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ABSTRACT

Computationally tractable and reliable, albeit approximate, methods for studying exciton transport in molecular aggregates immersed in
structured bosonic environments have been actively developed. Going beyond the lowest-order (Born) approximation for the memory
kernel of the quantum master equation typically results in complicated and possibly divergent expressions. Starting from the memory
kernel in the Born approximation, and recognizing the quantum master equation as the Dyson equation of Green’s functions theory, we
formulate the self-consistent Born approximation to resum the memory-kernel perturbation series in powers of the exciton–environment
interaction. Our formulation is in the Liouville space and frequency domain and handles arbitrary exciton–environment spectral densities.
In a molecular dimer coupled to an overdamped oscillator environment, we conclude that the self-consistent cycle significantly improves
the Born-approximation energy-transfer dynamics. The dynamics in the self-consistent Born approximation agree well with the solutions of
hierarchical equations of motion over a wide range of parameters, including the most challenging regimes of strong exciton–environment
interactions, slow environments, and low temperatures. This is rationalized by the analytical considerations of coherence-dephasing dynam-
ics in the pure-dephasing model. We find that the self-consistent Born approximation is good (poor) at describing energy transfer modulated
by an underdamped vibration resonant (off-resonant) with the exciton energy gap. Nevertheless, it reasonably describes exciton dynamics
in the seven-site model of the Fenna–Matthews–Olson complex in a realistic environment comprising both an overdamped continuum and
underdamped vibrations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0237483

I. INTRODUCTION

The light absorption and thus initiated excitation energy trans-
fer (EET) in molecular aggregates constitute the first steps of
solar-energy conversion in both natural1,2 and artificial3–6 systems.
The EET takes place in a complex dynamic spatiotemporal land-
scape stemming from the competition of interactions promoting
exciton delocalization (resonance coupling between molecules) and
localization (static and dynamic disorder).7 As the energy scales
of these counteracting interactions are typically comparable to
one another,8,9 theoretical descriptions of EET dynamics are quite
challenging.

When approached from the perspective of the theory of open
quantum systems,10,11 the challenge transforms into describing

non-Markovian quantum dynamics of excitons interacting with
their environment. As standard theories (such as Redfield12 and
Förster13 theories) do not meet this challenge,14 various numerically
exact methods have been developed. Two most common founda-
tions of these are (i) the Feynman–Vernon influence functional
theory15 and (ii) the Nakajima–Zwanzig [time-convolution (TC)]
quantum master equation (QME).16–18 The approaches rooted in
(i) include the hierarchical equations of motion (HEOM)19–21 and
a host of path-integral and process-tensor-based methods.22–29 Each
of these approaches develops a different representation of the so-
called exact reduced evolution superoperator (or the dynamical
map) U(t), which becomes its central object. Meanwhile, the main
aim of the approaches originating from (ii) is to evaluate the exact
memory-kernel superoperator K(t).30–32 All the above-referenced
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approaches are in general computationally intensive. Their appli-
cations to realistic EET models, which feature a larger number
of chromophores and/or structured spectral densities (SDs) of the
exciton–environment interaction extracted from experiments or
atomistic simulations,33–38 can thus be impractical. A need for com-
putationally less demanding and reliable, although approximate,
approaches to study EET dynamics in realistic multichromophoric
models cannot be overemphasized.

Recent years have witnessed the emergence of many such
approaches, among others quantum–classical methods,39–44 and
related quantum–chemical approaches to nonadiabatic dynamics
(e.g., the surface hopping).45–47 One can also devise approxima-
tions to U and K starting from the formally exact expressions
of (i) and (ii), respectively. For example, the former give rise to
cumulant-expansion-based approaches,48–51 while the latter result
in various approximations to the exact memory kernel.52,53 The
authors of Ref. 54 noted that the second-order TC (TC2) QME,
which retains only the lowest-order (second-order) term K

(2)(t) in
the expansion of K in powers of the exciton–environment interac-
tion, can qualitatively reproduce the main features of EET dynamics
in multichromophoric systems. The most obvious improvement
over the TC2 QME, also known as the (second) Born approxima-
tion (BA),55 is to retain some of the higher-order contributions to
K. Such a route generally leads to involved expressions that might
not always be convergent and that can be practically evaluated only
for the simplest models, where they show some improvements over
the original theory.56–63 While already the lowest-order kernel of
polaron-transformed QMEs64–67 can significantly improve over TC2
QME, decent results can also be obtained by partially resumming
the perturbation expansion for K using only low-order terms as the
input. Partial resummations are most commonly performed in the
frequency domain, and one usually applies Padé or Landau–Zener
resummation schemes to K

(2)(ω) and K
(4)(ω).62,68 Another pos-

sibility, the self-consistent resummation schemes strongly rooted in
condensed-matter physics,69–72 has received even less attention in
this context.

Successful self-consistent improvements over the TC2 QME
have been reported in the context of quantum theory of elec-
tronic transport throughmolecular junctions.73–76 These approaches
have mainly considered purely electronic quantum transport, when
the role of the bath is played by electronic leads. Their applica-
tions to the quantum transport in the presence of both electronic
leads and molecular vibrations are much more recent and scarcer.77

A proposal for a self-consistent description of the dynamics of a gen-
eral open quantum system has been made only very recently.78 It
leans on a diagrammatic representation of the perturbation series
for U(t), which has indeed appeared in the context of open quan-
tum dynamics; see, for example, Refs. 79–81. The novelty of the
approach by Scarlatella and Schirò78 lies in the subsequent formu-
lation of the perturbation series for K(t), which is related to U(t)
via the TC QME. In the context of the theory of Green’s func-
tions in quantum many-body systems,71,72,82 the memory kernel
K(t) is analogous to the self-energy, whereas the TC QME plays
the role of the Dyson equation. Considering the zero-temperature
dynamics of the spin–boson model, Scarlatella and Schirò78 find
that performing the self-consistent cycle starting from the BA mem-
ory kernel K(2) produces promising results. However, they consider
only the zero temperature and SDs commonly used when studying

the spin–boson model in its narrowest sense.83 Moreover, their
time-domain formulation of the self-consistent Born approxima-
tion (SCBA) involves solving an integrodifferential equation in each
iteration of the cycle.

This study explores the applicability of the self-consistent
memory-kernel resummation scheme introduced in Ref. 78 to EET
dynamics in multichromophoric aggregates. For the sake of com-
pleteness, we first reconsider the theoretical developments of Ref. 78
andmake them technically simpler by working in the Liouville space
and replacing the above-mentioned integrodifferential equation in
the time domain by a matrix equation in the frequency domain. In a
molecular dimer coupled to an overdamped phonon environment,
we find that the self-consistent cycle greatly improves the origi-
nal BA (TC2 QME) over a wide range of dimer parameters. This
success of the SCBA is rationalized by considering the analytically
tractable example of coherence dephasing in the pure-dephasing
model. Remarkably, we find that the SCBA remains reliable even
in the generally difficult regimes of strong exciton–environment
interactions and/or slow environments, whenmultiple environmen-
tally assisted processes dominate the dynamics,84,85 as well as at low
temperatures. Considering exciton dynamics modulated by a sin-
gle underdamped vibrational mode, we conclude that the SCBA
delivers good results only when the vibrational energy is resonant
with the exciton–energy gap. Upon including overdamped phonon
continuum on top of a number of underdamped modes, we find
that the SCBA delivers decent results for EET dynamics in the
seven-site model of the FMO complex interacting with the realistic
environment extracted from atomistic simulations.

This paper is organized as follows. Section II introduces our
theoretical framework, whose applicability to EET dynamics is
assessed in Sec. III. Section IV summarizes our main findings and
discusses prospects for future work.

II. THEORETICAL CONSIDERATIONS

A. Model

We model EET dynamics in an aggregate composed of
N chromophores using the Frenkel–Holstein Hamiltonian,

H = HS +HB +HS−B. (1)

We take into account only the ground and one excited state on each
chromophore so that the purely electronic part HS reads as

HS = ∑
n

εn∣n⟩⟨n∣ + ∑
m≠n

Jmn∣m⟩⟨n∣. (2)

Here, ∣n⟩ is the collective singly excited state residing on chro-
mophore n (all the other chromophores are unexcited), εn is the
energy of the vertical transition from the ground state to the
excited state on chromophore n, while Jmn is the resonance (typi-
cally dipole–dipole) coupling between chromophores m and n. The
aggregate is in contact with the environment modeled as collections
of mutually independent harmonic oscillators associated with each
chromophore,

HB = ∑
nξ

ωnξb
†

nξbnξ. (3)
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Here, ωnξ is the frequency of oscillator ξ on chromophore n, while
bosonic operators b†

nξ
(bnξ) create (annihilate) the corresponding

oscillation quantum and obey [bnξ , bmξ′] = 0, [bnξ , b†

mξ′
] = δnmδξξ′ .

The exciton–environment interaction is of the Holstein type, i.e.,
local and linear in oscillator displacements,

HS−B = ∑
nξ

gnξVn(bnξ + b†

nξ), (4)

where Vn = ∣n⟩⟨n∣. Its strength, determined by the interaction con-
stants gnξ , is more conveniently described using the reorganization
energy on chromophore n,

λn = ∑
ξ

g2nξ
ωnξ
= ∫

+∞

−∞

dω

2π
J n(ω)
ω

, (5)

where the SD of the exciton–environment interaction

J n(ω) = π∑
ξ

g
2
nξ[δ(ω − ωnξ) − δ(ω + ωnξ)] (6)

is typically a continuous function of ω. We focus on exciton
dynamics starting from the factorized initial condition

W(0) = ρ(0)ρeqB , (7)

where ρ(0) is the excitonic reduced density matrix (RDM) at the
initial instant t = 0, while

ρeqB =
e−βHB

TrB e
−βHB

(8)

represents the state of the environment (equilibrium at temperature
T = β−1) with no excitons present. Within the Condon approxima-
tion,86 this choice of the initial condition leads to the dynamics
that can be probed in ultrafast nonlinear spectroscopies.87 As our
formalism deals with Green’s function, we can still reconstruct
the dynamics under an arbitrary excitation condition as long as
the light–matter interaction is weak and the Condon approxima-
tion is valid.87–89 The only environmental quantity influencing the
reduced excitonic dynamics starting from Eq. (7) is the displacement
autocorrelation function,15

Cn(t) =∑
ξ

g
2
nξTrB{[bnξ(t) + b†

nξ(t)](bnξ + b†

nξ)ρeqB }
= ∫

+∞

−∞

dω

π
e
−iωt J n(ω)

1 − e−βω
. (9)

The time dependence in Eq. (9) is taken with respect to HB, i.e.,
bnξ(t) = e−iωnξ tbnξ .

B. Real-time diagrammatic representation: Green’s
superoperator and self-energy superoperator

The assumption embodied in Eq. (7) permits us to define the
exact reduced evolution superoperator (dynamical map) U(t) by

∣ρ(t)⟩⟩ = U(t)∣ρ(0)⟩⟩. (10)

Equation (10) is formulated in the Liouville space,86 in which
the excitonic RDM at t > 0, represented by the operator ρ(t) in

the Hilbert space, becomes the N2-component vector ∣ρ(t)⟩⟩. The
reduced evolution superoperator is then a tetradic quantity compris-
ingN4 entries ⟨⟨e′2e′1∣U(t)∣e2e1⟩⟩, where {∣e⟩} is an arbitrary basis in
the single-exciton manifold. U(t) is formally expressed as (see, for
example, Ref. 90 and references therein)

U(t) = e−iLStTrB{T te
−i∫

t
0 ds L

(I)
S−B(s)ρeqB }, (11)

where the Liouvillian La associated with the term Ha (a = S,B,
S − B) in Eq. (1) is defined by its action on an arbitrary Liouville-
space vector ∣O⟩⟩ corresponding to the Hilbert-space operator
O, La∣O⟩⟩↔ [Ha,O], while the interaction-picture counterpart of
LS−B is

L
(I)
S−B(t) = ei(LS+LB)tLS−Be

−i(LS+LB)t. (12)

The time-ordering sign T t imposes the chronological order (lat-
est to the left) among the Liouvillians in the expansion of
Eq. (11) in powers of the exciton–environment interaction. The
Liouville-space approach adopted here is somewhat different from
standard real-time approaches to the RDM of a particle in an oscil-
lator environment,78,91 which consider the forward and backward
Hilbert-space evolution operators separately. Dealing with superop-
erators, we simplify the formalism, as we consider only the forward
evolution in the Liouville space.92 The average in Eq. (11) can be
performed term-by-term using Wick’s theorem,91 and only even-
order powers in LS−B remain. The order 2k (k ≥ 1) consists of(2k − 1)!! terms. Further manipulations usually proceed in two
different manners.

The first possibility is to observe that, because of the T t

sign, all the terms appearing in any given order are mutually
identical.81 Retaining the T t sign, one obtains the well-known
Feynman–Vernon expression,20,81

U(t) = e−iLSt T te
−Φ(t), (13)

with

Φ(t) =∑
n
∫

t

0
ds2∫

s2

0
ds1 V

(I)
n (s2)×

× [Cr
n(s2 − s1)V(I)n (s1)× + iCi

n(s2 − s1)V(I)n (s1)○]. (14)

In Eq. (14), the superoperators V× and V○ are defined by the corre-
spondences V×∣O⟩⟩↔ [V ,O] and V○∣O⟩⟩↔ {V ,O} (anticommu-
tator), respectively. Assuming that Cn(t) can be decomposed into a
number of exponentially decaying terms, Eqs. (13) and (14) serve as
the starting point for the HEOMmethod.

The possibility we opt for here is to make the time ordering
explicit in each term, in which case the terms in any given order
appear as different. Further developments are facilitated by consid-
ering the (retarded) evolution superoperator [the (retarded) Green’s
function or Green’s superoperator]86

G(t) = −iθ(t)U(t) (15)

instead of U(t). Each term in order 2k of the expansion of G(t) can
be represented by a diagram [Fig. 1(d)] comprising a total of 2k + 2
(2 terminal and 2k internal) instants,

s2k+1 = t ≥ s2k ≥ ⋅ ⋅ ⋅ ≥ s1 ≥ 0 = s0,
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and k chromophore indices nk, . . .,n1 associated with k pairs selected
from the set {s2k, . . ., s1} by the application of Wick’s theorem.
The consecutive instants sj+1 and sj (0 ≤ j ≤ 2k + 1) of a diagram
are connected by a straight line directed from sj to sj+1 [Fig. 1(d)]
and represent the (retarded) free-exciton Green’s superoperator
[Fig. 1(b)]

GS(t) = −iθ(t)e−iLSt. (16)

The directed double-line represents G(t) [Fig. 1(a)]. The dashed cir-
cumferences connect the instants sl and sj (sl ≥ sj) that are paired
by Wick’s theorem; see Fig. 1(c). These instants are accompanied
by the same chromophore index njl [see Eq. (4)] and the following
superoperators [cf. Eq. (14)]:

sl ↔ V
×
n jl
, (17)

sj ↔ C
r
n jl
(sl − sj)V×n jl

+ iCi
n jl
(sl − sj)Vnjl

○. (18)

Having placed all the superoperators in a chronologically
ordered string (reading diagrams from left to right), one performs
integrations ∫ t

0 ds2k . . . ∫ s2
0 ds1 over 2k internal instants and sum-

mations over k independent chromophore indices. Any diagram is
either reducible or irreducible, depending on whether it can be cut
into two by cutting a free Green’s superoperator line or not.93 Exam-
ples of irreducible diagrams in Fig. 1(d) are diagrams (2), (4.2), and
(4.3), while the diagram (4.1) is reducible. Amputating the external
lines corresponding to GS(s1) and GS(t − s2k) of irreducible dia-
grams, one obtains the diagrammatic representation of the so-called
(retarded) self-energy superoperator; see Fig. 1(f). The self-energy
superoperator thus consists of all amputated diagrams that cannot
be cut into two by cutting a free Green’s superoperator line. One can
then derive the following Dyson equation:93

G(t) = GS(t) +∫ +∞

−∞
ds2∫

+∞

−∞
ds1 GS(t − s2)Σ(s2 − s1)G(s1),

(19)
whose diagrammatic representation is shown in Fig. 1(e). All the
superoperators in Eq. (19) are retarded, and the integrals in Eq. (19)
can run from −∞ to +∞, which facilitates the transition to the
frequency domain. Rewriting Eq. (19) as an equation for U(t),

inserting the result thus obtained into Eq. (10), and differentiating
with respect to t, one obtains the QME,

∂t ∣ρ(t)⟩⟩ = −iLS∣ρ(t)⟩⟩ −∫ t

0
ds K(t − s)∣ρ(s)⟩⟩, (20)

where the relation between the memory kernel K and the retarded
self-energy Σ is

Σ(t) = −iθ(t)K(t). (21)

Equation (20) differs from the standard QME only by the repre-
sentation of the memory kernel. The memory kernel is commonly
expressed in terms of projection superoperators P and Q = 1 − P,
and its perturbation expansion in the exciton–environment interac-
tion is most often hidden in the propagator of the irrelevant part
QLS−BQ of the interaction Liouvillian; see, for example, Refs. 10
and 18. Choosing P∣O⟩⟩↔ TrB{OρeqB }94,95 and expanding the afore-
mentioned irrelevant propagator in power series, one obtains the
perturbation expansion of the memory kernel in terms of the so-
called partial cumulants of the interaction Liouvillian.96 The results
of Ref. 95 suggest that the same final result is obtained using
the more conventional Agyres–Kelley97 projection superoperator
P∣O⟩⟩↔ ρeqB TrB{O}. One can convince themselves that the partial
cumulants in Ref. 96 simply restate that the memory-kernel (or self-
energy) perturbation series does not contain disconnected diagrams,
as in Fig. 1(f). To that end, the general expressions of Ref. 96 have
to be transformed by applying Wick’s theorem and diagrammati-
cally representing the resulting series according to the above-stated
rules. These two steps, which were not considered in Ref. 96, are
vital to the formulation of the self-consistent resummation scheme
in Sec. II E.

C. Frequency-domain description

Resummation techniques usually require transferring to the
frequency space. This is most conveniently done starting from
Eq. (19) and forming the dynamical equation for G(t),

∂t G(t) = −iδ(t) − iLSG(t) − i∫ +∞

−∞
ds Σ(t − s)G(s). (22)

FIG. 1. Diagrammatic representation of (a) the interacting Green’s superoperator and (b) the free-exciton Green’s superoperator. (c) In an arbitrary diagram, the environmental
assistance starting at sj , ending at sl (t ≥ sl ≥ sj ≥ 0), and involving the environment that surrounds chromophore njl is represented by a dashed circumference connecting
sj and sl . The connections of the circumference with free-exciton lines, represented by full dots, correspond to the superoperators in Eqs. (17) and (18). Diagrammatic
representation of (d) the perturbation expansion for G(t) up to the fourth order in the exciton–environment interaction, (e) the Dyson equation [Eq. (19)], and (f) the
self-energy superoperator up to the fourth order in the exciton–environment interaction.
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With the standard definition of the frequency-dependent quantities,

G(t) = ∫ +∞

−∞

dω

2π
e
−iωt

G(ω). (23)

Equation (22) becomes the following algebraic equation:

G(ω) = [ω − LS − Σ(ω)]−1. (24)

The Hermitian property of the RDM implies that G(ω) satisfies
⟨⟨e′2e′1∣G(ω)∣e2e1⟩⟩ = −⟨⟨e′1e′2∣G(−ω)∣e1e2⟩⟩∗. (25)

This property shows that it is sufficient to compute G(ω) only for
ω ≥ 0, while the values for negative frequencies follow from this
symmetry property. We additionally note that the same symme-
try property also characterizes the inverse Green’s superoperator
G
−1(ω), as well as the self-energy superoperator Σ(ω), which now

carries the dimension of energy.
The frequency-domain diagrammatic representations of G(ω)

and Σ(ω) appear the same as the time-domain representations
in Figs. 1(d) and 1(f), respectively. The general rules for translat-
ing diagrams into formulas can be inferred from the discussion in
Sec. II D.

D. Born and Redfield approximations

The lowest, second-order approximation to Σ is known as the
(second) BA.55 The corresponding self-energy superoperator, shown
in Fig. 2(a1), reads as (see also Refs. 84 and 85)

ΣBA(t) =∑
n

V
×
n GS(t)[Cr

n(t)V×n + iCi
n(t)V○n], (26)

while its frequency-domain counterpart is

ΣBA(ω) =∑
n
∫
+∞

−∞

dν

2π
J n(ω − ν)

× {coth(β(ω − ν)
2

)V×n GS(ν)V×n +V×n GS(ν)V○n}. (27)

Upon inserting KBA(t) = iΣBA(t) into Eq. (20), we obtain the well-
known TC2 QME,54

∂tρ(t) = −i[HS, ρ(t)]
−∑

n

[Vn,∫
t

0
ds Cn(t − s)e−iHS(t−s)Vnρ(s)eiHS(t−s)]

+∑
n

[Vn,∫
t

0
ds Cn(t − s)∗e−iHS(t−s)ρ(s)Vne

iHS(t−s)].
(28)

For delta-correlated noise characterized by the dephasing rate Γ,
Cn(t) = Γδ(t), Eq. (28) assumes the Lindblad form,

∂tρ(t) = −i[HS, ρ(t)] − Γ∑
n

(1
2
{V2

n , ρ(t)} −Vnρ(t)Vn). (29)

We will use this result in Sec. III B 3.
The time-independent and nonsecular Redfield theory (see, for

example, Sec. 3.8.2 of Ref. 55 or Sec. 11.2 of Ref. 98),

∂t ∣ρ(t)⟩⟩ = −iLS∣ρ(t)⟩⟩ − R∣ρ(t)⟩⟩, (30)

is obtained by inserting Eq. (26) into Eq. (22) and then per-
forming the Markovian and adiabatic approximations. These
approximations result in the delta-like self-energy in the time
domain, ΣRed(t) = ΣRedδ(t), the frequency-independent self-energy
ΣRed(ω) = ΣRed, and the Redfield tensor R = iΣRed [see Eq. (21)],
where

ΣRed = ∫
+∞

−∞
ds ΣBA(s) eiLSs. (31)

The Redfield theory is formulated in the exciton basis {∣x⟩} defined
throughHS∣x⟩ = ωx∣x⟩. Equation (31) then implies that the Redfield-
tensor matrix elements read

⟨⟨x′2x′1∣R∣x2x1⟩⟩ = i⟨⟨x′2x′1∣ΣBA(ωx2 − ωx1)∣x2x1⟩⟩. (32)

For delta-correlated noise, Cn(t) = Γδ(t), the Redfield equation
[Eq. (30)] also assumes the Lindblad form [Eq. (29)].98

E. Self-consistent Born approximation

In this work, we improve upon the BA by replacing the free-
exciton Green’s superoperator GS in Fig. 2(a1) or Eq. (27) with the
interacting Green’s superoperator G; see Fig. 2(b1). The resultant
equation for the self-energy superoperator

Σ(ω) =∑
n
∫
+∞

−∞

dν

2π
J n(ω − ν)

× {coth(β(ω − ν)
2

)V×n G(ν)V×n +V×n G(ν)V○n} (33)

is to be solved together with the Dyson equation [Eq. (24)] in a
self-consistent loop. Namely, one starts from the free-exciton case,
Σ
(0) (ω) = 0, when Eq. (24) gives the free-exciton Green’s function(η→ +0),

G
(0)(ω) = GS(ω) = [ω + iη − LS]−1. (34)

G
(0)(ω) is then inserted into Eq. (33) to yield Σ

(1) (ω) = ΣBA(ω),
which is then inserted into Eq. (24) to yield G

(1)(ω), etc. The

FIG. 2. Diagrammatic representation of
(a1) the BA self-energy superoperator
[Eq. (26) or Eq. (27)], (b1) the SCBA
self-energy superoperator [Eq. (33)], (a2)
Green’s superoperator in the BA, and
(b2) Green’s superoperator in the SCBA.
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above-described procedure is repeated until the difference between
two consecutive iterations Σ(k)(ω) and Σ

(k−1)(ω) for the self-energy(k ≥ 1) becomes smaller than a prescribed numerical tolerance
(see Sec. III A for more details).

Using either BA or SCBA for the self-energy superoperator,
we do perform a partial resummation of the perturbation series for
G [Fig. 1(d)]. The resulting G(SC)BA contains contributions from all
orders in the exciton–environment interaction constant. Neverthe-
less, the diagrammatic content of the SCBA is much richer than
that of the BA, compare Fig. 2(b2) to Fig. 2(a2), suggesting that
the SCBA is reliable in a much wider parameter range than the BA.
Still, the SCBA retains only a very limited subset of all possible dia-
grams appearing in Figs. 1(d),99 and its reliability is to be carefully
checked.

III. RESULTS

A. Technical details

Equation (34) features an infinitesimally small frequency η,
which ensures the causality, i.e., GS(t) = 0 for t < 0. We always shift
ω→ ω + iη on the right-hand side of the Dyson equation [Eq. (24)],
which, apart from the causality, ensures that the matrix inversion
in Eq. (24) is numerically stable. However, the numerical Fourier
transformation of G(ω) thus obtained produces the exponentially
damped Green’s superoperator G̃(t) = e−ηt G(t). The results for the
true Green’s superoperator G(t) = eηt G̃(t) are thus the most reliable
for t ≪ η−1. In all our computations, we set η = 1 cm−1, meaning
that our results for exciton dynamics are bound to be reliable for
t ≪ 5 ps. While we find that our results in the real-time domain are
free of finite-η effects on timescales beyond η−1, we always show only
the initial 2–3 ps of exciton dynamics.

Generally, G(ω) slowly decays toward zero as ∣ω∣→ +∞.
The dominant component of the high-frequency tail of G(ω)
can be inferred by performing one partial integration of G(ω)
= ∫ +∞0 dt ei(ω+iη)t G(t), which results in

G(ω) = 1

ω + iη + O(ω−2), ∣ω∣→ +∞. (35)

Deriving Eq. (35), we use G(t = 0) = −i1, where 1 denotes the unit
operator in the Liouville space. The strongly pronounced high-
frequency tail of G(ω) means that we have to consider many
values of ω in order for the discrete Fourier transform to pro-
duce decent results in the time domain. This is to be avoided
as computing G(ω) and Σ(ω) involves inversion of an N2 ×N2

matrix [Eq. (24)] and numerical integration [Eq. (33)], respectively.
Defining T (ω) = 1

ω+iη and G
nt(ω) = G(ω) − T (ω),100 the discrete

(numerical) Fourier transformation of the non-tailed part G
nt(ω)

produces G̃
nt(t), while the Fourier transformation of the high-

frequency tail T (ω) can be performed analytically to yield T̃ (t)
= −iθ(t)e−ηt1. Finally,

G(t) = −iθ(t)1 + eηt G̃ nt(t). (36)

As we assume local exciton–environment interaction [Eq. (4)], G(ω)
and Σ(ω) are most conveniently represented in the site basis {∣n⟩}.
In all the examples to be discussed, we assume for simplicity that the

environments of individual chromophores are identical. The inte-
gration in Eq. (33) expressing Σ in terms of G is performed using
the ordinary trapezoidal rule. Because of the symmetry property in
Eq. (25), we perform a numerical integration of Eq. (33) from 0 to
ωmax with frequency step Δω. The contribution around ν = ω to the
integral in Eq. (33) may be divergent for sub-Ohmic SDs, while it is
finite (zero) for Ohmic (super-Ohmic) SDs. The correct treatment
of the possible divergence when computing Eq. (33) for sub-Ohmic
SDs is beyond the scope of this study. Importantly, the SDs that
are most widely used in studying EET through multichromophoric
aggregates are either super-Ohmic or Ohmic101,102 and can be han-
dled in the manner presented here; see Sec. III C and Appendix C.
We stop the self-consistent cycle once we achieve δΣ(k) ≤ εtol, where(k ≥ 1),

δΣ(k) = max
n′2n

′
1

n2n1

∣2⟨⟨n′2n′1∣Σ(k)(ω) − Σ(k−1)(ω)∣n2n1⟩⟩⟨⟨n′2n′1∣Σ(k)(ω) + Σ(k−1)(ω)∣n2n1⟩⟩ ∣, (37)

while εtol is the desired (relative) accuracy. We summarize the val-
ues of adjustable numerical parameters (η,ωmax,Δω, εtol) involved
in our computations in Table I.

The computational performance of the numerical integration
of Eq. (33) mainly depends on the high-frequency rather than low-
frequency behavior of the SD. In the examples analyzed in Sec. III B,
J (ω) ∼ ω−1 as ∣ω∣→ +∞ so that the integrand in Eq. (33) falls off as
ν−2 as ∣ν∣→ +∞; see also Eq. (35). Other widely used SDs decrease
even more rapidly in the high-frequency limit.101,102 This suggests
that the bottleneck in the self-consistent cycle is the inversion of the
N2 ×N2 matrix in Eq. (24).

Figures 3(a) and 3(b), respectively, show δΣ(k) as a function
k when the SCBA is used on the dimer in the overdamped phonon
continuum [the examples analyzed in Figs. 7(a)–7(d)] and on the
seven-site FMO model in the realistic environment [the examples
analyzed in Figs. 12(b1) and 12(b2)]. Notably, the convergence of
the self-consistent algorithm is achieved in a couple of tens of steps,
even in a multichromophoric system immersed in a structured envi-
ronment. After its initial increase with k, starting from the value of
2 [see the text above Eq. (34)], δΣ(k) decreases in a power-law fashion
for sufficiently large k.

In both BA and SCBA, the trace of the RDM is preserved
because of the outermost commutator in self-energies in Eqs. (27)
and (33). The RDM positivity is a much subtler issue, but we
observe that, whenever SCBA improves over the BA, the results of
both approximations conform to the positivity requirement on the
timescales analyzed.

TABLE I. Summary of the adjustable numerical parameters needed to perform the
self-consistent cycle and the values used in our computations.

Parameter (unit) Value

η (cm−1) 1
ωmax (cm−1) 3000–5000
Δω (cm−1) 0.5
εtol (−) 10−6
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FIG. 3. Dependence of the quantity δΣ(k)

[Eq. (37)] monitoring the convergence of
the self-consistent algorithm on the itera-
tion number k in the examples analyzed
in (a) Figs. 7(a)–7(d) and (b) Figs. 12(b1)
and 12(b2). Note the logarithmic scale on
both axes.

Aswe are primarily interested in examining the reliability of the
BA and SCBA, we use

∣ρ(0)⟩⟩ = 1
N
∑
n2n1

∣n2n1⟩⟩ (38)

as the initial condition in all numerical computations. Apart from its
simplicity, this initial condition provides a fairer assessment of the
approximation performance than the widely used initial condition∣n0n0⟩⟩, in which the exciton is placed at chromophore n0. In more
detail, exciton dynamics in an arbitrary basis {∣e⟩} is
⟨⟨e2e1∣ρ(t)⟩⟩ =∑

n2n1
n′2n

′
1

⟨e2∣n2⟩⟨n1∣e1⟩⟨⟨n2n1∣G(t)∣n′2n′1⟩⟩⟨⟨n′2n′1∣ρ(0)⟩⟩.
(39)

If the exciton is initially placed at chromophore n0, its sub-
sequent dynamics is determined by only N2 matrix elements⟨⟨n2n1∣G(t)∣n0n0⟩⟩ of G out of the total ofN4 elements. Quite gener-
ally,103 the quality of approximate dynamics is different for different
matrix elements of G, that is, for different starting chromophores
n0. Inserting the initial condition of Eq. (38) into Eq. (39), we can
assess the overall approximation performance, which is effectively
“averaged” over different matrix elements of G.

B. Reliability of the SCBA: Asymmetric dimer

The advantages and shortcomings of the SCBA are most
transparently identified on the simplest model relevant for EET,
the molecular dimer. In the site basis {∣1n⟩, ∣2n⟩}, the exciton
Hamiltonian HS is represented by the matrix

HS = (Δε J

J 0
), (40)

where Δε is the site-energy gap, while J is the resonance coupling.
The exciton state of lower (higher) energy is denoted as ∣1x⟩ (∣2x⟩).

In Secs. III B 1–III B 4, we consider exciton dynamics in
the featureless phonon environment described by the overdamped
Brownian oscillator (OBO) SD,86

J ph(ω) = 2λph ωγph

ω2 + γ2ph , (41)

TABLE II. Summary of the default values of excitonic (Δε, J) and
exciton–environment interaction (λph, γph) parameters used in Secs. III B 1–III B 4.

Parameter (unit) Value

Δε (cm−1) 100
J (cm−1) 50
λph (cm−1) 40
γph (cm−1) 40
T (K) 300

where λph is the reorganization energy, while γ−1ph determines the
environment–reorganization timescale. Table II summarizes the
default values of model parameters, which are broadly representative
of photosynthetic aggregates. The performance of our approxima-
tions upon varying these parameters is studied in Secs. III B 1 and
III B 3.

In Sec. III B 5, we assume that the exciton interacts with a sin-
gle underdamped vibrational mode so that the interaction can be
modeled by the underdamped Brownian oscillator SD,86

J vib(ω) = S0ω0[ ωγ0(ω − ω0)2 + γ20 +
ωγ0(ω + ω0)2 + γ20 ], (42)

where ω0 is the vibrational frequency, S0 is the Huang–Rhys factor,
while γ0 is the relaxation rate. Quite generally, γ0 ≪ ω0 and S0 ≪ 1.
The values used in benchmarks are taken from Ref. 50 and are listed
in Sec. III B 5.

1. Overdamped phonon continuum: Variations
in excitonic parameters

Here, we fix the exciton–environment interaction parameters
λph and γph and study the quality of SCBA and BA for different
excitonic parameters J and Δε. Figure 4 provides an overall assess-
ment of the performance of BA [Fig. 4(a)] and SCBA [Fig. 4(b)]
and of the improvement of the SCBA over the BA introduced by
the self-consistent cycle [Fig. 4(c)]. A convenient performance mea-
sure is the trace distance between the approximate [ρ(SC)BA(t)] and
numerically exact [ρHEOM(t)] RDM. As the trace distance is time-
dependent, while we also limit ourselves to the short-time dynamics
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FIG. 4. (a) and (b) Heat maps of the maximum trace distance D((SC)BA∣HEOM) [Eq. (43)] between the numerically exact and BA [(a)] or SCBA [(b)] excitonic RDM

over the interval [0, tmax]. (c) Heat map of the ratio
D(BA∣HEOM)

D(SCBA∣HEOM)
between the performance metrics used in (a) and (b). All quantities are computed for different values

of the resonance coupling J and the site-energy gap Δε, the remaining parameters assume their default values listed in Table II, the initial condition is specified in Eq. (38),
while tmax = 2 ps.

(see Sec. III A), we quantify the performance of our approximations
using the maximum trace distance over the time window [0, tmax],

D((SC)BA∣HEOM) = max
0≤t≤tmax

1
2

2

∑
k=1
∣r(SC)BA−HEOM
k

(t)∣, (43)

where r
(SC)BA−HEOM
k

(t) is the kth eigenvalue of the operator
ρ(SC)BA(t) − ρHEOM(t). We set tmax = 2 ps in Eq. (43). The colorbar
ranges in Figs. 4(a) and 4(b) suggest that the SCBA is generally a
better approximation to the exact dynamics than the BA. To quan-
tify the improvement of the SCBA over the BA, in Fig. 4(c), we plot

the ratio D(BA∣HEOM)
D(SCBA∣HEOM) , which we find to be greater than or equal

to unity for all the pairs (J,Δε) examined. The larger the ratio, the
more pronounced the improvement of the SCBA over the BA.

Figures 4(a) and 4(b) show that the reliability of both BA and
SCBA generally improves with increasing J and/or decreasing Δε.
This suggests that the approximations are best suited for relatively
delocalized excitons, when the mixing angle θ ∈ [0,π/4], defined as
tan(2θ) = 2J/Δε, significantly deviates from zero. Still, for Δε = 0,
when excitons are perfectly delocalized, the quality of both BA and
SCBA increases with increasing J, i.e., decreasing λph/J. The impact
of the exciton–environment interaction on the approximation reli-
ability will be analyzed in detail in Sec. III B 3. Figure 4(c) reveals
that the improvement of SCBA over BA is the most pronounced in
the region of moderate resonance coupling 50 cm−1 ≲ J ≲ 150 cm−1
and large site-energy gap Δε ≳ 200 cm−1. The improvement is also
appreciable for small resonance coupling, irrespective of the value of
Δε, when both BA and SCBA perform relatively poorly; see Figs. 4(a)
and 4(b).

2. Overdamped phonon continuum: Analytical
insights into the pure-dephasing model

For J = 0, the model reduces to the pure-dephasing model,
in which there is no population dynamics, but only dephasing

of the initially present interexciton coherences. The superopera-
tors entering Eq. (14) are then time independent, and combining
Eqs. (13)–(15), we readily obtain the following exact expression for
the reduced evolution superoperator:

⟨⟨n′2n′1∣G(t)∣n2n1⟩⟩ = −iθ(t)δn′2n2δn′1n1× {δn2n1 + (1 − δn2n1)e−iεn2n1 te−2gr(t)}, (44)

where gr(t) = ∫ t
0 ds2∫ s2

0 ds1 C
r(s1) is the real part of the line shape

function, whereas εn2n1 = εn2 − εn1 (for the dimer, εn2n1 = ±Δε). The
derivation of Eq. (44), in which only gr appears, crucially relies
on our assumption that individual-chromophore environments
are identical. While the exact coherence dynamics, which follows
from Eqs. (38), (39), and (44), can be recovered from the time-
convolutionless second-order QME,104 the corresponding BA and
SCBA results remain only approximations to the exact solution, as
both involve an explicit convolution in the time domain. Still, rele-
vant analytical insights concerning the (SC)BA can be obtained for
the pure-dephasing model in the high-temperature limit 2πT ≫ γph.
In Appendix A, we derive that the matrix elements of the exact
self-energy superoperator ⟨⟨n2n1∣Σ(ω)∣n2n1⟩⟩ for n2 ≠ n1 have the
following continued-fraction expansion (CFE):

⟨⟨n2n1∣Σ(ω)∣n2n1⟩⟩
=

4λphT

ω − εn2n1 + iγph − 2 ⋅ 4λphT
ω − εn2n1 + 2iγph −

3 ⋅ 4λphT
ω − εn2n1 + 3iγph − ⋅ ⋅ ⋅

.

(45)

Truncating the CFE in the first layer, we obtain the BA result(n2 ≠ n1),
⟨⟨n2n1∣ΣBA(ω)∣n2n1⟩⟩ = 4λphT

ω − εn2n1 + iγph
. (46)
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The same result follows from Eq. (27) upon approximating

coth( β(ω−ν)2 ) ≈ 2T
ω−ν , as appropriate in the high-temperature limit,

and performing a contour integration by closing the contour in
the upper half-plane. In the pure-dephasing model, we can use
Eqs. (32) and (46) to obtain the matrix elements of the self-energy
superoperator in the Redfield theory,

⟨⟨n2n1∣ΣRed∣n2n1⟩⟩ = −i4λphT
γph

. (47)

Appendix A also demonstrates that the CFE of the SCBA self-energy
reads

⟨⟨n2n1∣ΣSCBA(ω)∣n2n1⟩⟩
=

4λphT

ω − εn2n1 + iγph −
4λphT

ω − εn2n1 + 2iγph −
4λphT

ω − εn2n1 + 3iγph − ⋅ ⋅ ⋅

.

(48)

Comparing Eq. (45) to Eq. (48), we find that the CFE of the
SCBA result can be obtained from the exact result by changing all
the coefficients multiplying 4λphT in the CFE numerators to unity.
While this could suggest that the SCBA is, in general, a poor approx-
imation to the exact solution,99,105 we note that the broadening
factors are the same at each CFE denominator in both the SCBA and
exact self-energy. One can then expect that the SCBA is superior to
both the BA and the Redfield theory at reproducing the timescale
of coherence dephasing. This expectation is confirmed in Fig. 5(a)
comparing different approximations to the coherence dynamics in a
symmetric (Δε = 0) pure-dephasing dimer. The Redfield theory pre-
dicts an excessively fast coherence dephasing whose analytical form
reads as [see Appendix A and the circles in Fig. 5(a)]

⟨⟨1n2n∣ρRed(t)⟩⟩ = 1
2
exp(−4λphT

γph
t). (49)

On the contrary, the BA predicts an excessively slow coherence
dephasing that can be reasonably described by [see Appendix A and
the down-triangles in Fig. 5(a)]

⟨⟨1n2n∣ρBA(t)⟩⟩ ≈ 1
2
cos(2√λphT t)e−γpht/2. (50)

The exact coherence-dephasing timescale is in between the results of
the Redfield theory and BA, while the corresponding exact dynamics
can be reasonably approximated by [see Appendix A and the up-
triangles in Fig. 5(a)]

⟨⟨1n2n∣ρ(t)⟩⟩ ≈ 1
2
exp (−2λphTt2). (51)

The SCBA indeed reproduces the correct order of magnitude of the
dephasing timescale, although it displays oscillations similar to that
predicted by Eq. (50). The performance of different approximations
can also be inferred from (the imaginary part of) the corresponding
self-energy profile presented in Fig. 5(a). The self-energy within the
Redfield theory [Eq. (47)] does not bear even a qualitative resem-
blance to the exact result. The BA, SCBA, and the exact result all
display a peak centered around ω = 0. The BA peak is the narrowest
and highest and has a Lorentzian shape whose full width at half-
maximum is determined by γph only; see Eq. (46). The exact peak

FIG. 5. (a) Time dependence of the real part of the coherence in a symmetric
(Δε = 0) pure-dephasing dimer. (b) Frequency profile of the imaginary part of the
matrix element of the self-energy superoperator describing coherence dephas-
ing in a symmetric pure-dephasing dimer. We compare the results of the SCBA
(solid lines), BA (dashed lines), and Redfield theory (dotted lines) to the exact
result (double dashed-dotted lines). The lines in (a) display Fourier-transformed
frequency-domain results using the self-energies given in Eq. (45) (label “exact”),
Eq. (48) (label “SCBA”), Eq. (46) (label “BA”), and Eq. (47) (label “Red”). Full
symbols in (a) display the analytical results given by Eq. (49) (circles), Eq. (50)
(down-triangles), and Eq. (51) (up-triangles). For visual clarity, the BA and Redfield
self-energies in (b) are scaled down by a factor of 4.

[Eq. (45)] is much broader than the BA peak, while the width of the
SCBA peak [Eq. (48)] is somewhat smaller than, yet comparable to,
the width of the exact peak.

3. Overdamped phonon continuum: Variations
in exciton–environment interaction parameters
and temperature

Here, we fix exciton parameters Δε and J and vary λph and γph
to examine the reliability of BA [Fig. 6(a)] and SCBA [Fig. 6(b)],
as well as the improvement over the BA brought about by the self-
consistent cycle [Fig. 6(c)]. Overall, we find that the quality of both
BA and SCBA improves with decreasing the reorganization energy
and/or shortening the environment–reorganization timescale; see
Figs. 6(a) and 6(b). Figure 6(c) shows that the SCBA is always bet-
ter at approximating the exact dynamics than the BA. Within the
range of values of λph and γ−1ph typically used in models of photo-

synthetic EET (25 cm−1 ≲ λph ≲ 250 cm
−1 and 50 fs ≲ γ−1ph ≲ 200 fs),

1

the self-consistent cycle significantly improves the BA results; see
the dashed-line rectangle in Fig. 6(c). Notably, for very fast envi-
ronments (γ−1ph ≲ 10 fs), we find that the quality of BA and SCBA

J. Chem. Phys. 161, 204108 (2024); doi: 10.1063/5.0237483 161, 204108-9

Published under an exclusive license by AIP Publishing

 2
6
 N

o
v
e
m

b
e
r 2

0
2
4
 1

3
:3

9
:4

0



The Journal

of Chemical Physics
ARTICLE pubs.aip.org/aip/jcp

FIG. 6. (a) and (b) Heat maps of the maximum trace distance D((SC)BA∣HEOM) between the numerically exact and BA [(a)] or SCBA [(b)] excitonic RDM over the

interval [0, tmax] [Eq. (43)]. (c) Heat map of the ratio
D(BA∣HEOM)

D(SCBA∣HEOM)
between the performance metrics used in (a) and (b). All quantities are computed for different values of

the reorganization energy λph and the environment–reorganization timescale γ−1
ph

, the remaining parameters assume their default values listed in Table II, the initial condition

is specified in Eq. (38), while tmax = 2 ps. The dashed-line rectangle in (c) delimits the range of values of γ−1
ph

and λph typically used in modeling photosynthetic EET.

is virtually the same, i.e., D(SCBA∣HEOM) ≈ D(BA∣HEOM), for
all reorganization energies examined. To understand this, we
observe that when γph →∞ and T →∞ so that γph/T → 0, our
model reduces to the well-known Haken–Strobl–Reineker white-
noise model,106,107 within which Cn(t) = Γδ(t), with Γ = 2λphT/γph.
Inserting this Cn(t) into Eq. (14) for the exact evolution super-
operator U(t), we conclude that the exact equation of motion for
ρ(t) coincides with the Lindblad-like equation (29). To reach this

conclusion, we use that the white-noise assumption renders the
time-ordering sign upon differentiating Eq. (14) effective only on
the superoperator e−Φ(t) and ineffective on the superoperator ∂tΦ(t).
Our discussion in Sec. II D then implies that the BA, and even the
Redfield theory, becomes exact in the white-noise limit. The exact-
ness of the BA implies that the self-consistent cycle cannot improve
on BA any further, meaning that the SCBA result is also exact in the
white-noise limit.

FIG. 7. Dynamics of the population of the lower-energy exciton state ∣1x⟩ [(a1)–(d1)] and the real part of the interexciton coherence [(a2)–(d2)] computed using SCBA (solid
lines), BA (dashed lines), Redfield theory (dotted lines), and HEOM (double dashed-dotted lines). The insets in (a1)–(d1) present the very initial dynamics of the imaginary
part of the interexciton coherence (BA and Redfield results are omitted for visual clarity). The parameters λph, γph, T , and λph assume their default values in (a1) and (a2),

while we change γph = 5 cm−1 in (b1) and (b2), T = 77 K in (c1) and (c2), and λph = 200 cm−1 in (d1) and (d2).
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Figure 6(c) shows that the improvement of SCBA over BA is
the most pronounced for sluggish environments or large reorga-
nization energies. Both observations are ultimately rooted in the
richer diagrammatic content of the SCBA compared to that of the
BA, see Fig. 2, and are remarkable as computing exciton dynamics
modulated by strong exciton–environment interactions and/or slow
environments has to take into account higher-order environmen-
tally assisted processes.84,85 Similar challenges are encountered when
studying exciton dynamics at low temperatures. Additional insights
into the quality of different approximations can be gained from
Fig. 7, which compares approximate and numerically exact exciton
dynamics for the default values of model parameters [Figs. 7(a1)
and 7(a2)], slow environment [γph = 5 cm

−1, Figs. 7(b1) and 7(b2)],

strong exciton–environment interaction [λph = 200 cm
−1, Figs. 7(c1)

and 7(c2)], and low temperature [T = 77 K, Figs. 7(d1) and 7(d2)].
The overall performance of approximate methods is essentially as
discussed in Sec. III B 2. The Redfield theory shows pronounced
deviations from the exact result already on shortest timescales,
whereas the BA and SCBA reproduce the very initial stages(t ≲ 50 fs) of the exact dynamics quite well. While the subsequent
dynamics within the BA generally exhibits oscillatory features that
are damped relatively slowly, cf. Fig. 5(a), the SCBA dynamics of
exciton populations and the interexciton coherence follows the cor-
responding HEOM results very reasonably. The SCBA approximates
the true exciton-population dynamics in both realistically slow
[Fig. 7(a1)] and excessively slow [Fig. 7(b1)] environments quite
well, both on subpicosecond and on somewhat longer timescales.
Meanwhile, Figs. 7(a2) and 7(b2), as well as the insets of Figs. 7(a1)
and 7(b1), suggest that the SCBA is not that good at reproducing
the true interexciton-coherence dynamics. Still, it does capture the
correct long-time behavior (the imaginary part of the interexciton
coherence tends to zero, and the real part tends to a non-zero value).
For strong interactions and at low temperatures, the subpicosecond
dynamics of exciton populations within the SCBA is quite close to

FIG. 8. Heat map of the number of steps kconv needed to achieve the convergence
of the SCBA [δΣ(k)

≤ εtol for k ≥ kconv] for different values of the reorganization
energy λph and the environment–reorganization timescale γ−1

ph
.

the true dynamics, see Figs. 7(c1) and 7(d1), while some quantita-
tive differences between them appear on longer timescales (these are
more pronounced for the higher-energy exciton state). Meanwhile,
the SCBA dynamics of the interexciton coherence agrees well with
the corresponding numerically exact dynamics, especially at lower
temperatures; see Figs. 7(c2) and 7(d2) and the insets of Figs. 7(c1)
and 7(d1).

Figure 3(a) suggests that the convergence of the SCBA
slows down with increasing the reorganization energy or the
environment–reorganization timescale. This is corroborated in
Fig. 8, which shows the heat map of the number of iterations
kconv the SCBA needs to converge [δΣ(k) ≤ εtol for k ≥ kconv] for dif-
ferent values of λph and γ

−1
ph . Even in the regime of strong interaction(λph = 500 cm−1) with slow environment (γ−1ph = 1 ps), the conver-

gence is achieved in around 70 iterations. Interestingly, we find that
kconv remains essentially unaffected by variations in the excitonic
parameters J and Δε for fixed λph and γph. For all parameter com-
binations in Fig. 4, the SCBA converges in 10–13 iterations. The
pace of the convergence appears to be relatively weakly affected
by temperature variations; see Fig. 3(a). Figure 3(b) suggests that
this holds true even in larger aggregates interacting with structured
environments [Figs. 12(b1) and 12(b2)].

4. Overdamped phonon continuum: Self-energy
superoperator

We formulate our approximate approaches in the frequency
domain, with the self-energy (memory-kernel) superoperator as
their central quantity, and Figs. 9(a)–9(d) discuss the reflections of
the above-summarized time-domain observations on the frequency
domain. We choose the slow-environment regime analyzed in
Fig. 7(b) and concentrate on thematrix elements ⟨⟨2x2x∣Σ(ω)∣2x2x⟩⟩
and ⟨⟨1x2x∣Σ(ω)∣2x2x⟩⟩ describing, respectively, the population flux
out of the higher-energy exciton state and the population-to-
coherence transfer from that state. The results in Figs. 9(a)–9(d) are
obtained setting the artificial-broadening parameter to η = 1 cm−1,
and we have checked that varying η over the range [0.5, 5] cm−1
does not qualitatively (and to a large extent quantitatively) affect
the results presented here. Within the BA, the imaginary parts of
both self-energy matrix elements display very narrow peaks cen-
tered around the exciton energy gap (at ω = ±ΔεX), see Figs. 9(a)
and 9(c), which is compatible with the oscillatory features of the BA
in Fig. 7(b). Meanwhile, the peaks of the numerically exact profiles
are much wider, and their centers are somewhat shifted from ΔεX .
While the SCBA profiles overall reasonably reproduce the numeri-
cally exact ones in terms of both peak positions and shapes, we note
the tendency of the SCBA toward somewhat excessive peak shift-
ing and narrowing. The relative advantage of the SCBA over the
BA is the most obvious for the population-to-coherence transfer,
when the BA completely misses the peak appearing somewhat below
ΔεX in both HEOM and SCBA profiles; see Fig. 9(c).

In Figs. 9(e) and 9(f), we compare the BA and SCBA results
for the self-energy superoperator in the time domain to the cor-
responding numerically exact result. As discussed in Sec. III A,
these time-domain results do not depend on η. The general ten-
dencies observed in the exciton dynamics in Fig. 7(b) are also seen
on the level of the time-dependent memory kernel. Namely, the
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FIG. 9. (a)–(d) Frequency dependence of the imaginary [(a) and (c)] and real [(b) and (d)] parts of the matrix elements of the self-energy superoperator Σ(ω) computed
using SCBA (solid lines), BA (dashed lines), and HEOM (double dashed-dotted lines). We show matrix elements describing the population flux out of the higher-energy
exciton state ∣2x⟩ [(a) and (b)] and the population-to-coherence transfer from the higher-energy exciton state [(c) and (d)]. For visual clarity, the BA results are multiplied by
a factor of (a) and (b) 0.1 and (c) and (d) 0.05. In panels (a)–(d), we use η = 1 cm−1. (e) and (f) Time dependence of the matrix elements of the self-energy superoperator
Σ(t) computed using SCBA, BA, and HEOM. The time-domain results on the timescales shown in (e) and (f) do not depend on η; see Sec. III A. Model parameters assume
the same values as in Figs. 7(b1) and 7(b2).

BA result for the time-dependent memory kernel displays pro-
nounced weakly damped oscillatory features, while the SCBA repro-
duces the exact result reasonably well. The quantitative agreement
between the SCBA and HEOM results for the matrix element con-
nected to population-to-population transfer is somewhat better than
in the case of population-to-coherence transfer; compare Fig. 9(e)
to Fig. 9(f). We finally note that obtaining the memory-kernel
superoperator in the time domain is generally difficult.108 On the
contrary, our time-domain results are readily obtained by the
numerical Fourier transformation of the corresponding frequency-
domain self-energies.

5. A single underdamped vibrational mode

Here, using the values of J,Δε, and T summarized in Table II,
we benchmark the (SC)BAwhen the SD of the exciton–environment
interaction is modeled using Eq. (42). We set γ0 = 3 cm−1, cor-
responding to the relaxation timescale of γ−10 = 1.77 ps. Keeping
in mind that the interaction with an individual intrachromophore
mode is, in general, relatively weak (S0 ∼ 0.01, irrespective of the
vibrational frequency ω0),109 one could expect that already the BA
recovers the numerically exact exciton dynamics. Figures 10(a) and
10(b) reveal that this is indeed the case when the vibrational mode
is not resonant with the excitonic energy gap (ω0 ≠ ΔεX). The
true dynamics then exhibits weakly damped oscillations in both
exciton populations and interexciton coherence, which reflect the
relatively slow and inefficient interchromophore population transfer

discussed in the literature.110 While the BA reproduces the oscilla-
tory behavior fairly well on the timescales we focus on, the SCBA
produces an excessively fast oscillation damping and an overall
incorrect dynamics of exciton populations. One may then expect
that the general tendency of the self-consistent cycle toward the fast
equilibration of the excitonic subsystem could render the SCBA a
reliable approximation when the vibrational frequency is nearly res-
onant with the exciton-energy gap (ω0 ≈ ΔεX). At resonance, the
existing results show that the damping of the interexciton coher-
ence and the concomitant interchromophore population transfer are
particularly fast.110 Figures 11(a) and 11(b) show that the SCBA is
indeed sufficiently good at reproducing this rapid equilibration of
both exciton populations and coherences.

