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Hayuynom Behy UHcTHTYyTa 32 Qdm3uky y Beorpany
Anpeca: Ilperpesuua 118, 11080 Beorpan, Cp6uja

IpeameT: Mon6a 3a MOKpEeTamke MOCTyIkKa 3a ctuiame 38aka HAYUHU CAPAJTHUK

C o63upom J1a McIyHmaBaM CBe KPUTEpPHjyMe MPONKCaHe O CTpaHe MUHKUCTAapCTBa 32 HayKy, TEXHOJNOIIKH
pa3Boj M MHOBalMje 3a cTHUame 3Bakba HAYUHHU CAPAIHHUK, monum Hayuno sehe HMucTtuTyTa 3a
¢usuky y Beorpamy na mokpeHe mocTynak 3a Moj u3top y 3Bame.

V npunory nocraBibam:

Mulsbeme pyKoBOOHOLIA IPyIIe ca MPEAIOroM 4IaHOBa KOMHCH]E 3a U360p Y 3Bambe,
Crpyuny 6uorpadujy,

[Ipemen Hay4YHe aKTUBHOCTH,

EnemMeHTe 3a KBAIUTATUBHY aHATN3y HAYYHOT JONPUHOCA,

EnemeHTe 3a KBaHTUTAaTHBHY aHAIHM3Y HAYy4YHOT HOMPUHOCA,

Crniucak 06jaB/beHMX paoBa U HUXOBE KOMHje,

ITonatke o nuTUpanoctTu pagora (Scopus),

Pememe o nperxonHoM U300py y 3Baibe,

IToTepay o onOpameHOj NOKTOPCKOj AUCEPTALIUjH.
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V Beorpany, [~ 1S
30.10.2024 7 / np Wean Tpamapuh




HHCTUTYT 3A AMDU3UKY
NPUMMEHO: 371 -10-
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Muuuberme pyKkoBoanona rpymne ca npeajioroM 4JaHoBa KOMHCHje 3a H36op y
3Bame HAyYHH capaaHHK — Kauauaar ap Uesan Tpanapuh

Hp Wsan Tpanapuh, pohen 14.9.1996. ronune y Tpebumy je 18.10.2024. ronune ycnemHo oq6paHio cBojy
AOKTOPCKY IHMCEpTalMjy MOJA HAcloBOM ,[IpMMeHa MalIMHCKOT y4ea W BELITa4yKe WHTEIMIeHLHje y
CIIEKTPOCKONKjH Muasme” Ha DusnykoMm ¢akynrety YHuBep3uteTa y beorpamy. MeHTOpH JOKTOpCKe
Auceprauuje cy 6unu nou. ap Mapujana ['aBpuiosuh Boxosuh ca ®akynTera HHXEHEPCKHX HayKa H JIp
Munusoje MBkouh, Hayunu caBeTHuk MHcTHTYTa 32 dusuky y Beorpany.

[lopen tora, np Wsan Tpanapuh je akTuBHY yuecHuk npojexra NOVA2LIBS4fusion koju ce hunancupa y
okBupy nosuBa UJIEJE @onna 3a Hayky Pemy6mauke CpOuje. Y MHCTHTYTY 3a QH3HMKY je 3amoclieH o
anpuna 2021. rogMHe MpBO y 3Baky HCTPaXKMBay MPUMpPABHUK, a 0 HoBemOpa 2023. rofuHe y 3Bamy
UCTpaXXuBa4 capaJHuk. TokoM H3paje NOKTOpCKe AMcCepTaluje, KaHIuaar je 00jaBUO BHILIE HAyYHHUX
pajoBay BUCOKO PaHTHPaHMM MHOCTPAHUM HAayYHUM Yacomucuma. M3 mpuiioxkeHor Marepujaa, KaH uaar
Ap HWBan Tpanapuh ucnmymaBa cBe ycnoBe npeiBhlieHe 3aKOHOM O Haylld W HMCTPaXHBambUMa U
[TpaBUIHMKOM O CTHIIaWy HCTPAKMBAYKUX M HAYYHHX 3Batba MUHMCTApPCTBA HAyKe, TEXHOJOMIKOT Pa3Boja
¥ uHoBauuja PemyGnuke CpGuje 3a u360p y 3Bare Hay4HH capalHMK, Te mpeaiaxeM Hayunom sehy
HucrutyTa 3a dusuky y beorpany na nokpene usbop ap Msana Tpanapuha y oMeHyTO 3Bambe.

3a uaHOBE KOMHUCH]€ TIpEJIaXKeM:

1. np Munusoje MBkoBuh, Hay4yHu caBeTHHK MHCTHTYTa 32 hu3KKy y Beorpany

2. np bumana CrankoB, Hay4HH capagHuk MHCTUTYTa 3a husuky y Beorpany

3. mp Mupocnas Ky3maunosuh, penosuu npogecop @akynrera 3a Gusnuky XeMujy YHUBEpP3UTETA Y
beorpany

V¥ Beorpany, \QA\ v ({W

30.10.2024. Iap Munusoje MBkoBuh

PykoBoaunal naboparopuje 3a CHEKTPOCKOIH]y I1a3Me U Jlacepe



Crpyuyna ouorpa¢puja — UBan Tpanapuh

WBan Tpanapuh pohen je y Tpebumy, buX, 14.9.1996. ronqune rae je 3aBpIINO OCHOBHY M CPEJEbY IIKOITY.
Ha ocuoBHe crymuje ®usmukor dakynrera YHuBepsuteta y beorpamy ymucyje ce 2015. romuHe Ha cMep
Ilpumervena u xomnjymepcxa ¢usuxa. OCHOBHE CTyIMje 3aBpIlaBa y pedoBHOM poky 2019. rommae ca
cpeamoM mpocedyHoM oneHoM 9.43. Mcre rogune ymucyje mactep cryauje Ha DU3MYKOM (axyiaTery
Yuupep3uteTa y beorpany Ha cmepy Teopujcka u excnepumenmanna ¢gusuxa. Mactep CTyauje je 3aBpIIno
ca cpemmoM TpocedHoM oreHoM 10, a macrep pan omdbpanuo ca oreHoM 10. Macrtep pan mom HacIOBOM
»Bakyym yimpamybuuacma cnexkmpockonuja Jlajmanoge cepuje jonuzosanoe amoma xeaujyma’ je ypahen
y Jlaboparopuju 3a CHEKTpOCKONMHjy IUTazMe W Jyiacepe Ha WHctutyty 3a ¢usuky y beorpamy, mon
pyxoBozcTBOM Ap MumnmBoja MBkosuha.

Ha Unctutyty 3a ¢husuky y beorpamy je 3amocimen on ampmiia 2021. Kao CTYICHT JOKTOPCKUX CTyAHja Y
3Balby HUCTPAXKUBAY TPUNPABHUK. TOKOM [OKTOPCKHUX CTyAWja, 0aBUO ce WM ce 0aBH BakyyM
YITPaJbyON9acTOM CIIEKTPOCKOITHjOM €JIEKTPUYHUX TACHUX MPaXmbermha, MPIMEHOM MAaIIHHCKOT yuemha H
BEITAaYKe MHTEIMICHIM]Ee Y ONTHYKO] eMHCHOHO] CIIEKTPOCKOIUjU TJIa3Me M yHamnpelhuBameM MeTona U
moOoJblllaba TPaHWIA JETEKIlHje MOjeJMHMX eJleMeHaTa Y CIIEKTPOCKOIMjU JIACEPCKH WHIYKOBAaHUX
w1a3My. Y mocienmbe BpeMe, 0aBi ce U MIPUMEHOM BEIITadKe MHTEIUIEHINje Y BaKyyM YITpajbyOUdacToj
CHEKTPOCKONHjH (y3MOHHX IJIa3MH. Y TOKy OCHOBHHMX CTYAMja j€ Y4€CTBOBAO Ha JIBE JIETHE IIKOJIE W3
obnactu ¢usuke Qy3nonux muasmu. IlpBa neTma mKojda opraHu3oBaHa je y beorpamy, y orpanuszanuju
Dyzoune obpaszoene mpexce (POM). TokoM OBE JIETHE INKOJIC, UMAO j& MPHIIMKY Ja IyTeM HHTEPHETa
MIPUCYCTBYyje eKcrepuMeHTHMa Ha TokamMaky GOLEM y Ilpary, a Ttema wucrtpaxuBama Owmna je
eKcIiepuMeHTalTHa Qu3uKa runaway enekTpona. [pyra nerma mikona je Owia Ha HCTHTYTY 32 QU3MKY
mia3me Yemke akagemuje Hayka u ymerHocTH y llpary, rme cy paljeHm ekcrepMMeHTH Ha TOKaMmakKy
COMPASS. Orze je nMao MPHIIMKY Ja JBe HelleJbe YUEeCTBYje Y UCTPaKUBAKy EKCIEpUMEHTAIHE TpyIie
Koja ce 0aBM HECTaOMJIIHOCTHUMA Ha WBUIH TLIA3ME.

o cana je o0jaBuo mecT pagoBa y yaconrcuma ca CLIU mucre, ox kojux cy Tpu 00jaB/beHa y BPXYHCKOM
mehynaponoMm wacomucy (kateropuja M21) a ocrama Tpu y Mel)yHApOTHOM dYacommuCy Kareropuje M23.
CBo0j mocamamimy paja Ipe3eHToBao je Ha mect mMehynapomanx kondepennmja (SPIG 2020, SPIG 2022,
SPIG 2024, XIV SCSLSA, SLSP 6 u ICSLS 2024). Ha mehynaponnoj konbepenuuju [4th Serbian
Conference on Spectral Line Shapes in Astrophysics onmpxkanoj y bajHoj Bamtu y jyHy oBe romuue je
O7Ip’)kao KpaTKO MO3MBHO TIpefaBame. YdecHHUK je mpojekra NOVA2LIBS4fusion koju ce ¢uHaHCHpa y
okBupy nporpama MJIEJE ®onna 3a Hayky Peny6nuke Cpouje. IIpema nHIekcHO] 6a3u Scopus meroBu
pazoBu IUTHPAHU Cy 7 mmyTa a Xupmios ¢aktop u3Hocu h = 2.



IIpernien HayyHe aKTHBHOCTH

Hayuna axtuBHocT ap MBana Tpamapuha je mpBeHCTBEHO y OOJNIACTH AMjarHOCTHKE IIa3ME€ METOIOM
ONTHYKE eMHUCHOHE U BaKkyyM ynrpasbyomdacte (BYB) criekrpockomnuje, mpuMeHaMa MamInHCKOT y4ema y
CHEKTPOCKONHMjH IUIa3Me, Te€ MeTomama yHampeheHa aHaIUTHYKUX Nep(OpMaHCH CIIEKTPOCKOIHje
JaCepCKH MHAYKOBAaHOT Mpoboja.

CXO,Z[HO OBOMC, paJ KaHaAuaaTa CC MOXKE KJ'IaCI/I(bI/IKOBaTI/I y cnez[ehe KaTeroije:

1. TIpuMeHa MANTMHCKOT YY€Hha Y CIEKTPOCKOMHjH I1a3Me
2. HcrpaxuBama y 00JIACTH CIIEKTPOCKOIIH]jE JIACEPCKH WHIYKOBAHOT MpoOoja

Kaamunar je 1o cama oOjaBumo 6 HaydHUX pajoBa, a O Tora 2 paga o MPETXOTHOT H300pa y 3Bambe
(HoBeMOap 2023. romuHe) 10 AaHAC.

IIpyuMeHa MAIIMHCKOT y4ela y CIEKTPOCKONUjH MJia3Me

[IpuMeHa MaIIMHCKOT yuera MPHUCYTHA je Y CBUM O0JIaCTHMa HayKe TeHepaliHo, 1a je TAaKO CBOjY MPUMEHY
HAIIUIO M Y CIIEKTPOCKOMHU]H TIIa3Me. JenaH o HCTOPHjCKU HajCcTapujuXx o0jacTH kojuma ce Jlaboparopuja
3a CIEKTPOCKOIIMjy Iula3Me M Jlacepe OaBH jecTe onpehuBame TyCTHHE €JEeKTpoHa KopumhemeMm
pa3NMUYUTHX OCOOWHA CIEKTPaJHUX JMHHja Koje mcmosbaBajy llltapkoB edekar (TmosymmprHa JIHHH]E,
pacTtojambe u3Mel)y 103BOJbCHMX M 3a0pambeHUX KOMIIOHEHTH HTH.). Y TOM CMHCIY, Y OKBUPY paja Ha
JOKTOPCKOj MCEPTallji KaHAWJAT j€ pa3BHO MOJEN 3aCHOBAaH HA MAIIMHCKOM YUY€y YHjU je IHJb OHO
npensuhame TMONYIIHPHHE E€MUTOBaHE CIIEKTpallHE JIMHHjE 3a Yyia3He Iapamerpe Iula3Me: TyCTHHaA
eNIEKTpHA, TEMIIepaTypa eJEeKTPOHa, EMHUTEp, HaeJEeKTPHCAmhe EMHTEepa, CS(PEKTHBHH jOHU3ALHOHH
MTOTEHIHjaJl TOPHETr HUBOA, EHEPTHje TOPHEr U JOKET €HePreTCKOTI HIBOa, NIaBHU W OpOMTaIHW KBaHTHHU
OpojeBn o0a HHMBOAa, YKYyIIHH YraoHH MOMEHT 00a HHMBOa M €Hepruja joHu3auuje emutepa. llopen
moryhHoctu 6p3e mpouene lllTapkoBe momymmupuHe, UcnuTaHe cy u peryaapuoctu llltapkoBor edexra
Iy>K CIIEKTpalHE CepHje HeyTpaJHOr aToMa JIUTHjyMa. Pesynratu oBux ncTpaskupama 00jaBJbEHHU CY y JBa
pala y HHOCTpaHUM Hay4YHUM 4YacolHCUMa!

1. Stark spectral line broadening modeling by machine learning algorithms
Ayrtopm: 1. Tapalaga, I. Trapari¢, N. Trklja Boca, J. Puri¢, 1. P. Doj¢inov¢

Yacomuc: Neural Computing and Applications 34, 6349-6358, 2022, M21, IF 6.0
DOI: 10.1007/s00521-021-06763-4

2. New perspectives in the analysis of Stark width regularities and systematic trends

AyTtopu: Z. Majlinger, 1 Traparié
Yacomuc: Contrib. Astron. Obs. Skalnaté Pleso 53, 58 — 71, 2023, M23, IF 0.3
DOI: 10.31577/caosp.2023.53.3.58

MamuHCKO yueme je Takole MpuMemeHo W y KiIacu(HUKaIMju 3Be3[la Ha OCHOBY CHHMJBEHOT CIIEKTpa y
BUJJBMBO] O0JIACTH U OBH PE3YJTaTH Cy 00jaBJbEHU Y paiy

1. The usage of perceptron, feed and deep feed forward artificial neural networks on the
spectroscopy data: astrophysical & fusion plasmas



Aytopn: NM Sakan, I Traparic, VA Sreckovic, M Ivkovic
Yaconuc: Contrib. Astron. Obs. Skalnaté Pleso 52, 97 — 104, 2022, M23, IF 0.4
DOI: 10.31577/caosp.2022.52.3.97

ITorom, ypaheno je ncnutuBame MoryhHOCTH 0OyuyaBama MoJeNa MAIIMHCKOT y4uema Ha moctojehoj 6asu
CHUMJbEHUX CIIeKTapa CTaHAapIHUX y3opaka Hephajyhnx uennka y IWJby KBaHTHUTATHBHE aHANN3E y
CIIEKTPOCKOIHjU JIACEPCKH WHAYKOBaHOT mpoboja. Hamme, kako OM ce m30emio Tpoulelme BpeMeHa Ha
npaBJbeme 0asze 3a 00ydaBame, ca HCTOM anapaTypoM M IIPU UCTUM YCIOBHMAa CHUMJBEHH Cy CIIEKTPH TECT
y30paka M pe3yaTaT cy 00jaB/beHH Y pamy:

1. Determination of austenitic steel alloys composition using laser-induced breakdown
spectroscopy (LIBS) and machine learning algorithms

Aytopu: I Traparié¢, M Ivkovié
Yacomuc: The European Physical Journal D 77, 30, 2023, M23, IF 1.6
DOI: 10.1140/epjd/s10053-023-00608-6

KoHauHO, MamMHCKO y4yeme NPUMEHEHO je y CBpXy TIeHepalnHje W MOAEIOBama CIEKTpa BoippaMa
eMuTOBaHOT y obsnactu BYB crnektpa y omcery tamacHux aykuHa of 4 1o 7 nm. Y OBOM ey CHEKTpa,
KOJIM3UOHO pajjaTUBHU MOMEIHM Pa3BHjeHM paHuje HUCY y MoryhHoctn na CHEKTpH Cy CHUMJBEHH Y
xemmoTpony JIX] (enr. Large Helical Device) y Janany. Pax je mocnat y 4aconmuc u TpeHYTHO j€ Y TIPOIECY
pereH3uje.

HNcrpaxuBama y 00/1aCTH CIEKTPOCKONNje JIACEPCKH MHAYKOBAHOT NMPodoja

Y Toky peamuzanuje npojekra WJIEJE kanmmpar je ydyecrtBoBao y yHampehemwmy moctojehinx merona
CIIEKTPOCKOTIHje JIACEPCKY MHIyKoBaHOT mpoboja (eHr. LIBS — Laser Induced Breakdown Spectroscopy) y
IMJby aHaJIM3e W KapakTepusandje mpBor 3uga (ysmoHor peakropa. C THM y Be3H, NPBO je HCIHTaHA
rpaHulla AeTeKnuje 6akpa y Jerypu Boidpam — Oakap Koja mpeacTaBjba MAcalaH Ipeja3Hu MaTepujai ca
yrcTor Bojippama Ha HEKy Off Jierypa kao mro je serypa CuCrZr o koje ce mpase LeBH 3a XJaleme npeor
3uma peakropa. Ilpenasau matepujan je morpebaH jep 300T M3IOKEHOCTH MPBOT 3HUAa jAKUM TOILIOTHHM
¢mykceBnMa m07a3u A0 HanpcHyha MaTepHjaia MpBOT 3HUa YHME Ce yIpoKaBajy caMme IeBH 3a Xiaheme u
0e30eman pan dysuoHor peaktopa. 30or tora, JIMBC TtexHuka je uckopuinheHa 3a IEMOHCTpPAIH])yY
onpehuBama mporenTa 6akpa y y30pKy Kao W KoMuunHe abnupaHor marepujana. Pesynraru cy o0jaBiseHH

y paay:
1. LIBS depth-profile analysis of W/Cu functionally graded material

Aytopu: M Ivkovic, J Savovic, Biljana D Stankov, M Kuzmanovic, I Traparic
Yaconmuc: Spectrochimica Acta Part B: Atomic Spectroscopy 213, 106874, 2024, M21, IF 3.2
DOI: 10.1016/j.sab.2024.106874

Jpyru mpobieM Koju je pa3sMOTPEH y OBOM IIPOjEKTy jecy TEXHHKE pasaBajamba baamep anda muHUHja
BOZIOHMKOBHX n3oTona. OBaj mpo0OsieM je BeoMa aKkTyenaH jep ce pa3BHja METoia MPOIeHe KOHIIEHTpanHnje
TPHUIHjyMa y IPBOM 3UTy pEaKTopa in-situ METOIOM, Koja Ou jana Op3y, jeMHOCTaBHY U MOy3[aHy MPOLEHY
KOHILIEHTpalMje TpUlMjymMa y TIPBOM 3UJYy HYKIeapHOr peaktopa. Meroma Koja je NpUMEmeHa je
JIeMOHCTpHpaHa Ha rpaUTHOj] METH Ha KOjy je HakamaHa ofpel)eHa KOHIIEHTpallyja TemKe Boge. Merta je
nznoxeHa sacepckoM ummyincy TEA CO; nacepa pa3nuMuuTHUX €HEPrHja, a CHUMAbE CIEKTPa je BPIICHO Y
KOHTPOJINCAHO] aTMoc(epH aproHa M xelljyma KopuirhemeM CHeKTpoMmeTpa BUcoke pesonynuje u iCCD
kamepe. JloOujeHn pe3ynTaTu MPUKa3aHU Cy y paay:



1. Resolving studies of Balmer alpha lines relevant to the LIBS analysis of hydrogen isotope
retention

Aytopu: I Traparic, D Rankovic, BD Stankov, J Savovic, M Kuzmanovic, M Ivkovic
Yacomuc: Spectrochimica Acta Part B: Atomic Spectroscopy 221, 107050, 2024, M21, IF 3.2
DOI: 10.1016/j.sab.2024.107050

Enementn 3a KBAJUTATUBHY NPOLCHY HAYYHOI' JOIIPUHOCA KaHAX/IaTa

1. 3Hayaj Hay4yHHMX pe3yJiTara

WBan Tpamapuh mao je CBOj AONPHHOC Y Pa3IuYMTHM obnacTiMa (pu3MKe jOHH30BAaHHUX IacoBa U
miazMe. [maBHa oOmacT wWcTpakuBama KaHAWAaTa Omiia je TNpUMEHAa MAIIMHCKOT y4Yema Y
CIEKTPOCKOIIH]H IIIa3Me, T7Ie je IIOCTHTao 3alakeHe pe3ylTare.

VY OKBUpY HCTpa)knBara BE3aHHX 33 MPUMEHY MAIIMHCKOT y4ea, MPBU YT jeé YCHEeIHO MPUMEHHO
MaIIMHCKO y4Yeme y cBpXy aHanm3upama LlltapkoBor edekra. TauHo cy mpenBuljeHe perynapHOCTH
Iy CIEKTPaJTHUX CepHja HEYTPAIHOT aTOMa JIUTHjyMa, a MOZIEN j€ YCIEIIHO MPEABUACO U caTyparujy
nosymupuHe yeien lltapkoBor edekra koja HacTaje yesben JlebajeBor ekpaHupama emuTepa. Takohe,
JEMOHCTPHPAHO j€ M Jla MOJIeJT MOXe jako euKacHO Ja fa mpoueny llltapkose momymmprae 3a 6o
KOju emuTep ca oactymnameM of 20 % y oqHOCY Ha eKCIEepHMEHTAHa MEpema, ITO je y CKIamy ca
CEeMH KJIACHYHUM TepTypOanmonum mozaenom (eHr. SCP — Semiclassical Perturbation Theory) Caxan
Bpemo n [lumutpujesnha Ha 4njuM pe3yiITaTUMa je UCTH W 00ydaBaH.

Taxole, ycnen moctynHocTH onpeme y JlJabopaTopuju 3a CIEKTPOCKONH]Y IIa3Me U J1acepe, CHUMIbCHA
je TecT 6a3a moJ UCTHM YCJIOBUMA Kao W 0a3a 3a moTpede yrmopeaHor TakMuuema (SHT. benchmarking)
Ha JIMBC 2022 wmehynaponnoj koHpepenumju. Mneja je 6mna ma ce mo mpBH IyT Ipoda METOx
oOyJaBama Mozeia Ha 0a3H Koja CHUMJbEHA Ca HCTHM HHCTPYMEHTOM Y JIPYToj JIabopaToOpHjH, a Ja ce
OTOM OOydYeHH MOJENI MCKOPUCTH 3a KBAaHTHUTATHBHY aHalM3y CHUMJbEHHX y30paka Yy COICTBEHO]
naboparopuju. Pe3yaraTti oBor HCTpakiBama JIEMOHCTPHPAjy [a je OBaj METOJ OCTBAPHB, I KaKo OU
pUMeHa MallMHCKOT ydema A0 Kpaja 3axuBena y JIMBC kBaHTMTaTHBHO] aHanmW3W, moTpeOHa je
CTaHAapAn3aIija METOIE IITO j€ U JUCKYTOBAHO y pajy.

KoHauHO, KaHIUAAT je a0 M BEJMKH JONPHUHOC Y EKCIIEPUMEHTATHOj IOCTaBIH, pPealn3aluju
eKCTIEpUMEHTA U TyMadewhy pe3yaTaTa y okBupy npojexra MJIEJE. Osne je neMonctpupana MoryhHOCT
pa3nBajama banMep anda nuMHUja BONOHUKA U JeyTepHjyMa KOpUIINEHeM CIEKTPOCKOIUje JaCepCKU
HMHIYKOBaHOT Ipo0oja Ha HUCKOM MPUTHUCKY. JloOMjeHr OIHOC CUTHAJ/IIYM M Pe30iyIfja ca KOjoM Cy
OBE JMHUjE Pa3IBOjeHE CYTepuIle Jia je OoBa MeTolma IOToIHA 3a pasaBajamkbe bammep amda awHHja
JIeyTepujyMa W TpHUIMjyMa y CBpXy IpOIeHE KOHIIEHTpauuje yrpaheHor Tpuiujyma y TpBH 3HJT
peakTopa.

