
Physica A 525 (2019) 450–465

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Group chase and escape in the presence of obstacles
J.R. Šćepanović a, A. Karač b, Z.M. Jakšić a, Lj. Budinski-Petković c, S.B. Vrhovac a,∗

a Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of
Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia
b Polytechnic faculty, University of Zenica, Bosnia and Herzegovina
c Faculty of Engineering, Trg D. Obradovića 6, Novi Sad 21000, Serbia

h i g h l i g h t s

• Hunting in the presence of obstacles is studied.
• Dynamics of smart chasing and escape between two species is studied by MC simulations.
• Stretched exponential behavior excellently describes the capture dynamics.
• Characteristic time τ decreases with the initial density of targets as a power law.
• Characteristic timescale τ increases with the density of obstacles.
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a b s t r a c t

We study a stochastic lattice model describing the dynamics of a group chasing and
escaping between two species in an environment that contains obstacles. The Monte
Carlo simulations are carried out on a two-dimensional square lattice. Obstacles are
represented by non-overlapping lattice shapes that are randomly placed on the lattice.
The model includes smart pursuit (chasers to targets) and evasion (targets from chasers).
Both species can affect their movement by visual perception within their finite sighting
range σ .

We concentrate here on the role that density and shape of the obstacles plays in
the time evolution of the number of targets, NT (t). Temporal evolution of the number
of targets NT (t) is found to be stretched-exponential, of the form NT (t) = NT (0) −

δNT (∞)
(
1 − exp[−(t/τ )β ]

)
, regardless of whether the obstacles are present or not. The

characteristic timescale τ is found to decrease with the initial density of targets ρT
0

according to a power-law, i.e., τ ∝ (ρT
0 )

−γ . Furthermore, temporal dependences of the
number of targets NT (t) are compared for various combinations of chasers and targets
with different sighting ranges, σ = 1, 2, in order to analyze the relationship between
the ability of species and the capture dynamics in the presence of obstacles.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The collective motion of interacting living organisms such as bacteria colonies [1–3], amoeba [4–6], cells [7–9], insects
[10,11], fish [12,13], birds [14,15], and humans [16–20] has drawn great attention of researchers from diverse fields in
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the past two decades [21]. Pursuit and evasion problems have a long and interesting history [22]. It is well known that
collective motion of individuals with escape and pursuit behavior serve as a protection mechanisms against chasers. The
goal for chaser (predator) and target (for example, prey) is to choose an efficient motion strategy that optimizes their
respective chances of successful pursuit or evasion. At first, developing computational systems and techniques enabled one
to deal with a two-particle system consisting of one chaser and one target, where there existed a challenging mathematical
problem for obtaining analytical expressions [22]. Also, a class of pursuit-and-evasion problems involving a single evading
prey that is being hunted by N > 1 predators has been modeled and analyzed [23–25]. In addition to these modeling
efforts, extensive research has been devoted to developing multi-agent models that consider the role of multiple predators
and/or preys [26–35].

Kamimura and Ohira [26] have introduced a lattice model to analyze the group spatial chase and escape phenomena.
The model assumes that chasers and targets are initially placed randomly on the square lattice as pointlike particles. Both
species perform independent nearest-neighbor random walks on a lattice following simple dynamical rules, increasing or
decreasing the distance from the nearest particle of the opposite group. Chasers start a direct chase whenever a target
appears within their sighting range. Targets try to evade capture by making a distance of one lattice spacing in a direction
away from the nearest chaser. Target is caught upon the first encounter with a chaser. In their model, although each chaser
independently moves in order to catch one of the nearest targets, some groups of chasers are simultaneously formed. In
the simulation, the chasers form flocks and seem to cooperate to catch the flocks of targets [24,26,33,34,36]. In the basic
version of the model, chasers can sense the positions of the targets at an arbitrary distance. The authors have considered
several extensions to this simplest version of the model, including the search range of chasers and targets, and introduction
of a term designed to account for random fluctuations that are usually present in real systems. Despite its simplicity, the
model is able to reproduce a lot of interesting behaviors [27].

Based on a concept proposed by Kamimura and Ohira [26] we built up a bio-inspired realistic agent-based approach to
model collective chasing and escaping in a discrete space and time with periodic boundary conditions for the case when
the lattice is initially covered with obstacles at various concentrations. The depositing objects (obstacles) are formed by
a small number of lattice steps on the square lattice. Spatial distribution of the obstacles on the lattice is created using
the random sequential adsorption (RSA) method [37,38]. The dominant effect in RSA is the blocking of the available
surface area. When the surface is saturated by the adsorbed objects so that no further objects can be placed, the system
reaches the jamming limit ρJ. Thus, an element of stochasticity of environment, which is present in any natural system,
is incorporated into the model. It must be emphasized that birth and death processes [39,40] are not considered here,
so the results obtained apply only on the time scales short compared to the typical lifetime of single organisms. The
role of multiple predators and preys has also been studied by using an off-lattice models [41,42], based on the modeling
of the self-propelled organisms by Vicsek et al. and including the chase-escape mechanisms through simple intergroup
pairwise interactions [43]. In such models, an analysis of the impact of geometrically complex boundary conditions, such
as obstacles, would require taking into account a hard core repulsion term in the interaction. However, the lattice-based
models allow easier handling of objects (obstacles) of various shapes and sizes.

For the real life systems, simulation resembles to two animal species fighting for the survival. Obstacles may be trees,
rocks, or anything that is big enough for the evader and pursuer to become ‘‘invisible’’ for the other. The chasers and
evaders can also be human beings, but with different roles, like police officers and robbers, where buildings, grocery
stores and similar objects can be viewed as obstacles.

We study the survival of NT
0 targets (for example, prey) that is captured by NC

0 chasers (predators) in the presence
of static obstacles. We have kept the rules governing the dynamics of the processes at the individual level as simple
as possible to focus entirely on the effects of obstacles. Each species has its specific sighting range σ in which it can
see the other species. In [26], for each target, the distance to each chaser is calculated as the Euclidean distance. Unlike
the Kamimura and Ohira model [26], distances as well as sighting ranges in the present study are measured by a L1
(‘‘Manhattan’’) metric. Manhattan distance between sites P1 and P2 on a square lattice is equal to the length of all paths
connecting P1 and P2 along horizontal and vertical segments, without ever going back. Therefore, Manhattan metric more
correctly than Euclidean’s determines the length of the path between two sites in the lattice-based models. In our model,
there are two types of chasers and targets and each of them has its own sighting range σ , which describes their skills at
chasing and escaping, respectively. In reality, chasers search for targets in their vicinities. Similarly, targets can recognize
the existence of nearby chasers. Therefore, analysis of the capture dynamics in the present study is limited to species
with two different sighting ranges, i.e., σ = 1, 2. If the value of σ equals zero, the movement is equivalent to the random
walkers [26,28,40,44]. It has been confirmed that the idea of animals using blind search strategies does not seem to be
usable since it neglects the role of animals’ smartness and experience in guiding them [45]. We investigate the role that the
density of obstacles plays in the time evolution of the number of targets, NT (t). A detailed analysis of the contribution to
the capture dynamics coming from the size and the shape of obstacles is carried out. Furthermore, temporal dependences
of the number of targets NT (t) in the presence of obstacles are compared for various combinations of chasers and targets
with different chasing and avoidance skills in order to analyze the relationship between the ability of species and the
capture dynamics. In particular, we try to find a universal functional type that describes the decrease in the number of
targets NT (t) in the best way.

We organized the paper as follows. Section 2 describes the details of the model and simulations. In Section 3 results
of numerical simulation are presented and discussed. Finally, Section 4 contains some additional comments and final
remarks.
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2. Definition of the model and the simulation method

The environment where two interacting species coexist is represented by the two-dimensional square lattice of linear
size L with periodic boundary conditions. In our model the lattice is initially occupied by obstacles of various shapes
and sizes at the effective density ρ0. This density is defined as a fraction of sites of the lattice that are occupied by the
obstacles. Linear obstacles are k-mers of length ℓ = k − 1 = 0, 1, . . . , 6, shown in Table 1 as objects (A1)–(A7). Extended
shapes that we have used as obstacles are the crosses of two different sizes, shown in Table 2 as objects (C1) and (C2).

Obstacles cannot overlap and their spatial distribution at density ρ0 is generated using the random sequential
adsorption (RSA) method [37,38]. In the case of mixtures of obstacles, at each deposition attempt, one of the objects
that makes the mixture is selected at random and deposition of the selected object is tried in a randomly chosen lattice
site. In this way we are able to prepare the environment in disordered initial state with a statistically reproducible density
ρ0 of obstacles. To initialize the model, NC

0 chasers and NT
0 targets are randomly distributed as monomers in the lattice.

Each site can be either empty or occupied by one particle: by a chaser or escapee (target) or by a particle that belongs to
an obstacle.

After placing the chasers and the targets up to the chosen densities ρC
0 = NC

0 /L2 and ρT
0 = NT

0 /L2, we switch the
species deposition events off and initiate a random diffusive dynamics in the system. At this stage, apart from the hard
core interaction between the species, and between the species and the obstacles, there are simple rules governing the
dynamic processes at the individual level. Movement within the lattice and the population dynamics are modeled as
discrete time processes. At each Monte Carlo step a lattice site is selected at random. If the selected site is unoccupied or
occupied by an obstacle, the configuration remains unchanged and a new site is selected at random. If the selected site
is occupied by a chaser or an escapee, each species follow the hopping rules described below.

Chaser has a certain pursuit region within which it can locate targets; simultaneously, target has an escape zone inside
which it can detect chasers. In other words, each species has its specific sighting range σ in which it can see the other
species. By definition, the metric is L1, so e.g. the site (x, y) is at distance |x| + |y| from the origin, with lattice spacing
equal to unity. Two types of chasers and targets are used in our model depending on the sighting range σ : Chasers-I and
Targets-I have sighting range σ = 1, while for Chasers-II and Targets-II, σ = 2.

Suppose that Chaser-I is placed in a randomly selected site of the lattice. If the first neighbors of the selected site are
entirely occupied with obstacles and chasers, the chosen chaser stays at its original position. Then, the time t is updated,
t → t+1/L2 and the process continues by choosing a new lattice site at random. Suppose that some of the first neighbors
of the selected site are occupied with targets. Then we randomly select a target among them, remove the selected target
from the grid, and move the chosen chaser to this empty place. However, if the first neighbors of the chosen chaser are
not occupied with targets, the chaser executes a jump as long as there is at least one empty nearest neighbor site. In this
case, the chaser is moved to the randomly selected empty adjacent site.

Now, suppose that Target-I is placed in a randomly selected site of the lattice. If there are no empty nearest neighbors
of the selected site, the chosen target does not change its position, and the time increases by 1/L2. If the selected site has
empty adjacent sites, the chosen target moves into one of them randomly.

In our model we introduce chasers and targets with different chasing and avoidance skills, respectively, depending
on the sighting range σ . Accordingly, decision for every step both of the Chaser-II and Target-II depends on the species
that are found at the places of second neighbors. Algorithms for movement of species I and II are different only in the
method of selection of the empty neighboring sites for a jump. Species I randomly chooses an empty nearest neighbor
site for a jump. However, Chaser-II moves to the empty adjacent site that is surrounded by the highest number of targets,
n(max)
T , as its first neighbors (see, Fig. 1(a)). On the contrary, Target-II jumps to the empty nearest neighbor site that is

surrounded by the lowest number of chasers, n(min)
C , as its first neighbors (see, Fig. 1(b)). If two or more empty nearest

neighbor sites correspond to the same highest/lowest number of targets n(max)
T /chasers n(min)

C , one of them is selected at
random. It must be emphasized that Target-II moves to the selected site only if n(min)

C is less than or equal to the number
of chasers surrounding it in its original position. In both cases when the sighting range σ is one or two, pursuer and
evader can move only to a neighboring site. Neither chasers nor evaders can see through the obstacles and they make
their decision about the movement without the knowledge of the situation behind the obstacle.

The time t is counted by the number of attempts to select a lattice site and scaled by the total number of lattice sites
N = L2. Since in one Monte Carlo time step each lattice site is randomly checked once on the average, it can be considered
that all chasers and targets are active at all times and that none of the species have a priority in the number of attempts
to make a move. The simulation data are averaged over 100 independent runs for each coverage of obstacles and each
initial chasers and targets concentrations.

The simulations have been performed for a wide range of obstacle densities, ρ0 < 0.45, below the corresponding
percolation thresholds [46,47]. Considering the underlying percolation problem on the lattice, a geometric transition
occurs at the percolation threshold p∗

c , above which the void space falls completely apart into finite clusters. As density of
obstacles is increased above a certain critical value p∗

c , the initial large cluster of empty lattice space breaks into tiny non-
communicating components and connectivity between both sides of the lattice disappears. In this case, spatially separated
groups of chasers and targets can be formed on the lattice during the initialization process. Such artificial situations will
not be considered in this paper.
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Fig. 1. Hopping rules for (a) chasers and (b) targets. Diamonds represent their respective sighting ranges, σ = 1, 2. The green squares show the
obstacles. Chasers (red circles) look for the nearest target and move to one of the nearest sites in order to catch the target. Targets (blue circles) try
to escape from the nearest chaser. When a target is in a site nearest to a chaser, the chaser catches the target by hopping to the site, and then the
target is removed from the system. Panel (a): Yellow arrow from the chaser to the adjacent site indicates that the Chaser-II hops to the empty site
that is surrounded by the highest number of targets (n(max)

T = 3). Chaser-I has three choices. Panel (b): Yellow arrow from the target to the adjacent
site indicates that Target-II hops to the empty site that is surrounded by the lowest number of chasers (n(min)

C = 1). Target-I has two choices. Values
of the number of the nearest targets and chasers are given for the empty adjacent sites.
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Fig. 2. Time dependences of the number of targets NT (t) (panel (a)) and of the normalized number of targets NT (t)/NT
0 (panel (b)) on the lattices

of size L = 32, 64, and 128, as indicated in legend. The full curves represent the results obtained when obstacles are the binary mixtures of trimers
(A3) and crosses (C1) of density ρ0 = 0.30 (see, Tables 1 and 2). The dashed curves represent the results obtained in the absence of obstacles. Panel
(c): Shown here are the temporal dependences of the number of targets NT (t) on the lattice of size L = 128, obtained for the same conditions as in
panel (a) (see legend). The black (red) lines are plotted against the left-hand (right-hand) axis. The shaded region represents the standard deviation.
Results shown in panels (a), (b), and (c) are obtained for the same initial densities ρC

0 = 0.0439 and ρT
0 = 0.0488, for all lattices. Initial values for

the number of chasers/targets are NC
0 /NT

0 = 45/50, 180/200, 720/800 for L = 32, 64, 128, respectively.
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3. Results and discussion

While the number of chasers, NC (t), remains constant NC
0 , the number of targets, NT (t), monotonically decreases along

with the catches. Here we focus on the model that includes species with sighting range σ = 2 (Chasers-II + Target-II),
and study the effects of obstacles on the time evolution of the number of targets, NT (t). In addition, we will compare the
results for all four combinations of previously defined species I and II, as shown in Table 3.