In the off-resonant case, the exciton populations and interexci-
ton coherence predominantly oscillate at frequencies ∣ω0 − ΔεX ∣ and
ΔεX , respectively; see the most pronounced features of the spectra
in Figs. 10(c) and 10(d). The spectra in Figs. 10(c), 10(d), 11(c), and
11(d) originate from our frequency-domain computations so that
they are broadened with the parameter η. The incorrect SCBA pop-
ulation dynamics in Fig. 10(a) is reflected on the frequency domain
as the spurious low-frequency feature in Fig. 10(c). In the reso-
nant case, the dynamics of interexciton coherence displays beats
most probably stemming from oscillations at two similar frequen-
cies; see the most intensive features in Fig. 11(d). In contrast to the
off-resonant case, the relation of the beating frequency or the fre-
quency of population oscillations in Fig. 11(c) to the inherent energy
scales of the problem (Δε, J,ω0) is not obvious. To establish such
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FIG. 10. Time dependence of (a) the population of the
lower-energy exciton state ∣1x⟩ and (b) the real part of the
interexciton coherence computed using SCBA (solid lines),
BA (dashed lines), and HEOM (double dashed-dotted
lines). (c) and (d) The real part of the Fourier transformation
of the quantities displayed in (a) and (b), respectively.
The dimer is coupled to an underdamped vibrational
mode characterized by ω0 = 213 cm−1, S0 = 0.024, and
γ0 = 3 cm−1. The vertical lines in (c) [(d)] show the
frequencies of oscillatory features in exciton-population
(interexciton-coherence) dynamics obtained using
the weak-interaction vibronic-exciton model; see
Eqs. (54)–(56).

FIG. 11. Time dependence of (a) the population of the
lower-energy exciton state ∣1x⟩ and (b) the real part of
the interexciton coherence computed using SCBA (solid
lines), BA (dashed lines), and BA (double dashed-dotted
lines). (c) and (d) The real part of the Fourier transfor-
mation of the quantities displayed in (a) and (b), respec-
tively. The dimer is coupled to an underdamped vibrational
mode characterized by ω0 = 138 cm−1, S0 = 0.023, and
γ0 = 3 cm−1. The vertical lines in (c) [(d)] show the
frequencies of oscillatory features in exciton-population
(interexciton-coherence) dynamics obtained using the
weak-interaction vibronic-exciton model; see Eqs. (52)
and (53).

a relation, we note that even the weak exciton–vibration interac-
tion can induce appreciable mixing of the vibrational and excitonic
levels and thus render the description in terms of vibronic–exciton
states more appropriate. To discuss our observations in terms of
these hybrid states, we assume, for simplicity, that the vibrational
mode is undamped, i.e., γ0 = 0. Then, the Hamiltonian is analo-
gous to the Jaynes–Cummings Hamiltonian of quantum optics.111

When S0 ≪ 1, it is sufficient to consider at most a single vibra-
tional quantum,112 and in Appendix B, we conclude that the first
two states above the lowest-lying vibronic-exciton state ∣1x, v0 = 0⟩

are linear combinations of the states ∣1x, v0 = 1⟩ and ∣2x, v0 = 0⟩. In
the nearly resonant case (ΔεX ≈ ω0), the energies corresponding to
the oscillatory features in exciton populations,

Ω
res
pop ≈ ω0

√
2S0∣ sin (2θ)∣, (52)

and the interexciton coherence,

Ω
res
coh,± ≈ ΔεX ± ω0

√
S0

2
∣ sin (2θ)∣, (53)
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are proportional to
√
S0 and agree reasonably well with the corre-

sponding numerically exact and SCBA results; see Figs. 11(c) and
11(d). Interestingly, the frequency of the beats in the interexciton-
coherence dynamics virtually coincides with the frequency of pop-
ulation oscillations, i.e., Ωres

pop ≈ Ω
res
coh,+ −Ω

res
coh,−. In the off-resonant

case ΔεX ≠ ω0, we find that the frequency of population oscillations
is shifted from ∣ΔεX − ω0∣ by an amount proportional to S0, i.e.,

Ω
off
pop − ∣ΔεX − ω0∣ ≈ S0 sin2(2θ) ω2

0∣ΔεX − ω0∣ , (54)

which agrees very well with the HEOM result, and not so well with
the BA and SCBA results; see Fig. 10(c). The frequency shift of
the most pronounced component of exciton-coherence oscillations
from ΔεX is also linear in S0,

Ω
off
coh,− − ΔεX ≈ −

1
2
S0 sin

2(2θ) ω2
0∣ΔεX − ω0∣ , (55)

in good agreement with the HEOM and BA results in Fig. 10(d).
We mention that the much less intensive feature of the coherence-
oscillation spectrum appearing around the vibration energy is
shifted from ω0 by

Ω
off
coh,+ − ω0 ≈

1
2
S0 sin

2(2θ) ω2
0∣ΔεX − ω0∣ . (56)

C. Reliability of the SCBA: Seven-site model
of the FMO complex

In Figs. 12 and 13, we benchmark the SCBA and BA on the
widely studied seven-site model of the FMO complex found in
green sulfur bacteria. Detailed benchmarks of our approximations

for chromophore populations (Fig. 12) and interchromophore
coherences (Fig. 13) against numerically exact results are possible
for the OBO SD [Eq. (41)]. In Figs. 12(a1), 12(b1), 13(a1), and
13(b1), we use λph = 35 cm−1 and γ−1ph = 50 fs (γph = 106.2 cm−1).
To explore the viability of our methodology, we also apply it to
the model using the structured SD emerging from atomistic simu-
lations performed in Ref. 34. As we are not aware of any numerically
exact results for the dynamics modulated by this structured bath,
Figs. 12(a2), 12(b2), 13(a2), and 13(b2) compare the SCBA and BA
results. Details on the excitonic Hamiltonian HS and the structured
SD used are summarized in Appendix C.

Using the OBO SD, the BA already provides a good approx-
imation to the subpicosecond dynamics of chromophore popula-
tions [Figs. 12(a1) and 12(b1)], in agreement with the findings of
Ref. 54. Nevertheless, on a picosecond timescale, the BA overes-
timates (underestimates) populations of low-energy (high-energy)
states, and this effect becomes more pronounced with decreasing the
temperature; compare Fig. 12(a1) to Fig. 12(b1). While the SCBA
suffers from the same deficiency, its predictions for chromophore
populations are systematically closer to the numerically exact results
throughout the time window examined. At higher temperatures,
Figs. 12(a1) and 13(a1) suggest that the SCBA is better at approxi-
mating population dynamics than coherence dynamics. Meanwhile,
Figs. 12(b1) and 13(b1) suggest that the reverse is true at lower tem-
peratures. Figures 13(a1) and 13(b1) do not show BA results, which,
at all temperatures, display oscillatory features lasting much longer
than the numerically exact method predicts.

Comparing panels (a2) and (a1) [(b2) and (b1)] in Figs. 12
and 13, we conclude that our approximations deliver reasonable
results for exciton dynamics in the structured environment, as it is
overall similar to the dynamics in the featureless environment. The
problems with longer-time population dynamics of extremal-energy

FIG. 12. Comparison of SCBA (solid), BA (dashed), and
HEOM (double dashed-dotted) dynamics of BChl popula-
tions within the seven-site model of the FMO complex.
Computations are performed at T = 300 K [(a1) and (a2)]
and T = 77 K [(b1) and (b2)] using the OBO [(a1) and (b1)]
and realistic [(a2) and (b2)] SDs of the exciton–environment
interaction. As the numerically exact dynamics are not avail-
able for the realistic SD, panels (a2) and (b2) compare the
SCBA and BA dynamics.
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FIG. 13. Comparison of SCBA (solid), BA (dashed), and
HEOM (double dashed-dotted) dynamics of the interchro-
mophore coherence between BChl 3 and BChl 6 within the
seven-site model of the FMO complex. Computations are
performed at T = 300 K [(a1) and (a2)] and T = 77 K [(b1)
and (b2)] using the OBO [(a1) and (b1)] and realistic [(a2)
and (b2)] SDs of the exciton–environment interaction. In
(a1) and (b1), we omit BA dynamics for visual clarity. As the
numerically exact dynamics are not available for the real-
istic SD, panels (a2) and (b2) compare the SCBA and BA
dynamics.

states are exacerbated in the structured environment at lower tem-
peratures, when SCBA (and also BA) predicts nonphysical (greater
than 1 or negative) populations of such states; see Fig. 12(b2). A pos-
sible origin of these problems can be understood from our analysis
of the dynamics modulated by an underdamped vibrational mode;
see Sec. III B 5. There, we find that the resonance condition between
the exciton-energy gap and the vibrational energy quantum is crucial
to the success of the SCBA. Here, exciton-energy gaps fluctuate due
to low-frequency phonon modes, their fluctuations becoming more
pronounced with increasing temperature. Therefore, at higher tem-
peratures, satisfying resonance conditions between exciton-energy
gaps and weakly damped vibrational modes is more probable than
at lower temperatures. In other words, the SCBA is expected to
work better at higher temperatures. The SCBA coherence dynamics
in Figs. 13(a2) and 13(b2) is physically sensible, while the lifetime
of interchromophore coherences in the structured environment
is somewhat shorter than in the featureless environment at both
temperatures examined.

IV. SUMMARY AND OUTLOOK

We have developed and benchmarked the self-consistent Born
approximation for studying the dynamics of EET through a mul-
tichromophoric aggregate linearly interacting with a bosonic envi-
ronment. We start from the lowest-order approximation for the
memory kernel of the QME and improve it in the self-consistent
cycle based on the QME represented in the Liouville space. We find
that the SCBA reproduces the exact exciton dynamics modulated
by an overdamped phonon continuum very well, even in the gen-
erally difficult regimes of strong exciton–environment interaction,
slow environmental reorganization, and low temperature. This suc-
cess of the SCBA can be understood from the analytically tractable

example—coherence-dephasing dynamics in the pure-dephasing
model. We conclude that the reliability of the SCBA when the
dynamics is modulated by an underdamped vibrational mode leans
on the resonance between the mode frequency and the exciton-
energy gap. Nevertheless, in a structured environment comprising
both an overdamped phonon continuum and a number of under-
damped vibrational modes, the SCBA reasonably describes exciton
dynamics through the seven-site model of the FMO complex.

Importantly, our method does not introduce any assumptions
on the form of the exciton–environment SD, making it a strong
candidate for studying exciton dynamics modulated by structured
environments whose properties are extracted from experiments or
atomistic simulations. Although the method sometimes leads to
unphysical results [see, for example, Fig. 12(b2)], it can, in principle,
be improved by enlarging the set of the diagrams included in Green’s
superoperator beyond that in Fig. 2(b2). Namely, Fig. 12(b2) shows
that the onset of the unphysical behavior in the SCBA result is shifted
toward later times with respect to the BA result so that including
additional diagrams can be expected to further improve the SCBA
result. Systematic improvements are possible by performing the self-
consistent cycle starting from a higher-order approximation for the
memory kernel. The next member of the family of self-consistent
approximations thus obtained is the so-called one-crossing approx-
imation, in which the starting memory kernel is the sum of the first
two diagrams in Fig. 1(f). The final memory kernel then contains all
diagrams in which the lines representing the environmental assis-
tance cross at most once. However, the one-crossing approximation
is computationally much more demanding than the SCBA, as each
iteration involves a double integral over frequency. The practical
applicability of the one-crossing approximation is thus determined
by the balance between its computational requirements and the
improvements it offers over the SCBA.
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Remarkably, it may happen that the good results obtained in
the lowest-order Born approximation are deteriorated by includ-
ing the higher-order diagrams captured by the SCBA; see, for
example, Fig. 10(a). Such situations typically feature underdamped
(or undamped) environments, whose SDs are narrow (the corre-
sponding bath correlation functions decay very slowly). Then, we
have to recall that the perturbation series in Fig. 1(d) is actually
an asymptotic series, which in general does not converge. Never-
theless, in realistic environments, overdamped contributions may
be considered to come to rescue the convergence of the perturba-
tion series, as these effectively hide the unphysical features caused
by underdamped contributions alone.

Finally, our Liouville-space frequency-domain formulation of
the SCBA suggests that it might be used as a computationally effi-
cient and reasonably accurate approach to compute experimentally
accessible nonlinear response functions. To test such a possibil-
ity, one should generalize the present formulation so that memory
kernels in different excited-state sectors can be computed.
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dation (GAČR), Grant No. 22-26376S. The work in Belgrade was
supported by the Institute of Physics Belgrade, through the grant
by the Ministry of Science, Technological Development, and Inno-
vation of the Republic of Serbia. Numerical computations were
performed on the PARADOX-IV supercomputing facility in the Sci-
entific Computing Laboratory, National Center of Excellence for the
Study of Complex Systems, Institute of Physics Belgrade.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

V.J. developed the method and performed all analytical deriva-
tions. V.J. and T.M. numerically implemented the method and
conceived the examples on which the method was tested. V.J. per-
formed all numerical computations and prepared the initial version
of the manuscript. Both authors contributed to the final version of
the manuscript.
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APPENDIX A: COHERENCE DEPHASING
IN THE PURE-DEPHASING MODEL (OBO SD
AND HIGH-TEMPERATURE LIMIT)

We first show that the CFE of the exact Σ(ω) is given by
Eq. (45). In the high-temperature limit, the real part of the line shape
function can be approximated as86

g
r(t) = 2λphT

γ2ph
(e−γpht + γpht − 1). (A1)

Inserting Eq. (A1) into Eq. (44) and performing the Fourier
transformation of the latter gives (n2 ≠ n1)

⟨⟨n2n1∣G(ω)∣n2n1⟩⟩
= eΛph

+∞

∑
k=0

(−Λph)k
k!

1
ω − εn2n1 + iΛphγph + ikγph

, (A2)

where we introduce the dimensionless parameter Λph =
4λphT

γ2ph
.

It is known that the zero-temperature absorption line shape
(the excitation-addition spectral function) of a two-level system
whose energy gap εeg between the ground and excited states is mod-
ulated by an undamped vibrational mode (frequency ω0 and HR
factor S0) is proportional to the negative imaginary part of the
retarded Green’s function (see, for example, Chap. 8 of Ref. 86 or
Chap. 4 of Ref. 82),

G
R(ω) = e−S0+∞∑

k=0

Sk0
k!

1
ω − εeg + S0ω0 − kω0 + iη

. (A3)

The CFE of Eq. (A3) reads as99,105

G
R(ω) = 1

ω − εeg −
S0ω

2
0

ω − εeg − ω0 −
2S0ω

2
0

ω − εeg − 2ω0 − ⋅ ⋅ ⋅

. (A4)

The CFE of ⟨⟨n2n1∣G(ω)∣n2n1⟩⟩ is then obtained by substituting
ω − εeg → ω − εn2n1 , S0 → −Λph, and ω0 → −iγph in Eq. (A4), which
follows from comparing Eq. (A2) with Eq. (A3), and reads

⟨⟨n2n1∣G(ω)∣n2n1⟩⟩
=

1

ω − εn2n1 −
4λphT

ω − εn2n1 + iγph −
2 ⋅ 4λphT

ω − εn2n1 + 2iγph − ⋅ ⋅ ⋅

. (A5)

Keeping in mind that ⟨⟨n2n1∣Σ(ω)∣n2n1⟩⟩ = ω − εn2n1
− ⟨⟨n2n1∣G(ω)∣n2n1⟩⟩−1, see Eq. (24), one immediately obtains
Eq. (45).

Working in the high-temperature limit, Tanimura and Kubo
obtained an expression very similar to Eq. (A5); see Appendix
B of Ref. 113. They considered a single two-level chromophore
(labeled n1) and its optical coherence, whose time evolution is
governed by e−iεn1 te−g(t).114 The numerators of their CFE feature
nonzero imaginary parts originating from gi(t). Here, however,
we consider the interchromophore coherence between excitoni-
cally uncoupled chromophores n2 and n1 and assume that their
environments are identical and uncorrelated. In the time domain,
the coherence involves the de-excitation of chromophore n1 and
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excitation of chromophore n2 so that it evolves according to
e−iεn2 te−g(t)[e−iεn1 te−g(t)]∗ = e−iεn2n1 te−2gr(t). The imaginary parts of
the line shape functions cancel out, in agreement with Eq. (44),
rendering the numerators of the CFE in Eqs. (A5) and (45) purely
real.

We now argue that the CFE of the SCBA self-energy is given by
Eq. (48). Our starting point is the BA propagator in the frequency
domain (n2 ≠ n1),

⟨⟨n2n1∣GBA(ω)∣n2n1⟩⟩ = 1

ω − εn2n1 −
4λphT

ω−εn2n1+iγph

, (A6)

which is obtained by inserting the BA self-energy [Eq. (46)] into the
Dyson equation [Eq. (24)]. The BA propagator is then inserted into
Eq. (33) to obtain the following self-energy Σ(2) in the next iteration:

⟨⟨n2n1∣Σ(2)(ω)∣n2n1⟩⟩ = ∫ +∞

−∞

dν

2π

4λphγphT(ω − ν)2 + γ2ph
× ⟨⟨n2n1∣GBA(ω)∣n2n1⟩⟩. (A7)

Here, we have approximated coth( β(ω−ν)2 ) ≈ 2T
ω−ν . The last

integral is solved by integrating along a contour that is closed in the
upper half-plane to ensure causality. As the poles of the BA propaga-
tor are in the lower half-plane by construction, the only pole of the
integrand in the upper half-plane is at ν = ω + iγph. Evaluating the
corresponding residue, we obtain

⟨⟨n2n1∣Σ(2)(ω)∣n2n1⟩⟩ = 4λphT

ω − εn2n1 + iγph −
4λphT

ω−εn2n1+2iγph

. (A8)

Repeating the above-described procedure ad infinitum, we obtain
Eq. (48).

We end this section by presenting analytical results for the
matrix elements of Green’s superoperator that determine the
dynamics of coherence dephasing within the BA and the Red-
field theory; see Eqs. (49) and (50). Equation (A6) implies that the
BA propagator in the time domain can be expressed as

⟨⟨n2n1∣GBA(t)∣n2n1⟩⟩ = e−iεn2n1 t∫ +∞

−∞

dΩ

2π
e
−iΩt Ω + iγph(Ω −Ω+)(Ω −Ω−) ,

(A9)

where

Ω± =
γph
2

⎡⎢⎢⎢⎢⎣±
¿ÁÁÀ16λphT

γ2ph
− 1 − i

⎤⎥⎥⎥⎥⎦ ≈ ±2
√
λphT − i

γph
2

(A10)

are the roots of the quadratic equation Ω
2
+ iγphΩ − 4λphT = 0, of

which both lie in the lower half-plane. We use 2πT/γph ≫ 1 to
obtain Ω± in the high-temperature limit. The integral in Eq. (A9)
is solved using the contour integration with the final result,

⟨⟨n2n1∣GBA(t)∣n2n1⟩⟩ = −iθ(t)[Ω+ + iγph
Ω+ −Ω−

e
−iΩ+t

−
Ω− + iγph
Ω+ −Ω−

e
−iΩ−t]. (A11)

Retaining the contributions that are the most dominant in the high-
temperature limit 2πT/γph ≫ 1, Eq. (A11) can be further simplified
to

⟨⟨n2n1∣GBA(t)∣n2n1⟩⟩ = −iθ(t)e−iεn2n1 t cos(2√λphT t)e−γpht/2.
(A12)

Equation (32) implies that the Redfield propagator in the time
domain can be expressed as

⟨⟨n2n1∣GRed(t)∣n2n1⟩⟩ = e−iεn2n1 t∫ +∞

−∞

dΩ

2π
e−iΩt

Ω + i
4λphT
γph

= −iθ(t)e−iεn2n1 t exp(−4λphT
γph

t). (A13)

The approximation to the exact coherence-dephasing dynamics
embodied in Eq. (51) is obtained by inserting the short-time approx-
imation gr(t) ≈ λphTt2 to the line shape function [Eq. (A1)] into
Eq. (44).

APPENDIX B: VIBRONIC-EXCITON MODEL

We consider the model dimer, Eq. (40), in which the exci-
tons interact with an undamped vibrational mode of frequency
ω0 and HR factor S0 [we set γ0 = 0 in Eq. (42)]. We assume that
S0 ≪ 1 so that the reorganization energy S0ω0 is much smaller
than all the other energy scales in the problem (Δε, J). It is known
that the center-of-mass motion of the intrachromophore vibra-
tions, described by B+ = (b1 + b2)/√2, does not affect the single-
exciton dynamics.109,115 The energies of the exciton states, as well
as transitions between them, are then modulated by the relative
motion of intrachromophore vibrations, which is described by
B− = (b1 − b2)/√2. The single-exciton dynamics is governed by the
Hamiltonian H = HX +HB− +HX−B− , where

HX =
2

∑
k=1
∣kx⟩⎡⎢⎢⎢⎢⎣εkx + (−1)

k cos (2θ)ω0

√
S0

2
(B†
− + B−)⎤⎥⎥⎥⎥⎦⟨kx∣, (B1)

HB− = ω0B
†
−B−, (B2)

HX−B− = − sin (2θ)ω0

√
S0

2
(∣2x⟩⟨1x∣ + ∣1x⟩⟨2x∣)(B†

− + B−). (B3)

The energy of the bare exciton state k = 1, 2 is εkx =
Δε
2[1 + (−1)k√1 + tan2(2θ)]. The dynamic modulation of the

exciton energy can be taken into account exactly by transferring to
the polaron frame, H̃ = UHU†, using the polaron transformation,

U =
2

∑
k=1
∣kx⟩⟨kx∣e(−1)kSθ , Sθ = cos (2θ)

√
S0

2
(B†
− − B−). (B4)

The bare exciton energies εkx are then shifted to ε̃kx = εkx
−

S0ω0
2 cos2(2θ), while the eigenstates ∣kx, v0⟩ of the transformed

Hamiltonian H̃X + H̃B− are enumerated by the exciton number
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k and the number v0 = 0, 1, . . . of excited vibrational quanta. Inmore
detail,

∣kx, v0⟩ = ∣kx⟩ (B†
−)v0√
v0!
∣∅⟩, ε̃k,v0

= εkx −
S0ω0

2
cos2(2θ) + v0ω0.

(B5)
As we assume that S0 ≪ 1, the leading contribution (proportional to√
S0) to the transformed interaction term H̃X−B− in powers of S0 is

identical to HX−B− . To proceed further, we additionally perform the
rotating-wave approximation, which amounts to

H̃X−B− ≈ −ω0

√
S0

2
(∣2x⟩⟨1x∣B− + ∣1x⟩⟨2x∣B†

−). (B6)

We now limit ourselves to the subspace containing at most a sin-
gle vibrational excitation, where we find that H̃X−B− mixes the states∣1x, v0 = 1⟩ and ∣2x, v0 = 0⟩. In the resonant case ω0 ≈ ΔεX , these
two states are nearly degenerate, and H̃X−B− lifts this degeneracy.
While there is no degeneracy in the off-resonant case ω0 ≠ ΔεX ,
the vibronic mixing still affects the energy difference between these
two states. The energies of vibronically mixed states measured with
respect to the energy of the lowest-lying state ∣1x, v0 = 0⟩ then read
as

Ev0=1,± − Ev0=0 =
1
2
[ΔεX + ω0 ±

√(ΔεX − ω0)2 + 2S0ω2
0 sin

2(2θ)].
(B7)

The exciton populations then exhibit oscillatory features of fre-
quency,

Ωpop = Ev0=1,+ − Ev0=1,− =
√(ΔεX − ω0)2 + 2S0ω2

0 sin
2(2θ), (B8)

while the oscillations in interexciton coherence have the frequencies

Ωcoh,± = Ev0=1,± − Ev0=0. (B9)

In the nearly resonant case (ΔεX − ω0 ≈ 0), the frequencies of oscil-
latory features in exciton-population and interexciton-coherence
dynamics are given by Eqs. (52) and (53), respectively. To be con-
sistent with the simplifications made up to now, our considerations
in the off-resonant case have to keep only the lowest-order term in
small S0 so that

Ω
off
pop ≈ ∣ΔεX − ω0∣[1 + S0 sin2(2θ) ω2

0(ΔεX − ω0)2 ], (B10)

Ω
off
coh,± =

1
2
[ΔεX + ω0 ± ∣ΔεX − ω0∣ ± S0 sin2(2θ) ω2

0∣ΔεX − ω0∣ ]. (B11)
Equations (54)–(56) are then readily obtained from Eqs. (B10) and
(B11).

APPENDIX C: COMPUTATIONS ON THE SEVEN-SITE
MODEL OF THE FMO COMPLEX

The excitonic Hamiltonian HS is taken from Ref. 116, and the
values of interchromophore couplings and average chromophore
energies are summarized in Table III.

We take the structured SD of the exciton–environment inter-
action from the spreadsheet jz6b01440_si_002.xlsx appearing

TABLE III. Interchromophore couplings and average chromophore energies (in cm−1)
within the seven-site model of the FMO complex considered in Ref. 116. We subtract
the energy of the lowest-lying BChl3 (12 210 cm−1) from the diagonal entries.

BChl 1 2 3 4 5 6 7

1 200 −87.7 5.5 −5.9 6.7 −13.7 −9.9
2 320 30.8 8.2 0.7 11.8 4.3
3 0 −53.5 −2.2 −9.6 6.0
4 110 −70.7 −17.0 −63.3
5 270 81.1 −1.3
6 420 39.7
7 230

in the supplementary material of Ref. 34. More specifically, we use
the data from the sheet PBE0-FMO_subunitA-J, which reports
the total SD (comprising both the interchromophore and intra-
chromophore contributions) for individual BChls in one of the
FMO subunits. In our computations, we assume that the SDs for
all BChls are identical and thus use the arithmetic average of the
SD data for BChl1, . . ., BChl7. The SD thus obtained is plot-
ted in Fig. 14. The frequency grid is equidistant, with spacing
Δω = 0.53 cm−1, which we find sufficiently fine for the numerical
integration of Eq. (33) using the ordinary trapezoidal rule. The SD is
Ohmic, and we obtain its linear behavior around ω = 0 by fitting
the points (0, 0), (Δω, J (Δω)), . . . , (5Δω, J (5Δω)) to a straight
line. As the SD is available up to ωavail = 2650.8 cm−1, our numer-
ical computations use ωmax = 2ωavail and assume J (ω) = 0 for
ωavail < ω < ωmax.

While we take the excitonic and the exciton–environment
interaction parameters from different studies and different (seven-
site116 and eight-site34) FMO models, we emphasize that our main
goal is to examine the applicability of our approximate methods to
a relatively realistic model of a multichromophoric complex. The
results in Figs. 12 and 13 indeed suggest that our approximate
methods can provide decent results on exciton dynamics in realistic
models.

FIG. 14. Spectral density of the exciton–environment interaction used to obtain
the results presented in Figs. 12 and 13. The SD is extracted from the data
accompanying Ref. 34.
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Vertex corrections to conductivity in the Holstein model: A numerical-analytical study
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The optical-conductivity profile carries information on electronic dynamics in interacting quantum many-body
systems. Its computation is a formidable task that is usually approached by invoking the single-particle (bubble)
approximation and neglecting vertex corrections, the importance of which remains elusive even in model
Hamiltonian calculations. Here, we combine analytical arguments with our recent breakthroughs in numerically
exact and approximate calculations of finite-temperature real-time correlation functions to thoroughly assess the
importance of vertex corrections in the one-dimensional Holstein polaron model. We find, both analytically
and numerically, vanishing vertex corrections to optical conductivity in the limits of zero electron-phonon
interaction, zero electronic bandwidth, and infinite temperature. Furthermore, our numerical results show that
vertex corrections to the electron mobility also vanish in many parameter regimes between these limits. In some
of these cases, the vertex corrections still introduce important qualitative changes to the optical-conductivity
profile in comparison to the bubble approximation even though the self-energy remains approximately local.
We trace these changes back to the bubble approximation not fully capturing a time-limited slowdown of the
electron on intermediate timescales between ballistic and diffusive transport. We find that the vertex corrections
are overall most pronounced for intermediate electron-phonon interaction and may increase or decrease the
bubble-approximation mobility depending on the values of the model parameters.

DOI: 10.1103/PhysRevB.109.214312

I. INTRODUCTION

Charge carrier transport in semiconducting materials is the
key physical process behind the operation of many semi-
conductor electronic and optoelectronic devices [1,2]. Under
typical operating conditions, the carrier density is low, and
their transport is limited by the interaction with phonons
[3,4]. Quantifying the ability of a carrier to cover long dis-
tances, phonon-limited electron (dc) mobility is the primary
factor determining device performance. On the other hand,
the frequency profile of the dynamical (ac) mobility, which
is proportional to the optical conductivity, carries information
on charge dynamics on various time and length scales, thus
providing fundamental insights into the mechanisms of carrier
transport [5–7]. While the dc and ac mobility are nowadays
experimentally accessible [5], reliable theoretical results for
these quantities are rather scarce.

Within the linear-response theory [8], transport properties
are encoded in the two-particle current-current correlation
function, which is, however, seldom calculated exactly. One
usually calculates it in the so-called independent-particle
(single-particle or bubble) approximation [9,10], which ex-
presses it entirely in terms of single-particle quantities (the
so-called bubble term), and neglects two-particle correlations
(commonly referred to as vertex corrections). The bubble term

*Contact author: veljko.jankovic@ipb.ac.rs
†Contact author: petar.mitric@ipb.ac.rs
‡Contact author: darko.tanaskovic@ipb.ac.rs
§Contact author: nenad.vukmirovic@ipb.ac.rs

is, in principle, much easier to evaluate than the vertex correc-
tions, and the bubble approximation is commonly employed
both in first-principles studies of transport properties [9,11,12]
and in many model Hamiltonian calculations [13–17].

Understanding how the vertex corrections influence trans-
port properties is an arduous task whose solution has been
attempted in just a few instances. Historically, the first in-
stance is impurity scattering in metals, where the Green’s
functions in the Born approximation are used for the cal-
culation of the ladder diagrams, whose contribution to the
dc conductivity is comparable to the bubble term [10,18].
These diagrams are responsible for the dominant contribu-
tion to dc resistivity from the large-angle scattering within
the semiclassical Boltzmann approach in the presence of di-
luted impurities. Another well-studied case is the disorder
scattering in two dimensions, where the maximally crossed
diagrams give a divergent contribution to resistivity at low
temperatures even in the presence of weak disorder [19,20].
Concerning the electron-phonon models, the contribution of
vertex corrections to conductivity [21–25] has been studied so
far only for weak interaction. In classic papers from the 1960s,
vertex corrections to conductivity stemming from scattering
on acoustic phonons were calculated by summing the ladder
diagrams [25]. Within the Fröhlich model, vertex corrections
originating from scattering on optical phonons were shown
to be negligible at low temperatures and for weak electron-
phonon coupling [24,25]. It is a challenge to determine the
importance of vertex corrections outside the weak-coupling
limit, and, to the best of our knowledge, this has not been done
before either for the Fröhlich model or the Holstein model, on
which we focus in this study.

2469-9950/2024/109(21)/214312(23) 214312-1 ©2024 American Physical Society
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Transport properties of interacting electron-phonon models
have been commonly studied either by approximately calcu-
lating the current-current correlation function [26–34] or by
starting from (possibly approximate) single-particle spectral
functions [15,17,35–39] and using the bubble approximation
[13–17]. However, elucidating the role of vertex corrections
requires genuine numerically exact approaches that provide
results on both single-particle and two-particle correlation
functions at finite temperatures. While imaginary-axis quan-
tum Monte Carlo (QMC) approaches are formulated directly
in the thermodynamic limit [40–43], the uncertainties associ-
ated with the procedure of numerical analytical continuation
[44–48] cast doubts on the reliability of real-axis results thus
obtained. It is therefore of paramount importance that nu-
merically exact methods used to study vertex corrections be
formulated directly on the real-time or real-frequency axis
[49]. Calculations of the dc mobility are particularly chal-
lenging for such methods because of finite-size effects (e.g.,
Lanczos diagonalization-based methods [50–52]) or maxi-
mum simulation time that is not sufficiently long to fully
capture the carrier’s diffusive motion (e.g., real-time QMC
[53] or density matrix renormalization group [54,55]).

There have been three very recent advances that facilitate
our present study. First, we developed the numerically exact
momentum-space hierarchical equations of motion (HEOM)
method for calculating both single- and two-particle corre-
lation functions [56,57]. This method provides dc mobilities
whose uncertainties due to finite-size effects are controllable
and can be suppressed in a wide range of model parame-
ters. Second, we developed the real-axis path integral QMC
method, which can provide a real-time current-current cor-
relation function for weak and intermediate electron-phonon
coupling at elevated temperatures [53,56]. For lower temper-
atures or stronger coupling, valuable information can still be
obtained for short time correlations, before the sign problem
sets in. Finally, we also have at our disposal the dynamical
mean-field theory (DMFT), a computationally inexpensive
method producing close-to-exact results for the spectral func-
tions of the Holstein polaron in the thermodynamic limit, even
in one dimension, in the whole parameter space [39]. This can
be used for reliable calculations of conductivity without vertex
corrections, as all the results to be presented demonstrate
that the DMFT ac mobility practically coincides with the one
calculated in the bubble approximation within the HEOM
method.

In this study, we first develop analytical arguments demon-
strating that the vertex corrections vanish in the limits of
vanishing electron-phonon interaction, vanishing electronic
bandwidth (the atomic limit), and infinite temperature. We
then proceed to numerically analyze their importance in pa-
rameter regimes between these limits for three values of
phonon energy (intermediate, low, and high with respect to the
bare electron’s kinetic energy) and at temperatures that are not
too low for HEOM (to minimize finite-size effects) and QMC
(to avoid severe sign problem) calculations. For intermediate
phonon frequency and moderate electron-phonon coupling,
the numerically exact dynamical mobility assumes a two-peak
structure: the Drude-like peak is accompanied by another
peak at finite frequency. At higher temperatures, this peak is
centered away from ω0, and it can be ascribed to a temporally

limited slowdown of the carrier during the crossover between
the ballistic and diffusive transport regimes. This slowdown
is not fully captured by the bubble approximation, and the
corresponding dynamical-mobility profile features only the
Drude-like peak. On the other hand, at low temperatures,
the finite-frequency peak is positioned exactly at ω0, and it
is recovered also within the bubble approximation because
it corresponds to the optical transitions between the quasi-
particle and the satellite peaks in a single-particle spectral
function. In all these cases, the numerically exact dc mobility
is somewhat larger than that in the bubble approximation. For
low phonon frequency and moderate interaction, we find that
the dynamical-mobility profile bears qualitative similarities
to that for intermediate phonon frequency. Interestingly, the
peak at zero frequency persists, and the numerically exact dc
mobility is somewhat smaller than, yet comparable to, the one
in the bubble approximation. Only as ω0 is further decreased is
the dc mobility expected to decrease to the values much below
the bubble-approximation result. For high phonon frequency,
available HEOM results do not indicate a large discrepancy in
comparison to DMFT.

The paper is structured as follows. Section II provides
an overview of the Holstein model and methods we use to
study its transport properties. Section III exposes the readers
to the analytical results and illustrative numerical examples
demonstrating vanishing vertex corrections in the above-listed
limiting cases. The in-depth analytical arguments are deferred
to Appendixes B–D. We analyze our numerical results and
present our main findings on the importance of vertex correc-
tions in Sec. IV. Section V summarizes our results.

II. MODEL AND METHODS

A. Formalism: Holstein model and its transport properties

We examine the Holstein model on a one-dimensional (1D)
lattice composed of N sites with periodic boundary condi-
tions. In momentum space, its Hamiltonian reads

H = He + Hph + He-ph

=
∑

k

εkc
†
k
ck + ω0

∑

q

b†
qbq +

g
√

N

∑

kq

c
†
k+q

ck (bq + b
†
−q ).

(1)

The electronic and phononic wave numbers k and q may
assume any of the N allowed values 2πn/N (n is an integer)
in the first Brillouin zone (−π, π ]. The free-electron Hamil-
tonian He describes electrons in a band whose dispersion
εk = −2t0 cos k originates from the nearest-neighbor hopping
of amplitude t0. The operator c

†
k

(ck) creates (annihilates) an
electron in the state with wave number k. The free-phonon
Hamiltonian Hph describes dispersionless optical phonons of
frequency ω0, with b†

q (bq) creating (annihilating) a phonon
of momentum q. The interaction term He-ph is characterized
by its strength g. In the following, we set the lattice constant
al , the elementary charge e0, and the physical constants h̄ and
kB to unity. As a convenient measure of the electron-phonon
interaction strength, we use the dimensionless parameter

λ =
g2

2t0ω0
. (2)
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We consider the dynamics of a single spinless electron in
the band, which is determined by the current-current correla-
tion function (normalized to the electron number)

C j j (t ) =
〈 j(t ) j(0)〉K

〈Ne〉K

. (3)

In Eq. (3), Ne =
∑

k c
†
k
ck denotes the electron-number op-

erator, and the expectation values are evaluated in the
grand-canonical ensemble defined by temperature T = β−1

and chemical potential µF (K = H − µFNe),

〈A〉K =
Tr{Ae−βK}

Tr e−βK
. (4)

The current operator reads

j =
∑

k

jkc
†
k
ck, (5)

with

jk = −2t0 sin k. (6)

We assume that µF lies far below the bottom of the band
(formally, µF → −∞), i.e., the electron density is low. A
reasoning analogous to that in Refs. [37,39,58] shows that
the dominant contributions to the expectation values entering
Eq. (3) as µF → −∞ read

〈 j(t ) j(0)〉K = eβµF
Tr1e{eiHt je−iHt je−βH }

Zph
, (7)

〈Ne〉K = eβµF
Z

Zph
, (8)

where Zph = Trph e−βHph denotes the free-phonon partition
sum, the trace Tr1e is taken over states containing a single
electron (and an arbitrary number of phonons), while

Z = Tr1ee−βH (9)

is the corresponding partition sum. Equation (3) is then recast
as

C j j (t ) = 〈 j(t ) j(0)〉H,1 =
Tr1e{eiHt je−iHt je−βH }

Z
. (10)

The real part of the frequency-dependent mobility (for ω �= 0)
is [10]

Re µ(ω) =
1 − e−βω

2ω

∫ +∞

−∞
dt eiωtC j j (t ), (11)

and the corresponding dc mobility is

µdc =
1

T

∫ +∞

0
dt Re C j j (t )

= −2
∫ +∞

0
dt t Im C j j (t ). (12)

While the dynamical-mobility profile encodes information on
carrier dynamics on all time and length scales, a more intuitive
understanding of carrier transport can be gained from the
evolution of the carrier’s spread,

�x(t ) =
√

〈[x(t ) − x(0)]2〉H,1, (13)

where x is the carrier position operator. The growth rate of the
spread is determined by the time-dependent diffusion constant

D(t ) =
1

2

d

dt
[�x(t )]2 =

∫ t

0
ds Re C j j (s), (14)

which varies from 0 at short times to its long-time limit
D∞, for which the Einstein relation D∞ = µdcT holds. The
carrier’s dynamics then changes from short-time ballistic dy-
namics, when �x(t ) ∝ t , to long-time diffusive dynamics,
when �x(t ) ∝

√
t .

B. Single-particle (bubble) approximation

C j j (t ) is a four-point (two-particle) correlation function,
which can be expressed as [combine Eqs. (3) and (5)]

C j j (t ) =
∑

k′k jk′ jk〈c†
k′ (t )ck′ (t )c†

k
(0)ck (0)〉K

〈Ne〉K

. (15)

Its evaluation in the most general many-body setup is a
formidable task. This remains true even when we limit our-
selves to a single electron in the system [Eq. (10)], which
represents an important case that has been successfully solved
only very recently using the HEOM formalism [57,59].

Quite generally [60], the two-particle correlation function
in Eq. (15) can be formally decomposed into the sum of
products of two single-particle correlation functions plus a
remainder containing genuine two-particle correlations (de-
noted as �2):

C j j (t ) =
1

〈Ne〉K

∑

k′k

jk′ jk{〈c†
k′ (t )ck′ (t )〉K〈c†

k
(0)ck (0)〉K

+ δk′k〈c†
k
(t )ck (0)〉K〈ck (t )c†

k
(0)〉K

+ �2[〈c†
k′ (t )ck′ (t )c†

k
(0)ck (0)〉K ]}. (16)

The Kronecker δ in the second term on the right-hand side
of Eq. (16) comes from momentum conservation. The first
term on the right-hand side of Eq. (16) is O(eβµF ), and is
thus negligible in the µF → −∞ limit with respect to the
remaining two terms, which are both O(1). The single-particle
(or bubble) approximation additionally neglects the �2 term,
so that the current-current correlation function in this approx-
imation reads

Cbbl
j j (t ) = −

1

〈Ne〉K

∑

k

j2
kG

>(k, t )G<(k, t )∗. (17)

Here, the greater and lesser single-particle Green’s functions
read

G>(k, t ) = −i〈ck (t )c†
k
(0)〉K

= −i

∫ +∞

−∞
dω e−iωt A(k, ω)

1 + e−βω
, (18)

G<(k, t ) = i〈c†
k
(0)ck (t )〉K

= i

∫ +∞

−∞
dω e−iωt A(k, ω)

eβω + 1
. (19)

The first equalities in Eqs. (18) and (19) are the textbook
definitions, while the second equalities use the fluctuation-
dissipation theorem [18] to express G>/< in terms of the
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spectral function A(k, ω), which is normalized so that∫ +∞
−∞ dω A(k, ω) = 1. In the limit µF → −∞, we can ensure

that the spectral weight occurs at finite frequencies by defining
A(k, ω) = A(k, ω − µF ); see the supplemental material of
Ref. [39]. Equations (18) and (19) then become (we exploit
µF → −∞)

G>(k, t ) = −ieiµFt

∫ +∞

−∞
dω e−iωt A(k, ω), (20)

G<(k, t ) = ieβµF eiµFt

∫ +∞

−∞
dω e−iωt e−βωA(k, ω). (21)

Remembering that 〈Ne〉K = −i
∑

k G
<(k, t = 0), and per-

forming the Fourier transformation of Eq. (17), we obtain the
well-known results [10,13,17] for the dynamical mobility,

Re µbbl(ω) = 4πt2
0

1 − e−βω

ω

×
∑

k sin2 k
∫ +∞
−∞ dν e−βνA(k, ω + ν)A(k, ν)

∑
k

∫ +∞
−∞ dν e−βνA(k, ν)

,

(22)

and the dc mobility

µbbl
dc =

4πt2
0

T

∑
k sin2 k

∫ +∞
−∞ dν e−βνA(k, ν)2

∑
k

∫ +∞
−∞ dν e−βνA(k, ν)

(23)

in the bubble approximation. The computation of transport
properties in the bubble approximation thus reduces to the
computation of the carrier’s spectral function A(k, ω).

C. Hierarchical equations of motion

The HEOM method is a numerically exact density-matrix
technique providing access to the dynamics of the system of
interest (here, electrons) that is linearly coupled to a collection
of harmonic oscillators (here, phonons) [61,62]. The method
has been recently extended to computations of various real-
time finite-temperature correlation functions of the operators
acting on the system of interest [31,59,63–65]. The method is
ultimately based on the formally exact results of the Feynman-
Vernon influence functional theory [66] (though the details
do depend on the correlation function). In Appendix A, we
summarize such formally exact results for the current-current
correlation function [Eq. (10)] [57] and the Green’s function
[Eqs. (20) and (21)] [56] of the Holstein model. These re-
sults can serve as a convenient starting point for analytical
studies in various limits; see Sec. III. The actual computa-
tions are, however, performed numerically by recasting the
formally exact result as a hierarchy of dynamical equations for
the correlation function we consider (the hierarchy root) and
auxiliary quantities needed to fully take the interactions into
account (deeper hierarchy layers). The hierarchy is, in princi-
ple, infinite, and it has to be truncated at a certain maximum
depth D.

The applications of the HEOM method to the Holstein
model featuring a single oscillator per site [67] have been
hindered by the numerical instabilities of the truncated hier-
archy [68,69], which ultimately stem from the finite number
of oscillators on a finite lattice. Within our recently developed
momentum-space HEOM [56], we have resolved this issue

in a wide range of the model’s parameter space by devising
a physically motivated hierarchy closing [57]. At the same
time, we have lowered the computational requirements with
respect to the commonly used real-space HEOM by exploit-
ing the model’s translational symmetry. We summarize the
momentum-space HEOM for the current-current correlation
function [Eq. (10)] [57] and the Green’s function [Eqs. (20)
and (21)] [56] in Sec. SI of Ref. [70].

Numerical uncertainties in HEOM results can be due to
the finite chain length N , finite maximum depth D, and fi-
nite maximum propagation time tmax. We found [57] that
finite-size effects can be controlled by following the relative
accuracy with which the optical sum rule

∫ +∞
−∞ dω Re µ(ω) =

−π〈He〉H,1 is satisfied. We concluded [57] that the con-
vergence with respect to D can be enhanced by taking
the arithmetic average of HEOM results for two consecu-
tive depths D − 1 and D (provided that D is sufficiently
large, so that the relative accuracies with which the opti-
cal sum rule is satisfied at the two depths almost coincide).
The time tmax should be sufficiently long, so that the
integrals T −1

∫ tmax

0 ds Re C j j (s) and −2
∫ tmax

0 ds s Im C j j (s),
whose tmax → +∞ limit defines µdc [Eq. (12)], have entered
into saturation as a function of tmax. In practice, we always
choose N, D, and tmax that are sufficiently large so that (i) the
optical sum rule is satisfied with relative accuracy � 10−4, and
(ii) the relative difference between the values of µdc obtained
using the two expressions in Eq. (12) is � 0.1. Based on (ii),
we estimate that the relative uncertainty of HEOM results for
the dc mobility is � 10%.

For stronger g or at higher T , we generally need smaller N ,
shorter tmax, and larger D. However, it is difficult to give an a

priori estimate of N, D, and tmax based on the values of model
parameters. As an illustration, we typically use N ∼ 100, D =
2 − 3, and ω0tmax � 500 for small g and T , N ∼ 10, D ∼ 7,

and ω0tmax ≃ 300 at intermediate g and T , and N � 7, D �

12, and ω0tmax � 100 for large g and T . The HEOM results to
be presented are publicly available as a data set [71].

D. Real-time quantum Monte Carlo

We also employ path-integral QMC to evaluate the numeri-
cally exact current-current correlation function C j j (t ), and the
same quantity within the bubble approximation Cbbl

j j (t ). This
method can produce reliable results for imaginary times and
for real times that are not too long. For longer real times, the
statistical error of the Monte Carlo procedure becomes very
large due to the dynamical sign problem, and the results could
not be obtained. The results obtained using QMC are used
to cross-check the results obtained using HEOM, for model
parameters and times when both methods give results, as well
as to complement HEOM results for some cases in which the
results could not be obtained using HEOM.

The path-integral QMC method used in this work is in
many aspects the same as the methods that we employed in
Refs. [53,56]. It is based on a path-integral representation of
the correlation function, where the Suzuki-Trotter expansion
is used to decompose the (real- or imaginary-time) evolution
operator (eiHt or e−βH ) into evolution operators over small
time intervals. Unlike in Ref. [53], where the decomposition
is performed to the operators e−βH , eiHt , and e−iHt , here we
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apply it to the operators e−(β−it )H and e−iHt , which allows
us to perform either real- or imaginary-time calculations us-
ing the same computational code. As in Ref. [53], in the
path-integral representation, we make use of either the mo-
mentum or site representation for electronic single-particle
states. An appropriate choice of the representation reduces
the sign problem and enables the calculations for longer real
time. For weaker electron-phonon interaction, the momentum
representation of electronic states is more convenient in that
respect, while the site representation is more convenient for
stronger electron-phonon interaction.

We use QMC to calculate the quantities C j j (t ) [as defined
in Eq. (3)], G>(k, t ) [as defined in Eq. (18)], G<(k, t ) [see
Eq. (19)], and 〈Ne〉K [see Eq. (8)]. With these quantities at
hand, we can then also evaluate Cbbl

j j (t ) using Eq. (17).

E. Dynamical mean-field theory

The DMFT is an approximate yet nonperturbative method
that can treat the models with local interactions [72]. The
DMFT establishes a mapping between the lattice problem and
the impurity problem, supplemented with a self-consistency
condition. For the Holstein model, the polaron impurity
model can be efficiently solved in a form of the contin-
ued fraction expansion [35]. While this mapping is exact in
the infinite-dimensional limit, it remains applicable in the
finite-dimensional case as well, yielding approximate results
characterized by momentum-independent self-energy. It was
recently shown that this method yields remarkably accurate
single-particle properties of the Holstein polaron, regardless
of the dimensionality of the system, while demanding min-
imal computational resources [39]. Therefore, it can also be
used for the calculation of the optical conductivity within the
bubble approximation.

III. ANALYTICAL INSIGHTS INTO THE LIMITS WITH

VANISHING VERTEX CORRECTIONS

Using different analytical arguments, this section identi-
fies the limits in which vertex corrections to conductivity
vanish. The main analytical results accompanied with nu-
merical examples are briefly summarized in Secs. III A–III C,
while the corresponding technical details are provided in
Appendixes B–D.

A. Limit of vanishing electron-phonon interaction (g → 0)

In Appendix B, we first demonstrate that the lowest-order
terms in the expansions of C j j (t ) [Eq. (10)] and Cbbl

j j (t )
[Eq. (17)] in powers of small g are identical. We then use these
terms to partially resum the perturbation series for C

(bbl)
j j (t )

in the g → 0 limit by employing the second-order cumu-
lant expansion approach [17,37,73], which becomes exact
in this limit. The final expressions needed to evaluate the
weak-coupling second-order cumulant result are provided in
Eqs. (B17) and (B19)–(B23).

Figures 1(a) and 1(b) present a numerical example sup-
porting our analytical conclusion that the vertex corrections
vanish in the g → 0 limit. We compare C j j (t ) computed
using HEOM, DMFT (in the thermodynamic limit), and
the weak-coupling second-order cumulant expansion (label

FIG. 1. Time dependence of the (a) real and (b) imaginary part
of C j j computed using HEOM (solid line), DMFT (dashed line), and
Eqs. (B17) and (B19) (dash-dotted line, label “wcl + CE2”). HEOM
computations use N = 160 and D = 2, wcl + CE2 computations use
N = 1009, whereas the DMFT results are in the thermodynamic
limit (N → ∞). The inset of panel (b) shows the dynamical mobility
obtained using the above approaches. The inset of panel (a) com-
pares the DMFT result for N → ∞ with the HEOM and finite-chain
DMFT results, both of which use N = 160. The model parameters
are t0 = 1, ω0 = 1, λ = 1/100, and T = 1.

“wcl + CE2,” obtained on a long but finite chain). While the
dynamics predicted by the cumulant method almost perfectly
agrees with the DMFT result, a small hump in the HEOM
result for Re C j j (t ) appearing around t0t ∼ 150 suggests that
it exhibits weak finite-size effects. This is further corroborated
by the inset of Fig. 1(a), which shows that HEOM and DMFT
results on a finite chain (as implemented in Ref. [39]) ex-
hibit qualitatively (and also quantitatively) similar deviations
from the infinite-chain DMFT result for 150 < t0t < 200. The
HEOM, DMFT (N → ∞), and cumulant dynamical-mobility
profiles virtually coincide and assume a Drude-like shape; see
the inset of Fig. 1(b).

B. Limit of vanishing electronic coupling (t0 → 0)

One can demonstrate that the vertex corrections vanish
in the limit t0 → 0 by establishing the equality of the first
nonzero terms in expansions of C j j (t ) and Cbbl

j j (t ) in powers
of small t0. Since the current operator itself is linear in t0
[Eqs. (5) and (6)], the lowest-order term in expansions of both
C j j (t ) and Cbbl

j j (t ) as t0 → 0 is of the order of t2
0 . As a starting

point, one can again take the formally exact expressions from
which the HEOM are derived (Appendix A), in which all
operators e−αHe (α = β,±it ) are replaced by the unit operator.
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The procedure summarized in Sec. SII of Ref. [70] leads to
[nph = (eβω0 − 1)−1]

C j j (t ) = Cbbl
j j (t )

≈ 2t2
0 exp

{
− 2

g2

ω2
0

[(2nph + 1)

− (nph + 1)e−iω0t − npheiω0t ]

}
. (24)

While this proves that the vertex corrections vanish in the
limit t0 → 0, the expression in Eq. (24) is periodic in real
time with period 2π/ω0. Thus, the current-current correlation
function does not decay to zero as real time goes to infinity.
Hence, one would obtain infinite dc mobility by integrating
Eq. (24) over t . This issue has been recognized in the literature
[74–77]. To circumvent it, we find it convenient to perform
the polaronic (Lang-Firsov) unitary transformation [78] of the
Holstein Hamiltonian and evaluate the current-current correla-
tion function in the t0 → 0 limit in the polaronic frame. Using
the Matsubara Green’s function formalism [10], we eventually
obtain an expression for C j j (t ) that decays as t−3 at long times
t , which is sufficiently fast to render the time integral of C j j (t ),
and thus the dc mobility, finite. While we defer all the details
to Appendix C, here we only present the final result for the
current-current correlation function,

C j j (t ) =Cbbl
j j (t )

≈ 2t2
0

β

t (β − it )
√

c0

I1[−2(β − it )
√

c0]J1(2t
√

c0)

I1(−2β
√

c0)

× exp

{
− 2

g2

ω2
0

[2nph + 1 − (nph + 1)e−iω0t

− npheiω0t ]

}
, (25)

where c0 is defined in Eq. (C35), while I1 (J1) is the (modified)
Bessel function of the first kind of order 1.

In Figs. 2(a)–2(c) we present a numerical example that
supports our analytical proof that vertex corrections vanish
in the limit t0 → 0. We present ReC j j (t ) for g = 1, ω0 = 1,
T = 1, and different values of t0 calculated using QMC, QMC
within the bubble approximation, and using the analytical
formula given in Eq. (25). The results clearly demonstrate
that the analytical formula and the bubble-approximation re-
sults converge towards numerically exact QMC results as t0
decreases towards zero.