2. Ilapamerpu KBajMTETa Yacommca
p MBan Tpanapuh je TokoMm cBoje Kaprjepe 00jaBro IIecT pajoBa y Mel)yHapHOIMM YacOMUCHMA, Off

TOTa JBa pajia O MPETXOMHOT n300pa y 3Bame. KBannrer 00jaB/beHIX paoBa MOXKE C€ TPOICHUTH Ha
OCHOBY KBAJIHTETAa YaCOIMHUCa Y KOjMa Cy OBU PAJOBU 00jaBIbEHU:



e 2 pamay BpxyHCKoM MelyHapomHOM "acomucy Spectrochimica Acta Part B: Atomic Spectroscopy
(M21, IF 3.2)

e 1 paxg y BpxyHckoM MehyHapomHoMm waconucy Neural Computing and Applications (M21, IF 6.0
(2022))

e 1 pany mehynaponHom waconucy: The European Physical Journal D (M23, IF 1.6)

e 2 panay mehynapomnom daconucy: Contributions of the Astronomical Observatory Skalnaté Pleso
(M23, 0.4)

VYKymman uMIakT GpakTop MyOJuKOBaHUX pamoBa kanaumata je 14.80.

o M CHMUII

YKynHo 14.80 33 5.175
YepenheHo 10 YIAHKY 2.46 5.5 0.862
YcepeameHo 1o ayTopy 1.23 2.75 0.431

3. Ilo3uTMBHA HATHPAHOCT KAHAMIATA

IIpema Scopus 6a3u momaraka (Scopus link) pagosu ap Meana Tpamapuha mutupanu cy 7 myta 6e3
ayTOIMTAaTa ca yKymHUM h — (pakTopom 2.

4. Hopmupame 0poja KOAyTOPCKUX PajioBa, MATEHATA U TEXHUYKHX pellera

[Ba pama nmp MBana Tpamapuha cmanajy y eKCIIepIMEHTATHE pajioBe y MPUPOTHO — MATEMATHUKUM
HayKama I1a ce paJoBH ca 7 KoayTopa y3uMajy ca IyHOM TeXMHOM. Kako Ha cBUM pagoBuma Opoj
KOayTopa He Mpena3u oBaj 0poj, 00a pama ymase ca IyHOM TEKHHOM.

Ocrana 4eTupu paja NpencTaB/bajy HyMEpUUKe CHMYyJallHje y OOJIACTH MPUPOJHO — MAaTEeMAaTHUYKHX
HayKa T€ C€ PaJioBU ca 5 KoayTopa y3uMajy ca IIyHOM TeKMHOM. bpoj koayTropa Ha OBUM paJoBHMa
Takohe He mpernas3u oBaj Opoj, ITa CBU PaJIOBH yila3e ca MMyHOM TE€XHUHOM.

5. Yuyemhe Ha npojekTHMAa, MOTNPOjeKTUMA U MPOjEeKTHUM 3aJanuMa

Hp UBan Tpanapuh Beh oko romuHy gaHa aKTHBHO YYECTBYj€ Kao WIaH MPOjEKTHOT TUMA Ha MPOjeKTy
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ARTICLE INFO ABSTRACT

Keywords:

Hydrogen isotopes
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Plasma-facing components

Utilizing Laser-Induced Breakdown Spectroscopy (LIBS) for detecting deuterium and tritium retention in fusion
devices poses a significant challenge due to the experimental limitations in resolving hydrogen isotope Balmer
alpha lines (Hy, Dy, and T,). This study utilizes the Rayleigh criterion to distinguish T, and D lines by deter-
mining the maximum line widths and corresponding plasma parameters. Experimental validation was performed
through LIBS analysis of heavy water-doped graphite/silica gel targets in both argon and helium atmospheres to
assess the predicted plasma parameters and line profile shapes. The optimization of laser pulse energy, gas
pressure, delay, and gate times aimed at achieving fully resolved lines based on the intensity, width, and the dip
between deuterium and hydrogen Balmer alpha lines. By fine-tuning these experimental parameters, the study
successfully achieved a dip of less than 10 % between the Hy and D, lines with a satisfactory signal-to-noise ratio,
demonstrating the feasibility of fully resolving the T, and D, lines. These findings underscore the potential of

LIBS in enhancing the detection of deuterium and tritium retention in fusion devices.

1. Introduction

Resolving the challenges surrounding energy production stands at
the forefront of modern science and technology. Nuclear fusion is a clean
and sustainable energy production that holds the promise of addressing
global energy demands. A fusion reactor uses deuterium (D) and tritium
(T) as fuels to produce inert gas helium, high-speed neutrons, and vast
amounts of energy without producing long-lived radioactive waste.
Despite its immense potential, the complexity and costliness of fusion
reactors necessitate collaborative efforts on an international scale,
exemplified by the joint endeavor to construct the International Ther-
monuclear Experimental Reactor (ITER) among participating nations
such as the EU, USA, Japan, Russia, China, India, and South Korea [1].

The development and maintenance of nuclear fusion reactors are
vital to sustain the promise of clean and efficient energy production.
Amidst the complex operational challenges faced by fusion reactors,
attention must be given to the impact on plasma-facing components
(PFCs), exposed to various stresses, requiring meticulous material
composition monitoring and particularly critical hydrogen isotope
retention studies. In a nuclear fusion reactor, PFC faces intense plasma
radiation, thermal loads, and neutron fluxes, leading to structural

* Corresponding author.
E-mail address: ivke@ipb.ac.rs (M. Ivkovic).
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material damage. Thermal loads may cause re-crystallization, cracks,
melting, and dust formation. Plasma exposure leads to sputtering,
hydrogen isotope retention, and helium-induced morphology changes.
Potential defects and transmutations may appear under neutron action.
Because of this, in-situ real-time material analysis is essential to prevent
an unexpected failure. Monitoring hydrogen isotope retention in PFCs is
particularly important as it may affect fuel efficiency, plasma density,
and the density of neutral hydrogen in the plasma boundary, essential
for the safe operation of nuclear fusion installations [2]. Consequently,
hydrogen isotope retention studies play a key role in PFC diagnostics
[2-6].

Numerous research papers focus on various methodologies for PFC
characterization [7,8]. Two currently significant techniques for the ex-
situ characterization of fusion-relevant materials are accelerator-based
Ion Beam Analysis (IBA) and Thermal Desorption Spectroscopy (TDS)
[3,9-13]. IBA encompasses setups like Nuclear Reaction Analysis (NRA)
and Elastic Recoil Detection Analysis (ERDA) crucial for quantifying
light isotopes due to their sensitivity and selectivity. Additionally, TDS
offers insights by analyzing demounted (from the reactor) material
samples using a quadrupole mass spectrometer with an enclosed ion
source to evaluate hydrogen isotope desorption behavior. However, TDS
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cannot provide information on the depth distribution of fuel concen-
trations. Radiofrequency Glow Discharge Spectrometry (RF-GDOES)
proves effective for depth profiling of PFCs, as demonstrated in studies
such as the analysis of deuterium in tungsten [2].

Laser Induced Breakdown Spectroscopy holds a prominent position
among techniques applied for PFCs analysis within fusion devices. Its
analytical capabilities have been extensively documented in many books
and review articles [14-20]. LIBS is a minimally invasive non-contact
technique suitable for multi-element analysis, including depth
profiling, without requiring sample preparation. The technique is
adaptable for vacuum or low-pressure gas environments and excels in
remote in situ analysis. Notably, LIBS allows for on-site analysis without
the need to dismantle or cut samples from the reactor, reducing costs
and eliminating issues related to PFC replacement due to structural non-
uniformity. Moreover, LIBS offers versatility in analyzing various
reactor components beyond those that are easily disassembled. Review
articles [21-23] provide an overview of the current state of LIBS
development for fusion applications. Various LIBS systems were used for
diverse characterization objectives, such as identifying elemental
composition, depth profiling, deposited layer thickness, or spatial
analysis. The efficiency of LIBS as a remote online diagnostics tool was
demonstrated by analyzing multilayer structures, simulating the surface
of a PFC covered with deposited impurity layers [24]. Specifically
tailored LIBS configurations optimized for vacuum operation showcased
promising results, including a compact system integrated onto the ro-
botic arm of the Frascati Tokamak Upgrade (FTU) for ITER-relevant
sample analysis [25], demonstrating improved spectral resolution in
double-pulse (DP-LIBS) over single-pulse (SP-LIBS) configurations.
Notably, the exceptional sensitivity of LIBS to lighter elements has been
found application in hydrogen isotope retention investigations [26-35].
At Experimental Advanced Superconducting Tokamak (EAST) [26], a
remote in situ laser-induced breakdown spectroscopic (RIS-LIBS) system
has been developed for the determination of PFC composition (fuel
retention, impurity deposition, and deposited layer thickness) [26].
Isotope lines D, and H, were identified but only partially resolved. The
limit of detection of H/D was estimated to be about 200 ppm in the
lithium layer on the first wall [27] applied LIBS for in-situ probing of D
retention and Li deposition on a W-PFC surface after being exposed to D
plasmas in a tokamak. Deuterium retention inside both pure and lithi-
ated tungsten was investigated, and it was found that the Do and Ha
signals of lithiated W are significantly more intense than those of pure
W. LIBS was also applied for in-situ diagnostics of the Li-H/D co-depo-
sition on the first wall of EAST [28]. The results showed that the D, and
H, signal intensities disappeared after the third laser shot, which was
explained by the greater depth of the nanosecond laser ablation than the
thickness of the deposited impurity layer. Additionally, femtosecond
laser filamentation-induced breakdown spectroscopy combined with
chemometrics methods was used to quantify deuterium content in water
samples [29]. Filamentation was found to suppress spectral broadening,
and well-resolved peaks of H, and D, were obtained. Burger et al. [30]
studied the segregation of species and spectral line broadening in D,O-
H,0 plasma produced by single- and double-pulse nanosecond laser
ablation in air. It was found that species segregation for laser-produced
plasma formed in the air does not significantly impact the ability to
distinguish Dy and H, Balmer lines for the SP-LIBS and DP-LIBS. Fantoni
et al. [31] studied the resolving of H, and D, lines using double pulse
configuration with Nd:YAG lasers having energy of 170 mJ at 1.06 pm to
irradiate, in vacuum, Mo target co-deposited with W, Al, and D using
vacuum arc deposition method. With a 300 ns delay between pulses, H,
and Dy lines are almost resolved according to the Rayleigh criteria, thus
enabling line intensity determination using fitting with Pseudo Voigt
functions.

Kautz et al. [32,33] obained an even better resolution by using fs Ti-
saphire laser (800 nm, 35 fs, 5 mJ) to irradiate H and D loaded Zircaloy-
4 targets. In 10 Torr of He, using a gate of 2 ps, FWHM of hydrogen lines
from 0.08 to 0.05 nm was obtained for delays from 1 to 26 ps [33]. Using
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an ns laser and different pressures of Ar, a slightly greater FWHM was
obtained. Later [34], using the same fs laser irradiation of the Zircaloy-4
target with incorporated D or T in 26 Torr of Ar, the hydrogen Balmer
alpha lines are clearly resolved from the D, or T,. Lowering gas pressure,
the line width goes even below 0.08 nm, but the line intensity drops even
faster, thus limiting the possibility for resolving D, from T,,.

Recently [35], the analysis of the parameters influencing resolving
and recordings of the fully resolved D, and Hy, lines are obtained in 30
Torr of Ar at delays of 60 ps, but without indicating other experimental
conditions.

Achieving direct Laser-Induced Breakdown Spectroscopy (LIBS)
analysis of hydrogen isotopes remains a formidable challenge due to the
high electron density in laser-induced plasma, intensifying Stark
broadening and hindering the clear distinction of closely spaced spectral
lines of different H isotopes.

This research aims to enhance the resolution and sensitivity of LIBS
for detecting hydrogen isotopes in fusion-relevant materials. The initial
focus involved a theoretical exploration to ascertain the maximum line
widths for resolving hydrogen Balmer alpha D, and T, lines and to
determine their real intensity. Parameters such as maximum tempera-
ture, electron number density, and instrumental width in conjunction
with peak intensity ratios were meticulously assessed. In addition, the
influence of the applied approximations on maximum line widths was
evaluated.

The experimental verification of obtained results, i.e., generation of
plasma condition necessary to resolve hydrogen isotopes Balmer lines,
was performed using an earlier proposed [36] CO; laser-based LIBS
under a low-pressure helium and argon atmosphere. Different graphite
targets incorporated with heavy water (D20) were analyzed, including
the silica gel-doped wet graphite targets.

2. Theoretical considerations

In this section, the requirements for resolving Balmer alpha lines of
hydrogen isotopes were analyzed and calculated. Special attention was
devoted to calculating the requirements for resolving the tritium Balmer
alpha line. This is necessary since tritium control and retention studies
are critical for the safety operation of fusion power plants due to the
possibility of tritium permeation into the coolant and the difficulties
associated with its recovery [37].

However, as tritium is radioactive and its determination is experi-
mentally challenging, laboratory studies of hydrogen retention primar-
ily rely on analyzing deuterium content. A key parameter in applying
isotopically resolved LIBS for retention studies is the relation between
line broadening and the isotopic shifts. Compared to other Balmer series
lines, the Balmer alpha lines, besides being the most intense visible
hydrogen line, have lesser Stark broadening than isotopic shifts, so they
are commonly selected for hydrogen retention studies. Namely, Hy and
Dy lines cannot be resolved under typical LIBS plasma conditions (N =
102 m3 and Te = 10.000 K) since the isotopic shift for the Balmer beta
Hp - Dg lines is 0.13 nm [38], while the Stark widths of these lines are 1
nm (according to the computer simulation (CS) calculations [39]).
Contrary, under the same plasma conditions, the Stark width of the
Balmer alpha lines is 0.23 nm [39], while the isotopic shift for Hy - D is
0.18 nm and 0.23 nm for Hy - T, [38]. The main task of our research was
to enhance the sensitivity of LIBS for the detection of hydrogen isotopes.
For that purpose, optimal plasma conditions must be found under which
hydrogen lines broadening is reduced, peak separation improved, and
emission signal increased.

2.1. Determination of the critical FWHM for resolving hydrogen isotope
lines

The first step in the analysis was to determine the limiting values of
the spectral line widths necessary for resolving the H-D-T lines. From the
spectroscopic point of view, lines are resolved if they fulfill the Rayleigh
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criterion [29]. Therefore, the theoretical analysis of the overall line
profiles (when all three isotopes are present in plasma) was performed to
determine the maximum width of spectral lines that satisfy the Rayleigh
criterion.

It is shown that the fitting of the hydrogen Balmer series lines with
one, two, 4, 6, or seven Lorenzian excellent matches theoretical Stark
profiles [40]. This and the fact that fitting the overall hydrogen profiles
with one or sum of the Voigt function [40-42] also gives an excellent
matching is a clear consequence of the fine structure of these lines. Since
each fine structure component can be presented by the Voigt function,
the resulting overall profile also has the Voigt shape [43]. Of course,
such an approximation can be applied only above the fine structure limit
[44]. On the contrary, it is unclear how such a fitting with several Voigt
profiles can be easily applied for electron number density diagnostics.

Therefore, in many applications hydrogen profiles were fitted with a
single Voigt profile. Determination of the full half width at half
maximum, FWHM by such fitting procedure is adequate and is used in
this work. On the contrary, deconvolution to determine Stark contri-
bution by equalizing it with Lorentzian contribution to the overall line
width may lead to significant errors [45]. More details about this
approximation in determining electron density will be discussed in
Section 2.3.

First, Hy, Dy, and T, spectral lines, having the same intensity and line
width, were generated using the Voigt approximation, which treats each
peak as a sum of fractional contributions of the Gaussian and Lorentzian
shapes:

wy = 0.5346 e w; +1/0.2169 e w; 2 + wg? 1)

where wy, wi, and wg are the full width at half maximum (FWHM) of the
Voigt, Lorentz, and Gaussian profiles, respectively [46].

The Gaussian contribution is taken as the combination of the
instrumental (w;) and the Doppler broadening (wp) [47]:

Wwg = \/wp? +w;? 2
wp = 7.16 x 10 7A(T/M) 72 ®3)

where T and M are the temperature and mass of the radiating atom in
atomic mass units, and 4 is the central wavelength in nm.

The estimated maximum line width (critical FWHM) for which the
hydrogen isotope lines can be resolved is shown in Fig. 1. According to
Rayleigh’s criterion, assuming that the hydrogen isotope line intensities
are the same, the critical FWHM to separate the H, peak from the
blended D,/T, lines is 0.18 nm (Fig. 1a), and 0.054 nm to resolve the Dy

(@)

Relative intensity

6560 6562 6564
Wavelength (nm)

655.8 656.6
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from T, line (Fig. 1b). It should be stressed that even when D, /H, line
pair is resolved, the information about T, may be lost entirely. In
addition, if one wants to resolve D, /T, line pair, the dip between the D,
and H lines should be 10 % or less of the smaller line peak intensity.

Resolved deuterium and hydrogen lines were obtained in LIBS
spectra of samples with different deuterium concentrations, confirming
that the critical FWHM for H,/D, line separation is attainable [29-36]. It
is much harder to attain the minimum peak width necessary to separate
the Dy - Ty line pair. In addition, the critical FWHM for resolving lines
depends on the assumed peak intensities’ ratio, R. Dependence of,
determined, (critical for D, and T, lines resolving according to the
Rayleigh criterion) FWHM dependance on a line intensity ratio in the
range from 0.1 to 1 is presented in Table 1. The critical FWHM depends
on the assumed ratio between D, and T, line intensities, R, regardless of
which line is more intense, i.e., there was no difference between critical
FWHM values obtained for intensity ratios of 0.5 and 2. Therefore,
Table 1 presents only the values for intensity ratios between 0.1 and 1.
To simplify procedure for critical FWHM determination, lines were
approximated by Voigt profiles using the same line width for all lines.

As illustrated in Table 1, the determined critical FWHM of Voigt
profiles for resolving D, and T, lines go from 0.027 to 0.054 nm,
depending on the line intensity ratio. The results in Table 1 suggest that
as the intensity ratio between these two lines decreases, it becomes more
challenging to resolve D, and T, lines experimentally.

The dependence of determined critical FWHM on the assumed ratio
of peak intensities of the Balmer alpha lines can be, besides in Table 1,
presented by eq. (4), which enables easy calculation of the maximum
FWHM necessary for resolving studied lines, for the estimated value of
R:

FWHM,, = 0.0599 — 0.0388 x exp(— 1.765 x R) (C)]

2.2. Critical plasma parameters for resolving hydrogen isotope lines

Resolving hydrogen isotope lines requires detecting a spectral signal
at reduced electron density with corresponding narrower line widths. In
other words, plasma parameters (T and N,) must be optimized to ensure
the conditions necessary to decrease electron density without a

Table 1
Critical FWHM for resolving D, and T, for different intensity ratios.
Line intensity ratio (R) 0.1 0.3 0.5 0.67 0.8 1
Critical FWHM 0.027 0.038 0.044 0.047 0.050 0.054
(b)
= S H
164 w, = 0.054 nm o
i - D,
....... '|'(x
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Fig. 1. Voigt approximation of hydrogen spectral lines having equal line widths and intensities and critical FWHM for resolving (a) H, and D, and (b) D, and

T, peaks.
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significant decrease in light emission intensity.

Electron density from the width of the H, can be determined using
different approaches since much work was devoted to studying this line.
For example, it is shown [48] that using Griem theory, there is a
considerable difference between electron densities determined from
Balmer alpha and Balmer beta line widths. Having in mind the high
accuracy of the Hg line theory, electron density can be determined using
the correction factor between theories of the Hy and Hg widths.

In this work, according to the approximation that the Stark profile of
the H, line at electron densities greater than 10! m~2 is close to Lor-
entzian [45], the eq. (1) was used to obtain Stark broadening contri-
bution to overall line width, assuming w;, = ws. Then, eq. (5) [39] was
used to calculate Ne:

N, [m™®] = 10* o (ws[nm]/1.098 )" 471> 5)

Fig. 2 shows the maximum values of plasma parameters (T and N,),
under which critical FWHM for T,, D, resolving is obtained, estimated
for different values of the instrumental FWHM parameter, w;. Plasma
parameters were calculated for two critical line width values corre-
sponding to two values of R spectral line intensity ratios. Upon
approaching the limit value of Ne = 1.2 x-10%! m™ as shown in Fig. 2a, it
becomes impossible to obtain the parameters (T and w;) required to
resolve both the Dy and T,, when R = 1. Additionally, it is observed that
for an electron density of approximately 4 x 102 m~3 and temperature
less than 6000 K, (corresponding to LIBS plasma at later evolution
times), the instrumental FWHM should be less than 0.027 nm to resolve
the Ty and Dy lines. Also, with equal peak intensities, if the temperature
is higher than 10,000 K and N, greater than 4 x 10%° m~3, the instru-
mental width must be smaller than 0.02 nm. As shown in Fig. 2b, for an
N, lower than 1 x 10%° m™2 and a minimal instrumental width of less
than 0.01 nm, the temperature cannot exceed 3000 K.

2.3. Validity of approximations used for simulation of line profiles

Several approximations were used to determine critical, i.e.,
maximal FWHM and plasma parameters necessary to resolve hydrogen
isotope Balmer alpha lines. Therefore, the validity of these approxima-
tions and their influence on determined parameters will be analyzed.

2.3.1. Approximation of line profiles with Voigt function

The validity check of the Voigt approximation, in the determination
of the plasma conditions required for resolving studied lines, was per-
formed by comparing estimated parameters with those obtained using
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the Computer Simulation model of hydrogen spectral line profiles (CS
tables) given by Gigosos et al. [39]. Previous studies [45] have
confirmed the validity of approximating hydrogen Balmer alpha line
shapes using the Voigt function. Conversely, determining the width by
fitting hydrogen lines with the Voigt function, even by fixing the
Gaussian contribution to the line width, can lead to significant errors at
low electron densities. Therefore, the calculation of plasma parameters
was performed using relation (5) [39,45] to improve their accuracy.
The difference in calculated values for the instrumental width w; =
0.01 nm, and w; = 0.027 nm respectively, (0.027 CS and 0.01 CS), was
illustrated in Fig. 2 a,b, respectively. Error bars, included for these data
in Fig. 2, indicate uncertainty of used formula. The slight variation be-
tween these values can be attributed to the contribution of a Doppler
broadening mechanism because Voigt profiles were generated assuming
identical widths of all three lines. For example, in the Voigt approxi-
mation, all three lines have a width of 0.054 nm, whereas the precise
values are 0.0598 nm for H,, 0.052 nm for D,, and 0.049 nm for Tj,.

2.3.2. Consistency in the assumption of the same stark widths and shifts
Different Stark widths of Balmer alpha lines of hydrogen and
deuterium were reported [49]. The author measured the Stark-
broadened line profiles of Hy and D, in a wall-stabilized argon arc at
an electron density of Ne = 1.4 x 10?2 m~3 and found the half width of
D, to be about 15 % smaller than the width of H,. It was found that only
about 5 % of the measured 15 % difference between the experimental H,
and D, profiles can be explained by differences in Doppler widths and
inaccuracies in reproducing the exact electron density, while the major
portion (= 10 %) must be attributed to ion dynamic effects. In reference
[49], for the evaluation of N, through the Stark broadening of the D,
line, the numerical factor of 0.9 was introduced in relation (5) to account
for the reduced Stark broadening of the D, compared to the H line.
Our study of the necessary conditions for resolving the Hy, Dy, and T,
peaks assumed the same values for FWHM of these lines. Therefore, the
impact of disregarding the influence of the reduced mass on the line
profile was examined using CS tables [39]. The analysis was performed
for four values of a reduced mass of 0.5, 0.8, 1, and 2, corresponding (in
case of equal gas and electron temperatures) to different plasma com-
positions: pure hydrogen, hydrogen-helium, hydrogen-argon, and a
mixture of argon with deuterium or all three hydrogen isotopes,
respectively. It was concluded that ion dynamics affects the line shapes,
resulting in the observed difference in line widths. As a result, observed
differences could impact the precision of estimated widths and plasma
conditions for separating D, and T, peaks in the studied range of den-
sities. Namely, according to the CS simulation results, a dip between
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Fig. 2. Relationship of the maximal electron temperature versus the electron density corresponding to different values of the instrumental FWHM calculated for two
critical line width values: a) critical FWHM = 0.054 nm, T,/D, = 1, and b) critical FWHM = 0.027 nm, T,/D, = 0.1.
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lines increases with the increase of the reduced mass, which positively
influences the conditions for resolving the hydrogen isotope lines. But,
neglecting the influence of reduced mass on the line shapes by analyzing
theoretical profiles for pure hydrogen only loosen the criteria for
maximal FWHM for other p. In addition, the hydrogen and deuterium
spectral line profiles analyzed and experimentally tested in this work
correspond to plasma with a simultaneous presence of hydrogen iso-
topes. On the contrary, in reference [49], measurements were performed
for two experimental conditions (with a small percentage of the H or D
added to Ar) having different reduced masses, which caused the stated
difference in the hydrogen and deuterium line width.

3. Experimental methods and materials

Requirements for line resolution, analyzed in Chapter 2, were
experimentally tested using the LIBS setup described in Section 3.1.
Emission spectra were recorded using the spectrometer, the resolution of
which is analyzed in Section 3.2. The selection of targets and their
preparation procedures are described in Section 3.3. To verify the re-
quirements for plasma parameters estimated in Chapter 2, temperature
and electron number density diagnostics were performed. These results
are described in Section 3.4.

