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A B S T R A C T   

The emergence of a new virus variant is generally recognized by its usually sudden and rapid spread (outburst) in 
a certain world region. Due to the near-exponential rate of initial expansion, the new strain may not be detected 
at its true geographical origin but in the area with the most favorable conditions leading to the fastest expo-
nential growth. Therefore, it is crucial to understand better the factors that promote such outbursts, which we 
address in the example of analyzing global Omicron transmissibility during its global emergence/outburst in 
November 2021–February 2022. As predictors, we assemble a number of potentially relevant factors: vaccina-
tions (both full and boosters), different measures of population mobility (provided by Google), estimated 
stringency of measures, the prevalence of chronic diseases, population age, the timing of the outburst, and 
several other socio-demographic variables. As a proxy for natural immunity (prevalence of prior infections in 
population), we use cumulative numbers of COVID-19 deaths. As a response variable (transmissibility measure), 
we use the estimated effective reproduction number (Re) averaged in the vicinity of the outburst maxima. To 
select significant predictors of Re, we use machine learning regressions that employ feature selection, including 
methods based on ensembles of decision trees (Random Forest and Gradient Boosting). We identify the young 
population, earlier infection onset, higher mobility, low natural immunity, and low booster prevalence as likely 
direct risk factors. Interestingly, we find that all these risk factors were significantly higher for Africa, though 
curiously somewhat lower in Southern African countries (where the outburst emerged) compared to other Af-
rican countries. Therefore, while the risk factors related to the virus transmissibility clearly promote the outburst 
of a new virus variant, specific regions/countries where the outburst actually happens may be related to less 
evident factors, possibly random in nature.   

1. Introduction 

The new strain of SARS-CoV-2 (which appeared in November 2022) 
was designated as a “variant of concern” by the World Health Organi-
zation. This title echoed through worldwide media both as a “variant of 
fear” and a “variant of hope”. Namely, the new Omicron variant started 
to spread at rates previously unseen (indicating that its contagiousness 
was paralleled only by measles (Gerke et al., 2022; Rozsa and Karlis, 
2022)) while seemingly, ignoring prior individual immunity and 
vaccination status (Gao et al., 2022; Khandia et al., 2022). The news 
prompted many world countries to (re)introduce travel bans and lock-
downs to postpone local epidemics (Güvendik and Kavak, 2021). On the 
other hand, the preliminary data hinted at significantly reduced disease 
severity (Abdullah et al., 2022; Khandia et al., 2022; Ulloa et al., 2022), 

raising hopes that we might be witnessing a transition to the endemic 
phase and a more peaceful coexistence with the virus (Mattiuzzi et al., 
2022; Picheta, 2022). 

Nevertheless, the mounting data were difficult to interpret unam-
biguously. The new variant was spreading through an unevenly vacci-
nated population, with different prevalences of prior exposure to the 
virus, different mobility patterns, and potential significant differences in 
other socio-demographic and medical factors, which may complicate 
every Omicron study. For example, it is unclear to what extent Omi-
cron’s rapid expansion is due to its shortened incubation period (Jansen 
et al., 2021) and inherently increased basic transmissibility or due to 
immune evasiveness in combination with the waning immunity of the 
population (Lyngse et al., 2021b). While it was quickly apparent that the 
new strain is suddenly causing a substantial number of reinfections 
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(Bastard et al., 2022; Pulliam et al., 2022) and that the effects of the full 
(double) vaccination in spread prevention are marginal (if any) (Accorsi 
et al., 2022; Ferguson et al., 2021; Hansen et al., 2021), the effects of 
booster vaccines were more challenging to understand. Most studies 
thus far show that boosters confer certain protection from Omicron 
infection (Accorsi et al., 2022; Ferguson et al., 2021; Lustig et al., 2021). 
However, it is unclear if this is a qualitatively new increase in immunity 
(e.g., due to affinity maturation (Schmidt et al., 2021) or some other 
mechanism (Willyard, 2022)) or merely a restoration of the immunity 
produced by the second dose, which is again rapidly waning (to 25–40% 
protection after 15 weeks (Rigby, 2022)). Moreover, if the booster 
protection is generally short-lived, it is disappointing and surprising that 
the introduction of the fourth dose provides hardly any remedy (Rege-
v-Yochay et al., 2022), which raises doubts about the proper timing of 
the booster shots and long-term strategies. On the other hand, while the 
influence of booster doses on disease transmission appears limited, their 
effect on the prevention of hospitalization is quite significant (Tenforde 
et al., 2022). Unfortunately, it also seems to be quickly waning (Rigby, 
2022). However, the large-scale impact of the boosting efforts remains 
unclear, since the disease severity seems to be already heavily reduced 
by widespread prior COVID-19 infections and/or the full vaccination. 
The prior COVID-19 immunity (rather than the inherent characteristics 
of the strain) might be the leading underlying cause of the reduced 
Omicron severity (Nealon and Cowling, 2022) - which is a potentially 
serious problem for countries that so far had low SARS-CoV-2 exposure, 
such as China. Therefore, there are many open questions due to many 
competing effects and their interactions, which are hard to disentangle 
yet essential to understand, especially since the Omicron variant might 
be here to stay. Moreover, even Omicron’s geographical origin is 
disputed: while its detection and the first major outburst occurred in 
southern Africa, it is unclear whether this region was the variant’s actual 
origin or merely a fertile soil for its transmission and a place where it 
finally reached a genome sequencing laboratory (Ellyatt, 2021; Malla-
paty, 2022). Consequently, analyzing factors that promote Omicron 
transmissibility is also needed to objectively assess arguments on the 
disease origin. Previous research demonstrated the utility of analyzing 
global patterns of SARS-CoV-2 spread (see, e.g. (Dankulov et al., 2021; 
Magdalena Djordjevic et al., 2021; Sarkar et al., 2020; Vilar and Saiz, 
2021a)). 

In this light, we intend to complement the existing studies (domi-
nantly of cohort and case-control type) with an ecological study design 
systematically comparing the Omicron epidemic’s evolution in more 
than a hundred world countries. We emphasize the influence of full 
vaccination, boosters, and natural immunity (taking the cumulative 
number of COVID-19 deaths as the proxy for the prevalence of prior 
infections in the population) on the virus transmission in the population, 
but also considering the effects of some other likely important factors: 
population age and density, prevalence of diabetes and cardiovascular 
diseases, time until the epidemic onset, and human development index. 
Additionally, we consider the estimated measure stringency and, more 
importantly, the actual (observed) human mobility data. As the response 
variable, we consider the effective reproduction number Re, averaged 
(for each country) in the vicinity of the Omicron outbreak peak (Ravg). 
Apart from analyzing direct (univariate) correlations, we apply linear 
regression methods that employ feature selection and state-of-the-art 
(nonlinear) machine learning techniques. This approach allows con-
trolling for multiple factors that influence transmissibility while 
excluding those (initially considered) variables that do not influence the 
response. Additionally, more advanced machine learning techniques, 
which we also employ in this work, account for possible nonlinear ef-
fects and interactions among the predictors. 

In this way, we provide insights on the Omicron expansion com-
plementary to other studies’ conclusions, emphasizing global (i.e., 
country-level) epidemical tendencies and effects of implemented 
(vaccination and social) policies. After identifying the main factors that 
promote the virus transmission, we show that all of them were highly 

elevated in African countries during the Omicron outburst, suggesting 
that it is not surprising that the variant was first recognized on this 
continent. This, together with negative correlations between the 
perceived time of the outburst and the reproduction number, argues 
against inclinations to equate the place where the virus originated with 
the place where it initiated the first outburst. In particular, this casts 
further doubts that this new strain has necessarily originated in Africa. 

Instead, we suggest that the local medical, socio-demographic, or 
mobility patterns that modulate the Re value may substantially affect the 
onset of the local epidemic, potentially misleading about the actual 
location of virus origin. In extreme cases, the local modulation can keep 
the reproduction number below the threshold necessary to transition to 
the exponential phase of the epidemic, which can be exacerbated by 
stochastic effects (particularly at a low number of infected) and by 
population and spatial heterogeneities (e.g., social bubbles) (Britton 
et al., 2020; Hellewell et al., 2020; Leng et al., 2021). This can preclude 
any observable local outburst (Kochańczyk et al., 2020) (or significantly 
delay its onset) in regions with lower transmissibility, despite the 
appearance of a new virus (or variant) in this region. In such cases, the 
new virus/strain will show up only when and if it, in the stochastic 
regime, manages to reach some other, possibly distant region, with more 
favorable conditions for its transmission. Therefore, we argue that a new 
strain is likely to be first observed and sequenced in the regions with the 
most favorable conditions for its transmission, irrespective of its actual 
location of origin (but assuming a reasonably high level of intercon-
nectedness of populations across the globe). Therefore, the risk factors 
that we identified (which tend to intensify the reproduction number of 
Omicron and similar future strains/viruses) can point to world regions 
that should be closely monitored for the appearance of new variants. 
Finally, we compare our results with the data analysis from the initial 
pandemic wave (Marko Djordjevic et al., 2021), revealing some simi-
larities and reversed trends. 

2. Methods 

2.1. Data acquisition 

Complete Our World in Data COVID-19 dataset was retrieved from 
(Dong et al., 2020; Ritchie et al., 2020), where it was aggregated from 
several external sources (see below). All rows that do not belong to 
countries, i.e., correspond to larger regions such as continents (recog-
nized by OWID in iso code), were filtered out. Rows from Nov. 20th, 
2021, to Feb. 14th, 2022, were selected for each country. Nov. 20th was 
taken as the initial date since the new Omicron variant was first reported 
to the WHO from South Africa on Nov. 24th (CDC COVID-19 Response 
Team, 2021; Tian et al., 2022). Columns were extracted that correspond 
to iso code (three-letter), continent, country, date, total deaths per 
million, reproduction rate (Re), fully vaccinated per hundred (fully 
vaccinated), boosters per hundred (boosters), stringency index (strin-
gency), population density (pop. density), median age, aged 65 or older 
(older population), cardiovascular death rate (cardiovasc), diabetes 
prevalence (diabetes), and human development index (HDI). Here, the 
cardiovascular death rate and diabetes prevalence were chosen as 
readily available measures of two known COVID-19 comorbidities (Liu 
et al., 2020; Sanyaolu et al., 2020). The inferred reproduction rates come 
from (Arroyo-Marioli et al., 2021), while the other direct data sources 
are listed in (Hasell et al., 2020; Mathieu et al., 2021). We take total 
COVID-19 deaths per million as proportional to the prevalence of prior 
COVID-19 infections in the population, i.e., natural immunity in a 
country (immunity proxy). This measure is taken as a reasonable im-
munity proxy, as the number of deaths is proportional to the number of 
infections while being much less dependent on the testing coverage 
(which significantly varies between countries). 

Global mobility data, provided by Google LLC, were retrieved from 
(Google, 2022). The data are aggregated in six categories, represented as 
percent change from baseline: retail and recreation; grocery and 

M. Djordjevic et al.                                                                                                                                                                                                                             



Environmental Research 216 (2023) 114446

3

pharmacy; parks; transit stations; workplaces; residential. Countries 
were selected from this dataset, i.e., smaller territorial units were 
filtered out. The same range of dates as for OWID data was then selected. 
Also, to facilitate joining with the OWID dataset, a two-letter country 
code was substituted by a three-letter code, and the two datasets were 
joined by their standard country code and date. An integrated (filtered) 
dataset consisting of selected OWID variables and Global mobility cat-
egories is provided in Supplement Table 1 and was used in further 
analysis. 

2.2. Data processing 

A maximum of Re(t) was found for each country in the considered 
time interval (Nov. 20th, 2021–Feb. 14th, 2022). The Onset was defined 
as the number of days between the first date (Nov. 20th, 2021) and the 
maximum. As the maximum of Re(t) is based on a single date, to more 
robustly estimate the response variable (transmissibility), we calculated 
an average value Ravg for a 21 days time window centered around the 
maximum for each country. Ravg was used as the response variable in 
further analysis. The countries were included in the study if i) The 21 
days time window is within the interval considered in the analysis. This 
ensures that peaks unrelated to Omicron are likely to be excluded (for a 
too early maximum) and that Re(t) had a chance to reach its maxima 
within this time interval (satisfied for a large majority of countries). ii) 
The maximum of Re(t) was at least 1.2 to ensure that there was indeed a 
peak (outburst) adequately reflected in the data. iii) Re(t) values are 
available for at least 50% of the dates in the considered interval. Note 
that many Re(t) values will be missing for countries with irregular case 
count measurements. 

With the criteria above, i.e., the three conditions and availability of 
OWID and Global Mobility data, 104 countries were included in the 
further analysis. For these countries, total death per million (used as 
immunity proxy) was calculated at the beginning of the time window 
(ten days before maximum). The vaccination data (full vaccinations and 
boosters) are reported at larger time intervals than days for some 
countries. Consequently, we used the available value closest to the date 
of Re(t) maxima. Stringency has been calculated as an average during 
the 20-day time window. Equivalently, all mobility categories are 
included as the window averages. The socio-demographic and medical 
data (prevalence of chronic diseases) that do not change during the 
considered interval were included as is in the dataset. The complete 
dataset used in further analysis, with the response Ravg and the predictor 
variables for each country, is provided in Supplement Table 2. 

2.3. Variable transformations 

Variables were transformed before further analysis, as reduction of 
the data skewness (and the corresponding reduction of the outliers 
associated with heavy asymmetric tails of non-transformed distribu-
tions) is needed for implementing Lasso and Elastic Net regressions 
(Hastie et al., 2009). The variable transformations are similar to Box-Cox 
transformations (Box and Cox, 1964). We wrote a custom script, where 
for each variable the transformation was selected so that the skewness of 
the data was as close to zero as possible, with the minimal number of 
remaining outliers (subsequently substituted by the median value of the 
transformed variable). The list of the applied transformations is pro-
vided in Table 1. 

2.4. Machine learning regressions 

Statistical analysis was performed following the previously imple-
mented methodology (Markovic et al., 2021). Two regularization-based 
regression methods, Lasso (Hastie et al., 2009; Tibshirani, 1996) and 
Elastic net (Hastie et al., 2009; Zou and Hastie, 2005) were implemented 
as “Relaxed” (Hastie et al., 2009; Meinshausen, 2007), i.e., two rounds 
of regression were performed, where only predictors selected in the first 

round were used as input for the second round of regression. In both 
rounds, the optimal model was selected through 5-fold cross-validation, 
with the data repartitioned 40 times, as the sparsest model among those 
with mean squared error (MSE) within one standard error from the 
minimal MSE. 

Decision tree-based machine learning algorithms, Random Forest 
(Breiman, 2001; Hastie et al., 2009) and Gradient Boosting (Breiman, 
1996; Hastie et al., 2009), were also implemented in the “Relaxed” 
settings, where only variables with the importance above the mean 
importance threshold of the minimal MSE model (selected through 
cross-validation, same as in Lasso and Elastic Net) in the first round of 
regression were kept in the second round. In the second round, a model 
with the minimal MSE was selected as optimal. Partial dependence plots 
(Hastie et al., 2009) were then used to examine further the contribution 
of features with the highest estimated importance in the minimal MSE 
model. In these plots, the effect of a given feature on the average pre-
diction (i.e., taking the average effects of the remaining model features) 
is estimated. This allows confirmation of the model results and deter-
mining the direction of the association, as the importance estimate does 
not imply it. 

3. Results 

3.1. Exploratory data analysis and Ravg inference 

We start with exploratory data analysis, where Re(t) patterns were 
analyzed for different countries, grouped by continents, allowing us to 
assess the progression of the Omicron variant. Here we specifically 
emphasize South African countries for which the data are available 
(South Africa, Mozambique, Namibia, Zimbabwe), where the initial 
outburst happened. Consequently, in Fig. 1A, we showed each country’s 
Re(t) dependences. In Fig. 1B, average Re(t) profiles for six continents are 
shown. By observing patterns in Fig. 1A and B, we see the same general 
Re(t) pattern, first increasing, reaching a maximal value, and then 
decreasing. Such a pattern is consistent with our definition of the 
response variable (see Methods), where Ravg in a 21-day window 
centered at maximum is calculated and used as a response. The 

Table 1 
Variable transformation.  

Variable Description Transformation 

immunity 
proxy 

Number of deaths per million people as the 
proxy for population immunity 

x1/3 

fully 
vaccinated 

Percentage of the fully vaccinated population −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
max(x) − x

√

boosters Vaccine boosters administered per 100 people x1/3 

stringency Government response stringency index None 
pop. density Population density log (x)
median age Population median age x2 

older 
population 

Percentage of population over 65 years x1/3 

cardiovasc Prevalence of cardiovascular diseases log (x)
diabetes Prevalence of diabetes x1/3 

HDI Human development index −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
max(x) − x

√

mobility retail Changes in mobility trends for retail and 
recreation 

log (x − min (x))

mobility 
grocery 

Changes in mobility trends for grocery and 
pharmacy 

log (x − min (x))

mobility parks Changes in mobility trends for parks (x − min(x))1/3 

mobility 
transit 

Changes in mobility trends for public 
transport 

(x − min(x))1/3 

mobility 
workplace 

Changes in mobility trends for places of work ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x − min (x)

√

mobility 
residential 

Changes in mobility trends for places of 
residence 

−

(max(x) − x)1/3 

onset Delay of the Omicron wave onset (time from 
Nov. 20th, 2021, until the peak of Re) 

None 

Ravg Average effective reproductive number of the 
virus 

log (x)
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emergence of this time pattern of Re(t) is discussed in the next section. 
By comparing Fig. 1A and B, we see that the curves for South African 

countries are shifted to the left, corresponding to an earlier outburst in 
these countries. This is also clear from Fig. 1D, where onsets are 
compared, with the onset for South African countries happening 
significantly earlier than for the other countries. The onset for South 
African countries is clearly (and significantly) separated from other 
African countries. The onset in the other African countries also happens 
earlier than for the other continents; however, it is not nearly as clearly 
separated as the South African countries from the rest of the regions. 
This is a nontrivial result, as Re(t) is inferred only from the case counts, i. 
e., it does not a priori take into account that the first outburst happened 
in South African countries but is independently reproduced/obtained 
from our analysis. Fig. 1C shows Ravg again for South African countries 
and continents. One can see that Ravg shows significant variability both 
within and in-between continents. For example, Europe has a signifi-
cantly smaller Ravg than the other continents. Our next goal is to explore 
what factors (i.e., assembled predictors) contribute to this variability. 
Also, African countries have the largest Ravg, though interestingly, the 
South African countries have a somewhat smaller value than the rest of 
the African countries. We will come back to this at the end of our 
analysis. 

Finally, note that the maxima values of the peaks in Fig. 1B should 
not be directly compared with Fig. 1A and C. The curves in Fig. 1B 
correspond to averages over many countries, where peaks for individual 
countries happen asynchronously (at different dates), which effectively 

lowers the maxima of the averaged curves. Nevertheless, the utility of 
average profiles is to clearly show the same pattern of Re(t) (initial in-
crease, reaching maxima, and then decrease). Also, Fig. 1A and B 
additionally support the conclusion from Fig. 1D that the outburst in 
South African countries happened much earlier than in the rest of the 
world, followed (with significant delay) by the outbursts in the rest of 
Africa. 

3.2. Univariate data analysis 

Pearson correlation coefficients between all the considered variables 
and the response variable Ravg were determined after appropriately 
transforming variables (see Table 1) and presented in Fig. 2. As an 
alternative to calculating Person correlations for the transformed data, 
we could have used Spearman or Kendall coefficients, for which nor-
mally distributed data is not needed. However, in our previous work 
with COVID-19 data (Salom et al., 2021) we did not get much difference 
in obtained results when using these different correlations. 

Fig. 2 shows that Ravg exhibits the highest negative correlation with 
the delay of the epidemic onset, percentage of the older population, 
median age, immunity proxy, boosters, and HDI, and the highest posi-
tive correlation with transit (longer range) mobility. Scatter plots of Ravg 
with these variables are presented in Fig. 3. 

Fig. 1. Exploratory data analysis. A) Re(t) dependences for four South African countries during Omicron outburst. B) Averaged Re(t) profiles for the six continents. 
C) Box plots of Ravg for South African countries and six continents (South African countries excluded from Africa). D) Box plots of the delay of the epidemic’s onset, 
relative to Nov. 20th, 2021, for South African countries and six continents; In Figs. C and D, the outliers are represented by blue plus marks (“+’’). Re – effective 
reproductive number of the virus. Ravg - Re averaged in 21 day window around maxima. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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3.3. Feature selection by machine learning regressions 

Relaxed Lasso and Elastic net regressions were first performed on the 
entire set of variables, yielding results presented in Fig. 4A and C, 
respectively. These regressions selected the percentage of an older 
population and the delay of epidemic onset (relative to the approximate 
time of the first diagnosed Omicron case), both negatively associated 
with Ravg. Since the direct causal impact of these variables on trans-
missibility is unlikely, to further analyze the effect of other predictors 
(potentially masked by these selected variables), the regressions were 
repeated, excluding age-related variables (median age and older popu-
lation) and onset. From this reduced set of variables, immunity proxy, 
boosters, mobility retail, and mobility transit are robustly selected by 
both methods (Fig. 4B and D). While immunity proxy and boosters are 
negatively associated with Ravg, long-range transit mobility and, to some 
extent, retail mobility are positively associated with the transmissibility 
measure. 

The importance estimates from Relaxed Random Forest and Gradient 
Boosting regressions, performed on the reduced set of variables, are 
presented in Fig. 5A and D. While Random Forest and Gradient Boosting 
are generally robust to data transformations, for consistency we apply 
them to the same (transformed) dataset as used in Lasso and Elastic Net. 
From Fig. 5A, only immunity proxy is above the mean importance 
threshold in the second (relaxed) round of Random Forest regression, 
while mobility transit has the second-highest importance estimate value, 
which is consistent with Lasso and Elastic Net results. Interestingly, the 
rest of the variables previously selected by these two methods – boosters 
and mobility retail were not included in the second round of Random 
Forest (i.e., their importance was not above the importance threshold in 
the first round of Random Forest regression). On the other hand, some 
other variables, e.g., percentage of the fully vaccinated population, were 
included, with the importance estimate close to the threshold. However, 
the impact of these predictors on Ravg, examined by Partial Dependence 
Plots, was negligible (not shown). On the other hand, the effects of 
immunity proxy and transit mobility can be seen from the partial 

Fig. 2. Correlation matrix for the predictors and the response. Colors 
correspond to the value of Person correlation coefficients, as specified by the 
color bar on the right, while asterisks correspond to the statistical significance 
of the results (’ ’ – P > 0.05, ’ * ’ – 0.05 > P > 0.01, ‘**’ – 0.01 > P > 0.001, 
‘***’ – P < 0.001); HDI – human development index, Ravg - average effective 
reproductive number of the virus; see Table 1 for more detailed variable de-
scriptions. The figure was created using the R (R Core Team, 2021) corrplot 
package (Wei and Simko, 2021). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Scatterplots of Ravg vs. six predictors with the highest (positive or negative) Pearson’s correlation coefficients. Values of the transformed variables 
(see Table 1) are presented on the horizontal axes; HDI – human development index, Ravg - average effective reproductive number. 
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dependence plots in Fig. 5B and C, respectively. 
Gradient Boosting results confirm the findings from previous re-

gressions regarding the importance of immunity proxy and mobility 
transit variables in explaining Ravg, which can also be observed from the 
partial dependence plots in Fig. 5E and F, which resemble those obtained 
from the Random Forest. In Fig. 5C and F, a positive association between 
mobility transit and Ravg can be observed, while Fig. 5B and E shows 
step-like dependence between immunity proxy and Ravg. Several other 
predictors were selected to enter the second round of Gradient Boosting 
regression. However, similarly to Random Forest results, Partial 
Dependence Plots showed that their contribution to Omicron variant 
transmissibility is insignificant. 

3.4. Analyzing risk factors 

We next go backward, asking what the values of identified risk fac-
tors for different countries across continents are, specifically for South 
African countries. We obtain that these risk factors are indeed signifi-
cantly elevated for African countries: The fraction of the older popula-
tion is significantly lower (Fig. 6A); Mobility has been significantly 
elevated compared to the baseline (in contrast to, e.g., Europe where it 
has been significantly lowered from baseline); Natural immunity (proxy 
immunity) has also likely been significantly smaller in Africa. Finally, 
the booster vaccinations were very low in Africa and significantly lower 
than in other regions. 

On the other hand, while risk factors for South African countries 
were clearly higher than in other continents, they were not distinct from 
other African countries (and are, in fact, even somewhat smaller). 
Consequently, while African countries are optimal for Omicron pro-
gression, South African countries were not specifically distinct from the 
rest of Africa. Overall, we obtain an interesting result that the continent/ 
region where the Omicron wave has initiated is also a ‘fertile ground’ in 

terms of the disease transmissibility. This is a highly nontrivial obser-
vation, as nothing in our analysis a priori uses information on where the 
outburst initiated. (Note that, even if we had not treated South African 
countries separately, the African continent would stand out as the one 
with the most favorable conditions for the outburst: the values for the 
overall African continent would be somewhere in between the nearby 
values for South Africa and Africa in Fig. 6, clearly singling out this 
continent as the riskiest one according to the relevant factors identified 
by our analysis.) It is also interesting that South African countries do not 
have distinctly optimal conditions among the other African countries. 
We will further discuss these findings below. 

4. Discussion 

4.1. Change of the effective reproduction number with time 

We find that the dependence of the effective reproduction number on 
time has the same global pattern in the observed interval: increases, 
reaches a maximum, and afterward decreases (reaching a value below 
one for the majority of countries, indicating the end of the outburst 
(Khajanchi et al., 2021)). The increase in Re is likely due to introducing 
the much more virulent Omicron strain, which was found to have more 
than two times higher effective reproduction number than Delta (Ito 
et al., 2022a, 2022b). An increase in the number of infected by Omicron 
leads to a rapid dominance of Omicron over the other (much less 
transmissible) SARS-CoV-2 variants in the population (Ito et al., 2022a), 
which is observed as an increase in Re in Fig. 1A and B. The smoothing by 
the Kalman filter used for Re extraction (Arroyo-Marioli et al., 2021) and 
the gradual transition from the stochastic phase (due to an increase in 
the number of infected by Omicron) may also be behind the gradual 
increase of Re. Therefore, the maximum of Re (averaged in a window 
around the maxima to evade the dependence on a single number) likely 
reflects an instance where Omicron dominates over other strains and 
where the other artifacts can be neglected. It thus provides a reasonable 
measure of Omicron transmissibility (effective reproduction number) 
for different countries. The start of the phase where Re drops is likely due 
to a decrease in susceptibility numbers or a ramp-up in social measures. 
We here assume that the outburst in November 2021–February 2022 
(and the consequent surge in Re values) for the countries analyzed is 
indeed due to Omicron. There is no direct (genetic) evidence for this 
assumption (at least not at the level of all countries analyzed). However, 
the outburst in this interval is widely attributed to Omicron (Chassa-
levris et al., 2022; del Rio et al., 2022). Since the rapid increase in Re is 
also consistent with the introduction of a highly transmissible variant (a 
pronounced Omicron property), we believe that our assumption is 
reasonable. 

4.2. Influence of the population age and onset 

Our preliminary analysis, performed on all independent variables, 
identified only two variables as dominant (and important) predictors of 
the effective reproduction number: the percentage of older people and 
epidemic onset, Fig. 4A and C. For both variables, the correlation is 
negative - a higher percentage of the older population and the longer 
interval to the epidemic onset are related to lower Ravg values. However, 
for either of the two, it is evident that we cannot presume a direct causal 
influence in the literal sense: assuming that older individuals have, per 
se (i.e., inherently biologically), a lower chance of catching and trans-
mitting the virus, or that the potency of the virus has somehow 
decreased within the observed weeks, does not seem plausible. For 
example, a study in Danish households actually found increased trans-
missibility of SARS-CoV-2 in the older population (though the study 
does not concern Omicron) (Lyngse et al., 2021a). 

Instead, there are clear arguments for the strong indirect influence of 
the two factors. In the case of population age, it is reasonable to assume 
that the older population was, due to higher risks, on average, better 

Fig. 4. Relaxed Lasso and Elastic net regression coefficients. A) Relaxed 
Lasso with all variables included in the first round of regression, B) Relaxed 
Lasso without onset and two age-related variables, C) Relaxed Elastic net with 
all variables, D) Relaxed Elastic net without onset and two age- 
related variables. 
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observing social measures and taking more care to avoid the infection 
(as supported by a number of studies (Lin et al., 2021; Wright et al., 
2022):). This is consistent with the obtained negative correlation be-
tween age-related variables and mobility measures, showing higher 
drop-in activities (work, shopping, transit) where the population was 
older (the correlation with mobility residential variable is positive, 
translating to longer stay-at-home time). Furthermore, vaccination, 
including booster shots, was generally more prevalent in the older 
population, both as a result of prioritizing population at higher risks and 
due to vaccine hesitancy in younger population (Diesel et al., 2021; 
Ritchie et al., 2020; Rzymski et al., 2021; Sønderskov et al., 2021). This 
trend, also indicated by correlations shown in Fig. 2, likely contributes 
to lower infection and transmission rates in older population. 

Age-related variables are also strongly positively correlated with the 
human development index, further connecting this variable to other 
influences. Namely, richer countries had higher overall vaccination 
percentages (among the older and younger populations), lowering Ravg 
values. Besides, more developed countries were also harder hit by 
COVID-19 in the first waves of the pandemic (Dalglish, 2020; Marko 
Djordjevic et al., 2021; Stribling et al., 2020). This led to higher values of 
natural immunity proxy (which in later analysis turned out to be a 
highly important predictor) and may explain why social measures were 
now stronger and more obeyed in these countries (as especially indi-
cated by the strong negative correlation of HDI with mobility variables). 
Indeed, we note the inverted trend for the HDI variable for the Omicron 

phase compared to the first wave of the pandemic. I.e., while, in the first 
wave, HDI was the dominant predictor of fast epidemic progression 
(Marko Djordjevic et al., 2021), now it is negatively correlated with Ravg 
values. This suggests that high HDI countries were better prepared and 
took more resolute actions in the later stages of the pandemic (learning 
from their own prior mistakes and having more resources to implement 
actions such as vaccination). Overall, age is highly correlated with 
almost all of our significant predictors of transmissibility. Therefore, we 
repeated the analysis after removing the age-related variables from the 
list of potential predictors to investigate which of these variables 
genuinely influence Omicron spread. 

On the other hand, the cause behind the relatively strong influence of 
the onset variable on the transmissibility is much more intriguing, since 
this variable only loosely correlates with other predictors - mostly with 
population age, immunity proxy, and HDI (positive correlation), and 
somewhat with mobility measures (negative correlation). The mere sign 
of these correlations is, indeed, consistent with the observed connection 
of onset and reproduction number, because age, immunity proxy and 
HDI all negatively correlate with Re, while mobility measures correlate 
positively. However, these correlations appear too weak to explain the 
magnitude and robustness of the effect, and seem more likely to merely 
reflect the fact that the first apparent outburst of the Omicron variant 
occurred in South Africa, while the waves in western countries (with old 
population, strong measures, high values of HDI, and immunity proxy) 
followed with a delay visible in Fig. 1B and D. Alternatively, it might 

Fig. 5. Random Forest and Gradient Boosting machine learning algorithms and partial dependence (PD) plots for variables with the highest importance. 
A) Relaxed Random Forest predictor importance estimates, B–C) PD plots for Random Forest, D) Relaxed Gradient Boosting predictor importance estimates, E-F) PD 
plots for Gradient Boosting, Dashed line in A and D correspond to the mean variable importance in a given model. 
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seem relevant that a number of countries have quickly introduced travel 
bans from the initially affected African countries (Güvendik and Kavak, 
2021), in attempts to postpone the Omicron epidemic. It is likely that the 
same countries, apart from the travel bans, have also (re)introduced 
stronger social measures (later leading to lower Re values). However, 
this effect does not seem to be sufficiently large either - otherwise, a 
stronger correlation between onset and mobility variables (and/or 
stringency index) should be expected. On the contrary, weak correla-
tions of this kind dismiss (at least as a complete answer) a simple 
explanation that the additional time to outburst provides more oppor-
tunity to introduce significantly stronger control measures and appro-
priately modify behavior (thus consequently lowering the reproductive 
number) (Rai et al., 2022). 

The effects considered so far do not seem to offer sufficient expla-
nation for the obtained significance of the onset variable as a predictor. 
Mainly since this connection is unusually robust, i.e., the onset variable 
was similarly strongly negatively correlated with the reproduction 
number in the first wave of the pandemic (Marko Djordjevic et al., 
2021); however, low values of the onset variables were then tied to high 
HDI western nations. 

Instead of looking only for indirect influences of this sort (i.e., via 
common confounders), we point to a potential connection of mathe-
matical nature, which, to a certain extent, directly correlates the onset 
variable with the reproduction number. Namely, the effective repro-
duction number crucially determines the shapes of epidemic curves, 
affecting not only the evolution of case numbers but, consequently, also 
how quickly will the number of (effectively) susceptible individuals be 

sufficiently depleted so that the reproductive number value begins to 
decline. Higher transmissibility of the virus in the given environment 
also leads to a shorter initial phase of stochastic epidemic evolution (as 
higher numbers of infected will be reached sooner). Consequently, the 
Re value may strongly determine the epidemic peak time – the higher the 
virus’s transmissibility, the sooner the new epidemic wave becomes 
apparent and attracts attention. (However, due to the stochastic nature 
of the early epidemic’s evolution and interplay of various parameters, 
including variation in the initial number of introduced cases, we cannot 
expect any strict proportionality but merely a probabilistic correlation.) 
Therefore, the larger Re values will (statistically) directly lead to shorter 
observed onset times. 

Importantly, this conclusion can be expected to hold irrespective of 
the exact definition of the “onset time” that we adopt: whether we as-
sume that the local epidemic has started when daily case numbers reach 
a certain threshold and it becomes apparent in the population, or we 
consider the timing of the peak in the effective reproduction number as 
in this paper, or even if we define the onset as the moment when the 
epidemic definitively enters the phase of exponential growth (Marko 
Djordjevic et al., 2021). We chose the maximum position as the measure 
of the outburst timing (the onset time), as the switching time from 
decay/fluctuations to growth is generally harder to estimate and asso-
ciated with uncertainties due to the low number of infected (Vilar and 
Saiz, 2021b). Evidently, the daily detected cases threshold will be 
reached sooner if the transmission is faster. In the case of onset as the 
peak time of the effective reproduction number, we note that the 
maximal Re value is reached just before its values begin to decline either 

Fig. 6. Risk factors for continents Values of four identified risk factors are shown as box plots for South African countries and six continents: A) older population, 
B) mobility transit, C) immunity proxy, D) boosters; blue plus marks (“+’’) represent the outliers. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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due to depletion of susceptibility numbers or increased efforts to stop the 
new wave – and both occur sooner if the number of cases is larger (as is 
also the case with the transition from the stochastic into the exponential 
phase). In the last case, i.e., if we associate onset with the start of the 
exponential phase, the negative correlation of the transmissibility and 
the onset can be expected due to the Re-dependent duration of the sto-
chastic phase (Kochańczyk et al., 2020; Leng et al., 2021). 

The relation of the Re value and the onset variable is best illustrated 
in a hypothetical scenario in which the new virus or strain appears 
simultaneously in different world regions but with different effective 
reproductive numbers (due to characteristics of the local population 
and/or environment). It will take some time to notice the new pandemic 
– until case numbers sufficiently increase to attract attention – but this 
threshold will be reached sooner in regions of higher Re value. In turn, 
we would tend to falsely conclude that the virus “originated” from the 
region where it was first observed, in spite that it (in this hypothetical 
scenario) started everywhere simultaneously. Such an example illus-
trates that the location of the first outburst does not, necessarily, reveal 
much about the place of true mutation origin. Note that the effect is 
more pronounced in the case of a new virus strain appearing during an 
already raging epidemic – in this case, it will take a higher threshold for 
the new strain to be noticed in the background of existing infections. 

4.3. Identified risk factors 

Our data thus suggest that a significant part of the onset influence on 
Ravg value could be of this “mathematical” nature – implying that, to 
some extent, the onset variable can be seen as a proxy for trans-
missibility, making it less meaningful to consider it as an independent 
variable. The observed correlations of the onset value with other vari-
ables, indicating indirect connection with Ravg via different confounders, 
also contribute to this conclusion. Therefore, to gain better insight into 
other predictor variables’ influences, we removed the onset variable 
(together with age variables) from the initial set and repeated the 
analysis. Among the remaining variables, both linear regression 
methods (relaxed Lasso and Elastic net) selected the same important 
predictors of Omicron transmissibility: immunity proxy and booster 
prevalence as negatively influencing, and mobility variables (mainly 
transit mobility and less pronounced mobility retail) as positively 
influencing Ravg values (Fig. 4B and D). Similar, though somewhat more 
restrictive results were obtained by machine learning methods with 
ensembles of decision trees, with the Random Forest leaving only the 
immunity proxy variable above the importance threshold and Gradient 
Boosting attributing some significance also to the mobility transit vari-
able, Fig. 5. Interestingly, none of the methods assigned importance to 
the full vaccination. 

These results should be interpreted with care. The much stronger 
significance assigned to the immunity proxy than to the booster vaccines 
should not be, per se, interpreted as stronger Omicron protection pro-
vided by prior COVID-19 infection than by the booster vaccine. Whether 
this is the case or not simply cannot be addressed by our analysis. 
Namely, the effect of booster vaccination on the effective transmission 
rate of Omicron in the population crucially depends on the percentage of 
boosted individuals: even if the booster vaccine provides total immu-
nity, this would hardly affect the population-measured Ravg value if the 
booster coverage is negligible. 

However, our results indicate that, on a larger population level, the 
influence of past COVID-19 infections on Omicron epidemic evolution 
seems stronger than the achieved influence of the booster policies. This 
is likely to be mostly the effect of insufficient booster coverages. How-
ever, it could also be related to the relatively rapid waning of the 
vaccine-produced immunity (Lyngse et al., 2021b; Mahase, 2022). In 
any case, it is interesting that the importance of our immunity proxy is so 
consistently obtained. The most natural and direct way to interpret this 
result is that the prior COVID-19 exposure reduces the Omicron trans-
mission rate. Namely, even if this protection is not high on an individual 

basis, it might play an important role in slowing down the epidemic on 
the population level, if the prevalence of individuals with a prior 
infection is sufficient (note that Fig. 5 shows the highly nonlinear in-
fluence of immunity proxy on Ravg, suggesting the existence of a certain 
threshold value above which the effect of natural immunity becomes 
significant). Especially since there are indications that the immunity 
conferred by prior infection by any SARS-CoV-2 strain, albeit not strong, 
could be longer-lasting: a national database study in Qatar found that 
this protection against Omicron strain remains at the level of 56 percent 
(which is, however, substantially lower than against other variants) 
even after 10 months (median) from the initial infection (Altarawneh 
et al., 2022). Roughly, our result can be seen as consistent with these 
findings. 

Moreover, suppose there is a substantial influence of the natural 
immunity already on the virus transmission. In that case, its significance 
for the disease severity is likely much higher, and it might be responsible 
for prevalently mild forms of Omicron infections (Altarawneh et al., 
2022; Nealon and Cowling, 2022; Pilz et al., 2022). It is suggested that 
T-cells (which last longer and are less strain-specific) developed in the 
initial infection can prevent severe forms of the disease, despite being 
unable to stop virus transmission or symptomatic infection (Ledford, 
2022). In turn, this might have ramifications for populations that have, 
so far, experienced low COVID-19 exposures, such as China, due to its 
“zero Covid” policy (and could be related to the current outburst in 
Shanghai and its severity) (Burki, 2022; Taylor, 2022). 

Of course, the above interpretations and discussion hinge on our 
assumption that cumulative COVID-19 mortality can be used as the 
immunity proxy. While the number of deaths is much less affected by 
insufficient testing policies than the number of confirmed cases (e.g., 
asymptomatic or mild COVID-19 cases will much more easily remain 
undetected than a virus fatality), it is also true that the number of 
COVID-19-induced deaths is not simply a function of the number of 
COVID-19 cases alone. The case-fatality ratio is influenced by the quality 
of medical care, while the COVID-19 deaths can also be misattributed to 
other causes, often still due to low testing capabilities or inadequate 
policies (alternatively, we could have considered total cumulative 
excess of deaths, but neither this number was available for a large 
number of countries nor all excess deaths in a region can be directly 
attributed to SARS-CoV-2 infections). 

Nevertheless, we believe our assumption is still fairly reasonable, 
especially in the absence of any more precise measure. Namely, two 
main effects that can influence the relation between COVID-19 mortality 
and natural immunity tend to cancel each other: in highly developed 
countries, advanced medical care leads to lower COVID-19 mortality (i. 
e., case fatality ratio), but, on the other hand, better reporting in these 
countries results in fewer deaths being misattributed to other causes (e. 
g., due to stricter medical protocols and larger availability of testing 
kits). Conversely, in underdeveloped areas, weaker medical care leads to 
more COVID-19 casualties, but, at the same time, COVID-19 deaths are 
more often under-reported (e.g., due to lower testing rates). Our recent 
quantitative analysis (Markovic et al., 2022) shows that these two effects 
are either small or approximately cancel each other, rendering the 
number of COVID-19-induced deaths a reasonably good measure for the 
total cumulative number of infected individuals (i.e., of the natural 
immunity). 

Alternatively, the obtained importance of the immunity proxy could, 
in principle, be also a failure of the used methods to identify our im-
munity proxy as a confounder, ascribing it instead importance due to its 
strong correlation to other factors, such as population age, booster 
vaccines or social measures (represented by mobility variables). These 
correlations are not surprising from a psychological perspective since 
more severe initial waves of COVID-19 could influence the population 
(especially the older population) to better practice social distancing and 
opt for booster vaccines in greater numbers. 

Independently of the interpretation of the importance of immunity 
proxy, we note the lack of any relevance assigned to full vaccination. 
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This is especially evident when contrasted with the relevance of the 
booster doses we obtained, despite the much higher prevalence of full 
vaccination. This supports the findings of many studies (Andrews et al., 
2022; Gao et al., 2022; Gardner and Kilpatrick, 2021; Lyngse et al., 
2021b) that the effects of full vaccination on Omicron transmission are 
effectively negligible, possibly since the Omicron outburst happened 
substantially later than the full vaccination. Our results regarding the 
importance of mobility variables are straightforward to interpret: it is 
expected that the decrease in interpersonal contacts and activities 
potentially leading to virus transmission should consequently lead to 
lower Ravg values. Note that the measures of this activity, obtained by 
aggregating geolocation data from mobile phones, seem to reflect the 
actual situation and true level of adherence to social measures much 
better than the stringency index (Arroyo-Marioli et al., 2021), based on 
formally enacted policies. In our study, the latter neither significantly 
correlated with any variable (including Ravg values and mobility vari-
ables) nor was selected as an important predictor of the effective 
reproduction number. 

4.4. Ramifications for the strain origin 

The insights that Fig. 6 provides about the regional distribution of 
the identified risk factors directly relate to our prior conclusions about 
the relevance of the onset variable. The risk factors promoting high 
transmission were higher in Africa than on other continents. Inciden-
tally, the first Omicron outburst occurred in Africa (and while these risk 
factors were slightly milder at the very place of the outburst in southern 
Africa than in Africa on average, Fig. 1 reveals that Ravg values were 
nevertheless above-average in this region). A priori, this connection was 
not expected: a new strain need not appear in regions where its trans-
missibility is high. 

Of course, this might have been a coincidence. Alternatively, we note 
that such coincidence is in line with our discussion on the relation of the 
onset variable and the reproduction number: had the Omicron muta-
tions occurred basically anywhere in the world, there would still have 
been an increased probability for the first outburst to be observed pre-
cisely in Africa, simply since the virus effects on the population-scale 
would be there sooner detectable (due to optimal local conditions for 
high Re). In other words, our analysis further argues that Omicron’s true 
origin was not necessarily in Africa. While others have already 
contemplated this possibility (Ellyatt, 2021; Mallapaty, 2022), we now 
provided more concrete analytical and mathematical reasons for this 
doubt by identifying the risk factors leading to high Re (and showing that 
it was precisely Africa where the fastest virus spread could have been 
expected) and by pointing to the relation of the effective reproduction 
number and the time to the epidemic onset. 

However, we must also note that, while showing that it is premature 
to judge the origin of the virus mutation only based on the location of the 
first observed outburst, our results neither prove that the true origin of 
the mutations could not be in Africa (it might have been in South Africa, 
but – as generally overlooked – it might also be somewhere else). The 
location of the initial mutations does not play absolutely any role only if 
we assume that the strain is instantly spread around the globe – which is 
far from the truth. In reality, we have two relevant time scales: i) for the 
virus to arrive from its true origin to the considered region, and ii) for the 
epidemic of the new variant to sufficiently grow locally to be noticed 
and the new strain recognized. And what matters is the sum of these two 
time durations. It is hard to estimate the orders of magnitude of the two 
scales, but in the contemporary civilization heavily interconnected by 
international flights, the first scale might be even significantly shorter 
than the second – in which case the country of the first outburst would 
be primarily determined by the favorable conditions for the transmission 
of the new variant. 

From the practical side, an implication should be that the regions 
expected to exhibit high values of the effective reproductive number 
should be more closely monitored for new strains. Of course, an obvious 

problem is how to know in advance which regions are more favorable 
for transmitting a strain that is yet to appear? However, consideration of 
the Omicron risk factors that we identified reveals that, even generally, 
it might be possible to obtain certain hints sufficient to form an educated 
guess. Namely, it might be generally expected that prior infection will, at 
least to some extent, affect the transmissions of the new strains where 
the prevalence of past infections at the population level is high. Simi-
larly, it is reasonable to assume that subpopulations under higher 
inherent risk from the current variant (the older population in this case) 
will be more cautious and better exercising social measures (or even less 
mobile in general), thus being less prone to a fast spread of any new 
strain epidemic. This information should complement the real-world 
data on mobility trends – associating higher risks with regions where 
the mobility is higher (especially where it has increased during the 
pandemic, instead of being stifled by the measures). Clearly, the prev-
alence of the vaccinated population is also expected to have a significant 
impact. Only the booster vaccination turned out to be relevant in the 
Omicron case, but this is not entirely surprising due to generally quickly 
waning SARS-CoV-2 immunity (Gardner and Kilpatrick, 2021; Lauring 
et al., 2022). Overall, all these arguments jointly point to a higher risk of 
regions that were less affected in the earlier course of the pandemic. And 
while it was impossible to foresee that the new variant would have such 
capacity for immune escape as the Omicron exhibited, note that the 
potential relevance of this reasoning should be only stronger if the prior 
immunity/vaccination has more impact on the new strain. 

We remark that, in principle, it could also be argued that Omicron 
appeared in southern Africa precisely because higher transmissibility in 
the local environment promoted the evolutionary chances of the strain. 
This reasoning certainly plays a major role for viruses with compara-
tively low values of the reproductive number, for which unfavorable 
conditions can reduce the transmissibility below the threshold necessary 
for igniting a local epidemic and cause them to immediately disappear 
(unless they initially emerge on a fertile soil). For example, such appears 
to be the case with a very deadly and prolonged incubation of the Nipah 
virus in Southeastern Asia, which, despite its ability for human-to- 
human transmission (with bats as its natural reservoir), seems to have 
an insufficient effective reproduction number to cause the epidemic and 
consequently survive in the long term in the human population (Luby, 
2013). Interestingly, many more infections are being recorded in 
Bangladesh than in the rest of the region, which has been attributed to 
modulation of its transmissibility due to local conditions (Cappelle et al., 
2020; Hughes et al., 2009) - it is not inconceivable that with even-more 
favorable local conditions, Nipah transmissibility might reach the point 
of causing an outburst. However, for a strain of Omicron type, with a 
potential to cause epidemic outbursts anywhere on the planet, local 
variations in the Re value are unlikely to have such a strong selective 
impact (i.e., deciding if the virus will propagate through the population 
or not). Nonetheless, even that possibility is still congruent with the 
implication that regions with anticipated higher effective reproduction 
numbers should be more closely monitored and where the above 
guidelines for recognizing higher risk areas could be useful. 

5. Conclusion and outlook 

Our goal in this study was to investigate factors that influenced the 
transmission of the Omicron SARS-CoV-2 variant. Our data analysis 
revealed that a younger population, increased mobility, low natural 
immunity, and low booster prevalence are associated with higher 
average Omicron effective reproduction number values. In line with 
most other studies, we have not obtained that full vaccination played 
any significant role. However, our analysis indicates that - on the 
country level - natural immunity had more influence on the intensity of 
the Omicron outburst than the booster vaccination (probably due to 
much lower prevalences of the latter). 

Additionally, we obtained that the Omicron transmission depended 
quite significantly upon the time of the outburst: countries where the 
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infection peaked earlier also had a tendency toward higher Ravg values. 
We argue that this connection is primarily mathematical, reflecting a 
faster transition to the exponential phase of the epidemic and more rapid 
depletion of effectively susceptible individuals in regions with higher 
local transmissibility. In addition to the relation between Ravg and onset, 
this conclusion is supported by the significantly elevated risk factors for 
the African countries compared to the other continents. If so, we pointed 
out that this conclusion has profound general implications. Under the 
assumption of highly interconnected populations, it implies that the 
country where the first outburst of a new strain will be observed might 
be more strongly determined by the presence or the absence of favorable 
local conditions for the virus transmission than by the true whereabouts 
of the initial mutations (however, in most of the real-world scenarios, 
both factors are expected to play important roles). Furthermore, this 
means that regions expected to potentially exhibit higher Re values in 
future outbursts should be more on the alert for the appearance of new 
variants. Moreover, based on the insights into risk factors for Omicron 
transmission, we suggested that regardless of the genetic details of the 
new variant, high Re values may be expected in countries/regions that 
were previously spared from the severe impact of the pandemic. 
Therefore, in addition to other important considerations relevant to the 
emergence of novel viral agents/variants (Coccia, 2022; Domingo, 
2021a, 2021b), factors that modulate transmissibility in the initial 
outburst should also be carefully considered. 

Several limitations of the present study can be identified. In the 
absence of precise and reliable epidemiological data, we used the cu-
mulative number of reported COVID-19 deaths (per capita) as the proxy 
for the natural immunity since the two clearly must be highly correlated. 
While these data are less dependent on the testing policies than the 
COVID-19 case numbers, they still can depend on the uneven mortality 
and varying definitions of what constitutes a death attributable to 
COVID-19 infection (as we discussed in more detail above). And even if 
the cumulative number of deaths fairly represents true natural immu-
nity, we cannot dismiss the possibility that it primarily affected the 
course of the outburst not by immunological means but due to the 
psychological effect that the population severely struck by the previous 
pandemic waves will more strongly uphold social measures. Further-
more, many of our variables are highly mutually correlated, so even the 
most advanced data analysis techniques could, in principle, fail to 
identify the main drivers of the response variable correctly. And our 
suggestion that the first outburst can easily show up in a high Re value 
country (rather than near the true origin of the initial mutation) strongly 
depends on the ratio of the two time scales (i.e., of the characteristic 
time for the spread of a pathogen across countries and of the duration of 
the stochastic/pre-exponential phase of the epidemic) - but we could not 
reliably estimate this ratio, and it has to be yet investigated. 

Despite these limitations, we believe that these results can be a 
valuable contribution to the growing body of knowledge on Omicron 
and COVID-19 and potentially valuable for the possible future outbursts 
of new strains or in the context of an entirely new pandemic. 
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A B S T R A C T   

Understanding variations in the severity of infectious diseases is essential for planning proper mitigation stra-
tegies. Determinants of COVID-19 clinical severity are commonly assessed by transverse or longitudinal studies 
of the fatality counts. However, the fatality counts depend both on disease clinical severity and transmissibility, 
as more infected also lead to more deaths. Instead, we use epidemiological modeling to propose a disease severity 
measure that accounts for the underlying disease dynamics. The measure corresponds to the ratio of population- 
averaged mortality and recovery rates (m/r), is independent of the disease transmission dynamics (i.e., the basic 
reproduction number), and has a direct mechanistic interpretation. We use this measure to assess demographic, 
medical, meteorological, and environmental factors associated with the disease severity. For this, we employ an 
ecological regression study design and analyze different US states during the first disease outbreak. Principal 
Component Analysis, followed by univariate, and multivariate analyses based on machine learning techniques, is 
used for selecting important predictors. The usefulness of the introduced severity measure and the validity of the 
approach are confirmed by the fact that, without using prior knowledge from clinical studies, we recover the 
main significant predictors known to influence disease severity, in particular age, chronic diseases, and racial 
factors. Additionally, we identify long-term pollution exposure and population density as not widely recognized 
(though for the pollution previously hypothesized) significant predictors. The proposed measure is applicable for 
inferring severity determinants not only of COVID-19 but also of other infectious diseases, and the obtained 
results may aid a better understanding of the present and future epidemics. Our holistic, systematic investigation 
of disease severity at the human-environment intersection by epidemiological dynamical modeling and machine 
learning ecological regressions is aligned with the One Health approach. The obtained results emphasize a 
syndemic nature of COVID-19 risks.   

1. Introduction 

COVID-19 has brought large changes to people’s lives, including 
significant impacts on health and the economy. At the population level, 
the effects of the disease can be characterized through the disease 
transmissibility and clinical severity. Transmissibility relates to the 
number of infected people, which in epidemiological models (see e.g. 
[1]) is quantified by the reproduction number R(t) (corresponding to an 
average number of people infected by an individual during its infectious 
period). Clinical severity corresponds to the medical complications 
experienced by infected individuals, potentially also including death. In 

the epidemic models, two population average rates relate with the dis-
ease severity (see e.g. [2]): i) Mortality rate (m), corresponding to the 
probability per day for the detected case to result in death. ii) Recovery 
rate (r), corresponding to the inverse time needed for a detected case to 
recover. 

This study aims to quantify the generalized severity of the COVID-19 
disease in a given population described with a set of demographic and 
environmental factors by proposing an easy-to-evaluate but plausible 
measure. Applying that measure to diverse countries, together with 
carefully designed multivariate regression analysis, allows identifying 
the severity predictors among the population-level factors. Knowing the 
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particular causes of a potentially higher fatality of the disease in a 
population can help plan efficient strategies for disease prevention, 
control, and treatment, specifically targeting the health vulnerabilities 
of the society. 

COVID-19 transmissibility and severity are often assessed through 
the numbers of confirmed cases and fatalities, respectively [3–8]. 
Regarding severity, a major complication is that the fatalities are 
correlated with the number of infected, as more infections lead to more 
fatalities. Additional complications are related to nonlinearities and 
delays that inherently characterize the disease dynamics [9]. For 
example, the time from infection to death can be long and highly vari-
able, while the number of fatalities in different regions (at a given time) 
may correspond to different points of the infected curve. Thus, equal- 
time comparisons of mortality numbers (or rates) would be inade-
quate. For these reasons, somewhat modified variables, such as delay- 
adjusted case fatality rate (aCFR), are sometimes used [10–12], but 
their mechanistic interpretation is unclear [13]. Alternatively, we pro-
pose a novel quantity for the disease severity measure. This quantity has 
a clear mechanistic interpretation, can be derived directly from 
epidemic modeling and inferred from publically available data. Specif-
ically, we argue that the ratio of mortality and recovery rates (m/r) is a 
highly plausible population-level measure of disease severity: higher 
mortality and lower recovery rates indicate a more severe disease 
leading to a larger m/r. We will also show (both theoretically and from 
empirical data) that this measure is a priori unrelated to R(t), which is a 
result independent from the specific assumed transmission mechanism. 

To assess how reasonable is the proposed measure, it is desirable to 
use it to infer significant predictors (and their importance) of COVID-19 
severity. However, this entails certain methodological challenges [14]. 
Specifically, significant predictors have to be selected among a large 
number of potentially relevant variables. Moreover, these variables may 
be highly correlated [15,16], and mutual interactions (and nonlinear 
relations) may be relevant. To address this, we apply a novel approach 
that combines Principal Component Analysis (PCA) and machine 
learning regression methods [17]. 

2. Methods 

There are many compartmental models used in epidemiology, ob-
tained as extensions of the basic SIR or SEIR models [2] – a number of 
them recently developed in the context of COVID-19, e.g. to account for 
contact tracing and hospitalization strategies [18], media effects [19], 
unreported cases [1,20], infected but asymptomatic individuals [21], 
uninfected but quarantined population [22], seasonality effects [23], 

etc. To extract the severity variable m/r directly from dynamical 
compartmental models, we used our SPEIRD modification [24] of the 
SEIR model, schematically represented in Fig. 1. Note that m/r deriva-
tion is independent of the transmission mechanism and (by construc-
tion) from R(t). Consequently, the left rectangle (from which R(t) and its 
special case at the early stages of the epidemic, i.e., basic reproduction 
number (R0), is determined) is presented only for clarity and coherence. 
The relevant part of the model represents the transition of the active 
cases (A) to healed (H) at recovery rate r, or to fatalities (F) at mortality 
rate m. Note that the cumulative (total) number of detected cases (D) 
corresponds to the sum of A, H, and F. 

The system of differential equations, which mathematically repre-
sents the model in Fig. 1 is given in [24]. From eqs. (5–6) in [24], we 
obtain: 

dH
dt

= rA;
dF
dt

= mA⇒
dF
dt

=
m
r

dH
dt

(1) 

We integrate the right side of Eq. (1) from the epidemics start (t = 0) 
to the end (t = ∞): 

F(∞) =
m
r

H(∞) (2) 

Since D(t) = A(t) + F(t) + H(t), and since there are no more active 
cases at t = ∞, while F(∞) and H(∞) reach constant values (see Fig. 2A), 
we obtain: 

D(∞) = F(∞) + H(∞) (3) 

Combining Eqs. (2) and (3) gives: 

m
r
=

CFR(∞)

1 − CFR(∞)
;CFR =

F(∞)

D(∞)
(4)  

where CFR(∞) is the case fatality rate at the end of the epidemic (the 
“long COVID-19” cases, being detected but not dead, contribute to H(∞) 
in Eq. (3)). As the COVID-19 pandemic is still ongoing, we use the end of 
the first peak, where the number of active cases can be approximately 
considered as zero. 

For consistency and easier direct comparison with the COVID-19 
transmissibility analysis, data collection, data processing, and machine 
learning techniques are similar to the one presented in [25]. For 
completeness, full information is provided in the Supplementary 
Methods, which also includes definitions for all variables and principal 
components (PCs) used in the analysis. Supplementary Methods also 
provide a complete dynamical model and derivations for both m/r and 
R0. The Supplementary Table contains all input data. 

Fig. 1. Deriving the severity measure m/r from the epidemics compartmental model. SPEIRD model is schematically shown. Transitions between the compartments 
are denoted by solid arrows, with the transition rates indicated above arrows. The dashed arrow from I to S indicates the interaction of I and S (infections) leading to 
the transition to E. The dashed arrow from P to S indicates the potential (reverse) transition from P to S due to the easing of measures. The dashed rectangles indicate 
parts of the model corresponding to the disease transmission (the left rectangle) and the disease outcome for the detected cases (the right rectangle). The single 
arrows indicate parts of the model from which the reproduction number R(t) and the severity measure (m/r) are, respectively, inferred. The total number of detected 
cases (D) corresponds to the sum of A, H, and F and is denoted by a double arrow. Compartments are S – susceptible, P –protected, E – exposed, I –infected, R – 
recovered, A – active, H – healed, F – fatalities, D – total number of detected cases. r and m represent recovery and mortality rates of active (detected) cases. 
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3. Results 

Fig. 2A illustrates how m/r values are inferred from data. The cu-
mulative number of detected cases and fatalities during the first peak of 
the epidemic is presented for one of the USA states (Connecticut). m/r is 
inferred once both classes of the case counts reach saturation, leading to 
constant m/r (inset in the figure). In Fig. 2B a very high positive corre-
lation (R = 0.97) is obtained between the cumulative number of fatal-
ities and detected cases observed at fixed time cross-sections, 
quantitatively confirming the intuitive expectation that a higher number 
of infected is strongly related to higher fatality counts. This shows that 
fatality counts are strongly related to COVID-19 transmissibility, despite 
being often used as a measure of the disease severity [3–8]. On the other 
hand, the moderate correlation between m/r and R0 (Fig. 2C) is 
consistent with the a priori independence of these two variables. This 
correlation reflects a genuine similarity in COVID-19 transmissibility 
and severity determinants (e.g., air pollution or weak immunity can be 
associated with both increased transmissibility [25] and severity of the 
disease [26]). 

Univariate analysis of m/r relation to the variables used in the study 
is presented in Fig. 3. Statistically significant correlations (P < 0.05) of 
m/r with several variables/PCs are shown in Fig. 3A and scatterplots 
(Fig. 3B-E). The highest (positive) correlation was observed for NO PC1, 
Disease PC4, and Density PC1, while the percentage of the youth pop-
ulation showed the highest negative correlation with m/r. Several other 
predictors, specifically, Density PC2, Disease PC2, SO2, and NO Insur-
ance PC1, Black and PM2.5 also exhibit statistically significant correla-
tions with m/r. As expected, chronic disease, pollution, population- 
density-related variables promote COVID-19 severity (positive correla-
tions), as does the percentage of Afro-Americans (Black). Percentage of 
population under 18 (Youth) decreases the severity (negative correla-
tion), also as expected. Sign of the correlation with No Insurance PC1 is 
opposite than expected, as people with health insurance should get 
better medical treatment (further analyzed below). 

Fig. 4A-D provide interpretation of the relevant PCs through their 
correlations with the variables entering PCA. Density PC1 is comprised 
of all three parameters from the population density group (Fig. 4A), 
presenting a general measure of population density, while Density PC2 is 
significantly correlated only with population density (Fig. 4B). Disease 
PC2 and PC4 show, respectively, the highest positive correlation with 
the prevalence of cancer and cardiovascular diseases. Fig. 4E shows a 
high correlation of No Insurance PC1 with Youth and Density PC1. Signs 
of these correlations, and the effect of these two variables on m/r, 
indicate that the unintuitive sign of No Insurance PC1 correlation with 
m/r (noted above) is an artifact of its high correlations with Youth and 
Density PC1. 

We next performed multivariate analyses, where the effect of each 
variable on m/r is controlled by the presence of all other variables. We 
used Lasso and Elastic net methods [17] that both perform feature se-
lection by shrinking the coefficients of variables that do not affect m/r to 
zero, followed by, so-called, relaxed Lasso and Elastic net procedures (as 
described in Supplementary Methods). 

Both methods robustly show similar results (Fig. 5A-B) and predic-
tion accuracy (MSE indicated in figures). Disease PC4 appears in re-
gressions as the most important predictor, followed by NO PC1 and 
Disease PC2. Other selected predictors are Density PC1 and PC2, No 
Insurance PC1, PM2.5, and Youth. These results agree with pairwise 
correlations, except for SO2 and Black, which appeared significant in 
pairwise correlation but were not selected by either linear regression- 
based method. 

We next apply Gradient Boost and Random Forest [17] (see Sup-
plementary Methods), which are non-parametric machine learning 
methods, i.e., account for potentially highly non-linear relations and 
interactions between the predictors. For each of these methods, the 
predictor importance is presented in Fig. 5C-D, where the dashed lines 
indicate a standard threshold for distinguishing important predictors. 
Largely consistent results are obtained by both methods, where the 
predictors with the highest importance are Disease PC4, NO PC1, Dis-
ease PC2, No Insurance PC1, Black, and Youth. The only difference is in 
Density PC1, which appears as important in Random Forest but not in 
Gradient Boost. Results of Gradient Boost and Random Forest are also 
consistent with those of Lasso and Elastic Net, with an exception in Black 
(important in non-linear, but not linear, methods) and PM2.5 (vice 
versa). The effect of Black on m/r may therefore be nonlinear and/or 
based on interactions with other predictors (further discussed below). 

To test our assumption that No Insurance PC1 appears in regressions 
due to its high correlation to other m/r predictors (mainly Youth and 
Density PC1), we next repeated the analysis, this time excluding No 
Insurance PC1. The results presented in Supplementary Fig. S1 show 
that removing No Insurance PC1, besides leading to an (expected) in-
crease of importance of Youth and Density PC1 (which are highly 
correlated with No Insurance PC1), does not significantly alter previ-
ously obtained results – confirming our assumption. 

Finally, in Fig. 6, we quantitatively estimate the influence of the five 
most important predictors determined above. For each of 51 states, we 
fix the values of all other predictors while changing the analyzed pre-
dictor’s value within the range observed in all other states. The resulting 
distribution of the relative changes in m/r (δ(m/r)) due to the variation 
of Chronic disease is shown in Fig. 6A, where each data point in the 
distribution corresponds to a single USA state. We see that changing 
Chronic disease values in a realistic range leads to significant variations 
of m/r, with a median of ~30% and going up to 40%. To increase 

Fig. 2. Inferring m/r from data. A) Cumulative detected (D) and fatality (F) counts in Connecticut. m/r is inferred from the time period (enlarged in the inset) 
corresponding to saturation (end of the first peak). B) and C) Correlation plots of F vs. D and m/r vs R0 with the Pearson correlation coefficients shown. 
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robustness, the predictions are made by the consensus of all relevant 
models. For the remaining four predictors, the obtained median and 
maximal relative changes are shown in Fig. 6B. The obtained results 
confirm the importance of Chronic disease, Youth, Black, and Pollution, 
and, to a smaller extent, Population density. 

4. Discussion 

While we have earlier studied the parameters that might affect R0 
[25,27], the present goal was to investigate which demographic and 
environmental variables may influence the average disease severity as 
manifested in a population. The first step was to propose the response 
variable, which has to be causally independent of R0 [25,27], to allow 
understanding the effects of clinical severity alone. We showed that this 

is indeed satisfied by our choice (m/r). Additionally, this work allowed 
us to mechanistically interpret the standard (simple) measure of clinical 
severity (CFR), i.e., to relate its saturation value with the rate parame-
ters in the epidemiological dynamical model. The relation is, however, 
non-linear (sigmoidal), which further underscores the non-triviality of 
the obtained result. 

The proposed measure is practical to implement on a large scale (i.e., 
for diverse regions or countries, as we here demonstrated for 51 USA 
states), as only publicly available data are required, and calculation 
corresponds to a simple (though nonlinear) relation. Estimating the 
saturation (end of the peak) is straightforward in most cases, through 
both case counts and m/r reaching a saturation (nearly constant) value. 
We set the following aims for the selected significant predictors of m/r: i) 
test if we can recover clinically observed dependencies, ii) uncover 

Fig. 3. Univariate correlation analysis. (A) Values of Pearson’s correlations for the variables significantly correlated (P < 0.05) with m/r. Correlation plots of m/r 
with (B) Youth (percent of the population under 18), (C) density PC1, (D) disease PC4, (E) NO PC1. 
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Fig. 4. Interpretation of the relevant PCs. Correlation of the relevant principal components with the independent variables is shown, where the height of bars 
corresponds to the value of Pearson’s correlation coefficients. A) and B) Correlation of Density PC1 and Density PC2 with three population density variables. C) and 
D) Correlation of Disease PC2 and Disease PC4 with the variables from the chronic disease group. (E) Correlations of No Insurance PC1 with the variables from 
Fig. 3A. The abbreviations correspond to PD – population density, BUAPC – Built-Up Area Per Capita, UP – Urban Population, OB – obesity, CVDD – cardiovascular 
disease deaths, HT – hypertension, HC – high cholesterol, SM – smoking, CVD – cardiovascular disease, DI – diabetes, CA – cancer, CKD – chronic kidney disease, 
COPD – chronic obstructive pulmonary disease, MCC – multiple chronic conditions, PI – physical inactivity. 
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additional risk factors for COVID-19 clinical severity, suitable to extract 
from ecological study design [28–30], iii) compare with significant 
predictors of COVID-19 transmissibility (R0) that we previously ob-
tained [25,27]. We here indeed obtained different predictors for m/r 
compared to R0 [25,27]. There are also some similarities consistent with 
inherent connections in COVID-19 transmissibility and severity drivers, 
e.g., the role of pollution, unhealthy living conditions, and indoor 
population density [25]. We further discuss i) and ii). 

We obtain that both the prevalence of chronic diseases and Youth 
significantly influence m/r. This is hardly surprising - though quite a 
non-trivial result - as we started from a large group of initial variables. 
The influence of Disease PC4, dominantly reflecting the prevalence of 
cardiovascular diseases, is well documented by clinical studies [31,32] 
together with some other ecological studies [11,15]. Other chronic 
conditions that are known COVID-19 comorbidities (i.e., hypertension, 
obesity, and diabetes) are significant risk factors for cardiovascular 
diseases [33], and it is not surprising that cardiovascular diseases 
dominate over other chronic conditions in our results. Disease PC2, 
dominantly reflecting the prevalence of cancer (though also related to 
cardiovascular diseases), agrees with CDC warning that people with a 
history of cancer may be at increased risk of getting severely ill from 
COVID-19 [34]. Regarding Youth, it is established that younger in-
dividuals are, on average, less severely affected by COVID-19, and that 
the disease severity increases with age [3,35,36]. 

We found that chronic pollution exposure, NOx levels in particular, 

significantly promote COVID-19 severity. While difficult to assess 
through clinical studies, it has been suggested that pollution is associ-
ated with the severity of COVID-19 conditions through similar pathways 
by which it affects respiratory and cardiovascular mortality [37]. In 
particular, NOx may reduce lung activity and increase infection in the 
airway [38]. Similarly, the effect of population density (which here 
significantly affects m/r) is hardly suited to detect through clinical 
studies, while some ecological regression studies also noticed this 
dependence [39]. An explanation might be that while medical facilities 
are, in general, more abundant in overcrowded areas [40], this effect 
becomes overshadowed by the highly increased rate of the COVID-19 
spread in these areas. Therefore, population density probably acts as a 
proxy for smaller healthcare capacity per infected (as the infections 
increase with the population density, particularly in indoor areas). 
Additionally, it was also proposed that higher viral inoculum may lead 
to more severe COVID-19 symptoms [41,42], where overcrowded con-
ditions might lead to higher initial viral doses. 

The appearance of the variable Black among the important pre-
dictors (Fig. 5C-D) suggests that Afro-Americans are, on average, at 
higher risk of developing more severe COVID-19. While clinical evi-
dence and several ecological meta-analyses [40,43] seem to confirm 
this, the underlying reasons are still a matter of debate (see e.g. [44]). 
Interestingly, this predictor appears only in non-parametric models, 
where interactions with other predictors are (implicitly) included. A 
posteriori, this result may not be surprising as it has been argued that 

Fig. 5. Multivariate (machine learning) analysis. Values of regression coefficients in relaxed A) Lasso and B) Elastic Net regressions. Only the variables whose 
coefficients are not shrunk to zero by the regressions are shown. The height of bars corresponds to the value of coefficients. Variable importance in C) Gradient 
Boosting and D) Random Forest regressions, where the height of bars corresponds to estimated importance. Testing set MSE values with the standard errors are shown 
for each model, corresponding to 5-fold cross-validations with 40 repartitions. Coefficients of determination on the entire dataset (R2) are also shown for each model. 
Variable names are indicated on the horizontal axis. 
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higher clinical severity of COVID-19 for Black may be tightly related to 
other significant factors of COVID-19 severity (larger prevalence of 
chronic diseases, more crowded conditions, higher air pollution). 

Our broad estimates of the magnitude of the effects on m/r are also 
consistent with all four groups of factors (disease, youth/age, pollution, 
race) being significant drivers of COVID-19 severity, where a somewhat 
smaller magnitude was obtained for the fifth group (population density). 
The immediate implications are that prevention of chronic diseases, 
reduction of pollution, and improving living conditions can indirectly 
also alleviate the harms of the pandemics. 

4.1. Limitations 

To infer the m/r value, our method requires the existence of a well- 
defined end of an epidemic wave. While all US states met this criterion in 
the first COVID-19 wave, in general, this may show up as a limitation. 

Some of the studied predictors exhibited limited variability across US 
states. E.g., this must be considered when interpreting the absence of 
meteorological variables from the set of significant predictors (despite 
their significant association with R0 [18,37]) and the presence of air 
pollution (occasionally hypothesized to contribute to COVID-19 severity 
[45]). 

5. Conclusion 

We employed a cross-disciplinary (One Health) approach [46–49], 
combining epidemiological modeling with advanced statistical (ma-
chine) learning approaches, to explore the relationship of environmental 
factors to COVID-19 clinical severity. From a large number of variables, 
we achieved a robust selection of a small number of significant factors, 
including those that are clinically known as determinants of COVID-19 
severity. Our findings (performed in an unbiased manner directly from 
the data) are thus consistent with previous clinical studies – which may 
be interpreted as a kind of experimental validation of our method. 
Additionally, our results underscore a syndemic nature of COVID-19 
risks [50] through a selection of variables related to pollution, popula-
tion density, and racial factors (intertwined with the effects of other 
factors). These results might have important implications for both longer 
and shorter-term efforts to alleviate the effects of this and (likely) future 

epidemics, in terms of longer-term policies to reduce these risks and 
shorter-term efforts to accordingly relocate medical resources. Our 
proposed measure (independent of disease transmissibility) originates 
from general considerations that are not limited to COVID-19. Thus, it 
may also be utilized in potential future outbreaks of infectious diseases, 
possibly also combined with other more traditional measures [9]. 
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A B S T R A C T   

Many studies have proposed a relationship between COVID-19 transmissibility and ambient pollution levels. 
However, a major limitation in establishing such associations is to adequately account for complex disease dy-
namics, influenced by e.g. significant differences in control measures and testing policies. Another difficulty is 
appropriately controlling the effects of other potentially important factors, due to both their mutual correlations 
and a limited dataset. To overcome these difficulties, we will here use the basic reproduction number (R0) that 
we estimate for USA states using non-linear dynamics methods. To account for a large number of predictors 
(many of which are mutually strongly correlated), combined with a limited dataset, we employ machine-learning 
methods. Specifically, to reduce dimensionality without complicating the variable interpretation, we employ 
Principal Component Analysis on subsets of mutually related (and correlated) predictors. Methods that allow 
feature (predictor) selection, and ranking their importance, are then used, including both linear regressions with 
regularization and feature selection (Lasso and Elastic Net) and non-parametric methods based on ensembles of 
weak-learners (Random Forest and Gradient Boost). Through these substantially different approaches, we 
robustly obtain that PM2.5 is a major predictor of R0 in USA states, with corrections from factors such as other 
pollutants, prosperity measures, population density, chronic disease levels, and possibly racial composition. As a 
rough magnitude estimate, we obtain that a relative change in R0, with variations in pollution levels observed in 
the USA, is typically ~30%, which further underscores the importance of pollution in COVID-19 transmissibility.   

1. Introduction 

In the current era of globalization, the appearance of the new SARS- 
CoV-2 virus in 2019 has harshly reminded humanity of how easily an 
epidemic can also become a global issue. While essentially the entire 
world, already for more than a year, suffers from the COVID-19 disease, 
not all areas have been hit equally. Hence, scientists worldwide are 
struggling to find patterns in observable variations in the epidemic 
progression speed and/or its severity, and the present paper is a part of 
this international and interdisciplinary effort (Bontempi et al., 2020). 
More specifically, we aim to understand the possible effects of air 
pollution on the transmission of COVID-19. 

Many previous studies have already provided arguments for the 
importance of pollution (primarily PM2.5 and, to a lesser degree, PM10 
and NO2) in COVID-19 transmissibility and suggested mechanisms that 

might explain this connection. It was argued that droplets with virus 
particles may bind to Particulate Matter (PM), which may promote the 
diffusion of virus droplets in the air (Chen et al., 2010; Comunian et al., 
2020; Contini and Costabile, 2020). Furthermore, once the virus droplet 
bound to PM reaches a susceptible individual, it can penetrate deeper in 
alveolar and tracheobronchial regions – especially in the case of small 
(PM2.5) pollution particles (Copat et al., 2020; Qu et al., 2020). Besides 
these direct mechanical effects on transmission, pollution has a general 
effect on weakening the immune system making the organism more 
susceptible to infection (Domingo and Rovira, 2020; Paital and Agrawal, 
2020; Qu et al., 2020). In addition, it promotes overexpression of ACE-2 
receptors, which allows SARS-CoV-2 binding and entry into cells 
(Comunian et al., 2020; Paital and Agrawal, 2020; Sagawa et al., 2021). 

While these arguments are compelling, and several studies pointed to 
correlations between pollutant levels and increased severity of COVID- 
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19 progression (De Angelis et al., 2021; Kolluru et al., 2021; Lorenzo 
et al., 2021; Tello-Leal and Macías-Hernández, 2020; Yao et al., 2021; 
Zhu et al., 2020), there are also prominent methodological difficulties in 
establishing this link, as discussed in (Anand et al., 2021; Bontempi, 
2021; Bontempi et al., 2020; Villeneuve Paul J. and Goldberg Mark S., 
2020). Specifically, comparing case counts (Adhikari and Yin, 2020; 
Suhaimi et al., 2020) in different geographical regions may be influ-
enced by significant differences in the epidemic onsets (Villeneuve Paul 
J. and Goldberg Mark S., 2020), applied control (e.g., social distancing) 
measures (Bontempi, 2021)), and testing methodologies (most signifi-
cantly the number of performed tests). Consequently, adequately con-
trolling for the infection dynamics, rather than relying on absolute case 
counts, is crucial. Secondly, due to a multitude of potential confounding 
factors, it is crucial to, jointly with pollution, consider possible in-
fluences of diverse sociodemographic, economic, medical, and meteo-
rological factors on transmission (Bontempi, 2020b; Bontempi et al., 
2020). Ideally, the scope of the study should be conceived to emphasize 
variability in pollution, while being relatively homogenous in these 
other factors. As another obstacle, the considered variables can be 
mutually highly correlated (Notari and Torrieri, 2021; Salom et al., 
2021). Such high correlations realistically present a problem for any 
statistical inference method, though modern machine-learning ap-
proaches can partially account for this difficulty (Gupta and Ghar-
ehgozli, 2020). Additionally, the relationship of input variables to R0 
might be (highly) non-linear, which can hardly be accounted for by 
linear regressions, but may be successfully addressed by e.g. ensembles 
of decision trees (Hastie et al., 2009). Finally, to obtain robust pre-
dictions that are not an artifact of the applied methodology and the 
underlying assumptions, it is crucial to perform analysis by several in-
dependent methods. 

In our approach, we aim to address these general limitations. First of 
all, the USA dataset seems to be optimal for this analysis: while, in ab-
solute figures, the pollution in the United States is not high, there is still 
sufficient variability in the pollution variables to extract reasonable 
conclusions, whereas heterogeneities in sociodemographic and weather 
parameters are not too large to overshadow the dependence on pollu-
tion. Next, as a measure of transmissibility, we use the basic reproduc-
tion number (R0). R0 is a measure of SARS-CoV-2 transmissibility in a 
completely susceptible (non-resistant) population and in the absence of 
social distancing (sometimes also referred to as R0,free (Magdalena 
Djordjevic et al., 2021b; Maier and Brockmann, 2020)), which is 
insensitive to differences in specific testing policies and control mea-
sures. We here apply our previously developed methodology (Salom 
et al., 2021), which is based on observation of different dynamical re-
gimes in COVID-19 infection counts during the disease outburst (Mag-
dalena Djordjevic et al., 2021a). Our model is then applied to one of 
these growth regimes (the exponential one), to estimate R0 for individ-
ual USA states. These R0 estimates, instead of the disease counts (or 
other similar measures), are then used as the dependent (response) 
variable in further analysis. As independent (input) variables, we 
assemble a large set of available sociodemographic, medical, and 
weather variables. Importantly, to assess the pollution levels in detail, 
we assemble the data for ten different pollutants, with the levels 
determined in the time windows relevant for the analyzed exponential 
growth regimes. We gather the weather parameters in the same 
dynamically relevant manner. This results in a large number of pre-
dictors, many of which we group in sets of similar and mutually often 
highly correlated variables. Additionally, the number of assembled 
variables exceeds the total sample size, so it is necessary to reduce the 
number of predictors to a smaller and less correlated set. We achieve this 
through data preprocessing (feature engineering), which includes vari-
able transformations, removing all outliers, and grouping mutually 
related and highly correlated variables into subsets (e.g., age-related, 
population prosperity measures, chronic diseases). Principal Compo-
nent Analysis (PCA) is then applied within these subsets, resulting in 
dimensionality reduction (reducing the number of predictors) and 

smaller overall correlations within this reduced predictor set. Finally, to 
go beyond establishing mere correlations between different varia-
bles/components with R0, we use four established machine learning 
approaches: Lasso, Elastic net, Random Forest, and Gradient Boost. Our 
goal is to: i) select important variables and rank their relative impor-
tance in explaining R0, ii) obtain an estimate of expected changes in R0 
based on observed variability in pollution levels. While the estimates we 
get in this way are only rough (due to the inability to assemble all 
relevant factors in determining R0), the obtained results nevertheless 
provide a quantitative assessment of the importance of pollution in 
SARS-CoV-2 transmissibility. 

2. Methods 

2.1. R0 extraction 

As the proxy for the COVID-19 transmissibility, we used the basic 
reproduction number (R0). Basic reproduction number is a measure of 
SARS-CoV-2 transmissibility in a fully susceptible population and in the 
absence of intervention measures (social distancing, quarantine). For 
extraction of R0, we used our previously published methodology, in 
particular analysis of widespread infection growth regimes (Magdalena 
Djordjevic et al., 2021a) and extraction of R0 from the exponential 
growth phase that we previously applied on a worldwide level (Salom 
et al., 2021). For the sake of completeness, we summarize this meth-
odology below. 

To describe the SARS-CoV-2 transmission in a population, we con-
structed an adapted version of an SEIR compartmental model (Maier and 
Brockmann, 2020; Maslov and Goldenfeld, 2020; Perkins and España, 
2020; Tian et al., 2020; Weitz et al., 2020), which takes into account all 
the relevant features of this process, while being simple enough to be 
used for R0 estimation in a wide range of populations (Magdalena 
Djordjevic et al., 2021a; Salom et al., 2021). In the early stages of epi-
demics and before social distancing measures are introduced, the flow 
between the model compartments leads to the changes of the compart-
ment member abundances S (susceptible), E (exposed), I (infected), R 
(recovered), and D (cumulative detected cases) which are described by 
the following system of ordinary differential equations: 

dS
dt

= −
βSI
N

(1.1.)  

dE
dt

=
βSI
N

− σE (1.2.)  

dI
dt

= σE − γI (1.3.)  

dR
dt

= γI (1.4.)  

dD
dt

= εδI (1.5.)  

where N is the population size. Parameters represent: β - the rate of virus 
transmission from an infected to the encountered susceptible individual, 
σ - the inverse of the average incubation period (~3 days), γ - the inverse 
of the average period of infectiousness, ε – the detection efficiency (as 
not every infected individual becomes detected), and δ - the detection 
rate. 

We here applied the model to the relatively brief, initial epidemics 
period when only a small fraction of the population is resistant, and 
before social distancing interventions take effect. Note that, even after 
introducing the measures, there is ~10 days delay in observing their 
effect in the confirmed case-counts curve, due to the incubation period 
and the time needed between the symptom onset and the infection 
detection/confirmation. During this period, the virus is spreading at a 
rate determined by its natural biological potential, modulated by the 
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characteristics of the given population and the environment. Therefore, 
the above parameter values of infection progression are considered 
constant in this period. The standard measure of the virus trans-
missibility in these conditions (not influenced by interventions or im-
munity) is the basic reproduction number, R0, defined as the average 
number of secondary infections caused by a primary infected individual 
in a fully susceptible population (S/N ≈ 1), and in the absence of social 
distancing measures (also sometimes denoted as R0,free) (Maier and 
Brockmann, 2020). At the start of an epidemic, R0 > 1 and the number of 
infected individuals grows exponentially. The model can then be line-
arized by invoking S/N ≈ 1, reducing the model to two linear differential 
Eqs. (1.2) and (1.3). Solving for the eigenvalues of this system, 

λ± =
− (γ+ σ) ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(γ − σ)2
+ 4βσ

√

2
,

(1.6.)  

provides the solution of the form I(t) = C1 ⋅eλ+t + C2 ⋅ eλ− t, which can be 
approximated by 

I(t) = I(0)⋅ eλ+ t (1.7.)  

where the term containing the negative eigenvalue, λ- can be neglected 
(see (Salom et al., 2021)). With R0 = β/γ (Keeling and Rohani, 2011; 
Martcheva, 2015), the equation for the basic reproduction number, 

R0 = 1 +
λ+⋅ (γ + σ) + λ2

+

γ*σ . (1.8.)  

can be obtained by expressing β from Eq. (1.6). 
To estimate the R0 values for 46 US states, we collect the detected 

case counts for each state from online resources (Worldometer, 2020). 
The solution D(t) = ε⋅δ⋅I(0)⋅(eλ+ t − 1)/λ+ of Eq. (1.5) using Eq. (1.7) 
models the dependence of the cumulative number of detected with time. 
Taking its logarithm 

log(D(t)) = + λ+⋅t, (1.9.)  

results in the equation of the straight line that can be fitted to the data on 
the semilogarithmic scale. Notably, the slope of that line is given by the 
positive eigenvalue of the system, λ+. Once that λ+ is determined by 
fitting, the value of R0 for a particular state can be calculated from Eq. 
(1.8). 

2.2. Pollution data collection 

Air quality information was obtained from the US environmental 
protection agency (EPA) Air Data service (US Environmental Protection 
Agency, 2020). We used aggregated daily data for pollutant gases (O3, 
NO2, SO2, CO), particulates (PM2.5 and PM10) and other available spe-
cies, such as VOCs (Volatile Organic Compounds), NOx, and HAPs 
(Hazardous Air Pollutants). For a given state, aggregation was done over 
all cities with available information. The populations of cities were 
obtained from the US Census Bureau (U.S. Census Bureau, 2020). All the 
variable values are averaged for each city over the identified time 
period, and the state average is calculated as the average of all included 
state cities weighted by the population. 

2.3. Weather data collection 

Weather parameters were downloaded in bulk using a custom Py-
thon script from the NASA POWER project service (NASA Langley 
Research Center, 2020). All the parameters were downloaded via the 
POWER API at the longitude and latitude coordinates matching the 
largest cities in each state that comprise above 10% of the state popu-
lation. Variables include temperature at 2 m and 10 m, measures of 
humidity and precipitation (wet bulb temperature, relative humidity, 
total precipitation), insolation indices, wind speed, and pressure. The 

maximum predicted UV index was downloaded from OpenUV (OpenUV, 
2020). Geographical coordinates of the cities and populations of cities 
and states were adapted from Wikidata (Wikipedia, 2021a, b). 

2.4. Socio-demographic data collection 

Demographic data were collected from several sources. The de-
mographic composition of the US population by gender, race, and per-
centage of the population under 18 and over 65 was taken from the 
Measure of America, a project of The Social Science Research Council 
website (Measure of America, 2018). Information about health insur-
ance, GDP, life expectancy at birth, infant and child mortality was also 
taken from the Measure of America website. Medical parameters such as 
hypertension, cholesterol, cardiovascular disease, diabetes, cancer, 
obesity, inactivity, and chronic kidney and obstructive pulmonary dis-
ease were taken from America’s Health Rankings website (America’s 
Health Ranking, 2021) hosting Centers for Disease Control and Pre-
vention (CDC) data (CDC, 2019). Percentages of the population that are 
actively smoking and consuming alcohol are taken from the same 
source. The percentage of the foreign population was taken from the 
Census Reporter website (U.S. Census Bureau, 2019). The subnational 
HDI was taken from the Global Data Lab website (2020) (Smits and 
Permanyer, 2019). Population density, urban population percentage, 
and median age were taken from the U.S. Census Bureau website (U.S. 
Census Bureau, Population Division, 2019). 

2.5. Data processing 

The initial analysis of the assembled data distributions and QQ plots 
revealed non-normal distributions in a majority of variables. To reduce 
the skewness of the data we applied a number of transforms with 
different strengths (square root, cubic root, or log), adjusted in sign to 
maintain the data ranking (Spearman correlation). Individual data 
values that remained more than three median absolute deviations from 
the new median were substituted by the said median value. 

The main purpose of these transformations, and outliers’ removal, 
was to account for more extreme variable values (such as heavy distri-
bution tails), which may significantly affect some of the analysis 
methods that we further use (in particular, correlation analysis, Lasso 
and Elastic net regressions). On the other hand, methods based on the 
ensembles of decision trees (e.g., Random Forest and Gradient Boost) are 
fairly robust to outliers and non-normal variable distributions and pro-
vide a consistency check of the obtained conclusions. 

The table with all applied transformations is provided below. Also, 
note that the entire dataset used in this analysis (variable values for all 
46 states) is provided in Supplement Table 1. In addition to the trans-
formations applied, the table below also links the variables to the 
dataset, by relating a variable abbreviation (used in Supplemental files) 
with its full name and units (see Table 1). 

2.6. Feature engineering and principal components analysis 

The total number of variables (74) is larger than the sample size (46 
states). While the regressions with feature selection (Lasso and Elastic 
net) can handle the number of variables that is significantly larger than 
the sample size (as long as the number of selected features is smaller 
than the sample size), this large number of variables (some highly 
correlated) is a major risk for overfitting, particularly for Random Forest 
and Gradient Boost methods. To reduce the number of variables, we first 
divided them into groups by conceptual similarity and expected corre-
lation, after which we performed Principal Component Analysis (PCA) 
on each group. This also partially reduced data correlation (Jolliffe, 
2002). Variables were grouped according to two criteria: i) those that 
represent similar quantities so that, after PCA, the interpretation of the 
obtained PC remains unambiguous; ii) the correlations between the 
variables in the same group are high, so that in this way, after PCA, the 
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overall correlations in the new predictor set are substantially reduced. 
Grouping of variables and their relation to PCA is provided in Table 2. 

Since different variables are expressed in different units and corre-
spond to diverse scales, each variable in the dataset was standardized 
(the mean subtracted and divided by the standard deviation) before 
PCA. For each dataset, we retained as many PCs (starting from the most 
dominant one) as needed to (cumulatively) explain >85% of the data 
variance. It was inspected that PCs reasonably follow a normal distri-
bution (as expected, based on the transformation of the original vari-
ables). Note that some of the initial variables did not satisfy our grouping 
criteria and thus do not appear in Table 2. They either have a distinct 
meaning from other variables (e.g., racial prevalence) or have a similar 
meaning, but do not exhibit a high correlation with the related variables 
(e.g., relative humidity RH2M, which does not correlate well with the 
other two humidity measures, QV2M and T2MDEW). These variables 
enter further analysis independently, i.e., together with PCs obtained 
after PCA on grouped variables. 

2.7. LASSO regression 

To complement the PCA feature selection, additional L1 regulariza-
tion was done with Lasso (Hastie et al., 2009; Tibshirani, 1996). All 
input variables were standardized. Hyperparameter λ (which controls 
the model complexity) was optimized through grid search on an 

Table 1 
List of variables (with units) and the applied transformations. Variable shortcuts 
(first column) correspond to Supplement Table 1.  

Data Name (units) Transformation f 
(x) 

T2M, T2MMAX, T2MMIN, T10M, 
T10MMAX, T10MMIN, TS, 
T2MWET 

Temperatures (◦C) None 

RH2M Relative humidity at 2 m (%) -log(max(x) - x) 
QV2M Specific humidity at 2 m (g/ 

kg) 
log(x) 

T2MDEW Dew Point (◦C) None 
PRECTOT Precipitation (mm/day) x1/3 

TQV Total Column Precipitable 
Water (cm) 

log(x) 

CLRSKY_SFC_SW_DWN Clear Sky Insolation Incident 
on a Horizontal Surface (MJ/ 
m2/day) 

-(max(x) - x)1/3 

ALLSKY_SFC_LW_DWN Downward Thermal Infrared 
(Longwave) Radiative Flux 
(MJ/m2/day) 

log(x) 

ALLSKY_SFC_SW_DWN All Sky Insolation Incident on 
a Horizontal Surface (MJ/ 
m2/day) 

log(x) 

OpenUVmax UV radiation index x1/3 

WS2M Wind speed at 2 m None 
WS10M Wind speed at 10 m None 
P Pressure x1/2 

Population over 65 (%) Population over 65 (%) None 
Life Expectancy Life Expectancy at Birth 

(years) 
-(max(x) - x)1/2 

Median age Median age (years) -(max(x) - x)1/2 

Youth population Population under 18 (%) log(x) 
Population density Population density (people/ 

km2) 
log(x) 

BUAPC Built Up Area Per Capita 
(km2/people) 

log(x) 

Urban Population Urban Population (%) -(max(x) - x)1/2 

HDI Human development index 
(0–1) Average of education, 
health and standard of living. 
(Mean years of schooling of 
adults aged 25+, Expected 
years of schooling of children 
aged 6 + Life expectancy at 
birth + GNIpc)/3 

-(max(x) - x)1/2 

GDPpc Gross domestic product per 
capita 

log(x) 

Infant mortality rate Infant Mortality Rate (per 
1000 live births) 

-log(x) 

Child mortality Child Mortality (age 1–4, per 
1000 population) 

-log(x) 

Alcohol consumption Adults alcohol consumption 
binge drinking (%) 

log(x) 

Foreign-born population Foreign-born population (%) log(x) 
Obesity Obesity age 20 and older (%) None 
CVD deaths Age 65+ Cardiovascular 

disease deaths per 100000 
people 

log(x) 

Hypertension Adults with Hypertension 
(%) 

log(x) 

High cholesterol Population with high 
cholesterol (%) 

None 

Smoking Population smoking (%) None 
Cardiovascular disease Population with 

cardiovascular disease (%) 
None 

Diabetes Population with diabetes (%) x1/3 

Cancer Population with cancer (%) None 
Chronic kidney disease Population with chronic 

kidney disease (%) 
x1/2 

Chronic obstructive pulmonary 
disease 

Population with chronic 
obstructive pulmonary 
disease (%) 

log(x) 

Multiple chronic conditions Population with multiple 
chronic conditions (%) 

None 

Physical inactivity Population physically 
inactive (%) 

x1/3  

Table 1 (continued ) 

Data Name (units) Transformation f 
(x) 

Male percent Fraction of male in the 
population (%) 

log(x) 

White percent Fraction of white in the 
population (%) 

-log(max(x) - x) 

Black percent Fraction of black in the 
population (%) 

x1/3 

Native percent Fraction of native in the 
population (%) 

log(x) 

Asian percent Fraction of Asian in the 
population (%) 

log(x) 

Latino percent Fraction of Latino in the 
population (%) 

log(x) 

No health insurance children No health insurance under 18 
(%) 

x1/2 

No health insurance adults No health insurance 18–64 
(%) 

None 

No health insurance all No health insurance all 
population (%) 

None 

No insurance black No health insurance black 
(%) 

None 

No insurance native No health insurance native 
(%) 

x1/3 

No insurance Asian No health insurance Asian 
(%) 

x1/2 

No insurance Latino No health insurance Latino 
(%) 

None 

No insurance white No health insurance white 
(%) 

None 

PM2.5 PM2.5 concentration (μg/m3) None 
PM10 PM10 concentration (μg/m3) x1/2 

CO CO concentration (ppm, 
10− 6) 

x1/2 

NO2 NO2 concentration (ppb, 
10− 9) 

None 

SO2 SO2 concentration (ppb) log(x - min(x)) 
O3 O3 concentration (ppm) None 
VOC Volatile organic compounds 

concentration (ppb Carbon) 
log(x) 

Lead Lead concentration (μg/m3) log(x) 
HAPs Hazardous air pollutants 

concentration (μg/m3) 
(x-min(x))1/2 

NONOxNOy Nitrous oxides concentration 
(ppb) 

x1/3 

R0 Estimated basic reproduction 
number 

log(x)  
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exponential scale from numerical zero (OLS regression) to the value 
yielding the intercept-only model. Mean Squared Error (MSE) on the 
cross-validation testing set (200 repeats, 80-20 split) was taken as the 
loss function, and we chose the λ1SE as the simplest model still compa-
rable to the optimal one (Krstajic et al., 2014). The final model was 
comprised of all the non-zero coefficients. 

2.8. Elastic net regression 

Elastic Net expands the Lasso regression with an L2 regularization 
and introduces a second hyperparameter α (Friedman et al., 2010; 
Hastie et al., 2009; Zou and Hastie, 2005). The same preprocessing was 
done for the input variables, after which the 2-dimensional grid-search 
with the same λ -scale as in Lasso, and the α linearly equidistant on 
the interval from 0 (Ridge regression) to 1 (Lasso regression) inclusive. 
Cross-validation was performed in the same way as for the Lasso 
regression, but each fold gave a distinct (α, λ) pair of hyperparameters. 
The final chosen value was the pair closest to the centroid of all the folds, 
and these hyperparameters were used to retrain the model on the whole 
dataset. Again, the final model was comprised of all the non-zero 
coefficients. 

2.9. Random forest and gradient boost 

To avoid overfitting, the variables were preselected to exhibit sig-
nificant correlations with R0 (with a liberal threshold of P < 0.1) by 
either Pearson, Kendall, or Spearman correlations. Cross-validation and 
hyperparameter selection for Gradient Boost (GBoost) and Random 
Forest (Breiman, 1996, 2001; Freund and Schapire, 1997; Friedman, 
2001; Hastie et al., 2009) was done equivalently as for Lasso and Elastic 
net. For Gradient Boost, maximal number of splits, minimal leaf size, and 
learning rate were chosen through grid search, with the respective 
values: {1, 2, 3, 4, 5, 8, 16}; {1, 2, 3, 4, 5, 8, 16, 18}; { 0.1, 0.25, 0.5, 
0.75, 1}. For Random Forest, the grid values for the maximal number of 
splits and minimal leaf size were, respectively: {6, 12, 18, 22, 24, 26 30, 
35}, {1, 2, …, 7}. In the ensemble, the number of trained decision trees 
was chosen to minimize Mean Square Error (MSE) on the testing set, for 
both methods. The obtained hyperparameters were used to retrain the 
models on the whole dataset, and predictor importance was estimated 

for both methods. 

2.10. Model metrics 

MSE for the testing data, averaged over all cross-validations, was 
used as a metric to compare the performance of different models. For 
easier interpretability, MSE values were scaled by those corresponding 
to the constant model (so that MSE of 1 corresponds to the constant 
model). To assess statistical significance with respect to the constant 
model, a t-test was applied to MSE values obtained through cross- 
validation. 

3. Results 

3.1. Extraction of R0 and feature engineering 

The log(D(t)) in the exponential growth regime for a subset of 
selected USA states is shown in Fig. 1. The linear dependence confirms 
that the progression of the epidemic in the early infection stage is almost 
perfectly exponential and is robustly observed for a wide range of USA 
states, while the same initial exponential growth was previously 
observed for a wide range of world countries (Notari and Torrieri, 2021; 
Salom et al., 2021). We exploited this exponential regime to infer R0 as 
described in Methods, which we further use as our independent 
(response) variable. 

Next, we transformed the variables so that their distribution became 
as close as possible to normal, and removed the outliers, followed by a 
grouping of the variables into subsets and performing PCA on these 
subsets, as detailed in Methods. The results of PCA are shown in Table 2, 
where each group of variables is related to their corresponding PCs in 
that table. For each variable group, we retained as many PCs as needed 
to explain more than 85% of the variability in the subset (standard 
threshold). To each of the PCs listed in Table 2, we assigned an intuitive 
name (e.g., PC1 prosperity, PC1 age) according to the set of variables 
from which they are formed. 

3.2. Feature extraction 

We started from the basic assessment of the variable importance in 
explaining R0, which are pairwise correlations. Note that these do not 
control for the presence of other potentially important variables but are 
a straightforward initial assessment of the relation with R0. In Fig. 2A, 
we show the Pearson correlation constant of the variables with R0, 
where predictors with statistically significant correlations (P < 0.05) are 
shown together with their correlation constants (represented by bars’ 
heights) and statistical significance levels (indicated by stars). Some-
what surprisingly, we found that the highest correlation was with PM2.5, 
with R~0.6 and P~10− 4. A large positive correlation between R0 and 
PM2.5 levels can also be observed from the scatter plot in Fig. 2B. 
Additionally, several other variables exhibit statistically significant 
correlations with R0, as indicated in Fig. 2A. Note, however, that some of 
these variables are also significantly correlated with PM2.5. Moreover, 
their correlation with R0 and PM2.5 is in the same direction (Fig. 2C). 
Consequently, their significant correlation with R0 may be, at least in 
part, due to their correlation with PM2.5. 

To partially address this, we performed an analysis that allows us to 
select the most important predictors from the set of correlated variables. 
Specifically, results of Lasso and Elastic net regressions are shown in 
Fig. 3A and B. Both of these methods provide both regularization and the 
ability to select significant predictors through shrinking other co-
efficients to zero. Moreover, we standardized all the variables before 
using them in regressions, so that the absolute values of the regression 
coefficients provide estimates of relative importance of the selected 
variables. For each of the two methods, we performed repeated cross- 
validations, together with optimizations of hyperparameters, so that 
methods have maximal predictive power (minimal MSE) on the training 

Table 2 
Grouping of variables and relation to PC.  

PC components Variables 

PC1 temperature T2M, T2MMAX, T2MMIN, T10M, T10MMAX, T10MMIN, TS 
PC1 humidity QV2M, T2MDEW 
PC1 precipitation PRECTOT, TQV 
PC1 wind WS2M, WS10M 
PC1 - PC2 

radiation 
CLRSKY_SFC_SW_DWN, ALLSKY_SFC_SW_DWN, 
ALLSKY_SFC_LW_DWN 

PC1 - PC2 
seasonality 

PC1 temperature, PC1 humidity, PC1 precipitation, PC1 
radiation, PC2 radiation, RH2M, OpenUVmax 

PC1 NO NO2, NONOxNOy 
PC1 - PC2 age Population over 65, Youth population, Median age 
PC1 - PC2 density 1/BUAPC, Urban population, Population density 
PC1 - PC4 

prosperity 
Life expectancy, Infant mortality, GDP, HDI, Child mortality, 
Alcohol consumption, Foreign-born population 

PC1 - PC4 disease Obesity (% age 20 and older), Age 65+ CVD deaths, Adults with 
hypertension (%), Population with high cholesterol (%), 
Population smoking (%), Population with cardiovascular 
disease (%), Population with diabetes%, Population with 
cancer (%), Population chronic kidney disease (%), Population 
chronic obstructive pulmonary disease (%), Population 
multiple chronic conditions (%), Population physical inactivity 
(%), 

PC1 - PC3 ins. No health insurance (% of_children_under_18), No health 
insurance (% of_adults_ages_18–64), No health insurance total 
population (%), No health insurance black (%), No health 
insurance native (%), No health insurance Asian (%), No health 
insurance Latino (%), No health insurance white (%),  
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set (see Methods for details). We obtained that the two methods are 
statistically highly significant compared to the constant model 
(P~10− 19 and 10− 23, for Lasso and Elastic net, respectively). The pre-
dictive power of these methods is, however, only moderate, as can be 
seen for the obtained MSE values (MSEs are scaled, so that MSE of 1 
corresponds to the constant model, which is not a large difference from 
0.79 to 0.76, obtained by Lasso and Elastic net, respectively). Note, 
however, that the main purpose of these models was in feature selection, 
while predictability was improved through models employed in the next 
subsection. 

From both Lasso and Elastic net, we again obtained that PM2.5 was 
the most important predictor, positively affecting COVID-19 trans-
missibility (so that higher PM2.5 leads to higher transmissibility). A 
similar trend was obtained for CO and PC1 NO (formed from NO2 and 
Nitrogen-oxides concentrations) – CO was also found to be significantly 
related with R0 through pairwise correlations. Additionally, the popu-
lation density (PC2 density) appears as an important predictor through 
both Lasso and Elastic net, though with smaller importance (regression 
coefficient), but consistently with pairwise correlations and with a 
tendency to increase transmissibility. Also, through all three approaches 
employed so far (pairwise correlations, Lasso, and Elastic net), we ob-
tained that the higher state prosperity (PC1 prosperity) negatively in-
fluences R0. Also, chronic diseases significantly influence (increase) R0 
as obtained by both pairwise correlations and Elastic net. Finally, PC2 
ins., which is related to the fraction of the population (in particular 
Latinos) with medical insurance, also negatively correlates with R0 

(through all three methods). Interpretation of these dependencies is 
further addressed in the Discussion section. 

3.3. Variable importance estimates 

Our next goal was to assess variable importance and achieve better 
model predictability through methods that are considered state-of-the- 
art in machine learning for these types of problems. We employed two 
methods based on ensembles of weak learners (decision trees), in 
particular Gradient Boost and Random Forest. They are substantially 
different from Lasso and Elastic net employed in the previous subsec-
tion, as they do not assume linear dependence of the response from input 
variables (so-called non-parametric models). Consequently, their 
employment provided an independent check for the importance of PM2.5 
in explaining R0. Our motivation was also to obtain better predictability 
of these models so that we can generate a quantitative estimate of 
pollution variation effects on R0. 

Two methods were implemented similarly to Lasso and Elastic net, i. 
e., model hyperparameters are optimized to achieve maximal predict-
ability through repeated cross-validations (see Method for details). As 
these models (i.e., decision trees in general) are prone to overfitting, we 
performed a simple variable selection. That is, only variables with P <
0.1 (according to either Pearson, Kendell, or Spearman correlations) 
were selected, resulting in 13 variables shown on the horizontal axes of 
Fig. 3C and D, which were then used in further analysis. We obtained a 
much better predictive power for both Gradient Boost and Random 

Fig. 1. The time dependence of the detected cases for the different US states during the initial period of the epidemic is shown on a log-linear scale. The linear fit of 
log(D) shows that the spread of COVID-19 is well approximated by exponential growth in this phase. Values on axes are chosen differently for each state to emphasize 
the exponential growth phase. For each state, the start and end dates, the extracted slope λ+, of the exponential regime, are given in Supplementary Table S1. Al – 
Alabama; AK – Arkansas; AR – Arizona; CA – California; CO – Colorado; FL – Florida; GA – Georgia; ID – Idaho; ME – Maine; MD – Maryland; MN – Montana; NE – 
Nebraska; NJ – New Jersey; NM – New Mexico; NY – New York; NC – North Carolina; OH – Ohio; OR – Oregon; PA – Pennsylvania; RI – Rhode Island; SD – South 
Dakota; TN – Tennessee; TX – Texas; VA – Virginia. 
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Forest models (compared to regressions in the previous subsection) with 
MSE of 0.44 and 0.5, respectively, where these differences compared to 
the constant model (MSE = 1) are statistically highly significant 
(P~10− 83 and 10− 84, respectively). 

Estimates of variable importance for both of these models are shown 
in Fig. 3C and D. In both figures, the most prominent feature is PM2.5, 
consistently with all other results obtained so far. Furthermore, PC1 
disease and PC1 NO appear with moderate importance in both methods, 
where GBoost also emphasizes the importance of PC2 ins., which is all 
generally consistent with the analysis presented in the previous sub-
section. With respect to the pollution, the only difference is that PM10 
appears as moderately important in GBoost, while not selected by other 
models. Also, CO was selected by Random Forest as moderately 
important (consistent with the previous analysis) but does not appear as 
such in GBoost. Finally, the racial factor (in particular, fraction of black 
population) was selected as important by Random Forest (and also 
appeared as significant through pairwise correlations) but does not 
appear as important in GBoost. A possible interpretation of these find-
ings is addressed in the Discussion section. 

3.4. Quantitative estimate of pollution influence on R0 

As we obtained a reasonable model accuracy through both GBoost 
and Random Forrest, we were able to estimate how pollution variations 
(observed through different USA states) affect R0. While we included a 
substantial number of variables (all that we managed to systematically 
assemble) in our analysis, these are of course not all the variables that 
can affect R0, so we only aimed to provide rough estimates. Still, such an 

estimate is useful, as it provides the magnitude by which reasonably 
realistic changes in the pollution levels can affect R0. For example, the 
new SARS-CoV-2 strain that was first detected in Great Britain (known as 
B.1.1.7, or more recently Alpha (Callaway, 2021)), which has, at the 
time of writing, become dominant in many other parts of the world, is 
estimated to lead to up to 1.9 increase in R0 – this value can e.g. be 
compared with our estimated change due to pollution variations. To 
generate predictions for each of the analyzed states, we kept all other 
parameters fixed while changing the pollution values so that the changes 
corresponded to the actual values observed in all 46 states. In this way, 
the relative change in R0, due to observed variations in pollution 
(ΔR0/R0), was estimated, where ΔR0 corresponded to the difference 
between maximal and minimal estimated R0 values. 

The obtained results for ΔR0/R0 for all analyzed states are shown as 
histograms in Fig. 4A (GBoost) and 4B (Random Forest). For GBoost, a 
somewhat larger ΔR0/R0, corresponding to the median of ~40% (and 
going up to ~70%), was obtained, while for Random Forrest, smaller 
values with a median of ~25% were estimated. This can e.g. be 
compared with ΔR0/R0 of up to 90% for the Alpha strain (Davies et al., 
2021) so that estimated changes due to pollution variation are smaller 
but still substantial. Finally, as the two histograms are somewhat 
different, in Fig. 4C we directly test the consistency of their ΔR0/R0 
predictions. It can be seen that they are well consistent, with reasonably 
high correlation (R = 0.73 and P~10− 8). Note that these two methods 
are independent and substantially different (though both based on en-
sembles of decision trees), so differences in their predictions are 
expected. 

Fig. 2. Pearson’s correlations for relevant variables. A) Variables significantly correlated (P < 0.05) with the basic reproduction number R0 are shown. The bars’ 
height indicates the value of Pearson’s correlation coefficient (R on the y axis). B) Scatter plot of R0 vs. PM2.5. The dashed line shows linear fit. C) Person’s cor-
relations of variables in A) with PM2.5. Variable names are indicated on the horizontal axis. Stars in bar plots represent the level of statistical significance, as indicated 
in the figure legend. 
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4. Discussion 

Figs. 2 and 3 reveal the main result of the paper: PM2.5 pollution is, 
throughout our analysis, consistently singled out as the main driver 
behind SARS-CoV-2 transmissibility in the US. This result was obtained 
through both pairwise correlations of variables with R0, and by the 
applied machine learning approaches. 

The association of the PM2.5 pollution with the rate of COVID-19 
spread per se is not a novel result (Gujral and Sinha, 2021; Gupta and 
Gharehgozli, 2020; Kolluru et al., 2021; Lorenzo et al., 2021; Maleki 
et al., 2021; Stieb et al., 2020). However, the existing studies had several 
methodological limitations (Anand et al., 2021; Bontempi, 2021; Bon-
tempi et al., 2020; Villeneuve Paul J. and Goldberg Mark S., 2020), 
outlined in the Introduction, that we here tried to address. Moreover, 
previous studies in the USA obtained non-consistent reports on pollution 
relevance, underlying the importance of more extensive modeling and 

statistical learning approaches that we employed here (Allen et al., 
2021; Gupta and Gharehgozli, 2020; Luo et al., 2021). 

First of all, by explicitly taking into account the infection dynamics, i. 
e., the model-based estimate of R0 as SARS-CoV-2 transmissibility 
measure (instead of, for example, considering case counts) we addressed 
a number of common shortcomings of studies with a similar goal: R0 
obtained in this way (as it depends only on the curve exponent and is 
thus scaling invariant) is prone neither to underreporting bias nor to 
errors due to differences in testing policies (Villeneuve Paul J. and 
Goldberg Mark S., 2020); since we concentrate only on the initial period 
of the local epidemic, our results do not suffer from the problem of 
comparing different stages on the epidemic curves, are not influenced by 
the existence of multiple epidemic peaks nor by the later appearance of 
multiple virus strains, and are unaffected by social measures which alter 
dynamic only later (Bontempi, 2021; Villeneuve Paul J. and Goldberg 
Mark S., 2020); our approach does not rely on time series and thus 

Fig. 3. Values of regression coefficients in A) Lasso and B) Elastic Net regressions, respectively, where the bars’ height corresponds to the coefficients’ values for 
selected variables. Coefficients of all other variables are shrunk to zero (not shown) by the regressions. Variable importance in C) Gradient Boosting (GBoost) and D) 
Random Forest (RF) regressions, with the bars’ height corresponding to estimated importance. Only variables with P < 0.1 (according to either Pearson, Kendall, or 
Spearman correlations with R0) are included in GBoost and RF regressions. MSE values are scaled to the constant value model and averaged over 200 cross- 
validations. P-values correspond to the statistical significance of obtained MSE’s compared to the baseline model. Variable names are indicated on the horizontal axis. 
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avoids the related methodological difficulties (Villeneuve Paul J. and 
Goldberg Mark S., 2020). Next, as our inferences are not based simply on 
mutual correlations of variables alone, but we also robustly obtain the 
same main conclusion by employing four different machine learning 
techniques, including those that can account for potentially highly 
non-linear dependences of R0 on predictors. Consequently, common 
objections to statistical methodology (Bontempi et al., 2020; Villeneuve 
Paul J. and Goldberg Mark S., 2020) do not apply here. Furthermore, by 
taking into account 74 diverse predictors covering a broad scope of 
potentially relevant factors, we avoid the lack of multidimensionality 
and a bias that may result from considering only a narrow class of var-
iables – problems otherwise observed in many similar studies (Bon-
tempi, 2020b; Bontempi et al., 2020). With regards to that, we note that 
our study was initially conceptualized to explore which parameters, 
from a large collected set, had the most influence on the spread of the 
SARS-CoV-2 virus in the USA (without initial bias towards pollution). As 
our preliminary results singled out air pollution as the major predictor of 
COVID-19 transmission speed, this motivated us to put the pollution 
variables in the spotlight of this research, trying also to differentiate 
which types of pollution mostly contribute to the transmission of 
COVID-19. 

As several limitations still remain in our study, the observed asso-
ciation between PM2.5 pollution and COVID-19 cannot be yet taken to 
guarantee the existence of a causal relation. Even with the use of 
advanced statistical learning methods, it is difficult and not always 
possible to disentangle the effects of strongly correlated variables. As we 
will further discuss below, it is particularly problematic to differentiate 
between the independent effects of pollution and the indirect effects of 
factors related to economic and racial disparities, which often go hand in 
hand in the USA (Chakraborty, 2021). Another problem is to select a 
proper proxy (or proxies) for the frequency of human interactions in a 
given society, as there is little doubt that the human-to-human mode of 
transmission is most dominant in COVID-19. In this context, some au-
thors (Bontempi, 2020b; Bontempi et al., 2020; Cartenì et al., 2020; Guo 
et al., 2021) rightfully emphasize the importance of properly assessing 
the mobility of the considered population, and suggest possible proxies: 
from specific measures of economic relations and commercial exchanges 
to taking into account the number of job seekers/investors and analysis 
of public transportation statistics. Presently, we have taken into account 
only basic measures of economic prosperity that are expected to indi-
rectly but highly correlate with mobility and frequency of human to 
human interactions: human development index, gross domestic product 
per capita, life expectancy, infant/child mortality, and foreign-born 
population. While it is not easy to identify and find further variables 
that could properly reflect these factors and yet be available, in a sys-
tematic and unified way, across all studied regions, there is certainly 
room for methodological improvement in this respect. 

Another methodological limitation that cannot be easily overcome is 
the potential difference between indoor and outdoor air pollution. This 
is of obvious relevance since it is estimated that people, on average, 
spend 80–90 percent of their time indoors (Noorimotlagh et al., 2021b). 
In the absence of systematic data sources on indoor pollution, our 
conclusion must rely on a reasonable assumption that indoor and out-
door pollution are, in general, highly correlated, as is illustrated in 
(Harbizadeh et al., 2019). The unavoidable trade-off between choosing a 
scope of analysis that exhibits extreme levels (and variations) of air 
pollution on one side, and the need for uniformity of other parameters 
on the other side – that we settled by choosing the USA dataset – presents 
an additional limitation, considering that pollution values in the USA are 
generally not high, and certainly below serious health-hazard levels. 
(The values are far below the levels investigated in the COVID-19 
context in some other locations: for example, in a study done in 
Bangkok (Sangkham et al., 2021) the authors reported much higher 
PM2.5 values but had to face severe methodological limitations of the 
sorts discussed above.) Despite these remaining limitations of our 
research, we believe that this work presents substantial progress in 
terms of methodology and reliability of the obtained results. It thus es-
tablishes the link of PM2.5 pollution with COVID-19 transmissibility 
much more firmly than the previous studies and provides further 
motivation for research in this direction. 

Since this study suggested a direct relation between pollution and 
COVID-19 transmissibility, we finally provided a quantitative estimate 
of the established connection in Fig. 4. We estimated that varying the 
pollutant levels (specifically, levels of PM2.5, PM10, CO, and NO2, which 
enter Random Forest and Gradient Boost methods), where changes in 
PM2.5 levels are by far the most important, makes a difference of ~30% 
in terms of the R0 values. While this is smaller compared to reproduction 
number changes due to the appearance of new highly infective strains 
(estimated to increase R0 for up to ~90% higher) (Davies et al., 2021), it 
is still sizable, and clearly illustrates the potential importance of PM2.5 in 
modulating the virus transmissibility. For example, in an exponential 
regime of infection progression (c.f. Eq. (1.7) in Methods) lasting for 
~10 days (a typical period in which exponential growth is observed for 
the USA states), and with typical parameter values, such difference 
would lead to two times larger number of infected, and (at least) equal 
proportion of lost human lives. Aside from increasing transmissibility, 
an additional (and largely independent) effect of larger pollutant levels 
is the potentially increased COVID-19 mortality (due to health hazards 
of pollution), as suggested by several studies (Luo et al., 2021; Pozzer 
et al., 2020; Wu et al., 2020). Overall, this underscores the importance of 
reducing pollutant levels in the epidemiological context, along with 
other established non-pharmaceutical measures (Abboah-Offei et al., 
2021; Anand et al., 2021; Bontempi, 2021). 

While we obtain that PM2.5 pollution is the dominant predictor of 

Fig. 4. Relative change in R0 due to pollution variations observed in USA states. For each state included in the analysis, R0 was predicted for the range of pollution 
values observed throughout all other states. Relative variation in R0 was estimated through both A) Gradient Boost (GBoost) and B) Random Forest (RF) regressions, 
with the models trained as in Fig. 3C) Scatter plot of ΔR0/R0 predictions for GBoost and RF, with indicated Pearson’s correlation coefficient and P-value. 
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virus transmissibility, our results also identify the relevance of other 
factors. First, a few other pollutants are also selected through our 
analysis, most notably NO2 and its related nitrogen oxide derivatives 
(where its particularly high importance was assigned by the Random 
Forest method, see Fig. 3D), and to some extent CO and PM10. These 
results are partially in line with findings that several pollutants, more 
precisely particulate matter (Comunian et al., 2020; Sagawa et al., 
2021), but also NO2 (Paital and Agrawal, 2020), cause overexpression of 
ACE-2 in respiratory cells, thus increasing the likelihood of infection. 
This is not the only potentially relevant mechanism, as some studies 
point to the prolonged exposure to pollutants as a cause of a general 
weakening of the immune system (Glencross et al., 2020; Qu et al., 
2020). However, the relatively low importance of NO and CO pollutants 
that we obtained more speaks in favor of the hypothesis that PM 
pollution, by binding to virus droplets, mechanically facilitates 
SARS-CoV-2 spread through the air - both extending the range of virus 
diffusion and allowing its direct transport into deeper pulmonary re-
gions (Qu et al., 2020). This suggested mechanism of the 
pollution-to-human mode of transmission should be seen in the light of 
substantial evidence for COVID-19 airborne transmission via aerosols 
(Anand et al., 2021; Kenarkoohi et al., 2020; Noorimotlagh et al, 2021a, 
b) and of established positive correlation between the concentration of 
certain pathogens in air and PM pollution (Chen et al., 2010; Harbizadeh 
et al., 2019). The fact that we were here considering short-term (acute) 
pollution values precisely in the initial days of the outbreak, and the fact 
that pollution levels in the US are well below serious health hazards, are 
also in favor of this mechanistic interpretation of the 
pollution-COVID-19 link, rather than of the explanation via general 
adverse effects of pollution on the immune system. On the other hand, 
the inferred large difference in the influence of PM2.5 and PM10 particles 
may be understood through the difficulty of particulate matter larger 
than 5 μm to reach ACE2 receptors located in type II alveolar cells (Copat 
et al., 2020; Zhu et al., 2020). It should be noted that our study is not the 
only one suggesting a substantial difference between the effect of PM2.5 
and PM10 particles on the spread of COVID-19 (Copat et al., 2020; 
Lorenzo et al., 2021; Zhu et al., 2020). 

Another factor (unsurprisingly) related to the susceptibility of an 
organism to infections, is the presence of different comorbidities and, in 
general, any diseases that could potentially compromise the immune 
system (Allel et al., 2020; Coccia, 2020; Liu et al., 2020). Indeed, all 
applied analysis methods except for Lasso find the prevalence of chronic 
diseases in the population (i.e., its dominant principal component 
PC1-disease) to be an important R0 predictor. 

Additionally, our applied methods also identify a group of three 
mutually interrelated factors: the dominant PC reflecting the overall 
prosperity of the state (PC1 prosperity), the percentage of the black 
population, and the PC2 insurance component (this component effec-
tively reflects the insurance coverage among the Hispanic population). 
Our recent study of the effects of various demographic and weather 
parameters on the spread of COVID-19 based on the data from 118 world 
countries (Marko Djordjevic et al., 2021) also pointed to the essential 
role of the country’s prosperity, but we note a disagreement in the sign 
of the correlation: whereas, worldwide, the more developed countries 
suffered from higher COVID-19 expansion rates, data on US states show 
an opposite trend - wealthier and more developed areas of US on average 
seem to exhibit lower R0 values (Gupta and Gharehgozli, 2020). How-
ever, this difference may be expected: on the global level, there are 
substantial variations in the development level between countries, and 
this level effectively becomes a proxy for the frequency of social contacts 
(reflecting business and cultural activity, population mixing due to 
work/education, international travel, etc.) (Bontempi, 2020b; Bontempi 
et al., 2020; Gangemi et al., 2020). On the other hand, US states have 
highly developed societies and the dominant effect of these more subtle 
differences is likely different: within this prosperity range, the better off 
population has more means to prioritize and practice precautionary 
behavior (e.g., have professions that require less physical contacts, 

fewer comorbidities, healthier lifestyle, higher awareness of the infec-
tion risks, etc.). Furthermore, compared to the global analysis, we note 
that air pollution also played a role in that study, though a less promi-
nent one, via a principal component that turned out to encapsulate also 
other measures of unhealthy living conditions and lifestyle. While the 
influence of PM2.5 on COVID19 transmission should, of course, exist 
everywhere and cannot be effect unique to the territory of the USA, we 
note that this influence is much more difficult to observe when consid-
ering more diverse areas/populations, as it might be overshadowed by 
more dominant factors. 

The COVID-19 pandemic has also emphasized a specific racial aspect 
of healthcare disparities. The correlation between the percentage of the 
black population and R0 observed in our data (Fig. 2A), as well as the 
results of the Random Forrest regression method (Fig. 3D), agree with 
the already established conclusion that the black minority is by far 
overrepresented not only among COVID-19 fatalities (Luo et al., 2021; 
Wu et al., 2020) but also among the total infected population (Chakra-
borty, 2021). Another relevant factor is the health insurance coverage 
(PC2 insurance), which consistently through our analysis shows that 
COVID-19 infection is spreading faster among people without medical 
insurance (Figs. 2 and 3). Both the percentage of the black population 
and the prevalence of insurance coverage are significantly correlated 
with pollution, in particular with PM2.5, as can be seen in Fig. 2C 
(curiously, our data do not show such correlation with the PC1 pros-
perity component). Further complicating this relation of poverty, 
pollution and COVID-19, are the findings that indicate the importance of 
high quality and well maintained artificial ventilation (which is not 
equally affordable to everyone) in reducing indoor pollution with 
possible consequent effects on COVID-19 transmission (Harbizadeh 
et al., 2019; Noorimotlagh et al., 2021b). It has been already argued that 
the influence of factors related to a more economically disadvantaged 
population (overrepresentation of minorities, absence of medical in-
surance,…) is inherently hard to disentangle from the effects of pollu-
tion (Chakraborty, 2021). While this standpoint is also in part supported 
by our analysis, we also note that PM2.5 consistently appeared with 
much larger importance through all analyses compared to these 
economically disadvantaged factors (Chakraborty, 2021; Stieb et al., 
2020). In this sense, based on our results, it seems more plausible to 
associate PM2.5 (rather than these other factors) with R0 changes. 

It is also interesting to consider which parameters did not show up as 
important in our results. The absence of seasonal principal components 
from the final sets of significant predictors may indicate that the 
importance of the weather parameters such as temperature, UV radia-
tion, and humidity on the SarS-CoV2 transmission is lesser than 
commonly assumed. While there are substantial arguments that high 
temperatures and humidity levels should suppress virus transmission 
(Byun et al., 2021; Fu et al., 2021; Noorimotlagh et al., 2021a; Notari, 
2021; Sarkodie and Owusu, 2020), the literature is not fully unison on 
this conclusion, with some even reporting the opposite effects (Kolluru 
et al., 2021; Lorenzo et al., 2021; Sangkham et al., 2021). The results 
presented here seem to side with some authors who disagree that 
weather factors bear a significant influence on the course of the 
COVID-19 epidemic (Wang et al., 2021). One should however note that 
variations of meteorological factors are much larger on a global scale, 
where indeed we find out a larger significance of these factors (Salom 
et al., 2021). Another somewhat surprising conclusion is the moderate 
significance of the population density that we obtain. While there is a 
significant correlation of PC2 density component with R0, it further 
appeared significant only in Lasso regression, and even there with not a 
quite high coefficient. While in disagreement with common expectation 
and some studies (Chakraborty, 2021), this is however in line with 
several other studies, that also didn’t assign a high significance to 
population density (Carozzi et al., 2020; Hamidi et al., 2020; Pour-
ghasemi et al., 2020; Rashed et al., 2020). Rather than interpreting such 
an outcome simply as the irrelevance of population density, we, as 
already argued in (Salom et al., 2021), see it as an indication that more 
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subtle measures of density (that would more accurately reflect effective 
proximity of individuals in everyday scenarios) are needed. 

5. Conclusion and outlook 

Starting from 74 initial parameters and by using five different 
analysis approaches, we obtained the results that robustly select PM2.5 
pollution as a major predictor of SARS-CoV-2 transmissibility in the 
USA. Using R0 as a transmissibility measure and non-linear dynamics to 
extract its values for different USA states, these results are largely 
insensitive to the differences in the state policies. The obtained large 
quantitative estimate of the magnitude of the PM2.5 effect on virus 
transmissibility may be intuitively unexpected and is not that far from 
estimated differences in transmissibility caused by virus mutations. 

The main issue to be addressed in future studies is that of causality, i. 
e., disentangling the effects of pollution from those of socio- 
demographic factors with which it is correlated. This clearly cannot be 
achieved through studies with low resolution, such as the one employed 
here, despite using sophisticated statistical (machine) learning methods 
and studiously taking into account the infection progression dynamics. 
Carefully crafted, and high-resolution, longitudinal epidemiological 
studies may be a way forward in this regard. The results obtained here, 
and by other similar studies, may provide a basis for these high- 
resolution studies, particularly in terms of factors that should be 
considered, their expected relative importance, and the magnitude of 
the effects that may be expected. 
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Abstract While there has been much computational
work on the effect of intervention measures, such as
vaccination or quarantine, the influence of social dis-
tancing on the epidemics’ outbursts is not well under-
stood. We present a realistic, analytically solvable,
framework for COVID-19 dynamics in the presence of
social distancing measures. The model is a generaliza-
tion of the compartmental SEIRmodel that accounts for
the effects of these measures. We derive a closed-form
mathematical expressions for the time dependence of
epidemiological observables, in particular, the detected
cases and fatalities. These analytical solutions indi-
cate simple quantitative relations between the model
variables and epidemiological observables, which give
insights into cause-effect connections that underlie the
outburst dynamics but are obscured in more standard
(numerical) approaches.While the obtained results and
conclusions are based on the study of the COVID-19
pandemic, the presented analysis has general applica-
bility to infection outbursts. Our findings are partic-
ularly important in the emergence of new pandemics
when effective pharmaceutical treatments are unavail-
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able, and onemust rely onwell-timed and appropriately
chosen social mitigation measures.

Keywords SEIR model · Analytical solutions ·
Infection progression · Population dynamics ·
Epidemics peak · Infection tipping points

1 Introduction

Numerical computation methods and/or simulations
are routinely used to study epidemiological dynam-
ics. These tools can easily produce predictions of even
very complex epidemiological models. Yet, in a certain
sense, the numerical computation/simulation is compa-
rable to a black-box system that converts given model
parameters to the prediction outcomes, hardly facili-
tating any direct and deeper understanding of the influ-
ences of individual parameters on model observables.
Additionally, inferring the parameter values from the
observed data, analogous to reverse-engineering of the
black-box functioning, often becomes a difficult task.

These problems have become additionally pro-
nounced in the context of the current COVID-19 pan-
demic, which, since being unprecedented in many
aspects, underlines the necessity to expand the com-
monly used epidemiologicalmodels. Progress has been
made in various directions, e.g. by taking into account
the effects of quarantine [1,2], temporary immunity
[3], recurrent outbreaks [4], vaccination [5–8], differ-
ent levels of population susceptibility [9], comorbidi-
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ties [8,10], stratification by age [11–13], competitive
virus strains of different severity and/or transmissi-
bility [14,15], spatial diffusion [16], human mobility
between different regions [17–19], availability of test-
ing kits [20], hospital infrastructure [21] and media
coverage [22,23] to name a few. In particular, the
attempts to combat the disease led to the introduction of
social distancing measures on the scales hardly imag-
inable before [24].

While it is evident that social distancing measures
seriously impact the epidemiological dynamic, their
effects are not yet well understood [25–27], despite a
lot of undergoing effort to incorporate the influence of
these measures into the existing epidemiological mod-
els [4,8,22,28–39]. These studies often use an ana-
lytical approach to analyze and reveal some of the
system’s characteristics—e.g., system equilibria, posi-
tivity and boundness of variables, stability, sensitivity
and bifurcation analysis [8,35–39]. Thus, they allowed
insights into some important aspects of the system’s
behavior, and the role played by the social measures.
For example, analytical calculations provided a bet-
ter understanding of the interventions required to con-
trol the disease, such as the interplay between govern-
mental actions and the public response [39], and quar-
antine [35]. However, to our knowledge, no attempts
were made to analytically solve complex systems of
nonlinear differential equations stemming from these
extended epidemiological models (neither from the
models aimed to include the effects of mitigation mea-
sures nor from those trying to incorporate other relevant
factors). Instead, computer simulations and/or numeri-
cal solving of differential equations are commonly used
to compute and analyze the time evolution of the epi-
demic (e.g., to make comparisons with the actual epi-
demiological data). Consequently, despite the ability
to include intricate details of the models, these studies
lacked the full analytical approach to establish direct
functional relations between variables and outcomes,
thus missing the advantages of having analytical for-
mulas describing the entire time evolution of the system
variables.

While the advantages of the analytical approach
are clear, all of the studied models in epidemiology,
including the very basic ones such as SIR (Susceptible-
Infected-Removed [40]), are nonlinear and the corre-
sponding differential equations cannot be solved in
a straightforward manner [41]. Nevertheless, in the
last two decades, there was significant progress in

the field. To our knowledge, the earliest advances in
this direction appeared with the turn of the century
and were related to the SIR model, on networks [42]
and its stochastic variant [43], followed by solutions
given in the forms of convergent series, for SIR [44]
and then also for SIR and SIS (Susceptible-Infected-
Susceptible) models [45]. Further progress was made
by Harko et al. in 2014 [46], by providing the SIR
model analytical solutions, albeit in parametric form
and up to an integral inexpressible by elementary func-
tions. COVID-19 pandemic has intensified the efforts
in this direction, resulting in new forms of solutions
for SIR model: as infinite series (using Asymptotic
Approximants method) [47], as an inverse solution
with an approximated integral [48], using integrals
inexpressible in terms of elementary functions [49],
and a direct approximated solution [50,51]. Some of
these approaches preserve (approximative) integrabil-
ity even when constant model parameters (such as
infection rate) are replaced by time-varying functions
(though with certain constraints). Recently, there has
been also some progress even with compartmental
models more complex than the basic SIR variant. More
precisely, papers [52] and [53] analytically treat SEIR
(Susceptible-Exposed-Infected-Removed) model and
find, respectively, a solution in the form of a well con-
verging infinite series and as an exact solution to an
approximative reduced model.

Along with the attempts to analytically solve the
equations governing the epidemic dynamics, there was
an ongoing effort to find useful analytical relations
between the relevant epidemiological variables. One
such simple but transcendental equation, relating the
basic reproductive numberwith the final size of the sus-
ceptible compartment, was an immediate consequence
of the SIRmodel [40], and a similar result was obtained
for the SEIR model [53] (the robustness of such rela-
tions is discussed in [54]). Moreover, it often turns
out to be possible to derive useful simple analytical
expressions for the time of the infection peak and/or the
fraction of immunized required to stop the epidemic
[48,50,51,53,55,56]. These formulas, obtained at a
low cost of applying practically negligible approxima-
tions to the starting equations or intermediary expres-
sions, turn out to be very accurate (when compared to
precise numerical computations).

All these analytical results were obtained only in
the context of SIR and SEIR models, and the pres-
enceof interventionmeasures likely renders themunus-
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able. Therefore, this study aims, for the first time, to
establish a realistic—analytically solvable— model of
COVID-19 dynamics in the presence of social distanc-
ingmeasures and to demonstrate the benefits of such an
approach. Themodel is a generalization of the compart-
mental SEIR model— so-called SPEIRD [57,58]—
that accounts for the influence of social measures by
mathematically representing them as an effect that
removes susceptibles from the transmission process
(and places them in a newly introduced Protected
compartment). A similar approach to introduce the
effects of distancing in compartmental models can be
found in [32,34–37] and is in certain aspects advanta-
geous over simply varying transmission coefficients in
time, implemented in manymodels [4,8,22,33,38,39].
SPEIRD also introduces additional compartments that
directly correspond to epidemiological observables: the
number of detected cases and fatalities. The model was
introduced in [57], but due to the complex system of
nonlinear differential equations, no attemptsweremade
to solve them analytically. However, it turned out that,
despite complicated equations, it was possible to ana-
lytically compute the closed-form expression for the
number of infected cases as a function of time. This
partial result was published in [58] and presents a start-
ing point in this study. However, due to its complex-
ity, we were unable to make further progress toward
computing other system variables. We only recently
managed to analytically compute the time evolution of
all relevant variables (i.e., the closed-form expressions
for the full-time evolution of the number of confirmed
(detected) cases and fatalities). These two variables
have been used as crucial measures for tracking epi-
demic progression and its severity, and this manuscript
presents the full analytical treatment of the equations by
deriving their closed-form mathematical expressions.

The time evolutions derived here allow us to analyt-
ically investigate the effect of different model parame-
ters on the infection outcome and to recognize particu-
lar interplays.Knowing explicitly the relations between
input and output variables not only vastly simplifies our
ability to extract model parameters from experimental
data (e.g., by distinguishing special regimes in which
equations have characteristic behavior [58]) but, more
importantly, to straightforwardly draw conclusions that
may simplify public policy decision making. In par-
ticular, the asymptotic expressions obtained here for
the cumulative numbers of COVID-19 detected cases
and fatalities, quantitatively reveal a simple interplay

between the basic reproduction number R0, the strength
of introduced social measures, and the timing of their
introduction. Namely, it turns out, as we show in Sect. 4
and further elaborate in Sect. 5, that more flexible, i.e.,
relaxed measured can be easily afforded if they are
timely introduced (to the same overall effect as with far
more stringent measures introduced just a week or two
later). Moreover, we provide simple analytical expres-
sions for estimating the timing of the peak, the tipping
points of the epidemicwave, aswell as themaximumof
detected cases per day. Providing an analytical frame-
work to understand such epidemiological behaviormay
have a significant impact both on the economy and the
quality of human lives.

While the obtained results and conclusions were
based on the study of the COVID-19 pandemic (and
tested on corresponding epidemiological data), the
analysis presented here is of general validity and there-
fore directly applicable to any possible infection out-
break in the future.While at this stage of theCOVID-19
pandemic, we already have additional tools to combat
the disease (e.g., vaccines andmounting clinical experi-
ence), general conclusions drawn from the models like
this one can be a particularly valuable aid in the initial
stages of any new epidemic.