C. Limit of infinite temperature (β → 0)

In the limit of infinite temperature, it is permissible to
treat phonons as classical harmonic oscillators. Furthermore,
at sufficiently high temperatures, single-particle correlation
functions become local (Fig. 3 provides illustrative examples),
and their dynamics becomes primarily determined by local
(on-site) processes. In Appendix D, we derive that the exact
and bubble-approximation correlation functions are identical
in the β → 0 limit:

C j j (t ) = Cbbl
j j (t ) ≈ 2t2

0 e−σ 2t2−iσ 2βt . (26)

FIG. 2. (a)–(c) Real part of the real-time current-current corre-
lation function for the Holstein model for different values of the
parameter t0. Other parameters are set to g = 1, ω0 = 1, T = 1.
The results labeled as “QMC” were obtained using QMC simu-
lations, the results labeled as “bubble QMC” were obtained from
QMC simulations within the bubble approximation, while the results
labeled as “analytic” were obtained using Eq. (25).

Here,

σ 2 = g2 coth(βω0/2) ≈ 2g2/(βω0) (27)

is the variance of the thermal fluctuations in the on-site energy

ε = g(b† + b) evaluated in the equilibrium state e
−βHph

Zph
of free

phonons.
We support these analytical results with a numerical

example, obtained from QMC simulations, presented in
Figs. 3(a1)–3(c2). The results presented in Figs. 3(a1)–3(c1)
show that the bubble-approximation result and the analytical
result given by Eq. (26) converge towards the numerically
exact result as T increases. In Figs. 3(a2)–3(c2) we present
the absolute value of the quantity snm(t ) = 〈cn(t )c†

m〉K , where
cn (c†

m) is the annihilation (creation) operator for an electron at
site n (m). This quantity was obtained from Fourier transform
to real space of the quantity G>(k, t ) [see Eq. (18)] and can be

214312-6



VERTEX CORRECTIONS TO CONDUCTIVITY IN THE … PHYSICAL REVIEW B 109, 214312 (2024)

FIG. 3. (a1)–(c1) Real part of the real-time current-current cor-
relation function for the Holstein model for different values of the
temperature T . Other parameters are set to g = 1, ω0 = 1, t0 = 1.
The results labeled as “QMC” were obtained using QMC simu-
lations, the results labeled as “QMC bubble” were obtained from
QMC simulations within the bubble approximation, while the results
labeled as “analytic” were obtained using Eq. (26). (a2)–(c2) Time
dependence of the absolute value of the quantity snm(t ) (defined in
the text) that describes correlations between annihilation and creation
operators at lattice sites n and m. The results are presented for the
same model parameters as in (a1)–(c1).

used as a measure of spatial correlations in the system. It can
be seen from Figs. 3(a2)–3(c2) that at higher temperatures, the
spatial correlations for n − m �= 0 become smaller and even-
tually practically negligible. This confirms the assumption of
locality of the correlations used in our analytical derivation.
One should nevertheless note that unrealistically high tem-
peratures (which would be certainly above the melting point
in a real material) are needed for full vanishing of spatial
correlations.

IV. IMPORTANCE OF VERTEX CORRECTIONS:

ANALYSIS OF NUMERICAL RESULTS

Having identified the limiting cases in which the ver-
tex corrections vanish, here we combine numerical results
emerging from different methods at our disposal to an-
alyze the importance of vertex corrections in parameter
regimes between these limits. A detailed summary of the
parameter regimes examined is provided in Table S1 of
Ref. [70].

The numerically exact dynamics on short time scales can
be computed using QMC in essentially any parameter regime.
On the other hand, the crossover from the short-time ballistic
to the long-time diffusive dynamics, and thus the dynamical-
mobility profile down to ω = 0, can be captured using the
HEOM method, which in practice works best when the

hierarchy closing strategy developed in Ref. [57] is effective.
This is the case for not too strong interaction (λ � 1), at
moderate temperatures (1 � T/t0 � 10), and for ω0/t0 � 2.
The results of the two numerically exact methods (HEOM
and QMC) will be compared to the results stemming from
the bubble approximation, which, in principle, needs nu-
merically exact single-particle properties. While these are
available from appropriate HEOM-method computations [56],
we have recently demonstrated that the DMFT, which is
formulated directly in the thermodynamic limit, provides
close-to-exact single-particle properties of the Holstein model
in the whole parameter space at a much smaller computational
cost [39]. The very good agreement between HEOM and
DMFT spectral functions translates into the very good agree-
ment between the current-current correlation functions and
dynamical-mobility profiles computed using HEOM (within
bubble approximation) and DMFT, as shown in Figs. 4(a)–
4(c) for different phonon frequencies ω0. We have checked
that a similar level of agreement persists for all parameters
where HEOM bubble computations are performed. We thus
conclude that the DMFT results can be practically taken as
the exact bubble-approximation results, which are available in
the whole parameter space.

A. Comparison of typical features of numerically exact and

bubble-approximation results in time and frequency domains

In Figs. 5(a1)–5(c3) we compare the numerically exact and
bubble-approximation dynamics of Re C j j , the carrier spread
�x, and the diffusion constant D, as well as the correspond-
ing dynamical-mobility profiles. We perform the comparison
in three representative cases spanning the range from slow-
phonon [ω0/t0 = 1/3 in (b1)–(b3)] to intermediate-phonon
[ω0/t0 = 1 in (a1)–(a3)] and fast-phonon [ω0/t0 = 3 in (c1)–
(c3)] regimes. We choose the intermediate electron-phonon
interaction (λ = 1/2), which unveils the most commonly
observed differences between the numerically exact and
bubble-approximation results. Figures S1–S3 of Ref. [70]
summarize similar comparisons in other parameter regimes
examined (see also Table S1).

In Appendix A, we prove that the exact and bubble-
approximation current-current correlation functions are iden-
tical at t = 0 in all parameter regimes. Figures 5(a1)–5(c1)
additionally demonstrate that their short-time dynamics are
also identical. The very good agreement between the two
dynamics persists beyond the very initial time scales, when
the dynamics is ballistic so that C j j,bal(t ) = C j j (0), �xbal(t ) =√

C j j (0)t , and Dbal(t ) = C j j (0)t . Figures 5(a2)–5(c2) suggest
that the numerically exact and bubble-approximation dynam-
ics closely follow one another as long as �x(t ) � 1, i.e., the
carrier spread is smaller than the lattice constant. In parameter
regimes analyzed in Fig. 5, the agreement is good for t0t � 1,
which is the timescale characteristic for the transfer of a free
electron between neighboring sites. This translates into the
very good agreement between the two dynamical-mobility
profiles in the high-frequency region ω/t0 � 2π ; see the insets
of Figs. 5(a1)–5(c1).

On intermediate time scales, the numerically exact results
in Figs. 5(a) and 5(b) predict a time-limited slowdown of
the carrier [negative values of Re C j j (t ), decrease of D(t )]
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FIG. 4. Time dependence of Re C j j computed within the bubble approximation using numerically exact HEOM spectral functions (solid
blue lines) and approximate DMFT spectral functions (dashed brown lines) for t0 = 1 and (a) ω0 = 1, T = 1; (b) ω0 = 1/3, T = 1; (c) ω0 =
3, T = 5. The electron-phonon interaction strength in all three panels is λ = 1/2. The insets display the corresponding dynamical-mobility
profiles computed within the bubble approximation using HEOM and DMFT spectral functions. HEOM spectral functions are computed using
(a) N = 10, D = 6; (b) N = 10, D = 8; and (c) N = 7, D = 12.

that is followed by a steady increase in the diffusion con-
stant until it saturates to its long-time limit. On the other
hand, in the regimes analyzed here, the results in the bub-
ble approximation do not display any transient slowdown
of the carrier, and the diffusion constant is a monotonically
increasing function of time. As a consequence, the dynamical-
mobility profile in the bubble approximation has only the

Drude-like peak centered at ω = 0 (qualitatively similar to
that in the g → 0 limit analyzed in Sec. III A), while the
numerically exact dynamical-mobility profile additionally de-
velops a finite-frequency peak. In the regimes analyzed here,
the numerically exact dynamical-mobility profile still has
a local maximum at ω = 0. Namely, rewriting Eq. (11) as
Re µ(ω) = 2 tanh(βω/2)

ω

∫ +∞
0 dt cos(ωt )Re C j j (t ), one realizes

FIG. 5. Comparison of numerically exact (labels “HEOM” and “QMC”) and bubble-approximation (label “DMFT”) results for time
evolution of (a1)–(c1) Re C j j , (a2)–(c2) �x, and (a3)–(c3) D(t ). In all panels, t0 = 1, λ = 1/2, while the remaining model parameters are
(a1)–(a3) ω0 = 1, T = 1; (b1)–(b3) ω0 = 1/3, T = 1; and (c1)–(c3) ω0 = 3, T = 5. Vertical dotted lines indicate time t = 1. The insets
of (a1)–(c1) compare dynamical-mobility profiles in the numerically exact approach and in the bubble approximation. Dotted lines in
(a2)–(c2) show the carrier spread in the short-time ballistic [�xbal(t ) =

√
C j j (0)t] and long-time diffusive [�xdiff (t ) =

√
2µHEOM

dc T t] regimes,
while double dash-dotted lines show �x(t ) = 1. The inset of panel (b3) shows the fit of DHEOM(t ) to the exponentially decaying function
f (t ) = a0 − a1e−t/a2 (magenta dots) for 50 � t � 300. Fitting parameters are a0 = 0.895, a1 = 0.251, a2 = 97.1. HEOM results in (a1)–(a3)
are obtained using N = 13, D = 6, while the results displayed in (b1)–(b3) [(c1)–(c3)] are obtained by performing the arithmetic average of
HEOM results for N = 10, D = 7 and N = 10, D = 8 [N = 7, D = 11 and N = 7, D = 12]. QMC results are displayed with the associated
statistical error bars and are obtained using N = 10 in (a1), N = 7 in (b1), and N = 10 in (c1).
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that ω = 0 is a stationary point of the dynamical-mobility
profile [Re µ(ω) ∝ ω2 as ω → 0]. The convexity of Re µ(ω)
around ω = 0 then follows from the sign of the corresponding
second derivative that reads [79]

(
d2

dω2
Re µ(ω)

)

ω=0

= −β

{
D∞β2

6
+ 2

∫ +∞

0
dt t[D∞ − D(t )]

}
. (28)

In Figs. 5(a) and 5(b), the function D∞ − D(t ) is non-negative
for t � 0, and ω = 0 is a local maximum. In general, the
sign of D∞ − D(t ) can change with t , and direct analyt-
ical arguments based on Eq. (28) cannot be developed. It
is then notable that our HEOM results suggest that ω =
0 remains a local maximum of Re µ(ω) in all parameter
regimes amenable to HEOM computations; see Figs. S1–S3 of
Ref. [70].

While the long-time saturation of DHEOM(t ) is apparent in
Fig. 5(a3), Fig. 5(b3) might suggest that the corresponding
tmax is not sufficiently long to guarantee that the relative un-
certainty of DHEOM (or µHEOM

dc = DHEOM/T ) is below or of
the order of the target 10% accuracy (Sec. II C). To exclude
this possibility, we fit DHEOM(t ) in Fig. 5(b3) for t � 50
(when all the transients have certainly vanished) to the expo-
nentially saturating function f (t ) = a0 − a1 e−t/a2 . The high
quality of the fit is apparent from the inset of Fig. 5(b3), and
the relative difference between DHEOM and a0 is well below
10%.

Differently from the situation in Figs. 5(a) and 5(b), in
Fig. 5(c) the bubble-approximation dynamical-mobility pro-
file qualitatively resembles its numerically exact counterpart.
Both profiles display relatively broad peaks at integer mul-
tiples of ω0 that originate from peaks in Re C j j (t ) at integer
multiples of 2π/ω0. The bubble approximation predicts peaks
without internal structure, whereas numerically exact results
predict structured peaks. Such peaks may be ascribed to a
more complicated dynamics of Re C j j , which becomes neg-
ative after the first peak. A word of caution is in order here as
we have established [57] that our HEOM results for ω0/t0 = 3
may not be entirely reliable due to possible problems with the
HEOM closing strategy for ω0/t0 � 2.

Finally, in contrast to the regimes studied in Figs. 5(a) and
5(b), there are situations in which the bubble approximation
partially captures the time-limited slowdown of the carrier.
This typically happens for strong interaction and at not too
high temperatures. One example (ω0/t0 = 1, λ = 2, T/t0 =
1) is analyzed in Fig. 6, whose inset shows the short-time
dynamics of the carrier spread. While in Figs. 5(a) and 5(b)
the carrier slows down having covered more than a lattice
constant, the slowdown in Fig. 6 happens over the time inter-
val in which �x remains well below a single lattice constant.
This suggests that the dynamics shown in Fig. 6 predomi-
nantly reflects on-site phonon-assisted processes. It is thus not
surprising that the short-time bubble-approximation dynamics
can be qualitatively (and to a large extent quantitatively) re-
produced by the atomic-limit formula [Eq. (25)] corrected so

FIG. 6. Comparison of numerically exact (labels “HEOM” and
“QMC”) and bubble-approximation (label “DMFT”) dynamics of
Re C j j for t0 = 1, ω0 = 1, λ = 2, and T = 1. The results labeled
“atomic limit” are obtained using Eq. (29). The inset shows time-
dependent carrier spread �x(t ) computed numerically exactly and
within the bubble approximation. HEOM computations use N =
10, D = 8. QMC results are displayed with the associated statistical
error bars and are obtained for N = 10.

that it reproduces the value of C j j (t = 0):

C j j (t ) =C j j (0) exp

{
− 2

g2

ω2
0

[(2nph + 1) − (nph + 1)e−iω0t

− npheiω0t ]

}
, (29)

compare the lines labeled “DMFT” and “atomic limit” in
Fig. 6. [We have checked that, on timescales analyzed in
Fig. 6, the attenuating time-dependent prefactor entering
Eq. (25) does not introduce any quantitative changes to the
result of Eq. (29).] The numerically exact dynamics shows
that the slowdown is prolonged with respect to the bubble-
approximation results, meaning that the latter captures the
temporal slowdown only partially.

B. Vertex corrections to the dc mobility

The importance of vertex corrections to the dc mobility will
be quantified by the relative deviation of the dc mobility in
the bubble approximation from the numerically exact result,
i.e.,

δµvtx
dc =

µHEOM
dc − µDMFT

dc

µHEOM
dc

. (30)

The results in the bubble approximation can be considered to
carry no intrinsic numerical error because they follow from
the DMFT equations formulated directly in the thermody-
namic limit; see also Fig. 4. On the other hand, the relative
uncertainty that should accompany HEOM results for the dc
mobility does not surpass 10%, as discussed in Sec. II C and
Ref. [57]. In other words, whenever |δµvtx

dc | � 0.1, one can re-
gard the vertex corrections to the dc mobility as unimportant.

Figures 7(a1)–7(c2) provide an overall picture of the im-
portance of the vertex corrections to the dc mobility for
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FIG. 7. (a1)–(c1) Temperature dependence of the dc mobility computed using the HEOM (full symbols connected by dashed lines) and
DMFT (empty symbols connected by dotted lines) for different strengths of the electron-phonon interaction λ and fixed phonon frequency ω0.
(a2)–(c2) Temperature dependence of the quantity δµvtx

dc [Eq. (30)], which quantifies the importance of vertex corrections to the dc mobility,
for different values of λ and fixed ω0. Gray regions in (a2)–(c2) delimit the range δµvtx

dc ∈ [−0.1, 0.1] in which the vertex corrections to the
dc mobility can be considered as vanishing. ω0 is equal to 1 in (a1) and (a2), 1/3 in (b1) and (b2), and 3 in (c1) and (c2), while t0 = 1 in all
panels.

different values of ω0/t0, λ, and T/t0. Interestingly, in most of
the parameter regimes examined for ω0/t0 = 1 and 1/3, δµvtx

dc
falls in the gray-shaded regions delimiting the aforementioned
range |δµvtx

dc | � 0.1, in which the vertex corrections to the
dc mobility can be regarded as vanishing. Our scarce results
for ω0/t0 = 3 might suggest that the vertex corrections to the
dc mobility are more important than in the other two cases
analyzed in Fig. 7. However, possible problems with HEOM
results for ω0/t0 � 2 [57] prevent us from giving a definite
statement on the importance of the vertex corrections to the
dc mobility in the case of fast phonons.

In the parameter regimes analyzed in Figs. 5(a) and 5(b),
the vertex corrections to the dc mobility can be deemed impor-
tant as δµvtx

dc is around 0.5 and 0.2, respectively. On the other
hand, while δµvtx

dc ≈ −0.4 points towards significant vertex
corrections to the dc mobility for parameters in Fig. 5(c), the
overall shape of the dynamical-mobility profile suggests that
their importance may be much smaller for the ac mobility.
The vertex corrections in Figs. 5(a) and 5(b) are positive,
i.e., µHEOM

dc > µDMFT
dc . The dominant contribution to µDMFT

dc
comes from the dynamics on short time scales t0t � 1, on
which the approximate and numerically exact results agree
quite well [see also Eq. (12)]. This is most conveniently seen
from Figs. 5(a3)–5(c3) showing the dynamics of D. The sub-
sequent slowdown of the carrier is fully compensated by the
speedup of the carrier [Re C j j (t ) > 0, D(t ) increases with t]
on somewhat longer time scales. Ultimately, the effects of the
transient slowdown are overpowered by the speedup, so that
the numerically exact dc mobility becomes larger than the
approximate one.

Our results for λ = 1/2 in Fig. 7(a2) and for λ = 1
in Fig. 7(b2) suggest that the vertex corrections to the dc
mobility decrease with temperature for the parameters stud-
ied. However, even at the highest temperatures accessible
in these two cases, the numerically exact results (and the
bubble-approximation results, too) are not close to the re-
sults in the infinite-temperature limit analyzed in Sec. III C.
Also, one should keep in mind that even when the vertex
corrections to the dc mobility can be considered as vanish-
ing [e.g., for λ = 1/8 in Figs. 7(a2) and 7(b2)], there may
be important differences between the numerically exact and
bubble-approximation dynamical-mobility profiles (see also
Figs. S1 and S2 of Ref. [70]).

Considering all these things, in the following three sec-
tions we discuss in more detail specific results related to the
importance of vertex corrections for the three values of ω0/t0
studied.

C. Intermediate-frequency phonons (ω0/t0 = 1)

For λ = 1/100 and at all temperatures examined, our nu-
merical results show vanishing vertex corrections to the dc
mobility, as demonstrated both numerically in Fig. 7(a2) and
analytically in Sec. III A. The small nonzero values of δµvtx

dc
can be attributed to the weakly pronounced finite-size effects
in the HEOM results; see also Fig. 1. The vertex corrections to
dc mobility are also small for λ = 1/8. However, as the tem-
perature is increased, the dynamical-mobility profile develops
a finite-frequency peak qualitatively similar to that discussed
in Fig. 5(a); see Fig. S1 of Ref. [70].
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FIG. 8. Dynamical-mobility profile computed using HEOM and
DMFT for t0 = ω0 = 1, λ = 1/2, and T = 0.4. HEOM computa-
tions use N = 29, D = 4.

Although the vertex corrections to the dc mobility for
λ = 1/2 become insignificant at the highest temperatures
considered, see Fig. 7(a2), the differences between the numer-
ically exact and bubble-approximation dynamics of Re C j j

and dynamical-mobility profiles persist, as shown in Fig. 5(a)
and Fig. S1 of Ref. [70]. Figure S1 additionally suggests
that the carrier slowdown becomes less pronounced and shifts
towards later times as the temperature is decreased, mean-
ing that the finite-frequency peak in the numerically exact
Re µ(ω) then shifts towards lower frequencies. Also, in the
inset of Fig. 4(a), we observe a nascent atomic-limit-like peak
in the bubble-approximation optical response at ω0, indicat-
ing the presence of a more pronounced peak at ω0 at even
lower temperatures (T/t0 < 1). These expectations are con-
firmed in Fig. 8, which compares the numerically exact and
bubble-approximation dynamical-mobility profiles at T/t0 =
0.4. Both HEOM and DMFT results show that the finite-
frequency peak is centered exactly around ω0. This peak can
be associated with the transitions between the quasiparticle
and the satellite peak in the single-particle spectral function.
While Fig. 8 indicates that the vertex corrections to the dc
mobility remain important at lower temperatures, we note that
reaching lower temperatures is problematic for the HEOM
method here, mainly because of the system size necessary to
minimize finite-size effects.

Figure 7(a2) suggests that the vertex corrections to the
dc mobility for λ = 1 are overall smaller than for λ = 1/2.
The numerically exact dynamics of Re C j j displays similar
features to those in Figs. 5(a1) (λ = 1/2) and 6 (λ = 2); see
also Fig. S1 of Ref. [70]. Setting λ = 1 and increasing T , the
overall decrease of Re C j j towards zero becomes generally
faster, so that the difference between µdc and µDMFT

dc stem-
ming from the carrier slowdown becomes more pronounced
than that caused by the subsequent speedup. This argument
can explain positive (negative) vertex corrections at the lower
(upper) end of the temperature range considered for λ = 1
in Fig. 7(a2). In a similar vein, we argue that the vertex
corrections to the dc mobility are not substantial for λ = 2.
Namely, at a fixed temperature T , the overall decrease of

FIG. 9. Time dependence of Re C j j computed within the HEOM,
DMFT, and QMC for t0 = 1, ω0 = 1/3, λ = 1, and T = 1. The
QMC results are displayed without the associated statistical er-
ror bars for visual clarity. The inset compares the corresponding
dynamical-mobility profiles computed within HEOM and DMFT.
HEOM computations use N = 7, D = 11 and 12 (arithmetic aver-
age). QMC simulations use N = 7.

Re C j j towards zero is faster for stronger interaction. There-
fore, for sufficiently strong g, we may expect that the features
specific to the numerically exact result will not appreciably
affect µdc, which is then primarily determined by Re C j j (t )
up to times at which the corresponding bubble-approximation
and numerically exact results agree well; see also Fig. 6.

D. Slow phonons (ω0/t0 = 1/3)

For λ = 1/100, the vertex corrections are negligible. For
λ = 1/8, the vertex corrections are very small at T/t0 = 1, but
with increasing temperature, a characteristic two-peak struc-
ture emerges in the numerically exact dynamical-mobility
profile; see Fig. S2 of Ref. [70]. Intermediate interactions
λ = 1/2 [Fig. 5(b1)] and λ = 1 (Fig. 9) bring about the
appearance of the two-peak structure also at T/t0 = 1. For
λ = 1, the finite-frequency peak is centered around ω =
2t0, in agreement with earlier numerically exact studies in
the slow-phonon regime [80]. While the bubble approxima-
tion partially captures the time-limited carrier slowdown at
T/t0 = 1, compare Fig. 9 with Fig. 6, it does not capture
the finite-frequency absorption feature; see the inset of Fig. 9
and Sec. IV C of Ref. [15]. To elucidate the origin of this
feature, the assumption of strictly on-site phonon dynamics
underlying the atomic-limit-like Eq. (29) (which reproduces
the bubble-approximation result reasonably well, similarly to
Fig. 6) has to be relaxed, as has been done by Schubert et al.

[80]. Their analysis attributes the 2t0 absorption feature to the
optical transition between the symmetric and antisymmetric
states of the electron residing on two neighboring sites, over
which phonon dynamics is considered. Figure S2 of Ref. [70]
shows that the finite-frequency peak remains around 2t0 also
at higher temperatures, in agreement with earlier results [80].

Despite important differences in the overall dynamics of
C j j , see Fig. 9, the results summarized in Fig. 7 show that
the bubble approximation correctly predicts the order of
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magnitude of the dc mobility. However, as we approach the
adiabatic limit ω0 → 0, the exact result for the dc mobility
tends to zero (phonon motion is effectively frozen and an
electron experiences a random potential in one dimension
where it cannot move over a large distance due to the effect
of Anderson localization), while the bubble-approximation
result keeps a finite value [18]. Therefore, in this limit, ver-
tex corrections are most pronounced. They give a negative
contribution to dc mobility, which completely cancels out the
bubble-approximation result (so that δµvtx

dc → −∞). The fact
that the results presented in Fig. 7 show positive or somewhat
negative vertex corrections implies that the system is still rel-
atively far from the adiabatic limit in these cases. We illustrate
this in Fig. S4 of Ref. [70], where we compare C j j (t ) and D(t )
for certain parameter values with the adiabatic-limit result for
these quantities. The figure confirms that these quantities are
far from their adiabatic-limit values. Adiabatic-limit results
are obtained using a very computationally efficient Monte
Carlo procedure that exploits the fact that phonon momentum
is negligible in the adiabatic limit. This procedure is described
in detail in Sec. SV of Ref. [70].

In the strong-interaction regime λ = 2, and at T/t0 = 1, the
DMFT captures the time-limited slowdown observed in QMC
data quite well; see Fig. 10(a) and compare to Fig. 9. The
short-time dynamics of Re C j j is also very well reproduced
by the atomic-limit-like Eq. (29). The DMFT dynamical-
mobility profile displays atomic-limit-like peaks at integer
multiples of ω0. As the temperature is increased from T/t0 =
1 to 10, the peaks become smoothed out, and their envelope
changes from a function displaying a finite-frequency local
maximum and a zero-frequency local minimum to a function
displaying only a zero-frequency local maximum; see the
insets of Figs. 10(a) and 10(b). This finite-frequency peak of
the envelope, appearing at sufficiently low temperatures, is the
well-known polaron peak because the shape of the envelope
of the dynamical-mobility profile compares reasonably well
with the high-temperature (small-ω0) limit of the Reik for-
mula [Eq. (29) of Ref. [77] in which sinh x ≈ tanh x ≈ x, with
x = const × βω0 ≪ 1], which reads

Re µ(ω) =
√

πt2
0

σω

[
exp

(
−

(ω − 2εpol)2

4σ 2

)

− exp

(
−

(ω + 2εpol)2

4σ 2

)]
. (31)

Here, εpol = g2/ω0 is the polaron binding energy, and σ is
defined in Eq. (27). Even at the highest temperatures studied,
QMC results predict a protracted temporally limited slow-
down of the electron, pointing towards possibly nontrivial
negative vertex corrections to the dc mobility (because the
intensity of the possible atomic-limit-like features appearing
at integer multiples of 2π/ω0 decreases quickly with time,
which is compatible with the rather wide DMFT optical re-
sponse).

E. Fast phonons (ω0/t0 = 3)

HEOM results are available only in a limited portion of the
parameter space, characterized by sufficiently but not exces-
sively high temperatures and interaction strengths.

FIG. 10. Time dependence of Re C j j computed within DMFT
and QMC for t0 = 1, ω0 = 1/3, λ = 2, and (a) T = 1, (b) T = 10.
Solid brown lines represent the results of the atomic-limit Eq. (29).
The insets compare the corresponding dynamical-mobility profiles
with those evaluated using the Reik formula [Eq. (31)]. QMC simu-
lations use N = 7.

We first compare numerically exact and bubble-
approximation results in the weak-coupling regime
λ = 1/8 and T/t0 = 10; see Fig. 11(a). While the
bubble-approximation result predicts a monotonically
increasing diffusion constant [Re C j j (t ) > 0], the numerically
exact result predicts a time-limited slowdown of the carrier
motion after it has covered a single lattice constant (for
1 � t0t � 2, when �x � 1), similarly to what we observed in
Figs. 5(a) and 5(b) for smaller values of ω0/t0. Interestingly,
both numerically exact and approximate results predict a
local maximum in Re C j j (t ) around 2π/ω0, which is typical
for the atomic limit. With this in mind, the reasonable overall
agreement between the numerically exact and approximate
dynamical-mobility profiles, similar to our observations in
Fig. 5(c), is not surprising; see Fig. S3 of Ref. [70]. The vertex
corrections to the dc mobility may be considered as vanishing,
see Fig. 7(c), as expected in the limit of weak electron-phonon
coupling. The potential problems with our HEOM closing
are exacerbated at a lower temperature (T/t0 = 5), where
our results predict significant vertex corrections, contrary to
expectations for small λ.
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FIG. 11. Time dependence of Re C j j computed using HEOM
(solid black lines), DMFT (dashed red lines), and QMC (full cir-
cles) for t0 = 1, ω0 = 3 and (a) λ = 1/8, T = 10, and (b) λ =
1, T = 5. QMC results are accompanied with their statistical er-
ror bars. The insets show (a) the carrier spread and (b) the
dynamical-mobility profile computed using HEOM and DMFT.
HEOM computations use (a) N = 10, D = 8; (b) N = 5, D = 20
and 21 (arithmetic average). QMC simulations use (a) N = 10,
(b) N = 7.

For λ = 1 and T/t0 = 5, see Fig. 11(b), the bubble ap-
proximation again predicts strictly non-negative Re C j j (t )
with peaks at integer multiples of 2π/ω0. On the other
hand, numerically exact results show that the peaks’ cen-
ters are generally shifted towards somewhat earlier times,
while Re C j j (t ) may assume negative values. This is clearly
observed for the first peak, whose intensity within the nu-
merically exact framework is smaller than the intensity of its
bubble-approximation counterpart. As a consequence, the nu-
merically exact dynamical-mobility spectrum is qualitatively
different from its bubble-approximation counterpart, which
has equidistant peaks at integer multiples of ω0.

F. Insights from the imaginary-time domain

It is known that the extraction of transport properties
from imaginary-axis data for the current-current correlation

FIG. 12. Imaginary-time current-current correlation function for
t0 = 1, ω0 = 1/3, and λ = 1/2 at temperatures (a) T = 0.1 and
(b) T = 1. The QMC results obtained from a full calculation and
by making use of the bubble approximation are presented. The inset
of the top panel shows a zoom to the region where the difference
between numerically exact and bubble approximation results is most
pronounced.

function can often be unreliable as it relies on procedures
for numerical analytical continuation. In Fig. S5 of Ref. [70],
we compare some of our results for dc mobility, which en-
tirely follow from real-axis data, to the corresponding results
of Ref. [41], which follow from imaginary-axis QMC data.
Nevertheless, one may hope to gain insights into the impor-
tance of vertex corrections by comparing the imaginary-time
current-current correlation functions computed numerically
exactly and within the bubble approximation. We have done
this by computing, on the one hand, the quantity C j j (−iτ ) [see
Eq. (3)] for 0 � τ � β, and, on the other hand, the quantities
G>(k,−iτ ) [see Eq. (18)] and G<(k,−iτ ) [see Eq. (19)],
which are needed to obtain Cbbl

j j (−iτ ) in accordance with
Eq. (17). The computations were performed using QMC. It
is easier to obtain these quantities in imaginary time than in
real time because the dynamical sign problem occurs only for
real times.

For the investigated values of parameters when T/t0 � 1
we find that the differences between C j j (−iτ ) and Cbbl

j j (−iτ )
are very small. They typically differ by less than 1%, and
this difference is typically below or comparable to the statis-
tical error of QMC results. One such example is presented
in Fig. 12(b). These results should be contrasted with our
conclusions reached by analyzing real-time results in the very
same parameter regime; see Figs. 5(b) and 7(b2). We can
thus conclude that good agreement between numerically exact
and bubble approximation results in imaginary time does not
imply that the same level of agreement will be present in real
time.
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When the temperature is lowered to T/t0 = 0.1, the differ-
ences between numerically exact and bubble approximation
results become noticeable; see Fig. 12(a). The inset of that
panel shows a zoom to the region where this difference is
most significant. In this region, the difference is above 5%,
while the statistical error of QMC results is on the order
of 0.5%, hence we are confident that the difference ob-
served is above the level of statistical noise. While these data
point towards non-negligible vertex corrections, a definitive
conclusion could be reached only if we had access to the
corresponding real-time data.

V. SUMMARY AND OUTLOOK

In summary, we presented a detailed analysis of the
importance of vertex corrections for charge transport in
the one-dimensional Holstein model. Our analytical results
demonstrate that the vertex corrections vanish in the weak-
interaction, atomic, and infinite-temperature limits, which is
supported by numerical results. The numerically exact HEOM
calculations were performed for three phonon frequencies: in-
termediate ω0/t0 = 1, low ω0/t0 = 1/3, and high ω0/t0 = 3.

For ω0/t0 = 1, as the electron-phonon coupling is in-
creased, a characteristic two-peak profile of the numerically
exact optical conductivity emerges instead of a single Drude
peak. At low temperatures, the other peak is centered precisely
at ω = ω0 and is also captured within the bubble approxi-
mation because it corresponds to the transitions between the
quasiparticle and the first satellite peak in the single-particle
spectral density. At higher temperatures, the peak shifts to
ω > ω0. Then, the two-peak structure in optical conductivity,
which cannot be reproduced in the bubble approximation,
is traced back to a downturn in the time-dependent diffu-
sion constant D(t ) at intermediate timescales. Interestingly,
for strong interactions, such a slowdown of charge carrier
is observed also in the bubble approximation, but at shorter
times. In this case, it is primarily governed by the on-site
phonon-assisted processes and not by the vertex corrections.
This observation is compatible with the absence of vertex
corrections in the atomic limit. Both at low and high tem-
peratures, we find that the vertex corrections either do not
affect or increase the dc mobility by a few tens of percent in
comparison to the bubble term.

Interestingly, for ω0/t0 = 1/3 and for moderate electron-
phonon interaction, the optical-conductivity profile looks
qualitatively similar to that for ω0/t0 = 1. We find that the
peak at zero frequency persists, giving the dc mobility that is
somewhat smaller, but still comparable to the one obtained in
the bubble approximation. The height of this peak is expected
to diminish as the frequency is lowered further, approaching
the adiabatic limit. However, this calculation is not feasible
within our implementation of the HEOM method, and is
generally challenging for numerically exact methods on the
market.

The HEOM solution in the bubble approximation almost
coincides with the DMFT solution for optical conductivity for
all available parameter values. Hence, our results demonstrate
that the vertex corrections can be substantial also in the cases
in which the single-particle correlations are almost local, in
agreement with previous findings on the Hubbard model [49].

Our results also illustrate the challenges in numerical analyt-
ical continuation of the imaginary axis data: in all parameter
regimes, the difference between the full and bubble correlation
functions in imaginary time is minuscule, and yet the differ-
ence in optical conductivity can be large.

To our knowledge, in this work we have presented the
most comprehensive study so far of vertex corrections to
conductivity on a specific model of the electron-phonon
interaction. However, there are several challenges left for
future work. It would be interesting to calculate the charge
transport in higher dimensions and make a comparison to
the one-dimensional case. Also, microscopic calculations for
lower phonon frequencies and for models with nonlocal
electron-phonon interactions are highly desirable, especially
in connection with real-world materials.
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APPENDIX A: FORMALLY EXACT EXPRESSIONS

FOR THE ELECTRONIC DYNAMICS

It is convenient to switch from the electronic creation and
annihilation operators, which act in the Fock space for the
electrons, to their counterparts acting in the subspaces con-
taining at most one electron. The corresponding replacements
c

†
k

→ |k〉〈vac| and ck → |vac〉〈k|, where the state |vac〉 con-
tains no electrons, are appropriate in the limit of low carrier
concentration in which we are interested.

We first summarize the formally exact result for the dy-
namics of the current-current correlation function in Eq. (10),
which can be expressed as

C j j (t ) = Tr1e{ jι(t )} =
∑

k

jk〈k|ι(I )(t )|k〉, (A1)

where

ι(t ) =
1

Z
Trph{e−iHt je−βH eiHt }. (A2)
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In Ref. [57], we derived that the interaction-picture counter-
part of the purely electronic operator ι(t ) reads

ι(I )(t ) = T e−[�1(t )+�2 (β )+�3(t,β )] j
e−βHe

Ze
. (A3)

The corresponding influence phases are given as

�1(t ) =
∑

qm

∫ t

0
ds2

∫ s2

0
ds1 V (I )

q (s2)× e−µm (s2−s1 )

×
[

cm + cm

2
V

(I )
−q (s1)× +

cm − cm

2
V

(I )
−q (s1)◦

]
,

(A4)

�2(β ) = −
∑

qm

∫ β

0
dτ2

∫ τ2

0
dτ1

CV −q(τ1)

× eiµm (τ2−τ1 )cm
CV q(τ2), (A5)

�3(t, β ) = − i
∑

qm

∫ t

0
ds

∫ β

0
dτ V (I )

q (s)×

× e−µmseiµm (β−τ )cm
CV −q(τ ), (A6)

where the purely electronic operator Vq reads

Vq =
∑

k

|k + q〉〈k|, (A7)

while the coefficients cm and µm (m = 0, 1) are

c0 =
(

g
√

N

)2

(1 + nph ), µ0 = +iω0, nph =
1

eβω0 − 1
,

(A8)

c1 =
(

g
√

N

)2

nph, µ1 = −iω0. (A9)

For later use, we introduce the index m defined by µm = µ∗
m.

In other words, 0 = 1 and vice versa. The hyperoperators
entering Eqs. (A4)–(A6) are defined by their action on an
arbitrary operator O, which is as follows:

V C O = V O, (A10a)
CV O = OV, (A10b)

V × O = V O − OV, (A10c)

V ◦ O = V O + OV. (A10d)

The operators Vq in the real-time and imaginary-time inter-
action picture are defined as

V (I )
q (t ) = eiHetVqe−iHet , V q(τ ) = eHeτVqe−Heτ . (A11)

The time-ordering sign T in Eq. (A3) orders the hyperop-
erators so that one first applies imaginary time-dependent
hyperoperators that are mutually antichronologically ordered
(descending imaginary-time instants) and subsequently ap-
plies real time-dependent hyperoperators that are mutually
chronologically ordered (ascending real-time instants). The
so-called electronic partition sum entering Eq. (A3) is defined
as

Ze =
Z

Zph
= Tr1e{T e−�2 (β )e−βHe}, (A12)

where Zph = Trphe−βHph is the free-phonon partition sum.

Concerning single-particle quantities, it is convenient to
redefine them as follows:

G>(k, t ) = G>(k, t )e−iµFt

= −i
Tr0e{eiHt |vac〉〈k|e−iHt |k〉〈vac|e−βH }

Zph

= −i
Trph{eiHpht 〈k|e−iHt |k〉e−βHph}

Zph

= −ie−iεkt 〈k|T e−ϕ1(t )
1e|k〉, (A13)

G<(k, t ) =
G<(k, t )e−iµFt

〈Ne〉K

= i
Tr1e{|k〉〈vac|eiHt |vac〉〈k|e−iHt e−βH }

Z

= i
Trph{eiHpht 〈k|e−iHt e−βH |k〉}

Z

= ie−iεkt 〈k|T e−[ϕ1(t )+ϕ2 (β )+ϕ3(t,β )] e−βHe

Ze
|k〉. (A14)

The redefinition embodied in the first equalities of Eqs. (A13)
and (A14) is fully compatible with the frequency shift used
to transform Eqs. (18) and (19) into Eqs. (20) and (21),
respectively. It also introduces a different normalization for
G<, −i

∑
k G<(k, t = 0) = 1, which explicitly shows that we

consider a single electron, while the current-current correla-
tion function in the bubble approximation is expressed as [cf.
Eq. (17)]

Cbbl
j j (t ) = −

∑

k

j2
k G>(k, t )G<(k, t )∗. (A15)

In Ref. [56], we derived that the influence phases for single-
particle quantities read

ϕ1(t ) =
∑

qm

∫ t

0
ds2

∫ s2

0
ds1V

(I )
q (s2)Ce−µm (s2−s1 )cmV

(I )
−q (s1)C,

(A16)

ϕ2(β ) = �2(β ), (A17)

ϕ3(t, β ) = − i
∑

qm

∫ t

0
ds

∫ β

0
dτ V (I )

q (s)C

× e−µmseiµm (β−τ )cm
CV −q(τ ). (A18)

As the first illustration of the utility of these formally
exact results, we prove the equality C j j (t = 0) = Cbbl

j j (t = 0).
Because of �1(t = 0) = �3(t = 0, β ) = 0, see Eqs. (A4) and
(A6), Eqs. (A1) and (A3) imply that

C j j (t = 0) =
∑

k

jk〈k|T e−�2 (β ) j
e−βHe

Ze
|k〉

=
∑

k

jk〈k| jT e−�2 (β ) e−βHe

Ze
|k〉

=
∑

k

j2
k 〈k|T e−�2 (β ) e−βHe

Ze
|k〉. (A19)
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Since the hyperoperators in �2(β ) act on the operator
je−βHe/Ze from the right-hand side, see Eq. (A5), the cur-
rent operator can be moved in front of T e−�2 (β ). Because
of ϕ1(t = 0) = ϕ3(t = 0, β ) = 0 [see Eqs. (A16) and (A18)],
Eqs. (A15), (A13), and (A14) imply that

Cbbl
j j (t = 0) =

∑

k

j2
k 〈k|T e−ϕ2 (β ) e−βHe

Ze
|k〉. (A20)

The right-hand sides of Eqs. (A19) and (A20) are identical
because of Eq. (A17).

APPENDIX B: EVALUATION OF C j j (t ) AND Cbbl
j j (t )

IN THE g → 0 LIMIT

1. Equality of the lowest-order terms

Let us start from the lowest-order term in the bubble re-
sult [Eq. (A15)], which we derive by separately considering
G>(k, t ) [Eq. (A13)] and G<(k, t ) [Eq. (A14)] in the lowest-
order approximation. Up to the second order in g, we have

[G>(k, t )]2 = −ie−iεkt [1 − 〈k|ϕ1(t )1e|k〉], (B1)

[G<(k, t )]2 = ie−iεkt e−βεk

Ze
[1 − 〈k|ϕ1(t )1e|k〉

− 〈k|ϕ2(β )1e|k〉 − 〈k|ϕ3(t, β )e−β(He−εk )|k〉],
(B2)

where we have used the relation

〈k|ϕ2(β )e−β(He−εk )|k〉 = 〈k|ϕ2(β )1e|k〉 (B3)

and a similar relation for 〈k|ϕ1(t )e−β(He−εk )|k〉. The time-
ordering sign can be safely omitted because the hyperopera-
tors entering Eqs. (B1) and (B2) are already properly ordered.
Therefore, up to the second order in g, the current-current
correlation function in the bubble approximation reads

[Cbbl
j j (t )]2 =

∑

k

j2
k

e−βεk

Ze
[1 − 〈k|ϕ2(β )1e|k〉

− 2 Re 〈k|ϕ1(t )1e|k〉

− 〈k|ϕ3(t, β )e−β(He−εk )|k〉∗], (B4)

where we have observed that the matrix element
〈k|ϕ2(β )1e|k〉 is purely real.

We proceed to find the expression for the full current-
current correlation function [Eq. (A1)] up to the second order
in g. Because of Eqs. (A17) and (B3), together with [ j, He] =
0, we can start from

[C j j (t )]2 =
∑

k

j2
k

e−βHe

Ze

[
1 − 〈k|ϕ2(β )1e|k〉

− 〈k|�1(t ) j−1
k je−β(He−εk )|k〉

− 〈k|�3(t, β ) j−1
k je−β(He−εk )|k〉

]
. (B5)

In the following two paragraphs, we demonstrate that

�1(k, t ) = 〈k|�1(t ) j−1
k je−β(He−εk )|k〉 − 2 Re 〈k|ϕ1(t )1e|k〉

= 0 (B6)

and

�3(k, t ) = 〈k|�3(t, β ) j−1
k je−β(He−εk )|k〉 − 〈k|ϕ3(t, β )e−β(He−εk )|k〉∗ = 0. (B7)

Collectively, Eqs. (B4), (B5), (B6), and (B7) show that, in the lowest order in the electron-phonon coupling g, the expressions
for the full and bubble current-current correlation function coincide. Since these terms are the most important ones in the limit
g → 0, we can conclude that there are no vertex corrections in the limit of vanishing g.

We first prove that �1(k, t ) = 0. We start from

〈k|�1(t ) j−1
k je−β(He−εk )|k〉 =

∑

qm

∫ t

0
ds2

∫ s2

0
ds1 e−µm (s2−s1 )

[
cm〈k|V (I )

q (s2)V (I )
−q (s1)|k〉 + cm〈k|V (I )

−q (s1)V (I )
q (s2)|k〉

− cm〈k|V (I )
−q (s1) j−1

k je−β(He−εk )V (I )
q (s2)|k〉 − cm〈k|V (I )

q (s2) j−1
k je−β(He−εk )V

(I )
−q (s1)|k〉

]
. (B8)

Since V †
q = V−q [see Eq. (A7)], one observes that the first two summands within the square brackets in Eq. (B8) are complex

conjugates of one another, and the same applies to the last two summands. On the other hand,

〈k|ϕ1(t )1e|k〉 =
∑

qm

∫ t

0
ds2

∫ s2

0
ds1 cme−µm (s2−s1 )〈k|V (I )

q (s2)V (I )
−q (s1)|k〉, (B9)

so that the following equation holds:

�1(k, t ) = 〈k|�1(t ) j−1
k je−β(He−εk )|k〉 − 2 Re 〈k|ϕ1(t )1e|k〉 =

= −2 Re
∑

qm

∫ t

0
ds2

∫ s2

0
ds1 cme−µm (s2−s1 )〈k|V (I )

q (s2) j−1
k je−β(He−εk )V

(I )
−q (s1)|k〉. (B10)
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An explicit calculation of the matrix element in Eq. (B10) gives

�1(k, t ) = −2 Re
∑

qm

∫ t

0
ds2

∫ s2

0
ds1 cmei(εk−εk−q+iµm )(s2−s1 ) jk−q

jk
e−β(εk−q−εk ). (B11)

The following sum over q should be performed (with q′ = k − q):
∑

q

jk−qe−(β+it )εk−q =
∑

q′

jq′e−(β+it )εq′ . (B12)

The second sum in Eq. (B12) is equal to zero because j−q = − jq, while ε−q = εq. This proves Eq. (B6).
Let us now prove that �3(k, t ) = 0. We start from

〈k|�3(t, β ) j−1
k je−β(He−εk )|k〉 = i

∑

qm

∫ t

0
ds

∫ β

0
dτ cme−µmseiµm (β−τ )

×
[
〈k|V −q(τ )V (I )

q (s)|k〉 − 〈k|V (I )
q (s) j−1

k je−β(He−εk )V −q(τ )|k〉
]
. (B13)

On the other hand, using Eq. (A18), we find that

〈k|ϕ3(t, β )e−β(He−εk )|k〉∗ = i
∑

qm

∫ t

0
ds

∫ β

0
dτ cme−µmse−iµm (β−τ )〈k|V q(−τ )e−β(He−εk )V

(I )
−q (s)|k〉

= i
∑

qm

∫ t

0
ds

∫ β

0
dτ cme−µmse−iµm (β−τ )〈k|V −q(β − τ )V (I )

q (s)|k〉

= i
∑

qm

∫ t

0
ds

∫ β

0
dτ cme−µmse−iµmτ 〈k|V −q(τ )V (I )

q (s)|k〉

= i
∑

qm

∫ t

0
ds

∫ β

0
dτ cme−µmseiµm (β−τ )〈k|V −q(τ )V (I )

q (s)|k〉. (B14)

Writing the first equality in Eq. (B14), we used µ∗
m = µm, as well as V −q(τ ) = V q(−τ ). In going from the first to the

second equality in Eq. (B14), we performed the dummy-index change q → −q, m → m, and observed that V −q(−τ )e−βHe =
e−βHeV −q(β − τ ). The third equality is obtained from the second by the integral variable change β − τ → τ . The last equality
in Eq. (B14) follows from the identity cme−iµmτ = cmeiµm (β−τ ), which can be checked by direct inspection. Equations (B13) and
(B14) imply that

�3(k, t ) = 〈k|�3(t, β ) j−1
k je−β(He−εk )|k〉 − 〈k|ϕ3(t, β )e−β(He−εk )|k〉∗

= −i
∑

qm

∫ t

0
ds

∫ β

0
dτ cme−µmseiµm (β−τ )〈k|V (I )

q (s) j−1
k je−β(He−εk )V −q(τ )|k〉. (B15)

An explicit calculation of the matrix element in Eq. (B15) leads to

�3(k, t ) = −i
∑

qm

∫ t

0
ds

∫ β

0
dτ cmei(εk−εk−q+iµm )seiµmβe(εk−q−εk−iµm )τ jk−q

jk
e−β(εk−q−εk ). (B16)

The same reasoning as in Eq. (B12) proves that �3(k, t ) = 0.

2. Second-order cumulant expansion

Still, Eqs. (B4) or (B5) do not suffice to obtain an expression for C j j (t ) in the weak-coupling limit. To that end, the perturbation
series for C j j (t ) in powers of g has to be (at least partially) resummed. We [17] and other groups [37] have recently promoted
the second-order cumulant expansion as a computationally viable and accurate approach to resum the perturbation series for
time-dependent quantities in the limit g → 0. The second-order cumulant expansion starts from Eq. (B4) and produces the
following expression for C j j (t ):

C j j (t ) = Cbbl
j j (t ) ≈

∑

k

j2
k

e−βεk

Ze
e−〈k|ϕ2(β )1e|k〉e−2Re 〈k|ϕ1(t )1e|k〉−〈k|ϕ3(t,β )e−β(He−εk )|k〉∗ . (B17)
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Up to now, we have not discussed the electronic partition sum Ze, which has its own perturbation expansion in g that up to
second order reads

Ze =
∑

k

e−βεk [1 − 〈k|ϕ2(β )1e|k〉]. (B18)

Performing the second-order cumulant resummation in Eq. (B18), we obtain the following expression for Ze:

Ze =
∑

k

e−βεk e−〈k|ϕ2(β )1e|k〉. (B19)

We note that Eq. (B17) suggests that the unnormalized equilibrium occupation of state |k〉 is proportional to e−βεk e−〈k|ϕ2 (β )1e|k〉,
so that Ze given in Eq. (B19) ensures the correct normalization of equilibrium occupations.

We finally list the explicit expressions for the matrix elements needed to evaluate Eqs. (B17) and (B19):

〈k|ϕ1(t )1e|k〉 =
g2

N

∑

q

[
(1 + nph )

−ei�ε−(k,q)t + i�ε−(k, q)t + 1

�ε−(k, q)2
+ nph

−ei�ε+(k,q)t + i�ε+(k, q)t + 1

�ε+(k, q)2

]
, (B20)

〈k|ϕ2(β )1e|k〉 =
g2

N

∑

q

[
(1 + nph )

−eβ�ε−(k,q) + β�ε−(k, q) + 1

�ε−(k, q)2
+ nph

−eβ�ε+(k,q) + β�ε+(k, q) + 1

�ε+(k, q)2

]
, (B21)

〈k|ϕ3(t, β )e−β(He−εk )|k〉 =
g2

N

∑

q

e−βεk−q

e−βεk

{
nph

[ei�ε−(k,q)t − 1][e−β�ε−(k,q) − 1]

�ε−(k, q)2
+ (1 + nph )

[ei�ε+(k,q)t − 1][e−β�ε+(k,q) − 1]

�ε+(k, q)2

}
,

(B22)

where

�ε±(k, q) = εk − εk−q ± ω0. (B23)

APPENDIX C: EVALUATION OF C j j (t ) AND Cbbl
j j (t )

IN THE t0 → 0 LIMIT

Here, we rewrite the Holstein Hamiltonian in the site rep-
resentation and partition it into the zeroth-order term and the
perturbation term as appropriate in the limit t0 → 0:

H = H0 + H1, (C1)

where (p enumerates lattice sites)

H0 = ω0

∑

p

b†
pbp + g

∑

p

c†
pcp(bp + b†

p), (C2)

while

H1 = −t0
∑

p

∑

γ=±1

c
†
p+γ cp. (C3)

We perform a unitary transformation of the Hamiltonian

H̃ = eSHe−S (C4)

with

S = −
g

ω0

∑

p

c†
pcp(bp − b†

p). (C5)

The action of the unitary transformation on the electron oper-
ators is

eScpe−S = cpXp, (C6)

with

Xp = exp

[
g

ω0
(bp − b†

p)

]
, (C7)

while its action on the phonon operators is

eSbpe−S = bp −
g

ω0
c†

pcp. (C8)

Limiting the discussion on the Hilbert space of states that
contain one electron, the transformed Hamiltonian takes the
form H̃ = H̃0 + H̃1, with

H̃0 = −
g2

ω0
+ ω0

∑

p

b†
pbp, (C9)

H̃1 = −t0
∑

pγ

Xp+γ ,pc
†
p+γ cp. (C10)

We introduced the notation

Xp+γ ,p = X
†
p+γ Xp = exp

[
g

ω0
(bp − b†

p − bp+γ + b
†
p+γ )

]
.

(C11)

The transformed current operator reads

j̃ = eS je−S = −it0
∑

pγ

γ c
†
p+γ cpXp+γ ,p. (C12)

We denote by z the (real or imaginary) time (where z = t for
real time and z = −iτ for imaginary time). We make use of
the identity

〈 j(z) j(0)〉K = 〈 j̃(z) j̃(0)〉K̃ (C13)

and we use Eq. (C12) to obtain

C j j (z) = −
1

〈Ne〉K̃

t2
0

∑

ps
γ ,δ=±1

γ δ〈c†
p(z)cp+γ (z)

× Xp,p+γ (z)c†
s (0)cs+δ (0)Xs,s+δ (0)〉K̃ . (C14)

All the averages and time evolutions in Eq. (C14) should in
principle be taken with respect to the operator K̃ . We are,
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however, interested in the limit of small t0, and we would
like to obtain the first nonzero term with respect to t0. We
note that the factor in front of the sum gives us the ∼t2

0 term.
The expansion of the time evolution operator for real z (the
situation is similar in other cases) is of the form

e−iK̃z = e−iK̃0zT exp

[
−i

∫ z

0
ds eiK̃0sH̃1e−iK̃0s

]

= e−iK̃0z[1 + O(t0)], (C15)

that is, its first nonzero term is of order ∼1 and the remaining
terms are of order ∼t0 and smaller. The same is true for the
e−βK̃ operator. Therefore, to obtain the first nonzero term in
Eq. (C14), it is sufficient to take the terms of order ∼1 in the
expansion of all operators e±iK̃z and e−βK̃ . This is equivalent
to replacing the K̃ operator with the K̃0 operator. All the av-
erages in Eq. (C14) can then be obtained by applying Wick’s
theorem. We thus obtain

〈c†
p(z)cp+γ (z)Xp,p+γ (z)c†

s (0)cs+δ (0)Xs,s+δ (0)〉K̃

≈ 〈c†
p(z)cp+γ (z)Xp,p+γ (z)c†

s (0)cs+δ (0)Xs,s+δ (0)〉K̃0

= 〈c†
p(z)cp+γ (z)c†

s (0)cs+δ (0)〉K̃0
〈Xp,p+γ (z)Xs,s+δ (0)〉K̃0

.

