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Quantum criticality in photorefractive optics: Vortices in laser beams and antiferromagnets
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We study vortex patterns in a prototype nonlinear optical system: counterpropagating laser beams in a
photorefractive crystal, with or without the background photonic lattice. The vortices are effectively planar and
have two “flavors” because there are two opposite directions of beam propagation. In a certain parameter range,
the vortices form stable equilibrium configurations which we study using the methods of statistical field theory and
generalize the Berezinsky-Kosterlitz-Thouless transition of the XY model to the “two-flavor” case. In addition to
the familiar conductor and insulator phases, we also have the perfect conductor (vortex proliferation in both beams
or “flavors”) and the frustrated insulator (energy costs of vortex proliferation and vortex annihilation balance each
other). In the presence of disorder in the background lattice, a phase appears which shows long-range correlations
and absence of long-range order, thus being analogous to glasses. An important benefit of this approach is that
qualitative behavior of patterns can be known without intensive numerical work over large areas of the parameter
space. The observed phases are analogous to those in magnetic systems, and make (classical) photorefractive
optics a fruitful testing ground for (quantum) condensed matter systems. As an example, we map our system to
a doped O(3) antiferromagnet with Z2 defects, which has the same structure of the phase diagram.
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I. INTRODUCTION

Nonlinear and pattern-forming systems [1–3] have numer-
ous analogies with strongly correlated systems encountered
in condensed matter physics [4,5], and on the methodological
level they are both united through the language of field theory,
which has become the standard language to describe strongly
correlated electrons [6,7] as well as nonlinear dynamical
systems [8]. In the field of pattern formation, some connections
to condensed matter systems have been observed; see, e.g.,
Ref. [4]. More recently, extensive field-theoretical studies of
laser systems were performed, e.g., Refs. [9–12], and also
compared to experiment [13]. However, this topic is far from
exhausted and we feel many analogies between quantum
many-body systems and pattern-formation dynamics remain
unexplored and unexploited. In particular, nonlinear optical
systems and photonic lattices are flexible and relatively cheap
to build [3] and they can be used to “simulate” a broad spectrum
of phenomena concerning band structure, spin ordering, and
conduction in strongly correlated electron systems; some of
the work in this direction can be found in Refs. [14,15].

Our goal is to broaden the connections between the strongly
correlated systems and nonlinear optics and to put to work
the mighty apparatus of field theory to study the patterns in a
nonlinear optical system from the viewpoint of phase transition
theory: Pattern dynamics in certain cases shows critical
behavior which is analogous to phenomena seen in magnetic
systems. To that end, we use the formalism of perturbative field
theory and renormalization group analysis but we also perform
numerical simulations from the first principles, i.e., directly
integrating the equations of motion to provide an independent
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check of our main conclusions. We also establish a connection
to an O(3) antiferromagnetic model which is encountered in
the study of strongly correlated electron systems. The analogy
is not just qualitative: We construct the phase diagrams of both
systems and find they have the same structure. Introducing
disorder into the system further enriches the physics, and it
is physically motivated: In optics, disorder is rooted in the
imperfections of the photonic lattice, and in magnetic systems
it comes from the quenched spin impurities which are regularly
found in realistic samples. It turns out that in both cases a glassy
phase arises. This is another important research topic and it is
again appealing to realize glasses in photonic lattice systems,
where the parameters are easy to tune.

A. On topology and vortices

The key phenomenon which governs the phenomenology of
the systems studied is the existence of topologically nontrivial
solutions or topological solitons [16]: These are the solutions
which map the physical boundary of the system to the whole
configuration space of the field, so one explores all field
configurations by “going around the system.” For example,
in a two-dimensional system (in the x-y plane) with U(1)
phase symmetry, the configuration space is a circle (the phase
lies between 0 and 2π ) and the boundary of the physical
space (i.e., the two-dimensional plane) is again a circle, the
“boundary” of the plane at infinity. The topological soliton is a
pattern of the U (1) field which spans the whole phase circle (its
phase goes from 0 to 2π ), as one moves around the far-away
circle in the x-y plane. Of course, this is the vortex—the most
famous and best studied topological configuration. Similar
logic leads to the classification of topological defects of other,
more complicated symmetry groups. A potential source of
confusion is that in nonlinear dynamics and theory of partial
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differential equations, the “integrable” solutions, i.e., linearly
(often also nonlinearly) stable solutions which can be obtained
by inverse scattering or similar methods and which propagate
through each other without interacting, are also called solitons,
or more precisely dynamical solitons. In optics, they are often
called spatial solitons. Dynamical solitons in nonlinear optics
are a celebrated and well-studied topic [17–22]; they show an
amazing variety of patterns and phenomena like localization,
Floquet states [14], etc. But in general they do not have a
topological charge. In contrast, topological solitons carry a
topological charge (winding number for vortices) and their
stability is rooted in topological protection (conservation of
topological charge).

The phenomenon of vortices is perhaps best known in
three spatial dimensions. The phase of the wave function can
wind, forming a vortex line. These vortices are stable when
the phase symmetry is broken by magnetic field. Famously,
vortices may coexist with the superconducting order (U (1)
symmetry breaking) in type-II superconductors or exist only
in the normal phase, upon destroying the superconductivity
(type I). The primary example in two spatial dimensions is the
vortex unbinding phase transition of infinite order found by
Berezinsky et al. for the planar XY model [23]. The formal
difference between the two- and three-dimensional vortices is
that the latter gives rise to an emergent gauge field; this does not
happen in the XY -like system in two dimensions [24]. While
the nonlinear optical system we study is three-dimensional, its
geometry and relaxational dynamics make it natural to treat it
as a (2 + 1)-dimensional system (the x and y coordinates are
spatial dimensions, the z direction has the formal role of time,
and physical time t has the role of a parameter). We therefore
have a similar situation to the XY model: pointlike vortices in
the plane (and no gauge field).

Vortex matter is known to emerge in liquid helium [25],
Bose-Einstein condensates [26], and magnetic systems [27].
The basic mechanisms of vortex dynamics are thus well
known. However, unusual physics can arise if the system has
multiple components and each of them can form vortices which
mutually interact. This is precisely our situation: We have a
system of two laser beams propagating in opposite directions,
and we will compare it to a two-component antiferromagnet.
So far, such situations have been explored in multicomponent
superconductors [28] which have attracted some attention,
as they can be realized in magnesium diboride [29]. But
these are again bulk systems, not planar. Vortices in planar
multicomponent systems have not been very popular, an
important exception being the two-component Bose-Einstein
condensates of Ref. [30], which were found to exhibit complex
vortex dynamics; in these systems, contrary to our case, the
two components have an explicit attractive interaction, unlike
our case where they interact indirectly, by coupling to the total
light intensity (of both components).

B. The object of our study

In this paper, we study phases and critical behavior of topo-
logical configurations (vortices and vortex lattices) in a specific
and experimentally realizable nonlinear optical system: laser
beams counterpropagating (CP) through a photorefractive
(PR) crystal. This means we have an elongated PR crystal

(with one longitudinal and two transverse dimensions) and
two laser beams shone onto each end. We thus effectively
have two fields, one forward propagating and one backward
propagating. The optical response of the crystal depends
nonlinearly on the total intensity of both beams, which means
the beams effectively interact with each other. This system
has been thoroughly investigated for phenomena such as
dynamical solitons [17,31,32], vortex stability on the photonic
lattice [18–20,33–36], and global rotation [37]. We will see
that the CP beams are an analog of the two-component planar
antiferromagnet, which can further be related to some realistic
strongly correlated materials [38–40]. The two beams are now
equivalent to two sublattices which interact through a lattice
deformation or external field. The PR crystal is elongated and
the axial propagation direction has the formal role of time,
which has a finite span, the length of the crystal. For the
antiferromagnet, the third axis is the usual imaginary time
compactified to the radius 1/T , i.e., inverse temperature. Both
systems contain vortices as topological defects, i.e., solutions
with integer topological charge. In the PR optical system,
vortices arise as a consequence of the U(1) symmetry of the
electromagnetic field. In the antiferromagnets we consider, the
O(3) symmetry of the antiferromagnet gives rise toZ2-charged
defects, which exhibit the same interactions as the vortices.
The optical system is not subject to noise (i.e., it lives at
zero temperature), and thus the criticality we talk about is
obviously not the same as thermodynamic phase transitions.
Phase transitions happen upon varying the parameters, not
temperature, so they may be described as quantum critical
phenomena in the broad sense taken in Ref. [38]—any
critical behavior controlled not by thermal fluctuations but
by parameter dependence.

In the PR counterpropagating beam system, our focus
are the vortices but in order to study them we need to
do some preparational work. We first recast the system
in Lagrangian and then in Hamiltonian form so it can be
studied as a field theory, which depends parametrically on
the time t . Then we consider the time dynamics of the
system and show that in a broad parameter range the patterns
relax to a static configuration which can be studied within
equilibrium field theory. Along the way, we also study the
stability of topologically trivial (vortex-free) configurations
and then consider the phases of the static vortex configurations.
The analytical insight we obtain also allows us to avoid
overextensive numerics—analytical construction of the phase
diagram tells us which patterns can in principle be expected in
different corners of the parameter space. By “blind” numerical
approach, this result could only be found through many runs
of the numerics.

In the antiferromagnetic spin system, the nontopological
excitations are simple: They are spin waves, perturbed away
from the noninteracting solution by the quartic terms in the
potential. There are no dynamical solitons. But we will see
that topological excitations lead to a phase diagram which,
after reasonable approximations, can be exactly mapped to
the phase diagram of the photorefractive crystal. The reason
is that both can be reduced to an effective Hamiltonian
for a two-component vortex system; i.e., every vortex has
two charges or two “flavors.” In the photorefractive crystal
it happens naturally, as there are two beams, forward and
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backward propagating. In the Heisenberg antiferromagnet it
is less obvious and is a crucial consequence of the collinearity
of the spin pattern. We will focus on common properties of the
two systems and map the phase diagrams onto each other. In
the antiferromagnetic system, different phases are separated
by quantum phase transitions—phase transitions driven by the
quantum fluctuations instead of temperature.

On disorder

It is known that impurities pin the vortices and stabilize
them. This leads to frozen dynamics even though no symmetry
is broken, the phenomenon usually associated with glasses. In
simple systems such as the Ising model with disorder, one
generically has two phases: The disordered (paramagnetic)
phase remains and the ordered (magnetic) phase is replaced
by a regime with algebraic correlations and no true order. In
many cases, such phases are called glasses. The exact definition
of a glass is lacking; normally, they show (i) long-range
correlations, (ii) absence of long-range order, i.e., of a nonzero
macroscopic order parameter, and (iii) “frozen dynamics,”
i.e., free energy landscape with numerous local minima in
which the system can spend a long time [41,42]. While the
most popular example are probably spin glasses in Ising-
like models such as Sherington-Kirkpatrick and Edwards-
Anderson models, glasses are also known to appear in the XY

model with disorder in two dimensions, the Cardy-Ostlund
model, which postulates both random couplings and a random
magnetic field [43–45]. Our model is essentially a two-flavor
generalization of the XY model, although in order to solve it
we need to simplify it. According to Refs. [43–45], the details
differ depending on how the disorder is implemented, but the
two-phase system (paramagnetic, i.e., disordered, and glass) is
ubiquitous. In the two-component version, the phase diagram
becomes richer, and on top of the glassy phase and the insulator
(disordered) phase we find a few other phases. In nonlinear
optics, the topic of random lasers has attracted considerable
attention [9–12,46]. Here one has a complex version of the XY

model, with the additional complication that not only phase but
also amplitude is free to vary, but only with random couplings
(no random field). On top of the glassy and the disordered
phase, one or two additional phases appear.

In the presence of disorder, the relation to magnetic systems
in condensed matter physics is very inspiring, since a number
of complex materials show different ordering mechanisms
(spin and charge density waves, superconductivity, etc.) in
parallel with significant influence of disorder. Just as in the
disorder-free case, we are particularly interested in possible
spin-glass phenomena in doped insulating O(3) antiferromag-
nets [39,40,47–49] and in the last section we will discuss also
the spin-glass phase in such systems.

C. The plan of the paper

The structure of the paper is as follows. In the next section,
we describe the dynamical system which lies at the core of
this paper: counterpropagating laser beams in a photorefractive
crystal. We give the equations of motion and repackage them in
the Lagrangian form. In Sec. III, we study the vortex dynamics:
We construct the vortex Hamiltonian and classify the order
parameters. Then we study the renormalization group (RG)

flow and obtain the phase diagram. Finally, we discuss the
important question of how to recognize the various phases in
experiment: What do the light intensity patterns look like and
how do they depend on the tunable parameters? Section IV
brings the same study for the system with disorder. After
describing the disordered system, we perform the replica trick
for the disordered vortex Hamiltonian and solve the saddle-
point equations to identify the phases and order parameters,
again refining the results with RG calculations. The fifth
section takes a look at a doped collinear antiferromagnet, a
model encountered in the description of many strongly coupled
materials, and shows how the dynamics of topological solitons
is again described by a two-flavor vortex Hamiltonian. We
discuss the relation between the phase diagrams of the two
systems and the possibilities of modeling the condensed matter
systems experimentally by the means of photorefractive optics.
The last section sums up the conclusions. In Appendix A, we
describe the numerical algorithm we use to check the analytical
results for the phase diagram. In Appendix B, we show in detail
that the CP beams are capable of reaching equilibrium (i.e.,
stop changing in time)—if they would not, the application of
equilibrium field theory would not be justified. Appendix C
discusses the stability of nonvortex configurations—although
somewhat peripheral to the main topic of the paper, it is useful
to better understand the geometry of patterns. In Appendix D,
we give the (routine) algebra that yields the vortex interaction
Hamiltonian from the microscopic equations. Appendix E
contains an improved mean-field theory for the clean system,
which we do not use much throughout the paper but we
include it for completeness (we prefer either the simplest
single-vortex mean-field reasoning or the full RG analysis,
which are described in the main text). Appendix F discusses
an important technicality concerning the CP geometry, i.e., the
specific boundary conditions of the CP beam system where the
boundary conditions for one beam are given at the front face
and for the other at the back face of the crystal. Appendix G
contains some details on mean-field and RG calculations of
the phase diagram for the dirty system: The dirty case includes
some tedious algebra we feel appropriate to leave out from the
main text.

II. THE MODEL OF COUNTERPROPAGATING BEAMS IN
THE PHOTOREFRACTIVE CRYSTAL

We consider a photorefractive crystal of length L irradiated
by two laser beams. The beams are paraxial and propagate
head on from the opposite faces of the crystal in the z direction.
Photorefractive crystals induce self-focusing of the beams—
the vacuum (linear) wave equation is modified by the addition
of a frictionlike term, so the diffusion of the light intensity (the
broadening of the beam) is balanced out by the convergence
of the beam onto an “attractor region.” The net result is the
balance between the dissipative and scattering effects, allowing
for stable patterns to form. The physical ground for this is the
redistribution of the charges in the crystal due to the Kerr
effect. The nonlinearity, i.e., the response of the crystal to the
laser light, is contained in the change of the refraction index
which is determined by the local charge density. A sketch of
the system is given in Fig. 1. Before entering the crystal, the
laser beams can be given any desirable pattern of both intensity
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FIG. 1. Sketch of the experimental setup for the study of the CP
beams in the PR crystal. The crystal has the shape of a parallelepiped,
and the beams propagate along the longitudinal, z axis: the forward
(F ) beam from z = 0 to z = L, and the backward (B) beam the other
way round. The intensity patterns are observed at the transverse faces
of the crystal, at z = 0 and z = L.

and phase. In particular, one can create vortices (winding of
the phase) making use of the phase masks [3] or other, more
modern ways.

Assuming the electromagnetic field of the form E =
eiωt+iq·r(Feikz + Be−ikz), we can write equations for the
so-called envelopes F and B of the forward- and backward-
propagating beams along the z axis (the frequency, transverse,
and longitudinal momentum are denoted respectively by
ω,q,k). The wave equations for F and B are now

±i∂z�±(z; x,y; t) + ��±(z; x,y; t)

= �E(z; x,y; t)�±(z; x,y; t), (1)

where the plus and minus signs on the left-hand side stand
for the forward- and backward-propagating component of the
beam amplitude doublet � ≡ (�+,�−) ≡ (F,B), and � is the
dimensionless PR coupling constant. The two beams (flavors
of the field �) will from now on be denoted either by F/B or
more often by �±. We will use α as the general flavor index for
summation, e.g., �1α�2α = �1+�2+ + �1−�2−. The charge
field E on the right-hand side of the equation is the electric
field sourced by the charges in the crystal (i.e., it does not
include the external electric field of the beams). Its evolution
is well represented by a relaxation-type equation [17]:

τ

1 + I (z; x,y; t)
∂tE(z; x,y; t) + E(z; x,y; t)

= − I (z; x,y; t)

1 + I (z; x,y; t)
. (2)

Here, I ≡ I� + Ix is the total light intensity at a given point,
I� ≡ |F |2 + |B|2 is the beam intensity, and Ix the intensity
of the fixed background. The meaning of Ix is that the
crystal is all the time irradiated by some constant light source,
independent of the counterpropagating beams with envelopes
F,B. We will usually take a periodic lattice as the background,
allowing also for the defects (missing cells) in the lattice when
studying the effects of disorder. The relaxation time is τ . The
time derivative ∂tE is divided by 1 + I , meaning that the
polarizability of the crystal depends on the total light intensity:
Strongly irradiated regions react faster. In the numerical
calculations, we solve Eqs. (1) and (2) with no further as-
sumptions, as explained in Appendix A. For analytical results,
we will need to transform them further, assuming a vortex
pattern.

The equation for the charge field has no microscopic basis; it
is completely phenomenological, but it excellently represents

the experimental results [3]. Notice that the derivative ∂tE

in (2) is strictly negative (since intensity is non-negative): It
thus has the form of a relaxation equation, and one expects
that a class of solutions exists where ∂tE(t → ∞) → 0, i.e.,
the system relaxes to a time-independent configuration. We
show this in Appendix B; in the main text we will not discuss
this issue but will simply take the findings of Appendix B for
granted. Notice that there are also parameter values for which
no equilibrium is reached [37,50,51].

For slow time evolution (in the absence of pulses), we can
Laplace transform the equation (2) in time [E(t) �→ E(u) =∫∞

0 dte−utE(t)] to get the algebraic relation

E(z; x,y; u) = − �†� + Ix − τE0

1 + τu + Ix + �†�

= −1 + 1 + τu + τE0

1 + τu + Ix + �†�
. (3)

The original system (1) can now be described by the La-
grangian:

L = i�†σ3∂z� − |∇�|2 + ��†�

−�(1 + τE0 + τu)ln(1 + τu + Ix + �†�), (4)

where σ3 is the Pauli matrix σ3 = diag(1,−1). One can
introduce the effective potential

Veff(�
†,�) = −�ln

e�†�

(1 + τu + Ix + �†�)1+τ (E0+u)
, (5)

so we can write the Lagrangian as L = i�†σ3∂z� − |∇�|2 −
Veff(�†,�). This is the Lagrangian of a nonrelativistic field
theory (a nonlinear Schrödinger field equation) in 2 + 1
dimensions (x,y; z), where the role of time is played by the
longitudinal distance z and the physical time t (or u upon the
Laplace transform) is a parameter. The span of the z coordi-
nate 0 < z < L will influence the behavior of the system, while
the dimensions of the transverse plane are not important for
the effects we consider.

Our main story is now the nature and interactions of the
topologically nontrivial excitations in the system (4). A task
which is in a sense more basic, the analysis of the topologically
trivial vacua of (4) and perturbative calculation of their
stability, is not of our primary interest now, in part because this
was largely accomplished by other methods in Refs. [31,32].
We nevertheless give a quick account in Appendix C; first,
because some conclusions about the geometry of the pat-
terns can be carried over to vortices, and second, to give
another example of applying the field-theoretical formalism
whose power we wish to demonstrate and popularize in this
paper.

III. VORTICES AND MEAN FIELD THEORY
OF VORTEX INTERACTIONS

A. The classification of topological solutions and the vortex
Hamiltonian

Now we discuss the possible topological solitons in our
system. Remember once again that they differ from dynamical
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solitons such as those studied in Ref. [17] and references
therein. In order to classify the topologically nontrivial
solutions, consider first the symmetries of the Lagrangian
(4). It describes a doublet of two-dimensional (2D) complex
fields which interact solely through the phase-invariant total
intensity I = �†� (and the spatial derivative term |∇�|2),
while in the kinetic term �†σ3∂z� the two components have
opposite signs of the “time” derivative, so this term cannot be
reduced to a functional of I . The intensity I has the symmetry
group SU(2) (the isometry group of the three-dimensional
sphere in Euclidean space) and the kinetic term has the group
SU(1,1) (the transformations which leave the combination
|F |2 − |B|2 invariant, i.e., the isometry of the hyperboloid).
The intersection of these two is the product U (1)F ⊗ U (1)B :
The forward- and backward-propagating doublet (F,B) has
phases θF,B which can be transformed independently, as
θF,B �→ θF,B + δθF,B .

The classification of possible topological solitons is
straightforward from the above discussion [52]. They can
be characterized in terms of homotopy groups. We remind
readers that the homotopy group πn of the group G is the
group of transformations which map the group manifold of G

onto the n-dimensional sphere Sn. In D-dimensional space,
the group πD−1 therefore classifies what a field configuration
looks like from far away (from infinity): It classifies the
mappings from the manifold of the internal symmetry group
of the system to the spherical “boundary shell” in physical
space at infinity. Since the beams in our PR crystal effectively
see a two-dimensional space (we regard z as time), we
need the first homotopy group π1 to classify the topological
solitons. Since π1(U (1)) = π1(S1) = Z and π1(G ⊗ G) =
π1(G) ⊗ π1(G) for any group G, the topological solutions
are flavored vortices, and the topological charge is the pair of
integers {QF ,QB}.

Let us now derive the effective interaction Hamiltonian for
the vortices and study the phase diagram. In principle, this story
is well known: For a vortex at r0, in the polar coordinates (r,φ),
we write �(r) = ψ exp (iθ (r)) for |r − r0|/|r0| � 1, and a
vortex of charge Q has θ (φ) = Qφ/2π . In general the phase
has a regular and a singular part, ∇� = ψ(∇δθ + ∇ × ζez),
where finally ζ = Q ln |r − r0|. The difference in the CP beam
system lies in the existence of two beam fields (flavors)
and the nonconstant amplitude field ψ±(r), so the vortex
looks like

�0±(r) = ψ0±(r)eiδθ±(φ)+iθ0±(φ). (6)

When we insert this solution into the equations of motion (or,
equivalently, the Lagrangian), it is just a matter of algebra to
obtain the vortex Hamiltonian, analogous to the well-known
one but with two components (flavors) and their interaction.
We refer the reader to the Appendix D for the full derivation.
The outcome is perhaps expected: We get the straightforward
generalization of the familiar Coulomb gas picture for the XY

model where all interactions of different flavors, F -F , B-B,
and F -B, are allowed. In order to write the Hamiltonian (and
further manipulations with it) in a concise way, it is handy
to introduce shorthand notation 	Q ≡ (Q+,Q−), 	Q1 · 	Q2 ≡
Q1+Q2+ + Q1−Q2−, and 	Q1 × 	Q2 ≡ Q1+Q2− + Q1−Q2+.
For the self-interaction within a vortex 	Q1, we have 	Q1 · 	Q1 =

Q2
1+ + Q2

1− but 	Q1 × 	Q1 ≡ Q1+Q1− (i.e., there is a factor of
2 mismatch with the case of two different vortices). Now for
vortices at locations ri ,i = 1, . . . ,N with charges {Qi+,Qi−}
we get

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑

i

(g0 	Qi · 	Qi + g1 	Qi × 	Qi). (7)

The meaning of the Hamiltonian (7) is obvious. The first
term is the Coulomb interaction of vortices; notice that only
like-flavored charges interact through this term (because the
kinetic term |∇�|2 is homogenous quadratic). The second term
is the forward-backward interaction, also with Coulomb-like
(logarithmic) radial dependence. This interaction comes from
the mixing of the F and B modes in the fourth term in Eq. (D2),
and it is generated, as we commented in Appendix D, when
the amplitude fluctuations δψα(r), which couple linearly to
the phase fluctuations, are integrated out. In a system without
amplitude fluctuations, i.e., classical spin system, this term
would not be generated. The third and fourth terms constitute
the energy of the vortex core. The self-interaction constants
g0,g1 are of course dependent on the vortex core size and
behave roughly as g ln a/ε,g′ ln a/ε, where ε is the UV cutoff.
The final results will not depend on ε, as expected, since g0,g1

can be absorbed in the fugacity y (see the next subsection).
Expressions for the coupling constants in terms of original
parameters are given in (D11).

In three space dimensions, vortices necessitate the introduc-
tion of a gauge field [24] which, in multicomponent systems,
also acquires the additional flavor index [28,53]. In our case,
there is no emergent gauge field and the whole calculation is
a rather basic exercise at the textbook level but the results
are still interesting in the context of nonlinear optics and
analogies to magnetic systems: They imply that the phase
structure (vortex dynamics) can be spotted by looking at the
intensity patterns (light intensity I or local magnetization M;
see the penultimate section).

B. The phase diagram

1. The mean-field theory for vortices

The phases of the system can be classified at the mean field
level, following, e.g., Refs. [24,41]. In order to do that, one
should construct the partition function, assuming that well-
defined time-independent configuration space exists. We have
already mentioned the question of equilibration and address
it in detail in Appendix B. Knowing that the system reaches
equilibrium (in some part of the parameter space), we can
count the ways in which a system of vortices can be placed in
the crystal—this is by definition the partition function Z . First,
the number of vortices N can be anything from 0 to infinity;
second, the vortex charges can be arbitrary; and finally, the
number of ways to place each vortex in the crystal is simply
the total surface section of the crystal divided by the size of the
vortex. Then, each vortex carries a Gibbs weight proportional
to the energy, i.e., the vortex Hamiltonian (7) for a single
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vortex.1 Let us focus first on a single vortex. If the vortex
core has linear dimension a and the crystal cross section linear
dimension �, the vortex can be placed in any of the (�/a)2

cells (and in the mean-field approach we suppose the vortex
survives all the way along the crystal, from z = 0 to z = L,
so there is no additional freedom of placing it along some
subinterval of z). This gives

Z =
∑

Q+,Q−

(
�

a

)2

e−LH1 =
∑

Q+,Q−

e2 ln �
a
−L(g 	Q· 	Q+g′ 	Q× 	Q) ln �

a .

(8)

Remember that H is energy density along the z axis, so it
appears multiplied by L. The factor ln(�/a) in the second term
of the exponent comes from the Coulomb potential of a single
vortex (in a plane of size �). The exponent can be written as
−LF (1), with F (1) = H1 − (1/L)S1, recovering the relation
between the free energy F (1) and entropy S(1) of a single
vortex. The entropy comes from the number of ways to place a
vortex of core size a in the plane of size � � a: S ∼ ln(�/a)2.
Suppose for now that elementary excitations have |Q±| � 1,
as higher values increase the energy but not the entropy, so they
are unlikely (when only a single vortex is present). Now we
can consider the case of single-charge vortices with possible
charges (1,0),(−1,0),(0,1),(0,−1), and the case of two-charge
vortices where F and B charge may be of the same sign or
opposite signs, (1,1),(−1,−1),(1,−1),(−1,1):

F (1)
0 =

(
g − 2

L

)
ln

�

a
, 	Q = (±1,0) or 	Q = (0,±1), (9)

F (1)
1 =

(
2g − g′ − 2

L

)
ln

�

a
, (Q+,Q−) = (±1,∓1),

(10)

F (1)
2 =

(
2g + g′ − 2

L

)
ln

�

a
, (Q+,Q−) = (±1,±1).

(11)

Now we identify four regimes, assuming that g,g′ > 0:2

(1) For L > 2/g, a vortex always has positive free energy
so vortices are unstable like in the low-temperature phase of
the textbook Berezinsky-Kosterlitz-Thouless (BKT) system.
This is the vortex-free phase where the phase U (1)F ⊗ U (1)B
does not wind. This phase we logically call vortex insulator in
analogy with the single-flavor case.

(2) For 2/g > L > 1/(g − g′/2), a double-flavor vortex
always has positive free energy but single-flavor vortices are
stable; in other words, there is proliferation of vortices of
the form 	Q = (Q+,0) or 	Q = (0,Q−). This phase is like the
conductor phase in a single-component XY model, and the

1Again, this is not generally true for out-of-equilibrium configura-
tions but if the system reaches equilibrium, i.e., stable fixed point,
this follows by usual statistical mechanics reasoning.

2One specificity of multicomponent vortices is that the coupling
constants may be negative, as can be seen from (D11). In that case,
the ordering of the four regimes (how they follow each other upon
dialing L) changes but the overall structure remains.

topological excitations exist for the reduced symmetry group,
i.e., for a single U (1). We thus call it vortex conductor; it is
populated mainly by single-flavor vortices (Q,0), (0,Q).

(3) For 1/(g − g′/2) > L > 1/(g + g′/2), double-vortex
formation is only optimal if the vortex has Q+ + Q− = 0,
which corresponds to the topological excitations of the diago-
nal U(1)d symmetry subgroup, the reduction of the total phase
symmetry to the special case (θF ,θB) �→ (θF + δθ,θB − δθ ).
In other words, vortices of the form (Q+,−Q+) proliferate.
Here, higher charge vortices may be more energetically favor-
able than unit-charge ones, contrary to the initial simplistic
assumption, the reason being that the vortex core energy
proportional to gQ2

+ may be more than balanced out by the
intravortex interaction proportional to −g′Q2

+ (depending on
the ratio of g and g′). This further means that there may be
multiple ground states of equal energy (frustration). We thus
call this case frustrated vortex insulator (FI); it is populated
primarily with vortices of charge (Q,−Q).

(4) For 1/(g + g′/2) > L vortex formation always reduces
the free energy, no matter what the relation between Q+ and
Q− is, and each phase can wind separately: (θF ,θB) �→ (θF +
δθF ,θB + δθB). Vortices of both flavors proliferate freely
at no energy cost and for that reason we call this phase
vortex perfect conductor (PC). We deliberately avoid the term
superconductor to avoid the (wrong) association of this phase
with the vortex lines and type I or type II superconductors
familiar from the three-dimensional (3D) vortex systems:
Remember there is no emergent gauge field for the vortices in
two spatial dimensions, and we only have perfect conductivity
in the sense of zero resistance for transporting the (topological)
charge, but no superconductivity in the sense of breaking a
gauge symmetry.

A more systematic mean-field calculation will give the
phase diagram also for an arbitrary number of vortices. This
is not so interesting as it already does not require much less
work than the RG analysis, which is more rigorous and more
accurate for this problem. For completeness, we give the
multivortex mean-field calculation in Appendix E.

One might worry that the our whole approach approach
misses the CP geometry of the problem, i.e., the fact that the
�+ field has a source at z = 0 and the �− field at z = L.
In Appendix F, we show that nothing is missed at the level
of approximations taken in this paper, i.e., mean-field theory
in this subsubsection and the lowest-order perturbative RG in
the next one. Roughly speaking, it is because the sources are
irrelevant in the RG sense—the bulk configuration dominates
over the boundary terms. The appendix states this in much
more precise language.

2. RG analysis

We have classified the symmetries and thus the phases of
our system at the mean-field level. To describe quantitatively
the borders between the phases and the phase diagram, we
will perform the renormalization group (RG) analysis. Here
we follow closely the calculation for conventional vortex
systems [24]. We consider the fluctuation of the partition
function δZ upon the formation of a virtual vortex pair at
positions r1,r2 with charges 	q,−	q (with r1 + r2 = 2r and
r1 − r2 = r12), in the background of a vortex pair at positions
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R1,R2 (with R1 + R2 = 2R and R1 − R2 = R12) with charges
	Q1, 	Q2. This is a straightforward but lengthy calculation and

we state just the main steps. First, it is easy to show that
the creation of single-charge vortices is irrelevant for the
RG flow so we disregard it. Also, we can replace the core
self-interaction constants g0,1 with the fugacity parameter
defined as y ≡ exp [−β(g0 + g1) ln ε]. Here we introduce the
notation β ≡ L in analogy with the inverse temperature β

in standard statistical mechanics, in order to facilitate the
comparison with the literature on vortices in spin systems,
and also with antiferromagnetic systems in Sec. V.3

Now from the vortex Hamiltonian Hvort the fluctuation
equals (at the quadratic order in y and r)

δZ
Z = 1 + y4

4

∑
q±

∫
dr12r

3
12e

g	q·	q+g′ 	q×	q

×
[ ∫

drr2(g 	Q1 · 	q + g′ 	Q1 × 	q)

×∇ ln |R1 − r| + (g 	Q2 · 	q + g′ 	Q2 × 	q)

×∇ ln |R2 − r|
]2

. (12)

Notice that ∇ is taken with respect to r. The above result
is obtained by expanding the Coulomb potential in r12 (the
separation between the virtual vortices being small because
of their mutual interaction) and then expanding the whole
partition function (i.e., the exponent in it) in y around the
equilibrium value Z . The term depending on the separation
r12 is the mutual interaction energy of the virtual charges, and
the subsequent term proportional to r2 is the interaction of the
virtual vortices with the external ones (the term linear in r

cancels out due to isotropy). Then by partial integration and
summation over q± ∈ {1,−1} we find

δZ
Z = 1 + y4[8πg2 	Q1 · 	Q2 + 8π (g′)2 	Q1 · 	Q2

+ 16πgg′ 	Q1 × 	Q2]I3 ln R12

+ y4[4πg(g + g′)( 	Q1 × 	Q1 + 	Q2 × 	Q2)

× I1 + 8(g′)2I1] ln ε, (13)

with In = ∫ �a

εa
drrn+g+g′

. Now, by taking into account the def-
inition of the fugacity y, rescaling � �→ �(1 + �), performing
the spatial integrals, and expanding over �, we can equate the
bare quantities g,g′,y in (7) with their corrected values in
Z + δZ to obtain the RG flow equations:

∂g

∂�
= −16π (g2 + g′2)y4,

∂g′

∂�
= −2πgg′y4,

∂y

∂�
= 2π (1 − g − g′)y. (14)

3Of course, the physical meaning of β in our system is very different:
We have no thermodynamic temperature or thermal noise, and the
third law of thermodynamics is not satisfied for the “temperature”
1/β = 1/L. We merely use the β notation to emphasize the similarity
between free energies of different systems, not as a complete physical
analogy.

Now let us consider the fixed points of the flow equations. If
one puts g′ = 0, they look very much like the textbook XY

model RG flow, except that the fugacity enters as y4 instead
of y2 (simply because every vortex contributes two charges).
They yield the same phases as the mean-field approach as
it has to be, but now we can numerically integrate the flow
equations to find exact phase borders. The fugacity y can
flow to zero (meaning that the vortex creation is suppressed
and the vortices tend to bind) or to infinity, meaning that
vortices can exist at finite density. At y = 0, there is a fixed
line g + g′ = 1. This line is attracting for the half-plane
g + g′ > 1; otherwise, it is repelling. There are three more
attraction regions when g + g′ < 1. First, there is the point
y → ∞,g = g′ = 0 which has no analog in single-component
vortex systems. Then, there are two regions when g → ∞
and g′ → ±∞ (and again y → ∞). Of course, the large
g,g′ regime is strongly interacting and the perturbation theory
eventually breaks down, so in reality the coupling constants
grow to some finite values g∗,g′

∗ and g∗∗,g′
∗∗ rather than to

infinities. The situation is now the following:
(1) The attraction region of the fixed line is the vortex

insulator phase: The creation rate of the vortices is suppressed
to zero.

(2) The zero-coupling fixed point attracts the trajectories in
the vortex perfect conductor phase: Only the fugacity controls
the vortices and arbitrary charge configurations can form.
Numerical integration shows that this point also has a finite
extent in the parameter space.

(3) In the attraction region of the fixed point with g∗ < 0
and g′

∗ > 0 (formally they flow to −∞ and +∞, respectively),
same-sign F and B charges attract each other and those with
the opposite sign which repel each other. This is the frustrated
insulator.

(4) The fixed point with g∗∗,g′
∗∗ < 0 (formally both flow

to −∞) corresponds to the conductor phase.
The RG flows in the g-g′ plane are given in Fig. 2. Full

RG calculation is given in Fig. 2(b); for comparison, we
include also the mean-field phase diagram (following from the
previous subsubsection and Appendix E) in Fig. 2(a). In the
half-plane g + g′ > 1 every point evolves toward a different,
finite point (g,g′) in the same half-plane. In the other half-plane
we see the regions of points moving toward the origin or
toward one of the two directions at infinity. The PC phase
(the attraction region of the point (0,0)) could not be obtained
from the mean field calculation (i.e., it corresponds to the
single point at the origin at the mean field level).

It may be surprising that the coupling constants can be
negative, with like charges repelling and opposite charges
attracting each other. However, this is perfectly allowed in our
system. In the usual XY model, the stiffness is proportional
to the kinetic energy coefficient and thus has to be positive.
Here, the coupling between the fluctuations of F and B

beams introduces other contributions to g,g′ and the resulting
expressions (D11) give bare values of g,g′ that can be negative,
and the stability analysis of the RG flow clearly shows that for
nonzero g′, the flow can go toward negative values even if
starting from a positive value in some parameter range. If
we fix g′ = 0, the flow equations reproduce the ones from
the single-component XY model, and the phase diagram is
reduced to just the g′ = 0 line. If we additionally suppose that
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FIG. 2. Phase diagram for the clean system in the g-g′ plane, at the mean-field level (a) and with RG flows (b). We show the flows for a
grid of initial points, denoted by black dots; red lines are the flows. Four phases exist, whose boundaries are delineated by black dashed lines.
In the mean-field calculation (a) all phase boundaries are analytical. In the RG calculation, the straight line g + g′ = 1 is obtained analytically
whereas the other phase boundaries can only be found by numerical integration of the flow equations (14). The flows going to infinity are the
artifacts of the perturbative RG; they probably correspond to finite values which are beyond the scope of our analytical approach. Notice how
the flows in the g + g′ > 1 phase all terminate at different values.

the bare value of g is non-negative, than we are on the positive
g′ = 0 semiaxis in the phase diagram—here we see only
two phases, insulator (no vortices, g → const.) and perfect
conductor (g → 0). However, for g′ fixed to zero (that is, with
a single flavor only), the perfect conductor reduces to the usual
conductor phase of the single-component XY model—in other
words, we reproduce the expected behavior.

Physically, it is preferable to give the phase diagram in
terms of the quantities �,τ,I,Ix,L that appear in the initial
equations of motion (1) and (2): The light intensities can be
directly measured and controlled, whereas the relaxation time
and the coupling cannot, but at least they have a clear physical
interpretation. The relations between these and the effective
Hamiltonian quantities y,g,g′ are found upon integrating out
the intensity fluctuations to obtain (7) and the explicit relations
are stated in (D11). Making use of these we can easily plot
the phase diagram in terms of the physical quantities for
comparison with experiment. However, for the qualitative
understanding we want to develop here, it is much more
convenient to use g,g′ as the phase structure is much simpler.

As an example, we plot the �-g′ diagram in Fig. 3 (we
have kept g′ to keep the picture more informative; the �-L
and �-I diagrams contain multiple disconnected regions for
each phase). The noninteracting fixed point g = g′ = 0 is now
mapped to � = 0. The tricritical point where the PC, the FI,
and the conductor phases meet is at R = 1. Therefore, the rule
of thumb is that low couplings � produce stable vortices with
conserved charges—the perfect vortex conductor. Increasing
the coupling pumps the instability up, and the kind of
instability (and the resulting phase) is determined by the
relative strength of the photonic lattice compared to the
propagating beams. Obviously, such considerations are only
a rule of thumb and detailed structure of the diagram is more
complex. This is one of the main motives of this study—blind
numerical search for patterns without the theoretical approach

adopted here would require many runs of the numerics for a
good understanding of different phases.

C. Geometry of patterns

Now we discuss what the intensity pattern I (r) looks
like in various phases, for various boundary conditions. This
is very important as this is the only thing which can be
easily measured in experiment—phases θα are not directly
observable, while the intensity distribution is the direct
outcome of the imaging of the crystal [31]. We shall consider
three situations. The first is a single Gaussian beam on zero

FIG. 3. Typical phase diagram for the system without disorder,
in the �-g′ plane. There are two discrete fixed points and the critical
line at � = 0, which corresponds to the critical line g + g′ = 1 in the
previous figure. We also see two discrete fixed points, corresponding
to g∗,∗∗,g′

∗,∗∗. The advantage of physical parameters is that the location
of these fixed points in the �-I plane can be calculated directly from
the numerics (or measured from the experiment).
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background (Ix = 0), with Gaussian initial intensity profile
|F (z = 0,r)|2 = |B(z = L,r)|2 = N exp(−r2/2s2) and pos-
sibly nonzero vortex charges: arg�±(r) ∼ exp (QF,Bφ), with
r = (r cos φ,r sin φ). The second case is a quadratic vortex
lattice of F and B beams, so the initial beam intensity is I0 =∑

i,j exp [−(x − xi)2/2s2
0 − (y − yi)/2s2

0 ], with xi+1 − xi =
yi+1 − yi ≡ b = const., the situation particularly relevant for
analogies with condensed matter systems. In the third case,
we have again a quadratic vortex lattice but now on top
of the background photonic square lattice, which is either
coincident or off phase (shifted for half a lattice spacing) with
the beam lattice. The background intensity is thus of the form
Ix = ∑

i,j exp [−(x − xi)2/2s2 − (y − yi)/2s2].
First of all, it is important to notice that there are two kinds

of instabilities that can arise in a vortex beam:4

(1) There is an instability which originates in the imbalance
between the diffusion and self-focusing (crystal response) in
favor of diffusion in high-gradient regions: If a pattern I (x,y)
has a large gradient ∇I , the kinetic term in the Lagrangian (4),
i.e., the diffusion term in (1) is large and the crystal charge
response is not fast enough to balance it as we travel along
the z axis, so the intensity rapidly dissipates and the pattern
changes. Obviously, the vortex core is a high-gradient region
so we expect it to be vulnerable to this kind of instability. This
is indeed the case: In the center of the vortex the intensity
diminishes, a dark region forms, and the intensity moves
toward the edges. We dub this the core or central instability
(CI), and in the effective theory it can be understood as the
decay of states with low fugacity y, i.e., high self-interaction
constants g0,g1. This instability prevents the formation of
vortices in the insulator phase, or limits it in the frustrated
insulator and conductor phases.

(2) There is an instability stemming from the dominance
of diffusion over self-focusing in low-intensity regions of
sufficient size and/or convenient geometry. At low intensity,
the charge response is nearly proportional to I [from Eq. (2)],
so if I is small diffusion wins and the intensity dissipates.
If there is sufficient inflow of intensity from more strongly
illuminated regions, it may eventually balance the diffusion,
but if the pattern has a long “boundary”, i.e., outer region of low
intensity, it will not happen and the pattern will dissipate out or
reshape itself to reduce the low-intensity region. We call this
case the edge instability (EI). For a vortex, it happens when
the positive and negative vortex charges tend to redistribute
due to Coulomb attraction and repulsion. In our field theory
Hamiltonian (7), this instability dominates in the conductor
and perfect conductor phases.

Let us first show how the CI and EI work for a single beam
with nonzero vortex charge. In Fig. 4, we show the intensity
patterns for a single vortex with charges (1,0) and (3,0) as the
x-y cross sections (transverse profiles) in the middle of the

4They are distinct from the bifurcations which happen also
in topologically trivial beam patterns and lead to the instability
which eventually destroys optical (nontopological) solitons. These
instabilities have been analyzed in Appendix C and in more detail in
Ref. [32], where the authors have found them to start from the edge
of the beam and result in the classical “walk through the dictionary
of patterns.”

(a) (b)

(d)( )c

Q=(1,0) Q=(3,0)

m
m4.2=L

m
m8.4=L

conductor

insulator

conductor

insulator

FIG. 4. Transverse profiles for a single Gaussian beam for two
different propagation distances, L = 2.4 mm (top) and L = 4.8 mm
(bottom), with vortex charges (1,0) [(a), (c)] and (3,0) [(b), (d)],
at the back face of the crystal (z = L). The regime on top [(a),
(b)] corresponds to the conductor phase, which has a single con-
served vortex charge QF . This vortex charge conservation prevents
significant instabilities; nevertheless, the multiquantum vortex (3,0)
shows the onset of CI; notice the reduced intensity and incoherent
distribution of the beam in the central region in the top right panel (the
CI is expected to grow roughly as Q2

+ + Q2
−). The insulator phase

only preserves the F − B invariance but not the vortex charge, and
in the absence of topological protection the vortices can annihilate
into the vacuum. Here we see the EI taking over for both charges;
four unstable regions appear near the boundary, violating the circular
symmetry and dissipating away the intensity of the vortex. Parameter
values: FWHM 40 μm, �I0 = 41, t = 10τ .

crystal, i.e., for z = L/2. The parameters chosen (�,I0,R,L)
correspond to the conductor phase (top) and the insulator phase
(bottom). In top panels, for Q2

+ + Q2
− = 1, the core energy is

not so large and CI is almost invisible. For Q2
+ + Q2

− = 9,
we see the incoherence and the dissipation in the core region,
signifying the CI. The conductor phase allows the proliferation
of vortices but only those with |Q±| � 1 are stable. In the
bottom panels, both vortices have almost dissipated away due
to EI, which starts from discrete poles near the boundary.5

Indeed, the insulator phase has no free vortices, no matter what
the charge. In Fig. 5, we see no instability even for a high-
charge vortex in the perfect conductor phase (top), whereas
the frustrated insulator phase (bottom) shows strong EI for the
like-charged vortex (3,3) since this fixed point has g′

∗ > 0, but
the (3,−3) vortex is stable. Notice that we could not expect

5As a rule, it follows the sequence (C9) found in Appendix C from
the pole structure of the propagator, though some of the steps can be
absent, e.g., for a single Gaussian vortex there is no C2 stage.
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FIG. 5. Transverse profiles for a single Gaussian beam for two
different coupling strengths, �I0 = 20 (top) and �I0 = 40 (bottom),
with vortex charges (3,−3) [(a), (c)] and (3,3) [(b), (d)] at the back
face of the crystal (z = L). The regime on top corresponds to the
perfect conductor phase, where the vortices of all charges freely
proliferate—both vortices are reasonably stable. The bottom case
is in the frustrated insulator phase—the forward-backward coupling
makes the (3,3) vortex unstable from EI while the (3,−3) vortex
survives. Parameter values: FWHM 40 μm, L = 2 mm, t = 10τ .

CI for this case since the sum Q2
+ + Q2

− = 9 is the same in
both cases—if for Q− = −Q+ the vortex has no CI, then for
Q− = Q+ it cannot have it either (since the value Q2

+ + Q2
−

is the same).
We have thus seen what patterns to expect from CI and

EI and also what kind of stable vortices to expect in different
phases: The perfect conductor phase allows free proliferation
of vortices of any charge, the conductor phase allows only
single-quantum vortices (or vortices with sufficiently low
Q2

+ + Q2
−) while others dissipate from CI, the frustrated

insulator supports the vortices with favorable charges (or
favorable charge distribution in multiple-vortex systems) while
others disintegrate from EI, and the insulator phase supports
no vortices—they all dissipate from CI or EI, whichever settles
first (depending on the vortex charges).

The case rich with analogies with condensed matter systems
is the square vortex lattice on the background photonic square
lattice, Fig. 6. Here we can also appreciate the transport
processes. The photonic lattice is coincident with the beam
lattice and equal in intensity, so �(I0 + Ix) = 2�I0. In the
perfect conductor phase [Fig. 6(a)], the vortices are stable
and coherent and keep the uniform lattice structure. In the
conductor phase [Fig. 6(b)], the CI is visible but the lattice
structure survives. The bottom panels show the nonconducting
phases: frustrated insulator [Fig. 6(c)] and insulator [Fig. 6(d)].
The insulator loses both lattice periodicity and the Gaussian
profile of the vortices but the frustrated insulator keeps
the regular structure: From EI the intensity is inverted and
the resulting lattice is dual to the original one [compare
Fig. 6(c) to Fig. 6(a)]. The phase patterns θF (x,y; z = L/2)

(a) ΓI=5 - perfect conductor (b) ΓI=15 - conductor

c) ΓI=20 - frustrated insulator( ΓI=60 - insulator(d)

FIG. 6. Vortex lattice with Gaussian profile for �I = 5 [PC, panel
(a)], �I = 15 [conductor, panel (b)], �I = 20 [FI, panel (c)], and
�I = 60 [insulator, panel (d)]. The perfect conductor phase has
a coherent vortex lattice and no instabilities. Conductor exhibits
a deformation of the vortex lattice and the reduction of the full
O(2) symmetry, starting from the center, whereas the FI exhibits
the reduction of symmetry and the inversion of the lattice due
to edge effects. Notice how both phases have reduced symmetry
compared to PC but retain coherence. Only the insulator phase loses
not only symmetry but also coherence; i.e., the intensity diffuses
and the pattern is smeared out. Transverse size of the lattice is
512 × 512 in computational space; same lattice size, FWHM, and
lattice spacing are used for all subsequent figures unless specified
otherwise. Parameter values: L = 4.8 mm, t = 10τ , FWHM 10 μm,
and lattice spacing equal to FWHM.

and θF (x,z; y = 320 μm) for the perfect conductor (top) and
the frustrated insulator phase (bottom) are shown in Fig. 7.
Here we see the vortex charge transport mechanism in a PC:
The vortices are connected in the sense that the phase θF is
coherently traveling from one vortex to the next. In the FI
phase, the phase is initially frozen along the z axis, until the
transport starts at some z ≈ L/2.

It may be instructive to take a closer look at the lattice
dynamics of the most interesting phase: the frustrated insulator.
In Fig. 8, we inspect square lattices on the photonic lattice
background for several charges of the form (Q+ = 3,Q−). The
first row shows how the vortices lose stability and develop CI as
the total square of the charge grows [from Fig. 8(a) to Fig. 8(c)].
Figures 8(d)–8(i) show how the g′ coupling favors the opposite
sign of Q+ and Q− and how the optimal configuration is
found for Q− = −3. This is easily seen by minimizing the free
energy over Q−: It leads to the conclusion that the forward-
backward coupling favors the “antiferromagnetic” ordering in
the sense that Q+ + Q− = 0.
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FIG. 7. Same system as in panels (a) and (c) from the previous
figure (PC and FI phases) but now we plot the phase θF , as
the transverse cross section θF (x,y; z = L/2) [(a), (b)] and as the
longitudinal section along the PR crystal θ (x,z; y = 320 μm) [(c),
(d)]. The perfect conductor phase has well-defined vortices in contact
which allows the transport of the vortex charge through the lattice
and shows as the periodical modulation of the phase along the z axis
(vortex lines). The frustrated insulator keeps well-defined vorticity
even though the intensity map undergoes inversion [Fig. 6(c)] with
frozen phase along the z axis, so there is no vorticity transport until
some z ≈ L/2 = 2.4 mm, when the phase stripes develop into vortex
lines. The unit on the x and y axis is 1 μm (1 in computational space)
and on the z axis 0.12 mm (120 in computational space).

Finally, it is interesting to see how the FI phase at high
intensities and coupling strengths contains a seed of translation
symmetry breaking which will become important in the
presence of disorder. In Figs. 9 and 10, we give intensity
and phase transverse profiles across the PC-FI transition and
deep into the FI phase at large couplings. The intensity maps
show the familiar inverse square lattice but the phase maps
show stripelike ordering, i.e., translation symmetry breaking
along one direction in Figs. 10(c) and 10(d)—horizontal
and vertical lines with a repeating constant value of the
phase θF on all lattice cells along the line. This is a new
instability, distinct from CI and EI. We cannot easily derive this
instability from the perturbation theory in Appendix C as it is a
collective phenomenon and cannot be understood from a single
beam.

IV. THE SYSTEM WITH DISORDER

Consider now the same system in the presence of quenched
disorder. This is a physically realistic situation: The disorder
corresponds to the holes in the photonic lattice which are
caused by the defects in the material. The defects are in
fixed positions, i.e., they are quenched, whereas the beam is
dynamical and can fluctuate. Now Ix(r) → Ix(r) + Ih(r); i.e.,

FIG. 8. Transverse profiles for vortex lattices with different
charges in the FI phase. In the first row [(a)–(c)], we see how the
CI gets stronger and stronger as the total vortex core energy grow
(with the square of the total charge). The second and third rows
show the growth of CI from (3,0) to (3,±3) (notice the increasingly
reduced intensity in the center and the strong ringlike structure of
the beams) but also the forward-backward interaction which favors
the configurations (3,−3),(3,−2),(3,−1) over (3,3),(3,2),(3,1). In
particular, the (3,−3) lattice is the optimal configuration of all (3,Q−)
configurations even though it has greater CI than say (3,0) (notice the
small dark regions in the center), because the

∑
ij gg′Qi+Qi− ln rij

term minimizes the EI—notice there is no “spilling” of intensity from
one vortex to the next. The parameters are �I = 20,L = 2.5 mm.

the quenched random part Ih(r) is superimposed to the regular
background (whose intensity is Ix). The disorder is given
by some probability distribution, assuming no correlations
between defects at different places. As in the disorder-free
case, the lattice is static and “hard”, i.e., does not backreact
due to the presence of the beams. One should, however,
bear in mind that the backreaction on the background lattice
can sometimes be important as disregarding it violates the
conservation of the angular momentum [37]. Disregarding
the backreaction becomes exact when Ix + Ih � |�|2, i.e.,
when the background irradiation is much stronger than the
propagating beams.

To treat the disorder, we use the well-known replica
formalism [54]. For vortex-free configurations, typical exper-
imental values of the parameters suggest that the influence of
disorder is small [31,33,35]. However, the influence of disorder
becomes dramatic when vortices are present. This is expected,
since holes in the lattice can change the topology of the phase
field θ± (the phase now must wind around the holes). Our
equations of motion are still given by the Lagrangian (4), but
with Ix �→ Ix + Ih. In our analytical calculations, we assume
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(a) ΓI=3 - perfect conductor (b) ΓI=9 - perfect conductor

c) ΓI=15 - frustrated insulator( ΓI=20 - frustrated insulator(d)

FIG. 9. Intensity maps for the quadratic vortex lattice with
charges (1,1), for increasing values of �I = �(I0 + Ix). The tran-
sition from the PC phase [(a), (b)] into the FI phase [(c), (d)]
happens at about �I ≈ 12. The edge instability sets in progressively,
in accordance with what we saw in the previous figure, leading
eventually to an inverse square lattice. Propagation length L = 5 mm.

that a defect in the photonic lattice changes the lattice intensity
from Ix to Ix + Ih, with Gaussian distribution of “holes” in Ih,
which translates to the approximately Gaussian distribution of
the couplings g,g′,g0,g1. In the numerics, however, we do a
further simplification and model the defects in a discrete way;
i.e., at a given spot either there is a lattice cell of intensity I1

(with probability h), or there is not (the intensity is zero, with
probability 1 − h). This corresponds to Ix = I1/2,Ih = ±I1/2
so the disorder is discrete. Due to the central limit theorem,
we expect that the Gaussian analytics should be applicable to
our numerics.

A. The replica formalism at the mean-field level

To study the system with quenched disorder in the photonic
lattice, we need to perform the replica calculation of the free
energy of the vortex Hamiltonian (7). We refer the reader
to the literature [41,42] for an in-depth explanation of the
replica trick. In short, one needs to average over the various
realizations of the disorder prior to calculating the partition
function, i.e., prior to averaging over the dynamical degrees
of freedom (vortices in our case). This means that we need
to perform the disorder average of the free energy, i.e., the
logarithm of the original partition function −lnZ , and not the
partition function Z itself. The final twist is the identity lnZ =
limn→0 (Zn − 1)/n: We study the Hamiltonian consisting of
n copies (replicas) of the original system and then carefully

(a) ΓI=3 - perfect conductor (b) ΓI=9 - perfect conductor

c) ΓI=15 - frustrated insulator( ΓI=20 - frustrated insulator(d)

FIG. 10. Transverse phase maps for the F beam for the same
cases as in Fig. 9. As the coupling strength �I grows toward very large
values (d), the violation of translation symmetry becomes obvious:
Notice the vertical and horizontal phase stripes. This instability gives
rise to the charge density wave ordering in the presence of disorder.

take the n → 0 limit.6 The partition function of the replicated
Hamiltonian reads

Z = lim
n→0

Tr exp

⎡
⎣−

n∑
μ=1

Hvort(Q
(μ))

⎤
⎦, (15)

where Q(μ) are the vortex charges in the μth replica of the
system. In the original Hamiltonian (7), the disorder turns
the interaction constants into quenched random quantities
gij ,g

′
ij ,g0;ij ,g1;ij , so we can compactly write our interaction

term as
Hvort =

∑
ij

∑
αβ

QiαJ
αβ

ij Qjβ (16)

with J++
ij = J−−

ij = gij (1 − δij )lnrij + g0δij , J+−
ij = J−+

ij =
g′

ij (1 − δij )lnrij + g1δij . Now we again make the mean-field
approximation for the long-ranged logarithmic interaction.
Similar to the clean case, for i �= j we approximate glnrij ∼
g′lnrij ∼ ln�, knowing that g,g′ ∼ 1 and assuming that
average intervortex distance is of the same order of magnitude
as the system size �, and for the core energy we likewise get
g0,g1 ∼ lna/ε ∼ −lnε ∼ ln�. The result is that all terms in
J

αβ

ij , both for i �= j and i = j , are on average of the order
ln� � 1, and the mean-field approach is justified. We will
sometimes denote the 2 × 2 matrices in the flavor space by
hats (e.g., Ĵ = J αβ).

6Care is needed as the n → 0 limit does not in general commute
with the thermodynamic limit.
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The final Hamiltonian (16) has the form of the random-
coupling and random-field Ising-like model: Random cou-
plings stem from the stochasticity of Jij values and random
field from the fact that 〈Jij 〉 �= 0 introduces terms linear in Qiα ,
i.e., an effective external field coupling to the “spins.” We have
arrived at this model through three steps of simplification: our
microscopic model is a type of the XY -glass model (Cardy-
Ostlund model [55]), a well-known toy model for disorder. At
this stage, our model is similar to the work of Refs. [9,10], only
with two components instead of one. Then we have written the
effective vortex Hamiltonian with Coulomb-like interaction,
disregarding the topologically trivial configurations. This is
a rather extreme approximation but a necessary one as it is
very complicated to consider the full model with vortices.
Finally, we have approximated the logarithmic potential with
a constant all-to-all vortex coupling. Such an approximation

(essentially the infinite dimension limit) is frequently taken
and lies at the heart of the solvable Sherington-Kirkpatrick
Ising random coupling model [41]. Our case differs from
the Sherington-Kirkpatrick model as it (i) has also a random
field, (ii) has two flavors, and (iii) has the Ising spins taking
arbitrary integer values. From the random XY model it differs
by (i) and (ii) above, and also by considering only vortices and
no nontopological spin configurations. The additional phases
we get in comparison to Refs. [9,10] and its generalization
in Refs. [11,12,46] come from the interactions between the
forward and backward flavors. But bearing in mind the drastic
approximations we take, we stress that we cannot aspire to
solve either the XY model or the resulting Ising-like model
in any rigorous way (certainly not at the level of rigor of
mathematical physics). We merely try to obtain a crude
understanding.

The Gaussian distribution of defects reads p(J αβ

ij ) = exp [−(J αβ

ij − J
αβ

0 )(σ̂−2)αβ(J αβ

ij − J
αβ

0 )], where the second moments are
contained in the matrix σαβ , with σ+− = σ−+. In this case, we get the replicated partition function

Z̄n =
∫

D
[
Q

(μ)
iα

] ∫
D
[
J

αβ

ij

]
exp

⎡
⎣−1

2

N∑
i,j=1

∑
α,β

(
J

αβ

ij − J
αβ

0

)
σ−2

αβ

(
J

αβ

ij − J
αβ

0

)
−

n∑
μ=1

N∑
i,j=1

∑
α,β

βJ
αβ

ij Q
(μ)
iα Q

(μ)
jβ

⎤
⎦. (17)

We can now integrate out the couplings J
αβ

ij in (17) and get

Z̄n = const.
∫

D
[
Q

(μ)
iα

]
exp

⎡
⎣1

2
β2

n∑
μ,ν=1

N∑
i,j=1

∑
α,β

Q
(μ)
iα Q

(ν)
iβ (σ̂ 2)αβQ

(μ)
jα Q

(ν)
jβ − β

n∑
μ=1

N∑
i,j=1

∑
α,β

J
αβ

0 Q
(μ)
iα Q

(μ)
jβ

⎤
⎦. (18)

Integrating out the disorder has generated the nonlocal quartic
term proportional to the elements of σ 2

αβ . The additional
scale given by the average disorder concentration means we
cannot scale out β = L anymore, and it becomes an additional
independent parameter. The partition function can be rewritten
in the following way, usual in the spin-glass literature [42,54].
We can introduce the nonlocal order parameter fields

p(μ)
α = 1

N

N∑
i=1

Q
(μ)
iα , q

(μν)
αβ = 1

N

N∑
i,j=1

Q
(μ)
iα Q

(ν)
jβ , (19)

which have the meaning of overlap between different
metastable states. The rest is just algebra, although rather
tedious: One rewrites the Hamiltonian in terms of new order
parameters, and then one can solve the saddle-point equations
for pα and qαβ , or do an RG analysis. The calculation is found
in Appendix G.

The mean-field analysis yields six phases:
(1) One phase violates both the replica symmetry and

the flavor symmetry, breaking it down to identity. We dub
this phase vortex charge density wave (CDW), as it implies
spatial modulation of the vortex charge, leading to nonzero
net charge density

∑
i Q

(μ)
iα in some parts of the system even if

the boundary conditions are electrically neutral (the total net
charge density must still be zero due to charge conservation).
Vortices take their charges from Z ⊗ Z.

(2) The second phase violates the replica symmetry in both
flavors and reduces the flavor symmetry but does not break it
down to identity. Instead, it reduces it to the diagonal subgroup

U (1)F ⊗ U (1)B → U (1)d , so it has nonzero density of the
vortex charge in a given replica

∑
i Q

(μ)
i+ = −∑

i Q
(μ)
i− . Again,

the charge density is locally nonzero but now with an additional
constraint resulting in frustration (multiple equivalent free
energy minima). This is thus the dirty equivalent of the
frustrated insulator phase and we dub it vortex glass, as
it has long-range correlations (because of the logarithmic
interactions between charged areas), does not break spatial
symmetry, and exhibits frustration; its charges are from
π1[U (1)d ] = Z.

(3) The remaining phases have no nonzero vortex charge
density fluctuation and are similar to the phases in the clean
system. Vortex perfect conductor violates the replica symmetry
of all three fields q++,q−−,q+− and allows free proliferation
of vortices with charges (Q+,Q−) ∈ Z ⊗ Z.

(4) Frustrated vortex insulator preserves the replica sym-
metry of q±± but has nonzero value, with broken replica
symmetry, of the mixed q+− field, which gives U (1)d vortices,
with charges Q+ = −Q− ∈ Z.

(5) Vortex conductor preserves the replica symmetry of the
mixed q+− order parameter but violates it in q±±, resulting in
the proliferation of single-flavor vortices with Z charge.

(6) Vortex insulator fully preserves the replica symmetry,
all order parameters are zero, and vortices cannot proliferate.
RG analysis will show that insulator surivives only at zero
disorder; otherwise it generically becomes CDW.

The phase diagram (given in Fig. 11 in the next sub-
section) now contains six phases (only five are visible for
the parameters chosen in the figure): CDW, insulator, FI,
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FIG. 11. Phase diagram for the system with lattice disorder in the g-g′ plane together with RG flows, with red lines denoting the flows
starting at the initial conditions denoted by black points. The dashed black lines are approximate phase boundaries from mean-field theory,
for σ 2 = 0.4 (a) and σ 2 = 1.2 (b). In panel (a), the area where g + g′ + β2σ 2 > 1 is inhabited by the flows toward nonuniversal values of
(g,g′) which belong to the CDW phase and the opposite region is divided between the attraction regions of (0,0), (g∗ → ∞,g′

∗ → ∞), and
(g∗∗ → ∞,g′

∗∗ → −∞)—the familiar PC, FI, and conductor phases. In panel (b), for σ 2 = 1.2, the disorder becomes relevant in the glass phase
(denoted by “GL”), whose RG flows end on the half-line of fixed points g + g′ + β2σ 2 = 1,g′ < 0. For our parameter values, this line happens
to pass almost through the origin; in general, this is not necessarily the case. The nondisordered phases (flowing to σ 2 = 0) FI, conductor, and
PC have survived. Propagating length is L = 3.0 mm.

conductor, PC, and the glassy phase. The insulator phase is
now of measure zero in the (g,g′,σ 2) plane, existing only for
the points at σ 2 = 0; for generic nonzero values we have a
CDW. For simplicity, we have plotted the phase diagram for
σ 2

++ = σ 2
−− = σ 2

+− ≡ σ 2.

B. RG analysis and the phase diagram

To study the RG flow, we can start from the replicated
partition function (18), inserting the definition of the couplings
J

αβ

ij and keeping the vortex charges Q
(μ)
iα as the degrees of

freedom (without introducing the quantities pμ
α ,q

(μν)
αβ ). The

basic idea is the same: We consider the fluctuation δ(Z̄n) upon
the creation of a vortex pair at r1,2 with charges 	q(μ)

1 ,−	q(μ)
2 ,

in the background of the vortices 	Q(ν)
1,2 at positions R1,2.

Likewise, we introduce the fugacity parameter y(μ) to account
for the vortex core energy. However, this problem is much
harder than the clean problem and one has to resort to many
approximations to perform the calculation. In its most general
form, the problem is still open, in the sense that all known
solutions suppose a certain form of replica symmetry breaking
or truncate the RG equations [42]. The RG analysis is thus
less useful in the disordered case but at least the numerical
integration of the flow equations is supposed to give a more
precise rendering of the phase diagram compared to the mean
field theory. We again describe the calculation in Appendix G
and jump to the results.

The fixed point of the flow equations lies either at infinite y

or at y = 0 like in the clean case. This is again controlled
by the the equation for ∂y/∂� but now depending on the
combination g + g′ + β2σ 2 instead of g + g′ in the clean case
(for simplicity, we consider the case where σ 2

αβ are all equal).
The following cases appear:

(1) When the fugacity flows toward infinity, we reproduce
the phases and the fixed point values (g,g′,σ 2) from the clean
case: The PC flows toward (0,0,0), the FI toward (g∗,g′

∗,0),
and the conductor toward (g∗,g′

∗∗,0) with g∗ → −∞,g′
∗ →

−∞,g′
∗∗ → ∞. Notice that all these phases flow to σ 2 = 0;

i.e., disorder is irrelevant.
(2) When the fixed point lies at y = 0, one possibility is

that all parameters (g,g′,σ 2) flow toward some nonuniversal
nonzero values. The attraction region of this point is the CDW
phase: The disorder term stays finite as well as the couplings.
In particular, the points on the half-plane g + g′ > 0,σ 2 = 0
stay at σ 2 = 0 (with constant coupling values) and this is the
insulator phase from the clean case. Notice that σ 2 > 0 now;
i.e., disorder is relevant. For σ 2 < 1, this are the only fixed
points when y = 0.

(3) However, for sufficiently strong disorder (σ 2 > 1),
there is a new line of fixed points at y = 0 with a finite
attraction region, corresponding to a new phase. For β > 1,
the right-hand side of the second RG equation in (G19) has
a zero at nonzero g′ and there are trajectories flowing toward
(y,g,g′,σ 2) = [0,g,g′(g),σ 2(g)] and not toward an arbitrary
nonuniversal value of σ 2. This is precisely the glass phase,
where disorder is again relevant. At the lowest order, the
relation between g,g′,σ 2 at the fixed point line is given by
the relation g + g′ + β2σ 2 = 1.

Now we have made contact between the mean-field classi-
fication of phases and the fixed points and regions of the RG
flow. The flows in the (g,g′) plane are given in Fig. 11. The
parameter space is four-dimensional so the phase structure is
different at different disorder concentrations σ 2. In Fig. 11(a)
for σ 2 = 0.4, the phase structure is similar to the clean case;
we see the same four phases except that insulator (no stable
vortices) is replaced by the CDW phase with localized vortices.
In Fig. 11(b) for σ 2 = 1.2, the CDW phase is replaced by
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(a) z=0.20 L (b) z=0.40 L

c) z=0.65 L( z=0.95 L(d)

FIG. 12. Transverse profile for the PC phase in a Gaussian
beam lattice on a background lattice, for four different propagation
distances. The vortex charge is (1,1), which is sufficiently low that the
CI does not destroy the vortices. We see some CI-induced symmetry
reduction from O(2) to C4 but the overall lattice structure is preserved.
Parameter values are σ 2 = 0.1,�I = 20,L = 2 mm, FWHM for the
CP beams is 9 μm and for the photonic lattice 6 μm.

another disordered phase, the glasslike regime. Importantly,
the glass phase does not cross the g′ = 0 axis, meaning that
a single-flavor system even with disorder could not support a
glass. We thus conjecture that the transition at σ 2 = 1 is of first
order, as the change is the structure of the (g,g′) phase diagram
is discontinuous, and we do not see how this could happen if
the first derivative ∂F/∂ρ± (the derivative of the free energy
with respect to vortex charge density) is continuous. However,
we have not checked the order of this transition by explicit
calculation. The phase structure is further seen in the σ 2 − g′
diagram, where we see the glass phase emerge at some value
of the disorder. This is discussed further in the next section,
where we study the equivalent antiferromagnetic system (with
the same structure of the phase diagram, Fig. 16).

C. Geometry of patterns

The two previously considered mechanisms of instability—
central instability and edge instability—remain active also in
the presence of disorder. However, in the presence of disorder
there is a third, inherently collective effect that we dub domain
instability (DI). It follows from the fact that the self-focusing
term �E grows with intensity I : More illuminated regions
react faster [Eqs. (1) and (2)]. In the presence of background
lattice, there will be regions of initially zero beam intensity
I0 where the regular lattice cells have some nonzero intensity
Ix . Approximating I = I0 + Ix ≈ Ix = const., our equations
in the vicinity of the defect (hole) in the background lattice

(a) z=0.20 L (b) z=0.40 L

c) z=0.65 L( z=0.95 L(d)

FIG. 13. Transverse profile for the FI phase, present in the same
system as in Fig. 12 but for �I = 40. Now both the CI [low-intensity
regions in the beam center in panels (a) and (b)] and the EI [lattice
inversion in panels (c) and (d)] are present. The net result is the lattice
inversion, and the vortex charge dissipates along the inverse lattice.

becomes the Schrödinger equation in a step potential (equal to
Ix in the regular parts of the photonic lattice, and equal to zero
where a hole is found), so the z-dependent part of the solution is
of the form

∑
k eiλkz and the eigenenergies along z are gapped

by the inverse length: λk > 1/L. For small eigenenergies, the
transmission coefficient is very low, whereas for large energies
it approaches unity. Thus for 1/L large (i.e., there are few λk’s
which are larger than 1/L), most of the intensity remains
confined by the borders of the defect and the intensity does
not spill but for small 1/L the beam profile is deformed by
the “spilling” into the hole regions. For vortices, there is an
additional Coulomb interaction in the x-y plane, meaning the
effective potential is not piecewise constant anymore (even
in the simplest approximation) but the qualitative conclusion
remains: Large L brings global reshaping of the intensity
profile.

The other phases are analogous to the ones in the clean
case, though with a general trend that the presence of disorder
decreases the stability of vortex patterns. The PC and FI phases
are shown in Figs. 12 and 13. In this section, we only look at the
lattices, as the notion of disorder is inapplicable for a single
beam. Consider first the patterns in the PC phase (Fig. 12).
Compared to the clean case [Fig. 6(a)], the symmetry is much
reduced, from O(2) to C4, but the vortices are conserved and the
original lattice structure (outside the holes) is clearly visible.
The FI (Fig. 13) shows mainly EI (and to a smaller extent CI),
which together lead to the lattice inversion. The rule of thumb
for differentiating the conductor and PC on one side from the
CDW and FI on the other side is precisely the presence of
the lattice inversion. The absence of the charge transport is
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FIG. 14. Transverse profiles for the charge density wave [panels
(a) and (c)] and the glass phase [panels (b) and (d)]: intensity maps
(top) and vortex charge density maps (down). The telltale difference is
that the CDW loses the regular lattice as the intensity “flows” between
the regular and the defect regions and we see the DI at work. Glass,
on the other hand, consists of domains with coherent (well-defined)
vortices though with reduced symmetry (C4) mostly due to EI. The
charge density forms a connected network in the glass phase and
transport is possible, whereas in a frustrated insulator the charge is
stuck in isolated points.

best appreciated in the phase images: The charge pins to the
defects and localizes toward the end of the crystal (i.e., for z

near L). Only near the edges we see high vorticity, somewhat
analogous to topological insulators, which only have nonzero
conductivity along the edges of the system.

The CDW versus the glass phase is given in Fig. 14. The
charge density wave [Figs. 14(a) and 14(c), L = 240 μm]
exhibits the diffusion of intensity due to DI, and the vortex
beams are in general asymmetric and not clearly delineated.
In Figs. 14(b) and 14(d), where L = 120 μm with all other
parameters the same, there is a clear border between defects
and the regular parts of the lattice and the intensity is
concentrated in the vortex cores. We give also the vortex charge
density map in Figs. 14(c) and 14(d) in addition to the intensity
maps in Figs. 14(a) and 14(b)] as the charge density shows
why the CDW is insulating: Even though individual beams
diffuse and smear out in intensity, the regions of nonzero vortex
charge are disjoint and no global conduction can occur. Glass
is divided into ordered domains in intensity but the vortex
charges form a connected network which supports transport.
This is analogous to the percolation transition in a disordered
Ising model [56,57] and we may expect that the CDW-glass
transition follows the same scaling laws near the critical point.
However, we have not checked this explicitly and we leave it
for further work.

V. THE CONDENSED MATTER ANALOGY: COLLINEAR
DOPED HEISENBERG ANTIFERROMAGNET

The two-beam photorefractive system can serve as a good
model for quantum magnetic systems. The most obvious
connection is to multicomponent XY antiferromagnets (i.e.,
two-dimensional Heisenberg model): Planar spins are nothing
but complex scalars, and the vortex Hamiltonian remains
identical (π1[SO(2)] = π1[U(1)] = Z). The nonlinearity in
the spin system is different and usually much simpler, but
that typically does not influence the phase diagram (the
symmetry structure remains the same). Such connection is so
obvious it does not require further explanations. Our point
is that the CP beams in a PR crystal can also describe
more general magnetic systems in the presence of topological
solutions described by homotopy groups different from Z.
In particular, we want to point out to a connection with a
two-sublattice antiferromagnetic system which has some time
ago enjoyed considerable popularity as a possible description
of magnetic ordering in numerous planar strongly coupled
electron systems, including cuprate high-Tc superconductors
[5,38,58]. This is the collinear doped antiferromagnet defined
on two sublattices. When coupled to a charge density wave
(speaking about the usual U(1) electromagnetic charge) and a
superconducting order parameter, it becomes a toy model of
cuprate materials (one variant is given in Ref. [58]). In the light
of what we know today, the ability of this model to realistically
describe the cuprate physics is quite questionable; but even so
it is an interesting magnetic system on its own, and it was
already found in Refs. [39,47] to exhibit a spin-glass phase,
though in a slightly different variant (in particular, with spiral
instead of collinear ordering).

Let us formulate the model. While the material is a lattice
on the microscopic level, here we are talking about an effective
field theory model. The order parameter is the staggered
magnetization

M(r) =
∑

α=1,2

Mα(r) cos(n · r), (20)

where α ∈ {1,2} is the sublattice “flavor” index (analogous to
the α index for the F and B beam in the previous sections)7

and each component Mα is a three-component spin, describing
the internal, i.e., spin degree of freedom (we label the spin
axes as X, Y , Z). The total spin is thus the sum of the spins
of the two components, and n is the modulation vector. The
modulation gives rows of alternating staggered magnetization
in opposite directions as in Fig. 15(a). This stands in contrast
with the spiral order, where the modulation vectors become
nα , i.e., differ for the two sublattices, and are themselves space
dependent [39]. The ordered phase of the collinear system has
the nonzero expectation value of the staggered magnetization
along one direction, which can be chosen as the Z axis (“easy
axis”), where the spin fluctuations about the easy axis remain
massless, and the symmetry is broken from O(3) to O(3)/O(2).
The spiral order, on the other hand, breaks the symmetry down
to identity, as the order parameter is a dreibein [39].

7Sometimes we will denote the sublattices by ± instead of 1,2 for
compactness of notation.
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FIG. 15. Numerical realization of the spin pattern (staggered magnetization M1) in the collinear O(3) antiferromagnet. Magnetization is
three dimensional and we give the projection in the XY plane, M1 · nXY ≡ M⊥. In panel (a), we show the characteristic collinear spin pattern
in absence of vortices. In panel (b), we plot M(vort)

1 , a Z2-charged point vortex defect with Q = 1. In panel (c), we give an enlargement of the
vortex from panel (b) shown as the difference M(vort)

1 − M1 to show more clearly the structure of the vortex—now the regular periodic pattern
is absent and we appreciate the pointlike structure of the vortex. The parameters are u = r = 1 and v = 0.5.

The symmetry conditions (isotropy in absence of external
magnetic field) determine the Hamiltonian up to fourth order,
as discussed in Ref. [58]:

Haf = 1

2gM

[(
1

cM

∂τ Mα

)2

+ |∇Mα|2 + r

2
|Mα|2

]

+ u0

2
|Mα|4 − v0(|M1|2 + |M2|2)2. (21)

The antiferromagnetic coupling is gM , the spin stiffness is cM ,
and the effective mass of spin wave excitations is r . The fourth-
order coupling u0 comes from the “soft” implementation of
the constraint |Mα| = 18 and v0 is the anisotropy between the
two sublattices, justified by the microscopic physics [5,58].
The Hamiltonian can be transformed by rescaling τ and x,y,
together with the couplings u0 �→ u and v �→ v0 to set gM =
cM = 1 so that the kinetic term becomes isotropic, giving

Haf = 1

2
(∂τM)2 + 1

2
|∇M|2 + r

2
|M|2 + u

2
(|M|2)2

− v|M1|2|M2|2, (22)

where we have also rewritten the quartic terms for convenience.
Without anisotropy, the energy of the system is a function of
|M1|2 + |M2|2 only and the symmetry group is the full O(6).
With v �= 0, the symmetry is reduced to O(3)1 ⊗ O(3)2: The
internal spin symmetry in each sublattice remains unbroken
but the spatial rotation symmetry between the layers is broken
down to just the discrete flip. Compare this to the U(1) ⊗ U(1)
symmetry in the PR system: There, it is the internal phase
symmetry that remains unbroken.

8One could also enforce the constraint exactly, through the nonlinear
σ model, as was done in Ref. [39]. While the leading term of
the “vortex” Hamiltonian would remain the same in that case, the
amplitude fluctuations have different dynamics which influences
some terms of the Hamiltonian and thus its RG flow (though probably
not the very existence of the glass phase).

A. Z2 vortices

Remember that topological solitons are classified by homo-
topy groups and that we work in a two-dimensional plane. The
relevant group is again the first homotopy group, π1[O(3)] =
Z2. For simplicity, we will call these excitations “vortices,”
bearing in mind that the only possible charges are Qα = ±1
and not all integers. A realization of the vortex with Q = 1
is shown in Fig. 15(b). Since the spins are three-dimensional
(the figure shows the projection in the XY plane), it becomes
clear that vortex charge is only defined modulo 2; i.e., it makes
no sense to talk about charges |Q| > 1. For example, winding
around twice in the XY plane can be done along a closed line
in the XYZ space which can be contracted to a point. That
could not happen for the two-dimensional phase U(1) precisely
because there is no extra dimension. In Fig. 15(b), the vortex is
superimposed onto the regular configuration: It is recognizable
as a contact point between two lines of alternating staggered
magnetization. In Fig. 15(c) we have subtracted the regular
part and only the vortexing spin pattern is shown: Here we see
the vortex interpolates between two opposite spin orientations
in two opposite directions in the plane.

Now let us derive the effective Hamiltonian of the vortices.
For the Z2 vortex, a loop in real space is mapped onto a π arc
in the internal space, so the vortex can be represented as

Mα(r,φ) =
∫

dφ′e
i
2 (φ′−φ)�̂3 mα, (23)

giving (the matrices �1,2,3 represent the so(3) algebra)

Mα =
⎛
⎝ cos φ ∓ sin φ 0

± sin φ cos φ 0
0 0 1

⎞
⎠
⎛
⎝ m1α

m2α

m3α

⎞
⎠, (24)

where mα is the magnetization amplitude, analogous to the
beam amplitude ψα in the optical system. The leading-order,
noninteracting term in (22) gives the following for the energy
of a single vortex of charge 	Q:

E1 = 2π (|mX × eZ|2 + |mY × eZ|2) ln �

= 2π |m⊥α|2 ln �, (25)
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which is in fact independent of the sign of 	Q (as could be
expected, as it is in general proportional to 	Q · 	Q which is a
constant for parity vortices). The vortex singles out an easy
axis (Z axis) around which the staggered magnetization winds
(φ being the winding angle). This allows one to introduce
mα⊥ ≡ (mXα,mYα,0). A vortex pair with charges 	Qi and 	Qj

has the binding energy

E2 = 2π 	Qi · 	Qj (|m1 × eZ|2 + |m2 × eZ|2) ln rij

= 2π |m⊥α|2 	Qi · 	Qj ln rij . (26)

Now we should integrate out the amplitude fluctuations as
we did in Appendix D for the CP beams. This again leads
to the coupling between different flavors, giving a vortex
Hamiltonian analogous to (7):

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qi) ln rij +
∑

i

	μ · 	Qi.

(27)

Two obvious differences with respect to the optical system
are (i) the charges are now limited to the values ±1, and
(ii) there is a term linear in charge density, which acts as a
chemical potential. The latter arises from the coupling of the
three-dimensional spin waves (i.e., the topologically trivial
excitations of the amplitude mα) to the vortices. Remember
that in the CP system, the amplitude fluctuations also couple to
the vortices, but there is no third, Z axis of the order parameter
so no linear term appears. The microscopic expressions for the
effective parameters g,g′,μα read

g = m2
⊥ + 4r + 6um2

⊥(
2v + 3

2um2
⊥ + v

2 m2
⊥
)(

2r + 3
2um2

⊥ − v
2 m2

⊥
) ,
(28)

g′ = − 4vm2
⊥(

2v + 3
2um2

⊥ + v
2 m2

⊥
)(

2r + 3
2um2

⊥ − v
2 m2

⊥
) , (29)

μα = 1

2
m⊥mz, (30)

assuming m1⊥ = m2⊥ ≡ m⊥. Now the RG calculation is
similar to the optical case but the nonzero chemical potential
introduces two differences. First, there is obviously the
additional term proportional to the total charge of the virtual
pair of vortices, μα(q1α + q2α). Second, there is no charge
conservation as the expectation value of the total vortex charge
is now 〈 	Q〉 = ∂F/∂ 	μ �= 0. Thus we need to take into account
not only the fluctuations with zero net charge (virtual vortex
pairs with charges 	q1 ≡ 	q and 	q2 ≡ −	q) but also the situations
with arbitrary pairs 	q1,	q2.9 This modifies the variation of the

9In the CP beam system, the total vortex charge can be nonzero if the
boundary conditions at z = 0,L have nonzero total vorticity. But there
we had no bulk chemical potential so the total vorticity in the crystal
could not change during the propagation along z. Here, we have a
bulk term in the Hamiltonian which violates charge conservation.

partition function from (12) and (13) to

δZ
Z = 1 + y4

4

∑
	q1,2

∫
dr12r

3
12e

−g	q1·	q2−g′ 	q1×	q2−	μ·	q ′

×
[ ∫

drr2(g 	Q1 · 	q + g′ 	Q1 × 	q)∇ ln |δR1|

+ (g 	Q2 · 	q + g′ 	Q2 × 	q)∇ ln |δR2|
]2

+ y4

4

∑
	q1,2

∫
dr12r

3
12e

−g	q1·	q2−g′ 	q1×	q2−	μ·	q1

×
[ ∫

drr2(g 	Q1 · 	q0 + g′ 	Q1 × 	q0) ln |δR1|

+ (g 	Q2 · 	q0 + g′ 	Q2 × 	q0) ln |δR2|
]2

,

where we have introduced 2	q ≡ 	q1 − 	q2,	q0 ≡ 	q1 + 	q2 and
δR1,2 ≡ R1,2 − r. The mixed term which includes both 	q and
	q0 vanishes due to isotropy. By matching the terms in the
resulting expression with the original Hamiltonian, we find
the recursion relations:

∂g

∂�
= −16πy4(g2 + g′2),

∂g′

∂�
= −16πy4gg′,

∂ 	μ
∂�

= 0,
∂y

∂�
= (1 − g − g′ − μ+ − μ−)y. (31)

Crucially, the chemical potential does not run which could
be guessed from dimensional analysis (it couples to dimen-
sionless charge). This is the same system as (14) up to the
trivial rescaling of the coupling constants and the shift of
the critical line g + g′ = 1 in the PR system to the line
g + g′ + μ+ + μ− = 1. It becomes obvious that the phase
diagrams are equivalent and can be mapped onto each other.

B. Influence of disorder

The disorder in a doped antiferromagnet comes from
electrically neutral metallic grains quenched in the bipartite
lattice. Being metallic and neutral, they are naturally modeled
as magnetic dipoles X quenched in the bipartite lattice. This
picture stems from the microscopic considerations in Ref. [48].
We again assume the Gaussian distribution of the disorder as
p(X) ∝ exp(−|X|2/2σ 2

X). The disorder dipoles are one and
the same for both sublattices, so X has no flavor (sublattice)
index. The minimal coupling of the dipoles to the lattice spins
∂i �→ ∂i − i�̂iXi gives

Haf �→ Hdis = Haf + ∇Mα · (X × Mα) + M2X2. (32)

Now the replica calculation requires the multiplication of the
M field into n copies and performing the Gaussian integral
over the disorder. The initial distribution of the disorder p(X)
gives rise to two independent Gaussian distributions: for the
couplings J

αβ

ij with dispersion matrix σ 2
αβ and for the chemical

potential μα
i with the dispersion vector ξ 2

α . The resulting
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Hamiltonian is

Hdis =
n∑

μ=0

(
1

2

∣∣∂τ M(μ)
α

∣∣2 + 1

2

∣∣∇M(μ)
α

∣∣2

+ u

2

∣∣M(μ)
α

∣∣2 − v
∣∣M(μ)

1

∣∣2∣∣M(μ)
2

∣∣2)

+ σ 2

4

n∑
μ,ν=0

(∇M(μ)
α × M(μ)

α

) · (∇M(ν)
α × M(ν)

α

)
, (33)

where we have disregarded the subleading logarithmic term
(∼ln|M(μ)

α |). Now making use of the representation (23) and
plugging it in into (33) gives the disordered vortex Hamiltonian

βHvort =
n∑

μ,ν=1

N∑
i,j=1

[
β2

2
Q

(μ)
iα Q

(ν)
iβ Q

(μ)
jα Q

(ν)
jβ

− βQ
(μ)
iα J

αβ

0 Q
(μ)
jβ + β2Q

(μ)
iα ξ 2Q

(ν)
iα

]

−
n∑

μ=1

N∑
i=1

βξ 2μα
0 Q

(μ)
iα . (34)

Of course, we could have arrived at the same effective
action starting from the vortex Hamiltonian (27), taking the
infinite-range approximation and identifying J αα

ij = gij ln rij

and similarly for other components of J
αβ

ij as we demonstrated
for the PR system. The final result has to be same at leading
order.

The next step is to rewrite the Hamiltonian in terms of
the order parameters p(μ)

α ,q
(μν)
αβ defined in (19). Compared to

the effective action for the photonic lattice with disorder in
Eq. (G4), there are two extra terms in the resulting action Seff :
One is proportional to the dispersion ξ 2 and the other to the
mean chemical potential 	μ0. The former term just introduces
the shift J

αβ

0 �→ J
αβ

0 − σ 2/2β and the latter term, linear in
the vortex charges and proportional to the chemical potential,
introduces solutions with nonzero net vortex charge density.
Looking back at the results of the saddle-point calculation in
Eqs. (19) and (G14), this tells us that the relation between the
phase diagrams is the following. The phases with no net vortex
charge density—insulator, conductor, frustrated insulator, and
perfect conductor—remain the same as in the PR system, since
both the average coupling value J

αβ

0 (which gets shifted) and
the term proportional to the chemical potential μα couple only
to 	p(μ). For brevity, denote J±±

0 ≡ J±
0 and notice that J−+

0 =
J+−

0 . The structure of phases with nonzero 	p(μ) depends on
the zeros of the saddle-point equation

J±
0 p± +

(
J+−

0

β
− β

2
ξ±
)

p∓ + (p±)−1

− μ±
0 (σ±±)2 + μ∓

0 σ 2
+−

β
= 0, (35)

analogous to (G13), where the one-step replica symmetry
breaking implies p±

(μ) = (p±, . . . ,p±). Now the equation is
cubic and the structure of solutions is different from (G14).
We could not find the solution in the closed form but it
is clear that a pair of cubic equations will have either a

single solution (p+,p−) or nine combinations (p+,p−), not
necessarily all different. Numerical analysis of (35) reveals
only two inequivalent solutions, analogous to (G14), i.e., one
of them has a single free energy minimum and the other one
a pair of degenerate minima. Therefore, we again have two
disordered solutions, one of which is glassy (frustrated).

Now we can write down also the RG equations for the
effective action (34). In this calculation, we put ξ 2

α = σ 2
αβ ≡

σ 2 for simplicity. Following the same logic as earlier, the
equations are found to be10

∂g

∂�
= −8π (g + g′)2y4 cosh(2β2σ 2)

× cosh(2β2σ 2) − 8π (g − g′)2y4,

∂g′

∂�
= −π (g + g′)2y4 cosh(2β2σ 2)

× cosh(2β2σ 2) − π (g − g′)2y4,

∂y

∂�
= 2π (1 − g − g′ − μ+ − μ− − β2σ 2)y,

∂μ

∂�
= −8πμ,

∂σ 2

∂�
= −2πβ4σ 4y4. (36)

Like in the clean case, the chemical potential is irrelevant
and the solutions for fixed point are the same as for the PR
beams, including the spin-glass fixed point. We conclude that
the phase structure of the optical system is repeated in strongly
correlated doped antiferromagnets, which also exhibit the spin-
glass phase and have the phase diagram sketched in Fig. 16.
In this context, it is more interesting to plot the phase diagram
in the σ 2 − 1/g′ plane, mimicking the x − T phase diagram
of quantum critical systems [38] (remember that the coupling
constants g,g′ behave roughly as inverse temperature in XY -
like models). Bear in mind that all phases shown are about
vortex dynamics; i.e., one should not compare Fig. 16 to the
textbook phase diagram of high-temperature superconductors,
which accounts also for the charge or stripe order and the
superconducting order. All vortex phases would be located
inside the pseudogap regime of the superconductor, where
various exotic orders can coexist (assuming, of course, that
our model is an adequate approximation of the magnetic order
in a cuprate or similar material, which is a complex question).
Crucially, the spin-glass phase (blue curves) flows toward finite
disorder σ 2, whereas the remaining two phases end up at zero
disorder, either at infinite 1/g′ (PC, red flows) or at zero 1/g′
(conductor, green flows). The RG flows in the conductor phase
are almost invisible in the figure, as the flows are much slower
than in the remaining two phases.

Discussion

Early papers which found and explored the spin-glass
phase in a very similar model are Refs. [39,40,47,49]. The

10For the most general case of different and nonscalar σ 2
αβ and ξ 2

α ,
the flow equations for them complicate significantly and we will not
consider them.
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FIG. 16. The phase diagram of the two-sublattice-doped Heisen-
berg antiferromagnet model in the σ 2-T plane (we have rescaled
σ 2 �→ 12σ 2). Since T ∼ 1/g′, we can alternatively understand
the vertical axis as 1/g′. Black dashed curves are approximate
phase boundaries. RG flows (starting from black dots) are colored
differently according to the phase they belong to: spin glass (blue),
PC (red), and conductor (green). At high temperatures, the vortex
conductor becomes either a perfect vortex conductor or a spin glass.
Spin glass (blue) is recognized by the fact that the RG equations flow
to nonzero disorder at finite and large g′ (low temperatures). The PC
phase (red) flows toward zero disorder and zero coupling (infinite
T ), collapsing practically to a single trajectory. The flows for the
conductor (green) end up at T = σ 2 = 0 but are not shown to scale
in the figure. Parameter values are u = r = 1 with varying v so as to
have g = −0.5 for all trajectories.

main difference is that the papers cited consider the spiral
(noncollinear) spin order. These works are all inspired by
the cuprate materials, the most celebrated brand of high-
temperature superconductors. While Refs. [40,47] explore in
detail the transport properties, we have no pretension either
to provide a realistic model of cuprates or to explore in detail
all the properties of the spin-glass phase. We are content to
see that the PR system of Z vortices reproduces the phase
structure of a certain kind of dirty Heisenberg antiferromagnets
(with O(3) spins and Z2 vortices), besides the more obvious
connection to systems which directly reproduce the Z vortices
in multicomponent U(1) systems like multicomponent Bose-
Einstein condensates and type-1.5 superconductors.

VI. CONCLUSIONS

We have investigated the light intensity patterns in a nonlin-
ear optical system consisting of a pair of counterpropagating
laser beams in a photorefractive crystal. We have studied
this system as a strongly interacting field theory and have
focused mostly on the formation and dynamics of vortices.
The vortices show a remarkable collective behavior and their
patterns are naturally classified in the framework of statistical
field theory: The effective action shows several different

phases with appropriate order parameters, and the system is
essentially an XY model with two flavors, i.e., two kinds of
vortex charge, for the two beams. The interaction between
the flavors is the central reason that the total energy of the
Coulombic interactions between the vortices in general cannot
be locally minimized at every point. In the presence of disorder,
a phase with multiple free energy minima arises, where the
absence of long-range order is complemented by the local
islands of ordered vortex structure, and which resembles spin
glasses.

The phase diagram is simple in terms of the effective
parameters—vortex coupling constants—and quite complex
when expressed in terms of the experimentally controllable
quantities—the intensity of the laser beams, the intensity of the
background photonic lattice, and the properties of the photore-
fractive crystal (the last is not controllable but can be estimated
reasonably well [3]). The lesson is that the approach we adopt
can save us from demanding numerical work if the space of
original parameters is blindly explored. Our phase diagrams
can serve as a starting point for guided numerical simulations,
suggesting what phenomena one should specifically look
for. So far the field-theoretical and statistical approach was
not much used in nonlinear optics (important exceptions are
Refs. [9–12,14,15,50,51,59,60]). We hope to stimulate work in
this direction, which is promising also because of the potential
of the photorefractive systems to serve as models of strongly
correlated condensed matter systems. They make an excellent
testing ground for various models because of the availability
and relatively low cost of experiments.

In this work, we have focused on the relation of the
photorefractive counterpropagating system to the model of an
O(3) doped antiferromagnet with two sublattices. The authors
of previous works on this model [40,47,48,58] were motivated
mainly by the ubiquitous problem of understanding the
pseudogap phase in cuprate superconductors. The applicability
of the model to this particular problem is still an open
question; it may well be that cuprate physics goes far beyond.
Nevertheless, it is an important quantum magnetic system in its
own right and serves as an illustration of how one can simulate
condensed matter systems in photorefractive optics.

Another field where vortices are found as solutions of
a nonlinear Schrödinger equation are cold atom systems
and Bose-Einstein condensates [26]. Notice, however, that
Bose-Einstein condensates in optical traps are usually (but not
always; see Ref. [30]) three-dimensional systems with vortex
lines (rather than XY -type systems with point vortices) and our
formalism would be more complicated there: In three spatial
dimensions, vortices give rise to emergent gauge fields. The
multicomponent systems of this kind give rise to so-called
type-1.5 superconductors [53], which are a natural goal of
further study.

A more complete characterization of the glasslike phase
is also left for further work. The reader will notice we
have devoted very little attention to the correlation functions
in various parameter regimes or the scaling properties of
susceptibility, which should further corroborate the glassy
character of the system. This is quite difficult in general but
very exciting as it offers an opportunity to tune the parameters
(e.g., disorder strength) freely in the optical system and study
the glasslike phase and its dynamics.
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APPENDIX A: NUMERICAL ALGORITHM

In order to solve numerically the system [(1) and (2)], we
employ a variation on the method of Refs. [61,62]. The method
does not make use of any analytical ansatz: It is an ab initio
numerical procedure which integrates the equations of motion.
The system has four independent variables: the transverse
coordinates (x,y), the longitudinal coordinate (formal time) z,
and the (physical) time t . That means we have essentially three
nested loops: (i) At every z slice we integrate the transverse
Laplacian and the interaction terms for the whole z axis, (ii)
we advance the time t , and (iii) we repeat the whole procedure
until reaching some time tf , which certainly should be much
longer than the relaxation time τ .

The important point is the very different natures of the
initial and boundary conditions for various coordinates. The
boundary conditions in the (x,y) plane, i.e., at the crystal edge
are not crucial: We have either just one or a few Gaussian beams
whose intensity drops exponentially away from the center and
is practically zero at the crystal edge, or we have a large lattice
consisting of many (of the order of 50–100) Gaussian beams so
the edge effects only affect a small portion of the whole lattice.
Therefore, imposing periodic boundary conditions (stemming
naturally from the integration in Fourier space, see the next
paragraph) are perfectly satisfying. Crucially, however, the CP
geometry means that F (t ; z = 0; x,y) = F0(x,y) and B(t ; z =
L; x,y) = B0(x,y) are given functions, fixed for all times. We
thus have a two-point boundary value problem along z and
have to iterate the z integration several times until we reach the
right solution. Finally, the initial condition for the relaxation
equation (2) is that the crystal is initially at equilibrium,
meaning that E(t = 0) = −Ix/(1 + Ix); specifically, for zero
background lattice, E(t = 0) = 0.

The algorithm now has the following structure:
(1) The innermost loop integrates in the x-y plane. This

is a Poison-type (elliptic) equation, thus we employ the
operator-split method, integrating the Laplacian operator in the
Fourier space and the interaction term (the EF and EB terms)
in real space, in the second-order leapfrog scheme. Thus, at
every time instant ti = i�t , we start from z = 0 where we set
the condition F (i�t ; z = 0; x,y) = F0(x,y), divide the z axis
into N steps of size �z = L/N , and at every slice z = j�z

perform the frog’s leap: We do the fast Fourier transform
(FFT) to turn the (x,y) dependence into (qx,qy) dependence,11

then we advance the Laplacian for �z/2 as F (i�t ; j�z; q) ≡
F̃

(0)
i,j �→ F̃

(1)
i,j = exp(−iq2�z/2)F̃ (0)

i,j , and then we do the in-
verse FFT and advance the interaction in real space as

11We denote the fields in Fourier space with a tilde, e.g., F̃ .

F
(2)
i,j = exp[i�E(i�t ; j�z; x,y)]F (1)

i,j . Finally we do the FFT
again and advance the Laplacian for the remaining half-step,
F̃i,j+1 = exp (−iq2�z/2)F̃ (2)

i,j . Once we reach j = N , the
integration goes backward, along the same lines, updating
now the B field [starting from B0(x,y)], where all signs in
the exponents of the above formulas are to be reversed. When
we reach z = 0 again, we are done. In this loop, we use the
field E1,j as already known for all j .

(2) The above loop will, in general, produce results
inconsistent with the charge field Ei,j because the equation for
E couples F and B and we have ignored that by integrating
the two fields one after the other instead of simultaneously.
This is, of course, commonplace in two-point boundary value
problems: Either only one boundary condition can be imposed
exactly and the other is shot for or, as in our case, both
are imposed exactly but at the cost of the solution being
inconsistent with the equations, so we have to iterate the
system to arrive at the correct solution everywhere. The second
loop thus iterates the first loop A times, at each step updat-
ing the charge field as E

(a−1)
i,j �→ E

(a)
i,j = Ei−1,j − τ [E(a−1)

i,j +
I

(a−1)
i,j /(1 + I

(a−1)
i,j )]/(1 + I

(a−1)
i,j ). The number of iterations A

is not fixed: We stop iterations when the intensity pattern
stabilizes,

∑
j

∑
x,y(I (a)

i,j − I
(a−1)
i,j ) < ε, for some tolerance ε.

Here, Ii,j refers to total intensity, i.e., |F |2 + |B|2 + Ix .
(3) Finally, the outermost loop integrates in time t , from

t = 0, with the initial condition E(t = 0) = −Ix/(1 + Ix)
given above. The integration time tf is divided into M =
tf /�t intervals, and at the end of each step we update
(Fi,j ,Bi,j ,Ei,j ) �→ (Fi+1,j ,Bi+1,j ,Ei+1,j ). Only the charge
field is directly integrated (as written above), in the first-order,
Euler scheme. The beam envelopes depend on time only
parametrically, through E(t), and they evolve by using an
updated Ei,j in the first two loops at every time step.

This procedure is very close to that in Ref. [61]; the main
difference is that we use a second-order (leapfrog) scheme,
while on the other hand our time integration is of the lowest,
linear order instead of second order as in Ref. [61].

APPENDIX B: TIME-DEPENDENT PERTURBATION
THEORY AND THE EXISTENCE OF EQUILIBRIUM

CONFIGURATIONS

1. Stability analysis: fixed points and limit cycles

In this appendix, we consider the time evolution of the CP
beams and show the existence of a stable equilibrium point
with nonzero intensity. This means that the system reaches a
stationary state for long times, justifying the basic assumption
of the paper that one can study the vortex configurations within
equilibrium statistical mechanics. Not all patterns are stable:
Depending on the boundary conditions and parameter values,
the system may or may not have a stable equilibrium, and
nonequilibrium solutions in photorefractive optics are well
known [37,50]. For our purposes, however, it is enough to
identify the region of parameter space where the equilibrium
exists; other cases are not the topic of this paper.

The time evolution of the beams �α and the charge field
E in (k,q) space is obtained by differentiating Eqs. (1) with
respect to time and plugging in ∂E/∂t from the relaxation
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equation (2):

∂�±
α

∂t
= −�

τ

[(1 + I )E + I ]

αk − q2 − �E
�±

α ,

(B1)
∂E

∂t
= − 1

τ
[(1 + I )E + I ].

This system has three equilibrium points. One is the 0 point,

(�±
+ ,�±

− ,E) =
(

0,0,− Ix

1 + Ix

)
,

and the remaining two are related by a discrete symmetry
�± �→ �∓, so we denote them as “±” points, with the “+”
point being

(�±
+ ,�±

− ,E) =
(√

E(1 + Ix) + Ix

1 + E
eiφ+ ,0,E

)
,

and the “−” point has instead �+ = 0 and �− =√
(E(1 + Ix) + Ix)/(1 + E) exp(iφ−). Notice that the phase

φ± remains free to vary, so this solution supports vortices.
The 0 point is the trivial vacuum, i.e., the zero-intensity
configuration with only background lattice. The fluctuation
equations about this point to quadratic order read

∂tX = −
[

− f+X1X5,−f+X2X5,−f−X3X5,−f−X4X5,

− 1

1 + Ix

(
X2

1 + X2
2 + X2

3 + X2
4

)− (1 + Ix)X5

]
,

(B2)

where we have introduced the real variables X1,3 =
Reδ�±,X2,4 = Imδ�±,X5 = δE and

f± = �(1 + Ix)2

�Ix ∓ (1 + Ix)(k ± q2)
. (B3)

The system (B2) is degenerate at linear order; thus, we need
a quadratic order expansion to analyze stability. The simplest
approach is to construct a Lyapunov function for Eq. (B2). The
function V (X) = X2 is positive for and only for X �= 0, and
its derivative is

dV

dt
= −2f+

(
X2

1 + X2
2

)
X5 − 2f−

(
X2

3 + X2
4

)
X5

− 1

1 + Ix

(
X2

1 + X2
2 + X2

3 + X2
4

)
X5 − (1 + I5)X2

5,

(B4)

which is strictly negative for X nonzero if f± > 0 and X5 > 0.
However, we always have X5 > 0 because dX5/dt in the full
relaxation equations (B1) has a strictly negative right-hand
side and E grows monotonically from zero to −Ix/(1 + Ix),
and at any finite t we have E(t) − E(t = ∞) = X5 > 0. Thus
the trivial equilibrium point is locally stable for f+ > 0,f− >

0, i.e., k > q2. It is much harder to construct the Lyapunov
function for the global equations (B1): In this case, there are no
additional symmetries and the stability of higher dimensional
systems is in general an extremely difficult topic. Thus there
may well be regions far away from the 0 point which do not
flow toward it.

The “±” pair is quite hard to study. All hope of expanding
the system to second order and understanding the resulting
complicated five-variable system is lost. This time, however,
we can do a nontrivial first-order analysis as the system is
nondegenerate and nicely reduces to the (X1,X5) subsystem.
Rescaling X1 �→ (1 + E0)−3/4[Ix + E0(1 + Ix)]1/2 and t �→
t{(1 + E0)/[Ix + E0(1 + Ix)]}1/4, the equation of motion for
the ± point reads

∂t

(
X1

X5

)
=
(

− a±
�E0+k+q2 −1

1 − a±
�E0+k+q2

)(
X1

X5

)

+O
(
X2

1 + X2
5; X2,X3,X4

)
, (B5)

with a± being some (known) positive functions of �,E0,Ix

(independent of k,q). This is precisely the normal form for
the Andronov-Hopf bifurcation [63], and the bifurcation point
lies at k = −�E0 − q2. As a reminder, the bifurcation happens
when the off-diagonal element in the linear term changes sign:
The fixed point is stable when a±/(�E0 + k + q2) is positive.
The sign of the nonlinear term determines the supercritical or
subcritical nature of the bifurcation. A negative sign means
the fixed point is stable everywhere before the bifurcation
and is replaced by a stable limit cycle after the bifurcation
(supercritical). A positive sign means the fixed point coexists
with the stable limit cycle before the bifurcation and the
(X1,X5) plane is divided among their attraction regions; after
the bifurcation there is no stable solution at all (subcritical).12

In conclusion, stable + equilibrium exists for k > −�E0 −
q2 where E0 is best found numerically. Exactly the same
condition holds for the − point. For k < −�E0 + q2, dynam-
ics depends on the sign of the nonlinear term in (B5): For
the positive sign, we expect periodically changing patterns.
If the term is negative and the bifurcation is subcritical,
various possibilities arise: The system may wander chaotically
between the + and the − point, or it may end up in the attraction
region of the 0 point and fall onto the trivial solution with zero
intensity. Naively, the attraction regions of the two fixed points
(± and 0) are separated by the condition −�E0 − q2 = q2, i.e.,
qc = √−�E0(�,τ )/2, where we have emphasized that E0 is
in general nonuniversal. The actual boundary may be more
complex, however, as our analysis is based on finite-order
expansion around the fixed points, which is not valid far away
from them.

The outcome is that the system generically has stable trivial
and nontrivial (nonzero intensity) equilibria, in addition to
time-dependent, periodic, or aperiodic solutions. Numerical
integration gives a similar picture of the stability diagram
in Fig. 17. Numerically we find that the stability limit is
k > � − q2, i.e., E0 ≈ −1. The region of applicability of our
formalism lies in the top right corner of the diagram (nontrivial
equilibrium), above k ≈ 1/L. Formally, both k and q can be
any real numbers. In practice, however, k is discrete and its
minimal value is of the order 1/L. The spatial momentum q

12One should not take the stability in the whole (X1,X5) plane in
the supercritical case too seriously. We have expand the equations of
motion in the vicinity of the fixed points and the expansion ceases to
be valid far away from the origin.
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FIG. 17. Stability diagram in the q-k plane. The onset of insta-
bility for k < kc(q) is found numerically for a range of q values. The
solid lines are the analytical prediction for the stability of the 0 point
(kc = q2, magenta) and of the + point (kc = �E0 − q2 ≈ � − q2,
red). The black dashed line at q = qc ≈ 1 separates the stability
regions of the two points. The domain of applicability of our
main results is the top left corner (nontrivial equilibrium), above
k > kmin ∼ 1/L and for not very large q values. Parameter values:
� = 2,Ix = 0.

lies between the inverse of the transverse length of the crystal
(which is typically an order of magnitude smaller than L, i.e.,
minimal q can be assumed equal to zero) and some typical
small-scale cutoff which in our case is the vortex core size.
We made no attempt to study the nonequilibrium behavior in
detail or to delineate the boundary between the oscillatory and
the chaotic regime since it is irrelevant for the main story of
the paper.