2 Methodology

To assess the dynamics of COVID-19 infection, we
employ amechanisticmodel SPEIRD,whichwe devel-
oped in Refs. [57,58]. More precisely, concerning the
standard compartmental models in epidemiology [25–
27], which comprise susceptible (S), exposed (E),
infectious (I ), and undiagnosed recovered (R) pools,
we added a few additional compartments. These are
introduced to take into account the available data (direct
observable quantities), such as the total number of
detected (confirmed and thereupon quarantined) cases
(D), active cases (A), and fatalities (F). It also accounts
for the effects of the social protection measures by
adding a compartment (P) of protected individuals
(denoting those effectively removed from susceptible
category due to social distancing). The corresponding
equations, describing the model dynamics, read:

dS

dt
= −βSI

N
− dP

dt
, (1)
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dP

dt
= αS

1 + (t0/t)n
, (2)

dE

dt
= βSI

N
− σ E, (3)

dI

dt
= σ E − γ I − εδ I, (4)

dR

dt
= γ I, (5)

dD

dt
= εδ I, (6)

dA

dt
= εδ I − hA − mA, (7)

dF

dt
= mA. (8)

In the above equations, N stands for the total popu-
lation number, while parameters have the following
meaning: β− the transmission rate; α− strength of
the social measures; σ− the inverse of the latency
period; γ− the inverse of the infectious period; δ− the
inverse of the infected detection period; ε− the detec-
tion efficiency; h and m− the recovery and the mortal-
ity rate, respectively. According to [59–61], we assume
σ = 1/3 day−1 and γ = 1/4 day−1. The gradual effect
of social measures is introduced through Eq. (2) where
t0 denotes the time when the measures are enforced. In
[58], it was shown thatHill function [62] can be reliably
replaced by the step function of the form αθ(t − t0),
which we further apply. We also assume that, after t0,
the 2nd term in Eq. (1) dominates over the 1st term, i.e.,
S(t) ∼ e−αt , whichwe previously numerically showed
to hold well for a wide range of countries in the first
COVID-19 wave [58].

In Fig. 1, we provide a schematic representation of
the SPEIRD model (Eqs. (1)-(8)). Thus, Eq. (1) deter-
mines the rate of depletion of the susceptible population
due to both the infection process and the social distanc-
ing measures. These measures result in a transition of
the susceptible to the protected compartment, described
by Eq. (2). In Eq. (3), the exposed pool increases due to
the infection events. Simultaneously, it decreases due to
a transition to the infectious compartment with the rate
σ . Equation (4) describes how the number of infectious
individuals grows due to the transition from exposed
to the infectious category, while it decreases with the
rate γ (recovery of undiagnosed infected to R com-
partment) or with rate εδ (corresponding to their detec-
tion and subsequent quarantine, resulting in a transition
to the detected compartment D). Equation (7) fixes

the rate at which the active compartment is depleted
through two channels − by being healed (rate h) or by
dying from the virus (rate m). Equation (8) describes
the growth of the fatalities.

Themodel corresponds to the infection phase,where
social distancing measures are first introduced (in our
case, the first COVID-19 wave), corresponding to the
effective transition from S to P compartment. As the
measures later got eased, there can also be a transition
from P back to S. This is, for simplicity, not imple-
mented in SPEIRD (and usually neither in similarmod-
els, see e.g. Refs. [32,34–37]), i.e., only the first phase
of epidemics (and the social measure introduction) is
considered.We implement ourmodel deterministically,
as publicly available COVID-19 counts [63] are very
high in most countries, making the relative importance
of fluctuations low, and the deterministic description
appropriate [62]. The advantage of such an approach
is the analytical tractability and more intuitive under-
standing of the obtained results.

Despite the complexity of the system of equations
(1)-(8), we show that the model can be analytically
treated.As a starting point in our calculation,we use the
explicit expression for the number of infectious indi-
viduals as a function of time, obtained in [58]:

I (t) = θ(t0−t)I0e
λ+t+θ(t−t0)I0e

λ+t0e−
γ+εδ+σ

2 (t−t0)

×
K

(
γ+εδ−σ

α ,
2
√
e−α(t−t0)βσ

α

)

K
(

γ+εδ−σ
α ,

2
√

βσ
α

) , (9)

where K(n, x) stands for the modified Bessel function

of the secondkind [64],λ+=
√

(γ+εδ−σ)2+4βσ−(γ+εδ+σ)

2 ,
θ(t) denotesHeaviside step function and I0 is the initial
number of infectious individuals in population.

The main result of this paper is the derivation of the
time-dependent expressions for the numbers of fatal-
ities F(t) and detected cases D(t), which are contin-
uously tracked and publicly available quantities for a
vast number of countries and regions [63]. The analyt-
ical derivations of these expressions are presented in
Appendix A. Essentially, Eqs. (6)-(8) lead to two dis-
entangled differential equations determining F(t) and
D(t):

d2F(t)

dt2
+ (h + m)

dF(t)

dt
− mεδ I (t) = 0, (10)
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Fig. 1 Scheme of the SPEIRD model. The compartments are
represented with circles and named as indicated in the text.
The transitions between different compartments are denoted by
arrows, with labels corresponding to the appropriate transition
rates, as explained in the text. The two main categories for our

study (also corresponding to widely tracked observable quanti-
ties) − fatalities (F) and detected cases (D) are denoted by the
full gray and purple circles, respectively. The dashed circle indi-
cates that A, H , and F compartments from the original model
compose the detected cases D

D(t) = εδ

∫
I (t) dt + C. (11)

Here, I (t) is given by Eq. (9) and C stands for the
constant of integration. All constants of integration are
determined from the requirement of continuity of func-
tions, their first derivatives, and/or the initial condi-
tions: F(0) = 0 and D(0) = D0, where D0 is the
initial number of detected cases at onset of infection
progression in a population.

Solving these equations is highly nontrivial due to
the complex form (see Eq. (9)) of the function I (t). To
accomplish this task, aside from commonly used meth-
ods for solving differential equations (i.e., knownmeth-
ods for second-order inhomogeneous Cauchy–Euler
equation), we used a number of special properties of
modified Bessel functions of the first and second kind,
of upper incomplete gamma functions, and of regular-
ized generalized hypergeometric functions, as detailed
in Appendix A.

3 Analytical results

Using the methodology outlined in the previous sec-
tion, in Appendix A, we derived closed-form expres-
sions for the number of fatalities and the cumulative
number of detected cases, as functions of time. The
number of fatalities F(t) has the following form:

F(t) = θ(t0 − t)
I0εδ

λ+
m

m + h{
−1 + λ+

h + m + λ+
e−(h+m)t

+ h + m

h + m + λ+
eλ+t

}

+ θ(t − t0)

{
C1 + C2e

−(h+m)t

+ C1(t) + C2(t)

(
2
√

βσ

α

) 2(h+m)
α

e−(h+m)t
}
,

(12)

where:

C1(t) = C0

⎡
⎣(

√
βσ

α

) γ+εδ−σ
α

e−(γ+εδ)t


(
γ + εδ

α

)

× 1F̃2

(
γ + εδ

α
; 1 + γ + εδ

α
, 1

+γ + εδ − σ

α
; e

−αtβσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α

e−σ t

(σ

α

)

×1F̃2

(
σ

α
; 1 + σ

α
, 1 + σ − γ − εδ

α
; e

−αtβσ

α2

)⎤⎦
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π

2
csc

[
π(γ + εδ − σ)

α

]

C2(t) = −C0

[(√
βσ

α

) γ+εδ−σ
α

e−(γ+εδ)t


(
γ + εδ − h − m

α

)

× 1F̃2

(
γ + εδ − h − m

α
; 1

+γ + εδ − h − m

α
, 1

+γ + εδ − σ

α
; e

−αtβσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α

e−σ t


(
σ − h − m

α

)

× 1F̃2

(
σ − h − m

α
; 1 + σ − h − m

α
, 1

+σ − γ − εδ

α
; e

−αtβσ

α2

)]

π

2
csc

[
π(γ + εδ − σ)

α

]
, (13)

C1 = I0εδ
m

(h + m)

eλ+t0 − 1

λ+
− C0

[(√
βσ

α

) γ+εδ−σ
α




(
γ + εδ

α

)

× 1F̃2

(
γ + εδ

α
; 1 + γ + εδ

α
, 1

+γ + εδ − σ

α
; βσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α



(σ

α

)

× 1F̃2

(
σ

α
; 1 + σ

α
, 1 + σ − γ − εδ

α
; βσ

α2

)]

× π

2
csc

[
π(γ + εδ − σ)

α

]
(14)

C2 = I0εδ
m

(h + m)

e−(h+m)t0 − eλ+t0

h + m + λ+

+ C0

⎡
⎣
(√

βσ

α

) γ+εδ−σ
α




(
γ + εδ − h − m

α

)

× 1F̃2

(
γ + εδ − h − m

α
; 1 + γ + εδ − h − m

α
, 1

+γ + εδ − σ

α
; βσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α




(
σ − h − m

α

)

× 1F̃2

(
σ − h − m

α
; 1 + σ − h − m

α
, 1

+σ − γ − εδ

α
; βσ

α2

)]
.

π

2
csc

[
π(γ + εδ − σ)

α

]
(15)

In these formulas C0 = I0εδ
α

m
h+m e

λ+t0/K
( γ+εδ−σ

α
,

2
√

βσ
α

)
,while pF̃q(a1, a2, ...ap; b1, b2, ...bq ; z)denotes

regularized generalized hypergeometric function [65].
While these expressions jointly constitute the exact

solution to the differential equations governing the
dynamics of F(t), their form is too complex to con-
vey a useful conclusion about the epidemic dynam-
ics. However, by applying a combination of appropri-
ate mathematical transformations and by using Han-
kel’s asymptotic expression for Bessel functions (see
Appendix A.1 for details), we arrive at the following
approximate expression for F(t):

F(t) = I0εδ
m

h + m[
θ(t0 − t)

(
eλ+t − 1

λ+
+ e−(h+m)t − eλ+t

h + m + λ+

)

+ θ(t − t0)(
eλ+t0 − 1

λ+
− e−(h+m)t e

(h+m+λ+)t0 − 1

h + m + λ+

+ 2

α

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
eλ+t0+ 2

√
βσ
α

×
{


(γ + εδ + σ

α
− 1

2
,
2
√
e−α(t−t0)βσ

α

)

− 

(γ + εδ + σ

α
− 1

2
,
2
√

βσ

α

)

+
(2√e−α(t−t0)βσ

α

) 2(h+m)
α

×
[


(γ + εδ + σ − 2(h + m)

α
− 1

2
,
2
√

βσ

α

)

− 

(γ + εδ + σ − 2(h + m)

α

− 1

2
,
2
√
e−α(t−t0)βσ

α

)]})]
. (16)
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This expression replaces expressions (12)-(15)while
not significantly deviating from the full solution (the
deviations are essentially negligible, having in mind
the limited precision with which we know most of the
COVID-19 epidemiological parameters).

As expected, the F(t) saturates at some maximal,
asymptotic value as t → ∞ (for details seeAppendices
A.3 and A.4). This value corresponds to the total (final)
number of COVID-19 fatalities Ff in in the observed
epidemic outburst:

Ff in ≈ 2I0εδ

α

m

h + m

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
eλ+t0+ 2

√
βσ
α

× 


(
γ + εδ + σ

α
− 1

2

)
. (17)

Furthermore, due to the fact that for realistic values of
epidemiological parameters [58] (γ +εδ+σ)/α−1/2
is high enough, we utilize Stirling’s formula [66] (for
large n): 
(n + 1) ≈ √

2πn
( n
e

)n . After making use of
4βσ � (γ + δε − σ)2 (for multiple times) Eq. (17)
reduces to:

Fapprox
f in ≈ 2D0

m

h + m
e
3
2

√
2π/α

γ + εδ + σ − 3
2α

λ+

×
(2λ+ + γ + εδ + σ

γ + εδ + σ − 3
2α

) 1
2− γ+εδ+σ

α
e

(
t0+ 2

α

)
λ+

, (18)

where D(0) = D0 = I0εδ/λ+.
By applying a similar procedure, we straightfor-

wardly obtain the equivalent expressions for the time
evolutionof thenumber of detected cases (seeAppendix
A.2). For brevity, we here provide only the final results:

D(t) = I0εδ

λ+

⎛
⎝θ(t0 − t)eλ+t + θ(t − t0)e

λ+t0

×
⎧⎨
⎩1 + 2λ+

α

(
2
√

βσ

α

)− γ+εδ+σ
α

+ 1
2

e
2
√

βσ
α

×
[



(
γ + εδ + σ

α
− 1

2
,
2
√
e−α(t−t0)βσ

α

)

−


(
γ + εδ + σ

α
− 1

2
,
2
√

βσ

α

)⎤⎦
⎫⎬
⎭
⎞
⎠ (19)

and for the total number of detected cases at the end of
the epidemic wave:

D f in ≈ 2I0εδ

α

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
eλ+t0+ 2

√
βσ
α

× 

(γ + εδ + σ

α
− 1

2

)
, (20)

that can be again approximated to the form:

Dapprox
f in ≈ 2D0e

3
2

√
2π/α

γ + εδ + σ − 3
2α

λ+

×
(2λ+ + γ + εδ + σ

γ + εδ + σ − 3
2α

) 1
2− γ+εδ+σ

α
e

(
t0+ 2

α

)
λ+

.

(21)

Consequently, the estimate for Case Fatality Rate
(CFR), which is defined as the final number of fatalities
per detected cases (CFR = Ff in/D f in), acquires a
simple form [67], involving a ratio of mortality (m)
and healing (h) rates:

CFR = m

h + m
, (22)

further supporting that our analytical derivation is plau-
sible.

The explicit formulas (18) and (21) provide analogs—
though now in the entirely different context with social
distancing—of the final size (i.e. asymptotic value)
relations for SIR [40,54] and SEIR models [53]. Based
on our analytical solution, we can also provide a fairly
simple relation for the timing of the epidemic peak (see
Appendix A.5 for details), which is another quantity
that has been previously analytically derived in sim-
pler scenarios of SIR [48,50,51,55,56] and SEIR [53]
models:

tmax = t0 + 1

α
ln

[
16βσ

(2(γ + εδ + σ) − α)2

]
. (23)

FromEq. (23), we can also obtain themaximal num-
ber of detected cases per day during the outburst:

(
dD

dt

)
max

= D0λ+e
λ+
(
t0+ 2

α

)
+ 1

2

(
4
√

βσ

2(γ + εδ + σ) − α

) 1
2− γ+εδ+σ

α

(24)

which we will further analyze in the next section.
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The infection tipping points (see Appendix A.5)
correspond to the inflection points of the bell-shaped
infected curve. We can explicitly express the two tip-
ping points, from which we can obtain the duration of
the epidemic peak (cf. Figure 1D in [58]), correspond-
ing to the time interval between these two points:

Δtpeak = 4

α
ln

⎛
⎝γ + εδ + σ +

√
α(γ + εδ + σ − α

4 )

γ + εδ + σ − α/2

⎞
⎠.

(25)

Whenα << (γ +σ) this formula effectively simplifies
to:

Δtpeak ≈ 4√
α(γ + εδ + σ)

, (26)

where we used [68] ln (1 + x) ≈ x for x � 1. Note
that Δtpeak is independent of the transmission rate β,
which is a nontrivial result.Δtpeak provides an estimate
of the time interval during which the infected are at a
high level, and the chance of contracting the infection
is the highest.

4 Numerical analysis

To test the model reliability, we first compare our full-
fledged predictions for case counts (detected cases and
fatalities) with the observed data counts for three rep-
resentative countries: Austria, Switzerland, and Israel.
Figure2 shows that we obtain an overall good agree-
ment between our predictions and the data for all three
countries. In particular, we see that the time delay,
much discussed in interpreting COVID-19 case counts
data [12,61], is also well reproduced. This agreement
provides confidence that the analytical expressions,
which we derived from our model, indeed reasonably
represent the observed case counts data.

The obtained results allow us to analyze the effect
of each model parameter on D(t) and F(t) curves. For
succinctly presenting the results in Figs. 3, 4, 5 and
6, we will further use the parameter values that were
extracted for Israel in Fig. 2. We note that the obtained
results are independent of the analyzed country, as
long as the data are continuously tracked with mod-
erate testing capacities and fairly transparent report-
ing policies. First, we will consider the influence of
the ε parameter—the fraction of the infections that are

detected and consequently quarantined. We here, and
in the subsequent analysis, fix the initial (observed)
number of detected cases D0 = D(t = 0). The triv-
ial (direct) proportionality dependence of D(t) on ε in
Eq. (6) then gets absorbed in D0, so that we investi-
gate the nontrivial effect of the quarantine (ε) on the
case count dynamics from Eq. (4). For this, we opt
for two limiting cases ε = 0.1 and ε = 0.5, which
respectively correspond to the low and high detection
rates inferred from the observed data [58]. From Fig. 3,
which represents the time evolution of detected cases
and fatalities, we observe that a substantial change of
this parameter leads to at most ∼ 20% change in satu-
ration value of D and F . In comparison to changes due
to variations of other parameters, see below, wewill see
that this is a minor effect. Expectedly, better detection
efficacy (i.e., the higher ε value) leads to lower over-
all numbers of case counts, simply because the larger
part of infected individuals is timely quarantined. The
value of ε has practically no impact on the steepness
of these time-evolution curves. Consequently, detected
cases and fatalities are nearly independent of ε, and, for
simplicity, wewill further set this value to be 0.1. (Note
that, if not indicated otherwise, full-fledged expressions
are used for generating predictions through the entire
section.)

Next, we assess how sensitive case counts are on
the initial slope (on a log scale) of the exponential
growth of the infectious curve, quantified by λ+. Indi-
rectly, in this way, we also test the dependence of the
curves on the closely related basic reproduction num-
ber R0 (quantifying inherent virus transmissibility in
population [69]), which relates to λ+ by R0 = β/γ =
λ2++λ+(γ+εδ+σ)+(γ+εδ)σ

σγ
[57,70]. To this end, we vary

λ+ in the range between 0.1/day and 0.4/day, based on
our previously inferred λ+ values for a large number of
analyzed countries [70,71]. From the left plot in Fig. 4,
we observe that D(t) is highly sensitive to this param-
eter, to the extent that the linear–linear plot is unable
to adequately illustrate this dependency. The log-linear
plot in the inset is much better suited for this: it clearly
demonstrates that the greater the λ+ is, the D(t) curve
is steeper, and the final saturation value becomes expo-
nentially larger. The same tendency is preserved in the
case of F(t) dependence on λ+ (see middle plot in
Fig. 4), where we ab initio opt for log-linear display.

To gain some further insight on the influence of λ+
on case counts saturation values, we note that the dom-

123



An analytical framework for understanding 22041

Fig. 2 Comparison between model prediction and data for Aus-
tria (the left plot), Switzerland (the central plot), and Israel (the
right plot), as indicated by abbreviations in the upper left cor-
ners. The predictions are generated for the evolution of detected
cases (the purple curves) and fatalities (the gray curves). The
observed detected counts are denoted as purple dots, while the

fatality counts are represented by gray dots. The left and the right
y-axis of each plot corresponds to detected cases and fatalities,
respectively, while the ticks on the x-axis denote the dates given
in DD/MM/YY format. The data for detected cases and fatalities
are taken from [63]

Fig. 3 The dependence on
the infection detection
efficiency ε of detected
cases (the left plot) and
fatalities (the right plot).
The blue and the orange
curves correspond to
ε = 0.1 and ε = 0.5,
respectively

inant λ+ dependence in Eqs. (18) and (21) is exponen-

tial, of the form e(t0+ 2
α
)λ+ . However, it can be shown

that λ+ terms outside of the exponent in Eqs. (18)
and (21) still contribute by effectively lowering the

exponent from e(t0+ 2
α
)λ+ to tα = t0+1/α. In Ref. [57],

we introduced tα as the, so-called, protection time (the
time at which ∼ 1

2 of the population moves to the
protected category), so that there is a simple, overall,
dependence of the case counts on λ+ as ∼ etαλ+ .

The λ+ dependence of three curves: D f in, D
approx
f in

and our estimate ∼ e(t0+ 1
α
)λ+ , is presented in the

rightmost plot of Fig. 4. The practically overlapping
D f in and Dapprox

f in curves confirm the adequacy of the
approximation applied in Eqs. (18) and (21).Moreover,
the fact that the simple exponential dependence etαλ+

very well qualitatively and quantitatively reproduces

D(λ+), highlights usefulness of the protection time in
assessing infection risks.

Finally, we concentrate on the effect of the social
distancing strength α on the case counts. We assume
that α lies in the range between 0.03 and 0.3, as inferred
from the observed data by our previous numerical anal-
ysis [58]. All plots on Fig. 5 are again presented in log-
linear scale. From the left and central plot in Fig. 5, we
see that both D(t) and F(t) are strongly affected by the
change of α. As the epidemic progresses, the stronger
social measures result in a significantly lower plateau
of case counts. The effect of α on these two observables
is the opposite of the one of λ+, as expected.

To further clarify the dependence of D and F on
α, we again use Eq. (21). After taking a logarithm, we
obtain:
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Fig. 4 The effect of initial slope of infectious curve λ+ on the
main observables. The time evolution of detected cases is pre-
sented in the left plot, with inset on amore pronounced log-linear
plot. The central plot shows fatalities versus time on a log-linear
scale. λ+ values are indicated in the legend. In the right plot, λ+

dependence of detected cases at saturation is displayed on a log-
linear scale. D f in , D

approx
f in and etαλ+ are denoted by the solid

black, the dashed blue and dot-dashed orange curves, respec-
tively

ln
(
Dapprox

f in

) ≈ κ1 + 2λ+
α

+
(κ2

α
− 1
)

ln
(
κ2 − 3

2
α
)

− ln (α)

2
, (27)

where κ1 = ln
(
2D0λ+

√
2π
)

+ λ+t0 + 3
2 +

(
1
2 −

γ+εδ+σ
α

)
× ln

(
γ + εδ + σ + 2λ+

)
and κ2 = γ +

εδ + σ . The dominant term on the right-hand side of
Eq. (27) is proportional to 1/α, i.e., the logarithmic
terms could be neglected. To test this obtained simple
dependance, in the rightmost plot of Fig. 5 we compare
D f in , D

approx
f in and our estimate ∼ e0.8λ+/α , as func-

tions ofα, on log-linear scale. The very good agreement
between D f in and Dapprox

f in again confirms the valid-
ity of our approximations. Moreover, we demonstrate
that the influence of the strength of social distancing on
detected cases (and fatalities) can be reduced (at satu-
ration) to a simple dependence of the form ∼ e0.8λ+/α .

From Figs. 4 and 5, we also see that λ+ has no sig-
nificant effect on infection extinguishing time, i.e., the
time for case counts to enter saturation. That is, its most
prominent effect is on the total case counts.On the other
hand, the strength of social distancing measures affects
(i.e., diminish) both the total case counts and the time
needed for extinguishing the infection.

Finally, in Fig. 6, we show how themaximal value of
detected cases per day depend on λ+ and α. For λ+, we
see that, similarly to D f in and Ff in , simple exponen-
tial dependence etαλ+ well reproduces ( dDdt )max , fur-
ther highlighting the importance of the lower protection

time for reducing the infection risks. For social dis-
tancing strength, we see that ( dDdt )max is also strongly
affected by α, where this dependence can be approxi-
mated by the simple expression ∼ e0.6λ+/α .

5 Discussion

The main goal of the present paper was to provide
a fully-analytical treatment of our epidemiological
model with introduced social distancing, which pre-
dicts observables that are readily accessible in a large-
scale epidemic. We accomplished this task by calcu-
lating these observables as explicit functions of time,
expressed in closed-form: Eqs. (16) and (19). Particu-
larly useful are the derived (approximate) expressions
(18) and (21) for the detected cases and fatalities at sat-
uration (i.e., at the end of an epidemic wave).We tested
the model predictions against the observed COVID-19
data, obtaining a very good agreement (as illustrated in
Fig. 2).

The obtained analytical results facilitate a better
understanding of the influence of individual epidemio-
logical parameters on COVID-19 observables. In par-
ticular, the effect of varying the detection efficacy ε

(within reasonable boundaries) turned out to be expo-
nentially smaller than the influence of the λ+ value, as
illustrated in Figs. 3 and 4. Since theλ+ value is directly
related to the basic reproduction number R0, which
characterizes the inherent biological transmission of
the virus in an (initially) completely unprotected pop-
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Fig. 5 The effect of social distancing strength α on the main
observables. The time evolution of detected cases and fatalities
are presented in the left and central plots, respectively. α val-
ues are indicated in the legend. The α dependence of detected

cases at saturation is assessed in the right plot. D f in , D
approx
f in

and ∼ e0.8λ+/α are denoted by the solid black, the dashed blue
and dot-dashed orange curves, respectively. All plots are on log-
linear scale

Fig. 6 The effect of initial
slope of the infectious curve
λ+ and social distancing
strength α on the maximum
of detected cases per day
( dDdt )max is shown on the
left and right plots,
respectively. ( dDdt )max and
approximate expressions are
denoted by the solid black
and dot-dashed orange
curves, respectively. All
plots are on a log-linear
scale

ulation (λ+ and R0 are roughly proportional, in realis-
tic parameter ranges) [57], this conclusion has a sim-
ple and yet important interpretation. Namely, it means
that medical, demographic, and environmental predis-
positions (determining R0) [70,71] should be expected
to strongly influence the behavior of the considered
observables (detected cases and fatalities attributed to
the virus) [72–74]. On the other hand, R0 seems not to
significantly impact the infection extinguishing time.

Our analysis has shown that the strength of the
implemented social measures, quantified by α, effec-
tively appears in the denominator in the exponent of
the number of total COVID-19 casualties, as follows
from Eq. (27). The impact of the social measures is
thus, unsurprisingly, highly significant— as illustrated
in Figs. 5 and 6.

Evenmore interesting is the interplaybetween t0 (the
timing of the introduction of measures) and α values in
the asymptotic behavior of the COVID-19 observables.

Careful analysis of the functions for COVID-19 fatali-
ties (18) and detected cases (21) at saturation, as well as
the maximum of detected cases per day (24), revealed
that this dependence is, in all three cases, effectively of

the form: e(t0+ 1
α
)λ+ (see also Figs. 4 and 6). The sig-

nificance of the value tα = t0 + 1
α
has already been

numerically recognized in [57], where this combina-
tion of parameters was named “protection time”. Here
we show that the total number of fatalities and detected
COVID-19 cases for the entire infection wave does not
depend on either t0 or α individually, but only jointly,
through the protection time tα . The implications of this
analytical result are striking: introducing very strict
(and economically debilitating) social measures can
have precisely the same effect (infected case-wise and
mortality-wise) as implementing much weaker mea-
sures somewhat earlier.

For example, consider a decision to introduce weak-
to-moderate social measures, corresponding to α =
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0.1, some t0 days from the epidemic onset. If this deci-
sion is only oneweek postponed (i.e., measures put into
practice at t0 + 7), it would require far more restric-
tive policies, corresponding to α = 0.3, to compensate
for the delay and retain the same number of fatalities
(according to our analysis [58] - α = 0.3 corresponds
to the strongest social measures that had been imposed
in practice, in the first wave of COVID-19 pandemic).

“The sooner the better” conclusion regarding the
introduction of social measures is hardly surprising
[28–30] and does not require such a sophisticated anal-
ysis to reach. However, the analysis presented here pro-
vides uswith additional insight that was not so obvious:
even reasonablyweakmeasures introduced quickly and
without prolonged preparations seem to have much
strongermitigation potential than very strongmeasures
introduced with hesitation and delay.

Furthermore, since the numbers of COVID-19 fatal-
ities and detected cases in saturation depend upon the
protection time tα as etαλ+ , it is clear that the mea-
sures must be put into force sooner and/or be stronger
(i.e., tα lower) in populations with higher SARS-CoV-
2 reproduction number R0. While this conclusion is
fairly natural, having this quantitative relation and com-
bining it with machine learning techniques to estimate
R0 dependence upon demographic and environmental
parameters [71]may substantially aid the policymaking
process, in multiple ways. For example, by estimating
how much sooner the measures must be implemented
in areas with greater median age, higher prevalence
of comorbidities, or higher pollution [70,71]. Also, to
properly allocate medical resources according to this
interplay of R0, t0, and α.

6 Conclusion

In this manuscript, we demonstrated that it is possible
to carry out a full analytical treatment of a compart-
mental epidemiological model that takes into account
the effects of social distancing measures. The model
has shown a good agreement with publicly available
data on COVID-19 case counts.

As a benefit of having analytical solutions to the
model equations, we were able to point out simple
quantitative relations between the model variables and
epidemiological observables. Such relations provide
insights into cause-effect connections that underlie the

epidemiological dynamics and are obscured in more
standard, i.e., purely numerical, approaches.

Our analysis revealed a quantitatively expressible
interplay between the strength of the social measures
and the time of their introduction, showing that the
two variables effectively combine into a single relevant
parameter called protection time. This not only implies
that stringentmeasures canbeoften substitutedbymore
relaxed ones introduced at earlier times but provides a
direct analytical expression to quantify this trade-off.

We emphasize that our model and its implica-
tions are not COVID-19 specific and should hold for
any potential future epidemic. Many epidemiologists
believe that outbursts of new infectious diseases (or
even pandemics) are likely, possibly even in the near
future [75]. Thus, our results might be even more use-
ful in the future, i.e., in the early stages of some new
pandemic, when vaccines or effective pharmaceutical
treatments are still not at our disposal, but we can only
count on well-timed and appropriately chosen control
measures.
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A Appendix

A.1 Analytical derivation of the number of fatalities

To assess the dynamics of COVID-19 infection, we
employed the mechanistic model, defined by equations
(1)-(8). In Ref. [58], we have already obtained the num-
ber of infectious individuals as a function of time (9).
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Throughout the derivations, wewill distinguish two-
time regions: I) t ≤ t0 and II) t > t0, and will denote
the variables in these two regions accordingly.

First, we concentrate on deriving the expression for
the time evolution of the number of fatalities. To this
end, we start from Eqs. (7)-(8), which lead to a single
equation (10). In region I, this second-order inhomo-
geneous differential equation, after taking into account
the first term of Eq. (9) (i.e., II (t) = I0eλ+t ), reduces
to:

d2FI (t)

dt2
+ (h + m)

dFI (t)

dt
− mεδ I0e

λ+t = 0. (28)

If we assume FI (t = 0) = 0 and F ′
I (t = 0) = 0, the

time-dependent fatalities for t ≤ t0 are given by:

FI (t) = I0εδ

λ+
m

m + h

{
− 1 + λ+

h + m + λ+
e−(h+m)t

+ h + m

h + m + λ+
eλ+t

}
. (29)

In region II, for simplicity we shift t − t0 → t , and
take into account that the expression for infectious now

reads II I (t) = I0eλ+t0e− γ+εδ+σ
2 tK

( γ+εδ−σ
α

,
2
√

e−αtβσ

α

)
/K
( γ+εδ−σ

α
,
2
√

βσ
α

)
(the second term of Eq. (9)). Since

II I (t) has this complex form, the further derivations are

quite demanding. By substituting t → y = 2
√

e−αtβσ

α
,

it can easily be verified that Eq. (10) is in region II
reduced to the well-known second-order inhomoge-
neous Cauchy–Euler equation [76,77] ax2y′′ +bxy′ +
cy = g(x). After dividing thus obtained differential
equation by y2, we obtain

d2FI I

dy2
+
[
1 − 2(h + m)

α

] 1
y

dFI I

dy

= Cy
γ+εδ+σ

α
−2K

(γ + εδ − σ

α
, y
)
, (30)

whereC = 4I0εδm
α2

(
2
√

βσ/α
)− γ+εδ+σ

α eλ+t0/K
( γ+εδ−σ

α
,

2
√

βσ
α

)
.

Next, we apply the standard procedure for solving
inhomogeneous differential equation given byEq. (30):
the full solution equals homogeneous plus particu-
lar solution FI I (y) = FI I,h(y) + FI I,p(y). It is
straightforward to show that auxiliary/characteristic
equation yields the following simple form of homo-

geneous solution FI I,h(y) = C1 + C2y
2(h+m)

α (where
linearly independent solutions are FI I,1(y) = 1 and

FI I,2(y) = y
2(h+m)

α ), while for obtaining particu-
lar solution FI I,p(y) we used the Lagrange’s method
of variation of parameters [76]. More precisely, we

assume that FI I,p(y) = C1(y) + C2(y)y
2(h+m)

α , where
again linearly independent solutions of the homoge-
neous equation are employed. The unknown functions
Ci (i = 1, 2) of variable y are sought for via the stan-
dard procedure

C1(y) = −
∫

FI I,2(y) f (y)

W
dy,

C2(y) =
∫

FI I,1(y) f (y)

W
dy, (31)

where f (y) denotes the right-hand side of Eq. (30),
whileWronskian [76,77] is given byW = FI I,1F ′

I I,2−
FI I,2F ′

I I,1 = 2(h+m)
α

y
2(h+m)

α
−1. This leads to:

C1(t) = − Cα

2(h + m)

∫ 2
√

e−αt βσ
α

0
y

γ+εδ+σ
α −1

K
(γ + εδ − σ

α
, y
)
dy,

C2(t) = Cα

2(h + m)

∫ 2
√

e−αt βσ
α

0
y

γ+εδ+σ−2(h+m)
α −1

K
(γ + εδ − σ

α
, y
)
dy. (32)

In spite that the above form of the result will be more
useful in what follows, we nevertheless provide also its
full-fledged form:

C1(t) = C0

[(√
βσ

α

) γ+εδ−σ
α

e−(γ+εδ)t


(
γ + εδ

α

)

× 1F̃2

(
γ + εδ

α
; 1 + γ + εδ

α
, 1 + γ + εδ − σ

α
; e

−αtβσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α

e−σ t

(σ

α

)

× 1F̃2

(
σ

α
; 1 + σ

α
, 1 + σ − γ − εδ

α
; e

−αtβσ

α2

)]

π

2
csc

[
π(γ + εδ − σ)

α

]

C2(t) = −C0

[(√
βσ

α

) γ+εδ−σ
α

e−(γ+εδ)t


(
γ + εδ − h − m

α

)

123



22046 B. Ilic et al.

× 1F̃2

(
γ + εδ − h − m

α
; 1 + γ + εδ − h − m

α
, 1

+γ + εδ − σ

α
; e

−αtβσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α

e−σ t


(
σ − h − m

α

)

× 1F̃2

(
σ − h − m

α
; 1 + σ − h − m

α
, 1

+ σ − γ − εδ

α
; e

−αtβσ

α2

)]

× π

2
csc

[
π(γ + εδ − σ)

α

]
, (33)

where C0 = I0εδ
α

m
h+m e

λ+t0/K
( γ+εδ−σ

α
,
2
√

βσ
α

)
, while

pF̃q(a1, a2, ...ap; b1, b2, ...bq ; z) denotes regularized
generalized hypergeometric function [65]. The general
solution of Eq. (30), when returned to variable t , has a
form:

FI I (t) = C1 + C2e
−(h+m)t + C1(t)

+ C2(t)
(2√βσ

α

) 2(h+m)
α

e−(h+m)t , (34)

where the only unknown parameters are C1 and C2. In
order to determine these constants we use the following
boundary conditions: FI I (0) = FI (t0) and F ′

I I (0) =
F ′
I (t0). After some cumbersome calculation steps we

obtain the following expressions:

C1 = I0εδ
m

(h + m)

eλ+t0 − 1

λ+

− C0

[(√
βσ

α

) γ+εδ−σ
α




(
γ + εδ

α

)

× 1F̃2

(
γ + εδ

α
; 1 + γ + εδ

α
, 1

+γ + εδ − σ

α
; βσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α



(σ

α

)

1F̃2

(
σ

α
; 1 + σ

α
, 1 + σ − γ − εδ

α
; βσ

α2

)]
π

2

× csc

[
π(γ + εδ − σ)

α

]
(35)

C2 = I0εδ
m

(h + m)

e−(h+m)t0 − eλ+t0

h + m + λ+

+ C0

[(√
βσ

α

) γ+εδ−σ
α




(
γ + εδ − h − m

α

)

× 1F̃2

(
γ + εδ − h − m

α
; 1 + γ + εδ − h − m

α
, 1

+ γ + εδ − σ

α
; βσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α




(
σ − h − m

α

)

× 1F̃2

(
σ − h − m

α
; 1 + σ − h − m

α
, 1

+σ − γ − εδ

α
; βσ

α2

)]
π

2

× csc

[
π(γ + εδ − σ)

α

]
(36)

Now, if we use the definition of regularized general-
ized hypergeometric functions, the above expressions
can be significantly simplified and reduced to the form
similar to Eq. (32). Namely [65]

1F̃2(a1; b1, b2; z) =
∞∑
k=0

(a1)k zk

k!
(k + b1)
(k + b2)
, (37)

where (a1)0 = 1, while for k � 1

(a1)k = a(a + 1)...(a + k − 1). (38)

Let us first concentrate onC1, where fromEq. (35) it
follows that z = βσ/α2. By denoting a1 = (γ +εδ)/α

and a2 = σ/α, it is straightforward to infer that the
expression in the square brackets of Eq. (35) can be
rewritten in a form:

I1 = z
a1−a2

2 
(a1) 1F̃2(a1; 1 + a1, 1 + a1 − a2; z)
− z

a2−a1
2 
(a2) 1F̃2(a2; 1 + a2, 1 + a2 − a1; z).

(39)

After multiplying the right-hand side by z
a1+a2

2 /z
a1+a2

2

we obtain:

I1 = 1

z
a1+a2

2

∞∑
k=0

[ zk+a1

k!(k + a1)
(k + 1 + a1 − a2)

− zk+a2

k!(k + a2)
(k + 1 + a2 − a1)

]
, (40)

123



An analytical framework for understanding 22047

where we made use of the fact that 
(n + 1) = n
(n)

and 
(a)(a)k = 
(a + k) (see Eq. (38)). To further
simplify Eq. (40), we adopt the following notation

J1 = ∑∞
k=0

zk+a1

k!(k+a1)
(k+1+a1−a2)
and differentiate it

with respect to z:

dJ1

dz
=

∞∑
k=0

(
√
z)2k+2a1−2

k!
(k + 1 + a1 − a2)
. (41)

As already mentioned, the main idea is to try to
reduce Eq. (35) to a form similar to Eq. (32), i.e., to
relate the above expression to modified Bessel func-
tions, and the modified Bessel function of the first
kind [64] is defined as:

In(x) =
∞∑
k=0

( x
2

)2k+n

k!
(k + n + 1)
. (42)

By comparing Eqs. (41) and (42), we observe that their
right-hand sides are of a similar form, if x/2 → √

z,
n → a1 − a2, that is:

dJ1

dz
= (

√
z)a1+a2−2Ia1−a2(2

√
z). (43)

Proceeding in a similar manner in the case of the
remaining term in Eq. (40) J2 = ∑∞

k=0
zk+a2

k!(k+a2)
(k+1+a2−a1)
we arrive at:

dJ2

dz
= (

√
z)a1+a2−2Ia2−a1(2

√
z). (44)

Note, from Eq. (40), that I1 = z−
a1+a2

2 (J1 − J2).
By substituting integrated Eqs. (43) and (44) in

Eq. (40), and thus obtained expression in Eq. (35), for
C1 we finally obtain:

C1 = I0εδ
m

(h + m)

eλ+t0 − 1

λ+
+ 2C0

(2√βσ

α

)− γ+εδ+σ
α

×
∫ 2

√
βσ
α

0
y

γ+εδ+σ
α

−1K
(γ + εδ − σ

α
, y
)
dy. (45)

Note that, in obtaining the above expression the iden-
tity [66,68] relatingmodifiedBessel functionof thefirst
and the second kind I−n(x)−In(x) = 2

π
sin(nπ)Kn(x)

was used.

The remaining constantC2 (see Eq. (36)) from fatal-
ity counts expression is simplified by applying the same
procedure as in the case of C1. To avoid redundant
derivations (i.e., the repetition of the above calcula-
tions), we simply outline the final expression:

C2 = I0εδ
m

(h + m)

e−(h+m)t0 − eλ+t0

h + m + λ+

− 2C0
(2√βσ

α

)− γ+εδ+σ−2(h+m)
α

×
∫ 2

√
βσ
α

0
y

γ+εδ+σ−2(h+m)
α

−1K
(γ + εδ − σ

α
, y
)
dy,

(46)

with the only distinction that, in the process of simpli-
fication, parameters a1 and a2 now read (γ + εδ − h −
m)/α and (σ − h − m)/α, respectively.

Now that all terms of fatalities count (given by
Eq. (34)) are determined, we note that all constants
(C1,C2,C1(t) and C2(t)) are still in their integral
form. Since, for all countries that we consider it holds
2
√

βσ/α � 1, we may further simplify these integrals
by utilizing Hankel’s asymptotic expression [66]:

Kn(x) ∼
√

π

2x
e−x
(
1 + O

(1
x

))
, (47)

which holds for large x = 2
√

βσ/α.
Along these lines, we rewrite Eqs. (32, 45, 46):

C1 ≈ I0εδ
m

(h + m)[eλ+t0 − 1

λ+
+ 2

α

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
eλ+t0+ 2

√
βσ
α

×
∫ 2

√
βσ
α

0
y

γ+εδ+σ
α

− 3
2 e−ydy

]

C2 ≈ I0εδ
m

(h + m)

[e−(h+m)t0 − eλ+t0

h + m + λ+

− 2

α

(2√βσ

α

)− γ+εδ+σ−2(h+m)
α

+ 1
2

× eλ+t0+ 2
√

βσ
α

∫ 2
√

βσ
α

0
y

γ+εδ+σ−2(h+m)
α

− 3
2 e−ydy

]

C1(t) ≈ −2I0εδ

α

m

h + m

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
eλ+t0+ 2

√
βσ
α
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×
∫ 2

√
e−αt βσ

α

0
y

γ+εδ+σ
α

− 3
2 e−ydy

C2(t) ≈ 2I0εδ

α

m

h + m

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
eλ+t0+ 2

√
βσ
α

×
∫ 2

√
e−αt βσ

α

0
y

γ+εδ+σ−2(h+m)
α

− 3
2 e−ydy, (48)

where we also used the same approximation given by
Eq. (47) for modified Bessel function of the second
kind contained inC andC0. Note that the second terms
of C1 and C1(t) on one side, and the second terms of
C2 and C2(t) on the other have the same exponents
(keep in mind that, according to Eq. (34), there is still a

remaining factor
(
2
√

βσ/α
) 2(h+m)

α multiplying C2(t)).
In Eq. (48), we encounter the lower incomplete

gamma function [66] γ (s, x) = ∫ x
0 t s−1e−tdt , which

we go about by utilizing [66]:

γ (s, x) = 
(s) − 
(s, x), (49)

where 
(s, x) = ∫∞
x t s−1e−tdt represents the upper

incomplete gamma function [66].
Finally, upon implementing thus calculated con-

stants of Eq. (48) in Eq. (34), and by taking into account
Eq. (29), we obtain the expression (16) for the general
solution of Eq. (10) at the entire t region.

A.2 Analytical derivation of detected cases

Next, we concentrate on the time evolution of detected
counts. To this end, we make use of Eqs. (6) and (9),
i.e.

D(t) = εδ

∫
I (t)dt + Ci , (50)

where Ci (i = 3, 4) stands for the constant of inte-
gration. In region I the integration of II (t) (the first
term in Eq. (9)) is straightforward and yields DI (t) =
I0εδ
λ+ eλ+t + C3, while C3 is obtained from the initial

conditions DI (t = 0) = D0 ≡ I0εδ
λ+ , leading to:

DI (t) = I0εδ

λ+
eλ+t . (51)

In region II, the integration is more demanding, due
to the form of II I (t) (the second term of Eq. (9)). To

address this, we employ the following substitution of

variable t − t0 → x = 2
√

βσ
α

e− α(t−t0)

2 . Thus:

DI I (t) = −2C0
h + m

m

(2√βσ

α

)− γ+εδ+σ
α

×
∫ 2

√
e−α(t−t0)βσ

α

2
√

βσ
α

x
γ+εδ+σ

α −1

K
(γ + εδ − σ

α
, x
)
dx + C4. (52)

Note that, as opposed to our previous notation during
the derivation of FI I (t), nowwe do not make use of the
substitution t − t0 → t . Because of this, the boundary
condition reads: DI I (t0) = DI (t0), which is used for
determining the integration constant C4 = I0εδ

λ+ eλ+t0 .
So, the expression for detected cases reads:

D(t) = θ(t0 − t)
I0εδ

λ+
eλ+t + θ(t − t0)

{
I0εδ

λ+
eλ+t0 + C0

h + m

m

×
[(√

βσ

α

)− γ+εδ−σ
α



(σ

α

)

1F̃2

(
σ

α
; 1 + σ

α
, 1 + σ − γ − εδ

α
; βσ

α2

)

−
(√

βσ

α

) γ+εδ−σ
α




(
γ + εδ

α

)

× 1F̃2

(
γ + εδ

α
; 1 + γ + εδ

α
, 1 + γ + εδ − σ

α
; βσ

α2

)

+
(√

βσ

α

) γ+εδ−σ
α

e−(γ+εδ)(t−t0)


(
γ + εδ

α

)

× 1F̃2

(
γ + εδ

α
; 1 + γ + εδ

α
, 1

+γ + εδ − σ

α
; e

−α(t−t0)βσ

α2

)

−
(√

βσ

α

)− γ+εδ−σ
α

e−σ(t−t0)

(σ

α

)

× 1F̃2
(σ

α
; 1 + σ

α
, 1

+σ − γ − εδ

α
; e

−α(t−t0)βσ

α2

)]

π

2
× csc

[
π(γ + εδ − σ)

α

]}
. (53)
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After performing the same algebraic manipulations of
regularized generalized hypergeometric functions as in
the previous Subsect. A.1, as well as applying Hankel’s
approximation (47), we obtain the expression (19) for
the general solution of Eq. (11) at the entire t region.

Alternatively, the same expression (19) could be
obtained more straightforwardly. Namely, the expres-
sion for the number of infectious individuals (Eq. (9))
can be simplified by utilizing Eq. (47):

I (t) = θ(t0 − t)I0e
λ+t + θ(t − t0)

I0e
λ+t0+ 2

√
βσ
α e

− α(t−t0)

2

(
γ+εδ+σ

α
− 1

2

)

× e− 2
√

e−α(t−t0)βσ

α . (54)

Now that I (t) has been determined in the desired form,
the detected counts can be calculated from Eq. (11). In
region I, the derivation is straightforward (and therefore
omitted) and leads to Eq. (51). In region II, the integra-
tion is more demanding, due to the form of II I (t) =
I0eλ+t0+ 2

√
βσ
α e− α(t−t0)

2 (
γ+εδ+σ

α
− 1

2 )e− 2
√

e−α(t−t0)βσ

α .
To address this, again we employ the following sub-

stitution of variable t − t0 → x = 2
√

βσ
α

e− α(t−t0)

2 ,
resulting in the boundary condition DI I (t0) = DI (t0)
(which is used for determining the integration constant
C4). In a similar manner as before, we again encounter
the incomplete gamma functions [66]:

DI I (t) = −2I0εδ

α

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
e
2
√

βσ
α

+λ+t0

×
∫ 2

√
e−α(t−t0)βσ

α

2
√

βσ
α

x
γ+εδ+σ

α
− 3

2 e−xdx + C4.

(55)

The only difference compared to Eq. (48) is that now
the lower boundary of integration is not zero but some
positive real number. This integral is solved by apply-
ing the identity

∫ b
a xs−1e−xdx = ∫ b

0 xs−1e−xdx −∫ a
0 xs−1e−xdx = 
(s, a)−
(s, b). By combining this
result with Eq. (51), we finally arrive at the expression
(19) for the number of detected cases.

A.3 Simplified expressions for fatalities and detected
cases

In this section, we show that certain terms in the
expressions for fatalities and detected cases can be
neglected (when epidemiological parameters are in
realistic ranges), without significant loss of predic-
tive precision. First, we start with Eq. (16) for fatal-
ity counts. We notice that for t > t0 first two terms
are much smaller than the remaining terms, due to
2
√

βσ/α � 1, and therefore can be neglected. Addi-
tionally, for the same reason all 
(s, 2

√
βσ/α) →


(s,∞) are approximately equal to zero (i.e., the
gamma integral is effectively

∫∞
∞ ). Therefore, instead

of Eq. (16), the following formula can be safely used
in practice:

Fsimp(t) ≈ I0εδ
m

h + m{
θ(t0 − t)

(eλ+t − 1

λ+
+ e−(h+m)t − eλ+t

h + m + λ+

)

+ θ(t − t0)
2

α

(2√βσ

α

)− γ+εδ+σ
α

+ 1
2
eλ+t0+ 2

√
βσ
α

×
[


(γ + εδ + σ

α
− 1

2
,
2
√
e−α(t−t0)βσ

α

)

−
(2√e−α(t−t0)βσ

α

) 2(h+m)
α

× 

(γ + εδ + σ − 2(h + m)

α

− 1

2
,
2
√
e−α(t−t0)βσ

α

)]}
. (56)

Continuing in the same manner, the simplified form of
the number of detected cases is easily obtained:

Dsimp(t) ≈ I0εδ[
θ(t0 − t)

eλ+t

λ+
+ θ(t − t0)

2

α(2√βσ

α

)− γ+εδ+σ
α

+ 1
2

× eλ+t0+ 2
√

βσ
α



(γ + εδ + σ

α
− 1

2
,
2
√
e−α(t−t0)βσ

α

)]
.

(57)
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We have numerically tested and confirmed that the
full-fledged (given by Eq. (16)) and simplified (given
by Eq. (56)) fatality curves are practically overlapping
(and the same for the detected cases).

A.4 Expressions for fatalities and detected cases at sat-
uration

We will evaluate the saturation values of fatalities and
detected counts, that is, their expressions in the limit of
very large t . This means that we can concentrate only
on t > t0, i.e., region II, wherewe set t → ∞. Building
on the results of the previous section, from Eq. (56) we
observe that, in this limit, the second term in the square
brackets can be neglected, due to e−(h+m)(t−t0) → 0.
Likewise,



(γ + εδ + σ

α
− 1

2
,
2
√
e−α(t−t0)βσ

α

)

→ 

(γ + εδ + σ

α
− 1

2
, 0
)

≡ 

(γ + εδ + σ

α
− 1

2

)
.

Therefore, we obtain the expressions (17) and (20) for
the saturation values.

A.5 Expressions for the epidemics peak and tipping
points

Other important quantities characterizing infection
dynamics during the first wave are epidemics peak time
and inflection (tipping and turning) points, for which
we here provide analytic expressions. Namely, the epi-
demics peak time is the moment when infected curve
reaches its maximal value (i.e., dI/dt = 0), or equiva-
lently d2D/dt2 = 0. The second derivative of Eq. (19)
in region II (or equivalently Eq. (57) in the same region)
yields:

d2DI I

dt2
= I0εδe

λ+t0+ 2
√

βσ
α

e
− α(t−t0)

2

(
γ+εδ+σ

α
− 1

2

)
e− 2

√
e−α(t−t0)βσ

α

×
(

− γ + εδ + σ

2
+ α

4
+
√
e−α(t−t0)βσ

)
.

(58)

In deriving the above expression,wemade use of equal-
ity d
(s, x)/dx = −xs−1e−x , following from the def-
inition of incomplete gamma functions [66]. Note that,
in this subsection, we are interested in region II, where
all relevant points lay.After equating the second deriva-
tive of DI I with zero, for the epidemics peak time, we
obtain:

tmax = t0 + 1

α
ln
[ 16βσ

(2(γ + εδ + σ) − α)2

]
. (59)

By evaluating dD
dt at t = tmax , we can straightforwardly

obtain the maximum of detected cases per day, given
by

(
dD

dt

)
max

= D0λ+e
λ+
(
t0+ 2

α

)
+ 1

2

(
4
√

βσ

2(γ + εδ + σ) − α

) 1
2− γ+εδ+σ

α

. (60)

Along the same lines, the epidemics inflection points
are defined as d2 I/dt2 = 0, or equivalently d3D/dt3 =
0:

d3DI I

dt3
= I0εδe

λ+t0+ 2
√

βσ
α e− α(t−t0)

2 (
γ+εδ+σ

α
− 1

2 )

e− 2
√

e−α(t−t0)βσ

α

×
[(γ + εδ + σ

2
− α

4
−
√
e−α(t−t0)βσ

)2

− α

2

√
e−α(t−t0)βσ

]

= 0. (61)

Eq. (61) has two solutions, which correspond to the
infection tipping points

t1,2 = t0 + 2

α
ln
( 2

√
βσ

γ + δε + σ ∓
√

α
(
γ + εδ + σ − α

4

)
)
.

(62)

The duration of the epidemic peak can then be
defined as a difference between these two tipping points
and is equal to:

Δtpeak = 4

α
ln
(γ + εδ + σ +

√
α(γ + εδ + σ − α

4 )

γ + εδ + σ − α/2

)
.

(63)
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We study whether it is possible to use high-p⊥ data/theory to constrain the temperature dependence of the
shear viscosity over entropy density ratio η/s of the matter formed in ultrarelativistic heavy-ion collisions at
the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). We use two
approaches: (i) We calculate high-p⊥ RAA and flow coefficients v2, v3, and v4 assuming different (η/s)(T ) of
the fluid-dynamically evolving medium. (ii) We calculate the quenching strength (q̂/T 3) from our dynamical
energy loss model and convert it to η/s as a function of temperature. It turned out that the first approach cannot
distinguish between different (η/s)(T ) assumptions when the evolution is constrained to reproduce the low-p⊥
data. In distinction, (η/s)(T ) calculated using the second approach agrees surprisingly well with the (η/s)(T )
inferred through state-of-the-art Bayesian analyses of the low-p⊥ data even in the vicinity of Tc, while providing
much smaller uncertainties at high temperatures.

DOI: 10.1103/PhysRevC.108.044907

I. INTRODUCTION

Quantum chromodynamics (QCD) predicts that at ex-
tremely high densities matter undergoes a transition to a state
consisting of deconfined and interacting quarks, antiquarks,
and gluons [1,2]. According to the current cosmology, this
new state of matter, called quark-gluon plasma (QGP) [3],
existed immediately after the big bang [4]. Today, QGP is
created in “little bangs,” when heavy ions collide at ultrarel-
ativistic energies [5] in experiments at the BNL Relativistic
Heavy Ion Collider (RHIC) and the CERN Large Hadron
Collider (LHC). Such collisions lead to an expanding fireball
of quarks and gluons, which thermalizes to form QGP. The
QGP cools down, and quarks and gluons hadronize when the
temperature T drops to the critical temperature Tc.

*Email: magda@ipb.ac.rs

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

Extracting useful information from “little bangs” requires
comparing theoretical predictions with experimental data.
By such comparisons, it is established that QGP is formed
in the RHIC and LHC experiments [6] through two main
lines of evidence [5–7]: (i) by comparison of low transverse
momentum (p⊥) measurements with relativistic hydrodynam-
ical predictions, which imply that created QGP is consistent
with the description of a nearly perfect fluid [8–10], and
(ii) by comparison of perturbative QCD (pQCD) predictions
with high-p⊥ data [11–14], which showed that high-p⊥ par-
tons (jets) significantly interact with the opaque medium [5].
Beyond the discovery phase, the current challenge is to inves-
tigate the properties of this extreme form of matter [15–25].

The QGP was expected to behave as a weakly interacting
gas based on ideas of asymptotic freedom and color screening
[26]. Thus, the agreement of the fluid-dynamical predictions,
which assumed the QGP to behave as a nearly inviscid fluid,
with the data came as a surprise [10]. Furthermore, subse-
quent calculations revealed [10] that reproduction of the data
required the shear viscosity to entropy density ratio (η/s) of
QGP to be near the lower bound predicted by anti–de Sitter
and conformal field theory (AdS/CFT) correspondence [27].

However, the temperature of the QGP changes significantly
[28] during the evolution of the collision system. For exam-
ple, in the LHC experiments, the temperature is estimated
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to span the range from 4Tc to Tc. Even if the QGP behaves
as a perfect fluid close to Tc (the “soft,” strongly coupled
regime), its η/s may significantly increase with increasing T
if the QGP becomes weakly coupled at higher temperatures
(the “hard,” weakly coupled regime). We call this possibility
the “soft-to-hard” medium hypothesis.

Testing this hypothesis has turned out to be surprisingly
difficult. Reproduction of the observed anisotropies of low-p⊥
particles necessitates low η/s in the vicinity of Tc, but the
value of shear viscosity in higher temperatures has only a
weak effect on anisotropies in collisions at LHC energies,
and basically no effect at all at RHIC [29–31]. In the recent
Bayesian analyses of the data, this is manifested in a well
constrained η/s in the Tc <∼ T <∼ 1.5Tc temperature range and
weak constraints at larger temperatures [17–20]. Some of the
most recent Bayesian analyses [32,33] even suggest that η/s
may decrease in the region Tc–2Tc, where the reason for such
a decrease still remains to be understood.

Thus, it is evident that a complementary theory and ob-
servables are needed to investigate the “soft-to-hard” medium
hypothesis. Since most of the jet energy loss takes place when
the system is hottest, it is reasonable to expect the high-p⊥
observables to be sensitive to the properties of the system
at that stage. To use jet energy loss and high-p⊥ data to
provide constraints to the bulk properties of the collision sys-
tem, we developed the state-of-the-art DREENA tomography
tool [34,35] based on the dynamical energy loss formalism
[36–38]. So far, we have used this tool to, e.g., provide con-
straints to the early evolution of the collision system [22] and
map how the shape of the collision system is manifested in the
high-p⊥ data [23].

In this study, we explore whether high-p⊥ data can provide
constraints on the η/s ratio of QGP at high temperatures. As
is known, shear viscosity generates entropy, which means that
the system with larger viscosity cools slower or, alternatively,
to reach the same final entropy, the system with larger vis-
cosity must have a lower initial temperature. Thus, different
assumed η/s during the early evolution of the system may
lead to different jet energy loss and therefore different nuclear
suppression factor RAA. As well, azimuthal anisotropy in path
lengths and temperature along the paths leads to azimuthal
dependence of jet suppression [5], which is measured as vn

of high-p⊥ particles. High-p⊥ vn are known to be sensitive
to the details of the medium evolution [34,35,39], and, since
viscosity changes the evolution of the anisotropy of the sys-
tem, the changes in η/s can lead to changes in high-p⊥ vn. We
choose three different parametrizations of (η/s)(T ), adjust the
parameters to reproduce the low-p⊥ data measured in

√
sNN =

200 GeV Au + Au collisions (RHIC) and
√

sNN = 5.02 TeV
Pb + Pb collisions (LHC), calculate the temperature evolution
of the system, and energy loss of jets traversing this system in
each case, and evaluate the RAA and high-p⊥ v2, v3, and v4 to
see if different assumptions of η/s lead to differences in these
observables.

Complementary to this phenomenological approach to in-
fer the η/s ratio from the experimental data, we also provide a
fully theoretical estimate of η/s based on jet energy loss: The
jet quenching strength is quantified through the jet quenching
parameter q̂. It has been argued that in a weakly coupled

regime T 3/q̂ is directly proportional to η/s [40], and thus
evaluating one allows one to know the other. We estimate
the quenching parameter q̂ as function of temperature using
our dynamical energy loss formalism, convert it to η/s, and
compare the resulting (η/s)(T ) to constraints obtained from
state-of-the-art Bayesian analyses [18,19].

II. METHODS

A. Modeling the bulk evolution

To calculate the temperature evolution and the low-p⊥
observables we use the version of VISHNEW [41,42] used in
Refs. [17,18,43].1 It is a code to solve the dissipative fluid-
dynamical equations in 2+1 dimensions, i.e., assuming boost
invariance. Shear stress and bulk pressure are taken as dy-
namical variables and evolved according to the Israel-Stewart
type equations [45]. We use an equation of state (EoS) [43]
that combines the lattice QCD-based EoS of the HotQCD
Collaboration [46] at large temperatures and a hadron reso-
nance gas EoS at low temperatures. At a constant temperature
Tsw = 151 MeV hypersurface, we convert the fluid to par-
ticle ensembles according to the Cooper-Frye prescription
[47]. These ensembles are fed to the UrQMD hadron cascade
[48,49], which describes the evolution of the hadronic stage
of the system until freeze-out.

We generate the event-by-event fluctuating initial states
using the TRENTo model [50]. In this model nucleus-nucleus
collisions are considered as a superposition of nucleon-
nucleon collisions. The nucleons are represented by Gaussian
distributions, which in this study have the width w = 0.5
fm while the minimum nucleon-nucleon distance within the
nucleus is also set to d = 0.5 fm. The inelastic nucleon-
nucleon cross section is 70 mb at

√
sNN = 5.02 TeV (energy

of Pb + Pb collisions) and 42 mb at
√

sNN = 200 GeV (energy
of Au + Au collisions). For the other parameters we use the
maximum a posteriori (MAP) values found in Ref. [18]. We
do not allow any preequilibrium evolution (free-streaming or
otherwise), and use τ0 = 1 fm/c as the initial time for fluid-
dynamical evolution, since the reproduction of the high-p⊥
observables does not allow strong transverse expansion earlier
[22].

We include both bulk and shear viscosity in our fluid-
dynamical calculation. The temperature dependence of the
bulk viscosity coefficient ζ is parametrized as a Cauchy dis-
tribution [18]:

(ζ/s)(T ) = (ζ/s)max

1 +
(

T −T0
(ζ/s)width

)2 . (1)

We consider a small bulk viscosity with a maximum value
(ζ/s)max = 0.03, the width parameter (ζ/s)width = 0.022, and
T0 = 0.183 GeV. As in the case of the TRENTo parameters
described above, the width and T0 correspond to MAP pa-
rameter values from Ref. [18]. However, the maximum of the
bulk viscosity [(ζ/s)max] is decreased compared to the MAP

1Code available at [44].
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value in [18] to compensate for the lack of preequilibrium free
streaming and still reach agreement with the p⊥ spectra.

As mentioned, our main objective is to find out whether
high-p⊥ data can provide constraints to η/s at high tem-
peratures. Naively one can expect the jet energy loss to be
proportional to the third power of temperature (T 3), but a
detailed calculation has shown it to be proportional to only

T 1.2 [51,52]. Since the sensitivity to temperature is weaker
than expected, we want to maximize the difference in tem-
perature due to differences in η/s. Therefore we do not
take as our (η/s)(T ) the upper and lower limits suggested
by the Bayesian analyses [18,19] but something more ex-
treme. We parametrize the temperature dependence of η/s as
[17,18]

(η/s)(T ) =
{

(η/s)min, T < Tc,

(η/s)min + (η/s)slope(T − Tc)
(

T
Tc

)(η/s)crv
, T > Tc,

(2)

where (η/s)min is the minimum value of the specific shear
viscosity, (η/s)slope is the slope above Tc, and (η/s)crv

controls the curvature above Tc. Tc is fixed to the pseudo-
critical temperature Tc = 154 MeV evaluated by the HotQCD
Collaboration [46].

We study three different scenarios, each capable of describ-
ing a subset of low-p⊥ data at RHIC and LHC with reasonable
accuracy:

(1) constant η/s (0.15 for Pb + Pb collision at LHC and
0.12 for Au + Au collision at RHIC),

(2) (η/s)min = 0.1, (η/s)slope = 1.11, (η/s)crv = −0.48,
(3) (η/s)min = 0.04, (η/s)slope = 3.30, (η/s)crv = 0.

The parameters in our second scenario are within the 90%
credible intervals of the analysis of Ref. [18]. Therefore, we
label it as “Nature.” Nevertheless, our (η/s)min is larger than
in Ref. [18] since we require the reproduction of the RHIC
data, not only the LHC data. As is known, including the
RHIC data tends to increase the favored minimum value of
η/s [20]. Our third scenario with its very rapidly rising η/s
(see Fig. 8) is inspired by the “LHHQ” parametrization in
Ref. [30]. Consequently, we label it as such.

To calculate the low-p⊥ and high-p⊥ predictions, we gen-
erated 104 minimum-bias events and sorted the events in
centrality classes according to the number of participants.
While using the final particle multiplicity would be closer to
the centrality selection done in experiments, participant num-
ber sorting allows us to reduce the number of hydrodynamic
simulations by focusing on the narrower (10–50)% centrality
range, thus saving computational resources (we numerically
tested that this approximation would have a negligible effect
on theoretical predictions). Finally, we evaluated the event-
averaged observables in each centrality bin.

We reproduced the pion, kaon, and proton multiplici-
ties and charged hadron four-particle cumulant elliptic flow
v2{4} in Au + Au collisions at

√
sNN = 200 GeV (RHIC) and

Pb + Pb collisions at
√

sNN = 5.02 TeV (LHC) in 10–20%,
20–30%, 30–40%, and 40–50% centrality classes by varying
only the nucleon-nucleon cross section according to the col-
lision energy and the overall normalization factor according
to the collision energy and choice of (η/s)(T ). All the other
TRENTo parameters were kept the same in all cases. For the
LHHQ parametrization, the minimum value of η/s is chosen
to get an acceptable agreement of v2{4} with both Pb + Pb and
Au + Au collision data. The centrality dependence of charged

particle multiplicities (p⊥-integrated yields) for Pb + Pb and
Au + Au collisions with three different (η/s)(T ) parametriza-
tions found from the hydrodynamical simulation are shown
in the left panels of Fig. 1. The four-particle elliptic flow
coefficient v2{4} at different centrality classes for Pb + Pb and
Au + Au collisions are shown in the right panels of Fig. 1.

B. Overview of DREENA framework

After evaluating the temperature evolution, we use the
“generalized DREENA-A” framework to calculate the high-p⊥
observables: Nuclear suppression factor RAA and high-p⊥ flow
harmonics v2, v3, and v4. DREENA (Dynamical Radiative and
Elastic ENergy loss Approach) is a computationally efficient
tool for QGP tomography [34,35], based on generalized hard
thermal loop (HTL) perturbation theory [57] with naturally
regulated infrared divergences [36,58]. In this formalism both
the radiative [37,38] and collisional energy loss [36] of high
energy particles have been computed in an evolving QCD
medium of finite size at finite temperature. Furthermore, the
framework is extended to account for running coupling [59],
finite magnetic mass [60], and beyond soft-gluon approxima-
tion [58]. We also recently extended the formalism towards
finite orders in opacity [61], but showed that higher-order
effects can be neglected for high-p⊥ predictions. Thus, a
computationally more efficient version with one scattering
center is used in this study. Additionally, in this framework,
all parameters are fixed to standard literature values stated
below (i.e., no fitting parameters are used) [22,23]. This
allows systematic comparison of data and the predictions
from the simulation obtained using the same formalism and
parameter set.

We use the generic pQCD convolution formula [59,62] to
generate the final quenched (q) and unquenched (u) spectra of
hadrons as

E f d3σq(HQ)

d p3
f

= Eid3σ (Q)

d p3
i

⊗ P(Ei → E f ) ⊗ D(Q → HQ),

(3)

E f d3σu(HQ)

d p3
f

= Eid3σ (Q)

d p3
i

⊗ D(Q → HQ), (4)

where i and f denote the initial parton (Q) and the final
hadron (HQ) respectively. Eid3σ (Q)

d p3
i

represents the initial par-
ton spectrum calculated at the next-to-leading order for light
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FIG. 1. Left panels: Centrality dependence of the p⊥-integrated yields of pions, kaons, and protons are shown in different centrality classes.
The pion multiplicity is scaled by 0.5. The upper panel corresponds to 5.02 TeV Pb + Pb collisions, where the ALICE experimental data are
taken from Ref. [53]. The lower panel corresponds to 200 GeV Au + Au collisions, where the PHENIX experimental data are taken from
Ref. [54]. Right panels: v2{4} is shown at different centrality classes. The upper panel corresponds to 5.02 TeV Pb + Pb collisions, where
the ALICE experimental data are taken from Ref. [55]. The lower panel corresponds to 200 GeV Au + Au collisions, where the STAR
experimental data are taken from Ref. [56].

and heavy partons [63–65]. P(Ei → E f ) is the energy loss
probability computed within finite temperature field theory.
D(Q → HQ) represents the fragmentation function. DSS [66],
BCFY [67,68], and KLP [69] fragmentation functions were
used for charged hadrons, D mesons, and B mesons, respec-
tively. DREENA-A [35], where “A” stands for adaptive (i.e.,
arbitrary) temperature profiles, has been optimized to incorpo-
rate any event-by-event fluctuating temperature profile [34].
For parameters, we use �QCD = 0.2 GeV [70–72] and the
effective numbers of light quark flavors, n f = 3 and 2.5 for
Pb + Pb and Au + Au collision systems, respectively. We
also consider the gluon mass mg = μE/

√
2 [73], where μE is

the temperature-dependent Debye mass computed following
the procedure in Ref. [70] (outlined in the next subsection).
We assume the mass of the light quarks to be μE/6, and
the masses of the charm and bottom quarks to be 1.2 and
4.75 GeV, respectively. The magnetic-to-electric mass ratio is
μM/μE = 0.6 [74].

C. Derivation of transport coefficient q̂ from dynamical
energy loss formalism

To derive the transport coefficient q̂, which is the squared
average transverse momentum exchange between the medium

and the fast parton per unit path length [75], we start from
dynamical perturbative QCD medium, where the interaction
between high-p⊥ partons and QGP constituents can be char-
acterized by the HTL resummed elastic collision rate [76]:

d�el

d2q
= 4CA

(
1 + n f

6

)
T 3 α2

s

q2
(
q2 + μ2

E

) . (5)

While αs in Eq. (5) is presumed to be constant, for RHIC
and LHC, it is necessary to include running coupling constant
in the kernel due to the wide kinematic range covered in
these experiments. To include running coupling in dynamical
energy loss formalism, we adopt the procedure from Ref. [77]
where

α2
s → αs(ET )αs

(
μ2

E

)
, (6)

and μE is obtained [70] as a self-consistent solution to

μ2
E =

(
1 + n f

6

)
4πα

(
μ2

E

)
T 2, (7)

where

α(t ) = 4π(
11 − 2

3 n f
) 1

ln
(

t
�2

) , (8)
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leading to

μE =
√

�2
ξ (T )

W (ξ (T ))
, (9)

where

ξ (T ) = 1 + n f

6

11 − 2
3 n f

(
4πT

�

)2

, (10)

and W is Lambert’s W function. Note that μE obtained
through this procedure agrees with lattice QCD results [70].

By using Eqs. (9) and (6), Eq. (5) reduces to

d�el

d2q
= CA

π
T

α(ET )μ2
E

q2
(
q2 + μ2

E

) , (11)

which reproduces Eq. (16) from Ref. [76] in the case of con-
stant coupling α(ET ) = g2/4π . Following Ref. [60], finite
magnetic mass can be introduced into Eq. (11), reducing the
collision rate to

d�el

d2q
= CA

π
T α(ET )

μ2
E − μ2

M(
q2 + μ2

E

)(
q2 + μ2

M

) , (12)

where μM is the magnetic mass defined in the previous sub-
section, and CA = 4/3. This expression [i.e., Eq. (12)] can be
further reduced to

d�el

d2q
= CA

π
T α(ET )

(
1

q2 + μ2
M

− 1

q2 + μ2
E

)
. (13)

In the fluid rest frame, the transport coefficient q̂ can then
be computed as [76,78]

q̂ =
∫ √

6ET

0
d2q q2 d�el

d2q

= CAT α(ET )
∫ 6ET

0
dq2 q2

(
1

q2 + μ2
M

− 1

q2 + μ2
E

)

= CAT
4π(

11 − 2
3 n f

)
(
μ2

E ln
[ 6ET +μ2

E
μE2

] − μ2
M ln

[ 6ET +μ2
M

μ2
M

])
ln

(
ET
�2

) .

(14)

In the limit ET → ∞, Eq. (14) reduces to an expression
independent of jet E :

q̂ = CAT
4π

11 − 2
3 nF

⎛
⎝μ2

E

ln ET
μ2

E /6

ln ET
�2

− μ2
M

ln ET
μ2

M/6

ln ET
�2

⎞
⎠

≈ CAT
4π

11 − 2
3 nF

(
μ2

E − μ2
M

)

= CAT
4π

11 − 2
3 nF

1 + nF
6

11 − 2
3 nF

(4π )2T 2

W (ξ (T ))

(
1 − x2

ME

)

= CA

(
4π

11 − 2
3 nF

)2
4π

(
1 + nF

6

)
W (ξ (T ))

(
1 − x2

ME

)
T 3, (15)

where xME = μM/μE is the magnetic-to-electric mass ra-
tio. It is worth noticing that this is expected behavior: As
a property of the medium, q̂ should be independent (or

weakly dependent) on jet energy [76]. Nevertheless, many
models/approaches fail to describe this behavior [76].

III. RESULTS

A. Constraining η/s through high-p⊥ data

To examine the sensitivity of the high-p⊥ observables on
the specific shear viscosity of the medium, we compare in
Fig. 2 the experimental charged hadron RAA and high-p⊥ flow
harmonics v2, v3, and v4 in Pb + Pb collisions at

√
sNN =

5.02 TeV to the theoretical predictions calculated using three
different (η/s)(T ) parametrizations (see Sec. II A). The high-
p⊥ flow harmonics are computed using the scalar product
method [34]. As seen in all three cases, the calculated charged
hadron RAA and flow anisotropies are almost indistinguishable
from each other. Furthermore, the predicted charged hadron
v4 significantly underestimates the experimental data even
when the current large experimental uncertainties are taken
into account. We previously reported a similar observation
in Ref. [34], where high-p⊥ v4 was calculated using several
different initializations of the fluid dynamical evolution.

Unfortunately, the heavy flavor high-p⊥ observables
shown in Fig. 3 are hardly more sensitive to the (η/s)(T )
parametrizations. The calculated D and B meson RAA, v2,
and v3 in Pb + Pb collisions at

√
sNN = 5.02 TeV do not

depend on our assumptions about η/s, whereas v4 in the
10–30% centrality class shows some sensitivity. Nevertheless,
given the large experimental uncertainties of v2 and v3, it is
doubtful whether the small difference in v4 is experimentally
detectable, especially when our v4 predictions are very close
to 0.

Since the collisions at LHC reach larger initial temper-
atures than collisions at RHIC, we may expect them to be
more sensitive to η/s at large temperatures, and thus to our
(η/s)(T ) parametrizations. Nevertheless, for the sake of com-
pleteness and to allow for surprises in the evolution, we
checked whether the high-p⊥ observables measured in col-
lisions at the full RHIC energy (

√
sNN = 200 GeV) allow us

to distinguish between different (η/s)(T ) parametrizations.
The theoretical predictions for charged hadron and D

and B meson high-p⊥ observables in Au + Au collisions
at

√
sNN = 200 GeV collision energy are shown in Figs. 4

and 5, respectively. Again, we calculated our predictions
using the generalized DREENA-A framework with three differ-
ent (η/s)(T ) parametrizations. As can be seen, the high-p⊥
observables are not sensitive to the η/s ratio at high temper-
atures, and thus we cannot further constrain (η/s)(T ) using
high-p⊥ observables.

As was argued in the Introduction, different η/s require
different initial temperatures. However, as shown in Fig. 6,
temperature difference during the evolution is small and, as
demonstrated above, insufficient to lead to observable differ-
ences in high-p⊥ observables. In Fig. 6, we characterize the
system temperature using the so-called average jet-perceived
temperature: At each time τ we average the system tem-
perature in the transverse plane using the number of jets at
each point as weight; e.g., while the average initial temper-
ature in (10–20)% centrality class for Pb + Pb collisions at
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FIG. 2. Charged hadron RAA (first row) and high-p⊥ flow harmonics v2 (second row), v3 (third row), and v4 (fourth row) as a function
of transverse momentum in Pb + Pb collisions at

√
sNN = 5.02 TeV for different (η/s)(T ) parametrizations indicated in the legend. CMS

(blue squares) [79,80], ALICE (red circles) [81,82], and ATLAS (green triangles) [83,84] experimental data are also shown for comparison.
Columns 1–4 represent the centrality classes 10–20%, 20–30%, 30–40%, and 40–50%, respectively.

√
s = 5.02 TeV is 370 MeV, the maximal temperature experi-

enced by the jet can reach up to 600 MeV. The jet-perceived
temperatures calculated using all three (η/s)(T ) parametriza-
tions are almost identical, differing less than 4% at the early
stages of the evolution and settling for less than 2% for most
of the evolution. The differences in the anisotropy of the
jet-perceived temperature, 〈 jT2〉, introduced in Ref. [23], are
equally small (not shown). The investigated high-p⊥ observ-
ables turned out to be insensitive to such small differences in
temperature.

Even if our calculated high-p⊥ RAA and v2 agree with
the data (see Fig. 2), the calculated 〈 jT2〉 are slightly be-
low the experimentally favored values. This deviation is
possible since our results for both RAA and v2 are at the
lower end of experimental uncertainty. When taking the ratio

v2/(1 − RAA), which constrains 〈 jT2〉, this deviation from the
data is magnified, and the calculated 〈 jT2〉 is below the exper-
imental constraint. Nevertheless the values of 〈 jT2〉 obtained
in these calculations are close to the largest values obtained in
Ref. [23] for various initialization models.

B. Calculating η/s from the dynamical energy loss q̂

In our previous publications, we have seen that the DREENA

framework is capable of reproducing the observed RAA with-
out fitting parameters [59,93,94] (see also comparison to RAA

in the previous subsection). This agreement suggests that the
dynamical energy loss formalism can adequately describe in-
teractions between high-p⊥ particles and the QCD medium.
Thus, it seems reasonable to estimate (η/s)(T ) theoretically
using the dynamical energy loss model.
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FIG. 3. Predictions for D (left 4 × 2 panel) and B meson (right 4 × 2 panel) RAA (first row) and high-p⊥ flow harmonics v2 (second row),
v3 (third row), and v4 (fourth row) using three different (η/s)(T ) parametrizations at various centralities in Pb + Pb collisions at

√
sNN =

5.02 TeV. The theoretical predictions for D mesons are compared with the CMS (blue squares) [85] and ALICE (red circles) [86,87] data,
whereas B meson predictions are compared to preliminary CMS (blue squares) [88] and preliminary ALICE (red circles) [89] data.

For this purpose, we need to estimate the jet quenching pa-
rameter q̂, quantifying the transverse momentum broadening
of fast parton due to its elastic scatterings with the medium
[75]. This parameter is a key quantity in estimating the inter-
action strength between jet partons and nuclear matter [76,97–
101]. It has been proposed to be a valuable tool for various
purposes, including gaining insights into the jet quenching
phenomenon, estimating the bulk medium property (η/s)(T )
[40,102], and, more recently, exploring the QCD phase
diagram [103].

We presented the derivation of the transport coefficient q̂
from our dynamical energy loss model in Sec. II C. We note
that q̂ is weakly dependent on E due to ln(ET ) appearing both
in the numerator and the denominator of Eq. (14), as desired
for a medium property such as transport coefficient.

Before discussing our results further, we outline the the-
oretical expectations for q̂ and its relationship to η/s. To
account for the temperature dependence of the coefficients η

and q̂, it is common practice to examine their dimensionless

counterparts: η/s, and q̂/T 3 [102]. Both quantities are sensi-
tive to the effective coupling strength in QGP. If the coupling
is weak, η/s is large, while q̂/T 3 is small. Conversely, when
the coupling is strong, η/s becomes small, while q̂/T 3 is large.
In the case of weak coupling, it has been argued that these two
quantities are related by η

s
q̂

T 3 ≈ const, i.e., more specifically
[40,102],

η

s
≈ 1.25

T 3

q̂
. (16)

Furthermore, to explain the large observed high-p⊥ v2,
it was proposed in Ref. [104], that the jet-quenching factor
q̂/T 3 must rise rapidly when approaching Tc from above.
We schematically depicted such behavior in Fig. 7(a). This
behavior is neither straightforward nor trivial to obtain from a
model calculation.

The expected (qualitative) relation of the T 3/q̂ and
(η/s)(T )—based on the existing knowledge from previous
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FIG. 4. The calculated charged hadron RAA (first row), high-p⊥ v2 (second row), v3 (third row), and v4 (fourth row) in
√

sNN = 200 GeV
Au + Au collisions. The experimental data from the STAR (orange stars) [90] and PHENIX (purple diamonds) [91,92] Collaborations are also
shown. Columns 1–4 represent the centrality classes 10–20%, 20–30%, 30–40%, and 40–50%, respectively.

studies—is schematically depicted in Fig. 7(b) [40]. At large
temperatures, we expect the system to be weakly coupled. At
that limit, our dynamical energy loss model should be appli-
cable, and Eq. (16) should be a good approximation. Thus, we
expect the calculated T 3/q̂ to agree well with the inferred η/s
as shown in the grey area at the right part of Fig. 7(b). On the
other hand, in the strongly coupled limit [the left gray area
in Fig. 7(b)] close to Tc, the calculated T 3/q̂ is expected to
significantly deviate from the inferred η/s. Interestingly, the
T 3/q̂ calculated using weak coupling methods is expected to
drop below the inferred η/s [40], which, as known, is very
close to the AdS-CFT lower limit of 1/(4π ) in the vicinity
of Tc.

The region between strongly and weakly coupled limits is
the so-called “soft-to-hard” boundary [105], i.e., the region

where the transition from a strongly to a weakly coupled
regime could take place. Therefore, plotting together η/s and
T 3/q̂ as a function of T might allow estimating the “soft-to-
hard” boundary as the region where these two curves start to
deviate, as schematically shown in Fig. 7(b).

We calculate q̂/T 3 from our dynamical energy loss using
Eq. (14) in the initial jet energy range 3 < E < 10 GeV,
as p⊥ has to be low enough to mimic interactions of par-
tons within the medium. The obtained result is shown in
Fig. 8(a), and qualitatively similar to the expectation shown
in Fig. 7(a). In particular, near Tc, we obtain an enhanced
quenching, which is considerably larger than quenching in
other energy loss models [76] (with the exception of [101],
which got a substantial increase in q̂/T 3 near Tc, due to
a very large coupling in their model). Some models even
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FIG. 5. D (left panel) and B meson (right panel) RAA (first row) and high-p⊥ flow harmonics v2 (second row), v3 (third row), and v4 (fourth
row) in

√
sNN = 200 GeV Au + Au collisions in 20–40% centrality class. Theoretical predictions for D meson are compared with STAR

(orange stars) [95] and preliminary PHENIX (purple diamonds) [96] data, whereas B meson predictions are compared with the preliminary
PHENIX (purple diamonds) [96] data.
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FIG. 6. The average temperature experienced by the jets as a function of proper time for three different (η/s)(T ) parametrizations in√
sNN = 5.02 TeV Pb + Pb collisions for four different centrality regions (10–20%, 20–30%, 30–40%, and 40–50%, as indicated in each

panel). The inset shows the relative difference in jet-perceived temperature in case of “Nature” (dot-dashed curve) and “LHHQ” (dashed
curve) with respect to constant η/s parametrizations.

(a) (b)

FIG. 7. (a) A schematic T dependence of quenching strength q̂/T 3 proposed in [104]. (b) A scheme for mapping soft-to-hard boundary
based on Ref. [40].
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(a) (b)

FIG. 8. (a) T dependence of q̂/T 3 extracted from dynamical energy loss for initial jet energy in the range E = 3 GeV (lower boundary)
to E = 10 GeV (upper boundary) [76]. (b) Comparison of η/s extracted from q̂/T 3 [shown in (a)], with three different choices of the specific
shear viscosity considered in this study and indicated in the legend.

predicted a decrease of q̂/T 3 (or increase in η/s) when the
temperature is approaching Tc from above [76,106,107]. The
enhancement near Tc, obtained in Fig. 8(a), is due to an inter-
play between chromoelectric and chromomagnetic screenings
[60]. As the magnetic component is inherently related to
the dynamical nature of the medium constituents, it can-
not exist in widely used static models, making the evolving
medium an important feature of the dynamical energy loss
model.

We convert our calculated q̂/T 3 to (η/s)(T ) using Eq. (16),
and compare it to the parametrizations used in this study
in Fig. 8(b). First, the uncertainty due to the relevant initial
jet energy is way smaller than the range of our (η/s)(T )
parametrizations. Second, our result is surprisingly close to
the parametrization inspired by the Bayesian analysis of
Ref. [18], “Nature,” and, third, unexpectedly, our result ob-
tained using weak coupling approximation does not drop
significantly below the inferred η/s values in the vicinity
of Tc.

To further gauge the significance of our result, we compare
it to the 90% credible intervals for (η/s)(T ) obtained in two
state-of-the-art Bayesian analyses [18,19] in Fig. 9. Interest-
ingly, the η/s dependence extracted from our q̂/T 3 shows an
excellent agreement with both of these analyses in the entire T
range, i.e., it falls precisely in the overlap of the two intervals.
Our result agrees not only at large temperatures, where the
Bayesian constraints are weakest, but even in the vicinity of
Tc, where we expected our result to drop below the inferred
values of η/s [as depicted in Fig. 7(b)]. This is a surprising
result, as one might expect that our calculation of q̂ from the
dynamical energy loss model and Eq. (16) are reliable only in
the weakly coupled regime. However, the agreement extends
to Tc, i.e., to the regime corresponding to strong coupling.

While the extended agreement observed in Fig. 9 is en-
couraging in terms of the prediction ability of the dynamical

energy loss formalism, it leads to the question of why the
expected behavior [shown schematically in Fig. 7(b)] is not
observed in Fig. 9. It is unlikely that the weak coupling regime
would extend down to Tc. Instead, it was suggested [40] that
Eq. (16) is valid as long as the quasiparticle picture of QGP
is applicable. The same is required for the validity of energy
loss calculations, including our dynamical energy loss model.
Therefore, it is an intriguing (and potentially significant)

FIG. 9. Comparison of η/s extracted from q̂/T 3 to the 90% cred-
ible intervals of the Bayesian analyses of Refs. [18,19] (Bernhard
et al. and Auvinen et al., respectively).
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hypothesis that the quasiparticle picture used for describing
interactions between jet and QGP is consistent with the QCD
medium created at RHIC and LHC at the entire temperature
range. In practical terms, this hypothesis is consistent with the
dynamical energy loss model’s ability to explain a wide range
of experimental data.

Lastly, one of the open issues of QGP physics is map-
ping the “soft-to-hard” boundary. As discussed, a possible
approach for estimating the boundary is to compare estimates
of the same quantity (like η/s) from the high-p⊥ and low-p⊥
sectors, as schematically presented in Fig. 7(b). However,
as shown here, the η/s obtained from high-p⊥ theory and
inferred from the low-p⊥ data agree in the entire T range,
providing no guidance on locating the boundary.

IV. SUMMARY

Our previous studies showed that combining high-p⊥
predictions/data with temperature profiles from bulk medium
simulations can constrain QGP medium properties, such as
its early evolution and medium averaged anisotropy. Here
we used an equivalent approach, where temperature profiles
corresponding to different (η/s)(T ) parametrizations were
generated and subsequently used by our generalized DREENA-
A framework to generate predictions for RAA and high-p⊥ v2,
v3, and v4. However, we found that this approach cannot
differentiate between temperature profiles generated using
different (η/s)(T ) parametrizations, since the differences in
T profiles and jet-perceived anisotropies [23] turned out to
be small, and consequently the differences in high-p⊥ pre-
dictions were also small. It is unrealistic to expect that the
experiments at RHIC and LHC will (in a reasonable time
frame) achieve the precision needed to distinguish between
these predictions.

On the other hand, our second approach, based on cal-
culating the quenching strength q̂/T 3 from our dynamical

energy loss model, showed a surprisingly good agreement
with the constraints to (η/s)(T ) extracted from low-p⊥
data by state-of-the-art Bayesian analysis. Such agreement
is highly nontrivial as it originates from two entirely dif-
ferent approaches: A theoretical calculation based on finite
temperature field theory through generalized HTL approach
(dynamical energy loss) and inferring (η/s)(T ) from exper-
imental data using fluid-dynamical modeling and advanced
statistical (Bayesian) methods. The agreement is also surpris-
ing, as it extends all the way to Tc, where a strongly coupled
regime should apply, and where a disagreement between en-
ergy loss calculation based on weak coupling approximation
and inferred value of η/s is expected. We interpret the absence
of such a disagreement in terms of the quasiparticle picture
being valid even close to Tc. However, this obscures estimat-
ing soft-to-hard boundary, whose inference remains one of the
field’s major (to our knowledge, unresolved) problems. Over-
all, this work further emphasizes the utility of jet tomography,
where low- and high-p⊥ theory and data are jointly used to
constrain the QGP properties.
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Importance of higher orders in opacity in quark-gluon plasma tomography
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We consider the problem of including a finite number of scattering centers in dynamical energy loss and
classical DGLV formalism. Previously, either one or an infinite number of scattering centers were considered in
energy loss models, while efforts to relax such approximations require a more conclusive and complete treatment.
In reality, however, the number of scattering centers is generally estimated to be 4–5 at the BNL Relativistic
Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC), making the above approximations (a
priori) inadequate and this theoretical problem significant for QGP tomography. We derived explicit analytical
expressions for dynamical energy loss and DGLV up to the fourth order in opacity, resulting in complex,
highly oscillatory, mathematical expressions. These expressions were then implemented into an appropriately
generalized DREENA framework to calculate the effects of higher orders in opacity on a wide range of high-p⊥
light and heavy flavor predictions. Results of extensive numerical analysis and interpretations of nonintuitive
results are presented. We find that, for both RHIC and the LHC, higher-order effects on high-p⊥ observables
are small, and the approximation of a single scattering center is adequate for dynamical energy loss and DGLV
formalisms.

DOI: 10.1103/PhysRevC.108.044905

I. INTRODUCTION

Quark-gluon plasma (QGP) [1–4] is a new form of mat-
ter consisting of quarks, antiquarks, and gluons that are no
longer confined. It has been created in landmark experiments
at the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) (so-called little bangs),
where heavy ions collide at ultrarelativistic energies [2,3].
Hard probes are one of the main tools for understanding and
characterizing the QGP properties [2], where hard processes
dominate interactions of these probes with QGP constituents.
These interactions are dominantly described by energy loss,
where radiative is one of the most important mechanisms at
high transverse momentum p⊥. The radiative energy loss can
be analytically computed through pQCD approaches, typi-
cally under the assumption of the optically thick or optically
thin medium [e.g., BDMPS-Z [5,6], ASW [7], (D)GLV [8,9],
HT and HT-M [10,11], AMY [12], dynamical energy loss
[13,14] and different applications and extensions of these
methods] and tested against the experimental data.

Optically thick medium corresponds to the approxima-
tion of a jet experiencing infinite scatterings with medium
constituents. While such an approximation would be ade-
quate for QGP created in the early universe (big bang), little
bangs are characterized by short, finite-size droplets of QCD
matter. Another widely used approximation is an optically
thin medium, assuming one scattering center. However, the
medium created in little bangs is typically several femtome-
ters in size (with mean free path λ ≈ 1 fm), so considering

*magda@ipb.ac.rs

several scattering centers in energy loss calculations is needed.
Thus, it is evident that both approaches represent two extreme
limits to the realistic situations considered in RHIC and LHC
experiments, and relaxing these approximations to the case
of a finite number of scattering centers is necessary. Thus,
relaxing such an approximation is a highly nontrivial problem,
addressed in Ref. [8], with recently renewed interest [15–21].
Some of these approaches are analytically quite advanced,
e.g., providing full expressions for a gluon radiation spectrum
(or splitting functions) with relaxed soft-gluon approximation
in DGLV formalism [19,20] or derivation of gluon emission
spectrum with full resummation of multiple scatterings within
the BDMPS-Z framework [15,17,18]. However, in our view,
this issue requires a more conclusive and complete treat-
ment. Namely, the importance of including higher orders in
opacity effects on experimental observables is still not ad-
dressed. In relaxing this approximation, it is not only needed
to estimate these effects on, e.g., the energy loss and gluon
radiation spectrum, but also to implement these corrections
in the numerical frameworks needed to generate predictions
for high-p⊥ observables measured at RHIC and the LHC
experiments. Furthermore, most of these studies were done
in massless quarks and gluons limit and/or use the approxi-
mation of an uncorrelated medium (i.e., where the spacings
between collisions are considered to be mutually indepen-
dent, see Ref. [21] for more details). Since we, a priori, do
not know the magnitude of the effects of the inclusion of
multiple scattering centers, nor how the mentioned approxi-
mations can influence this magnitude, we find it questionable
to discuss higher-order corrections while ignoring the effects
which might potentially overshadow or alter the final effects.
For example, due to a finite-temperature medium, light quarks
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and gluons gain mass in QGP, which can significantly numer-
ically modify the importance of these effects on experimental
observables.

In this study, we start from our dynamical energy loss
formalism [13,14], computed under the approximation of an
optically thin QCD medium, i.e., one scattering center. We use
general expressions from Ref. [21] to relax this approximation
to the case of finite number of scattering centers, where ex-
plicit analytical expressions up to the fourth order in opacity
(scattering centers) are presented. These expressions are im-
plemented in our (appropriately modified) DREENA-C [22]
framework (which assumes a constant-temperature medium),
enabling us to more straightforwardly estimate the effects of
higher orders in opacity on high-p⊥ RAA and v2 observables.
Based on these results, we also provide estimates for the fully
evolving medium, while a rigorous study in this direction is
left for future work.

While the initial expressions taken from Ref. [21] were,
strictly speaking, derived in the approximation of static scat-
tering centers, we apply them here in the context of a dynamic
QCD medium. Namely, by careful calculation, we have shown
in Ref. [14] that—at least in the first order in opacity—the
generalization from the static to dynamic medium eventually
amounts to a mere appropriate replacement of the mean free
path and effective potential in the final expressions. Following
general arguments given in Ref. [8] and the expectations ex-
pressed in Ref. [21], we assume that the same prescription for
progressing from static to dynamic medium remains valid in
higher orders of opacity.

The outline of the paper is as follows: Sections II
and III present the outline of theoretical and numerical

frameworks used in this study, with more detailed analytical
results presented in the Appendixes. In the Results section,
we numerically analyze the effects of higher orders in opacity
on the gluon radiation spectrum and high-p⊥ RAA and v2

predictions. Intuitive explanations behind obtained results will
be presented. This section will also analyze a special case
of static QCD medium (extension of (D)GLV [8,9] to the
finite number of scattering centers). The main results will be
summarized in the last section.

II. THEORETICAL FRAMEWORK

In this study, we use our dynamical radiative energy loss
[13,14] formalism, which has the following features: (i) QCD
medium of finite size L and temperature T , which consists of
dynamical (i.e., moving) partons, in a distinction to models
with widely used static approximation and/or vacuum-like
propagators [5,7,8,10]. (ii) Calculations based on generalized
hard-thermal-loop approach [23,24], with naturally regulated
infrared divergences [13,14,25]. (iii) Generalization towards
running coupling [26] and finite magnetic mass [27].

However, as noted in the Introduction, this radiative energy
loss is developed up to the first order in opacity. Thus, to
improve the applicability of this formalism for QGP tomogra-
phy, it is necessary to relax this approximation. To generalize
the dynamical energy loss to finite number in scattering cen-
ters, we start from a closed-form expression—Eq. (46) from
Ref. [21] and Eq. (20) from Ref. [9]—derived for static
QCD medium [i.e., (D)GLV case [8,9]] but applicable for a
generalized form of effective potential and mean free path
λ [21]:

x
dN (n)

dx d2k
=

∫ L

0
dz1 · · ·

∫ L

zn−1

dzn

∫ n∏
i=1

(
d2qi

v2(qi ) − δ2(qi )

λ(z)

)

× CRαs
(
Q2

k

)
π2

(
−2 C(1···n) · Bn

[
cos

n∑
k=2

ω(k···n)�zk − cos
n∑

k=1

ω(k···n)�zk

])
, (1)

where |vi(qi )|2 is defined as the normalized distribution of
momentum transfers from the ith scattering center (i.e., “ef-
fective potential”), λ(i) is the mean free path of the emitted
gluon, CR is the color Casimir of the jet. Note that, for
consistency with our previous work, we denote transverse
two-dimensional (2D) vectors as bold p.

The running coupling is defined as in Ref. [26]:

αs(Q
2) = 4π

(11 − 2/3n f ) ln(Q2/�QCD)
, (2)

where Q2
k = (k2 + M2x2 + m2

g )/x, appearing in Eq. (1) above
is the off-shellness of the jet before gluon radiation [26].

ω(m...n) is the inverse of the formation time or the (longitu-
dinal) momentum,

ω(m...n) = χ2 + (k − qm − · · · − qn)2

2xE
, (3)

where n is the final scatter, while m varies from the first up
to the final scatter. χ2 ≡ M2x2 + m2

g, where x is the longitu-
dinal momentum fraction of the quark jet carried away by the
emitted gluon, M is the mass of the quark, mg = μE/

√
2 is the

effective mass for gluons with hard momenta [25], and μE is
the Debye mass (i.e., electric screening).

“Cascade” terms represent the shifting of the momentum of
the radiated gluon due to momentum kicks from the medium:

C(i1i2...im ) = (k − qi1 − qi2 − · · · − qim )

χ2 + (k − qi1 − qi2 − · · · − qim )2
. (4)

A special case of C without any momentum shifts is de-
fined as the “hard” term:

H = k
χ2 + k2

and Bi = H − Ci. (5)

In Refs. [13,14,27], we showed that, despite much more
involved analytical calculations, at first order in opacity the
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radiative energy loss in a dynamical medium has the same
form as in the static medium, except for two straightforward
substitutions in mean free path and effective potential:

λstat → λdyn, (6)

where

λ−1
stat = 6

1.202

π2

1 + n f /4

1 + n f /6
λ−1

dyn,

while the “dynamical mean free path” is given by λ−1
dyn =

3αs(Q2
v )T [13,14], with Q2

v = ET [26]. Running coupling
αs(Q2

v ) corresponds to the interaction between the jet and the
virtual (exchanged) gluon, while E is the jet’s energy.[

μ2
E

π
(
q2+μ2

E

)2

]
stat

→
[

μ2
E − μ2

M

π
(
q2+μ2

E

)(
q2+μ2

M

)
]

dyn

, (7)

where μM is magnetic screening. Thus, we assume that Eq. (1)
can also be used in our case, with the above modification of
effective potential and mean free path. In Appendixes A and
B, we use this general expression to derive an explicit expres-
sion for the gluon radiation spectrum for first, second, third,
and fourth order in opacity (dN (1)

g /dx, dN (2)
g /dx, dN (3)

g /dx,
dN (4)

g /dx, respectively).

III. NUMERICAL FRAMEWORK

To generate the results presented in this work, we used our
(appropriately generalized, see below) DREENA-C frame-
work. For completeness, we here give a brief outline of
this framework, while a detailed description is presented in
Ref. [22]. The quenched spectra of light and heavy quarks are
calculated according to the generic pQCD convolution given
by

E f d3σ

d p3
f

= Eid3σ (Q)

d p3
i

⊗ P(Ei → E f ) ⊗ D(Q → HQ). (8)

Here, the indices i and f stand for “initial” and “final,”
respectively, while Q denotes initial high-energy parton (light
quarks, heavy quarks, or gluons). Eid3σ (Q)/d p3

i is the initial
momentum spectrum for the given parton, which is calculated
according to Ref. [28], P(Ei → E f ) represents the energy
loss probability for the given particle which was calculated
within the dynamical energy loss formalism [13,14], which
includes multigluon [29] and path-length fluctuations [22,30].
D(Q → HQ) represents the fragmentation function of light
and heavy partons into hadrons, where for light hadrons, D
and B mesons, we use the DSS [31], BCFY [32], KLP [33]
fragmentation functions, respectively. The geometry is aver-
aged over by using path-length distributions, i.e., probability
distributions of the path lengths of hard partons in Pb + Pb
collisions, in the same way as in the original DREENA-C
framework [22]. They are used as weight functions when
integrating over the path-length in our numerical procedure.

We use the following parameters in the numerical pro-
cedure: �QCD = 0.2 GeV and n f = 3. The temperature-
dependent Debye chromoelectric mass μE (T ) has been
extracted from Ref. [34]. For the mass of light quarks, we

take the thermal mass M ≈ μE/
√

6, and for the gluon mass,
we use mg = μE/

√
2 [25]. The mass of the charm (bottom)

quark is M = 1.2 GeV (M = 4.75 GeV). The magnetic and
electric mass ratio is 0.4 < μM/μE < 0.6 [35,36]. All the
results presented in this paper are generated for the Pb + Pb
collision system at

√
sNN = 5.02 TeV.

As DREENA-C [22] does not include suppression from
multiple scattering centers in the medium, we now upgrade
this framework to include the second and third order in opacity
contributions. We integrate the expressions obtained from (1)
analytically for zi (see Appendixes A and B), and then nu-
merically for momenta k and qi using the quasi-Monte Carlo
method to obtain dNg/dx up to third order in opacity. Also, to
test the importance of multiple scattering centers on radiative
energy loss, we exclude the collisional [37] contributions from
the DREENA-C framework and only generate predictions
for radiative energy loss. Appendixes A and B also include
expressions for the fourth order in opacity. We implemented
fourth order into DREENA-C, but as the resulting integrals
are highly oscillatory, we could not reach convergence for this
order using our available computational resources. Notably,
this numerical complexity is significantly higher, estimated
to be ≈2 orders of magnitude larger than for the third order
(e.g., for the first order, we needed ≈25 CPU h; for the second
order ≈2500 CPU h; for the third order ≈70 000 CPU h). Nev-
ertheless, at specific points where we reached a convergence,
we found the fourth-order contribution negligible, as expected
from the results presented in the next section.

IV. RESULTS

In Fig. 1, the effect of higher orders in opacity on dNg/dx
as a function of x is shown for typical medium length L =
5 fm. In each plot, we use double axes for clarity: the lower
axis corresponds to magnetic to electric mass ratio μM/μE =
0.6 (and the curves with the peak on the left side), while the
upper axis corresponds to μM/μE = 0.4 (and the curves with
the peak on the right side). Note that, in each case, maximum
is reached for low values of x. We see that the importance
of higher orders of opacity decreases with the increase of
jet energy and mass. They also decrease with decreasing the
size of the medium, as shown in Appendix C [equivalent
figures for L = 3 fm (Fig. 6, left) and L = 1 fm (Fig. 6,
right)]. For bottom quarks, higher-order effects are negligible
independently of the jet momentum. In contrast, these effects
are moderate for charm and light quarks and can influence the
jet observables, as discussed below. Note that, due to color
triviality, the results for light quarks show the (scaled) result
for gluons, too. This holds up to the fact that, due to the
indistinguishability of the radiated gluon from the gluon in
the jet, the limits for subsequent integration of dNg/dx with
respect to x is performed from xlower = 0 to xupper = 1/2 (as
opposed to xupper = 1 for light quarks).

In Fig. 2, we show the effect of higher orders in opacity on
radiative RAA observable. Our computations have shown that
the effect on v2 is similar to the one on RAA (see Fig. 8 in Ap-
pendix D). Thus, to avoid redundancy, we further concentrate
only on RAA.
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FIG. 1. Gluon radiation spectrum dNg/dx as a function of x, for the typical medium length of L = 5 fm and various jet momenta. Different
columns correspond to light, charm, and bottom quarks. Solid black curves show the first order in opacity results, red dashed curves show the
results up to the second order, while cyan dot-dashed curves up to the third order in opacity. Curves with the peaks on the left (right) side of
each of the plots correspond to the μM/μE=0.6 (μM/μE = 0.4) case, and the numerical values should be read off on the lower (upper) x axis.

We first observe that the effect on RAA is smaller for more
peripheral collisions. This is expected because the medium is
shorter on average, so including multiple scattering centers
becomes less important.

Furthermore, we find that higher orders in opacity are
negligible for B mesons, while these effects increase with
decreasing mass, as expected from Fig. 1. The reason behind
this is the decrease in the gluon formation time with increasing
jet mass. When the gluon formation time is short, the energy
loss approaches the incoherent limit, where it was previously
shown that the effects of higher orders in opacity are negli-
gible [9]. Thus, our results are consistent with the previous
findings. On the other hand, for large gluon formation time
(massless quark and gluon limit), the higher orders in opacity
effects become significant, also in general agreement with the
previous findings [15]. In finite-temperature QGP (considered
in this study), light quarks and gluons gain mass due to Debye
screening, reducing the effects of higher orders in opacity on
the energy loss, consistent with Fig. 2.

Unexpectedly, we also observe that, for different magnetic
mass limiting cases, these effects on RAA are opposite in sign:
for μM/μE = 0.6, the inclusion of higher orders in opac-
ity reduces energy loss (and, consequently, suppression). In

contrast, for μM/μE = 0.4, the effect is both opposite in sign
and larger in magnitude. What is the reason behind these
unexpected results?

To answer this question, we go back to the effective po-
tential [27] v(q) in dynamical QCD medium, which can be
written in the following form:

v(q) = vL(q) − vT (q), (9)

where vL(q) is longitudinal (electric), and vT (q) is transverse
(magnetic), contribution to the effective potential. The general
expressions for the transverse and longitudinal contributions
to the effective potentials are

vL(q) = 1

π

(
1(

q2 + μ2
pl

) − 1(
q2 + μ2

E

)
)

,

(10)

vT (q) = 1

π

(
1(

q2 + μ2
pl

) − 1(
q2 + μ2

M

)
)

,

where μE , μM , and μpl = μE/
√

3 are electric, magnetic, and
plasmon masses, respectively. As seen from Eq. (9), this po-
tential has two contributions: electric and magnetic, where the
electric contribution is always positive due to μpl < μE . On
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FIG. 2. Radiative RAA results obtained within DREENA-C—the effects of different orders in opacity. The results are generated for the
Pb + Pb collision system at

√
sNN = 5.02 TeV, and all the other figures in the manuscript show the results for the same collision system and

energy. Different columns correspond to charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black
curves show the first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to
the third order in opacity. The upper (lower) boundary of each band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case.

the other hand, the magnetic contribution depends nontrivially
on the value of magnetic mass. That is, for μM > μpl , we see
that the magnetic contribution decreases the energy loss, while
for μM < μpl it increases the energy loss and consequently
suppression, as shown in Fig. 2, which may intuitively explain
the observed energy-loss behavior.

Furthermore, the Debye mass μE is well defined from
lattice QCD, where the perturbative calculations are also con-
sistent [34]. Thus, the electric potential is well defined in
dynamical energy loss, and we can separately test the effect
of higher orders in opacity on this contribution [by replacing
v(q) by vL(q) in the DREENA framework]. We surprisingly
find it to be negligible, as shown in Fig. 3. Thus, higher orders
in opacity essentially do not influence the electric contribution
in a dynamical QCD medium, which is an interesting and
intuitively unexpected result. That is, the higher orders mainly
influence the magnetic contribution to energy loss (keeping
the electric contribution unaffected), where the sign of the
effect depends on the magnetic mass value. For example,
as μM/μE = 0.4 is notably smaller than μpl/μE = 1/

√
3,

the higher orders in opacity are significant for this limit and
increase the suppression, in agreement with Fig. 2. On the

other hand, μM/μE = 0.6 is close to (but slightly larger than)
μpl/μE , so higher orders in opacity are small for this magnetic
mass limit and reduce the suppression, also in agreement with
Fig. 2. Additionally, note that the most recent 2 + 1 flavor
lattice QCD results with physical quark masses further con-
strain the magnetic screening to 0.58 < μM/μE < 0.64 [38].
Thus, for this range of magnetic screening, we conclude that
the effects of higher orders in opacity are small in a dynamical
QCD medium and can be safely neglected.

Furthermore, Fig. 3 raises another important question: as
is well known, only electric contribution exist in the static
QCD medium approximation [23,24] (although it has a dif-
ferent functional form compared to the electric contribution
in dynamical QCD medium). That is, the magnetic contri-
bution is inherently connected with the dynamic nature of
the QCD medium. As most existing energy loss calculations
assume (simplified) static QCD medium approximation, does
this mean that higher orders in opacity can be neglected under
such approximation?

We first note that this does not necessarily have to be the
case, because the effective potential for electric contribution is
significantly different in static compared with the dynamical
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FIG. 3. RAA results, obtained within DREENA-C when only electric contribution vL (q) to radiative energy loss is considered. Different
columns correspond to charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black curves show the
first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third order in
opacity.

medium. However, to address this question, we repeat the
same analyses as above, this time assuming the static medium
effective potential [left-hand side of Eq. (7)] and mean free
path λstat. Figure 4 shows the effects of higher orders in opac-
ity in static medium approximation. While larger than those
in Fig. 3, we see that these effects are still small (i.e., less
than 6%). Thus, for optically thin medium models with static
approximation, we show that including multiple scattering
centers has a small effect on the numerical results, i.e., these
effects can also be neglected.

Finally, we ask how the inclusion of evolving medium
would modify these results. Including higher-order effects in
evolving medium is very demanding and out of the scope of
this paper. However, it can be partially addressed by studying
how higher-order effects depend on the temperature, which
changes in the evolving medium. To address this, in Fig. 5,
we focus on D meson RAA, μM/μE = 0.6 (per agreement with
Ref. [38]) and study the effects of higher orders in opac-
ity for three different temperatures T = 200, 400, 600 MeV
(which broadly covers the range of temperatures accessible at
RHIC and the LHC). We find that the higher-order effects are
largely independent of these values. Thus, we do not expect
that including medium evolution will significantly influence

the results presented in this study, i.e., expect the effect of
multiple scattering centers to remain small.

V. SUMMARY

In this paper, we generalized our dynamical energy loss and
DGLV formalisms towards finite orders in opacity. For bottom
quarks, we find that higher orders in opacity are insignificant
due to short gluon formation time, i.e. the incoherent limit. For
charm and light quarks, including second order in opacity is
sufficient, i.e., the third order numerical results almost overlap
with the second. Surprisingly, we also find that for limits
of magnetic screening, μM/μE = 0.4 and μM/μE = 0.6, the
effects on the RAA are opposite in sign. That is, for μM/μE =
0.6 (μM/μE = 0.4), higher orders in opacity decrease (in-
crease) the energy loss and subsequently suppression. The
intuitive reason behind such behavior is the magnetic contri-
bution to the dynamical energy loss. That is, while electric
contribution remains almost insensitive to increases in the
order of opacity, magnetic screening larger (smaller) than the
plasmon mass value decreases (increases) the energy loss and
suppression, in agreement with theoretical expectations. We
also show that in the static QCD medium approximation, in
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FIG. 4. Radiative RAA results obtained within DREENA-C under the static medium approximation. Different columns correspond to
charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black curves show the first order in opacity
results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third order in opacity.

which (per definition) only electric contribution remains, the
effects of higher orders in opacity on high-p⊥ observables
are small and can be safely neglected. Thus, for static QCD

FIG. 5. D meson radiative RAA results obtained within DREENA-
C for different temperatures. The left panel corresponds to 0%–5%
centrality, while the right panel corresponds to 40%–50% centrality.
The values of temperature are T = 200 MeV (the uppermost curves),
400 MeV (the middle curves), and 600 MeV (the lowest curves).
The solid black curves show the first order in opacity results, while
cyan dot-dashed curves show the results up to the third order in
opacity. The chromomagnetic and chromoelectric mass ratio is fixed
at μM/μE = 0.6.

medium, the first order in opacity is an adequate approxima-
tion for finite-size QCD medium created at RHIC and the
LHC. For dynamical energy loss, both the sign and the size
of the effects depend on the magnetic screening, as outlined
above. However, for most of the current estimates of magnetic
screening [38], these effects remain less than 5%, so they can
also be safely neglected.

The analyses presented here are obtained for a constant-
temperature medium (and adequately generalized DREENA-
C framework). However, we also tested how the effects of
including multiple scatterers depend upon temperature and
found this influence to be also small (affecting the radiative
RAA for less than 5%). Thus, we expect that including higher
orders in opacity in the evolving medium will not change
the qualitative results obtained here, but this remains to be
rigorously tested in the future.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR dNg/dx: GENERAL FORM

The gluon radiation spectrum up to the fourth order in opacity contains the following terms, which are here given in detail:(
dNg

dx

)
=

(
dN (1)

g

dx

)
+

(
dN (2)

g

dx

)
1

−
(

dN (2)
g

dx

)
2

+
(

dN (3)
g

dx

)
1

−
(

dN (3)
g

dx

)
2

−
(

dN (3)
g

dx

)
3

+
(

dN (3)
g

dx

)
4

+
(

dN (4)
g

dx

)
1

−
(

dN (4)
g

dx

)
2

−
(

dN (4)
g

dx

)
3

+
(

dN (4)
g

dx

)
4

−
(

dN (4)
g

dx

)
5

+
(

dN (4)
g

dx

)
6

+
(

dN (4)
g

dx

)
7

−
(

dN (4)
g

dx

)
8

. (A1)

Numerical integrations with respect to the momentum k are performed over 0 < |k| < 2Ex(1 − x), and the ones with respect
to momenta qi are performed over 0 < |qi| <

√
4ET [39]. The integrations with respect to angles ϕi are performed over

0 < ϕi < 2π . Under the constant-T approximation considered in this manuscript, the expressions presented below can be
analytically integrated over zi, significantly simplifying subsequent numerical calculations (see Appendix B).

In the expressions below, the following equations hold for i, j ∈ {1, 2, 3, 4}:
k · qi = |k||qi| cos ϕi, (A2)

qi · q j = |qi||q j | cos(ϕi − ϕ j ). (A3)

The first order in opacity term is given by(
dN (1)

g

dx

)
= 4CR

πx

∫ L

0
dz1

∫
d2k
π

∫
d2q1

π
αs

(
Q2

k

) 1

λdyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

)
× χ2[q1 · (q1 − k)] + (q1 · k)(k − q1)2

(χ2 + k2)[χ2 + (k − q1)2]2
sin2

(
χ2 + (k2 − q1)2

4xE
z1

)
. (A4)

After integration with respect to z1, this expression reduces to the expression used to obtain dNg/dx in the original DREENA-
C framework [22].

The second order in opacity contains two terms, which are given by(
dN (2)

g

dx

)
1

= 4CR

πx

∫ L

0

∫ L

z1

dz1dz2

∫
d2k
π
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π
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(
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) 1
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E

)(
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M
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E

)(
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M

)
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× sin
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4xE
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)
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(
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4xE
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, (A5)
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The third order in opacity contains four terms, which are given by(
dN (3)

g

dx

)
1

= 4CR

πx
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0
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, (A7)
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(
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The fourth order in opacity is given by eight terms, which are given by(
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M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q1+q2+q3+q4 − k)]+(q4 · k)(k−q4)2+[k · (q1+q2+q3)][q4 · (q4−2k)]+k2[q4 · (q1+q2 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q3 − q4)2]

× sin

(
χ2 + (k − q1 − q2 − q3 − q4)2

4xE
z1 + χ2 + (k − q2 − q3 − q4)2

2xE
z2 + χ2 + (k − q3 − q4)2

2xE
z3

+ χ2 + (k − q4)2

2xE
z4

)
sin

(
χ2 + (k − q1 − q2 − q3 − q4)2

4xE
z1

)
, (A11)

(
dN (4)

g

dx

)
2

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q1 + q2 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q2)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q4)2]

× sin

(
χ2 + (k − q1 − q2 − q4)2

4xE
z1 + χ2 + (k − q2 − q4)2

2xE
z2 + χ2 + (k − q4)2

2xE
(z3 + z4)

)

× sin

(
χ2 + (k − q1 − q2 − q4)2

4xE
z1

)
, (A12)
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(
dN (4)

g

dx

)
3

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q1

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q3 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q3)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q3 − q4)2]

× sin

(
χ2 + (k − q1 − q3 − q4)2

4xE
z1 + χ2 + (k − q3 − q4)2

2xE
(z2 + z3) + χ2 + (k − q4)2

2xE
z4

)

× sin

(
χ2 + (k − q1 − q3 − q4)2

4xE
z1

)
, (A13)

(
dN (4)

g

dx

)
4

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q1

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q1)[q4 · (q4 − 2k)] + k2(q4 · q1)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q4)2]

× sin

(
χ2 + (k − q1 − q4)2

4xE
z1

)
sin

(
χ2 + (k − q1 − q4)2

4xE
z1 + χ2 + (k − q4)2

2xE
(z2 + z3 + z4)

)
, (A14)

(
dN (4)

g

dx

)
5

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q2

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q2 + q3 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q2 + q3)][q4 · (q4 − 2k)] + k2[q4 · (q2 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q2 − q3 − q4)2]

× sin

[
χ2 + (k − q2 − q3 − q4)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q3 − q4)2

2xE
z3 + χ2 + (k − q4)2

2xE
z4

]

× sin

(
χ2 + (k − q2 − q3 − q4)2

4xE
z1

)
, (A15)

(
dN (4)

g

dx

)
6

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q2

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q2 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q2)[q4 · (q4 − 2k)] + k2(q4 · q2)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q2 − q4)2]

× sin

(
χ2 + (k − q2 − q4)2

4xE
z1

)
sin

[
χ2 + (k − q2 − q4)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q4)2

2xE
(z3 + z4)

]
, (A16)
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(
dN (4)

g

dx

)
7

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q3 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q3)[q4 · (q4 − 2k)] + k2(q4 · q3)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q3 − q4)2]

× sin

(
χ2 + (k − q3 − q4)2

4xE
z1

)
sin

[
χ2 + (k − q3 − q4)2

2xE

(
z1

2
+ z2 + z3

)
+ χ2 + (k − q4)2

2xE
z4

]
, (A17)

(
dN (4)

g

dx

)
8

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫
d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

) χ2[q4 · (q4 − k)] + (q4 · k)(k − q4)2

(χ2 + k2)[χ2 + (k − q4)2]2

× sin

(
χ2 + (k − q4)2

4xE
z1

)
sin

[
χ2 + (k − q4)2

2xE

(
z1

2
+ z2 + z3 + z4

)]
. (A18)

APPENDIX B: ANALYTICAL EXPRESSIONS FOR dNg/dx WITHIN DREENA-C

Within the DREENA-C framework, under the assumption of constant medium temperature, we can explicitly perform analytical
integrations for zi, where (i = 1, 2, 3, 4). ω(m...n) coefficients are defined in the Theoretical Framework section. The expression
for the first order in opacity then became

(
dN (1)

g

dx

)
= 2CR

πx

∫
d2k
π

∫
d2q1

π
αs

(
Q2

k

) L

λdyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) χ2[q1 · (q1 − k)] + (q1 · k)(k − q1)2

(χ2 + k2)[χ2 + (k − q1)2]2

(
1 − sin(Lω(1) )

Lω(1)

)
,

(B1)

The expressions for higher orders in opacity became

(
dN (2)

g

dx

)
1

= 2CR

πx

∫
d2k
π

∫∫
d2q1

π

d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q1 + q2 − k)] + (q2 · k)(k − q2)2 + (k · q1)[q2 · (q2 − 2k)] + k2(q2 · q1)

(χ2 + k2)[χ2 + (k − q2)2][χ2 + (k − q1 − q2)2]

× 1

ω(2)

(
ω(2) cos[(ω(2) + ω(12))]

(ω(2) + ω(12))ω(12)
+ L sin (Lω(2) ) − (ω(2) − ω(12)) cos (Lω(2) )

ω(2)ω(12)
− ω(12)

ω(2)(ω(2) + ω(12))

)
, (B2)

(
dN (2)

g

dx

)
2

= 2CR

πx

∫
d2k
π

∫
d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q2 − k)] + (q2 · k)(k − q2)2

(χ2 + k2)[χ2 + (k − q2)2]2

sin (Lω(2) )[Lω(2) − sin (Lω(2) )]

ω2
(2)

, (B3)

(
dN (3)

g

dx

)
1

= 2CR

πx

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q1 + q2 + q3 − k)] + (q3 · k)(k − q3)2 + [k · (q1 + q2)][q3 · (q3 − 2k)] + k2[q3 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q2 − q3)2]

×
{

ω(3)ω(123) + 2ω(23)ω(123) − ω2
(23) − ω(3)ω(23)

ω2
(23)(ω(3) + ω(23))2ω(123)

sin[L(ω(3) + ω(23))] − ω(123) sin (Lω(3) )

ω(3)ω
2
(23)(ω(23) + ω(123))

+ sin[L(ω(3) + ω(23) + ω(123))]

ω(123)(ω(23) + ω(123))(ω(3) + ω(23) + ω(123))
− L cos[L(ω(3) + ω(23))]

ω(23)(ω(3) + ω(23))

}
, (B4)
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(
dN (3)

g

dx

)
2

= CR

πx

∫
d2k
π

∫∫
d2q1

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)

× χ2[q3 · (q1 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q1)[q3 · (q3 − 2k)] + k2(q3 · q1)

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q3)2]

×
(( 3ω(13)

2 − ω(3)
)

sin (2Lω(3) )

ω3
(3)ω(13)

− 2ω(13) sin (Lω(3) )

ω3
(3)(ω(3) + ω(13))

+ sin
[
2L

(
ω(3) + ω(13)

2

)]
(
ω(3) + ω(13)

2

)
ω(13)(ω(3) + ω(13))

− L cos (2Lω(3) )

ω2
(3)

)
,

(B5)

(
dN (3)

g

dx

)
3

= 2CR

πx

∫
d2k
π

∫∫
d2q2

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)

× χ2[q3 · (q2 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q2)[q3 · (q3 − 2k)] + k2(q3 · q2)

(χ2 + k2)[χ2 + (k − q3)2](χ2 + (k − q2 − q3)2)

×
⎛
⎝ sin

[
2L

(ω(3)

2 + ω(23)
)]

4ω2
(23)

(ω(3)

2 + ω(23)
) − sin (Lω(3) )

2ω2
(23)ω(3)

+
sin[L(ω(3)+ω(23) )]

ω(3)+ω(23)
− L cos[L(ω(3) + ω(23))]

ω(23)(ω(3) + ω(23))

⎞
⎠, (B6)

(
dN (3)

g

dx

)
4

= CR

πx

∫
d2k
π

∫
d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) χ2[q3 · (q3 − k)] + (q3 · k)(k − q3)2

(χ2 + k2)[χ2 + (k − q3)2]2

× 1

ω2
(3)

(
− sin (Lω(3) )

ω(3)
+ sin (2Lω(3) )

2ω(3)
+ sin (3Lω(3) )

3ω(3)
− L cos (2Lω(3) )

)
, (B7)

(
dN (4)

g

dx

)
1

= 2CR

πx

∫
d2k
π

∫∫∫∫
d2q1

π

d2q2

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1+q2+q3 + q4−k)]+(q4 · k)(k−q4)2+[k · (q1+q2+q3)][q4 · (q4−2k)]+k2[q4 · (q1+q2 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q3 − q4)2]

×
{

− L sin[L(ω(4) + ω(34) + ω(234))]

ω(234)(ω(34) + ω(234))(ω(4) + ω(34) + ω(234))

− cos[L(ω(4) + ω(34) + ω(234) + ω(1234))]

ω(1234)(ω(234) + ω(1234))(ω(34) + ω(234) + ω(1234))(ω(4) + ω(34) + ω(234) + ω(1234))

+ F41

ω2
(234)(ω(34) + ω(234))2(ω(4) + ω(34) + ω(234))2ω(1234)

cos[L(ω(4) + ω(34) + ω(234))]

+ ω(1234) cos[L(ω(4) + ω(34))]

ω(34)(ω(4) + ω(34))ω2
(234)(ω(234) + ω(1234))

− ω(1234) cos (Lω(4) )

ω(4)ω(34)(ω(34) + ω(234))2(ω(34) + ω(234) + ω(1234))

+ ω(1234)

ω(4)(ω(4) + ω(34))(ω(4) + ω(34) + ω(234))2(ω(4) + ω(34) + ω(234) + ω(1234))

}
, (B8)
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where F41 = (ω(34) + ω(234))[(ω(4) + ω(34))(ω(234) − ω(1234)) + ω2
(234) − 3ω(234)ω(1234)] − ω(4)ω(234)ω(1234),

(
dN (4)

g

dx

)
2

= CR

πx

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q2 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q2)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q4)2]

×
{

2
[
ω(24)

(
2ω2

(4) + 3ω(24)ω(4) + ω2
(24)

) − (
2ω2

(4) + 6ω(24)ω(4) + 3ω2
(24)

)
ω(124)

]
cos[L(2ω(4) + ω(24))]

ω2
(24)(ω(4) + ω(24))2(2ω(4) + ω(24))2ω(124)

− 2 cos[L(2ω(4) + ω(24) + ω(124))]

ω(124)(ω(24) + ω(124))(ω(4) + ω(24) + ω(124))(2ω(4) + ω(24) + ω(124))
+ ω(124) cos (2Lω(4) )

ω2
(4)ω

2
(24)(ω(24) + ω(124))

− 2L sin[L(2ω(4) + ω(24))]

ω(24)(ω(4) + ω(24))(2ω(4) + ω(24))
− 2ω(124) cos (Lω(4) )

ω2
(4)(ω(4) + ω(24))2(ω(4) + ω(24) + ω(124))

+ ω(124)

ω2
(4)(2ω(4) + ω(24))2(2ω(4) + ω(24) + ω(124))

}
, (B9)

(
dN (4)

g

dx

)
3

= CR

2πx

∫
d2k
π

∫∫∫
d2q1

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q3 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q3)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q3 − q4)2]

×
{

−2L sin[L(ω(4) + 2ω(34))]

ω2
(34)(ω(4) + 2ω(34))

− 4 cos[L(ω(4) + 2ω(34) + ω(134))]

ω(134)(ω(34) + ω(134))(2ω(34) + ω(134))(ω(4) + 2ω(34) + ω(134))
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APPENDIX C: dNg/dx RESULTS FOR L = 3 AND L = 1

In this section, we show dNg/dx as a function of x for medium lengths L = 3 f m [Fig. (6)] and L = 1 f m [Fig. (7)].

FIG. 6. Gluon radiation spectrum dNg/dx as a function of x, for the medium length of L = 3 fm and various jet momenta. The panel on
the left (right) side shows the result for μM/μE = 0.4 (0.6). The figure caption is the same as for Fig. 1.

FIG. 7. Gluon radiation spectrum dNg/dx as a function of x, for the medium length of L = 1 fm and various jet momenta. The panel on
the left (right) side shows the result for μM/μE = 0.4 (0.6). The figure caption is the same as for Fig. 1.
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FIG. 8. v2 results obtained within DREENA-C – the effects of different orders in opacity. Different columns correspond to charged hadrons,
D, and B mesons, while different rows show different centrality classes. Only radiative energy loss is taken into account. Solid black curves
show the first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third
order in opacity. The lower (upper) boundary of each band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case.

APPENDIX D: v2 RESULTS UP TO THIRD ORDER IN OPACITY

We here show the results for v2 up to the third order in opacity (Fig. 8). Note that here the lower (upper) boundary of each
band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case (opposite with respect to RAA results). We observe the same behavior
as for RAA.
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Quark-gluon plasma (QGP) tomography aims to constrain the parameters characterizing the properties and
evolution of QGP formed in heavy-ion collisions, by exploiting low- and high-p⊥ theory and data. Higher-order
harmonics vn (n > 2) are an important—but seldom explored—part of this approach. However, to take full
advantage of them, several issues have to be addressed: (i) consistency of different methods for calculating vn,
(ii) importance of event-by-event fluctuations to high-p⊥ RAA and v2 predictions, and (iii) sensitivity of higher
harmonics to the initial state of fluid-dynamical evolution. We obtain that (i) several methods for calculating har-
monics are compatible with each other, (ii) event-by-event calculations are important in mid-central collisions,
and (iii) various initializations of the evolution of the medium lead to quantitatively and qualitatively different
predictions, likely to be distinguished by future measurements. We also find that the present high-p⊥ v4 data
cannot be reproduced using initial states for fluid-dynamical evolution given by state-of-the-art models. We call
this discrepancy the high-p⊥v4 puzzle at the Large Hadron Collider.

DOI: 10.1103/PhysRevC.106.044909

I. INTRODUCTION

During the past two decades, an impressive experimental
and theoretical effort has been invested in generating and
exploring a new form of matter called quark-gluon plasma
(QGP) [1–4]. This form of matter consists of interacting
and no longer confined quarks, antiquarks, and gluons [5,6]
and is created at extremely high energy densities achieved
in ultrarelativistic heavy ion collisions in experiments at the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC). An unprecedented amount of data for dif-
ferent collision systems (large and small), collision energies,
types of particles, momentum regions, centralities, etc., are
generated in these experiments, and one of the major current
goals is to optimally use these data to investigate the proper-
ties of this exciting form of matter.

As one of the latest experimental achievements, the high
momentum (high-p⊥) higher harmonics have recently become
available at RHIC and the LHC. For example, for charged
hadrons, the data are available up to the seventh harmonic
(for ATLAS [7]) and cover the p⊥ region up to 100 GeV

*magda@ipb.ac.rs

Published by the American Physical Society under the terms of the
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and the published article’s title, journal citation, and DOI. Funded
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(for CMS [8]). For heavy flavor, the coverage is not that ex-
tensive (for both harmonics and momentum region); still, the
upcoming experimental data at high-luminosity LHC Run 3
should provide these data for both light and heavy flavor with
much higher precision. In the upcoming RHIC (sPHENIX and
STAR) experiments, similar quality data is expected, with p⊥
coverage up to 20 GeV. Even if the p⊥ range accessible at
RHIC is narrower than at the LHC, it is particularly useful for
QGP tomography due to the pronounced difference between
light and heavy flavor in that region. While these data (will)
represent the state of the art in the experimental sector, theo-
retically the higher harmonics at high p⊥ have not been well
explored.

To use these data for QGP tomography, i.e., for exploring
the bulk QGP properties through high-p⊥ theory and data,
one should first identify and address potential limitations, in
particular related to coverage and design of different exper-
iments. For example, four different methods are commonly
used in the literature to evaluate vn: two-particle cumulant
vn{2}, four-particle cumulant vn{4}, event plane vn{EP}, and
scalar product vn{SP} methods (see Sec. II C for more details).
Do these methods provide consistent results, especially when
different experimental collaborations even define vn{SP} in
different ways?

Furthermore, in experimental analysis, the scalar prod-
uct method correlates the particle of interest at midrapidity
with the bulk medium constituents at higher rapidity regions
to avoid nonflow effects on measured vn [7,8]. From the
theoretical perspective, this means the use of the experi-
mental definition for vn{SP} necessitates 3+1-dimensional
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(3+1D) hydrodynamic modeling for event-by-event sim-
ulations. However, 3+1D simulations are computationally
several orders of magnitude more demanding than 2+1D
simulations, and consequently they are timewise impractical
for high-precision QGP tomography. Thus, the question arises
whether it would be plausible to compare vn{SP} obtained
in boost-invariant 2+1D simulations to experimental data in
a model where the high- and low-p⊥ particles have separate
sources (fragmenting jets and a thermal fireball, respectively),
and are thus uncorrelated.

Next, for the second harmonic, v2, event-by-event fluc-
tuations are expected to either have a significant effect on
v2 values [9] or to be small enough to be considered neg-
ligible [10,11]. However, these studies were done in limited
and different centrality regions. It is expected [12] that the
effects of event-by-event fluctuations increase with decreasing
centrality. Thus, it is important to systematically investigate
and quantify these effects for the high-p⊥ region at different
centralities.

Therefore, the study presented in this paper has the follow-
ing main goals:

(i) Explore to what extent the different methods for cal-
culating higher harmonics are compatible with each
other.

(ii) Explore the importance of event-by-event fluctuations
and correlations to high-p⊥ v2 and RAA.

(iii) Explore the qualitative and quantitative effects of dif-
ferent medium evolution scenarios on high-p⊥ higher
harmonics, and how well the existing high-p⊥ data
can be reproduced without further tuning of parame-
ters.

Overall, this study explores whether and how high-p⊥
higher harmonics, with an adequate theoretical framework,
can provide further constraints to the bulk QGP properties.

II. METHODS

A. Outline of DREENA-A framework

To use the high-p⊥ particles to explore the bulk prop-
erties, we developed a fully optimized modular framework
DREENA-A [13], where “DREENA” stands for dynamical
radiative and elastic energy loss approach, while “A” stands
for adaptive. We further optimized the framework for this
study to efficiently incorporate any arbitrary event-by-event
fluctuating temperature profile within the dynamical energy
loss formalism. Due to the very large amount of tempera-
ture profile data processed in event-by-event calculations, we
optimized file handling and formats. Also, we reorganized
the parallelization of computation, and ensured that spatio-
temporal resolution and calculation precision are optimal and
adjusted to the event-by-event type of profiles.

The framework does not have fitting parameters within
the energy loss model (i.e., all parameters used in the model
correspond to standard literature values), which allows one
to systematically compare the data and predictions obtained
by the same formalism and parameter set. Therefore dif-
ferent temperature profiles (which are the only input in the

DREENA-A framework) resulting from different initial states
and QGP properties can be distinguished by the high-p⊥ ob-
servables they lead to, and the bulk QGP properties can be
further constrained by studying low- and high-p⊥ theory and
data jointly.

The dynamical energy loss formalism [14–16] has several
important features, all of which are needed for accurate pre-
dictions [17]: (i) QCD medium of finite size and temperature
consisting of dynamical (i.e., moving) partons. (ii) Calcula-
tions are based on a generalized hard-thermal-loop approach
[18], with naturally regulated infrared divergences [14,16,19].
(iii) Both radiative [14,15] and collisional [16] energy losses
are calculated in the same theoretical framework and apply to
both light and heavy flavors. (iv) The framework is general-
ized toward running coupling [20] and finite magnetic mass
[21]. We have also investigated the validity of the widely
used soft-gluon approximation [22], but found it a very good
approximation which does not need to be relaxed.

The initial quark spectrum, for light and heavy partons, is
computed at next to leading order [23]. We use de Florian–
Sassot–Stratmann (DSS) [24] fragmentation functions to
generate charged hadrons, and Braaten-Cheung-Fleming-
Yuan (BCFY) [25] and Kartvelishvili-Likhoded-Petrov (KLP)
[26] fragmentation functions for D and B mesons, respec-
tively. To generate high-p⊥ predictions, we use the same
parameter set as in DREENA-A [13]. Specifically, we assume
effective light quark flavors n f = 3 and �QCD = 0.2 GeV.
The temperature-dependent Debye mass μE is obtained by
applying the procedure from [27] and leads to results com-
patible with lattice QCD [28]. For the gluon mass we assume
mg = μE/

√
2 [19], and for light quark mass M = μE/

√
6.

The charm mass is M = 1.2 GeV and the bottom mass is
M = 4.75 GeV. For magnetic to electric mass ratio, we use
μM/μE = 0.5 [29,30].

B. Modeling the bulk evolution

We investigate three different event-by-event initializations
for the bulk evolution. The first is Monte Carlo Glauber
(MC-Glauber) initialization at initial time τ0 = 1.0 fm with-
out initial transverse flow. We assign the binary collision
points at halfway between the two colliding nucleons and
convert these points to a continuous binary collision density
using 2D Gaussian distributions

nBC (x, y) = 1

2πσ 2
BC

NBC∑
i=1

exp

(
− (x − xi )2 + (y − yi )2

2σ 2
BC

)
(1)

with a width parameter σBC = 0.35 fm. The binary collision
density is then converted to energy density with the formula

ε(x, y) = C0
(
nBC + c1n2

BC + c2n3
BC

)
, (2)

and further extended in the longitudinal direction using the
LHC parametrization from Ref. [31]. The evolution of the
fluid is calculated using a 3+1D viscous fluid code [31],
with a constant shear viscosity over entropy density ratio
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η/s = 0.03 and no bulk viscosity. The equation of state (EoS)
parametrization is s95p-PCE-v1 [32]. The model parameters
were tuned to ALICE charged particle multiplicity [33] and
vn(p⊥) data [34] for 10–20%, 20–30%, and 30–40% centrality
classes in Pb + Pb collisions at

√
sNN = 5.02 TeV.

The second model is the TRENTo initialization [35] with
a free streaming stage until τ0 = 1.16 fm, further evolved
using the VISH2+1 code [36] as described in [37,38]. The
parameters in this calculation are based on a Bayesian analysis
of the data at Pb + Pb collisions at

√
sNN = 2.76 and 5.02

TeV [38]. In particular the calculation includes temperature
dependent shear and bulk viscosity coefficients with the min-
imum value of η/s = 0.081 and maximum of ζ/s = 0.052.
The EoS [37] is based on the lattice results by the HotQCD
Collaboration [39].

The third investigated initialization model is IP-Glasma
[40,41]. The calculated event-by-event fluctuating initial
states [42] are further evolved [43] using the MUSIC code
[44–46] constrained to boost-invariant expansion. In these
calculations, the switch from Yang-Mills to fluid-dynamical
evolution takes place at τswitch = 0.4 fm, shear viscosity
over entropy density ratio is constant η/s = 0.12, and the
temperature-dependent bulk viscosity coefficient over entropy
density ratio has the maximum value ζ/s = 0.13. The equa-
tion of state is based on the HotQCD lattice results [39] as
presented in Ref. [47].

C. Flow analysis

1. Scalar product and event plane methods

We start by defining the low-p⊥ normalized flow vector for
the nth harmonic based on M particles as

Qn = 1

M

M∑
j=1

einφ j ≡ |vn|ein
n , (3)

where 
n is the event plane angle: 
n = arctan ( Im Qn

Re Qn
)/n.

