained using
x40 objectives, and microscopic set-up shown in Fig. 1c. The scale bar is 10 pm; ¢ transmission spectra
obtained from different areas (each of diameter of 50 um) of the DCP sample, with 1 mm distance between
two adjacent areas

3 Numerical simulations

We have calculated reflection spectra of a volume Bragg gratings by the method of character-
istic matrix (Born and Wolf 1980). First, we approximated the refractive index variation along
the direction perpendicular to the DCP surface, with a function whose mathematical expres-
sion is as follows (Wang et al. 2006, 2008; Liu and Zhou 1994):

2w X 7
A —a,T
}+ n, exp(—a, )COS<A><Mj>

(€]

Graphical presentation of the function is given in Fig. 4. As can be seen from Eq. (1),
z-dependence of the refractive index n(z) incorporates three terms. The first one is the average
refractive index of the material n,, indicated by the dashed line in Fig. 4.

The second term describes the effects of attenuation of two counter-propagating beams
leading to global variation of the refractive index An; (described by hyperbolic cosine). The
last term describes a sinusoidal modulation (with amplitude An,) of the index of refraction.
Additional parameters are: a,—absorption coefficient, 7—the material thickness, A—grating
period, N—the number of grating layers. We assume that the grating period is not constant,
due to uneven expansion of the material during processing. Instead, each period of the grating
(defined by parameter j; 1 <j<N) is slightly changed, as defined by random variable M;:

. Z
n(z) = ny + An, exp(—agT)ch{ a, [N =j+ 1A= ﬁj
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where R; is a random number with Gaussian statistics, zero mean value and the standard
dev1at10n of 1.5. Variation of the layer thickness is small, however, consequences on opti-
cal properties are significant, leading to the band gap broadening.

With the above assumptions, the method of characteristic matrix produces rapidly oscil-
lating spectra. This is different from experimentally recorded smooth spectra. Therefore,
we had to modify the theoretical model. In previous research (Wang et al. 2006), it was
assumed that grating parameters vary only along z-axis (i.e. depth of material). As we have
found from microscope images (Fig. 3b, ¢) transmission or reflection spectra depend on the
location on the material surface (x and y coordinates). This means that the grating param-
eters depend on x, y coordinates too. The resulting spectrum (as measured by any finite
aperture optical device) is an average value of many spectra integrated along the aperture.

Therefore, we introduced an additional random factor Tk into Eq. (2):

026 . B 1y

M%M+——M&——ﬂ+—+

3
45 N - 45 45 )

here r ; is also Gaussian random number with mean value 0 and standard deviation of 1.5.
The meaning of other parameters is the same as in Eq. (2).

First we use Eq. (2) to calculate spectrum by the characteristic matrix method. This
calculation is repeated several times giving typically reflection spectra with 2, 3 and
4 peaks. The following values for parameters were used: n,=1.45, A=184 nm, N=78,
Any exp(—a,T) = An, exp(—a,T) = 0.08, T=14 pm, and a, = 0.02(um)~! (measured
value). Then we fixed R; and generate arrays ry; where & is from 1 to 15 and j from 1 to
78. These way k different spectra were calculated and the result is obtained by averaging
individual spectra.

The results of the model given in (Wang et al. 2006) show that appearance of multi peak
band gap can be due to uneven spatial modulation of interference pattern recorded inside
the material. There are two reasons for uneven modulation, irregular swelling of material
during processing, and attenuation of radiation inside the emulsion.

The results of our calculations are shown in Fig. 5. We can see that for different vari-
ations of layer thickness after processing, different number of peaks appear. Since differ-
ences in the variations in the layer thickness are exclusively due to presence of random
parameter with Gaussian distribution, we can assign appearance of peaks to this parameter,
which is in agreement with (Wang et al. 20006).

Results presented in the upper row in Fig. 5, calculated assuming that thickness of lay-
ers varies (middle row) according to Eq. (2), contain noise-like, rapidly oscillating part.
The bottom row in Fig. 5 presents resulting spectra obtained by lateral averaging defined
by Eq. (3). Averaging over spectrums from several neighboring points eliminates rapidly
oscillating part. In the bottom row of Fig. 5 we compare reflection spectra obtained experi-
mentally using set-up shown in Fig. 1b (black dotted curves) and by numerical simulation
(red solid curves). The results of calculation are in agreement with experimental results.

4 Discussion of fabrication of structured band gaps in DCP

Structured reflection spectra under the usual chemical processing are very rare [0.5% prob-
ability (Wang et al. 2006)]. In order to investigate how special techniques in processing
volume holograms lead to more frequent appearance of structured reflection spectra, we
prepared 250 samples of DCP photonic crystals with different concentration of ammonium
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Fig. 5 Calculated reflection spectra of photonic structures in DCP showing multiple peaks as result of the
layer thickness variation (upper row). Layer thickness variation (middle row). Averaged results taking into
account the different thickness variation of layers in adjacent lateral regions of the film (red solid curve) and
reflection spectra obtained experimentally (black dotted curve) using set-up shown in Fig. 1b (bottom row).
(Color figure online)

dichromate (from 10 to 50% by weight of pullulan), different thickness of DCP (6-30 pm)
and use various chemical processing. Samples were developed in mixture of water and iso-
propyl alcohol. We noticed that probability of obtaining multi peak and wider band gap
photonic crystals is higher (although by only a few percent), by increasing the water to
isopropyl ratio. If water to isopropyl ratio is 3:1 or more, analysis of our samples shows
that probability of obtaining two peak photonic crystals is about 10 and 1.5% for three or
more peaks.

5 Conclusions

In this paper we investigated bifurcation in the reflection spectra of the holographic DCP
gratings. Volume holograms in DCP were made using simple, single-beam holographic
technique. Although these types of diffraction spectra of volume hologram are usually
rare, there are exact ways to increase the frequency of appearance of multi peak structure
by using certain techniques in processing of DCP, as described in Sect. 2. Our simulation
model suggests that multi peak structures are produced by uneven modulation of interfer-
ence pattern inside the volume hologram. In addition, smoothness of reflectivity function is
due to the difference in layer thickness in neighboring regions of the grating.

@ Springer
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Abstract: Magnesium diboride gained significant interest in the materials science community after the
discovery of its superconductivity, with an unusually high critical temperature of 39 K. Many aspects
of the electronic properties and superconductivity of bulk MgB, and thin sheets of MgB, have
been determined; however, a single layer of MgB, has not yet been fully theoretically investigated.
Here, we present a detailed study of the structural, electronic, vibrational, and elastic properties of
monolayer MgB,, based on ab initio methods. First-principles calculations reveal the importance of
reduction of dimensionality on the properties of MgB, and thoroughly describe the properties of this
novel 2D material. The presence of a negative Poisson ratio, higher density of states at the Fermi
level, and a good dynamic stability under strain make the MgB, monolayer a prominent material,
both for fundamental research and application studies.

Keywords: magnesium diboride; 2D materials; density functional theory

PACS: 71.15.Mb; 74.70.Ad

1. INTRODUCTION

Magnesium diboride was first synthesized and had its structure confirmed in 1953 [1]. An interest
in its properties has grown ever since 2001, when it was discovered that MgB, exhibits the highest
superconducting transition temperature T, of all metallic superconductors. It is an inter-metallic s-wave
compound superconductor with a quasi-two dimensional character [2] and a critical temperature of
superconductive transition at T, = 39 K. The experimental confirmation of the isotope effect [3] in
MgB, indicated that it is a phonon-mediated BCS superconductor. A better definition would describe
MgB; as self-doped semimetal with a crucial o-bonding band that is nearly filled [4]. The basic aspects
of the electronic structure and pairing is in a rather strong coupling of high frequency boron-boron
stretch modes to the bonding electronic boron-boron states at the Fermi surface. The phonon-mediated
mechanism with different coupling strengths between a particular phonon mode and selected electronic
bands, boron - and 7r-bands [5-13], results in the presence of two superconducting gaps at the Fermi
level. MgB, has already been fabricated in bulk, as single crystals, and as a thin film, and shows
potential for practical applications.

Condens. Matter 2019, 4, 37; d0i:10.3390 /condmat4020037 www.mdpi.com/journal/condensedmatter
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The discovery of graphene in 2004 [14] sparked an interest in 2D materials and their properties.
A variety of new properties, which distinguished graphene from graphite [14-22], inspired a search
for other low-dimensional limits of layered materials and possibilities they offered. Interest in a
low-dimensional limit of MgB; has arisen in past years, showing that it is superconductive even in a
monolayer [23,24].

MgB, has a distinct layer structure, where boron atoms form a honeycomb layer and
magnesium atoms are located above the center of the hexagons, between every boron plane.
The boron layers alternate with a triangular lattice of magnesium layers. There is a noticeable
structural similarity of MgB, to graphite-intercalated compounds (GICs), some of which also exhibit
superconductivity [25-29]. Both monolayer and two-layer graphene, decorated/intercalated with
atoms of alkali and alkaline earth metals, exhibit superconductivity and have been thoroughly studied
using ab initio methods and isotropic and anisotropic Eliashberg theory [30-32].

Furthermore, a similarity in the electronic structure between GICs and MgB; exists. The peculiar
and unique property of MgB, is a consequence of the incomplete filling of two ¢ bands corresponding
to strongly covalent sp?-hybrid bonding within the graphite-like boron layers [33].

Here, we present a comprehensive study of the electronic, vibrational, and mechanical properties
of MgB, using ab initio methods, in order to provide its detail description.