From a practical viewpoint, the �-Ix plane can be divided
into two regions. One of them has a single stable “+” or
“−” equilibrium or a + �→ − limit cycle whose amplitude
vanishes in the thermodynamic limit at all scales, i.e., for all
(k,q). This region can be legitimately described within the
formalism of partition functions and equilibrium field theory.
The second region flows toward the trivial fixed point and does
not support vortices—this can also (trivially) be described
by our formalism, as it always corresponds to the insulator
regime, with no stable vortices. Thus the consistency check
is that our method predicts no other phases in this region but
insulator. In the third regime, long-term dynamics is either a
limit cycle with amplitude of order unity or chaos. This regime
was studied in detail in some earlier publications (e.g., Ref. [3]
and references therein), and it cannot be reached within our
present formalism.

2. Numerical checks

Now we complement the analytical considerations with
numerical evidence that the phases described in the main
text exist as long-term stable configurations. In Fig. 18,
we show the time evolution of a vortex lattice in three
different phases, where a visual inspection clearly suggests
the system approaches equilibrium. In contrast, in Fig. 19 we
see first a pattern that oscillates forever, i.e., follows a limit
cycle [Fig. 19(a)], becomes incoherent [wandering chaotically
over the unstable manifold, Fig. 19(b)], or dissipates away
(reaching the 0-fixed point), in Fig. 19(c). The loss of stability
corresponds to an Andronov-Hopf bifurcation, as found earlier
for nonvortex patterns in Ref. [32].

FIG. 18. Time evolution of patterns at five different times: (a) perfect conductor phase, (b) frustrated insulator phase, and (c) insulator
phase. In all cases, the approach to equilibrium is obvious, and we expect that for long times a thermodynamic description is justified. The
parameters are the same as in Fig. 6, for the corresponding phases.
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FIG. 19. Time evolution of nonequilibrium patterns. In panel (a), the limit cycle leads to permanent oscillatory behavior, in panel (b)
wandering along the unstable manifold between the equilibrium points gives rise to chaos, and in panel (c) dissipation wins and dynamics dies
out. The parameters are the same as in the previous figure, except that the length L is increased three times.

Dynamics can be most easily traced by looking at the
numerically computed relaxation rate

1

X

dX

dt
=
∑

x,y |X(tj+1x,y) − X(tj ; x,y)|2∑
x,y |X(tj ; x,y)|2 , (B6)

FIG. 20. Time evolution of the relaxation rate r for the various
situations from Figs. 18 and 19, illustrating the relaxation to nontrivial
(non-zero-intensity) equilibrium, i.e., “±”-fixed points [Figs. 18(a),
18(c), hollow black circles], limit cycle [Fig. 19(a), full blue circles],
chaos [Fig. 19(b), full red romboids], and the relaxation to trivial
(zero-intensity) equilibrium, i.e., 0 fixed point [Fig. 19(c), full green
squares]. In the main text, we study the cases like the black curves,
where time-independent stable configurations are seen. The symbols
are data points from numerics and the lines are just to guide the eye.

which is expected to reach zero for a generical relaxation
process, where in the vicinity of an asymptotically stable
fixed point X ∼ Xeq + xe−rt will be generically nonzero for
a limit cycle or chaos and will asymptote to a constant for
the 0 point, where Xeq = 0, so we get (1/X)dX/dt ∼ r .
Figure 20 summarizes these possibilities. The black curves,
corresponding to Figs. 18(a) and 18(c), show the situation
which is in the focus of this work—the approach toward static
equilibrium. The blue curve shows the limit cycle leading
to periodic oscillations. The green curve corresponds to the
chaotic regime with aperiodic dynamics and no relaxation, as
in Fig. 19(b). Finally, the red curve corresponding to the pattern
which radiates away in Fig. 19(b) reaches a constant value of
r . In conclusion, the system shows roughly four classes of
dynamics: fixed point, limit cycle, chaos, and incoherence.
Our work only covers the first of the four, but the bifurcation
diagrams in the previous subsection give a good hint of the
part of the parameter space which contains them, facilitating
experimental or numerical verification.

APPENDIX C: PERTURBATION THEORY AND
STABILITY ANALYSIS

In this appendix, we develop the perturbation theory of the
photorefractive beam system starting from the Lagrangian (4).
The perturbation theory yields the criterion for the stability of
the intensity patterns as they propagate along the z axis. For-
mally, it is just the perturbative diagrammatic calculation of the
propagator. This calculation explicitly excludes topologically
nontrivial patterns and thus is somewhat peripheral for our
main goal, understanding the vortex dynamics. But the general
ways by which an envelope �± can evolve along the z axis and
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become unstable remain valid also for vortices. In particular,
we will end up with a classification of geometrical symmetries
of the intensity pattern �†�; the same symmetries are seen in
vortex patterns and are an important guide for numerical and
experimental work—how to recognize instabilities and also
phases of the system.

Our system is strongly nonlinear, thus a naive perturbation
theory about the trivial vacuum, i.e., constant beam intensity
is out of question. The right way is to perturb about a
nontrivial solution, which approximates a stable pattern. This
means we treat the light intensity as constant in time z

but nonconstant in space (x,y). This is the hallmark of
spatial dynamical solitons: They propagate with a constant
profile along the z axis and to a good approximation do
not interact with each other and do not radiate [3]. We thus
write � = �0 + δ�, giving �†� = I0 + F0(δ�†

+ + δ�+) +
B0(δ�†

− + δ�−) + δ�†δ� + O(|δ�|2) with F 2
0 + B2

0 = I0.
The lowest-order Lagrangian for �0 now reads

L0 = �
†
0��0 + �I0 − �(1 + τu + τE0)

× ln(1 + τu + Ix + I0), (C1)

which determines the shape of the solution �0(x,y) in the
first approximation. The dynamical term with ∂z� drops out
(it is proportional to the equation of motion for �). Nontrivial
propagation in time z is obtained from second-order expansion
of the potential which is given in the next appendix in Eq. (D1)
and we will not copy it here. Varying the quadratic expansion
with respect to the fluctuation δ� gives the linearized equation
of motion for δ�:

[±iσ3∂z − q2 + � − (1 + τu + τE0)]δ�∓

∓�
1 + τu + τE0

(1 + τu + Ix + I0)2
δ�± = 0, (C2)

where δ�+ ≡ δ�†,δ�− ≡ δ�. In homogenous spacetime
(z,x,y), we can transform to momentum space in both
transverse and longitudinal directions. In the transverse plane,
we get (x,y) �→ (qx,qy) and � �→ −q2. The longitudinal
coordinate or time z transforms as z �→ kn where kn = πn/L,
so the time maps to discrete frequencies. The reason is, of
course. that its domain is finite, corresponding to the crystal
length L.

Now we can derive the bare propagator (Green’s function)
of the fluctuating dynamical field δ� by inserting the appropri-
ate source S(z) on the right-hand side of Eq. (C2). Normally,
the source in the equation for the Green’s function is just
the Dirac δ function but the counterpropagating nature of our
beams imposes a two-sided source:

S(z) =
(

δ(z) 0

0 δ(z − L)

)
. (C3)

With this source (also Fourier-transformed in z), Eq. (C2) gives
the bare propagator G

(0)
αβ for the fields δ�±

αβ :

G
(0)
αβ(kn,q) = [−iknSαγ (kn) + A∗

αδSδγ (kn) − BαδSδγ (kn)]

× [−k2
n + A∗

γ δAδβ − BγδB
∗
δβ + [A∗,B]γβ

]−1
.

(C4)

The auxiliary matrices A,B are defined as follows:

Aαβ = i

(
P0 + P1 − q2 P0

−P0 −P0 − P1 + q2

)
,

Bαβ = i

(
P0 P0

−P0 −P0

)
, (C5)

where P1 = (1/4)I0�(1 + τu + τE0)/(1 + τu + Ix + I0)2,

P0 = � − �(1 + τu + τE0)/(1 + τu + Ix + I0), and
S(kn) = diag(1,eiknL).

Now we have the basic ingredient of the perturbation
theory: the bare propagator. The self-energy correction � of
the propagator from the potential Veff can be expanded in a
power series over δ�, which gives an infinite tower of vertices.
Simple combinatorial considerations give the expansion

� =
∑

j1,j2,j3∈N

(−1)j1+j2+j3 (j1 + j2 + j3 − 1)!

j1!j2!j3!

× �(1 + τu + τE0)

(1 + τu + I0 + Ix)j1+j2+j3+1
(�†

0δ�)j1

× (�0δ�
†)j2 (δ�†δ�)j3 , (C6)

and the contraction over the internal indices of �±,δ�± is
understood. Now we can formulate the diagrammatic rules.
We have two kinds of propagators, G(0) and its Hermitian
conjugate. The mean-field values �±

0 are external sources.
The term of order (j1,j2,j3) contains j1 + j3 propagator lines
G(0) (j1 of them ending with the source �0) and j2 + j3 lines
(G(0))

†
(j2 of them ending with a source �

†
0); altogether, there

are j ≡ j1 + j2 + 2j3 lines. The expansion has to be truncated
at some j . Since the mass dimension of � is 1, the (j1,j2,j3)
diagram has the scaling dimension 2 − 2(j1 + j2 + 2j3) < 0,
so all diagrams are irrelevant in the IR. This means we can
make a truncation at small j .13 The leading terms are those
where the order of the perturbation in δ�±, which equals j1 +
j2 + 2j3, is the smallest. This gives two classes of diagrams,
one with j1 = 1,j2 = j3 = 0 and another with j2 = 0,j1 =
j3 = 0. They contain a single external source and introduce
the wave-function renormalization, G(0) �→ ZG(0), which does
not influence the stability analysis. The four quadratic terms
[with (j1,j2,j3) = (2,0,0),(0,2,0),(1,1,0),(0,0,1)] introduce a
mass operator. Only the terms (1,1,0) and (0,0,2) are trivial
(noninteracting); the other two are interacting as they contain
(δ�±)2 and require the calculation of an internal loop, giving
the dressed propagator

G−1
αβ (kn,q) = [G(0)(kn,q)]−1

αβ + (m2)αβ, (C7)

where the mass squared is a positive matrix, because the
corresponding coefficients in (C6) have positive signs [from
the term (−1)j1+j2+j3 with j1 + j2 + j3 = 2] and the integral
of the bare propagator is also positive. Explicitly, it reads

(m2)αβ = �(1 + τu + τE0)

(1 + τu + I0 + Ix)2

∑
kn

∫ ∞

0
dqqG

(0)
αβ (kn,q),

(C8)

13We do not worry about the UV divergences: We have an effective
field theory and the UV cutoff is physical and finite.
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FIG. 21. Dispersion relation (position of the poles of the propagator) k(q), where k is the continuous approximation of the discrete effective
momentum kn = πnL, for Ix = 0 [(a), (b)] and Ix = 1 [(c), (d)]. The plots (b) and (d) are enlargements of the plots (a) and (c). Blue lines
denote Rek and red lines show Imk. Notice that the propagator contains only k2

n and q2, so the pole has two copies with opposite signs and is
either real or pure imaginary. Dashed lines are the corrected relations, with dressed propagator instead of the bare one. In the top panels, the
region of instability, with Imkn �= 0, is cured by the nonlinear corrections, whereas in the bottom panels the instability remains. This generically
happens at finite q and corresponds to the edge instability. Parameter values: I0 = 1, � = 15, L = 10 mm.

where the discrete “frequency” kn is summed in steps of π/L.
Other than the mass renormalization, the dressed propagator
has the same structure as the bare one. Now we will consider
what this means for the stability of the patterns.

1. The pole structure, stability, and dispersion relations

Consider the poles of the propagator defined by the zeros
of the eigenvalues of the matrix G−1

αβ (kn,q). The stable solution
corresponds to the situation where the perturbation δ�± dies
out along z, so the stability of the solution is determined by
the condition that the pole in q should have a nonpositive
imaginary part, i.e., that a small perturbation decays. The
denominator depends on kn,q solely through k2

n,q
2; it is

linear in k2
n and quadratic in q2. Therefore, each of the

two eigenvalues λ± defines two pairs of opposite poles,
±q∗+,±q∗−,±q∗∗+,±q∗∗−. Out of these, two pairs are positive
for all parameter values, so no imaginary part can arise, and we
have either two pairs of centrally symmetric imaginary poles,
or one such pair, or none at all. We thus expect the sequence
of symmetry-breaking transitions:

O(2) −→ C4 −→ C2. (C9)

Full circular symmetry is expected when there is no instability.
With a single pair of unstable eigenvalues, we expect a square-
like pattern withC4 symmetry, and with two pairs only a single
reflection symmetry axis remains, yielding the group C2. Only
in the presence of disorder in the background lattice intensity
pattern Ix can we expect the full breaking of the symmetry

group down to unity, but this is an explicit breaking and is not
captured by this analysis.

The dispersion relation for a typical choice of parameter
values is represented in Fig. 21, where we plot the location of
the pole k(q) in the continuous approximation (interpolating
between the kn values), with real parts of the pole in blue
and imaginary in red. Since we have two pairs of opposite
eigenvalues, the dispersion is P symmetric in x,y, and z

(remember that time is really another spatial dimension), and
any dispersion relation with a nonzero imaginary part will
have a branch in the upper half-plane, i.e., an unstable branch.
The only way out of instability is that the pole is purely
real, i.e., infinitely sharp—this quasiparticle-like excitation
signifies a solitonic solution. In Fig. 21, the dashed lines are
drawn with the bare propagator G(0) and the full lines with the
dressed propagator G, for the sets of parameter values. The
perturbation always reduces the instability, i.e., the magnitude
of the imaginary part of the poles—in Figs. 21(a) and 21(b)
completely, resulting in zero imaginary part, and in Figs. 21(c)
and 21(d) only partially. This reduction of instability likely
explains the fact that linear stability analysis works extremely
well for hyper-Gaussian beams (which have most power at
small values of q), as found in Ref. [32].

The fact that the imaginary region always lies at finite q

implies that the instability always starts at a finite scale, which
corresponds to the behavior seen in the edge instability, which
is shown, e.g., in Fig. 4. In order to understand the central
instability, which starts from a single point, corresponding to
q → ∞, one needs to take into account also the higher order
corrections from the potential (C6) which, as we discussed,
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FIG. 22. The movement of the poles in the complex momentum
plane in the case of central instability, for four different values of
the PR coupling constant � = 5,7,9,11. The complex momentum k

is denoted by ω. Starting from the C4-symmetric situation with two
pairs of complex-conjugate poles, we first break the symmetry down
to C2 and eventually lose all geometric symmetry as the two pairs
merge into two real poles. Parameter values I0 = Ix = 1,L = 10 mm.

diverge at q → ∞. While we always have a natural UV
cutoff, it may happen that the corrections become large (though
finite) before that UV scale is reached. We postpone a detailed
account for the subsequent publication, and content ourselves
to give only the diagram of the movement of the poles in
the complex plane. Higher order terms bring q-dependent
corrections and break the inversion symmetry, resulting in the
evolution of poles, as in Fig. 22. The instability corresponds to
the situations where at least one pole has a positive imaginary
part, i.e., the first three situations in the figure. The last pattern,
with no symmetry at all and two real poles, is stable (but not
asymptotically stable, as there is no pole with nonzero negative
imaginary part).

The analysis performed here is obviously incomplete, and
we have contented ourselves merely to give a sketch of how
the instabilities considered in the main text arise, as well
as to formulate a perturbation scheme which allows one
to study such phenomena. Further work along the lines of
Refs. [20,32,36] is possible by making use of our formalism,
and we plan to address this topic in the future.

APPENDIX D: DERIVATION OF THE VORTEX
HAMILTONIAN FROM THE MICROSCOPIC

LAGRANGIAN

Starting from the vortex solution (6), we want to obtain an
effective Hamiltonian for the vortex-vortex interaction. The
task is to separate the kinetic term of the winding phase (with
∇θ0± = ∑

i Q± ln |r − ri |) from (i) the intensity fluctuations
δψ± about some background value ψ0± and (ii) the nonvortex
phase fluctuations (δθ±) in (6). The first task requires us

to integrate out the amplitude fluctuations in the quadratic
approximation. We first write � = �0 + δ� and expand the
Lagrangian to quadratic order:

L = L0 + L2,

L0 = 1

2
∂rψ

†
0∂rψ0 + I0

2r2
|∇θ0α|2,

L2 = 1

2
∂rδ�

†
α∂rδ�α

+ 1

2r2
δ�†

α|∇θ0α|2δ�α + Veff(δ�±),

Veff(δ�
±) = −�δ�†δ� − �

1 + τu + τE0

2(1 + τu + Ix + I0)2

× [(�0δ�
†)2 + (�†

0δ�)2 − 2(1 + τu+ Ix + I0)

× δ�†δ� − (�0σ2δ�
†)(�†

0σ2δ�)]. (D1)

The zeroth-order (nonfluctuating) term L0 determines the in-
tensity I0 = ψ

†
0ψ0 and produces the kinetic term for the vortex

phase θα , which gives just two decoupled copies of the
conventional XY vortex gas. The quadratic part L2 becomes
quite involved when we separate the amplitude δψ and the
phase δθ . Inserting (6) into (D1), one gets a quadratic action
for δψα and δθα . The rest gives a coupled quadratic action
for the amplitude and phase fluctuations. Altogether, the
Lagrangian is

L = 1

2
(δψ ′2

+ + δψ ′2
− ) + 1

2r2
(δψ2

+ + δψ2
−)|∇θα|2

+ δψαK̂αβδψβ + (δψ†
αψα∇θα∇δθα + H.c.) + · · · ,

(D2)

where (· · · ) denote all terms of cubic or higher order in
amplitude or phase fluctuations δψα,δθα , and we have left
out the constant terms independent of all field values. Primes
denote the derivatives with respect to r . The first term
defines the intensity fluctuations through ψα(r), and the
second term (transformed through partial integration) yields
the aforementioned conventional Coulomb gas of vortices
after inserting the vortex solution from (6) for θα . The third
term has the meaning of stiffness or mass matrix for intensity
fluctuations and the last term gives rise to the coupling between
the flavors, upon integrating out δψ . The matrix K̂ is

K̂ = 1(
b + 3

2I0
)(

b − 1
2I0

)
(

b + I0
2 I0

I0 b + I0
2

)
,

(D3)
b = �

1 + τE0

2(1 + τE0)2
(2 + 2Ix + 3I0).

The action is quadratic in δψ ; therefore, we know how to
integrate it out and obtain an effective action depending only on
phase fluctuations. To do that, we need to solve the eigenvalue
equation for δψ obtained from (D2), which reads

∂rrδψα − Kαβδψβ =
( |∇θ |2

2r2
+ λ±

)
δψα, (D4)
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and is solved by diagonalizing the system δψα �→ δχα =
Uαβδψβ and reducing it to the Bessel equation:

δχ±(r) = √
r{C±Jν[

√
2(K11 ∓ K12 − λ±)r]

+D±Yν[
√

2(K11 ∓ K12 − λ±)r]}, (D5)

with ν =
√

1/4 + |∇θ |2, where Jν,Yν are Bessel functions
of the first and second kinds, respectively. For well-defined
behavior close to the vortex core (for r ∼ a), we have D± = 0,
and C± are arbitrary as the equation is linear. The eigenvalues
λn±,n = 0,1, . . . are obtained by requiring that the fluctuation
decays to zero at the crystal edge r = �:√

2K11 ∓ K12 − λn±� = jn(ν), (D6)

where jn is the nth zero of the Bessel function Jν . The values
λn± are impossible to express analytically in closed form;
however, it is not necessary for our purposes as � � a. The
functional determinant obtained after integrating out χ± is now
expressed in terms of the eigenvalues:

Kαβ = ln

(∏
n

λnαλnβ

)−1/2

= −1

2

∑
n

ln

(
K ′

α + K ′
β + 2jn(ν)2

�2

)
∼

− �

2
(K ′

α + K ′
β) + O

(
1

�

)
, (D7)

where K ′
± = 2K11 ∓ K12. Now we are left with a solely phase-

dependent quadratic Lagrangian:

L = ψ0α∇θα∇δθαK̂αβψ0β∇θβ∇δθβ + I0

2r2
|∇θα|2. (D8)

The final task is to integrate out the phase fluctuations, which
is a trivial Gaussian integration, yielding

L = I0

2r2
|∇θα|2 + I0∇θαK−1

αβ ∇θβ. (D9)

The resulting Lagrangian now depends only on the vortexing
phases θα . The first term is carried from the original La-
grangian, and it does not mix the flavors. But the second term,
stemming from the fluctuations, has nonzero mixed ± cross
terms. The quadratic derivative terms can be transformed by
partial integration to the familiar Coulomb gas form of the XY

model, with the same-flavor coupling which is already present
in absence of fluctuations, and the coupling between the
vortices of different flavors. Thus the existence of two beams
together with the fact that amplitude and phase fluctuations do
not decouple give us a richer system, with interaction between
two vortex flavors. For future use, it is more convenient to
look at the vortex Hamiltonian Hvort—the difference from
the Lagrangian lies just in the sign of the term Veff . This
finally yields the Hamiltonian [for Eq. (7), repeated here for
convenience]:

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑

i

(g0 	Qi · 	Qi + g1 	Qi × 	Qi), (D10)

with rij ≡ |ri − rj |, and the indices 1 � i,j � N sum over
all the vortices. The coupling constants g,g′,g0,g1 are the
result of integrating out the intensity fluctuations and in general
are given by rather cumbersome (and not very illustrative)
functions of �,I0,τ . We give the expressions at leading order
just for comparison with numerics:

g = I0 + 4b + 2I0

(2b + 3I0)(2b − I0)
,

g′ = 4I0

(2b + 3I0)(2b − I0)
,

b = �
1 + τ

L
− τ I0+Ix

1+I0+Ix

2
(
1 + τ

L
− τ I0+Ix

1+I0+Ix

)2

(
2 + 2

τ

L
+ 2Ix + 3I0

)
.

(D11)

These expressions are used later to redraw the phase diagram
in the space of physical parameters �,I0,Ix,L.

APPENDIX E: MULTIVORTEX MEAN-FIELD THEORY

For a mean-field treatment of a system with multiple
vortices, we start from the Hamiltonian (7) and introduce
the order parameter fields in the following way. Denote the
number of vortices with charge (1,1) by ρ2+ and the number of
vortices (1,−1) by ρ2−; due to charge conservation, this means
we also have ρ2+ vortices of type (−1,−1) and ρ2− vortices
with charge (−1,1). The number of single-charge vortices of
type (1,0) and (0,1) is denoted by ρ1+ and ρ1−, respectively.
Denote also ρ2 ≡ ρ2+ + ρ2− and δρ2 ≡ ρ2+ − ρ2− (notice that
−ρ2 � δρ2 � ρ2), and finally ρ1 ≡ ρ1+ + ρ1−. We insert this
into the vortex Hamiltonian Hvort and assume that the long-
ranged logarithmic interaction ln rij justifies the mean-field
approximation: For i �= j , we can approximate lnrij ∼ ln�,
assuming that average intervortex distance is of the same order
of magnitude as the system size. For the core energy, we know
that g0,g1 ∼ ln(a/ε) ∼ −lnε ∼ ln�, where in the last equality
we have assumed that the UV cutoff ε is of similar order
of magnitude as the inverse of the IR cutoff 1/�, which is
natural.14 Thus all terms are proportional to Lln� and we can
write

Fmf = βln
�

a
[2(g − 1)ρ2 + 2g′δρ2 + (g − 1)ρ1]

≡ Aρ2 + Bδρ2 + B

2
ρ1. (E1)

We use the notation β ≡ L to emphasize the analogy with the
free energy of spin vortices, where β is the inverse temperature.
The analogy is purely formal as our system is not subject
to thermal noise. Now the ground state is determined by
minimizing the free energy, i.e., the effective action of the
system. Notice that Fmf is linear in the fields ρ2,δρ2,ρ1 so the
optimal configurations have either Fmf = 0 or Fmf → −∞,
and the mean-field densities ρ1,2 are either zero or arbitrary

14Nevertheless, this is clearly not a rigorous argument. Our mean-
field calculation is somewhat sketchy and merely assumes that the
long-range interactions can safely be modeled as a uniform vortex
charge field.
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(formally infinite). This is a well-known property of the 2D
Coulomb gas and has to do with the fact that (assuming
the cutoff dependence has been eliminated) this system is
conformal invariant in the insulator phase, so all finite densities
ρ are equivalent: There is no other scale to compare ρ to.
Likewise, the prefactor β can be absorbed into the definition
of the coupling constants g,g′ and thus is not an independent
parameter (this is well known also from the single-flavor case).
Minimizing (E1) is an elementary exercise and we find again
four regimes, corresponding to the four phases we guessed
based on the single-vortex free energy F (1):

(1) For A > 0,A > |B|, the minimum is reached for ρ2 =
δρ2 = ρ1 = 0. In the ground state, there are no vortices at
all—the system is a vortex insulator.

(2) For B > 0,A + B < 0, giving g + g′ < 1,g′ > 0, the
free energy has its minimum for ρ2 > 0 and δρ2 = −ρ2

(notice that −ρ2 � δρ2 � ρ2). This means ρ2+ = 0,ρ2− > 0,
so opposite-charged vortices (Q,−Q) proliferate, and the
system is dominated by the interactions between the charges.
This is the frustrated vortex insulator regime. Since g′ < 0, the
single-charge vortices (density ρ1) are suppressed.

(3) For B < 0,A + B < 0, i.e., g + g′ < 1,g′ < 0, the
minimum is reached for ρ2 = δρ2 > 0, i.e., ρ2− = 0, so the
vortices (Q,Q) can proliferate. However, since g′ < 0, there
is also nonzero single-flavor density ρ1 and the proliferation
of vortices (Q,0) and (0,Q) which generically dominate over
two-flavor vortices. This is the conductor phase, with mostly
single-flavor vortices (as in the standard XY model).

(4) The point A = B = 0 is special: Naively, from (E1),
arbitrary nonzero ρ1,ρ2,δρ2 are allowed. Of course, higher
order corrections will change, this but the energy cost of vortex
formation will generically be smaller than in previous phases.
This is the vortex perfect conductor phase. In the mean-field
approach, it looks like a single point, but that will turn out to
be an artifact of the mean-field approach: For small nonzero
A,B the system still remains in this phase.

In terms of the original parameters g,g′, one sees the
insulator phase is given by g + g′ > 1, and the conductor and
the FI are separated by the line g′ = 0. We can now sketch
the phase diagram, which is given in Fig. 2(a), side by side
with the more rigorous diagram obtained by the RG flow, in
Sec. III B 2.

APPENDIX F: COUNTERPROPAGATING BOUNDARY
CONDITIONS

In the derivation of the vortex Hamiltonian and its RG
analysis, we have pulled under the rug the treatment of
the CP boundary conditions: The effective Hamiltonian (and
consequently the partition function and the phase diagram)
depends solely on the bulk configuration, and nowhere can one
see the fact that �+(z = 0; r,t) and �−(z = L; r,t) are fixed.
Now we will explicitly show that these boundary conditions
are irrelevant in the RG sense; i.e., they contribute additional,
boundary terms to the effective Hamiltonian, but these terms
do not change the fixed points to which the solution flows.

The full Hamiltonian with correct CP boundary conditions
is obtained by adding the F source at z = 0 and the B source
at z = L to the Lagrangian L from (4) or, equivalently, to the
equations of motion. The sources impose the conditions F (z =

0; x,y; t) = F0(x,y) and B(z = L; x,y; t) = B0(x,y) so they
equal

J+ = F0(x,y)δ(z), J− = B0(x,y)δ(z − L), (F1)

and the full Lagrangian is

LCP = L + J+�+ + J−�− �→ L + F0(x,y)�+(z; x,y; t)

+ eikzB0(x,y)�−(z; x,y; t). (F2)

Unlike the Dirac δ source (C3) for the Green’s function,
now the source has nontrivial dependence on transverse
coordinates. Now we can insert the vortex solution (6) in
both �± and F0,B0 and repeat the steps from the subsequent
derivation. The vortex charges in F0 can be denoted by
	P (+)
i ′ ≡ (Pi ′+,0) and 	P (−)

i ′ ≡ (0,Pi ′−); by definition, the +
component of B0 as well as the − component of F0 are zero and
thus carry no vorticity. The primed indices refer to the vortices
in the input beams, and the nonprimed, like before, to the bulk
vortices. Notice the source term changes sign upon performing
the Legendre transform, appearing as −J+�+ − J−�− in the
Hamiltonian.

Now we will check if the RG flow of the Hamiltonian with
boundary terms is affected by the sources. In the notation
introduced above, the total vortex Hamiltonian is

HCP =
∑
i,j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑
i ′,j

δ(z)Pi ′+(gQj+ + g′Qj−) ln ri ′j

+
∑
i,j ′

δ(z − L)Pj ′−(gQi− + g′Qi+) ln rij ′ . (F3)

Notice there is no source-source interaction: Same-flavor
interaction cannot exist as Pi ′− = Pj ′+ = 0, and cross-flavor
interaction does not exist as J+ and J− exist at different
z values, i.e., the cross term would be proportional to
δ(z)δ(z − L) and thus vanishes. The presence of sources breaks
the spatial homogeneity, complicating the traces (integrals over
the positions of virtual vortex-antivortex pairs), but does not
change the main line of the calculation. The fluctuation of the
partition function due to vortex pair creation is now

δZ
Z = 1 + y4

4

∑
	q

∫
d2r

×
∫

d2r12e
−C(	q,r1;−	q,r2)−∑j ′ [D+

j ′ (	q,r1)−D−
j ′ (	q,r2)]

× [eC( 	Q1,R1;	q,r1)+C( 	Q1,R1;−	q,r2)+C( 	Q2,R2;	q,r1)+C( 	Q2,R2;−	q,r2)

− 1]. (F4)

We have denoted C( 	Q1,R1; 	Q2,R) ≡ (g 	Q1 · 	Q2 +
g′ 	Q1 × 	Q2) ln R12, and the coupling to the sources is
encapsulated in the function

D±
j ′ (	q,r) ≡ δ(z − z±)(g±	q · 	Pj ′ + g′

± 	q × 	Pj ′ ) ln |r − rj±|,
(F5)
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with z+ = 0,z− = L. The coupling constants g±,g′
± are

obtained from g,g′ in (F4) by replacing

I0 �→
√

I0I±, (F6)

with I+ = |F0|,I− = |B0|. Now the exponential of the extra
term with sources also needs to be expanded in r12, as
the combinations 2r = r1 + r2,r12 = r1 − r2 do not decouple
anymore and exact integration is impossible. After writing
D±

j ′ (	q,r1,2) = D±
j ′ (	q,r) ± r12 · ∇D±

j ′ (	q,r) + · · · and similarly
for C, we notice first that the zeroth-order terms from
Dj ′± cancel out: D±

j ′ (	q,r) + D±
j ′ (−	q,r) = 0. Then we get (at

quadratic order in r12 in the integrand):

δZ
Z = 1 + y4

4

∑
j ′

∫
d2r

∫
d2r12e

−C(	q,r12;−	q,0)

×
{

r12 · [∇C( 	Q1,R; 	q,r) + ∇C( 	Q2,R; −	q,r)]

+ r2
12

2

∣∣∣∣∇C( 	Q1,R; 	q,r) + ∇C( 	Q2,R; −	q,r)

∣∣∣∣
2}

× [r12 · [1 − ∇D+
j ′ (	q,r) + ∇D−

j ′ (	q,r)]

+{r12 · [∇D+
j ′ (	q,r) + ∇D−

j ′ (	q,r)]}2] + · · ·

≡ 1 + y4

4

[
I10 + I20 − I11 + O

(
r3

12

)]
. (F7)

The integral Imn is the term with the contribution of order rm
12

from the second line in the integrand and with the contribution
of order rn

12 from the third line. The integrands in Imn are thus
of order m + n in r12, m coming from the expansion of D±

j ′ and
n from the expansion of C. By homogeneity, I01 = 0 and I02

is the same integral that appears in absence of sources, whose
calculation was used in obtaining (13) and which gives the
right-hand side of the RG flow (14). The remaining integral
I11 is the new ingredient, and the only one which depends on
the sources. Representing it as

I11 = π2

4

∑
j ′

∑
α=±

∑
σ=1,2

δ(z − zα)

× (gα
	Qσ · 	Pj ′α + g′

α
	Qσ × 	Pj ′α)

×∇ 1

|R12| · ∇ 1

|rjα| Ĩj ′α, (F8)

we compute the integral Ĩj ′α in polar coordinates:

Ĩj ′α = 1

2

∫ 2π

0
dθj ln

(
r2

12 − 2r12rj ′α cos θj + r2
j ′α
)∣∣�2

�1
,

(F9)

where θj ′α is the angle between rj ′α and r12. Assuming the RG
scale changes as �1 = �,�2 = �(1 + �), for small � we can
expand the integrand, getting

Ĩj ′α =
∫ 2π

0
dθj ′

�2 − �rj ′α cos θj

�2 − 2�rj ′α cos θj + r2
j ′α

� + O(�2)

= 2π� + O(�2). (F10)

The complicated dependence on the positions of the sources
disappears completely in the first order in �.15 Altogether, by
comparing the outcome of (F7) to the original Hamiltonian
(F3), we see that the renormalization of the bulk interaction
between 	Q1 and 	Q2 is unaffacted by the sources, given
as before by the I02 term, and the source-bulk coupling
renormalizes with a strictly negative shift (as Ĩj ′α = 2π > 0).
The flow equations for g,g′ couplings are unchanged, being
the same as in (14). The bulk-to-boundary couplings g±,g′

±
have the flow equations

∂g±
∂�

= −π3N�,
∂g′

±
∂�

= −π3

2
N�, (F11)

where N = ∑
j ′
∑

α 1 is the total vorticity of the sources. This
obviously flows to g±,g′

± = 0.
Intuitively, one may wonder how come such an important

thing as the CP geometry has no bearing on the vortex
dynamics; surely the behavior of a copropagating system
would be expected to differ from a counterpropagating
system. The answer is that the CP geometry does enter our
calculations—the B beam has an extra minus sign in the
equations of motion (1) (alternatively, in the Lagrangian in
Eq. (4)); equivalently, the symmetry group of the effective
potential in the Lagrangian is SU(1,1), not SU(2) as it would
be for two copropagating beams. Finally, let us emphasize
again that in the numerical simulations we directly solve the
propagation equations (1) together with (2); i.e., we directly
take into account the CP boundary conditions—no analytical
approximations whatsoever are used in the numerics, and no
use is made of the effective vortex Hamiltonian.

APPENDIX G: ORDER PARAMETERS AND RG ANALYSIS
OF THE CP VORTICES IN THE PRESENCE OF DISORDER

1. Saddle-point solutions

We start by rewriting the replicated partition function
Z̄n in terms of pα,qαβ and inserting the constraints which
encapsulate their definition in Eq. (19):

1 �→
∫

D
[
λα

(μ)

]
exp

[
λα

(μ)

(
p(μ)

α − 1

N

N∑
i=1

Q
(μ)
iα

)]
, (G1)

1 �→
∫

D
[
λ

αβ

(μν)

]
exp

⎡
⎣λ

αβ

(μν)

⎛
⎝q

(μν)
αβ − 1

N

N∑
i,j=1

Q
(μ)
iα Q

(ν)
jβ

⎞
⎠
⎤
⎦.

(G2)

We have five constraints, λ++
(μν),λ

−−
(μν),λ

+−
(μν) = λ−+

(μν),λ
+
(μ),λ

−
(μ),

for the corresponding five order parameters in (19). We can
denote

K̂ ≡
(

λ++
(μν) λ+−

(μν)

λ+−
(μν) λ−−

(μν)

)
, 	λ ≡

(
λ+

(μ)
λ−

(μ)

)
. (G3)

We will also sometimes leave out the replica indices μ,ν to
avoid cramming the notation too much. Now we can first
integrate out the vortex degrees of freedom Q

(μ)
iα from (18)

15The additional assumption is that � > rj ′α so the integrand
contains no poles; this is clearly justified as � is the length cutoff.
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to get the effective action

Seff = −β2

4

n∑
μ,ν=1

[σ 2
++(q(μν)

++ )2 + 2σ 2
+−(q(μν)

+− )2 + σ 2
−−(q(μν)

−− )2] − β

n∑
μ=1

[J+
0 (p(μ)

+ )2 + 2J+−
0 p

(μ)
+ p

(μ)
− + J−

0 (p(μ)
− )2]

+ 1

2
ln det K̂ − 1

4
	λK̂−1	λ −

n∑
μ,ν=1

(λ++
(μν)q

(μν)
++ + λ+−

(μν)q
(μν)
+− + λ−−

(μν)q
(μν)
−− ) −

n∑
μ=1

	λ(μ) · 	p(μ). (G4)

The saddle-point equations for the constraints give the con-
straints in terms of the expectation values q(μν),p(μ). Luckily,
the equation for 	λ is easy:

∂Seff

∂	λ = K̂−1	λ − 	p = 0, (G5)

so we immediately solve 	λ = K̂ 	p. Now plugging this into the
equations for the three remaining constraints yields

∂Seff

∂λ±±
= 1

2

Xλ−1
±±

X2 − Y 2
− q±± + 1

4
(p±)2 = 0, (G6)

∂Seff

∂λ+−
= Yλ−1

+−
X2 − Y 2

− q+− + 1

2
p+p− = 0. (G7)

We have denoted X = det λ++ = det λ−−,Y = det λ+− (these
have a well-defined limit for n → 0). It is trivial to write
λ±±,λ+− from the above expressions, and we can feed the
solutions for all the constraints into the effective action and
then solve the saddle-point equations for the order parameters
p±,q++,q−−,q+−. Full equations are too complex to be
solved, even approximately. We will simplify the problem with
the following reasoning. The sums over single-replica order

parameters generically scale as
∑

μ p
(μ)
± ∼ ∑

μ (p(μ)
± )

2 ∼ n,

whereas the double-replica parameters have
∑

μ,ν q
(μν)
αβ ∼ n2.

This means that in the limit n → 0, the p± terms dominate over
qαβ terms. Therefore, if p± �= 0 we can disregard the quantities
qαβ or expand in a series over them, simplifying the equations
significantly. Only if the replica symmetry breaking imposes
p± = 0 (not every replica-symmetry-breaking configuration
does so) are the qαβ order parameters significant, and the
saddle-point equations with p± = 0 are again approachable.

Consider first the case p± = 0. After some algebra, the
effective action is now

Seff = −β2

4

n∑
μ,ν=1

[σ 2
++(q++

(μν))
2 + 2σ 2

+−(q+−
(μν))

2

+ σ 2
−−(q++

(μν))
2] + 1

2
ln(X2|q++|−1 · |q−−|−1

− 4Y 2|q+−|−2). (G8)

Consider first the ansatz when the q±± fields are nonzero,
whereas the mixed-flavor field q+− is zero. In this case,
the second term in (G8), coming from the determinant K̂ ,
simplifies further and we get the saddle-point equation

− β2

2
σ 2

±±q±± − 1

2
(q±±)−1 = 0, (G9)

which is the same as for the infinite-range spin-glass Ising
model [42,54]. One obvious solution is q±± = q+− = 0, the
completely disordered system with no vortex proliferation—
the familiar insulator phase. It is easy to check that this is
indeed a minimum of the effective action Seff . There is also a
replica-symmetric but nontrivial solution

q±±
(μν) = Q±±

0 + (1 − Q±±
0 )δμν, (G10)

which yields the solution Q±±
0 = 1 − 1/(βσ±±). However,

this solution is unstable and is not observable. A stable
nontrivial solution is obtained if the replica symmetry is
broken. The ansatz is well known from the spin-glass literature
(e.g., Ref. [42]) and has a ρ × ρ matrix Q̂±± on the block-
diagonal and the constant zero elsewhere, with

Q̂±± = Q±±
1 + (1 − Q±±

1 )δμν, μ,ν = 1, . . . ,ρ. (G11)

Equation (G9) suggests that Q±±
1 > 0 for sufficiently large β,

i.e., small L. However, no analytical solution for the elements
Q±±

1 exists and they have to be solved for numerically,
by plugging in the solution into the effective action and
minimizing it. This is an easy task (for chosen values of
the parameters and disorder statistics) but we will not do it
here as we do not aim at quantitative accuracy anyway; we
merely want to sketch the phase diagram. Now if the third
field q+− is nonzero, it satisfies the same equation as (G9)
just with σ 2

++ �→ 2σ 2
+−. The three combinations of nonzero

order parameters correspond to the three familiar phases:
q±± �= 0 is the conductor, q+− �= 0 is the frustrated insulator,
and q±±,q+− �= 0 is the perfect conductor.

The solutions with 	p �= 0 yield new physics. In this case, we
have at leading order λ±± = −2X/(X2 − Y 2)(p±)−2,λ+− =
−2Y/(X2 − Y 2)(p+p−)−1, so the effective action is

Seff = −β

n∑
μ=1

[J+
0 (p+

(μ))
2 + 2J+−

0 p+
(μ)p

−
(μ) + J−

0 (p−
(μ))

2]

− ln p+p− + O(|qαβ |2) + O

( |qαβ |
| 	p|2

)
, (G12)

giving the saddle-point equation

J±
0 p±

(μ) + J+−
0

β
p∓

(μ) + (p±
(μ))

−1 = 0, (G13)

which easily gives

p± = s1

√√√√√ 1

J±
0 + s2

J+−
0
β

√
J+

0

J−
0

, (G14)

with s1,2 ∈ {±1}. The solution is the same for every μ and
p±

(μ) = (p±,p±, . . . ,p±). Now, depending on the sign of the
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FIG. 23. Free energy (effective action S
(μ)
eff ) in a given replica

subsystem in a photonic lattice with quenched disorder, for the case
when the order parameter p± = ∑

i Qi± has a nonzero saddle-point
solution for the action in a given subsystem (replica). Darker (blue)
tones are lower values. The ground states of the system are the
local minima. In panel (a) for J + = −J − = 1, there is a single
local minimum. In case (b), for J + = −J − = 1, we see two distinct
minima of equal height, for two different nonzero values of p±. Such
potential energy landscape fits the description of glassy systems.

determinant J+
0 J−

0 − (J+−
0 )

2
, the solutions for different s1,2

may be minima or saddle points. In either case, we have a phase
with nonzero local charge density, which is the meaning of 	p. If
there are multiple minima, we call this phase vortex glass. The
reader may argue that true glass should satisfy more stringent
conditions and that our phase is not a true glass. Depending
on the viewpoint this may well be accepted, and we use the
term “glass phase” merely as shorter and more convenient
than “phase with power-law correlation decay, no long-range
order, and frustrated free energy landscape.” The phase with a
single minimum will be called charge density wave, as it has
a unique ground-state configuration yielding macroscopically
nonzero charge density; i.e., it has a true long-range order.
On the other had, with multiple minima the replica-averaged
charge density sums to zero. The landscape, i.e., the effective
action of the system for given replica (μ) as a function of
p±

(μ), is given in Fig. 23 as the density map of the function
Seff(p+,p−) dependence for J+

0 = −J−
0 = 1 (glass phase, A)

and J+
0 = J−

0 = 1 (charge density wave, B). We see that the
glassy phase shows two inequivalent minima in each replica,
with s1 = −s2 = ±1 in Eq. (G14), so the total action, the
sum of actions of all replica subsystems, can have one and
the same value for many configurations, the definition of a
highly frustrated system, one of the reasons we dub this phase
glass. The charge density wave only has a single minimum for
s1 = s2 = 1.

2. RG flow equations

The starting Hamiltonian is the same as in (18). Now we will write it out more explicitly, keeping the distance-dependent
parts:

βHeff = β

n∑
μ=1

∑
i,j

(
ḡc

	Q(μ)
i · 	Q(μ)

j + ḡ′
c
	Q(μ)

i × 	Q(μ)
j

)
ln rij − β2

2

n∑
μ,ν=1

∑
i,j

Q
(μ)
iα Q

(ν)
iβ σ 2

αβQ
(μ)
jα Q

(ν)
jβ . (G15)

We have denoted the elements of J0 by J++
0 = J−−

0 = ḡc,J
+−
0 = J−+

0 = ḡ′
c (the bars over the letter remind us that these are

disorder-averaged values). The fluctuation of the partition function is completely analogous to the clean case, only it has the
additional nonlocal quartic term. It can again be expanded over r12 as in (12) but the quartic term contains no small parameter for
the power series expansion and has to be kept in the exponential form. Starting from the expression for the fluctuation analogous
to the clean case (12), we get

δZ
Z = 1 + y4

4

∑
	q(ρ),	q(σ )

e− β2

2 (	q(ρ),−	q(σ ),	q(ρ),−	q(σ ))+ β2

2 ( 	Q(μ),	q(ρ), 	Q(ν),	q(σ ))
∫

dr12r
3
12e

g	q(ρ)·	q(ρ)+g′ 	q(ρ)×	q(ρ)

×
[ ∫

drr2
(
g 	Q(μ)

1 · 	q(ρ) + g′ 	Q(μ)
1 × 	q(ρ)

)∇ ln |R1 − r| + (
g 	Q(μ)

2 · 	q(ρ) + g′ 	Q(μ)
2 × 	q(ρ)

)∇ ln |R2 − r|
]2

. (G16)

We have used the notation

(	q1,	q2,	q3,	q4) ≡ σ 2
++q1+q3+q2+q4+ + σ 2

+−(q1+q3−q2+q4− + q1−q3+q2−q4+) + σ 2
−−q1−q3−q2−q4−. (G17)

Now we trace out the fluctuations first by integrating over r and doing some simple algebra:

δZ
Z = [

1 + 16y4(g + g′)2 cosh(β2σ 2
++ + β2σ 2

+−) cosh(β2σ 2
−− + β2σ 2

+−)
( 	Q(μ)

1 · 	Q(ν)
2 + 	Q(μ)

1 × 	Q(ν)
2

)
ln R12

]
× [

1 + 16y4(g − g′)2 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−)
( 	Q(μ)

1 · 	Q(ν)
2 − 	Q(μ)

1 × 	Q(ν)
2

)
ln R12

]
×
[

1 − 2πy4e− β2

2 (σ 2
++(q(μ)

+ q
(ν)
+ )2+σ 2

+−(q(μ)
+ q

(ν)
− )2+σ 2

+−(q(μ)
− q

(ν)
+ )+σ 2

−−(q(μ)
− q

(ν)
− )2)

∫
drr1−β(g	q(μ)·	q(μ)+g′ 	q(μ)×	q(μ))

]
. (G18)

The next step is the summation over all possible ±1 charges of virtual vortices 	q(μ),	q(ν) (the two replica indices mean two
summations from 1 to n), which requires quite some algebra. The renormalized partition function Z̄n finally gives the RG flow
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equations:

∂g

∂�
= −8π (g + g′)2y4 cosh(β2σ 2

++ + β2σ 2
+−) cosh(β2σ 2

−− + β2σ 2
+−)

− 8π (g − g′)2y4 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−),

∂g′

∂�
= −π (g + g′)2y4 cosh(β2σ 2

++ + β2σ 2
+−) cosh(β2σ 2

−− + β2σ 2
+−)

−π (g − g′)2y4 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−),

∂y

∂�
= 2π

[
1 − g − g′ − β2

4
(σ 2

++ + 2σ 2
+− + σ 2

−−)

]
y,

∂σ 2
αβ

∂�
= −2πβ4σ 4

αβy4. (G19)

As discussed in the main text, the fixed point must lie either at y = 0 or y → ∞, depending on the magnitude of g + g′ + β2σ 2.
For y → 0, three clean fixed points remain, which flow to zero disorder: These correspond to PC, FI, and conductor. The
disordered fixed point also has y → 0 but the disorder is nonzero: This is the CDW phase from the mean-field analysis, the dirty
analog of the insulator. Finally, when y → ∞ and nonzero σ 2 at the fixed point, we expect glassy behavior.
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[47] V. Juričić, L. Benfatto, A. O. Caldeira, and C. Morais Smith, Dis-
sipative dynamics of topological defects in frustrated Heisenberg
spin systems, Phys. Rev. B 71, 064421 (2005).

[48] L. Benfatto, M. Silva-Neto, V. Juričić, and C. Morais Smith,
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We explore numerically and analytically the pattern formation and symmetry breaking of beams propagating
through left-handed (negative) nonlinear metamaterials. When the input beam is a vortex with topological charge
(winding number) Q, the initially circular (isotropic) beam acquires the symmetry of a polygon with Q, 2Q, or
3Q sides, depending on the details of the response functions of the material. Within an effective field-theory
model, this phenomenon turns out to be a case of spontaneous dynamical symmetry breaking described by a
Landau-Ginzburg functional. Complex nonlinear dependence of the magnetic permittivity on the magnetic field
of the beam plays a central role, as it introduces branch cuts in the mean-field solution, and permutations among
different branches give rise to discrete symmetries of the patterns. By considering loop corrections in the effective
Landau-Ginzburg field theory we obtain reasonably accurate predictions of the numerical results.
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I. INTRODUCTION

The idea of a material with negative refraction index was
first considered long before it could be realized in experiment,
in the now famous paper by Veselago [1], in 1968. He con-
sidered a material with negative electric permeability ε and
magnetic permittivity μ, and predicted a number of interesting
properties in such systems, among them negative refraction.
Only much later did it become possible to combine elements
with negative ε and negative μ at a microscopic level, as a
composite metamaterial. First experimental realizations were
reported in [2,3]. Negativity, or left-handedness, is typically
only achieved in a narrow frequency range, close to the
resonant frequency of the conductive elements of the metama-
terial. This was the original motivation for studying nonlinear
effects in these systems. Nonlinearities can be strengthened
by appropriate design at the microscopic level. The study
of nonlinear phenomena in metamaterials started with [4].
This has become a broad and important field in metamate-
rials research [5]. Nonlinear phenomena like solitons [6,7],
nonlinear surface waves [8], modulational instability [9,10],
and ultrashort pulses [11] were observed. Other work in left-
handed metamaterials relevant for our paper includes, among
others, [12–20]. We have no intention of being exhaustive
in this short review of the literature; we merely mention the
results we have directly used or found particularly inspiring.

The focus of our paper is the dynamics of symmetry
breaking in intensity patterns of electromagnetic waves propa-
gating through a left-handed nonlinear metamaterial. Numer-
ical solutions of the equations of motion reveal that circular

*trivko98@gmail.com
†mcubrovic@gmail.com

(usually Gaussian) input beams turn into polygonal patterns,
with some discrete symmetry. This fits the textbook notion of
symmetry breaking, more specifically dynamical symmetry
breaking. The general theory of dynamical criticality is by
now well developed [21] and has been applied to numer-
ous systems [22]. In [22], a systematic theory of isotropy-
breaking transition is presented, though mainly for periodic
and quasiperiodic structures (convection in fluids, fluctuations
in quasicrystals). The basic mechanism is that the system
develops momentum eigenmodes of a fixed module but with
multiple discrete directions on the sphere |k| = const in mo-
mentum space. In nonlinear negative materials, the situation
is complicated by the strong frequency dependence of the
magnetic permittivity but the same basic logic remains. At
a fundamental level, this situation can be understood from
the viewpoint of a spatially nonuniform Landau-Ginzburg
theory. Quantitative accuracy is, however, hard to achieve; this
requires cumbersome perturbative calculations. Ultimately,
numerical work is the best way to describe the patterns in
detail; they look like polygons or, occasionally, necklaces,
with C3Q, C2Q, or CQ symmetry, depending on the parameter
regime; here, Q is the topological charge of the beam, a
property we will discuss in detail in the next paragraph.
The paper [10] is very important in this context: it starts
from the model derived in [9] and studies mainly necklace
configurations, which consist of discrete beads (spots of high
intensity) distributed more or less uniformly along a circle.
The authors find the same C3Q symmetry that we see. Our
goal is to gain a detailed understanding of the phenomenon,
and move beyond single beams toward collective behavior and
interactions.

We have chosen to study this phenomenon on vortices,
topologically nontrivial solutions where the phase of the
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complex electric and magnetic field winds one or more times
along a closed line encircling the vortex core. Vortices appear
in many systems described by a complex field, i.e., a field
with U(1) phase invariance [23,24]. In optics, this is just the
complex beam envelope of the electric and magnetic field.
The phase of any complex wave function or field can wind
along some closed line around a defect, forming a vortex.
Famously, vortices may coexist with the superconducting
order [U(1) symmetry breaking] in type-II superconductors
or they may exist only in the normal phase, upon destroying
the superconductivity (type I). Pattern-forming systems like
fluids and soft matter often have rich vortex dynamics [22].
Other examples of vortex matter in nature arise in liquid
helium [25], Bose-Einstein condensates [26], and magnetic
systems [27]. In two spatial dimensions, interactions among
the vortices lead to a vortex unbinding phase transition of
infinite order found by Berezinsky, Kosterlitz, and Thouless
for the planar XY model [28]. We study a three-dimensional
metamaterial but with an elongated geometry, so we treat it
as a 2 + 1-dimensional system (the x and y coordinates are
spatial dimensions and the z direction has the formal role
of time). We therefore have a similar situation to the XY
model but with different equations of motion and different
phenomena.

In addition to direct numerical and analytical study of
the equations of motion, we also propose an effective field-
theory Lagrangian which gives slightly different equations but
captures the key properties of the system. The Lagrangian
form makes it easier to understand some of the phenomenol-
ogy we find in numerical simulations; the foundations of
the symmetry breaking are obtained from this model in a
natural way. Numerical work is done with original equations
of motion, as they are directly grounded in the microscopic
physics. The Lagrangian is just a phenomenological tool to
facilitate the theoretical understanding. It is difficult (and
perhaps impossible) to package the exact original equations
in a Lagrangian form because the system is strongly nonlinear
and dissipative. Dissipative systems can be encapsulated in
a Lagrangian (our Lagrangian is also dissipative) but with
some limitations, and there is certainly no general method
to write down a Lagrangian for a broad class of dissipative
systems.

The structure of the paper is the following. In the next
section we describe the model of a nonlinear left-handed
metamaterial, following closely the wave propagation equa-
tions used in previous research, e.g., in [4,6,7] and oth-
ers, which correspond to a specific experimentally realizable
metamaterial. We also formulate and motivate the field-theory
model of the system. In the third section, we describe our
numerical findings, above all the anisotropy of the intensity
patterns. The fourth section offers the theoretical explanation
for the patterns: first by a direct approximate solution of
the propagation equations, and then also from field theory,
which makes the physics of the symmetry breaking partic-
ularly clear. In the fifth section we briefly discuss how to
check our predictions in experiment and how prominent the
effects of symmetry breaking are compared to other possible
instabilities in realistic metamaterials. The last section sums
up the conclusions. We have included some long calculations
in the Appendices.

II. WAVE EQUATIONS IN A NONLINEAR
LEFT-HANDED METAMATERIAL

We adopt the model of [4,7] to describe a left-handed
metamaterial with a nonlinear response. Microscopically, the
material is realized as a lattice of split-ring resonators and
wires. In the terahertz range, this is an experimentally well-
studied system [3]. In [6], a detailed microscopic derivation
is given, starting from the current transport equations in the
resonator-wire system. The outcome is a nonlinearity similar
to that postulated phenomenologically in [4]. We adopt essen-
tially the same model, described by the electric permeability
ε and the magnetic permittivity μ:

ε(E , E†) ≡ ε(|E |2) = (εD0 + α|E |2)

(
1 − ω2

0

ω(ω + ıγ )

)
, (1)

μ(H, H†) ≡ μ(|H |2) = 1 + Fω2

ω2
0NL(|H |2) − ω2 + ı�ω

, (2)

with α = 1 or −1 for self-focusing or self-defocusing non-
linearity, respectively. Frequency is denoted by ω and εD0 is
the linear part of the permittivity. By F , γ , and � we denote
the filling factor of the material and the electric and magnetic
damping coefficients. Equations (1) and (2) allow us to model
also the real (lossless) dielectric response by putting γ = 0.
For the magnetic field, the permittivity will in general stay
complex even for � = 0, as the nonlinear frequency of the
resonator rings ω0NL can always have a nonzero imaginary
part. This frequency is related to the magnetic field through
the relation (X ≡ ω0NL/ω0):

|H |2 = αA2 (1 − X 2)[(X 2 − �2)2 + �2γ 2]

X 6
, (3)

where � ≡ ω/ω0, ω0 is the eigenfrequency of the rings,
and A is a parameter which can be derived microscopically
[4,6,7]; for our purposes, it can be treated just as a phe-
nomenological parameter. This cubic equation yields three
branches for ω2

0NL. All these branches are physical and cor-
respond to different possible nonlinear oscillations [7]. Now
the equations of motion are just the Maxwell equations in a
medium described by (1) and (2), in the approximation of
slowly changing beam envelopes. We assume an elongated
(cylindrical or parallelepipedal) slab of metamaterial, so we
can employ the paraxial beam approximation (e.g., [29]). The
beam is initially collimated along the longitudinal axis z and
focuses or defocuses slowly in the transverse x-y plane due
to the nonlinearity of the material. The electric and magnetic
field Ê (t ; x, y, z) and Ĥ (t ; x, y, z) are directed along the z axis.
From now on, the speed of light is put to unity, c = 1. All the
steps in deriving the nonlinear Schrödinger-like equation are
well known so we merely state the final result here, which is
quite close to the equations used in [13] in 1 + 1 dimension,
or the equations found in [9–11]. Full derivation can be found
in Appendix A. The equations of motion turn out to be

− ı

b
∂zE = ∇2

⊥E + [ω2ε(|E |2)μ(|H |2) − k2]E

− ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − ı

∂zμ(|H |2)

2μ(|H |2)
E , (4)

− ı

b
∂zH = ∇2

⊥H + [ω2ε(|E |2)μ(|H |2) − k2]H. (5)
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Here, ∇⊥ ≡ (∂x, ∂y) is the nabla operator in the transverse
plane, k is the wave vector along the z direction, and b is the
characteristic propagation length along the z axis. Equations
of motion (4) and (5) together with the equations (1) and (3)
for the permittivities contain the following five parameters:
εD0, F, �, γ , and ω0. Realistic values for all the parameters
are discussed in [7]. The natural length scale of the model
is dominated by the 1/ω0 scale. Dimensional analysis of the
terms on the right-hand side of (4) determines the length
scale b in (4) and (5) as b ∼ 1/ω0. Both in analytical and in
numerical calculations, we express the transverse coordinates
(x, y) in millimeters but the longitudinal coordinate z is often
stated in units of b. This is because the length scales of
all patterns in the transverse plane are similar whereas the
propagation lengths along z can vary by an order of magnitude
as γ and � are varied, so it is more natural to express them in
terms of the characteristic distance b.

A. field-theoretical model

For some theoretical considerations it is useful to formulate
a Lagrangian (gradient) model which captures the essential
features of the equations of motion (4) and (5). As it often hap-
pens in studies of complex nonlinear pattern-forming systems,
we cannot easily write the original equations in such a form.
Instead, we construct a field theory which yields equations of
motion somewhat different from the original ones but which
still give the same phenomenology, and are able to explain
the results of numerical calculations with the equations (4)
and (5).

Let us think what such a field theory would look like. The
terms with the gradient of magnetic permittivity obviously
introduce dissipation, which physically originates from the
losses in the inductive rings of the metamaterial. In general,
dissipative systems do not have a Lagrangian, although a
number of generalized Lagrangian approaches exist for dis-
sipative systems: either with more general functional forms of
the Lagrangian, or with a dissipative function in addition to
the Lagrangian, or with extra degrees of freedom [30,31]. We
will take the first, most conventional of the three approaches:
we will consider a conventional Lagrangian (no dissipative
function, no extra degrees of freedom) which gives slightly
generalized equations of motion compared to (4) and (5),
with dissipative terms for both electric and magnetic fields
coming from the complex terms in the effective potential. The
effective action reads

L = LE + LH ,

LE = ı

2μ(|H |2)
(E∂zE

† − E†∂zE )

+ |∇⊥E |2
μ(|H |2)

+ k2|E |2
μ(|H |2)

− ω2ε(|E |2)|E |2,

LH = ı

2ε(|E |2)
(H∂zH

† − H†∂zH )

+ |∇⊥H |2
ε(|E |2)

+ k2|H |2
ε(|E |2)

− ω2
∫ HH†

0
dxμ(x). (6)

The last term in LE equals −ω2
∫ EE†

0 dxε(x), analogously to
the corresponding term in LH , but since ε is polynomial in

E†E the integral can be solved explicitly. Now (6) gives the
equations of motion:

− ı

b
∂zE = ∇2

⊥E + [ε(|E |2)μ(|H |2) − k2]E

− ı∂zμ(|H |2)

μ(|H |2)
E − ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − 	H , (7)

− ı

b
∂zH = ∇2

⊥H + [ε(|E |2)μ(|H |2) − k2]H

− ı∂zε(|E |2)

ε(|E |2)
H − ∇⊥ε(|E |2)

ε(|E |2)
∇⊥H − 	E , (8)

where 	E ,H are related to the fluxes of the electric and
magnetic field (prime denotes the derivative of ε and μ with
respect to their arguments E†E and H†H):

	H = ε′(|E |2)

ε2(|E |2)

(
ı

2
(H∂zH

† − H†∂zH )

+ |∇⊥H |2 + k2|H |2
)

, (9)

	E = μ′(|H |2)

μ2(|H |2)

(
ı

2
(E∂zE

† − E†∂zE )

+ |∇⊥E |2 + k2|E |2
)

. (10)

These are the extra terms compared to the physical equations
(4) and (5).1 Inserting ∂zE± from the equations of motion (7)
and (8) into the above we derive

	E = μ′

μ
∇⊥

(
E∇⊥E† − E†∇⊥E

μ

)
, (11)

and analogously for 	H , with ε ↔ μ, E ↔ H . This term is
proportional to a total derivative, and is therefore related to the
flux (E∇⊥E† − E†∇⊥E )/μ. For slowly changing ε and μ,
which is often the case in our system (i.e., for ε′, μ′ � ε, μ),
this term is small, which partly justifies the choice (6) for
the Lagrangian. But the ultimate justification, as it frequently
happens, is that a posteriori we will find that this model is able
to explain the features observed in the numerics. Therefore we
will not try to interpret the term (11) in detail.

III. GEOMETRY AND STABILITY OF VORTICES

We will now sum up our numerical results which demon-
strate the breaking of the circular symmetry of the vortex
beams and their decay during the propagation. We always start
from a Gaussian input beam with a topological charge Q, of
the form E (r, φ; z = 0) = E0 × e−r2/2σ 2

eiQφ and analogously
for the magnetic field, with amplitude H0 but with the same
vortex charge Q. Therefore, we always give an exact vortex as
an input. The parameters of the model were chosen so that the
permittivities ε and μ, given by (1) and (2), respectively, are of
order unity. This serves to limit the dissipative effects, so that
the propagation along the longitudinal direction can be clearly
observed. Same phenomena are found for arbitrary values of

1The dissipative term proportional to ∇⊥H in (8) is also absent in
the original equations, but that one is easy to interpret: we make both
LE and LH complex, so both fields have dissipative dynamics.
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FIG. 1. The radial profile of μ for a left-handed medium (a) and a right-handed medium (b), for a vortex of charge Q = 1. The profiles
are radially symmetric in accordance with the fact that μ depends strictly on the magnitude of the magnetic-field vector |H |2. The real (blue)
and imaginary (red) values of the complex permeability μ vs the frequency of the beam ω are displayed in (c). For frequencies higher than the
eigenfrequency of the resonator rings ω0, the real part of the permeability is negative, essentially yielding a left-handed medium. The figure is
made for dissipative ε; for lossless ε the behavior is similar.

ε and μ but on a different length scale. We do not aim at
a stamp-collecting exhaustive description of patterns for all
possible parameter values, so we will focus on just a few rel-
evant cases. We are mainly interested in left-handed materials
(ε, μ < 0) and how they compare to right-handed ones, so for
the dielectric constant we always choose the self-defocusing
Kerr nonlinearity (α = −1) with a linear part εD0 = 12.8,
which has both a left-handed and a right-handed regime. To
check the effects of dissipation, we either adopt γ = 0 in (1),
i.e., the lossless case, or we tune γ so that ω2

0/(ω2 + ıγω) =
1/2. In other words, we impose either Imε = 0 or Imε = Reε.
This is for simplicity and to avoid probing a huge parameter
space for all possible γ values; from now on we will call these
cases simply lossless ε and dissipative ε. The filling factor is
F = 0.4 and the magnetic dampening coefficient is � = 109

Hz; these values are kept fixed in all calculations. Numerical
calculations are performed with an operator split algorithm
described in detail in the Appendices of [32].

The nonlinear frequency of the oscillator rings is obtained
as a solution to (3). Of the three branches of the solution,
we take the one that yields a negative real value of μ for
ω > ω0 (Fig. 1). We have freely taken ω = 9.8 × 109 Hz to
represent a left-handed medium, and ω = 7.0 × 109 Hz to
represent a right-handed medium. The transverse profiles are
displayed in Fig. 1. We see there is a well-defined left-handed
regime.

Now we discuss the transverse intensity profile for differ-
ent initial beam configurations, with vortex input beams as
explained in the beginning. We observe the following features.

(1) Circular symmetry of the vortex input always breaks
down to a discrete group.

(a) In a dissipative left-handed medium, the discrete sym-
metry group for a vortex of charge Q is C3Q, before break-
ing down to simple C2 axial symmetry at longer distances
[Fig. 2(a)].

(b) In a dissipative right-handed medium, the discrete sym-
metry group for a vortex of charge Q is C2Q, before breaking
to CQ and then to C2 axial symmetry at longer distances
[Fig. 2(b)].

(c) In a lossless left-handed medium, the discrete symmetry
group for a vortex of charge Q is C3Q for very short distances,
before quickly breaking down to CQ and finally C2 [Fig. 2(c)].

(d) In a lossless right-handed medium, the discrete symme-
try group for a vortex of charge Q is C2Q, before breaking to
simple C2 axial symmetry at longer distances [Fig. 2(d)].

(2) Vortices decay approximately exponentially as they
propagate along the longitudinal axis. Figure 4 shows the
intensity of the beam across the z axis, for various regimes. At
early z values, total intensity may behave nonmonotonically
and nonuniversally but on longer scales it decays exponen-
tially. For different charges, the intensity curves collapse to a
unique exponential function at large z. As could be expected,
lossless and dissipative cases differ somewhat and collapse to
different curves.

The bottom line is that there is a vocabulary of patterns
with CQ,C2Q, and C3Q symmetries. One of them dominates in
each case (left and right handed, dissipative and lossless) but
at longer propagation distances the symmetry can change, be-
fore the intensity drops to near zero from dissipation. The final
stadium of C2 symmetry is only seen at very low intensities,
so it might be practically unobservable in experiment; that is
why we say the vocabulary only has three possible patterns,
excluding C2.

The findings above are further corroborated by Fig. 3,
which shows the vortices with different charges Q =
1, 2, and 3 in the same regime [dissipative left handed (a) and
lossless left handed (b)]. As claimed above, the symmetry is
C3Q in panel (a), and (except at small z values) CQ in panel (b).
Finally, it is obvious that there is some mixing of patterns:
the polygons are never exactly regular, so the groups Cn are
certainly not exact symmetries; we use the Cn nomenclature
merely for convenience.

One interesting phenomenon in Fig. 2(c) is that the pat-
tern rotates along the z axis. This can be understood as
excitation of multiple angular modes (of the form eılz with
various l numbers) as the beam travels along the sam-
ple. This is a well-known consequence of nonlinear terms
[5,29] and typically depends on the relative strength of
nonlinear mode interactions compared to energy density
|E |2 + |H |2 and dissipation γ . We will not explore it in
quantitative detail in this paper as it is only tangential to
our main topic of radial symmetry breaking; as one can
see, the structure remains the same; just the orientation
changes.
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FIG. 2. The patterns for a Q = 1 vortex, in a left- and right-handed dissipative medium [(a) and (b), respectively], and in a left- and
right-handed lossless medium [(c) and (d), respectively], at longitudinal slices z = 2b, 4b, 6b, and 8b, showing the C3Q, C2Q, C3Q/CQ, and C2Q

regimes. The remaining parameters are defined in the text at the beginning of this section.

One might rightly worry that the initial conditions which
contain a vortex in both electric and magnetic field are not
very realistic, as in most materials the electric field dominates
the optical response. Therefore, in experimental practice, one
typically prepares a vortex in the electric field making use of
phase masks or some other method, and the initial magnetic-
field distribution is completely analytic. In Appendix B we
repeat the calculations from Fig. 3 and show that the outcome
is the same, including the vocabulary of patterns and their
Cn shapes. Therefore, the E -H symmetric ansatz is merely a
matter of convenience, and the realistic regime where |H | �
|E | is in fact covered by our paper.

Figure 4 shows that at long times the decay of intensity is
universal for given dielectric dampening coefficient γ , which
suggests the main mechanism of dissipation is in fact the
radiative loss. This is because we deliberately chose ε and μ

with small imaginary parts (for ε it can also be zero), so the
losses in the medium are not so important when it comes to
total energy (they are still important for being nonlinear and
influencing the patterns). One important difference between
the lossless medium (black and blue symbols in Fig. 4) and
the dissipative medium (red, magenta) is that the former has
a short interval of growing intensity, before reaching the
universal regime of radiative decay. The physical reason is
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FIG. 3. The patterns for Q = 1, 2, and 3 vortices (left to right), in a dissipative (a) and lossless (b) left-handed metamaterial. The behavior
for three different charges confirms the previous conclusions for the type of symmetry encountered. All parameters except for the vortex charge
are the same as for Fig. 2. The propagation distance is z = 5b in (a) and z = 8b in (b).

that the polarization, i.e., the rearrangement of charges in the
self-defocusing metamaterial, reduces the overall electrostatic
potential energy of the medium, and this energy becomes
available to the beam, increasing its intensity. Clearly, once
the radiative losses overcome the total potential energy avail-
able, the intensity decays. The growth is clearly a transient
effect which cannot persist for long z intervals. A formal way
to understand this is that the nonconservation of energy is
encoded by the last term in (4), which can have a positive or
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Q=1 dissipative
Q=2 dissipative

FIG. 4. Decay of the total intensity I = ∫
dx

∫
dy(E 2 + H 2) in

computational units for Q = 1 and 2, for a lossless (blue circles,
black stars) and dissipative (red squares, magenta triangles) left-
handed material. At early times the behavior is complicated and
nonuniversal but at late times it collapses to an exponential curve.
This is expected when loss through radiation dominates. The oscilla-
tory features of the Q = 2 lossless case (black) are likely due to finite
numerical resolution.

negative imaginary part depending on the sign of ∂zμ/μ. At
large values of z, we expect to enter a universal regime where
this sign is constant, because the radiation loss dominates over
nonlinearities and the exchange of energy between the beam
and the medium; this is the universal decay regime in the
figure.

IV. THE THEORY OF VORTEX EVOLUTION

The phenomenology described in the previous section can
be understood on several levels. At the crudest level, we
can introduce a variable-separation ansatz in the equations of
motion and then linearize them in the amplitude (but not in
the phase). This picture explains the C2Q patterns, but not the
C3Q and CQ regimes. It also does not explain the instabilities,
that is, the changes and disappearance of patterns during the z
propagation. For the full picture it is necessary to take into
account the nonlinear effects through the loop corrections,
i.e., to move perturbatively beyond the amplitude-linearized
solution. A qualitative insight of the symmetry breaking can,
however, be obtained also in a simpler and more elegant way,
directly from the symmetry analysis of the model Lagrangian
(6). Therefore, after finishing the amplitude-linearized analy-
sis and the loop corrections from nonlinearity, we will obtain
the same results from a unified mean-field treatment of the
(nonlinear) model Lagrangian.

A note on terminology is in order. The solutions we find
are not the textbook type of vortex with phase dependence
solely of the type eıQφ ; rather, the dependence on the phase
is more complicated, i.e., the phase is doing more than just
the winding, but it is still true that the circulation of the
phase around some point (the location of the vortex core)
is an integer—the topological charge of the vortex. Such
solutions are sometimes called spirals [22] whereas the term
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“vortex” is reserved for the simple winding-phase solutions.
We nevertheless stick to the widespread term “vortex” for any
topologically charged solution under the fundamental group
of the U(1) phase symmetry.

A. Amplitude-linearized solution

We will separate variables in the equations of motion (4)
and (5) [or the Lagrangian equations (7) and (8), which do not
differ from the original equations at the amplitude-linearized
level] and then plug in the vortex ansatz. The vortex ansatz is
a solution which has a winding phase 	 with some winding
number Q, for a constant (averaged) value of the permittivity
μc = const, because we ignore the nonlinear dependence of
μ on |H |. The vortex solution of winding number (topological
charge) Q in cylindrical coordinates (r, φ, z) can be separated
into regular and vortex parts:

E = Ereg + Evort. (12)

We represent the vortex part as

Evort (r, φ, z) = ZE (z)RE (r)eıQφ−ı	(φ), (13)

and analogously for the magnetic field. Along the z axis we
get ZE (z) = eıλz as expected, and the eigenvalue λ is arbitrary
for now, i.e., it is determined by the boundary conditions along
the z axis. Upon inserting (13) into (4), the equation separates
into the angular part and the radial part. The former reads

	′′ − ı(	′)2 + 2ıQ	′ + ıl2 = 0, (14)

where l is the eigenvalue of the angular part. This is the crucial
equation—the phase dynamics is nonlinear because μ is in
general complex and the terms with ∇⊥μ contain nonlinear
dependence on the phase. The equation is easily solved by
first introducing w ≡ 	′ and then reducing it to quadratures.
The outcome is

	(φ) = cos(
√

Q2 + l2φ + Cl ). (15)

In other words, we still stay with a winding solution but
various winding numbers (equal to

√
Q2 + l2) are possible

when multiple modes are excited. Clearly, only the solutions
with integer windings are physical, otherwise they would not
be single valued. The most general solution is thus a su-
perposition of solutions ZE (λ, l; z)	E (λ, l; φ)RE (λ, l; r) with
different l modes so as to result in a single-valued function.
Now the radial part acquires the form

R′′
E + 1

r
R′

E +
(

λ

r2
− k2 + εD0ω̃

2

)
RE + αμcω̃

2

E2
c

R3
E = 0,

(16)
with ω̃ ≡ ω[1 − ω2

0/(ω2 + ıωγ )]. If we disregard the cubic
term (amplitude-linearized approximation),2 the well-known
solution in terms of Bessel functions is obtained:

RE (r) ≈ c(1)
E (λ, l )JQl (ar) + c(2)

E (λ, l )YQl (ar),

Ql ≡
√

Q2 + l2, a ≡
√

λ − εD0μcω̃/ωE2
0 − k2. (17)

2This is justified at least in some interval of z values, as the
system is dissipative and loses power

∫
(E 2 + H 2), so the amplitude

progressively decreases along z.

FIG. 5. Polygonal pattern |E |2 for a vortex of charge Q = 2,
for k = 2, εD0 = 12.8, and μc = 1.004 (values of all parameters and
constants in the main text), at radial slice z = 1, for a single vortex
mode l = 0 (a), and for a linear combination of modes with l =
0, 1, and 2 decaying at infinity (b). The symmetry is C2Q = C4,
which does not explain the CQ and C3Q regimes. Obviously, the crude
picture of breaking the radial symmetry works but full explanation is
lacking. It will come from the loop corrections.

Here, J and Y are the Bessel functions of first and second
kind, respectively. Similar solutions ZH (z),	(φ), and RH (r)
are obtained for the magnetic field. The angular equation is
identical for both fields: for this reason we have one solu-
tion 	 for both E and H . The eigenvalues λ and l and the
values of the constants c(1,2)

E ,H are determined by the boundary
conditions. Obviously, (15) imposes the C2Q symmetry, i f
l = 0. This simplest case is not necessarily the stable solution.
We might have a sum over many l values. In principle,
such sums may yield more complicated patterns, however we
will see that when the physically reasonable boundary con-
ditions are implemented (decay at infinity, single valuedness
everywhere) one typically always has the robust C2Q pattern.
One important consequence of the fact that multiple l modes
are possible is that due to nonlinear effects a new l mode
can be created during the propagation along the z axis. We
have already seen an example in Fig. 2(c). A quantitative
analysis of this phenomenon requires a full nonlinear model
and so can only be studied within the formalism of the next
section.

This solution is not very satisfying but reproduces some of
the features from the numerics, summarized at the start of the
previous section: (1) the reduction of the full O(2) symmetry
down to a discrete symmetry Cn for some n ∈ N, i.e., the
polygonal form of the vortex, and (2) the value n = 2Q is
true in some but not in all situations. We show the solutions
for a single angular mode from (15) and (17) in Fig. 5(a). In
Fig. 5(b), we show a linear combination of angular modes with
l = 0, 1, and 2, with the coefficients c(1,2)

E ,H in (17) chosen so
that the total intensity still decays sufficiently fast at infinity.
The symmetry is still C2Q. Apparently, the regimes with the CQ

and C3Q symmetries require loop corrections from nonlinear
μ to be taken into account.

B. Loop corrections

The origin of the breaking of radial symmetry is the fact
that a discrete set of modes in Fourier space is selected.
This is best seen from the Fourier transform of the solutions
(15) and (17). We will calculate the propagator G(u) at
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constant z, i.e., the Fourier transform r 
→ u of the solution
with a Dirac delta source. This source imposes the boundary
condition RE (0) → ∞,

∫
drr cos φRE (r) = 1, giving c(1)

E =
0, c(2)

E = 2π/�(Q/2) in (17). Fourier transforming (x, y) 
→
(ux, uy) we get for a single mode (17), making use of the
Bessel and Lommel integrals:

GE ,H (u) = 2π

�(Q/2)

eıQ(π/2+φ)

au

(
sin[(u − a)�]

u − a
− cos[(u + a)� − πQ]

u + a

)

+ 2π

�(Q/2)

e−ıQ(π/2+φ)

au

(
cos[(u − a)� + πQ]

u − a
− cos[(u + a)�]

u + a

)
. (18)

Here, � is the ultraviolet (UV) small-length and high-
momentum cutoff, i.e., the Fourier transform is performed by
integrating

∫ ∞
1/�

dr
∫ 2π

0 dφ. The cutoff has a clear physical
meaning: 1/� is the size of the vortex core (where the
vortex ansatz stops working because the gradient of the field
becomes too high). We clearly do not get anything new by
just Fourier transforming. The goal is to move beyond the
amplitude-linearized approximation of the previous section by
considering the effects of nonconstant permittivity μ instead
of constant (averaged) μc. This calculation is essentially ele-
mentary but might be tedious and boring for readers who are
not fond of perturbative field theory. Most of the integrations
are in Appendix C. Even the rest of this subsection can be
skipped until the the equation (22), where we discuss the final
result.

Putting μ from (3) in place of μc requires the solutions
for ω0NL in terms of the magnetic field. The solutions are
readily found from the Cardan formulas (we do not give them
explicitly as they are cumbersome and not very illustrative).
But the form of the H dependence of ω0NL is seen already
from the Viete formula:(

ω
(1)
0NL

)2 + (
ω

(2)
0NL

)2 + (
ω

(3)
0NL

)2 = 1 + 2�2

1 + |H |2/αE2
c

, (19)

so the solutions depend on |H |2 only, with no higher powers of
the magnetic field. Inserting this into L, we get the nonlinear
correction of the form

δL = g2,0,0|∇⊥E |2 + g0,2,0|E |2 + g0,2,2|E |2|H |2
+ g2,0,2|∇⊥E |2|H |2. (20)

We thus have two quartic interaction terms and two quadratic
terms. We do not intend to calculate the loop corrections
in full detail; it is not worth the effort as we only want to
capture the symmetry, i.e., the form of the angular depen-
dence. First of all, the quadratic corrections g2,0,0 and g0,2,0

trivially renormalize the parameters in the bare propagator
and do not change its functional form. Lowest-order non-
trivial loop corrections to the self-energy come from g0,2,2

and g2,0,2. The electric field receives the correction G−1
E 
→

(GE + �
(1)
E + �

(2)
E )

−1
with

�
(1)
E = g0,2,2

∫
du′GH (u′) ≈ g0,2,2e3ıQ/2 sin(πQ) ln �,

�
(2)
E = 3

2
g0,2,2

∫
du′

∫
du′′GH (u′)GH (u′′)GE (u − u′ − u′′)

≈ const × [a3/2 cos(3Qφ/2) − 2ıQ2 ln a]. (21)

We will write all equations for E , because this field receives
interesting corrections from the gradient of μ [Eqs. (4) and
(7)]. The magnetic field does not couple to the permeability
ε in the same way in the original equation (5), and in the
Lagrangian form (8) it does but ε does not contain such
strong (nonpolynomial) nonlinearities as μ. One- and two-
loop corrections appear not only in the self-energy but also
in the vertex operators. However, the vertex corrections only
have a weak momentum dependence and consequently the
coordinate dependence (geometric patterns) of the solution is
not significantly affected by them. For that reason we will not
discuss them in detail.

The correction �
(1)
E is the Hartree correction with a sin-

gle vacuum bubble which is not very interesting: it merely
introduces an additional mass term and does not influence the
momentum dependence and thus the geometry of the patterns.
As could be expected from power counting, it is logarithmi-
cally divergent in the UV cutoff �. Of course, this is not a
problem in an effective theory; we have already explained
the physical meaning of �. The watermelon diagram �

(2)
E ,H

is crucial: it is momentum dependent. Its calculation is found
in Appendix C. An informal way to estimate its effect is the
following: the leading contribution comes from the region
where u ≈ u′ − u′′ because this is a pole of the self-energy
correction. Then we are left with angular integrals only, and
they reduce to integrals of products of three rational functions
[for the three propagators in (21)] of the half angle—this gives
rise to 3φ/2 in the argument of the cosine. Now the dressed
propagator (G−1

E ,H + �)
−1

needs to be Fourier transformed
back to real space. We will only do this approximately (it is
likely impossible to do exactly in closed form). The outcome
is

Evort (r, φ, z) = e(ıλ−2Q2 ln a)z cos(Qφ)√
κr

×
[

c(1)
E (λ, l )

(
1+ (2π )3/2g0,2,2

�(Q/2)3
cos(3Qφ/2)

)

+ c(2)
E (λ, l )

(
1+ (2π )3/2g0,2,2

�(Q/2)3
sin(3Qφ/2)

)]
.

(22)

No doubt the reader sees that the terms
cos(3Qφ/2) and sin(3Qφ/2) give a pattern |Evort|2 with
3Q branches, in addition to the 2Q polygons obtained from
the term cos(Qφ). The interference between the two patterns
might (1) break the symmetry completely and (2) lead to CQ
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symmetry if the relative phase between the leading term and
the corrections is approximately 2π/Q. Both cases are seen
in numerical work: C3Q appears in all left-handed materials
[Figs. 2(a) and 2(c)], and elements of CQ symmetry are
present in almost all cases at long propagation distances z
[Figs. 2(a)–2(c) and 3].

The self-energy has an imaginary part [equivalently, the
solution (22) exhibits exponential decay in z], meaning that
these configurations are not stable—they are only seen up
to some propagation distance z. The exact order (along z)
and stability of each of the patterns depend on the details
of the permeability ε. One important and universal lesson is,
however, that the decay rate [the real part of the exponent in
(22)] is proportional to Q2, therefore the higher the value of
|Q| the faster it decays. This supports the general intuition
that vortices with high winding numbers are not stable. But
unlike the simplest case of the XY model or a superfluid
where the stability only allows Q = ±1 we can in principle
have arbitrarily high Q as we have seen also in the numerics;
their lifetimes are smaller and smaller as Q grows, but still
finite. The exponential decay itself is also confirmed by the
numerics, as seen from Fig. 4.

C. Isotropy breaking: The look from the action

The basic mechanism leading to the symmetry breaking
O(2) 
→ C3Q 
→ C2Q 
→ CQ is seen already from the model
Lagrangian (6). The symmetry breaking is essentially the
consequence of the interplay of the nonlinear-sigma-model
form of the kinetic term and the complex nonlinearity of
the magnetic permittivity μ. Therefore, we can take a static
approximation of the z dynamics, ignoring the z dependence;
clearly, in that framework we can only obtain the vocabulary
of patterns, not the relative stability of CQ,C2Q, and C3Q.3

The separation of variables remains a natural ansatz, and the
vortex nature of the solution implies Evort = E0(r)eı�(φ) with∮

dφ�(φ) = 2πQ and analogously for the magnetic field.
The Lagrangian (6) then becomes

L = (E ′
0)2 + (�′ )2

r2 + k2E2
0

μ
+ (H ′

0)2 + (�′ )2

r2 + k2H2
0

ε
. (23)

The fact that μ contains ω2
0NL(|H |2), which is in turn the

solution of the cubic equation, introduces a branch cut in H
because of the cubic roots. This is the simplest explanation
of the origin of the C3Q symmetry. More quantitatively, the
story follows exactly the Landau-Ginzburg paradigm: while
the initial Lagrangian only depends on |E |2 and |H |2 and thus
preserves isotropy, the saddle-point solution is given by the
equation

ε(∇2
⊥ − H )E − ε′∇⊥E · ∇⊥H

ε2
+ μ′

μ2
|H |−1/3 = 0, (24)

where we have used that μ = μ(ω2
0NL) and ω2

0NL =
ω2

0NL(|H |2/3, |H |4/3) (from the Cardan formulas). With the
ansatz adopted above, the amplitude equation for E0(r) is the

3We could take the ansatz eıλz instead; it would merely modify
k2 
→ k2 − λ.

nonlinear amplitude equation (16). The equation for the phase
part � is more interesting. It reads

(�′)2
(
1 − ε′

ε
E0
H0

) − k

ε
+ 2μ′

3μ2
|H |−1/3 = 0. (25)

The cubic root carries a branch cut, and the last term
really evaluates to 2μ′/3μ2 × H−1/3

0 e−ı�/3+2nπ ı/3 with n =
−1, 0, and 1. The solution �0 which satisfies the phase wind-
ing condition is obtained in implicit form as

ı(�0 + 2πn/3) = Kn ln

[
k
(
1 − ε′

ε
E0
H0

)
E2

0 + H2
0

sec2

(
Q

2
φ

)]
,

(26)

where Kn is a constant determined by the amplitude solution
and depending also on n = −1, 0, and 1; its exact value is
hard to find analytically as we do not know the solution
to the amplitude equation in the nonlinear regime. But that
is not crucial for our general argument. The point is that
the system can choose a solution with any of the values
n = −1, 0, and 1; i.e., even though the equations of motion
(and the Lagrangian) are isotropic, the solution is not. Each n
branch behaves as ≈1/ cos2(Qφ/2), only they are rotated by
±2π/3 with respect to each other, and each of them has a CQ

symmetry. Put together, the three branches give C3Q patterns.
But all that holds if two of the cubic roots are complex. If all
cubic roots are real, the phase remains single valued, and we
only have CQ symmetry, coming directly from (26) if we fix
n = 0, i.e., if we only keep a single branch.4

What is the regime in which cubic roots are real and the
symmetry is CQ, as opposed to the complex roots and C3Q

patterns? The easiest way is to look at the cubic equation (3)
for the magnetic permeability (and the nonlinear frequency
ω0NL). For μ > 0 (right-handed regime), the roots are all real
and C3Q patterns cannot occur. Indeed, the C3Q phase is only
present in Figs. 2(a) and 2(c), in left-handed media.

This approach is much more physical and elegant than the
tour-de-force calculations of the previous two sections but it
does not give explicit solutions for E and H ; it only classifies
the symmetries of the solution. This is why we we still needed
the perturbative linear and two-loop analysis, to arrive at more
quantitative results.

The saddle-point solution (26) is nonlinear, unlike the
linearized solution found in the first subsection (15). It is not
a vacuum in the usual field-theory sense, however, as it is
not constant. We are dealing with dynamical criticality of the
kind discussed in [21]. In the vicinity of this solution, the La-
grangian describes the fluctuations of amplitude δE and δH ,
and the fluctuations of phase δ	. Similar to the O(3)-type spin
models [23] and multibeam optical systems [32], and unlike
simple XY-type models, the phase and amplitude fluctuations
mix. By analyzing the fluctuation equations, it should be
possible to understand analytically also the transition from the
left-handed to the right-handed regime as the parameters are
varied, i.e., what are the instabilities that drive it. We will not

4We use the fact that a cubic equation has either one or all three
solutions real.
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FIG. 6. (a) Frequency dependence of the typical propagation length scale for the dissipation of the vortex a2Q2
(blue dashed line) and for

the evolution of the symmetry-breaking Cn patterns (red dotted line). The symmetry breaking is detectable as long as the pattern evolution is
faster than the dissipation, i.e., as long as the red curve is below the blue one. This is obviously the case for most of the frequency range. We
also plot the frequency dependence of the negative permittivity −μ (black full line; because of the minus sign large positive values in the plot
are really large negative values of μ). The left-handed regime is most prominent at intermediate frequencies, which are also inside the regime
of the symmetry breaking. (b) Frequency dependence of the relative strength of nonlinear interactions ω0NL/ω (blue dashed line) together with
negative permittivity −μ as in (a) (black full line). Our calculations, based on a pair of nonlinear Schrödinger-like equations, are reliable as
long as the nonlinearity is not too strong. This is again the case for all but very small frequencies, and again includes the left-handed regime.

attempt that here; it is a long subject that deserves separate
work.

V. TOWARD EXPERIMENTAL VERIFICATION
AND APPLICATIONS

We will now briefly discuss what an experimentalist can
learn from our results and what to look for in practical
work. Wave propagation through the metamaterial can be
observed by measuring the transmission coefficients Si j . From
these coefficients, one can also reconstruct the electric-field
intensity |E |2, which can be directly compared to our intensity
maps like Figs. 2 and 3 [33]. Another quantity which can
be measured is the voltage waveform, which can be used to
construct amplitude envelopes [34].

Therefore, the predicted symmetry breaking is in principle
directly observable. But the question remains how widespread
it will be for realistic values of the parameters. From a more
applied viewpoint, this question is reversed: how to make a
vortex transmission through a left-handed waveguide stable.
In other words, how not to observe the symmetry breaking. It
is true that the phenomenon disappears as soon as the vortex
charge is zero, i.e., when the beam is not a vortex. However,
the vortex patterns are likely important in applications. First,
as a topologically protected object with conserved charge, a
vortex is among the natural candidates for computational de-
vices and information transmission (for the same reasons that
solitons are also interesting in that regard: they are robust to
noise, carry a discrete “quantum” number, i.e., charge, and are
stable to small local perturbations). Second, in the presence
of impurities in the sample, vortices can form in a nonlinear
metamaterial from the initially nonvortexing beam [23].

Let us focus on the left-handed regime, which is the most
interesting and the most relevant for applications. The first
condition is therefore to be in the frequency regime with
μ(ω) < 0. This can be checked directly from Eq. (2) as
we did in Fig. 1(c). The second issue is that the symmetry
breaking takes some finite time, i.e., some finite propagation
length, which is of order b; as can be seen from Fig. 3 and

directly from Eqs. (4) and (5), this is the length scale over
which the patterns change. On the other hand, the one-loop
calculation (22) shows that the intensity decays with the
rate ∼a−2Q2

. As long as this is less than the characteristic
length b, one will likely not see the symmetry breaking but
just eventual dissipation of the beam. Therefore, these two
scales should be compared for some reasonable parameter
values. We show this in Fig. 6(a) for F = 0.4, εD0 = 12.8,
γ = 1 GHz, and ω0 = 10 GHz. Apparently, the length scale of
the Cn pattern development (red dotted line) is nearly always
shorter than the dissipation scale (blue dashed line), so we
expect that the effect predicted in the paper is readily seen in
experiment, at least for Q = ±1. For larger vortex charges,
the dissipation grows quickly and high Q values are probably
not easily observed. Conversely, if the goal is to keep a stable
radially symmetric vortex pattern, one should remain at small
frequencies, although for ω � ω0 the material is not strongly
left handed, as can be seen from the −μ(ω) dependence, also
given in the figure.

There is still one remaining issue. Our theoretical ap-
proach, based on a pair of nonlinear Schrödinger-like equa-
tions, inherently disregards some effects. It describes a quasi-
monochromatic wave without wave mixing or dissipation due
to higher harmonic generation [5]. Such phenomena become
significant for strong nonlinearities, so we should compare the
nonlinearities in ε and μ to the typical energy (frequency)
scale of the vortex. In Eqs. (1) and (2) the approximate ratios
of the nonlinear to linear terms are given by |E |2/εD0 and
ω0NL/ω0 ∼ (A/H )1/3. The first scale is frequency indepen-
dent and solely depends on the beam intensity. The second
scale depends on frequency and needs to be inspected more
closely. In Fig. 6(b) we plot the nonlinearity ratio for the
magnetic field for a range of frequencies ω, again together
with the permittivity to make sure we are at the same time
in the left-handed regime. The relative nonlinearity strength
quickly saturates around a value 0.06 � 1, so we are rather
confident that our equations of motion still make sense.

Altogether, the conclusion is that the breaking of radial
symmetry is observable by standard means (measuring the
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transport coefficients and reconstructing the intensity map at
the exit face of the metamaterial), as long as the frequency
of the wave is not too low. This kind of instability kicks in
at shorter propagation lengths [of order 0.1 mm in Fig. 6(a)]
than the nonlinear diffraction effects studied for breathers in
[35], suggesting that vortex signals are more fragile and less
convenient for information transmission.

VI. DISCUSSION AND CONCLUSIONS

Our main result is contained already in the title—left-
handedness and nonlinearity together create the breaking of
the O(2) symmetry down to a discrete group, with the pattern
vocabulary consisting of the C3Q,C2Q, and CQ patterns. In the
right-handed system with the same nonlinearity the isotropy
is broken again, but the pattern vocabulary only has C2Q

and CQ stages. How exactly the patterns evolve into each
other and through which instabilities is not universal, and it
depends on the exact form of ε and μ. In our model, the ε

dependence is mainly encapsulated in the dissipation γ : the
left-handed nondissipative case is usually dominated by CQ

after a much shorter C3Q phase, whereas the dissipative left-
handed metamaterials most prominently show C3Q patterns.
For the right-handed materials, nondissipative and dissipative
dynamics show mainly C2Q and CQ patterns, respectively.

A detailed account of the pattern dynamics was only
possible through numerical work. But the vocabulary itself—
the existence of symmetries C3Q,C2Q, and CQ—we were able
to understand analytically. The dynamic Landau-Ginzburg
picture reveals this as a consequence of the cubic root non-
linearity in the magnetic permittivity, and the fact that the
cubic equation has either two complex roots in the left-handed
regime or all three real roots in the right-handed regime,
and the presence or absence of dissipation in the electric
permeability. In the framework of our field theory model,
the second derivative of the free energy (on-shell Lagrangian,
Landau-Ginzburg functional) likely has a jump when the
symmetry changes. This is a strong encouragement that the
phenomena we observe here, and in general the walk through
the pattern vocabulary, can be understood from the viewpoint
of order and disorder transitions.

Similar phenomena were studied also in [15,18] and above
all [10], where C3Q necklaces were found, within a model of
left-handed metamaterials given in [15] and similar to ours.
Clearly, we have not exhausted this subject; more research
is still needed to fully understand the transition between
different symmetries and their instabilities. Vortices in meta-
materials seem to be a promising arena, as in a metamaterial
the nonlinearity and the frequency band where the material
is left-handed can to some extent be tuned at will. Therefore,
the phase diagram of collective vortex interactions can also be
studied, and is an obvious topic for future work.
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION FROM THE MAXWELL EQUATIONS

Start from the definitions D̂ = εÊ and B̂ = μĤ and the
Maxwell equations in the absence of external charges and
currents (ρ = ĵ = 0):

∇ · D̂ = ρ = 0, ∇ · B̂ = 0, ∇ × Ê = −∂t B̂,

∇ × Ĥ = 4π ĵ + ∂t D̂ = ∂t D̂. (A1)

We make the following assumptions.
(1) We assume small gradients of the permittivities ε and

μ, so their second and higher derivatives are disregarded.
Since ω ∝ k, it means that mixed derivatives of the form ∂t∇ε

are also disregarded. In other words, the characteristic length
scale l along the z axis on which ε and μ change is assumed to
be large compared to the characteristic scale b of the changes
in E and H .

(2) We assume that the time dependence is harmonic so
∂t = −ıω.

Acting on the last equation by ∇× and making use of the
identity ∇ × ∇ × Ĥ = −∇2Ĥ + ∇(∇ · Ĥ ), one gets for the
left-hand side

∇ × ∇ × Ĥ = −∇2Ĥ + ∇
(

∇ · B̂

μ

)

= −∇2Ĥ + ∇
(

1

μ
∇ · B̂

)
− ∇

(∇μ

μ2
· B̂

)

= −∇2Ĥ + ∇
(

1

μ
∇ · B̂

)
− ∇ ·

(∇μ

μ2

)
B̂

− ∇μ

μ2
∇ · B̂ = −∇2Ĥ + 0 + O(1/l2) + 0

= −∇2Ĥ, (A2)

where we used ∇ · B̂ = 0 and disregarded the second deriva-
tive of μ. The right-hand side yields

∇ × ∇ × Ĥ = ∇ × (∂t D̂) = −ıω∇ × D̂ = −ıω∇ × (εÊ )

= −ıω(∇ε)Ê − ıωε∇ × Ê

= −ıω(∇ε)Ê − ω2εμĤ = O(1/l2) + ω2εμĤ ,

(A3)

so we obtain

∇2Ĥ + ω2εμĤ = 0. (A4)

For the Ê field we start from the third Maxwell equation, act
by ∇×, and find for the left-hand side

∇ × ∇ × Ê = −∇2Ê + ∇(∇ · Ê ) = −∇2Ê − ∇
(

∇ · D̂

ε

)

= ∇2Ê − ∇
(

1

ε
∇ · D̂

)
+ ∇

(∇ε

ε2

)
εÊ

+ ∇ε

ε2
∇ · D̂ = −∇2Ê + 0 + O(1/l2) + 0

= −∇2Ê , (A5)
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and for the right-hand side we get

∇ × ∇ × Ê = −∂t (∇ × B̂) = −∂t (∇ × B̂)

= −∂t [∇ × (μĤ )] = −∂t [(∇μ)Ĥ + μ∇ × Ĥ ]

= −(∂t∇μ)Ĥ − ∇μ · ∂t Ĥ − ∂t (μ∂t D̂)

= O(1/l2) − ∇μ

μ
∇Ê + ω2εμÊ , (A6)

so

∇2Ê + ω2εμÊ − ∇μ

μ
∇Ê = 0. (A7)

For our geometry we take the paraxial beam approximation,
with the ansatz Ê = E (x, y)eı(kz−ωt ), Ĥ = H (x, y)eı(kz−ωt ), so
the nabla acts as

∇Ê = (∇⊥E , ∂zE + ıkE )eı(kz−ωt ), (A8)

and the Laplacian operator acts as

∇2Ê = (∇2
⊥E + 2ık∂zE − k2E )eı(kz−ωt ), (A9)

and analogously for the magnetic field. Now to write the equa-
tions motion in the final form we rescale E → E × 2kb, H →
H × 2kb, and z 
→ z × 2kb, where b is some characteristic
length scale along the z axis, and divide the equations by
bk2 to obtain the equations (4) and (5), reprinted here for
convenience:

− ı

b
∂zE = ∇2

⊥E + [ω2ε(|E |2)μ(|H |2) − k2]E

− ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − ı

∂zμ(|H |2)

2μ(|H |2)
E , (A10)

− ı

b
∂zH = ∇2

⊥H + [ω2ε(|E |2)μ(|H |2) − k2]H. (A11)

For comparison to the equations given in [4,7,12], one needs
(1) to rescale H 
→ ω2/c2H to get the term −γ 2H = −k2/ω2

in (A11) and (2) to absorb the factor −k2 in (A10) in the
definition of εD0. This is possible as ε and μ have a constant
term (equal εD0 and 1, respectively) so the product εμ also
has a constant term proportional to εD0, and the contribution
k2E can be absorbed as εD0 
→ εD0 − k2. We thus arrive at a
system identical to that from [4], except for the extra terms for
the propagation along the z axis.

APPENDIX B: CONFIGURATIONS WITH NO VORTICITY
IN THE MAGNETIC FIELD

Here we show that our results stay valid also when only
the electric field has vortex patterns whereas the magnetic
field starts analytic everywhere. As we discuss in the main
text, this situation is experimentally more relevant than the
one assumed in most calculations in the paper (that both the

electric and the magnetic field have a vortex as they enter
the material). The electric field is typically a few orders of
magnitude more intense than the magnetic field, as seen in
[4]. Therefore, one typically controls the electric field directly,
imposing a given boundary condition at the front end of the
material. Despite this fact, the magnetic field remains very
important: the coupled equations of motion (4) and (5) require
both E and H to be nonzero. Indeed, as explained in [4], the
left handedness comes as a consequence of the hysteresis-type
dependence of the magnetic permittivity on H . So while it
is crucial that E and H are both nonzero, it is also true that
the results should remain valid for |H | � |E |, and for the
boundary condition that only has a vortex in E at the front of
the metamaterial, not for H . With such boundary conditions
and the same parameter values as before, Fig. 7 repeats the
calculations of Fig. 3. Obviously, the symmetries remain the
same and the similarity of the results for the two cases is
striking. Obviously, the |E |2 map is insensitive to the details
of the initial magnetic-field pattern, as one expects from
experiments and common wisdom in nonlinear optics. We are
thus content that the numerically simplifying assumption of
identical z = 0 boundary conditions for E and H does not put
into question the findings of our paper.

APPENDIX C: THE CALCULATION
OF THE SELF-ENERGY DIAGRAMS

We discuss here in some more detail the equations (21)
from the main text. First we give the expressions for the
couplings g2,0,0, g0,2,0, g2,0,2, and g0,2,2, which come from
the expansion over the magnetic field H of the nonlinear
dependence μ(H ) in (20):

g2,0,0 = αE4
c ω2

0 − (ω − ı�)ωαE8
c

H0 + αE4
c

[
ω2

0 − (ω − ı�)ωαE2
c

] , (C1)

g0,2,0 = (k2 − λ2)g2,0,0, (C2)

g2,0,2 = 2αE2
c H0

ω2
0 − (ω − ı�)ωαE4

c{
H0 + αE4

c

[
ω2

0 − (ω − ı�)ωαE2
c

]}2 , (C3)

g0,2,2 = (k2 − λ2)g2,0,2. (C4)

For simplicity, we will treat the case when λ = k and thus
g0,2,0 = g0,2,2 = 0. This simplifies the calculations substan-
tially while it does not change the symmetry of the solution.
It is possible to evaluate the diagram �(1) exactly in terms of
sine and cosine integrals Si and Ci. The angular integration
is straightforward; the integration over u results in four com-
binations of the trigonometric integrals, for the four terms in
(18). Three of the four integrals are finite and therefore they
just shift the mass term. The third term of the propagator is
logarithmically divergent:

�
(1)
3 = 4π sin πQ

Q�(Q/2)
e−3ıπQ/2 1

a2
{γE + ln � + (−1)Qa[cos(a�)Ci(a�) + sin(a�)Si(a�)]}. (C5)

To judge the effect of this term, we should extract the mass squared rm of the bare propagator, writing it out for small u:

G(u → 0) = 2π

�(Q/2)

1

u(u2 − a2)
{eıQ(π/2+φ)[cos(a� − πQ) − sin(a�)] + e−ıQ(π/2+φ)[cos(a� + πQ) − cos(a�)]}. (C6)
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FIG. 7. The patterns for Q = 1, 2, and 3 vortices (left to right), in a dissipative (a) and lossless (b) left-handed metamaterial. All parameters
are the same as in Fig. 3 but the boundary condition at z = 0 is now a vortex for the electric field E and a homogenous background for H . The
symmetries and the whole qualitative picture are the same as before, confirming that the predictions of the paper do not require preparing a
vortex in magnetic field at the entry.

Since G−1(u → 0) ∝ u = 0, the bare propagator is massless. The one-loop correction �(1) therefore gives a cutoff-dependent
mass rM ∼ ln �, which could be absorbed in the overall normalization of the propagator. As we declared in the main text, the
one-loop self-energy does not do much.

The crucial diagram �(2), the popular watermelon diagram, cannot be calculated exactly. It can be evaluated in the regime
of small external momentum u, i.e, when u < u′, u′′; more precisely, we can look at the regime when u < u0 < u′, u′′ for some
(arbitrary) scale u0 and expand in a series in u/u0. Let us denote such an entity by �(2)(u; u0): it contains enough information
for our purposes: we are interested mainly in angular integrations which determine the symmetry, and these can be done exactly
as they separate from the integrations over the module u in the small-u limit. For u = 0 the watermelon diagram reads (with∫ ≡ ∫ 2π

0 dφ′ ∫ 2π

0 dφ′′ ∫ du′ ∫ du′′)

�(2) ≈
∫

G(u′)G(u′′)
v

{eıQ[π/2+(φ−φ′−φ′′ )][cos(a� − πQ) − sin(a�)] + e−ıQ[π/2+(φ−φ′−φ′′ )][cos(a� + πQ) − cos(a�)]},

v ≡
√

(u′)2 + (u′′)2 − 2u′u′′ cos(φ − φ′ − φ′′). (C7)

One angular integration is performed by taking φ′ 
→ φ′ + φ′′, which makes the φ′′ integral completely trivial, and the φ′ integral
is evaluated in terms of the elliptic integrals E and K . The outcome is finite, hence it is observable (not only at the cutoff scale)
and reads

�(2)(0; u0) =
(

2π )

a�(Q/2)

)3

e3ıQ/2 cos(3Qφ/2)2
∫

du′
∫

du′′ [(u′)2 − (u′′)2](u′ + u′′)E
(− 4u′u′′

(u′+u′′ )2

)
(u′)2(u′′)2[(u′)2 − a2][(u′′)2 − a2][(u′)2 − (u′′)2]

= 1

4π

(
2π

a�(Q/2)

)3

e3ıQ/2 cos(3Qφ/2)2(a3/2 − 1/�3/2) + O(1/�2). (C8)

In particular, this means that a nontrivial mass term is acquired, of the order a3/2. This mass is anisotropic, and the factor
cos(3Qπ/2)2 is all we need for the 3Q polygon. The leading correction in u/u0 is in fact inessential for the symmetry, but it is
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important as it contains a nonzero imaginary part, introducing a finite lifetime for such patterns. It reads

�(2)(u; u0) =
∫

G(u′)G(u′′)
w

{eıQ[π/2+(φ′−φ′′ )][cos(a� − πQ) − sin(a�)] + e−ıQ[π/2+(φ′−φ′′ )][cos(a� + πQ) − cos(a�)]}

= 1

4π

(
2π

a�(Q/2)

)3

e3ıQ/2

(
2ıa3/2

π
sin(3Qφ/2) + 2�3/2

π
cos(3Qφ/2)

)
,

w ≡
√

(u′)2 + (u′′)2 − 2u′u′′ cos(φ′ − φ′′) − 2u[u′ cos(φ − φ′) + u′′ cos(φ − φ′′)]. (C9)

At leading order, this tedious expression behaves like 1/r3, falling off much quicker than the bare propagator (18), which goes
as 1/

√
r (most obvious from the Bessel-function form of the real-space solution), suggesting that the shape of the vortex, which

is mainly determined by long-distance behavior, is not much influenced by the finite-u correction to �(2).
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1 Introduction

Sharp results like inequalities and no-go theorems are often the cornerstones of our under-

standing of physical phenomena. Besides being appealing and captivating, they are easy to

test as they provide a sharp prediction on a certain quantity, and we can often learn a lot

by understanding the cases when such bounds need to be generalized or abandoned. The

upper bound on the Lyapunov exponent (the rate of the growth of chaos), derived in [1]

inspired by hints found in several earlier works [2–7], is an example of such a result, which

is related to the dynamics of nonstationary correlation functions and provides insight into

the deep and important problem of thermalization and mixing in strongly coupled systems.

– 1 –
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It is clear, as discussed also in the original paper [1], that there are cases when the bound

does not apply: mainly systems in which the correlation functions do not factorize even at

arbitrarily long times, and also systems without a clear separation of short timescales (or

collision times) and long timescales (or scrambling times). A concrete example of bound

violation was found in [8] for a semiclassical system with a conserved angular momentum

(inspired by the Sachdev-Ye-Kitaev (SYK) model [9–12]) and in [13], again for a SYK-

inspired system. In the former case, the reason is clear: the orbits that violate the bound

are precisely those that cannot be treated semiclassically, so the violation just signals that

the model used becomes inaccurate; in the latter case things are more complicated and the

exact reason is not known. Finally, in [14] systematic higher-order quantum corrections to

the bound are considered. The bound is in any case a very useful benchmark, which can

tell us something on long-term dynamics of the system at hand, i.e. if some bound-violating

mechanisms are at work or not.

Although the bound on chaos is mainly formulated for field theories in flat spacetime,

it has an intimate connection to gravity: the prediction is that fields with gravity duals

saturate the bound. This makes dynamics in asymptotically anti-de Sitter (AdS) space-

times with a black hole particularly interesting: they have a field theory dual,1 and black

holes are conjectured to be the fastest scramblers in nature [2, 3], i.e., they minimize the

time for the overlap between the initial and current state to drop by an order of magni-

tude. Some tests of the bound for the motion of particles in the backgrounds of AdS black

holes and an additional external potential were already made [15]; the authors find that

the bound is systematically modified for particles hovering at the horizon and interacting

with higher spin external fields. When the external field becomes scalar, the exact bound

by Maldacena, Shenker and Stanford is recovered (as shown also in [16]).