Similarly to low p⊥, we can define the flow vector for a
high p⊥ bin as [RAA(p⊥) = 1

2π

∫ 2π

0 RAA(p⊥, φ) dφ]

qhard
n =

1
2π

∫ 2π

0 einφRAA(p⊥, φ) dφ

RAA(p⊥)
, (4)

and single-event high-p⊥ flow coefficients vhard
n as [9]

vhard
n =

1
2π

∫ 2π

0 cos[n{φ − 
hard
n (p⊥)}]RAA(p⊥, φ) dφ

RAA(p⊥)
, (5)

where the event plane angle 
hard
n (p⊥) is defined as


hard
n (p⊥) = 1

n
arctan

( ∫ 2π

0 sin(nφ)RAA(p⊥, φ) dφ∫ 2π

0 cos(nφ)RAA(p⊥, φ) dφ

)
. (6)

The high-p⊥ vn is then calculated by correlating qn with Qn

[9,10,48]:

vhard
n {SP} =

〈
Re

[
qhard

n (Qn)∗
]〉

ev√〈Qn(Qn)∗〉ev

=
〈|vhard

n ||vn| cos
[
n
{

hard

n (p⊥) − 
n
}]〉ev√

〈|vn|2〉ev

. (7)

We may also simply calculate the high-p⊥ anisotropy with
respect to the event plane 
n, which we shall denote as the
“event plane” vn [10]:

vn{EP} = 〈〈cos[n(φhard − 
n)]〉〉ev

= 〈
vhard

n cos
[
n
(

hard

n − 
n
)]〉

ev. (8)

For our theoretical vn{SP}, the reference flow vector Qn is
calculated using only midrapidity particles. In order to reduce
nonflow effects, it is common in experiments to introduce a
rapidity gap between the particles of interest and the reference
flow particles. ATLAS defines the scalar product vn as [7]

vn{SPATLAS} = Re 〈〈einφ (Q−|+
n )∗〉〉ev√〈Q−

n (Q+
n )∗〉ev

, (9)

where Q−
n = 1

M−
∑M−

j=1 einφ j refers to particles in the rapidity
interval −4.9 < η < −3.2 and Q+

n similarly to particles in the
interval 3.2 < η < 4.9, while einφ is associated with particles
in midrapidity |η| < 2.5. Q−|+

n indicates that particle of inter-
est with η < 0 are coupled to Q+

n and particles with η > 0 to
Q−

n to maximize the rapidity gap.1

The CMS definition for the scalar product is [8]

vn{SPCMS} = Re 〈QnQ∗
nA〉ev√ 〈QnAQ∗

nB〉ev〈QnAQ∗
nC〉ev

〈QnBQ∗
nC〉ev

, (10)

where the flow vector Qn = ∑M
j=1 einφ j consists of parti-

cles of interest in midrapidity |η| < 1.0, vectors QnA, QnB =∑MA,B

j=1 ET einφ j are measured from the HF calorimeters at
2.9 < |η| < 5.2, one at the negative and the other at the
positive rapidity, and the third reference vector QnC =∑MC

j=1 p⊥ einφ j is obtained from tracks with |η| < 0.75. If the
particle of interest comes from the positive-η side of the
tracker, then QnA is calculated using the negative-η side of HF,
and vice versa.

2. Cumulant method

For two- and four-particle cumulant analysis, we use the
unnormalized flow vector:

Q̃n =
M∑

j=1

einφ j . (11)

The low-p⊥ integrated reference flow is calculated using
Eqs. (8)–(19) from Ref. [49]: The two-particle cumulant vn is

1Since our high-p⊥ particles are produced at η = 0, the choice of
Q+

n or Q−
n for the correlation is arbitrary.

044909-3



DUSAN ZIGIC et al. PHYSICAL REVIEW C 106, 044909 (2022)

defined as

vn{2} =
√

cn{2}, (12)

where the second-order cumulant cn{2} equals the event-
averaged two-particle correlation 〈〈2〉〉ev. The four-particle
cumulant vn is

vn{4} = 4
√

−cn{4}, (13)

where cn{4} is the fourth-order cumulant 〈〈4〉〉ev − 2〈〈2〉〉2
ev.

For a single event, the two-particle correlation is

〈2〉 = |Q̃n|2 − M

W2
(14)

with a combinatorial weight factor W2 = M(M − 1), and the
single-event four-particle correlation is

〈4〉 = |Q̃n|4 + |Q̃2n|2 − 2Re|Q̃2nQ̃∗
nQ̃∗

n|
W4

(15)

− 2
2(M − 2)|Q̃n|2 − M(M − 3)

W4

with W4 = M(M − 1)(M − 2)(M − 3).
Using the weight factors defined above, the weighted av-

erage of a k-particle correlation over multiple events is then

〈〈k〉〉ev =
∑Nevents

i=1 Wk,i 〈k〉i∑Nevents
i=1 Wk,i

. (16)

Once the reference flow has been determined, the
pT -differential flow can be calculated using Eqs. (20)–(35)
of [49]. Here we denote the flow vector in a p⊥ bin with mq

particles as

qn =
mq∑
j=1

einφ j . (17)

For high-p⊥ particles, qn is calculated from the distribution

qn =
∫ 2π

0
einφ dN

d p⊥dφ
dφ (18)

with the associated multiplicity

mq =
∫ 2π

0

dN

d p⊥dφ
dφ. (19)

For high-p⊥ differential flow, none of the particles in a p⊥
bin are included in the calculation of the reference flow, so
the weight factors are W ′

2 = mqM and W ′
4 = mqM(M − 1)

(M − 2), and the two-particle correlation is simply

〈2′〉 = qnQ̃∗
n

W ′
2

, (20)

while the four-particle correlation is

〈4′〉 = qnQ̃nQ̃∗
nQ̃∗

n − qnQ̃nQ̃∗
2n − 2MqnQ̃∗

n + 2qnQ̃∗
n

W ′
4

. (21)

With the knowledge of the correlations, we can calculate the
differential cumulants

dn{2} = 〈〈2′〉〉ev,

dn{4} = 〈〈4′〉〉ev − 2〈〈2′〉〉ev〈〈2〉〉ev
(22)

and the differential flows

v′
n{2} = dn{2}√

cn{2} ,

v′
n{4} = − dn{4}

(−cn{4})3/4
.

(23)

III. RESULTS AND DISCUSSION

A. Compatibility of analysis methods

In Fig. 1, we compare vn(p⊥) for high-p⊥ particles ob-
tained using six different methods: two-particle cumulant
vn{2} given by Eq. (12), four-particle cumulant vn{4} given
by Eq. (13), event plane vn{EP} defined by Eq. (8), midra-
pidity scalar product vn{SP} calculated using Eq. (7), scalar
product vn{SPATLAS} as defined by the ATLAS Collaboration
[Eq. (9)], and scalar product vn{SPCMS} as defined by the CMS
Collaboration [Eq. (10)]. High-p⊥ RAA and vn predictions
were obtained using generalized DREENA-A framework with
the temperature profiles calculated using the combination of
3+1D viscous fluid code and MC-Glauber initial conditions
(i.e., the first bulk model described in the Sec. II B).

As illustrated in Fig. 1, different scalar product methods for
evaluating the vn coefficients, and the two-particle cumulant
method, lead to the same results with ≈5% level accuracy. In
agreement with Refs. [10,11,50], the event plane results are
also comparable to the scalar product results, deviating only
≈10%, i.e., less than the current experimental uncertainty.
The only method with significantly different results is the
four-particle cumulant method vn{4}, which is expected to dif-
fer from vn{2} in the presence of event-by-event fluctuations
[12,51]. The equivalence of different approaches simplifies
comparison between theoretical predictions and experimental
results, since a theoretical prediction calculated using any
method (with the exception of the four-particle cumulant
method) can be directly compared to experimental data an-
alyzed using any method. We have also checked that, in the
scalar product method, the rapidity of particles used to cal-
culate the reference flow vector has a negligible impact on
high-p⊥ particle vn in our framework and setup, allowing us
to make meaningful vn{SP} data comparisons using the boost-
invariant hydro simulations. However, it must be remembered
that the scalar product method with large rapidity gap can
be affected by the event plane decorrelation at different ra-
pidities [52,53]. In our approach the event plane is the same
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FIG. 1. Charged hadron v2 (left), v3 (middle), and v4 (right) in Pb + Pb collisions at
√

sNN = 5.02 TeV for 20–30% centrality class,
computed using different analysis methods: two-particle cumulant, four-particle cumulant, event plane, midrapidity scalar product, ATLAS-
defined scalar product, and CMS-defined scalar product, each described in the Sec. II C. Energy loss calculation was performed on MC-Glauber
+ 3d-hydro temperature profiles, with μM/μE = 0.5.

independent of rapidity, and thus the effect of decorrelation
is not included. How the event plane depends on rapidity
depends on the model used to create the longitudinal structure
of the initial state, and, since there are very few theoretical
constraints for it, we leave these studies for a later work.

B. Event-by-event fluctuations

To investigate the influence of event-by-event fluctuations
on high-p⊥ observables, MC-Glauber initial conditions for
all events within a single centrality class were averaged we
kept reaction planes aligned, and averaged binary collision
densities before converting to energy density [Eq. (2)], and
then evolved using the 3+1D viscous fluid code (in a single
run, instead of one run for each event). The obtained smooth

temperature profile was used to calculate high-p⊥ predictions,
and RAA as well as v2{2} and v2{4} results were compared to
those obtained using full event-by-event calculations (evolved
separately for each event); see Fig. 2.

We see that event-by-event fluctuations increase both RAA

and v2. While the effect on the RAA values is rather small
(≈7%) and does not have clear centrality dependence, the
effect on v2{2} is more pronounced and increases with de-
creasing centrality. Quantitatively, we obtain that the average
difference between event-by-event v2{2} and v2{2} calculated
using the smooth temperature profile goes from 14% for the
40–50% centrality class to 32% in the 10–20% centrality
class. The observed centrality dependence can be explained
by the fact that, with the increase in centrality, the influ-
ence of geometry on v2{2} becomes larger, while at low

FIG. 2. Upper panels: charged hadron RAA calculated using event-by-event (ebe) fluctuating temperature profiles compared to RAA

calculated using a smooth temperature profile (avg). Lower panels: charged hadron vn{2} and vn{4} calculated using event-by-event (ebe)
fluctuating temperature profiles compared to vn{2} and vn{4} calculated using a smooth temperature profile (avg). Calculation was done for
Pb + Pb collisions at

√
sNN = 5.02 TeV, μM/μE = 0.5, using MC-Glauber + 3d-hydro bulk evolution. Each column represents different

centrality class (from left to right: 10–20%, 20–30%, 30–40%, and 40–50%).
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FIG. 3. Charged hadron RAA (first row) v2 (second row), v3 (third row), and v4 (fourth row) in Pb + Pb collisions at
√

sNN = 5.02 TeV for
different initializations of the QGP evolution (indicated in the legend). Theoretical predictions, obtained using SP method, are compared to
CMS [8,54] (blue squares), ALICE [55,56] (red circles), and ATLAS [7,57] (green triangles) data. Columns 1–4 correspond to, respectively,
10–20%, 20–30%, 30–40%, and 40–50% centrality classes. μM/μE = 0.5.

centralities, event-by-event fluctuations have the dominant
impact on v2{2}. We also observe a p⊥ dependence of these
differences (generally decreasing with increasing p⊥) and no
notable difference between v2{2} and v2{4} when calculated
on the smooth temperature profile, where initial state eccen-
tricity fluctuations are absent.

C. Effects of initial state

To demonstrate the applicability of high-p⊥ theoretical
predictions as a QGP tomography tool, we generated three dif-
ferent sets of temperature profiles using three different initial
conditions and hydrodynamics codes. Generalized DREENA-
A [13] was then used to calculate high-p⊥ predictions, which

are compared to experimental data and, for charged hadrons,
presented in Fig. 3, and for D and B mesons in Fig. 4. As can
be seen, different initializations of fluid-dynamical evolution
lead to different high-p⊥ predictions for both RAA and v2, v3,
and v4, even though they all provide good agreement with
low-p⊥ data. Specific differences are visible already on the
level of RAA values, where the IP-Glasma model results in
discernibly stronger suppression. The differences in predic-
tions become even higher when we consider the v2 observable,
with TRENTo leading to lower v2 than IP-Glasma, while
MC-Glauber predictions are far above the two. A similar
magnitude of relative differences is also obtained for v3 and v4

predictions, with an additional qualitative signature appearing
for these observables: we notice that some initializations lead
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FIG. 4. D meson (left 4 × 2 panel) and B meson (right 4 × 2 panel) predictions in Pb + Pb collisions at
√

sNN = 5.02 TeV for different
initializations of QGP evolution (indicated in the legend). In each 4 × 2 panel, the first row corresponds to RAA, the second, third, fourth to
v2, v3, v4, respectively, while the left (right) column corresponds to 10–30% (30–50%) centrality class. D meson theoretical predictions are
compared to CMS [58] (blue squares) and ALICE [59,60] (red circles) data, while B meson predictions are compared to preliminary CMS [61]
(blue squares) and preliminary ALICE [62] (red circles) data for nonprompt D mesons from b decay. μM/μE = 0.5.

to negative values of high-p⊥ v3 and v4, i.e., models can differ
even in the expected sign of the flow coefficients.

Since DREENA-A does not have fitting parameters in the
energy loss (the only inputs are the temperature profile and
binary collisions, which come as a direct output from fluid-
dynamical calculation and the initial state model), Figs. 3 and
4 demonstrate that high-p⊥ RAA and higher harmonics can
distinguish between different initializations and temperature
profiles, and subsequently further constrain their parameters.
Furthermore, Fig. 4 suggests that heavy flavor high-p⊥ ob-
servables are even more sensitive to different temperature
profiles than the light flavor. We also see that predictions for
high-p⊥ higher harmonics can be either positive or negative.
Thus, the high-p⊥ sector can provide both quantitative and
qualitative constraints for different initial states.

Presently, of the considered models, the best agreement is
observed for MC-Glauber. This result is compatible with our
earlier findings [63], where the best agreement with high-p⊥
data was found by delaying the start of transverse expansion
and energy loss to time τ0 ≈ 1.0 fm. However, all models
seem to vastly underestimate the v4 values, though the error
bars for the available v4 data are quite large. If this tendency
is preserved in future high luminosity experiments (e.g., in
LHC Run 3), it will present a new “high-p⊥ v4 puzzle,”
whose solution will require modifications to the present initial
state models and/or energy loss mechanisms. Additionally,
better quality heavy flavor data are needed, especially D-
and B-meson data, as they present valuable constraints to the
evolution of the medium.
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IV. SUMMARY

We obtained four main conclusions in this work: (i) We
found that different methods to calculate higher harmonics at
high-p⊥ are compatible with each other within ≈5–10% accu-
racy, which is less than the current experimental uncertainties.
(ii) Event-by-event calculations are particularly important for
high-p⊥ v2 in mid-central collisions. (iii) Predictions for
high-p⊥ observables, and especially for higher harmonics,
are sensitive to the initial state of fluid-dynamical evolution,
and can distinguish between different initial state models.
(iv) All initial state models lead to way smaller high-p⊥ v4

than is experimentally observed, and this disparity deserves
to be called a “v4 puzzle.” Overall, the higher harmonics
provide an exciting opportunity to obtain further constraints
to the QGP properties and its evolution in heavy-ion colli-

sions by combining new theoretical developments (with the
corresponding predictions) and upcoming higher luminosity
experimental measurements.
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DREENA-A framework as a QGP
tomography tool
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Magdalena Djordjevic1*
1Laboratory for High-Energy Physics, Institute of Physics Belgrade, University of Belgrade, Belgrade,
Serbia, 2Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids, University of
Wrocław, Wrocław, Poland

QGP tomography aims to constrain the QGP parameters by exploiting both low

and high-p⊥ theory and data. With this goal inmind, we present a fully optimised

framework DREENA-A based on a state-of-the-art energy loss model. The

framework can include any, in principle arbitrary, temperature profile within the

dynamical energy loss formalism. Thus, “DREENA” stands for Dynamical

Radiative and Elastic ENergy loss Approach, while “A” stands for Adaptive.

DREENA-A does not adjust parameters within the energy loss model,

allowing it to exploit differences in temperature profiles which are the only

input in the framework. The framework applies to light and heavy flavor

observables, different collision energies, and large and smaller systems. This,

together with the ability to systematically compare data and predictions within

the same formalism and parameter set, makes DREENA-A a unique

multipurpose QGP tomography tool. The provided code allows researchers

to use their own QGP evolution models to straightforwardly generate high-p⊥
predictions.

KEYWORDS

relativistic heavy ion collisions, quark-gluon plasma, QGP tomography, predictions for
high-p⊥ observables, light and heavy flavor

1 Introduction

QCD predicted that a new form of matter [1, 2]— consisting of quarks, antiquarks,

and gluons that are no longer confined—is created at extremely high energy densities.

According to the current cosmology, this new state of matter, called Quark-Gluon Plasma

(QGP) [3–7], existed immediately after the Big Bang [8]. Today, QGP is created in ‘Little

Bangs’, when heavy ions collide at ultra-relativistic energies [5, 6]. Such collisions lead to

an expanding fireball of quarks and gluons, which thermalises to form QGP; the QGP

then cools down, and when the temperature reaches a critical point, quarks and gluons

hadronise.

Successful production of this exotic state of matter at the Relativistic Heavy Ion

Collider (RHIC) and the Large Hadron Collider (LHC) allowed systematical testing

of different models of QGP evolution against experimental data. Up to now, it has

been established that QGP is formed at the LHC and RHIC experiments through two

main lines [5, 6, 9] of evidence: 1) by comparison of low momentum (p⊥)

measurements with relativistic hydrodynamic predictions, which implied that
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created QGP is consistent with the description of a nearly

perfect fluid [10–12], 2) by comparison of high-p⊥ data

[13–17] with pQCD predictions, which showed that high-

p⊥ partons (jets) significantly interact with an opaque

medium. Beyond this discovery phase, the current

challenge is to investigate the properties of this extreme

form of matter.

While high-p⊥ physics had a decisive role in the QGP

discovery [5], it was rarely used for understanding the bulk

medium properties. On the other hand, low-p⊥ observables do

not provide stringent constraints to all parameters of the models

used to describe the evolution of QGP [18–21]. Thus, it is

desirable to explore QGP properties through independent

theory and data set. We argue that this is provided by jet

energy loss and high-p⊥ data, complementing the low-p⊥
constraints to QGP.

To use high-p⊥ theory and data as a QGP tomography tool,

it is necessary to have a realistic high-p⊥ parton energy loss

model. We use our dynamical energy loss formalism, which

has the following properties: 1) It is based on finite size, finite

temperature field theory [22, 23], and takes into account that

QGP constituents are dynamical (moving) particles.

Consequently, all divergences are naturally regulated in the

model. 2) Both collisional [24] and radiative [25, 26] energy

losses are calculated in the same theoretical framework. In

radiative energy loss, finite size effects induce a non-linear

path length dependence of the energy loss, recovering both the

incoherent Gunion Bertsch and destructive Landau-

Pomeanchuk-Migdal limit [25, 26]. For collisional energy

loss, we show that finite size effects can be neglected [24],

i.e., path-length dependence is close to linear. 3) It is

applicable to both light and heavy flavors, so it can provide

predictions for an extensive set of probes. 4) Temperature is a

natural variable in the framework [27], so that the T profiles

resulting from bulk medium simulations are a direct input in

the model. 5) The non-perturbative effects related to

screening of the chromo-magnetic and chromo-electric

fields are included [28] through the generalized hard-

thermal-loop (HTL) approach. For radiative energy loss,

the effective cross-section is handled through sum-rules

[29], which allows consistent inclusion of non-perturbative

medium-related interactions captured by lattice QCD (see

[28] for more details). For collisional energy loss, the

nonperturbative effects were included at the leading order

through modification of the running coupling, following the

procedure from [30] (see [31] for more details). 6) No

parameters are adjusted when comparing the dynamical

energy loss predictions with high-p⊥ data [32, 33], i.e., we

use fixed parameter values consistent with other studies

(specified in Subsection 2.1). The formalism explained a

wide range of high-p⊥ data [31, 34–37], including puzzling

data [37] and generating predictions for future experiments

[35]. This suggests that the model realistically describes high-

p⊥ parton-medium interactions. While other available energy

loss models (see e.g. [38–48]) have some of the above

properties, none have all (or even most of them), making

the dynamical energy loss an advanced framework for QGP

tomography1. As the temperature is the only input in the

energy loss model, this allows further exploiting different

temperature profiles that agree with low-p⊥ data by testing

their agreement with high-p⊥ data. Consequently, a systematic

comparison of data and predictions obtained by the same

formalism and parameter set allows constraining the QGP

parameters from both low and high-p⊥ theory and data.

Including full medium evolution in the dynamical energy loss

is, however, a highly non-trivial task, as all the model properties

have to be preserved [49], without additional simplifications in

the numerical procedure. Furthermore, to be effectively used as a

precision QGP tomography tool, the framework needs to

efficiently (timewise) generate a comprehensive set of light and

heavy flavor suppression predictions through the same numerical

framework and the same parameter set. Such predictions can then

be compared with the available experimental data, sometimes even

repeatedly (i.e., iteratively)—for different combinations of QGP

medium parameters–to extract medium properties that are

consistent with both low and high-p⊥ data.

To introduce the medium evolution in the dynamical

energy loss, we took a step-by-step approach, allowing us

to check the consistency of each consecutive step by

comparing its results with the previous (simpler)

framework versions. Consequently, we first developed the

DREENA-C framework [50] (‘C’ stands for constant

temperature), continuing to DREENA-B [51] (‘B’ stands for

Bjorken expansion). In this manuscript, we present a fully

optimised DREENA-A framework, where ‘A’ stands for

‘adaptive’ (i.e., arbitrary) temperature evolution. The

convergence speed of the developed numerical procedure is

analysed, as well as consistency with other (earlier) versions of

the framework, as necessary for the reliable and efficient QGP

tomography tool. Finally, as a utility check of the DREENA-A

framework, the sensitivity of high-p⊥ observables to different

temperature profiles is presented.

The link to the software code implementing the

DREENA-A framework (with usage instructions and

example data) is provided at https://github.com/

DusanZigic/DREENA-A. Using this software, researchers

can generate high-p⊥ predictions for their own (different)

models of medium evolution and compare the results with

experimental data.

1 While it is challenging to implement further improvements into the
analytical calculations while keeping all existing ingredients, some
possible directions for advances include, e.g., flow velocity of the
bulk medium and transverse gradients of temperature and density
(see e.g. [45–48]).
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2 Methods

2.1 Theoretical outline

The calculation of the final hadron spectrum includes

initial high-p⊥ parton (quark and gluon) distributions from

perturbative QCD, energy loss (if the QCD medium

is formed), and fragmentation into hadrons. The cross

section for quenched spectra is schematically written as

[52, 53]:

Efd3σq HQ( )
dp3

f

� Eid3σ Q( )
dp3

i

⊗ P Ei → Ef( ) ⊗ D Q → HQ( ), (1)

where ⊗ is a generic convolution, and the change in the initial

spectra due to energy loss in QGP is denoted P (Ei → Ef). If the

medium is not created, then Eq. 1 reduces to cross section for

unquenched spectra

Efd3σu HQ( )
dp3

f

� Eid3σ Q( )
dp3

i

⊗ D Q → HQ( ). (2)

More specifically, Efd3σq(HQ)
dp3

f
is the final hadron spectrum

in the presence of QGP, while Efd3σu(HQ)
dp3

f
is the spectrum in

the absence of QGP. ‘i’ and ‘f’ correspond to ‘initial’ and

‘final’, respectively. Q denotes quarks and gluons, while

HQ denotes hadrons. Initial parton spectrum is denoted by

Eid3σ(Q)/dp3
i , and computed at next to leading order [54–56]

for light and heavy partons. P (Ei → Ef) is the probability

for energy transfer, which includes medium induced

radiative [25, 26] and collisional [24] contributions in a

finite size dynamical QCD medium with running

coupling [31]. Both contributions include multi-gluon

fluctuations, introduced according to Refs. [31, 57]

for radiative and [52, 58] for collisional energy loss

(for more details, see below). Q to hadron HQ

fragmentation is denoted by D (Q → HQ). For charged

hadrons we use DSS [59], for D mesons BCFY [60, 61]

and for B mesons KLP [62] fragmentation functions,

respectively.

In DREENA-A, the medium temperature needed to

calculate P (Ei → Ef) depends on the position of the parton

according to a temperature profile given as an input.

Therefore, the temperature that the parton experiences

along its path, becomes a function of the coordinates of its

origin (x0, y0), the angle of its trajectory ϕ, and the proper

time τ:

T x0, y0, ϕ, τ( ) � Tprofile x0 + τ cos ϕ, y0 + τ sin ϕ, τ( ), (3)

where Tprofile is, in principle, arbitrary. This temperature then

appears in the expressions below.

The collisional energy loss is given by the following analytical

expression [51]:

dEcol

dτ
� 2CR

π v2
αS E T( ) αS μ2E T( )( )

× ∫∞
0

neq | �k|, T( )d| �k| ∫
| �k|/ 1+v( )

0

d| �q| ∫v|
�q|

−v| �q|

ωdω + ∫|
�q|max

| �k|/ 1+v( )

d| �q| ∫v|
�q|

| �q|−2| �k|

ωdω
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× |ΔL q, T( )|2 2| �k| + ω( )2 − | �q|2
2

+ |ΔT q, T( )|2 | �q|2 − ω2( ) 2| �k| + ω( )2 + | �q|2( )
4| �q|4 v2 | �q|2 − ω2( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(4)

Here we used the following notation: k is the 4-momentum of

the incoming medium parton; T is the current temperature along

the path, given by Eq. 3; neq(| �k|, T) � N
e| �k|/T−1 +

Nf

e| �k|/T+1 is the

equilibrium momentum distribution [63] at temperature T

including quarks and gluons. N = 3 and Nf represent,

respectively, the number of colors and flavors, where we

assume Nf = 3 for the LHC and Nf = 2.5 for RHIC; q � (ω, �q)
is the 4-momentum of the exchanged gluon; E2 = p2 +M2 denotes

the initial jet energy, p is the jet momentum, whileM is the mass

(specified below) of the quark or gluon jet; v � p/
�������
p2 +M2

√
denotes velocity of the incoming jet; CR � 4

3 for quark jet and

three for gluon jet; ΔL(T) and ΔT(T) are effective longitudinal and

transverse gluon propagators [64, 65], while the electric screening

(the Debye mass) μE(T) is obtained by self-consistently solving

the expression from [66] (ΛQCD is perturbative QCD scale):

μE T( )2
Λ2

QCD

ln
μE T( )2
Λ2

QCD

( ) � 1 +Nf/6
11 − 2/3Nf

4πT
ΛQCD

( )2

. (5)

Note that such solution leads to the Debye mass consistent

with lattice QCD results [66, 67].

Running coupling αS (Q
2) is defined as [68].

αS Q2( ) � 4π

11 − 2/3Nf( )ln Q2/Λ2
QCD( ), (6)

where, in the collisional energy loss case, the coupling appears

through the term α2S [24], which can be factorised to

αS(μ2E) αS(ET) [30] (see also [31]).

The radiation spectrum [51] is:

d2Nrad

dxdτ
� ∫ d2k

π

d2q

π

2CRC2 G( )T
x

μE T( )2 − μM T( )2
q2 + μM T( )2( ) q2 + μE T( )2( )

αS ET( ) αS k2 + χ T( )
x

( )
π

×
k + q( )

k + q( )2 + χ T( ) 1 − cos
k + q( )2 + χ T( )
x E + pz( ) τ( )( ) k + q( )

k + q( )2 + χ T( ) −
k

k2 + χ T( )( ).
(7)

Here C2(G) = 3; χ(T) ≡ M2x2 + mg(T)
2, where x is the

longitudinal momentum fraction of the jet carried away by the

emitted gluon, pz is longitudinal component of initial jet

momentum, and mg(T) � μE(T)/
�
2

√
is the effective gluon

mass in finite temperature QCD medium [69], where μE(T)

is Debye mass defined above;M = 1.3 GeV for charm, 4.5 GeV

for bottom [54–56, 70, 71] and μE(T)/
�
6

√
for light quarks

(where thermal mass originates from gluon propagators);

μM(T) is magnetic screening, where different non-

perturbative approaches suggest 0.4 < μM(T)/μE(T) < 0.6

[67, 72]; q and k are transverse momenta of exchanged

(virtual) and radiated gluon, respectively. Q2
k � k2+χ(T)

x in
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αS(k
2+χ(T)
x ) corresponds to the off-shellness of the jet prior to

the gluon radiation [25]. Note that, all αS terms in Eqs 4, 7 are

infrared safe (and moreover of a moderate value) [31]. Thus,

contrary to majority of other approaches, we do not need to

introduce a cut-off in αS (Q
2).

We further assume that radiative and collisional energy losses

can be separately treated in P (Ei → Ef), i.e., jet quenching is

performed via two independent branching processes [31, 52]. We

first calculate the modification of the quark and gluon spectrum

due to radiative energy loss, then collisional energy loss (we

checked that change of order is unimportant within our model).

This is a reasonable approximation when the radiative and

collisional energy losses can be considered small (which is in

the essence of the soft-gluon, soft-rescattering approximation

widely used in energy loss calculations) and when radiative and

collisional energy loss processes are decoupled, as is the case in

the generalized HTL approach [73] used in our energy loss

calculations.

To obtain the radiative energy loss contribution to the

suppression [57], we start with Eq. 7 and, for a given

trajectory, we first compute the mean number of gluons

emitted due to induced radiation (further denoted as �Ntr(E)),
as well as the mean number of gluons emitted per fractional

energy loss x (i.e., d �Ntr(E)
dx , for compactness further denoted

as �Ntr′ (E, x)):

�Ntr E( ) � ∫
tr

∫ d2Nrad

dxdτ
dx( )dτ, �Ntr′ E, x( ) � ∫

tr

d2Nrad

dxdτ
dτ,

(8)
where the subscript tr indicates that the value depends on the

trajectory. Radiative energy loss suppression takes multi-gluon

fluctuations into account, where we assume that the fluctuations

of gluon number are uncorrelated. Such assumption is

reasonable, as Ref. [74] studied full splitting cascade and

found that independent branchings reasonably well

approximate a full branching. The radiative energy loss

probability can then be expressed via Poisson expansion [31, 57]:

Ptr
rad Ei → Ef( ) � δ Ei − Ef( )

e
�Ntr Ei( ) +

�Ntr′ Ei, 1 − Ef

Ei
( )
Ei e

�Ntr Ei( ) +

+∑∞
n�2

e− �Ntr Ei( )

n!Ei
∫dx1/dxn

�Ntr′ Ei, x1( )/�Ntr′ Ei, xn−1( ) �Ntr′ Ei, 1− Ef

Ei
−x1−/−xn−1( ).

(9)

Ei and Ef are initial and final jet energy (before and after)

radiative process.

To calculate the parton spectrum after radiative energy loss,

we apply

Ef,Rd3σ

dp3
f,R

� Eid3σ Q( )
dp3

i

⊗ Ptr
rad Ei → Ef,R( ), (10)

where the final spectra is obtained after integrating over pi > pf,R.

To find collisional energy loss contribution, Eq. 4 is first

integrated over the given trajectory:

�E
tr
col E( ) � ∫

tr

dEcol

dτ
dτ. (11)

For collisional energy loss, the full fluctuation spectrum is

approximated by a Gaussian centered at the average energy loss
�Etr
col(E) [52, 58].

Ptr
col Ei, Ef( ) � 1���

2π
√

σtrcol Ei( ) exp − Ei − Ef − �E
tr
col Ei( )( )2

2 σtrcol Ei( )2
⎛⎝ ⎞⎠,

(12)
with a variance

σtrcol E( ) �
����������
2Ttr �E

tr
col E( )

√
, (13)

where Ttr is the average temperature along the trajectory, Ei and

Ef are initial and final energy (before and after collisional

processes).

To calculate the quenched hadron spectrum after collisional

energy loss, we apply

Efd3σq HQ( )
dp3

f

� Ei,Cd3σ Q( )
dp3

i,C

⊗ Ptr
col Ei,C → Ef( ) ⊗ D Q → HQ( ),

(14)
where we assume Ei,C = Ef,R, i.e. the final jet energy after

radiative quenching corresponds to the initial jet energy

for collisional quenching. Since both collisional energy loss

and gain contribute to the final spectra [24, 52], both Ei,C > Ef
and Ei,C < Ef have to be taken into account in Eq. 14.

Finally, the hadron suppression Rtr
AA(pf, HQ) for the single

trajectory, after radiative and collisional energy loss, is

equal to the ratio of quenched and unquenched momentum

spectra

Rtr
AA pf,HQ( ) � Efd3σq HQ( )

dp3
f

Efd3σu HQ( )
dp3

f

,/ (15)

where Efd3σu(HQ)
dp3

f
is given by Eq. 2. Rtr

AA(pf,HQ) then needs to be

averaged over trajectories with the same direction angle ϕ to

obtain the suppression as a function of angle, RAA (pf, ϕ, HQ).

This is an important intermediary step since, depending on the

details of QGP temperature evolution and the spatial variations

in the temperature profile, energy loss may significantly depend

on the parton’s direction of motion2. Once we have calculated

RAA (pf, ϕ, HQ), we can easily evaluate RAA and v2 observables as

[75] (we here omit HQ in the expressions, and denote pf = p⊥)
3:

2 In earlier DREENA frameworks, this dependence was also present but
was solely a consequence of the path-length distribution dependence
on the angle.

3 Note that, in Eq. 17, using RAA(p⊥, ϕ), instead of the hadron p⊥ spectrum,
is computationally more efficient since RAA(p⊥, ϕ) is a well-behaved
function, and the number of p⊥ points where we need to evaluate
RAA(p⊥, ϕ) is significantly smaller.
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RAA p⊥( ) � 1
2π

∫2π
0

RAA p⊥, ϕ( )dϕ, (16)

v2 p⊥( ) � 1
2π∫2π

0
cos 2ϕ( )RAA p⊥,ϕ( )dϕ

RAA p⊥( ) . (17)

While the general expressions of the dynamical energy loss

formalism are the same as in the DREENA-B framework [51], the

fact that, in DREENA-A, the temperature entering the Eqs 4–7

explicitly depends on the current parton position, notably

complicates the implementation of these formulas, as we

discuss in the following section.

2.2 Framework outline

Our previous DREENA-C and DREENA-B frameworks were

based on computationally useful, but rough, approximations of

the medium evolution: while in DREENA-C, there was no

evolution, and the temperature remained constant both in

time and along spatial dimensions, in DREENA-B, the

medium was assumed to evolve according to 1D Bjorken

approximation [76]. Due to these approximations, parton

energy loss depended on its path length independently of its

direction or production point. This allowed to analytically

integrate energy-loss formulas to a significant extent, which

notably reduced the number of required numerical

integrations. Furthermore RAA only needed to be averaged out

over precalculated path-length distributions. Thus, these

approximations of the medium evolution straightforwardly led

to efficient computational algorithms for DREENA-C and

DREENA-B.

DREENA-A framework, on the other hand, addresses fully

general medium dynamics, with arbitrary spatio-temporal

temperature distribution. The main input to the algorithm is

the temperature profile Tprofile given as a three-dimensional

matrix of temperature values at points with coordinates (x, y,

τ) (in the input file, the values should be arranged in an array of

quartets of the form (τ, x, y, Tprofile), and the lowest value of τ

appearing in the data is taken to be τ0). In addition to the

temperature profile, the DREENA-A algorithm also takes, as

inputs, the initial parton p⊥ distributions d2σ
dp2

⊥
(each as an array of

(p⊥, d
2σ

dp2
⊥
) pairs) and the jet production probability distribution

(as a matrix of probability density values in the transversal plane,

formatted analogously as the profile temperature values). This

level of generality requires a different approach than in previous

frameworks. Since the DREENA-A algorithm takes arbitrary

medium temperature evolution as the input, the energy loss

has to be individually calculated for each parton trajectory.

This means that for each trajectory–given by the coordinates

x0 and y0 of the parton origin (in the transversal plane) and the

direction angle ϕ–we must first numerically evaluate integrals (8)

and (11). Since the current parton position–for a given

trajectory–becomes a function of the proper time τ, integrands

in Eqs 8, 11 also become functions of τ, either through an explicit

dependence, or via position and time dependent medium

temperature (3). We numerically integrate these functions

along the trajectory (parametrized by τ as x = x0 + τ cos ϕ,

y = y0 + τ sin ϕ), starting from the origin at (x0, y0) and moving in

small integration steps along the direction ϕ (in practice, 0.1 fm

step is sufficiently small for most of the profiles). The integration

is terminated when the medium temperature at the current

parton’s position drops below Tc = 155 MeV [77], i.e., when

the parton leaves the QGP phase. Also, we approximate that there

are no energy losses before the initial time τ0 (which is a

parameter of the temperature profile evolution) and thus the

first part of the trajectory, corresponding to τ < τ0, is effectively

skipped (i.e., τ0 is taken as the lower limit of integration in

Eqs 8, 11).

Once we, for a given trajectory, compute the integrals (8)

and (11), we then perform the rest of procedure laid out by Eqs

8–15. Most of the computation time is spent on numerical

integrations, in particular for evaluating integrals in Eqs 9, 10.

While, in principle, n → ∞ in Eq. 9, in practice we show that

n = 5 is sufficient for convergence in the case of quark jets,

while for gluon jets n = 7 is needed. In general, the Quasi-

Monte Carlo integration method turned out to be the most

efficient and is used for all these integrals (as quasirandom

numbers, we use precalculated and stored Halton sequences).

The result of the integration (15) is the final hadron

suppression Rtr
AA(p⊥, HQ) for the jet moving along the

chosen trajectory, given as the function of its transversal

momentum.

To obtain RAA (p⊥, ϕ,HQ), we have to average this result over

all production points (taking into account the provided jet

production probability distribution) and repeat the procedure

for many angles ϕ. In practice, this means that we must evaluate

energy loss along a very large number of trajectories. This has

significantly increased the computational complexity of the

problem compared to DREENA-C and DREENA-B and

required a number of optimisations.

2.3 Numerical optimisation of DREENA-A

We started by adapting optimisation methods that we

successfully implemented in earlier versions. One useful

approach was a tabulation and consequent interpolation of

values for computationally expensive functions. In particular,

this is crucial for the complicated integrals (4–7): while a two

dimensional array is sufficient to tabulate dEcol
dτ (which is a

function of T and p), values of d2Nrad
dxdτ (depending on τ, T, p

and x) must be stored in a four-dimensional array. Tabulating

such functions is done adaptively, with the density of evaluated

points varying, depending on the function behaviour (i.e., using a

denser grid where the functions change rapidly and sparser
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where the behaviour is smooth). In the case of these two

functions, not only that the consequent interpolation can

significantly reduce the overall number of integral evaluations,

but the corresponding tables (for each particle type) can be

evaluated only once and then permanently stored and reused

for all trajectories and even for different temperature profiles. To

further optimise the algorithm, we also precalculate the integral∫ d2Nrad
dxdτ dx values and store a corresponding three-dimensional

array (since it is a function of τ, T, and p).

When using this table-interpolation method, it is often

necessary to make a function transformation before

tabulation: e.g., it is more efficient and accurate to sample and

later interpolate logarithm of a rapidly (nearly or approximately-

exponentially) increasing function than the function itself

(similarly, it is sometimes more optimal to tabulate ratio, or a

product of functions than each of the functions separately). For

example, it is much more optimal to tabulate and consecutively

interpolate RAAs (and other similarly behaving expressions) than

FIGURE 1
D meson RAA (left) and v2 (middle) at 30–40% centrality computed using different numbers of randomly generated trajectories (Monte Carlo
approach), together with their deviations (right, scaled 1-norm was used as a metric) from the results averaged over the same ensemble of
trajectories. The dashed horizontal line in rightmost panels indicates the threshold of 1% deviation. The top row depicts results obtained from
sampling 25 trajectories at different angles originating from each of 100 randomly selected jet-production points; the middle row—50 angles
from 1,000 points; the bottom row—100 angles from 10,000 points. Each panel shows the results of eight repeated computations (each with an
independent ensemble of randomly generated trajectories), the dashed line representing the mean.M = 1.2 GeV. We use a single value μM/μE = 0.5
[67, 72] to make the figure clearer.
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the corresponding momentum distributions. This methodology

is now extensively applied throughout DREENA-A (from some

intermediate-level energy loss results to evaluating multi-

dimensional integrals in the calculation of radiated gluon

rates). Given the size of some of these tables and that many

interpolations are needed, we ensured that the table lookup and

interpolation algorithm are efficient.

As we encounter multiple numerical integrations at different

stages of the computation, modifying their order was another

type of optimisation, where the natural order (from the

FIGURE 2
D meson RAA (left) and v2 (middle) at 30–40% centrality computed using different numbers of trajectories originating from equidistant points.
Results are labeled by numbers nϕ × (nx × ny): jet directions are along nϕ uniformly distributed angles (from 0 to 2π) originating from each point of the
nx-by-ny equidistant grid in the transversal plane. Deviation of each line from the baseline result (chosen as the outcome for 100 × (150 × 150)
trajectories, dashed line) is shown in right panels. M = 1.2 GeV, μM/μE = 0.5.

FIGURE 3
Temperature distribution (Pb + Pb collision, 30–40% centrality, mid-rapidity) for constant temperature [50] (A) and 1DBjorken evolution [51] (B),
at time (from left to right) τ = τ0, 3, and five fm/c, represented by colour mapping. For constant temperature approximation, τ0 = 0 fm. For 1D Bjorken
approximation, τ0 = 0.6 fm.
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theoretical viewpoint) is not necessarily followed but is instead

adapted to the particular function behaviour. Specifically, it

turned out that a different order of integration (for radiative

contribution) is optimal for heavy flavor particles compared to

gluons. I.e., while it is natural, from the physical perspective, to

start with the initial momentum distributions of partons and

integrate over the radiative energy loss (see Eqs 9 and 10), it

turned out that (for heavy flavors) the shape of the initial

distributions necessitates a very high number of integration

points to achieve the required computation precision.

Reorganising the formulas and postponing the integration

over initial distributions to the very end turned much more

computationally optimal for heavy flavor. A similar procedure in

the case of light quarks allowed much of the integration to be

carried out jointly for all quarks, since their effective masses are

the same, but initial p⊥ distributions differ.

The crucial optimisation in DREENA-A is the method used

for averaging over the particle trajectories. In suppression

calculations, it is common to carry out the averaging over

production points and directions by Monte Carlo (MC)

sampling, but it turned out that the equidistant sampling of

both jet production points and direction angles was here

significantly more efficient. We initially implemented the

Monte Carlo approach, randomly selecting both the origin

coordinates and the angles of particle trajectories. The binary

collision density was used as the probability density for

coordinates of origins, while the angles were generated from a

uniform distribution. Convergence of the results by using this

method required a large number of sampled trajectories, as

illustrated in Figure 1. The figure shows RAA and v2 results

obtained by the DREENA-A algorithm for a different total

number of trajectories (the computation was done for D

meson traversing the temperature evolution generated using a

Glauber initialised viscous hydrodynamic code [78], at 30–40%

centrality class). The plots in the right column of Figure 1 show

the magnitude of the deviation of the particular curve from the

median curve, where the latter is the arithmetic mean of all curves

in the plot (as the measure of deviation of a function f(p) from a

FIGURE 4
Comparison of different DREENA frameworks, for Bjorken medium evolution (A) and for constant medium temperature approximation (B),
demonstrating inter-framework consistency. (A) show D meson RAA (left) and v2 (right) at 30–40% centrality computed using DREENA-A (supplied
with temperature profiles representing Bjorken evolution) and DREENA-B. (B) show the same observables, computed using all three DREENA
frameworks, when applied to the same constant temperature medium. M = 1.2 GeV, μM/μE = 0.5.
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reference function �f(p) we use |δf| � ∫ |f(p)− �f(p)|dp∫ | �f(p)|dp ). We see

that RAA convergence is easily achieved, where relative deviations
of the order of 1% are obtained by taking into account only
2,500 trajectories (see Figure 1-A and Figure 1-A*). Computing
the v2 value requires much more trajectories, i.e., we see a
substantial scattering of the Monte Carlo results with
2,500 trajectories, while ~ 106 trajectories are needed to
reduce relative deviation below 1%. Note that a small number
of sampled trajectories also causes a systematic error: the smaller
the number of trajectories, the lower the averaged v2.

When using the equidistant sampling method instead of

Monte Carlo, we divide the transverse plane into an

equidistant grid, whose points are used as jet origins. Energy

loss for each trajectory is then weighted with the jet production

probability at each point, and summed up. As production

probability, we used the binary collision density evaluated

using the optical Glauber model. In Figure 2, we see that, for

already ~ 10.000 evaluated trajectories, the integral has

converged within 1% of the estimated ‘proper’ value. This

modification resulted in a more than two orders of magnitude

reduction of the execution time. We also tested two hybrid

variants: 1) where trajectory origins were randomly selected

but directions equidistantly, and 2) where production points

were equidistantly selected, but directions randomly sampled.

The convergence of the two variants interpolated between the

MC sampling and the equidistant sampling (Figures 1, 2,

respectively).

2.4 Convergence test of different DREENA
methods

Finally, as a consistency check for DREENA-A, we compared

its predictions with DREENA-C and DREENA-B results. For this

purpose, we generated artificial T profiles suitable for this

comparison, illustrated in Figure 3. The results of the

DREENA-A and DREENA-B comparison, for RAA and v2, are

shown in the upper panels of Figure 4, respectively. Lower panels

of Figure 4 show the comparison of all three frameworks on the

hard-cylinder collision profile constant in time (for this

comparison, we modified the DREENA-B code to remove

temperature dependence on time). We see that all frameworks

lead to consistent results (up to computational precision),

supporting the reliability of the DREENA-A.

3 Results and discussion

To demostrate the utility of the DREENA-A approach, we

generated temperature profiles for Pb + Pb collisions at the full

FIGURE 5
Temperature distribution (Pb + Pb collision, 30–40% centrality, mid-rapidity) for different medium evolution models, at time (from left to right)
τ = τ0, 2, 3, 4 and five fm/c, represented by colour mapping. First row: “Glauber”, τ0 = 1 fm; second row: “EKRT”, τ0 = 0.2 fm; third row: “TRENTo”, τ0 =
1.16 fm. Note that distributions in the first column correspond to different times.
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LHC energy (
���
sNN

√ � 5.02 TeV) and Au +Au collisions at the full

RHIC energy (
���
sNN

√ � 200 GeV) using three different

initialisations of the fluid-dynamical expansion.

First, we used optical Glauber initialisation at initial time τ0 =

1.0 fm without initial transverse flow. The evolution of the fluid

was calculated using a 3+1D viscous fluid code from Ref. [78].

The parameters to describe collisions at the LHC energy were

tuned to reproduce the low-p⊥ data obtained in Pb + Pb collisions

at
���
sNN

√ � 5.02 TeV [32]. In particular, shear viscosity over

entropy density ratio was constant η/s = 0.12, there was no

bulk viscosity, and the equation of state (EoS) parametrisation

was s95p-PCE-v1 [79]. For RHIC energy we used ‘LH-LQ’

parameters from Ref. [78], except that we used constant η/s =

0.16. Binary collision density fromGlauber model was used as the

probability distribution for the initial points of jets, while their

directions were sampled from a uniform angular distribution.

Second, we used the EKRT initialisation [80–82], and evolved

it using the same code we used to evolve the Glauber

initialisation, but restricted to a boost-invariant expansion. In

this case, the initial time was τ0 = 0.2 fm, and parameters were the

favoured values of a Bayesian analysis of the data from Pb + Pb

collisions at
���
sNN

√ � 2.76 and 5.02 GeV, and from Au + Au

collisions at
���
sNN

√ � 200 GeV using the EoS parametrisation

s83s18 [19]. In particular, there was no bulk viscosity and the

minimum value of temperature-dependent η/s was 0.18. Origins

of the high-p⊥ particles were sampled using the binary collision

density of Glauber model, while the distribution of their

directions was uniform.

Our third option was the TRENTo initialisation [83] evolved

using the VISH2+1 code [84] as described in [85, 86]. To describe

collisions at LHC, parameters were based on a Bayesian analysis

of the data at the above mentioned two LHC collision energies

[86], although the analysis was done event-by-event, whereas we

carried out the calculations using simple event-averaged initial

states. In particular, the calculation included free streaming stage

until τ0 = 1.16 fm, EoS based on the lattice results by the HotQCD

collaboration [77], and temperature-dependent shear and bulk

viscosity coefficients with the minimum value of (η/s)min = 0.081

and maximum of (ζ/s)max = 0.052. For RHIC, we used the “PTB”

maximum a posteriori parameter values from Ref. [87], but

changed the temperature-dependent shear viscosity coefficient

(η/s) (T) to a constant η/s = 0.16. The initial event-by-event

FIGURE 6
DREENA-A RAA (top panels) and v2 (bottom panels) predictions in Pb + Pb collisions at

����
sNN

√ � 5.02 TeV are generated for different models of
QGP medium evolution (indicated in the legend). Charged hadron (A) predictions are generated for 30–40% centrality, while D (B) and B (C)meson
predictions are generated for 30–50% centrality region. For charged hadrons, the predictions are compared with the experimental data from CMS
[88, 89], ALICE [90, 91] and ATLAS [92, 93]. For D mesons, the predictions are compared with ALICE [94, 95] and CMS [96] data. For B mesons
predictions are compared with preliminary ALICE [97] and CMS [98]. The boundary of each gray band corresponds to 0.4 < μM/μE < 0.6 [67, 72].
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collision points were used to generate the spatial probability

distribution for the initial coordinates of the high-p⊥ particles,

while their angular distribution was uniform.

All these calculations lead to an acceptable fit to measured

charged hadron multiplicities, low-p⊥ spectra, and p⊥-differential

v2 in 10–20%, 20–30%, 30–40%, and 40–50% centrality classes.

As wemay expect, different initialisations and initial times lead to

a visibly different temperature evolution. This is demonstrated in

Figure 5 where we show the calculated temperature distributions

in collisions at the LHC energy at various times. Looking at the

profiles, it is easily noticeable that they evolve differently in space

and time. Even if the initial anisotropy of the Glauber

initialisation is lowest, later in time, its anisotropy is largest,

since the very early start of EKRT initialisation, or the early free

streaming of TRENTo, dilute the spatial anisotropy very fast.

That is, “Glauber” exhibits larger asymmetry throughout the

QGP evolution compared to the other two profiles (though

“EKRT” has larger asymmetry than “Trento”), which might

accordingly translate to differences in high-p⊥ v2. Similarly,

the early start of EKRT leads to a large initial temperature,

which is expected to result in a smaller RAA than the other

two profiles.

To test if these visual differences can be quantified through

high-p⊥ data at the LHC and RHIC, we used these profiles as an

input to the DREENA-A to generate high-p⊥ RAA and v2
predictions for charged hadrons, D and B mesons. As can be

seen in Figures 6, 7, both RAA and v2 show notable differences for

both experiments and all types of flavor. For example, “EKRT”

leads to the smallest RAA, i.e., largest suppression, as can be

expected based on the largest temperature. Similarly, the

calculated high-p⊥ v2 depicts the same ordering as the system

anisotropy during the evolution: “Glauber” leads to the largest,

followed by “EKRT”, while TRENTo leads to the lowest v2.

Consequently, the DREENA-A framework can differentiate

between temperature profiles by corresponding differences in

high-p⊥ observables, where these differences agree with the

qualitative observations from Figure 5. Since the differences in

evolution are due to different initialisations, and different

FIGURE 7
DREENA-A RAA (top panels) and v2 (bottom panels) predictions in Au + Au collisions at

����
sNN

√ � 200 GeV are generated for different models of
QGPmedium evolution (indicated in the legend). Charged hadron (A), Dmeson (B) and Bmeson (C) predictions are generated for 20–30% centrality
region. The h± predictions are compared with π0 data from PHENIX [99, 100] and h± data from STAR [101, 102] - note that for v2 10–40% centrality
data is shown for STAR. For Dmesons, the predictions are compared with STAR [103, 104] data at 10–40% centrality and with PHENIX [105] data
at 20–40%. B mesons predictions are compared with PHENIX [105] data at 20–40%. The boundary of each gray band corresponds to 0.4 < μM/μE <
0.6 [67, 72].
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properties of the fluid (EoS and/or dissipative coefficients), RAA

and v2 observables can be used to provide further constraints to

the fluid properties. We note here that even low-p⊥ data could be

used to differentiate our three evolution scenarios, but such

analysis would require evaluating χ2 or a similar measure of

the quality of the fit, or computing Bayes factors [87]. The high-

p⊥ observables, on the other hand, show clear differences visible

by the naked eye.

Moreover, from Figures 6, 7, we see that all types of flavor, at

both RHIC and LHC, show apparent sensitivity to differences in

medium evolution, making them equally suitable for exploring

the bulk QGP properties with high-p⊥ data. With the expected

availability of precision data from the upcoming high-luminosity

experiments at RHIC and LHC (see e.g. [106–108]), the

DREENA-A framework provides a unique opportunity for

exploring the bulk QGP properties. We propose that the

adequate medium evolution should be able to reproduce high-

p⊥ observables in both RHIC and LHC experiments for different

collision energies and collision systems, with reasonable

accuracy. As demonstrated in this study, an equal emphasis

should be given to light and heavy flavor, as they provide a

valuable independent constraint for bulk medium evolution.

Overall, DREENA-A provides a versatile tool to put large

amounts of data generated at RHIC and LHC experiments to

optimal use.

We also observe that none of the profiles analysed in Figures

6, 7 lead to satisfactory agreement with high-p⊥ RAA and v2 data.

However, we note that the goal of this study is not to get a good

agreement with the experimental data, but to demonstrate that 1)

different temperature profiles lead to different high-p⊥
predictions, 2) high-p⊥ data can provide an important further

constraint in exploring the QGP properties. Finding suitable

temperature profiles (i.e., QGP parameters) that would lead to a

reasonable agreement with high-p⊥ data is a highly non-trivial

task which is left for further work.

4 Summary

We presented the DREENA-A computational framework for

tomography of Quark-Gluon Plasma created in heavy-ion

collisions at RHIC and the LHC. The tool is based on state-

of-the-art energy loss calculation and can include arbitrary

temperature profiles. This feature allows fully exploiting

different temperature profiles as the only input in the

framework. We showed that the calculated high-p⊥ RAA and

v2 exhibit notable sensitivity to the details of the temperature

profiles, consistent with intuitive expectations based on the

profile visualisation. The DREENA-A framework applies to

different types of flavor, collision systems, and collision

energies. It can, consequently, provide an efficient and

versatile QGP tomography tool for further constraining the

bulk properties of this extreme form of matter. To facilitate

this, we also provided the fully optimized, publicly available

software for generating DREENA-A predictions. The code allows

straightforwardly generating high-p⊥ predictions for diverse

models of QGP evolution.
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Analyzing the GHSI puzzle 
of whether highly developed 
countries fared worse in COVID‑19
Sofija Markovic1, Igor Salom2, Andjela Rodic1 & Marko Djordjevic1*

Global Health Security Index (GHSI) categories are formulated to assess the capacity of world 
countries to deal with infectious disease risks. Thus, higher values of these indices were expected 
to translate to lower COVID‑19 severity. However, it turned out to be the opposite, surprisingly 
suggesting that higher estimated country preparedness to epidemics may lead to higher disease 
mortality. To address this puzzle, we: (i) use a model‑derived measure of COVID‑19 severity; (ii) 
employ a range of statistical learning approaches, including non‑parametric machine learning 
methods; (iii) consider the overall excess mortality, in addition to official COVID‑19 fatality counts. 
Our results suggest that the puzzle is, to a large extent, an artifact of oversimplified data analysis 
and a consequence of misclassified COVID‑19 deaths, combined with the higher median age of the 
population and earlier epidemics onset in countries with high GHSI scores.

It is natural to assume that the most prosperous world countries, well organized and with the most advanced 
medical institutions, would soon gain an advantage in the global race to minimize the harm from a new viral 
infection. This expectation is quantified in the form of the Global Health Security Index (GHSI)—a measure of 
preparedness for various health emergencies, precisely of the kind of the present COVID-19  pandemic1. The 
categories included in this index were carefully designed to help countries identify weaknesses primarily in their 
healthcare systems but also in their political and socio-economic structure, as well as to guide the process of 
reinforcing their health security  capacities2–4. To this end, capacities to prevent medical hazards, to timely detect 
and report them, to rapidly respond in these situations, to comply in all these with international norms, as well 
as the health system capacity, and the overall vulnerability to biological threats—are all separately assessed and 
assigned a specific GHSI category: Prevent, Detect, Respond, Norms, Health and Risk, respectively.

With the COVID-19 pandemic, the GHSI scores were put for the first time to a real-life global test – which 
they failed, according to most of the published attempts to assess their correlation with the epidemic  scale5–18. 
An unexpected positive correlation between the GHSI categories and differently calculated  mortality5–7,12,14,17 
and infection  spread5,7,8,10,12–14 – deserving to be called the "GHSI puzzle" – suggested that the GHSI cannot be 
used to describe the national pandemic  preparedness19. As this result seemed highly convincing, the focus was 
shifted to the search for explanations of the GHSI  inappropriateness19. Thereby, the observed large COVID-19 
infection counts in highly developed (high GHSI countries) motivated the firm opinion that their responses were 
“sclerotic and delayed at best”20. The first-ranked country in the GHSI 2019 list, the USA, provided a striking 
example. Despite its top overall score of 76/100—equaling roughly twice the average score of 38.9—COVID-19 
has taken a devastating toll in the US, especially in the first wave of the  pandemic21,22, introducing a two-year drop 
in life  expectancy23. It was pointed out that GHSI scores cannot anticipate how a country decides to respond to 
epidemics, so these scores cannot be expected to necessarily be predictive of reported infections and  fatalities24,25.

However, it is also necessary to revisit the methodological approaches that lead to the unintuitive relation 
of GHSI scores to the observed pandemic effects. First, the outcome variable, assumed to depend on the GHSI, 
should measure the relevant, effective epidemic burden to reasonably represent the country’s overall success in 
minimizing the harm from the epidemic. Significantly, it should predominantly depend on the aspects of pre-
paredness rather than other prevailing factors. As noted above, the GHSI predictivity was analyzed for different 
mortality and infection rates, yielding mostly positive correlations, and these variables depend on factors that 
directly or indirectly increase the frequency and range of personal contacts 26 and thus promote the disease spread 
27. Developed countries, typically carrying high GHSI scores, are characterized by intense population mobility 
and mixing due to ease of travel, higher local concentrations of people, and business and social activities. So, 

OPEN

1Quantitative Biology Group, Faculty of Biology, University of Belgrade, Belgrade, Serbia. 2Institute of Physics 
Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia. *email: dmarko@
bio.bg.ac.rs

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22578-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17711  | https://doi.org/10.1038/s41598-022-22578-2

www.nature.com/scientificreports/

the consequential rapid disease spread may cancel and overshadow the ameliorating effects of large prepared-
ness capacities, explaining the lack of a negative correlation of the GHSI with COVID-19 growth numbers. In 
addition, these outcome variables depend on the calculation time frame, and there are even examples of inci-
dence rates with negative dependence on the GHSI 18. Therefore, it is quite nontrivial to select the appropriate 
outcome variable (among mortality and incidence rates) for describing the relationship between the GHSI and 
the epidemic burden.

The relation of the GHSI with clinical severity measured by the Case Fatality Ratio (CFR), as a more obvious 
indicator of the burden magnitude, was considered in a few papers 8,13,16, with the most extensive study (for a 
large number of countries and with including numerous other potential predictors) carried out in 13—and the 
connection turned out to be positive. This is genuinely perplexing since CFR is an objective measure of disease 
severity, thus expected to be causally independent of the disease transmissibility. Consequently, there is no obvi-
ous explanation why higher GHSI would be linked to a worse case fatality ratio.

While CFR is a specific measure of severity, its shortcoming is being time-dependent and affected by the vary-
ing lag between case detections and fatal outcomes (in addition to lacking a direct mechanistic interpretation in 
terms of the disease dynamics)28. Instead, we choose a timing-independent measure of severity: m/r value that 
we previously derived from an epidemic  model29, which represents the ratio of population-averaged mortality 
to recovery rates (so that many fatalities and/or slow recovery correspond to higher epidemic severity). It can be 
shown that this measure is independent of the SARS-CoV-2 transmissibility and directly relates to the asymptotic 
CFR value calculated at the end of the epidemic wave, so it does not rely on an arbitrary time frame. Thus, we 
could estimate it straightforwardly using the data from the end of the first pandemic’s peak, avoiding interpreta-
tion of complex effects of vaccination and different SARS-CoV-2 strains on the disease severity.

Furthermore, we aimed to check if the observed positive GHSI correlations with various measures of epi-
demics intensity may be an artifact of the applied methods that are not well adapted for the problem complexity 
– i.e., cannot extract the impacts specific to individual factors entangled in mutual correlations. To that end, 
we searched for the m/r predictors among a number of variables on 85 countries using methods such as the 
regularization-based linear regressions (Lasso and Elastic Net)30, and non-parametric machine learning tech-
niques (Random Forest and Gradient Boost)30. Together with different GHS Indices, we also included a number 
of sociodemographic and health-related variables in the analysis, in line with a recent result that factors external 
to GHSI may aid in characterizing countries’ ability to respond to epidemic  outbursts31. Finally, we investigated 
the relationship between the GHSI and the total excess deaths, which was not performed before; the main 
advantage of such analysis is that, unlike official COVID-19 figures, total excess deaths counts do not depend on 
diagnosis and reporting  policies17,18. Combined together, our results, to a large extent, solve—or more precisely 
dissolve—the puzzle: it is not justified to relate high GHSI values (i.e., high estimated country preparedness) 
with an unsatisfactory pandemic response and high severity/mortality burden.

Results
Analysis based on COVID‑19 case counts. Univariate analysis (Fig. 1) reveals a statistically significant 
positive correlation of all selected GHSI categories with our severity measure (m/r), demonstrating the puzzle. 
Strikingly, GHSI categories show the highest positive correlations compared to all other variables in the analysis. 
Also, they are highly correlated with measures of a country’s development (e.g., GDP per capita and HDI), so 
that, on average, more developed countries have higher GHSI.

However, the univariate analysis does not control for simultaneous effects of multiple factors that can influ-
ence the disease severity. Additionally, many factors that we initially included as potentially important (and 
thus considered in the analysis) may not significantly influence the severity, so retaining them in the final model 
would introduce large noise. Another problem is that many factors are mutually highly correlated. Consequently, 
we next applied linear regressions with regularizations and feature selection (Lasso and Elastic Net, which can 
eliminate non-significant predictors), combined with PCA on groups of related variables (to partially decorrelate 
the variable set while retaining its interpretability).

Mutually related variables were thus grouped in three categories (age, chronic disease, prosperity) on which 
PCA was performed (Supplement Fig. 1, Supplement Table 2), while the other variables remained unchanged 
(Supplement Table 1). The data were then independently analyzed using Lasso (Fig. 2A) and Elastic net regres-
sions (Fig. 2B), which were implemented in the so-called “relaxed”30 way to reduce noise from the multidimen-
sional data.

From Fig. 2, we see that age PC1 is the dominant predictor in both methods, unsurprisingly suggesting that 
the older population is more severely affected by COVID-19. Furthermore, epidemic onset appears to be an 
important factor negatively associated with the disease severity, meaning that earlier epidemic onset is associ-
ated with higher severity of the disease. Of all four analyzed GHSI categories, the disease detection index is 
selected as the most important, with an (unintuitive) positive effect on m/r. While positive contribution was also 
obtained through univariate analysis, its magnitude diminishes when the more advanced analysis is used, i.e., 
in Fig. 2, PCA followed by multivariate regressions with regularization. Consequently, while the paradox is still 
there (positive contribution of one of GHSI categories), the regression coefficient of this predictor significantly 
decreases (e.g., compared to age) as the analysis progresses from univariate to multivariate (with feature selec-
tion and correlated variables accounted for). Also, in Elastic net regression (Fig. 2B), net immigration appears 
to contribute negatively to the disease severity, which we will further discuss below. The obtained results remain 
robust when the regression methods are applied to the initial data without PCA, when besides 18 demographic 
parameters, Detect, Respond, Health and Risk GHSI categories (Supplement Fig. 2), or Covid index (Supple-
ment Fig. 3) are used.
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In the analysis above, we grouped variables in subsets according to their natural interpretation (e.g., age-
related, chronic diseases, country prosperity) for PCA. While this approach facilitates the interpretation of 
the regression results, there is also some arbitrariness in the grouping criteria. This motivated us to perform 
supervised PCA—a mathematically well-defined procedure that chooses the variables for PCA solely based on 
their numerical correlation with the response variable. The optimal hyperparameter values, selected through 
cross-validation, were θ = 0.05 for correlation coefficient cutoff and n = 6 for the number of retained principal 
components. The selected six principal components were used as predictors in a linear regression model with m/r 
as the response variable. As only two principal components, PC1 and PC4, turned out to be significant predictors 
(with the standard significance cutoff of P < 0.05) in the linear regression, we proceeded to further analyze these 
principal components. The results in Fig. 3 show scatterplots of PC1 and PC4 vs. m/r and variables entering 
PCA. One can see a high correlation of m/r with PC1, which technically makes it a good risk index for COVID-
19 severity – though some of its constituents, such as GHSI, have an unintuitive contribution to m/r. More 
importantly, PC1 shows that the composite variable, which can explain much of the variability in m/r, contains 
GHSI categories intertwined with HDI and GDP in terms of their effect on m/r. Consequently, the unintuitive 
positive contribution of GHSI to m/r (as well as the absence of negative contribution in more complex models) 
may be an indirect consequence of some effect that increases m/r for more developed countries (for which both 
HDI/GDP and GHSI are high). We will further explore this possibility through the analysis of excess deaths.

Figure 1.  Graphical representation of the predictor correlation matrix (as the matrix is symmetric, only its 
upper half is shown). Colors correspond to the magnitude of Person correlation coefficients, as indicated by 
the color bar on the right, while asterisks correspond to the statistical significance of the results (‘ ’ – P > 0.05, 
‘ * ’ – 0.05 > P > 0.01, ‘ ** ’ – 0.01 > P > 0.001, ‘ *** ’ – P < 0.001 ). Correlations of m/r and selected three Global 
Health Security Index categories, relevant for the pandemic, are also represented by scatterplots in the inset. m/r 
– disease severity measure, Overall – Overall GHSI, Prevent – GHSI Prevent category, Detect – GHSI Detect 
category, Respond – GHSI Respond category, Health – GHSI Health category, Norms – GHSI Norms category, 
Risk – GHSI Risk category, Covid – a combination of COVID-related GHSI indicators, BUAPC – built-up area 
per capita, UP – urban population, MA – median age, IM – infant mortality, GDP – gross domestic product 
per capita, HDI – human development index, IE – net immigration, RE – refugees, CH – blood cholesterol 
level, AL – alcohol consumption, OB – prevalence of obesity, SM – prevalence of smoking, CD – prevalence of 
cardiovascular diseases, RBP – raised blood pressure, IN – physical inactivity, BCG – BCG vaccination coverage, 
ON – the onset of the epidemic, PL – air pollution. The figure was created using  R55 corrplot  package56, in 
RStudio integrated development environment for  R57.
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The regression methods used so far do not account for nonlinearities or possible interactions between pre-
dictor variables. For this reason, we applied machine learning methods based on ensembles of weak learners 
(decision trees), Random Forest, and Gradient Boost, on the same set of predictors and PCs used in the linear 
regression models above. Figure 4 shows the estimate of variable importance (A and D) and Partial Dependence 
(PD) plots (B, C, E, F) for the variables with the highest importance in explaining disease severity. PD plots also 
provide information about the direction (positive or negative) in which the predictors affect m/r. We obtain 
age PC1 as by far the most important variable, where older age promotes the disease severity. Detect GHSI and 
epidemic onset also appear above the standard importance threshold. However, the estimated effect of Detect 
GHSI is now small, based on both the variable importance and PD plots that show a much larger dependence 
of m/r on age PC1.

Analysis of excess deaths. We next focus on excess deaths (see the definition in Methods), where we 
again use several univariate and multivariate approaches. As predictors, we here use COVID-19 counts, GHSI, 
and demographic variables, which we separated into mutually related subsets on which PCA was performed (see 
Supplement Table 3 and Supplement Fig. 4). In Fig. 5, which shows Random Forest results, we see that Counts 
PC1, which equally well reflect COVID-19 infection and death case counts, are by far the most dominant predic-
tor of excess deaths. While expected, this is also a highly nontrivial result, given that the two quantities (excess 
deaths and classified COVID-19 deaths) are inferred in an entirely independent manner, and that in-principle 
ununiform policies of COVID-19 related deaths classification are applied in different  countries32. This result 
is robust, i.e., consistently obtained through different methods, ranging from simple univariate regressions to 
linear regressions (with variable selection and regularization), see Supplement Figs. 5 and 6 and Supplement 
Table 4. The only other predictor with importance above the threshold in Fig. 5 is CFR (which we also calculate 
in saturation, i.e., at the end of the first wave), which has a small to moderate positive effect on m/r, though much 
smaller than the COVID-19 case counts.

We then analyzed the unexplained deaths with the same approach described above for the excess deaths. 
The unexplained deaths are the difference between the excess deaths and COVID-19 deaths, i.e., those excess 
deaths not attributed to COVID-19 (for the definition, see Methods). From Fig. 6, we see that the most important 
predictor is demo PC1, which has a clear negative association with unexplained deaths (see the corresponding 
PD plot). These results are robust, i.e., independently obtained by several different univariate and multivariate 
analyses (Supplement Figs. 7 and 8 and Supplement Table 5). As demo PC1 is strongly related to country GDP/
HDI (see Supplement Fig. 4), more developed countries are associated with a smaller number of unexplained 
deaths. The other demographic-related PC components above the importance threshold (demo PC 4 and 6) 
have a smaller influence on unexplained deaths and can also be related to the negative influence of HDI/GDP 
(see Supplement Fig. 4). Interestingly, GHSI PC1 (highly correlated to all GHSI categories) is also selected as a 
significant predictor, negatively associated with unexplained deaths. This implies that higher GHSI (significantly 
correlated to HDI/GDP) is associated with fewer unexplained COVID-19 deaths.

Discussion
Although the m/r quantity does not depend on the epidemic growth rate, which is boosted by the large contact 
rate in countries with high GDP, HDI, and GHSI, the univariate analysis shows that GHSI categories significantly 
correlate with this measure of severity – having the highest correlation of all considered variables. This could 
be naively interpreted as a higher likelihood of dying from COVID-19 in well-equipped medical facilities than 
in settings ranked by far lower GHSI. In the subsequent two parallel analyses—Lasso and Elastic Net on PCs 

Figure 2.  Lasso and Elastic Net regressions with m/r as the response variable. (A) Regression coefficients of 
variables selected by Relaxed Lasso regression, (B) Regression coefficients of variables selected by Relaxed 
Elastic Net regression, age PC1 – age principal component 1, Detect – GHSI Detect category, Respond – GHSI 
Respond category, IE – net immigration, IN – physical inactivity, ON – the onset of the epidemic.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17711  | https://doi.org/10.1038/s41598-022-22578-2

www.nature.com/scientificreports/

obtained from three predefined groups of variables, on one side, and the Supervised PCA, on the other – the 
positive effect of GHSI is acknowledged, primarily through the Detect category. However, it is smaller than the 
effects of PCs brought to the fore, determined by factors like the population median age, the epidemic onset, and 
the net immigration. Thereby, the diversity of the variables constituting PC1 in the supervised PCA, together 
with multiple GHSI categories, additionally questions the GHSI significance, as it makes it hard to separate the 
influence of the GHSI from the influences of other variables related to the country development level (HDI/
GDP). Finally, the variable importance analysis points to a robust and dominant influence of the age PC1, while 
a positive influence of the GHSI Detect category is present but almost negligible compared to the age PC1 effect.

Moreover, the Random Forest method selects the Onset as an additional variable with higher significance than 
the GHSI Detect. Therefore, our results show that oversimplified analytical methods play a major role in the puz-
zle: While simple pairwise correlations indeed strongly suggest that "better healthcare leads to higher COVID-19 
mortality", there is hardly any hint of such paradox with advanced machine-learning analyses. Instead, old age 
and an earlier epidemic onset are likely behind the increased disease severity—and simple univariate analysis 
fails to identify these confounding variables, both significantly correlated with the GHSI.

Figure 3.  Supervised Principal Component Analysis. Scatterplot of (A) PC1 and m/r, (B) PC4 and m/r, (C) 
PC1 and variables entering PCA, (D) PC4, and variables entering PCA. m/r – mortality over recovery rate, 
Detect – GHS Detect category, Respond – GHSI Respond category, Health – GHSI Health category, Risk – 
GHSI Risk category, BUAPC – built-up area per capita, UP – urban population, MA – median age, IM – infant 
mortality, GDP – gross domestic product per capita, HDI – human development index, IE – net immigration, 
RE – refugees, CH – blood cholesterol level, AL – alcohol consumption, OB – prevalence of obesity, SM – 
prevalence of smoking, CD – prevalence of cardiovascular diseases, RBP – raised blood pressure, IN – physical 
inactivity, BCG – BCG vaccination coverage, ON – the onset of the epidemic, PL – air pollution.
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Three severity predictors robustly selected by different methods – the median age, the epidemic onset, and 
the net immigrations – are generally supported by other studies’ results, obtained in combinations with other 
 predictors6,8,11,13,14. The fact that our analysis singled them out argues about their dominant roles. Old age is 
undoubtedly a dominant risk factor for developing severe illness and dying from COVID-196,8,13,14. The onset 
variable, not acknowledged only by the Random Forest, is obtained with a negative association to  severity11,33. 
The time in which the pandemic reached a country may have been a significant factor in the first wave, as 
countries could use it to organize medical resources and adjust treatment protocols, learning from the experi-
ences of those affected earlier. The Elastic net and the supervised PCA results identify the net immigration as 
a negative contributor to the COVID-19 severity. The supervised PCA groups this variable inside the same PC 
with the percent of refugees. This negative effect of immigration in the broader sense on the severity should 
not be interpreted through a hypothetical mitigating effect of the full lockdowns on the virus spread, rapidly 
imposed in those countries expecting a massive inflow of  people13,34, because m/r is independent of the disease 
transmissibility. Rather than being more efficient in treating COVID-19, countries leading in net immigration 
probably had an additional under-privileged  population35 whose deaths from COVID-19 were more frequently 
misattributed to other causes, e.g., a lack of medical insurance or a general reluctance to go to  hospitals36,37. If so, 
the presence of immigrants did not decrease the actual COVID-19 mortality, but only the officially recognized 
toll (further discussed below).

We further demonstrate that the reliability of COVID-19 data also plays an important role. Many factors can 
lead to underreporting, or even overreporting, of COVID-19 deaths: testing capabilities, protocols for classifying 
causes of death, to outright political  influences38. Since these factors can be highly variable between countries, we 
considered the overall excess deaths as an alternative measure to official COVID-19 mortality statistics. We obtain 
that, similarly  to39, the excess deaths variable depends almost only on the sheer number of COVID-19 cases (itself 
not significantly correlated with any other of our predictor variables, see Fig. 1), together with some influence 
of the CFR value (where CFR itself is dominantly correlated with median age, and with epidemic onset—pos-
sibly due to the accumulated experience in medical treatments). The counterintuitive connection of COVID-19 
severity with GHSI categories (and country’s prosperity) does not appear when considering the overall excess 
mortality. Another perspective on the phenomenon is gained by considering the "unexplained deaths" variable, 
quantifying the part of the overall excess deaths not officially attributed to COVID-19 mortality. We obtained 
that unexplained deaths are smaller in developed countries with high GHSI scores. Other studies also found 
a similar relationship between unaccounted excess deaths and the lower average income/fewer physicians per 
 capita6,8,14,37,38,40. This strongly suggests that underreporting COVID-19 deaths plays another crucial role in the 
GHSI puzzle, i.e., that the actual COVID-19 toll in low GHSI countries is higher than the official figures reveal.

For our present purposes, it is not crucial whether the excess deaths represent direct COVID-19 victims or 
indirect pandemic causalities of reduced access to healthcare services (i.e., due to overwhelmed medical facilities): 

Figure 4.  Machine learning algorithms and Partial dependence (PD) plots with disease severity as the response 
variable. (A) Variable importance estimates for Random Forest regression, (B–C) PD plots corresponding 
to Random Forest, (D) Variable importance estimates from Gradient Boost regression, (E–F) PD plots 
corresponding to Gradient Boost. The dashed lines in A and D correspond to the mean variable importance in 
the given model. HDI PC1 – human development index PC1, Chr PC1 – chronic diseases PC1, Detect – GHSI 
Detect category, Respond – GHSI Respond category, Health – GHSI Health category, BUAPC – built-up area 
per capita, OB – obesity, SM – smoking, IN – physical inactivity, ON – epidemic onset, m/r – disease severity 
measure.
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GHSI scores should reflect capabilities to cope with both aspects of the pandemic consequences. Nevertheless, 
most of the unaccounted deaths likely represent direct consequences of SARS-CoV-2 infection, especially in 
countries where the difference between the official COVID-19 mortality and the excess of deaths is substantial. 
Namely, our results are based on the excess of deaths that occurred during a relatively short time window of the 
first pandemic wave (a few months), where the negligence of other/chronic medical conditions (e.g., postponed 
oncological or cardiological check-ups and treatments) will unlikely have such immediate effects on mortality. 

Figure 5.  Random Forest regression with excess deaths as the response. (A) Predictor importance estimates 
from Random Forest regression, where dashed line represents the importance threshold, i.e., the mean 
importance value, (B–E) Partial dependence plots of predictors with the highest importance estimates from 
Random Forest regression model, CFR – case fatality rate, R0 – basic reproductive number of the virus.
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Besides, if the unexplained deaths were primarily an indirect consequence of saturation of medical resources, 
COVID-19 case counts should reflect this saturation and thus be expected to appear as a relevant predictor of 
unexplained deaths—but this does not happen. On similar grounds, the authors  of39 support the same interpreta-
tion of excess mortality in regions of Italy. As an additional argument, we note that, of all GHS indices, both the 
linear regressions with feature selection (Fig. 2) and the machine learning techniques (Fig. 4) consistently single 
out the Detect score (quantifying testing capabilities) as the one most affecting m/r. This is consistent with the 
interpretation that high GHSI scores—and the Detect index category in particular—are not connected to higher 

Figure 6.  Random Forest regression with unexplained deaths as the response. (A) Predictor importance 
estimates from Random Forest regression, where dashed line represents the importance threshold (the mean 
value of the variables), (B–E) Partial dependence plots od predictor with the highest importance estimates from 
Random Forest regression model, CFR – case fatality rate, R0 – basic reproductive number of the virus.
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COVID-19 mortality but rather reflect better capacity to recognize (i.e., "detect") COVID-19 deaths as such, 
and thus lead to less unexplained deaths. On the other hand, a lower Detect score relates to a larger number of 
unrecognized COVID-19 deaths and falsely lower mortality, adding to the apparent paradox.

We have provided ample arguments that the puzzling connection of high GHSI scores with severe COVID-
19 epidemic outcomes is an artifact of oversimplified analyses and low-quality data, but neither of our methods 
could directly establish the anticipated negative correlation. Notably, the negative correlation with the scale of 
under-reporting of COVID-19 deaths is suggested by our results, demonstrating the effectiveness of better detec-
tion capacity of high-GHSI countries. However, it seems that the anticipated benefits of the elaborated prepared-
ness capacities for minimizing the overall harm did not manifest, at least not directly. Note that our results clearly 
show the strong influence of population age and, in the second place, the epidemic onset on the m/r measure 
of severity. The lather predictor emphasizes the particular vulnerability of the initial pandemic  period11,12. Not 
only did a later onset provide more time to organize a response, but the large unpredictability effect when the 
world encountered an unknown virus, obstructing any organizational efforts 1,41,42, put the first-hit countries in 
an additionally vulnerable position. The lack of knowledge and experience could have primarily determined the 
reach of the initial efforts to minimize severity regardless of the pre-established capacities, and this factor would 
be hard to incorporate in a static preparedness measure such as the GHSI. Nevertheless, the GHSI might show 
a better, anticipated agreement later during the pandemic, when the advantages of the prepared system start to 
reveal. Previous studies, like ours, assessed the GHSI predictivity focusing on the pre-vaccination period, so its 
performance separated from the sensitive, first outbreak period remains largely unexplored.

On the other hand, GHS indices are positively correlated with the population age and negatively correlated 
with the onset time. In turn, if there was no direct influence of GHSI scores on mortality (nor additional con-
founding correlations), we should expect more excess deaths in countries with higher GHS indices—simply 
because the population is, on average, older, while the epidemic came earlier, in these countries. However, 
since the plot in Fig. 6 does not reveal such a trend, and overall excess mortality seems to depend almost solely 
on the number of infected individuals (with neither age nor GHSI playing any role in Fig. 5), there must be a 
factor that compensates for this age and early epidemic onset disadvantage. While we cannot rule out possible 
confounders, it is plausible that the difference in levels of medical care—reflected via GHSI scores—counterbal-
ances these two effects.

In summary, the main goal of this study was to reinvestigate the "GHSI puzzle," giving attention to three 
essential aspects (i) the choice of the effective epidemic burden measure, (ii) the advanced multivariate data 
analysis, suiting the data complexity, and (iii) the analysis of excess deaths data, in addition to more questionable 
official COVID-19 infection and mortality figures. Our results point to a major weak point in the previous efforts 
to assess the predictivity of the GHS index – namely, using the oversimplified methodology, which emphasizes 
the importance of implementing the three essential steps in our analysis mentioned above. We show that high 
GHSI scores cannot be associated with low efficacy in combating epidemics, contrary to the dominant claim in 
academic literature. On the contrary, more developed countries with high GHSI values likely provided better 
quality data due to more reliable reporting of COVID-19 fatality counts. This becomes particularly significant in 
light of the notion strongly supported by our results: that a majority of excess deaths after the first wave should 
be attributed to direct COVID-19 fatalities instead of indirect consequences of the pandemic or other concur-
rent causes.

GHSI categories, therefore, do not contradict the observed data and can still be a valuable instrument in ame-
liorating the consequences of future global health-related crises, especially with some refinement to account for 
the country’s vulnerability to a high level of initial unpredictability when it faces an unknown, fast-transmitting 
virus. Refining this and developing similar measures can aid the prevention of future epidemic catastrophes, 
where our study may provide some guidelines on how to perform an accurate assessment of their appropriateness. 
Some of the GHSI shortcomings have already been  reported31 and addressed in the revised GHSI Index  202143, 
where the authors have attempted to improve the index by adding several new subcategories, which can certainly 
be viewed as a step in the right direction. While the lack of a positive association between higher GHSI scores 
and lower disease severity cannot be fully explained by our results, it is possible that including more variables in 
the research and obtaining excess and unexplained deaths data for a higher number of countries (which would 
allow for introducing more predictor variables without the danger of overfitting the data) would help bring to 
light some of the dependencies we were unable to capture in this research. One such variable could be countries’ 
corruption index, as it is reasonable to assume that countries with a higher corruption prevalence, would be less 
transparent in reporting COVID-19-related deaths. Less reported deaths would lead to lower disease severity 
estimates in countries with a higher corruption index, contributing to the paradox. Higher perceptions of cor-
ruption and social polarization have already been identified as contributing to higher excess  mortality31.

Also, the results from later COVID-19 peaks might differ from the first peak, as it is reasonable to anticipate 
that more developed countries, with higher GHSI and, on average, higher healthcare budgets, given enough 
time and resources, would be better prepared for the later COVID-19 waves 44,45. Additionally, a quicker vac-
cine rollout in developed countries could lead to quicker drop in disease severity, regardless of the increasing 
transmissibility of new viral strains 46.

Methods
Data collection and processing. The majority of the data used in this research, including 18 demo-
graphic and health parameters, and the basic reproduction number of the virus was taken from the dataset 
previously assembled  in27. Additionally, Global Health Security Index (GHSI) data were taken  from1. In addi-
tion to the main (Overall) GHSI and six index categories (Prevent, Detect, Respond, Health, Norms, and Risk), 
the Covid index was calculated from the averaged values of COVID-19 related GHSI indicators, according  to47. 
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COVID-19 counts (average and maximal daily cases and deaths) were taken  from48. At the end of the first peak, 
the case fatality rate and severity measure (m/r) for each country were calculated according to the methodol-
ogy described  in29. To determine the numbers of total and excess deaths during the first peak of the pandemic, 
data  from49 was used. Relative excess deaths and relative unexplained deaths (excess and unexplained deaths in 
further text and figures) were calculated as follows:

For the research two datasets were constructed: (i) m/r dataset—a subset of the dataset used  in27, consist-
ing of the data from 85 countries for which both GHSI were available and m/r was inferred; (ii) excess deaths 
dataset—a subset of (i) for which total and excess deaths data was available (59 countries). Since the distribution 
of most variables initially deviated from normality, data was transformed, so that the skewness of the variables 
was as close to zero as possible, with the minimal number of remaining outliers. To obtain the best possible 
results, transformations were applied separately for variables in each dataset. Interpretation of all the variables 
and the used transformation for both datasets are presented in Supplementary Table 1. For easier tracking of the 
course of the research, analyses performed on each dataset are graphically represented by a flowchart in Fig. 7.

Principal component analysis. To partially decorrelate data and reduce dimensionality while retain-
ing relatively simple interpretation of principal components, some of the variables were grouped into mutu-
ally related groups, on which Principal Component Analysis (PCA) was performed. The number of principal 
components retained from each group after the PCA was determined to explain over 85% of the variance of 
the data. PCA grouping was performed independently for both datasets and variables entering PCA; retained 
principal components, and the percentage of variance they account for are presented in Supplementary Table 2 
(m/r dataset) and 3 (excess deaths dataset). New datasets, now consisting of both retained principal components 
and remaining variables that did not enter PCA, were next used as input in univariate and multivariate analyses. 
For easier interpretation of the most relevant principal components, their correlation with the variables enter-
ing PCA is given in Supplementary Figs. 1 and 4. Two now obtained sets of predictors were: (i) variables used 
in m/r regression analysis, consisting of: Detect, Respond, and Health GHSI categories, five selected PCs from 
Supplementary Table 2, and remaining demographic and health parameters that did not enter PCA (BUAPC, 
UP, IE, RE, OB, SM, IN, BCG, ON) (ii) variables used in excess and unexplained deaths analysis with principal 
components consisting of  R0, CFR and 11 principal components from Supplementary Table 3.

Linear regression models. LASSO and Elastic net regressions were used as the implementations of L1 
(LASSO) and L1 and L2 norms (Elastic net) on three variations of the m/r dataset and on excess deaths data-
set with principal components (regressions were implemented separately for excess and unexplained deaths as 
response variables). The variables (and PCs) were standardized before the regressions, so the regression coef-
ficients obtained by these methods can be interpreted as the relative importance of predictors in explaining 
the response variables. Values of the hyperparameters λ in LASSO and α and λ in Elastic Net were determined 
through fivefold cross-validation, with the data repartitioned 40 times. In m/r dataset regressions, the sparsest 
model—with mean squared error (MSE) within 1 standard error (SE) from the minimal MSE—model was cho-
sen. To further reduce the noise in m/r dataset regressions (where the number of predictors retained after the 
first round of regression was relatively high), LASSO and Elastic Net were implemented as “Relaxed”50, meaning 
that the regression was performed in two rounds so that only the variables selected in the first round were used 
as the input for the second round of regression. Regressions were performed on the initial m/r dataset, without 
grouping and PCA and with Detect, Respond, Health and Risk GHSI categories (Supplementary Fig. 2); on a 
dataset containing Covid index and 18 demographic and health variables, without any other GHSI categories 
(Supplementary Fig. 3); and on m/r dataset with principal components (Fig. 2). Since the number of selected 
variables after the first round of regression with both excess and unexplained deaths data was relatively small 
(even though this time minimal MSE model was selected instead of the sparsest), the second round of regression 
was not performed. As an addition to LASSO and Elastic Net for the excess and unexplained deaths analysis, 
Forward stepwise linear  regression30 was performed. In this method, starting from the constant model, a predic-
tor is added to the regression if it improves the fit significantly (P < 0.05 in F-statistics). The process is repeated 
sequentially, adding significant and removing non-significant terms until the best fit is obtained.

Random forest and gradient boost regressions. Two non-parametric, decision tree-based methods 
– Random  Forest30,51 and Gradient  Boost30,52—were implemented on both m/r and excess deaths datasets with 
principal components. These methods are of particular importance, as they can accommodate potential interac-
tion between the variables and highly non-linear relations between the predictors and the response variable. In 
the analysis of disease severity, the m/r dataset with principal components was used, with a constraint that only 
variables correlated to m/r with P < 0.1 in either Pierson, Kendall, or Spearman correlation are used as the input 
in the model. This way, overfitting, which would present a problem for these algorithms, is avoided. As the num-
ber of input variables was smaller in the excess/unexplained deaths dataset, preselection was not required before 
those regressions. Values of the hyperparameters in Random Forest and Gradient Boost methods were selected 
through extensive grid search, by the same method of cross-validation used for LASSO and Elastic Net regres-

relative excess deaths =
excess deaths

total deaths − excess deaths

relative unexplained deaths =
excess deaths − COVID19 deaths

total deaths − excess deaths
.
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sions, and a model with the minimal MSE was chosen to be retained on the entire (reduced) dataset. Unlike 
linear regression models, where regression coefficients measure the impact of each feature on the outcome vari-
able, in these two methods, the contribution of each of the features is measured by feature importance. For each 
decision tree, the feature importance is calculated as the sum of changes in the node risk due to splits for each 
feature, divided by the total number of branch  nodes53. The feature importance for the ensemble is obtained by 
averaging over all the  trees54. Note that, unlike regression coefficients, feature importance does not indicate the 
direction of the association (that is, whether the feature affects the outcome positively or negatively). Therefore, 
the contribution of the relevant variables in Random Forest and Gradient Boost was estimated through Partial 

Figure 7.  Flowchart of the methods applied on each of the datasets. m/r – disease severity measure, GHSI – 
Global Health Security Index, demo – demographic, counts – COVID-19 counts, PCs – principal components, 
Detect – GHSI Detect category, Respond – GHSI Respond category, Health – GHSI Health category, Risk – 
GHSI Risk category, MA – median age, IM – infant mortality, GDP – gross domestic product per capita, HDI 
– human development index, CH – blood cholesterol level, AL – alcohol consumption, CD – prevalence of 
cardiovascular diseases, RBP – raised blood pressure, PL – air pollution.
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Dependence (PD)  plots30, which estimate the effect of a single predictor by considering the average effects of all 
other predictors.

Supervised PCA. Supervised Principle Component  Analysis30 was performed. In this method, PCA is done 
only on those variables that show sufficiently high correlation with the response variable (m/r), where a certain 
number of PCs is then used in multiple regression with m/r as the response. The univariate correlation constant 
cutoff (i.e., the number of variables retained for PCA), and the number of retained PCs, are treated as hyper-
parameters, i.e., determined through cross-validation. Principal components that appeared significant in the 
multivariable regressions were further analyzed.

Data availability
We confirm that all methods were carried out in accordance with relevant guidelines and regulations as publicly 
available data set is used. All data generated or analyzed during this study are included in this published article 
and its Supplementary material.

Code availability
All source codes are available at https:// github. com/Q- bio- Belgr ade/ GHSI_ puzzle.
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It is hard to overstate the importance of a timely prediction of the COVID-19 pandemic

progression. Yet, this is not possible without a comprehensive understanding of

environmental factors that may affect the infection transmissibility. Studies addressing

parameters that may influence COVID-19 progression relied on either the total numbers

of detected cases and similar proxies (which are highly sensitive to the testing capacity,

levels of introduced social distancing measures, etc.), and/or a small number of analyzed

factors, including analysis of regions that display a narrow range of these parameters.

We here apply a novel approach, exploiting widespread growth regimes in COVID-19

detected case counts. By applying nonlinear dynamics methods to the exponential

regime, we extract basic reproductive number R0 (i.e., the measure of COVID-19

inherent biological transmissibility), applying to the completely naïve population in the

absence of social distancing, for 118 different countries. We then use bioinformatics

methods to systematically collect data on a large number of potentially interesting

demographics and weather parameters for these countries (where data was available),

and seek their correlations with the rate of COVID-19 spread. While some of the

already reported or assumed tendencies (e.g., negative correlation of transmissibility with

temperature and humidity, significant correlation with UV, generally positive correlation

with pollution levels) are also confirmed by our analysis, we report a number of both

novel results and those that help settle existing disputes: the absence of dependence on

wind speed and air pressure, negative correlation with precipitation; significant positive

correlation with society development level (human development index) irrespective of

testing policies, and percent of the urban population, but absence of correlation with

population density per se. We find a strong positive correlation of transmissibility on

alcohol consumption, and the absence of correlation on refugee numbers, contrary to

some widespread beliefs. Significant tendencies with health-related factors are reported,

including a detailed analysis of the blood type group showing consistent tendencies

on Rh factor, and a strong positive correlation of transmissibility with cholesterol levels.

Detailed comparisons of obtained results with previous findings, and limitations of our

approach, are also provided.

Keywords: COVID-19 transmissibility, environmental factors, basic reproduction number, COVID-19 demographic

dependence, COVID-19 weather dependence
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INTRODUCTION

The ancient wisdom teaches us that “knowing your adversary” is
essential in every battle—and this equally applies to the current
global struggle against the COVID-19 pandemic. Understanding
the parameters that influence the course of the pandemic is
of paramount importance in the ongoing worldwide attempts
to minimize the devastating effects of the virus which, to the
present moment, has already taken a toll of more than a million
lives (Dong et al., 2020), and resulted in double-digit recession
among some of the major world economies (World Bank, 2020a).
Of all such factors, the ecological ones (both abiotic such as
meteorological factors and biotic such as demographic and
health-related population properties) likely play a prominent role
in determining the dynamics of disease progression (Qu et al.,
2020).

However, making good estimates of the effects that general
demographic, health-related, and weather conditions, have
on the spread of COVID-19 infection is beset by many
difficulties. First of all, these dependencies are subtle and
easily overshadowed by larger-scale effects. Furthermore, as the
effective rate of disease spread is an interplay of numerous
biological, medical, social, and physical factors, a particular
challenge is to differentiate the dominating effects of local
COVID-19-related policies, which are both highly heterogeneous
and time-varying, often in an inconsistent manner. And this is
precisely where, in our view, much of the previous research on
this subject falls short.

There are not many directly observable variables that can be
used to trace the progression of the epidemics on a global scale
(i.e., for a large number of diverse countries). The most obvious
one—the number of detected cases—is heavily influenced both
by the excessiveness of the testing (which, in turn, depends
on non-uniform medical guidelines, variable availability of
testing kits, etc.) and by the introduced infection suppression
measures (where the latter are not only non-homogeneous but
are also erratically observed (Cohen and Kupferschmidt, 2020).
Nevertheless, the majority of the research aimed to establish
connections of the weather and/or demographic parameters
with the spread of COVID-19 seeks correlations exactly with
the raw number of detected cases (Adhikari and Yin, 2020;
Correa-Araneda et al., 2020; Fareed et al., 2020; Gupta et al.,
2020; Iqbal et al., 2020; Li et al., 2020; Pourghasemi et al.,
2020; Rashed et al., 2020; Singh and Agarwal, 2020). For the
aforementioned reasons, the conclusions reached in this way
are questionable. Other variables that can be directly measured,
such as the number of hospitalized patients or the number of
COVID-19 induced deaths (Pranata et al., 2020; Tosepu et al.,
2020; Ward, 2020), again depend on many additional parameters
that are difficult to take into account: level of medical care and
current hospital capacity, advancements, and changing practices
in treating COVID-19 patients, the prevalence of risk groups,
and even on the diverging definitions of when hospitalization
or death should be attributed to the COVID-19 infection. As
such, these variables are certainly not suitable as proxies of the
SARS-CoV-2 transmissibility per se.

On the other hand, as we here empirically find [and as
theoretically expected (Anderson and May, 1992; Keeling and

Rohani, 2011)] the initial stage of the COVID-19 epidemic (in
a given country or area) is marked by a period of a nearly
perfect exponential growth for a wide range of countries, which
typically lasts for about 2 weeks (based on our analysis of
the available data). One can observe widespread dynamical
growth patterns for many countries, with a sharp transition
between exponential, superlinear (growth faster than linear), and
sublinear (growth slower than linear) regimes (see Figure 1)—
the last two representing a subexponential growth. We here
concentrate on the initial exponential growth of the detected-
case data (marked in red in Figure 1), characterizing the period
before the control measures took effect, and with a negligible
fraction of the population resistant to infection. Note that dates
which correspond to the exponential growth regime (included
in Supplementary Table 1) are different for each country,
corresponding to the different start of COVID-19 epidemic in
those countries.

We use the exponential growth regime to deduce the basic
reproduction number R0 (Martcheva, 2015), following a simple
and robust mathematical (dynamical) model presented here. R0
is a straightforward and important epidemiological parameter
characterizing the inherent biological transmissibility of the
virus, in a completely naïve population, and the absence of
social distancing measures (Bar-On et al., 2020; Eubank et al.,
2020). To emphasize the absence of social distancing in the
definition (and inference) of R0 used here, the term R0,free is
also used, — for simplicity, we further denote R0 ≡ R0,free. R0
is largely independent of the implemented COVID-19 policies
and thus truly reflects the characteristics of the disease itself,
as it starts to spread unhampered through the given (social
and meteorological) settings. Namely, the exponential period
ends precisely when the effect of control measures kick in,
which happens with a delay of ∼10 days after their introduction

FIGURE 1 | COVID-19 growth regimes. Transitions of the growth patterns

(here shown for Italy) from exponential (red), to superlinear (blue) and sublinear

(green) regime. The three insets correspond to the log-linear scale

(exponential), log-log scale (superlinear), and linear-log scale (sublinear). Dots

correspond to detected infections, starting from 20.02.2020. In this study,

R0,free is extracted from the slope of the first (exponential, i.e., log-linear) inset,

corresponding to dates 29.02–13.03 in the case of Italy.
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(The Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020), corresponding to the disease latent
period, and to the time between the symptom onset and the
disease confirmation. Not only that very few governments
had enacted any social measures before the occurrence of a
substantial number of cases (Cohen and Kupferschmidt, 2020),
but also the length of the incubation period makes it likely that
the infection had been already circulating for some time through
the community even before the first detected case (and that
the effects of the measures are inescapably delayed in general).
Also, the transition from the exponential to the subsequent
subexponential phase of the epidemics is readily visible in
the COVID data (see Figure 1). Furthermore, R0 is invariant
to the particular testing guidelines, as long as these do not
significantly vary over the (here relatively short) studied period.
Note that in Figure 1 cumulative number of positive cases (also
known as cumulative infection incidence) is shown, which has
to monotonically increase—though with a decreasing rate, once
the infection starts to slow down, i.e., once the subexponential
growth (sublinear and superlinear regimes) is reached.

In the analysis presented here, we consider 42 different
weather, demographic, and health-related population factors,
whose analyzed ranges correspond to their variations exhibited in
118 world countries (not all of the parameters were available for
all of the countries, as discussed in Section “Demographic and
Weather Data Acquisition”). While some authors prefer more
coherent data samples to avoid confusing effects of too many
different factors (Adhikari and Yin, 2020; Correa-Araneda et al.,
2020; Fareed et al., 2020; Rashed et al., 2020; Singh and Agarwal,
2020; Tosepu et al., 2020), this consideration is outweighed by the
fact that large ranges of the analyzed parameters serve to amplify
the effects we are seeking to recognize and to more reliably
determine the underlying correlations. For example, while the
value of the HumanDevelopment Index (HDI, a composite index
of life expectancy, education, and per capita income indicators)
varies from 0.36 to 0.96 over the set of analyzed countries, this
range would drop by an order of magnitude (Global Data Lab,
2020) if the states of the US were chosen as the scope of the
study (other demographic parameters exhibit similar behavior).
The input parameters must take values in some substantial ranges
to have measurable effects on R0 (i.e., small variations may lead
to effects that are easily lost in statistical fluctuations).

The number of considered parameters is also significant,
especially when compared to other similar studies (Adhikari
and Yin, 2020; Copat et al., 2020; Fareed et al., 2020; Iqbal
et al., 2020; Rashed et al., 2020; Rychter et al., 2020; Singh and
Agarwal, 2020; Thangriyal et al., 2020; Tosepu et al., 2020). In a
model where a large number of factors are analyzed under the
same framework, consistency of the obtained results, in terms of
agreement with other studies, common-sense expectations, and
their self-consistency, becomes an important check of applied
methodology and analysis. Furthermore, a comprehensive and
robust analysis is expected to generate new findings and lead
to novel hypotheses on how environmental factors influence
COVID-19 spread. Overall, we expect that the understanding
achieved here will contribute to the ability to understand the
behavior of the pandemics in the future and, by the same token,

to timely and properly take measures in an attempt to ameliorate
the disease effects.

MODEL AND PARAMETER EXTRACTION

Modified SEIR Model and Relevant
Approximations
There are various theoretical models and tools used to
investigate and predict the progress of an epidemic (Keeling and
Rohani, 2011; Martcheva, 2015). We here opted for the SEIR
compartmental model, up to now used to predict or explain
different features of COVID-19 infection dynamics (Maier and
Brockmann, 2020; Maslov and Goldenfeld, 2020; Perkins and
España, 2020; Tian et al., 2020; Weitz et al., 2020). The model is
sufficiently simple to be applied to a wide range of countries while
capturing all the features of COVID-19 progression relevant for
extracting the R0 values. The model assumes dividing the entire
population into four (mutually exclusive) compartments with
labels: (S)usceptible, (E)xposed, (I)fected, and (R)ecovered.

The dynamics of the model (which considers gradual
transitions of the population from one compartment to the
other) directly reflects the disease progression. Initially, a healthy
individual has no developed SARS-CoV-2 virus immunity and
is considered as “susceptible.” Through contact with another
infected individual, this person may become “exposed”—
denoting that the transmission of the virus has occurred, but
the newly infected person at this point has neither symptoms
nor can yet transmit the disease. An exposed person becomes
“infected”—in the sense of becoming contagious—on average
after the so-called “latent” period which is, in the case of
COVID-19, approximately 3 days. After a certain period of
the disease, this person ceases to be contagious and is then
considered as “recovered” (from the mathematical perspective
of the model, “recovered” are all individuals who are no longer
contagious, which therefore also includes deceased persons). In
the present model, the recovered individuals are taken to be no
longer susceptible to new infections (irrespectively of whether
the COVID-19 immunity is permanent or not, it is certainly
sufficiently long in the context of our analysis).

Accordingly, almost the entire population initially belongs
to the susceptible class. Subsequently, parts of the population
become exposed, then infected, and finally recovered. SARS-
CoV-2 epidemic is characterized by a large proportion of
asymptomatic cases (or cases with very mild symptoms) (Day,
2020), which leads to a large number of cases that remain
undiagnosed. For this reason, only a portion of the infected will
be identified (diagnosed) in the population, and we classify them
as “detected.” This number is important since it is the only direct
observable in ourmodel, i.e., the only number that can be directly
related to the actual COVID-19 data.

This dynamic is schematically represented in Figure 2, and is
governed by the following set of differential equations:

dS

dt
= −

βSI

N
(1)

dE

dt
=

βSI

N
− σE (2)
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FIGURE 2 | Diagrammatic representation of the SEIR model with the added class of “Detected” patients. Individuals move (denoted by solid arrows) from Susceptible

to Exposed to Infected to Recovered, with the rates indicated above arrows in the figure. Some of the infected are detected (diagnosed/confirmed), indicated by the

dashed arrow.

dI

dt
= σE− γ I (3)

dR

dt
= γ I (4)

dD

dt
= εδI (5)

In the above equations, S, E, I, and R denote numbers
of individuals belonging to, respectively, susceptible, exposed,
infected, and recovered compartments, D is the cumulative
number of detected cases, while N is the total population.
Parameter β denotes the transmission rate, which is proportional
to the probability of disease transmission in contact between
a susceptible and an infectious subject. Incubation rate σ

determines the rate at which exposed individuals become infected
and corresponds to the inverse of the average incubation period.
Recovery rate γ determines the transition rate between infected
and recovered parts of the population, (i.e., 1/γ is the average
period during which an individual is infectious). Finally, ε

and δ are detection efficiency and the detection rate. All these
rate parameters are considered constant during the analyzed
(brief) period. Also, note that the constants in our model do
not correspond to transition probabilities per se, but rather to
transition rates (with units 1/time), so that e.g. γ and εδ do
not add to one. While rates in the model can be rescaled and
normalized to directly correspond to transition probabilities,
our formulation (with rates rather than probabilities) is rather
common (see e.g., Keeling and Rohani, 2011), and also has
a direct intuitive interpretation, where the transition rates
correspond to the inverse of the period that individuals spend in
a given compartment (see e.g., the explanation for γ above).

In the first stage of the epidemic, when essentially the entire
population is susceptible (i.e., S/N ≈ 1) and no distancing
measures are enforced, the average number of secondary
infections, caused directly by primary-infected individuals,
corresponds to the basic reproduction number R0. The infectious
disease can spread through the population only when R0 > 1
(Khajanchi et al., 2020a), and in these cases, the initial growth of
the infected cases is exponential. Though R0 is a characteristic of
the pathogen, it also depends on environmental abiotic (e.g., local
weather conditions), as well as biotic factors (e.g., prevalence of
health conditions, and population mobility tightly related to the
social development level).

Note that, as we seek to extract the basic reproduction
number R0 from the model for a wide range of countries,

the social distancing effects are not included in the model
presented above. That is, the introduced model serves only to
explain the exponential growth phase—note that this growth
regime characterizes part of the infection progression where
the social distancing interventions still did not take effect, and
where the fraction of resistant (non-susceptible) population
is still negligible. It is only this phase which is relevant for
extracting R0 that is used in the subsequent analysis. R0 should
not be confused with the effective reproduction number Re,
which takes into account also the effects of social distancing
interventions and the decrease in the number of susceptibles
due to acquired infection resistance. Re is not considered in
this work, as we are concerned with the factors that affect the
inherent biological transmissibility of the virus, independently
from the applied measures. That is, by considering R0 rather
than Re, we disentangle the influence of meteorological and
demographic factors on transmissibility (the goal of this study),
from the effects of social distancing interventions (not analyzed
here). The model can, however, be straightforwardly extended
to include social distancing measures, as we did in (Djordjevic
et al., 2020)—social distancing measures were also included
through other frameworks (Khajanchi and Sarkar, 2020; Maier
and Brockmann, 2020;Maslov andGoldenfeld, 2020; Perkins and
España, 2020; Samui et al., 2020; Sarkar et al., 2020; Tian et al.,
2020; Weitz et al., 2020). Such extensions are needed to explain
the subexponential growth that emerges due to intervention
measures (i.e., superlinear and sublinear growth regimes that
are illustrated in Figure 1 for Italy but are common for other
countries as well).

COVID-19 Growth Regimes
If we observe the number of total COVID-19 cases (e.g., in a
given country) as a function of time, there is a regular pattern that
we observe: the growth of the detected COVID cases is initially
exponential but slows down after some time—when we say it
enters the subexponential regime. The subexponential regime can
be further divided into the superlinear (growing asymptotically
faster than a linear function) and sublinear regime (the growth
is asymptotically slower than a linear function). This typical
behavior is illustrated, in the case of Italy, in Figure 1 above.
The transition to the subexponential regime occurs relatively
soon, much before a significant portion of the population gains
immunity, and is a consequence of the introduction of the
infection suppression measures.
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Inference of the Basic Reproduction
Number R0
In the initial exponential regime, a linear approximation to
the model can be applied. Namely, in this stage, almost the
entire population is susceptible to the virus, i.e., S/N≈1, which
simplifies the Equation (2) to:

dE

dt
= − σE+ βI. (6)

By combining expressions (3) and (6) one obtains:

d

dt

(

E
I

)

=

(

− σ β

σ −γ

) (

E
I

)

= A

(

E
I

)

, (7)

where we have introduced a two-by-two matrix:

A =

(

− σ β

σ −γ

)

(8)

The solution for the number of infected individuals can now
be written:

I (t) = C1 · e
λ+t + C2 · e

λ−t , (9)

where λ+ and λ− denote eigenvalues of the matrix A, i.e., the
solutions of the equation:

det (A− λI) = 0. (10)

The eigenvalues must satisfy:

∣

∣

∣

∣

−σ − λ β

σ −γ − λ

∣

∣

∣

∣

= 0,

leading to:

(λ + σ) · (λ + γ) − β · σ = 0. (11)

The solutions of (11) are:

λ± =
− (γ + σ) ±

√

(γ − σ)2 + 4βσ

2
. (12)

Since λ− < 0, the second term in (9) can be neglected for
sufficiently large t. More precisely, numerical analysis shows that
this approximation is valid already after the second day, while,
for the extraction of R0 value we will anyhow ignore all data
before the fifth day (for the analyzed countries, numbers of cases
before the fifth day were generally too low, hence this early data
is dominated by stochastic effects/fluctuations). Hence, I (t) is
proportional to exp(λ+t), i.e.:

I (t) = I (0) · eλ+t . (13)

By using β from (12) and R0 =
β
γ
(Keeling and Rohani, 2011;

Martcheva, 2015), we obtain:

R0 = 1+
λ+ · (γ + σ) + λ+

2

γ · σ
. (14)

From (13) and (5) we compute:

D (t) = ε · δ · I (0) ·
(eλ+t − 1)

λ+
. (15)

By taking the logarithm, the above expression leads to:

log (D (t)) = log (εδI(0)/λ+) + λ+ · t, (16)

from which λ+ can be obtained as the slope of the log (D (t))
function. From Equation (14), we thus obtain the R0 value as
a function of the slope of log (D (t)), where the latter can be
efficiently inferred from the plot of the number of detected
COVID-19 cases for a large set of countries.

The SEIR model and the above derivation of R0 assume that
the population belonging to different compartments is uniformly
mixed. Possible heterogeneities may tend to increase R0 values
(Keeling and Rohani, 2011). However, this would not influence
the results obtained below, as our R0 values are consistently
inferred for all analyzed countries by using the same model,
methodology, and parameter set. Moreover, our R0 values are
in agreement with the prevailing estimates in the literature
(Najafimehr et al., 2020).

Demographic and Weather Data
Acquisition
For the countries for which R0 was determined through
the procedure above, we also collect a broad spectrum of
meteorological and demographic parameter values. Overall, 118
countries were selected for our analysis, based on the relevance
of the COVID-19 epidemiological data. Namely, a country
was considered as relevant for the analysis if the number of
detected cases on June 15th was higher than a threshold value
of 1,000. A few countries were then discarded from this initial
set, where the case count growth was too irregular to extract any
results, possibly due to inconsistent or irregular testing policies.
As a source for detected cases, we used (World Bank, 2020b;
Worldometer, 2020).

In the search for factors correlated with COVID-19
transmissibility, we have analyzed overall 42 parameters, 11
of which are related to weather conditions, 30 to demographics
or health-related population characteristics, and one parameter
quantifying a delay in the epidemic’s onset (data provided in
Supplementary Tables 2–5). Not all of these parameters were
available for all of the considered countries. In particular, data
on the prevalence of blood types (Supplementary Table 4

in the Supplement) was possible to find for 83 of the 118
countries, while, primarily due to scarce data on pollutant
concentrations during the epidemics, almost 30% of entries in
Supplementary Table 5 in Supplement had to be left blank for
this category. Nevertheless, we opted to include these parameters
in our report: despite the lower number of values, some of these
parameters exhibited strong and highly statistically significant
correlations with R0, warranting their inclusion.

Our main source of weather data was project POWER
(Prediction of Worldwide Energy Resources) of the NASA
agency (NASA Langley Research Center, 2020). A dedicated

Frontiers in Ecology and Evolution | www.frontiersin.org 5 January 2021 | Volume 8 | Article 617841

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Salom et al. COVID-19 Environmental Dependence

Python script was written and used to acquire weather data
via the provided API (Application Programming Interface).
NASA project API allows a large set of weather parameters
to be obtained for any given location (specified by latitude
and longitude) and given date (these data are provided in the
Supplementary Table 7). From this source, we gathered data on
temperature (estimated at 2m above ground), specific humidity
(estimated at 2m above ground), wind speed (estimated at 2m
above ground), and precipitation (defined as the total column of
precipitable water). Data on air pressure (at ground level) and
UV index (international standard measurement of the strength
of sunburn-producing ultraviolet radiation) were collected via
similar API fromWorldWeather Online source (WorldWeather
Online, 2020), using the same averaging methodology. Since
we needed to assign a single value to each country (for
each analyzed parameter), the following method was used for
averaging meteorological data. In each country, a number of
largest cities1 were selected and weather data was taken for
the corresponding locations. These data was then averaged,
weighted by the population of each city, followed by averaging
over the period used for R0 estimation (more precisely, to
account for the time between disease transmission and the case
confirmation, we shifted this period 12 days into the past). The
applied averaging method used here can be of limited adequacy
in countries spreading over multiple climate zones, but is still
expected to provide reasonable single-value estimates of the
weather parameters, particularly since the averaging procedure
was formulated to reflect the most likely COVID-19 hotspots in
a given country.

Demographic data was collected from several sources.
Percentage of the urban population, refugees, net migration,
social and medical insurance coverage, infant mortality, and
disease (CVD, cancer, diabetes, and CRD) risk was taken from
the World Bank organization (World Bank, 2020b). The HDI
was taken from the Our World in Data source (Our World in
Data, 2020), while median age information was obtained from
the CIA website. The source of most of the considered medical
parameters: cholesterol, raised blood pressure, obesity, inactivity,
BSG vaccination as well as data on alcohol consumption and
smoking prevalence was World Health Organization (World
Health Organization, 2020). Data for blood types were taken
from the Wikidata web site. BUCAP parameter, representing
population density in the built-up area, was taken from GHS
Urban Center Database 2015 (European Commission Global
Human Settlement, 2020). The onset parameter, determining the
delay (in days) of the epidemic’s start, was inferred from COVID-
19 counts data. We used the most recent available data for all
the parameters.

RESULTS

The log (D (t)) function, for a subset of selected countries, is
shown in Figure 3. The obvious linear dependence confirms that

1This number was determined for each country by the following condition: the
total population of the cities taken into consideration had to surpass 10 percent of
the overall population of the country.

the progression of the epidemic in this stage is almost perfectly
exponential. Note that our model exactly reproduces this early
exponential growth (see Equation 13), happening under the
assumption of a small fraction of the population being resistant,
and the absence of the effect of social distancing interventions.
From Figure 3, we see that this behavior, predicted by the model
for the early stage of the epidemic, is also directly supported by
the data, i.e., the exponential growth in the cumulative number
of confirmed cases is indeed observed for a wide range of
countries. For each country, the parameter λ+ is directly obtained
as the slope of the corresponding linear fit of the log (D (t)),
and the basic reproduction number R0 is then calculated from
Equation (14). Here, we used the following values for the
incubation rate, σ = 1/3 day−1, and for the recovery rate γ =

1/4 day−1, per the commonly accepted values in the literature
(Bar-On et al., 2020). Note that possible variations in these two
values would not significantly affect any conclusions about R0
correlations, due to the mathematical properties of the relation
(14): it is a strictly monotonous function of λ+ and the linear
term λ+· (γ + σ) /γ ·σ dominantly determines the value of R0.

Supplementary tables contain the values for 42 variables,
for all countries. Correlations of each of the variables with R0
are given in Supplementary Table 6. Values for the Pearson
correlation coefficient are further shown below, though
consistent conclusions are also obtained by Kendall and
Spearman correlation coefficients (which do not assume a
linear relationship between variables). Correlation coefficients
were calculated in the usual manner: as the correlation of the
vector of parameter values with the vector of R0 values, by
taking into account all available data (for parameters that were
available across all of the countries, both of the vectors were 118
dimensional; if values were missing for certain countries, these
countries were simply ignored and lower-dimensional vectors
were compared).

The first set of results that corresponds to, roughly speaking,
general demographic data, is presented in Figure 4. The plot
in panel A shows the distribution of R0 vs. HDI values for
all countries, where a higher HDI score indicates the more
prosperous country concerning life expectancy, education, and
per capita income (Sagar and Najam, 1998). This parameter was
included in the study due to a reasonable expectation that a
higher level of social development also implies a higher level
of population interconnectedness and mixing (stronger business
and social activity, more travelers, more frequent contacts,
etc.), and hence that HDI could be related to the SARS-CoV-
2 transmissibility. Indeed, we note a strong, statistically highly
significant correlation between the HDI and the R0 value, with
R = 0.37, and p = 4·10−5, demonstrating that the initial
expansion of COVID-19 was faster in more developed societies.

The social security and health insurance coverage (INS)
“shows the percentage of population participating in programs
that provide old age contributory pensions (including survivors
and disability) and social security and health insurance
benefits (including occupational injury benefits, paid sick leave,
maternity, and other social insurance)” (World Bank, 2020b).
Reflecting the percentage of the population covered by medical
insurance and likely feeling more protected from the financial
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FIGURE 3 | Time dependence of the detected cases for various countries, during the initial period of the epidemic, shown on a log-linear scale. The linear fit of log(D)

shows that the spread of COVID-19 in this phase is very well approximated by exponential growth. Note that the values on axes are chosen differently for each

country, in order to emphasize the exponential character of the growth. For each country, the start and end dates of the exponential regime, together with the

extracted slope λ+, are provided in the Supplementary Table 1. ARG, Argentine; AUT, Austria; AZE, Azerbaijan; BEL, Belgium; BRA, Brazil; CHL, Chile; CRO,

Croatia; CZE, Czech Republic; EGY,Egypt; GAB, Gabon; GEO, Georgia; DEU, Germany; HUN, Hungary; ISL, Iceland; IND, India; IRN, Iran; IRQ, Iraq; ISR, Israel; CIV,

Cote d’Ivoire; MDG, Madagascar; MLI, Mali; MDA, Moldova; MAR, Morocco; NLD, Netherlands; PAN, Panama; PRT, Portugal; ROU, Romania; SAU, Saudi Arabia;

SEN, Senegal; SRB, Serbia; ESP, Spain; CHE, Switzerland; TUN, Tunis; GBR, Great Britain; UKR, Ukraine.

effects of the epidemics, this indicator shows a strong (R = 0.4)
and highly significant (p = 4·10−4) positive correlation with R0.
The percentage of urban population (UP) and BUCAP density
(BAP) are both included as measures of how concentrated is the
population of the country. While the UP value simply shows
what percentage of the population lives in cities, the BUCAP
parameter denotes the amount of built-up area per person. Of
the two, the former shows a highly significant positive correlation
with the COVID-19 basic reproduction number, whereas the
latter shows no correlation. Median age (MA) should be of
obvious potential relevance in COVID-19 studies since it is well

known that the disease more severely affects the older population
(Jordan et al., 2020). Thus, we wanted to investigate also if there
is any connection of age with the virus transmissibility. Our
results are suggestive of such a connection, since we obtained
a strong positive correlation of age with R0, with very high
statistical confidence. Infant mortality (IM) is defined as the
number of infants dying before reaching 1 year of age, per 1,000
live births. Lower IM rates can serve as another indicator of
the prosperity of a society, and it turns out that this measure
is also strongly correlated, but negatively, with R = −0.36 and
p = 8·10−5 (showing again that more developed countries, i.e.,
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FIGURE 4 | (A) R0 vs. HDI as an example of transmissibility dependence on demographic data (Pearson correlation denoted as R). (B) Pearson correlations of R0

with (from left to right): social security and health insurance coverage (INS), percentage of urban population (UP), BUCAP measure of population density (BAP), median

age (MA), infant mortality (IM), net migration (I-E), and percentage of refugee population by country or territory of asylum (RE). The statistical significance of each

correlation is indicated in the legend, while “ns” stands for “no significance.”

those with lower IM rates, have experienced more rapid spread
of the virus infection). Net migration (I-E) represents the 5-
year estimates of the total number of immigrants less the annual
number of emigrants, including both citizens and non-citizens.
This number, related to the net influx of foreigners, turns out
to be positively correlated, in a statistically significant way, with
R0. However, according to our data, the percentage of refugees,
defined as the percentage of the people in the country who are
legally recognized as refugees and were granted asylum in that
country, is not correlated with R0 at all.

Another set of parameters corresponds to medically-related
demographic parameters and is shown in the upper part of
Figure 5. The plot in panel A represents the average blood
cholesterol level (in mmol/L) in the population of various
countries, plotted against the value of R0. The two parameters
are strongly correlated, with R = 0.4, and p = 6·10−6. Another
demographic parameter with clear medical relevance, that has
a comparatively strong and significant positive correlation with
R0, is the alcohol consumption per capita (ALC), as shown
in panel B of Figure 5. Our data shows that R0 is also
positively correlated, with high statistical significance, with the
prevalence of obesity and to a somewhat smaller extent with
the percentage of smokers. Here, obesity is defined as having a
body-mass index over 30. A medical parameter that is strongly,
but negatively, correlated with R0, is a measure of prevalence
and severity of COVID-19 relevant chronic diseases in the
population (CD). This parameter is defined as “the percent of
30-year-old-people who would die before their 70th birthday
from any of cardiovascular disease, cancer, diabetes, or chronic
respiratory disease, assuming that s/he would experience current
mortality rates at every age and s/he would not die from any
other cause of death” (World Bank, 2020b). The percentage
of people with raised blood pressure (RBP) is also negatively

correlated with R0, though this correlation is not as strong and
as statistically significant as in the case of the CD parameter.
Here, raised blood pressure is defined as systolic blood pressure
over 140 or diastolic blood pressure over 90, in the population
older than 18. The percentage of smokers exhibits statistically
significant (though not large) positive correlation. Two medical-
demographic parameters that show no correlation with R0 in our
data are the prevalence of insufficient physical activity among
adults aged over 18 (IN) and BCG immunization coverage among
1-year-olds (BCG).

In Figure 5C we see that blood types are, in general, strongly
correlated with R0. The highest positive correlation is exhibited
by A− and O− types, with a Pearson correlation of 0.4 and 0.39,
and a very high statistical significance of p = 10−4 and p =

2·10−4, respectively. Taken as a whole, group A is still strongly
and positively correlated with R0, albeit with a bit lower statistical
significance (A+ type correlation has p-value two orders of
magnitude higher than A−). This is not so for group O that,
overall, does not seem to be correlated to R0 (O+ even shows a
certain negative correlation but without statistical significance).
Our data reveals a highly significant positive correlation also
for AB− subtype (R = 0.31, p = 0.003), while neither the AB+

subtype nor overall AB group is significantly correlated with
the basic reproduction number. Clear negative correlation is
exhibited only by B blood group (R = −0.31, p = 0.004), mostly
due to the negative correlation of its B+ subtype (R = −0.34,
p = 0.001), whereas B− subtype is not significantly correlated
with R0 in our data. If we consider the rhesus factor alone, we
again observe very strong correlations with R0 and with very
high statistical significance: Rh− and Rh+ correlate positively
(R= 0.4) and negatively (R=−0.4), respectively, with very high
statistical significance (p = 2·10−4). The tendency of Rh− and
Rh+ to, respectively, increase and decrease the transmissibility,
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FIGURE 5 | (A) R0 vs cholesterol level, as an example of a health-related parameter dependence. (B) Pearson correlation of R0 with (from left to right): alcohol

consumption per capita (ALC); the prevalence of obesity (OB); severity of COVID-19 relevant chronic diseases in the population (CD); a percentage of people with

raised blood pressure (RBP); a percentage of smokers (SM); the prevalence of insufficient physical activity among adults (IN); BCG immunization coverage among

1-year-olds (BCG) (C) Correlation of blood types with R0 in order: A, B, AB, and O (from left to right); overall value for that group, correlation only for Rh+ subtype of

the group, and correlation for Rh− subtype is shown. The two rightmost bars correspond to the overall correlation of Rh+ and the overall correlation of the Rh− blood

type with R0. The convention for representing the statistical significance of each correlation is the same as in Figure 4.

is therefore consistent with the results obtained for all four
individual blood-groups.

In Figure 6, the onset represents the delay of the exponential
phase and is defined, for each country, as the number of days
from February 15 to the start of the exponential growth of
detected cases. The motivation was to check for a possible
correlation between the delay in the onset of the epidemic and
the rate at which it spreads. Indeed, our data shows that such
correlation exists and that it is strong and statistically significant:
R=−0.48 and p= 4·10−8. In other words, the later the epidemic
started, the lower (on average) is the basic reproduction number.

Panel B of Figure 6 shows the correlation of R0 with some
of the commonly considered air pollutants. Our data reveal
a statistically significant positive correlation of R0 with NO2

and SO2 concentrations. Other pollutants—CO, PM2.5 (fine
inhalable particles, with diameters that are generally 2.5µm

and smaller), and PM10 (inhalable particles, up to 10 nm in
diameter)—show no statistically significant correlation with R0.

Next, we consider weather factors. Panels C and D of
Figure 6 show correlations of precipitation, temperature, specific
humidity, UV index, air pressure, and wind speed with the
reproduction number R0. Of these, precipitation, temperature,
specific humidity, and UV index show a strong negative
correlation, at a high level of statistical significance. Of the
other two parameters, both air pressure and wind speed are not
correlated at all with R0 in our data.

DISCUSSION

The present paper aimed to establish relations between
the COVID-19 transmissibility and a large number of
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FIGURE 6 | (A) R0 vs. the time delay of epidemic onset. (B) Pearson correlation of R0 with pollutants (from left to right): NO2, SO2, CO, PM2.5, and PM10 (inhalable

particles with 2.5 and 10µm, respectively). (C) R0 vs. precipitation. (D) Pearson correlation of R0 with (from left to right): temperature, specific humidity, UV index, air

pressure, and wind speed. The convention for representing the statistical significance of each correlation is the same as before.

demographic and weather parameters. As a measure of COVID-
19 transmissibility, we have chosen the basic reproduction
number R0—a quantity that is essentially independent of the
variations in both the testing policies and the introduced social
measures (as discussed in the Introduction), in distinction
to many studies on transmissibility that relied on the total
number of detected case counts [see e.g., (Adhikari and Yin,
2020; Correa-Araneda et al., 2020; Fareed et al., 2020; Gupta
et al., 2020; Iqbal et al., 2020; Li et al., 2020; Pourghasemi et al.,
2020; Rashed et al., 2020; Singh and Agarwal, 2020)]. We have
covered a substantial number of demographic and weather
parameters, and included in our analysis all world countries
that were significantly affected by the COVID-19 pandemic
(and had a reasonable consistency in tracking the early phase
of infection progression). While a number of manuscripts
have been devoted to factors that may influence COVID-19
progression, only a few used an estimate of R0 or some of its

proxies (Coccia, 2020; Contini and Costabile, 2020; Copiello
and Grillenzoni, 2020)—these studies were however limited to
China, and included a small set of meteorological variables, with
conflicting results obtained for their influence on R0. Therefore,
a combination of (i) using a reliable and robust measure of
COVID-19 transmissibility, and (ii) considering a large number
of factors that may influence this transmissibility within the
same study/framework, distinguishes our study over prior
work. We, however, must be cautious when it comes to further
interpretation of the obtained data. As always, we must keep
in mind that “correlation does not imply causation” and that
further research is necessary to identify possible confounding
factors and establish which of these parameters truly affect the
COVID-19 transmissibility. Due to the sheer number of studied
variables, an even larger number of parameters that might be
relevant but are inaccessible to study (or even impossible to
quantify), as well as due to possible intricate mutual relations of
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the factors that may influence COVID-19 transmission, this is a
highly non-trivial task. While we postpone any further analysis
in this direction to future studies, we will, nevertheless, consider
here the possible interpretations of the obtained correlations,
assuming that they also probably indicate the existence of at
least some causation. We below provide a detailed comparison
between our results and previous findings. While a detailed
discussion is presented, despite our best effort, we may have
missed some of the relevant references due to an extremely
rapidly developing field. Nevertheless, we point out a clear
distinction of our work with previous studies, as outlined in
this paragraph.

We will first consider the demographic variables presented
in Figure 4. The obtained correlation of the HDI with the
basic reproduction number is both strong and hardly surprising.
The level of prosperity and overall development of a society
is necessarily tied with the degree of population mobility and
mixing, traffic intensity (in particular air traffic), business and
social activity, higher local concentrations of people, and other
factors that directly or indirectly increase the frequency and range
of personal contacts (Gangemi et al., 2020), rendering the entire
society more vulnerable to the spread of viruses. In this light, it
is reasonably safe to assume that the obtained strong and highly
statistically significant correlation of HDI with R0 reflects a truly
causal connection. However, some authors offer also a different
explanation: that higher virus transmission in more developed
countries is a consequence of more efficient detection of COVID-
19 cases due to the better-organized health system (Gangemi
et al., 2020)—but since our R0 measure does not depend on
detection efficiency, presented results can be taken as evidence
against such hypothesis.

The interpretation is less clear for other demographic
parameters, for example, the percentage of the population
covered by medical and social insurance programs (INS). While
there seem to be no previous studies discussing this parameter,
one possibility is to attribute its strong positive correlation with
R0 to a hypothetical tendency of population to more easily
indulge in the epidemiologically-risky behavior if they feel well-
protected, both medically and financially, from the risks posed
by the virus; conversely, that the population that cannot rely
on professional medical care in the case of illness is likely to be
more cautious not to contract the virus. The other is, of course,
to see this correlation as an indirect consequence of the strong
correlation of this parameter with HDI—which is also, almost
certainly, the underlying explanation of the infant mortality (IM)
correlation, where low mortality ratios point to a better medical
system, which goes hand in hand with the overall prosperity and
development of the country (Ruiz et al., 2015) (thus the negative
correlation with R0).

Similarly, the strong positive correlation of median age (MA)
with R0 might be a mere consequence of its clear relation
with the overall level of development of the country (Gangemi
et al., 2020), but it can be also considered in the light of the
fact that clinical and epidemiological studies have unanimously
shown that the elderly are at higher risk of developing a more
severe clinical picture, and our result may indicate that the virus
also spreads more efficiently in the elderly population. Possible

explanations may include: drugs frequently prescribed to this
population that increase levels of ACE2 receptors (Shahid et al.,
2020), a general weakening of the immune system with age
leading to a greater susceptibility to viral infections (Pawelec and
Larbi, 2008), and a large number of elderly people grouped in
nursing homes, where the virus can expand very quickly (Kimball
et al., 2020).

The correlation of population density with R0, or the lack
of thereof, is more challenging to explain. Naively, one could
expect that COVID-19 spreads much more rapidly in areas with
a large concentration of people, but, if exists, this effect is not
that easily numerically captured. As the standard population
density did not show any correlation with the reproduction
number R0 (not shown), we explored some more subtle variants.
Namely, the simplest reason why the data shows no correlation
of R0 with population density would be that the density,
calculated in the usual way, is too averaged out: the most
densely-populated country on our list, Monaco, has roughly
10,000 times more people per square kilometer than the least
densely-populated Australia. However, Melbourne downtown
has a similar population density as Monaco and far more
people, so one would expect no a priori reason that its infection
progression would be slower (and the R0 rate for Australia as a
whole will be dominantly determined by the fastest exponential
expansion occurring anywhere on its territory). For this reason,
we included the BUCAP parameter into the analysis, which
takes into account only population density in built-up areas.
Surprisingly, even this parameter did not exhibit any statistically
significant correlation. Actually, several studies may serve as
examples showing that the correlation of population density
with the rate of COVID-19 expansion can be expected only
under certain conditions since the frequency of contacts between
people is to a large extent modulated by additional geographical,
economic, and sociological factors (Berg et al., 2020; Carozzi,
2020; Pourghasemi et al., 2020; Rashed et al., 2020). Our observed
absence of a correlation could be therefore expected and possibly
indicates that such a correlation should be sought at the level
of smaller populated areas—for example, individual cities (Yu
et al., 2020). This conclusion is somewhat supported by the
obtained highly significant and strong positive correlation of
R0 with the percentage of the population living in cities (UP)
and which probably reflects the higher number of encounters
between people in a more densely populated, urban environment
(Li et al., 2020). It is also possible that virus spread might have
a highly non-linear dependence on the population density—
namely, that an outbreak in a susceptible population requires
a certain threshold value of its density, while below that value
population density ceases to be a significant factor influencing
virus (Scheffer, 2009; Carozzi, 2020; Coro, 2020).

Another demographic parameter that exhibits a significant
correlation with R0 in our data is the net migration (I-E),
denoting the number of immigrants less the number of
emigrants. Unlike this number, which shows a positive
correlation, the number of refugees (RE) seems not to be
correlated at all. By definition, migrants deliberately choose to
move to improve their prospects, while refugees have to move
to save their lives or preserve their freedom. Migrants (e.g., in
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economic or academic migration), arguably tend to stay in closer
contact with the country of their origin and have more financial
means for that, which likely contributes to more frequent border
crossings and more intensive passenger traffic (Fan et al., 2020),
thereby promoting the infection spread. On the other hand,
refugees are mostly stationed in refugee camps, there is less
possibility of spreading the virus outside through contacts with
residents, but there is a high possibility of escalation of the
epidemic within camps with a high concentration of people
(Hargreaves et al., 2020). We did not find any other attempt
in the literature to examine this issue. In any case, our results
demonstrate that refugees are certainly not a primary cause
of concern in the pandemics, contrary to fears expressed in
some media.

Of the medical factors, the strongest correlation of R0 is
established with elevated cholesterol levels, as shown in Figure 5.
Cholesterol may be associated with a viral infection and further
disease development through a complex network of direct and
indirect effects. In vitro studies of the role of cholesterol in virus
penetration into the host body, done on several coronaviruses,
indicate that its presence in the lipid rafts of the cell membrane is
essential for the interaction of the virus with the ACE2 receptor,
and also for the latter endocytosis of the virus (Radenkovic et al.,
2020). Obesity prevalence (OB) also exhibits a highly significant,
though somewhat weaker correlation with R0, which might be
a consequence of the common connection between obesity and
cholesterol: in principle, obesity might be a relevant factor in
the COVID-19 epidemic exactly due to the effects of cholesterol
on SARS-CoV-2 susceptibility. Of course, other effects might
be at play, e.g., the fact that the adipose tissue of obese people
excessively produces pro-inflammatory cytokines (Sattar et al.,
2020). In the case of obesity, a simple explanation via relation
to HDI is not available, since obesity does not show a simple
correlation with the society development (Haidar and Cosman,
2011). Overall, while the correlation of obesity with a more severe
prognosis in COVID-19 is well established in the literature, its
relation to COVID-19 transmissibility is only mentioned in Li
et al. (2020) and hitherto unexplained.

Often related to obesity is also raised blood pressure (RBP),
and we have discovered that this factor is also correlated, at
high statistical significance, with R0. While this seems to be
the first study correlating high blood pressure with the SARS-
CoV-2 transmission rate, it is known that, based on clinical
studies, RBP appears to be a risk factor for hospitalization and
death due to COVID-19 (Ran et al., 2020a; Schiffrin et al.,
2020). In this light, it might be surprising that the correlation
between RBP and R0 turns out to be negative. On the other
hand, this result supports the existing hypothesis about the
beneficial effect of ACE inhibitors and ARBs (Ran et al., 2020a;
Schiffrin et al., 2020) (standardly used in the treatment of
hypertension). Similarly unintuitive correlation we report in
the case of chronic diseases that are known to be relevant
for the COVID-19 outcome. Namely, our data show, at very
high statistical significance, a strong negative correlation of
R0 with the risk of death from a batch of chronic diseases
(cardiovascular disease, cancer, diabetes, and chronic respiratory
disease), agreeing in this regard with some recent research

(Chiang et al., 2020; Li et al., 2020). These diseases are identified
as relevant comorbidities in the context of COVID-19, leading
to a huge increase in the severity of the infection and poorer
prognosis (An et al., 2020; Zheng et al., 2020) and, therefore, the
discovered negative correlation comes as a surprise—particularly
when contrasted to the positive correlation of obesity (where both
are recognized risk factors in COVID-19 illness). One possible
explanation is that the correlation may be due to potentially
lower mobility of people with chronic diseases compared to the
general mobility of the population. Additionally, it is possible that
these people, being aware to belong to a high-risk group, behaved
more cautiously even before the official introduction of social
distancing measures.

According to our analysis, the prevalence of certain health-
hazard habits is also significantly correlated to COVID-19
transmissibility. Chronic excessive alcohol consumption has, in
general, a detrimental effect on immunity to viral and bacterial
infections, which, judging by the strong positive correlation we
obtained, most likely applies also to SARS-CoV-2 virus infection.
This correlation contradicts the belief that alcohol can be used
as a protective nostrum against COVID-19, which has spread in
some countries and even led to cases of alcohol poisoning (Chick,
2020).

Regarding the impact of smoking on SARS-CoV-2 virus
infection—the results are controversial (Chatkin and Godoy,
2020). The positive correlation of smoking with COVID-19
transmissibility that we obtained seems to support the reasoning
that, since the SARS-CoV-2 virus enters cells by binding to
angiotensin-converting enzyme 2 (ACE2) receptors and that the
number of these receptors is significantly higher in the lungs of
smokers, the smokers will be more affected and easily infected
(Brake et al., 2020; Hoffmann et al., 2020). Accordingly, our result
contradicts the hypothesis that a weakened immune response of
smokers to virus infection may prove beneficial in the context
of inflammation caused by intense cytokine release (Garufi et al.,
2020).