3.1. Experimental setup

The breakdown on a solid target was generated using the modified
carbon dioxide TEA laser (Tachisto 215G) operated at 10.6 pm, with a
repetition rate of 1 Hz. The duration of the main laser pulse was 80 ns
with a tail lasting 2 ps (see inset in Fig. 3). The targets were placed
within the vacuum chamber mounted on the x-y table (Isel-automation
230,510). The chamber was vacuumed and filled with a continuous
argon or helium gas flow at the desired pressure. The laser beam was
focused perpendicular to the target surface using a ZnSe lens (L, f; =
100 mm), as illustrated in Fig. 3. Fast imaging was conducted through a
lateral window of the vacuum chamber, capturing the plasma image and
projecting it onto the entrance slit of a spectrometer. This process uti-
lized an optical fiber settled at 15 degrees and equipped with a colli-
mator (SolarLas PS2) for precise light transmission. For recordings of
line shapes, a spectrometer (Sol Instruments MS7504i) was employed,
outfitted with an iCCD camera (Andor Technology, model DH734I-18F-
63 featuring 1024 x 1024 pixels, with a size of 13 x 13 pm and an 18
mm diameter intensifier). The iCCD was controlled using a pulse
generator (DG-535, Stanford Research Systems), triggered optically by
the occurrence of plasma on the target. A fast photodiode (PD) oriented
towards the target was utilized to convert the light signal into electrical

TEA CO, LASER

——
0 1 2uS
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and trigger the DDG. Line shape recordings were performed with full
vertical binning and different gate widths at various delay times. The
acquisition gate width was varied between 15 ns and 70 ps. If not stated
otherwise, the gate time was 5 ps. The shorter acquisition widths at
earlier delays were favorable for tracking fast-changing plasma. Signals
were recorded over ten accumulations to mitigate the influence of shot-
to-shot variations.

3.2. Instrument selection and determination of instrumental profile

The initial step in experimental evaluation of the criteria for
resolving hydrogen isotope Balmer alpha lines involved examining the
spectrometer’s resolution, i.e., determining the instrumental half-width.
Namely, the instrumental half-width must be smaller than the values
shown in Table 1. The shape and width of the instrumental profile of the
MS 7504i spectrometer were determined by measuring radiation from
the Ne pen lamp. The instrumental width (diffraction grating with 1800
groves/mm and a 15 pm wide entrance slit of spectrometer) was
determined to be w; = 0.03 nm. Thus, it was concluded that the spec-
trometer was suitable for resolution studies of hydrogen isotope Balmer
alpha lines.

3.3. Preparation and testing of targets

The second task was selecting and preparing the targets that could
serve as substitutes for the hydrogen isotope-enriched components of the
plasma fusion reactor. The material selected for the present study was
graphite because of its importance for fusion technology [50,51]. Two
preparation procedures were used to obtain graphite targets with
embedded D-O. In the first case, a controlled amount of the D,O was
applied with a micropipette to the surface of a tablet made from spec-
troscopically pure graphite powder. In this way, graphite targets with a
gradient concentration of hydrogen along the sample thickness were
produced. These targets were suitable for depth analysis of hydrogen
retention, i.e., recording LIBS spectra in which the intensity ratio of
hydrogen over deuterium Balmer alpha lines changes with the number
of laser shots.

In the second case, tablets were made from graphite powder doped
with D20 and mixed with silica gel (SiO2). The silica gel was added to
prevent a decrease in water content during vacuuming. Before mixing
with D,O-doped graphite, SiO2 was ground to a fine powder and dried in
an oven at 110 °C for 20 h to eliminate previously accumulated mois-
ture. The best consistency of the tablets was achieved by mixing the
graphite and silica gel powders in the proportion of 3:1. After pressing
(10 tons hydraulic press for 30 min), the tablets were dried at 120 °C for

Gas
inlet

PC

Fig. 3. Experimental setup: L-lens, PD-photodiode, OF-optical fiber, FC-focusing collimator, VAC-vacuum outlet, DSO-digital storage oscilloscope and DDG-digital

delay generator.
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6 h and stored in a desiccator to prevent moisture absorption. Targets
prepared with this procedure had a homogeneous water distribution, as
confirmed by LIBS spectra. The intensity ratio of the Hy and C II lines
remained almost unchanged with increasing number of applied laser
shots. The heavy water-doped graphite/silica gel targets were used in all
further experiments.

3.4. Plasma diagnostics

The plasma parameter measurements were conducted to experi-
mentally validate the conclusions drawn from the results depicted in
Fig. 2. Electron number density was evaluated from the measurement of
wavelength separation (s) between peaks of allowed (2p 3P°- 4d 3D)
and forbidden (2p 3P°- 4d 3F°) component of the He I 447.1 nm line,

using the relation (6) [52], with T. in K, s in nm and N, in m 3

s \bT
lOglo(Ne) =215+ lOglo {(m) -1 :|

8380
12

b(T.) = 1.46 x (6)

From the spectra presented in Fig. 4 a, the separation between peaks
was determined: s = 0.206 nm for shorter delay/gate times (0.5 ps / 5 ps)
and 0.155 nm for longer delay/gate times (5.5 ps / 50 ps). The estimated
N, for shorter and longer delay/gate times were 2.5 x 10%! and 2.7 x
102° m~3, respectively.

In addition, N, was determined from the parameters of the He I
492.2 nm line (2p Ipo — 4d 1D) with forbidden component (2p Ipo _4f
1F° and 2p Ipo _ 4p Ipe using the relation (7) [53], with Te in K, s in nm,

and Neinm™ 3

logio(N,) = 21.3065 + )1 S
0810(Ne) = 21.3065 + ( 5o-cc 10810 <0.131187) -

994

T, )

b(T,) =125+

Using the separation values s = 0.203 nm and 0.146 nm determined
from Fig. 4 b, the calculated electron number density was N = 1.5 x
10?! and 2.2 x 10%° m™ for shorter and longer delay/gate times,
respectively. From data presented in Fig. 4, for separation between
forbidden (F) and allowed (A) components (s = 0.203 nm and 0.146 nm)
and their intensities ratios (F/A = 0.196 and 0.044) the following N,
values were obtained by interpolation of the data according to unified
theory (BCS) [54]: 2.03 x 10%!, 3 x 10%, 1.5 x 10?! and 3.66 x 10%°
m ™3, which are in reasonable agreement with values obtained from the
calculations based on approximative formulas [52,53].

The gas temperature was determined by comparing the synthetic and
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recorded spectra of the sequence Av = 0 of the C; molecule Swann
system at 515 nm. Fig. 5a shows a part of the Av = 0 sequence of the Cy
molecule Swann system spectrum, obtained in an Ar atmosphere at
reduced pressure (10 millibars) between the band heads (0-0) and
(1-1). Spectra were obtained with different delay times (5, 10, and 15
ps), with a gate of 5 ps. As can be seen from the picture, the resolution of
the spectrograph and the plasma conditions allow for obtaining spectra
with a well-developed rotational structure, where the lines of the R and
P branches are well-separated. Due to the decrease of plasma tempera-
ture with time, the band intensities obtained for different delay times
decrease rapidly with increasing time. In general, the emission of mo-
lecular bands is characteristic of the peripheral plasma parts and/or
later times of development of the laser-induced plasma: with increasing
temperature, the intensity of the emission increases, but at the same
time, the concentration of molecules decreases due to dissociation. The
maximum emission intensity of the Swan system is usually reached at a
temperature around 6700 K [55].

When the rotational structure of molecular band spectra is well
resolved, it can be used to determine the temperature of heavy particles.
The (0-0) band of the Swan system is very suitable for that purpose: the
C, molecule has a sufficiently high dissociation energy (6.2 eV) and a
sufficiently low excitation energy (2.4 eV) to obtain very intense spectra,
and on the other hand, the structure of the energy levels is such that the
components of rotational structures can also be separated using a
medium-resolution spectrograph. Fig. 5 b shows a detail of the Co band
spectrum synthesized for different temperatures, with a Gaussian profile
corresponding to the instrumental profile of the spectrograph. The
Pgopher program [56] was used to synthesize the spectra. The intensity
ratio of R components and band head does not depend on temperature,
so both synthesized and experimental spectra can be normalized to the
intensity of the R component. This way of normalization is better than
normalization using the (0-0) band head because of its potential self-
absorption. As shown in Fig. 5 b, the intensity ratios of the R and P
components of the (0-0) band strongly depend on temperature, so they
can be used to estimate plasma temperature.

By comparing the normalized experimental and synthesized spectra,
the temperature was estimated for different delay times: for a delay of 5
ps, a temperature value of 5000 K was determined, with an error of 10
%. With the delay time increase, a clear trend of temperature decrease
was observed, from 4500 K for a delay of 10 ps to a temperature of about
3500 K for a delay of 20 ps. The intensities were significantly lower for
delay times longer than 10 ps, considerably increasing the determina-
tion error.
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Fig. 4. Examples of the N, diagnostics: (a) Shape of the He I line at 447.1 nm and (b) Shapes of the hydrogen isotope Balmer beta lines and He I line at 492.2 nm.
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Fig. 5. (a) Experimentally obtained spectra of the Swan band (Av = 0 sequence) for different delay times. (b) Synthesized normalized spectra for temperatures of
4000 and 6000 K and experimental spectrum for a delay time of 5 ps (part of the (0-0) band).

4. Results

The analysis outlined in Chapter 2 has shown that a necessary
requirement for resolving hydrogen isotope lines is employing a spec-
troscopic instrument with minimal instrumental width and generating
plasma with parameters (N and T) falling within the limits indicated in
Fig. 2. The LIBS operation is commonly performed in air and spectral
lines are recorded with some delay period to the laser pulse, to avoid the
influence of continuum radiation, i.e., acquisition starts when lines of
the studied elements appear in spectra and last, until their intensity
becomes comparable to noise.

Typical temperature and electron number density values for laser-
induced plasmas are around T = 15,000 K and N, = 10% m~3 (or
above) [14-20]. The value of N, is almost two orders of magnitude
greater than the values shown in Fig. 2. The plasma induced by Nd:YAG
laser in Ar at reduced pressure is characterized by a lower N, but still far
above the values required to resolve the Balmer alpha line. For example,
the H, line measured in tungsten plasma induced in He atmosphere at
10 mbar had FWHM of around 0.5 nm [57], i.e., almost ten times greater
than requested for resolving studied lines. In LIBS detection of hydrogen
in molybdenum within mixtures of argon and nitrogen at atmospheric
pressure it is observed that the width of the H, line decreases (for the
same delay), with shorter duration of plasma, i.e., emission intensities
decrease faster than in pure argon [58]. The resolving of the H, and D
was obtained using double-pulsed LIBS (with ps and fs lasers) or laser-
induced filamentation LIBS. However, the line widths were too wide
to resolve Dy and T, like the line profiles shown in Fig. 1a.

Resolving D, and Ty, lines is the most critical task for LIBS analysis of
hydrogen isotope retention, bearing in mind that the isotope shift

between Dy and T, is 0.0598 nm, while between Hy and D,is 0.1785 nm.
The targets used in this study did not contain tritium. Nonetheless, the
analysis presented in Section 2 (Fig. 1 b) demonstrates that when the H,
and D, are distinctly resolved, and the dip between these lines accounts
for less than 10 % of the intensity of the smaller peak, the requirements
for resolving D, and T, are met.

In this work, we investigated the potential of LIBS based on TEA CO,
laser for obtaining well-resolved hydrogen Balmer alpha lines. Experi-
mental parameters were optimized by recording LIBS spectra of heavy
water-doped graphite/silica gel targets under different experimental
conditions. Three laser energies were used in this study, namely 260 mJ,
320 mJ and 420 mJ. Targets were irradiated in Ar and He atmosphere at
different gas pressures (3-80 mbar), and spectra were recorded with
variable delay (0.5-15 ps) and gate times (5-50 ps).

The characteristic dependence of the line profiles on delay time at He
pressure of 30 mbar are shown in Fig. 6 a, and on He gas pressure at a
delay time of 15 ps in Fig. 6 b. Each spectrum is a sum of 10 accumulated
laser shots applied at the same spot on the target.

Based on Fig. 6, it can be inferred that ionized carbon lines start to
emerge in the spectra during the initial phase of plasma evolution and
persist for less than 5 ps. It should be stressed that the width of the C II
lines (3 s %S - 3p 2p%) at 657.8 nm and 658.29 nm, recorded at the
beginning of the plasma evolution, was 0.033 nm, which confirms that
wj is equal to or slightly less than the stated value. In addition, since the
overall width is not greater than the instrumental width, we may
conclude that the contribution of the other line-broadening mechanisms
was negligible. Further, in the time window 0.5 ps - 5 ps, the N, value
was around 102! m~3 since a Stark width of these lines, according to
theory [59], is around 0.1 nm at N, = 102 m3,
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Fig. 6. Variation of line shapes: (a) with delay time at He pressure of 30 mbar and (b) on gas pressure at a delay of 15 ps. The influence of gate time on spectra (c)
recorded in He at 10 mbar. All spectra were recorded using the laser energy of 260 mJ. Gate time for (a) and (b) was 5 ps. Delay for (c) was 5 ps.
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After a few microseconds, the spectral lines of surrounding gas (He or
Ar) and those of hydrogen become more pronounced, thus enabling
adequate resolving of the Balmer alpha line from the closely spaced
spectral lines of the target material. This fact is significant for studying
hydrogen isotope retention in tungsten targets because the presence of
the spectral line of W I at 656.32 nm or Be II line at 656.45 nm can make
it difficult to separate it from the hydrogen Balmer alpha line. Further-
more, the Balmer alpha lines were not fully resolved at short delay times,
see Fig. 6 a, indicating a preference for analysis at delays longer than 15
ps. Fig. 6 also shows that the dip between H, and Dy, lines decreases with
increasing pressure. For pressure higher than 10 mbar, lines are fully
resolved. Unfortunately, the intensities of Balmer lines diminish swiftly
as the pressure and delay times increase. Hence, the primary objective of
this study was to identify experimental parameters where line intensities
significantly exceed the noise level and fulfill conditions required for
resolution. As the plasma evolves, the line width decreases, indicating
improved resolution. However, this decrease in width is accompanied by
a decrease in intensity, which presents a drawback. Therefore, when the
line width aligns with the instrumental resolution, the remaining signal
can be captured by widening the gates for data collection. As an illus-
tration, the spectra recorded in He at 10 mbar, using laser energy of 260
mJ and delay time of 15 ps for gate values of 20 ps and 5 ps, are shown in
Fig. 6c.

In argon, under the same experimental conditions as for He gas, the
intensity and shape of the hydrogen isotope Balmer alpha lines are
considerably different due to the changes in electron number density,
electron temperature, and different temporal and space evolution of
plasma. The recorded line shapes for a laser energy of 420 mJ and a gate
time of 5 ps are shown in Fig. 7a for various delay times.

Considerably greater electron number densities are obtained in LIBS
with Ar compared to He. Consequently, the resolution of lines at the
beginning of the plasma evolution is of poorer quality (Fig. 7a). How-
ever, plasma emission in Ar lasts longer, and for longer time delays (at
50 ps) well-resolved lines of sufficient intensity can also be obtained, see
Fig. 7a. The line shapes obtained under same laser energy and gate time
parameters, but under varying pressure, are depicted in Fig. 7b, for
delay time of 0.5 ps.

As a figure of merit, which will clearly describe the quality of
resolving of hydrogen lines, the dip between lines seems to be the most
appropriate. The dip was defined as the minimum intensity between
lines (presented as a percentage of the lowest peak intensity). Consid-
ering that determining the line widths requires fiting, it is clear that dip
is a more adequate parameter. Namely, a dip may, without any other
procedure, give a reasonable estimate of how far one is from the optimal
conditions for resolving not only the H, and D, line, but also for
resolving the deuterium and tritium Balmer alpha lines. Fig. 8 shows the
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dependence of the dip between hydrogen isotope lines versus studied
parameters: laser energy, gas type and pressure, and delay times. For
comparison, the line widths are also shown in the same figure.

In Fig. 8, it is evident that the dip value’s dependency on gas pressure
and laser energy is most notable during the initial stages of plasma
evolution. However, as delay times progress, the line width approaches
or matches the instrumental width, leading to dip changes among lines
comparable to the measurement uncertainty. It is plausible to infer that
employing a spectrometer of higher resolution would yield smaller dip
and FWHM values, particularly at longer delays.

In argon (Ar), the dip increases with both pressure and laser energy
due to the higher electron number density, resulting in an increase in the
Stark width of the spectral line. Conversely, when using helium (He) as
the surrounding gas, the increment in electron density is less pro-
nounced, leading to a dip that remains nearly unaffected by changes in
pressure and laser energy, under studied conditions.

Hydrogen isotope retention studies depend not only on resolving
Balmer alpha lines but also on studied line peak intensities. Therefore,
we presented the results for lines fitting in the form of peak intensity
versus determined FWHM for all experimental parameters. In Fig. 9. gas
pressure was used as a parameter, while data for various delay times are
presented and labeled for each data point. On the same graph, the
critical FWHM value of 0.054 nm (Chapter 2) for resolving D and T
Balmer alpha lines having equal intensities is presented as a thick ver-
tical line. The experimental points on the left side of the vertical line
display plasma parameters where the line separation was deemed
satisfactory. The vertical dotted line presents the value of the minimal
instrumental width of the spectrometer. The red arrow indicates the data
point for which optimal intensity and resolution of spectral lines were
obtained.

Fig. 9 shows that resolved hydrogen isotope Balmer alpha lines can
be obtained in both gases, but the line’s intensity and signal-to-noise
ratios is better in He than in Ar. In addition, at various line peak in-
tensities, the dip between studied D, and Hy lines is less than 10 % (see
Fig. 8), i.e., line widths much less than 0.054 nm (see Fig. 9) can be
obtained, which guarantees, according to the analysis presented in
Chapter 2, resolving of D, and T, lines. At optimal conditions for
resolving lines, the intensity is much lower than at the beginning of
plasma evolution, see Fig. 10a, but still adequate for determining their
intensities with high accuracy, see Fig. 10b.

5. Conclusion
This study examined the resolution of hydrogen isotope Balmer

alpha lines, a crucial aspect for tritium retention investigations using
LIBS. Key highlights of the study included determining the critical line
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Fig. 7. Figure (a) illustrates the variation of line shapes with delay time at an argon pressure of 10 mbar, while figure (b) shows the influence of gas pressure at a
delay of 0.5 ps. The laser energy and gate time used for these measurements were 420 mJ and 5 ps, respectively.
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equal peak intensities (R = 1) and 0.027 nm for R = 0.1. An approximate
formula for calculating FWHM,, dependency on R was proposed. The
study emphasized that fulfilling necessary conditions for resolving D

width (FWHM,,) for resolving deuterium (D,) and tritium (T,) lines by
applying Rayleigh criteria and Voigt profile approximations for
hydrogen lines. The estimated FWHM,, ranged between 0.054 nm for
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Fig. 10. Comparison of the Balmer alpha line shapes at (a) the beginning of the plasma evolution and at (b) optimal conditions: for He at 40 mbar at a delay 20 ps

and for Ar at 10 mbar at a delay 40 ps.

and T, required full resolution of Hy and D, lines while ensuring the dip
between these lines was less than 10 % of the smaller peak intensity.

Experimental validation of the determined conditions essential for
resolving T, and D, was conducted using a LIBS setup employing a TEA
CO; laser and recording plasma emission through an iCCD camera
mounted on the spectrometer’s exit slit with an instrumental width of
0.03 nm. Tests on hydrogen isotope retention in plasma-facing compo-
nents were carried out using graphite samples doped with heavy water
(D20) mixed with silica gel. Plasma parameters were assessed by
determining electron number density from the separation between
peaks of He I components and inferring temperature from the measured
and synthetic segments of the Cy molecule sequence Av = 0. In the time
frame of 0.5 ps — 5 ps, the electron number density was approximately
10%! m~3, with plasma temperature around 5000 K and 3500 K for de-
lays of 5 ps and 20 ps, respectively.

Spectra of hydrogen and deuterium Balmer alpha lines were ob-
tained using different laser energies under varying experimental con-
ditions in Ar or He atmospheres, impacting line resolution differently.
Optimal conditions for plasma induced in He and Ar were identified
concerning laser energy, gas pressure, and delay times, resulting in
better intensities and signal-to-noise ratios. Resolving D, and H, lines
with a dip below 10 % of the smaller peak intensity under optimal
conditions showcased the potential for obtaining fully resolved T, and
D, lines in both gas atmospheres.

Enhancement of the line intensities by using longer gate times (for
recordings when at given delay time, the line width approaches instru-
mental width) is demonstrated.
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A feature of Laser-Induced Breakdown Spectroscopy (LIBS), the ability to perform depth profiling, has been
exploited to analyze a tungsten-copper functionally graded material (FGM), considered a relevant candidate for
components in a nuclear fusion reactor. The proposed method relies on establishing correlations between the
depth of ablation craters and the number of laser pulses, along with the accompanying LIBS spectra acquired by
varying a number of laser pulses. LIBS measurements were performed using a Q-switched Nd:YAG laser at 532
nm with 100 mJ/pulse energy under reduced Ar pressure. The ablation craters were analyzed using optical
profilometry. The copper concentration at each specific depth was assessed using a univariate calibration curve
constructed with intensity ratios of Cu I 521.82 nm and W I 522.47 nm spectral lines. The calibration samples
were pure W and homogenous W/Cu composite samples with different Cu content (10.9% - 35.3%) whose
composition was determined by X-ray fluorescence. The proposed method exhibits potential applicability for

quantitative analysis of multilayered materials.

1. Introduction

Functionally Graded Materials (FGM) have innovative properties
and multifunctional characteristics that conventional homogeneous
materials cannot achieve. In its simplest form, FGM consists of a singular
material on one surface, a distinct material on the opposing surface, and
an intermediary layer characterized by a gradual variation in structure,
composition, and morphology spanning micron-level dimensions be-
tween the two materials. A desired function can be achieved by selecting
the transition profile of FGM. Therefore, the FGM must be classified
separately from conventional homogeneous composites and nano-
composite materials [1-3]. The applications of FGM are extensive and
include engineering, aerospace, chemical plants, electronics, energy
conversion, optics, nuclear energy, and even biomaterials [4,5].
Depending on the application, various properties, such as thermal
(expansion coefficient, conductivity, stability, temperature distribution,
response under transient heating), electric (conductivity, dielectric
properties), elastic (deformation, strength, Young’s elastic modulus), or
some other can have one-, two- or three-dimensional variation in the
fraction of its components.

Due to their distinctive characteristics, materials with property
gradation offer significant advantages for application in nuclear fusion
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reactors. For example, functionally graded materials are relevant can-
didates for the interlayer between W plasma-facing components (PFCs)
and CuCrZr heat sinks [6-15]. The challenge posed by a substantial
difference in the coefficient of thermal expansion between these two
materials, resulting in thermal stress on PFC, can be mitigated by
introducing a transition layer consisting of a material characterized by a
low thermal expansion rate, high thermal conductivity, and favorable
thermomechanical properties. Promising candidates for joining layers of
W to CuCrZr are W/Cu composites and W/Cu functionally graded
composites [13,14]. The suitability of these materials is reflected in the
ability to finely tune their macroscopic properties (microstructure and
phase distribution) to attain the desired characteristics.

As an in-situ, non-contact, minimally invasive technique sensitive to
light elements, with the limit of detection down to ppm (or even to ppb
in some cases), laser-induced breakdown spectroscopy (LIBS) is a
promising tool for analyzing plasma-facing components in fusion de-
vices [16]. Various LIBS configurations, using either single pulse (SP-
LIBS) or double pulse (DP-LIBS), have been used to explore the opti-
mization of the technique for monitoring compositional alterations in
PFCs. These changes may arise due to impurity deposition, erosion, or
fuel retention [17-23]. Also, the effect of laser parameters (energy and
duration of laser pulse, wavelength) and the effect of atmospheric
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conditions on the emission, mass ablation, and plasma parameters have
been extensively studied [24-27]. LIBS possesses a competitive advan-
tage over alternative techniques designed for in-depth elemental anal-
ysis due to its in-situ and remote analysis capability, which is especially
important when analysis has to be performed in hostile environments
like nuclear reactors.

This paper presents the research findings on the potential of LIBS for
in-depth profiling of W/Cu functionally graded material using a
medium-resolution spectrometer. A conventional nanosecond LIBS sys-
tem was used, and the samples were analyzed under the Ar atmosphere
at reduced pressure. The proposed method is based on the correlation of
the depth of the ablation craters and gathered LIBS spectra for different
number of accumulated laser pulses. The ablation craters were analyzed
using optical profilometry. The copper content at each depth was esti-
mated from the constructed calibration curve. For concentration cali-
bration, homogenous W/Cu samples whose composition was
determined by X-ray fluorescence were used. Subsequently, a univariate
calibration curve was developed utilizing the line intensity ratios of Cu I
521.82 nm and W I 522.47 nm lines.

The proposed approach is also amenable to the analysis of elemental
composition and the determination of individual layer thickness in
multilayered materials.