In our model, lattice size L is an arbitrary parameter. In Fig. 2(a) we show the temporal dependence of the number
of targets NT (t) on the lattices of size L = 32, 64, and 128, when obstacles are the binary mixtures of trimers (A3) and
crosses (C1) of density ρ0 = 0.30 (see, Tables 1 and 2). For comparison, we also plot the temporal dependences of the
number of targets NT (t) in the absence of obstacles for these three lattices. It is important to note that the initial densities
of chasers ρC

0 and targets ρT
0 have not changed with the lattice size L. Numerical results for NT (t) in Fig. 2(a) are given

for the initial densities ρC
0 = 0.0439 and ρT

0 = 0.0488, with the same ratio ρC
0 /ρT

0 = NC
0 /NT

0 = 0.9 for all the lattices.
In Fig. 2(b), the values of the normalized number of targets NT (t)/NT

0 versus the time t are presented for the simulation
results shown in Fig. 2(a). It is evident that for the given density of the obstacles ρ0, the time evolution of the normalized
number of targets NT (t)/NT

0 does not depend on the lattice size L. However, for the lattice of fixed size L, time evolution of
NT (t)/NT

0 depends on the initial number of chasers NC
0 and targets NT

0 . We shall return to this point later on in connection
with the relationship between the densities of species and dynamics of the model.

In Fig. 2(c) we show the temporal dependence of the number of targets NT (t) on the lattice of size L = 128 obtained
for the same conditions as in Fig. 2(a). The shaded strips in Fig. 2(c) indicate an interval of one standard deviation above
and below the estimated mean value. In addition, the double logarithmic plots of the same results are also shown in the
same panel. In this way, a better insight into the values of the standard deviation during the entire process is enabled.
Standard deviations from the average value of NT (t) are of the order ±1% throughout the whole process of interest. In
very late times, when the number of targets disappears, the standard deviation is less than 10%. As it can be seen, the
statistical error bars slightly exceed the line thickness.

It must be stressed that all simulations have been performed in the conditions of sufficiently low densities of agents. In
this way, we have tried to avoid the effects of the self volume [34,48,49]. In reality, chasers and targets are impenetrable
bodies. For example, in an abundant population of prey, the prey species may obstruct each other while trying to escape.
Moreover, at sufficiently large densities of targets, target can be temporarily trapped in ‘‘cages’’ formed by their neighbors
of the same species. Then the motion of target is restricted by a shell of nearest neighbors, and its movement is influenced
by the effect of trapping. However, in our model, agents can be temporarily caged by a dense network of obstacles. In
order to make the analysis of the results simpler, it is necessary that these two effects are not present in simulations at
the same time. Consequently, all simulations are carried out in the conditions of sufficiently low densities of agents.

In the absence of obstacles, simulations are carried out until all targets have been caught by chasers, i.e. NT (t) = 0.
However, in the presence of obstacles, there may be targets that cannot be eliminated by the chasers. Such targets
are located within clusters of empty sites (‘‘cages’’) in which chasers have not been deposited during the initialization
process. The number of inaccessible targets increases with the density of obstacles ρ0. Fig. 3 shows two typical snapshot
configurations obtained in the case of the binary mixture of obstacles (trimers (A3) and crosses (C1)) of density ρ0 = 0.30.
The snapshots are taken at the beginning of the process (t = 1), and after a long enough time (t = 300) when only a few
targets (NT (300) = 6) are left in the ‘‘cages’’ formed by obstacles.

Now, we present and discuss the numerical results regarding the time evolution of the number of targets NT (t) in the
absence of obstacles, for several initial densities of chasers ρC

0 and targets ρT
0 on the lattice of the fixed size L = 128.

The initial numbers of species (NC
0 ,NT

0 ) were chosen as (20, 25), (40, 50), (80, 100), (160, 200), (320, 400), and (640, 800),
so that we have the same ratio NC

0 /NT
0 = 0.8 in all simulation runs. Temporal evolution of the normalized number of

targets NT (t)/NT
0 for various initial densities ρC

0 = NC
0 /L2 and ρT

0 = NT
0 /L2 (provided that ρC

0 /ρT
0 = 0.8) are presented

in Fig. 4. We observe that the decrease of NT (t)/NT
0 with time gets drastically slower when the initial densities ρC

0 and
ρT
0 decrease. Analyzing the curves in Fig. 4 we find that the decrease of NT (t)/NT

0 is slower than exponential in time. In
addition, the curves for different values of the initial density of species are very similar in form. In order to provide the
best analytical approximation for the temporal behavior of the number of targets NT (t), we have probed a wide set of
phenomenological fitting functions for relaxation processes in many complex disordered systems [50]. The best agreement
with our simulation data was obtained by the Kohlrausch–Williams–Watts (KWW) or stretched exponential function. The
fitting function we have used is of the form:

NT (t)
NT

0
= 1 +

(
NT (∞)
NT

0
− 1

)(
1 − exp

[
−

(
t
τ

)β
])

, (1)

where β is the parameter measuring the deviation from the single exponential form (0 < β ≤ 1) and τ is the characteristic
time. Fits of this stretched exponential form to the simulation data are shown as dashed lines in Fig. 4. Since the asymptotic
number of targets NT (t) → NT (∞), t ≫ τ , in the absence of the obstacles is equal to zero for all initial densities of species,
the characteristic time τ can be defined as the time it takes for the simulation curves of NT (t)/NT

0 to fall to the level of 1/e,
i.e., NT (τ )/NT

0 = 1/e. In the absence of obstacles, the fitting parameter τ is given in Fig. 5 as a function of the initial density
of targets ρT

0 , for two values of the ratio NC
0 /NT

0 = 0.8, 1.0. In numerical simulations with the ratio NC
0 /NT

0 = 1.0, the
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Fig. 3. Typical configurations of chasers (red dots) and targets (blue dots) at lattice of size L = 64 in the case of the binary mixture of obstacles
(trimers (A3) and crosses (C1)) of density ρ0 = 0.30. The snapshots are taken at the beginning of the process (t = 1, panel (a)), and after long
enough times (t = 300, panel (b)) when only six targets are left on the lattice. Five cages with the remaining targets are marked on the panel (b)
with thin blue lines. Initial number of chasers/targets is NC

0 /NT
0 = 180/200.

initial numbers of species were chosen to be NC
0 = NT

0 = 25, 50, 100, 200, 400, and 800. It is obvious that the parameter
τ seems to be a simple power law of the initial density of targets ρT

0 :
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Fig. 4. Temporal evolution of the normalized number of targets NT (t)/NT
0 obtained in the absence of obstacles on the lattice of the size L = 128,

and for various initial numbers of species (NC
0 ,NT

0 ), as indicated in the legend. The dashed curves are the stretched exponential fits of Eq. (1), with
the parameter τ given in Fig. 5 and β = 0.802. Here, the ratio NC

0 /NT
0 = ρC

0 /ρT
0 = 0.8 is the same in all simulation runs. The horizontal dashed line

indicates the 1/e value.

Fig. 5. Fitting parameter τ of the fit (1), as a function of the initial density of targets ρT
0 in the case of the absence of obstacles, for two values

of the initial ratio of chasers to targets NC
0 /NT

0 = 0.8, 1.0. The straight lines are the fits using Eq. (2). Dependence of τ on ρT
0 seems to be well

described by the simple power law (2). The values of fitting parameters are A = 0.230, γ = 1.252, β = 0.802 for NC
0 /NT

0 = 0.8; for NC
0 /NT

0 = 1.0,
the fitting parameters are A = 0.169, γ = 1.261, and β = 0.805.

τ = A (ρT
0 )

−γ . (2)

Exponent γ is approximately equal to γ = 1.256 ± 0.006 for all examined ratios NC
0 /NT

0 . On the other hand, the
stretching exponent β has the values below one, which confirms the nonexponential functional dependence of NT (t)/NT

0 .
Furthermore, for the fixed value of ratio NC

0 /NT
0 the exponent β is rather weakly dependent on the initial density of targets

ρT
0 . This provides the collapse of NT (t)/NT

0 vs. t curves onto a single curve when the time is scaled as t/τ . Fig. 6 shows the
time-density superposition of the NT (t)/NT

0 curves in the case of the ratio NC
0 /NT

0 = 0.8, for all initial densities of species
investigated. This figure clearly demonstrates the existence of a single universal master function.
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Fig. 6. Normalized number of targets NT (t)/NT
0 obtained in the absence of obstacles and rescaled to t/τ , for various initial numbers of species

(NC
0 ,NT

0 ), as indicated in the legend. Here, the ratio NC
0 /NT

0 = ρC
0 /ρT

0 = 0.8 is the same in all simulation runs. The horizontal dashed line indicates
the 1/e value.

Fig. 7. Temporal evolution of the normalized deviation ∆NT (t) (Eq. (3)) of the number of targets NT (t) obtained in the presence of obstacles (A1)
(solid lines) and (C1) (dashed lines) on the lattice of size L = 128, and for various initial numbers of species (NC

0 ,NT
0 ), as indicated in the legend.

Here, the ratio NC
0 /NT

0 = ρC
0 /ρT

0 = 0.8 is the same in all simulation runs. The horizontal dashed line indicates the 1/e value.

In the following, we analyze the time evolution of the number of targets NT (t) in the presence of obstacles, for various
initial densities of chasers ρC

0 and targets ρT
0 on the lattice of the fixed size, L = 128. In order to gain a better insight

into the effect of obstacles on the capture dynamics, simulations are performed both for point-like obstacles (A1) and for
obstacles of cruciform shape (C1) covering five lattice sites (see, Tables 1 and 2). Furthermore, the results are obtained
for the various values of density of the obstacles, ρ0 = 0.15, 0.20, 0.25, and 0.30. Let us first focus our attention on the
representative results given in Fig. 7 for the case of density ρ0 = 0.25. Fig. 7 shows the time evolution of the normalized
deviation ∆NT (t) of the number of targets NT (t) from the asymptotic value NT (∞) for various initial densities ρC

0 and ρT
0 ,

provided that NC
0 /NT

0 = ρC
0 /ρT

0 = 0.8. The quantity ∆NT (t) is defined as

∆NT (t) =
NT (t) − NT (∞)
NT

0 − NT (∞)
. (3)
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Fig. 8. Fitting parameter τ of the fit (1), as a function of the initial density of targets ρT
0 in the case of the presence of (a) obstacles (A1), and (b)

obstacles (C1). The curves in each graph correspond to various values of the density of obstacles ρ0 = 0.15, 0.20, 0.25, 0.30, as indicated in the
legend. All the results are for NC

0 /NT
0 = 0.8.

As in the case of the absence of obstacles, we observe that the decrease of NT (t)/NT
0 with time gets slower with the

decrease in the initial densities ρC
0 and ρT

0 . Comparing the results from Fig. 7 for different obstacles at the same density
ρ0 = 0.25, one can see that the number of targets NT (t) in the case of point-like obstacles (A1) decreases more slowly in
time than for the case of obstacles of cruciform shape (C1). This change in the capture dynamics is the result of a different
structure of empty space that is formed after the deposition of obstacles of different size up to the chosen coverage
fraction ρ0. Actually, the mesh structure of the open spaces look very different for the adsorbing point-like obstacles (A1)
in comparison with the extended obstacles (C1) [38,51]. Deposition of the extended obstacles (C1) is characterized by
domains of large islands of unoccupied sites. On the other hand, small obstacles such as monomers (A1) cover the surface
more uniformly, so that the empty space on the lattice is broken into small areas. Such a different free space view is
the cause of the enhanced mobility of species in the case of cruciform shapes (C1) as compared to those in the case of
point-like shapes (A1), resulting in a faster decrease of the number of targets NT (t) in the former case.

It must be stressed that the stretched-exponential fit (Eq. (1)) also accurately describes the temporal dependence of the
number of targets NT (t) in the presence of obstacles (not shown here). Dependences of the nonlinear fitting parameter τ
on the initial density of targets ρT

0 are shown in Fig. 8 on a double logarithmic scale for various densities of obstacles (A1)
and (C1), ρ0 = 0.15− 0.30. For all examined densities and obstacle shapes these plots are nearly straight lines, indicating
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Fig. 9. Normalized deviation ∆NT (t) (Eq. (3)) of the number of targets NT (t) obtained in the presence of obstacles (A1) (solid lines) and (C1) (dashed
lines) and rescaled to t/τ , for various initial numbers of species (NC

0 ,NT
0 ), as indicated in the legend. For clarity, the data for obstacle (C1) are shifted

to the left (t → t/10). Here, the lattice size is L = 128, density ρ0 = 0.25, and the initial ratio of chasers to targets NC
0 /NT

0 = ρC
0 /ρT

0 = 0.8 are the
same in all simulation runs. The horizontal dashed line indicates the 1/e value.

Fig. 10. Parameter β of the fit (1) vs. the density ρ0 of the obstacles. Circles and squares correspond to obstacles (A1) and (C1) in Tables 1 and 2,
respectively. Other parameters: L = 128, NC

0 /NT
0 = ρC

0 /ρT
0 = 0.8.

that the fitting parameter τ is a simple power-law of the initial density of targets ρT
0 (see Eq. (2)). As in the case of the

absence of obstacles, we observe that the dynamical behavior of our model is severely slowed down with the decrease
of the initial densities ρC

0 and ρT
0 . In addition, the characteristic time τ is found to increase with the density of obstacles

ρ0. As one can see from Figs. 8(a) and 8(b), the increase of τ with ρ0 is more pronounced for the lower initial densities
of targets. Indeed, the efficiency of chasing becomes very high at larger densities of targets and weakly dependent on
the presence of obstacles, due to the smaller mean distance between chasers and targets. Then the chasers quickly and
efficiently find the neighboring targets, regardless of whether there are obstacles or not. However, for the lower initial
concentration of targets the presence of obstacles noticeably slows down the dynamics of the system. We notice, the
lower is the concentration of the targets, the longer is the mean distance that a chaser crosses to find a target and catch
it. Along the longer path, chaser will interact with a larger number of obstacles. Therefore, obstacles more effectively
suppress the chasing for lower densities of targets. Also, at sufficiently low densities of targets, obstruction of chasing is
more pronounced at the higher densities of the obstacles.
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Fig. 11. Temporal evolution of the normalized deviation ∆NT (t) (Eq. (3)) of the number of targets NT (t) obtained in the presence of obstacles (A3)
(solid lines) for various densities ρ0 , as indicated in the legend. The dashed line represents the temporal behavior of ∆NT (t) in the absence of
obstacles. Other parameters: L = 128, NC

0 /NT
0 = 720/800 = 0.9.