The idea of this paper is to study the bound on chaos in the context of motion of

strings in AdS black hole geometries. Asymptotically AdS geometry is helpful not only

because of the gauge/gravity duality, but also for another reason: AdS asymptotics pro-

vide a regulator, i.e., put the system in a box, making its dynamics more interesting (in

asymptotically flat space, most orbits immediately escape to infinity with no opportunity

to develop chaos). Now why consider strings instead of geodesics? Because geodesics are

not the best way to probe the chaos generated by black holes: we know that geodesics

in AdS-Schwarzschild, AdS-Reissner-Nordstrom and AdS-Kerr backgrounds (and also in

all axially symmetric and static black hole geometries) are integrable, and yet, since the

horizon in all these cases has a finite Hawking temperature, there should be some ther-

malization and chaos going on. The logical decision is therefore to go for string dynamics,

which is practically always nonintegrable in the presence of a black hole. We look mainly

at the Lyapunov exponents and how they depend on the Hawking temperature. We will

see that the bound of [1] is surprisingly relevant here, even though the bound was formu-

lated for field theories with a classical gravity dual, whereas we look at the bulk dynamics

of strings, which go beyond the realm of Einstein gravity. At first glance, their Lyapunov

exponents should not saturate (let alone violate) the bound; in fact, at first glance, it is not

1Of course, one should be careful when it comes to details; it is known that for some field contents in

the bulk the boundary theory does not exist.
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obvious at all how to relate the Lyapunov exponent of classical bulk orbits to the result [1],

which defines the Lyapunov exponent in terms of the out-of-time ordered correlation func-

tions (OTOC).2 An important discovery in relation to this issue was made in [17], where

the authors consider a holographically more realistic string (open string dual to a quark in

Brownian motion in a heath bath), compute the Lyapunov exponent in dual field theory,

and find that it exactly saturates the bound. However, their world-sheet theory, i.e., their

induced metric itself looks somewhat like gravity on AdS2; therefore, close connection to

the Einstein gravity result is understandable. Our situation is different not only because

the ring string configurations have worldsheet actions very different from Einstein gravity

but also because we look mainly at the Lyapunov exponents of the bulk orbits.3 We will

eventually look also at the OTOC in dual field theory and find that the “quantum” Lya-

punov exponents do not in general coincide with the classical bulk values. However, the

subject of OTOC functions is more complicated as it requires one to consider the backre-

action on the background, and studying the behavior of the ring string in such backreacted

geometry is in general more difficult than for the open string od [17]. Therefore, we mostly

leave the OTOC and quantum Lyapunov exponent for future work.

At this point we come to another question, distinct but certainly related to the chaos

bound: the story of (non)integrability in various curved spacetimes. For point particles (i.e.,

motion on geodesics) it is usually not so difficult to check for integrability, and symmetries

of the problem usually make the answer relatively easy. However, integrability in string

theory remains a difficult topic. Most systematic work was done for top-down backgrounds,

usually based on the differential Galois theory whose application for string integrability

was pioneered in [19]. Systematic study for various top-down configurations was continued

in [20–22]; [21] in particular provides the results for strings in a broad class of brane

backgrounds, including Dp-brane, NS1 and NS5 brane configurations. The bottom line is

that integrable systems are few and far apart, as could be expected. Certainly, AdS5 ×
S5 is an integrable geometry, as could be expected from its duality to the (integrable)

supersymmetric Yang-Mills field theory. In fact, direct product of AdS space and a sphere

is integrable in any dimension, which is obvious from the separability of the coordinates.

But already a marginal deformation destroys integrability; a specific example was found

analytically and numerically in [23], for the β-deformation of super-Yang-Mills and its

top-down dual. More information can be found, e.g., in the review [24].

The first study of integrability in a black hole background was [25], where the

nonintegrability of string motion in asymptotically flat Schwarzschild black hole back-

ground was shown. In [26] the first study for an AdS black hole background (AdS-

Schwarzschild) was performed, putting the problem also in the context of AdS/CFT corre-

spondence. In [27] the work on top-down backgrounds was started, considering the strings

2In addition, the scrambling concept of [2, 4–7] is more complex; it is about the equilibration of the black

hole and its environment after something falls in. In other words, it necessarily includes the perturbation of

the black hole itself. We do not take into account any backreaction so we cannot compute the scrambling

time, only the Lyapunov exponent.
3Another example where the bound is modified (by a factor of 2) in a theory that goes beyond Einstein

gravity is [18].
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on the AdS×T 1,1 geometry generated in a self-consistent top-down way. For the top-

down AdS-Sasaki-Einstein background the nonintegrability was proven analytically [19].

Finally, AdS-soliton and AdS-Reissner-Nordstrom were also found to be nonintegrable

in [28, 29]. So most well-known in AdS/CFT have nonintegrable string dynamics: AdS-

Schwarzschild, AdS-Reissner-Nordstrom, AdS soliton and AdS-Sasaki-Einstein.4 Other

results on (non)integrability can be found in [30–33]; the list is not exhaustive.

Apart from the usual spherical static black holes (neutral and charged), we consider also

non-spherical horizons with constant curvature. Among them are also the zero-curvature

black branes, with infinite planar horizons, which are most popular in applied holography.

But it is known that more general horizons can be embedded in AdS space (in general

not in Minkowski space). Such black holes are usually called topological black holes, first

constructed in [34–37] and generalized in [38]. The term topological is in fact partly mis-

leading, as the backgrounds considered in some of the original papers [35] and also in our

paper are not necessarily of higher topological genus: besides spherical and planar hori-

zons, we mainly consider an infinite, topologically trivial hyperbolic horizon with constant

negative curvature (pseudosphere).5

The reader might wonder how important the non-spherical black holes are from the

physical viewpoint. In fact, as shown in the aforementioned references, they arise naturally

in spaces with negative cosmological constant, i.e., in AdS spaces, for example in the col-

lapse of dust [39], and the topological versions are easily obtained through suitable gluings

(identifications of points on the orbit of some discrete subgroup of the total symmetry

group) of the planar or pseudospherical horizon. Another mechanism is considered in [34],

where topological black holes are pair-created from instanton solutions of the cosmolog-

ical C-metric (describing a pair of black holes moving with uniform acceleration). More

modern work on constant-curvature black holes and some generalizations can be found

in [40–42], and AdS/CFT correspondence was applied to topological black holes in [43].

But our main motivation for considering non-spherical black holes is methodological, to

maximally stretch the testing ground for the chaos bound and to gain insight into various

chaos-generating mechanisms. In hindsight, we find that hyperbolic are roughly speaking

most chaotic, because moving on a manifold of negative curvature provides an additional

chaos-generating mechanism, in addition to the black hole.

The plan of the paper is the following. In the next section we write down the equations

of motion for a closed string in static black hole background, inspect the system analyti-

cally and numerically and show that dynamics is generically non-integrable. In the third

section we compute the Lyapunov exponents numerically and estimate them analytically,

formulating a generalized bound in terms of the local temperature and the string winding

number. The fourth section is a rather speculative attempt to put our results in the context

of the dual field theory and the derivation of the original bound from [1]; we will also try

to clarify the relation of the bulk classical Lyapunov exponent to the decay rates of OTOC

functions in dual field theory. The last section sums up the conclusions.

4In [26, 29] it was shown that Reissner-Nordstrom black holes in asymptotically flat space are also

nonintegrable.
5In fact, constant-curvature black holes would be a more suitable term than topological black holes.

– 4 –
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2 String dynamics in static black hole backgrounds

A constant curvature black hole in N + 1 spacetime dimensions is a geometry of constant

curvature with the metric [34–36]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dσ2

N−1

f(r) = r2 + k − 2m

rN−2
+

q2

r2N−4
, (2.1)

where dσ2
N−1 is the horizon manifold, which has curvature k, and m and q define the

mass and charge of the black hole. It is a vacuum solution of the Einstein equations with

constant negative cosmological constant and thus interpolates to AdS space with radius

1. From now on let us stick to N = 3 unless specified otherwise. For k = 1 we have the

familiar spherical black hole. For k = 0 we get the planar horizon (black brane) popular

in AdS/CFT applications.6 Finally, for k = −1 the horizon is an infinite hyperbolic sheet

(pseudosphere), with the symmetry group SO(2, 1).7 Notice that k can always be rescaled

together with the coordinates on σ2 thus we only consider k = −1, 0, 1. The metric of the

horizon surface takes the form

dσ2
2 = dφ2

1 + sink2φ1dφ
2
2, (2.2)

with sink(x) = sinx for k = 1, sink(x) = x for k = 0 and sink(x) = sinh(x) for k = −1.

A closed string with tension 1/α′ on the worldsheet (τ, σ) with target space Xµ and

the metric Gµν is described by the Polyakov action:

S = − 1

2πα′

∫
dτdσ

√
−hhabGµν(X)∂aX

µ∂bX
ν + εabBµν(X)∂aX

µ∂bX
µ. (2.3)

In our black hole backgrounds we always have Bµν = 0 so we can pick the gauge hab =

ηab = diag(−1, 1). This gives the Virasoro constraints

Gµν

(
ẊµẊν +X ′µX ′ν

)
= 0, GµνẊ

µX ′ν = 0, (2.4)

where we introduce the notation Ẋ ≡ ∂τX,X
′ ≡ ∂σX. The first constraint is the Hamil-

tonian constraint H = 0. We consider closed strings, so 0 ≤ σ ≤ 2π. From the second

constraint the following ansatz is consistent (of course, it is not the only one possible):

T = T (τ), R = R(τ), Φ1 = Φ1(τ), Φ2 = nσ. (2.5)

We denote the (dynamical) target-space coordinates Xµ(τ, σ) by capital letters T , R,Φ1,Φ2,

to differentiate them from the notation for spacetime coordinates t, r, φ1, φ2 in the met-

ric (2.1). The form (2.5) was tried in most papers exploring the integrability and chaos

6With periodic identifications on σ2 one gets instead a toroidal horizon.
7If we identify the points along the orbits of the little group of SO(2, 1), we get a genus g surface with

g ≤ 2, and the horizon becomes compact and topologically nontrivial, hence the term topological black

holes for this case.
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of strings [19, 25–29]. It is not an arbitrary ansatz: the winding of Φ2 follows from the

equations of motion, i.e., from the fact that Φ2 is a cyclic coordinate, leading to the solution

Φ̈2 = 0. Since Φ2 has trivial dynamics, from now on we will denote Φ ≡ Φ1. The equations

of motion follow from (2.3):

∂τ

(
f Ṫ
)

= 0⇒ E ≡ f Ṫ = const. (2.6)

R̈+
f ′

2f
(E2 − Ṙ2) + fR

(
Φ̇2 − n2sink2Φ

)
= 0 (2.7)

Φ̈ +
2Ṙ

R
Φ̇ +

n2

2
sink(2Φ) = 0. (2.8)

Clearly, the stationarity of the metric yields the first integral E with the informal meaning

of mechanical energy for the motion along the R and Φ coordinates (it is not the total

energy in the strict sense). The system is more transparent in Hamiltonian form, with the

canonical momenta PT = −E = −f Ṫ , PR = Ṙ/f, PΦ = R2Φ̇:8

H =
f

2
P 2
R +

1

2R2
P 2

Φ +
n2

2
R2sink2Φ− E2

2f
= 0, (2.9)

the second equality being the Virasoro constraint. We thus have a 2-degrees-of-freedom

system (due to the integral of motion E, i.e., the cyclic coordinate T ), with a constraint,

effectively giving a 1.5-degrees-of-freedom system, moving on a three-dimensional manifold

in the phase space (R,PR,Φ, PΦ). Notice that the motion along a geodesic is obtained

for n = 0; in this case, the system is trivially separable and becomes just motion in a

central potential. For nonzero n, the Hamiltonian (2.9) is not separable and the system is

nonintegrable.9 On the other hand, for a point particle all constant-curvature black holes

have a full set of integrals of motion leading to the integrability of geodesics: for the sphere,

the additional integrals (besides E) are L2 and Lz from SO(3), and for the pseudosphere

these are K2 and Kz from SO(2, 1). For the planar black hole we obviously have Px,y,

the momenta, as the integrals of motion. Of course, if we consider compactified surfaces,

the symmetries become discrete and do not yield integrals of motion anymore. Therefore,

truly topological black holes are in general nonintegrable even for geodesics.10

8In this and the next section we put α′ = 1/π, as we only consider classical equations of motion, which

are independent of α′. In section 4, when calculating the quantities of the dual gauge theory, we restore α′

as it is related to the ’t Hooft coupling, a physical quantity.
9One can prove within Picard-Vessiot theory that no canonical transformation exists that would yield

a separable Hamiltonian, so the system is nonintegrable. We will not derive the proof here, as it is not

very instructive; the nonintegrability of the spherical case was already proven in [26, 29], and the existence

of nonzero Lyapunov exponents will de facto prove the nonintegrability for the other cases. One extra

caveat is in order for the planar case. For k = 0 and sinkΦ = Φ, the Hamiltonian is still not separable,

and dynamics is nonintegrable. One could change variables in the metric (2.1) as (φ1, φ2) 7→ (φ′1 =

φ1 cosφ2, φ
′
2 = φ1 sinφ2), and the string with the wrapping Φ′2 = nσ would provide an integrable system,

with the separable Hamiltonian H ′ = f
2
P 2
R+ 1

2R2P
2
Φ′ + n2

2
R2− E2

2f
. But that is a different system from (2.9):

even though a change of variables is clearly of no physical significance, the wrapping Φ′2 = nσ is physically

different from Φ2 = nσ. Integrability clearly depends on the specific string configuration.
10For special, fine-tuned topologies and parameters, one finds integrable cases (even for string motion!)

but these are special and fine-tuned; we will consider these cases elsewhere as they seem peripheral for our

main story on the chaos bound.
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Figure 1. Poincare section (R,PR) for orbits starting at the apparent horizon (removed for a

distance of 10−4 from the event horizon), at increasing temperatures T = 0.00, 0.05, 0.10, for a

planar black hole with m = 1 and charge parameter q determined by the temperature. The

coordinate and momentum are in units of AdS radius.

2.1 Fixed points and near-horizon dynamics

For a better overall understanding of chaos in string motion, let us sketch the general trends

in dynamics first. For spherical black holes, this job was largely done in [26, 29, 44] and for

similar geometries also in [27, 28]. We will emphasize mainly the properties of near-horizon

dynamics that we find important for the main story.

Typical situation can be grasped from figure 1, where the Poincare sections of orbits

starting near the horizon are shown for increasing temperatures of the horizon, as well as

figures 2 and 3 where we show typical orbits in the x− y plane for different temperatures

and initial conditions.

1. Higher temperatures generally increase chaos, with lower and lower numbers of peri-

odic orbits (continuous lines in the Poincare section in figure 1) and increasing areas

covered with chaotic (area-filling) orbits. This is also obvious from the figure 2.

2. Orbits closer to the horizon are more chaotic than those further away; this will be

quantified by the analysis of the Lyapunov exponents. This is logical, since the

equations of motion for strings in pure AdS space are integrable, and far away from

the horizon the spacetime probed by the string becomes closer and closer to pure

AdS. An example of this behavior is seen in figure 3(A).

3. The previous two trends justify the picture of the thermal horizon as the generator

of chaos. However, for an extremal or near-extremal hyperbolic horizon there is a

slight discrepancy — in this case, moving away from the horizon increases the chaos.

In other words, there is yet another mechanism of chaos generation, independent of

the temperature and not located precisely at the horizon, which is subleading and

not very prominent, except when it is (almost) the only one, i.e., when the horizon

is (near-)extremal. This is demonstrated in figure 3(B).

When we come to the consideration of the Lyapunov exponents, we will identify the horizon-

induced scrambling and the chaotic scattering as the chaos-inducing mechanisms at work

for r → rh and for intermediate r, respectively.

Consider now the radial motion from the Hamiltonian (2.9). Radial motion exhibits an

effective attractive potential E2/2f which diverges at the horizon. The Φ-dependent terms
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Figure 2. Thermal horizon as the generator of chaos. We show the orbits in the vicinity of the

spherical (A) and hyperbolic (B) horizon, at T = 0.01 (left) and T = 0.10 (right); obviously, hot

horizons generate more chaos than cold ones. The light blue dot is the initial condition of the orbit

(the position of the point on the string with Φ = 0 at τ = 0).
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Figure 3. Thermal horizon and hyperbolic scattering as generators of chaos. In (A) and (B), we

show the orbits in the vicinity of the spherical and hyperbolic horizon, respectively, at the small

temperature T = 0.01 and starting at increasing distances from the horizon. In (A), the further

from the horizon, the more regular the orbit becomes. But in the hyperbolic geometry (B), the

thermally-generated chaos is negligible; instead, the orbit becomes chaotic as it explores larger and

larger area of the hyperbolic manifold. Hence for hyperbolic horizons, an additional, non-thermal

generator of chaos exists: it is the hyperbolic scattering. Light blue dots are again the initial

positions of the string origin (Φ = 0).

– 8 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

proportional to R2 and 1/R2 are repulsive and balance out the gravitational attraction to

some extent but they remain finite for all distances. For R large, the repulsion proportional

to n2 dominates so for large enough distances the string will escape to infinity. For inter-

mediate distances more complex behavior is possible: the string might escape after some

number of bounces from the black hole, or it might escape after completing some (non-

periodic, in general) orbits around the black hole. The phase space has invariant planes

given by (R,PR,Φ, PΦ) = (R0 + Eτ,E/f0, Nπ, 0), with R0 = const. and f0 ≡ f(R0) and

N an integer. It is easy to verify this solution by first plugging in Φ̇ = 0 into (2.8) to find

Φ; eq. (2.7) and the constraint (2.9) then reduce to one and the same condition Ṙ2 = E2.

We discard the solution with the minus sign (with R = R0 − Eτ) as R is bounded from

below. Pictorially, this solution means that a string with a certain orientation just moves

uniformly toward the black hole and falls in, or escapes to infinity at uniform speed, all

the while keeping the same orientation. Besides, there is a trivial fixed point at infinity,

(R,PR,Φ, PΦ) = (∞, 0, Nπ, 0), found also in [26, 29].

We are particularly interested if a string can hover at a fixed radial slice R = r0 =

const.. Let us start from the spherical case. Inserting R = r0, Ṙ = 0 into eq. (2.8) leads

to the solution in terms of the incomplete Jacobi sine integral sn (Jacobi elliptic function

of the first kind, Jacobi E-function), and two integration constants to be determined. The

other equation, (2.7), is a first-order relation for Φ acting as a constraint. Solving it gives

a Jacobi elliptic function again, with one undetermined constant, and we can match the

constants to obtain a consistent solution:

sin Φ(τ) = sn

(
E
√
|f ′0|√

2r0f0
τ,

2n2r0f
2
0

E2|f ′0|

)
. (2.10)

The value of r0 is found from the need to satisfy also the Hamiltonian constraint. The

constraint produces a Jacobi elliptic function with a different argument, and the matching

to (2.10) reads

2f(r0) + r0f
′(r0) = 0. (2.11)

This turns out to be a cubic equation independent of the black hole charge, as the terms

proportional to q cancel out. It has one real solution, which is never above the horizon.

The solution approaches the horizon as f ′(r0), approaches zero, and r = rh is obviously a

solution of (2.11) for f ′(rh) = 0. However, the r → rh limit is subtle in the coordinates we

use because some terms in equations of motion diverge, so we need to plug in f(r) = 0 from

the beginning. Eqs. (2.6), (2.8) then imply Ṙ = E, i.e., there is no solution at constant R

except for E = 0. This is simply because the energy is infinitely red-shifted at the horizon,

i.e., E scales with f (eq. (2.6)), thus indeed unless Ṫ → ∞, which is unphysical, we need

E = 0. Now solving eq. (2.7) gives the same solution as before, of the form sn(C1τ, C2),

with undetermined constants C1,2, which are chosen so as to establish continuity with the

solution (2.10). For an extremal horizon of the from f ∼ a(r − r2
h) ≡ aε2, a smooth and

finite limit is obtained by rescaling E 7→ Eε2. Now expanding the sn function in ε produces

simply a linear function at first order in ε:

Φ(τ) = Eτ/
√
ar0 +O

(
ε3
)
. (2.12)
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Therefore, a string can hover at the extremal horizon, at strict zero temperature, when

its motion (angular rotation) becomes a simple linear winding with a single frequency.

Such an orbit is expected to be linearly stable, and in the next section we show it is also

stable according to Lyapunov and thus has zero Lyapunov exponent. Finally, from (2.7)

and (2.11) the radial velocity Ṙ in the vicinity of a non-extremal horizon behaves as:

Ṙ2 ≈ E2 + 4πTrh(r − rh)2, (2.13)

meaning that Ṙ grows quadratically as the distance from the horizon increases. This will

allow us to consider near-horizon dynamics at not very high temperatures as happening at

nearly constant radius: the string only slowly runs away.

For a hyperbolic horizon the calculation is similar, changing sin 7→ sinh in the solu-

tion (2.10). The constraint (2.11) is also unchanged (save for the sign of k in the redshift

function), and the final conclusion is the same: the string can only balance at the zero

temperature horizon (but now such a horizon need not be charged, as we mentioned previ-

ously). The zero temperature limit is the same linear function (2.12). For a planar horizon

things are different. For Ṙ = 0, we get simply harmonic motion Φ = C1 cosnτ +C2 sinnτ ,

which is consistent with the constraint H = 0. But eq. (2.7) implies exponential motion

instead, D1 sinhnτ + D2 coshnτ . Obviously, there is no way to make these two forms

consistent. Accordingly, no hovering on the horizon (nor at any other fixed radial slice)

is possible for a planar black hole. But the same logic that lead to (2.13) now predicts

oscillating behavior:

R(τ) ≈ E2 + 4πTrh(r − rh)2
(
n2 cos2 nτ − sin2 nτ

)
. (2.14)

Therefore, even though there are no orbits at all which stay at exactly constant R, we

now have orbits which oscillate in the vicinity of the horizon forever. Averaging over long

times now again allows us to talk of a string that probes some definite local temperature,

determined by the average distance from the horizon.

The point of this (perhaps tedious and boring) qualitative analysis of possible orbits

is the following. No orbits at fixed distance from the horizon are possible, but at low

temperatures a string that starts near the horizon will spend a long time in the near-

horizon area. Therefore, we can study the influence of the low-temperature horizon as the

main chaos-generating mechanism by expanding the variational equations for the Lyapunov

exponents in the vicinity of the horizon, This we shall do in the next section.

3 Lyapunov exponents and the bound on chaos

In general, Lyapunov exponents are defined as the coefficients λ of the asymptotic ex-

ponential divergence of initially close orbits; in other words, of the variation δX of a

coordinate X:

λ ≡ lim
t→∞

lim
δX(0)→0

1

t
log
|δX(t)|
|δX(0)|

, (3.1)

and the variation is expected to behave as δX ∼ δX(0) exp(λt) for t large and δX(0)

small enough in practice. This definition makes sense for classical systems; in quantum
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mechanics, the linearity of the state vector evolution guarantees zero exponent but the

intuition that initially small perturbations eventually grow large in a strongly coupled

system remains when we look at appropriately defined correlation functions, like the OTOC

used in [1]. We should first make the following point clear. In a classical nonlinear system,

the presence of deterministic chaos leads to positive Lyapunov exponents even in absence

of temperature or noise. Quantum mechanically, as we explained, the linearity of evolution

means that exponential divergence is only possible in a thermal state, and this situation

leads to the temperature bound on the Lyapunov exponents. This is easy to see upon

restoring dimensionful constants, when the bound from [1] takes the form λ ≤ 2πkBT/~,

and indeed in a classical system where ~→ 0 no bound exists. In the context of our work,

which effectively reduces to the classical Hamiltonian (2.9) which has no gravitational

degrees of freedom, it is not a priori clear if one should expect any connection to the

bound on chaos: instead of a QFT correlation function or its gravity dual, we have classical

dynamics, and the Hawking temperature of the black hole is not the local temperature

probed by the string. But we will soon see that analytical and numerical estimates of λ

nevertheless have a form similar to the chaos bound of [1].

Before we proceed one final clarification is in order. One might worry that the Lya-

punov exponents are gauge-dependent, as we consider equations of motion in terms of the

worldsheet coordinate τ , and for different worldsheet coordinates the variational equations

would be manifestly different; in other words, the definition (3.1) depends on the choice of

the time coordinate (denoted schematically by t in (3.1)). Indeed, the value of λ clearly

changes with coordinate transformations, however it has been proven that the positivity

of the largest exponent (the indicator of chaos) is gauge-invariant; the proof was derived

for classical general relativity [45] and carries over directly to the worldsheet coordinate

transformations. This is all we need, because we will eventually express the τ -exponent in

terms of proper time for an inertial observer, making use of the relation Ṫ = −E/f . This

could fail if a coordinate change could translate an exponential solution into an oscillating

one (because then λ drops to zero and it does not make sense to re-express it units of

proper time); but since we know that cannot happen we are safe.

3.1 Variational equations and analytical estimates of Lyapunov exponents

3.1.1 Thermal horizon

Consider first a thermal black hole horizon at temperature T , with the redshift func-

tion behaving as f = 4πT (r − rh) + O
(

(r − rh)2
)

. Variational equations easily follow

from (2.6)–(2.7):

δR̈− E2

(R− rh)2
δR− 4πT

(
Φ̇2 − n2sink2Φ

)
δR− 8πT (R− 2rh)RΦ̇δΦ̇

+4πn2TRsink(2Φ)δΦ = 0 (3.2)

δΦ̈ + n2sink(2Φ) +
2

rh
Φ̇δṘ = 0, (3.3)

with on-shell solutions R(τ),Φ(τ). This system looks hopeless, but it is not hard to extract

the leading terms near the horizon which, as we explained, makes sense at low temperatures.

– 11 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

Therefore, we start from the solutions (2.10), (2.12), (2.14), adding a small correction

(r0,Φ (τ))→ (r0 + ∆R (τ) ,Φ(τ) + ∆Φ (τ)). Then we expand in inverse powers of r0 − rh,

and express the angular combinations Φ̇2±sink2Φ making use of the constraint (2.9). When

the dust settles, the leading-order equations simplify to:

δR̈−
(

16 (πT )3 n
2

E2
(r0 − rh)− 32 (πT )3 Cn

E2φ0
(r0 − rh)2

)
δR = 0 (3.4)

δΦ̈ + n2〈cosk2(2Φ)〉δΦ = 0, (3.5)

where C = C(k,E) is a subleading (at low temperature) correction whose form differs for

spherical, planar and hyperbolic horizons. From the above we read off that angular motion

has zero Lyapunov exponent (the variational equation is oscillatory, because 〈cosk2(2Φ)〉 ≥
0) but the radial component has an exponent scaling as

λ̃(T ) ∼ 4
√

(πT )3(r0 − rh)
n

E

(
1− (r − rh)

C

φ0n

)
. (3.6)

Now we have calculated the Lyapunov exponent in worldsheet time τ . The gauge-invariant

quantity, natural also within the black hole scrambling paradigm, is the proper Lyapunov

exponent λ, so that 1/λ is the proper Lyapunov time for an asymptotic observer. To relate

λ̃ to λ, we remember first that the Poincare time t is related to the worldsheet time τ

through (2.6) as |dt| ∼ E/f × dτ . Then we obtain the proper time as tp = t
√
−g00 = t

√
f ,

where near the thermal horizon we can write f ≈ 4πT (r − rh). This gives11

λ(T ) ∼ 2πTn

(
1− ε C

φ0n

)
. (3.7)

At leading order, we get the estimate 2πTn, with the winding number n acting as correction

to the original bound.

3.1.2 Away from the horizon

At intermediate radii we can do a similar linear stability analysis starting from f ∼ r2 +

k + A/r where A is computed by series expansion (with just the AdS term r2 + k in f ,

without the leading black hole contribution A/r, we would trivially have integral motion

and zero λ; but this approximation applies at large, not at intermediate distances). In

this case the equations of motion yield R ∼ τ
√
E2 − 1, and the variational equations, after

some algebra, take the form

δR̈− 2

R
(k +R2)δΦ̇ + E

(
3kR2

R2 + k
+ 1

)
δR = 0. (3.8)

One can show again that δΦ̇ is always bounded in absolute value, thus the third term

determines the Lyapunov exponent. The exponent vanishes for k > −1/3 (because the

equations becomes oscillatory) and for k ≤ −1/3 we get

λ ∼
√
−(3k + 1)E. (3.9)

11We introduce the notation ε ≡ r − rh.
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Since the curvature only takes the values −1, 0, 1, the prediction (3.9) always holds for

hyperbolic horizons. Notice that this same term (the third term in (3.8)) appears as

subleading in the near-horizon expansion, so we can identify it with C(k,E) and write (3.7)

as λ(T ) ∼ 2πTn (1− ε|(3k + 1)E|/ (φ0n)). This holds for any k, and we see that C ≤ 0;

thus the bound is only approached from below as it should be.

In absence of negative curvature, i.e., for k > 0, we have vanishing C at leading or-

der in 1/R but subleading contributions still exist, so both the slight non-saturation of

the limit 2πTn near-horizon (for small ε) and a parametrically small non-zero Lyapunov

exponent at intermediate distances will likely appear, which we see also in the numerics.

That the motion is chaotic on a pseudosphere (negative curvature) is of course no sur-

prise; it is long known that both particles and waves have chaotic scattering dynamics on

pseudospheres [46]. We dub this contribution the scattering contribution to the Lyapunov

exponent, as opposed to the scrambling contribution. It is largely independent of temper-

ature and largely determined by the geometry of the spacetime away from the horizon.

3.1.3 Extremal horizon

For an extremal horizon we replace f by f ∼ a(r − rh)2 = aε2, and plug in this form into

the variational equations. Now the result is (for concreteness, for the spherical horizon)

δR̈−
(

a2ε4r2
hn

2

2aεrh − 2aε2

)
δR = 0 (3.10)

δΦ̈ + n2〈cosk(2Φ)〉δΦ = 0, (3.11)

leading to a vanishing exponent value:

λ̃(T ) ∼
√
arh/2nε

3/2 → 0. (3.12)

Obviously, this also means λ = 0 — there is no chaos at the extremal horizon. This is

despite the fact that the string motion in this case is still nonintegrable, which is seen

from the fact that no new symmetries or integrals of motion arise in the Hamiltonian in

this case. The horizon scrambling is proportional to temperature and does not happen at

T = 0, but the system is still nonintegrable and the chaos from other (scattering) origins

is still present. In particular, the estimate (3.8)–(3.9) remains unchanged.

The estimates (3.7), (3.9), (3.12) are the central sharp results of the paper. We can

understand the following physics from them:

1. At leading order, we reproduce (and saturate) the factor 2πT of the Maldacena-

Shenker-Stanford bound, despite considering classical dynamics only.

2. The bound is however multiplied by the winding number n of the ring string. The

spirit of the bound is thus preserved but an extra factor — the winding number —

enters the story.

3. Taking into account also the scattering chaos described by (3.9), the results are in

striking accordance with the idea of [2]: there are two contributions to chaos, one
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proportional to the black hole temperature and solely determined by the scrambling

on the horizon, with the universal factor 2πT expected from the concept of black

holes as the fastest scramblers in nature, and another determined by the (slower)

propagation of signals from the horizon toward the AdS boundary, which we call the

scattering term, as it is determined also by dynamics at large distances.

4. For a particle (n = 0), we correctly get λ = 0, as the geodesics are integrable.

5. The temperature appearing in (3.7) is always the Hawking temperature of the black

hole T .

In the next section, when we consider the AdS/CFT interpretation, we will try to shed

some more light on where the modification of the bound 2πT 7→ 2πTn comes from.

3.1.4 Lyapunov time versus event time

In the above derivations we have left one point unfinished. We have essentially assumed

that R(τ) ≈ const. = r and treated the difference ε = r − rh as a fixed small parameter.

This is only justified if the local Lyapunov time 1/λ̃ is much shorter than the time to

escape far away from rh and the horizon, or to fall into the black hole. In other words, it

is assumed that the Lyapunov time is much shorter than the “lifetime” of the string (let

us call it event time tE). Now we will show that this is indeed so. For the spherical black

hole, upon averaging over the angle Φ, we are left with a one-dimensional system

Ṙ2 +R2f(R)
E2f ′(R)

Rf2(R)
= E2, (3.13)

which predicts the event time as

tE ∼
∫ rh,∞

r0

dR√
|E − Ef ′(R)Rf2(R)|

≈ πrh√
2

1√
4πTεn

≈ πrh√
2
× λ̃−1

ε
. (3.14)

In other words, the event times are roughly by a factor 1/ε longer than Lyapunov times,

therefore our estimate for λ should be valid. In (3.14), we have considered both the

infalling orbits ending at rh, and the escaping orbits going to infinity (for the latter, we

really integrate to some r∞ > r0 and then expand over 1/r∞). An orbit will be infalling or

escaping depending on the sign of the combination under the square root, and to leading

order both cases yield a time independent of r0 (and the cutoff r∞ for the escaping case).

The hyperbolic case works exactly the same way, and in the planar case since R(τ) oscillates

the event time is even longer (as there is no uniform inward or outward motion). For

extremal horizons, there is no issue either as r = rh is now the fixed point.

3.1.5 Dimensionful constants

One might wonder what happens when dimensionful constants are restored in our results

for the Lyapunov exponents like (3.7) or (3.9): the original chaos bound really states

λ ≤ 2πkBT/~, and we have no ~ in our system so far. The resolution is simple: the role

of ~ is played by the inverse string tension 2πα′, which is obvious from the standard form
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of the string action (2.3); the classical string dynamics is obtained for α′ → 0. Therefore,

the dimensionful bound on chaos for our system reads λ = 2πkBTn/2πα
′ = kBTn/α

′.

Another way to see that α′ takes over the role of ~ in the field-theory derivation [1] is

that the weight in computing the correlation functions for a quantum field is given by the

factor exp
(
−1/~

∫
L
)
, whereas for a string the amplitudes are computed with the weight

exp
(
−1/2πα′

∫
L
)
. In the next section, we will also look for the interpretation in the

framework of dual field theory. In this context, α′ is related to the number of degrees of

freedom in the gauge dual of the string, just like the Newton’s constant GN is related to

the square of the number of colors N2 in the gauge dual of a pure gravity theory. But the

issues of gauge/string correspondence deserve more attention and we treat them in detail

in section 4.

3.2 Numerical checks

We will now inspect the results (3.7), (3.9), (3.12) numerically. Figure 4 tests the basic pre-

diction for the horizon scrambling, λ ≈ 2πTn at low temperatures: both the n-dependence

at fixed temperature (A), and the T -dependence at fixed n (B) are consistent with the

analytical prediction. All calculations were done for the initial condition Ṙ(0) = 0, and

with energy E chosen to ensure a long period of hovering near the horizon. The tempera-

tures are low enough that the scattering contribution is almost negligible. In figure 5 we

look at the scattering term in more detail. First we demonstrate that at zero temperature,

the orbits in non-hyperbolic geometries are regular (A): the scattering term vanishes at

leading order, and the scrambling vanishes at T = 0. In the (B) panel, scattering in hy-

perbolic space at intermediate radial distances gives rise to chaos which is independent of

the winding number, in accordance to (3.7). To further confirm the logic of (3.7), one can

look also at the radial dependence of the Lyapunov exponent: at zero temperature, there

is no chaos near-horizon (scrambling is proportional to T and thus equals zero; scattering

only occurs at finite r−rh), scattering yields a nonzero λ at intermediate distances and the

approach to pure AdS at still larger distances brings it to zero again; at finite temperature,

we start from λ = 2πTn near-horizon, observe a growth due to scattering and fall to zero

approaching pure AdS.

4 Toward a physical interpretation of the modified bound

4.1 Dual gauge theory interpretation

The ring string wrapped along the σ coordinate is a very intuitive geometry from the

viewpoint of bulk dynamics. However it has no obvious interpretation in terms of the

gauge/gravity duality, and the Hamiltonian (2.9) itself, while simple-looking, is rather

featureless at first glance: essentially a forced nonlinear oscillator, it does not ring a bell

on why to expect the systematic modification of the Maldacena-Shenker-Stanford bound

and what the factor n means. Thus it makes sense to do two simple exercises: first, to

estimate the energy and spin of the operators corresponding to (2.5) to understand if it has

to do with some Regge trajectory; second, to consider some other string configurations,

with a more straightforward connection to the operators in gauge theory. Of course, finite
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Figure 4. (A) Logarithm of the relative variation of the coordinate R, for a spherical AdS-Reissner-

Nordstrom black hole, for a fixed temperature T = 0.04 and increasing winding numbers n =

1, 2, 3, 4, 5, 6 (black, blue, green, red, magenta, orange). Full lines are the numerical computational

of the function log (δX (τ) /δX (0)) = λτ , so their slopes equal the Lyapunov exponents λ. Dashed

lines show the analytically predicted bound log δX = 2πTnτ + logX0. Numerically computed

variations almost saturate the bounds denoted by the dashed lines. The calculation for n = 1 is

stopped earlier because in this case the orbit falls in into the black hole earlier than for higher n.

(B) Same as (A) but for a hyperbolic AdS-Schwarzschild black hole, at fixed n = 1 and increasing

temperature T = 0.050, 0.075, 0.100, 0.125, 0.150 (black, blue, green, red, magenta), again with

analytically predicted bounds shown by the dashed lines. For the two highest temperatures (red,

magenta) the computed slopes are slightly above the bound probably because the near-horizon

approximation does not work perfectly well. The short-timescale oscillations superimposed on

the linear growth, as well as the nonlinear regime before the linear growth starts in the panel

(A) are both expected and typical features of the variation δR (Lyapunov exponents are defined

asymptotically, for infinite times).

temperature horizons are crucial for our work on chaos, and saying anything precise about

the gauge theory dual of a string in the black hole background is extremely difficult; we

will only build some qualitative intuition on what our chaotic strings do in field theory,

with no rigorous results at all.

Let us note in passing that the ring string configurations considered so far are almost

insensitive to spacetime dimension. Even if we uplift from the four-dimensional spacetime

described by (t, r, φ1, φ2) to a higher-dimensional spacetime (t, r, φ1, φ2, . . . φN−2), with the

horizon being an N − 2-dimensional sphere/plane/pseudosphere, the form of the equations

of motion does not change if we keep the same ring configuration, with Φ1 = Φ1(τ, σ),Φ2 =

nσ,Φ3 = const., . . .ΦN−2 = const. — this is a solution of the same eqs. (2.6)–(2.8) with the

same constraint (2.9). The difference lies in the redshift function f(r) which depends on

dimensionality. This, however, does not change the main story. We can redo the calculation

of the radial fixed point from the second section, to find a similar result — a string can

oscillate or run away/fall slowly in the vicinity of a horizon, and the variational equations

yield the same result for the Lyapunov exponent as before. It is really different embeddings,

i.e., different Polyakov actions, that might yield different results.

4.1.1 Operators dual to a ring string?

We largely follow the strategy of [47] in calculating the energy and the spin of the string

and relating them to the dual Yang-Mills theory. In fact, the ring string is quite close to
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Figure 5. (A) Logarithm of the radial variation δR for near-horizon orbits with n = 1, 2, 3, 4, 5, 6

(black, blue, green, red, magenta, orange) in a planar extremal Reissner-Nordstrom geometry. All

curved asymptote to a constant, i.e., (almost) zero slope, resulting in λ ≈ 0. (B) Same as previ-

ous for an extremal hyperbolic black hole. Now the Lyapunov exponent is nonzero, and equal for

all winding numbers: in absence of thermal scrambling, the chaos originates solely from scatter-

ing, which is independent of n. (C) The Lyapunov exponent in zero-temperature hyperbolic black

hole background for n = 1 and r = rh, 1.1rh, 1.2rh, 1.3rh (black, blue, green, red) starts at zero (no

scrambling, no scattering), grows to a clear nonzero value for larger radii due to scattering, and again

falls to zero for still larger distances, as the geometry approaches pure AdS (D) Lyapunov exponent

in T = 0.02 hyperbolic black hole background for n = 1 and r = rh, 1.1rh, 1.2rh, 1.3rh, 1.4rh, 1.5rh
(black, blue, green, red, magenta, orange) starts at the scrambling value (black), reaches its max-

imum when both scrambling and scattering are present (blue, green) and then falls to zero when

AdS is approached (red, magenta, orange).

what the authors of [47] call the oscillating string, except that we allow one more angle to

fluctuate independently (thus making the system nonintegrable) and, less crucially, that

in [47] only the winding number n = 1 is considered.

Starting from the action for the ring string (2.3), we write down the expressions for

energy and momentum:

E =
1

2πα′

∫
dτ

∫
dσPT =

E

α′

∫ φ2

φ1

dΦ

Φ̇
(4.1)

S =
1

2πα′

∫
dτ

∫
dσPΦ =

1

α′

∫ φ2

φ1

dΦ

Φ̇
R2(Φ)Φ̇, (4.2)

where the second worldsheet integral gives simply
∫
dσ = 2π as R,Φ do not depend on σ,

and we have expressed dτ = dΦ/Φ̇; finally, the canonical momentum is conserved, PT = E,
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and in the expression for the spin we need to invert the solution Φ(τ) into τ(Φ) in order to

obtain the function R(Φ). We are forced to approximate the integrals. Expressing Φ̇ from

the Hamiltonian constraint (2.4), we can study the energy in two regimes: small amplitude

φ0 � π which translates to E/T � 1, and large amplitude φ0 ∼ π, i.e., E/T ∼ 1. For

these two extreme cases, we get:

E ≈
4r0

√
f(r0)

α′
φ0 =

4E

α′n
, φ0 � π (4.3)

E ≈ πE

α′n
, φ0 ∼ π (4.4)

For the spin similar logic gives

S ≈ 8r0E

α′
√
f(r0)

φ0 =
8E2

α′n

1

f(r0)
≈ 8E2

α′n

1

4πTε
, φ0 � π (4.5)

S ≈ 4E2

α′n

√
2f ′(r0)r0

f3(r0)
≈ 8E2

α′n

√
2π

4πTε
, φ0 ∼ π. (4.6)

The bottom line is that in both extreme regimes (and then presumably also in the inter-

mediate parameter range) we have E ∝ E/α′n and S ∝ E2/α′nTε; as before ε = r − rh
and it should be understood as a physical IR cutoff (formally, for r → rh the spin at finite

temperature diverges; but we know from section 2 that in fact no exact fixed point at con-

stant r exists, and the average radial distance is always at some small but finite distance ε).

Therefore, we have E2 ∝ S/α′nTε.
The presence of temperature in the above calculation makes it hard to compare the

slope to the familiar Regge trajectories. But in absence of the black hole, when f(r) = 1,

we get

E = 4E/α′n, S = 8E2/α′n⇒ E2 = 2S/α′n. (4.7)

For n = 1, this is precisely the leading Regge trajectory. For higher n the slope changes, and

we get a different trajectory. Therefore, the canonical Lyapunov exponent value λ = 2πT

precisely corresponds to the leading Regge trajectory. We can tentatively conclude that

the winding string at finite temperature describes complicated thermal mixing of large-

dimension operators of different dimensions and spins, and these might well be sufficiently

nonlocal that the OTOC never factorizes and the bound from [1] does not apply.

4.1.2 Planetoid string

In this subsubsection we consider so-called planetoid string configurations, also studied

in [47] in the zero-temperature global AdS spacetime and shown to reproduce the leading

Regge trajectory in gauge theory. This is again a closed string in the same black hole

background (2.1) but now the solution is of the form12

T = eτ, R = R(σ), Φ1 = Φ1(τ), Φ2 = Φ2(σ), (4.8)

12The authors of [47] work mostly with the Nambu-Goto action but consider also the Polyakov formulation

in the conformal gauge; we will stick to the Polyakov action from the beginning for notational uniformity

with the previous section. For the same reason we keep the same coordinate system as in (2.1).
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where the auxiliary field e is picked so as to satisfy the conformal gauge, and any additional

coordinates Φ3,Φ4, . . . and Θ1,Θ2, . . . are fixed. The Lagrangian

L = − 1

2f

(
R′
)2 − e2

2
f +

R2

2

(
−Φ̇2

1 + sin2 Φ1Φ′22

)
(4.9)

has the invariant submanifold Φ1 = ωτ,Φ2 = const. when the dynamics becomes effectively

one-dimensional, the system is trivially integrable and, in absence of the black hole, it is

possible to calculate exactly the energy and spin of the dual field theory operator. This is

the integrable case studied in [47, 48], and allowing Φ2 to depend on σ seems to be the only

meaningful generalization, because it leads to another submanifold of integrable dynamics

with R = r0 = const., Φ2 = nσ and the pendulum solution for Φ1:

sin Φ1(τ) = sn

(
`τ,−n

2

`2

)
, (4.10)

where `2 = Φ̇1
2 − n2 sin2 Φ1 is the adiabatic invariant on this submanifold. With two

integrable submanifolds, a generic orbit will wander between them and exhibit chaos. The

variational equations can be analyzed in a similar fashion as in the previous section. Here,

the chaotic degree of freedom is Φ1(τ), with the variational equation

δΦ̈1 − Φ′22 cos(2Φ1) = 0, (4.11)

which in the near-horizon regime yields the Lyapunov exponent

λ = 2πTn, (4.12)

in the vicinity of the submanifold (4.10). In the vicinity of the other solution (Φ1 =

ωτ,Φ2 = const.), we get λ = 0. Chaos only occurs in the vicinity of the winding string

solution, and the winding number again jumps in front of the universal 2πT factor.

Now let us see if this kind of string reproduces a Regge trajectory. In the presence of

the black hole the calculation results in very complicated special functions, but we are only

interested in the leading scaling behavior of the function E2(S). Repeating the calculations

from (4.1)–(4.2), we first reproduce the results of [47] in the vicinity of the solution Φ1 = ωτ :

for short strings, we get E ∼ 2/ωT,S ∼ 2/ω2T 2 and thus E2 ∝ 2S, precisely the result for

the leading Regge trajectory. Now the Regge slope does not depend on the temperature

(in the short string approximation!). This case, as we found, trivially satisfies the original

chaos bound (λ = 0, hence for sure λ < 2πT ). In the vicinity of the other solution, with

R = r0, things are different. Energy has the following behavior:

E ∼ 8π

α′
T

n
, `� 1 (4.13)

E ∼ 8π2

α′
T

`
, `� 1. (4.14)

For the spin, the outcome is

S ∼ 2r2
0

α′
`

n
, `� 1 (4.15)

S ∼ 2r2
0

α′
, `� 1, (4.16)
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so in this case there is no Regge trajectory at all, i.e., no simple relation for E2(S) because

the scale r0 and the quantity ` show up in the E2(S) dependence even at zero temperature.

In conclusion, the strings that can violate the chaos bound have a strange Regge

behavior in the gauge/string duality, in this case in a more extreme way than for the ring

strings (even for n = 1 no Regge trajectory is observed). The strings which have λ = 0

and thus trivially satisfy the bound on the other hand obey the leading Regge trajectory.

4.2 The limits of quasiclassicality

One more thing needs to be taken into account when considering the modification of the

chaos bound. Following [8], one can suspect that the violating cases are not self-consistent

in the sense that they belong to the deep quantum regime when semiclassical equations

(in our case for the string) cease to be valid and quantum effects kill the chaos. For a ring

string this seems not to be the case. To check the consistency of the semiclassical limit,

consider the energy-time uncertainty relation ∆E∆t ≥ 1. The energy uncertainty is of the

order of E/α′n as we found in (4.3)–(4.4), and the time uncertainty is precisely of the order

of the Lyapunov time 1/2πTn; the uncertainty relation then gives E ≥ 2πTn2α′. On the

other hand, we require that the spin S should be large in the classical regime: S � 1. This

implies E2 � 4πTεnα′ or, combining with the uncertainty relation, Tn3α′ � ε. Roughly

speaking, we need to satisfy simultaneously Tn2 ≤ 1/α′ and Tn3 � ε/α′, which is perfectly

possible: first, we need to have small enough α′ (compared to Tn2), as could be expected for

the validity of the semiclassical regime; second, we need to have sufficiently large n/ε� 1,

which can be true even for n = 1 for small ε, and for sure is satisfied for sufficiently large n

even for ε ∼ 1. In conclusion, there is a large window when the dynamics is well-described

by the classical equations (and this window even grows when n � 1 and the violation of

the chaos bound grows).

4.3 Ring string scattering amplitude and the relation to OTOC

So far our efforts to establish a field theory interpretation of a ring string in black hole

background have not been very conclusive, which is not a surprise knowing how hard it is in

general to establish a gauge/string correspondence in finite-temperature backgrounds and

for complicated string geometries. Now we will try a more roundabout route and follow

the logic of [4–6], constructing a gravity dual of the OTOC correlation function, which

has a direct interpretation in field theory; it defines the correlation decay rate and the

scrambling time of some boundary operator. In [17] this formalism was already applied to

study the OTOC of field theory operators (heavy quarks) dual to an open string in BTZ

black hole background, hanging from infinity to infinity through the horizon in eikonal

approximation. That case has a clear interpretation: the endpoints of the string describe

the Brownian motion of a heavy quark in a heath bath. As we already admitted, we do not

have such a clear view of what our case means in field theory, but we can still construct the

out-of-time ordered correlator corresponding to whatever complicated boundary operator

our string describes.

We will be delibarately sketchy in describing the basic framework of the calculation

as it is already given in great detail in [4–6]. The idea is to look at the correlation func-

– 20 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

tion 〈〈V̂x1(t1)Ŵx2(t2)V̂x3(t3)Ŵx4(t4)〉〉 of some operators V,W at finite temperature (hence

the expectation value 〈〈(. . .)〉〉 includes both quantum-mechanical and thermal ensemble

averaging). The time moments need not be ordered; we are often interested in the case

<t1 = <t3 ≡ 0,<t2 = <t4 = t.13 This correlation function corresponds to the scattering

amplitude between the in and out states of a perturbation sourced from the boundary. The

propagation of the perturbation is described by the bulk-to-boundary propagators K. The

perturbation has the highest energy at the horizon since the propagation in Schwarzschild

time becomes a boost in Kruskal coordinates, and the pertubation, however small at the

boundary, is boosted to high energy in the vicinity of the horizon. In the Kruskal coordi-

nates defined the usual way:

U = −e
t−r∗
2rh , V = e

t+r∗
2rh , r∗ =

∫ ∞
r

dr

f(r)
, (4.17)

the scattering amplitude becomes

D =

4∏
i=1

∫
d2pi

∫
d2xiK

∗(p3;x3)K∗(p4;x4)K(p1;x1)K(p2;x2)out〈pU3 , pV4 ;x3, x4|pU1 , pV2 ;x1, x2〉in.

(4.18)

The propagators are expressed in terms of the Kruskal momenta pi = (pUi , p
V
i ) and the

coordinates xi = (x1
i , x

2
i ) in the transverse directions. The in-state is defined by (pU3 , x

3)

at U = 0, and by (pV4 , x
4) at V = 0, and analogously for the out-state. The form of the

propagators is only known in the closed form for a BTZ black hole (in 2+1 dimensions), but

we are happy enough with the asymptotic form near the horizon. For simplicity, consider a

scalar probe of zero bulk mass, i.e., the conformal dimension ∆ = D, and at zero black hole

charge, i.e., for a Schwarzschild black hole. The propagator then behaves as (ω̃ ≡ ω/4πT ):

K(pU , pV ) ∼ π

sinh
(
π
T

) 1− e−πω̃

Γ (−ıω̃) Γ (ıω̃)

e−ıω̃t

(pU )1+ıω̃ + (pV )1−ıω̃ e
ı(pUV+pV U). (4.19)

The task is thus to calculate the amplitude (4.18) with the propagators (4.19). In the

eikonal approximation used in most of the literature so far, the problem boils down to

evaluating the classical action at the solution. However, it is not trivial to justify the

eikonal approximation for a ring string. Let us first suppose that the eikonal aproximation

works and then we will see how things change if it doesn’t.

4.3.1 Eikonal approximation

If the energy in the local frame near the horizon is high enough, then we have approximately

pU1 ≈ pU3 ≡ p, pV2 ≈ pV4 ≡ q so that pV1 ≈ pU2 ≈ pV3 ≈ pU4 ≈ 0, and for a short enough

scattering event (again satisfied if the energy and thus the velocity is high enough) the

coordinates are also roughly conserved, therefore the amplitude 〈out|in〉 is diagonal and

can be written as a phase shift exp(ıδ). The point of the eikonal approximation is that the

13In the Schwinger-Keldysh finite-temperature formalism the time is complex, with the imaginary time

axis compactified to the radius of the inverse temperature.
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shift δ equals the classical action. The action of the ring configuration is

S =
1

2πα′

∫
dτ

∫
dσ

(
R2

2

(
Φ̇2

1 − n2 sin2 Φ1

)
+
Ṙ2

2f
+
f

2
Ṫ 2

)
. (4.20)

We will consider again the string falling slowly in the vicinity of the horizon (see eqs. (2.10)–

(2.14)) and put Ṙ → 0, R(τ) ≈ r0, r0 − rh � rh. Now we need to pass to the Kruskal

coordinates and then introduce the new variables T = (V +U)/2, X = (V −U)/2. In these

coordinates the near-horizon geometry in the first approximation is Minkowskian and we

can easily expand around it as required for the eikonal approximation. The action and the

energy (to quartic order in the fluctuations) are now

S =
1

2πα′

∫
dτ

∫
dσ

[
1

2

(
−Ṫ2 + Ẋ2 + r2

0Φ̇2 + r2
0n

2 sin Φ2
)(

1 +
T2 −X2

2

)]
(4.21)

E =
1

2πα′

∫
dτ

∫
dσ

Ṫ
(1− T2 +X2)2

. (4.22)

As a sanity check, for n = 0 the fluctuations of the (T, X) variables in the action (4.21) are

the same as in [17], although we use a different worldsheet parametrization. The dynamics

of the angle Φ crucially depends on the winding number. One consequence is that the

on-shell action is nontrivial already at quadratic order. For the solution (2.10) — the

slowly-moving near-horizon string — we can assume Ṫ, Ẋ � Φ̇, so the equations of motion

yield as approximate on-shell solutions

T = T0e
ınr0τ/

√
2, X = X0e

−ınr0τ/
√

2, (4.23)

so that, as the perturbation dies out, the string approaches the locus T0 = 0⇒ U = −V ⇒
t→∞. Inserting (4.23) into (4.21), we obtain, after regularizing the action:

S(0) =
nr0

2α′
T2

0 + . . . (4.24)

E(0) =

√
2

α′
T0 + . . . . (4.25)

Therefore, S(0) =
(
E(0)

)2 × nrhα′/4 (where we have plugged in r0 ≈ rh): the action is

proportional to the square of energy, which equals E2 = pq in the center-of-mass frame.

This is perfectly in line with the fast scrambling hypothesis. Plugging in δ = S(0) into the

amplitude in (4.18) and rescaling

T13 ≡ e2πTt1 − e2πTt∗3 , T24 ≡ e−2πTt∗4 − e−2πTt2 (4.26)

pU =
p

ı

1

T13
, pV =

q

ı

1

T24
(4.27)

we obtain:

D = N4
ω

(
e2πTt1 − e2πTt∗3

)2 (
e−2πTt∗4 − e−2πTt2

)2
∫
dp

p2

∫
dq

q2
e
−p−q−ı pq

T13T24

α′nrh
4 , (4.28)
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with Nω containing the first two factors in (4.19) which only depend on ω and T . Introduc-

ing the change of variables p = Q sin γ, q = Q cos γ, we can reduce (4.28) to an exponential

integral. With the usual contour choice for OTOC =ti = −εi,<t1 = <t3 = 0,<t2 = <t4 = t,

we end up at leading order with

D ∼ 1 + 2ıα′nrhe
2πTt ⇒ λOTOC ∼ 2πT, t∗ ∼

1

2πT
log

1/α′

nrh
. (4.29)

Therefore, the Lyapunov time as defined by the OTOC in field theory precisely saturates

the predicted bound 2πT , and in the eikonal approximation is not influenced by the winding

number n. On the other hand, the scrambling time t∗ is multipled by a factor of log(1/α′n)

(the horizon radius can be rescaled to an arbitrary value by rescaling the AdS radius, thus

we can ignore the factor of rh). The factor 1/α′ appears also in [17] and plays the role of

a large parameter, analogous to the large N2 factor in large-N field theories: the entropy

of the string (the number of degrees of freedom to be scrambled) certainly grows with

1/α′. For a ring string, this factor is however divided by n, as the number of excitations

is reduced by the implementation of the periodic winding boundary condition. Therefore,

the winding of the ring string indeed speeds up the chaotic diffusion, by speeding up the

scrambling. However, the faster scrambling is not seen in the timescale of local divergence

which, unlike the classical Lyapunov exponent, remains equal to 2πT ; it is only seen in the

timescale on which the perturbation permeates the whole system.

In conclusion, the violation of the Maldacena-Shenker-Stanford limit for the bulk Lya-

punov exponent in AdS space in the eikonal approximation likely corresponds to a decrease

of scrambling time in dual field theory, originating from reduction in the number of degrees

of freedom.

4.3.2 Beyond the eikonal approximation: waves on the string

What is the reason to worry? Even if the scattering is still elastic and happens at high

energies and momenta (therefore the overlap of the initial and final state is diagonal in the

momenta), it might not be diagonal in the coordinates if the string ocillations are excited

during the scattering. These excitations might be relevant for the outcome.14 However, the

quantum mechanics of the string in a non-stationary background is no easy matter and we

plan to address it in a separate work. In short, one should write the amplitude (4.18) in the

worldsheet theory and then evaluate it in a controlled diagrammatic expansion. For the

black hole scrambling scenario, the leading-order stringy corrections are considered in [6];

the Regge (flat-space) limit is the pure gravity black hole scrambling with the Lyapunov

exponent 2πT and scrambling time determined by the large N . We need to do the same

for the string action (4.21) but, as we said, we can only give a rough sketch now.

14With an open string hanging from the boundary to the horizon as in [17] this is not the case, since

it stretches along the radial direction and the scattering event — which is mostly limited to near-horizon

dynamics because this is where the energy is boosted to the highest values — remains confined to a small

segment of the string, whereas any oscillations propagate from end to end. However, a ring string near the

horizon is wholly in the near-horizon region all the time, and the string excitations may happilly propagate

along it when the perturbation reaches the area UV ≈ 0.
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The amplitude (4.18) is given by the worldsheet expectation value

A =
∏
i

∫
d2zi〈V̂ (z1, z̄1)Ŵ (z2, z̄2)V̂ (z3, z̄3)Ŵ (z4, z̄4)〉 (4.30)

with the action (4.20), or (4.21) in the target-space coordinates (T, X) accommodated

to the shock-wave perturbation. Here, we have introduced the usual complex worldsheet

coordinates z = τ + ıσ, z̄ = τ − ıσ. We thus need to compute a closed string scattering

amplitude for the tachyon of the Virasoro-Shapiro type, but with nontrivial target-space

metric and consequently with the vertex operators more complicated than the usual plane-

wave form. This requires some drastic approximations. We must first expand the non-

Gaussian functional integral over the fields T(z, z̄), X(z, z̄), Φ(z, z̄) perturbatively, and

then we can follow [6] and [49] and use the operator-product expansion (OPE) to simplify

the vertex operators and decouple the functional integral over the target-space coordinates

from the worldsheet integration. First we can use the worldsheet reparametrization to fix

as usual z1 = ∞, z2 = z, z3 = 1, z4 = 0. The most relevant regime is that of the highly

boosted pertrubation near the horizon, with |z| ∼ 1/s. At leading order in the expansion

over T, X, the action (4.21) decouples the Gaussian functional integral over the (T, X)

coordinates from the pendulum dynamics of the Φ coordinate. We can just as easily use

the (U, V ) dynamics, with 1/2(Ṫ2− Ẋ2) 7→ −2U̇ V̇ ; this is just a linear transformation and

the functional integral remains Gaussian. The states in U and V coordinates are just the

plane waves with p1 = p3 = p, p2 = p4 = q, but the Φ states are given by some nontrivial

wavefunctions ψ(Φ). Alltogether we get

A=

∫
d2z

∫
DUDVDΦexp

[
− 1

2πα′

∫
d2z′

(
−2U̇ V̇ +r2

h

(
Φ̇2+n2 sin2 Φ

))]
V̂1Ŵ2V̂3Ŵ4

V̂1,3 = g(U1,3)e∓ıpU1ψ∓(Φ1,3), Ŵ2,4 = g(V2,4)e∓ıqV2,4ψ∓(Φ2,4), (4.31)

where we denote by the index i = 1, 2, 3, 4 the coordinates depending on zi and the coordi-

nates in the worldsheet action in the first line depend on z′ which is not explicitly written

out to save space. The higher-order metric corrections in U and V give rise to the weak non-

plane-wave dependence of the vertices on U and V , encapsulated in the functions g above.

We will disregard them completely, in line with considering the decoupled approximation

of the metric as written explicitly in the action in (4.31). The functional integral over U, V

is easily performed but the Φ-integral is formidable. However, for small |z|, we can expand

the ground state solution (2.10) in z, z̄, which corresponds to the linearized oscillatory be-

havior and the functional integral becomes Gaussian: Φ̇2 + n2 sin2 Φ 7→ Φ̇2 + n2Φ2. With

the effective potential for the tachyon Veff(Φ) = n2Φ2, the worldsheet propagator takes

the form

GΦ(z, z̄, z′, z̄′) = K0(n|z − z′|) ∼ log
n|z − z′|2

2
. (4.32)

For the plane wave states we take the ansatz ψ(Φ) = eı`Φ, where ` = l−ıν, with l ∈ Z being

the angular momentum and 0 < ν � 1 the correction from the interactions (fortunately

we will not need the value of ν). The worldhseet propagator for the flat (U, V ) coordinates
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has the standard logarithmic form. Now we use the fact that 1/|z| ∼ s = pq to expand the

vertices for Ŵ2 and Ŵ4 in OPE. The OPE reads

: Ŵ2Ŵ4 :∼ exp
(
ıqz∂V2 + ıqz̄∂̄V2

)
exp

(
ı`z∂Φ2 + ı`z̄∂̄Φ2

)
|z|
−2− 2πα′

r2
h

(`2−n2/2)
, (4.33)

which follow from the action of the Laplace operator on the state eı`Φ. This finally gives

A= const.×
∫
d2z : Ŵ2Ŵ4 : exp

(
−πα

′

2
pq log |1−z|2

)
exp

[
πα′

r2
h

`2
(
GΦ (z)+GΦ (1−z)

)]
.

(4.34)

The above integral results in a complicated ratio of the 1F1 hypergeometric functions and

gamma functions. We still have three possible poles, as in the Virasoro-Shapiro amplitude.

In the stringy regime at large pq, the dominant contribution must come from ` ∼ l = 0,

for the other pole brings us back to the purely gravitational scattering, with S ∝ pq,

whereby the local scrambling rate remains insensitive to n, as we have shown in the eikonal

approximation. The stringy pole yields the momentum-integrated amplitude

D ∼
∫
dp

p2

∫
dq

q2
exp

[
−p− q −

(
pqe−2πTt

)1+πα′

r2
h

n2
]
∼ 1 + const.× e2πT(1+πα′n2)

λOTOC ∼ 2πT
(
1 + πα′n2

)
, (4.35)

showing that the Lyapunov scale 2πT is modified (we again take rh = 1 for simplicity).

We conclude that in the strong stringy regime the Lyapunov exponent in dual field theory

behaves as 2π(1 + πα′n2)T , differing from the expected chaos bound for nonzero winding

numbers n. Thus, if the classical gravity eikonal approximation does not hold, the mod-

ification of the bulk Lyapunov exponent also has an effect on the OTOC decay rate in

field theory.

Once again, the above reasoning has several potential loopholes: (1) we completely

disregard the higher-order terms in the metric, which couple that radial and transverse

dynamics (2) we assume only small oscillations in Φ (3) we disregard the corrections to

vertex operators (4) we disregard the corrections to the OPE coefficients. These issues

remain for future work.

5 Discussion and conclusions

Our study has brought us to a sharp formal result with somewhat mystifying physical

meaning. We have studied classical chaos in the motion of closed strings in black hole

backgrounds, and we have arrived, analytically and numerically, at the estimate λ = 2πTn

for the Lyapunov exponent, with n being the winding number of the string. This is a

correction by the factor of n of the celebrated chaos bound λ ≤ 2πT . However, one

should think twice before connecting these things. From the bulk perspective, what we

have is different from classical gravity — it includes string degrees of freedom, and no

gravity degrees of freedom. Therefore, the fast scrambler hypothesis that the black holes

in Einstein gravity exactly saturate the bound is not expected to be relevant for our system
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anyway, but the question remains why the bound is modified upwards instead of simply

being unsaturated (in other words, we would simply expect to get λ < 2πT ). The twist

is that the Lyapunov exponent in the bulk is related to but in general distinct from the

Lyapunov exponent in field theory, usually defined in terms of OTOC. Apparently, one just

should not uncritically apply the chaos bound proven for the correlation function decay

rates in flat-space quantum fields to worldsheet classical string dynamics.

Therefore, it might be that the field theory Lyapunov time does not violate the bound

at all. The timescale of OTOC decay for a field theory dual to the fluctuating string is

calculated in [17]: OTOC equals the expectation value of the scattering operator for bulk

strings with appropriate boundary conditions. The field-theory Lyapunov time is then

determined by the phase shift of the collision. In particular, [17] finds the saturated bound

λ = 2πT as following from the fact that the phase shift is proportional to the square of

the center-of-mass energy. On the other hand, [6] predicts that the Lyapunov exponent is

lower than the bound when stringy effects are considered. We have done first a completely

classical calculation of OTOC and have found, expectedly perhaps, that the 2πT bound

is exactly obeyed. Then we have followed the approximate scheme of [49] to include the

one-loop closed string tachyon amplitude as the simplest (and hopefully representative

enough?!) stringy process. For a ring string background, this gives an increased value for

the field-theory Lyapunov rate, yielding some credit to the interpretation that complicated

string configurations encode for strongly nonlocal operators, which might indeed violate

the bound. But as we have explained, the approximations we took are rather drastic. We

regard a more systematic study of loop effects in string chaos as one of the primary tasks

for future work.

To gain some more feeling on the dual field theory, we have looked also at the Regge

trajectories. In one configuration, the strings that violate the bound n times are precisely

those whose Regge trajectory has the slope n times smaller than the leading one (and thus

for n = 1 the original bound is obeyed and at the same time we are back to the leading Regge

trajectory). In another configuration, the strings that violate the bound describe no Regge

trajectory at all. However, it is very hard to say anything precise about the gauge theory

operators at finite temperature. Deciphering which operators correspond to our strings

is an important but very ambitious task; we can only dream of moving toward this goal

in very small steps. What we found so far makes it probable that complicated, strongly

non-local operators correspond to the bound-violating strings, so that (as explained in

the original paper [1]) their OTOC cannot be factorized and the bound is not expected

to hold.15

15In relation to the gauge/string duality it is useful to look also at the gauge theories with Nf flavors

added, which corresponds to the geometry deformed by Nf additional D-branes in the bulk. In [50] it was

found that the system becomes nonintegrable in the presence of the flavor branes (expectedly, as it becomes

non-separable), but the Lyapunov exponent does not grow infinitely with the number of flavors, saturating

instead when the number of colors Nc and the number of flavors become comparable. This is expected, as

the D3-D7 brane background of [50] formally becomes separable again when Nf/Nc →∞ (although in fact

this regime cannot be captured, the calculation of the background ceases to be valid in this case). In our

case the winding number n is a property of the string solution, not geometry, and the Hamiltonian (2.9)

seems to have no useful limit for n→∞, thus we do not expect the estimate 2πTn will saturate.
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Preparing the final version of the paper, we have learned also of the work [52] where

the n-point OTOCs are studied following closely the logic of [1] and the outcome is a factor

of n enlargement, formally the same as our result. This is very interesting but, in the light

of the previous paragraph, we have no proof that this result is directly related to ours. It

certainly makes sense to investigate if the winding strings are obtained as some limit of

the gravity dual for the n-point correlations functions. We know that n-point functions

in AdS/CFT are a complicated business. The Witten diagrams include bulk propagators

carrying higher spin fields that might in turn be obtained as string excitations. Just how

far can one go in making all this precise we do not know for now.

In relation to [15, 16] one more clarifying remark should be given. In these works,

particles in the vicinity of the horizon are found to exhibit chaos (either saturating the

bound or violating it, depending on the spin of the background field). At first glance, this

might look inconsistent with our finding that for n = 0, when the string degenerates to

a particle, no chaos occurs; after all, we know that geodesic motion in the background of

spherically symmetric black holes is integrable, having a full set of the integrals of motion.

But in fact there is no problem, because in [15, 16] an additional external potential (scalar,

vector, or higher-spin) is introduced that keeps the particle at the horizon, balancing out

the gravitational attraction. Such a system is of course not integrable anymore, so the

appearance of chaos is expected. The modification of the bound in the presence of higher-

spin fields might have to do with the findings [51] that theories with higher-spin fields can

only have gravity duals in very restricted situations (in particular, higher spin CFTs with

a sparse spectrum and large central charge or, roughly speaking, massive higher spin fields,

are problematic).

Another task on the to-do list, entirely doable although probably demanding in terms

of calculations, is the (necessarily approximate) calculation of the black hole scattering

matrix, i.e., the backreactrion of the black hole upon scattering or absorbing a string,

along the lines of [7]. In this paper we have worked in the probe limit (no backreaction),

whereas the true scrambling is really the relaxation time of the black hole (the time it

needs to become hairless again), which cannot be read off solely from the Lyapunov time;

this is the issue we also mentioned in the Introduction, that local measures of chaos like the

Lyapunov exponent do not tell the whole story of scrambling. Maybe even a leading-order

(tree-level) backreaction calculation can shed some light on this question.

Acknowledgments

I am grateful to K. Schalm and M. V. Medvedyeva for helpful discussions. I also thank

to D. Giataganas, L. A. Pando Zayas and J. Kasi for insightful remarks. Special thanks

goes to the anonimous referee for his stimulating question which has improved the quality

of the final manuscript. This work has made use of the excellent Sci-Hub service. Work

at the Institute of Physics is funded by Ministry of Education, Science and Technological

Development, under grant no. OI171017.

– 27 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

0 20 40 60 80 100

0

2. × 10
-7

4. × 10
-7

6. × 10
-7

8. × 10
-7

1. × 10
-6

1.2 × 10
-6

τ

H
(τ
)

0 20 40 60 80 100

0

1. × 10
-7

2. × 10
-7

3. × 10
-7

4. × 10
-7

5. × 10
-7

τ

H
(τ
)

Figure 6. Check of the Hamiltonian constraint H = 0 during an integration for the spherical,

planar and hyperbolic black hole (black, blue, red respectively), at temperature T = 0.01 (left)

and T = 0.10 (right). The accuracy of the constraint is a good indicator of the overall integration

accuracy, it is never above 10−6 and has no trend of growth but oscillates.

A Summary of the numerics

We feel it necessary to give a short account of the numerical methods used. The string

equations of motion (2.6)–(2.8) present us with a system of two ordinary second-order

differential equations with a constraint. This numerical calculation is not very difficult, and

it would be trivial if it were not for two complicating factors. First, the constraint itself

is the main complication; it is non-holonomic and cannot be easily eliminated. Second,

the system is rather stiff, with Ṙ in particular varying for several orders of magnitude.

We did the integration in the Mathematica package, using mostly the NDSolve routine,

and controlling both the relative and the absolute error during the calculations. The

constraint problem is solved serendipitously by ensuring that the initial conditions satisfy

the constraint and then adjusting the required absolute and relative error tolerance so that

the constraint remains satisfied. A priori, this is a rather unlikely way to succeed but we

find it works in most cases. Only in a few integrations we needed to write a routine which

shoots for the condition H = 0 at every timestep, using the NDSolve routine in the solver;

the shooting itself we wrote using the tangent method which is handier for this problem

than the built-in routines. The usual analytic way, making use of the Lagrange multipliers,

seems completely unsuitable for numerical implementation in this problem. In figure 6 we

show the evolution of the constraint for a few examples, demonstrating the stability of the

integration. We have also checked that the functions R(τ),Φ(τ) converge toward definite

values as the precision and accuracy (relative and absolute error per step) are varied.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[2] Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]

[INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01409
https://doi.org/10.1088/1126-6708/2008/10/065
https://arxiv.org/abs/0808.2096
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2096


J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

[3] N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast

scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

[4] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[5] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051

[arXiv:1409.8180] [INSPIRE].

[6] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132

[arXiv:1412.6087] [INSPIRE].

[7] J. Polchinski, Black hole S matrix, arXiv:1505.08108 [INSPIRE].

[8] T. Scaffidi and E. Altman, Chaos in a classical limit of the Sachdev-Ye-Kitaev model, Phys.

Rev. B 100 (2019) 155128 [arXiv:1711.04768] [INSPIRE].

[9] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg

magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

[10] O. Parcolet and A. Georges, Non-Fermi liquid regime of a doped Mott insulator, Phys. Rev.

B 59 (1998) 5341 [cond-mat/9806119].

[11] A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, April 7, 2015,

http://online.kitp.ucsb.edu/online/entangled15/kitaev/.

[12] A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, May 27, 2015,

http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.

[13] E. Marcus and S. Vandoren, A new class of SYK-like models with maximal chaos, JHEP 01

(2019) 166 [arXiv:1808.01190] [INSPIRE].

[14] A.L. Fitzpatrick and J. Kaplan, A quantum correction to chaos, JHEP 05 (2016) 070

[arXiv:1601.06164] [INSPIRE].

[15] K. Hashimoto and N. Tanahashi, Universality in chaos of particle motion near black hole

horizon, Phys. Rev. D 95 (2017) 024007 [arXiv:1610.06070] [INSPIRE].

[16] S. Dalui, B.R. Majhi and P. Mishra, Presence of horizon makes particle motion chaotic,

Phys. Lett. B 788 (2019) 486 [arXiv:1803.06527] [INSPIRE].

[17] J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev.

Lett. 120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].

[18] J.R. David, S. Khetrapal and S.P. Kumar, Local quenches and quantum chaos from

perturbations, JHEP 10 (2017) 156 [arXiv:1707.07166] [INSPIRE].

[19] P. Basu and L.A. Pando Zayas, Analytic nonintegrability in string theory, Phys. Rev. D 84

(2011) 046006 [arXiv:1105.2540] [INSPIRE].

[20] A. Stepanchuk and A.A. Tseytlin, On (non)integrability of classical strings in p-brane

backgrounds, J. Phys. A 46 (2013) 125401 [arXiv:1211.3727] [INSPIRE].

[21] Y. Chervonyi and O. Lunin, (Non)-integrability of geodesics in D-brane backgrounds, JHEP

02 (2014) 061 [arXiv:1311.1521] [INSPIRE].
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1 Introduction

Recent years have seen a renewed interest in classical and quantum chaos in the context
of high-energy physics, black holes and AdS/CFT, thanks to the relation of chaos to
quantum information theory and the information problems of black holes. Sharp and
reasonably rigorous results such as the celebrated MSS chaos bound [1] and its subsequent
refinements [2, 3] establish a connection between chaos and the fundamental properties of
gravity and black holes [4, 5]. Maximal chaos, with the Lyapunov exponent λ = 2πT at
temperature T , is reached for strongly coupled field theories in the large N limit, which
have a classical gravity dual with a black hole. In [2] and other works it is explicitly shown
how the Lyapunov exponent changes with finite N effects.

However, it has been pointed out many times, also in the pioneering MSS paper [1],
that the multiple notions of quantum chaos in the literature mean different things. The
out-of-time ordered correlation function (OTOC), given by the expectation value of the
commutator of some operators A and B at times 0 and t:

C(t) ≡ 〈| [A(t), B(0)] |2〉, (1.1)

– 1 –



J
H
E
P
0
5
(
2
0
2
2
)
0
2
3

is a natural quantity in quantum field theories, i.e. many-body systems, and defines the
quantum Lyapunov exponent λ as the exponent of the time growth of OTOC. However,
the classical limit of this exponent does not necessarily have much to do with the classical
Lyapunov exponent λclass, obtained by solving the variational equations [6–8]. The reason is
the noncommutation of the three limits to be taken: the classical limit ~→ 0, the long-time
limit t→∞, and the small initial variation limit δx(0)→ 0. The crucial insight of [7, 8]
is that the mechanism of scrambling may be the chaotic dynamics, in which case λclass is
related though still not identical to the OTOC exponent (quantum Lyapunov exponent) λ,
or it may originate in local instability (hyperbolicity), in which case even regular systems
may have a nonzero λ exponent and likewise chaotic systems may have λ which is completely
unrelated to the classical counterpart.

This mismatch between the classical and quantum Lyapunov exponent is just the tip
of the iceberg. The problem is twofold: not only what is the relation between the quantum
(OTOC) exponent and classical chaos, but also what is the relation between the quantum
Lyapunov exponent λ and other indicators of quantum chaos such as, first and foremost,
level statistics. The bread and butter of quantum chaos is the famous Dyson threefold
way leading to the Wigner surmise, the level repulsion statistics determined solely by the
time reversal properties of the Hamiltonian [10], which follows from the random matrix
approximation of chaotic Hamiltonian operators [11]. It is no secret for several years already
that the black hole quasinormal mode spectra follow the random matrix statistics [12], and
the OTOC of a Gaussian unitary ensemble (GUE) has been computed analytically in terms
of Bessel functions in [13, 14]; the outcome is close to the expected behavior of large-N
field theories only at long timescales, longer than the scrambling time; at shorter timescales
there are important differences. The authors of [13] have reached a deep conclusion in
this respect: random matrices have no notion of locality as the correlation of any pair of
eigenvalues is described by the same universal function. This is why the OTOC of a GUE
system deviates from that of a local field theory at early times, when the perturbation
in field theory has not had time to spread yet (i.e. when it is still localized). Therefore,
the level repulsion does not imply the usual picture of the chaotic (exponential) OTOC
behavior. However, we do not know yet how this correlates to the behavior of few-body or
more precisely few-degrees-of-freedom quantum systems as opposed to the large-N field
theories with a gravity dual. In few-body systems the notion of locality (and a classical
gravity dual) does not exist anyway and the main problem found by [13] is irrelevant; at
the same time, such systems are often very well described by random matrix statistics, i.e.
Wigner-Dyson statistics [10]. In this paper we aim to understand the behavior of OTOC
in such systems. Running a bit forward, we can say that the growth of OTOC is rather
unremarkable: we find no universal trend, and little connection to level statistics. This
confirms the results found for specific examples in [8, 15].

The relation of OTOC, level statistics and the classical Lyapunov exponent was studied
for few-body systems (quantum mechanics) in [8, 15–18] and the picture is inconclusive. One
can have a nonzero growth exponent in integrable systems,1 whereas fast scrambling with

1This actually correlates with the classical variational equations in hyperbolic systems, which show
exponential growth even in absence of chaos.
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the exponent close to 2πT or at least growing linearly in T has not been found even in some
clearly chaotic systems [8, 9]. Arguments for many-body systems such as spin chains even
suggest that quantum-chaotic systems with Gaussian spectral statistics generically never
show fast scrambling [19], but no claims of such generality have been tested or formulated
for few-body quantum chaos.

Various indicators of chaos relevant also for small systems, and their relation to OTOC
and scrambling were studied by [20–27] among others. In particular, in [26] some important
insights can be found: even in small systems devoid of the locality notion, OTOC can be
interpreted as a measure of delocalization of a state in phase space, and the oscillatory
component of the OTOC dynamics has to do with the power spectrum of the system. This
last insight provokes a more general question: can we learn something from the quasi-
stationary regime of OTOC, where no systematic growth is present but only oscillations? In
this paper we provide a partial answer from a detailed study of this saturated (asymptotic,
plateau) OTOC regime: the magnitude of the OTOC average at the plateau has a simple
temperature dependence, and apparently can differentiate between weak chaos (dominantly
Poissonian level distribution with some admixture of the Wigner-Dyson statistics) and
strong chaos (clear Wigner-Dyson level repulsion). We will demonstrate this on three
representative systems: the quantum Henon-Heiles Hamiltonian, whose classical limit has
mixed (regular/chaotic) phase space and thus we expect on average weak chaos, a simplified
BMN matrix model (at small N) exhibiting strong chaos for most initial conditions, and
Gaussian random matrices, the prototype of strong quantum chaos. The long-time limit of
OTOC behaves in subtly different ways in each case.

Before we start, one caveat is in order (we will consider this issue in more detail
later on): one might think that the saturated OTOC value is always trivially determined
by the system size. We typically assume that the OTOC function C as defined in (1.1)
behaves roughly as C(t) ∼ c/N2× exp(λt) with c of order unity, so when t ∼ t∗ ≡ logN2/λ

the growth of C(t) stops and OTOC approximately reaches unity (when appropriately
normalized). But the twist is precisely that c is system-specific and in general poorly known.
The leading N2 behavior indeed determines the OTOC values for N large, but when N
and c are comparable within an order of magnitude the effects of fluctuations and finite N
corrections are significant. This is at the root of our observations in this work.

The plan of the paper is as follows. In section 2 we recapitulate and generalize some
results on computing OTOC in quantum mechanics, and show how OTOC sensitively
depends on both the Hamiltonian and the operators A, B from the definition (1.1). In
section 3 we apply the general formalism to random matrix ensembles and show that the
OTOC growth is a complicated and nonuniversal function but that its asymptotic value
behaves in a rather simple way. Section 4 discusses the behavior of OTOC for deterministic
quantum-chaotic Hamiltonians. Section 5 sums up the conclusions.

2 OTOC in quantum-mechanical systems

Consider a four-point time-disordered correlation function for a quantum-mechanical system
in 0 + 1 dimensions at temperature T = 1/β. Starting from the usual definition (1.1) as the

– 3 –
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squared module of the commutator of the two operators A and B, we can write it out as

C(t) = 1
Z
〈| [A(t), B(0)] |2〉 = 1

Z

∑
n

e−βEn〈n|| [A(t), B(0)] |2|n〉, (2.1)

where the averaging is both thermal and quantum mechanical: 〈. . .〉 = tre−βH〈vac| . . . |vac〉.
We can pick a basis of states and express the above defining expression in terms of matrix
elements of the operators (this closely follows the derivation in [8, 16]):

C(t) = 1
Z

∑
nm

e−βEn〈n| [A(t), B(0)] |m〉〈m| [A(t), B(0)] |n〉 = 1
Z

∑
nm

e−βEn |cmn(t)|2, (2.2)

where we have inserted the completeness relation 1 =
∑
m |m〉〈m|. For a single element

cmn(t) one gets:

cmn(t) = 〈n|
[
eıHtAe−ıHt, B

]
|m〉 =

=
∑
k

(
〈n|eıHtAe−ıHt|k〉〈k|B|m〉 − 〈n|B|k〉〈k|eıHtAe−ıHt|m〉

)
=

=
∑
k

(
〈n|eıEntAe−ıEkt|k〉〈k|B|m〉 − 〈n|B|k〉〈k|eıEktAe−ıEmt|m〉

)
=

=
∑
k

(
ankbkme

−ıEknt − bnkakme−ıEmkt
)
, (2.3)

where in the second line we have again inserted a completeness relation and in the third line
we have used the fact that we work in the energy eigenbasis. The outcome is expressed in
terms of the matrix elements amn, bmn of the operators in the energy basis. In practice, it
may or may not be possible to compute these analytically. Specifically, for A = x,B = p, we
get the analogue of the classical Lyapunov exponent. From now on we call this the kinematic
OTOC as it is directly related to the classical trajectory. Let us now see what general
bounds can be put on (2.3) from the properties of quantum-mechanical Hamiltonians.

2.1 An upper bound on OTOC saturation

We begin with a very general and very formal result, which immediately makes it clear
that in a generic quantum-mechanical system (integrable or nonintegrable) OTOC can be
bounded from above by a quantity which solely depends on the energy spectrum of the
Hamiltonian and the choice of the operators A and B. This upper bound remains valid no
matter what is the time dependence of OTOC, even if it does not have a nonzero growth
exponent at all (which is quite generic in quantum mechanics). Starting from the basic
equations (2.2)–(2.3), let us denote Cnmk = ankbkm i Dnmk = −bnkakm, and estimate a
single coefficient cmn(t) in the sum. We clearly have

|cmn(t)| = |
∑
k

Cnmke
−iEknt +Dnmke

−iEmkt| ≤
∑
k

|Cnmke−iEknt +Dnmke
−iEmkt| ⇒

|cmn(t)|2 ≤
(∑

k

|Cnmke−iEknt +Dnmke
−iEmkt|

)2
≤
∑
k

|Cnmke−iEknt +Dnmke
−iEmkt|2 ≤

≤
∑
k

(
|Cnmk|2 + |Dnmk|2 + 2|Cnmk||Dnmk| cos (Emk − Ekn) t

)
, (2.4)
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where N is the matrix size. In the second and third line we have used the inequality between
the arithmetic and harmonic mean. Now we can bound the value of C(t):

0 ≤ C(t) ≤ 1
Z

∑
nmk

e−βEn
(
|Cnmk|2 + |Dnmk|2 + 2|Cnmk||Dnmk| cos (Emk − Ekn) t

)
(2.5)

This means that C(t) is bounded at all times by an oscillatory function of time, whose
frequencies are linear combinations of three eigenenergies (Emk − Ekn = Em + En − 2Ek).
Such a combination is generically always nonzero for a chaotic system except when the
energies coincide, e.g. Em = En = Ek (according to the non-resonance condition). Therefore,
since OTOC is typically a non-decreasing function of time, the behavior of C(t) for t large is
roughly its maximum value and is likely close to the right-hand side in (2.5). This suggests
that the OTOC dynamics after saturation likely consists of a very complex oscillatory
pattern (with ∼ N3 frequencies if the Hilbert space has dimension N) superimposed on a
plateau. The numerics will indeed confirm such behavior.

Another estimate, which is time-independent and relevant for our main result — the
magnitude of the saturation (plateau) OTOC value, is obtained from the triangle and mean
inequalities:

|cmn(t)|2 ≤ |
∑
k

Cnmke
−iEknt|2 + |

∑
k

Dnmke
−iEmkt|2 ≤ |

∑
k

Cnmk|2 + |
∑
k

Dnmk|2 ⇒

C(t) ≤ 1
Z

∑
nm

e−βEn
(
| (A ·B)nm |

2 + | (B ·A)nm |
2
)
≤ 2
Z

∑
nm

e−βEn | (A ·B)nm |
2,

(2.6)

where we have used the obvious relations
∑
k Cmnk = (A ·B)nm and

∑
kDnmk = (B ·A)nm =

(A · B)∗mn = (A · B)nm, assuming also the hermiticity of the operators. For some models
(e.g. random matrices, Henon-Heiles), this sum can be estimated in a controlled way and
provides an approximation for the plateau of OTOC. These estimates are obviously very
simple and very weak (in the mathematical sense) but provide us with a framework into
which we can insert specific A, B and H (the Hamiltonian with energies En) and perform
back-of-the-envelope calculations which explain the numerical findings.

3 OTOC for random matrix ensembles

Random matrix theory [10, 11] provides a highly detailed and rigorous (within its starting
assumptions) stochastic effective description of the few-body quantum chaos, and allows an
analytic calculation of OTOC along the lines of (2.3). Let us focus on Gaussian ortohogonal
ensembles of size N × N , appropriate when there is full time reversal invariance. It is
known [10] that the joint distribution all the elements of all eigenvectors is obtained simply
from the statistical independence of the eigenvectors from each other and of the elements in
each eigenvector (and the orthogonality of the eigenvectors):

P ({c}) =
(

N∏
n=1

δ

(∑
i

(cni )2 − 1
))( ∏

n<m

δ

(∑
i

cni c
m
i

))
, (3.1)
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where i = 1 . . . N is the component of the eigenvector and 1 ≤ n,m ≤ N count the eigen-
vectors themselves, i.e. the energy levels; so the n-th eigenvector |n〉 is represented by the
column vector ψ(n) with the elements (cn1 , . . . cnN ). Special cases like the probability distribu-
tion for the p-tuple of elements of a single eigenvector are obtained from (3.1) by integrating
out all the other elements [10]. We will also need the probability distribution of the energy
levels {E} = E1, E2, . . . EN , the celebrated Wigner-Dyson distribution function [10]:

P ({E}) = const.×
∏
n<m

|En − Em|b exp
(
−
∑
k

E2
k

σ2

)
, (3.2)

where σ is the standard deviation, fixing the unit of energy, and b = 1, 2 or 4 for orthogonal,
unitary and symplectic ensembles respectively. Most of our work is independent of the
symmetry class, however our default class will be the Gaussian orthogonal ensemble (GOE)
with b = 1 when not specified otherwise.

3.1 Estimate of the OTOC and its plateau

The idea is to use the results recapitulated in the previous section to find the ensemble expec-
tation value of OTOC from the “master formulas” (2.2)–(2.3). Representing the eigenvectors
and the operators as matrices in some (arbitrary) basis we can obviously write out

ank =
∑
ij

ψ
(n)
i ψ

(k)
j Aij ⇒ 〈ank〉 =

∫
dNψ(n)

∫
dNψ(k)P

(
ψ(n), ψ(k)

)
ψ

(n)
i ψ

(k)
j Aij , (3.3)

and similarly for bnk. Inserting the above expression for the matrix elements into (2.3),
multiplying cmn(t) by its complex conjugate taking into account the reality of the eigenvec-
tors and relabelling the indices in the sums where convenient we find (denoting the average
over the random matrix ensemble by 〈C(t)〉):

〈C(t)〉=
∫
dN

2{c}
∫
dN{E}P ({E})P ({c})

∑
n,m

∑
k,k′

∑
i1,2

∑
j1,2

∑
i′1,2

∑
j′1,2

ckj1c
k
i2c

k′

j′1
ck
′

i′2
cni1c

n
i′1
cmj2c

m
j′2
e−βEn×

×
(
Ai1i2Ai′1i′2Bj1j2Bj′1j′2e

ı(Ek′−Ek)t+Ai2j2Ai′2j′2Bi1j1Bi′1j′1e
ı(Ek−Ek′ )t−

−Ai2j2Ai′1i′2Bi1j1Bj′1j′2e
ı(Ek+Ek′−Em−En)t−Ai1i2Ai′2j′2Bj1j2Bi′1j′1e

ı(Em+En−Ek−Ek′ )t
)
,

(3.4)

where {c} determines the whole set of N2 random elements c(n)
j with j, n = 1 . . . N and

likewise {En} is the whole set of eigenenergies. All the sums run from 1 to N . The
integral over the eigenvector elements {c} in (3.4) produces only an overall constant as
these coefficients do not couple to the other quantities (in fact the integral dN2{c} is a
textbook Jeans integral, but we do not need its value as it only produces an N -dependent,
T -independent constant). The remaining integral, over the eigenenergies, is again a sum of
products of Jeans-type integrals but with an additional linear term −βE in the exponent.
Notice that the imaginary (sine) terms in (3.4) cancel out when the sum is performed; this
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is a consequence of the module squared in |cmn|2, i.e. of the reality of OTOC. Now we see
that (3.4) becomes a sum where each term is a product of factors of the form

pi(Ei)e−E
2
i /4σ2−βEi cos(sEit), s ∈ {0, 1},

where pi is some polynomial and s may be zero or unity, i.e. some terms have this factor and
some do not. Every such term is a Jeans-type integral. The number of terms in P ({E})
equals the number of partitions of N(N − 1)b/2, and the sums over the coefficients {c}
bring alltogether N12 terms. When everything is said and done (for details see appendix A),
the final outcome, ignoring the multiplicative constant factors, reads:

〈C(t)〉 =
4∏

a=1

∑
j
αaj=N(N−1)b/2∑
αa1 ,...α

a
N

[
1F1

(
1 + αa

2 ,
1
2 ,
σ2

4 (β − ıt)2
)

+ (β − ıt)1F1

(
2 + αa

2 ,
3
2 ,
σ2

4 (β − ıt)2
)

+ 1F1

(
1 + αa

2 ,
1
2 ,
σ2

4 (β + ıt)2
)

+ (β + ıt)1F1

(
2 + αa

2 ,
3
2 ,
σ2

4 (β + ıt)2
)]

, (3.5)

where 1F1 is the confluent hypergeometric function. The sum runs over all partitions of
N(N −1)b/2, and the product has four terms as each factor |cmn|2 has four matrix elements
of A and B.

3.1.1 Kinematic OTOC

In order to move further we need to specify at least to some extent the operators A and B.
We will consider (1) the kinematic OTOC, with A = x, B = p (2) generic sparse operators,
with O(N) nonzero elements in the matrices amn and bmn, and (3) dense operators A
and B, with O(N2) nonzero elements, in particular the case when the operators A, B are
themselves represented by Gaussian random matrices. Let us estimate OTOC for each case.

For the kinematic OTOC, Aij = xiδij is diagonal and in the large-N limit B can
be approximated as Bij ∼ δij/xi. The Kronecker deltas reduce the number of terms in
the sums over {c} to N4, the number of partitions

∑
j αj = n can be approximated as

p(n) ∼ exp(π
√

2n/3)/
√
n, and the general expression (3.4) becomes2

〈C(t)〉∼ eπ
√

b
3NN3e

σ2β2
4

(
W0 (σβ)+Q1

(
cos σ

2βt

2

)
W1 (σβ)+Q2

(
sin σ

2βt

2

)
W2 (σβ)

)
,

(3.6)
where W0,1,2 are polynomials in σβ of degree N(N − 1)b/2 ∼ N2b/2, Q1 is an even
polynomial (with only even powers) of the same degree, and Q2 is an odd polynomial
of the same degree. Each coefficient in the polynomials W0,1,2 comes from ∼ N2 terms
(appendix A), therefore the size of the coefficients scales approximately with N2. Eq. (3.6)

2One might be surprised by the unusual dependence on N . This happens because we have not normalized
C(t) by the product 〈AA〉〈AA〉 as it is usually done. With appropriate normalization, C(t) would of course
be of order unity.
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is a very complicated oscillating function as many terms are involved. But if we are only
interested in the average value of C(t) at long times, we may simply ignore the oscillations
(which in the first approximation average out to some value of order unity) and write the
estimate for the long-term, saturated or plateau OTOC value that we denote by C∞:

C∞ ∼ 〈C(t→∞)〉 ∼ eπ
√

b
3NN3e

σ2β2
4 W0 (σβ) (3.7)

We deliberately do not write limt→∞ in the above definition as the limit in the strict sense
does not exist because of the oscillatory functions, and in addition our derivation is obviously
nothing but a crude estimate. A similarly rough estimate of the temperature dependence of
C∞ can be obtained in the following way. For sufficiently large σβ, roughly σβ/N2 > 1,
the polynomial W0 is dominated by the highest-degree term and we have, from (3.7):

C∞ ∼ (σβ)
N2b

2 e
σ2β2

4 + . . . ∼ e
σ2

4T2 + . . . , (3.8)

where in the second step we have assumed β � 1 so that the power-law prefactor βN2b/2

becomes negligible compared to the exponential. We deliberately emphasize that there are
other terms in the expansion (. . .), including also a constant term (from the zeroth-order
term in W0). This is important as it tells us that the scaling is in general of the form
C∞ ≈ const.+ exp(σ2/4T 2), i.e. the temperature dependence is superimposed to a constant.
This is also expected as the (appropriately normalized) saturated value C∞ should always
be of order unity, and the temperature dependence will only account for the relatively small
differences between the plateau values of C(t), as we will see later in figures 1 and 2.

On the other hand, for sufficiently small σβ, the polynomial W0 can be estimated as a
geometric sum of monomials in −σβN2 (remember the terms in W0 have alternating signs):

C∞ ∼
e
σ2β2

4

1 + σβN2 ∼ 1− σβN2 +O
(
β2
)
. (3.9)

We have now reached an important point: the plateau OTOC falls off exponentially with
1/T 2 at low temperatures3 and grows as a function of 1/T at high temperatures (we are not
sure which function, as there are higher order terms in addition to the one written in (3.9),
and there is no clearly dominant term like the exponential at large β), with the crossover
temperature:4

Tc ∼ σN2. (3.10)

If we consider a pair of arbitrary sparse operators A and B, the whole above reasoning
remains in place, except that the products of matrix elements such as Ai1i2Ai′1i′2Bj1j2Bj′1j′2
remain as arbitrary constants. Therefore we get the same qualitative behavior with two
regimes and a crossover between them. The crossover temperature is very high for typical
N � 1 (otherwise the random matrix formalism makes little sense) and finite σ (again,
σ → 0 makes little sense). In particular, in the N → ∞ limit the crossover temperature
becomes infinite and the only regime is the exponential decay.

3Actually, the falloff rate equals const./T 2 with some system-specific constant, but for brevity we will
denote it schematically as the 1/T 2 regime throughout the paper.

4The crossover temperature is determined simply as βcσN2 = 1, i.e. whether the terms in W0 grow or
decay at higher and higher order.
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3.1.2 OTOC for dense and/or random operators

Now consider the case when the matrix elements in (3.5) are generically all nonzero (and
for now nonrandom, i.e. we fix the operators and do not average over them). The large-t
limit yields the expression

〈C(t)〉 ∼ eπ
√

b
3NN11eσ

2(β2−t2) [q0 (σt)w0 (σβ) + q1 (σt)w1 (σβ + ıt, σβ − ıt)] , (3.11)

where q0,1 and w0 are polynomials of degree N(N−1)b/2 ∼ N2b/2, and w1 is the polynomial
of the same total degree of two variables, σβ + ıt and σβ − ıt. The coefficients of w0,1 are
proportional to products of matrix elements Ai1j1Bk1l1 . . . Ai8j8Bk8l8 , which are roughly
proportional to |A|8|B|8. The long-time limit yields

C∞ ∼
eπ
√

b
3N

N5 (|A||B|)8 e
σ2β2

4 w0(σβ)w1(σβ, σβ), (3.12)

but now a typical coefficient of the polynomials w0,1 behaves as N2 (|A||B|)8. Therefore,
the scaling in the low-temperature regime remains the same as (3.8): C∞ ∼ exp(σ2/T 2).
But the high-temperature regime yields

C∞ ∼ 1− σβN2 (|A||B|)8 +O
(
β2
)
, (3.13)

therefore the crossover now happens at

Tc ∼ σN2 (|A||B|)8 (3.14)

and therefore may be lower than the very high value (3.10), depending on the norm of the
operators A and B.

Finally, if the operators A and B are both random Hermitian matrices (for concreteness,
from the Gaussian unitary ensemble with the distribution function Π and the standard
deviation ξ), we need to average also over the distribution functions for A and B and work
with the double average 〈〈C(t)〉〉:

〈〈C(t)〉〉 ≡
∫
dN{a}

∫
dN{b}Π ({a}) Π ({b}) 〈C(t)〉 ∼ ξN2〈C(t)〉. (3.15)

This estimate is very crude, based simply on the fact that the distribution functions Π have
∼ N2/2 pairs of the form (ai − aj)2. The important point is that the scaling from (3.13)
that behaves essentially as ∼ ξ16 now becomes ∼ ξN2 , therefore the crossover temperature
is significantly reduced compared to (3.14) and behaves as Tc ∼ σN2λN

2 . So for random
operators the crossover may happen at temperatures that are not very high and thus can
be clearly visible in the numerics and experiment.

3.2 Numerical checks

Now we demonstrate numerically that the crude estimates from the previous subsection
indeed make sense and describe the characteristic behavior of OTOC. Our chief goal is to
understand the behavior of C∞, however it is instructive to start from the time dependence
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Figure 1. Numerically computed and averaged kinematic OTOC C(t) for an ensemble of l = 1000
Gaussian orthogonal matrices of size N = 20 for the deviation σ = 0.02 (A, C) and σ = 0.05 (B,
D), at temperatures 0.67 (black), 1.00 (blue), 1.25 (green), 2.50 (magenta), 5 (red). The plots (A,
B) show the linear scale and the plots (C, D) the log-log scale. Crucially, the growth regime is not
exponential and is actually closer to a power law. The growth ends on a plateau with superimposed
oscillations. The plateaus differ slightly for different temperatures — the main effect we look at in
this paper. Times is in units 1/σ in all plots.

of the kinematic OTOC (figure 1). We find the expected pattern of early growth followed by
a plateau, however the growth is closer to a power law than to an exponential; this follows
from the polynomial terms in (3.6), although the power law is not perfect either, as we see
in the panels (A, C). This is in line with the prediction of [13], where the authors find

〈C(t)〉 ≈ J4
1 (2t)/t4 + t(t/2− 1), (3.16)

for a slightly different ensemble of random matrices (J1 is the Bessel function of the first
kind). This function is also neither an exponential nor a power law but at early times it is
best approximated by a power law at leading order (at long times it falls off exponentially
but the saturation is reached already prior to that epoch). In figure 2 we focus on the
plateau behavior. It has the form of a constant function with superimposed aperiodic
oscillations, and the differences of the plateau values are the subject of our theoretical
predictions. These are relatively small and become important only when N is finite and
not very large. In figure 2 we plot again the time dependence of the kinematic OTOC but
now we focus on long timescales, to confirm that the plateau is indeed stable, and to show
the very complex oscillation pattern superimposed on the plateau.
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Figure 2. Numerically computed and averaged kinematic OTOC C(t) for an ensemble of l = 1000
Gaussian orthogonal matrices of size N = 60 for the deviation σ = 0.1, at temperatures 0.67 (black),
1.00 (blue), 1.25 (green), 2.50 (magenta), 5 (red), 10 (orange), 20 (yellow) and 100 gray. In (B) we
plot the same as in (A) but over a longer timescale, showing that the plateau remains stable for
long times, i.e. represents true asymptotic behavior.
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Figure 3. (A) The logarithm of the amplitude of the plateau C∞ of the kinematic OTOC for the
deviations σ = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 (blue to red) as a function of temperature for β values.
The linear dependence is nearly perfect, in accordance with the predicted scaling logC∞ ∝ 1/T 2.
The matrix size is N = 20. (B) Same as (A) but for the deviation σ = 0.4 and varying matrix size
N = 10, 20, 40, 60, 80, 100 and 120 (blue to red). In (C) we bring the zoom-in of the plot (B) for
high temperatures. Appart from a slight deviation near β = 0, the behavior for larger matrices is
still fully consistent with the analytical prediction. The solid lines are just to guide the eye.

Figure 3 confirms our main prediction for the low-temperature regime (again for
the kinematic OTOC) — clear linear scaling of logC∞ with 1/T 2 in a broad range of
temperatures. At small inverse temperatures there is some deviation from the linear scaling
law but this we also expect. Looking now at the OTOC for a pair of random Hermitian
operators in figure 4, we detect also the other regime at small enough temperatures —
logC∞ decays with the inverse temperature. This regime is likely present also in figure 3,
but only at extremely high temperatures (which we have not computed in that figure).

4 OTOC for weakly and strongly chaotic Hamiltonians

For quasi-integrable few-degrees-of-freedom Hamiltonians one would naively expect that
OTOC closely resembles the Lyapunov exponent, at least for high quantum numbers,
approaching the classical regime. As we have already commented in the Introduction, it
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Figure 4. The saturated OTOC C∞(T ) of a pair of dense random operators A and B for the
Gaussian orthogonal random Hamiltonian with σ = 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 (blue to red).
In (A), looking at the full range of C∞ values, it is obvious that the dominant regime is still the
exp(c/T 2) scaling. However, focusing on the low-σ ensembles (B), we notice the high-temperature
growing behavior of the OTOC plateau which is absent for sparse operators.

is known that this is not true in general [6, 8, 9, 16, 17] and that both chaotic systems
with zero quantum Lyapunov exponent and regular systems with a nonzero exponent exist.
We will now try to find some common denominator of OTOC dynamics in (deterministic)
quantum-mechanical systems. It will quickly become clear from our general analysis of
the master formula (2.3) that the function C(t) is as complicated as for random matrices
(indeed, even more so). But we will again construct an upper bound for the saturated
OTOC value and arrive at a rough scaling estimate.

4.1 Weak chaos: perturbation theory

As an example of a quasi-integrable system (of the form H = H0 + εV where H0 is
integrable and the perturbation V makes it nonintegrable for ε 6= 0) consider the Henon-
Heiles Hamiltonian

H = 1
2
(
p2
x + p2

y

)
+ 1

2
(
ω2
xx

2 + ω2
yy

2
)

+ ε

(
x2y − 1

3y
3
)
, (4.1)

a well-known paradigm for classical chaos with applications in galactic dynamics and
condensed matter. For ε = 0 it obviously reduces to a 2D linear harmonic oscillator and
becomes integrable. As we know, nonintegrability does not always imply chaos; indeed, this
is a typical system with mixed phase space, with both chaotic and regular orbits. Chaotic
orbits proliferate only when the perturbation is larger than some finite εc; they are almost
absent at low energies, numerous at intermediate energies and again absent at very high
energies when the potential energy is negligible compared to the kinetic energy [28, 29].
For such a quasi-integrable system our idea is to apply elementary perturbation theory in
the occupation number basis to estimate OTOC starting from (3.4). We will present the
perturbation theory in a fully general way, for an arbitrary Hamiltonian H0 + εV , and some
of the conclusions will also turn out to be quite general. Only at the end we will show the
quantitative results for the Henon-Heiles system (4.1).
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Let us write the perturbative expression for OTOC. Replacing the initial basis states
|n〉 with the first-order5 perturbatively corrected states |n+δn〉 and introducing likewise the
perturbative corrections δamn, δbmn for the matrix elements of A and B, the equation (2.3)
becomes

c(1)
mn = cmn+

∑
k

(δamkbkn+amkδbkn)e−ıEkmt−
∑
k

(δbmkakn+bmkδakn)e−ıEnkt =

= cmn+
∑
kl

(δmlalkbkn+δ∗kla
∗
lmbkn+δklblnamk+δ∗nlb

∗
lkamk)e−ıEkmt+(a↔ b)e−ıEnkt =

= cmn+
(
δ ·A ·B+A† ·δ† ·B+A ·δ ·B+A ·B† ·δ†

)
mn

e−ıEkmt+(A↔B)mn e
−ıEnkt.

(4.2)

Now we insert this result into (2.2) and apply the Cauchy-Schwarz-Bunyakovski inequality:

C(1)(t) = 1
Z

∑
mn

e−βEn |c(1)
mn|2 ≤

≤ 1
Z

∑
mn

e−βEn
(
|cmn|2 + |δ ·A ·B+A† ·δ† ·B+A ·δ ·B+A ·B† ·δ†|2mn+(A↔B)

)
=

=C(t)+ 1
Z

(
4Tr

(
B† ·A† ·δ† · ρ̃2 ·δ ·A ·B

)
+4Tr

(
B† ·δ ·A · ρ̃2 ·A† ·δ† ·B

))
≤

≤C∞+ 8
Z
|ρ̃|2|A|2|B|2|δ|2 ≡C∞+δC∞, (4.3)

where ρ̃ ≡ diag(exp(−βEn)) is the non-normalized density matrix. In the above derivation,
we have also used the definition of trace and the definition of thermal expectation values
〈A〉 ≡ Tr (ρ ·A). The norm of a matrix is defined as usual by |A|2 ≡ TrA†A. This estimate
manifestly replaces C(t) by its asymptotic (maximum) value, as we have replaced the terms
containing the time-dependent phase factors by their time-independent norms.

In order to move further, notice first that |ρ̃|2 =
∑
n exp(−2βEn) = Z(2β) for a

canonical ensemble with the diagonal density matrix that we consider here. This means,
from (4.3), that the temperature dependence is encapsulated in the ratio Z(2β)/Z(β). The
prefactor will again differ between dense and sparse A, B and V . For sparse matrices, we can
write |A|2 ∼ Na2 whereas for dense matrices we have |A|2 ∼ N2a2, assuming that all matrix
elements have some characteristic magnitude a. Obviously, if this is not true the outcome
will be more complicated, but it seems this does not influence the temperature dependence.
For concreteness we assume sparse A and B. For sparse V with nonzero elements of order
v concentrated near the diagonal (this is true for the Henon-Heiles Hamiltonian and in
general for perturbations expressed as low-degree polynomials in coordinates and momenta),
we can estimate |δ|2 ∼ Nv2/ω2. Here we assume an approximately equidistant spectrum of
H0 with frequency (neighboring level spacing) ω. This yields:

C(1)
∞ ∼ C∞ + Z(2β)

Z(β) N
3a2b2 v

2

ω2 . (4.4)

5The whole argument works the same way also for higher-order perturbation theory; we assume first
order just for simplicity.
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Figure 5. The thermal dependence factor of logC∞ for weak perturbative chaotic systems, given
by Z(2β)/Z(β) with β = 1/T the inverse temperature, here given for a 2D linear harmonic oscillator
with the frequencies ωx = ωy = 0.1, with N = 20 levels (blue) and with N = 150 levels (red). We
also plot the sum over N =∞ levels (black). In (A) we zoom in at high β/low temperatures, and
in (B) we focus on smaller β/larger T . The N = 150 plot is aready quite close to the monotonic
N =∞ dependence but at high temperatures there is always a region decaying with β, before the
approximately linear logR(1/T ) dependence sets in, just like in the numerical results. At very low
temperatures the ratio saturates, as we see in the panel (A). This ensures that our estimate for the
saturated OTOC has a finite limite at zero temperature. The overall scale is arbitrary as the R
factor is always multiplied by various other factors.