2. Experimental
2.1. Samples

A set of tungsten-copper alloys W93Cu7, W90Cul0, W80Cu20,
W70Cu30, and pure W in the form of tablets (diameter 10 mm, thickness
1 mm) were obtained from HUBEI FOTMA MACHINERY CO LTD,
Wuhan, P. R. China. Since W/Cu samples’ trade names represent a rough
percentage of the main constituents, the precise composition of the
samples was determined using X-ray fluorescence (XRF) analysis. These
samples were used as calibration samples for LIBS analysis. A W/Cu
functionally graded material (W/Cu FGM), i.e., tungsten with a gradient
concentration of copper along the sample thickness direction, was used
for LIBS depth-profile analysis. A W/Cu FGM sample was a disc with a 6
mm diameter and thickness of 1 mm.

2.2. XRF spectrometry

A portable XRF Niton XL3t970 GOLDD analyzer (Thermo Fisher
Scientific) was used to analyze the composition of W/Cu standards. The
instrument is equipped with an X-ray tube, working at a maximum of 50
kV, 200 pA, and a high-performance semi-conductor detector with a
resolution of 185 eV. The spot diameter at the measurement point is
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about 3 mm. Depending on the application, the analytical range covers
up to 30 elements, from sulfur to uranium. The analysis was carried out
using a General Metal Mode calibration (includes elemental analysis of
Ba, Sb, Sn, In, Cd, Pd, Ag, Mo, Nb, Zr, Se, Bi, Pb, Pt, Br, Au, Hg, Ta, Hf,
Zn, Cu, Ni, Co, Fe, Mn, Cr, V, Ti) for a total time of 60 s (30 s Main filter
and 15 s for Low and High filters).

2.3. LIBS setup

Fig. 1a shows a sketch of the focusing head for the basic single-pulse
LIBS setup used in this work. A setup consists of the laser (1) mounted on
the platform (2) movable vertically (0-380 mm) by the column (3)
connected to the second fixed platform (4). The focusing head (5) carries
a dichroic bending mirror at 45 degrees, a green diode laser (6) for
indicating the position of a focal point, and a focusing mirror mount
(which has the possibility for fine focal distance adjustment with accu-
racy of 10 pm and the range of +10 mm). A laser source (1) was Nd:YAG
Quantel Q-smart 450 laser (A = 532 nm; energy 100 mJ; 6 ns pulses,
frequency 10 Hz). The change in the laser energy density was obtained
by varying the distance between the sample and lens with a 10 cm focal
length.

The shape, position, and size of the laser beam spot on the target
were monitored using the endoscopic camera (8) equipped with six
white light-emitting diodes for illumination. The camera has a diameter
of 7 mm and a 5 m long light guide connected to the computer. The
resolution of the camera is 640 x 480 pixels.

Fiber optic cable (@ = 400 pm) led the plasma emission collected by
the light collector, i.e., fiber adapter Solar LS FA-2 (9), to the entrance of
the imaging spectrometer Shamrock 303 Andor. The imaging spec-
trometer was equipped with the iCCD camera Andor iStar DH720. The
camera working in full vertical binning mode (FVB) was triggered at
various delays and gate times determined by a digital delay generator
(SRS DG535) using the signals from the ICCD camera computer interface
and Q switch trigger from the laser (controlled by the remote laser
controller) by the help of the digital storage oscilloscope and computer
software. Spectral sensitivity calibration of a Shamrock spectrometer
system with an Andor iStar DH720 ICCD camera was performed with a
calibrated tungsten lamp in the 300-800 nm wavelength range. Instru-
mental width (w;) was experimentally determined by fitting a profile of
the spectral line emitted from a low-pressure mercury lamp. For
entrance slit width of 20 pm, w; was 0.11 nm.

A small vacuum chamber (based on KF40 Tee, see Fig. 1b) carrying
target was settled on the carrier (Thorlabs, Pitch and roll platform) (7)
with the manually adjustable angle, connected to the Thorlabs XY
stepper motor translation stage controlled by the computer. After the
chosen number of laser pulses, n, the target position (10) was changed to

Fig. 1. a) Sketch of the focusing head for the single-pulse LIBS setup showing dimensions and range of the focal point adjustment. Legend: (1) laser, (2) platform, (3)
movable column, (4) fixed platform, (5) focusing head, (6) green diode laser, (7) XY translation stage; b) Technical drawing of the vacuum chamber. Legend: (8)
endoscopic camera, (9) light collector, i.e., fiber adapter, (10) target. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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expose the “fresh” target surface. The target position was fixed when the
task was to determine the ablation depth as a function of the number of
applied laser shots. The appropriate gas pressure inside the chamber was
adjusted using regulation and needle valves and monitored by the
manometer, led to the chamber using appropriate tubing, and evacuated
by the vacuum pump. All measurements reported in this work were
recorded under reduced Ar pressure.

2.3.1. Profilometry analysis

The Zygo New View 7100 Scanning White Light Interferometer
(optical Surface profiler) was used for fast, non-contact 3D measurement
of surface morfology. The profilometer’s vertical scan range is 150 pm,
with the extended scan range up to 20 mm. Vertical resolution is <0.1
nm, while the lateral resolution is objective dependent and ranges from
0.36 to 9.5 pm. A data scan rate is user-selectable (camera and scan
mode dependent) and goes up to 26 pm/s. RMS repeatability is <0.01
nm. The step height accuracy is <0.75%, while repeatability is <0.1%.
The profilometer is equipped with the program (Zygo corporation,
Metro Pro) that was used for measuring crater depths from two-
dimensional (2D) profiles and their three-dimensional (3D)
visualization.

3. Results and discussions
3.1. XRF spectroscopy

The composition of the W/Cu calibration standards was determined
by XRF analysis. A part of the obtained XRF spectra is presented in Fig. 2.
The elemental composition obtained by XRF is summarised in Table 1.
Samples also contain trace levels of other elements, such as Ti, Mn, Fe,
and Co. The measurement accuracy (element dependent) was typically
2% - 5% of the reported weight percent value. Concentration values
obtained by XRF were used to construct the calibration curve.

3.2. LIBS analysis

A critical problem with the application of LIBS for the elemental
(quantitative) analysis of W and W-alloys is the low reproducibility of
the spectral line intensities caused by different grain sizes in a tungsten
structure [28]. The line intensities also depend on grain distribution,
causing differences in measured intensities during target irradiation at
different angles [29]. In addition, explosive boiling occurs at tempera-
tures greater than critical [30-32]. For example, threshold laser in-
tensity for phase explosion in tungsten under interaction with Nd:YAG
laser at 355 nm was estimated to be 6 x 10'° W em~2 [31].

Our first step was to study the influence of different experimental
parameters (e.g., gas pressure, laser energy, beam size, the number of
accumulated pulses, and delay time) on the reproducibility of the

Intensity [Counts/sec]
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Table 1
Results of the XRF analysis of W/Cu calibration samples.

Concentration (wt%)*

Trade name Cu w Zn Ni Cr Other elements
w - 100 - - - -

W93Cu7 109 87 1.6 0.47 - 0.03
W90Cul0 12.9 84 1.9 0.56 0.23 0.41
W80Cu20 24.3 72 2.8 0.78 - 0.12

W70Cu30 35.3 59 3.0 1.5 0.11 1.09

measured spectral line intensities. All LIBS measurements reported in
this study were done in an argon atmosphere, as it was shown that the
inert background gas provides almost uniform spatial distributions of
plasma temperature and densities [33,34].

3.2.1. Optimization of the LIBS experimental parameters

The influence of Ar pressure on the spectral emission intensity was
studied within the pressure range spanning from vacuum conditions to
1 atm. Fig. 3 shows that, in the analyzed pressure range, the highest
signal-to-noise ratio (SNR) of spectral lines was obtained at 10 mbar,
hence this pressure was chosen as optimal.

The influence of delay time on the intensity of Cu1521.82 nm and W
522.47 nm lines is illustrated in Fig. 4 (a), while the SBR and signal-to-
noise ratio (SNR) for a copper 521.82 nm line is illustrated in Fig. 4 (b).

40 *
[0} « *
E ] e
£ 30 .
A
@ .
N
© 20
5 K3
S
= 104
(a1
(D 4
L 2
O_
1E-3 0.01 0.1 1 10 100 1000 10000

Pressure [mbar]

Fig. 3. The influence of Ar pressure on the signal-to-background ratio of Cu
521.82 nm line.
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Fig. 2. Segment of the XRF spectra of W and W/Cu samples used as calibration standards for LIBS.
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Fig. 4. (a) LIBS spectra of W93Cu7 showing Cu I 521.82 nm and W I 522.47 nm lines recorded for different gate delay times. Laser energy 100 mJ, gate 20 ns, spot
diameter 1 mm. Each spectrum represents an average of ten measurements consisting of 10 accumulated consequent laser shots. (b) The SNR and the SBR of Cu

521.82 nm line, as a function of the delay time.

The highest SBR and SNR values were obtained for a delay time of
around 1.5-2 ps.

The laser pulse energy threshold required for creating plasma usable
for spectrochemical analysis was determined to be 30 mJ. As shown in
Fig. 5, the intensity of W and Cu demonstrated a proportional increase
with elevated laser energy. Nevertheless, when the beam is focused on
the target and the laser energy surpasses 50 mJ, the ratio of line in-
tensities (CuI 521.82 nm / W I 522.47 nm) remains constant. Uniform
evaporation of both components was achieved at energies exceeding 50
mJ, resulting in a constant line intensity ratio at higher laser pulse en-
ergies. A laser energy of 100 mJ was chosen for further LIBS measure-
ments to enhance emission intensity, thereby improving the precision of
intensity measurements and increasing the ablated mass compared to a
pulse energy of 50 mJ (for the same spot diameter).

The spot size required optimization to ensure that the spot diameter
remains significantly larger than the sample grain size. The spot size was
optimized by adjusting the focus, specifically by varying the lens-to-
sample distance to define the surface that would be ablated. Due to
the granulation of the material, the minimal preferable spot size should
be above 100 pm. A spot size of 1 mm eliminated a problem with
inhomogeneous grain size distribution and reduced spectral intensity
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fluctuations.

The minimum number of laser shots needed to obtain reproducible
spectral line intensities was determined to be 10. For the laser pulse
energy of 100 mJ, the spot size of 1 mm, and 100 shots (average of ten
measurements of 10 accumulated consequent laser shots), the relative
standard deviation of the intensity ratio of the selected Cu and W lines
was around 5%.

Because the measured line intensities may vary due to the interaction
of the plasma with the crater walls, the plasma confinement, or plasma
cooling by the crater walls, the influence of crater depth on the
measured LIBS intensity was also investigated. Fig. 6 (a) shows spectra
recorded for a sequence (1-800) of laser shots applied to the same spot
on the W90Cu10 target. The effect of the crater depth on the intensity of
Cu I 521.82 nm and W I 522.47 nm line and Cu/W intensity ratio is
shown in Figs. 6 (b-d). The variation of the line intensities is more
pronounced than the variation of the Cu/W intensity ratio. After the
100th shot at the same position, the influence on the measured Cu/W
intensity ratio is significant, i.e., it decreases with a further increase of
the crater depth. A possible explanation for such behavior could be a
more significant effect of the changed plasma parameters (caused by
crater walls) on the intensity of the line with lower excitation energy.
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Fig. 5. (a) Effect of laser pulse energy on the LIBS emission of Cu I 521.82 nm and W 522.47 nm line. b) The influence of pulse energy and fluence on the Cu/W line

intensity ratio. Target W93Cu7; delay 1.5 ms; gate 20 ns; spot diameter 1 mm.
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Fig. 6. (a) LIBS spectra recorded for a sequence (1-800) of laser shots applied to the same spot on the W90Cu10 target. (b-d) The effect of the crater depth on the

intensity of Cu I 521.82 nm and W I 522.47 nm line and Cu/W intensity ratio.

Therefore, the influence of crater depth on the measured Cu/W intensity
ratio was negligible for the number of pulses applied in this work.

3.2.2. Plasma diagnostics

LIBS spectrum recorded for the W70Cu30 sample was used to
determine the excitation temperature from the Boltzmann plot of the
selected W and Cu spectral lines. In order to cover a large spectral
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window (320 nm to 550 nm), several consecutive LIBS spectra were
recorded, each covering a spectral portion of about 60 nm. The experi-
mental parameters (laser energy, focusing, delay and gate time, and the
number of accumulations) were held constant. Under our experimental
conditions, only lines generated by neutral and single ionized W and Cu
species can be detected. The list of lines and their spectral parameters
(taken from the NIST Atomic Spectral Database [35]) are given in the
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Fig. 7. a) Boltzmann plot of Cu and W spectral lines, and b) Experimental profile of the H, line fitted to a Voigt function.
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Fig. 8. LIBS spectra of the W93Cu7 alloy sample. Experimental conditions: Nd:YAG pulse energy 40 mJ; wavelength 532 nm; frequency 10 Hz; delay 0.5 ps; gate 2.5

ps; 10 mbar argon.

Appendix. The temperatures obtained from Boltzmann plots (Fig. 7a)
were 8900 K, 9400 K, and 10,400 K for W I, W II, and Cu [, respectively.
A Boltzmann plot using copper ionic lines was omitted because it had
poor calculation accuracy of the plasma temperature due to a low
number of identified Cu II spectral lines.

The electron number density was determined from the Stark width of
the Balmer alpha line of the hydrogen, which is always present in the
tungsten as an impurity (Fig. 7b). This line was chosen due to the low
Balmer beta line intensity caused by the small amount of hydrogen. The
line width was determined under the approximation that the line profile
can be described with a Voigt function. The deconvolution of a Voigt
function was performed using the Levenberg-Marquardt nonlinear
fitting algorithm for minimum squares, with the Gaussian FWHM fixed,
assuming that the Lorentzian component, wy, is due to Stark broadening.
The Gaussian fraction (wg) is assumed to be a combination of the
instrumental (w;) and the Doppler broadening (wp): wg = (W% + w; 205
= (0.05% + 0.11%)%% = 0.12 nm. To calculate N, an approximate for-
mula was used [36,37]:

» . . WL[nm] 1.47135
Nefm] =10 '<1‘098)

The estimated value of N, was 2.5 x 10?2 m~3.

3.2.3. Univariate calibration
Characteristic spectra of the W/Cu composite sample in the 300-660

Table 2
Comparison of theoretical and experimental ratios of spectral line intensities.

nm spectral range are shown in Fig. 8.

The possible influence of self-absorption was checked by comparing
the experimental and theoretical ratios of line strengths within multi-
plets [38]. Based on the results shown in Table 2, it was concluded that
the influence of self-absorption on the measured intensities of W and Cu
lines could be neglected.

LIBS spectra of pure W and four W/Cu composite samples (Table 1)
were used to construct a calibration curve. The spectra were recorded
using the standard LIBS setup described in the experimental section
using an optimized set of parameters: pulse energy 100 mJ; spot diam-
eter 1 mm; delay 2 ps; gate 20 ns; 100 accumulations (average of ten
measurements of 10 accumulated consequent laser shots). LIBS spectra
of calibration samples are shown in Fig. 9 a.

Because the selected Cu and W lines overlap, integral intensities of
these lines were determined using their approximation with Voigt
functions. The line fit was performed using the Levenberg-Marquardt
nonlinear fitting algorithm for minimum squares, with the Gaussian
FWHM fixed (w; = 0.11 nm). The calculated contribution of Doppler
broadening was negligible for temperatures around 10,000 K, 0.005 nm
for the Cu 521.82 nm line, and 0.003 for the W 522.47 nm line. The
selected line pair was suitable for the Cu concentration range considered
in this study. For samples with a low concentration of Cu, the intensity
ratio of the strongest Cu I line at 324.75 nm with some of the nearby W
lines (e.g., W I 320.72 nm) may be used.

A linear relationship was obtained between the Cu I 521.82 nm and

Configuration A1 (am)/Ay (nm) R = L,1/I)5 (theor.) R = L,1/I,2 (exp.)
413.74 / 407.06 2.11 2.10
wi 5d46s2 - 5d5(65)6p 436.48 / 407.06 0.32 0.29
Cul 3d94s2 - 3d104p 510.55 / 578.21 2.42 2.27
3d104p - 3d104d 515.32 / 521.82 0.53 0.56
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15 Intercept 0.55 0.59
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Fig. 9. (a) LIBS spectrum of W/Cu composites; (b) Calibration curve for Cu from the ratio Ic, 1/Iw 1.

W I 522.46 nm line intensity ratio and the Cu concentration (Fig. 9 b).
The calibration curve prediction error, calculated as a Root Mean Square
Error (RMSE), was 0.598. The normalized value of the RMSE was 8.6%.

3.3. LIBS depth-profile analysis

A W/Cu functionally graded material (W/Cu FGM), i.e., tungsten
with infiltrating copper along the sample thickness direction, was
exposed to a variable number of Nd:YAG laser pulses. Time-resolved
LIBS spectra were recorded to monitor the corresponding W and Cu
spectral line intensity changes. The proposed depth profile analysis
method was performed by combining the LIBS spectral analysis with the

I +6.00000

25 pulses

pm
-30.00000
100 pulses
I +25.00000
0835
pm
mm 0827
034G 331 n
-80.00000

results of 3D-optical profilometry used to establish the depth of the
ablation craters [39]. Fig. 10 shows 3D surface profiles of craters created
on a W/Cu target after the increasing number of laser pulses irradiated
the same spot on the target.

Corresponding 2D cross-sectional profiles used to evaluate the depth
of the craters are shown in Fig. 11 a. A relationship between the number
of laser pulses and crater depths is shown in Fig. 11 b.

As seen in Fig. 11 a, the paraboloid function describes the crater
shape well. The volume of a paraboloid is given by V = 1/2 1 r* h, where
r is the radius of the circular “cap” of the paraboloid and h is the axial
height of the paraboloid. In our case, the radius of the surface damaged
area was taken as r and the crater depth as h. Using this equation, the

50 pulses

I +15.00000

0778
pm
-40.00000
200 pulses
I +20.00000

Hm 0800
mm
0304309
-130.00000

Fig. 10. Surface map of the W/Cu FGM target exposed to a different number of laser pulses.
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Fig. 11. (a) 2D profile of craters created on W/Cu target by a different number of laser pulses. (b) Crater depth as a function of the number of applied laser pulses.

Table 3
Characteristic parameters of craters created on W/Cu FGM target.

Number of pulses Spot diameter (mm) Crater depth (pm)

Spot surface area Crater volume Ablated mass* (ug)

(10’4 cmz) 1o’ cms)
25 0.16 29 2.0 3.0 5.7
50 0.16 47 2.0 4.8 9.2
100 0.16 69 2.0 6.9 13
200 0.20 120 3.1 19 36

" Calculated using tungsten density of 19.28 g/cm®.

volume of the ablated material was calculated. Characteristic parame-
ters of craters used to estimate the ablated volume and mass of the ab-
lated material are given in Table 3.

20000~ cul
15000 4 Number of pulses
> 1
@ 25
Dbt e = 0 e ) ERd v o 50
ER100005 el e = R el e [E S 100
2 000
©
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14

5000

0 e S o
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Fig. 12. LIBS spectra of a W/Cu-based gradient material. Laser energy 40 mJ;
spot diameter 0.16 mm; delay 0.5 ps; gate 2.5 ps; 10 mbar argon.

Table 4
Copper content at different depths of the W/Cu FGM sample.

LIBS spectra of a W/Cu target irradiated by an increasing number of
laser pulses applied to the same target spot are shown in Fig. 12. As the
figure shows, the intensity of a copper spectral line at 521.82 nm de-
creases with the increasing number of applied laser pulses, suggesting
copper content gradually reduces from the top. The line disappeared
from the spectra after 200 laser shots, indicating the complete removal
of a layer containing a gradient concentration of Cu. Based on the ob-
tained results, we estimated the depth of inbound copper into tungsten
to ~120 pm. The copper concentrations at different depths were esti-
mated from the calibration curve (Fig. 9 b) using a measured Cu I
521.82 nm and W I 522.46 nm line intensity ratios. The results are
shown in Table 4.

4. Conclusion

The results have shown that a standard LIBS setup based on Nd:YAG
laser using a medium spectral resolution spectrometer can be success-
fully applied to quantitative analysis of W/Cu functionally graded ma-
terials relevant to fusion technology.

For the W/Cu composite with Cu in the 10.9% - 35.3% concentration
range, a linear relationship was found between Cu I 521.82 nm to W I
522.46 nm spectral line intensity ratio and Cu concentration. Under
optimized experimental conditions (fluence, delay and gate time,
number of accumulations), the selected W and Cu lines used to construct
a calibration curve were optically thin.

It should be noted that the suitability of the W/Cu samples selected

Number of laser shots Depth (pm) Intensity ratio Cu concentration (%)
CuI521.82/W1522.46

1 0.9 12 30+3

25 29 1.5 2.0+0.2

50 47

100 120

0.7 0.39 + 0.03
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for the calibration technique should be carefully checked. Depending on
the manufacturing processes, the grain size, shape of grains, distribution
of additives inside the tungsten matrix, or other characteristics of W-
based composites may influence the accuracy of LIBS analysis.

The copper concentration along the sample thickness direction was
obtained by combining LIBS spectral analysis and optical profilometry
results. The applied protocol may be suitable for depth profile analysis of
tungsten-based composite in the fusion reactor, i.e., a transition layer
between W tiles at the first wall of the reactor and cooling channels
made of CuCrZr.
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Abstract. In this paper, the determination of composition of certified samples of austenitic steel alloys
was done by combining laser-induced breakdown spectroscopy (LIBS) technique with machine learning
algorithms. Isolation forest algorithm was applied to the MinMax scaled LIBS spectra in the spectral
range form (200-500) nm to detect and eject possible outliers. Training dataset was then fitted with random
forest regressor (RFR) and Gini importance criterion was used to identify the features that contribute the
most to the final prediction. Optimal model parameters were found by using grid search cross-validation
algorithm. This was followed by final RFR training. Results of RFR model were compared to the results
obtained from linear regression with £2 norm and deep neural network (DNN) by means of R? metrics
and root-mean-square error. DNN showed the best predictive power, whereas random forest had good
prediction results in the case of Cr, Mn and Ni, but in the case of Mo, it showed limited performance.

1 Introduction

The structural materials of fusion reactors are sub-
jected to thermal, mechanical, chemical, and radia-
tion loads. Due to their excellent manufacturability,
good mechanical properties, welding ability, and cor-
rosion resistance, austenitic stainless steels were chosen
as structural reference material for ITER [1]. In addi-
tion, entire vacuum vessel of LHD stellarator in Japan
is made of austenitic steel [2], and to diagnose the com-
position of the deposits on the fusion reactor’s first
wall, test targets made of austenitic steel (AISI 316 L)
were settled at ten positions on the first wall [3]. Laser-
induced breakdown spectroscopy (LIBS) is one of the
emerging analytical technique that is non-destructive,
easy to use and requires little to no preparation of the
sample [4]. Therefore, it represents a great tool for the
analysis of the composition of austenitic steel samples.
There are two main approaches to the LIBS analysis,
namely standard calibration method and calibration—
free method [5]. In the method where calibration curve
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is constructed, a connection between one integrated line
intensity and known concentrations is established, thus
enabling the determination of unknown concentration.
This method is by far the most used one. Alterna-
tively, one can assume local thermodynamic equilib-
rium (LTE) in plasma and use Saha-Boltzmann equa-
tion to obtain plasma temperature and density, and
from this the unknown concentrations regardless of the
matrix effect. Machine learning algorithms have been
successfully applied in analysis of Raman spectra, NIR,
and THz spectroscopy, vibrational spectroscopy, fusion
plasma spectroscopy, etc., just to name a few [6-10].
In recent years, to speed up the analysis of LIBS spec-
tra, machine learning methods are being used inten-
sively [11-14]. These methods involve the usage of
principal component analysis (PCA) for dimensionality
reduction, support vector machine (SVM) for classifica-
tion purposes and partial least squares regression (PLS)
for multivariate regression problems [15]. Also, for clas-
sification or regression problems, many authors applied
back propagation neural networks (BPNN) or convolu-
tional neural networks (CNN) to the LIBS spectra in
order to perform quantitative analysis of different sam-
ples [16-20]. Other regression algorithms, like random
forest regression (RFR), have also been widely used [21—
24]. Random Forest was constructed and reported by
Breiman [25], and it is based on the ensemble of decis-
sion threes, where the decision or prediction is made
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by the majority prediction. This algorithm was pre-
viously applied on steel spectra by Zhang et al. [26]
where they showed that this regression could be applied
for the determination of composition of steel alloys.
Later, Zhang with his collaborators used BPNN com-
bined with SelectKBest algorithm for feature selection
to trace minor elements in steel samples [27]. Liu and
his coworkers also used random forest, combined with
permutation importance feature selection to train and
predict the composition of steel alloys [28]. Gini impor-
tance criteria was also used previously in combination
with random forest on classification problems [29,30],
but here we are applying it to regression problem.