Fig. 12. Temporal evolution of the normalized deviation ∆NT (t) (Eq. (3)) of the number of targets NT (t) obtained in the presence of obstacles
(A1, A2, . . . , A7) of density ρ0 = 0.30 (solid lines). The dashed line represents the temporal behavior of ∆NT (t) in the absence of obstacles. Other
parameters: L = 128, NC

0 /NT
0 = 720/800 = 0.9.

Fig. 9 illustrates that when the normalized deviations ∆NT (t) (see, Eq. (3)) presented in Fig. 7 are plotted as a function
of t/τ , the data for the all initial numbers of targets, NT

0 = 25, 50, 100, 200, 400 and 800, collapse onto a single curve.
We note that different choices of obstacles give qualitatively similar results. This superposition of ∆NT vs. t/τ curves is
a consequence of the fact that for the fixed values of ratio NC

0 /NT
0 and density of obstacles ρ0, the fitting parameter β is

rather weakly dependent on the initial density of targets ρT
0 . However, the stretching exponent β depends on the density

ρ0 of the obstacles. Fig. 10 shows dependence of parameter β on density ρ0 for the two types of obstacles ((A1) and (C1)).
Parameter β measures the rate of the chasing process on the time scale determined by the parameter τ . Consequently,
in the late stage of the chasing process the decay rate of the number of targets NT (t) for the point-like obstacles (A1) is
higher than for the extended obstacles (C1).

Now we consider in more details the influence of the length ℓ and density ρ0 of the linear segments that make the
obstacles on the temporal behavior of the number of targets NT (t). The simulations have been performed for linear
segments (k-mers) of lengths ℓ = k − 1, k = 1, 2, . . . , 7 (see, Table 1), and for a wide range of obstacle densities,
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Fig. 13. Temporal behavior of the normalized deviation ∆NT (t) (Eq. (3)) for the four models (Model-ij, i, j = 1, 2) created by combining the two
types of chasers and targets, as shown in Table 3. The solid lines represent the results obtained in the presence of obstacles C2 (see, Table 2) at
densities ρ0 = 0.15(a), 0.30(b), 0.45(c). The dashed lines represent the temporal behavior of ∆NT (t) in the absence of obstacles. Other parameters:
L = 128, NC

0 /NT
0 = 720/800 = 0.9.

ρ0 = 0 − 0.45. At first, we present the results of simulations for one representative linear segment, i.e., for the trimer
(A3) at densities ρ0 = 0.15, 0.30, 0.45. The corresponding time dependences of the normalized deviation ∆NT (t) (see,
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Table 1
Jamming coverages ρ

(x)
J for various k-mers (x) of length ℓ(x) on a square

lattice. The estimated statistical errors are on the last given digits.

(x) k-mer ℓ(x) ρ
(x)
J

(A1) 0 1.0
(A2) 1 0.9067
(A3) 2 0.8465
(A4) 3 0.8102
(A5) 4 0.7867
(A6) 5 0.7699
(A7) 6 0.7578

Table 2
Jamming coverages ρ

(x)
J for extended shapes (x) of size s(x) on a square

lattice. The estimated statistical errors are on the last given digits.

(x) Shape s(x) ρ
(x)
J

(C1) 2 0.6988

(C2) 4 0.5691

Table 3
Four models created by combining the two types of chasers and targets.
Depending on the sighting range σ , chasers and targets with different
chasing and avoidance skills, respectively, can be distinguished.
Model Chaser Target

Model-11 Chaser-I (σ = 1) Target-I (σ = 1)
Model-12 Chaser-I (σ = 1) Target-II (σ = 2)
Model-21 Chaser-II (σ = 2) Target-I (σ = 1)
Model-22 Chaser-II (σ = 2) Target-II (σ = 2)

Eq. (3)) for the aforementioned densities ρ0 are given in Fig. 11 together with the result obtained in the absence of the
obstacles. It can be seen that the capture dynamics gets slower, and the evolution of the number of targets NT (t) toward
the asymptotic value NT (∞) takes place on much wider time scale when the density of trimers ρ0 increases. We note
that different choices of the linear segments give qualitatively similar results.

In Fig. 12 we compare the temporal evolution of the normalized deviation ∆NT (t) (see, Eq. (3)) for the linear segments
(k-mers) covering k = 1, 2, . . . , 7 lattice sites. Time dependences of ∆NT (t) are displayed both for the density ρ0 = 0.30 of
obstacles, and for the case of lattice without obstacles. In the presence of k-mers, reduction in the number of targets NT (t)
takes place on the approximately equal time scale for all k-mers. As expected, the decrease of the number of targets NT (t)
with time is significantly faster in the absence of obstacles. It is interesting that ∆NT (t) vs. t curves have similar shapes
for all finite-size k-mers (k > 1). As can be seen, for the point-like obstacles (k = 1) the capture dynamics gets slower,
especially in the intermediate time regime. There is an important difference between the deposition of point-like and
elongated obstacles on a square lattice. Deposition of elongated objects is characterized with domains of parallel objects
and large areas of unoccupied sites. Blocking of the lattice area is enhanced with the growth of the obstacle length,
making the surface more porous (unoccupied sites can form open and large pores). On the other hand, the point-like
objects (monomers) cover the surface more uniformly and efficiently. Lower porosity of the surface is responsible for the
reduced mobility of species, and therefore for slower dynamics in the case of the point-like obstacles.

In Section 2 we have introduced the chasers and the targets with different chasing and avoidance skills, respectively.
Depending on the sighting range σ , less (σ = 1) and more (σ = 2) capable chasers or targets can be distinguished
(see, Table 3). It is now useful to explore the relationship between the ability of species and the capture dynamics. In
Fig. 13 we compare the temporal evolution of the normalized deviation ∆NT (t) (see, Eq. (3)) for all four combinations
of previously defined species, as shown in Table 3. The results are given for the obstacle C2 (see, Table 2) at densities
ρ0 = 0.15, 0.30, 0.45, as well as for the lattice without obstacles. By comparing the results for the Model-12 with those
for the Model-22 and Model-11, it can be observed that the less capable chasers or the more capable targets cause a
significantly slower decrease in the number of targets NT (t) to the asymptotic value NT (∞). On the contrary, by comparing
results for the Model-21 with those for the Model-22 and Model-11, it is obvious that the less capable targets or the more
capable chasers hasten the dynamics of the chasing process.

As can be seen from Fig. 13 the decrease in the number of targets in the presence of obstacles at sufficiently small
times is faster than in the absence of obstacles, and this effect is more pronounced for the larger densities of obstacles.
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At the beginning of the process, the density of targets is high, so that the mean distance between them is small. As a
consequence, a chaser quickly and efficiently find targets in its own vicinity. At the same time, the obstacles make it
difficult for the targets to escape from the nearest chaser. Therefore, the presence of obstacles increases the efficiency of
chasers in the initial phase of the evolution of the number of targets.

However, in the late chasing stage inversion occurs, i.e., the presence of obstacles slows down the dynamics of the
system (see, Fig. 13). Indeed, the lower is the concentration of the targets, the longer is the time necessary for the chaser
to find a target and catch it. Thus, the mean distance that a chaser crosses between two consecutive catches increases over
time. Along the longer path, chaser will interact with a larger number of obstacles. Therefore, obstacles more effectively
hinder the chasers when the density of the targets becomes small enough.

In models with more capable chasers (Model-22 and Model-21), the presence of obstacles induces larger changes in the
dynamics of the system in the late chasing stage than in the initial phase of the process. At the beginning of the process,
more capable chasers quickly and efficiently find the neighboring targets, regardless of whether there are obstacles or not.
However, less capable chasers interact with a larger number of obstacles between two consecutive catches. Consequently,
in the cases of less capable chasers (Model-11 and Model-12), the differences in the dynamics of the system with and
without obstacles are pronounced even in the initial phase of the evolution of the number of targets.

4. Summary

We have numerically studied a stochastic lattice model describing a group chase and escape with sight-limited chasers
and targets. We take into account the spatial structure of the environment where the species coexist in an explicit way. The
environment heterogeneities are built by randomly selecting a fraction of the sites of the square lattice that are considered
forbidden for the species. Specifically, the obstacles are represented by non-overlapping lattice shapes that are randomly
placed and fixed on the lattice. Our focus in this paper was to investigate the role that density and shape of obstacles plays
in the time evolution of the number of targets, NT (t). Basic mechanisms responsible for the studied phenomenon were
investigated and for this reason we ignored the birth/death processes. Such processes will be considered in the future
work.

It was shown that the stretched exponential behavior (Eq. (1)) excellently describes the temporal dependence of the
number of targets NT (t) regardless of whether the obstacles are present or not. The characteristic timescale τ was found
to decrease with the initial density of targets ρT

0 according to a power-law (2), τ ∝ (ρT
0 )

−γ . Furthermore, it was obtained
that the characteristic time τ increases with the density of obstacles ρ0. This effect was much more pronounced at the
lower densities ρ0 investigated.

We have considered the behavior of the stretched exponent β (Eq. (1)) as a function of the initial density of targets ρT
0

and the density of obstacles ρ0. At the given density of obstacles ρ0, the exponent β is weakly dependent on the initial
density of targets ρT

0 , provided the initial ratio of chasers to targets NC
0 /NT

0 = ρC
0 /ρT

0 is constant. However, the stretching
exponent β , which measures the rate of the chasing process, decreases with the density of the obstacles ρ0. At the fixed
density ρ0, parameter β depends on the shape and size of the obstacles.

The simulations have shown that the time dependences of ∆NT (t) (Eq. (3)), at the fixed density ρ0, are very similar for
all finite-size k-mers (k > 1). However, slowing down in the capture dynamics was observed in the case of the point-like
obstacles (k = 1). Indeed, randomly deposited monomers cover the lattice more uniformly and therefore efficiently reduce
the mobility of species.

We have discussed the significance of the sighting range σ of species for governing the capture dynamics in the
presence of obstacles. It was shown that the less capable chasers/targets (σ = 1) or the more capable targets/chasers
(σ = 2) slow-down/hasten the dynamics of the chasing process. It was observed that the decrease in the number of
targets in the presence of obstacles at sufficiently small/large times is faster/slower than in the absence of obstacles, and
this effect is more pronounced for larger densities of obstacles. In the case of more capable chasers (σ = 2), the presence
of obstacles induces larger changes in the dynamics of the system in the late chasing stage than in the initial phase of
the process. In the case of the less capable chasers (σ = 1), differences in the dynamics of the system with and without
obstacles are pronounced in the initial phase of the evolution of the number of targets.

This model can easily be generalized using obstacles of various shapes, describing the system of interest. Features
of the chasers and escapees as well as their capabilities can also be modified according to the system of interest. Our
simulation can describe in a simple manner some real life systems or tools that are still in development, and becoming
more important. Application can be seen even in robotics, especially in unmanned vehicles, designed to avoid obstacles
(something that could be developed in new versions of our simulation) and win certain targets that are fixed or in motion,
depending on its goal. For instance, one can observe a security robot trying to capture and eliminate malicious evader
that is trying to escape. Robot can be instructed not to capture but to follow and monitor the evader (something that
could also be developed in other versions of the simulation) and report its behavior. Just visual monitoring can be greatly
useful in the home caring situations, for example following elderly people and report if there is an emergency.
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Random sequential adsorption of lattice animals on a three-dimensional cubic lattice
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The properties of the random sequential adsorption of objects of various shapes on simple three-dimensional
(3D) cubic lattice are studied numerically by means of Monte Carlo simulations. Depositing objects are “lattice
animals,” made of a certain number of nearest-neighbor sites on a lattice. The aim of this work is to investigate
the impact of the geometrical properties of the shapes on the jamming density θJ and on the temporal evolution of
the coverage fraction θ (t ). We analyzed all lattice animals of size n = 1, 2, 3, 4, and 5. A significant number of
objects of size n � 6 were also used to confirm our findings. Approach of the coverage θ (t ) to the jamming limit
θJ is found to be exponential, θJ − θ (t ) ∼ exp(−t/σ ), for all lattice animals. It was shown that the relaxation
time σ increases with the number of different orientations m that lattice animals can take when placed on a cubic
lattice. Orientations of the lattice animal deposited in two randomly chosen places on the lattice are different if
one of them cannot be translated into the other. Our simulations performed for large collections of 3D objects
confirmed that σ ∼= m ∈ {1, 3, 4, 6, 8, 12, 24}. The presented results suggest that there is no correlation between
the number of possible orientations m of the object and the corresponding values of the jamming density θJ.
It was found that for sufficiently large objects, changing of the shape has considerably more influence on the
jamming density than increasing of the object size.

DOI: 10.1103/PhysRevE.101.012119

I. INTRODUCTION

A broad variety of structures are created of objects packed
together, and describing the packing processes are among the
most persistent problems in science [1,2]. Understanding of
various aspects of packing is of a great scientific and industrial
importance, with applications in nanotechnology, material sci-
ence, biology, agriculture, and ecology [3–7]. Particle packing
is still far from well understood. Packing structure is still
not able to be predicted by a general model that takes into
account various controlling parameters, such as geometric and
material properties of objects, gravity, and packing methods.

One common approach to studying the packaging of ob-
jects of various shapes is the random sequential adsorption
(RSA) method [8] which appears to be the simplest but non-
trivial model of random packing. The RSA model considers
sequential addition of particles of various shapes at randomly
chosen places on the n-dimensional substrate. Overlapping
of the particles is not allowed, and there is no diffusion of
the deposited objects. The time evolution of the coverage
(or the density of the system), θ (t ), i.e., the fraction of the
substrate occupied by the deposited objects at time t , describes
the kinetic properties of the deposition process. Once an ob-
ject is placed, it affects the geometry of all later placements, so
that the dominant effect in RSA is the blocking of the available
substrate space. At sufficiently large times the coverage θ (t )
approaches the jamming value θJ, where only gaps too small
to place new particles are left on the substrate.