Another result that addresses the association of unhealthy
lifestyle with greater susceptibility to SARS-CoV-2 infection is
the slight positive correlation we obtained for the prevalence of
insufficient physical activity (IN) in adults, which is however not
statistically significant. In this sense, in the case of COVID-19,
we could not fully confirm the findings from (Jurak et al., 2020),
who found that physical activity significantly reduces the risk of
viral infections.

Despite the recent media interest (Gallagher, 2020), our
findings neither could confirm that BCG immunization has any
beneficial effect in the case of COVID-19, at least as far as
reducing the risk of contracting and transmitting the disease is
concerned. While it is known that the BCG vaccine provides
some protection against various infectious agents, unfortunately,
there is no clear evidence for such an effect against SARS-
CoV-2 (O’Neill and Netea, 2020). Our analysis suggests that
BCG immunization simply does not correlate with SARS-CoV-2
virus transmission.

SARS-CoV-2 target cells are typically capable of synthesizing
ABH antigens and certain arguments exist, both theoretical
and experimental, for a potential relation of blood groups
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with COVID-19 progression and transmission (Guillon et al.,
2008; Dai, 2020; Gérard et al., 2020). While the results of
epidemiological studies on COVID-19 patients mostly support
the proposed effect of blood groups on the development of
COVID-19 disease, the relationship between virus transmission
and blood group prevalence and Rh phenotype has been
significantly less studied. Our analysis showed strong positive
correlations of virus transmission with the presence of A blood
group and Rh− phenotype, as well as strong negative correlations
for B blood group and Rh+ phenotype, while for AB and O blood
group no significant correlations were obtained (Figure 5C). This
result coincides significantly with the correlations obtained in
a study conducted for 86 countries (Ansari-Lari and Saadat,
2020). However, another study focused on hospitalized patients
in Turkey reported that the Rh+ phenotype represents a
predisposition to infection (Arac et al., 2020), contradicting our
findings. Similar results regarding the Rh factor were obtained
in a study (Latz et al., 2020) on hospitalized patients in the US
(this study further reported no correlation of blood types with
the severity of the disease). One way to reconcile these results
with ours would be to speculate that the virus is more efficiently
transmitted in a population with a higher proportion of Rh−

phenotype because these people show a milder clinical picture
compared to Rh+, so their movement is not equally limited,
which is why they have more ability to pass on the infection.

Our data (Figure 6A) shows a strong negative correlation with
the date of the epidemic onset. Curiously, it seems that the later
the epidemic started in a given country, it is more likely that
the disease expansion will be slower. Instead of interpreting this
result as an indication that the virus has mutated and changed its
properties over such a short period, we offer the following simpler
explanation: pandemic reached first those countries that are most
interconnected with the rest of the world (at the same time,
those are the countries characterized by great mobility of people
overall), so it is expected that also the progression of the local
epidemics in these countries is more rapid. Another contributing
factor could be the effect of media, which had more time to raise
awareness about the risks of COVID-19 in the countries that were
hit later (Khajanchi et al., 2020b).

Another segment of our interest were air pollutants, shown
in Figure 6B. Air pollution can have a detrimental effect on
the human immune system and lead to the development (or
to worsening) of respiratory diseases, including those caused
by respiratory viral infections (Becker and Soukup, 1999; Copat
et al., 2020). Several papers have already investigated air pollution
in the context of COVID-19 and reported a positive correlation
between the death rate due to COVID-19 and the concentration
of PM2.5 in the environment (Wu et al., 2020; Yao et al., 2020c).
Positive correlations were also found for the spread of the SARS-
CoV-2 virus, but mainly by considering daily numbers of newly
discovered cases—a method that, as we have already argued, may
strongly depend on testing policies, as well as on state measures
to combat the epidemic (Copat et al., 2020). It has been suggested
that virus RNA can be adsorbed to airborne particles facilitating
thus its spread over greater distances (Coccia, 2020; Setti et al.,
2020), but these arguments were contested by examination of air
samples inWuhan (Contini and Costabile, 2020; Liu et al., 2020).

The latter conclusions concur with the results of a study in which
no correlation was obtained between the basic reproductive
number of SARS-CoV-2 infection for 154 Chinese cities and the
concentration of PM2.5 and PM10 particles, while the correlation
of these factors with the death rate (CFR) was shown (Ran
et al., 2020b). The statistically insignificant and relatively weak
correlations we obtained for PM2.5 and PM10 pollutants also
do not support the hypothesis of a potentially significant role
of these particles in the transmission of this virus. In contrast,
significant positive correlations were shown by our analysis
for concentrations of NO2, SO2, and CO in the air (although
the correlation for CO is not statistically significant), which is
generally supported by the results of other studies. For example,
a positive correlation of NO2 levels with the basic reproductive
number of infection was obtained from data for 63 Chinese cities
(Yao et al., 2020a). Also, it has been shown that the number
of detected cases of COVID-19 in China is strongly positively
correlated with the level of CO, while in Italy and the USA
such correlation exists with NO2 (Pansini and Fornacca, 2020).
The mentioned study failed to establish a clear correlation with
the level of SO2. Possible mechanisms of interaction were also
proposed (Daraei et al., 2020). Also, it is important to emphasize
that the atmospheric concentration of NO2 strongly depends on
the levels of local exhaust emissions, so its correlation with virus
transmission can be interpreted by the connection with the urban
environment, characterized by more intensive traffic (Goldberg
et al., 2020).

Finally, we have also obtained some interesting correlations of
the meteorological parameters with R0, shown in Figures 6C,D.
The statistically very highly significant negative correlation of
the basic reproductive number of SARS-CoV-2 virus infection
with both the mean temperature and humidity obtained in
our research (Figure 6D) is consistent with the results of other
relevant papers, e.g., (Mecenas et al., 2020). For example, a similar
correlation was obtained in a study that analyzed COVID-19
outbreak in the cities of Chile—a country that covers several
climate zones, but where it is still safe to assume that social
patterns of behavior and introduced epidemic control measures
do not drastically differ throughout the country (Correa-Araneda
et al., 2020). Effectively the same conclusion—that fewer COVID-
19 cases were reported in countries with higher temperatures
and humidities—was reached in a study covering over 200
countries in the world (Iqbal et al., 2020). While an established
correlation between virus transmission and a certain factor is
not, in general, a telltale sign of a direct causal relationship
between them, in the case of temperature and humidity such
connection is firmly indicated also by results of experimental
research (Lowen et al., 2007; Casanova et al., 2010; Chan et al.,
2011; van Doremalen et al., 2020). Nevertheless, some studies
yielded different conclusions, most likely due to the method
of calculating R0 or due to choosing a small/uninformative
sample of populations in which the number of infected cases
was monitored (Guo et al., 2020; Lin et al., 2020; Yao et al.,
2020b). For example, a study focused on the suburbs of New
York, Queens, obtained a positive correlation between virus
transmission and temperature, which seems unexpected given
the prevailing observations of other studies (Adhikari and Yin,
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2020). This result is most likely a consequence of analyzing data
for a small area (Queens only) where the temperature varies in
a relatively narrow range of values, as well as correlating the
number of detected cases, which may be sensitive to variations
in the testing procedure.

Another environmental agent that can destroy or inactivate
viruses is UV radiation from sunlight, and the properties of a
particular virus determine how long it can remain infectious
when exposed to radiation. For example, epidemics of influenza
have a seasonal character precisely due to the susceptibility of
influenza viruses to UV radiation (Sagripanti and Lytle, 2007).
Our analysis found, at very high statistical significance, a strong
negative correlation between the transmission of the SARS-CoV-
2 virus and the intensity of UV radiation, which is consistent
with the results of other studies obtained for the cities of Brazil
and the provinces of Iran (Ahmadi et al., 2020; Mendonça et al.,
2020). It is worth mentioning that lower temperatures, humidity,
and sunlight levels usually occur in combination and directly
affect not only the virus but also the human behavior, so the
observed higher transmission of the virus in such conditions can
alternatively be interpreted by indirect effects of other factors that
act together in cold weather, such as more time spent indoors
where the virus spreads more easily, or weakening of the immune
system that increases susceptibility to infections (Abdullahi et al.,
2020).

While the results related to COVID-19 correlations with
temperature, humidity, and UV radiation are fairly frequent in
the literature, this is less so for the results on the precipitation
levels. Very few other studies have examined the association
of precipitation with SARS-CoV-2 transmission, with either no
correlation found (Pourghasemi et al., 2020), or looking at
precipitation as a surrogate for humidity and generally receiving
a negative correlation with infection rate (Araujo and Naimi,
2020; Coro, 2020). Our results, however, shown in Figure 6D,
confirm natural expectations: just like humidity, the precipitation
exhibits a strong negative correlation with R0, only slightly lower
than in the case of T, H, and UV, at a very high level of
statistical significance. Such results also concur with some general
conclusions about the behavior of similar viruses (Agrawal et al.,
2009; Pica and Bouvier, 2012).

Our analysis did not reveal any statistically significant
correlation either between the wind speed or between air pressure
and SARS-CoV-2 transmissibility. In the case of wind speed,
this result agrees with the findings in some other papers (Gupta
et al., 2020; Oliveiros et al., 2020). A positive correlation of
wind speed with COVID-19 transmissibility was obtained in
a study in Chilean cities, but, as the authors themselves note,
the interpretation of the effect of this factor is complicated by
its observed significant interaction with temperature (Correa-
Araneda et al., 2020). The role of wind in transmitting the
virus to neighboring buildings is predicted by the SARS virus
spread model within the Amoy Gardens residential complex
in Hong Kong, but such an effect may relate to local air
currents and virus transmission over relatively short distances
and does not imply a correlation of mean wind speeds in
the area with virus transmission (McKinney et al., 2006; Pica
and Bouvier, 2012). As for the air pressure, the potential
connection is hardly at all investigated in the literature. An

exception is a study (Cambaza et al., 2020) reporting a positive
correlation of air pressure with the number of COVID-19 cases
in parts of Mozambique, but our results do not confirm such
a conclusion.

CONCLUSION

While there is by now a significant amount of research on a
crucial problem of how environmental factors affect COVID19
spread, several features set this analysis apart from the existing
research. First is the applied methodology: instead of basing
analysis directly on the number of detected COVID-19 cases
(or some of its simple derivatives), we employ an adapted
SEIR model to extract the basic reproduction number R0 from
the initial stage of the epidemic. By taking into account only
data in the exponential growth regime, i.e., before the social
measures took effect (as explained in the “Methods” section), we
ensured that the correlations we have later identified were not
confounded with the effects of local COVID-19 policies. Even
more importantly, our method is also invariant to variations in
COVID-19 testing practices, which, as is well known, used to vary
in quite an unpredictable manner between different countries.
Another important factor is the large geographical scope of
our research: we collected data from 118 countries worldwide,
more precisely, from all the countries that were above a certain
threshold for the number of confirmed COVID-19 cases (except
for several countries with clearly irregular early growth data).
The third factor was the number of analyzed parameters: we
calculated correlations for the selected 42 different variables (of
more than a hundred that we initially considered overall) and
looked for viable interpretations of the obtained results.

These results should also help in resolving some of the existing
disputes in the literature. For example, our findings indicate that
correlation of HDI with R0 is not a consequence of the COVID-
19 testing bias, as was occasionally argued. Of the opposing
opinions, our data seem to support assertions that blood types
are indeed related to COVID-19 transmissibility, as well as
arguments that the higher prevalence of smoking does increase
the virus transmissibility (though weakly). On the other hand,
in the dispute about the effects of the pollution, our correlations
give an edge to claims that there is no correlation between PM2.5
and PM10 particles and transmissibility (whereas we agree with
the prevailing conclusions about the positive correlation of other
considered pollutants). In the case of the effects of the wind,
based on the obtained results we tend to side with those denying
any connection. In certain cases our findings contradict popular
narratives: there are no clear indications that either number of
refugees or physical inactivity intensifies the spread of COVID-
19. Unfortunately, our data also suggest that BCG immunization
may not help in subduing the epidemic. Additionally, the
obtained correlations hint to possible new alleys of research, e.g.,
those that would help us understand the connection between
cholesterol levels and SARS-CoV-2 transmissibility.

Overall, we believe that the presented results can be a useful
contribution to the ongoing attempts to better understand the
first pandemic of the twenty-first century—and the better we
understand it, the sooner we may hope to overcome it.
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a novel and effective approach in revealing 
infection progression mechanisms that 
may be a valuable alternative to detailed 
numerical simulations.

We start by introducing our COVID-19 
dynamics model.  We then extract 
COVID-19 count data[7] and select those 
countries that systematically trace not 
only confirmed cases and fatalities, 
but also active cases (Andorra, Austria, 
Czechia, Croatia, Cuba, Germany, Israel, 
New Zealand, Switzerland and Turkey), 
which allows tight constraint of numer-
ical analysis. We observe three charac-
teristic growth regimes in confirmed 
case counts, show that our model is well 
constrained by these regimes for a wide 
range of countries, and provide an intui-
tive explanation behind the emergence 
of such regimes. Our analytical results 

for the characteristic (inflection and maximum) points of 
the infective curve will allow to i) explain the nearly constant 
value of the scaling exponent in the superlinear regime of 
confirmed counts; ii) understand the relation between the 
duration of this regime and strength of social distancing; iii) 
pinpoint changes in the reproduction number from outburst 
to extinguishing the infection, and iv) constrain the main 
parameter quantifying the effect of social distancing by ana-
lyzing scaling of the infection growth with time in the sub-
linear regime. The obtained constraints provide a basis for 
successful analysis of countries that did not continuously 
track the active cases (here demonstrated for France, Italy, 
Spain, United Kingdom, and Serbia). We will finally present 
the key infection parameters inferred through combined ana-
lytical and numerical analysis.

We develop a mechanistic model (nonlinear and nonhomoge-
neous), which takes into account gradual introduction of social 
distancing (as relevant for most countries’ response), in addi-
tion to other important infection progression mechanisms. We 
start from standard compartments for epidemiological models, 
that is, susceptible (S), exposed (E), infective (I), and recov-
ered (R).[2–4] To account for social distancing and observable 
quantities, we introduce additional compartments: protected  
(P)—where individuals effectively move from susceptible 
category due to social distancing; total number of diagnosed 
(confirmed and consequently quarantined) cases (D), active cases  
(A), and fatalities (F). D, A, and F correspond to directly observ-
able (measured) quantities, but are indirect observables of I, as 
only part of infective individuals gets diagnosed, due to a large 
number of mild/asymptomatic cases.[8]

Widespread growth signatures in COVID-19 confirmed case counts are 
reported, with sharp transitions between three distinct dynamical regimes 
(exponential, superlinear, and sublinear). Through analytical and numerical 
analysis, a novel framework is developed that exploits information in these 
signatures. An approach well known to physics is applied, where one looks 
for common dynamical features, independently from differences in other 
factors. These features and associated scaling laws are used as a powerful 
tool to pinpoint regions where analytical derivations are effective, get an 
insight into qualitative changes of the disease progression, and infer the 
key infection parameters. The developed framework for joint analytical and 
numerical analysis of empirically observed COVID-19 growth patterns can 
lead to a fundamental understanding of infection progression under strong 
control measures, applicable to outbursts of both COVID-19 and other 
infectious diseases.

© 2021 The Authors. Global Challenges published by Wiley-VCH GmbH. 
This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited.

COVID-19 pandemic introduced unprecedented worldwide 
social distancing measures.[1] While interventions such as 
quarantine or vaccination have been extensively studied in 
quantitative epidemiology, effects of social distancing are 
not well understood,[2–4] and when addressed, they have been 
studied only numerically. Unique opportunity to understand 
these effects has been provided by COVID-19 tracing through 
confirmed case counts, active cases and fatalities, in a variety 
of countries with different demographic and environmental 
conditions.[5,6] We here show that focusing on analytical and 
numerical derivations in distinct epidemics growth regimes, is 
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We implement the model deterministically, as COVID-19 
count numbers are very high wherever reasonable testing 
capacities are employed. This makes model analytically trac-
table, and allows robust parameter inference through com-
bination of analytically derived expressions and tightly con-
strained numerical analysis, as we show below. Our analysis 
is applied separately to each country, as the effect of social 
distancing, initial numbers of infected and exposed cases, 
diagnosis/detection efficiency and transmission rates may 
be different. However, within a given country, we do not take 
into account different heterogeneities−demographic, spatial, 
population activity, or seasonality effects.[2,9,10] Alternatively, 
global dynamical properties of the outbreak can be analyzed 
in a probabilistic framework employing partial differential 
equations in an age-structured model.[11,12] These can readily 
be included in our model, but would lead to model structure 
which is not analytically tractable, so these extensions are left 
for future work.

Given this, the model equations are:

d /d / d /d ; d /d /(1 ( / ) )0β α= − − = +S t IS N P t P t t t Sn  (1)

d /d / ; d /d ; d /dβ σ σ γ εδ γ= − = − − =E t IS N E I t E I I R t I (2)

εδ εδ= = − − =d /d ; d /d ; d /dD t I A t I hA mA F t mA  (3)

where N  is the total population number; β-the transmis-
sion rate; σ -inverse of the latency period; γ -inverse of the 
infectious period; δ-inverse of the detection/diagnosis  
period; ε-detection efficiency; h—the recovery rate; m-the 
mortality rate. Social distancing is included through Equation 
(1) (second equation), which represents the rate at which the 

population moves (on average) from susceptible to protected 

category. The term 1 ( / )0

α
+ t t n  corresponds to a sigmoidal depend-

ence (similar to Fermi–Dirac function, in quantitative biology 
known as the Hill function[13]). Time 0t  determines the half-
saturation, so that well before 0t  the social distancing is negli-
gible, while well after 0t  the rate of transition to the protected 
category approaches α . Parameter n  (the Hill constant) deter-
mines how rapidly the social distancing is introduced, that is, 
large n  leads to rapid transition from OFF to ON state, and 
vice versa.[13] Equation (3) considers that only a fraction of the 
infected is diagnosed, so that εδI  takes into account the diag-
nosis and the subsequent quarantine process.

To make the problem analytically tractable, we approxi-
mate the Hill function in the first relation of Equation (1) by 
unit step function, so that after 0t  the second term in Equa-
tion (1) becomes α− S and dominates over the first term, that 
is, ( ) ≈ α−S t e t. We checked that this approximation agrees 
well with full-fledged numerical simulations (Figure 1D and 
Supporting Information). In all comparisons with analyt-
ical results, numerical analysis is done with the full model, 
allowing an independent check of both analytical deriva-
tions and employed approximations. Under this assumption, 
Equations (1) and (2) reduce to:

d ( )

d
( )

d ( )

d
[ ( ) ( )] ( ) ( )

2

2 0
( )

0
0γ εδ σ σ β θ θ γ εδ{ }+ + + = − + − − +α− −I t

t

I t

t
t t e t t I tt t

 
 (4)

We next introduce two time regions: I) 0≤t t  and II) 0>t t  
and solve Equations (4) separately within these regions, where 
corresponding solutions are denoted as ( )II t  and ( )III t . As in 
the above expressions γ εδ+  always appear together, we further 
denote γ εδ γ+ → .

Global Challenges 2021, 5, 2000101

Figure 1. Comparison of the model (dashed blue curves) with the data in the case of Germany (grey circles) for A) confirmed case counts, B) active 
cases, C) fatalities. D) Exponential, superlinear, and sublinear fit to confirmed case data, is shown. Arrows “weak” and “strong” indicate, respectively, 
the regions with a small and large magnitude of social distancing. The full grey curve denotes susceptibles ( ( )S t ), where the dashed grey curve shows 
an approximation to ( )S t . The dashed green curve denotes the number of infectious cases ( ( )I t ), where the dashed blue curve is ( )′I t , whose maxima 
indicate ( )I t  inflection points. The confirmed case counts in the three regimes are shown on E) log–linear, F) log–log and G) linear–log scale.
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For ( )II t , we take ( 0) 0= ≡I t I , and restrict to dominant  
(positive) Jacobian eigenvalue, leading to the exponential 
regime:

( )I 0

1
2

[ ( ) ( ) 4 ]2

=
γ σ γ σ βσ− + + − +

I t I e
t (5)

By shifting 0− →t t t, ( )III t  is determined by

d ( )

d
( )

d ( )

d
( ) ( )

2
II

2
II

IIγ σ σ β γ+ + = −α−I t

t

I t

t
e I tt  (6)

Equation  (6) is highly nontrivial, due to variable coefficient 

(σβ α−e t). By substituting variable 
2

2
βσ

α
→ = − α−

t x
i

e
t

 it can be 

shown that Equation (6) reduces to transformed form of Bessel 
differential equation:[14]

d
d

(1 2 )
d
d

02
2

2 1 1
2

1
2 2

1
2 2

1
21α β γ α ν γ( )+ − + + − =γx

y

x
x

y

x
x y  (7)

whose general solution for noninteger ν  is given by:

( ) , ,1 1 2 1
1 1 1ν β ν β( ) ( )= + − 

α γ γy x x C J x C J x  (8)

where ( , )νJ x  represents Bessel function of the first kind, and 
,1 2C C  are arbitrary constants. In our case 

1α γ σ
α= + , 11 1γ β= = , 

while ν γ σ
α= −  is indeed noninteger. If we return to t  variable, 

taking into account the following relation between standard 
and modified ( ( , )νI x ) Bessel functions of the first kind:[15,16] 
( , ) ( , )ν ν= ν−I x i J ix , the general solution of Equation (6) reads:

( ) ( 1) ,
2

1

( 1) ,
2

1

II 2

2

1

2

βσ
α

γ σ
α

βσ
α

γ σ
α

γ σ
α

βσ
α

γ σ
α

= 

 


 − −







Γ + −


 










+ − − −







Γ − −


 









α

γ σ
α

γ
α

α

σ
α

α

−

+
−

−

I t e C I
e

C I
e

t
t

t

 (9)

To determine 1C , 2C , we use the following boundary condi-
tions: (0) ( )II I 0=I I t  and (0) ( )II I 0=′ ′I I t , where the first derivative 
in region II has the following expression:

(0) ( 1) 1

,
2

1 ,
2

( 1) 1

,
2

1 ,
2

II 2

2

1

2

βσ
α

γ σ
α

γ γ σ
α

βσ
α

βσ γ σ
α

βσ
α

γ σ
α

σ γ σ
α

βσ
α

βσ γ σ
α

βσ
α

= 





 − Γ + −












−







 + + −





















+ − Γ − −







− −







+ − −



























γ σ
α

α γ
α

α σ
α

′

+
+

+

I C

I I

C

I I

 (10)

In obtaining the expression above, the following identities 
were frequently used:[15,16]

d ,

d
1, , ; 1, 1,

2 ,ν ν ν ν ν ν ν ν( ) ( ) ( ) ( ) ( ) ( )= − − − − + =I x

x
I x

x
I x I x I x

I x

x
 (11)

After derivations, where the following relation[16]

1, , , 1,
2sin( )ν ν ν ν πν

π
( ) ( ) ( ) ( )+ − − − − =I x I x I x I x

x
 (12)

together with sin(( 1) ) sin( )ν π νπ± = −  and the identity 
relating modified Bessel function of the first and second kind 

( , )
2

( , ) ( , )

sin
ν π ν ν

νπ
= − −

K x
I x I x

 are used,[15,16] we finally obtain a 

surprisingly simple result:

γ σ
α

βσ
α

γ σ
α

βσ
α

=

−









−









γ σ

α

− +

−

I t I t e

K
e

K

t

t

( ) ( )

,
2

,
2

II I 0
2  (13)

where ( , )νK x  is the modified Bessel function of the 
second kind.

At maximum and inflection points, 0II =′I  and 0II =′′I , 
respectively. After extensive simplification of the results, this 
leads to ( 0,free= α−y R e t, where /0,free β γ=R  is the basic reproduc-
tion number in the absence of social distancing:[6,17])

1,
2

,
2γ σ

α
γσ

α
γ
σ

γ σ
α

γσ
α

− +








 = −







yK y K y  (14)

1,
2

1

,
2γ σ

α
γσ

α
γ
σ

γ
σ

γ
σ

γ σ
α

γσ
α

− +








 =

+







+







−







yK y

y

K y  (15)

Equations  (14) and  (15) have to be solved numerically, but, 
as γ  and σ  are constants, we, interestingly, obtain that solu-
tions will depend only on α . Since, for the analysis of super-
linear and sublinear regimes, only the left inflection point and 
the maximum are important, we will further omit the second 
solution of Equation (15) (Equation (14) has one solution), and 
denote ( ) ( )1 α α= ≡y f fi i i , ( )m m α=y f  (these two solutions are 
presented as upper and lower curves on Figure  2C, respec-
tively), so that the effective reproduction numbers at inflection 
and maximum points ( e,iR  and e,mR ) are:

α
α

≡ =
≡ =

α

α

−

−

R R e f

R R e f

t

t

i

m

( ),

( ).
e, i 0,free i

e, m 0,free m

 (16)

From this follows the length of superlinear regime (between 
inflection and maximum points):

α
α
α

∆ ≡ − =








t t t

f

f

1
ln

( )

( )
m i

i

m

 (17)

We further Taylor expand ( )III t  around the inflection point:

Global Challenges 2021, 5, 2000101
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( ) ( )

,
2

( )

,
2

1 1 ( ) ( ) ( )

II I 0
2

2

γ σ
α

γσ
α

α

γ σ
α

βσ
α

γσ
γ σ

α ( )( )

=

−









−









−
+

− − + −










γ σ− +

O

I t I t e

K f

K

f t t t t

t
i

i i i

i

 (18)

In the superlinear regime ( ) ( )s≈ − υD t t t , where υ  is the 
scaling exponent and st  marks the beginning of this regime. By 
Taylor expanding ( )D t  around it , using Equations (18) and (3):

υ
α

γσ
γ σ

α α
α

= +
+

−










k
f

f

f
1

1
[ ( ) 1] ln

( )

( )
i

i

m

 (19)

which is always larger than 1, as expected for the superlinear 
regime. As ti  is localized toward the beginning of the regime, 
we estimate − ≈ ∆

i st t t
k

, where 3,4≈k .
Finally, to provide analytical constrain on α , we Taylor 

expand ( )I tII  around the maximum:

γ σ
α

γσ
α

α

γ σ
α

βσ
α

γσ α ( )( )

=

−









−









− − − + −





γ σ− +

I t I t e

K f

K

f t t t t

t
( ) ( )

,
2

( )

,
2

1
2

1 ( ) ( ) ( )

II I 0
2

m

m m
2

m
3

m

O

 (20)

As ( ) 0m α <f , we see that the quadratic term in Equation (20) 
is always negative, that is, ( )D t  curve enters sublinear 
regime around maximum of the infection. By fitting ( )D t  

to ( ) ( )m m
3+ − − −c d t t f t t  in this regime, and by using 

Equation (20) together with Equation (3), we obtain:

γσ α= −f

d
f

6
[1 ( )]m  (21)

which allows to directly constrain α.
We first numerically analyze outburst dynamics in the coun-

tries that continuously updated[18] three observable categories  
(D, A , and F). For a large majority of countries active cases were 
either not tracked or were not continuously updated, so the 
analysis is done for ten countries listed in the outline above.

In the exponential regime, the analytical closed-form solu-
tion is given by Equation  (5). From this, and the initial slope 
of ln( )D  curve (once the number of counts are out of the 
stochastic regime), β  can be directly determined, while the 
corresponding eigenvector sets the ratio of 0I  to 0E . The inter-
cept of the initial exponential growth of D  at 0=t  sets the 
product of 0I  and εδ . h  and m  can also be readily con-
strained, as from Equation (3), they depend only on integrals of 
the corresponding counts; here note that − − =d( )/dD A F t hA. 
Also,[17,19,20] 1/3σ =  day 1−  and 1/4γ =  day 1− , characterize fun-
damental infectious process, which we assume not to change 
between different countries.

Only parameters related with the intervention meas-
ures ( , , ,0α εδt n ) are left to be inferred numerically, leading 
to tightly constrained numerical results. For this, we indi-
vidually performed joint fit to all three observable quantities 
( , ,A D F) for each country. The errors are estimated through 
Monte-Carlo[21,22] simulations, assuming that count numbers 
follow Poisson distribution.

Representative numerical results are shown in Figure  1 for 
Germany, while other countries are shown in the Supporting 

Global Challenges 2021, 5, 2000101

Figure 2. The dependence on the effective social distancing strength (α ) of A) ∆t, the duration of the superlinear regime, B) υ , the scaling exponent 
of the superlinear regime, C) Re , effective reproduction number at the left inflection point (Re,i) and the maximum (Re,m) of I t( ). α∆ ≈t 1/  indicates 
that the time, in which the change from Re,i  to Re,m  is exhibited, is approximately inversely proportional to α . “ →exp sub” indicates the region of α  
where we predict a direct transition from exponential to sublinear growth. D) Comparison of α  constrained from analytical derivations (the grey bands) 
and numerical analysis, with countries indicated on the horizontal axis by their abbreviations. Results obtained by independent numerical analysis are 
presented by red dots with corresponding errorbars.
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Information. In Figure 1A–C (and Supporting Information) we 
see a good agreement of our numerical analysis with all three 
classes of the case counts. In Figure  1D, we see sharp transi-
tions between the three growth patterns indicated in the figure: 
i) exponential growth, observed as a straight line in log–linear 
plot in Figure 1E; ii) superlinear growth, a straight line in log–
log plot in Figure  1F; iii) sublinear growth, a straight line in 
linear–log plot in Figure 1G.

Transition between the growth patterns can be qualitatively 
understood from Equation (3), and ( )I t  curve in Figure  1D. 
The exponential growth has to break after the inflection point 
of ( )I t , that is, once the maximum of its first derivative ( ( )′I t  
in Figure 1D) is reached. In the superlinear regime, confirmed 
counts case ( ( )D t ) curve is convex ( ( ) 0′′ >D t ), so this regime 
breaks once ( )′I t  (dashed blue curve) becomes negative. Equiv-
alently, ( )D t  curve becomes concave (enters sublinear regime) 
once the maximum of the ( )I t  is reached. Note that the growth 
of ( )D t  can reemerge if the social distancing measures are alle-
viated. Our model can account for this by allowing transition 
from protected back to susceptible category, which is out of 
the scope of this study, but may improve the agreement with 
the data at later times (see Figure  1A–C). In addition to this 
numerical/intuitive understanding, we also showed that we 
analytically reproduce the emergence of these growth regimes 
(Equations  (6), (14), (15)). Can we also analytically derive the 
parameters that characterize these regimes?

The exponential regime is straightforward to explain, as 
described above. The superlinear regime is in between the 
left inflection point and the maximum of ( )I t , so that infec-
tive numbers grow, but with a decreasing rate. While the 
derivations are straightforward in the exponential regime, 
they are highly non-trivial during the subsequent subexpo-
nential (superlinear and sublinear) growth. As the superlinear 
regime spans the region between the left inflection point  
( , ( ) 0i i′′ =t I t ) and the maximum ( , ( ) 0m m′ =t I t ), its duration 
is ∆ = −t t tm i  given by Equation  (17), with 1/α≈  depend-
ence, so that weak measures lead to protracted superlinear 
growth (see Figure  2A). This tendency is also confirmed by 
independent numerical analysis in Figure  2A, where for each 
individual country we numerically infer α  and extract the 
length of the superlinear regime. Therefore, the duration of 
the superlinear regime indicates the effectiveness of introduced 
social distancing.

The scaling exponent υ  of the superlinear regime is given 
by Equation  (19), and shown in Figure  2B, where we predict 
that all countries are roughly in the same range of 1.2 1.5υ< <  
(surprisingly, weakly dependent on α ), despite significant dif-
ferences in the applied measures, demographic and environ-
mental factors. This result is (independently from our model) 
confirmed from case count numbers (the slope in Figure  1F, 
and equivalently for other countries, see Figure 2B).

How the effective reproduction number eR  changes during 
this regime, that is, between the left inflection point and the 
maximum of ( )I t ? eR  quantifies the average number of sec-
ondary cases per infectious case, so that 1e >R  signifies disease 
outburst, while for 1e <R  the disease starts to be eliminated 
from the population.[17] The Equation (16) provides expressions 
for e,iR  (at the inflection point) and e,mR  (at the maximum). 
Interestingly, from Figure  2C, we observe that e,iR  and e,mR  

do not depend on 0,freeR  and are, respectively, significantly larger 
and smaller than  1, which shows that transition from infec-
tion outburst to extinguishing happens during the superlinear 
growth. Consequently, the steepness of eR  change over the 
superlinear regime significantly increases (larger change over 
smaller time interval, see Figure 2C) with the measure strength.

Finally, in the sublinear regime, in a wide vicinity of ( )I t  
maximum (which marks the beginning of the sublinear 
growth) leading non-linear term of ( )D t  is cubic ( 3≈ t , with neg-
ative prefactor). This is consistent with the expansion of ( )I t  
around mt , which has leading negative quadratic ( 2t ) depend-
ence (see Equations (3) and (20)). The ratio between the prefac-
tors in ( )D t  expansion is given by Equation (21), from which we 
see that α  can be directly constrained, as shown in Figure 2D. 
For the ten countries with consistent tracking of ,D A, and F ,  
we independently numerically determined α  and compared 
it with analytical results coming from Equation (21), obtaining 
an excellent agreement between our derivations and numerical 
results. The obtained α  values should be understood as an 
effective epidemic containment measure—that is, estimating 
the true result of the introduced measures, which can be used 
to evaluate the practical effectiveness of the official policies.

To demonstrate how constraining α  can aid numerical anal-
ysis in the cases when A  is not continuously tracked, we next 
analyze five additional countries listed in the outline above, 
so that altogether our study covers majority of COVID-19 hot-
spots, which (at the time of this analysis) are close to satura-
tion in confirmed counts. Furthermore, in the specific cases of 
UK and Italy, where we analytically obtained both very low and 
very constrained α  (0.01 0.04α< < ), we chose five times larger 
parameter span in α  in the numerical analysis, to confirm 
that these low values are indeed preferred by the exhaustive 
numerical search. For example, the finally obtained α  for Italy 
(0.033 0.005)±  and UK (0.025 0.005± ), together with previously 
obtained agreements shown in Figure 2A–C, strongly confirm 
that the observed growth patterns provide invaluable informa-
tion for successful analysis of the infection progression data.

To further illustrate this, the synergy of analytical deriva-
tions and numerical analysis presented above enables us to, 
directly from the publicly available data, infer key infection 
parameters necessary to assess epidemics risks (provided in 
Table S1, Supporting Information). We estimate these param-
eters by the same model/analysis, for a number of diverse 
countries, allowing their direct comparison. In Figure  3, we 
show together case fatality rate (CFR), infected fatality rate 
(IFR) and infection attack rate (AR).[17,24] CFR is the number 
of fatalities per confirmed cases. CFR can, in principle, be 
inferred directly from the data, but since different coun-
tries are in different phases of infection, we project forward 
the number of confirmed cases until a saturation is reached 
for each country, from which we calculate CFR. IFR (crucial 
parameter for assessing the risks for infection progression 
under different scenarios) is the number of fatalities per total 
number of infected cases, which is a genuine model esti-
mate, due to the unknown total number of infected cases. 
AR (necessary for understanding the virus recurrence risk) 
is also determined from our model and provides an estimate 
of the fraction of the total population that got infected and 
possibly resistant.

Global Challenges 2021, 5, 2000101
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From Figure  3, we see that CFR takes very different values 
for different countries, from below 2%  (New Zealand) to above 
20%  (France). On the other hand, IFR is consistent with a con-
stant value (the dashed red line in the figure) of 0.3 0.4%≈ − . 
In distinction to IFR, AR also takes diverse values for different 
countries, ranging from 1%≈  to as high as 15%≈  (though 
with large errorbars). Although diverse, these AR values are 
well bellow the classical herd immunity threshold of 60–70%

To summarize, we here developed a novel quantitative frame-
work through which we showed that: i) The emergence of three 
distinct growth regimes in COVID-19 case counts can be repro-
duced both analytically and numerically. ii) Typically, a brief 
superlinear regime is characterized by a sharp transition from 
outburst to extinguishing the infection, where effective reproduc-
tion number changes from much larger to much smaller than 
one; more effective measures lead to shorter superlinear growth, 
and to a steeper change of the effective reproduction number. iii) 
Scaling exponent of the superlinear regime is surprisingly uni-
form for countries with diverse environmental and demographic 
factors and epidemics containment policies; this highly non-trivial 
empirical result is well reproduced by our model. iv) Scaling pref-
actors in the sublinear regime contain crucial information for 
analytically constraining infection progression parameters, so 
that they can be straightforwardly extracted through numerical 
analysis. Interestingly, we found that the number of COVID-19 
fatalities per total number of infected is highly uniform across 
diverse analyzed countries, in distinction to other (highly variable) 
infection parameters, and about twice higher than commonly 
quoted for influenza (0.3–0.4% compared to 0.1–0.2%), which 
may be valuable for direct assessment of the epidemics risks.

While state-of-the-art approach in epidemiological modeling 
uses computationally highly demanding numerical simu-
lations, the results above demonstrate a shift of paradigm 
toward simpler, but analytically tractable models, that can both 
explain common dynamical features of the system and be used 
for straightforward and highly constrained parameter infer-
ence. This shift is based on a novel framework that relates uni-
versal growth patterns with characteristic points of the infec-
tive curve, followed by analytical derivations in the vicinity 
of these points, in an approach akin to those in a number of 

physics problems. The framework presented here can be, in 
principle, further extended toward, for example, including sto-
chastic effects or different heterogeneities such as age-struc-
ture. However, these are non-trivial tasks, and it remains to 
be seen to what extent the analytical results can be obtained 
in those more complex models. Overall, as our approach does 
not depend on any COVID-19 specifics, the developed frame-
work can also be readily applied to potential outbursts of 
future infections.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.

Acknowledgements
This work was supported by the Ministry of Education, Science and 
Technological Development of the Republic of Serbia.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data used in this study are openly available in Worldometer at 
https://www.worldometers.info/coronavirus/, reference number [7].  
Parameters inferred through the analysis are available in the 
supplementary material of this article.

Keywords
dynamical growth patterns, infections disease modeling, physics and 
society, scaling of epidemics growth

Received: October 8, 2020
Revised: January 16, 2021

Published online: March 1, 2021

Global Challenges 2021, 5, 2000101

Figure 3. CFR, IFR, and AR, inferred for countries whose abbreviations are indicated on the horizontal axis, are denoted, respectively, by blue, grey, and 
green dots, with errorbars indicated by corresponding bands. The dashed red horizontal line stands for IFR consistent with a mean value (indicated in 
the legend). Values for PRC are from ref. [23].

 20566646, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gch2.202000101 by U

niversity O
f B

elgrade, W
iley O

nline L
ibrary on [25/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.global-challenges.com

© 2021 The Authors. Global Challenges published by Wiley-VCH GmbH2000101 (7 of 7)Global Challenges 2021, 5, 2000101

[1] WHO report. https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/situation.

[2] O.  Diekmann, H.  Heesterbeek, T.  Britton, Mathematical Tools for 
Understanding Infectious Disease Dynamics, Princeton University 
Press, Princeton, NJ 2012.

[3] M.  Martcheva, An Introduction to Mathematical Epidemiology, 
Springer, Berlin 2015.

[4] M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and 
Animals, Princeton University Press, Princeton, NJ 2011.

[5] H.  Tian, Y.  Liu, Y.  Li, C. H.  Wu, B.  Chen, U. G.  Kraemer, B.  Li, 
J. Cai, B. Xu, Q. Yang, B. Wang, P. Yang, Y. Cui, Y. Song, P. Zheng, 
Q.  Wang, O. N.  Bjornstad, R.  Yang, B. T.  Grenfell, O. G.  Pybus, 
C. Dye, Science 2020, 368, 638.

[6] G.  Chowell, L.  Sattenspiel, S.  Bansal, C.  Viboud, Physics of Life 
Reviews 2016, 18, 66.

[7] Worldometer  2020. COVID-19 Coronavirus Pandemic. https://www.
worldometers.info/coronavirus/ (accessed: June 2020).

[8] M. Day, BMJ: British Medical Journal 2020, 368, m1165.
[9] G. N. Wong, Z. J. Weiner, A. V. Tkachenko, A. Elbanna, S. Maslov, 

N. Goldenfeld, arXiv:200602036,  2020.
[10] J. R. Dormand, P. J. Prince, J. Comput. Appl. Math. 1980, 6, 19.
[11] J. M. Vilar, L. Saiz. medRxiv 2020.11.26.20239434, 2020.
[12] N. C. Grassly, C. Fraser, Nat. Rev. Microbiol. 2008, 6, 477.
[13] R.  Phillips, J.  Kondev, J.  Theriot, H.  Garcia, Physical Biology of the 

Cell, Garland Science, New York, NY 2012.
[14] F.  Bowman, Introduction to Bessel Functions, Dover Publications, 

New York, NY 1958.
[15] D.  Zwillinger, Standard Mathematical Tables and Formulae, CRC 

Press, Boca Raton, FL 1995.

[16] M. Abramowitz, T. A. Stegun, Handbook of Mathematical Functions 
(Ed: M. Abramowitz), Dover Publications, New York, NY 1972.

[17] Y. M.  Bar-On, A. I.  Flamholz, R.  Phillips, R.  Milo, eLife 2020, 9, 
e57309.

[18] E.  Dong, H.  Du, L.  Gardner, Lancet Infect. Dis. 2020, 20,  
533.

[19] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Science 
2020, 368, 489.

[20] X.  He, E. H. Y.  Lau, P.  Wu, X.  Deng, J.  Wang, X.  Hao, Y. C.  Lau,  
J. Y. Wong, Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, 
Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li, 
G. M. Leung, Nat. Med. 2020, 26, 672.

[21] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numer-
ical Recipes: The Art of Scientific Computing, Cambridge University 
Press, Cambridge 1986.

[22] R. W. Cunningham, Comput. Phys. 1993, 7, 570.
[23] M.  Djordjevic, M.  Djordjevic, I.  Salom, A.  Rodic, D.  Zigic, 

O. Milicevic, B. Ilic, arXiv:2005.09630,  2020.
[24] S. Eubank, I. Eckstrand, B. Lewis, S. Venkatramanan, M. Marathe, 

C. L. Barrett, Bull. Math. Biol. 2020, 82, 1.
[25] T. Britton, F. Ball, P. Trapman, arXiv:2005.03085,  2020.
[26] F. P.  Havers, C.  Reed, T.  Lim, J. M.  Montgomery, J. D.  Klena,  

A. J.  Hall, A. M.  Fry, D. L.  Cannon, C.-F.  Chiang, 
A.  Gibbons, I.  Krapiunaya, M.  Morales-Betoulle, K.  Roguski,  
M.  Ata Ur Rasheed, B.  Freeman, S.  Lester, L.  Mills, D. S.  Carroll, 
S. M.  Owen, J. A.  Johnson, V.  Semenova, C.  Blackmore,  
D.  Blog, S. J.  Chai, A.  Dunn, J.  Hand, S.  Jain, S.  Lindquist, 
R.  Lynfield, S.  Pritchard, et  al., JAMA Intern. Med. 2020, 180,  
1576.

 20566646, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gch2.202000101 by U

niversity O
f B

elgrade, W
iley O

nline L
ibrary on [25/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/


1. Introduction
Despite the unprecedented worldwide campaign of mass immunization, due to the relatively slow vaccine 
rollout and to the appearance of new, more contagious (Tegally et al., 2020), and maybe even more deadly 
SARS-CoV-2 strains (Mallapaty, 2021), COVID-19 still takes its toll on human lives, stifles the world econo-
my, and forces the majority of countries to keep unpopular lockdowns. In the absence of a prompt solution 
to the first pandemic of the century, the goal to identify the main environmental and demographic parame-
ters that influence the dynamics of infection transmission remains as important as ever.

Investigating which factors influence the rate of COVID-19 expansion is a highly involved matter, primarily 
due to many possibly relevant modes of SARS-CoV-2 transmission. It is generally undisputed that COVID-19 
transmission occurs by droplets between people in close proximity (Rahimi et  al.,  2021). Consequently, 

Abstract Identifying the main environmental drivers of SARS-CoV-2 transmissibility in the 
population is crucial for understanding current and potential future outbursts of COVID-19 and other 
infectious diseases. To address this problem, we concentrate on the basic reproduction number R0, which 
is not sensitive to testing coverage and represents transmissibility in an absence of social distancing 
and in a completely susceptible population. While many variables may potentially influence R0, a high 
correlation between these variables may obscure the result interpretation. Consequently, we combine 
Principal Component Analysis with feature selection methods from several regression-based approaches 
to identify the main demographic and meteorological drivers behind R0. We robustly obtain that country's 
wealth/development (GDP per capita or Human Development Index) is the most important R0 predictor at 
the global level, probably being a good proxy for the overall contact frequency in a population. This main 
effect is modulated by built-up area per capita (crowdedness in indoor space), onset of infection (likely 
related to increased awareness of infection risks), net migration, unhealthy living lifestyle/conditions 
including pollution, seasonality, and possibly BCG vaccination prevalence. Also, we argue that several 
variables that significantly correlate with transmissibility do not directly influence R0 or affect it differently 
than suggested by naïve analysis.

Plain Language Summary While numerous studies tried to assess the correlations of 
different factors with the SARS-CoV-2, the next step should be predicting the environmental risk of the 
high transmissibility in a certain population. Specifically, a relatively small number of the most influential 
meteorological and demographic factors should be selected for a predictive risk measure that is accurate 
enough and practical for use. To achieve this, we here utilize a combination of Principal Component 
Analysis and feature selection techniques. We identify that the main drivers behind COVID-19 
transmissibility are the country's wealth/development level corrected by the available indoor space per 
person and net migration; pollution levels, and some of the unhealthy living factors; spontaneous behavior 
change due to developing epidemics; weather seasonality; (less significantly) BCG vaccination. On the 
other hand, we show that several variables that appear significantly related to the disease progression 
through naive pairwise correlation analysis do not directly influence transmissibility. These results may 
provide useful guidelines for future strategies of imposing epidemic mitigation measures.
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various factors that influence the frequency of interpersonal contacts and intensity of social mixing between 
people arriving from different/distant areas will necessarily strongly impact the rate of the epidemic spread. 
However, other means of transmission may also play important roles. It has been established that contact 
with surfaces in the immediate environment of infected persons (or with objects used by them) can lead to 
infection. Also, there is an increasing body of evidence that the airborne transmission of COVID-19 cannot 
be neglected and, moreover, that small air pollutant particles may aid the long-range virus transmission 
(Coccia, 2020b; Rahimi et al., 2021). Some authors even suggest the relevance of contaminated wastewater 
in the infection spread (Rahimi et al., 2021). Such various modes of transmission open up the possibility not 
only of direct influence of numerous environmental factors (e.g., temperature, humidity, wind speed, and 
air pollution) (Sarkodie & Owusu, 2020) but also of nontrivial interactions between these factors (e.g., the 
interplay between the pollution, wind speed, and population density is discussed in Coccia, 2021b). It must 
also be taken into account that the level of personal susceptibility to the given virus can strongly affect the 
rate of an epidemic, and thus a comprehensive study must also consider more subtle demographic/medical 
variables (Notari & Torrieri, 2020).

We recently published a comprehensive study of the correlation of 42 different demographic and weather 
parameters with COVID-19 basic reproduction number R0 across 118 world countries (Salom et al., 2021). 
R0 is a well-established epidemiological measure of virus transmissibility. Its major advantage is independ-
ence on the testing policy/capacity and intervention measures, which can be highly variable (and almost 
impossible to consistently control) between different countries (Salom et al., 2021). In Salom et al. (2021), 
we selected all the countries that exhibited regular exponential growth in the case numbers before the 
introduction of intervention measures (Djordjevic et al., 2021), from which their R0 values can be reliably 
extracted. Tracking a wide range of countries allows achieving a maximal variability in the data set, that is, 
a maximal possible range in the values of analyzed variables, as another advantage of this study. This data 
set will be used as a starting point in this work.

Our present goal is to go a step further than the previous study by applying and combining various advanced 
data analysis methods. Namely, while (Salom et al., 2021) covered a broad scope of variables and countries, 
it focused on establishing pairwise correlations between R0 and each of the studied factors, ignoring the fact 
that many of these variables are highly mutually correlated. This is most obvious in the case of the weather 
parameters such as for example, temperature and UV radiation (which both reflect the local climate in a 
similar way and follow comparable seasonal trends), but also in the case of many demographic parameters, 
for example, the strong positive correlation between the Human Development Index (HDI) and cholesterol 
levels. Based on pairwise correlations alone, it is thus hard to estimate, which of these variables might be 
truly influencing the spread of the disease, to what extent, and in which direction.

Therefore, in the present paper, our task is to go beyond mere pairwise correlations, and by using a com-
bination of principal component analysis (PCA) and four different regression-based approaches, establish 
which of these factors significantly affect R0 (by at the same time controlling for the impact of other factors). 
To achieve this, the number of variables necessary to explain the virus transmissibility needs to be reduced 
to only a few without losing predictiveness. However, this is not the only challenge, because of variable 
redundancy. In particular, one may select different combinations of variables accounting together for a 
similar proportion of variance in the virus transmissibility, which presents an ambiguity that is difficult 
to resolve. Consequently, there is a challenge to narrow down the possibilities and illuminate important 
contributions of the seemingly small differences between highly correlated variables. Notably, numerous 
studies examined the correlations of several selected (Lin et al., 2020; Ran et al., 2020; Xie et al., 2020) or 
many different (Hassan et al., 2021; Li et al., 2020; Salom et al., 2021) sociodemographic and meteorological 
factors with the magnitude of the COVID-19 epidemic. However, only a few studies tried to select a hand-
ful of key factors whose combination can explain a large portion of the variance between regions (Allel 
et al., 2020; Coccia, 2020d; Gupta & Gharehgozli, 2020; Notari & Torrieri, 2020). Even a smaller number 
of studies included data from multiple countries (Allel et al., 2020; Notari & Torrieri, 2020). Furthermore, 
a similar effort to relate the rate of exponential case growth to a smaller set of variables by PCA was made 
(Notari, 2021; Notari & Torrieri, 2020). To conduct a thorough investigation and reach robust conclusions, 
we partially decorrelate 24 different factors and apply several specialized feature selection methods inde-
pendently. While disentangling the various effects on the epidemic spread is undeniably a challenging task, 
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by comparing the results obtained by different methods one can identify the variables that are selected by 
all or most of them, which provides valuable evidence in favor of their true significance.

The main idea of this study is to develop a novel approach, which can robustly identify the most important 
predictors of R0. The development of such an approach will (a) provide a straightforward solution to the 
known problem of selecting the important ones among the highly correlated variables, (b) enable a better 
understanding of which environmental and demographic variables may dominantly and/or independently 
influence the progression of the COVID-19 epidemics, and what is the direction of this influence. With 
these goals, we organize the study as follows:

1.  The variables are first naturally split into two groups. The first group comprises six meteorological pa-
rameters, sampled and averaged (for each country) during the initial stage of the local epidemic out-
break: air temperature (T), precipitation (PR), specific humidity (H), ultra-violet radiation index (UV), 
air pressure (P), and wind speed (WS). Eighteen (broadly speaking) demographic parameters form the 
second group: human development index (HDI), percentage of the urban population (UP), gross domes-
tic product per capita (GDP), amount of the built-up area per person (BUAPC), percentage of refugees 
(RE), net migration (i.e., the number of immigrants minus emigrants, I-E), infant mortality (IM), medi-
an age (MA), long-term average of PM2.5 pollution (PL), prevalence and severity of COVID-19 relevant 
chronic diseases in the population (CD), average blood cholesterol level (CH), the prevalence of raised 
blood pressure (RBP), the prevalence of obesity (OB), the prevalence of insufficient physical activity 
among adults (IN), BCG immunization coverage (BCG), alcohol consumption per capita (ALC), smok-
ing prevalence (SM), and the delay of the epidemic onset (ON).

2.  Due to strong correlations between parameters within each group (as well as across the groups, but at a 
lower extent), on each group, we will perform the PCA (Jolliffe, 2002). This step will allow us to notably 
reduce the dimensionality, that is, proceed to work with a smaller number of (mostly) uncorrelated var-
iables. Such a dimensionality reduction will significantly simplify the further analysis and improve the 
reliability of the results.

3.  The linear regression analysis will next be performed in four independent ways, ranging from our cus-
tom-developed to more formal regression-based approaches, to select important variables. In our cus-
tom-developed approach, multiple linear regressions are applied, first separately to demographic and 
meteorological principal components (PCs) to narrow down the number of relevant PCs within each 
of the two groups, before doing overall linear regression with the remaining PCs to assess their im-
portance in explaining R0. A major advantage of such an analysis is an intuitive understanding of the 
data structure and its relation to R0. This analysis is next independently redone by more formal feature 
selection methods, commonly employed in bioinformatics and systems biology: Stepwise regression and 
regressions utilizing both regularization and variable selection—Lasso (Least Absolute Selection and 
Shrinkage Operator) and Elastic net (Hastie et al., 2009; Tibshirani, 1996; Zou & Hastie, 2005). Lasso 
and Elastic net are regressions based on regularization, which can shrink coefficients exactly to zero, 
allowing variable selection. Such a feature selection is quite important, as the variables that do not affect 
the response (R0) may introduce significant noise in the model. This would lead to overfitting (high var-
iance), which is exacerbated by a small/limited data set and correlated predictors (as applicable here). 
Note that regressions with regularization are not ordinary fits, for example, hyperparameters that control 
coefficient shrinkage have to be carefully tuned through cross-validation. Overall, this comprehensive 
analysis will ensure the consistency and robustness of the reported results.

4.  Finally, an intuitive interpretation of the obtained results will be presented. This will permit a much 
more specific understanding of COVID-19 transmissibility, by focusing on the main driving factors be-
hind the disease spread in the population.

2. Methods
2.1. Sample and Data

Data for demographic and meteorological parameters were assembled as described in Salom et al. (2021). 
Briefly, the data correspond to six meteorological and eighteen demographic variables outlined above. The 
differences between this data set and the one used in Salom et al. (2021) is the following: IMS (Social se-
curity and health insurance coverage), Prevalence of ABO and Rhesus blood groups, and Ambient levels 
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of different pollutants (NO2, SO2, CO, PM2.5, and PM10) are not used in this analysis, as they contain too 
many missing values. Instead of the pollutant levels measured from air pollution monitoring stations dur-
ing the epidemic's exponential growth (available for only ∼40 countries), we use the yearly average PM2.5 
pollutant levels in 2017 (World Bank, 2020b). Also, we consider GDP per capita (GDPpc), taken from World 
Bank (2020a), as a more direct (average) indicator of a country's economic wealth/productivity.

There are no missing values in the meteorological data, while we substitute the missing values in the demo-
graphic data (which were sparse for the used variables) with the median values of the respective variables. 
The discarded variables have at least 30% missing values (occurring for blood groups) and going up to 72% 
(for CO). On the other hand, for the variables that we retained, the missing values are sparse. Specifically, 
the maximal fraction is 6% (for refugees).

Basic reproduction number (R0), that is, a measure of SARS-CoV-2 transmissibility in a fully susceptible 
population and in the absence of intervention measures (social distancing, quarantine), was also taken from 
Salom et al. (2021), where it was inferred from nonlinear dynamics modeling. Overall, demographic data, 
meteorological data, and R0 were assembled for 118 different countries from which we could reliably infer 
R0. We used the following criteria to select the countries for which R0 was inferred and consequently used 
in the further analysis:

1.  We initially selected 165 world countries, with the following criteria: more than 1,000 tests performed by 
12.06.2020, with the ratio between performed tests and detected cases larger than five. This accounts for 
reliable testing capacity, that is, in this way, we avoid countries with low testing capacity.

2.  R0 is inferred from the regime, which has reached the deterministic limit, that is, the starting time is 
such that the number of detected cases is ∼10 or more. Each country is processed/inspected manually 
to determine the time period that is used in the analysis (i.e., exactly which interval corresponds to the 
exponential growth)—this is necessary as we found that this interval significantly varies for different 
countries. The manual inspection corresponds to recognizing a straight line on a semi-logarithmic plot, 
which is straightforward and reproducible.

3.  Clear exponential growth is observed for at least 7 days, corresponding to the straight line in the number 
of detected cases versus time on the log scale.

In this way, we avoid the cases where too small (or irregular) testing is preventing reliable inference of R0. 
Two 'filters' ensure this: The first is a condition (a) which directly accounts for those countries with too 
small testing capacity. Second, the countries with 'irregular' testing are also filtered by condition (b), as they 
exhibit an irregular behavior in the case count numbers, rather than regular exponential growth, which is 
robustly observed across other countries. Finally, condition (c) ensures that stochastic fluctuations (and 
possible very early testing inconsistencies) do not influence results, while the manual inspection for each 
country ensures adequacy of the time interval used in the analysis.

2.2. Measures of Variables

Several variables, particularly among demographic data, show a significant deviation from normality when 
visually inspected. Such deviations generate large outliers and would significantly impact the necessary 
normality of the model error residuals. We consequently transform the data (where necessary) to make 
the resulting distributions closer to normal, by using standard transformations that reduce the right and 
left skewness. We chose the strength of the applied transformations (e.g., square root, cubic root, or log) so 
that skewness of the transformed distribution is as close as possible to zero. Applied transformations are 
provided in Table 1. Each transformed variable whose direction was changed by the transformation was tak-
en with a minus sign, so that the original and the transformed variable are oriented in the same direction, 
allowing for easier result interpretation.

After transformations, the remaining (now sparse, less than 2% of the data set) outliers were removed by 
substituting them with the median of each variable; the outliers were identified as having more than three 
scaled median absolute deviation (MAD) from the (transformed) variable median. Removal of the outliers 
is important, as they may substantially (both quantitatively and qualitatively) obscure the multivariate re-
gression analysis, including regressions with regularization (Hastie et al., 2009).
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The dimensionality of the transformed data was later reduced and the data decorrelated through PCA (Jol-
liffe, 2002). PCA was done separately for demographic and meteorological variables to allow for a more 
straightforward interpretation of the obtained PCs. Since different variables are expressed in different units 
and correspond to diverse scales, each variable in the data set was standardized (the mean subtracted and 
divided by the standard deviation) before PCA. For both data sets, we retained as many PCs (starting from 
the most dominant one) as needed to (cumulatively) explain >85% of the data variance. It was inspected 
that PCs reasonably follow a normal distribution (as expected, based on the transformation of the original 
variables). Few remaining outliers were then substituted by medians. For easier interpretation of PCs and 
their contribution to R0, each PC was oriented in the same direction as the variable with which it has a 
maximal magnitude of Pearson correlation (i.e., when needed, the sign of the PC was flipped to render the 
positive sign of this correlation).

2.3. Data Analysis

Custom regression analysis was done by applying multiple linear regression (PC regression) to only demo-
graphic PCs (Hastie et al., 2009). Only linear terms were included in the regression to allow straightforward 
interpretation, that is, the selection of PCs that significantly affect R0. Significant PCs were selected as those 
appearing in the regression with P < 0.05, where the significance in the regression was estimated in the 
standard way (through F-statistics) (Alexopoulos, 2010). The same regression was then repeated with only 
meteorological PCs, and those significant in explaining R0 were retained. Finally, multiple linear regression 
was performed with all retained demographic and meteorological PCs. The significant PCs from this last 
step were recognized as PCs relevant for the R0 explanation. Before regression, each PC was standardized 
so that coefficients obtained in the regression provided a measure of the variable importance in explaining 
R0. For both the custom analysis and stepwise regression, OLS (Ordinary Least Squares) were used as the 
regression metrics.

Variable Acronym Transformation

Built-up area per capita BUAPC   1/3
minE x x

Urban population UP 2E x

Infant mortality IM log(x)

Gross domestic product per capita GDPpc log(x)

Human development index HDI   1/2
maxE x x

Number of immigrants minus emigrants I-E   1/2
maxE x x

Percentage of refugees RE log(x)

Average blood cholesterol level CH   1/2
maxE x x

Prevalence of obesity OB   1/2
maxE x x

Prevalence and severity of chronic diseases CD 1/3E x

Prevalence of insufficient physical activity IN log(max(x)−x)

BCG immunization coverage BCG   1/2
maxE x x

Epidemic onset ON log(x)

Long-term PM2.5 pollution PL log(x)

Precipitation PR  log(x)

Wind speed WS 1/3E x

Basic reproduction number of SARS-CoV-2 R0 log(x)

Table 1 
Data Transformations
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Stepwise regression was used to select PCs that significantly affect R0. In Stepwise regression, as well as in 
LASSO and Elastic net described below, all PCs (demographic and meteorological) were included in the re-
gression. Briefly, starting from a constant model, at each step a term is added to the model if its significance 
(calculated with F-statistics) meets the condition P < 0.05 (Pope & Webster, 1972). Only linear terms are 
added to the model (i.e., interaction and quadratic terms are not considered) to allow for straightforward in-
terpretation of the PCs which significantly affect R0. All PCs are standardized before regression so that con-
tributions of the terms (PCs) in the model can be assessed by the magnitude of the regression coefficient.

Lasso regression (Hastie et al., 2009; Tibshirani, 1996) was used to implement L1 regularization. As needed 
with the Lasso regularization, all PCs were standardized before regression, which allowed direct compari-
son of the coefficients obtained by the regression. The value λ in Lasso was treated as the hyperparameter, 
that is, minE λ  value was determined through cross-validation, so that MSE (Mean Squared Error) on the test-
ing set was minimal. A total of 100 λ values were put on the grid, corresponding to the geometric sequence, 
where the largest value produces all zero terms. Note that larger λ corresponds to a sparser model, that is, 
a smaller number of nonzero components in the regression, while the small λ limit corresponds to OLS 
regression. To obtain the maximally sparse model, 1 1SE minE SE λ λ , where 1SE corresponds to the stand-
ard error of MSE obtained by cross-validation, was used. 1,000 cross-validations were performed—in each 
repetition, 20% of the data were randomly selected for the testing set, with the remainder used for training. 
All nonzero terms, and the corresponding coefficients obtained through Lasso, were reported.

Elastic net regression was used to implement a combination of L1 and L2 regularization (Zou & Hast-
ie, 2005). Analogously to our Lasso analysis, that is, as needed due to regularization, all PCs were stand-
ardized. In the regression, both α and λ were treated as hyperparameters, that is, their optimal values were 
found by cross-validation. Cross-validation was repeated 1,000 times. In each repetition, testing and training 
sets were formed in the same way as for Lasso. α and λ values were put on a grid consisting of 100 α and 100 
λ values. α values on the grid were chosen uniformly in the range (0,1)—α approaching zero corresponds 
to Ridge (L2) regression, and 1 corresponds to Lasso regression. For each α value, λ values were chosen as 
described for the Lasso regression. For each repetition of cross-validation, a combination of α and λ that 
leads to the minimal MSE was chosen. α and λ values in (α,λ) pairs from each cross-validation run were 
then standardized so that α and λ values are on the same scale and centered to the origin of the α−λ plane. 
 min min,E    was then chosen as the (α,λ) point closest to the origin. With this  min min,E    value, the model 
was then retrained on the entire data set. All nonzero terms and the corresponding regression coefficients 
were reported.

3. Results
PCA was first applied to the data set consisting of 18 demographic and health factors for 118 countries. Cu-
mulative data variance that is explained jointly by the first n PCs is shown in Figure 1a (with n represented 
on the x-axis). In particular, Figure 1a shows the first PC alone already accounts for 45% of the variance, 
while the first 9 PCs (PC1–PC9), which we retain in further analysis, explain more than 85% (precisely, 89%).

To obtain a basic interpretation of these nine PCs, we related each PC with the original (transformed) 
variable it is most correlated with. The corresponding associations—with the values of correlations coeffi-
cients presented on the y-axis—are shown in Figure 1b (however, one should have in mind that some PCs 
are highly correlated with more than one original variable, as we discuss in more detail below). Among all 
principal components, the PC1 and the PC5 have the highest correlation coefficients (close to 1) with indi-
vidual demographic factors—the HDI and the BCG immunization coverage, respectively. Moderately high 
correlation coefficients (∼0.75) characterize the relations between the PC2 and the prevalence of smokers, 
and the PC3 and the percentage of refugees, while the coefficient values of ∼0.5 were obtained for the cor-
relations of the PC4, the PC6, the PC7, the PC8, and the PC9 with, respectively, the prevalence of obesity, 
the prevalence of insufficient physical activity, the amount of the built-up area per person, the percentage 
of refugees, and the epidemic onset.

In particular, the first PC, accounting alone for the largest portion of the variance in the demographic data, 
is almost perfectly correlated with the Human Development Index (Figure 1c). On the other hand, the HDI 
variable itself strongly correlates with several other demographic variables (Figure 1d), most prominently 
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with per capita GDP, infant mortality, and cholesterol levels. As elaborated in the Discussion section, such 
extremely high correlations will eventually preclude us from differentiating between the separate effects of 
each of these variables on R0. On the other hand, the prevalence of obesity, the built-up area per person, and 
the epidemic onset are significantly correlated with the HDI (Figure 1d), and thereby the PC1 (Figure 1c), 
but they are markedly featured also in separate principal components (Figure 1b), namely—the PCs 4, 7, 
and 9. This will help us to infer whether their specific (additional) contributions to the variance in the data 
(apart from that along the PC1) impact the virus transmissibility.

Meteorological factors for 118 countries were reduced similarly as for the demographic data set. PCA gen-
erated six uncorrelated, orthogonal principal components. Thereby, the first PC alone explains 62% of the 
variance, while the first three PCs (PC1–PC3) capture 95%, which is significantly above the targeted 85% 
of the total variance (Figure 2a). Pairwise correlations showed that the retained three PCs have the highest 
correlations with the temperature, the wind speed, and the air pressure, respectively (Figure 2b), where the 
correlation of PC1 with the temperature is close to 1 (Figures 2b and 2c). There are also notable correlations 
of the temperature with humidity, the levels of UV radiation, and precipitation (Figure 2d). Therefore, PC1 
presents seasonality, that is, a set of mutually correlated meteorological variables that can be related to 
yearly weather changes. PCA, thus, effectively separated the impacts of seasonality (PC1), the wind speed 
(through the PC2), and the air pressure (through the PC3). The variables determining the PC1 are also 
correlated with the HDI. These inter-data set correlations are not resolved at this level by our PCA and 
represent the trade-off that allows interpreting the PCs more easily within each of the two smaller, thematic 
groups of factors.

Figure 1. Principal component analysis for demographic data. (a) Cumulative explained variance. (b) Variables best correlated with demographic principal 
components (PCs). The labels above and below each bar present, respectively, the demographic PC and the variable with which that PC has the highest 
correlation. (c) Scatter plot PC1 versus. HDI. (d) Correlations of selected demographic variables with HDI. HDI—Human development index, SM—prevalence 
of smoking, RE—the percentage of refugees, OB—prevalence of obesity, BCG—BCG immunization coverage, IN— prevalence of insufficient physical activity, 
BUAPC—Built-up area per capita, ON—epidemic onset, GDPpc—GDP per capita, IM—infant mortality, MA—median age, UP—urban population, CH—
average blood cholesterol level, CD—prevalence of chronic diseases, PL—PM2.5 pollution, I-E—number of immigrants minus emigrants.
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After PCA, we applied the linear regression analysis using four different methods, as explained in Methods. 
The first, “custom” method included the additional step of “preselecting, ”that is, further narrowing down 
the number of PCs that will enter the final regression analysis. The multiple linear regression, applied on 
the group of nine demographic PCs, selected first, fourth, seventh, and ninth component as the most rele-

vant predictors of R0 (the remaining 5 PCs appeared in the linear regres-
sion with p values above 0.05 threshold and were consequently excluded 
from the further analysis, see Table 2. Analogously, the “preselection” of 
meteorological PCs singled out the first component as the only statisti-
cally relevant predictor of R0 from this group (see Table 3). The multiple 
linear regression was then applied on these five selected PCs (four demo-
graphical and one meteorological) and yielded a regression model with 
the corresponding linear coefficients represented in Figure 3a (see also 
Table 4). Meteo PC1 component does not appear in the results of the cus-
tom method due to the lack of statistical significance (p > 0.305) in the 
final regression. Thus, according to our custom regression methodology, 
weather parameters do not significantly influence R0. R0 in this model 
is, therefore, determined by a combination of demographic PC1, PC4, 
PC7, and PC9, where coefficients multiplying PC1 and PC4 are positive, 
while for PC7 and PC9 are negative. As can be inferred from the values 
represented in Figure 3a, the demographic PC1 has the most dominant 
influence on R0—a robustly obtained result throughout all four methods 
(see below).

Figure 2. Principal component analysis for meteorological data. (a) Cumulative explained variance. (b) Variables 
best correlated with meteorological principal components (PCs). (c) Scatter plot meteo PC1 versus. temperature. (d) 
Correlation of meteorological variables with temperature. T—temperature, WS—wind speed, P—air pressure, H—
specific humidity, UV—ultra-violet radiation index, PR—precipitation.

Principal component Coefficient Standard error P-value

Demo PC1 0.15 0.03 10−6

Demo PC2 0.02 0.03 0.4

Demo PC3 −0.00 0.03 0.97

Demo PC4 0.06 0.03 0.03

Demo PC5 −0.05 0.03 0.08

Demo PC6 0.02 0.03 0.6

Demo PC7 −0.12 0.03 10−4

Demo PC8 −0.00 0.03 0.9

Demo PC9 −0.10 0.03 4 × 10−4

Note. Root Mean Squared Error  =  0.31, Adjusted R-Squared  =  0.33, 
F-statistics versus constant model = 7, P-value ∼ 2·10−8.

Table 2 
Multiple Linear Regression for Demographic Principal Components
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We have already related each of these four PCs with the dominantly cor-
related variable (Figure 1b), but a more detailed interpretation of the re-
sults is obtained if all significant correlations (not just the dominant one) 
are taken into account. In addition to the very high correlation with HDI, 
demographic PC1 is also highly positively correlated with GDP, choles-
terol levels, median age, and percentage of the urban population, while 
it is highly negatively correlated with infant mortality and the prevalence 
of chronic diseases (Figure 4a). Such strong correlations with HDI, GDP, 
IM, MA, and UP show that this component indeed expresses an overall, 
both social and financial, the prosperity of the country (which seeming-
ly also goes hand in hand with high average cholesterol levels and low 

prevalence of COVID-19 relevant chronic diseases). Similarly, by considering the correlations of demo PC4 
with all demographic variables, we see that this component is significantly positively correlated not only 
with obesity but also with smoking, physical inactivity, and air pollution (Figure 4b)—in other words, with 
major indicators of an unhealthy lifestyle and living conditions. Apart from its correlation with the BUAPC 
parameter, the component demo PC7 is also significantly positively correlated with net migration (Fig-
ure 4c). In the case of the demo PC9 component, its only significant correlation is with the onset variable. 
Results of the custom method can, therefore, be summarized as follows: the country's prosperity, as well 

Principal component Coefficient Standard error P-value

Meteo PC1 −0.14 0.03 4 × 10−5

Meteo PC2 0.00 0.03 0.99

Meteo PC3 −0.04 0.03 0.3

Note. Root Mean Squared Error  =  0.35, Adjusted R-Squared  =  0.12, 
F-statistics versus constant model = 6, P-value ∼ 4·10−4.

Table 3 
Multiple Linear Regression for Meteorological Principal Components

Figure 3. Results of: (a) multiple linear regression (“custom”) method, (b) Stepwise regression, (c) Lasso regression, 
and (d) Elastic net regression. Bar charts represent the values of regression coefficients for each of the PCs selected by 
the method.
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as unhealthy living conditions and lifestyle, tend to increase the value 
of R0, while the larger built-up area per person and the later epidemic 
outbreak tend to slow the spread of the disease. Also, the results seem 
to indicate—via demo PC7 component—a surprising diminishing effect 
of the net migration on the rate of epidemic progress (though the sign of 
this variable may not be easy to interpret, as the net migration is a differ-
ence of two quantities).

Equivalently to Figures 3a–3d represent the results of, respectively, Step-
wise, Lasso, and Elastic net regression. Results (and the corresponding 
graph) of the Stepwise method almost coincide with the results of our 
custom method—in spite that in the Stepwise regression (as well as in 
Lasso and Elastic net methods), there is no intermediate “preselection” 
step.

Lasso results, shown in Figure 3c, find two additional PCs as relevant: demo PC5 and meteo PC1 (in addi-
tion to demo PC1, demo PC4, demo PC7, and demo PC9). The component demo PC5, appearing in Lasso 

Principal component Coefficient Standard error P-value

Demo PC1 0.13 0.03 2 × 10−4

Demo PC4 0.06 0.03 0.03

Demo PC7 −0.11 0.03 2 × 10−4

Demo PC9 −0.10 0.03 9 × 10−4

Meteo PC1 −0.04 0.03 0.3

Note. Root Mean Squared Error  =  0.31, Adjusted R-Squared  =  0.34, 
F-statistics versus constant model = 13, P-value ∼ 10−9.

Table 4 
Multiple Linear Regression for Relevant Principal Components

Figure 4. Pearson correlation coefficients between principal components and demographic variables for (a) demo PC1, (b) demo PC4, and (c) demo PC7. 
BUAPC—built-up area per capita, UP—urban population, MA—median age, IM—infant mortality, GDP—gross domestic product per capita, HDI—human 
development index, I-E—number of immigrants minus emigrants, RE—percentage of refugees, CH—average blood cholesterol level, ALC—alcohol 
consumption per capita, OB—prevalence of obesity, SM—prevalence of smoking, CD—prevalence and severity chronic diseases, RBP—prevalence of raised 
blood pressure, IN—prevalence of insufficient physical activity, BCG—BCG immunization coverage, ON—epidemic onset, and PL—long-term average PM2.5 
pollution.
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results with a small negative coefficient, is significantly correlated only with the BCG variable, hinting 
at possible beneficial effects of BCG vaccination. Meteorological principal component meteo PC1 reflects 
seasonality (see above). In addition to supporting the conclusions of the custom and stepwise methods, the 
Lasso method thus also implicates a significance of seasonality changes and (to some extent) BCG vaccina-
tion in reducing the rate of SARS-CoV2 spread.

The results of the Elastic net method, shown in Figure 3d, are again a bit more restrictive. While further 
bolstering our confidence in the importance of demo PC1, demo PC7, and demo PC9, these results also re-
inforce that the seasonal weather variables influence the COVID-19 epidemic (in agreement with the Lasso 
method) but, for the first time, we do not find an indication of the relevance of the unhealthy lifestyle and 
living conditions—as revealed by the absence of demo PC4 component in Figure 3d.

Finally, as much as the PCs appearing in Figure 3 are important, the absence of the remaining PCs in the re-
sults can be of comparative significance for some of our conclusions. For example, we note that PCs highly 
correlated with the urban population, alcohol consumption, and chronic diseases do not show up as rele-
vant in any of the methods used. While it is true that these variables are moderately correlated with demo 
PC1, absence in the results of additional PCs tied with these variables supports the view that these variables 
are not directly influencing R0 value, but only via indirect relation to the country's prosperity.

4. Discussion
Our goal was to identify the most predictive factors influencing the risk of the SARS-CoV-2 virus spread-
ing in a population in the absence of any epidemic mitigation measures. Since many potentially relevant 
factors strongly correlate with each other, we divided them into two groups—meteorological and sociode-
mographic—and applied the PCA to the variables in each group. In this way, we were able to decorrelate 
variables within each group while still retaining intuitive interpretation for the new variables (demographic 
and meteorological PCs) used in further analysis. While a similar approach was proposed in Notari and 
Torrieri (2020); Notari (2021), dimensionality reduction and predictor decorrelation through PCA were, in 
our study, combined with different variable selection and regularization techniques—namely, Lasso and 
Elastic net—to select PCs that are most predictive of R0 for COVID-19 epidemics. Examining correlations 
of these PCs with the original variables allowed pinpointing the main drivers of COVID-19 transmissibility. 
Therefore, this approach, which is reminiscent of the analysis of complex data in systems biology and bi-
oinformatics, to our knowledge represents the most thorough effort to disentangle true COVID-19-related 
effects from indirect correlations.

Three principal components are robustly selected as the most important predictors by all the methods. Of 
these, the prosperity of the country has the most significant influence on R0: the spread of the epidemic is 
faster in economically more developed countries. Specifically, this is the most dominant PC from the de-
mographic group of variables, which is by far most important in explaining R0, and very strongly correlated 
with HDI (Pearson's correlation coefficient r = 0.95) and GDP (r = 0.94)—therefore, effectively reflecting 
prosperity and wealth. The second PC is dominantly related to the BUAPC, and the third with the epidemic 
onset, where the increase of these reduces the infection spread. We also robustly obtained (by three out of 
four methods) that unhealthy living conditions/lifestyle is another important factor that exacerbates the 
epidemic—this PC is dominantly (and consistently positively) correlated with obesity, physical inactivity, 
smoking, and air pollution. The group of four weather conditions, represented by seasonality, was selected 
by two independent methods. One is the Elastic net, which is well adapted for selecting among correlat-
ed variables (Hastie et al., 2009; Zou & Hastie, 2005)—note that correlations between meteorological and 
demographic PCs were not abolished by our approach. The PC dominantly correlated with BCG immuni-
zation appears only in Lasso regression. In favor of our results, we notice that the analysis of 13 selected 
variables conducted by Notari and Torrieri (2020) pointed to several similar factors as significant, such as 
the epidemic starting date, temperature, and the factors characteristic of general poor health and, thus, low-
er resistance to the virus infection (i.e., smoking, obesity and lung cancer as related to the chronic diseases).

HDI (alternatively, GDPpc) shows the highest correlation with the first demographic PC, which singles 
out this variable as the main index quantifying the virus transmissibility risk. Higher HDI leads to a higher 
rate of social contacts and more intense population mixing (especially over long distances), as high HDI is 
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strongly related to high GDPpc implying intensive economic activity, trade, and transportation, including 
large-distance flights (Allel et al., 2020; Gangemi et al., 2020). While it is true that the intensity of social 
binding might often be even higher in low-income societies, such interpersonal relations are prevalently 
of spatially local character and may less contribute to a large scale epidemic than the intense business 
activity (trade, transport, tourism, and education), which connects and mixes people over large distances/
areas. Thus, in our view, much higher contact frequency (especially of contacts that mix individuals over 
large distances) in societies with higher HDI is likely the main cause behind the dominant role of the first 
demographic PC in explaining R0.

There is, however, no reason to expect this relation of HDI with R0 to uniformly hold across the entire range 
of HDI (prosperity PC) values: indeed, analysis performed in Notari and Torrieri, 2020 shows that GDP 
(strongly correlated to HDI and our prosperity PC) ceases to be a significant predictor of COVID-19 trans-
mission rate once the low-income countries are excluded. One possible interpretation is that above a certain 
threshold of HDI, there is a focus on fully developed modern societies. The impact of further increasing 
country prosperity on the frequency of social contacts then becomes overshadowed by other factors. This 
was obtained in our recent study of the rate of COVID-19 transmission in USA states (Milicevic et al., 2021), 
where different factors, in the first place pollution, become dominant in that data set.

This explanation of the impact of prosperity PC is still a hypothesis, which should be tested by further 
investigating the relation of HDI to some more direct measures of frequency of actual physical contact be-
tween individuals (unfortunately, such measures are not readily available) (Bontempi et al., 2020). We think 
that the obtained strong association of the PC closely related with GDP/HDI with R0 is an important result 
(allowing a better understanding of epidemic risks), regardless of whether our interpretation (entirely) cap-
tures the true underlying causes of this connection.

An advantage of our approach is that it is based on the analysis of R0 rather than other measures used as 
transmissibility proxies. The most commonly used measure, confirmed case counts, strongly depends on 
the number of performed tests, which is generally much higher in high-GDPpc countries, so the analysis 
would become strongly influenced by testing policies. For example, in Allel et al. (2020), the importance of 
HDI for predicting cumulative case counts was noted. However, this perceived effect may be due to the lack 
of testing in lower-income countries, as already noted in Notari (2021), rather than genuine HDI influence. 
Our results are, on the other hand, insensitive to the testing capacity differences. Namely, since our R0 esti-
mation procedure relies on the scale-invariant slope of the case growth curve logarithm (in the distinct early 
exponential phase) (Djordjevic et al., 2021), it does not depend on the percentage of the infected individuals 
that get tested/diagnosed (i.e., multiplying daily case counts by arbitrary number will not affect R0). As long 
as this percentage is roughly constant (i.e., testing is performed consistently) during the (relatively short) 
examined period, our R0 estimate remains valid irrespectively of whether the country must reserve testing 
kits only for symptomatic cases, or the country has the means to (preventively) test asymptomatic individ-
uals. On the other hand, if testing policies/criteria happen to irregularly change during the observed period 
(e.g., due to a sudden lack of testing resources), this would be accounted for (i.e., filtered out) as described 
in Methods. Therefore, our analysis indeed strongly suggests that HDI/GDPpc are the main/genuine pre-
dictors of COVID-19 spread in the population.

Many correlations previously reported between SARS-CoV-2 transmissibility and various weather, sociode-
mographic, and health factors (see e.g., Li et al., 2020; Salom et al., 2021) may be captured by HDI. From 
our results, one can note that several demographic factors significantly correlate with both HDI/GDPpc 
and the first demographic PC, but are not noticeably related with other demographic PCs (4, 5, 7, and 
9) that significantly contribute to R0. These demographic factors can be further divided into two groups 
using the correlation of BUAPC with HDI as the reference. The percentage of the urban population, the 
prevalence of alcohol consumption, and chronic diseases, which have similar (just somewhat higher) cor-
relations with HDI compared to BUAPC, comprise the first group. Their absence from the independent PCs 
significantly related with R0 (in contrast to BUAPC that prominently appears in the demographic PC7), 
indicates that they do not have independent effects on R0. Consequently, their significant correlation with 
R0 (Salom et al., 2021) is likely due to their generic correlation with HDI, rather than a consequence of the 
independent effect that they exhibit on R0. This result is especially interesting for the percentage of the 
urban population, whose relation with R0 is sometimes taken for granted (Carozzi, 2020). It also explains 
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the previously obtained negative correlation of the prevalence of chronic diseases with R0, where one might 
expect the opposite, as it is generally known that people with chronic diseases are seriously affected by 
COVID-19 (Zheng et al., 2020). We can now claim that this result is due to a generically lower incidence of 
chronic diseases in more developed countries (i.e., due to their significant negative correlation with HDI) 
rather than a direct effect on R0.

A significant positive correlation with the first demographic PC is also exhibited by the net economic mi-
gration (the difference between immigrants and emigrants), population median age, infant mortality, and 
the average blood cholesterol level. However, their correlation with HDI is very high (in distinction to the 
three factors mentioned before), that is, visibly higher compared to the correlation of BUAPC with HDI. So, 
even though they do not appear in demographic PCs that significantly contribute to R0 other than PC1, we 
cannot make any reliable conclusion about their direct effect on R0 based on our analysis. Therefore, it is 
relevant to discuss evidence from other sources, that is, possible mechanisms for distinguishing their direct 
influence on R0. Regarding infant mortality, a mechanism of its direct contribution to R0 is hard to imagine, 
so its involvement in PC1, and high negative correlation with R0, is almost certainly an indirect consequence 
of this variable being a proxy of HDI (Ruiz et al., 2015). On the other hand, the median age and the blood 
cholesterol level are real contenders for direct R0 modifiers, as mechanisms for their contribution to COV-
ID-19 transmissibility have been proposed. Aging is generally associated with the weakening of the immune 
response to infectious diseases making the elderly more susceptible to the viruses like the SARS-CoV-2 
(Pawelec & Larbi, 2008). Additionally, many of them due to some chronic diseases take ACE inhibitors 
and angiotensin-receptor blockers, which cause an increased expression of ACE2 serving as a receptor for 
the SARS-CoV-2 virus entry (Shahid et al., 2020). Their residing in care homes, which is particularly com-
mon in high-income countries, also well suits the spreading of the infection (Kapitsinis, 2020). Similarly, 
high cholesterol levels can increase susceptibility to the infection by SARS-CoV-2 through systemic adverse 
effects on the immune and inflammatory responses and through direct implication in the virus life cycle 
(especially at the level of its endocytosis). To that end, statins, blocking cholesterol synthesis, were proposed 
for usage in COVID-19 treatment, which is supported by studies showing that previous statin usage is as-
sociated with a milder pneumonia outcome in the case of several other viral infections (Frost et al., 2007; 
Schmidt et al., 2020).

Other demographic PCs (4, 5, 7, and 9) that are selected to have a significant influence on R0 are by construc-
tion independent (decorrelated) from PC1. Variables associated with these PCs can be interpreted as effects 
on R0 independent from those related to PC1. These variables then importantly identify corrections to the 
main effect of HDI/GDPpc. Specifically, these are available to an individual in an indoor area and the net 
migration (demographic PC7), the delay in the epidemic onset, which is associated with more awareness of 
the virus threat (demographic PC9), the prevalence of unhealthy lifestyle and environment (demographic 
PC4), and the weather seasonality (meteorological PC1). The slower spread of the virus with a larger built-
up area per capita, as an independent and significant R0 predictor, is an interesting and new result, though 
intuitively plausible. It can be understood as having a less crowded indoor space (where the virus trans-
mission dominantly happens) so that people are less exposed to each other and the virus. For example, on 
the Diamond Princess cruise ship, both the population density and R0 were estimated as four times greater 
than those in Wuhan (Rocklöv & Sjödin, 2020). On the other hand, a correlation of the virus transmissibil-
ity with the large territory population density is weakly established in the literature, whereby it seems that 
one should rather seek a correlation with a local population density, directly determining the number of 
contacts that an individual can make (Diao et al., 2021; Garland et al., 2020).

A positive contribution to the transmissibility is also made by the principal component strongly correlated 
with the onset variable, representing the number of days from February 15th to the epidemic's start in a 
particular country. The importance of the delay in the epidemic onset may be due to the psychological effect 
of hearing the news about the spread of COVID-19 in other countries (Khajanchi et al., 2020). Namely, the 
longer the epidemic was growing outside of a particular country, the larger impact this had on its people to 
change their usual behavior to prevent the infection, which could slow down the virus transmission even 
before the introduction of the official intervention measures (Salom et al., 2021).

Another distinguished principal component appears to encompass multiple indicators of an unhealthy life-
style and environment—specifically, the prevalence of obesity, physical inactivity, and smoking, together 
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with the level of air pollution. We obtained that all these factors promote virus transmission. It is well es-
tablished that they can impair immune function and adversely affect different organ systems. Furthermore, 
their association with mechanisms specifically facilitating the infection by the SARS-CoV-2 virus has been 
proposed (Domingo & Rovira, 2020; Haddad et al., 2021; Heidari-Beni & Kelishadi, 2020). Notably, the asso-
ciation of air pollution with COVID-19 transmission has been shown in several studies (Bashir et al., 2020; 
Coccia, 2020b; Milicevic et al., 2021). Two of the remaining relevant PCs are strongly determined by tem-
perature (and/or three other highly related weather factors) and the prevalence of BCG vaccinated children, 
respectively. Although not selected by all the methods, the weather component seems important as it was 
chosen by the Elastic net algorithm (in addition to Lasso), which is specifically designed to deal with (high-
ly) correlated variables, and yet it did not exclude this PC despite its correlation with the first demographic 
PC. Moreover, a decrease of the transmissibility with the temperature increase appears as a robust result 
in COVID-19 literature (Haque & Rahman, 2020; Rosario et al., 2020; Sarkodie & Owusu, 2020), although 
conflicting conclusions are also present (Islam et al., 2021; Srivastava, 2021; Xie & Zhu, 2020). Higher tem-
peratures may shorten the period of virus viability in aerosols, enhance the immune system functioning, 
and/or impact the time that people spend together in poorly ventilated indoor spaces (Notari, 2021). Since 
temperature is highly positively correlated with the intensity of UV radiation, humidity, and the level of 
precipitation, we cannot exclude the possibility that some of these other factors are in a significant causal 
relationship with virus transmissibility. Importantly, some experimental findings support the inactivating 
effects of high temperature, humidity, and UV radiation on SARS-CoV-2 and related viruses (Casanova 
et al., 2010; Chan et al., 2011; Heilingloh et al., 2020; Sagripanti & Lytle, 2020; van Doremalen et al., 2020). 
Anyhow, our results suggest the dependence of virus transmissibility on seasonal weather variations related 
to our meteorological PC1 component. On the other hand, while some authors suggest the importance of 
wind speed in virus dissemination (Coccia, 2020a, 2020b; Islam et al., 2021; Sarkodie & Owusu, 2020), our 
study could not confirm this connection—as reflected by the absence of the wind-related principal com-
ponent meteo PC2 in our results. This might be the consequence of a strong interplay between wind speed 
and pollution effects (Coccia, 2021b) that our study is not suited to detect. The last demographic principal 
component occurred as important only in Lasso regression. It, however, closely follows the extent of BCG 
vaccination, which is known to provide some protection against various respiratory tract infections through 
the induction of the trained immunity (O'Neill & Netea, 2020), so BCG immunization may influence the 
SARS-CoV-2 spread, although, according to our results, to a lesser extent than the other discussed factors.

Our study is also an example of how assessing the effect of one factor, while controlling for the presence 
of other relevant variables can change the obtained conclusions. We will illustrate this with four exam-
ples, where we obtained qualitatively different conclusions, compared to single-variable correlation analysis 
(Salom et al., 2021): BUAPC, net migration, air pollution, and raised blood pressure. BUAPC showed an 
absence of a significant correlation with R0 (Salom et al., 2021), which is a consequence of canceling the 
two effects. The first is its direct effect on R0 (exhibited through demographic PC7), which tends to slow the 
spread of COVID-19 in a population. The second is collinearity with PC1, which reflects a generic correla-
tion of BUAPC with GDPpc, caused by more construction (higher built-up area) per capita with the increase 
in GDPpc. Our combination of PC and regression analysis revealed this nontrivial conclusion, which can-
not (even qualitatively) be obtained from the pairwise correlation analysis.

Similar reasoning, though perhaps harder to understand intuitively, applies to net migration. Net migration 
is also significantly positively correlated with HDI (and consequently also with PC1), reflecting a generic 
tendency of immigrants to flow to countries with higher GDPpc. The direct effect of net migration (exhibit-
ed through PC7) is harder to intuitively understand, as I-E negatively contributes to R0, so that faster spread 
(at least in the initial phase of the epidemic) appears to be associated with a higher number of emigrants. 
As these are economic migrations (to be distinguished from the movement of refugees), possibly the part of 
the emigrants returned to their countries with the pandemic's start. The significant effect of net migration 
on R0 (inferred through our analysis) is again highly nontrivial and in the opposite direction from the pos-
itive pairwise correlation of R0 with I-E. Refuges (i.e., percentage of refugee population by country) exhibit 
high correlations only with PC3 and PC8, where neither significantly contributes to R0. There is also no 
significant pairwise correlation of refugees with R0, which robustly shows that this variable does not affect 
transmissibility.
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Pollution negatively contributes to demographic PC1 (with the corresponding negative correlation with 
HDI) and positively to demographic PC4. The pairwise correlation between the pollution and R0 is negative 
(−0.31), which is counterintuitive, as it is generally expected that higher pollution should increase COV-
ID-19 transmissibility. This is, however, an artifact of negative correlation between pollution and HDI, while 
its genuine (direct) effect on R0 is reflected through PC4. Our analysis, therefore, revealed the direct effect of 
long-term air pollution on transmissibility, which is consistent with previously published observations that 
it can damage the respiratory system and reduce resistance to infections (Domingo & Rovira, 2020; Fattorini 
& Regoli, 2020) but opposite to naive pairwise correlation analysis.

Finally, raised blood pressure also shows a statistically significant (counterintuitively negative) correlation 
with R0. However, in addition to PC1, raised blood pressure shows a notable correlation only with PC2, 
which does not significantly affect R0. This indicates that the negative correlation of this variable with R0 
is a consequence of its generically negative correlation with HDI, instead of a direct effect on COVID-19 
transmissibility.

5. Conclusion and Outlook
Numerous studies tried to assess the correlations of different factors with the SARS-CoV-2 virus transmissi-
bility (Li et al., 2020; Notari & Torrieri, 2020; Salom et al., 2021), but the next step should be predicting the 
environmental risk of the high spreadability in a certain population (Allel et al., 2020; Coccia, 2020d; Gupta 
& Gharehgozli, 2020). Specifically, a relatively small number of the most influential meteorological and 
demographic factors should be selected for a predictive risk measure that is accurate enough and practical 
for use. Such risk assessment is very useful in guiding the future strategies of imposing epidemic mitigation 
measures (Coccia, 2021a).

Here, we demonstrated that taking into account joint effects of different factors can point to qualitatively 
different conclusions about their influence on the virus transmissibility than considering them individually 
as in Salom et al., 2021. Utilizing a combination of PCA and feature selection techniques, we were able to 
disentangle with high confidence, the variables of which independently (and significantly) influence the 
rate of the infection spread, and which only have an indirect influence or no influence at all (here found 
for alcohol consumption, chronic diseases, percentage of the urban population, raised blood pressure, and 
refugees).

While PCA brings clear advantages to regression analysis, such as working with a smaller number of vari-
ables and abolishing collinearity, the main disadvantage is harder interpretation in terms of original varia-
bles. We were, however, able to interpret PCs that significantly affect R0, so that the main driving factors be-
hind COVID-19 transmissibility are (a) the country's wealth/development level, corrected by the available 
indoor space per person and net migration), (b) pollution levels and some of the unhealthy living factors, 
(c) spontaneous behavior change due to developing epidemics, (d) weather seasonality and (e) possibly 
(marginally) BCG vaccination. These conclusions, and the direction of the corresponding effects, crucially 
depend on the more complex analysis performed here.

Certain limitations of this study should also be addressed. When the alignment between certain variables is 
too high, even the analysis performed here cannot differentiate between the factors genuinely affecting R0 
and mere accidental correlations. In such cases, further, specifically designed (such as targeted epidemio-
logical) studies are needed. For example, based on this analysis alone and due to the very high correlation 
between the cholesterol levels and HDI/GDP, it cannot be excluded that cholesterol is a contributing factor 
to the observed significance of the PC1 component, in addition to the country's prosperity that likely mim-
ics the contact rate in population (as a crucial disease transmission property). For this reason, our research 
suggests that a separate study of cholesterol levels in the COVID-19 context (e.g., by measuring cholesterol 
blood levels along with PCR tests) could be, potentially, of high value since a hypothetical unexpected dis-
covery of inherent cholesterol importance could lead to novel treatments of SARS-CoV-2 infection. Similar-
ly, studies that disentangle the effect of the overall country's prosperity from the intrinsic effects of median 
age on R0 would also be quite welcome. Furthermore, some of the variables that were not included in our 
study, but were found as significant by other studies (Notari & Torrieri, 2020), and are closely related to HDI, 
such as lung cancer prevalence (Youlden et al., 2008), or frequency of tourist arrivals (Anggraeni, 2017), may 
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also contribute to the strong association of HDI with R0, which we observe. Another problem might occur 
due to possible nontrivial interactions between different factors: for example, the effects of pollution on the 
airborne COVID-19 transmission can be significantly dependent on the wind speed (Coccia, 2020b, 2021b). 
Unfortunately, our study is not well-suited to detect such effects (while, in principle, these effects could be 
included through higher-order terms in regression, this might lead to overfitting). A nontrivial future task 
may be a systematic attempt to unify (and standardize, to the extent possible) different approaches and var-
iables used in the studies of the environmental factor effects on COVID-19 transmissibility.

Some suggestions that could improve COVID-19 mitigation policies may already follow from this study. 
Deliberately reducing (in the long run) the overall population prosperity, which we identified as the most 
important predictor of R0, in an attempt to indirectly reduce the frequency of social contacts is impractical. 
However, the widely implemented lockdowns, proven to inhibit the infection spread, are the measures that 
reduce the frequency of interpersonal contacts, but also economic activity, so the epidemic behavior seems 
consistent with the predicted HDI dependence. Our conclusions about the importance of HDI, as a predic-
tor of R0, could be further tested by studies of epidemiological relevance of higher resolution HDI-analogs, 
such as Subnational HDI (SHDI) or City Development Index. If HDI and GDP parameters are confirmed 
to dominantly influence R0 values simply since they highly and naturally correlate with the frequency of 
social contacts (as we anticipate to be the case), identifying this as one of the major factors is not without 
implications. That is, recognizing the importance of this parameter can help make better predictions of the 
disease dynamic and locate in advance high-risk spots/areas.

Moreover, since we identified the built-up area per person as another relevant factor, future urban policies 
should put more emphasis on avoiding very high population concentrations (Coccia, 2020c). The relevance 
of the onset variable may indicate the importance of timely informing the public about all the risks and 
perils of the incoming epidemic. More obviously, pointing to unhealthy living conditions and lifestyle as 
a significant driver of COVID-19 pandemic, underscores the importance of measures to reduce obesity, 
smoking prevalence, physical inactivity, and air pollution (Coccia, 2021a), also by subsidizing energy from 
renewable resources (Coccia, 2020c). Overall, the results presented here emphasize the importance of un-
derstanding environmental factors that impact transmissibility for both COVID-19 and other (including 
potential future) infectious diseases.
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Abstract

We study the so(3) Gaudin model with general boundary K-matrix in the framework of the algebraic 
Bethe ansatz. The off-shell action of the generating function of the so(3) Gaudin Hamiltonians is deter-
mined. The proof based on the mathematical induction is presented on the algebraic level without any 
restriction whatsoever on the boundary parameters. The so(3) Gaudin Hamiltonians with general boundary 
terms are given explicitly as well as their off-shell action on the Bethe states. The correspondence between 
the Bethe states and the solutions to the generalized so(3) Knizhnik-Zamolodchikov equations is estab-
lished. In this context, the on-shell norm of the Bethe states is determined as well as their off-shell scalar 
product.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The systems obtained as the quasi-classical limit of the Heisenberg spin chains [1] were first 
studied by Gaudin [2–4]. In the framework of the coordinate as well as the algebraic Bethe ansatz 
Gaudin has found the spectrum of the generating function of the corresponding Hamiltonians 
[2–4]. This system has been recasted in the framework of the quantum inverse scattering method 
[5–7] by exploring the so-called Sklyanin linear bracket using an s�(2) invariant, unitary classical 
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r-matrix [8]. This result enabled further generalisations based on other unitary solutions to the 
classical Yang-Baxter equation [9,10], prompting the interest in the Gaudin systems based on 
higher-rank simple Lie algebras [11–13] as well as Lie superalgebras [14–18]. The relation with 
the Knizhnik-Zamolodchikov equations of conformal field theory in two dimension [19] and 
the representation theory of the Kac-Moody algebras [20] was further strengthened when the 
connection between the Bethe states of the Gaudin model and the solution to the Knizhnik-
Zamolodchikov equations was established [21,22,15–17,23]. It is also interesting to note that, in 
a somewhat more physical approach, the long-range interaction of these systems was studied in 
[24,25]. The Gaudin system on an elliptic curve was studied in [26], while the s�(2) Gaudin with 
the Jordanian twist was studied in [27–29]. On the classical level, the Gaudin model corresponds 
to the so-called Schlesinger system in the theory of isomonodromic deformation [30–36].

In our considerations of the quantum Heisenberg spin chains with non-periodic boundary 
conditions we follow Sklyanin’s approach where the boundary conditions are expressed in the 
form of the left and right reflection matrices [37]. The so-called reflection equation and the dual 
reflection equation represent the compatibility conditions between the bulk and the boundary of 
the system at the left and, respectively, right site of the system. The commutativity of the transfer 
matrix, in this case, is guaranteed on the one hand by the fact that the matrix form of the exchange 
relations between the entries of the Sklyanin monodromy matrix is analogous to the reflection 
equation and on the other hand, by the dual reflection equation [37–39].

Renewed interest has emerged in the implementation of algebraic Bethe ansatz on solv-
able Heisenberg chains with non-periodic boundary conditions [40–48]. As for alternative ap-
proaches, a review of the coordinate Bethe ansatz in this case is given in [49], the Bethe ansatz 
based on the functional relation between the eigenvalues of the transfer matrix and the quantum 
determinant, as well as the associated T-Q relation are studied in [50–52], functional relations for 
the eigenvalues of the transfer matrix based on fusion hierarchy were discussed in [53] and the 
Vertex-IRF correspondence in [54,55], while the Jordanian deformation of the open XXX chain 
is analysed in [56]. For the latest results, as well as an excellent review on the application of the 
separation of variables method on the 6-vertex model and the associate XXZ quantum chains see 
[57].

Our interest in open Heisenberg spin chains was twofold. On the one hand, we were inter-
ested in the implementation of the algebraic Bethe ansatz, and on the other hand, we wanted to 
consider the quasi-classical limit which yields the corresponding Gaudin model [58,59]. As it 
is well known [41,42,58], due to the symmetry of the R-matrix of the non-periodic XXX spin 
chain, the accomplishment of the algebraic Bethe ansatz does not imply any restriction on the 
boundary parameters. However, in the case of the open XXZ chain [60], the existence of the 
so-called vacuum vector requires the triangular form of the boundary K-matrix [43,44,59]. As 
for the quasi-classical limit, Hikami showed, in complete analogy with the periodic case [24,25], 
how the expansion of the XXZ transfer matrix, calculated at the special values of the spectral 
parameter, yields the Gaudin Hamiltonians in the case when both reflection matrices are diago-
nal [61]. Similar expansion was done for the Jordanian deformation of the ration s�(2) Gaudin 
model with generic boundaries [62]. The algebraic Bethe ansatz was applied to open Gaudin 
model in the context of the Vertex-IRF correspondence [63–65]. Also, results were obtained for 
the open Gaudin models based on Lie superalgebras [66]. Returning back to the quasi-classical 
limit, following the Sklyanin proposal for the periodic boundary conditions [8,67], we have de-
rived the generating function of the Gaudin Hamiltonians both for the XXX [58] and the XXZ 
chain [59] as well as for the Jordanian deformation of the XXX Heisenberg spin chain [68]. 
Moreover, we have shown [69] how, in the context of the quasi-classical limit, the solutions to 

2
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the classical Yang-Baxter equation [9,10] can be combined with the solutions to the classical 
reflection equation [70,71] to yield solutions to the so-called generalized classical Yang-Baxter 
equation [72–75]. These solutions are the non-unitary classical r-matrices [76–82]. In particular, 
the generic elliptic s�(2) non-unitary r-matrix was studied in [83]. Also, we draw attention to the 
recent study of the generalized Gaudin and Richardson models based on a class of non-unitary 
r-matrices [84].

An approach to the implementation of the algebraic Bethe ansatz for the rational as well as 
the trigonometric s�(2) Gaudin model based on the corresponding Maillet linear bracket was 
developed in [85–89]. Once a suitable set of generators of the relevant generalized Gaudin al-
gebra is found, the local realization of these generators becomes compact and it naturally leads 
to the definition of the so-called creation operators. In both the rational and trigonometric case 
[86,89], these creation operators define Bethe states in such a way that the off-shell action of the 
generating function of the Gaudin Hamiltonians can be computed explicitly, and a completely 
algebraic proof of this action given.

This paper is centred on the application of the algebraic Bethe ansatz to the rational so(3)

Gaudin model with generic classical boundary K-matrix. We recall that this K-matrix can be ob-
tained by the so-called fusion procedure [6,90,91], starting from the s�(2) K-matrix [58,92–94]. 
The outline of this method in the trigonometric so(3) case was given in [95]. Alternatively, one 
can use the so-called scaling limit [96], to obtain the K-matrix from the trigonometric so(3)

boundary K-matrix [95,97]. The non-unitary so(3) classical r-matrix (B.8) is then obtained by 
combining the unitary so(3) invariant classical r-matrix and the K-matrix. This non-unitary clas-
sical r-matrix defines the so(3) Maillet linear bracket, for the suitable Lax operator, and provides 
an algebraic framework for our study of the non-periodic so(3) Gaudin model. As an immediate 
consequence of the definition of the so(3) Maillet bracket follows the mutual commutativity of 
the generating function for different values of the spectral parameter. However, as it will be con-
firmed in the following, the natural set of generators unfortunately turns out not to be adequate 
for the implementation of the algebraic Bethe ansatz. Thus we will here propose a new set of 
generators. Besides the relative simplicity of the local realization of the new generators, their 
most striking feature will be the compact form of their commutation relations. This is of great 
significance since it efficiently enables the algebraic proof of the off-shell action of the generat-
ing function on the Bethe states. Furthermore, it is important to stress that these results will be 
obtained without any restriction whatsoever on the boundary parameters. It is only when solving 
the generalized so(3) Knizhnik-Zamolodchikov equations that the key identity in the proof will 
require one of four boundary parameters to be set to zero. However, in spite of this constraint 
we will retain a large improvement in generality over the previous studies: while the formulas 
that we here provide for the solutions to the generalized so(3) Knizhnik-Zamolodchikov equa-
tions, the on-shell norm of the Bethe vectors and the off-shell scalar product of the Bethe vectors 
do superficially look similar to the analogous formulae in the s�(2) case [86], only one of the 
boundary parameters will be fixed here, instead of all four of them (as, for example, in [86]).

The paper is organised as follows. In Section 2 we study the so(3) Maillet linear bracket 
which provides the algebraic framework for implementation of the Bethe ansatz. In the same 
section we propose the novel set of generators with simplified commutation relations and intro-
duce Gaudin Hamiltonians. The implementation of the algebraic Bethe ansatz is the principal 
topic of the Section 3. There we will obtain the expression for the off-shell action of the gen-
erating function τ(λ), as well as for the off-shell action of the so(3) Gaudin Hamiltonians with 
general boundary terms – and prove these formulas by mathematical induction. The solutions 
to the generalized so(3) Knizhnik-Zamolodchikov equations will be given in the Section 4. Our 
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results will be summarised in the concluding Section 5. Fundamental definitions regarding the 
so(3) Lie algebra, including the two so(3) invariant operators in C3 ⊗ C3 which generate the 
relevant Brauer algebra, are presented in the Appendix A. Finally, the cornerstone of our study – 
the non-unitary so(3) classical r-matrix – is given in the Appendix B.

2. The so(3) Maillet linear bracket

In this section we show how the non-unitary so(3) classical r-matrix (B.8) helps define the 
so(3) Maillet linear bracket (8) for the suitable Lax operator (7). Although this Maillet bracket 
provides an appropriate algebraic framework for studying the quantum so(3) Gaudin model, 
yielding the generating function of the so(3) Gaudin Hamiltonians with general boundary terms, 
it will be shown below that the natural set of generators unfortunately does not provide the most 
efficient way for implementing the algebraic Bethe ansatz in this case. Thus we will propose a 
new set off generators of the corresponding generalized so(3) Gaudin algebra.

In our study we use the Lax operator

L0(λ) =
N∑

m=1

�S0 · �Sm

λ − αm

=
N∑

m=1

1

λ − αm

(
S3

0 ⊗ S3
m + 1

2

(
S+

0 ⊗ S−
m + S−

0 ⊗ S+
m

))
, (1)

where the spin operators Sα
m, with α = +, −, 3 and m = 1, 2, . . . , N , are introduced in (A.12) and 

the matrices S3
0 and S±

0 in the auxiliary space C3 are specified by (A.1) and (A.3), respectively. 
The Lax operator (1) can also be represented in the following form

L0(λ) = �S0 · �S(λ) , (2)

where the generators of the so(3) Gaudin algebra are defined by [2–4]

S3(λ) =
N∑

m=1

S3
m

λ − αm

, S±(λ) =
N∑

m=1

S±
m

λ − αm

. (3)

The so-called Sklyanin linear bracket [8,15,16] for the Lax operator (1) and the r-matrix (B.1)

[L1(λ),L2(μ)] = [r12(λ − μ),L1(λ) + L2(μ)] (4)

yields nontrivial commutation relations for the generators (3)[
S3(λ), S±(μ)

]
= ∓ S±(λ) − S±(μ)

λ − μ
,

[
S+(λ), S−(μ)

] = (−2)
S3(λ) − S3(μ)

λ − μ
. (5)

The Lax operator corresponding to the generalized so(3) Gaudin algebra is given by

L0(λ) = L0(λ) − K0(λ)L0(−λ)K−1
0 (λ) , (6)

where L0(λ) is the Lax operator (1) and K0(λ) is the reflection K-matrix defined in (B.4). This 
form of the Lax operator can be obtained by following a relatively general procedure of quasi-
classical expansion of the Sklyanin monodromy [69]. By direct substitution we obtain

4
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L0(λ) = �S0 · �S(λ) −
(
K0(λ)�S0K

−1
0 (λ)

)
· �S(−λ)

=

⎛⎜⎜⎝
H(λ) 1√

2
F(λ) 0

1√
2
E(λ) 0 1√

2
F(λ)

0 1√
2
E(λ) −H(λ)

⎞⎟⎟⎠ .

(7)

The Lax operator (7) obeys the following so(3) Maillet linear bracket [73–75,38,69]

[L0(λ),L0′(μ)] =
[
rK

00′(λ,μ),L0(λ)
]
−

[
rK

0′0(μ,λ),L0′(μ)
]
. (8)

This linear bracket is obviously anti-symmetric and it obeys the Jacobi identity because the r-
matrix (B.6) satisfies the generalized classical Yang-Baxter equation (B.7).

The so(3) Maillet bracket (8) implies the following commutation relations for the generators 
E(λ), F(λ) and H(λ) (7)

[E(λ),E(μ)] = −2ϕ2

λ + μ

(
μ2

ξ2 − (ψϕ + ν2)μ2 H(λ) − λ2

ξ2 − (ψϕ + ν2)λ2 H(μ)

)
,

+ 2ϕ

λ + μ

(
(ξ + νμ)μ

ξ2 − (ψϕ + ν2)μ2 E(λ) − (ξ + νλ)λ

ξ2 − (ψϕ + ν2)λ
E(μ)

)
, (9)

[F(λ),F (μ)] = 2ψ2

λ + μ

(
μ2

ξ2 − (ψϕ + ν2)μ2 H(λ) − λ2

ξ2 − (ψϕ + ν2)λ2 H(μ)

)

+ 2ψ

λ + μ

(
(ξ − νμ)μ

ξ2 − (ψϕ + ν2)μ2 F(λ) − (ξ − νλ)λ

ξ2 − (ψϕ + ν2)λ
F (μ)

)
, (10)

[H(λ),H(μ)] = −ψ

λ + μ

(
(ξ + νμ)μ

ξ2 − (ψϕ + ν2)μ2 E(λ) − (ξ + νλ)λ

ξ2 − (ψϕ + ν2)λ2 E(μ)

)

+ −ϕ

λ + μ

(
(ξ − νμ)μ

ξ2 − (ψϕ + ν2)μ2 F(λ) − (ξ − νλ)λ

ξ2 − (ψϕ + ν2)λ2 F(μ)

)
, (11)

and

[H(λ),E(μ)] = ϕ

λ + μ

(
ϕ μ2

ξ2 − (ψϕ + ν2)μ2 F(λ) − 2 (ξ − νλ)λ

ξ2 − (ψϕ + ν2)λ2 H(μ)

)

− 1

(λ − μ)(λ + μ)

(
(2(ξ − νλ) (ξ + νμ) − ψϕ (λ + μ)μ)μ

ξ2 − (ψϕ + ν2)μ2 E(λ)

− 2
(
ξ2 − (

ψϕ μ + ν2λ
)
λ
)
λ

ξ2 − (ψϕ + ν2)λ2 E(μ)

)
, (12)

[H(λ),F (μ)] = −ψ

λ + μ

(
ψ μ2

ξ2 − (ψϕ + ν2)μ2 E(λ) + 2 (ξ + νλ)λ

ξ2 − (ψϕ + ν2)λ2 H(μ)

)

+ 1

(λ − μ)(λ + μ)

(
(2(ξ − νμ) (ξ + νλ) − ψϕ (λ + μ)μ)μ

ξ2 − (ψϕ + ν2)μ2 F(λ)

5
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− 2
(
ξ2 − (

ψϕ μ + ν2λ
)
λ
)
λ

ξ2 − (ψϕ + ν2)λ2 F(μ)

)
, (13)

[F(λ),E(μ)] = −2

λ + μ

(
ϕ (ξ + νμ)μ

ξ2 − (ψϕ + ν2)μ2 F(λ) − ψ (ξ − νλ)λ

ξ2 − (ψϕ + ν2)λ2 E(μ)

)

+ 2

(λ − μ)(λ + μ)

(
(2(ξ − νλ) (ξ + νμ) − ψϕ (λ + μ)μ)μ

ξ2 − (ψϕ + ν2)μ2 H(λ)

− (2(ξ − νλ) (ξ + νμ) − ψϕ (λ + μ)λ)λ

ξ2 − (ψϕ + ν2)λ2 H(μ)

)
. (14)

Moreover, the Maillet linear bracket (8) yields the expression for the generating function of 
the so(3) Gaudin Hamiltonians with general boundary terms in terms of the Lax operator (6)

τ(λ) = 1

2
tr0

(
L2

0(λ)
)

. (15)

Namely, using the Maillet bracket (8), it is straightforward to check that the operator τ(λ) com-
mutes for different values of the spectral parameter,

[τ(λ), τ (μ)] = 0 . (16)

From (7) it follows that

τ(λ) = H 2(λ) + 1

2
(E(λ)F (λ) + F(λ)E(λ)) . (17)

Our aim here is to obtain the spectrum and the corresponding states of the generating function 
τ(λ) by algebraic methods. To this end we would have to use the relations (9) – (14). As it is 
evident from the formulae above, these relations do not seem to be suitable to efficiently address 
this problem. Therefore, we propose a new set of generators

E(λ) = 1

2ψ
√

ψϕ + ν2

(
ψ2E(λ) −

(
ψϕ + 2ν

(
ν −

√
ψϕ + ν2

))
F(λ)

+ 2ψ

(
ν −

√
ψϕ + ν2

)
H(λ)

)
, (18)

F(λ) = 1

2ψ
√

ψϕ + ν2

(
− ψ2E(λ) +

(
ψϕ + 2ν

(
ν +

√
ψϕ + ν2

))
F(λ)

− 2ψ

(
ν +

√
ψϕ + ν2

)
H(λ)

)
, (19)

H(λ) = 1

2
√

ψϕ + ν2
(ψE(λ) + ϕF(λ) + 2νH(λ)) . (20)

The commutation relations we obtain for the new generators are substantially simpler than the 
initial relations (12)–(11). In particular,

[E(λ),E(μ)] = [F(λ),F(μ)] = [H(λ),H(μ)] = 0 , (21)

6
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and the three non-trivial relations are

[H(λ),E(μ)] = −2

λ2 − μ2

(
μ

ξ − λ
√

ψϕ + ν2

ξ − μ
√

ψϕ + ν2
E(λ) − λ E(μ)

)
, (22)

[H(λ),F(μ)] = 2

λ2 − μ2

(
μ

ξ + λ
√

ψϕ + ν2

ξ + μ
√

ψϕ + ν2
F(λ) − λF(μ)

)
, (23)

[F(λ),E(μ)] = 4

λ2 − μ2

(
μ

ξ − λ
√

ψϕ + ν2

ξ − μ
√

ψϕ + ν2
H(λ) − λ

ξ + μ
√

ψϕ + ν2

ξ + λ
√

ψϕ + ν2
H(μ)

)
.

(24)

Furthermore, the local realization of the new generators is:

E(λ) = λ√
ψϕ + ν2

N∑
m=1

ξ − αm

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2

× 2(ν −√
ψϕ + ν2)S3

m + ψS+
m − ψϕ+2ν (ν−√

ψϕ+ν2)

ψ
S−

m

(λ − αm)(λ + αm)
, (25)

F(λ) = −λ√
ψϕ + ν2

N∑
m=1

ξ + αm

√
ψϕ + ν2

ξ + λ
√

ψϕ + ν2

× 2(ν +√
ψϕ + ν2)S3

m + ψS+
m − ψϕ+2ν (ν+√

ψϕ+ν2)

ψ
S−

m

(λ − αm)(λ + αm)
, (26)

H(λ) = λ√
ψϕ + ν2

N∑
m=1

2νS3
m + ψS+

m + ϕS−
m

(λ − αm)(λ + αm)
. (27)

A straightforward but somewhat lengthy calculation shows that the generating function τ(λ)

(17) has exactly the same form when expressed in terms of the new generators

τ(λ) = H2(λ) + 1

2
(E(λ)F(λ) +F(λ)E(λ)) . (28)

The explicit expressions for the so(3) Gaudin Hamiltonians with general boundary terms are 
derived by substituting the local realization of the new generators (25) – (27) in the right-hand-
side of (28)

Hm =(±) Res
λ=±αm

τ(λ) = 1

ξ2 − (
ψϕ + ν2

)
α2

m

×
(

ξ2 + (
ψϕ − ν2

)
α2

m

αm

(S3
m)2 − αm

2

(
ψ2 (S+

m)2 + ϕ2 (S−
m)2

+2ψν
(
S+

mS3
m + S3

mS+
m

)
+ 2ϕν

(
S−

mS3
m + S3

mS−
m

))
7
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+ ξ2 + ν2α2
m

2αm

(
S+

mS−
m + S−

mS+
m

))

+ αm

ξ2 − (
ψϕ + ν2

)
α2

m

N∑
n�=m

(
4
(
ξ2 − ψϕ αmαn − ν2α2

m

)
α2

m − α2
n

S3
mS3

n

− αm

αm + αn

(
ψ2 S+

mS+
n + ϕ2 S−

mS−
n

+ 2ψν
(
S+

mS3
n + S3

mS+
n

)
+ 2ϕν

(
S−

mS3
n + S3

mS−
n

))
+ 2

(
ξ2 − (

ψϕ + ν2
)
αmαn

)− ψϕ αm (αm − αn)

α2
m − α2

n

(
S−

mS+
n + S+

mS−
n

))

+ ξ · αm

ξ2 − (
ψϕ + ν2

)
α2

m

N∑
n�=m

1

αm + αn

(
2ψ

(
S+

mS3
n − S3

mS+
n

)

+ 2ν
(
S−

mS+
n − S+

mS−
n

)+ 2ϕ
(
S3

mS−
n − S−

mS3
n

))
. (29)

Besides the formula above for the so(3) Gaudin Hamiltonians with general boundary terms, 
our main result in this section is the new form of generators of the generalized so(3) Gaudin 
algebra (25) – (27). Due to their strikingly simple commutation relations (21) – (24) they now 
provide a suitable framework for applying the algebraic Bethe ansatz without any restrictions on 
boundary parameters.

3. Implementation of the algebraic Bethe ansatz

Before we can proceed to find Bethe vectors and determine the off-shell action of the gener-
ating function τ(λ), we have to establish several intermediary results.

In the Hilbert space H (A.11) of the system we have to define the so-called vacuum vector 

+ ∈ H together with the appropriate action of the generators (25) – (27) on it. To this purpose 
we observe that in every local space Vm = C3, m ∈ {1, . . . , N} there exists a vector ωm ∈ Vm

given by

ωm =

⎛⎜⎜⎝
ψ2

−√
2ψ

(
ν −√

ψϕ + ν2
)

(
ν −√

ψϕ + ν2
)2

⎞⎟⎟⎠ ∈ C3 = Vm , (30)

where the parameters ν, ψ and ϕ are the parameters of the boundary K-matrix (B.4). Then it is 
easy to check that(

2

(
ν −

√
ψϕ + ν2

)
S3

m + ψ S+
m − ψϕ + 2ν (ν −√

ψϕ + ν2)

ψ
S−

m

)
ωm = 0 , (31)

(
2νS3

m + ψS+
m + ϕS−

m

)
ωm = 2

√
ψϕ + ν2 ωm . (32)

8
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Therefore the vacuum vector 
+, defined as


+ = ω1 ⊗ · · · ⊗ ωN ∈ H (33)

has the desired properties. Namely, it is annihilated by the generator E(λ) (25) and, at the same 
time, it is an eigenvector of the generator H(λ) (27), that is

E(λ) 
+ = 0 and H(λ) 
+ = ρ(λ) 
+ with ρ(λ) =
N∑

m=1

2λ

λ2 − α2
m

. (34)

Our next aim is to rewrite the formula for τ(λ) (28) in a more suitable way so that the action 
of the generating function τ(λ) on the vacuum vector 
+ (33) becomes more transparent. With 
this aim, we first note that the commutation relations (22) – (24) imply

[H(λ),F(λ)] = −ξ

λ
(
ξ + λ

√
ψϕ + ν2

) F(λ) + F′(λ) , (35)

[H(λ),E(λ)] = ξ

λ
(
ξ − λ

√
ψϕ + ν2

) E(λ) − E′(λ) , (36)

[F(λ),E(λ)] = 2

(−1

λ

ξ2 + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 H(λ) + H′(λ)

)
, (37)

where prime denotes derivative with respect to parameter. Therefore we can express the generat-
ing function τ(λ) (28) as follows

τ(λ) = H2(λ) + 1

λ

ξ2 + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 H(λ) − H′(λ) + F(λ)E(λ) . (38)

Taking into account (34) and (38), it is evident that the vacuum vector 
+ (33) is an eigenvector 
of the generating function

τ(λ)
+ = χ0(λ)
+ with χ0(λ) = ρ2(λ) + ξ2 + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2

ρ(λ)

λ
− ρ′(λ) . (39)

In our approach, one fo the essential steps in the implementation of algebraic Bethe ansatz 
is to find the commutation relation between the generating function τ(λ) (38) and the generator 
F(μ) (19). To this end, we will also need the following auxiliary result which follows from (23)

[
H′(λ),F(μ)

] = 2

λ2 − μ2

⎛⎝ ξ (λ − μ)

(λ + μ)
(
ξ + μ

√
ψϕ + ν2

) F(λ)

+ λ2 + μ2

λ2 − μ2 (F(μ) −F(λ)) + μ
ξ + λ

√
ψϕ + ν2

ξ + μ
√

ψϕ + ν2
F′(λ)

)
.

(40)

Now we can compute the commutator by a straightforward calculation, based on the formulae 
(38), (23), (24) and (40):

9
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[τ(λ),F(μ)] = − 4

λ2 − μ2 F(μ)

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2

)

+ 4

λ2 − μ2

λ

μ

ξ − μ
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)

(
μH(μ) + (ψϕ + ν2)μ2

ξ2 − (ψϕ + ν2)μ2

)
.

(41)

The relative simplicity of the right hand side of the equation above has encouraged us to seek 
the commutator between the operator τ(λ) and the product F(μ1)F(μ2) as the next step. In this 
case, an analogous direct calculation based on the previous formulae, leads to

[τ(λ),F(μ1)F(μ2)] =

− 4

λ2 − μ2
1

F(μ1)F(μ2)

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 − λ2

λ2 − μ2
2

)

− 4

λ2 − μ2
2

F(μ1)F(μ2)

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 − λ2

λ2 − μ2
1

)

+ 4

λ2 − μ2
1

λ

μ1

ξ − μ1
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ2)

×
(

μ1H(μ1) + (ψϕ + ν2)μ2
1

ξ2 − (ψϕ + ν2)μ2
1

− 2μ2
1

μ2
1 − μ2

2

)

+ 4

λ2 − μ2
2

λ

μ2

ξ − μ2
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(μ1)F(λ)

×
(

μ2H(μ2) + (ψϕ + ν2)μ2
2

ξ2 − (ψϕ + ν2)μ2
2

− 2μ2
2

μ2
2 − μ2

1

)
.

(42)

Evidently, the right hand side of (42) has extra lines and every line has extra terms in compar-
ison with (41). While certain pattern is already visible, we will explicitly compute one more step 
before conjecturing the general case. The commutation relation between the generating func-
tion τ(λ) and the product F(μ1)F(μ2)F(μ3) is obtained in a similar manner, using the previous 
results,

[τ(λ),F(μ1)F(μ2)F(μ3)] =

− 4

λ2 − μ2
1

F(μ1)F(μ2)F(μ3)

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 − λ2

λ2 − μ2
2

− λ2

λ2 − μ2
3

)

− 4

λ2 − μ2
2

F(μ1)F(μ2)F(μ3)

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 − λ2

λ2 − μ2
1

− λ2

λ2 − μ2
3

)

− 4

λ2 − μ2
3

F(μ1)F(μ2)F(μ3)

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 − λ2

λ2 − μ2
1

− λ2

λ2 − μ2
2

)

10
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+ 4

λ2 − μ2
1

λ

μ1

ξ − μ1
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ2)F(μ3)

×
(

μ1H(μ1) + (ψϕ + ν2)μ2
1

ξ2 − (ψϕ + ν2)μ2
1

− 2μ2
1

μ2
1 − μ2

2

− 2μ2
1

μ2
1 − μ2

3

)

+ 4

λ2 − μ2
2

λ

μ2

ξ − μ2
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(μ1)F(λ)F(μ3)

×
(

μ2H(μ2) + (ψϕ + ν2)μ2
2

ξ2 − (ψϕ + ν2)μ2
2

− 2μ2
2

μ2
2 − μ2

1

− 2μ2
2

μ2
2 − μ2

3

)

+ 4

λ2 − μ2
3

λ

μ3

ξ − μ3
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(μ1)F(μ2)F(λ)

×
(

μ3H(μ3) + (ψϕ + ν2)μ2
3

ξ2 − (ψϕ + ν2)μ2
3

− 2μ2
3

μ2
3 − μ2

1

− 2μ2
3

μ2
3 − μ2

2

)
. (43)

In the general case, we conjecture validity of the following relation:

[τ(λ),F(μ1)F(μ2) · · ·F(μM)] = −F(μ1)F(μ2) · · ·F(μM)

M∑
j=1

4

λ2 − μ2
j

×

×
⎛⎝λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 −
M∑

k �=j

λ2

λ2 − μ2
k

⎞⎠

+
M∑

j=1

4

λ2 − μ2
j

λ

μj

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ1)F(μ2) · · · ̂F(μj ) · · ·F(μM)

×
⎛⎝μjH(μj ) + (ψϕ + ν2)μ2

j

ξ2 − (ψϕ + ν2)μ2
j

−
M∑

k �=j

2μ2
j

μ2
j − μ2

k

⎞⎠ ,

(44)

where the notation ̂F(μj ) means that the operator F(μj ) is omitted.
The proof of the formula above is by mathematical induction. Our initial hypothesis is that 

the equation (44) is valid for some natural number M . Thus, we have to show that the analogous 
equation is valid for M + 1. To this end, we write

[τ(λ),F(μ1)F(μ2) · · ·F(μM)F(μM+1)] =
= [τ(λ),F(μ1)F(μ2) · · ·F(μM)]F(μM+1)

+F(μ1)F(μ2) · · ·F(μM)F(μM+1)
[
τ(λ),F(μM+1)

]
(45)

= [
[τ(λ),F(μ1)F(μ2) · · ·F(μM)] ,F(μM+1)

]
11
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+F(μM+1) [τ(λ),F(μ1)F(μ2) · · ·F(μM)]

+F(μ1)F(μ2) · · ·F(μM)F(μM+1)
[
τ(λ),F(μM+1)

]
. (46)

It follows from (44) that the first term on the right hand side of (46) yields two type of terms. In 
the second term of (46) we can just substitute the right hand side of (44). Finally, in the last term 
of (46) we use (41). In this way we obtain[

τ (λ),F(μ1)F(μ2) · · ·F(μM)F(μM+1)
] =

−F(μ1)F(μ2) · · ·F(μM)

M∑
j=1

4λ

λ2 − μ2
j

[
H(λ),F(μM+1)

]

+
M∑

j=1

4λ

λ2 − μ2
j

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2
×

× F(λ)F(μ1)F(μ2) · · · ̂F(μj ) · · ·F(μM)
[
H(μj ),F(μM+1)

]
−F(μ1)F(μ2) · · ·F(μM)F(μM+1)×

×
M∑

j=1

4

λ2 − μ2
j

⎛⎝λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2
−

M∑
k �=j

λ2

λ2 − μ2
k

⎞⎠

+
M∑

j=1

4

λ2 − μ2
j

λ

μj

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ1)F(μ2) · · · ̂F(μj ) · · ·F(μM)F(μM+1)×

×
⎛⎝μjH(μj ) +

(ψϕ + ν2)μ2
j

ξ2 − (ψϕ + ν2)μ2
j

−
M∑

k �=j

2μ2
j

μ2
j

− μ2
k

⎞⎠
+F(μ1)F(μ2) · · ·F(μM)

(
− 4

λ2 − μ2
M+1

F(μM+1)

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2

)

+ 4

λ2 − μ2
M+1

λ

μM+1

ξ − μM+1
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)×

×
(

μM+1H(μM+1) + (ψϕ + ν2)μ2
M+1

ξ2 − (ψϕ + ν2)μ2
M+1

))
. (47)

In the first two terms on the right hand side of (47) we used the equation (23) and the remaining 
terms we rewrite in a more appropriate order

[
τ (λ),F(μ1)F(μ2) · · ·F(μM)F(μM+1)

] = −F(μ1)F(μ2) · · ·F(μM)

M∑
j=1

4λ

λ2 − μ2
j

×

× 2

λ2 − μ2
M+1

(
μM+1

ξ + λ
√

ψϕ + ν2

ξ + μM+1
√

ψϕ + ν2
F(λ) − λF(μM+1)

)

12
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+
M∑

j=1

4λ

λ2 − μ2
j

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ1)F(μ2) · · · ̂F(μj ) · · ·F(μM)×

× 2

μ2
j

− μ2
M+1

(
μM+1

ξ + μj

√
ψϕ + ν2

ξ + μM+1
√

ψϕ + ν2
F(μj ) − μj F(μM+1)

)

−F(μ1)F(μ2) · · ·F(μM)F(μM+1)×

×
M∑

j=1

4

λ2 − μ2
j

⎛⎝λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2
−

M∑
k �=j

λ2

λ2 − μ2
k

⎞⎠
−F(μ1)F(μ2) · · ·F(μM)F(μM+1)×

× 4

λ2 − μ2
M+1

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2

)

+
M∑

j=1

4

λ2 − μ2
j

λ

μj

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ1)F(μ2) · · · ̂F(μj ) · · ·F(μM)F(μM+1)×

×
⎛⎝μjH(μj ) +

(ψϕ + ν2)μ2
j

ξ2 − (ψϕ + ν2)μ2
j

−
M∑

k �=j

2μ2
j

μ2
j

− μ2
k

⎞⎠
+ 4

λ2 − μ2
M+1

λ

μM+1

ξ − μM+1
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(μ1)F(μ2) · · ·F(μM)F(λ)×

×
(

μM+1H(μM+1) + (ψϕ + ν2)μ2
M+1

ξ2 − (ψϕ + ν2)μ2
M+1

)
. (48)

Now it is just a question of reordering the terms in a more suitable manner[
τ(λ),F(μ1)F(μ2) · · ·F(μM)F(μM+1)

] =
−F(μ1)F(μ2) · · ·F(μM)F(μM+1)×

×
M∑

j=1

4

λ2 − μ2
j

⎛⎝λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 −
M+1∑
k �=j

λ2

λ2 − μ2
k

⎞⎠
−F(μ1)F(μ2) · · ·F(μM)F(μM+1)×

× 4

λ2 − μ2
M+1

(
λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 −
M∑

k=1

λ2

λ2 − μ2
k

)

+
M∑

j=1

4

λ2 − μ2
j

λ

μj

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ1)F(μ2) · · · ̂F(μj ) · · ·

13
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· · ·F(μM)F(μM+1)

⎛⎝μjH(μj ) + (ψϕ + ν2)μ2
j

ξ2 − (ψϕ + ν2)μ2
j

−
M+1∑
k �=j

2μ2
j

μ2
j − μ2

k

⎞⎠
+ 4

λ2 − μ2
M+1

λ

μM+1

ξ − μM+1
√

ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(μ1)F(μ2) · · ·F(μM)F(λ)×

×
(

μM+1H(μM+1) + (ψϕ + ν2)μ2
M+1

ξ2 − (ψϕ + ν2)μ2
M+1

−
M∑

k=1

2μ2
M+1

μ2
M+1 − μ2

k

)
. (49)

To obtain all the terms in the last sum (in the last line above) we had to use a generally valid, 
purely algebraic identity:

−1

(λ2 − μ2
j )(λ

2 − μ2
M+1)

ξ2 − (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)μ2
M+1

+ 1

(λ2 − μ2
j )(μ

2
j − μ2

M+1)
×

× ξ2 − (ψϕ + ν2)μ2
j

ξ2 − (ψϕ + ν2)μ2
M+1

= −1

(λ2 − μ2
M+1)(μ

2
M+1 − μ2

j )
,

(50)

which is valid for every j = 1, 2, . . . , M .
Finally, to complete the proof we can simply combine together similar terms and obtain the 

desired result[
τ(λ),F(μ1)F(μ2) · · ·F(μM)F(μM+1)

] =
−F(μ1)F(μ2) · · ·F(μM)F(μM+1)×

×
M+1∑
j=1

4

λ2 − μ2
j

⎛⎝λH(λ) + (ψϕ + ν2)λ2

ξ2 − (ψϕ + ν2)λ2 −
M+1∑
k �=j

λ2

λ2 − μ2
k

⎞⎠
+

M+1∑
j=1

4

λ2 − μ2
j

λ

μj

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2
F(λ)F(μ1)F(μ2) · · · ̂F(μj ) · · ·

· · ·F(μM)F(μM+1)

⎛⎝μjH(μj ) + (ψϕ + ν2)μ2
j

ξ2 − (ψϕ + ν2)μ2
j

−
M+1∑
k �=j

2μ2
j

μ2
j − μ2

k

⎞⎠ . (51)

This completes the proof by mathematical induction of the formula (44). It should be stressed 
that the right hand side is in an algebraically closed form. Thus the off-shell action of the gener-
ating function of the so(3) Gaudin Hamiltonians with general boundary terms becomes a simple 
corollary of this result.

Namely, from (44) it follows that, for an arbitrary natural number M , the off-shel action of 
the generating function τ(λ) on the Bethe vectors

�M(μ1,μ2, . . . ,μM) = F(μ1)F(μ2) · · ·F(μM)
+ , (52)

is given by

14
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τ(λ)�M(μ1,μ2, . . . ,μM) = χM(λ,μ1,μ2, . . . ,μM) �M(μ1,μ2, . . . ,μM)

+
M∑

j=1

4λ

λ2 − μ2
j

ξ − μj

√
ψϕ + ν2

ξ − λ
√

ψϕ + ν2

⎛⎝ρ(μj ) + (ψϕ + ν2)μj

ξ2 − (ψϕ + ν2)μ2
j

−
M∑

k �=j

2μj

μ2
j − μ2

k

⎞⎠×

× �M(λ,μ1, . . . , μ̂j , . . . ,μM) , (53)

where the eigenvalue χM(λ, μ1, μ2, . . . , μM) is given by

χM(λ,μ1,μ2, . . . ,μM) =

χ0(λ) −
M∑

j=1

4λ

λ2 − μ2
j

⎛⎝ρ(λ) + (ψϕ + ν2)λ

ξ2 − (ψϕ + ν2)λ2 −
M∑

k �=j

λ

λ2 − μ2
k

⎞⎠ .
(54)

The unwanted terms on the right hand side of (53) are annihilated once the Bethe equations

ρ(μj ) + (ψϕ + ν2)μj

ξ2 − (ψϕ + ν2)μ2
j

−
M∑

k �=j

2μj

μ2
j − μ2

k

= 0 , j = 1,2, . . . ,M , (55)

are imposed on the parameters μ1, μ2, . . . , μM .
The off-shell action of the so(3) Gaudin Hamiltonians with general boundary terms (29) on 

the Bethe vectors (52) is obtained by taking the residue, at λ = αm, of the equation (53)

Hm �M(μ1,μ2, . . . ,μM) = Em,M �M(μ1,μ2, . . . ,μM)

+
M∑

j=1

4αm

α2
m − μ2

j

ξ − μj

√
ψϕ + ν2

ξ − αm

√
ψϕ + ν2

×

×
⎛⎝ρ(μj ) + (ψϕ + ν2)μj

ξ2 − (ψϕ + ν2)μ2
j

−
M∑

k �=j

2μj

μ2
j − μ2

k

⎞⎠×

×
⎛⎝−2(ν +√

ψϕ + ν2)S3
m − ψS+

m + ψϕ+2ν (ν+√
ψϕ+ν2)

ψ
S−

m

2
√

ψϕ + ν2

⎞⎠×

× �M−1(μ1, . . . , μ̂j , . . . ,μM) ,

(56)

where

Hm = Res
λ=αm

τ(λ) (57)

and the eigenvalues Em,M of the so(3) Gaudin Hamiltonians are the residues of the eigenvalues 
χM(λ, μ1, μ2, . . . , μM) (54) of the generating function τ(λ) at λ = αm,

Em,M = Res
λ=αm

χM(λ,μ1,μ2, . . . ,μM)

= 2ξ2(
ξ2 − (

ψϕ + ν2
)
α2

m

)
αm

+
N∑

n�=m

4αm

α2
m − α2

n

−
M∑

j=1

4αm

α2
m − μ2

j

,
(58)
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and

Res
λ=αm

�M(λ,μ1, . . . , μ̂j , . . . ,μM) = Res
λ=αm

(F(λ)) · �M−1(μ1, . . . , μ̂j , . . . ,μM)

=
⎛⎝−2(ν +√

ψϕ + ν2)S3
m − ψS+

m + ψϕ+2ν (ν+√
ψϕ+ν2)

ψ
S−

m

2
√

ψϕ + ν2

⎞⎠ ·

· �M−1(μ1, . . . , μ̂j , . . . ,μM) , (59)

where the notation μ̂j means that the argument μj is omitted.
As a closing remark for this section we must underline the complete gerality of these results: 

the formulae for the off-shell action of the generating function τ(λ) (53) and the so(3) Gaudin 
Hamiltonians on the Bethe vectors (52) are obtained for an arbitrary natural number M and with-
out any restriction whatsoever on all four boundary parameters. In this sense we can say that 
these formulae are as general as they can possibly be. In the next section we will establish a cor-
respondence between the Bethe vectors (52) established here and the solutions to the generalized 
so(3) Knizhnik-Zamolodchikov equations.