(C16)

By applying Wick’s theorem to the term with electronic oper-
ators, we obtain

〈c†
p(z)cp+γ (z)c†

s (0)cs+δ (0)〉K̃0

= 〈c†
p(z)cs+δ (0)〉K̃0

〈cp+γ (z)c†
s (0)〉K̃0

+ 〈c†
p(z)cp+γ (z)〉K̃0

〈c†
s (0)cs+δ (0)〉K̃0

≈ δp,s+δδs,p+γ 〈c†
p(z)cp(0)〉K̃0

〈cp+γ (z)c†
p+γ (0)〉K̃0

. (C17)

The first term on the right-hand side of the first equality is
proportional to the number of carriers, while the second term
is proportional to the square of the number of carriers. Hence,
in the limit of small carrier concentration, it is the first term
that dominates. Eventually,

C j j (z) =
1

〈Ne〉K̃0

t2
0

∑

pγ

〈c†
p(z)cp(0)〉K̃0

〈cp+γ (z)c†
p+γ (0)〉K̃0

× 〈Xp,p+γ (z)Xp+γ ,p(0)〉K̃0
. (C18)

We now show that the result of Eq. (C18) is recovered in
the bubble approximation in which, upon neglecting the term
proportional to the square of carrier density, one obtains

Cbbl
j j (z) =−

1

〈Ne〉K̃

t2
0

∑

ps
γ ,δ=±1

γ δ〈c†
p(z)cs+δ (0)〉K〈cp+γ (z)c†

s (0)〉K

= −
1

〈Ne〉K̃

t2
0

∑

ps
γ ,δ=±1

γ δ〈c†
p(z)cs+δ (0)X †

p (z)Xs+δ (0)〉K̃

× 〈cp+γ (z)c†
s (0)Xp+γ (z)X †

s (0)〉K̃ . (C19)

Following the same reasoning as above, the leading term in
the expansion of Cbbl

j j (z) in powers of t0 → 0 is obtained by

replacing all averages and time evolutions with respect to K̃

with those with respect to K̃0. Similarly as in Eq. (C17), we

obtain

Cbbl
j j (z) =

1

〈Ne〉K̃0

t2
0

∑

pγ

〈c†
p(z)cp(0)〉K̃0

〈cp+γ (z)c†
p+γ (0)〉K̃0

× 〈X †
p (z)Xp(0)〉K̃0

〈Xp+γ (z)X †
p+γ (0)〉K̃0

. (C20)

We finally note that

〈Xp,p+γ (z)Xp+γ ,p(0)〉K̃0

= 〈X †
p (z)Xp+γ (z)X †

p+γ (0)Xp(0)〉K̃0

= 〈X †
p (z)Xp(0)〉K̃0

〈Xp+γ (z)X †
p+γ (0)〉K̃0

, (C21)

where the first equality stems from Eq. (C11), while the
second equality follows from the fact that phonon opera-
tors acting on different sites p and p + γ commute. From
Eqs. (C18), (C20), and (C21), we conclude that C j j (z) =
Cbbl

j j (z) as t0 → 0.
In the remainder of this Appendix, we provide explicit

expressions for Cbbl
j j (z) to show that the corresponding dc

mobility is finite. The phonon term from Eq. (C21) is given
as

〈Xp,p+γ (z)Xp+γ ,p(0)〉K̃0
= exp

{
− 2

g2

ω2
0

[2nph + 1

− (nph + 1)e−iω0z − npheiω0z]

}
.

(C22)

In the limit of low carrier density, the electronic term from
Eq. (C20) reads

〈c†
p(z)cp(0)〉K̃0

〈cp+γ (z)c†
p+γ (0)〉K̃0

= nF, (C23)

where nF is the occupation of single-particle electronic state
given by the Fermi-Dirac function. It follows from Eqs. (C20),
(C22), and (C23) that Cbbl

j j (z) does not decay to zero as real
time goes to infinity. Hence, one would obtain infinite dc
mobility by integrating Cbbl

j j (z). To circumvent this issue, we
make use again of the fact that the leading term in the limit of
small t0 is approximately the same when all averages and time
evolutions are taken either with respect to K̃0 or K̃ . Therefore,
we now make use of

〈c†
p(z)cp(0)〉K̃0

≈ 〈c†
p(z)cp(0)〉K̃ ,

〈cp(z)c†
p(0)〉K̃0

≈ 〈cp(z)c†
p(0)〉K̃ . (C24)

To evaluate the terms 〈c†
p(z)cp(0)〉K̃ and 〈cp(z)c†

p(0)〉K̃ for
the Hamiltonian given by Eqs. (C9) and (C10) (where the
irrelevant shift −g2/ω0 in H̃0 is neglected), we make use of
the Matsubara Green’s function formalism to evaluate the self-
energy stemming from the perturbation H̃1 to the Hamiltonian
H̃0. The overall approach is very similar to that developed in
Ref. [33], see in particular its Appendix B. To first order in
interaction, we obtain the self-energy

�
(1)
p±1,p(ω) = −t0e

− g2

ω2
0

(2nph+1)
, (C25)

which in the momentum representation reads

�
(1)
k

(ω) = −2teff cos(k) (C26)
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with

teff = t0e
− g2

ω2
0

(2nph+1)
. (C27)

It can be seen from Eq. (C26) that first-order self-energy
describes the formation of bands due to renormalized elec-
tronic coupling teff . This term, however, does not have an
imaginary part and therefore it does not lead to energy level
broadening. Hence it is not expected that it will provide energy
dissipation of electronic system, which is a requirement for
finite dc mobility to occur. For this reason, we proceed to
evaluate the self-energy term arising from second-order terms
in interaction. We obtain that the dominant second-order term
is the local term

�(2)(ω) = 2t2
0

i

2π

∫ +∞

−∞
dω1X >(ω1)GR(ω − ω1), (C28)

where GR is the retarded Green’s function, and X >(ω) =∫
dt eiωt X >(t ) with

X >(t ) = − i exp

{
− 2

g2

ω2
0

[2nph + 1 − (nph + 1)e−iω0t

− npheiω0t ]

}
. (C29)

We can further transform Eq. (C28) into the form (we now
omit superscripts R, 2 for brevity)

�(ω) = 2t2
0

i

2π

∫ +∞

−∞
dω1X >(ω1)G(ω − ω1) (C30)

that is amenable to the self-consistent treatment in conjunction
with the Dyson equation

[ω − �(ω)]G(ω) = 1. (C31)

Making use of the identities

ea cos θ =
+∞∑

l=−∞

Il (a)eilθ , (C32)

where Il is the modified Bessel function of the first kind of
order l and

(nph + 1)e−iω0t + npheiω0t

= 2
√

nph(nph + 1) cos

[
ω0

(
t + i

β

2

)]
, (C33)

we recast Eq. (C30) as

�(ω) =
+∞∑

l=−∞

cl G(ω + lω0), (C34)

with cl given by

cl = 2t2
0 e

−2 g2

ω2
0

(2nph+1)
e−l

βω0
2 Il

[
4

g2

ω2
0

√
nph(nph + 1)

]
. (C35)

Equations (C31) and (C34) can be solved using a self-
consistent procedure. Alternatively, these equations can be
solved analytically by introducing an additional approxima-
tion that the dominant term in the sum in Eq. (C34) is the l = 0
term. This is a reasonable assumption as one might expect
that both G(ω) and �(ω) should have maximal values in the

region around ω = 0. This assumption can always be checked
by comparing the result with the self-consistent solution of
Eqs. (C31) and (C34). Under this assumption, Eqs. (C31) and
(C34) reduce to a single quadratic equation for G(ω) and we
obtain the corresponding spectral function as

A(ω) = −
1

π
ImG(ω) =

√
4c0 − ω2

2πc0
θ (4c0 − ω2). (C36)

From the relation between the spectral function and the cor-
relation functions of creation and annihilation operators, we
obtain

1

〈Ne〉K̃

〈c†
p(z)cp(0)〉K̃〈cp+γ (z)c†

p+γ (0)〉K̃

=
∫

dω e−β(ω−iz)A(ω)∫
dω e−βωA(ω)

∫
dω e−iωzA(ω). (C37)

The integrals in the previous equation are all of the form

f (z) =
2

πa2

∫ a

−a

dω e−zω
√

a2 − ω2 = −
2

az
I1(−az), (C38)

with a = 2
√

c0. The integral is solved by introducing
the substitution ω = a cos t , by making use of In(u) =
1
π

∫ π

0 dθ eu cos θ cos(nθ ), and by using the identity Iν (z) −
Iν+2(z) = 2 ν+1

z
Iν+1(z). Combining Eqs. (C18), (C24), (C22),

(C36), and (C37), we finally obtain the expression given in
Eq. (25), where Jn denotes the Bessel function of the first kind
of order n.

It is worth investigating the asymptotic behavior of the
prefactor in front of the exponential term in Eq. (25) when real
time t tends to infinity z = t → +∞. The time dependence of
this prefactor is determined by the term

g(t ) =
I1[−2(β − it )

√
c0]J1(2t

√
c0)

t (β − it )
. (C39)

As t → +∞, making use of J1(x) = −iI1(−ix), we have

g(t ) ∼
J1(−2t

√
c0)J1(2t

√
c0)

t2
. (C40)

The asymptotic behavior of the Bessel function when x →
+∞ is

J1(x) ∼
√

2

πx
cos

(
x −

3π

4

)
. (C41)

Consequently, g(t ) ∼ t−3 as t → +∞. This is sufficiently fast
convergence to make the time integral of the C j j (t ) finite,
which then leads to finite dc mobility.

APPENDIX D: EVALUATION OF C j j (t ) AND Cbbl
j j (t )

IN THE β → 0 LIMIT

To prove that there are no vertex corrections in the infinite-
temperature limit, it is instrumental to first analyze in more
detail the single-site limit of the Holstein Hamiltonian in
which phonons can be treated as classical harmonic oscilla-
tors. The appropriate Hamiltonian reads (the oscillator mass
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is set to unity)

h =
p2

2
+

ω2
0

2
x2

︸ ︷︷ ︸
hph (x,p)

+Cxc†c, (D1)

where x and p are, respectively, the classical coordinate and
momentum of the oscillator, while C = g

√
2ω0. The greater

Green’s function can be expressed as [see also Eq. (A13)]

G>(t ) = −ieiµFt

∫
dx d p e−βhph (x,p)e−iCxt

∫
dx d p e−βhph (x,p)

= −ieiµFt

∫
dx e−β

ω2
0x2

2 −iCxt

∫
dx e−β

ω2
0 x2

2

= −ieiµFt e− σ2t2

2 . (D2)

In the same vein, the lesser Green’s function can be expressed
as [see also Eq. (A14)]

G<(t ) = ieiµFt eβµF

∫
dx d p e−βhph e−βCxe−iCxt

∫
dx d p e−βhph

= ieiµFt eβµF

∫
dx e−β

ω2
0x2

2 e−βCxe−iCxt

∫
dx e−β

ω2
0x2

2

= ieiµFt eβµF e
σ2

2 (β+it )2
. (D3)

The electron number is

〈c†c〉K = eβµF e
σ2β2

2 . (D4)

Let us now consider an N-site chain and start from Eq. (17)
determining Cbbl

j j (t ). Because of the locality of single-particle
correlation functions at high temperatures, we can replace
G>(k, t ) and G<(k, t ) by the single-site expressions derived
in Eqs. (D2) and (D3), respectively. The remaining sum in
the numerator of Eq. (17) is readily evaluated using Eq. (6),∑

k j2
k = 2t2

0 N . The total electron number 〈Ne〉K is N times
the electron number per site, which is derived in Eq. (D4).
Collecting all pieces together, we obtain the result embodied
in Eq. (26).

We continue by applying the same approximations to
Eq. (10) defining C j j (t ). Because of the assumed locality and
classicality of phonons, we can approximate the Hamiltonian
[Eq. (1)] as

H ≈
∑

r

(
p2

r

2
+

ω2
0

2
x2

r

)

︸ ︷︷ ︸
Hph (x,p)

+C
∑

r

xrc†
r cr, (D5)

where x and p, respectively, denote (classical) coordinates and
momenta of oscillators. Since the traces in Eq. (10) are to be
evaluated over the single-electron subspace, we can replace
c†

r cr → |r〉〈r|, so that

e−αH ≈ e−αHph (x,p)
∑

r

e−αCxr |r〉〈r|. (D6)

Inserting Eq. (D6) (with α = β,±it) into Eq. (10), one ob-
tains

C j j (t ) =
∫

dx dp e−βHph (x,p)
∑

r1r |〈r1| j|r〉|2 e−itCxr1 e−(β−it )Cxr

∫
dx dp

∑
r e−βHph (x,p)e−βCxr

. (D7)

Because the current operator in the real-space representation is j = −it0
∑

rγ |r + γ 〉〈r|, we have r1 = r + γ , where γ = ±1,
and Eq. (D7) is recast as

C j j (t ) =
t2
0

∑
r

∑
γ=±1

[ ∫
dxr e−β

ω2
0x2

r

2 e−(β−it )Cxr
][ ∫

dxr+γ e−β
ω2

0 x2
r+γ

2 e−itCxr+γ
] ∏

s/∈{r,r+γ }
∫

dxs e−β
ω2

0x2
s

2

∑
r

[ ∫
dxr e−β

ω2
0 x2

r

2 e−βCxr

] ∏
s �=r

∫
dxs e−β

ω2
0 x2

s

2

. (D8)

The integrals in the numerator have been evaluated in the single-site limit; see Eqs. (D2) and (D3). Upon inserting the
corresponding results in Eq. (D8), and performing the remaining sums (which produce the factor of 2N in the numerator and N

in the denominator), one immediately obtains Eq. (26).

[1] F. Rossi, Theory of Semiconductor Quantum Devices: Micro-

scopic Modeling and Simulation Strategies (Springer-Verlag,
Berlin, 2011).

[2] C. Jacoboni, Theory of Electron Transport in Semiconductors:

A Pathway from Elementary Physics to Nonequilibrium Green

Functions (Springer-Verlag, Berlin, 2010).
[3] C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Po-

larons in materials, Nat. Rev. Mater. 6, 560 (2021).
[4] L. R. V. Buizza and L. M. Herz, Polarons and charge local-

ization in metal-halide semiconductors for photovoltaic and
light-emitting devices, Adv. Mater. 33, 2007057 (2021).

[5] R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M.
Bonn, Carrier dynamics in semiconductors studied with time-

resolved terahertz spectroscopy, Rev. Mod. Phys. 83, 543
(2011).
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systems with local electron-phonon interaction, Phys. Rev. B
99, 104304 (2019).

[34] J. H. Fetherolf, D. Golež, and T. C. Berkelbach, A unification
of the Holstein polaron and dynamic disorder pictures of charge
transport in organic crystals, Phys. Rev. X 10, 021062 (2020).

[35] S. Ciuchi, F. de Pasquale, S. Fratini, and D. Feinberg, Dynam-
ical mean-field theory of the small polaron, Phys. Rev. B 56,
4494 (1997).

[36] M. Berciu, Green’s function of a dressed particle, Phys. Rev.
Lett. 97, 036402 (2006).

[37] P. J. Robinson, I. S. Dunn, and D. R. Reichman, Cumulant
methods for electron-phonon problems. I. Perturbative expan-
sions, Phys. Rev. B 105, 224304 (2022).

[38] P. J. Robinson, I. S. Dunn, and D. R. Reichman, Cumulant
methods for electron-phonon problems. II. The self-consistent
cumulant expansion, Phys. Rev. B 105, 224305 (2022).
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ABSTRACT

Numerically “exact” methods addressing the dynamics of coupled electron–phonon systems have been intensively developed. Nevertheless,
the corresponding results for the electron mobility μdc are scarce, even for the one-dimensional (1d) Holstein model. Building on our recent
progress on single-particle properties, here we develop the momentum-space hierarchical equations of motion (HEOM) method to evaluate
real-time two-particle correlation functions of the 1dHolsteinmodel at a finite temperature.We compute numerically “exact” dynamics of the
current–current correlation function up to real times sufficiently long to capture the electron’s diffusive motion and provide reliable results
for μdc in a wide range of model parameters. In contrast to the smooth ballistic-to-diffusive crossover in the weak-coupling regime, we observe
a temporally limited slow-down of the electron on intermediate time scales already in the intermediate-coupling regime, which translates to a
finite-frequency peak in the optical response. Our momentum-space formulation lowers the numerical effort with respect to existing HEOM-
method implementations, while we remove the numerical instabilities inherent to the undamped-mode HEOM by devising an appropriate
hierarchy closing scheme. Still, our HEOM remains unstable at too low temperatures, for too strong electron–phonon coupling, and for too
fast phonons.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165532

I. INTRODUCTION

The electron–phonon interaction governs the transport of
charge (and energy) in systems ranging from semiconductors,1–6

organic molecular crystals, and polymers7–9 to molecular aggre-
gates relevant for photosynthesis.10–14 The simplest model of such
diverse systems is the Holstein model,15 in which an electron is
locally and linearly coupled to phonons. Well-established trans-
port theories are formulated as perturbative expansions from either
the limit of vanishing coupling (Boltzmann-like4,5,16 or Redfield-
like13,14,17 theories) or vanishing electronic bandwidth (small-
polaron/Lang–Firsov,18 Marcus,13,14,19 or Förster13,14,20 theories).
However, in many instances, the energy scales representative of
electron motion, phonons, electron–phonon interaction, and ther-
mal fluctuations are all comparable to one another.1,21–23 This cir-
cumstance calls for the development of methods beyond standard
transport theories.

Such methods are typically formulated under physically
motivated approximations. Examples include the cumulant
expansion,24–28 dynamical mean-field theory,29–33 polaron

transformation-based approaches,34–43 momentum-average
approximation,44–46 and kinetic Monte Carlo approaches.47,48

The approximate methods are generally computationally efficient
and can thus be combined with electronic-structure methods
to provide first-principles results on systems large enough that
a direct comparison with experimental results is sensible.49–55

While the agreement between numerical and experimental results
justifies the approximations introduced, it does not fully reveal their
domain of validity. This can be unveiled by comparison to results
produced by numerically “exact” methods, which do not lean on
any approximation beyond those in the Hamiltonian. Since they are
computationally intensive, numerically “exact” methods are usually
applied to model Hamiltonians only.

The numerically “exact” approaches used to study interacting
electron–phononmodels may be roughly divided into the following:
(i) quantum Monte Carlo (QMC) methods;56–63 (ii) wavefunction-
based methods considering the electron and phonons as a closed
system, such as exact diagonalization (ED)-based techniques,64–69

the density-matrix renormalization group (DMRG),70–77

thermo-field dynamics,78–80 and the hierarchy of Davydov’s
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Ansätze;81–85 (iii) methods leaning on the theory of open quantum
systems, such as the hierarchical equations of motion (HEOM),86–89

its generalizations,90,91 and hybridizations92,93 with the stochastic
Schrödinger equation.94,95

Many of the above-mentioned methods deliver practi-
cally exact results on the ground-state or equilibrium finite-
temperature properties of the Holstein model.58,65,70,76 Some of
them have recently been used to examine the model’s single-
particle properties (the electronic spectral function or linear absorp-
tion spectra).67–69,71,73,76,77,92,95,96 However, much more demanding
numerically “exact” evaluations of two-particle correlation functions
at finite temperatures, such as the ac and dc electrical conductiv-
ity, have started only recently.27,61–63,74,75,77,93,97–99 Each class of the
above-mentioned numerically “exact” methods encounters certain
issues in computations of two-particle quantities. (i) QMC meth-
ods are usually formulated directly in the thermodynamic limit
but require numerical analytical continuation to reconstruct real-
frequency spectra. A combination of statistical errors and uncer-
tainties in the analytical continuation may lead to final results
whose errors are comparable to the results themselves. Real-time
QMC simulations witness a progressive development of the infa-
mous sign (or phase) problem, which limits their applicability to
relatively short-time dynamics. (ii) ED-based methods are applied
to small clusters and typically require artificial broadening para-
meters to construct real-frequency spectra. The DMRG equations
can be propagated only for relatively short times,76,77 which may
not be long enough to reliably estimate the dc mobility.77 (iii) The
HEOM method treats small clusters but can, in principle, capture
the full decay of correlation functions.97–100 Being based on a for-
mally exact expression for the electronic reduced density matrix
(RDM), the HEOM method is undoubtedly numerically “exact.”
However, when employed on a finite system and truncated at a
finite depth, the HEOM with undamped phonon modes suffers
from numerical instabilities,101 which practically limit the maxi-
mum propagation time102 and whose overcoming requires further
algorithmic developments.101,103

In this study, we provide numerically “exact” results for the
electron mobility within the 1d Holstein model. In contrast to the
best currently available results, which are obtained by perform-
ing the numerical analytical continuation of imaginary-axis QMC
data61 (possibly combined with real-time QMC data on rather short
time scales63), our results entirely follow from real-time compu-
tations. We extend the momentum-space HEOM we developed
in Ref. 96 to follow the time evolution of finite-temperature two-
particle correlation functions up to very long (practically infinite)
real times. In addition, our momentum-space HEOM also enables
us to obtain highly accurate results for imaginary-time correlation
functions, which are the central quantities in QMC simulations.
Our imaginary-axis results help us establish the minimum chain
length and hierarchy depth needed to obtain results representa-
tive of the thermodynamic limit. The high quality of our real-time
results is ensured by checking that different sum rules (e.g., the
optical sum rule—OSR) are satisfied with high accuracy. We lower
the numerical effort with respect to existing HEOM implementa-
tions by exploiting the translational symmetry, which reduces the
number of independent dynamical variables in the formalism, and
noting that the totally symmetric phonon mode does not contribute
to the time evolution of correlation functions. We avoid numerical

instabilities in a wide range of parameter spaces by devising a specific
closing of the hierarchy. Still, the numerical instabilities inherent to
the undamped-mode HEOM prevent us from obtaining results at
low temperatures, for strong electron–phonon coupling, and when
electronic dynamics is much slower than phonon dynamics (the
so-called antiadiabatic regime).

The paper is organized as follows. Section II specifies the
model and introduces our momentum-space HEOM method for
the current–current correlation function. Technical details are pre-
sented in Appendixes A–D. In Sec. III, we provide a number of
numerical examples testing critical points of our methodology and
present our main results concerning temperature-dependent dc
mobility. Section IV is devoted to a summary and prospects for
future work.

II. THEORETICAL FRAMEWORK

A. Model and definitions

We consider the Holstein model on the 1d lattice comprising
N sites with periodic boundary conditions. In the momentum space,
its Hamiltonian reads as

H = He +Hph +He−ph

= ∑
k

εk∣k⟩⟨k∣ +∑
q

ωqb
†
qbq +∑

q

VqBq. (1)

The electronic and phononic wave numbers k and q may assume
any of the N allowed values in the first Brillouin zone −π < k,
q ≤ π. The Hamiltonian He describes an electron in a free-
electron band whose dispersion εk = −2J cos(k) originates from the
nearest-neighbor electronic hopping of amplitude J. The Hamil-
tonian Hph describes an optical-phonon branch with dispersion
ωq such that ωq=0 ≠ 0. The interaction term He−ph is character-
ized by its strength g and contains the purely electronic operator
Vq = ∑k ∣k + q⟩⟨k∣, which increases the electronic momentum by
q, and the purely phononic operator Bq = g√

N
(bq + b†

−q), which
decreases the phononic momentum by q. In the following, we set
the lattice constant al and the elementary charge e0, and the physical
constants h and kB to unity.

We focus on the dynamics of the current–current correlation
function

C jj(t) = 1
Z
Tr{ j(t) j(0)e−βH}, (2)

where the current operator reads as

j = −2J∑
k

sin (k)∣k⟩⟨k∣, (3)

where j(t) = eiHtje−iHt , while Z = Tr e−βH is the partition sum at tem-
perature T = β−1. Its Fourier transform C jj(ω) = ∫ +∞−∞ dt eiωtC jj(t)
[with Cjj(−t) = Cjj(t)∗] determines the frequency-dependent (or
dynamical) mobility,

Re μac(ω) = 1 − e−βω
2ω

C jj(ω)
= C jj(ω) − C jj(−ω)

2ω
, (4)

J. Chem. Phys. 159, 094113 (2023); doi: 10.1063/5.0165532 159, 094113-2

Published under an exclusive license by AIP Publishing

 1
1
 S

e
p
te

m
b
e
r 2

0
2
3
 0

7
:3

6
:2

7



The Journal

of Chemical Physics
ARTICLE pubs.aip.org/aip/jcp

where the second equality follows from the fluctuation–dissipation
theorem for equilibrium correlation functions, Cjj(−ω)= e−βωCjj(ω). The dc mobility is μdc = limω→0Re μac(ω) and
may be computed using only the real or only the imaginary part of
Cjj(t),104

μdc = 1
T∫

+∞

0
dt Re C jj(t)

= −2∫ +∞

0
dt t Im C jj(t). (5)

Cjj(t) (for t > 0) carries information on the carrier’s
dynamics resulting from a sudden (δ-like) perturbation of the
electron–phonon equilibrium. Its real part is proportional to the
velocity–velocity anticommutator correlation function, which is the
quantum counterpart of the velocity–velocity correlation function
used, e.g., to study Brownian motion. The mean-square displace-
ment (MSD) of the carrier’s position, Δx2(t) = ⟨[x(t) − x(0)]2⟩,
where ⟨⋅ ⋅ ⋅⟩ denotes averaging with respect to e−βH/Z, grows at a
rate determined by the time-dependent diffusion constant,105

D(t) = 1
2
d

dt
Δx

2(t) = ∫ t

0
ds Re C jj(s). (6)

Within the model considered here, Re Cjj(t) decays to zero in the
long-time limit, so that D(t) varies from 0 at short times to D∞= ∫ +∞0 ds Re C jj(s) at long times, where D∞ is the diffusion
constant related to the dc mobility by the Einstein relation (in
the units we use, μdc = D∞/T). The electron’s dynamics then
exhibits a crossover from short-time ballistic dynamics, whenΔx2(t)= Cjj(0)t2 and D(t) = C jj(0)t, to long-time diffusive dynamics,
whenΔx2(t) = 2D∞t and D(t) = D∞. In addition to D(t), another
quantity useful to describe this crossover is the diffusion exponent
α(t) ≥ 0 defined by assuming that the power-law scaling Δx2(t)∝
tα(t) holds locally around instant t,106 so that

α(t) = 2tD(t)
Δx2(t) . (7)

At short times, α(t) is close to 2, while it reaches the value of unity
in the long-time diffusive limit.

B. HEOM for the real-time current–current correlation
function

We formulate the HEOM method for the purely electronic
operator

ι(t) = 1
Z
Trph{e−iHt je−βHeiHt}, (8)

whileC jj(t) = Tre{ jι(t)}. Since the totally symmetric phononmode
(q = 0 mode) couples to the unit operator in the electronic sub-
space, it does not affect the dynamics of ι(t), while its contributions
to Z and e−βH cancel out after performing the partial trace over
phonons. This decoupling of the q = 0 phonon mode from the rest
of the phonon modes and the electronic states107 somewhat lowers

the number of auxiliary density operators (ADOs) ι(n)n (t), which
are characterized by the vector n = {nqm∣q ≠ 0,m = 0, 1} contain-
ing 2(N − 1) non-negative integers nqm counting individual phonon

absorption and emission events whose total number is n = ∑′qm nqm.
The prime on the sum indicates the omission of the q = 0 term.

The momentum conservation implies that the ADO ι
(n)
n (t) changes

the electronic momentum by kn = ∑′qm qnqm, so that only N of its

N2 matrix elements are nonzero. The only nonzero matrix ele-

ments of ι(n)n (t) are the ones connecting the states whose momenta
differ by kn. This requirement leads to a drastic reduction in the
number of equations with respect to existing real-space HEOM
formulations.97,99,102 A more detailed discussion in this direction is
deferred to the last paragraph of Sec. III B.

The dynamics of ι(t) follows from the real-time HEOM

∂t⟨k∣ι(n)n (t)∣k + kn⟩
= −i(εk − εk+kn + μn)⟨k∣ι(n)n (t)∣k + kn⟩
+ i∑′

qm

√(1 + nqm)cqm ⟨k − q∣ι(n+1)n+qm
(t)∣k + kn⟩

− i∑′
qm

√(1 + nqm)cqm ⟨k∣ι(n+1)n+qm
(t)∣k + kn + q⟩

+ i∑′
qm

√
nqmcqm ⟨k + q∣ι(n−1)n−qm

(t)∣k + kn⟩
− i∑′

qm

√
nqm

cqm√
cqm
⟨k∣ι(n−1)n−qm

(t)∣k + kn − q⟩, (9)

where μn = ∑′q ωq(nq0 − nq1). The ADO ι
(n)
n (t) couples to ADOs at

depths n ± 1, which are characterized by vectors n±qm whose compo-
nents are [n±qm]q′m′ = nq′m′ ± δq′qδm′m. The coefficients cqm and cqm

are defined in Eqs. (A2) and (A3) of Appendix A, where we provide
a detailed derivation of Eq. (9).

The initial condition for Eq. (9) is set by the equilibrium state
of the interacting electron–phonon system [see also Eq. (8)]. In our
previous publication,96 we derived that the hierarchical representa-
tion of that equilibrium state can be obtained from the following
imaginary-time HEOM:

∂τ⟨k∣σ(n)n (τ)∣k + kn⟩
= −(εk + μn)⟨k∣σ(n)n (τ)∣k + kn⟩
+∑′

qm

√(1 + nqm)cqm⟨k − q∣σ(n+1)n+qm
(τ)∣k + kn⟩

+∑′
qm

√
nqmcqm⟨k + q∣σ(n−1)n−qm

(τ)∣k + kn⟩. (10)

Equation (10) is propagated in imaginary time τ from 0 to βwith the

infinite-temperature initial condition ⟨k∣σ(n)n (0)∣k + kn⟩ = δn,0. The
initial condition for Eq. (9) is finally

⟨k∣ι(n)n (0)∣k + kn⟩ = Z−1e (−2J) sin (k)⟨k∣σ(n)n (β)∣k + kn⟩, (11)

where the so-called electronic partition sum reads as

Ze =∑
p

⟨p∣σ(0)0 (β)∣p⟩. (12)

A more detailed derivation is provided in Appendix A. Here, let
us emphasize that the structure of the imaginary-time HEOM in
Eq. (10) is fully compatible with the structure of the real-timeHEOM
in Eq. (9). This is different from existing approaches, in which the
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structures of the imaginary-time and real-timeHEOMs are notman-
ifestly identical99,108 and may require appropriate rearrangement
steps to obtain the initial condition for the real-time HEOM.108

C. Closing the HEOM for the real-time current–current
correlation function

When truncated at a finite maximum depth D, the real-time
HEOM in Eq. (9) suffers from numerical instabilities appearing at
sufficiently long times, which are commonly ascribed to the dis-
crete and undamped nature of phonons.101 Such instabilities have
been observed even for not-too-strong couplings and at not-too-low
temperatures. The instabilities are particularly detrimental to eval-
uations of μdc, for which we need Cjj(t) up to times so long that
it has decayed almost to zero [Eq. (5)]. They may be eliminated by
projecting out the unstable eigenmodes of the truncated HEOM,101

which requires numerically complicated filtration algorithms, or by
deriving a new hierarchy of equations,103 whose generally nontriv-
ial relation to the original hierarchy may complicate evaluations of
physically relevant quantities. The numerical instabilities reported
in Ref. 101 were observed under the so-called time-nonlocal (TNL)
truncation scheme, which sets all ADOs at depths n > D to zero.
One may thus hope that an appropriate closing of the HEOM at
the maximum depth could eliminate numerical instabilities. While a
number of closing schemes have been proposed recently,91,109,110 we
find that none of them stabilizes Eq. (9). A possible reason behind
our observation is that these schemes were tried and tested for the
electron coupled to a phonon bath, i.e., when the spectral density
of the electron–phonon interaction is a continuous function of the
energy exchanged. On the other hand, here we deal with a discrete
spectral density consisting of a finite number δ peaks at ±ωq. In
Appendix B, we build on previous density-matrix studies111–113 and
derive in detail a specific closing of Eq. (9) that permits us to over-
come the instabilities in many (but not all) parameter regimes. Here,
let us only mention that we eliminate the ADOs at depth D + 1 from
the equations at the maximum depth D by (i) setting the ADOs with
n ≥ D + 2 to zero and (ii) solving the resulting equations at depth
D + 1, which then contain only the ADOs at depth D in the Markov
and adiabatic approximations. The structure of the resulting equa-
tions at depth D is, however, more involved than the structure of
Eq. (9) because the ADOs at depth D become mutually coupled. We
eliminate these equal-depth couplings by resorting to the random
phase approximation, which neglects momentum-averaged matrix
elements of the ADOs at depth D due to random phases at different
momenta. The above-described procedure for closing the HEOM
results in equations for maximum-depth ADOs (n = D) that feature
exponential damping terms

[∂t⟨k∣ι(n)n (t)∣k + kn⟩]
close
= −δn,D 1

2
(τ−1k + τ−1k+kn)

× ⟨k∣ι(n)n (t)∣k + kn⟩, (13)

where τk is the carrier scattering time in the second-order per-
turbation theory and the long-chain limit [see Eq. (B7) and
Ref. 42].

In our numerical computations, we assume that phonons are
dispersionless, ωq ≡ ω0. For ω0/J ≥ 2, the closing scheme in Eq. (13)
cannot fully remove the numerical instabilities inherent to the
undamped-mode HEOM because the carrier scattering times then

become infinite for k states in the vicinity of ±π/2.26,42 We thus
obtain HEOM results for ω0/J ≥ 2 only at sufficiently high temper-
atures and for sufficiently (but not excessively) strong interactions.
For ω0/J < 2, our results summarized in Secs. III A and III E show
that the closing scheme in Eq. (13) removes the instabilities of Eq. (9)
for not too strong g or at not too low T. The instabilities remain for
strong g and at low T, while their relatively early appearance pre-
vents us from reliably computing μdc in such parameter regimes (see
Sec. III F).

D. HEOM for the imaginary-time current–current
correlation function

In order for Cjj(t) to be representative of the long-chain limit
and take all relevant phonon-assisted processes into account, both
N and D should be sufficiently large. The first proxy for how large
N and D should be follows from analyzing the current–current
correlation function Cjj(τ) in imaginary time.

While Cjj(τ) is directly accessible in QMC simulations,61,63,100

its evaluation using the HEOM method has not been considered
so far, to the best of our knowledge. The appropriate imaginary-
time HEOM is obtained from Eq. (9) by performingWick’s rotation
t → −iτ. We employ the TNL truncation of the HEOM thus
obtained, i.e., we simply set all the ADOs with n > D to zero. Cjj(τ)
is to be determined on the interval [0,β], on which it is symmetric
with respect to β/2. To enable as accurate an evaluation of Cjj(τ) as
possible, we find it useful to consider the symmetrized correlation
function

C
sym
jj (τ) = 1

Z
Tr{e−βH/2eHτ je−Hτe−βH/2 j}, (14)

on the interval [−β/2,β/2], which is related to Cjj(τ) via C jj(τ)= Csym
jj (τ − β/2) for 0 ≤ τ ≤ β. We note that the use of the sym-

metrized correlation function instead of the standard one is advan-
tageous in real-time QMC simulations114 and is also reported to be
useful in real-time HEOM computations.98,99 Nevertheless, we find
that the numerical instabilities of the real-time HEOM [Eqs. (9) and
(13)] are reflected on both Cjj(t) and C

sym
jj (t) in the same man-

ner, which is the reason why we consider the non-symmetrized
correlation function [Eq. (2)] in all our real-time computations.

We determine C
sym
jj (τ) by two independent imaginary-time

propagations: one forward from 0 to β/2 and the other backward
from 0 to−β/2. The initial condition (at τ = 0) for both propagations
is obtained from the imaginary-time HEOM for the equilibrium
state of the coupled electron–phonon system [Eq. (10)], which we
(i) propagate from 0 to β/2, (ii) multiply by j from the left, and
(iii) propagate once again from 0 to β/2. Since Csym

jj (τ) is symmet-
ric around 0, the results of the forward and backward propagations
in imaginary time should coincide. We use this fact to gain insight
into the maximum hierarchy depth D that is needed to obtain con-
verged results. In more detail, we find that the relative deviation(−β/2 ≤ τ ≤ β/2)

δ
sym
jj (τ) = 2 ∣C

sym
jj (τ) − Csym

jj (−τ)∣
C
sym
jj (τ) + Csym

jj (−τ) , (15)
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decreases with increasing D. Furthermore, following how C jj(τ)= [Csym
jj (τ − β/2) + Csym

jj (β/2 − τ)]/2 (0 ≤ τ ≤ β) changes with the
chain length N provides information about the minimum chain
length N needed to obtain results representative of the thermody-
namic limit. We, however, emphasize that the estimates for D and
N that stem from imaginary-axis data may differ from the cor-
responding estimates originating from real-time data. Whenever
possible, we also perform real-time simulations for multiple N and
D to ensure that our real-time results are also representative of the
thermodynamic limit.

E. Sum rules

To gain additional confidence in our HEOM results, we check
that certain sum rules for frequency-resolved quantities are sat-
isfied with sufficient accuracy.77,115 We compare the moments of
frequency-dependent quantities evaluated by (i) numerical integra-
tion over frequency and (ii) averaging an appropriate operator in the
equilibrium state of the coupled electron and phonon. We consider
the OSR

∫ +∞

0
dω Re μac(ω) = −π

2
⟨He⟩, (16)

and the sum rules

∫ +∞

−∞

dω

2π
ωn

C jj(ω) =Mn, (17)

for the first three moments (n = 0, 1, 2) of the real-frequency
current–current correlation function. In Eq. (16), we use the dynam-
ical mobility computed using the first equalities in Eqs. (4) (for
ω ≠ 0) and (5) (for ω = 0). The electron’s kinetic energy entering
Eq. (16) is evaluated using the quantities defined in Eqs. (10) and
(12),96

⟨He⟩ = 1
Ze
∑
k

εk⟨k∣σ(0)0 (β)∣k⟩. (18)

We note that the initial conditions ι(n)n (t = 0) [Eq. (11)] for the real-
time HEOM [Eq. (9)] do not enter Eq. (18). On the other hand, the
quantities Mn entering Eq. (17) are expressed in terms of the initial

conditions ι(n)n (t = 0) for the real-time HEOM, and we derive the
corresponding relations in Appendix C. Strictly speaking, Eq. (16)
holds only in the long-chain limit, and in Appendix D, we demon-
strate that the corresponding finite-size corrections decrease with
increasing N. On the contrary, for any given N and D, Eq. (17)
(with the expressions obtained in Appendix C) is exact. Having all
these things considered, we conclude that checking the sum rules
in Eq. (17) provides an important self-consistency check that all
the numerical procedures (e.g., the numerical Fourier transforma-
tion) are properly implemented while providing limited information
on the adequacy of N and D employed. In addition to a test for
numerical implementation procedures, checking the OSR consti-
tutes a nontrivial test for the adequacy of both D and N employed,

which is in line with previous studies.115 It is for this reason that we
focus our discussion in Sec. III on the OSR. As a general trend, we
observe that the sum rules in Eq. (17) are satisfied with better relative
accuracy than the OSR.

III. NUMERICAL RESULTS

We limit ourselves to dispersionless optical phonons, ωq ≡ ω0,
and perform HEOM computations for three different values of ω0/J
spanning the range from the adiabatic regime of slow phonons(ω0/J = 1/3) to the extreme quantum regime (ω0/J = 1) and the
antiadiabatic regime of fast phonons (ω0/J = 3). Since most of
our results are obtained for ω0/J ≤ 1, we use the dimensionless
interaction parameter,

λ = g2

2Jω0
, (19)

that is appropriate to describe the zero-temperature transition
from free electrons (λ < 1) to polarons (λ > 1) at such phonon
frequencies.

We devote Secs. III A–III C to discussing the performance
of the closing strategy embodied in Eq. (13) (Sec. III A) and the
effects of finite N and D on the HEOM results in imaginary and
real time (Sec. III B), as well as the accuracy with which the OSR
is satisfied (Sec. III C). Section III D summarizes the most rep-
resentative HEOM results for the time evolution of Cjj and the
dynamical-mobility profile. Our most significant results, which con-
cern the temperature dependence of μdc for different values of ω0/J,
are presented in Sec. III E. To further illustrate the capabilities and
limitations of our approach, we present HEOM results for Cjj(t) for
strong electron–phonon couplings and at different temperatures in
Sec. III F.

We provide HEOM data on Cjj(t), its Fourier transformation
Cjj(ω) computed using the FFTW3 software package,116 as well
as Re μac(ω), in different parameter regimes, as a freely available
dataset. For more details, see Ref. 117, which contains all our numer-
ical data, and the supplementary material of this manuscript, which
contains their detailed description. Here, let us onlymention that the
HEOM in Eq. (9) supplemented with the closing in Eq. (13) is prop-
agated using the algorithm proposed in Ref. 118 with the time step
ω0Δt = (1 − 2) × 10−2. While the maximum propagation time tmax

generally shortens with increasing g and/or T, it is a highly non-
trivial task to give its a priori estimate based only on the values of
model parameters. Fortunately, in contrast to some other numeri-
cally “exact” methods, such as the DMRG77 or real-time QMC,63 the
computational demands of the HEOMmethod do not increase with
time t and are completely determined by N,D,Δt, and the propa-
gation algorithm. We thus propagate the HEOM up to real times
that are sufficiently long so that the integral ∫ t

0 ds Re C jj(s)/T [see
Eq. (5)] as a function of t enters saturation [see, e.g., Figs. 3(b) and
3(c)]. The frequency resolution in the optical response is increased
by continuing Cjj(t) symmetrically for negative times −tmax ≤ t ≤ 0
using Cjj(−t) = Cjj(t)∗, which results in the frequency step Δω/ω0= π/(ω0tmax). Therefore, if one wants both a reliable result for μdc
and a finely resolved optical response, the maximum propagation
time should be sufficiently long. In practice, we used ω0tmax ≳ 500
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for small g and at relatively low T, ω0tmax ≃ 300 at intermediate
values of g and T, and ω0tmax ≲ 100 for large g or at high T.

A. Effectiveness and reliability of our closing strategy

We offer numerical examples demonstrating that the closing
in Eq. (13) actually stabilizes the real-time HEOM [Eq. (9)] without
compromising the results for μdc.

Figure 1(a) (its inset) shows the evolution of Re Cjj (Im Cjj)
with the closing in Eq. (13) and the TNL truncation in the weak-
coupling regime and at a relatively low temperature. The benefi-
cial effects of our closing strategy on HEOM stability are appar-
ent. Moreover, the HEOM [with closing in Eq. (13)] estimate for
μHEOM
dc = 68.0 using Jtmax = 800 agrees well with the estimate μwcldc =

72.5 emerging from the weak-coupling limit [see Eq. (49) in Ref. 42].
The relative difference between the two results is under 10%, which
eventually emerges as the relative error that is to be associated with
μHEOM
dc (see Sec. III B). With TNL truncation, it is much more diffi-

cult to obtain a reliable estimate of μdc. This is evident when μdc is
computed using only Re Cjj(t) [the first equality in Eq. (5)], which
under TNL truncation develops a pronounced hump for Jt ≳ 100.
The same applies to the computation using only Im Cjj(t) [the

FIG. 1. Time dependence of Re Cjj (in units of J2) employing the closing in
Eq. (13) (full black line, label “this work”) or the time-nonlocal truncation (dashed
red line, label “TNL”). The values of model parameters are ω0/J = 1, λ = 0.01,
and (a) T/J = 1, N = 160, D = 2 (in units of J2), (b) T/J = 10, N = 40, D = 3.
The insets show the time dependence of (a) Im Cjj , (in units of J2) (b) the quantity

∫
t

0
ds Re C jj(s)/T , which tends to μdc as t → +∞.

second equality in Eq. (5)], when the small-amplitude long-time
oscillations of Im Cjj around zero are amplified by multiplication
with time.

One may still argue that at higher temperatures, when carrier
scattering rates entering Eq. (13) become large, our hierarchy closing
may underestimate μdc. Such an effect may be particularly pro-
nounced for not too strong coupling when the maximum depth D
is not very large so that the exponentially damping terms in Eq. (13)
may appreciably affect the quantity at the hierarchy root, i.e., Cjj(t).
The inset of Fig. 1(b) shows that the estimate for μdc using the closing
in Eq. (13) and propagating the HEOM to sufficiently long times (we
took Jtmax = 100) is approximately the same as the one using the TNL
truncation and propagating the HEOM to times before the insta-
bilities arise (up to Jt ≈ 20). Both of these estimates (μHEOM

dc = 0.53)
agree reasonably well with the estimate μwcldc = 0.61 emerging from
the weak-coupling limit.

B. Effects of finite N and D on the current–current
correlation function and dc mobility

We first analyze Cjj(τ). We fix g/J = ω0/J = T/J = 1 and dis-
cuss the importance of finite-size effects for maximum hierarchy
depth D = 6. Figure 2(a) shows that Cjj(τ) steadily approaches its
long-chain limit with increasing N. The approach to that limit is
quite fast because the relative deviation with respect to the results
for the longest chain studied (N = 13) decreases by almost three
orders of magnitude upon increasing N from 7 to 10 [see the inset
of Fig. 2(a)]. Therefore, already, N = 10 should be sufficiently large
to obtain results representative of the long-chain limit. Figure 2(b)
shows that the quality of our imaginary-time data, quantified by
the relative difference δsymjj (τ) [Eq. (15)], steadily increases with
increasing D.

While Figs. 2(a) and 2(b) demonstrate a steady convergence of
the imaginary-time data toward the large-N and large-D limit as N
and D are increased, the situation on the real axis is somewhat more
complicated, which is summarized in Figs. 3(a)–3(c). Fixing D to 6,
Fig. 3(a) [Fig. 3(b)] shows that Re Cjj(t) [Im Cjj(t)] is virtually the
same for N = 10, 13, and 15. For N = 7, 10, and 13, we propagated
HEOM up to Jtmax = 400, while we used Jtmax = 300 for N = 15. At
longer times (not shown here), both Re Cjj(t) and Im Cjj(t) exhibit
small-amplitude oscillations around zero. The agreement between
the results for different N in the real-time domain translates to the
overall profile of Reμac(ω) [see the inset of Fig. 3(a)]. However, the
dc mobility somewhat decreases upon increasingN from 7 to 10 and
13, while its values for N = 13 and 15 are virtually the same [see the
full dots in the inset of Fig. 3(a) and Table I]. The relative differ-
ences between μdc for different values of N considered are of the
order of percent, which is also evident from the inset of Fig. 3(b)
displaying the convergence to the dc limit when only Im Cjj(t) is
used to evaluate μdc [the second equality in Eq. (5)]. The integral

−2∫ t
0 dssIm C jj(s) is expected to display long-time oscillations origi-

nating from the corresponding oscillations of Im Cjj(s) around zero.
The inset of Fig. 3(b) thus shows the smoothed data obtained using
the moving-average procedure, which is employed at sufficiently
long times to reliably compute μdc. In more detail, the moving aver-

age of the quantity −2∫ t
0 dssIm C jj(s) at instant t is computed as

the arithmetic average of its Nmove values right after t and its Nmove
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FIG. 2. (a) Current–current correlation function (in units of J2) in imaginary time
Jτ ∈ [0, βJ] for D = 6 and different chain lengths N. The inset shows the quantity

∣CN
jj(τ) − CN=13

jj (τ)∣/CN=13
jj (τ) for N = 7 and 10. (b) The quantity δsym

jj
[Eq. (15)]

as a function of imaginary time Jτ ∈ [−βJ/2, βJ/2] for a 10-site chain and differ-
ent maximum hierarchy depths D. Note the logarithmic scale on the vertical axis in
the insets of (a) and (b). The model parameters are g/J = ω0/J = T/J = 1.

values right before t. We take Nmove to be 10% of the total number
of points for which we have HEOM data. Figure 4(a) shows that the
moving-average procedure indeed smooths out the long-time oscil-
lations of the quantity −2∫ t

0 dssIm C jj(s), while the dependence of
the final result for μdc on the averaging window is much less pro-
nounced than, e.g., its dependence on the parity of D, vide infra.
The μdc estimates using the two equalities in Eq. (5) agree up to a
couple of percent (see Table I). The relative difference of the same
order of magnitude is obtained when D is increased from 6 to 8
when N = 10, while decreasing D from 6 to 5 leads to a decrease
in μdc of around 10% [see Fig. 3(c) and Table I]. For N = 10 and
D = 7, Re Cjj(t) becomes negative at long times, which may prevent
us from reliably estimating μdc. Nevertheless, we see that follow-
ing the time evolution up to Jtmax = 70 provides an estimate of μdc
that differs from the estimate for N = 10,D = 5, by a couple of per-
cent. We thus conclude that μdc estimates may depend on the parity
of the maximum hierarchy depth D. For sufficiently large D, the
estimates for D and D + 2 differ by a couple of percent, and those
for D and D + 1 differ by around 10%. While we find that such
a behavior of μdc as a function of D (for fixed N) is generic, the

FIG. 3. Time dependence of (a) Re Cjj and (b) Im Cjj (both in units of J2) for
D = 6 and different chain lengths N. (c) Time dependence of Re Cjj (in units of

J2) for N = 10 and different maximum hierarchy depths D. The inset in (a) shows
the frequency profile of the dynamic mobility for D = 6 and different N. Full dots
at ω = 0 represent the results for μdc using the first equality in Eq. (5) (see also
Table I). The inset in (b) shows how the result of the integration in Eq. (5) converges
toward μdc as we increase the upper integration limit. To obtain smooth curves, we
perform the moving average procedure described in the text. The inset in (c) shows
how the result of the integration in Eq. (5) converges toward μdc as we increase
the upper integration limit. The model parameters are g/J = ω0/J = T/J = 1.

magnitudes of the above-mentioned relative differences generally
decrease with temperature. The preceding discussion implies that
HEOM estimates for μdc should be taken with relative uncertainties
not surpassing 10%.
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TABLE I. Effects of finite N and D on HEOM results for the dc mobility. The HEOM is
propagated up to time Jtmax. Model parameters are g/J = ω0/J = T/J = 1.

(N,D) μdc from Re Cjj(t) μdc from Im Cjj(t) Jtmax

(10,5) 1.327 1.308 400
(10,6) 1.493 1.484 400
(10,7) 1.336 1.325 70
(10,8) 1.548 1.537 200

(7,6) 1.520 1.513 400
(13,6) 1.472 1.459 400
(15,6) 1.473 1.452 300

Without the specific HEOM closing [Eq. (13)], it would be
nearly impossible to obtain meaningful results for the dc or ac
mobility, which is apparent from Fig. 4(b) showing HEOM data for
Re Cjj(t) that use the TNL truncation. Model parameters are the
same as in Fig. 3(c), to which the results in Fig. 4(b) are to be com-
pared. Our closing smooths the local maximum in Re Cjj(t) around
Jt ≃ 4 and stabilizes the subsequent time evolution, whose oscil-
latory features under TNL truncation become more pronounced
with increasing D. In addition to Re Cjj(t), in Fig. 4(c), we show
the quantity ∫ t

0 ds Re C jj(s)/T [see Eq. (5)] under TNL truncation
(dashed lines) and our closing scheme (solid lines). While the agree-
ment between the dashed and solid lines in Fig. 4(c) is good for
Jt ≲ 10, the results obtained under TNL truncation do not show any
sign of reaching a long-time limit with increasing t. One could use
the HEOM data with TNL truncation up to Jtmax ≃ 20 (before the
instabilities become more pronounced) to extract the dc mobility
of around 1.25, and virtually the same estimate would be obtained
using the HEOM data with our closing scheme up to Jtmax ≃ 20 [see
Fig. 4(c)]. Nevertheless, if one is to obtain the optical response with
a decent frequency resolution using the HEOM data in Fig. 4(b)
up to Jtmax ≃ 20, one should probably perform additional numerical
procedures, such as the zero-padding (to effectively increase tmax),
possibly combined with signal windowing.77,96 Such procedures,

however, may affect the intensities (and to some extent the posi-
tions) of the optical-response features, mainly in the low-frequency
part that corresponds to the most challenging long-time dynamics.
On the other hand, when we propagate our stabilized HEOM up to
long real times, no additional numerical procedures on the HEOM
data for Cjj(t) are required to compute the optical response. While
the observed dependence of our HEOM results on the parity of D
could be attributed to our closing scheme, we believe that we handle
this effect in an appropriate manner because we use it to estimate
the relative error of our results for μdc. While a detailed explana-
tion of our observations is beyond the scope of this investigation,
we speculate about their possible origin as follows. In Eq. (9), μn is
the change in energy of the phononic subsystem due to the sequence
of electron–phonon interaction events described by n. At depth n,
μn/ω0 can assume values ±n,±(n − 2), . . ., while at odd depths n,
all μns are nonzero, even depths feature some vectors n for which
μn = 0. At even depths, there are thus ADOs having both μn = 0
and kn = 0, meaning that the resonance condition εk − εk+kn + μn = 0
emerging from the free-rotation term in Eq. (9) is perfectly satis-
fied. On the other hand, at odd depths, the resonance condition
is almost never perfectly met: even if kn = 0 for a particular n,
μn is certainly nonzero. When the closing scheme in Eq. (13) is
applied, the behavior of all ADOs at an odd maximum depth can
be described by damped oscillations (in the lowest approximation
that neglects links to other ADOs). In the same approximation, at
an even maximum depth, there are ADOs that are exponentially
suppressed with time without displaying any oscillatory behavior.
The influence of such ADOs on the overall HEOM dynamics might
be less pronounced than the influence of ADOs exhibiting damped
oscillations.