2. Computational Details

MgB; has a hexagonal unit cell and consists of graphite-like By layers stacked with the Mg atoms
in between, as shown in Figure 1. The first-principles calculations were performed within the density
functional theory (DFT) formalism, using a general gradient approximation (GGA) to calculate the
electronic structure. For all electronic and phonon structure, the Quantum Espresso software package
[34] was used with ultra-soft pseudopotentials and a plane-wave cutoff energy of 30 Ry. All calculated
structures are relaxed to their minimum energy configuration, following the internal force on atoms
and stress tensor of the unit cell. We used the Monkhorst-Pack 48 x 48 x 48 and 40 x 40 x 1 k-meshes,
for the calculations of the electronic structure of the MgB, bulk and MgB, monolayer, respectively.
The phonon frequencies are calculated using Density Functional Perturbation Theory (DPFT) on
the 12 x 12 x 12 and 20 x 20 x 1 phonon wave vector mesh for the bulk and monolayer structures,
respectively. In two-dimensional systems, the van der Waals (vdW) interaction was found to play
an important role on the electronic structure [35]; however, as this is study on monolayer MgB,, we
do not treat vdW interactions, especially since, in this case, the effects are minor and including them
would add additional computational costs but would not yield more accurate results.

Figure 1. Crystal structure of the MgB, monolayer (a) and bulk MgB, (b), with a hexagonal unit cell.
Green (orange) spheres represent Boron (Magnesium) atoms. Color online.

The crystal structure of MgB, and the MgB, monolayer are presented in Figure 1. The lattice
parameters for the bulk MgB, are in agreement with the experimental results, 2 = 3.083 A and
c¢/a = 1.142 [9]. In order to avoid an interlayer interaction due to the periodicity and to simulate a 2D
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material, an artificial vacuum layer was set to be 25 A. When the monolayer is modelled, the structure
is geometrically optimized, allowing the atoms to reach a minimum potential energy state. The bond
length between neighbouring atoms remained to be 1.78 A, but the distance from the boron layer to
the Mg atoms changed from & = 1.76 A to h = 1.60 A.

For the molecular dynamics (MD) study, the Siesta code was utilized [36]. The super-cell is
built by repeating the unit cell three times in both in-plane directions, whereas the lattice vector
in the perpendicular direction is 15 A, providing a large enough vacuum space between the 2D
material and its periodic replica in order to avoid their mutual interaction. The lattice parameters
and the geometry of the unit cell are initially optimized using the conjugate gradient method. The
Perdew-Burke-Ernzerhof form of the exchange-correlation functional [37], the double-zeta polarized
basis set, and the Troulier-Martins pseudopotentials [38] were used in all MD calculations.

The second-order elastic constants were calculated using the ElaStic software package [39]. First,
the direction is projected from the strain tensor and total energies for each deformation are calculated.
Elastic constants are then calculated using the second derivatives of the energy curves, dependent on
the parameter . In our calculations, the maximum positive and negative amplitudes of 5% Lagrangian
strain were applied, with a step of 0.1%.

For the 2D square, rectangular, or hexagonal lattices, the non-zero second-order elastic constants,
in Voigt notation, are c11, ¢22, ¢12, and cgs. Due to symmetry, in hexagonal structures c11 = ¢ and
Co6 = %(cu — c12); so, we have 2 independent elastic constants. The layer modulus, which represents
the resistance of a 2D material to stretching, is given as

1
Y= 1(011 + 0 + 2c12).

The 2D Young modulus Y for strains in the (10) and (01) directions, Poisson’s ratio v and the shear
modulus G are obtained from the following relations,

2 2
c74 — C Cc
y=-11_"2 12, v:—u, G = ce6-
C11 €22

Units for elastic constants and those parameters are N/m.

3. Results and Discussion

In order to determine the stability of a single layer of MgB,, we perform MD simulations based on
DFT and the super-cell approach. Besides the system with optimized (pristine) lattice parameters, we
also consider a biaxially stretched system (up to 3% of tensile strain) and biaxially compressed system
(up to 5% of compressive strain). The MD simulations are conducted in the range of temperatures
between 50-300 K, with a step of 50 K, using the Nosé—Hoover thermostat [40].

Figure 2a shows the average distance between Mg and B atomic layers, as evolved over a time of
1 ps. Throughout the simulation time, there is no further evolution of the z-coordinate and the Mg
atom shows only oscillatory movement around the equilibrium positions (as is shown in Figure 2)
Importantly, the separation indicates that the Mg atoms do not leave the surface of the MgB, crystal.
The plane in which the Mg atoms reside shifts away from the plane of the B atoms on average by
0.09 A in a compressed crystal, while the distance between the planes decreases on average by 0.42 A
in the stretched system. This (relatively larger) shift in the latter case can be understood by analysing
the details of the MgB, atomic structure. When the crystal is biaxially stretched, its Mg-B bond lengths
increase, which is partially compensated by the nesting of the Mg atoms in the hollow sites closer to
the B sublattice. Despite these atomic shifts, the MD simulations show the structural stability of the
system. The stability from the MD simulations can be further quantitatively derived from the global
Lindemann index, the dependence of which on temperature is shown in Figure 2b. It is calculated
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for the pristine crystal, with a compressive strain of 5% and a tensile strain of 3%, from the local
Lindemann indices, given by the formula

1 <r1'2]'> - <7ij>2
7= N-—-1 ]; <1’i]‘> !

by averaging over all atoms. Here g; is the local Lindemann index of atom i, N is number of atoms, r;;
is a separation between atoms i and j, and the angle brackets denote averaging over time (i.e., MD
steps) [41]. The linear behaviour of the Lindemann indices indicate that systems are stable, at least up
to room temperature.

25 S —— .
s
=%
A
® 15
L]
v |- 4
M
s 1 _
= | — pristine at 300K ]
i —- comp. strain 5% at 300K
0.5 -~ tensile strain 3% at 300K| |
0 i 1 N 1 L I L 1 L
0 200 400 600 800 1000
Time (fs)
0.08 oS A N S R R B
0.07+ © compressive strain 5% i
F o0 pristine ]
0.06- A tensile strain 3% =
& r !
_E 0.05- -
= L 4
S0.04F i
E F ]
So0.03F N
k= L !
=
002+ —~
0.01- —
0- L 1 L | n 1 L | . 1 n I L i
0 50 100 150 200 250 300 350

Temperature (K)

Figure 2. (a): Average distance between the Mg and B atomic layers; and (b): the dependence of the
global Lindemann index as a function of temperature.

The calculated second-order elastic constants and other structural parameters for monolayer
MgB, are given in Table 1. All elastic constants related to the bulk material (those that have 3, 4, or 5 in
their subscripts), are calculated close to zero, as is expected for the monolayer. Compared to similar
2D materials, the layer modulus of MgB; of 30.18 N /m is relatively small (in the range of Silicene and
Germanene), roughly five times smaller than that of graphene or h-BN, for example [42,43]. Similar
results are obtained for the Young modulus. Compared to borophene (two-dimensional boron sheets
with rectangular structures) [44], which is a hard and brittle 2D material that exhibits an extremely
large Young’s modulus of 398 N/m along the a direction [45], the MgB, monolayer has a significantly
smaller value of 63.29 N/m. The most interesting observation in the elastic properties of the MgB2
monolayer is that the ¢, constant is negative, which gives a negative Poisson ratio in the a and b
directions, too—although, with a very small negative value of —0.05. However, compared to 2D
borophene, which has an out-of-plane negative Poisson’s ratio (that effectively holds the strong boron
bonds lying along the a direction and makes the boron sheet show superior mechanical flexibility
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along the b direction [46]), we obtain similar values [45]. For comparison, graphene has a Young
modulus of 352.2 N/m and a Poisson ratio of 0.185 [42]. After confirming its stability and determining
the elastic properties of the MgB, monolayer, we study its electronic properties. In Figure 3, the
electronic structures of bulk MgB, and the MgB, monolayer are presented. The band structures for
the bulk along the high-symmetry points I'-K-M-I'-A-L, and for the monolayer along I'-K-M-I" were
calculated. The Fermi level is set to zero. The band structure of the bulk is in full agreement with
previous studies [10,47-49]. The two bands crossing the Fermi level play a crucial role in the electronic
properties of MgBs. The density of the states around E are predominantly related to the B atoms
and their p-orbitals, whereas the Mg atom contribution is negligible in this region. Previous studies
described Mg as fully ionized and showed that the electrons donated to the system are not localized
on the anion but, rather, are distributed over the whole crystal [6]. A similarity to graphite can be
observed, with three o bands, corresponding to the in-plane sppy (sp®) hybridization in the boron
layer and two 7t-bands of boron p; orbitals [33]. Boron p,(,) and p; orbitals contribute as " and 7 states.
Analysing projected DOS, one concludes that the o states are considerably involved in the total density
of states at the Fermi level, while the 7T states have only a partial contribution. It is worth emphasizing
that the bulk bands of this material at the K-point above the Fermi level present a formation similar to
the Dirac cones in graphene.

In the monolayer, there is an increase in the total density of states at the Fermi level from N(E)pyx
= 0.72 states/eV to N(Ef)mono = 0.97 states/eV. In the same manner as in the bulk, the monolayer
Mg atoms negligibly contribute to the density of states at the Fermi level, and the main contribution
comes from the B p-orbitals. The characteristic Dirac cone-like structure is still present and closer to
the Fermi level. Dg77, as the symmetry group of the MgB, monolayer, hosts a Dirac-like dispersion in
the vicinity of the K-point in the hexagonal Brillouin zone, if the orbital wave functions belong to the
2D representation E of the Cs, point group of the wave vector [50,51]. In the tight-binding case, the
px and py orbitals of two boron ions give rise to one E-representation (and to two one-dimensional
representations), while the s-orbitals form a basis for one E-representation and p,-orbitals form a basis
for one E-representation as well. This explains the presence of the Dirac cones at the K-point in the
band structure of the MgB, monolayer (as shown in Figure 3b).

b) MONOLAYER

Energy (eV)
Energy (eV)

i
L s N O N B O ©

-10 ¢

Figure 3. The electronic band structure and total density of states in bulk MgB, (a) and the MgB,
monolayer (b). The blue and red colors represent the B and Mg atoms contributions to the electronic
dispersion, respectively.