*vrhovac@ipb.ac.rs; http://www.ipb.ac.rs/∼vrhovac/

Depending on the system of interest, the substrate can be
continuum or discrete, and RSA models can differ in substrate
dimensionality. Analytical results are available mostly for
one-dimensional problems [9–11]. Due to the complexity of
deposition of objects of various shapes in higher dimensions,
Monte Carlo simulations remain a main tool for describing
such systems. The long-term behavior of the coverage fraction
θ (t ) is known to be asymptotically algebraic for continuum
substrates [11–15] and exponential for lattice models [16–20].
For the discrete case, the approach of the density θ (t ) to the
jamming limit θJ is of the form

θJ − θ (t ) ∼ exp(−t/σ ), (1)

where jamming density θJ and the characteristic time σ are
the parameters that depend on the details of the model, such
as shape and symmetry properties of the depositing objects
[17,18,20]. In our model, relaxation time σ is the fitting
parameter that will be discussed within the context of the
orientational freedom of the shape.

During the past few decades the methods of random
sequential deposition of different objects on substrates of
various dimensions have developed extensively. Previously,
the majority of work has been done for spherical particles
[21–23]. To examine the significance of particle anisotropy
in formation of the jammed state coverings, RSA of many dif-
ferent object shapes has been studied for both continuum and
lattice models. For example, RSA on continuous substrates
has been studied for lines and ellipses [24,25], rectangles
[26,27], starlike particles [28], superdisks bounded by the
Lame curves [29], spherocylinders and ellipsoids [24,30],
cubes [31], cuboids [32], and polymers modeled as chains
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of identical spheres [33]. It was found that the kinetics of
irreversible deposition and morphological characteristics
of the packing are strongly dependent on the shape and size
of the depositing particles.

Formation of random deposits on discrete substrates has
also been extensively studied for various object shapes
[16–19,34,35]. Wang and Pandey [36] have studied the RSA
kinetics of self-avoiding walk chains on a square lattice and
found that the jamming coverage decreases with the chain
length according to a power law. Deposition of objects of
various sizes and rotational symmetries was studied for a
square and triangular lattice [17,18]. It was found that the
rapidity of the approach to the jamming coverage depends
only on the symmetry order of the shape. The crucial role of
the object shape in deposition dynamics was also confirmed
in Ref. [20], where the depositing objects were formed by
self-avoiding lattice steps, whereby the size of the objects was
gradually increased by wrapping the walks in several different
ways. Values of the relaxation time σ have been found to
depend only on the symmetry properties of the shape, and it
can be seen that objects differing in only one lattice step can
have significantly different values of the relaxation time. This
work provides the link between the decay of probability for
the insertion of a new particle onto a lattice and the intrinsic
properties of the shapes, such as parameter of nonsphericity
of the objects.

Much attention has been paid to the RSA on 1D and
2D lattices, but there are only a few studies of irreversible
deposition in 3D. Irreversible deposition on three-dimensional
lattices has been studied mostly for k-mers [37–40]. Tara-
sevich and Cherkasova [38] examined the percolation and
jamming properties of dimers on simple 3D cubic lattices. In
Ref. [40], the study of Tarasevich and Cherkasova is extended
to larger k-mers (2 � k � 64) to determine the dependence
of the jamming coverage on the size of the deposited k-mers
for 3D cubic lattices. To the best of our knowledge, there are
no results for RSA of various shapes formed by connected
sites on a 3D lattice. It should be stressed that examining all
possible positions of irregular shapes during the RSA process
is complex and very time consuming. There is also a number
papers dealing with percolations in 3D [41–45], including
some results for more complex systems.

It is obvious that object deposition is not physically realiz-
able in three dimensions since sometimes it requires objects
to be placed in locations that are surrounded by objects
previously deposited. However, RSA in 3D is useful as the
simplest, yet nontrivial model of random packing, which
takes into account excluded volume effects. Most research is
focused on the random close packings (RCPs) where neigh-
boring particles touch each other [2]. The RCP state is dif-
ficult to define because by introducing order, higher packing
fractions can be obtained [46]. In other words, the properties
of RCPs are very sensitive to a numerical protocol used for
packing objects. In contrast to random close packings, for
RSA packing, the mean packing density is unambiguously
defined, and it is more convenient for studying the influence
of object shape on the structure of the packing and its density.

The aim of this work is to study the RSA of large collec-
tions of objects made by connected sites on a simple 3D cubic
lattice, the so called “lattice animals.” More precisely, a lattice

animal can be viewed as a finite set of lattice sites connected
by a network of nearest neighbor bonds. Object size is the
number n of nodes that lattice animal covers on the grid. In
the physics literature lattice animals are often called clusters,
due to their close relationship to percolation problems [47,48].
Series expansions for the percolation probability or the aver-
age cluster size can be obtained as weighted sums over the
number of lattice animals gn,p, enumerated according to their
size n and perimeter p [49]. Lattice animals have also been
suggested as a model of branched polymers with excluded
volume [50,51]. In the present study the deposition kinetics
and the jamming limit are analyzed for all lattice animals of
size n = 1, 2, 3, 4, and 5 (41 different shapes). Our results
suggest that the number of different orientations that lattice
animals can take when placed on a cubic lattice exerts a
decisive influence on the adsorption kinetics near the jamming
limit θJ. To further confirm this finding, we have analyzed
some additional lattice animals of size n = 6 (8 objects) and
n � 7 (11 objects).

The paper is organized as follows. Section II describes
the model and the details of the simulations. The jamming
densities and the jamming configurations are analyzed in
Sec. III A. The approach of the coverage fraction θ (t ) to the
jamming limit θJ is analyzed in Sec. III B. Finally, Sec. IV
contains some additional comments.

II. DEFINITION OF THE MODEL AND
THE SIMULATION METHOD

Depositing objects are “lattice animals,” made of a certain
number of connected sites. In mathematics, and combinatorics
in particular, the term polyominoes and polycubes are fre-
quently used for 3D discrete objects. A polyomino of size n
is an edge-connected set of n squares on the square lattice
Z2 (the set of integers is denoted by Z). Polycubes are the
3D analogues of the planar polyominoes, i.e., polycube of
size n is a face-connected set of n cubes in the simple-cubic
lattice Z3. Because the square (cubic) lattice is self-dual,
the number of polyominoes (polycubes) with n cells is pre-
cisely the number of 2D (3D) site animals with n vertices.
Consequently, polyominoes (polycubes) are equivalent to site
animals on the dual lattice. In this work we use the term
“lattice animal” interchangeably with the other relevant terms
such as “polyomino” and “polycube.”

Fixed polycubes are considered distinct if they have differ-
ent shapes or orientations. In other words, two fixed polycubes
are identical if one of them can be translated into the other.
The number of fixed d-dimensional polycubes of size n is
usually denoted in the literature by Ad (n). In the mathematical
literature, fixed polycubes are most discussed in the context
of simple combinatorial problem—enumeration. Enumeration
deals with determining the number of polycubes correspond-
ing to a certain parameter, usually their size or perimeter.
Lunnon [52] has made the first successful enumeration. He
computed the number of polyominoes up to size 18 [with
a slight error in A2(17)]. It is very interesting that to this
day there is no known analytic formula for Ad (n) (d > 1).
The only known methods for computing Ad (n) are based on
explicitly or implicitly enumerating all the polyominoes or
polycubes using various numerical algorithms [52–56].
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TABLE I. All polycubes (x) of size n = 1, 2, 3, 4 and their
number of orientations m.

(x) m shape (x) m shape

(M) 1 (I4) 3

(D) 3 (L4) 24

(I3) 3 (O4) 3

(V3) 12 (P4) 8

(A4) 12 (S4) 12

(B4) 12 (T4) 12

Free lattice animals, however, are distinguished only by
shape, not by orientation. The number of free d-dimensional
polycubes of size n with m different orientations is denoted
by Am

d (n). Lunnon [57] analyzed three-dimensional polycubes
by considering symmetry groups, and computed (manually!)
A3(n) up to n = 6. Most polycubes are asymmetric, but many
have more complex symmetry groups. The maximum symme-
try for a polycube is the full symmetric group of a cube, with
48 elements—achiral octahedral group Oh. Lunnon found
[57] that Oh has 98 subgroups falling into 33 conjugacy sets
(polycube symmetry types). A polycube without symmetry
has 24 different orientations. This is easy to visualize with a
die. A die has 6 faces numbered 1 thru 6. If we place a die on
the table with the “1” showing up, then we can rotate it to get 4
different orientations with the “1” still on top. Since there are 6
faces, there are 6 × 4 = 24 different orientations. It is evident
that a number of orientations that a polycube may take varies
with the symmetry of the polycube. Since we solely consider
free lattice animals in this work, the term “free” is omitted in
the following text.

Table I shows all polycubes of size n = 1, 2, 3, and 4.
Polycubes of size n = 1, 2, 3 are planar with a maximum of 12
different orientations (object V3). There are eight tetracubes

TABLE II. All polycubes (x) of size n = 5 and their number of orientations m.

(x) m shape (x) m shape (x) m shape (x) m shape

(A5) 24 (L25) 24 (S15) 24 (V25) 12

(F5) 24 (L35) 24 (S25) 24 (W5) 12

(I5) 3 (L45) 24 (T5) 12 (X5) 3

(J15) 12 (N5) 24 (T15) 12 (Y5) 24

(J25) 24 (N15) 24 (T25) 24 (Z5) 12

(J45) 24 (N25) 24 (U5) 12

(L5) 24 (P5) 24 (V5) 12

(L15) 12 (Q5) 24 (V15) 12
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TABLE III. Some polycubes (x) of size n = 6 and their number
of orientations m.

(x) m shape

(I06) 3

(Ba6) 4

(Xb6) 6

(Tp6) 6

(Th6) 12

(Zf6) 12

(Te6) 24

(Ti6) 24

(fourth-order polycubes), five of which are planar [58]. It
must be emphasized that polycubes are usually counted with
mirror pairs (so-called chiral twins) distinguished, as would
be natural for the cubical case in ordinary space. For example,
a tetracube A4 and its mirror image B4 are considered distinct
because there is no rigid motion that transforms one onto the
other.

All polycubes of size n = 5 (pentacubes) are shown in
Table II. There are 29 distinct three-dimensional pentacubes
[58]. As it can be seen, 12 pentacubes are flat and correspond
to solid pentominoes. Among the nonplanar pentacubes, there
are five that have at least one plane of symmetry (A5, L35,
Q5, T15, T25) and each of them is its own mirror image.
The remaining twelve nonplanar pentacubes form six chiral
pairs: {J15, L15}, {J25, L25}, {J45, L45}, {N15, S15}, {N25,
S25}, {V15, V25}. Of the 29 pentacubes, for two flats (I5, X5)
there are only three possible orientations. Ten pentacubes have
twelve orientations and each of the remaining 17 pentacubes
has 24 orientations.

Polycubes of size n � 5 can have 1, 3, 8, 12, or 24
different orientations. However, there are hexacubes (sixth-
order polycubes) that have four and six different orientation.
There are 166 hexacubes, 35 of which are planar [58]. Some
hexacubes are shown in Table III. Hexacube Ba6 is the sole
polycube of size n � 6 with four orientations. It is interesting
that among the polycubes of size n � 6 only one object has
eight different orientations (see, tetracube P4 in Table I).

TABLE IV. Shown here is the number of polycubes Am
3 (n) of size

n with the specified number of possible orientations m. The results
are shown for all polycubes of size n � 6.

n A1
3 A3

3 A4
3 A6

3 A8
3 A12

3 A24
3 N = ∑

m Am
3

1 1 1
2 1 1
3 1 1 2
4 2 1 4 1 8
5 2 10 17 29
6 1 1 3 34 127 166

Further, three hexacubes have six orientations. Most of the
hexacubes have 12 and 24 different orientations (34 and 127
objects, respectively). Table IV shows the number of possible
orientations m for polycubes of size n � 6 and the number of
objects Am

3 (n) with the specified number of orientations.

A. Simulation method

In this paper the primary lattice animal is a connected set of
sites in Z3 that contains the origin (0,0,0). We call that point
the head of an object. At each Monte Carlo step a lattice site
is selected at random. If the selected site is unoccupied, then
deposition of the object is tried in one of the 24 orientations
which is chosen at random. Then we fix the head of the object
at the selected site and search whether all necessary sites
are unoccupied. If so, then we occupy these sites and place
the object. If the attempt fails, then a new site and a new
orientation are selected at random, and so on.

It is crucial to explain how to choose a random object
orientation. A basic rotation of the lattice animal is a rotation
about one of the axes of a coordinate system. Each rotation is
specified by an angle ψ of rotation. The rotation angle ψ is
defined to be positive for a rotation that is counterclockwise
when viewed by an observer looking along the rotation axis
towards the origin. In accordance with the Euler’s rotation the-
orem any arbitrary rotation can be composed of a combination
of these three rotations [59]. The rotation matrices that rotate
a vector around the x, y, and z axes are given by [59]

Rx(α) =

⎡
⎢⎣

1 0 0

0 cos(ψ1) − sin(ψ1)

0 sin(ψ1) cos(ψ1)

⎤
⎥⎦

(counterclockwise rotation around x axis), (2)

Ry(β ) =

⎡
⎢⎣

cos(ψ2) 0 sin(ψ2)

0 1 0

− sin(ψ2) 0 cos(ψ2)

⎤
⎥⎦

(counterclockwise rotation around y axis), (3)

Rz(γ ) =

⎡
⎢⎣

cos(ψ3) − sin(ψ3) 0

sin(ψ3) cos(ψ3) 0

0 0 1

⎤
⎥⎦

(counterclockwise rotation around z axis). (4)
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For example, a vector v can be rotated in any direc-
tion using a composition of three rotations [59]: v′ =
Ra(ψ1)Rb(ψ2)Rc(ψ3)v, a, b, c ∈ {x, y, z}. In our model, ro-
tation angles can take the following values: ψ1, ψ2, ψ3 ∈
{0, π/2, π, 3π/2}.