We finish this section by briefly discussing the decrease in the
number of active variables in our momentum-space HEOM with
respect to existing real-space formulations. Namely, for an N-site
chain, the number of ADOs upon hierarchy truncation at depth D

is nrsADO = ( 2N+DD
) when working in real space (q = 0 phonon mode

is considered) and nms
ADO = ( 2(N−1)+DD

) when working in momen-

tum space (q = 0 phonon mode is not considered). As the num-
ber of entries in each ADO is at the same time reduced by a

FIG. 4. (a) Long-time evolution of the quantity −2∫
t

0
dssIm C jj(s) [black solid line, label “non-smoothed,” see Eq. (5)] and its moving averages computed for different sizes

(determined by Nmove defined in the text) of the averaging window. Percentages are to be taken from the total number of points for which HEOM data are available. (b) Time

dependence of Re Cjj (in units of J2) under the TNL truncation for different values of D. (c) Time dependence of the quantity ∫
t

0
ds Re C jj(s)/T [see Eq. (5)] under the TNL

truncation (dashed lines) and our closing in Eq. (13) (solid lines). The values of the model parameters and the color code are the same as in (b). The model parameters are
g/J = ω0/J = T/J = 1, N = 10 in all three panels, and D = 6 in panel (a).
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factor of N, the relative decrease in the number of variables that
have to be propagated upon transferring from real to momentum
space is

N2nrsADO −Nnms
ADO

N2nrsADO
= 1 − 2(2N − 1)

(2N +D)(2N +D − 1) . (20)

For a fixed N, the savings in computer memory increase with D.
While the savings in computer memory for fixed D decrease with
N, they can be substantial on relatively short chains that are still suf-
ficiently long so that the corresponding results are representative of
the long-chain limit. For example, forN = 10 andD = 6 (as in Fig. 3),
the relative decrease in the number of active variables with respect to
HEOM formulations in real space is around 40%.

C. Numerical examples concerning sum rules

Figure 5(a) summarizes how the relative accuracy

δOSR = ∣∫
+∞
0 dω Reμac(ω) − π

2 ∣⟨He⟩∣∣
π
2 ∣⟨He⟩∣ , (21)

with which the OSR is satisfied depends on N and D for the same
values of model parameters as in Figs. 2–4. We observe that, in the
ranges of N and D considered, δOSR generally decreases with both N
[assuming fixed D; see black circles, right vertical and top horizon-
tal axes in Fig. 5(a)] and D [assuming fixed N; see red squares, left
vertical and bottom horizontal axes in Fig. 5(a)].

Fixing D to 6 and varying N from 7 to 15, we observe the steep-
est decrease in δOSR upon increasing N from 7 to 10, while further
increases inN from 10 to 13 and 15 result in a much milder decrease
in δOSR. This observation is consistent with both the imaginary-axis
data shown in Fig. 2(a) and the real-time data presented in Figs. 3(a)
and 3(b) and Table I. Namely, the largest (and smallest) variation
in Cjj(τ), Cjj(t), and μdc upon increasing N ∈ {7, 10, 13} to the sub-
sequent value from the sequence [7,10,13,15] is observed for N = 7(N = 13). The decrease in δOSR with increasing N is, however, ulti-
mately limited by the fact that δOSR depends on quantities that are
themselves calculated numerically and thus bring their own numer-
ical errors into the final expression. The integral over frequencies
is computed using the trapezoidal rule, while ⟨He⟩ is computed for
finite values of N and D (we do not use its “exact” value in the
limit N,D→∞ that could be obtained using our96 or some other76

method). The error incurred when the integral ∫ +∞0 dω Reμac(ω) is
evaluated using the trapezoidal rule is of the order of (Δω/J)3,119
where the frequency step Δω is related to the maximum propaga-
tion time tmax by Δω/J = π/(Jtmax). Fixing D and varying N, we
use Jtmax = 300, meaning that the numerical error of the integral

∫ +∞0 dω Reμac(ω) is of the order of (π/300)3 ∼ 10−6. In other words,
N = 15 is sufficiently large that δOSR is most probably not domi-
nated by finite-size effects in N but rather by the error of numerical
integration. This is further corroborated by the fact that the kinetic
energies for N = 13 and N = 15 differ on the seventh decimal place
(see Table II), meaning that the error of the kinetic energy forN = 15
is at least an order of magnitude below the numerical integration
error. On the other hand, for N = 7, δOSR is most probably limited
by the finite-size effects in ⟨He⟩. The data in Table II suggest that
the error of ∣⟨He⟩∣N=7,D=6, which can be inferred from its deviation

FIG. 5. (a) Relative accuracy δOSR [Eq. (21)] as a function of D for N = 10 (red
squares, left vertical and bottom horizontal axes) and as a function of N for D = 6
(black circles, right vertical and top horizontal axes). The dashed lines connecting
the symbols serve as guides for the eye. The model parameters are g/J = ω0/J
= T/J = 1 (λ = 0.5). For N = 10, we use Cjj(t) up to Jtmax = 200 for
D = 5, 6, and 8, while for D = 7, we take Jtmax = 70 (see also Table I).
For D = 6, we use Cjj(t) up to Jtmax = 300 for N = 7, 10, 13, and 15.
(b) Comparison of HEOM (lines) and QMC (symbols with error bars)

results for Re Cjj(t) (in units of J2) for N = 10, g/J = 1/√3, ω0/J = 1/3,
T/J = 1 (λ = 0.5), and different values of D. Solid lines (label “w c”)
employ our closing [Eq. (13)], while dashed lines (label “TNL”) use the TNL trun-
cation. (c) Comparison of HEOM results averaged over depths D − 1 and D (solid
lines) with QMC results (symbols with error bars) for D = 6, 7, and 8, while other
parameters assume the same values as in (b). QMC data are the courtesy of N.
Vukmirović.

from ∣⟨He⟩∣N=10,D=6, is of the order of 10−3. This is consistent with
the value of δOSR reported in Fig. 5(a).

A similar analysis can be repeated by fixingN and varyingD. In
practice, our criterion for choosing N and D is that δOSR ≲ 10−4. As
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TABLE II. Kinetic energy of the electron as a function of N and D for g/J = ω0/J
= T/J = 1.

(N,D) ∣⟨He⟩∣/J
(7,6) 1.155 308 279 5
(10,6) 1.154 623 995 5
(13,6) 1.154 622 914 9
(15,6) 1.154 623 007 8

mentioned in Sec. II E and as can be seen from the supplementary
material, the relative accuracy with which the sum rules in Eq. (17)
are satisfied is generally better than δOSR.

At higher temperatures (T/ω0 ≳ 3), we find that HEOM data
for fixed N and two sufficiently large consecutive depths D − 1 and
D generally have almost the same δOSR [as in Fig. 5(a)], while there
are some differences between them already at relatively short times.
For example, for g/J = 1/√3, ω0/J = 1/3, and T/J = 1 (λ = 0.5), we
find that the differences between HEOM results for different val-
ues of D (we fix N = 10) appear already for Jt ≃ 2 or ω0t ≃ 2/3 [see
Fig. 5(b)], in contrast to the situation in Figs. 3(c) and 4(c), where the
differences appear at somewhat longer times. We perform HEOM
computations with TNL truncation and our specific closing and find
that the short-time differences observed in Fig. 5(b) cannot be exclu-
sively attributed to our closing scheme as they are also present under
the TNL truncation. Actually, our closing stabilizes the evolution of
Re Cjj(t) and lowers the differences between HEOM results for dif-
ferent values of D (with respect to the TNL truncation). To reveal
whether our HEOM results are reliable, we compare them with
QMC data obtained using the methodology developed in Ref. 63.
QMC results are numerically “exact,” as their convergence with
respect to all control parameters of the simulation has been carefully
checked. In Figs. 5(b) and 5(c), we show QMC results with their sta-
tistical error bars. Figure 5(b) suggests that the difference between
HEOM (with our closing) and QMC results decreases relatively
slowly with increasing D, while HEOM dynamics for Ds of the same
parity (D = 5, 7 andD = 6, 8) deviate from the QMC results in a sim-
ilar manner (both deviations are positive/negative). It is known that
the convergence of a slowly converging sequence can be improved
by performing an appropriate sequence transformation, such as the
Shanks or Richardson transformation.120 Here, inspired by the rea-
soning behind the Shanks transformation, we want to improve the
convergence of the sequence Cjj(D; t) in D (for fixed N and at each
instant t) by handling the term whose decay (as a function of D)
toward zero is the slowest. Based on Fig. 5(b), one may imagine that
the dependence of Cjj(D; t) on D can be represented as

C jj(D; t) = CD→∞
jj (t) + α(t)(−1)D

Da , (22)

where a > 0, α(t) is a complex number, CD→∞
jj (t) is the sought

large-D limit, while the alternating term (−1)D mimics the observed
alternation of HEOM results with respect to QMC results with the
parity of D. We use Eq. (22) to arrive at

C jj(D − 1; t) − CD→∞
jj (t)

C jj(D; t) − CD→∞
jj (t) = −(D − 1

D
)a ≈ −1, (23)

where the last approximate equality holds for sufficiently large D
(the smaller a, the smaller the minimum value of D for which the
approximation is good). Equation (23) implies that

C
D→∞
jj (t) ≈ C jj(D; t) + C jj(D − 1; t)

2
, (24)

which suggests that the large-D limit of Cjj(D; t) can be approached
more rapidly by considering the transformed sequence [Cjj(D; t)
+ Cjj(D − 1; t)]/2 instead of the original sequence Cjj(D; t). While
our arguments are not fully mathematically rigorous, they produce
plausible results, as revealed in Fig. 5(c), showing how the HEOM
data averaged over two consecutive depths (5 and 6, 6 and 7, 7 and
8) compare to the QMC data. We observe that the agreement with
the QMC data improves with increasing the depths over which the
averaging is performed. As a result, when averaging over depths 7
and 8, HEOM results are within the QMC error bars in the largest
portion of the time window displayed. It then seems reasonable that
our final HEOM result in this parameter regime be the average of
the results forD = 7 and 8. Finally, whenever our dataset117 provides
raw data for Cjj(t) for two consecutive depths, we use the average
Cjj(t) when computing physical quantities.

D. Signatures of the electron–phonon interaction
in time and frequency domains

Figures 6(a1)–6(c3) present selected results concerning the
dynamics of the j − j correlation function, diffusion constant,
and diffusion exponent, together with the frequency profile of
the dynamical mobility. Our analysis of the parameter regimes
in which HEOM computations are free of numerical instabili-
ties [see Figs. 7(a)–7(c)] identifies three typical behaviors of the
aforementioned quantities.

In the weak-coupling regime (λ = 0.01) for ω0/J = 1/3 and 1,
we find a smooth crossover from the ballistic electronic motion at
short times toward the diffusive motion at long times. The rep-
resentative results for ω0/J = 1 are shown in Figs. 1(a) and 1(b),
while Figs. 6(a1)–6(a3) show representative results for ω0/J = 1/3.
Re Cjj(t), D(t), and α(t) are all monotonic functions of time, while
the dynamical-mobility profile has only the Drude peak at ω = 0 and
bears an overall resemblance to the Drude model.

Already in the intermediate-coupling regime (λ = 0.5) for
ω0/J = 1/3 and 1, the ballistic-to-diffusive crossover is not
smooth. The representative results for ω0/J = 1 are presented in
Figs. 3(a)–3(c), whereas Figs. 6(b1)–6(b3) show representative
results for ω0/J = 1/3. Re Cjj(t), D(t), and α(t) are non-monotonic
functions of time. We observe that Re Cjj(t) < 0 on intermediate
time scales, on which the diffusion constant decreases with time.
This is clear from Eq. (6), which establishes a connection between
the sign of Re Cjj(t) and the intervals of monotonicity of D(t).
α(t) reaches a pronounced local minimum on the very same time
scale. In other words, intermediate time scales in the intermediate-
interaction regime witness a temporally limited slow-down of the
electronic motion. Depending on the parameter regime (typically
for strong g and at high T), that slow-down may be so pronounced
that the electronic motion changes its character from superdiffusive(α > 1) to subdiffusive (α < 1) over a limited time frame.While such
a change occurs for model parameters studied in Figs. 6(b1)–6(b3),
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FIG. 6. Time dependence of Re Cjj [in units of J2, (a1)–(c1)], D [in units of J, (a2)–(c2)], and the frequency dependence of Re μac [(a3)–(c3)] for (a) ω0/J = 1/3, λ =
0.01, T/J = 1, (b) ω0/J = 1/3, λ = 0.5, T/J = 1, and (c) ω0/J = 3, λ = 0.5, T/J = 10. The insets of panels (a1)–(c1) [(a3)–(c3)] display the time dependence of Im Cjj in

units of J2 (α). The dashed lines in (a2)–(c2) represent the short-time (ballistic) limit of the diffusion constant, Dbal(t) = C jj(0)t. The dashed line in the inset of (c2)
represents α(t) for the parameter regime examined in Fig. 3. The results in (a1)–(a3) emerge from HEOM computations using N = 128, D = 2, while the remaining results
are the arithmetic average of HEOM computations using: (b1)–(b3) N = 10, D = 7 and N = 10, D = 8; (c1)–(c3) N = 5, D = 18 and N = 5, D = 19.

FIG. 7. HEOM-method results for the temperature-dependent dc mobility for different interaction strengths (different values of parameter λ) and (a) ω0/J = 1/3, (b) ω0/J = 1,
and (c) ω0/J = 3. Full symbols are HEOM-method results, while dashed lines connecting them serve as guides to the eye. Double dashed–dotted lines show the theoretically

predicted26 power-law scaling μdc ∝ T−2 or μdc ∝ T−3/2 in appropriate limiting cases (no fitting procedures have been performed on the HEOM data).

it is absent for model parameters studied in Figs. 3(a)–3(c) [see the
dashed line in the inset of Fig. 6(b3)]. Apart from the Drude peak at
ω = 0, the dynamical mobility features a prominent finite-frequency
peak.

The available results for ω0/J = 3, which are obtained for
sufficiently strong interactions and at sufficiently high tempera-
tures, also display a non-monotonic behavior of Re Cjj(t), D(t),
and α(t). In contrast to the results for ω0/J = 1/3 and 1, D(t)
increases in almost regular steps centered around integer multiples
of 2π/ω0. The first peak of Re Cjj(t) is indeed centered at 2π/ω0,

while subsequent peaks are somewhat displaced toward earlier times
[see Fig. 6(c1)]. The dynamic-mobility profile is characterized by rel-
atively broad peaks centered around integer multiples of ω0. These
features suggest that we are close to the genuine small-polaron
limit.18,32

E. Temperature dependence of the dc mobility

Figures 7(a)–7(c) present the central result of our study, the
HEOM-method results for the temperature dependence of μdc for
three different values of ω0/J. As discussed in Sec. III B, our results
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for μdc should be assigned relative errors not surpassing 10%. The
values reported in Figs. 7(a)–7(c) are obtained by averaging μdc com-
puted using only ReCjj(t) or only ImCjj(t) [Eq. (5)]. The smoothing
procedure described in Sec. III B is applied when considering only
Im Cjj(t). At elevated temperatures (T/ω0 ≳ 3), we additionally
average HEOM results for two consecutive depths, as discussed in
Sec. III C.

Section III F gives an example of numerical instabilities appear-
ing for sufficiently strong g or at sufficiently low T, which prevent
us from obtaining reliable HEOM results, e.g., when λ > 1 or when
T/J < 2 and λ = 1 in Fig. 7(b). Our data for λ = 1 in Figs. 7(a) and
7(b) suggest that μdc enters saturation on the low-temperature side.
If we could lower the temperature further, we would enter the regime
of thermally activated transport, in which μdc grows with T, while
we obtain HEOM results only in regimes where μdc decreases with
T. Concerning the temperature dependence of μdc, we find that the
HEOM mobilities at low g and for ω0/J = 1/3 and 1 are consistent
with the recently found scaling μdc ∝ T−2,26 which is shown as a
double dashed–dotted line. For stronger coupling and at sufficiently
high temperatures, the HEOM mobilities are consistent with the
scaling μdc ∝ T−3/2, which is again shown as a double dashed–dotted
line.

F. Numerical instabilities for strong electron–phonon
interactions and at low temperatures

For stronger interactions, at lower temperatures, and for larger
ω0/J, the numerical instabilities appearing already at relatively short
real times (despite employing our specific closing strategy) prevent
us from computing the long-time dynamics of Cjj(t) and thus μdc.
As an example, in Figs. 8(a) and 8(b), we present our HEOM results
in the strong-coupling regime (λ = 2) for ω0/J = 1 at a relatively low
temperature T/J = 1 [Fig. 8(a)] and at an elevated temperature T/J= 5 [Fig. 8(b)].

For T/J = 1, numerical instabilities appear already for Jt ≳ 3
and become more pronounced at longer times. The maximum time
up to which reliable HEOM results for Cjj(t) can be obtained is
thus of the same order of magnitude as the maximum time that can
be reached in real-time QMC simulations, whose results are shown
as full symbols (QMC error bars are omitted here for visual clar-
ity). The inset of Fig. 8(a) shows how the integrals ∫ t

0 dsReC jj(s)/T
and −2∫ t

0 dssIm C jj(s), whose t → +∞ limit determines μdc, evolve
as functions of their upper limit t. While the numerical instabili-
ties become amplified when μdc is computed using only Im Cjj(t),
the data using only Re Cjj(t) may suggest that the maximum
time Jtmax = 3 is sufficiently long to capture the electron’s diffusive
motion [∫ t

0 ds Re C jj(s)/T reaches a plateau for 2 ≤ Jt ≤ 3]. Nev-
ertheless, the corresponding mobility estimate may be unreliable.
Namely, as discussed in Ref. 42, for strong interactions and at not
too high temperatures, Re Cjj(t) exhibits a series of peaks whose
envelope decays over many phonon periods. Our HEOM computa-
tions do capture the most prominent peak centered at t = 0. Still, the
numerical instabilities arise well before the completion of the first
phonon period 2π/ω0, meaning that the HEOM results fully miss
the contributions to μdc from the peaks at later times. Such contri-
butions may be appreciable because of the slowly decaying envelope,
and one may thus expect that the HEOM result underestimates the
dc mobility.

FIG. 8. Time dependence of Cjj (in units of J2) computed using the HEOM method
(lines) and the real-time QMC method developed in Ref. 63 (symbols) for ω0/
J = 1, λ = 2, and (a) T/J = 1, (b) T/J = 5. Solid (dashed) lines display Re Cjj(t)
[Im Cjj(t)]. The insets display time evolution of ∫

t
0

ds Re C jj(s)/T (solid lines)

and −2∫
t

0
dssIm C jj(s) (dashed lines). The HEOM computations in (a) use

N = 10 and D = 8, while (b) shows the arithmetic average of HEOM results
obtained for N = 7, D = 10 and N = 7, D = 11. QMC simulations in both (a) and
(b) use N = 10, and the respective data are the courtesy of N. Vukmirović.

For strong interactions and at higher temperatures, we do
not observe numerical instabilities [see Fig. 8(b)], and our HEOM
method can again reach much longer times than real-time QMC
methods. Higher temperatures, in combination with our closing
strategy, generally stabilize the HEOM. Since the amplitude of the
aforementioned later-time peaks is strongly suppressed at higher
temperatures,42 the HEOM method may provide reliable results
for μdc. The inset of Fig. 8(b) shows that mobility computations
using either ReCjj(t) or ImCjj(t) [the latter in conjunction with the
moving-average procedure, see the discussion of Fig. 3(b)] lead to
virtually the same HEOM result, μHEOM

dc = 0.0375.
Finally, the very good agreement between theHEOMandQMC

results in Figs. 8(a) and 8(b) strongly suggests that the values of
D employed in the corresponding HEOM computations are suffi-
ciently large. One may ask themselves whether a larger value of D
could mitigate the instabilities observed in Fig. 8(a). Unfortunately,
the results of Ref. 101 show that the undamped-modeHEOM cannot
be stabilized by further increasing D.
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IV. CONCLUSION AND OUTLOOK

We develop the momentum-space HEOMmethod to compute
the real-time current–current correlation function at finite tempera-
ture for the 1d Holstein model, which provides us with direct access
to its transport properties. By exploiting the decoupling of the q = 0
phonon mode and formulating the HEOM in the momentum rep-
resentation, we greatly reduce the number of variables with respect
to existing real-space HEOM implementations. This circumstance
has enabled us to obtain results that take into account all important
phonon-assisted processes (i.e.,D is sufficiently large) on chains that
are sufficiently long (i.e.,N is sufficiently large) so that the finite-size
effects are minimized. Another distinctive feature of our formal-
ism is its specific hierarchy closing strategy [Eq. (13)], which has
enabled us to overcome the numerical instabilities inherent to the
undamped-mode HEOM formulated on a finite chain and truncated
at a finite maximum hierarchy depth. We are thus in a position to
provide reliable results for the dc mobility by computing Cjj(t) up
to quite long real times by which it has almost decayed to zero, i.e.,
the electronic motion has become diffusive. A detailed analysis of
how Cjj(t) and, therefore, μdc depend on N and D suggests that our
results for temperature-dependent mobility should be considered
with uncertainties typically below 10%. Still, the instabilities remain
for strong couplings, at low temperatures, and for large phonon fre-
quencies. In such parameter regimes, we can obtain Cjj(t) only up
to relatively short real times.

Our momentum-space HEOM method, which has already
achieved substantial memory savings with respect to existing real-
space HEOM implementations (see Sec. III B), may be com-
bined with advanced propagation techniques based on the tensor
formalism80,103,121–123 or with on-the-fly filtering techniques124 to
treat longer chains or larger maximum depths. This could pave the
way toward HEOM computations at lower temperatures or stronger
interactions. In such parameter regimes, accurate results for elec-
tronic dynamics can be obtained using the hierarchy of Davydov’s
Ansätze.81,82 However, its current implementations assume that the
initial state of the electron–phonon system is factorized and that
phonons are in thermal equilibrium with the system with no elec-
trons. While following the electron’s dynamics from such a state can
provide information on the dc mobility,40,83,97 it provides no infor-
mation on the frequency-dependent mobility, which follows from
the current–current correlation function (see Sec. II A). Its com-
putation, in turn, necessitates an appropriate representation of the
thermal equilibrium state of the interacting electrons and phonons
(see Sec. II B), which has still not been addressed using the hierarchy
of Davydov’s Ansätze, to the best of our knowledge. Our study may
motivate an extension of Davydov’s Ansätze approach to compute
equilibrium correlation functions in parameter regimes that are the
most challenging for the HEOMmethod.

We also note that, at least in the limiting case of slow phonons,
an interesting physical picture for the finite-frequency peak we
observe in the optical response may be constructed based on the
transient localization scenario.125 While this approach was originally
devised to study transport limited by intermolecular vibrationsmod-
ulating the hopping amplitude, its more recent refinements126 and
applications127 have considered the Holstein model in the limit of
vanishing carrier density. A more detailed study in this direction
might be the subject of future work. We finally note that the method

proposed in this manuscript cannot be directly applied to study car-
rier transport limited by the nonlocal electron–phonon interaction
(e.g., the Peierls model).128 The developments reported here cru-
cially lean on the fact that the current operator j is a purely electronic
operator [see Eq. (3)]. In other words, the current–current corre-
lation function Cjj(t) can be computed using only the electronic
RDM (see Sec. II B). On the other hand, when the electron interacts
linearly with intermolecular phonons modulating the hopping inte-
gral, the current operator is a mixed electron–phonon operator.37,100

This means that Cjj(t) cannot be computed using only the electronic
RDM. One should thus devise a procedure to retrieve correlation
functions involving phonon operators from the HEOM formalism.
While this complex issue is well beyond the scope of this study, the
herein developed momentum-space representation of the HEOM
will remain beneficial to the overall computational performance of
such a procedure.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of HEOM com-
putations [values ofN andD employed, reference HEOM results for
the electron’s kinetic energy and moments of Cjj(ω), as well as the
relative accuracy with which different sum rules are satisfied]. The
supplementary material contains all the information needed to use
our numerical data that are deposited on the Zenodo platform (see
Ref. 117).
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APPENDIX A: DERIVATION OF THE HEOM
FOR THE REAL-TIME CURRENT–CURRENT
CORRELATION FUNCTION

The decoupling of the q = 0 phonon mode from the rest of
the system permits us to consider Hamiltonians H′ph = ∑′q ωqb

†
qbq

and H′e−ph = ∑′q VqBq without the q = 0 term, which is signaled
by primes. The Feynman–Vernon influence functional theory129

implies that the only phonon quantity that determines the dynam-
ics of ι(t) is the equilibrium free-phonon correlation function (we
assume t > 0 and q2, q1 ≠ 0),

Cq2q1(t) = Tr′ph
⎧⎪⎪⎨⎪⎪⎩B
(I)
q2 (t)Bq1

e−βH
′
ph

Z′ph

⎫⎪⎪⎬⎪⎪⎭
= δq1 ,−q2

1∑
m=0

cq2me
−μq2mt. (A1)

The time dependence in Eq. (A1) is in the interaction pic-

ture [signaled by the superscript (I)], B(I)q (t) = eiH′phtBqe
−iH′pht , Z′ph

= Tr′ph e−βH′ph is the free-phonon partition sum, while

cq0 = ( g√
N
)2 1

1 − e−βωq
, μq0 = +iωq, (A2)

cq1 = ( g√
N
)2 1

eβωq − 1
, μq1 = −iωq. (A3)

The partial trace over phonons in Eq. (8) is performed in the same
manner as in Refs. 96, 98, 99, and 108, and the final result for ι in the
interaction picture reads as

ι(I)(t) = T e
−[Φ1(t)+Φ2(β)+Φ3(t,β)] j

e−βHe

Ze
. (A4)

Here, Ze = Z/Z′ph is the electronic partition sum [Eq. (12)], while the
influence phases are given as

Φ1(t) =∑′
qm
∫ t

0
ds2∫ s2

0
ds1 V

(I)
q (s2)× e−μqm(s2−s1)

× [ cqm + cqm
2

V
(I)
−q (s1)× + cqm − cqm

2
V
(I)
−q (s1)○], (A5)

Φ2(β) = −∑′
qm
∫ β

0
dτ2∫ τ2

0
dτ1

C
V−q(τ1)

× eiμqm(τ2−τ1)cqmC
Vq(τ2), (A6)

Φ3(t,β) = −i∑′
qm
∫ t

0
ds∫ β

0
dτ V

(I)
q (s)×

× e−μqmseiμqm(β−τ)cqmC
V−q(τ). (A7)

The influence phase Φ1(t) describes the pure real-time evolution,
and the hyperoperators V× and V○ entering Eq. (A5) act on an arbi-
trary operatorO as V×O = [V ,O] (commutator) and V○O = {V ,O}
(anticommutator), respectively. We define m = 1 for m = 0 and vice
versa. The influence phase Φ2(β) represents the pure imaginary-
time evolution, while Φ3(t,β) takes into account the contributions

mixing the real-time and imaginary-time evolutions. The imagi-
nary time-dependent operator in the interaction picture is defined
as V(τ) = eHeτVe−Heτ , while the hyperoperator CV appearing in
Eqs. (A6) and (A7) acts on an arbitrary operator O as CVO = OV .
The time ordering symbol T imposes the following hyperopera-
tor ordering: the hyperoperators depending on real time act after
the imaginary time-dependent hyperoperators; the arguments of
real time-dependent hyperoperators are chronologically ordered,
while the arguments of imaginary time-dependent hyperoperators
are anti-chronologically ordered. This ensures that the general term
in the expansion of Eq. (A4) is of the form

V
(I)
qn (sn)πn . . .V(I)q1 (s1)π1 j e

−βHe

Ze
Vpm(τm) . . .Vp1(τ1),

where n +m is even, π1, . . . ,πn ∈ {×, ○}, t ≥ sn ≥ ⋅ ⋅ ⋅ ≥ s1 ≥ 0,
β ≥ τm ≥ ⋅ ⋅ ⋅ ≥ τ1 ≥ 0, and qn + ⋅ ⋅ ⋅ + q1 + pm + ⋅ ⋅ ⋅ + p1 = 0.

Starting from Eq. (A4), the HEOM [Eq. (9)] is formulated in

the standardmanner.88,96 The ADO ι
(n)
n is defined (in the interaction

picture) as

ι
(I,n)
n (t) = f (n)T∏′

qm

{i∫ t

0
ds e

−μqm(t−s)[ cqm + cqm
2

V
(I)
−q (s)×

+
cqm − cqm

2
V
(I)
−q (s)○] + e−μqmt∫ β

0
dτ eiμqm(β−τ)

× cqmC
V−q(τ)}nqme−[Φ1(t)+Φ2(β)+Φ3(t,β)] j

e−βHe

Ze
. (A8)

The rescaling factor f (n) reads as124

f (n) =∏′

qm

[cnqmqm nqm!]−1/2. (A9)

Equation (A8) explicitly shows that ι(n)n decreases the momentum
of the electronic subsystem by kn = ∑′qm qnqm, meaning that only

N matrix elements ⟨k∣ι(n)n ∣k + kn⟩ connecting the free-electron states
whose momenta differ by kn assume nonzero values.

Setting t = 0 in Eq. (A8) gives the following initial condition for
the real-time HEOM:

ι
(n)
n (0) = j f (n)T∏′

qm

{∫ β

0
dτ eiμqm(β−τ)cqm

C
V−q(τ)}nqm

× e−Φ2(β) e
−βHe

Ze
. (A10)

In Eq. (A10), we may move the current operator to the left-most
position because all the hyperoperators act on the operator je−βHe/Ze

from the right. Similarly to Ref. 96, one may now recognize that

ι
(n)
n (0) is the product of operator j and the ADO σ

(n)
n (β), which

is one of the components in the hierarchical representation of the
(unnormalized) reduced density operator,

σ
(0)
0 (β) = T e

−Φ2(β)e−βHe. (A11)
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To actually evaluate σ
(n)
n (β) and the normalization constant Ze

= Treσ(0)0 (β), we consider the imaginary time-dependent analog of
Eq. (A11),

σ
(0)
0 (τ) = T e

−Φ2(τ)e−τHe , (A12)

where 0 ≤ τ ≤ β. As discussed in detail in Ref. 96, Eq. (A12) can be
transformed into the imaginary-time HEOM given in Eq. (10).

APPENDIX B: DERIVATION OF THE CLOSING SCHEME
IN EQ. (13)

Here, we provide a detailed derivation of our strategy for
hierarchy closing that is embodied in Eq. (13).

Let us consider the equation for ⟨k∣ι(D)D (t)∣k + kD⟩ at the maxi-

mum depth D, which contains the ADOs ι(D+1)
D+qm

at depth D + 1. The

equation of motion for ι(D+1)
D+qm

contains ADOs at depth D + 2, which
will be set to zero. Moreover, its coupling with the ADOs at depth
D will be restricted by assuming it couples back only to the original

ADO ι
(D)
D we are considering. With these assumptions, the equation

at depth D + 1 reads as

∂t⟨k∣ι(D+1)D+qm
(t)∣k + kD + q⟩

= −i(εk − εk+kD+q + μD+qm)⟨k∣ι(D+1)D+qm
(t)∣k + kD + q⟩

+ i
√(1 +Dqm)cqm ⟨k + q∣ι(D)D (t)∣k + kD + q⟩

− i
√
1 +Dqm

cqm√
cqm
⟨k∣ι(D)D (t)∣k + kD⟩. (B1)

Using the initial condition ⟨k∣ι(D+1)
D+qm

(0)∣k + kD + q⟩ = 0, which is

appropriate because the imaginary-time HEOM in Eq. (10) is trun-
cated at the maximum depth D, Eq. (B1) can be formally integrated
to yield

⟨k∣ι(D+1)
D+qm

(t)∣k + kD + q⟩
= i√1 +Dqm∫ t

0
dt1 e

−i(εk−εk+kD+q+μD+qm )(t−t1)

× [√cqm e
−i(εk+q−εk+kD+q+μD)t1 f1(t1)

−
cqm√
cqm

e
−i(εk−εk+kD+μD)t1 f2(t1)]. (B2)

We have introduced the auxiliary function f1(t) representing the
slowly changing part of the ADO at depth D by factoring out the
oscillating (rapidly changing) part as follows:

⟨k + q∣ι(D)D (t)∣k + kD + q⟩ = e−i(εk+q−εk+kD+q+μD)t f1(t), (B3)

and similarly for f2(t). Under the integral entering Eq. (B2), we
introduce the variable change s = t − t1 and subsequently apply
the Markovian approximation f1/2(t − s) ≈ f1/2(t) to the slowly
changing part. As a result, we obtain

⟨k∣ι(D+1)
D+qm

(t)∣k + kD + q⟩
= i√(1 +Dqm){√cqm∫ t

0
ds e

−i[εk−εk+q+(δm0−δm1)ωq]s

× ⟨k + q∣ι(D)D (t)∣k + kD + q⟩ − cqm√
cqm

×∫ t

0
ds e

−i[εk+kD−εk+kD+q+(δm0−δm1)ωq]s

× ⟨k∣ι(D)D (t)∣k + kD⟩}. (B4)

Using the last result, we write one of the terms that couple the equa-
tions at depthsD andD + 1 [the third term on the RHS of Eq. (9)] as
follows:

− i∑′
qm

√(1 +Dqm)cqm ⟨k∣ι(D+1)D+qm
(t)∣k + kD + q⟩

=∑′
qm

(1 +Dqm)cqm∫ t

0
ds e

−i[εk−εk+q+(δm0−δm1)ωq]s

× ⟨k + q∣ι(D)D (t)∣k + kD + q⟩
−∑′

qm

(1 +Dqm)cqm∫ t

0
ds e

−i[εk+kD−εk+kD+q+(δm0−δm1)ωq]s

× ⟨k∣ι(D)D (t)∣k + kD⟩. (B5)

The second term on the RHS of Eq. (9) can be written and analyzed
in an analogous manner.

To evaluate Eq. (B5), we have to know the detailed structure
of the vector D that characterizes the ADOs at the maximum depth
D. We also observe that the second term on the RHS of Eq. (B5)

depends only on the quantity ⟨k∣ι(D)D (t)∣k + kD⟩ whose differential
equation we are considering. On the other hand, thematrix elements

of ι(D)D entering the first term on the RHS of Eq. (B5) depend on
q. This term may be neglected by invoking a sort of random phase

approximation: the matrix elements ⟨k + q∣ι(D)D (t)∣k + kD + q⟩ are
typically oscillatory functions of q, and onemay then argue that their
average over all momenta q is close to zero. A similar approximation
is also at the heart of the momentum-average approximation.44,45

In the remaining terms, we (i) exploit that for dispersionless optical
phonons (ωq ≡ ω0), cqm does not depend on q, (ii) neglect the contri-
butions containing Dqm, and (iii) evaluate the remaining integral in
Eq. (B5) by invoking the so-called adiabatic approximation, in which
the upper limit t of the integral is replaced by +∞. We furthermore
keep only the real part of the integral evaluated so that

∫ t

0
ds e

−iΩs ≈ ∫ +∞

0
ds e

−iΩs ≈ πδ(Ω). (B6)

This way, we introduce physically motivated damping of the ADOs
at the terminal level of the hierarchy. The damping effectively
replaces higher-order phonon-assisted processes that are not explic-
itly taken into account, while phonon-assisted processes involving
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at most D phonons are completely taken into account through the
HEOM. In the resulting expressions, we recognize the second-order
approximation for carrier scattering time out of the free-electron
state ∣k⟩,

1
τk
= 2π g2

N
∑′
q

[(1 − e−βω0)−1δ(εk − εk−q − ω0)
+ (eβω0 − 1)−1δ(εk − εk−q + ω0)], (B7)

for which an analytical expression in the limit of infinite N has been
derived in Refs. 42 and 26. Even though we perform HEOM compu-
tations on finite chains, in Eq. (13) we use the value of τk obtained in
the infinite-chain limit. We believe that such a procedure is appro-
priate because we invested great effort to perform computations with
a sufficiently large N.

Instead of neglecting the term containing Dqm in Eq. (B5),
we may have replaced Dqm by its average value D/[2(N − 1)] at
depth D [the sum ∑′qmDqm, which is equal to D, contains 2(N − 1)
terms]. Such a replacement would lead to larger damping factors
at depth D, which may have already been overestimated by using
the value of τk in the infinite-chain limit. Since the substitution
Dqm → D/[2(N − 1)] does not improve the stability of the hierarchy
at low temperatures, for strong interactions, and for fast phonons,
we decided not to use it in our computations.

APPENDIX C: SUM RULES

The zeroth-moment sum rule states that

M0 = ∫ +∞

−∞

dω

2π
C jj(ω) = ⟨ j 2⟩. (C1)

Since j is a purely electronic operator, the evaluation of M0

necessitates only the operator ι(0)0 (t = 0),
M0 = −2J∑

k

sin (k)⟨k∣ι(0)0 (t = 0)∣k⟩ ≡ C jj(t = 0). (C2)

On the other hand, to evaluateMn for n ≥ 1, we need all ADOs
ι
(n)
n (t = 0) at depths starting from 0 and concluding with n. The first-
moment sum rule is

M1 = ∫ +∞

−∞

dω

2π
ω C jj(ω) = ⟨[ j,H] j⟩. (C3)

It can be shown that

[ j,H] = [ j,He−ph] = −2J∑
q≠0,p
[sin (p + q) − sin (p)]∣p + q⟩⟨p∣Bq.

(C4)
Therefore,

M1 = −2J∑
q≠0,p
[sin(p + q) − sin(p)]

× ⟨p∣Trph{Bq j
e−βH

Z
}∣p + q⟩. (C5)

The second-moment sum rule is somewhat more cumbersome to
evaluate

M2 = ∫ +∞

−∞

dω

2π
ω2

C jj(ω) = ⟨[[ j,H],H] j⟩. (C6)

We separately evaluate the three contributions to the double
commutator

[[ j,H],H] = [[ j,H],He]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K1

+ [[ j,H],Hph]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K2

+ [[ j,H],He−ph]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K3

, (C7)

starting from the result for [j,H] embodied in Eq. (C4). We obtain

K1 = −2J∑
q≠0,p
[sin(p + q) − sin(p)](εp − εp+q)∣p + q⟩⟨p∣Bq, (C8)

K2 = −2J∑
q≠0,p
[sin(p + q) − sin(p)]ωq

g√
N

× (∣p + q⟩⟨p∣bq − ∣p + q⟩⟨p∣b†
−q), (C9)

K3 = −2J∑
q1≠0
q2≠0

∑
p

∣p + q1 + q2⟩⟨p∣Bq2Bq1

× [sin (p + q1 + q2) − sin (p + q1) − sin (p + q2) + sin (p)].
(C10)

In addition to the single-phonon-assisted ADO Trph{Bq j
e−βH

Z
},

the evaluation of ⟨K1j⟩, ⟨K2j⟩, and ⟨K3j⟩ necessitates their contri-
butions describing phonon absorption and emission, which stem
from the definition Bq = g√

N
(bq + b†

−q), as well as the two-phonon-
assisted ADO Trph{Bq2Bq1 j

e−βH

Z
}. In the following, we compute

these (electronic) operators using the ideas developed in Refs. 130
and 131.

Denoting e−βH

Z
= ρeqT , we can write

jρeqT = T exp
⎡⎢⎢⎢⎢⎣
−∫ β

0
dτ∑′

q

C
Vq(τ)

C
Bq(τ)

⎤⎥⎥⎥⎥⎦

× j
e−βHe

Ze

e−βH
′
ph

Z′ph
. (C11)

To evaluate phonon-assisted contributions, we introduce auxiliary
fields fq(τ) and consider their functional

jρeq
T, f = T exp

⎡⎢⎢⎢⎢⎣
−∫ β

0
dτ∑′

q

C[Vq(τ) + fq(τ)]CBq(τ)
⎤⎥⎥⎥⎥⎦

× j
e−βHe

Ze

e−βH
′
ph

Z′ph
. (C12)

Defining

jρeq
f
= jTrphρ

eq
T, f , (C13)

one can show that

⎡⎢⎢⎢⎢⎣
j
δρeq

f

δ fq(β)

⎤⎥⎥⎥⎥⎦ f=0
= −Trph{Bq jρ

eq
T
}, (C14)

⎡⎢⎢⎢⎢⎣
j

δ2ρeq
f

δ fq2(β)δ fq1(β)

⎤⎥⎥⎥⎥⎦ f=0
= Trph{Bq2Bq1 jρ

eq
T
}. (C15)
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On the other hand,

ρeq
f
= T e

−Φ2, f (β) e
−βHe

Ze
, (C16)

where the influence phase Φ2, f (β) is a functional of auxiliary fields
fq(τ) [cf. Eq. (A6)],

Φ2, f (β) = −∫ β

0
dτ2∫ τ2

0
dτ1∑′

qm

C[V−q(τ1) + f−q(τ1)]
× eiμqm(τ2−τ1)cqmC[Vq(τ2) + fq(τ2)]. (C17)

It then follows that

δρeq
f

δ fq1(β) = T {−δΦ2, f (β)
δ fq1(β) e

−Φ2, f (β)} e−βHe

Ze
, (C18)

δ2ρeq
f

δ fq2(β)δ fq1(β)
= T {[− δ2Φ2, f (β)

δ fq2(β)δ fq1(β) +
δΦ2, f (β)
δ fq2(β)

δΦ2, f (β)
δ fq1(β) ]e

−Φ2, f (β)}
×
e−βHe

Ze
, (C19)

The explicit evaluation of the functional derivatives produces

δΦ2, f (β)
δ fq1(β) = −∫

β

0
dτ∑

m

cq1m e
iμq1m(β−τ)C[V−q1(τ) + f−q1(τ)],

(C20)

δ2Φ f (β)
δ fq2(β)δ fq1(β) = −δq2 ,−q1∑m cq1m. (C21)

Using the definition of ADOs ι(n)n at t = 0 [Eq. (A8)] and rescaling
factors f (n) [Eq. (A9)], we finally obtain

Trph{Bq jρ
eq
T
} = −∑

m

1
f (0+qm) ι

(1)
0+qm
(t = 0), (C22)

Trph{Bq2Bq1ρ
eq
T
} = δq2 ,−q1(∑

m

cq1m)ι(0)0 (t = 0) + ∑
m2m1

×
1

f (0++(q1m1),(q2m2)) ι
(2)
0++
(q1m1),(q2m2)

(t = 0). (C23)

The contributions that differentiate between absorption and emis-
sion of a single phonon are most straightforwardly obtained by
explicitly setting up an equation of motion for such processes and
comparing the kinetic term in the equation thus obtained with the
kinetic term in Eq. (9). This procedure yields

g√
N
Trph{bq jρeqT } = − 1

f (0+q0) ι
(1)
0+
q0
(t = 0), (C24)

g√
N
Trph{b†

−q jρ
eq
T } = − 1

f (0+q1) ι
(1)
0+
q1
(t = 0). (C25)

The final result for the first-moment sum rule reads as

M1 = 2J∑
q≠0,p
∑
m

sin (p + q) − sin (p)
f (0+qm)

× ⟨p∣ι(1)
0+qm
(t = 0)∣p + q⟩. (C26)

The final result for the second-moment sum rule reads as

M2 = ⟨K1j⟩ + ⟨K2j⟩ + ⟨K3j⟩, (C27)

where

⟨K1 j⟩ = 2J∑
q≠0,p
∑
m

sin (p + q) − sin (p)
f (0+qm) (εp − εp+q)

× ⟨p∣ι(1)
0+qm
(t = 0)∣p + q⟩, (C28)

⟨K2 j⟩ = 2J∑
q≠0,p
∑
m

(−1)m sin (p + q) − sin (p)
f (0+qm) ωq

× ⟨p∣ι(1)
0+qm
(t = 0)∣p + q⟩, (C29)

and

⟨K3 j⟩ = −2J∑
q≠0,p
∑
m

4 sin (p)sin2(q/2)cqm⟨p∣ι(0)0 (t = 0)∣p⟩

− 2J ∑
q2 ,q1≠0
p

∑
m2m1

⟨p∣ι(2)
0++
(q1m1),(q2m2)

(t = 0)∣p + q1 + q2⟩
f (0++(q1m1),(q2m2))

× [sin (p + q1 + q2) − sin (p + q1) − sin (p + q2) + sin (p)].
(C30)

APPENDIX D: OPTICAL SUM RULE AND FINITE-SIZE
EFFECTS

We find that the relative accuracy with which the OSR is sat-
isfied increases with increasing N, see Sec. III C. This observation
suggests that the OSR formulated in Eq. (16) is strictly valid only
in the long-chain limit, while on finite chains there are finite-size
corrections that vanish as N → +∞. In the following, we provide a
derivation of the OSR for finiteN, identify the finite-size corrections,
and demonstrate that they vanish in the long-chain limit.

Let us start by noting that the current operator on an N-site
chain, defined in Eq. (3), may be expressed in the site basis as

j = iJN−1∑
m=0
(∣m⟩⟨m⊕ 1∣ − ∣m⊕ 1⟩⟨m∣). (D1)

The cyclic addition ⊕ [a⊕ b = (a + b) mod N] takes into account
that sites 0 and N − 1 are first neighbors because of the periodic
boundary conditions. Our derivation of the OSR makes use of the
continuity equation

j̃ = dP

dt
= −i[P,H], (D2)

J. Chem. Phys. 159, 094113 (2023); doi: 10.1063/5.0165532 159, 094113-17

Published under an exclusive license by AIP Publishing

 1
1
 S

e
p
te

m
b
e
r 2

0
2
3
 0

7
:3

6
:2

7



The Journal

of Chemical Physics
ARTICLE pubs.aip.org/aip/jcp

where the polarization operator (in the site basis) is given as

P = −N−1∑
m=0

m∣m⟩⟨m∣. (D3)

While the current operators j̃ and j are identical in the infinite-chain
limit, their difference on a finite chain reads as

j̃ − j = −iJP̂N−1,0, (D4)

where

P̂N−1,0 = N(∣N − 1⟩⟨0∣ − ∣0⟩⟨N − 1∣). (D5)

Our derivation starts from the integral I = ∫ +∞−∞ dωReμac(ω),
whose integrand is expressed using the first equality in Eq. (4). Sub-
stitutingCjj(ω) in terms ofCjj(t), writing the resulting expression in
the eigenbasis {∣α⟩} of the full Hamiltonian H (H∣α⟩ = Eα∣α⟩), and
performing the integrations over time and frequency, we obtain

I = π∑
α′ α

⟨α′∣ j∣α⟩⟨α∣ j∣α′⟩
Eα − Eα′

e−βEα′ − e−βEα

Z
. (D6)

We can eliminate the energy difference Eα − Eα′ in the denomina-
tor of each term by expressing one of the current operators using
the continuity equation [Eq. (D2)]. We should, however, take into
account the finite-size correction entering Eq. (D4). We then obtain

I = −iπ∑
α′α

⟨α′∣P∣α⟩⟨α∣ j∣α′⟩ e−βEα′ − e−βEα
Z

+ iπJ∑
α′α

⟨α′∣P̂N−1,0∣α⟩⟨α∣ j∣α′⟩
Eα − Eα′

e−βEα′ − e−βEα

Z

= I1 + I2. (D7)

The term I1 can then be written as

I1 = −iπTr{[P, j] e−βH
Z
}. (D8)

The commutator [P, j], where both operators are defined on a finite
chain, is equal to

[P, j] = −iHe − iJP̂N−1,0, (D9)

so that

I1 = −πTre
⎧⎪⎪⎨⎪⎪⎩He

σ
(0)
0 (β)
Ze

⎫⎪⎪⎬⎪⎪⎭ − πJTre
⎧⎪⎪⎨⎪⎪⎩P̂N−1,0

σ
(0)
0 (β)
Ze

⎫⎪⎪⎬⎪⎪⎭
= I1,1 + I1,2. (D10)

While the term I1,1 alone gives the desired result for the OSR(I = −π⟨He⟩), the terms I1,2 and I2 are finite-size corrections. The

term I2 can be transformed by applying the steps that led to Eq. (D6)
in the reverse order, which gives

I2 = ∫ +∞

−∞
dω

1 − e−βω

2ω ∫ +∞

−∞
dt e

iωt

× Tr{eiHtP̂N−1,0e
−iHt

j
e−βH

Z
}

= ∫ +∞

−∞
dω

1 − e−βω

2ω ∫ +∞

−∞
dt e

iωtTre{P̂N−1,0ι(t)}. (D11)

Both I1,2 and I2 reduce to expectation values of the purely electronic
operator P̂N−1,0 with respect to the reduced (purely electronic) den-

sity matrix σ(0)0 (β)/Ze (for I1,2) or ι(t) (for I2) that is diagonal in the
momentum representation. For example,

Tre{P̂N−1,0ι(t)} = −2i∑
k

⟨k∣ι(t)∣k⟩⟩ sin(2πnkN − 1
N
), (D12)

where the sum is over N allowed values of the wave number
k = 2πnk/N, with nk being N consecutive integers. As N → +∞,(N − 1)/N → 1, and each term entering Eq. (D12) tends to zero.
In other words, the finite-size correction I2 vanishes in the infinite-
chain limit. The same reasoning may be applied to show that I1,2
vanishes in the infinite-chain limit.
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ABSTRACT

Ultracold-atom simulations of the Hubbard model provide insights into the character of charge and spin correlations in and out of equi-
librium. The corresponding numerical simulations, on the other hand, remain a significant challenge. We build on recent progress in the
quantum Monte Carlo (QMC) simulation of electrons in continuous space and apply similar ideas to the square-lattice Hubbard model. We
devise and benchmark two discrete-time QMC methods, namely the fermionic-propagator QMC (FPQMC) and the alternating-basis QMC
(ABQMC). In FPQMC, the time evolution is represented by snapshots in real space, whereas the snapshots in ABQMC alternate between
real and reciprocal space. The methods may be applied to study equilibrium properties within the grand-canonical or canonical ensemble,
external field quenches, and even the evolution of pure states. Various real-space/reciprocal-space correlation functions are also within their
reach. Both methods deal with matrices of size equal to the number of particles (thus independent of the number of orbitals or time slices),
which allows for cheap updates. We benchmark the methods in relevant setups. In equilibrium, the FPQMCmethod is found to have an excel-
lent average sign and, in some cases, yields correct results even with poor imaginary-time discretization. ABQMC has a significantly worse
average sign, but also produces good results. Out of equilibrium, FPQMC suffers from a strong dynamical sign problem. On the contrary,
in ABQMC, the sign problem is not time-dependent. Using ABQMC, we compute survival probabilities for several experimentally relevant
pure states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133597

I. INTRODUCTION

The last two decades have witnessed remarkable develop-
ments in laser and ultracold-atom technologies that have enabled
experimental studies of strongly correlated electrons in and out
of equilibrium.1,2 Ultracold atoms in optical lattices2,3 and opti-
cal tweezers arrays4–6 have been used as quantum simulators for
paradigmatic models of condensed-matter physics, such as the Hub-
bard model.7,8 Recent experiments with fermionic ultracold atoms
have probed the equation of state,9 charge, and spin correlation
functions,10–13 as well as transport properties (by monitoring charge
and spin diffusion14–17).

These experimental achievements pose a significant challenge
for the theory. The level of difficulty, however, greatly depends
on whether one computes instantaneous (equal-time) correlations

or the full time/frequency dependence of dynamical correlators.
The other factor is whether one considers thermal equilibrium or
out-of-equilibrium setups.

Instantaneous correlators in equilibrium are the best-case
scenario. The average density, double occupancy, and correla-
tions between particle or spin densities on adjacent sites are still
very important. They serve as a thermometer: the temperature in
cold-atom experiments cannot be measured directly and is often
gauged in comparison with numerical simulations.11,14 For this
kind of application, current state-of-the-art methods18–43 are often
sufficient. Equal-time multipoint density correlations are also of
interest, as they hold information, e.g., about the emergence of
string patterns13,44,45 or the effect of holes on antiferromagnetic
correlations.46–48 However, measuring density at a larger number
of points simultaneously is more difficult in many algorithms. For
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example, in the Hirsch–Fye (HF) algorithm,24,49 one cannot do
this straight-forwardly, as the auxiliary Ising spins only distinguish
between singly occupied and doubly occupied/empty sites.

Of even greater interest and much greater difficulty are the
time-dependent correlations in equilibrium. These pertain to stud-
ies of transport and hydrodynamics at the level of linear response
theory.50–52 The limitations of current state-of-the-art methods here
become starkly apparent. If one is interested in long-wavelength
behavior (as is precisely the case in the study of hydrodynamic
properties52), the lattices treated in the simulation need to be suffi-
ciently large. The finite-temperature Lanczos method53,54 can only
treat up to 20 lattice sites50,55 and is unsuitable for such appli-
cations. Quantum Monte Carlo (QMC) methods can treat up to
300 sites,29,30 but only under certain conditions: doping away from
half-filling leads to a significant sign problem, which becomes
more severe as the lattice size, inverse temperature, and coupling
constant are increased. Moreover, QMC methods are formulated
in imaginary time and require ill-defined analytical continuation
to reconstruct optical conductivity or any other real-frequency
spectrum.51

Direct real-time calculations, regardless of proximity to the
equilibrium, are the most difficult.31,56–69 These present an alterna-
tive to analytical continuation in equilibrium calculations but are
necessary to describe non-equilibrium regimes, e.g., in external field
quenches.16 In the corresponding Kadanoff–Baym–Keldysh three-
or two-piece contour formalism, QMC computations are plagued
by the dynamical sign problem, which has so far been overcome
in only the smallest systems.61 The time-dependent density matrix
renormalization group70–72 produces practically exact results, how-
ever, only in one-dimensional63,64 or ladder systems.73 Simulations
based on the nonequilibrium Green’s functions formalism74 are also
possible but not numerically exact. They can, however, treat much
larger systems over much longer time scales than other real-time
approaches.64,75–77

The main goal of this work is to construct a numerically exact
way to compute spatially resolved densities in setups relevant for
optical lattice experiments. This includes general multipoint corre-
lators in real space and momentum space, and we focus on densities
of charge and spin. We are interested in both the equilibrium
expectation values and their time dependence in transient regimes.
(The latter can formally be used to access temporal correlations in
equilibrium as well.)