Table 1. The calculated elastic stiffness constants, layer modulus -y, Young’s modulus Y, Poisson’s ratio
v, and shear modulus G for the MgB, monolayer. All parameters are in units of N/m.

c11 12 C66 v Y v G
634 —-3.1 333 3018 6329 —-005 333

Figure 4 shows the phonon dispersions for both the bulk and monolayer. For the bulk
(in Figure 4a), there are four optical modes at the I' point. Due to the light atomic mass of the B
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atoms and the strong B-B coupling, the two high-frequency modes almost have a pure boron character.
The in-plane stretching mode Ej, and the out-of-plane mode (where the atoms move in opposite
directions Byg) are the boron atom modes. Ej; is a doubly-degenerate Raman active mode and
experimental studies [6,9] showed that this mode is very sensitive to structural changes and it has a
strong electron-phonon coupling. The low-frequency modes (A;,) and double degenerate (E;,) are
infrared active and they do not involve changes on in-plane bonds. In Figure 4b, the phonon dispersion
of the MgB, monolayer is presented. In the phonon spectrum there are no imaginary frequencies,
which confirms, once again, the dynamical stability of the system (also demonstrated earlier by the
MD calculations).

a)

MONOLAYER

;’.'f"i‘f“%’"ig
_ N \\“_\‘?___‘__/_

<]

Frequency [cm™]

Figure 4. The phonon dispersion and the phonon density of states for the MgB, bulk (a) and
monolayer (b). The blue and red colours represent the B and Mg atom contributions in the phonon
dispersion, respectively.

At the I' point, there are three acoustic and six optical modes (from which two pairs are doubly
degenerate). The optical modes A1, By, Eq, and E; are related to the optical modes of the parent material.
Two significant differences between the bulk and monolayer spectrum can be observed: The E; and A4
mode become energy degenerate in the monolayer, resulting in either a slight softening (hardening)
of the modes which leads to nearly equal frequencies, which opens a gap in the phonon density of
states (DOS) between the acoustic and optical modes. A more significant effect concerns the softening
of the B mode and hardening of the E; mode. As in the bulk Ep; mode, the monolayer E; mode is
strongly coupled to electrons, causing the superconductivity in the monolayer in a similar fashion as
in the bulk. In Figure 5, the vibrational frequencies and normal coordinates for the MgB, monolayer
are presented. The symmetry group is Cg;, and the acoustic modes are A; and E;. The optical modes
at the I' point are Ay, By, E1, and Ep, where the infrared-active ones are A; and E;. The Raman-active
modes are A1, Ej, and E, and B is silent. In Table 2, the Raman tensor for the MgB, monolayer is
presented [52]. Similar to graphene, the phonon eigenvectors and the normal coordinates at the I'-point
are determined by symmetry rules and, therefore, are a model independent.

Table 2. Raman tensor of the MgB; monolayer.

Raman Tensors

_ A] E1 EZ
11\)437372_“}%“0 a 0 0 00 ¢ 000 i 0 0 0 —d 0
goﬂcév 0 a 0 00 0 00 c 0 —d 0 ~d 0 0
z 1156 0 0 b c 0 0 0 ¢ 0 0 0 0 0 0 0

OxHUv
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Figure 5. Vibrational frequencies (in wavenumbers) and the vibration normal coordinates at I' for the
MgB, monolayer.

4. Conclusions

The electronic band structure, density of states, phonon dispersion, and elastic constants have
been calculated for the MgB, monolayer and compared to the bulk material, using first-principles
calculations within the DFT framework. We demonstrated an increase of electronic density of states at
the Fermi level in the monolayer (compared to the bulk) and determined its stability under various
strains. These two features are crucial for the enhancement of electron-phonon coupling and they
enable significant mechanical modification that increases the critical superconducting temperature.
Establishing stability and offering insight into this novel 2D material, we focus on the effects of
ultimate lowering of the dimensionality. The question of reduction of dimensionality to its limit,
a truly atomic-scale 2D system, and the consequences of this [53-61] are highly relevant, not only to
fundamental science but also to applications in nanotechnology.
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1. Introduction

Symmetry is widely applied concept in solid-state physics. Predictions of crystal field split-
ting of electron energy levels in three-dimensional (3D) crystals [1], determination of phonon-
displacement patterns in graphene [2, 3] and spin ordering in nano-tubes [4], are just a few among
many examples. Group theoretical results are derived from irreducible (co)representations of little
groups of the wave vector and the whole space groups. Those are tabulated and available for (3D)
space groups [5, 6]. For layer groups, which are symmetries of two-dimensional (2D) materi-
als, [7] tabulates little groups characters, while [8] gives characters of the (whole) graphene layer
group. Recently, the representations of all layer groups, both single- and double-, with and without
time-reversal symmetry (TRS), were also published [9].

Not only band degeneracies, but also dispersions near band contacts, are determined by sym-
metry. Ref. [10] gives analysis of band dispersions dictated by all symmorphic little groups in 3D.
A few decades later, sufficient conditions for existence of Weyl fermions near high-symmetry points
(HSPs) in Brillouin zone (BZ) of (3D) space groups were derived [11]. Recently, a full classification
of linear dispersions near HSPs in layers has been reported [12]. Fully linear Hamiltonians are
mutually distinguished not only by the dimensionality, but also by the functional dependence of
energy on the wave vector near band contacts. Fortune teller dispersion (FT), theoretically predicted
earlier [13], is seen in surface layers of silicone by angular resolved photo-emission spectroscopy
(ARPES) [14].

While group theory gives band contacts and dispersions in their vicinity, it does not predict the
position of the Fermi level. Also, symmetry alone does not guarantee that no other bands cross the
Fermi level, once it is conveniently placed (i.e. it does not guarantee clean Fermi surface). Here
we report the realization of FT states from a tight-binding model and show that it is impossible
for FT states to be the only dispersions near given energy, at least when spin-orbit coupling (SOC)
is neglected and for FT states arising from essential band contacts at HSP. Our proof relies on
topologically protected accidental band contacts tabulated in the literature [15-20].

2. Results and discussion

When SOC is neglected and the material is non-magnetic, the combined crystal symmetry and
TRS give FT states near BZ corners of layer groups 33, 43 and 45 [13]. From these layer groups,
space groups 29, 54 and 57 are obtained by adding pure vertical translation (notation for layer
and space groups is according to [21] and [22], respectively). We calculated the electronic band
structure within tight-binding approximation on a structure that belongs to layer groups 45 (site 4c
with z = 0.610\, x = 0.2), which is shown in Figure 1.

Tight-binding Hamiltonian arising from s-orbitals is:

H(k) = [fo+ ficos(k-a)]4

0 by (l + eik'a') coe’ka (1 + eik'az) 20 (1 + eik'az)
b (1 + e‘ik'al) 0 g0 (1 + eik'az) co (1 + eik'az) |
coe”ka (1 + e‘ik’az) 20 (1 + e‘ik'az) 0 by (1 + e‘ik'al) > (D
g0 (1 + e‘ik'az) co (1 + e‘ik'a2) by (1 + eik'al) 0
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Figure 1: Crystal structure of the tight-binding model with |a;| =2A, |ay| =3A. All nuclei are of the same
type. Black (gray) nuclei are located 0.6A, above (below) the drawing plane. Fractional coordinates (in
{ay, ap}-basis) for nucleus 1, 2, 3 and 4 are (0.2, 0.2), (0.7, 0.2), (0.8, 0.7) and (0.3, 0.7), respectively. We
used program VESTA [23] for visualization.

where I, is the four-dimensional unit matrix, k is a vector from the reciprocal space, while fy,
8o, bo, f1 and co (real numbers) are hopping parameters for the zeroth, first, second, third and
fourth neighbor, respectively. The eigenvalues of A are bands denoted such that E; (k) < E»(k) <
E3(K) < E4(Kk) for every wave vector k. The full band structure for particular specified values of
parameters is shown in Figure 2a) and near BZ corner in Figure 2b). Doubly degenerate lines are
at BZ border as predicted by symmetry. The all four bands meet at the BZ corners. For closer look
at dispersions near BZ corners, we expand the Hamiltonian in the vicinity of (1/2, 1/2) in Taylor
series up to linear (first) order:

0 —boq-a; coq-ay —goq-a
A a . b() -a 0 —g0q a2 —coq-a
AW@ ~ (fo- fls+i| °T " sol a @)
—coq-ay  goq-a 0 boq - a
goq-ay coq-ay —boq-a 0
The dispersion is:
Eip34~ fo— fi£|lboq-ai| +/ci + g5 |q - asl|, 3)

which is exactly FT type predicted in [13].