In this paper, we will consider three algorithms, ran-
dom forest, linear regression with £2 norm and deep
neural network (DNN) to predict steel samples com-
position. Instead of making our own database, we will
use the dataset published at the LIBS 2022 conference
site [31] and record our own test dataset under similar
conditions to check how much these small differences
affect the final model performance. Idea to use RF algo-
rithm is twofold. On the one end, it is able to catch non-
linear phenomena in the data, on the other end to see
to what extent we can use already implemented Gini
importance criteria within RF to make good regression
model. Although simple neural networks have yielded
good analytical prediction in the past, in general, they
are hard to train (better said, it is not easy to find most
favorable architecture), so we wanted to see how close
RF predictions are going to be with respect to DNN.

The paper is organized as follows: In the first section,
a brief introduction and overview of previous results
is given. In Sect. 2, the experimental setup and sam-
ple preparation is described. Section 3 gives the detail
description of applied methodology and data prepro-
cessing, while the results are given in Sect. 4. Finally,
we gave the conclusion of this work in Sect. 5.

2 Experimental setup and sample
preparation

Experimental setup is shown in Fig. 1.

The setup is a classical LIBS setup consisting of
Quantel Q switched neodymium-doped yttrium alu-
minum garnet (Nd:YAG) laser having pulse width of
6 ns, repetition rate of 10 Hz, pulse energy of 96 mJ
and operated at fundamental wavelength A = 1064 nm.
Laser beam was reflected from 45° angle mirror M and
focused via lens L onto a target mounted on a z—y
micrometric moving stage by a lens of focal length f =
11 cm. Light emitted from plasma was collected using a
fiber optic cable with collimator having a focal length
of ffe = 4.4cm and directed onto the 50 pm width
entrance slit of Mechelle 5000 spectrograph that can
record spectra from 200 to 950 nm. As a detector, we
used Andor iStar ICCD camera (model DH734, 1024
x 1024 pixels) cooled to —15 °C. Camera was trig-
gered with a photodiode and gated by usage of Stan-
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ford Research digital delay unit (model DG535). Delay
from laser pulse was set to 0.6 pus and the gate width
was set to 50 ws.

Steel samples used in this work were AISI steels with
certified composition from National Bureau of Stan-
dards (NBS, today NIST), whose elemental composi-
tion is given in Table 1.

Sample mentioned above, austenitic steel AISI 316 L
lies in between these tested models (concentrations of
main elements: Cr 17%, Ni 12%, Mo 2% and Mn 2%).
Fach sample was firstly polished by sandpaper 200, fol-
lowed by polishing it with sandpaper 600. In front of
laser beam, external shutter was placed, coupled with
laser pulse counter. Counter was set to 16 counts, as it
is a binary counter, and after 16 pulses, the shutter is
closed for another 16 pulses. This represents one acqui-
sition of the spectra. For each sample, we recorded 22
spectra from different places on the target, and each
spectra is a result of averaging 20 acquisitions on the
same place (this gives 320 individual laser shots per
place on the target). To further improve and increase
signal, electrical gain of the camera was set to 80 (on
the scale of 0-255).

3 Methodology and data preprocessing

Database used in this paper was downloaded from LIBS
2022 website [31]. This database consists of a spectra
of 42 different steel samples, and for each sample, a
50 single-shot spectra were taken. This gives in total a
database of 2100 spectra samples divided into 40,002

Fig. 1 Experimental setup. Laser (Quantel, A = 1064 nm,
pulse width 6 ns, peak energy 96 mJ) was focused via lens L
onto the movable target and plasma spectrum was recorded
by Andor iStar iCCD camera mounted on Echelle spectro-
graph. Camera gating was done by Stanford Research Dig-
ital Delay Generator (DDG, model 535) and triggered by
photodiode (PD). Mirror M and lens L are integrated within
a laser head, which was not drawn on this figure
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Table 1 Steel alloy certified composition

Page 3 of 7 30

Steel number Steel type Cr Mn Mo Ni
443 Cr18.5-Ni9.5 18.5 3.38 0.12 9.4
445 AISI 410 13.31 0.77 0.92 0.28
446 AIST 321 18.35 0.53 0.43 9.11
447 ATSI 309 23.72 0.23 0.053 13.26
In the spectra normalization step, two normalizations
were tried to later adopt the best one, and those were
Raw Data

Data
preprocessing
Feature
selection
( odel tralnlng}

\ 4

Model
verification

Fig. 2 Flowchart of procedures taken in this work

columns (each column corresponds to one wavelength).
The flow diagram of our methodology is given in Fig. 2.
For machine learning part of this work, we used python
public repository scikit-learn.

3.1 Data preprocessing

Firstly, we restricted our dataset to the spectral range
between 200 and 500 nm, as this is the spectral area
where the most emission lines of metals of interest
can be found. It is worth mentioning that all training
dataset spectra were not intensity corrected. Therefore,
no intensity correction was done on the test dataset.

total spectral area normalization, and standard nor-
mal variate (SNV) normalization. First one is clear,
whereas SNV normalization represents a spectral nor-
malization tool that mean centers the spectra and then
divide each mean-centered intensity with its standard
deviation [32]:

Io - Imean
Inew == ldf (1)

where ey is the new intensity, I,1q is the intensity that
is being mean centered, I ean is the mean intensity and
o is standard deviation of intensities. Besides these two,
MinMax data scaling was also tried. MinMax scaling
represents procedure where for each feature, we scale
the values according to the formula below, so we have
feature values between zero and one:

I— Imin
Iscaled = 17

2
max Imin ( )

Proceeding further, we detected and ejected outliers
with the help of Isolation Forest algorithm implemented
in sci-kit learn. After the outliers have been removed,
we fitted Random Forest regressor with aim to find fea-
tures that give the most contribution to the final result.
To achieve this, we actually trained four random forest
models, one for each element, to have features that con-
tribute to the each element prediction separately. Fea-
ture importances were calculated within random forest
algorithm by usage of Gini importance. The higher the
value, the more valuable this feature is to the final pre-
diction.

3.2 Hyperparameters tuning and model selection

To find the optimal parameters of the model, we
performed GridSearch cross-validation. This validation
technique takes the given model parameters and initial-
izes the model of interest with these parameters, splits
provided dataset into training and test datasets, fits the
model and reports the accuracy of the model through
R? coefficient. This procedure is done five times in a
row for each set of model parameters, where, at the
end, for each model algorithm reports the best perfor-
mance and with which parameters they were obtained.
Used metrics to assess the predictive performance of the
models were coefficient of determination R? and root-
mean-square error (RMSE). With optimal parameters
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Fig. 3 Results for feature importance analysis for Cr and Mn (a, b) and Mo and Ni (c, d)

found, we proceeded to final model training and finally
the prediction of steel samples composition.

4 Results

The results of feature importance analysis is given in
Fig. 3. It is evident that the algorithm successfully rec-
ognized and selected persistent line of Mo II at 281.61
nm (see Fig. 3c¢)). Also in Fig. 3d), lines of Ni II at
239.45 nm and 241.6 nm were successfully identified.
Great importance was also given for Cr II lines around
285, 286, 287, 313 nm, as well as to Cr II line at 336 nm
(see Fig. 3a)). Unimportant features have value of zero
or close to zero, so the condition threshold was set to
1074,2x 107% and 5 x 10™%, while the best results were
obtained for threshold 2 x 10~%. Hence, the final dimen-
sionality of dataset used to train the final model is given
in Table 2.

In GridSearch cross-validation, parameters for ran-
dom forest that were supplied to the algorithm were
number of estimators (number of threes in forest) which
was changed from 200 to 350 in the step of 50, and maxi-
mal depth of the individual three which was varied from
none to 4. None here means that the three is going to
expand until all leaves are pure. In the case of linear
regression, the only parameter that could be changed
is £2 norm penalization coefficient o, and we have cho-
sen the values of 0.5, 0.8 and 1. For DNN, considered

@ Springer

architectures were ones with one, two and three hid-
den layers [(100), (100, 100) and (100, 150, 50)]. Num-
bers in parentheses represent number of neurons in each
hidden layer. Activation function was ReLU (Rectified
Linear Unit). Best results reported for all models were
ones with MinMax scaling. For RF, best results were
the ones where number of threes was equal to 350 and
maximum depth that was set to none. Best results with
linear regression were reached for the a parameter equal
to 0.8. Finally, for DNN, architecture with three hidden
layers showed best performance. After dimensionality
reduction via Gini importance, resulting dataset was
divided into training and test datasets, keeping 20%
of the data for testing. Validation of the models was
done by using R? metrics and RMSE, and it is given in
Table 3.

With model training finished, judging by the R?
score, best overall performance is showed by deep neu-
ral network. The prediction precision for each element
goes above 0.9, whereas the predicted values in the case
of RF are little less. Results for linear regression are not
given, since they are significantly worse than these, thus
they were omitted. Prediction on recorded test dataset
was done with RF as well as with DNN, and the pre-
dicted results are summed in Fig. 4. From Fig. 4a—d,
it can be seen that DNN showed good performance on
all elements, while the predictions made using RF are
quite good for the case of Cr, Mn and Ni, but it showed
bad overall performance regarding the prediction of Mo,
see Fig. 4d. There was no difference when we tried to
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Table 2 Dimensionality and number of samples in training dataset used for model training

Element Number features Number of samples
Cr 273 1608
Mn 129 1608
Mo 317 1608
Ni 120 1608

All useful information is contained in these selected features

predict Mo concentration with all features, where unim-
portant features were not removed.

5 Conclusion and future development

In this paper, the prediction of austenitic steel alloy
samples was done using the random forest algorithm
and deep neural network. Data preprocessing consisted
of applying MinMax scaler on the raw data, followed by
outliers removal with isolation forest algorithm. Feature

Cr
25
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35
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5 s
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selection was performed by Gini importance criterion
within random forest algorithm. It successfully isolated
most important features, thus enabling the dimension-
ality reduction while keeping all the necessary infor-
mation. This was preceded by final training of three
models: random forest, linear regression with £2 norm
and deep neural network. Random forest and neural
network showed better predictive power than linear
regression; hence, they were used as selected models
for prediction of the steel alloy composition. Trained
random forest model showed good predictive power for

Ni

443 445 446 447

BRF mCertified ®NN

Mo
443 445 446

BRF mCertified ®NN

-
447

Fig. 4 RFR and DNN predicted results (denoted with RF and NN on the figure) and comparison with certified values.
Numbers on x-axis denote the steel sample number given in Table 1. The figure indicates that the models learned and
yielded good results in the case of Cr (a), Mn (c) and Ni (b), but on the other hand, RFR had rather poor performance in

the case of Mo (d)
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Table 3 R? and RMSE values for validation dataset

Element Rirr Rixn RMSERr RMSExn
Cr 0.88 0.97 3.68 1.84

Mn 0.89 0.93 0.397 0.313

Mo 0.85 0.96 0.511 0.263

Ni 0.97 0.98 1.77 1.21

Cr, Ni and Mn, but rather poor performance in the
case of Mo. On the other hand, neural network showed
good overall predictive power. Nevertheless, random
forest algorithm, combined with the data preprocess-
ing techniques, shows a good potential for application
in austenitic steel alloy composition prediction, which
was also confirmed by results from other authors. For
future work, we tend to write a better feature extraction
software that should improve the feature selection and
hence the predictive power of a used regressor. Also,
good overall results are obtained, although the train-
ing and test datasets were not intensity corrected. This
work shows how useful it can be, to build a unique steel
dataset for later usage by different authors, as they not
need to every time record their own datasets. These
results can be further improved, if one performs cali-
bration transfer, as these spectra were recorded on dif-
ferent instruments. Here, this was not performed as we
have not had any identical standard that was used on
primary instrument.
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Abstract

Various types of electric fields contained in the laboratory and astrophysical plasma cause a Stark broadening of spectral
lines in plasma. Therefore, a large number of spectroscopic diagnostics of laboratory and astrophysical plasma are based on
experimental and theoretical studies of Stark broadening of spectral lines in plasma. The topic of the present investigation
is the Stark broadening caused by free electrons in plasma and its dependence on certain atomic parameters using a new
method based on the machine learning (ML) approach. Analysis of empirical data on atomic parameters was done by ML
algorithms with more success that it was previously done by classical methods of data analysis. The correlation parameter
obtained by artificial intelligence (AI) is slightly better than the one obtained by classical methods, but the scope of
application is much wider. Al conclusions are applicable to any physical system while conclusions made by classical
analysis are applicable only to a small portion of these systems. ML algorithms successfully identified quantum nature by
analyzing atomic parameters. The biggest issue of classical analysis, which is infinite spectral line broadening for high

ionization stages, was resolved by Al with a saturation tendency.

Keywords Machine learning - Stark broadening - Atomic data - Plasma physics

1 Introduction

One of the greatest challenges of the modern science is the
processing of enormous amounts of data. Two primary
goals in this field are how to learn from data and how to
make data predictions [37]. Data science and machine
learning (ML) have made tremendous progress in the last
few decades. Statistical physics have a great contribution to
the development and understanding methods in ML [6].
ML algorithms have become very important in the analysis
of data in physics and related sciences. ML methods have
been shown to be useful in different physical sciences:
astrophysics, particle physics, chemical physics, con-
densed-matter physics, quantum physics. In astrophysics
and particle physics experiments such as CMS and ATLAS
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at the LHC in CERN, as well as projects such as the Sloan
Digital Sky Survey (SDSS), gives enormous amount of
data measuring the particle collisions and properties of a
billion stars and galaxies [37]. Object classification in
astrophysics is very important task [3, 27, 46] whose suc-
cessful solution enables easier selection of objects
according to certain criteria and their further study. Use of
ML algorithms enables the solution of numerous problems
in the processing of astronomical data and enables the
consideration of dependences and correlations that have
not been observed before [25, 26, 44, 45]. In one of the
most significant modern experiment: observation of the
gravitational waves arises from the merger of a binary
black hole, ML algorithms are used to clear the noise in the
signals of gravitational waves [1, 57]. Large development
in the domain of data science, as well as the strengthening
of connection to quantum physics, enabled the develop-
ment of our knowledge of the matter. Namely, atomic
physics is a base for the creation of new molecules and
advanced materials, as well. The theoretical basis of atomic
physics is quantum mechanics. Quantum mechanics has
provided a base for successful research of molecular
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physics and condensed matter physics, as well as nuclear
physics and particle physics. Consequently, the develop-
ment of ML algorithms recently has been used to address
fundamental questions in the domain of quantum physics
[4, 49]. One of the big problems in quantum physics is the
inability to solve the Schrédinger equation for multiparticle
systems, i.e., inability to obtain appropriate wave functions.
In quantum chemistry and chemical physics, ML algo-
rithms are used for analysis and prediction of physical and
chemical properties, chemical structures, optimization of
reaction parameters and process conditions (a type of
reagents, catalysts, concentration, time, temperature), pre-
diction of new reaction design, maximization of the pro-
duction rate of chemical reactions [2, 9, 18, 29, 59, 60]. In
condensed-matter physics and material science, ML has
been used to improve the calculation of material properties,
as well as a modeling of properties of new materials
[10, 12, 19, 43, 58]. Learning techniques can be used for
the research of advanced materials: materials for memory
devices, solar cells, batteries, sensors, nanoparticle cata-
lysts, supercapacitors, superhard material, etc.

From interconnections between quantum physics and
ML, scientific community has huge expectation
[4,8,23,24,32,33, 35, 38, 49, 54]. There are many current
questions about entanglement classification [23], quantum
state tomography [54], solving the quantum many-body
problem [8, 24]. There are many interesting active ML
models with the aim of creation of new quantum experi-
ments [32, 33, 38], as well as quantum machine models
[17]. Also, ML can be used to discover physical concepts
from new experimental data [28]. ML approaches have
been applied to atomic physics. The neural networks can be
used as a representation of quantum states [6]. There is a
lack of atomic parameters for heavy elements and high
ionized atoms. ML can be applied to the classification of
heavy atoms energy levels according to their electronic
configurations [7, 41]. Learning techniques have been
applied for the investigation of atomic processes, like
ionization and radiation [6]. Analysis of spectra from stars
and quasars, as well as laser-produced and fusion plasma,
can be done with the help of ML [40, 45]. The knowledge
of atomic parameters is a base for atomic processes mod-
eling. The aim of this research work is to use machine
learning algorithms for modeling Stark spectral line
broadening.

Stark broadening of spectral lines is a tool for spectro-
scopic diagnostics of laboratory plasma, as well as astro-
physical and fusion plasma. In astrophysics, stark line
widths are used for analysis of stellar spectra, investigation
of chemical abundances of elements in different stellar
objects, opacity calculations. Recently, it has been shown
that Stark broadening has a big influence on the uncer-
tainties in the calculation of the solar opacity [34]. Spectral
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analysis has a very important role in the physics of fusion
plasma, too. Part of the current research in this field is
concentrated on the possibility of using various durable
materials, (as Mo, Ti, Zr...) for tungsten alloying. During
the operation of fusion machines, it is expected that a small
amount of these materials would be found in the peripheral
regions of confined plasma, because of the spattering pro-
cess. Stark widths of these atoms and their ions are needed
for a detailed spectral analysis and diagnostics.

Stark broadening of spectral lines of neutral atoms and
ions is used in science for a number of problems in various
physical conditions. Theoretical calculations of the Stark
width values usually use one of the models given by Griem
et al. [20]; Sahal-Bréchot et al. [47]; Griem [21]; Dimitri-
jevi¢ and Konjevi¢ [13]. Recent research indicates the
importance and usefulness of searching for possible types
of regularities in the framework of a Stark broadening
investigation [16, 53, 56]. Still, existing tables with cal-
culated and measured Stark widths have a big lack of data.
There is a need for Stark widths data in the wide range of
chemical elements, plasma temperature and electron den-
sities. In this paper a correlation between Stark broadening
and environment parameters, such as the ionization
potential of the upper level of the corresponding transition,
electron density and temperature, will be investigated using
modern ML algorithms. If this method proves to be accu-
rate enough, the process of calculating the value of stark
widths will be significantly accelerated and facilitated.

2 Theoretical background of Stark line
broadening

One of the primary deexcitation ways of excited atoms is
photon emission. A cumulative signal obtained from a
radiating medium (for example plasma) is a spectral line
with a small frequency range. Each spectral line emitted by
atoms in plasma has a finite frequency range represented as
line width. Generally, there are four types of spectral line
broadening in plasma. One is a natural line broadening,
related with the uncertainty in the energy of the states
involved in the transition profile, with line width negligible
compared to the other broadening mechanisms. The second
is instrumental line broadening which includes the influ-
ence of spectral device on a line profile. Doppler broad-
ening is caused by a distribution of velocities of atoms or
molecules and depends on plasma temperature. The pres-
sure broadening, which generally depends on pressure (i.e.,
density of active species) and temperature, results from the
interactions of the emitters with neighboring neutral par-
ticles (resonant and Van der Waals broadening) and ion-
ized particles (Stark broadening). Natural and instrumental
broadening are always present. The existence of other types
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of spectral line broadening depends on the plasma condi-
tions. Stark broadening is caused by the free charges which
surround the emitters in plasma and produce the local
electric field which affects the emission process, giving rise
to shifts of the emission wavelengths or changes in the
phase of the radiation. This is observed as a phenomenon of
broadening and shift of the spectral lines [22]. This effect is
determined by the intensity of the local electric field and it
depends on the density of charged particles in the plasma
(electrons and ions). The influence of free electrons on the
line broadening in plasma is much more pronounced than
the influence of ions. The topic of the present investigation
is the Stark broadening caused by free electrons in plasma
using new method based on ML approach.

The general formula for Stark width calculation in the
impact approximation, which is appropriate to use in the
overwhelming number of cases, is [22]:

‘U:Ne<v' “U‘+Zaii’+zaﬁ" > (1)
i !

av

The line has a Lorentzian profile whose width is o,
expressed in angular frequencies unit [rad/s]. N, and v are
electron density and velocity, respectively. The average is
being over the velocity distribution of perturbing electrons.
The cross sections ¢;; (off/) are for inelastic scattering on
the initial (final) state of the line,

while oy is an effective elastic cross section to be cal-
culated essentially from the difference of elastic scattering
amplitudes f; and f;.

The formula proposed by Griem [22] is very compli-
cated, it cannot be resolved exactly, so it is useful to use
different approaches in the calculation. The regularity
approach which correlates Stark width of spectral line, o,
expressed in [rad/s], electron density N,, electron temper-
ature T, and positive value of electron binding energy on
the upper level of the transition, expressed in [eV], is given
by Puri¢ and Séepanovié [42] (Eq. 2):

=27 a N, -f(T,) - x° (2)

where Z, = 1,2,3... for neutrals, singly charged ions, ...
respectively and it represents the rest core charge of the
ionized emitter and a, b and k are coefficients independent
of electron concentration and ionization potential for a
particular transition and the rest core charge of the emitter.
In Eq. 2, stark width is expressed in radian per second and
this is the only suitable unit to analyze the regularity of
Stark broadening. If regularity analysis use wavelengths (1)
and line widths (AZ) expressed in meters, Eq. 2 should be
written as follows:

Zf-a-Ne-f(Tg)-be-/lz 3)

Al =
& 2-m-c

In Eq. 3, every transition have its own wavelength, while
the other parameters remain unchanged, so regularity can’t
be seen.

Atoms and ions with the same number of electrons form
an isoelectronic sequence. It is expected that spectral series
within an isoelectronic sequence show regularity behavior
because a wide range of atomic/ionic parameters depend on
the electron number. The results obtained by regularity
studies have proven to be very precise and this approach
has been used in previous papers of our group. In the last
decade we have investigated Stark broadening regularities
using Eq. 2 within spectral series of individual elements
[14, 15, 30, 51, 52], within spectral series of individual
isoelectronic sequences [53, 55, 56] and we published one
paper with analysis of Stark line broadening regularities
within two spectral series of isoelectronic sequences
simultaneously: potassium and copper [16]. The present
investigation goes one step further and analyses all ele-
ments for which there are available data needed for Stark
broadening investigation, simultaneously, using machine
learning approach. The aim is to find the best possible
model which correlates Stark width of spectral line with all
available parameters for transition of interest (atomic
parameters and environmental parameters).

3 Dataset creation and data cleaning

In order to create our dataset we used two public reposi-
tories connected with atomic spectroscopy. First one is
Stark B database [48], where the parameters of Stark
broadening for different emitters are given. The features
taken from this database are: chemical element, ionization
stage, upper and lower level of spectral transitions, Stark
broadening, the environment temperature and electron
density in environment. In the available database, stark
widths are expressed in angstroms (1 angstrom = 101" m).
For analysis purpose, angstroms are converted in radian per
second [53] (Eq. 4). In the physical sense, radian per sec-
ond is unit related with energy.

o — 27 ?2 A @)
A
We also performed data analysis with Stark widths
expressed in meters, using machine learning and results
have not shown any meaningful trends. This is confirma-
tion that radians per second are suitable unit for machine
learning approach, too. When the difference between
energy levels of the same multiplet is small compared to
the distance to the next level linked by an allowed
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transition, all the fine structure lines of the same multiplet
have the same width and shift in Stark B database . In that
case, the data are given of the multiplet only (wp,y) and for
an average wavelength of the whole multiplet (Apyy). The
width value for a particular line (wy,e) Within a multiplet is
obtained from:

Wmu}t : )L]Zjne (5)

2
/Lmult

Wiline =

To ensure better results, we enriched features taken from
Stark B database with ones taken from NIST Atomic
Spectra database [31]: binding energy of both upper and
lower transition levels, ground level energy, total angular
momentum quantum number J of both upper and lower
transition level, as well as principal » and orbital ¢ quantum
numbers and total angular momentum J quantum numbers
of upper and lower transition levels.

The algorithm of connecting those two databases to form
our own works as described below. For every transition
connected with certain chemical element, we take the elec-
tronic configuration of both upper and lower levels from
Stark B database. Then, we look for that particular element in
NIST database and compare the electronic configurations. If
they match, then we take the binding energy of those levels,

their principal quantum number 7, orbital quantum number ¢
and total angular momentum quantum number J and finally
the ionization energy of that atom. The ionization energy is
needed for calculation of the so-called upper level ionization
potential y. For practical purposes, we replaced the chemical
element name with its atomic number Z and its charge,
obtained from periodic system of elements (i.e., instead of
Ar+2, we used Z = 10 and charge = + 2). For better
understanding of the algorithm mentioned above, pseudo
code is given in table Algorithm 1 while the complete code
can be found at https:/github.com/ivantraparic/Stark
BroadeningMLApproach. After we completed the creation
of database, it consisted of 54,236 successfully matched
transitions for 53 different emitters.

Then we proceeded with data cleaning. Outliers were
detected as those transitions where the energy of upper
level is smaller than the energy of lower level, which is
physically impossible, thus those lines were removed from
the database. Next, we excluded transitions given for
temperatures above 150,000 K and electron densities above
10" cm™3, because we are currently not interested in
making predictions for those plasma conditions. As a
result, this dataset contains 53 emitters and 34,973 spectral
lines and follows a normal distribution.