For a dense perturbation V , the only factor that changes is |δ|. Assuming again the
utterly simple situation where all matrix elements of V are roughly equal v, we have
δmn ∼ v/Emn ∼ v/(ω(m − n)), which yields a series that can be summed analytically.
However, we will not pursue this further as the temperature dependence is universal in all
cases, given by the simple ratio of the partition functions:

C∞ ∝ R(β) ≡ Z(2β)
Z(β) →

∑N
j=1 e

−2βω∑N
j=1 e

−βω
→ eβω

1 + eβω
. (4.5)

The first simplification holds when H0 is a 1D harmonic oscillator, and the second one
when N → ∞. But the basic result (the ratio of partition functions) always holds. We
are in fact more interested in the 2D harmonic oscillator, which is the integrable part of
the Henon-Heiles Hamiltonian. For that case, we plot the sum (for finite N) in figure 5.
Of course, the analysis of the function R(β) is trivial — we plot it in the figure merely to
emphasize the qualitative agreement with the numerics.

As a final remark, what we have found is the correction of the OTOC plateau δC∞.
There is still the unperturbed value of C∞ for the integrable Hamiltonian H0. We know
that this can be nonzero and even quite large because of local instability [6, 7, 9]. We are
mainly interested in the opposite situation, when the scrambling chiefly comes from chaos
so that OTOC does not grow when H = H0. In this case C(1) ≈ δC∞ and the temperature
dependence is primarily determined by (4.4). In the next subsection we will look both at
the Henon-Heiles system where this holds, and a perturbed inverse chaotic oscillator where
H0 is unstable.
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4.2 Weak chaos: examples and numerics

As our main example we can now study the Henon-Heiles system of eq. (4.1). Starting
from the nonperturbed Hamiltonian (2D harmonic oscillator), we will express the nonzero
elements of cmn(t) exactly, i.e. we will not use the estimates (4.3) as the perturbation is
quite simple and amenable to analytic treatment. Denoting a basis state by the quantum
number n = (nx, ny), we can write the amplitudes cnxnyn′xn′y as products of amplitudes of
the two decoupled subsystems cnxnyn′xn′y = Cnxn′xCnyn′y , with

Cnxnx = −ınxωx cos t

Cnx,nx−2 = ı

2
√
nx − 1

(√
nx + 1e−ıωxt −

√
nx + 2eıωxt

)
Cnx,nx+2 = ı

2
√
nx + 1

(√
nx − 1eıωxt −

√
nx − 2e−ıωxt

)
, (4.6)

and all other elements are zero; for the y quantum numbers the coefficients are the same
with (nx, ωx) 7→ (ny, ωy). For nonzero ε, the off-diagonal matrix elements can be represented
exactly as

cnxn′xnyn′y(t) = εδ|nx−n′x|−2δ|ny−n′y |−1

√
mx(mx − 1)

√
my + 1, mx,y ≡ min(nx,y, n′x,y).

(4.7)
The state vectors are now easily calculated in textbook perturbation theory. We have
compared the analytic calculation to the numerics and find that they agree within a relative
error ≤ 0.04; therefore, one may safely use (4.6)–(4.7) in order to speed up the computations
and avoid numerical diagonalization of large matrices.

The magnitude of the plateau value of C(t), computed by long-time averaging similarly
to the random matrix calculations in section 3, are given in figure 6. At large T values,
C∞ decays with 1/T , at intermediate values it shows an exponential growth with 1/T just
like R(1/T ) in figure 5, and as the temperature goes to zero it reaches a finite value. In
figure 7 we consider a system with much reduced state space, with N = 25. We expect
that for small N the existence of two regimes is more clearly visible, and that the crossover
temperature is higher. This is indeed what happens, although the exact form of the function
C∞(1/T ) is not very well described by the analytical result. As we have made many crude
approximations, this is not surprising: our analytical result still explains the existence
of two regimes and the crossover between them.6 One unexpected finding is that the
high-temperature regime is apparently universal for all perturbation strengths and scales
as C∞ ∝ exp(−4π/T ). This is probably specific for the Henon-Heiles system; we do not
understand it at present.

It is instructive to look at the energy level statistics of the Henon-Heiles system for
the same parameters that we have used for the OTOC calculation, in order to understand
the relation of OTOC to chaos. In figure 8 we plot the histograms of the neighboring level

6One might regard such truncation of the state space as artificial and unphysical. It is clearly just a
technical step in order to show the effect we seek for more clearly, however in principle it can be realized
by introducing an additional external potential. In other contexts, e.g. finite spin systems, a finite Hilbert
space is perfectly natural.
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Figure 6. (A) The saturated kinematic OTOC value C∞ for a range of inverse temperatures
β = 10−4, 10−3, 5 × 10−3, 0.01, 0.02, 0.05 and a range of perturbation strengths ε = 1, 2, 5, 10,
15, 20 (black, blue, green, magenta, red, orange). Here we see the scaling C∞ ∝ exp(c/T ), with c
growing with ε. In the (B) panel we zoom in the high-temperature region, to show that for ε ≤ 5
there is also the other regime where C∞ grows with T . Since the number of points in this interval is
small it is not easy to judge the form of T -dependence. In (C) we focus on the opposite regime, at
very low temperature, showing that C∞ saturates as T → 0. This is again in accordance with the
β →∞ limit of Z(2β)/Z(β). The system is truncated to N = 144 levels.
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Figure 7. The saturated kinematic OTOC value C∞(T ) for the truncated Henon-Heiles model
with N = 25 levels. The perturbation strength is ε = 0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 3.0 (black, blue,
green, magenta, red, orange, cyan). Already in (A) we see that for ε ≤ 0.5 there is a finite crossover
temperature Tc so that C∞ grows wth temperature for T > Tc. Since Tc goes down when the
Hilbert space is reduced, we can observe the high-temperature regime very clearly and see that it
collapses to a universal law C∞ ∼ exp(−4π/T ). This is seen in the panel (B) where we zoom in at
the interesting region.

spacing. Even for large ε, the regular (Poisson) component is dominant over the chaotic
(Wigner-Dyson) component. In other words, the classically mixed phase space, with the
increasing chaotic component, is almost completely regular in the quantum regime; quantum
chaos is “weaker”, as is often found in the literature [33]. For us, the fact that the system
is outside the Wigner-Dyson regime means that indeed the behavior of C∞ is a good litmus
test of quantum dynamics, behaving (at low temperatures) as exp(1/T 2) or exp(1/T ) for
strong or weak chaos respectively.7 Indeed, we would not expect that a system which is
well described by perturbation theory shows strong level repulsion.

7In fact, this is only true provided that the scrambling is chaos-related, i.e. that the integrable limit with
ε = 0 and H = H0 does not scramble significantly. We will come to this issue in the next paragraph.
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(A) (B)

Figure 8. Distribution of neighboring energy level spacings N(s) for the Henon-Heiles Hamiltonian
with ε = 0.1 (A) and ε = 1.5 (B). In each plot we compare the level distribution to the Poisson law
(exp(−s)) and the Wigner-Dyson law for orthogonal matrices (s exp(−πs2/4)). The distribution
is dominantly Poissonian even for large perturbations, although there is a small admixture of
Wignerian statistics. The perturbative dynamics of the Henon-Heiles system is always weakly chaotic
in quantum mechanics (despite being classically strongly chaotic for large enough ε).
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Figure 9. Temperature dependence of the asymptotic OTOC C∞ for the inverse Henon-Heiles
Hamiltonian, with ω2

x = 4ω2
y = −1, and perturbation strength ε = 0, 0.1, 0.5, 0.9, 1.5 (blue, green,

magenta, red, orange). The curves are more or less flat and without a clear trend, as the scrambling
is rooted in local instability, not chaos.

Finally, it is instructive to look at the inverse Henon-Heiles system, with (ω2
x, ω

2
y) 7→

(−ω2
x,−ω2

y), so that H0 is the inverse harmonic oscillator. As already found in the literature,
scrambling is significant already at ε = 0, and this contribution dominates even at high ε,
at all temperatures. In other words, neither the perturbation nor the temperature have
a significant influence over C∞. This is fully in accordance with the result (4.3) and the
morale is that OTOC directly describes scrambling, and chaos only indirectly, through
the scrambling, if the scrambling originates mainly from chaos; if not, OTOC is largely
insensitive to chaos. Therefore, the temperature dependence of the OTOC value, derived
from the assumptions about the dynamics (perturbative chaos or strong, random-matrix
chaos) cannot be seen when there is a strong non-chaotic component to scrambling (figure 9).
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4.3 Strong chaos: numerics and the return to random matrices

As a final stroke, we will now examine a strongly chaotic system which is also relevant for
black hole scrambling and related problems in high energy physics. This is the bosonic
sector of the D0 brane matrix model known as the BMN (Berenstein-Maldacena-Nastase)
model [30], obtained as a deformation of the BFSS (Banks-Fischler-Shenker-Susskind)
model [31] by a mass term and a Chern-Simons term. This model has been studied in
detail in the context of non-perturbative string and M theory. It is known to describe the
dynamics of M theory on pp-waves and is also related to the type IIA string theory at high
energies; for details one can look at the original papers or the review [32]. Following [33–36],
we focus solely on the bosonic sector which is enough to have strongly chaotic dynamics with
equations of motion that are not too complicated. The quantum-mechanical Hamiltonian
of the BMN bosonic sector reads:8

H = Tr
(1

2ΠiΠi − 1
4
[
Xi, Xj

] [
Xi, Xj

]
+ 1

2ν
2XaXa + 1

8ν
2XαXα + ıνεabcX

aXbXc
)

i ∈ {1 . . . 9}, a, b, c ∈ {1, 2, 3}, α ∈ {4 . . . 9}, (4.8)

where Πi are the canonical momenta, Xi the canonical variables, εabc is the Levi-Civitta
tensor, and ν2 > 0 is the mass deformation which also determines the size of the Chern-
Simons deformation (the last term in (4.8)). Following [35], we will study the “mini-BMN”
model with Xα = 0, so we effectively only have three degrees of freedom. The matrices
X1,2,3 and P1,2,3 are N × N matrices. For this example we have to abandon the master
formulas for OTOC (2.2)–(2.3) as it is very difficult to find the quantities cmn — for this
we would have to perform exact diagonalization of the Hamiltonian (4.8). Instead, we
follow [36] and write a truncated system of equations directly for the expectation values
〈Xa〉 and 〈P a〉 and the two-point correlators 〈XaXb〉, 〈ΠaXb〉 and 〈ΠaΠb〉, where the
expectation value is obtained through the trace over the density matrix: 〈Xa〉 ≡ Tr(ρXa).
The equations read (for their derivation see [36]):

∂t〈Xa〉= 1
N
〈Πa〉

1
N
∂t〈Πa〉= 〈Xb〉〈Xb〉〈Xa〉−2〈Xb〉〈Xa〉〈Xb〉+〈Xa〉〈Xb〉〈Xb〉+ν2〈Xa〉+ıνεabc〈Xb〉〈Xc〉+

+
(
Xa〈XbXb〉−〈XbXb〉Xa+Xb〈XaXb〉−〈XaXb〉Xb+ıνεabc〈XbXc〉

)
, (4.9)

where the last line contains the leading quantum corrections: all possible terms with a
single contraction of the classical equation of motion, and the summation over repeated
indices is understood. The equations of motion for the two-point correlators are obtained
again by writing the classical equations of motion for the bilinears ΠaΠb, ΠaXb and XaXb

8Do not confuse with the classical action considered in [33, 35].
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Figure 10. (A) Time dynamics C(t) for the truncated quantum-mechanical mini-BMN model,
with ν = 0.1, 0.3, 0.5, 1.0 (red, black, blue, red), shows the expected pattern of growth followed by
an oscillating plateau. (B) Temperature dependence of the saturated value C∞(T ) for the same
values of ν (blue to red) has the same exp(1/T 2) scaling as the random matrix ensembles. The level
spacing statistics, shown in (C) for ν = 0.5, is indeed quite close to the Gaussian unitary ensemble
(full red curve) and clearly at odds with the Poisson statistics (full black curve), confirming that
this system is within the scope of our random matrix calculation.

and taking all possible single contractions in each term. This yields:

∂t〈XaXb〉 = 1
N

(
〈ΠaXb〉+ 〈XaΠb〉

)
(4.10)

∂t〈ΠaXb〉 = 1
N
〈ΠaΠb〉+N〈XaXb〉〈XcXc〉 −N〈XcXc〉〈XaXb〉+N〈XbXc〉〈XaXc〉−

−N〈XaXc〉〈XbXc〉+ ν2〈XaXb〉 (4.11)
∂t〈ΠaΠb〉 = N〈XaXb〉〈XcXc〉 −N〈XcXc〉〈XaXb〉+N〈XbXc〉〈XaXc〉−

−N〈XaXc〉〈XbXc〉+ ν2〈XaXb〉+ (a↔ b) . (4.12)

As explained in [36], this truncated system is obtained by assuming a Gaussian approximation
for the wavefunctions. Therefore, we solve the truncated quantum dynamics of the mini-
BMN model — essentially a toy model, but it will serve our purpose. Now that we have set
the stage, we can express the kinematic OTOC as C(t) = 〈XaΠb〉 − 〈ΠaXb〉 and study its
dynamics. The outcome is given in figure 10. We are essentially back to the random matrix
regime of section 3 — there is a clear scaling C∞ ∼ exp(1/T 2) (we do not see the other
regime, but again it may well be there for sufficiently high temperatures), and the level
distribution is a near-perfect fit to the Wigner-Dyson curve. Therefore, if a Hamiltonian is
strongly chaotic, then both the level distribution and the OTOC plateau are well described
by the random matrix theory.

5 Discussion and conclusions

In this paper we have formulated a somewhat unexpected indicator of quantum chaos,
useful mainly in few-body (few-degrees-of-freedom) systems. While OTOC has become
the quintessential object in the studies of quantum chaos and information transport,
characterized mainly by its growth rate — the (quantum) Lyapunov exponent, in our
examples its growth pattern tends to be quite nonuniversal and “noisy” (in the sense that
it depends sensitively on the system at hand and the operators we look at). Our analytic
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treatment of OTOC dynamics is quite sketchy, however both analytical and numerical
results strongly suggest there is no clear exponential growth. At first glance, one might
think that this finding is completely at odds with the established wisdom, however this is
not true. In the literature, exponential growth is mainly characteristic for systems with a
classical gravity dual (and reaches its maximum when the dual contains a thermal black
hole horizon). There are abundant examples of quantum chaotic systems which do not have
an exponentially growing OTOC (we especially like [19] but there are many other published
examples). The exponential growth follows, in the AdS/CFT picture, from the shock wave
dynamics in a classical gravity background, and need not exist when the background is
not classical or when the gravity dual does not exist at all. This is precisely what happens
here: the Henon-Heiles Hamiltonian is certainly nothing like a strongly coupled large N
field theory, while the truncated mini-BMN model comes closer (it is actually related to
discretized Yang-Mills) but we tackle it at finite N and thus away from the fast scrambling
dual. For random matrices, our findings for C(t) are in line with the rigorous results of [13].
As pointed out in that work, the crucial difference between random matrices and strongly
coupled field theories is that the former have no notion of locality neither in time nor in
space. In our small systems, the spatial locality is irrelevant anyway but if the system is
not sufficiently chaotic there will still be long-term temporal correlations in dynamics (this
indeed gives rise to different scaling regimes for strong and weak chaos).

On the other hand, what we have found is that the long-time OTOC behavior, when it
becomes essentially stationary, with a complex oscillation pattern, is surprisingly regular —
behaving as exp(1/T 2) and exp(1/T ) respectively in strong and weak chaos. This indicator
seems to have a stronger connection to quantum chaos in the sense of level statistics than
the Lyapunov exponent; in all examples we have studied the exp(1/T 2) regime and the
Wigner-Dyson level distribution go hand in hand. At very high temperatures we detect also
a different regime, when the OTOC plateau grows with temperature. This regime seems
less universal, and we do not understand it very well. One might think that the plateau
value should not carry any useful information; it is often laconically stated that OTOC
reaches saturation when the initial perturbation has spread all over the system and that
this saturation value is unity when OTOC is appropriately normalized. This is roughly
true, however “spreading all over the system” is not a rigorous notion — depending on the
system and the operators A, B in OTOC, the perturbation may never spread completely
due to symmetry constraints, specific initial conditions, quasi-integrals of motion etc. Such
factors are particularly important in finite systems (quantum mechanics as opposed to
quantum field theory) that we study. Looking at the figures, one sees that differences in
the asymptotic OTOC value C∞ tend to be small, and C∞ tends to be about the same to
an order of magnitude in all cases. We conjecture that such differences would dwindle to
zero in the field limit.

A simple intuitive explanation for the falloff of asymptotic OTOC with temperature is
the following: we expect that higher temperatures lead to faster information spreading and
quicker equilibration. Therefore, it is logical that the plateau value will be lower, so that
the system needs less time to reach it, i.e. it needs less time to equilibrate.
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We note in passing that we have confirmed that scrambling can originate from at
least two distinct mechanisms: local instability and chaos, so in the former case the
relation of OTOC to chaos is largeley lost. This is a known fact in many examples
already [6, 7, 9, 16, 26] and we emphasize it here merely as a reminder to the reader that
the OTOC-chaos connection is really a relation of three elements: OTOC-scrambling-chaos,
and if the second link is missing no attempt should be made to understand chaotic dynamics
from OTOC.

We conclude with some speculations. The OTOC plateau value, as we found, is a
rather universal function of temperature, and it is essentially a finite-size fluctuation of the
correlation function, when the system is small enough that the relative size of fluctuations
does not go to zero. We may then look for universality and the connections to chaotic
dynamics in other similar quantities, e.g. the average fluctuation of the expectation value of
some operator during thermalization. Such a quantity remains nonzero also in AdS/CFT at
large N , and may relate our results to the more familiar fast scrambling, strongly correlated
holographic systems.
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A Detailed structure and calculation of OTOC for Gaussian orthogonal
ensembles

In this appendix we consider the calculation of OTOC for random matrix systems in some
more detail, and describe the detailed structure of the correlation function C(t). Let us
first denote, for the sake of brevity:∑

tot
≡
∑
n,m

∑
k,k′

∑
i1,i2

∑
j1,j2

∑
i′1,i
′
2

∑
j′1,j
′
2

, C ≡ ckj1 . . . c
m
j′2
.

Denote also the products of matrix elements of the operators A,B entering the expres-
sion (3.4) by χ1, χ2, χ3, χ4. Now the expression for 〈C(t)〉 can be written as:

〈C(t)〉 =
∑
tot

∫
P ({c})dN2{c}

∫
P({E})dNEe−βEnC

×
(
χ1e

i(Ek′−Ek)t + . . .+ χ4e
i(Em+En−Ek′−Ek)t

)
(A.1)

As we have noticed in the main text, the integral over C yields just a numerical constant. Let
us therefore evaluate the energy integral I1 =

∫
dN{E}P({E})e−βEnχ1e

i(Ek′−Ek)t. We have:

I1 =
∫ ∫
· · ·
∫
dEn

∫
dEk

∫
dEk′P({E})e−βEn × χ1e

ı(Ek′−Ek)t. (A.2)
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The absolute values of the differences can be written out in the obvious way:∏
n<m

|En − Em| =
∑
i

(−1)π(i)E
α1,i
1 E

α2,i
2 . . . E

αN,i
N , (A.3)

where all αi,j are some (positive) integer exponents and π(i) is the appropriate sign factor
0 or 1. Therefore, I1 can be reorganized as:

I1 =
∑
j

χ1
∏

i 6=n,k,k′

∫
E
αi,j
i e−E

2
i dEi

∫
dEne

−βEne−E
2
n

∫
dEke

iEk′ te−E
2
k′

∫
dEke

−iEkte−E
2
k .

(A.4)
Note that the part

∏
n<m |En − Em|, is not essential for the general behavior, since the

singular integral
∫
E
αi,j
i e−E

2
i dEi is either some constant (if α is even), or zero if α is odd.

Otherwise for i 6= j ∫ ∏
l<i<l′

Eie
−E2

j dEj = const.×
∏

l<i<l′

Ei. (A.5)

Therefore, we only focus on calculating integrals of the form∫
dEn

∫
dEk

∫
dEk′e

−βEn × e−E
2
n−E2

k−E
2
k′χ1e

i(Ek′−Ek)t, (A.6)

which yields the closed-form expression for the temperature dependence of I1:

I1 ∼ δk,k′eβ
2/4 +

(
1− δk,k′

)
eβ

2/4e−t
2/2., (A.7)

where δk,k′ is the Kronecker delta, reminding us that the main contribution comes from the
terms with Ek = Ek′ which generically means k = k′. It is clear that a similar calculation
holds for the other parts of 〈C(t)〉. This produces the temperature scaling found in the
main text for random matrices, of the form 〈C(t)〉 ∼ e1/4T 2 . But the time dependence is
more complicated. In order to see this, we look at the structure of the polynomial factors
in I1 in some more detail. We see immediately that 〈C(t)〉 will also have dependence on
t2n, βn. Start from ∫

Eαii e
−iEite−E

2
i dEi = e−t

2/4
∫

(u− it/2)αie−u2
du, (A.8)

where Ei = u − it/2. Let us look at two cases: αi even and αi odd. For any αi the
polynomial will have the form:

(u− it/2)αi =
αi∑
j=0

γju
j(it/2)αi−j . (A.9)

Assume first that αi is even. This means that j and αi − j are of same parity. For even
j the Gaussian integral evaluates to some constant, but we will also have the prefactor
of (it/2)αi−j , for all even j ≤ αi. The odd powers (j odd) will disappear because of the
symmetric domain of integration. For αi odd, j and αi − j will be of different parity so
again, only even j give a nonzero integral. In conclusion, the integral (A.6) with polynomial
prefactors included will have the form:∫

Eαii e
−iEite−E

2
i dEi = e−t

2/4Q(t2n), (A.10)
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where Q(t2n) is a real polynomial depending on even powers of t, and 2n ≤ αi. Alternatively,
for αi odd, we get: ∫

Eαii e
−iEite−E

2
i dEi = ıe−t

2/4R(t2n+1), (A.11)

where R(t2n+1) is a real polynomial depending on odd powers of t, and 2n + 1 ≤ αi.
Analogous logic holds for the β dependence. Now we look back at I1:

I1 = const.
∫
Eαnn dEn

∫
Eαkk dEk

∫
E
αk′
k′ dEk′e

−βEn × e−E
2
n−E2

k−E
2
k′χ1e

i(Ek′−Ek)t. (A.12)

When we write out the products of energies, we have the following types of monomials in
the resulting polynomial:

1. QQU

2. QRU

3. QQV

4. QRV ,

with the prefactor δk,k′e−t
2/2eβ

2/4. Here, Q,R are polynomials of t and are U/V are
polynomials of even/odd powers of β respectively. Note however that QR and RQ give the
same structure after integration.

The other integral appearing when writing out the master formula for OTOC is

Kn =
∫
Eαnn e−βEne−iEnte−E

2
ndEn. (A.13)

According to the same logic as for I1, it is not hard to get the equivalent form of Kn (leaving
out the exponentially decaying terms):

Kn = eβ
2/4eıβt/2

∫ ∑
j

γju
j(β/2 + it/2)αn−je−u2

du. (A.14)

Now we will use the fact that OTOC is a real function, as we can see also from the
definition (2.2). Therefore, all imaginary parts must vanish. From this fact we reach a few
important conclusions:

1. In the structure of I1, the combination QR is impossible, thus we will only have
polynomials of t with an even exponent, and no restriction for polynomials of β as it
is a real integral, and no term has to vanish.

2. In the structure of Kn, when we have the factor cos(βt/2), only even powers of t and
arbitrary powers of β can survive.

3. In the structure of Kn when we have the factor sin(βt/2), only odd powers of t and
arbitrary powers of β can survive.

– 23 –



J
H
E
P
0
5
(
2
0
2
2
)
0
2
3

The conclusion of the above analysis gives us a rough idea of what the 〈C(t)〉 looks like:

〈C(t)〉 = e
β2
4 W0(σβ) + e

β2
4

(
cos

(
βt

2

)
Q
(
t2n
)
W1(σβ) + sin

(
βt

2

)
R
(
t2n+1

)
W2 (βn)

)
,

(A.15)
where W0,W1,W2 are arbitrary polynomials of β. This is the form found also in the main
text, with the exception that in the main text we have rescaled the combination βt as βt/σ2

in order to have a dimensionless expression.

A.1 The large matrix limit

In the limit N −→∞ we can say more on the structure of OTOC. We can first schematically
rewrite (A.15) together with any exponentially suppressed corrections as

〈C(t)〉 = e
β2
4 Q

(
t2n
)
W (σβ)

(
L1 + L2e

−t2/2
)
. (A.16)

Here we have first absorbed all time and β dependence of (A.15) into the functions Q and
W respectively, and then we have included the exponentially suppressed correction coming
from the k 6= k′ terms in the integrals I1 and Kn. By L1, L2 we denote the constant (time-
and temperature-independent) factors. In general one can write L1 as

L1 =
N∑
j=1

j∑
i=0

ci

(
j

i

)
(A.17)

We can easily estimate the second sum. Namely, j∑
i=0

ci

(
j

i

)2

≤
( j∑
i=0

c2
i

) j∑
i=0

(
j

i

)2
 , (A.18)

by the Cauchy-Schwarz-Bunyakovski inequality. Next, the well known formula
∑j
i=0

(j
i

)2 =(2j
j

)
yields

j∑
i=0

ci

(
j

i

)
≤ const.×

√√√√(2j
j

)
. (A.19)

To get rid of the binomial coefficient we will use the Stirling’s formula and get√√√√(2j
j

)
=
√

(2j)!
j!j! ≈

√√√√√√4πj (2j)2j

e2j

2πj (jj)2

(ej)2

≈ const.× 2j

j1/4 . (A.20)

Finally we reach the result:

L1 ≈ const.×
N∑
j=1

2j

j1/4 ≈ const.× 2N+1

N1/4 , (A.21)

for N −→∞. Exactly the same logic goes for L2.
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In the large matrix limit it is possible to show explicitly what we know has to happen:
OTOC reaches a plateau. Looking at (A.16), the condition to reach the plateau for times
longer than some scale t0 is

e
−t2

2 Q(t2n)
(
L1 + L2e

−t2/2
)

= const. t > t0. (A.22)

It is more convenient to look at the forms given in (A.15). First let us look at the condition
Q(t2n) = const.× et2/2. The exponential term can be represented as a series; equating it
with Q(t2n) we get ∑

j

αjt
2j = const.×

∑
j

t2j

2jj! , (A.23)

thus, we need αj ∼ 1
2jj! , which we know is the case from (A.9). For the second term the

situation is similar: ∑
j

βjt
2j = const.×

∑
j

t2j

j! , (A.24)

so we need to have βj ∼ 1
j! ; this is true by cos(βt/2) = Q(t2n)W (β2n) and sin(βt/2) =

Q(t2n+1)W (β2n+1), since the terms in the Taylor expansions of the left-hand sides behave
as ∼ 1

j! .
We can also look at the opposite limit in which t −→ 0. Let us rearrange (A.16):

〈C(t)〉 = L′1Q(t2n)e−t2/2 + L′2Q(t2n)e−t2 . (A.25)

Now, simply using the definition of Q and expanding into a series we get:

〈C(t)〉 = L′1

(
1− t2

2 + o
(
t4
))(

qo + q1t
2
)

+ L′2

(
1− t2 + o

(
t4
)) (

qo + q1t
2
)
. (A.26)

After some algebra we get:

〈C(t)〉 = Q0 +Q1t
2 +Q2t

4 + o
(
t4
)

= P (t). (A.27)

We see now that OTOC behaves in a very simple way for early times; this expansion is also
consistent with the result (3.16) of [13].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction

The factorization problem in gravity and holography has come into the spotlight with
the discovery of replica wormholes, entanglement islands and the path they open toward
a possible solution of the black hole information paradox [1–3]. It also resonates with
the general growth of knowledge in quantum information and its relation to black holes,
scrambling [4–6] and quantum chaos [7, 8]. Stated simply, the puzzle lies in the fact that
the spacetime (Euclidean)1 wormholes constructed in [1, 2], which are crucial to save the
Page curve and the unitarity of black hole evaporation, imply that the partition function

1Usually, the literature speaks of spacetime=Euclidean wormholes versus spatial=Lorentzian wormholes.
But to be precise, Euclidean vs. Lorentzian signature is just a matter of choice, the true difference is between
spatial wormholes which act as bridges of Kip Thorne style, and spacetime wormholes considered in this
paper and in most works on factorization and averaging, which affect also the time direction. Therefore,
even though the latter are usually considered in Euclidean time (also in this paper), one could also study
them in Lorentzian signature. But one should still bear in mind that Euclidean/Lorentzian wormholes is the
term often used in the literature, meaning really spacetime/ spatial wormholes.

– 1 –
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of two copies (two replicas) of a gravitating system does not equal the square of a single-
replica partition function: Z2

1grav 6= Z2grav. But at least in asymptoticlly anti-de-Sitter
(AdS) geometries this contradicts the field theory intuition that the partition function of
two identical decoupled systems should always factorize: Z2

1CFT = Z2CFT. The way out
proposed in several works [9–13] is that holography performs some kind of averaging or
coarse-graning so that the dual CFT partition function is really an expectation value over
some distribution:

〈Z1CFT〉2 6= 〈Z2CFT〉. (1.1)

In this case, the nonfactorization ceases being a puzzle — of course there is no reason
that expectation values factorize. The averaging could in principle be carried over disorder
(“explicit”) or it could really be some kind of self-averaging in a chaotic system, i.e. some
kind of coarse-graning.

A prototypical framework for explicit averaging is the Sachdev-Ye-Kitaev (SYK) model,
featuring a system of Majorana fermions with all-to-all coupling, the coupling strengths being
a quenched random variable. In a certain regime, this system is dual to gravity in AdS2 [14],
making it perfect for studying the factorization problem. A simplified version — SYK model
in a single time point — was analyzed in [12, 15] and the outcome is very pleasing: although
the wormhole configurations (which couple different replicas) are non-factorizing, there are
additional solutions, dubbed half-wormholes, which restore the factorization; half-wormholes
depend strongly on the choice of microscopic couplings. A similar picture was found to
hold also in other systems like tensor models, random matrices and the two-site SYK
model [16–19]. In [20–22] the traversable spatial (“Lorentzian”) wormholes have also been
related to field theories averaged over the states or over the operators, starting, as could be
expected, from thermofield-dynamics (TFD)-like states. Some recent generalizations are
found in [23–26] and in particular in [27], where the authors find that nonlocally interacting
bulk branes in 2D gravity provide a mechanism which restores factorization in absence of
any explicit disorder.

Our goal is to understand these workings of (half)wormholes in systems with an
ensemble average but directly in quantum gravity, not in a field theory like SYK or a matrix
model. The puzzle is now the following: is the averaging an operation which is somehow
“automatically” performed specifically by holography, or we can perform it in a gravitating
system directly, without any reference to the dual field theory (or for gravitating systems
which have no dual CFT at all)? We will take a quantum gravity model (specifically the
IIB string theory matrix model) and construct wormholes and half-wormholes by averaging
over suitably chosen “quenched” degrees of freedom, thus repeating the logic of [9, 12, 15–
17, 28, 29] but directly in gravity. Therefore, we mainly aim to understand factorization as
such, not specifically in the context of AdS/CFT. But we will also discuss how one can
make contact with AdS/CFT, by introducing a non-flat background metric; this is merely a
first step and a full-fledged application of our findings to holography will be a subject of
future work.

The arena for our work on wormholes and factorization is the model by Ishibashi,
Kawai, Kitazawa and Tsuchiya (IKKT), proposed and developed in [30–33]. Like other
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matrix models of string and M theory (see [34, 35] for a review), it is potentially capable
of providing a nonperturbative description of string theory, including D-branes and other
deep quantum effects, which are beyond the scope of old-style perturbative string theory.
On the other hand, as a matrix model, the IKKT system allows the explicit computation of
observables and partition functions in a controlled way, and it has a lot in common with
matrix models in field theory. In fact, in a certain limit the system we study can also be
thought of as ten-dimensional Yang-Mills field theory with a quenched background field
configuration [36, 37]. This makes our results relevant in principle also in the field theory
context, and highlights that the formal workings of (non)factorization of partition functions
are in a sense quite technical and independent of many physical details of the system.

Another important point is that the IKKT model is well-defined both in Lorentzian
and Euclidean signature. While the latter is more convenient when studying the landscape
of saddle-point solutions, as we can define a partition function in terms of the Euclidean
action SE in the usual way as Z =

∫
exp(−SE), the former is more frequently studied in the

literature, as the amplitude A =
∫

exp(−ıSL) of the Lorentzian action SL is always real; this
is not the case for the partition function when the fermionic excitations are turned on. For
example, the Lorentzian dynamics was argued to explain the effective 3+1-dimensionality
of spacetime and other cosmologically relevant issues in [38–42]. We have opted for the
Euclidean model so we can readily read off the free energy and determine which of the
wormhole and half-wormhole solutions are thermodynamically prefered, but the reader
should bear in mind that this is just a matter of convenience (see also the first footnote).

With some hindsight, we can say that a picture rather similar to the wormhole/half-
wormhole story in SYK and similar models will emerge here. We have not found a single
case where the factorization of 〈Zn〉 is not restored already at leading order in perturbation
theory for n ≥ 4, although there are cases where the factorization is violated for n = 2. In
some cases the factorization is trivial (when the averaged value 〈Zn〉 is at leading order
just the product of n copies of the leading-order estimate for 〈Z〉), and sometimes it is
nontrivial, in the sense that it cannot be written in terms of 〈Z〉 contributions only. This
distinction is interesting and depends on the geometry of the D-brane configuration. All of
this is happening in (discretized) string theory, without any reference to holographic duality
(although of course, one expects that the nonperturbative IKKT model implicitly knows
about the duality).

As a final word of caution, one should bear in mind that more general wormhole
configurations exist which are not necessarily all related to averaging, see, e.g. [44–47]
and the recent insights of [48]. There is actually a very general geometric perspective
on wormhole solutions, which works also in quantum mechanics (not only field theory),
resting on the symplectic structure of the Hamiltonian dynamics [49]; this likewise suggests
Euclidean wormholes to be more general than the averaging-induced configurations in
this paper.

1.1 The sharp question

After all this talk, we are ready to formulate in a sharp way the main question of the paper
— if the fluctuations of the D-brane solutions to the IKKT model factorize when averaged
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over the background fields. Factorization means that n replicas of the system behave in
the same way as n independent copies. In precise language, this says that the averaged
partition functions satisfy 〈Zn〉 ∼ 〈Z〉n. A related concept is self-averaging. Self-averaging
means that the expectation value of 〈Zn〉 is “close” to a “typical” Zn value for some generic
realization of the quenched variables (brane matrices). In precise language, denoting the
quenched variables by λ, self-averaging is formulated as

〈Zn(λ)〉 ∼ Zn
(√
〈λ2〉

)
. (1.2)

The above means simply that the average over all λ values produces the same result at
leading order as the value for an average λ; the reason we take the square root of 〈λ2〉 and
not simply 〈λ〉 is that the latter is often zero (λ will often have a symmetric distribution).

The outline of the paper is the following. In section 2 we sum up the essential physics
of D-branes in the type IIB matrix model and define the quenched approximation, setting
the stage for the main work. Sections 3 and 4 contain the core of the paper: we find
saddle-point solutions of Zn, 〈Zn〉 and 〈Z〉n and discuss their factorization properties, first
for a simple, single-D-string configuration and then for interacting D-strings. Section 5
sums up the conclusions. In appendix A we show that a technical simplification made
in the paper (putting the background fermions to zero) does not lead to any qualitative
changes in our results. In appendix B we demonstrate another important technical point
(that the conclusions do not depend qualitatively on whether the eigenvalue distribution is
Gaussian or uniform). Finally, in appendix C we discuss how the reasoning of this paper
could be applied specifically to the factorization puzzle of holography, in asymptotically
AdS backgrounds.

2 Setup: D-brane configurations in the IKKT model

Let us start from the action of the type IIB matrix model, as found by Ishibashi, Kawai,
Kitazawa and Tsuchiya [30, 31] by discretizing the Schild action for IIB superstrings:

S = −Tr
(1

4 [Xµ, Xν ]2 + 1
2Ψ̄αΓµ [Xµ,Ψα]

)
. (2.1)

Here, µ = 1, . . . 10 are the spacetime (target space) dimensions and α = 1, . . . 16 counts the
Majorana-Weyl fermions. The gamma matrices are then 16× 16 matrices. Both the scalars
and the spinors are N ×N Hermitian matrices. The size N is also dynamic, corresponding
to the auxiliary field g in the Schild action (see e.g. [34]). However, we will always work
with fixed and large N , assuming as usual that the partition function is strongly dominated
by a single saddle point at some N . For this reason there is no sum over N in the partition
functions throughout the paper.

The equations of motion follow from (2.1):

[Xµ, [Xµ, Xν ]] = 0, [Xµ, (ΓµΨ)α] = 0. (2.2)

We work in the Euclidean signature, hence the spacetime metric is ηµν = diag(1, . . . 1) and
we do not need to differentiate between up and down indices. The partition function is now
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given in the usual way

Z =
∑
N

∫
D[Xµ]

∫
D[Ψα]

∫
D[Ψ̄α] exp (−S) . (2.3)

When only the bosonic degrees of freedom are excited, the above partition function is positive
definite. If, however, the fermionic matrices Ψ are also nonzero, then their contribution to
the path integral (the Pfaffian) is complex in Euclidean signature.2 Therefore, we will need
to be careful in interpreting the results when we turn on also the Ψ fields.

Now let us remember how Dp branes show up in the matrix model. What follows
is a resume of the crucial aspects of brane solutions from [30, 34, 37]. Type IIB string
theory admits Dp branes with p odd, starting from p = −1, i.e. D-instantons. Taking
D-instantons as elementary degrees of freedom, we can write any configuration of size N as
a superposition of N D-instantons at coordinates λj , j = 1, . . . N . For a general Dp brane,
the BPS condition and equations of motion from the action (2.1) lead to solutions Xµ = Aµ
for the bosonic part, with Aµ of the form:3

Aµ =
(
L1
2πq1,

L2
2πk1, . . .

L2i−1
2π q(p+1)/2,

L2i
2π k(p+1)/2, 0 . . . , 0

)
, [qi, ki] ≡ ωiI = ı

L2i−1L2i
2πN2/(p+1) I.

(2.4)
Here qi and ki are random Hermitian matrices with the eigenvalues λ(qi)

j and λ(ki)
j (of course,

p+ 1 ≤ 10), and Lµ (µ = 1 . . . p+ 1) are the compactification radii of the coordinates Xµ.
The commutators ωi have the meaning of ~, and ωi → 0 corresponds to the classical limit —
in this case qi and ki are just any commuting Hermitian matrices, describing the moduli
of the theory. Multi-brane configurations are described by block-diagonal matrices qi, ki
with Mp blocks of size N ×N for Mp branes Dp. We will specialize to configurations of
two D-strings as this suffices to discuss the factorization. The solution to the equations
of motion (2.2) which corresponds to two strings at distance `, with angle 2θ between the
strings, reads [30]:

A0 =
(
q 0
0 q

)
, A1 =

(
p cos θ 0

0 p cos θ

)
, A2 =

(
`
2 0
0 − `

2

)
, A3 =

(
−p sin θ 0

0 p sin θ

)

A4 = . . . = A10 = 0, [p, q] = ı
L2

2πN I. (2.5)

For θ = 0 (θ = π) we get two parallel (antiparallel) strings, and for ` = 0 the strings cross.
Parallel D-branes (including D-strings), with θ = 0, are a special case: they are BPS states
with zero on-shell action. This will be important as the properties and mechanisms of
factorization differ between the BPS and the interacting case.

2This is not a problem by itself. Indeed, there lies the mechanism of the SO(10) symmetry breaking
studied in [50, 51] in the context of the origin of the four-dimensionality of the spacetime.

3From now on, I always denotes the N ×N unit matrix. If we need the unit matrix of a different size
N ′, we will write it explicitly as IN′×N′ .
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2.1 The background-field regime and the quenched regime of the IKKT model

In the semiclassical regime one can study the fluctuations aµ around the classical geometry
described by matrices Aµ from (2.4) or (2.5):

Xµ = Aµ + aµ, Ψα = ψα, (2.6)

where we have taken into account that the background configuration of the fermions is
Ψα = 0. This spoils the supersymmetry and non-renormalization results, but does not
change the essence of our conclusions; indeed, in the large N limit this is physically justified
as the fermions are large-N suppressed anyway.4 In appendix A we redo the main calculation
of the paper in the presence of nonzero background Ψα and show that the outcome is
essentially the same, though different in quantitative details of the solution. In the classical
(commuting) regime, the matrices Aµ can be diagonalized simultaneously, their eigenvalues
having the role of locations of D-instantons. In applications to D-brane dynamics and other
nonperturbative string theory phenomena, as well as gravity and the dynamics of spacetime
dimensions, the natural viewpoint is the background field approach, i.e. to integrate out the
quantum fluctuations aµ, ψα and study the effective semiclassical action for the diagonal
matrices Aµ.

The opposite limit is the quenched IKKT model of [37], where the moduli Aµ are
considered as fixed backgrounds and not integrated over. Now aµ (and ψα, if turned on)
are “dynamical” variables, and Aµ are quenched, so the partition function Z is tied to
a specific realization of Aµ. This approach is natural if we want to study the quantum
dynamics of perturbative string excitations in a given geometry. It can also be interpreted
in the context of the Eguchi-Kawai finding [36] that the Lagrangian of the Yang-Mills gauge
theory in the large N limit loses the derivative terms and reduces just to (2.1). In that
context the dynamics of aµ and ψα is basically the dynamics of a Yang-Mills system in
the presence of quenched disorder.5 In other words, the fields Aµ play the same role as
disorder in the SYK and similar models, describing on one hand a prototypical strongly
interacting large N field theory and on the other hand string theory in deep nonperturbative
regime. This is our motivation to study the quenched IKKT model. Furthermore, AdS/CFT
suggests that the background-field limit and the quenched limit show different aspects of
the same physics — the Eguchi-Kawai system must have a dual description in terms of
D-brane stacks. Therefore, the quenched IKKT model is a robust system of equations with
several important physical aspects and should provide us an excellent testing ground for the
factorization puzzle. From now on, we will denote the non-averaged quantities by ordinary
letters, e.g. Z for the partition function, and the quantities averaged over the realizations

4Another way to say this is that the fermionic background can be put to zero in the semiclassical limit.
Our general formalism is not limited to the semiclassical regime, but the physical picture does become
simpler in that case, as we can interpret the matrix entries as spacetime coordinates of the constituent
D-instantons making the D-brane. Such approximation is also exploited for similar reasons in some of the
original IKKT papers [30, 32].

5The equivalence is not complete, as the quenched IKKT model contains zero modes, from the terms
which couple aµ and ψα; such terms do not exist in the large-N Yang-Mills theory. However, at leading —
quadratic — order such terms vanish also in the quenched IKKT model (see eqs. (2.8)–(2.9)).
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of the quenched variables Aµ will be denoted as expectation values, inside angular brackets,
e.g. 〈Z〉.

Let us now write the IKKT action (2.1) in terms of the background field Aµ and the
fluctuations aµ, ψα, as in (2.6). The quadratic (S2) and quartic (S4) contributions in aµ
and ψα read:

S = S2 + S4 (2.7)

S2 = Tr
[
−1

4aµ
(
P 2δµν + 2Fµν

)
aν + ψ̄α /Pψα − c̄P 2c

]
, (2.8)

S4 = Tr
[
ψ̄α/aψα − 2 (Pµaµ) (aνaν)− 1

2 [aµ, aν ] [aµ, aν ]
]
, (2.9)

where we have introduced the superoperators Pµ and Fµν , acting on matrices as

Pµ ≡ [Aµ, ·] , Fµν = [[Aµ, Aν ] , ·] , P 2 = PµP
µ. (2.10)

We will also sometimes use the matrix fµν ≡ [Aµ, Aν ]. Finally, c in (2.8) is the ghost field
arising from the Faddeev-Popov ghost action. BPS states have fµν = const.×I with I being
the unit matrix or, equivalently, Fµν = 0; in that case the on-shell action vanishes, one-loop
quantum corrections are absent and the eigenvalues of Aµ remain uniformly distributed.

As we explained, for our purposes it is enough to focus on the bosonic sector and put
the background fermionic matrices to zero: Ψα = 0. This is always a consistent (if not fully
generic) solution of the equations of motion, and it simplifies the calculations significantly.
Bose-only backgrounds always give real action but they are obviously not protected by
supersymmetry so even if Fµν = 0 there will be a logarithmic attraction of the eigenvalues
as there is no fermionic sector to cancel the determinant from the bosonic path integral;
however it remains (trivially) true that the solutions with Fµν = 0 describe a non-interacting
configuration (in the Eguchi-Kawai picture, the field strength is zero). In general, even in
zero fermionic background there are still nonzero fermionic fluctuations ψα. As a special
case, we can turn off these too: ψα = 0. In that case only the first term in (2.8) is nonzero,
and in (2.9) the second and the third term remain nonzero. We will consider this special
case as a warmup but will always include also the fermionic fluctuations ψα in the end.

3 Replicas and factorization for a single D-string

Now that we have set up the formal framework, we can explore the main question of
the paper: how do the partition functions of D-branes in the quenched IKKT model
factorize? From now on, we will specialize to D-strings as the whole story remains the
same for higher-dimensional branes. In this section we give a detailed calculation for a
single bosonic D-string, so the reader can get acquainted with the basic algorithm on the
simplest example. Afterwards it will be straightforward to redo the calculation for the more
interesting configurations of interacting strings.

3.1 Single copy — direct calculation

As we know [34], the background fields Aµ representing a D-brane are described by random
Hermitian matrices p, q which, according to (2.4), satisfy the commutation relation (putting
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L1 = L2 ≡ L):

[p, q] = ω = L2

2πN I. (3.1)

This is a BPS state (although we do not see the supersymmetry when we put Ψα = 0) with
f21 = −f12 = ω and Fµν = 0. The eigenvalues λiµ (µ = 1, 2, i = 1 . . . N) are distributed in
the interval −L ≤ λi ≤ L. Unlike the typical choice in the IKKT model literature, where
the compactification radii Lµ define the hard cutoffs of the distribution, we adopt — solely
for computational reasons — a soft cutoff with the Gaussian distribution of eigenvalues
(Gaussian Unitary Ensemble) for Aµ so the width of the Gaussian equals Lµ. Our choice is
unusual but on one hand it is no less physical (indeed, a hard cutoff is more of an idealization
than a continuous Gaussian tail) and on the other hand more convenient for calculations.
However, we emphasize that nothing changes qualitatively even when we return to hard
cutoffs — in appendix B we show this explicitly, redoing the calculations with hard cutoff
regularization.

From (2.3) we now have the following form for the partition function in the non-averaged
and in the averaged form, respectively:

Z =
∫
D[aµ]e−S(aµ;Aµ) (3.2)

〈Z〉 =
∫
D[Aµ]

∫
D[aµ]e−S(aµ;Aµ)P(Aµ) =

∫
D[aµ]

∫
d2Nλiµe

−S(aµ;λiµ)− 1
2L2 λ

i
µλ

µi

.

(3.3)

In the second equality, we have expressed Aµ in terms of its eigenvalues λiµ and likewise
the Gaussian measure (regulator) P is written out explicitly in terms of the width of the
distribution L, as −λµλµ/2L2. Now we want to write out the action in (3.3) in terms
of matrices A0 = p and A1 = q. It is easiest to diagonalize the matrices and work in
the eigenbases. Then we have Aµ = diag(λµ1 , . . . λ

µ
N ). The superoperators Pµ are now

represented as6

P1 = q ⊗ I − I ⊗ q, (P1)ijkl = qikδjl − qjlδik
P2 = k ⊗ I − I ⊗ k, (P2)ijkl = kikδjl − kjlδik . (3.4)

However, since the canonical momentum and the conjugate coordinate do not commute, we
cannot assume both matrices to be diagonal at the same time, i.e. in the same basis. The
above representation (3.4) takes each Pµ in its own eigenbasis. In order to give the reader a
clearer intuitive grasp, we can list a few supermatrix elements, say for P1:

(P1)11 =


0 p12 . . . p1N
p21 p22 − p11 . . . p2N
. . . . . . . . . . . .

pN1 pN2 . . . pNN − p11


(P1)12 = diag(−p12, . . .− p12), (P1)1N = diag(−p1N , . . .− p1N )

6Superoperators act on N ×N matrices, hence they are strictly speaking the Kronecker products of two
N ×N matrices. For convenience, we write them simply as N2 ×N2 matrices.
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. . .

(P1)21 = diag(−p21, . . .− p21), (P1)22 =


p11 − p22 p12 . . . p1N
p21 0 . . . p2N
. . . . . . . . . . . .

pN1 pN2 . . . pNN − p22


(P1)N,N−1 = diag(−pN,N−1, . . .− pN,N−1)

(P1)NN =


p11 − pNN p12 . . . p1N

p21 p22 − pNN . . . p2N
. . . . . . . . . . . .

pN1 . . . pN,N−1 − pNN 0

 . (3.5)

Averaging over the quenched variables now requires either adopting a single basis and
transforming all Pµ but one (say P1) from the form (3.4) to this fixed basis, or keeping
each Pµ in its own eigenbasis — but then we have to divide the integral measure by the
volume of the unitary matrices that transform each supermatrix to its eigenbasis. The
latter is more convenient, and it gives rise to the eigenvalue attraction term. Plugging in
the representation (3.4) into Z from (3.3) and taking into account the basis change we get

〈Z〉 =
∫
D[aµ]

∫
d2NλµiΠi<j (λµi − λµj)2 exp

[
−1

4a
†
µij

(
λ2
µi + λ2

µj

)
aµklδjkδil −

1
2L2λ

2
µi

]
=
∫
D[aµ]e−W1 , W1 = 1

2
∑
µ

log det
(
I

L2
µ

+ 2a†µaµ − 2ITra†µaµ

)
. (3.6)

We have introduced the effective macroscopic action W1 akin to the thermodynamic free
energy. The first line in (3.6) is obtained by inserting the matrix representations for P into
the general expression (3.3) taking into account the basic change (see e.g. [32]), and the
final expression for W1 in the second line comes from performing the Gaussian integral
over λµi and the second-order expansion of the determinant in small a†a and 1/L2N . Since
the partition function is not a power-law function of a and a†, the series expansion has
correlation functions a†a . . . a†a of arbitrarily high order. Their meaning is better grasped
in the collective field formalism that we introduce in the next subsection.

3.2 Collective fields and replicas

3.2.1 Warmup: single partition function again

The time is ripe to introduce the collective fields. We follow the formalism of [12, 15, 17] and
largely adopt the notation of [12]. The idea is the following: we define a bilinear operator g
as being equal to the current a†a. We impose this equality as a constraint through the Dirac
delta functional, and finally replace the a†a-dependent terms by the appropriate functionals
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of the bilinear:7

〈Z〉=
∫
D[a]

∫
D[g]

∫
dλexp

[
−1

2Tra†P 2a−
2
(
Trg−Tra†a

)
L2N−2

]
δ
(
g−a†a

)
P(λ)

=
∫
D[a]

∫
D[g]

∫
D[s]

∫
dλexp

[
−1

2Tra†P 2a−
2
(
Trg−Tra†a

)
L2N−2 −ıTr

[
s†
(
g−a†a

)]]
P(λ)

=
∫
D[a]

∫
D[g]

∫
D[s]

2NπN2 exp
[
− 1

2 logdet
(
I

L2 +2a†a−2ITra†a
)
−

2
(
Trg−Tra†a

)
L2N−2

−ıTr
[
s†
(
g−a†a

)]]
∼
∫
D[g]

∫
D[s]

2NπN2 exp
[
−1

2 logdets−ıTrs†g− 2
L2N−2 Trg

]
. (3.7)

In the first line, we have inserted into the effective action the term proportional to Trg−Tra†a
which, at leading order in a†a, equals zero on-shell, i.e. when the constraint g = a†a is
obeyed. In the second line, we have implemented the Dirac delta in the usual way, through
the auxiliary field s, and in the third line we have averaged over the eigenvalues of the
quenched coordinates λ. Notice how the inserted “zero term” precisely cancels all a†, a
dependence after averaging, which was of course the reason to introduce it in the first
place. Again, this only holds at leading order in the a-fields and 1/LN . This is important —
all our calculations are perturbative (unlike the simpler SYK quantum mechanics where
the collective fields can be introduced in an exact way); for example, the last line in (3.7)
holds at the order O

((
a†a

)4
)

+O(1/L4N ). We will not write explicitly such higher-order
remainders. Higher order terms could be taken into account perturbatively, by introducing
additional collective fields and eventually closing the series by expressing the l + 1-st order
terms in terms of the loop integrals over the l-th and lower order terms. We will do this
explictily for the 〈Z2〉 calculation, when it will be necessary to get anything nontrivial. For
now, let us stay at the lowest order.

Now we can look for the saddle-point solutions of the effective action W1 defined by
the last line in (3.7) in the same way as in (3.6), through W1 ≡ − log〈Z〉:

∂W1
∂g

= 2
L2N−2 I + ıs = 0, ∂W1

∂s
= ıg + 1

2
(
s−1

)T
= 0

s = 2ı
L2N−2 I, g = L2N−2

4 I. (3.8)

Here, I is the N ×N unit matrix as usual. The solution (3.8) is unique.
The important conclusion is that the nonzero solution (3.8) consists of scalar matrices

which scale as L2N−2, and inserting them into W1 yields

W1|on−shell ∼ (N2 −N) logL+ N

2 log 2. (3.9)

Here and in the future we routinely disregard the contributions which go to zero when
N → ∞ or L → ∞; we will only write them in a few special occasions when we want

7For the sake of brevity we leave out the spatial indices µ, ν etc. from now on. We will only write them
when leaving them out could lead to confusion.
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to emphasize that some part of the partition function contributes only negligible terms.
One can check that the same value follows from the expression (3.6) after we solve the
saddle-point equation for aµ. We will compare this value with the on-shell value of the
effective action for 〈Z2〉 to check for factorization. One final remark: there is always a
sum over the spacetime coordinate µ (in general µ = 1, . . . 2p, in our case µ = 1, 2), hence
W1 from (3.9) is really multipled by 2 (2p for a general Dp brane). But we do not write
this factor explicitly in order not to clutter the notation; our W1 (and similar for the
two- and four-replica actions W2 and W4 we are yet to compute) is really the effective
action per spacetime dimension (and since we work in Euclidean signature all dimensions
are equivalent).

3.2.2 Double and quadruple partition function

Now that we have the averaged partition function 〈Z〉 for a D-brane, our question is: does
the replicated partition function 〈Z2〉 factorize? With two copies (replicas), the collective
fields show their true meaning. The replicated partition function is8

Z2 =
∫
D[a] exp

[
−Tr

(
2λi

(
a†AaA

)
λi + I

2L2λ
2
i

)]
, (3.10)

where now we have the left and right replicas, denoted by the indices A,B, . . . taking values
L or R. The fun part is the averaged function 〈Z2〉:

〈Z2〉=
∫
D[a]

∫
D[g]

∫
D[s]
2π

∫
dλe−

1
2 Tra†AP

2aAe−V (gAA)+V
(
a†AaA

)
e−ıTr

[
s†AA

(
gAA−a†AaA

)]
P(λ)

=
∫
D[g]

∫
D[s]

2NπN2 exp
[
−ıTr

(
s†AAgAA

)
− 1

2 logdetsAA−V (gAA)
]
≡ e−W2 . (3.11)

Analogously to what we did for 〈Z〉, the term with −V (gAA) + V
(
a†AaA

)
in the exponent

is the multiplication by unity on-shell, and the sAA auxiliary fields implement the Dirac
delta functional. Up to fourth order, the interaction terms V read (from performing the
Gaussian integration over λi and expanding the determinant):

V = V2 + V4

V2 = 2
L2N−2 Tr(gLL + gRR)

V4 = 4
L2N−4 Tr2(gLL + gRR)− 4

L2N−4 Tr
(
g2
LL + gLLgRR + gRRgLL + g2

RR

)
. (3.12)

Again, this is just the expansion of the averaged function 〈Z2〉 to fourth order in aA, i.e. to
second order in gAA; the full expansion of the log det term is infinite. This is a consequence
of the initial action Seff being quadratic in the fields, so the effective actions Wn contain the
log det term. If we had a linear coupling to the sources of the form Ja, we would get the

8In order to make the equations more compact we do not write out the replica indices in the measure of
the integrals. Therefore, we write

∫
D[g] for

∫
D[gAA], or

∫
D[a] for

∫
D[aA] and similar. We still write the

replica indices in the integrands (unlike the spatial indices µ, ν . . . which we usually leave out.)
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by now familiar wormholes with collective fields gLR, as in the SYK model in [11, 15, 17].
Now the saddle point equations from (3.12) are:

1
2
(
s−1
AA

)T
+ ıgAA = 0 ⇒ sAA = ı

2
(
gTAA

)−1
(3.13)

ısAA + 2I
L2N−2 + 8I

L2N−4 Tr(gLL + gRR)− 8
L2N−4 (gLL + gRR)T = 0. (3.14)

While complicated at first glance, this system of equations has a high degree of symmetry.
First, it is manifestly L ↔ R invariant; second, it allows (though does not require) the
maximally symmetric ansatz, where s and g are scalar matrices. Their matrix indices are
i, j ∈ {1, . . . N} (which we do not write explicitly) and A,B ∈ {L,R}. Therefore a scalar
solution assumes (1) the U(N) group of the matrix model is fully preserved (which is logical
in the large-N , random matrix regime that we study) and (2) full replica symmetry is
preserved. The latter can be broken, and later on we will discuss this possibility in detail;
but for now let us look at the replica-symmetric solution. We first insert s from (3.13)
into (3.14) and then take the trace of both sides. Denoting TrgLL = TrgRR ≡ t, we find

t ∼ − 1
16L2 ±

LN−2

4
√

2
√
N
. (3.15)

At leading order in large N and L, the two traces are symmetric, behaving as TrgLL =
TrgRR ∼ ±LN−2/

√
N . Still assuming maximal symmetry, this gives the following solution:

s = ±2ı
t
I ⊗ E, g = ±tI ⊗ E. (3.16)

Here, E is the two-by-two unit matrix in the replica space; its indices are A,B ∈ {L,R}.
From now on we use this Kronecker product notation for the collective fields with replica
indices: a field gAA can be written in the form B ⊗ C, with B being an N ×N matrix and
C being an n× n matrix with n the number of replicas.

The solutions scale as LN−2 instead of L2N−2 for the single replica solution (3.8). This
fact already suggests that the two-replica solution does not factorize. Inserting (3.16)
into (3.12) we find (for either sign in (3.16)):

W2|on−shell ∼ 2N2 logL+ L2N/2± (2N)3/2LN+2. (3.17)

Comparing to (3.9), we see that indeed the two-replica solution does not factorize: 〈Z2〉 6=
〈Z〉2. The first term in (3.17) precisely equals 2W1,9 but it is actually strongly subleading
compared to the other two terms, which behave entirely differently, as LN and L2N .
Therefore, we can spot a contribution equaling 2W1 but there is also a much larger
contribution absent in W1.

So the partition function 〈Z2〉 is not factorizing. Is it self-averaging? To check this, we
can again follow [12] and compute the four-replica solution. Exploiting the definition of the

9Remember that all the solutions and on-shell action values are calculated for large N and L, meaning
we disregard the terms which tend to zero as N →∞. Such higher-order corrections would likely spoil the
exact ratio but this is expected.
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non-averaged Z2 from (3.11) we write:

Z2 =
∫

D[s]
2NπN2 χ(s; g)Φ(s)

χ(s; g) =
∫
D[g] exp

[
−ıTr

(
s†AAgAA

)
− V (gAA)

]
Φ(s) =

∫
D[a] exp

[
ıTr

(
s†AAa

†
AaA

)
− 1

2Tra†AP
2aA + V

(
a†AaA

)]
. (3.18)

Here we have separated the partition function into the non-averaging part χ(s; g) which
just doubles when computing 〈Z4〉 as it is independent of aA, and the part Φ(s) with
aA-dependent integrand which gets nontrivial additional correlations when Z4 is averaged.
Now the replica indices A, B can take values L, R, and A′, B′ take values L′, R′. In addition
to the two-replica fields, we now also have combinations of the form LLR′R′ and similar:10

〈Φ2(s)〉=
∫
D[aA]

∫
D[aA′ ]

∫
dNλP(λi)

×exp
[
ıTr

(
s†AAa

†
AaA+s†A′A′a

†
A′aA′−

1
2a
†
AP

2aA−
1
2a
†
A′P

2aA′
)

+V
(
a†AaA

)
+V

(
a†A′aA′

)]
=
∫
D[aA]

∫
D[aA′ ] exp

[
ıTr

(
s†AAa

†
AaA+s†A′A′a

†
A′aA′

)
+V

(
a†AaA

)
+V

(
a†A′aA′

)]
×exp

[
−1

2 log det
(
I

L2 +2a†AaA+2a†A′aA′−2ITra†AaA−2ITra†A′aA′
)]
. (3.19)

The next step is to expand the argument of the logarithm, which results in the mixing of L,
R and L′, R′. Expanding to order four, we generate a new interaction potential, mixing
all four replicas, and again resort to the trick of multiplying by unity and introducing the
four-replica collective field GAAB′B′ , together with the Dirac delta constraint implemented
by SAA′BB′ :

〈Φ2(s)〉 =
∫
D[aA]

∫
D[aA′ ]

∫
D[S]

∫
D[G]

× exp Tr
[
ıs†AAa

†
AaA + ıs†A′A′a

†
A′aA′ + ıS†AAB′B′

(
a†AaAa

†
B′aB′ −GAAB′B′

)]
× exp

[
V
(
a†AaA

)
+ V

(
a†A′aA′

)
− V (gAA, gB′B′ ;GAAB′B′) + V

(
a†AaA, a

†
B′aB′

)]
=
∫
D[S]

∫
D[G]e−W̃4 , (3.20)

with the effective action that now depends also on the new collective fields GAAB′B′ ≡
a†AaAa

†
B′aB′ . From (3.18), the total effective action is the sum of W̃4 from the last equation

and the non-averaging contribution from χ(s; g):

W4 = ıTr
(
s†AAgAA

)
+ V (gAA) + W̃4

W̃4 = 1
2 (log det sAB + log det sA′B′ + log detSAAB′B′)− ıTr

(
S†AAB′B′GAAB′B′

)
+ V

V (gAA, gB′B′ ;GAAB′B′) = 8
L2N−4 TrgAATrgB′B′ −

4
L2N−4 TrGAAB′B′ . (3.21)

10In this equation, exceptionally, we write the indices in the integrand, e.g.,
∫
D[aA′ ], in order to emphasize

that we now have extra copies of the fields.
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This is the main formal result of this section. We will now consider various saddle-
point solutions of the effective action (3.21), and consider which of these may restore the
factorization and which are self-averaging.

3.3 Half-wormholes

The effective action (3.21) is slightly more involved but the highest symetry solutions are
still easy to find. The saddle-point equations read:

− 1
2
(
g−1
AA

)T
+ 2I
L2N−2 + 8I

L2N−4 Tr(gLL+gRR)− 8
L2N−4 (gLL+gRR)T − 8I

L2N−4 TrgB′B′ = 0
1
2
(
S−1
AAB′B′

)T
+ ıGAAB′B′ = 0, − ıSAAB′B′−

4
L2N−4 I = 0. (3.22)

Notice that the first and the second line are decoupled. The second line (the equations
for S and G) is linear and the solution is unique and left-right symmetric in the replica
space (invariant to L↔ R and L′ ↔ R′). In the first line, we have already implemented
the relation

(
s−1
AA

)T
+ 2ıgAA = 0 which remains the same as in (3.13); that is why sAA

is already elliminated from (3.22). This equation is nonlinear and potentially has many
solutions. If we again take the fully replica-symmetric ansatz, we can easily solve for the
trace as in (3.13)–(3.14). When everything is said and done the outcome is

s = ±2ı
t
I ⊗ E, g = ±tI ⊗ E (3.23)

SLLL′L′ = SLLR′R′ = SRRL′L′ = SRRR′R′ = 4ı
L2N−4 I (3.24)

GLLL′L′ = GLLR′R′ = GRRL′L′ = GRRR′R′ = L2N−4

8 I. (3.25)

W4|on−shell ∼ 4(N2 −N) logL+ 2N log 2−
√

2N/LN . (3.26)

The remaining components of S and G (those not listed in (3.25)) are zero. The first and
second term in W4|on−shell come from S and G fields; the third term comes from s and g.
Although the first term clearly dominates over the others, and the last term is negligible,
we have deliberately written all three to emphasize the different contributions. We notice
the following:

1. The solution for W4 factorizes at leading order, as we have W4 ∼ 4W1 on-shell
(compare to (3.9)). What is more, it factorizes nontrivially, i.e. the expression for
W4 in (3.21) does not consist of four copies of W1 (3.7). The leading contribution
to (3.26) comes roughly from the log detS term in (3.21) and involves fields of the
form a†LaLa

†
L′aL′ and similar, whereas the dominant contribution to W1 comes from

the term log det s with fields of the form a†LaL.

2. There is no simple “wormhole” contribution, mixing the left and right copy, i.e. no
fields gLR, only gLL and gRR. As we already said, this is so because there is no linear
source coupling to a. However, since the fields GAAB′B′ (or explicitly GLLR′R′ and
GRRL′L′) are nonzero, this solution can be called half-wormhole (HWH) in analogy
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with the terminology of [11], already accepted in [15, 17, 18, 21].11 The half-wormhole
thus dominates the action.

3. The local contribution in replica space, the one coming from gLL and gRR fields, is
negligible compared to the HWH part. It is also non-factorizing; but as in other cases
in the literature, the HWH restores factorization.

4. The solution is not self-averaging. To see this, we follow the criterion (1.2) and insert√
〈λ2
µ〉 = Lµ into Z as given in (3.3). Since now we deal with a free quadratic action

(having fixed λµ 7→ Lµ) the n-replica partition function is easily found for any n:
Wn = nN logL; specifically, for n = 4, we have W4 ∼ 4N logL. This does not capture
the leading term in (3.26).

We can confirm our findings numerically by computing the full action for a numerically
generated ensemble of quenched matrices Aµ. In figure 1 we plot the numerical realization
and the estimate (3.26) in blue and red respectively. We also plot the quadraple value of
the single-replica action W1 for comparison (black dashed). The analytical estimate is very
good and the factorization near-perfect, as the black dashed curve almost falls on top of
the blue and red one.

So while the action of the two-replica system W2 does not factorize, the four-replica
action W4 has a HWH saddle point which restores factorization. In our view, the most
interesting aspect of this is that the four-replica system factorizes nontrivially: the effective
action (3.26) is dominated by nonlocal terms, half-wormholes; it does not merely consist
of four copies of W1. Since our system contains explicit quenched disorder, it is no big
surprise that in general 〈Z2〉 6= 〈Z〉2 (this is the same situation as for the SYK model).
But the restoration of the factorization in the sense that 〈Z4〉 = 〈Z〉4 was not a priori
expected, nor the fact that this happens already in the collective fields formalism at leading
order (disregarding an infinite series of higher-order terms in 〈Z4〉). Even though we look
directly at the (discretized) string theory action, which includes gravity, there is no obvious
geometric interpretation of the half-wormhole. This is not much of a surprise as the IKKT
model should capture the nonperturbative stringy effects, far beyond general relativity
and geometry.

3.4 Fermionic contribution to D-string partition functions

Now we turn on also the fermionic fluctuations ψα (while still putting the background
fermions Ψα to zero). In addition to the collective fields introduced earlier, we now need
also the fermion bilinear γAB = ψ̄AψB, with A,B ∈ {L,R}; in order to implement the
constraint that defines γAB we also have to introduce another auxiliary field called σAB
(analogous to sAA). Actually, the fermionic part may be more familiar to the reader as
fermionic collective fields were investigated in the literature in much detail, mainly in the

11In fact, the name is not a very fortunate one, as there is nothing “halved” here; it a product of replicas
just like a wormhole, only of different replicas. A more descriptive term would be “higher-order wormholes”
but we will not attempt to change an already established name.
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Figure 1. Effective action W4 as a function of the matrix size N (A) and compactification radius L
(B) from analytical (red) and numerical (blue) calculations; the curves almost coincide. For reference
we also show the single-replica solution 4W1 (black dashed) which is nearly equal to W4, confirming
the factorizing property.

context of SYK model [12, 17, 20]. We can first write 〈Z〉:

〈Z〉=
∫
D[ψ]

∫
D[ψ̄]

∫
D[a]

∫
D[g]

∫
D[γ]

∫
D[s]

2NπN2

∫
D[σ]

2NπN2

∫
dλ

×expTr
(
−1

2aP
2a−ψ̄α /Pψα

)
×exp

[
−ıTr

(
s†
(
g−a†a

)
+σ†

(
γ− 1

N
ψ̄αψα

))
−V (g)+V (a†a)−Γ(γ)+Γ

( 1
N
ψ̄αψα

)]
=
∫
D[g]

∫
D[γ]

∫
D[s]

2NπN2

∫
D[σ]

2NπN2 e
−ıTr(s†g+σ†γ)−V (g)−Γ(γ)+Tr(γs−1γ)+logdetσ, (3.27)

where we have introduced the self-interaction potential Γ(γ) = (L2/4)γ2 for the collective
fermionic fields analogously to V (g) for the boson. At quadratic order O(g2 + γ2) there
is no interaction between the Bose and Fermi sectors. At the quartic level they couple,
through the term γs−1γ which comes from the term ψ̄/aψ in the original action. Defining
the negative exponent in (3.27) as W1, we will now compare W1 to the four-replica effective
action W4. Let us first calculate W1. The equations of motion read

2
L2N−2 I + ıs = 0, ıg + 1

2
(
s−1

)T
+ γs−2γ = 0 ⇒ s = 2ı

L2N−2 I ⊗ E, g = L2N−2

4 I ⊗ E

ıσ + L2

2 γ − 1
4
(
γs−1 + s−1γ

)
= 0, ıγ +

(
σ−1

)T
= 0 ⇒ σ = ı

LN−1
√

2
I, γ =

√
2

LN−1 I.

(3.28)

This yields the same solution for the bosonic fields g and s as before, since their coupling
to the fermions (the last term in the first line of (3.28)) only contributes a correction which
goes to zero for L,N → ∞; in fact, the γ-s coupling does not influence the fermionic
solution either at large L,N . The on-shell action is just the sum of the bosonic term (3.9)
and the fermionic term from (3.28):

W1|on−shell =
[
(N2 −N) logL+ N

2 log 2
]

+
[
N logL− N

2 log 2
]

= N2 logL. (3.29)

Now we derive the four-replica action W4. In order to do this, we need to write first the
two-replica function. Just like for bosons, it separates into the averaging and non-averaging
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part:

Z2 =
∫

D[s]
2NπN2

∫
D[σ]

2NπN2 χ(s, σ; g, γ)Φ(s, σ)

χ(s, σ; g, γ) =
∫
D[g]

∫
D[γ] exp

[
−ıTr

(
s†AAgAA + σ†ABγAB

)
− V (gAA)− Γ(γAB)

]
Φ(s, σ) =

∫
D[a]

∫
D[ψA]

∫
D[ψ̄A] exp

[
ıTr

(
s†AAa

†
AaA

)
− 1

2Tra†AP
2aA + V

(
a†AaA

)]
× exp

[
ıTr

(
σ†AA

ψ̄AψA
N

)
− Trψ̄A /PψA + Γ

(
ψ̄AψA
N

)
− Trψ̄A/aAψA

]
. (3.30)

In order to test the factorization property we find 〈Φ2〉 through the steps similar to those
in eq. (3.19).

〈Φ2(s)〉 =
∫
D[aA]

∫
D[aA′ ]

∫
dψ̄A

∫
dψA

∫
dψ̄B′

∫
dψB′

∫
dS

2NπN2

∫
dG

× exp
[
ıTr

(
s†AAa

†
AaA + s†A′A′a

†
A′aA′ + S†AAB′B′a

†
AaAa

†
B′aB′ + σ†AA

ψ̄AψA
N

)]

× exp
[
V
(
a†AaA

)
+ V

(
a†A′aA′

)
+ V

(
a†AaA, a

†
B′aB′

)
+ Γ

(
ψ̄AψA
N

)
− Trψ̄A/aAψA

]

× exp
[
−ıTr

(
S†AAB′B′GAAB′B′

)
− V (gAA, gB′B′ ;GAAB′B′)

]
=
∫

dS

2NπN2

∫
D[G]e−W̃f .

(3.31)
The final step is to integrate out the original fields. The bosonic integrals result in
determinants and traces, as we have already seen, and the fermionic integrals are expressed
in terms of Pfaffians, i.e. polynomials. Thanks to this the fermionic bilinear can contain
any combination of L, L′, R and R′, giving rise to wormholes as we shall see. The effective
action is finally:

Wf = ıTr
(
s†AAgAA + σ†ABγAB

)
+ V + W̃f

W̃f = 1
2 log det (sABsA′B′SAAB′B′)− ıTr

(
S†AAB′B′GAAB′B′

)
+ V + Vf

Vf = L2

4 Tr
(
γ2
AB′

)
− Tr

(
γAAs

−1
AAγAA

)
− log Tr (σLRσL′R′ − σLL′σRR′ + σLR′σRL′) ,

(3.32)
and the bosonic potentials V and V are given in (3.12) and (3.21) respectively. The saddle-
point equations (3.22) now get additional terms and two additional equations from fermionic
contributions:

1
2
(
s−1
AA

)T
+ ıgAA + γAAs

−2
AAγAA = 0

ısAA + 2I
L2N−2 + 8I

L2N−4 Tr(gLL + gRR)− 8
L2N−4 (gLL + gRR)T − 8I

L2N−4 TrgB′B′ = 0
1
2
(
S−1
AAB′B′

)T
+ ıGAAB′B′ = 0, − ıSAAB′B′ −

4
L2N−4 I = 0

ıσAB + L2

2 γAB −
1
4{γAB, s

−1
AB}δAB = 0

ıγAB − σA′B′ (σCDσC′D′ − σCC′σDD′ + σCD′σDC′)−1 = 0. (3.33)
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This Bose-Fermi saddle-point system has a rich structure. We notice the following properties:

1. The collective field γAB can now couple different replicas already at the quadratic
level. This is simply a consequence of the fact that fermions couple linearly to the
quenched bosonic degrees of freedom Aµ. We would have obtained the same situation
for the bosonic fields if we coupled them linearly to a source. The Pfaffian obtained
upon integrating out ψα fields has a combinatorial structure which allows the breaking
of replica symmetry, i.e. some σAB may be zero and some nonzero.

2. One solution is obtained by setting σLR = σL′R′ ≡ σ 6= 0 while all other components
are zero. This yields12

σLR = σL′R′ = LN−1
√

2
, γLR = γL′R′ = −ı

√
2

LN−1

W4|on−shell = 4N2 logL+ 2N. (3.34)

This is a wormhole (WH), coupling the L and R copies. The term 2N spoils the
factorization (compare to (3.29)).

3. We can have σLR′ = σRL′ ≡ σ 6= 0 while the other components of σAB are zero. This
is a half-wormhole. This solution reads

σLR′ = σRL′ = LN−1
√

2
, γLR′ = γRL′ = −ı

√
2

LN−1

W4|on−shell = 4N2 logL+N. (3.35)

The effective action is lower than (3.34) by N so this solution is thermodynamically
preferrable compared to the wormhole, and also the mismatch from factorization is
smaller (N compared to 2N).

4. The third possibility is σLL′ = σRR′ ≡ σ as the only nonzero component. This solution
acquires a minus sign in the logarithm of the Pfaffian (the last term in (3.32)) hence
it has a nonzero phase:

σLL′ = σRR′ = ı
LN−1
√

2
, γLL′ = γRR′ =

√
2

LN−1

W4|on−shell = 4N2 logL+ ıπ. (3.36)

This is a half-wormhole but inequivalent to the half-wormhole from the previous
point; it breaks the phase symmetry and has lower (real part of) free energy than the
previous solutions. Apart from the phase factor, it is a factorizing solution, as we
have <W4 ∼ 4N2 logL = 4W1.

12In all examples we consider, the solutions for the bosonic fields g, s, G, S do not change at leading order
in the presence of fermions, hence we do not write the expressions for them again.
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5. The last possibility is σLL = σRR ≡ σ as the only nonzero component. This solution
contributes to the last equation in (3.33) with the opposite sign, and thus leads to a
different saddle point:

σLL = σRR = LN/2−2

27/4N1/4 e
−ıπ/4, γLL = γRR = 27/4N1/4

LN/2−2 e−ıπ/4 (3.37)

W4|on−shell = 4(N2 +N/2) logL+N − 1
4e
−ıπ/4. (3.38)

This saddle point would not exist for Majorana fermions (as in the SYK model) since
for Majoranas ψ̄ = ψ and thus γLL = 〈ψψ〉 = 0. It is a strongly suppressed solution
as its on-shell action is by ∼ 2N logL larger than the real part of W4 of all previous
solutions (3.34), (3.35), (3.36).

This situation is more akin to the SYK and similar field theory models in the literature
than the purely bosonic case — several competing solutions of the local (3.37), worm-
hole (3.34), and half-wormhole type (3.35), (3.36). There may be more general solutions
with less symmetry than the ones we found analytically above. Such solutions are hard to
find, and we did not explore them in detail. In figure 2 we plot the landscape of the real
part of the action for varying σLR and σL′R (fixing the remaining couplings). The outcome
is invariant to the sign change of σ which was to be expected from the effective action.
The trivial vacuum σLR = σL′R = σLR′ = 0 is one solution, but we also have a nontrivial
solution with all WH and HWH couplings nonzero. It seems however that the latter is never
the global minimum, i.e. it is a false vacuum. So we fail to find any thermodynamically
stable solutions other than (3.34)–(3.37), but we still have no proof that they never exist.

Looking at the on-shell actions (3.34)–(3.38), we see that the dominant (least-action)
solution, the LL′ HWH configuration, restores the factorization. It is true though that
fermionic contributions are always subleading to the 4N2 logL term coming from the bosonic
determinant, so one could also argue that the factorization is always roughly satisfied; but
precisely the dominant fermionic saddle point, i.e. the true vacuum satisfies it also at the
next order in L,N . This strongly suggests that the physical dynamics indeed tends to
“know” about the factorization. The factorization remains nontrivial, as the same dominant
term log detS from the bosonic action still gives the main contribution. And — unlike the
findings for the SYK model in [12] — none of our solutions is self-averaging. The total
action for the fluctuations aµ and ψα evaluated for λ = L is easily found from (2.8) to be zero
— the Bose and Fermi terms exactly cancel out each other, as it has to happen for a BPS
configuration (the averaging over the quenched background Aµ spoils the supersymmetry
and that is why the averaged on-shell actions we find are always nonzero; but expanding
about fixed BPS solution for Aµ without averaging keeps the BPS property).

4 Replicas and factorization for a pair of interacting D-strings

We have found that for a single D-string the factorization of the partition function, broken
for two replicas, is always re-established with four replicas essentially at the mean field
level, and in a nontrivial way. A possible physical interpretation of this fact is simply
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Figure 2. (A) Real part of the effective action W4 as a function of the wormhole coupling σLR and
the half-wormhole coupling σL′R, for σLL = σRR = 0.3 and σLL′ = σRR′ = 0.5ı. The magnitude
of W4 is encoded by the color map, from blue (low) to red (high). The global minimum is the
trivial solution σLR = σL′R = 0 (the blue area in the center). There is also a line of shallow local
minima for nonzero WH and HWH couplings, which is easier to see along one-dimensional slices
(B), where we plot W4(σLR) for σL′R = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (black, blue, magenta, red,
orange, yellow, green). But the true vacuum, in the presence of nonzero LL and LL′ couplings,
remains the one with no WH (LR) or additional HWH (L′R) contributions (there is already one
HWH coupling LL′).

that n noninteracting D-strings form an ergodic system, i.e. averaging the dynamics over
all the strings (computing their partition function Zn) is equivalent to averaging a single
string over the quenched degrees of freedom (computing the partition function 〈Z1〉). A
consequence of this is that if we have a BPS configuration, the conclusion from the previous
section cannot change: as long as Fµν = 0 there is no difference between n copies of a single
D-brane and a stack of n parallel D-branes. Notice this remains true also in absence of
background fermions (for Ψα = 0) since it only hinges on Fµν = 0.

Now we consider a pair of strings with angle 2θ between them — this is the solution
given in (2.5). For nonzero angle, this solution is non-BPS, the interaction between the
strings is nonzero as it has a nonzero component of Fµν . Following eq. (2.10) and [30], the
superoperators are found to be:

P0 = [q ⊗ I2×2, ·] =
(
I2×2 ⊗ Q̂ 0

0 I2×2 ⊗ Q̂

)

P1 = cos θ [p⊗ I2×2, ·] = cos θ
(
I2×2 ⊗ P̂ 0

0 I2×2 ⊗ P̂

)

P2 = `

2
[
IN ′×N ′ ⊗ σ3, ·

]
= `

(
−Π− ⊗ IN ′2×N ′2 0

0 Π+ ⊗ IN ′2×N ′2

)

P3 = sin θ
[
p⊗ σ3, ·

]
= 2 sin θ

(
−Π− ⊗ Q̂ 0

0 Π+ ⊗ Q̂

)

F03 = 2ω sin θ
[
IN ′×N ′ ⊗ σ3, ·

]
= 2ω sin θ

(
−Π− ⊗ IN ′2×N ′2 0

0 Π+ ⊗ IN ′2×N ′2

)
, (4.1)

and the other components are zero. For two strings, according to (2.5), the matrices Aµ
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and aµ have the two-by-two block structure, hence the superoperators in (4.1) have the
four-by-four block structure. We have denoted N ′ ≡ N/2 and Π± ≡ (I2×2 ± σ3)/2. The
superoperators P̂ ≡ [p, ·] and Q̂ ≡ [q, ·] are obtained by commuting with p and q and have
the explicit form as given in (3.5). Now we follow the same path as in the previous section,
so we will not repeat all the technical details. Unlike the previous section, we restore the
spacetime indices and write e.g. a†µaµ and not a†a; this is because the different spacetime
dimensions are not equivalent anymore as for a single string. The effective action reads

W1 = 1
2 log det

[
I

L2 +
(
1 + cos2 θ

) (
a†µaµ − ITra†µaµ

)]
+ `2

2 sin2 θ · Tra†µK2aµ

+ 2ω sin θTr
(
a†0Ka3 + a†3Ka0

)
, K =

(
−Π− 0

0 Π+

)
. (4.2)

Introducing the collective fields, expanding the log det term, and integrating out the original
variables we get

W1 = Tr
[2
(
1 + cos2 θ

)
L2N−2

(
g − a†µaµ

)
+ `2

2 sin2 θ
(
K2g − a†µK2aµ

)
+ 2ω

(
j − sin θ

(
a†0Ka3 + a†3Ka0

))
+ ıs†

(
g − a†µaµ

)
+ ıζ†

(
j − sin θ

(
a†0Ka3 + a†3Ka0

)) ]
= 1

2 log det s2
(
s2 − sin2 θK2ζ2

)
+ Tr

[
2
(
1 + cos2 θ

)
L2N−2 g + `2

2 sin2 θK2g + 2ωj + ıs†g + ıζ†j

]
. (4.3)

Here, j is the new current, equal (on-shell) to the bilinear originating from the string-string
interaction, and ζ is the corresponding auxiliary field. The two-replica action (to quadratic
order) is now

W2 = 1
2 logdets2

AA

(
s2
AA−sin2 θK2ζ2

AA

)
+V2 (gAA)+Tr

[
2ωjAA+ıs†AAgAA+ıζ†AAjAA

]
V2(gAA) = Tr

[
2
(
1+cos2 θ

)
L2N−2 gAA+ `2

2 sin2 θK2gAA

]
. (4.4)

Finally, the four-replica solution yields

W4 = ıTr
(
s†AAgAA+ζ†AAjAA

)
+V2(gAA)+2TrωjAA+W̃4

W̃4 = 1
2 logdet

[
s2
AA

(
s2
AA−sin2 θK2ζ2

AA

)
+
(
A 7→A′

)
+S2

AAB′B′

(
S2
AAB′B′−sin2 θK2ζ2

AAB′B

)]
+V

V = 8
L2N−4 TrgAATrgB′B′−

4
L2N−4 TrGAAB′B′ . (4.5)

The solutions to the saddle-point equations for W1,2,4 depend crucially on whether the
strings are parallel (θ = 0) or not (θ 6= 0). We will therefore consider each case separately.
Parallel strings with θ = 0 and thus j = 0 reduce to four times the result of the single-
matrix calculation from the previous section; therefore we have W1|on−shell = 4N2 logL
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(and analogously W4|on−shell = 16N2 logL).13 This of course had to happen, as this case
is BPS. The old conclusion thus remains, as we have anticipated at the beginning of this
section: the partition functions factorize nontrivially.

For a non-BPS configuration the picture will actually turn out to be simpler. Let us
first solve the saddle-point equations for W1. The outcome is

s = 2ı
L2N−2

[
(1 + cos2 θ)I + `2 sin2 θK2

]
, ζ = 2ıωI (4.6)

j = ı
sin2 θK2ζ

K2ζ2 sin2 θ − s3 ⇒ j ∼ 1
2ωI (4.7)

0 = s2 (2 + ıgs− sin2 θK2 (I + gs) ζ2)
s3 − sin2 θK2sζ2 ⇒ g ∼ I

2L2N−2(1 + cos θ2 + `2 sin2 θK)
(4.8)

This leads to the on-shell action (neglecting as usual the subleading terms):

W1|on−shell ∼ 2N2 logL+N2 log(4Lc1c2) + . . .

c1 = 1 + cos θ2 + `2 sin2 θ, c2 = ω sin θ. (4.9)

It is easy to inspect W1 and find that the leading contribution to the on-shell action
value (4.9) comes from the term with log det in (4.3). Now let us look at the two- and
four-replica action. These lead to very cumbersome expressions which, however, do not
present any principal difficulties so we do not write them out in full detail. The outcome
reads

W2|on−shell ∼ 4N2 logL+ 2N2 log(4Lc1c2) + . . .

W4|on−shell ∼ 8N2 logL+ 4N2 log(4Lc1c2) + . . . (4.10)

One can also check that nothing changes qualitatively when ` = 0, i.e. when the strings
intersect. The limit of parallel strings is subtler: taking the limit θ → 0 directly does
not make sense as it gives a divergence in W1; instead one should go back to the BPS
solution (3.8) for the collective fields, which brings the old result W1|on−shell = 4N2 logL.

Obviously, from (4.10), the action always factorizes. But the interesting part is that
the terms which contribute at (leading) order N2 logL all come from the same term
log det

(
s2 . . .

)
, obtained from the bosonic determinant upon integrating out the microscopic

variables aµ. Therefore, interacting systems have partition functions which factorize trivially.
This is in contrast to the non-interacting (and specifically BPS) configurations where 〈Z4〉
factorizes nontrivially, from the sum of terms log det s and log detS (i.e., from both two-
replica and four-replica couplings). An intuitive explanation would be the following: in BPS
systems, the interactions (from gravity and from 2-form fields) precisely cancel out each
other, but when multiple replicas are involved, there are combinations (like LR or LLL′L′)
where this cancelation does not happen, so the structure of the effective action is different
from that of a single replica (i.e. does not amount to four copies of a single replica). In
the presence of interactions however, the dominant contribution to the free energy always
comes from pairwise interactions: this is so for W1, W2, W4 and for any Wn.

13The overall factor of four in these solutions compared to the solutions (3.9) and (3.26) comes from the
fact that we now explicitly consider the four matrices Aµ, µ = 0 . . . 3; in section 3 we were working with a
single matrix for simplicity.
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4.1 Fermionic contributions

The fermionic contributions do not add anything fundamentally new to the picture, as they
are subleading compared to the bosons. While the complete calculation is quite involved,
it is easy to recognize the principle. Let us compute the fermionic contribution to the
single-replica and two-replica actions. The fermionic contribution at leading order comes
from the term ψ̄α /Pψα from (2.8). Using (4.1), integrating out the quenched degrees of
freedom and then also the original fermionic fields ψα, we get the fermionic contribution in
addition to the bosonic one from (4.2):

W1f = ıσ†γ + L2

4 γ(K ⊗ IN2×N2)γ − Tr(γs−1γ)− log det
(
σ − `

2 (M ⊗ IN2×N2)
)

M = I2×2 ⊗ σ3 − σ3 ⊗ I2×2, K = 2I4×4 + ` sin θM, γ ∼ ψ̄αψα. (4.11)

We remind that the matrices are now of size 2N × 2N , and therefore the superoperators are
of size 4N2 × 4N2, so they are naturally regarded as block matrices of size 4× 4 with each
block of size N2 ×N2. That is why we have the four-by-four matrices in the expressions
above. The contribution proportional to ` comes from the gap, i.e. the finite separation of
the D-strings. To actually compute the saddle point solutions to (4.11) is not easy, but if
we look at the doubled system:

W2f = W2 + ıTrσ†ABγAB + L2

4 γAB′(K ⊗ IN2×N2)γAB′ − Tr
(
γAAs

−1
AAγAA

)
− log Tr (σ̃LRσ̃L′R′ − σ̃LL′ σ̃RR′ + σ̃L′Rσ̃LR′) ,

σ̃AB′ ≡ σAB′ −
`

2M ⊗ IN2×N2 , (4.12)

with W2 being the bosonic contribution from (4.10), we see that the only difference with
respect to the parallel strings is the transformation σ 7→ σ−(`/2)M⊗IN2×N2 . However, the
determinant (and the trace) of the matrix σ does not change under this transformation. This
can be checked directly as M is a degenerate matrix, with two zero eigenvalues. Therefore,
the solutions and the on-shell values of the effective action stay the same as before. We
still have the multiple choices (3.34)–(3.38), where (3.36), the true vacuum, actually leads
to nontrivial factorization, but they all contribute only subleading terms to the bosonic
action. Therefore, even though the outcome is mixed (trivial factorization for bosons plus
nontrivial for fermions), the picture at leading order remains the same, with or without
fermionic contributions — the multi-replica solution factorizes trivially at leading order.

To wrap up, the leading order collective field description (i.e. a mean field description)
reproduces the factorization of partition functions of fluctuating Dp-branes (the number of
dimensions p plays no role here), nontrivially for BPS-stabilized branes and trivially for
interacting branes. We will try to make a bigger picture out of this fact in the final section.

5 Discussion and conclusions

The main outcome of our adventure can be summarized in the following way: (1) the
restoration of factorization with n ≥ 4 replicas (2) the nonfactorization of the two-replica
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system and the nontrivial factorization of the four-replica system for the noninteracting D-
branes (3) the trivial factorization for any number of replicas in interacting D-brane systems
(4) the absence of self-averaging. On one hand, the restoration of factorization is overall in
line with the previous results from the literature for the SYKmodel [12, 15, 16, 23, 25] and the
general expectation that our intuition should somehow survive so that the thermodynamic
potentials of multiple independent copies of any system should just add up (i.e. the partition
functions should just multiply). The points to ponder about are trivial vs. nontrivial
factorization, the absence of self-averaging and above all the fact that we work with the
IKKT model which is not a (fixed metric) field theory but is itself a quantum gravity system.

The absence of self-averaging, while in itself an important difference from the SYK and
similar models, is maybe less surprising than it at first appears. Self-averaging means that
the physics of the averaged model can be obtained as a small correction to a model with
random fixed background (no matter which one!). That can only be true if the dynamics
of the system is almost ergodic, i.e. if the system is strongly chaotic, perhaps only if it
saturates the fast scrambling limit, like black holes and their dual field theories (such as
the SYK model). Therefore, it is no surprise that self-averaging is never there for more
general models. This has little to do with gravity in the IIB model; it only has to do with
the fact that it is not (dual to) a black hole.14 Thus we expect that a wide range of field
theories will never be self-averaging (and the fact that our equations can be reinterpreted
as the Eguchi-Kawai discretized Yang-Mills theory apparently corroborates that).

The trivial vs. nontrivial factorization is subtler. In the section 4 we have offered a
somewhat handwaving explanation: the non-interacting nature of the BPS configurations
is maintained by the precarious balance between different forces (in a single system), this
balance is lost in multi-replica combinations and is only restored when the contributions
from all combinations are included (this is the term log detSAAB′B′). We have no proof
that this will happen at all orders or for all BPS configurations. It is also not true that
interacting systems necessarily have a trivial factorization. For example, the SYK model
cannot in general be divided into mutually noninteracting subsystems, yet it factorizes
nontrivially as found in [12, 23], in the sense that the factorization is restored roughly
as Z2 ∼ WH + HWH, in other words both a wormhole and a half-wormhole contribute
significantly. This is in contrast with our backgrounds, both BPS and non-BPS, where only
half-wormholes contribute significantly and there is no WH+HWH solution. An additional
caveat is the important insight of [23] that different collective field descriptions are possible,
leading to different types of HWH solutions. It seems that the trivial factorization of
interacting branes, with nonzero Fµν terms, is really a consequence of the structure of
interactions in the action of the IKKT model (eqs. (2.8)–(2.9)). It is an interesting task
for future work to understand this better: is this a specific signature of theories with
(quantum) gravity?

To answer that question, it would be useful to look at theories where we can directly
construct interesting geometries, and interpret the disorder geometrically. This was done

14While the IKKT model should contain also the microscopic description of black holes, we don’t know
which background Aµ corresponds to that solution.
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in [29], where a system of wrapped branes on complicated cycles within some compact man-
ifold is represented as quiver quantum mechanics with a random superpotential. The basic
strategy of our paper (modelling complicated solutions as effectively random, introducing
the collective field formalism and then computing the effective action) is quite close to what
was done in [29]. The authors find both replica-symmetric saddles and saddles which break
the replica symmetry; the latter probably give rise to non-factorizing solutions whereas
the former probably factorize.15 In fact, as shown in [52], the same model in a different
regime gives rise to ergodicity breaking already in classical dynamics, suggestive of glassy
behavior. The appealing thing is that in this case the many local minima of the free energy
have an obvious interpretation: these are geometries with multiple black holes, forming
“molecules” [53] and a direct gravity analogue of structural glasses [54]. We hope to learn
more about the factorization of leading saddles in such systems in our future work.

Speaking of (non)factorization, one technical point should be emphasized. We look
mainly at averaged partition functions 〈Zn〉 and find various saddle-point solutions to the
effective actions obtained as − log〈Zn〉. One could instead look directly at the average of the
logarithm: −〈logZn〉. This latter variant is called the quenched free energy in the literature
on disordered systems, whereas our effective actions Wn are called annealed free energies.
The two differ precisely when the system is non-factorizing, and this criterion was used to
explain the non-factorization due to replica wormholes in [47]. We use a slightly different
criterion: direct comparison of annealed free energies for different numbers of replicas. For
our purposes either of the two approaches (comparing log〈Zn〉 to 〈logZn〉 versus comparing
log〈Zn〉 among each other for different n) is suitable to check the factorization, although
the difference between the two kinds of free energy is perhaps the more usual way in
statistical physics.16

One might worry about the fact that we always disregard the terms which scale to
zero as L,N → ∞, i.e. the terms where L or N appears with a negative power. Indeed,
we have not studied the behavior of such terms and there is no way to argue (except by
performing additional calculations and checking explicitly) that these terms will obey the
same factorization laws. However, even the starting ansatz for the background (with random
Hermitian matrices) only makes sense for N large (otherwise we cannot speak of eigenvalue
statistics), so the whole setup does not really address the regime of small N . Therefore, in
the framework of our approach, the large-N results we find are sound.

In the context of very interesting findings of [27], one can also wonder if the D-branes of
the IIB matrix model have a meaning analogous to the correlated bulk branes in 2D gravity
models. In [27], such branes act as novel UV degrees of freedom which, when integrated
out to arrive at an IR description, introduce nonlocalities in the gravity theory; in that
paper it turns out that these nonlocalities save the factorization if tuned to a specific value.
Essentially the same mechanism holds for our interacting D-branes — their interaction is
also nonlocal and guarantees factorization for any number of replicas; when the (nonlocal)
interaction is absent (in the BPS case), the factorization can be violated with n = 2 replicas,

15These are just our rough guesses; neither we nor [29] have explicitly checked the factorization of partition
functions in this setup.

16We thank Souvik Banerjee for pointing out this issue.
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and when restored it happens through a more complicated mechanism. We hope to reach a
better understanding of this mechanism, and the relation to [27], in future work.

Finally, although we were motivated to look at (non)factorization by the puzzle arising
from the replica wormholes in AdS/CFT (like most of the recent papers on the subject),
this question is worth asking also on its own, as it is connected to dynamical and statistical
properties of quantum gravity. Within our approach, we can in principle discuss also
the matrix models of AdS geometries, with a CFT dual. One way would be to impose
a background geometry along the lines of [55–57], by introducing a deformation of the
action (2.1) to obtain matrices which satisfy the algebra of the generators of AdS isommetries.
Another way is to consider a different matrix model, along the lines of [54, 58], which
corresponds to D-particles in AdS. We discuss this briefly in appendix C, however a more
complete treatment is again a task for future work.
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A Including the background fermions

Here we show that we do not lose anything by putting the background fermions to zero.
Clearly this is a drastic change to the background as it destroys the supersymmetry and
makes the on-shell action nonzero, but it should not strongly influence the factorization
properties. The inclusion of background fermions merely shifts the action of the background
to zero, but the background is frozen and not integrated over in the quenched regime.
The dynamics and partition functions are determined by the fluctuations on top of the
background, and these are not changed qualitatively when background fermions are included.
Let us now show this explicitly, for a single degree of freedom (i.e., for noninteracting
parallel D-strings). The outcome is that the fermionic fluctuations become even smaller
(and for Ψ = 0, considered in the main text, they are already subleading to the bosonic
ones), so our findings on factorization remain the same as those already found for bosonic
fluctuations in sections 3 and 4.

Keeping nonzero Ψ and Ψ̄, the action up to second order (we will not compute third-
and fourth-order corrections) becomes:

S = S1 + S2 (A.1)

S1 = Tr
[
Ψ̄α/aΨα + Ψ̄α /Pψα + ψ̄α /PΨα

]
(A.2)

S2 = Tr
[
−1

4aµ
(
P 2δµν + 2Fµν

)
aν + Ψ̄α/aψα + ψ̄α/aΨα + ψ̄α /Pψα

]
. (A.3)
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The steps analogous to eq. (3.27) leading to the effective action still consist of elementary
Gaussian integrations, but we have a few extra terms. Comparing to the last line in (3.27),
we have two extra terms in the action at second order:

W1 = ıTr
(
s†g+σ†γ

)
+V (g)+Γ(γ)−Tr

(
γs−1γ

)
+logdetσ+ 1

4 (gγ+γg)+ 1
2
(
γσ−1+σ−1γ

)
,

(A.4)
the last two terms being absent when Ψ = 0. The equations of motion for s are unchanged
compared to (3.28) but the others change:

2
L2N−2 I + ıs+ 1

2γ = 0, ıg + 1
2
(
s−1

)T
+ γs−2γ = 0

ıσ + L2

2 γ − 1
4
(
γs−1 + s−1γ

)
+ 1

2g + 1
2σ
−1 = 0

ıγ +
(
σ−1

)T
−
(
γσ−2 + σ−2γ

)
= 0. (A.5)

The relation between s and g is obviously unaffected, so we can express g in terms of s and
insert in the remaining equations. The solution (ignoring the contributions which go to
zero for large N and L) reads

s = 4ı
L2N−2 I ⊗ E, g = L2N−2

8 I ⊗ E, σ = − ıL
2N−4

8 I ⊗ E, γ = 4
L2N−2 I ⊗ E. (A.6)

Inserting this into the action W1, we find that both the first and the second extra term in
the action are negligible since they scale as 1 and 1/L4N−4 respectively, the old fermionic
terms are even more strongly subleading, and log detσ doubles with respect to the on-shell
value of W1 found in eq. (3.8). The same doubling will occur also for a multiple-replica
configuration, since the relation between σ and γ (the fourth equation in (3.33)) changes
only trivially when we consider multiple copies of the system: all terms get the replica
indices but there are no new terms — compare the mentioned equation in (3.33) and the
third equation in (3.28).

One caveat remains: as mentioned in the main text, there is no guarantee that we have
found all solutions. It is thus possible that solutions with less symmetry exist which change
qualitatively in the presence of background fermions. Our numerical explorations (figure 2)
suggest that this is unlikely, but clearly there is no rigorous proof.

B Hard vs. soft cutoff for matrix eigenvalues

In this appendix we will rederive some of our results assuming the uniform distribution
of the eigenvalues of the background matrices Aµ within some compactification interval:
−Lµ ≤ λµi ≤ Lµ. This is the usual picture in the IKKT model [30, 34].17 From now on
we again equate all compactification radii, so that Lµ ≡ L. We will see that, apart from

17Sometimes in the literature the factor Lµ/
√

2πN is pulled in front of the matrices Aµ, so the eigenvalues
are distributed between ±

√
2πLµ and the commutators between Aµ’s are just ı with no prefactors. We have

adopted the conventions of [34] in this paper, where the eigenvalues are between ±Lµ and the commutator
acquires additional prefactors as in (2.5).
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numerical factors of order unity, nothing changes compared to the Gaussian soft cutoff. The
reason is essentially that we are looking at the quenched IKKT/large-N Yang-Mills model,
expanding in small fluctuations aµ, ψα and in large cutoff/compactification radius L; it is
thanks to this quenched dynamics that the system is largely insensitive on the details of the
eigenvalue distribution of the semiclassical background. If the matrices Aµ were annealed
and not quenched, i.e. if we were to study the full dynamics of the background, this would
not be true and we would have to be careful about the regulator. This point is explained in
detail in [28] where the averaged theory depends crucially on the UV closure because in the
setups of [28] both fast and slow degrees of freedom are dynamical.

Let us start from the defining expression for the single averaged partition function (3.3):

〈Z〉 =
∫
D[Aµ]

∫
D[aµ]e−S(aµ;Aµ)P(Aµ) =

∫
D[aµ]

∫ Lµ

−Lµ
d2Nλiµe

−S(aµ;λiµ), (B.1)

where we have now emphasized that the limits of integration for λiµ are between −L and L.
Proceeding along the same lines as before, this yields the integral

〈Z〉 =
∫
D[aµ]

∫ L

−L
d2NλµiΠi<j (λµi − λµj)2 exp

[
−1

4a
†
µij

(
λ2
µi + λ2

µj

)
aµklδjkδil

]
=
∫
D[aµ]e−W1 (B.2)

W1 = 1
2
∑
µ

log det
(
2a†µaµ − 2ITra†µaµ

)
− log Erf

(
L

√
1
2Tra†µaµ

)
. (B.3)

The error function Erf in the result is quite difficult to work with (we understand the error
function of a matrix and in general functions of matrices in the usual way). But when we
expand in aµ small just like we did in the last line of (3.6) the result simplifies:

W1 = a†µaµ −
4
3ITra†µaµ +O

((
a†µaµ

)4
)
7→ 1

2 log det s+ ıTrs†g + 2
3L2N−2 Trg. (B.4)

In the above equation, we have first performed a straightforward series expansion of the
effective action W1 in (B.3), and then we have introduced the collective field g = a†µaµ
just like with the Gaussian cutoff. As we see, the additional error function terms, when
expanded to quadratic order, merely change the coefficients in front of some of the terms.
From here it is already obvious that the whole logic will remain the same as before; we
believe there is no reason to repeat all the calculations again, as the factorization does not
depend on the numerical coefficients (if say the term Trg has a different coefficient, the
same coefficient will remain also in the two-replica term TrgAA, and the same holds for the
potentials V (gAA)).

Now we show the same result for the fermionic fluctuations. Starting from the basic
expression (3.27) we can write

〈Z〉=
∫
D[aµ]

∫
D[ψ̄α]

∫
D[ψα]

∫ L

−L
d2NλµiΠi<j (λµi−λµj)2 exp

[
−1

2a
†
µP

2aµ−
1
2 ψ̄α

/Pψα

]
=
∫
D[aµ]

∫
D[ψ̄α]

∫
D[ψα]e−W1

e−W1 =
√

π

2a†µaµ
e

(ψ̄αψα)2

2a†µaµ

Erf

La†µaµ+ ψ̄αψα√
2a†µaµ

−Erf

−La†µaµ+ ψ̄αψα√
2a†µaµ

 , (B.5)
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where it is understood that expressions of the form (ψ̄αψα)2/2a†µaµ really mean
(2a†µaµ)−1(ψ̄αψα)2, i.e. we divide by matrices the usual way, by multiplying by the matrix
inverse. The result (B.5) is quite involved, but a series expansion again brings it to the
form quite close to the Gaussian result (3.27):

W1 = a†µaµ − ITra†µaµ + L2

6
(
ψ̄αψα

)2
+O

((
a†µaµ

)4
+
(
ψ̄αψα

)4
)
⇒

⇒W1 = ıTr
(
s†g + σ†γ

)
+ V (g) + Γ(γ) + log detσ, Γ(γ) = L2

6 γ2, (B.6)

and V = V2 + V4 remains unchanged from (3.12). The only change with respect to
the Gaussian eigenvalue statistics is the coefficient in Γ(γ), being L2/6 instead of L2/4.
Therefore, the story remains the same: while the on-shell values of the actions Wn will
change, the (non)factorization properties will not, as the coefficient change in Γ affects
equally the actions Wn with any number n of replicas.

C Toward a holographic interpretation

So far, as we have mentioned in the Introduction, the connection of this work to AdS/CFT
is only indirect, as the simple D-string configurations that we consider do not have an
obvious CFT dual. We have also argued that it is nevertheless very relevant to know the
factorization properties of theories with gravity, precisely in order to know if the restoration
of factorization through half-wormholes despite the existence of non-factorizing wormhole
saddles is a specific twist of holography or rather a generic phenomenon. But then again a
realization of AdS replica wormholes, with a dual CFT, in the framework of IKKT model is
clearly a worthy and exciting task. It is an open problem how to derive the holographic
duality within the IKKT model, certainly deserving a separate work; here we just outline
some ideas.

Recall first that the IIB matrix model at leading order coincides with the Eguchi-
Kawai model of discretized 10-dimensional Yang-Mills theory [36]. Hence, there is a direct
relation to a quantum field theory: all the partition functions we have calculated can be
reinterpreted as field-theoretical partition functions of the Eguchi-Kawai system, and these
should factorize for a set of non-interacting replicas.

The second thing to note is that the IKKT model, describing the type IIB string theory,
should contain also the celebrated D3 brane background which gives rise to gravity on
AdS5 × S5, dual to the N = 4 superconformal Yang-Mills. However, we do not know yet
how to find such a solution explicitly in terms of matrices. A stack of parallel D3 branes is
completely analogous to a pair of parallel strings that we consider, just with 4 matrices
instead of 2. But the AdS geometry is not explicit in such a solution, as the starting action
and its solutions (2.4) in terms of random Hermitian matrices still describe branes in flat
space — the starting action already assumes a background, because the Schild action in
the first place also describes strings on flat background. Therefore, we could in principle
repeat the averaging over some set of fluctuating AdS configurations with our formalism
but it is not known what this set should be.
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For this reason, there is a much studied idea [55, 56] to impose a geometric symmetry
by deforming the model so that the matrices satisfy the commutation relations of the
corresponding isommetries. For example, [57] realizes the (Lorentzian) AdS2 geometry by
imposing the structure of SO(2, 1) algebra. In our (Euclidean) case, the group is SO(1, 2)
and the deformed model reads:18

S = −Tr
(1

4 [Xµ, Xν ]2 + cfµνρ [Xµ, Xν ]Xρ

)
, (C.1)

where fµνρ are the structure constants of SO(1, 2),19 and c is the coupling constant. Classical
equations of motion now read (putting again the background fermions to zero):

[Xµ, [Xµ, Xν ]] + gfνρσ [Xρ, Xσ] = 0. (C.2)

But the solution to this equation has to satisfy a nontrivial commutation relation, so it is
more restricted than the IKKT brane solutions, where for N →∞ any commuting random
matrices form a solution. Neverthless, for N large, the three commutation relations do
not much reduce the space of solutions, and all but three eigenvalues can still be chosen
at random from some interval (in other words, any reducible representation of so(1, 2),
combined form arbitrary irreducible representations, is a solution). The fluctuating solutions
of the form Xµ = Aµ + aµ now yield the following structure of the quenched action up to
second order, analogous to (2.8):

S2 = Tr
[
− 1

4aµ
(
P 2δµν + 2Fµν

)
aν − ıcfµνρ

(
[aµ, Aν ]Aρ + [Aµ, aν ]Aρ + [Aµ, Aν ] aρ

+ [aµ, aν ]Aρ + [aµ, Aν ] aρ + [Aµ, aν ] aρ
)]
. (C.3)

We will not consider the third- and fourth-order terms. For the equations of motion (C.2),
the superoperators are expressed as Pµ = Aµ ⊗ I + I ⊗ Aµ and Fµν = −fµνρAρ. Making
use of that and the antisymmetry of the structure constants, we arrive at the simplified
action for the fluctuations:

S2 = −1
4aµ

[
P 2δµν + 2fµνρ (Aρ − 8cPρ − 4cΠAρ)

]
aν − 2cfµνρPνAρaµ, (C.4)

where Π ≡ σ3⊗I−I⊗σ3. Here we will be somewhat sloppy: integrating over the background
Aµ requires us to know the statistical properties of eigenvalues and traces of the so(1, 2)
representations. These are known from the literature (see e.g. the references in [56]) but
the calculation goes beyond the scope of this short appendix. For large N the central
limit theorems suggest that it still makes sense to assume that the eigenvalues are only

18It is not entirely clear if the fermionic part should receive any deformations, but it is hard to think of
any other meaningful term involving Ψ̄,Ψ which satisfies the necessary symmetries. In any case, in this
appendix we will ignore the fermions completely, as we only want to provide a roadmap to a hologrpahic
setup, not to perform a precise calculation.