From (3) it follows that E| = E; and E3 = E4if q-a; = 0 or - ap = 0. These degeneracies are
located at BZ borders and they are essential (caused by symmetry). However, there is another line
of degeneracy E, = E3, valid if |boq - a1| = /c% + g% |q - a2, which always has two solutions for
sufficiently small |q|. This degeneracy is accidental and it prevents the FT states to be the only states
at the Fermi level, provided it continues across the whole BZ. Exact eigenvalues of full Hamiltonian
(1) give lines of accidental degeneracies E,(k) = E3(k) for |K| not necessarily being small. These
lines are indicated in red in Figure 2¢). Such lines are not property of a model, but will always
appear in group 45 as can be shown by the following argument. In the case with SOC included,
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Figure 2: Band structure of the model: a) full band structure for fy, go, bo, f1 and co equal to 2eV, 1.7¢V,
1.2¢V, 0.7¢V and 0.3eV, respectively, b) band structure near (1/2,1/2) showing FT dispersion, c) lines
E» = E3 (denoted in red) in k-space, d) lines E, = Ej for fy, go, bo, f1 and cg equal to 2.2¢V, 1.3¢V, 1.1€V,
0.4eV and 0.1eV, respectively. Grey rectangle in ¢) and d) denotes BZ border.

eight spinful non-degenerate bands are tangled together for groups 33, 43 and 45, giving electron
filling of 8n as necessary condition for an insulator [17]. Since inclusion of SOC cannot close
the gap, these eight bands (four if spin is not included) must be connected away from BZ corners,
also in the absence of SOC. This means that the line £, = E3 will always be present although its
actual position depends on the parameters of the model. This is illustrated in Figure 2d) for slightly
different values of parameters.

3. Conclusions

In summary we have confirmed that symmetry gives FT states unavoidably in the BZ corners
of layer group 45, if the SOC is negligible and the magnetic order is absent. In addition, we showed
that these FT states cannot be alone at the Fermi level and that there are always other bands that
cross it. The same conclusion applies for remaining gray layer single groups with FT states (33 and
43). Our findings might help predicting new materials with anisotropic properties, or even suggest
how to modify existing layered materials to obtain ones with these three symmetry groups.

Acknowledgments

Authors acknowledge funding by the Ministry of Science, Technological Development and
Innovation of the Republic of Serbia provided by the Institute of Physics Belgrade (V.D.) and



Fortune teller states from a tight-binding model Vladimir Damljanovié

Faculty of Physics (N.L.).

References

[1] H. Bethe, Termaufspaltung in Kristallen, Annalen der Physik 395(2) (1929) 133-208.

[2] V Damljanovi¢ and R Gaji¢, Phonon eigenvectors of graphene at high-symmetry points of the
Brillouin zone, Physica Scripta T149 (2012) 014067.

[3] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Applications to the Physics
of Condensed Matter, Springer, 2008.

[4] NatasaLazi¢ and Milan Damnjanovié, Spin ordering in RKKY nanowires: Controllable phases
in 3C nanotubes, Phys. Rev. B 90 (2014) 195447.

[5] Mois I. Aroyo, Asen Kirov, Cesar Capillas, J. M. Perez-Mato, and Hans Wondratschek,
Bilbao Crystallographic Server. Il. Representations of crystallographic point groups and
space groups, Acta Crystallographica Section A 62 (2006) 115-128.

[6] Luis Elcoro, Barry Bradlyn, Zhijun Wang, Maia G. Vergniory, Jennifer Cano, Claudia Felser,
B. Andrei Bernevig, Danel Orobengoa, Gemma de la Flor, and Mois 1. Aroyo, Double
crystallographic groups and their representations on the Bilbao Crystallographic Server,
Journal of Applied Crystallography 50 (2017) 1457-1477.

[7] D. B. Litvin and T. R. Wike, Character Tables and Compatibility Relations of the Eighty
Layer Groups and Seventeen Plane Groups, Plenum Press, 1991.

[8] V Damljanovié¢, R Kostié, and R Gaji¢, Characters of graphene’s symmetry group Dg80,
Physica Scripta T162 (2014) 014022.

[9] Bozidar Nikoli¢, Ivanka MiloSevi¢, Tatjana Vukovi¢, Natasa Lazi¢, SaSa
Dmitrovié, Zoran Popovi¢, and Milan Damnjanovié, Irreducible and site-
symmetry-induced representations of single/double ordinary/grey layer groups,
Acta Crystallographica Section A 78 (2022) 107-114.

[10] A. A. Abrikosov and S. D. Beneslavskii, Possible existence of substances intermediate between
metals and dielectrics, Soviet Physics JETP 32 (1971) 699-708.

[11] J. L. Mafnes, Existence of bulk chiral fermions and crystal symmetry,
Phys. Rev. B 85 (2012) 155118.

[12] N Lazi¢, V Damljanovi¢, and M Damnjanovié¢, Fully linear band crossings at high sym-
metry points in layers: classification and role of spin—orbit coupling and time reversal,
Journal of Physics A: Mathematical and Theoretical 55 (2022) 325202.

[13] Vladimir Damljanovié, Igor Popov, and RadoS§ Gaji¢, Fortune teller fermions in two-
dimensional materials, Nanoscale 9 (2017) 19337-19345.



Fortune teller states from a tight-binding model Vladimir Damljanovié

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Marek Kopciuszynski, Mariusz Krawiec, Lucyna Zurawek, and Ryszard Zdyb, Experimental
evidence of a new class of massless fermions, Nanoscale Horizons 5 (2020) 679—682.

Haruki Watanabe, Hoi Chun Po, Michael P. Zaletel, and Ashvin Vishwanath, Filling-enforced
gaplessness in band structures of the 230 space groups, Phys. Rev. Lett. 117 (2016) 096404.

Haruki Watanabe, Hoi Chun Po, Ashvin Vishwanath, and Michael Zaletel, Filling con-
straints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals,
Proceedings of the National Academy of Sciences 112 (2015) 14551-14556.

Benjamin J. Wieder and C. L. Kane, Spin-orbit semimetals in the layer groups,
Phys. Rev. B 94 (2016) 155108.

J. Zhang, Y.-H. Chan, C.-K. Chiu, M. G. Vergniory, L. M. Schoop, and A. P. Schnyder,
Topological band crossings in hexagonal materials, Phys. Rev. Materials 2 (2018) 074201.

Moritz M. Hirschmann, Andreas Leonhardt, Berkay Kilic, Douglas H. Fabini, and Andreas P.
Schnyder, Symmetry-enforced band crossings in tetragonal materials: Dirac and Weyl degen-
eracies on points, lines, and planes, Phys. Rev. Materials 5 (2021) 054202.

Andreas Leonhardt, Moritz M. Hirschmann, Niclas Heinsdorf, Xianxin Wu,
Douglas H. Fabini, and Andreas P. Schnyder, Symmetry-enforced topological
band crossings in orthorhombic crystals:  Classification and materials discovery,
Phys. Rev. Materials 5 (2021) 124202.

V Kopsky and D. B. Litvin, International Tables of Crystallography Volume E: Subperiodic
Groups, Kluwer Academic Publishers, 2002.

T Hahn, International Tables of Crystallography Volume A: Space-Group Symmetry, Springer,
2005.

Koichi Momma and Fujio Izumi, VESTA3 for three-dimensional visualization of crystal,
volumetric and morphology data, Journal of Applied Crystallography 44 (2011) 1272—-1276.



BOOK OF ABSTRACTS

ADVANCES

IN SOLID STATE PHYSICS
AND NEW MATERIALS

AOCTUTHYRA Y OU3NLN YBPCTOI
CTAHHA N HOBUX MATEPUJANA

30 200uHa LleHmpa 3a ¢u3uky uepcmoz cmara u Hoge mamepujane
NHcmumyma 3a ¢u3uky y beo2pady

ADVANCES IN SOLID STATE PHYSICS
AND NEW MATERIALS

30 years of the Center for Solid State Physics and New Materials at the
Institute of Physics Belgrade

19 - 23 May 2025
Belgrade, Serbia




Advances in Solid State Physics and New Materials 2025 - Belgrade - Serbia

Group-Theoretical Study of Simple Bands in
Two-Dimensional Materials

Vladimir Damljanovi¢?
“Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia

Abstract. In two-dimensional materials, simple bands are electronic or phononic bands that do
not touch other bands near high-symmetry points of the Brillouin zone. In this contribution we
found all possible simple bands in non-magnetic, two-dimensional materials using group theory.
We found in total seven types of simple bands including bands of Mexican-hat shape. Our results
are shown graphically for cases without and with spin-orbit coupling with the intention to made
their usage easier [1].
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Wettability of Covellite

Rados Gaji¢?, Marina Blagojev®, Aleksandar Kremenovi¢®, Tijana
Tomasevic¢?, Vladimir Damljanovi¢?, Marko Opaci¢®, Borislav Vasi¢?

@ Laboratory for 2D materials, Center for Solid State Physics and New Materials, Institute of Physics
Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
b University of Belgrade - Faculty of Mining and Geology, Djusina 7, 11000 Belgrade, Serbia
¢ Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of
Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Abstract. Covellite (covelline) is acopper sulfide mineral (CuS). It has many interesting
properties and applications including the first naturally occurring superconductivity or
applications for lithium batteries cathodes, ammonium gas sensors or solar cells. In the mining
engineering the froth flotation of covellite is an important issue. Therefore, the wettability of
covellite (hydrophobicity) is a critical feature. In this this study we used ab-initio methods (density
functional theory and molecular dynamics) to calculate the contact angle of covellite (the angle
between a liquid and a solid surfaces). It turned out that the calculated value of the contact angle
is ina good agreement with the experimental one we measured, proving that ab-initio methods are
useful tools in the mining engineering.

Acknowledgement The authors would like to thank Professor Milena Kostovic from Faculty of
Mining and Engineering in Belgrade for useful discussions.

REFERENCES

1. P. G. De Gennes, F. Brochard-Wayart, D. Quere, Capillarity and Wetting Phenomena, Springer
(2004).

2. A. Gross, Theoretical Surface Science, Springer (2009).

3. S. R. Rao, J. Leja, Surface Chemistry of Froth Flotation, 2"%, Vol. 1, Springer (2004).

4. S.J. Clark, M. D. Segall, C. J. Pickard, P. Hasnip, M. J. Probert, K. Rafson, and M. C. Payne, Z
Crystallogr.220,567-570(2005).