4. Generalized so(3) Knizhnik-Zamolodchikov equations

In this section we study solutions to the generalized so(3) Knizhnik-Zamolodchikov equa-
tions. To proceed further, we now have to set the parameter ξ to zero, i.e. ξ = 0. Consequently, 
the local realization of the generators (25) – (27) simplifies to

Ẽ(λ) =
N∑

m=1

αm√
ψϕ + ν2

2(ν −√
ψϕ + ν2)S3

m + ψS+
m − ψϕ+2ν (ν−√

ψϕ+ν2)

ψ
S−

m

λ2 − α2
m

, (60)

F̃(λ) =
N∑

m=1

−αm√
ψϕ + ν2

2(ν +√
ψϕ + ν2)S3

m + ψS+
m − ψϕ+2ν (ν+√

ψϕ+ν2)

ψ
S−

m

λ2 − α2
m

, (61)

H(λ) = λ√
ψϕ + ν2

N∑
m=1

2νS3
m + ψS+

m + ϕS−
m

λ2 − α2
m

. (62)

These generators have the following non-trivial commutation relations[
H(λ), Ẽ(μ)

] = −2λ

λ2 − μ2

(̃
E(λ) − Ẽ(μ)

)
, (63)

[
H(λ), F̃(μ)

] = 2λ

λ2 − μ2

(
F̃(λ) − F̃(μ)

)
, (64)

[̃
E(λ), F̃(μ)

] = −4

λ2 − μ2 (λH(λ) − μH(μ)) . (65)

Thus, in this case, the first Bethe vector is here defined by

16
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�̃1(μ) = �1(μ)

∣∣∣
ξ=0

= F̃(μ)
+ , (66)

and, in general case, for the Bethe vectors �̃M(μ1, μ2, . . . , μM) we have

�̃M(μ1,μ2, . . . ,μM) = �M(μ1,μ2, . . . ,μM)

∣∣∣
ξ=0

= F̃(μ1)F̃(μ2) · · · F̃(μM)
+ . (67)

It is useful to explicitly write Hm for ξ = 0:

H̃m = Hm

∣∣∣
ξ=0

= 1

2
(
ψϕ + ν2

)
αm

(
2
(
ν2 − ψϕ

)
(S3

m)2

+ ψ2 (S+
m)2 + ϕ2 (S−

m)2 + 2ψν
(
S+

mS3
m + S3

mS+
m

)
+ 2ϕν

(
S−

mS3
m + S3

mS−
m

)
− ν2 (S+

mS−
m + S−

mS+
m

))

+ 1

ψϕ + ν2

N∑
n�=m

(
4
(
ψϕ αn + ν2αm

)
α2

m − α2
n

S3
mS3

n + 1

αm + αn

×

×
(
ψ2 S+

mS+
n + ϕ2 S−

mS−
n + 2ψν

(
S+

mS3
n + S3

mS+
n

)
+ 2ϕν

(
S−

mS3
n + S3

mS−
n

))
+ 2ν2αn + ψϕ (αm + αn)

α2
m − α2

n

(
S−

mS+
n + S+

mS−
n

))
. (68)

Therefore the off-shell action of these Hamiltonians reads

H̃m �̃M(μ1,μ2, . . . ,μM) =

Ẽm,M �̃M(μ1,μ2, . . . ,μM) +
M∑

j=1

(−2)μj

α2
m − μ2

j

βM(μj ) �̃
(j,m)
M−1 ,

(69)

where

Ẽm,M = Em,M

∣∣∣
ξ=0

=
N∑

n�=m

4αm

α2
m − α2

n

−
M∑

j=1

4αm

α2
m − μ2

j

, (70)

βM(μj ) = −2

⎛⎝ρ(μj ) − 1

μj

−
M∑

k �=j

2μj

μ2
j − μ2

k

⎞⎠ , (71)

and

�̃
(j,m)
M−1 =

⎛⎝−2(ν +√
ψϕ + ν2)S3

m − ψS+
m + ψϕ+2ν (ν+√

ψϕ+ν2)

ψ
S−

m

2
√

ψϕ + ν2

⎞⎠ ·

· �̃M−1(μ1, . . . , μ̂j , . . . ,μM) .

(72)

Our main objective in this section is to show how to each Bethe vector (67) we can relate a 
solution to the generalized so(3) Knizhnik-Zamolodchikov equations
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κ ∂αm�(α1, α2, . . . , αN) = H̃m �(α1, α2, . . . , αN) . (73)

Within our approach [22,61,15–17,86,89] this correspondence is defined by a closed contour 
integration with respect to the variables μ1, μ2, . . . , μM

�(α1, α2, . . . , αN) =
∮ ∮

· · ·
∮

ϒ
(−→μ ;−→α ) · �̃M

(−→μ ;−→α )
dμ1 dμ2 · · ·dμM . (74)

The scalar function ϒ
(−→μ ;−→α )

is defined by

ϒ
(−→μ ;−→α ) = exp

(
S(−→μ ;−→α )

κ

)
, (75)

with the constant κ and the function S(−→μ ; −→α ) specified by

S
(−→μ ;−→α ) =

N∑
m=1

⎛⎝ N∑
n�=m

ln
(
α2

n − α2
m

)
−

M∑
j=1

2 ln
(
μ2

j − α2
m

)⎞⎠ (76)

+
M∑

j=1

⎛⎝ln
(
μ2

j

)
+

M∑
k �=j

ln
(
μ2

j − μ2
k

)⎞⎠ . (77)

It is straightforward to check that the function ϒ
(−→μ ;−→α )

satisfies the system

κ ∂αmϒ = Ẽm,M ϒ , (78)

κ ∂μj
ϒ = βM(μj )ϒ , (79)

where Ẽm,M and βM(μj ) are defined in (70) and (71), respectively.
The crucial identity in our approach is

∂αm�̃M =
M∑

j=1

∂μj

(
2μj

α2
m − μ2

j

�̃
(j,m)

M−1

)
. (80)

It takes a few rather simple steps to confirm that the function �(α1, α2, . . . , αN) (74) is a solution 
to the generalized so(3) Knizhnik-Zamolodchikov equations (73). As the first step, using the 
Leibniz rule, we calculate

κ ∂αm

(
ϒ · �̃M

) = (
κ ∂αmϒ

) · �̃M + ϒ · (κ ∂αm�̃M

)
. (81)

Then we use the equation (78) in the first term on the right hand side of the equation above and 
the identity (80) in the second term

κ ∂αm

(
ϒ · �̃M

) = Em,M

(
ϒ · �̃M

)+ ϒ · κ
M∑

j=1

∂μj

(
2μj

α2
m − μ2

j

�̃
(j,m)
M−1

)
. (82)

In the following step we use the equation (69) in the first term and the Leibniz rule in the second 
term on the right hand side of the equation above
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κ ∂αm

(
ϒ · �̃M

) = H̃m

(
ϒ · �̃M

)+
M∑

j=1

2μj

α2
m − μ2

j

βM(μj ) · ϒ · �̃(j,m)

M−1

+ κ

M∑
j=1

∂μj

(
2μj

α2
m − μ2

j

ϒ · �̃(j,m)

M−1

)
− κ

M∑
j=1

(
∂μj

ϒ
) 2μj

α2
m − μ2

j

�̃
(j,m)

M−1 .

(83)

Now it remains to rewrite the last terms on the right hand side using the equation (79)

κ ∂αm

(
ϒ · �̃M

) = H̃m

(
ϒ · �̃M

)+
M∑

j=1

2μj

α2
m − μ2

j

βM(μj ) · ϒ · �̃(j,m)

M−1

+ κ

M∑
j=1

∂μj

(
2μj

α2
m − μ2

j

ϒ · �̃(j,m)

M−1

)
−

M∑
j=1

2μj

α2
m − μ2

j

βM(μj ) · ϒ · �̃(j,m)

M−1 .

(84)

As the final step of this demonstration, we simplify the second and the last term in the equation 
above in order to obtain the desired result

κ ∂αm

(
ϒ · �̃M

) = H̃m

(
ϒ · �̃M

)+ κ

M∑
j=1

∂μj

(
2μj

α2
m − μ2

j

ϒ · �̃(j,m)
M−1

)
. (85)

This shows that the function �(α1, α2, . . . , αN) (74) is a solution to the generalized so(3)

Knizhnik-Zamolodchikov equations (73) since the terms in the sum will not contribute to the 
closed contour integrals with respect to the variables μj , j = 1, 2, . . . , M .

In the final part of this section we determine the on-shell norm as well as the off-shell scalar 
products of the Bethe vectors (67). In particular, the on-shell norm of the Bethe vector (66) is 
obtained to be∥∥�̃1(μ)

∥∥2 = lim
ν→μ

〈

+, Ẽ(ν)F̃(μ)
+

〉 = −2

(
ρ′(μ) + ρ(μ)

μ

)

= ∂β1(μ)

∂μ

∣∣∣
β1(μ)=0

= ∂2S(μ)

∂μ2

∣∣∣
β1(μ)=0

.

(86)

Similarly, the norm of the Bethe vector

�̃2(μ1,μ2) = F̃(μ1)F̃(μ2)
+ , (87)

when the Bethe equations are imposed on the parameters μ1 and μ2, is given by∥∥�̃2(μ1,μ2)
∥∥2 = lim

ν1→μ1
ν2→μ2

〈

+, Ẽ(ν1)̃E(ν2)F̃(μ2)F̃(μ1)
+

〉

= 4 ρ′(μ1) ρ′(μ2) + 4 ρ′(μ1)

(
1

μ2
2

+ 2

μ2
2 − μ2

1

+ 4μ2
1(

μ2
2 − μ2

1

)2

)

+ 4 ρ′(μ2)

(
1

μ2
1

+ 2

μ2
1 − μ2

2

+ 4μ2
2(

μ2
2 − μ2

1

)2

)
+ 12

(
μ2

1 + μ2
2

)2

μ2
1μ

2
2

(
μ2

2 − μ2
1

)2 (88)
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= det

⎛⎝ ∂β2(μ1)
∂μ1

∂β2(μ2)
∂μ1

∂β2(μ1)
∂μ2

∂β2(μ2)
∂μ2

⎞⎠∣∣∣∣∣ β2(μ1)=0
β2(μ2)=0

= det

⎛⎝ ∂2S

∂μ2
1

∂2S
∂μ1 ∂μ2

∂2S
∂μ2 ∂μ1

∂2S

∂μ2
2

⎞⎠∣∣∣∣∣ β2(μ1)=0
β2(μ2)=0

.

In the general case, for an arbitrary positive integer M , the norm of the Bethe vector 
�̃M(μ1, μ2, . . . , μM) (67), when the Bethe equations

βM(μj ) = −2

⎛⎝ρ(μj ) − 1

μj

−
M∑

k �=j

2μj

μ2
j − μ2

k

⎞⎠ = 0 , j = 1,2, . . . ,M , (89)

are imposed on the parameter μ1, . . . , μM , is obtained to be

∥∥�̃M(μ1,μ2, . . . ,μM)
∥∥2 = det

⎛⎜⎜⎜⎜⎝
∂2S

∂μ2
1

∂2S
∂μ1∂μ2

. . . ∂2S
∂μ1∂μM

...
. . .

...

∂2S
∂μM∂μ1

∂2S
∂μM∂μ2

. . . ∂2S

∂μ2
M

⎞⎟⎟⎟⎟⎠ βM(μ1)=0

...
βM (μM)=0

. (90)

Finally, we also calculate the off-shell scalar products of the Bethe vectors �̃M(μ1, μ2, . . . ,
μM) (67). As our first step, we observe that in the case when M = 1 the scalar product is

〈
�̃1(μ), �̃1(ν)

〉 = 4

(
−μρ(μ) − ν ρ(ν)

μ2 − ν2

)
. (91)

For M = 2, a straightforward calculation yields〈
�̃2(μ1,μ2), �̃2(ν1, ν2)

〉 = 42
∑
σ∈S2

detMσ = 16
(

detM1 + detM2
)

, (92)

where S2 is the symmetric group of degree two and the two-by-two matrices M1 and M2 are 
given by

M1
11 = −μ1 ρ(μ1) − ν1 ρ(ν1)

μ2
1 − ν2

1

− μ2
2 + ν2

2(
μ2

1 − μ2
2

) (
ν2

1 − ν2
2

) ,

M1
12 = − μ2

2 + ν2
2(

μ2
1 − μ2

2

) (
ν2

1 − ν2
2

) ,

M1
22 = −μ2 ρ(μ2) − ν2 ρ(ν2)

μ2
2 − ν2

2

− μ2
1 + ν2

1(
μ2

2 − μ2
1

) (
ν2

2 − ν2
1

) ,

M1
21 = − μ2

1 + ν2
1(

μ2
2 − μ2

1

) (
ν2

2 − ν2
1

) ,

(93)

and
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M2
11 = −μ1 ρ(μ1) − ν2 ρ(ν2)

μ2
1 − ν2

2

− μ2
2 + ν2

1(
μ2

1 − μ2
2

) (
ν2

2 − ν2
1

) ,

M2
12 = − μ2

2 + ν2
1(

μ2
1 − μ2

2

) (
ν2

2 − ν2
1

) ,

M2
22 = −μ2 ρ(μ2) − ν1 ρ(ν1)

μ2
2 − ν2

1

− μ2
1 + ν2

2(
μ2

2 − μ2
1

) (
ν2

1 − ν2
2

) ,

M2
21 = − μ2

1 + ν2
2(

μ2
2 − μ2

1

) (
ν2

1 − ν2
2

) .

(94)

In general case, for an arbitrary positive integer M , we have〈
�̃M(μ1,μ2, . . . ,μM), �̃M(ν1, ν2, . . . , νM)

〉 = 4M
∑

σ∈SM

detMσ , (95)

where SM is the symmetric group of degree M and the matrix entries of the M × M matrix Mσ

are given by

Mσ
jj = −μj ρ(μj ) − νσ(j) ρ(νσ(j))

μ2
j − ν2

σ(j)

−
∑
k �=j

μ2
k + ν2

σ(k)

(μ2
j − μ2

k)(ν
2
σ(j) − ν2

σ(k))
, (96)

Mσ
jk = − μ2

k + ν2
σ(k)

(μ2
j − μ2

k)(ν
2
σ(j) − ν2

σ(k))
, for j, k = 1,2, . . . ,M . (97)

The off-shell scalar products of the Bethe vectors �̃M(μ1, μ2, . . . , μM) (67) in the M = 1
case (91) and in the M = 2 case (92) were derived by a direct, straightforward calculations. The 
formula (95) was obtained by symbolic computer calculations for M = 3, 4, 5, for some values 
of N . In the general case, the proof of these formulae by induction would be very difficult, since 
it would require some highly non-trivial relations between a certain type of determinants of a 
different order. In this sense, the general formula (95), strictly speaking, remains a conjecture.

5. Conclusions

The cornerstone of our study of the non-periodic so(3) Gaudin model was the so(3) Maillet 
linear bracket (8) for the suitable Lax operator (7) and the non-unitary so(3) classical r-matrix 
(B.8) constructed from the generic boundary K-matrix (B.4). Based on Maillet bracket we ob-
tained the generating function (15) of the so(3) Gaudin Hamiltonians with general boundary 
terms. However it turned out that the natural set of generators was not the most efficient choice 
for implementing the algebraic Bethe ansatz due to the cumbersome commutation relations (9) -
(14). For this reason we proposed a new set of generators: (18) - (20). Not only that their com-
mutation relations had a strikingly compact form (21) - (24) but also their local realization was 
fairly simple (25) - (27), yielding the explicit expression for the Gaudin Hamiltonians with all 
four boundary parameters (29).

There were several preceding objectives which we had to address before attempting to find 
the off-shell action of the generating function τ(λ) (28). In the first place, we had to define the 
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so-called vacuum vector 
+ (30) - (33). Then we had to confirm the action of the generators 
on the vacuum vectors (34) and to show that the vector 
+ is the eigenvector of the generating 
function τ(λ) (39). As our next step, we have calculated the commutation relations between the 
generating function τ(λ) and the remaining generator F(μ) of the generalized so(3) Gaudin 
algebra (41). The idea of using the generator F(μ) as the so-called creation operator prompted 
us to calculate the commutation relations between the generating function τ(λ) and the product 
F(μ1)F(μ2) (42) as well as the product F(μ1)F(μ2)F(μ3) (43). Hence, we have conjectured 
the formula (44), in the general case, for the commutator between the generating function τ(λ)

and the product F(μ1)F(μ2) · · ·F(μM), for an arbitrary natural number M . The proof of the 
formula (44) based on the mathematical induction was presented in (45) - (51). Once we have 
accordingly defined the Bethe vectors (52), the off-shell action (53) of the generating function 
τ(λ), including the formulae for the eigenvalues (54) and the Bethe equations (55), followed from 
(44). Moreover, the off-shell action (56) of the Gaudin Hamiltonians (29) on the Bethe vectors 
(52) was obtained by taking the residue, at λ = αm, of the left and the right hand side of (53). 
It should be stressed that the formulae of the off-shell action (53) and (56) have been obtained 
without any restriction whatsoever on any of the four boundary parameters and therefore we can 
say that these formulae are as general as they can possibly be.

Next, we found the solutions to the generalized so(3) Knizhnik-Zamolodchikov equations 
(73). In spite that the key identity (80) in the proof required the parameter ξ to be set to zero, 
the formulae we obtained for the solutions to the generalized so(3) Knizhnik-Zamolodchikov 
equations (74), the on-shell norm of the Bethe vectors (90) and the off-shell scalar product of the 
Bethe vectors (95) – all possess higher degree of generality than the analogous formulae in the 
s�(2) case [86] (here we have fixed only one of the four boundary parameters instead of all four).

In our future research we hope to address the remaining open problem of correlation functions 
for the so(3) Gaudin model with general boundary, following Sklyanin approach in the periodic 
s�(2) case [100].
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Appendix A. Preliminaries

Some essential definitions regarding the so(3) Lie algebra and its fundamental representation 
are given in the Appendix A. Namely, we consider the spin one operators

Sx = 1√
2

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠ , Sy = ı√
2

⎛⎝ 0 −1 0
1 0 −1
0 1 0

⎞⎠ , Sz =
⎛⎝ 1 0 0

0 0 0
0 0 −1

⎞⎠ (A.1)

acting in the space V (1) = C3 with the commutation relations

[Sx,Sy] = ıSz, [Sz,Sx] = ıSy, [Sy,Sz] = ıSx

and the Casimir element

c2 = �S · �S = (Sx)2 + (Sy)2 + (Sz)2 = 21. (A.2)

Introducing raising and lowering operators

S+ = Sx + ıSy =
⎛⎝ 0

√
2 0

0 0
√

2
0 0 0

⎞⎠ , S− = Sx − ıSy =
⎛⎝ 0 0 0√

2 0 0
0

√
2 0

⎞⎠ , (A.3)

the relations above can also be written as

[Sz,S±] = ±S±, [S+,S−] = 2Sz, (A.4)

and

c2 = (Sz)2 + 1

2
(S+S− + S−S+) = (Sz)2 + Sz + S−S+. (A.5)

It is useful to notice that the tensor Casimir operator can be expressed as follows

c⊗
2 (1,2) = �S1 · �S2 = P − 3K. (A.6)

The permutation operator

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.7)

the rank 1 projector
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K = 1

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.8)

and the identity operator 1 satisfy the relations

P2 = 1 , K2 = K , PK = KP = K . (A.9)

and therefore define the representation of the Brauer algebra in C3 ⊗C3. Moreover these are the 
three invariant operators acting on C3 ⊗C3

[Sα ⊗ 1+ 1⊗ Sα,P] = 0 , [Sα ⊗ 1+ 1⊗ Sα,K] = 0 , (A.10)

here α = x, y, z.
In our study of the so(3) Gaudin model with N sites, characterised by the local space Vm = C3

together with the corresponding inhomogeneous parameter αm, the Hilbert space is given by

H = N⊗
m=1

Vm = (C3)⊗N . (A.11)

The local spin operators

Sα
m = 1⊗ · · · ⊗ Sα︸︷︷︸

m

⊗· · · ⊗ 1 , (A.12)

with α = x, y, z and m = 1, 2, . . . , N , are given by the matrices (A.3) and (A.1) in every local 
space Vm = C3. Evidently, they satisfy the usual commutation relations

[S3
m,S±

n ] = ±S±
m δmn , [S+

m,S−
n ] = 2S3

m δmn . (A.13)

Appendix B. The non-unitary so(3) classical r-matrix

The cornerstone of our study presented in this paper is the non-unitary so(3) classical r-matrix 
(B.8). Here, in the Appendix B, we recount how the r-matrix (B.8) can be obtained starting from 
the unitary, so(3) invariant classical r-matrix

r(λ) = −
�S1 · �S2

λ
= −P − 3K

λ
, (B.1)

where we have used the notation introduced in the Appendix A. In particular, the classical r-
matrix (B.1) can be obtained as a quasi-classical limit of the SO(3) quantum R-matrix [98,99,6]. 
Evidently, this classical r-matrix satisfies the classical Yang-Baxter equation [10]

[r12(λ − μ), r13(λ − ν)] + [r12(λ − μ), r23(μ − ν)] + [r13(λ − ν), r23(μ − ν)] = 0, (B.2)

and has the unitarity property

r21(−λ) = −r12(λ). (B.3)
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N. Manojlović and I. Salom Nuclear Physics B 978 (2022) 115747

We also consider the following reflection matrix

K(λ) =

⎛⎜⎜⎝
(ξ − νλ)2 −√

2ψ λ(ξ − νλ) ψ2λ2

−√
2ϕλ(ξ − νλ) ξ2 + (ψϕ − ν2) λ2 −√

2ψλ(ξ + νλ)

ϕ2λ2 −√
2ϕλ(ξ + νλ) (ξ + νλ)2

⎞⎟⎟⎠ , (B.4)

here ξ, ν, ψ, ϕ are arbitrary parameters. As it is well known, this K-matrix can be obtained by the 
so-called fusion procedure [6,90,91], starting from the s�(2) K-matrix [58,92–94]. This method 
is outlined, in the trigonometric so(3), in [95]. Alternatively, the so-called scaling limit [96] can 
be used to obtain the K-matrix (B.4) from the trigonometric so(3) boundary K-matrix [95,97]. 
Evidently, this K-matrix satisfies the classical reflection equation

r12(λ − μ)K1(λ)K2(μ) + K1(λ)r21(λ + μ)K2(μ) =
= K2(μ)r12(λ + μ)K1(λ) + K2(μ)K1(λ)r21(λ − μ).

(B.5)

It is worth mentioning that, while in the context of Heisenberg’s open spin chain, one should 
also consider the dual reflection equation, this is not the case in the Gaudin model. Namely, as a 
consequence of long-range Gaudin model interactions, the “two ends of the chain” cannot have 
the same interpretation as in the case of Heisenberg’s spin chain. In the Gaudin case, boundary 
parameters must be fixed in a way that the reflection equation and its dual effectively degenerate 
into a single equation.

Therefore, it follows that the corresponding non-unitary classical r-matrix, given by [69,76–
82]

rK
12(λ,μ) = r12(λ − μ) − K2(μ)r12(λ + μ)K−1

2 (μ) , (B.6)

satisfies the generalized classical Yang-Baxter equation [69,72–75][
rK

32(ν,μ), rK
13(λ, ν)

]
+

[
rK

12(λ,μ), rK
13(λ, ν)

]
+

[
rK

12(λ,μ), rK
23(μ, ν)

]
= 0. (B.7)

The explicit form of this non-unitary so(3) classical r-matrix is the following

rK
12(λ,μ) = −

⎛⎝ �S1 · �S2

λ − μ
−

�S1 ·
(
K2(μ)�S2K

−1
2 (μ)

)
λ + μ

⎞⎠ . (B.8)
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[68] N. Manojlović, N. Cirilo António, I. Salom, Quasi-classical limit of the open Jordanian XXX spin chain, in: 
Proceedings of the 9th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical 
Physics, 18–23 September 2017, Belgrade, Serbia, in: SFIN XXXI Series A: Conferences, vol. A1, ISBN 978-86-
82441-48-9, 2018, pp. 259–266.
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[89] I. Salom, N. Manojlović, Bethe states and Knizhnik-Zamolodchikov equations of the trigonometric Gaudin model 
with triangular boundary, Nucl. Phys. B 969 (2021) 115462, https://doi .org /10 .1016 /j .nuclphysb.2021 .115462.

[90] L. Mezincescu, R.I. Nepomechie, Fusion procedure for open chains, J. Phys. A 25 (1992) 2533–2544.
[91] P.P. Kulish, N. Manojlovic, Z. Nagy, Symmetries of spin systems and Birman-Wenzl-Murakami algebra, J. Math. 

Phys. 51 (2010) 043516, https://doi .org /10 .1063 /1 .3366259.

28

http://refhub.elsevier.com/S0550-3213(22)00098-0/bibC3F9BE0A4B6453254BD7A8FB12F6C2BFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibC3F9BE0A4B6453254BD7A8FB12F6C2BFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibC3F9BE0A4B6453254BD7A8FB12F6C2BFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibC3F9BE0A4B6453254BD7A8FB12F6C2BFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib3AB9D743EEA291E02F0A6CC8A024821Cs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib3AB9D743EEA291E02F0A6CC8A024821Cs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib3AB9D743EEA291E02F0A6CC8A024821Cs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib3AB9D743EEA291E02F0A6CC8A024821Cs1
https://doi.org/10.1016/j.nuclphysb.2015.02.011
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib582CC015A98027CB15EBEE83390BEFA0s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib582CC015A98027CB15EBEE83390BEFA0s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib7D53F8885BE3C436E01D32B0B1B59C45s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib7D53F8885BE3C436E01D32B0B1B59C45s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib896A81A79BCDB6DFA20FF5D0500885AFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib896A81A79BCDB6DFA20FF5D0500885AFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib7A86560B2B7F625B543B65B51062DD90s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib3D4A507A9186A65B981658AC5FAADA90s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib1F6FCAD4D95B5B135CD8282BB9D0C86Bs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib1F6FCAD4D95B5B135CD8282BB9D0C86Bs1
https://doi.org/10.1063/1.2179052
https://doi.org/10.1063/1.2816256
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib0B094A4E5E27EB2186200F294C1B3B8Es1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib0B094A4E5E27EB2186200F294C1B3B8Es1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib727537E37F16AF55905CB3A2F507B620s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib727537E37F16AF55905CB3A2F507B620s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibB5C68318539F56AB0896716B1FE11B01s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibB5C68318539F56AB0896716B1FE11B01s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibEC9C3B75CCC48805910943B07B602660s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibDF0D91CD020B931CC18A956AE79AC3DAs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibDF0D91CD020B931CC18A956AE79AC3DAs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib66BCCDC168DC37B02E9CBFA215230594s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib66BCCDC168DC37B02E9CBFA215230594s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib66BCCDC168DC37B02E9CBFA215230594s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib66BCCDC168DC37B02E9CBFA215230594s1
https://doi.org/10.1016/j.nuclphysb.2021.115424
https://doi.org/10.1016/j.nuclphysb.2021.115424
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib70A47B4E6D95C3B69418996544B2A3EFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib70A47B4E6D95C3B69418996544B2A3EFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib70A47B4E6D95C3B69418996544B2A3EFs1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bib70A47B4E6D95C3B69418996544B2A3EFs1
https://doi.org/10.1016/j.nuclphysb.2018.12.025
https://doi.org/10.1016/j.nuclphysb.2018.12.025
https://doi.org/10.3390/sym12030352
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibCBE8D55347E51CD2267E26CEA9CCFE06s1
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibCBE8D55347E51CD2267E26CEA9CCFE06s1
https://doi.org/10.1016/j.nuclphysb.2021.115462
http://refhub.elsevier.com/S0550-3213(22)00098-0/bibF4DE735302A8F91BD94159E24BAD690Ds1
https://doi.org/10.1063/1.3366259
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Abstract

We present a comprehensive treatment of the non-periodic trigonometric s�(2) Gaudin model with tri-
angular boundary, with an emphasis on specific freedom found in the local realization of the generators, 
as well as in the creation operators used in the algebraic Bethe ansatz. First, we give Bethe vectors of the 
non-periodic trigonometric s�(2) Gaudin model both through a recurrence relation and in a closed form. 
Next, the off-shell action of the generating function of the trigonometric Gaudin Hamiltonians with gen-
eral boundary terms on an arbitrary Bethe vector is shown, together with the corresponding proof based on 
mathematical induction. The action of the Gaudin Hamiltonians is given explicitly. Furthermore, by careful 
choice of the arbitrary functions appearing in our more general formulation, we additionally obtain: i) the 
solutions to the Knizhnik-Zamolodchikov equations (each corresponding to one of the Bethe states); ii) 
compact formulas for the on-shell norms of Bethe states; and iii) closed-form expressions for the off-shell 
scalar products of Bethe states.
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1. Introduction

Gaudin systems have been a subject of study for almost half a century. Gaudin originally 
introduced them as a quasi-classical limit of the Heisenberg spin chains [1–3]. Sklyanin used a 
suitable unitary classical r-matrix [4] in the study of the rational s�(2) model [5]. A generalisation 
of these results to the skew-symmetric classical r-matrices of simple Lie algebras [6–8] and 
Lie superalgebras [9–12] was relatively straightforward as well as their Jordanian deformation 
[13–15].

Non-periodic Gaudin systems have also attracted considerable attention [16–30]. Particularly 
compelling is the approach based on the non-unitary r-matrices [31–33]. Recently we have stud-
ied the rational s�(2) Gaudin model with general boundary K-matrices, both as a limit of the 
spin-chain model [34] and independently [35], and provided a number of additional interesting 
results, from the solutions to Knizhnik-Zamolodchikov (KZ) equations to compact formulas for 
on-shell norms and for off-shell scalar products of the Bethe states [36].

A number of results are already available also for the trigonometric s�(2) Gaudin model with 
nontrivial boundary. The generating function of the trigonometric s�(2) Gaudin Hamiltonians 
with triangular boundary terms was obtained in [37]. Moreover, we have shown that in this case a 
suitable non-unitary trigonometric classical r-matrix is an essential tool in the implementation of 
the algebraic Bethe ansatz [38] and we have conjectured the spectrum of the generating function 
and the corresponding Bethe equations [38]. Restricting boundary conditions to triangular K-
matrices was here essential for the existence of unique lowest weight state, which then allowed 
straightforward application of the algebraic Bethe ansatz and finding the off-shell action of the 
generating function. The so-called modified Bethe ansatz for this model was studied in [39]. In a 
special case (when the number of excitations matched a specific value) this approach allowed a 
more general form of boundary conditions, while in the rest of the cases it was again necessary 
to restrict boundary conditions to triangular K-matrices (after which our earlier results [37,38]
would be recovered). In spite of all this progress, a number of other important problems has 
remained hitherto open and we intend to address them in the present paper.

Although we have conjectured the form of full off-shell action of the generating function 
on Bethe vectors in [38], the strict mathematical proof of the obtained formulas was lacking. 
More importantly, one of the main goals here was to provide solutions to the corresponding 
KZ equations, as well as to find the formulas for on-shell norms of Bethe vectors and for their 
off-shell scalar products – the tasks we have already successfully accomplished in the rational 
case. However, we faced serious obstacles in pursuing these goals: the straightforward approach 
adapted from the rational case was failing to produce either KZ solutions or norm/scalar product 
formulas. It was not before we noticed and employed a combination of freedom in defining the 
local realization of Gaudin algebra generators and a freedom in defining the effective creation 
operators for the Bethe vectors, that we could achieve our established objectives. This realisation 
and the corresponding technique is another novel contribution of this paper.

The approach taken here differs in many aspects from our previous work on the subject [37,
38]. As a crucial step towards the complete proof (by mathematical induction) of the off-shell 
action of the generating function, we here define Bethe states through a particular recurrence 
relation. Next, our study is here based on the unitary, trigonometric s�(2) classical r-matrix and 
the corresponding reflection K-matrix, both given in the so-called homogeneous gradation [21], 
as opposed to our previous papers [37,38] where we have used the trigonometric r-matrix and 
the classical reflection K-matrix in the principal gradation. Although the two formulations are 
equivalent, the motivation for making the present choice is related to the forementioned freedom 
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in the local realization of the new set of generators of the generalized trigonometric s�(2) Gaudin 
algebra. This approach yields a neat form of the off-shell action of the generating function on 
the Bethe vectors while at the same time enables the quest for the solutions to the corresponding 
Knizhnik-Zamolodchikov equations. Once this freedom – represented by two initially arbitrary 
functions – is fixed by solving appropriate differential equations, we not only find solutions to KZ 
equations, but also recover the compact determinant representation for the norms and the scalar 
products of the Bethe vectors, analogous to the expressions we have obtained in the rational case 
[36].

The composition of the paper is the following. In Section 2 the local realisation of the new 
generators of the relevant Gaudin algebra is given. The novel feature of this realisation is an 
arbitrary function of the local inhomogeneous parameter whose introduction does not affect the 
algebraic Bethe ansatz. The suitable creation operators and the complete details of the algebraic 
Bethe ansatz for the first two Bethe states are given in Section 3. It should be emphasised that the 
creation operator contains the second arbitrary function, this time of the rapidity parameter. In 
Section 4 we present the recurrent relation which defines the Bethe states of this system as well as 
the complete proof of the off-shell action of the generating function. The action of Gaudin Hamil-
tonians on the Bethe vectors is shown in Section 5. The solutions o the Knizhnik-Zamolodchikov 
equations are obtained in Section 6 by solving the appropriate differential equations for the two 
previously introduced arbitrary functions. The same choice for these functions allows us to de-
rive, in Section 7, very compact relations for the on-shell norm and the scalar product of the 
Bethe vectors. Finally, our conclusions are presented in Section 8. For the sake of completeness, 
the fundamental structure on which this work is based (e.g. the classical r-matrix and the corre-
sponding classical K-matrix) is presented in Appendix A. The standard definition of the Hilbert 
space of the system is given in Appendix B. The generalized Gaudin Lax operator as well as the 
Gaudin Hamiltonians with the boundary terms, both in the parametrization we have considered 
here, are given in Appendix C. In Appendix D we present the key formula in the proof of the off-
shell action of the generating function of the trigonometric Gaudin Hamiltonians with boundary 
terms.

2. Generalized trigonometric Gaudin algebra

Our approach adopted here is established upon the non-unitary r-matrix (A.5) and the Lax op-
erator (C.3), which in turn follow from the unitary, trigonometric s�(2) classical r-matrix (A.1)
and the corresponding reflection K-matrix (A.3), both given in the so-called homogeneous gra-
dation [21]. We will focus on the triangular case when the boundary parameter φ is set to zero. 
As it follows from the linear bracket (C.4), the entries of the Lax matrix (C.3) generate the gen-
eralized s�(2) trigonometric Gaudin algebra [38]. Furthermore, it is convenient to apply a linear 
triangular transformation that yields a particularly convenient set of generators which will be 
used below. These generators admit the following local realization

e(λ) =
N∑

m=1

(ξe−2αm + ν)Z(αm)S+
m

sinh(λ − αm) sinh(λ + αm)
, (2.1)

h(λ) =
N∑

m=1

S3
m + ψ

2ξν

(
ξe−2αm − ν

)
Z(αm)S+

m

sinh(λ − αm) sinh(λ + αm)
, (2.2)

3
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f (λ) =
N∑

m=1

(
ξe2αm + ν

) S−
m

Z(αm)
− ψ

ξν

(
ξ2 − ν2 − 2ξν sinh(2αm)

)
S3

m + ψ2

ξν
e−2αm

(
ξ e2αm + ν

)
Z(αm)S+

m

sinh(λ − αm) sinh(λ + αm)
,

(2.3)

where Z(αm) is an arbitrary function of the inhomogeneous parameter αm. As it will be shown in 
the next two sections, the function Z(αm) will remain arbitrary throughout the implementation 
of the algebraic Bethe ansatz. However, it will be of utmost importance both for finding the 
solutions to the Knizhnik-Zamolodchikov equations (6.7) and for finding formulas for norms 
and scalar products of Bethe vectors 7.

An important feature of the these generators is that their commutation relations are quite 
simple. Namely, the trivial commutation relations are

[e(λ), e(μ)] = [h(λ),h(μ)] = [f (λ), f (μ)] = 0, (2.4)

and the only nontrivial ones are given by

[h(λ), e(μ)] = 1

sinh(λ − μ) sinh(λ + μ)
(e(μ) − e(λ)) , (2.5)

[h(λ), f (μ)] = 1

sinh(λ − μ) sinh(λ + μ)

(
f (λ) − f (μ) + ψ2

2ξ2ν2 ×

×
((

ξ2 + ν2 + 2ξν cosh(2μ)
)

e(μ) −
(
ξ2 + ν2 + 2ξν cosh(2λ)

)
e(λ)

))
, (2.6)

[e(λ), f (μ)] = 2

sinh(λ − μ) sinh(λ + μ)
×

×
((

ξ2 + ν2 + 2ξν cosh(2μ)
)

h(μ) −
(
ξ2 + ν2 + 2ξν cosh(2λ)

)
h(λ)

)
. (2.7)

Note that function the function Z(αm) does not appear in the relations above.
Next, for the study of the algebraic Bethe ansatz it is essential to have the expression of the 

generating function τ(λ) (C.5) in terms of the generators (2.1)–(2.3).

τ(λ) = 2 sinh2(2λ)

(
h2(λ) − 4ξν h(λ)

ξ2 + ν2 + 2ξν cosh(2λ)
− h′(λ)

sinh(2λ)

)

+ 2 sinh2(2λ)

(
f (λ)

ξ2 + ν2 + 2ξν cosh(2λ)
− ψ2

4ξ2ν2 e(λ)

)
e(λ).

(2.8)

As we have shown in [38] the trigonometric s�(2) Gaudin Hamiltonians with the boundary terms 
are obtained as the residues of the generating function τ(λ) at poles λ = ±αm. For completeness, 
the explicit expressions of the Gaudin Hamiltonians Hm in the parametrisation used here are 
given in the Appendix C, more precisely, in the equation (C.7).

3. The algebraic Bethe ansatz

As it is well known [40–42], the existence of the pseudo-vacuum is essential for the alge-
braic Bethe ansatz. In the present case, the vector 
+ (see the definition in the Appendix B, in 
particular relations (B.3) and (B.4)), is annihilated by the generator e(λ), i.e.

4
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e(λ)
+ = 0 , (3.1)

and is an eigenvector of the generator h(λ),

h(λ)
+ = ρ(λ)
+ , with ρ(λ) =
N∑

m=1

sm

sinh(λ + αm) sinh(λ − αm)
. (3.2)

From the expression for the generating function τ(λ) that we have obtained in the previous 
section (2.8) and from the relations above (3.1) and (3.2) it is evident that the pseudo-vacuum is 
an eigenvector

τ(λ)
+ = χ0(λ)
+, (3.3)

with the eigenvalue χ0(λ) given by

χ0(λ) = 2 sinh2(2λ)

(
ρ2(λ) − 4ξν ρ(λ)

ξ2 + ν2 + 2ξν cosh(2λ)
− ρ′(λ)

sinh(2λ)

)
. (3.4)

One way to define the Bethe states of the system is to introduce the appropriate creation 
operators [11,42]. In this case, it is of interest to consider the following creation operators

CM(λ) = A(λ)

(
f (λ)+2ψ

(
(2M − 1)− ξ2 + ν2 + 2ξν cosh(2λ)

2ξν

(
h(λ)+ ψ

2ξν
e(λ)

)))
,

(3.5)

where A(λ) is an arbitrary function of the parameter λ. Being an overall multiplier of the cre-
ation operator, it is not surprising that the function A(λ) will not be relevant for the algebraic 
Bethe ansatz. However, it will play an important role in relation to the solutions to the Knizhnik-
Zamolodchikov equations, together with the function Z(αm) that we have introduced in the local 
realization of the generators of the generalized s�(2) trigonometric Gaudin algebra (2.1)–(2.3). 
The constant values for functions A(λ) and Z(αm) would effectively (i.e. up to technical dif-
ferences in used gradation) correspond to our earlier results [37,38]. (Similarly, with a suitable 
choice of these functions the creation operators (3.5) exactly correspond to those in the triangular 
boundary case of [39].)

In particular, it holds:

[C1(λ),C1(μ)] = 4ψ (A(λ)C1(μ) − A(μ)C1(λ)) , (3.6)

as well as

[C1(λ), e(μ)] = A(λ)

ξν sinh(λ − μ) sinh(λ + μ)

((
2νξ cosh(2λ) + ν2 + ξ2

)
×

(ψe(λ) − ψe(μ) + 2νξh(λ)) − 2νξh(μ)
(

2νξ cosh(2μ) + ν2 + ξ2
))

, (3.7)

[C1(λ),h(μ)] = A(λ)

(
2ψ2e(μ)

νξ
+ 1

sinh(λ − μ) sinh(λ + μ)
(f (μ) − f (λ))

)
, (3.8)

[C1(λ), f (μ)] = ψA(λ)

2ν3ξ3 sinh(λ − μ) sinh(λ + μ)

(
2νξ cosh(2λ) + ν2 + ξ2

)
×

(
ψ2e(λ)

(
2νξ cosh(2λ) + ν2 + ξ2

)
− ψ2e(μ)

(
2νξ cosh(2μ) + ν2 + ξ2

)
+

5
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2νξ
(−νξf (λ) + νξf (μ) + ψh(λ)

(
2νξ cosh(2λ) + ν2 + ξ2

)
−

ψh(μ)
(

2νξ cosh(2μ) + ν2 + ξ2
)))

. (3.9)

Another useful relation is:

τ(λ) = 2 sinh2(2λ)

(
h2(λ) − 4ξν h(λ)

ξ2 + ν2 + 2ξν cosh(2λ)
− h′(λ)

sinh(2λ)

)

+ 2 sinh2(2λ)

(
C1(λ) − 2ψA(λ)

A(λ)(ξ2 + ν2 + 2ξν cosh(2λ))
+ ψ

ξν

(
h(λ) + ψ

4ξν
e(λ)

))
e(λ).

(3.10)

Now it is not difficult to show that the Bethe vector ϕ1(μ) has the form

ϕ1(μ) = C1(μ)
+, (3.11)

where the operator C1(μ) is given in (3.5), with M = 1. Evidently, the action of the generating 
function of the Gaudin Hamiltonians (2.8) reads

τ(λ)ϕ1(μ) = [τ(λ),C1(μ)]
+ + χ0(λ)ϕ1(μ). (3.12)

In this case, a direct calculation shows that the commutator in the first term on the right hand side 
of (3.12) is given by

[τ(λ),C1(μ)]
+

= − 2 sinh2(2λ)

sinh(λ + μ) sinh(λ − μ)

(
2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)

)
ϕ1(μ)

+ A(μ)

A(λ)

2 sinh2(2λ)

sinh(λ + μ) sinh(λ − μ)

ξ2 + ν2 + 2ξν cosh(2μ)

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
(

2ρ(μ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2μ)

)
ϕ1(λ).

(3.13)

Consequently, the action of the generating function τ(λ) on ϕ1(μ) is given by

τ(λ)ϕ1(μ) = χ1(λ,μ)ϕ1(μ) + A(μ)

A(λ)

4 sinh2(2λ)

sinh(λ + μ) sinh(λ − μ)

ξ2 + ν2 + 2ξν cosh(2μ)

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
(

ρ(μ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μ)

)
ϕ1(λ) ,

(3.14)

where

χ1(λ,μ) = χ0(λ) − 2 sinh2(2λ)

sinh(λ + μ) sinh(λ − μ)

(
2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)

)
.

(3.15)

The unwanted term in (3.14) vanishes when the following Bethe equation is imposed on the 
parameter μ,

6
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ρ(μ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μ)
= 0. (3.16)

Thus we have shown that ϕ1(μ) (3.11) is a desired Bethe vector of the generating function τ(λ)

with the eigenvalue χ1(λ, μ) (3.15), for arbitrary choices of the functions A(μ) and Z(αm).
As the next step, we will show that the Bethe vector ϕ2(μ1, μ2) can be given in a similar form:

ϕ2(μ1,μ2) = C1(μ1)ϕ1(μ2) + 4ψ A(μ2)ϕ1(μ1). (3.17)

With the aim of obtaining the off-shell action of the generating function τ(λ) on ϕ2(μ1, μ2) we 
observe that

τ(λ)ϕ2(μ1,μ2) = [τ(λ),C1(μ1)]ϕ1(μ2) + C1(μ1) τ (λ)ϕ1(μ2) + 4ψ A(μ2) τ (λ)ϕ1(μ1).

(3.18)

As the action of τ(λ) on ϕ1(μ) known (3.14), now it is only necessary to calculate the first term 
on the right hand side of the equation above. Its straightforward to obtain

[τ(λ),C1(μ1)]ϕ1(μ2) = − 2 sinh2(2λ)

sinh(λ + μ1) sinh(λ − μ1)
×

×
(

2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)
− 2

sinh(λ + μ2) sinh(λ − μ2)

)
ϕ2(μ1,μ2)

+A(μ1)

A(λ)

2 sinh2(2λ)

sinh(λ + μ1) sinh(λ − μ1)

ξ2 + ν2 + 2ξν cosh(2μ1)

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
(

2ρ(μ1) − 4ξν

ξ2 + ν2 + 2ξν cosh(2μ1)
− 2

sinh(μ1 + μ2) sinh(μ1 − μ2)

)
ϕ2(λ,μ2)

−A(μ2)

A(λ)

2 sinh2(2λ)

sinh(λ + μ2) sinh(λ − μ2)

ξ2 + ν2 + 2ξν cosh(2μ2)

ξ2 + ν2 + 2ξν cosh(2λ)

× 2

sinh(μ2 + μ1) sinh(μ2 − μ1)
ϕ2(μ1, λ)

+ 8ψ A(μ2) sinh2(2λ)

sinh(λ + μ1) sinh(λ − μ1)

sinh(μ1 + μ2) sinh(μ1 − μ2)

sinh(λ + μ2) sinh(λ − μ2)

×
(

2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)

)
ϕ1(μ1)

− 8ψ A(μ1)A(μ2) sinh2(2λ)

A(λ) sinh(λ + μ1) sinh(λ − μ1)

ξ2 + ν2 + 2ξν cosh(2μ1)

ξ2 + ν2 + 2ξν cosh(2λ)

×
(

2ρ(μ1) − 4ξν

ξ2 + ν2 + 2ξν cosh(2μ1)

)
ϕ1(λ)

+ 8ψA(μ2) sinh2(2λ)

sinh(λ + μ2) sinh(λ − μ2)

ξ2 + ν2 + 2ξν cosh(2μ2)

ξ2 + ν2 + 2ξν cosh(2λ)

×
(

2ρ(μ2) − 4ξν

ξ2 + ν2 + 2ξν cosh(2μ2)

)
ϕ1(μ1). (3.19)

7
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Then, after substituting this formula into the equation (3.18), twice using the action of τ(λ) on 
ϕ1(μ) (3.14) and then rearranging some terms, the desired off-shell action of τ(λ) on the vector 
ϕ2(μ1, μ2) is obtained

τ(λ)ϕ2(μ1,μ2) = χ2(λ,μ1,μ2)ϕ2(μ1,μ2)

+
2∑

j=1

A(μj )

A(λ)

4 sinh2(2λ)

sinh(λ + μj ) sinh(λ − μj )

ξ2 + ν2 + 2ξν cosh(2μj )

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
(

ρ(μj ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μj )
− 1

sinh(μj + μ3−j ) sinh(μj − μ3−j )

)
× ϕ2(λ,μ3−j ),

(3.20)

with the eigenvalue

χ2(λ,μ1,μ2) = χ0(λ) −
2∑

i=1

2 sinh2(2λ)

sinh(λ + μi) sinh(λ − μi)
×

×
(

2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)
− 1

sinh(λ + μ3−i ) sinh(λ − μ3−i )

)
.

The two unwanted terms in the action above (3.20) vanish when the Bethe equations are imposed 
on the parameters μ1 and μ2,

ρ(μj ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μj )
− 1

sinh(μj + μ3−j ) sinh(μj − μ3−j )
= 0, (3.21)

with j = 1, 2. In this way, we have demonstrated that, for an arbitrary choice of the functions 
A(μj ) and Z(αm), the vector ϕ2(μ1, μ2), as defined in (3.17), is the Bethe state of the generating 
function of the Gaudin Hamiltonians with the eigenvalue χ2(λ, μ1, μ2).

4. The general form of Bethe vectors

In this section we will obtain the general form of Bethe states as well as the off-shell action of 
the generating function on these states. For arbitrary natural number M , the Bethe states of the 
system can be defined by the following recurrence relation

ϕM(μ1,μ2, . . . ,μM) = C1(μ1)ϕM−1(μ2,μ3, . . . ,μM)

+ 4ψ

M∑
j=2

A(μj ) ϕM−1(μ1,μ2, . . . , μ̂j , . . . ,μM−1,μM), (4.1)

where the notation μ̂j means that the argument μj is not present. Thus the action of the generat-
ing function of the Gaudin Hamiltonians on ϕM(μ1, μ2, . . . , μM) can be obtained as follows

τ(λ)ϕM(μ1,μ2, . . . ,μM)

= [τ(λ),C1(μ1)]ϕM−1(μ2, . . . ,μM) + C1(μ1) τ (λ)ϕM−1(μ2, . . . ,μM)

+ 4ψ

M∑
j=2

A(μj ) τ (λ)ϕM−1(μ1,μ2, . . . , μ̂j , . . . ,μM−1,μM). (4.2)

8
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According to the principle of mathematical induction, on the right hand side of the equation 
above, it is assumed that the action of τ(λ) on ϕM−1 is known. Therefore the essential step in 
the proof consists in determining the off-shell action of the commutator between the generating 
function and the creation operator, i.e. [τ(λ), C1(μ1)], on the Bethe vector ϕM−1(μ2, . . . , μM). 
This can be done by a straightforward calculation and the result is a somewhat cumbersome one-
page formula given in Appendix D, equation (D.1). Then, after substituting this formula into the 
equation (4.2) and using the action of τ(λ) on ϕM−1 in the remaining M terms on the right hand 
side of (4.2), it is also necessary to make some obvious steps which consist in rearranging some 
terms and simplifying others. Finally, as required by the mathematical induction, we obtain the 
action of the generating function on ϕM(μ1, μ2, . . . , μM) in the desired form

τ(λ)ϕM(μ1, . . . ,μM) = χM(μ1, . . . ,μM)ϕM(μ1, . . . ,μM)

+
M∑

j=1

A(μj )

A(λ)

4 sinh2(2λ)

sinh(λ + μj ) sinh(λ − μj )

ξ2 + ν2 + 2ξν cosh(2μj )

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
⎛⎝ρ(μj ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μj )
−

M∑
k �=j

1

sinh(μj + μk) sinh(μj − μk)

⎞⎠
× ϕM(λ,μ1, . . . , μ̂j , . . . ,μM),

(4.3)

where the notation μ̂j means that the argument μj is not present and the eigenvalue χM(λ, μ1,

μ2, . . . , μM) is given by

χM(λ,μ1,μ2, . . . ,μM) = χ0(λ) −
M∑

j=1

2 sinh2(2λ)

sinh(λ + μj ) sinh(λ − μj )
×

×
⎛⎝2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)
−

M∑
k �=j

1

sinh(λ + μk) sinh(λ − μk)

⎞⎠ .

(4.4)

In order to guarantee that the M unwanted terms in (4.3) will vanish, the Bethe equations have to 
be imposed on the rapidity parameters μj :

ρ(μj ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μj )
−

M∑
k �=j

1

sinh(μj + μk) sinh(μj − μk)
= 0, (4.5)

with j = 1, 2, . . . , M . In this way, we have concluded the proof.
While the form (4.1) for Bethe vectors is more convenient for the proof of the off-shell action 

relation (4.3), it is relatively straightforward to show that Bethe vectors can be also written in a 
much more compact form that was conjectured in [38]:

ϕM(μ1,μ2, . . . ,μM) = C1(μ1)C2(μ2) · · ·CM(μM)
+ (4.6)

As it is evident from the formulas above, the choice of functions A(μj) and Z(αm) does not 
affect the algebraic Bethe ansatz and therefore they may still remain arbitrary. This will remain 
so until the Section 6 where will have to fix these functions in order to derive solutions to the 
related Knizhnik-Zamolodchikov equations.

9
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5. The action of Gaudin Hamiltonians

To deal with KZ equations we must first find the off-shell action of the Gaudin Hamiltonians 
(C.7) on an arbitrary Bethe vector ϕM(μ1, . . . , μM) (4.1). It is obtained by taking the residum of 
(4.3) at λ = αm and dividing both sides of the equation by four

HmϕM(μ1,μ2, . . . ,μM) = Em,M ϕM(μ1,μ2, . . . ,μM)

+
M∑

j=1

A(μj )

A(αm)

sinh2(2λ)

sinh(αm + μj ) sinh(αm − μj )

ξ2 + ν2 + 2ξν cosh(2μj )

ξ2 + ν2 + 2ξν cosh(2αm)
×

×
⎛⎝ρ(μj ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μj )
−

M∑
k �=j

1

sinh(μj + μk) sinh(μj − μk)

⎞⎠×

× Res
λ=αm

ϕM(λ,μ1, . . . , μ̂j , . . . ,μM),

(5.1)

where the eigenvalues of the Gaudin Hamiltonians (C.7) are given by

Em,M = 1

4
Res
λ=αm

χM(λ,μ1,μ2, . . . ,μM) = sm(sm + 1) coth(2αm) + sm sinh(2αm)×

×
⎛⎝− 2ξν

ξ2 + ν2 + 2ξν cosh(2αm)
+

N∑
n�=m

sn

sinh(αm + αn) sinh(αm − αn)

⎞⎠
−

M∑
i=1

sm sinh(2αm)

sinh(αm + μi) sinh(αm − μi)
,

(5.2)

and, for example,

Res
λ=αm

ϕM(λ,μ2, . . . ,μM) = Res
λ=αm

C1(λ) (ϕM−1(μ2, . . . ,μM)

+ 4ψ

M∑
j=2

A(μj ) ϕM−2(μ2, . . . , μ̂j , . . .μM)

+ (4ψ)2 · 2
M∑

j,k=2
k �=j

A(μj )A(μk) ϕM−3(μ2, . . . , μ̂j , . . . , μ̂k, . . . ,μM) + · · ·

+ (4ψ)M−1 · (M − 1)! A(μ2)A(μ3) · · ·A(μM) 
+
)

.

(5.3)

Here the residuum of the creation operator (3.5) at the pole λ = αm is given by

Res
λ=αm

C1(λ) = A(αm)
(
ξe2αm + ν

)
sinh(2αm)

(
S−

m

Z(αm)
− 2

ψ

ν
e−2αm S3

m − ψ2

ν2 e−4αmZ(αm)S+
m

)
.

(5.4)

10
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This action will be essential in obtaining solutions to the corresponding Knizhnik-Zamolodchi-
kov equations in the following section.

6. Knizhnik-Zamolodchikov equations

Even before writing down the form of Knizhnik-Zamolodchikov equations in this context, we 
note that the results in this section will be obtained under the condition that the boundary param-
eter ψ is set to zero. Having in mind the local realization (2.1)–(2.3), it should be emphasised 
that then the creation operator (3.5) simplifies to become

C̃(λ) = CM(λ)

∣∣∣
ψ=0

= A(λ)

N∑
m=1

ξ e2αm + ν

Z(αm) sinh(λ − αm) sinh(λ + αm)
S−

m, (6.1)

and therefore the Bethe vectors (4.1) simplify as well

ϕ̃M(μ1,μ2, . . . ,μM) = ϕM(μ1,μ2, . . . ,μM)

∣∣∣
ψ=0

= C̃(μ1) C̃(μ2) · · · C̃(μM)
+. (6.2)

Moreover, when ψ = 0, the Gaudin Hamiltonians (C.7) reduce to

H̃m = Hm

∣∣∣
ψ=0

=
N∑

n�=m

(
coth(αm − αn) S3

m · S3
n + eαm−αn S−

m · S+
n + e−(αm−αn) S+

m · S−
n

2 sinh(αm − αn)

)

+
N∑

n=1

coth(αm + αn)

(
S3

m · S3
n + S3

n · S3
m

2

)

+
N∑

n=1

e−(αm+αn)

sinh(αm + αn)

(
ξ e2αm + ν

ξ e−2αm + ν

S−
m · S+

n + S+
n · S−

m

4

)

+
N∑

n=1

eαm+αn

sinh(αm + αn)

(
ξ e−2αm + ν

ξ e2αm + ν

S+
m · S−

n + S−
n · S+

m

4

)
. (6.3)

Also, observe that, in this case, the equation (5.1) takes the following from

H̃mϕ̃M(μ1,μ2, . . . ,μM) = Em,M ϕ̃M(μ1,μ2, . . . ,μM)

+
M∑

j=1

A(μj )

A(αm)

sinh2(2λ)

sinh(αm + μj ) sinh(αm − μj )

ξ2 + ν2 + 2ξν cosh(2μj )

ξ2 + ν2 + 2ξν cosh(2αm)
×

×
⎛⎝ρ(μj ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μj )
−

M∑
k �=j

1

sinh(μj + μk) sinh(μj − μk)

⎞⎠×

× Res
λ=αm

ϕ̃M(λ,μ1, . . . , μ̂j , . . . ,μM),

(6.4)

where the eigenvalue Em,M of the Gaudin Hamiltonian H̃m is given by (5.2), the notation μ̂j

means that the argument μj is not present and

Res
λ=αm

ϕ̃M(λ,μ1, . . . , μ̂j , . . . ,μM) = Res
λ=αm

C̃(λ) ϕ̃M−1(μ1, . . . , μ̂j , . . . ,μM) (6.5)

11
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with

Res
λ=αm

C̃(λ) = A(αm)

Z(αm)

ξ e2αm + ν

sinh(2αm)
S−

m. (6.6)

The interplay between the Bethe vectors of the Gaudin models and solutions to the corre-
sponding Knizhnik-Zamolodchikov equations have attracted some attention [11,12,36,43–48]. 
The main objective of this section is to consider the Knizhnik-Zamolodchikov equations

κ ∂αm�(α1, α2, . . . , αN) = H̃m �(α1, α2, . . . , αN) , (6.7)

where the Hamiltonians H̃m are given by (6.3). The goal is to find the functions (i.e. states) 
�(α1, α2, . . . , αN) with the curious property that the action of the Gaudin Hamiltonians H̃m on 
these states reduces to mere derivation with respect to parameters αm.

Following a common approach [11,12,36,45,46], we seek solutions to the equations above in 
the form of contour integrals with respect to the variables μ1, μ2, . . . , μM

�(α1, α2, . . . , αN) =
∮

· · ·
∮

�( �μ|�α) · ϕ̃M( �μ|�α) dμ1 · · ·dμM, (6.8)

where the integrating factor is a scalar function �( �μ|�α) that we will seek in the form:

�( �μ|�α) = exp

(
S( �μ|�α)

κ

)
. (6.9)

We choose the function S( �μ|�α) to be:

S( �μ|�α) =
N∑

m=1

sm(sm + 1)

2
ln(sinh(2αm)) −

N∑
m=1

sm

2
ln

(
ξ2 + ν2 + 2ξν cosh(2αm)

)

+
N∑

m>n

smsn (ln(sinh(αm − αn)) + ln(sinh(αm + αn)))

−
M∑

j=1

N∑
m=1

sm
(
ln(sinh(αm − μj )) + ln(sinh(αm + μj ))

)

+
M∑

j=1

ln
(
ξ2 + ν2 + 2ξν cosh(2μj )

)
+

M∑
j>k

(
ln(sinh(μj − μk))

+ ln(sinh(μj + μk))
)
,

(6.10)

so that it becomes straightforward to check that the function φ( �μ|�α), as defined above, satisfies 
the following system of linear partial differential equations

κ ∂αm� = Em,M �, (6.11)

κ ∂μj
� = βM(μj ) �, (6.12)

with Em,M given by (5.2) and

12
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βM(μj ) = − sinh(2μj )

(
ρ(μj ) − 2ξν

ξ2 + ν2 + 2ξν cosh(2μj )

−
M∑

k �=j

1

sinh(μj + μk) sinh(μj − μk)

)
. (6.13)

Note that, up to multiplication by − sinh(2μj ), the functions βM(μj ) coincide with the left-hand 
sides of Bethe equations (4.5). Alternatively, we might have imposed Bethe equations in the form 
βM(μj ) = 0.

For later convenience we rewrite the equation (6.4) as follows

H̃mϕ̃M(μ1,μ2, . . . ,μM) = Em,M ϕ̃M(μ1,μ2, . . . ,μM)

+
3∑

j=1

sinh(2αm)

sinh(μj + αm) sinh(μj − αm)

ξ2 + ν2 + 2ξν cosh(2μj )

Z(αm)
(
ξ e−2αm + ν

)
× A(μj )

sinh(2μj )
βM(μj ) · ϕ̃(j,m)

M−1 ,

(6.14)

where we have used the notation

ϕ̃
(j,m)

M−1 = S−
m ϕ̃M−1(μ1, . . . , μ̂j , . . . ,μM), (6.15)

once more, μ̂j means that the argument μj is not present.
Now, for the KZ equations to be satisfied, the following must hold:

∂αmϕ̃M =
M∑

j=1

∂μj

(
ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

A(μj )

sinh(2μj )

× sinh(2αm)

Z(αm)
(
ξ e−2αm + ν

) ϕ̃
(j,m)

M−1

)
. (6.16)

The novel feature in the present case is that the functions A(μj) of the rapidity parameter μj

and Z(αm) of the inhomogeneous parameter αm appear on both sides of the equation (6.16). It 
is easy to check that, without these functions, equality (6.16) simply would not hold. But in their 
presence, we can try to determine these functions in such a way that the equation (6.16) is valid 
for an arbitrary natural number M .

With the aim of satisfying the equation (6.16) for arbitrary M , we write the same equation in 
the case when M = 1

∂αm C̃(μ)
+ =∂μ

(
ξ2 + ν2 + 2ξν cosh(2μ)

sinh(αm + μ) sinh(αm − μ)

A(μ)

sinh(2μ)

sinh(2αm)

Z(αm)
(
ξ e−2αm + ν

)
× S−

m 
+
)

(6.17)

On the left hand side of the equation above we substitute the expression for the operator C̃(μ)

(6.1) and we use the identity

13
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∂αm

sinh(2μ)

sinh(μ − αm) sinh(μ + αm)
= ∂μ

(
ξ2 + ν2 + 2ξν cosh(2μ)

sinh(αm − μ) sinh(αm + μ)

)
× sinh(2αm)

ξ2 + ν2 + 2ξν cosh(2αm)
, (6.18)

to obtain the following equation

Z(αm)
(
ξ e−2αm + ν

)
sinh(2αm)

∂αm

ξ e2αm + ν

Z(αm)
= −ξ2 + ν2 + 2ξν cosh(2μ)

A(μ)
∂μ

A(μ)

sinh(2μ)
. (6.19)

Evidently, in the equation above the variables are separated and therefore we have to solve

∂αmZ(αm)

Z(αm)
− 2 ξ e2αm

ξ e2αm + ν
+ C sinh(2αm)

ξ2 + ν2 + 2ξν cosh(2αm)
= 0, (6.20)

and

∂μ A(μ)

A(μ)
− 2 coth(2μ) + C sinh(2μ)

ξ2 + ν2 + 2ξν cosh(2μ)
= 0, (6.21)

where C is an arbitrary constant. The general solution of the equations above is

Z(αm) = C1
ξ e2αm + ν(

ξ2 + ν2 + 2ξν cosh(2αm)
) C

4ξν

, (6.22)

A(μ) = C2
sinh(2μ)(

ξ2 + ν2 + 2ξν cosh(2μ)
) C

4ξν

, (6.23)

where C1 and C2 are additional arbitrary constants. One possible solution is obtained if we set 
C = 0 and C1 = C2 = 1. In this case, forms of the functions become extremely simple:

Z(αm) = ξ e2αm + ν, and A(μ) = sinh(2μ). (6.24)

After substituting these expressions into (6.1) and (6.2), it is not difficult to confirm that (6.16)
is valid for an arbitrary positive integer M . However, we will nevertheless choose C = 2ξν and 
C1 = C2 = 1, since these values will turn out to be far more suitable in the next section, when 
we discuss norms and scalar products of Bethe vectors. With these values, we obtain:

Z(αm) = ξ e2αm + ν√
ξ2 + ν2 + 2ξν cosh(2αm)

and A(μ) = sinh(2μ)√
ξ2 + ν2 + 2ξν cosh(2μ)

.

(6.25)

It is straightforward to verify that (6.16) is valid also in this case.
For completeness, we proceed to show that the functions �(α1, α2, . . . , αN) (6.8) are solutions 

to the Knizhnik-Zamolodchikov equations (6.7)

κ ∂αm (� · ϕ̃M) = (
κ ∂αm�

) · ϕ̃M + � · (κ ∂αmϕ̃M

)
. (6.26)

As the next step, in the first term, we substitute the right-hand-side of (6.11) and in the second 
term we use (6.16), with (6.25), to obtain

14
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κ ∂αm (� · ϕ̃M) =Em,M (� · ϕ̃M) + � · κ
M∑

j=1

∂μj

( √
ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

× sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

ϕ̃
(j,m)
M−1

)
. (6.27)

We use (6.14), with (6.25), to express the first term and we rewrite the second term of the equation 
above using the Leibniz rule

κ ∂αm (� · ϕ̃M) = Hm (� · ϕ̃M) +
M∑

j=1

√
ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

× sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

×

× βM(μj ) · � · ϕ̃(j,m)
M−1 + κ

M∑
j=1

∂μj

( √
ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

× sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

� · ϕ̃(j,m)
M−1

)

− κ

M∑
j=1

(
∂μj

�
) √

ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

ϕ̃
(j,m)
M−1 .

(6.28)

Then, in the last term we use (6.12) to obtain

κ ∂αm (� · ϕ̃M) = Hm (� · ϕ̃M) +
M∑

j=1

√
ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

×

× βM(μj ) · � · ϕ̃(j,m)

M−1 + κ

M∑
j=1

∂μj

( √
ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

× sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

� · ϕ̃(j,m)

M−1

)

−
M∑

j=1

√
ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

βM(μj ) · � · ϕ̃(j,m)

M−1 .

(6.29)

15
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Finally, we simplify the second and the last term to conclude

κ ∂αm (� · ϕ̃M) = Hm (� · ϕ̃M)

+ κ

M∑
j=1

∂μj

⎛⎜⎝
√

ξ2 + ν2 + 2ξν cosh(2μj )

sinh(αm + μj ) sinh(αm − μj )

sinh(2αm)√
ξ2 + ν2 + 2ξν cosh(2αm)

� · ϕ̃(j,m)

M−1

⎞⎟⎠ .

(6.30)

Evidently, the terms in the second line of (6.30) will not contribute to the contour integrals with 
respect to variables μj , j = 1, 2, . . . , M , in (6.8). Therefore, we have shown that every Bethe 
vector ϕ̃M(μ1, μ2, . . . , μM) (6.2) yields a solution �(α1, α2, . . . , αN) (6.8) to the Knizhnik-
Zamolodchikov equations (6.7).

7. Norms and scalar products

In this section we will first study the on-shell norms of the Bethe vectors ̃ϕM(μ1, μ2, . . . , μM)

(6.2). With the choice we made for the function Z(αm), the local realization of the generators is 
given by:

e(λ) =
N∑

m=1

√
ξ2 + ν2 + 2ξν cosh(2αm) S+

m

sinh(λ − αm) sinh(λ + αm)
, (7.1)

h(λ) =
N∑

m=1

S3
m

sinh(λ − αm) sinh(λ + αm)
, (7.2)

f (λ) =
N∑

m=1

√
ξ2 + ν2 + 2ξν cosh(2αm) S−

m

sinh(λ − αm) sinh(λ + αm)
. (7.3)

As the first step, the norm of the Bethe vector

ϕ̃1(μ) = C̃(μ)
+ = sinh(2μ)√
ξ2 + ν2 + 2ξν cosh(2μ)

f̃ (μ)
+ , (7.4)

is calculated, when the Bethe equation (3.16) is imposed on the parameter μ, to be∥∥ϕ̃1(μ)
∥∥2 = −2 sinh(2μ)

(
ρ′(μ) + 4ξν sinh(2μ)

ξ2 + ν2 + 2ξν cosh(2μ)
ρ(μ)

)

= 2
∂β1(μ)

∂μ

∣∣∣
β1(μ)=0

= 2
∂2S(μ)

∂μ2

∣∣∣
β1(μ)=0

.

(7.5)

As the next step, we obtain the norm of the Bethe vector

ϕ̃2(μ1,μ2) = C̃(μ1)C̃(μ2)
+

= sinh(2μ1)√
ξ2 + η2 + 2ξν cosh(2μ1)

sinh(2μ2)√
ξ2 + η2 + 2ξν cosh(2μ2)

f̃ (μ1)f̃ (μ2)
+ ,

(7.6)
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when the Bethe equation (3.21) is imposed on the parameter μ1 and μ2, to be

∥∥ϕ̃2(μ1,μ2)
∥∥2 = 22 det

( ∂β2(μ1)
∂μ1

∂β2(μ2)
∂μ1

∂β2(μ1)
∂μ2

∂β2(μ2)
∂μ2

)∣∣∣∣∣β2(μ1)=0
β2(μ2)=0

= 22 det

⎛⎝ ∂2S

∂μ2
1

∂2S
∂μ1∂μ2

∂2S
∂μ2∂μ1

∂2S

∂μ2
2

⎞⎠∣∣∣∣∣β2(μ1)=0
β2(μ2)=0

.

(7.7)

In general, the norm of the Bethe vector

ϕ̃M(μ1,μ2, . . . ,μM) = C̃(μ1) · · · C̃(μM)
+ , (7.8)

where M is an arbitrary natural number, is calculated to be

∥∥ϕ̃M(μ1,μ2, . . . ,μM)
∥∥2 = 2M det

⎛⎜⎜⎜⎜⎝
∂2S

∂μ2
1

∂2S
∂μ1∂μ2

. . . ∂2S
∂μ1∂μM

...
. . .

...

∂2S
∂μM∂μ1

∂2S
∂μM∂μ2

. . . ∂2S

∂μ2
M

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣ βM(μ1)=0

...
βM(μM)=0

,

(7.9)

when the Bethe equation (4.5) is imposed on the parameters μ1, . . . , μM . Therefore, we confirm 
that relations for norm, analogous to those in rational case [36], now hold also in the trigonomet-
ric case, thanks to the proper choices of Z(αm) and A(μ) functions.

Furthermore, with this choice for Z(αm) and A(μ), it is also possible to calculate more gen-
eral expression for the off-shell scalar product of the Bethe vectors, again analogous as in the 
rational case [36]. It turns out that the scalar product

〈ϕ̃M(μ1,μ2, . . . ,μM), ϕ̃M(ν1, ν2, . . . , νM)〉
= 〈
+, C̃∗(μ1) · · · C̃∗(μM)C̃(ν1) · · · C̃(νM) 
+〉 , (7.10)

is proportional to

〈
+, e(μ1) · · · e(μM)f (νM) · · ·f (ν1) 
+〉 = 2M
∑

σ∈SM

detMσ , (7.11)

where SM is the symmetric group of degree M and the entries of the M × M matrix Mσ are 
given by

Mσ
jj = −

(
ξ2 + ν2 + 2ξν cosh(2μj )

)
ρ(μj ) − (

ξ2 + ν2 + 2ξν cosh(2νσ(j))
)
ρ(νσ(j))

sinh(μj − νσ(j)) sinh(μj + νσ(j))

− 1

2

M∑
k �=j

(
ξ2 + ν2 + 2ξν cosh(2μk)

) + (
ξ2 + ν2 + 2ξν cosh(2νσ(k))

)
sinh(μj − μk) sinh(μj + μk) sinh(νσ(j) − νσ(k)) sinh(νσ(j) + νσ(k))

,

(7.12)

Mσ
jk = −1

2

(
ξ2 + ν2 + 2ξν cosh(2μk)

) + (
ξ2 + ν2 + 2ξν cosh(2νσ(k))

)
sinh(μj − μk) sinh(μj + μk) sinh(νσ(j) − νσ(k)) sinh(νσ(j) + νσ(k))

, (7.13)

where j, k = 1, 2, . . . , M .
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8. Conclusions

We have demonstrated the implementation of the algebraic Bethe ansatz for the trigonometric 
Gaudin model with boundary terms, which we have conjectured in our previous paper [38]. The 
Bethe vectors are here defined by the recurrent relation (4.1). We have shown the action of the 
generating function τ(λ) on an arbitrary Bethe vector (4.3). The proof was based on mathematical 
induction. The key step in the proof is calculating the off-shell action of the commutator between 
the generating function and the relevant creation operator on the previous Bethe vector. This was 
been done by a straightforward calculation and the result is presented in Appendix D, equation 
(D.1), and is valid for an arbitrary natural number M.

The work we have presented here is based on the non-unitary classical r-matrix (A.5) which is 
given in the so-called homogeneous gradation, as opposed to our previous papers [37,38] where 
we have used the r-matrix in the principal gradation. As we have shown, the novel feature in 
this approach is the certain freedom we have found in the local realization of the generators of 
the generalized trigonometric s�(2) Gaudin algebra as well as in the creation operators we have 
used in the algebraic Bethe ansatz. It is precisely this structure that supports the interplay with 
the corresponding Knizhnik-Zamolodchikov equations. As a result we have obtained not only 
the solutions to the Knizhnik-Zamolodchikov equations, each of which corresponding to every 
Bethe state we have constructed, but also some neat formulas for the on-shell norms and off-self 
scalar products of these Bethe states, in some sense, analogous to the ones we have obtained 
previously in the rational case [36].
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Appendix A. Classical r-matrix

The study presented in this paper is based on the following classical r-matrix [20,49,50]

r(λ) = −coth(λ)

2
σ 3 ⊗ σ 3 − 1

4 sinh(λ)

(
e−λ σ+ ⊗ σ− + eλ σ− ⊗ σ+)

, (A.1)

where σα , with α = +, −, 3 are the Pauli matrices

σα =
(

δα3 2δα+
2δα− −δα3

)
.
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This unitarity classical r-matrix is a solution to the (proper) classical Yang-Baxter equation and 
it has the following symmetry [4].

[σ 3
1 + σ 3

2 , r12(λ)] = 0 . (A.2)

In this case, the relevant K-matrix is given by [20,49,50]

K(λ) =
(

ξ e−2λ + ν 2ψ sinh(2λ)

2φ sinh(2λ) ξ e2λ + ν

)
, (A.3)

where we use the standard parametrization of [51]. This K-matrix and the r-matrix (A.1) satisfy 
the classical reflection equation [35,52,53]

r12(λ − μ)K1(λ)K2(μ) + K1(λ)r21(λ + μ)K2(μ) =
= K2(μ)r12(λ + μ)K1(λ) + K2(μ)K1(λ)r21(λ − μ).

(A.4)

Thus, the corresponding non-unitary r-matrix defined by [35]

rK
12(λ,μ) = r12(λ − μ) − K2(μ)r12(λ + μ)K−1

2 (μ) , (A.5)

satisfies the generalized classical Yang-Baxter equation [31–33,35,54–56]

[rK
32(ν,μ), rK

13(λ, ν)] + [rK
12(λ,μ), rK

13(λ, ν)] + [rK
12(λ,μ), rK

23(μ, ν)] = 0. (A.6)

Moreover, it is straightforward to check the following useful identities

K(λ)K(−λ) = det (K(λ))1, (A.7)

K(−λ) = tr (K(λ))1− K(λ). (A.8)

When the parameters are chosen so that ξ2 + 4ψϕ �= 0, the K-matrix (A.3) admits two distinct 
eigenvalues

ε±(λ) = ξ cosh(2λ) ±
√

ξ2 + 4ψφ sinh(2λ) + ν . (A.9)

In this case, for φ �= 0, there exists the matrix

U =
(

ξ + √
ξ2 + 4ψφ ξ − √

ξ2 + 4ψφ

−2φ −2φ

)
(A.10)

such that

K(λ) = UD(λ)U−1, with D(λ) =
(

ε−(λ) 0

0 ε+(λ)

)
. (A.11)

Under the conditions above there exists the matrix

M =
(

ξ + √
ξ2 + 4ψφ −2φ

−2φ ξ + √
ξ2 + 4ψφ

)
(A.12)

such that

M−1 K(λ)M =
(

ε−(λ) 2 (ψ + φ) sinh(2λ)

0 ε+(λ)

)
. (A.13)
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An analogous diagonalization can be obtained for ψ �= 0. However, when ξ2 + 4ψϕ = 0, the 
matrix (A.3) cannot be diagonalized. In this case, its Jordan form is given by

K(λ) = V(λ)J (λ)V−1(λ), (A.14)

where

V(λ) =
( −ξ sinh(2λ) 1

2φ sinh(2λ) 0

)
, and J (λ) =

(
ξ cosh(2λ) + ν 1

0 ξ cosh(2λ) + ν

)
.

(A.15)

Appendix B. Hilbert space

It is well known that the Hilbert space of the inhomogeneous trigonometric s�(2) Gaudin 
model with N sites, characterised by the local space Vm = C2s+1 together with the corresponding 
inhomogeneous parameter αm, is given by [20,37–39]

H = N⊗
m=1

Vm = (C2s+1)⊗N. (B.1)

The local spin operators Sα
m, here α = +, −, 3, satisfy the usual commutation relations

[S3
m,S±

n ] = ±S±
m δmn, [S+

m,S−
n ] = 2S3

m δmn. (B.2)

Moreover, for every m ∈ {1, . . . , N}
∃ωm ∈ Vm : S3

mωm = smωm and S+
mωm = 0. (B.3)

Then the vector 
+ is defined to be


+ = ω1 ⊗ · · · ⊗ ωN ∈ H. (B.4)

Appendix C. Linear bracket

The Lax operator

L0(λ) =
N∑

m=1

(
coth(λ − αm) σ 3

0 ⊗ S3
m

+ 1

2 sinh(λ − αm)

(
e−λ+αmσ+

0 ⊗ S−
m + eλ−αmσ−

0 ⊗ S+
m

))
, (C.1)

and the r-matrix (A.1) satisfy the so-called Sklyanin linear bracket [5,10–12]

[L0(λ),L0′(μ)] = [r00′(λ − μ),L0(λ) + L0′(μ)] . (C.2)

Consequently, the entries of the Lax operator (C.1) generate the s�(2) trigonometric Gaudin 
algebra.

In the study of the generalized trigonometric s�(2) Gaudin algebra the relevant the Lax oper-
ator is given by

L0(λ) = L0(λ) − K0(λ)L0(−λ)K−1
0 (λ), (C.3)
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where L0(λ) is the Lax operator (C.1) and K0(λ) the reflection K-matrix is defined in (A.3). The 
Lax operator (C.3) obeys the following linear bracket [31–33,35,54–56]

[L0(λ),L0′(μ)] =
[
rK

00′(λ,μ),L0(λ)
]
−

[
rK

0′0(μ,λ),L0′(μ)
]
. (C.4)

This linear bracket is obviously anti-symmetric and it obeys the Jacobi identity because the r-
matrix (A.5) satisfies the classical Yang-Baxter equation (A.6).

The generating function of the Gaudin Hamiltonians with boundary terms is given by

τ(λ) = tr0

(
L2

0(λ)
)

, (C.5)

and it generates an Abelian subalgebra since it commutes for different values of the spectral 
parameter,

[τ(λ), τ (μ)] = 0 . (C.6)

It this formulation the trigonometric Gaudin Hamiltonians with boundary terms have slightly 
different form in terms of local operators

Hm = (±1)

4
Res

λ=±αm

τ(λ)

=
N∑

n�=m

(
coth(αm − αn) S3

m · S3
n + eαm−αn S−

m · S+
n + e−(αm−αn) S+

m · S−
n

2 sinh(αm − αn)

)

+
N∑

n=1

coth(αm + αn)

(
S3

m · S3
n + S3

n · S3
m

2
− 2ψ sinh(2αm)

ξ e2αm + ν

S+
m · S3

n + S3
n · S+

m

2

)

+
N∑

n=1

e−(αm+αn)

sinh(αm + αn)

(
2ψ sinh(2αm)

ξ e−2αm + ν

S3
m · S+

n + S+
n · S3

m

2

+ ξ e2αm + ν

ξ e−2αm + ν

S−
m · S+

n + S+
n · S−

m

4

)

+
N∑

n=1

e−(αm+αn)

sinh(αm + αn)

(
− 2ψ2 sinh2(2αm)

(ξ e2αm + ν)(ξ e−2αm + ν)

S+
m · S+

n + S+
n · S+

m

2

)

+
N∑

n=1

eαm+αn

sinh(αm + αn)

(
ξ e−2αm + ν

ξ e2αm + ν

S+
m · S−

n + S−
n · S+

m

4

)
.

(C.7)

Appendix D. Crucial formula

Obtained by direct calculation, the action of the commutator between τ(λ) and the creation 
operator on the Bethe vector ϕM−1(μ2, . . . , μM) represents the crucial step in the proof of the 
off-shell action of the generating function
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[τ(λ),C1(μ1)]ϕM−1(μ2, . . . ,μM) = − 2 sinh2(2λ)

sinh(λ + μ1) sinh(λ − μ1)
×

×
⎛⎝2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)
−

M∑
j=2

2

sinh(λ + μj ) sinh(λ − μj )

⎞⎠
×ϕM(μ1,μ2, . . . ,μM)

+A(μ1)

A(λ)

2 sinh2(2λ)

sinh(λ + μ1) sinh(λ − μ1)

ξ2 + ν2 + 2ξν cosh(2μ1)

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
⎛⎝2ρ(μ1) − 4ξν

ξ2 + ν2 + 2ξν cosh(2μ1)
−

M∑
j=2

2

sinh(μ1 + μj ) sinh(μ1 − μj )

⎞⎠
×ϕM(λ,μ2, . . . ,μM)

+
M∑

j=2

A(μj )

A(λ)

2 sinh2(2λ)

sinh(λ + μj ) sinh(λ − μj )

ξ2 + ν2 + 2ξν cosh(2μj )

ξ2 + ν2 + 2ξν cosh(2λ)
×

× 2

sinh(μ1 + μj ) sinh(μ1 − μj )
ϕM(λ,μ1,μ2, . . . , μ̂j , . . . ,μM)

+
M∑

j=2

8ψ A(μj ) sinh2(2λ)

sinh(λ + μ1) sinh(λ − μ1)

sinh(μ1 + μj ) sinh(μ1 − μj )

sinh(λ + μj ) sinh(λ − μj )
×

×
⎛⎝2ρ(λ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2λ)
−

M∑
k �=1,j

2

sinh(λ + μk) sinh(λ − μk)

⎞⎠
×ϕM−1(μ1,μ2, . . . , μ̂j , . . . ,μM)

+
M∑

j=2

4ψ A(μj )

A(λ)

2 sinh2(2λ)

sinh(λ + μj ) sinh(λ − μj )

ξ2 + ν2 + 2ξν cosh(2μj )

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
M∑

k �=1,j

2A(μk) sinh(μ1 + μk) sinh(μ1 − μk)

sinh(μj + μ1) sinh(μj − μ1) sinh(μj + μk) sinh(μj − μk)

×ϕM−1(λ,μ1,μ2, . . . , μ̂j , . . . , μ̂k, . . . ,μM)

−
M∑

j=2

4ψ A(μ1)A(μj )

A(λ)

2 sinh2(2λ)

sinh(λ + μ1) sinh(λ − μ1)

ξ2 + ν2 + 2ξν cosh(2μ1)

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
⎛⎝2ρ(μ1) − 4ξν

ξ2 + ν2 + 2ξν cosh(2μ1)
−

M∑
k �=1,j

2

sinh(μ1 + μk) sinh(μ1 − μk)

⎞⎠
×ϕM−1(λ,μ2, . . . , μ̂j , . . . ,μM)
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+
M∑

j=2

8ψ A(μj ) sinh2(2λ)

sinh(λ + μj ) sinh(λ − μj )

ξ2 + ν2 + 2ξν cosh(2μj )

ξ2 + ν2 + 2ξν cosh(2λ)
×

×
⎛⎝2ρ(μj ) − 4ξν

ξ2 + ν2 + 2ξν cosh(2μj )
−

M∑
k �=1,j

2

sinh(μj + μk) sinh(μj − μk)

⎞⎠
×ϕM−1(μ1, . . . , μ̂j , . . . ,μM) . (D.1)
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[35] N. Cirilo António, N. Manojlović, E. Ragoucy, I. Salom, Algebraic Bethe ansatz for the s�(2) Gaudin model with 

boundary, Nucl. Phys. B 893 (2015) 305–331, arXiv :1412 .1396.
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Abstract
High p⊥ theory and data are commonly used to study high p⊥ parton interactions with QGP, while low p⊥ data and
corresponding models are employed to infer QGP bulk properties. On the other hand, with a proper description of
high p⊥ parton-medium interactions, high p⊥ probes become also powerful tomography tools, since they are sensitive
to global QGP features, such as different temperature profiles or initial conditions. This tomographic role of high p⊥
probes can be utilized to assess the spatial anisotropy of the QCD matter. With our dynamical energy loss formalism,
we show that a (modified) ratio of RAA and v2 presents a reliable and robust observable for straightforward extraction of
initial state anisotropy. We analytically estimated the proportionality between the v2/(1−RAA) and anisotropy coefficient
ε2L, and found surprisingly good agreement with full-fledged numerical calculations. Within the current error bars, the
extraction of the anisotropy from the existing data using this approach is still inaccessible. However, with the expected
accuracy improvement in the upcoming LHC runs, the anisotropy of the QGP formed in heavy ion collisions can be
straightforwardly derived from the data. Such a data-based anisotropy parameter would present an important test to
models describing the initial stages of heavy-ion collision and formation of QGP, and demonstrate the usefulness of
high p⊥ theory and data in obtaining QGP properties.

Keywords: Quark-gluon plasma, High p⊥ probes, Initial anisotropy

1. Introduction

Understanding the properties of the new form of matter named Quark-Gluon Plasma (QGP) is the major
goal of relativistic heavy ion physics [1, 2]. However, to explore the properties of QGP, one needs good
probes. With regards to that, it is commonly assumed that high p⊥ theory and data are good probes for
exploring the high p⊥ parton interactions with QGP, while low p⊥ theory and data are considered as good
probes for bulk QGP properties. Contrary to this common assumption, the goal of this contribution is to
demonstrate that high p⊥ particles can also be useful independent probes of bulk QGP properties.

To put it simply, the main idea is that when high p⊥ particles transverse QGP, they lose energy, where
this energy loss is sensitive to bulk QGP properties, such as its temperature profiles or initial conditions.
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Consequently, with a realistic and sophisticated high p⊥ parton energy loss model, high p⊥ probes can
indeed become powerful tomographic tools. So, in this contribution, we will present how we can use these
probes to infer some of the bulk QGP properties, i.e., for precision QGP tomography. Note that only the
main results are presented here; for a more detailed version, see [3], and references therein.

2. DREENA framework

To achieve the goal of utilizing high p⊥ theory and data for inferring the bulk QGP properties, as pre-
viously implied, a reliable high p⊥ parton energy loss model is necessary. With this goal in mind, we de-
veloped a dynamical energy loss formalism [4, 5], which takes into account some more realistic and unique
features, such as: i) The calculations are performed within finite temperature field theory and generalized
Hard-Thermal-Loop [6] approach, in which the infrared divergences are naturally regulated, excluding the
need for artificial cutoffs. ii) The formalism assumes QCD medium of finite size and finite temperature,
consisting of dynamical partons (i.e., energy exchange with medium constituents is included), in distinction
to commonly considered static scatterers approximation and/or models with vacuum-like propagators. iii)
Both radiative [4] and collisional [5] energy losses are calculated within the same theoretical framework,
and are equally applicable to light and heavy flavors. iv) The formalism is generalized to include a finite
chromomagnetic mass [7], running coupling, and to relax the widely used soft-gluon approximation [8].
Finally, the formalism is integrated in a numerical framework DREENA (Dynamical Radiative and Elastic
ENergy loss Approach) [9, 10], to provide predictions for high p⊥ observables.

Within this framework, we generated a wide set of high p⊥ predictions using 1D Bjorken expansion [11]
(i.e., DREENA-B framework [10]). Thus we obtained a good joint agreement with a wide range of high p⊥
RAA and v2 data, by applying the same numerical procedure, the same parameter set, and no fitting param-
eters in model testing. That is, there is no v2 puzzle [12] within our model, which then strongly suggests
that the model provides a realistic description of high p⊥ parton-medium interactions. Moreover, our pre-
liminary findings suggest that, within our formalism, moving from 1D Bjorken to full 3D hydrodynamical
expansion does not significantly affect the agreement of our predictions with high p⊥ RAA and v2 data [13].
Consequently, in order to adequately address the high p⊥ measurements, a proper description of high p⊥
parton interactions with the medium appears to be much more important than an advanced medium evo-
lution description. Furthermore, we have also analyzed the sensitivity of high p⊥ RAA and v2 to different
initial stages, giving an additional insigth in the usefulness of both high p⊥ observables in the precision QGP
tomography [14].

3. Inferring QGP anisotropy through high p⊥ theory and data

As one example of QGP tomography, in this contribution, we will address how to infer the QGP
anisotropy from high p⊥ RAA and v2 data. The initial state anisotropy is one of the main properties of
QGP and a major limiting factor for precision QGP tomography. However, despite its essential impor-
tance, it is still not possible to directly infer the initial anisotropy from experimental measurements. Several
theoretical studies [15, 16, 17, 18] have provided different methods for calculating the initial anisotropy,
leading to notably different predictions, with a notable effect in the resulting predictions for both low and
high p⊥ data. Therefore, approaches for inferring anisotropy from the data are necessary. Optimally, these
approaches should be complementary to existing predictions, i.e., based on a method that is fundamentally
different from models of early stages of QCD matter.

To this end, we here propose a novel approach to extract the initial state anisotropy. Our method is based
on inference from high p⊥ data, by using already available RAA and v2 measurements, which will moreover
be measured with much higher precision in the future. Such an approach is substantially different from the
existing approaches, as it is based on the inference from experimental data (rather than on calculations of
early stages of QCD matter) exploiting the information from interactions of rare high p⊥ partons with the
QCD medium. This also presents an improvement/optimization in utilizing high p⊥ data as, to date, these
data were mostly constrained on studying the parton-medium interactions, rather than assessing bulk QGP
parameters, such as spatial asymmetry.

M. Djordjevic et al. Nuclear Physics A 1005 (2021) 121900

2



In the literature, the initial state anisotropy is quantified in terms of eccentricity parameter ε2

ε2 =
〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (1)

where ρ(x, y) denotes the initial density distribution of the formed QGP. Regarding high p⊥ observables, we
note that v2 is sensitive to both the anisotropy of the system and its size, while RAA is sensitive only to the
size of the system. Therefore, it is plausible that the adequate observable for extracting eccentricity from
high p⊥ data depends on both v2 and RAA, and the question is how.

To address this question, we will use the dynamical energy loss formalism, and DREENA-B framework
outlined above. For high p⊥, the fractional energy loss scales as [3] ΔE/E ∼ χ〈T 〉a〈L〉b, where 〈T 〉 stands
for the average temperature along the path of high p⊥ parton, 〈L〉 is the average path-length traversed by the
parton, χ is a proportionality factor that depends on the initial parton transverse momentum, and a and b are
exponents which govern the temperature and path-length dependence of the energy loss. Within our model,
a ≈ 1.2 and b ≈ 1.4, which is contrary to simpler models, and consistent with a wide range of experimental
data [19, 20]. From this simple scaling argument, we can straightforwardly obtain the following expressions
for RAA and v2 (for more details we refer the reader to [3]):

RAA ≈ 1 − ξ(χ)〈T 〉a〈L〉b, v2 ≈ 1
2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ(χ)〈T 〉a〈L〉b
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
, (2)

where we see that ξ(χ)〈T 〉a〈L〉b corresponds to 1− RAA. Therefore, if we divide v2 by (1− RAA), we see that
this ratio is given by the following simple expression:

v2

1 − RAA
≈
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
. (3)

Note that, while this ratio exposes the dependence on the asymmetry of the system (through spatial (ΔL/〈L〉)
and temperature (ΔT/〈T 〉) parts), the dependence only on spatial anisotropy is still not isolated. However,
by plotting together spatial and temperature anisotropy, we obtain a linear dependence [3], with a propor-
tionality factor given by c ≈ 4.3. Therefore, v2/(1 − RAA) reduces to the following expression:

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς, where ς =

〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1
2

(b − a
c

) ≈ 0.57. (4)

Consequently, the asymptotic scaling behavior of observables v2 and RAA, at high p⊥, reveals that their
(moderated) ratio is determined only by the geometry of the initial QGP droplet. Therefore, the anisotropy
parameter ς could, in principle, be directly obtained from the high p⊥ experimental data.

Fig. 1. A) Comparison of theoretical predictions for charged hadron v2/(1 − RAA) as a function of p⊥ with 5.02 TeV Pb + Pb
CMS [21, 22] (blue squares), ALICE [23, 24] (red triangles) and ATLAS [25, 26] (green circles) data. Each panel corresponds to
different centrality range, as indicated in the upper right corners, while red lines denote the limit 0.57ς from Eq. (4). B) Comparison
of ε2L (red band) extracted from our full-fledged calculations, with ε2 obtained from MC-Glauber [15] (gray full curve), EKRT [16]
(cyan dashed curve), IP-Glasma [17] (green dot-dashed curve) and MC-KLN [18] (blue dotted curve) models. MC-Glauber and EKRT
curves correspond to 5.02 TeV, whereas IP-Glasma and MC-KLN curves correspond to 2.76 TeV Pb + Pb collisions at the LHC.

To test the adequacy of the analytical estimate given by Eqs. (2)-(4), Fig. 1A is displayed, which
comprises our v2/(1 − RAA) predictions (gray bands), stemming from our full-fledged recently developed
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DREENA-B framework (outlined in the previous section), the ALICE, CMS and ATLAS data, and analyt-
ically derived asymptote 0.57ς (red lines). Importantly, for each centrality range and for p⊥ � 20 GeV,
v2/(1 − RAA) is independent on p⊥, and approaches the asymptote, i.e., is determined by the geometry of
the system - depicted by the solid red line, up to 5% accuracy. Moreover, the experimental data for all three
experiments also display the independence on the p⊥ and agree with our predictions, although the error bars
are rather large. Therefore, we conclude that our scaling estimates are valid and that v2/(1 − RAA) indeed
carries the information about the anisotropy of the fireball, which can be simply (from the straight line fit to
data at high p⊥ limit) and robustly (in the same way for each centrality) inferred from the experimental data.

However, note that the anisotropy parameter ς is not the widely-considered anisotropy parameter ε2
(given by Eq. (1)). To facilitate comparison with ε2 values in the literature, we define ε2L =

〈Lout〉2−〈Lin〉2
〈Lout〉2+〈Lin〉2 =

2ς
1+ς2 , and in Fig. 1B compare it with the results from different initial-state models [15, 16, 17, 18]. First, we
should note that as a starting point, our initial ε2, through which we generate our path-length distributions,
agrees with EKRT and IP-Glasma. However, what is highly non-trivial is that, as an outcome of this proce-
dure, in which v2/(1 − RAA) is calculated (based on the full-fledged DREENA-B framework), we obtain ε2L

which practically coincides with our initial ε2 and also with some of the conventional initial-state models.
As an overall conclusion, the straightforward extraction of ε2L and its agreement with values of the prevail-
ing initial-state models’ eccentricity (and our initial ε2) is highly non-trivial and supports v2/(1 − RAA) as a
reliable and robust observable for anisotropy. Additionally, the width of our ε2L band is smaller than the dif-
ference in the ε2 values obtained by using different models (e.g., MC-Glauber vs. MC-KLN). Therefore, our
approach provides genuine resolving power to distinguish between different initial-state models, although
it may not be possible to separate the finer details of more sophisticated models. This resolving power,
moreover, comes from an entirely different perspective, i.e., from high p⊥ theory and data, supporting the
usefulness of utilizing high p⊥ theory and data for inferring the bulk QGP properties.
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Abstract

A number of models in mathematical epidemiology have been developed to account
for control measures such as vaccination or quarantine. However, COVID-19 has brought
unprecedented social distancing measures, with a challenge on how to include these in
a manner that can explain the data but avoid overfitting in parameter inference. We
here develop a simple time-dependent model, where social distancing effects are intro-
duced analogous to coarse-grained models of gene expression control in systems
biology. We apply our approach to understand drastic differences in COVID-19 infection
and fatality counts, observed between Hubei (Wuhan) and other Mainland China prov-
inces. We find that these unintuitive data may be explained through an interplay of
differences in transmissibility, effective protection, and detection efficiencies between
Hubei and other provinces. More generally, our results demonstrate that regional dif-
ferences may drastically shape infection outbursts. The obtained results demonstrate
the applicability of our developed method to extract key infection parameters directly
from publically available data so that it can be globally applied to outbreaks of COVID-19
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in a number of countries. Overall, we show that applications of uncommon strategies,
such as methods and approaches from molecular systems biology research to mathe-
matical epidemiology, may significantly advance our understanding of COVID-19 and
other infectious diseases.

1. Introduction

As the novel COVID-19 disease caused by the SARS-CoV-2 virus

took the world by a storm, the new pandemic quickly gained priority in sci-

entific research in a wide range of biological and medical science disciplines.

Despite that their prior expertise was in unrelated research fields, many

researchers have successfully adapted their approaches andmethods to exam-

ine various aspects of this viral infection and, thus, contributed to finding the

necessary solutions. The systems biology community is not an exception

(Alon, Mino, & Yashiv, 2020; Bar-On, Flamholz, Phillips, & Milo, 2020;

Djordjevic, Djordjevic, Ilic, Stojku, & Salom, 2021; Eilersen & Sneppen,

2020; Karin et al., 2020; Saad-Roy et al., 2021; Vilar & Saiz, 2020;

Wong et al., 2020): those involved in modeling the dynamics of biological

systems at the molecular and cellular level can directly apply the similar

methodology in epidemiological studying of the virus spread—and this

exactly is the central point of the present paper. In particular, dynamic

models of biochemical reaction networks, in which the reaction kinetics fol-

low the law of mass action, are analogous to compartmental epidemiological

models which, instead of concentrations of chemical species, track the

prevalence of individuals in defined population classes over time (Voit,

Martens, & Omholt, 2015). Moreover, gene expression dynamics is usually

a result of the interplay between the changing rate of cell growth, on which

the global physiological rates of molecule synthesis and degradation depend,

and complex transcription regulation (Djordjevic, Rodic, & Graovac,

2019). Therefore, modeling dynamics of gene circuits implies combining

kinetic models, often relying on the law of mass action, with appropriate

non-linear functions describing the regulation part. In the case of the

COVID-19 epidemic, one can note that the virus transmission in a popu-

lation, driven by the biological capacity of the particular virus in the given

environment, is coupled with strong, time-dependent regulation, represen-

ted by the epidemic mitigation measures imposed by governments. These

similarities between the modeled systems may facilitate the application of
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the systems biology techniques to the epidemiology field of research. In this

paper, we will show how such an approach can be used to assess the basic

parameters of the COVID-19 epidemic progression in a given population.

In particular, we will use the analogy outlined above to study the

COVID-19 spread inMainland China and test the hypothesis about possible

reasons for the uneven disease spread in China provinces.

Our interest inMainland China infection progression comes from Fig. 1.

The progression seems highly intriguing, as Hubei (with only 4% of China

population) shows an order of magnitude larger number of detected infec-

tion cases (Fig. 1A) and two orders of magnitude higher fatalities (Fig. 1B)

compared to the total sum in all other Mainland China provinces. The epi-

demic was unfolding well before the Wuhan closure (with the reported

symptom onset of the first patient on December 1, 2019) and within the

period of huge population movement, which started 2 weeks before

January 25 (the Chinese Lunar New Year) (Chen, Yang, Yang, Wang, &

B€arnighausen, 2020). As a rough baseline, a modeling study of the infection

spread from Wuhan (Wu, Leung, & Leung, 2020) estimated more than

105 new cases per day in Chongqing alone—instead, the actual (reported)

peak number for allMainland China provinces outside Hubei was just 831.

Fig. 1 Infection and fatality counts for Hubei vs all other provinces. The number of
(A) detected infections, (B) fatality cases. Zero on the horizontal axis corresponds to
the time from which the data (Hu et al., 2020) are taken (January 23), which also coin-
cides with the Wuhan closure. Red circles correspond to the observed Hubei counts.
Blue squares correspond to the sum of the number of counts for all other provinces.
The figure illustrates a puzzling difference in the number of counts between Hubei
alone and the sum of all other Mainland China provinces.
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Consequently, it is a notable challenge for computational modeling to

understand drastic differences in COVID-19 infection and fatality counts

observed between Hubei (Wuhan) and other Mainland China provinces.

These drastic differences may be a consequence of an interplay between

the virus transmissibility (influenced by environmental and demographic

factors) and the effectiveness of the protection measures. Both can signifi-

cantly change between different provinces (more generally different coun-

tries/regions), and the model has to infer this from available data (commonly

the number of confirmed cases, publicly available for a large number of

countries/regions).

The study presented here will therefore demonstrate the usefulness of the

systems biology approach to the analysis of non-trivial COVID-19 data from

China. In particular, the developed method will allow us to analyze the puz-

zling differences in dynamics trajectories in Mainland China provinces, and

it will also turn out to be more generally applicable for understanding

regional differences in outburst dynamics. The surprising differences in

COVID-19 progression in different provinces may put strong constraints

on the underlying infection progression parameters and allow us to

understand:

i. What interplay between the inherent disease transmissibility and the

effects of social distancing is responsible for the large difference in the

count numbers between Hubei and the rest of Mainland China?

Addressing this question in a proper way would make easier to compre-

hend how regional differences may shape the infection outbursts, which

is important both locally (for explaining this puzzle), and more generally

in the context of global COVID-19 pandemics progression.

ii. What is the Infected Fatality Rate (IFR, the number of fatalities per total

number of infected cases) in China? Case Fatality Rate (CFR, the number

of fatalities per confirmed/detected cases) can be obtained directly from the

data but is highly sensitive to the testing coverage. IFR is a more fun-

damental mortality parameter, as it does not depend on the testing cov-

erage, but is however much harder to determine, due to the unknown

number of infected cases.

Addressing these questions allows understanding both the different response

policies, and the inherent risks posed by the pandemics and will enable future

cross-country comparisons. The developed methodology (i) demonstrates

the usefulness of applying transdisciplinary expertise to efficiently analyze

problems of nationwide importance, (ii) allows to readily analyze future
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outbreaks of COVID-19 and other infectious diseases, as it depends only on

inference from straightforward and publically available data.

2. An overview of compartmental models of epidemic
progression

In epidemiology, for practical and ethical reasons, it is fairly impossible

to conduct scientific experiments in controlled conditions in order to inves-

tigate the spread of the disease in the human population (Brauer, 2008).

Therefore, epidemiologists usually resort to collecting data from clinical

reports on the observed situation in the field and, then, using mathematical

models to interpret these data, i.e., to infer the principles underlying the pro-

cess of disease spreading. These principles may point to potentially successful

control strategies, as well as to the probable future status of the disease in the

population. Epidemiological data can often be incomplete or inaccurate due

to poorly controlled or non-standardized collection methods, which signif-

icantly complicates modeling. However, even a qualitative agreement of the

model with the data can provide useful information of great practical impor-

tance. Hence, model predictions are widely used for making various esti-

mates and answering important questions about the seriousness of the

epidemic consequences. For example, how many people will be infected,

require treatment, or die, or how many patients should the public health

facilities expect at any given time? Also, how long will the epidemic last?

Towhat extent could quarantine and self-isolation of the infected contribute

to mitigating the effects of the epidemic?Model predictions guide the devel-

opment of strategies to control the epidemic spread, including vaccination

programs.

When the goal is to discover the general principles of epidemic progres-

sion, simple mathematical models, which can be solved and analyzed with a

“pencil on paper,” are a logical choice as they give insight into the properties

of the examined process despite failing to reproduce it in detail. In 1927,

Kermack and McKendrick formulated a simple model that predicted

behavior similar to that observed in numerous epidemics (Kermack &

McKendrick, 1927). It was a type of compartmental model describing the

infection spread in a population by analogy with a system of vessels con-

nected by pipes through which a fluid flows. Namely, the population is

divided into compartments, and assumptions are made about the nature

and the rate of the flow between them. The structure of the compartmental
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model—which sections and howmany of them it will contain and how they

will be connected—depends on the characteristics of transmission of a given

infectious disease and whether the past disease provides immunity to

re-infections or not. The model set by these two scientists is known as

SIR (from Susceptible–Infected–Recovered). It divides the population into

three classes which correspond to compartments (Fig. 2): Susceptible (S)

class includes healthy individuals susceptible to infection, which have never

been exposed to the virus; Those who are infected and can infect others

belong to the Infected (I) class; Recovered (R) class encompasses those

who are excluded from the population, either by quarantining the infected,

or by acquiring immunity through recovery from disease or immunization,

or by the death of the infected (Brauer, 2008).

Mathematically, this model is represented by a system of ordinary differ-

ential equations. The time derivative of the number of individuals in a

compartment, i.e., the rate of their change, is given by the difference between

the rates at which the compartment is filled and emptied. Analogous to the

processes in which chemical species (e.g., proteins) are degraded or converted

into others within a biochemical reaction network (Ingalls, 2013), the rate of

transition of individuals from one compartment to another follows the law of

mass action. For example, a person moves from compartment S to compart-

ment I at the rate which is proportional to the product of the S and I, as the

encounterwith an infected person enables virus transmission to the susceptible

one (Voit et al., 2015).

By formulating such (or similar) models, one assumes that the epidemic is

a deterministic process. Namely, the state of the population at all times is

completely determined by its previous state and the rules described by the

model. This is a reasonable approximation in cases where the numbers of

individuals in the compartments are large, i.e., in a commonly considered

Fig. 2 Schematic representation of the SIR model. Rectangles denote model compart-
ments containing susceptible (S), infected (I), and recovered (R) individuals in the pop-
ulation of size N. Permitted directions of flow between compartments are denoted by
arrows, with the rates of flow indicated above them. The rates are expressed according
to the law of mass action, where κ1 and κ2 are the rate constants. The dashed curve
corresponds to bimolecular reaction, where newly infected are generated through
interactions (contacts) between susceptible and already infected individuals.
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deterministic range (>10). Such approximation (i.e., deterministic model-

ing) is well suited for the spread of COVID-19, which is up to now known

for a large number of individuals in all compartments.

3. Systems biology approach to compartmental
modeling of the COVID-19 epidemic

The above-introduced SIR model is likely the simplest compartmen-

tal model in mathematical epidemiology and many subsequent models are

derivatives of this basic form. Among others, these extensions have also been

developed toward including control measures such as vaccination or quar-

antine (Diekmann, Heesterbeek, & Britton, 2012; Keeling &Rohani, 2011;

Martcheva, 2015). However, COVID-19 brought a challenge to account

for previously unprecedented social distancing measures, taken by most

countries. When included, these effects have been, up to now, accounted

for by the direct changes in the transmissibility term (Chowell, Sattenspiel,

Bansal, & Viboud, 2016; Tian et al., 2020), which, however, corresponds

to introducing a phenomenological dependence in otherwise mechanistic

models. That is, to be included consistently in the model, social distancing

should move individuals from one compartment to the other, just as vaccina-

tion and quarantine are usually implemented. On the other hand, it is neces-

sary to construct aminimal mechanistic model in terms of the ability to explain

the data with the smallest number of parameters, so that relevant infection pro-

gression properties can be inferredwithout overfitting.With this goal inmind,

we used our systems biology background to develop a minimal model that

accounts for all the main qualitative features of the SARS-CoV-2 infection

spread under epidemic mitigation measures. As outlined above, we opt for

a deterministic model due to the robust and computationally less demanding

parameter inference (Wilkinson, 2018).

To describe the COVID-19 epidemic, we developed SPEIRD model

depicted schematically in Fig. 3. It assumes that healthy persons susceptible

to infection (S), can be infected, but in the case of this (and many other)

viruses they do not immediately become contagious to other people, but

first spend some time in the compartment E (Exposed to the virus) and then

develop symptoms and pass to the compartment I. Infected persons can

either recover at home, moving to the compartment R, or they can be diag-

nosed with SARS-CoV-2 virus infection (Active detected cases).A (Active)

cases can, further, either become healed (H) or die from the disease (F ). To

consistently implement the social distancing within this model structure, we
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included a compartment P (Protected) in the model, which contains suscep-

tible persons who are protected from exposure to the virus as a result of the

epidemic mitigation measures, such as self-imposed isolation, social distanc-

ing, and advised changes in individual behavior.

The following differential equations describe how different categories

change with time:

dS=dt ¼ �β � I � S=N � α tð Þ � S (1)

dE=dt ¼ β � I � S=N � σ � E (2)

dI=dt ¼ σ � E � γ � I � ε � δ � I (3)

dA=dt ¼ ε � δ � I � h � A� m � A (4)

dH=dt ¼ h � A (5)

dF=dt ¼ m � A (6)

where β is the infection rate in a fully susceptible population; α(t), the
time-dependent protection rate, i.e., the rate at which the population moves

from susceptible to the protected category, quantifying the impact of the

social protection measures; σ, the inverse of the exposed period; γ, the
inverse of the infectious period; δ, the inverse of the period of the infection
diagnosis; ε, the detection efficiency; h, the healing rate of diagnosed cases;

m, the mortality rate.

Fig. 3 Schematic representation of the SPEIRDmodel. Compartments and the transition
rates are as indicated in the text, where transitions between different compartments are
marked by arrows. The time-dependent transition rate from susceptible to protected
category α(t) is indicated by the solid arrow. The infected can transition to the recovered
category either without being diagnosed (transition to R), or being diagnosed and then
transitioning to confirmed healed or fatality cases. The dashed rectangle indicates that
A, H, and F categories in the starting model are substituted for the cumulative case
counts (D), which removes h and m from the analysis, where D is fitted to the
observed data.

298 Magdalena Djordjevic et al.



The probability that an infected person will meet a susceptible person is

proportional to S/N, whereN is the total number of individuals in the pop-

ulation. The rate at which individuals move from S to E is obtained when

the product of I and S/N is multiplied by the infection rate, β, which quan-
tifies the efficiency of transmission of a particular virus in the population

with certain demographic characteristics and meteorological conditions,

and it does not depend on epidemic suppression measures. Thus, β is a char-
acteristic of the virus, the population, and the external conditions in which

the virus is transmitted. Since the compartment S is being emptied, the

corresponding rate in the first equation is specified with the minus sign.

S also decays by moving the individuals to P with a protection rate that

may vary with time. While mitigation measures are commonly accounted

for bymodels with time-independent terms (Martcheva, 2015), we note that

the social distancing term should depend on time, as this measure is intro-

duced at a certain point in epidemics and may also evolve gradually. We

denote the time point (more specifically, the date) of the onset of the social

distancing measures in the examined population with t0. The protection rate

α(t) is then taken as 0 before t0 and a constant value α afterwards.

One may notice a direct parallel between the model outlined above, and

e.g., modeling gene expression regulation in systems biology with a step

function that approximates the activity of a promoter to which repressor

proteins are highly cooperatively bound: the promoter is initially silenced

and upon receiving a signal which leads to the abrupt removal of repression,

promoter activity rises sharply to its maximum value. We notice that

the step function is a satisfactory approximation of the dynamics of social

distancing, i.e., it may not be necessary to further increase the number of

parameters by applying the Hill function (which describes a more gradual

activation), since governments quickly introduced these measures, together

with their effective implementation. Note however that in (Djordjevic

et al., 2021) we introduced a more complex model with Hill function,

and provided analytical results for key properties of this model.

Compartment E is filled by infecting the susceptibles and emptied by

moving the individuals to I, with the rate σ representing the inverse value

of the latent period during which the person is not contagious. While com-

partment I is filled with individuals from E, it is depleted through two chan-

nels. Individuals move toRwith the rate γ, which is the inverse of the period
of contagiousness, and to A with the rate δ, which is the inverse of the time

required for diagnosis, multiplied by ε, reflecting that only a fraction (likely

small due to many asymptomatic infections) of the total infected are
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detected. Note that case detection reduces the number of individuals in

I that can infect susceptibles: the model assumes that the detected cases

are quarantined and thus isolated from the general population. The numbers

in compartments A,H, and F change following the same logic described for

the other compartments.

We can further simplify the analysis by looking at the total number of

detected cases (D), which is the sum of A, H, and F. By adding the

Eqs. (4)–(6), we obtain:

dD=dt ¼ ε � δ � I , (7)

and thus lose two parameters, h and m. The total number of detected cases in

time is a measurable quantity from which we can determine the dynamics of

other model compartments since this is the data that is available for various

different regions and countries. Thereby, we assume that before t0 social

distancing does not take effect, and the measures introduced at t0 will take

effect on D�10 days later, as this is about the time that elapses between

infection and detection/diagnosis (Feng et al., 2020). Consequently, for

the first t0+10 days, the D curve reflects disease transmission without

epidemic suppression measures.

3.1 Virus transmission in the early stages of epidemics
Wewill now focus on the dynamics of the infection spread at the very begin-

ning of the epidemic, i.e., on the period before the introduction and practice

of any control measures (Salom et al., 2021). Regarding the model, we

assume that there is no social distancing (no transition from S to P), there

is no quarantine, and almost the entire population consists of people suscep-

tible to infection, so S/N¼1. This gives us an even simpler mathematical

model which appears to be very useful because it allows analytical derivation

of the expressions we need. Our system of Eqs. (1)–(3) and (7) is reduced to
two linear differential equations that we can write in matrix form

d

dt

E

I

� �
¼ �σ β

σ �γ

� �
E

I

� �
¼ A

E

I

� �
, (8)

determine the eigenvalues and eigenvectors of the matrix and, subsequently,

the solutions of the system,E(t) and I(t). Specifically, the cumulative number

of infected in time, I(t), is obtained according to the following equation:

I tð Þ ¼ C1 exp λ+tð Þ + C2 exp λ�tð Þ, (9)

300 Magdalena Djordjevic et al.



where λs are eigenvalues of the matrix. Since one of the eigenvalues, here

denoted by λ�, is negative, the corresponding term of the Eq. (9) will

decrease over time, and I(t) will be effectively described by the first term,

already after few days from the epidemic outbreak (Salom et al., 2021).

We can further derive this equation for the dependence of the logarithm

of the number of detected cases in time:

log D tð Þð Þ ¼ log ε � δ � I 0ð Þ=λ+ð Þ + λ+ � t (10)

This is the straight line equation whose slope is given by the value of λ+ (the

dominant, positive eigenvalue of the matrix in Eq. (8)).

Once we know λ+, we can calculate the value of the so-called basic

reproduction number, R0,free, by fixing mean values of the latency period

and the infectivity period (γ¼0.4 days�1, σ¼0.2 days�1), which are known

from the literature and characterize the fundamental infection processes

(Kucharski et al., 2020; Li et al., 2020):

R0,free ¼ β
γ
¼ 1 +

λ+ γ + σð Þ + λ2+
γσ

(11)

R0,free is an important epidemiological parameter that characterizes the

inherent biological transmission of the virus in a completely unprotected

population. In particular, it is the mean number of secondarily infected

by one infected person introduced in a completely susceptible population.

It depends on the biology of the specific virus, as well as the demographic

characteristics of the population and the environmental conditions, while it

does not depend on the applied infection control measures (Brauer, 2008).

In Salom et al. (2021) we utilized a bioinformatics analysis, akin to those

often used to understand complex data in systems biology, to pinpoint

demographic and meteorological factors that affect R0,free (i.e., inherent

virus transmissibility in population). This furthermore underlines that a rich

array of techniques developed and/or widely used within systems biology

can be successfully employed within infectious disease modeling.

4. Parameter analysis and inference

R0,free, α, t0, two initial conditions (I0 and E0), and the detection effi-

ciency ε, are unknown andmay differ between the provinces. Is it possible to

determine these unknown parameters from different properties of the

D curve? Early in the infection, almost the entire population is susceptible

(S�N), so Eqs. (2) and (3) become linear, and decoupled from the rest of the
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system, as discussed in the previous section. This sets the ratio of I0 to E0,

through the eigenvector components with the dominant (positive) eigen-

value of the Jacobian for this subsystem. This eigenvalue, corresponding

to the initial slope of the log(D) curve, sets the value of λ+ and subsequently,

ofR0,free (see Eq. 11). From Eq. (7) one can see that the product of I0 and ε�δ
is set by dD/dt at the initial time (t¼0). Later dynamics of the D curve is

determined solely by the combination tα¼ t0+1/α (which we denote as

protection time), setting the time at which �½ of the population moves

to the protected category. We also numerically checked this, and confirmed

that t0 can be lowered at the expense of increasing 1/α, without affecting the
fit quality.We allowed for t0 to vary in reasonable proximity of January 23, as

the social distancing was generally introduced close to Wuhan closure (e.g.,

on that date, all major events in Beijing were canceled) (Chen et al., 2020;

Du et al., 2020), but we cannot be sure when the measures effectively took

place. Our inferred t0 values are within a week from Wuhan closure, appe-

aring as reasonable. The remaining independent parameter (I0) is then left to

be determined fromD curve properties at the late infection stage, such as its

saturation time. The number of characteristic dynamics features is thus at

least equal to the number of fit parameters, leading to constrained numerical

analysis, so that overfitting is not expected. For few provinces, we however

observed that I0 can be decreased compared to the best fit value, without

noticeably affecting the fit quality. For these provinces, we chose the lowest

I0 value that still leads to a comparably good fit. This allows obtaining the

most conservative (i.e., as high as possible while still consistent with data)

IFR estimate, as the reported fatality counts for provinces other than

Hubei is surprisingly low.

Parameter inference and uncertainties are estimated separately for each

province. However, within a given province, demographic, special, or pop-

ulation activity (network effects) heterogeneities (Britton, Ball, & Trapman,

2020; Diekmann et al., 2012), or seasonality effects (Wong et al., 2020), are

not taken into account. These are potentially important, particularly for pro-

jections (longer-term predictions of infection dynamics under different sce-

narios), and can be readily included in our model. Such extensions would

however complicate parameter inference, due to an increase in parameter

number, as this may either lead to overfitting or require special/additional

data that may be available only for a limited number of countries/regions

(which would limit the generality of our proposed method). A more

complex model structure may also obscure a straightforward relationship

between the model parameters and distinct dynamical features of the
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confirmed case count curve analyzed above. While the inclusion of addi-

tional effects is left for future work, we here employ the model structure

and parameter inference introduced above on widely available case count

data, as proof of the principle for the generality of our proposed approach.

Moreover, a major advantage of our approach is that it allows consistent

analysis for all provinces with the same model, numerical procedure, and

parameter set, allowing an objective comparison of the obtained results.

Our model was numerically solved by the Runge-Kutta method

(Dormand & Prince, 1980) for each parameter combination. Parameter

values were inferred by exhaustive search over a wide parameter range, to

avoid reaching a local minimum of the objective function (R2). To infer

the unknown parameters, we fit (by minimizing R2) the model to the

observed total number of detected D for each province. As an alternative

to exhaustive search, some of many optimization techniques used in epi-

demics modeling, such as the Markov chain Monte Carlo (MCMC)

approach, can be used instead (Keeling & Rohani, 2011; Wong et al.,

2020)—exhaustive search is however straightforward, guarantees that the

global minimum is reached, and is in this case not computationally demand-

ing. Errors were estimated through Monte-Carlo simulations (Press,

Flannery, Teukolsky, & Vetterling, 1986), individually for each province

with the assumption that count numbers follow the Poisson distribution.

Monte-Carlo simulations were found as the most reliable estimate of the

fit parameter uncertainties for a non-linear fit (Cunningham, 1993). This

also serves as an independent check for overfitting, as in that case, data point

perturbations would lead to large parameter uncertainties. We find no indi-

cation of this in the results reported below, as the inferred uncertainties (con-

sistently indicated with all results) are reasonably small. In particular, the

differences in the inferred parameter values, which are relevant for the

reported results/conclusions, are statistically highly significant. P values

for extracted parameter differences between provinces are estimated by

the t-test.

5. Analysis of COVID-19 transmission in China

We used our SPEIRD model with the parameter inference described

above, to analyze all Mainland China provinces, except Tibet, where only

one COVID-19 case was reported. Parameters were estimated separately

for each of the 30 provinces by the same model and parameter set, which

enables an impartial comparison of the results presented below. To allow

303A systems biology approach to COVID-19



for a straightforward comparison of the infection progression between

different provinces, the starting date (i.e., t¼0) in our analysis is the same

for all the provinces and corresponds to January 23 (when the data for

all the provinces became publically available and continuously tracked

(Hu et al., 2020)).

In Fig. 4A and B, we show that our model can robustly explain the

observed D, in the cases of large outburst (Hubei on Fig. 4A), as well as

for all other provinces, where D is in the range from intermediate (e.g.,

Guangdong) to low (e.g., Inner Mongolia). Provinces in Fig. 2B were

selected to cover the entire range of observed D (from lower to higher

counts), while comparably good fits were obtained for other provinces,

which were all included in the further analysis. Our method is also robust

to data perturbations (which might be frequent), e.g., in the case of

Hubei (Wuhan), a large number of counts was added on February 12, based

on clinical diagnosis (CT scan) (Feng et al., 2020), which is apparent as a

discontinuity in observedD in Fig. 4A. Themodel however interpolates this

discontinuity, finding a reasonable description of the overall data.

We backpropagated the dynamics inferred for Hubei, to estimate that

January 5 (�4 days) was the onset of the infection’s exponential growth

in the population (not to be confused with the appearance of first infections,

which likely happened in December (Feng et al., 2020)). This agrees well

with (Feng et al., 2020) (cf. Fig. 3A), which tracked cases according to their

symptom onset (shifted for�12 days with respect to detection/diagnosis, cf.

Fig. 3B), and coincides with WHO reports on social media that there is a

cluster of pneumonia cases—with no deaths—in Wuhan (WHO, 2020).

Since our analysis does not directly use any information before January

23, this agreement provides confidence in our I0 estimate. Note that we infer

I0 separately for each province of interest, through which we also take into

account different times of the infection onset in different provinces (so that

earlier onset time would generally lead to a larger number of infected on

January 23).

Key parameters inferred from our analysis are summarized in Fig. 4C–F,
with individual results and errors for all the provinces shown in Table 1.

Fig. 4C shows the distribution of R0,free. Note that R0,free might depend

on demographic (population density, etc.) and climate factors (temperature,

humidity…), which are not controllable, but are unrelated to the applied

social distancing measures (see above). It is known that the R0 value can

strongly depend on the model, e.g., the number of introduced compart-

ments (Keeling & Rohani, 2011); accordingly, a wide range of R0 values
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Fig. 4 Model predictions: comparison with data and key parameter estimates. Predictions (compared to data) of detected infection counts for
(A) Hubei, (B) other Mainland China provinces. Zeros on the horizontal axis correspond to January 23, which is the initial time in our numerical
analysis for all the provinces. The observed counts are shown by dots and our model predictions by dashed curves. Names of the provinces
are indicated in the legend, with provinces selected to cover the full range of the observed total detected counts. The distribution with
respect to provinces of (C) the basic reproduction number in the absence of social distancing, R0,free, (D) the protection time tα. (E) Case
Fatality Rate, calculated directly from the reported data. (F) Infected Fatality Rate. The values for Hubei are indicated by the red bars.



Table 1 Inferred COVID-19 infection progression parameters for Mainland China provinces
Province tα (days) R0 E0 I0 IFR (%) CFR (%) Detected (%)

Anhui 6.6�0.5 5.5�0.8 920�30 220�20 0.04�0.02 0.6�0.3 6�3

Beijing 7.9�0.5 3.5�0.4 610�20 180�10 0.12�0.05 1.7�0.7 7�3

Chongqing 7.0�0.2 3.5�0.2 1900�40 560�20 0.04�0.03 1.0�0.5 4�2

Fujian 3.7�0.4 7�2 1660�40 360�20 0.007�0.003 0.3�0.4 2�1

Gansu 5�1 6�3 630�20 150�10 0.03�0.04 1�1 2�3

Guangdong 5.0�0.1 7�1 1360�40 290�20 0.04�0.01 0.6�0.2 7�2

Guangxi 7�1 3.8�0.8 1000�30 290�20 0.02�0.02 0.8�0.6 3�3

Guizhou 8.1�0.6 7�1 53�7 11�3 0.06�0.03 1�1 4�2

Hainan 7.6�0.8 3.3�0.7 300�20 90�10 0.21�0.09 4�2 6�3

Hebei 6.0�0.6 7�2 240�20 52�7 0.11�0.03 1.8�0.8 6�2

Heilongjiang 7�1 6�2 260�20 59�7 0.15�0.07 2.9�0.9 5�3

Henan 7.0�0.3 4.5�0.5 1780�40 460�20 0.09�0.04 1.7�0.4 5�2

Hubei 8.3�0.2 8.2�0.4 31,900�400 6600�200 0.15�0.09 6.5�0.1 2�2

Hunan 5.1�0.1 6.8�0.8 1430�40 310�20 0.02�0.01 0.4�0.2 5�2

I. Mongolia 10.0�0.8 2.8�0.4 940�30 300�20 0.01�0.03 1�1 1�3

Jiangsu 5.5�0.5 7�2 500�20 110�10 0�0 0�0 6�2



Jiangxi 7.0�0.2 5.6�0.9 890�30 210�10 0.005�0.002 0.1�0.1 5�2

Jilin 10.0�0.7 4.0�0.8 270�20 76�9 0.02�0.02 1�1 1�2

Liaoning 7�1 2.9�0.7 1240�40 390�20 0.02�0.04 2�2 1�2

Ningxia 5.3�0.9 7�3 72�9 15�4 0�0 0�0 6�23

Qinghai 6.1�0.6 4.0�0.5 2260�50 640�30 0�0 0�0 0�2

Shaanxi 5.2�0.5 6�1 380�20 90�10 0.07�0.03 1.3�0.8 6�2

Shandong 9�1 3.5�0.5 900�30 260�20 0.06�0.01 1.0�0.4 6�1

Shanghai 5.0�0.4 6�1 1570�40 370�20 0.02�0.02 0.8�0.5 2�3

Shanxi 5.2�0.5 6�2 1600�40 370�20 0�0 0�0 1�2

Sichuan 7.7�0.8 3.7�0.5 990�30 280�20 0.03�0.02 0.6�0.3 5�3

Tianjin 7�2 4�2 170�10 46�7 0.14�0.06 2�1 7�3

Xinjiang 7.3�0.9 6�1 42�7 10�3 0.25�0.09 3�2 8�2

Yunnan 4.0�0.2 7�2 360�20 76�9 0.06�0.03 1.2�0.9 5�2

Zhejiang 5.0�0.1 7.2�0.8 1340�40 290�20 0.005�0.002 0.1�0.1 7�3

tα, protection time;R0,free, basic reproduction number; E0, initial exposed; I0, initial infected; IFR, Infected Fatality Rate;CFR, Case Fatality Rate; detected %, fraction of
the infected population that has been detected. Error of the quantities correspond to one standard deviation.



were reported for China in the literature (Sanche et al., 2020; Wu, Leung,

Bushman, et al., 2020). Consequently, a clear advantage of our study is that

parameters for all China provinces were determined from the same model

and data set, which allows direct comparisons. Our obtained average R0,free

for provinces outside of Hubei is 5.3�0.3, in a reasonable agreement with a

recent estimate (�5.7) (Sanche et al., 2020). Furthermore, we observe that

R
0,free

for Hubei is a far outlier with a value of 8.2�0.4, which is notably

larger than for other provinces with p�10�11. This then strongly suggests

that demographic and climate factors that determineR0,free, played a decisive

role in a large outburst in Hubei vs other provinces, which we further

address below.

The distribution of protection time tα for the provinces is shown in

Fig. 4D, with the value for Hubei indicated in red. The mean for the other

provinces is 6.6�0.2 days. That is, we observe that the suppressionmeasures

were efficiently implemented, with �½ of the population moving to the

protected category within a week fromWuhan closure. The protection time

for Hubei of 8.3�0.2 days was longer, which is statistically significant at the

p�10�11 level. The estimated less efficient protection in the case of Hubei

may also be an important contributing factor in the surprising difference in

Hubei vs other provinces, which we further investigate below.

CFR distribution, based on the fatality numbers reported for Hubei and

other provinces is shown in Fig. 4E. These numbers are not based on the

model predictions, i.e., can be straightforwardly obtained by dividing the

total number of fatalities by the total number of detected cases. CFR for

other provinces with a mean of 1.2�0.4% is significantly smaller compared

to CFR for Hubei, which was 4.6% before the correction on April 17, and

6.5% after the correction (with 1290 fatalities added to Wuhan). This large

difference in CFR between Hubei and other provinces further accentuates

the differences noted in Fig. 1.

IFR is harder to determine than CFR, as a majority of COVID-19 infec-

tions correspond to asymptomatic or mild cases that are by large not diag-

nosed (Day, 2020). We consequently calculate IFR as the total number of

fatalities divided by the total number of infections (cumulative incidence) for

the entire outburst, where cumulative incidence is estimated from our

model. As the infections precede fatalities, both the total number of fatalities

and the cumulative incidence in our estimate correspond to the entire out-

burst, so that all the infections had a sufficient time to recover or lead to

fatalities—this is directly feasible for the provinces in China, where all

detected case counts reached saturation. Note that IFR calculated in this
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way corresponds to an averaged quantity so that it does not capture possible

time-dependent change over the outburst interval (in fact, for Wuhan it

is known that the fatality rate was larger at the very beginning of the out-

burst). Nevertheless, the estimated IFR’s present a reasonable measure of

COVID-19 mortality across China provinces.

IFR distribution, which provides a much less biased measure of the

infection mortality, is shown in Fig. 4F. In distinction to CFR, estimated

IFR shows a much smaller difference between Hubei (0.15�0.09%) and

other provinces (0.056�0.007%). Therefore, while Hubei is a clear outlier

with respect to CFR, we observe similar IFR values for all Mainland China

provinces, where few provinces have even higher IFR than Hubei. The

ratio of IFR to CFR equals the fraction of all infected that got detected

(detection coverage). We estimate that the mean detection coverage for all

provinces except Hubei is higher than detection coverage for Hubei

(4.5�0.9% vs 2�2%). This difference is responsible for a decrease by a

factor of two fromCFR to IFR for Hubei, compared to the other provinces,

and consequently for more uniform mortality estimates at the IFR level.

Xinjiang has the highest IFR of 0.25�0.09% so that Hubei is not an outlier

anymore. Estimated IFR’s of up to 0.3% in China provinces are in general

agreement with the estimates reported elsewhere (see e.g., (Bar-On et al.,

2020; Djordjevic et al., 2021; Mizumoto, Kagaya, & Chowell, 2020)).

In Fig. 5A, two key infection progression parameters are plotted against

each other: protection time tα vs basic reproduction number R0,free.

Unexpectedly, there is a high negative correlation, with Pearson correlation

coefficient R¼� 0.70, which is statistically highly significant p�10�5,

where these two are a priori unrelated (see above). Actually, stronger social

distancing measures—which by definition are not included in R0,free—

would lead to a decrease in effective transmissibility. This would then lead

to a tendency of transmissibility to positively correlate with tα, oppositely

from the strong negative correlation observed in Fig. 5A. Therefore, higher

basic reproduction number is genuinely related to a shorter protection time

(larger effect of the suppression measures). Intuitively, this could be under-

stood as a negative feedback loop, commonly observed in systems biology

(Alon, 2019; Phillips, Kondev, Theriot, & Garcia, 2012), where larger

R0,free leads to steeper initial growth in the infected numbers, which may

elicit stronger measures and better observing of these measures by the pop-

ulation faced with a more serious outbreak. Interestingly, similar negative

feedback was also obtained in the context of epidemics research other than

COVID-19 (Wang, Andrews, Wu, Wang, & Bauch, 2015).
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The twomain properties of the Hubei outburst are therefore higherR0,

free and tα compared to other provinces. In Fig. 5B, we investigate how

these two properties separately affect the Wuhan outburst for latent and

infected cases, where unperturbed Hubei dynamics is shown by the red full

curve.We first reduce onlyR0,free from the Hubei value, to the mean value

for all other provinces (the dash-dotted green curve). We see that this

reduction substantially lowers the peak of the curve, though it still remains

wide. Next, instead of decreasing R0,free, we decrease the protection time

tα to the mean value for all other provinces (dashed orange curve). While

reducing tα also significantly lowers the peak of the curve, its main effect is

in narrowing the curve, i.e., reducing the outburst time. Finally, when R0,

free and tα are jointly reduced, we obtain the (dotted purple) curve that is

both significantly lower and narrower than the original Hubei progression.

This curve comes quite close to the curve that presents the sum of all other

provinces (full blue curve)—the dotted curve remains somewhat above

this sum, mainly because the initial number of latent and infected cases

is somewhat higher for Hubei compared to the sum of all other provinces.

This synergy between the transmissibility and the control measures will be

further discussed below.

Fig. 5 The interplay of transmissibility and effective social distancing. (A) The correlation
plot of tα vs R0,free for all provinces, where the point corresponding to Hubei is marked in
red. (B) The effect (on the Hubei dynamics of infected and latent cases) of reducing R0,
free and tα to the mean values of other Mainland China provinces. Both the unperturbed
Hubei dynamics and the sum of infected and latent cases for all other provinces are
included as references.
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6. Conclusions

In this study, we applied a systems biology approach to develop a

novel method of COVID-19 transmission dynamics. The model includes

(time-dependent) social distancing measures in a simple manner, consistent

with the compartmental mechanistic nature of the underlying process. The

model has a major advantage that it is independent of the specific transmis-

sion process considered, and requires only commonly available count data as

an input. The model allows extracting key infection parameters from the

data that are readily available and publicly accessible (both for China and

other countries), so that, in a nutshell, our approach is of wide applicability.

To our best knowledge, such parameters (necessary to assess any future

COVID-19 risks), were not extracted by other computational approaches.

The developed method is subsequently applied to the problem that

appears highly non-trivial, i.e., to understand the puzzle created by the dras-

tic differences in the infection and fatality counts betweenHubei and the rest

of Mainland China. The goal was to determine if it is possible to consistently

explain such drastic differences by the same model, and what are the

resulting numerical estimates and conclusions. We found that Hubei was

a suitable ground for infection transmission, being an outlier with respect

to two key infection progression parameters: having significantly larger

R0,free, and a longer time needed to move a sizable fraction of the population

from susceptible to a protected category. While stricter measures were for-

mally introduced in Hubei, the initial phase of the outburst put a large strain

on the system, arguably leading to less effective measures compared to other

provinces.

The fact that the initial epidemic in Hubei was not followed by similar

outbursts in the rest ofMainland China may be understood as a serendipitous

interplay of the two factors noted above. While both smaller R0,free and

lower half-protection time (more efficient measures) significantly suppress

the infection curve, their effect is also qualitatively different.While lowering

R0,free more significantly suppresses the peak, decreasing the half-protection

time significantly reduces the outburst duration. Consequently, the synergy

of these two effects appears to lead to drastically suppressed infection dynam-

ics in other Mainland China provinces compared to Hubei. The number of

detected (diagnosed) cases in the entire Mainland China is, therefore,

though unintuitive, well consistent with the model, and is explainable by

a seemingly reasonable combination of circumstances. Our obtained
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negative feedback between transmissibility and effects of social distancing

may be understood in terms of larger transmissibility triggering more strin-

gent social distancing measures, where a similar conclusion was also obtained

through entirely different means (a combination of real-time human mobil-

ity data and regression analysis) (Kraemer et al., 2020).