19Although the commutator of classical solutions was denoted by fµν , there can be no confusion as the
structure constants have three indices instead of two, and in this appendix we will not make use of the
commutators fµν anyway.
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weakly correlated (which we approximate with totally uncorrelated), and limited by some
cutoff function which we assume to be Gaussian, as we have shown in appendix B that the
outcome is not sensitive to cutoff. In this case, paralleling the steps in the sections 3 and 4,
we find the effective action for a single copy:

W1 =
(

I

2L2 + 2a†µaµ + 8c
(
a†µ + aµ

)
− 2ITra†µaµ

)
+ 1

2L2

(
a†µfµνρ (1− 8c− 4cΠ) aν

)2
7→

7→W1 + ıs†s+ ıζ†µνKµν , g ∼ a†µaµ, Kµν ∼ a†µaν + a†νaµ. (C.5)

Therefore, because of the deformation, we have an additional set of collective fields Kµν

and the corresponding auxiliary fields ζµν . Obviously, this is an interacting system, unlike
the BPS parallel branes from section 3. Integrating out aµ, we get the effective action in
the form:

W1 = 3
2 log det s2 + 3

2 log det ζ2
µν + 3Ṽ2(g)− 1− 8c

2L2 TrKµν + ıs†g + ıζ†µνKµν

Ṽ2(g) = 2− 32c2

L2N−2 g. (C.6)

In a system with four replicas, we get a result of the form

W4 = 6 log det s2 + 6 log det ζ2
µν + 3Ṽ2(gAA) + W̃4

(
sAA, gAA, ζAAB′B;µν ,KAAB′B′;µν

)
− 1− 8c

2L2 TrKAA;µν + ıs†AAgAA + ıζ†AAB′B′;µνKAAB′B′;µν . (C.7)

We do not need detailed expressions for W̃4 (although tedious, they are straightforward
to find). The key point is that, just like the findings (4.9)–(4.10) for a pair of interacting
D-strings, the term log det s2 always dominates, with the solutions g = 3ıs−1 and s =
−(2 + 32c2)/L2N−2ıI. Finally, this yields

Wn ∼ −6nN2 logL+ 3nN log(2 + 32c2) + . . . , (C.8)

hence we again have trivial factorization.
A big caveat is in order: the interpretation of this and similar models is different

from D-branes in the IKKT model; the bosonic matrices Xµ are not branes but quantized
(non-commuting) coordinates [55, 56]. Besides, we have not properly derived the eigenvalue
distribution for the background. The connection to the IIB matrix model is thus rather
indirect. In fact, the main limitation in applying this scheme directly to holographic setups
lies in the general lack of knowledge on how to encode AdS/CFT (i.e., the corresponding
AdS backgrounds) in the IKKT action; the general idea and the formalism itself remains
applicable for any background.

As a side note, another possible connection of D-brane matrix models to AdS back-
grounds is the quiver matrix model of [58] (see also the references therein), where D-particles
in AdS are described by a supersymmetric matrix action in 0 + 1 dimension, i.e. with a time
derivative, hence only the static limit fits into our formalism. This setup is less directly
related to the IKKT model, so we do not have a precise idea on what the meaningful
background solutions would look like and what the averaging would give.
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1 Introduction

Strongly correlated electrons at finite density remain a deep and interesting puzzle, en-
countered in various quantum-many body systems, from condensed matter to heavy ion
physics to astrophysics. Apart from some special cases, Fermi liquids are the only inter-
acting fermionic systems at finite density where we have good control. A breakthrough
was provided by the application of AdS/CFT to finite density large N -matrix fermionic
systems. This allowed new strongly coupled IR fixed points characterized by an emergent
Lifshitz scaling with dynamical critical exponent z to be discovered.1 Though many of
such results were found in bottom-up holographic models where only bosonic operators are
tracked, there is reason to believe that any holographic finite density systems must also
have microscopic fermionic degrees of freedom. Indeed a number of these holographically
discovered fixed points have now been independently confirmed as Sachdev-Ye-Kitaev-like
large N quantum spin-liquid fermionic ground states, where the additional microscopic
description allows valuable extra insights into the workings of these novel states of matter.

1At finite N these fixed points may be not be true IR fixed points but intermediate scale attractors in
the RG flow.
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In holography these new ground states are qualitatively understood to arise as a
deconfined phase of an underlying microscopic theory with the confined phase corresponding
to a conventional Fermi liquid; see [1]. A dozen years ago this was a hotly debated topic
and it was found that the prototypical deconfined state, characterized by the AdS2, z =∞
near horizon dynamics of AdS Reissner-Nordstrom (RN) black holes and an associated
multitude N of non-Fermi-liquid Fermi surfaces [2–4] in the Thomas-Fermi limit of N →∞
indeed transitions at low temperatures to a charged Tolman-Oppenheimer-Volkov electron
star [5–9]. These states are partially confined-partially deconfined in that they still have a
finite z Lifshitz horizon; for a review and the transport responses of these states, see [10, 11].

However, away from the Thomas-Fermi limit a holographic description of a direct single
Fermi-surface deconfined non-Fermi-liquid-to-confined Fermi-liquid T = 0 quantum phase
transition has so far not yet been found. In the bulk, this problem corresponds to solving an
Einstein-Maxwell-Dirac system in a self-consistent way, accounting for the backreaction of
fermions on geometry, but keeping the number of Fermi surfaces finite or specifically keeping
only one. The distinct puzzle here is that the signal of the putative instability towards
confinement at low temperature — a log-oscillatory response in the single fermion spectral
function [4] — occurs at a distinct point in parameter space from the one where the first
stable Fermi surface is located (figure 1). In [12] an electron star model is introduced where
N is finite but still very large; this hinted at a first order rather than a continuous transition.
Approaching the question from the other side, a holographic description of confined single
Fermi surface Fermi-liquid was constructed in [13] by enforcing confinement through a hard
wall IR cut-off [13]. This confirmed that confinement-deconfinement is the correct viewpoint
of the quantum phase transition, but did not yet include the gravitational backreaction. The
most comprehensive study to date is the attempt at quantum electron star model of [14, 15]
which regulates the system by putting it on a sphere and then tries to carefully remove
this regularization procedure for a self-consistent solution of the Einstein-Maxwell-Dirac
equations in the asymptotic AdS background.

The simple hard-wall solution of [13] already illustrates the fundamental problem. In
the presence of an occupied Fermi surface the gravitational backreaction is uncontrolled,
see [14, 15]. These subsequent papers then address this by a second cut-off for the
backreaction, and then attempt to remove both cut-offs in a precarious balancing act.
In the present paper we address this in a different way. We construct a fully gravitionally
backreacted single-Fermi surface solution confined through a soft rather than a hard wall.
From the gravitational point of view this soft wall determines the deep interior boundary
conditions of the fermionic wave functions instead of the horizon geometry. As illustrated in
detail in [14, 15] at the technical level the puzzle is that with the vanishing of the horizon
(signalling deconfinement) at the quantum phase transition, not only must one find a new
self-consistent (confining) IR geometry, but also an associated set of self-consistent boundary
conditions for the fermion wave-function.

Because the confining boundary conditions suppress the fermion wave function in the
IR, there is also no associated backreaction in the deep IR, which remains AdS. This
confined regulated quantum electron star (rQES) is therefore the fermionic analogue of the
Horowitz-Roberts-Gubser-Rocha AdS4-to-AdS4 groundstate/domain wall for holographic

– 2 –
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Figure 1. A schematic representation of the phase diagram of holographic fermions, where q and
m are the charge and the mass (related to the scaling dimension in field theory ∆ = 3/2 +m) of the
bulk fermion respectively. Along the line q = m/

√
2, determined by the Schwinger pair production

threshold, the quantum phase transition ought to happen between the Reissner-Nordström black
hole describing the strange metal phase and the quantum electron star solution (no black hole)
corresponding to a metallic phase. However, this line is not identical to boundary of the regime
where the Reissner-Nordström system supports stable Fermi surfaces as probed through the Reissner-
Nordström spectral functions. The electron star (fluid) model requires taking the limit q,m→ 0
where both critical lines become indistinguishable. To understand the transition at finite q,m is the
motivation for our approach. Adapted from [4].

superconductors [16, 17]. This solution (just like our soft wall confining electron star
solution) describes a system that flows from a conformal pure AdS UV to an intermediate
ordered holographic superconductor (Fermi liquid) state with a gap in the sense that below
that gap it returns to the renormalized conformal theory and low energy excitations cannot
disturb the ordered state. As is well-known the generic holographic superconductor ground
state is not AdS4-to-AdS4 but of the Lifshitz type [18]. It is the technical difficulties
described above that guided us to first construct this Horowitz-Roberts-Gubser-Rocha type
solution. We leave the full Lifshitz quantum electron star for future work. One natural way
to construct the latter is that, rather than trying to remove the soft-wall regulator, one can
also make it dynamical, similar to the electron star study in [19].

We do confirm that within the class of non-dynamical soft-wall solutions this gapped
confined holographic Fermi liquid is the thermodynamically preferred state over the decon-
fined Reissner-Nordström metallic state for appropriate charge and mass of the fermion.
Because we are not yet able to remove the regulator we do not yet solve the puzzle of
figure 1 directly.

The outline of the paper is the following. In section 2 we present the gravity setup
and the regulated quantum electron star (rQES) solution. In section 3, we present the

– 3 –
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properties of our rQES solution, i.e. the gapped confined Fermi liquid: we show it is the
thermodynamically preferred solution in a certain range of parameters, and demonstrate
the existence of the infinitely long-lived quasiparticle peaks in the spectrum of the boundary
theory. In section 4, we present some considerations about removing the confining soft wall.
Section 5 sums up the conclusions together with some musings on further directions of work
and the physical meaning of our results.

2 A confined quantum electron star: set-up

The minimal bottom-up gravity dual of a strongly correlated electron system is the Einstein-
Maxwell-Dirac system [2–4]. The new element of our setup is the phenomenological
soft-wall-like regulator inspired by bottom-up AdS/QCD [20]. The regulator is a fixed
non-dynamic scalar field, which neither backreacts on the metric itself nor does it feel the
backreaction by the fermions. This is again in line with AdS/QCD models. Therefore,
the geometry starts as pure AdS in the UV, in the interior it is influenced by the gauge
and matter fields and deviates from AdS, and in far IR all matter fields are exponentially
damped by the confining potential. However, in contrast to most hard/soft-wall models we
will let the potential only damp the matter sector and not the gravitational sector. The
action of the system is:

S =
∫

d4x
√
−g

[
L2

2κ2 (R+ 6)− L2

4 FµνF
µν + L3Lf [Ψ,Φ]

]
(2.1)

where κ is the gravitational coupling constant; and L is set to L = 1 in the remainder. The
Dirac Lagrangian is:

Lf = Ψ̄
[
eµAΓA

(
∂µ + 1

4ω
BC
µ ΓBC − iqAµ

)
−
(
m+ M̂Φ

)]
Ψ (2.2)

where Ψ̄ = iΨ†Γ0, eµA is the vierbein, ΓA are the gamma matrices in four dimensions, and
ωABµ is the spin connection. The regulator is fully encoded in an effective mass contribution
M̂(z)Φ(z) for the Dirac field, with Φ(z) a non-dynamical scalar field whose profile we shall
choose later. Inspired by [21], we will consider two types of the confining potential:

M̂ =

−ez3Γ3 , the potential preserves chirality ,
z14 , the potential breaks chirality .

(2.3)

Here z, both as index and a variable, refers to the radial coordinate of the AdS space.
We will assume a radially symmetric metric which is asymptotically AdSd+1 with d = 3,
parametrized as:

ds2 = −f(z)h(z)
z2 dt2 + dxidxi

z2 + dz2

z2f(z) . (2.4)

The radial coordinate is defined for z ≥ 0, where z = 0 is the location of AdS boundary
(UV). Development of a horizon at finite z is in principle signified by the appearance of a
zero of the function f : f(zH) = 0. At zero temperature (the only case we consider), the
space extends to infinity, 0 ≤ z ≤ ∞.

– 4 –
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Our choice to let the wall only confine the fermion-matter sector (together with the
absence of backreaction by the confining scalar) implies that at finite chemical potential but
zero bulk fermion density, the thermodynamically preferred solution is the regular charged
(RN) black hole, though pure AdS with a constant electrostatic potential is also a solution.

For a certain value of the charge q of the fermion, it will be thermodynamically preferred
to store all charge in an occupied bulk fermionic state, i.e. nonzero bulk density nc ≡ 〈Ψ†Ψ〉,
rather than a Reissner-Nordström black hole. Now the precise radial profile of the scalar
Φ(z) becomes important. The original AdS/QCD papers used a quadratic scalar, behaving
in the IR as Φ ∼ z2 [22], which ensures confinement while still being smooth. Another form
found in the literature is a profile which flattens out to a constant in the IR [23]. At the
same time the UV completion of the scalar field has to ensure that its contribution to the
Dirac equation decays quickly enough for small z to reproduce the equation of motion in
pure AdS in the limit z → 0. The forms that satisfy all the requirements and which we find
numerically convenient are

Φ(z) = λz2, quadratic scalar

Φ(z) = λ
zα

zα0 + zα
, flat scalar.

(2.5)

The amplitude of the scalar (i.e. the measure of the “hardness” of the wall) is parametrized
by λ, and z0 is the scale at which the scalar begins to flatten (in the second, flat scalar
model). The choice of α is merely that of computational convenience and we choose α = 4.
Similarly, we will consistently choose z0 = 2 throughout the rest of this paper.

2.1 Einstein-Maxwell-Dirac equations

From the action we obtain the Maxwell equation and two convenient linear combinations
of the tt and zz components of the Einstein equations. With the ansatz that only At 6= 0,
and that all functions only depend on z, compatible with homogeneity and isotropy, they
reduce to

A′′t (z)− h′(z)
2h(z)A

′
t(z) =

√
h(z)n(z) ,

1 + z

3f
′(z)− f(z) = z2

3f(z)h(z)ρ(z) + z4

12h(z)A
′
t(z)2 ,

h′(z) = −zh(z)p(z)− z

f(z)2 ρ(z) .

(2.6)

Compatible with the symmetries the current vanishes J i = 0, the charge density J0 is
denoted as J0 = n(z)/

√
−g = z4n(z)/

√
h(z), and the stress tensor is parametrized as

(Tf )µν = diag(ρ(z), p⊥(z), p⊥(z), p(z)), (2.7)

where p⊥(z) is the pressure in the transverse x, y directions.
The ii components of the Einstein equations are both equal to

zh(z)
[
−z3A′t(z)2 +

(
3zf ′(z)− 4f(z)

)
h′(z) + 2zf(z)h′′(z)

]
+

+ 2h(z)2 [z (zf ′′(z)− 4f ′(z)− 2βzp⊥(z)
)

+ 6f(z)− 6
]
− z2f(z)h′(z)2 = 0 .

– 5 –
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They are not independent, however. Denoting the Einstein field equations as Eµν ≡
Gµν − Tµν and the Maxwell equation as EM ≡ ∇µFµν − Jν , one can show that2

Exx = L̂ · E − 1
2z∇µT

µν , (2.8)

where L̂ · E ≡ A1∂zEtt + A2∂zEzz + A3EM + A4f
′(z)Ett + Ezz (A5f

′(z) +A6h
′(z) +A7)

is a linear combination of both {Ett, Ezz, EM} and their derivatives and Tµν is the total
stress-energy tensor associated with the matter content of the theory. The stress-tensor
is covariantly conserved if the matter sector is on-shell, i.e. obeys its equations of motion.
Thus

Eon-shell
xx = ∇µTµν = 0 (2.9)

It is therefore sufficient to solve the three equations (2.6) together with the matter sector.
The charge, energy and pressure densities n(z), ρ(z), p(z) are determined by the occupied

fermionic states in the AdS bulk space. Importantly, we will compute them solely from
microscopic considerations: we do not assume anything like a fluid limit or a specific form
of the equation of state. We compute them from the Dirac Lagrangian, within the one-loop
Hartree correction to the background. This is discussed in detail in the next subsection.

We will now proceed to derive the equation of motion for the Dirac field. From (2.2),
the equation reads:

eµAΓA
(
∂µ + 1

4ω
BC
µ ΓBC − iqAµ

)
Ψ =

(
m+ M̂(z)Φ

)
Ψ . (2.10)

It is known that the spin connection in this type of metric can be eliminated by rescaling
the fermion [2, 24]:

Ψ = (−gzz det gµν)−
1
4 ψ̃ =

(
f(z)h(z)
z2d

)− 1
4
ψ̃ ≡ a(z)ψ̃. (2.11)

In addition, it is convenient to eliminate any singular terms from the fermionic wavefunction.
Since our solutions are smooth in the interior as we shall see, the only singularity is the
branch cut in the UV behaving as zm. We thus rescale one more time

ψ̃ = zmψ ≡ b(z)ψ. (2.12)

In most cases we will use the rescaled form and write the equations for ψ. So far this is
all independent of the gamma matrix representation. In order to simplify the equations of
motion, we now employ the representation

Γµ =
(

0 γµ

γµ 0

)
, Γ3 =

(
1 0
0 −1

)
, (2.13)

with µ ∈ {0, 1, 2}, γ0 = iσ2, γ1 = σ1, γ2 = σ3 and σ1,2,3 are the usual Pauli matrices.
Homogeneity and isotropy along the t, x, y directions allow us to take the energy ω and
momentum k ≡ kx as good quantum numbers, so the Dirac bispinor is expressed as

ψ = e−iωt+ikx (ψ1(z), χ1(z),−iχ2(z), iψ2(z))T . (2.14)
2This is essentially ∇µGµν = ∇µTµν .

– 6 –



J
H
E
P
0
8
(
2
0
2
2
)
2
2
2

As in [13, 24], this yields two (equivalent) decoupled systems for the two independent
components, for ψ1,2 and χ1,2, corresponding to the spin degeneracy of our system. We will
focus on the ψi components for which the Dirac equation reads[

∂z + ε+Φ + m

z

(
1− 1√

f(z)

)]
ψ1(z)−

[
k√
f(z)

+ ω + qAt

f(z)
√
h(z)

]
ψ2(z) = 0[

∂z + ε−Φ + m

z

(
1 + 1√

f(z)

)]
ψ2(z) +

[
ω + qAt

f(z)
√
h(z)

− k√
f(z)

]
ψ1(z) = 0 .

(2.15)

where ε+ = ε−= 1 corresponds to the chiral-preserving potential and ε+ =−ε−=−1/
√
f(z)

corresponds to the chiral-breaking potential.

2.2 Fermion densities and backreaction

The fermionic densities and pressures are obtained microscopically, from the Dirac La-
grangian (2.2):

ρ = 〈Ψ†et0Γ0(−iω − iqAt)Ψ〉 ,
n = −〈Ψ†Ψ〉 . (2.16)

The components of the pressure p⊥, p are likewise formally equal to

p⊥ = 〈Ψ̄iex1kxΓ1Ψ〉,
p = 〈Ψ̄ez3Γ3∂zΨ〉. (2.17)

The expectation value 〈. . .〉 in (2.16)–(2.17) is the quantum-mechanical expectation value,
i.e. one solves the Dirac equation with appropriate boundary conditions (see below) and
sums over the quantum numbers in the appropriate range. The quantum numbers are the
radial modes `, and momenta kx, ky in the x, y-directions which determine the on-shell
energy in terms of a dispersion relation ω = E`(k). The role of the confining potential is
essential here: it quantizes the radial number `. Each discrete radial mode corresponds to
a separate Fermi surface [2–4, 8, 9, 13]. As emphasized in the Introduction, we seek a state
where only a single Fermi surface is occupied. This must be the lowest radial mode. Note
that despite occupying a single mode, this mode still contains a thermodynamically large
number of states counted by the x, y-momenta. Each radial mode is thus a fluid of fermions.

We will ignore the subtleties of the zero-point energy and the Dirac sea; in principle
these are absorbed in a renormalization of the cosmological constant and the AdS radius;
see however [14, 15] for a more detailed treatment. Then, in terms of the solutions to the
Dirac equation, formally the expressions for the density are

n(z) = 2q
z3
√
f(z)

a(z)2b(z)2∑
k,`

Θ(−E`(k))
(
ψ†1;`,k(z)ψ1;`,k(z)+ψ†2;`,k(z)ψ2;`,k(z)

)
ρ(z) = a(z)2b(z)2et0(z)(−iω−iqAt(z))

∑
k,`

Θ(−E`(k))
(
ψ†1;`,k(z)ψ1;`,k(z)+ψ†2;`,k(z)ψ2;`,k(z)

)
p(z) = a(z)2b(z)2ez3(z)

∑
k,`

Θ(−E`(k))
(
ψ†1;`,k∂zψ2;`,k−ψ†2;`,k∂zψ1;`,k

)
(2.18)
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Figure 2. Iteration algorithm used to compute the rQES solution.

where the step-function Θ(x) selects the positive energy states. Note that due to the
antisymmetry of the two spin components, the derivatives of the scaling factors a(z), b(z)
cancel out in the expression for p.

2.2.1 The self-consistent Hartree calculation

We solve the system (2.6), (2.15) in the one-loop Hartree approximation. As a reminder,
the Hartree correction is the local single-particle diagram (vacuum bubble), ignoring anti-
particles, i.e. ignoring the contribution from the Dirac sea. We do not take into account
the Fock correction. In flat space, the Hartree correction is trivial [25]: in terms of the
causal fermionic propagator GR it equals limt→0−

∫
dωd2k GR(ω, k)e−iωt = δµ,3 merely

renormalizing the chemical potential. In curved space however, the local chemical potential
is µloc(z) = At(z)

√
−gtt(z), with a nontrivial radial profile, thus the correction δµ(z) is also

variable along z and therefore it can have nontrivial physical effects.
The Hartree approximation then proceeds by computing this one-loop Hartree correction

self-consistently. One starts with an ansatz for the background, solves the Dirac equation
in this background, computes the one-loop Hartree densities in the assumption that they
are small, updates the background and iterates to convergence as in figure 2.

2.3 Boundary conditions on the Einstein-Maxwell sector

The Einstein-Maxwell equations (2.6) require four boundary conditions in total (two for
At(z) and one for each of the metric functions f(z), h(z)). The UV boundary conditions are

At(zUV) = µ , the chemical potential.
f(zUV) = h(zUV) = 1 , AdS4 asymptotics.

(2.19)

The fourth boundary condition we impose is given by our demand that we seek a state
where all the charge is contained in occupied fermionic states.4 The confining potential
ensures that the fermionic wavefunctions are localized at a finite value in the radial direction.

3The infinitesimal time separation t→ 0− is really the point-splitting regularization, as the integral of
GR at coincident points in spacetime generally diverges; the sign of t is dictated by the contour choice for
the retarded propagator [25].

4There could be interpolating solutions with both a charged horizon and a charge in occupied fermionic
states. We will not seek for those here as the presence of the charged Reissner-Nordstrom like horizons
should imply the continued presence of log-oscillatory instabilities.
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Thus by construction the charge density will vanish in the deep AdS interior. From this
follows that the fourth boundary condition is ∂zAt(zIR) = 0. Formally zIR = ∞; in our
numerical computation it will be finite but large, and we have checked that our results do
not depend on its value.

In practice, we solve the boundary value problem by shooting from the IR. We impose
directly the condition ∂zAt(zIR) = 0 as well as the condition ∂zf(zIR) = 0. The latter
indirectly encodes our demand that we seek a T = 0 solution; recall that for a black hole
solution ∂zf(zhorizon) ∼ T . Then we use the free value At(zIR) and h(zIR) to shoot for
At(zUV) = µ, h(zUV) = 1 at the boundary. From the equation of motion for f(z) one
obtains automatically that f(zIR) = 1 once we fall on the right branch; for the same reason
one can also use f(zIR) = 1 as an IR boundary condition if one demands in addition that
there is no energy density or electric field in the deep interior.

2.4 Boundary conditions for the fermions

The UV boundary conditions for the appropriate solutions to the Dirac equation are
straightforward. Near the AdS boundary the rescaled field behaves as

ψ1(z → 0) ∼ A`(ω, k)ω − k − µq2m− 1 z1−2m +B`(ω, k) + . . . ,

ψ2(z → 0) ∼ A`(ω, k) z−2m +B`(ω, k)ω + k − µq
2m+ 1 z + . . . .

(2.20)

On-shell solutions are normalizable, i.e. A`(ω, k) = 0. This agrees with the AdS/CFT
dictionary, where a finite A`(ω, k) would imply an external source for the fermions for a
specific band ` and energy ω, k. Demanding normalizability A`(ω, k) = 0 instead, implicitly
translates in a dispersion relation ω(k) = E`(k).

The IR boundary conditions for the fermions require a more detailed discussion. Firstly,
for the fermionic wavefunctions, the amplitude is set by normalization of each wavefunction
to unity. For each radial mode ` this implies∫

dz
√
−g|ψi;`,k(z)|2 <∞. (2.21)

For finite temperature backgrounds this is usually not an issue as the horizon is parametrically
at finite distance and finite IR boundary conditions, together with the UV-condition that the
un-normalizable fall-off vanish, guarantees a finite integral. For the T = 0 background we
consider here, the interior is parametrically at infinite distance and finiteness of the integral
can only follow from bounded behavior of the wavefunction. Since the spin components are
not independent, it is sufficient to demand ψ1;`(z →∞)→ 0, i.e., the leading component
should vanish in the interior.

It is well known in AdS/CFT that it is then the simultaneous requirement of a UV and an
IR boundary condition that determines the spectrum of the small excitations. This spectrum
can still be continuous or discrete; we address this directly below. Formally, however, the
normalization together with two boundary conditions make the system overconstrained and
one must search for accidental solutions. We again do so by shooting from the interior to
search for parameters where the UV conditions are also satisfied.
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The shooting condition we use is the ratio ψ2/ψ1, which still leaves the freedom to
normalize the norm (2.21) to unity, and which we do after the solution is found.

2.4.1 Effective potentials and confinement

Pure T = 0 AdS — representing a deconfined phase of the strongly coupled boundary
theory — has a continuum spectrum of normal modes computed in the way described above.
The system must be considered in a different phase or have its IR dynamics modified by
a confining potential to discretize the spectrum; this spectrum may still be ungapped or
gapped. We will now demonstrate that the chiral-breaking soft-confining potential supports
a discrete Fermi surface, i.e. a tower of bound states at discrete energies, for momenta up to
some kF , the Fermi momentum. The spectrum is also gapped. A convenient way to see the
effect of this potential is to transform the Dirac equation to the Schrödinger form [4, 9, 10]:

χSch(z) = e
1
2

∫ z
0 duP(u) ,[

∂2
z − V (z)

]
χSch(z) = 0 ,

V (z) = 1
2P
′(z) + 1

4P(z)2 −Q(z) , (2.22)

where the coupled equations (2.15) were decoupled into two second order equations, each
taking the form

ψ′′(z) + P(z)ψ′(z) +Q(z)ψ(z) = 0 , (2.23)

with the indices 1,2 on ψ, χSch(z), V omitted.
In principle, the Schrödinger potential is itself a function of the background spacetime

and electrostatic potential f(z), h(z), At(z) and can be fully determined only by calculating
numerically the full solution. However, we can give a qualitative estimate whether it is
confining or not by studying its asymptotics. Since the bulk remains asymptotically AdS4,
we have V (z → 0) ∼ 1

z2 . In pure AdS4 the IR behavior would be VAdS-IR(z → ∞) =
−(ω + µq)2 + k2 + m(m + 1)/z2 + O(1/z3) (figure 3).5 This now gets modified by the
confining potential due to the scalar Φ(z). Making the ansatz that the confining potential
in the deep IR for z →∞ suppresses exponentially all sources in the Einstein and Maxwell
equations for large z, i.e. the geometry in the deep IR is again an (emergent) AdS4 geometry,
the leading order IR behavior of the potential is then schematically

VAdS−IR = V (z →∞)+(ε−−ε+)
[
−φ
′(z)
2z + φ(z)(4m+ 2) + (ε− − ε+)φ(z)2

4z2 +
]

+O(1/z3) .

(2.24)
Note that the chiral-preserving solution ε+ = ε− = 1 leads to a vanishing contribution

and therefore does not lead to fermionic bound states. In contrast the chiral-breaking
solution ε+ = −ε− = −1/

√
f(z) = −1 +O(1/z) in an AdS4 IR does lead to a potentially

bounding potential depending on the choice of Φ(z). For this reason, we will work solely
with the chiral-breaking scalar field.

5We are interested in k2 < (ω + µq)2 since the potential is otherwise confining even in AdS4 with no
regulator, as discussed in [26]. We will discuss this later.
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Figure 3. Comparison of the Schrödinger potentials for ψ1(z) for the two types of confining potential:
chiral-breaking quadratic (green), chiral-breaking flat (red) and chiral-preserving quadratic (blue).
The dashed black line indicates the truncation of spacetime which happens in the hard wall model
of [13] at z = 7. Only the chiral-breaking potential and the hard wall allow for bound states.
Parameters are {m,µq, k, ω} = {0.1, 1.05, 0,−0.027}. The scalar parameters are λ = 0.1 for the two
quadratic scalars and λ = 1 for the flat scalar.

Figure 3 shows the behavior of the Schrödinger potential for the various profiles of the
scalar field and regulation schemes. With a chiral-breaking regulator, we indeed see that
the infrared behavior of the potential is dominated by the large z behavior of each profile.
The final choice of which scalar field profile to use is determined by the convergence of
the iteration scheme. We numerically found the quadratic profile to be unstable while the
flat profile leads to an emergent AdS4 in the infrared. Specifically for the chiral-breaking
confining potential with flat asymptotics the Schrödinger potential in the deep IR becomes

V (z → zIR)=− ω2
IR + λ2

IR + k2
IR +O(1/z) ≡ VIR +O(1/z) , (2.25)

where we have used that f(z), h(z), At(z) become constant in the emergent AdS4 IR and

we have defined ωIR ≡
ω + qAt(zIR)
f(zIR)

√
h(zIR)

, λIR ≡
λ√
f(zIR)

and kIR ≡
k√
f(zIR)

.

In the IR limit, the Schrödinger equation becomes[
∂2
z − VIR

]
χSch(z) = 0 , (2.26)

which is solved by

χSch(z) = χSch+(z)e
√
VIRz + χSch−(z)e−

√
VIRz . (2.27)

We see from (2.27) that, for frequencies such that VIR > 0, the solutions have a growing
and a decaying branch. The decaying branch clearly confines the wavefunction. This is
the one we shall choose. This leads to the following IR form for our original Dirac fermion
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components
ψIR

1,2(z) = cIR
1,2(z)e−

√
VIRz , (2.28)

where the ratio of the coefficients is fixed by the Dirac equation (2.15):

ψIR
2 (z)

ψIR
1 (z)

= cIR
2 (z)
cIR

1 (z)
= 1
ωIR + kIR

[
m

z

( 1√
fIR
− 1

)
+
√
VIR + λIR

]
(2.29)

and the normalization of the wavefunction to unity sets the remaining overall scale.
With these IR boundary conditions the equations (2.15) are solved by shooting from

zIR to zUV.
The confinement imposed by both IR and UV boundary conditions leads to a discrete

and gapped spectrum which defines a band structure (see figure 6 later). The fall-off of the
wavefunction both at the AdS boundary and the interior also implies an absence of any
backreaction in those regions. Once backreaction is included the resulting solutions will
therefore be AdS4-to-AdS4 domain wall solutions, as we will show in the next section.

As a last remark, equation (2.25) gives us a simple way to view the effect of the
chiral-breaking flat potential. As has been pointed out in [4, 26], in AdS4 with constant
electrostatic potential where λ = 0, the potential is deconfining for modes with |ωIR| > |kIR|
and confining for modes such that |ωIR| < |kIR|. The addition of a flat profile means that
now modes with |kIR| ≤ |ωIR| <

√
k2

IR + λ2
IR, which previously were not bound states,

also become confined. This allows the existence of a window ω−(k) < ω < ω+(k), with
ω±(k) ≡ qAt(zIR)±

√
k2

IR + λ2
IR where a discrete set of (gapped) modes can be populated.

3 Regulated quantum electron star: thermodynamics and spectrum

Now that the problem is well-posed, we can follow the algorithm in figure 2 and construct a
fully backreacted regulator-confined T = 0 quantum electron star. Choosing the chirality-
breaking flat regulator the resulting solution is shown in figure 4. This is by construction
an AdS4-to-AdS4 domain wall solution. Just like the analogous domain wall solutions
for the holographic superconductor [16–18], it has a UV AdS4 and an IR AdS4 with the
same radius but different effective speed of light. This can be checked by considering the
diffeomorphism-invariant ratios vIR/vUV and LIR/LUV which are equal to

LIR
LUV

=
√
R(z → zUV)
R(z → zIR) = 1 , vIR

vUV
≡ v(z → zIR)
v(z → zUV) =

√
h(z → zIR)
h(z → zUV) < 1 in our solution .

(3.1)
Here R(z) is the Ricci scalar and v(z) =

√
h(z) is deduced from the null vector d

dtX
µ(z)

where Xµ(z) ≡ {t, 0, v(z)t, 0} is a x-directed trajectory. Therefore, our solution obeys the
c-theorem since the effective speed of light in the dual field theory is lower in the IR than
in the UV, as discussed in detail in [17].

In accordance with our discussion in the Introduction, the chemical potential is chosen
such that only the lowest radial mode of the fermionic wavefunction is occupied. The
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Figure 4. Iterative backreactions on the background fields (f(z), h(z), At(z)) and their associated
currents (n(z), ρ(z), P (z)) with the same parameters as in figure 5. In total 5 iterations are
performed, denoted by the color scale from green (first iteration) to red (last iteration). For these
values {m,µq, λ} = {0.1, 0.9, 1} only the first iteration differs significantly from the final solution,
and the other curves are visually barely distinguishable from each other; for higher q convergence
rapidly becomes slower.

associated matter content shows that a localized distribution of fermions in the mid-
infrared region is characterized by a stable finite density of fermions with total charge
Q = −A′t(z → 0).

With the chirality-breaking flat potential the convergence is in fact quite fast at low
density. The Hartree algorithm provides a discrete sequence of fields (f (n), h(n), A

(n)
t ) as we

iterate from n = 1, 2, . . .. We can introduce a criterion for the convergence of the solution
using the IR parameters used for shooting

εn =
√
f (n)(zIR)2 +A

(n)
t (zIR)2 + h(n)(zIR)2 . (3.2)

Convergence is obtained if (∆ε)n ≡ εn−εn−1
n→∞−−−→ 0. For a small occupation number/charge

figure 5 shows that the solution already stabilizes after three iterations; for large occupation
numbers the convergence rapidly becomes much slower. We have checked that the solution
is not sensitive to the choice of the numerical cutoffs {zUV, zIR}.

3.1 Thermodynamics

For a large q/m ratio we expect that the quantum electron star at a given chemical potential
µ is the thermodynamically preferred solution over the extremal Reissner-Nordström solution.
In order to study the thermodynamics of the regulated quantum electron star, we need to
compute its free energy. It consists of two parts. There is a direct saddle point contribution
from the regularized Euclidean action:

SE =
∫

d4x
√
gE

[ 1
2κ2 (R+ 6)− 1

4F
2
]

+
∮
z=ε

d3x
√
h(−2K + 2γ) , (3.3)

where gE is the Euclidean metric, h is the induced metric on a hypersurface normal to a
radial (z) slice, pointing outwards, K is the trace of the extrinsic curvature and γ = 2 is
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Figure 5. Convergence in terms of the logarithm of the difference in the IR between the n-th
and n + 1-st iteration log |(∆ε)n| for a rQES with {m,µq, λ} = {0.1, 0.9, 1}. The convergence is
exponentially fast and the agreement is very good already around the 3rd iteration.

required to make the AdS free energy vanish. The imaginary time at temperature T is
compactified with the radius β = 1/T , the integral in the x–y plane produces the (infinite)
volume Vol2, and the radial integration is performed to some UV cutoff ε, yielding

SE = βVol2
∫

dz√gE
[ 1

2κ2 (R+ 6)− 1
4F

2
]

+ βVol2
√
h(ε)(−2K(ε) + 2γ) . (3.4)

This accounts for the contribution of the bosonic fields. The Dirac action vanishes on-shell
and therefore does not contribute to this part. It does have a one-loop contribution to the
free energy density

f ≡ SE
βVol2

+ fDirac . (3.5)

Here fDirac represents the fermionic contribution. Following [13, 24, 27, 28], at T = 0 we
can simply sum the energies along the filled band of fermions (above the Dirac sea). This is
the internal energy shifted by the chemical potential. For our normal modes, this leads to
the expression

fDirac =
∑
`

∫
kdk
2π Θ(−E`(k))Θ(E`(k)− µq)E`(k) =

∫
kdk
2π Θ(−E1(k))E1(k)

where in the last line we have made explicit that we choose our chemical potential such
that only states of the lowest electronic radial mode E`=1 will be occupied. One must first
choose the potential strength λ such that the Schrödinger potential supports at least one
normalizable mode. At the same time, it is only these normalizable modes that can be
populated. If there is only one band in the window of existence of normalizable modes
[ω−(k), ω+(k)], i.e.,E`=1(k) < ω+(k) < E`=2(k), then increasing the chemical potential
beyond that upper limit will not populate further normalizable modes. Our rQES is in this
sense not plagued by the usual large-N Fermi surfaces artifact.
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Figure 6. First electronic band for {m,µq, λ} = {0.1, 0.9, 1}, for the AdS4 background with
constant electrostatic potential (blue) and the backreacted solution (red). The lines are a fit to the
form (3.6).

It is furthermore quite easy to show that both before and after accounting for backre-
action the band structure follows a similar form as in pure AdS4 [13]

E`(k) = −E0 +
√
k2 + k2

0 , (3.6)

where kF ≡
√
E2

0 − k2
0 and the parameters E0, k0 are most easily found by fitting from the

numerical dispersion curves, as in figure 6.
Note that fDirac is negative semi-definite. This does not mean, however, that the

occupied state is automatically thermodynamically preferred. The backreaction also changes
the bosonic saddle point contribution compared to its original AdS4 value f(AdS4) = 0.
Adding both contributions we compare to the RN free energy

f (RN) = −4 + z2
hµ

2

4z3
h

= − µ3

6
√

3
at T = 0 . (3.7)

Because the regulator does not act on the background sector, the Reissner-Nordström free
energy is unaffected by it.

Figure 7 shows the free energy of the rQES as a function of the charge µq for a fixed
mass m and confining potential strength λ. As q increases, the rQES grows, so we need
to compute more and more modes. This becomes more and more time consuming. By
constructing an interpolating curve based on low q rQES solutions (using the points until
µq ' 1.2), we can estimate where the solution becomes thermodynamically preferred and
verify this with a fewer number of large q datapoints (µq = 1.4 and µq = 1.58). We see
that at µq = µqc ' 1.56, the rQES becomes thermodynamically preferable over the RN
background.
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Figure 7. Plot of the free energy density for rQES at {µ,m, λ} = {0.75, 0.1, 1} as a function of the
fermionic charge µq (blue dots) and the reference RN black hole free energy (red dashed line); the
thin blue line and the red triangle are to guide the eye to the transition point. Since RN has no
fermions its free energy curve is flat, i.e. does not depend on the fermion charge. The first-order
phase transition from RN to rQES happens at the intersection of the two lines. Since the calculations
for larger µq values are costly, we only compute two points for µq > 1.5 and interpolate.

In figure 8(a), we show that this transition point evolves linearly with the fermion
mass m for fixed q and λ. Based on this finding, we can sketch a thermodynamic phase
diagram for our model in figure 8(b). The critical charge satisfies an approximate relation
qc(m;λ) ≈ c0(λ) + c1(λ)mµ with c0 and c1 dependent on λ. It is tempting to compare this
to the confounding phase diagram based on RN holography alone. For pure RN holography
it is surmised [29] that the superradiant instability of the RN black hole toward an electron
star (seen in the spectrum as log-periodic oscillations) sets in at q =

√
3m. This should

correspond to the limit λ → 0. As λ decreases we therefore expect the phase-boundary
to pivot anti-clockwise. This comparison should be done with care, because the smaller
λ becomes, the harder it is to observe bands that can be occupied — see the section on
removing the regulator below. Another way to see this is that the effective Schrödinger
potential in the extremal RN black hole for ω = k = 0 (the onset of instability) has no
linear term in m: VRN ∼ −4q2 + 2m2. Hence we cannot extrapolate freely to λ = 0.

3.2 Spectrum of the rQES

To confirm our results, we consider the fermionic spectral function on rQES backgrounds. As
a reminder, the spectral function is defined as the trace of the imaginary part of the retarded
propagator: A(ω, k) = Im TrGR(ω, k). In holography the type of propagator is defined by
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Figure 8. (a) Transition point µqc as a function of m and its linear fit, for λ = 1. (b) Sketch of the
phase diagram of the rQES. The black line indicates a first order transition between the regulated
Reissner-Nordström and the rQES, occuring when their free energies cross.

the boundary conditions in the interior. Therefore the only difference with computing the
normalizable Dirac solutions is the choice of appropriate boundary conditions.

Considering that we have an emergent AdS4 geometry in the IR, we can use the known
prescription for infalling boundary conditions in pure AdS, i.e. the presence of a Poincaré
horizon [30]. Accounting for the confining potential, these are

ψ1(z →∞) =


e−z
√

k2
IR , if ω2

IR < k2
IR + λ2

IR ,

eiz
√
−k2

IR , if Re[ωIR] >
√
k2

IR + λ2
IR ,

e−iz
√
−k2

IR , if Re[ωIR] < −
√
k2

IR + λ2
IR ,

(3.8)

where ωIR, kIR, λIR were defined by (2.25), kIR =
(
ωIR,

√
k2

IR + λ2
IR, 0

)
and k2

IR = −ω2
IR +

k2
IR + λ2

IR = VIR. As we saw with the normal modes, the IR boundary condition for ψ2 can
be obtained using the Dirac equation and the boundary condition for ψ1. After imposing
these boundary conditions, the retarded propagator is then computed as

GR(ω, k) = B/A = lim
z→0

z−2mψ1(z)
ψ2(z) , (3.9)

where A and B are the coefficients in the UV expansion of the spinor (2.20).
Inside the gap (ω2

IR < k2
IR +λ2

IR) the IR boundary conditions are the same for the probe
fermions as for the bulk normalizable modes – the wavefunction should fall off for z →∞,
which yields A = 0 for the normal mode frequencies ω = E`(k). Therefore, the propagator
will present a pole along the bands of the background. Moreover, since the fermionic
wavefunctions and thus also the Green’s functions are real inside the domain where bound
states exist, the spectral function will vanish there. Thus, we expect to see ImGR(ω, k) = 0
for ω ∈ [ω− (k) , ω+ (k)], except when ω = E`(k) where a pole should appear.

This general structure of the spectral function including the gap for ω− ≤ ω ≤ ω+
can be seen in figure 9. The data here and in the remainder of this section is computed
for {µ, q,m, λ} = {3/4, 1.2, 1/10, 1}. Inside the gap (white area), the spectral weight of
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Figure 9. Spectral function ImGR(ω, k) for {m,µq, λ} = {0.1, 0.9, 1}. The gap appears in white
and is well delimited by ω±(k) (red dashed lines). The normal mode bands have been superimposed
to show the infinitely long-lived modes, see figure 10. Outside the gap, there is no particle (normal
mode) but a continuum shaped by the remnant of the UV conformal branch cuts. Since the
regulator and the chemical potential explicitly break conformality, we do not reproduce the pure
AdS Lorentz-invariant spectrum for any finite value of ω and k.

excitations is indeed zero to numerical accuracy except at the positions of the normal modes
of the background fermions. The latter are computed directly from the solution of the
background Dirac equation (green lines in figure 9), as they cannot be seen numerically in the
spectral function because they are infinitely long-living modes which show in the spectrum
as Dirac delta peaks. Being infinitely narrow on the real axis, they can only be detected
in the complex-ω plane. Representing schematically the normal mode located at ω? by
ImG(ω = Re(ω)) = Zδ(ω− ω?) where Z is the peak weight (wavefunction renormalization),
we have, for complex ω:

ImGR(ω, k) = −Z Imω − Imω?

(Reω − Reω?)2 + (Imω − Imω?)2 . (3.10)

When Reω = Reω?, this simplifies to

ImGR(ω, k) = − Z

Imω − Imω?
. (3.11)

We check this picture against the numerics first in figure 10(A), where the absolute value of
the spectral function in complex frequency plane shows the typical structure of a string of
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Figure 10. (A) Absolute value of the fermionic spectral function for different values of momentum.
The plot is cropped for values below 100 to highlight the quasiparticle peaks. (B and C) Comparison
of the poles in the spectrum (blue circles), identified in (A), to the first electron band of the
background (red triangles). The real parts (B) of both sets agree perfectly; the imaginary parts (C)
are both zero to high accuracy. All this data is computed for {m,µq, λ} = {0.1, 0.9, 1}.

poles (for various momentum values) lying on the real axis. The relation (3.11) is then used
to identify the dispersion relation of the pole ω?(k) by fitting ImGR(ω, k). We find, with
no big surprise, a perfect agreement with the normal mode excitations E1(k) corresponding
to the first electron band, as seen in figure 10(C) and (D). A similar picture is found for
the first hole band E−1(k) and this yields the spectrum inside the gap, plotted in figure 9.

In figure 11 we compare the spectral function at finite µ for our regulated quantum
electron star (blue data points) to the fermionic spectral function in a pure AdS4 background
with finite chemical potential, either with (green line) and without (red line) regulation by
the confining scalar. The comparison is given at k = 0 (left) and k = 1 (right). The Dirac
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Figure 11. (Confined) Dirac spectral function (blue points) in the rQES background for k = 0 (left)
and k = 1 (right), compared with the standard/unconfined (red dashed line) and regulated/confined
(green dashed line) Dirac spectral function in AdS with finite electrostatic potential.

spectrum in AdS4 is well-known [30]:

GR(ω,k) =


2

ω2−k2
Γ(1/2−m)
Γ(1/2+m)

[
− i2

(
ω2−k2

)]2m+1 [
ωγ0−kγ1

]
if ω > k ,

2
ω2−k2

Γ(1/2−m)
Γ(1/2+m)

[
i

2
(
ω2−k2

)]2m+1 [
ωγ0−kγ1

]
if ω <−k .

(3.12)

It has a conformal branch-cut at ω = k and a gap for ω2 < k2. For AdS4 with finite
electrostatic potential, one merely needs to replace ω → ω + µq in the previous expression.
Adding confining potential by turning on the chirality-breaking flat scalar widens the gap
to (ω + µq)2 < k2 + λ2; in particular the gap is open also at k = 0. The rQES solution
outside the gap exhibits qualitatively the same spectral function as that of the confined
Dirac spectrum in pure AdS4 but for renormalized IR values ωIR, kIR, λIR given in (2.25).
It is important to emphasize that none of the modes in this continuum are normalizable
and thus do not contribute when building the bulk rQES, even when µq is large enough
that ω+(k) < 0. This is guaranteed by our choice of UV boundary conditions.

4 Towards a self-confining quantum electron star

4.1 Comparison to the holographic superconductor

By construction the confinement in our setup gives an AdS4-to-AdS4 solution. With the fully
backreacted solution in hand we can also understand what the field theory dual describes.
The confining regulator scale λ gaps the field theory fermion spectral function. Considering
then the RG flow from the IR emergent conformal field theory towards the UV, this means
that as one increases the energy scale it takes a finite distance for occupiable fermion states
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to be encountered. This can also be seen in the band structure of figure 6. At this scale the
theory deforms away from the strict conformal theory up to the scale µ beyond which it is
no longer energetically favorable to occupy more states. The flow up the RG then continues
towards the UV AdS4 fixed point.

In the more usual flow from the UV to the IR this is not a natural RG trajectory.
The generic IR will not be a non-trivial conformal field theory. Nevertheless, within
holography such AdS4-to-AdS4 domain walls are well-known. Especially in the search for
the holographic dual of the holographic superconductor ground state, Horowitz and Roberts
and independently Gubser and Rocha have found AdS4-to-AdS4 domain walls (in some
cases with logarithmic corrections) in a finite parameter range [16, 17]; the other solution
found is the Lifshitz geometry. It was later understood that Lifshitz rather than an AdS4
IR is the generic holographic superconductor ground state [17, 18], but this is only seen
with the inclusion of a stabilizing quartic potential.

In detail of course the solutions are different. The Horowitz-Roberts-Gubser-Rocha
holographic superconductor ground states do not need an additional confining scalar. They
can also be obtained classically without the need for a one-loop Hartree mean field. This
is due to the fact that the bosonic field already couples quadratically to the electrostatic
potential At. A fermion only couples linearly, but its one-loop contribution can couple at
all orders. This is why for fermionic systems one needs to go to one-loop.

4.2 Confinement in the rQES solution

Given that the Horowitz-Roberts-Gubser-Rocha AdS4-to-AdS4 solutions do not need a
confining potential, and that the more generic holographic superconductor Lifshitz solutions
are known, it is a natural question why we do not try to remove the soft-confining regulator
alltogether. There was in fact a concerted effort to do so several years ago [5, 9, 12], culminat-
ing in the QES model of [14, 15]. The latter two articles show in detail how the presence of
the gap and the discretized spectrum are crucial to construct any type of quantum fermionic
backreacted solution, i.e. where one or a small finite number of radial modes are occupied.
Any attempt to remove the confining potential results in a uncontrolled continuum spectrum.

It is precisely this insight that was the starting point for our confining potential. What
we have furthermore shown, is that even then there are several severe technical hurdles
to overcome to construct a converging fully backreacted confined quantum electron star
solution. At the same time the general insight still holds. Our infrared boundary conditions
crucially depend on the coupling to the scalar Φ(z) to extend the domain of existence of
normalizable modes of AdS4 all the way to k = 0. The parameter λ, as we previously noted,
acts as a momentum shift in this domain such that a mode at k = 0 will behave as a mode
at keff = λ and therefore normalizable modes with |ω + µq| < λ will be found. These can
be populated and will condense in the bulk. Turning off the potential, even slowly, will
invariably lead to a lack of normalizable modes at the lowest momenta and will bring us
back to a situation similar to that of AdS4.

One sliver of hope would be that the domain wall solution itself, after convergence, can
support a well in the Schrödinger potential such that a regulator is no longer necessary. We
have therefore looked at this (figure 12) by comparing the Schrödinger potential for a k = 0,

– 21 –



J
H
E
P
0
8
(
2
0
2
2
)
2
2
2

0 5 10 15 20

-1

0

1

2

Figure 12. Comparison of the Schrödinger potential for the AdS4 (blue) and AdS4-to-AdS4 (red)
solutions with (dashed) and without (solid) regulator, for {m,µq, k, ω} = {0.1, 1.05, 0,−0.027}.

ω = E1(0) mode in the confined quantum electron star AdS4-to-AdS4 background with and
without the confining potential. Without a potential, however, the AdS4-to-AdS4 quantum
electron star domain wall solution is not confining. We do see that Vdomain wall(z →∞) >
VAdS which means the wedge of existence of normalizable modes is indeed wider in the
domain wall solution than in the AdS4 solution. Yet, the modes with sufficiently small
momenta (including k = 0) are always outside the wedge.

This therefore leads us to believe a true QES would not remove the regulator but must
incorporate it into the model, i.e. make the scalar field a dynamical dilaton which couples
to the Dirac fermion and drives the geometry from one fixed point to another.

5 Discussion and conclusions

In this paper we have constructed a self-consistent model of a single band confined holo-
graphic Fermi liquid. The crucial technical problem, the infrared divergence brought about
by the fermionic wavefunctions, is solved by controlling it by hand. We control the far
infrared by the means of a scalar regulator, equivalent to a soft-confining potential. The
confinement is drastic and 100%: our regulated quantum electron star is dual to a gas
of infinitely-long living particles with zero self-energy. In the limit where we compute, it
is a single-band Fermi-gas rather than a Fermi-liquid.6 At higher energies, the spectrum
switches to the featureless continuum inherited from the UV conformal field theory (though
it is not conformally invariant due to the presence of the confining potential).

6This holds at zero temperature. At finite temperature a black hole horizon would form, causing inevitably
some dissipation even in the presence of the confinement.
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The regulated quantum electron star is the thermodynamically preferred solution over
the Reissner-Nordström background for µq/m > (µq/m)critical. The transition is first order,
which means that the there is no continuous exchange of charge from the RN solution to
the bulk Fermi sea. Instead all the charge is carried by the infinitesimally small rQES. This
is somewhat different from the conundrum that we mention in the Introduction: the onset
of a log-oscillatory signal in the spectral function signaling a putative instability and the
presence of normalizable solutions. The first order transition is essentially unrelated to the
RN horizon instability.

Although it is not yet clear how the rQES is related to the final state after the
conjectured continuous quantum phase transition which destroys the Reissner-Nordström
black hole horizon signalled by the log-oscillatory instability, we nevertheless feel it is a step
in the right direction, bringing us closer to the full unregulated quantum electron star. The
reasons are the following:

1. It is now much clearer what a healthy Fermi liquid should do on the gravity side: it
should self-consistently form a geometry which yields such an effective potential for the
Dirac fermion that it is just confined enough not to diverge in far IR but not so much
that the bulk Fermi sea dies out in the far IR, failing to influence the low-energy physics.

2. We have inspected in some detail the spectrum and the phenomenology of the dual
confined Fermi liquid. Although our confining bulk construction is somewhat more
natural in holography — it just uses a non-dynamical rather than a dynamical scalar
— than the hard-wall model [13], and it now allows us to compute the backreaction,
qualitatively the field-theory side description is only marginally improved. Similar
to the hard-wall model, the occupied fermions have vanishing self-energy. The main
effect of the backreaction is to understand how this confined Fermi gas emerges in an
RG-flow from the UV conformal field theory. In the likely event that an unregulated
(confining) quantum electron star — supported for instance by a dynamical rather
than a non-dynamical scalar (such as the fluid electron star in [19]) — has a Lifshitz
IR rather than an AdS4 IR, possible decay into the Lifshitz horizon could provide
a finite lifetime and an honest Fermi liquid.

3. Unlike the global AdS radius regulator of [15] which cannot be easily sent to infinity,
our scalar can at least in principle be made dynamical. That would be a perfectly
natural holographic model, given the ubiquity of non-minimally coupled scalars in
top-down holographic actions. Therefore, a very natural line of further research is
to turn this construction into a fully dynamical Einstein-Maxwell-Dirac-scalar system,
similar to the fluid approach of [19].

Apart from the natural next step — making the dilaton dynamic — a number of other
directions of work open up. It would be useful to understand the relation of our work to
the AdS/QCD studies, some of which employ a similar type of scalar (soft wall) to impose
confinement. The role of the Fock correction (the one-loop exchange diagram) is also not
clear yet, and may be important for a fully self-regulating solution and/or a finite self-energy.
Finally, the most characteristic property of rQES — the domain-wall-type solution with
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an infrared AdS4, is analogous to the domain-wall holographic superconductor solutions of
Horowitz-Roberts-Gubser-Rocha [16, 18, 31]. Based on those results and the macroscopic
electron star with dynamical dilaton studied in [19], it strongly suggests that Lifshitz IR
quantum electron stars must also exist.
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1 Introduction

Chaos in string theory has traversed the way from an arcane and little-noticed topic to
a mainstream field, thanks to the ideas of fast scrambling and black holes as the fastest
scramblers in nature [1], the Maldacena-Shenker-Stanford (MSS) maximum chaos bound for
strongly coupled field theories with black hole duals [2] and the notion of out-of-time ordered
correlators (OTOC) [3–5] and their applications in the physics of chaotic strongly coupled
systems [6–8]. An important motor of the field is also the connection to recent progress on the
black hole information problem [9–12] and the related puzzle of factorization [13–20]. In [21] it
was demonstrated for the first time that the MSS scale characterizes also the time-disordered
correlation functions on a string worldsheet, provided that the induced metric has a horizon
and thus mimics black hole physics. The guiding idea through all these topics is of course the
AdS/CFT duality, the unifying principle of many topics in string theory and gravity. Our
primary interest thus lies in the dynamics in asymptotically AdS backgrounds.

Among the many questions which have opened up, there is one seemingly technical but
in fact physically important subtlety. Several papers have reported the saturation of the
bound 2πT for bulk orbits of particles [22, 23], or its slight modification/generalization for
fields [22] and strings [24–30]; the systematic answer to the question of the bulk Lyapunov
exponent is given in [31]. However, a very simple question arises: why should there ever be

– 1 –
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an MSS-like bound for bulk Lyapunov exponents? The OTOC exponent and its MSS bound
λ = 2πT in principle have no simple relation to the classical bulk motion and its Lyapunov
exponent: the former is a property of a time-dependent correlation function in dual CFT,
determined by a 4-wave scattering amplitude in the bulk, and the latter is the solution of
a bulk equation of motion, for a single orbit, with no scattering and thus no OTOC-like
interpretation in the bulk. This relates to a more general question: what is the CFT dual of
a bulk orbit (and its Lyapunov instability exponent)? Some important work was done on this
issue [32–37], and the outcome is that a bulk particle is dual to a shock wave perturbation
of the dual CFT. But many details are still missing; in particular, the answer cited above
holds for a geodesic with both endpoints on the AdS boundary; it is less clear what the
CFT dual is for an orbit not reaching the boundary.

Paradoxically, a string in the bulk, specifically an open string, is perhaps an easier
case for study. It is long known that a static or dragging string, with one endpoint in
the interior and the other on the boundary, is dual to a heavy quark in the quark-gluon
plasma of the supersymmetric Yang-Mills gauge theory [38, 39]. Likewise, an open string
with both endpoints on the boundary represents a quark-antiquark pair [40–44], and encodes
information on the confinement mechanism. It is thus a convenient framework to pose our
main question: what is the meaning of the bulk Lyapunov exponent and what does it have
to do with the MSS bound?

In this work we give a partial answer to the question and demonstrate it by a number
of case studies involving bosonic open strings in various backgrounds.1 There is, in fact,
no unique answer to the question of the CFT dual to a bulk Lyapunov exponent: just as
various string configurations have various field theory duals (a quark, a bound pair of quarks,
an EPR pair, an accelerating quark. . . ), likewise the Lyapunov stability of these different
solutions will have different meanings. Furthermore, on the string worldsheet there are two
coordinates thus we have two Lyapunov exponents, with different CFT meanings.

We also find that the MSS form of the exponent is really a red herring: in the strict
infinite-coupling, infinite-N limit and with maximal symmetry, 2πT becomes a natural scale
which has to appear in all fluctuation equations. As soon as we decrease symmetry (e.g.
by considering a D1-D5-p bound state in the bulk that breaks rotational invariance) or
include stringy effects, the bulk exponent (as well as OTOC [5] and other CFT correlation
functions) undergo corrections, and do not coincide anymore (neither among themselves
nor with the MSS bound). Recent work on universal near-horizon symmetries [45, 46] has
shone additional light on the issue, allowing us to view the MSS scale as the fundamental
property of black hole horizons, so it can appear in any CFT correlator which is sensitive
to temperature T , i.e. which probes the energy scales smaller than T . The puzzle of “why
2πT pops out everywhere” is thus a fake issue: it disappears as soon as leading corrections
or broken symmetries are taken into account.

The sharpest finding of our analysis is that the bulk Lyapunov exponents of a probe
string in fact reproduce the quasi-normal mode (QNM) spectrum of the black hole or black

1While the dynamics of a superstring would be an interesting problem to study, in this work we stick solely
to the bosonic sector. This is enough to understand the principles, and also to model holographically the
dynamics of a heavy quark in Yang-Mills plasma.
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string background; in other words, they correspond to the thermal decay rate. Since this rate
is also determined by the temperature times an O(1) factor, we feel that this also provides
an explanation for the origin of an MSS-like expression in bulk dynamics. It also clearly
spells out that the relation of bulk instability scale to OTOC-ology and chaos in dual CFT
is fake. In terms of the relation to QNM, our work is a stringy generalization of a similar
result for geodesics [47, 48] and scalar waves [49, 50].

The plan of the paper is the following. In section 2 we study the simplest possible case:
open string in AdS-Schwarzschild background, where the basic message already appears — the
bulk Lyapunov exponent is 2πT but it is not related to chaos. In section 3 we demonstrate the
same findings on more general background. In section 4 we address the dynamics of the string
probe in the D1-D5-p and related backgrounds. Here we do a more detailed study, comparing
the bulk variational equations to the retarded correlators dual to the string fluctuations, and
finding that the bulk Lyapunov instability really described the quasinormal modes and hence
the thermal decay rate in field theory. The final section sums up the conclusions.

2 Open string in AdS-Schwarzschild background

Our goal is to study the linear stability and fluctuations of classical solutions for the static
open string stretching from the boundary to the horizon of an AdS black hole, the well-known
simple holographic probe for a heavy quark in quark-gluon plasma.2 Therefore, we write
down the string action, derive the equations of motion and variational equations. Throughout
the paper we consider only the bosonic sector of the string. Most of the time we will use
the Polyakov action, but sometimes we will switch to the Nambu-Goto action, depending
on the problem at hand.

2.1 Setup and radial fluctuations

Dynamics of a string in D + 1-dimensional AdS-Schwarzschild spacetime with the time
coordinate t, radial coordinate r, transverse spatial coordinates xi (i = 1, . . . D − 1) and
the horizon at rh:

ds2 ≡ Gµν(x)dxµdxν = r2
(
−h(r)dt2 + dx⃗2

)
+ dr2

r2h(r) , h(r) = 1−
(
rh

r

)D

, (2.1)

can be described by the Polyakov action for the string:

SP = − 1
2πα′

∫
dτdσ ηαβ∂αX

µ∂βX
νGµν(X). (2.2)

Here and in the rest of the paper α, β, · · · ∈ {τ, σ} and µ, ν, · · · ∈ {t, r, x⃗} stand for worldsheet
and spacetime indices respectively. Latin indices i, j, · · · count the transverse coordinates
x1, . . . xD−2. As we know [38], the equations of motion are consistent with the following ansatz:

t = t(τ), R = R(σ), X1 = X1(τ, σ), Xj = Xj(τ), j = 2, . . . , D − 1, (2.3)

2In fact, to be precise, a heavy colored particle in super-Yang-Mills plasma.
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describing a string stretching from the horizon at rh to the boundary at r = ∞. It is easiest
to impose the flat worldsheet metric and solve for the Virasoro constraints together with
the equations of motion:

ẗ(τ) = 0, Ẍj(τ) = 0, j = 2, . . . , D − 1 (2.4)

− 2h3(R)R4(σ)−
(
R(σ)h′(R) + 2h(R)

)
R′2(σ) + 2h(R)R(σ)R′′(σ)+

+ h2(R)R4(σ)

−R(σ)h′(R) + 2

X ′
1

2(τ, σ) + Ẋ1
2(τ, σ) +

D−1∑
j=2

Ẋj
2(τ)

 = 0, (2.5)

2R′(σ)X ′
1(τ, σ) +R(σ)

(
X ′′

1 (τ, σ)− Ẍ1(τ, σ)
)
= 0, (2.6)

R′2(σ)
R4(σ) + h(R)

−h(R)ṫ2(τ) +X ′
1

2(τ, σ) + Ẋ1
2(τ, σ) +

D−1∑
j=2

Ẋj
2(τ)

 = 0, (2.7)

X ′
1 · Ẋ1 = 0. (2.8)

The equations for t, X2, . . . , XD−1 (2.4) are trivially satisfied when these are functions linear
in τ , thus we can set t = τ and Xj = const. Moreover, the second constraint (2.8) requires
X1 to depend on one variable only. For now we choose X1 = X1(σ), i.e. the static open
string/heavy quark (later on we will study both space- and time-dependent fluctuations).
Now the remaining equation for R(σ) (eq. (2.5)), together with the nontrivial Virasoro
constraint (2.7), also decouples from X1(σ) and simplifies to the following form

4h3(R)R3(σ) + h2(R)h′(R)R4(σ) + h′(R)R′2(σ)− 2h(R)R′′(σ) = 0. (2.9)

The same equation can be derived from the effective Lagrangian, obtained by first substituting
the trivial solutions t = τ and Xj = 0, ∀j ̸= 1 into the Polyakov Lagrangian, and then
making use of the Virasoro constraint (2.7) to eliminate X ′

1
2:

Leff = −h2(R)− f(R)R′2(σ)− h(R)X ′
1

2(σ)√
f(R)h(R)

. (2.10)

This Lagrangian has the worldsheet energy as its integral of motion and is thus integrable,
as we will argue more rigorously in the following section.

2.1.1 Variational equations and Lyapunov exponents

We will now write down the variational equation corresponding to the on-shell equation of
motion (2.9). We will find that the solution to the variational equation is an exponential
function, which defines the Lyapunov exponent the usual way. The unusual detail is the
fact that both R(σ) and its variation δR(σ) depend on the spatial coordinate σ. Studying
the spatial dependence of the worldsheet field and calling it dynamics as we do might be
controversial; so is the term Lyapunov exponent for the growth exponent of the variation
δR(σ). The important difference between σ and τ dynamics is that the worldsheet time
is unbounded and one can define asymptotic quantities as it is usually done for the Lya-
punov exponent (defining it as the limit of small initial variation and long-time evolution
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λ = limt→∞ limδx(0)→0 log (δx (t)) /t, for some generic coordinate x). The extent of the σ
coordinate is finite and there is no analogue to limt → ∞. Therefore, while we talk all the time
of Lyapunov exponents, we really study what is often called finite-time Lyapunov indicator
in the context of time evolution, i.e. the exponent defined locally rather than asymptotically.
This is however often assumed as a matter of course: the bulk Lyapunov exponent (in time)
computed, e.g. in [22, 26, 47], is also the finite-time quantity.

We are mainly interested in studying the variation near the horizon. To that end, we
substitute R(σ) 7→ r0 + εδR(σ) into eq. (2.9), expand it in ε small to linear order, and finally
take the limit r0 → rh.3 This yields the near-horizon variational equation:

δR′′ −D2r2
hδR = 0. (2.11)

The solution is thus δR ∝ e±2λLσ with a pair of Lyapunov exponents of equal magnitude and
with opposite signs, as it has to happen in a Hamiltonian system. The exponent formally
coincides with the MSS bound:

λL = Drh

2 = 2πT. (2.12)

The reason why we define the Lyapunov exponent with a factor of 2, i.e. through δR ∝ e±2λLσ

instead of δR ∝ e±λLσ is that the same expression appears also in the OTOC growth, and
follows from the definition of OTOC on the thermal circle. Here, for bulk equations of motion,
this argument is irrelevant (these are different quantities!) but we nevertheless want to stay
consistent with the definition of the MSS bound as we want to compare the two situations.

We have shown that the exponent is 2πT regardless of the spacetime dimension or
any other parameters save the temperature. While it is tempting to call this “maximal
chaos in the bulk”, we will soon show that this system is not chaotic at all. Therefore we
should interpret λL not as a measure of chaos (neither in the bulk nor in CFT) but as
some characteristic scale related to the near-horizon physics, that will likely correspond to
relaxation time of some perturbations around a thermal horizon. Toward the end of the
paper we will make this precise.

2.2 Integrability of the static open string

Here we prove that the simplest open string configuration — a static open string at the
horizon of the AdS-Schwarzschild geometry — is integrable, unlike the motion of a closed
winding string which is nonintegrable in the presence of a black hole [51, 52]. We emphasize
that this does not imply integrability of the open string for generic boundary conditions.

We will preform the same type of analysis that is done in [51], exploiting the Kovacic
algorithm [51, 53–56]. The algorithm can be described as follows: (1) find a family of solutions

3The order of limits is important because of the coordinate singularity at the horizon. If we immediately
put R(σ) 7→ rh + εδR(σ) we end up with an equivalent variational equation which is however nonlinear :
δR′′ − δR′2/(2δR) − (D2/2)r2

hδR = 0; the nonlinearity stems from the vanishing of a term in the on-shell
equation at the horizon, so that a linear expansion in ε yields an equation which is not necessarily linear in
δR and its derivatives. If we try to expand the Lagrangian Leff and then solve the equation which follows
from the leading correction to Leff (quadratic in ε), the coefficients of this equation diverge at r = rh. Again,
all of this is merely about the coordinate system we use; we could work in Kruskal-Szekeres coordinates and
avoid the problem.
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to the equations of motion defining an invariant plane in the parameter space (2) write down
the normal variational equation (NVE) for the invariant plane (3) solve the NVE so obtained
and check whether it is expressible in terms of Liouvillian functions; these are the elementary
functions (powers, exponentials, trigonometric functions and their inverses), rational functions
of such elementary functions, and their integrals.4

We want to show the integrability of the system described by the effective Lagrangian in
eq. (2.10). One obvious invariant plane is the R−X1 plane for a straight string solution:

R(σ) = rh, X1(σ) = const. ≡ Xc. (2.13)

One can see that this plane is invariant simply by observing that the canonical momentum
corresponding to the off-plane motion is zero: p′X = ∂Leff/∂X1 = 0. The corresponding
NVE along the X1-direction is trivial: δX ′′

1 = 0, yielding the conclusion that the system is
integrable. We have seen that the system nevertheless exhibits an exponential growth of
the in-plane variation with a positive Lyapunov exponent in the near-horizon region. By
itself this is not surprising: a local instability can lead to a growing mode even in a trivially
integrable system, the simplest example being the inverse chaotic oscillator [57]. This is
similar to findings of [31] where it is noted that horizons are really sources of instability in the
bulk. Even integrable systems can display local instability in the vicinity of thermal horizons.

We need to make one thing clear. The integrability of the static open string La-
grangian (2.10) that we have demonstrated in no way conflicts the established nonintegrability
of string motion in black hole and D-brane backgrounds proved in [51, 55]. The fact that a
ring string in these backgrounds is nonintegrable, as found in the aforementioned references, is
enough to prove the nonintegrability of string motion in these geometries in general, and this
likely holds also for open strings with sufficiently complicated boundary conditions. On the
other hand, the existence of special solutions and boundary conditions which are integrable
(and therefore certainly nonchaotic) is perfectly possible also in a nonintegrable system.

3 Open string in other backgrounds

In order to further corroborate the universality of the result (2.12), we will repeat exactly
the same analysis for two more backgrounds: (1) a general hyperscaling-violating metric and
(2) a black Dp brane. The former is quite relevant for many holographic purposes, the latter
does not in general have a holography dual (as its asymptotic geometry is in general not
AdS) but it does appear as a sector in various backgrounds (and of course the AdS throat
of the D3 brane provides the simplest and most famous top-down AdS/CFT construction).
This endeavour might look like mere stamp collecting but it has a purpose: to show that the
result is not special to AdSS metric and also to show (from the Dp case) that by itself it has
nothing to do with holography or AdS asymptotics — it is all about thermal horizons.

4One can find the reasoning behind this algorithm in the literature. In brief, the existence of such a solution
is equivalent to the solvability of the identity component G0 of the Galois group; conversely, their nonexistence
is equivalent to G0 being not solvable, and hence non-Abelian. Non-Abelian nature of G0 tells us that no
complete system of integrals of motion in involution exists, therefore the system is nonintegrable.
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3.1 General hyperscaling-violating background

In our first example we closely follow the idea of [31] and study bulk motion in a broad
class of bulk geometries: hyperscaling-violating horizons at finite temperature, constructed
in [58–61] as gravity duals of effective field-theories with scaling and long-range entanglement,
thought to be ubiquitous in quantum-many body systems. In [31], it is shown that the bulk
geodesics, i.e. particle orbits also have the 2πT Lyapunov exponent in a large part of the
parameter space though not everywhere; here we show that static strings/holographic heavy
quarks always yield 2πT . The background metric reads

ds2 =−r2z− 2θ
D−2 f(r)dt2+ 1

f(r)r2+ 2θ
D−2

dr2+r2dx⃗2, f(r)= 1−
(
rh

r

)D−2+z−θ

, (3.1)

and depends on two parameters, the Lifshitz exponent5 z that measures the anisotropy of
space versus time scaling (so that Lorentz-invariant backgrounds correspond to z = 1) and the
hyperscaling exponent θ which measures the deviation from the dimensional scalinig of free
energy and roughly corresponds to long-range-entangled degrees of freedom. By definition,
the temperature of the horizon at rh is found as:

4πT = − g′tt(rh)√
gtt(rh)grr(rh)

= (D − 2− θ + z)rzh. (3.2)

We can easily redo the same analysis as for the AdSS configuration, keeping the same
ansatz (2.3) and the equations of motion analogous to (2.4)–(2.8). When everything is said
and done, we obtain the near-horizon variational equation

δR′′(σ)− (D − 2− θ + z)2r2z
h δR(σ) = 0, (3.3)

which, according to (3.2), implies again λL = 2πT with the ansatz δR ∼ exp(2λLσ).

3.2 Dp brane and related backgrounds

3.2.1 Extremal black Dp brane

Consider first the single Dp brane geometry in 10 spacetime dimensions. To the best of our
knowledge no systematic work was done on string dynamics in brane backgrounds, except
for the general proofs of nonintegrability in [51, 55] and of course the near-brane limit of
the D3 brane when the asymptotics becomes AdS. The metric reads

ds2 = ηµνdx
µdxν

f2(r) + f2(r)
(
dr2 + r2dΩk

)
, µ = 0, . . . p (3.4)

f(r) =
(
1 + Q

rn

)m

, n = 7− p, k = 8− p,m = 1
4 . (3.5)

Here, r is the radial coordinate, xµ are the directions on the brane, while dΩk is the k-sphere
with coordinates Φ1, . . .Φk. The string configuration we consider is completely analogous

5We denote the Lifshitz exponent by z rather than the usual z, as z will be used for the radial coordinate
z = 1/r. Likewise ζ is taken by another coordinate to be used in section 4.
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to the static open string studied previously in AdS black hole backgrounds:

t = t(τ), X1 = x1, . . . Xp = xp,

R = R(σ), Φ1 = ϕ1, . . . Φk = ϕk (3.6)

Therefore, our string configuration is only nontrivial in the directions transverse to the brane,
and reduced to a point on the k-sphere (i.e., in longitudinal directions). In appendix A we
show that more general ansätze are possible; but for our purposes, eq. (3.6) is perfectly
sufficient. For the time direction we can again choose t(τ) = τ . We have one nontrivial
Virasoro constraint which, upon plugging into the equation of motion, yields:

R′′ + 2f ′(R)
f(R)5 −

(R′)2 f ′ (R)
(
−f (R)4 +QRp−7 + 1

)
f(R)5 = 0. (3.7)

We have some analytical control over the eq. (3.7) and its variational equation for small R,
i.e. near the brane, when we expand R(σ) = ϵ+ δR(σ). The variational equation then reads

δR′′ − ϵ5−p

√
(7− p)(6− p)

2Q δR = 0, (3.8)

where R ∼ ϵ, i.e. the small parameter is the distance from the brane; since this limit means
ϵ → 0, the bulk Lyapunov exponent vanishes. We will see the opposite situation with
black Dp branes, in the presence of a thermal horizon. The solution (3.8) is obviously only
sensible for p ≤ 5 but for p > 5 the same conclusion is reached, only the expansion in r

large (ϵ small) is different.

3.2.2 Non-extremal black Dp brane

We will now consider a non-extremal black brane, the finite-temperature generalization of
the extremal solution at temperature T :6

ds2 = −h(r) dt2

f2(r) +
dx⃗2

f(r)2 + f2(r)
(
dr2

h(r) + r2dΩ2
k

)
(3.9)

f(r) =
(
1 + Q

rn

)m

, h(r) = 1−
(
rh

r

)4
, n = 7− p, k = 8− p, m = 1

4 (3.10)

1
T

= 4πf(rh)√
h′(rh)(h(r)/f2(r))′

∣∣
r=rh

=
4πrh

√
1 +Qrp−7

h

p+ 1 . (3.11)

In the limit rh → 0 (equivalently, T = 0) the black brane becomes the previously studied
extremal black brane. The coordinates are the same as in the extremal solution (3.5). The
dΩk sector is insensitive to temperature, which can be seen from the fact that its metric is
independent of the redshift function h. The effect of the thermal horizon is thus seen solely

6For concreteness we again assume p ≤ 5 but, just like for the extremal brane, the generalization for p > 5
is easy.
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in the equation of motion for R (after plugging in the Virasoro constraint as usual):

R′′−

f ′(R)
(
−f (R)4+QRp−7+1

)
f(R)5 + h′(R)

2h(R)

R′2−h(R)(f (R)h′ (R)−4h(R)f ′ (R))
2f(R)5 =0.

(3.12)
Following the same logic as before, we find the near-horizon variational equation:

δR′′ − (p+ 1)2

r2
h +Qrp−5

h

δR = 0. (3.13)

Looking for a solution of a form ∼ exp(2λLσ) and using eq. (3.11), we find that λL = 2πT .
The ubiquitous 2πT is present even if the metric is asymptotically flat, as thermal horizons
generate instability, whatever the faraway asymptotics. The holographic meaning of this
instability is theory-dependent, and in general does not exist when there is no AdS region.

3.2.3 From AdSp+2 × Sk throat to flat space

Following [51, 62, 63], we can consider a modification of the Dp brane geometry at zero or
finite temperature to obtain a metric interpolating from an AdSp+2×Sk throat (near-brane) to
flat space in the far region; such solutions appear as solutions of supergravity and interpolate
between different vacua. The expressions for the metric remain the same as before (eq. (3.5)
at T = 0 or eq. (3.10) at T > 0) but the parameters are:

m = 1
n
, p, n, k arbitrary. (3.14)

One can easily check that indeed for Q→ 0 or equivalently r → rh (including the case rh = 0
for the extremal brane) we obtain AdSp+2 × Sk and for Q→ ∞ or equivalently r → ∞ we
get flat space (in fact, its product with the k-sphere). We proceed along the same lines as
before, hence we only give the end results. The variational equation reads

δR′′ −
(
p+ 1
rh

)2 (
1 +Qrp−7

h

) 4
p−7 δR = 0, (3.15)

which yields once again λL = 2πT , computing the temperature by definition, similar as in
eq. (3.11). Now we can however obtain an analytic solution also in the far region, which
interpolates to R × Rp+1 × Sk. Writing R(σ) = 1/ϵ + δR(σ) with ϵ → 0, we get the
variational equation

δR′′ + 2(8− p)Qϵ9−pδR = 0, (3.16)

yielding λL = 0 as the coefficient of δR is positive (hence the dynamics is oscillatory rather
than exponentially growing), and in addition it drops to zero as we reach infinity.

All these examples strongly suggest that the 2πT exponent (with the same value, but
different meaning from the MSS bound for CFT chaos) for the unstable saddle point in bulk
motion is present if and only if the geometry has a static thermal horizon, holographic or not.
In the next section we will see that the presence of rotation changes the outcome. This will
lead us to the general conclusion: that the bulk near-horizon Lyapunov exponent is universal
for a given symmetry class of the metric. For maximally symmetric horizons (isotropic and
static) the result is always 2πT , which is argued in detail also in [46], on the basis of [45].
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3.2.4 Numerical solutions

Although the equations we solve so far are quite elementary, it is always nice to have a
numerical check too. Therefore, in this subsubsection we solve the equations of motion
numerically; also, this is the only way to look at the string in whole space.7 We will
see explicitly that the system is integrable and yet that the variational equations have
exponentially growing solutions.

We will look at the D3 black brane, The aim is thus to solve eq. (3.12) and its variational
equation for p = 3.8 In order to do so, it is more convenient to use the coordinate z = 1/r,
so that the equation of motion for the new worldsheet field Z(σ) becomes

Z ′′ − Z ′2

Z
− h′(Z)Z ′2

2h(Z) − h2(Z)Z3

f4(Z)

(
1− Z

(2f ′(Z)
f(Z) + h′(Z)

2h(Z)

))
= 0. (3.17)

We impose Dirichlet conditions at the brane and Neumann conditions at the other end
(open strings should be attached to branes but they can float freely in the asymptotically
flat outer region). Once we have the solutions Z(σ) we substitute the solution into the
variational equation:

δZ ′′ − (2h(Z) + Zh′(Z))Z ′

Zh(Z) δZ ′ + 1
2Z2

[
Z ′2

(
2h2(Z) + Z2h′2(Z)− h(Z)Z2h′′(Z)

)
h2(Z)

− 20v2h2(Z)Z6f ′2(Z)
f6(Z) + 4v2h(Z)Z5 (3f ′(Z) (2h(Z) + Zh′(Z)) + h(Z)Zf ′′(Z))

f5(Z)

−
v2Z4

(
6h2(Z) + Z2h′2(Z) + h(Z)Z (8h′(Z) + Zh′′(Z))

)
f4(Z)

]
δZ = 0. (3.18)

For δZ the meaningful boundary condition is the fixed (and small) difference between the
on-shell trajectory and its clone at the brane (δZ(σ = 0) = ϵ) and the Neumann condition
at infinity (since the strings float freely so does the difference between to string profiles).
The outcome is given in figure 1. Along with the radial profiles of the string for different
temperatures, we plot the near-horizon values of the numerically computed Lyapunov exponent
λ

(n)
L = log (δZ (σ0) /ϵ) /2, where σ0 is some near-brane cutoff (we want the Lyapunov exponent

near the brane thus σ0 should cut off the far-from-brane part).9 The numerics is reasonably
close to the analytic result, providing an additional confirmation.

4 Open string in D1-D5-p black string background

So far we have explored the bulk instability of open strings in black hole and black brane
backgrounds and we have found the saturation of a fake MSS bound — fake as it is unrelated
to chaos (the configuration we consider is even integrable, though a more involved setup likely

7Remember we have no analytic control at intermediate distances, far from both the brane/horizon and
the infinity/AdS boundary (depending on the geometry).

8The value p = 3 is chosen as the D3 brane is particularly relevant for applications, having also the AdS
throat, but the numerics works the same way for any p.

9Of course, we have checked that the results do not strongly depend on σ0.
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Figure 1. Radial profile Z(σ) (A) and the numerical Lyapunov exponent λ(n)
L = log (δZ (σ0) /ϵ) /2

(B) for the static open string in thermal black brane background, for a range of temperatures T . We
take σ0 = 0.2 for the cutoff but values between 0.1 and 0.5 yield similar results. We compare the
numerical result for the Lyapunov exponents to the analytic estimate (i.e., the chaos bound) and find
reasonable agreement.

would not be such). Now we will interpret this finding and relate it to the thermal correlators
and quasi-normal modes in a theory which is particularly interesting as we know something
not only about the (super)gravity solution and the dual large-N field theory, but also about
the microscopics: the D1-D5-p black string [64–69]. This setup is celebrated for being the
first black hole solution in string theory for which the entropy was computed by counting
the microscopic degrees of freedom, obtaining for a horizon area A the famous Bekenstein-
Hawking result S = A/4 [65]. Another famous result is the calculation of the greybody
factor in [64], the logical macroscopic extension of the entropy calculation. To remind, the
greybody factor is obtained in [64] as the absorption cross section for a wavepacket in the
black string background. In holographic setups, where the relevant near-horizon dynamics
is dual to a two-dimensional CFT, the absorption cross section can be obtained from the
imaginary part of the retarded Green’s function.

Our idea here is twofold. First, we study the Lyapunov stability in D1-D5-p background
— this will yield some surprises as the geometry has a global rotation with angular velocity Ω;
so far we have only studied static geometries. Second, we will relate the Lyapunov exponent
to the retarded propagator in dual field theory and pinpoint what it tells us about the
meaning of bulk instability.

4.1 Holography of the D1-D5-p system: a reminder

The background describing the D1-D5-p black string reads

ds2 = 1√
f(r)

(
−dt2 + dx2

5 +
r2

0
r2 (coshΣdt+ sinhΣdx5)2

)
+

+
√
f(r)

(
dr2

h(r) + r2
(
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

)))
, (4.1)

f(r) =
(
1 + r2

1
r2

)(
1 + r2

5
r2

)
, h(r) = 1− r2

0
r2 . (4.2)

As usual, t and r are the time and radial coordinate respectively, ψ, θ and ϕ are the angles on
the 3-sphere, and xi (i = 1, . . . 5) are the Cartesian coordinates in the plane. This is a classical
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solution of ten-dimensional type IIB supergravity compactified on T 5 ∼= T 4 × S1 [64, 70]. It
is charged under the Ramond-Ramond field of the corresponding theory; since D1 and D5
branes are magnetically dual to each other we get electric and magnetic charges that are
related to the radii r1 and r5, respectively.10 There is also an additional charge associated to
the p-momentum along D1-brane, i.e. the Kaluza-Klein (KK) mode on S1, related to factors
of r2

0 cosh2 Σ in the metric (4.1)–(4.2). In the dilute gas regime these three charges satisfy [64]:

r0, r0 sinhΣ ≪ r1, r5. (4.3)

The solution is anisotropic and rotating for Σ ̸= 0 as we see from the presence of non-vanishing
tx5-component in the metric (4.1), implying that we now have the left and right temperature:

TL = r0e
Σ

2πr1r5
, TR = r0e

−Σ

2πr1r5
. (4.4)

We may further define the “average” (Hawking) temperature T as 1/T = (1/TL + 1/TR)/2.
This temperature and entropy are given by

1
T

= 2πr1r5 coshΣ
r0

, S = 2π2r1r5r0 coshΣ
4 . (4.5)

We will need a few more features of this solution. The first is that in the extremal case
(T, S ∝ r0 = 0), also known as the extremal D1-D5 bound state system, the near-horizon
geometry becomes AdS3 ×S3. We can show this by performing the coordinate transformation
t → t/εL, r → εLr, x5 → x5/εL in the metric (4.1), where L2 = r1r5: in the limit ε → 0
we recover the AdS3 × S3 geometry

ds2
NHE ≈ r2

L2

(
−dt2 + dx2

5

)
+ L2dr

2

r2 + L2dΩ2
3. (4.6)

On the other hand in the near-extremal case (r0 → 0, Σ → ∞), the p-momentum survives
and we still have the full D1-D5-p system, with a near-horizon geometry of the rotating
Banados-Teitelboim-Zanelli (BTZ) black hole:

ds2
NHNE ≈ r2

L2

(
−dt2 + dx2

5

)
+ L2 dr2

r2 − r2
0
+ r2

0
L2 (coshΣdt+ sinhΣdx5)2 + L2dΩ2

3. (4.7)

The procedure to derive this is the same as in the extremal case, except that now we also
need to take r0 → εLr0. In order to translate the metric (4.7) into the standard coordinates
for BTZ black holes we have to perform an additional coordinate transformation:

r2 = w2 − w2
−, w+ = r0 coshΣ, w− = r0 sinhΣ. (4.8)

For convenience we will write down the metric of the rotating BTZ in these coordinates:

ds2
BTZ =−

(w2−w2
+)(w2−w2

−)
L2w2 dt2+ L2w2dw2

(w2−w2
+)(w2−w2

−)
+w2

L2

(
w+w−
w2 dt+dx5

)2
. (4.9)

The angular velocity is given by Ω = w−/Lw+ = tanhΣ/L.
10One can think of these charges also as representing the number of copies in the stack of D1 branes

compactified on S1 along the x5 direction, and in the stack of D5 branes wrapping the whole T 4 ×S1 manifold.
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From the above it is clear that the dual CFT lives in 1+1 spacetime dimension and
encodes the physics of the AdS3 × S3 sector: in the holographic regime the large-r flat
asymptotics of the geometry (4.1) have to decouple. The classical gravity solution of course
corresponds to the strongly coupled regime in CFT, however some direct comparisons were
made (and count among the famous early tests of AdS/CFT) in the weakly-coupled regime
where the CFT is approachable from field theory side [67, 69, 71, 72] and some basic results
from gravity side (like thermodynamics) still hold for reasons of continuity. In this regime
the CFT has an orbifold point [71, 72] which acts as UV deformation, driving the theory
toward a weakly coupled regime. This is seen in gravity as the deformation of the metric
away from the near-brane region (AdS3 or BTZ). Therefore, we understand, at least to some
extent, the UV physics and the meaning of the UV deformation of the theory.

4.2 Radial fluctuations

We consider a static open string in D1-D5-p background stretching from interior to the
boundary just like in previous examples. In particular, we postulate the following string
configuration

t(τ, σ) = τ, R(τ, σ) ≡ R(σ),
Ψ(τ, σ) ≡ ψ(τ), Θ(τ, σ) ≡ π/2, Φ(τ, σ) ≡ ϕ(τ), X5(τ, σ) ≡ X5(σ). (4.10)

The τ -dependent degrees of freedom {Ψ,Φ} decouple. The remaining fields R and X5 also
decouple from each other, since we can combine the equation of motion for R with the
nontrivial Virasoro constraint

f(R)R′2(σ)
h(R) +X ′

5
2(σ) +

r2
0

(
v2 cosh2 Σ+ sinh2 ΣX ′

5
2(σ)

)
R2(σ) = 1 (4.11)

to obtain the following equation

2fh2
(
−2r2

0 cosh2 Σ+R2
)
+ f ′h2R

(
−r2

0 cosh2 Σ+R2
)
+

+ f2R2
(
−
(
2h+Rh′

)
R′2 + 2hRR′′

)
= 0. (4.12)

The effective Lagrangian for the coordinates R and X5 takes the form

L = 1√
f(R)

[(
−1 + r2

0 cosh2 Σ
R2

)
− f(R)R′2

h(R) −
(
1 + r2

0 sinh2 Σ
R2

)
X ′

5
2
]
, (4.13)

and reproduces eq. (4.12) when combined with the Virasoro constraint (4.11).
We will assume that we are in the dilute gas regime, like in [64], defined by r0, r0 sinhΣ ≪

r1, r5. This boils down to the condition T ≪ 1/r1, 1/r5. As usual, we can solve the equation
analytically in two distinct regions: (1) near-horizon region r ∼ r0, r0 sinhΣ ≪ r1, r5 and
(2) far region r0, r0 sinhΣ ≪ r ∼ r1, r5.

Expectedly, the system described by the Lagrangian (4.13) is integrable. Applying
the NVE methods, we can choose the invariant plane to be {t = τ,R = r0,Ψ = 0,Θ =
π/2,Φ = 0, X5 = const.}. Since X5 is a cyclic coordinate in (4.13), its conjugate momentum
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is constant: p′X5
= ∂L/∂X5 = 0. Therefore, the R−X5 plane is indeed invariant under the

evolution of the system (along σ). The normal variational equation therefore corresponds
to the variations in the X5-direction, yielding δX ′′

5 = 0. Just like the open string dynamics
on the Schwarzschild horizon, this system is integrable.11 In both cases, the extra integrals
of motion are simply the transverse momenta.

We solve the variational equation of the radial coordinate in (4.12) obtained by perturbing
the horizon solution R(σ) = r0 as R ∼ r0 + δR(σ):

δR′′ − 2a4

r6
0f

2(r0)
δR = 0, (4.14)

a4 ≡ r2
0(r2

1 + r2
5) + 2r2

1r
2
5 + r2

0

(
2r2

0 + r2
1 + r2

5

)
cosh 2Σ (4.15)

Plugging in the expression for f , we find the exponent of the asymptotic growth of the
solution, determined as before by ∼ e2λLσ:

λL = r0
r1r5

√
1 + r2

0(r2
1 + r2

5)
2r2

1r
2
5

cosh(2Σ). (4.16)

The above expression12 can be written in terms of the temperatures (4.4)–(4.5) as:

λL =2πT coshΣ
√
1+π2 (r2

1+r2
2
)(
T 2

L+T 2
R

)
=2πT coshΣ

(
1+π2

2
(
r2

1+r2
5

)(
T 2

L+T 2
R

)
+. . .

)
.

(4.17)
The second equality (expansion in r2

0/
√
r2

1 + r2
5) is the dilute-gas approximation. Importantly,

the Lyapunov exponent does not repeat the universal 2πT (“fake MSS”) result. It depends
on r1 and r5 in addition to T , and its temperature dependence is a nonlinear function. But
the leading term in the expansion has a simple form:

λ
(0)
L ≈ r0

r1r5
= 2πT coshΣ. (4.18)

Therefore, the Lyapunov exponent in the dilute-gas regime “comes close” to the static value
but differs by a factor of coshΣ which equals unity when Σ = 0, i.e. when there is no rotation.
In absence of rotation we return to the 2πT exponent in the dilute-gas regime.

We can translate our result into the standard variables for rotating BTZ solutions. Since
in standard coordinates for BTZ black holes we have Ω = w−/Lw+, using eq. (4.8) it follows
that LΩ = tanhΣ. Therefore, using the identity coshΣ = 1/

√
1− tanh2 Σ, we get

λ
(0)
L = 2πT√

1− L2Ω2
, LΩ ∈ [0, 1). (4.19)

We could express this result in terms of the left and right temperature TL,R, making use
of the relation 2/T = 1/TL + 1/TR ⇒ T = 2TLTR/(TL + TR). However, we do not get

11Again, a more general open string setup would not necessarily be integrable — one has to perform the
Kovacic analysis for every boundary condition (i.e. effective Lagrangian) separately.

12One may worry whether this expression remains finite in the near-extremal limit where we take Σ → ∞.
We should pay attention to the fact that there is a factor of r0 hiding inside the temperature T . In the
near-extremal limit we also take a limit r0 → 0, while keeping r0 cosh Σ fixed.
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a particularly simple or more intuitive form than (4.19), which in fact nicely shows how a
nonzero rotation rate Ω deforms us away from the universal 2πT scaling.

This result should be compared to the ones found in [73, 74], where chaos in dual CFT
was studied by calculating the OTOC correlators of rotating BTZ black holes for a scalar
field and for a probe string respectively. The calculation done in [73] obtains two different
Lyapunov exponents λ±L = 2πT/(1∓ LΩ) in the presence of rotation, one of which is above
the MSS bound and the other one bellow it, presuming that Ω ̸= 0. Our result (4.19) turns
out to be exactly equal to the geometric mean of {λ+

L , λ
−
L}, implying that λ−L < λL < λ+

L .
Both results show that when an additional scale (angular velocity) appears there is no single
“degenerate” exponent anymore, but different response functions receive different corrections.

We note in passing that our near-horizon analysis yields a single Lyapunov exponent,
rather than a Lyapunov spectrum with two (in general different) exponents as one would
expect in this background (and as [73] finds in the rotating BTZ case) — rotation breaks
isotropy so the two directions normal to the invariant plane should be inequivalent. The reason
that we nevertheless only see a single exponent could be that the quanta of p-momentum
in D1-D5-p are only left-moving, thus we only see the Lyapunov exponent associated with
the temperature of the left-moving modes.

The opposite limit when r ≫ r0, r0 coshΣ and r ≫ r1, r5, is treated in the same way
as the asymptotically flat limit of the interpolating geometry in subsubsection 3.2.3: we
have noted that we can think of the six-dimensional black string as an interpolation between
AdS3 × S3 and Minkowski spacetime. The far region corresponds to the latter, hence it
must have zero Lyapunov exponent.

Unlike the examples from previous sections, we have now found some unexpected aspects
of the bulk Lyapunov exponent: dependence on the rotation rate and the complex temperature
dependence away from the dilute-gas limit.13 Now we will relate it to the retarded propagator
of a CFT quasiparticle interacting with the thermal ensemble,14 the natural dual object
to consider.

4.3 Transverse fluctuations

Now we want to study the retarded Green’s function for transverse fluctuations, which
describes thermal motion of quasiparticles in D1-D5 field theory, the more intuitive object to
consider compared to the radial fluctuation. In this case, it is convenient to switch to the
Nambu-Goto formalism and work in the static gauge. A similar calculation was already done
in a slightly different setup [75], where the authors study the bulk dynamics of a fundamental
string in an extremal and near-extremal Reissner-Nordström (RN) black hole background.
Of course, the D1-D5 background will give very different physics.

13There is of course no rigorous reason for the bulk exponent to obey the MSS bound in all cases as it is a
different object, and comparing to [73] we have seen that even though the OTOC exponent also changes in
the presence of rotation the values are different. But still, the fact that (4.17)–(4.18) differ from the results
like [73] suggests there is a difference in underlying physics.

14In the context of D1-D5 CFT it does not make much sense to talk about quarks as the symmetries of the
theory differ from N = 4 SYM.
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The ansatz is now:

t(τ, σ) = τ ≡ t, R(τ, σ) = σ ≡ r,

Ψ(τ, σ) ≡ ψ(t), Θ(τ, σ) ≡ π/2, Φ(τ, σ) ≡ ϕ(t), X5(τ, σ) ≡ X(t, r). (4.20)

We expand X(t, r) in Fourier modes

X(t, r) =
∫
dω

2π e
−iωtXω(r), (4.21)

and the relevant equation of motion obtained by varying the Nambu-Goto action reads

X ′′
ω(r) +

 r2
0

(
−3r2 + r2

0 +
(
r2 − r2

0
)
cosh2 (2Σ)

)
r
(
r2 − r2

0
) (

−2r2 + r2
0 + r2

0 cosh2 (2Σ)
) − f ′(r)

f(r) + h′(r)
2h(r)

X ′
ω(r)

− 2r2ω2f(r)(
−2r2 + r2

0 + r2
0 cosh2 (2Σ)

)
h(r)

Xω(r) = 0. (4.22)

In the special case when there is no rotation (Σ = 0) this equation simplifies to

X ′′
ω(r) +

(
r2

0
r3h(r) −

f ′(r)
f(r) + h′(r)

2h(r)

)
X ′

ω(r) +
ω2f(r)
h2(r) Xω(r) = 0. (4.23)

We will first solve the special case with no rotation; it will give us some useful prior intuition
for the general case. Since the problem can be divided into two regions, we will again employ
the matching procedure in order to gain some analytic control of the equation.

4.3.1 Static AdS: extremal case

Consider first the near-horizon region of the extremal black string, i.e. at temperature T = 0
on the field theory side. In this case the IR geometry is given by eqs. (4.6). The relevant
equation of motion for string fluctuations along the x5-direction in this regime is

X ′′
ω(r) +

4
r
X ′

ω(r) +
(
L2ω

r2

)2

Xω(r) = 0, (4.24)

with general solutions of the form

Xω(r) = A
(
1− iL2ω

r

)
e

iL2ω
r + B 1

2L4ω2r

(
1− ir

L2ω

)
e−

iL2ω
r . (4.25)

Imposing the infalling boundary condition (appropriate for the retarded propagator) at the
horizon requires B = 0. Expanding this solution in the matching region r0 ≪ r ≪ L, we get

Xω(r) = A
(
1 +

(
L2ω

)2
r2

)
. (4.26)

From this we can calculate the retarded Green’s function at T = 0 in the IR region
r0/r, ωL ≪ 1 ≪ L/r:

G(T =0)
R = L4ω2 ⇒ ℑG(T =0)

R = 0. (4.27)
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Figure 2. The effective Schrödinger potential (4.28) for the extremal D1-D5 geometry with L = 1, for
four values of the frequency ω. The static case ω = 0 (red full line) is qualitatively different because
the potential is strongly repulsive: there is no absorption because plan waves coming from infinity
are reflected away. For ω > 0 (blue, green, black dotted lines) the potential is strongly attractive,
diverging as 1/r4 at the origin r = 0. This again implies zero absorption cross section as there are no
solutions behaving as plane waves at infinity.

Therefore, we get a vanishing absorption cross-section in the presence of the horizon, i.e.
ℑG(T =0)

R = 0. So we need to understand why the extremal horizon does not absorb anything
even though it is a horizon (with finite area and finite greybody factor). From the bulk
viewpoint, one way to see the reason is to rewrite the fluctuation equation (4.24) in the
Schrödinger form:

∂2
r X̃ω(r)− Veff(r)X̃ω(r) = 0, Veff(r) =

2r2 − L4ω2

r4 . (4.28)

The effective potential is shown in figure 2 for various values of ω. For ω = 0 a zero
imaginary part could be expected — for ω = 0 the effective potential is positive and
(quadratically) divergent at the horizon, thus there is no absorption, i.e. all incoming waves
are reflected backward.

The nonstatic case ω ̸= 0 is qualitatively different — it has the expected negative
divergence (infinite well) at the extremal horizon r → 0, as we see from eq. (4.28) and figure 2.
However, it is known that the scattering problem for attractive central potentials diverging as
1/rs for s > 2 is not well-defined [76]: such potentials always lead to a wave “falling toward
the center” and the solution to the Schrödinger equation in this case is always localized
around zero — there is no absorption because the infalling plane wave at infinity is not a
consistent boundary condition. We will see in the following section that we can infer this
result for the retarded Green’s function in the extremal case by considering the limit ω ≪ T

of the thermal correlator obtained in a near-extremal case.

4.3.2 Static BTZ: near-extremal case

At low but finite temperatures or equivalently in the near-extremal case we would be interested
in the dynamics of the open string in the metric given by eq. (4.7). Therefore, we look for
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Figure 3. The effective Schrödinger potential (4.30) for a near-extremal D1-D5-p system with
the parameters r0 = 0.1, L = 1, for Lω = 1, 5, 10, 15 (red, blue, green, black). Already from the
expression in eq. (4.30) it is obvious that in the near-extremal case nothing special happens in the
static limit ω = 0. For all frequencies, the potential has the form typical of near-horizon effective
potentials [68, 70], where a high but finite potential barrier is followed by the infinite well at the
horizon r = r0.

the solution of open string equations in BTZ×S3 geometry but (in this subsection) still with
no rotation (Σ = 0). The relevant equation can be written in a compact form reminiscent
of the relativistic wave equation in curved background:

h(r)
r4

d

dr

(
h(r)r4dXω(r)

dr

)
+ L4ω2

r4 Xω(r) = 0. (4.29)

It is again instructive to look at the Schrödinger form of the equation, obtained by plugging
in Xω(r) = h−1/2(r)r−2Ψ(r) into eq. (4.29):(

d2

dr2 − Veff(r)
)
Ψ(r) = 0, Veff(r) =

2r2 − 3r2
0 − L4ω2(

r2 − r2
0
)2 . (4.30)

The second term inside the brackets is the effective Schrödinger potential, plotted in figure 3.
Proceeding further toward the analytic solution to eq. (4.29) it is convenient to transform

the radial variable as

ζ ≡ r2
0
r2 . (4.31)

In order to reduce eq. (4.29) to a hypergeometric differential equation,15 we will make a
further coordinate transformation ζ 7→ 1 − ξ. The equation now reads

X ′′
ω(ξ)−

1
2ξ

2− ξ

1− ξ
X ′

ω(ξ) +
1

ξ2(1− ξ)

(
L2ω

2r0

)2

Xω(ξ) = 0. (4.32)

15Since eq. (4.29) has three regular singular points at r = 0, r0 and ∞, we can be sure that it can be written
in the form of the hypergeometric differential equation.
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We can solve this equation at the horizon ξ = 0, by making the substitution y = − log ξ in
eq. (4.32). The solution at the horizon takes the form Xω ∼ e±iαy = ξ±iα, with α = L2ω/2r0.
The boundary condition at the horizon requires the outgoing modes to vanish, yielding

Xω(ξ) = Ã ξ−iα. (4.33)

In order to get the full near-horizon solution, we plug the ansatz Xω(ξ) = ξ−iαF (ξ) into
eq. (4.32), yielding

ξ(1−ξ)d
2F

dξ2 +
[
1−2iα−

(
1−iα− 1

2−iα
)
ξ

]
dF

dξ
−(−iα)

(
−1
2−iα

)
F (ξ)= 0. (4.34)

We recognize eq. (4.34) as the hypergeometric equation with parameters

a = −iα, b = −1
2 − iα, c = 1− 2iα. (4.35)

The corresponding regular solution reads

F (ξ) = Ã 2F1 (a, b, c; ξ) + B̃ ξ2iα
2F1 (a+ 1− c, b+ 1− c, 2− c; ξ) . (4.36)

We impose the infalling boundary condition (4.33) at the horizon, implying that B̃ = 0,
thus the near-horizon solution becomes

Xω(ξ) = Ã ξ−iα
2F1 (a, b, c; ξ) . (4.37)

We can now use the following identity to express solution (4.37) in terms of functions
depending on ζ, instead of ξ = 1 − ζ:

2F1 (a, b, c; ξ) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1 (a, b, 1 + a+ b− c; ζ)+

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) ζc−a−b

2F1 (c− a, c− b, 1 + c− a− b; ζ) . (4.38)

The matching region r0 ≪ r corresponds to ζ ≪ 1, so we expand eq. (4.38) in small ζ:

2F1 (a, b, c; ξ) ≈
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) +

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) ζc−a−b. (4.39)

We observe that the full solution in the matching region is of the form

Xω(r) ∝ S̃ r−d+∆ + F̃ r−∆, d = ∆ = 3, (4.40)

which allows us to read off the retarded Green’s function as the ratio F̃/S̃:

G(T )
R (ω) ∝ Γ(c− a)Γ(c− b)

Γ(a)Γ(b) =
Γ
(
1− i ω

2λL

)
Γ
(

3
2 − i ω

2λL

)
Γ
(
−i ω

2λL

)
Γ
(
−1

2 − i ω
2λL

) . (4.41)

We can take the imaginary part of (4.41) to get the absorption cross-section:

σabs = ℑG(T )
R (ω) ∝ α

4 + α3, α = ω

2λL
, λL = 2πT. (4.42)

This is the central result of our calculation — the IR propagator and the absorption cross
section for a heavy quasiparticle excitation. Let us think what this result means:
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1. The only energy scale in the Green’s function is the temperature. This is in line with
the problem of drift of a heavy quark through neutral N = 4 super-Yang-Mills (SYM)
plasma, dual to a dragging string in AdSS background [38, 39, 77] and many subsequent
works in the same setup [78–82]: in this case the quasiparticle does not see the charges
of the D1-D5-p system.16 This can be ascribed to the fact that the additional charges
of the D1-D5-p system are global and the quasiparticle is neutral with respect to them.

2. The form of the propagator (eq. (4.41)) could be expected from the BTZ asymptotics of
the near-extremal geometry [83], as it has the form of conformal quantum mechanics, i.e.
0+1-dimensional CFT [84] (we know that in the near-horizon region of the BTZ geometry
the transverse spatial coordinate decouples and the geometry becomes AdS2 × S, so
that AdS2 gives the 0+1-dimensional CFT).

3. The imaginary part behaving as ∼ ω + ω3 suggests that in addition to the usual drag
force f ∝ ẋ we also have a third-order term f̃ ∝ dx3/dt3. This is in fact expected

— all odd-power terms17 in velocity are allowed symmetry-wise and the leading-order
holographic Green function already captures the first two terms.

4. This result could not be reproduced neither from the static limit (ω = 0) nor from the
extremal limit T = 0 — these two limits are singular, which is expected for the static
limit but somewhat strange for the extremal limit.

As a sanity check we consider the high-frequency limit ω ≫ T where one should recover
the result for the extremal case.18 In this limit we can compare our calculation to the
pure CFT result for the two-point correlation function. We consider a two-point correlation
function in a 2 + 1-dimensional CFT for an operator with scaling dimension ∆: this behaves
as ⟨O∆(t)O∆(0)⟩ ∼ |t|−2∆, i.e. ∼ ω2∆−d, where d is the spacetime dimensionality. For an
operator with a scaling dimension ∆ = 3 living in d = 3 spacetime dimensions, one should
indeed expect ∼ ω3 power-law behavior of the thermal correlator in the high-frequency limit.

4.3.3 Rotating BTZ: near-extremal case

Now we study the rotating BTZ black hole. Compared to the static case, it is considerably
more difficult for calculations. Conceptually, it is also distinct for having different left and
right temperature. Now we cannot write an analytic solution in the whole throat, all the
way to the AdS boundary (i.e., the throat of the D1-D5-p geometry, before the far-region flat
asymptotics kick in), akin to eq. (4.37). Instead, we can only treat the near-horizon limit,
when r → rh or equivalently ζ → 1 (for ζ as defined in eq. (4.31)).