5. A. M. Garcia, J. He, A. L. Soares Jr,and H. A. Duarte, CrystEngComm, 19,3078-3084 (2017)

30



Advances in Solid State Physics and New Materials (5; 2025; Beograd)

Book of abstracts / Advances in Solid State Physics and New Materials - 30 years of the
Center for Solid State Physics and New Materials at the Institute of Physics Belgrade, 19 -
23 May 2025, Belgrade, Serbia; editors Bojana Visi¢ and Andrijana Solajié. - Belgrade:
Center for Solid State Physics and New Materials, Institute of Physics, 2025 (Belgrade:
SASA).

ISBN 978-86-82441-65-6
1. Advances in Solid State Physics and New Materials

a) dunaurka uBpcTor cTarba - ANCTpakTu




BOOK OF ABSTRACTS

ADVANCES

IN SOLID STATE PHYSICS
AND NEW MATERIALS

AOCTUTHYRA Y OU3NLN YBPCTOI
CTAHHA N HOBUX MATEPUJANA

30 200uHa LleHmpa 3a ¢u3uky uepcmoz cmara u Hoge mamepujane
NHcmumyma 3a ¢u3uky y beo2pady

ADVANCES IN SOLID STATE PHYSICS
AND NEW MATERIALS

30 years of the Center for Solid State Physics and New Materials at the
Institute of Physics Belgrade

19 - 23 May 2025
Belgrade, Serbia




Advances in Solid State Physics and New Materials 2025 - Belgrade - Serbia

Raman Signatures Of Instabilities In InSiTe;

T. Belojica?, A. Milosavljevié?, S. Djurdji¢ Mijin®, J. Blagojevié?, A.
golajiéa, J. Pesi¢?, B. Visi¢?, V. Damljanovi¢?, M. O. Ogunbunmi®, S.
Bobev®, Yu Liu4, C. Petrovic®', Z. Popovi¢®, R. Hackl™ and N.
Lazarevic¢?

“Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
bDepartamento de Fisica de Materiales, Facultad de Ciencias, Universidad Auténoma de Madrid,
28049 Madrid, Spain
“Departament of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716,
USA
dCondensed Matter Physics and Materials Science Departament, Brookhaven National
Laboratory, Upton, NY 11973-5000, USA
¢Department of Nuclear and Plasma Physics, Vinca Institute of Nuclear Sciences, University of
Belgrade, Belgrade 11001, Serbia
IShanghai Advanced Research in Physical Sciences (SHARPS), Shanghai 201203, China
8Serbian Academy of Sciences and Arts, Knez MIhailova35, 11000 Belgrade, Serbia
hSchool of Natural Sciences, Technische Universitit Miinchen, Garching 85748, Germany
'IFW Dresden, Helmholtzstrasse 20, Dresden 01069, Germany

Abstract. Layered van der Waals materials have gained considerable interest for their unique
physical properties, yet InSiTe; remains largely unexplored due to uncertainties surrounding its
crystal structure. In this work, we present a comprehensive experimental and theoretical
investigation of InSiTes, confirming a rhombohedral structure with P3 space group symmetry via
single-crystal X-ray diffraction. Polarization-resolved Raman scattering reveals nine out of ten
Raman-active modes expected for this symmetry, further validating the structural assignment.
Beyond conventional phonon behavior, we identify strong anharmonicity and the emergence of a
self-organized coherent phonon state associated with a high-energy A; mode near 500 cm.
Analysis of phonon-phonon coupling parameters indicates that A; modes exhibit coupling
strengths up to eight times greater than E; modes. Temperature-dependent Raman measurements
from 80 to 300 K reveal notable changes in A; mode intensities around 200 K and the appearance
of broad spectral features in the phonon gap region, attributed to overtone excitations.
Our findings point to an intrinsic lattice instability in InSiTes, driven by strong anharmonic
interactions. However, further studies are required to fully uncover the microscopic origin of these
instabilities and their implications for the material’s physical properties.

*This research was supported by the Science Fund of the Republic of Serbia, 10925, Dynamics of CDW
transition in strained quasi-1D systems — DYNAMIQS
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Centrosymmetric, non-symmorpic, non-magnetic, spin-orbit coupled layers
without Dirac cones: a tight-binding example

V. Damljanovi¢
Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade, Serbia
e-mail: damlja@ipb.ac.rs

It is believed that the existence of Dirac cones in the Brillouin zone (BZ) of time-reversal symmetric,
two-dimensional (2D) materials with strong spin-orbit coupling (SOC) is closely connected with the
presence of spatial inversion and non-symmorphic symmetry [1]. This belief is indeed confirmed in
many cases published in the literature; however, a detailed group-theoretical analysis shows that this
does not always hold [2]. Here we illustrate the mentioned fact by a tight-binding model from s-orbitals,
on a structure that belongs to a non-symmorphic, gray, layer double group with spatial inversion. The
band structure of the model consists of two double-degenerate bands touching only along a line at the
BZ edge. Further, we show that neglecting SOC leads to unaltered Hamiltonian, up to numerical values

of the parameters. Finally, we state some 2D materials described in the literature, with the symmetry of
our model.
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[1] S.M. Young, C.L. Kane, Phys. Rev. Lett. 115, 126803 (2015).
[2] N. Lazi¢ et al., J. Phys. A: Math. Theo. 55, 325202 (2022).
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Atlas of electronic band structures in two-dimensional materials
V. Damljanovi¢', N. Lazi¢®

(1) Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11 080 Belgrade, Serbia
(2) NanoLab, Faculty of Physics, University of Belgrade, Studentski Trg 12, 11001 Belgrade, Serbia

Contact: V. Damljanovi¢ ( damlja@ipb.ac.rs )

Abstract. We have extended our previous work, devoted to full enumeration of layer groups
and Brillouin zone high symmetry points hosting fully linear dispersions [1], to include
dispersions beyond linear ones near all high symmetry points and lines for non-magnetic
materials without and with spin-orbit coupling. Our results are presented graphically and fit into
only two figures and a few pages of text/formulas [2]. Our graphical presentation enables easy
access to information regarding which parts of Brillouin zone host particular quasiparticle in a
certain layer (single- or double-) group.
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Using TVA technology, multilayer and composite C-Ti layers were deposited on
silicon substrates. The C-Ti multilayers were constructed from the silicon substrate
as follows: 100nm of carbon, followed by alternant 17nm Ti and 40 nm C three times,
covered by one last 17 nm Ti layer, resulting a seven multilayer structure. For the
composite layer, after the pre 100nm carbon one, we varied quasi continuously the
Ti:C atomic ratio, from 1:9 and reaching 9:1 at the top of the 119 nm. For both
composite and multilayer structures, several batches were obtained for comparison.
We varied the substrate temperatures during the deposition (R. T.,100, 200, 300 and
4000C) and one deposition batch was obtained at 3000C with a -700V polarisation
voltage on the substrates, in order to increase the ions energy reaching the layer,
during the coating process.

Characterization of structural properties of films was achieved by Electron Microsco-
py technique (TEM) and GIXRD techniques. The measurements show that increase
of the substrate temperature reveal changes in TixCy lattice parameters. Thus, ac-
cording to GIXRD analysis it was found out that the Ti:C atomic ratio changes with
increase of synthesis temperature. Also, in the case of composite films an increase
of amount and sizes of TiC nanocrystals with the increase of energy of Ti ions deter-
mined by increase of polarisation voltage was observed. The tribological measure-
ments were performed using a ball-on-disk system with normal forces of 0.5, 1, 2,
3N respectively. Was found that the coefficient of friction depends on the synthesis
temperature and on the polarisation voltage. It is also noted that the friction coeffi-
cient depends on the pure C content, Ti content and amount of TiC nanocrystallites.
These results are due to atomic diffusion at Ti/C interfaces and also are associated
with amount of TiC nanocrystallites. Using Bruker Hysitron TI980 Triboindenter
System, global hardness of the coating, in depth hardness and SPM imaging anal-
ysis were performed. By Nanoscratch Analysis, global and depth Young modulus
was measured. To characterize the electrical conductive properties, the electrical
surface resistance versus temperature have been measured, and then the electrical
conductivity is calculated. Using the Wiedemann-Frantz law was obtained the ther-
mal conductivity.

S06-CMPSP-101 / Oral presentation

Linear dispersions in two-dimensional materials: a crys-
tal with symmetry pbma1’ as an example
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Symmetry determines forms of band structures in the vicinity of special points in
the reciprocal space of one-, two- and three-dimensional materials. After short
introduction to the complete classification of linear dispersions in 2D materials, * we
will focus on a particular example. A tight binding model on a crystal with four sites
per primitive cell that belongs to grey layer single group pbma (45.2.315 or pbmal’
in the magnetic layer groups notation of Ref. [2]) is calculated. Fortune teller states
are obtained in the Brillouin zone corners, as predicted ! by group theory for non-
magnetic materials with negligible spin-orbit coupling. We will discuss possible
realizations of this model in realistic and hypothetical materials.
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Belgrade, University of Belgrade, Pregrevica 118, Belgrade, 11080, Serbia
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Ionic liquids (ILs) are two-component systems composed of large asymmetric and
irregularly shaped organic cations and anions. Physical properties of ILs like negli-
gible vapour pressure, high-temperature stability, high ionic conductivity and also
a great variety of ILs and their mixtures highlight them as potentially relevant to
lubrication [1, 2]. A large number of variations in IL composition is possible, esti-
mated at the order of magnitude of 10'8 different ILs. From their variety stems the
possibility of tuning their physicochemical properties which can affect lubrication,
such as viscosity, polarity, surface reactivity. Hence, it would be advantageous to
figure out general relations between the molecular structure and tribological prop-
erties of ILs.