In summary, we showed that unintuitive dissimilarity in the infection

progression for Hubei vs other Mainland China provinces is consistent with

our model, and can be attributed to the interplay of transmissibility and

effective protection, demonstrating that regional differences may drastically

shape the infection outbursts. This also shows that comparisons in terms of

the confirmed cases, or fatality counts (even when normalized for population

size), between COVID-19 and other infectious diseases, or between differ-

ent regions for COVID-19, are not feasible, and that parameter inference

from quantitative models (individually for different affected regions) is nec-

essary. Consequently, this paper illustrates that utilization of uncommon

strategies, such as systems biology application to mathematical epidemiol-

ogy, may significantly advance our understanding of COVID-19 and other

infectious diseases.
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Abstract: In this paper we deal with the trigonometric Gaudin model, generalized using a nontrivial
triangular reflection matrix (corresponding to non-periodic boundary conditions in the case of
anisotropic XXZ Heisenberg spin-chain). In order to obtain the generating function of the Gaudin
Hamiltonians with boundary terms we follow an approach based on Sklyanin’s derivation in
the periodic case. Once we have the generating function, we obtain the corresponding Gaudin
Hamiltonians with boundary terms by taking its residues at the poles. As the main result, we find the
generic form of the Bethe vectors such that the off-shell action of the generating function becomes
exceedingly compact and simple. In this way—by obtaining Bethe equations and the spectrum of the
generating function—we fully implement the algebraic Bethe ansatz for the generalized trigonometric
Gaudin model.

Keywords: Gaudin model; Algebraic Bethe Ansatz; non-unitary r-matrix

1. Introduction

The so-called rational s`(2) Gaudin model was first introduced in [1] as a model of “long-range”
interacting spins in a chain. Having non-trivial long-range (pairwise) interactions and yet being fully
integrable, the model was of clear potential interest in many areas of physics. Naturally, the most
promising were its applications in condensed matter physics, where the need for exactly (or even
only quasi-exactly) solvable interacting many-body models was maybe the most acute, and where
the generalizations of Gaudin algebra arguably play a significant role [2]. However, the potential
physical significance of Gaudin model is not confined to this area; for example, its connection with
Wess–Zumino–Novikov–Witten model was pointed out in [3], more recently it was also related to AGT
correspondence [4], and applied to obtain classical integrable field theories [5].

Therefore it is not surprising that many generalizations ensued soon after the Gaudin’s original
paper, along various directions: to other simple Lie algebras [6,7], in the context of the quantum
inverse scattering method [8–10], to other cases where skew-symmetric r-matrix fulfills the classical
Yang-Baxter equation [11,12]. In general, not only Gaudin models corresponding to the classical
r-matrices of simple Lie algebras [3,13–17], but also those of Lie superalgebras [18–22] attracted
considerable attention.

One particular approach to the relation between Heisenberg spin-chains and Gaudin models
was due to Hikami, Kulish and Wadati, who showed that the Gaudin Hamiltonians can be obtained
by making the so-called quasi-classical expansion of the transfer matrix of the periodic chain [23,24].
This was soon demonstrated also for cases with non-periodic boundary conditions [25]. The progress
paved the way for further studies of open Gaudin models, and algebraic Bethe ansatz (ABA)
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was soon applied to open Gaudin model in the context of Lie superalgebras [26] and of the the
Vertex-IRF correspondence [27–29]. Open Gaudin models were also studied in the light of the classical
reflection equation [30–32] and, more recently, an approach utilizing non-unitary r-matrices was
demonstrated [33,34]. A more detailed review of the open Gaudin model can be found in [35].

Due to the close mathematical connection between Heisenberg spin-chains and Gaudin models,
development in one area inevitably led also to the progress in the other. Further generalizations in
applications of ABA to spin-chains with non-periodic boundary conditions [36–53] recently influenced
study of the corresponding Gaudin model [54,55]. A new method to obtain the eigenvalues of the
Gaudin Hamiltonians and the corresponding Bethe ansatz equations was derived in [56], based
on T–Q approach to implementation of Bethe ansatz [41,42]. Also, in [53], by taking the so-called
quasi-classical limit we obtained the off-shell action of the generating function on the Bethe vectors for
the trigonometric Gaudin model with boundary terms.

While in [53] we considered expansion of the XXZ spin-chain expressions to obtain Bethe vectors
for the Gaudin model (i.e., by exploiting the mathematical relation between the two models), the open
trigonometric Gaudin model can be treated in its own right, by fully implementing the algebraic Bethe
ansatz for this case. This is the essential goal of the present paper.

The first important goal of an independent treatment of the Gaudin model is to obtain the
generating function of the Gaudin Hamiltonians. Similarly like in the rational case [55], we will follow
the approach based on Sklyanin’s method in the periodic case [10,57]. Once we have the generating
function, taking its residues at the poles will yield the Gaudin Hamiltonians with the boundary terms.

The next step is to establish the algebra of Bethe operators. This will be accomplished by first
constructing non-unitary classical r-matrix (which satisfies the generalized classical Yang-Baxter
equation) and the corresponding modified Lax matrix—both of which depend on the reflection
K-matrix (following the analogy with the spin-chain case, we may say that the K-matrix encodes
non-period boundary conditions). These two entities are mutually related via linear bracket, which
is anti-symmetric, obeys the Jacobi identity and will lead us to algebraic relations between Bethe
operators (matrix elements of the Lax matrix). Additionally, as an important nontrivial step, we will
demonstrate how an appropriate change of generator basis can result in significant simplification of
the initial Bethe algebra relations.

The most difficult part of the ABA implementation is to find the Bethe vectors and the
corresponding off-shell action of the generating function. After explicitly solving the first few particular
cases, we will conjecture the general form of a Bethe vector using a family of suitably defined creation
operators. Such Bethe vectors will turn out to yield strikingly simple off-shell action of the generating
function—so simple that it is hardly any more complex than the corresponding formula when the
boundary matrix is diagonal [25]. As usual, off-shell action of the generating function provides us
both with the spectrum of the system and with the corresponding Bethe equations (the latter are the
necessary conditions to eliminate the unwanted terms and promote Bethe vectors into true solutions
of the eigenproblem).

This paper is organized as follows. In Section 2 we establish the fundamentals of the framework,
defining the reflection matrix, Lax matrix and r-matrix that correspond to the Gaudin model with
nontrivial boundary. The generating function, as well as the Gaudin Hamiltonians are also derived
in this section. Section 3 deals with the algebraic Bethe ansatz of the model: we derive the relevant
algebraic structure and proceed to solve the generating function eigenproblem by finding the
appropriate Bethe vectors and the formula for the off-shell action. We summarize our results in the
Section 4. In Appendix A we provide proof for the essential commutativity property of the generating
function of the Gaudin Hamiltonians, while the Appendix B contains some explicit formulas regarding
the Bethe vector ϕ3(µ1, µ2, µ3).
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2. Trigonometric Gaudin Model with Boundary

Lax matrix of the trigonometric Gaudin model with periodic boundary conditions [20] is of the
following form [53,57]:

L0(λ) =
N

∑
m=1

σ3
0 ⊗ cosh(λ− αm)S3

m + 1
2
(
σ+

0 ⊗ S−m + σ−0 ⊗ S+
m
)

sinh(λ− αm)
, (1)

where spin operators Sα
m, α = +,−, 3, living in the product Hilbert space

H =
N
⊗

m=1
Vm = (C2s+1)⊗N , (2)

satisfy the usual commutation relations:

[S3
m, S±n ] = ±S±m δmn, [S+

m , S−n ] = 2S3
m δmn. (3)

The corresponding classical r-matrix is given by:

r(λ) =
−1

2 sinh(λ)

(
cosh(λ)(1⊗ 1+ σ3 ⊗ σ3) +

1
2
(
σ+ ⊗ σ− + σ− ⊗ σ+

))
. (4)

The r-matrix (4) satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0, (5)

and also has the following unitarity property

r21(−λ) = −r12(λ). (6)

Crucially, Lax matrix and r-matrix satisfy the so-called Sklyanin linear bracket relation:

[L1(λ), L2(µ)] = [r12(λ− µ), L1(λ) + L2(µ)] . (7)

The Sklyanin linear bracket (7) obeys the Jacobi identity and is also anti-symmetric. From here it
follows that the entries of the Lax matrix (1) generate a Lie algebra (Gaudin algebra), which in this
case corresponds to the trigonometric Gaudin model with periodic boundary conditions [20].

The Gaudin model described by the above Lax matrix (1) and r-matrix (4) is mathematically tightly
related to the trigonometric spin-chain model with periodic boundary: the former can be obtained
from the latter by the so-called quasi-classical expansion [23,24]. This can be verified by considering
linear terms in the η expansion of the XXZ Heisenberg spin-chain Lax operator and R-matrix, taken
from [53], in a full analogy with the rational case [55]:

L0m(λ− αm) = 10 ⊗ 1m + η

(
σ3

0 ⊗ coth(λ− αm) S3
m +

1
2 sinh(λ− αm)

(
σ+

0 ⊗ S−m + σ−0 ⊗ S+
m
))

+
η2

2
10 ⊗

(
S3

m

)2
+O(η3);

(8)

and
1

sinh(λ)
R(λ) = 1− ηr(λ) +O(η2). (9)

To extend the generality of the model it is possible to introduce the reflection K-matrix, in a
mathematically similar manner as when the periodic Heisenberg spin-chain model is extended
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to account for nontrivial boundary conditions. K-matrix must then satisfy the classical reflection
equation [30,31,55]:

r12(λ− µ)K1(λ)K2(µ) + K1(λ)r21(λ + µ)K2(µ) =

= K2(µ)r12(λ + µ)K1(λ) + K2(µ)K1(λ)r21(λ− µ).
(10)

In the spin chain case, parameters of K− and K+ matrices (encoding, respectively, boundary
conditions on the left and on the right end of the chain) are allowed to be different. However,
in the Gaudin model case we must impose the following additional condition on the reflection
matrices [35,55]:

lim
η→0

(
K+(λ)K−(λ)

)
=
(

κ2 sinh(ξ − λ) sinh(ξ + λ)− φψ sinh2(λ)
)
1. (11)

In turn, this implies that parameters of the K− and K+ cannot be mutually independent,
and effectively, we cannot speak of two reflection matrices but of a single one. Intuitively, this is
not surprising, since the long-range Gaudin interactions actually do not single out any nodes as
boundary nodes and thus, physically, K-matrices cannot be literally interpreted as describing any
boundary conditions but merely as parameters that provide further generalization of the model (this
can be best inferred from the Hamiltonian Expression (23) below). In spite of this, we will say for such
a Gaudin model—incorporating a nontrivial K-matrix—that it satisfies nontrivial boundary conditions
(or denote it as “open”), simply due to the analogy and direct relation with the corresponding
spin-chain model (the strict mathematical connection can be again established by the quasi-classical
expansion procedure).

The solutions for K−(λ) and K+(λ) can be thus given in terms of a single K-matrix, and they take
the following form [58,59]:

K−(λ) ≡ K(λ) =

(
κ sinh(ξ + λ) ψ sinh(2λ)

φ sinh(2λ) κ sinh(ξ − λ)

)
(12)

and

K+(λ) = K(−λ− η) =

(
κ sinh(ξ − λ− η) −ψ sinh (2(λ + η))

−φ sinh (2(λ + η)) κ sinh(ξ + λ + η)

)
. (13)

Moreover, it is straightforward to check the following useful identities

K(−λ)K(λ) = det (K(λ))1, (14)

K(−λ) = tr K(λ)− K(λ). (15)

Now, the new Gaudin Lax matrix generalized by the K-matrix, is given by

L0(λ) = L0(λ)− K0(λ)L0(−λ)K−1
0 (λ), (16)

and the corresponding non-unitary r-matrix is given by:

rK
00′(λ, µ) = r00′(λ− µ)− K0′(µ)r00′(λ + µ)K−1

0′ (µ). (17)

It is not difficult to check that this r-matrix satisfies the classical Yang-Baxter equation

[rK
32(λ3, λ2), rK

13(λ1, λ3)] + [rK
12(λ1, λ2), rK

13(λ1, λ3) + rK
23(λ2, λ3)] = 0 (18)
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and that the linear bracket for the modified Lax operator is now preserved:

[L0(λ),L0′(µ)] =
[
rK

00′(λ, µ),L0(λ)
]
−
[
rK

0′0(µ, λ),L0′(µ)
]

. (19)

This linear bracket is also anti-symmetric. Since the r-matrix (17) satisfies the classical Yang-Baxter
equation, it additionally obeys the Jacobi identity.

We have now set the stage to introduce the generating function of the Gaudin Hamiltonians with
boundary terms:

τ(λ) = tr0 L2
0(λ) (20)

The essential property of τ(λ) is that it commutes for different values of the spectral parameter:

[τ(λ), τ(µ)] = 0. (21)

The proof of this relation is given in the Appendix A.
Next, we obtain the Gaudin Hamiltonians with the boundary terms by taking the residues of the

generating function (20) at poles λ = ±αm :

Res
λ=αm

τ(λ) = 4 Hm and Res
λ=−αm

τ(λ) = (−4) Hm (22)

where

Hm =
N

∑
n 6=m

(
coth(αm − αn) S3

mS3
n +

S+
mS−n + S−mS+

n
2 sinh(αm − αn)

)
+

N

∑
n=1

coth(αm + αn)
S3

mS3
n + S3

nS3
m

2

+
ψ

κ

sinh(2αm)

sinh(ξ + αm)

N

∑
n=1

S3
mS+

n + S+
n S3

m
2 sinh(αm + αn)

+
sinh(ξ − αm)

2 sinh(ξ + αm)

N

∑
n=1

S−mS+
n + S+

n S−m
2 sinh(αm + αn)

− ψ

κ

sinh(2αm)

sinh(ξ − αm)

N

∑
n=1

coth(αm + αn)
S+

mS3
n + S3

nS+
m

2
+

sinh(ξ + αm)

2 sinh(ξ − αm)

N

∑
n=1

S+
mS−n + S−n S+

m
2 sinh(αm + αn)

− ψ2

κ2
sinh2(2αm)

2 sinh(ξ − αm) sinh(ξ + αm)

N

∑
n=1

S+
mS+

n + S+
n S+

m
2 sinh(αm + αn)

. (23)

In the next section we will deal with the arduous task of obtain the spectrum and the corresponding
Bethe vectors of the generating function.

3. Algebraic Bethe Ansatz

Implementation of the algebraic Bethe ansatz requires triangularity of the K-matrix (12).
As opposed to the rational case [55] where the triangularity of the K-matrix can be guaranteed
by the similarity transformation independent of the spectral parameter, in the present case there is no,
in general, U(1) symmetry transformation that can bring the reflection matrix to the upper triangular
form. For this reason, we are forced to impose an extra condition on the parameters of K(λ). By setting

φ = 0

the reflection matrix becomes upper triangular

K(λ) =

(
κ sinh(ξ + λ) ψ sinh(2λ)

0 κ sinh(ξ − λ)

)
. (24)
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The inverse matrix has the following form:

K−1(λ) =
1

κ2 sinh(ξ + λ) sinh(ξ − λ)

(
κ sinh(ξ − λ) −ψ sinh(2λ)

0 κ sinh(ξ + λ)

)
. (25)

By substituting these formulas into (16),

L0(λ) =

(
H(λ) F(λ)
E(λ) −H(λ)

)
= L0(λ)− K0(λ)L0(−λ)K−1

0 (λ), (26)

we obtain local realisation for the entries of the Lax matrix of the following form:

E(λ) =
N

∑
m=1

(
S+

m
sinh(λ− αm)

+
sinh(ξ − λ) S+

m
sinh(ξ + λ) sinh(λ + αm)

)
, (27)

H(λ) =
N

∑
m=1

(
coth(λ− αm) S3

m + coth(λ + αm) S3
m +

ψ sinh(2λ) S+
m

κ sinh(ξ + λ) sinh(λ + αm)

)
, (28)

F(λ) =
N

∑
m=1

(
S−m

sinh(λ− αm)
+

sinh(ξ + λ) S−m
sinh(ξ − λ) sinh(λ + αm)

− 2ψ sinh(2λ)

κ sinh(ξ − λ)
coth(λ + αm) S3

m

− ψ2 sinh2(2λ) S+
m

κ2 sinh(ξ − λ) sinh(ξ + λ) sinh(λ + αm)

)
. (29)

Similarly, by using (4), (24), (25) and (17) we obtain explicit expression for rK
00′(λ, µ).

This non-unitary, classical r-matrix together with the Lax matrix (26) defines the Lie algebra relevant for
the open trigonometric Gaudin model. By explicitly rewriting the relation (19) we find the following
commutation relations for the generators E(λ), H(λ) and F(λ):

[E(λ), E(µ)] = 0, (30)

[H(λ), E(µ)] =
1

sinh(λ− µ) sinh(λ + µ)

(
sinh(2λ) E(µ)− sinh(ξ + λ)

sinh(ξ + µ)
sinh(2µ) E(λ)

)
, (31)

[E(λ), F(µ)] =
2ψ

κ
coth(λ + µ)

sinh(2µ)

sinh(ξ − µ)
E(λ) +

2
sinh(λ− µ) sinh(λ + µ)

×

×
(

sinh(ξ + µ)

sinh(ξ + λ)
sinh(2λ) H(µ)− sinh(ξ − λ)

sinh(ξ − µ)
sinh(2µ) H(λ)

)
, (32)

[H(λ), H(µ)] =
−ψ

κ sinh(λ + µ)

(
sinh(2λ)

sinh(ξ + λ)
E(µ)− sinh(2µ)

sinh(ξ + µ)
E(λ)

)
, (33)

[H(λ), F(µ)] = − 1
sinh(λ− µ) sinh(λ + µ)

(
sinh(2λ) F(µ)− sinh(ξ − λ)

sinh(ξ − µ)
sinh(2µ) F(λ)

)
+

2ψ sinh(2λ)

κ sinh(λ + µ) sinh(ξ + λ)
H(µ)− ψ2 sinh2(2µ)

κ2 sinh(λ + µ) sinh(ξ − µ) sinh(ξ + µ)
E(λ), (34)

[F(λ), F(µ)] =
2ψ

κ
coth(λ + µ)

(
sinh(2λ)

sinh(ξ − λ)
F(µ)− sinh(2µ)

sinh(ξ − µ)
F(λ)

)
− 2ψ2

κ2 sinh(λ + µ)

(
sinh2(2λ)

sinh(ξ − λ) sinh(ξ + λ)
H(µ)− sinh2(2µ)

sinh(ξ − µ) sinh(ξ + µ)
H(λ)

)
. (35)

In terms of the entries of the Lax matrix, the generating function of the Gaudin Hamiltonians (20)
has the following form:

τ(λ) = tr0 L2
0(λ) = 2H2(λ) + 2F(λ)E(λ) + [E(λ), F(λ)] , (36)
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where, from (32) we evaluate the last term to be

[E(λ), F(λ)] = 2
cosh(2ξ) cosh(2λ)− 1

sinh(2λ) sinh(ξ + λ) sinh(ξ − λ)
H(λ)− 2H′(λ) +

2ψ cosh(2λ)

κ sinh(ξ − λ)
E(λ), (37)

and thus the final expression becomes

τ(λ) = 2
(

H2(λ) +
cosh(2ξ) cosh(2λ)− 1

sinh(2λ) sinh(ξ + λ) sinh(ξ − λ)
H(λ)− H′(λ)

)
+

(
2F(λ) +

2ψ cosh(2λ)

κ sinh(ξ − λ)

)
E(λ). (38)

In order to simplify commutation relations (30)–(35) we switch to new generators e(λ), h(λ) and
f (λ), defined as linear combinations of the original ones:

e(λ) =
sinh(ξ + λ)

sinh(2λ)
E(λ) =

N

∑
m=1

sinh(ξ + αm) S+
m

sinh(λ− αm) sinh(λ + αm)
, (39)

h(λ) =
1

sinh(2λ)

(
H(λ)− ψ sinh(λ)

k sinh(ξ)
E(λ)

)
=

N

∑
m=1

S3
m −

ψ sinh(αm)

κ sinh(ξ)
S+

m

sinh(λ− αm) sinh(λ + αm)
, (40)

f (λ) =
1

sinh(2λ)

(
sinh(ξ − λ)F(λ) +

ψ

κ
sinh(2λ)H(λ)

)
=

N

∑
m=1

sinh(ξ − αm) S−m +
ψ

κ
sinh(2αm) S3

m

sinh(λ− αm) sinh(λ + αm)
. (41)

The essential property of the new basis operators is:

[e(λ), e(µ)] = [h(λ), h(µ)] = [ f (λ), f (µ)] = 0. (42)

Therefore there are only three remaining nontrivial commutation relations

[h(λ), e(µ)] =
1

sinh(λ− µ) sinh(λ + µ)
(e(µ)− e(λ)) , (43)

[h(λ), f (µ)] =
−1

sinh(λ− µ) sinh(λ + µ)
( f (µ)− f (λ)) +

2ψ coth(ξ)
κ sinh(λ− µ) sinh(λ + µ)

×

×
(

sinh2(µ) h(µ)− sinh2(λ) h(λ)
)
+

2ψ2

κ2 sinh(λ− µ) sinh(λ + µ) sinh2(ξ)
×

×
(

sinh2(µ) e(µ)− sinh2(λ) e(λ)
)

, (44)

[e(λ), f (µ)] =
−2ψ coth(ξ)

κ sinh(λ− µ) sinh(λ + µ)

(
sinh2(µ) e(µ)− sinh2(λ) e(λ)

)
+

2
sinh(λ− µ) sinh(λ + µ)

×

× (sinh(ξ − µ) sinh(ξ + µ) h(µ)− sinh(ξ − λ) sinh(ξ + λ) h(λ)) . (45)

Lie algebra (42)–(45) will be the basis of our implementation of the algebraic Bethe ansatz. The first
step is to find the expression for the generating function τ(λ) as a function of the new generators
e(λ), h(λ) and f (λ). To this end, we will invert the relations (39)–(41)

E(λ) =
sinh(2λ)

sinh(ξ + λ)
e(λ), (46)

H(λ) = sinh(2λ)

(
h(λ) +

ψ sinh(λ)
κ sinh(ξ) sinh(ξ + λ)

e(λ)
)

, (47)

F(λ) =
sinh(2λ)

sinh(ξ − λ)

(
f (λ)− ψ sinh(2λ)

κ
h(λ)− ψ2 sinh(λ) sinh(2λ)

κ2 sinh(ξ) sinh(ξ + λ)
e(λ)

)
. (48)
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In particular, we find

H2(λ) = sinh2(2λ)

(
h2(λ) +

ψ sinh(λ)
κ sinh(ξ) sinh(ξ + λ)

(2h(λ)e(λ)− [h(λ), e(λ)])

+
ψ2 sinh2(λ)

κ2 sinh2(ξ) sinh2(ξ + λ)
e2(λ)

)

= sinh2(2λ)

(
h2(λ) +

ψ sinh(λ)
κ sinh(ξ) sinh(ξ + λ)

(
2h(λ)e(λ) +

e′(λ)
sinh(2λ)

)
+

ψ2 sinh2(λ)

κ2 sinh2(ξ) sinh2(ξ + λ)
e2(λ)

)
. (49)

Substitution of (46)–(49) into (38) yields the desired expression for the the generating function

τ(λ) = 2 sinh2(2λ)

(
h2(λ) +

h(λ)
sinh(ξ + λ) sinh(ξ − λ)

− h′(λ)
sinh(2λ)

)
+

2 sinh2(2λ)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

f (λ)− 2
ψ

κ
coth(ξ) sinh2(λ) h(λ)− ψ2 sinh2(λ)

κ2 sinh2(ξ)
e(λ) +

ψ

κ
coth(ξ)

)
e(λ).

(50)

In every factor-space Vm = C2s+1 from the Hilbert space H (2) there exists a vector ωm ∈ Vm

such that
S3

mωm = smωm and S+
mωm = 0. (51)

We define a vector Ω+ to be

Ω+ = ω1 ⊗ · · · ⊗ωN ∈ H. (52)

The action of the generators e(λ) and h(λ) on the vector Ω+ can be obtained from the definitions
above and the formulas (27)–(28) and (39)–(41):

e(λ)Ω+ = 0 and h(λ)Ω+ = ρ(λ)Ω+, with ρ(λ) =
N

∑
m=1

sm

sinh(λ + αm) sinh(λ− αm)
. (53)

Of a crucial importance in what follows is to note that the vector Ω+ (52) is an eigenvector of the
generating function τ(λ). This can be shown by using (53)

τ(λ)Ω+ = χ0(λ)Ω+ = 2 sinh2(2λ)

(
ρ2(λ) +

ρ(λ)

sinh(ξ + λ) sinh(ξ − λ)
− ρ′(λ)

sinh(2λ)

)
Ω+. (54)

By using the explicit expression for the function ρ(λ) (53) the eigenvalue χ0(λ) can be also
written as

χ0(λ) = 2 sinh2(2λ)

(
N

∑
m=1

sm(sm + 1)
sinh2(λ + αm) sinh2(λ− αm)

+
N

∑
m=1

sm

sinh(λ + αm) sinh(λ− αm)
×

×
(

1
sinh(ξ + λ) sinh(ξ − λ)

+
N

∑
n>m

2sn

sinh(λ + αn) sinh(λ− αn)

))
.

(55)

The essential goal of the implementation of the algebraic Bethe ansatz is to find the corresponding
Bethe vectors. Due to the existence of Bethe conditions, it turns out that their form is not unique,
and we seek the solution that renders the off-shell action of the generating function of the Gaudin
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Hamiltonians as simple as possible. We proceed by demonstrating that the Bethe vector ϕ1(µ) has
the form

ϕ1(µ) =
(

f (µ) + c(1)1 (µ)
)

Ω+, (56)

where c1(µ) is given by

c(1)1 (µ) =
ψ

κ

(
1 +

(
e−2ξ − cosh(2µ)

)
ρ(µ)

)
. (57)

We proceed by explicit calculation to find

τ(λ)ϕ1(µ) = [τ(λ), f (µ)]Ω+ + χ0(λ)ϕ1(µ), (58)

where the commutator in the first term of (58) becomes

[τ(λ), f (µ)]Ω+ = − 2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
ϕ1(µ)

+
2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

sinh(ξ + µ) sinh(ξ − µ)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µ) +
1

sinh(ξ + µ) sinh(ξ − µ)

)
ϕ1(λ). (59)

Hence the action of the generating function τ(λ) on ϕ1(µ) is

τ(λ)ϕ1(µ) = χ1(λ, µ)ϕ1(µ) +
2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

sinh(ξ + µ) sinh(ξ − µ)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µ) +
1

sinh(ξ + µ) sinh(ξ − µ)

)
ϕ1(λ),

(60)

with

χ1(λ, µ) = χ0(λ)−
2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
. (61)

We can make the unwanted term in (60) vanish in the standard manner, i.e., by imposing the
following Bethe equation:

2ρ(µ) +
1

sinh(ξ + µ) sinh(ξ − µ)
= 0. (62)

Therefore, we have shown that ϕ1(µ) (56) is indeed a Bethe vector of the generating function τ(λ)

with the eigenvalue χ1(λ, µ) (61).
Next, we seek the Bethe vector ϕ2(µ1, µ2) in the form of the following symmetric function

ϕ2(µ1, µ2) = f (µ1) f (µ2)Ω+ + c(1)2 (µ2; µ1) f (µ1)Ω+ + c(1)2 (µ1; µ2) f (µ2)Ω+ + c(2)2 (µ1, µ2)Ω+. (63)

We now proceed to show that a proper solution for the scalar coefficients c(1)2 (µ1; µ2) and

c(2)2 (µ1, µ2) is

c(1)2 (µ1; µ2) =
ψ

κ

(
1 +

(
e−2ξ − cosh(2µ1)

)(
ρ(µ1)−

1
sinh(µ1 − µ2) sinh(µ1 + µ2)

))
, (64)

c(2)2 (µ1, µ2) =
ψ2

κ2

(
3 +

(
e−2ξ − cosh(2µ1)

) (
e−2ξ − cosh(2µ2)

)
ρ(µ1)ρ(µ2)+

+
2e−4ξ + 2e−2ξ (cosh(2µ1)− 3 cosh(2µ2))− (3 + cosh(4µ1)− 6 cosh(2µ1) cosh(2µ2))

4 sinh(µ1 − µ2) sinh(µ1 + µ2)
ρ(µ1)

+
2e−4ξ + 2e−2ξ (cosh(2µ2)− 3 cosh(2µ1))− (3 + cosh(4µ2)− 6 cosh(2µ2) cosh(2µ1))

4 sinh(µ2 − µ1) sinh(µ2 + µ1)
ρ(µ2)

)
. (65)
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The action of τ(λ) on ϕ2(µ1, µ2) can be written as

τ(λ)ϕ2(µ1, µ2) = [[τ(λ), f (µ1)] , f (µ2)]Ω+ +
(

f (µ2) + c(1)2 (µ2; µ1)
)
[τ(λ), f (µ1)]Ω+

+
(

f (µ1) + c(1)2 (µ1; µ2)
)
[τ(λ), f (µ2)]Ω+ + χ0(λ)ϕ2(µ1, µ2).

(66)

Then, we already have the Expression (59) for the second and third term above, and we use
the relations

(
f (µ1) + c(1)2 (µ1; µ2)

)
ϕ1(µ2) = ϕ2(µ1, µ2)−

ψ

κ

e−2ξ − cosh(2µ2)

sinh(µ1 − µ2) sinh(µ1 + µ2)
ϕ1(µ1)

−
(

c(2)2 (µ1, µ2)− c(1)1 (µ1)c
(1)
1 (µ2) +

ψ

κ

(
e−2ξ − cosh(2µ1)

)
c(1)1 (µ2)−

(
e−2ξ − cosh(2µ2)

)
c(1)1 (µ1)

sinh(µ1 − µ2) sinh(µ1 + µ2)

)
Ω+, (67)

(
f (µ1) + c(1)2 (µ1; µ2)

)
ϕ1(λ) = ϕ2(µ1, λ)− ψ

κ

e−2ξ − cosh(2λ)

sinh(λ− µ1) sinh(λ + µ1)
ϕ1(µ1)

+
(

c(1)2 (µ1; µ2)− c(1)2 (µ1; λ)
)

ϕ1(λ)

−
(

c(2)2 (µ1, λ)− c(1)1 (µ1)c
(1)
1 (λ) +

ψ

κ

(
e−2ξ − cosh(2λ)

)
c(1)1 (µ1)−

(
e−2ξ − cosh(2µ1)

)
c(1)1 (λ)

sinh(λ− µ1) sinh(λ + µ1)

)
Ω+, (68)

which follow from the definition (63). After expressing appropriately the first term on the right-hand
side of (66) and using twice the expression for the action of the commutator of τ(λ) with the generator
f (λ) on the vector Ω+ (59) as well as the identities (67) and (68), a straightforward calculation shows
that the off-shell action of the generating function τ(λ) on ϕ2(µ1, µ2) is given by

τ(λ)ϕ2(µ1, µ2) = χ2(λ, µ1, µ2)ϕ2(µ1, µ2) +
2

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
− 2

sinh(µi + µ3−i) sinh(µi − µ3−i)

)
ϕ2(λ, µ3−i),

(69)

with the eigenvalue

χ2(λ, µ1, µ2) = χ0(λ)−
2

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
− 1

sinh(λ + µ3−i) sinh(λ− µ3−i)

)
.

(70)

Again, we can take care of the two unwanted terms in (69) by imposing the Bethe equations on
the parameters µ1 and µ2:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
− 2

sinh(µi + µ3−i) sinh(µi − µ3−i)
= 0, (71)

with i = 1, 2. Thus, we have established that ϕ2(µ1, µ2) is the Bethe vector of the generating function
of the Gaudin Hamiltonians corresponding to the eigenvalue χ2(λ, µ1, µ2).
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The form of the Bethe vector ϕ3(µ1, µ2, µ3) is given explicitly (as a symmetric function of these
parameters) in the Appendix B. By a straightforward (but lengthy) computation one can show that the
action of the generating function τ(λ) on ϕ3(µ1, µ2, µ3) has the following form:

τ(λ)ϕ3(µ1, µ2, µ3) = χ3(λ, µ1, µ2, µ3)ϕ3(µ1, µ2, µ3)

+
3

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

3

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

)
ϕ3(λ, {µj}j 6=i),

(72)

where the eigenvalue is

χ3(λ, µ1, µ2, µ3) = χ0(λ)−
3

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
−

3

∑
j 6=i

1
sinh(λ + µj) sinh(λ− µj)

)
.

(73)

The three unwanted terms in (72) vanish upon imposing the following Bethe conditions on the
parameters µi:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

3

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

= 0, (74)

with i = 1, 2, 3.
Instead of processing further in a brute-force manner to find the form of ϕ4(µ1, µ2, µ3, µ4), it turns

out that it is possible to unify the obtained expressions for ϕ1, ϕ2 and ϕ3 by introducing a family
of operators

CK(µ) = f (µ) +
ψ

κ

(
(2K− 1) +

(
e−2ξ − cosh(2µ)

)
h(µ)

)
+

ψ2

κ2
e−ξ

2 sinh(ξ)
×

×
(

e−2ξ + 1− 2 cosh(2µ)
)

e(µ),
(75)

for any natural number K. Now, it can be shown by a direct calculation that the Bethe vectors (56), (63)
and (A8) can be expressed as

ϕ1(µ) = C1(µ)Ω+, ϕ2(µ1, µ2) = C1(µ1)C2(µ2)Ω+ and ϕ3(µ1, µ2, µ3) = C1(µ1)C2(µ2)C3(µ3)Ω+. (76)

Although in general the operators CK(µ) (75) do not commute, it is easy to verify that the Bethe
vector ϕ2(µ1, µ2) is a symmetric function

ϕ2(µ1, µ2) = C1(µ1)C2(µ2)Ω+ = C1(µ2)C2(µ1)Ω+ = ϕ2(µ2, µ1). (77)

Analogously, it is straightforward to check that the Bethe vector ϕ3(µ1, µ2, µ3) is a symmetric
function of its arguments

ϕ3(µ1, µ2, µ3) = C1(µ1)C2(µ2)C3(µ3)Ω+ = C1(µ2)C2(µ1)C3(µ3)Ω+ = ϕ3(µ2, µ1, µ3), (78)
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etc. Moreover using the formulae above (76) for the Bethe vectors it is somewhat simpler to calculate
the off-shell action of the generating function. Evidently,

[τ(λ), C1(µ)]Ω+ = [τ(λ), f (µ)]Ω+,

and consequently, the action (60) of the generating function τ(λ) on the Bethe vector ϕ1(µ) follows
directly from (59). In order to show (69), we calculate

[[τ(λ), C1(µ1)] , C2(µ2)]Ω+ =
4 sinh2(2λ)

sinh(λ + µ1) sinh(λ− µ1) sinh(λ + µ2) sinh(λ− µ2)
ϕ2(µ1, µ2)

−
2

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)

2
sinh(µi + µ3−i) sinh(µi − µ3−i)

ϕ2(λ, µ3−i)

+
ψ

κ

4 sinh2(2λ)

sinh(λ + µ1) sinh(λ− µ1)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
(ϕ1(µ1)− ϕ1(µ2))

− ψ

κ

4 sinh2(2λ)

sinh(λ + µ1) sinh(λ− µ1)

sinh(ξ + µ1) sinh(ξ − µ1)

sinh(ξ + λ) sinh(ξ − λ)

(
2ρ(µ1) +

1
sinh(ξ + µ1) sinh(ξ − µ1)

)
×

× (ϕ1(λ)− ϕ1(µ2))

− ψ

κ

4 sinh2(2λ)

sinh(λ + µ2) sinh(λ− µ2)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
ϕ1(µ1)

+
ψ

κ

4 sinh2(2λ)

sinh(λ + µ2) sinh(λ− µ2)

sinh(ξ + µ2) sinh(ξ − µ2)

sinh(ξ + λ) sinh(ξ − λ)

(
2ρ(µ2) +

1
sinh(ξ + µ2) sinh(ξ − µ2)

)
ϕ1(µ1)

(79)

and use (59) appropriately. Finally, the action (72) of the generating function τ(λ) on the Bethe vector
ϕ3(µ1, µ2, µ3) can be obtained by expressing [[[τ(λ), C1(µ1)] , C2(µ2)] , C3(µ3)]Ω+ conveniently and
using (59) and (79) adequately.

We proceed in a natural way and conjecture that the Bethe vector ϕ4(µ1, . . . , µ4) can be written in
the form

ϕ4(µ1, . . . , µ4) = C1(µ1)C2(µ2)C3(µ3)C4(µ4)Ω+. (80)

With the aim of calculating the action of the generating function of the Gaudin Hamiltonians on the
vector above we calculate [[[[τ(λ), C1(µ1)] , C2(µ2)] , C3(µ3)] , C4(µ4)]Ω+, expressing it appropriately
as a linear combination of all the previous Bethe vectors. This formula is very long and cumbersome
and for this reason, is not presented in the text. Using this result it is possible to obtain the desired
off-shell action in the following form

τ(λ)ϕ4(µ1, µ2, µ3, µ4) = χ4(λ, µ1, µ2, µ3, µ4)ϕ4(µ1, µ2, µ3, µ4)

+
4

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

4

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

)
ϕ4(λ, {µj}j 6=i),

(81)

where the eigenvalue is

χ4(λ, µ1, µ2, µ3, µ4) = χ0(λ)−
4

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
−

4

∑
j 6=i

1
sinh(λ + µj) sinh(λ− µj)

)
.

(82)
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This result we have confirmed also by computer algorithms for symbolical calculation.
Upon putting constrains on parameters µi in the form of the following Bethe equations:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

4

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

= 0, (83)

with i = 1, 2, 3, 4, the four unwanted terms vanish in (81).
We readily proceed to define ϕM(µ1, µ2, . . . , µM), for an arbitrary positive integer M,

ϕM(µ1, µ2, . . . , µM) = C1(µ1)C2(µ2) · · · CM(µM)Ω+, (84)

and the operators CK(µ) are given in (75). Although the operators CK(µ) do not commute, the Bethe
vector ϕM(µ1, µ2, . . . , µM) is nonetheless a symmetric function of its arguments, since these operators
satisfy the following identity,

CK(µ)CK+1(µ̃)− CK(µ̃)CK+1(µ) = 0, (85)

for K = 1, . . . , M − 1. It can be confirmed by explicit calculation that the off-shell action of the
generating function τ(λ) on the Bethe vector ϕM(µ1, µ2, . . . , µM), is given by

τ(λ)ϕM(µ1, µ2, . . . , µM) = χM(µ1, µ2, . . . , µM)ϕM(µ1, µ2, . . . , µM)

+
M

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

M

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

)
ϕM(λ, {µj}j 6=i),

(86)

with the eigenvalue

χM(µ1, µ2, . . . , µM) = χ0(λ)−
M

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
−

M

∑
j 6=i

1
sinh(λ + µj) sinh(λ− µj)

)
.

(87)

Imposing the following Bethe equations on parameters µi:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

M

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

= 0, (88)

with i = 1, 2, . . . , M, results in vanishing of M unwanted terms in (86).
The obtained formula (86) for the action of the generating function τ(λ) has a strikingly compact

form. This simplicity stems from our suitable definition of the Bethe vector ϕM(µ1, µ2, . . . , µM)

(84) and of the corresponding creation operators CK(µ) (75). In this sense we have successfully
implemented the algebraic Bethe ansatz for the trigonometric Gaudin model, with triangular K-matrix
(24). The implementation was based on the non-unitary classical r-matrix (17) and the corresponding
linear bracket (19).

4. Conclusions

Our first step was to derive the generating function of the Gaudin Hamiltonians with boundary
terms. We followed the approach based on Sklyanin’s method in the periodic case, just as we previously
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did in the rational case. Having obtained the generating function, we could calculate its residues at
poles and find the corresponding Gaudin Hamiltonians with boundary terms.

Our next step was the implementation of the algebraic Bethe ansatz for the trigonometric Gaudin
model with triangular reflection matrix (24). To this end we have introduced the non-unitary classical
r-matrix (17), which satisfies the generalized classical Yang-Baxter Equation (18), as well as the modified
Lax matrix (16). Together they define the linear bracket (19), which is obviously anti-symmetric and
obeys the Jacobi identity. As a consequence, it follows that the entries of the modified Lax matrix
generate an infinite dimensional Lie algebra, which is the basis of the open trigonometric Gaudin
model. A suitable set of generators (39)–(41) simplifies the commutation relations (42)–(45) and
therefore facilitates the algebraic Bethe ansatz. Another crucial observation for the implementation of
the algebraic Bethe ansatz was the existence of the so-called pseudo-vacuum or the reference state Ω+

(52) (see also (53) and (54)). The simplest way to define the relevant Bethe vectors turned out to be by
using the family of the creation operators CK(µ) (75). Obtained Bethe vectors ϕM(µ1, µ2, . . . , µM) (84)
are symmetric functions of their arguments and they result in exceedingly simple and compact form
of off-shell action of the generating function. In this sense, we have fully implemented the algebraic
Bethe ansatz: we have obtained the spectrum of the generating function and found the corresponding
Bethe equations.

Having in mind the already discussed range of potential applications that Gaudin model and its
generalizations have in various areas of physics (from condensed matter physics to field theory [2–5]),
we believe that the inclusion of nontrivial boundary conditions while retaining the integrability of
the model—demonstrated here—also has its share of significance. In this regard, it would be of
further considerable interest to establish a relationship between the presented Bethe vectors of the
trigonometric Gaudin model and the solutions to the related generalized Knizhnik-Zamolodchikov
equations, analogously as we did it for the rational case in [60]. These results will be reported elsewhere.
Also, we intend to give a mathematical completion of the work presented here by providing a strict
analytical proof (omitted here primarily due to its length) of the general Expression (86) for the
off-shell action.

Author Contributions: Investigation, N.M. and I.S; methodology N.M.; software, I.S.; writing–original draft
preparation, N.M.; writing–review and editing, I.S. All authors have read and agreed to the published version of
the manuscript.

Funding: I.S. was supported in part by the Serbian Ministry of Science and Technological Development under
grant number ON 171031.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Commutativity of the Generating Function

There are multiple ways to prove the commutation relation (21). Here we will employ the relation
of the present Gaudin model with the XXZ Heisenberg spin-chain model with boundary, explored in
detail in [53]. Thus, in this appendix, we will extensively reference expressions from that paper.
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We will begin by computing the expansion (with respect to the quasi-classical parameter η) of the
monodromy matrix taken from [53]:

T(λ) = 1+ ηL0(λ) +
η2

2
10 ⊗

N

∑
m=1

(
S3

m

)2

+
η2

2

N

∑
n,m=1
n 6=m

10 ⊗
(

cosh(λ− αm) cosh(λ− αn) S3
mS3

n +
1
2 (S

+
mS−n + S−mS+

n )
)

sinh(λ− αm) sinh(λ− αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ3
0 ⊗ (S−mS+

n − S+
mS−n ) + σ+

0 ⊗
(
cosh(λ− αm)S3

mS−n − cosh(λ− αn)S−mS3
n
)

2 sinh(λ− αm) sinh(λ− αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ−0 ⊗
(
cosh(λ− αn)S+

mS3
n − cosh(λ− αm)S3

mS−n
)

2 sinh(λ− αm) sinh(λ− αn)

+
η2

2

N

∑
m=1

N

∑
n>m

σ3
0 ⊗ (S−n S+

m − S+
n S−m) + σ+

0 ⊗
(
cosh(λ− αn)S3

nS−m − cosh(λ− αm)S−n S3
m
)

2 sinh(λ− αn) sinh(λ− αm)

+
η2

2

N

∑
m=1

N

∑
n>m

σ−0 ⊗
(
cosh(λ− αm)S+

n S3
m − cosh(λ− αn)S3

nS−m
)

2 sinh(λ− αn) sinh(λ− αm)
+O(η3). (A1)

Analogously, it is straightforward to obtain the expansion of the T̃(λ) monodromy matrix
from [53] in the powers the quasi-classical parameter η

T̃(λ) = 1− ηL0(−λ) +
η2

2

N

∑
m=1

10 ⊗ (S3
m)

2 −
2
(

σ3
0 ⊗ S3

m + 1
2 cosh(λ + αm)

(
σ+

0 ⊗ S−m + σ−0 ⊗ S+
m
))

sinh2(λ + αm)


+

η2

2

N

∑
n,m=1
n 6=m

10 ⊗
(

cosh(λ + αm) cosh(λ + αn) S3
mS3

n + 1
2
(
S+

m S−n + S−m S+
n
))

sinh(λ + αm) sinh(λ + αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ3
0 ⊗

(
S−m S+

n − S+
m S−n

)
+ σ+

0 ⊗
(
cosh(λ + αm)S3

mS−n − cosh(λ + αn)S−m S3
n
)

2 sinh(λ + αm) sinh(λ + αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ−0 ⊗
(
cosh(λ− αn)S+

m S3
n − cosh(λ + αm)S3

mS−n
)

2 sinh(λ + αm) sinh(λ + αn)

+
η2

2

N

∑
m=1

N

∑
n>m

σ3
0 ⊗

(
S−n S+

m − S+
n S−m

)
+ σ+

0 ⊗
(
cosh(λ + αn)S3

nS−m − cosh(λ + αm)S−n S3
m
)

2 sinh(λ + αn) sinh(λ− αm)

+
η2

2

N

∑
m=1

N

∑
n>m

σ−0 ⊗
(
cosh(λ + αm)S+

n S3
m − cosh(λ + αn)S3

nS−m
)

2 sinh(λ + αn) sinh(λ + αm)
+O(η3). (A2)

Using these formulas, as well as the first three terms in the power series of the K-matrix (13), we
can deduce the expansion of the transfer matrix of the chain t(λ) in powers of η. We similarly obtain
the expansion of the so-called Sklyanin determinant ∆ [T (λ)] in powers of η. However these formulas
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are long and cumbersome, therefore we will not present them here. Instead we will give the expansion
of the difference between the transfer matrix of the chain and the Sklyanin determinant:

t(λ)− ∆ [T (λ)]
sinh(2λ)

=
1
2

tr0K0(λ)K0(−λ) + η
(
tr0K′0(−λ)K0(λ) + tr00′P

−
00′K0(λ)r00′(2λ)K0′(λ)

)
+ η2 (tr0K′0(−λ)L0(λ)K0(λ) + tr00′P

−
00′ (L0(λ)K0(λ)r00′(2λ)K0′(λ) + K0(λ)r00′(2λ)L0′(λ)K0′(λ))

)
− η2 tr00′P

−
00′L0(λ)K0(λ)L0′(λ)K0′(λ) +

η2

2

(
tr0K′′0 (−λ)K0(λ)−

1
4

tr0K′′0 (λ)K0(−λ)

+
1
2

tr00′P
−
00′K

′
0(λ)K

′
0′(λ)−

1
sinh(2λ)

tr00′P
−
00′K0(λ)∂

2
η R00′(2λ)

∣∣
η=0K0′(λ)

)
+O(η3). (A3)

Note the explicit appearance of the K-modified Lax matrix (16) in the above result.
Actually, a straightforward calculation shows that the terms in the second line of the expression

above vanish

tr0K′0(−λ)L0(λ)K0(λ) + tr00′P
−
00′ (L0(λ)K0(λ)r00′ (2λ)K0′ (λ) + K0(λ)r00′ (2λ)L0′ (λ)K0′ (λ)) = 0. (A4)

Also, it is important to notice that using the following identity

L0(λ)K0(λ)− tr0′ (L0′(λ)K0′(λ))10 = K0(−λ)L0(λ), (A5)

the first term in the third line of (A3) can be simplified

tr0 K0(−λ)L0(λ)L0(λ)K0(λ) = det K0(λ) tr0 L2
0(λ). (A6)

Finally, the Expansion (A3) reads

t(λ)− ∆ [T (λ)]
sinh(2λ)

= det K0(λ) + η
(
tr0K′0(−λ)K0(λ) + tr00′P

−
00′K0(λ)r00′ (2λ)K0′ (λ)

)
+

η2

2
det K0(λ) tr0 L2

0(λ) +
η2

2

(
tr0K′′0 (−λ)K0(λ)−

1
4

tr0K′′0 (λ)K0(−λ)

+
1
2

tr00′P
−
00′K

′
0(λ)K

′
0′ (λ)−

1
sinh(2λ)

tr00′P
−
00′K0(λ)∂

2
η R00′ (2λ)

∣∣
η=0K0′ (λ)

)
+O(η3). (A7)

Since both the transfer matrix t(λ) and the Sklyanin determinant ∆ [T (λ)] commute (as well as
their difference) for different values of the spectral parameter, the result (21) directly follows from the
previous relation.

Appendix B. Bethe Vector ϕ3(µ1, µ2, µ3)

Here we provide explicit formulas of the Bethe vector ϕ3(µ1, µ2, µ3):

ϕ3(µ1, µ2, µ3) = f (µ1) f (µ2) f (µ3)Ω+ + c(1)3 (µ1; µ2, µ3) f (µ2) f (µ3)Ω+ + c(1)3 (µ2; µ3, µ1) f (µ3) f (µ1)Ω+

+ c(1)3 (µ3; µ1, µ2) f (µ1) f (µ2)Ω+ + c(2)3 (µ1, µ2; µ3) f (µ3)Ω+ + c(2)3 (µ2, µ3; µ1) f (µ1)Ω+

+ c(2)3 (µ3, µ1; µ2) f (µ2)Ω+ + c(3)3 (µ1, µ2, µ3)Ω+,
(A8)
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where the three scalar coefficients above are given by

c(1)3 (µ1; µ2, µ3) =
ψ

κ

(
1 +

(
ρ(µ1)−

1
sinh(µ1 − µ2) sinh(µ1 + µ2)

− 1
sinh(µ1 − µ3) sinh(µ1 + µ3)

)
×

×
(

e−2ξ − cosh(2µ1)
))

, (A9)

c(2)3 (µ1, µ2; µ3) =
ψ2

κ2

(
3 +

(
e−2ξ − cosh(2µ1)

) (
e−2ξ − cosh(2µ2)

)
×

×
(

ρ(µ1)−
1

sinh(µ1 − µ3) sinh(µ1 + µ3)

)(
ρ(µ2)−

1
sinh(µ2 − µ3) sinh(µ2 + µ3)

)

+
2e−4ξ + 2e−2ξ (cosh(2µ1)− 3 cosh(2µ2))− (3 + cosh(4µ1)− 6 cosh(2µ1) cosh(2µ2))

4 sinh(µ1 − µ2) sinh(µ1 + µ2)

×
(

ρ(µ1)−
1

sinh(µ1 − µ3) sinh(µ1 + µ3)

)

+
2e−4ξ + 2e−2ξ (cosh(2µ2)− 3 cosh(2µ1))− (3 + cosh(4µ2)− 6 cosh(2µ2) cosh(2µ1))

4 sinh(µ2 − µ1) sinh(µ2 + µ1)

×
(

ρ(µ2)−
1

sinh(µ2 − µ3) sinh(µ2 + µ3)

))
, (A10)

c(3)3 (µ1, µ2, µ3) =
ψ3

κ3

(
15 +

(
e−2ξ − cosh(2µ1)

) (
e−2ξ − cosh(2µ2)

) (
e−2ξ − cosh(2µ3)

)
ρ(µ1)ρ(µ2)ρ(µ3)

+

((
5− 2 coth(ξ)

(
sinh2(µ1)

sinh(µ1 − µ3) sinh(µ1 + µ3)
+

sinh2(µ2)

sinh(µ2 − µ3) sinh(µ2 + µ3)

))(
e−2ξ − cosh(2µ1)

)
×
(

e−2ξ − cosh(2µ2)
)
− e−ξ

sinh(ξ)

(
sinh(ξ − µ1) sinh(ξ + µ1)

sinh(µ1 − µ3) sinh(µ1 + µ3)

(
e−2ξ + 1− 2 cosh(2µ1)

)
×

×
(

e−2ξ − cosh(2µ2)
)
+

sinh(ξ − µ2) sinh(ξ + µ2)

sinh(µ2 − µ3) sinh(µ2 + µ3)

(
e−2ξ − cosh(2µ1)

) (
e−2ξ + 1− 2 cosh(2µ2)

)))
× ρ(µ1)ρ(µ2)

+

((
5− 2 coth(ξ)

(
sinh2(µ1)

sinh(µ1 − µ2) sinh(µ1 + µ2)
+

sinh2(µ3)

sinh(µ3 − µ2) sinh(µ3 + µ2)

))(
e−2ξ − cosh(2µ1)

)
×
(

e−2ξ − cosh(2µ3)
)
− e−ξ

sinh(ξ)

(
sinh(ξ − µ1) sinh(ξ + µ1)

sinh(µ1 − µ2) sinh(µ1 + µ2)

(
e−2ξ + 1− 2 cosh(2µ1)

)
×

×
(

e−2ξ − cosh(2µ3)
)
+

sinh(ξ − µ3) sinh(ξ + µ3)

sinh(µ3 − µ2) sinh(µ3 + µ2)

(
e−2ξ − cosh(2µ1)

) (
e−2ξ + 1− 2 cosh(2µ3)

)))
× ρ(µ1)ρ(µ3)
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+

((
5− 2 coth(ξ)

(
sinh2(µ2)

sinh(µ2 − µ1) sinh(µ2 + µ1)
+

sinh2(µ3)

sinh(µ3 − µ1) sinh(µ3 + µ1)

))(
e−2ξ − cosh(2µ2)

)
×
(

e−2ξ − cosh(2µ3)
)
− e−ξ

sinh(ξ)

(
sinh(ξ − µ2) sinh(ξ + µ2)

sinh(µ2 − µ1) sinh(µ2 + µ1)

(
e−2ξ + 1− 2 cosh(2µ2)

)
×

×
(

e−2ξ − cosh(2µ3)
)
+

sinh(ξ − µ3) sinh(ξ + µ3)

sinh(µ3 − µ1) sinh(µ3 + µ1)

(
e−2ξ − cosh(2µ2)

) (
e−2ξ + 1− 2 cosh(2µ3)

)))
× ρ(µ2)ρ(µ3)

+
(

8e−6ξ + 4e−4ξ (4 cosh(2µ1)− 5 (cosh(2µ2) + cosh(2µ3))) + 2e−2ξ (−5 + 7 cosh(4µ1) + 30 cosh(2µ2)×

× cosh(2µ3)− 10 cosh(2µ1) (cosh(2µ2) + cosh(2µ3)))− 3 cosh(6µ1) + 10 (3 + cosh(4µ1))×

× (cosh(2µ2) + cosh(2µ3))− 5 cosh(2µ1) (5 + 12 cosh(2µ2) cosh(2µ3))
)
×

× ρ(µ1)

16 sinh(µ1 − µ2) sinh(µ1 + µ2) sinh(µ1 − µ3) sinh(µ1 + µ3)

+
(

8e−6ξ + 4e−4ξ (4 cosh(2µ2)− 5 (cosh(2µ1) + cosh(2µ3))) + 2e−2ξ (−5 + 7 cosh(4µ2) + 30 cosh(2µ1)×

× cosh(2µ3)− 10 cosh(2µ2) (cosh(2µ1) + cosh(2µ3)))− 3 cosh(6µ2) + 10 (3 + cosh(4µ2))×

× (cosh(2µ1) + cosh(2µ3))− 5 cosh(2µ2) (5 + 12 cosh(2µ1) cosh(2µ3))
)
×

× ρ(µ2)

16 sinh(µ2 − µ1) sinh(µ2 + µ1) sinh(µ2 − µ3) sinh(µ2 + µ3)

+
(

8e−6ξ + 4e−4ξ (4 cosh(2µ3)− 5 (cosh(2µ1) + cosh(2µ2))) + 2e−2ξ (−5 + 7 cosh(4µ3) + 30 cosh(2µ1)×

× cosh(2µ1)− 10 cosh(2µ3) (cosh(2µ1) + cosh(2µ2)))− 3 cosh(6µ3) + 10 (3 + cosh(4µ3))×

× (cosh(2µ1) + cosh(2µ2))− 5 cosh(2µ3) (5 + 12 cosh(2µ1) cosh(2µ2))
)
×

× ρ(µ3)

16 sinh(µ3 − µ1) sinh(µ3 + µ1) sinh(µ3 − µ2) sinh(µ3 + µ2)

)
(A11)
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60. Salom, I.; Manojlović, N.; Cirilo António, N. Generalized s`(2) Gaudin algebra and corresponding
Knizhnik-Zamolodchikov equation. Nuclear Phys. B 2019, 939, 358–371. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0305-4470/37/2/012
http://dx.doi.org/10.1007/s10582-006-0075-9
http://dx.doi.org/10.1016/j.nuclphysb.2004.12.008
http://dx.doi.org/10.1088/1742-5468/2007/09/P09009
http://dx.doi.org/10.1016/j.nuclphysb.2013.06.022
http://dx.doi.org/10.1016/j.nuclphysb.2013.10.001
http://dx.doi.org/10.1142/S0129055X13430071
http://dx.doi.org/10.1007/s11005-012-0601-6
http://dx.doi.org/10.3842/SIGMA.2013.072
http://dx.doi.org/10.1088/1751-8113/46/45/455002
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.003
http://dx.doi.org/10.1016/j.nuclphysb.2015.03.016
http://dx.doi.org/10.1016/j.nuclphysb.2015.08.006
http://dx.doi.org/10.1016/j.nuclphysb.2016.06.007
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.022
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.014
http://dx.doi.org/10.1016/j.nuclphysb.2017.07.017
http://dx.doi.org/10.1016/j.nuclphysb.2014.06.018
http://dx.doi.org/10.1016/j.nuclphysb.2015.02.011
http://dx.doi.org/10.1016/j.aop.2015.01.007
http://dx.doi.org/10.1088/0305-4470/27/18/021
http://dx.doi.org/10.1142/S0217751X94001552
http://dx.doi.org/10.1016/j.nuclphysb.2018.12.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


Chapter 15 

Systems Biology Approaches to Understanding COVID-19 
Spread in the Population 

Sofija Marković, Igor Salom, and Marko Djordjevic 

Abstract 

In essence, the COVID-19 pandemic can be regarded as a systems biology problem, with the entire world as 
the system, and the human population as the element transitioning from one state to another with certain 
transition rates. While capturing all the relevant features of such a complex system is hardly possible, 
compartmental epidemiological models can be used as an appropriate simplification to model the system’s 
dynamics and infer its important characteristics, such as basic and effective reproductive numbers of the 
virus. These measures can later be used as response variables in feature selection methods to uncover the 
main factors contributing to disease transmissibility. We here demonstrate that a combination of dynamic 
modeling and machine learning approaches can represent a powerful tool in understanding the spread, not 
only of COVID-19, but of any infectious disease of epidemiological proportions. 

Key words COVID-19 transmissibility, Epidemics dynamics, Compartmental epidemiological 
models, Regularized regressions, Machine learning, Feature selection methods 

1 Introduction 

1.1 Pandemics from 

the Systems Biology 

Perspective 

Similarly to many scientific disciplines, systems biology was urged 
to adapt to the research of COVID-19, which practically overnight 
became the priority of almost the entire scientific community. It was 
soon apparent that many approaches used in systems biology for 
exploring molecular-level phenomena can be employed in the 
population-level epidemiological study. In essence, the pandemic 
represents a systems biology problem, where the entire world is the 
system, with the human population as the elements transitioning 
from one state to another. Compartmental models, similar to those 
used to describe transport dynamics and biochemical reactions in 
cellular compartments [1], can be utilized to analyze epidemics’ 
dynamics. Here, instead of the molecular species, the transition of 
individuals from one epidemiological population class to another is 
observed over time [2]. During the pandemic, the population size
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in each compartment is relatively large. Thus, the entire epidemic 
can be considered a deterministic process, where the system’s pre-
vious state and the model constraints determine the state of the 
population at any given time.
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Epidemiological models of this type were first described in 
1927 by Kermack and McKendrick [3]. In their SIR (Susceptible-
Infected-Recovered) model, the entire population is divided into 
susceptible, infected, and recovered classes (i.e., compartments), 
with certain transition rates between them. Numerous other epide-
miological models of a similar type have been proposed since then, 
most notably the SEIR model [4], aiming to better describe the 
dynamics of different infectious diseases. In ref [5], the modified 
SEIR model was used as a starting point for modeling the dynamics 
of COVID-19 spread during the first wave of the pandemic. To 
model the later stages of the infection outburst, when the disease 
mitigation measures, such as strong social distancing, already took 
effect, a more complex model is needed. In ref [2, 6], the SPEIRD 
model was introduced to capture the dynamic of the later epidemi-
ological stages and, subsequently, used to analytically and numeri-
cally explain different (almost universally observed) epidemic 
growth regimes. 

A parallel can be drawn between the modeling of virus trans-
mission in the population and gene expression dynamics 
[2, 7]. While the dynamics of gene expression is influenced by 
both the global physiological state of the cell, driven by the chang-
ing rate of cell growth [8], and the complex (nonlinear) transcrip-
tion regulation [9], the virus transmissibility also depends on the 
combination of the inherent properties of the virus in the given 
environment, represented by its basic reproduction number (R0), 
and the complex effects of epidemiological measures introduced by 
each country. That is, from the systems biology point of view, the 
classical models for epidemic dynamics (such as SIR and SEIR) are 
an example of the mass action law kinetics [10]. However, COVID-
19 also brought additional challenges, such as unprecedented con-
trol measures, which are analogous to the control mechanisms at 
the cellular level—a widely studied problem in systems biology, 
which is addressed using methods ranging from nonlinear differen-
tial equations to network theory. Therefore, it is unsurprising that 
many system biologists have used different approaches to tackle this 
problem [11–16]. For example, in ref [12], agent-based simulation 
was combined with the SEIR model to mimic the structure of 
society and social contacts in the context of the pandemic to deter-
mine the most efficient epidemic mitigation strategies. On the 
other hand, in ref [13], the authors employ a non-Markovian age-
of-infection model to estimate the effective reproduction number 
of the virus.



Systems Biology Approaches to Understanding COVID-19 Spread in the Population 235

1.2 Challenges in 

Uncovering the Main 

Transmissibility 

Drivers of COVID-19 

In the context of the ongoing COVID-19 pandemic, besides esti-
mating the basic reproduction number of the virus in the given 
country, it is crucial to understand the observed differences in 
transmissibility between different countries. Unmasking the main 
environmental, demographic, and health-related factors responsi-
ble for the severe outbreaks in some countries and regions world-
wide was one of the highest priorities in early COVID-19 
epidemiological studies. That is, although in the first wave of the 
pandemic, only one (initial Wuhan) strain was present, significant 
discrepancies in viral transmissibility (and severity) were observed in 
different countries, with R0 ranging from 1.5 to 5.5 [5]. 

In the absence of previous knowledge of the environmental and 
social factors influencing the transmissibility of a novel disease, a 
large set of potential transmissibility drivers for a relatively small 
number of countries for which the relevant data is available needs to 
be considered. The matter is further complicated by the often-high 
correlation of these predictors and their potentially nonlinear rela-
tionship with the response variable. This makes feature selection a 
highly nontrivial problem whose solution goes beyond standard 
statistical techniques and allows for more advanced machine-
learning approaches. This is also analogous to many machine-
learning applications in molecular systems biology and bioinfor-
matics [17–19]. There, one often has to understand the influence 
of many heterogeneous factors, which are hard to account for by 
mechanistic modeling alone, so the complementarity of mechanis-
tic dynamical models (deterministic or stochastic) and machine 
learning is increasingly emphasized [20–22]. We proceed similarly 
in epidemics modeling and data analysis, starting with methods 
based on dynamical compartmental models and proceeding to 
machine learning methods. 

1.3 Definition of an 

Appropriate 

Transmissibility 

Measure 

The first step in studying disease dynamics in the population is 
defining an appropriate disease transmissibility measure. This mea-
sure must meet several criteria before being implemented as the 
response variable in feature selection methods. Although the most 
practical, using the number of registered disease cases is inappro-
priate when examining an epidemic of global proportions, such as 
COVID-19, due to several reasons, such as being sensitive to 
differences in testing policies and introduced epidemiological mea-
sures between countries. A way to overcome these difficulties is 
using the basic reproduction number of the virus, extracted from 
the dynamical model of the exponential phase of the epidemics, as a 
measure of disease transmissibility [5]. R0, defined in this way, 
represents the number of secondarily infected people per infected 
individual in a fully susceptible population, and is equal to the 
infection rate and recovery rate ratio. Infectious diseases with 
R0 > 1 can spread through the population and have epidemiologi-
cal potential. Without any epidemiological measures, an initial



increase in the number of cases of such diseases is exponential due 
to the large number of susceptible individuals at the beginning of 
the epidemic. Although R0 is the inherent characteristic of the 
virus, it is affected by environmental conditions and hence varies 
in different countries. During the later stages of the pandemic, 
when epidemiological measures have been introduced and not all 
population members are susceptible to the disease, R0 is no longer 
an appropriate measure of disease transmissibility. Instead, the 
effective reproduction number, Re, is used. 
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Fig. 1 Growth regimes of COVID-19. SPEIRD model predictions are compared with the data for (a) confirmed 
cases, (b) active cases, and (c) fatalities; (d) Exponential, superlinear, and sublinear growth regimes are 
represented by red, blue, and green curves, respectively, with arrows representing a transition from “weak” to 
“strong” social distancing measures. The confirmed (i.e., detected) case count and the corresponding fit are 
represented on (e) log-linear, (f) log-log, and (g) linear-log scale for the corresponding regime. 
(Figure reproduced from ref [7]) 

1.4 Growth Regime 

of COVID-19 

Typically, the time course of the COVID-19 epidemic can be 
divided into three regimes: exponential, superlinear, and sublinear 
(see Fig. 1). During the initial exponential phase, no measures have 
been implemented, and the number of cases grows exponentially. 
In countries with a clear exponential growth regime, R0 can be 
calculated from the SEIR-based compartmental epidemiological 
model presented in Fig. 2 [5]. This model is a simplification of a 
more complex SPEIRD model, introduced in ref [2] and suitable 
for dynamic modeling of the early epidemiological stages when the 
following assumptions are met: (i) No epidemiological measures 
have been introduced; (ii) The entire population is susceptible to



the disease (there is no immunity); (iii) Only a single strain of the 
virus is present. Introducing epidemiological measures causes a 
transition from exponential to subexponential (superlinear and 
sublinear) growth. This typically occurs 10–14 days after introdu-
cing the measures (see Fig. 1d). The sublinear and superlinear 
growth regimes have been analyzed in more detail in ref [6, 7]. 
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Fig. 2 SEIR-based compartmental model of the early stages of the epidemic. 
Each block represents an epidemiological compartment with a suitable label, 
while arrows represent possible transitions from one compartment to another, 
which occurs at the rates denoted above the arrows, β – transmission rate, σ – 
incubation rate, γ – recovery rate, ε – detection efficiency, δ – detection rate. 
(Figure reproduced from ref [5]) 

2 Methods 

2.1 A Simplified 

Compartmental Model 

of the Epidemic and 

Inference of R0 

During the exponential regime, the compartmental model of 
COVID-19 progression in the population can be simplified to the 
SEIR-based model [5] presented in Fig. 2. In this model, the entire 
population is divided into five compartments: Susceptible (S), 
Exposed (E), Infected (I), Recovered (R), and, as an addition to 
the SEIR model, Detected (D). The transition between the com-
partments is denoted by arrows, with the appropriate transition 
rates above them. At the initial stage of the epidemic, an entire 
population is treated as susceptible to the disease. With the infec-
tion rate β, a certain proportion of the susceptible population is 
exposed to the disease, moving to the Exposed compartment. After 
a latent period, the exposed individuals become infected (at which 
point they also become infectious). Infected can either recover 
without detection, moving to the Recovered compartment, or are 
diagnosed with COVID-19 at a certain detection rate, which 
depends on the detection efficiency and time needed for diagnos-
tics. At this point, they transition to the detected compartment. In 
our model, which studies the brief initial infection period, all the 
described rates are considered constant. 

Mathematically, the described model can be represented by a 
system of ordinary differential equations: 

dS 
dt 

= - β � I � S 
N 

, 

dE 
dt 

= β � I � S 
N

- σ � E,
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dI 
dt  

= σ � E- γ � I - ε � δ � I , 
dR 
dt 

= γ � I , 
dD 
dt 

= ε � δ � I , 

where capital letters S, E, I, R, and D represent the number of 
people in the corresponding compartment, N denotes population 
size, β denotes infection rate, σ denotes incubation rate, that is, the 
inverse value of the average latent period, γ denotes the recovery 
rate, defined as the inverse value of the infectious period, and ε and 
δ represent the detected fraction of infected and reciprocal value of 
the time needed for diagnosis, respectively. 

The cumulative number of detected disease cases, D, is a mea-
surable quantity, with the data publicly available for most countries 
[23]. In ref [5], we showed that the basic reproduction number of 
the virus, defined as the infection rate multiplied by the infectious 
period (R0 = β γ), can be calculated from the slope of the log(D(t)) 
curve during the exponential growth period, by applying the 
formula: 

R0 =1þ λþðγ þ σÞ þ  λþ2 

γ � σ 
Here λ+ is the slope of the log(D(t)) function, and γ and σ are 

approximated to 1/4 day-1 and 1/3 day-1 , respectively, according 
to the findings from the literature [14]. 

The basic reproduction number of the virus represents the 
mean number of secondarily infected individuals by one infected 
individual in a completely susceptible population, and with the 
absence of epidemic mitigation measures. It depends on the biol-
ogy of the virus, environmental factors, and socio-demographic 
characteristics of the population, but it is independent of the testing 
policies. 

Using the methodology above, described in ref [5], R0 can be 
inferred for all countries at the beginning of the epidemic, given 
that exponential growth in the number of detected cases, lasting at 
least 7 days, is observed, during which at least 1000 tests are 
performed, with less than 20% reported positive test results. R0 is 
inferred from the exponential regime for these countries, assuming 
a deterministic limit (valid when the number of detected cases is 
around 10 or more). The manual inspection of growth profiles for 
each country is needed to determine this interval, as it can vary 
from country to country. 

Therefore, the steps to obtain R0 are: 

1. Obtain daily values of Detected cases D(t) and performed tests 
numbers in the initial stage of epidemic for various countries/
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regions (ignore the non-deterministic pre-exponential period 
with less than 10 daily detected cases). 

2. Discard countries/regions with more than 20% of positive test 
results as regions with insufficient testing coverage. 

3. For each country/region, manually identify the initial 
exponential-growth interval, in the duration of at least 7 days, 
with overall at least 1000 performed tests. 

4. Make a plot of log(D(t)) function and discard the country/ 
region if it is not close to linear. 

5. Calculate R0 value from the slope of log(D(t)), using the above 
formula. 

While this absence of epidemiological measures and immunity 
among the population allows calculating R0 as the inherent virus 
property, it is also worth mentioning that, although more compli-
cated, it is possible to derive the effective reproductive number of 
the virus (Re) during later stages of the epidemics, as shown in ref 
[2, 7]. However, extracting Re from these models, with the control 
measures fully considered, is complicated and requires a high-
quality data set [7]. Consequently, in the machine learning meth-
ods explained below, we will use publicly available Re values 
extracted from a simplified SIR model [24]. 

2.2 Univariate 

Correlations – 
Valuable First Insight 

Simple linear correlation is a valuable tool for quickly analyzing the 
strength of the linear relationship between two variables. Although 
it does not account for the effects of other (confounding) factors, it 
is a relatively simple method that provides a helpful first insight into 
the strength and direction of the relationship between the variables. 

The protocol for univariate correlations is the following: 

1. Collect data for variables of interest. 

2. Calculate Pearson’s correlation coefficient between each vari-
able and the target variable. 

3. Graphically represent the results via bar plots or scatter graphs 
to visualize the strength of correlation for selected variables. 

4. Interpret the results to identify potential risk factors and assess 
the strength and direction of the relationship between 
variables. 

5. Consider the limitations of the univariate correlation method, 
including the lack of accounting for confounding factors, and 
plan for further analysis if needed. 

6. Utilize the results for various purposes, such as interpretation 
of principal components and preselection of variables for 
machine learning regressions.



p p

240 Sofija Marković et al.

As an illustration of this procedure, in ref [5], Pearson’s corre-
lation of R0, inferred for 118 world countries, was determined 
together with 42 demographic, meteorological, and health-related 
variables. This way, potential risk factors were singled out among 
many variables. These univariate correlations can be graphically 
represented via bar plots (for representing univariate correlation 
coefficients of a group of variables with R0) and scatter graphs 
(to emphasize the strength of correlation for selected variables), 
as presented in Fig. 3. This figure shows significant positive correla-
tions between R0 and the human development index (HDI), the 
median population age, and the urban population percentage. At 
the same time, the highest negative correlation is observed for 
infant mortality rate and weather parameters related to a warmer 
climate (i.e., higher temperatures, precipitation, humidity, and UV 
radiation). The correlation between R0 and the delay of the epi-
demic onset is also significant and negative. 

Besides exploring the strength of the linear relationship 
between R0 and potential risk factors, univariate correlation can 
be used for a number of purposes, including interpretation of 
principal components with respect to the variables entering PCA, 
as well as for preselection of variables entering the machine learning 
regressions, all of which will later be discussed. 

2.3 Data 

Transformation and 

Outlier Substitution 

Many linear regression methods used for feature selection are sen-
sitive to outliers and require approximately normal 
distribution. Thus: 

1. Check the distribution of collected environmental and demo-
graphic data before running regression. 

2. If the distribution deviates significantly from normal, apply 
appropriate transformations. 

3. Use standard transformations (x2 , log x, x, x3 ) that lead to 
the skewness coefficient closest to zero, and the minimal num-
ber of outliers in the transformed data. 

4. Substitute remaining outliers with the median of the trans-
formed variable. 

2.4 Dealing with 

Multicollinearity of 

High-Dimensional 

Data – PCA and mRMR 

Approach 

Principal component analysis (PCA) [25] is an unsupervised 
machine learning method widely used to analyze high-dimensional 
data sets. This relatively simple technique allows for dimensionality 
reduction and partial data decorrelation while keeping the desired 
percentage of the variance. As the result of PCA, the initial data are 
linearly transformed into a new coordinate system based on the 
variables’ covariance, so that the new set of variables, i.e., principal 
components (PCs), contain a descending amount of information. 
That is, the first principal component contains most of the variance 
of the original data, followed by the second principal component,
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Fig. 3 Pearson’s correlation of R0 and potential transmissibility drivers. (a) Scatter graph of R0 vs. HDI; (b) Bar 
plot of Pearson’s correlation coefficients of R0 with socio-demographic variables, INS – social security and 
health insurance coverage, UP – percentage of urban population, BAP – built-up area per capita (measure of 
population density), MA – median age, IM – infant mortality, I-E – net immigration, RE – percentage of 
refugees; (c) Scatter graph of R0 vs. days since the epidemic onset; (d) Bar plot of Pearson’s correlation 
coefficients of R0 with air pollutants, 2.5 – PM2.5 concentration, 10 – PM10 concentration; (e) Scatter graph of
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etc. Commonly, we keep only the number of components required 
to explain over 85% of the variance of the original data. This way, a 
minimal number of maximally informative components can be used 
as input in regression models, making the analysis significantly 
more straightforward and reliable. The standard PCA protocol is 
the following:
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1. Collect high-dimensional data for analysis. 

2. Standardize the data by subtracting the mean from each data 
point and dividing the result by the standard deviation 
(required for PCA). 

3. Perform PCA on the standardized data. 

4. Examine the distribution of the PCs and substitute the outliers 
(if they appeared). 

5. Determine the number of principal components that explain 
over 85% of the variance of the original data and retain only 
them in the following regression-based analysis. 

6. Interpret the principal components by assessing their correla-
tion with the variables entering PCA. 

The biggest downside of this approach is a somewhat compli-
cated interpretation of principal components. For example, in ref 
[26], the correlation of each of the PCs relevant for the analysis 
with the variables entering the PCA was determined, and PCs were 
later discussed based on the variable(s) with which they had the 
highest correlation. An approach used by [27] to overcome this 
problem was to group the variables in smaller, mutually related 
subsets prior to the PCA, making their subsequent interpretation 
more straightforward. In ref [26], PCA was performed on nine 
demographic variables obtained from 118 world countries. The 
increase of the cumulative variance explained by a larger number 
of PCs and the 85% cut-off point for the principal components are 
represented in Fig. 4a. The correlation of the 9 selected PCs (which 
cumulatively explain over 85% of the data variance) and the vari-
ables entering PCA were examined. The variables with the highest 
correlation with each of the PCs, along with the corresponding 
Pearson’s correlation coefficient, are represented in Fig. 4b. PC1, 
containing the highest portion of the explained variance, shows the 
highest correlation with the Human Development Index (HDI) 
(see Fig. 4c). HDI is, in turn, significantly correlated with many 
variables related to society’s prosperity (see Fig. 4d), interpreting 
PC1 as the prosperity measure. 

Fig. 3 (continued) R0 vs. precipitation; (f) Bar plot of Pearson’s correlation coefficients of R0 with five 
meteorological variables, T – temperature, H – specific humidity, UV – UV index, P – air pressure, WS – the 
wind speed. (Figure adapted from ref [5])
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Fig. 4 Principal Component Analysis of selected demographic variables. (a) Cumulative variance explained by 
first n principal components, with the dashed line representing 85% variance cut-off; (b) Pearson’s correlation 
coefficients of the variables with the highest correlation with each of the selected principal components; (c) 
Scatter plot of PC1 vs. HDI; (d) Pearson’s correlation of HDI and demographic variables which entered PCA, 
HDI – human development index, SM – prevalence of smoking, RE – the percentage of refugees, OB – 
prevalence of obesity, BCG – BCG immunization coverage, IN – prevalence of insufficient physical activity, 
BUAPC – built-up area per capita, ON – delay of the epidemic onset, GDPpc – GDP per capita, IM – infant 
mortality, MA – median age, UP – urban population, CH – average blood cholesterol level, CD – prevalence of 
chronic diseases, PL -PM2.5 pollution, I-E – net immigration. (Figure reproduced from ref [26]) 

A generalization of PCA, Supervised Principal Component 
Analysis [28, 29], is a PCA-based regression and classification 
method aimed at analyzing data sets in which the number of 
observations is smaller than the number of their features. In the 
Supervised PCA, principal component analysis is performed only 
on the variables whose Pearson’s correlation coefficient with the 
response variable is higher than a certain threshold, θ. Only m 
principal components obtained this way are used as input in the 
multiple linear regression model. In ref [30], supervised PCA was 
used to analyze COVID-19 global severity determinants, with θ 
and m treated as hyperparameters and selected through cross-
validation.
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The Minimum Redundancy Maximum Relevance (mRMR) 
[31] feature selection method can be used for variable preselection 
as an alternative to PCA. This method’s features are ordered based 
on their maximal correlation with the response variable (maximal 
relevance) and minimal correlation with the previously selected 
features (minimal redundancy). Only the predetermined number 
of highest-ranking features are selected. The mRMR algorithm is 
executed in the following way: 

1. Calculate relevance of the features as F-statistics between the 
target variable and each feature. 

2. Calculate the redundancy of each feature with respect to the 
remaining features as sum of the absolute values of their Pear-
son’s correlation coefficients. 

3. Divide relevance with redundancy to obtain the score. 

4. Choose the feature with the highest score as the first feature. 

5. Iteratively select the remaining features based on their score. 

6. The selected features can then be used as input in regression 
models or other analyses. 

This method was recently proved effective with the Random 
Forest algorithm [32]. In ref [33], this approach was used in the 
large-scale analysis of COVID-19 severity determinants in the 
United States. The number of best-ranking features retained by 
mRMR in this research was treated as a hyperparameter and deter-
mined through cross-validation. 

2.5 Regularization-

Based Linear 

Regression Methods 

Although multiple linear regression models (MLRM) are practical 
and easy to implement, they are prone to overfitting, especially for 
small data sets with many variables, such as the data set used in ref 
[27], consisting of 74 initial variables observed in 46 US states. 
Regularization-based models aim to resolve this issue by balancing 
bias and variance. This is accomplished by penalizing a higher 
number of variables in the model. While Lasso (Least Absolute 
Shrinkage and Selection Operator) [34] implements an L1 penalty, 
Elastic Net [35] is the combination of Ridge [36] and Lasso 
regression, which implements both L1 and L2 penalties. In both 
methods, significant predictors are selected by shrinking the coeffi-
cients of all other (insignificant) predictors to zero. The parameter λ 
determines the significance threshold for Lasso and λ and α for 
Elastic Net regression. Parameter λ can take any positive value, 
with higher values associated with a stricter penalty (i.e., for λ = 0 
regression model is equal to MLRM, and for λ → 1, all the model 
coefficients are equal to zero). On the other hand, parameter α can 
take values from 0 to 1. It represents the balance between Lasso and 
Ridge regressions: for α = 1, the model turns to Lasso regression, 
and for α = 0, it turns to Ridge regression.



Systems Biology Approaches to Understanding COVID-19 Spread in the Population 245

The optimal values of α and λ can be found through cross-
validation. In MATLAB implementation of this procedure used in 
ref [37], 100 λ values for cross-validation are obtained through a 
scanning round of Lasso regression performed on the entire data 
set. In the case of Elastic Net regression, corresponding 100 linearly 
spaced α values in the range from 0 to 1 are assigned to each λ value. 
The model is then trained for every 100 λ values for Lasso regres-
sion, or every 10,000 α-λ combinations for Elastic Net, using 
fivefold cross-validation, with the data repartitioned 40 times, and 
determining Mean Square Error (MSE) on the testing set for each 
model. Depending on the problem at hand, the final model is 
selected as the model with minimal MSE on the testing set or the 
sparsest model among those with MSE within one standard error 
from the minimal MSE—that is, the model with the smallest num-
ber of predictors among the models with the smallest error. If the 
response variable strongly correlates with the higher number of 
predictors, the sparsest model is usually more informative (as the 
noise is reduced). If the response variable is not strongly correlated 
with most predictors, the minimal MSE model is preferable. While 
choosing the sparsest model is trivial for Lasso regression (the 
model with the highest λ value among the models with MSE close 
to minimal), for the Elastic Net, the number of predictors for all the 
models with MSE within 1 SE from the minimal MSE needs to be 
determined for the sparsest model to be selected. 

The association of a higher Human Development Index (HDI) 
on COVID-19 transmissibility, which was observed by [5]  (see 
Fig. 3a), was confirmed by [26], where the principal component 
associated with higher prosperity of the country (and most notably, 
HDI, see Fig. 4b, c) was selected by both Lasso and Elastic Net 
regression as the most important global COVID-19 transmissibility 
predictor (Fig. 5c, d). This research also performed an MLRM-
based approach and stepwise linear regression (Fig. 5a, b). While 
the shortcomings of MLRM compared to regularization-based 
methods have already been discussed, it is worth mentioning that 
Forward stepwise regression also offers certain advantages com-
pared to MLRM. In this method, starting from the null model 
(i.e., a model containing no variables), a linear term is added to the 
model if its significance, estimated using F-statistics, falls below the 
standard threshold of P = 0.05 [38]. Forward stepwise selection 
proved a useful yet straightforward feature selection method, espe-
cially when the number of predictors is comparable to the sample 
size, i.e., when MLRM would likely lead to overfitting [29]. How-
ever, unlike regularization-based methods, Forward stepwise 
regression is affected by multicollinearity and may fail to select 
relevant predictors among a group of mutually correlated variables. 
Also, this model’s significant drawback is that it is biased in param-
eter estimation and produces inflated R2 values [39]. For all the 
mentioned reasons, regularization-based techniques, although 
more complex and computationally demanding, remain preferable.
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Fig. 5 Regression coefficient obtained by four linear regression models of COVID-19 transmissibility. Principal 
components obtained from selected demographic (see Fig. 4) and meteorological variables were used as 
input, (a) Multiple linear regression model on the previously selected subset of predictors; (b) Forward 
stepwise linear regression model; (c) Lasso regression; (d) Elastic Net regression. (Figure reproduced from 
ref [26]) 

Relaxed Lasso [40] and Elastic Net procedures can be imple-
mented to reduce noise when the response variable is highly corre-
lated with many predictors. In this setup, regression is performed in 
two rounds of selection. While the first round is identical to the 
procedure described above, only the predictors selected as impor-
tant in the first round are used as input for the second round of 
regression. In ref [37, 41], a relaxed approach was successfully 
implemented to analyze COVID-19 severity determinants in the 
USA and worldwide.
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To summarize, for (Relaxed) Lasso/Elastic Net regression: 

1. Collect data for the variables of interest, preprocess and stan-
dardize them, as previously described. 

2. Choose the appropriate regularization-based method (Lasso or 
Elastic Net). 

3. Choose an appropriate values of lambda (and alpha for Elastic 
Net) to be tested during cross-validation. A good rule of 
thumb is to test values ranging from 0 to 1, in increments of 
0.01 for alpha and select 100 lambda values through a “scan-
ning” round of regression for each alpha value. 

4. Perform k-fold cross-validation (e.g., fivefold), with the data 
repartitioned sufficiently many times (e.g., 40), using the cho-
sen method and lambda/alpha values, and record the mean 
squared error (MSE) for each model. 

5. Determine the optimal lambda/alpha value(s) based on the 
MSE values obtained in step 4. A common approach is to 
choose the lambda/alpha value that results in the model with 
the smallest MSE, or the sparsest model with MSE within one 
standard error of the minimum MSE. 

6. Train the final model on the entire training set using the 
optimal lambda/alpha value(s). 

7. If implementing the relaxed approach, repeat the whole proce-
dure while taking only the selected predictors (i.e., predictors 
with non-zero coefficients from step 6) as the new input. 

2.6 Decision-Tree-

Based Methods 

Potential interactions between predictors and their often nonlinear 
relationship with the response variable cannot be captured by linear 
feature selection methods presented so far. To further inspect these 
relations, a different approach is needed. Nonlinear supervised 
machine learning methods, based on ensembles of decision trees, 
such as Random Forest and Gradient Boost regressions, have 
proven particularly useful for solving these problems. 

Decision trees are relatively simple classification and prediction 
tools with a wide range of applications, most commonly used in 
data mining [29, 42]. These tree-like models aim to classify the 
given data in the best possible way by creating a set of branching 
criteria, separating the data into two or more subsets. That is, a 
decision tree consists of root, internal, and terminal nodes 
(or leaves). The root node represents the first branching criterion, 
i.e., the criterion by which the data is separated into two branches. 
Internal nodes are the branching points in between, and leaves are 
the terminal subsets in which data is separated. The branching 
criteria are determined for each node based on how well they 
separate the data according to the response variable. Calculating 
each leaf node’s entropy or Gini index is a standard method for
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accomplishing this in classification problems [42] while minimizing 
the residual sum of squares is usually used in regression trees 
[43]. To prevent the tree from “growing” too complex and conse-
quentially overfitting the data, minimal leaf size and the maximal 
number of splits can be used as stopping criteria [42]. 
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Unlike the linear regression methods, these methods do not 
require normal data or scaling distribution and are not sensitive to 
outliers or missing data. However, while fast and easy to interpret, 
decision trees are prone to overfitting when facing small, high-
dimensional data sets. To overcome this problem, Random Forest 
[44] and Gradient Boosting [45] methods use ensembles of deci-
sion trees combined with bootstrapping and bagging [46] o  
boosting approaches for solving classification and prediction 
problems. 

In the Random Forest algorithm [44], the model is created 
using the bagging approach [46]. Each decision tree in the ensem-
ble is trained on a bootstrapped data set, following the methodol-
ogy described above but considering only a randomly chosen 
subset of predictors at each branching step. This way, a set of 
decorrelated decision trees with a large number of splits is created. 
In the final model, each decision tree’s aggregate “votes” are used 
to predict the value of the response variable, reducing the relatively 
high variance of a single decision tree. 

In our MATLAB implementation of these algorithms [37, 41], 
the number of trees in the ensemble, minimal number of splits, and 
maximal number of leaves were all treated as hyperparameters 
(similar to α and λ in Lasso and Elastic Net) and selected through 
grid search, with fivefold cross-validation and the data repartitioned 
40 times. The model with minimal MSE was considered optimal 
and evaluated on the entire data set. The features were relevant if 
their importance estimates were above the mean threshold. 

Gradient Boost [45] implements a boosting algorithm similar 
to the widely used Ada Boost method [47]. In this method, the 
trees are constructed to correct the error produced by the previous 
tree (i.e., “pseudo-residual”), with the weight of each tree (i.e., its 
impact on the final prediction) scaled by the set learning rate. This 
way, by adding each tree to the ensemble, the prediction improves 
as the pseudo-residuals get closer to 0. Hyperparameter tuning for 
the Gradient Boost method is similar to the above-explained pro-
cedure for the Random Forest regression, with the learning rate as 
an additional parameter. 

To further reduce noise in both Random Forest and Gradient 
Boost, in ref [41], the procedure was repeated, analog to the 
Relaxed Lasso and Elastic Net settings, using only the features 
with the importance estimates above the mean importance 
threshold.
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The importance estimates produced by Random Forest and 
Gradient Boost, unlike the regression coefficient from the linear 
regression methods, do not indicate the direction of the associa-
tion. That is why partial dependence plots [29] should be used to 
assess the effect of each relevant predictor on the response variable 
while considering the average effects of the remaining predictors. 

In practice, the steps for implementation of the Random Forest 
algorithm (and similarly for the Gradient Boost) are the following: 

1. Prepare your data set for analysis. No need to normalize data or 
remove outliers. 

2. Treat the number of trees in the ensemble, minimal number of 
splits, and maximal number of leaves as hyperparameters in 
Random Forest algorithms; additionally, learning rate is also 
used as a hyperparameter in Gradient Boost. 

3. The hyperparameter values should be selected through grid 
search, e.g. with fivefold cross-validation and the data reparti-
tioned 40 times. 

4. For each set of hyperparameter values evaluate the performance 
of the model by comparing the predicted values to the actual 
values using mean squared error (MSE) as metrics. 

5. Choose the model with minimal MSE as optimal and evaluate it 
on the entire data set. 

6. Determine the importance of the features by examining their 
importance estimates. Relevant features should have impor-
tance estimates above the mean threshold. 

7. Refine the model by selecting a subset of the relevant features 
and repeating the procedure. 

8. Generate partial dependence plots to determine the direction 
of the predictor influence. 

In Fig. 6, obtained from [41], the average effective reproduc-
tive number of the virus (Ravg) was used as the response variable, 
leading to the importance estimates from Relaxed Random Forest 
and Gradient Boost regressions. The dependence between the 
variables with the highest importance—immunity proxy and transit 
mobility and Ravg is represented by partial dependence plots. 

2.7 New Variant 

Outburst Analysis 

The inference of R0, as described previously, is possible only for the 
initial epidemiological peak when the premises of susceptibility of the 
entire population and the absence of epidemiological measures are 
fulfilled. For the analysis of later epidemiological stages, a different 
approach is needed. For example, in ref [41], the late outburst of the 
Omicron strain of COVID-19 was analyzed in the following way: 

1. The estimated effective reproductive number (Re) was inferred 
for over a hundred countries, following the methodology 
introduced in ref [24].
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Fig. 6 Relaxed Random Forest and Gradient Boost regressions. (a) Importance estimates from the Relaxed 
Random Forest regression; (b, c) Partial dependence plots of variables with highest importance estimates in 
Random Forest; (d) Importance estimates for the Relaxed Gradient Boost regression; (e, f) Partial dependence 
plots of variables with highest importance estimates in Gradient Boost; Dashed line in (a) and (d) represents 
the mean importance estimate. (Figure reproduced from ref [41]) 

2. To dampen data fluctuations, the Re value was averaged over 
21 days around the epidemiological peak (the day with the 
maximal estimated Re). 

3. A large data set containing a number of possibly relevant envi-
ronmental and social predictors for these countries was 
assembled. 

4. All discussed feature selection methods were then applied, 
implemented in relaxed settings, with the averaged Re as the 
response variable. 

The method singled out the younger population age, earlier 
epidemic onset, higher population mobility, as well as lower 
COVID-19 immunity and booster vaccination prevalence as most 
likely transmissibility risks (Fig. 6). Therefore, all the described 
methods are also effective when considering factors relevant to 
the later epidemiological stages, such as vaccination and natural 
immunity.
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3 Conclusion 

Machine learning is a powerful tool in systems biology, as mecha-
nistic models are often hard to formulate due to heterogeneous 
signals. This problem transfers to the epidemiological field, where 
numerous factors impact disease transmissibility. Mechanistic mod-
els have proved valuable input for machine learning methods, as 
they provide epidemiological measures insensitive to the epidemio-
logical phase and testing policies. The methodology presented in 
this chapter is well-adjusted to analyze these factors. It can easily be 
modified to analyze the spread of any potential future infectious 
disease of epidemiological proportions. While regularization-based 
methods offer an easily understandable parametric approach for 
selecting important features among numerous mutually correlated 
predictors, even in relatively small data sets, non-parametric, 
decision-tree-based algorithms go a step further and enable us to 
infer the potential risk factors by taking into account interactions 
between variables and their nonlinear relationship to output. More-
over, combining supervised statistical learning with unsupervised 
approaches or variable preselection techniques such as PCA or 
mRMR may alleviate the problem of highly correlated input vari-
ables. Overall, as also recently increasingly argued for other areas of 
systems biology, machine learning and mechanistic models can 
effectively complement each other to advance understanding of 
infectious disease spread in the population. Here, we review some 
of the methods and specific examples of their application on real-
world data, which can efficiently achieve these results. We expect 
exciting future developments in this area, particularly given the 
abundance of data available from the COVID-19 pandemic, 
which will be used to improve the methodology further so that 
we become increasingly better prepared for future epidemics. 
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We used the U(1)⊗SO(3)rot ⊂ U(3) ⊂ SO(6) hyperspherical harmonics
of I. Salom, V. Dmitrašinović, Nucl. Phys. B 920, 521 (2017). to calculate
the energy-spectrum of three nonrelativistic quarks in the (interpolation of
the) lattice QCD potential. We show that the first clear difference between
the ∆, or the Y-string confinement and the lattice QCD potential can be
seen only in the third shell of excited states. This is beyond experimental
access, even in the light-quark sector. We also briefly discuss the role of
relativity.
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1. Introduction

The form of the three-heavy-quark potential in (lattice) QCD is substan-
tially better known after the recent lattice work by Sakumichi and Suganuma
[1], and by Koma and Koma [2]. The form of this potential has been anal-
ysed in terms of hyperspherical variables by Leech et al. [3, 4], as well as in
another contribution to this workshop [5], where an upper and a lower bound
(a band of small width) on the triangle-shape dependence of the confining
part of the potential has been established.

These upper and lower bounds on the potential in two sectors/lines in
the shape space can be extrapolated to the whole shape space due to its
periodicity, and certain inequalities can be inferred about the value of the
v66 hyperspherical expansion coefficient. In this light, one may even discuss
the consequences of this lattice potential in three-heavy-quark spectroscopy.
The aim of this work is to briefly discuss the effects of the lattice QCD
3-quark potential, as extracted in Refs. [3–5], in the heavy-baryon spectrum,
as calculated in the hyperspherical approach, see Refs. [6–9].
∗ Presented at Excited QCD 2020, Krynica Zdrój, Poland, February 2–8, 2020.
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2. The nonrelativistic quantum-mechanical three-body problem
in hyperspherical coordinates

2.1. O(6) hyperspherical coordinates

Any (spin-independent) three-body potential must be invariant under:
(1) translations; (2) overall (“ordinary O(3)”) rotations; (3) permutations, if
three identical particles are involved. Thus, due to (1), it may depend only
on the relative position (Jacobi) vectors ρ = 1√

2
(x1 − x2), λ = 1√

6
(x1 +

x2−2x3); (2) is a function of three scalar products of the two vectors, ρ ·λ,
ρ2, and λ2; (3) it must be permutation-symmetric.

It can be transcribed in hyperspherical coordinates as f(R,Ω5), where
R =

√
ρ2 + λ2 is the hyperradius, and five angles Ω5 that parametrize a hy-

persphere in the six-dimensional Euclidean space. Three (Φi; i = 1, 2, 3) of
these five angles (Ω5) are just the Euler angles associated with the orienta-
tion in a three-dimensional space of a spatial reference frame defined by the
(plane of) three bodies; the remaining two hyperangles describe the shape
of the triangle subtended by three bodies; they are functions of three in-
dependent scalar three-body variables, e.g., ρ · λ, ρ2, and λ2. One linear
combination (ρ2 +λ2) of the two variables is already taken by the hyperra-
dius R, so the shape-space is two-dimensional, and topologically equivalent
to the surface of a three-dimensional sphere. We define the hyperangles

(α, φ) as (sinα)2 = 1 −
(

2ρ×λ
R2

)2
, tanφ =

(
2ρ·λ

ρ2−λ2

)
, which reveal the full

S3 permutation symmetry of the problem: the angle α does not change
under permutations, so that all permutation properties are encoded in the
φ-dependence of the wave functions. This leads to permutation-adapted
hyperspherical harmonics, as explained in Refs. [6, 7] wherein specific hy-
perspherical harmonics used here are displayed.

2.2. O(6) harmonics

Labelling the O(6) hyperspherical harmonics with labels K, the
Abelian hyperangular momentum quantum number Q conjugated with the
Iwai angle φ, the (total orbital) angular momentum quantum numbers L and
Lz = m, and ν which is the multiplicity label that distinguishes between hy-
perspherical harmonics with remaining four quantum numbers that are iden-
tical, as defined in Refs. [6, 7], corresponds to the subgroup chain U(1) ⊗
SO(3)rot ⊂ U(3) ⊂ SO(6). We expand the wave function Ψ(R,Ω5) in terms
of hyperspherical harmonics YK[m](Ω5), Ψ(R,Ω5) =

∑
K,[m] ψ

K
[m](R)YK[m](Ω5).
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2.3. Hyperspherical expansion of three-body Schrödinger equation

The hyperspherical harmonics turn the Schrödinger equation of three
particles in a factorizable three-body potential V (R,α, φ) = V (R)V (α, φ)
into a set of coupled hyperradial equations

− 1

2µ

[
d2

dR2
+

5

R

d

dR
− K(K + 4)

R2
+ 2µE

]
ψK[m](R)

+ Veff(R)
∑

K′,[m′]

CK K′

[m][m′]ψ
K′

[m′](R) = 0 (1)

with a hyperangular coupling coefficients matrix CK K′

[m][m′] defined by

Veff(R)CK
′ K

[m′][m] =
〈
YK′[m′](Ω5)

∣∣∣V (R,α, φ)
∣∣∣YK[m](Ω5)

〉
= V (R)

〈
YK′[m′](Ω5)

∣∣∣V (α, φ)
∣∣∣YK[m](Ω5)

〉
. (2)

Factorizability of the potential is a simplifying assumption that leads to
analytic results in the energy spectrum. It holds for the power-law ones, but
also other homogeneous ones.

2.4. Hyperspherical expansion of three-body potentials

The hyperangular part V (α, φ) of a factorizable potential can be ex-
panded in terms of O(6) hyperspherical harmonics with zero angular mo-
menta L = m = 0 as

V (α, φ) =

∞∑
K,Q

v3-body
K,Q YKQν00 (α, φ) , (3)

where
v3-body
K,Q =

∫
YKQν∗00 (Ω5)V (α, φ) dΩ(5) (4)

leading to

Veff(R)CK
′′ K′

[m′′][m′] = V (R)

∞∑
K,Q

v3-body
K,Q

×
〈
YK′′[m′′](Ω5)

∣∣∣YKQν00 (α, φ)
∣∣∣YK′[m′](Ω5)

〉
. (5)

In the case of three identical particles, the sum runs only over double-even-
order (K = 0, 4, . . .) O(6) hyperspherical harmonics with zero value of the
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democracy quantum number G3 = Q = 0, as well as over K = 6, 12, 18 . . .
O(6) hyperspherical harmonics with democracy quantum number G3 ≡ Q ≡
0 (mod 6), always with vanishing angular momentum L = m = 0.

The numerical values for the first four allowed (nonvanishing) v3-body
K,Q

coefficients for K ≤ 11, in the Y- and ∆-string and Coulomb potential’s
hyperspherical expansions are tabulated in Table I. All other coefficients
vanish for K < 12. Smallness of the coefficient v6,±6(Y-string) indicates (an
additional) dynamical symmetry of the Y-string potential.

TABLE I

Expansion coefficients vKQ of the Y- and ∆-string as well as of the Coulomb and
Logarithmic potentials in terms of O(6) hyperspherical harmonics YK,0,0

0,0 , for K =

0, 4, 8, respectively, and of the hyperspherical harmonics Y6,±6,0
0,0 .

(K,Q) vKQ(Y-string) vKQ(∆-string) vKQ(CM-string) vKQ(Coulomb)

(0,0) 8.22 16.04 16.04/
√

3 20.04
(4,0) −0.398 −0.445 −0.445/

√
3 2.93

(6,±6) −0.027 −0.14 0.14/
√

3 1.88
(8,0) −0.064 −0.04 −0.04/

√
3 1.41

3. Consequences for the low-lying spectrum

The lowest-lying states in which the energy splittings depend on the v66

coefficient are the odd-parity resonances in the K = 3 shell. In Ref. [8], one
finds that only two pairs of levels in the K = 3 shell are split by the v66

coefficient [
20, 1−

] 1

π
√
π

(
v00 +

1√
3
v40 −

2

7
v66

)
,

[
56, 1−

] 1

π
√
π

(
v00 +

1√
3
v40 +

2

7
v66

)
,

[
20, 3−

] 1

π
√
π

(
v00 −

√
3

7
v40 − v66

)
,

[
56, 3−

] 1

π
√
π

(
v00 −

√
3

7
v40 + v66

)
. (6)

In Table I, one can find the hyperspherical harmonic expansion coefficients
of several standard potentials. In a separate contribution to this conference
[5], we have analysed the lattice QCD data from Refs. [1, 2] in terms of
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permutation-adapted hyperspherical variables. We found that the confining
lattice QCD potential lies roughly half-way between the pure Y-string and
the pure ∆-string within the region of acute triangles. This allows us to set
an upper and a lower bound on the value of the lattice coefficient: −0.14 ≤
v66 ≤ −0.027 using the values from Table I. Unfortunately, no K = 3 shell
levels have been experimentally identified among the heavy-quark baryons
as yet [12].

One possibility is to search for K = 3 states among light-quark baryons
[12], which, however, involve significant contributions from relativity. In
order to get a feeling for, or at least the sign of relativistic corrections,
we shall employ a special case of the three-body problem: the extreme-
relativistic three-body harmonic oscillator.

4. Extreme-relativistic three-body harmonic oscillator

The (extreme) relativistic three-quark Hamiltonian in configuration space
is the ma → 0 limit of

H =
∑
a

√
m2
a + p2

i +
k

2

(
ρ2 + λ2

)
(7)

with the confining 3-body harmonic oscillator potential VHO. The Hamilto-
nian in momentum space and CM frame reads

H̃ =
k

2

(
∂2

∂p2
ρ

+
∂2

∂p2
λ

)
+

3∑
i=1

|pi| ,

which, after the substitutions pρ ↔ ρ and pλ ↔ λ, is equivalent to the
(nonrelativistic) Schrödinger equation

H̃Ψ̃ = ẼΨ̃

for three identical particles with a mass m = k and interacting with a lin-
early rising “CM-string” potential with unit string tension σ = 1. As we
have developed hyperspherical harmonic methods [6, 7, 9] to deal with such
three-body Schrödinger equations, we simply use the solution worked out in
Ref. [11]. In Table I, we can see that the v66 coefficient has opposite signs in
the Y- and ∆-string potentials, on the one hand, and the CM-string, i.e., in
the relativistic case and the Coulomb one, on the other. Thus we see that the
relativistic effects, as well as the residual QCD Coulomb interaction, may
reduce or even annihilate the ∆-string effects, which makes an identification
of the confining potential more difficult.
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5. Discussion and conclusions

We have shown how the lattice QCD data interpreted in terms of the
hyperspherical variables can be used to put bounds on the mass-splittings of
certain higher-lying odd-parity baryons using O(6) hyperspherical harmon-
ics.

The Serbian Ministry of Science and Technological Development sup-
ported V.D. under grant numbers OI 171037 and III 41011, and I.S. under
grant number OI 171031.
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Abstract. Higher category theory can be employed to generalize the notion of a gauge group
to the notion of a gauge n-group. This novel algebraic structure is designed to generalize notions
of connection, parallel transport and holonomy from curves to manifolds of dimension higher
than one. Thus it generalizes the concept of gauge symmetry, giving rise to a topological action
called nBF action, living on a corresponding n-principal bundle over a spacetime manifold.
Similarly as for the Plebanski action, one can deform the topological nBF action by adding
appropriate simplicity constraints, in order to describe the correct dynamics of both gravity
and matter fields. Specifically, one can describe the whole Standard Model coupled to gravity
as a constrained 3BF or 4BF action. The split of the full action into a topological sector and
simplicity constraints sector is adapted to the spinfoam quantization technique, with the aim
to construct a full model of quantum gravity with matter. In addition, the properties of the
gauge n-group structure open up a possibility of a nontrivial unification of all fields. An n-group
naturally contains additional novel gauge groups which specify the spectrum of matter fields
present in the theory, in a similar way to the ordinary gauge group that prescribes the spectrum
of gauge vector bosons in the Yang-Mills theory. The presence and the properties of these new
gauge groups has the potential to explain fermion families, and other structure in the matter
spectrum of the theory.

1. Introduction
The formulation of a quantum theory of gravity represents one of the fundamental open
problems in modern theoretical physics. Among the many approaches to this problem, some
have developed into vast research frameworks, such as Loop Quantum Gravity, which aims to
formulate a model of quantum gravity (QG) in a nonperturbative fashion, both canonically and
covariantly [1, 2, 3]. The covariant approach aims to give a tentative rigorous definition of the
path integral for the gravitational field,

Z =

∫
Dg eiS[g] . (1)

One of the essential assumptions is a triangulation of a spacetime manifold, and the path integral
is introduced as a discrete state sum of the gravitational field configurations, living on the
simplicial complex structure. This approach to quantization of gravity is usually called the
spinfoam quantization method. It is performed via the following three steps:
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(1) one reformulates the classical action S[g] as a constrained BF action, separating the
topological BF part and the constraint part of the action;

(2) one employs the underlying Lie group structure of the BF sector of the action, in order to
define a triangulation-independent state sum Z;

(3) finally, one deforms the topological state sum by applying the simplicity constraints, and
therefore redefining it into a triangulation-dependent state sum, which plays the role of a
definition for the path integral (1).

This type of quantization prescription has been implemented in a number of cases, for various
choices of the gravitational action, of the Lie group, and of the spacetime dimension. Historically
the first spinfoam model was the Ponzano-Regge model [4], defined in 3 spacetime dimensions.
In 4 dimensions multiple models have been formulated, differing in the choice of the Lie group
and the way one imposes the simplicity constraints [5, 6, 7, 8, 9]. While all these models do
represent definitions of the gravitational path integral, none of them are able to include matter
fields in a seamless way. Introducing the latter into a spinfoam QG model has so far had only
limited success [10], predominantly due to the lack of the tetrad fields in the topological part of
the model.

Recently, a new approach has been developed to address the issue of matter fields, which
employs the framework of higher gauge theory (see [11] for a review). Specifically, one uses the
notion of a categorical ladder to generalize the BF action (based on a Lie group) to a 2BF
action (based on the so-called 2-group structure), and further to a 3BF action (based on a
3-group structure). A convenient choice of the Poincaré 2-group gives rise to the needed tetrad
fields in the topological sector of the action [12], while an additional extension to the 3-group
naturally introduces the matter fields (fermions and scalars) into the model [13]. The steps of
the categorical ladder and their corresponding structures are summarized as follows:

categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed
module

differential Lie
crossed module

2BF theory tetrad fields

Lie 3-group
Lie 2-crossed

module
differential Lie

2-crossed module
3BF theory

scalar and
fermion fields

The main aim of this work is to provide a short review of the classical pure BF , 2BF and
3BF actions, in order to demonstrate the categorical ladder procedure and the construction of
higher gauge theories. In other words, we mainly focus on the step 1 of the spinfoam quantization
programme, with a very short review of step 2 of the programme.

The layout of the paper is as follows. Section 2 deals with first three examples of nBF theories,
namely BF , 2BF and 3BF actions, and their construction using the categorical ladder. After
this, in Section 3 we briefly present an application of a 3BF theory to the Standard Model of
elementary particles coupled to Einstein-Cartan gravity. As it turns out, the scalar and fermion
fields are naturally associated to a new gauge group, generalizing the role of an ordinary gauge
group in the Yang-Mills theory. This opens up a possibility of an algebraic classification of
matter fields, and (more speculatively) a possibility of the explanation of the three fermion
families. Finally, Section 4 contains some discussion and our conclusions.

The notation and conventions are as follows. Spacetime indices are denoted by the Greek
letters µ, ν, . . . , and are raised and lowered by the spacetime metric gµν = ηabe

a
µe

b
ν , where

eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. The local Lorentz indices are
denoted by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using
the Minkowski metric ηab with signature (−,+,+,+). All other indices that appear in the paper
depend on the context, and their use is explicitly defined in the text where they appear. We
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work in the natural system of units where c = ℏ = 1, and G = l2p, where lp is the Planck length.
The exterior product in the space of differential forms is denoted with the standard “wedge”
symbol, ∧.

2. nBF theories
We begin by giving a short review of nBF theories, for n = 1, 2, 3, which represent the most
interesting cases for physics.

2.1. BF theory
A BF theory and its various applications in physics are already well known in the literature,
see for example [14, 15, 16], so here we merely give a brief definition. Given a Lie group G, and
its corresponding Lie algebra as g, one defines the BF action in the form (we discuss only the
4-dimensional spacetime manifolds M4):

SBF =

∫
M4

⟨B ∧ F⟩g . (2)

Here, F ≡ dα+α∧α is the curvature 2-form for the g-valued connection 1-form α ∈ Λ1(M4)⊗g,
while B ∈ Λ2(M4) ⊗ g is a g-valued Lagrange multiplier 2-form. Also, ⟨ , ⟩g denotes a G-
invariant nondegenerate symmetric bilinear form over g.

Varying the action (2) with respect to B and α, one obtains the equations of motion:

F = 0 , ∇B ≡ dB + α ∧B = 0 . (3)

The first equation implies that α is a flat connection, in the sense that α = 0 up to gauge
transformations. The second equation then implies that B is covariantly constant. From these
one can deduce that there are no local propagating degrees of freedom, and therefore the theory
is said to be topological.

2.2. 2BF theory
Once we have introduced the BF model, we procceed to first step of the categorical ladder,
generalizing the algebraic notion of a group to the notion of a 2-group. This leads to the
generalization of the BF theory to the 2BF theory, also sometimes called BFCG theory
[11, 17, 18, 19].

The categorical ladder is a procedure of generalizing various notions in mathematics, using
the framework of category theory, and works as follows. One starts from the notion of a group
as an algebraic structure, and notes that it can be understood as a category with only one object
and invertible morphisms [11]. Then, one employs the fundamental idea that a category can be
generalized to the so-called higher categories, which have not only objects and morphisms, but
also 2-morphisms (maps between morphisms), 3-morphisms (maps between 2-morphisms), and
so on. This tower of n-categories is known as the categorical ladder. Applying the construction to
groups, it is straightforward to introduce the notion of a 2-group as a 2-category consisting of only
one object, where all the morphisms and all 2-morphisms are invertible. It was demonstrated

that every strict 2-group is equivalent to a crossed module (H
∂→ G ,▷), see [13] for detailed

definitions. Here G and H are groups, ∂ is a homomorphism from H to G, while ▷ : G×H → H
is an action of G on H.

Just like an ordinary Lie group G has a naturally associated connection α and gives rise to
a BF theory, a Lie 2-group has a naturally associated 2-connection (α , β), described by the
usual g-valued 1-form α ∈ Λ1(M4) ⊗ g and an h-valued 2-form β ∈ Λ2(M4) ⊗ h, where h is a
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Lie algebra of the Lie group H. This 2-connection gives rise to the so-called fake 2-curvature
(F ,G), defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧▷ β . (4)

Here α∧▷ β means that α and β are multiplied as forms using ∧, and simultaneously multiplied
as algebra elements using ▷, see [13]. The curvature pair (F ,G) is called “fake” due of the
presence of the additional term ∂β in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module, one can introduce the
so-called 2BF action, as a generalization of the BF action, as follows [17, 18]:

S2BF =

∫
M4

⟨B ∧ F⟩g + ⟨C ∧ G⟩h . (5)

Here the 2-form B ∈ Λ2(M4) ⊗ g and the 1-form C ∈ Λ1(M4) ⊗ h are Lagrange multipliers.
Also, ⟨ , ⟩g and ⟨ , ⟩h denote the G-invariant nondegenerate symmetric bilinear forms over the
Lie algebras g and h, respectively. As a consequence of the axiomatic structure of a crossed
module (see [13]), the bilinear form ⟨ , ⟩h is H-invariant as well. See [17, 18] for review and
references.

The equations of motion for a 2BF theory are an extension of the equations of motion of a
BF theory. Varying with respect to B and C one obtains

Fα = 0 , Ga = 0 , (6)

while varying with respect to α and β one obtains the equations for the multipliers,

∇B + C ∧T β = 0 , ∇C − ∂B = 0 . (7)

Here the map T is defined in [13]. A rigorous Hamiltonian analysis of the model demonstrates
that in this case as well there are no local propagating degrees of freedom [20, 21] (see also [22]).
Therefore the 2BF theory is also topological.

2.3. 3BF theory
When constructing more realistic (nontopological) models by adding constraints to BF and 2BF
models, it becomes apparent that the group G with a constrained BF action can successfully
describe ordinary gauge vector bosons, while the so-called Poincaré 2-group with a constrained
2BF action can successfully describe general relativity. However, neither of these can suitably
accomodate matter fields, such as fermions or scalars. Nevertheless, it turns out that this can
be remedied if we make one further step in the categorical ladder, passing from the notion of a
2-group to the notion of a 3-group. As we shall see in the next Section, the notion of a 3-group
will prove to be an excellent structure for the description of all fields that are present in the
Standard Model, coupled to Einstein-Cartan gravity. Moreover, a 3-group contains one more
gauge group, which is novel and specifies the spectrum of scalar and fermion fields present in
the theory. This is an unexpected and beautiful result, absent from ordinary gauge theory.

Applying the categorical ladder once more, one can introduce the notion of a 3-group in
the framework of higher category theory, as a 3-category with only one object where all the
morphisms, 2-morphisms and 3-morphisms are invertible. Also, the equivalence between a 2-
group and a crossed module has been generalized to the equivalence between a strict 3-group

and a 2-crossed module [23]. A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,▷ , { , }), is an
algebraic structure specified by three Lie groups G, H and L, together with the homomorphisms
δ and ∂, an action ▷ of the group G on all three groups, and a G-equivariant map

{ , } : H ×H → L .
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called the Peiffer lifting. The maps ∂, δ, ▷ and the Peiffer lifting satisfy certain axioms, so that
the resulting structure is equivalent to a 3-group [13].

Based on a given 2-crossed module (L
δ→ H

∂→ G ,▷ , { , }), one can introduce a gauge
invariant topological 3BF action over the manifold M4 as follows. Denoting g, h and l as
Lie algebras corresponding to the groups G, H and L, respectively, the Lie 3-group structure
allows one to introduce a 3-connection (α, β, γ) given by the algebra-valued differential forms
α ∈ Λ1(M4) ⊗ g, β ∈ Λ2(M4) ⊗ h and γ ∈ Λ3(M4) ⊗ l. The corresponding fake 3-curvature
(F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧▷ β − δγ ,

H = dγ + α ∧▷ γ + {β ∧ β} ,
(8)

see [23, 24] for details. Note that γ is a 3-form, while its corresponding field strength H is a
4-form, requiring that the spacetime manifold be at least 4-dimensional. Also, for this reason,
going beyond 3-groups and 4-groups in the categorical ladder does not have many applications
in realistic 4-dimensional physics. A 3BF action is defined as

S3BF =

∫
M4

⟨B ∧ F⟩g + ⟨C ∧ G⟩h + ⟨D ∧H⟩l , (9)

where B ∈ Λ2(M4)⊗g, C ∈ Λ1(M4)⊗h and D ∈ Λ0(M4)⊗ l are Lagrange multipliers valued in
the respective algebras. Note that exclusively in 4 spacetime dimensions the Lagrange multiplier
D corresponding to H is a 0-form, i.e. a scalar function. As before, the bilinear forms ⟨ , ⟩g,
⟨ , ⟩h and ⟨ , ⟩l are G-invariant, nondegenerate and symmetric, over the algebras g, h and l,
respectively.

The equations of motion can be obtained by varying the action with respect to the multipliers
B, C and D,

F = 0 , G = 0 , H = 0 , (10)

and by varying with respect to the connections α, β and γ,

∇B + C ∧T β −D ∧S γ = 0 , ∇C − ∂B −D ∧(X1+X2) β = 0 , ∇D + δC = 0 . (11)

See [13] for the detailed definitions of the maps T , S, X1 and X2.

3. The Standard Model 3-group
At this point we are finally ready to construct a realistic classical action, featuring the full
Standard Model of elementary particles coupled to Einstein-Cartan gravity. The action is based

on a so-called Standard Model 3-group, which is a 2-crossed module ( L
δ→ H

∂→ G , ▷ , { , } )
with a following choices for the Lie groups:

G = SO(3, 1)× SU(3)× SU(2)× U(1) , H = R4 ,

L = C4 ×G64 ×G64 ×G64 .

We choose the group G as a product of the Lorentz group and the usual internal gauge symmetry
group of the Standard Model. The group H is chosen to be the group of spacetime translations,
motivated by the Poincaré 2-group construction [12]. Finally, we choose the group L as a product
of C4 accouning for the doublet of complex scalar fields, and three copies of the 64-dimensional
Grassmann algebra G64, representing three families of fermions. The maps δ, ∂ and { , } are
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trivial, while the map ▷ is chosen in a natural way, in accord with the usual action of the gauge
group G onto translations and various components of matter fields. It is defined in detail in [13].

Once the 3-group has been completely specified, the corresponding action can be written as
a 3BF action with suitable constraint terms, as follows:

S =

∫ ⟨B∧F⟩︷ ︸︸ ︷
Bα ∧ Fα +B[ab] ∧R[ab] +

⟨C∧G⟩︷ ︸︸ ︷
ea ∧∇βa +

⟨D∧H⟩︷ ︸︸ ︷
ϕA(∇γ)A + ψ̄A(

→
∇γ)A − (γ̄

←
∇)Aψ

A 3BF

−
∫
λ[ab] ∧

(
B[ab] − 1

16πl2p
ε[ab]cd ec ∧ ed

)
+

1

96πl2p
Λ εabcd e

a ∧ eb ∧ ec ∧ ed GR and CC

+

∫
λα ∧

(
Bα − 12Cα

βMβab e
a ∧ eb

)
+ ζαab

(
Mαab εcdef e

c ∧ ed ∧ ee ∧ ef − Fα ∧ ea ∧ eb
)

YM

+

∫
λA ∧

(
γA −HabcA e

a ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcA ε

cdef ed ∧ ee ∧ ef − (∇ϕ)A ∧ ea ∧ eb
)

Higgs

−
∫

1

12
χ
(
ϕAϕA − v2

)2

εabcd e
a ∧ eb ∧ ec ∧ ed Higgs potential

+

∫
λ̄A ∧

(
γA +

i

6
εabcd e

a ∧ eb ∧ ec
(
γdψ

)A
)
− λA ∧

(
γ̄A − i

6
εabcd e

a ∧ eb ∧ ec
(
ψ̄γd

)
A

)
Dirac

−
∫

1

12
YABC ψ̄

AψBϕC εabcd e
a ∧ eb ∧ ec ∧ ed Yukawa

+

∫
2πi l2p ψ̄Aγ5γ

aψA εabcd e
b ∧ ec ∧ βd . spin-torsion

Here the first row represents the topological 3BF part, while the remaining rows represent
various constraint terms, each corresponding to one sector of the theory. Taking all together,
the equations of motion obtained from the action S are equivalent to the full set of equations of
motion for all Standard Model fields, coupled to the Einstein-Cartan theory of gravity.

The key novelty of the above structure is the role of the group L, which prescribes the
spectrum of scalar and fermion fields present in the theory, via the ⟨D∧H⟩ term in the topological
sector of the action.

4. Conclusions
Let us summarize the results of the paper. In Section 2 we have introduced the nBF theories
for n = 1, 2, 3, and explanied in brief terms how the categorical ladder procedure can be applied
to generalize the notion of a group to the notions of a 2-group and a 3-group, which represent
more powerful ways to describe the gauge symmetry of a physical theory. These structures
were employed in Section 3 to construct the constrained 3BF action for the Standard Model
of elementary particles coupled to the Einstein-Cartan gravity in the usual way. Within that
framework, the spectrum of scalar and fermion fields happens to be determined by a new gauge
group, in a way similar to that of the ordinary gauge group determining the spectrum of gauge
vector bosons in Yang-Mills theory. This opens up a very interesting possibility of applying the
structure of a 3-group to classify matter fields, and possibly gain some insight into why there
are three families of fermions.

These results complete the first step of the spinfoam quantization programme, as outlined
in the Introduction. The second step has also been performed in [25], for a general case of a

Lie 2-crossed module (L
δ→ H

∂→ G ,▷ , { , }). The resulting state sum is a novel topological
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invariant of a 4-dimensional manifold, and has the following form:

Z = |G|−|Λ0|+|Λ1|−|Λ2||H||Λ0|−|Λ1|+|Λ2|−|Λ3| |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|

×
∏

(jk)∈Λ1

∫
G

dgjk
∏

(jkℓ)∈Λ2

∫
H

dhjkℓ

∏
(jkℓm)∈Λ3

∫
L

dljkℓm

×
∏

(jkℓ)∈Λ2

δG

(
∂(hjkℓ) gkℓ gjk g

−1
jℓ

) ∏
(jkℓm)∈Λ3

δH

(
δ(ljkℓm)hjℓm (gℓm ▷ hjkℓ)h

−1
kℓm h−1

jkm

)
×

∏
(jkℓmn)∈Λ4

δL

(
l−1
jℓmn hjℓn ▷′ {hℓmn, (gmngℓm) ▷ hjkℓ}p l−1

jkℓn(hjkn ▷′ lkℓmn)ljkmnhjmn ▷′ (gmn ▷ ljkℓm)
)
.

(12)

Here gij , hijk, lijkl are elements from groups G,H,L, respectively, which are assigned to simplices
of the triangulation whose vertices are numerated by indices i, j, . . . In other words, gij are
assigned to edges, hijk are assigned to triangles, and lijkl are assigned to tetrahedra of the
simplicial complex representing a compact 4-manifold, which has a total number of Λ0 vertices,
Λ1 edges, Λ2 triangles, Λ3 tetrahedra, and Λ4 4-simplices.

Of course, when building a realistic theory, we are in fact not interested in a topological theory,
but instead in a theory which contains local propagating degrees of freedom. Thus the state sum
Z should be appropriately deformed. This is the task of step 3 of the spinfoam quantization
programme, by imposing the simplicity constraints on Z. The classical action from Section 3
manifestly distinguishes the topological sector from the simplicity constraints. Imposing those
constraints should thus complete the spinfoam quantization programme, and would ultimately
lead us to a tentative model of quantum gravity with matter, by providing a rigorous definition
for the path integral

Z =

∫
Dg

∫
Dϕ eiS[g,ϕ] , (13)

which is a generalization of (1) in the sense that it contains matter fields as well as gravity, at
the quantum level.

In addition to the construction of a full quantum theory of gravity, there are also many
additional possible studies of the classical constrained 3BF action. For example, a full
Hamiltonian analysis of the 3BF action has been done for the example of scalar electrodynamics
[26], and then also for a general choice of a Lie 3-group [27], and the complete gauge symmetry
group has been discussed in detail [27, 28]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mechanism, and some work
has already begun in this area. Finally, one can also study in more depth the mathematical
structure and properties of the simplicity constraints. The list is not conclusive, and there may
be many other interesting topics to study.
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s`(2) Gaudin model with general
boundary terms

I. Salom and N. Manojlović

Abstract We study the s`(2) Gaudin model with general boundary K-matrix
in the framework of the algebraic Bethe ansatz. The off-shell action of the
generating function of the so(3) Gaudin Hamiltonians is determined without
any restriction whatsoever on the boundary parameters.

1 Introduction

In the framework of the Bethe ansatz, Gaudin has studied the system ob-
tained as the quasi-classical limit of the Heisenberg spin chain [1, 2]. This
system has been recast in the framework of the quantum inverse scattering
method with the help of the so-called Sklyanin linear bracket, correspond-
ing to an s`(2) invariant, unitary classical r-matrix [3]. This result enabled
further generalizations based on other unitary solutions to the classical Yang-
Baxter equation corresponding to higher-rank simple Lie algebras as well as
Lie superalgebras [4–6] and the corresponding Jordanian deformation [7–9].

In our considerations of the non-periodic rational as well as trigonometric
Gaudin model we have studied them as the quasi-classical limit, respectively,
of the open XXX and XXZ Heisenberg spin chains [10, 11]. Also, we have
shown how the expansion of the XXZ transfer matrix, calculated at the spe-
cial values of the spectral parameter, yields the Gaudin Hamiltonians in the
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2 I. Salom and N. Manojlović

trigonometric case [12] as well as for the Jordanian deformation of the ra-
tion s`(2) Gaudin model with generic boundaries [13]. Returning back to the
quasi-classical limit, following the Sklyanin proposal for the periodic bound-
ary conditions [3,14], we have derived the generating function of the Gaudin
Hamiltonians both for the XXX [10], the XXZ chain [11] and for the Jorda-
nian deformation of the XXX Heisenberg spin chain [15]. Moreover, we have
shown [16] how, in the context of the quasi-classical limit, the solutions to
the classical Yang-Baxter equation can be combined with the solutions to
the classical reflection equation to yield solutions to the so-called generalized
classical Yang-Baxter equation. These solutions are the non-unitary classical
r-matrices [17]. In particular, the generic elliptic s`(2) non-unitary r-matrix
was studied in [18]. Also, we have developed an approach to the implementa-
tion of the algebraic Bethe ansatz for the rational as well as the trigonometric
s`(2) Gaudin model, in the case when the classical boundary K-matrix has a
triangular form [19–22].

Following our approach to the generic so(3) Gaudin [23,24], here we study
the non-periodic s`(2) Gaudin model with the general boundary K-matrix.
Namely, we show that it is possible to keep all of the K-matrix parameters
arbitrary, though this requires a more complex form of the vacuum state.

The paper is organized as follows. In Section 2 we study the s`(2) linear
bracket which provides the algebraic framework for implementation of the
Bethe ansatz. In the same section we propose the novel set of generators
with simplified commutation relations. In Section 3 we will introduce an
explicit form of the vacuum state which, together with the suitable choice of
algebra generators, allows the implementation of the algebraic Bethe ansatz
without reducing generality of the K-matrix. In this way, we will finally obtain
the expression for the off-shell action of the generating function of the s`(2)
Gaudin Hamiltonians with general boundary terms.

2 The s`(2) linear bracket

We consider the classical r-matrix

r(λ) = −P
λ
, (1)

where P is the permutation matrix in C2 ⊗ C2. This classical r-matrix (1)
has the unitarity property

r21(−λ) = −r12(λ), (2)

and it satisfies the classical Yang-Baxter equation

[r12(λ−µ), r13(λ−ν)]+[r12(λ−µ), r23(µ−ν)]+[r13(λ−ν), r23(µ−ν)] = 0. (3)
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The corresponding Gaudin Lax matrix is defined by [3]

L0(λ) =

N∑
m=1

~σ0 · ~Sm
λ− αm

, (4)

as usual, {αm,m = 1, . . . , N} are the inhomogeneous parameters, σα0 , with
α = +,−, 3, are the Pauli matrices

σα =

(
δα3 2δα+

2δα− −δα3

)
, (5)

in the auxiliary space V0 = C2 and the spin 1
2 operators Sα = 1

2σ
α are acting

on the local space Vm = C2 at each site of the chain

Sαm = 1⊗ · · · ⊗ Sα︸︷︷︸
m

⊗ · · · ⊗ 1, (6)

with α = +,−, 3 and m = 1, 2, . . . , N . The Gaudin Lax matrix (4) and the
classical r-matrix (1) obey the so-called Sklyanin linear bracket [3]

[L1(λ), L2(µ)] = [r12(λ− µ), L1(λ) + L2(µ)] . (7)

The next step is the generalization of the model by introduction of the
K-matrix, which must satisfy the reflection equation. The general, spectral
parameter dependent solutions of the classical reflection equation [10]:

r12(λ− µ)K1(λ)K2(µ) +K1(λ)r21(λ+ µ)K2(µ) =

= K2(µ)r12(λ+ µ)K1(λ) +K2(µ)K1(λ)r21(λ− µ) ,
(8)

where the classical r-matrix is the one given in (1), can be written as follows
[10]

K(λ) =

(
ξ − λ ψλ
φλ ξ + λ

)
. (9)

Moreover, by introducing the non-unitary, classical r-matrix [16]

rK12(λ, µ) = r12(λ− µ)−K2(µ)r12(λ+ µ)K−12 (µ) , (10)

the two equations (3) and (8) can be combined into the generalized classical
Yang-Baxter equation [16][
rK32(ν, µ), rK13(λ, ν)

]
+
[
rK12(λ, µ), rK13(λ, ν)

]
+
[
rK12(λ, µ), rK23(µ, ν)

]
= 0. (11)

As we have shown [16], the appropriate Lax matrix is given by
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L0(λ) = L0(λ)−K0(λ)L0(−λ)K−10 (λ) =

(
H(λ) F (λ)
E(λ) −H(λ)

)
=

N∑
m=1

(
~σ0 · ~Sm
λ− αm

+
K0(λ)~σ0K

−1
0 (λ) · ~Sm

λ+ αm

)
.

(12)

The corresponding linear bracket based on the r-matrix rK(λ, µ) (10) is de-
fined by [16]

[L0(λ),L0′(µ)] =
[
rK00′(λ, µ),L0(λ)

]
−
[
rK0′0(µ, λ),L0′(µ)

]
. (13)

This linear bracket is obviously anti-symmetric and it obeys the Jacobi iden-
tity because the r-matrix rK00′(λ, µ) (10) satisfies the generalized classical
Yang-Baxter equation (11).

As it is well known [16], the linear bracket (13) yields the expression for the
generating function of the s`(2) Gaudin Hamiltonians with general boundary
terms in terms of the Lax operator (12)

τ(λ) =
1

2
tr0
(
L2
0(λ)

)
= H2(λ) +

1

2
(E(λ)F (λ) + F (λ)E(λ)) . (14)

Using the bracket (13), it is straightforward to check that the operator τ(λ)
commutes for different values of the spectral parameter

[τ(λ), τ(µ)] = 0 . (15)

Our aim here is to study the Gaudin system without any restriction what-
soever on the boundary parameters. Consequently, the commutation relations
for the generators H(λ), E(λ) and F (λ) turn out to be long and cumbersome
and, thus, we will not present them here. Technically, these commutation re-
lations are the principal difficulty in implementing the algebraic Bethe ansatz
in this, fully general, case. To overcome this problem we propose the new set
of generators

H(λ) =
1

2ν
(2H(λ)− ϕF (λ)− ψE(λ)) , (16)

E(λ) = −1− ν
2ν

(
2H(λ)− ϕ

1 + ν
F (λ)− ψ

1− ν
E(λ)

)
, (17)

F(λ) =
1 + ν

2ν

(
2H(λ)− ϕ

1− ν
F (λ)− ψ

1 + ν
E(λ)

)
. (18)

The commutation relations for the new generators are substantially sim-
pler than the relations for the initial generators. In particular,

[E(λ),E(µ)] = [F(λ),F(µ)] = [H(λ),H(µ)] = 0 , (19)
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and the three non-trivial relations are

[H(λ),E(µ)] =
−2

λ2 − µ2

(
µ
ξ − λν
ξ − µν

E(λ)− λ E(µ)

)
, (20)

[H(λ),F(µ)] =
2

λ2 − µ2

(
µ
ξ + λν

ξ + µν
F(λ)− λF(µ)

)
, (21)

[E(λ),F(µ)] =
−4

λ2 − µ2

(
µ
ξ + λν

ξ + µν
H(λ)− λ ξ − µν

ξ − λν
H(µ)

)
. (22)

A straightforward but somewhat lengthy calculation shows that the gener-
ating function τ(λ) (14) has exactly the same form when expressed in terms
of the new generators

τ(λ) = H2(λ) +
1

2
(E(λ)F(λ) + F(λ)E(λ)) . (23)

Our main result in this section are the new generators of the generalized
s`(2) Gaudin algebra (16) – (18). Due to their strikingly simple commuta-
tion relations (19) – (22) they provide a suitable framework for applying the
algebraic Bethe ansatz without any restrictions on boundary parameters.

3 Implementation of the algebraic Bethe ansatz

A necessary prerequisite for the implementation of the algebraic Bethe ansatz
is the existence of an appropriate vacuum vector Ω+ ∈ H in the Hilbert space

H =
N
⊗
m=1

Vm = (C2)⊗N . (24)

The standard approach relies on its property to be annihilated by one of the
algebra generators – usually: E(λ) Ω+ = 0. To this end we obtain the local
representation of the generators (16) – (18):

H(λ) =
λ

ν

N∑
m=1

2S3
m − ψS+

m − ϕS−m
(λ− αm)(λ+ αm)

, (25)

E(λ) =
−λ (1− ν)

ν

N∑
m=1

ξ − αmν
ξ − λν

2S3
m −

ψ
1−ν S

+
m −

ϕ
1+νS

−
m

(λ− αm)(λ+ αm)
, (26)

F(λ) =
λ (1 + ν)

ν

N∑
m=1

ξ + αmν

ξ + λν

2S3
m −

ψ
1+ν S

+
m −

ϕ
1−ν S

−
m

(λ− αm)(λ+ αm)
. (27)
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A simple approach to ensure E(λ) Ω+ = 0 is by fixing some of the K-matrix
parameters – e.g. setting φ = 0 and choosing the vacuum state as the tensorial
product of highest spin states in each of the local spaces Vm [22]. Another
approach, allowing for general boundary parameter in a set of special cases
can be found in [25].

However, here we show that, for the s`(2) Gaudin model, it is possible to
retain the full generality of the K-matrix parameters by choosing a somewhat
more complicated vacuum vector. To this purpose we observe that in every
local space Vm = C2, m ∈ {1, . . . , N} there exists a vector ωm ∈ Vm given by

ωm =

(
ψ

1−
√
1+ψϕ

1

)
∈ C2 = Vm , (28)

where the parameters ν, ψ and ϕ are the parameters of the boundary K-
matrix (9). Then it is easy to check that(

2S3
m −

ψ

1− ν
S+
m −

ϕ

1 + ν
S−m

)
ωm = 0 , (29)

(
2S3

m − ψS+
m − ϕS−m

)
ωm = ν ωm . (30)

Therefore the vacuum vector Ω+, defined as

Ω+ = ω1 ⊗ · · · ⊗ ωN ∈ H (31)

is annihilated by the generator E(λ) (26) and, at the same time, it is an
eigenvector of the generator H(λ) (25), that is

E(λ) Ω+ = 0 and H(λ) Ω+ = ρ(λ) Ω+ with ρ(λ) =

N∑
m=1

λ

λ2 − α2
m

.

(32)
Our next aim is to rewrite the formula for τ(λ) (23) in a more suitable way

so that the action of the generating function τ(λ) on the vacuum vector Ω+

(31) becomes more transparent. As it can be shown, the generating function
τ(λ) (23) can be expressed as follows

τ(λ) = H2(λ) +
1

λ

ξ2 + λ2ν2

ξ2 − λ2ν2
H(λ)− H′(λ) + F(λ)E(λ) . (33)

Taking into account (32) and (33), it is evident that the vacuum vector Ω+

(31) is an eigenvector of the generating function

τ(λ)Ω+ = χ0(λ)Ω+ with χ0(λ) = ρ2(λ) +
ξ2 + λ2ν2

ξ2 − λ2ν2
ρ(λ)

λ
−ρ′(λ) . (34)
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Now we can compute the commutator by a straightforward calculation,
based on the formulae (33), (21) and (22)

[τ(λ),F(µ)] = − 4

λ2 − µ2
F(µ)

(
λH(λ) +

λ2ν2

ξ2 − λ2ν2

)

+
4

λ2 − µ2

λ

µ

ξ − µν
ξ − λν

F(λ)

(
µH(µ) +

µ2ν2

ξ2 − µ2ν2

)
.

(35)

The relative simplicity of the right hand side of the equation above has
encouraged us to seek the commutator between the operator τ(λ) and the
product F(µ1)F(µ2) as the next step. In this case, an analogous direct calcu-
lation based on the previous formulae, leads to

[τ(λ),F(µ1)F(µ2)] = − 4

λ2 − µ2
1

F(µ1)F(µ2)

(
λH(λ) +

λ2ν2

ξ2 − λ2ν2
− λ2

λ2 − µ2
2

)

− 4

λ2 − µ2
2

F(µ1)F(µ2)

(
λH(λ) +

λ2ν2

ξ2 − λ2ν2
− λ2

λ2 − µ2
1

)

+
4

λ2 − µ2
1

λ

µ1

ξ − µ1ν

ξ − λν
F(λ)F(µ2)

(
µ1H(µ1) +

µ2
1ν

2

ξ2 − µ2
1ν

2
− 2µ2

1

µ2
1 − µ2

2

)

+
4

λ2 − µ2
2

λ

µ2

ξ − µ2ν

ξ − λν
F(µ1)F(λ)

(
µ2H(µ2) +

µ2
2ν

2

ξ2 − µ2
2ν

2
− 2µ2

2

µ2
2 − µ2

1

)
.