When choosing a random object orientation, it is essential
that the numerical algorithm provides a search of all
possible object orientations. If we apply a sequence RaRbRc,
a, b, c ∈ {x, y, z} of basic 3D rotations to the lattice animal,
then it is known that the order in which they are applied
affects the final result. In other words, operators of rotation in
3D [Eq. (4)] are noncommutative [59]. Therefore, when we
try to deposit an object, one random permutation (a b c) of

a set {x, y, z} is selected at first. Random permutation (a b c)
defines the order of successive rotations RaRbRc of an object
about the axes a, b, c ∈ {x, y, z} of the coordinate system.
Further, three random rotation angles ψ1, ψ2, ψ3 of an object
around the a, b, c ∈ {x, y, z} axes are chosen from the set
{0, π/2, π, 3π/2}. The primary object is rotated by applying
the operator Ra(ψ1)Rb(ψ2)Rc(ψ3), after which its head is
moved from the point (0,0,0) to a randomly selected lattice
site and checked for any overlap with neighboring lattice
animals already placed in the lattice. Let us remark that a
different choice of the head of the object does not change the
obtained results. We have verified that usage of different heads
for all examined objects gives quantitatively the same results

TABLE V. All lattice animals (x) of size n = 1, 2, 3, 4 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(M),1 XY

Z

(A4),12

Z

Y X (O4),3 XY

Z

(D),3 XY

Z

(B4),12

Z

Y X (P4),8

Z

Y X

(I3),3 XY

Z

(I4),3 XY

Z

(S4),12 X
Y

Z

(V3),12 XY

Z

(L4),24 XY

Z

(T4),12 X
Y

Z
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TABLE VI. All lattice animals (x) of size n = 5 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(A5),24

Z

Y X (L45),24 Y X

Z

(T25),24

Z

Y
X

(F5),24 XY

Z

(N5),24 X
Y

Z

(U5),12 X
Y

Z
(I5),3 XY

Z

(N15),24

Z

Y
X (V5),12 XY

Z

(J15),12 Y X

Z

(N25),24

Z

Y
X (V15),12 X

Z

Y

(J25),24 Y X

Z

(P5),24 XY

Z

(V25),12

Z

Y
X

(J45),24 Y X

Z

(Q5),24

Z

Y X (W5),12 XY

Z
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TABLE VI. (Continued.)

(L5),24 XY

Z

(S15),24

Z

Y
X (X5),3 XY

Z

(L15),12 Y X

Z

(S25),24

Z

Y
X (Y5),24 XY

Z

(L25),24 Y X

Z

(T5),12 XY

Z

(Z5),12 XY

Z

(L35),24 Y X

Z

(T15),12

Z

Y
X

(x), m shape (x), m shape (x), m shape

for the temporal evolution of density θ (t ) and the jamming
limit θJ.

During the simulation, we can record the number of all
inaccessible sites in the lattice. These include the occupied
sites and the sites that are unoccupied but cannot be the
head of the object deposited in any of the 24 possible ori-
entations. The jamming limit is reached when the number
of inaccessible sites is equal to the total number of sites
in the lattice. Checking this condition is performed after
every kL2 attempts to absorb the object, starting at some
late time point estimated in the trial simulations on smaller

lattices. Depending on the object size, the values of param-
eter k are 5, 20, and 50. If the condition is true, then we
stop the current run and continue with the next simulation
run.

The Monte Carlo simulations are performed on a 3D cubic
lattice of size L = 128. Periodic boundary conditions are
used in all directions. The time is counted by the number
of attempts to select a lattice site and scaled by the total
number of lattice sites L3 ≈ 2 million. The data are averaged
over 100 independent runs for each of the investigated lattice
animals.
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TABLE VII. Some lattice animals (x) of size n = 6 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(I06),3 XY

Z

(Tp6),6

Z

Y X (Te6),24

Z

Y
X

(Ba6),4

Z

Y X (Th6),12

Z

Y
X (Ti6),24

Z

Y
X

(Xb6),6

Z

Y
X (Zf6),12 XY

Z

III. RESULTS AND DISCUSSION

As stated in Sec. II, the structure of a polycube can be
represented by means of a lattice animal that has a vertex for
each cube and an edge for each two cubes that share a square.
Lattice animals that are equivalent to polycubes presented
in Tables I–III are shown in Tables V–VII. Some additional
lattice animals of size n � 7 are shown in Table VIII. The
number of examined objects represents a good basis for
studying the impact of the geometrical properties of the shapes
on the packing process in 3D, i.e., on the jamming coverage θJ

and on the temporal evolution of the coverage fraction θ (t ).

A. Jamming densities

The first quantity of interest is the jamming limit θJ which
is reached when no more objects can be placed in any position
on the lattice. Numerical values of the obtained jamming
limits θJ are given in Tables IX–XII for all examined shapes.
We can see that in each chiral pair, both objects have the
identical values of the jamming density. From Tables IX
and X it is evident that for small shapes (n � 5), jamming
densities θJ decrease rapidly with the size n of the objects.

Most objects of size n � 4 have a jamming density θJ greater
than 0.80, while θJ for all objects of size n = 5 is in the
interval 0.70–0.80. Jamming densities θJ for all examined
objects of size n � 7 have values below ≈0.70. Noticeable
drop in the jamming density θJ is thus a clear consequence of
the enhanced frustration of the spatial adsorption. However,
adding a single node to large objects does not result in a
significant increase in their size. Therefore, changing of the
shape of the large objects has considerably more influence on
the jamming density than increasing of the object size. For ex-
ample, jamming densities for objects LA7b (n = 7) and LA12
(n = 12) with m = 3 possible orientations from Table XII are
almost identical ≈0.67, although they are of different sizes.
The results presented in Tables IX–XII also suggest that there
is no correlation between the number of possible orientations
of the object and the corresponding values of the jamming
density θJ. Indeed, the jamming density of the object Xb6
with m = 6 possible orientations is θJ ≈ 0.68, but objects
I06 and Ba6 with a smaller number of possible orientations
than six have, respectively, a higher and lower θJ value than
0.68 (see Table XI). Similarly, the jamming density of the
object LA7b with m = 3 possible orientations is θJ ≈ 0.67.
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TABLE VIII. Some lattice animals (x) of size n � 7 and their number of orientations m.

(x), m shape (x), m shape (x), m shape

(LA7a),1

Z

Y X (LA7e),24 Y

Z

X (LA10),8

Z

Y X

(LA7b),3 XY

Z

(LA8a),1

Z

Y X (LA12),3

Z

Y
X

(LA7c),6 X
Y

Z

(LA8b),3 X

Z

Y (LA13),6 X
Y

Z

(LA7d),8

Z

Y X (LA8c),12

Z

XY

However, objects LA7c and LA7d with a greater number of
possible orientations than three have, respectively, a lower and
higher θJ value than 0.67 (see Table XII). Note that our results
for the jamming densities of linear objects (k-mers: D, I3–I5,
I06, LA7b) are in a good agreement with the results presented
in reference [40] in which RSA of straight rigid rods on a
simple cubic lattice is analyzed.

Figure 1 shows typical snapshot configurations at the jam-
ming density obtained for objects (a) LA7a, (b) LA8b, (c)
Ba6, (d) Xb6, (e) P4, (f) T15, and (g) LA7e. The snapshots
of size 	L3 = 103 are taken from the central part of the
lattice. Figure 1 displays configurations for seven objects that
match all values of the number of possible orientations (m =
1, 3, 4, 6, 8, 12, 24) for given objects.

B. RSA kinetics

Now, we report and discuss the numerical results regarding
the influence of the number of possible orientations of the

shape on the kinetics of the deposition processes. Figures 2–6
show the plots of ln[θJ − θ (t )] versus t for seven classes of the
objects, i.e., for seven values m = 1, 3, 4, 6, 8, 12, 24 of the
number of different orientations that lattice animals can take
when placed on a cubic lattice. Each of these figures contains
results for objects with the same number of possible orienta-
tions. For all examined objects plots of ln[θJ − θ (t )] versus t
are found to be straight lines at the late times of the deposition
process, confirming the exponential approach to the jamming
limit of the form Eq. (1), with parameters σ and θJ that depend
on the shape of a depositing object. Furthermore, for a given
value of m, these plots are parallel lines in the late stages of the
deposition process for lattice animals of very different sizes
[e.g., see Fig. 3(b)]. Hence, for objects that have the same
value of the parameter m, rapidity of the approach to the jam-
ming state is not affected by the size of the object. The number
of possible orientations m of the object has an essential influ-
ence in the late times of the deposition process. Lines with
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TABLE IX. For each lattice animal (x) of size n = 1, 2, 3, 4
with m possible orientations, θ

(x)
J is the jamming coverage and σ

is the relaxation time [Eq. (1)]. The numbers in parentheses are the
numerical values of the standard uncertainty of θ

(x)
J referred to the

last digits of the quoted value.

Shape (x), size n m σ θ
(x)
J

(M), n = 1 1 0.99 1.0000(0)
(D), n = 2 3 3.09 0.9184(1)
(I3), n = 3 3 3.16 0.8390(2)
(V3), n = 3 12 12.36 0.8788(2)
(A4), n = 4 12 12.45 0.8178(2)
(B4), n = 4 12 12.47 0.8178(2)
(I4), n = 4 3 3.19 0.7808(3)
(L4), n = 4 24 23.98 0.8339(2)
(O4), n = 4 3 3.06 0.8079(3)
(P4), n = 4 8 8.03 0.7941(3)
(S4), n = 4 12 12.08 0.8149(2)
(T4), n = 4 12 12.49 0.8114(3)

seven different slopes are plotted in Fig. 7, showing the late
times of the deposition process corresponding to objects of

TABLE X. For each lattice animal (x) of size n = 5 with m possi-
ble orientations, θ

(x)
J is the jamming coverage and σ is the relaxation

time [Eq. (1)]. The numbers in parentheses are the numerical values
of the standard uncertainty of θ

(x)
J referred to the last digits of the

quoted value.

Shape (x) m σ θ
(x)
J

(A5) 24 24.21 0.7716(2)
(F5) 24 24.29 0.7860(3)
(I5) 3 3.18 0.7369(4)
(J15) 12 11.95 0.7635(2)
(J25) 24 24.72 0.7839(2)
(J45) 24 24.12 0.7958(3)
(L5) 24 23.91 0.7695(3)
(L15) 12 12.20 0.7635(3)
(L25) 24 24.24 0.7839(2)
(L35) 24 24.42 0.7774(3)
(L45) 24 24.88 0.7957(2)
(N5) 24 24.34 0.7866(3)
(N15) 24 24.88 0.7842(2)
(N25) 24 24.35 0.7790(3)
(P5) 24 24.20 0.8017(3)
(Q5) 24 23.95 0.7826(3)
(S15) 24 24.41 0.7841(2)
(S25) 24 24.25 0.7790(3)
(T5) 12 12.76 0.7500(3)
(T15) 12 12.43 0.7582(3)
(T25) 24 24.58 0.7863(2)
(U5) 12 12.48 0.7611(3)
(V5) 12 11.94 0.7628(3)
(V15) 12 12.37 0.7647(3)
(V25) 12 12.64 0.7647(3)
(W5) 12 12.31 0.7615(3)
(X5) 3 3.08 0.7007(3)
(Y5) 24 24.62 0.7595(3)
(Z5) 12 12.79 0.7643(2)

TABLE XI. For lattice animal (x) of size n = 6 with m possible
orientations, θ (x)

J is the jamming coverage and σ is the relaxation time
[Eq. (1)]. The numbers in parentheses are the numerical values of the
standard uncertainty of θ

(x)
J referred to the last digits of the quoted

value.

Shape (x) m σ θ
(x)
J

(I06) 3 3.06 0.7026(4)
(Ba6) 4 4.02 0.6683(3)
(Xb6) 6 6.03 0.6827(3)
(Tp6) 6 6.13 0.6879(4)
(Th6) 12 12.18 0.7179(3)
(Zf6) 12 12.25 0.7215(3)
(Te6) 24 24.55 0.7378(3)
(Ti6) 24 24.60 0.7369(3)

different number of possible orientations m, as indicated in the
legend.

We have calculated the values of the parameter σ [Eq. (1)]
from the slopes of the ln[θJ − θ (t )] versus t curves in the
late times of the process. The parameter σ determines how
fast the lattice is filled up to the jamming coverage θJ. The
values of the relaxation time σ are given in Tables IX–XII
for all examined lattice animals. Approximate values of the
parameter σ for the seven classes of objects are found to be
equal the number of possible orientations of the shape:

σ � m ∈ {1, 3, 4, 6, 8, 12, 24}. (5)

This means that the approach to the jamming limit is slower
for objects with a larger number of possible orientations. At
large times, adsorption events take place on islands of un-
occupied sites. The individual islands act as selective targets
for specific deposition events. In other words, there is only a
restricted number of possible orientations in which an object
can reach a vacant location, provided the location is small
enough. Such difficult placement of an object in locations that
allow only a small number of object orientations is a feature
of the deposits near the jamming state. Namely, for an object

TABLE XII. For lattice animal (x) of size n � 7 with m possible
orientations, θ (x)

J is the jamming coverage and σ is the relaxation time
[Eq. (1)]. The numbers in parentheses are the numerical values of the
standard uncertainty of θ

(x)
J referred to the last digits of the quoted

value.

Shape (x), size n m σ θ
(x)
J

(LA7a), n = 7 1 0.98 0.6225(4)
(LA7b), n = 7 3 2.97 0.6749(5)
(LA7c), n = 7 6 6.19 0.6336(4)
(LA7d), n = 7 8 8.06 0.6897(4)
(LA7e), n = 7 24 24.20 0.7006(3)
(LA8a), n = 8 1 0.98 0.6453(5)
(LA8b), n = 8 3 3.11 0.5858(4)
(LA8c), n = 8 12 12.18 0.6308(3)
(LA10), n = 10 8 8.08 0.5693(4)
(LA12), n = 12 3 3.04 0.6719(5)
(LA13), n = 13 6 6.12 0.4899(4)
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FIG. 1. Snapshots of patterns formed during the RSA of objects (a) LA7a, m = 1 (Tables VIII and XII), (b) LA8b, m = 3 (Tables VIII and
XII), (c) Ba6, m = 4 (Tables VII and XI), (d) Xb6, m = 6 (Tables VII and XI), (e) P4, m = 8 (Tables V and IX), (f) T15, m = 12 (Tables VI
and X), and (g) LA7e, m = 24 (Tables VIII and XII). The snapshots are taken from the central part of the lattice at times needed for the system
to reach the jamming state. A corresponding lattice animal is shown in the lower right corner of each panel (a)–(g). The objects are colored
with 12 colors randomly selected for each one.

with a larger number of possible placements, a longer time is
needed to examine all isolated empty locations that are left
in the late times of the process. Hence, the increase in the
number of possible placements of the shape reduces the rate
of single particle adsorption. This extends the mean waiting
time between consecutive and successful deposition events,
and the approach to the jamming state is slower.

IV. CONCLUDING REMARKS

In the case of irreversible deposition on planar lattices, it is
well established that the kinetics of the late stage of deposition
is determined exclusively with the symmetry properties of the

shapes. For the shapes made by self-avoiding lattice steps
on the 2D triangular lattice, relaxation time σ [Eq. (1)] is
inversely proportional to the order of symmetry axis ns of
the shape, σ = 6/ns [18,20]. However, for a planar shape
with symmetry order ns on a triangular lattice, the number of
possible orientations is given exactly by the expression 6/nn.
To generalise this result to 3D shapes, we have performed
extensive numerical simulations of the RSA using large col-
lections of objects (“lattice animals”) made by connected sites
on a simple 3D cubic lattice.