In this study, we investigate a generic tailed-model (TM) of ILs which includes: an
asymmetric cation consisting of a positively charged head (¢ = 5A) and a neutral
tail of variable size (o7 = 3,5,9A) and a large spherical negatively charged anion
(oa = 10A). It represents a more realistic model compared to the simplest one,
the so called Salt Model (SM) [3, 4]. We figured that, although simple, TM model
results in striking differences in equilibrium bulk structure of IL governed by the
tail size relative to cationic head: (i) simple cubic lattice for the small tail, (ii) liquid-
like state for symmetric cation-tail dimer, and (iii) molecular layer structure for the

98



CIP - Karanoruzanuja y myOauKamuju
Hapoana 6ubmmorexa Cpouje, beorpan

53(048)

INTERNATIONAL Conference of the Balkan Physical
Union (11 ; 2022 ; Belgrade)

Book of Abstracts / [The 11th International Conference
of the Balkan Physical Union] [i. e] BPU 11 congress, 28
August 2022-1 September 2022 ; editors Antun Balaz ...
[et al.]. - Belgrade : [CAHVY] ; [Hum] : [[TpupoaHo-
MaTeMaTuuku (akynrer YHusepsuretal, 2022 (Belgrade :
Planeta print). - 298 str. ; 25 cm

Tiraz 350. - Str. 1-2: Preface / Goran S. Djordjevic. -
Registar.

ISBN 978-86-7025-950-8 (SANU)

1. Balaz, Antun, 1973- [ypennux]

a) ®usuka -- AcTpakTu

COBISS.SR-ID 72769545




Co-organizers

Bt INSTITUTE OF NUCLEAR SCIENCES) MAI ¢ I ..........
— Un sity of Belgrade Bep3uTeTy beorpaay
TIORAL ST Py

INSTITUTE OF THE REPURLIC CF SERRBIA Ma eMaT uKu dakyntet Mm“

Partners and Sponsors

org
65";- é‘-’-, (CTP)  CEl - m@; E.P;I . ° ;j






ISFOE22, 4-7/7/2022, Thessaloniki, Greece ISFOE22 Committees

ISFOE22 Committees

International Organizing Committee

S. Logothetidis, Department of Physics, Aristotle University of Thessaloniki, Greece (Chair)

Z. Cui, Printable Electronics Research Center, Suzhou Institute of Nanotech, Chinese Academy of Sciences, China (Co-chair)
G. Hadziioannou, LCPO, CNRS, University of Bordeaux, France (Co-chair)

J. Kallitsis, Department of Chemistry, University of Patras, FORTH-ICE-HT, Greece (Co-chair)

A. Laskarakis, Department of Physics, Aristotle University of Thessaloniki, Greece (Co-chair)

G. Malliaras, Department Of Engineering, University of Cambridge, UK (Co-chair)

R. P. Silva, Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, UK (Co-chair)

Local Organizing Committee
S. Logothetidis, Department of Physics, Aristotle University of Thessaloniki, Greece
A. Laskarakis, Department of Physics, Aristotle University of Thessaloniki, Greece

International Scientific Committee

T. Anthopoulos, King Abdullah University of Science and Technology, Saudi Arabia
R. Baumann, Chemnitz University of Technology, Germany

F. Biscarini, University of Modena and Reggio Emilia, Italy

Y. Bonnassieux, LPICM, Ecole Polytechnique, CNRS, France

C. Brabec, Friedrich-Alexander-University of Erlangen-Nornberg, Germany

D. Bradley, King Abdullah University of Science and Technology, Saudi Arabia

F. Castro, National Physical Laboratory (NPL), UK

A. Christou, Maryland NanoCenter, University of Maryland, USA

T. Claypole, Welsh Centre for Printing and Coating, Swansea University, UK

Z. Cui, Printable Electronics Research Center, Suzhou Institute of Nanotech, Chinese Academy of Sciences, China
M. Damnjanovic, Faculty of Physics, University of Belgrade, Serbia

G. Deligeorgis, FORTH IESL, Greece

B. Drevillon, CNRS, Ecole Polytechnique, France

V. Dyakonov, Julius-Maximilian University of Wuerzburg, Germany

D. Dykeman, ANSYS, Inc., UK

B. Fillon, CEA Liten, France

S. Forrest, University of Michigan, USA

M. Graetzel, LPI, ISIC, EPFL, Lausanne, Switzerland

G. Hadziioannou, LCPO, CNRS, University of Bordeaux, France

R. A. J. Janssen, Eindhoven University of Technology, The Netherlands

J. Kallitsis, Department of Chemistry, University of Patras, FORTH-ICE-HT, Greece
E. Kaxiras, Harvard University, Division of Engineering and applied Sciences, USA
J. Kido, Yamagata University, Japan

T. Kolbusch, COATEMA Coating Machinery GmbH, Germany

M. Krebs, Varta Microbattery GmbH, Germany

A. Laskarakis, Department of Physics, Aristotle University of Thessaloniki, Greece
K. Leo, Novaled & Dresden Technical University, Germany

N. Li Pira, Centro Ricerche Fiat, S.C.p.A, Italy

P. Lianos, General Department of Polytechnic School of Patras, Greece

L. Lidorikis, University of loannina, Greece

S. Logothetidis, Department of Physics, Aristotle University of Thessaloniki, Greece
G. Malliaras, Department Of Engineering, University of Cambridge, UK

M. MclLachlan, Imperial College London, UK

N. Rikita, Mitsubishi Materials Corporation, Japan

M. Schrarber, Linz Institute for Organic Solar Cells, Austria

R. Silva, Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, UK
F. Stelzer, Graz University of Technology, Graz, Austria

N. Stingelin, Georgia Institute of Technology, USA

D. Tsoukalas, National Technical University of Athens, Greece

J. Ulanski, Department of Molecular Physics, Technical University of Lodz, Poland
L. Van Langenhove, Department of Textiles, Ghent University, Belgium

A. Wedel, Fraunhofer Institute for Applied Polymer Research, Germany



ISFOE22, 4-7/7/2022, Thessaloniki, Greece Workshop on Computational 3

Topological quantum chemistry for quasi-one-dimensional systems with either

translational or helical periodicity
I. Milosevié, S. Dmitrovié, T. Vukovié, M. Damnjanovié

Faculty of Physics, University of Belgrade, Studentski trg 12, Belgrade, Serbia

Abstract:

By linking symmetry with combinatorial graph theory, topological quantum chemistry [1], in terms of elemen-
tary band representations (EBRs), gives universal description of electronic band structure topology of short-range en-
tangled matter.

Here, derived are complete sets of nonequivalent (physical) EBRs, for symmetry groups of quasi-one-dimen-
sional systems with either translational or helical periodicity. Apart from the system configuration symmetry described
by line groups (LGs), considered also is the additional symmetry of time-reversal (grey-LGs) and the symmetry origi-
nating from spin degree of freedom (double-LGs and double-grey-LGs) [2,3]. The results obtained are complete and
exhaustive, thus enabling thorough algorithmic search for topological compounds across the one-dimensional matter.
As an illustration, a topological mirror chain model is considered.

[1] B. Bradlyn et al., Nature 547 (2017) 298
[2] I. MiloSevi¢ et al., ). Phys. A 53 (2020) 455204
[3]S. Dmitrovié¢ et al., J. Phys. A (2022)

Linear dispersions in low-dimensional structures: the role of crystalline

symmetries, time reversal, and spin-orbit coupling
N. Lazié!, V. Damljanovi¢?, M. Damnjanovié3, ...

1 Nanolab, Faculty of Physics, University of Belgrade, Studentski trg 12, 11001 Belgrade, Serbia
2 |nstitute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
3 Serbian Academy of Sciences and Arts, Kneza Mihaila St. 35, 11000 Belgrade, Serbia

Abstract: Crystalline symmetry imposes requirements on the band structure of material, which have consequences in
the band topology. Besides gapped topological insulators, lattice symmetries are also important in describing gapless
semi-metallic phases. They are characterized by band crossings on the Fermi level, and particularly interesting are those
with linear energy-momentum dependence. Here, we study symmetry-enforced semi-metallic layered materials with
dispersions linear in all directions around crossings hosted by high-symmetry Brillouin zone points. In particular, single
and double, ordinary and grey layer groups are used to achieve the complete systematization of such fully linear band
crossings and corresponding effective Hamiltonians. The resulting dispersion shapes are: single cone (with double de-
generate crossing point and non-degenerate branches, or 4-fold degenerate crossing point with double degenerate
conical branches), poppy-flower (4-fold degenerate crossing point with two pairs of non-degenerate mutually rotated
conical branches), and a fortune teller (with nodal lines). Inclusion of spin-orbit interaction is analysed through the
transition from single to double group; this results in interesting patterns at high symmetry points such as: gap closing,
gap opening, cone preserving, cone splitting etc. Similarly, the role of time reversal symmetry is clarified through the
ordinary to grey group transit

94



-

1SFOE P2

1

19" International Symposium on Flexible Organic Electronics

L ISFOE22 is part of NANOTEXNOLOGY 2022 J

Organized hy

HNonolnet et

JsREAL / _
S Gose ranoMEComman: _
= NANS  ‘sus TRIN {imusicode s Soul@

Under the Auspices of

Supported hy




University of Belgrade
Institute of Physics Belgrade
Kopaonik, March 13-16, 2022

Book of Abstracts
15" Photonics Workshop

(Conference)

!’I!ONTONICS

T ER




15™ Photonics Workshop (2022)

Book of abstracts

Kopaonik, Serbia, March 13-16, 2022

Publisher, 2022:

Institute of Physics Belgrade

Pregrevica 118

11080 Belgrade, Serbia

Editors:

Dragan Luki¢, Marina Leki¢, Zoran Gruji¢
ISBN 978-86-82441-55-7

Printed by:

NEW IMAGE d.o.o.