16At least, this is the case in our current setup with no drift; it would be interesting to check if this conclusion
remains in force in presence of drift.

17Even-power terms (like ẋ2) are not expected as their sign is independent of the sign of velocity, i.e. a
proper drag force (opposing the motion) would have to look like −ẋ2sgnẋ but that implies the breaking of
some discrete symmetry which we do not have.

18In this limit we consider wavelengths well below T−1 (ω−1 ≪ T−1) that are insensitive to thermal
fluctuations and thus resemble the behavior for the extremal background geometry.
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The equation of motion for the transverse fluctuations (4.22) can be slightly rewritten as(
1− r2

0
r2

)(
1− r2

0+r2
n

r2

)
X ′′

ω(r)+
4
r

[
1− 3

2

(
1− r2

0
3r2

)
− 5
4

(
1− 2

5
r2

0
r2

)]
Xω(r)+

L4ω2

r4 Xω(r)= 0.

(4.43)
Now we perform the same change of variables as before, y = − log ξ = − log

(
1− r2

0/r
2), so

that y → ∞ at the horizon. Expanding the coefficients to order ξ0 for ξ small or equivalently
to order 1 = (e−y)0 for y large, we get the near-horizon limit of (4.43):(

1 + 2r2
n

r2
0

− ey r
2
n

r2
0

)
X ′′

ω(r) + ey r
2
n

2r2
0
X ′

ω(r) +
L4ω

4r2
0
Xω(r) = 0. (4.44)

The solution that satisfies the infalling boundary condition at the horizon is

Xω(y) ∼ eiδy
2F1

(
iδ,−1

2 + iδ, 1 + 2iδ; eyr2
n

r2
0 + 2r2

n

)
, δ = L2ω

2
√
r2

0 + 2r2
n

. (4.45)

Another way to understand the fact that in the presence of rotation the solution of this type
cannot exist without imposing some approximations is that hypergeometric functions are
the representations of SL(2,R) which is broken by rotation.

In order to obtain the IR propagator (now we cannot obtain analytically the propagator
for general ω values), we expand the above solution in the region far from the horizon, for
r ≫ r0, that is for y small. Using the identity (4.39) this yields

2F1

(
iδ,−1

2 + iδ, 1 + 2iδ; eyr2
n

r2
0 + 2r2

n

)
∼

Γ
(

3
2

)
Γ(1 + 2iδ)

Γ(1 + iδ)Γ
(

3
2 + iδ

) +
Γ (1 + 2iδ) Γ

(
−3

2

)
Γ(iδ)Γ

(
−1

2 + iδ
) (r0

r

)3
.

(4.46)
Identifying the leading term and subleading term as the source and response respectively
we compute the retarded Green’s function in the rotating case:

G(T )
R (ω) ∼

Γ(1− iδ)Γ
(

3
2 − iδ

)
Γ(−iδ)Γ

(
−1

2 − iδ
) (4.47)

It has the same form as the one that we have obtained in previous section in the absence
of rotation (4.41), but with a different λL scale compared to eq. (4.18):

λ
(mod)
L = 2πT coshΣ

√
1 + 2r2

n

r2
0

= λ
(0)
L

√
cosh(2Σ), δ = ω

2λ(mod)
L

. (4.48)

We can interpret this as a modification of energy in the presence of a rotating horizon, i.e.
the Lense-Thirring effect.

4.4 Quasinormal modes and their decay scale

So far, we have found that breaking a global symmetry in IR (introducing rotation) in general
influences the bulk instability scale differently from the way it influences the exponent of
the field-theory OTOC. We have likewise seen that UV deformations (full brane geometry
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deforming the AdS throat) also change the instability scale away from 2πT . It remains
unclear however what exactly the bulk scale is from the CFT viewpoint, and to understand
this we will relate the bulk instability exponent to the quasinormal mode frequencies. For
simplicity we will consider the non-rotating case but all the results that we obtain still hold
also in the presence of rotation with λL → λ

(mod)
L .

Let us first remember that the poles in the retarded Green’s function are related to
transport properties of a thermal field theory. On the gravity side, they correspond to a
spectrum of quasinormal modes [68, 70]. More specifically, the relaxation times in field theory
are given by the imaginary part of the QNM spectrum in the bulk [85, 86]. Since our retarded
Green’s function (4.41) is singular at an infinite number of points in the complex plane, due
to the presence of the gamma functions in the numerator, we can extract the whole QNM
spectrum from it. Singular points are given by c − a = −n or c − b = −n, for n ∈ Z+ (a
set of non-negative integers), thus ωn = −2i(n+ 1)λL or ωn = −2i(n+ 3/2)λL. The union
of the two sets yields the following spectrum:

ωn = −2i(n+ 1)λL, n = 0, 12 , 1,
3
2 , · · · (4.49)

or equivalently

ωm = −i(m+ 1)λL, m = 1, 2, 3, · · · . (4.50)

We write the solution in these two obviously equivalent ways in order to facilitate the
comparison with the literature.19

Another way to derive the QNM spectrum is by definition, as the eigenfrequencies of
the equations of motion with infalling boundary conditions at the horizon and Dirichlet
boundary conditions at the boundary. The latter require the solution at AdS boundary to
vanish.20 The equivalence of the two approaches should be obvious, since the same set of
requirements that force the solution (4.39) to vanish at infinity also describes the poles of
the retarded Green’s function (4.41). This gives us a more intuitive picture of QNM: they
tell us how a local near-horizon instability decays. Therefore, we can think of the inverse of
the Lyapunov exponent λ−1

L as some characteristic timescale for the decay of perturbations
along the open string, that has nothing to do with chaos.

The result summarized in eqs. (4.49)–(4.50) is qualitatively the same as the one obtained
in [85] for scalar perturbations in a nonrotating BTZ black hole background, except that
the spectrum (4.50) also includes half-integer values of n (which is simply due to different
objects being considered: strings vs. scalar field). Similar scaling of the QNM spectrum with
the Lyapunov exponent of some special orbit is known from two classic papers concerning
asymptotically planar black holes:

19The form (4.50) is simpler and more natural but (4.49) has the same form as the scalar QNM solution [85]
that we want to benchmark against.

20In this context we again ignore the asymptotically flat region of the D1-D5-p geometry and only consider
its interior and AdS throat, just as we did when solving the string equations of motion. In an asymptotically
Minkowski spacetime we would require outgoing boundary condition at infinity, very different from the
situation in AdS. This will be important in what follows.
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1. In [47], the imaginary part of the QNM frequencies is determined by the instability of
geodesic motion, i.e. the Lyapunov exponent of a massless particle on the photon sphere,
which acts as an unstable fixed point. This is obtained in the eikonal approximation
when ℜω ≫ ℑω.21

2. In the opposite, high-overtone or overdamped regime, when n ≫ 1 and thus ℜω ≪
ℑω, [50] find that ℑω is proportional to the surface gravity at the horizon, which equals
precisely 2πT .

Our results are clearly obtained in the high-overtone regime since our Green’s functions
satisfy ℑG(T )

R ≫ ℜG(T )
R . Therefore, our result essentially generalizes [50] for an open string in

AdS. Yet, the coefficient itself is obtained as the Lyapunov exponent of an unstable fixed
point, and in that sense generalizes also [47] from the eikonal (photon-sphere dominated)
regime to the high-overtone (horizon-dominated) regime.

We have thus shown that both “easy” regimes (l ≫ 1 and n ≫ 1) can be understood from
classical unstable saddle points, but of course the eikonal regime sees the scattering near the
photon sphere while the overdamped regime (our case) sees the horizon. In this sense, earlier
results on the universal 2πT exponent for geodesics and fields near-horizon [31], bringing the
conclusion about the horizon as the “nest of chaos”, are not in collision with the studies of the
instability on the photon sphere [47, 87, 88] — only that they correspond to different regimes.
It is somewhat surprising that for a special string configuration these results are obtained in
asymptotically AdS backgrounds, as it is well known and discussed already in [47, 50] that
for a geodesic the argument does not easily generalize to AdS asymptotics.

Finally, we should also comment on the field theory interpretation of the quasinormal
modes spectrum that we have just found in the bulk. We already mentioned that an open
string in the bulk stretched from the boundary to the thermal AdSS horizon corresponds to a
heavy quark in thermal plasma of super-Yang-Mills quarks and gluons. Perturbations along
the string describe thermal perturbations in the plasma. Similar holds in the D1-D5 CFT
except that the elementary excitations now cannot be called quarks. We can summarize the
findings above by noting that a Lyapunov exponent is really related to the QNM frequencies,
which describe how local near-horizon instabilities on the string decay. Decay rates of those
instabilities are given by the spectrum of quasinormal modes, so on the field theory side they
describe how the thermal fluctuations in plasma die off. Thus, they predict the thermalization
timescale in the dual CFT.

5 Discussion and conclusions

The initial motivation for this work was a rather technical question: what is the meaning
of bulk chaos in particle and string motion in AdS spaces, and why it typically saturates
the same universal chaos bound as OTOC in field theory. We were led to the study of open
strings (rather than ring strings or particle geodesics) largely by reasons of calculational
simplicity and direct CFT interpretation: a string with one end on the boundary and the

21Here ℜω denotes the orbital frequency (oscillations) and ℑω is the Lyapunov exponent for the unstable
geodesic orbit (damping).
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other in the interior describes the motion of a heavy quark in quark-gluon plasma. The
holographic interpretation is less obvious for other string configurations, and for geodesics
it corresponds to a rather special, high-conformal-dimension limit.

As usual, the chase is almost better than the catch. We have found a number of surprising
properties of bulk dynamics, first and foremost the horizon as an unstable saddle point and
the “fake nest of chaos” with local instability rate exactly equal to 2πT in the static case but
different from it in the rotating black string geometry. But the holographic interpretation
is equally interesting: the universal MSS-like exponent is a red herring, the artifact of the
large-N limit in field theory, i.e. classical bulk dynamics, when temperature is the only scale,
unless some additional symmetry is explicitly broken in IR. This happens in the D1-D5-p
black string, where the rotation breaks the symmetry between left- and right-moving modes.
Just like in [89], the rotating system deforms away from the universal 2πT exponent, and
this shows directly in the correlation functions. We also note that away from the dilute gas
approximation there are additional higher-order temperature corrections to the Lyapunov
exponent — this is the effect of the UV deformation.

We have found the connection between the near-horizon Lyapunov exponent and the
spectrum of quasinormal modes in the high-overtone regime. This gives us an important hint
about the meaning of the bulk Lyapunov exponent: it is an instability scale associated to the
decay of fluctuations along the string due to thermal dissipation, and has nothing to do with
bulk chaos. This resembles two classic results on quasinormal modes of asymptotically flat
black holes: in the eikonal regime the Lyapunov exponent on the photon sphere determines
the quasinormal mode [47], whereas in the overdamped regime (our case) the imaginary part
of the quasinormal mode equals the horizon surface gravity [50]. We have essentially shown
that for near-horizon string orbits the bulk Lyapunov exponent equals the surface gravity
(which generalizes even for a rotating horizon).

Motivated by this connection, one could try to extend some other known results on
geodesic instabilities to the orbits of extended objects like strings. Of primary interest is
the instability on the photon sphere which, apart from the well-known connection with
quasinormal modes, holds the key to several other properties both in asymptotically flat
and in global AdS spaces [90, 91]. However, our setup needs to be substantially modified to
study the photon sphere, which arises as the locus of unstable saddle points for null geodesics
arriving from infinity. An open string in our configuration does not even have a saddle point
on the photon sphere, i.e. one cannot even define the Lyapunov exponent on the photon
sphere unambiguously. Therefore, instead of having a static string, we would need to scatter
an open string along a null geodesic. In that case one would expect the minimal allowed
value for the impact parameter to be of order of the photon sphere size (analogous study for
massless particles is performed in [48]). Such a setup is particularly suitable for the study of
fuzzballs and microstate geometries, since they have no sharp length/energy scale analogous
to a horizon [87, 92]. We would then be probing another branch of the QNMs spectrum,
associated to stringy instabilities around the photon sphere.

One might find it surprising that our open string lives in an integrable sector. This
is likely a consequence of the highly symmetric and simple boundary conditions for which
we prove integrability: a static string at the horizon. It is known that a ring string is
nonintegrable in thermal backgrounds, and also in generic Dp-brane backgrounds (although
some very special cases can be integrable, even at finite temperature, see e.g. [93, 94]). A
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more generic open string configuration is likely also nonintegrable. Essentially, since different
boundary conditions for string motion result in a different effective Lagrangian, the Liouville
integrability has to be checked separately for every configuration. While physically we like
to think of “string motion in a given background”, mathematically the system is integrable
if the Euler-Lagrange equations satisfy certain conditions — and for a string the form of
these equations depends on the string ansatz. Therefore, while a single example is enough
to prove general nonintegrability, proving integrability in the most general case requires
more powerful tools than the Kovacic algorithm. We do not do that: we merely focus on
a single case which turns out to be integrable.

From our results it is clear that the study chaos and scrambling in gauge/string duality
(i.e., beyond classical gravity) is a separate topic, not much touched upon in this work.
Fluctuations of a static straight string stretched from boundary to boundary of a maximally
extended (static and neutral) BTZ black hole are known to lead to the exact MSS value for
the worldsheet OTOC [21]; for a dragging string, butterfly velocity also enters the picture, as
the leading correction to the drag force [95]. Given the high symmetry of these systems, this
is not surprising; when the symmetry is decreased or corrections added to the classical string
solution the value will be modified but there is no reason to believe that the solutions and the
OTOC exponents will be modified in the same way as the bulk exponents, i.e. quasinormal
modes in our setup. Worldsheet scrambling for a rotating BTZ black hole was studied in [74]
and indeed, while the OTOC exponent is modified from the MSS value, it is not the same
as the bulk exponent that we find here. Of course, strings can also model spatiotemporal
chaos if we allows both worldsheet coordinates to fluctuate as in [96].

Finally, the issue of gauge choice might be worth commenting. Our choice to work in
the conformal gauge instead of static gauge most of the time is somewhat unusual. The
static gauge equates the time and radial coordinate with the worldsheet coordinates τ and σ
and thus immediately kills the unphysical (gauge-dependent) degrees of freedom. But the
conformal gauge has several advantages for us: (i) it simplifies many calculations (ii) it allows
us to look at the fluctuations along the holographic RG flow (the radial direction) (iii) it
does not fully fix the reparametrization invariance on the worldsheet, leaving the SL(2,R)
group of global coordinate transformations, but as argued in [45, 46, 97] this group provides
a nice way to understand the appearance of a universal scale and its disappearance when we
determine the boundary conditions for the transverse fluctuations that fully fix the gauge on
the worldsheet. This approach was exploited in full depth in [97] to study quantum chaos,
i.e. OTOC on the worldsheet of the open string.

5.1 Note added: quasi-normal modes, variational equations and the spectral
form factor

At the end we want to comment on another connection between our calculation and the
quasi-normal modes of the black hole (or black string) background. After finishing the first
version of the paper we became aware of the work [98] where it is shown that the partition
function and the spectral form factor of a holographic theory at finite temperature can be
understood as a product over the QNM frequencies ωQNM of the bulk black hole. Specifically,
for a bosonic system at temperature T , one-loop partition function is found in [98] to be

Z = Tre−i ˆ̃KT =
∏

ωQNM

(
1− e−iωQNMT

)−1
. (5.1)
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Here, ˆ̃K is the time-shift operator which acts as a boost near the horizon (where gtt → 0), in
a complexified metric where the radial coordinate is shifted as r 7→ r − iϵ. From (5.1), it is
obvious that ωQNM are just the eigenvalues of ˆ̃K. But Lyapunov exponents are nothing but
the eigenvalues of the Jacobian matrix of the equations of motion — in other words, they
are the eigenvalues of the shift operator but now the shift is along the tangential directions
in phase space. In a given background however, e.g. in a near-horizon region like the BTZ
region of a near-extremal black string, one can choose the gauge so that the Jacobian locally
(but not everywhere) coincides with the time-shift operator K̂; the complexification to ˆ̃K
then just imposes the analytic behavior at the horizon, as one normally does when computing
correlation functions such as GR from subsection 4.3.

The above discussion is obviously not rigorous. It would be interesting to formulate it
in strict terms and see how much one can learn from such a viewpoint.
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A Slightly generalized ansatz for the Dp-brane background

Here we comment on the ansatz for the string configuration in Dp-brane backgrounds in
subsection 3.2. We can have nontrivial dynamics of the string also on the k-sphere provided
we impose some additional constraints which are necessary to preserve the separation of
variables. For example, we can replace the ansatz from eq. (3.6) by

t = t(τ), X1 = x1, . . . X10−k = x10−k,

R = R(σ), Φ1 = Φ1(τ), Φ2 = Φ2(τ), Φ3 = ϕ3, . . . Φk = ϕk (A.1)

Choosing t(τ) = τ as usual, we are left with a constraint (in addition to the Virasoro
constraint) coming from the above ansatz, i.e. the assumption that R only depends on σ:

Φ̇2
1 + sinΦ2

1Φ̇2
2 ≡ ℓ2, (A.2)

where ℓ2 is the conserved squared angular momentum on the k-sphere. The constraints
decouple the dynamics of R from Φ1 and Φ2, so the equation of motion for R remains the
same as eq. (3.7) and for Φ1 we obtain:

Φ̈1 +
(
Φ̇2

1 − w2
)
cotΦ1 = 0. (A.3)

Therefore, it is possible to go for more general dynamics than in the main text, which
might be of interest for some applications but is completely peripheral for our main interest
in this paper.
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1 Introduction

Chaos and dynamical phenomena have turned out to provide a fundamental insight into the
structure and information content of black holes and gravity in general. Since the discovery
of the black hole scrambling concept [1, 2], chaos bound and OTOC-ology [3, 4] and on
the other hand the questions of factorization and microscopic statistics stemming from the
replica wormhole proposal in the context of the information paradox [5–7], it is becoming
clear that nonlinear dynamics is an integral part of high-energy theory, as many questions in
gravity and string theory are naturally formulated in terms of scrambling, thermalization
and microscopic chaos.

The time is now ripe to move beyond semiclassical horizons and black holes in general
relativity. The same questions of scrambling, universal timescales and the like can be
asked also for stringy black hole solutions [8] or for solutions proposed to replace black
holes by horizonless stringy objects (microstate geometries and fuzzballs) [9]. With stringy
corrections, things become much more difficult and less universal. One possible approach
is the string/black hole (string/BH) complementarity paradigm [10–12]: a highly excited
string should look like a black hole in the weak coupling regime.

The idea of string/BH complementarity stems from the fact that at sufficiently high
occupation numbers, the Schwarzschild radius of the HES becomes smaller than the string
scale, hence the string should collapse into a black hole. To remind, the mass of a string
Ms and the mass of a black hole MBH in d + 1 spacetime dimension are

MBH ∼ rd−2
s

G
, Ms ∼ N

α′
, (1.1)

– 1 –
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where α′ is the string tension, G is the Newton’s constant and N the occupation number
(level). At the string/BH transition, we expect the string length scale to be ℓs =

√
α′ ∼ rs;

then a string of mass Ms can become a black hole of mass MBH = Ms ≡ M . Equating the
mass and length scales and taking into account that G ∼ g2α′ where g is the string coupling,
we find the condition for the black hole description of the string:

Ng4 ∼ (α′)d−3 ⇒ gc ∝ N−1/4(α′)
d−3

4 . (1.2)

Therefore, when the total occupation number N is large the string will approximately describe
a black hole already at small g, i.e. in the perturbative regime. This is the motivation behind
the recent works on the scattering amplitudes of highly excited strings (HES). By HES we
mean simply a string with N ≫ 1, and scattering amplitudes of the form HES → HES + A
or HES + A → HES + B provide a stringy equivalent to the scrambling perspective for black
holes, where we scatter a field on an AdS black hole, obtaining a time-disordered correlation
function as a probe of chaos [13–15]. In [16] a general framework for computing the HES
scattering amplitudes was formulated, based on the Del Giudice-Di Vecchia-Fubini (DDF)
formalism [17–20]. The idea is to obtain the HES in a controlled way, by adding photonic
excitations to a tachyon (vacuum of the bosonic string). In [21–24] the poles and zeros of the
resulting amplitudes are studied within the framework of random matrix theory (RMT), also
making use of a novel chaos indicator, the ratio of eigenvalue spacings, discussed in [25, 26].

We are thus dealing with (possibly chaotic) quantum scattering. The reader is perhaps
better acquainted with the study of quantum chaos in closed systems, i.e. the study of quantum
Hamiltonians [27], where strong chaos is successfully described by the RMT approach [28]. To
remind, quantum chaotic Hamiltonians of sufficiently large size approach Gaussian random
matrices in their behavior, and can be described by the Gaussian ensemble statistics. In
particular, the eigenvalue (i.e., eigenenergy) spacings obey the celebrated Wigner-Dyson
distribution, and the system is chaotic in the RMT sense if the eigenvalue spacing histogram
is well fit by the Wigner-Dyson curve.

A scattering problem is inherently different. Instead of a Hamiltonian, we deal with
scattering amplitudes and the S-matrix which describes the probability amplitudes of all
possible scattering outcomes. A difference of principle is that the scattered object ends up
“at infinity”, i.e. the system is not closed in the usual sense. For classical scattering, this
means that exit curves behave in a sense like attractors in dissipative chaos, i.e. they tell
us where the orbits end up when t → ∞. A measure of chaos is then the very complex
(usually fractal) dependence of the final state (e.g. scattering angle) on the initial conditions.
Therefore, we might expect a similar fractal behavior for the dependence of amplitudes on
the scattering angle. This approach was used in [23]. Another approach is to look at the
spacings of special points in the amplitudes and to test if these satisfy the RMT statistics,
analogously to the eigenenergy spacings in Hamiltonian systems; this approach was taken
in [21, 22, 24, 26, 29]. The outcome of these works is very interesting and has uncovered
several important ideas, e.g. the emergence of thermalization in [24] but concerning the chaos
itself it is inconclusive: while there are clear signs of chaos some indicators, e.g. the spacing
ratios in [26] deviate significantly from the RMT predictions, and the angular dependence
of the amplitudes, while complex, is not fractal [23].
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In this work we continue the exploration of chaos in HES scattering but attempt a more
systematic approach, studying directly the S-matrix rather than individual amplitudes. We
also introduce a novel element of “geometric” chaos which arises when we look at non-scalar
scatterers, i.e. the process HES + photon instead of HES + tachyon. For the S-matrix a
rigorous generalization of the RMT approach exists [30, 31]: the role of eigenenergies is taken
by the eigenphases, i.e. the phases of the (complex) eigenvalues of the S-matrix. Now the
eigenphase spacings are expected to obey the Wigner-Dyson distribution. It will turn out
that the study of the S-matrix as a whole reveals some additional surprises: we find clear
signs of chaos only for special values of the angles and/or momenta, and the underlying
mechanism is the competition between different (”short” and “long”) partitions of the total
occupation number N . This “combinatorial” approach to chaos will also reveal the existence
of quasi-invariant states, which necessarily spoil the chaos — in other words, despite finding
strong chaos at special points in parameter space, we argue that there is always a regular
component. All of the above holds for bosonic strings: we do not consider superstrings in
this work so from now on it is understood that “string” means bosonic string.

Recently the work [32] has appeared which also studies the properties of the S-matrix and
likewise sees a crossover between “short” and “long” partitions as dominant in the scattering
(though their terminology is different). There is therefore some overlap of our work and [32]
but our results are mostly complementary: in [32] the influence of the polarization of the
DDF photons is studied, typicality of states is probed and in addition important indications
of eigenstate thermalization are found, whereas we study in more detail the dynamics itself
and introduce the photon (instead of tachyon) scattering. We warmly recommend the reader
to study [32] in addition to our paper.

With some hindsight, we can say that our results indicate that HES scattering is never
uniformly chaotic and therefore does not directly provide a look at black holes in the stringy
regime; the naive hope that the string/BH complementarity can be seen directly in the HES S-
matrix is thus invalid. But this conclusion is also useful for future work, and the HES S-matrix
is in itself worth studying, as it shows some novel phenomena of quantum chaotic scattering.

The plan of the paper is the following. In section 2 we briefly recapitulate the construction
of the HES in the DDF formalism and the calculation of the HES-tachyon amplitude; then
we compute the HES-photon amplitude which was never studied so far. In section 3 we
introduce the tools and ideas for studying the S-matrix dynamics: eigenphase statistics
and the combinatorics of partitions/states. Section 4 brings the results of the analysis
described in section 3, and in section 5 we discuss the implications of our findings and
directions of further work.

2 Highly excited strings and their scattering amplitudes

In this section we set the stage: we construct the highly excited string states and then write
the tree-level scattering amplitude for a few simple 2 → 2 processes, scattering a tachyon
t or a photon γ off a HES:

HES + t −→ HES′ + t′ (2.1)
HES + γ −→ HES′ + γ′. (2.2)
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For open strings we closely follow the formalism of [16, 19] and specifically the calculations
of [23]. For closed strings we construct the amplitude exploiting the KLT relations [33–35] and
check the result by direct integration on the worldsheet. The KLT duality applied to eqs. (2.1)
and (2.2) will yield the processes with closed HES (cHES) and tachyon or graviton respectively:

cHES + t −→ cHES′ + t′ (2.3)
cHES + g −→ cHES′ + g′. (2.4)

In the rest of the paper we do not differentiate between open and closed HES in notation,
i.e. we use HES (rather than cHES) for both cases, as the open/closed nature of the string
will always be stated explicitly. Of course, we do differentiate between a photon γ and a
graviton g as the two have different spins. We will thus always call the process in eq. (2.2) the
HES-photon scattering and the process in eq. (2.4) will be called the HES-graviton scattering.

2.1 Open HES - tachyon amplitudes

The HES represents the state with a large number of excitations {nk}, or equivalently with a
high level N =

∑∞
k=1 nk, where k labels the modes and nk is the occupation number of the

k-th mode. Following the DDF formalism [17, 19, 20], a convenient way to think of the HES
state is as a state created in a process in which the tachyon absorbs J photons (we will call
them DDF photons) with momenta qa and polarizations λa (a = 1, . . . J), one by one, as in
figure 1. In the lightcone quantization the general HES state then has the form [19]:

|HES⟩ ∝ ξi1...iJ P
(
∂X, (∂X)2 , . . . (∂X)N

)
i1...iJ

|0, p⟩ (2.5)

where ξi1...iJ is the polarization tensor, P is a polynomial of degree N over the derivatives
of the string coordinates Xµ and |0, p⟩ is the tachyon state (ground state of the bosonic
string) with momentum p. Hence, the physical process in eq. (2.1) can be described by
writing it formally as

tachyon(1)+(tachyon (2) + J photons) −→ tachyon(1′)+
(
tachyon

(
2′
)
+ J ′ photons

)
, (2.6)

and then picking out the poles so that the (tachyon + J photons) part of the amplitude
creates an intermediate on-shell HES state, as shown schematically in figure 1.

For this procedure to correctly describe the absorption of J photons by the tachyon
one by one, it is necessary to remove the terms which couple the photons to each other.
These are proportional to λa · λb, so we must take the polarizations of different photons
to be orthogonal to each other. For the sake of simplicity, we achieve this by making two
special choices, again following [23]:1

1. We take all photons to have the same polarization λa ≡ λ such that λ · λ = 0.

2. The momenta of DDF photons are taken to be equal to qa = −Naq (a = 1, . . . J) where
Na is a positive integer. Now q must satisfy the condition q · λ = 0 (this essentially
states that all polarizations are transverse, as they have to be for photons).

1These special choices essentially limit the polarization tensor ξi1...iJ to a subset of all possible values.
We have not explored more general choices; a more detailed discussion of the influence of the DDF photon
polarization can be found in [32].
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Figure 1. String amplitude for the HES-tachyon scattering process (2.1). The tachyon labeled by its
momentum p2 absorbs J photons with momenta and polarizations {−Nkq, λ} which (after picking
out appropriate poles) results in a HES state labeled by v (similarly for the HES′). The two HES
states interact with tachyons labeled by p1 and p′

1. Adapted from [23].

For the HES′ state, on the right-hand side of eq. (2.1), we similarly take λ′ · λ′ = 0 and
q′b = −N ′bq

′. To find the tree-level amplitude we use the tachyon vertex operator Vt(z, p) =:
eipX(z) :, then we employ a computational trick to replace the photon vertex operators Vp(z, p)
by : eiζ∂X+ikX : and keep only the part linear in the polarization ζ.

When the HES state is constructed as described above, we can express the tree-level
amplitude as the path integral over the product of the vertex operators:

A =
∫ DXe−SP

Vol (SL (2,R))

∫ ∏
i

dwiVt(wi, pi)
J∏

a=1
dzaVp(za,−Naq, λ)

J ′∏
b=1

dz′bVp(z′b,−N ′bq, λ) (2.7)

where i ∈ {1, 2, 1′, 2′} runs over the tachyons (1 and 1′ are physical tachyons and 2 and 2′ are
DDF tachyons), a ∈ {1, . . . , J} runs over the photons in HES, b ∈ {1, . . . , J ′} runs over the
photons in HES′ and the integration variables z and w run over the worldsheet. The action
in the path integral is the usual Polyakov action SP = − 1

4πα′
∫

z dz(∂X)2. For open string
calculations we set α′ = 1

2 , while for closed strings in subsection 2.3 we take α′ = 2. Next,
still following [23], we make two more special choices to further simplify calculations:

1. The polarizations of DDF photons in HES and HES’ satisfy λ′ ∝ λ.

2. The momenta of DDF photons in HES and HES’ satisfy q′ ∝ q.2

2This choice was introduced in [20] and put to use also in [36, 37].
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Using the above simplifications and performing the contractions we obtain:

A = 1
Vol (SL (2,R))

∫ ∞
−∞

∏
i

dwi

∫ ∞
−∞

J∏
a=1

dza

∫ ∞
−∞

J ′∏
b=1

dz′b ×

×
∏
i<j

|wi − wj |pi·pj
∏
a,i

|za − wi|−αi
∑

i

−pi · λ

wi − za

∏
b,j

|z′b − wj |−βj
∑

j

−pj · λ′

wj − z′b
, (2.8)

where we have expanded the integrand to linear order in photon polarizations, and introduced
αi ≡ Napi · q and βj ≡ N ′bpj · q′. Exploiting the residual SL(2,R) gauge invariance of the
worldsheet to fix three out of four wi values, we end up with six channels of the amplitude,
labeled in terms of the Mandelstam variables s, t, u defined the usual way:3

A = Ast +Atu +Aus +Ats +Aut +Asu. (2.9)

It is enough to state in full the expression for one channel; the others are then obtained by
simple permutations of the momenta.4 We give the expression for the st channel:

Ast = A|w′
1=−∞,w2=0,w1=w,w′

2=1 =

=
∫ 1

0
dwwp1·p2(1− w)p1·p′2

J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w), (2.10)

where the integrals Zijk
a are defined in [23] as

Zijk
a (α, p, λ;w) ≡ Za(αi, αj , αk, p, λ;w) ≡ (2.11)

≡
∫ ∞
−∞

dza|za|−αi |za − w|−αj |za − 1|−αk

(−pi · λ

−za
+ −pj · λ

w − za
+ −pk · λ

1− za

)
.

The other channels are now related to the st channel in the following way:

Atu = A|w2=−∞,w′
2=0,w1=w,w′

1=1 = Ast|2→2′,2′→1′ , (2.12)
Aus = A|w′

2=−∞,w′
1=0,w1=w,w2=1 = Ast|2→1′,2′→2, (2.13)

Ats = Ast|2←→2′ , (2.14)
Aut = Atu|2′←→1′ , (2.15)
Asu = Aus|1′←→2. (2.16)

The on-shell condition needed to create HES and HES′ is that after the first j ≤ J photons
have been absorbed, the mass of the intermediate state is Mj = 2(

∑
a≤j Na − 1). Having

3The definition is given in the description of kinematics, in eq. (2.27). At this place we do not need the
definition of Mandelstam variables, we just want to emphasize that, depending on the permutations of the
insertion points on the worldsheet, we get six different channels; for this reason we only give the definitions of
s, t, u later in the text, when we have defined all the momenta.

4We write the amplitude without Chan-Patton factors so it reduces to the sum of the six cyclic orderings;
equivalently, one can imagine Chan-Patton factors of an Abelian U(1) group which reduce to just an overall
multiplication of the sum. It would be interesting to consider nontrivial Chan-Patton factors as additional
group structure could well further reduce chaos and divide the S-matrix into symmetry sectors. But at the
present level of understanding this would be a superfluous complication.
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in mind that the total momentum of this intermediate state is p2 −
∑

a≤j q, and using the
on-shell condition for tachyons −p2

2 = −2, we obtain:

α2 → Na, β′2 → N ′b (2.17)

where the second condition comes from HES′. The Zijk
a integrals can be written in terms of

regularized hypergeometric functions 2F̃1(a, b; c; z) ≡ 2F1(a, b; c; z)/Γ(c). The coefficients of
their Taylor expansions are then expressed in terms of gamma functions. This calculation
is thoroughly described in [23], the result for the st channel being

Ast =
∑

ia∈{2,2′}

∑
jb∈{2,2′}

Na∑
ka=1

N ′
b∑

lb=1

( J∏
a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pjb
·λ′)d(jb)

lb

)
B

(
−1− s

2 +k,−1− t

2 + l

)
,

(2.18)
where l ≡

∑J ′
b lb, k ≡

∑J
a ka, the coefficients c and d are defined as:

c
(2)
k = ck(α2 + 1, α1 + 1, α′2), (2.19)

c
(2′)
k = −ck−1(α2, α1, α′2 + 1), (2.20)

d
(2)
l = −cl−1(β′2, β1, β2 + 1), (2.21)

d
(2′)
l = cl(β′2 + 1, β1 + 1, β2), (2.22)

using the function:

ck(α2, α1, α′2) = (−1)α2+k−1 π

sin (πα2)
Γ(α2 − k + α1 − 1)Γ(α′2 + k)
Γ(α1)Γ(α′2)Γ(α2 − k)Γ(k + 1) , (2.23)

and finally the beta function is defined as usual: B(x, y) ≡ Γ(x)Γ(y)/Γ(x + y).
Because of the condition (2.17), the coefficients c and d from eqs. (2.19)–(2.22) diverge

as we can see from the factor π/ sin(πα2) in eq. (2.23). This divergence is just the expected
behavior of the amplitude when one of the internal momenta in the diagram goes on-shell.
In order to extract the amplitude of the HES + t −→ HES′ + t′ process we thus have to
regularize the amplitude. To achieve this we simply omit the divergent factor π/ sin(πα2)
in the definition (2.23), resulting in a finite expression for the amplitude (except of course
for special choices of kinematic variables).5

For a generic partition
∑J

a=1 Na = N the number of operations needed to compute the
amplitude (2.18) increases rapidly with the partition lengths J and J ′ due to the increase
of the number of sums over ka and lb. In addition, the number of states with fixed level
N grows exponentially in

√
N . These two effects make the calculation of the S-matrix in

the whole subspace of fixed N and fixed kinematic variables computationally demanding,
heavily limiting the maximum value of N we can work with and requiring the use of a
cluster for larger values of N .

5This procedure is essentially the same as the one in quantum field theory where one would remove the
divergence by multiplying the amplitude by the inverse propagator of the internal on-shell particle.
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2.1.1 Kinematics

A look at the expression (2.18) for Ast tells that the kinematics is highly non-unique: there are
many momenta and polarizations involved and we have many parameters to choose. We have
made no attempt to consider their influence in full detail. We have varied the momenta and
the scattering angles (one at a time) over some representative intervals; with some hindsight,
we can say that for tachyon scattering only the magnitude of the incoming momentum is
crucial. As noted above, p1 and p′1 are the momenta of the on-shell tachyons while HES is
created from the tachyon with momentum p2 and a set of J photons with momenta {−Naq}
whose polarizations are all equal to λ (similarly for the HES′ we have p′2, J ′, {N ′b}, q′ and λ′).
The on-shell conditions and the momentum conservation equation now read:

p2
1 = p2

2 =
(
p′1
)2 =

(
p′2
)2 = 2, q2 = q′2 = 0 (2.24)

p1 + (p2 − Nq) + p′1 + (p′2 − Nq′) = 0. (2.25)

The total mass of HES (and HES′) is given by the total occupation number M = 2(N − 1) =
2(N ′ − 1), while J and J ′ represent the total spin of HES and HES′ respectively because the
photons have identical polarizations. We choose to work in the center-of-mass frame and,
as we already mentioned, for simplicity we take the polarizations and photon momenta to
satisfy λ = −λ′, λ · λ = 0 and q′ ∝ q. In order to satisfy these conditions we parametrize
momenta and polarizations in the following way:

q = 1√
2(N −1)+p2−pcosθ

(−1,0,0,1)T

q′ = 1√
2(N −1)+p2−pcosθ′

(1,0,0,−1)T

p1 =
(√

p2−2,psinθ,0,pcosθ

)T

p′1 = −
(√

p2−2,psinθ′ cosϕ′,psinθ′ sinϕ′,pcosθ′
)T

p2 =
(√

2N −2+p2− N√
2N −2+p2−pcosθ

,−psinθ,0,−pcosθ+ N√
2N −2+p2−pcosθ

)T

p′2 =
(
−
√
2N ′−2+p2+ N ′√

2N ′−2+p2−pcosθ′
,psinθ′ cosϕ′,psinθ′ sinϕ′,

pcosθ′− N√
2N −2+p2−pcosθ′

)T

λ = 1√
2
(0,1, i,0)T . (2.26)

Defining the Mandelstam variables in terms of momenta:

s = − (p1 + p2 − Nq)2 , t = −
(
p1 + p′2 − N ′q′

)2
, u = −

(
p1 + p′1

)2
, (2.27)

we obtain p2 · q = p′2 · q′ = 1 as required by the on-shell conditions (2.17). Furthermore,
the only imaginary contribution to Ast comes from the (p · λ) factors which we calculate to
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be p′2 · λ′ = −p sin θ′√
2 eiϕ′ . Hence for ϕ′ = 0 the amplitudes calculated from eq. (2.18) will be

real. For the collinear kinematics, that is θ, θ′ ∈ {0, π}, the amplitude vanishes as can be
seen from the fact that λ is orthogonal to all momenta.

From the above, the amplitude is fully characterized by the module of the momentum p,
scattering angles θ, θ′ and ϕ′, and by the partitions of the levels Na and N ′b. The amplitudes
then define the elements of the S-matrix for fixed kinematics (p, θ, θ′, ϕ′) in the basis of
different partitions of the level N .

2.2 Open HES-photon amplitudes

It will turn out crucial to check also the dynamics of a spinful (non-scalar) state scattering on
the HES — some novel aspects of transient chaos will only show up for initial states with spin.
We thus consider the HES-photon scattering process (2.2).6 The DDF construction of HES
states proceeds exactly the same way as before, with the same assumptions and conditions on
the momenta q, q′ and polarizations λ, λ′ of DDF photons and the momenta p2, p′2 of DDF
tachyons. The sole difference lies in the states 1, 1′ which now describe photons with vertex
operators Vγ , momenta p1, p′1 satisfying p2

1 = (p′1)
2 = 0 and polarizations ξ1 ≡ ξ, ξ1′ ≡ ξ′

satisfying the gauge invariance condition ξ · p1 = ξ′ · p′1 = 0. The amplitude is now

Aγ = 1
Vol (SL (2,R))

∫
DXe−SP

∫ ∏
i

dwiVt(wi, pi)
∫ ∏

K

dwKVγ(wK , pK)×

×
J∏

a=1
dzaVp(za,−Naq, λ)

J ′∏
b=1

dz′bVp(z′b,−N ′bq, λ), (2.28)

where now i, j ∈ {2, 2′} are DDF tachyons, K, L ∈ {1, 1′} are the physical photons, and the
rest of the notation is the same as in eq. (2.7). Writing out the insertions of the vertex
operators, we can write the amlitude as

Aγ = 1
Vol (SL (2,R))

∫ ∞
−∞

∏
i

dwi

∏
K

dwK

∫ ∞
−∞

J∏
a=1

dza

∫ ∞
−∞

J ′∏
b=1

dz′b aIaIIaIII, (2.29)

where the factors aI,II,III denote the tachyon-tachyon, tachyon-photon and photon-photon
terms respectively:

aI =
∏
i<j

|wi − wj |pi·pj

aII =
∏
i,K

|wi − wK |pi·pK
∑

i

−pi · ξK

wi − wK

∏
i,a

|za − wi|−αi
∑

i

−pi · λ

wi − za

∏
j,b

|z′b − wj |−βj
∑

j

−pj · λ′

wj − z′b

aIII =
∏
K,a

|za − wK |−αK
∏
L,b

|z′b − wL|−βL
∏

K<L

|wK − wL|pK ·pL × exp
[ ∑

K<L

ξK · ξL

2w2
KL

+ (2.30)

×
∑
K,a

(−pa · ξK + pK · λ

wK − za
+ ξK · λ

2|wK − za|2
)
+
∑
L,b

(
−pb · ξL + pL · λ′

wL − z′b
+ ξL · λ′

2|wL − zb|2

)]
.

6As we have mentioned, the HES-graviton process is obtained by applying the KLT relations to the
HES-photon process.
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Here αi, αK , βj , βL have the same meaning as before (taking into account the definition of
i, j, K, L above), and it is understood as usual that we only take the terms in the expansion of
the exponent which are linear in every single polarization. The integrals in eq. (2.29) can again
be expressed in terms of the same functions Zijk

a from eq. (2.12), and different permutations
of the insertion points on the worldsheet again produce the sum of contributions for various
permutations as in eqs. (2.9), (2.12)–(2.16). But now the photon-photon interaction terms,
encapsulated in aIII from eq. (2.30) cannot in general be avoided: we cannot in general impose
the additional conditions on the physical photons 1, 1′ akin to those for DDF photons as we
would not have enough equations to satisfy the momentum conservation. Therefore, many
additional terms will appear in the expression for each channel. We again give the expression
for Ast, understanding that the others are obtained by permutations of the indices 1, 2, 1′, 2′:

Aγ
st = A|w′

1=−∞,w2=0,w1=w,w′
2=1 =

∫ 1

0
dwwp1·p2(1− w)p1·p′2 ×

×
[(

p2 · ξ1
w

+ p′2 · ξ1
1− w

) J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w) +

+ (q · ξ1 − p1 · λ)
J∏

a=1
Z212′

a (α, p, λ;w;−1)
J ′∏

b=1
Z212′

b (β, p, λ′;w) +

+
(
q′ · ξ1 − p1 · λ′

) J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w;−1) +

+ (ξ1 · λ)
J∏

a=1
Z212′

a (α, p, λ;w;−2)
J ′∏

b=1
Z212′

b (β, p, λ′;w) +

+
(
ξ1 · λ′

) J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w;−2)

]
. (2.31)

Here we introduce the notation Z212′
a (α, p, λ;w;−σ) with σ a positive integer. This is defined as

ZiKj
a (α, p, λ;w;−σ) ≡ Za(αi − σ, αK , αj , p, λ;w) + Za(αi, αK , αj − σ, p, λ;w). (2.32)

In other words, the argument −σ means we sum over the values of the original ZiKj
a as

defined in eq. (2.12) with the arguments αi, αj being reduced by σ one at a time. Notice
that we do not include the function with αK − σ in the sum in (2.32), i.e. we only reduce
the α’s corresponding to DDF tachyons, not physical photons. The outcome is that the
photon amplitude Aγ

st consists of the same building blocks as the tachyon amplitude Ast

given in eqs. (2.10), (2.18) but with different coefficients and arguments of the gamma and
beta functions. Writing out in full the expression (2.31) we obtain:

Aγ
st =

∑
ia∈{2,2′}

∑
Kb∈{2,2′}

Na∑
ka=1

N ′
b∑

lb=1

(
b0 + b−1 + b′−1 + b−2 + b′−2

)
. (2.33)
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Note that the terms b0,−1,−2 and b′−1,−2 are not related in any simple way to aI,II,III from
eqs. (2.30). They are defined as:

b0 =
( J∏

a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)[
(pia ·ξKb

)B
(
−2−s

2+k,−1− t

2+l

)
+

+(pia ·ξKb
)B
(
−1−s

2+k,−2− t

2+l

)]
(2.34)

b−1 = (q·ξKb
−pia ·λ)

[( J∏
a

(pia ·λ)c̄
(′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−1−s

2+k,−2− t

2+l

)
+

+
( J∏

a

(pia ·λ)c̄
(′′′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−2−s

2+k,−1− t

2+l

)]
(2.35)

b′−1 =
(
q′·ξKb

−pia ·λ′
)( J∏

a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pKb
·λ′)d̄(′′Kb)

lb

)
B

(
−1−s

2+k,−1− t

2+l

)
(2.36)

b−2 = (ξKb
·λ)
[( J∏

a

(pia ·λ)¯̄c
(′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−1−s

2+k,−3− t

2+l

)
+

+
( J∏

a

(pia ·λ)¯̄c
(′′′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−3−s

2+k,−1− t

2+l

)]
(2.37)

b′−2 =
(
ξKb

·λ′
)( J∏

a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pKb
·λ′) ¯̄d(′′Kb)

lb

)
B

(
−2−s

2+k,−2− t

2+l

)
. (2.38)

The coefficients c
(i)
k , d

(K)
l and the function ck(αi, αK , αj) have the same meaning as in

eqs. (2.19)–(2.23). The newly introduced coefficients are defined as:

c̄
(′2)
k = ck(α2, α1 + 1, α′2), c̄

(′′′2)
k = ck(α2 + 1, α1 + 1, α′2 − 1), (2.39)

c̄
(′2′)
k = −ck−1(α2 − 1, α1, α′2 + 1), c̄

(′′′2′)
k = −ck−1(α2, α1, α′2), (2.40)

d̄
(′′2)
l = −cl−1(β′2, β1 − 1, β2 + 1), (2.41)

d̄
(′′2′)
l = cl(β′2 + 1, β1, β2) (2.42)

and analogously for the two-bar coefficients:

¯̄c(′2)
k = ck(α2 − 1, α1 + 1, α′2), ¯̄c(′′′2)

k = ck(α2 + 1, α1 + 1, α′2 − 2), (2.43)
¯̄c(′2′)

k = −ck−1(α2 − 2, α1, α′2 + 1), ¯̄c(′′′2′)
k = −ck−1(α2, α1, α′2 − 1), (2.44)

¯̄d(′′2)
l = −cl−1(β′2, β1 − 2, β2 + 1), (2.45)

¯̄d(′′2′)
l = cl(β′2 + 1, β1 − 1, β2). (2.46)

In other words, the number of bars (one or two) corresponds to the value of σ in the
function ZiKj

a (α, p, λ;w;−σ) in eq. (2.32), and the additional superscript ′, ′′ or ′′′ means
we should subtract σ from the first, second or third argument of the function ck(αi, αK , αj)
from eq. (2.23).
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Finally, we should define the kinematics. We minimally modify the setup for the HES-
tachyon process in the subsubsection 2.1.1. Energy and momentum conservation now read

p2
2 =

(
p′2
)2 = 2, p2

1 =
(
p′1
)2 = q2 = q′2 = 0 (2.47)

p1 + (p2 − Nq) + p′1 + (p′2 − Nq′) = 0. (2.48)

The momenta and polarizations of the physical photons are now given by

p1 = (p, p sin θ, 0, p cos θ)T

p′1 = −
(
p, p sin θ′ cosϕ′, p sin θ′ sinϕ′, p cos θ′

)T (2.49)
ξ1 ≡ ξ = (0, cos θ, 0,− sin θ)T

ξ′1 ≡ ξ′ = (0,− cos θ′, 0, sin θ′ cosϕ′), (2.50)

whereas all the other momenta are the same as for the HES-tachyon scattering, as given in
eq. (2.50). The simplifications which eliminate the interaction terms among the DDF photons
are still in place. For the physical photons they are absent (indeed, it seems the number of free
parameters is insufficient to require ξ′ ∝ ξ after implementing the conservation laws) therefore
we indeed have photon-photon terms in the amplitudes as we found in eqs. (2.30)–(2.38).

2.3 Closed string amplitudes

In the previous section we have described the HES-tachyon scattering for open (bosonic) HES.
This process already shows interesting physics as we will see, however to make closer contact
with black holes or with the results on classical string scattering in the literature [38–40],
we should also consider closed string amplitudes. This can be achieved in a similar way as
for the open case, making use of the DDF operators. But at tree level we can circumvent
this calculation by employing the celebrated KLT relations [33–35]. To remind, the idea
behind the KLT relations is that a closed string amplitude can be constructed from two open
string amplitudes coupled by a momentum-dependent kernel.7 Schematically, an M -point
closed string amplitude AM

closed is given by:

AM
closed ∝

∑
P,P ′

A(P )M
openĀ(P ′)M

openeiF (P,P ′) (2.51)

where P and P ′ denote the permutations of the M external legs, A(P )M
open is the ordered

M -point open string amplitude and F is a phase determined by the kinematics. In the
case of interest for us, that is for the four-leg (2 → 2) scattering, the KLT relation becomes
particularly simple:

ζµ1...µ4,ν1,...ν4A
µ1...µ4,ν1...ν4
closed = −π sin(πp2 · p′1)ξµ1...µ4Aµ1...µ4

open (s, t)ξ′ν1...ν4A
′ν1...ν4
open (t, u). (2.52)

This enables us to construct the closed string S-matrix as a direct product of the st and
tu contributions to the open string S-matrix. If we consider fixed kinematics and vary
the partitions, the direct product structure changes the dimensions of the S-matrix from

7The connection between open and closed tree-level amplitudes can be seen from the fact that the closed
string propagator can be constructed by joining the two open string propagators.
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p(N) × p(N) for open to p(N)2 × p(N)2 for closed strings, which is a big enhancement in
size having in mind the fast growth of the number of partitions p(N) with N . In this way
we obtain the closed HES-tachyon and the closed HES-graviton processes of eqs. (2.3), (2.4)
from the open HES processes of eqs. (2.1), (2.2) respectively.

For our main interest — inspecting the eigenphase statistics and chaos of the S-matrix —
the KLT method may be potentially risky as it yields the closed string amplitudes in the
uncorrelated basis, i.e. the closed string states are expressed in terms of direct products of
open-string states |n⃗⟩ ⊗ | ⃗̃m⟩ projected to the subspace satisfying N = Ñ , i.e.

∑
a na =

∑
b m̃b.

In this basis the symmetry between the left- and right-moving modes is not manifest so even
and odd states under this symmetry are dumped together. It is known that expressing the
Hamiltonian/S-matrix in a basis which is not adapted to the symmetries of the system can
invalidate the results in the sense that Wigner-Dyson statistics does not show up even if
the system is in fact RMT chaotic. We have thus checked our results for small occupation
numbers N ≤ 6 against numerically computed S-matrices in the even and odd sector separately
(obtained by performing the worldsheet integrals via a grid method). We find no discrepancy
between the resulting eigenphase statistics, however for larger N we were unable to perform
this test as the numerical integration becomes unfeasible. Nevertheless, we consistently find
equal or stronger chaos for closed than for open HES, meaning that there is no artifical
reduction of chaos because the spectrum unfolding is not performed.8

3 The structure of the S-matrix

Our basic object is the S-matrix for the processes (2.1)–(2.2) involving two HES states and the
two tachyons or two photons. Because of the complexity of the expressions for the amplitudes,
in particular the photon amplitude Aγ , the computation time grows rapidly, limiting the
laptop calculations to N ≤ 12.9 We first calculate the amplitudes for fixed kinematics and all
possible partitions specifying the two HES states and from these we obtain the S-matrix on
the subspace of fixed kinematics (which we call simply the S-matrix).

3.1 The partition basis

The S-matrix is characterized by its eigenvalues and eigenvectors. Being unitary, it has
eigenvalues on the unit circle, and of particular relevance for the RMT statistics are the
eigenphases, i.e. the phases of the eigenvalues. The natural basis for the analysis of eigenvectors
at HES level N is the basis of partitions {P}, i.e. the sets of K numbers {n1, . . . nK} with

8According to [25], testing the spacing ratios instead of spacings themselves is also helpful in such situations
the ratios r and R are less sensitive to folding/unfolding of the spectrum, and in our case again they give
similar results as the Wigner-Dyson fits themselves.

9In [16, 21, 24, 26] much larger N values were considered, however the calculations in these papers were
performed for the three-leg and four-leg processes including one HES state rather than two (IN and OUT)
as in our case, and only for a subset of amplitudes, not for the whole S-matrix. In [23] the 2 → 2 process
was considered as in our eq. (2.1) but again only for individual amplitudes, considering N ≤ 27. Essentially,
calculating individual amplitudes instead of the S-matrix allows one to go to much higher levels. In [32], where
the whole S-matrix was calculated, the calculations was limited to modest values of N just as in our case.
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∑K
k=1 nk = N and K the highest nonzero occupation number. The dimension of the Hilbert

space is the total number of partitions of N denoted by p(N).10

We define the partition length |P| as the total number of nonzero occupation numbers
nk in the partition (obviously between 1 and min(N, K)):11

∀ P = {n1, . . . nK} with
K∑

k=1
nk = N, K = max j|nj>0 : |P| ≡

∑
j

Θ(nj). (3.1)

In the above Θ(nj) is the Heaviside unit step: Θ(nj) = 1 for nj > 0 and Θ(nj) = 0
otherwise. Now we can order all possible partitions according to partition lengths |P|, from
1 (the shortest partitions, of length 1) to N (the longest partitions, of length N); when
several partitions have the same length their relative order is chosen arbitrarily. A more
widespread way to characterize the size of the partition is the partition rank, defined as
m(PN ) = max nj |nj>0 − |P|. While the rank lies between −(N − 1) and N − 1, the length
is between 1 and N and is thus more convenient for our purposes as we will also consider
the logarithms of the lengths.

A general eigenvector of the S-matrix is some linear combination of various partitions∑p(N)
j=1 cj |Pj⟩. We will argue that the distribution of the coefficients cj as a function of j is

a useful quantity when analyzing the scattering, in particular the relative contribution (i.e.
the absolute value of the coefficients |cj |) of short versus long partitions.

3.2 Tests of the RMT statistics

Once we have the eigenvalues (and eigenvectors), we can apply the textbook tests of quantum
chaos by comparing the eigenvalue statistics with the predictions for Gaussian random
ensembles. As we mentioned in the Introduction, the RMT theory of chaotic scattering
essentially replaces the eigenvalue spacings of the Hamiltonian in a closed system by the
eigenphase spacings of the scattering matrix [31]. To remind, eigenphase spacing is the
difference between the phases of two neighboring eigenvalues:

sn ≡ arg λn+1 − arg λn

s̄
, (3.2)

where s̄ is the average value of the spacings for the whole S-matrix, and λn are the eigenvalues
ordered according to their phases, i.e. argλ1 > argλ2 > . . . > argλp(N ) (or λp(N )2 for the
closed string). Therefore, if the scattering is chaotic in the RMT sense, then the distribution
of normalized spacings s obeys the Wigner-Dyson distribution:

Pβ(s) = Aβsβe−Bβs2
, (3.3)

10As we know, this number grows exponentially as p(N) ∼ exp
(√

N
)
.

11One might be confused that we denote partition elements, i.e. occupation numbers by nk whereas the
DDF photon momenta were previously denoted by Nkq, where again Nk are the elements of the partition.
The reason is that nk = Nk only for open strings. A closed string in the state |nk, ñk⟩ will have a different
momentum, i.e. different Nk even though the partition elements are the same. For this reason we keep the
notation separate.
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where β = 1, 2, 4 for orthogonal (GOE), unitary (GUE) or symplectic (GSE) ensemble,
respectively, and the constants Aβ and Bβ read

A1 = π

2 , B1 = π

4 (3.4)

A2 = 8
π

, B2 = 4
π

(3.5)

A4 =
( 64
9π

)3
, B4 = 64

9π
. (3.6)

(3.7)

As we know, the three classes are determined by the properties under the time-reversal
symmetry [27] — GOE describes time-reversal-invariant systems with “conventional time
reversal operator”, squaring to 1; GSE describes time-reversal-invariant systems with Kram-
mers degeneracy where time reversal squares to −1; GUE describes systems which break
time-reversal invariance. Our process is time-reversal invariant and the strings are bosonic
hence there cannot be any Krammers degeneracy. We thus expect the GOE statistics, with
β = 1. For purposes of checking the Wigner-Dyson statistics however we have tried fits
with different β values and we have also tried fitting the eigenphase spacing distribution
with β as a free fitting parameter. Finally, a regular scattering process can be written as a
collection of independent channels, leading to the Poisson distribution of eigenphase spacings:
P0(s) = exp(−s). The crucial physical difference between the two is that the Wigner-Dyson
distribution encapsulates eigenstate repulsion - one always has Pβ(s = 0) = 0 and there
is no clustering. The Poisson distribution, on the contrary, always has P0(s = 0) = 1 and
always leads to clustering of levels.

We will find that our S-matrices are typically not Gaussian random and certainly not
Poissonian, but can — in the simplest picture — be thought of as being generated from a
mixed ensemble with both Gaussian random matrices and integrable matrices. Therefore,
it will make sense to consider the distribution

Pc(s) ≡ wP P0(s) + (1− wP )Pβ(s). (3.8)

Importantly, while both the Wigner-Dyson and the Poison form follow from rigorous deriva-
tions, the above linear combination is purely phenomenological — there is no guarantee
that a system with mixed (regular-chaotic) dynamics will indeed have eq. (3.8) for the
eigenphase spacing distribution. We will use the size of wP , i.e. the relative contribution of
the Poisson contribution, as a rough indicator of non-chaoticity but it is not simply related
to any physical quantity.

One important caveat concerning the Wigner-Dyson test is that the eigenstates with
additional discrete symmetries that do not commute with time reversal can introduce novel
behavior, leading to the Altland-Zirnbauer tenfold way instead of the Dyson threefold way [41].
In our case however there are no obvious additional symmetries that behave nontrivially
under time reversal, so the threefold way of eqs. (3.4)–(3.6) remains valid.

Another measure of chaos which is perhaps more robust is the eigenspacing ratio, which
considers the ratio of the spacings between two neighboring pairs of eigenphases, i.e. between
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two neighboring spacings:

rn ≡ sn

sn−1
= arg λn+1 − arg λn

arg λn − arg λn−1
. (3.9)

Another possibility is to consider normalized ratios, defined as Rn = min(rn, 1/rn). This chaos
diagnostic was proposed in [42] and applied to field-theoretical systems in [43] and finally
to HES scattering amplitudes in [24, 26]. Its appeal lies in the fact that the normalization
cancels out hence this quantity is more robust to numerical fluctuations; in addition, it is
argued in [26] to be less sensitive to the mixing of states with different symmetries. One can
study the distributions P (r), P (R) or just the mean values ⟨r⟩, ⟨R⟩; the latter we find more
useful as it gives robust and concise information within just a single number.

A few words about the calculations are in order. For smaller excitation numbers N ≤ 12
it is easy to compute the S-matrix on a laptop in Wolfram Mathematica. For larger N we
perform the calculations on a cluster, and in addition we use approximate interpolation
formulas for beta and gamma functions to speed up the calculation, sacrificing some accuracy.
Still, when computing the whole S-matrix, we cannot go further than N ≈ 30. This is
an inherent difficulty when working with the S-matrix instead of just the amplitudes: the
matrix becomes huge.

Now we are ready to study the properties considered in this section — the structure
of the S-matrix and its eigenvectors, and the eigenvalue statistics — for the S-matrices of
the HES-tachyon, HES-photon and HES-graviton scattering.

4 S-matrix analysis of HES scattering processes

In this section we present numerical results on the S-matrix involving the HES states for the
setting described in the previous section. We start with the open string and then move to
discuss the physically more relevant closed string. Afterwards we provide some a posteriori
analytic arguments explaining the numerical findings.

4.1 The HES-tachyon S-matrix

4.1.1 The eigenphase statistics

The first test that gives an idea on the degree of chaos in the S-matrix is the fit of the
Wigner-Dyson distribution to the histogram of eigenphase spacings. Computing the S-matrix,
diagonalizing it and producing the histogram of the differences of the eigenphases normalized
by the mean of this difference, we typically obtain a picture such as figure 2. We give the
fit for both open and closed strings (panels (A) and (B) respectively), with the expected
GOE ensemble value β = 1, and with the GUE ensemble with β = 2; we do not give the fit
with β = 4 as this case gives far worse fit quality (and is physically untenable in a bosonic
system). The agreement with the RMT statistics is not impressive: in some cases (mainly
p = 16.1 for open strings and p = 4.1, 8.1 for closed strings) the agreement is decent but
far from perfect. For other momenta, in particular for large momenta in the closed HES
case, the disagreement is drastic. Indeed, at large momenta many eigenvalues coalesce and
the spacings cluster at s = 0.
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Figure 2. Normalized eigenphase spacing distribution for six momentum values p =
4.1, 8.1, 12.1, 16.1, 20.1, 24.1, with N = 10, θ = 0.23, θ′ = 0.5 and ϕ′ = 0.7, for open (A) and closed (B)
HES. The blue and red lines represent the best fits to the Wigner-Dyson distribution (eq. (3.3)) with
β = 1 (eq. (3.4)) and β = 2 (eq. (3.5)) respectively; the former corresponds to GOE, expected from the
time-reversal symmetry and the latter to GUE, for time-reversal-breaking systems. While the overall
shape of the distribution is close to the Wigner-Dyson function for intermediate momenta (roughly
p = 16.1 in (A) and p = 8.1 in (B)), the presence of near-zero spacings clearly excludes pure RMT statis-
tics. For the closed string there is strong clustering of levels at large momentum values; for that reason
we do not give the fit to Wigner-Dyson distributions for the closed string for p = 20.1 and p = 24.1.

The natural conclusion is that dynamics is mixed, consisting of contributions from both
Poisson and Wigner-Dyson distribution. Of course, for N = 10, the value used in figure 2,
the set of spacings available for an open string is rather small, so the outcome may well be
influenced by finite-size fluctuations. But the closed string already has a much larger S-matrix
(of size p(N)2 × p(N)2 instead of p(N)× p(N)) and significant finite-size effects seem unlikely.

The hypothesis of two-component dynamics (regular and chaotic) is checked by fitting
the combination of the two distribution functions (eq. (3.8)). The relevant quantity now
is wP , the contribution of the Poisson distribution, which is expected to be minimal when
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Figure 3. The relative contribution of the Poisson distribution wP when fitting the Poisson-Wigner-
Dyson combination to the histogram of eigenphase spacings as a function of momentum, for the same
values of momenta and angles as in figure 2, for open (A) and closed (B) string. The smallest regular
component, i.e. the smallest Poisson ratio wP (0 ≤ wP ≤ 1) is found for p ≈ 16.1 (A) and p ≈ 8.1 (B),
roughly the same values which yield the nicest fit to the Wigner-Dyson distribution in figure 2. For
large momenta we again see that the closed string becomes completely regular, with strong clustering
of eigenphases. We fit the Poisson+Wigner-Dyson distribution both with β = 1 (blue) and β = 2 (red).
The GOE value β = 1 gives somewhat better plots as we expect. The full lines are just to guide the eye.

chaos is the strongest. Its dependence on the momentum p is given in figure 3. Here and
in most other figures throughout the paper we perform the fit both with β = 1 and β = 2
but in general the former value, corresponding to GOE and time-reversal invariance agrees
better with the data as it should be.

Another way to characterize the proximity to the RMT-like chaotic behavior is the
average spacing ratio ⟨r⟩ defined in eq. (3.9), or its normalized variant ⟨R⟩. We find it
particularly convenient when studying the behavior of the S-matrix for increasing excitation
number N . We have tentatively found that the scattering shows clear signs of chaos only
for certain values of momentum, which we dub the crossover momentum pc for reasons that
will soon become clear. Now we fix this value (pc = 8.1 for the open string and pc = 16.1
for the closed string) and vary the total excitation number N (figure 4). Computing ⟨r⟩
(A) and ⟨R⟩ (B) for each N value at p = pc we find that already for N ≳ 9 the values are
very close to the predicted outcome for the time-reversal-invariant GOE random matrix
ensemble (black dashed line in figure 4). This suggests that indeed in a small interval of
momenta around pc the S-matrix shows clear signs of chaos which stay stable for large N

(in accordance with the string/black hole complementarity and the fast scrambling of black
holes, if there is strong chaos then indeed it has to remain strong (or become stronger and
stronger) as N grows). Still, a more refined measure such as the fit to the Wigner-Dyson
distribution or its combination with the Poisson distribution (figures 2, 3) reveals that even
at pc some non-chaoticity remains. Therefore, rather than a sharp strongly chaotic point it
is a smeared crossover region where chaos becomes strong but still non-uniform. Now we
will try to understand the nature of this crossover.
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Figure 4. The non-normalized (A) and normalized (B) average spacing ratio at the crossover
momentum pc = 16.1 for the closed HES-tachyon scattering at different excitation levels N of the
HES; the kinematic parameters are the same as in figures 2 and 4. For growing N the spacing ratios
stay firmly around the values ⟨r⟩ = 1.75 (A) and ⟨R⟩ = 0.536 (B) predicted for the GOE random
matrix dynamics (black dashed reference lines). The spacing ratio indicates stronger chaos at p ≈ pc

than the fits to the Wigner-Dyson distribution, which even around pc show visible discrepancies.

4.1.2 The crossover

We now invoke the partition basis described in the subsection 3.1 and the notion of partition
length from eq. (3.1). Finding the coordinates c

(n)
k (1 ≤ k ≤ p(N) for open HES and

1 ≤ k ≤ p(N)2 for closed HES) of the n-th S-matrix eigenvector |n⟩ in the partition basis, we
can speak of the relative contribution of short vs. long partitions to the eigenvector (large
c

(n)
k for small/large k implies dominant contribution of short/long partitions). One detail is

still arbitrary: the ordering of the eigenvectors themselves, i.e. the number n = 1, . . . p(N)
(n = 1, . . . p(N)2 for closed strings) in c

(n)
k as defined above. We opt to order the eigenvectors

according to the absolute value of the real part of their eigenvalues: thus |1⟩ is the “leading”
eigenvector, which contributes most to the OUT state after the scattering, and |p(N)⟩ (|p(N)2⟩
for closed strings) is the “least important” eigenvector, which contributes the least.

In figure 5, we plot the set of coordinates c
(n)
k for three eigenvectors, for a number of

S-matrices with different momenta and fixed angles θ, θ′ and ϕ′. We find that short partitions
dominantly contribute to the leading eigenvector (the one with the largest eigenvalue) at
small momenta p, while for large momenta long partitions dominate. The crossover from the
domination of short partitions to the domination of long partitions happens just around the
momentum where chaos is maximal, which we have denoted by pc in the previous subsection:
at p ≈ pc partitions of all lengths contribute equally. We find that pc slightly decreases
with increasing ϕ′ but overall is almost insensitive to the kinematics (for the tachyonic case
that we consider here).

The fact that at large energies (and momenta) long partitions dominantly contribute
to the dynamics is also seen from the plot of absolute values of the S-matrix elements in
figure 6 (remember the rows of the matrix are nothing but the eigenvectors in the partition
basis): the largest matrix element migrates from upper left corner (processes scattering short
states into short states) to upper right corner (short-to-long processes) to bottom right corner
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(long-to-long processes).12 This can be roughly understood in a simple way: for p ≪ pc

there is not enough energy to activate most modes so only a few modes contribute (and
they must have large occupation numbers nk in order to have the total excitation number
N); for p ≫ pc the kinetic energy is much larger than the interaction energy scale thus all
the modes are excited (and they must have mostly small occupation numbers so as not to
overshoot the total occupation N). For p ∼ pc these two factors balance each other and the
dominant eigenvectors consist of partitions of all lengths.

Now why is the chaos clearly visible precisely around these crossover momenta pc? For
small energies only a few states effectively participate in the scattering dynamics hence it
cannot be very complex. As we increase the energy more and more modes are activated
providing more channels for the interaction, forming a complex structure through which
chaotic behavior may develop. But at very high energies there is “less time” for the interaction
to occur, the strings just “fly away from each other”, which results in the suppression of
the chaotic behavior.13

We further support the above reasoning by calculating the Shannon information entropy
associated with the S-matrix. As we know, the Shannon entropy is defined as S =

∑
j pj log pj

for some classical probabilistic system with probability pj assigned to each state j. The usual
quantum-mechanical analogue is the von Neumann entropy, defined in terms of the density
matrix ρ as Trρ log ρ. Since we have a quanutm scattering process, one should in principle
speak of von Neumann rather than Shannon entropy. However, we work with the S-matrix
and do not have the density matrix so defining the von Neumann entropy the canonical way
would be tricky. We can introduce a phenomenological measure of entropy or complexity
for a single amplitude from the IN state |n⃗⟩ to the OUT state |m⃗⟩ simply as:

C (|n⃗⟩ → |m⃗⟩) = Re
[
A|n⃗⟩→|m⃗⟩ logA|n⃗⟩→|m⃗⟩

]
. (4.1)

Taking the real part is necessary as amplitudes are in general neither real nor positive.
For the whole scattering matrix, the natural choice is to sum the definition (4.1) for all
amplitudes, or equivalently to take the trace of the expression over the whole S-matrix. But
in the eigenbasis the S-matrix becomes diagonal, with elements N exp(iϕk), where ϕk is the
eigenphase of the state k and N is some overall normalization constant, which is irrelevant
for our purposes. Therefore we can write

C(S) = ReTrS logS = −
∑

k

ϕk sinϕk, (4.2)

where the sum goes from k = 1 to k = p(N) for open strings and from k = 1 to k = p(N)2

for closed strings.14 As the S-matrix becomes chaotic, we expect the information entropy to
12This was also seen and discussed in the recent paper [32].
13This situation is analogous to classical scattering, where likewise at low energies the skeleton of periodic

orbits (which defines the symbolic dynamics) is quite simple as most orbits see just a near-harmonic potential
well, at high energies most orbits barely feel the scattering potential and continue to infinity almost undisturbed,
and at intermediate energies the competition between the bounded and unbounded dynamics generates
sensitivity to initial conditions and chaos.

14For N → ∞ the index of the state becomes continuous and we get the differential entropy, the well-known
generalization of the Shannon entropy for continuous distributions. This limit is important for the string/BH
complementarity but we leave it for further work.
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Figure 5. Coefficients of the S-matrix eigenvector |n⟩ in the partition basis, for the leading eigenvector
and a few smaller eigenvectors, denoted by colored lines (see the plot legends). The partitions are
enumerated from shortest (of the form (0, . . . 0, N, 0, . . . 0)) to longest (of the form (1, . . . 1)). The
leading eigenstate n = 1 (blue line — corresponding to the largest eigenvalue, which dominates the
final state of the scattering process) consists mainly of short partitions for small momenta, becomes
approximately equipartitioned for intermediate momenta which we identify with the crossover scale
pc, and consists mainly of long partitions for high momenta. The eigenstates with n = 10 and n = 30
behave in a more or less complementary way (i.e. long partitions dominate for p < pc and short
partitions for p > pc), although for them the trends are less clear. Six momentum values are considered
(p = 8.1, 12.1, 14.1, 15.1, 16.1, 20.1 in (A), for open strings, and p = 12.1, 16.1, 17.1, 17.6, 18.1, 24.1 in
(B), for closed strings), with N = 9, θ = 0.23, θ′ = 0.30, ϕ′ = 0.70 (A) vs. N = 10, θ = 0.20, θ′ = 0.30
and ϕ′ = 0.20 (B). The crossovers in general happen at different momenta for open and closed strings;
here we have pc ≈ 15.1 for open HES (A) and pc ≈ 17.5 for closed HES (B).

increase, reflecting the increase in the complexity of dynamics. In fact, it is likely possible to
calculate C(S) in a closed form for a Gaussian random matrix ensemble but so far we have
not found an expression in terms of elementary functions. Still, figure 7 suggests that C(S)
is indeed a useful measure as it becomes maximal at about the same value where the spacing
analysis and the eigenvector structure from figure 5(B) show the crossover and strong chaos.
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Figure 6. The S-matrices in the partition basis for open (A) and closed (B) HES scattering, for the
same kinematics as in figure 5, the color code showing the module of the (generically complex) matrix
elements. For the open string the S-matrix and consequently the interval of the values of its elements
is much smaller hence it is convenient to use a linear color scale (normalized to the unit interval).
For the closed string the S-matrix is much larger and the magnitude of its elements varies by several
orders of magnitude hence we use the logarithmic color scale (again normalized to the unit interval).
In accordance with figure 5, the dominant processes for p < pc ≈ 15 involve short partitions with few
occupied levels and large occupation numbers (upper left corner), whereas for p > pc the opposite is
true and the lower left corner of the S-matrix is dominant.
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Figure 7. Shannon entropy C(S(p)) in computational units as a function of momentum p for the
same kinematics as in figure 5(B). We observe a peak in the entropy at the crossover momentum
pc ≈ 17.5. The line is just to guide the eye.

4.1.3 Quasi-invariant states

Returning again to the structure of the S-matrix akin to plots in figure 6, it is possible
to detect the regular structure that spoils the Wigner-Dyson statistics at all momenta (to
some extent even at pc). For this it is necessary to plot different channels separately as
they can behave very differently. In figure 8 we plot the st and tu parts of the open string
amplitude. In the tu matrix we see clear structures — stripes, while in the st part we do not
see any obvious regularities. Of course, the stripe structure of the tu channel induces similar
structure in the complete S-matrix (though less sharp as it combines with the featureless
structures of the other channels).

These quasi-invariant states are very intriguing for several reasons: (1) they provide
a specific mechanism which precludes the canonical random matrix behavior of the HES
S-matrix — we need to understand them if we want to know why the HES approach can
seemingly never peep into the black hole regime (2) they are a natural generalization of the
scar states which have drawn a lot of attention in quantum chaos studies in recent years
but here we find quasi-invariant states generically, not for fine-tuned initial conditions as is
usually the case for scars15 (3) analyzing the structure of the amplitudes starting from the
expressions (2.18)–(2.23) for the tachyon or (2.33)–(2.46) for the photon it might be possible

15In the context of our calculation of first-quantized string dynamics, we may see something like quantum-
mechanical scars introduced in [44], rather than the scars in quantum many-body systems such as those
in [45–47].
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Figure 8. Channels Ast and Atu of the open string (A) and the closed string (B) amplitude in
the partition basis for the same kinematics as in figure 5, the color code showing the phases of the
elements, normalized to the [0, 1] interval. The tu part shows stripes (i.e., sets of partitions with
lengths confined to some fixed interval), whose number increases at the crossover. The phase structure
of the st part is on the other hand more or less featureless. In (B) only a part of the S-matrix is shown
in order to zoom-in into the stripe structure; the rest of the S-matrix behaves in a similar manner.

to understand the quasi-invariant states analytically in future work. For now we can only
give some general hints as to their appearance, which we do in the discussion in section 5.
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Figure 9. The contribution of the Poisson distribution to the fit of the level spacing histogram of
the HES-graviton S-matrix, as a function of N for θ = 0.70 (A), and as a function of θ for N = 10
(B), in both cases for p = 10.1, θ′ = 0.25, ϕ′ = 0.70. There is obviously a relatively narrow interval of
angles where the eigenphase spacing distribution is almost of the RMT type, but this is not the case
for all values of N . For large N values, when HES becomes really highly excited, the chaos is actually
weaker. The fit is for β = 1, and the solid lines are just to guide the eye.

4.2 The HES-photon and HES-graviton S-matrices

For the HES-photon scattering (eq. (2.2)) and its closed-string equivalent, the HES-graviton
scattering (eq. (2.4)) we can perform a similar analysis as for the HES-tachyon scattering dis-
cussed in the previous subsection. The overall phenomenology is similar, with two differences:

1. Dependence of dynamics on the momentum p and the angles θ and θ′ is now much
stronger and more complicated, so that in some cases there is more than one value of
momentum where chaos becomes strong, but it only does so when the values of the
angles are also inside the chaotic window.

2. The strong chaos found for special p and θ values is mainly there for finite N values
and does not in general persist for growing N .

The above findings can be seen from figure 9. There is now a narrow interval in the
angle θ where the Poisson contribution wP becomes very low but this is only the case for
N = 10 and N = 15, otherwise the dynamics is again highly mixed. This suggests that the
mechanisms of chaos at work here are not relevant for the black hole scrambling and the
string/black hole complementarity picture: otherwise the chaos could only become stronger
for growing N . Therefore, unlike the tachyon case considered in figure 4, where indeed the
strong chaos at p ≈ pc persists for growing N , here it is a finite-N phenomenon.

The momentum dependence of the chaos indicators ⟨r⟩ and wP can be seen in figure 10.
Now we have several crossover values pc where the main contribution to the eigenvectors
goes back and forth between short and long partitions. In this example four pc values exhibit
clear signs of chaos. We note in passing that for mixed/weakly chaotic cases the ⟨r⟩ values
are now above the GOE value 1.75 whereas for the tachyon they are below. We do not know
the significance of this. For reference we also give a few plots of the eigenphase spacing
distribution in figure 11, for two crossover momenta (p = 1.3, 1.9) and two other momenta
(p = 1.0, 1.6), where we can directly observe an increased fit quality by the Wigner-Dyson
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Figure 10. Mean level spacing ratio ⟨r⟩ (A) and the Poisson contribution to the eigenphase spacing
histogram wP for a HES-photon process with N = 9, θ = 0.23, θ′ = 0.5, ϕ′ = 0.7, and a range of
momenta p. Now we have several chaotic momenta instead of just one, roughly at pc = 1.3, 1.9, 3.7, 6.1.
Both measures of chaos (⟨r⟩ and wP ) roughly agree in indicating chaotic dynamics at these points.
The fit is for β = 1 in the Wigner-Dyson distirbution.
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Figure 11. Eigenphase spacing distribution for the same kinematics as in figure 10 for four momentum
values p = 1.0, 1.3, 1.6, 1.9. The points p = 1.3 and p = 1.9 provide a better fit to the Wigner-Dyson
distribution with β = 1/β = 2 (blue/red line) than the other two, in accordance with the other chaos
indicators (⟨r⟩ and wP ).

distribution with β = 1 for the p = pc momenta. Here again we perform the Wigner-Dyson
fit also for β = 2 in addition to β = 1 for comparison, but the fit is again better for β = 1.

In conclusion, the scattering of spinful states (such as the photon) provides a more
complex phenomenology: strong chaos is still limited to special values of parameters, not
only momenta but also the angles and the occupation number. In this sense one could argue
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that this case is even less chaotic than the tachyonic case as chaos does not persist for infinite
N . On the other hand, highly erratic dependence on p and θ is more in accordance with
the classical chaotic scattering where precisely the high sensitivity of the scattering outcome
on the initial conditions encapsulates chaos [48, 49]. In fact, [50] has found precisely such
behavior also for the HES-tachyon process but for individual amplitudes only (here we have
shown it does not hold for the S-matrix as a whole, where just a single p value is special).
The result we have is akin to the classical scattering of the ring string off a black hole, studied
e.g. in [38–40] and numerous later works.

5 Discussion and conclusions

The S-matrices paint a complex picture of HES dynamics. The dynamics varies from
mostly regular, with strong eigenphase clustering, to mostly chaotic, in good agreement
with the usual RMT measures of chaos. There is no simple characterization of chaos as a
function of kinematics or the occupation number N , and spinful vs. scalar incoming state
also influences the outcome. This variation is in itself our first conclusion: the dynamics is
strongly non-uniform and no signs of black hole universality are seen.

The first important idea is that of a crossover at special momentum pc between two mostly
regular regimes in the HES-tachyon scattering: only when all the HES states are excited in the
scattering process the chaos dominates in the eigenphase statistics. For scattering of photons
and gravitons the picture is more complicated, and several values of special/chaotic momenta
and angles can be found. To some extent this is expected: only a non-scalar state can exhibit
strong dependence on the angles and geometry of the scattering process. But more important
is the very idea of the crossover. First, it tells us how the chaos arises: it arises through the
exponentially large number of excited states, a factor which makes up for the simplicity of
the Polyakov action for the scattering and the Veneziano- and Virasoro-type amplitudes.16

The second important idea is that of quasi-invariant states. They provide a clear reason
why chaos can never become uniform: as long as there are many IN states which give almost
the same OUT state there will be a strong clustering of eigenphases and no uniform eigenphase
repulsion. We plan to understand these states better in future work.

Both the crossover (mentioned also in [32]) and the quasi-invariant states could not
be seen from amplitudes alone, they are properties of the whole S-matrix. Therefore it is
important to move away from the study of individual amplitudes toward the study of the
whole S-matrix. Yet, this is computationally demanding. Indeed, one possible weakness
of this work is that we are forced to study relatively small N values (roughly around 10)
when working on a laptop, and even on a cluster we cannot move beyond N ≈ 30 and that
with an approximate evaluation of the gamma and beta functions. Therefore, one might
worry that we simply do not look at sufficiently high N to make our strings truly highly
excited. Could it be that in fact chaos will become uniform and black-hole-like when going
for much higher excitation numbers?

16Indeed, one may wonder how is it possible to see any chaos when the action is quadratic. The answer
lies in the fact that the Polyakov action has an additional constraint and, as we mentioned, in the fact that
we have an exponentially large number of amplitudes in the S-matrix, where each amplitude behaves as an
infinite sum of field-theoretical amplitudes.
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We cannot provide a definite answer but we have some reasons to conjecture that the
answer is negative. First, we reach a seemingly constant ratio of regular to chaotic (Poisson
to Wigner-Dyson) eigenphase populations: it is possible but not very likely that this constant
ratio will suddenly drop at some N . Also, when studying individual amplitudes the authors
of [26] have gone for much higher N (over 105 in some cases) and they still do not see the
statistics collapse onto the RMT predictions. Finally, existing results on the eigenvalue
distribution of beta-Wishart matrices [51, 52] provide a path toward an analytic proof that
quasi-invariant states are present for S-matrices of arbitrarily large size. We plan to follow
this path in further work on the subject.

All of the above shows that HES scattering is very different from black hole scrambling:
in the latter, there are universal time and space scales encapsulated in the chaos bounds for
the Lyapunov exponent and the butterfly velocity. These rest essentially on the existence of
a (semi)classical horizon with an infinite redshift, thus any infalling wave behaves as a shock
wave and leads to a universal response. It seems that, despite the string/BH complementarity,
a perturbative tree-level string calculation just cannot describe the transition to a black
hole. One reason might be that we work in flat space background. This poses another
important task for the future: will we get different results if we allow at least for weak gravity,
taking it into account through perturbative vertex corrections? This question is in principle
approachable and is another task for the future. Finally, one may try to model the dynamics
at the transition point, which was studied in a number of recent works [53–55].

Acknowledgments

We are grateful to Matthew Dodelson, David Berenstein and Dmitry Ageev for stimulating
discussions. The authors acknowledge funding provided by the Institute of Physics Belgrade,
through the grant by Ministry of Science, Technological Development, and Innovations of
the Republic of Serbia. M. Č. would like to acknowledge the Steklov Mathematical Institute
(Moscow), International Center for Theoretical Physics (Trieste) and Mainz Institute for
Theoretical Physics (MITP) of the Cluster of Excellence PRISMA+ (Project ID 39083149)
for hospitality and the opportunity to present and discuss this work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

[2] N. Lashkari et al., Towards the fast scrambling conjecture, JHEP 04 (2013) 022
[arXiv:1111.6580] [INSPIRE].

[3] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106
[arXiv:1503.01409] [INSPIRE].

[4] J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2008/10/065
https://arxiv.org/abs/0808.2096
https://inspirehep.net/literature/793175
https://doi.org/10.1007/JHEP04(2013)022
https://arxiv.org/abs/1111.6580
https://inspirehep.net/literature/963413
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/literature/1347290
https://arxiv.org/abs/1505.08108
https://inspirehep.net/literature/1373738


J
H
E
P
0
3
(
2
0
2
4
)
1
0
1

[5] A. Almheiri et al., Replica wormholes and the entropy of Hawking radiation, JHEP 05 (2020)
013 [arXiv:1911.12333] [INSPIRE].

[6] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

[7] A. Almheiri et al., The entropy of Hawking radiation, Rev. Mod. Phys. 93 (2021) 035002
[arXiv:2006.06872] [INSPIRE].

[8] J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory,
Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].

[9] I. Bena, E.J. Martinec, S.D. Mathur and N.P. Warner, Fuzzballs and microstate geometries:
black-hole structure in string theory, arXiv:2204.13113 [INSPIRE].

[10] L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145
[INSPIRE].

[11] G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys.
Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].

[12] G.T. Horowitz and J. Polchinski, Selfgravitating fundamental strings, Phys. Rev. D 57 (1998)
2557 [hep-th/9707170] [INSPIRE].

[13] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067
[arXiv:1306.0622] [INSPIRE].

[14] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051
[arXiv:1409.8180] [INSPIRE].

[15] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132
[arXiv:1412.6087] [INSPIRE].

[16] D.J. Gross and V. Rosenhaus, Chaotic scattering of highly excited strings, JHEP 05 (2021) 048
[arXiv:2103.15301] [INSPIRE].

[17] E. Del Giudice, P. Di Vecchia and S. Fubini, General properties of the dual resonance model,
Annals Phys. 70 (1972) 378 [INSPIRE].

[18] M. Hindmarsh and D. Skliros, Covariant closed string coherent states, Phys. Rev. Lett. 106
(2011) 081602 [arXiv:1006.2559] [INSPIRE].

[19] D. Skliros and M. Hindmarsh, String vertex operators and cosmic strings, Phys. Rev. D 84
(2011) 126001 [arXiv:1107.0730] [INSPIRE].

[20] M. Bianchi and M. Firrotta, DDF operators, open string coherent states and their scattering
amplitudes, Nucl. Phys. B 952 (2020) 114943 [arXiv:1902.07016] [INSPIRE].

[21] V. Rosenhaus, Chaos in a many-string scattering amplitude, Phys. Rev. Lett. 129 (2022) 031601
[arXiv:2112.10269] [INSPIRE].

[22] M. Firrotta and V. Rosenhaus, Photon emission from an excited string, JHEP 09 (2022) 211
[arXiv:2207.01641] [INSPIRE].

[23] K. Hashimoto, Y. Matsuo and T. Yoda, Transient chaos analysis of string scattering, JHEP 11
(2022) 147 [arXiv:2208.08380] [INSPIRE].

[24] M. Firrotta, The chaotic emergence of thermalization in highly excited string decays, JHEP 04
(2023) 052 [arXiv:2301.04069] [INSPIRE].

[25] M. Bianchi, M. Firrotta, J. Sonnenschein and D. Weissman, Measure for chaotic scattering
amplitudes, Phys. Rev. Lett. 129 (2022) 261601 [arXiv:2207.13112] [INSPIRE].

– 29 –

https://doi.org/10.1007/JHEP05(2020)013
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/literature/1767472
https://doi.org/10.1007/JHEP03(2022)205
https://arxiv.org/abs/1911.11977
https://inspirehep.net/literature/1767458
https://doi.org/10.1103/RevModPhys.93.035002
https://arxiv.org/abs/2006.06872
https://inspirehep.net/literature/1801017
https://doi.org/10.1016/S0370-1573(02)00271-5
https://arxiv.org/abs/hep-th/0203048
https://inspirehep.net/literature/583776
https://arxiv.org/abs/2204.13113
https://inspirehep.net/literature/2074156
https://arxiv.org/abs/hep-th/9309145
https://inspirehep.net/literature/36167
https://doi.org/10.1103/PhysRevD.55.6189
https://doi.org/10.1103/PhysRevD.55.6189
https://arxiv.org/abs/hep-th/9612146
https://inspirehep.net/literature/427427
https://doi.org/10.1103/PhysRevD.57.2557
https://doi.org/10.1103/PhysRevD.57.2557
https://arxiv.org/abs/hep-th/9707170
https://inspirehep.net/literature/446109
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/literature/1236835
https://doi.org/10.1007/JHEP03(2015)051
https://arxiv.org/abs/1409.8180
https://inspirehep.net/literature/1319352
https://doi.org/10.1007/JHEP05(2015)132
https://arxiv.org/abs/1412.6087
https://inspirehep.net/literature/1334998
https://doi.org/10.1007/JHEP05(2021)048
https://arxiv.org/abs/2103.15301
https://inspirehep.net/literature/1854187
https://doi.org/10.1016/0003-4916(72)90272-2
https://inspirehep.net/literature/67611
https://doi.org/10.1103/PhysRevLett.106.081602
https://doi.org/10.1103/PhysRevLett.106.081602
https://arxiv.org/abs/1006.2559
https://inspirehep.net/literature/858100
https://doi.org/10.1103/PhysRevD.84.126001
https://doi.org/10.1103/PhysRevD.84.126001
https://arxiv.org/abs/1107.0730
https://inspirehep.net/literature/917073
https://doi.org/10.1016/j.nuclphysb.2020.114943
https://arxiv.org/abs/1902.07016
https://inspirehep.net/literature/1720819
https://doi.org/10.1103/PhysRevLett.129.031601
https://arxiv.org/abs/2112.10269
https://inspirehep.net/literature/1993874
https://doi.org/10.1007/JHEP09(2022)211
https://arxiv.org/abs/2207.01641
https://inspirehep.net/literature/2106136
https://doi.org/10.1007/JHEP11(2022)147
https://doi.org/10.1007/JHEP11(2022)147
https://arxiv.org/abs/2208.08380
https://inspirehep.net/literature/2136890
https://doi.org/10.1007/JHEP04(2023)052
https://doi.org/10.1007/JHEP04(2023)052
https://arxiv.org/abs/2301.04069
https://inspirehep.net/literature/2621949
https://doi.org/10.1103/PhysRevLett.129.261601
https://arxiv.org/abs/2207.13112
https://inspirehep.net/literature/2126723


J
H
E
P
0
3
(
2
0
2
4
)
1
0
1

[26] M. Bianchi, M. Firrotta, J. Sonnenschein and D. Weissman, Measuring chaos in string scattering
processes, Phys. Rev. D 108 (2023) 066006 [arXiv:2303.17233] [INSPIRE].

[27] F. Haake, Quantum signatures of chaos, in Quantum coherence in mesoscopic systems, Springer,
Boston, MA, U.S.A. (1991), p. 583–595 [DOI:10.1007/978-1-4899-3698-1_38].

[28] M.L. Mehta, Random matrices, third edition, (2004).

[29] V. Rosenhaus, Chaos in the quantum field theory S-matrix, Phys. Rev. Lett. 127 (2021) 021601
[arXiv:2003.07381] [INSPIRE].

[30] E. Doron and U. Smilansky, Semiclassical quantization of chaotic billiards: a scattering theory
approach, Nonlinearity 5 (1992) 1055.

[31] R. Blümel, B. Dietz, C. Jung and U. Smilansky, On the transition to chaotic scattering, J. Phys.
A 25 (1992) 1483.

[32] D. Das, S. Mandal and A. Sarkar, Chaotic and thermal aspects in the |HES⟩ S-matrix,
arXiv:2312.02127 [INSPIRE].

[33] H. Kawai, D.C. Lewellen and S.-H.H. Tye, A relation between tree amplitudes of closed and open
strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

[34] T. Sondergaard, Perturbative gravity and gauge theory relations: a review, Adv. High Energy
Phys. 2012 (2012) 726030 [arXiv:1106.0033] [INSPIRE].

[35] S. Stieberger and T.R. Taylor, Closed string amplitudes as single-valued open string amplitudes,
Nucl. Phys. B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE].

[36] A. Addazi, M. Bianchi, M. Firrotta and A. Marcianò, String memories. . . Lost and regained,
Nucl. Phys. B 965 (2021) 115356 [arXiv:2008.02206] [INSPIRE].

[37] A. Aldi, M. Bianchi and M. Firrotta, String memories. . . Openly retold, Phys. Lett. B 813 (2021)
136037 [arXiv:2010.04082] [INSPIRE].

[38] A.V. Frolov and A.L. Larsen, Chaotic scattering and capture of strings by black hole, Class.
Quant. Grav. 16 (1999) 3717 [gr-qc/9908039] [INSPIRE].

[39] L.A. Pando Zayas and C.A. Terrero-Escalante, Chaos in the gauge/gravity correspondence,
JHEP 09 (2010) 094 [arXiv:1007.0277] [INSPIRE].

[40] P. Basu, P. Chaturvedi and P. Samantray, Chaotic dynamics of strings in charged black hole
backgrounds, Phys. Rev. D 95 (2017) 066014 [arXiv:1607.04466] [INSPIRE].

[41] A. Altland and M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic
normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142 [cond-mat/9602137]
[INSPIRE].

[42] V. Oganesyan and D.A. Huse, Localization of interacting fermions at high temperature, Phys.
Rev. B 75 (2007) 155111 [INSPIRE].

[43] M. Srdinšek, T. Prosen and S. Sotiriadis, Signatures of chaos in nonintegrable models of quantum
field theories, Phys. Rev. Lett. 126 (2021) 121602 [arXiv:2012.08505] [INSPIRE].

[44] E.J. Heller, Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of
periodic orbits, Phys. Rev. Lett. 53 (1984) 1515 [INSPIRE].

[45] S. Moudgalya, B.A. Bernevig and N. Regnault, Quantum many-body scars and Hilbert space
fragmentation: a review of exact results, Rept. Prog. Phys. 85 (2022) 086501
[arXiv:2109.00548] [INSPIRE].

– 30 –

https://doi.org/10.1103/PhysRevD.108.066006
https://arxiv.org/abs/2303.17233
https://inspirehep.net/literature/2647254
https://doi.org/10.1007/978-1-4899-3698-1_38
https://doi.org/10.1103/PhysRevLett.127.021601
https://arxiv.org/abs/2003.07381
https://inspirehep.net/literature/1785808
https://doi.org/10.1088/0951-7715/5/5/003
https://doi.org/10.1088/0305-4470/25/6/010
https://doi.org/10.1088/0305-4470/25/6/010
https://arxiv.org/abs/2312.02127
https://inspirehep.net/literature/2729837
https://doi.org/10.1016/0550-3213(86)90362-7
https://inspirehep.net/literature/217982
https://doi.org/10.1155/2012/726030
https://doi.org/10.1155/2012/726030
https://arxiv.org/abs/1106.0033
https://inspirehep.net/literature/902366
https://doi.org/10.1016/j.nuclphysb.2014.02.005
https://arxiv.org/abs/1401.1218
https://inspirehep.net/literature/1276321
https://doi.org/10.1016/j.nuclphysb.2021.115356
https://arxiv.org/abs/2008.02206
https://inspirehep.net/literature/1810214
https://doi.org/10.1016/j.physletb.2020.136037
https://doi.org/10.1016/j.physletb.2020.136037
https://arxiv.org/abs/2010.04082
https://inspirehep.net/literature/1821979
https://doi.org/10.1088/0264-9381/16/11/316
https://doi.org/10.1088/0264-9381/16/11/316
https://arxiv.org/abs/gr-qc/9908039
https://inspirehep.net/literature/505322
https://doi.org/10.1007/JHEP09(2010)094
https://arxiv.org/abs/1007.0277
https://inspirehep.net/literature/860385
https://doi.org/10.1103/PhysRevD.95.066014
https://arxiv.org/abs/1607.04466
https://inspirehep.net/literature/1476376
https://doi.org/10.1103/PhysRevB.55.1142
https://arxiv.org/abs/cond-mat/9602137
https://inspirehep.net/literature/465680
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://inspirehep.net/literature/2730733
https://doi.org/10.1103/PhysRevLett.126.121602
https://arxiv.org/abs/2012.08505
https://inspirehep.net/literature/1836653
https://doi.org/10.1103/PhysRevLett.53.1515
https://inspirehep.net/literature/212562
https://doi.org/10.1088/1361-6633/ac73a0
https://arxiv.org/abs/2109.00548
https://inspirehep.net/literature/1915881


J
H
E
P
0
3
(
2
0
2
4
)
1
0
1

[46] D. Liska, V. Gritsev, W. Vleeshouwers and J. Minář, Holographic quantum scars, SciPost Phys.
15 (2023) 106 [arXiv:2212.05962] [INSPIRE].

[47] A. Milekhin and N. Sukhov, All holographic systems have scar states, arXiv:2307.11348
[INSPIRE].

[48] E. Ott and T. Tél, Chaotic scattering: an introduction, Chaos 3 (1993) 417.

[49] E. Ott, Chaos in dynamical systems, second edition, Cambridge University Press, Cambridge,
U.K. (2002).

[50] K. Hashimoto and N. Tanahashi, Universality in chaos of particle motion near black hole
horizon, Phys. Rev. D 95 (2017) 024007 [arXiv:1610.06070] [INSPIRE].

[51] A. Dubbs, A. Edelman, P. Koev and P. Venkataramana, The Beta-Wishart ensemble, J. Math.
Phys. 54 (2013) 083507 [arXiv:1305.3561]

[52] L. Luo, J. Wang, L. Zhang and S. Zhang, The differential entropy of the joint distribution of
eigenvalues of random density matrices, Entropy 18 (2016) 342.

[53] Y. Chen, V. Gorbenko and J. Maldacena, Bra-ket wormholes in gravitationally prepared states,
JHEP 02 (2021) 009 [arXiv:2007.16091] [INSPIRE].

[54] Y. Chen, J. Maldacena and E. Witten, On the black hole/string transition, JHEP 01 (2023) 103
[arXiv:2109.08563] [INSPIRE].

[55] Y. Chen and J. Maldacena, String scale black holes at large D, JHEP 01 (2022) 095
[arXiv:2106.02169] [INSPIRE].

– 31 –

https://doi.org/10.21468/SciPostPhys.15.3.106
https://doi.org/10.21468/SciPostPhys.15.3.106
https://arxiv.org/abs/2212.05962
https://inspirehep.net/literature/2613370
https://arxiv.org/abs/2307.11348
https://inspirehep.net/literature/2679307
https://doi.org/10.1063/1.165949
https://doi.org/10.1103/PhysRevD.95.024007
https://arxiv.org/abs/1610.06070
https://inspirehep.net/literature/1492722
https://doi.org/10.1063/1.4818304
https://doi.org/10.1063/1.4818304
https://arxiv.org/abs/1305.3561
https://doi.org/10.3390/e18090342FILE: /proj/ads/abstracts/
https://doi.org/10.1007/JHEP02(2021)009
https://arxiv.org/abs/2007.16091
https://inspirehep.net/literature/1809725
https://doi.org/10.1007/JHEP01(2023)103
https://arxiv.org/abs/2109.08563
https://inspirehep.net/literature/1923692
https://doi.org/10.1007/JHEP01(2022)095
https://arxiv.org/abs/2106.02169
https://inspirehep.net/literature/1867137


SciPost Phys. Core 6, 027 (2023)

Photoemission “experiments” on holographic lattices
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Abstract

We construct a 2D holographic ionic lattice with hyperscaling-violating infrared geome-
try and study single-electron spectral functions (“ARPES photoemission curves”) on this
background. The spectra typically show a three-peak structure, where the central peak
undergoes a crossover from a sharp but not Fermi-liquid-like quasiparticle to a wide inco-
herent maximum, and the broad side peaks resemble the Hubbard bands. These findings
are partially explained by a perturbative near-horizon analysis of the bulk Dirac equa-
tion. Comparing the holographic Green functions in imaginary frequency with the Green
functions of the Hubbard model obtained from quantum Monte Carlo, we find that the
holographic model provides a very good fit to the Hubbard Green function. However,
the information loss when transposing the holographic Green functions to imaginary
frequencies implies that a deeper connection to Hubbard-like models remains question-
able.
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1 Introduction

Holography has established itself as a natural point of view in the subject of strongly correlated
electron systems – the strong/weak duality translates the problem into tractable perturbative
calculations in general relativity, and the relation of bulk physics to the renormalization group
flow establishes a novel framework where many phenomena can be naturally expressed and
understood [1–3]. Paradoxically, it is likewise indisputable that the field of AdS/cond-mat
is still in its infancy in many respects. For example, controlled (top-down) constructions are
few and quite complicated, thus we are mainly condemned to phenomenological, bottom-up
models without explicit knowledge of the field theory Hamiltonian. Another issue is that the
ultraviolet (UV) CFT puts rather strong constraints on physics at short distances, often quite
unphysical in the context of condensed matter. Finally, the treatment of electrons on crystalline
lattices – the bread and butter of condensed matter physics – is numerically demanding and has
not yet become common among holographers. Here we aim to reduce this gap by constructing
a holographic lattice with infrared (IR) geometry appropriate for a range of phases from normal
to strange metals, and studying in detail the spectral functions (measured by angle-resolved
photoemission spectroscopy (ARPES) in real life) of probe fermions on these backgrounds.

Spectral functions of probe bulk fermions on holographic lattices have been studied in
some detail by now. The basic idea of true lattice models is to introduce a periodically mod-
ulated chemical potential (through the appropriate boundary condition for the bulk gauge
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field), yielding a lattice of finite “hardness” in continuous space, akin to cold atoms in a peri-
odic potential (or indeed the potential of a real-world crystal) and unlike the idealized lattice
models like the Hubbard or t−J model where the space itself is discrete. A perturbative analyt-
ical approach was pioneered in [4] and the full numerical solution (although for conductivity,
not fermionic spectra) in [5, 6]. Afterwards, a wealth of research was performed. Limiting
ourselves to the works on fermionic spectral functions, let us mention the exploration of the
lattice Fermi surface in [7], the effects of striped phases on the fermionic spectra in [8–10], and
the weakening and destruction of the Fermi surface due to anisotropy and nonlinear effects
in [11,12].

Some alternatives to the modulation of the chemical potential, known in the literature
as the “ionic lattice”, which requires solving numerically a system of nonlinear partial differ-
ential equations (PDE), are the Q-lattice which breaks translation invariance without actu-
ally introducing a lattice [13, 14] (see also [15]), the helical lattice in the Bianchi-VII back-
ground [16, 17] and the linear axion model [18]. We do not treat such approaches: the Q-
lattice (despite the name!) and the linear axion are not really lattices and their Fermi surfaces
do not live in Brillouin zones, whereas the Bianchi-VII geometry is a very special solution. We
did however try out a number of approximations to the ionic lattice which go under the name
of semiholography. The simplest, original idea [19] is to consider a free fermion on the lattice,
coupled linearly to the probe bulk fermion whose propagator therefore acts as a self-energy
in the propagator of the semiholographic theory. More elaborate setups are proposed in [20].
We have also solved the averaged equations of motion (essentially a multipole expansion of
the lattice potential) as a convenient way to obtain a quick glance at the system or to perform
large scans over the parameter space. It turns out that the spectra do not crucially depend on
the approximation taken. Quite unexpectedly, even semiholography provides a decent quick
and dirty way to compute the spectrum.

Running a bit forward, we will find that the lattice physics can be understood to a good
extent by combining the near-horizon analysis of the spectral functions in homogeneous space
[21–26] and the perturbative lattice calculations within the weak binding framework [4]. This
is however only true for relatively weak lattices, where the amplitude of the chemical poten-
tial δµ is no larger than the mean µ0, i.e. δµ/µ0 ≤ 1. We are pretty much in the dark in
the opposite, strong lattice regime. We realize the lattice in the hyperscaling-violating back-
ground of [27], a special case of the “effective holographic theories” or “holographic scaling
atlas” framework of [28–31]. In homogeneous space, [27] shows that one can tune the pa-
rameters to have either a quasiparticle pole dressed in quantum-critical fluctuations, or just a
quantum-critical continuum. On the lattice, the two regimes mix as different lattice momenta
can belong to the first or the second regime. We will see that this provides an inhomogeneous
and anisotorpic multi-peak structure of the spectral function (with quasiparticles, bands and
wide bumps), which is not unlike the known phenomenology in real-world lattice models [32]
and materials [33].

An important motivation and an additional challenge of this paper is the physics of the Hub-
bard model, the ubiquitous paradigm of non-Fermi liquids and strange metals, quite amenable
to computational work at high temperatures and in certain approximations, yet still extremely
rich, complex and unsolvable in the most general case (especially difficult at low tempera-
tures), not the least because of the fermion sign problem [32,34,35]. No doubt the microscopy
of this model has very little to do with the effective holographic theories – but the qualita-
tive features of the spectrum are quite robust, and the general phenomenology as elucidated
in [36–40] might be related to holographic physics.

Quantum Monte Carlo methods (specifically CTINT [41,42]) provide us with high-quality
Green functions of the Hubbard model at relatively high temperatures. We have directly

3

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.027


SciPost Phys. Core 6, 027 (2023)

compared them to the holographic Green functions.1 Therefore, a secondary goal of the paper
is to find a holographic background (from the family of hyperscaling-violating geometries [27–
29,31]) which provides a good description of the correlation functions in the Hubbard model;
one could then use the power of holography to study the low-temperature regime and other
properties which are hard to access directly. It will turn out that we need one or two additional
ingredients to model the Hubbard physics in AdS/CFT: regularization of the spectrum provided
by a dynamical UV source, necessary to satisfy the ARPES sum rule [43], and perhaps the
dipole coupling of the probe fermion (introduced first in [44, 45]) which makes the gaps in
the spectrum more pronounced; we come close to the Hubbard model also without it but it
does improve the fit. We emphasize however that the general phenomenology of holographic
lattices and their spectra is important and interesting also in its own right: it yields a crossover
from the quasiparticle regime to the strange metallic regime, and it will allow us to understand
the effects of umklapp in the strong coupling regime.

The reader might be unhappy with the large number of figures and the emphasis on phe-
nomenology as opposed to few equations and little analytical understanding. We certainly
hope to gain a deeper view of our numerical findings, but in the present stage even a phe-
nomenological exploration of the system is useful, hence the formulation “photoemission ex-
periments” in the title, in conscious homage to [46].

The composition of the paper is the following. In section 2 we give the basic framework
of our model: the Einstein-Maxwell-dilaton (EMD) system with hyperscaling violation and
the ionic lattice; we describe the lattice solution in the bulk and list the relevant tunable pa-
rameters. Section 3 brings the Dirac equation, discussing the dipole term and the dynamical
cutoff. Section 4 discusses in detail the properties of the spectral functions, the appearance of
Hubbard-like bands and quasiparticles, and offers a tentative explanation for some phenom-
ena through a perturbative analytic treatment. In Section 5, we explore how far the analogy
to the Hubbard model can go by fitting our results (in imaginary frequency) to the quantum
Monte Carlo results for the Hubbard Hamiltonian. In Section 6 we conclude the paper trying
to find deeper implications of our results, in particular how fundamental the relation to the
Hubbard model is and what to do next.

2 Holographic ionic lattice with hyperscaling violation

2.1 Action and geometry

The broad idea of the holographic setup is that a strange metal can be understood as a (not
necessarily Fermi-liquid-like!) quasiparticle coupled to a bath of quantum critical excitations.
This viewpoint (different in details and with a different choice of the holographic model) was
pursued e.g. in [47] and formulated particularly clearly in the context of charge transport
in [48]. To that end, we adopt from [27] a specific realization of the effective holographic
theory of quantum critical phases of [29–31]. The holographic dual of this system is a theory
with gravity, gauge and matter fields in AdS4. Its action has the structure S = Sbulk+ Sbnd, the
sum of the bulk action and the boundary action. The boundary action contains the Gibbons-
Hawking-York term and the regulator terms (Aµ∂νnνAµ and Φ2) for the gauge and dilaton field
respectively. We do not use Sbnd explicitly (because we do not compute correlation functions of
the EMD fields nor the thermodynamic quantities). The bulk action reads (in the (−,+,+,+)

1An important twist is that quantum Monte Carlo yields the Green function in imaginary (Matsubara) fre-
quency, so we need to transform the holographic functions into imaginary frequencies too. Although this direction
is easy – it is way harder to perform “analytical continuation” from imaginary to real frequencies – it will turn
out nevertheless that comparing the Green functions in Matsubara frequencies destroys a lot of information and
creates great difficulties.
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convention that we use everywhere throughout the paper):

S =

∫

d4 x
p

−g
�

R− (∇Φ)2 − Z(Φ)FµνFµν + V (Φ)
�

. (1)

Here, Fµν is the electromagnetic field strength tensor and the potentials of the dilaton Z and
V depend on some scaling exponents α and δ:2

Z(Φ) =
1
2
(1+ cosh (2αΦ)) , V (Φ) = 6+ V0 (1− cosh (2δΦ)) . (2)

The important feature is that Z and V run as exp(2αΦ) and exp(2δΦ) respectively in the IR
and reduce to unity and 6 respectively in the UV of AdS4 (we will show shortly that φ→ 0 at
the boundary). For all calculations in the paper we choose V0 = −0.5. The charged black brane
sources the gauge field of the form A = At d t. Ionic square lattice solutions are obtained by
introducing a boundary source for the gauge field with the periodicity of a square lattice with
period 1/2πQ. For such solutions a numerically convenient choice of coordinates, suggested
in [9, 10], is (t, x , y, z̃) where the AdS boundary is at z̃ = 1 and the horizon is at z̃ = 0.
We denote by r the usual radial coordinate which equals∞ at the AdS boundary and some
positive rh at the horizon, and its inverse is z = 1/r. The relation between the three radial
coordinates is rh

r
=

z
zh
= 1− z̃2 . (3)

The r coordinate will be convenient for analytical considerations near the horizon but the
optimal coordinate choice for the numerical solution of EMD equations is z̃; the z coordinate
will be convenient when discussing the calculation of the spectral functions and their UV cutoff.
The electrostatic potential at the AdS boundary for the square lattice with period 1/2πQ now
reads

At(x , y, z̃ = 1) = µ(x , y)≡ µ0 +δµ cos(2Qπx) cos(2Qπy) . (4)

With this boundary condition the solution becomes inhomogeneous and the metric gµν as well
as the gauge and matter fields At and Φ depend on x , y, z̃ in the whole space. The most general
form of the metric consistent with the symmetries of the square lattice is:

ds2 =
r2
h

(1− z̃2)2

�

− f (z̃)qt t(x , y, z̃)d t2 + qx x(x , y, z̃)
�

d x2 + d y2
�

+ 2qx y(x , y, z̃)d xd y

+2qxz̃(x , y, z̃) (d x + d y) dz̃ +
4z̃2qz̃z̃(x , y, z̃)

r2
h f (z̃)

dz̃2

�

,

(5)

where f (z̃) is the redshift function (to be determined in the next subsection from the IR anal-
ysis) and qt t , qx x , qx y , qxz̃ , qz̃z̃ parametrize the inhomogeneous metric. Obviously f could be
absorbed into qt t and qz̃z̃ but it is useful to keep it in order to understand the IR asymptotics.
The gauge field is A = At(x , y, z̃)d t so the electric field strengths Ex , Ey , Ez are all nonzero,
and the dilaton is Φ= Φ(x , y, z̃).