We take a largely unexplored QMC route78–80 toward the com-
putation of correlation functions in the square-lattice Hubbard
model. Current state-of-the-art methods, such as the continuous-
time interaction-expansion (CT-INT),31–33 the continuous-time
auxiliary field (CT-AUX),31,34 and HF,24,49 rely on the computa-
tion of large matrix determinants, which, in many cases, presents
the bottleneck of the algorithm. In CT-INT and CT-AUX, the size
of the matrices generally grows with coupling, inverse temperature,
and lattice size. In the HF, which is based on the Suzuki–Trotter
decomposition (STD), the matrix size is fixed, yet presents a mea-
sure of the systematic error: the size of the matrix scales with
both the number of time slices and the number of lattice sites. A
rather separate approach is possible, where the size of the matri-
ces scales only with the total number of electrons. This approach
builds on the path-integral MC (PIMC).81,82 In PIMC, the trajecto-
ries of individual electrons are tracked. In continuous-space models,

PIMC was used successfully even in the calculation of dynamical
response functions.83,84 The downside is that the antisymmetry of
electrons feeds into the overall sign of a given configuration, thus
contributing to the sign problem. A more sophisticated idea was
put forward in Refs. 85–87. Namely, the propagation between two
time slices can be described by a single many-fermion propagator,
which groups (blocks) all possible ways the electrons can go from
one set of positions to another—including all possible exchanges.
The many-fermion propagator is evaluated as a determinant of a
matrix of size equal to the total number of electrons. This scheme
automatically eliminates one important source of the sign problem
and improves the average sign drastically. Such permutation blocking
algorithms have been utilized with great success to compute ther-
modynamic quantities in continuous-space fermionic models.88–96

Here, we investigate and test analogous formulations in the lattice
models of interest and try generalizing the approach to real-time
dynamics.

We develop and test two slightly different QMC methods. The
Fermionic-propagator QMC (FPQMC) is a real-space method sim-
ilar to the permutation-blocking and fermionic-propagator PIMC,
respectively, developed by Dornheim et al.90 and Filinov et al.96 for
continuous models. On the other hand, the alternating-basis QMC
(ABQMC) method is formulated simultaneously in both real and
reciprocal space, whichmakesmeasuring distance- andmomentum-
resolved quantities equally simple. Themotion of electrons and their
interactions are treated on an equal footing. Both methods are based
on the STD and are straight-forwardly formulated along any part
of or the entire Kadanoff–Baym–Keldysh three-piece contour. This
allows access to both real- and imaginary-time correlation functions
in and out of equilibrium. Unlike CT-INT, CT-AUX, and HF, our
methods can also be used to treat canonical ensembles as well as
the time evolution of pure states. Our formulation ensures that the
measurement of an arbitrary multipoint charge or spin correlation
function is algorithmically trivial and cheap.

We perform benchmarks on several examples where numeri-
cally exact results are available.

In calculations of instantaneous correlators for the 2D Hub-
bard model in equilibrium, our main finding is that the FPQMC
method has a rather manageable sign problem. The average sign is
anti-correlated with coupling strength, which is in sharp contrast
with some of the standard QMC methods. More importantly, we
find that the average sign drops off relatively slowly with the lattice
size and the number of time slices—we have been able to con-
verge results with as many as eight time slices, or as many as 80
lattice sites. At strong coupling and at half-filling, we find the aver-
age sign to be very close to 1. In the temperature range relevant
for optical-lattice experiments, we find that the average occupancy
can be computed to a high accuracy with as few as two time slices;
the double occupancy and the instantaneous spin–spin correlations
require somewhat finer time discretization, but often not more than
six time-slices in total. We also document that FPQMC appears to
be sign-problem-free for Hubbard chains.

However, in calculations of the time-evolving and spatially
resolved density, we find that the FPQMC sign problem is
mostly prohibitive of obtaining results. Nevertheless, employing the
ABQMC algorithm, we are able to compute survival probabilities of
various pure states on 4 × 4 clusters—in the ABQMC formulation,
the sign-problem is manifestly independent of time and interaction
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strength, and one can scan the entire time evolution for multiple
strengths of interaction in a single run. The numerical results reveal
several interesting trends. Similarly to observations made in Ref. 97,
we find in general that the survival probability decays over longer
times when interactions are stronger. At shorter times, we observe
that the behavior depends strongly on the type of the initial state,
likely related to the average density.

The paper is organized as follows: The FPQMC and ABQMC
methods are developed in Sec. II and applied to equilibrium and
out-of-equilibrium setups in Sec. III. Section IV discusses the
FPQMC and ABQMC methods in light of other widely used QMC
algorithms. Section V summarizes our main findings and their
implications, and discusses prospects for further work.

II. MODEL AND METHOD

A. Hubbard Hamiltonian

We study the Hubbard model on a square-lattice cluster con-
taining Nc = NxNy sites under periodic boundary conditions (PBC).
The Hamiltonian reads as

H = H0 +Hint. (1)

The noninteracting (single-particle) part H0 of the Hamiltonian
describes a band of itinerant electrons

H0 = −J ∑
⟨r,r′⟩σ

c
†
rσ cr′σ = ∑

kσ

εk nkσ , (2)

where J is the hopping amplitude between the nearest-neighboring
lattice sites r and r′, while the operators c†rσ (crσ) create (destroy) an
electron of spin σ on lattice site r. Under PBC, H0 is diagonal in the
momentum representation; the wave vector kmay assume any of the
Nc allowed values in the first Brillouin zone of the lattice. The free-
electron dispersion is given by εk = −2J(cos kx + cos ky). The density
operator is nkσ = c†kσ ckσ with ckσ = ∑r⟨k∣r⟩crσ . The Hamiltonian of
the on-site Hubbard interaction (two-particle part) reads as

Hint = U∑
r

nr↑ nr↓, (3)

where U is the interaction strength, while nrσ = c†rσ crσ .
If the number of particles is not fixed, Eq. (1) additionally

features the chemical-potential term −μ∑rσ nrσ = −μ∑kσ nkσ that
can be added to either H0 or Hint. Here, since we develop a
coordinate-space QMCmethod, we add it to Hint.

B. FPQMC method

Finding viable approximations to the exponential of the form
e−αH is crucial to many QMC methods. With α = 1/T (T denotes
temperature), this is the Boltzmann operator, which will play a role
whenever the system is in thermal equilibrium. In the formulation
of dynamical responses, the time-evolution operator will also have
this form, with α = it, where t is the (real) time. One possible way to
deal with these is the lowest-order STD98

e
−αH ≈ (e−ΔαH0e

−ΔαHint)Nα

, (4)

where the interval of length ∣α∣ is divided into Nα subintervals of
length ∣Δα∣ each, where Δα = α/Nα. The error of the approximation
is of the order of ∣Δα∣2∥[H0,Hint]∥, where the norm ∥[H0,Hint]∥may
be defined as the largest (in modulus) eigenvalue of the commutator[H0,Hint].80 The error can in principle be made arbitrarily small by
choosing Nα large enough. However, the situation is complicated by
the fact that the RHS of Eq. (4) contains both single-particle and
two-particle contributions. The latter are diagonal in the coordinate
representation, so that the spectral decomposition of e−ΔαHint is per-
formed in terms of totally antisymmetric states in the coordinate
representation, aka the Fock states,

∣Ψi⟩ =∏
σ

Nσ

∏
j=1

c
†

rσj σ
∣∅⟩ (5)

that contain Nσ electrons of spin σ whose positions rσ1 , . . . , r
σ
Nσ

are ordered according to a certain rule. We define εint(Ψi)
≡ ⟨Ψi∣Hint∣Ψi⟩. On the other hand, the matrix element of e−ΔαH0

between many-body states ∣Ψ′i⟩ and ∣Ψi⟩ can be expressed in terms
of determinants of single-electron propagators

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∏
σ

det S(Ψ′i ,Ψi,Δα, σ), (6)

[S(Ψ′i ,Ψi,Δα, σ)]j1 j2 = ⟨r′σj1 ∣e−ΔαH0 ∣rσj2⟩. (7)

We provide a formal proof of Eqs. (6) and (7) in Appendix A. The
same equations lie at the crux of conceptually similar permutation-
blocking90 and fermionic-propagator96 PIMC methods, which are
formulated for continuous-space models. When Δα is purely real
(purely imaginary), the quantity on the right-hand side of Eq. (7)
is the imaginary-time (real-time) lattice propagator of a free particle
in the coordinate representation.80 Its explicit expressions are given
in Appendix B.

Further developments of the method somewhat depend on
the physical situation of interest. We formulate the method first
in equilibrium and then in out-of-equilibrium situations. To facil-
itate discussion, in Figs. 1(a)–1(d), we summarize the contours
appropriate for the different situations we consider.

1. FPQMC method for thermodynamic quantities

The equilibrium properties at temperature T = β−1 follow
from the partition function Z ≡ Tr e−βH , which may be computed
by dividing the imaginary-time interval [0,β] into Nτ slices of
length Δτ ≡ β/Nτ , employing Eq. (4), and inserting the spectral
decompositions of e−ΔτHint . The corresponding approximant for Z
reads as

Z ≈ ∑
C

Dβ(C,Δτ)e−Δτεint(C ). (8)

The configuration

C = {∣Ψi,1⟩, . . . , ∣Ψi,Nτ ⟩} (9)

resides on the contour depicted in Fig. 1(a) and consists of Nτ Fock
states ∣Ψi,l⟩ in the coordinate representation. Dβ(C,Δτ) depends
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FIG. 1. Contours appropriate for computing (a) thermodynamic quantities at tem-
perature T = 1/β, (b) time-dependent quantities after quantum quench in which
the Hamiltonian is suddenly changed from H(0) at t < 0 to H at t > 0, (c) time-
dependent quantities during evolution from a pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩, (d) the
survival probability of the initial pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩. In (a) and (b), the ver-
tical part is divided into Nτ identical slices of length Δτ. In (b)–(d), each horizontal
line is divided into Nt identical slices of length Δt. Within the FPQMC method, a
many-body state in the coordinate representation ∣Ψi,l⟩ [Eq. (5)] is associated with
each slice l. Within the ABQMC method, in addition to ∣Ψi,l⟩, each slice l features
a many-body state in the momentum representation ∣Ψk,l⟩ [Eq. (29)].

on the temperature and imaginary-time discretization through the
imaginary-time step Δτ

Dβ(C,Δτ) ≡ Nτ

∏
l=1

⟨Ψi,l⊕1∣e−ΔτH0 ∣Ψi,l⟩

=
Nτ

∏
l=1
∏
σ

det S(Ψi,l⊕1,Ψi,l,Δτ, σ) (10)

and is a product of 2Nτ determinants of imaginary-time single-
particle propagators on a lattice (this is emphasized by adding
the subscript β). The cyclic addition in Eq. (10) is the standard
addition for l = 1, . . . ,Nτ − 1, while Nτ ⊕ 1 = 1. The symbol εint(C)
stands for

εint(C) ≡ Nτ

∑
l=1

εint(Ψi,l). (11)

By virtue of the cyclic invariance under trace, the ther-
modynamic expectation value of an observable A can be
expressed as

⟨A⟩ = 1
Nτ

Nτ−1

∑
l=0

1
Z
Tr{(e−ΔτH)lA(e−ΔτH)Nτ−l}. (12)

The FPQMC method is particularly suitable for observables diago-
nal in the coordinate representation (e.g., the interaction energyHint

or the real-space charge density nrσ). Such observables will be dis-
tinguished by adding the subscript i. Equation (12), combined with
the lowest-order STD [Eq. (4)], produces the following approximant
for ⟨Ai⟩ :

⟨Ai⟩ ≈ ∑C Dβ(C,Δτ) e−Δτεint(C ) 1
Nτ
∑Nτ

l=1Ai(Ψi,l)
∑C Dβ(C,Δτ) e−Δτεint(C ) , (13)

where

Ai(Ψi,l) ≡ ⟨Ψi,l∣Ai∣Ψi,l⟩. (14)

Defining the weight w(C,Δτ) of configuration C as

w(C,Δτ) ≡ ∣Dβ(C,Δτ)∣e−Δτεint(C ), (15)

Eq. (13) is rewritten as

⟨Ai⟩ ≈ ⟨sgn(C)
1
Nτ
∑Nτ

l=1Ai(Ψi,l)⟩
w⟨sgn(C)⟩

w

, (16)

where ⟨⋅ ⋅ ⋅⟩w denotes the weighted average over all C with respect
to the weight w(C); sgn(C) ≡ Dβ(C,Δτ)/∣Dβ(C,Δτ)∣ is the sign of
configuration C, while ∣⟨sgn⟩∣ ≡ ∣⟨sgn(C)⟩w ∣ is the average sign of the
QMC simulation.

By construction, our FPQMC approach yields exact results for
the noninteracting electrons (ideal gas, U = 0) and in the atomic
limit (J = 0). In both limits, due to [H0,Hint] = 0, the FPQMC
method with arbitrary Nτ should recover the exact results. How-
ever, the performance of the method, quantified through the average
sign of the simulation, deteriorates with increasing Nτ . For Nτ = 1,
the FPQMC algorithm is sign-problem-free because it sums only
diagonal elements ⟨Ψi,1∣e−βH0 ∣Ψi,1⟩ of the positive operator e−βH0 .
The sign problem is absent also for Nτ = 2 because Dβ(C,β/2) is a
square of a real number.

An important feature of the above-presented methodology
is its direct applicability in both the grand-canonical and canon-
ical ensemble. The grand-canonical formulation is essential to
current state-of-the-art approaches31 (e.g., CT-INT or CT-AUX)
relying on the thermal Wick’s theorem, which is not valid in
the canonical ensemble.99 In the auxiliary-field QMC,22,23,25,27,28

the Hubbard–Stratonovich transformation100 decouples many-body
propagators into sums (or integrals) over one-body operators
whether the particle number is fixed or not. Working in the grand-
canonical ensemble is then analytically and computationally more
convenient because the traces over all possible fermion occupations
result in determinants.23,101 In the canonical ensemble, the compu-
tation of traces over constrained fermion occupations is facilitated
by observing that the Hubbard–Stratonovich decoupling produces
an ensemble of noninteracting systems101 to which theories devel-
oped for noninteracting systems in the canonical ensemble, such as
particle projection102,103 or recursive methods,104,105 can be applied.
While such procedures may be numerically costly and/or unsta-
ble,101 a very recent combination of the auxiliary-field QMC with
the recursive auxiliary partition function formalism105 is reported
to be stable and scale favorably with the numbers of particles and
available orbitals.106 In contrast to all these approaches, the for-
mulation of the FPQMC method does not depend on whether the
electron number is fixed or not. However, the selection of MC
updates does depend on the ensemble we work with. In the canonical
ensemble, the updates should conserve the number of electrons; in
the grand-canonical ensemble, we also need to include the updates
that insert/remove electrons. Our MC updates, together with the

J. Chem. Phys. 158, 044108 (2023); doi: 10.1063/5.0133597 158, 044108-4

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

procedure used to extract MC results and estimate their statistical
error, are presented in great detail in Sec. SI of the supplementary
material.

2. FPQMC method for time-dependent quantities

Ideally, numerical simulations of quench experiments such as
those from Refs. 14, 16, and 17 should provide the time-dependent
expectation value ⟨A(t)⟩ of an observable A at times t > 0 after the
Hamiltonian undergoes a sudden change from H(0) for t < 0 to H
for t > 0. Again, in many instances,14,17 the experimentally measur-
able observableA is diagonal in the coordinate representation, which
will be emphasized by the subscript i. The computation proceeds
along the three-piece Kadanoff–Baym–Keldysh contour1

⟨Ai(t)⟩ = Tr(e−βH(0) eiHt Ai e
−iHt)

Tr(e−βH(0) eiHt e−iHt) , (17)

where one may employ the above-outlined fermionic-propagator
approach after dividing the whole contour into a number of slices,
see Fig. 1(b). While H is the Hubbard Hamiltonian given in
Eqs. (1)–(3), H(0) describes correlated electrons whose charge (or
spin) density is spatially modulated by external fields.

The immediate complication (compared to the equilibrium
case) is that there are now three operators (instead of one) that need
to be decomposed via the STD. A preset accuracy determined by the
size of both Δτ and Δt will, therefore, require a larger number of
time-slices. In turn, this will enlarge the configuration space to be
sampled and potentially worsen the sign problem in theMC summa-
tion. Even worse, the individual terms in the denominator depend
on time, so that the sign problem becomes time-dependent (dynam-
ical). The problem is expected to become worse at long times t, yet
vanishes in the t → 0 limit.

To simplify the task and yet keep it relevant, we consider the
evolution from a pure state ∣ψ(0)⟩ that is an eigenstate of real-
space density operators nrσ , so that its most general form is given by
Eq. (5). Such a setup has been experimentally realized.5,6,14,17 Replac-
ing e−βH(0)

→ ∣ψ(0)⟩⟨ψ(0)∣ in Eq. (17) leads to the expression for the
time-dependent expectation value of the observable Ai

⟨Ai(t)⟩ = ⟨ψ(0)∣eiHt Ai e
−iHt ∣ψ(0)⟩

⟨ψ(0)∣eiHt e−iHt ∣ψ(0)⟩ . (18)

Here, the STD should be applied to both the forward and backward
evolution operators, see Fig. 1(c), which requires a larger number of
time-slices to reach the desired accuracy (in terms of the systematic
error). Nevertheless, Eq. (18) is the simplest example in which the
applicability of the real-time FPQMCmethod to follow the evolution
of real-space observables may be examined.

Generally speaking, the symmetries of the model should be
exploited to enable as efficient as possible MC evaluation of Eq. (18).
Recent experimental15 and theoretical107 studies have discussed the
dynamical symmetry of the Hubbard model, according to which the
temporal evolution of certain observables is identical for repulsive
and attractive interactions of the same magnitude. The symmetry
relies on specific transformation laws of the Hamiltonian H, the

initial state ∣ψ(0)⟩, and the observable of interest Ai under the com-
bined action of two symmetry operations. The first is the bipartite
lattice symmetry, or the π-boost15 operation, which exploits the
symmetry εk = −εk+(π,π) of the free-electron dispersion and is rep-
resented by the unitary operator B. The second is the time reversal
symmetry represented by the antiunitary operator T (TiT = −i)
that reverses electron spin and momentum according to Tc

(†)
rσ T

= (−1)δσ,↓c(†)
rσ

and Tc(†)kσ T = (−1)δσ,↓c(†)
−k,σ . In Appendix C, we formu-

late our FPQMCmethod to evaluate Eq. (18) in a way that manifestly
respects the dynamical symmetry of the model (each contribution to
the MC sums respects the symmetry). Here, we only cite the final
expression for the time-dependent expectation value of an observ-
able Ai that satisfies TBAiBT = Ai when the evolution starts from a
state ∣ψ(0)⟩ satisfying TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩

⟨Ai(t)⟩ ≈ ∑C Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos[Δεint(C)Δt]
∑C Re{D2t(C,Δt)} cos[Δεint(C)Δt] . (19)

Here, the configuration resides on the contour depicted in Fig. 1(c),
which is divided into 2Nt slices in total, and contains 2Nt − 1
independent states. We assume that states ∣Ψi,l⟩ for l = 1, . . . ,Nt(l = Nt + 1, . . . , 2Nt) lie on the forward (backward) branch of the
contour, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. Ai(Ψi,Nt+1) is defined as in Eq. (14),
while

Δεint(C) ≡ Nt

∑
l=1

[εint(Ψi,l+Nt
) − εint(Ψi,l)]. (20)

The symbol D2t(C,Δt) stands for the following combination
of forward and backward fermionic propagators (which is also
emphasized by the subscript 2t):

D2t(C,Δt) = 2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣eiH0Δt ∣Ψi,l⟩ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩. (21)

The bipartite lattice symmetry guarantees that D2t(C,Δt)
= D2t(C,−Δt), see Eq. (C9). The numerator and denominator of the
RHS of Eq. (19) are term-by-term invariant under the transforma-
tions Δt → −Δt and Δεint(C)→ −Δεint(C) that respectively reflect
the transformation properties under the time reversal symmetry and
the fact that the dynamics of ⟨Ai(t)⟩ are identical in the repulsive
and the attractive model. Defining w(C) ≡ ∣Re{D2t(C,Δt)}∣ and
sgn(C) ≡ Re{D2t(C,Δt)}/∣Re{D2t(C,Δt)}∣, Eq. (19) is recast as

⟨Ai(t)⟩ ≈ ⟨Ai(Ψi,Nt+1) sgn(C) cos[Δεint(C)Δt]⟩w⟨sgn(C) cos[Δεint(C)Δt]⟩w . (22)

The sign problem in the MC evaluation of Eq. (22) is dynam-
ical. It generally becomes more serious with increasing time t and
interaction strength ∣U∣. Moreover, w(C) also depends on both t
and U, meaning that MC evaluations for different ts and Us should
be performed separately, using different Markov chains. It is thus
highly desirable to employ further symmetries in order to improve
the performance of the method. Particularly relevant initial states
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∣ψ(0)⟩, from both an experimental14,17 and theoretical108 viewpoint,
are pure density-wave-like states. Such states correspond to extreme
spin-density wave (SDW) and charge-density wave (CDW) patterns,
which one obtains by applying strong external density-modulating
fields. The SDW-like state can be written as

∣ψSDW(G)⟩ =∏
r1∈G

c
†

r1↑ ∏
r2∈U/G

c
†

r2↓
∣∅⟩, (23)

where G denotes the multitude of sites on which the electron spins
are polarized up, while set U contains all sites of the cluster stud-
ied. The electron spins on sites belonging to U/G are thus polarized
down. Such states have been experimentally realized in Ref. 17. The
CDW-like states have also been realized in experiment,14 and they
read as

∣ψCDW(G)⟩ =∏
r∈G

c
†

r↑c
†

r↓∣∅⟩. (24)

The sites belonging to G are doubly occupied, while the remain-
ing sites are empty. The state ∣ψCDW(G)⟩ can be obtained from the
corresponding ∣ψSDW(G)⟩ state by applying the partial particle–hole
transformation that acts on spin-down electrons only

∣ψSDW(G)⟩ =∏
r∈U

(c†r↓(1 − nr↓) + cr↓ nr↓)∣ψCDW(G)⟩, (25)

see also Refs. 109 and 110. By combining the partial particle–hole,
time-reversal, and bipartite lattice symmetries, the authors of
Ref. 108 have shown that the time evolution of spatially resolved
charge and spin densities starting from states ∣ψCDW(G)⟩ and∣ψSDW(G)⟩, respectively, obey

⟨ψCDW(G)∣eiHt(nr↑ + nr↓ − 1)e−iHt ∣ψCDW(G)⟩
= ⟨ψSDW(G)∣eiHt(nr↑ − nr↓)e−iHt ∣ψSDW(G)⟩. (26)

Equation (26) may be used to acquire additional statistics by com-
bining the Markov chains for the two symmetry-related evolutions.
The procedure is briefly described in Appendix C and applied to all
corresponding computations presented in Sec. III B.

3. ABQMC method for time-dependent quantities

In this section, we develop the so-called alternating-basis QMC
method, which is aimed at removing the dynamical character of the
sign problem in real-time FPQMC simulations. Moreover, using the
ABQMC method, the results for different real times t and different
interactions U may be obtained using just a single Markov chain, in
contrast to the FPQMC method, which employs separate chains for
each t and U.

Possible advantages of the ABQMC over the FPQMC method
aremost easily appreciated on the example of the survival probability
of the initial state ∣ψ(0)⟩

P(t) = ∣⟨ψ(0)∣e−iHt ∣ψ(0)⟩∣2, (27)

which is the probability of finding the system in its initial state after
a time t has passed. Evaluating Eq. (27) by any discrete-time QMC

method necessitates only one STD, see Fig. 1(d). The survival prob-
ability is thus the simplest example on which the applicability of
anyQMCmethod to out-of-equilibrium setups can be systematically
studied.

The FPQMC computation of P(t)may proceed via the ratio

R(t) = ⟨ψ(0)∣e−iHt ∣ψ(0)⟩⟨ψ(0)∣e−iH0t ∣ψ(0)⟩ (28)

of the survival-probability amplitudes in the presence and absence
of electron–electron interactions. However, the average sign of the
MC simulation of Eq. (28) is proportional to the survival-probability
amplitude of the noninteracting system, which generally decays very
quickly to zero, especially for large clusters.62 This means that the
dynamical sign problem in the FPQMC evaluation of Eq. (28) may
become very severe already at relatively short times t.

Instead of expressing the many-body free propagator⟨Ψ′i ∣e−iH0Δt ∣Ψi⟩ as a determinant of single-particle free propagators
[Eqs. (6) and (7)], we could have introduced the spectral decom-
position of e−iH0Δt in terms of Fock states ∣Ψk⟩ in the momentum
representation. In analogy with Eq. (5), such states are defined as

∣Ψk⟩ =∏
σ

Nσ

∏
j=1

c
†

kσj σ
∣∅⟩. (29)

The state ∣Ψk⟩ contains Nσ electrons of spin σ whose momenta
kσ1 , . . . ,k

σ
Nσ

are ordered according to a certain rule and we define
ε0(Ψk) ≡ ⟨Ψk∣H0∣Ψk⟩. In this case, the final expression for the sur-
vival probability of state ∣ψ(0)⟩ that satisfies TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩
reads as

P(t) ≈ ∣∑C Re{D (C )} cos[ε0(C )Δt] cos[εint(C )Δt]
∑C Re{D (C )} ∣2. (30)

A derivation of Eq. (30) is provided in Appendix D. The MC eval-
uation of Eq. (30) should sample a much larger configuration space
than the MC evaluation of Eq. (28). The configuration C in Eq. (30)
also resides on the contour depicted in Fig. 1(d), but comprises
2Nt − 1 states in total:Nt Fock states ∣Ψk,l⟩ (l = 1, . . . ,Nt) andNt − 1
Fock states ∣Ψi,l⟩ (l = 2, . . . ,Nt) (again, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩). D(C) is the
product of 2Nt Slater determinants

D(C) = Nt

∏
l=1

⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩ (31)

that stem from the sequence of basis alternations between the
momentum and coordinate eigenbasis. Using the notation of
Eqs. (5) and (29), the most general Slater determinant ⟨Ψi∣Ψk⟩
entering Eq. (10) is given as

⟨Ψi∣Ψk⟩ =∏
σ

det S̃(Ψi,Ψk, σ), (32)

[̃S(Ψi,Ψk, σ)]j1 j2 = ⟨rσj1 ∣kσj2⟩ =
exp(ikσj2 ⋅ rσj1)√

Nc
, (33)

where 1 ≤ j1, j2 ≤ Nσ . The symbol ε0(C) stands for [cf. Eq. (11)]
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ε0(C) ≡ Nt

∑
l=1

ε0(Ψk,l). (34)

We note that each term in Eq. (30) is invariant under transfor-
mations ε0(C)→ −ε0(C) and Δt → −Δt, which reflect the action
of the bipartite lattice symmetry and the time reversal symmetry,
respectively. Being term-by-term invariant under the transforma-
tion εint(C)→ −εint(C), Eq. (30) explicitly satisfies the requirement
that the dynamics of P(t) for repulsive and attractive interactions of
the same magnitude are identical. Defining w(C) ≡ ∣Re{D(C)}∣ and
sgn(C) ≡ Re{D(C)}/∣Re{D(C)}∣, Eq. (30) is recast as

P(t) ≈ ∣ ⟨sgn(C ) cos[ε0(C )Δt] cos[εint(C )Δt]⟩w⟨sgn(C)⟩
w

∣2. (35)

This choice for w is optimal in the sense that it minimizes the vari-
ance of ⟨sgn(C)⟩w ,111 whose modulus is the average sign of the
ABQMC simulation. The sign problem encountered in the MC eval-
uation of Eq. (35) does not depend on either time t or interaction
strength U, i.e., it is not dynamical. The weight w(C) in Eq. (35)
does not depend on either Δt or any other property of configuration
C (ε0, εint). Therefore, the MC evaluation of Eq. (35) may be per-
formed simultaneously (using a single Markov chain) for any U and
any t. This presents a technical advantage over the FPQMCmethod,
which may be outweighed by the huge increase in configuration
space when going from FPQMC to ABQMC. To somewhat reduce
the dimension of the ABQMC configuration space and improve
the sampling efficiency, we design the MC updates so as to respect
the momentum conservation law throughout the real-time evolu-
tion. The momentum conservation poses the restriction that all the
momentum-space states ∣Ψk,l⟩ have the same total electron momen-
tum K ≡ ∑kσk⟨Ψk,l∣nkσ ∣Ψk,l⟩ [modulo (2π, 2π)]. The MC updates
in the ABQMC method for the evaluation of the survival proba-
bility are presented in great detail in Sec. SII of the supplementary
material.

By relying on the partial particle–hole and bipartite lattice
symmetries, in Appendix D we demonstrate that the dynamics of
the survival probabilities of states ∣ψSDW(G)⟩ and ∣ψCDW(G)⟩ are
identical, i.e.,

∣⟨ψSDW(G )∣e−iHt ∣ψSDW(G)⟩∣2 = ∣⟨ψCDW(G )∣e−iHt ∣ψCDW(G)⟩∣2.
(36)

Evaluating Eq. (35), additional statistics can be acquired by
combining theMarkov chains for the P(t) calculations starting from
the two symmetry-related states ∣ψCDW(G)⟩ and ∣ψSDW(G)⟩. The
procedure is similar to that described in Appendix C, and we apply
it to all corresponding computations presented in Sec. III C.

III. NUMERICAL RESULTS

We first apply the FPQMC method to equilibrium situations
(the particle number is not fixed), see Sec. III A, and then to time-
dependent local densities during the evolution of pure states, see
Sec. III B. Section III C presents our ABQMC results for the sur-
vival probability of pure states. Our implementation of the ABQMC
method on the full Kadanoff–Baym–Keldysh contour [Eq. (17)] is
benchmarked in Sec. SVII of the supplementary material.

A. Equilibrium results: Equation of state

We start by considering the Hubbard dimer, the minimal
model capturing the subtle interplay between electron delocalization
and electron–electron interaction.112 We opt for moderate temper-
ature T/J = 1 and interaction U/J = 4, so that the expected num-
ber of imaginary-time slices needed to obtain convergent FPQMC
results is not very large. Figure 2 presents the equation of state
(i.e., the dependence of the electron density ρe = ⟨N̂↑ + N̂↓⟩/Nc on
the chemical potential μ) for a range of μ below the half-filling.
Here, N̂↑ and N̂↓ are the operators of the total number of spin-
up and spin-down electrons, respectively. Figure 2 suggests that
already Nτ = 2 imaginary-time slices suffice to obtain very good
results in the considered range of μ, while increasing Nτ from 2
to 4 somewhat improves the accuracy of the FPQMC results. It
is interesting that, irrespective of the value of Nτ , FPQMC sim-
ulations on the dimer are manifestly sign-problem-free. First, the
one-dimensional imaginary-time propagator defined in Eq. (B2) is
positive, I(JΔτ, l) = [eJΔτ + (−1)le−JΔτ]/2 for both l = 0 and 1. Sec-
ond, the configuration containing two electrons of the same spin is
of weight cosh2(JΔτ) − sinh2(JΔτ) ≡ 1, implying that the weights of
all configurations are positive. Furthermore, our results on longer
chains suggest that FPQMC simulations of one-dimensional lattice
fermions do not display a sign problem. While similar statements
have been repeated for continuum one-dimensional models of both
noninteracting85,86 and interacting fermions,87 there is, to the best
of our knowledge, no rigorous proof that the sign problem is
absent from coordinate-space QMC simulations of one-dimensional
fermionic systems. While we do not provide such a proof either,
Fig. 3 is an illustrative example showing how the FPQMC results
for the double occupancy ∑r⟨nr↑ nr↓⟩/Nc of the Hubbard chain at
half-filling approach the reference result (taken from Ref. 113) as the
imaginary-time discretization becomes finer. For allNτs considered,
the average sign of FPQMC simulations is ∣⟨sgn⟩∣ = 1.

We now apply the FPQMC method to evaluate the equation
of state on larger clusters. We focus on a 4 × 4 cluster, which may
already be representative of the thermodynamic limit at T/J ≳ 1.50
We compare our ρe(μ) results with the results of the numerical
linked-cluster expansion (NLCE) method.40–42 The NLCE results
are numerically exact and converged with respect to the control
parameter, i.e., the maximal cluster-size used. NLCE is commonly

FIG. 2. Equation of state ρe(μ) for the Hubbard dimer with T/J = 1, U/J = 4.
Full red circles (green squares) are the results of FPQMC simulations employing
Nτ = 2 (Nτ = 4) imaginary-time slices, while the solid black line is computed
using the exact diagonalization. The estimated statistical error of the FPQMC data
is in all cases smaller than the symbol size.
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FIG. 3. Double occupancy of the Nc = 20-site Hubbard chain at half-filling
(μ = U/2, ρe = 1) as a function of the number Nτ of imaginary-time slices. The
remaining parameters are U/J = 3 and T/J = 1. The dotted line connecting full
symbols (FPQMC results) serves as a guide to the eye. The reference result is
taken from Ref. 113. The relative deviation of the FPQMC result with Nτ = 6 from
the reference result is around 2%. The statistical error bars of the FPQMC results
are smaller than the symbol size.

used to benchmark methods and understand experimental data.9,10

Again, we keep U/J = 4, but we take T/J = 1.0408 to be able to
compare results to the data of Ref. 41. Figure 4(a) reveals that the
FPQMC results with only Nτ = 2 imaginary-time slices agree very
well (within a couple of percent) with the NLCE results over a wide
range of chemical potentials. This is a highly striking observation,
especially keeping in mind that the FPQMC method with Nτ = 2 is
sign-problem-free, see Fig. 4(b). It is unclear whether other STD-
based methods would reach here the same level of accuracy with
only two imaginary-time slices (and without the sign problem). This
may be a specific property of the FPQMCmethod. Finer imaginary-
time discretization introduces the sign problem, see Fig. 4(b), which
becomes more pronounced as the density is increased and reaches
a plateau for ρe ≳ 0.8. Still, the sign problem remains manageable.
Increasing Nτ for 2 to 6 somewhat improves the agreement of the
density ρe [the inset of Fig. 4(a)] and considerably improves the
agreement of the double occupancy [Fig. 4(c)] with the referent
NLCE results. Still, comparing the insets of Figs. 4(a) and 4(c), we
observe that the agreement between FPQMC (Nτ = 6) and NLCE
results for ρe is significantly better than for the double occupancy.
The systematic error in FPQMC comes from the time-discretization
and the finite size of the system. At Nτ = 6, it is not a priori clear
which error contributes more, but it appears most likely that the
time-discretization error is dominant. In any case, the reason why
systematic error is greater for the double occupancy than for the
average density could be that the double occupancy contains more
detailed information about the correlations in the system. This
might be an indication that measurement of multipoint density cor-
relations will generally be more difficult—it may require a finer time
resolution and/or greater lattice size.

The average sign above the half-filling, ρe = 1, mirrors that
below the half-filling. The particle–hole symmetry ensures that
ρe(μ) = 2 − ρe(U − μ), but that it also governs the average sign is not
immediately obvious from the construction of the method. A formal
demonstration of the electron-doping–hole-doping symmetry of the
average sign is, however, possible (see Appendix E). Note that we
restrict our density calculations to ρe < 1 because, in this case, the
numerical effort to manipulate the determinants [Eqs. (7) and (10)]

FIG. 4. (a) Equation of state ρe(μ) for the Hubbard model on a 4 × 4 cluster
with the following values of model parameters: U/J = 4, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρe,FPQMC of the electron density

for different values of Nτ . The dashed lines are guides for the eye. (c) The double
occupancy ∑r⟨nr↑ nr↓⟩/Nc as a function of the FPQMC estimate ρe,FPQMC of the

electron density for different values of Nτ . In (a) and (c), full symbols represent
FPQMC results, the solid line shows the NLCE data taken from Ref. 41, while
the insets show the relative deviation of FPQMC results from the reference NLCE
results. The estimated statistical error of the FPQMC data is in all cases smaller
than the symbol size.

is lower (size of the corresponding matrices is given by the num-
ber of particles of a given spin). The performance of the FPQMC
algorithm to compute ρe(μ) (average time needed to propose/accept
an MC update and acceptance rates of individual MC updates) is
discussed in Sec. SIII of the supplementary material.

We further benchmark our method in the case of very strong
coupling, U/J = 24 and, again, T/J = 1.0408. Figure 5(a) com-
pares the FPQMC results on a 4 × 4 cluster using Nτ = 2, 4, and 6
imaginary-time slices with the NLCE results. At extremely low fill-
ings ρe ≲ 0.1, the relative importance of the interaction term with
respect to the kinetic term is quite small, and taking onlyNτ = 2 suf-
fices to reach a very good agreement between the FPQMC andNLCE
results, see the inset of Fig. 5(a). As the filling is increased, the inter-
action effects become increasingly important, and it is necessary to
increase Nτ in order to accurately describe the competition between
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FIG. 5. (a) Equation of state ρe(μ) for the Hubbard model on a 4 × 4 cluster
with the following values of model parameters: U/J = 24, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρe,FPQMC of the electron density

for different values of Nτ . (c) Nearest-neighbor spin correlations∑rδ⟨S
z
rS

z
r+δ⟩/Nc

as a function of the FPQMC estimate ρe,FPQMC of the electron density for Nτ = 4

and 6. In (a) and (c), full symbols represent FPQMC results, the solid line shows
the NLCE data taken from Ref. 41, while the insets show the relative deviation of
FPQMC results from the reference NLCE results. The dashed or dashed-dotted
lines connecting the symbols serve as guides to the eye. The estimated statistical
error of the FPQMC data are in all cases smaller than the symbol size.

the kinetic and interaction terms. In the inset of Fig. 5(a), we see that
Nτ = 6 is sufficient to reach an excellent (within a couple of percent)
agreement between FPQMC and NLCE results over a broad range of
fillings. At very high fillings ρe ≳ 0.9 and forNτ = 6, our MC updates
that insert/remove particles have very low acceptance rates, which
may lead to a slow sampling of the configuration space. It is for this
reason that FPQMC results withNτ = 6 do not significantly improve
overNτ = 4 in this parameter regime. ForNτ = 6, an inefficient sam-
pling near the half-filling also renders the corresponding results for
the nearest-neighbor spin correlations ∑rδ⟨SzrSzr+δ⟩/Nc inaccurate,
so that they are not displayed in Fig. 5(c). Here, vector δ connects
nearest-neighboring sites, while Szr = (nr↑ − nr↓)/2 is the operator of
z projection of the local spin. At lower fillings, ρe ≲ 0.8, the agree-
ment between our FPQMC results withNτ = 6 and the NLCE results
is good, while decreasing Nτ from 6 to 4 severely deteriorates the
quality of the FPQMC results.

At this strong coupling, the dependence of the average sign on
the density is somewhat modified, see Fig. 5(b). The minimal sign is
no longer reached around half-filling but at quarter-filling, ρe ∼ 0.5,
around which ∣⟨sgn⟩∣ appears to be symmetric. Comparing Fig. 5(b)
to Fig. 4(b), we see that the average sign does not become smaller
with increasing interaction, in sharp contrast with interaction-
expansion-based methods, such as CT-INT32,33 or configuration
PIMC.89

To better understand the relation between the average sign and
the interaction, in Fig. 6(a) we plot ∣⟨sgn⟩∣ as a function of the
ratio U/(4J) of the typical interaction and kinetic energy. We
take Nτ = 6 and adjust the chemical potential using the data from
Ref. 41 so that ρe ≈ 0.5. We see that ∣⟨sgn⟩∣ monotonically increases
with the interaction and reaches a plateau at very strong interactions.
This is different from interaction-expansion-based QMC methods,
whose sign problem becomes more pronounced as the interaction is

FIG. 6. (a) The average sign as a function of the ratio between the typical interac-
tion and kinetic energies. Full symbols are results of FPQMC computations on a
4 × 4 cluster with Nτ = 6, the temperature is fixed to T/J = 1.0408, and the chem-
ical potential at each U is chosen such that ρe ≈ 0.5. (b) The average sign as a
function of the cluster size Nc for the values of model parameters summarized in
the figure. The FPQMC results (full symbols) are obtained using Nτ = 4 and 6. (c)
Average sign as a function of Nτ . The FPQMC results (full symbols) are obtained
on a 4 × 4 cluster for the values of model parameters summarized in the main
part of the figure. The inset shows how the FPQMC result for double occupancy
approaches the referent NLCE result as the imaginary-time discretization becomes
finer.
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increased. Moreover, for weak interactions, the performance of the
FPQMC method deteriorates at high densities, see Fig. 4(b), while
methods such as CT-INT become problematic at low densities. The
FPQMCmethod could thus become a method of choice to study the
regimes ofmoderate coupling and temperature, which are highly rel-
evant for optical lattice experiments. Figure 6(b) shows the decrease
of the average sign with the cluster size Nc in the weak-coupling and
moderate-temperature regime at filling ρe ≈ 0.8. We observe that for
both Nτ = 4 and Nτ = 6, the average sign decreases linearly with Nc.
For Nτ = 6, we observe that the decrease for Nc ≲ 40 is somewhat
faster than the decrease for Nc ≳ 40. We, however, note that the
acceptance rates of our MC updates strongly decrease with Nc and
that this decrease is more pronounced for finer imaginary-time dis-
cretizations. That is why we were not able to obtain any meaningful
result for the 10 × 10 cluster with Nτ = 6. At fixed cluster size and
filling, the average sign decreases linearly with Nτ , see the main part
of Fig. 6(c), while the double occupancy tends to the referent NLCE
value, see the inset of Fig. 6(c).

In Sec. SIV of the supplementary material, we provide an
implementation of the ABQMC method in the equilibrium setup.
Figures 7(a) and 7(b), which deal with the same parameter regimes
as Figs. 4 and 5, respectively, clearly illustrate the advantages of the
fermionic-propagator approach with respect to the alternating-basis
approach in equilibrium. The average sign of ABQMC simula-
tions with only two imaginary-time slices is orders of magnitude
smaller than the sign of FPQMC simulations with three times
finer imaginary-time discretization. Since the FPQMC and ABQMC
methods are related by an exact transformation, they should produce

FIG. 7. Average sign as a function of the electron density in ABQMC simulations
with Nτ = 2 (open circles) and FPQMC simulations with Nτ = 6 (full squares) for
T/J = 1.0408 and (a) U/J = 4 and (b) U/J = 24. The inset in panel (a) compares
ABQMC (open circles) and FPQMC (full circles) results for the double occupancy
as a function of ρe (both methods employ Nτ = 2). The inset in panel (b) shows
the average sign of ABQMC simulations with Nτ = 2 as a function of cluster size
Nc at low density (ρe ≈ 0.06, μ/J = −5).

the same results for thermodynamic quantities (assuming that Nτ is
the same in both methods). This is shown in the inset of Fig. 7(a) on
the example of the double occupancy. The inset of Fig. 7(b) suggests
that the average sign decreases exponentially with the cluster size
Nc. Overall, our current implementation of the ABQMC method in
equilibrium cannot be used to simulate larger clusters with a finer
imaginary-time discretization.

B. Time-dependent results using FPQMC method:
Local charge and spin densities

1. Benchmarks on small clusters

In Figs. 8(a) and 8(b), we benchmark our FPQMC method for
time-dependent local densities on the example of the CDW state of
the Hubbard tetramer, see the inset of Fig. 8(b).We follow the evolu-
tion of local charge densities on initially occupied sites for different
ratios U/D, where D is the half-bandwidth of the free-electron band
(D = 2J for the tetramer). For all the interaction strengths consid-
ered, taking Nt = 2 real-time slices on each branch (four slices in
total) is sufficient to accurately describe the evolution of local densi-
ties up to times Dt ∼ 2, see full symbols in Fig. 8(a). At longer times,
2 < Dt ≤ 4, taking Nt = 3 improves results obtained using Nt = 2,
compare empty to full symbols in Fig. 8(a). Nevertheless, for the
strongest interaction considered (U/D = 1), 6 real-time slices are
not sufficient to bring the FPQMC result closer to the exact result
at times 3 ≤ Dt ≤ 4. The average sign strongly depends on time, and
it drops by an order of magnitude upon increasing Nt from 2 to 3,
see Fig. 8(b). Despite this, the discrepancy between the Nt = 3 result

FIG. 8. (a) Time-dependent population of sites occupied in the initial CDW state
of a tetramer for different interaction strengths. Solid lines represent exact results,
full symbols connected by dashed lines are FPQMC results using Nt = 2 real-time
slices, while empty symbols connected by dotted lines are FPQMC results using
Nt = 3 real-time slices. The initial CDW state is schematically depicted in panel
(b). (b) Time-dependent average sign of the FPQMC simulation using Nt = 2 (full
symbols connected by dashed lines) and Nt = 3 (empty symbols connected by
dotted lines) for different interaction strengths. In (a) and (b), FPQMC simulations
using Nt = 3 real-time slices are carried out only for 2 < Dt ≤ 4.
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and the exact result for U/D = 1 cannot be ascribed to statistical
errors but rather to the systematic error of the FPQMCmethod (the
minimum Nt needed to obtain results with certain systematic error
increases with both time and interaction strength).

2. Results on larger clusters

Figure 9(a) summarizes the evolution of local charge den-
sities on initially occupied sites of a half-filled 4 × 4 cluster, on
which the electrons are initially arranged as depicted in the inset of
Fig. 9(b). This state is representative of a CDW pattern formed by
applying strong external density-modulating fields with wave vec-
tor q = (π, 0). The FPQMC method employs four real-time slices
in total, i.e., the forward and backward branches are divided into
Nt = 2 identical slices each. On the basis of the Nt = 2 results in
Fig. 8(a), we present the FPQMC dynamics up to the maximum
time Dtmax = 2. The extent of the dynamical sign problem is shown
in Fig. 9(b).

At the shortest times, Dt ≲ 1, the results for all the interactions
considered do not significantly differ from the noninteracting result.
The same also holds for the average sign. As expected, the decrease
of ∣⟨sgn⟩∣ with time becomes more rapid as the interaction U and
time discretization Δt = t/Nt are increased. The oscillatory nature of⟨sgn⟩ as a function of time [see Eq. (22)] is correlated with the dis-
continuities in time-dependent populations observed in Fig. 9(a) for
U/D ≥ 0.5. Namely, at the shortest times and for all the interactions
considered, ⟨sgn⟩ is positive, while for sufficiently strong interac-
tions, it becomes negative at longer times. This change is indicated
in Fig. 9(b) by placing the symbols “+” and “−” next to each relevant
point. We now see that the discontinuities in populations occur pre-
cisely around instants at which ⟨sgn⟩ turns from positive to negative
values. Focusing on U/D = 1, in Figs. 9(c1)–9(c3) we show the MC
series for the population of initially occupied sites at instants before

TABLE I. Schematic representations of the initial states of small systems on which
the ABQMC method for P(t) is benchmarked.

system ∣ψCDW⟩ ∣ψSDW⟩
Dimer

Tetramer

[(c1)] and after [(c2), (c3)] ⟨sgn⟩ passes through zero. The corre-
sponding series for ⟨sgn⟩ are presented in Figs. 9(d1)–9(d3). Well
before [Figs. 9(c1) and 9(d1)] and after [Figs. 9(c3) and 9(d3)] ⟨sgn⟩
changes sign, the convergence with the number of MC steps is excel-
lent, while it is somewhat slower close to the positive-to-negative
transition point, see Figs. 9(c2) and 9(d2). Still, the convergence at
Dt = 1.4 cannot be denied, albeit the statistical error of the popu-
lation is larger than at Dt = 1.2 and 1.6. At longer times Dt ≥ 1.5,
when ⟨sgn⟩ is negative and of appreciable magnitude, the popula-
tion again falls in the physical range [0, 2]. Nevertheless, at such long
times, the systematic error may be large due to the coarse real-time
discretization.

In Sec. SV of the supplementary material, we discuss FPQMC
results for the dynamics of local charge densities starting from some
other initial states.

C. Time-dependent results using ABQMC method:
Survival probability

1. Benchmarks on small clusters

We first benchmark our ABQMC method for the survival
probability on Hubbard dimers and tetramers. The initial states

FIG. 9. (a) Time-dependent population of
sites occupied in the initial CDW state
of a 4 × 4 cluster, which is schemati-
cally depicted in the inset of panel (b).
FPQMC results using Nt = 2 real-time
slices (four slices in total) are shown for
five different interaction strengths (sym-
bols) and compared with the noninter-
acting result (solid line). (b) Magnitude
of the average sign as a function of
time for different interaction strengths.
The color code is the same as in panel
(a). For U/D = 0.5, 0.75, and 1 and Dt
≥ 1.2, symbols “+” and “−” next to each
point specify whether ⟨sgn⟩ is positive
or negative. (c) MC series for the pop-
ulation of initially occupied sites for U/D
= 1 and (c1) Dt = 1.2, (c2) Dt = 1.4, and
(c3) Dt = 1.6. (d) MC series for ⟨sgn⟩
for U/D = 1 and (d1) Dt = 1.2, (d2)
Dt = 1.4, and (d3) Dt = 1.6. Note the
logarithmic scale on the abscissa in (c)
and (d).

J. Chem. Phys. 158, 044108 (2023); doi: 10.1063/5.0133597 158, 044108-11

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

are schematically summarized in Table I. In both cases, we are at
half-filling.

Figures 10(a1)–10(e2) present the time evolution of the survival
probability of the initial CDW-like and SDW-like states depicted in
Table I for the dimer (left panels, D = J) and tetramer (right pan-
els, D = 2J) for different values of U/D starting from the limit of a
weakly nonideal gas (U/D = 0.05) and approaching the atomic limit(U/D = 20). The results are obtained using Nt = 2 (full red circles)
and Nt = 4 (blue stars) real-time slices and contrasted with the exact
result (solid black lines). The ABQMC results with Nt = 2 agree
both qualitatively (oscillatory behavior) and quantitatively with the
exact result up to tmax ∼ 1/U. Increasing Nt from 2 to 4 may help
decrease the deviation of the ABQMC data from the exact result
at later times. Even when finer real-time discretization does not
lead to better quantitative agreement, it may still help the ABQMC
method qualitatively reproduce the gross features of the exact
result. The converged values of ∣⟨sgn⟩∣ for the dimer and tetramer

TABLE II. Modulus of the average sign for ABQMC simulations of P(t) on dimer and
tetramer with Nt = 2, 3, and 4.

System Nt = 2 Nt = 3 Nt = 4
Dimer 1/2 1/4 1/8
Tetramer 1/8 2.4 × 10−2 3 × 10−3

for Nt = 2, 3, and 4 are summarized in Table II. For the dimer,
increasing Nt by one reduces ∣⟨sgn⟩∣ by a factor of 2. In contrast,
in the case of the tetramer, increasing Nt by one reduces ∣⟨sgn⟩∣ by
almost an order of magnitude.

2. Results on larger clusters

We move on to discuss the survival probability dynam-
ics of different 16-electron and eight-electron states on a 4 × 4

FIG. 10. Time dependence of the sur-
vival probability of the initial state ∣ψCDW⟩
or ∣ψSDW⟩ (see Table I) for the dimer
[(a1)–(e1)] and tetramer [(a2)–(e2)] for
five different interaction strengths start-
ing from the noninteracting limit and
approaching the atomic limit: U/D
= 0.05 [(a1) and (a2)], U/D = 0.25 [(b1)
and (b2)], U/D = 1 [(c1) and (c2)],
U/D = 5 [(d1) and (d2)], and U/D
= 20 [(e1) and (e2)]. The ABQMC results
with Nt = 2 (red full circles) and Nt

= 4 (blue stars) are compared with
the exact result (black solid lines). The
dotted/dashed lines connecting subse-
quent circles/stars are guides to the
eye. In most cases, the MC error bars
are smaller than the linear size of the
symbols.

J. Chem. Phys. 158, 044108 (2023); doi: 10.1063/5.0133597 158, 044108-12

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

cluster. Figures 11(a) and 11(b) present P(t) for 16-electron states
schematically depicted in their respective insets. These states are rep-
resentative of CDW patterns formed by applying strong external
density-modulating fields with wave vectors q = (π, 0) in Figs. 11(a)
and q = (π,π) in Fig. 11(b). Figures 11(c) and 11(d) present P(t) for
eight-electron states schematically depicted in their respective insets.
The ABQMC method employs Nt = 2 real-time slices. The results
are shown up to the maximum time Dtmax = 2.5, which we chose on
the basis of the results presented in Fig. 10(c2).

As a sensibility check of our ABQMC results, we first com-
pare the exact result in the noninteracting limit, see solid lines
in Figs. 11(a)–11(d), with the corresponding ABQMC prediction,
see full circles in Figs. 11(a)–11(d). While the exact and ABQMC
results agree quite well in Figs. 11(b) and 11(c), the agreement in
Figs. 11(a) and 11(d) is not perfect. Since no systematic errors are
expected in ABQMC at U = 0, the discrepancy must be due to sta-
tistical error. We confirm this expectation in Fig. 12 where we see
that the obtained curve tends to the exact one with the increasing
number of MC steps. The average sign cited in Fig. 11(d) suggests
that more MC steps are needed to obtain fully converged results.
Even though the converged average sign in Figs. 11(a)–11(c) is
of the same order of magnitude, we find that the rate of conver-
gence depends on both the number and the initial configuration of
electrons.

In Figs. 11(a)–11(d), we observe that weak interactions (U/D
≲ 0.5) do not cause any significant departure of P(t) from the cor-
responding noninteracting result. On the other hand, the effect of
somewhat stronger interactions on P(t) depends crucially on the
filling. In the 16-electron case, the increasing interactions speed up
the initial decay of P, see Figs. 11(a) and 11(b), while in the eight-
electron case interactions have little effect at Dt < 1, see Figs. 11(c)
and 11(d). This we attribute to the essential difference in the over-
all electron density and the relative role of the interaction term
in the Hamiltonian. In the 16-electron case, starting from the
moderate coupling U/D ∼ 1, there is a clear revival of the initial

FIG. 12. (a) Average sign as a function of the number of MC steps in the
ABQMC simulation of P(t) for the 16-electron initial state schematically depicted
in Fig. 11(a). (b) Time dependence of the survival probability for U = 0 extracted
using the first 1/30 of the total number of MC steps completed (1.29 × 109

steps, full red circles), the first 1/3 of the total number of MC steps completed
(1.29 × 1010 steps, full blue squares), and all the MC steps completed (3.87 × 1010

steps, full green up-triangles). These results are compared to the exact result in
the noninteracting limit, which is represented by the solid line. The vertical lines in
(a), whose colors match the colors of the symbols in (b), denote the ending points
of the simulations.

state in Fig. 11(a), while no such a revival is observed in Fig. 11(b).
Furthermore, the memory loss of the initial density-wave pattern is
more rapid in Fig. 11(a) than in Fig. 11(b), even atU = 0. The revival
of the initial state is observed in the eight-electron case as well: at

FIG. 11. Survival-probability dynamics of
the 16-electron states [in (a) and (b)]
and 8-electron states [in (c) and (d)]
that are schematically depicted in the
respective insets. The ABQMC results
are shown for five different interaction
strengths (symbols) and compared with
the noninteracting result (solid line). We
cite the converged value of the average
sign ∣⟨sgn⟩∣, as well as the total number
NMC of MC steps completed.
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t < 1/D there is barely any effect of the interaction, yet at longer
times it boosts P. However, in contrast to the 16-electron case, the
results in Figs. 11(c) and 11(d) exhibit a weaker dependence of the
survival-probability dynamics on the initial density-wave pattern.
Indeed, the exact results in the noninteracting case are identical for
both patterns in Figs. 11(c) and 11(d). Except in the case of the (π,π)
wave, the interactions lead to a persistence of the initial pattern at
longer times, t > 1/D. The precise form of temporal correlations that
develop due to interactions apparently depends on the initial spatial
arrangement of the electrons.