Tosin Bunar 185, Belgrade

Number of copies: 55

CIP - KaTtanornsauuja y nyébnmkaumju - HapoaHa 6ubnuoteka Cpbuje, beorpaa
535(048)

681.7(048)

66.017/.018(048)

PHOTONICS Workshop (15; 2022; Kopaonik)

Book of Abstracts / 15th Photonics Workshop, (Conference), Kopaonik,

March 13-16, 2022; [editors Dragan Luki¢, Marina Leki¢, Zoran Gruji¢]. -

Belgrade: Institute of Physics, 2022 (Belgrade: New image). - 72 str.:

ilustr.; 25 cm

Tiraz 55. - Registar.

ISBN 978-86-82441-55-7

a) OnTtuka - AnctpakTn b) OnToenekTpoHuka - ANCTpPakTN c) TEXHUYKMK

Matepujanu - ANCTpakTn

COBISS.SR-ID 60055049




15t Photonics Workshop Kopaonik, March 13 — 16, 2022.

Full classification of linear dispersions in two-dimensional materials
V. Damljanovi¢', M. Damnjanovi¢**, N. Lazi¢?

(1) Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
(2) NanoLab, Faculty of Physics, University of Belgrade, Studentski Trgl2, 11001 Belgrade, Serbia
(3) Serbian Academy of Sciences and Arts, Kneza Mihaila St. 35, 11000 Belgrade, Serbia
Contact:V. Damljanovi¢ (damlja@ipb.ac.rs)

Abstract. We present group-theoretical classification [1] of all possible dispersions, which
are linear in all directions, in the vicinity of high-symmetry Brillouin zone points, in non-
magnetic layered materials. Both spinless and spinfull cases in the presence and in the absence
of time-reversal symmetry are covered. We found that only three types of such dispersions are
possible: Dirac, fortune teller and poppy flower. Low energy effective Hamiltonians are also
presented. Special attention will be given to some recently published results not supported by
our theory [2-5].

REFERENCES

1 N. Lazi¢, V. Damljanovi¢, M. Damnjanovi¢, arXiv: 2108.11733 (2021).
1 B.J. Wieder. B. Bradlyn et al., Science 361 (2018), 246-251.

] S. M. Young and C. L. Kane, Phys. Rev. Lett. 115 (2015), 126803.

1 P.J. Guo, Y. W. Wei et al., Phys. Rev. Lett. 127 (2021), 176401.
]

[1
[2
[3
[4
[51 W.Luo, J. Jietal., Phys. Rev. B. 101 (2020), 195111.
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PYRAMIDS AND COOTIE CATCHERS: NEW
MASSLESS FERMIONS IN 2D MATERIALS

Igor Popov ', Vladimir Damljanovic %, Rados Gajic ?

" Institute of Physics Belgrade
Institute for Multidisciplinary Research
University of Belgrade
Belgrade, Serbia
popov@ipb.ac.rs
2 Institute of Physics Belgrade
University of Belgrade
Belgrade, Serbia

Dirac-like electronic states are the main engines powering the tremendous advances in research of
graphene, topological insulators and other materials with these states. Zero effective mass, high
carrier mobility and numerous applications are some consequences of linear dispersion that
distinguishes Dirac states.

Here we report a new class of linear electronic bands in two-dimensional materials with zero
effective mass and sharp band edges never seen in solid state matter before, and predict stable
materials with such electronic structure utilizing symmetry group analysis and ab initio approach
[1]. We make a full classification of completely linear bands in two-dimensional materials and find
that only two classes exist: Dirac fermions on one hand and pyramidal-like and cootie catcher-like
states on the other hand.

The new class supports zero effective mass and hence high carrier mobility similar to that of
graphene, anisotropic electronic properties like that of phosphorene, and robustness of states with
respect to electronic correlations.

Reference

[1] V. Damljanovic, I. Popov, R. Gajic. Fortune teller fermions in two-dimensional materials.
Nanoscale, 2017, 9, 48, 19337-19345.
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Topological phases of layers: elementary band representations
M. Damnjanovic?!
NanolLab, Faculty of Physics, University of Belgrade Studentski trg 12, 11000 Belgrade, Serbia

Research of topological phases is probably the main stream of condensed matter physics. In brief, Bloch theory
transforms band structure of the hamiltonian spectrum into the fibre bundle over Brillouin zone (BZ), in this way
enabling topological characterization of such bundles. Extensive work is performed within differential-geometric
framework: Berry phase and derived notions (connection, curvature and Wilson loop e.g.), are used to find
topological invariants like winding and Chern numbers. However, 30 years ago Mischel and Zak, pathed the
symmetry based combinatorial way to classify band structures. Reconsidered recently, these results are firmly
related to topological phases of crystals. This purely algebraic method considers graphs graphs imposed by
symmetry. The first one is graph of Brillouin zone: as a contractible manifold, each stratum of k-vectors with
equivalent (conjugated) stabilizers is a vertex of the graph, while (oriented) edges connect neighbouring strata.
Bands are made of patches over strata, each corresponding to specific allowed irreducible representation (IR)
associated to the stratum. Contraction of BZ to graph, causes simultaneous contraction of the band patches, and
the whole band structure becomes IR-graph: vertices are IRs, while edges represent connected patches. These
edges are subdued to compatibility relations, or better, they depict them. Therefore, having BZ-graph, and
compatibility relations (the both are directly and fully symmetry-determined), all possible IR-graphs are found in a
combinatorial manner. This procedure is implemented in POLSym code, and applied to all layer groups (single and
double, with or without time reversal). The results are presented, together with various analyses. For example, the
disconnected graphs are looked for, as pointing out topologically non-trivial phases. Also, selected are band
structures with special subgraphs which indicate possible atomic limits.

Electronic Dispersions in Two- and Three-Dimensional Single Crystals From Symmetry

Point of View
V. Damljanovi¢*
Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade, Serbia

In spatially periodic atomic arrangements, the electronic energy depends on the wave vector and forms a band
structure. The form of a band in the vicinity of some point in the Brillouin zone is called the electronic dispersion
and determines many physical properties of a material. Examples of electronic dispersions are Dirac (e.g. in
graphene), semi-Dirac (e.g. in black phosphorus) and quadratic (e.g. in MoS;). On the other hand, every crystal
periodic in two (three) directions belongs to one of 80 layer- (230 space-) groups. Here we present deep connection
between the crystal symmetry and the types of electronic dispersions present in the crystal. Our contribution is
based on works published for two- [1-3] and three-dimensional [4-7] single crystals. We show that new and
unexpected types of dispersions often appear as a consequence of crystal symmetry. This may be the clue for
discovery of new materials with interesting physical properties.

References:

[1] V. Damljanovi¢, R. Gaji¢, Journal of Physics: Condensed Matter 28, 085502 (2016).

[2] V. Damljanovi¢, R. Gaji¢, Journal of Physics: Condensed Matter 28, 439401 (2016).

[3] V. Damljanovic, I. Popov, R. Gaji¢, Nanoscale 9, 19337-19345 (2017).

[4] J. L. Maiies, Physical Review B 85, 155118 (2012).

[5] B. J. Wieder, Y. Kim, A. M. Rappe, C. L. Kane, Physical Review Letters 116, 186402 (2016).
[6] B. Bradlyn et al., Science 353, 10.1126/science.aaf5037 (2016).

[7] B. J. Wieder et al., Science 361, 246-251 (2018).
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Unusual electronic dispersions in non-magnetic, spin-orbit coupled, two-
dimensional materials from double groups perspective

V. Damljanovi¢’
(1) Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia
Contact: V. Damljanovi¢ ( damlja@ipb.ac.rs )

Abstract. When electron spin and orbital degrees of freedom are coupled, rotation in real
space induces analogous transformation of two-compenent wave functions - Pauli spinors.
Similarly, a symmetry group of an object in real space becomes a symmetry group in both
real and spin space — so called double group [1]. In this contribution we used theory of layer
double group representations to search for new electronic dispersions in non-magnetic, time-
reversal symmetric two-dimensional materials with non negligible spin-orbit coupling [2].
Apart from known fortune-teller (FT) dispersion [3], we have found a new onc: a
generalization of both FT and Dirac dispersions. Our findings illustrate the fact that “to
actually discover a feature in a band structure that provides the quasiparticle dispersion of a
new and unexpected type is rare” [4] and that symmetry often provides such discovery.

REFERENCES

(1] H. Bethe, dun. Phys. (Leipzig) 3 (1929), 133-208.