Algorithm 1 Creation of database used in this paper

1: for element in elements do

@ Springer

2: charge, Z < DetermineZAndCharge(element)

3: elementNIST < FindElementInNIST (element)

4: ElectronTemperature < electronic temperature from Stark B database

5: ElectronDensity < electron density from Stark B database

6: StarkWidth < stark broadening from Stark B database

7 UpperLevels <— upper transition levels from Stark B for element

8: LowerLevels < lower transition levels from Stark B for element

9: Levels < levels configuration in NIST database for elementNIST

10: Upperbindingenergy, Lowerbindingenergy, jupper, jlower, ni, li, nf, lf, x < Arrays

for saving found quantities from NIST database

11: GroundLevel <+ FindGroundLevel(elementNIST)

12: for lowerlevel in LowerLevels do

13: for level in Levels do

14: if lowerlevel == level then

15: Lowerbindingenergy, nf, If, jlower <— binding energy

and associated quantum numbers for that lower level taken from NIST

16: upper level ionization potential x <— GroundLevel - Lowerbingingenergy
17: break

18: for upperlevel in UpperLevels do

19: for level in Levels do
20: if upperlevel == level then
21: Upperbindingenergy, ni , li, jupper < binding energy

and associated quantum numbers for that upper level taken form NIST

22: break
23: if length(Lowerbindingenergy) != length(Upperbindingenergy) then
24: Error
25: return
26: else
27: for i != length(Lowerbindingenergy) do
28: Z, ElectronTemperature, ElectronDensity, charge, x, GroundLevel,

Upperbindingenergy, jupper, Lowerbindingenergy, jlower, ni, li, nf, 1f, StarkWidth

<+ Insert line 7 in database


https://github.com/ivantraparic/StarkBroadeningMLApproach
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Table 1 List of ML algorithms

Model
and parameters

Parameters

Linear regression
Decision tree regressor
Random forest regressor

Gradient boosting regressor

Normalize: [True, False]

max_depth [3, 5, 10]

n_estimators [5, 10, 15, 100]

max_depth [3, 5, 10], n_estimators [100, 150, 200]

Table 2 List of ML algorithms
and their final score

Model Best R? Parameters

Linear regression 0.38 Normalize: False

Decision tree regressor 0.92 max_depth = 10

Gradient boosting regressor 0.94 max_depth = 10, n_estimators = 150

It consisted of 15 columns, 14 of those were our features
(atomic number Z, electron temperature, electron density,
charge, lower level ionization potential y, ground level
energy, lower level energy, lower level J, upper level
energy, upper level J, principal quantum number of lower
level ny, orbital quantum number of lower level ¢, prin-
cipal quantum number of upper level n;, orbital quantum
number of upper level £;), and 15" column was our target
value .

4 Model creation and training
For model creation and training, we used public Python

package Sci-kit learn. We created four models, every being
Pipeline with two steps. In each object of Pipeline class, the

1012
1011
-
v 1010
S 10
o
3 n
10°
108 = 2s-np(2)
—— 2s-np(2) model prediction
100 10!
x~11/eVv]

first step was data scaling using StandardScaler, and in
second step we made our predictions with defined model.
Considered models were: Linear Regression, Decision Tree
Regressor, Random Forest Regressor and Gradient Boost-
ing Regressor. We split the dataset into training and test
dataset using train_test_split method, leaving 25% of the
data for testing. To find the best model out of four con-
sidered, and best parameters for that model, we used
ShuffleSplit combined with GridSearchCV. In ShuffleSplit
object we set number of splits to 5, and we left 30% of data
for testing. In GridSearchCV object we set cross validation
to ShuffleSplit object. The values for parameters of models
used in GridSearchCV are presented in table 1. Other
parameters of the model remained at their default values.

To rank the performance of models, we used best
Coefficient of Determination, RZ, value obtained after

1012

loll.
o
o
2
3

1010

= 3s-np(2)
109 1 —— 3s-np(2) model prediction
100 10!
x7t[1/eV]

Fig. 1 Stark widths regularities within 2s-np i 3s-np spectral series of Li 1 (T = 30,000 K, N, = 102 m~3)
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Fig. 2 Stark widths regularities within 2p-nd and 3p-nd spectral series of Li 1 (T = 30,000 K, N, = 10*°m~?)
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Fig. 3 Stark widths regularities within 3d-np and 4d-np spectral series of Li 1 (T = 30,000 K, N, = 102 m™)

GridSearchCV algorithm finished. We have taken the
parameters that the algorithm used to score that particular
R%. As a result, we got that the best R? value was for
Random Forest Regressor having R?> = 0.95 for n_estima-
tors = 100. The results of other model is given in table 2.

So, our winning model after performing hyper parameter
tuning using GridSearchCV was Random Forest Regressor
with number of estimators set to 100. Random Forest is a
learning method that operates by constructing a large
number of decision trees during the training process [5]. It
is simple to use and shows high performance for a wide
variety of tasks, making it one of the most popular ML

@ Springer

algorithms in different sciences. Random forests are an
effective tool in predicting new data, in our case new
atomic parameters. It should be emphasized that Breimans
paper [5] is cited more about 30,000 times (Web of Sci-
ence: 36.234, CrossRef: 27.683). In order to check over-
fitting of the winning model, we did R? score check of the
model on both training and test datasets. Training R? score
was 0.98, and test score was R = 0.95, so we were sure
our model is not overfitting the data.
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Fig. 4 Stark widths regularities within 2p-ns and 3p-ns spectral series of Li 1 (T = 30,000 K, N, = 102 m~3)
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Fig. 5 Stark widths predictions for 2p-ns and 3p-ns spectral series of Li 1 (T = 30,000 K, N, = 10?> m~3)

5 Results

The Random Forest model is used to calculate Stark
broadening data for spectral series within neutral lithium
Li 1. Calculated stark widths (red lines) for transitions
within analyzed series are represented with existing known
values of Stark widths data at the same graphs.

Figure 1 shows the dependence of the Stark width (w)
on the reciprocal value of the electron binding energy at the
upper level of the transition (3~ 1) for 2s-np and 3s-np
transitions within lithium atom at a temperature of
T = 30,000 K and electron concentration N, = 102 m~3.

Figures 2 and 3 show the change in Stark width under
the same conditions (temperature 7 = 30,000 K and elec-
tron concentration N, = 10%° m~?), but for 2p-nd and 3p-nd
transitions, as well as 3d-np and 4d-np. A very good
description of the atomic structure of lithium, i.e., the
values of atomic parameters, can be observed. Interest-
ingly, points 2s-2p and 2p-3d were omitted in our previous
analysis [15], while the ML algorithm includes them in the
overall analysis and gives excellent agreement with the
Stark width value.

Of special importance is the possibility of obtaining the
value of stark widths at higher energy levels, for which
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these data are not quantitatively calculated. Figure 4 shows
the change of Stark widths for the 2p-ns and 3p-ns tran-
sitions at a temperature of T = 30,000 K and electronic
concentration N, = 10> m~3. In Fig. 5, the conditions are
the same, but the initial values of the Stark width and the
values obtained by the ML algorithm are given for higher
energy levels of lithium atom. A slight saturation of the
values of Stark parameters at higher energy levels can be
observed.

The functional dependence obtained using the ML
algorithm describes the quantum structure of the energy
levels of lithium atoms. From the model lines (red lines), it
can be concluded that the model successfully (within the
error) indicates the quantum nature of atomic transitions
and that other results do not make physical sense, but only
jumps.

6 Conclusion

Analysis of spectral data on Stark broadening for 53 dif-
ferent emitters and 34973 lines by ML algorithms was done
with more success than it was previously done by classical
methods of data analysis. Random forest has scored an
average of R* = 0.95 which makes it an excellent choice
for Stark broadening calculations. The correlation param-
eter obtained by Al is slightly better than the one obtained
by classical methods of Stark broadening analysis, but the
scope of application is much wider. Al conclusions are
applicable to any physical system while conclusions made
by classical analysis are applicable only to a small portion
of these systems, mostly to ions with low ionization stage.
This improves the quality of predictions and enhance a
broader usability of results. In fact, these results can be
used for any transition and any environment without any
restrictions. ML algorithms successfully identified quan-
tum nature by analyzing Stark broadening parameters
which can not be done with similar analyses that used
classical methods and obtained linear correlation. The
biggest issue of the classical analysis is infinite spectral line
broadening for high ionization stages and it was success-
fully resolved by Al with a saturation tendency.

The process of calculating the values of Stark widths,
which is used in science for a number of problems in
various physical conditions in spectroscopic diagnostics of
laboratory plasma, as well as astrophysical and fusion
plasma, is significantly accelerated and facilitated with new
method based on ML and proposed in the present paper.
Using our new proposed model, Stark databases can be
significantly improved. For example, Stark broadening
calculations can be made for some spectral transitions
within W, Ti, Mo and Zr atoms, which are common in

@ Springer

nuclear fusion diagnostics and of interest for spectral
analysis in fusion physics [39], as titanium, molybdenum
and zirconium are used as alloying materials for tungsten
[11, 50]. Lines of Ti are used for astrophysics diagnostics,
too [36]. Despite their significance, there is a very big lack
of Stark data for these atoms and their ions. There is a lot of
missing energy data for higher energy levels for W, Ti, Mo
and Zr atoms and their ions. For example, there is no
precise value of energy for 6p level for Ti 1, so there is no
calculated Stark data for transition for which this level is
the closest perturbing level. Although very rich in data,
NIST database does not have energy values data for all
possible excited states of atoms. With standard known
methods for Stark width calculation, it is not possible to
calculate Stark widths for levels for which energy values of
the closest perturbing levels are missing, but ML algo-
rithms enable calculation in these situations, too. In next
step, ML predictions and analytic calculations will be
compared and ML technique will be used for atomic
parameters analyses. Special attention will be paid to
spectral lines that are important for fusion and astrophys-
ical research.
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Abstract. Artificial neural networks are gaining a momentum for solving com-
plex problems in all sorts of data analysis and classification matters. As such,
idea of determining their usability on complex plasma came up. The choice
for the input data for the analysis is a set of stellar spectral data. It consists
of complex composition plasma under vast variety of conditions, dependent on
type of star, measured with calibrated standardized procedures and equipment.
The results of the analysis has shown that even a simple type of perceptron
artificial neural network could lead to results of acceptable quality for the anal-
ysis of spectra of complex composition. The analyzed ANNs performed good
on a limited data set. The results can be interpreted as a figure of merit for
further development of complex neural networks in various applications e.g. in
astrophysical and fusion plasmas.

Key words: Atomic processes—Line: profiles-astrophysical & fusion plasmas

1. Introduction

The usage of machine learning algorithms is a growing field of research (D’Isanto
et al., 2016; Baron, 2019; Kates-Harbeck et al., 2019). Since the computer power
is constantly growing its usage is often found in a wide variety of applications:
from determination of objects on a photograph all the way to expert systems
capable to determine adequate states and predicted outcomes of complex sys-
tems; from difficult-to-maintain machines states and prediction of conditions,
up to the assistance in human health monitoring.

Even the specific fields of spectroscopy rely deeply on artificial neural net-
works, as is the case for instance with medical spectroscopy application Wang
et al. (2015), or for instance agricultural application Basile et al. (2022); Longin
et al. (2019). The material recognition in extraterrestrial spectroscopic probing
is also a very difficult task, since the limitations of the mass and resolving power
of the onboard instruments are a very difficult limiting factor (Koujelev et al.,
2010; Bornstein et al., 2005).
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Usage of the artificial neural networks (ANN) fell into focus of our interest
because of flexibility of their application, as well as a variety of complex problems
that they have already solved.

All of the mentioned has been a factor for applying neural networks to the
decision process of determining a stellar spectral type as an example of appli-
cation on astrophysical data (Albert et al., 2020). Artificial neural networks are
often used in astrophysics (e.g. for the integral field spectral analysis of galaxies
in Hampton et al. 2017). There is an expectation of development of further focus
on convolutional neural networks application on spectroscopic data (Castorena
et al., 2021). Also, even more complex predictions based on back-propagation
in neural networks as well as complex artificial neural networks structures in
spectroscopic usage are known (Li et al., 2017). In order to have insight of ap-
plicability of the ANN usage we have limited our research on simplest case as a
figure of merit.

Few random spectral curves from database Pickles (1998) are presented here
in results. Entire database set consists of spectra for 12 types of stars, spectral
type O normal; B normal; A normal; F normal; F Metal rich; F metal weak; G
normal; G Metal rich; G metal weak; K normal; K Metal rich; K metal weak;
and M normal. Our aim was to create test case as a method of determining
a quality of specific ANN in various machine learning analysis, from stellar
and fusion spectra analysis, material analysis, up to extremely specific cases
as enhancing a low resolution instrument performance for specific applications
(Marinkovié¢ et al., 2019; Albert et al., 2020).

2. ANN basics and principles

The usage of systems related to the functions of neural networks has been in
focus of investigation since mid-1940 McCulloch & Pitts (1943), but the real
usage has evolved with the application of modern day digital computers, which
enabled construction of networks of enlarged complexity. One of the simplest
neural networks, that could be seen more as a test case of validity of operation of
artificial intelligence systems, is perceptron (Rosenblatt, 1958). The prediction
as well as sensitivity of the training data set is in favor of more complex net-
works. It is the primary goal of our investigation, along with their application
on spectral data sets and measurements.

The choice for the dataset was made on open access data files for the 131
stellar spectra published by Pickles (1998) (available at accompanying refer-
ence appended to the bibliographical entry, as seen in May 2022). The results
are promising and further research on the field is expected. The quality of the
trained artificial neural network prediction is related to the data set as well as
its structure. An effort of applying it on a large scale dataset or database should
be carried out.
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The problem of finding out a category of data subset is an inherent problem
for any sort of machine learning and as such for the artificial neural networks
also. The artificial neural network is a system of mathematical functions trying
to resemble a simplified animal brain. The network consists of artificial neurons.

Output

Acrivation
function

Figure 1. The concept of a neuron. Schematic presentation.

A neuron is described as a function that adopts output value based on its
input values and bias value by the means of reaction function. The simplest
neuron concept could be seen on a Figure 1. The neuron determines its output
state as an output of activation function based on a weighted sum of input
values and a bias value itself, and could be described by equation

N
Yout = fact (BiaS + Z xiwi> , (1)

i=1
where f,; is a activation function, x; and w; are the i-th input value as well as
adequate input weight.

Sigmoidal tanh RelLU Leaky ReLU
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Figure 2. Four most common neuron reaction functions.

The neuron reaction on external stimulus is strongly dependent on its reac-
tion function. In order to determine the neuron behavior on a micro scale, the
reaction function as well as the method of adopting the weight values plays a
determining role. Four most common reaction functions are shown on Figure 2.
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Input Hidden layers of the ANN Output
layer layer

Figure 3. Concept of ANN of perceptron, feed forward and deep feed forward.The
shown ANN consist of M input neurons, two hidden layers of N and P neurons and
output layer of Q neurons.

A topology of the neural network as well as the learning method are de-
termining the global reaction of the neural network. For the goal of usability
analysis the simplest ANN topologies, perceptron, is chosen. The Feed Forward
and Deep Feed Forward topologies are based upon fully connected dense layers
of neurons, see Figure 3. The two specific layers, input and output, have the
dimensionality of the input data and output states consequently and are the
only limiting factors of the network. When there is more than one hidden layer,
the neural network is considered to be the deep one.

3. Results and discussion

In Figure 4 several random spectral curves from database Pickles (1998) are
presented. Entire dataset consists of spectra for 12 types of stars, spectral type
O normal; B normal; A normal; F normal; F Metal rich; F metal weak; G normal;
G Metal rich; G metal weak; K normal; K Metal rich; K metal weak; and M
normal. Each epoch of the dataset was divided into 70% for training set and
30% for the test set.

As a test bench for the application of the ANN to the selection set of per-
ceptron, Feed Forward and Deep Feed Forward networks are used. As a reaction
function ReLU (rectified linear unit) was used, and the input data was normal-
ized to unit using standardization
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No additional data preparation was imposed. The investigated neural net-
work topologies were let to train on the set of data for 200 epochs. Input layer
consisted of 4771 input values of available data, output layer consisted of 12
types of stars, spectral type O normal; B normal; A normal; F normal; F Metal
rich; F metal weak; G normal; G Metal rich; G metal weak; K normal; K Metal
rich; K metal weak; and M normal. The hidden layers consisted of 5000 neu-
rons in first, 1000 in second and 512 neurons in third layer. They were included
consequently in order to compare ANN behavior, see Figure 5.

It is obvious, by the analysis of calculated data presented in Figure 5, that
the deeper ANNs are capable to learn faster and have better predictions after
smaller epochs of learning. This capability is a winning solution in the case of
complex spectra. The ANN could fall into pseudo stable states and produce
a non-minimal error. Such falls into local minimum state could be avoided by
several advanced methods one of which is providing an algorithm for forgetting
of the learned state, e.g. algorithm that disturbs a learned state after each
application.

Also, there are probably better methods for the input dataset preparation,
from pure mathematical procedures up to convolutional ANN (CNN) incorpo-
ration. It is proven that, even in its simplest forms, ANN could be used for such
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ANN convergence by learning epochs
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Figure 5. Convergence of ANN of perceptron, feed forward and deep feed forward,
on analyzed dataset.

tasks. It is to expect that there are better ANN topologies for such a task, and
this is a field for further investigation.

From the above it is obvious that even in its crudest form artificial neu-
ral networks are capable to successfully deal with the spectra classification. It
is confirmed that this case could be used as a figure of merit for the further
development of ANN and machine learning applications in general.

4. Conclusions and future possibilities

The results are promising and the further research on the field is expected. The
first goal of analysis of a single set of complex spectral data recorded under sim-
ilar conditions is achieved with reasonably good prediction. Concerning minute
differences in comparison to each other it is considerable result for the basic
ANN structure.

Since the quality of the trained artificial neural network prediction is related
to its structure as well as the dataset quality and volume, an effort on a large-
scale database collection should be carried out. One of the first steps should
be inclusion of pre-trained convolutional ANN for the purpose of input data
pre-processing before entering of selector ANN.

Commercial packages as well as some specific open-source solutions for the
analysis of the spectra with the help of predefined ANN exist. Their application
is usually very specific and does not allow the opportunity to fit the best ANN
nor to perform unique mathematical procedures during input data preparation
that could be best suited for the sought purpose. This possibility is the winning
factor in each specific case. Such approach should enable systems for more spe-
cialized problem solutions, from stellar and fusion spectra analysis up to more
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specific expert systems related to technical solutions. The further development
in both ANN structures as well as data preparation should be carried out with
the specified problem in mind.
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Abstract. Regularites and systematic trends among the sample of Stark widths
obtained by using modified semiempirical method from the STARK-B database
were analysed. Two different approaches are independently used — multiple re-
gression method combined with simple cluster analysis, and random forest
(RF) machine learning algorithm. Predicted values of Stark widths calculated
with estimate formulae obtained from multiple regression method, and those
values predicted by using RF algorithm, were compared with already known
corresponding experimental Stark widths published elsewhere. Results of this
analysis indicate that both of these methods can mostly predict new Stark
width values within the acceptable range of accuracy.

Key words: line profile — Stark broadening -— atomic data — machine learn-
ing

1. Introduction

Stark broadening theory plays the important role in investigation of high tem-
perature dense plasma, where the collisional processes between the charged par-
ticles contribute significantly to the spectral line broadening. From technological
perspective, Stark widths and shifts of spectral lines in the spectra of neutral
atoms and ions are of interest for a number of problems - for example, analysis
and modelling of laboratory, laser produced, fusion or technological plasmas,
accurate spectroscopic diagnostics and modelling, etc. Applications of Stark
broadening theory are also various in research of astrophysical plasma as well -
for example, for interpretation, synthesis and analysis of stellar spectral lines,
determination of chemical abundances of elements from equivalent widths of ab-
sorption lines, opacity calculations, estimation of the radiative transfer through
the stellar atmospheres and subphotospheric layers, radiative acceleration con-
siderations, nucleosynthesis research, etc.
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Calculation of Stark broadening parameters sometimes can be difficult, and
it can take a time, especially if quantum theory is applied. If conditions to ap-
ply less accurate but faster quasistatic, unified, semiempirical or semiclassical
methods are not satisfied, quick and simple estimates could become important,
especially if we do not need a great accuracy, or there is no time for more com-
plicated and more accurate calculations, or if we have a great number of Stark
broadening parameters to calculate in very small period of time. This is very
common case, for example, if astrophysical spectra are investigated. Accord-
ing to (Wiese, Konjevic, 1982), regularities and systematic trends (RST) can
be found among the Stark widths of atomic spectral lines, which can simplify
the way of obtaining these estimates. This is especially significant when some
atomic data, necessary to perform more accurate Stark broadening methods of
calculations, are missing. For example, the lack of atomic data, such as energy
levels or transition probabilities is usually noticed in the spectral data for rare-
earth elements. Analysis based on RST is mostly the only way to determine
Stark widths and shifts in sometimes very complex spectra of these elements,
which become more and more important in spectral investigations of hot stars
of spectral type A and B, and white dwarfs (Popovi¢, Dimitrijevi¢, 1998).

In this investigation, we focused on searching systematic trends among great
amount of Stark widths from STARK-B database (Sahal-Bréchot et al., 2014b,
2015), obtained by modified semiempirical (MSE) method (Dimitrijevié¢, Kon-
jevié, 1981) as a continuation of our previous work on determination of unknown
MSE Stark widths and studying of RST among the MSE Stark broadening pa-
rameters (see, for example, Majlinger et al., 2015, 2017a,b, 2020a). Two different
methods are used to analyse the sample — classical statistical regression method,
which has already been used many times in previous investigations of regular-
ities and systematic trends, and random forest (RF) algorithm from a group
of machine learning methods, which become very popular methods more often
used in these days whenever some classification or non-linear regression is needed
to be performed. Unlikely to previous analyses of RST, here some new atomic
parameters, which have not taken into consideration before, are included. We
will shortly explain both of these methods and finally discuss and compare the
obtained results.

2. Methods

2.1. Simple cluster and multiple regression analysis
Estimates of Stark widths can be divided into three main groups:

— approximations derived from the theory — e.g., Cowley’s formula (Cowley,
1971) or MSE formula (Dimitrijevi¢, Konjevi¢, 1987)

— formulae based on statistical analysis on a large number of existing Stark
widths (see e.g. Puri¢, Séepanovié, 1999; Puri¢ et al., 1978).
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— formulae based on systematic trends noticed without statistical analysis on
corresponding examples (Wiese, Konjevic, 1982).

Whether it is one type or another, the formula for estimating Stark widths for
lines of multiple ionized atoms usually can be expressed as a non-linear function
of atomic and plasma parameters:

wWE = f()‘7NevTa Za EionyEupper;Elower) (1)

Sometimes some of these parameters are included in the estimate implicitly,
through the effective ionization potential x; for level j:

X; = Bion — Ej, j = upper, lower (2)

according to Purié, or effective principal quantum number of the upper (n,) or
lower (n_) level, which has already been used, for example, in MSE theory of
Dimitrijevi¢ and Konjevié (Dimitrijevié¢, Konjevié, 1981):

Z°E
nl = =—= (3)
Xupper
2
n2 — 2 Bn (4)
Xlower

Here Z — 1 is the charge of the ion, wg is the estimated Stark width in A, X
is the wavelength in A, N, is the perturber density in cm™3, Ej is the energy
of the hydrogen atom (or Rydberg constant), E;,, is the ionization energy, and
E; is the energy of upper or lower levels in ecm™! (j = upper, lower).

Immediately after the first article on Stark broadening (Holtsmark, 1919),
simple approximate formulas derived from the theory began to appear. Cowley’s
formula (Cowley, 1971) is probably the best known among them and it is still
commonly used in astrophysics. Cowley (1971) specified three different formu-
las, one for neutral emitters, one for electrically charged emitters (which humble
Cowley contributes to Griem), and one for estimating widths for temperatures
close to 10000 K. The authors use different variants of Cowley’s formula in ad-
dition to the original ones from the article (Cowley, 1971), and the difference
is in the neglect or addition of the lower effective principal quantum number as
a number and in the values of the numerical constant in the formula (see e.g.
Killian et al., 1991; Alwadie et al., 2020).

Jagos Puri¢ made a great effort in studying RST among the Stark width
values. The first works on regularities were published by (Purié, C’irkovié7 1973)
and (Purié¢ et al., 1978). Puri¢ and his co-workers found the correlation between
Stark width and difference between ionization energy and energy of the upper
state (what he called the upper effective ionization potential) and a number
of experimental and theoretical values of Stark widths, offering a set of differ-
ent estimation formulae. In the following decades, a number of papers on this
topic were published, where different correlation parameters were stated for dif-
ferent transitions, different charges and different homologous and isoelectronic
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sequences (see e.g. Miller et al., 1980; Puri¢ et al., 1978, 1993, 1997, 2008). This
statistical research is also supported by some other authors (see e.g. Djenize,
1999; Djenize et al., 2001), with occasional attempts to generalize this approach
for all different transitions, different elements and different charge values (Puri¢,
Séepanovié, 1999; Scepanovic, Puric, 2013). Comparing the great amount of
Stark width data from STARK-B database (Sahal-Bréchot et al., 2014b, 2015),
Puri¢ offered so-called “generalized” estimate (Puri¢, Séepanovié, 1999) which
should be used, according to the authors, “to calculate Stark line widths of
the multiply charged ion of different elements along the periodic table.” These
scientific articles evolve over time, so Puri¢ and co-workers later give up search-
ing for a universal formula for all lines and focus their statistical analysis only
on individual homologous or isoelectronic series (Dojéinovié et al., 2011, 2012,
2013a,b; Tapalaga et al., 2011, 2018; Jevti¢ et al., 2012; Trklja et al., 2019b,a).
However, the possibility to apply all of these estimates to predict new unknown
Stark widths should be furtherly discussed (Majlinger et al., 2017a,b, 2020b).