(36)

From these relations it is not difficult to infer, and to prove by mathemat-
ical induction, e.g. as in [22] that, for an arbitrary natural number M , the
off-shell action of the generating function τ(λ) on the Bethe vectors takes the
form:

ΦM (µ1, µ2, . . . , µM ) = F(µ1)F(µ2) · · ·F(µM )Ω+ , (37)

is given by

τ(λ)ΦM (µ1, µ2, . . . , µM ) = χM (λ, µ1, µ2, . . . , µM ) ΦM (µ1, µ2, . . . , µM )

+

M∑
j=1

4λ

λ2 − µ2
j

ξ − µjν
ξ − λν

ρ(µj) +
µjν

2

ξ2 − µ2
jν

2
−

M∑
k 6=j

2µj
µ2
j − µ2

k

ΦM (λ, µ1, . . . , µ̂j , . . . , µM ) ,

(38)

where the eigenvalue χM (λ, µ1, µ2, . . . , µM ) is given by

χM (λ, µ1, µ2, . . . , µM ) = χ0(λ)−
M∑
j=1

4λ

λ2 − µ2
j

ρ(λ) +
λν2

ξ2 − λ2ν2
−

M∑
k 6=j

λ

λ2 − µ2
k

 .

(39)
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The unwanted terms on the right hand side of (38) are annihilated once the
Bethe equations

ρ(µj) +
µjν

2

ξ2 − µ2
jν

2
−

M∑
k 6=j

2µj
µ2
j − µ2

k

= 0 , j = 1, 2, . . . ,M , (40)

are imposed on the parameters µ1, µ2, . . . , µM .

4 Conclusion

The usual approaches to nontrivial boundary conditions for the s`(2) Gaudin
model commonly require additional constraints on the K-matrix parame-
ters [22], with the exception of some special cases for the trigonometric s`(2)
Gaudin model [25]. In this paper, we have demonstrated that, by the suit-
able choices of generators of the generalized s`(2) Gaudin algebra and of the
corresponding vacuum vector, it is possible to retain full generality of the K-
matrix, i.e. without any restriction whatsoever on the boundary parameters.
While here this was realized for fixed values of spin – 1

2 at each node, we
believe that the approach can be further generalized to the case of arbitrary
spins.
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Relativistic Three-Body Harmonic
Oscillator

Igor Salom and V. Dmitrašinović

AbstractWe discuss the relativistic three-body harmonic oscillator problem,
and show that in the extreme relativistic limit its energy spectrum is closely
related to that of the non-relativistic three-body problem in the ∆-string
potential, which blurs the distinction between relativistic and confinement
effects. This, perhaps unexpected, feature can be understood in terms of
permutation properties of the two problems, and as such can be expected to
persist in confining potentials other than the harmonic oscillator.

1 Introduction

The harmonic oscillator is the quintessential example of a solvable/integrable
problem in physics, both classical and quantum. It is (always) understood
to be non-relativistic, the (special) relativistic version being neither easily
solvable, nor integrable in the formal sense of the word 1. Consequently,
the relativistic harmonic oscillator is mentioned only rarely in the literature.
Nevertheless, it can be an instructive example, as we shall show below, espe-
cially in the (quantum mechanical) three-quark problem, where relativity is
expected to play an important role, particularly in excited states.

Over the past five years, or so, we have developed an O(6) hyper-spherical
harmonics (HSH) approach to the quantum-mechanical non-relativistic three-
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Serbia e-mail: isalom@ipb.ac.rs
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1 Indeed, so-called relativistic “No Interaction Theorems” suggest that the interaction
must vanish in a relativistic setting, see Sect. 5
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body problem [1, 2, 3]. This approach relies on the fact that the non-
relativistic kinetic energy has an O(6) symmetry, which is generally not
shared by the three-body potential. In the case of the harmonic oscillator
interaction, the potential shares the same O(6) symmetry, and in conjunction
with the non-relativistic kinetic energy, leads to the higher U(6) dynamical
symmetry, which ensures its super-integrability. What happens to this sys-
tem when the motion becomes relativistic? We shall explore this question
here, and show that (in the ultra-relativistic limit) the energy spectrum is
equivalent to that of the non-relativistic three-body system in a linearly rising
potential.

We start from the (obvious) observation that under the transition from
the configuration-space to the momentum-space representation, one does a
Fourier transformation of the whole Schrödinger equation, the wave func-
tion included. A necessary condition for this transformation to hold is that
all of the functions involved be square-integrable. Whereas that is certainly
true of the bound-state wave functions, it does not hold for the harmonic
oscillator, or any other infinitely rising (i.e., confining) potential. Therefore,
the Fourier transform of the harmonic-oscillator Schrödinger equation is not
the usual Lippmann-Schwinger integro-differential equation, but rather, (the
same) differential equation, except for the fact that the variables are in the
momentum space. In Boukraa and Basdevant’s [4] words: “These integral
equations appear to be singular for confining potentials and hence need par-
ticular treatment.” For an arbitrary confining potential this “particular treat-
ment” has been presented in some detail in Ref. [4].

In the special case of the harmonic oscillator potential, however, this “par-
ticular treatment” turns out to be simple and yields an elegant solution: in-
stead of an integro-differential equation, one ends up with a purely differential
equation of the second order that looks just like an ordinary nonrelativistic
Schrödinger equation, see problem V.17, Chapter V in Ref. [5], albeit with
a (different) potential, that is the Fourier transform of the relativistic ki-
netic energy operator. Indeed the relativistic 1-body harmonic oscillator was
treated in this way by Li et al. [6]. The Fourier transform of the relativistic ki-
netic energy be evaluated in closed form with the (possibly not-so-surprising)
result that it asymptotically grows linearly with the resulting “separation of
quarks in momentum space”, which corresponds to a linearly confining po-
tential.

Thus the relativistic harmonic oscillator three-body problem is reduced
to a non-relativistic three-body problem in a linearly growing potential in
momentum space2. In this light, we do not seem to have gained much, just
trading one three-body problem for another. The actual advantage is that
the new three-body problem is non-relativistic, which allows us to use the
O(6) hyper-spherical harmonics.

2 This was noted by Hall et al [7].
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From this point onwards, one can employ our previously developed hyper-
spherical harmonics methods [1, 2, 3] to solve the resulting equations of
motion. The new potential is expanded in hyper-spherical harmonics and
the resulting expansion coefficients inserted into the (reduced) hyper-radial
Schrödinger equations, that can be solved numerically at least in the extreme
relativistic limit (zero masses).

The resulting energy spectrum is curious and instructive: instead of the
highly degenerate spectrum of the non-relativistic harmonic oscillator, we
find that the degeneracy has been maximally lifted, the only remnants of
degeneracy being those decreed by the S3 permutation symmetry. Moreover,
degeneracy-lifting effects have the same amplitudes, and (sometimes) the
opposite sign to those in the ∆-string potential, at least in the extreme rela-
tivistic limit.

Of course, the more realistic case of non-zero masses is expected to inter-
polate between the two extreme cases of non-relativity and extreme relativity,
but that cannot be handled as simply as in the case shown here.

2 Semi-relativistic three-body harmonic oscillator in
momentum space

The semi-relativistic three-quark Hamiltonian in configuration space is

H =
∑
a

√
m2

a + p2
i + V3b (|ρ|, |λ|,ρ · λ) , (1)

where the confining 3-body harmonic oscillator potential reads (for the sake
of simplicity we shall work with three identical particles):

V3b (|ρ|, |λ|,ρ · λ) = VHO =
k

2

(
ρ2 + λ2

)
(2)

=
k′

2

(
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2

)
and k′ = 3k. Here we used the standard notation for Jacobi coordinates ρ
and λ, defined as the following linear combinations of the positions of the
three identical particles xi:

ρ =
1√
2
(x1 − x2), λ =

1√
6
(x1 + x2 − 2x3).

The Fourier transform of the harmonic oscillator potential, as is well
known, see problem V.17, Chapter V in Ref. [5], is proportional to the Lapla-
cian operator, i.e., to the kinetic energy (in the configuration representation).
This property holds in the three-body problem, as well, with the distinction
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that the Laplacian operates in six-dimensional space

ṼHO = −k

2

(
∂2

∂p2
ρ

+
∂2

∂p2
λ

)
.

The major difference is in what happens to the relativistic kinetic energy
in the momentum space: the kinetic energy

T =
3∑

a=1

√
m2

a + p2
i ,

is a differential operator in configuration representation (because pj =
−ih̄ ∂

∂xj
is a differential operator), but a multiplicative operator in the mo-

mentum representation. In the center-of-momentum (CM) frame it holds:

3∑
i=1

pi = 0

and, subjected to this constraint, it is possible to express all three spatial
momenta pi as linear combinations of just two Jacobi vectors pρ and pλ.

Note that kinetic energy T does not have the O(6) symmetry of its non-
relativistic analogon. Moreover, in the extreme relativistic limit ma → 0, or
TCM → ∞, we can write center-of-momentum kinetic energy as:

TCM =
3∑

i=1

|pi| =
√

2

3
p2
λ +

√
1

2

(∣∣∣∣pρ +
pλ√
3

∣∣∣∣+ ∣∣∣∣pρ − pλ√
3

∣∣∣∣) , (3)

and it is only a linearly (rather than quadratically as in the non relativistic
case) rising function of momenta magnitudes.

Thus, the Hamiltonian in momentum space and CM frame reads

H̃ = −k

2

(
∂2

∂p2
ρ

+
∂2

∂p2
λ

)
+

3∑
i=1

|pi|,

which, after the substitutions pρ ↔ ρ and pλ ↔ λ, is equivalent to the
Schrödinger equation

H̃Ψ̃ = ẼΨ̃

for three identical particles with a mass m = k and interacting with a CM-
string potential with unit string tension σ = 1. We have developed hyper-
spherical harmonic methods [1, 2, 3] for the solution of such three-body
Schrödinger equations.
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3 Barycentric-string three-body potential

The potential:

VCM = σCM

(√
2

3
λ2 +

√
1

2

(∣∣∣∣ρ+
λ√
3

∣∣∣∣+ ∣∣∣∣ρ− λ√
3

∣∣∣∣)
)

(4)

corresponding to the expression (3) is known as the barycentric-junction (in-
stead of Torricelli-junction) string

VCM = σCM

3∑
i=1

|xi − xCM|,

in the literature [8]. In terms of Iwai-Smith angles it reads

VCM(R,α, ϕ) =
σCM√

3
R

(√
1− sin(α) cos

(
ϕ− π

3

)
+

√
1− sin(α) cos

(
ϕ+

π

3

)
+
√

1 + sin(α) cos(ϕ)

)
. (5)

The barycentric string 3-body potential is closely related to the ∆-string
one,

V∆ = σ∆

3∑
i>j=1

|xi − xj |, (6)

which, written in terms of Jacobi vectors reads

V∆ = σ∆

(√
2ρ2 +

√
1

2

(
ρ2 + 3λ2 − 2

√
3ρ · λ

)
+

√
1

2

(
ρ2 + 3λ2 + 2

√
3ρ · λ

))
. (7)

Note that the expression Eq. (4) for VCM can be obtained from the expression
Eq. (7) for V∆ by exchanging ρ and λ (together with setting σ∆ = σCM/

√
3).

The ∆-string potential Eq. (7), in terms of Iwai-Smith angles, reads

V∆(R,α, ϕ) = σ∆R

(√
1 + sin(α) sin

(π
6
− ϕ

)
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+

√
1 + sin(α) sin

(
ϕ+

π

6

)
+
√

1− sin(α) cos(ϕ)

)
(8)

which is just a rotation of angle ϕ through π as compared with Eq. (5).
An interchange of the ρ and λ vectors has exactly such the effect of a ϕ-
rotation through π on the hyper-spherical harmonic expansion coefficients,
v∆K,Q, defined in Eq. (9).

In order to find the general hyper-spherical harmonic expansion of the ∆-
string potential we note that it factors into the hyper-radial V∆(R) = σ∆R
and the hyper-angular part V∆(α, ϕ), and thus:

V∆(R,α, ϕ) = V∆(R)V∆(α, ϕ)

= σ∆R
∞∑

K,Q

v∆K,QY
KQν
00 (α, ϕ). (9)

This circumstance, of course, leaves consequences for the hyper-spherical har-
monic expansion coefficients of these two potentials: 1) the Q = 0 coefficients
vK,Q=0 of these two potentials are identical (modulo

√
3 in the definitions of

the string tensions); 2) the Q ̸= 0 coefficients vK,Q ̸=0 of these two potentials
have the same absolute value, with opposite signs.

We have already calculated the expansion coefficients v∆K,Q in Ref. [10], and
we can use our above conclusions to directly infer values of the corresponding
coefficients in the hyper-spherical decomposition of the potential VCM (4). All
these coefficients (and some additional for comparison) are tabulated in Table
1.

Table 1 Expansion coefficients vKQ of the Y- and ∆-string as well as of the Coulomb

and Logarithmic potentials in terms of O(6) hyper-spherical harmonics YK,0,0
0,0 , for

K = 0, 4, 8, 12, respectively, and of the hyper-spherical harmonics Y6,±6,0
0,0 .

(K,Q) vKQ(Y − string) vKQ(∆) vKQ(CM− string) vKQ(Coulomb) vKQ(Log)

(0,0) 8.22 16.04 16.04/
√
3 20.04 -6.58

(4,0) -0.398 - 0.445 - 0.445/
√
3 2.93 -1.21

(6,±6) -0.027 - 0.14 0.14/
√
3 1.88 -0.56

(8,0) -0.064 - 0.04 - 0.04/
√
3 1.41 -0.33

(12,0) -0.01 0 0 0 -0.17
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4 Results: Energy spectra

This means that the relativistic 3-body harmonic oscillator spectrum is
closely related to that of the non-relativistic ∆-string one, which has been
studied in detail Ref. [10], see also Basdevant and Boukraa, [11, 4]. The pre-
cise energy eigenvalues depend on the absolute value of the (1-body) mass,
and can be bounded from above and below as shown in [6]. In the extreme
relativistic limit (m → 0) the ground-state energy is equal to the (rescaled)
∆-string ground state energy (cf. Table 5 in Ref. [8]). Thus we find that the

Table 2 The eigen-energies (in units of
(

σ#√
2m

) 2

3 ) of the #-string potentials (where

# = Y,∆,CM) for all K = 0,1,2 states. The CM-string eigen-energies are obtained
from the ∆ by dividing the latter by 3

√
3, which is equivalent to the substitution

σ∆ =
√
3σCM in the above formula for units.

K NK [SU(6),LP] E
(Y)
NK,K,L E

(∆)
NK,K,L E

(CM)
NK,K,L

0 0 [56, 0+] 5.1761 6.1348 4.2536
1 0 [70, 1−] 6.3160 7.4858 5.1904
0 1 [56, 0+] 7.1360 8.4577 5.8643
2 0 [70, 0+] 7.1733 8.6322 5.9852
2 0 [56, 2+] 7.2437 8.6691 6.0108
2 0 [70, 2+] 7.3968 8.7430 6.0621
2 0 [20, 1+] 7.5550 8.8168 6.1132

degeneracy of energy levels has been maximally lifted, the only remnants
of degeneracy being those allowed/decreed by the S3 permutation symme-
try and by angular momentum conservation. Moreover, degeneracy-lifting
effects have the same amplitudes, and in some cases the opposite sign(s)
to those in the ∆-string potential, at least in the extreme ultra-relativistic
limit. This stands in stark contrast to the highly degenerate spectrum of the
non-relativistic harmonic oscillator.

Moreover, this shows that the relativistic effects can either enhance, or
reduce the (K,Q) = (6,±6) coefficient, which is a benchmark signal of the
Y-string confinement potential, thus possibly confusing the issue of ∆- vs.
Y-string further still.

Of course, the more realistic case of non-zero masses is expected to in-
terpolate between the two extreme cases of non-relativistic and extremely
relativistic motion, but that cannot be handled as simply as in the case
shown here. Once the masses are turned on, the problem’s Hamiltonian loses
its homogeneity, and has to be (re)calculated separately at every mass value.

Next we compare our ground state energy (see the right-most column in

Table 5 in Ref. [8]) E00 = 5.3592 × 3

√
3
2k

1/3 = 6.13475k1/3 which is slightly

(0.12 %) larger than Hall et al’s [7] (rigorous) lower bound of 2.33810741 ×
3
√
18k1/3 = 6.12757k1/3. The difference may well be down to the numerical
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inaccuracy (4th significant digit) in the numerical evaluation of the eigenvalue
in Table 11 in Ref. [8].

5 Discussion and Conclusions

In this paper we have explicitly established a direct relation between ultra-
relativistic three-particle harmonic oscillator problem, and the non-relativistic
three particle problem in a linear ∆ potential. This relation allowed us to
directly infer the harmonic oscillator spectrum from the already known prop-
erties of the three particle non-relativistic system in the ∆ potential.

In conferences one can still occasionally hear comments to the effect that
the Dirac’s formulation(s) of (special) relativistic mechanics [12] precludes
any and all interaction within few-body systems - the so-called “No Interac-
tion Theorems” of Currie, Jordan, and Sudarshan [13]. It is far less known
that in a series of papers [14, 15], Luis Bel has reviewed which assumption(s)
lay at the root of this apparent difficulty, as well as several assumptions sup-
planting the Currie-Jordan-Sudarshan ones, which permit one to circumvent
this “No Interaction theorem”. In this regard, see also Jordan’ own more
recent views [16]. Thus there are no formal grounds for viewing our present
results with suspicion.
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2. Igor Salom and V. Dmitrašinović, Springer Proc. Math. Stat. 191, 431 (2016).
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Departamento de Matemática, Faculdade de Ciências

Campo Grande, Edif́ıcio C6, 1749-016 Lisboa, Portugal

Nuno Cirilo António§

Centro de Análise Funcional e Aplicações
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Abstract

We obtain the non-unitary classical r-matrix of the spin 1 trigonometric Gaudin
model with boundary terms. Starting from the R-matrix and corresponding K-
matrix of the spin 1

2 XXZ Heisenberg chain the so-called fusion procedure yields
the R and K matrices of the spin 1 XXZ Heisenberg chain. We demonstrate
that the corresponding classical r and K matrices satisfy, respectively, the classical
Yang-Baxter equation and the classical reflection equation. Consequently, we show
that the relevant non-unitary classical r-matrix satisfies the generalized classical
Yang-Baxter equation and therefore defines the non-periodic spin 1 trigonometric
Gaudin model.

1. Introduction

An approach to study periodic Gaudin models [1, 2, 3] is based on the
unitary classical r-matrices [4, 5, 6, 7] and the corresponding Sklyanin linear
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bracket [5, 6, 7, 8, 9, 10, 11]. The algebra generated by the entries of
the relevant Lax operators can be used to completely solve the system
through the algebraic Bethe ansatz, or the separation of variable method
[5, 6, 7, 8, 9, 10, 11].

Similar approach to the non-periodic Gaudin models, based on the non-
unitary classical r-matrices and corresponding linear bracket, enabled full
implementation of the algebraic Bethe ansatz in the spin 1

2 case [12, 13,
14, 15, 16, 17, 18, 19]. In this paper we initiate the study of the spin 1
non-periodic Gaudin models by deriving the relevant non-unitary classical
r-matrix. This classical r-matrix is a solution to the generalized classical
Yang-Baxter equation. An important advantage of this approach is that
the generalized classical Yang-Baxter equation is equivalent to both the
classical Yang-Baxter equation and classical reflection equation [15]. To
obtain this non-unitary r-matrix we use the fusion procedure starting from
the quantum R-matrix and the reflection K-matrix of the spin 1

2 XXZ
Heisenberg chain. The classical r-matrix we obtain defines completely the
non-periodic spin 1 Gaudin model.

This paper is organized as follows. In the section 2. we describe briefly
the fusion procedure as applied to the R and K matrices of the spin 1

2 XXZ
Heisenberg chain. The results of the second section are then presented and
analysed in the section 3.. The quasi-classical limit which leads to the spin
1 non-unitary r-matrix is presented in the section 4..

2. Spin 1
2

XXZ Heisenberg chain

In our study of the spin 1
2 XXZ Heisenberg spin chain [16] the starting

point is always the R-matrix [20, 21, 22, 23]

R(λ, η) =


sinh(λ+ η) 0 0 0

0 sinh(λ) sinh(η) 0

0 sinh(η) sinh(λ) 0

0 0 0 sinh(λ+ η)

 . (1)

This R-matrix satisfies the Yang-Baxter equation [24, 22, 23, 20, 21] in the
space C2 ⊗ C2 ⊗ C2

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ), (2)

and it also has other relevant properties such as

U(1) symmetry
[
σ31 + σ32, R12(λ)

]
= 0;

unitarity R12(λ)R21(−λ) = sinh(η − λ) sinh(η + λ)1;
parity invariance R21(λ) = R12(λ);
temporal invariance Rt

12(λ) = R12(λ);
crossing symmetry R(λ) = J1Rt2(−λ− η)J1,



The spin 1 XXZ Gaudin model with boundary 279

where t2 denotes the transpose in the second space and the two-by-two
matrix J is proportional to the Pauli matrix σ2, i.e. J = ıσ2.

A way to introduce non-periodic boundary conditions which are com-
patible with the integrability of the bulk model, was developed in [25].
Boundary conditions on the left and right sites of the chain are encoded in
the left and right reflection matrices K− and K+. The compatibility condi-
tion between the bulk and the boundary of the system takes the form of the
so-called reflection equation. It is written in the following form for the left
reflection matrix acting on the space C2 at the first site K−(λ) ∈ End(C2)

R12(λ− µ)K−1 (λ)R21(λ+ µ)K−2 (µ) = K−2 (µ)R12(λ+ µ)K−1 (λ)R21(λ− µ).
(3)

Due to the properties of the R-matrix (1) the dual reflection equation
can be presented in the following form

R12(µ− λ)K+
1 (λ)R21(−λ− µ− 2η)K+

2 (µ) =
K+

2 (µ)R12(−λ− µ− 2η)K+
1 (λ)R21(µ− λ).

(4)

One can then verify that the mapping

K+(λ) = K−(−λ− η) (5)

is a bijection between solutions of the reflection equation and the dual re-
flection equation. After substitution of (5) into the dual reflection equation
(4) one gets the reflection equation (3) with shifted arguments.

The general, spectral parameter dependent, solutions of the reflection
equation (3) and the dual reflection equation (4) can be written as follows
[26, 27, 28]

K−(λ) =

(
κ− sinh(ξ− + λ) ψ− sinh(2λ)
φ− sinh(2λ) κ− sinh(ξ− − λ)

)
, (6)

K+(λ) =

(
κ+ sinh(ξ+ − λ− η) −ψ+ sinh (2(λ+ η))
−φ+ sinh (2(λ+ η)) κ+ sinh(ξ+ + λ+ η)

)
. (7)

Due to the fact that the reflection matrices K∓(λ) are defined up to mul-
tiplicative constants the values of parameters κ∓ are not essential, as long
as they are different from zero. Although the R-matrix (1) has the U(1)
symmetry the reflection matrices K∓(λ) (6) and (7) cannot be brought to
the upper triangular form by the symmetry transformations like in the case
of the XXX Heisenberg spin chain [14].

We will not discuss the Lax operators and the corresponding mon-
odromies, relevant for the study of the spin 1

2 XXZ Heisenberg spin chain
[16]. Our aim is to obtain the R and K matrices corresponding the spin
1 XXZ Heisenberg chain. As our first step we use the fusion procedure
[29, 21] in the space C2⊗C2⊗C2⊗C2 with the aim of deriving the spin 1
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XXZ R-matrix. To this end we observe that the R-matrix (1) at λ = −η is
proportional to the projector onto the antisymmetric subspace of the space
C2 ⊗ C2,

P− =
−1

2 sinh(η)


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

 . (8)

For our purpose, the relevant projector is the complementary one, which
projects onto the symmetric subspace of the space C2 ⊗ C2,

P+ = 1− P−. (9)

We obtain the spin 1 representation in the tensor product of the last two
spaces,

R1(34)(λ) = P+
34R14(λ− η)R13(λ)P+

34. (10)

It straightforward the check that the corresponding Yang-Baxter equation
is satisfied

R12(λ− µ)R1(34)(λ)R2(34)(µ) = R2(34)(µ)R1(34)(λ)R12(λ− µ). (11)

Analogously, we have

R(12)3(λ) = P+
12R13(λ)R23(λ+ η)P+

12. (12)

Finally, we obtain the relevant R-matrix

R(12)(34)(λ) = P+
34R(12)4(λ− η)R(12)3(λ)P+

34. (13)

In this case, the fusion procedure for the K-matrix [30] yields

K−(12)(λ) = P+
12K

−
1 (λ)R12(2λ+ η)K−2 (λ+ η)P+

12. (14)

A direct calculation shows that the corresponding reflection equation is
satisfied

R(12)(34)(λ− µ)K−(12)(λ)R(34)(12)(λ+ µ)K−(34)(µ) =

= K−(34)(µ)R(12)(34)(λ+ µ)K−(12)(λ)R(34)(12)(λ− µ).
(15)

Therefore we have achieved our main objective in obtaining the relevant R
and K matrices. In the following section we will look at their explicit form
and some important properties.
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3. Spin 1 XXZ Heisenberg chain

In the appropriate bases the R-matrix (13) of the spin one XXZ Heisenberg
chain can be represented as the following 9× 9 matrix

R(λ, η) =



a1
a2 b1

a3 b2 b3
b1 a2

b2 a4 b2
a2 b1

b3 b2 a3
b1 a2

a1


, (16)

where the entries are given by

a1 = sinh(λ+ η) sinh(λ+ 2η), b1 = sinh(λ+ η) sinh(2η),

a2 = sinh(λ) sinh(λ+ η), b2 = sinh2(λ) sinh(2η) cosh(η),

a3 = sinh(λ) sinh(λ− η), b3 = sinh(η) sinh(2η) sinh(λ) sinh(λ+ η),

a4 = sinh(λ) sinh(λ+ η) + sinh(η) sinh(2η).

This R-matrix satisfies the Yang-Baxter equation in the space C3⊗C3⊗
C3

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ), (17)

and has the U(1) symmetry

[h1 + h2, R12(λ, η)] = 0, (18)

where h = diag(1, 0,−1). The similarity transformation

Ad exp(αλ(h1 − h2))R12(λ, η), (19)

with α = 1
2 , yields the O(3) invariant form of this R-matrix [31, 32, 33]. The

R-matrix 16 has some important properties such as regularity, unitarity,
PT-symmetry and crossing symmetry. The regularity condition at λ = 0
reads

R(0, η) = sinh(η) sinh(2η)P, (20)

where P is the permutation matrix of C3 ⊗ C3. The unitarity relation is

R12(λ)R12(−λ) = ρ(λ)1, (21)

here ρ is the following function

ρ(λ) = sinh(λ+ η) sinh(λ+ 2η) sinh(λ− η) sinh(λ− 2η). (22)
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The so-called PT-symmetry states

Rt
12(λ) = R12(λ). (23)

Finally, the R-matrix (16) has the following crossing symmetry property:

R(λ) = (J ⊗ 1)Rt2(−λ− η)
(
J −1 ⊗ 1

)
, (24)

where t2 denotes the transpose in the second space and the matrix J is
given by

J =

(
0 0 −1
0 1 0
−1 0 0

)
. (25)

In the basis in which the R-matrix (13) takes the form (16) the K-matrix
(14) is given by

K−(λ, η) = sinh(2λ+ η)

(
k11 k12 k13

k21 k22 k23

k31 k32 k33

)
, (26)

where

k11 = κ−
2

sinh(ξ− + λ+ η
2 ) sinh(ξ− + λ− η

2 ) + ψ−φ− sinh(2λ− η) sinh(η),

k22 = κ−
2

sinh(ξ− − λ+ η
2 ) sinh(ξ− + λ− η

2 ) + ψ−φ− sinh(2λ− η) sinh(2λ+ η),

k33 = κ−
2

sinh(ξ− − λ+ η
2 ) sinh(ξ− − λ− η

2 ) + ψ−φ− sinh(2λ− η) sinh(η),

k12 = κ−ψ−√2
√

cosh(η) sinh(ξ− + λ− η
2 ) sinh(2λ),

k23 = κ−ψ−√2
√

cosh(η) sinh(ξ− − λ+ η
2 ) sinh(2λ),

k13 = ψ−2
sinh(2λ− η) sinh(2λ),

k21 = κ−φ−
√

2
√

cosh(η) sinh(ξ− + λ− η
2 ) sinh(2λ),

k32 = κ−φ−
√

2
√

cosh(η) sinh(ξ− − λ+ η
2 ) sinh(2λ),

k31 = φ−
2

sinh(2λ− η) sinh(2λ).
(27)

The R-matrix (16) and the above K-matrix satisfy the reflection equa-
tion

R12(λ− µ)K−1 (λ)R21(λ+ µ)K−2 (µ) = K−2 (µ)R12(λ+ µ)K−1 (λ)R21(λ− µ).
(28)

The study of the spin 1 XXZ Heisenberg chain would require the dual
reflection equation and the relevant K+ matrix. Although, now this would
be straightforward we will not proceed in this direction since our main aim
is to derive the corresponding Gaudin model through the so-called quasi-
classical limit [14, 16].



The spin 1 XXZ Gaudin model with boundary 283

4. Spin 1 XXZ Gaudin model

The classical r-matrices are essential tools in the study of the Gaudin models
[5, 4, 6, 7, 8, 9, 10]. To this end we observe the quasi-classical property of
the R-matrix (16)

1

sinh2(λ)
R(λ, η) = 1 + ηr(λ) +O(η2), (29)

where the classical r-matrix is given by [4, 6]

r(λ) =
2

sinh(λ)



cosh(λ)
1

− cosh(λ) 1
1

1 1
1

1 − cosh(λ)
1

cosh(λ)


+ coth(λ)1.

(30)

As it is very well known[4, 6], the above r-matrix has the unitarity property

r21(−λ) = −r12(λ), (31)

and it satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0. (32)

Our objective is the non-periodic Gaudin model and therefore we also
need the classical K-matrix [14, 15, 16] which is obtained from the K-matrix
(26) by setting η = 0,

K(λ) ≡ K−(λ, 0). (33)

A direct consequence of the equation (28) is the classical reflection equa-
tion [34, 35, 15]:

r12(λ− µ)K1(λ)K2(µ) + K1(λ)r21(λ+ µ)K2(µ) =

= K2(µ)r12(λ+ µ)K1(λ) + K2(µ)K1(λ)r21(λ− µ).
(34)

It can be shown [15, 12] that by defining the non-unitary classical r-
matrix

rK12(λ, µ) = r12(λ− µ)−K2(µ)r12(λ+ µ)K−12 (µ), (35)

the classical Yang-Baxter equation (32) and (34) combine into one equation,
the so-called generalized classical Yang-Baxter equation[

rK32(ν, µ), rK13(λ, ν)
]

+
[
rK12(λ, µ), rK13(λ, ν) + rK23(µ, ν)

]
= 0. (36)



284 I. Salom, N. Manojlović and N. Cirilo António

As the classical r-matrix defines the Sklyanin linear bracket, an essential
tool in the study of the periodic Gaudin model [5, 6, 7, 8, 9, 10], the non-
unitary r-matrix (34), through the relevant linear bracket, defines the so-
called generalized Gaudin algebra essential in the study of the non-periodic
model [12, 15, 17, 18, 19] .
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[13] N. Cirilo António, N. Manojlović and Z. Nagy, Trigonometric s`(2) Gaudin model
with boundary terms, Reviews in Mathematical Physics Vol. 25 No. 10 (2013)
1343004 (14 pages); arXiv:1303.2481.
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Departamento de Matemática, Faculdade de Ciências e Tecnologia
Universidade do Algarve, Campus de Gambelas,

PT-8005-139 Faro, Portugal
and
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Abstract

We study the elliptic Gaudin model as a quasi-classical limit of the XYZ Heisen-
berg spin chain with the most general K-matrix. In particular, we give the gener-
ating function of the Gaudin Hamiltonians with boundary terms.

1. Introduction

There is extensive literature on the subject of Gaudin algebras, discussing
its various generalizations in many diferent context [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Here we derive the generat-
ing function of the Gaudin Hamiltonians with boundary terms in the elliptic
case following Sklyanin’s approach in the periodic case [4], as we have done
for the rational and trigonometric Gaudin model [44, 45, 43, 46, 47]. In the
section 2. we review the XYZ Heisenberg spin chain. Our starting point is
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the corresponding R-matrix [48, 49] and its most relevant properties. The
relevant Lax operator as well as the definition of the Sklyanin algebra [50]
is our next step. Then we study the properties of the central element of
the RLL-relations, the so-called quantum determinant of the Lax operator,
and the representation theory of the Sklyanin algebra which follows from
the fusion procedure [50, 51, 52]. Sklyanin showed how to introduce non-
periodic boundary conditions which are compatible with the integrability of
the bulk system[27]. Following his approach we study the general solution
of the relevant Reflection Equation [53, 54, 55] which at the same time de-
fines the corresponding solution of the so-called dual Reflection Equation.
The Reflection Equation Algebra provides the suitable algebraic framework
for studying the non-periodic XYZ Heisenberg spin chain. This algebra is
generated by the entries of the so-called Sklyanin monodromy matrix. As
Sklyanin showed [27], the trace of the product of this monodromy matrix
with the solution of the dual Reflection Equation yields the transfer matrix
of the chain, i.e. the generator of an Abelian subalgebra which is relevant
for the dynamics of the system. Moreover, the Sklyanin monodromy matrix
admits a central element of the Reflection Equation Algebra. In the section
3. we study the non-periodic elliptic Gaudin model as the quasi-classical
limit of the XYZ Heisenberg spin chain. Following Sklyanin’s approach
in the rational case [4] we show how the linear combination of the quan-
tum determinant of the elliptic monodromy matrix together with its trace
yields the generation function of the elliptic Gaudin model, in the peri-
odic case. To study the non-periodic elliptic Gaudin model we follow the
same approach we have used successfully in the rational [44] as well as in
the trigonometric case [47]. Namely, we combine the classical r-matrix to-
gether with the general solution of the classical Reflection Equation into
the so-called non-unitary classical r-matrix which is the key notion in the
study of the non-periodic Gaudin model. The relevant Lax operator can
then be defined in somewhat natural way [44, 45, 46, 47]. This Lax operator
and the non-unitary classical r-matrix determine the linear bracket which
is antisymmetric and satisfies the Jacobi identity, defining the dynamical
symmetry algebra which is of utmost importance for the solvability of the
system. The generating function of the Gaudin Hamiltonian is then in-
troduced in a similar way like for the other non-periodic Gaudin models
[44, 45, 46, 47]. Finally, in the appendix A we summarise some fundamental
identities satisfied by the Jacobi elliptic functions used in the text.

2. XYZ Heisenberg spin chain

The R-matrix relevant for the XYZ Heisenberg spin chain is given by [48, 49]

R(λ, η, κ) = 1 +
3∑

α=1

Wα(λ, η, κ) σα ⊗ σα, (1)
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where

W1(λ, η, κ) =
cn(λ+ η, κ) sn(η, κ)

sn(λ+ η, κ) cn(η, κ)
,

W2(λ, η, κ) =
dn(λ+ η, κ) sn(η, κ)

sn(λ+ η, κ) dn(η, κ)
, (2)

W3(λ, η, κ) =
sn(η, κ)

sn(λ+ η, κ)
,

the functions sn(λ, κ), cn(λ, κ), and dn(λ, κ) are the usual Jacobi elliptic
functions, λ is a spectral parameter, η is a quasi-classical parameter, κ is
the modulus and σα, α = 1, 2, 3, are the Pauli matrices

σα =

(
δα3 δα1 − ıδα2

δα1 + ıδα2 −δα3

)
. (3)

The R-matrix (1) satisfies the Yang-Baxter equation

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ) . (4)

In the present case Yang-Baxter equation reduces to the following matrix
equation

3∑
α,β,γ=1

εαβγ (Wβ(λ− µ)Wγ(λ)−Wα(λ− µ)Wγ(µ) +Wα(λ)Wβ(µ)

−Wγ(λ− µ)Wβ(λ)Wα(µ))σα ⊗ σβ ⊗ σγ = 0, (5)

or to the six scalar equations

W2(λ− µ)W3(λ)−W1(λ− µ)W3(µ) +W1(λ)W2(µ)−W3(λ− µ)W2(λ)W1(µ) = 0,

W3(λ− µ)W1(λ)−W2(λ− µ)W1(µ) +W2(λ)W3(µ)−W1(λ− µ)W3(λ)W2(µ) = 0,

W1(λ− µ)W2(λ)−W3(λ− µ)W2(µ) +W3(λ)W1(µ)−W2(λ− µ)W1(λ)W3(µ) = 0,

W3(λ− µ)W2(λ)−W1(λ− µ)W2(µ) +W1(λ)W3(µ)−W2(λ− µ)W3(λ)W1(µ) = 0,

W1(λ− µ)W3(λ)−W2(λ− µ)W3(µ) +W2(λ)W1(µ)−W3(λ− µ)W1(λ)W2(µ) = 0,

W2(λ− µ)W1(λ)−W3(λ− µ)W1(µ) +W3(λ)W2(µ)−W1(λ− µ)W2(λ)W3(µ) = 0,

(6)

which are consequences of the definition (2) of the functions Wα(λ) ≡
Wα(λ, η, κ) , α = 1, 2, 3, the identities (92) and the addition theorems of
the Jacobi elliptic functions (93) - (95).

In the following, we study some important properties of the R-matrix
(1). Evidently, this R-matrix has the parity invariance

R21(λ) = R12(λ), (7)

temporal invariance
Rt12(λ) = R12(λ), (8)
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and it is regular at λ = 0,
R12(0) = 2P, (9)

here P is the permutation matrix in C2 ⊗ C2.
With the aim of checking the unitarity property we calculate the prod-

uct

R(λ)R(−λ)=

(
1 +

3∑
α=1

Wα(λ)Wα(−λ)

)
1+

3∑
α=1

(Wα(λ) +Wα(−λ))σα⊗ σα

−
3∑

α,β,γ,ρ=1

εαβγ εαβρ Wα(λ)Wβ(−λ) σγ ⊗ σρ. (10)

A straightforward calculation shows that

W1(λ) +W1(−λ)−W2(λ)W3(−λ)−W3(λ)W2(−λ) = 0,

W2(λ) +W2(−λ)−W3(λ)W1(−λ)−W1(λ)W3(−λ) = 0,

W3(λ) +W3(−λ)−W1(λ)W2(−λ)−W2(λ)W1(−λ) = 0.

(11)

Therefore the R-matrix (1) has the unitarity property

R(λ)R(−λ) = ρ(λ, η, κ) 1 (12)

where the function ρ(λ, η, κ) is given by

ρ(λ, η, κ)=

(
1 +

3∑
α=1

Wα(λ)Wα(−λ)

)
=4

sn2(η, κ)

sn2(2η, κ)

sn2(λ, κ)− sn2(2η, κ)

sn2(λ, κ)− sn2(η, κ)
.

(13)
The R-matrix (1) has the crossing symmetry

R(λ) =
(
σ2 ⊗ 1

)
Rt1(−λ− 2η)

(
σ2 ⊗ 1

)
, (14)

were t1 denotes the transpositions in the first space of the tensor product
C2 ⊗ C2. Consequently, the crossing unitarity property holds

Rt1(λ)Rt1(λ− 4η) = ρ(λ+ 2η, η, κ) 1. (15)

In what follows we study an inhomogeneous XYZ spin chain with N
sites, with the local space Vm, that is the 2s + 1 dimensional spin s rep-
resentation space of the Sklyanin algebra and inhomogeneous parameter
αj .

H =
N
⊗
m=1

Vm.
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Following [50] we introduce the Lax operator

L0q(λ) = 1⊗ S0 +
3∑

α=1

Wα(λ, η, κ) σα ⊗ Sα, (16)

=

(
S0 +W3(λ)S3 W1(λ)S1 − ıW2(λ)S2

W1(λ)S1 + ıW2(λ)S2 S0 −W3(λ)S3

)
,

were S0, S1, S2, S3 are the generators of the Sklyanin algebra Uτ,η(sl(2))
[50]. The generators of the Sklyanin algebra satisfy the following relations[

S1, S2
]

= ı
(
S0S3 + S3S0

)
,[

S2, S3
]

= ı
(
S0S1 + S1S0

)
,[

S3, S1
]

= ı
(
S0S2 + S2S0

)
,[

S0, S1
]

= ı J23
(
S2S3 + S3S2

)
,[

S0, S2
]

= ı J31
(
S3S1 + S1S3

)
,[

S0, S3
]

= ı J12
(
S1S2 + S2S1

)
,

(17)

where

J23 =
W2(λ− µ)W3(λ)W2(µ)−W3(λ− µ)W2(λ)W3(µ)

W1(λ)−W1(λ− µ)W1(µ)
, (18)

J23 =
W3(λ− µ)W2(µ)W3(λ)−W2(λ− µ)W3(µ)W2(λ)

W1(µ)−W1(λ− µ)W1(λ)
, (19)

J31 =
W3(λ− µ)W1(λ)W3(µ)−W1(λ− µ)W3(λ)W1(µ)

W2(λ)−W2(λ− µ)W2(µ)
, (20)

J31 =
W1(λ− µ)W3(µ)W1(λ)−W3(λ− µ)W1(µ)W3(λ)

W2(µ)−W2(λ− µ)W2(λ)
, (21)

J12 =
W1(λ− µ)W2(λ)W1(µ)−W2(λ− µ)W1(λ)W2(µ)

W3(λ)−W3(λ− µ)W3(µ)
, (22)

J12 =
W2(λ− µ)W1(µ)W2(λ)−W1(λ− µ)W2(µ)W1(λ)

W3(µ)−W3(λ− µ)W3(λ)
. (23)

Actually, the quantities J12, J23 and J31 do not depend on the spectral
parameter and are given by [50, 51]

J12 =
W 2

1 (λ)−W 2
2 (λ)

W 2
3 (λ)− 1

= (1− κ2) sn2(η, κ)

cn2(η, κ)dn2(η, κ)
, (24)

J23 =
W 2

2 (λ)−W 2
3 (λ)

W 2
1 (λ)− 1

= κ2
sn2(η, κ)cn2(η, κ)

dn2(η, κ)
, (25)

J31 =
W 2

3 (λ)−W 2
1 (λ)

W 2
2 (λ)− 1

= −sn2(η, κ)dn2(η, κ)

cn2(η, κ)
. (26)
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A straightforward calculation shows that

J12 + J23 + J31 + J12J23J31 = 0. (27)

Therefore

Jαβ = −
Jα − Jβ
Jγ

, (28)

with

J1 : J2 : J3 =
cn(2η, κ)

cn2(η, κ)
:

dn(2η, κ)

dn2(η, κ)
: 1. (29)

Also, it is important to notice that [51]

κ =
J12 + 1

J12 + J23

√
−J23J31, sn2(η, κ) =

J12 + J23
J12 + 1

. (30)

The quadratic Casimir elements of the Sklyanin algebra are given by

C0 = (S0)2 +

3∑
α=1

(Sα)2, (31)

C2 =

3∑
α=1

Jα(Sα)2. (32)

Following [50], it maybe useful to introduce another Casimir element of the
Sklyanin algebra

C1 = C0 − C2 = (S0)2 +
3∑

α=1

(1− Jα) (Sα)2. (33)

Evidently the two dimensional representation of the Sklyanin algebra is
given by the R-matrix (1). Therefore in this case

S0 = 1 and Sα = σα. (34)

In this representation, evidently,

C0 = 41 and C2 = (J1 + J2 + J3)1. (35)

The other irreducible representations of the Sklyanin algebra are con-
structed by the so-called fusion procedure [52, 49, 51, 50]. In particular,
the three dimensional representation can be obtained from

R1(23)(λ) = P+
23R1,23(λ)P+

23

= P+
23R12(λ+ η)R13(λ− η)P+

23, (36)
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where

P+
23 = 1− P−23 = 1− 1

4
R23(−2η) . (37)

It follows that, with a suitable choice of bases, the generators of the Sklyanin
algebra are represented by the following set of matrices [50]

S0 =

(
J3 0 J1 − J2
0 J1 + J2 − J3 0

J1 − J2 0 J3

)
, (38)

S1 =
√

2J2J3

(
0 1 0
1 0 1
0 1 0

)
, (39)

S2 =
√

2J3J1

(
0 −ı 0
ı 0 −ı
0 ı 0

)
, (40)

S3 = 2
√
J1J2

(
1 0 0
0 0 0
0 0 −1

)
. (41)

Straightforward substitution of formulae (38) - (41) into (31) and (32) yields

C0 = (J1 + J2 + J3)
2
1, C2 = (8J1J2J3)1. (42)

The commutation relations of the generators of the Sklyanin algebra
(17) guarantee the RLL-relations for the XYZ Lax operator (16)

R12(λ− µ)L1q(λ)L2q(µ) = L2q(µ)L1q(λ)R12(λ− µ). (43)

The RLL-relations admit a central element

D [L(λ)] = tr00′P
−
00′L0q(λ− η)L0′q(λ+ η), (44)

where

P−00′ =
1− P00′

2
=

1

4
R00′(−2η) . (45)

A straightforward calculation shows that[
D
[
L(µ)

]
, L(ν)

]
= 0 . (46)

Substituting (16) into (44) yields

D [L(λ)] = (S0)2 −
3∑

α=1

Wα(λ− η)Wα(λ+ η)(Sα)2. (47)
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In particular, in the case of the R-matrix, its quantum determinant is given
by

D [R(λ)] =

(
1−

3∑
α=1

Wα(λ− η)Wα(λ+ η)

)
1 = ρ(λ+ η, η, κ)1 . (48)

In general, the central D [L(λ)] can be expressed in terms of the Casimir
elements of the Sklyanin algebra using (28), (19), (21) and (23),

D [L(λ)] = C0 −
1 +W3(λ− η)W3(λ+ η)

J3
C2 . (49)

The quantum determinant D [L(λ)] can be written in terms of C0 and C1

as follows

D [L(λ)] =

(
1− 1 +W3(λ− η)W3(λ+ η)

J3

)
C0

+

(
1 +W3(λ− η)W3(λ+ η)

J3

)
C1. (50)

The Lax operator (16) satisfies the following identity

L0q(λ)σ20L
t0
0q(λ− 2η)σ20 = 1⊗ D [L(λ− η)] , (51)

were t0 denotes the transpositions in the auxiliary space C2.
The so-called monodromy matrix

T (λ) = L0N (λ− αN ) · · ·L01(λ− α1) (52)

is used to describe the system. Notice that T (λ) is a two-by-two matrix in
the auxiliary space V0 = C2, whose entries are operators acting in H

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
. (53)

From RLL-relations it follows that the monodromy matrix satisfies the
RTT-relations

R00′(λ− µ)T0(λ)T0′(µ) = T0′(µ)T0(λ)R00′(λ− µ). (54)

The RTT-relations define the commutation relations for the entries of the
monodromy matrix.

In the periodic case the modified Algebraic Bethe Ansatz [48, 56] yields
the spectrum of the spin-s XYZ Heisenberg Hamiltonian

H = −1

2

N∑
m=1

(
J1S

1
mS

1
m+1 + J2S

2
mS

2
m+1 + J3S

3
mS

3
m+1

)
. (55)
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A way to introduce non-periodic boundary conditions which are com-
patible with the integrability of the bulk system, was developed in [27].

The compatibility condition between the bulk and the boundary of the
system takes the form of the so-called Reflection Equation. It is written in
the following form for the left reflection matrix acting on the space V1 = C2

at the first site, K−(u) ∈ End(C2)

R12(u− v)K−1 (u)R21(u+ v)K−2 (v) = K−2 (v)R12(u+ v)K−1 (u)R21(u− v).
(56)

The general solution of the reflection equation above, for the R-matrix (16),
can be written as follows [53, 54, 55]

K−(u) =

 sn(u+ a)− d sn(u− a) b sn(2u)
c(1− τ sn2(u)) + 1 + τ sn2(u)

1− τ2 sn2(u) sn2(a)

b sn(2u)
c(1− τ sn2(u))− 1− τ sn2(u)

1− τ2 sn2(u) sn2(a)
−sn(u− a) + d sn(u+ a)

 ,

(57)

here a, b, c, d are arbitrary constants.
Due to the properties of the Yang R-matrix the dual reflection equation

can be presented in the following form

R12(v − u)K+
1 (u)R21(−u− v − 2ω)K+

2 (v) = K+
2 (v)R12(−u− v − 2ω)K+

1 (u)R21(v − u).

One can then verify that the mapping

K+(u) = K−(−u− ω)

is a bijection between solutions of the reflection equation and the dual
reflection equation. After substitution of into the dual reflection equation
one gets the reflection equation with shifted arguments.

We use Sklyanin approach to integrable spin chains with non-periodic
boundary conditions [27]. The Sklyanin monodromy matrix T (λ) is

T0(λ) = T0(λ)K−0 (λ)T̃0(λ). (58)

The monodromy matrix T̃0(λ) is such that its RTT-relations (54) can be
recast as follows

T̃0′(µ)R00′(λ+ µ)T0(λ) = T0(λ)R00′(λ+ µ)T̃0′(µ), (59)

T̃0(λ)T̃0′(µ)R00′(µ− λ) = R00′(µ− λ)T̃0′(µ)T̃0(λ). (60)

Then, by construction, the exchange relations of the monodromy matrix
T (λ) are

R00′(λ− µ)T0(λ)R0′0(λ+ µ)T0′(µ) = T0′(µ)R00′(λ+ µ)T0(λ)R0′0(λ− µ).
(61)
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The Reflection Equation Algebra admits a central element, the so-called
Sklyanin determinant [27],

∆ [T (λ)] = tr00′P
−
00′T0(λ− η/2)R00′(2λ)T0′(λ+ η/2). (62)

The open chain transfer matrix is given by the trace of the monodromy
T (λ) over the auxiliary space V0 with an extra reflection matrix K+(λ),

t(λ) = tr0
(
K+(λ)T (λ)

)
. (63)

The reflection matrix K+(λ) is the corresponding solution of the dual re-
flection equation.

The commutativity of the transfer matrix for different values of the
spectral parameter

[t(λ), t(µ)] = 0, (64)

is guaranteed by the dual reflection equation and the exchange relations of
the monodromy matrix T (λ).

In the spin-12 case, in the homogeneous limit, this transfer matrix yields
the Hamiltonian with the boundary terms of the form:

H =
N−1∑
m=1

Hm,m+1+
(
A−σ

z
1 +B−σ

+
1 + C−σ

−
1

)
+
(
A+σ

z
N +B+σ

+
N + C+σ

−
N

)
,

(65)
where the first term corresponds to the expression 55 (here without the
periodic boundary condition). The separation of variables method [57, 58]
was used to obtain the spectrum of the above transfer matrix by S. Faldella
and G. Niccoli [59].

3. Generalized XYZ Gaudin model

The key observation is that the R-matrix (1) admits the following expansion
[16]

R(λ, η) = 1 + 2ηr(λ) +O(η2), (66)

where the classical r-matrix is given by

r(λ) =

3∑
α=1

wα(λ) σα ⊗ σα, (67)

where

w1(λ) =
cn(λ, κ)

sn(λ, κ)
, w2(λ) =

dn(λ, κ)

sn(λ, κ)
, w3(λ) =

1

sn(λ, κ)
, (68)
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the functions sn(λ, κ), cn(λ, κ), and dn(λ, κ) are the usual Jacobi elliptic
functions and σα, α = 1, 2, 3, are the Pauli matrices (3). Evidently, this
classical r-matrix has the parity invariance property

r21(λ) = r12(λ), (69)

and, due to the fact that wα(λ) (68) are odd function of λ cf. (91), it also
has the unitarity property

r21(−λ) = −r12(λ). (70)

Notice that in the case of the r-matrix (67) the classical Yang-Baxter
equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0, (71)

reduces to the following three identities

w1(λ) w2(µ) = −w2(λ− µ) w3(λ) + w1(λ− µ) w3(µ),

w3(λ) w1(µ) = −w1(λ− µ) w2(λ) + w3(λ− µ) w2(µ),

w2(λ) w3(µ) = −w3(λ− µ) w1(λ) + w2(λ− µ) w1(µ),

(72)

which are consequences of the definition (68) of the functions wα(λ) , α =
1, 2, 3, the identities (92) and the addition theorems of the Jacobi elliptic
functions (93) - (95).

The Lax operator of the chain (16) admits the following expansion

L0q(λ, η) = 1 + 2η `0q(λ) +O(η2), (73)

where

`0q(λ) =
3∑

α=1

wα(λ) σα0 ⊗ Sα. (74)

Therefore the expansion of the monodromy matrix (52) reads

T0(λ, η) = 1 + 2η L0(λ) + η2 T
(2)
0 (λ) +O(η3), (75)

where the Gaudin Lax operator is given by

L0(λ) =

N∑
m=1

`0n(λ− αm). (76)

The RTT-relations (54) imply the so-called Sklyanin linear bracket for the
Gaudin Lax operator

[L0(λ), L0′(µ)] = [r00′(λ− µ), L0(λ) + L0′(µ)] , (77)
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with the above classical r-matrix (67).
It can be shown that the transfer matrix of the chain and the quantum

determinant of the monodromy matrix admit the following expansions

t(λ, η) = 1 + η2 tr0T
(2)
0 (λ) +O(η3),

D [T0(λ, η)] = 1 + η2
(

tr0T
(2)
0 (λ) + 4 tr0L

2
0(λ)

)
+O(η3).

(78)

Thus the generating function τ(λ) of the Gaudin Hamiltonians in the ellip-
tic case can be obtain as a difference

D [T0(λ, η)]− t(λ, η) = 4η tr0L
2
0(λ) +O(η3), (79)

with, as expected,
τ(λ) = tr0L

2
0(λ). (80)

Evidently, τ(λ) commute for different values of the spectral parameter,

[τ(λ), τ(µ)] = 0. (81)

As in the rational and the trigonometric case, the expansion into partial
fractions yields the corresponding Gaudin Hamiltonians

τ(λ) =

N∑
m=1

℘(λ− αm) sm(sm + 1) +

N∑
m=1

ζ(λ− αm) Hm +H0, (82)

where ℘ is the Weierstrass P function, ζ is the zeta function, H0 is λ
independent and

Hm = 2
∑
m 6=n

3∑
α=1

wα(αn − αm) SαnS
β
m. (83)

Sklyanin and Takebe [16, 17] obtained the spectrum of the generating func-
tion both by the modified Algebraic Bethe Ansatz and by the separation
of variables method.

In order to define the Gaudin model with boundary terms we consider
the following non-unitary classical r-matrix [44, 47]

rK00′(λ, µ) = r00′(λ− µ)−K0′(ν)r00′(λ+ µ)K−10′ (µ), (84)

where
K0(λ) ≡ K−0 (λ). (85)

It is straightforward to check that this r-matrix satisfies the classical Yang-
Baxter equation [44, 47]

[rK32(λ3, λ2), r
K
13(λ1, λ3)] + [rK12(λ1, λ2), r

K
13(λ1, λ3) + rK23(λ2, λ3)] = 0. (86)
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The corresponding Lax operator is given by

L0(λ) =

N∑
m=1

(
`0m(λ− αm) +K0(λ)`0m(λ+ αm)K−10 (λ)

)
. (87)

Evidently, it satisfies the following linear bracket relations

[L0(λ),L0′(µ)] =
[
rK00′(λ, µ),L0(λ)

]
−
[
rK0′0(µ, λ),L0′(µ)

]
. (88)

By definition this linear bracket is obviously anti-symmetric. It obeys the
Jacobi identity since the r-matrix rK00′(λ, µ) satisfies the classical Yang-
Baxter equation.

The generating function τ(λ) of the Gaudin Hamiltonians with bound-
ary terms is given by

τ(λ) = tr0 L20(λ). (89)

The generating function for different values of the spectral parameter ob-
viously commute,

[τ(λ), τ(µ)] = 0. (90)

Thus, defining the family of the Gaudin Hamiltonians in involution.
In this way, we have achieved the main objective of this work. Our

next step will be to solve explicitly the model using either the modified
algebraic Bethe ansatz [48], which was successfully used in the periodic
case [16], or the separation of variables method [57, 58], used to solve the
periodic elliptic Gaudin model [17] as well as the non-periodic elliptic chain
[59].

A Jacobi elliptic functions

In this appendix we briefly review some basic identities which follow from
the definition of the Jacobi elliptic functions. In particular,

sn(−λ, κ) = −sn(λ, κ), cn(−λ, κ) = cn(λ, κ), dn(−λ, κ) = dn(λ, κ),
(91)

sn2(λ, κ) + cn2(λ, κ) = 1, dn2(λ, κ) + κ2sn2(λ, κ) = 1. (92)

The addition theorems for the Jacobi elliptic functions read

sn(λ+ µ, κ) =
sn(λ, κ)cn(µ, κ)dn(µ, κ) + cn(λ, κ)dn(λ, κ)sn(µ, κ)

1− κ2sn2(λ, κ)sn2(µ, κ)
, (93)

cn(λ+ µ, κ) =
cn(λ, κ)cn(µ, κ)− sn(λ, κ)dn(λ, κ)sn(µ, κ)dn(µ, κ)

1− κ2sn2(λ, κ)sn2(µ, κ)
, (94)

dn(λ+ µ, κ) =
dn(λ, κ)dn(µ, κ)− κ2sn(λ, κ)cn(λ, κ)sn(µ, κ)cn(µ, κ)

1− κ2sn2(λ, κ)sn2(µ, κ)
.

(95)
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Some other important identities follow from the formulae above

sn(λ+ µ, κ) sn(λ− µ, κ) =
sn2(λ, κ)− sn2(µ, κ)

1− κ2sn2(λ, κ)sn2(µ, κ)
, (96)

cn(λ+ µ, κ) cn(λ− µ, κ) =
cn2(µ, κ)− sn2(λ, κ) dn2(µ, κ)

1− κ2sn2(λ, κ)sn2(µ, κ)
, (97)

dn(λ+ µ, κ) dn(λ− µ, κ) =
dn2(µ, κ)− κ2sn2(λ, κ) cn2(µ, κ)

1− κ2sn2(λ, κ)sn2(µ, κ)
. (98)
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Abstract 

The ideas and results that are in the background of the 2022 Nobel 
Prize in Physics had an immense impact on our understanding of 
reality. Therefore, it is crucial that these implications also reach the 
general public and not only the scientists in the related fields of quan-
tum mechanics. The purpose of this review is to attempt to elucidate 
these revolutionary changes in our worldview that were eventually 
also acknowledged by the Nobel Committee, and to do it with very 
few references to mathematical details (which could even be ignored 
without undermining the take-away essence of the text).
We first look into the foundational disputes between Einstein and 
Bohr about the nature of quantum mechanics, which culminated in 
the so-called EPR paradox—the main impetus for all the research that 
would ensue in this context. Next, we try to explain the statement of 
the famous Bell’s theorem—the theorem that relocated the Einstein-
Bohr discussions from the realm of philosophy and metaphysics to 
the hard-core physics verifiable by experiments (we also give a brief 
derivation of the theorem’s proof). Then we overview the experimen-
tal work of the last year’s laureates who had the final say about who 
was right in the debate. The outcome of these experiments forced us 
to profoundly revise our understanding of the universe. Finally, we 
discuss in more detail the implications of such outcomes, and what 
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are the possible ways in which our worldviews can be modified to ac-
count for the experimental facts. As we will see, the standard mecha-
nist picture of the universe is no longer a viable option and can never 
be again. Nowadays, we know this with certainty unusual for physics 
that only a strict mathematical theorem could provide.

Keywords: EPR paradox, Bell’s theorem, Bell’s inequality, foundations of 
quantum mechanics, local realism

1.	 Introduction

The 2022 Physics Nobel Prize was not quite like any other. While the 
Nobel prizes in physics are always of interest to the physics community, 
by a rule, they are merely a matter of curiosity for the general public. 
However, the last year’s Nobel award should pertain to all of us, irrespec-
tive of profession, and remind us that it is time to rethink our basic world-
views. Indeed, the Nobel Committee’s announcement in early October 
2022 has elicited some bold titles across journals and news agencies 
worldwide, even among those not aimed at scientific circles. For exam-
ple, on October 11, the business newspaper Financial Times came up with 
an article titled What quantum physics tells us about reality, while the non-
profit news website The Wire had a piece titled In the 2022 Physics Nobel 
Prize, a Test of Your Grip on Reality. Scientific American, in its October is-
sue, brought up the article The Universe Is Not Locally Real, and the Physics 
Nobel Prize Winners Proved It. The deep philosophical impact of the 2022 
Nobel Prize was particularly nicely emphasized in the title of an article 
that last October showed up in The Conversation media network: How 
philosophy turned into physics — and reality turned into information. As 
we can see, the word “reality” is recurrent in these titles, and few things 
should be of more pervasive importance than the calls to reconsider our 
notion of the fundamental reality, especially when these calls (essential-
ly) originate from the Royal Swedish Academy of Sciences.  

So, in what sense do the accomplishments of the 2022 laureates Alain 
Aspect, John F. Clauser, and Anton Zeilinger challenge our understand-
ing of reality? The Nobel Committee summarizes that they were awarded 
“for experiments with entangled photons, establishing the violation of 
Bell inequalities and pioneering quantum information science”, but it 
takes some time and effort to unwrap this ostensibly simple statement. 
To do so, we must start with the achievements of certain people who 
could not appear at the last year’s Nobel ceremony.
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2.	 Einstein and Bohr

2.1.	The	Debates

The first act of the deeply philosophical drama that had its (scientific) 
resolution in the last year’s Nobel prize begins in the first half of the 20th 
century, in the period between the two world wars, when the “new phys-
ics” called Quantum Mechanics has begun to assume its mathematically 
well-defined, more or less present-day form. While there essentially ex-
isted a global consensus that the claims of the new theory seemed pre-
posterous, there was a huge disagreement to what extent such a state 
of affairs reflected the true properties of nature and to what extent only 
the present state of (possibly highly incomplete) scientific understand-
ing of that nature. The opinions ranged from that of the camp of (some 
of) the “founding fathers of quantum mechanics”, which included the 
likes of Niels Bohr, Werner Heisenberg, and Wolfgang Pauli, all the way 
to the staunch criticizers of quantum ideas among whom was no lesser 
figure than Albert Einstein himself. While the former insisted that quan-
tum mechanics provides an accurate and complete description of reality 
(and if we do not like it, it is nature to blame), the latter were convinced 
that quantum physics is, at best, a temporary and approximate model of 
some more “reasonable” underlying physics that we are yet to discover.

The new physics seemed to ignore all the cornerstones of the previ-
ously known exact science. One of the more obvious departures from the 
previous scientific reasoning was the sudden appearance of randomness 
at the most fundamental level of the new theory—prompting Einstein to 
famously protest with “God does not play dice”. Namely, we must recall 
that one of the main tenets of all the prior physics, including then novel 
theory of relativity, was that there can be nothing inherently random in 
nature—everything evolves according to strict mathematical laws that 
precisely determine the future of any physical system, leaving no room 
for chance. Any randomness in the events that we might observe had 
to be a consequence of our imprecise knowledge either of the present 
state of the universe, or of the laws of nature, or a consequence of our 
technical inability to calculate the future from these basic laws. Yet, for 
a hypothetical being (so-called Laplace’s daemon) who knows precise 
positions and momenta of every atom in the universe, and has both the 
complete knowledge of physical laws and sufficient computational ca-
pabilities—the entire future (and past also) was fixed and known. Such 
a view was essentially uncontested in science—until this new quantum 
theory. Famously, in those days, Max Born put forward his “probabilis-
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tic” interpretation of the wavefunction (the wavefunction was the main 
mathematical object of the new physics, describing all properties of a 
system), according to which we could often do no more but to predict 
only the probabilities of experimental outcomes—and not due to any 
lack of technological abilities, but in principle. At face value, the quantum 
theory suggested that physical laws simply do not fully determine the 
future of systems, but only provide probabilities for the possible events. 
This seemed outrageous to many, including Einstein. But, it was gradually 
becoming clear that much more is at stake than merely this determinism 
of classical physics.

The novel “uncertainty relations”, produced by Heisenberg—stat-
ing that some mutually  “incompatible” properties such as position and 
momentum cannot be simultaneously known with arbitrary precision—
seemed to be inevitably related to the proposed indeterminism. These 
relations provided an intuitive rationale as to why we cannot reduce un-
certainties in our knowledge of physical systems and again recover deter-
minism. Intuitively, due to them, it was impossible to “track down” all de-
tails of the present state of the system, and thus it was also impossible to 
precisely predict its future state—allowing only for experimental predic-
tions of statistical type. At least, this was intuition based on our classical 
understanding of systems and their properties which, of course, implied 
that these properties are well-defined per se, in spite of our knowledge 
of them possibly being quite vague. However, even here the positions of 
the two camps started to diverge.

Indeed, it was not clear how to interpret the uncertainty relations 
themselves. It was one thing to accept that we are incapable to deter-
mine certain physical quantities with arbitrary precision, even to accept 
that the laws of physics happen to “conspire” in such a way that this 
turns out to be impossible in principle, that is, irrespective of our tech-
nological abilities and experimental skills. In particular, it seemed reason-
able that the very act of measurement, which must involve some inter-
action with the object being measured, inescapably disturbs that object 
in an unpredictable fashion that leads to uncertainties. Einstein seemed 
quite ready to accept such a possibility, even if it would, in practice, pre-
clude any prospect of determining precise properties of the systems and 
forever confine our experimental predictions to the mere computation 
of probabilities. We are imperfect creatures, and thus it is not inconceiv-
able that our capacities, including those to gather (precise) data about 
the universe, are strictly limited. In this case, it is our imperfection and 
our problem. Universe (and the systems themselves) certainly “know” 
their properties, and underlying objective reality must be well-defined, 



173

I. Salom, 2022 Nobel Prize in Physics and the End of Mechanistic Materialism

solid real. The uncertainty relations were, in this view, technical or epis-
temological limitations and had nothing to do with the true ontology, 
which remains to be described by a deeper, more complete theory than 
the quantum mechanics. Consequently, Einstein maintained that deep 
down “God does not play dice with the universe”, no matter how that 
might look to us. Even Heisenberg himself seemed to initially share this 
view of his own relations—as can be inferred from his analysis of what 
is nowadays known as Heisenberg’s microscope3 (the position he soon 
after changed, under Bohr’s influence4).

Yet, it was an entirely different thing to assume that the uncertainty 
relations do not merely talk about our inability to reveal the true prop-
erties of nature, but that they actually reflect the vagueness of these 
properties themselves, per se—that the problem is not that when the 
momentum of a particle is precisely known and defined, we cannot know 
the position of this particle, but that this particle position, in a certain 
sense, no longer “exists”, i.e., that it is not a well-defined property of 
itself. (Alternatively, following the mathematical formalism, we might 
then say that this property becomes blurred into a so-called superposi-
tion of various possibilities.) In other words, neither the universe nor the 
particle itself really “know” this location. And this was gradually becom-
ing the position of the Bohr’s camp. Bohr, in particular, saw this via his 
principle of complementarity, the precursor of the contemporary notion 
of contextuality in quantum physics. Knowledge of one of the two “com-
plementary” properties (i.e., of those “incompatible”5 in the context of 
uncertainty relations) automatically renders the other one ill-defined: 
precise measurement of momentum does not simply make the posi-
tion of the particle unknown or unpredictable (e.g., as a consequence of 
mechanically disturbing theparticle)—it makes it fully meaningless and 
undefinable. In his view, the properties themselves were inseparable 
from the experimental context that reveals them: the setup needed to 
measure the momentum crucially differs from the one required to find 
out the position—these two properties cannot be observed or measured 
simultaneously. Thus, it was also wrong to assume that the position ex-

3 Werner Heisenberg, The Physical Principles of the Quantum Theory (Courier do-
ver Publications, 1949). 
4 W. Heisenberg, “uber den anschaulicken Inhalt der quantentheoretischen 
Kinematik und Mechanik”, Z. fur. Physik, 43, 172 (1927). Translated as “The physi-
cal content of quantum kinematics and mechanics”, in Quantum Theory and Mea-
surement, eds. J. Wheeler and W. Zurek (Princeton: Princeton university Press, 
1983).
5 Mathematically, operators corresponding to such properties do not commute.
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ists in the context where the momentum was (precisely) measured, and 
vice versa.

But such a view was inevitably leading further down the rabbit 
hole. It was obviously altering our basic views about reality, to cite F. 
Frescura: “In the traditional view, it is assumed that there exists a reality 
in space-time and that this reality is a given thing, all of whose aspects 
can be viewed or articulated at any given moment. Bohr was the first 
to point out that quantum mechanics called this traditional outlook into 
question.”6 Moreover, if the position, or momentum (and this also holds 
for basically any other property) is not always well-defined, when is it 
that it becomes well-defined? Answering this question eventually led to 
what is now called the “measurement problem” of quantum mechan-
ics. Namely, it seemed that the properties would become well-defined 
and thus fully (i.e., in the traditional/classical sense) real only upon their 
measurement, i.e., observation. According to quantum formalism, it was 
only upon the measurement that the probabilities of various possible re-
sults would collapse into one truly realized outcome—a mere potentiality 
turning into actuality. This idea was often summarized as “measurement 
causes collapse of the wavefunction”.

Yet, what would constitute a measurement? Bohr thought it was suf-
ficient, in this context, to note that to have a (communicable) measure-
ment outcome requires the interaction of the measured system with a 
macroscopic measurement instrument, where the latter must be de-
scribed in the language of classical physics.7 However, this boundary be-
tween a quantum system and the classical measurement apparatus (that 
possessed this crucial “ability” to make system properties well-defined 
and thus truly real via measurement)—was itself fluid and vague. Indeed, 
what prevented us from seeing the measurement apparatus as yet an-
other (albeit larger and more complicated) quantum system that also 
adhered to the principles of quantum mechanics? And if so, then what 
makes the properties of the apparatus itself (with or without the system 
it is measuring) well-defined, that is, when, in that case, does the reality 
becomes truly “real”? Such a chain of thoughts prompted Eugene Wigner, 
in a part of his life, to even assume that it must be the consciousness of 
the observer (as purportedly the only entity not describable by quantum 

6 F. A. M. Frescura and B. J. Hiley, “Algebras, quantum theory and pre-space”, in 
Revista Brasileira de Fısica, Special volume “Os 70 anos de Mario Schonberg” (1984): 
49–86.
7 Niels Bohr, Atomic Physics and Human Knowledge (London, New York: John 
Wiley and Sons, 1958).
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laws) which truly completes the measurement process and grants the 
full reality to physical systems. Needless to say, such a view (if seen, as 
by Wigner, as a claim that consciousness causes an objective, instead 
of merely subjective, wavefunction collapse) would open a number of 
other intractable and presumably ridiculous questions (e.g., could a cat, 
a mouse, an amoeba or a single neuron cause the collapse?). Overall, to 
the present day, there has been no consensus about what a satisfactory 
solution to the question when (if ever) the reality becomes well-defined 
would be (only a plethora of different views called the interpretations of 
quantum mechanics), so the measurement problem remains.

In any case, Einstein would not subscribe to any of this. The novel 
roles of the observation and the observer in quantum mechanics, to 
whom was granted the ability to cause the “wavefunction collapse”8, 
was something abhorred by Einstein. He insisted that physics should de-
scribe objective reality independent of any observation, stressing that 
the moon must be there even when we do not look at it.9 Therefore, he 
kept attempting to provide arguments that quantum mechanics must be 
only an approximate description of a maybe complicated but objective 
and deterministic underlying reality. After each of his arguments, Bohr 
would consequently make an effort to refute Einstein’s criticism of the 
theory, with the aim to show that quantum mechanics was not some 
effective approximation, but that the quantum wavefunction provides 
a complete description of reality. These exchanges are remembered as 
probably the most impressive contest of the two genius minds in the his-
tory of science, aka the Einstein-Bohr debates. Einstein would come up 
with a wisely constructed thought experiment, ostensibly violating the 
principles of quantum mechanics or demonstrating its logical inconsis-
tency, and then it was up to Bohr to defend the theory by showing where 
Einstein went wrong. In all rounds of this intellectual game, Bohr would 
eventually come out as the winner (the most remarkable case being the 
one when Bohr used Einstein’s general relativity to prove Einstein’s argu-
ment wrong). Seemingly, Bohr won in all rounds but the last one.

This last and the most influential round of that contest is today known 
as the Einstein-Podolsky-Rosen (EPR) paradox. It was this argument and 
its final experimental resolution that, almost a century later, ended in the 

8 That is, to invoke the projection postulate.
9 N. david Mermin, Boojums All the Way Through (Cambridge: Cambridge uni-
versity Press, 1990), 81; J. F. Clauser, “Early History of Bell’s Theorem”, in N. P. Bi-
gelow, J. H. Eberly, C. R. Stroud and I. A. Walmsley, eds., Coherence and Quantum 
Optics VIII (Boston, MA: Springer, 2003). 
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last year’s Nobel Prize in Physics, and therefore, it warrants a more de-
tailed discussion.

2.2	 Einstein-Podolsky-Rosen	Paradox

In May 1935, an article titled Can Quantum-Mechanical Description of 
Physical Reality Be Considered Complete? appeared in the journal Physical 
Review.10 It was signed by Albert Einstein, Boris Podolsky, and Nathan 
Rosen. In spite of the question mark in the title, it was clear that the au-
thors were confident that they have finally proved the “incompleteness” 
of the quantum theory. And sure they had some strong arguments.

Effectively, their claim was that the wavefunction—the mathematical 
object that, according to quantum mechanics, was supposed to repre-
sent the complete information about the physical system—must actually 
be representing only some “incomplete” approximation of the physical 
reality. Namely, as they argued, in a good and complete physical theory, 
every “element of physical reality” must find its place in the mathemati-
cal description of the universe—but, according to the authors, this was 
not the case in quantum mechanics. Their point was that something is 
likely missing from the quantum description, i.e., that some properties 
of the physical systems were not taken into account by the quantum 
theory. (Such properties we would, in modern terminology, call “hidden 
variables”.) Or, at the very least, that the correspondence between the 
wavefunction and the physical system is not so one-to-one as claimed by 
the proponents of the quantum theory (i.e., that the theory lacks “bijec-
tive completeness”, as this was later called by some authors11).

The novel idea was to consider cases of physical systems that inter-
acted in the past and were then separated. For example, we may con-
sider two particles that constituted a bound two-particle system (like an 
electron and a proton forming a hydrogen atom) that later decayed, re-
sulting in the two particles leaving in opposite directions. In such cases, 
it is generally possible to infer some property of one of the particles indi-
rectly, by making the corresponding measurement on the other particle 
in the pair. For example, if we knew the initial momentum of the overall 
system (e.g., it was zero) and the momentum was conserved, then af-
terwards, by measuring the momentum of one particle, we immediately 

10 A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical description 
of Physical Reality Be Considered Complete?” Phys. Rev., 47, 10 (1935): 777–780. 
11 A. Fine, The Shaky Game: Einstein, Realism and the Quantum Theory, 2nd Edition 
(Chicago: university of Chicago Press, 1996).
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also find out the momentum of the other one (i.e., it must be of the same 
intensity but in the opposite direction, so that their vector sum remains 
zero). This, of course, holds irrespectively of the mutual distance that the 
separating particles reached at the moment of measurement. In princi-
ple, this allows us to find out and precisely predict the momentum of a 
faraway particle by performing a measurement on a nearby particle.

This fact, that we can precisely know the momentum of the distant 
particle, without ever disturbing it in any way (we have not performed 
any measurement on it, only on its peer), in the view of the EPR au-
thors meant that there must be something real about this momentum. 
Whoever next measures the momentum of that other particle is guar-
anteed (i.e., with 100 percent chance) to obtain precisely the predicted 
result. EPR paper argues that this is only possible if the distant particle 
really possesses that well-defined, truly existing momentum value—in 
other words, if it is an element of reality. Quite generally, the EPR paper 
authors argued that: “If, without in any way disturbing a system, we can 
predict with certainty (i.e., with probability equal to unity) the value of a 
physical quantity, then there exists an element of reality corresponding 
to that quantity.”12 In a relatively similar way, it turns out to be possible 
to find out the precise location of the distant particle (by measuring the 
position of the closer one) which, by the same reasoning, implies that the 
position of that particle must be a well-defined and real property—an 
element of reality. Now, since the two particles can be light years apart 
at the moment when we perform the measurement on one of them, such 
measurement cannot immediately affect the distant particle—therefore, 
if it has well-defined momentum after we measure the momentum of its 
peer, then it must have had it all the time. It is the same with the posi-
tion. Ergo, contrary to Heisenberg relations and Bohr’s interpretation of 
those, the particle must possess both well-defined momentum and well-
defined position (with precise values of both quantities). If quantum me-
chanics cannot describe both these properties simultaneously, it means 
that it is incomplete.

In this last part of the reasoning, they tacitly relied on what is com-
monly called the principle of locality, i.e., of the idea that no influence 
can be exerted immediately and directly at a distance (more specifically, 
that no influence can travel faster than light). Namely, a part and parcel 
of a fully successful mechanical description of reality was always the idea 
that matter should affect other matter only “locally”, that is, only the 

12 Einstein, Podolsky and Rosen, “Can Quantum-Mechanical description of Phys-
ical Reality Be Considered Complete?”.
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matter which is in its immediate vicinity (i.e., as if by mechanically “pull-
ing and pushing”), and that only in this way any influence or interaction 
can propagate through space. It seemed that, at the beginning of the 
20th century, Einstein cemented this view by showing that the speed of 
this propagation is always limited by the speed of light (and, via General 
Relativity, by also clarifying that the same is also true for gravitational 
interaction).

While this is the outline of EPR’s essential argument against the com-
pleteness of quantum mechanics, it is worthwhile to consider their discus-
sion in some more detail, especially as a prelude to later developments.

Quite generally, the EPR authors have noticed that the type of con-
nection (or, in mathematical terminology, type of correlation) that, ac-
cording to quantum mechanics, often exists between particles (systems) 
that interacted in the past and were then separated, is very strange from 
the common-sense classical-physics viewpoint. Actually, as they pointed 
out, quantum mechanics predicted a whole class of many-particle states 
with such strange properties, which had no classical-physics analogues. 
Today we call such many-particle states “entangled”.

For example, we can consider more closely wavefunction (or, in con-
temporary terminology, state vector, or simply state) corresponding to 
two particles of spin , which are “aligned in opposing directions” in the 
sense that their total spin equals zero. In other words, while each of the 
particles separately “rotates” in a certain sense—and thus possesses the 
axis and direction of this rotation (spin)—the overall angular momen-
tum (physical measure of rotation) vanishes. This is similar to the case 
discussed above—of two particles of known and vanishing total mo-
mentum—only here, we consider angular instead of linear momentum, 
for the reasons of mathematical simplicity. (To practically obtain such a 
state, the two particles generally had to interact before, to constitute 
a bound state, or to be simultaneously generated in some physical pro-
cess.) Mathematically, this two-particle state, in the so-called dirac nota-
tion, has almost an intuitive, pictorial form:

|Ψ⟩ =  (| ↑⟩| ↓⟩ − | ↓⟩| ↑⟩). (1)

Here, | ↑⟩ denotes particle spin aligned in the direction of the posi-
tive z-axis, i.e., “upwards” (meaning as if the particle “rotates” around 
the z-axis in anti-clockwise direction as seen from above, where the usu-
al convention is that the z-axis goes in the “upward” direction), while 
| ↓⟩ will denote the opposite direction of spinning. The term | ↑⟩| ↓⟩ then 
corresponds to the physical situation where the first particle has its spin 
oriented upwards, while the second particle spin has a downward spin 
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orientation. Hence, (the z components of) their spins cancel each other. 
The overall state has two similar terms of this type, but the second one 
is “opposite” in respect to the two particles: the first particle is this time 
spin-down, while the second is spin-up. To simplify referencing these two 
particles, we can imagine that the first of these two particles is heading 
to a researcher named Alice, while the second one is moving towards a 
researcher called Bob (here we follow the usual naming convention in pa-
pers on this subject). Then | ↑⟩| ↓⟩ denotes that Alice’s particle is spin-up, 
while Bob’s is spin-down and vice-versa, for the | ↓⟩| ↑⟩ term. The combi-
nation of the two terms, together with the relative minus sign, turns out 
to mathematically ensure that the total spin angular momentum is zero, 
along any axis (not only along the z-axis). The numerical factor  is the 
so-called overall normalization (in principle, relevant for the evaluation of 
probabilities) and it is not crucial for understanding the paradox.

Taken together, the two terms have the following simple interpreta-
tion: if Alice’s particle is a spin-up, Bob’s will be a spin-down, and vice 
versa. More precisely, the formalism of quantum mechanics tells us a 
couple more things about the particles in such a state. First, if we mea-
sure the spin of Alice’s particle along the z-axis, we will get the up result 
in the 50% of cases, and the spin down result in the other 50% of cases. 
The same goes for Bob’s particle.13 In addition, the formalism also tells 
us that if Alice’s particle, upon the z-spin measurement, turned out to be 
spin-up, the measurement of the z-spin of Bob’s particle will yield spin-
down result with certainty, i.e., 100%. It means that, after the measure-
ment of the spin of Alice’s particle and getting the up result, the state 
of Bob’s particle is no longer ambiguous (i.e., leading to up and down 
outcomes with equal chances), but has become precisely | ↓⟩.14 And vice 
versa: obtaining that Alice’s particle has its spin in the down direction, re-
veals that Bob’s particle has its spin upwards—which in turn means that, 
as a consequence of the measurement on Alice’s particle, the state of 
Bob’s particle was automatically changed, or “updated” to the | ↑⟩ value.

In this sense, by measuring the z-spin component of the first particle, 
we have automatically also found out the z-spin of the other particle and, 
according to the quantum formalism, by the same token, we have also 
altered (i.e., updated) the wavefunction of the other particle spin. And 
this conclusion holds irrespective of the distance between the two par-
ticles: even if the other particle is located light years away, by measur-

13 Mathematically, we calculate the up-spin probability of the first particle by 
computing ⟨Ψ|| ↑⟩⟨↑ | ⊗ I |Ψ ⟩, where I is the identity operator.
14 We can obtain this result by acting with the projector | ↑⟩⟨↑ | ⊗ 1 on state |Ψ ⟩.
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ing the spin of the first particle we can find out the spin orientation of 
the second. After all, this is not really surprising: we already knew that 
the two spins must be opposite, so finding one directly determines the 
other. In the process, we have updated our knowledge about the spin of 
the second particle, and as long as its wavefunction corresponds to our 
knowledge, there is nothing mysterious in the fact that the wavefunction 
has immediately changed, no matter that the particle is light years away.

So far, none of this has been particularly revealing. But the key insight 
of the authors was that everything said still holds if we decide to measure 
the spin along the x-axis, instead of the z-axis. Namely, it turns out that 
the same state vector |Ψ⟩ can be written, in essentially the same form, 
this time using “right” | →⟩ and “left” | ←⟩ spinning states—with respect 
to the x-axis:15

|Ψ⟩ =  (| →⟩| ←⟩ − | ←⟩| →⟩). (2)

In particular, this means that if we perform a spin-x measurement on 
Alice’s particle, we will immediately also know the x-spin component of 
Bob’s particle. Furthermore, according to the formalism, it would mean 
that the state of Bob’s particle will be again altered after the measure-
ment performed by Alice on her particle: if we obtain that Alice’s is right 
spinning, the state of Bob’s will become | ←⟩, and if we obtain left x-spin 
of Alice’s particle, Bob’s will be “projected” to | →⟩ state.

And now the authors make two important points. The first is that 
by choosing what measurement to perform on her particle, Alice can 
partially influence what will be the new state of Bob’s particle. Namely, 
Alice can choose whether to measure spin along the z-axis or along the 
x-axis. In the first case, Bob’s particle will end up either in the down state 
| ↓⟩ (if Alice obtained up) or in the up state | ↑⟩ (if Alice obtained down). 
Alternatively, Alice can choose to perform measurement of the x-spin 
component, and Bob’s particle will end up either in the state | →⟩ or | ←⟩. 
Note that Alice cannot choose whether Bob’s particle will end in | →⟩ or 
in | ←⟩ state—this is completely random, with probability of 50 % for both 
outcomes. But she can choose whether Bob’s particle will end up in the 
set {| ↑⟩, | ↓⟩} (if she decides to measure spin along the z-axis), or in the 
set {| →⟩, | ←⟩} (if she opts for the x direction). And she can decide in 
which of these two mutually exclusive sets Bob’s particle will turn up af-

15 This is not difficult to verify since, following from the so-called representation 
theory of the Su (2) group, it holds: | →⟩ =   (| ↑⟩ + | ↓⟩) and | ←⟩ =  (| ↑⟩ − 
| ↓⟩).  Here, the relative minus sign between the two terms in (1) and (2) becomes 
important.
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ter her measurement, even if the second particle is light years away at 
that moment!

This seemed clearly at odds with Einstein’s theory of relativity, ac-
cording to which no influence could travel faster than light. As it is widely 
known, light speed appears as the natural speed limit in our universe, 
since the theory of relativity has shown that a bunch of problems and 
paradoxes are related to exceeding this limit. On top of the list are prob-
lems with causality. Namely, thanks to Einstein’s discoveries, we know 
that moving faster than light in one system of reference amounts to trav-
eling into the past in another system. And while wishful thinking on be-
half of the science fiction industry has made worldwide audiences pretty 
comfortable with the time travel idea (as long as one takes care not to 
kill their own grandfather), in reality, it is the logical inconsistencies that 
plague (and thus prevent) this hypothetical possibility. The mere possi-
bility to send information into own past (on demand) is a logical contra-
diction: one can decide to send oneself in the past (e.g., yesterday) any 
piece of information that he has not already received yesterday—prov-
ing that this is either impossible or not deserving to be truly called “send-
ing information into the past”. We emphasize that the problem has noth-
ing to do with free will—as long as a deterministic robot has the means 
to send arbitrary information to its own past, a simple algorithm of this 
sort demonstrates the implausibility of the idea.16 For these reasons, it 
is—and has been at the time of EPR writing—generally taken that no 
influences can travel faster than light.

Thus, the authors of the EPR paper drew a seemingly natural conclu-
sion: since no real influence can travel faster than light, it must be that 
nothing really happens with Bob’s particle upon the distant spin mea-
surement performed by Alice. Consequently, it means that some of the 
states from the {| ↑⟩, | ↓⟩} set must correspond to the same unchanged 
reality of Bob’s particle as one of the states from the {| →⟩, | ←⟩} set. 
That is, the state vector (wavefunction) has changed, but the reality has 
not—hence, this matching between the wavefunction and the true real-
ity of Bob’s particle is not so one-to-one. In other words, the quantum 
wavefunction does not provide such a completely adequate description 
of reality as Bohr liked to claim. Either that, or there was some “spooky 
action at distance”, as Einstein liked to call this immediate influence that 

16 It should be noted, however, that the existence of the so-called “closed time 
loops”, as well as tachyons, is not explicitly forbidden by contemporary physical 
theories, but to avoid logical contradiction the related hypotheses must some-
how preclude either sending information into the past altogether, or at least the 
ability to do so at will. 
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the measurement on the first particle allegedly has on the second one. 
For Einstein, the latter was hardly a serious option.

At this point, it is important to understand why authors could not 
make a stronger claim: that, since the quantum theory predicts such im-
mediate action at a distance, it is in strict violation of special relativity 
(and that, thus, quantum mechanics is simply wrong). Namely, one needs 
to be able to send information faster than light at will in order to violate 
the predictions of the special theory of relativity: according to relativity, 
by consecutively sending information faster than light and then return-
ing it back again faster than light from another system of reference, one 
can actually send it in own past—which, as we have explained, is not just 
weird but is logically forbidden. But, curiously, in spite of allowing the 
existence of this “spooky action at distance” that influences wavefunc-
tion, quantum mechanics predicts that sending information via such a 
channel is not possible. This has to do with the inherent randomness of 
quantum mechanics, due to which Alice cannot influence in which par-
ticular state vector will Bob’s particle end (i.e., she can choose only in 
which of the two sets it will end). And the quantum calculations show 
that Bob, by measuring the spin of his particle, cannot infer whether Alice 
has measured her spin along the z-axis or along the x-axis. (All Bob can do 
is to measure his particle spin along some axis, but irrespective of Alice’s 
choice, his spin measurement will always yield 50-50 probability along 
any axis.) Therefore, Alice’s decision on whether to measure x-spin or 
z-spin of her particle cannot be later inferred just by performing measure-
ments on Bob’s particle, in spite of the fact that its wavefunction descrip-
tion will be different in the two cases. 

Had the quantum mechanics predicted that entangled pairs can be 
used for sending faster-than-light signals (obviously then, it would allow 
sending information “on demand”), this would have been in contradic-
tion with the implications of special relativity. In principle, one could 
then perform an actual experiment and check whether the superlumi-
nal signalling in this way is really achieved—falsifying one or the other 
of the two theories. But this was an awkward situation—according to 
the wavefunction description, some influence was spreading faster than 
light, yet still it was impossible to use such influence to send meaningful 
information. As if the two particles were somehow communicating faster 
than light, only in some specific conspiratorial way that we cannot use 
for sending information ourselves. Something like that was unconceiv-
able in classical physics, but it was somehow now strangely allowed in 
quantum physics, thanks to its indeterminism. This might have contrib-
uted to Einstein calling the effect “spooky action at distance”, instead of 
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simply “action at distance”. Consequently, the EPR paradox could not 
demonstrate the inconsistency of quantum mechanics nor that it has 
any real (i.e., measurable) conflict with relativity, and for this reason, 
the EPR paper remained only a (strong) philosophical argument against 
the purported completeness of the quantum theory. On the other hand, 
for Einstein, who was a realist and did not believe that nature is truly 
indeterministic, whether we could use this supposed influence to send 
information or not certainly did not seem essential: in his view, no real 
influence could travel faster than light and thus the fact that, according 
to quantum mechanics, wavefunction was nevertheless changing at dis-
tance was simply a proof that quantum description was faulty.

The second point that the EPR authors had made was the one related 
to uncertainty relations, that we have already briefly discussed. Namely, 
Heisenberg relations also hold for x and z components of spin.17 This means 
that, according to Bohr’s understanding of the uncertainty relations, when 
spin along the x-axis is precisely known, the spin along the z-axis cannot 
be well-defined and vice versa. But, according to Einstein, Podolsky, and 
Rosen, this two-particle setup demonstrates that Bohr’s understanding 
must be wrong, that is, that the values of spin along both axes must be 
well-defined and existing properties at all times, while it is only due to the 
imperfection of the quantum theory (i.e., due to its incompleteness) that 
these properties do not appear in the mathematical formalism.

Their argument goes as follows. Let us assume that Alice first mea-
sures the spin of her particle along the z-axis, and obtains the up result. 
Now we know (and quantum formalism tells us) that if Bob measures 
z-spin component of his particle, he is bound to get the spin-down result, 
with certainty. And, according to the authors, since the z-spin of Bob’s 
particle is now well-defined, and has the certain, known-in-advance val-
ue, it must be that this spin-z property is in some sense real, that is, there 
must really be “something about” this particle that would “produce” that 
guaranteed outcome upon future z-spin measurement. Furthermore, 
since these particles can be arbitrarily distant from each other (preclud-
ing any real influence of Alice’s measurement on the second particle), 
that property must have been there even before our measurement or, 
more precisely, irrespective of our measurement. Thus, this property of 
Bob’s particle that determines its z-spin outcome must be there even if 
Alice decides not to carry out any measurement. Thus, authors call this 

17 The Sx and Sz operators, corresponding to measurements of these two values, 
do not commute.
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real property of Bob’s particle “an element of reality” corresponding to 
its z-spin value. 

By the same reasoning, we can conclude that there must be some 
feature of Bob’s particle—i.e., an element of reality—that determines 
the outcome of the x-spin measurement, since we can also, in principle, 
infer its x-spin value by measuring the spin of Alice’s particle along the 
x-axis. In this reasoning, it is crucial that we are able to reveal the spin 
of Bob’s particle without influencing, i.e., disturbing this particle, as it 
is here guaranteed by the spatial distance between the particles—of 
course, assuming the validity of the “locality” premise (which was never 
doubted in the paper). Namely, if any influence of Alice’s measurement 
on Bob’s particle was possible, then there would remain a possibility that 
the spin value of Bob’s particle became well-defined only after Alice’s 
measurement and due to it. This is why the “without in any way disturb-
ing a system” requirement had to be present in the above EPR definition 
of an “element of reality”.

In this way, the authors have concluded that there must exist ele-
ments of reality that determine the spin projection both along the x-axis 
and along the z-axis, and since these do not appear in quantum formal-
ism, this formalism must be incomplete. While this is the entire formal 
conclusion of the paper, essentially, the authors expected that they have 
consequently proved that uncertainty relations are, therefore, a conse-
quence of this incompleteness, i.e., of our technical inability to precisely 
infer these elements of reality by measurement and account for them in 
the theory. In other words, reality is rock-solid with always well-defined 
properties, while the problem is in us and our present theory. Such ele-
ments of reality that do not show up in quantum mechanics, due to its 
alleged incompleteness, soon become known (in general) as “hidden 
variables”. All this was contrary to Bohr’s stance that quantum mechan-
ics provided the full picture (with no room for any “hidden variables”), 
while the x-spin value, after the spin z measurement, was simply a not 
well-defined property of nature per se (following the quantum formal-
ism, this property existed then in a so-called superposition of different 
possibilities, and thus, it did not have a well-defined unique value).

The ball was now in Bohr’s court. It took him a few months to reply, 
and he did it by publishing a paper with precisely the same title as the 
title of the EPR paper, in the same journal.18 As we will discuss in some 
more detail later, the reply emphasized his “non-realist” views (in a cer-

18 N. Bohr, “Can Quantum-Mechanical description of Physical Reality be Consid-
ered Complete?”, Phys. Rev., 48, 8 (1935): 696–702. 
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tain sense: if something does not exist well-defined per se, what would 
it mean that it was changed at a distance) and that we must embrace 
a new view of reality, which is more holistic (instead of reductionistic) 
and does not allow us to see the two particles as truly separate enti-
ties. Until this day there are ongoing discussions of historians of science 
and philosophers as to what extent his defence of the completeness of 
the theory was to the point and successful.19 Many were of the opinion 
that the reply was unclear and confusing, and even Bohr himself, some 
15 years later, has regretted his choice of wording on some essential 
points.20 However, what was certain is that he has doubled down on the 
completeness of quantum mechanics, even if it entailed accepting some 
sort of nonlocality, i.e., of the “spooky action at distance”.

In any case, both the EPR’s initial argument and Bohr’s reply were 
of philosophical nature, so it was rather a matter of taste who will find 
which side more appealing and convincing. And the conundrum seemed 
likely to remain undecided, maybe forever.

3.	 John Bell

3.1	Hidden	Variables

For the second act of the drama, we fast forward some thirty years into 
the future.

The success of the new physics was huge, and almost nobody really 
cared about Einstein’s philosophical objections. Meanwhile, the formal-

19 For example, Arthur Fine and Thomas A. Ryckman, “The Einstein-Podolsky-
Rosen Argument in Quantum Theory”, in The Stanford Encyclopedia of Philosophy 
(Summer 2020 Edition), Edward N. Zalta, ed., accessed on July 31, 2023, https://
plato.stanford.edu/archives/sum2020/entries/qtepr; A. Fine and M. Beller, “Bohr’s 
response to EPR”, in eds. J. Faye and H. Folse, Niels Bohr and Contemporary 
Philosophy (New York: Kluwer, 1994), 1–31; Arthur Fine, “Bohr’s Response to EPR: 
Criticism and defense.” Iyyun: The Jerusalem Philosophical Quarterly, 56 (2007): 
31–56. JSTOR, accessed on July 31, 2023, http://www.jstor.org/stable/23354464. 
H. Halvorson and R. Clifton, “Reconsidering Bohr’s Reply to EPR. Non-locality and 
Modality”. Springer (2022), accessed on August 1, 2023, doi: 10.1007/978-94-010-
0385-8 1; A. drezet, “Why Bohr was wrong in his response to EPR”, arXiv (2023), 
2305.06859, accessed on August 1, 2023, https://arxiv.org/abs/2305.06859v1; 
Shingo Fujita, “How did Bohr Reply to EPR?”, in “The Two Faces of Realism: Bohr 
and Bell”, Journal of the Philosophy of Science, 27 (1994).
20 Fine and Ryckman, “The Einstein-Podolsky-Rosen Argument in Quantum 
Theory”.
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ism was polished (mostly thanks to John von Neumann) and in practice 
it worked flawlessly, showing no traces of any incompleteness. The mea-
surement problem still existed, but it was not showing up in any real-
life applications or computations. Besides, the science of the post-World 
War II era was more of a pragmatic type, and physicists were increasingly 
leaning towards the infamous “shut up and calculate” view of quantum 
mechanics.

One of the few to whom the question of the true meaning of quan-
tum mechanics was of greater importance than its applications, was Irish 
physicist John Bell. Working on accelerator design at CERN in the early 
1960s, Bell was still managing to find time to investigate the deepest in-
terpretational issues of quantum physics.

Personally, Bell was entirely sharing the late Einstein’s dissatisfaction 
with the quantum theory. Even the quantum terminology alone was, in 
his view, improper for a theory of physics—as we can see from his com-
ment about the books on the subject: “For the good books known to me 
are not much concerned with physical precision. This is clear already from 
their vocabulary. Here are some words which, however legitimate and 
necessary in application, have no place in a formulation with any preten-
sion to physical precision: system, apparatus, environment, microscopic, 
macroscopic, reversible, irreversible, observable, information, measure-
ment. [...] On this list of bad words from good books, the worst of all is 
‘measurement’.”21

So, the roles of the measurement and the observer in quantum me-
chanics, even more than the lack of determinism, were deeply unset-
tling to him, similarly as they were to Einstein. In his view, the prevail-
ing Copenhagen interpretation of quantum physics (i.e., one following 
the views of Bohr and Heisenberg) had too many “subjective” elements, 
while he longed for a description of objective reality that would be de-
void of vagueness, indeterminism, and the role of the observers.22

In particular, he was very enthusiastic about the so-called De Broglie-
Bohm pilot-wave interpretation of quantum mechanics. According to 
the pilot-wave theory, particles had well-defined positions at all times 
and obeyed causal (deterministic) laws. These supposedly real and well-
defined positions were an example of what the EPR authors considered 
as elements of reality that were not taken into account by the standard 
quantum mechanics. In quantum mechanics, the full description of sys-

21 John Stewart Bell, Speakable and Unspeakable in Quantum Mechanics 
(Cambridge: Cambridge university Press, 1987). 
22 Ibid.
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tems was given by the wavefunction, and wavefunction only, so if these 
well-defined coordinates really existed, they were “hidden” in the quan-
tum formalism. Therefore, the pilot-wave theory was an example of a 
model with hidden variables that was, nevertheless, experimentally indis-
tinguishable from the standard, Bohr’s quantum mechanics.

However, while realistic and deterministic, this model had a terribly 
unwelcome feature of being manifestly nonlocal—meaning that influenc-
es could spread immediately over distance, as if acting at infinite speeds. 
In particular, the velocity of a particle in this theory would depend on the 
configuration of arbitrarily distant particles at the present moment, i.e., 
in principle, it could depend on what was currently happening in other 
galaxies. due to special relativity, this meant that the influences could 
also travel into the past, as seen from some reference systems. In truth, 
the pilot-wave model predicted that information could not be sent faster 
than by light speed, so it did not experimentally conflict with relativity 
(otherwise it could be easily falsified), but the nonlocality feature also led 
to many other, either technical or conceptual complications that plagued 
this approach. Nevertheless, for Bell, this was an encouraging example, 
a proof of concept that it might be possible to find a truly satisfactory re-
alistic underlying theory that would replace the vague and subjectivistic 
quantum formalism. In particular, it would have been exactly the type of 
theory Einstein was arguing for in the EPR paper, if only it was not for this 
nonlocality. The essential question was could a similar realistic, but this 
time also local theory exist, and how to find it?

Bell was strongly inspired by the EPR paradox. Meanwhile, the experi-
mentalists managed (in experiments with photons) to check that the en-
tangled pairs of particles indeed behaved as quantum mechanics predict-
ed: the two spins in the state given by equation (1) would indeed always 
be opposite to one another (along arbitrary direction). Nevertheless, 
this confirmation did not take anything away from Einstein, Podolsky, 
and Rosen’s arguments of incompleteness (after all, they exactly pre-
sumed that spins would always be opposite, in deriving their conclu-
sions). Just like Einstein, Bell was confident that the fact that two spins 
always turn out to be opposite, across arbitrary distances, must point 
to the existence of some well-defined underlying “elements of reality” 
that were driving such experimental outcomes. Basically, he understood 
that these spins must in some sense simply be real, predefined, and op-
posite to each other, and that the experiment’s role was just to confirm 
and demonstrate such a state of affairs, and not to make any of the spins 
well-defined at the moment of measurement (as quantum formalism 
suggested). He likened the case of opposing spins in the EPR pair to the 
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socks of his colleague Reinhold Bertlmann, who had a habit of wearing 
socks of different colours. In his paper Bertlmann’s socks and the nature 
of reality,23 he noted that when we observe one sock of Prof. Bertlmann, 
we immediately know that the other sock will be of a different colour, 
even before we spot it—and that there is nothing puzzling here (apart 
from Bertlmann’s dressing habits), irrespective of the hypothetical dis-
tance between the socks. The colours of both socks were real and well-
defined all the time, and in no way was the moment of our observation 
essential nor influenced any of the socks. He was positive that the matter 
of spins should be no more mysterious than that of his colleague’s socks, 
once we discover the underlying true theory of quanta.

Yet, there was this question of how to prove that the spins were in-
deed like socks and that measurement outcomes were merely reveal-
ing the preexisting well-defined reality? Thus far, the EPR argument had 
remained purely a philosophical one and there had been no consensus 
about its implications, let alone a consensus that a more complete theory 
than quantum mechanics was really needed. Moving forward from there 
required an argument in a form of a prediction that could be experimen-
tally verified and which would, once and for all, settle down the dispute 
either in Einstein’s favour or in favour of Bohr.

However, this seemed impossible. Namely, the trouble was that no-
body yet knew the hypothetical underlying more-complete theory that 
Einstein was arguing for. And if we do not know the theory, how could 
we possibly test and compare its predictions? All anyone knew was that 
such a theory had to be realistic and local, but apart from that, it could 
be arbitrarily complex. Einstein was not claiming that he knew it—he was 
only confident that it must exist, but the theory might, in principle, even 
be so complicated that human beings could be incapable of deducing it. 
Besides, if existed, why would such a theory experimentally differ at all 
from quantum mechanics—maybe all experimental predictions would be 
the same, as was the case with the pilot-wave theory?

But, Bell’s intuition was different. He felt that any such locally-realistic 
theory must be observably different from quantum mechanics, and in 
1964 he managed to prove it.24 The proof is known as Bell’s theorem, and 
it (together with the associated experimental tests) was even praised as 

23 J. S. Bell, Bertlmann’s socks and the nature of reality. Speakable and Unspeakable 
in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge: 
Cambridge university Press, 2004). 
24 J. S. Bell, “On the Einstein Podolsky Rosen paradox”, Physics Physique Fizika, 
1(3) (1964): 195–200.
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“the most profound discovery of science”.25 Note that the claim was not 
about the most profound discovery of physics, but of all science, in the 
history of mankind! 

3.2	 Bell’s	Theorem

The starting point was the setup with two entangled particles depicted in 
the EPR paper. Bell felt that the type of connection between the particles 
predicted by quantum theory was in some sense “stronger” than it was 
possible to explain by any “pre-existing” reality (such as that of the well-
defined pre-existing colours of Bertlemann’s socks). It did not take long 
to realize that, to prove this, it was not sufficient to consider only the 
type of measurements that were in the spotlight of the EPR paper—that 
is, those where the outcomes of the measurement on the second particle 
were certain. Thus, Bell’s first insight was that he should in much more 
detail consider non-zero-or-one probabilities related to measurements 
on both particles, along different directions.

Once he realized this, he went on to derive a mathematical relation 
concerning a combination of probabilities to get particular spin outcomes 
on the two distant particles, but when we are measuring the spin along 
axes that are neither parallel nor perpendicular, but forming some inter-
mediate angles. For example, he was considering probabilities of the fol-
lowing type: if Alice measures her particle spin along z-axis and obtains 
up, what is the probability for Bob to obtain the spin of his particle to be 
in the direction inclined by 45 degrees with respect to the vertical? He 
managed to mathematically prove that in any locally-realistic universe, 
a particular combination of such probabilities must satisfy a certain in-
equality, now known as Bell’s inequality. The main achievement here was 
in the word “any”. This meant that truly any universe that would respect 
Einstein’s (and Bell’s) expectations—i.e., where physical systems have 
well-defined properties irrespective of observation and where influences 
cannot spread infinitely fast—was bound to satisfy this inequality. This 
included arbitrarily complicated universes, where particles could, in prin-
ciple, mutually communicate and even conspire against experimentalists 
in arbitrary manners, or could behave differently on Earth than on Jupiter 
(whether we as humans are able to infer or comprehend these complex 
rules or not was of no relevance here). 

25 Henry P. Stapp, “Bell’s Theorem and World Process”, Nuovo Cimento, 29B, 2, 
(1975): 270.
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It is important to underline that this inequality had, per se, absolutely 
nothing to do with quantum mechanics. Again, this was inequality that 
necessarily constrained any theory in which measurement outcomes 
were driven by observer-independent well-defined properties of matter 
(i.e., adhering to realism) and in which there was a limit for the speed at 
which influences can travel (i.e., respecting locality). In other words, this 
was a limitation for all universes that meet Einstein’s expectations, not 
for the quantum mechanical universe of Niels Bohr. 

This is clear from the fact that the inequality was essentially derived 
from the following two seemingly naive and self-evident presumptions. 
The first was the premise of locality: whatever Alice decides to do in her 
lab, it cannot influence the outcomes (or probabilities of outcomes) of 
Bob’s simultaneous measurements in his arbitrarily distant lab. The other 
was the premise of realism, which was, arguably, always tacitly present 
in derivations. In the original Bell’s formulation, this premise was taken 
into account by assuming that the outcomes of spin measurements 
deterministically followed from some unknown (and non-existing in 
quantum formalism) yet well-defined properties of particles. In other 
words, that the outcomes were determined by some hidden variables. 
Mathematically, they were explicitly represented in Bell’s original paper 
by variable(s) denoted as λ. In some of the following reformulations of 
Bell’s theorem,26 the requirement of determinism was removed, but the 
premise of realism nevertheless remained in some form through the role 
of the variable(s) λ still representing the hidden variables and through 
the way these hidden variables were used to derive probabilities of spin 
measurement outcomes. (Some authors argue that the very way the 
probabilities are expressed as functions of λ encodes the presumption 
about a classical-like, non-contextual reality.27 Another way to see this is 
that, arguably, certain presumptions about underlying reality are neces-
sary even to define the locality postulate in the sense in which it is differ-
ent from “no-signalling”—while the former is claimed to be violated, the 
latter is not.)  

To fully understand how it was possible to prove such a general 
inequality can be accomplished only by considering the proof itself. 
However, since the exposition of the proof requires some equations and 

26 Wayne Myrvold, Marco Genovese and Abner Shimony, “Bell’s Theorem”, in 
The Stanford Encyclopedia of Philosophy (Fall 2021 Edition), Edward N. Zalta, ed., 
accessed on August 1, 2023, https://plato.stanford.edu/archives/fall2021/entries/
belltheorem.
27 Marek Żukowski and Časlav Brukner, “Quantum non-locality – it ain’t neces-
sarily so”, J. Phys. A: Math. Theor., 47, 42, 8 (2014): 424009.
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some (though fairly basic) mathematical knowledge, we discuss it in a 
separate Appendix A, below.

The entire relevance of this inequality for the context of the EPR dis-
cussion of quantum physics was that Bell noticed that quantum theory 
actually predicted violations of this inequality! (In the Appendix B, we 
give a concrete mathematical example of this violation.) Hence, this was 
precisely what could settle Einstein-Bohr debate once and for all. This 
inequality was violated by physics advocated by Bohr, while it had to be 
satisfied by any type of physics advocated by Einstein. Whether the real 
physical systems satisfied this inequality or not could finally discriminate 
between Bohr’s and Einstein’s views, and thus, this inequality had the 
power to move the debate from pure philosophy into physics.

The very fact that such inequality existed was a proof of Bell’s theo-
rem, which essentially stated that no locally-realistic theory can ever 
reproduce exactly all quantum mechanical predictions. In other words, 
this was also a proof that it was not possible to improve the pilot-wave 
theory in a way to make it local but still experimentally indistinguishable 
from the standard quantum theory. It was now certain that any realis-
tic model that closely reproduces experimental predictions of quantum 
formalism is also bound to have non-local properties. And it is important 
to stress that this conclusion holds irrespective of whether we are look-
ing for a strictly deterministic theory or we are even ready to accept in-
herent randomness (this, however, had become clear only after some 
generalizations of the original Bell’s derivation). Crucially, the quantities 
constrained by the Bell’s inequality were something that could, in prin-
ciple, be measured. Therefore, it finally became possible to experimen-
tally measure values of these quantities—for some of the special cases in 
which quantum physics predicts violation of the inequality—and simply 
check if the constraint is satisfied or not. If the inequality would turn out 
to be preserved in such an experiment, that would be in contradiction 
to quantum predictions and would present definite proof that quantum 
mechanics requires modifications. That would mean the entire quantum 
theory was only some sort of approximation, with just partial validity. 
Bell himself thought that such an outcome was, regrettably, unlikely (dis-
couraged by the enormous practical success of quantum mechanics), but 
still hoped for “an unexpected result, which would shake the world!”28 
and falsify the completeness of the quantum ideas.

However, if the measurement would reveal a violation of Bell’s in-
equality, it would have groundbreaking philosophical implications for 

28 Clauser, “Early History of Bell’s Theorem”.
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our understanding of the universe. Once and for all, we would have to 
abandon any hope that a “rational” realistic explanation of phenomena 
in nature, of the type sought after by Einstein, could be found.

Bell, for his part, could now just sit and wait until someone managed 
to perform the real experiment.

4.	 	John	F.	Clauser,	Alain	Aspect	and	Anton	Zeilinger

4.1	Experimental	Verdict

The history of physics had to wait almost another decade for the final act 
of this philosophical drama. Years were passing by after Bell’s ground-
breaking proof, yet hardly anyone was noticing Bell’s discovery. Bell had 
to wait a couple of years even for the first citation of his work, collecting 
only a handful of citations in the first decade or more. It was not just 
that his paper was published in a less-known journal Physics, Physique, 
Fizika,29 but, as the young physicist John F. Clauser working as a postdoc-
toral researcher at uC Berkeley at the time would later recall, this was a 
generally unpopular topic. Young Clauser, together with his colleague, 
graduate student Stuart Freedman, will be the first ever to perform an 
experimental test of Bell’s inequality. Even after being warned that this 
research might ruin their careers,30 the two young scientists further 
pursued their idea until finally obtaining a definite experimental answer 
about who was right in the great Einstein-Bohr debate.

From 1964 to 1972, our understanding of physics remained in an un-
usual limbo state: we knew it was possible to, once and for all, find out 
whether our universe is “normal” in the sense of Einstein (local and real), 
or truly as “weird” as Bohr suggested—but still nobody knew the answer. 
And finally, in 1972, Clauser and Freedman managed to perform the first 
ever “Bell’s test”.31 Unlike the original Bell’s paper, which discussed mat-
ter particles of spin equal to  (such as electrons or protons), for practical 
reasons this experiment dealt with photons, measuring polarizations of 
photon pairs emitted in an atomic cascade. While the spins in Bell’s analy-

29 Bell, “On the Einstein Podolsky Rosen paradox”.
30 Clauser, “Early History of Bell’s Theorem”; Whitney Clavin, “Proving that 
Quantum Entanglement is Real”, Caltech, accessed 10 July 2023, https://www.
caltech.edu/about/news/proving-thatquantum-entanglement-is-real.
31 S. J. Freedman and J. F. Clauser, “Experimental Test of Local Hidden-Variable 
Theories”, Phys. Rev. Lett., 28, 14 (1972): 938–941.
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sis were opposite, here the polarizations of the two photons in each pair 
were the same: every time we would let the two photons arrive at polar-
izing filters aligned in the same direction, either both photons would pass 
the filters, or neither would. The task was to measure the so-called coin-
cidences: how often would it happen that both photons manage to pass 
the corresponding polarizing filter and to investigate this probability as a 
function of the angle between the polarizers. Instead of the probability 
of the spin measurement outcomes, it was these probabilities of photon 
coincidences that had to satisfy Bell’s inequality. However, these were 
merely technical differences—the essence remained absolutely the same.

And, at last, we heard the Nature’s ruling—no doubt, it was in favour 
of Bohr! The obtained experimental results perfectly followed quan-
tum mechanical predictions, demonstrating Bell’s violation at 6.3 sigma 
(where everything over 5 sigmas is considered in physics as statistically 
sure proof). Clauser himself, sympathetic to Einstein’s side in the debate, 
would later say “I was very sad to see that my own experiment had prov-
en Einstein wrong.”32 But so it was.

No doubt that Bell was even sadder than Clauser. As most dramas 
have some tragic character, in this one, that role was, so to say, taken 
by Bell. It was Bell’s strong inclination towards the realist stance that led 
him to investigate possibilities for local hidden variable theories in the 
first place, finally leading him to his theorem. No one else has so openly 
and bluntly expressed his convictions as did Bell, and seemingly no one’s 
convictions were as strong as Bell’s. He was absolutely sure that Einstein 
must be right, yet he had to concede that he was not:

“For me, it is so reasonable to assume that the photons in those ex-
periments carry with them programs, which have been correlated in ad-
vance, telling them how to behave. This is so rational that I think that 
when Einstein saw that, and the others refused to see it, he was the ra-
tional man. The other people, although history has justified them, were 
burying their heads in the sand. I feel that Einstein’s intellectual superior-
ity over Bohr, in this instance, was enormous; a vast gulf between the 
man who saw clearly what was needed, and the obscurantist. So for me, 
it is a pity that Einstein’s idea doesn’t work. The reasonable thing just 
doesn’t work.”33

32 B. Skuse, “Nobel Prize in Physics 2022”, Lindau Nobel Laureate Meetings, ac-
cessed on August 1, 2023, https://www.lindau-nobel.org/blog-nobel-prize-inphys-
ics-2022-provin g-and-using-the-peculiar-quantumnature-of-reality.
33 Jeremy Bernstein, Quantum Profiles (Princeton: Princeton University Press, 
1991).
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On another occasion, he succinctly summarized his sentiment as: 
“Bohr was inconsistent, unclear, wilfully obscure and right. Einstein was 
consistent, clear, down-to-earth and wrong.”34 

despite his theorem and the subsequent violation of the inequality 
being terribly disappointing to Bell, this episode was a perfect testimony 
to the strength of the scientific method. While every scientist must and 
should have their own opinions, a truly good scientist will not allow their 
own wishful thinking to stand in the way of reaching the truth. Despite 
so fervently advocating Einstein’s positions, it was essentially Bell himself 
who led us to the definite falsification of these views. While Clauser was 
an accomplice, it was Bell who killed the worldview he cherished as the 
true one. And he did not hesitate to acknowledge that the outcome of his 
work and of the later experiments was not the one he was hoping for. By 
doing so, Bell established his greatness as a scientist, in yet another way.

4.2	 Closing	Loopholes

Yet, some hope for Einstein’s viewpoint still remained after the 1972 ex-
periment. Namely, in Clauser and Freedman’s 1972 experiment, the pho-
tons were impinging on the polarizers that were a mere couple of meters 
away, in the same lab. The experiment was performed in cycles of 100 
seconds of accumulating the detectors’ data, during which the polarizers 
were kept oriented along fixed angles.35 But the essence of Bell’s original 
idea was that the two polarizers belonging to Alice and Bob need to be 
sufficiently distant, so that Alice’s decision about how to orient her polar-
izer could not have a chance to influence the photon arriving on Bob’s 
side. In Clauser’s experiment, the hypothetical influence of the decision 
on how to orient the polarizer on one side of the lab had plenty of time to 
reach the other side, with no need for superluminal speeds and conflict 
with locality principles of special relativity.

Reading the Bell’s original paper, there is an impression that not 
even Bell himself had hoped that the outcome of an experiment such 
as Clauser’s could be any different than to support quantum mechanical 
predictions. On the other hand, his hopes were that quantum mechani-
cal predictions about entangled pairs of particles may be limited to the 
cases where the subluminal influences can arrive from one side to the 

34 Graham Farmelo, “Random Acts of Science”, The New York Times, June 11, 
2010.
35 Freedman and Clauser, “Experimental Test of Local Hidden-Variable Theories”.
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other in due time, but may fail in cases when the distances are greater 
(or relevant times shorter):

“Of course, the situation is different if the quantum mechanical pre-
dictions are of limited validity. Conceivably they might apply only to ex-
periments in which the settings of the instruments are made sufficiently 
in advance to allow them to reach some mutual rapport by exchanging 
signals with velocity less than the speed of light. In this connection, ex-
periments of the type proposed by Bohm and Aharonov, in which the 
settings are changed during the flight of the particles, are crucial.”36

In the last sentence, we see that he urged for experiments that would 
remove this possibility of having any ordinary, slower-than-light signals 
influencing the results.

However, it must be noted that it is difficult to imagine in what way 
the two polarizers/detectors from different sides could “communicate” 
in order to fool the experimenter. Clauser, personally, saw this as a form 
of “paranoia” for which “it is first necessary to believe that a pair of de-
tectors and analysers that are several meters apart are somehow conspir-
ing with each other, so as to defeat the experimenter”.37 Nevertheless, 
this remained a logical possibility, so it is generally accepted that Clauser 
and Freedman’s original experimental realization with static polarizers 
suffered from this “locality loophole”, as this “paranoid possibility” be-
came known.

The first experiment to almost entirely close this locality loophole 
and essentially meet Bell’s original criterion was performed in 1982. It 
was done by our second Nobel Laureate Alain Aspect and his collabora-
tors working at École Supérieure d’Optique in Orsay.38 Among other ex-
perimental improvements, Aspect has found a way to effectively change 
the orientation of the polarizers on the fly, i.e., while the photons were 
on their way towards detectors. The polarizers (with the corresponding 
detectors behind) were situated on the opposing ends of the lab, at a 
distance of 6 meters from the photon source (i.e., 12 meters apart). That 
corresponded to the flight time of 20 nanoseconds from the creation of 
photons to their detection. Instead of physically rotating the polarizers—
which was technically impossible to accomplish in such a short time—he 
replaced the polarizer on each side with a setup consisting of a so-called 
optical switch, and two polarizers aligned in different directions. The 

36 Bell, “On the Einstein Podolsky Rosen paradox”.
37 Clauser, “Early History of Bell’s Theorem”.
38 A. Aspect, J. dalibard and G. Roger, “Experimental Test of Bell’s Inequalities 
using Time-Varying Analyzers”, Phys. Rev. Lett., 49, 25 (1982): 1804–1807.
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switches allowed the incoming photons to be directed toward different 
polarizers, and this change of direction was occurring regularly, approxi-
mately every 10 nanoseconds. In this way, the photons were arriving at 
the polarizers whose angle varied, and this variation of the angle was 
happening during the flight of photons. There was no way for a signal, 
traveling from one side to the other at a speed not greater than that of 
light, to arrive in time to “inform” the physical system there about the 
current state of the optical switch. The results were unwavering, con-
firming Bohr’s expectations at 5 standard deviations. Bell’s last hopes 
that our universe might still be locally realistic were dispersing.

However, this was not yet precisely what Bell had envisaged. Ideally, 
the experimenter on one side should be capable to orient their polar-
izer at will, or randomly, so that there would be absolutely no way for 
the system on the other side to predict what angle was chosen. This was 
not what Aspect’s setup allowed, where variations of polarization were 
periodic, and thus, strictly speaking, easily predictable (if the equipment 
on the two sides could communicate, wanted to “conspire” against the 
experimenter—as Clauser would say, and was “intelligent” enough to 
get the pattern of variations). Regardless of whether this was an overly 
paranoid requirement or not, it was still a logically necessary one if we 
wanted to be absolutely sure that no room for any locally realistic model 
has remained. And the first one to definitely close this locality (or com-
munication) loophole—by using superfast random number generators—
was the third laureate, Anton Zeilinger, with his team from the university 
of Innsbruck, back in 1998.39 His experiment demonstrated a violation of 
Bell’s inequality to a staggering 30 standard deviations.

But, after careful analysis, physicists have realized that, strictly 
speaking, the locality loophole was not the only potential loophole. 
Additionally, they also identified the detection loophole (related to the 
low efficiency of used detectors), the coincidence loophole (related to 
the imperfect methods used to judge which two detected photons be-
longed to the same pair), and the memory loophole (a pretty “paranoid” 
possibility that hidden variables could exploit the memory of past mea-
surements to conspire against experimenters). However, with a com-
bined effort of many experimental groups worldwide, finally, in 2015, we 
had the first “loophole-free” confirmations of Bell’s inequality violation 

39 G. Weihs et al., “Violation of Bell’s Inequality under Strict Einstein Locality Con-
ditions”, Phys. Rev. Lett., 81, 23 (1998): 5039–5043.
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(one of three such experiments done in 2015 was once again performed 
by Zeilinger’s group40). 

It is also worth mentioning that some of these additional loopholes 
do not even appear in generalizations of Bell’s theorem to entangled 
states of three or more particles. Generalizations of this sort were dis-
covered by daniel Greenberger, Michael Horne, and Anton Zeilinger in 
1989 (aka GHZ theorem41), and the corresponding experimental tests42, 
performed also by Zeilinger’s group, again falsified local realism. In these 
cases, the incompatibility of local realism with our universe could be veri-
fied on the level of a single measurement, without the need to gather suf-
ficient statistics and consider any probabilities, or inequalities, at all. And, 
after all these experiments there was no more a single speck of doubt: 
our world could never be explained by any locally realistic theory, and it 
was Bohr who won the famous debates.

Overall, hardly to anyone’s surprise, the loopholes failed to save local 
realism. Years later, it is time to finally get used to this fact and take the 
conclusions seriously.

4.3	 Superdeterminism

It should be noted that, in a tendency to give statements of utmost math-
ematical precision, physicists often mention yet another hypothetical 
loophole. It is known by the name of “superdeterminism”. If the local-
ity loophole was already paranoid in Clauser’s words, this one must be 
labelled as “insanely paranoid”. Namely, what if the conspiracy of nature 
(to fool physicists and leave a false impression of Bell’s inequality vio-
lation) is so grand, that neither random nor human choices for polariz-
ing angles are sufficiently independent? In principle, the universe could 
still be real and local, moreover deterministic, only if it was precisely 
fine-tuned at the moment of the Big Bang so that each time we try to 
test Bell’s inequality our attempts are actually futile, since everything is 
staged. Everything is so precisely adjusted in advance (and the determin-
istic assumption in this picture makes such an idea logically consistent) 

40 Marissa Giustina et al., “Significant-Loophole-Free Test of Bell’s Theorem with 
Entangled Photons”, Phys. Rev. Lett., 115, 25, (2015): 250401.
41 M. daniel Greenberger, Michael A. Horne and Anton Zeilinger, “Going Beyond 
Bell’s Theorem”, in Bell’s Theorem, Quantum Theory, and Conceptions of the Uni-
verse (1st edition), ed. Kafatos, Menos (Heidelberg: Springer, 1989), 69–72.
42 J.-W. Pan et al., “Experimental test of quantum nonlocality in three-photon 
Greenberger-Horne-Zeilinger entanglement”, Nature, 403 (2000): 515–519.
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that each time we attempt to measure distant particles in a Bell’s pair, 
Bob’s particle and/or equipment “knows” what angle Alice is going to 
choose not because it was somehow signalled/influenced faster than 
light, but simply because everything is evolving according to a script writ-
ten long ago, by a screenwriter whose core motive was seemingly to trick 
physicists into a false belief.

John Clauser, together with Abner Shimony and Michael Horne (sci-
entists who, together with Richard Holt, were responsible for the most 
popular CHSH variation of the Bell’s inequality) illustrated this type of 
conspiracy ideas in their 1976 paper43 by noting a possibility that manu-
facturers of the measurement equipment might have tweaked the in-
struments as to produce a prepared set of false experimental outcomes. 
However, for this to work, conspirators would have also had to instruct 
the secretaries of the experimenters on both sides to “quietly whisper in 
their ears” appropriate choices of polarizer angles for each run—every-
thing carefully orchestrated in order to demonstrate the ostensible 
violation of Bell’s inequality in a universe that is otherwise locally real. 
Meanwhile, it actually turned out that even this scenario would not have 
worked, since all the details of the conspiracy had to have been fixed 
much earlier, probably already at the dawn of time: a Bell test performed 
in 2018 has confirmed the violation by using, instead of random genera-
tors, the light emitted 7.8 billion years ago from distant quasars, to de-
cide how to orient polarizers (so, according to superdeterminism, these 
quasars would also have to be a part of the conspiracy, taking care of 
what light to emit, so that some scientists on Earth 7.8 billion years later 
will be properly fooled).44 Furthermore, “as a safeguard against potential 
systematic or conspiratorial effects”, one of the loophole-free Bell tests 
in 201545 used a number of popular culture sources to modulate the deci-
sion of the angles to be used in the experiment. In particular, they used 
binary bits of digital versions of movies such as the Back to the Future 
franchise (all three parts, of which the third was used in reverse order), 
Star Trek episodes, Doctor Who, and the Monty Python and the Holy Grail. 
For good measure, they also performed a binary XOR operation of every-
thing also with binary digits of the number pi. This raised the bar for the 
required conspiracy even further: “A hypothetical cause that achieved 

43 A. Shimony, A. Horne and J. Clauser, “Comment on ‘The theory of local bea-
bles’,” Epistemological Letters, 13 (1976): 1–8.
44 d. Rauch, “Cosmic Bell test using random measurement settings from 
high-redshift quasars,” Physical Review Letters, 121 (2018): 080403.
45 L. K. Shalm et al., “Strong loophole-free test of local realism,” Physical Review 
Letters, 115 (2015): 250402.
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the observed statistics via correlation between states of the photons 
studied and the choice of measurements would have had to precisely or-
chestrate the creative processes leading up to the digitized versions of 
these cultural artifacts in such a way that, when processed in conjunction 
with the outputs of the random number generators, produced just the 
right sequence of experimental choices.”46

By one of the worse misnomers in physics, the negation of the “su-
perdeterminism” hypothesis is sometimes called the “free will” require-
ment, potentially misleading audiences that the superdeterminism con-
spiracy idea has anything to do with the ancient and open philosophical 
problem of the existence of free will. While the existence of free will (or 
of true inherent randomness in nature) would indeed logically ensure 
that superdeterminism is not possible, the lack of free will by no means 
implies superdeterminism. As should be clear from the above discussion, 
apart from complete determinism (and thus the absence of free will), 
the latter also seemingly requires some sort of intentional ultra-fine tun-
ing specifically aimed at tricking physicists interested in Bell inequalities. 
(Here we discuss the superdeterminism in its basic form—e.g., there are 
also variations that presuppose retrocausality, i.e., affecting past from 
the future, but this has some resemblance to the idea of putting out fire 
with gasoline: a rather problematic and hard-to-motivate move to avoid 
the milder initial problem of Bell’s nonlocality.)

As an idea of conspiracy without bounds, the superdeterminism loop-
hole is, obviously, in principle, experimentally unfalsifiable. However, if su-
perdeterminism is true, the inability to draw correct conclusions from the 
violation of Bell’s inequalities should be of our least concern. As noted by 
Clauser and his coauthors, the whole pursuit of science would be mean-
ingless: “Unless we proceed under the assumption that hidden conspira-
cies of this sort do not occur, we have abandoned in advance the whole 
enterprise of discovering the laws of nature by experimentation.”47

A similar conclusion was echoed by Zeilinger when he stated that, if 
superdeterminism were true, “it would make no sense at all to ask nature 
questions in an experiment, since then nature could determine what our 
questions are, and that could guide our questions such that we arrive at a 
false picture of nature”.48 Actually, there can be much worse implications 
of superdeterminism than making science pointless. Following the same 

46 Myrvold, Genovese and Shimony, “Bell’s Theorem”.
47 Shimony, Horne and Clauser, “Comment on ‘The theory of local beables’”.
48 A. Zeilinger, Dance of the Photons (New York: Farrar, Straus and Giroux, 2010): 
266.
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reasoning, the Earth could right now be flooded with hostile species of 
reptilian aliens that are literally all around us, but so it happens that some 
regrettable sets of circumstances always prevent us from looking in the 
right direction at the right moment—just as fine-tuned sets of circum-
stances dictate Alice and Bob’s decisions how to turn their polarizers. 
And we could never know—unless, at some moment, the script dictates 
that aliens begin to devour us alive.

Instead of a serious hypothesis about nature, the superdeterminism 
can rather be seen as a testament to the price some people are ready 
to pay, just to avoid the inevitable conclusion that our universe is not 
locally realistic (seemingly, some scientists are ready to entertain super-
determinism at least partially seriously)49. This enormity of the price only 
underlines the depth of the change in our worldviews that the Bell’s in-
equality and its violation force us to make.

5.	 	Epilogue

5.1	 Nobel	Prizes

Luckily, times are changing. With only a handful of citations in the first 
decade, as of today, Bell’s 1964 paper has amassed more than 27,000 
citations. Implications of its violation are widely discussed and brought 
into the spotlight of broader audiences. Finally, last year, even the Nobel 
Committee decided to acknowledge the momentous scientific and philo-
sophical contributions of Bell and the experimental physicists who tested 
his inequality. John Clauser, Alain Aspect and Anton Zeilinger shared the 
2022 Nobel Prize in Physics.

The only reason why Bell was not among the last year’s laureates 
was that he unfortunately died in 1990, at the age of 62. Reportedly, he 
was nominated for the Nobel prize in the year that he passed away.50 
Of the other main actors in this drama, Einstein and Bohr did not live to 
see Bell’s theorem and the outcomes of experimental Bell tests, but both 
were awarded Nobel prizes for other achievements. Stuart Freedman, 
who assisted J. Clauser in his experiment, also died prematurely.

Taking into account that the first experimental test of Bell’s inequality 
happened already in 1972 (and that hardly anyone expected any remain-

49 Myrvold, Genovese and Shimony, “Bell’s Theorem”.
50 Louisa Gilder, The Age of Entanglement: When Quantum Physics Was Reborn 
(New York: Alfred A.Knopf, 2008).
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ing loopholes to change our conclusions), it is reasonable to ask why it 
has taken an entire half of a century for the Nobel Committee to effec-
tively recognize, by its decision, the depth of the irrevocable shift in our 
perception of the reality that quantum mechanics has brought, and Bell 
has proved. Stated differently, what prompted the Nobel Committee to 
suddenly remember Bell nowadays, 50 years after the first test and 24 
years after Zeilinger closed the locality loophole?

At least a part of the answer certainly has to do with the shift from 
pure science and philosophy into technology. As it often happens, the 
most fundamental research in physics, aimed at purely philosophical 
topics, eventually also produced some very practical spin-offs. At some 
point, it was realized that the strange non-classical properties of quan-
tum entanglement—the phenomenon first brought to attention in the 
EPR paper—can be used in many technologies, from cryptography, high-
ly sensitive measurement techniques, superdense information coding, all 
the way to the entirely novel concept of quantum computing. It actually 
opened a whole new branch of research called quantum information sci-
ence. In this light, the achievements of the pioneers of this field, both 
in the theory and experiment, were also gradually becoming more and 
more difficult to ignore.

5.2	 The	Aftermath:	Reality	or	Locality

And, when the dust has settled, what is it that this “most profound dis-
covery of science”, as Henry Stapp praised Bell’s inequality and its viola-
tion, actually tells us? While this obviously is the most important question 
in this context, to this day, it remains a controversial one.

On multiple occasions we have stated that Bell’s violations falsify the 
idea of “local realism”—they show us that nature certainly cannot be 
both “local” and “real” at the same time. While it might be neither. This 
common formulation of conclusions dates back to Clauser and Shimony’s 
1978 paper.51 While the idea of the locality they had in mind is fairly clear 
(i.e., that no influence can be exerted immediately to arbitrary distance, 
i.e., as if mediated at infinite speed), they explained the notion of realism 
as follows: “Realism is a philosophical view in which external reality is 
assumed to exist and have definite properties, whether or not they are 
observed by someone.” Giving up the notion of objective reality inde-
pendent of observers, which was the cornerstone of exact science from 

51 J. F. Clauser and A. Shimony, “Bell’s theorem: experimental tests and implica-
tions,” Reports on Progress in Physics, 41 (1978): 1881–1927.
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its advent, might seem like quite a steep price to pay. The problem with 
violating the notion of locality, on the other hand, is not only in the fact 
that it is not in the spirit of Einstein’s theory of relativity (it neither strictly 
experimentally contradicts it, since particle entanglement does not al-
low sending information faster than light). The additional problem is that 
giving up locality also jeopardizes the idea that nature can be split into 
separate subsystems and investigated in this way. If whatever happens in 
our lab can be, in principle, influenced by what is at the moment happen-
ing in another galaxy, that undermines the very reductionist approach to 
reality. It certainly does away with the good old mechanist ideal of reality 
being a set of moving pieces that influence only those in the immediate 
vicinity (the intuitive idea of gears and levers, or of particles bouncing off 
each other). We should clarify that, although the influence by “pulling 
and pushing”, i.e., by the contact-interaction of impenetrable solid bodies 
was the golden standard, or at least ideal, of Newtonian classical physics, 
it is true that Newton himself was forced to introduce a long-range force 
to explain gravity. However, that idea was immediately considered as a 
sort of occult and definitely troubling, even by Newton.52 And what was 
merely shunned in Newton’s era, would eventually become inadmissible 
with Einstein’s theory of relativity due to the light-speed limitation on all 
influences. It took a while for science to get rid of such unwelcome “oc-
cult” remnants: first, thanks to Maxwell’s theory of electromagnetism, 
which solved this problem for the case of electric and magnetic interac-
tions, and finally by Einstein who solved the same problem for gravity. 
They provided perfectly local (and of course, realist) explanations of the 
universe’s inner workings. With these achievements, the Newtonian ide-
al of a mechanistic universe was seemingly completely accomplished and 
the universe fully gained the intuitive feel of a huge clockwork mecha-
nism. Yet, the option opened by the Bell test—to abandon the locality 
of physics—all of a sudden endangered this ancient worldview, in a way 
that was far more disturbing than the simple inverse-square Newton’s 
law of gravity.

Even without these purely philosophical repercussions, the huge 
problem of internal compatibility between nonlocal interactions and the 
theory of relativity means that accepting the nonlocality requires serious 
revisions of our understanding of space and time. Overall, as Clauser and 
Shimony emphasize in their paper: “The conclusions [from Bell’s theo-
rem] are philosophically startling; either one must totally abandon the 

52 W. Seager, “The Philosophical and Scientific Metaphysics of david Bohm”, 
Entropy, 20, 7 (2018): 493.
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realistic philosophy of most working scientists, or dramatically revise our 
concept of space-time.”53

We stress again that the issue of determinism is unrelated here. First 
we must clarify that, per se, realism does not inevitably entail determin-
ism (though the two notions are often conflated). It is easy to conceive 
a model that would be realistic (i.e., systems have definite properties ir-
respective of measurement/observation) and local in spite of being sto-
chastic (i.e., laws of physics do not allow us to predict actual outcomes of 
experiments, but only probabilities of different outcomes). For example, 
in the Bell’s context, we might consider a hypothetical model in which 
photons always have well-defined polarizations (hence the model is re-
alistic), while it is nevertheless impossible to surely predict whether a 
particular photon will pass the polarizing filter or not (thus model is in-
deterministic): in particular, the probability of transmission could be pro-
portional to the cosine squared of the angle between photon polariza-
tion and the filter orientation (such dynamics would be local and would 
correctly reproduce the experimentally observed Malus law).54

Importantly, giving up determinism cannot save the role of local re-
alism in nature—since locally-realistic models like the one above must 
also satisfy Bell’s inequalities, despite them having sacrificed determin-
ism. This fact was obscured in the original formulation of Bell’s inequal-
ity (which actually presumed determinism), but was recognized in later 
generalizations of the theorem.