[2] V. Damljanovié, N. Lazié, A. Solajié. . Pesié, B, Nikoli¢, M. Damnjanovié, submitted (2020),
[3] V. Damljanovié. I. Popov, R. Gajié, Nanoscale 9 (2017), 19337-19345,

(4] S.Banerjee, W. E. Pickett, Phys. Rev. B 86 (2012). 075124,
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09:00-09:30 Keynote Talk (Crystal Hall)

09:00-09:30 |Linear dispersions in Q1D and Q2D crystalline structures

M.Damnjanovié
BT [University of Belgrade, Studenteki frg 12, 11001 Belgrade, Serbia

Linear dispersions in Q1D and Q2D crystalline structures
M.Damnjanovié!, V. Damljanovi¢?
!NanoLab, F, aculty of Physics, University of Belgrade, Studentski trg 12, 11001 Belgrade, Serbia

“Institute of Physics, University of Belgrade, Pregrevica 118,11000 Belgrade, Serbia

Band structure with Dirac cone is origin of many amazing properties of graphene. Consequent Dirac equation of electron
dynamics is one of the reasons for intensive research of this phenomenon during the past decade. In addition, topological

band theory of insulators emphasized necessity of materials of this type as interphase for topologically different phases,

(integer or half-integer). The results are discussed. For example
spin-orbit interaction are singled out,

[111. L. Manes, Phys. Rev. B 85, 155118 (2012)
{21V Damljanovié and R Gajié, J. Phys.: Condens. Matter 28 (2016) 085502
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Konaonwus, 10-14.03.2019, Jleanaecta paguoHuua dotoHuKe

Effective masses, density of states and conductivities of various dispersions
in 2D materials

Vladimir Damljanovi¢'
(1) Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia

Contact: V. Damljanovié¢ ( damljai@ipb.ac.rs )

Abstract, Within the most simple, Drude model, the electrical conductivity of a crystal is
inversely proportional to the electron effective mass and directly proportional to the
concentration of free charge carriers [1]. At zero temperature, this concentration is
determined by integration of density of states over partially filled energy bands. Situation
becomes particularly interesting when the electron effective mass is zero. Dirac, semi-Dirac
and Fortune-teller dispersions in 2D materials, support zero electron effective mass along at
least one direction in the Brillouin zone. The conductivities of Dirac [2] and semi-Dirac [3]
materials are well studied, both experimentally (graphene) and theoretically. On the other
hand, the conductivity of recently discovered Fortune teller dispersion [4] remains an open
question. In this talk we present conductivity analysis in [2, 3] and speculate that conductivity

of the Fortune teller dispersion might be similar, with differences in detail left for future
work.
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An example of two-dimensional crystal structure with semi-Dirac electronic
dispersion

V. Damljanovi¢'and R. Gaji¢?
nstitute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
*Graphene Laboratory (GLAB) of Center for Solid State Physics and New Materials, Institute of Physics, University of
Belgrade, Pregrevica 118, Belgrade, 11080, Serbia
e-mail: damlja@ipb.ac.rs

In nanophysics, notion “semi-Dirac dispersion” denotes an electronic dispersion which is Dirac-like along
certain direction in two-dimensional Brillouin zone (BZ) and quadratic along the orthogonal direction. Semi-
Dirac materials are in the focus of research lately due to their intriguing physical properties. These include
anisotropic Klein tunneling, characteristic response to magnetic field and peculiar photoresponse to circularly
polarized light. To help search for new materials with the semi-Dirac cones, we have recently formulated a set
of group-theoretical conditions that allow such dispersion and have provided the list of symmetry groups
satisfying them [1]. In present contribution we have considered a tight-binding model on a structure that
belongs to diperiodic (layer) group p/1b (Dg5). This group belongs to our list [1] and should host the semi-
Dirac cones in the vicinity of 4 and B points in the BZ. We have calculated electronic dispersion in the
vicinity of these points. Obtained dispersion is of a semi-Dirac type thus confirming our theory. Here we also
discuss other possible candidates for two-dimensional semi-Dirac materials by search Materials project
database with particular attention to layered structures published in [2].
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Bifurcation in reflection spectra of holographic pullulan diffraction grating

S. Savié-Sevié, D. Pantelié, V. Damljanovi¢ and B. Jelenkovi¢

Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
e-mail:savic@ipb.ac.rs

Reflection volume hologram gratings, fabricated using a single-beam method, usually have only one Bragg
peak in the spectrum. Z. Wang et al. [1]noted the appearance of multiple peaks in the spectrum of volume
diffraction grating recorded in dichromated gelatin, phenomenon that looks like bifurcation within the Bragg
plateau. We also observed bifurcation phenomenain the spectrum of diffraction gratings recorded in
dichromated pullulan (DCP), which is a polysaccharide doped with chromium. Compared to dichromated
gelatin, the DCP material is simpler to prepare and process, it is insensitive to humidity, thusretaining high
resolution and diffraction efficiency [2]. The typical number of appeared peaks in the spectrum is two, three,
or four. It was found that a multi-peak phenomenon isaccompanied by wider band gap.

In order to understand multi-peak structure of band gaps, experimental results were compared with
theoretically predicted results. The theoretical model investigates effects of several important parameters:
absorption of radiation within the photosensitive layer, non-uniform thickness of the layer, refractive index
modulation and non-uniform spatial period of the grating. Numerical reflection spectra of volume Bragg
gratings have been calculated by the method of characteristic matrix [3]. Our model suggests that multi peak
structures are produced by uneven modulation of Bragg layersinside the volume hologram. The results of
calculation are in agreement with experimental results.
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Twenty-Second Young Researchers Conference — Materials Science and Engineering
December 4 — 6, 2024, Belgrade, Serbia

6-2
Study of crystal phases and temperature dependence of InSiTe3

T. Belojica!, J. Blagojevi¢!, S. Djurdi¢ Mijin!2, A. Solaji¢!, J. Pesi¢!, B. Visi¢!, V.
Damljanovi¢!, M. O. Ogunbunmi®, S. Bobev**, Yu Liu*, C. Petrovic**°, Z.V. Popovi¢’,
A. Milosavljevi¢!, N. Lazarevi¢!

!Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University
of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, *Departamento de Fisica de
Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid, Spain,
3Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
19716, U.S.A., “Condensed Matter Physics and Materials Science Department, Brookhaven
National Laboratory, Upton, NY 11973-5000, USA, *Shanghai Advanced Research in
Physical Sciences (SHARPS), Shanghai 201203, China, *Department of Nuclear and Plasma
Physics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade 11001,
Serbia, "Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

In recent years, quasi-low-dimensional materials have attracted significant attention due to
their distinctive properties and possible applications in nanoeletronics and spintronics. The
material of a specific interest within this group is InSiTes. Unlike related compounds, such as
CrSiTe; and CrGeTes, research results InSiTe; are limited, most likely due to the unclear
nature of its crystal structure. Detailed experimental and theoretical investigation was
conducted to determine the crystal structure of InSiTes. Inelastic light scattering experiment
performed on the InSiTes reveals presence of six (3A 1, + 3E,) out of eight and seven (5A; +
2E,) out of ten Raman active modes for proposed P3/m and P3 space groups, respectively.
These findings suggest a coexistence of two trigonal crystal phases: a high symmetry one
corresponding to P3/m and athe lower symmetry one that corresponds to P3 space group.
Additional exitations were detected in parallel scattering configuration; two broad features in
the gap of PDOS that can be a consequence of to two-phonon processes and a third one, at
about 500 c¢cm™' that might indicate local symmetry breaking at nano scale. Temperature
dependent measurements from 80 K to 300 K show monotonous decrease in energy and
increase in linewidth up to 200 K at which point discontinuities appear across all analyzed
modes. However, this anomaly overcomes the scope of this research and remains an open
question.
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The 21st Symposium on Condensed Matter Physics - SFKM 2023, Belgrade - Serbia

Unmovable Nodal Points and Lines in Two-
Dimensional Materials: Dispersions and
Positions in the Reciprocal Space

V. Damljanovi¢?® and N. Lazi¢®

“Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia
bNanoLab, Faculty of Physics, University of Belgrade, Studentski Trg 12, 11001, Belgrade, Serbia

Abstract. We have found all quasiparticles in non-magnetic, two-dimensional materials in the
presence of time-reversal symmetry [1]. Analysis of all eighty layer groups, both single- and
double-, indicates that nineteen sorts exist, which are located near high-symmetry points and lines
in the Brillouin zone. Our results are presented graphically in analogy with space groups elements
in International Tables for Crystallography. Our findings can pave the way towards realization of
new 2D materials with unprecedent physical properties.
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The 20th Symposium on Condensed Matter Physics - SFKM 2019, Belgrade - Serbia

Peculiar Electronic Dispersions in Two-
Dimensional Materials Caused by Symmetry

Vladimir Damljanovi¢®
“Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Abstract. Two-dimensional materials are spatial atomic arrangements that are periodic in two
directions, but are finite in the third, orthogonal direction. Most of their physical properties are
determined by the functional dependence of the electronic energy near the Fermi level on the
electron wave vector i.e. by the electronic dispersion. Until recently only three types of
electronic dispersions were known in two-dimensional materials: Dirac (as in graphene), semi-
Dirac (as in black Phosphorus) and quadratic (as in MoS,). In this talk we show that certain
symmetries of non magnetic, time-reversal symmetric, two-dimensional materials with no spin-
orbit coupling (SOC) leads unavoidably to new, forth type of electronic dispersion we called the
Fortune teller (FT) dispersion [1]. Even more, inclusion of SOC leads to another type of peculiar
electronic dispersion, which is generalization of both Dirac and FT dispersions. The physical
properties of materials which these new dispersions induce are still to be investigated
theoretically.
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Symmetry induced electronic dispersions in two-dimensional materials

Vladimir Damljanovi¢'
(1) Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 1 1080 Belgrade, Serbia
Contact: V. Damljanovié (damlia@ipb.ac.rs )

Abstract. Two-dimensional (2D) materials are arrangements of atomic ions which
periodic in two spatial directions but finite in the third, orthogonal direction. Recent examp
of such materials include graphene, silicene, transition metal dichalcogenide monolayers efc.
Any 2D material belongs to one of eighty, so-called layer (or diperiodic) symmetry groups. In
this talk, a deep connection between various types of famous electronic dispersions (Dirac,
semi-Dirac, quadratic etc.) in a certain 2D material and a layer group to which the material
belongs, is presented. In addition, previously unknown type of electronic dispersion obtain
by applying symmetry arguments is also presented. Our talk is based on recently publis
results [ 1-4] refering to non-magnetic 2D materials with negligible spin-orbit coupling.
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