2.1.1 IR asymptotics

In absence of lattice, this geometry was studied in detail in [27] and represents a case of
hyperscaling-violating Lifshitz-scaling geometries [29–31] of the holographic “scaling atlas”
[49]. With the lattice, it is extremely difficult to say anything about the IR geometry. It is

2These exponents determine the familiar Lifshitz exponent ζ and the hyperscaling-violation exponent θ , dis-
cussed in many holographic publications, e.g. [29–31].
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known that an “explicit”, i.e. not spontaneously generated lattice is always irrelevant in far IR
at sufficiently low temperatures; the study of holographic Mott insulators [8] has also found
that only the spontaneously generated lattice survives at the horizon. However, for any specific
bulk action, the question is how low the temperature should be, and how far from the boundary
(i.e., how close to the extremal horizon) the lattice dies out. If the lattice dies out only slowly
as we approach the horizon at relatively small (though nonzero) temperature, then we have no
good idea what IR ansatz to take.3 Assuming a “weak” lattice in the sense that the amplitude
is no larger than the mean of the chemical potential:

δµ

µ0
≤ 1 , (6)

it makes sense to perform a perturbative expansion in δµ/µ0 about a homogeneous scaling
solution. The IR region is best described in the r coordinate, hence we start from the IR ansatz

ds2
IR = − f (r)Q t t(x , y, r)d t2 +Q x x(x , y, r)

�

d x2 + d y2
�

+ 2Q x y(x , y, r)d xd y

+ 2Q x r(x , y, r) (d x + d y) dr +
Qr r(x , y, r)

f (r)
dr2 . (7)

The redshift function f in (7) is the same as in (5), only in (5) we have expressed it in terms
of z̃ rather than r. The other metric functions (Qµν vs. qµν) differ in the two metrics and a
priori have nothing to do with each other. The expansion around a scaling solution reads4

Q t t(x , y, r → 0) = r2γSt t , Q x x(x , y, r → 0) = r2βSx x , Qr r(x , y, r → 0) = r−2γSr r ,

Q x y(x , y, r → 0) = r2νSx y , Q x r(x , y, r → 0) = r2λSx r , (8)

At(x , y, r → 0) = r2ξ f (r)Sa , Φ(x , y, r → 0) = 2η log rSΦ ,

where the series Sfield for any of the fields Q t t ,Q x x ,Q x y ,Q x r ,Qr r , At ,Φ has the form

Sfield = C (0)field +
∞
∑

n=1

rn

�

C (n)field + D(n)field cos (2Qπx) cos (2Qπy) + E(n)field cos (2Qπx) sin (2Qπy)

+ F (n)field sin (2Qπx) cos (2Qπy) + G(n)field sin (2Qπx) sin (2Qπy)

�

. (9)

In other words, the leading-order scaling IR solution acquires both homogeneous and inho-
mogeneous corrections.

Among the zeroth-order terms C (0)field in (9), we must have C (0)x y = C (0)x r = 0 as the off-
diagonal metric terms are always zero (in the appropriate gauge) in the homogeneous limit.
Picking the appropriate gauge we may always put C (0)x x = 1 and also C (0)t t = 1/C (0)r r . Also,

C (0)Φ = 1 because any non-unit value could be absorbed in η. Now equating the scaling expo-
nents in the leading terms in each equation of the EMD system yields

β =
(α+δ)2

4+ (α+δ)2
, γ= 1−

2δ(α+δ)
4+ (α+δ)2

, η= −
2(α+δ)

4+ (α+δ)2
,

ξ= α
Æ

β(1− β) + β +
5
4

, (10)

f (z̃) = 1−
� rh

r

�2β+2γ−1
, T =

C (0)t t (2β + 2γ− 1)
4π

r2γ−1
h . (11)

3We thank Aristomenis Donos and Koenraad Schalm for their remarks on this issue.
4In principle we should be expanding starting from r = rh not r = 0 at any finite temperature, however we

assume that the temperature is not very high and rh is reasonably small. Only in this case does it make sense to
assume that an approximate scaling solution still exists, as argued also in [27].
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This is just the homogeneous solution studied in [27] in slightly different notation. In order to
have a smooth horizon the condition 2γ− 1 > 0 has to be satisfied. We thus specialize to the
domain δ > 0,α < α0 < 0 where α0 is a negative constant which can be expressed from α,δ as
in [27]. The coefficients of the first and higher order corrections can be obtained perturbatively
in the usual way, equating with zero the prefactors of the terms in the small r expansion of
the equations of motion. We list the coefficients of a few leading terms in Appendix A. The
important point is that all coefficients are zero at first order, and only at second order there is an
inhomogeneous branch of the solution. Since the leading (and even the first subleading) term
for all functions is homogeneous, we conclude that indeed the ionic lattice is irrelevant in IR.
But this result is clearly perturbative as it hinges on expanding over the oscillatory part, hence
it may be unjustified for strong lattices, with δµ/µ0 large. Since we do not consider strong
lattices in this paper, we adopt this solution as the IR boundary condition. The numerical
solution is found to be convergent and consistent with these boundary conditions, further
strengthening the result.

We are now ready to state the boundary conditions for the numerics. We expect no Maxwell
hair at the horizon, so we impose Dirichlet boundary conditions for At , which should drop to
zero, in accordance with (8). The behavior of the dilaton is also determined by (8): at the
horizon it approaches some constant value which at leading (scaling) order equals 2η log rh.
This is not enough for stable numerics, so we have included also the subleading corrections as
stated in (8) and Appendix A. The boundary condition is given by this IR expansion. In fact,
in z̃ coordinate the outcome is very simple: the dilaton is smooth at the horizon and has zero
derivative, i.e. in computational coordinates we have Neumann conditions.

Finally, the metric functions should all be smooth (the simple zero at the horizon is taken
care of by the redshift function f ), so we impose Neumann boundary conditions, requiring
their derivatives to be zero, again with the falloff in accordance with the IR expansion.

2.1.2 UV asymptotics

The UV asymptotics are straightforward to obtain by expanding the equations of motion in the
vicinity of z̃ = 1:

qii(x , y, z̃→ 1) = 1+ C(2)ii (1− z̃2)2 + . . . ,

qi j(x , y, z̃→ 1) = C(2)i j (1− z̃2)2 + . . . ,

At(x , y, z̃→ 1) = µ(x , y) + a(x , y)(1− z̃2) + . . . ,

Φ(x , y, z̃→ 1) =
�

1− z̃2
�∆− (1+ C(1)Φ (1− z̃2) + C(2)Φ (1− z̃2)2 + . . .) ,

∆− =
3
2
−

√

√9
4
− 4δ2V0 , (12)

where in the first equation the index i can be t, x or z̃ and in the second equation i j is either
x y or xz̃, and the leading term µ in the expansion of the gauge field is the inhomogeneous
chemical potential.5 We do not list here the (cumbersome) explicit expressions for the series
coefficients as finding them poses no principal problems and goes along the same lines as
in [9–11]. The UV boundary conditions are the following: for the metric functions we need
Dirichlet conditions to ensure the AdS asymptotics; for the scalar potential At we likewise
impose the Dirichlet condition with the boundary value (4). The boundary condition for the
dilaton amounts to setting the leading term (proportional to the source) to unity, so that we
do not have a spontaneous formation of the scalar condensate, therefore it is again of Dirichlet

5Note that the next term, a(x , y), is not the charge density as the presence of the lattice makes the boundary
integrals obtained in the on-shell action more complicated.
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type; the effective mass squared of the dilaton field is −4δ2V0, from the form of the potential
V in (2).

The equations of motion are the standard EMD equations, altogether 7 in number – 5 inde-
pendent components of Einstein equations, one Maxwell equation and one dilaton equation.
This matches the 7 independent fields taking into account the C4 symmetry of the square –
qt t , qx x = qy y , qz̃z̃ , qx y , qxz̃ = qyz̃ , plus At and Φ. We do not give the equations in human-
readable form as the expressions are huge (we keep them as Wolfram Mathematica files).
In the next section we give a phenomenological overview of the numerics and the solutions
obtained.

2.2 Square ionic lattice – the solution

We solve the equations of motion numerically, with the boundary conditions determined by
the coefficients in the expansions (8-12). The resulting system of nonlinear PDEs is integrated
by a collocation pseudospectral algorithm on Gauss-Lobatto grid along the radial direction z̃
and on Fourier grid along the transverse directions x , y . Our code is mainly based on [50,51].
In Appendix B we give some more details on the integrator and some test examples. The
production runs were performed on a lattice 2N × 2N × 2N with N = 16 but in the Appendix
we have checked the convergence of the solution for varying lattice sizes from N = 6 to N = 16.

Typical solutions for the bulk are given in Figs. 1 and 2 for the matter and gauge fields and
in Fig. 3 for components of the metric. The top panel of Fig. 1 shows that indeed the lattice
is irrelevant: both fields modulate in UV but in IR the oscillations die out completely. The UV
oscillations are of the same form cos(2Qπx) cos(2Qπy) for both At and Φ, as we see in the
bottom panel. Fig. 2 demonstrates that the scaling solution indeed survives in IR: both fields
agree nicely with the analytical predictions for the scaling laws obtained in Eqs. (9-10). The
figure is produced for a low temperature T/Q = 0.1 so the horizon radius is quite small; for
higher temperatures the scaling is not as clear (expectedly, because the relevant scale is then
(r − rh)/rh rather than r/rh). Finally, Fig. 3 confirms that the AdS asymptotics are preserved
(no oscillations in UV) and that in deep IR the lattice also dies out.

All calculations in Section 4 are performed in this way, with the fully self-consistent PDE
solver for the holographic ionic lattice. For mass runs needed for the comparison to the Hub-
bard model, we have also used approximate methods: averaged equations (multipole expan-
sion) and semiholography (in the narrow sense, introduced in [19] and exploited e.g. in [52])
to gain a first guess at the solution; afterwards we have always confirmed the result through a
full lattice calculation. The next two sections are devoted mainly to the full lattice calculation
of the spectrum from the probe Dirac equation. In Appendix C we describe the other methods,
which we all call semiholographic in the broad sense that one does not solve the full system
of equations for the background.

3 Dirac equation for the probe fermion

3.1 The action and the equation of motion

We now come to the computation of the spectral functions. This is perhaps the “cleanest”
way of doing bottom-up holography, as the outcome directly determines the density of states
and the excitation spectrum of the electron in a given background. This calculation is well-
established, both without [21, 22, 24, 25] and with a lattice [7–12]. The basic holographic
dictionary entry stemming from the Gubser-Polyakov-Klebanov-Witten prescription [53,54] re-
lates the two-point propagator of the strongly coupled CFT electron to the probe Dirac fermion
in AdS. Being a probe, it does not backreact on the other fields and propagates in the fixed
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A
t

F
r

Figure 1: Numerically computed electrostatic field (left) and rescaled dilaton
Φr ≡ Φ/(1 − z̃2) (right), along an x − z̃ slice at y = 0.5 (top) and along an x − y
slice at the AdS boundary z̃ = 1 (bottom). Both fields oscillate at the boundary but
the oscillation amplitudes rapidly diminish toward the horizon because the ionic lat-
tice is irrelevant in IR. Unlike the rescaled dilaton Φr , the physical dilaton Φ does
not oscillate at the boundary because the factor 1− z̃2 kills the oscillations at z̃ = 1.
The scaling exponents are (α,δ) = (−1.5, 1) at temperature T = 0.1, for µ0 = 1,
δµ/µ0 = 1 and Q = 1/2.

background found in Section 2 for given parameters (α,δ). The probe fermion has charge
q, mass m and dipole momentum κ (more on it later). The action again has the bulk and
boundary term: S f = S f bulk + S f bnd. The bulk action reads:

S f bulk = i

∫

d4 x
p

−gΨ̄
�

1
2

�←−
/D +
−→
/D
�

−m−
i
2
κΓ abeµa eνb Fµν

�

Ψ . (13)

Here, Ψ is the Dirac bispinor, /D is the covariant derivative determined by the spin connection
ωabµ and the gauge field Aµ, and the last term is the coupling of the electron dipole momen-
tum κ with the field strength Fµν. Explicitly the covariant derivative reads

/D = Γ aeµa

�

∂µ +
1
4
ωbcµΓ

bc − iqAµ

�

. (14)

The indices a, b, c ∈ {t, x, y, z} denote the local flat coordinates and Γ ab ≡
�

Γ a, Γ b
�

/2. The
expressions for the vielbein eµa are quite cumbersome and we list them only as functions of
a general metric gµν with nonzero components gt t , gx x = g y y , gr r , gx y , gx r . Inserting all the
metric functions in their explicit form would result in expressions which are too cumbersome

9

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.027


SciPost Phys. Core 6, 027 (2023)
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-3

log Hr-rhL�rh

lo
g

A
t

At~r2 Ξ

-5 -4 -3

-4

-2

log Hr-rhL�rh

F

F~2Η log r

Figure 2: Far-IR scaling of the gauge field At (left) and the dilatonΦ (right), as a func-
tion of the radial coordinate r (related to z̃ as stated in Eq. (3)), for (α,δ) = (−1.5,1)
at temperature T = 0.1, µ0 = 1, δµ/µ0 = 1 and Q = 1/2. Full blue curves denote
the numerical solution at x = y = 0.5 while the red dashed lines are the analytical
scaling predictions from (9). Near the horizon the solutions are reasonably close to
the scaling ansatz; further away they diverge. For higher temperatures the scaling is
less and less prominent.

and not very illustrative:

et =
p

−gt t∂t , ex =
Æ

gx x − gx y∂x +
p

gx y∂r , ey =
Æ

gx x − gx y∂y +
p

gx y∂r ,

ez = a1∂x + a2∂y + (a3 +
p

gr r)∂r ,

a1 = gx r

p

gx x − gx y

gx x − gx y
+

q

gx y

�

−2g2
x r + gr r

�

gx x + gx y

��

gx x + gx y
,

a2 =
p

gx y ,

a3 =
2gx r

p

gx y −
p

gr r

�

gx x + gx y

�

−
p

gx x + gx y

q

−2g2
x r + gr r

�

gx x + gx y

�

gx x + gx y
. (15)

To specify the boundary conditions the bulk action S f bulk in (13) needs to be supplemented
by a boundary action S f bnd. This action encapsulates the choice of standard or alternative
quantization and any additional sources on the boundary. We adopt the usual maximally
symmetric boundary action of [55, 56] but add the coupling to an external source D (which
may break the Lorentz invariance or some other symmetry):

S f bnd =

∮

z̃=1−ε
d3 x

p

−h
�

s
i
2
Ψ̄+(t, x , y, z̃)Ψ+(t, x , y, z̃) + Ψ̄−(t, x , y, z̃)iDΨ−(t, x , y, z̃)

�

,

s = −1, Ψ± =
1
2
(1± Γ z)Ψ , (16)

where ε→ 0 is the UV cutoff (computing the action at distance ε away from the boundary) and
D is any sufficiently well-behaving function which can be interpreted as the external source of
Ψ (in the simplest interpretation it is a kinetic term on the boundary and contains derivatives
with respect to t, x , y). The sign in front of the first term, denoted by s = ∓1, corresponds to
standard/alternative quantization [57]. For now we choose the sign s = −1, for the standard
quantization, but eventually we will invert the propagator to work in the alternative one. This
is equivalent to having a negative fermion mass −1/2 < m ≤ 0, so we have the conformal
dimension given by the usual formula:

∆=
3
2
+m . (17)

We discuss the choice and physical meaning of D in subsection 3.3; we will first finish the
derivation of the expression for the field theory propagator.
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q
t
t

q
x

x
Figure 3: Numerically computed metric components qt t (left) and qx x (right), along
an x−z̃ slice at y = 0.5 (top) and along an x− y slice at the AdS boundary z̃ = 1 (bot-
tom), for the same parameter values as the previous two figures ((α,δ) = (−1.5,1),
T = 0.1, µ0 = 1,δµ/µ0 = 1, Q = 1/2). The top panels show that the metric be-
comes homogeneous both for z̃ = 0 (there is no lattice in IR) and for z̃ = 1 (the UV
asymptotics is pure AdS). In the bottom row we show explicitly that the functions
qt t(x , y; z̃ = 1), qx x(x , y; z̃ = 1) are flat and equal unity, which provides a sanity
check on the numerics. The oscillatory nature of the solution is thus only seen at
intermediate z̃ scales.

As usual, we can Fourier-transform the wavefunction from time t to frequency ω. On
the other hand, the momentum in the periodic lattice background is only defined up to a
Brillouin zone, as determined by the Bloch theorem [9–11]. Therefore, instead of a Fourier
transform to the plane wave basis we expand the wavefunction over the Bloch states (plane
waves modulated by periodic functions). The periodicity of the Bloch states is fixed by the
umklapp vector K , so we have the following expansion for Ψ:

Ψ(t, x , y, z̃) =

∫

dω
2π

∫

d2k
(2π)2

ψωk(x , y, z̃)e−iωt+ikx x+iky y

=

∫

dω
2π

∫

d2k
(2π)2

∞
∑

nx=−∞

∞
∑

ny=−∞
ψ
(nx ,ny )
ωk (z̃)e−iωt+i(kx+nx K)x+i(ky+ny K)y , (18)

where the Bloch momentum k = (kx , ky) is in the first Brillouin zone: kx ,y ∈ (−K/2, K/2),
nx ,y are the numbers of the Brillouin zones, and the ± components of the bispinor are defined
analogously to Ψ± in (16):

ψ
(nx ,ny )
ωk (z̃) =

�

ψ
(nx ,ny )
ωk+ (z̃)

ψ
(nx ,ny )
ωk− (z̃)

�

,

ψωk(x , y, z̃) =

�

ψωk+(x , y, z̃)
ψωk−(x , y, z̃)

�

=
∞
∑

nx=−∞

∞
∑

ny=−∞

�

ψ
(nx ,ny )
ωk+ (z̃)

ψ
(nx ,ny )
ωk− (z̃)

�

einx K x+iny Ky . (19)

The period K is related to Q as K = 2πQ. As we see, the wavefunction (and thus the Green
function) on the lattice has an infinity of contributions from different Brillouin zones nx , ny .
We now have all the ingredients for the Dirac equation. At this point we adopt the following
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representation of gamma matrices:

Γ t =

�

iσ1 0
0 iσ1

�

, Γ x =

�

−σ2 0
0 σ2

�

, Γ y =

�

0 σ2

σ2 0

�

, Γ z =

�

−σ3 0
0 −σ3

�

, (20)

we write the two spinors ψωk± as

ψωk±(x , y, z̃) =

�

aωk±(x , y, z̃)
bωk±(x , y, z̃)

�

, (21)

and obtain
�

∂z̃ +Ωz̃ +
2mz̃

1− z̃2

√

√qzz

f

�

aωk± + (−Ωt ±Ωx − κK∂z̃At) bωk± −Ωy bωk∓ = 0 ,

�

∂z̃ −Ωz̃ −
2mz̃

1− z̃2

√

√qzz

f

�

bωk± + (Ωt ±Ωx −κK∂z̃At) aωk± −Ωy aωk∓ = 0 , (22)

Ωt = Ωt (x , y, z̃;ω) , Ωx ,y = Ωx ,y (x , y, z̃;k) , Ωz̃ = Ωz̃ (x , y, z̃;k) , K =K (x , y, z̃) .

We again refrain from writing out in full the (very cumbersome) expressions for the Ω and K
terms which contain also the spin connection; they would not contribute to physical under-
standing anyway. The result is a linear (partial) differential equation, and thus presents no
problems with numerical convergence. At the end of Appendix B we discuss some practicalities
concerning the numerical implementation and solution of (22).

So far we have not discussed the dipole coupling term. As we know, the dipole couples to
the field strength Fµν. This term was proposed in [44] and further explored in [14,45,58–61]
and other works. Its action is to simulate a gap in the spectrum. Roughly speaking, it does so
by shifting the effective momentum vector k so that, depending on the dipole strength κ and
the position of the Fermi momentum kF , the quasiparticle is “skipped” and we only have low-
intensity incoherent background in some interval of momenta. More elaborate explanations
are found in [45,61]: the authors show that the gap arises from the zero-pole duality between
the Green functions in standard and alternative quantization. Since the dipole term mixes the
leading and subleading mode at the boundary (see later in Eq. (24)), a pole can appear in
the denominator of the propagator, i.e. in the self-energy, producing zeros in the spectrum.
This is quite in line with the real-world Mott physics where likewise the self-energy diverges,
however in order to really understand the relation to Mottness6 one should certainly put the
system on the lattice. We have done so, and we will comment both on the phenomenology of
nonzero κ systems and on possible relations to the Mott phase of the Hubbard model.

3.2 Boundary conditions and the Green function

It is well known how to obtain the retarded real-time Green function on the CFT side from
the bulk solutions with infalling boundary condition on the horizon.7 Near-horizon expan-
sion of the equation (22) in the background (7) in the Bloch wave representation (18) yields
schematically:8
�

ψωk+(x , y, r → rh)
ψωk−(x , y, r → rh)

�

= (r − rh)
− iω

2πT

��

ψ
(0)
ωk+(x , y)

−iψ(0)
ωk+(x , y)

�

+

�

ψ
(1)
ωk+(x , y)

iψ(1)
ωk+(x , y)

�

(r − rh) + . . .

�

. (23)

6There are different views and definitions on what exactly defines Mottness. We understand it mainly as the
presence of a gap due to “traffic jam” from the interactions, which is seen as the shift of the spectral weight from
high to low frequencies when the doping changes.

7Since we are always at finite temperature, the notion of infalling solution is unambiguous. For the analytical
near-horizon expansion we use the r coordinate instead of z̃.

8Although we have earlier denoted the number of the Brillouin zone by upper indices and now we use the
upper indices to count the order of the terms in near-horizon expansion, we believe this will not cause confusion:
previously we had a pair of numbers (nx , ny) and now just a single number; besides, we have already emphasized
that solely the case nx = ny = 0 is considered throughout the paper.
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Therefore, we have one independent spinor at the horizon at both leading (Ψ(0)+ ) and sublead-
ing (Ψ(1)+ ) order, as it should be. The coefficients ψ(0)

ωk+,ψ(1)
ωk+ can be determined from the

near-horizon expansion of the Dirac equation, providing the Dirichlet boundary condition in
the IR. We discuss the IR limit of the Dirac equation in more detail in the next section in order
to learn about the scaling of the spectral function and self-energy. For now it suffices to say
that (23) provides the IR boundary conditions.

Near the AdS boundary the behavior is universal (for the sake of brevity we do not write
explicitly the ω and k dependence of the UV coefficients A±, B± and the propagators):
�

ψωk+(x , y, z̃→ 1)
ψωk−(x , y, z̃→ 1)

�

=

�

B+(x , y)
0

�

�

1− z̃2
�3/2+m

+

�

0
A−(x , y)

�

�

1− z̃2
�3/2−m

+ . . . (24)

Inserting the near-boundary expansion into the boundary action (16)9 we get

S f bnd ∼ ε−3
�

1
2

B̄+(x , y)A−(x , y) + Ā−(x , y)iDA−(x , y)
�

. (25)

It remains to determine the Green function from this action.

3.2.1 The Green function and its regularization

The holographic dictionary [1] and more specifically the prescriptions of [20, 23, 43, 55, 56],
define the Green function in the following way. Since A− and B+ are both finite at the bound-
ary for |m| < 1/2 (the m values that we compute), there are two possible choices for GR
in field theory, known as the standard and alternative quantization. In the standard quanti-
zation, the propagator in absence of the source D is defined by the ratio of the subleading
and the leading branch. In the alternative quantization, the propagator is the inverse of the
standard-quantization propagator, i.e. the ratio of the leading and the subleading branch.
More precisely, we have:10

Gstd
R |D=0 = iε−2mB+σ

1A−1
− , Galt

R |D=0 =
�

Gstd
R |D=0

�−1
= −iε2mA−σ

1B−1
+ . (26)

In the presence of the source, the above expression for the standard quantization generalizes in
a straightforward way, taking the second variation of the total action (25) with respect to A−:

Gstd
R = iε−2mB+σ

1A−1
− + iε−1D = Gstd

R |D=0 + iε−1D . (27)

In order to get the Green function in the alternative quantization we keep the relation
Galt

R =
�

Gstd
R

�−1
also in the presence of the source, getting from (27):

Galt
R =

�

�

Galt
R |D=0

�−1
+ iε−1D

�−1
. (28)

This prescription is also in accordance with the regularization in [43] and its interpretation
in [20]. The term ε−2m in (26) is merely the dimensional regulator coming from the scaling of
the boundary fermionic operator, and the ε−1 term in front of D corresponds to the canonical
dimension of the operatorD. Here we see the role of the boundary operatorD in the expression
for the Green function. Such a nontrivial “source” was first proposed already in [56] and
used in [43] to regulate the ω-dependence in order to satisfy the ARPES sum rule. We use it
for precisely the same purpose, though we will motivate it in a slightly different way in the

9The bulk action vanishes on-shell as it is proportional to the Dirac equation.
10We write GR, for the retarded Green function, as this is the one that we compute in this paper; but in fact the

expressions for the Green function in terms of boundary values of the bulk fermion are independent of the contour
prescription.
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next subsection. From now on we will write just GR instead of Galt
R as we only calculate the

alternative quantization.
The last stroke is to implement the above procedure for an inhomogeneous system, where

the wavefunction depends on x , y as in (24). In principle, everything could be done just
like in Eqs. (26-28), and the result would be a local Green function (depending on the co-
ordinates x , y). But that is not appropriate for a photoemission “experiment”: ARPES uses
photons in plane wave states, thus we want the Fourier transform of the local propagator to
the momentum space. This procedure is discussed in [7, 9–11]. We start from the expansion

of ψωk±(x , y, z̃) in terms of ψ
(nx ,ny )
ωk± (z̃) and consequently the expansion of aωk±, bωk± as

�

aωk±(x , y, z̃)
bωk±(x , y, z̃)

�

=
N
∑

nx=−N

N
∑

ny=−N

�

a
(nx ,ny )
ωk± (z̃)

b
(nx ,ny )
ωk± (z̃)

�

einx Kx+iny Ky , (29)

where now a
(nx ,ny )
k± and b

(nx ,ny )
k± only depend on z̃, withω and k having the role of parameters,

so these functions satisfy ordinary differential equations, obtained by plugging (29) into (22).
We have now truncated the formally infinite expansion in (nx , ny) by a finite zone number N .
The next step is to expand the UV coefficients A±, B± from (24) analogously to the expansion
(29) and to insert them into the Green function in the alternative quantization from (26),
getting:11

A
(nx ,ny )
σ (ω,k) = iε−2m

∑

σ′=±

N
∑

nx=−N

N
∑

ny=−N
G

n′x ,n′y
nx ,ny

(ω,k)B
(n′x ,n′y )
σ′

(ω,k) . (30)

The Green function thus becomes a matrix with both spinor and Brillouin zone indices. Com-
puting the full matrix for a 2D lattice would be a huge computational job. But the off-diagonal
terms (with n′x ̸= nx , n′y ̸= ny) are usually suppressed, at least for the weak lattice regime de-
fined in Eq. (6); for strong lattices this approximation is of questionable validity. Since we stay
in the weak lattice regime, we follow all previous works on ARPES spectra on lattices [7,9–12]
and disregard all off-diagonal terms, putting (n′x , n′y) = (nx , ny) in (30) and eliminating the
sum over the zone numbers.12 One might worry that this is a basis-dependent notion but,
as pointed out in [9], taking the trace when computing the spectral function eliminates the
basis dependence as the trace is an invariant. The source is a plane wave, as in real ARPES

experiments, therefore A
(nx ,ny )
− = 0 for any nx ̸= 0 or ny ̸= 0 is the boundary condition for the

Dirac equation (the normalization is arbitrary). We then extract the components B
(nx ,ny )
± with

the cutoff N = 2 and sum them. This yields directly the values of the diagonal terms in GR.
Once GR is computed in this approximation, the spectral function is obtained as the trace of
its imaginary part: A(ω,k) = −Im Tr GR(ω,k)/π.

We are now ready to state the algorithm for computing the holographic Green function:

1. For chosen parameters (scaling exponents) (α,δ), calculate the background (metric,
gauge field, dilaton) by solving numerically the EMD system of equations defined by the
action (1).

2. With this background as the input, calculate the wavefunction of the probe fermion by
solving numerically the Dirac equation defined by the bulk action (13) and the boundary
action (16).

11For the wavefunctions we have written theω and k dependence in the subscript, as the wavefunctions are re-
ally functions of coordinates. But for the coefficients of the UV expansion, which do not depend on any coordinate,
it is natural to write ω, k as function arguments.

12Actually, since earlier works on ARPES spectra considered unidirectional lattices, they only had to deal with
a single n.
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3. From this wavefunction (specifically its behavior at z̃ → 1) as the input, determine the
Green function GR as given in (28).

3.3 A detour – boundary sources and their holographic interpretation

A holographic action may incorporate some boundary source D as long as it does not violate
the action principle and the AdS/CFT dictionary. Such a term is usually interpreted in the
semiholographic sense, i.e. as some (typically weakly interacting or free) theory coupled to
the strongly interacting holographic system. In [20,43] the ARPES sum rule was enforced by
coupling the holographic fermion to a free fermion of zero mass (with D being just the kinetic
term). We could employ exactly the same recipe to arrive at normalizable spectral functions,
however we prefer to choose a slightly different route for two reasons (1) to facilitate the
comparison to the Hubbard model later in the paper, we want a faster decay at large ω (2)
it is handy to have the source term which at least in principle can itself be obtained from
holography. In that case, the source D is effectively another holographic system (in a different,
“auxiliary” AdS space) coupled to the main model only through the boundary coupling.

This subsection is something of a detour – it addresses a technicality which is mainly im-
portant for the comparison to the Hubbard model and otherwise not really crucial; it defines
a cutoff which (being just a cutoff) could also be introduced by hand; and it is more techni-
cal and less related to condensed matter applications than most of the paper. It can thus be
skipped on first reading. Now we give a very quick derivation of the cutoff (very quick because
the steps and the model itself are long known and we merely employ them in a novel context).

We propose to employ a soft wall model which introduces a dilaton-like scalar ϕ coupled
to the auxiliary fermion χ. Such models have been widely studied in the context of AdS/QCD.
In analogy with [62] (although there are many other papers with similar models), we start
from the action13

SD = i

∫

d4 x
p

−gχ̄
�

1
2

�←−
/D +
−→
/D
�

−M − Γ 0Γ 1Γ 2ϕ

�

χ . (31)

The dilaton ϕ and the fermion χ are both considered in the probe limit, so the metric of the
auxiliary system remains pure AdS. Following [62], we adopt the quadratic dilaton profile
ϕ = ϕ0z2; we use z as the radial coordinate so the boundary is at z = 0 and the interior is at
z large. The Dirac equation for χ, written as χ = (x+, x−, y+, y−) is now

�

∂z ±
M +ϕ0z2

z

�

x± ∓ (ω∓ kx)x∓ = 0 , (32)

and the equation for y± is obtained from the above one by putting (kx 7→ −kx ,ϕ0 → −ϕ0).
This can be solved analytically in terms of the Tricomi confluent hypergeometric functions
U(a, b, x):

χ±(ω, k, z) = e±ϕ0z2/2z±M U

�

ω2 − k2

4ϕ0
,
1
2
±M ,∓ϕ0z2

�

. (33)

Following the usual recipe – expanding the solutions near z = 0 and taking the ratio of the
two independent branches of the solution, the propagator of the auxiliary fermion is

Gχ =D =
Γ
�

ω2−k2

4ϕ0

�

Γ
�

ω2−k2

4ϕ0
+ 1

2 −M
� , (34)

13The reader might protest that this form of coupling to the dilaton violates the Lorentz invariance. This is true
but it is unavoidable: a cutoff in energy only cannot be Lorentz-invariant. On the other hand, a cutoff in both
energy and momenta would not be justified, as the momentum is automatically regulated on the lattice. We have
employed a similar regulator in a very different context (quantum electron stars) in [63].
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with Γ being the usual gamma function. Notice that there is no chemical potential and of
course no lattice in auxiliary AdS (the latter fact allows us to assume ky = 0). The function
D has a fast growth with ω for large and positive M . Inserting it into Eq. (28), we see that
this in turn means a fast decay of the “physical” (as opposed to auxiliary) Green function GR.
Essentially, D acts like a regulator, with little influence at low energies but rapidly suppressing
the spectral weight for ω large.

Of course, one can also adopt a pragmatic viewpoint and simply introduce a regulator
by hand. For the purposes of this paper this is equally valid, however the viewpoint of this
subsection may be of interest on its own; it is essentially the implementation of the idea from
[64] to couple multiple AdS spaces in order to obtain a model with several different scales.

4 Fermionic spectral functions

We come now to the core of the paper, analyzing the spectral functions of our system as a
function of frequency. From now on all dimensionful quantities in the paper are stated in
units of the wavevector Q as defined in Eq. (4).

4.1 General phenomenology and the “phase diagram”

Let us first return to the homogeneous Fermi and non-Fermi liquids of [27]. The near-horizon
analysis in that paper shows that the crucial parameter is the combination

β + γ= 1+
α2 −δ2

4+ (α+δ)2
, (35)

where α and δ are the exponents of the dilaton potentials in (2) and β ,γ are the IR scaling
exponents of (10). For β +γ > 1, the imaginary part of the self-energy Σ (obtained by solving
the near-horizon effective Schrödinger equation as in [23]) is exponentially small near the
Fermi surface ω → 0 and the quasiparticle pole is stable and long-living. For β + γ < 1,
similar analysis in [27] shows that ImΣ is always of order unity, hence there is no sharp quasi-
particle. Properties at finite frequencies and of course the lattice effects cannot be described by
this simple reasoning, but the above serves to show that we should expect at least two regimes,
with and without a sharp quasiparticle peak. Since the combination β + γ can be varied even
with one of the fundamental exponents α,δ fixed, we choose δ = 1 throughout the whole
paper and vary α, as well as the fermion dimension ∆ (defined in (17)) which characterizes
the fermionic operator in field theory (not the background). For δ = 1, the critical value
β + γ= 1 is reached for α= −1:14

δ = 1⇒ β + γ= 1+
α2 − 1

4+ (α+ 1)2
, (36)

so we will use the notation β + γ > 1 and α < −1 interchangeably. Therefore, all our “phase
diagrams” will be α−∆ diagrams, keeping the fixed value of δ. We put “phase diagram” under
quotation marks as we have not checked the free energy and there is no reason to believe that
any sharp phase transition happens (indeed, ∆ cannot influence thermodynamic phases at all
as it is a probe parameter).

From now on we work on the lattice with δµ/µ0 = 0.5 unless specified otherwise and
express all quantities in units of µ0. Numerical results (soon to be shown in detail) show two
key phenomena (at least for some (α,∆)) values: quasiparticle peaks and broad bumps at

14Remember that α < 0.
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Figure 4: Presence of a coherent quasiparticle (QP) or a gap between the central
peak and the Hubbard bands, as a function of the background exponent α and the
conformal dimension of the probe fermion ∆, for no dipole coupling (left) and for
strong dipole coupling (right): black – no QP and no gap, blue – QP only, red – gap
only, violet – QP and the gap. Speaking very roughly, the violet regions correspond to
Mott-like and Hubbard-like physics, where a more or less coherent central QP peak is
surrounded by but well-separated from intermediate-frequency bands. The clear and
deep local minima of the fit to quantum Monte Carlo solutions of the Hubbard lattice,
denoted by light pink fields, are both located within the violet (QP+bands) regions.
We will refer to this last feature again in Section 5 when discussing the Hubbard fit.

finite energy (to the left and to the right from ω = 0). These finite-frequency maxima are
separated from the central maximum aroundω= 0 by soft gaps; we call them (Hubbard-like)
bands but one should bear in mind that the actual physics might be very different from the
bands in the Hubbard Hamiltonian (running a bit forward, it still has to do with umklapp
but in detail it is certainly different from Hubbard bands). The key property of the bands is
precisely the soft gap (usually the spectral weight does not drop exactly to zero) separating
them from the low-frequency part. In Fig. 4 we map the areas with a quasiparticle and/or a
gap between the central peak and at least one of the bands (upper or lower). The central peak
may be a quasiparticle or just a broad maximum, and the criterion for the gap is that there
is a point (or an interval) at finite ω where the spectral weight A(ω,k) is exponentially low
compared to the ratio of the peak maximum to the “background” value of the spectral function.
For a Fermi liquid, this ratio grows roughly as T2 so this essentially means that the gap has
to be exponentially suppressed in inverse temperature (squared); for a non-Fermi liquid, it is
harder to estimate the temperature scaling but it still makes sense to require that the gap be
exponentially small in peak height.15

The general structure of different “phases” is seen in Fig. 5, containing the numerical EDCs
for three backgrounds (α = −0.6,−1.1,−2.5), each for a range of conformal dimensions and
for now with κ = 0. As we have predicted, the gaped spectrum for α = −0.6 (left panel) de-
velops a sharp quasiparticle peak for increasing ∆, whereas the gapless spectrum of α= −2.5
loses a coherent quasiparticle as ∆ grows (right panel). In the central panel we show the case

15At this place we should comment on how we differentiate between quasiparticles and finite-width peaks
(“bumps”). The ultimate criterion (in absence of good analytic insight) is to compute the spectral function, in the
bottom half of the complex ω plane – then one can directly see the pole and differentiate it from a branch cut.
However, such a calculation was too demanding for our present work (it requires a large number of points and the
convergence becomes progressively worse as we increase the magnitude of the imaginary part of ω). Therefore,
we have simply scanned the peak in realω with increasing resolution, and decided we have the quasiparticle if the
peak width is at most O(1) times the temperature T . This is not quite satisfying but is apparently the only choice
in absence of firm analytic results.
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Figure 5: Energy spectra for six standard momentum values, taken along the
high-symmetry path ΓXMΓ ((0, 0) black, (π/2, 0) blue, (π, 0) cyan, (π,π/2)
magenta, (π,π) red, (π/2,π/2) green), for three different backgrounds with
α = −0.6,−1.1,−2.5, each for four conformal dimensions. In the first case, the
sharp peak and the gap between the peak and the bands are both present; in the sec-
ond case, the spectrum only has a broad and featureless maximum, and in the third
there is again a quasiparticle but without a clear gap separating it from the bands.
We shift the spectral curves by a constant c for each subsequent momentum value for
easier viewing.

with a featureless spectrum of α= −1.1. Notice that the peak is in general asymmetric so the
quasiparticle is not of Fermi liquid type.16 In this and subsequent figures we give the EDCs
for six momenta placed along the ΓXMΓ (high-symmetry) path for the square lattice: (0,0),
(π/2, 0), (π, 0), (π,π/2), (π,π) and (π/2,π/2); we call this the standard momentum set.

Temperature dependence of the EDCs is shown in Fig. 6 for the standard set of momenta
and in Fig. 7 in the full ω− k plane. The quasiparticle melts away upon heating the system,
but we know that just had to happen. More interesting is the fact that the bands (soft bumps
away from ω = 0) also become almost indistinguishable for T = 10. This scale is higher
than in the Hubbard model, where T ∼ 1 is already a high-temperature regime, whereas
here such regime only kicks in an order of magnitude later. We will have more to say on
this matter when directly comparing to the Hubbard model (EDC actually converges toward
a Gaussian at high T). In conclusion, the generic square lattice hyperscaling-violating model
shows some essential features of Hubbard-Mott physics in its single-particle spectra (we do
not know yet about transport and multi-particle operators): non-Fermi liquid (anomalously-

16In general, it is the asymmetry of momentum distribution curves (MDCs) that provides a litmus test for non-
Fermi liquids, not the asymmetry of EDCs. However, it is known [26,27] that in the context of EMD models of our
type Fermi liquid behavior always goes hand-in-hand with symmetric EDCs. In fact, this is known to be true in
absence of lattice, but our weak binding analysis in subsection 4.2 extends this also to weak lattices. In Appendix
D we show examples of MDCs which are indeed asymmetric, providing stronger evidence for the existence of
the non-Fermi liquid phase. Finally, the asymmetry of the EDC peak only makes sense sufficiently near the Fermi
surface; further away, the quasiparticle loses coherence anyway and we can say very little about its expected shape.
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Figure 6: The EDC curves for six standard momentum values along the high-
symmetry path ((0, 0) black, (π/2,0) blue, (π, 0) cyan, (π,π/2)magenta, (π,π) red,
(π/2,π/2) green), for a range of high temperatures, for µ0 = 2.5,α= −1.8,∆= 1.3.
As could be expected, the quasiparticle melts away and both the upper and lower
band merge with the remnants of the quasiparticle. It can be shown (Section 5) that
the high-temperature limit is just a single broad Gaussian peak.

scaling) quasiparticles which can be long- or short-living and Hubbard-like bands. Now we
will explore the influence of dipole coupling on the system.

A robust feature seen in the first (lowest T) panel in Fig. 7, present also in single EDCs in
Fig. 5 but perhaps not so obvious is that the quasiparticle changes intensity and sharpness as
we move along the high-symmetry path in the momentum cell: around (π,π) there is a drastic
weakening of the quasiparticle. This feature is robust and stays there for different resolutions
and parameters. In subsection 4.2 we will show that this is a consequence of umklapp in the
self-energy and thus should be regarded as a generic feature of hyperscaling-violating systems
on a lattice. It remains to see if this behavior can be related to real-world systems.

4.1.1 Dipole coupling and Mott-like physics

In absence of lattice the dipole coupling opens a gap at low frequencies, destroying the quasi-
particle and leading to a Mott-like spectrum, as we already commented from the results of
[14, 44, 45, 59–61]. But that mechanism crucially depends on shifting the effective momen-
tum and on the zero-pole duality in the spectrum. While the latter remains true on the lattice,
the former mechanism will likely work in a different way. Indeed, the mixing of modes from
different Brillouin zones shifts the gap to finite frequencies – the net result being not a Mott
gap aroundω= 0 but a gap separating the low-energy peak from higher enegies. If we already
have a soft gap there (when κ = 0), the result is a rather hard gap. This generally brings the
spectrum closer to the Hubbard-Mott physics, but in some cases, in absence of quasiparticle,
the hard gap actually hinders the transfer of the spectral weight from the central peak to the
bands, killing the quasiparticle (Fig. 8).

What we said above holds for lower values of the dipole coupling κ. For stronger cou-
plings, the gap both hardens and broadens and for some α values eventually encompasses also
the Fermi surface, i.e. the zero of energy. In this regime (Fig. 9) we approach a Mott insula-
tor, eliminating the central broad peak that we had in the non-quasiparticle regime at low κ
(though the peak may still be present for some momenta, thus the system is not yet fully in-
sulating). In Fig. 10 we show the action of κ also in a full (ω,k) density plot of the spectrum
– we see both the hardening of the gap and the sharpening of the central peak. Crucially, the

19

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.027


SciPost Phys. Core 6, 027 (2023)

A(ω)

0

0.1

0.2

0.3

0.4

0.5

Figure 7: Same as in Fig. 6 but here with full ω−k dispersion plots, to better appre-
ciate the evolution of the spectrum with temperature.

weakening of the quasiparticle near (π,π) is less prominent and the central peak is in general
less momentum-dependent: this brings the system more in line with the conventional wisdom
(but takes away an interesting feature which is physical and might have its place in nature).

Having explored in the main the dependence of the spectrum on proxy interactions
(α,∆,κ), let us look how the spectrum reacts to doping (chemical potential). In Fig. 11 we
increase the chemical potential, shifting the maximum of the spectral weight from ω < 0
(black) to ω ≈ 0 corresponding to a Fermi surface of a metal (blue) to ω > 0 (red), for two
backgrounds and for zero or nonzero dipole coupling. This is maybe the best (although still
shaky) argument toward the interpretation of κ as a source of Mottness on the holographic
lattice.17 In absence of dipole coupling, increased doping (chemical potential) just pushes the
system toward a quasiparticle regime (left panel); this may also happen for nonzero coupling
(central panel) but in the appropriate place in the (α,∆) diagram we witness just a promi-
nent lower band and a much smaller upper band with no quasiparticle, a possible signature
of Mottness (right panel). Finally, we note that other bulk mechanisms (probe fermion self-
interactions) have also been proposed as a source of Mottness [65]; we have not explored
them in this work.

4.2 Perturbative analysis and matching for the holographic lattice

In this subsection we will write down the weak binding perturbation theory in the two limits
(UV and IR) for the bulk Dirac equation in the hyperscaling-violating background. Essentially,
we follow the approach of Hong Liu and coworkers in [23] but now in a periodic potential.
A similar calculation was done in great detail in [4] for 1D probe lattice superimposed on the
Reissner-Nordstrom background. We follow essentially the same logic. On one hand, our task
is more difficult as the lattice is 2D and the geometry is much more complicated; on the other
hand, since the lattice is a subleading (irrelevant) perturbation in the IR, the IR equations are

17In absence of lattice, as we mentioned, the situation is simpler and earlier works present a rather complete
picture on how this works.
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Figure 8: Energy spectra for the same (standard) momenta, scaling exponents and
conformal dimensions as in Fig. 5 but with a nonzero dipole coupling κ = 1.5.
The main effect of not very large κ is to harden the gap between the central
peak/quasiparticle and the bands. This is reminiscent of Hubbard and similar micro-
scopic models, and can be explained as a combination of momentum shift introduced
by κ and the nonmonotonic ω dependence of the umklapp terms in the self-energy
(see subsection 4.2).

somewhat simplified (though we still have the mixing of different Brillouin zones). We set the
dipole coupling to zero in this subsection.

The basic idea is simply to expand the coefficients of the Dirac equation (22) in the (x , y)-
dependent perturbation (proportional to δµ/µ0 as a small parameter) and then to transform to
the basis of Bloch states. We keep the notation from (18,19,21) with the additional convention
that we write n for (nx , ny). The components of the Dirac bispinor (22) are then written as

ψ(n) ≡
�

a(n)+ , b(n)+ , a(n)− , b(n)−
�

, (37)

so for example a(n)+ stands for a+(k+ 2πnQ) with k from the first Brillouin zone.
Let us start from the AdS boundary and use the coordinate r, related to z̃ as in (3). From

the expansion (12), we know that the metric functions qµν and the dilaton are constant up to
second order in 1/r (the boundary is at r =∞). Of course, the modulation of the chemical
potential is relevant and present already at leading order. For a weak lattice as in Eq. (6), we
can expand the coefficients of the Dirac equation both in 1/r (UV expansion) and in δµ/µ0
(weak binding expansion); the fermionic wavefunction is likewise expanded in δµ/µ0.
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Figure 9: Energy spectra for the same (standard) momenta, scaling exponents and
conformal dimensions as in Fig. 5 but with a strong dipole coupling κ = 5. Here
the effect is different and more drastic than for κ = 1.5 in Fig. 8: the suppression
of the spectral weight now encompasses also the Fermi surface and its vicinity (the
region around ω = 0), so the quasiparticle either disappears or splits into two. In
this regime the dipole coupling overrides the umklapp and opens a broad gap.

The expansions for At and ψ read:

A(n)t (r) = Ā(n)t (r) +δA(n)t (r) , (38)

Ā(n)t (r) = µ0δn

�

1−
1
r
+ . . .

�

, (39)

δA(n)t =
�

δµ

µ0

�

µ0

4
δ|nx |−1δ|ny |−1

�

1−
1
r
+ . . .

�

, (40)

ψ(n)(k, r) =ψ(n)(0) +
�

δµ

µ0

�

ψ
(n)
(1) +

�

δµ

µ0

�2

ψ
(n)
(2) + . . . (41)

Of course, δn stands for the product of Kronecker deltas δnx
δny

. The UV Dirac equation at
leading order in δµ/µ0 includes the zero- and first-order terms, so it can be solved hierar-
chically by obtaining ψ(n)(0) first (this is just the homogeneous solution at the boundary) and

plugging it in the first-order equation to obtain ψ(n)(1):

�

∂r +
m
r

�

a(n)±(1) −
ω∓ kx + qĀt

r2
b(n)±(1) −

ky

r2
b(n)∓(1) =

qδµ
4r2

∑

n′
b(n

′)
±(0) ,

�

∂r −
m
r

�

b(n)±(1) +
ω± kx + qĀt

r2
a(n)±(1) −

ky

r2
a(n)∓(1) =

qδµ
4r2

∑

n′
a(n

′)
±(0) , (42)

where n′ ∈ {(nx + 1, ny + 1), (nx + 1, nx − 1), (nx − 1, nx + 1), (nx − 1, ny − 1)}.
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Figure 10: A set of density plots comparing the κ = 0 and κ = 1.5 spectra for a
range of (α,∆) values. From first to last row the central peak evolves from a wide
bump to a sharp peak, and the role of the dipole coupling (second column) is to keep
the side bands well-defined and separated from the center. The weakening of the
quasiparticle near the M point is less prominent with nonzero dipole coupling.

The right-hand side of the above equation, i.e. the source terms are the terms which mix
different zones. After solving for ψ(n)(1) we can analogously obtain the next approximation and
so forth, mixing the modes from more and more zones (in Eq. (42) we have only written the
first equation of the infinite hierarchy). Since the mixing of different zones only appears in the
sources, the solution to any order has the same form as in Eq. (24). This was already noticed
in [4] – the UV side is easy to write down.

The IR region is subtler. Despite the fact that the leading periodic corrections only appear
in the second order expansion of the bulk fields, in the Dirac equation they show up at leading
order already, because its coefficients mix various terms from the scaling ansatz (8) for the
background. Expanding in r − rh and δµ/µ0, we end up with an equation of the same form
as (42), with higher order terms mixing different modes, but the coefficients and the radial
dependence are more complicated. For later use it is convenient to rewrite the equation in the
Schrödinger form:

�

Î4×4∂
2
r + M̂1∂r + M̂0

�

ψ
(n)
(1) = S(n)(0) . (43)
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Figure 11: Local (momentum-integrated) spectral weight at frequency ω denoted
by Aloc(ω) for three interesting cases: metallic phase without (left) and with (cen-
ter) dipole coupling, for α = −1.9, and the transition toward a Mott-insulator-like
phase (right), for α = −1.5 and no dipolar coupling. All cases are for ∆ = 1.2
and for three chemical potentials (dopings), in black, blue and red respectively:
µ0 = 0.81, 2.10,2.70 (left and center), µ0 = 1.35,1.70, 2.10 (right). In the first two
figures, we see the central, quasiparticle-like peak moving toward the upper band as
the doping is increased; the figure with nonzero κ has gaps separating the quasipar-
ticle from the bands as we already expect. In the rightmost figure, the quasiparticle
is absent for low chemical potentials/dopings (black, blue); increasing the doping
from black to blue curve does not produce a quasiparticle but just a spectral weight
transfer from low to high frequencies. This signals that the system is approaching
the insulating phase (but is not insulating yet because there is no gap in the center).
All local spectra are obtained by inverse-Fourier-transforming the momentum-space
spectra on a 4x4 grid of points in momentum space.

The source S mixes different Bloch waves:

S(n)(0) =
�

E(2)t t
ω2

C6
a r6γ

− E(2)x x

k2
x + k2

y

C2
a r4β+2γ

�

∑

n′
ψ
(n′)
(0) , (44)

and the coefficients M̂1, M̂2 read

M̂1 =















2γωrβ+(β+γ)Cakx rγ

ωrβ+1+Cakx rγ+1 0 0 − ky

Ca rβ+γ

0 2γωrβ−(β+γ)Cakx rγ

ωrβ+1−Cakx rγ+1 − ky

Ca rβ+γ 0

0 − ky

Ca rβ+γ
2γωrβ−(β+γ)Cakx rγ

ωrβ+1−Cakx rγ+1 0

− ky

Ca rβ+γ 0 0 2γωrβ+(β+γ)Cakx rγ

ωrβ+1+Cakx rγ+1















, (45)

M̂0 =

















ω2

C4
a r4γ −

k2
x

C2
a r2β+2γ 0

ωky

C3
a rβ+3γ +

kx ky

C2
a r2β+2γ

(β−γ)ωky

Caωrβ+γ+1+C2
a kx r2γ+1

0 ω2

C4
a r4γ −

k2
x

C2
a r2β+2γ

(β−γ)ωky

Caωrβ+γ+1−C2
a kx r2γ+1 − ωky

C3
a rβ+3γ +

kx ky

C2
a r2β+2γ

ωky

C3
a rβ+3γ −

kx ky

C2
a r2β+2γ

(β−γ)ωky

Caωrβ+γ+1−C2
a kx r2γ+1

ω2

C4
a r4γ −

k2
x

C2
a r2β+2γ 0

(γ−β)ωky

Caωrβ+γ+1+C2
a kx r2γ+1 − ωky

C3
a rβ+3γ −

kx ky

C2
a r2β+2γ 0 ω2

C4
a r4γ −

k2
x

C2
a r2β+2γ

















. (46)

The coefficients E(2)t t and E(2)x x in the source term are the expansion coefficients of the metric,
given in Eqs. (A.7) in Appendix A. Fortunately, we will not need their explicit form neither in
the source nor in the matrices M̂1, M̂0; we are just interested in the general structure of the
self-energy.

From now on we employ the WKB approximation (this was also done in [27] in absence
of lattice) for two reasons (1) the scaling of elements of the coefficient matrix M̂0 is such
that they usually give a deep potential well, hence we expect to have many bound states and
high quantum numbers, precisely the regime where WKB applies (2) it is difficult to make
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any analytical progress without WKB because the equations are so complicated. Introducing
the tortoise coordinate s in the usual way [23–25] and equating the coefficient of the first
derivative ∂sψ to zero, we arrive at the condition:

det
�

Î4×4 +
∂ s/∂ r

∂r (∂ s/∂ r)
M̂1

�

= 0 , (47)

which determines the tortoise coordinate as a function of r. In our case, keeping only the
leading scaling term in r, we get s(r) ∼ r2Caγ. This gives the Schrödinger equation in the
tortoise coordinate, with no first-derivative term:

�

∂ 2
s −

�

∂ r
∂ s

�2

M̂0

�

ψ
(n)
(1) =

�

∂ r
∂ s

�2

S(n)(0) . (48)

The solution in the classically allowed region is expressed in terms of the WKB momentum p:

det

�

p2 Î4×4 +
�

∂ s
∂ r

�2

M̂0

�

= 0⇒ p ∼ r−β
Ç

ω2r2β − (k2
x + k2

y)r2γ , (49)

ψ
(n)
(0)IN/OUT =

1
p

p
e±i

∫

pdr . (50)

The two solutions above, with ± in the exponent, are just the incoming and the outgoing
solution at the horizon – the two independent solutions of the IR Schrödinger equation. For
the IN solution the integration limits in (50) are

∫ r
rh

dr and for OUT they are
∫∞

r dr. For the
next step we again follow [4] and solve the inhomogeneous equation by definition: we write
down the bulk-to-bulk propagator and integrate it over the source. Expressing the bulk-to-bulk
propagator from the solutions (50) and their Wronskian W as

Gbulk(r, r ′) =
1
W

�

ψ
(n)
(0)IN (r)ψ

(n)
(0)OUT

�

r ′
�

Θ
�

r ′ − r
�

−ψ(n)(0)IN
�

r ′
�

ψ
(n)
(0)OUT(r)Θ

�

r − r ′
�

�

, (51)

we write ψ(n)(1)(r) =
∫

dr ′Gbulk(r, r ′)S(n)(0) (r
′) and restrict the integration to the ε neighborhood

of the horizon (we are deliberately sketchy here as [4] contains a detailed discussion). When
everything is said and done and when we match the UV solution and read off the field theory
propagator GR from (28), we obtain

G(n)R ∼
1

ω− vF k⊥ − iImΣ(n)
, k⊥ ≡ |k− kF | , (52)

ImΣ(n) ∼ e−2I (n) + k̃2

�

∑

n′
e−2I (n

′)

�

+ k̃4





∑

(n′x ,n′′y )

e−2I (n
′
x ,n′′y )



+ k̃4





∑

(n′′x ,n′y )

e−2I (n
′′
x ,n′y )





+ k̃4

�

∑

n′′
e−2I (n

′′)

�

+ . . . (53)

k̃2 ≡
δµ

µ0

 

E(2)t t
ω2

C6
a r6γ

h

+ E(2)x x
k2

C2
a r4β+2γ

h

!

. (54)

In the first line, the expansion around the Fermi surface at ω = 0 and the Fermi momentum
kF obviously assumes that a sharp Fermi surface exists; this is true if bound states exist in
the effective Schrödinger potential [46]. By I we denote the integral of the WKB momentum
appearing in (50) which, from (49) scales as

I ∼
|k|

2γ−1
γ−β

ω
β+γ−1
γ−β

, (55)
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and the notation n′,n′′, (n′x , n′′y) and the like is hopefully clear: in n ≡ (nx , ny) we have the
lattice momentum (kx+2πnxQ, ky+2πnyQ), in n′ the momenta are shifted from n by (±1,±1),
in n′′ the shift is (±2,±2), in (n′x , n′′y) the possible shifts are (±1,±2) and so on.

The above expression for the self-energy is the main analytical result of our perturbative
expansion. So how does the peak width scale with frequency? In absence of lattice, only the
first term in (53) survives and from (55) we come back to the conclusion of [27] that the self-
energy is exponentially small at small ω if the exponent β + γ− 1 is positive (i.e. if α < −1),
or else it is always of order unity, even at ω= 0, and there is no sharp quasiparticle. But upon
adding the zone-mixing terms, the magnitude of Σ depends in a complex way both on ω and
on the position in the k space. We can discern the following trends.

1. Exponential decay of exp(−2I (n)) for smallω (when β+γ−1 is positive) can be partially
compensated by the power-law factors in k̃2n. True, these factors are suppressed by
factors of δµ/µ0 but they can add up to a non-negligible quantity. This explains the lack
of a sharp peak in some cases when β + γ > 1, i.e. α < −1.

2. If 2γ > 1 (in particular if 2γ ≫ 1) and |k| < 1 then the numerator in (55) can come
closer to zero than the denominator so even for β +γ > 1 and very small ω the integral
I can still be quite small, i.e. the self-energy can be of order unity. This explains the
weakening of the quasiparticle peak along the ΓXMΓ trajectory (for finite |k|) in some
figures.

3. The appearance of Hubbard-like bands comes from the competition of theω2n prefactors
and the exponential exp(−2I (n)) at finite ω – for small ω the influence of the prefactors
is negligible18 but for larger ω the exponential factors are all of order unity in any case,
so what matters is whether k̃2 grows or decays with ω: from (54), the maximum (the
band) is located roughly at ω ∼ C3

a r3γ
h ; of course such a maximum is broad as it comes

from a sum of various power laws. Emphatically, this has nothing to do with the position
of the poles, which the self-energy cannot influence, and the wide bumps are not poles
anyway; they are finite maxima and come solely from the variation of the finite part of
the propagator (large imaginary part of the self-energy means smaller spectral weight).

We have thus explained qualitatively the complex structure of the region with a quasiparticle
in the “phase diagram” in Fig. 4. For now we will not attempt to understand the action of the
dipole coupling κ analytically. In leading order expansions that we use in this subsection, κ
never appears – naively one would think its influence is not important. However, κ shifts the
effective momentum and thus influences the position of the pole, not just the self-energy. Such
effects require a more thorough analytical treatment than we are able to perform at present.

A systematic study of MDCs is also beyond the scope of this paper. Perhaps more interest-
ing than EDCs as they show the influence of the lattice more directly, they are also far more
complicated, and show strong dependence on the lattice strength δµ/µ0. We have looked at
a few examples in Appendix D, but we leave a proper treatment for further work.

5 Green functions in Matsubara frequencies: comparison to the
Hubbard model?

Encouraged by the detailed phenomenological understanding that we have achieved, we ex-
plore now to what extent are our findings in line with real-world lattice models of strongly

18If β+γ−1> 0 then the exponential smallness is not much influenced by power-law prefactors; if β+γ−1< 0
then the power-law prefactors are important but they do not exist in front of the first term, exp(−2I (n)), so the
self-energy remains large.
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correlated metals. A natural candidate is the Hubbard model on a square lattice. This famous
Hamiltonian

H = −t
∑

〈i, j〉

∑

σ

�

c†
iσc jσ + c†

jσciσ

�

+ U
∑

i

ni↑ni↓ , (56)

is a prototype model for strongly coupled electron systems, showing a wide range of experi-
mentally relevant phenomena: strange-metallic behavior, Mottness, superconductivity, various
exotic orders. The hopping is over the neighboring lattice sites, the spin is σ ∈ {↑,↓}, and the
crucial parameter is the Coulomb interaction strength U/t. A review and comparison of state-
of-the-art techniques can be found in [32,35]. We stick to the basic Hubbard Hamiltonian, with
no additional interactions, non-nearest-neighbor hoppings etc. – since any direct relation to
holography is tentative at best, it makes no sense to fine-tune the model.

The idea is to compare the holographic two-point function to the correlation functions of
the quantum Monte Carlo calculation (CTINT); therefore, unlike the previous section where
we looked solely at the spectral function, i.e. the imaginary part of GR, here we look at the
whole propagator. The object of comparison is the Green function in Matsubara frequency
G(iωn). This object is the direct outcome of the CTINT method and of most quantum Monte
Carlo methods (although real-time quantum Monte Carlo methods exist [66–68], they are
of recent origin and not much data has been accumulated so far). A detailed study of the
two-point retarded Green function in Matsubara frequencies for the Hubbard model on the
square lattice has been published in [69]. For comparison with holography we have used the
data from that study, provided to us by the first author of [69]. The data consists of Green
function values for a range of imaginary frequencies, computed in the doped Mott insulator
regime with U/t = 10 in a range of occupancy values n = 0.500, 0.475,0.450, 0.425 (set by
tuning the chemical potential), and for temperatures T = 0.3,0.5, 0.7 (in units of 4t). The
occupancy n = 0.500 represents the half-filling. From analytical continuation, this phase is
believed to have a quasiparticle or at least a clear maximum near ω = 0 [36–38] at low
temperatures (compared to both the chemical potential and lattice wavevector) – but for our
temperature range (0.3−0.7) one expects that the quasiparticle is already barely visible. The
fit to holographic data will nevertheless show a clear quasiparticle, a puzzle that we try to
resolve at the end of the section.

5.1 The fitting procedure

In order to express the Green functions in Matsubara frequency iωn, we start from the real-
frequency functions obtained from holography and apply the well-known Hilbert transform

GR(iωn) = −
1
π

∫ ∞

−∞
dω

ImGR(ω)
iωn −ω

. (57)

This is simply an integral over real frequencies ω and presents no difficulties, unlike the an-
alytical continuation necessary to arrive at real-frequency results from G(iωn). There we see
one advantage of holography, which directly produces real-frequency Green functions. Details
on the numerical integration of (57) can be found in Appendix E.

Although the Matsubara Green function is mathematically well-defined for any imaginary
ωn, in physical quantities at temperature T only the frequencies 2π(n+1/2)T show up, so only
these points were computed in CTINT and consequently we also only compute the holographic
G(iωn) for such points. The momenta k are chosen along the triangular high-symmetry path
ΓXMΓ for the square lattice 4× 4. Although the reference [69] contains also the 8× 8 data,
we have found it unnecessary to use these – the deviations between the holography and the
Hubbard model are larger than the systematic finite-size errors so we would get similar results
even if fitting to CTINT data for a larger lattice.
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In the holographic model that we employ, the free parameters are the scaling exponent α
(we still keep δ fixed) and the conformal dimension ∆, whereas in the Hubbard model the
free parameter is U/t. We can also tune the chemical potential µ0 and the temperature T
but these are external parameters, which are tuned for a given Hamiltonian. The idea is
that the combination (α,∆) that determines the scaling and interactions defines the effective
Hamiltonian and should be fit to the Hubbard U/t. The inclusion of ∆ may be controversial:
in holography it really characterizes the probe, i.e. the dimension of the operator O in the
correlation function 〈OO〉 that we compute, not the dual field theory itself or its Hamiltonian.
However, in a model of correlated electrons, the operator in the Green function is always the
electron annihilation operator c jσ (on lattice site j and with spin σ), and in holography we
always consider a probe Dirac fermion, so the requirement that the latter acts as a proxy for
the former is effectively a constraint on the dual field theory (that the Dirac probe really probes
the degrees of freedom of an elementary electron).

How to match the temperatures and the chemical potential? To that end we need to match
the units in the two models as µ0 and T are both dimensionful quantities. This can be done in
two ways. One, brute force way is to scan not only the parameters (α,∆) but also µ0 and T
for each (U/t, n, T) triple in CTINT data. We have done this only with limited resolution as
the dimension of the parameter space is quite large. The other way is to notice that the self-
energy of the Hubbard model in real space (i.e. in the space of lattice sites j, l) Σ jl(iωn) can
be written as

Σ jl(iωn) = U〈n〉δ jl +Σdyn(iωn) . (58)

The first term is the static contribution from the mean-field Coulomb repulsion and the second
term is dynamical and comes from quantum corrections. This term is known to drop to zero
in the static limit (iωn→∞); this was the reason that we needed the dynamical cutoff D in
holography. Therefore, only diagonal terms remain in the static limit; off-diagonal elements
are zero. The structure of the real-space propagator (GR) jl is now

[GR(iωn)] jl =
�

(iωn − U〈n〉) I −H−Σdyn

�−1
jl , (59)

where I and GR(iωn) are the unit matrix and the propagator in real (lattice-site) space and H
is the nearest-neighbor hopping matrix H jl = tδ| j−l|,1. The first term in (59) contributes only
to the diagonal elements of GR, the last term drops to zero in the static limit, so off-diagonal
we only have the contribution of the hopping matrix H from which we can read off t. The
algorithm is therefore:

1. Starting from the Matsubara Green functions G(iωn,k), perform the inverse Fourier
transform in momentum to get the real-space function G jl(iωn).

2. For the largest iωn available in the numerics, invert the real-space matrix to get
G−1

jl (iωn→∞).

3. From (59), the terms bellow/above the main diagonal of the result equal ±t.

Once we have t, we directly tune T and µ for computing GAdS to the same values as in CTINT
(in the latter they are in units of 4t). Since the holographic model is certainly not exactly the
Hubbard model (at best it comes close), and may well have long-range interactions, the above
procedure is not exact, but it serves as a decent estimate, and yields similar results as the brute
force fit.

One last technical remark is in order before we describe the fitting procedure. In AdS/CFT
literature, the spectral function is usually defined as the imaginary part of the trace of the
retarded Green function: A(ω,k) = −(1/π)Tr Im GR(ω,k).19 This quantity is basis-invariant;

19Depending on convention the prefactor −1/π might be different, but that is not essential now.
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it does not depend on the basis chosen to describe the spinor. On the other hand, Hubbard
model correlation functions obtained by quantum Monte Carlo are typically expressed in the
spin basis, so in absence of magnetic field they are of the form GR = diag(G11, G22) with
G11 = G22. For that reason, the notation GR for the Hubbard model usually means (GR)σσ with
σ up or down all the same. We could write everywhere in this section TrGAdS on one hand and
(GCTINT)σσ on the other but that would clutter the notation too much. We have decided to use
solely the trace, so both in real and imaginary frequencies we write the trace in front of G both
for AdS/CFT and CTINT functions. Although the trace is not explicitly performed in CTINT, we
know that this is the invariant quantity behind the element G11 = G22 of the CTINT calculation.
The only trouble is the mismatch in normalization: in CTINT conventions, the AdS/CFT result
should be normed not to unity but to 2. We have corrected for this by explicitly renormalizing
the AdS result by 1/2. As a result, we compare the same type of Green functions.

Now we describe the fit of the intrinsic parameters of the model (α,∆). We look for the
combination which minimizes the merit function. The merit function Md is just the normalized
deviation of weight d between the holographic function GAdS and the CTINT function GCTINT:

Md ≡
1

N d

∑

n, j

|TrδG
�

iωn,k j

�

|d =min.

δG ≡ GAdS

�

iωn,k j;α,∆
�

− GCTINT

�

iωn,k j; U/t
�

, N ≡
∑

n, j

1 . (60)

We have tried different weights d = −2,−1,1, 2, with very similar results.20 The solution
corresponds to the minimum of Md . As we discussed above, by GAdS and GCTINT we mean the
full 2× 2 matrices. The trace in front is the trace in the internal space of these matrices.

If we turn on also the dipole coupling κ, we should in principle perform a three-dimensional
scan. In order to avoid that, we perform the scan in (α,∆) for a few κ values between 0 and 5
(for larger κ the gap is too broad and clearly far from the Hubbard data), find that the κ value
does not influence much the position (but only the depth) of the minimum in the (α,∆) plane,
and then do a detailed scan in κ just near these minima.

In hindsight, quantitative accuracy of the fit is not a great concern as the main limiting
factor is the transition from G(ω) to G(iωn); the integral (57) erases a lot of information
so several rather different solutions may all give a very good fit in Matsubara domain. Until
we can find a different object for comparison (perhaps real-time GR from real-time quantum
Monte Carlo), it does not make sense to go for a high-resolution scan of the parameter space.

5.2 The solution

We first fix κ= 0 and perform the fit in the (α,∆) space only. The motive is that it is useful to
see if κ is essential or not for reproducing the Hubbard model results, and to know how much
can we get from the minimal model. In Fig. 12 we plot the merit function M2 for a range of
(α,∆) values. The landscape contains a few local minima, one of which is rather dominant as
the global minimum at

(α,∆)sol = (−1.3± 0.1, 1.20± 0.05) .

While in this case the global minimum is quite dominant, it is still in fact only by a factor of 5
better than the next smallest local minimum.

With nonzero dipolar coupling, the outcome is the Fig. 13. The local minima are pretty
much in the same places as in Fig. 12 but the depths differ somewhat. In particular, the global

20It is often said that negative d works better, imposing strict constraints on large-iωn properties, which translate
to the normalization of the real-ω spectral function, but we have seen little difference in our fits no matter what d
is.
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Figure 12: The squared norm of the difference |TrδG|2 (M2 function from (60))
between the holographic and CTINT Matsubara Green functions. For better viewing,
we give both a 3D plot (left) and a density plot (right) with the same data. Several
local minima are visible, but there is also a rather clear global minimum around
(α,∆) = (−1.3,1.2).
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Figure 13: Same as Fig. 12 (squared norm of the difference |TrδG|2 between the
holographic and CTINT Matsubara Green functions) but for nonzero κ = 1.5. We
have picked the κ value which yields the global minimum of the deviation (see the
text for details of the fitting procedure for nonzero κ). The local minima remain in
the same positions as for κ= 0 but their depths and consequently the position of the
deepest minimum change; the global minimum is now at (α,∆) = (−2.3, 1.5).

minimum is now different and lies at

(α,∆,κ)sol = (−2.3± 0.1,1.30± 0.05, 1.5± 0.5) .

The relatively large uncertainty on κ is simply due to the fact that once we move away
from κ = 0 (and until we reach large values, around 4 − 5), the solution is not very sensi-
tive to κ. Therefore, even though the overall structure of the landscape is similar with κ = 0
and κ > 0, the minima can go up and down when κ becomes nonzero. Therefore, it is impor-
tant to decide if κ should be fixed to zero (presumably by some symmetry) or not. Notice that
both solutions are in the violet zone of the “phase diagram” in Fig. 4, with a quasiparticle (or
at least something similarly-looking), separated from the upper and lower band by a soft gap.

The comparison of TrG(iωn) for AdS/CFT and Hubbard model is given in Fig. 14. In
addition to the real and imaginary part of the propagator, we give also the absolute value
of their difference. Notice that in the large-frequency regime the curves almost fall on top of
each other as they should because the asymptotics is universal. At smaller frequencies, the real
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Figure 14: Real part (left) and imaginary part (middle) of the Matsubara Green
function TrG(iωn), for the holographic fermion (solid lines) and for the QMC so-
lution of the Hubbard model (circles), together with the module of the deviation
between the two |TrδG(iωn)| (right; the lines are just to guide the eye). The func-
tions are computed for the canonical Matsubara frequencies iωn and for six stan-
dard momentum values ((0, 0) black, (π/2,0) blue, (π, 0) cyan, (π,π/2) magenta,
(π,π) red, (π/2,π/2) green) along the high-symmetry line ΓXMΓ of the unit cell.
The holographic model is for the parameters yielding the best fit to the QMC data:
(α,∆) = (−1.3±0.1,1.20±0.05), with no dipole coupling (κ= 0). The temperature
is T = 0.7.

part generally fares better than the imaginary part. Overall, there is a good agreement. The
agreement is even better when κ is allowed to vary (though of course increasing the number
of fit parameters nearly always yields better fits), as seen in Fig. 15. At the (π,π) point the
agreement is much worse, just like for κ= 0. At first glance, such an effect could be discarded
as a mere artifact, but in the near-horizon analysis in subsection 4.2, we have shown below
Eqs. (54-55) that special behavior near the corners of the Brillouin zone is in fact expected.
However, this phenomenon is absent in the Hubbard model, hence this curve is never very
well fit to the CTINT data.

While we need the Matsubara propagators for comparison, it is the real-frequency propa-
gator which is of prime physical importance. The solution without dipole coupling is shown
in Fig. 16, with momentum-integrated spectra Aloc(ω) (top) and momentum-resolved spectra
A(ω,k) (bottom). The overall structure of the spectrum in this regime is in fact known from
previous subsections – quasiparticle plus the bands. The interesting fact, best seen from the in-
tegrated spectra, is that the chemical potentials corresponding to the four doping values of the
Hubbard Hamiltonian are very close – the peak is barely moving upon dialing n. The chemical
potentials (from highest to lowest n) are µ0 = (1.21, 1.22,1.24, 1.25)± 0.01, i.e. quite close
to each other. A good fit as in Fig. 14 is obtained thanks to the large weight of the peak – slow
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Figure 15: Same quantities as in Fig. 14 (real and imaginary part of TrG(iωn) for
AdS/CFT and Hubbard models, and the module of the difference between the mod-
els) but with nonzero dipole coupling κ, for the three parameters yielding the best
fit to the QMC data: (α,∆,κ) = (−2.3± 0.1,1.20± 0.05,1.5± 0.5). The inclusion
of dipolar coupling makes the gap between the bands and quasiparticle more promi-
nent and allows for a better fit.

movement across the ω-axis is compensated by the fact that a lot of weight is moving, hence
the broad interval of ReG(iωn) values at small iωn (which roughly corresponds to the spectral
weight asymmetry in real frequencies) is still reproduced. We will come back to the question
how physical this solution is (in other words, is this really what is happening in the Hubbard
model in order to produce the resultant Matsubara curves). The fits for the remaining two
values of the temperature are given in Appendix E.

Finally, in Fig. 17 we appreciate the overall shape of the dispersion curve in the density plot
for an intermediate temperature (A) and for a very high temperature T = 10 at six standard
momenta (B). The lower temperature is not much of a surprise as we have already seen the
general properties of A(ω,k) in Fig. 10. But the high-temperature plot provides another hint
toward Hubbard physics: the curves evolve toward a Gaussian in ω, which is believed to
happen also in the Hubbard model in the high-T limit [70]. We do not give the full density
plot here as we have already demonstrated the temperature evolution in density plots in Fig. 7,
and in particular because we want to compare to a Gaussian, which is easier to visualize for
just a few momentum slices.

What is the physical significance of the solutions found? The fits are quite good and the
landscape of the merit function (Figs. 12 and 13) is robust in the sense that the same 2-3 local
minima always appear. However, these minima can become higher or lower when turning
on κ. The spectra corresponding to these minima all contain the quasiparticle and the bands
but in detail they differ. What is most suspicious when looking at Figs. 12 and 13 is that on
average nearly all points in the parameter space have relatively small deviations from the CTINT
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Figure 16: The local or momentum-integrated (top panel) and the momentum-
resolved (bottom panel) spectral weight for the best fit of the holographic spectral
function to the quantum Monte Carlo data for the Hubbard model, yielding the
parameters (α,∆,κ) = (−2.3, 1.3,1.5). The local spectrum shows the by now fa-
miliar structure lower band + quasiparticle + upper band. What is unexpected is
that the chemical potentials for the four doping values are very close for each other:
µ0 = 2.10,2.25, 2.40,2.50 (left to right), and indeed the local spectral function barely
changes between n= 0.500 and n= 0.425. Similar conclusions follow also from the
momentum-resolved spectra in the bottom row. The rough explanation is that the
strong quasiparticle in the center can transfer a lot of spectral weight from ω< 0 to
ω> 0 even for a minimal change of chemical potential.

solution and present relatively good fits! This suggests that the merit function is not very well
chosen. Physically, the behavior we see in the spectra is expected for these values of n and
U/t but only at much lower temperatures [37, 39]. We do not understand the origin of this
systematic mismatch – when we determine the temperature in AdS/CFT by brute-force fitting
we may well have large errors but we have also checked the units of temperature directly,
by estimating the effective t value in holography. It seems that the temperature mismatch is
physical and that the holographic system reacts differently to a heat bath. Another possibility
is that the real-time spectra obtained by analytic continuation (e.g. in [37,39]) contain large
errors but that is less likely as many authors obtain similar results. We hope to understand this
better in the future.

6 Discussion and conclusions

In our photoemission adventure we have gained a lot of knowledge on the phenomenology
of holographic spectra on 2D lattices; we have also developed a few useful tools on the way.
On the other hand, there is no sharp, golden-bullet conclusion on how exactly all of this re-
lates to real-world systems, apart from the basic features – non-Fermi liquids, asymmetric and
momentum-dependent self-energies, Hubbard-like bands and some (limited) signs of Mot-
tness. More specifically, we have found the following robust features:

1. The quasiparticle peak, the bands and the strong momentum dependence of the spec-
trum are the three possible robust features of photoemission spectra on the hyperscaling-
violating ionic lattice; they are not all present for all parameters, but may or may not be
there as shown in the phase diagrams in Fig. 4. In absence of a quasiparticle, the central
peak remains but becomes a wide bump, resembling a strange metal regime.

2. The quasiparticle pole is of similar origin as usual in holographic systems, stemming
from a zero in the holographic source at the boundary. But the bands are novel – they
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Figure 17: (A) Density plot for the spectral function A(ω,k) for the stan-
dard momentum set ((0, 0) black, (π/2,0) blue, (π, 0) cyan, (π,π/2) magenta,
(π,π) red, (π/2,π/2) green), for the best Hubbard fit with dipole coupling:
(α,∆,κ) = (−2.3 ± 0.1,1.3 ± 0.1,1.5 ± 0.5), at temperature T = 0.5. The central
quasiparticle peak together with the upper and lower band is clearly seen, and the
gaps between the bands and the center are rather hard. (B) Spectra A(ω) for the
standard set of momenta (solid curves, black to green) for the same backgroud but
with T = 10. At very high temperatures the spectrum evolves toward a single broad
peak with a Gaussian profile – the gray dashed line is a Gaussian centered at the
chemical potential ω = 0. The fit is best for the blue curve, which has its maximum
approximately at ω = 0; for the others, we do not expect a zero-centered Gaussian
to be a good fit except at large ω, which is precisely what we see.

can exist (separated from the central peak by soft gaps) even in absence of dipole cou-
pling and arise from the umklapp terms in self-energy, which make its ω dependence
nonmonotonic.21

3. Inhomogeneous and anisotropic (i.e., momentum-dependent) quasiparticle weight is
also explained through the near-horizon analysis of umklapp terms in the self-energy.
While it is somewhat at odds with the Hubbard model, it might have a role in some
realistic strange metals.

4. The influence of the dipole coupling is to make the side bands more robust and the
corresponding gaps harder. At larger couplings a soft central gap also appears, giving
rise to a Mott-like regime (but the gap never fully opens for all momenta). We do not
understand this analytically but it is likely related to the effective momentum shift and
the zero-pole duality found for κ in homogeneous systems in [45,59,61].

5. The fit to the Hubbard model is surprisingly good, given the vast differences in micro-
scopic physics from the holographic model. While the anisotropy of the spectrum always
spoils the fit, the general structure is preserved, and the dipole coupling κ further helps
to come closer to the Hubbard model. However, the fact the we have multiple local min-
ima of the merit function, often with rather different real-frequency shapes, suggests
that good fits to Matsubara functions do not mean that much.

In relation to the last point, we conclude that, quite generally, explicit fitting of the holographic
Matsubara Green function to that of the quantum Monte Carlo calculations is not the best way
to match the two. Essentially, we have attempted to circumvent the well-known unreliability
of analytic continuation from imaginary to real frequencies by calculating the real-frequency

21We thank Jan Zaanen for asking this question, in particular how much the existence of bands hinges on the
dipole coupling; it turns out that the dipole coupling strengthens the bands but is not a necessary condition.
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functions directly (quite a natural thing to do in holography); in this way we work with per-
fectly reliable real-frequency functions, but when we try to compare to the Matsubara data
from CTINT calculations, the problem shows up, just in reverse – it is easy to get a good fit but
we do not know how relevant that is when it comes to real-frequency propagators. Still, the
AdS/CFT curves pass several additional tests for the Hubbard physics (e.g. the single Gaus-
sian limit at high temperatures), so we believe it makes sense to connect holographic models
to lattice model Hamiltonians, but one has to find better merit functions and more appropriate
objects for comparison. We would be interested to try with real-frequency Green functions ob-
tained from the recently developed real-time Monte Carlo methods [66–68]. And it certainly
makes sense to construct AdS duals of simpler and lower-dimensional models, i.e. an Ander-
son impurity, in a controlled way. Although it is unreasonable to expect that typical condensed
matter lattice models have a controlled, microscopic gravity dual at all, work in this direction
is still useful, as it can tell us which properties of these models are important.

On the technical side, quite a number of goodies employed in this work are likely useful also
in different contexts. In particular, we have learned how the explicit ionic lattice influences the
spectrum at finite Lifshitz ζ, i.e. for a general case of the “holographic scaling atlas” of [29,30].
The IR analysis with the matching to the UV that we have performed is in principle feasible
in any background; it would be exciting to apply it to other AdS lattice models such as scalar
lattices or the spontaneously generated charge density wave lattices (stripes, checkerboards
and the like). These lattices are relevant also in the IR and we may expect further surprises.
The UV cutoff that we employ, following [43] but making the cutoff fully holographic, is also a
viable method for many purposes, allowing us to model multi-scale systems by coupling many
AdS spaces in a similar vein as in [64].

On the qualitative, phenomenological side, our findings seem robust and in line with the
general knowledge on strange metals [33,49,52]. The million dollar question is – is holography
ready to answer specific condensed matter questions, i.e. to teach us something about a specific
class of systems (like strange metals) rather than just general phenomenology as in this paper.
It seems we are not there yet although we are much closer than a decade ago – papers like [52]
as well as recent applications to transport phenomena have brought AdS/CFT closer to the lab
than ever before. Our present work does not answer any smoking gun question in condensed
matter, but it teaches us where to look further (other types of lattices, stronger lattices, near-
horizon analysis like in this paper, various hyperscaling-violating systems as very robust and
general) when trying to formulate and solve deep questions in quantum matter within the
holographic framework.
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A Coefficients of the IR expansion

At zeroth order (homogeneous solution), the scaling exponents (reprinted here for conve-
nience from (10)) and the coefficients read (with C (0)r r = 1/C (0)t t and C (0)x x = 1):

β =
(α+δ)2

4+ (α+δ)2
, γ= 1−

2δ(α+δ)
4+ (α+δ)2

, (A.1)

η= −
2(α+δ)

4+ (α+δ)2
, ξ= α

Æ

β(1− β) + β +
5
4

, (A.2)

C (0)t t =
V0

�

1+ (α+δ)2
�2

2 (1+ 2α (α+δ)) (1+ (3α−δ) (α+δ))
, C (0)x y = C (0)x r = 0 . (A.3)

Now we can also explicitly relate the temperature to rh and the parameters of the model:

T =
V0

4π

�

1+α2 −δ2
� �

1+ (α+δ)2
�

(1+ 2α (α+δ)) (1+ (3α−δ) (α+δ))
r2γ−1
h . (A.4)

At first order, all inhomogeneous corrections are zero, but we can determine the exponents λ
and ν of the off-diagonal metric terms and the homogeneous corrections:

λ=
(α+δ)2

1+ (α+δ)2
, ν=

1+ 3(α+δ)2

2+ 2(α+δ)2
, C (1)x x = C (1)x r =

1
1+ (α+δ)2

, (A.5)

whereas C (0)x y remains undetermined and the other first-order coefficients are all equal zero.
Only at second order there are (x , y)-dependent corrections:

E(2)t t = F (2)t t =
π

1+ (α+δ)2
, E(2)x x = F (2)x x = −

2π(1+ 2α2 + 2αδ)

(1+ (α+δ)2)2
, (A.6)

E(2)a = F (2)a = −
π2(α+δ)

2α (1+ (3α−δ)(α+δ)) (−1+ 2δ (α+δ))
. (A.7)

This tells us two important things: (1) at leading order there are indeed no inhomogeneous
terms and the scaling solution remains valid, which is also consistent with the numerical inte-
grations and theoretical expectations from the literature (2) the fact that an inhomogeneous
branch exists at higher order means that it is possible to match the IR solution to the UV asymp-
totics discussed in Eq. (12). We have not tried to do this matching explicitly but again the fact
that numerics yields a solution de facto justifies this logic.

B Summary of the numerics

Throughout most of the paper, we solve both the Einstein-Maxwell-dilaton system and the
probe Dirac equation with a pseudospectral collocation grid solver, based on the algorithms
in [50] and [51]. The pseudospectral method, by now pretty standard in works on holographic
lattices, is based on a series expansion of the unknown functions Y (x) in some basis,22 and a
set of points x i associated with that basis, so that the (truncated) expansion of the unknown
functions exactly satisfies the differential equation at the points from this set. This idea is
explained very well in [51], and the usual basis choices (that we also adopt) are the Chebyshev

22We denote schematically the independent variable(s) by x and the unknown function(s) by Y (x). In our case
x is a triple of coordinates and Y is a whole set of functions but for the sake of brevity we write Y and x as scalars
in this brief summary.
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polynomials for nonperiodic directions and the Fourier series for the periodic directions. The
collocation algorithm is a specific realization of the pseudospectral idea where one stores the
information on the series expansion of Y not as a set of series coefficients but as an array of
values Yj = Y (x ′j) at some set of points x ′j (the sets x i and x ′j are distinct). In this way one can
show (e.g. [50] and references therein) that, for a set of so-called cardinal functions C j(x),
the unknown function is approximated as

Y (x)≈
∑

j

Y (x ′j)C j(x) , (B.1)

thus a linear system L̂Y = f where L̂ is some differential operator and f are the sources,
discretizes as

Li jYj = fi , Li j = L̂C j(x)|x=x ′i
, Yj = Y (x ′j) , fi = f (x ′i) . (B.2)

The advantage is that the differentiation of the cardinal functions is very cheap: their values at
the collocation points x ′i are tabulated for pretty much any meaningful basis and can be found
in the appendices of [50]. The solution of a linear system then reduces to the inversion of L.
The boundary conditions (Dirichlet or Neumann) along the radial (z) direction are enforced
by replacing the first and last row in Li j with the appropriate row vectors implementing the
boundary condition (just as explained in [51]). Along x , y , the boundary conditions are pe-
riodic, so when using periodic basis functions they are automatically satisfied and no explicit
boundary conditions are needed.

We use the Gauss-Lobatto grid, which consists of the extrema of the basis polynomials and
the endpoints of the interval. The alternative is the Gauss-Chebyshev grid, consisting of zeros
of the basis polynomials and no endpoints. For equations of motion in AdS, we consistently
find the Gauss-Lobatto grid to be superior, as Gauss-Chebyshev is much more prone to artificial
oscillations. This is apparently a special property of AdS: the general convergence properties
of the two grids are known to be the same [50].
Since the EMD system is nonlinear, one further necessary ingredient is the
Newton-Raphson iterative algorithm, i.e. expanding the nonlinear system F̂(Y ) = f to first
order in the variations δY (0) around some initial guess Y (0) as

J (0)δY (0) = −F̂
�

Y (0)
�

+ f , J (0) ≡
∂ F̂
∂ Y
|Y=Y (0) . (B.3)

This is a linear equation in δY (0) that can be solved by a linear collocation solver by inverting
the discretized Jacobian J (0)i j in (B.3). We then update the function as

Y (0) 7→ Y (1) ≡ Y (0) + δY (0) and repeat the procedure until subsequent approximations are
close enough in some norm: ∥Y (n) − Y (n−1)∥ < ε. The matrix inversion is the costliest part
of the whole procedure and we found it more efficient to adopt the Broyden’s method in-
stead [71, 72]. The idea here is to compute the inverse of the Jacobian in the first iteration
only and in subsequent iterations to update directly the inverse, rather than the Jacobian itself.
Denoting the inverse of the Jacobian in the n-th iteration by I (n) ≡

�

J (n)
�−1

, the secant formula
and the matrix inversion lemma (Sherman–Morrison–Woodbury lemma) yield the equation

I (n+1) = I (n) +
1

Tr
�

�

δY (n)
�T · I (n) ·δF (n)

�

�

δY (n)
�T
· I (n) ·

�

δY (n) − I (n) ·δF (n)
�

, (B.4)

with
δF (n) = F

�

Y (n+1)
�

− F
�

Y (n)
�

. (B.5)

37

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.027


SciPost Phys. Core 6, 027 (2023)

2.0 2.5 3.0

4

6

8

log N

lo
g

t

2.0 2.5 3.0
-10

-5

0

log N

lo
g

∆

Figure 18: The running time in seconds (left) and the relative accuracy, i.e. relative
deviation from the result on the largest lattice, here with N = 26 (right), for a number
of lattice sizes. The running time grows as a power law, and the error drops sharply
once we are over some critical lattice size (here about N = 12) and the finite-size
effects stop.

Therefore, once we have I (0), everything proceeds by matrix multiplications only, with no
further inversions. In this way the first iteration takes most time, and subsequent ones are
much faster. An alternative formula is

I (n+1) = I (n) +
1

∥δF (n)∥2

�

δF (n)
�T
·
�

δY (n) − I (n) · δF (n)
�

, (B.6)

which is generally believed [71] to be inferior to (B.4), but in some (infrequent) cases we find
it actually more stable. Another possible method is to replace the inverse of the Jacobian by
pseudoinverse, found by singular value decomposition (which can be programmed manually
or invoked as the Mathematica function PseudoInverse). The decomposition runtime with
pseudoinverse scales as mN4 for an N -point grid with m iterations, unlike the naive inverse
which scales as mN6 and the Broyden’s method which scales as N6+(m−1)N2. Pseudoinverse
is thus the fastest method but it is often not accurate enough, eventually producing large errors,
so we avoid using it.

We demonstrate the convergence properties of the solver in Fig. 18 by plotting the running
time and the relative error (with respect to the highest-resolution result) for a number of
resolutions, for a test EMD equation.

In practice, we start by first fixing the gauge through the Einstein-DeTurck trick, explained
in [51,73] and references therein. It makes the Einstein equations elliptic which is necessary
to guarantee the numerical convergence. Then we usually perform a low-resolution run for
typical parameter values on a desktop computer. Knowing the qualitative properties of the
solution, we run a higher resolution calculation on a cluster for a range of parameter values of
the EMD system of equations. Finally, we use the outcome as the background for solving the
Dirac equations. The Dirac equations are solved in a single step of the pseudospectral solver,
without iterations, as they are linear.

The semiholographic calculations (which are discussed in the next Appendix and which
were not used in the main part of the paper but have proved valuable for a quick initial
screening of the parameter space) were all performed on a desktop computer. All codes are
implemented with double precision arithmetic.

C Holography vs. semiholographies

While the fully consistent ionic lattice obtained by numerical solution of the partial EMD sys-
tem is certainly preferable, we have experimented with two simpler approximations. We dub
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Figure 19: Semiholographic RPA Green function (A) and fully holographic Green
function (B) for holographic parameters (α,∆) = (−1.40, 1.3). The hybridization
for the semiholographic function is tuned to g = 0.002 in order to obtain a good
approximation to the consistent holographic lattice calculation. As we see, for the
appropriate hybridization values, semiholographic spectra reproduce all qualitative
and even some quantitative features of the fully holographic spectra.

both semiholography, according to the paper [19] which pioneered this approach, however
in detail they are quite different. The first is the true semiholography of the aforementioned
paper, recently applied in [52] to experimental ARPES curves, and also in a hybridization-
based theoretical model of strange metals [74,75]. To remind, the idea is to introduce a linear
coupling between the holographic propagator GR in a homogeneous background and a free
electron on the lattice. The total action is then

S = SAdS/CFT

�

Ψ†,Ψ
�

+

∫

d t

∫

d2 xχ†
k (i∂t − ε(k))χk + g

∑

K

�

χ†
kΨk+K +Ψ

†
k+Kχk

�

. (C.1)

Here, SAdS/CFT is the action for the holographic fermion Ψ (in absence of lattice), χ is the free
fermion on a square lattice with dispersion ω = ε(k) and g is the hybridization between the
two.23 The resulting dressed retarded propagator of the lattice fermion GR reads (in the RPA
approximation):

GR(ω,k) =
1

G−1
0R (ω,k)− g2G−1

R (ω,k)
=

1

ω− ε(k)− g2G−1
R (ω,k)

, (C.2)

where G0R is the bare propagator of the same fermion χ (containing a quasiparticle pole), and
G−1

R is the inverse holographic propagator which now has the role of self-energy. We assume
that g is real, i.e. g = g∗. Varying g and the holographic parameters (α,∆) yields results
similar to the full lattice calculation. We have not used this method neither when exploring
the AdS model in Section 4 nor when fitting to the Hubbard model in Section 5. We comment
upon it here because the resulting spectra look quite reasonable (we give one example in
Fig. 19), and they provide a decent (though uncontrolled) approximation to the full lattice
spectra.

Interestingly, the hybridization g also acts as a proxy of doping in the Mott-insulator-like
regime, controlling the spectral weight transfer in absence of a quasiparticle. As an example
we show a few spectra in Fig. 20 which all contain a soft gap around ω = 0 with two bands
around ω = ±4. As we pump up the coupling g, the spectral weight passes from the lower
to the upper band, while the gap remains approximately open. The gap-forming mechanism
is different than in fully holographic lattices: the pole in the free propagator G0R and the pole

23Of course, one should not confuse the coupling g with the determinant of the metric; it will always be clear
from context which one we mean.
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Figure 20: Semiholographic RPA Green function for four values of the hybridiza-
tion g and for holographic parameters (α,∆) = (−0.65,1.3). The structure of the
spectrum resembles a Mott insulator: no central peak but a (rather soft) gap, and
Hubbard bands at finiteω. This is a novel phenomenon in semiholography, however
what happens is that the zero in G−1

R (coming from the pole in the holographic prop-
agator GR) cancels the zero in the free fermion propagator. This is not what happens
in true Mott systems, where the self-energy develops a pole.

in the holographic propagator GR will approximately cancel each other in some interval of g.
So what happens is that self-energy G−1

R develops a zero which cancels the zero in the kinetic
term, rather than self-energy developing a pole, as it happens in true Mott insulators.

To conclude, the main message is that semiholography may serve as a good fit in g to fully
holographic Green functions, mimicking the true behavior quite well, however the physics
behind it is different and cannot encapsulate true lattice effects.

Another approximation that we have used for a quick and dirty scan in the (α,∆) plane
is to integrate the right-hand side and the boundary conditions of the EMD equations over
a single unit cell (x , y) ∈ (−1/ (2Q) , 1/ (2Q)). In this way we obtain a system of ordinary
differential equations (because the derivatives over x , y on the left-hand side also become
trivial in this case) which we integrate using the same pseudospectral algorithm as for PDEs,
but of course with just z̃ dependence the numerics is much easier. In the next step we write
the stress-energy tensors and sources as the sum of the former (monopole or averaged) term
and the quadrupole contribution (the dipole contribution is zero). This leads to the separation
of variables and again results in a system of ordinary differential equations. Already the third
(octupole) step results in a good approximation to the final solution. We have never used this
method either for any of the production runs but we have used it to gain a quick glance over
various corners of the parameter space. We will apply and describe in detail this scheme in a
forthcoming work [76].
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Figure 21: Three sections of momentum distribution curves (MDCs) A(kx , ky) for
ky = 0,0.5, 1.0 (blue, magenta, red), at ω = 10−3, for ∆ = 1.4 and α = −0.6 (left)
vs. α = −2.2 (right). The curves capture a QP peak which exists for both cases;
however the non-Fermi-liquid phase shows clear asymmetry of the peak, as opposed
to the Fermi-liquid-like phase where the MDC peak is apparently Lorentzian.

D A quick look at momentum distribution curves

We give here a few remarks on the difficult subject of MDC structure. Because of the interplay
of the lattice and the Fermi surface shape and the magnitudes of kF and the lattice period, the
phenomenology of MDCs shows vast variety. We thus limit ourselves to just pointing at what
MDCs look like for Fermi-liquid-like regime as opposed to the non-Fermi-liquid regime. We
work solely at κ= 0 now.

In Fig 21, we show the difference between a typical MDC in the non-Fermi-liquid
phase (left) and in the Fermi-liquid-like phase (right). In both cases the system has a quasi-
particle (as we can see also from the “phase diagram” in Fig. 4). However, the asymmetric
structure of the QP peak, the telltale sign of non-Fermi-liquid physics, is clearly present in the
left, whereas the right-hand plot has a symmetric peak. Notice that in this case the asymmetry
of the left-side plots is seen also in EDCs (e.g. Fig. 5), which is expected for the holographic
model of our type, since it is known that both in homogeneous space [27] and in the presence
of weak lattice (Section 4.2) our choice of the EMD action implies that overdamped peaks are
always asymmetric also in energy. But MDCs provide a direct and general piece of evidence of
the non-Fermi liquid physics.24

As a taste of the work to be done, we present in Fig. 22 three two-dimensional MDC plots,
again near zero energy, roughly corresponding to the three cases of EDCs in Fig. 5: a sharp
but asymmetric quasiparticle, a broad continuum with no quasiparticles, and a more symmet-
ric, Fermi-liquidish quasiparticle. Unusually, sharp EDC for α = −0.7 becomes a broad MDC,
whereas a complete lack of quasiparticle for α= −1.0 translates to strongly localized (though
of course finite in amplitude) MDC curve. The third case (α= −2.2) is sharp both in momen-
tum and energy. This potentially very intriguing phenomenon will be the subject of further
work.

24We thank an anonymous referee for reminding us of this criterion.
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Figure 22: Two-dimensional plots of momentum distribution spectra A(kx , ky) at
ω = 10−3, for ∆ = 1.3 and α = −0.7, α = −1.0, α = −2.2 (left to right). The first
case has no sharp QP in momentum despite a sharp EDC. The second case is opposite
to that: sharp momentum distribution even though we have shown that no sharp QP
in energy exists. The final case looks close to a Fermi liquid.
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Figure 23: Absolute trace of the relative difference Tr|∆G(iωn)| for three cutoff
values ωc , with respect to the largest cutoff we have tried ωc = 22. The spectra are
computed for the six standard momentum values. Overall agreement is good, even
for the largest cutoff employed.

E More on comparison to the Hubbard model

In this Appendix we discuss the practicalities of performing the Hilbert transform (57) numer-
ically, we give some more data comparing the Green functions of the holographic lattice to
those of the Hubbard model, and finally we show that the Hubbard-like bands are not present
in absence of the lattice even with the dipole coupling κ turned on. In other words, the band
require both the dipole coupling and the lattice.

E.1 Numerical implementation of the Hilbert transform

The numerical integration over frequencies in (57) has two nontrivial points: (1) the large-
frequency limit ω → ±∞ (2) the vicinity of the QP peak. The first problem is resolved
by imposing a large but finite cutoff so we really compute the integral

∫ωc

−ωc
. The conver-

gence is quite rapid already for ωc ≈ 10 because of the boundary source D, introduced
in Eq. (16) and motivated in subsection 3.3, which acts as a UV regulator. One can es-
timate the UV convergence by comparing the results for different cutoff values. We have
considered the cutoffs ωc = 10,14,18,22. We have adopted the ωc = 22 results as refer-
ence values G(0)(iωn) for the Matsubara propagator and calculated the relative difference
∆G(iωn) ≡ |

�

G(i) (iωn)− G(0) (iωn)
�

/G(0) (iωn) |, where the indices i = 1,2,3 correspond
to ωc = 18,14,10. In Fig. 23 we show the values of the relative difference for the three
cutoff values, for the standard set of momenta and for randomly chosen parameter values
α = 1.1,∆ = 1.3. We see that already for the smallest cutoff the relative difference is about
one percent, thus our results are reliable.
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Figure 24: Same as Fig. 15 but for the temperature T = 0.5 (A) and T = 0.3 (B). At
T = 0.5 the agreement is still quite good. For T = 0.3, the lowest temperature in the
set of CTINT data that we have used, we see some systematic differences between
the curves for small iωn, which is absent on higher temperatures. This suggests
differences in local features in real frequency, not really a surprise since the two
models are microscopically distinct.

The second issue discussed above is essentially an IR problem: if the quasiparticle peak is
very sharp, we need a much finer resolution when integrating near the peak; this is important
as otherwise we do not get good large-iωn asymptotics. However, this is easily resolved by
decreasing the integration step for by a factor 10 − 20 near the peak maximum. Since this
interval is very narrow (smaller than ∼ 0.01), this presents no problems (the slowdown near
the peak is significant but only constitutes a small part of the overall integration interval).
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E.2 Additional data on fitting the holographic spectra to the Hubbard model

Now we give the comparison of the Matsubara Green functions for the holographic and for
the Hubbard model for the remaining two temperatures, T = 0.5 and T = 0.3 (Fig. 24). At
T = 0.5 the agreement is still very good but at the lowest temperature, T = 0.3, there are larger
systematic differences. The agreement is the worst at small Matsubara frequencies, which
correspond to local features of real-frequency GR (large Matsubara frequencies correspond to
global features, or properties of the integral

∫

dωA(ω,k)). This simply means that detailed
properties of the spectrum (which are best visible at low temperatures) differ between the AdS
and Hubbard models. In the context of all our findings, this is expected. More interesting is
the clear outlying status of the curve at k= (π,π), in the corner of the Brillouin zone. We have
discussed in our WKB analysis why such points are expected to show diminished quasiparticle
intensity. We thus understand the phenomenon in AdS but obviously it is something which
does not happen in the Hubbard model.
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Figure 25: Energy spectra for the same values of α,∆,κ,µ as Fig. 8 but in absence
of lattice: δµ/µ0 = 0. The gaps separating the left and right band from the central
(quasiparticle) peak have almost vanished, in accordance with our expectation that
the bands are well-separated thanks to the contributions of multiple Brillouin zones
in the self-energy. The six momenta are chosen as k/µ0 = 0, 0.5,1.0, 1.5,2.0, 2.5.

E.3 Absence of Hubbard bands in a homogeneous system

We will now present numerical evidence that in absence of lattice and the umklapp contribu-
tions to the self-energy the Hubbard bands are not present (or at least are much less promi-
nent). We simply take the same values of other parameters but put δµ = 0, i.e. we work in
homogeneous space. As an example, consider Fig. 25, obtained with the same parameters as
Fig. 8, including the dipole coupling κ = 1.5, except for the absence of lattice. In this case,
the momenta can take any real values and the natural unit is the chemical potential µ0. While
the overall structure of the spectrum does not differ too much from the weak lattice case for
α = −1.1 and α = −2.5, there are no gaps and no band-like structures. For α = −0.6, we
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find the typical strong gap between two branches of the dispersion relation, both of them with
sharp peaks; this is very different from the lattice result, and again has no broad bands (the
only exception perhaps being the case α= −2.5,∆= 1.1).

Note however that point 2 in subsection 4.2 provides an analytical argument for the same
conclusion: that bands are a consequence of the umklapp terms in the Green function. Al-
though that argument is clearly non-rigorous, it lends additional merit to the numerical rea-
soning in this Appendix.
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Abstract
We study vortex patterns of counterpropagating laser beams in a photorefractive crystal, 
with or without the background photonic lattice. The vortices are effectively planar and 
have two “flavors” because there are two opposite directions of beam propagation. In a 
certain parameter range, the vortices form stable equilibrium configurations which we 
study using the methods of statistical field theory and generalize the Berezinsky–Koster-
litz–Thouless transition of the XY model to the “two-flavor” case. In the nonequilibrium 
regime, the patterns exhibit an Andronov–Hopf bifurcation which may lead to oscillations 
(limit cycle), chaos or decay to zero intensity due to radiation losses. We show how to iden-
tify various pathways toward instability from intensity patterns, i.e. from experiment.

Keywords Vortex · BKT transition · Photorefractive optics · Statistical field theory

1 Introduction

Nonlinear optical systems are a rich arena for studies of various fundamental physi-
cal phenomena. The strong response of the nonlinear optical medium to the propagation 
of light makes it a typical strongly correlated system, with many phenomena similar to 
those in other strongly interacting systems in areas such as condensed matter. Their com-
plex dynamics offers an opportunity to study spatiotemporal chaos and optical turbulence 
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(Cross and Hohenberg 1993; Rabinovich et al. 2000). On the other hand, they often also 
exhibit stable, equilibrium confgurations in a certain parameter range, which are nau-
trally studied by statistical physics methods. Vortices and other topological configurations 
(Alexander et al. 2007; Anderson 2007; Fetter 2009), long-range order (Anderson 2007), 
quenched disorder and glassy behavior (Antenucci et al. 2015a, b; Ghofraniha 2015; Per-
ret et al. 2012) are universal in a broad range of systems such as cold atoms (Bagnato et al. 
2015; Malomed et al. 2016) and magnetic systems, and the relative simplicity of experi-
ments in optics makes it an excellent testing ground for strongly coupled models.

In this paper we study a specific and experimentally realizable nonlinear optical system: 
laser beams counterpropagating (CP) through a photorefractive (PR) crystal. This means 
we have an elongated PR crystal (with one longitudinal and two transverse dimensions) 
and two laser beams shone onto each end. We thus effectively have two fields, one forward-
propagating and one backward-propagating. The optical response of the crystal depends 
nonlinearly on the total intensity of both beams, which means the beams effectively inter-
act with each other. This system has been thoroughly investigated for phenomena such as 
dynamical solitons (Denz et al. 2003; Petrović et al. 2011, 2005; Jović et al. 2008), vortex 
stability on the photonic lattice (Alexander et al. 2007; Terhalle et al. 2008; Čubrović and 
Petrović 2017) and topological invariants (Rechtsman et al. 2013).

We first recast the system in Lagrangian and then in Hamiltonian form so it can be stud-
ied as a field theory, which depends parametrically on the time t. Then we consider the 
time dynamics of the system and show that in a broad parameter range the patterns relax to 
a static configuration which can be studied within equilibrium field theory. By renormali-
zation group (RG) analysis, we obtain the phase diagram of static vortex configurations. 
The phase diagram is obviously closely related to the famous Berezinsky–Kosterlitz–Thou-
less (BKT) vortex unbinding transition in the XY model (Berezinsky 1971; Kosterlitz and 
Thouless 1973) except that having two components of the field produces additional phases 
and phase transitions, due to forward–backward beam interaction. The analytical insight 
we obtain also allows us to avoid overextensive numerics – analytical construction of the 
phase diagram tells us which patterns can in principle be expected in different corners of 
the parameter space.

Next we focus on the nonequilibrium regime, classify the fixed points and study pos-
sible routes of instability. We emphasize the pictorial and “rule-of-thumb” criteria to rec-
ognize various instabilities, in order to facilitate experimental checks. At the end we will 
discuss the perspective of studying dynamical criticality, i.e. instablities which consist in 
moving from one vortex phase to another in real time, a phenomenon which is intimately 
connected to the difficult questions of quench dynamics and thermalization in many-body 
systems.