53 Clauser and Shimony, “Bell’s theorem: experimental tests and implications”.
54 At first sight, it might seem possible to trade this randomness for a complex, 
but again, deterministic law of nature, if we would allow each photon to some-
how possess within itself a long enough predefined sequence of random num-
bers: each time it encounters a polarizing filter, it would then “consult” this list 
and “decide” according to some deterministic algorithm whether to pass or not, 
instead of this outcome being truly undetermined until that moment. However, 
if each photon possessed a different list, this would have revealed itself via viola-
tion of Bose-Einstein statistics, as they would cease to be identical particles. And 
if this list would be identical for all photons, then it would effectively constitute a 
new deterministic law of physics—something that should be expected to reveal 
itself via repeatable patterns in behaviour of particles under identical conditions. 
Finally, if every particle could somehow “consult” random-like number list that is 
external to the particle (and thus not violate statistics of identical particles), this 
would be problematic from the locality perspective. This last option also includes 
the so-called “second time around” universe: assume there is a nondeterminis-
tic universe, we let it evolve and “record” everything that happens; if we then 
“play” this recorded universe, all events would be predetermined and thus the 
universe deterministic, but its dynamical laws would not be local. Thus, non-de-
terministic locally-realistic models arguably constitute an entirely separate class.
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5.3	 Locality?

On the other hand, some of the more recent discussions on the subject 
tend to question this Clauser’s “reality or locality” formulation of the 
conclusions.55 Careful logical analysis shows that Bell’s inequality viola-
tion seemingly implies some elements of nonlocality irrespectively of our 
stance on realism, i.e., that “locality” assumption cannot be saved—at 
least not in its standard sense—even if we give up realism. Some modern 
scholars thus prefer to summarize implications of Bell’s violation simply 
as a constraint that any hidden variable theory must be nonlocal, more 
in line with Bell’s own formulation of his theorem: “If [a hidden variable 
theory] is local it will not agree with quantum mechanics, and if it agrees 
with quantum mechanics it will not be local”.56 To understand this em-
phasis on the hidden variables, but also to better understand the idea of 
sacrificing locality to preserve realism, we must again return to Bohm-
de Broigle’s hidden-variable interpretation, aka the pilot-wave theory 
(PWT),57 which hugely influenced Bell.

Namely, this theory was, and still is, basically the only known model 
of nature that explicitly does away with locality premise in order to re-
tain realism in a sense somewhat close to the classical one (though, even 
there the concept of reality had to be extended to include a quite ab-
stract wavefunction that lives in a mathematically involved construct of 
a so-called “tensor product of single-particle Hilbert spaces”, instead of 
keeping only the intuitively clear picture of the classical three-dimensional 
space). Bohmian mechanics (as PWT interpretation of quantum mechan-
ics is often called) assumes the existence of true and precise positions of 
all particles—here playing the role of hidden variables—which are well-
defined at all times, irrespectively of observation (despite the knowledge 
about these positions not being experimentally accessible). Besides, the 
theory is deterministic. However, as we have already discussed, the price 
is paid in the form of manifest nonlocality: the velocity of every particle 
depends on the current positions of all particles that exist in the universe, 
in a way determined by an additional “guiding” equation. This remote 
influence, which exists irrespective of the mutual distance between par-

55 Myrvold, Genovese, and Shimony, “Bell’s Theorem”.
56 Bell, Speakable and Unspeakable in Quantum Mechanics.
57 C. Zander and A. R. Plastino, “Revisiting Entanglement within the Bohmian 
Approach to Quantum Mechanics”, Entropy, 20, 6 (2018); Sheldon Goldstein, 
“Bohmian Mechanics”, The Stanford Encyclopedia of Philosophy (Fall 2021 
Edition), Edward N. Zalta, ed., accessed on August 1, 2023, https://plato.stanford.
edu/archives/fall2021/entries/qmbohm.
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ticles, is non-local simply by the definition and not as a consequence of 
any interaction potential. Apart from the guiding equation, this theory 
also postulates Schrödinger’s equation that governs the evolution of the 
wavefunction in precisely the same way as in standard quantum mechan-
ics. The theory is constructed in such a way as to produce experimen-
tal predictions mathematically equivalent to predictions of the standard 
quantum formalism.58 This is possible since those hypothetical real posi-
tions of particles (i.e., hidden variables) do not affect the dynamics in any 
way—the latter is entirely determined by the standard quantum mechan-
ical wavefunction. Since these positions cannot be inferred by measure-
ment, their main purpose is to provide philosophical comfort of allowing 
one to say that the particles actually had well-defined properties (more 
precisely, well-defined positions—things become much more complicat-
ed with other properties like spin), in spite of our eternal lack of precise 
knowledge about them. Of course, it depends upon personal philosophi-
cal predilections to whom will such a possibility sound comforting, and to 
whom misleading and strikingly non-parsimonious. In fact, the facets of 
this interpretation that its proponents find most appealing are often the 
same ones that the critics of the theory see as unnecessary and extrava-
gant additions to the complexity of an already complete theory. Bohmian 
mechanics is often criticized from the viewpoint of Occam’s razor, as it 
requires the introduction of additional properties and an entirely new dy-
namical equation, and it must also go to lengths to solve technical issues 
non-existent in the standard formulation, while at the same time, it is not 
adding anything to the explanatory power of quantum mechanics.

But, philosophical preferences aside (which can hugely differ, as in 
the case of Einstein and Bohr), the inherent non-locality of PWT inevita-
bly leads to both conceptual and severe technical problems in attempts 
to extend nonrelativistic quantum mechanics into the relativistic domain, 
and especially to the deeper, underlying quantum field theory.59 This was 
likely the main reason why Einstein was not satisfied with Bohm’s pro-
posal, in spite of its realism (besides, he found it “too cheap”)60. Bell, 
while favouring this view of quantum mechanics, was also aware of its 
problem with non-locality. In his opinion, the PWT would have been a 
perfect theory, if it was not for this problem. As we have explained, Bell 
eventually arrived at his theorem by attempting to answer the question 
of whether it was possible to improve the Bohmian mechanics in a way 

58 After assuming initial probability densities that match |ψ|2.
59 Goldstein, “Bohmian Mechanics”.
60 J. S. Bell, “On the impossible pilot wave”, Found. Phys., 12, 10 (1982): 989–999.



206

http://www.muzejnt.rsPhlogiston 31/2023

that would retain its realism but also remove the troubling non-local fea-
tures (which motivated his formulation of the theorem statement via hid-
den variables). The conclusion of Bell’s theorem—that no such improved 
theory can exist that would be compatible with predictions of quantum 
mechanics—was immediately disappointing to the author since the pros-
pect of experimentally invalidating quantum theory sounded implau-
sible. Once the Bell tests have indeed confirmed the validity of quantum 
predictions, from then on, the Bell’s theorem implied that any hidden 
variable theory, which aspires to conform to the experiments, must suf-
fer from the same non-locality problem as the Bohmian mechanics. 

But instead of being viewed as a deal-breaker for hidden variable the-
ories in general, by the proponents of PWT this was seen as an argument 
in favour of their interpretation: the non-locality was no longer the fault 
of the particular Bohmian approach, because it was now clear that no 
other hidden variable theory can do better, even in principle. Moreover, 
advocates of Bohmian mechanics particularly tend to emphasize that 
some sort of nonlocality is unavoidably inherent in quantum theory per 
se, irrespectively of interpretation. At the same time, they mostly dismiss 
that Bell’s inequality violations should have any logical implications on 
the idea of realism (even the mention of the existence of hidden vari-
ables—which is certainly an assumption about reality—is often avoided). 
For example, for Tim Maudlin, who is a vocal supporter of Bohmian me-
chanics, the implications of Bell tests can be simply summarized as “ac-
tual physics is non-local,” period.61 

5.4	 Reality?

While, as already mentioned, Bell’s theorem indeed suggests that quan-
tum mechanics must have some sort of non-local elements, we believe 
that such formulations that ignore mentions of realism (put forward 
mostly by Bohmian sympathizers) are at least misleading. Formulations 
of this type tend to wrongly reduce the deep and universal philosophi-
cal implications of Bell’s inequality violations to an ostensible dichotomy 
between local and non-local hidden variables. They completely ignore 
(or obscure) the fact that violations of Bell’s inequality come as the final 
confirmation of Bohr’s predictions, in contrast to Einstein’s expectations, 
and that, as such, the observed violations also strongly reinforce and sup-
port Bohr’s view. And this view is, in the context of EPR and Bell, succinct-
ly formulated by Clauser: “Bohr’s argument is more readily understood, 
once that one recognizes that it is based on his denial of realism. That is, 

61 Tim Maudlin, “What Bell did”, J. Phys. A: Math. Theor., 47, 42 (2014): 424010.
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it is impossible to physically disturb something that doesn’t exist! Thus, 
if there is no physical-space description of either the quantum mechani-
cally entangled individual systems or of the actual disturbance process, 
then the required associated existence of non-local action-at-a-distance 
is a non-issue. The objectionable aspect of Bohr’s description (action-at-
a-distance) is then, consistently with Bohr’s assertion of completeness, 
simply non-existent, by definition!”62

Accordingly, in Bohr’s view, even if there is some sort of non-locality 
in quantum mechanics after all, it is of absolutely secondary and inter-
pretational character. As pointed by Clauser above, what does it mean 
to physically disturb something at a distance, if that something does not 
truly exist, in the first place?

On the other hand, the premise of realism was built in from the out-
set: the “elements of reality” that were presumed to exist in the EPR 
paradox, were reflected via the variable (or set of variables) λ appearing 
in the Bell’s proof and representing the hidden variables. While, in the 
first version of the Bell’s theorem, these elements of reality were seen as 
giving rise to deterministic outcomes of the experiments, even the later 
versions of the theorem, which did not incorporate determinism, never-
theless relied on realism presumption of some sort. In a certain sense, 
reality presumption is an indispensable part of the theorem’s proof since 
the way the joint probabilities are computed implies that the “values co-
exist together independently of which experiment is actually performed 
on either side, and in this sense are ‘real’”.63

A part of the problem with emphasizing non-locality at the expense 
of considering issues with reality might be in the suggestively chosen 
terminology. In usual physics jargon, non-locality commonly implies, 
or suggests, some sort of “non-local interaction”, where “interaction” 
generally denotes some well-defined force, or potential (or a term in the 
Lagrangian) that causes/mediates influence between well-defined ob-
jects of the theory (e.g., particles or fields). In other words, the very term 
“non-locality” is not “ontologically neutral”, in the sense that it effective-
ly presupposes, or at least suggests, some sort of realism. Therefore, if 
the conclusion of Bell’s violations is indeed simply summarized as “actual 
physics is non-local”, that even leaves an impression that Bell tests rein-
forced Einstein’s position of realism, while in reality, the logical implica-
tions of Bell’s violations were certainly the opposite (without a doubt, re-
alism was far more plausible hypothesis while we still thought that such 

62 Clauser, “Early History of Bell’s Theorem”.
63 Żukowski and Brukner, “Quantum non-locality – it ain’t necessarily so”.
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theories could be constructed in full observance of the relativistic prin-
ciples). Similar is also true for the formulations closer to the original Bell’s 
statement, like “any hidden variable theory must be non-local”—again 
connoting that the entire issue is a dichotomy between local and non-
local hidden variable theories, instead of between the realist Einstein’s 
viewpoint and the “non-realist” Bohr’s stance.

A much better choice would be the word “inseparable” (this word is 
also more closely related to the mathematical term “non-factorizable”, 
which better corresponds to the presumptions of the Bell’s theorem 
than “non-locality”64). For, if the conclusion is that physical systems on 
Alice and Bob’s side cannot be thought of as separate65 entities, then it is 
a statement that pertains to our understanding of reality as a whole (sug-
gesting it possesses a certain holistic character) and not merely to some 
technical details about the speeds at which the influences can propagate. 
Besides, if the essence was truly in non-local interactions that somehow 
allow particles to “communicate” faster than light, we could naturally 
expect that we—and not only particles among themselves—should also 
be able to send faster-than-light signals. The fact that, ostensibly due to 
an interplay of probabilities, entanglement cannot be used for faster-
than-light signalling, speaks in favour of “non-separability” rather than 
of “non-locality”.66 

As noted by Gründler,67 in his reply to the EPR paradox, Bohr pre-
cisely argued that the notion of separability, as understood by classical 
physics and Einstein, is no longer applicable to the reality of quantum 
mechanics. In his paper, Bohr writes: “[...] we have to do with a feature 
of individuality completely foreign to classical physics”, putting the word 
“individuality” in italics.68 Seemingly, his point was that quantum me-
chanics does not allow us to fully consider subsystems individually, as we 
were accustomed to in classical thinking, since reality is in some sense 
not divisible (“individual” comes from Latin, literally meaning “not divis-
ible”). So, Bohr did recognize that quantum mechanics implies some non-
local effects in the sense of inseparability, but this was to him merely one 

64 Myrvold, Genovese and Shimony, “Bell’s Theorem”.
65 There is also a formal definition of separability in quantum information theory 
(being the opposite of entanglement) that corresponds well to this intuitive 
meaning.
66 Seager, “The Philosophical and Scientific Metaphysics of david Bohm”.
67 G. Gründler, “What exactly is proved by the violation of Bell’s inequality?”, 
arXiv, accessed on August 1, 2023, https://arxiv.org/abs/1704.03856v6.
68 Bohr, “Can Quantum-Mechanical description of Physical Reality be Considered 
Complete?”.
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of the features of that different sort of reality that we need to embrace. 
And this new reality clearly does not conform to Einstein’s idea of classi-
cal “realism”.

This difference between notions of locality and separability can be 
explained a bit better if we switch to the description using the so-called 
density matrix, instead of the wavefunction. The density matrix is a 
somewhat richer mathematical object than the wavefunction, capable of 
jointly describing both the quantum-mechanical lack of knowledge about 
systems (described by superposition) and the classical lack of knowledge 
(described by the so-called mixed states). Instead of using state-vector 
|Ψ⟩ given by (1) to describe EPR entangled state of two particles with 
spin (we will again denote them as Alice’s and Bob’s particle), we can 
use the density matrix ρAB that corresponds to this state and describes 
the joint system of both particles.69 However, in addition to the density 
matrix that describes the joint system, we can also define density ma-
trices corresponding to each of the particles taken individually.70 These 
mathematical objects deal with only one of the particles and do not have 
anything to do with the other one. As if we took the joint two-particle 
description and then forgotten (erased) anything about the second par-
ticle and their mutual connection. It turns out that such density matrices 
of individual particles (subsystems) provide sufficient information to pre-
dict the outcome of any possible experiment carried out on that particle 
alone! In other words, it can be argued that this reduced density matrix 
of a single particle is what truly describes the “reality” of that particle. 
(The analogue is not possible to define on the level of wavefunctions.) 
Importantly, it turns out that nothing that Alice does can influence the re-
ality of Bob’s particle defined in this sense, since the quantum formalism 
directly implies that Alice’s actions cannot change the reduced density 
matrix that Bob uses to describe his particle (and to successfully predict 
outcome probability of any possible measurement on it). For this reason, 
considering reduced density matrices is, mathematically, the simplest 
way to prove that it is impossible for Alice to send any information to 
Bob by using entanglement—the result that is far from obvious when 
considering the wavefunction.

Here, the weirdness of quantum mechanics appears through the 
fact that the reality of Alice’s particle alone, combined with the reality 
of Bob’s particle alone, does not represent the full reality of the system 

69 This is a two-particle operator defined as ρAB = |Ψ⟩⟨Ψ|.
70 They are obtained from ρAB by taking the “partial trace” over the other space, 
e.g.: ρA = trB(ρAB). The result is a single particle operator. 
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consisting of Alice’s and Bob’s particles taken together. Namely, the out-
comes of measurements that require access to both particles, in general, 
cannot be inferred (not even probabilistically) based only on these two 
reduced density matrices, even in situations where our ignorance does 
not play any role. This is in contrast with the situation in classical phys-
ics, where analogous situation is possible only when we are lacking some 
piece of information. For example, in classical physics, we could have 
pairs of particles where Alice’s spin is pointing upwards, and Bob’s spin 
points down, and pairs where, vice versa, Alice’s spin is down and Bob’s 
is up. If, from a mixture of ten pairs of the first type and ten pairs of the 
second type we would be randomly given a single pair (so that we do not 
know from which set it originates), our classical description of such a pair 
would be superficially similar to the quantum state of entangled spins (1) 
discussed in the context of the EPR paradox. Namely, it would also have 
the properties that probability of both Alice’s and Bob’s particle spin to 
be up is 50 % (same for down), while each time Alice’s spin turns out to be 
up, Bob’s will certainly be down, and vice versa. However, such classical 
correlations are always a consequence of some type of our ignorance 
(here, we simply did not know from which of the two sets our pair origi-
nated), but they are never the feature of the system per se—since, clas-
sically, particles do have well-defined properties and must “themselves 
know from which set they originated”. 

The essence of the EPR paradox and the Bell’s violation can be seen 
from this perspective: Einstein assumed that the only possible cause of 
such correlations in nature must be in our ignorance, i.e., that there must 
remain some hidden variables which make quantum mechanical descrip-
tion incomplete, but the violation of Bell’s inequality showed us that 
quantum correlations are not always of this type.71 According to quan-
tum mechanics, even if we know everything there is to be known, some-
times reduced density matrices still do not contain sufficient information 
to predict outcomes of experiments performed on the joint system. 
The simplest example of such a joint-type experiment is measuring the 
spins of both particles and comparing the results. To predict outcomes 
of such measurements (in general) we need the full density matrix of 
the joint system—and this matrix, therefore, somehow represents the 
reality of the two particles taken as a whole. As the joint matrix cannot 

71 Quantum-mechanical density matrix can describe both the “mixed state” 
correlations of the ignorance type expected by Einstein, and the counter-intuitive 
inseparable “pure state” correlations of the entanglement. The former differ by 
the absence of off-diagonal matrix elements.
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be reconstructed from the reduced density matrices—and this is not a 
consequence of our incomplete knowledge—the full reality turns out to 
be more than the sum of its parts.

In the case of the two EPR particles in state (1), the spin state of each 
particle is unknown and thus undefined (the reduced density matrices 
are proportional to unit matrices). In the language of Bohr, individual spin 
components of particles do not exist. However, in spite of the non-exis-
tence (indefiniteness) of individual spins, the fact that the spins are oppo-
site is well-defined and thus very much existent (otherwise, conservation 
of angular momentum and rotational symmetry would be violated). And 
the reality of this “oppositeness” is described by the joint density matrix 
ρAB. As if the two Bertlmann’s socks were of different colours despite the 
colour of each individual sock being undefined/non-existent.

This view is intuitively easier to grasp from the viewpoint of interpre-
tations that are closer to Wheeler’s “it from bit” doctrine, that is those 
in which, in one way or the other, information plays the fundamental 
(ontological) role. Wheeler used to liken the universe with the “twenty 
questions” game where the object we are trying to guess  was simply not 
yet decided by the answerer:72 our questions posed to nature by experi-
ments and observations do not find something out about the fixed reality 
that is out there—instead, our questions gradually shape that reality. The 
answer is, in a certain sense, created only after the question, and we are 
only granted to always obtain mutually consistent answers. Returning to 
the case at hand, from this viewpoint there is nothing surprising in the 
fact that the two spins can be opposite and this fact real, as this opposite-
ness follows from available information, while the individual spins, about 
which we can know nothing even in principle, are not yet defined. By 
our measurements required to prepare the initial state of the particles, 
we obtained confirmation from nature that the spins are opposite and 
that is all there is—before we ask anything about the individual spins, na-
ture does not yet have to decide anything about them, and they remain 
vague, undefined.

However, if we follow this line of reasoning, we must be careful about 
who precisely is posing the question to nature. For example, in the EPR 
case, not only that we have two subsystems, but also two observers, so 
the density matrices used to describe reality by Alice and Bob can eas-
ily start to differ. This is a consequence of the fact that the density ma-
trices take into account our classical knowledge (and the lack thereof). 

72 John Gribbin, Marry Gribbin and Jonathan Gribbin, Q. is for Quantum: An 
Encyclopedia of Particle Physics (Simon and Schuster, 2000).
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Namely, when Alice obtains the measurement result of spin projection 
on her particle, this new information pertains also to the joint system of 
the two particles. She may also update her knowledge about the reality 
of Bob’s particle spin (since the spins are opposite)—and the latter now 
also becomes well-defined from her viewpoint. Bob, on the other hand, 
does not know the outcome obtained by Alice, so he describes the joint 
system and the subsystems with different density matrices.73

So, what does it mean if Alice and Bob use different density matri-
ces to describe reality? If these matrices correspond merely to Alice’s 
and Bob’s knowledge, then this sounds quite natural, since they sim-
ply possess different sets of information about the systems they want 
to describe. But, if we want to assume that this knowledge also directly 
corresponds to a given, well-defined and unique reality of the particles 
they describe, obviously not both descriptions can be correct. We may 
be tempted to say that, initially, both Alice’s and Bob’s descriptions were 
the same and correctly represented the reality of Bob’s particle, but after 
Alice’s measurement, she has learned a piece of information that Bob 
does not have, and thus her description is correct, while Bob’s is not. If 
all this is so, then we indeed must concede that Alice’s measurement has 
somehow changed the state of Bob’s distant particle, i.e., that we have 
some sort of non-local influence.

Yet, assuming that additional reality is independent of available infor-
mation is not in the spirit of Wheeler’s proposal (and not even parsimoni-

73 All this directly follows from the standard formalism of quantum mechanics. 
From the perspective of Bob, who does not know the outcome, Alice performing 
the measurement corresponding to Hermitian operator A with spectral 
decomposition A  =  Σi ai Pi  has no effect  on  Bob’s  reduced  density  matrix  since 
ρ′B = trA (Σi (Pi1) ρAB (Pi1)) = trA (Σi (Pi1) ρAB) = trA (ρAB) = ρB, where we 
used cyclic property of trace. The only change Bob’s reduced density operator 
undergoes in this view is of taxonomic nature: after the measurement, it becomes 
a mixed state of the first kind—reflecting the classical lack of knowledge of the 
result that Alice has obtained, while previously it was a mixed state of the second 
kind—i.e., reflecting that it was entangled with Alice’s particle. This classification, 
of course, neither affects the form of the matrix nor the underlying reality. In 
interpretations of quantum mechanics in which collapse is only subjective 
and Alice’s measurement does not result in collapse from Bob’s perspective, 
his particle remains in the mixed state of the second kind—reflecting the 
entanglement which is now not only with Alice’s particle, but also with Alice’s 
measurement apparatus/environment and Alice herself. On the other hand, for 
Alice who knows which specific outcome ai has occurred, the density operator 
of the joint system changes according to the following formula: ρ′AB = (Pi1)
ρAB(Pi1) / trAB(ρAB Pi), leading to a nontrivial change in the reduced density 
matrix of Bob’s particle.
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ous). If we restrain from such a “realist” urge, we may say that there is 
one description (density matrix, or a vector state) and the corresponding 
reality related to Alice, and another one related to Bob. Taking such a 
view is literally, to a certain extent, the position of Rovelli’s “relational 
interpretation” of quantum mechanics. According to this interpreta-
tion, there is nothing anthropocentric here, i.e., Alice and Bob have no 
unique role, and we could speak about the quantum state (and “reality” 
in some sense) from the perspective of any physical system—since the 
state (wavefunction) is here observer-dependent and just encapsulates 
relations between the observed system and the reference system (i.e., 
observer). This is understood in a similar way as the lengths and time 
intervals are relative to observers (i.e., reference frames) in the theory 
of relativity. Another way to interpret different descriptions of reality by 
Alice and Bob, which may be ostensibly conflicting and yet both correct, 
is offered by the “quantum Bayesianism” (QBist) interpretation of quan-
tum mechanics. Here, the quantum state merely represents (rational) 
degrees of belief that an agent can have about the outcomes of possible 
measurements. Yet another would be a reading of the Copenhagen inter-
pretation where the collapse occurs strictly subjectively, and which goes 
hand in hand with the ontology of idealism.74 

It is beyond the scope of this paper to discuss in more detail the men-
tioned views. Nevertheless, it is very dubious whether, and in what sense, 
one can say that the universe is non-local, according to these interpreta-
tions. In all of these views, the wave-function collapse after Alice’s mea-
surement happens only from her perspective, and it is essentially nothing 
else but the update of knowledge (or degrees of belief) that Alice has 
about both hers and Bob’s particle. The fact that Bob’s particle is distant 
makes the update of knowledge, per se, nothing more mysterious than 
if Bertlmann would send a sock from his pair to Andromeda galaxy, and 
would only afterwards present us the other one from the pair: our update 
of the knowledge about the distant sock based on the one that we have 
just witnessed would be instantaneous, irrespectively of the light years 
of distance. Nonetheless, we most certainly would not describe the situ-
ation as a case of faster-than-light interaction—instead, we would simply 
say that we found out something about the distant sock. Note that no 
change in the “reality of Bob’s particle” happens from Bob’s viewpoint 
after Alice’s measurement, and thus, there is no objective non-local influ-
ence of Alice on the distant particle.

74 I. Salom, “To the rescue of Copenhagen interpretation”, arXiv, accessed on 
August 1, 2023, https://arxiv.org/abs/1809.01746v1.
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The mysterious part of these interpretations is not in their attitude 
towards locality, but towards reality. It is in the claim that the knowledge 
and information (given by state vector/density matrix) do not corre-
spond to any objective, observer-independent (or system-independent) 
reality. And since this idea of objective reality is now inherited by this 
observer-dependent information-based reality, finding out something 
about a distant system (which consequently also defines that revealed 
property) might be seen as a sort of action at a distance. However, in our 
view, calling this simply a “non-local interaction” (or a demonstration of 
the non-locality of the universe) is at least misleading and a stretch of 
definition.

There are some additional arguments that it is our understanding of 
reality which we must radically revise as the consequence of Bell’s vio-
lations (and not merely the idea of locality). These are provided by the 
Kochen-Specker theorem75 and more recent violations of the so-called 
Leggett (and Leggett-Garg) inequalities.76 In a similar fashion as with 
Bell’s inequalities, these theorems and experimentally violated inequali-
ties rule out a large class of intuitive realistic theories (e.g,. macroreal-
istic physical theories), this time irrespectively of whether our universe 
respects locality or not. The corresponding experiments were again first 
performed by Zeilinger and his team, and they concluded: “Giving up the 
concept of locality is not sufficient to be consistent with quantum experi-
ments, unless certain intuitive features of realism are abandoned.”77

While it is true that the De Broglie-Bohm hypothesis cannot be falsi-
fied in this way (since it was constructed to be experimentally indistin-
guishable from the standard quantum mechanics), these constraints 
on realistic theories explain why even PWT is very far from the realism 
standards set by classical physics. In particular, as a general consequence 
of the Kochen-Specker theorem, it is not possible to construct any hid-
den variable model (in agreement with experiments) that would have 
simultaneously well-defined values of all measurable properties of sys-

75 Carsten Held, “The Kochen-Specker Theorem”, The Stanford Encyclopedia 
of Philosophy (Fall 2022 Edition), Edward N. Zalta and uri Nodelman, eds., 
accessed on August 1, 2023, https://plato.stanford.edu/archives/fall2022/entries/
kochenspecker.
76 A. J. Leggett, “Nonlocal Hidden-Variable Theories and Quantum Mechanics: An 
Incompatibility Theorem”, Found. Phys., 33, 10 (2003): 1469–1493; A. J. Leggett 
and Anupam Garg. “Quantum mechanics versus macroscopic realism: Is the flux 
there when nobody looks?”, Phys. Rev. Lett., 54, 9 (1985): 857–860.
77 S. Gröblacher et al., “An experimental test of non-local realism”, Nature, 446 
(2007): 871–875.
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tems (hidden variables must be “contextual”, i.e., dependent upon the 
measurement “context”). For example, in PWT interpretation, a special 
role is given to the position of particles and they are real in the standard, 
classical case. However, this is not the case with spin, which cannot be 
taken as a genuine/intrinsic property of particle alone, but it has to do 
with both the wavefunction and the current experimental setup.78 Even 
Bohm himself saw this contextuality as a huge departure from the basic 
principles of classical physics.79 Besides, while postulating a wave-func-
tion existing in the real three-dimensional space would absolutely be in 
the spirit of “classical realism”, it is quite different to posit, forced by the 
quantum phenomenon of entanglement, a wave-function living in some 
abstract N-fold tensorial product of three-dimensional spaces (where 
N is the number of particles in the universe). Arguably, such ontology 
loses touch with the highest ideals of a true realist theory, where real-
ity should be intuitively clear and sort of palpable. (The matters are only 
made worse by the fact that this richness of the wave-function structure, 
which can never be directly observed, leads to endless “zombie worlds” 
of the so-called empty branches.)80 Thus, we see that even in the pilot 
wave theory the core idea of realism has suffered too much to warrant 
claims that ramifications of Bell’s inequalities can be constrained only to 
the issue of locality.

5.5	Something	else?

Overall, we have seen that even if we are ready to sacrifice realism, some 
features of locality (at least in the sense of separability) must be lost as 
well, while the attempts to solve the problem by explicitly giving up local-
ity again land far from any epitome of realism. Hence, Clauser’s original 
formulation, simply stating that we must abandon the idea of “local real-
ism”, seems to be the closest to the mark and to reasonably summarize 
the true philosophical implications of the violations of Bell’s inequalities. 
It is up to different interpretations of quantum mechanics to emphasize 
either the “locality” or the “reality” part of the statement.

78 M. daumer et al., “Naive realism about operators”, Erkenntnis 45, (1996): 
379–397.
79 Goldstein, “Bohmian Mechanics”; david Bohm and Basil J. Hiley, The Undivided 
Universe: An Ontological Interpretation of Quantum Theory (London: Routledge 
and Kegan Paul, 1993).
80 R. Brown, Harvey and david Wallace, “Solving the Measurement Problem: de 
Broglie–Bohm Loses Out to Everett”, Found. Phys., 35, 4 (2005): 517–540.
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However, we must mention the option that retains both the ideal 
of the locality of influences and the idea of observer-independent real-
ity, at the expense of giving up a seemingly necessary and tacitly always 
implied assumption that experiments have unique outcomes. This is the 
widely known many-worlds interpretation (MWI) of quantum mechanics. 
It asserts that it is wrong to say that in the EPR setting, Alice will obtain 
either a spin-up or spin-down outcome in the z-spin measurement—in-
stead, the universe will split (or multiply in some sense) into two uni-
verses, identical in every minute detail, apart from the fact that in one of 
them, there will be Alice seeing the up outcome, whereas the other will 
be inhabited by Alice registering the opposite outcome. While, as with 
every other interpretation, this one also has its strengths and weakness-
es (which we will not delve into), it is not difficult to see that the proof of 
Bell’s theorem cannot be carried out with such a wildly altered definition 
of measurement.

Many-world interpretation posits that the wavefunction of the uni-
verse is ontologically real and observer-independent. In this sense, this is 
a realist interpretation. On the other hand, merely saying that MWI calls 
for a revision of our understanding of reality would be an understate-
ment. Instead of having a single reality of three-dimensional space, we 
now have an almost infinite number of concurrent realities, i.e., “worlds”, 
and essentially everything that might have happened has actually hap-
pened in (at least) one of these worlds. Obviously, this picture of reality 
is far remote from any stretch of Newtonian or classical-like worldview.

6.	 Conclusion:	The	Fate	of	the	Clockwork	Mechanism	

While there might not be a consensus on whether it is the idea of sepa-
rability (locality) or reality that should give in, or maybe that we live in 
countless parallel universes, there is an absolute consensus in contempo-
rary physics that the hopes of ever returning to anything resembling clas-
sical physics are long over. Between the abandoning of reality or locality, 
the philosophy of mechanistic materialism is caught between a rock and 
a hard place, but with no more room left in the middle. Needless to say, 
the many-world option is of no help here. Therefore, the very mechanism 
idea, that the world can be understood as a separable set of moving/
acting parts that affect each other in the immediate vicinity, the view 
that was so pervasive in our science and technology of the last couple of 
centuries—has to be forsaken. Actually, even before Bell’s theorem, and 
long, long before closing all the loopholes in Bell tests, the overwhelm-
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ing majority of eminent physicists involved in the development of quan-
tum theory was already making radical shifts from the old philosophical 
views. Einstein, who still believed that the universe is something akin to 
a huge deterministic clockwork mechanism, was essentially the sole ex-
ception among this elite—and his expectations in this context were, as 
we have seen, proven explicitly wrong.

On the other hand, Bohr, with his “anti-realist” stance, was nei-
ther alone nor the most radical. Unsurprisingly, his close collaborator 
Heisenberg also deemed the speculations that “behind the perceived 
statistical world there still hides a ‘real’ world in which causality holds”, in 
his own words, “fruitless and senseless”.81 No doubt that, in his opinion, 
it was the “reality” which we misunderstood in the previous centuries. 
He saw implications of quantum mechanics as a call for a switch from 
Democritus’ to Plato’s views: “I think that modern physics has definitely 
decided in favour of Plato. In fact the smallest units of matter are not 
physical objects in the ordinary sense; they are forms, ideas which can be 
expressed unambiguously only in mathematical language.”82

Non-separability was, to him, seemingly just an anticipated part of 
this ideological shift: “There is a fundamental error in separating the 
parts from the whole, the mistake of atomizing what should not be at-
omized. Unity and complementarity constitute reality.”83

Wolfgang Pauli was also clear that it is time to move on from the 
worldview based on classical prejudices: “The mechanistic world view 
seems to us as a historically understandable, excusable, maybe even tem-
porarily useful, yet on the whole artificial hypothesis.”84

Fascinated by Jung’s idea of synchronicity (which he saw on par with 
the principle of causality, complementing it in the explanation of the 
world) and psychology of the unconscious, Pauli’s views are generally 

81 W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen 
Kinematik und Mechanik”, Z. Phys., 43, (3 (1927): 172–198.
82 W. Heisenberg, Das Naturgesetz und die Struktur der Materie. Natural law and 
the structure of matter (Stuttgart: Belser-Presse, 1967).
83 B. Piechocinska, “Physics from Wholeness: dynamical Totality as a Conceptual 
Foundation for Physical Theories”, Uppsala Universitet/Acta Universitatis 
Uppsaliensis (2005).
84 Harald Atmanspacher and Hans Primas, Recasting Reality: Wolfgang Pauli’s 
Philosophical Ideas and Contemporary Science (Springer Science & Business Media, 
2008).
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classified under the heading of a dual-aspect theory and he has never 
highly esteemed the philosophy of materialism.85

Interestingly, while Erwin Schrödinger often supported Einstein in de-
bates on topics in physics, his basic philosophical views were even more 
distant from materialism than Pauli’s. Finding agreement in Upanishads, 
he saw Brahman and Atman as essentially the same, clearly supporting 
idealist philosophical views: “The external world and consciousness are 
one and the same thing”.86 He leaves no doubt which of the two is the 
fundamental one in his view:  “Consciousness cannot be accounted for in 
physical terms. For consciousness is absolutely fundamental. It cannot be 
accounted for in terms of anything else.”87

Here, by consciousness he does not consider merely individual, per-
sonal consciousness, since he finds the plurality of consciousness to be 
deception (Indian maya): “The ego or its separation is an illusion.”88 

Idealist views were already expressed by Max Planck: “I regard 
consciousness as fundamental. I regard matter as derivative from 
consciousness.”89 In other words, his opinion was that “mind is the ulti-
mate source of matter.”90 

Consciousness was also essential for Eugene Wigner and John von 
Neumann. They were even of the opinion that it is indispensable for the 
quantum theory in the sense that, according to Neumann–Wigner inter-
pretation, it is the consciousness of the observer that causes the collapse 
of the wavefunction. Von Neumann also recognized that the wavefunc-
tion collapse (“the process 1” as he called it) has a unique role in the uni-
verse as only it can create new information (unlike “the process 2”—the 
deterministic evolution by Schrödinger’s equation).

We also encounter the emphasis on both information and the crucial 
role of the observer in the views of John Archibald Wheeler, in his already 

85 Harald Atmanspacher, “The Pauli–Jung Conjecture and Its Relatives: A 
Formally Augmented Outline”, Open Philosophy, 3, 1 (2020): 527–549.
86 Erwin Schrödinger, My View of the World (Cambridge: Cambridge university 
Press, 1964), quoted from R. Malhotra, Being different: An Indian challenge to 
western universalism (Princeton, N.J.: Infinity Foundation, 2018).
87 The Observer, January 11, 1931; also in Psychic Research 25 (1931), 91. 
88 Walter Moore, Schrodinger: Life and Thought (Cambridge university Press, 
1992).
89 The Observer, January 25, 1931, p.17, column 3.
90 “das Wesen der Materie [The Nature of Matter]”, a 1944 speech in Florence, 
Italy, Archiv zur Geschichte der Max-Planck-Gesellschaft, Abt. Va, Rep. 11 Planck, 
Nr. 1797.
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mentioned “it from bit” doctrine, combined with the idea of a “participa-
tory universe” (Participatory Anthropic Principle). 

For him (conscious) observers were participators in creating the real-
ity, by posing questions to nature (by measurement and observation), 
as in his variation of the “twenty questions” game. The information con-
tained in the answers was the basis for the existence of all physical things.

Of all of them, the philosophical positions of Max Born were the least 
radical (with respect to the prevailing materialistic views of that time). 
Since his contribution to quantum mechanics was the probabilistic in-
terpretation of the (modulus squared) wavefunction, he, naturally, dis-
agreed with Einstein on the issue of determinism. This further led to dif-
ferences about the existence of free will, since Born’s opinion was that 
the breach of causality arising from quantum mechanics provides a chan-
nel for our true agency in the physical world.91 In this sense, he was also 
departing from the philosophy of radical (monistic) materialism.

Curiously, even david Bohm did not support Einstein’s philosophical 
views. This might come as a surprise, since it was he who revived and 
further developed De Broglie’s vague idea of pilot-wave theory, to fully 
develop what is now known as de Broglie–Bohm theory—and is often 
seen as the last refuge of people looking to salvage as much as possible 
of our classical intuitions about the world and objective reality. (As for 
De Broglie, it is known that he has changed his philosophical views a few 
times.) But, Bohm had far more complex metaphysical intentions than at-
tempts to resurrect mechanical worldview. To him, the pilot-wave theory 
was a way to unite his holistic view of the universe, with the importance 
of information and mind.92 He strongly believed that the reductionistic 
approach of classical physics, relying on the separability of subsystems, 
was wrong: “Ultimately, the entire universe (with all its ‘particles’, in-
cluding those constituting human beings, their laboratories, observing 
instruments, etc.) has to be understood as a single undivided whole, in 
which analysis into separately and independently existent parts has no 
fundamental status.”93

As we can see, it turns out that Bohm advocated his mechanics not in 
spite of its non-locality (i.e., inseparability) features, but because of them. 
Furthermore, he saw the wavefunction as embodying a special kind of 

91 T. G. Cowling, Natural Philosophy of Cause and Chance (Nature Publishing 
Group, 1949).
92 Seager, “The Philosophical and Scientific Metaphysics of david Bohm”.
93 D. Bohm, Wholeness and the Implicate Order (London, uK: Routledge and 
Kegan Paul, 1980).
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information he called “active information” that was per se of semantic 
character (unlike Shanon’s information). Indeed, in this informational 
context, the abstract and huge dimensional space in which the wavefunc-
tion exists has much more sense than in the context of attempts to ex-
plain the wavefunction as a part of a classical-like realist ontology.94 And 
since the information was semantic, it was related to his, essentially pan-
psychic view that “the particles of physics have certain primitive mind-
like qualities”.95 The main achievement of his theory, for him, was not in 
any underlying realism, but that “the way could be opened for a world 
view in which consciousness and reality would not be fragmented from 
each other”.96 Overall, as Seager concluded: “In the end, Bohm’s meta-
physics is about as far from that of the Newtonian classical metaphysical 
picture of the world as one could get”.97 In this sense, we see that Bohm 
had much deeper and very different philosophical motives than most of 
his contemporary followers who are merely attracted by distant echoes 
of classical mechanistic views that can be found in Bohmian mechanics.98 

Above, we have summarized the philosophical views of the greatest 
physicists of the first half of the 20th century—of essentially everyone 
who significantly contributed to the birth of the new quantum theory. 
(We missed mentioning Paul Dirac since he had a sort of aversion towards 
quantum interpretations and philosophical issues. He explained his atti-
tude by writing: “I don’t want to discuss this question of the interpreta-
tion of quantum mechanics [...] I want to deal with more fundamental 
things”.99) Not only that Einstein was the only one of them who believed 
in a classical-like mechanistic conception of the world, but the vast major-
ity of them insisted on the necessity to radically evolve our understand-
ing of reality (not locality), often even being starkly non-materialistic and 
emphasizing the role of consciousness in one or the other way. And all of 
them were exceptional geniuses, who had the deepest available knowl-
edge of the laws of our universe. Thus, it is safe to say that there were 
plenty of rational arguments that mechanical worldview was no longer a 

94 Seager, “The Philosophical and Scientific Metaphysics of david Bohm”.
95 D. Bohm, “A new theory of the relationship of mind and matter”, Philos. 
Psychol., 3 (1990): 271–286.
96 Bohm, Wholeness and the Implicate Order.
97 Seager, “The Philosophical and Scientific Metaphysics of david Bohm”.
98 Ibid.
99 H. Kragh, Natural Philosopher. Simply Charly, PressBooks, accessed on August 
1, 2023, https://pressbooks.pub/simplydirac/chapter/naturalphilosopher.
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plausible description of the universe, even long before we got the rock-
solid mathematical proof for that, in the form of the Bell’s violations.

And, finally, once it was experimentally established that Bell’s in-
equalities are indeed violated in our universe, we encountered a truly 
unique situation in the entire history of science. Never before has hu-
manity been in need to abandon an entire paradigm because of a proof 
of mathematical nature that could guarantee that our previous scien-
tific view—in a quite broad sense—was plainly wrong. Namely, it was 
common, throughout the history of science, that one particular theory 
would succeed the previous one—as soon as it demonstrated to provide 
a better and more precise description of nature. But, this time, what was 
falsified was not some particular theory or model—it was a whole huge 
class of theories, and precisely those theories that we, just until recently, 
thought were the only reasonable and possible choices. We are speaking 
of abandoning the entire scientific worldview that was absolutely domi-
nant for a few centuries (at least in exact sciences). It was dominant to 
the extent that we, for the most part, tacitly understood it surely must 
be the correct one, so that rarely anyone even bothered to question it. 
And, if it was not for the Bell’s theorem, which possesses this unyielding 
power of a precise mathematical statement, to this day we would not 
be aware of the immensity and the inevitability of the quantum revolu-
tion that took place. Without Bell, some physicists could, even nowadays, 
see the quantum mechanics as yet another incremental step in scientific 
progress, possibly one of only technical nature. And there would always 
be a remaining chance that Einstein was right after all, and that someday 
we would find a reasonable mechanistic model “rationally” explaining all 
that quantum “mumbo-jumbo”, in a form of some good old (complicated 
or not) clockwork mechanism. But, thanks to the Bell’s theorem, we now 
know that this can never happen. (Again, we stress that by a clockwork-
like mechanistic model, we assume one being both local and realistic.) 
The word “never” is something we are basically not allowed to use in 
physics, except in this context—such is the extraordinary generality and 
pure mathematical strength of the Bell’s “no go” theorem. This is the 
reason, and a much of justification, why Stapp saw Bell’s theorem as the 
most profound in all of science.

With such few things that we can declare with certainty in physics, 
and with the debunking of mechanistic doctrine after Bell being one rare 
example, it is unbelievable that the perception of the universe as a (de-
terministic) clockwork mechanism persists to this day, even among many 
(obviously less well-informed) scholars of various scientific disciplines, 
and let alone in the general public. Ironically, most of them are clinging 
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to mechanistic materialism in a false belief that they are upholding strict 
scientific views. We hope that the Nobel Prize awarded last year can help 
raise awareness of the scientific and philosophical revolution that hap-
pened almost half a century ago (with the first Bell tests) and that a clock-
work mechanism picture of the reality will soon be widely recognized for 
what it is—a “flat Earth” of philosophy.
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Appendix	A:	Bell’s	Inequality

A complete understanding of how it was possible to formulate and prove 
a statement so general as that of Bell’s inequality can be gained only by 
going through its derivation. Thus, we will briefly derive the simplest ver-
sion of Bell’s inequalities known by the name CHSH inequality (in years 
after the Bell’s original paper,100 many variations of Bell’s initial inequality 
appeared, all of them nowadays collectively called Bell’s type inequali-
ties, or simply, Bell’s inequalities; CHSH was named after John Clauser, 
Michael Horne, Abner Shimony, and Richard Holt).

For simplicity of exposition of the proof, instead of considering the 
state of two particles with spins , we will here analyse a system made of 
two photons and consider their polarizations. (Beside mathematical con-
venience, most of the real experiments were performed with photons, 
so this different choice of physical system also simplifies comparisons 
with actual tests of Bell’s inequality). We will again assume that the first 
photon is heading towards Alice and her lab, while the second is heading 
towards Bob and his lab, which we will take to be far apart. While we 
were previously considering two particles with opposite spin directions, 
now we will focus on a case where the two photons are emitted (in oppo-
site directions) from a common source in such a way that they have iden-
tical polarizations. Throughout this section we will keep in mind a realis-
tic picture of the universe, where the polarizations are existing and are 
well-defined irrespective of observation—and, thus, we will assume both 
photons have the same, real polarization angle, to be denoted as λ. (As 
already stressed, the inequality we are about to prove puts a constraint 
on locally-realistic universes.) This value λ is unbeknown both to Alice and 
Bob, and might be thought of (in the simplest case) as a random angle 
(not necessarily in the sense of fundamentally-inherently random).101

Quite generally, if we direct an incoming photon towards a polarizing 
filter, it will either pass the filter or be absorbed. In principle, we expect 
this outcome to depend on at least two factors: the angle of polariza-
tion of the photon, and the angle at which we orient our polarizing filter. 
(Commonly, it is understood that if the two angles coincide, the photon 
will certainly pass the filter, while if the angles are perpendicular, the pho-
ton cannot pass. However, for this derivation we will not take anything 
for granted and, in any case, this will be irrelevant for the derivation.)

100 Bell, “On the Einstein Podolsky Rosen paradox”.
101 Eventually, it will turn out that these assumptions of identical polarizations λ 
of both photons and of random distributions are not essential for the derivation 
of CHSH inequality.
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Both Alice and Bob will let their photons impinge on polarization fil-
ters: Alice will orient her filter at an angle to be denoted as a, while Bob 
will orient his filter at angle b. We will introduce a variable A, which will 
take value 1 if Alice’s photon manages to pass through her filter, and value 
–1 if it gets absorbed. And here comes the crucial part of the entire theo-
rem: what does the outcome, i.e., the A value, depend upon? Certainly, we 
expect A to depend on Alice’s decision at which angle to orient her polar-
izer (that we denoted by a), as well as on the angle of the photon polariza-
tion (denoted by λ). Importantly, the outcome A cannot depend on Bob’s 
choice of his angle of polarizing filter b, simply because Bob can be light 
years away from Alice, and the presumption is that the universe respects 
the locality principle (i.e., no instantaneous influences). Therefore, we 
may write A as a function of a and λ, that is A = A(a, λ). In principle, it might 
be that the value A also depends on some other factors—in the end, we 
will see that the result trivially generalizes to include this possibility. In the 
same way, we introduce variable B and have B = B(b, λ).

We will consider the expected value (or mathematical expectation, 
similar to arithmetic mean value) of the product A(a, λ)B(b, λ). Since the 
angle λ is here the only unknown variable, to find the expected value 
E(A · B) we must average over all possible angles:

 (3)
Since there is an infinite number of possible angles, we had to inte-

grate over all of them to get the average. Here, ρ(λ) denotes the prob-
ability distribution for the angle λ—i.e., probability (density) that the 
photons have the particular polarization angle λ—allowing for the pos-
sibility that some angles are more probable than others. We only know 
that it must hold:

 (4)
since it is certain that the angle λ must take some value between 0 
and 2π. (If the distribution is uniform, then we simply have ρ(λ) = .) 
After integration over λ, we see that the expectation value  depe-
nds only on the remaining variables a and b, that is, the averaged value of 
this product that we will obtain after many repeated experiments even-
tually depends only on the choices of angles that Alice and Bob make. For 
simplicity, we can thus write E(a, b) ≡ E(A(a, λ)  B(b, λ)).

Now comes the ingenious part of the Bell’s theorem (in the CHSH 
variant). We will consider a very specially defined value S:

S ≡ E(a, b) + E(a′, b) + E(a, b′) − E(a′, b′), (5) 
and shortly it will become clear why such a choice is relevant.
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Above, a, a′, b, and b′ denote 4 different angles. Namely, the idea is 
that Alice and Bob first set their filters to angles a and b and find the ex-
pectation value E(a, b) by averaging over many experiments. Then Alice 
shifts her angle to a′ and they find E(a′, b) in the same way. Next, Alice 
sets her angle to a, and Bob to b′ to find E(a, b′). In the end, they also find 
E(a′, b′).

Finally, we can explicitly formulate the famous Bell’s inequality (in the 
CHSH variant): in any locally-realistic universe, and for any choice of a, a′, 
b and b′, the value of S must be less or equal to 2, i.e.,

S(a, a′, b, b′) ≤ 2. (6)
Before we explain the relevance of such a result, let us first prove the 

inequality.
We begin by noting a simple fact:  either A(a, λ) + A(a′, λ) = 0 or  

A(a, λ) – A(a′, λ) = 0. This is actually a trivial statement, since both A(a, λ) 
and A(a′, λ) can take either value 1 or –1, so that either their sum, or their 
difference, must vanish. In a similarly simple manner, it follows that:

B(b, λ)(A(a, λ) + A(a′, λ)) + B(b′, λ)(A(a, λ) − A(a′, λ)) ≤ 2.
This holds since one of the two terms must vanish, and the other term 

cannot be greater than two by absolute value: |A(a, λ) ± A(a′, λ)| ≤ 2 and 
|B(b, λ)| ≤ 1,   |B(b′, λ)| ≤ 1.  Now, if we multiply this inequality by ρ(λ) and 
integrate over all angles λ, we directly obtain the result we intended to 
prove:

  (7)

Namely, by comparison with the definition (5) we recognize that, due 
to equation (3), the integral on the left side yields precisely S value, while 
the expression on the right-hand side is equal to 2, due to equation (4).

Thus, we have proved the inequality (6) which tells us something 
(quite specific indeed) about the averaged outcomes of the repeated 
experiments with photons and polarizers. Crucially, we obtained this re-
sult essentially without assuming anything about the physical laws that 
govern the polarizations and filters! The only thing we explicitly assumed 
was that Bob’s choice of how to set up his apparatus cannot influence 
Alice’s outcomes far, far away (and vice versa). For simplicity, we also 
initially assumed that Alice’s outcome depends only on her filter angle a 
and the unknown polarization of the photon λ (same for Bob). However, 
we did not need this assumption, since we can repeat the same deriva-
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tion while taking λ to represent a whole set of relevant values, instead of 
a single angle. Among these values in the set λ can be, for example, the 
location of Alice’s lab, and/or two different angles instead of one—one 
for Alice’s photon and a different one for Bob’s, or any other value(s) 
that might be relevant for the outcomes. Regardless of what the set λ 
contains, we will again integrate over all possibilities, weighted by the 
corresponding probability density ρ(λ), to get the expected value of the 
product A . B.  Note that the general form of the probability density ρ(λ) 
also allows for the possibility not only that some photon polarizations are 
more frequent than others, but also that the photon polarization need 
not be random at all (e.g., taking ρ(λ) proportional to delta function). It 
also allows for much more complex hypotheses such that polarizations 
on Jupiter could be more often inclined towards its moon Io, while those 
on Earth must be aligned to follow the angle of the Leaning Tower of 
Pisa. Whatever the rules are, the inequality must be satisfied!

Actually, in the derivation of (6), we have tacitly used another as-
sumption about the underlying physics: we implied it was deterministic. 
Namely, this is seen from our statement that Alice’s outcome A is a func-
tion of values a and λ, meaning that each time a and λ are the same, the 
outcome A must also be the same. However, it turns out that the inequal-
ity remains the same even if we allow the physics to be indeterministic, 
and if we only assume that probabilities of getting A = 1 or A = –1 depend 
on values a and λ. (Essentially, we only need to replace the A value with 
its mathematical expectation.)

In addition, during this entire analysis, we had in mind a picture of a 
well-defined objective reality—two photons exist in and of themselves, 
with their always well-defined properties such as polarization. And we 
assumed that outcomes A and B (or, at least, probabilities for these out-
comes) depend on these real properties of the physical systems (regard-
less of whether these properties and their values are known, and regard-
less of what measurements we have or have not made).

So, to summarize, we assumed a locally-realistic universe and noth-
ing else about the underlying physics, and obtained that the value of S, 
defined by (5), must always be less or equal to two.

But, why is that relevant at all? This particular definition of S is impor-
tant since it turns out that, for certain choices of angles a, a′, b and b′, 
quantum mechanics predicts that the value of so-defined S will be great-
er than 2. This we will show in Appendix B.
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Appendix	B:	Quantum	Violation

To show that quantum mechanics predicts violations of Bell’s inequality, 
we will consider the following entangled state of two photons, which 
nowadays can be easily realized in a lab:

|Φ⟩ = (|H⟩|H⟩ + |V⟩|V⟩). (8)

This state is similar to the state |Ψ⟩ of two particles with opposing 
spins (1), just as the state |Φ⟩ describes two photons whose polarizations 
will be the same (not opposite) upon the measurement in any chosen 
direction (direction of polarization is always perpendicular to the direc-
tion of photon propagation, so we here only consider these perpendicu-
lar directions). Here, H and V denote, respectively, horizontal and vertical 
linear polarization (with respect to some, arbitrarily chosen axes). Note, 
however, that individual polarizations of the two photons are not well-
defined in this state: when directed into a polarization filter, each of the 
photons has  chance of passing through, irrespective of the polarizer 
angle. (The arbitrarily chosen horizontal and vertical directions H and V 
in expression (8) are not actually distinctive nor preferential in any sense, 
since this state would retain the same form when expressed in any other 
basis of two perpendicular directions H′ and V′—the state |Φ⟩ is isotro-
pic.) In other words, the state |Φ⟩ corresponds to the situation where 
individual polarizations are not well-defined (so, in Bohr’s sense, they are 
not fully real), while the fact that these two “unreal” polarizations are 
mutually identical is nevertheless well-defined and real. Following the 
analogy with socks, here we should consider a same-colour pair, and the 
situation would then be similar as if the colours of the two socks were 
not well-defined/real, but nevertheless, it was certain that the non-exis-
tent colours are the same (so that, observing one sock automatically also 
determines the colour of the other one).

To show a quantum violation of the CHSH inequality, we again note 
that, according to quantum mechanics, the first, i.e., Alice’s photon, has 
a 50 percent chance to pass through Alice’s filter, irrespective of the fil-
ter orientation a. Quantum formalism implies that, if this happens, Bob’s 
photon polarization state will be immediately projected to the vector 
state that corresponds to the same angle a. In other words, if we have 
measured that Alice’s photon was polarized in the direction a, Bob’s pho-
ton sort of immediately becomes polarized in the same way. (While a 
detailed discussion in this direction is beyond the scope of this review, 
we note that the temporal order of Alice’s and Bob’s measurements 
in this setting can depend upon the velocity of the frame of reference, 
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seemingly leading to, among some other interesting philosophical impli-
cations, strange relativity of whether an outcome was random or pre-
determined.) If Bob’s photon next encounters Bob’s polarization filter 
oriented at the angle b, quantum physics predicts that it has probability 
cos2(a – b) to pass it and sin2(a – b) to be absorbed (this also matches the 
classical result known as the Malus law). Therefore, the probability that 
both photons pass their filters, i.e., have A = 1 and B = 1 outcomes, ac-
cording to quantum mechanics, is P(A = 1, B = 1) = cos2(a − b). Similarly, 
probabilities to get the other three outcomes P(A = −1, B = 1), P(A = 1, 
B = −1), and P(A = −1, B = −1) are, respectively, sin2(a − b), sin2(a − b), 
and cos2(a − b). We should notice that no “real angle of polarization” λ 
of the two photons, or anything alike, appears in the quantum mechani-
cal description of the situation. That is why the hypothetical angle λ from 
our prior analysis of a realistic universe would usually be called a “hidden 
variable”. Also, note that the probability of both photons passing their 
polarizers cannot be written as a product of two independent probabili-
ties for each of the photons to pass (as we previously presumed possible 
and necessary in a locally-realistic universe).

Knowing these probabilities, it is now easy to compute the quantum 
expected value of the product A · B:

E(a, b) = E(AB) = P(A = 1, B = 1) · 1 · 1
+ P(A = −1, B = 1) · (−1) · 1
+ P(A = 1, B = −1) · 1 · (−1) (9)
+ P(A = −1, B = −1) · (−1) · (−1)
= cos2(a − b) − sin2(a − b) = cos2(a − b).
Once we know the formula E(a, b) for the expected value of the prod-

uct for given angles a and b, we can directly compute the S value for any 
given choice of the four angles a, a′, b and b′. To complete Bell’s proof, 
we should only find some concrete four angles for which the quantum 
prediction of the value of S exceeds number 2. And, for example, the 
inequality is violated for the following choice: a = 45o, a′ = 0 o , b = 22.5 o  
and b′ = 67.5 o, because:

S = cos(2 × 22.5) + cos(−2 × 22.5) + cos(−2 × 22.5)
−(cos(−2 × 67.5)) = 4 ×    = 2√2 ≈ 2.828 > 2.

Therefore, the standard Bohr’s version of quantum mechanics claims 
that Bell’s inequality can be violated. In particular, that it must be violated 
for the above choice of angles (it can be shown that this value of S = 2√2 
represents at the same time the maximal possible violation). But in a uni-
verse that is real in Einstein’s sense and respects the locality of interac-
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tions, there is absolutely no way to obtain such a high value for S. Hence, 
the existence of this quantum mechanical example that violates Bell’s 
inequality completes the proof of Bell’s theorem—that no local-realist 
theory can ever reproduce all predictions of quantum mechanics. 

Consequently, we have proved that the two worldviews (Einstein’s 
and Bohr’s) are not only philosophically different, but they can be also 
differentiated by an objective experiment! This was Bell’s pivotal contri-
bution to our understanding of the universe.

Bell’s inequality, in principle, also provided general instructions on 
what should be experimentally measured to settle the dispute. One first 
needed to be able to create pairs of photons in the state given by (8), af-
ter which each photon from a pair should be directed to a polarizing filter 
oriented, respectively, at angle 45o and 22.5o, in order to measure E(a, b). 
Then, the experiment should be repeated with angles 0o and 22.5o to 
measure E(a′, b), and so on. The particular expectation value is easily ex-
perimentally inferred (for any fixed choice of a and b angles) by using the 
first part of the equation (9), which, in practice, boils down to:

    (10)

where N++ would be the number of events in which both photons 
passed their filters, N+− would be the number of cases that the first one 
passed but the second was absorbed, and so on.
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Игор	Салом
Универзитет у Београду, Институт за физику, Београд

НОБЕЛОВА НАГРАДА ЗА ФИЗИКУ ЗА 2022. ГОДИНУ  
И КРАЈ ЕРЕ МЕХАНИСТИЧКОГ МАТЕРИЈАЛИЗМА

Идеје и резултати који се налазе у позадини Нобелове награде 
за физику, додељене 2022. године, имали су огроман утицај на наше 
разумевање самих основа универзума, односно фундаменталних 
особина стварности у којој живимо. Зато је од изузетног значаја да 
импликације ових открића такође стигну и до шире јавности, а не само 
до уских научних кругова. Стога, овај прегледни рад представља покушај 
да се ова револуција у научном погледу на филозофску суштину нашег 
универзума, а која је коначно овековечена и потврдом Нобеловог 
комитета, објасни и приближи што ширем кругу читалаца. Притом, то је 
изведено уз што мање позивања на математичке детаље (текст је писан 
са идејом да се може пратити и уз потпуно занемаривање математичких 
исказа, којих у главном тексту, ионако да готово и нема).  

Почећемо од генијалних научних расправа између Алберта Ајнштајна 
и Нилса Бора о самој природи квантне механике, у којима је Ајнштајн 
заступао своју „здраворазумску” визију универзума, зановану на 
детерминизму и уверењу да физички системи морају увек поседовати 
добро дефинисане, реалне особине, независне од контекста и мерења, 
док је Бор износио своје револуционарне погледе на природу реалности, 
а која је, по њему, своје јасне особине попримала тек у контексту 
конкретног експеримента. Расправе су кулминирале када је Ајнштајн, 
заједно са колегама Подолским и Розеном, формулисао такозвани ЕПР 
парадокс – проблем који ће послужити као подстицај за многобројна 
каснија истраживања у овом контексту (укључујући и она крунисана 
прошлогодишњом Нобеловом наградом), па чак посредно довести и до 
нових технологија везаних за квантну теорију информација. Ајнштајн је 
сматрао да је ЕПР аргументом коначно доказана „некомплетност” квантне 
механике, односно да ова физичка теорија не може претендовати да 
пружи потпуну слику стварности (у најбољем случају, може представљати 
само некакву апроксимативну теорију). Ипак, Ајнштајнове примедбе 
на рачун квантне механике су остале филозофске природе, док је њен 
практични успех био толики да се мало ко интересовао за потенцијалне 
дилеме око њене „комплетности”.

Затим ћемо се фокусирати на ирског физичара Џона Бела, који је био 
много више окупиран филозофским импликацијама квантне физике него 
њеним практичним последицама. Делећи Ајнштајнов поглед на физику и 
природу нашег универзума, он је био фасциниран идејом да се пронађе 
комплетнија и „објективнија” теорија од квантне механике, а која би 
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била у духу „реализма”: у којој би физички системи увек имали добро 
дефинисане особине и где не би било „субјективистичких” елемената 
нити специјалне улоге мерења. Био је инспирисан Де Брољ-Бомовом 
механиком: интерпретацијом квантне механике која је, по њему, 
имала много пожељних карактеристика (уједно била и „реалистична” 
и детерминистичка), али и велики проблем такозване манифестне 
„нелокалности” – односно, у тој теорији, утицаји су се преносили тренутно 
на даљину, пркосећи Ајнштајновој теорији релативитета. Трагање за 
реалистичном теоријом која не би имала овај проблем нелокалности, 
довело га је, на крају, до данас чувене Белове теореме – резултата 
који неки сматрају највећим достигнућем у целокупној историји људске 
науке, а не само физике. Надовезавши се на поставку из ЕПР парадокса, 
Бел је, са математичком стогошћу, доказао да се свака (колико год 
компликована) „здраворазумска”, односно локална и реалистична 
теорија, неизбежно мора експериментално разликовати од квантне 
механике. Другим речима, да квантна механика или мора бити погрешна 
на начин који се може доказати експериментом (а Бел је показао и како), 
или заувек морамо променити наше схватање универзума и одбацити 
сваку наду да се он може објаснити у истинском духу механицистичке 
физике и филозофије. Након Белове теореме, остало је да експеримент 
донесе своју пресуду. 

Коначно, размотрићемо експерименте који су пратили Белову 
теорему. Прво Џон Клаузер, па затим и Алан Аспе и Антон Цајлингер – 
тројица прошлогодишњих нобеловаца – отклонили су, кроз низ вештих 
експеримената, сваку сумњу: наш универзум није локално-реалистичан 
и никад неће бити могуће наћи теорију која би била у складу са 
Ајнштајновим (а и Беловим) очекивањима, а да притом буде у складу са 
експериментима. 

Исход ових експеримената нас је приморао да дубоко преиспитамо 
наше разумевање универзума. Детаљније ћемо продискутовати о 
филозофским последицама ових експерименталних резултата и о томе 
какве измене нашег погледа на свет они захтевају. Као што ћемо видети, 
једно је извесно: стандардна слика универзума као компликованог 
безличног механизма, у коме се сваки утицај може испратити и ништа се 
не догађа волшебно и на даљину – сигурно више није научно утемељена 
опција и никад више не може ни бити. Данас ово знамо са сигурношћу која 
је необична за физику, а коју је могла да пружи само строга математичка 
теорема какву нам је Бел подарио.

Кључне	 речи:	 ЕПР парадокс, Белова теорема, Белова неједнакост, 
заснивање квантне механике, локални реализам

Прихваћено за објављивање на се�ници 
Уређивачко� о�бора 11. новембра 2023.
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A large-scale machine learning
study of sociodemographic
factors contributing to COVID-19
severity
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Marko Djordjevic1*

1Quantitative Biology Group, Faculty of Biology, University of Belgrade, Belgrade, Serbia, 2Institute of

Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Understanding sociodemographic factors behind COVID-19 severity relates to

significant methodological di�culties, such as di�erences in testing policies and

epidemics phase, as well as a large number of predictors that can potentially

contribute to severity. To account for these di�culties, we assemble 115 predictors

for more than 3,000 US counties and employ a well-defined COVID-19 severity

measure derived from epidemiological dynamicsmodeling.We then use a number

of advanced feature selection techniques from machine learning to determine

which of these predictors significantly impact the disease severity. We obtain

a surprisingly simple result, where only two variables are clearly and robustly

selected—population density and proportion of African Americans. Possible

causes behind this result are discussed. We argue that the approach may be useful

whenever significant determinants of disease progression over diverse geographic

regions should be selected from a large number of potentially important factors.

KEYWORDS

SARS-CoV-2, sociodemographic factors, feature selection, Random Forest, XGBoost,

mRMR

1. Introduction

More than two years into the COVID-19 pandemic, there are still many open

questions regarding the spread and severity of SARS-CoV-2. Not only can we not

explain, on an individual basis, who will experience severe illness or no symptoms

at all, but we often lack this predictive power even on the larger scale of entire

regions, where personal traits and individual genetical predispositions are averaged out.

Different countries or regions within a country experience diverse numbers of new

cases and fatalities, with patterns that are difficult to anticipate. On the other hand,

the potential benefits of the ability to understand and foresee the regional COVID-

19 behavior are clear: it would assist governments in appropriately allocating resources,

help sustain economic activities, and allow to correctly and timely estimate risks and

necessary measures—thus saving human lives and reducing the overall epidemic impact.
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Naively, in the present era of abundant and widely available

data, one could expect that most of these questions could be settled

down by systematically comparing the COVID-19 numbers with

various demographic and environmental parameters. However,

while much progress in this direction has been made (e.g., Adhikari

and Yin, 2020; Allel et al., 2020; An et al., 2020; Gupta and

Gharehgozli, 2020; Pan et al., 2020; Djordjevic et al., 2021b;

Hradsky and Komarek, 2021; Lorenzo et al., 2021; Markovic et al.,

2021; Perone, 2021; Rontos et al., 2021; Salom et al., 2021; Singh

et al., 2021; Wang et al., 2022), many methodological obstacles

complicate this type of research and often lead to conflicting

conclusions of otherwise similar studies.

One obvious problem lies in often significant correlations

between potentially relevant demographic predictors, making

it challenging to disentangle their influences. This is further

complicated by interactions between the variables and the

nonlinear ways some of these predictors may influence COVID-19

observables. To distinguish between such delicate effects requires

careful numerical analysis and sufficiently large COVID-19 data.

State-of-the-art statistical and machine-learning methods can be

effective if they are provided with sufficiently large, high-quality

data. To train accurate models, one should collect relevant data

from a large number of smaller regions. However, in the COVID-

19 context, this comes with a trade-off: diverse regions tend to

have inconsistent testing/reporting policies, and the data is often

less reliable (or entirely unavailable) for smaller regions. In general,

this dependence of COVID-19 observables (e.g., case counts and

fatalities) on local policies (mostly on testing protocols and rules

on which deaths are attributed to COVID-19) poses a problem in

how to compare the data from various regions meaningfully. Even

when policies reasonably coincide, making equal-time comparisons

rarely makes sense since different counties of states belong to

different phases of the epidemics curve.

Another methodological issue is to define the response variable,

i.e., to quantify the precise aspect of the pandemic that we want

to investigate and the appropriate proxy variables. In particular,

there are two main, substantially different aspects of assessing

the pandemic effects: (i) Analyzing virus transmissibility, i.e.,

how rapidly it spreads in the community, which is necessary to

understand the evolution of COVID-19 case numbers, and (ii)

Investigating SARS-CoV-2 severity—i.e., understanding individual

hospitalization/morbidity/mortality risks, what causes differences

in infection severity, and identifying subpopulations or regions

more prone to severe forms of the disease. Of the two, much

more effort has been devoted to the former, while the studies

investigating the disease severity face the additional problem of

choosing a relevant severity measure intrinsically independent of

the transmissibility. For example, using COVID-19 fatalities is

not suitable, despite being often used in this context (Wu et al.,

2020; Moreira et al., 2021) since it is strongly correlated with

COVID-19 prevalence (i.e., transmissibility) in the population

(Markovic et al., 2021)—qualitatively, a larger number of cases

(larger transmissibility) also leads to a larger number of fatalities.

In this paper, we focus on the problem of COVID-19 severity

to address the above-mentioned caveats. As the dataset, we collect

COVID-19 time series (of case numbers and deaths) with values

of over one hundred diverse sociodemographic variables for more

than 3,000U.S. counties. This dataset has optimal properties in the

sense of being both large and reasonably uniform (in the sense of

COVID-19 policies). That is, all considered regions belong to the

same country (and therefore have reasonably uniform policies).

To focus on the influence of sociodemographic and economic

factors, i.e., to neglect the complex influences of vaccination

and different virus strains, we concentrate on the first epidemic

wave—though, in the future, our study could also be extended by

including suitable predictors for these factors. For each county,

we estimate a well-defined measure of severity alone, which is

a priori independent of the virus transmissibility. This measure,

denoted as m/r, was introduced in Markovic et al. (2021) and

is based on epidemiological modeling, representing the ratio of

population-averaged mortality to recovery rates. Intuitively, the

faster rate of dying from COVID-19, and slower recovery rate,

relate to larger severity.

We apply several machine learning techniques to identify

which demographic variables are relevant predictors of the m/r

severity measure. In particular, we use repetitive rounds of

(relaxed) Lasso and Elastic net linear regressions (with feature

selection and regularization) and Random Forest and XGBoost,

implementing ensembles of weak learners (decision trees). Random

Forest and XGBoost can also accommodate highly nonlinear

relations of the response to predictors and their interactions.

Both can assign importance to the predictors, allowing for

straightforward selection of significant predictors (with all other

advantages of these techniques). Finally, we will also use a

recently popularized [within the Uber platform (Zhao et al.,

2019)] mRMR (minimal Redundancy Maximal Relevance) feature

selection method, allowing better dealing with correlated datasets.

mRMR will be integrated into Random Forest and XGBoost, which

combines the advantages of thesemethods withmRMR.Overall, we

carefully devise several state-of-the-art feature selection methods,

intending to start from a large number of sociodemographic

factors and, in an unbiased way (without prior assumptions),

determine the most important predictors directly from the data.

While machine learning has been successfully applied to a number

of COVID-19-related problems, such as disease diagnosis and

prognosis (Alizadehsani et al., 2021; Mahdavi et al., 2021; Amini

et al., 2022; Kamalov et al., 2022; Rajab et al., 2022; Ramírez-del

Real et al., 2022; Yousefzadeh et al., 2022) it was to our knowledge

less frequently applied in the ecological study design (a transverse

comparison of geographical regions) as done here (Wang et al.,

2021).

The analysis presented here is also helpful from another

perspective. In Markovic et al. (2021), we studied COVID-19

severity based on U.S. states instead of counties. Comparing the

results of these studies can provide an important insight into the

possible effects of spatial resolution (from 51 states to over 3,000

counties) on the obtained results. To our best knowledge, it is

currently unresolved what happens with conclusions of ecological

regressions (transverse/cross-sectional study design across different

regions employed here) in a transition from a smaller number of

spatially larger geographic regions to a substantially larger number

of smaller regions. Consequently, our study can also aid a better

understanding of the implications of ecological regression study

design, particularly in the context of machine learning applications.
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2. Materials and methods

2.1. Data collection

Demographic data at the county level were collected from

several sources. The demographic composition of the U.S.

population by gender, race, and population under 18 and over

65 was taken from the U.S. Census Bureau website integrating

multiple different reports (U.S. Census Bureau, 2020). Information

about population behavioral health risks at the county level

was taken from the County Health Rankings website (County

Health Rankings, 2020). The number of hospital beds and

emergency unit capacity per county was obtained from the

Homeland Infrastructure Foundation-Level Data (HIFLD) website

(Homeland Infrastructure Foundation-Level Data, 2020). Poverty,

deep poverty, median household income, per capita income,

number of households, and predictor variables describing various

levels of education on the county level were downloaded from the

U.S. Department of Agriculture website resource Atlas of Rural

and Small-Town America (U.S. Department Of Agriculture, 2021).

Medical parameters such as hypertension, cardiovascular disease

mortality, diabetes, obesity, inactivity, lower respiratory disease

mortality, and daily smoking prevalence were downloaded from

the Global Health Data Exchange website (Global Health Data

Exchange, 2021). Individual county areas (U.S. Census Bureau,

2018) and exact FIPS codes (U.S. Census Bureau, 2011) were

also downloaded from the U.S. Census Bureau website. Python

scripts were used to map multiple county information sources

using FIPS code values, and the resulting dataset is provided in

Supplementary Tables 1, 2.

2.2. County severity measure calculation

Information about cumulative daily COVID-19 deaths and

cumulative registered infection cases at the county level was

retrieved from Dong et al. (2020). From these case counts, the

COVID-19 severity measure m/r was calculated as previously

derived (Markovic et al., 2021) using our SPEIRD infection

dynamics model (Djordjevic et al., 2021a,b):

m

r
=

CFR (∞)

1− CFR (∞)

Here CFR(∞) is the Case Fatality Rate in saturation, i.e.,

calculated at the end of the epidemic wave. CFR corresponds to the

ratio of cumulative fatalities and case counts, where both quantities

are calculated at the end of the wave. To estimate its saturation

value, without relying on a single date for the wave end, we use a

mean CFR value for the time interval at the end of the wave when

the case counts (and correspondingly also CFR) enter saturation.

This time interval (end of the wave) was estimated at the level of

states and then associated with the corresponding counties (see

Supplementary Table 3), as it was shown that the wave intervals

could be inferred more accurately from larger (conglomerated)

spatial units (Vilar and Saiz, 2021). For more details on the

derivation of m/r, see Supplementary methods.

In Markovic et al. (2021) it was shown that the m/r measure

is independent of transmissibility, which is also evident from the

direct (though nonlinear) relationship between m/r and CFR (due

to the fact that CFR is, per se, independent from the frequency of

the virus transmission). Therefore, our measure does not depend

on the rate at which the epidemic spreads, and is consequently

independent of the social distancing measures and/or quarantine.

It also does not depend on the epidemic phase since it is a

function of CFR at the end of the epidemic wave (when both the

number of fatalities and cumulative case counts have stabilized).

Additionally, the m/r value is not expected to significantly depend

on the testing policies. That is, while both the cumulative number

of (detected) COVID-19 deaths and the cumulative (detected)

case counts depend on the volume of testing, their dependence is

qualitatively of the same manner: fewer tests will result in lower

case counts but also in more COVID-19 deaths that failed to be

attributed to the pandemic. Thus, these two effects tend to cancel

each other.

Several other severity/fatality measures have been proposed

so far, including the total number of fatalities, as the simplest to

obtain, yet inadequate measure, which is highly correlated with the

total number of detected cases, making it impossible to distinguish

the severity from the transmissibility of the disease (Markovic

et al., 2021). Some other, more promising approaches found in the

literature include the use of CFR and its variations, such as delay-

adjusted CFR (Yeoh et al., 2021). These measures, however, do not

have a clear mechanistic interpretation (Böttcher et al., 2020), as

they are not derived from a dynamic/mechanistic model of the

disease spread.

Since CFR at the end of the first peak for COVID-19 has

a relatively small value for most counties (∼10−2), from the

equation above follows that in such cases m/r and CFR(∞) have

similar values, so m/r in principle leads to the robust results

compared to other measures (but only provided that CFR for

these measures is calculated in saturation, i.e., at the end of the

peak). However, this does not have to be the case for other

infectious diseases with potentially higher CFR, for which the

difference between m/r and CFR(∞) would be more drastic,

particularly since m/r is a nonlinear function of CFR(∞). In

such a case, and for the reasons stated above, the use of m/r

as the severity measure is more adequate. Even in the case of

low CFR, and as explained above, using m/r has the following

advantages: (i) In distinction to ordinary CFR, CFR in m/r

expression is calculated at saturation (end of the peak), which

naturally follows from m/r derivation and makes the measure

independent of the epidemic phase. (ii) The measure has a

clear mechanistic interpretation and is inherently independent of

transmissibility (and by that, also of the effects of epidemiological

policies and interventions), which further simplifies the result

interpretation. Based on that, using m/r as the response variable

in ecological regressions applied to epidemiological problems

is preferable. In addition to the study of COVID-19 severity

determinants at the level of USA states in Markovic et al.

(2021), the measure was also successfully applied at a global

level to better understand the apparently puzzling relationship

between Global Health Security Index (GHSI) and COVID-

19 mortality in different world countries (Markovic et al.,

2022).
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2.3. Data processing

All assembled variables were subjected to standard

transformations of different strengths and directions (square,

square root, cubic root, logarithm, negative square root, negative

cubic root, and negative logarithm) to reduce the skewness of

the data and bring them closer to normal distribution. For each

variable, the transformation that minimizes the absolute value of

the skewness from the Python SciPy library (Virtanen et al., 2020)

was chosen, which was automated by a custom Python script. The

county severity measure was transformed using the square root

function (also chosen to minimize skewness).

Outliers were identified as being outside three median

absolute deviations (MADs). After applying transformations,

outliers were substituted with the corresponding variable median

values. Transformations and subsequent outlier substitution by

median values removed heavy distribution tails (observed for some

variables) so that the distributions were brought closer to normal.

2.4. Model hyperparameter tuning

Processed data was split into training and validation sets (80-

20). The validation set was set aside, while the training set was used

for hyperparameter selection (through 10-fold cross-validations)

and final model training. To select optimal hyperparameter values,

we put them on an extensive grid (specified below for each model)

and chose the parameter combination leading to the smallest cross-

validation MSE (Mean Squared Error). Alternatively, to obtain

sparse models (see below), hyperparameter combinations within

one standard error of minimalMSEwere considered. The data were

standardized (the mean subtracted and divided by the standard

deviation) in each cross-validation round. The hyperparameter

grid search results are provided in Supplementary Tables 4–13.

Final models were trained on the entire training dataset with the

previously selected optimal hyperparameter values. MSE calculated

on the validation set was compared to (approximately) agree with

the training set MSE as a consistency check.

2.5. Lasso regression

Lasso regression applies L1 regularization (Hastie et al., 2009),

controlled by the λ hyperparameter value. Hyperparameter grid

search was performed as described in 2.4., with exponential grid

spacing and maximal λ value corresponding to all zero coefficients.

λ values that lead to minimal cross-validation MSE within one

standard error were selected. λ for training the model on the entire

training dataset corresponds to the maximally sparse Lasso model

(i.e., largest λ) within these values. Non-zero coefficients were

extracted from the model.

2.6. Elastic net regression

Elastic net regression applies L1 and L2 regularization (Zou and

Hastie, 2005; Hastie et al., 2009), which are controlled by λ and

α hyperparameter values. Scikit-Learn library implementation of

Elastic net model was used (Pedregosa et al., 2011). α parameter was

put on a linear grid in the range (0,1), and for each α parameter, the

range of λ values was selected as described in 2.5. This resulted in

a 2-dimensional grid, searched as described in 2.4. Hyperparameter

combinations within one standard error of cross-validation MSE

were selected. Among these, (λ, α) combination that leads to a

maximally sparse Elastic net model was chosen to train the model

on the entire training dataset.

2.7. Random Forest regression

For Random Forest regression, minimal leaf size and maximal

tree depth were used as hyperparameters (Breiman, 2001; Hastie

et al., 2009). The number of regression tree estimators was set

to 600. Hyperparameter grid values that correspond, respectively,

to minimal leaf size and maximal tree depth are: {1, 2, 4, 8,

16, 32, 64, 128, 256, 512, 1024}, {1, 106, 211, 316, 421, 526,

631, 736, 841, 946, 1051, 1156, 1261, 1366, 1471, 1576, 1681,

1786, 1891}. A 2-dimensional grid was constructed, and a search

was performed as described in subsection 2.4. A hyperparameter

combination that corresponds tominimal testMSEwas selected. As

several combinations correspond to the minimum, the one with the

smallest maximal tree depth (corresponding to the shallowest tree)

was selected. The Random Forest model was then trained on the

whole training set, and predictors with greater than mean feature

importance were selected.

2.8. XGBoost regression

XGBoost regression model learning rate, maximal tree depth,

and the number of tree estimators were tuned hyperparameters

(Friedman, 2001; Hastie et al., 2009; Chen and Guestrin, 2016).

Hyperparameter values in the previously defined order are: {0.5,

0.1, 0.15, 0.2, 0.25, 0.35, 0.5}, {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128,

256, 512}, {15, 30, 45, 60, 75, 90, 100, 115, 130, 145, 160, 175}. A

3-dimensional grid was constructed, and a search was performed

as described in 2.4. A Hyperparameter combination corresponding

to minimal test MSE was selected and used to train the XGBoost

model on the entire training dataset. Predictor variables with

greater than mean feature importance were selected.

2.9. Relaxed models

Relaxed models (Hastie et al., 2009) were implemented through

a two-step iterative training process. The first training step is

described in the sections above (Lasso, Elastic net, Random Forest,

and XGBoost regression). Input data for the first step contains

an entire dataset with all 115 predictor variables. Hyperparameter

values are optimized after the first round as described above, and

predictor variables are selected for each model based on non-

zero coefficients (Lasso and Elastic net) or greater than mean

feature importance for Random Forest and XGBoost. In the second

iteration, the input dataset contains only predictor features selected
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by the first iteration, and model training is repeated in the same

way as for the first iteration. Second iteration (relaxed) models

are further used to extract the final predictor importance and

coefficients. In the Supplement Figures, we provide importance

estimates for all predictors.

2.10. Minimum redundancy maximum
relevance predictor selection

Minimum redundancy maximum relevance (mRMR) is an

algorithm for selecting the minimal-optimal subset of predictor

variables (Ding and Peng, 2005; Zhao et al., 2019). In mRMR

implementation (Mazzanti, 2022), F-statistics was used to assess

association with the response (relevance) and mean Pearson

correlation between predictors to assess redundancy. mRMR

regression returns top n selected features, where n was added as

an additional hyperparameter to Random Forest and XGBoost

regressions, with the grid values: {5, 10, 15, 20, 25, 30, 40,

50, 65, 80, 100, 115}. For each grid value, (1—minimal MSE)

was plotted, and the number of features was selected when the

plot approached saturation. This number of features and other

hyperparameter values corresponding to minimal cross-validation

MSE were used to train Random Forest or XGBoost models on the

entire training dataset. Predictor variables with greater than mean

feature importance were selected.

3. Results

We started by assembling an extensive set of sociodemographic

and medical variables for USA counties (115). The entire dataset

is provided in Supplementary Tables 1–3. The main challenge

for the data analysis is a large number of input variables from

which we should select the most important predictors of disease

severity. While this allows for an unbiased selection of factors

that can contribute to the disease severity at the level of counties,

a large majority of the initial set of variables likely do not

significantly contribute to the response. Therefore, keeping them

in the analysis may lead to a large noise and, consequently, model

overfitting. On the other hand, several sociodemographic factors

can genuinely contribute to explaining severity, so multivariate

analysis, in which one controls for simultaneous effects of these

variables, is necessary. Consequently, we start with linear regression

methods with regularizations and variable selection, Lasso (Hastie

et al., 2009) and Elastic net (Zou and Hastie, 2005; Hastie

et al., 2009). Both methods can exclude redundant variables that

do not significantly contribute to m/r. To reduce the effect of

noise, both algorithms were implemented in the so-called relaxed

procedure (Hastie et al., 2009), consisting of two iterations. In

the first iteration, the algorithm is trained on all predictors. A

hyperparameter combination within one standard error of cross-

validation MSE that led to a maximally sparse model was chosen.

Only non-zero coefficient predictors are used in the second training

iteration to reduce noise influence on the model. Taken together,

the variable selection implemented through Lasso and Elastic

Net, together with the relaxed model selection procedure, allowed

reducing multicollinearity by removing redundant variables.

Results of the Lasso and Elastic net regressions are presented

in Figure 1. Hyperparameters in both models are optimized on

the grid through cross-validation so that the resulting model

corresponds to maximal prediction accuracies on new datasets.

Note that, as the data was standardized before the regression,

the obtained regression coefficients can be interpreted as the

importance of the given feature in explaining COVID-19 severity,

while the coefficient’s sign indicates the influence’s direction. Both

methods lead to similar results. Population density is singled out

as the severity predictor with the highest importance, followed by

the percentage of Black females. Both predictors positively affect

m/r, i.e., higher population density and Black female percentage are

related to higher disease severity. Of the predictors with somewhat

lower importance, traffic volume is negatively associated with the

disease severity, while PM air pollution and high housing costs

(an indication of poor socioeconomic conditions) are positively

associated with the severity. However, the importance of these three

features is notably smaller than the importance of the population

density and percentage of African Americans. Note that “Black

female” and “Black male” variables are highly correlated (Pearson

Correlation Coefficient of 0.93), which in practice makes them

hardly distinguishable and redundant. Due to this, in the text

we merge/consolidate them as a measure of African American

population prevalence (African Americans).

Lasso and Elastic net correspond to linear regression analysis.

However, in reality, the predictors may have a highly nonlinear

relationship with the output, while interactions between different

predictors in the model may also occur. Linear regressions cannot

account for such effects. Thus, we next used the ensembles of

weak learners (decision trees), i.e., XGBoost and Random Forest.

Another advantage of these methods is that they can better

handle multicollinearity, particularly when redundant variables are

removed (i.e., the most relevant variables selected), before training

the ensembles of the decision trees. We extensively optimized

(cross-validated) both methods over a large hyperparameter grid.

We again employ bothmethods in the relaxed setup to reduce noise

influence, i.e., only the predictors with importance above the mean

(standardly used threshold) in the first round are used as the input

in the second round.

Figure 2 presents feature importance in Relaxed Random

Forest and XGBoost. Again, robust results consistent across the

two methods were obtained, where by far the highest relative

importance is assigned to population density, followed by the Black

female variable. These results are consistent with those previously

obtained by Lasso and Elastic net regressions. Besides these two

features, which are clearly above the importance threshold in both

methods, traffic volume and high housing costs appear with values

barely above the threshold in XGBoost.

Mutual correlations between the predictors in the dataset

are another complication. To address this, we integrate the

mRMR method into Random Forest and XGBoost methods. The

method was initially introduced by Ding and Peng (2005) but

recently gained popularity with its implementation within the

Uber machine learning platform (Zhao et al., 2019). In essence,

mRMR ranks the variables to how well they are associated with

the response and how much they are redundant (where high

correlations with other predictors decrease the predictor rank). In

the Uber platform, the method was integrated only in Random
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FIGURE 1

Predictor selection by Lasso and Elastic net. The regression coe�cients, being a measure of the variable importance in explaining m/r, are shown for

(A) Lasso and (B) Elastic net. The selected variables are indicated on the x-axis, while the y-axis corresponds to the coe�cient’s values.

FIGURE 2

Estimated variable importance in relaxed Random Forest and

XGBoost methods. (A) Random Forest and (B) XGBoost methods are

implemented in the relaxed procedure, where only variables above

the importance threshold in the second round are shown. The

estimated variable importance is shown on the vertical axis. The

horizontal line indicates the standard threshold for the significant

predictors (corresponding to the predictor mean).

Forest, and fixed (preselected) hyperparameter values were used,

likely to reduce computational time in a time-sensitive setup.

Instead, we here carefully optimize hyperparameters by cross-

validation on an extensive grid. The number of selected predictors

in this cross-validation is also treated as a hyperparameter (see

Methods). We also implement mRMRwithin XGBoost, in addition

to being implemented in Random Forest.

Results of Random Forest and XGBoost with integrated mRMR

methods for variable preselection are shown in Figure 3. Optimal

selection of the number of variables was made through the plots

on the left-hand side of the Figures 3A, C, where the prediction

accuracy (assessed on the testing set in cross-validation) is shown

vs. the number of selected variables. Above a certain number of

included variables, the prediction accuracy enters saturation, which

we use for selecting the number of variables for training the final

model. The number of retained features was 25 for Random Forest

and 38 for XGBoost. Figures 3B, D (the right side of the panel)

again show the dominant importance of Population density and

the Black female variable. While in Random Forest, we obtain no

other features above the importance threshold, several features in

XGBoost have importance estimates above the mean importance

value. Most notably, the percentage of the rural population, high

housing costs, percentage of white males, and traffic volume. We

will see that most of these variables significantly correlate with the

two main predictors.

Interestingly, only two predictors (Population density and

Black female) were robustly singled out from 115 variables used in

the initial input in the analysis. We finally assess the correlation of

these two variables with the other variables to discuss factors related

to the two main predictors associated with m/r. The variables with

the highest values of the correlation coefficients are shown on the

bar plots in Figure 4. All these variables have a statistically highly

significant correlation (P∼10−100). These correlations are further

discussed in the next section.

4. Discussion

In our large-scale high-resolution study (county-level with

many predictors), we robustly obtain population density and

percentage of Black females as the COVID-19 severity predictors

with the highest importance in regressions. For discussion, we

correlated these variables with the other predictors and selected

those with the highest correlations.

This can be informative when trying to understand our

somewhat surprising result: only two variables were clearly selected

among a large number of starting predictors. By considering these

correlations, we may also better understand possible factors that

contribute to these two variables being clearly distinct in their

association with COVID-19 severity.
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FIGURE 3

Relaxed Random Forest and XGBoost with mRMR feature selection. Feature selection for Random Forest (A) and XGBoost (C) by mRMR method.

Feature importance estimates in Relaxed Random Forest (B) and XGBoost (D), where only variables above the importance threshold in the second

round are shown.

As the Black female variable is strongly positively correlated

with the Black male variable, it can be considered as a

measure of the percentage of African Americans of both genders.

Furthermore, the fraction of the Black population is strongly

negatively correlated with the proportion of the non-Hispanic

white population and positively correlated with the AsianAmerican

and Hispanic populations. The Black female variable can be,

thus, considered a signature of the minority population, which

we found strongly positively associated with COVID-19 severity.

Indeed, this association also holds for the Hispanic population,

who, despite having (on average) higher life expectancy (County

Health Rankings, 2020) compared to non-Hispanic whites, suffered

the highest drop in life expectancy due to COVID-19 compared to

any other ethnicity (Woolf et al., 2021).

The positive association between the percentage of African

Americans and the severity of COVID-19 has already been

documented (Azar et al., 2020; Thebault et al., 2020) and discussed

in the context of several health and social factors. These are

the same factors that show up in our analysis through the

correlations of Blacks with other variables. First, Blacks are

strongly correlated with several determinants of poverty and

disadvantaged population, such as the prevalence of sexually

transmitted infections (STIs), violent crimes, different housing

problems, and smaller homeownership. COVID-19 severity has

also been associated with determinants of the disadvantaged

population outside the USA (Gao et al., 2022). Secondly, they

are strongly correlated with a number of medical factors, such as

low birth weight, insufficient sleep, hypertension, cardiovascular

diseases, and generally poor health. These medical conditions are

well-known COVID-19 risk factors, as extensively discussed in the

literature (Ssentongo et al., 2020; Ahmadi et al., 2021; Crispi et al.,

2021; Du et al., 2021; Saleh et al., 2022; Zhang et al., 2022). We next

focus on sociodemographic factors, whose interpretation may be

less evident.

Although the direct association between the prevalence of

violent crimes and COVID-19 severity is unlikely, this variable can

be interpreted as another measure of socioeconomic deprivation,

as it is established that both poverty and income inequality are

positively associated with the rate of violent crimes (Hsieh and

Pugh, 1993; Kennedy et al., 1998). While a higher rate of violent

crimes is correlated with a larger proportion of African Americans,

violent crimes are more likely to be class-related (Smith et al., 2021)
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FIGURE 4

Correlation of the population density and Black female with the other variables. Names of the variables with magnitudes of Pearson correlations

(either positive or negative) larger than 0.4 are shown on the bar plots for (A) Population density and (B) Black female.

than associated with African Americans per se. Violent crime areas

may also lead to high-stress levels (Berman et al., 1996; Ellen et al.,

2001; County Health Rankings, 2020), which can damage health

and be the underlying cause of a series of chronic conditions, such

as hypertension (Zimmerman and Frohlich, 1990; Ellen et al., 2001)

or obesity (Conklin et al., 2019), which are both well-known risk

factors for the severe outcome of COVID-19 (Kwok et al., 2020; Du

et al., 2021).

Housing issues, such as severe or high housing costs and

a low homeownership percentage, indicate poor socioeconomic

conditions (Dunn, 2002; County Health Rankings, 2020). Race

differences also play a role in homeownership, as it is much lower

among African Americans than non-Hispanic Whites (Jackman

and Jackman, 1980). Households affected by housing issues would

probably lack access to healthcare, as they may be unable to pay

for it (Carroll et al., 2017). In the pandemic context, members

of such households might not receive proper medical care, fail

to timely seek medical attention, or be unable to afford the

appropriate treatment andmedications. Prevalence of STIs, defined

as the number of newly diagnosed Chlamydia cases per 100,000

population, is also correlated with the Black female variable, which

is not surprising, as it has been shown that African American

adolescent women are disproportionately affected by Chlamydia

(Cooksey et al., 2010). The prevalence of Chlamydia and other STIs

can thus be viewed in the context of health inequality (County

Health Rankings, 2020).

Therefore, all sociodemographic variables significantly

correlated with Blacks correspond to underserved communities.

This suggests that Black female was singled out by our regressions,

not as a single severity predictor but as the variable that best

captures most of these effects, indicating that minorities and

socially disadvantaged populations were disproportionately

severely affected by COVID-19, which is coherent with the results

of several other studies (Dyer, 2020; Tirupathi et al., 2020; Arasteh,

2021; Chen and Krieger, 2021; Tai et al., 2021). Additionally,

middle-aged Black females have already been recognized as the

group with the highest disease burden in Mississippi (Martin and

Garrett, 2022). This could be related to the higher prevalence

of obesity in this social group (Martin and Garrett, 2022) or

a relatively high percentage of Black females who are essential

workers (Sugg et al., 2021) working in an environment with a

probability of high viral exposure. High initial viral inoculum at

the workplace could also lead to higher disease severity (Burgess

et al., 2020). Since people in disadvantaged areas are more likely

to be “essential workers” working in environments with a high

risk of COVID-19 exposure while simultaneously having limited

access to healthcare (Oronce et al., 2020), the obtained associations

with the disease case counts are not surprising. However, as our

severity measure is independent of transmissibility, our result is

not a mere consequence of a larger COVID-19 exposure but rather

a consequence of the interplay of medical and sociodemographic

factors discussed above.
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Population density appeared as, by far, the most significant

predictor of COVID-19 severity. The variable with the highest

correlation with population density is air pollution. This likely

points to an important factor behind the strong association of

population density with disease severity. Namely, the link between

air pollution exposure and respiratory diseases, and COVID-19, in

particular, is well established (Ogen, 2020; Wu et al., 2020; Pansini

and Fornacca, 2021).

In addition to pollution, the population density is also

significantly correlated with Blacks, where potential contributions

of this variable to the severity are discussed above. Other variables

correlated with the Black female also appear to correlate with

population density (STI, housing problems, insufficient sleep).

Interestingly, another racial-related factor (non-White/White

residential segregation), which did not turn out to be highly

correlated with Blacks, now appears significantly correlated with

the population density. Regarding minorities, the Asian population

of both genders is also significantly correlated with population

density. The variable with the highest negative correlation with the

population density is Rural, so the population density is a good

proxy for urban and metropolitan areas.

Apart from the influences via pollution and African Americans

(and related variables discussed above), likely, population density is

also, per se, a prominent risk factor. A strong, nonlinear association

between the epidemic’s size and population density has already

been proposed (Kermack et al., 1927) and empirically confirmed

(Li et al., 2018). As higher population density inevitably leads

to a much higher number of infected individuals in densely

populated areas, the number of patients requiring hospitalization

is more likely to quickly exceed the healthcare capacity. The

effect of overcrowding, in this case, is dominant compared to the

disparities in healthcare in rural areas, where population density

is low. Namely, even though people in rural areas often struggle

with poverty, lack of health insurance, and shortages in health

professionals (Probst et al., 2004), a lower probability of exposure

to the virus leads to the generally lower severity of the disease

in these areas, so that healthcare facilities cannot quickly become

saturated. Another possible explanation for the lower severity in

rural areas is underreporting of COVID-19 deaths in these areas

(Souch and Cossman, 2020). Namely, it has been determined that

excessmortality not attributed to COVID-19 was higher in counties

with a lower percentage of insured individuals, fewer primary care

physicians, and more at-home deaths (Stokes et al., 2021). As most

of these characteristics apply to rural areas (Probst et al., 2004),

the reported cases and deaths likely do not correspond well to the

actual situation.

Finally, this work provides an opportunity to compare the

results of this high-resolution (county-level) analysis with our

previous study at the state level (Markovic et al., 2021). While, in

addition to different geographic resolutions, the two studies also

use different variables—a larger number of (different) predictors

are used here—interesting comparisons can still be made. First,

predictors related to population density, African Americans,

pollution, and prevalence of chronic diseases were obtained in that

study. Although all these variables were directly selected at the state

level, in the present study, pollution and chronic diseases were also

identified via association with the two directly selected predictors.

Also, at the state level, African Americans were less robustly

selected, i.e., only in the analysis that considers nonlinearities and

interactions between the predictors, while in this study, it was

robustly selected as a major predictor.

The largest difference between the two studies is the effect of

the population age, which was selected as a significant predictor

(with the expected positive influence on severity) in Markovic

et al. (2021) but did not emerge as significant in this study. A

higher proportion of African Americans and population density

are associated with a younger population. It appears that, at the

county level, Blacks are a much stronger signal associated with a

younger population, which appears to conceal the age effect on

severity. That is, counties with older populations will also have

a smaller Black fraction, so they do not appear with higher m/r.

At the state level, the variations of Blacks are lower (so that

Blacks come out only in a more complicated machine learning

analysis), which allows the age effect to come out. On the other

hand, age has been clinically recognized as an important COVID-

19 severity risk factor. This, therefore, shows that the analysis at

lower and higher spatial resolutions are complementary, i.e., the

smaller spatial resolution is not necessarily more accurate/relevant.

One reason is that decreasing the size of the regions where

the analysis is done also decreases the number of case counts,

thereby increasing fluctuations and, consequently, the noise in the

model. This consequently argues that, at least for some significant

predictors, larger spatial resolution may clearly promote their

proper identification.

5. Study limitations

We finally discuss some limitations of our study. Most

importantly, while we here assembled a vast number of COVID-

19 predictors, some factors that are likely very important (but

would be hard to quantify) are clearly missing. In particular, our

dataset consists of “static” variables and does not include “dynamic”

decisions and factors that emerge during the pandemic, such as

decisions on how to treat patients, medical protocols to be applied,

motivation/training of medical staff, etc. In other words, static

capacities or beneficial general conditions to fight pandemics may

not necessarily translate to optimal decisions (and willingness to

implement them), as has been well recognized in the case of, e.g.,

Global Health Security Index (Haider et al., 2020; Stribling et al.,

2020). How to systematically include/quantify such highly complex

factors remains to be seen.

On the other hand, a significant advantage of our study is that

the epidemic intervention decisions (social distancing, quarantine,

etc.) that impact the disease spread (transmissibility) (Hayashi et al.,

2022) do not influence our severity measure (Markovic et al.,

2021). This is because our severity measure m/r is independent of

transmissibility, which does not apply to measures commonly used

to quantify COVID-19 severity/mortality (such as the number of

fatalities). We feel this is a considerable advantage of our study,

as the actual effect of introduced intervention measures is hard to

quantify (Soltesz et al., 2020). Also, as discussed in theMaterials and

Methods section, m/r is neither expected to significantly depend

on the testing policies, since the variations in the volume of testing

affect both the numerator and the denominator of the CFR in the

same direction. However, the strict independence of m/r on testing
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policies would require that the influence of the testing coverage on

the case counts is exactly proportional to its effect on the number

of fatalities, which need not be the case. Possible larger deviations

in this sense might affect some of our conclusions.

Meteorological variables are also not included in this study.

While they may impact transmissibility (Salom et al., 2021; Lin

et al., 2022), they are unlikely to significantly impact the disease

severity/mortality, as explicitly obtained for the state-level analysis

(Markovic et al., 2021). Also, another potential limitation is that

we inferred the end of the peak time from states (and then applied

them to corresponding counties). It was previously shown that

the peak time range could be inferred more accurately in spatially

larger (conglomerated) regions (Vilar and Saiz, 2021), though we

cannot exclude some counties with different peak timing. However,

this should not significantly impact our results since in Markovic

et al. (2021), we showed that m/r enters saturation (i.e., is nearly

constant) for an extended time period, so the results should not

be susceptible to exact dates for m/r inference. More generally,

however, this issue corresponds to the conundrum of using smaller

vs. larger geographic regions, which is generally understudied and

should be better explored in the future.

Finally, as with other machine learning studies (limited to

exploring data associations), the significant predictors we identified

do not necessarily have to represent a causal relationship. In

particular, our analysis has singled out two demographic factors—

the percentage of Black females and population density—neither

of which seems to have a direct medical impact on the prognosis

of the disease. While this is clear for the population density, it is

also less likely (though not entirely impossible) that Black females

are genetically, per se, more predisposed to severe outcomes.

Therefore, in an attempt to point out possible causal associations,

we extensively discussed our results both in the context of previous

studies and by analyzing the correlations of these two factors with

the rest of the collected data. Thanks to the specific nature of

the identified factors and the large overall number of variables

included in the study, we believe that our interpretation of the

obtained results indeed reveals some of the main drivers behind

variations in the observed COVID-19 severity. Nevertheless, even

if the significant predictors only partially reflect direct causal

relations, they are still valuable risk assessment factors. Moreover,

theymay point to potential mechanistic relations that future studies

should explore.

6. Conclusion and outlook

We addressed the challenging problem of identifying some

of the potential main drivers of COVID-19 severity from a

large set of assembled sociodemographic factors. We showed that

machine learning methods with feature selection are well suited for

this task, producing robust results across different methods. The

combination of mRMR and ensembles of decision trees (Random

Forest and XGBoost) seems particularly promising for similar tasks

in the future, as it can simultaneously handle large, correlated

sets of predictors, their interactions, and nonlinear dependences.

We propose that this methodology is useful whenever there is

a measure of interest (response) defined over a diverse set of

geographic regions, and significant predictors of this measure (e.g.,

demographic, economic, medical variables, or their combinations)

should be selected among many variables that initially seem

potentially relevant. In the study of COVID-19 and any other

emerging infectious disease, identifying potential transmissibility

and severity determinants (and the consequent understanding

of the nature of their relation to the response variable) is a

very challenging problem that requires taking into account many

potential risk factors. The combination of the mRMR approach

(which offers a very efficient way of variable preselection while

eliminating all the redundant variables), and the nonparametric,

supervised machine learning methods based on the ensembles of

decision trees (which are capable of selecting important features

while taking into account possible nonlinear relation between the

features and the response variable), can be very promising in

resolving this problem, as our study illustrates.

In summary, our final result is simple and suggests that

densely populated areas with a high proportion of minorities

and disadvantaged populations are the main COVID-19 severity

risk factors. The result is here obtained for the USA, but it is

arguably more general. That is, the likely causes behind such

result are disadvantaged populations, environmental factors such

as pollution, and a potentially high increase of cases in densely

populated areas that available medical resources might not match.

These factors remain to be carefully investigated and understood in

the future.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

MD conceived the research. The work was supervised by

MD and IS. Data acquisition and analysis by MT. Figures

and tables made by MT and SM. A literature search by SM.

Manuscript written by MT and IS, with the help of MD and

SM. All authors contributed to the article and approved the

submitted version.

Funding

This work was partially supported by theMinistry of Education,

Science and Technological Development of the Republic of Serbia.

Acknowledgments

We thank Dusan Zigic andMagdalena Djordjevic for their help

in assembling part of the input data.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2023.1038283
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tumbas et al. 10.3389/fdata.2023.1038283

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.

1038283/full#supplementary-material

References

Adhikari, A., and Yin, J. (2020). Short-Term Effects of Ambient Ozone, PM(2.5,)
and Meteorological Factors on COVID-19 Confirmed Cases and Deaths in Queens,
New York. Int. J. Environ. Res. Public Health 17, 4047. doi: 10.3390/ijerph17114047

Ahmadi, M. N., Huang, B.-H., Inan-Eroglu, E., Hamer, M., and Stamatakis, E.
(2021). Lifestyle risk factors and infectious disease mortality, including COVID-19,
among middle aged and older adults: evidence from a community-based cohort study
in the United Kingdom. Brain Behav. Immun. 96, 18–27. doi: 10.1016/j.bbi.2021.04.022

Alizadehsani, R., Roshanzamir, M., Hussain, S., Khosravi, A., Koohestani, A.,
Zangooei, M. H., et al. (2021). Handling of uncertainty in medical data using machine
learning and probability theory techniques: a review of 30 years (1991–2020). Annal.
Operat. Res. 6, 2. doi: 10.1007/s10479-021-04006-2

Allel, K., Tapia-Muñoz, T., and Morris, W. (2020). Country-level factors associated
with the early spread of COVID-19 cases at 5, 10 and 15 days since the onset. Global
Public Health 15, 1589–1602. doi: 10.1080/17441692.2020.1814835

Amini, N., Mahdavi, M., Choubdar, H., Abedini, A., Shalbaf, A., and
Lashgari, R. (2022). Automated prediction of COVID-19 mortality outcome
using clinical and laboratory data based on hierarchical feature selection and
random forest classifier. Comput. Methods Biomechan. Biomed. Eng. 2, 1–14.
doi: 10.1080/10255842.2022.2050906

An, C., Lim, H., Kim, D.-W., Chang, J. H., Choi, Y. J., and Kim, S.
W. (2020). Machine learning prediction for mortality of patients diagnosed
with COVID-19: a nationwide Korean cohort study. Scientific Rep. 10, 18716.
doi: 10.1038/s41598-020-75767-2

Arasteh, K. (2021). Prevalence of Comorbidities and Risks Associated with COVID-
19 Among Black and Hispanic Populations in New York City: an Examination of the
2018 New York City Community Health Survey. J. Racial Ethnic Health Disparit. 8,
863–869. doi: 10.1007/s40615-020-00844-1

Azar, K. M. J., Shen, Z., Romanelli, R. J., Lockhart, S. H., Smits, K., Robinson, S.,
et al. (2020). Disparities in outcomes among COVID-19 patients in a large health care
system In California. Health Affairs 39, 1253–1262. doi: 10.1377/hlthaff.2020.00598

Berman, S. L., Kurtines, W. M., Silverman, W. K., and Serafini, L. T. (1996). The
impact of exposure to crime and violence on urban youth. Am. J. Orthopsychiatr. 66,
329–336. doi: 10.1037/h0080183

Böttcher, L., Xia,M., andChou, T. (2020).Why case fatality ratios can bemisleading:
individual- and population-based mortality estimates and factors influencing them.
Phys. Biol. 17, 065003. doi: 10.1088/1478-3975/ab9e59

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Burgess, S., Smith, D., Kenyon, J. C., and Gill, D. (2020). Lightening the viral load to
lessen covid-19 severity. BMJ 371, m4763. doi: 10.1136/bmj.m4763

Carroll, A., Corman, H., Curtis, M. A., Noonan, K., and Reichman, N. E. (2017).
Housing instability and children’s health insurance gaps.Academ. Pediatr. 17, 732–738.
doi: 10.1016/j.acap.2017.02.007

Chen, J. T., and Krieger, N. (2021). Revealing the Unequal Burden of COVID-19
by Income, Race/Ethnicity, and Household Crowding: U.S. county versus zip code
analyses. J. Public HealthManage. Pract. 27, S43. doi: 10.1097/PHH.0000000000001263

Chen, T., and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and DataMining KDD ’16. (NewYork, NY, USA: Association for Computing
Machinery), 785–794.

Conklin, A. I., Guo, S. X. R., Yao, C. A., Tam, A. C. T., and Richardson, C.
G. (2019). Stressful life events, gender and obesity: a prospective, population-based
study of adolescents in British Columbia. Int. J. Pediatr. Adolesc. Med. 6, 41–46.
doi: 10.1016/j.ijpam.2019.03.001

Cooksey, C. M. J. L., Berggren, E. K., and Lee, J. (2010). Chlamydia trachomatis
Infection in minority adolescent women: a public health challenge. Obstetric.
Gynecologic. Survey 65, 729–735. doi: 10.1097/OGX.0b013e3182110204

County Health Rankings (2020). 2020 County Health Rankings Key Findings
Report. County Health Rankings and Roadmaps. Available online at: https://www.
countyhealthrankings.org/reports/2020-county-health-rankings-key-findings-report
(accessed January 27, 2022).

Crispi, F., Crovetto, F., Larroya, M., Camacho, M., Tortajada, M., Sibila, O., et al.
(2021). Low birth weight as a potential risk factor for severe COVID-19 in adults.
Scientific Rep. 11, 2909. doi: 10.1038/s41598-021-82389-9

Ding, C., and Peng, H. (2005). Minimum redundancy feature selection from
microarray gene expression data. J. Bioinform. Computat. Biol. 03, 185–205.
doi: 10.1142/S0219720005001004

Djordjevic, M., Djordjevic, M., Ilic, B., Stojku, S., and Salom, I. (2021a).
Understanding Infection Progression under Strong Control Measures through
Universal COVID-19 Growth Signatures. Glob. Challenges 5, 2000101.
doi: 10.1002/gch2.202000101

Djordjevic, M., Rodic, A., Salom, I., Zigic, D., Milicevic, O., Ilic, B., et al. (2021b).
A systems biology approach to COVID-19 progression in population. Adv. Prot.
Chemistr. Struct. Biology 127, 291–314. doi: 10.1016/bs.apcsb.2021.03.003

Dong, E., Du, H., and Gardner, L. (2020). An interactive web-based
dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534.
doi: 10.1016/S1473-3099(20)30120-1

Du, Y., Zhou, N., Zha, W., and Lv, Y. (2021). Hypertension is a clinically important
risk factor for critical illness and mortality in COVID-19: a meta-analysis. Nutrit.
Metabol. Cardiovascul. Dis. 31, 745–755. doi: 10.1016/j.numecd.2020.12.009

Dunn, J. R. (2002). Housing and inequalities in health: a study of socioeconomic
dimensions of housing and self reported health from a survey of Vancouver residents.
J. Epidemiol. Commun. Health 56, 671–681. doi: 10.1136/jech.56.9.671

Dyer, O. (2020). Covid-19: Black people and other minorities are hardest hit in the
U.S. BMJ 369, m1483. doi: 10.1136/bmj.m1483

Ellen, I. G., Mijanovich, T., and Dillman, K.-N. (2001). Neighborhood effects on
health: exploring the links and assessing the evidence. J. Urban Affairs 23, 391–408.
doi: 10.1111/0735-2166.00096

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annal. Statistics 29, 1189–1232. doi: 10.1214/aos/1013203451

Gao, L., Zheng, C., Shi, Q., Wang, L., Tia, A., Liu, Z. G., et al. (2022).
Multiple introduced lineages and the single native lineage co-driving the four
waves of the COVID-19 pandemic in West Africa. Front. Public Health 30, 38.
doi: 10.3389/fpubh.2022.957277

Global Health Data Exchange (2021). US Data | GHDx. Global Health Data
Exchange. Available online at: http://ghdx.healthdata.org/us-data (accessed February
11, 2022).

Gupta, A., and Gharehgozli, A. (2020). Developing a Machine Learning Framework
to Determine the Spread of COVID-19.

Haider, N., Yavlinsky, A., Chang, Y.-M., Hasan, M. N., Benfield, C., Osman,
A. Y., et al. (2020). The Global Health Security index and Joint External
Evaluation score for health preparedness are not correlated with countries’ COVID-
19 detection response time and mortality outcome. Epidemiol. Infect 148, e210.
doi: 10.1017/S0950268820002046

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. 2nd ed. New York, NY: Springer-
Verlag.

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2023.1038283
https://www.frontiersin.org/articles/10.3389/fdata.2023.1038283/full#supplementary-material
https://doi.org/10.3390/ijerph17114047
https://doi.org/10.1016/j.bbi.2021.04.022
https://doi.org/10.1007/s10479-021-04006-2
https://doi.org/10.1080/17441692.2020.1814835
https://doi.org/10.1080/10255842.2022.2050906
https://doi.org/10.1038/s41598-020-75767-2
https://doi.org/10.1007/s40615-020-00844-1
https://doi.org/10.1377/hlthaff.2020.00598
https://doi.org/10.1037/h0080183
https://doi.org/10.1088/1478-3975/ab9e59
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1136/bmj.m4763
https://doi.org/10.1016/j.acap.2017.02.007
https://doi.org/10.1097/PHH.0000000000001263
https://doi.org/10.1016/j.ijpam.2019.03.001
https://doi.org/10.1097/OGX.0b013e3182110204
https://www.countyhealthrankings.org/reports/2020-county-health-rankings-key-findings-report
https://www.countyhealthrankings.org/reports/2020-county-health-rankings-key-findings-report
https://doi.org/10.1038/s41598-021-82389-9
https://doi.org/10.1142/S0219720005001004
https://doi.org/10.1002/gch2.202000101
https://doi.org/10.1016/bs.apcsb.2021.03.003
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/j.numecd.2020.12.009
https://doi.org/10.1136/jech.56.9.671
https://doi.org/10.1136/bmj.m1483
https://doi.org/10.1111/0735-2166.00096
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.3389/fpubh.2022.957277
http://ghdx.healthdata.org/us-data
https://doi.org/10.1017/S0950268820002046
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tumbas et al. 10.3389/fdata.2023.1038283

Hayashi, K., Kayano, T., Anzai, A., Fujimoto, M., Linton, N., Sasanami, M., et al.
(2022). Assessing public health and social measures against COVID-19 in Japan from
march to june 2021. Front. Med. 9, 937732. doi: 10.3389/fmed.2022.937732

Homeland Infrastructure Foundation-Level Data (2020). Hospitals. Available
online at: https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals/explore?
location=31.724568,-93.543139,7.83 (accessed February 11, 2022).

Hradsky, O., and Komarek, A. (2021). Demographic and public health
characteristics explain a large part of variability in COVID-19 mortality across
countries. Euro. J. Public Health 31, 12–16. doi: 10.1093/eurpub/ckaa226

Hsieh, C.-C., and Pugh,M. D. (1993). Poverty, income inequality, and violent crime:
a meta-analysis of recent aggregate data studies. Criminal Justice Rev. 18, 182–202.
doi: 10.1177/073401689301800203

Jackman, M. R., and Jackman, R. W. (1980). Racial inequalities in home ownership.
Soc. Forces 58, 1221–1234. doi: 10.2307/2577321

Kamalov, F., Cherukuri, A. K., and Thabtah, F. (2022). “Machine learning
applications to Covid-19: a state-of-the-art survey,” in 2022 Advances in Science and
Engineering Technology International Conferences (ASET), 1–6.

Kennedy, B. P., Kawachi, I., Prothrow-Stith, D., Lochner, K., and Gupta, V. (1998).
Social capital, income inequality, and firearm violent crime. Soc. Sci. Med. 47, 7–17.
doi: 10.1016/S0277-9536(98)00097-5

Kermack, W. O., McKendrick, A. G., and Walker, G. T. (1927). A contribution
to the mathematical theory of epidemics: proceedings of the royal society of
London. Series A, Contain. Papers Mathematic. Physic. Charact. 115, 700–721.
doi: 10.1098/rspa.1927.0118

Kwok, S., Adam, S., Ho, J. H., Iqbal, Z., Turkington, P., Razvi, S., et al. (2020).
Obesity: a critical risk factor in the COVID-19 pandemic. Clinic. Obesit. 10, e12403.
doi: 10.1111/cob.12403

Li, R., Richmond, P., and Roehner, B. M. (2018). Effect of population
density on epidemics. Physica A: Statistic. Mechan. Applicat. 510, 713–724.
doi: 10.1016/j.physa.2018.07.025

Lin, S., Rui, J., Xie, F., Zhan, M., Chen, Q., Zhao, B., et al. (2022). Assessing
the impacts of meteorological factors on COVID-19 pandemic using generalized
estimating equations. Front. Public Health 10, 920312. doi: 10.3389/fpubh.2022.920312

Lorenzo, J. S. L., Tam, W. W. S., and Seow, W. J. (2021). Association between air
quality, meteorological factors and COVID-19 infection case numbers. Environ. Res.
197, 111024. doi: 10.1016/j.envres.2021.111024

Mahdavi, M., Choubdar, H., Zabeh, E., Rieder, M., Safavi-Naeini, S., Jobbagy, Z.,
et al. (2021). A machine learning based exploration of COVID-19 mortality risk. Plos
One 16, e0252384. doi: 10.1371/journal.pone.0252384

Markovic, S., Rodic, A., Salom, I., Milicevic, O., Djordjevic, M., and Djordjevic,
M. (2021). COVID-19 severity determinants inferred through ecological and
epidemiological modeling. One Health 13, 100355. doi: 10.1016/j.onehlt.2021.100355

Markovic, S., Salom, I., Rodic, A., and Djordjevic, M. (2022). Analyzing the GHSI
puzzle of whether highly developed countries fared worse in COVID-19. Sci. Rep. 12,
17711. doi: 10.1038/s41598-022-22578-2

Martin, B. E., and Garrett, M. R. (2022). Race and sex differences in vital signs
associated with COVID-19 and flu diagnoses in mississippi. J Rac. Ethnic Health
Disparit. 12, 31. doi: 10.1007/s40615-021-01213-2

Mazzanti, S. (2022). mrmr-selection: minimum-Redundancy-Maximum-Relevance
algorithm for feature selection. Available online at: https://github.com/smazzanti/mrmr
(accessed September 5, 2022).

Moreira, A., Chorath, K., Rajasekaran, K., Burmeister, F., Ahmed, M., and Moreira,
A. (2021). Demographic predictors of hospitalization and mortality in U.S. children
with COVID-19. Europ. J. Pediatrics 180, 1659–1663. doi: 10.1007/s00431-021-03955-x

Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing
factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 726, 138605.
doi: 10.1016/j.scitotenv.2020.138605

Oronce, C. I. A., Scannell, C. A., Kawachi, I., and Tsugawa, Y. (2020). Association
Between State-Level Income Inequality and COVID-19 Cases and Mortality in the
USA. J. General Intern. Med. 35, 2791–2793. doi: 10.1007/s11606-020-05971-3

Pan, J., St. Pierre, J. M., Pickering, T. A., Demirjian, N. L., Fields, B. K. K., Desai,
B., et al. (2020). Coronavirus disease 2019 (COVID-19): a modeling study of factors
driving variation in case fatality rate by country. Int. J. Environ. Res. Public Health 17,
8189. doi: 10.3390/ijerph17218189

Pansini, R., and Fornacca, D. (2021). COVID-19 higher mortality in chinese
regions with chronic exposure to lower air quality. Front. Public Health 1, 53.
doi: 10.3389/fpubh.2020.597753

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Machine Learn. Res. 12, 2825–2830.
doi: 10.5555/1953048.2078195

Perone, G. (2021). The determinants of COVID-19 case fatality rate
(CFR) in the Italian regions and provinces: An analysis of environmental,
demographic, and healthcare factors. Science of The Total Environment 755, 142523.
doi: 10.1016/j.scitotenv.2020.142523

Probst, J. C., Moore, C. G., Glover, S. H., and Samuels, M. E. (2004). Person and
place: the compounding effects of race/ethnicity and rurality on health. Am. J. Public
Health 94, 1695–1703. doi: 10.2105/AJPH.94.10.1695

Rajab, K., Kamalov, F., and Cherukuri, A. K. (2022). Forecasting COVID-
19: vector autoregression-based model. Arab. J. Sci. Eng. 47, 6851–6860.
doi: 10.1007/s13369-021-06526-2

Ramírez-del Real, T., Martínez-García, M., Márquez, M. F., López-Trejo, L.,
Gutiérrez-Esparza, G., and Hernández-Lemus, E. (2022). Individual factors associated
with COVID-19 infection: a machine learning study. Front. Public Health 10, 12099.
doi: 10.3389/fpubh.2022.912099

Rontos, K., Syrmali, M.-E., and Salvati, L. (2021). Unravelling the role of
socioeconomic forces in the early stage of COVID-19 pandemic: a global analysis. Int.
J. Environ. Res. Public Health 18, 6340. doi: 10.3390/ijerph18126340

Saleh,M. A., Alotaibi, N., Schrapp, K., Alsaber, A., Pan, J., Almutairi, F., et al. (2022).
Risk factors for mortality in patients with COVID-19: The Kuwait Experience. Med.
Princip. Pract. 22, 166. doi: 10.1159/000522166

Salom, I., Rodic, A., Milicevic, O., Zigic, D., Djordjevic, M., and Djordjevic,
M. (2021). Effects of demographic and weather parameters on COVID-19 basic
reproduction number. Front. Ecol. Evol. 8, 617841. doi: 10.3389/fevo.2020.617841

Singh, B. B., Ward, M. P., Lowerison, M., Lewinson, R. T., Vallerand, I. A., Deardon,
R., et al. (2021). Meta-analysis and adjusted estimation of COVID-19 case fatality risk
in India and its association with the underlying comorbidities. One Health 13, 100283.
doi: 10.1016/j.onehlt.2021.100283

Smith, S., Ferguson, C. J., and Henderson, H. (2021). An exploratory study of
environmental stress in four high violent crime cities: what sets them apart? Crime
Delinquency 21, 00111287211057858. doi: 10.1177/00111287211057858

Soltesz, K., Gustafsson, F., Timpka, T., Jaldén, J., Jidling, C., Heimerson, A.,
et al. (2020). The effect of interventions on COVID-19. Nature 588, E26–E28.
doi: 10.1038/s41586-020-3025-y

Souch, J. M., and Cossman, J. S. (2020). A commentary on rural-urban disparities
in COVID-19 testing rates per 100,000 and risk factors. J. Rural Health, 10, 12450.
doi: 10.1111/jrh.12450

Ssentongo, P., Ssentongo, A. E., Heilbrunn, E. S., Ba, D. M., and Chinchilli, V. M.
(2020). Association of cardiovascular disease and 10 other pre-existing comorbidities
with COVID-19 mortality: A systematic review and meta-analysis. PLOS ONE 15,
e0238215. doi: 10.1371/journal.pone.0238215

Stokes, A. C., Lundberg, D. J., Elo, I. T., Hempstead, K., Bor, J., and Preston, S. H.
(2021). COVID-19 and excess mortality in the United States: a county-level analysis.
PLOS Med. 18, e1003571. doi: 10.1371/journal.pmed.1003571

Stribling, J., Clifton, A., McGill, G., and de Vries, K. (2020). Examining the U.K.
Covid-19 mortality paradox: Pandemic preparedness, healthcare expenditure, and the
nursing workforce. J Adv Nurs 76, 3218–3227. doi: 10.1111/jan.14562

Sugg, M.M., Runkle, J. D., Andersen, L., Weiser, J., andMichael, K. D. (2021). Crisis
response among essential workers and their children during the COVID-19 pandemic.
Prevent. Med. 153, 106852. doi: 10.1016/j.ypmed.2021.106852

Tai, D. B. G., Shah, A., Doubeni, C. A., Sia, I. G., and Wieland, M. L. (2021).
The disproportionate impact of COVID-19 on racial and ethnic minorities in the
United States. Clinic. Infect. Dis. 72, 703–706. doi: 10.1093/cid/ciaa815

Thebault, R., Tran, A. B., and Williams, V. (2020). The coronavirus is infecting and
killing black Americans at an alarmingly high rate. Washington Post. Available online
at: https://www.washingtonpost.com/nation/2020/04/07/coronavirus-is-infecting-
killing-black-americans-an-alarmingly-high-rate-post-analysis-shows/ (accessed
January 24, 2022).

Tirupathi, R., Muradova, V., Shekhar, R., Salim, S. A., Al-Tawfiq, J. A., and
Palabindala, V. (2020). COVID-19 disparity among racial and ethnic minorities
in the U.S.: a cross sectional analysis. Travel Med. Infect. Dis. 38, 101904.
doi: 10.1016/j.tmaid,0.2020.101904

U.S. Census Bureau (2011). USA Counties: 2011. U.S. Census Bureau. Available
online at: https://www.census.gov/library/publications/2011/compendia/usa-
counties-2011.html (accessed February 11, 2022).

U.S. Census Bureau (2018). 2018 Population Estimates FIPS Codes. U.S. Census
Bureau. Available online at: https://www.census.gov/geographies/reference-files/2018/
demo/popest/2018-fips.html (accessed February 11, 2022).

U.S. Census Bureau (2020). U.S. Census Data. U.S. Census Bureau. Available online
at: https://www.census.gov/en.html (accessed July 10, 2021).

U.S. Department Of Agriculture (2021). Atlas of Rural and Small-Town America.
Economic research service U.S. Department of Agriculture.Available at: https://www.ers.
usda.gov/data-products/atlas-of-rural-and-small-town-america (accessed February
11, 2022).

Vilar, J. M. G., and Saiz, L. (2021). Ascertaining the initiation of epidemic
resurgences: an application to the COVID-19 second surges in Europe and the
Northeast United States. Royal Soc. Open Sci. 8, 210773. doi: 10.1098/rsos.210773

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2023.1038283
https://doi.org/10.3389/fmed.2022.937732
https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals/explore?location=31.724568,-93.543139,7.83
https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals/explore?location=31.724568,-93.543139,7.83
https://doi.org/10.1093/eurpub/ckaa226
https://doi.org/10.1177/073401689301800203
https://doi.org/10.2307/2577321
https://doi.org/10.1016/S0277-9536(98)00097-5
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1111/cob.12403
https://doi.org/10.1016/j.physa.2018.07.025
https://doi.org/10.3389/fpubh.2022.920312
https://doi.org/10.1016/j.envres.2021.111024
https://doi.org/10.1371/journal.pone.0252384
https://doi.org/10.1016/j.onehlt.2021.100355
https://doi.org/10.1038/s41598-022-22578-2
https://doi.org/10.1007/s40615-021-01213-2
https://github.com/smazzanti/mrmr
https://doi.org/10.1007/s00431-021-03955-x
https://doi.org/10.1016/j.scitotenv.2020.138605
https://doi.org/10.1007/s11606-020-05971-3
https://doi.org/10.3390/ijerph17218189
https://doi.org/10.3389/fpubh.2020.597753
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1016/j.scitotenv.2020.142523
https://doi.org/10.2105/AJPH.94.10.1695
https://doi.org/10.1007/s13369-021-06526-2
https://doi.org/10.3389/fpubh.2022.912099
https://doi.org/10.3390/ijerph18126340
https://doi.org/10.1159/000522166
https://doi.org/10.3389/fevo.2020.617841
https://doi.org/10.1016/j.onehlt.2021.100283
https://doi.org/10.1177/00111287211057858
https://doi.org/10.1038/s41586-020-3025-y
https://doi.org/10.1111/jrh.12450
https://doi.org/10.1371/journal.pone.0238215
https://doi.org/10.1371/journal.pmed.1003571
https://doi.org/10.1111/jan.14562
https://doi.org/10.1016/j.ypmed.2021.106852
https://doi.org/10.1093/cid/ciaa815
https://www.washingtonpost.com/nation/2020/04/07/coronavirus-is-infecting-killing-black-americans-an-alarmingly-high-rate-post-analysis-shows/
https://www.washingtonpost.com/nation/2020/04/07/coronavirus-is-infecting-killing-black-americans-an-alarmingly-high-rate-post-analysis-shows/
https://doi.org/10.1016/j.tmaid
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/geographies/reference-files/2018/demo/popest/2018-fips.html
https://www.census.gov/geographies/reference-files/2018/demo/popest/2018-fips.html
https://www.census.gov/en.html
https://www.ers.usda.gov/data-products/atlas-of-rural-and-small-town-america
https://www.ers.usda.gov/data-products/atlas-of-rural-and-small-town-america
https://doi.org/10.1098/rsos.210773
https://doi.org/10.1038/s41592-019-0686-2
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tumbas et al. 10.3389/fdata.2023.1038283

Wang, L., Lin, M., Wang, J., Chen, H., Yang, M., Qiu, S., et al. (2022). Quantitative
analysis of the impact of various urban socioeconomic indicators on search-
engine-based estimation of COVID-19 prevalence. Infect. Dis. Modell. 7, 117–126.
doi: 10.1016/j.idm.2022.04.003

Wang, L., Zhang, Y., Wang, D., Tong, X., Liu, T., Zhang, S., et al. (2021).
Artificial Intelligence for COVID-19: a systematic review. Front. Med. 8, 256.
doi: 10.3389/fmed.2021.704256

Woolf, S. H., Masters, R. K., and Aron, L. Y. (2021). Effect of the COVID-
19 pandemic in 2020 on life expectancy across populations in the USA and other
high income countries: simulations of provisional mortality data. BMJ 373, n1343.
doi: 10.1136/bmj.n1343

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., and Dominici, F. (2020). Air
pollution and COVID-19 mortality in the United States: strengths and limitations
of an ecological regression analysis. Science Adv. 6, 49. doi: 10.1126/sciadv.
abd4049

Yeoh, E. K., Chong, K. C., Chiew, C. J., Lee, V. J., Ng, C. W., Hashimoto,
H., et al. (2021). Assessing the impact of non-pharmaceutical interventions on
the transmissibility and severity of COVID-19 during the first five months in

the Western Pacific Region. One Health 12, 100213. doi: 10.1016/j.onehlt.2021.
100213

Yousefzadeh, M., Hasanpour, M., Zolghadri, M., Salimi, F., Yektaeian Vaziri, A.,
Mahmoudi Aqeel Abadi, A., et al. (2022). Deep learning framework for prediction of
infection severity of COVID-19. Front. Med. 9, 960. doi: 10.3389/fmed.2022.940960

Zhang, Y., Luo, W., Li, Q., Wang, X., Chen, J., Song, Q., et al. (2022). Risk factors
for death among the first 80 543 coronavirus disease 2019 (COVID-19) Cases in China:
relationships between age, underlying disease, case severity, and region. Clinic. Infect.
Dis. 74, 630–638. doi: 10.1093/cid/ciab493

Zhao, Z., Anand, R., and Wang, M. (2019). “Maximum relevance and minimum
redundancy feature selection methods for a marketing machine learning platform,” in
2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

Zimmerman, R. S., and Frohlich, E. D. (1990). Stress and hypertension. J. Hypertens.
Supplement 8, S103–S107.

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the
elastic net. J. Royal Statistic. Soc. Series B (Statistical Methodology) 67, 301–320.
doi: 10.1111/j.1467-9868.2005.00503.x

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2023.1038283
https://doi.org/10.1016/j.idm.2022.04.003
https://doi.org/10.3389/fmed.2021.704256
https://doi.org/10.1136/bmj.n1343
https://doi.org/10.1126/sciadv.abd4049
https://doi.org/10.1016/j.onehlt.2021.100213
https://doi.org/10.3389/fmed.2022.940960
https://doi.org/10.1093/cid/ciab493
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Understanding risk factors of a new variant outburst through global analysis of Omicron transmissibility
	1 Introduction
	2 Methods
	2.1 Data acquisition
	2.2 Data processing
	2.3 Variable transformations
	2.4 Machine learning regressions

	3 Results
	3.1 Exploratory data analysis and Ravg inference
	3.2 Univariate data analysis
	3.3 Feature selection by machine learning regressions
	3.4 Analyzing risk factors

	4 Discussion
	4.1 Change of the effective reproduction number with time
	4.2 Influence of the population age and onset
	4.3 Identified risk factors
	4.4 Ramifications for the strain origin

	5 Conclusion and outlook
	Author contributions
	Funding
	Declaration of competing interest
	Data availability
	Appendix A Supplementary data
	References

	COVID-19 severity determinants inferred through ecological and epidemiological modeling
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	4.1 Limitations

	5 Conclusion
	Conflict of interest statement
	Acknowledgements
	Appendix A Supplementary data
	References

	PM2.5 as a major predictor of COVID-19 basic reproduction number in the USA
	1 Introduction
	2 Methods
	2.1 R0 extraction
	2.2 Pollution data collection
	2.3 Weather data collection
	2.4 Socio-demographic data collection
	2.5 Data processing
	2.6 Feature engineering and principal components analysis
	2.7 LASSO regression
	2.8 Elastic net regression
	2.9 Random forest and gradient boost
	2.10 Model metrics

	3 Results
	3.1 Extraction of R0 and feature engineering
	3.2 Feature extraction
	3.3 Variable importance estimates
	3.4 Quantitative estimate of pollution influence on R0

	4 Discussion
	5 Conclusion and outlook
	Credit author statement
	Data availability statement
	Funding
	Declaration of competing interest
	Appendix A Supplementary data
	References

	An analytical framework for understanding infection progression under social mitigation measures
	Abstract
	1 Introduction
	2 Methodology
	3 Analytical results
	4 Numerical analysis
	5 Discussion
	6 Conclusion
	A Appendix
	A.1 Analytical derivation of the number of fatalities
	A.2 Analytical derivation of detected cases
	A.3 Simplified expressions for fatalities and detected cases
	A.4 Expressions for fatalities and detected cases at saturation
	A.5 Expressions for the epidemics peak and tipping points

	References

	DREENA-A framework as a QGP tomography tool
	1 Introduction
	2 Methods
	2.1 Theoretical outline
	2.2 Framework outline
	2.3 Numerical optimisation of DREENA-A
	2.4 Convergence test of different DREENA methods

	3 Results and discussion
	4 Summary
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Analyzing the GHSI puzzle of whether highly developed countries fared worse in COVID-19
	Results
	Analysis based on COVID-19 case counts. 
	Analysis of excess deaths. 

	Discussion
	Methods
	Data collection and processing. 
	Principal component analysis. 
	Linear regression models. 
	Random forest and gradient boost regressions. 
	Supervised PCA. 

	References

	Effects of Demographic and Weather Parameters on COVID-19 Basic Reproduction Number
	Introduction
	MODEL and Parameter Extraction
	Modified SEIR Model and Relevant Approximations
	COVID-19 Growth Regimes
	Inference of the Basic Reproduction Number R0
	Demographic and Weather Data Acquisition

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Inferring the Main Drivers of SARS-CoV-2 Global Transmissibility by Feature Selection Methods
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods
	2.1. Sample and Data
	2.2. Measures of Variables
	2.3. Data Analysis

	3. Results
	4. Discussion
	5. Conclusion and Outlook
	Conflict of Interest
	Data Availability Statement
	References

	Rational so(3) Gaudin model with general boundary terms
	1 Introduction
	2 The so(3) Maillet linear bracket
	3 Implementation of the algebraic Bethe ansatz
	4 Generalized so(3) Knizhnik-Zamolodchikov equations
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Preliminaries
	Appendix B The non-unitary so(3) classical r-matrix
	References

	Bethe states and Knizhnik-Zamolodchikov equations of the trigonometric Gaudin model with triangular boundary
	1 Introduction
	2 Generalized trigonometric Gaudin algebra
	3 The algebraic Bethe ansatz
	4 The general form of Bethe vectors
	5 The action of Gaudin Hamiltonians
	6 KZ equations
	7 Norms and scalar products
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Classical r-matrix
	Appendix B Hilbert space
	Appendix C Linear bracket
	Appendix D Crucial formula
	References

	A systems biology approach to COVID-19 progression in population
	Introduction
	An overview of compartmental models of epidemic progression
	Systems biology approach to compartmental modeling of the COVID-19 epidemic
	Virus transmission in the early stages of epidemics

	Parameter analysis and inference
	Analysis of COVID-19 transmission in China
	Conclusions
	Acknowledgment
	References

	Introduction 
	Trigonometric Gaudin Model with Boundary 
	Algebraic Bethe Ansatz 
	Conclusions 
	Commutativity of the Generating Function 
	Bethe Vector 3 (1, 2, 3) 
	References
	1 Introduction
	2 The nonrelativistic quantum-mechanical three-body problem in hyperspherical coordinates
	2.1 O(6) hyperspherical coordinates
	2.2 O(6) harmonics
	2.3 Hyperspherical expansion of three-body Schrödinger equation
	2.4 Hyperspherical expansion of three-body potentials

	3 Consequences for the low-lying spectrum
	4 Extreme-relativistic three-body harmonic oscillator
	5 Discussion and conclusions
	A large-scale machine learning study of sociodemographic factors contributing to COVID-19 severity
	1. Introduction
	2. Materials and methods
	2.1. Data collection
	2.2. County severity measure calculation
	2.3. Data processing
	2.4. Model hyperparameter tuning
	2.5. Lasso regression
	2.6. Elastic net regression
	2.7. Random Forest regression
	2.8. XGBoost regression
	2.9. Relaxed models
	2.10. Minimum redundancy maximum relevance predictor selection

	3. Results
	4. Discussion
	5. Study limitations
	6. Conclusion and outlook
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