As expected, the approach to the jamming limit θJ was
found to be exponential for all the lattice animals. It was
shown that the relaxation time σ [Eq. (1)] is equal to the
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FIG. 2. Plots of ln[θJ − θ (t )] versus t for objects (M), (LA7a),
and (LA8a) with one possible placement (Tables V and VIII).
Additionally, the slanted straight line with the slope −1/σ = −1 is
shown, indicating the late-time RSA behavior and is guide to the eye.

number of different orientations m that lattice animals can
take when placed on a cubic lattice [Eq. (5)]. To confirm this
finding, we have analyzed all lattice animals of size n = 1,
2, 3, 4, and 5 (41 different shapes), eight lattice animals of
size n = 6 and eleven objects of size n � 7. In other words,
the coverage kinetics is slowed down with the increase in the
number of possible placements m of the shape. Indeed, the
mean waiting time between consecutive deposition events
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FIG. 3. Plots of ln[θJ − θ (t )] versus t for: (a) objects (D),
(LA8b), and (LA12) with three possible placements (Tables V
and VIII); (b) k-mers (k = 2, 3, 4, 5, 6, 7). Additionally, the slanted
straight lines with the slope −1/σ = −1/3 are shown, indicating the
late-time RSA behavior and are guide to the eye.
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FIG. 4. Plots of ln[θJ − θ (t )] versus t for: (a) object (Ba6) with
four possible placements (Table VII); (b) objects (LA7c), (Xb6),
and (LA13) with six possible placements (Tables VII and VIII).
Additionally, the slanted straight lines with the slopes −1/σ =
−1/4 (a), −1/6 (b) are shown, indicating the late-time RSA behav-
ior and are guide to the eye.
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FIG. 5. Plots of ln[θJ − θ (t )] versus t for: (a) objects (P4),
(LA10), and (LA7d) with eight possible placements (Tables V and
VIII); (b) objects (V3), (T15), and (Th6) with 12 possible placements
(Tables V, VI, and VII). Additionally, the slanted straight lines with
the slopes −1/σ = −1/8 (a),−1/12 (b) are shown, indicating the
late-time RSA behavior and are guide to the eye.
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FIG. 6. Plots of ln[θJ − θ (t )] versus t for objects (N5), (L35),
and (LA7e) with 24 possible placements (Tables VI and VIII).
Additionally, the slanted straight line with the slope −1/σ = −1/24
is shown, indicating the late-time RSA behavior and is guide to the
eye.

extends with m, so that the approach to the jamming state is
slower.

We have pointed out that for sufficiently large objects,
changing of the shape has considerably more influence on
the jamming density than increasing of the object size. These
findings are in an excellent qualitative agreement with the
results of Karayiannis and Laso [60,61]. They proposed a
Monte Carlo scheme which is able to efficiently sample
freely-jointed chains of hard spheres even up to the maximally
random jammed (MRJ) state. In this model, chain connectiv-
ity imposes constraints that force bonded spheres to adopt
specific local configurations. As an interesting result, the
constraints imposed by chain connectivity were found to play
a more important role in determining the MRJ states than the
size of flexible chains. However, our results suggest that there
is no correlation between the number of possible orientations
of the object and the corresponding values of the jamming
density θJ. In Ref. [20], special attention is paid to the behavior
of probability pinsert for the insertion of a new particle onto a
planar triangular lattice during the deposition process. Shape
factor, defined as the degree to which a particle is similar to
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FIG. 7. Plots of ln[θJ − θ (t )] versus t for objects (LA8a),
(LA12), (Ba6), (LA13), (LA7d), (Th6), and (LA7e) from
Tables VII and VIII. The curves correspond to objects with the
various number of possible orientations, m, as indicated in the leg-
end. Additionally, the slanted straight lines with the slope −1/σ =
−1, −1/3, −1/4, −1/6, −1/8, −1/12, −1/24 are shown, indi-
cating the late-time RSA behavior and are guides to the eye.

a circle, is associated with the evolution of probability pinsert.
It would be interesting to perform a similar investigation with
3D objects of various shapes within the context of the shape
descriptors, such as aspect ratios, compactness of the object,
smoothness of the perimeter, and the shape factor. As an open
possibility for the future, we think that the three-dimensional
model presented in this work can be generalized to mixtures
of several kinds of 3D objects.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education,
Science, and Technological Development of the Republic
of Serbia under Projects No. ON171017 and No. III45016,
and by the European Commission under H2020 Project
VI-SEEM, Grant No. 675121. Numerical simulations were
run on the PARADOX supercomputing facility at the Sci-
entific Computing Laboratory of the Institute of Physics
Belgrade.

[1] T. Aste, Variations around disordered close packing, J. Phys.:
Condens. Matter 17, S2361 (2005).

[2] S. Torquato and F. H. Stillinger, Jammed hard-particle pack-
ings: From Kepler to Bernal and beyond, Rev. Mod. Phys. 82,
2633 (2010).

[3] P. M. Chaikin and T. C. Lubensky, Principles of Con-
densed Matter Physics (Cambridge University Press, New York,
1995).

[4] A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R.
Connelly, S. Torquato, and P. M. Chaikin, Improving the den-
sity of jammed disordered packings using ellipsoids, Science
303, 990 (2004).

[5] A. Dabrowski, Adsorption—From theory to practice, Adv.
Colloid Interface Sci. 93, 135 (2001).

[6] V. Privman (ed.), Colloids Surf., A 165, 1 (2000) (a collection
of review articles).

[7] A. Cadilhe, N. A. M. Araújo, and V. Privman, Random sequen-
tial adsorption: From continuum to lattice and pre-patterned
substrates, J. Phys.: Condens. Matter 19, 065124 (2007).

[8] J. W. Evans, Random and cooperative sequential adsorption,
Rev. Mod. Phys. 65, 1281 (1993).

[9] E. Ben-Naim and P. L. Krapivsky, On irreversible deposition
on disordered substrates, J. Phys. A: Math. Gen. 27, 3575
(1994).

012119-13

https://doi.org/10.1088/0953-8984/17/24/001
https://doi.org/10.1088/0953-8984/17/24/001
https://doi.org/10.1088/0953-8984/17/24/001
https://doi.org/10.1088/0953-8984/17/24/001
https://doi.org/10.1103/RevModPhys.82.2633
https://doi.org/10.1103/RevModPhys.82.2633
https://doi.org/10.1103/RevModPhys.82.2633
https://doi.org/10.1103/RevModPhys.82.2633
https://doi.org/10.1126/science.1093010
https://doi.org/10.1126/science.1093010
https://doi.org/10.1126/science.1093010
https://doi.org/10.1126/science.1093010
https://doi.org/10.1016/S0001-8686(00)00082-8
https://doi.org/10.1016/S0001-8686(00)00082-8
https://doi.org/10.1016/S0001-8686(00)00082-8
https://doi.org/10.1016/S0001-8686(00)00082-8
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1088/0305-4470/27/10/031
https://doi.org/10.1088/0305-4470/27/10/031
https://doi.org/10.1088/0305-4470/27/10/031
https://doi.org/10.1088/0305-4470/27/10/031
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adsorption of unoriented rectangles at saturation, Phys. Rev. E
98, 063310 (2018).
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a b s t r a c t

This paper examines the influence of environmental perturbations on dynamical regimes
of model ecosystems. We study a stochastic lattice model describing the dynamics
of a group chasing and escaping between predators and prey. The model includes
smart pursuit (predators to prey) and evasion (prey from predators). Both species can
affect their movement by visual perception within their finite sighting range. Non-
conservative processes that change the number of individuals within the population,
such as breeding and physiological dying, are implemented in the model. The model
contains five parameters that control the breeding and physiological dying of predators
and prey: the birth and two death rates of predators and two parameters characterizing
the birth and death of prey. We study the response of our model of group chase
and escape to sudden perturbations in values of parameters that characterize the non-
conservative processes. Temporal dependencies of the number of predators and prey are
compared for various perturbation events with different abrupt changes of probabilities
affecting the non-conservative processes.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Simulation of population dynamics is a central research theme in computational biology, which contributes to
understanding the interactions between predators and prey. Classical models of predator–prey systems were developed
first by Lotka and Volterra [1–3]. They showed that simple predator–prey models may exhibit limit cycles during which the
populations of both species have periodic oscillations in time with a 1/4-period lag between predator and prey [4]. Such
oscillations in species abundances have successfully been observed in real-world systems [5–8]. As the field developed, the
commonly used model schemes shifted from continuous ones based on a differential equation towards discrete and agent-
based models [9–13]. Furthermore, the predator–prey systems have been studied in various contexts, such as robotics,
game theory and ecology [14–19].

Many complex systems have impulsive dynamical behavior due to abrupt jumps of some parameters affecting the
system at specific instants during the evolving processes. Ecological systems are often affected by environmental changes
and human activities, such as vaccination, medical treatment of disease, sterilization, etc. For example, numerous species
are prone to extinction due to temperature fluctuations or climatic changes, and pollution events [20–26]. Discrete nature
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of human actions or environmental changes lead to population densities changing very rapidly in a short time interval.
The maintenance of existing population density requires information as to how organisms react to intended as well as
unintended abrupt changes.

Short-term environmental perturbations (such as heavy rainfall, severe fires, or storms) are likely to cause the sudden
death of healthy individuals within a population, which would not exhibit any changes in their biological variables within
a population at a stable state. These perturbations are often assumed to be in the form of impulses in the modeling process.
However, ecosystems can be exposed to various types of environmental perturbations for long periods of time, which
may result in an enduring alteration of population and trait dynamics. Long-term effects of environmental perturbations
frequently cause modification of the biological properties of species, such as species reproduction, mortality rates and
other vital rates [23,27]. In this paper, we develop a stochastic lattice model describing the dynamics of a group chasing
and escaping between predators and prey [28,29]. Non-conservative processes, such as breeding and physiological dying,
are implemented in the model [30,31]. We study the dynamics of coexistence that arises due to the introducing of the
abrupt changes in the values of parameters that characterize the non-conservative processes into the model.

Our model is based on the agent-based approach to simulate numerically collective chasing and escaping in a discrete
space and time with periodic boundary conditions, similar to the model of hunting in groups proposed by Kamimura
and Ohira [28,32–35]. In the following, we sketch the main features of our model, along the lines of Ref. [29]. Predators
and prey are initially placed randomly on the sites of the lattice as pointlike particles. Thus, each site is either empty
or occupied by a predator or a prey. Predators can sense the positions of the prey at an arbitrarily predefined distance
and they try to move to one of the nearest neighboring sites in order to decrease the distance from the nearest prey. As
predators move and approach their prey, the prey try to evade the capture by making a distance of one lattice spacing in
a direction away from the nearest predator. Prey is caught upon the first encounter with a predator.

Distances in the present study are measured by the L1 (‘‘Manhattan’’) metric. Manhattan distance between sites S1 and
S2 on a square lattice is equal to the length of all paths connecting S1 and S2 sites along horizontal and vertical segments,
without ever going back. In reality, predators search for prey in their vicinities. Similarly, prey can recognize the existence
of nearby predators. Therefore, each species has its specific sighting range σ in which it can see the other species. Sighting
range σ describes their skills at chasing or escaping. In that sense the model includes the smart pursuit of predators to
prey and the escape of prey from predators. Analysis of the capture dynamics in the present study is limited to species
with the same sighting ranges, i.e., σ = 2 [29]. If the value of σ equals zero, the movement is equivalent to the random
walkers [28,31,36,37].

The model contains five parameters that control the breeding and physiological dying of predators and prey: the birth
and two death rates of predators and two parameters characterizing the birth and death of prey. The goal of the present
study is to investigate the short-time response of our model of group chase and escape to sudden perturbations in the
values of parameters that characterize the non-conservative processes. In addition, we present and discuss the numerical
results regarding the time evolution of the number of predators and prey for long periods of time after the abrupt changes
of parameters affecting the non-conservative processes. In this paper we show that the short-time behavior is always
linked to the forgetting of the initial conditions through the pursuit-evasion processes. Our numerical results suggest
that this short-time evolving process is often accompanied with high amplitudes of population dynamics. The short-term
memory effects observed in our model are reflected in the fact that the future evolution of the population densities
after time tw > 0 depends not only on the densities of predators and prey at the moment tw , but also on the previous
evolving history. This feature concerns the coding of the system history in various spatial configurations of predators
and prey on the habitat. Furthermore, we try to demonstrate that the number of predators and prey in the long-term
state are unambiguously determined by the probabilities for all nonconservative processes in the system. As consequence,
quasi-steady state regime corresponding to perturbed probabilities does not depend on the moment of their introduction.

An outline of this paper is as follows. Section 2 describes the details of the model and simulations. In Section 3 results
of numerical simulation are presented and discussed. Finally, Section 4 contains some additional comments and final
remarks.

2. Definition of the model and the simulation method

The habitat where two interacting species survive and proliferate is represented by a two-dimensional square lattice
of linear size L with periodic boundary conditions. In our model, the lattice is initially empty. To prepare the environment
in the initially disordered state, we randomly distributed N (0)

1 predators and N (0)
2 prey as monomers. Spatial distribution

of species on the lattice is generated using the random sequential adsorption (RSA) method [38,39]. Consequently, each
site can be either empty or occupied by one particle: by a predator (chaser) or prey (escapee).

After placing the predators and the prey up to the chosen densities ρ
(0)
1 = N (0)

1 /L2 and ρ
(0)
2 = N (0)

2 /L2, we switch
the species deposition events off and add the diffusive dynamics into the system. At this stage, apart from the hard core
interaction between the species, there are rules governing the dynamic processes at the individual level. Movement within
the lattice and the population dynamics are modeled as discrete time processes. At each Monte Carlo step a lattice site is
selected at random. If the selected site is unoccupied, the configuration remains unchanged and a new site is selected at
random. If the selected site is occupied by a predator or a prey, each species follow the hopping rules described below.
After each Monte Carlo step, the time t is updated, t → t + 1/L2 and the process continues by choosing a new lattice site
at random.
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We assume that each species has its specific sighting range σ in which it can see the other species. In other words,
predator has a certain pursuit region within which it can locate prey; simultaneously, prey has an escape zone inside which
it can detect predators. The metric used in our model is L1, so e.g. the site (x, y) is at distance |x| + |y| from the origin,
with lattice spacing equal to unity. Here, unlike the previous model [29], both predators and prey have a sighting range
σ = 2, which corresponds to the region around the individuals that includes the first and second neighbors. Accordingly,
the decision for every step both of the predator and prey depends on the individuals that are found at the places of the
first and second neighbors.