2  Counterpropagating beams in photorefractive medium: equations 
of motion

Consider a photorefractive crystal of length L irradiated by two paraxial head-on laser 
beams which propagate from the opposite faces of the crystal in the z-direction. Photore-
fractive crystals induce self-focusing of the beams—the vacuum (linear) wave equation is 
modified by the addition of a friction-like term, so the diffusion of the light intensity (the 
broadening of the beam) is balanced out by the self-focusing of the beam. The physical 
ground for this is the redistribution of the charges in the crystal due to the Kerr effect. 
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The nonlinearity is contained in the change of the refraction index which is determined by 
the induced charge density. A sketch of the system is given in Fig. 1. Before entering the 
crystal, the laser beams can be given any desirable pattern of both intensity and phase. In 
particular, one can create vortices (winding of the phase) making use of the phase masks 
(Denz et al. 2003).

Assuming the electromagnetic field of the form � = e��t+���
(
Feikz + Be−ikz

)
 , we can 

write equations for the so-called envelopes F and B of the forward- and backward-prop-
agating beams along the z-axis (the frequency, transverse and longitudinal momentum are 
denoted respectively by �, �, k ). The wave equations for F and B are now:

where the plus and minus signs on the left-hand side stand for the forward- and backward-
propagating component of the beam amplitude doublet � ≡ (�+,�−) ≡ (F,B) , and �  is 
the dimensionless PR coupling constant. From now on we will use � ∈ {+,−} to denote 
the two beams (F and B) and call it a flavor index, in analogy with field theory. The vorti-
city (winding number of the phase) will be called vortex charge as usual. The charge field 
E on the right-hand side of the equation is the electric field sourced by the charges in the 
crystal (i.e., it does not include the external electric field of the beams). Its evolution is well 
represented by a relaxation-type equation (notice that the derivative �E is strictly negative) 
(Petrović et al. 2011):

Here, I ≡ I� + Ix is the total light intensity at a given point, I� ≡ |F|2 + |B|2 is the beam 
intensity and Ix the intensity of the fixed background. The meaning of Ix is that the crys-
tal is all the time irradiated by some constant light source, independent of the counter-
propagating beams with envelopes F, B. The relaxation time is � . The form of the non-
linearity accounts for the saturation of the crystal; notice that a simple quartic non-linear 
Schrödinger equation would not account for the saturation.1 In the numerical calculations, 

(1)±��z�±(z;x, y;t) + Δ�±(z;x, y;t) = �E(z;x, y;t)�±(z;x, y;t),

(2)
�

1 + I(z;x, y;t)
�tE(z;x, y;t) + E(z;x, y;t) = −

I(z;x, y;t)

1 + I(z;x, y;t)
.

Fig. 1  Experimental setup for the study of the CP beams in the PR crystal. The crystal has the shape of a 
parallelepiped, and the beams propagate along the longitudinal, z-axis: the forward (F)-beam from z = 0 to 
z = L , and the backward (B)-beam the other way round. The intensity patterns can be observed at the trans-
verse faces of the crystal, at z = 0 and z = L

1 One might also worry that a realistic crystal is anisotropic, while our equation is isotropic. Nevertheless, 
comparison to experiment (Neshev et al. 2004; Fleischer et al. 2004; Dreischuh et al. 2002) shows that this 
model is able to describe actual measurements rather well. Also, the effects of anisotropy can be suppressed 
in experiment by illuminating the crystal by uniform light for very long times before starting the experiment 
(Cohen et al. 2002).
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we solve Eqs. (1), (2) with no further assumptions, using a slightly modified version of the 
beam propagation method (Sandfuchs et al. 2001). For analytical results we will need to 
transform them further assuming a vortex pattern. The Eq. (2) is completely phenomeno-
logical, but it excellently represents the experimental results (Denz et al. 2003). We will 
first consider the equilibrium regime, and then the nonequilibrium dynamics.

For slow time evolution (in absence of pulses), we can Laplace-transform the Eq. (2) in 
time ( E(t) ↦ E(u) = ∫ ∞

0
dte−utE(t) ) to get the algebraic relation

The original system (1) can now be described by the Lagrangian:

where �3 is the Pauli matrix �3 = diag(1,−1) . This has the form 
 = �� †�3�z� − |∇� |2 − Veff (�

†,� ) , i.e. the Lagrangian of a non-relativistic field the-
ory (a two-component nonlinear Schrödinger field equation) in 2 + 1 dimensions (x, y; z), 
where the role of time is played by the longitudinal distance z, and the physical time t (or u 
upon the Laplace transform) is a parameter.

3  Stable vortex configurations and the phase diagram

Following the same steps as for the textbook XY model we can arrive at an effective Ham-
iltonian for stable vortex configurations. For details we refer the reader to Čubrović and 
Petrović (2017). Assuming the vortex solution of the form

where �±(�) is the singular part of the phase and �0±(�) the regular part, we want to inte-
grate out both the amplitude fluctuations and the regular part of the phase and arrive at a 
description of the systems solely in terms of vortex charges. This is done by expanding the 
Lagrangian (4) to quadratic order in both amplitude and phase fluctuations and integrating 
them out. Then the usual Legendre transform yields the vortex Hamiltonian:

We denote the flavor ± by Greek indices, and the summation convention is understood.2 
Furthermore, we denote Q� × Q� ≡ Qi+Qj− + Qi−Qj+ . The first term is the expected Cou-
lomb interaction of vortices from the XY model (Berezinsky 1971; Kosterlitz and Thouless 
1973); notice that only like-flavored charges interact through this term (because the kinetic 
term |∇� |2 is homogenous quadratic). The second term is the forward–backward interac-
tion, also with Coulomb-like (logarithmic) radial dependence. This interaction is gener-
ated by the coupling of amplitude fluctuations ���(r) to the phase fluctuations. In a system 
without amplitude fluctuations, i.e. classical spin system, this term would not be generated. 
The third and fourth term constitute the energy of the vortex core. The self-interaction 

(3)E(z;x, y;u) = −
� †� + Ix − �E0

1 + �u + Ix + � †�
= − 1 +

1 + �u + �E0

1 + �u + Ix + � †�
.

(4) = �� †�3�z� − |∇� |2 + �� †� − � (1 + �E0 + �u) log(1 + �u + Ix + � †� ),

(5)�0±(�) = �0±(r)e
���±(�)+��0±(�),

(6)vort =
∑

i<j

(
gQi𝛼Qj𝛼 + g�Qi𝛼 × Qj𝛽

)
log rij +

∑

i

(
g0Qi𝛼Qi𝛼 + g1Qi𝛼 × Qi𝛽

)
.

2 There is no difference between upper and lower indices as both flavors always enter the sum with positive 
sign.
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constants g0, g1 are of course dependent on the vortex core size and behave roughly as 
g log a∕�, g� log a∕� , where � is the UV cutoff. The final results will not depend on � , as 
expected, since g0, g1 can be absorbed in the fugacity y (see the next subsection). Expres-
sions for the coupling constants in terms of original parameters are given in Čubrović and 
Petrović (2017); they can be used to relate the theoretical phase diagram to experiment.

To describe the phase diagram, we will perform the renormalization group (RG) analy-
sis. Here we follow closely the calculation for conventional vortex systems. We consider 
the fluctuation of the partition function � upon the formation of a virtual vortex pair at 
positions �1, �23 with charges q� ,−q� , (with �1 + �2 = 2� and �1 − �2 = �12 ), in the back-
ground of a vortex pair at positions �1,�2 (with �1 + �2 = 2� and �1 − �2 = �12 ) with 
charges Q1� ,Q2� . It is also convenient to replace the core self-interaction constants g0,1 with 
the fugacity parameter defined as y ≡ exp

[
−�

(
g0 + g1

)
log �

]
 . We also introduce the nota-

tion � ≡ L in analogy with the inverse temperature � in standard statistical mechanics but 
of course the physical meaning of � in our system is very different: we have no thermody-
namic temperature or thermal noise, and the third law of thermodynamics is not satisfied 
for the “temperature” 1∕� . We merely use the �-notation for reasons of formal similarity, 
not as a complete physical analogy.

This is a straightforward but lengthy calculation and we state just the resulting flow 
equations:

Notice that if one puts g� = 0 , they look very much like the textbook XY model RG flow, 
except that the fugacity enters as y4 instead of y2 (simply because every vortex contrib-
utes two charges). We can find fixed points analytically and then numerically integrate 
the flow equations to find exact phase borders. The fugacity y can flow to zero (meaning 
that the vortex creation is suppressed and the vortices tend to bind) or to infinity, meaning 
that vortices can exist at finite density. At y = 0 there is a fixed line g + g� = 1 . This line 
is attracting for the half-plane g + g� > 1 ; otherwise, it is repelling. There are three more 
attraction regions when g + g� < 1 . First, there is the point y → ∞, g = g� = 0 which has 
no analogue in single-component vortex systems. Then, there are two regions when g → ∞ 
and g� → ±∞ (and again y → ∞ ). Of course, the large g, g′ regime is strongly interacting 
and the perturbation theory eventually breaks down. What happens when g, g′ flow toward 
very large values is that the intensity at the vortex core becomes very large, so the lowest-
order, quadratic Hamiltonian needs to be supplemented by higher-order terms in intensity 
fluctuations. To integrate them out, one needs to perform a diagrammatic expansion which 
leads to quartic- and higher-order terms in vortex charges Q� in the effective vortex Ham-
iltonian [Eq. (6)], ultimately correcting the flow at large g, g′ to flow toward finite values 
g∗, g

�
∗
 and g∗∗, g�∗∗.

The RG flows in the g − g� plane are given in Fig. 2. The situation is now the following:

1. The attraction region of the fixed line is the vortex insulator phase (INS): the creation 
rate of the vortices is suppressed to zero. There is no vortex charge conservation.

(7)
�g

��
= − 16�(g2 + g�2)y4,

�g�

��
= − 2�gg�y4,

�y

��
= 2�(1 − g − g�)y.

3 The boldface vectors are the coordinate vectors in the plane.
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2. The zero-coupling fixed point attracts the trajectories in the vortex perfect conductor 
phase (PC): only the fugacity controls the vortices and arbitrary charge configurations 
can form. Each vortex charge, Q+ and Q− , is separately conserved.

3. In the attraction region of the fixed point with g∗ < 0 and g�
∗
> 0 (formally they flow 

to −∞ and +∞ , respectively), same-sign F- and B-charges attract each other and those 
with the opposite sign which repel each other. This is the frustrated insulator (FI): it 
conserves only the combination Q+ + Q− , and only vortices with charge (Q+,−Q+) are 
stable.

4. The fixed point with g∗∗, g�∗∗ < 0 (formally both flow to −∞ ) corresponds to the con-
ductor phase (COND). This phase preserves one of the charges, Q+ or Q− , i.e. either 
(Q+, 0) - or (0,Q−)-vortices proliferate.

In the half-plane g + g� > 1 every point evolves toward a different, finite point (g, g�) in 
the same half-plane. In the other half-plane we see the regions of points moving toward 
the origin or toward one of the two directions at infinity. In the future we plan to apply 
this formalism also to multi-component vortices in Bose–Einstein condensates (Ma et al. 
2016) and in particular in type-1.5 superconductors (Silaev and Babev 2012), where even 
more complex phenomena, including frustration, are observed as a consequence of multi-
component interaction.

Fig. 2  Phase diagram for the clean system in the g−g� plane, at the mean-field level with RG flows. We 
show the flows for a grid of initial points, denoted by black dots; red lines are the flows. Four phases exist, 
whose boundaries are delineated by black dashed lines: conductor (COND), insulator (INS), frustrated insu-
lator (FI) and perfect conductor (PC). The straight line g + g� = 1 is obtained analytically whereas the other 
phase boundaries can only be found by numerical integration of the flow Eq. (7). The flows going to infinity 
are the artifacts of the perturbative RG; they correspond to finite values which are beyond the scope of our 
analytical approach. Notice how the flows in the g + g� > 1 phase all terminate at different values
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An interesting line of research consists in adding disorder to the above system. We con-
sider this problem in Čubrović and Petrović (2017) and find that the system can be approxi-
mated by a random-coupling and random-field two-component XY-like model, related to the 
Cardy–Ostlund model (1982). The replica formalism (Castellana and Parisi 2015) then pre-
dicts a glassy phase with slow dynamics, strong correlations and no long-range order. This is 
however a separate story and we will leave it out here. Interested readers can consult (Čubrović 
and Petrović 2017) and look at related work in Antenucci et al. (2015a, b).

4  Time‑dependent regime

Here our goal is twofols. First, we have to show that at least for some boundary conditions and 
parameter values there is a stable fixed point of the time evolution, so that the system reaches a 
time-independent, equilibrium pattern. The reason is that the whole formalism of the previous 
chapter is only valid for such configurations, as it departs from equilibrium statistical mechan-
ics. Second, we want to check other, non-static behaviors as they are interesting in their own 
right and experimentally relevant (but one should not expect them to be described by an equi-
librium phase diagram like Fig. 2).

Time dynamics can be studied in a straightforward way, making use of the relaxation 
Eq. (2) to write down the first-order evolution equations for �±:

This system has three equilibrium points. One is the trivial equilibrium with zero intensity 
(“0” point):

and the remaining two are related by a discrete symmetry �± ↦ �∓ (“±” points). The “ + ” 
point is

and the “ − ” point has instead �+ = 0 and �− =
√
(E(1 + Ix) + Ix)∕(1 + E) exp(��−) . 

Notice that the phase �± remains free to vary so the “±” solutions support vortices. We 
first ask what is the stability criterion for a nontrivial solution, i.e. one of the “±” points, 
as this is the main criterion for the applicability of the equilibrium statistical mechanics 
methods in the previous section. Introducing the amplitudes of the fluctuations from equi-
librium as X1,3 = ℜ��±,X2,4 = ℑ��±,X5 = �E , we can do a first-order stability analysis 
as the system is non-degenerate. Rescaling X1 ↦ (1 + E0)

−3∕4
(
Ix + E0

(
1 + Ix

))1∕2 and 
t ↦ t

((
1 + E0

)
∕
(
Ix + E0

(
1 + Ix

)))1∕4 , the equation of motion for the “±” point reads

(8)
��±

�

�t
= −

�

�

((1 + I)E + I)

�k − q2 − �E
�±
�
,

�E

�t
= −

1

�
((1 + I)E + I).

(
�±
+
,�±

−
,E

)
=

(
0, 0,−

Ix

1 + Ix

)
,

(
�±
+
,�±

−
,E

)
=

(√
E(1 + Ix) + Ix

1 + E
e��+ , 0,E

)
,

(9)�t

(
X1

X5

)
=

(
−

a±

�E0+k+q
2

− 1

1 −
a±

�E0+k+q
2

)(
X1

X5

)
+ O(X2

1
+ X2

5
;X2,X3,X4),
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with a± being some (known) positive functions of � ,E0, Ix (independent of k, q). This is 
precisely the normal form for the Andronov–Hopf bifurcation (Arnol’d et al. 1994), and 
the bifurcation point lies at k = −�E0 − q2 . To remind, the bifurcation happens when 
the off-diagonal element in the linear term changes sign: the fixed point is stable when 
a±∕(�E0 + k + q2) is positive. The sign of the nonlinear term determines the supercritical/
subcritical nature of the bifurcation.4

Now the textbook analysis of the Andronov–Hopf bifurcation tells us that stable “ + ” 
equilibrium exists for k > −𝛤E0 − q2 where E0 is best found numerically. Exactly the same 
condition holds for the “ − ” point. For k < −𝛤E0 + q2 , dynamics depends on the sign of the 
nonlinear term in Eq. (9). For the positive sign we expect periodically changing patterns 
and for the negative sign (subcritical bifurcation), various possibilities arise: the system 
may wander chaotically between the “ + ” and the “ − ” points, or it may end up in the attrac-
tion region of the “0” point and fall onto the trivial solution with zero intensity. Naively, 
the attraction regions of the two fixed points (“±” and “0”) are separated by the condition 
−�E0 − q2 = q2 , i.e. qc =

√
−�E0(� , �)∕2 , where we have emphasized that E0 is in gen-

eral non-universal. The actual boundary may be more complex however, as our analysis is 
based on finite-order expansion around the fixed points, which is not valid far away from 
them.

The numerical stability diagram is given in Fig.  3. The stability limit turns out to 
be k > 𝛤 − q2 , i.e. E0 ≈ −1 . The curves separating the attraction regions of the three 
equilibrium points follow exactly the quadratic scaling in q as predicted by the analyti-
cal stability analysis. The equilibrium region lies in the top right corner of the diagram 
(nontrivial equilibrium), above k ≈ 1∕L . This is where the patterns evolve towards static 

Fig. 3  Stability diagram in the q−k plane. The onset of instability for k < kc(q) is found numerically for 
a range of q values. The solid lines are the analytical prediction for the stability of the “0” point ( kc = q2 , 
magenta) and of the “ + ” point ( kc = �E0 − q2 ≈ � − q2 , red). The black dashed line at q = qc ≈ 1 sep-
arates the stability regions of the two points. The domain of applicability of our main results is the top 
right corner (nontrivial equilibrium), above k > kmin ∼ 1∕L and for not too large q values. Parameter values: 
� = 2, Ix = 0

4 Negative sign means the fixed point is stable everywhere before the bifurcation and is replaced by a stable 
limit cycle after the bifurcation (supercritical). Positive sign means the fixed point coexists with the stable 
limit cycle before the bifurcation and the (X1,X5) plane is divided among their attraction regions; after the 
bifurcation there is no stable solution at all (subcritical). However, one should not take the stability in the 
whole (X1,X5) plane in the supercritical case too seriously. We have expand the equations of motion in the 
vicinity of the fixed points and the expansion ceases to be valid far away from the origin.
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long-time configurations. The top left corner describes “boring” situations, when all 
light ultimately radiates away from the crystal and intensity drops to zero. The bottom 
region contains nontrivial dynamics: depending on parameters, it may contain a limit 
cycle (correspinding to oscillating patterns) or aperiodic wandering among an alphabet 
of unstable patterns (chaos).

Formally, both k and q can be any real numbers. In practice, however, k is discrete 
and its minimal value is of the order 1  / L. The spatial momentum q lies between the 
inverse of the transverse length of the crystal (which is typically an order of magnitude 
smaller than L, i.e. minimal q can be assumed equal to zero) and some typical small-
scale cutoff which in our case is the vortex core size.

Now we test our conclusions numerically. A convenient quantity to differentiate 
between different stability regimes is the relaxation rate

which is expected to reach zero for a generic relaxation process, where in the vicinity of 
an asymptotically stable fixed point X ∼ Xeq + xe−rt will be generically nonzero for a limit 
cycle or chaos, and will asymptote to a constant for the “0” point, where Xeq = 0 so we get 
(1∕X)dX∕dt ∼ r.

Figure  4 summarizes these possibilities in terms of the relaxation rate r, whereas 
Figs.  5 and 6 show how the patterns evolve in some representative cases. The black 
curves in Fig.  4 show the situation which is in the focus of this work – the approach 
toward static equilibrium. This corresponds to the phases from Fig. 2. In Fig. 5 we see 
how the equilibrium configurations are reached (for three phases). In each case we start 
with a regular lattice of circular vortices. In the PC phase (Fig. 5a) the vortices expand 
somewhat but in principle retain the original configuration (and charges). The other two 
phases (Fig. 5b, c) have nontrivial transient dynamics and undergo the lattice inversion, 
but eventually (for times about t ≈ 20 − 25� ) they stabilize and form a static inverse lat-
tice (with charges (3,−3) in the FI case and with zero charge in the INS case).

(10)r ≡ 1

X

dX

dt
=

∑
x,y �X

�
tj+1;x, y

�
− X

�
tj;x, y

�
�2

∑
x,y �X

�
tj;x, y

�
�2

,

Fig. 4  Time evolution of the 
relaxation rate r for the various 
situations from Figs. 5 and 6, 
illustrating the relaxation to 
non-trivial (non-zero intensity) 
equilibrium, i.e. “±” fixed points 
(Fig. 5a, c, black), limit cycle 
(6a, blue), chaos (6b, red) and the 
relaxation to trivial (zero inten-
sity) equilibrium, i.e. “0” fixed 
point (6c, green). In the main text 
we mainly study the cases like 
the black curves, where time-
independent stable configurations 
are seen. The circles are data 
points from numerics and the 
lines are just to guide the eye
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Fig. 5  Time evolution of patterns at five different times: a perfect conductor phase, b frustrated insulator 
phase and c insulator phase. In all cases the approach to equilibrium is obvious, and we expect that for long 
times a thermodynamic description is justified

Fig. 6  Time evolution of non-equilibrium patterns. In a the limit cycle leads to permanent oscillatory 
behavior, in b wandering along the unstable manifold between the equilibrium points gives rise to chaos 
and in c dissipation wins and dynamics dies out. The parameters are the same as in the previous figure, 
except that the length L is increased thrice
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The other curves in Fig. 4 describe dynamics which does not result in a nontrivial static 
pattern. The blue curve shows a limit cycle leading to periodic oscillations of the pat-
tern, with half-period about 10� . The corresponding patterns are seen in Fig.  6a, where 
we see how the vortex lattice keeps coming back to the original configuration at times 
≈ 5�, 10�, 15� . The red curve corresponds to the chaotic regime with aperiodic dynamics 
and no relaxation, as in Fig. 6b. Here the pattern keeps changing, wandering among the 
original lattice (for t = 5�, 20� ), the inverse lattice (for t = 10� ) and more or less incoher-
ent patterns (for t = 15�, 25� ). Finally, the green curve in Fig. 4 reaches a constant value of 
r. This corresponds to the pattern which radiates away in Fig. 6c, with total intensity being 
almost zero for t > 20𝜏 . Here one might wonder what happens to the vortex charge when 
the initially regular vortex lattice ends up as an incoherent, low-intensity configuration 
which obviously does not support vortices. The explanation is that the vortex charge flows 
outward, eventually reaching the edges of the crystal. The finite-size effects then invalidate 
the vortex charge conservation, as the usual proof that the winding number of the phase 
is a topological invariant crucially depends on considering the winding at infinity. Vortex 
charge thus dissipates at the edges. This is demonstrated in Fig. 7, which presents the same 
systems as in Fig. 6a–c but shows the ratio of the total bulk vortex charge Qbulk(t) to the 
total initial vortex charge Qtot . Total initial charge is calculated by definition, as the inte-
grated vorticity of the F-beam, Qtot = ∫ dx ∫ dy|�F| , with

and all the quantities are taken at t = 0 . The integral ∫ dx ∫ dy|�F| equals precisely the 
total F-vortex charge summed over all vortices. The bulk charge is computed by subtract-
ing the integrated vorticity flow along the boundary:

(11)�F =
(
cos �F�x�F , sin �F�y�F

)
,

(12)Qbulk(t) = Qtot − ∫
t

0

dt� ∮ d� ⋅ �F(t).

Fig. 7  Same systems as in Fig. 6 but now for the time dependence of the F-vortex charge in the bulk (full 
lines) and the vortex current flow through ther boundary (dashed lines). While the limit cycle (blue) and 
chaos (red) keep all vortex charge in the bulk, dissipation toward the trivial equilibrium (green) has a sys-
tematic vortex flow toward the edges. This is a finite-size effect which would not happen in an infinite field 
(but it does happen in real-world PR crystals which are, of course, finite)
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Figure 7 shows that the sum of the bulk charge and the vortex current through the bound-
ary is preserved in all cases, including when chaos or dissipation makes the pattern inco-
herent. In the last case, however, all the vortex charge flows toward the boundaries – this is 
a finite-size effect which would be absent in infinite field but is observable in realistic PR-
crystals which are of finite dimensions. In practice, the matters are even more complicated 
as the boundary surface carries also new physics (surface polarization etc.), so the starting 
equations of motion would have to be modified. We believe, however, that the basic picture 
of vortex charge dissipating at the boundary still remains, because the mapping from the 
internal U(1) phase onto the loop in the coordinate plane is explicitly broken by the bound-
ary (whatever its detailed physics might be), and the vortex charge nonconservation at the 
boundary follows from this breaking.

The next task is to consider in more detail the decay of an ordered phase, either to chaos 
or to a limit cycle (radiating away all intensity is likely a trivial process, fully described by 
the approximately constant decay rate). We plan to address this problem in further work, 
and to relate the results to the question of quench dynamics in vortex systems.
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Institute of Physics

Belgrade, 2020

SERBIA



Autor: Grupa autora

Naslov: 10th MATHEMATICAL PHYSICS MEETING: SCHOOL
AND CONFERENCE ON MODERN MATHEMATICAL PHYSICS
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tematičke fizike. - Tiraž 150. - Str. VII: Preface / editors. - Napomene i bibliografske reference
uz radove. - Bibliografija uz svaki rad.

ISBN 978-86-82441-51-9
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Fermions, hairy blackholes and hairy wormholes
in anti-de Sitter spaces∗

Mihailo Čubrović†

Center for the Study of Complex Systems,
Institute of Physics Belgrade, Serbia

Abstract

We discuss the existence, properties and construction (analytical and numer-
ical) of hairy black holes with fermionic matter in asymptotically anti-de-Sitter
space. The negative cosmological constant makes hairy black holes stable, and the
nucleation mechanism can make the formation of hair at the horizon energetically
and entropically preferable to conventional black holes. The difficulties intrinsic to
fermions at finite density – the Pauli principle and exchange interactions – require
some drastic approximations in calculating the stress-energy tensor and geome-
try. We will consider several methods on the market – Hartree-Fock, WKB, and
fluid-mechanical methods, and consider the dual field theories of these construc-
tions. Then we will apply the same methods to the construction of wormholes;
fermions are a natural candidate for wormhole source matter as they have a Dirac
sea of negative energies, and negative energy-momentum density is the condition
for wormhole formation. The field theory interpretation of wormholes is still open
but has to do with strongly entangled systems. The paper combines a pedagogical
introduction to the basic methods and results (obtained in the last 10+ years)
with an account of fresh research results, mainly on the wormhole applications
and non-planar black holes.

1. Introduction

AdS black holes are a favorite topic, not only in relation to holography but
also in general: AdS space behaves like a potential box, the cosmological
constant provides an effective repulsive force at large distances and the ex-
istence of a boundary at spatial infinity makes bound states possible. All of

∗ The author acknowledges funding provided by the Institute of Physics Belgrade
through the grant by the Ministry of Education, Science and Technological Develop-
ment. The author acknowledges the use of the Sci-Hub service. The results described here
would never have been possible without the teaching, help and collaboration from Jan Za-
anen, Koenraad Schalm, Yan Liu, Ya-Wen Sun, Elena Gubankova, Mariya Medvedyeva,
Vladan Djukić and Nicolas Chagnet.
† e-mail address: mcubrovic@gmail.com
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this brings about the famous result that hairy black holes are indisputably
possible, and well-studied. In full (global) AdS space, one may have small
black holes, which barely see the boundary and radiate like in asymptot-
ically flat space, and large black holes, which reach an equilibrium state
with the Hawking radiation at given temperature and remain stable for-
ever (eternal AdS black holes). We will focus on the latter, as they can be
treated as (semi)classical stationary systems. Clearly, just like the Hawk-
ing radiation, matter and gauge fields can likewise equilibrate between the
black hole horizon and AdS boundary, possibly forming hair – by definition,
it means nonzero density of some field (and possibly nonzero expectation
values of other operators, like charge density, spin, etc) at the horizon itself.
This in turn means that the geometry changes as opposed to the no-hair
case: the hair itself enters the stress-energy tensor, and the outcome is a
hairy black hole geometry, where a horizon still exists but with a different
metric. At zero temperature, hair tends to remove extremal black holes in
favor of zero-area horizons, with zero Bekenstein-Hawking entropy. We will
soon discuss several explicit examples of this phenomenon.

The above story acquires an additional dimension thanks primarily to
the AdS/CFT correspondence (gauge/gravity duality) [1, 2, 3] – the fact
that the bulk gravity physics is equivalent to a quantum field theory in flat
space in one dimension less, whose operators act as boundary sources of
the AdS (bulk) fields. The actions in AdS (with field Φ) and in CFT (with
field O, which acts as a boundary source to Φ) are equal:

SAdS = SCFT

SAdS =

∫
DΦ exp

(
−
∫
AdS

dD+1x
√
−gLAdS (Φ, ∂µΦ) +

∮
∂

dDx
√
−hOΦ

)
SCFT =

∫
DO exp

(
−
∫
dDxLCFT (O)

)
, (1)

where we have denoted by ∂ the boundary of the AdS space, gµν is the
AdS metric and hµν is the induced metric at the boundary. From now
on, integrals over the bulk of AdS will be dnoted just by

∫
, understanding

that the integral is over the whole space. At this place we do not intend
to explain AdS/CFT and its applications in any detail; suffice to say that
one can obtain thermodynamic potentials and correlation functions in field
theory, which has found important applications in condensed matter theory,
quantum chromodynamics and conformal field theory. Interested readers
can consult [4, 5, 6] for reviews. In this work we deal with the gravity side
of the correspondence – the formation of a hairy black hole with fermionic
matter, which corresponds to a finite electron density phase in field theory.
We assume the familiarity with the basic notions of AdS space and quantum
field theory in curved spacetime, for example at the level of [7] and [8],
respectively.

Mathematically, the topic of this review is the solution of the coupled
Einstein-Maxwell-Dirac system with the total action SAdS = Sbulk + S∂ .
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The bulk action reads:

Sbulk = SE + SM + SDir

SE =

∫
d4x
√
−g (R+ 6)

SM = −
∫
d4x
√
−g F̂

2

4

SDir = −
∫
d4x
√
−g

(
1

2
Ψ̄Dµe

µ
aΓaΨ +

1

2
Ψ̄eµaΓaΨ +mΨ̄Ψ

)
. (2)

Here, F̂µν = ∂µAν−∂νAµ is the electromagnetic (EM) field strength tensor,
and the the cosmological constant in AdS4 is 6/L2, where the AdS radius
L = 1 is set to unity, as we will mainly work on the Poincare patch of
AdS space, so all other dimensionful quantities can be expressed in terms
of L. The Dirac bispinor Ψ has mass m and charge q, and the covariant
derivative

Dµ = eaµDa = ∂µ −
ı

8

[
Γa,Γb

]
ωµab − ıqAµ (3)

depends on the spin connection ωµab and the gauge field Aµ, and the gamma

matrices satisfy the usual relations
[
Γa,Γb

]
= 2ηab, with the Minkowski

metric η. We will be using the mostly plus convention. Obviously, Ψ = 0 is
a solution, and in this case we get a Schwarzschild black hole if the EM field
is also zero, or a charged Reissner-Nordstrom (RN) black hole for nonzero
field strength. The question is, are there other solutions, with nonzero pro-
file Ψ? Such solutions describe hairy black holes at finite temperature: the
horizon is typically still there, but the geometry is changed. At zero tem-
perature, the black hole might disappear. Since AdS space has a boundary,
there is also a boundary contribution to the action, as in (1), depending on
extrinsic curvature K, boundary cosmological constant λ and the boundary
values of the fields:

S∂ =

∮
∂
d3x
√
−h

[
K − λ− 1

2
nµAνF̂

µν − 1

2
Ψ̄Ψ

]
. (4)

The classical equations of motion do not depend on the boundary action.
However, S∂ is still important (1) to make sure there is a good action
principle, i.e., that the on-shell solutions are indeed minima of the action1

(2) to regularize any UV divergences (3) to get correct thermodynamics.
The last point will be particularly important: one way to see that the hairy
black hole and not the bald black hole is the true vacuum will be the fact
that the action on the hairy solution is lower.

Solving the system (2) is a problem in quantum field theory at finite
density. We work with classical general relativity (GR) and classical EM

1Remember that the (bulk) Euler-Lagrange equations are only a necessary condition
for the minimum of the action.
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field, but fermions are never classical ; this is the first important lesson.
The Pauli principle always introduces nonlocal correlations which show as
the exchange interaction. Another way of saying this is that the pressure of
a fermionic gas or fluid always includes the quantum contribution which is
absent in both classical and bosonic gas; that is the reason that organized
matter such as stars, planets, chairs and notebooks has rigidity and does
not collapse onto itself. Therefore, even though we do gravity at h̄ = 0, the
fermions even at leading order need to be tackled quantum-mechanically.
This means calculating the fermionic determinant :

ZDir =

∫
DΨ̄DΨe−SDir ” = ” [det (Dµe

µ
aΓa + eµaΓaDµ +m)]1/2 . (5)

We have put the equality sign under quotation marks because the determi-
nant is actually the product of the eigenenergies of all the modes (an infinity
of them), which is not only badly divergent (that could be regulated) but
is also impossible to calculate because of the fermion sign problem, the
fact that the fermionic modes enter the path integral with a sign that can
be plus or minus. This makes the measure in the path integral (5) non-
probabilistic and makes it impossible to expand around a classical solution
in a controlled way. Fortunately, the AdS metric turns out to simplify the
problem enough that it can be tackled in a way which is tractable and,
while of course not exact, can be systematically improved in a perturba-
tive way. This is in fact the motivation behind AdS/CFT modelling of
strongly correlated electron systems: the fermion sign problem is fatal for
strongly coupled field theories in flat space, but in GR with AdS boundary
conditions it transforms into a difficult but doable task.

Is the journey worthwhile? In line with the broad scope of the Belgrade
Mathematical Physics Meetings, we have anticipated a broad readership of
this paper and thus we have decided to give a very general and perhaps
rather dry introduction to the topic of fermionic hairy black holes. This
necessarily means that we will not touch upon the many interesting appli-
cations: AdS/CFT and its applications to quantum chromodynamics and
condensed matter physics, the black hole information problem, the critical
phenomena in gravitational collapse and the black hole solutions in string
theory. We do discuss one special topic that we currently find very inter-
esting: hairy wormholes generated by fermion matter, where many of the
methods used for hairy black holes can be successfully applied. The main
task of the paper is to provide a tutorial on the basic methodology and
calculation techniques, bringing the reader to the point that he can under-
stand and repeat the calculations from the literature and start doing his
own. The existing literature is rather heterogenuous and there is no single
text to recommend. We will give the references we deem particularly use-
ful throughout the paper, without the pretention of being exhaustive; the
choice of references is certainly dictated also by our prejudices and tastes.

Plan of the paper. In Section 2 we first explain the instabilities of AdS
space and AdS black holes to a nonzero density profile of fermions, and in-



Fermions, hairy blackholes and hairy wormholes in anti-de Sitter spaces 63

troduce the basic concepts that will keep appearing throughout the paper:
effective potential and the bound states of the fermionic wavefunctions. In
Section 3 we first treat the problem in the consistent one-loop (Hartree-
Fock) approximation, calculating the determinant (5) by definition, from
the individual wavefunctions for different states. We find this job surpris-
ingly difficult – it is still an active research area. But we are able to give a
qualitative picture of the outcome and sketch the phase diagram, depend-
ing on the chemical potential µ and fermion mass and charge m, q. As
we move toward the high-fermion-density corner of the phase diagram, the
things simplify. The simplest and ”most classical” limit of the problem is
the limit of large density. It is a rule of thumb that for fermions, the role of
interactions diminishes as the density grows. At high density, WKB approx-
imation works very well. At highest densities, we find semiclassical fluid
with an equation of state that takes into account the fermionic pressure,
similar in spirit to the Oppenheimer-Volkov equations for neutron stars.
In section 4 we apply these methods to a different topic – hairy worm-
holes instead of black holes. This problem has recently gained notoriety
and might carry some important messages for the black hole information
problem. The final section sums up the conclusions.

2. Planar AdS black holes and fermion nucleation

In this and the next section we will focus on large planar black holes on the
Poincare patch of AdS space. Large black holes can reach equilibrium with
the AdS boundary so they do not emit Hawking radiation and can exist
eternally. The Poincare patch of AdS4 space is a coordinate chart with a
single boundary on one end and interior on the other end. It does not cover
the whole AdS space but is simpler to work with than global AdS and is
good enough to desribe the instability at the horizon. The metric of pure
AdS space witout a black hole is given by

ds2 = r2
(
−dt2 + d~x2

)
+
dr2

r2
=

1

z2

(
−dt2 + d~x2 + dz2

)
(6)

where r = 1/z is the radial coordinate, t is time and ~x = (x, y) are the
transverse coordinates. The AdS boundary is at r = ∞ (z = 0), and the
interior is at r = 0 (z = ∞). From now on we will mainly use the z
coordinate; we will always specify explicitly if a different radial coordinate
is used. In AdS/CFT, the radial coordinate corresponds to the energy scale
in field theory: the near-boundary region encodes for the physics at high
energies, in the ultraviolet (UV), and the deep interior, with z large, is the
infrared (IR). Even though we do not consider the CFT dual here, we will
still adopt the UV/IR terminology.

In the presence of a point electric charge e we get a Reissner-Nordstrom
(RN) black hole with the horizon at zh = 1, with charge e, mass M and
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temperature T :

ds2 =
1

z2

(
−f(z)dt2 + d~x2 +

dz2

f(z)

)
, f(z) = 1−Mz3 + e2z4

M = z3
h + e2, A =

ezh
2
√
π

(1− z/zh)dt, T =
3zh
4π

(
1− e2

3z4
h

)
(7)

For e = 0 we get the Schwarzschild AdS black hole, and for e =
√

3z2
h

the black hole becomes extremal, with temperature T = 0. To see this,
remember that the black hole temperature is given by f(z → zH) = 4πT (z−
zH) + . . ., so plugging in f from above we indeed get the correct expression
for T . Importantly, the near-horizon region of a black hole is an AdS space
[7]. This IR AdS space (near z = zh) has a priori nothing to do with the
AdS asymptotics in the UV (near z = 0); it is there also for black holes in
flat or dS space. At T = 0, rescaling z − e/

√
3 7→ 1/6εξ and expanding in

ε to lowest order gives the metric

ds2 =
1

6
(−dt2 + dξ2) +

e2

3
d~x2, At =

1√
6ξ
. (8)

The is AdS2×R2 geometry, a direct product of AdS with a plane. At finite
temperature, a similar rescaling can be worked out, yielding again an AdS2

throat. Since the throat describes the near-horizon region, instabilities of
the black hole can be figured out from possible instabilities of this IR AdS
space. Once again, this is not the whole AdS4, which is always stable far
from the horizon, in the UV (otherwise our whole classical gravity approach
crumbles down), it is just a region near the horizon, in IR.

In order to write the equations of motion, we have to choose a basis for
the gamma matrices and the form of the Dirac bispinor (remember that
only two out of four components are really independent degrees of freedom).
A convenient representation is

Γ0 = σ1 ⊗ ıσ2, Γ1 = σ1 ⊗ σ1,Γ
2 = σ1 ⊗ σ3, Γz = σ3 ⊗ 1̂. (9)

so that the Dirac equation in a spherically symmetric metric defined as
diag(gtt, gii, gii, gzz) gives two equivalent decoupled pairs of equations. Tak-
ing the Dirac bispinor in the form Ψ = (ψ1, χ1, ıχ2, ıψ2)T , the equations for
ψ1,2 read [9, 10]:2

∂zψ1,2 ± m̂ψ1,2 −
(
∓Ê + k̂

)
ψ2,1 = 0 (10)

m̂ ≡ m√gzz, µ̂ ≡
√
gzz
−gtt

At, Ê ≡ qµ̂+ E

√
gzz
−gtt

, k̂ ≡
√
gzz
gii
k. (11)

2Since only two components of the Dirac bispinor are independent, the system for
χ1,2 yields no new information.
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We have Fourier-transformed the derivatives over time and transverse spa-
tial dimensions as ∂t = −ıω, ∂x = ıkx, ∂y = ıky, and we have exploited

the spherical symmetry to set kx = k, ky = 0. The quantities Ê, k̂, µ̂ can
be informally interpreted as ”local” values of the energy, momentum and
chemical potential, respectively. The ”local” values equal E, k, µ at the
AdS boundary, grow monotonously toward the horizon and diverge there, a
consequence of the infinite redshift seen by a faraway observer. An impor-
tant idea is to consider the Schrödinger form of the Dirac equation instead,
differentiating (10) once with respect to z, decoupling the equations for
ψ1,2, and elliminating the first derivatives ψ′1,2 by introducing the tortoise
coordinate s instead of z. The resulting picture is that of a zero-energy
Schrödinger equation, of the form ∂2

sψ1,2 − Veff(s)ψ1,2 = 0, in an effective
potential Veff(s).3 Near the horizon, the potential is constant at leading
order [11]:

Veff(s→ −∞) =
m2 + 12k2/µ2 − 2q2

(q/
√

2 + k)2
+ . . . (12)

It is true that the Schrödinger form is only a consequence of the Dirac
equation, not equivalent to it: extra conditions must be imposed on the
Schrödinger solution to make it satisfy the Dirac equation. But the effective
potential is great for qualitative insights and it contains the basic idea of
the black hole instability in a very transparent way. The near-horizon
potential can contain bound states if it is negative, hence the instability
criterion for a fermionic mode with momentum k is that the numerator of
(12) is negative. Fermions fill up the potential well starting from k = 0 up
to some maximum k for which (12) reaches zero. Therefore, the instability
first sets in when Veff is negative for k → 0, so we get our first rule-of-
thumb prediction: the black hole will be surrounded by a gas of fermions
and become hairy when

m < q
√

2. (13)

But this is just one end of the potential well; what happens at the other
end? Plugging in the pure AdS metric (6) into (12) we get

VAdS(s→ 0) =
m2 +m+ k2

(k + µ)2

1

s2
+ . . . , (14)

which is always non-negative, and grows to infinity. This is good – there is
never an instability in the far UV, and the fermionic hair can never come
arbitrarily close to the AdS boundary. It also means that bound states
in the interior will indeed exist whenever (13) is negative. The physical
picture is the following: in the presence of EM and gravitational field of
the black hole, fermions are pair-created. These pairs are virtual, and

3This is a simple exercise that we will do many times; the reader should be able to do
the necessary (straightforward) calculations leading to the expression for s(z) and Veff(s).
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they only have a finite probability of becoming long-living if the external
potential energy is large enough. In that case, bound states form, and there
is a solution of (2) with nonzero fermion density. In the literature, this is
sometimes called fermion nucleation. For scalars, similar logic leads to the
Breitenlohner-Freedman bound, which puts a constraint on the scalar mass
for the stability of the UV (with fermions, as we have seen, UV is always
stable), and in IR it similarly gives a criterion for forming hair [5]. We also
see from (14) and Fig. 1 that the potential well becomes shallower as k
grows, so the bound states only exist up to some maximum k = kF which
is really the Fermi momentum of the bulk Fermi sea.

From (12,14) we can understand the behavior of the effective potential.
In Fig. 1, we give the function V (s) in the whole space, from z = 0 (s = 0),
to z = zh (s = −∞). The fermionic modes fill the potential well until
they reach the energy E = 0. From (12), higher modes correspond to
higher momentum k. The fermionic density is thus given by a sum over
these bound states. The easiest case is in fact an extremely deep well: the
energy levels are so dense and so numerous that they can be approximated
by a continuum; this is called electron star limit. But the most interesting
regime is the one with only a few wavefunctions, which really describes the
transition to a hairy solution. This is a much harder nut to crack.

(A)
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Figure 1: Effective potential Veff , as a function of the tortoise coordinate
s ≡

∫ z
0 dzgzz(z), in the RN metric (A), and in the Lifshitz metric (B),

for q = 1, m = 0.4, µ = 1, and three momentum values increasing from
violet to blue to red: k = 1, 2, 3 (A) and k = 0, 5, 10 (B). In both cases,
the negative potential well becomes shallower and shallower and eventually
disappears as k grows, so we fill the bulk Fermi sea up from k = 0 to
some maximal k = kF . In the black hole background, the potential is
flat for s → −∞, which corresponds to the AdS2 near-horizon region and
signifies an instability as the bound states extend all the way to the horizon
(s = −∞). In the backreacted Lifshitz metric the potential grows for
s→ −∞, suggesting that deep IR is stable: the true vacuum is the Lifshitz
geometry, not RN. Taken over from [14].
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3. Fermionic hair

Now that we have convinced ourselves that hairy solutions, with finite
fermion density, have to exist, we need to solve the full system of Einstein,
Maxwell and Dirac equations to find them. Clearly, a more general ansatz
for the metric than (7) is needed now, and we will write it as

ds2 = −F (z)G(z)

z2
dt2 +

1

z2
d~x2 +

1

F (z)z2
dz2, (15)

leading to Einstein-Maxwell equations

1− F + zF ′/3− T tot
tt FG/3z

2 = 0 (16)

G′ + z(T tot
tt /F

2 + T tot
zz G) = 0 (17)

A′′t −G′/2GA′t + qn
√
G/
√
Fz3 = 0, (18)

where T tot
µν is the total stress-energy tensor, both from the electric field

(which is easy to find) and from the fermions (which is our big problem).
A typical situation in hairy problems is that formulating the physically
meaningful boundary conditions is not so easy. Notice the Einstein equa-
tions are first-order, so we need one boundary condition for each function
(F and G), whereas the Maxwell equation is second-order and requires two
boundary conditions. Let us now summarize what boundary behavior we
expect on physical grounds.

1. The AdS asymptotics for the metric and gauge field require F (z →
0), G(z → 0) = 1, At(z → 0) = µ. So far it’s all simple.

2. The main puzzle for the IR geometry is – does the horizon disappear
or not? At T = 0 we do not expect that the degenerate RN hori-
zon can survive. So we do not expect zeros in F,G but we do expect
their derivatives to vanish in order to have a smooth solution (finite
derivatives at z →∞ would likely give divergent curvature). Thus at
T = 0 we need F ′(z → ∞) = G′(z → ∞) = 0 or, in other words,
F (z → ∞) = const. + O(1/z) and likewise for G. At finite tempera-
ture, general GR arguments suggest there is a horizon at some z = zh
satisfying F ′(z → zh) = 4πT .

3. The IR behavior of the gauge field is related to the question: is all
the charge carried by the fermions, or the charge is shared between the
fermions and the horizon? The Gauss-Ostrogradsky theorem for the
AdS space, with a UV boundary and either a horizon or a smooth
far-away IR takes the form [12]:∮

∂
d3x
√
−h|z→0 ? F̂ =

∫
d4x
√
−gqn+

∮
IR
d3x

√
−hIR|z=zIR ? F̂ (19)

Here, ?F̂ is the coordinate-invariant flux of the 2-form F̂ , and hIR is
the induced metric on the surface normal to the radial direction at
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zIR = zh or zIR = ∞, depending on whether there is a horizon or
not. In principle, the IR charge might be shared between the horizon
and the fermions. However, we will find that in the semiclassical
calculation there are no solutions where the charge is shared – any
backreaction will always expell all the charge from the IR.

4. The boundary conditions for the Dirac equation present no problems
and are pretty standard in AdS space [13]. In the UV, out of the two
branches, we want the subleading one, with the motivation to preserve
the AdS asymptotics, i.e., to perturb the space as little as possible in
the UV. In particular, the near-boundary expansion of (11) gives

ψ1(z → 0) =
E + µq − k

2m− 1
A2z

5/2−m +B1z
3/2+m + . . .

ψ2(z → 0) = A2z
3/2−m +

E + µq + k

2m+ 1
B1z

5/2+m + . . . , (20)

so we pick A2 = 0, as the leading contribution for z → 0 comes
from the z3/2 term. In the IR, the metric determines the boundary
conditions: if there is a horizon, we need Ψ(z = zh)→ 0 for stability, if
not, then to avoid infinite energy density at large z we require ∂zΨ(z →
∞) = 0, for otherwise a nonconstant density profile would give rise
to a diverging curvature. The attentive reader should be alarmed:
this means two boundary conditions for each component (one in UV
and one in IR), but the equations are only first-order. The resolution
is that for given momenta, the energy is not arbitrary but fixed by
the dispersion relation E(k); thus solving the Dirac equation in an
effective potential well introducs energy quantization, as one would
expect.

What remains is to find the fermionic stress tensor. Since spinors couple
to the spin connection eµa and not directly to the metric, the stress tensor
is expressed as

Tµν =

〈
1

4
eµaΨ̄ΓaDνΨ + (µ↔ ν)

〉
, (21)

and the expectation value 〈. . .〉 reminds us that the fermions are never
classical. At zero temperature, the state is pure and can be represented as
the sum of (appropriately normalized) radial modes with energies E`, where
` is the radial quantum number, and the energies E` are all ≤ 0. At finite
temperature, the state is mixed and gets a contribution from both positive
and negative energies E`, with thermal weights w` = exp (−βE`) /Z, the
partition sum being Z =

∑
` exp(−βE`). With this in mind, we can wrote

out (21) as

Ttt = et0

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`ψ1;` + ψ†2;`ψ2;`

)
(E` + qAt)
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Tii = ei1

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`ψ1;` − ψ†2;`ψ2;`

)
k

Tzz = ez3

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`∂zψ2;` − ψ†2;`∂zψ1;`

)
. (22)

For brevity, we write ψ1,2;` ≡ ψ1,2(E`, k; z). We will consider in detail just
the T = 0 case, when the weights w` effectively just pick the ground state
and cut off all the others, but we will later discuss the results (without
details of the calculations) also at finite T . The spectrum is discrete and
gapped in the radial direction, so the integral

∫
dE/2π becomes a sum,

however in the transverse directions the system remains gapless, filling the
whole (spherical) Fermi sea in the k−momentum space, as long as the
dispersion relation E(k) = E` ≤ 0 is satisfied for some `. The highest
such k, for which E` = 0, is the Fermi momentum kF , and the possible
momenta are 0 ≤ k ≤ kF . It is this continuous quantum number k that
makes our life difficult. Here, indeed, our easy path comes to an end,
because a self-consistent calculation of the wavefunctions certainly cannot
be done in a closed form. Here we must resort to approximations. The
number of occupied levels N is a good guide on the kind of approximation
one needs to make. One can rephrase it as the ratio Q/q, where Q is the
total fermion charge

∫
d4x
√
−gqΨ†Ψ. The thermodynamic limit, where the

number of particles goes to infinity and the charge of an individual fermion
to zero so that N → ∞, q → 0, Q = Nq = const., is at one extreme. We
expect that the problem approaches the classical regime in this case, and it
will turn out to be true. The opposite limit is Q/q = 1, with just a single
excitation, the hairy black hole at birth. We expect this to be likewise a
simple limit, however it will turn out not to be quite true. In-between we
dial between the quantum mechanics of N = 1 and the classical field theory
of N →∞ [14].

Phase diagram. Before doing that, we can sum up our qualitative knowl-
edge on a phase diagram (Fig. 2). From (12-14), bound states form for small
enough m values (panel (A)); if (13) is valid beyond the probe approxima-
tion, the borderline is m = q

√
2. Left of this line there is a hairy solution,

to the right of it the AdS2 near-horizon region (and the whole RN black
hole) remain. The hairy solutions are best described in different ways de-
pending on the number of filled levels (N = Q/q); this is the topic od the
rest of this section. One can also plot the situation at finite temperature
(panel (B)). The phases remain the same; more precisely, the extremal black
hole becomes a finite-temperature black hole, and the hairy solutions also
smoothly develop a hairy horizon (thermal horizon with nonzero fermion
density n(zh)). What changes is the order of the phase transition: at T = 0
it is continuous, and at finite temperature it is discontinuous.



70 M. Čubrović
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Figure 2: (A) Phase diagram as a function of the total-to-fermion-charge
ratio Q/q (y-axis), and the fermion mass (in units of AdS radius L) over
charge ratio mL/q (x-axis). For large masses, the effective potential is pos-
itive and the ground state is the bald RN black hole, with quantum critical
dual field theory. For smaller masses, hair develops, which corresponds to
a Fermi liquid in dual field theory. For Q ∼ q (few wavefunctions), the
single-wavefunction Dirac hair approximation works; for Q/q →∞ we ap-
proach the semiclassical fluid (electron star) limit; between them there is
a smooth crossover with unclear properties, both in AdS and in the holo-
graphic dual. Notice different notational conventions for the total charge
from the main text (e vs. Q). Taken over from [15]. (B) Adding nonzero
temperature as the third axis, we obtain also the thermal phase transitions
between the black hole and the hairy solution, which are generically first
order, smoothing out to an infinite order (BKT) transition at T = 0 – the
red line in (B) is the bold black line between the RN and hairy (blue) region
in (A).

3.1. Quantum hairy black holes

A controlled approximation is to solve the problem perturbatively, at one-
loop order in fermionic fields. This is nothing but the textbook Hartree-
Fock (HF) method, but in curved space. Dynamical spacetime makes a big
difference: it introduces an additional strongly nonlinear component of the
system, making the solution landscape larger and less predictable, and the
UV and IR divergences can appear also in the Einstein equations and need
explicit regulators. In fact, this is still an open problem – nobody has yet
classified the solutions of the Einstein-Maxwell-Dirac system even in the
Hartree-Fock approximation, and we do not know what surprises might
lurk in this corner of the phase diagram. The HF electrodynamics contains
two diagrams, a vacuum bubble that renormalizes the chemical potential
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as µ̂(z) 7→ µ̂(z) + δµ̂(z) (the Hartree term):

δµ̂(z) ≡ q
N∑
`=1

∫
kdk

2π

(
ψ†1(E`, k; z)ψ1(E`, k; z) + ψ†2(E`, k; z)ψ2(E`, k; z)

)
(23)

and the exchange interaction (the Fock term). The explicit z-dependence
of the Hartree correction is a gory reminder that the problem is solved
in inhomogenous background. This is also the reason why already the
Hartree correction is nontrivial: unlike the textbook situation where the
shift δµ merely changes the numbers, here it is a radial function δµ(z) and
its influence is also qualitative. So far, nobody even tried to do the whole
HF calculation, and even just the Hartree term is not easy. We are plagued
(1) by the UV divergences introduced by the modes close to k = kF which,
as we have seen, peak most sharply near the boundary and can shatter the
AdS space into pieces if not properly renormalized (2) by the IR divergences
introduced by the modes with k close to zero, which extend far into large
z values and can make the system unstable to forming a naked singularity.

Hard-wall Fermi liquid. The only case which is under good control is
the hard-wall model of [12]: the UV divergences are resolved simply by not
backreacting on the metric, i.e. solving just the Maxwell-Dirac system in
fixed AdS metric (6) even without a black hole, and the IR divergences
disappear by cutting off the space at some arbitrary z0, so that we simply
elliminate the IR region. The approximations are rather drastic, but they
allow a complete solution. In pure AdS space, the solutions ψ1,2 can be
found analytically in terms of Bessel functions, the states form discrete
and gapped bands, and we only have to solve the Maxwell equation (18).
The outcome is given in Fig. 3. Hard wall acts as an infinite potential
barrier, so the wavefunctions should die on it, and the condition ψ1,2(z0) = 0
determines the dispersion relation. The wall should not be charged, so in
(19) the second term on the right-hand side equals zero, meaning that
A′t(z0) = 0. The picture is that of a Fermi liquid, nicely filling the Fermi
sea at momenta k ≤ kF and having long-living quasiparticles. This model
is an important starting point for more complicated setups, and has the
advantage of being intuitive, but by itself is too simplistic. Indeed, we
want to talk about hairy black holes, and here we don’t even have one, as
it is hidden behind the hard wall!

An attempt to study a simple setup but with a black hole was made
in [16]. In this approach, we are limited to a single energy level, ` = 1.
This is justified only when the hair is just starting to form, right at the
transition point. There is again no backreaction on metric, but the (fixed)
metric is now taken to be the RN black hole. This is actually a big jump
in difficulty: the wavefunctions oscillate near the horizon at any nonzero
energy (Fig. 4(A)), so they can satisfy the IR boundary condition at any
energy and momentum (we can always pick the phase so that ψ′(zh) = 0),
and the spectrum is continuous as there is no wall to create a gap. This
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is what forces us to consider the single-mode case: with the gapped hard-
wall model we could add a finite number of modes, but now there is a
continuum of them, N going to infinity even for arbitrarily small Q/q. The
only way out is to assume there one mode only and solve the resulting Dirac-
Maxwell system. This setup is convenient for understanding the transition
itself, which turns out to be discontinuous (first-order) at finite temperature
(Fig. 4(B), and likely infinite-order (Berezinskii-Kosterlitz-Thouless, BKT)
at zero temperature, as we shall soon see.

(A) (B)
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Figure 3: (A) Dispersion relation E`(k) for the first two electron bands
` = 1, 2 in hard-wall AdS space, for µ = 1,m = 1, q = 2. The first band
from bottom is the hole band, not an an electron band – its contribution can
be absorbed in the redefinition of the parameters and it does not contribute
to hair. The colormap shows the resolvent of the Dirac operator, (DzΓ

z +
~D · ~Γ−m−E)−1, thus the bright white regions show the places where the
resolvent diverges and a discrete bound state is formed. The horizontal axis
is the momentum and the vertical axis the energy, both in computational
units. (B) Wavefunctions ψ1,2 (here for ` = 1 and k = 1) are smooth
everywhere - what happen exactly at the horizon we do not know in this
model, as the space is cut off at z = 3.

Quantum electron star. The single-mode approach has taught us a les-
son: already at the level of the gauge field only, the changes from the finite
fermion density are drastic, and the resulting stress tensor is large at the
horizon, so a change of the black hole metric is certainly expected. How-
ever, when we try to solve the Einstein equatioons, things become almost
intractable. Both UV and IR divergences appear: the former because the
currents diverge in continuous space, and the latter because the discrete
bands fuse into a continuum in IR. The latter issue is most easily regu-
larized by a hard wall, but a hard wall does not make much sense if we
want to backreact on geometry. The regularization of the UV divergences
is systematically discussed in [17, 18] and the bottom line is that there is
a logarithmic short-distance divergence which can be regularized by point
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Figure 4: (A) Wavefunctions ψ1,2in RN background, for ` = 1 and k = 1,
always oscillate and approach an essential singularity at the horizon, which
indicates an instability: the metric changes and the degenerate horizon
disappears. (B) The bulk action (or free energy F , from AdS/CFT cor-
respondence) of the Maxwell (electric field), in blue, consists of the bulk
and boundary contribution (dark green and red), the former practically
identical to the contribution from fermions. All these are computed from
the action (2-4). While the total free energy is continuous, it has a cusp,
made manifest by the slight jump in density (black), a sign of first-order
hair-forming transition.

splitting; in this procedure the cosmological constant becomes renormal-
ized. This is not a drastic change: it will just change the numbers but
not qualitative behavior. The IR problem is still unsolved. The approach
of [18] is to put the system in global AdS space4 whose radial slices are
spheres, not planes, so the AdS radius provides a regulator. A perhaps
more physical approach, motivated by consistent truncations from string
theory, is to introduce a non-minimally coupled scalar, i.e., a dilaton that
introduces a soft wall and suppresses the IR degrees of freedom in a con-
tinuous way, without an abrupt cutoff at some z0, so the total bulk action
is now

Sbulk =

∫
d4x
√
−g

[
R− V (Φ)− 1

2
(∂Φ)2 − Z (Φ)

4
F̂ 2
]
−

−
∫
d4x
√
−gΨ̄

(
1

2
DaΓ

aeΦ +
1

2
eΦDaΓ

a +m

)
Ψ, (24)

where the dilaton potential reproduces the AdS cosmological constant near
the boundary, i.e., Φ(z → 0) = 0 and V (Φ → 0) = 6, Z(Φ → 0) = 1. It
is not clear if one can ever remove the IR regulator. That is precisely the

4Dual field theory then lives on a sphere instad of a plane.
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reason that we regard the dilaton regulator as more physical, since string
theory constructions as a rule contain non-minimally coupled scalars, and
the action (24) can be obtained by consistent truncation; whereas global
AdS is essentially an ad hoc solution, though a very interesting one, with
possible applications in AdS/condensed matter duality, where systems that
live on surfaces (such as a sphere) appear naturally.

While this is still very much a work in progress,5 preliminary results
suggest that the RN-to-hairy-black-hole transition at zero temperature is
an infinite-order (BKT) transition, where all derivatives of S remain smooth
(Fig. 5). This is the point where the potential just starts deviating very
slightly from the flat IR behavior in Fig. 1(A). At the end of this section we
will try to understand this (still conjectural) numerical finding analytically.

3.53.02.5

3.52

3.53

3.54

D

F

Figure 5: The bulk action (here denoted as free energy F , from AdS/CFT
correspondence) as a function of the fermion mass (here denoted as ∆ =
3/2 + m) is very well fit by the BKT function exp(−c/

√
∆c −∆). The

parameter c is determined by the chemical potential (we plot for three val-
ues mu = 1.0, 1.5, 2.0 in violet, blue, green). To the right of the transition
point the action is independent of m as there is no hair, fermion density is
zero, and so nothing depends on the fermion parameters. To the left of the
transition point, the fermions form hair of nonzero density. Nobody knows
yet how the near-horizon metric changes.

3.2. WKB star and electron star

WKB approach. We have followed the logical chain of reasoning from the
point where the hair starts growing, having Q/q ∼ 1 and deforming the
black hole just a slight bit, towards larger and larger hair, eventually reach-
ing the regime Q/q � 1. But this last regime is the easiest to approach,
as the fermions become as close to classical as they can possibly be. A
good starting point is the controlled expansion in h̄, where we solve the

5With N. Chagnet, V. Djukić and K. Schalm.
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Dirac equation in the eikonal approximation or, in other words, the WKB
approach [15]. We express the wavefunction as

ψ1,2 = eıθ±/
√
p, p ≡

√
Ê2 − m̂2 − k̂2, (25)

where p has the role of the canonical momentum. The wavefunction is
nonzero between the turning points z±, determined by the equation p(z±) =
0. The explicit from of the phase θ± as well as higher-order corrections to
the phase can be found in [15], but the reader should in fact have no diffi-
culty in deriving them, following the usual WKB procedure (though for the
Dirac equation instead of the Schrödinger equation). Now the density and
pressure are found by inserting the solution (25) into (22). The procedure
can be iterated to obtain self-consistent solutions, but now we solve the
whole system including the Einstein equations. It is instructive to plot the
total on-shell action (2) as a function of temperature (remember that finite
temperature is imposed through the corresponding boundary condition for
the metric function F ).6 Fig. 6 plots the dependence F(T ) in the vicinity
of the transition value Tc: the derivative ∂F/∂T undergoes a jump which is
nothing but the entropy S ≡ ∂F/∂T . We thus find a first-order phase tran-
sition at the point when Fermi hair starts forming. Of course, don’t forget
that the WKB approach is in fact not to be trusted very near the transition
point: at the transition N changes from 0 to 1, which is far from the regime
N � 1. But the qualitative insight that at finite temperature the system
undergoes a non-symmetry-breaking transition is likely robust and we ex-
pect to prove it also within the more rigorous fully quantum-mechanical
approach of the previous subsection. It is a hairy version of the celebrated
Hawking-Page transition [19], and confirms the intuition that the high-
tmeperature phase is always a black hole; but now, the low-temperature
phase is not simply a gas, but a dense fluid in AdS.

Ploting the density and pressure in Fig. 7(A), one finds that for high
values of N they tend to a constant value in deep interior. This motivates
the fluid ansatz taken in the electron star limit, now to be considered.

Electron star. Electron star is a charged, AdS version of the neutron
stars, described as perfect fluid by the Oppenheimer-Volkov equations. The
idea is to assume that the fermionic matter is a perfect fluid, and then ex-
press the energy density ρ, pressure p and charge density n in terms of
integrals over energy and momenta (i.e., assume that the bound states are
infinitely close, and the gaps between them vanish). The fluid approxi-
mation thus becomes exact in the limit of N → ∞, as we expect from a
semiclassical approximation. Anticipating the current and stress tensor of
the form

Tµν = (ρ+ p)uµuν + pgµν , Nµ = nuµ, (26)

6In AdS/CFT, the bulk on-shell action S precisely equals the free energy F of the
CFT side. But even without considering the details of the CFT, we can still make use
of this interpretation to detect a phase transition in the system.
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Figure 6: (A) The on-shell action or free energy as a function of tempera-
ture, in the presence of fermions. For low temperatures, the fermion density
is finite and the derivative ∂F/∂T jumps at T = Tc, a sign of first-order
transition with the development of the hair. This is in line with the Dirac
hair result in the previous figure, and indeed for the lowest number of levels
NWKB the transition is the sharpest. In (B) we zoom in into the transition
region.

we can write the density starting from (22) and making use the optical
theorem to relate it to the imaginary part of the Feynmann propagator
GF . This spells out as

ρ =

∫ Ê2−k2

0

dE

2π

∫ kF

0

d3k

(2π)3
Ê=TrıΓ0GF (E, k)

=

∫ Ê2−k2

0
dE

∫
k2dk

4π3

1

2

(
1− tanh

(
β

2
Ê

))
Tr(ıΓ0)2δ

(
Ê −

√
k2 +m2

)
=

1

π2

∫ µ̂

m
dEE2

√
E2 −m2. (27)

We similarly find the number density n, whereas the pressure need not be
computed explicitly: since we work with an isotropic free Fermi fluid, its
equation of state has to be p = ρ − qnµ̂. It is here that the approximate
nature of the electron star with respect to the WKB star becomes obvious
(Fig. 7): in WKB star there is an extra term in the pressure, coming from
the nodes of the WKB wavefunction. One can check that the integral in
(27) indeed approaches a constant as we go into deep interior. On the other
hand, at some z∗ when µ̂(z∗) = m the density falls to zero: the star is a
classical object and has a sharp border. So for 0 < z < z∗ we continue the
metric to the RN metric (the metric outside a charged isotropic object).

Since we can express n, ρ, p explicitly, we get a nice system of local
ordinary differential equations in F,G,At, with all quantum expectation
values pulled under the rug. This completes the circle, and brings another
universal message: due to Pauli principle, fermionic operators are never
local, except in two extreme cases: when only one state is occupied (so the
format of the Slater determinant is 1×1, i.e., it contains a single state), or
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when infinitely many states are occupied, so the Slater determinant turns
into a classical, continuous probability density. In Fig. 7 we can see how
the WKB solution captures the quantum ”tails” near the turning points,
which the electron star does not have. It is also instructive to compare this
solution to the Oppenheimer-Volkov equations in flat space: in the latter
case, m̂ ∼ 1/

√
F is always larger than µ̂ ∼ 1/F

√
G, unlike in AdS where

m̂ ∼ 1/z
√
F and for z > z∗ it becomes smaller than the local chemical

potential, so the integral in (27) has a nonzero range. This is because
AdS acts like a potential box that can hold the charged fermions together
against electrostatic repulsion. In flat space that does not happen, and we
have only neutron stars, not electron stars.
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Figure 7: (A) Density of the finite temperature WKB star at various fillings
NWKB; besides the classically allowed region, there are also exponentially
decaying tails in the classically forbidden region, where Veff > 0. (B) In
the electron star (fluid limit), there are no such tails and the star has a
sharp border. Taken over from [15]. (B) Comparison of the WKB solution
(full lines) and the electron star solution (dashed lines) at the same chemical
potential, fermion charge and mass. We plot the metric functions f, h (F,G
in the main text) in red and violet, the gauge field Φ (At in the main text)
in green, and density and pressure n, p in blue and dark green. The metric
solutions do not differ much, despite the long quantum WKB tails, absent
in the electron star.

3.3. Lifshitz metric, BKT transition and the missing pieces

In the framework of the electron star model, the Einstein-Maxwell equations
can be solved analytically, thanks to the fact that, in deep IR, n, ρ, p =
const. and we can employ a scaling ansatz for the metric. The idea is to
match the IR expansion around the scaling solution to the UV expansion
around pure AdS. With ansatz of the form gtt ∝ −1/zα, gii ∝ 1/zβ and
gzz = 1/z2 (one metric component we can fix at will as it amounts to
picking the gauge for the metric), equations of motion give the IR solution

ds2 = − 1

z2ζ
dt2 +

1

z2
d~x2 +

1

zζ
dz2
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At =
1

zζ
, L =

2

z2ζ
+ 6− ∂zA2

t − nA2
t − p⊥, (28)

where in the expression for the total Lagrangian density in the second
line, we have inserted in the action (2) the solutions for the metric and
the gauge field, as well as the constant (z-independent) solution obtained
for ρ in (27) and similarly for n, p. Three important conclusions can be
drawn: (1) the IR metric is scale-invariant, with anisotropic scaling of time
and space, so that the scaling transformation has the form t 7→ λt, ~x 7→
~xλ1/ζ (2) the on-shell Lagrangian density effectively describes a massive
vector field, with mass squared equal to fermion density n (3) the fermionic
contribution to the action equals the pressure. The second point agrees
with the known result that Lifshitz black holes are generated by Proca
fields [21], and what happens is the Abelian-Higgs mechanism: fermion
density acquires a finite expectation value which in turn breaks the U(1)
symmetry, giving the photon a mass. The third point is expected within
a fluid model, since the action of an ideal Lorentz-invariant (semi)classical
fluid equals its pressure [7]. In the fluid limit we can also understand the
first-order transition at finite temperature, because it is just a van der
Waals-type liquid-gas transition.

We have seen that the thermal transition from RN to a Lifshitz black
hole is of first order, and that the T = 0 transition is apparently a BKT
(infinite order) transition. The latter is not quite clear yet because, as
we have emphasized, nobody has yet managed to peek into the deep IR,
it remains hidden behind the hard wall. But if we tentatively accept the
numerical evidence for the infinite-order transition, can we understand it
theoretically? The key lies in understanding how the AdS2 throat dis-
appears. The conformality-breaking mechanism of [22, 23] gives an idea,
though the details are still missing. The crucial moment is that the near-
horizon geometry is AdS2. Right at the horizon (s → −∞) the potential
is approximately constant. In the UV of the AdS2 throat, which is around
some finite value s0, the potential behaves as −c/(s − s0)2. This inverse-
square potential is known to describe conformal quantum mechanics when
c > −1/4. For c = −1/4 the conformal invariance breaks. discrete states
appear and the effective potential is not consistent unless regularized as

Veff =
c

(s− s0)2
− vδ(s− s0), (29)

and the solution of the effective Schrödinger equation is

ψ(r) = c+(s− s0)α+ + c−(s− s0)α− , α± =
1

2
±
√
c+

1

4
, (30)

and the ratio c+/c− is given in terms of Bessel functions J1/2 and J−1/2:

c+

c−
= −εα−−α+

γ + α−
γ + α+

, γ =
√
v
J1/2(

√
v)

J−1/2(
√
v)

(31)
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The solution (30) diverges at s = s0 unless we introduce a cutoff at some
distance ε from s0. Imposing the renormalization condition that c+/c−
remains independent of ε, we get the β-function of the renormalization
group as (` being the RG scale):

β ≡ dγ

d`
= (c+ 1/4)− (γ + 1/2)2. (32)

And we’re done: the fixed points of the above flow equation are easily found
to be −α∓. For γ = −α∓ we get the solution for ψ from (30) with c± = 0
respectively. The free energy scaling is obtained as Son−shell = F ∝

∫
d`/β,

which gives just the form found in Fig. 5. However, the presence of both a
hard-wall cutoff in z and the soft-wall dilaton, completely unaccounted for
in the above analysis, clearly suggest more work is needed for everything
to click together.

4. Wormholes with fermion hair

The lengthy review we have given so far is meant to be self-contained and
helpful for those interested in understanding and contributing to the prob-
lem of black hole instabilities with fermionic matter. As we have seen, it
contains some puzzling questions and is of more than technical interest (af-
ter all, the whole field has been active mostly for the last fifteen years or so).
But we also want to point out that with the methodological powerhouse of
the HF, WKB and fluid methods, one can tackle new problems. A recent
issue where fermions at finite density seem very relevant is the search for
traversable wormholes.

The motivation for this story lies mainly in the celebrated black hole
information paradox: as far as we know, the Hawking radiation is ther-
malized, meaning that the information content of the matter falling into
the black hole is lost. A possible way out or, at least, a way to better un-
derstand the issue, is to consider the maximally extended Carter-Penrose
diagram of a black hole, which contains two horizons and two spacetimes. If
transport between the two were possible, one could imagine that the infor-
mation is not lost because the matter falling into one horizon is entangled
with the matter on the opposite side. This is the idea of the ER=EPR
conjecture [24]. In order to build a traversable wormhole, one needs neg-
ative that the stress-energy tensor averaged over a geodesic be negative,
thus violating the so-called averaged negative energy condition (ANEC)
[25, 26]. This will never happen with conventional classical matter. One
needs either exotic fields or quantum corrections. Recently however, a few
traversable wormholes have been realized with only standard-model matter.
The most ”conservative” is the setup of [27] which creates negative energy
by considering a particle-hole symmetric spectrum of massless fermions in
a mangetic monopole field: because of the negative Landau levels, the net
energy is negative. The starting point is thus a pair of magnetically charged
RN black holes with magnetic charges H and −H, with the hope that the
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negative energy Landau levels will push the averaged stress tensor to large
enough absolute values to open up a wormhole. In this way, [27] constructs
a quasi-stationary (long-living) wormhole in assymptotically flat space. In
AdS, negative energy density can easily be constructed by coupling the two
boundaries nonlocally: in this way temporary wormholes, opening up for
the finite duration of the pertrubation, can be constructed [28], and even
eternal wormholes are possible but at the cost of much more exotic bound-
ary CFTs and their couplings [29, 30, 31]. Here we are interested in making
a wormhole in a more ”down-to-earth” manner, by growing negative-energy
fermion levels as in [27]. The task is to make such wormholes more stable,
and to see if they survive at higher fermion density rather than just a single
wavefunction as in [27]. Here the previously develped methods can help us.

Magnetic electron star. The crucial consequence of the magnetic field is
the Landau quantization. The motion along the x-coordinate is quantized
into discrete levels, whereas the motion along y is not quantized and intro-
duces degeneracy. The quantization along x-axis makes our life somewhat
easier – even without any IR cutoff the ground state wavefunction now
has a discrete quantum number, the Landau level mj . The magnetic field
breaks the spherical symmetry of the wavefunctions down to cylindrical, so
it is convenient to introduce the polar angles θ, φ:

ds2 = −A(z)dt2 +B(z)dz2 + C(z)
(
dθ2 + sin2 θdφ2

)
(33)

and to pick a different gamma matrix basis: Γ0 = ıσ1 ⊗ 1̂, Γ1 = σ2 ⊗ 1̂,
Γ2 = σ3 ⊗ σ1, Γ3 = σ3 ⊗ σ2. Separating the variables and representing the
wavefunction as

Ψ =
j∑

mj=−j
(ψ+ (mj ; z) , ψ− (mj ; z))⊗ (η1 (mj ; θ) , η3 (mj ; θ)) e

ımjφ, (34)

where j is the total number of Landau levels j = (H − 1)/2, we get the
fully spin-polarized solution (η2 = 0) for zero fermion mass:

ψ±(mj ; z) = exp

(
±ıE(mj)

∫ z

0
dz′

√
B(z′)

A(z′)

)
, (35)

η1(mj ; θ) =
eıH sin θ/2

√
sin θ

(
tan

θ

2

)mj

.

For nonzero mass, we can perform a Foldy-Wouthuysen transform starting
from the above solution. Unlike the massless case considered in [27], the
resulting stress-energy tensor will not be traceless, but that is precisely
what will guve us extra stability. The reason this is consistent is the Landau
quantization: the levels for different mj are gapped from each other and
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each Landau level can be treated as a single-particle solution which does
not mix with other Landau levels. This results in the stress tensor

〈Tzz〉 =
En

(1 + z2)2
(sin 2α− cos 2α) , tanα = −m/E(mj). (36)

Fig. 8(A) shows the radial pressure Trr as a function of energy, the outcome
being that positive stress energy tensor is produced for 0 > E > −m. In
order to avoid this positive contribution, the Landau level spacing has to
be large enough, i.e., larger than the mass gap (at zero mass this condition
is trivially satisfied, as it simply means that any finite E(mj = 1) will do;
this is the case studied in [27]). The simplest gapping mechanism we can
think of is the chemical potential, i.e. an electrostatic field in addition to
the magnetostatic one. The black hole thus has to become dyonic, with
magnetic charge H and electric charge e. Assuming we have ensured the
negativity of (36), we can write it in the form Tzz = −τ/(1 + z2)2, with
τ a positive constant. Its magnitude roughly determines the size of the
wormhole opening.
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Figure 8: (A) Radial component of the stress-energy tensor 〈Trr〉 as a
function of the (discrete) fermion energy E. Positive contribution only
comes when > E(mj) > −m. In order to avoid this range of energies we
need a nonzero chemical potential (i.e., electric field, resulting in a dyonic
black hole) to stabilize the wormhole with massive fermionic hair. (B)
The solution for the metric component gtt in the intermediate region, as
a function of the radial coordinate r, for τ = 0, 0.05, 0.10 (black, blue,
red). Wormhole solutions (blue, red) are quantitatively very close to the
unperturbed black hole (black) but qualitativrly different as there is no
zero anymore.

Wormhole solution and matching. Having computed the stress-energy
tensor (36), we can solve the Einstein equations. The strategy is again
matching the expansions, but now we have three regions: the far region
which is asymptotically AdS or even flat (we have mentioned that in the
presence of magnetic field discrete bound states can form even in absence of
AdS boundary), the intemediate region is a slightly perturbed near-horizon
AdS2 region of our magnetic RN geometry, and the inner region, the worm-
hole throat that opens up, turns out to be a global AdS2 at leading order,
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so it has a spherical boundary continuing onto the intermediate regions.
The inner, near-global-AdS2 metric in the form (33) at leading order reads

A(z) = R2
0

[
1 + z2 − 8πτ

(
z2 +

(
3z + z3

)
arctan z − log

(
1 + z2

))]
B(z) = R4

0/A(z), C(z) = R2
0 [1 + 8πτ (1 + z arctan z)] . (37)

This solution is to be matched to the intermediate-region solution. Now
large z corresponds to the wormhole mouth, i.e., the matching is to be
done at large z, where small z is the ”center” of the wormhole throat. The
solution to match onto is the RN black hole metric:

ds2 = −l2f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
l =

R0

2π2τ
, R =

r −
√
π
√
e2 +H2

2π2τ
. (38)

The solution thus exists for any choice of e and H. But for large e (in
other words, for a large chemical potential), the density of the hair will
increase significantly and we should repeat the WKB star or electron star
approach. in AdS this is a simple matter, proving the stability of the
configuration even at high densities. The interesting question is, can it
work also in assymptotically flat space? In absence of magnetic field, the
answer is certainly no – without an AdS boundary, there is nothing to
equilibrate the electrostatic repulsion of electrons. But in the presence of
magnetic field, one might obtain a stable charged hairy wormhole if the
change in the near-horizon geometry is sufficient to effectively decrease the
electrostatic energy density. This is the logical immediate task for future
work.

We finish this short review of our work in progress on hairy wormholes
with a somewhat more ambitious task. The dyonic wormhole model consid-
ered here is obviously quite simplistic and artificial. A much more realistic
model is to start from a pair of Kerr black holes and see if these can open
up a wormhole in a manner analogous to the scenario we have considered.
In this case the magnetic field would be generated self-consistently by the
(rotating) fermionic hair, removing the need for the magnetic monopole
charge. Such an object would come much closer to realistic astrophysical
matter.

5. Instead of a conclusion

We have given a crack and practical review of the insights and technolo-
gies needed to describe and understand hairy black holes in anti-de Sitter
space. The phase diagram in the presence of nonzero fermion density is
quite rich, and it involves two deep and universal phenomena. First, the
finite-temperature hairy black holes develop through a discontinuous phase
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transition akin to the Hawking-Page transition (indeed, it is precisely the
Hawking-Page transition but at finite density). The standard lore that at
high enough temperatures black holes will always form is confirmed. Notice
this is true at any fermion mass and charge, and thus at any occupation
number, from a single wavefunction to the fluid limit, so the finding is
definitely robust. Second, at zero temperature the transition is driven by
the fermionic charge and/or chemical potential, i.e., electric charge of the
black hole. In this case the black hole vanishes infinitely slowly, in a BKT
transition that can be understood as the breaking of the one-dimensional
conformal symmetry of the wavefunctions in the effectve inverse-square po-
tential well. This is solely the consequence of the near-horizon physics,
independent of the AdS boundary. Similar conformality-breaking infinite-
order transitions are known in various backgrounds in string theory. Maybe
one could relate the case described here to some consistent top-down model.

As mentioned in the Introduction, we have deliberately left out exten-
sions and applications of the formalism described, for reasons of space and
also generality of discussion. The field of applications closest to our expe-
rience is the AdS/CFT correspondence. Electrically charged black holes
are dual to field theories at finite U(1) density. The transition from a bald
black hole to a hairy black hole is thus a transition between two phases at
equal chemical potential. How do they differ then? We know that a black
hole is dual to the Coulomb (deconfined) phase of some non-Abelian finite-
temperature gauge theory [1, 4]; in the simplest setup coming from type
IIB string theory, it is the N = 4 supersymmetric SU(N) theory. Coulomb
phase means that the U(1) charge is carried by SU(N)-gauge-charged op-
erators, in our case fermions (”mesinos”) and thus not visible to low-energy
probes, since at low energies all operators are likely SU(N)-gauge-neutral.
The hairy phase describes a dual field theory where the charge is carried
by gauge-neutral operators (”baryons”) and thus visible to probes such as
a photon. This viewpoint was tried and confirmed in [11, 12, 15, 23]. It
has realizations in condensed matter systems such as strange metals and
heavy fermion materials. In this case, the gauge fields are emergent and
arise from the spin-charge separation, and the transition between a black
hole and a hairy geometry is a transition between a non-Fermi liquid, where
most of the charge is carried by complicated excitatons that are nor directly
seen in the spectrum, and a Fermi liquid where the fundamental degrees
of freedom are just renormalized electrons. In QCD, this picture describes
the phase diagram at intermediate energy scales and finite densities, where
a black hole describes quark-gluon plasma, and a hairy solution describes
either the color condensate or conventional barionic matter depending on
the details of the model. One can learn a lot on AdS/condensed matter
and AdS/QCD from [5, 6].

Finally, the search for wormhole solutions and how fermionic hair might
stabilize them is likely to become very important in the future, in connec-
tion to the quantum information theory and the firewall, ER=EPR and
other approaches to the black hole information problem. One can use much
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of the formalism developed for hairy black holes, but the interpretation is
still challanging. It is also unclear how realistic the wormhole proposal is
if we work with only conventional, standard model matter, i.e. is it just an
important proof of concept or a realistic model?
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Title: Stringy effects in chaos  

 

Abstract: Black hole horizons and their holographic duals - strongly coupled thermal gauge 

theories - are well-known to exhibit fast scrambling and maximal chaos, which is best seen 

from their out-of-time ordered correlators. But the time is now ripe to look at chaos beyond 

classical gravity in the bulk. We will first look at D-brane dynamics in the framework of 

matrix models and show how stringy effects lead to sub-maximal chaos which in turn relates 

to the factorization problem in holography. We will also show how the infinite-matrix limit 

naturally leads back to black-hole-like fast scrambling. If time permits, we will also consider 

the opposite, perturbative regime by looking at the S-matrix of string-string scattering and 

find weak chaos with long-living states. This regime is disconnected from the fast-scrambling 

regime.  
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1 One hour talks

1. -Dordje Minić: Quantum gravity as gravitized quantum theory

In this talk I will present the new understanding of quantum foundations based on
the concept of quantum (modular) spacetime endowed with manifest non-locality
that is consistent with causality. This view implies the consistency of the fun-
damental length/time and Lorentz symmetry, based on the principle of relative
(observer-dependent) locality. The geometry of such quantum spacetime is en-
coded in the new concept of Born geometry. The problem of quantum gravity is
then viewed from the perspective of a dynamical Born geometry. In this approach
the quantum mechanical structures that are traditionally fixed, such as the Fubini-
Study metric in the Hilbert space of states, become dynamical and so implement
the idea of “gravitization of quantum theory”. A specific test of this new approach
to quantum gravity is based on intrinsic triple interference in a varying gravitational
field, in a profound analogy with recent triple-path interference experiments per-
formed in the context of nonlinear optics. I will emphasize that the intrinsic triple
interference experiment in a varying gravitational field would deeply influence the
present understanding of the kinematics of quantum gravity and quantum gravity
phenomenology. I will also discuss the non-linear Talbot effect in this context as an-
other striking phenomenological probe of gravitization of the geometry of quantum
theory.

2. Olivera Mǐsković: Asymptotic symmetries in the flat space and the electric-magnetic
duality

We analyze asymptotic symmetries emerging at the null boundary of four-dimensional
field theories in the flat space, not related to the bulk gauge transformations. We
discuss consequences on the examples of the scalar field theory and electromag-
netism.

3. Mihailo Čubrović: Black holes and chaos in matrix models

We study the measures of chaos (out-of-time ordered correlators and energy level
statistics) and magic (stabilizer Renyi entropy) in the black hole phase of the BFSS
(type IIA) matrix model, which is conjectured to contain the full nonperturbative
stringy physics of black holes. Deep in the black hole phase of the model, the physics
is strongly chaotic and strongly quantum-mechanical. At the black hole-thermal gas
transition, the collective modes give rise to a different mechanism of chaos. Inside
the thermal gas phase, the magic also decreases and we end up with weakly chaotic,
semiclassical dynamics. We discuss the implications of our findings for the black
hole - string complementarity and compare them to our earlier findings for the
IKKT (type IIB) matrix model and the factorization of the partition functions.

4. Rodrigo Olea: Conformal Renormalization of anti-de Sitter gravity

Boundary counterterms are required to cancel the divergences in the bulk action
of asymptotically AdS gravity. These boundary terms are prescribed by a system-
atic procedure known as Holographic Renormalization, developed in the context
of AdS/CFT correspondence. In this seminar, we show that, in four and six bulk
dimensions, these counterterms can also be obtained from a proper embedding of
Einstein in Conformal gravity (Conformal Renormalization).
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Emmanouil Raptakis: "Higher-derivative deformations of the ModMax 
theory" 
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Alon Faraggi: "Mirror symmetry and spinor-vector duality" 
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Olga Papadoulaki: Euclidean Wormholes in Holography 
Gabriel Lopes Cardoso: "Weyl-Lewis-Papapetrou coordinates, self-dual 
Yang-Mills equations and the single copy" 
Chrysoula Markou : "On the deep string spectrum" 
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Georgios Linardopoulos: "B-type anomaly coefficients of holographic 
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Online Workshop on Zoom, 23-25 May 2022
Zoom Links: Day 1, Day 2, Day 3

Strange metals: from the Hubbard model
to AdS/CFT

Hosted by: 
Institute of Physics Belgrade (IPB), Serbia
Key2SM project, funded by the Science fund of the Republic of Serbia

Organizers:

Dr Jakša Vučičević, Associate Research Professor (IPB)
Dr Mihailo Čubrović, Assistant Research Professor (IPB)

We aim to bring together the top experts approaching the same outstanding
physical problem in two greatly different ways. The main subject will be the
strange metallic behavior, as viewed from the perspective of the holographic
theories  and  the  microscopic  theories  based  on  interacting  lattice  models.
Particular focus will be given to the direct comparison between the two general
approaches.  The  workshop  will  also  cover  the  specific  realizations  of  the
ubiquitous strange metal regime: in the cuprates and other strongly correlated
materials, moire systems and cold atom simulators. The goal of the workshop is
to provide a wider perspective on the theoretical work focusing on the strange
metals, a better overview of the established phenomenology, and a connection
of  the  strange  metal  to  other  phenomena  in  strongly  correlated  electronic
systems.
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Full program:

Day 1

15:00-15:45
Antoine Georges 
CCQ, Flatiron Institute, New York, USA & Collège de France, Paris, France

Doped SYK Models, Quantum Criticality and Strange Metal Behavior

15:45-16:15
Wéi Wú 
Sun Yat-sen University, Guangzhou, China

Linear-in-temperature scattering rate in overdoped two dimensional
Hubbard model

In this talk, we will discuss a recent numerical study on the overdoped Hubbard Model
at low temperatures. We show that in the Hubbard model, the electron scattering rate
γ(T) can display linear T- dependence as temperature T goes to zero. The T-dependent
scattering rate is found in general isotropic on the Fermi surface, in agreement with
recent  experiments.  We identify  the  antiferromagnetic  fluctuations  as  the  physical
origin of the T-linear scattering rate in this system. Finally, we will also discuss briefly
the T-linear electron scattering rate that shows up in the two dimensional  periodic
Anderson model.
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revealed by holography showing how the Fermi-liquid generalizes into a densely many-
body entangled affair  [1],  revealing the finite temperature physics through a “first
principle” treatment of quantum thermalization. Guided by these insights, substantial
progress has been made in recognizing various of these traits in experiments on the
strange metal states of the high Tc superconductors.

[1]. J. Zaanen, arXiv:2110.00961 (2021).

18:00-18:30
Mihailo Čubrović 
Institute of Physics Belgrade, Serbia

Spectral functions in holographic lattices and the Hubbard model

We compare the spectral functions of probe fermions on holographic square lattices to
the Hubbard model spectra obtained from Quantum Monte Carlo CTINT simulations.
We find that a minimal AdS setup which incorporates the Hubbard physics at the level
of spectra consists of (1)  inhomogenous bulk geometries with hyperscaling violation
obtained  by  solving  the  Einstein-Maxwell-dilaton  equations  in  the  presence  of  the
lattice  (2)  high-frequency  dynamical  cutoff which  gives  rise  to  sum rules  (3)  bulk
dipole coupling which provides Mottness, a clear separation of the spectrum into IR
(quasiparticle and Hubbard bands) and UV (exponentially decaying tails) scales. The fit
of the holographic spectra to the Quantum Monte Carlo data is not strongly dependent
on  the  specific  choice  of  the  bulk  parameters  as  long  as  all  the  ingredients  are
present.  We conclude that  the key properties  of  spectral  functions in the Hubbard
model are not strongly dependent on microscopy, however they crucially depend on
the presence of Motness, even in the Fermi liquid phase.

Day 2

15:15-15:45
Waseem Bakr 
Princeton University, New Jersey, USA

Observation of strange metallicity in "hot" atomic Hubbard systems

The normal state of high-temperature superconductors exhibits anomalous transport
and spectral properties that are poorly understood. Cold atoms in optical lattices have
been used to realize the celebrated Fermi-Hubbard model, widely believed to capture
the  essential  physics  of  these  materials.  The  recent  development  of  fermionic
quantum gas microscopes has enabled studying the normal state of Hubbard systems
with single-site resolution. I will start by introducing the atomic platform and reviewing
experiments that have been done on measuring spin and density correlations. Next, I
will describe the development of a technique to measure microscopic diffusion, and
hence resistivity, in doped Mott insulators. We have found that this resistivity exhibits
a linear dependence on temperature in an intermediate temperature regime, and it
violates the Mott-Ioffe-Regel limit, two signatures of strange metallic behavior. I will
compare our experimental results to state-of-the-art numerical techniques.
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Alexandre Belin : Discussion on ensemble averages in holography

Francesco Benini : Entanglement and symmetry breaking

Abstract:  Entanglement  asymmetry  is  a  recently  introduced  quantum-information-based

observable  that  detects  symmetry  breaking  in  quantum  states  on  subsystems  and  out  of

equilibrium. After reviewing this observable, I will describe how to compute it in CFTs for a class

of  coherent  states  in  a  perturbative  expansion.  I  will  present  explicit  formulas  for  various

subsystem geometries as well as for its time dependence, exhibiting in some cases the quantum

Mpemba effect. The class of states we consider have a simple holographic description, allowing

us  to  present  a  dual  holographic  computation  of  entanglement  asymmetry.  This  might  have

interesting applications to the study of quantum properties of charged black holes.

Micha Berkooz : A chord path integral and chaos integrable phase transitions in
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Jan Boruch : Indices from the gravitational path integral - new forms of attraction

Abstract: In recent years, the Euclidean gravitational path integral has proven to be a reliable

tool for studying quantum mechanical aspects of black holes. An important quantity that can help

us  probe  whether  black  holes  behave  like  conventional  quantum  mechanical  systems  is  the

supersymmetric index computed directly from the gravitational path integral. In this talk, I will

discuss the issue of multicentered black hole contributions to the Euclidean path integral that

computes the supersymmetric index at finite temperature. In the context of Einstein-Maxwell

theory in 4d, I will explain how the multicentered generalization of the Kerr Newman black hole,

called  the  Israel-Wilson  solution,  can  be  seen  to  satisfy  the  boundary  conditions  of  the

supersymmetric index and yields a regular contribution to the index. I will show how even though

we perform the computations at finite temperature, the construction makes the value of the on-

shell action depend only on the black hole charges, which can be viewed as a new form of the

attractor mechanism. Finally, I will describe how we can extend the analysis to the most general

solutions  of  N=2  4d  supergravity,  where  the  on-shell  action  becomes  independent  of  the

boundary values of the scalars. Time permitting, I  will  describe how the phenomenon of wall-

crossing, in which the index jumps discontinuously as one crosses a codimension one wall in the

space of asymptotic scalar moduli,  arises from the perspective of the new finite temperature

saddles.  

Based  on  2310.07763  and  an  upcoming  work  with  Luca  Iliesiu,  Sameer  Murthy  and  Joaquin

Turiaci.

Alejandra Castro : Near-extremal black holes

Branislav Cvetković : Near horizon symmetry of extremal spacelike-stretched

black holes

Abstract: We analyze the near horizon structure of the extremal spacelike stretched black holes,

exact solutions of topologically massive gravity. We show that the algebra of improved canonical

generator is realized as a single centrally extended Virasoro algebra. We obtain the entropy of

the solution by using the Cardy formula and compare the results with the corresponding non-

extremal case.

A Balkan string meeting Home Schedule Speakers Posters Location

A Balkan string meeting - Speakers https://sites.google.com/view/black-holes-and-chaos/s...

2 од 5 22. 12. 24. 23:04

https://drive.google.com/file/d/12Tm5hXQTmLbAWi4F1uZN3YijM0RwbSDB/view?usp=sharing
https://drive.google.com/file/d/12Tm5hXQTmLbAWi4F1uZN3YijM0RwbSDB/view?usp=sharing
https://drive.google.com/file/d/12Tm5hXQTmLbAWi4F1uZN3YijM0RwbSDB/view?usp=sharing
https://drive.google.com/file/d/1u12uLoy5XbTIYh-FC8SCt6WjlcdcZOgZ/view?usp=sharing
https://drive.google.com/file/d/1u12uLoy5XbTIYh-FC8SCt6WjlcdcZOgZ/view?usp=sharing
https://drive.google.com/file/d/1u12uLoy5XbTIYh-FC8SCt6WjlcdcZOgZ/view?usp=sharing
https://drive.google.com/file/d/1u12uLoy5XbTIYh-FC8SCt6WjlcdcZOgZ/view?usp=sharing
https://drive.google.com/file/d/1u12uLoy5XbTIYh-FC8SCt6WjlcdcZOgZ/view?usp=sharing
https://drive.google.com/file/d/1u12uLoy5XbTIYh-FC8SCt6WjlcdcZOgZ/view?usp=sharing
https://sites.google.com/view/black-holes-and-chaos/home?authuser=0
https://sites.google.com/view/black-holes-and-chaos/home?authuser=0
https://sites.google.com/view/black-holes-and-chaos/home?authuser=0
https://sites.google.com/view/black-holes-and-chaos/home?authuser=0
https://sites.google.com/view/black-holes-and-chaos/home?authuser=0
https://sites.google.com/view/black-holes-and-chaos/home?authuser=0
https://sites.google.com/view/black-holes-and-chaos/home?authuser=0
https://sites.google.com/view/black-holes-and-chaos/schedule?authuser=0
https://sites.google.com/view/black-holes-and-chaos/schedule?authuser=0
https://sites.google.com/view/black-holes-and-chaos/schedule?authuser=0
https://sites.google.com/view/black-holes-and-chaos/speakers?authuser=0
https://sites.google.com/view/black-holes-and-chaos/speakers?authuser=0
https://sites.google.com/view/black-holes-and-chaos/speakers?authuser=0
https://sites.google.com/view/black-holes-and-chaos/posters?authuser=0
https://sites.google.com/view/black-holes-and-chaos/posters?authuser=0
https://sites.google.com/view/black-holes-and-chaos/posters?authuser=0
https://sites.google.com/view/black-holes-and-chaos/location?authuser=0
https://sites.google.com/view/black-holes-and-chaos/location?authuser=0
https://sites.google.com/view/black-holes-and-chaos/location?authuser=0


Nejc Čeplak : What is on the horizon for fuzzballs

Abstract: The Fuzzball proposal is a proposal for the resolution of the information paradox and

the entropy problem of black holes. It states that conventional black holes should be replaced by

horizonless microstates whose number reproduces the black hole entropy and that can be, in

principle, realised in string theory.

In this discussion session, I will review some of the general arguments in favour of and against the

fuzzball  proposal.  I  will  then  briefly  talk  about  the  construction  of  some  explicit  black  hole

microstates within supergravity, often called microstate geometries, and discuss some of their

most important properties and how these differ from conventional black holes. I will conclude

with some future directions and connections with other works.

Marine de Clerck : Mixmaster chaos in AdS black hole interior

Abstract:  Amongst  the  most  fascinating  behaviours  to  arise  from  Einstein's  equations  is  the

onset  of  chaotic  dynamics  in  the  approach  to  certain  cosmological  singularities.  This  was

analysed in detail in seminal work by Belinskii, Khalatnikov, Lifshitz (BKL) and others some fifty

years ago. A consequence of these results is that the Schwarzschild interior solution near the

singularity appears very fine-tuned and should give way for BKL-like dynamics in more generic

black holes. In our recent work (arxiv:2312.11622), we construct a setup that realises the so-

called 'mixmaster' chaotic dynamics in the interior of an AdS black hole. After a brief review of

the  BKL  work,  I  will  describe  our  holographic  setup  and  discuss  the  peculiar  symmetries

appearing in this problem.

Jan de Boer : Discussion on black hole interiors

Ben Freivogel : Quantum fluctuations in black holes
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Alessandra Gnecchi : Black holes, swampland constraints, and higher form

symmetry breaking

Abstract: The presence of black holes in the low energy spectrum of the gravitational EFT signals

fundamental properties of the UV-complete, quantum gravity theory. We show how black holes

constructed from string theory can be exploited to investigate swampland constraints, through

their thermodynamics. Finally, we discuss BPS states in relation to the breaking of supergravity

one-form symmetries, associated to abelian vector fields.

Dragoljub Gočanin : Holographic exploration of exotic bulk geometries

Abstract:  In the context of AdS/(B)CFT duality,  we discuss the possibility of having Riemann-

Cartan bulk geometry that involves torsion. This is a crucial step towards a better understanding

of spin systems, such as Fermi liquids, in holographic terms, and is also a base for holographic

analysis  of  noncommutative  gravity  -  a  theory  that  goes  beyond  the  classical  notions  of

spacetime geometry. Due to its rich structure, the main focus is on 5D Chern-Simons gravity and

related models.

Sašo Grozdanov : Three facts about the spectra of holographic thermal field

theories and black holes

Maciej Kolanowski : Looking at extremal black holes from very far away

Andrei Parnachev : Operator product expansion, geodesics and black hole

singularities

Abstract:  We  observe  features  of  black  hole  singularities  in  �nite  temperature  holographic

correlators.  We  also  elucidate  the  relation  between  geodesics  in  AdS-Schwarzschild  and  the

Operator Product Expansion in the boundary theory.

Philip Saad : Review of JT gravity
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Chiara Toldo : Thermodynamics of near-extreme rotating black holes

Abstract: From the perspective of classical gravity, a black hole is the simplest object we know of.

At the same time, it possesses huge entropy, hinting at an incredibly complex microstructure:

understanding this  fact  falls  in  the realm of  quantum gravity.  In  this  talk I  will  review recent

results  concerning  the  microscopics  and  the  thermodynamics  of  fast  spinning  black  holes  in

asymptotically  flat  and  Anti-de  Sitter  space.  In  the  first  part,  I  will  describe  how  recently

developed  techniques  allow  to  compute  the  quantum  corrections  to  the  entropy  of  near-

extremal  Kerr  black  holes.  I  will  show  that  the  quantum-corrected  near-extremal  entropy

exhibits 3/2logT behavior characteristic of the Schwarzian model,  and predicts a lifting of the

ground state degeneracy for the extremal Kerr black hole. In the second part,  I  will  show the

computation  for  the  density  of  states  for  fast  spinning  black  holes  in  AdS4,  which  admit  a

supersymmetric  limit,  and  comment  on  the  spectrum  of  near-BPS  states  and  on  the

interpretation in terms of the dual 3d field theory.
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Posters

Vasil Avramov (Sofia University)

Nielsen complexity of a TFD of a quantum harmonic oscillator in external
magnetic field

Drawing on the growing links between quantum information theory and black hole physics, we

explore the circuit complexity of a quantum

harmonic  oscillator  in  the  presence  of  an  external  magnetic  field.  By  applying  the  Nielsen

approach within the thermofield dynamics (TFD)

framework,  we  calculate  the  complexity  of  thermofield  double  states.  Our  analysis  uncovers

several  notable  characteristics  of  this  complexity.  Lastly,  we  derive  the  Lloyd  bound  for  the

system and demonstrate that it is upheld. 
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Banashree Baishya (Indian Institute of Technology, Guwahati)

An equivalence of three butter�ies in Lifshitz background

In  this  work,  we  investigate  two  salient  chaotic  features,  namely  Lyapunov  exponent  and

butter�y  velocity,  in  the  context  of  an  asymptotically  Lifshitz  black hole  background  with  an

arbitrary critical  exponent.  These features are computed using  three methods:  entanglement

wedge  method,  out-of-time-ordered  correlator  computation  and  pole-skipping.  We  present  a

comparative  study  of  the  aforementioned  features  where  all  of  these  methods  yield  exactly

similar results for the butter�y velocity and Lyapunov exponent. This establishes an equivalence

between all three methods for probing chaos in the chosen gravity background. Furthermore, we

evaluate the chaos at the classical level by computing the eikonal phase and Lyapunov exponent

from the bulk gravity. These quantities emerge as nontrivial functions of the anisotropy index. By

examining  the  classical  eikonal  phase,  we  uncover  different  scattering  scenarios  in  the  near-

horizon and near-boundary regimes. We also discuss potential limitations regarding the choice of

the turning point of the null geodesic in our approach.

Marti Berenguer (Universidad Santiago de Compostela)

Floquet SYK wormholes

We  study  the  non-equilibrium  dynamics  of  two  coupled  SYK  models,  conjectured  to  be

holographically dual to an eternal traversable wormhole in AdS2. We consider different periodic

drivings of the parameters of the system. We analyze the energy �ows in the wormhole and black

hole phases of the model as a function of the driving frequency. Our numerical results show a

series  of  resonant  frequencies  in  which  the  energy  absorption  and  heating  are  enhanced

signi�cantly and the transmission coef�cients drop, signalling a closure of the wormhole. These

frequencies correspond to part of the conformal tower of states and to the boundary graviton of

the dual gravitational theory. Furthermore, we provide evidence supporting the existence of a

hot wormhole phase between the black hole and wormhole phases. When driving the strength of

the separate SYK terms we �nd that the transmission can be enhanced by suitably tuning the

driving.
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Dušan Đorđević (University of Belgrade)

Chern-Simons and Boundaries: The Neverending Story

One concept that needs to be better understood in the holographic duality is the introduction of

torsion in gravity theory. Furthermore, �rst order gravity formalism seems to be computationally

simpler but conceptually more challenging to tackle.  Chern-Simons gravity is an example of a

theory where we can test different implications of the torsion tensor in the AdS/(B)CFT duality

set-up. This poster presents some of our recent results in that direction.

Vladan Đukić (Institute of Physics Belgrade)

Trapping and Chaos in Bubbling AdS Spaces 

We  study  the  dynamics  of  null  geodesics  in  1/2  BPS  bubbling  AdS  space.  Building  on  prior

research  that  established  a  connection  between  certain  null  geodesics  confined  to  a  specific

(phase) plane and chaotic billiards, we extend the analysis to geodesics that are not restricted to a

plane.  We  calculate  the  escape  rate  and  Lyapunov  exponent  for  trapped  geodesics  in  these

geometries.  Our results show that in systems with large spatial  dimensions,  the Kolmogorov-

Sinai entropy—representing the rate of information growth—is influenced by a non-zero escape

rate, leading to a value lower than the Lyapunov exponent. Additionally, our findings validate,

within numerical precision, the Gaspard-Nicolis relation, which links Kolmogorov-Sinai entropy,

Lyapunov exponent, and escape rate. 

Vladan Gecin  (Institute of Physics Belgrade)

Holographic Lattices and Luttinger's Theorem

AdS/CFT correspondence can provide a novel, nonperturbative insight into strongly correlated

materials.  We solve numerically a system of Einstein-Maxwell-dilaton equations with periodic

boundary  conditions  which  describes  strongly  correlated  matter  at  finite  temperature  and

chemical potential on a square lattice. The metric in the deep interior is hyperscaling-violating,

implying  an  anomalous  scaling  of  thermodynamic  quantities.  We  then  compute  the  charge

density of the system and inspect the validity of the Luttinger's theorem. The dependence of the

charge density on doping and its profile confirm that the system is in metallic phase. However,

the  Luttinger's  theorem  is  strongly  violated,  meaning  that  the  system  is  a  non-Fermi  liquid,

despite having stable quasiparticle peaks in the spectrum. 
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Cheryne Jonay (University of Ljubljana)

Hydrodynamics in 1d spin chains from a Holographic Perspective

Many  physical  systems  admit  a  simpli�ed  description  of  their  dynamics  when  examined  at

macroscopic  scales.  This  simpli�ed  description—generally  referred  to  as  hydrodynamics—is

governed  by  a  restricted  set  of  macroscopic  observables  that  includes  conserved  quantities,

Goldstone  modes,  and  order  parameters.  An  outstanding  challenge  in  quantum  many-body

physics  is  �nding  this  hydrodynamic  description  in  terms  of  the  microscopic  variables.  I  will

present  a  method  inspired  by  holography  for  constructing  the  effective  hydrodynamic

description in the form of a transfer matrix and a set of hydrodynamically-relevant variables. The

method proceeds by constructing an alternative representation of the operator dynamics in the

form of a local (1+1)d "bulk" theory. I will show how the properties of the auxiliary bulk encode

the existence of an effective local equation of motion of a given model, allowing for the extraction

of hydrodynamic parameters like diffusion constants and characteristic thermalization scales. I

will show results for various qubit and fermionic systems, and compare to the known literature.

Dragan Marković  (Institute of Physics Belgrade)

Geometric and phase space (de)localization in a semiclassical Bose-Hubbard

chain 

Anomalous diffusion is observed in the semiclassical approximation of the Bose-Hubbard model.

We present a few crucial criteria for the

development of anomalous transport on long timescales. The criteria encapsulate both the initial

geometry  of  the  system  (coordinate  distribution  of  the  particles)  and  the  initial  phase  space

statistics. We also find cases when diffusion breaks down completely  (there is no

transport  at  all):  it  turns  out  that  the  operators  which  are  sufficiently  nonlocal  exhibit  no

diffusion.  In  particular,  this  implies  that  (non-local)  quantum  corrections  eventually  destroy

anomalous transport as we move away from the semiclassical regime. 
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Jovan Odavić (University of Napoli Federico II)

Spectral Form Factor and Random Walks

This work examines the relationship between the spectral form factor (SFF) and planar random

walks. The SFF is a measure used to identify the onset of quantum chaos and scrambling. We

demonstrate that the moments of the SFF in generic quantum chaotic systems exhibit similar

behavior to the moments of the distribution describing the positions of random walkers in the

Euclidean plane. This similarity holds for the mean, variance, skewness, kurtosis, and all higher-

order moments of  the underlying probability distribution function.  Additionally,  we suggest a

potential generalization of planar random walks that avoid intersections along the trajectory, and

explore potential applications to integrable quantum systems.

Vasilii Pushkarev (Steklov Institute of Mathematical Sciences)

Signs for scalar field chaoticity

We  study  interesting  but  simple  examples  of  models  being  integrable  but  exhibiting  some

features commonly attributed to chaotic dynamics. In the first case, we consider free massive

scalar field dynamics in finite volume following a quench excitation and show that correlation

function peak distribution is not necessarily exponential as expected but in some cases close to

the level spacing distribution of Gaussian ensembles. In the second case, we generalize the free

scalar  field  model  on  a  curved  background  with  the  Dirichlet  boundary  conditions  imposed

(normal modes). In the case of BTZ spacetime, the appearance of the RMT profile for the spectral

form factor was recently reported in literature. We discuss here massive field and the de Sitter

spacetime case.

Juan Santos Suarez (Universidad de Santiago de Compostela)

Hamiltonian Forging of a Thermo�eld Double

The preparation of Thermo�eld Double states is of extreme importance due to its connection

with  wormhole  teleportation.  Following  proposals  in    the  literature  we  study  its  variational

preparation as the ground state of an interacting Hamiltonian on the doubled Hilbert space. We

focus on generic fermionic hamiltonians and �nd an exact solution for the quadratic case, which

provides a warm start for the general case.    The problem is naturally suited for the use of the

entanglement forging strategy, in which only circuits of size N are required. We comment the

case of SYK at the end. 
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