The final purpose of this research was to find new general estimates accurate
enough to approximately predict the unknown values of Stark widths. Our as-
sumption is that these new estimates should be related on existing estimates, e.
g. Cowley’s from Cowley (1971) and Purié¢’s from Puri¢ and Séepanovié (1999).
However, after investigation of accuracy in prediction of uknown Stark widths
by using of these two estimates, in the cases of MSE calculated electron-impact
widths for Lu III and Zr IV spectral lines, it was obvious that they don’t offer
enough accurate approximation (Majlinger et al., 2017a, 2020b). At least in the
case of Zr IV Stark widths, several possible reasons were suggested to explain
this discrepancy (Majlinger et al., 2017b):

— numerical coefficients in estimations are not properly adjusted

— some important parameters are neglected in equation (1) but significantly
contribute to the result, and

— temperature functions used in previous estimates could be incorrect

According to statistical analysis of Stark widths calculated for 143 transitions
from 26 multiply charged ions of 17 elements using the modified semiempirical
method, (for example, most of them are elaborated by (Dimitrijevié¢, Konjevié,
1981), and previous assumptions, new estimates of Stark widths were found.
After providing simple cluster analysis (Aggarval, V., 2014) and multiple re-
gression analysis (for example Chatterjee, Simonoff, 2014), we concluded that
MSE Stark width sample has to be devided in three separate groups:

1. For a type I of transitions: nl-nl’, L =1, L' = I’ (for example, 2s'.S —2p' P°,
3s35-3p>P°, 3pt P° — 3d' D, 4s3S-4p®P°, etc), proper estimate is Cowley-
like:

nf +nt

wpp = 3.438 - 107 #N N2 —F — =
ot 22 1)1

f(T) (5)
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2. For a type II of transitions: nl-n'l’, L = [, L' = I’ (for example, 2p3P°-3s38,
4p? P°-5d? D, 4d*D-5f2F°, 4d®D — 6f%F°, etc), proper estimate is Purié-
like:

716 TLG
1N g (6)

wge = 0.808 - 107N N2 ——F =
Z2(2ls —1)73

Here f(T) is chosen temperature function (which will be explained later),
while Is = maz(lupper, liower), Where lypper and lower are orbital quantum
numbers for upper and lower level respectively.

3. For all other types of these simplest transitions (type III), like nl—nl’, L # 1,
L' #1" and nl-n'l', L # 1, L' # I’ (for example, 35! P°-3p' D, 35*P°-3p*P,
3p°Do-3d°F, 3d' F°—4p' D, etc.), a well known general expression, valid also
for the first two types, can be used to obtain width for particular lines within
a multiplet from an average width as a whole:

wEs = (AT?)?WO (7)

where wgs and wg are estimates of uknown Stark widths and a Stark width
obtained with estimates (5) or (6), while Agz and Ay are corresponding
wavelengths respectively.

After optimizing the number of parameters in these estimates according to min-
imum description length properties (see, for example, Griinwald, 2004), and
keeping in mind that all models are uncertain, idealizing reality (Wit et al.,
2012) and that sample is not equal to population, we rounded exponents in (5)
and (6) on the closest integer or rational number, to avoid physically meaning-
less results (for example, A\ is replaced with A2, Z1-95 with Z2, etc.) and to
approach enough to probable statistical model ideally concerning about popu-
lation.

From interpolation of analysed data, new temperature function is suggested:

18, T

where  is the linear function of temperature defined as:

(8)

B=AT +B (9)

Numerical constants A and B are estimated to be A = 9.62- 1077 and B =
—4.167-1072 from the values of lower temperature limit for all considered Stark
widths. Lower temperature limit for most of considered Stark widths lies in a
range 15000 — 70000 K which corresponds to range of distance between perturb-
ing and perturbed levels used in all considered Stark width calculations around
cca 7500 — 38500 cm™!. It is easy to see that relation 0 < 8 < 1 is mostly
valid for such choice of A and B, and that temperature function approximately
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simulates both lower and upper temperature limit conditions when S reach to
its limits, which is in a good agreement with some previous analyses of behavior
of Stark width values for highest and lowest value of temperature (for example
Sahal-Bréchot et al., 2014a).

Correlation between new estimates of full Stark width at half maximum
(FWHM) obtained by using relations (5), (6) and (7), and existing MSE val-
ues for transition type I, type II and type III with corresponding regression
lines are displayed in Figs. 1-3 respectively. To calculate correlation parameters
for each estimate, we used the general symbol wgsr instead of wg1, wge, and
wgs. Correlation coefficients corresponding to each estimate WEST are pre-
sented in Table 1. In the most idealistic scenario, for log-log regression equation
logwgpsT = C1 + Cologwyrsg, should be valid C1 = 0, C2 = 1 and therefore
wepsT = wyse. As the additional attemption to confirm a validation of this
method, predicted Stark widths with estimates from above are compared with
corresponding experimental values from references (Konjevié¢ et al., 1984, 2002).
Result of this comparison is presented in Fig. 4.

Table 1. Correlation parameters for log-log regression equation
logwesr = Ci1 + Calogwmse, between results of estimates (5), (6) and (7)
respectively, and MSE values of FWHM Stark widths from analysed sample.

Transition type C1 Cy ErrCy  ErrCy St.dev. Reorr
I -1.45E-5 0.9126 0.0325 0.0336 0.13 97.76

1I -.28E-5 1.0266 0.0473 0.0262 0.19 99.32

111 -0.0334 0.84 0.025 0.029 0.064 97.23

2.2. Machine learning methods and RF algorithm

As machine learning represents a very popular tool for different types of prob-
lems encountered in science, here it was applied on the study of regularities of
Stark broadening. Machine learning model based on Random Forest algorithm
was developed and described in detail in reference (Tapalaga et al., 2022), so
here it would be briefly described for the sake of completeness. Before devel-
oping the model, we needed to develop and create a database for training and
testing of the future models. This database was created as a combination of two
databases, namely NIST atomic database (Kramida et al., 2022), from which we
took atomic parameters of interest for every transition and Stark B database
(Sahal-Bréchot et al., 2015) from which we took Stark width and plasma pa-
rameters for each calculated width. After the completion of this database, it
contained around 53 000 lines. Features selected for this research were: Plasma
electron density, electron temperature, atomic number, charge of the emitter,
energies of both upper and lower levels, total angular momentum of both upper
and lower levels, principal and orbital quantum numbers for initial and final of
corresponding transitions.
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Figure 1. Log-log correlation between FWHM Stark width values obtained by us-
ing estimates from multiple regression analysis (wg1) and MSE values (wysg), with
corresponding regression line.
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Figure 2. Log-log correlation between FWHM Stark width values obtained by us-
ing estimates from multiple regression analysis (wg2) and MSE values (wyse), with
corresponding regression line.

Additionaly, ionization energy and quantity called upper level effective po-
tential after (Purié, Séepanovié, 1999) were taken into a set of input parameters,
which provides a label data comparison. Data outliers were removed as data
having higher energy of lower level than upper level. Finally, the analysis was
constrained to the following plasma parameters: N < 107 cm ™3, T, < 150 000
K and Eypper < 500 eV. This restriction left us with around 32 000 available
transitions for further analysis. To choose the best model and corresponding
parameters, GridSearchCV (Grid Search Cross Validation) technique was ap-
plied. Here for every set of model parameters, model is trained and tested on
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Figure 3. Log-log correlation between FWHM Stark width values obtained by us-
ing estimates from multiple regression analysis (wg3) and MSE values (wamsg), with
corresponding regression line.
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Figure 4. Linear correlation between FWHM Stark width values obtained by using
estimates from multiple regression analysis (wgst) and corresponding experimental
values (wgxp), with corresponding regression line.

given dataset, and best performance is reported. Along with best performance,
algorithm reports with which parameters has been obtained. Three models were
tested: Decission Tree, Random Forest and Gradient Boosting Regressor. Per-
formances of the model are reported in table 2.

It can be seen that the best results were obtained with Random Forest for
the following parameters: maximal depth of the tree equal to 10, minimal sam-
ples at one leaf set to 3 and number of estimators equal to 200. As in the case
of multiple regression method, Stark widths predicted with using RF algorithm
were compared with corresponding experimental widths from the same refer-
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Table 2. Comparison of preformances for three learning machine models used in anal-

ysis.
Model Parameters R? score
Decision tree max_depth = 5 0.9
max_depth = 10
Random Forest min_samples_leaf = 3 0.97

n_estimators = 200
max_depth = 10
Gradient Boosting Regressor min_samples_leaf = 2 0.96
n_estimators = 200

ences as before (Konjevié et al., 1984, 2002). Results of this comparison are
shown in Fig. 5 and Fig. 6. As we can see on figure 5, RF model preforms well,
except of few points that are estimated badly. Also, from the figure 6 it can
be concluded that RF method performs better in visible part than in the ultra
violet or infrared part of the spectrum.

0,01 0.1 1
wW_ A

EXP!

Figure 5. Log-log correlation between FWHM Stark width values obtained by using
RF algorithm (wrr) and corresponding experimental values (wgx p), with correspond-

ing regression line.

To improve the model and to test whether we could reduce the number of
features in the dataset while keeping the accuracy of the model, permutation
importance test was performed. This method permutes each feature randomly
within dataset, and calculate the decrease in performance of the already trained
model. Greater the decrease, more important is the feature. Results of this
analysis are given in table 3.
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Figure 6. Dependence of ratio between experimental FWHM Stark widths (wgxp)

and corresponding values obtained by using RF algorithm (wrr) on wavelength of

spectral lines for which Stark widths are calculated.

Table 3. Feature importance test results for RF model.

Feature Importance score
Electron density N, 5.940.2

Upper - level principal quantum number n; 3.50 £0.12

Charge of emitter ¢ 1.04 £0.04

Upper-level effective potential x 0.37 + 0.04

Emitter Z 0.31 + 0.03

Upper-level orbital quantum number I; 0.19 + 0.02

Energy of upper level Eypper 0.11 £ 0.02

Lower-level principal quantum number ny 0.11 + 0.01
Energy of lower level Ejower 0.048 £ 0.005
Lower-level orbital quantum number [ 0.029 £ 0.004
Lower-level total angular momentum quantum number Jypper 0.029 + 0.007
Upper-level total angular momentum quantum number Jioyer 0.021 £ 0.005
T. 0.017 £+ 0.003
E; 0.002 4+ 0.001

Results in table 3 indicate that electron density is most important feature
as expected, while other important features are naturally emitter, its charge,
principal and orbital quantum numbers of upper level and upper-level effective
potential x. Other parameters were removed from analysis, as upper level is
included in definition of x, and model was retrained. As expected, model gave
very similar results as those reported in this work, which just confirms that
model didn’t got confused with some redundant data in initial run.



68 Z.Majlinger and I. Traparié¢

3. Discussion

For Type I, ratios between estimates and MSE values vary between 0.5 and 2.6,
for type II between 0.4 and 1.7, and for type III between 0.7 and 2.0. so we can
say that accuracy of our estimates according to MSE values are mostly between
-50% and +160%. Including predicted accuracy of MSE results, which is +£50%,
we expect that global accuracy of our estimates, according to statistical sample
we used, should lie between +50% and +100% e.g. comparable with the old
Griem’s semiempirical theory (Griem, 1968).

Despite of several exceptions, ratio between most of new calculated estimates
and corresponding experimental Stark widths from references (Konjevié¢ et al.,
1984, 2002), lies between 0.2 and 2 (see Tab. 3), which leads to conclusion that
our estimates are usually accurate in a range of £100%, in accordance with our
expectations. On the other hand, average value of this ratio for comparison of
estimates with experimental Stark widths is 1.38 & 0.11, resulting with accuracy
in a range between +30% and £50%, which is even better than theoretically
predicted accuracy for modified semiempirical theory by Dimitrijevi¢ and Kon-
jevié (1981).

Ratios between Stark widths predicted by using RF algorithm and corre-
sponding experimental Stark widths taken from the same references mentioned
above (Konjevi¢ et al., 1984, 2002), with the exception of two extreme values
0.06 and 4, lie between 0.16 and 2.23, but average ratio of these values is 0.96
+ 0.16, leading to an accuracy of around +£20%, which is much better than
accuracy of predicted results obtained by using classical statistical method. To
express the accuracy for both methods, as it is usual in statistics, we used
arithmetical mean as the average value of analysed data, while the standard
deviation is used as a measure of data dispersion. As a final proof that both
of presented methods could be valid, in Fig. 7 we presented results obtained
from mutual comparison of Stark width values predicted with these two differ-
ent approaches. Linear regression equation which expresses dependence between
Stark widths predicted with RF method wgrpr and those predicted by using es-
timates WEST obtained by using formulae (5), (6) and (7) is found to be wrp
= 0.0523 + 1.0563 wgsr with correlation coefficient Rcorr = 91.05%. Figure
7 and values of correlation parameters show that both of these two methods
are equivalent, e. g. the results of the estimates with RF model and classical
multiple regression statistical method are almost the same. Although it is feeded
with results obtained by using semiclassical perturbation method (see for exam-
ple Sahal-Bréchot et al., 2014a), RF algorthm is shown to be a good predictor,
despite of a theoretical method used to calculate analysed Stark width data,
because it gives results comparable with estimates based on set of calculations
obtained by using modified semiempirical method.
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Figure 7. Linear correlation between FWHM Stark width values obtained by using
estimates from multiple regression analysis (wgst) and corresponding values obtained
by using RF algorithm (wrr) , with corresponding regression line.

4. Conclusion

Both of the methods used in this study have some advantages and disadvan-
tages. In general, the advantage of ML models is that they are faster and easier
to perform with the proper knowledge of computer programming. On the other
hand, any of ML algorithms is some kind of black box, e. g. we finally don’t
know how input and output parameters are connected. If we want to find out
the relationship between Stark width values and atomic and plasma parame-
ters presented in a form of simple formula, we have to continue to investigate
regularities and systematic trends of Stark widths using the estimates as, for
example, were obtained here (equations (5)-(7)). If we don’t need to know this
connection, using of some ML algorithm is probably the best solution. Results
of predictions using RF model show that, if some general estimate really ex-
ists, according to previous vision of Jagos Purié, it should be the function of 14
variables. In this case, number of input atomic and plasma parameters we used
before in a group of equations (1) to find systematic trends among the Stark
width value, should be enlarged. We proved that, with additional two parame-
ters (upper and lower orbital quantum number) and considering transition type
into analysis, strongly affect on result of estimate, as it is assumed, for example,
in (Majlinger et al., 2017Db).

However, it is very important to stress that the estimates obtained in this
work should be valid under the assumption that they can be applied on simple
type of spectra, as they have been analysed in this case (for example, where for
all transtitions in a whole spectrum parent term remains the same). For more
complex spectra, these estimates should be improved, or some other methods
are welcome to be used. Furthermore, although RF model shows very strong
potential to be applied on RST analysis in future, it is tested only in the sample
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of Stark broadening parameters related to simple spectra described here, and
in the case of Li I spectral lines (Tapalaga et al., 2022), so it should also be
confirmed in a greater sample to make us sure that this method can be applied
generally in prediction of new Stark widths despite of complexity of a spec-
trum we investigate.For the application of these methods to study regularities
and systematic trends among the Stark broadening parameters of lines in more
complex spectra, additional investigations are needed, and development of both
of these method are neccessary. Created database used in this and previous
study is published online and it is available for use. It can be found on the link
https://github.com/ivantraparic/StarkBroadeningMLApproach.
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Abstract. We report use of the spectral line shapes of the Lyman series of ionized helium
for diagnostics of high temperature plasmas. As a light source the low pressure pulsed arc
was used. Electron density was determined from width of the He II Pashen alfa line and
parameters of the He I 447.1 nm line, while electron temperature was determined from
Boltzmann plot of the He II lines. The use of the Inglis-Teller relation on merging of
spectral lines along series and on condition for partial local thermodynamic equilibrium
was tested as methods for electron density estimation.

1. INTRODUCTION

Vacuum ultra violet, VUV spectroscopy is very important since most intense spectral
lines of various elements are in this wavelength region. Special attention was devoted
to study of hydrogen and helium lines important for diagnostics of astrophysical and
fusion plasmas. Among them, in high temperature plasmas the shape and width of
ionized helium Lyman series lines are extensively studied both theoretically, (Kepple,
1971) and experimentally (Wrubel, 2001) and (Mijovi¢, 1989). Since lower members
of a series are often highly self-absorbed, in this work methods for plasma diagnostics
based on higher member of Lyman series are analyzed.

2. EXPERIMENT

Experimental setup is shown in Figure 1. Plasma source is low pressure pulsed arc,
whose inner diameter is 10 mm and distance between electrodes 130 mm. Pressure in
the source was set and controlled by needle valve, with the gas flow of 0.2 I/min. One
side of plasma source is mounted on VUV spectrometer, and on the other end there is a
quartz window. Light emission was obtained by discharging capacitor of Experimental
setup is shown in Figure 1. Plasma source is low pressure pulsed arc, whose inner
diameter is 10 mm and distance between electrodes 130 mm. Pressure in the source
was set and controlled by needle valve, with the gas flow of 0.2 1/min. One side of
plasma source is mounted on VUV spectrometer, and on the other end there is a quartz
window. Light emission was obtained by discharging capacitor of 5 uF (previously
charged using high voltage supply unit) with ignitron switch BK7703. The discharge
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process is controlled via automatic trigger unit. Around the source, Rogowski coil was
placed, in order to measure current shape and its value. The radiation from this source
is projected 1:1 onto the slit of VIS spectrometer using optical mirrors M1 and M2.
Mirror M1 is plane mirror, while M2 is focusing mirror (f = 2m). Visible spectrometer
is McPherson 2061 Cherny-Turner type spectrometer, who has the slit widths of 15
um, focal length of 1 m and grating with 1200 grooves/mm. As light detector we used

VIS

Gas Inlet

[
Rogowsky
coil

(

Ignitron

L=
HY RIGGER R i I
control unit ) 2
= ——
L HY
il supp'y _’

Figure 1: Experimental setup

photomultiplier, PMT mounted on spectrometer exit slit. Wavelength scanning was
performed by rotation of diffraction grating with stepper motor, controlled by PC.

As we said above, the other end of plasma source is mounted on VUV spectrometer
McPherson 247, which have concave grating of radius 2.2 m and 600
grooves/mm.Wavelength scanning is performed by moving the exit slit around the
Rowland circle with help of stepper motor controlled by the PC. Spectrometer is
grazing incidence spectrometer (large incidence angle), so we can observe EUV
wavelengths from 0 to around 125 nm.

3. RESULTS AND DISCUSSION

In order to compare results obtained by different methods for electron density
determination, N, was determined from spectral lines recorded in visible spectral range.
The N, in early times of plasma evaluation was determined from full width at half
maximum, FWHM of He II Pashen alpha line using formula (Busher et al, 1996):

N,[cm™]=3.58-10"7 - FWHM [nm]"*** )

In plasma decay N, was determined from separation between forbidden and allowed
component of the He I using formula (Ivkovi¢ et al, 2010):

8380

1.2
Te

s
0.1479

b(Te)
log1o(Ne) = 21.5 + logsg <( ) - 1), b(T,) = 1.46 + )
using 7, = 32000 + 4000 K determined from Boltzmann plot of He II Lyman lines, see
Figure 2 and 5. The correction of self-absorption using additional mirror was not
possible due to window-less opreration of the discharge tube, since neither air not

MgF, window are not transparent for radiation at 30 nm and below.
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Figure 2: Time dependence of the electron densities in He
at 3 mbar and 7 kV

Shapes of the He II lines belonging to the Lyman series were recorded using VUV
spectrometer. Recordings were performed at different He gas pressures and different
voltages.
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Figure 3: Line shapes of the He II Lyman alpha line at He gas pressure of 3 mbar
at discharge voltages V of : a) 7 kV and b) 6 kV

It can be seen that He II Lyman alpha line at 30.2 nm is self-absorbed and becomes
even self-reversed, see Figure 3.

Therefore, additional methods based on the recordings of higher members of the He
II Lyman series shape for N, determination were tested. First method is based on
relation, see (Inglis-Teller, 1939), between N, and principal quantum number of the
upper level of the last resolved line in series 7,4,

log,o(N; + N, [cm™3]) = 23.26 — 7.5Nq, + 4.510g10 Z 3)

The second one is based on determination of #n for which partial local thermo-dynamic
equilibrium-PLTE criteria, see (Griem, 1963) was satisfied:
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Z  |kgT,

Ne(em™) 2 7.4-108 —— [=-°

n /2y En

Here Z is the nuclear emitter charge, £y is the hydrogen atom ionization energy and 7,
is electron temperature.
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Figure 4. He II Lyman series lines at He gas pressure of 3 mbar at V = 7kV
Spectra recorded (left) and Boltzmann plot (right)

In order to estimate the range of application and accuracy of these methods N,
calculated by these two methods for 7, = 32 000 K is presented in Table 1. It can be
seen that both methods can be used only for N, < 10" cm™.

Table 1: N, determined by relation (3) — IT and (4) — PLTE for 7, = 32 000 K

n 2 3 4 5 6 7 8 9
N IT 5.02 24 2.77 52 1.32 4.17 1.53 6.34
[cm-3] E20 | EI19 E18 El17 E17 El6 El6 E15
N.PLTE | 294 | 935 8.11 1.22 2.58 6.97 2.24 8.23
[cm-3] E17 | El15 El4 El4 E13 E12 E12 Ell

It should be stressed that for He gas pressure of 3 mbar, discharge voltage 7 kV the
N, determined from He II P, line is 3.15, from IT relation between 1.53 and 4.17 and
from PLTE criteria using n = 3.8, see (Konjevié et al, 2009) is 0.13 times 10'® cm™.
Increasing accuracy of IT method by using envelopes i.e. curves through min and max
of series lines proposed by (Vidal, 1966) is under development.
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Abstract. Diagnostics of the plasma-facing components (PFC) of a fusion reactor is vital
for the safe operation of the device. In this paper, the calibration-free (CF) LIBS procedure
was used to assess the chemical composition of an ITER-relevant material, an austenitic
steel sample. The self-absorption correction of the intensities of the chosen spectral lines
was done for each element, using the estimated plasma temperature and the internal
reference line. Obtained results suggest that this method could be suitable for the chemical
analysis of austenitic steels, but further investigation is needed to quantify its analytical
performance fully.

1. INTRODUCTION

The structural materials of fusion reactors are subjected to thermal, mechanical,
chemical, and radiation loads. Due to their excellent manufacturability, good
mechanical properties, welding ability, and corrosion resistance, austenitic stainless
steels were chosen as structural reference material for ITER (P.J. Maziasz and J.T.
Busby, 2012). In addition, to diagnose the composition of the deposits on the
fusion reactor’s first wall, test targets made of austenitic steel (AISI 316 L) were
settled at ten positions on the LHD at NIFS in Japan (V. Kh. Alimov et al., 2019).
A CF-LIBS analysis of the LIBS 316L(N)-IG (ITER Grade) was conducted to
evaluate the applicability of LIBS for the determination of the composition of test
targets and deposits at reactor walls.

2. EXPERIMENTAL SETUP

The experimental setup is shown in Figure 1. Target AISI 316L (YUS = C.45703,
DIN = X2CrNiMo17-12-2, EN 1.4404) plates were placed on the PC controllable
x-y table. The impulse from Nd:YAG Q-switch laser (Quantel, 2 = 532 nm, energy
55 mJ, pulse duration 6 ns) was focused on a target with a lens whose focal length
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is 15 cm. Light emitted from a plasma was collected using fiber optic cable (0 =
400 pm) and detected using Andor Tech. Mechelle 5000 spectrograph equipped
with Andor iStar DH734 camera. The camera was triggered using an external
photodiode, and the gating of the camera was done with the help of the external
Stanford Research System Digital Delay Generator DG535.

Spectrograph

target
FC with iCCD
RSN /
s / 3%
- \\

LASER

Figure 1: LIBS experimental setup

Delay was set to 0.6 ps, and 3 ps and 30 ps gates were used. LIBS experiments
were performed in air at atmospheric pressure.

3. RESULTS

A part of the spectrum, in the range 350 nm to 370 nm, recorded for two different
delay times is shown in Figure 2.
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Figure 2: Part of the recorded spectrum with identified lines of Fe I, Ni I, Mo I, and Cr L.