Suppose that predator is placed in a randomly selected site of the lattice. If the first neighbors of the selected site are
entirely occupied with predators, the chosen predator stays at its original position. Then, the time t is updated, and the
process continues by choosing a new lattice site at random. Suppose that some of the first neighbors of the selected site
are occupied with prey. Then we randomly select a prey among them, remove the selected prey from the lattice, and move
the chosen predator to this empty place. However, if the first neighbors of the chosen predator are not occupied with
prey, the predator executes a jump as long as there is at least one empty nearest neighbor site. In this case, the predator
moves to the empty adjacent site that is surrounded by the highest number of prey, n(max)

2 , as its first neighbors. If two
or more empty nearest neighbor sites correspond to the same highest number of prey n(max)

2 , one of them is selected at
random.

Now, suppose that a prey is placed in a randomly selected site of the lattice. If there are no empty nearest neighbors
of the selected site, the chosen prey does not change its position, and the time increases by 1/L2. The process continues
by choosing a new lattice site at random. If the selected site has empty adjacent sites, the chosen prey jumps to the
empty nearest neighbor site that is surrounded by the lowest number of predators, n(min)

1 , as its first neighbors. If two or
more empty nearest neighbor sites correspond to the same lowest number of predators n(min)

1 , one of them is selected at
random. It must be emphasized that prey moves to the selected site only if n(min)

1 is less than or equal to the number of
predators surrounding it in its original position.

The set of rules described above mimics the smart pursuit-evasion processes [29]. The competitive evolution of the
populations of predators and prey is also governed by additional set of rules which defines the population dynamics. Non-
conservative processes that change the number of individuals (size of the population), such as breeding and physiological
dying, are also implemented in the model. We introduce the following five non-conservative processes into the model.
For predators:

• Predators that have eaten a prey during the displacement can give an offspring in the previously occupied site, with
probability P fed

1r (birth probability of predators). In order to breed, it is considered that the predator must be strong
enough, i.e., it must have food available in immediate surroundings.

• Predators that have not eaten a prey during the displacement can die with probability Punfed
1d . It is assumed that the

lack of food reduces the number of predators present in the habitat.
• Predators can suddenly die with probability P1d (death probability of predators).

For prey:

• After displacement, prey can give an offspring filling an empty previously occupied site with probability P2r (birth
probability of prey).

• A prey has a probability P2d of dying (death probability of prey).

Death probabilities of species describe quantitatively the dying that could be tied to any other factors and events in the
eco-system, such as the old age of individuals or diseases.

Based on the above definitions we formulate the algorithm as follows. If a randomly selected site of the lattice is not
empty, predator (prey) can die with probability P1d (P2d). If the predator (prey) died, it is removed from the lattice, and a
new site is selected. Otherwise, we apply the rules for pursuit-evasion movement for individuals explained above. If the
randomly selected predator survives, we check whether it ate the prey during the displacement. If so, the predator leaves
an offspring in the previously occupied site, with probability P fed

1r . However, if the predator did not eat the prey during
the displacement, it dies with probability Punfed

1d . Similarly, if the randomly selected prey survives, we check whether it
moved into a new position. If so, the prey leaves an offspring in the previously occupied site, with probability P2r.

The time t is counted by the number of attempts to select a lattice site and scaled by the total number of lattice sites
N = L2. Since in one Monte Carlo time step each lattice site is randomly checked once on the average, it can be considered
that all predators and prey are active at all times and that none of the species have a priority in the number of attempts
to make a move. In our study, the typical value of lattice size is L = 128, and the simulation data are averaged over 128
independent runs.

3. Results

At first, we present and discuss the numerical results regarding the time evolution of the normalized number of
predators Ñ1(t) = N1(t)/N

(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 on the lattice of size L = 128, for the representative set

of probabilities S1 = {P fed
1r = 0.25, Punfed

1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01} that characterize the

3
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Fig. 1. (a) Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

L = 128. (b) Shown here are the temporal dependences of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between t1 = 2300
and t2 = 3400, obtained for the same conditions as in panel (a). The values of probabilities that characterize the non-conservative processes are
S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}. The initial numbers of species are chosen as N (0)

1 = 720 and N (0)
2 = 800.

non-conservative processes (see, Fig. 1(a)). The initial numbers of species were chosen as N (0)
1 = 720 and N (0)

2 = 800,
corresponding to the initial densities ρ

(0)
1 = N (0)

1 /L2 = 0.0439 and ρ
(0)
2 = N (0)

2 /L2 = 0.0488, with the ratio ρ
(0)
1 /ρ

(0)
2 =

N (0)
1 /N (0)

2 = 0.9. It can be seen that in the initial stage, during which the flocks of species are not formed, the number
of predators and prey oscillates periodically with large amplitudes. However, the amplitude of oscillation decreases with
time. After a short transient period, the system arrives at a quasi-steady state. This state corresponds to a coexisting
state when the densities of predators and prey oscillate (fluctuate) around some ‘‘average’’ values, which do not change
in time. More details about the temporal behavior of the number of predators and prey for the late stage of evolution,
in a time range between t1 = 2300 and t2 = 3400, are shown in Fig. 1(b). A common prediction can be observed:
prey oscillations precede predator oscillations by up to a quarter of the cycle period [4]. When predators are sparse, prey
increase in the abundance. As the number of prey increases, predators also increase in the abundance. When the predators
reach sufficiently high densities, the prey population is driven down to low densities. With a lack of prey, the predator
population reduces, and the cycle repeats.

In addition, Fig. 2 shows the temporal evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey

Ñ2(t) = N2(t)/N
(0)
2 for the set of probabilities S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01},

and initial numbers of species N (0)
1 = 720 and N (0)

2 = 800. For these conditions, we get qualitatively the same results as in
Fig. 1. The results presented in Figs. 1 and 2 are used to establish the response in the evolution of the density of species
to a change in the probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d} at a given moment tw .

It is interesting to compare the oscillatory behavior of the number of predators and prey obtained using the two
different sets (S1, S2) of probabilities that characterize the non-conservative processes (see, Figs. 1(b) and 2(b)). In the
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Fig. 2. (a) Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

L = 128. (b) Shown here are the temporal dependences of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between t1 = 2300
and t2 = 3400, obtained for the same conditions as in panel (a). The values of probabilities that characterize the non-conservative processes are
S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}. The initial numbers of species are chosen as N (0)

1 = 720 and N (0)
2 = 800.

second set of parameters S2, the probabilities P fed
1r and Punfed

1d for the non-conservative processes related to predator feeding
are significantly reduced. The predator–prey cycles are based on a feeding relationship between two species. Therefore,
we can consider that the coupling of the predator and prey systems is much stronger in the case of parameters from the
set S1. Consequently, the amplitude of oscillations of predators in the quasi-stationary regime corresponding to the set
of parameters S2 is significantly smaller than in the case of the set of parameters S1.

In Fig. 3 we show the temporal dependence of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey

Ñ2(t) = N2(t)/N
(0)
2 on the lattices of size L = 64 and 128. It is important to note that the initial densities of predators

ρ
(0)
1 and prey ρ

(0)
2 have not changed with the lattice size L. Numerical results for Ñ1(t) and Ñ2(t) in Fig. 3 are given for the

initial densities ρ
(0)
1 = 0.0439 and ρ

(0)
2 = 0.0488 for both lattices. It is evident that the time evolution of the normalized

number of species does not depend on the lattice size L. However, for the lattice of fixed size L, time evolution of Ñ1(t)
and Ñ2(t) depends on the initial number of predators N (0)

1 and prey N (0)
2 . Fig. 4 shows the dependence of the mean number

of predators ⟨N1⟩ and prey ⟨N2⟩ in a quasi-stationary state on their initial number. It can be seen that the behavior of the
system in the quasi-steady state ceases to depend on the initial conditions if the initial density of predators and prey is
high enough. Indeed, the lower is the concentration of the targets (prey), the longer is the mean distance that a chaser
(predator) crosses to find a target and catch it. Thus, at low densities of species, group chase with sight-limited chasers
becomes very inefficient. Consequently, in the present paper, sufficiently large initial densities of species are chosen so
that the average values of the number of predators and prey in the long-term state are unambiguously determined by
the probabilities for all nonconservative processes in the system.
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Fig. 3. Time dependences of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattices of size L = 64 and 128,

as indicated in the legend. Results shown here are obtained for the same initial densities ρ
(0)
1 = 0.0439 and ρ

(0)
2 = 0.0488, for both lattices. Initial

values for the number of predators/prey are N (0)
1 /N (0)

2 = 180/200, 720/800 for L = 64,128, respectively. The values of probabilities that characterize
the non-conservative processes are S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 4. Shown here is the dependence of the mean number of predators and prey in a quasi-stationary state on their initial number. The values of
probabilities that characterize the non-conservative processes are: S = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}. The lattice

size value is L = 128.

One of the aims of our study were the properties of the long-term state attained by a population. We have found
three possible states: (S1) the coexisting one with prey and predators, (S2) the absorbing one with prey only, and (S3) the
empty one where no individual survived. Which one is the final state of a given population depends on the parameters
characterizing the population dynamics. In the following example, we demonstrate the described behavior of the model.
From the set of probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d}, three of them are fixed, i.e. we put P1d = 0.05, P2r = 0.20

and P2d = 0.05. Probabilities P fed
1r and Punfed

1d are varied in [0, 1] range, with a step of 0.1. In Fig. 5 we show the average
values of the normalized number of predators Ñ1(t) = N1(t)/N

(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 in the long-term state

for the full range of probabilities P fed
1r , Punfed

1d ∈ [0, 1]. An absorbing state (S2) can be reached for each probability value
P fed
1r ∈ [0, 1] if the probability Punfed

1d is large enough. It corresponds to the part of the surface in Fig. 5(a) for which the
number of predators is equal to zero. Figs. 5(a) and 5(b) show that the system asymptotically tends to the state (S3) when
P fed
1r → 1 and Punfed

1d → 0. It can be seen from Fig. 5 that all other areas correspond to the coexisting state (S1). In order to
show different possible states in a more clear manner, we presented our results also in Fig. 6 which is a two-dimensional
plot where we highlighted the states (S1), (S2), (S3), and (S1&2) which is an area of both (S1) and (S2) states. In other
words, the individual simulation runs corresponding to the domain (S1&S2) can be finished in one of the two final states:
adsorbing or coexisting one. In the case of coexisting final state (S1), the number of prey is very high; it covers a large part
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Fig. 5. Shown here is the surface plot of the normalized number of (a) predators Ñ1 = N1(t)/N
(0)
1 and (b) prey Ñ2 = N2(t)/N

(0)
2 in the long-term

state for the full range of the probabilities P fed
1r , Punfed

1d ∈ [0, 1]. Initial densities of both species on the lattice of size L = 128 are the same,
ρ
(0)
1 = ρ

(0)
2 = 0.0488, which corresponds to N (0)

1 = N (0)
2 = 800 predators and prey at t = 0.

of the lattice, but they coexist with a small number of predators. Clear boundaries between the states could be obtained
by performing many more simulations with step that is less than 0.1.

3.1. Response properties of the model

In this section, we present the results of the simulations for the previously described model subject to abrupt changes
in the values of probabilities {P fed

1r , Punfed
1d , P1d; P2r, P2d} that characterize the non-conservative processes. Starting

from an initially disordered state, with randomly distributed predators and prey on the lattice, the system evolves at
fixed probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d}. At a certain time, tw , probability value for some selected non-

conservative process P ∈ S changes from P(I) to another value P(II). During the further evolution of the system, the
perturbed probability value P(II) does not change.

At first, we present the results of simulations for the cases with abrupt changes of probabilities P2r and P2d that
characterize the non-conservative processes of prey. In both cases, the system evolves to the time tw = 2500 with constant
probabilities S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}. Fig. 7 shows the response in the

evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) to an abrupt decrease in the birth probability of
prey P2r(I) = 0.20 → P2r(II) = 0.10 at instant tw = 2500. When P2r is abruptly lowered, the first effect is a sharp drop in
the number of prey. This is followed by a significant reduction in the number of predators due to a lack of food. After the
transient oscillatory regime, the system arrives at a quasi-steady state when the average number of predators remains
reduced, but the average number of prey has slightly increased for the chosen parameter set.
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Fig. 6. Two-dimensional representation of full range of probabilities P fed
1r , Punfed

1d ∈ [0, 1] that shows possible states of the model, (S1) — the coexisting
one, (S2) — with prey only, (S3) — the empty one, and (S1&S2) — with both (S1) and (S2) states.

Fig. 7. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of the

probability P2r(I) = 0.20 → P2r(II) = 0.10 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 8 shows the response in the evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) to an abrupt
increase in the death probability of prey P2d(I) = 0.01 → P2d(II) = 0.05 at instant tw = 2500. These results were obtained
for the initial probability set S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}, which is identical

to the previous one. Comparing Figs. 7 and 8, it can be seen that the response of the system to an increase in the death
probability is very similar to its behavior when reducing the birth probability of prey. At short times after the probability
P2d is suddenly increased, we observe an abrupt decrease in the number of prey, followed by the reduction of the number
of predators. After the transient oscillatory regime, the average number of predators is decreased because there is not
enough available food. However, the average number of prey remains the same because there are fewer predators to
catch them.

In the following, we present the results of simulations for the cases with the abrupt changes of probabilities
{P fed

1r , Punfed
1d , P1d} that characterize the non-conservative processes of predators. These simulations are performed for

two sets of initial probabilities, S1 = {P fed
1r = 0.25, Punfed

1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01} and
S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01} (see Figs. 1 and 2 showing the unperturbed

evolution of the system).
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Fig. 8. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of the

probability P2d(I) = 0.01 → P2d(II) = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 9. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of the

probability P1d(I) = 0.01 → P1d(II) = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

In Fig. 9 we show the time evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) for the first set of
initial probabilities S1, when the death probability of predators P1d is changed from P1d(I) = 0.01 to P1d(II) = 0.05 at
instant tw = 2500. We can see that for short times after an abrupt change of P1d the decay of the number of predators
is fast. At short times, predator deficiency leads to a rapid increase in the number of prey. However, the increased food
availability and the better nutrition of predators maintain their presence on the habitat after the transient oscillatory
regime with almost the same average number as before the system perturbation. In other words, increasing the probability
P1d has not reduced the number of predators on the habitat, but it increased the average number of prey.