Section SVI of the supplementary material presents additional
ABQMC results for the time-dependent survival probability.

IV. RELATION TO OTHER ALGORITHMS

As mentioned in the introduction, a variant of the FPQMC
method was first proposed by De Raedt and Lagendijk in the
1980s.78–80 They, however, explicitly retain permutation operators
appearing in Eq. (A5) in their final expression for Z, see, e.g., Eq. (3)
in Ref. 78 or Eqs. (4.13) and (4.14) in Ref. 80. On the other hand,
we analytically perform summation over permutation operators,
thus grouping individual contributions into determinants. This is
much more efficient [as the factorial number of terms is captured in
only O(N3) steps, or even faster] and greatly improves the average
sign (cancellations between different permutations are already con-
tained in the determinant, see Fig. 7). The approach followed by De
Raedt and Lagendijk later became known as permutation-sampling
QMC, and the route followed by us is known as antisymmetric-
propagator QMC,85,86 permutation-blocking QMC,90 or fermionic-
propagator QMC.96 The analytical summation over permutation
operators entering Eq. (A5) was first performed by Takahashi and
Imada.85

Our FPQMC method employs the lowest-order STD [Eq. (4)],
which was also used in the permutation-sampling QMC method of
De Raedt and Lagendijk.78–80 The maximum number of imaginary-
time slices Nτ they could use was limited by the acceptance rates
of MC updates, which decrease quickly with increasing Nτ and
the cluster size Nc. In our present implementation of FPQMC,
we encounter the same issue, and our sampling becomes pro-
hibitively inefficient when the total number of time slices is greater
than 6–8, depending on the cluster size. To circumvent this issue,
the fermionic-propagator idea was combined with higher-order
STDs98,114–116 and more advanced sampling techniques117,118 to sim-
ulate the equilibrium properties of continuummodels of interacting
fermions in the canonical90,92 and grand-canonical96 ensembles.
More recent algorithmic developments enabled simulations with as
much as 2000 imaginary-time slices,119 which is a great improve-
ment. Whether similar ideas can be applied to lattice systems to
improve the efficiency of sampling is currently unclear. Generally,
more sophisticated STD schemes have been regarded as not use-
ful in lattice-model applications.120 It is important to note that
the success of the antisymmetric-propagator algorithms in con-
tinuous systems relies on weak degeneracy. This corresponds to
an extremely low occupancy regime in lattice models, and it is
precisely in this regime that our FPQMC method has an aver-
age sign close to 1 [see Figs. 4(b) and 5(b)], and the sampling is
most efficient [see Sec. SIII of the supplementary material]. Near
half-filling, lattice models present a fundamentally different physics,

which may ultimately require a substantially different algorithmic
approach.

We further emphasize that the low acceptance rates and the
resulting inefficiency of sampling that we encounter are directly
related to the discrete nature of space in our model. Some strategies
for treating the analogous problem in continuous-space models may
not be applicable here. For example, in continuous-space models,
acceptance rates of individual updates can be adjusted by mov-
ing electrons over shorter distances, so that the new configuration
weight is less likely to be substantially different from the old one.
In contrast, in lattice models, electronic coordinates are discrete,
and the minimum distance the electrons may cover is set by the
lattice constant; in most cases, moving a single electron by a sin-
gle lattice spacing in a single time slice is sufficient to drastically
reduce the configuration weight. There is no general rule on how
electrons should be moved to ensure that the new configuration
weight is close to the original one. This is particularly true for the
updates that insert/remove a particle, and the problem becomes
more pronounced with increasing Nτ . When each of the Nτ states∣Ψi,l⟩ [see Eq. (9)] is changed to ∣Ψ′i,l⟩, the chances that at least one
of ⟨Ψ′i,l⊕1∣e−ΔτH0 ∣Ψ′i,l⟩ is much smaller than ⟨Ψi,l⊕1∣e−ΔτH0 ∣Ψi,l⟩ [see
Eq. (10)] increase with Nτ . Our configuration weight is appreciable
only in small, mutually disconnected regions of the configuration
space, the movement between which is difficult. In Sec. V, we touch
upon possible strategies to improve sampling of such a structured
configuration space.

It is also important to compare our methods to the HF QMC
method,24,49 which is a well-established STD-based method for the
treatment of the Hubbardmodel. The HFmethod is manifestly sign-
problem-free but only at particle–hole symmetry. The sign problem
can become severe away from half-filling, or on lattices other than
the simple square lattice with no longer-range hoppings. On the
other hand, our FPQMC method is nearly sign-problem-free at
low occupancy, but also near half-filling, albeit only at strong cou-
pling [see Figs. 4(b) and 5(b)]. The other important difference is
that matrices manipulated in HF are of the size NcNτ , while in
FPQMC, the matrices are of the size <2Nc, i.e., given by the num-
ber of particles. Algorithmic complexity of the individual MC step
in FPQMC scales only linearly with Nτ , while in HF, the MC step
may go as O(N2

τ ) [determinant is O(N3), but fast updates O(N2)
are possible when the determinant is not calculated from scratch49].
Low cost of individual steps in FPQMC has allowed us to perform
as many as ∼1010 MC steps in some calculations. This advantage,
however, weighs against an increased configuration space to be sam-
pled. In HF the number of possible configurations is 2Nc Nτ (space is
spanned by NcNτ auxiliary Ising spins), while in FPQMC it is 4Nc Nτ

(although, symmetries can be used to significantly reduce the num-
ber of possible configurations). The ABQMC method manipulates
matrices of the same size as does FPQMC, but with twice the num-
ber, and the configuration space is a priori even bigger (16Nc Nτ). Our
methods also have the technical advantage that the measurements
of multipoint charge and spin correlation functions are algorithmi-
cally trivial and cheap. Especially in ABQMC, the densities in both
coordinate andmomentum space can be simply read off the configu-
ration. This is not possible in HF, where the auxiliary Ising spin only
distinguishes between singly occupied and doubly-occupied/empty
sites. Most importantly, the ABQMC/FPQMC methods can be
readily applied to canonical ensembles and pure states, which may
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not be possible with the HF method. However, the HF is commonly
used with tens of time slices for lattice sizes of orderNc = 100–200; in
FPQMC, algorithmic developments related to configuration updates
are necessary before it can become a viable alternative to the HF in a
wide range of applications.

Finally, we are unaware of any numerically exact method for
large lattice systems, which can treat the full Kadanoff–Baym–
Keldysh contour, and yield real-time correlation functions. Our
ABQMC method represents an interesting example of a real-time
QMC method with manifestly no dynamical sign problem. How-
ever, the average sign is generally poor. To push ABQMC to larger
number of time slices (as needed for calculation of the time-
dependence of observables) and lattices larger than 4 × 4 will require
further work, and most likely, conceptually new ideas.

V. SUMMARY AND OUTLOOK

We revisit one of the earliest proposals for a QMC treat-
ment of the Hubbard model, namely the permutation-sampling
QMC method developed in Refs. 78–80. Motivated by recent
progress in the analogous approach to continuous space models, we
group all permutations into a determinant, which is known as the
antisymmetric-propagator,85 permutation-blocking,90 or fermionic-
propagator96 idea. We devise and implement two slightly different
QMC methods. Depending on the details of the STD scheme, we
distinguish between (1) the FPQMC method, where snapshots are
given by real-space Fock states and determinants represent anti-
symmetric propagators between those states, and (2) the ABQMC
method, where slices alternate between real and reciprocal space rep-
resentation and determinants are simple Slater determinants. We
thoroughly benchmark both methods against the available numer-
ically exact data and then use ABQMC to obtain some new results in
the real-time domain.

The FPQMC method exhibits several promising properties.
The average sign can be close to 1 and does not drop off rapidly with
either the size of the system or the number of time slices. In 1D,
the method appears to be sign-problem-free. At present, the lim-
iting factor is not the average sign but rather the ability to sample
the large configuration space. At discretizations finer thanNτ = 6–8,
further algorithmic developments are necessary. Nevertheless, our
calculations show that excellent results for instantaneous correlators
can be obtained with very few time slices and efficiently. Average
density, double occupancy, and antiferromagnetic correlations can
already be computed with high accuracy at temperatures and cou-
pling strengths relevant for optical-lattice experiments. The FPQMC
method is promising for further applications in equilibrium setups.
In real-time applications, however, the sign problem in FPQMC is
severe.

On the other hand, the ABQMC method has a significant
sign problem in equilibrium applications but has some advantages
in real-time applications. In ABQMC, the sign problem is manifestly
time-independent, and calculations can be performed for multiple
times and coupling strengths with a single Markov chain. We use
this method to compute time-dependent survival probabilities of
different density-modulated states and identify several trends. The
relevant transient regime is short, and based on benchmarks, we esti-
mate the systematic error due to the time discretization here to be
small. Our results reveal that interactions speed up the initial decay

of the survival probability but facilitate the persistence of the initial
charge pattern at longer times. Additionally, we observe a charac-
teristic value of the coupling constant, U ∼ 0.5D, below which the
interaction has no visible effect on time evolution. These findings
bare qualitative predictions for future ultracold-atom experiments,
but are limited to dynamics at the shortest wave-lengths, as dictated
by the maximal size of the lattice that we can treat. We finally note
that, within the ABQMCmethod, uniform currents, which are diag-
onal in the momentum representation, may be straightforwardly
treated.

There is room for improvement in both the ABQMC and
FPQMC methods. We already utilize several symmetries of the
Hubbard model to improve efficiency and enforce some physi-
cal properties of solutions, but more symmetries can certainly be
uncovered in the configuration spaces. Further grouping of con-
figurations connected by symmetries can be used to alleviate some
of the sign problem or improve efficiency. Also, sampling schemes
may be improved along the lines of the recently proposed many-
configuration Markov chain MC, which visits an arbitrary number
of configurations at everyMC step.121 Moreover, a better insight into
the symmetries of the configuration space may make deterministic,
structured sampling (along the lines of quasi-MC methods122–124)
superior to the standard pseudo-random sampling.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) a detailed description
of MC updates within the FPQMC method, (ii) a detailed descrip-
tion of MC updates within the ABQMCmethod for time-dependent
survival probability, (iii) details on the performance of the FPQMC
method in equilibrium calculations, (iv) discussion on the applica-
bility of the ABQMC method in equilibrium calculations, (v) addi-
tional FPQMC calculations of time-dependent local densities, (vi)
additional ABQMC calculations of time-dependent survival prob-
ability, and (vii) formulation and benchmarks of ABQMC method
in quench setups (on the full three-piece Kadanoff–Baym–Keldysh
contour).
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APPENDIX A: MANY-BODY PROPAGATOR
AS A DETERMINANT OF SINGLE-PARTICLE
PROPAGATORS

The demonstration of Eqs. (6) and (7) can be conducted for
each spin component separately. We thus fix the spin index σ and
further omit it from the definition of the many-fermion state ∣Ψi⟩
[Eq. (5)]. Since H0 is diagonal in the momentum representation, we
express the state ∣Ψi⟩ in the momentum representation

∣Ψi⟩ = ∑
{kj}

( N

∏
l=1

⟨kl∣rl⟩c†kl)∣∅⟩ (A1)

and similarly for ∣Ψ′i⟩. While the positions r1, . . . , rN are ordered
according to a certain rule, the wave vectors k1, . . . ,kN entering
Eq. (A1) are not ordered, and there is no restriction on the sum over
them. We have

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∑
{k′

l
}

∑
{kl}

e
−Δαεk1 . . . e

−ΔαεkN

× ⟨r′N ∣k′N⟩ . . . ⟨r′1∣k′1⟩⟨k1∣r1⟩⟨kN ∣rN⟩
× ⟨∅∣ck′N . . . ck′1c†k1 . . . c†kN ∣∅⟩. (A2)

The sums over {k′l} are eliminated by employing the identity80

⟨∅∣ck′N . . . ck′1c†k1 . . . c†kN ∣∅⟩
= ∑

P

sgn(P) δ(k′1,kP(1)) . . . δ(k′N ,kP(N)), (A3)

where the permutation operator P acts on the set of indices{1, . . . ,N}, while sgn(P) = ±1 is the permutation parity. We then
observe that

N

∏
l=1

⟨r′l ∣kP(l)⟩ = N

∏
l=1

⟨r′P −1(l)∣kl⟩, (A4)

which permits us to perform the sums over individual kls indepen-
dently. Combining Eqs. (A2)–(A4) and changing the permutation
variable P ′ = P −1 we eventually obtain

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ = ∑
P ′

sgn(P ′) N

∏
l=1

⟨r′P ′(l)∣e−ΔαH0 ∣rl⟩
= det S(Ψ′i ,Ψi,Δα), (A5)

where matrix S(Ψ′i ,Ψi,Δα) (here without the spin index) is defined
in Eq. (7).

APPENDIX B: PROPAGATOR OF A FREE PARTICLE
ON THE SQUARE LATTICE

Here, we provide the expressions for the propagator of a free
particle on the square lattice in imaginary [Δα = Δτ in Eq. (7)] and
real [Δα = iΔt in Eq. (7)] time. In imaginary time,

⟨r′∣e−ΔτH0 ∣r⟩ = I(2JΔτ, r′x − rx)I(2JΔτ, r′y − ry), (B1)

where the one-dimensional imaginary-time propagator (l is an
integer)

I(z, l) = 1
N

N−1

∑
j=0

cos(2πjl
N
) exp(z cos(2πj

N
)) (B2)

is related to the modified Bessel function of the first kind Il(z) via
lim
N→∞

I(z, l) = 1
π∫

π

0
dθ cos(lθ) ez cos θ = Il(z). (B3)

In real time,

⟨r′∣e−iΔtH0 ∣r⟩ = J (2JΔt, r′x − rx)J (2JΔt, r′y − ry), (B4)

where the one-dimensional real-time propagator (l is an integer)

J (z, l) = 1
N

N−1

∑
j=0

cos(2πjl
N
) exp(iz cos(2πj

N
)) (B5)

is related to the Bessel function of the first kind J l(z) via
lim
N→∞

J (z, l) = 1
π∫

π

0
dθ cos(lθ) eiz cos θ = ilJl(z). (B6)

For finite N, J (z, 2l) is purely real, while J (z, 2l + 1) is purely
imaginary.

APPENDIX C: DERIVATION OF THE FPQMC
FORMULAE THAT MANIFESTLY RESPECT
THE DYNAMICAL SYMMETRY
OF THE HUBBARD MODEL

Here, we derive the FPQMC expression for the time-dependent
expectation value of a local observable [Eq. (18)] that manifestly
respects the dynamical symmetry of the Hubbard model.

We start by defining the operation of the bipartite lattice sym-
metry, which is represented by a unitary, hermitean, and involutive
operator B (B† = B = B−1) whose action on electron creation and
annihilation operators in the real space is given as
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Bc
(†)
rσ B = (−1)rx+ryc(†)rσ . (C1)

In the momentum space, B is actually the so-called π-boost15

Bc
(†)
kσ B = c(†)k+Q,σ (C2)

that increases the electronic momentum by Q = (π,π). The time
reversal operator T is an antiunitary (unitary and antilinear), involu-
tive, and hermitean operator whose action on electron creation and
annihilation operators in the real space is given as

Tc
(†)
r↑ T = c(†)r↓ , Tc

(†)
r↓ T = −c(†)r↑ , (C3)

while the corresponding relations in the momentum space read as

Tc
(†)
k↑ T = c

(†)
−k↓, Tc

(†)
k↓ T = −c(†)−k↑. (C4)

Using Eqs. (C1)–(C4), consequently

BH0B = −H0, BHintB = Hint, TH0T = H0,

THintT = Hint.
(C5)

In Sec. II B 2, we assumed that the initial state ∣ψ(0)⟩ is an eigen-
state of local density operators nrσ , which means that B∣ψ(0)⟩
= eiχB ∣ψ(0)⟩, see Eq. (C1).

The denominator of Eq. (18)

Aden(t) = ⟨ψ(0)∣eiHt e−iHt ∣ψ(0)⟩ (C6)

is purely real, Aden(t) = Aden(t)∗, so that

Aden(t) ≈ 1
2
⟨ψ(0)∣(eiH0Δte

iHintΔt)Nt (e−iH0Δte
−iHintΔt)Nt ∣ψ(0)⟩

+ 1
2
⟨ψ(0)∣(eiHintΔte

iH0Δt)Nt (e−iHintΔte
−iH0Δt)Nt ∣ψ(0)⟩.

(C7)

We thus obtain

Aden(t) ≈∑
C

{Re{D2t(C,Δt)} cos[Δεint(C)Δt]
− Im{D2t(C,Δt)} sin[Δεint(C)Δt]}, (C8)

where configuration C consists of 2Nt − 1 independent states∣Ψi,2⟩, . . . , ∣Ψi,2Nt ⟩, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩, while D2t(C,Δt) and Δεint(C) are
defined in Eqs. (21) and (20), respectively. The denominator is also
invariant under time reversal, Aden(t) = Aden(−t), which is not a
consequence of a specific behavior of the initial state under time
reversal but rather follows from Aden(t) ≡ ⟨ψ(0)∣ψ(0)⟩. In other
words, Eq. (C8) should contain only contributions invariant under
the transformation Δt → −Δt. Using the bipartite lattice symmetry,
under which B∣Ψi,l⟩ = eiχl ∣Ψi,l⟩, we obtain

D2t(C,−Δt) = 2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣BBe−iH0ΔtBB∣Ψi,l⟩

×
Nt

∏
l=1

⟨Ψi,l⊕1∣BBeiH0ΔtBB∣Ψi,l⟩

=
2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣eiH0Δt ∣Ψi,l⟩ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩
= D2t(C,Δt). (C9)

Equation (C8) then reduces to

Aden(t) =∑
C

Re{D2t(C,Δt)} cos[Δεint(C)Δt]. (C10)

We now turn to the numerator of Eq. (18)

Anum(t) = ⟨ψ(0)∣eiHt Ai e
−iHt ∣ψ(0)⟩, (C11)

which is also purely real, Anum(t) = Anum(t)∗, so that
Anum(t) ≈∑

C

Ai(Ψi,Nt+1){Re{D2t(C,Δt)} cos[Δεint(C)Δt]
− Im{D2t(C,Δt)} sin[Δεint(C)Δt]}. (C12)

In the following discussion, we assume that the time reversal oper-
ation changes ∣ψ(0)⟩ by a phase factor, T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩. This,
combinedwith B∣ψ(0)⟩ = eiχB ∣ψ(0)⟩, gives the assumption on ∣ψ(0)⟩
that is mentioned before Eq. (19). We further assume that TBAiBT
= Ai. Under these assumptions, the numerator is invariant under
time reversal, Anum(−t) = Anum(t), meaning that Eq. (C12) should
contain only contributions invariant under the transformation
Δt → −Δt. Using Eq. (C9), Eq. (C12) reduces to
Anum(t) ≈∑

C

Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos[Δεint(C)Δt], (C13)

and Eq. (22) follows immediately.
An example of the initial state ∣ψ(0)⟩ and the observableAi that

satisfy TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩ and TBAiBT = Ai are the CDW state∣ψCDW⟩ [Eq. (24)] and the local charge densityAi = ∑σ nrσ .While the
time-reversal operation may change a general SDW state [Eq. (23)]
by more than a phase factor, Eq. (C13) is still applicable when the
observable of interest is the local spin densityAi = nr↑ − nr↓. This fol-
lows from the transformation law T(nr↑ − nr↓)T = nr↓ − nr↑ and the
fact that the roles of spin-up and spin-down electrons in the state
T∣ψSDW⟩ are exchanged with respect to the state ∣ψSDW⟩.

We now explain how we use Eq. (26) to enlarge statistics
in computations of time-dependent local spin (charge) den-
sities when the evolution starts from state ∣ψSDW⟩ in Eq. (23)
[∣ψCDW⟩ in Eq. (24)]. Let us limit the discussion to the spin
(charge) density at fixed position r. Suppose that we obtained
Markov chains (of length NCDW) {N CDW

1 (t), . . . , N CDW
NCDW
(t)}

and {DCDW
1 , . . . ,DCDW

NCDW
} for the numerator and denominator.

Suppose also that we obtained Markov chains (of length NSDW){N SDW
1 (t), . . . , N SDW

NSDW
(t)} and {D SDW

1 , . . . ,D SDW
NSDW
} for the

numerator and denominator. Using these Markov chains, we
found that the best result for the time-dependent local spin
(charge) density is obtained by joining them into one Markov
chain {N SDW

1 (t), . . . , N SDW
NSDW
(t), N CDW

1 (t), . . . , N CDW
NCDW
(t)} of

length NSDW +NCDW for the numerator, and another Markov chain
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{D SDW
1 , . . . ,D SDW

NSDW
,DCDW

1 , . . . ,DCDW
NCDW
} of length NSDW +NCDW

for the denominator. If individual chain lengths NCDW and NSDW

are sufficiently large, the manner in which the chains are joined is
immaterial; here, we append the CDW chain to the SDW chain, and
we note that other joining possibilities lead to the same final result
(within the statistical error bars). To further reduce statistical error
bars, we also combine SDW + CDW chains at all positions r that
have the same spin (charge) density by the symmetry of the initial
state.

APPENDIX D: DERIVATION OF THE ABQMC FORMULA
FOR THE SURVIVAL PROBABILITY

We start from the survival-probability amplitude

AP(t) = ⟨ψ(0)∣e−iHt ∣ψ(0)⟩⟨ψ(0)∣ψ(0)⟩ , (D1)

whose numerator can be expressed as

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈ 1
2
⟨ψ(0)∣(e−iH0Δte

−iHintΔt)Nt ∣ψ(0)⟩ + 1
2
⟨ψ(0)∣(e−iHintΔte

−iH0Δt)Nt ∣ψ(0)⟩
= ∑

Ψi,2...Ψi,Nt

Re{ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩}e−iεint(C )Δt

= ∑
Ψi,2...Ψi,Nt

∑
Ψk,1...Ψk,Nt

Re{ Nt

∏
l=1

⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩e−iε0(C )Δt}e−iεint(C )Δt

=∑
C

{Re{D(C)} cos[ε0(C)Δt] + Im{D(C)} sin[ε0(C)Δt]}e−iεint(C )Δt. (D2)

In going from the second to the third line of Eq. (D2), we
introduced spectral decompositions of Nt factors e

−iH0Δt . The con-
figuration C entering the last line of Eq. (D2) consists of Nt − 1
independent states ∣Ψi,2⟩, . . . , ∣Ψi,Nt ⟩ in the coordinate representa-
tion and Nt independent states ∣Ψk,1⟩, . . . , ∣Ψk,Nt

⟩ in the momentum
representation, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. D(C) and ε0(C) are defined in
Eqs. (31) and (34), respectively. By virtue of the bipartite lattice sym-
metry, under which D(C) remains invariant, while ε0(C) changes
sign, the summand containing sin[ε0(C)Δt] in Eq. (D2) vanishes, so
that

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈∑
C

Re{D(C)} cos[ε0(C)Δt] e−iεint(C )Δt. (D3)

This form should be used, e.g., when ∣ψ(0)⟩ is the SDW state defined
in Eq. (23). When the initial state is the CDW state defined in
Eq. (24), T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩, ⟨ψ(0)∣e−iHt ∣ψ(0)⟩ is purely real, so
that

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈∑
C

Re{D(C)} cos[ε0(C)Δt] cos[εint(C)Δt].
(D4)

Equation (30) then follows by combining Eq. (D4) with⟨ψ(0)∣ψ(0)⟩ = ∑C Re{D(C)}.
We now provide a formal demonstration of Eq. (36). The

partial particle–hole transformation is represented by a unitary, her-
mitean, and involutive operator P (P† = P = P−1), whose action
on electron creation and annihilation operators in real space is
given as109,110

Pcr↑P = cr↑, Pc
†

r↑P = c†r↑, (D5)

Pcr↓P = (−1)rx+ryc†r↓, Pc
†

r↓P = (−1)rx+rycr↓. (D6)

The interaction Hamiltonian Hint thus transforms under the par-
tial particle–hole transformation as PHintP = UN̂↑ −Hint. The action
of the partial particle–hole transformation in the momentum space
reads as [Q = (π,π)]

Pck↑P = ck↑, Pc
†

k↑P = c†k↑, (D7)

Pck↓P = c†Q−k,↓, Pc
†

k↓P = cQ−k,↓. (D8)

The kinetic energy, therefore, remains invariant under the par-
tial particle–hole transformation, i.e., PH0P = H0. Equations (D5)
and (D6) imply that P∣∅⟩ =∏r∈Uc

†

r↓∣∅⟩. We then find that P∣ψCDW⟩
= ∣ψSDW⟩, i.e., the partial particle–hole transformation transforms
the CDW state defined in Eq. (24) into the SDW state defined
in Eq. (23) and vice versa.108 The states ∣ψCDW⟩ and ∣ψSDW⟩
have the same number of spin-up electrons, while their num-
bers of spin-down electrons add to Nc. Using the combination of
the partial particle–hole transformation P and the bipartite lattice
transformation B defined in Appendix C, one obtains

⟨ψCDW∣e−iHt ∣ψCDW⟩ = e−iN↑(ψ)Ut⟨ψSDW∣e−iHt ∣ψSDW⟩∗, (D9)

where N↑(ψ) = ⟨ψCDW∣N̂↑∣ψCDW⟩ = ⟨ψSDW∣N̂↑∣ψSDW⟩ is the total
number of spin-up electrons in CDWand SDW states. Equation (36)
then follows immediately from Eq. (D9).

A similar procedure to that described in Appendix C is used
to combine Markov chains for the survival probabilities of the
CDW and SDW states related by the dynamical symmetry in
Eq. (D9).
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APPENDIX E: USING THE PARTICLE–HOLE SYMMETRY
TO DISCUSS THE AVERAGE SIGN OF THE FPQMC
METHOD FOR CHEMICAL POTENTIALS μ AND U − μ

The (full) particle–hole transformation is represented by a uni-
tary, hermitean, and involutive operator P f (P†

f
= P f = P−1f ) whose

action on electron creation and annihilation operators in real space
is defined as109,110

P f crσ P f = (−1)rx+ryc†rσ. (E1)

The corresponding formula in the momentum space reads as

P f ckσ P f = c†Q−k,σ. (E2)

Let us fix J,U,T, and Nτ and compute the equation of state ρe(μ)
using Eq. (13) in which Ai(Ψi,l) = [N↑(C) +N↓(C)]/Nc. It is con-
venient to make the μ-dependence in εint(C,μ) explicit. In the sums
entering Eq. (13) we make the substitution

C→ C
′ = {∣Φi,l⟩ = P f ∣Ψi,l⟩∣l = 1, . . . ,Nτ} (E3)

under which

Dβ(C,Δτ) = Dβ(C ′,Δτ), (E4)

εint(C,μ) = εint(C ′,U − μ) + (U − 2 μ)Nτ Nc, (E5)

Nσ(C ′) = Nc −Nσ(C). (E6)

It then follows that

∑C Dβ(C,Δτ) e−Δτεint(C,μ)[N↑(C) +N↓(C)]/Nc

∑C Dβ(C,Δτ) e−Δτεint(C,μ)
= 2 − ∑C′ Dβ(C′,Δτ) e−Δτεint(C′ ,U−μ)[N↑(C′) +N↓(C′)]/Nc

∑C′ Dβ(C′,Δτ) e−Δτεint(C′ ,U−μ) .

(E7)

The FPQMC simulations of the ratios in the last equation are
performed for chemical potentials μ and U − μ, which are symmet-
ric with respect to the chemical potentialU/2 at the half-filling. Since
εint(C,μ) and εint(C ′,U − μ) differ by a constant additive factor, the
corresponding configuration weights differ by a constant multiplica-
tive factor, and the average signs of the two FPQMC simulations are
thus mutually equal.
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Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

(Received 29 December 2022; revised 6 March 2023; accepted 17 March 2023; published 30 March 2023)

We examine the range of validity of the second-order cumulant expansion (CE) for the calculation of spectral

functions, quasiparticle properties, and mobility of the Holstein polaron. We devise an efficient numerical

implementation that allows us to make comparisons in a broad interval of temperature, electron-phonon coupling,

and phonon frequency. For a benchmark, we use the dynamical mean-field theory which gives, as we have

recently shown, rather accurate spectral functions in the whole parameter space, even in low dimensions. We

find that in one dimension, the CE resolves well both the quasiparticle and the first satellite peak in a regime of

intermediate coupling. At high temperatures, the charge mobility assumes a power law µ ∝ T −2 in the limit of

weak coupling and µ ∝ T −3/2 for stronger coupling. We find that, for stronger coupling, the CE gives slightly

better results than the self-consistent Migdal approximation (SCMA), while the one-shot Migdal approximation

is appropriate only for a very weak electron-phonon interaction. We also analyze the atomic limit and the spectral

sum rules. We derive an analytical expression for the moments in CE and find that they are exact up to the fourth

order, as opposed to the SCMA where they are exact to the third order. Finally, we analyze the results in higher

dimensions.

DOI: 10.1103/PhysRevB.107.125165

I. INTRODUCTION

The cumulant expansion (CE) method presents an alterna-

tive to the usual Dyson equation approach in the calculation

of spectral functions of interacting quantum many-particle

systems [1]. In this method, we express the Green’s function

in real time as an exponential function of an auxiliary quantity

C(t ), called the cumulant, which can be calculated perturba-

tively [2]. In the late 1960s, it was established that the lowest

order CE gives the exact solution of the problem of a core hole

coupled to bosonic excitations (plasmons or phonons) [3,4].

While there were early papers that emphasized the potential

role of CE as an approximate method to treat the elec-

tronic correlations in metals beyond the GW approximation

[5–8] and the electron-phonon interaction in semiconductors

and narrow band metals beyond the Migdal approximation

(MA) [9–11], a surge of studies of CE has appeared only

recently.

Renewed interest has emerged due to the possibility of

combining CE with ab initio band-structure calculations. The

CE for the electron-phonon interaction was used to obtain

the spectral functions of several doped transition-metal oxides

[12,13], showing a favorable comparison with angle-resolved

photoemission spectroscopy [14]. A particularly appealing

feature of the CE approach is that it describes the quasipar-

ticle part of the spectrum as well as the satellite structure

(sidebands). Combining the CE with the Kubo formula for

charge transport gives an attractive route to calculate mobility

in semiconductors beyond the Boltzmann approach, which

is applicable only for weak electron-phonon coupling [15].

This was very recently demonstrated for SrTiO3 [16] and

naphthalene [17]. CE was also applied to elemental metals

where a correction to the standard MA is discussed [18].

Similarly, the CE is successfully used to treat the electronic

correlations beyond the GW approximation [19–25]. Further-

more, CE was used to study absorption spectra in molecular

aggregates representative of photosynthetic pigment-protein

complexes [26–28].

Despite the wide use of the lowest order CE, there seems

to be a lack of studies establishing its range of validity,

which represents the central motivation for this paper. To

achieve this, we turn to simplified models of the electron-

phonon interaction. CE for the Fröhlich model [29,30] gives

the ground-state energy and the effective mass similar to

the exact quantum Monte Carlo calculations for moderate

interaction [31]. This is in contrast to the Dyson-Migdal

approach, which severely underestimates mass renormaliza-

tion. A comparison of the corresponding spectral functions

is, however, missing, since reliable quantum Monte Carlo

results are not available due to the well-known problems with

analytical continuation. The Holstein polaron model gives a

unique opportunity to explore the applicability of the CE since

various numerically exact methods are developed and applied

to this model covering different parameter regimes [32–49].

This was the approach of a very recent work by Reichman

and collaborators [50,51]. Still, there are several questions

that remained unresolved. Most importantly, a comparison of

spectral functions was made just for a small set of parameters

on a finite-size lattice, where the benchmark spectral functions

were available from the finite-temperature Lanczos results,

while the charge transport was not examined.

In our recent work [52], we established that the dynamical

mean-field theory (DMFT) [53] gives close to exact spectral

functions of the Holstein polaron for different phonon fre-

quencies, electron-phonon couplings, and temperatures even

in low dimensions, covering practically the whole parameter

space. This method is computationally very fast and precise,

which makes us ideally positioned to perform comprehen-

sive comparisons with the CE method, which is the goal of
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this paper. Within the CE, we calculate the spectral func-

tions and charge mobility for a broad set of parameters and

make detailed comparisons with DMFT and (self-consistent)

MA. We find that the one-shot MA is appropriate only for

very weak electron-phonon coupling. The validity of the CE

and self-consistent Migdal approximation (SCMA) is much

broader and for intermediate interaction CE even outperforms

SCMA. We also derive analytical CE expressions for the

ground-state energy, renormalized mass, and scattering rate

as well as the spectral sum rules, and make comparisons

between the methods. We establish a power-law behavior for

the charge mobility at high temperatures. We also compare the

performance of different methods as the bandwidth is reduced

toward the atomic limit.

The remaining part of the paper is organized as follows.

In Sec. II, we introduce the CE method and present details of

its implementation on the Holstein model. DMFT and SCMA

are here introduced as benchmark methods. Representative

spectral functions are shown in Sec. III from weak toward

the strong coupling. The high-temperature and atomic limits

are analyzed in detail, as well as the spectral sum rules. In

Sec. IV, we present the results for the effective mass and

ground-state energy. The temperature dependence of the elec-

tron mobility is analyzed in Sec. V, and Sec. VI contains our

conclusions. Some details concerning numerical implementa-

tions and additional figures for various parameters are shown

in the Appendix and in the Supplemental Material (SM) [54].

II. MODEL AND METHODS

The Holstein model is the simplest model of the lattice

electrons interacting with the phonons. It assumes a local

electron-phonon interaction and dispersionless phonons. The

Hamiltonian is given by

H = − t0
∑

〈i j〉

(c†
i c j + H.c.)

− g
∑

i

ni(a
†
i + ai ) + ω0

∑

i

a
†
i ai. (1)

Here, t0 is the hopping parameter between the nearest neigh-

bors and ω0 is the phonon frequency. ci and ai are the electron

and the phonon annihilation operators, ni = c
†
i ci, and g de-

notes the electron-phonon coupling strength. We set h̄, kB,

elementary charge e, and lattice constant to 1. We also often

use a parameter α = g/ω0. We study the model in the thermo-

dynamic limit (number of sites N → ∞). Furthermore, we

consider a dynamics of a single electron in the conduction

band and treat the electrons as spinless, since we are interested

only in weakly doped semiconductors. This is equivalent to

setting the chemical potential far below the conduction band,

i.e., considering the limit µ̃ → −∞. This case is often re-

ferred to as the Holstein polaron problem. We mostly focus

on the one-dimensional (1D) system, but we also consider the

system in 2D and 3D.

A. Cumulant expansion

1. General theory

The central quantity of this paper is the electron spectral

function Ak(ω) = (−1/π )ImGk(ω), where k is the momen-

tum and Gk(ω) is the retarded Green’s function in frequency

domain [1]. Its exact evaluation is often a formidable task,

which is why approximate techniques are usually employed.

One needs to be careful with such approaches not to violate

some analytic properties, such as the pole structure of the

Green’s function, the positivity of the spectral function, or

the spectral sum rules. At least some of these properties can

be easily satisfied if the Green’s function is not calculated

directly but instead through some auxiliary quantity, such as

the self-energy �k(ω). In the latter case, the connection with

the Green’s function is established via the Dyson equation

Gk(ω) =
1

Gk,0(ω)−1 − �k(ω)
=

1

ω − εk − �k(ω)
, (2)

where Gk,0(ω) is the noninteracting Green’s function and εk

is the noninteracting dispersion relation.

An alternative to the Dyson equation based approaches is

the so-called cumulant expansion method [19], in which the

exponential ansatz is chosen for the Green’s function in the

time domain:

Gk(t ) = Gk,0(t )eCk (t ) = −iθ (t )e−iεkt eCk (t ). (3)

Here, θ (t ) is the Heaviside step function and Ck(t ) plays the

role of an auxiliary quantity which is called the cumulant.

Both Eqs. (2) and (3) would correspond to the same Green’s

function in frequency and time domain if the cumulant Ck(t )

and the self-energy �k(ω) could be evaluated exactly [1].

In practice, however, one of these approaches is expected to

perform better. The spectral function within the CE can be

obtained as follows:

Ak(ω + εk ) =
1

π
Re

∫ ∞

0

dteiωt eCk (t ). (4)

Equation (4) circumvents the Fourier transform of the whole

Green’s function Ak(ω) = − 1
π

ImGk(ω), which is useful in

practice, as the free electron part e−iεkt typically oscillates

much more quickly than eCk (t ).

The expression for Ck(t ) in the lowest order perturbation

expansion can be obtained by taking the leading terms

in the Taylor expansion of the Dyson equation Gk(ω) =
(Gk,0(ω)−1 − �k(ω))−1 ≈ Gk,0(ω) + Gk,0(ω)�k(ω)Gk,0(ω),

taking its inverse Fourier transform and equating it to Eq. (3),

where the cumulant in the exponent is replaced with its linear

approximation eCk (t ) ≈ 1 + Ck(t ):

Ck(t ) = ieiεkt

∫ ∞

−∞

dω

2π

e−iωt�k(ω)

(ω − εk + i0+)2
. (5)

Using the spectral representation of the self-energy

�k(ω) =
∫

dν

π

|Im�k(ν)|
ω − ν + i0+ , (6)

and the contour integration over ω, Eq. (5) simplifies to [19]

Ck(t ) =
1

π

∫ ∞

−∞
dω

|Im�k(ω + εk )|
ω2

(e−iωt + iωt − 1). (7)

The corresponding spectral function satisfies the first two

sum rules, irrespective of �k(ω). This is a consequence of

the behavior of Ck(t ) for small t ; see Sec. III C. In gen-

eral, Ck(t = 0) = 0 is sufficient for the first spectral sum

rule
∫

Ak(ω)dω = 1 to be satisfied. The second sum rule
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∫

Ak(ω)ωdω = εk can also be satisfied if we additionally

impose that the cumulant’s first derivative at t = 0 is van-

ishing, dCk

dt
(0) = 0. Both of these conditions are satisfied by

the cumulant function in Eq. (7), as it is a quadratic function

of time for small arguments e−iωt + iωt − 1 ≈ −ω2t2/2 for

t → 0.

The application of Eq. (7) is facilitated by the fact that

it does not contain any iterative self-consistent calculations.

However, one needs to overcome the numerical challenges

caused by the removable singularity at ω = 0 and by the

rapidly oscillating trigonometric factor e−iωt for large t . The

latter is important for the weak electron-phonon couplings,

where it is necessary to propagate Ck(t ) up to long times until

the Green’s function is sufficiently damped out. The same

problem occurs in other regimes as well (e.g., close to the

atomic limit), where the Green’s function does not attenuate

at all; see Sec. II A 4.

The numerical singularity at ω = 0 can be completely

avoided if we consider the cumulant’s second derivative

d2Ck(t )

dt2
=

∫ ∞

−∞

dω

π
Im�k(ω + εk ) e−iωt ≡ 2eiεkt σ̃k(t ), (8)

where we used Im�k(ω) < 0 and introduced σ̃k(t ) ≡
∫ ∞
−∞ Im�k(ω)e−iωt dω

2π
. Then, Ck(t ) is obtained as a double

integral over time of Eq. (8),

Ck(t ) = 2

∫ t

0

dt ′
∫ t ′

0

dt ′′eiεkt ′′
σ̃k(t ′′), (9)

where the lower boundaries of both integrals have to be zero,

as guaranteed by the initial conditions Ck(0) = dCk

dt
(0) = 0.

Using the Cauchy formula for repeated integration, this can

also be written as a single integral:

Ck(t ) = 2

∫ t

0

(t − x)eiεkxσ̃k(x)dx. (10)

This completely removed the problem of numerical sin-

gularities. Still, the problem of rapid oscillations of the

subintegral function remains due to the presence of eiεkx term.

In Sec. II A 3, we provide an elegant solution for this issue,

focusing on the case of the Holstein model.

2. Asymptotic expansion for cumulant when t → ∞

The asymptotic expansion of Ck(t ) for large times, as

we now demonstrate, completely determines the quasiparticle

properties within this method. This is one of the main moti-

vations for studying the t → ∞ limit. From Eq. (8), we see

that

i
dCk

dt
(t → ∞) = i

∫ ∞

0

d2Ck(t )

dt2
dt

= −
i

π

∫ ∞

−∞
dω|Im�k(ω + εk )|

∫ ∞

0

dte−iωt

= �k(εk ), (11)

where we used the identity
∫ ∞

0
dte−iωt = πδ(ω) − iP 1

ω
and

the Kramers-Kronig relations for the self-energy. Hence, the

cumulant function Ck(t ), and also the whole exponent in

Eq. (3) is a linear function of time Ck(t ) − iεkt ≈ −iẼkt +

const for t → ∞, where

Ẽk = εk + �k(εk ). (12)

As a consequence, the Green’s function in Fourier space has a

simple pole situated at Ẽk, as seen from the following expres-

sion:

Gk(ω) = −i

∫ ∞

0

eit (ω−εk− iCk (t )

t
)dt . (13)

Therefore, quasiparticle properties are encoded in Ẽk: its real

and imaginary parts correspond to the quasiparticle energy

and scattering rate, respectively. We note that, in our present

analysis, we implicitly assumed that dCk

dt
(t → ∞) exists and

is finite. Although this is generally true, there are a few excep-

tions. In the Holstein model, the first assumption is violated

at the atomic limit [t0 = 0; see Eq. (28)], while the second

assumption is violated at the adiabatic limit (ω0 = 0) for

k = 0 or k = ±π ; see Eqs. (18) or (19).

The knowledge that we gained about the analytic properties

of the Ck(t ) provides us with an intuitive understanding of

how the shape of the cumulant determines the shape of the

spectral function. The asymptotic limits t → ∞ [where Ck(t )

is linear] and t → 0 [where Ck(t ) is quadratic] by them-

selves, to a large extent, describe only the simple one-peak

spectral functions, while the crossover between these limits

is responsible for the emergence of satellite peaks. This can

be explained as follows: If the cumulant was quadratic over

the whole t domain Ck(t ) = ct2, the spectral function would

have a simple Gaussian shape. Similarly, the Lorentzian shape

would be obtained from the linear cumulant Ck(t ) = ct . This

suggests that the simple crossover between quadratic (at small

t ) and linear (at large t ) behaviors would also give a sim-

ple one-peak shape of the spectral function. The information

about phonon satellites is thus completely encoded in the

Ck(t ) for intermediate times t , which depends on the system

and approximation in which the cumulant function is calcu-

lated.

3. Second-order cumulant expansion for the Holstein model

Let us now concentrate on a specific example, the Holstein

model on a hypercubic lattice in n dimensions. The second-

order cumulant is given by Eq. (7), where the self-energy is

taken to be in the MA �k(ω) = �MA(ω), i.e., of the second

(lowest) order with respect to the electron-phonon coupling

g. This is in accordance with the derivation from Sec. II A 1,

since we restricted ourselves to the lowest order terms in the

Taylor expansion of the Dyson equation and of eCk (t ). An alter-

native derivation of this expression is given in Sec. I of the SM

[54]. MA is briefly discussed in Sec. II B 1. For our present

purpose, we only need the expression for the imaginary part

of the self-energy

Im�MA(ω) = −πg2[(nph + 1)ρ(ω − ω0) + nphρ(ω + ω0)],

(14)

where nph = 1/(eω0/T − 1) is the Bose factor, ρ(ω) =
1
N

∑

k δ(ω − εk ) is the density of electron states for the system

of size N , which we take in the thermodynamic limit N → ∞,

and εk = −2t0
∑n

j=1 cos k j is the noninteracting dispersion

relation.
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FIG. 1. (a)–(f) The cumulant, Green’s, and spectral function on

the example of the one-dimensional Holstein model with the follow-

ing values of the model parameters: ω0 = 0.2, g = 0.2, T = 0.3, and

t0 = 1.

The expression for the cumulant function, as seen from

Eq. (10), is related to the inverse Fourier transform of

Im�MA(ω), which in turn is completely determined by the

inverse Fourier transform of the density of states ρ̃(t ). The

latter admits a closed-form solution

ρ̃(t ) =
∫ ∞

−∞

dωe−iωt

(2π )n+1

∫

[0,2π )n

dnk δ



ω + 2t0

n
∑

j=1

cos k j





=
1

2π

(
1

2π

∫ 2π

0

dke2it0t cos k

)n

=
J0(2t0t )n

2π
, (15)

where J0 is the Bessel function of the first kind of order

zero. Hence, Eqs. (10), (14), and (15) imply that the cumulant

function can be written as

Ck(t ) = −g2

∫ t

0

dx(t − x)iD(x)eixεk J0(2t0x)n, (16)

where iD(t ) = (nph + 1)e−iω0t + npheiω0t is the phonon prop-

agator in real time (for t > 0). In Fig. 1, we illustrate the

cumulant function, as well as the corresponding Green’s func-

tion and spectral function. Figures 1(a) and 1(b) show the

second derivative of the cumulant

d2Ck(t )

dt2
= −g2iD(t )eitεk J0(2t0t )n (17)

to demonstrate the rapid oscillations that are also present in

the cumulant itself. These are not easily observed by inspect-

FIG. 2. Quasiparticle lifetime τk in the CE method for T/t0 = 2

and g/t0 = 1.

ing Ck(t ) directly, as the linear behavior dominates for large

times. We observe that the k = 0 and k = π results possess an

oscillating envelope with period 2π/ω0, while intermediate

momenta have a much less regular structure. This can have

direct consequences on the spectral functions, as the satellite

peaks are expected to be at a distance ω0 from each other.

To be more explicit, oscillating envelopes suggest that there

is a much higher chance for the occurrence of satellite peaks

near the bottom (k ≈ 0) and the top (k ≈ π ) of the band, than

otherwise. However, that does not guarantee that the satellite

peaks will in fact occur. Figure 1(c) shows that ReCk(t ) is

declining faster for k > 0 than for k = 0. As a consequence,

eCk (t ) in Fig. 1(d) attenuates slower for k = 0, having enough

time to complete a full period, while k = π results are remi-

niscent of an overdamped oscillator. A similar, although much

less evident, effect can be seen in the Green’s function itself;

see Fig. 1(e). This is why the k = π spectral function in

Fig. 1(f) has a simple one-peak shape, while only the k = 0

result captures one small satellite peak.

From a numerical point of view, Eq. (16) is treated using

Levin’s collocation method [55], which is reviewed in Ap-

pendix A. It provides a controlled, accurate, and numerically

efficient way to integrate the product of trigonometric, Bessel,

and some slowly varying function. This approach avoids using

a dense t grid, which would otherwise be required, as the

subintegral function in Eq. (16) has the same type of rapid

oscillations present in d2Ck(t )/dt2.

4. Lifetime

Another question of practical importance is how long we

should propagate the cumulant function in real time until the

corresponding Green’s function attenuates. A rough estimate

of such quantity is given by the quasiparticle lifetime τk. The

lifetime is given by τk = 1/(2|ImẼk|), where Ẽk is given by

Eq. (12) and the self-energy is taken in the MA [see Eq. (14)]:

τ−1
k = 2|ImẼk| = 2g2

θ
(

4t2
0 − (εk − ω0)2

)

√

4t2
0 − (εk − ω0)2

(nph + 1)

+ 2g2
θ
(

4t2
0 − (εk + ω0)2

)

√

4t2
0 − (εk + ω0)2

nph. (18)

This is illustrated in Fig. 2. We observe that there is a con-

siderable part of the parameter space where the lifetime is
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FIG. 3. Feynman diagrams in the Migdal approximation and the

self-consistent Migdal approximation.

infinite, which means that the corresponding Green’s function

never attenuates. This occurs for ω0 > 2t0 + 2t0| cos k| in the

case of finite temperatures, and for ω0 > 4t0 sin2 k/2 in the

T = 0 case. In these regimes, one could presume that this is

reflected in the spectral functions through the appearance of

Dirac delta peaks, which is not expected at finite temperatures.

This illustrates one of the limitations of this method.

B. Benchmark methods

1. Migdal and self-consistent Migdal approximation

The Migdal approximation [56] is the simplest perturba-

tion approach, whose self-energy is represented with a single,

lowest order Feynman diagram, as shown in Fig. 3(a). The

imaginary part of the self-energy is given by Eq. (14) in the

case when there is just a single electron in the band, regardless

of the dispersion relation or the number of dimensions of

the system. The corresponding real part is obtained using the

Kramers-Kronig relations, and in 1D reads as

Re�MA(ω) = g2(nph + 1)
θ
(

(ω − ω0)2 − 4t2
0

)

sgn(ω − ω0)
√

(ω − ω0)2 − 4t2
0

+ g2nph

θ
(

(ω + ω0)2 − 4t2
0

)

sgn(ω + ω0)
√

(ω + ω0)2 − 4t2
0

.

(19)

The range of validity of the MA can be extended if we sub-

stitute the noninteracting electron propagator in Fig. 3(a) with

an interacting one. At the same time, the interacting propaga-

tor itself is expressed through the self-energy via the Dyson

equation. These relations constitute the SCMA. Figure 3 il-

lustrates that the SCMA self-energy consists of a series of

noncrossing diagrams, whose lowest order coincides with the

MA. Figure 3(b) shows the second-order contribution, while

the third-order contributions are shown in Figs. 3(c) and 3(d).

Mathematically, the self-consistency relations are straight-

forwardly derived and, in our case, read as

�SCMA(ω) = g2(nph + 1)G(ω − ω0) + g2nphG(ω + ω0),

(20a)

G(ω) =
1

(2π )n

∫ π

−π

dnk
1

ω − εk − �SCMA(ω)
, (20b)

where G(ω) is the local Green’s function. We see that in

the case of the Holstein model, the SCMA self-energy is k

independent.

2. Dynamical mean-field theory

Dynamical mean-field theory is a nonperturbative approx-

imate method, that represents a natural generalization of the

traditional mean-field theory [57]. It simplifies the original

lattice problem by mapping it to a single site impurity prob-

lem, embedded into an external bath that is described with

a frequency-dependent (i.e., dynamical) field G0(ω), which

needs to be determined self-consistently. This simplification

is reflected on the self-energy, which is assumed to be k-

independent �k(ω) = �(ω). The DMFT becomes exact in the

limit of infinite dimensions or, equivalently, infinite coordina-

tion number.

In practice, G0(ω) and �(ω) are determined self-

consistently, by imposing that the local Green’s function of

the lattice problem

G(ω) =
∫ ∞

−∞

ρ(ǫ)dǫ

ω − �(ω) − ǫ
, (21)

and the self-energy �(ω) coincide with the corresponding

quantities of the impurity problem. Here, ρ(ǫ) is the nonin-

teracting density of states. The self-consistent loop is closed

using the Dyson equation G0(ω) = (G−1(ω) + �(ω))−1. In

the case of the Holstein model, the (polaron) impurity problem

can be solved exactly, directly on the real-frequency axis, in

terms of the continued fraction expansion [53]. Furthermore,

in the one-dimensional case, Eq. (21) assumes a closed-form

solution and reads as

G(ω) = Re
1

2t0B(ω)
√

1 − 1
B(ω)2

+ iIm
−i

2t0
√

1 − B(ω)2
, (22)

where B(ω) = (ω − �(ω))/(2t0); see Supplemental Material

of Ref. [52]. We note that Eq. (22) can also be used for the

SCMA in Eq. (20).

We have very recently shown [52], by using extensive

comparisons with several numerically exact methods cover-

ing various parameter regimes, that the DMFT can provide

a rather accurate solution for the Holstein polaron even in

low dimension. Hence, the DMFT has emerged as a unique

numerical method that gives close to exact spectral functions

in practically the whole space of parameters, irrespective of

the number of dimensions. This makes the DMFT an ideal

benchmark method for comparisons with the CE results for

the Holstein model.

III. SPECTRAL FUNCTIONS

In this section, we present the CE spectral functions of

the 1D Holstein model. The DMFT is used as a benchmark,

while MA and SCMA represent the main competitors and

alternatives to the CE method. Section III A shows the results

for k = 0, whereas heat plots and the k = π results are shown

in Sec. III B. High-temperature spectral functions and spec-

tral sum rules are presented in Sec. III C. The behavior near

the atomic limit is discussed in Sec. III D. We present only
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FIG. 4. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5 and

k = 0. In the left panels T = 0.3, while T = 0.7 in the right panels.

Insets show the integrated spectral weights Ik(ω) =
∫ ω

−∞ Ak(ν )dν.

the results for ω0 = 0.5, while the results for other phonon

frequencies and various momenta are shown in Sec. II of SM

[54]. The 2D spectral functions are presented in Appendix B.

A. Low and intermediate temperatures for k = 0

In the weak-coupling limit α → 0, all these approximate

methods (DMFT, CE, SCMA, MA) provide accurate results.

In Fig. 4, we investigate how far from this strict limit each

of our methods continues to give reasonably accurate spectral

functions. In Fig. 4(a), we see that for α = 1 all methods

correctly capture the quasiparticle peak, which dominates in

the structure of the spectrum. The MA satellite peak is slightly

shifted towards higher frequencies, which becomes signifi-

cantly more pronounced at higher temperatures; see Fig. 4(b).

The limitations of the MA become more obvious for stronger

couplings, where even the position and weight of the quasi-

particle peak are inaccurate; see Figs. 4(c)–4(h).

While the quasiparticle properties of the CE and SCMA

seem to be quite similar if α is not too large, some difference

in satellite peaks is already visible in Figs. 4(b) and 4(c).

Figure 4(c) shows that SCMA gives broader satellites than

the DMFT benchmark, whereas CE slightly underestimates

the position of the satellite. Neither CE nor SCMA can be

characterized as distinctly better in this regime. On the other

hand, Figs. 4(e) and 4(g) display a clear advantage of the CE.