For both delay times, 30 spectra were averaged to obtain the final one, and the gain
of 100 was set to amplify the signal further and improve the signal-to-noise ratio.
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Quantitative analysis was done using a calibration-free algorithm proposed by
Yang et al. (Yang et al., 2018). As a first step, internal reference lines were selected
manually for each plasma species. In the next step, self-absorption (SA) correction
of the internal reference line was done using the following formula (Yang et al.,
2018):

fi =1, (L{ci/l/{::n)(Amngm/Akigk)eE"_Em/kBT (D

where £, and f;r are the SA coefficients of the analytical and internal reference line;
Lyn, Ay, &n, and Iy, Aw, g are the intensity, coefficient of spontaneous emission,
and statistical weight of the upper level for reference and analytical line,
respectively.

In the third step, Boltzmann plots, constructed using uncorrected intensities of
spectral lines for each analyte, were used to determine excitation temperatures.
After this, the optimal temperature was searched in the interval (Tin, Timax) USING
Particle Swarm Optimization (PSO) algorithm. The selection of temperature
interval was based on the minimal and maximal estimated temperatures from
Boltzmann plots (T = 7477 K, and Tr,,x = 18567 K). Number of particles was set
to 20, inertia coefficient was w = 0.6, and cognitive and social coefficients were ¢,
= ¢, =0.5. The optimal temperature was found to be 7920 K (0.68 eV).

Finally, using equation (2) (Yang et al., 2018) and the optimal temperature found
by PSO, we were able to correct the analytical lines for self-absorption:

= (Iﬂn/fAR)(Akigk/Amngm)eEm_E"/kBT"’” ()

Results of the optimization process are shown in figure 3.

In{A siliilgAi}
A ufelg A )

as 40 45 5.0 55 6.0 6.5 7.0 s 40 4% 50 a5 &0 65 Io
E.

Figure 3. Boltzmann plots before any correction (left) and after all corrections (right).

After all corrections, concentrations of all species were calculated using standard
calibration—free procedure (Yang et al., 2018):

1
cs ==Us(T)eds 3)

F
Here, F is the experimental parameter that includes the optical efficiency of the
collecting system, U(7) is the partition function of given species for temperature 7,

and g, is the intercept of the Boltzmann plot.
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Parameter /" was determined from the following condition:

Zn: cs = %Zn: Us(T)e =1 4)
s=1

s=1

By applying the described CF model to the experimentally determined intensities
of spectral lines, the following elemental composition of the analyzed sample was
calculated: Fe - 89.5%, Cr - 8.3 %, Mo - 1.7 %, and Ni - 0.50 %.

4. CONCLUSION

The applied CF model successfully corrected Boltzmann plots for self-absorption,
but the obtained concentrations deviate significantly from the expected chemical
composition of this type of steel. Careful analysis of the relative spectral intensities
of the Fe, Mo, Cr, and Ni lines, considering the measured temperature value,
indicates that the declared composition most likely does not correspond to the
tested sample. In the next step, an independent chemical analysis of the same
sample is planned to confirm the validity of the applied model for the analysis of
this type of steels.
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Abstract. The presented work investigates the application of artificial neural networks
(ANN) onto spectral classification. The goal of the work was to determine the type of
unknown spectra on the basis of a train dataset with the usage of several types of basic
ANN. The numerical procedures we are developing, for LIBS analysis of the plasma-
facing components of the fusion reactor, was tested on the classification of spectra from
different soil or ore types. The data source is a laser ablation combined with fast pulse
discharge, the method proposed for the reactor wall analysis. The success in it’s application
has shown not only that the ANN is usable in case of classification of type of spectra but it
presents a step forward making of expert system for the more complex equipment.

1. INTRODUCTION

Classification and determination is a common field for the usage of machine
learning. The artificial neural networks (ANN) are most powerful machine learning
algorithms (Mishra et. al. 2017). As a test case the simplest shallow and deep neural
networks has been selected. As a merit a experimental data from laser ablation
assisted plasma source for the cases of clay soil and tile brick are used. The goal
was to test if the ANN could achieve precision in determining of the appropriate
analyzed material as well as type of plasma as an emitter, and as such to prove the
usability of ANN method for the fast classification of the recorded spectra. The test
dataset was collected with the advanced, laser ablation combined with fast pulse
discharge, enhanced LIBS technique (Vini¢ et al., 2014).

The main contributions of this research work are as follows:

- We compared the applications of the four ANN of different complexities.

- Utilized the ANN of deep type.

In the flowing section we have described the experimental setup and
discussed the results and the future steps.
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2. EXPERIMENTAL SETUP

The laser induced breakdown spectroscopy (LIBS) has evolved to a mature
technique for the analysis of various samples, from gaseous up to underwater
samples. The work has been carried out in order to enhance the emissivity of
plasma, the introducing a second pulse, in the case of dual pulse LIBS (DP-LIBS).
This technique has made improvement in detection limit and a DP-LIBS is now
comparable to other more mature spectroscopy techniques and as such is adopted
as a standard spectroscopy technique. The other way of enhancement of the
detection limit is fast spark discharge enhanced LIBS, it also has a possibility to
excite harder to excite elements such as carbon, chlorine, sulphur and fluorine.

The experimental setup is shown on Figure 1. The investigated material (1.) is
irradiated by the 100-mJ nanosecond pulse Molectron model MY-34 Nd-YAG
laser (2). The plasma is formed on the sample, as well as inside the fast spark
discharge. The radiation is analyzed spectrally as well as temporally with the
Andor technology, model Shamrock 303-i spectroscope, coupled with the Andor
iStar iCCD camera, model DH 720 -18F-03 (position 3). The time delay for the
start of collection a spectral data is determined by the delay unit (4). The electrical
behavior of the spark as well as total emissivity is monitored and recorded on the
oscilloscope (5). The spark discharge unit consists of capacitor (7), and current
probe (8). The photodiode (9) monitores the emissivity of produced plasma.

Figure 1: Experimental setup of the system for the laser ablation of the sample
material spectroscopy: 1. - investigated material pill, 2. - Nd-YAG laser, 3. -
spectroscope with coupled iCCD camera, 4. - delay unit, 5. - oscilloscope, 6. - high
voltage supply , 7. - capacitor bank , 8. - current probe.

The set of measurements for clay soil and tile bricks are selected. In the initial time at
the delay of 0.1 us, only the LIBS phase of the plasma is visible, in the later recorded
spectra, 0.6 us delay, the ablated material is inside spark discharge that was triggered
by the LIBS phase plasma. So, the four classes of spectra are recorded and used for
ANN training, they are denoted here as clay-LIBS, clay-spark, tile-LIBS and tile-
spark. For more details on the technique as well as achieved improvement of the
signal to noise ratio please consult (Vinic¢ et al., 2014).
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3. ANN THEORY AND TOPOLOGY

The artificial neural network application in various areas of spectroscopy is in
growth, from environmental applications up to the analysis of LIBS extraterrestrial
probes on Mars rover (Sun et al. 2021). In the literature the LIBS spectroscopy as a
tool for determining a lead concentration in soil (Zhao et al. 2019) is coupled with
ANN. It is a trend in progress for environmental and geophysical analysis (Tingting
et al.,, 2020). Usually, the package of proven machine learning kit is used, for
instance Google kit Keras (https://keras.io/) is often used in LIBS specific
applications (Hao et al., 2020), in this work a Keras implementation of feed forward
and deep feed forward ANN was made for the investigation of the usability of ANN
presented in this manuscript.

4. RESULTS AND DISCUSSION

The prediction was made on the basis of available experimental data set. The
selection was made to throw individual CCD lines of data in order to have artificial
dataset enlargement with the different areas of plasma observed as well as different
noise composition. The random choice of two thirds of the data was used to train the
ANN while the one thirds was used to test the prediction.

Prediction of the ANN
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Figure 2: Artificial neural network prediction of the spectra type

The input layer is determined with the dimensionality of input data, so for the
available data set the input layer consists of 9927 input neurons. The prediction space
consists of four individual outcomes, so the output layer consists of four vectors: [1 0
0 0] — clay-LIBS; [0 1 0 0] — clay-spark; [0 0 1 0] — tile-LIBS; and [0 0 0 1] — tile-
spark. The output layer of ANN consists of four neurons belonging to each output
vector. Three networks were compared, simplest one consists of only one hidden
layer of 15000 neurons, the two layers one with additional 512 neuron second hidden
layer, and third one, most complex, consisting of three hidden dense layers of 15000,
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1200 and 256 neurons consequently. The output of four consecutive runs was
recorded for each of the three investigated ANN. The output outcome was shown on
Figure 2. The most complex ANN consist of three hidden dense layers is the one that
converged fastest towards the 100% prediction. It could be seen that the process of
selection of investigated spectra could be conducted with the help of ANN.

5. CONCLUSIONS AND PERSPECTIVES

From the presented results it is possible to make several conclusions, as first it
could be seen that the determination of target type as well as plasma condition, as
an emitter could be achieved with ANN successfully. The further conclusion is
made by the analysis of the convergence, the more complex, deep ANN, could be
more usable for investigation of the further applicability of the method. More over,
the third one, is that the sensitivity on the type of emitter, the type of plasma with
the ablated material, could lead to more advanced application of inverse methods,
to enable prediction of the emitted spectra based on input variables as laser energy,
buffer gas, pressure, composition of target and so on.

The paths for the further development, enlarging the data base of the training
sets in order of making a more precise determination of the investigated spectra
category, the outcome could be enlarged sensitivity on both target material
composition as well as plasma conditions. In the case of large training set the
interpolation of the known cases is more precise so the inverse problem could be
tested. The other result could be more sensitive selection between the spectra that
could not be easily dissolved by human eye or the in depth analysis of data could
be both time and effort consuming process. Finally, a set of trained ANN could be
generated for the in field usage for the specific tasks, e.g. the path towards the
production of expert systems.
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Abstract. Stark broadening caused by free electrons in plasma and its dependence on
atomic parameters available in NIST and Stark-b atomic databases has been investigated
using a new method based on the machine learning (ML) approach. The correlation
parameter obtained by artificial intelligence (Al) is slightly better than the one obtained by
classical methods, but the scope of application is much wider. ML algorithms successfully
identified quantum nature by analyzing atomic parameters. The biggest issue of classical
analysis, which is infinite spectral line broadening for high ionization stages, was resolved
by Al with a saturation tendency.

1. INTRODUCTION AND THEORETICAL BACKGROUND

Stark broadening of spectral lines of neutral atoms and ions is used in science for a
number of problems in various physical conditions (see Tapalaga et al. 2022).
Recent research indicates the importance and usefulness of searching for possible
types of regularities in the framework of a Stark broadening investigation. Still,
existing tables with calculated and measured Stark widths have a big lack of data.
There is a need for Stark widths data in the wide range of chemical elements,
plasma temperature and electron densities. In this paper a correlation between Stark
broadening and environment parameters, such as the ionization potential of the
upper level of the corresponding transition, electron density and temperature, will
be investigated using modern ML algorithms. If this method proves to be accurate
enough, the process of calculating the value of Stark widths will be significantly
accelerated and facilitated.

The general formula for Stark width calculation in the impact approximation
(see Griem 1974) is very complicated, it cannot be resolved exactly, so it is useful
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to use different approaches in the calculation. The regularity approach which
correlates Stark width of spectral line (w) expressed in [rad/s], electron density
(N.), electron temperature (7,) and positive value of electron binding energy on the
upper level of the transition (p), expressed in [eV], is given by Puric and
Scepanovic 1999. (Eq. 1)

w = Zé(aNef(Te)X_b (1)

where Z, = 1, 2, 3... for neutrals, singly charged ions, ... respectively and it
represents the rest core charge of the ionized emitter and a, b and k are coefficients
independent of electron concentration and ionization potential for a particular
transition and the rest core charge of the emitter.

It is expected that spectral series within an isoelectronic sequence show
regularity behavior because a wide range of atomic/ionic parameters depend on the
electron number. In the last decade we have investigated Stark broadening
regularities within spectral series of individual elements, individual isoelectronic
sequences and within two spectral series of isoelectronic sequences simultaneously.
The present investigation goes one step further and analyses all elements for which
there are available data needed for Stark broadening investigation, simultaneously,
using machine learning approach. The aim is to find the best possible model which
correlates Stark width of spectral line with all available parameters for transition of
interest (atomic parameters and environmental parameters).

2. DATASET CREATION AND DATA CLEANING

In order to create dataset, two public repositories connected with atomic
spectroscopy are used. First one is Stark B database, see Sahal-Brechot et al. 2020,
where the parameters of Stark broadening for different emitters are given. The
features taken from this database are: chemical element, ionization stage, upper and
lower level of spectral transitions, Stark broadening, the environment temperature
and electron density in environment. For analysis purpose, Stark widths expressed
in angstroms are converted in radian per second.

To ensure better results we enriched features taken from Stark B database with
ones taken from NIST Atomic Spectra database (see Kramida et al. 2019): binding
energy of both upper and lower transition levels, ground level energy, total angular
momentum quantum number (J) of both upper and lower transition level, as well as
principal (n) and orbital (/) quantum numbers and ionization energy. The algorithm
for connecting those two databases to form our own works is described below. For
every transition connected with certain chemical element, we take the electronic
configuration of both upper and lower levels from Stark B database. Then we look
for that particular element in NIST database and compare the electronic
configurations. If they match, then we take the binding energy of those levels, their
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principal quantum number, orbital quantum number and total angular momentum
quantum number and finally the ionization energy of that atom.

After data cleaning, dataset contains 53 emitters and 34973 spectral lines and
follows a normal distribution.

3. MODEL CREATION AND TRAINING

For model creation and training, public Python package Sci-kit learn is
used. Four models have been created, every being Pipeline with two steps. In each
object of Pipeline class, the first step was data scaling using StandardScaler, and in
second step we made our predictions with defined model. Considered models were:
Linear Regression, Decision Tree Regressor, Random Forest Regressor and
Gradient Boosting Regressor. The dataset was split into training and test dataset
using train test split method, leaving 25% of the data for testing. To rank the
performance of models, we used best Coefficient of Determination, R?, value
obtained after GridSearchCV algorithm finished. As a result, we got that the best
R? value was for Random Forest Regressor having R* = 0.95 for n estimators =
100. Random Forest is a learning method that operates by constructing a large
number of decision trees during the training process, see Tapalaga et al. 2022. It is
simple to use and shows high performance for a wide variety of tasks, making it
one of the most popular ML algorithms in different sciences. Random forests are
an effective tool in predicting new data, in our case new atomic parameters.

4. RESULTS

The Random Forest model is used to calculate Stark broadening data for
spectral series within neutral lithium Li I, see Tapalaga et al. 2022. Fig 1. shows
the dependence of the Stark width (o) on the reciprocal value of the electron
binding energy at the upper level of the transition (x ') for 2s-np and 3s-np
transitions within lithium atom. Calculated Stark widths (red lines) for transitions
within analyzed series are represented with existing known values of Stark widths
data at the same graphs (see Fig. 1). The functional dependence obtained using the
ML algorithm describes the quantum structure of the energy levels of lithium
atoms. From the model lines (red lines) it can be concluded that the model
successfully (within the error) indicates the quantum nature of atomic transitions
and that other results do not make physical sense, but only jumps.
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Figure 1: Stark widths regularities within 2s-np and 3s-np spectral series of Li |
(T =30000 K, N.=10"m™)

5. CONCLUSION

Analysis of spectral data on Stark broadening for 53 different emitters and 34973
lines by ML algorithms was done with more success than it was previously done by
classical methods of data analysis. Random forest has scored an average of R* =
0.95 which makes it an excellent choice for Stark broadening calculations. With
standard known methods for Stark width calculation, it is not possible to calculate
Stark widths for levels for which energy values of the closest perturbing levels are
missing, but ML algorithms enable calculation in these situations, too.
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Abstract. The study of the hydrogen’s isotope retention in the first wall of the fusion
reactors is the main task in diagnostics of plasma facing components (PFC). Laser Induced
Breakdown Spectroscopy (LIBS) enables in-situ PFC diagnostics without any sample
preparation making it a most promising technique for this purpose, see H.J. van der Meiden
et al, 2021. The basis of this diagnostics is the measurement of the emission of hydrogen
isotopes Balmer alpha lines. The most challenging task is the resolving of these lines.
Therefore, the first task was the selection and preparation of the targets from which, due to
the laser irradiation and consequent plasma formation, hydrogen and deuterium spectral
lines will be emitted. Such targets should be substitutes of the hydrogen isotopes enriched
components of PFC of future fusion reactors. The main idea was to use the heavy water
D,0 embedded in various substrates that are good absorbers of water. For this purpose,
following substrates were tested: NaCl - salt, copper sulfate pentahydrate CuSO,*5H,0 -
known as blue vitriol or blue stone, active coal - charcoal, microporous aluminosilicates -
zeolites, calcium carbonate CaCO; - quicklime, CaSO42H,0 — gypsum. Several forms of
graphite were also considered: factory made graphite discs, electrodes with controlled
amount of the D,O on it and spectroscopically pure (or mixed with silica gel) graphite
powder, which was doped with water before or after pressing it by hydraulic press. Testing
was performed using a 6 ns Q — switched Nd:YAG and TEA CO, laser (having 80 ns pulse
with 2 ps long tail) in low pressure argon or helium atmosphere. The best results are
obtained using gypsum and graphite doped with silica gel, see Traparic at al 2024.
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Abstract. Plasma spectroscopy represents the non-contact and non-perturbative plasma
diagnostics tool that is widely used. One such application, considered in this work, is the
determination of electron density from Stark broadening of emitted spectral lines. The
other, laser-induced breakdown spectroscopy (LIBS) is often used for quantitative analysis
of sample constitution. Finally, to track impurity transport mechanisms, extreme ultraviolet
(EUV) and vacuum ultraviolet (VUV) plasma spectroscopy are used in many fusion
devices to monitor highly charged impurity ions. Over the years many approximative
formulae and robust models were developed to simulate the shape of emitted spectral lines
due to the Stark effect from which line width and shift can be determined. Since a lot of
these codes request substantial computational resources, the application of machine
learning (ML) for quick estimation of line width was considered (Tapalaga et al. 2022).
Usually, the usage of ML in LIBS quantitative analysis is followed by the recording of a
large enough database with enough variance in it for precise analysis. Therefore, the usage
of an already recorded database for training of the ML model was investigated for
additional acceleration of the procedure, and its potential was discussed (Traparic and
Ivkovic. 2023). Last but not least, variational autoencoder (VAE) was employed to model
the so-called Unresolved Transition Array (UTA) structure, that rises due to the emission
from highly charged tungsten ions. The application considered here is the validation of
collisional radiative models and estimation of plasma core temperature and electron
temperature profile in devices that don’t have advanced diagnostics for this purpose.
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Abstract. The diagnostics of the first wall of future fusion reactors represents a major
source of information about the state of the machine and the expected lifetime of the first
wall components. As the absorption of neutrons can cause induced radioactivity of the first
wall tiles, it is of the essence to monitor the amount of absorbed neutrons. One possibility
to monitor themis via nuclear transmutation reaction where tungsten absorbs neutron and
create rhenium core [1]. Therefore by assessing the amount of rhenium present in the
material, the number of absorbed neutrons can be deduced. In this work Laser Induced
Breakdown Spectroscopy (LIBS) combined with fast pulse discharge was used to assess the
concentration of rhenium. The main resultis the amplification of line intensity and signal to
noise ratio compared to the classical LIBS setup at reduced pressure. This results is of
particular importance since only small amounts of rhenium are expected to be found,
therefore making this approach suitable forthis type of diagnostics. Additionally, univariate
calibration method based on intensity ratio of W 1 488.7 nm and Re 1488.9 nm spectral
lines was proposed for determination of rhenium concentrations.
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Figure 1. Amplification of Re | 488.9 nm line intensity with FPD (left) and
resulting signal to noise ratio (right).
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Abstract. Laser Induced Breakdown Spectroscopy - LIBS is the most promising technique
forthe in-situ analysis of the plasma fusion reactor walls, see (CongLiatal, 2016). The setup
which is most frequently used in fusion reactors is so-called remote in-situ RIS LIBS, see
(Caietal,2019). This configuration uses a scanning system which controls the Mo mirror to
direct the laser beamto a different position inside the fusion reactor. In this study, it was
investigated how changes in the ablation angles affect the intensity of the emitted spectral
lines, considering that the incident beam is not always perpendicular to the PFCs. To this
end, the classical LIBS setup at atmospheric pressure was employed. The angle of collection
fiber with respect to the laser beam was fixed to 17 degrees. Chosen targets were tungsten-
based alloys relevant to fusion research. The spectrum of the plasma was recorded with a
Solar MS7504i spectrometer and a fast camera. Results show that there is a non-trivial
dependance of the line intensity on the ablation angles, which was attributed to the change of
laser focus and ablation surface as the angles were varied both in poloidal and toroidal
directions. Additionally, the line intensity correction factor was calculated as the ratio of the
intensity for the beam incident at an angle to that of the beam at normal incidence, and it
exhibited a complex dependence on both angles.
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STARK BROADENING MODELING WITH ML
AND AI ALGORITHMS
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During past 20 years many Stark broadening models were developed
that can calculate spectral lineshape and estimate a line width that is
extensively used in plasma diagnostics of both astrophysical and laboratory
plasmas. Some of these calculations yield results relatively fast, some of
them need a lot of computational time. Therefore, idea of creating a machine
learning (ML) model emerged as a tool for fast estimation of Stark width
without need of huge computational time. In our approach, out of three
tested models, random forest (RF) algorithm showed the best predictive
power after it has been trained, where the coefficient of determination
R? = 0.94 was obtained. Model was trained on a database created by
merging parameters from Stark B and NIST atomic databases, it had 14
input parameters that were used to predict final Stark width. Results were
compared with experimental ones as well as with SCP theory. We also
checked for regularities in Stark effect, and they were also confirmed and in
agreement with previous findings.
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0HOCa ¥ BaXu A0 NPOMoLMje, OfHOCHO nobujarba JOKTOPCKE AUNAOME.

Ysepere je ocnoboheHo nnahatba TaKce.




HHCTUTYT 3A AMDU3UKY
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Muuuberme pyKkoBoanona rpymne ca npeajioroM 4JaHoBa KOMHCHje 3a H36op y
3Bame HAyYHH capaaHHK — Kauauaar ap Uesan Tpanapuh

Hp Wsan Tpanapuh, pohen 14.9.1996. ronune y Tpebumy je 18.10.2024. ronune ycnemHo oq6paHio cBojy
AOKTOPCKY IHMCEpTalMjy MOJA HAcloBOM ,[IpMMeHa MalIMHCKOT y4ea W BELITa4yKe WHTEIMIeHLHje y
CIIEKTPOCKONKjH Muasme” Ha DusnykoMm ¢akynrety YHuBep3uteTa y beorpamy. MeHTOpH JOKTOpCKe
Auceprauuje cy 6unu nou. ap Mapujana ['aBpuiosuh Boxosuh ca ®akynTera HHXEHEPCKHX HayKa H JIp
Munusoje MBkouh, Hayunu caBeTHuk MHcTHTYTa 32 dusuky y Beorpany.

[lopen tora, np Wsan Tpanapuh je akTuBHY yuecHuk npojexra NOVA2LIBS4fusion koju ce hunancupa y
okBupy nosuBa UJIEJE @onna 3a Hayky Pemy6mauke CpOuje. Y MHCTHTYTY 3a QH3HMKY je 3amoclieH o
anpuna 2021. rogMHe MpBO y 3Baky HCTPaXKMBay MPUMpPABHUK, a 0 HoBemOpa 2023. rofuHe y 3Bamy
UCTpaXXuBa4 capaJHuk. TokoM H3paje NOKTOpCKe AMcCepTaluje, KaHIuaar je 00jaBUO BHILIE HAyYHHUX
pajoBay BUCOKO PaHTHPaHMM MHOCTPAHUM HAayYHUM Yacomucuma. M3 mpuiioxkeHor Marepujaa, KaH uaar
Ap HWBan Tpanapuh ucnmymaBa cBe ycnoBe npeiBhlieHe 3aKOHOM O Haylld W HMCTPaXHBambUMa U
[TpaBUIHMKOM O CTHIIaWy HCTPAKMBAYKUX M HAYYHHX 3Batba MUHMCTApPCTBA HAyKe, TEXHOJOMIKOT Pa3Boja
¥ uHoBauuja PemyGnuke CpGuje 3a u360p y 3Bare Hay4HH capalHMK, Te mpeaiaxeM Hayunom sehy
HucrutyTa 3a dusuky y beorpany na nokpene usbop ap Msana Tpanapuha y oMeHyTO 3Bambe.

3a uaHOBE KOMHUCH]€ TIpEJIaXKeM:

1. np Munusoje MBkoBuh, Hay4yHu caBeTHHK MHCTHTYTa 32 hu3KKy y Beorpany

2. np bumana CrankoB, Hay4HH capagHuk MHCTUTYTa 3a husuky y Beorpany

3. mp Mupocnas Ky3maunosuh, penosuu npogecop @akynrera 3a Gusnuky XeMujy YHUBEpP3UTETA Y
beorpany

V¥ Beorpany, \QA\ v ({W

30.10.2024. Iap Munusoje MBkoBuh

PykoBoaunal naboparopuje 3a CHEKTPOCKOIH]y I1a3Me U Jlacepe