FIG. 5. (a)–(h) Heat maps of Ak(ω) for t0 = 1, ω0 = 0.5, and

T = 0.3. In the left panels, we present CE results, while the DMFT

benchmark is presented in the right panel. All plots use the same

color coding.

We see that it captures rather well the most distinctive features

of the solutions, which are the first few satellites. This is not

the case for SCMA.

Figures 4(f) and 4(h) demonstrate that the CE gives a

rather quick crossover toward the high-temperature limit, as

it predicts a simple broad one-peak structure for the spectral

function already for T = 0.7. This large difference between

the spectral functions for T1 = 0.3 and T2 = 0.7 can be

understood by examining the ratio of their corresponding

lifetimes τ (T1)/τ (T2) = nph(T2)/nph(T1) ≈ 8.5. This implies

that ReCk(t ) for T = 0.7 has a much steeper slope as a func-

tion time, which suppresses the appearance of satellites, as

explained in Sec. II A 3.

B. Low and intermediate temperatures for k �= 0

To proceed with the analysis of the CE ,we want to answer:

(i) Whether the conclusions that we reached for k = 0 can be

carried over to other momenta as well? (ii) Does CE continue

to be better than SCMA at much higher temperatures? The

first question is answered in Fig. 5, where we compare CE

and DMFT heat plots. Figures 5(a) and 5(b) demonstrate

that CE results are quite reminiscent of the DMFT results

for α = 1, even at nonzero momenta. The same conclusion

holds for weaker couplings as well. On the other hand, there

are differences between the results for somewhat stronger
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FIG. 6. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5, and

k = π . In the left panels T = 0.3, while T = 0.7 in the right panels.

coupling α = 1.5, as shown in Figs. 5(c) and 5(d). While the

polaron bands in both of these figures are convex, the CE

predicts the first satellite to be concave, unlike the DMFT.

In other words, CE predicts that the distance between the

polaron peak and the satellites decreases as we increase the

momentum. This is counterintuitive, as the satellites are per-

ceived as the quasiparticle that absorbed or emitted a phonon,

which should consequently be just at energy distance ω0 apart.

These limitations of the CE are much more pronounced for

stronger electron-phonon couplings. While the DMFT solu-

tion in Figs. 5(f) and 5(h) exhibits a series of distinct bands,

Figs. 5(e) and 5(g) demonstrate that the polaron and satellite

bands of the CE merge into a single band at higher momenta.

However, the most noticeable feature here is the fact that the

CE is too smeared, as if the temperature is too high. This is

a consequence of the fact that the lifetime in Eq. (18) scales

as τk ∼ 1/g2. While the heat maps reveal noticeable discrep-

ancies between the DMFT and CE for k �= 0, it seems that

these differences are much less pronounced around k = π . A

more detailed comparison is presented in Fig. 6 that shows

the results for the same regimes as in Fig. 4. The DMFT

solution in Figs. 6(a)–6(d) shows that the main feature of the

spectral function is a single broad peak for α � 1.5, which

is in agreement with the CE results. This is also the case for

the SCMA, although we observe a slight tendency of the main

peak to lean toward higher frequencies at higher temperatures.

For larger interaction strengths, CE cannot fully reproduce the

sharp peaks at lower frequencies of the low-temperature spec-

tral function or the fine structure of the main peak at higher

temperatures; see Figs. 4(e)–4(h). Similarly, CE misses the

quasiparticle peak as well, situated at low energy, although it

is typically tiny and not (clearly) visible in Figs. 6(a)–6(h) (see

Appendix C). A detailed comparison of the spectral functions

for other momenta and phonon frequencies is presented in

Sec. II of the SM [54].

Overall, we find that the CE gives the most accurate results

for k = 0 and k = π and that it is less accurate for other mo-

menta. Although it cannot fully reproduce a tiny quasiparticle

peak for k = π , it describes well a wide single-peak structure,

which is the most prominent feature of the spectrum. A much

larger discrepancy for k = π , between the CE and a reliable

benchmark, was reported in Ref. [50] by examining the sys-

tem on a finite lattice system with N = 6. In Appendix C,

we examine the same parameter regime as in Ref. [50] and

show that these discrepancies are significantly reduced in the

thermodynamic limit.

C. Spectral functions at high temperatures

and spectral sum rules

In Fig. 7, we show CE, SCMA, and DMFT spectral

functions at high temperatures for the same electron-phonon

couplings as in Figs. 4 and 6. We see that CE performs very

well both for k = 0 and k = π . There are only small discrep-

ancies at stronger interactions [see, e.g., Fig. 7(c)]. In contrast,

the SCMA solution gets tilted relative to the DMFT and CE.

In addition, it poorly reproduces the low-frequency part of the

spectrum. It is not obvious whether the CE method is exact in

the high-temperature limit T → ∞. As we now demonstrate,

this can be answered by examining the spectral sum rules:

Mn(k) =
∫ ∞

−∞
Ak(ω)ωndω. (23)

These can be calculated both exactly,

M
exact
n (k) =

〈

[. . . [[ck, H], H] . . . , H]
︸ ︷︷ ︸

n times

c
†
k

〉

T

, (24)

and within the CE approximation, where by combining

Eqs. (4) and (23) we find

M
CE
n (k) = Re

[

in

(
d

dt

)n

eCk (t )

]∣
∣
∣
∣
t=0

−
n

∑

p=1

(
n

p

)

(−εk )p
M

CE
n−p(k). (25)

The difference between these quantities MCE
n (k) − Mexact

n (k)

is zero for n = 0 and n = 1, as noted in Sec. II A 1. Higher

order sum rules for the CE method are easily calculated,

while the evaluation of the exact sum rules quickly becomes

cumbersome for increasing n. The first five (0 � n � 4) sum

rules were already calculated by Kornilovitch [58]

M2(k) = ε2
k + (2nph + 1)g2, (26a)

M3(k) = ε3
k + g2ω0 + 2g2(2nph + 1)εk, (26b)

M4(k) = ε4
k + 2g2εkω0 + g2(2nph + 1)

×
(

2t2
0 + 3ε2

k + ω2
0

)

+ 3g4(2nph + 1)2. (26c)
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FIG. 7. (a)–(h) CE, DMFT, and SCMA spectral functions in 1D for t0 = 1, ω0 = 0.5, and k = 0, π .

All of these are correctly predicted by the CE. However, the

disagreement between Mexact
n and MCE

n appears for n = 5,

where we find

M
exact
5 (k) = ε5

k + 3g2ω0

(

2t2
0 + ε2

k

)

+ g2ω3
0

+ 2g2
(

2ε3
k + 5g2ω0 + εkω

2
0 + 2t2

0 εk

)

(2nph + 1)

+ 7g4εk(2nph + 1)2, (27a)

M
CE
5 (k) = M

exact
5 (k) − 2g4εk(2nph + 1)2. (27b)

Hence, CE cannot be exact in the limit T → ∞. However, we

see that there are two limits where CE can potentially be exact:

the weak-coupling limit g → 0 and the atomic limit εk → 0.

It turns out that CE is actually exact in both of these limits,

as seen from Eqs. (3), (7), and (14) for the weak-coupling and

Sec. III D for the atomic limit. We note that the SCMA gives

correct sum rules only for n � 3 [42]. This is a consequence

of the fact that SCMA ignores one of the fourth-order dia-

grams (∼g4) since it includes only the noncrossing diagrams.

Also, we numerically checked that the DMFT results are in

agreement with all of the sum rules that we listed above.

D. Atomic limit

In the atomic limit (t0 = 0), the cumulant function can be

evaluated exactly:

C(t ) = α2(−2nph − 1 + itω0 + iD(t )). (28)

This follows from Eq. (16), using J0(0) = 1. If we express

the phonon propagator as iD(t ) = 2
√

nph(nph + 1) cos[ω0(t +
i

2T
)] and use the modified Jacobi-Anger identity

e2α2
√

nph (nph+1) cos[ω0(t+ i
2T

)]

=
∞

∑

l=−∞

Il (2α2
√

nph(nph + 1))e−ilω0t e
lω0
2T , (29)

where Il are the modified Bessel functions of the first kind,

the spectral function [see Eqs. (3) and (4)] can be calculated

analytically and reads as

A(ω) = e−α2 (2nph+1)

×
∞

∑

l=−∞

Il (2α2
√

nph(nph + 1))e
lω0
2T δ(ω + α2ω0 − lω0).

(30)

In the limit T → 0, the previous expression reduces to

A(ω) = e−α2

∞
∑

l=0

α2l

l!
δ(ω + ω0(α2 − l )). (31)

This proves that CE gives correct results in the atomic limit,

as Eqs. (30) and (31) coincide with the known exact results

[1,44].

In contrast, the SCMA (let alone the MA) does not share

this property, which is easy to show at zero temperature. In

this case, Eq. (20a) and the Dyson equation imply that

G(ω) =
1

ω − g2G(ω − ω0)
. (32)

The previous equation can be solved by the iterative applica-

tion of itself in terms of the continued fraction

G(ω) =
1

ω − g2

ω−ω0− g2

ω−2ω0− g2

ω−3ω0−...

. (33)

This does not coincide with Eq. (35) from Ref. [53], which

represents the exact solution. Thus, SCMA cannot reproduce

the correct result in the atomic limit.

While the CE is exact in the atomic limit (t0 = 0), it is

not immediately obvious how far from this limit it continues

to give reliable results. This is why we now examine the

regimes with small hopping parameter t0. Since the lifetime

is infinitely large in some of these regimes (see Fig. 2), we

introduce artificial attenuation η for the Green’s function in

real time by making a replacement G(t ) → G(t )e−ηt . The

results are presented in Fig. 8. Here, the dotted line is the

analytic solution in the atomic limit (t0 = 0), determined by

Eq. (30), where the Dirac delta functions have been replaced

by Lorentzians of half-width η. It is used as a measure to see
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FIG. 8. (a)–(f) CE, DMFT, and SCMA spectral functions close to

the atomic limit. Here, we use artificial Lorentzian broadening with

half width set to η = 0.05.

how far the regime we are examining is from the exact atomic

limit. In Fig. 8(a), we see that DMFT, SCMA, and CE spectral

functions are in agreement. This regime is quite far from the

atomic limit, as indicated by the dotted line. Figure 8(b) shows

that the DMFT spectral function already consists of a series of

peaks for t0 = 0.5, while the CE and SCMA spectral functions

are too flattened out. While the CE solution significantly im-

proved in Fig. 8(c), it is still not giving satisfactory results,

even though the DMFT suggests that we are already close to

the atomic limit. Only for t0 � 0.005 does the CE solution

give accurate results; see Fig. 8(d). However, this is practically

already at the atomic limit. It is interesting to note that while

both the DMFT and the CE are exact in the weak-coupling

and in the atomic limit, their behavior in other regimes can be

quite different.

IV. QUASIPARTICLE PROPERTIES

We now investigate the quasiparticle properties obtained

from the CE method and compare them extensively to the

results obtained from the DMFT and SCMA. We note that

the lifetime within the CE was already studied in Sec. II A 4,

so we supplement that study here with the results for the

ground-state energy and the effective mass. Here we show the

results in one, two, and three dimensions. Comparison with

the MA ground-state energy, in the 1D case, is presented in

Sec. III of the SM [54].

A. Ground-state energy

The polaron band dispersion Ep,k within the CE is given by

the real part of Eq. (12), where the self-energy is taken in the

MA:

Ep,k = εk + Re�MA(εk ). (34)

Since we deal with a single electron in the band, the

ground-state energy Ep is given by Ep,k=0 evaluated at zero

temperature. In the 1D case, Ep is straightforwardly evaluated

using Eq. (19) and reads as follows:

E1D
p = −2t0 −

α2ω2
0

√

ω2
0 + 4ω0t0

. (35)

For the expression in higher dimensions, we need to go back

to Eq. (14) that holds in any number of dimensions. At T = 0,

it reads as

Im�MA(ω) = −πα2ω2
0ρ(ω − ω0). (36)

The real part of �MA(ω) is obtained using the Kramers-

Kronig relation

Re�MA(ω) = πα2ω2
0H[ρ](ω − ω0), (37)

where H[ρ](ω) = P
∫ ∞
−∞

dν
π

ρ(ν)

ω−ν
is the Hilbert transform of

the density of states ρ(ω) and P is the Cauchy principle value.

The evaluation of the Hilbert transform may be reduced to

the evaluation of the Fourier transform F , using the following

identity:

F
−1
H[ρ](t ) = −i sgn(t ) F−1[ρ](t ). (38)

The inverse Fourier transform of the density of states on the

right-hand side was already calculated in Eq. (15) for the case

of the hypercubic lattice with the nearest-neighbor hopping.

Hence, H[ρ](ω) is obtained by applying F on both sides of

Eq. (38),

H[ρ](ω) =
1

π

∫ ∞

0

dxJ0(2t0x)n sin(xω), (39)

where n is the number of dimensions. The polaron band dis-

persion then reads as

Ep,k = εk + α2ω2
0

∫ ∞

0

dxJ0(2t0x)n sin (x(εk − ω0)). (40)

Ep is thus a linear function with respect to α2, whose intercept

is εk, while its slope can be calculated accurately using the

numerical scheme described in Appendix A. In the 2D case, it

admits an analytical solution

E2D
p = −4t0 −

2α2ω2
0

π (4t0 + ω0)
K

(
4t0

4t0 + ω0

)

, (41)

where K (k) =
∫ π/2

0
dθ/

√

1 − k2 sin2 θ is the complete ellip-

tic integral of the first kind. In the case n = 3, the integral
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FIG. 9. Ground-state energy within the DMFT (solid line), CE

(dashed line), and SCMA (dotted line). Here, t0 = 1 and T = 0.

in Eq. (40) does not admit a closed-form solution and thus

requires numerical calculation.

The polaron band dispersion Ep,k (and thus the ground state

Ep) within the DMFT and SCMA is obtained numerically, as

the smallest solution of the following equation:

Ep,k = εk + Re�(Ep,k ). (42)

Results for the 1D, 2D, and 3D case are presented in Fig. 9.

The DMFT benchmark, which is known to be very accurate

[52], always gives the lowest ground-state energy predictions

in comparison to the CE and SCMA. We see that CE always

outperforms the SCMA, despite the fact that its predictions

of the energy are always a linear function of α2. In the 1D

case, we see that CE results for ω0 = 0.5 start to deviate more

significantly from the DMFT just around α = 2.5. Hence, the

range of validity for the CE is similar as for the spectral

functions in Fig. 4. The analogous conclusions can also be

drawn from ω0 = 1 data as well. In contrast, all three methods

seem to be in agreement for ω0 = 0.2 in the whole range

of presented values of α. This is a consequence of the fact

that the ground-state energy correction is small, as seen from

Eqs. (35), (40), and (41) by fixing α and decreasing ω0. How-

ever, if we fix g = ω0α and then decrease ω0, the ground-state

energy would change substantially [see, e.g., Eq. (35)], and

the CE would certainly give poorer results.

Similar trends are observed in higher dimensions as well.

Seemingly, the range of validity of the CE is increased in

higher dimensions. However, one should keep in mind that the

hopping parameter is always taken to be unity, which means

that the bandwidth of the 2D and 3D systems are, respectively,

two and three times larger than their 1D counterpart. There-

fore, the correlation is weaker for a given coupling α.

B. Effective mass

Around the bottom (|k| ≈ 0) of the conduction band, the

dispersion Ep,k assumes the following parabolic form:

Ep,k ≈ const +
k2

2m∗ , (43)

where m∗ is the effective mass, which we now calculate.
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FIG. 10. Effective mass results within the DMFT, CE, and

SCMA for t0 = 1 and T = 0.

In the 1D case, one obtains the analytical result for the

effective mass using Eqs. (19) and (34),

m∗

m0

∣
∣
∣
∣
1D,T =0

=
1

1 − (2t0+ω0 )α2
√

ω0

(4t0+ω0 )3/2

, (44)

where m0 = 1/(2t0) is the band mass which remains the same

irrespective of the number of dimensions. Results for the

higher number of dimensions are evaluated using Eq. (40).

As for the ground-state energy, the 2D case admits an analytic

solution

m∗

m0

∣
∣
∣
∣
2D,T =0

=
1

1 − 2α2ω0

π (8t0+ω0 )
E

(
4t0

4t0+ω0

) , (45)
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where E (k) =
∫ π/2

0
dθ

√

1 − k2 sin2 θ is the complete elliptic

integral of the second kind. Results in the n-dimensional case

are given by

m∗

m0

∣
∣
∣
∣
T =0

=
1

1 + πα2ω2
0

dH[ρ]

dω

∣
∣
ω=−2nt0−ω0

, (46)

and require numerical calculation in the general case. From

Eq. (46) we see that m0/m∗ is a linear function of α2. This

linear behavior has to break down at one point, as m0/m∗

cannot be negative. This happens for strong interaction, where

the CE is certainly not expected to be reliable. The mass

renormalization within the DMFT and SCMA is calculated

numerically as

m∗

m0

∣
∣
∣
∣
T =0

= 1 −
d�(ω)

dω

∣
∣
∣
∣
ω=Ep

, (47)

where Ep is the ground-state energy. Results for the DMFT,

CE, and SCMA effective mass in different parameter regimes

and for different number of dimensions are presented in

Fig. 10. In the 1D case, we see that the CE always under-

estimates, while the SCMA overestimates the results from the

DMFT benchmark. Still, CE clearly outperforms the SCMA

for ω0 = 1 and ω0 = 0.5, while the results in the vicinity of

the adiabatic limit (ω0 = 0.2) seem to be equally well (poor)

represented by both methods.

In the higher-dimensional case, we see that the CE is al-

ways a clearly better approximation than the SCMA, while

both of them overestimate the DMFT predictions. As for the

ground-state energy, we emphasize again that the hopping pa-

rameter was set to 1. As a consequence, the system has a larger

bandwidth in the higher-dimensional case and, therefore, the

correlations are weaker.

V. MOBILITY

The mobility is defined as the DC conductivity, normalized

to the concentration of charge carriers ne (and their unit charge

which we set to e = 1), i.e., µ = σ DC/ne. It can be calculated

using the Kubo formalism, which relates µ to the current-

current correlation function [1]. The latter can be written

as a sum of the so-called bubble part, which is completely

determined by the spectral functions Ak(ω) and the vertex

corrections. Within the DMFT, the vertex corrections vanish

[57,59], while estimating their contribution in the general

case is beyond the scope of this paper. In the following, we

calculate the mobility solely from the bubble part.

In the case of a 1D system with a single spinless electron

in the band, the mobility in the bubble approximation can be

written as [1,60]

µ =
4πt2

0

T

∑

k

∫ ∞
−∞ dνAk (ν)2e−ν/T sin2 k

∑

k

∫ ∞
−∞ dνAk (ν)e−ν/T

. (48)

The processing time required for the calculation of µ within

the CE method rises linearly with the number of k points we

sum over. This is not the case for the DMFT and SCMA, as

their self-energies are k independent and thus need to be calcu-

lated only once for a given parameter set. In every parameter

regime the CE was applied to, we checked that 64 sampling

points in the Brillouin zone are enough to be representative of

FIG. 11. Temperature dependence of the mobility for the CE,

DMFT, and SCMA. The dotted red (black) lines are auxiliary lines

with the power law behavior µ ∝ T −2 (µ ∝ T −3/2). Here t0 = 1.

the thermodynamic limit. This was also crosschecked using

the DMFT.

The exponential term e−ν/T in Eq. (48) has some impor-

tant implications. Despite the factor sin2 k, it implies that the

largest contribution to the mobility most commonly comes
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from the spectral functions around the bottom of the band

(k ≈ 0), as they are typically situated at lower frequencies

with respect to their higher momentum counterparts. This is

actually helpful, as we have seen that the CE is more reliable

for k ≈ 0 than for 0 < k < π . However, e−ν/T also introduces

numerical instabilities, as even a small numerical noise of

Ak (ν) at ν ≪ −1 will be inflated and give an enormous overall

error in the mobility. This is why the integrals in Eq. (48)

require introducing some kind of negative frequency cutoff
∫ ∞
−∞ →

∫ ∞
−�

. We always check that the mobility results con-

verge with respect to �. This is easily done in both the DMFT

and SCMA due to the high numerical accuracy of our numer-

ical implementations. The convergence with respect to � is

much harder to achieve within the CE, as the Green’s func-

tions are initially calculated in the time domain and require

the use of numerical Fourier transform. We have implemented

a well-known interpolation scheme [61] to increase the pre-

cision of the Fourier transform. Still, the numerical noise at

low temperatures and strong interactions prevented us from

precisely calculating the mobility in these regimes. We show

only the data where an accurate calculation was possible.

In Fig. 11, we present numerical results for the temperature

dependence of the electron mobility. For weak electron-

phonon coupling, all methods are in agreement; see Fig. 11(a)

for α � 1 and Figs. 11(b) and 11(c) for α � 0.5. Electron-

phonon scattering is weak in these regimes, which is why

the quasiparticle lifetime τk is long, and the linear time de-

pendence dominates in the cumulant function. The spectral

function and its square can thus be approximated as Ak (ω) ≈
δ(ω − Ep,k ) and A2

k (ω) ≈ τk

π
δ(ω − Ep,k ), where δ is the Dirac

delta function and Ep,k is given by Eq. (34). The mobility from

Eq. (48) thus simplifies to

µweak ≈
4t2

0

T

∑

k τke−Ep,k/T sin2 k
∑

k e−Ep,k/T
. (49)

At high temperatures, Eq. (49) further simplifies as e−Ep,k/T ≈
1. In this case, the lifetime is inversely proportional to the tem-

perature τk ∝ 1/T , as seen from Eq. (18), which implies the

power-law behavior of the mobility µweak ∝ 1/T 2. This con-

clusion holds only for very weak electron-phonon couplings,

where the assumption of weak scattering is still satisfied de-

spite the high temperatures; see Figs. 11(a) and 11(b) for

α = 0.25 and Fig. 11(c) for α =
√

2/10. This assumption is

also violated at extremely high temperatures T → ∞.

For stronger couplings, in the limit of high-temperatures

T ≫ t0, ω0, the Green’s function in the time domain is quickly

damped, which is why Ck (t ) can be approximated with just

the lowest order (quadratic) Taylor expansion around t = 0.

Hence, Eqs. (3) and (17) imply that the Green’s function can

be written as

Gk (t ) = −iθ (t )e−iεkt e− g2

2
(2nph+1)t2

, (50)

while the corresponding spectral function is given by the

Gaussian:

Ak (ω) =
e
− (ω−εk )2

2g2 (2nph+1)

√

2πg2(2nph + 1)
. (51)

Plugging this back into Eq. (48) and changing the sum over

momenta to integral, we obtain

µhigh−T =
t0

g

√
π

2nph + 1
exp

(

−
g2(2nph + 1)

4T 2

)
I1

(
2t0
T

)

I0

(
2t0
T

) ,

(52)

where I0 and I1 are modified Bessel functions of the first kind,

of zeroth and first orders, respectively. Equation (52) can be

simplified by using the following approximations: 2nph + 1 ≈
2T/ω0 and I1(2t0/T )/I0(2t0/T ) ≈ t0/T , that are valid for

large T . Such a simplified formula coincides with the mobil-

ity obtained by combining the Einstein relation, between the

mobility and diffusion coefficient, with the Marcus formula

[45,62]. Furthermore, Eq. (52) implies the power-law behav-

ior for the mobility µhigh−T ∝ T −3/2, in the limit T ≫ t0, ω0.

This is confirmed by our numerical results for a wide range of

the electron-phonon coupling strengths, where all three meth-

ods are in agreement; see Fig. 11(a) for 1/
√

2 � α � 2.5,

Fig. 11(b) for 0.5 � α � 2, and Fig. 11(c) for 0.5 � α � 1.

While the SCMA gives satisfactory results for high temper-

atures and intermediate electron-phonon couplings, it deviates

from the DMFT at lower temperatures [see, e.g., Fig. 11(a) for

α = 2.5 and Fig. 11(b) for α = 2] and also for stronger cou-

pling strengths [see, e.g., Fig. 11(a) for α > 2.5 and Fig. 11(b)

for α > 2]. At these stronger couplings, the DMFT predicts

the nonmonotonic mobility, where a region of decreasing mo-

bility with decreasing temperature is ascribed to the hopping

transport in phenomenological theories [38,62]. The strong

coupling mobility is better described by the CE than SCMA,

although low-temperature results are missing due to our in-

ability to converge the results with respect to the cutoff �. In

Appendix D, we also give mobility predictions of the MA.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have presented a comprehensive analysis

of the CE method in the context of the Holstein model. The

second-order cumulant C(t ) is calculated in a broad tempera-

ture range for three vibrational frequencies ω0/t0 = 0.2, 0.5,

and 1, covering a regime from a weak to strong electron-

phonon coupling. We mostly focused on the 1D system in the

thermodynamic limit but some of the results are shown also in

2D and 3D. To avoid numerical instabilities and to reach high

numerical precision, we derived a number of analytical ex-

pressions and we used the collocation method in calculations

of the cumulant, as well as an interpolation scheme for the

Fourier transform in corresponding calculations of the spectral

functions. The quasiparticle properties, spectral functions, and

charge mobility are shown in comparison to the DMFT and

SCMA results. The DMFT, which gives close to the exact

solution for the Holstein polaron throughout the parameter

space [52], gave a valuable benchmark and facilitated a de-

tailed analysis of the validity of the CE method.

At weak coupling (roughly corresponding to m0/m∗�0.9)

CE, DMFT, and SCMA give very similar spectral functions.

Most of the spectral weight for k = 0 is in the quasiparticle

peak, while even a small sideband (satellite) spectral weight

is rather well reproduced in all three methods. As the inter-

action increases, a clear difference in the spectral functions
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emerges. Nevertheless, the positions of the CE and DMFT

quasiparticle and the first satellite peak at low temperatures

are in rather good agreement. Furthermore, the overall spectral

weight distribution is in a decent agreement even though the

satellite peaks are more pronounced in DMFT for stronger

electron-phonon coupling. Roughly speaking, there is a de-

cent agreement in 1D up to the interactions corresponding

to m0/m∗ ∼ 0.5. Interestingly, the agreement between the

CE and DMFT spectral functions persists also for k = π ,

although CE does not capture a tiny quasiparticle peak. In

this case, the DMFT spectral weight almost merges to a single

broad peak. We note that the difference for k = π observed in

Ref. [50] is solely due to considering a lattice of finite N = 6

size. The deviation of CE from the exact solution is most obvi-

ous for intermediate momenta where the CE solution merges

to a single peak, while the satellite structure is seen in DMFT.

At high temperatures, one might suspect that the CE would

give the exact spectral functions. However, this is not the case,

as we showed that the CE gives the exact spectral moments

only up to the order n = 4. We note that in all these regimes,

the CE gives slightly better results than the SCMA, while a

single-shot MA is adequate only for very weak interactions.

The spectral functions were used to calculate the charge

mobility from the Kubo formula without the vertex correc-

tions. The agreement between DMFT and CE is quite good.

This is the case even for stronger electron-phonon coupling

where the CE even indicates nonmonotonic behavior of µ(T ),

with a region of increasing mobility with temperature which

is usually assigned to hopping conduction in phenomeno-

logical theories. For strong electron-phonon coupling, the

CE mobility results are shown only for T � t0 since a very

small numerical noise at frequencies ω ≪ Ep affects a pre-

cise calculation of mobility at lower temperatures. For high

temperatures, the mobility assumes a universal form: For

weak electron-phonon coupling µ ∝ T −2, while for stronger

coupling µ ∝ T −3/2. These high-temperature limits can be

obtained also analytically from the CE.

The CE method can be easily applied to different Hamilto-

nians, which makes it a particularly attractive method for the

calculation of electronic properties beyond the weak-coupling

limit in various systems. In particular, we argue that it will

be most useful in calculations of charge mobility, as has

already been done in ab initio calculations for SrTiO3 [16]

and naphthalene [17]. While our analysis may suggest that

the DMFT appears computationally superior to CE, we note

that the numerical efficiency that we achieved with DMFT

is restricted to the Holstein model by virtue of the analytic

solution for the impurity problem [53] and the local Green’s

function [52]. For predicting the properties of real materials,

the numerical resources within the DMFT are vastly increased

and also the issue of nonlocal correlations may emerge, while

the CE remains simple and relatively inexpensive. Of course,

for a definitive answer on the range of validity of CE in

connection with ab initio calculations, one needs to perform a

similar analysis for the Fröhlich model and for other models

which can be used for realistic description of the electronic

spectra and charge transport in real materials. A useful hint in

this direction is provided by Ref. [51], which shows that the

CE, around the bottom of the band, gives promising results

for the spectral function even in the case when the phonons

have a dispersion [63]. Another very interesting question that

we leave for further work is a possible contribution of vertex

corrections to conductivity. Based on the weak coupling result

[64], one might assume that their contribution is small for

optical phonons, but this remains to be determined in the

case of stronger coupling. Our high-temperature results for

mobility may also be quite useful when analyzing a dominant

type of electron-phonon coupling in real materials. Still, one

needs to be cautious in such analyses since we see that at lower

temperatures µ(T ) does not assume a simple universal form.
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APPENDIX A: NUMERICAL INTEGRATION SCHEME

FOR THE HIGHLY OSCILLATING FUNCTIONS

IN THE CE METHOD

We present a numerical integration scheme for the calcula-

tion of the cumulant function from Eq. (16). Since Ck(t ) will

be expressed numerically on some t-grid [t0 = 0, t1 . . . tG−1],

it is much better to divide the integral
∫ t

0
from Eq. (16) into a

sum of integrals of the form
∫ ti

ti−1
, where ti are times from the

previously defined t grid. In this manner, we do not integrate

over the same interval multiple times. To shorten the notation,

from now on, we denote a ≡ ti−1 and b ≡ ti. There are two

different types of integrals in Eq. (16), and both of them have

the following form:

I =
∫ b

a

dx g(x)eir1xJ0(r2x)n, (A1)

where g(x) is either a linear or a constant function, r1 =
εk ± ω0, and r2 = 2t0. Numerical integration of Eq. (A1) has

already been studied by Levin for arbitrary r1 and r2 and

slowly varying g(x) [55]. In the rest of this Appendix, we

review this method in the 1D (n = 1), 2D (n = 2), and 3D

(n = 3) cases. The main idea is to rewrite the subintegral

function as a scalar product of two columns |g̃(x)〉 and |J̃ (x)〉,
whose elements are functions:

I =
∫ b

a

dx〈g̃(x)|J̃ (x)〉. (A2)

Column |g̃(x)〉 consists exclusively of slowly varying func-

tions, while |J̃ (x)〉 contains highly oscillating functions, with

the property that

d|J̃ (x)〉
dx

= Â(x)|J̃ (x)〉, (A3)
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where Â(x) is a matrix of slowly varying functions. Then, the

integral from Eq. (A2) can be written as

I =
∫ b

a

dx
d

dx
〈 f̃ (x)|J̃ (x)〉 = 〈 f̃ (b)|J̃ (b)〉 − 〈 f̃ (a)|J̃ (a)〉,

(A4)

where | f̃ (x)〉 satisfies

(
d

dx
+ Â†(x)

)

| f̃ (x)〉 = |g̃(x)〉. (A5)

This is then, following Levin [55], solved by formally ex-

panding | f̃ (x)〉 =
∑M

k=1 uk (x)[ck dk . . . ]T into a basis set of

polynomials uk (x) = (x − a+b
2

)k−1 and determining the un-

known polynomial coefficients ck, dk . . . by imposing that

Eq. (A5) is exactly satisfied at M uniformly distributed

collocation points x j = a + ( j−1)(b−a)

M−1
, j = 1 . . . M. The ini-

tial problem is thus reduced to a simple linear algebra

problem.

1. 1D case

In the 1D case (n = 1), columns |g̃(x)〉 and |J̃ (x)〉 assume

the following form:

|g̃(x)〉 = [g(x) 0]T , (A6a)

|J̃ (x)〉 = eir1x[J0(r2x) J1(r2x)]T , (A6b)

where J0(x) and J1(x) are the Bessel functions of the first kind,

of zeroth and first order. The matrix Â(x), such that Eq. (A3)

holds, is given by

Â(x) =
[

ir1 −r2

r2 ir1 − 1
x

]

. (A7)

The unknown coefficients ck and dk , which determine the

column function

| f̃ (x)〉 =
M

∑

k=1

uk (x)[ck dk]T , (A8)

are obtained from the following set of 2M linear equations:

[

C Cd

Dc D

]













c1
...

cM

d1
...

dM













=













g(x1)
...

g(xM )

0
...

0













. (A9)

Here, C, Cd ,Dc,D are M×M matrices that read as

Ci j = u′
j (xi ) − ir1u j (xi ); C

d
i j = r2u j (xi ), (A10a)

Di j = u′
j (xi ) −

(

ir1 +
1

xi

)

u j (xi ); D
c
i j = −r2u j (xi ).

(A10b)

2. 2D case

In the 2D case, the relevant quantities are given by

|g̃(x)〉 = [g(x) 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)2 J0(r2x)J1(r2x) J1(r2x)2]T ,

Â(x) =






ir1 −2r2 0

r2 ir1 − 1
x

−r2

0 2r2 ir1 − 2
x




. (A11)

The column | f̃ (x)〉 =
∑M

k=1 uk (x)[ck dk ek]T is determined

by ck , dk , and ek , which are obtained as a solution of the

following system of 3M linear equations:





C Cd Ce

Dc D De

Ec Ed E



















c1
...

cM

d1
...

e1
...















=















g(x1)
...

g(xM )

0
...

0
...















. (A12)

Here, C, Cd . . . E are M×M matrices. Elements of Ci j and Cd
i j

are the same as in Eq. (A10), while Ce
i j = Ec

i j = 0. All the

other elements are given by

Di j = u′
j (xi ) −

(

ir1 +
1

xi

)

u j (xi ),

Ei j = u′
j (xi ) −

(

ir1 +
2

xi

)

u j (xi ),

D
c
i j = −2r2u j (xi ); D

e
i j = 2r2u j (xi ); E

d
i j = −r2u j (xi ).

(A13)

3. 3D case

The procedure that was presented so far is actually quite

easily generalized to the 3D case as well. Here, the quantities

of interest are easily derived and read as

|g̃(x)〉 = [g(x) 0 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)3 J0(r2x)2J1(r2x)

J0(r2x)J1(r2x)2 J1(r2x)3]T ,

Â(x) =









ir1 −3r2 0 0

r2 ir1 − 1
x

−2r2 0

0 2r2 ir1 − 2
x

−r2

0 0 3r2 ir1 − 3
x









,

f̃ (x) =
M

∑

k=1

uk (x)[ck dk ek fk]T , (A14)
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where the coefficients ck , dk , ek , and fk satisfy









C Cd Ce C f

Dc D De D f

Ec Ed E E f

F c Fd F e F




























c1
...

cM

d1
...

e1
...

f1
...




















=




















g(x1)
...

g(xM )

0
...

0
...

0
...




















. (A15)

Here Ci j , C
d
i j , C

e
i j , Di j , D

e
i j , E

c
i j , and Ei j are the same as in

Eqs. (A10) and (A13), while C
f

i j = F c
i j = D

f

i j = Fd
i j = 0. All

other elements are given by

E
d
i j = −2r2u j (xi ); E

f

i j = 3r2u j (xi ),

D
c
i j = −3r2u j (xi ); F

e
i j = −r2u j (xi ),

Fi j = u′
j (xi ) −

(

ir1 +
3

xi

)

u j (xi ). (A16)

Thus, our numerical scheme has been completely specified.

We note that Eqs. (A10), (A13), and (A16) explicitly demon-

strate that our numerical scheme is singular at x = 0. This

does not pose any problems, as the subintegral function in

our initial expression Eq. (A1) is not highly oscillatory around

x = 0. Therefore, the trapezoid scheme can be applied there.

APPENDIX B: 2D SPECTRAL FUNCTIONS

We now examine the CE spectral functions in two di-

mensions and compare them to the results from DMFT and

SCMA. We investigate the Hamiltonian from Eq. (1) on a

square lattice and set h̄, kB and lattice constant to 1.

In the 2D case, the cumulant function is calculated from

Eq. (16) by setting n = 2, and by exploiting the numerical

integration scheme from Appendix A. The procedure for the

implementation of the DMFT and SCMA is the same as

explained in Sec. II B, with the only difference being that

Eq. (22) no longer represents the solution for the local Green’s

function from Eqs. (20b) and (21). The local Green’s function

for the square lattice is obtained as follows. Let us introduce

B(ω) ≡ (ω − �(ω))/(2t0) and rewrite Eq. (21) as

G(ω) = −
∫ ∞

−∞
dxρ̂(x)

∫ ∞

−∞
dε

eixε

ε − 2t0B(ω)
. (B1)

The integral over ε can be solved using the residue theorem. It

is thus important to note that the subintegral function has only

a single pole at εpole = 2t0B(ω) that is situated at the upper

half-plane, i.e., ImB(ω) > 0 (since Im�(ω) < 0). Hence

G(ω) = −2π i

∫ ∞

−∞
dxρ̃(x)e2ixt0B(ω)θ (x). (B2)

Here ρ̃(x) is given by Eq. (15) for n = 2. Substituting this into

Eq. (B2) and solving the integral gives

G(ω) =
K

(
2

B(ω)

)

B(ω)πt0
, (B3)

where K (k) ≡
∫ π/2

0
dθ/

√

1 − k2 sin2 θ is the complete elliptic

integral of the first kind.

Results are presented in Fig. 12. We note that in

Figs. 12(a)–12(d) [Figs. 12(i)–12(l)] the phonon frequency

ω0 = 0.2 (ω0 = 1) is smaller (larger) than both of the tem-

peratures T1 = 0.3 and T2 = 0.7 that we are considering.

Therefore, we focus on Figs. 12(e)–12(h) where T1 < ω0 <

T2, while other regimes can be analyzed analogously. We

see that most of the spectral weight is concentrated in a

smaller range of frequencies than in the 1D case; see Figs. 4

and 12(e)–12(h). This is a consequence of the fact that the

hopping parameter is always set to unity, while the 2D band-

width is twice as large in comparison with the bandwidth

in the 1D system. Spectral functions from Figs. 12(e)–12(g)

exhibit qualitatively similar behavior as results for the 1D

system in Figs. 4(a)–4(d). Here, all methods are in agree-

ment and predict that the quasiparticle peak dominates,

while there is only a single tiny satellite structure that is

more pronounced at higher temperatures. However, it seems

that the satellites are more pronounced in the 1D spectral

functions. A much more complicated multipeak structure is

predicted by the DMFT in Fig. 10(h), where a large dis-

crepancy can be observed in comparison to the CE and

SCMA results. A better agreement is observed for higher

temperatures.

It is interesting to note that while the DMFT frequently

gave sharper peaks than other methods in 1D (see Fig. 4), here

the roles are reversed. This is a consequence of the strong Van

Hove singularity at the bottom of the band of a 1D system,

which is highly relevant in our case when the concentration of

electrons is very low, while the singularity in the 2D system is

weaker and shifted to the center of the band.

APPENDIX C: A DETAILED STUDY OF THE SPECTRAL

FUNCTION FOR t0 = ω0 = g = 1 and k = π

In Sec. III, we concluded that the CE successfully captures

the main features of the spectral functions both at the bottom

of the band (k ≈ 0) and at top of the band (k ≈ ±π ) if the

electron-phonon coupling is not too strong. Less promising

results were reported in Ref. [50], where CE was examined on

a finite lattice with N = 6 sites in the regime t0 = ω0 = g =
1 and k = π , using the finite-temperature Lanczos method

(FTLM) [44] as a benchmark. They found that the CE, in

addition to the fact that it does not correctly reproduce a

quasiparticle peak, predicts that the most prominent feature

of the spectrum consists of only a single broad peak, whereas

two distinct peaks are present in the FTLM solution. Here

we show that this discrepancy between the CE and FTLM is

significantly reduced in the thermodynamic limit.

Reference [50] emphasized that previous conclusions are

valid only for low-temperature solutions, while CE becomes

accurate for T � ω0. This was confirmed by the FTLM,

whose spectral functions in this case look like a single broad
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FIG. 12. (a)–(h) Comparison of the CE, DMFT, and SCMA spectral functions in 2D for k = 0 and t0 = 1. The main panels show the results

for T1 = 0.3, while T2 = 0.7 results are shown in the insets.

peak; see Fig. 1(c) from Ref. [50]. However, Fig. S9 in the

Supplemental Material of Ref. [52] demonstrates that the

spectral function in the thermodynamic limit for t0 = ω0 =
g = 1, k = π consists of a broad single-peak structure even at

T = 0. This conclusion was reached by carefully examining

the finite-size effects using the numerically exact hierarchi-

cal equations of motion method (HEOM). It was established

that the system with N = 10 lattice sites is representative

of the thermodynamic limit, although much smaller systems

are required for the k = 0 results. Furthermore, the same

figure shows that two distinct peaks emerge for N = 6 and

k = π , in accordance with the FTLM results. Hence, CE

will provide much better results in the thermodynamic limit

than previously expected. We note that for t0 = ω0 = g = 1

and finite temperatures, one might expect that the required

lattice size, representative of the thermodynamic limit, does

not exceed N = 10, as the electron experiences much more

scattering compared to the T = 0 case. This will be cross-

checked independently (using the DMFT) in the rest of this

Appendix for finite T , which satisfies the T < ω0 condi-

tion. In that case, we analyze the overall performance of

the CE.

In Fig. 13(a), we show the FTLM data, (originally from

Ref. [44]) used in Ref. [50], and compare them to the DMFT

applied on a system of finite lattice size. We exploit the

fact that the corresponding spectral functions (although cer-

tainly not as accurate in comparison with the exact solution)

provide a rough estimate of how large N should be to faith-

fully represent the thermodynamic limit; see Sec. IV from

the Supplemental Material of Ref. [52] for more details. In

accordance with the FTLM results, we see that the DMFT

spectral function for N = 6 also predicts distinct peaks around

ω ≈ 1.5 and ω ≈ 2.5, although there is an additional peak

around ω ≈ 2. Nevertheless, these results change drastically

with increasing N and practically converge for N = 10. This

is the same N as predicted by HEOM at T = 0. Therefore, the

presented FTLM results are not representative of the thermo-

dynamic limit. Additionally, Fig. 13(a) also shows that FTLM

results for T = 0.6 and T = 0.8 are quite similar. Hence, our

further analysis will be conducted for T = 0.7 case.
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FIG. 13. CE, DMFT, FTLM, and HEOM spectral functions for

t0 = ω0 = g = 1. (a) Analysis of the finite-size effects. (b) Inspecting

the convergence of HEOM data with respect to hierarchy depth D.

In Fig. 13(b), we present HEOM results for N = 10 and

compare them to CE and DMFT. We note that HEOM has

one additional parameter, the so-called hierarchy depth D.

For details, we refer the reader to Ref. [47], but we only

briefly mention that the numerically exact results are formally

obtained in the limit D → ∞. In practice, we always check

whether the results converge with respect to D, which cannot

be increased indefinitely, as finite computer memory presents

a limiting factor. We see that the HEOM results have prac-

tically converged for N = 10 and D = 8. Here, the HEOM

solution does not possess the two-peak structure predicted by

the FTLM on a smaller lattice size (N = 6). It actually gives

only a single, broad peak around ω ≈ 2, which is correctly

reproduced by both the CE and the DMFT. Although the CE

misses the quasiparticle peak around ω ≈ −1.5, we conclude

that CE gives much more accurate results for the thermody-

namic limit than for a finite system.

APPENDIX D: MOBILITY RESULTS FROM THE

ONE-SHOT MIGDAL APPROXIMATION

In Sec. V, we presented and analyzed the mobility pre-

dictions from the CE, DMFT, and SCMA methods. Here,

we supplement that study with the data from the one-shot

MA (i.e., SCMA without self-consistency). The results are

shown in Fig. 14. Since the mobility results have already been

FIG. 14. Temperature dependence of the mobility within CE,

DMFT, and MA. Here t0 = 1.

thoroughly analyzed in Sec. V, we will here give only brief

comments about the performance of the MA. Figure 14(a)

shows that MA is practically useless for α � 2.5. Here, the

results are not even qualitatively correct, regardless of the tem-

perature. Even for α = 1, the results are still not satisfactory:
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the predictions for T < 4 (T > 9) overestimate (underesti-

mate) the DMFT benchmark. MA proves to be reliable only

for very weak interactions α � 1/
√

2. Here, the results are

better for higher temperatures. This is expected as the MA

takes into account only the lowest-order Feynman diagram,

while the relevance of higher-order diagrams decreases as the

temperature is increased. Similar analysis can be repeated for

other phonon frequencies in Figs. 14(b) and 14(c).
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[46] D. Jansen, J. Bonča, and F. Heidrich-Meisner, Finite-

temperature density-matrix renormalization group method

for electron-phonon systems: Thermodynamics and Holstein-

polaron spectral functions, Phys. Rev. B 102, 165155 (2020).
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Here we supplement the main text by giving an alterna-
tive derivation of the cumulant function in Sec. I, addi-
tional spectral functions and heat maps in Sec. II, and a
comparison of the 1D ground state energy using DMFT,
CE, SCMA, and MA in Sec. III.

I. ALTERNATIVE DERIVATION OF THE

CUMULANT FUNCTION IN THE CE METHOD

In Sec. XI of the Supplemental Material in Ref. [S1],
we showed that the Green’s function, if there is only a
single electron in the band, can be written as

Gk(t) = −iθ(t)〈ck(t)c†k〉T,0, (S1)

where:

ck(t) = eiHtcke
−iHt, (S2a)

H = Hel +Hph +Hel−ph, (S2b)

Hel = −t0
∑

〈ij〉

(

c†i cj +H.c.
)

=
∑

k

εkc
†
kck, (S2c)

Hph = ω0

∑

i

a†iai = ω0

∑

k

a†kak, (S2d)

Hel−ph = −g
∑

i

c†i ci

(

a†i + ai

)

= − g√
N

∑

k,q

c†k+qck

(

aq + a†−q

)

. (S2e)

Here, N is the number of sites (we take N → ∞ in order
to get the thermodynamic limit), while 〈. . . 〉T,0 denotes
the thermal average over the states with no electrons

and arbitrary number of phonons

〈x〉T,0 =

∑

{np}
〈0, ñp|e−Hph/Tx|0, ñp〉

∑

{np}
〈0, ñp|e−Hph/T |0, ñp〉

. (S3)

For the rest of this section, an arbitrary state with
np phonons and no electrons (since such state is not
unique) will be denoted by |0, ñp〉, while

∑

{np}
rep-

resents the sum over all possible phonon configura-

tions. We also introduce |k, ñp〉 ≡ c†k|0, ñp〉 and Zph =
∑

{np}
〈0, ñp|e−Hph/T |0, ñp〉.

Using the fact that |0, ñp〉 is an eigenstate of both
the full and the phononic Hamiltonian H|0, ñp〉 =
Hph|0, ñp〉 = npω0|0, ñp〉, we see how Eq. (S1) can be
written in a more explicit form

Gk(t) =
−iθ(t)

Zph

∑

{np}

eiω0npte−npω0/T 〈0, ñp|cke−iHtc†k|0, ñp〉.

(S4)
The term e−iHt can be read off from

eiHelteiHphte−iHt = Tt exp

[

−i

ˆ t

0

dt1H
(I)
el−ph(t1)

]

,

(S5)
which represents two different, but equivalent, forms
for the evolution operator in the Dirac picture. Here,

H
(I)
el−ph is the electron-phonon interaction part of the

Hamiltonian in the Dirac picture and Tt is the time-
ordering operator. For the purely phononic part
e−iHpht we use 〈0, ñp|e−iHpht = e−iω0npt〈0, ñp|, while
purely electronic part e−iHelt is dealt with analogously
〈0, ñp|cke−iHelt = e−iεkt〈0, ñp|ck. Hence, Eq. (S4) be-
comes

Gk(t) = − iθ(t)

Zph
e−iεkt

∑

{np}

e−npω0/T

〈

0, ñp

∣

∣

∣

∣

ckTt exp

[

−i

ˆ t

0

dt1H
(I)
el−ph(t1)

]

c†k

∣

∣

∣

∣

0, ñp

〉

(S6a)

≡ −iθ(t)e−iεkt
〈

Tte
−i
´

t

0
dt1H

(I)
el−ph(t1)

〉

T,k
. (S6b)

The expressions of the form (S6b) have been extensively
studied in the past. As shown in Eq. (6.10) of Kubo’s cu-

mulant paper [S2], the expectation value with the time-
ordering can be written as
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〈

Tte
−i
´

t

0
dt1H

(I)
el−ph(t1)

〉

T,k
= exp

〈

Tte
−i
´

t

0
dt1H

(I)
el−ph(t1) − 1

〉

T,k,c
≡ eCk(t), (S7)

where we defined the cumulant function Ck(t). The
notation 〈. . . 〉c denotes the so-called cumulant average.
For our present purposes, we only need to know how the
first two cumulant averages are defined:

〈X1〉c = 〈X1〉 (S8a)

〈X1X2〉c = 〈X1X2〉 − 〈X1〉〈X2〉. (S8b)

In general, the cumulant average is defined using the
ordinary average, by formally expanding the following
expression in the Taylor series with respect to ξi and
equating, order by order, the terms on the left- and the
right-hand side

〈

exp
∑

j

ξjXj

〉

= exp

〈



exp
∑

j

ξjXj



− 1

〉

c

.

(S9)
The −1 term on the right-hand side is motivated by the
fact that the expectation value of the unity operator is
equal to 1. While our paper focuses on the cumulant of
the second order, there is actually an analytic formula
that relates the cumulant average of any order with the

ordinary average [S3].
Let us now go back to Eq. (S6b) and use Eq. (S7) to

obtain

Gk(t) = −iθ(t)e−iεkteCk(t), (S10)

where

Ck(t) =
∞
∑

j=1

〈

Tt
(−i)j

j!

ˆ t

0

j
∏

m=1

dtmH
(I)
el−ph(tm)

〉

T,k,c

.

(S11)
So far, everything was exact. The approximation, that
we now introduce, consists of keeping only the first two
terms in the previous equation (j = 1 and j = 2 terms)
while neglecting everything else. This is known as the
second-order cumulant expansion. In the j = 1 term,
the cumulant average coincides with the ordinary aver-
age (see Eq. (S8a)), and hence vanishes due to Wick’s
theorem. As a consequence, the cumulant average can
be simply replaced by the ordinary average in the case
of j = 2 term as well; see Eq. (S8b). Therefore, the
second-order cumulant function reads as

Ck(t) = −1

2

ˆ t

0

dt1

ˆ t

0

dt2

〈

TtckH
(I)
el−ph(t1)H

(I)
el−ph(t2)c

†
k

〉

T,0
. (S12)

For a straightforward application of Wick’s theorem, it
is customary to rewrite electron creation and annihi-
lation operators in the Dirac picture. In order not to
change the already existing time ordering in Eq. (S12),
the annihilation operator is expressed in the final time

ck = eiεktc
(I)
k (t), while the creation operator is ex-

pressed in the initial time c†k = c
†(I)
k (0). If we also

use the explicit form of H
(I)
el−ph(t) from Eq. (S2e), the

Eq. (S12) becomes

Ck(t) = − g2

2N
eiεkt

ˆ t

0

dt1

ˆ t

0

dt2

〈

Ttc
(I)
k (t)

∑

k1,q1

c
†(I)
k1+q1

(t1)c
(I)
k1

(t1)A
(I)
q1

(t1)
∑

k2,q2

c
†(I)
k2+q2

c
(I)
k2

(t2)A
(I)
q2

(t2)c
†(I)
k (0)

〉

T,0

,

(S13)

where we introduced the shorthand notation for the
phonon part Aq = aq + a†−q. Eq. (S13) is now straight-
forwardly evaluated using Wick’s theorem. Contraction
between the phonon degrees of freedom gives [S4]

〈

TtA
(I)
q1

(t1)A
(I)
q2

(t2)
〉

= δq1,−q2
iD(t1 − t2), (S14)

where iD(t1− t2) = (nph+1)e−iω0|t1−t2|+nphe
iω0|t1−t2|

is the phonon propagator, while nph = 1/(eω0/T − 1) is
the Bose factor. Since we are working in the limit of
vanishing electron density (single electron in a band),
the contraction between the electron creation and anni-
hilation operators does not have a hole part, and hence
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reads as
〈

Ttc
(I)
k (t1)c

†(I)
q (t2)

〉

= δk,q e−iεk|t1−t2|θ(t1−t2). (S15)

Taking all of this into account, Eq. (S13) simplifies

Ck(t) = − g2

2N

∑

q

ˆ t

0

dt1

ˆ t

0

dt2e
i(εk−εq)|t2−t1|iD(t2−t1).

(S16)
We can get rid of the absolute value by noticing that
the contributions for t2 > t1 and for t2 < t1 are equal.
It is thus sufficient to restrict ourselves to t2 > t1 and
multiply everything by 2. Also, the expression can be
further simplified if we use

ei(εk−εq±ω0)(t2−t1) =

ˆ ∞

−∞

dωe−iω(t2−t1)δ(ω+εk−εq±ω0).

Then, the whole q dependence is inside the Dirac delta
function, which in combination with the summation
over q gives

∑

q

δ(ω + εk − εq ± ω0) = Nρ(ω + εk ± ω0), (S17)

where ρ is the density of states. It is now straightfor-
ward to show that Eq. (S16) reduces to

Ck(t) = g2
ˆ ∞

−∞

dω
e−iωt + iωt− 1

ω2

× [(nph + 1)ρ(ω + εk − ω0) + nphρ(ω + εk + ω0)] .
(S18)

This expression can be rewritten in terms of the Migdal
self-energy (see Eq. (14) from the main text) as follows

Ck(t) =
1

π

ˆ ∞

−∞

dω
|ImΣMA(ω + εk)|

ω2
(e−iωt + iωt− 1).

(S19)
Hence, we gave an alternative derivation of the cumu-
lant function Ck(t), where the self-energy in the Migdal
approximation emerges more explicitly than in Eq. (7)
of the main text.
We note that the cumulant expansion method that we

have now presented is analogous to the linked cluster
expansion for the thermodynamic potential F in sta-
tistical mechanics. This is a consequence of the same
mathematical form of Ck(t) = ln (Gk(t)/Gk,0(t)) and
F = ln(Z/Z0), where Z and Z0 are the partition func-
tion of the full and noninteracting theories.




