It must be stressed that the density evolution of predators and prey at short times after initialization (t = 0), or after an
abrupt change of probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d} at instant t = tw , depends not only on their density at these

instants, but also on the corresponding spatial distribution of agents on the lattice. Initial spatial distribution of agents on
the lattice depends on the method used to build an initial distribution of individuals within the population on the lattice.
Spatial distribution of agents generated at moment tw = 2500 represents the initial condition for further evolution of the
system with new (perturbed) probabilities that characterize the non-conservative processes. It is clear that the spatial
distributions of system agents in time tw = 2500 are quite different from the spatial distributions generated by the RSA
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Fig. 10. Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

L = 128. The values of probabilities that characterize the non-conservative processes are S = {P fed
1r = 0.25, Punfed

1d = 0.10, P1d = 0.01; P2r =

0.20, P2d = 0.05}. Solid lines: The results from Fig. 8, which are translated along the x-axis, t → t − tw . Dashed lines: Results obtained in the case
when the initial configuration of agents are generated by the RSA method.

Fig. 11. Time dependences of the number of the normalized number of predators Ñ1 = N1(t)/N
(0)
1 and prey Ñ2 = N2(t)/N

(0)
2 on the lattice of size

L = 128. The values of probabilities that characterize the non-conservative processes are S = {P fed
1r = 0.25, Punfed

1d = 0.10, P1d = 0.05; P2r =

0.20, P2d = 0.01}. Solid lines: The results from Fig. 9, which are translated along the x-axis, t → t − tw . Dashed lines: Results obtained in the case
when the initial configuration of agents are generated by the RSA method.

method. Therefore, the responses of the system at short times after initialization (t = 0) and after an abrupt change of the
any of probabilities S = {P fed

1r , Punfed
1d , P1d; P2r, P2d} at the time tw = 2500 are quite different. In Figs. 10 and 11 we show

such comparisons. This can be explained by the memory effect, which is a common phenomenon in out-of-equilibrium
systems. It is well known that the system can be found in states, characterized by the same density of predators and prey,
that have different spatial distribution of agents on the lattice. Memory of the hunting history up to the densities ρ1(t)
and ρ2(t) is encoded in the arrangement of the agents in the environment. This implies that the knowledge of the density
of agents ρ1(t) and ρ2(t) is not sufficient to predict the further evolution of the system. This feature concerns the coding
of the system history in the ‘‘microscopic’’ configurations.

Furthermore, a quasi-steady state regime corresponding to perturbed probabilities does not depend on the moment of
their introduction. This conclusion is confirmed by the results shown in Figs. 10 and 11. It can be seen that using different
moments (t = 0 or t = tw = 2500) of introducing the perturbed values of probabilities for non-conservative processes
give quantitatively the same results for the temporal evolution of Ñ1(t) and Ñ2(t) in the quasi-steady state regime.

In order to gain a better insight into the effect of a sudden increase in P1d on the population dynamics, the same set
of numerical experiments is carried out as in Fig. 9, with the only difference that the set of initial probabilities for the
non-conservative processes is changed from S1 to S2. These results are shown in Fig. 12. By comparing the results shown
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Fig. 12. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

the probability P1d(I) = 0.01 → P1d = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw are
S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}.

in Figs. 9 and 12, it is obvious that the same kind of numerical experiments for different initial probabilities S1 and S2
produce qualitatively similar results for the time evolution of the number of predators and prey. However, small changes
in the system behavior are possible. From Fig. 12, it is evident that the change in the initial probabilities S1 → S2 has led
to a shortening of the transient oscillatory regime. The sudden increase in the death probability of predators P1d causes
an increase in the number of prey. However, after the transient regime, the number of predators slightly decreased, in
the contrary to the behavior of the system shown in Fig. 9.

In the following, we shall demonstrate that an abrupt decrease in the birth probability of predators P fed
1r has a very

similar effect on the systems evolution as an abrupt increase of their death probability P1d. Fig. 13 shows the response in
the evolution of the normalized number of predators Ñ1(t) and prey Ñ2(t) for the set of initial probabilities S1, when the
birth probability of predators P fed

1r is decreased from P fed
1r (I) = 0.25 to P fed

1r (II) = 0.15 at instant tw = 2500. Fig. 14 shows
the same time dependences, but for the system whose initial probabilities are given by S2 and the birth probability of
predators P fed

1r is abruptly changed from P fed
1r (I) = 0.09 to P fed

1r (II) = 0.05. Similarly to the results presented in Figs. 9 and
12, here we observe a fast decay of the number of predators for short times after an abrupt change of P fed

1r . At short times
this leads to a rapid increase in the number of prey. As previously mentioned, better food availability favorably affects
the presence of predators in the habitat, so that their number increases slightly after the transient regime.

Inadequate and insufficient nutrition can lead to increased predator mortality. In our model, the predators that have not
eaten any prey in the previous MC step can die with probability Punfed

1d . In Figs. 15 and 16 we show the time evolution of the
normalized number of predators Ñ1(t) and prey Ñ2(t), when the death probability of predators Punfed

1d is abruptly doubled
at instant tw = 2500. In Figs. 15 and 16, the results are shown for the sets of initial probabilities S1 and S2, respectively.
After an abrupt increase of the probability Punfed

1d , large and long-lasting oscillations in the number of predators occur,
followed by large oscillations in the number of prey. As expected, the average number of prey is increased compared to
the one observed before the perturbation, but the average number of predators stays almost the same. An increase in the
number of prey makes the food more available, which maintains the number of predators.

4. Concluding remarks

In this paper, we have developed an intuitively clear framework for understanding the impacts of environmental
perturbations on the population dynamics of the predator–prey systems. We have studied a stochastic lattice model
describing a group chase and escape with sight-limited predators and prey by numerical simulations. Five probabilities
that control the breeding and physiological dying of predators and prey were introduced into the model. Although the
probability values used in the simulations were not taken from any specific research, our results highlight some possible
consequences of perturbations in the predator–prey systems. Our MC simulations have shown that there are three possible
final states into which the dynamics could lead the populations: coexistence of predator and prey, prey only, and an empty
state in which both populations are extinct.

In the model, a perturbation was introduced at a specific instant during the evolving process by the abrupt change of
the birth and death rates. In short times, after an abrupt change probability that characterizes the chosen non-conservative
process, we have observed a sharp drop or jump in the numbers of predators and prey. Sudden changes in their number
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Fig. 13. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

the probability P fed
1r (I) = 0.25 → P fed

1r (II) = 0.15 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw
are S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 14. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

the probability P fed
1r (I) = 0.09 → P fed

1r (II) = 0.05 at tw = 2500. The values of probabilities that characterize the non-conservative processes before tw
are S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}.

are stabilized during the transient oscillatory regime. After the transient oscillatory regime, the system arrives at a quasi-
steady state when the densities of predators and prey oscillate (fluctuate) around some ‘‘average’’ values, which do not
change in time. Our simulations predict the oscillations with a 1/4-period lag between predator and prey during and
after the transient oscillatory regime. We have demonstrated that perturbation of a selected non-conservative process in
numerical experiments with different initial probabilities produces qualitatively similar results for the time evolution of
the number of predators and prey.

Our results suggest that the response of the system to an increase in the death probability of prey is very similar to
its behavior when reducing the birth probability of prey. In both cases, the average number of predators is decreased
after the transient oscillatory regime due to the lack of food. Further, we have found that an abrupt decrease in the
birth probability of predators affects the evolution of the system similarly to an abrupt increase of their death probability.
Decreasing (increasing) the birth (death) probability of predators changes their number slightly, but considerably increases
the number of prey in the quasi-steady state regime. Such perturbations lead to a rapid increase in the number of prey
at short times. Consequently, increased food availability maintains the presence of predators on the habitat after the
transient oscillatory regime.
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Fig. 15. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

the probability Punfed
1d (I) = 0.10 → Punfed

1d (II) = 0.20 at tw = 2500. The values of probabilities that characterize the non-conservative processes before
tw are S1 = {P fed

1r = 0.25, Punfed
1d = 0.10, P1d = 0.01; P2r = 0.20, P2d = 0.01}.

Fig. 16. Response in the evolution of the normalized number of predators Ñ1(t) = N1(t)/N
(0)
1 and prey Ñ2(t) = N2(t)/N

(0)
2 to an abrupt change of

the probability Punfed
1d (I) = 0.05 → Punfed

1d (II) = 0.10 at tw = 2500. The values of probabilities that characterize the non-conservative processes before
tw are S2 = {P fed

1r = 0.09, Punfed
1d = 0.05, P1d = 0.01; P2r = 0.15, P2d = 0.01}.

This study could serve as a good basis for further studies of the dynamics of multi-species communities that are exposed
to sudden environmental perturbations. It would be interesting to perform a similar investigation in a heterogeneous
landscape, i.e., in an environment that contains obstacles [29]. This would allow us to study the role that rapid changes
in the spatial structure of the natural habitat play in the time evolution of the number of predators and prey.
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Abstract. In order to understand how a heterogeneous habitat affects the pop-
ulation dynamics of the predator–prey system, a spatially explicit lattice model
consisting of predators, prey and obstacles is constructed. The model includes
smart pursuit (predators to prey) and evasion (prey from predators). Both spe-
cies can affect their movement by visual perception within their finite sighting
range. Non-conservative processes that change the number of individuals within
the population, such as breeding and physiological dying, are implemented in
the model. Obstacles are represented by non-overlapping lattice shapes that are
randomly placed on the lattice. In the absence of obstacles, numerical simula-
tions reveal regular, coherent oscillations with a nearly constant predator–prey
phase difference. Numerical simulations have shown that changing the probabilit-
ies for non-conservative processes can increase or decrease the period of coherent
oscillations in species abundances and change the relative lag between coher-
ent components. After introducing obstacles into the model, we observe random
transitions between coherent and non-coherent oscillating regimes. In the non-
coherent regime, predator and prey abundances continue to oscillate, but without
a well-defined phase relationship. Our model suggests that stochasticity intro-
duced by density fluctuations of obstacles is responsible for the reversible shift
from coherent to non-coherent oscillations.
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1. Introduction

In predator–prey modeling, a system is modeled as a collection of autonomous decision-
making entities called agents. Basically, two types of agents are present in the system:
chasers (predators) and escapees (prey). A predator–prey model consists of a system of
agents and the relationships between them. Each agent individually assesses its situation
and makes decisions on the basis of a set of rules. Predator–prey models can exhibit
complex behavior patterns and provide valuable information about the dynamics of
real-world systems. For example, simple predator–prey models may exhibit limit cycles
during which the populations of both species have periodic oscillations in time with a
1/4-period lag between predator and prey [1–4]. These oscillations in species abundances
have been successfully observed in nature [5–8]. Furthermore, the predator–prey systems
have been studied in various contexts, such as robotics, game theory and ecology [9–15].

Habitat heterogeneity has long been recognized as a major factor in ecological
dynamics. Animal habitats include natural physical obstacles, such as lakes, rivers or
high mountains and areas of avoidance due to increased predation risk such as open
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areas without refuge. In addition, habitats are often intersected by long human-made
structures, such as roads, railways, power lines and pipe lines [16, 17]. These spatial het-
erogeneities can affect predator–prey interactions in two qualitatively different ways, by
providing refuge for the prey or obstacles that interfere with the movements of both
prey and predators. Predation is a consequence of predators and prey overlapping (i.e.
encounters) in time and space. Animals regulate the encounter process by deciding
which parts of resource to use, how long to use these parts, and how to travel among
them. However, anthropogenic landscape changes can alter the animals’ ability to access
resources and avoid predation, with consequences for predator–prey dynamics [18–20].
In this paper, we aim to explore how habitat spatial obstacles may affect the predator–
prey dynamics. Special attention is paid to the changes in the oscillatory properties of
species abundances caused by the presence of obstacles.

In the following, we sketch the main features of our numerical model, along the
lines of [21, 22]. Our model is an agent-based approach to simulate numerically col-
lective chasing and escaping in a discrete space with periodic boundary conditions.
Our approach is similar to the model of hunting in groups proposed by Kamimura and
Ohira [23–25]. The problem of group chase and escape in various situations and exten-
sions has been studied by computer simulations and by theoretical analysis. Examples
include the model with conversion of caught escapees into chasers [26], the group chase
and escape by three groups [27], the models with fast chasers [28], the group chase
and escape model with the chaser’s interaction [29], the off-lattice model [30], the three
aggregation strategies for the prey [31], etc. Predators and prey are initially placed ran-
domly on the sites of the square lattice as pointlike particles. Distances in the present
study are measured by the L1 (‘Manhattan’) metric. For example, the site (x, y) is at
distance |x|+ |y| from the origin, with the lattice spacing equal to unity. Both species
perform independent nearest-neighbor walks on a lattice following simple dynamical
rules, increasing or decreasing the distance from the nearest particle of the opposite
group. Each species has its specific sighting range σ in which it can see the other spe-
cies. Predators (prey) can sense the position of the prey (predator) at a predefined
distance σ and they try to move to one of the nearest neighboring sites in order to
decrease (increase) the distance from the nearest prey (predator). Therefore, the sight-
ing range σ describes their skills at chasing or escaping. Prey is caught upon the first
encounter with a predator. Analysis of the capture dynamics in the present study is
limited to species with the same sighting ranges, i.e. σ=2 [21, 22]. If the value of σ is
equal to zero, the movement is equivalent to that of random walkers [23, 26, 32, 33]. It
has been confirmed that the idea of animals using blind search strategies does not seem
to be usable since it neglects the role of animal intelligence and experience in guiding
them [34]. Consequently, we have not considered species with zero sighting range.

Non-conservative processes that change the number of individuals (size of the pop-
ulation), such as breeding and physiological dying, are also implemented in the model
[22, 32, 35–38]. The model contains five parameters that control the non-conservative
processes. The birth and two death rates of predators and two parameters character-
izing the birth and death of prey. In the presence of non-conservative processes, the
dominant type of dynamics can be characterized by regular, coherent oscillations in
time with a nearly constant predator–prey phase difference [1–4]. These oscillations in
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species abundances have been successfully observed in real-world systems or laboratory
studies with fast-reproducing organisms [5–8, 39, 40].

Furthermore, an element of stochasticity of the environment, such as obstacles
present in any natural system, is incorporated into the model. Lattice-based models
allow easy handling of obstacles of various shapes and sizes. We study the case when the
lattice is initially covered with obstacles at various concentrations. Depositing objects
(obstacles) of various shapes are formed by a small number of lattice steps on the
square lattice. The spatial distribution of the obstacles on the lattice is created using
the random sequential adsorption (RSA) method [41, 42].

In addition to the empirical data, long-running experiments with fast-reproducing
organisms also support the sustained nature of predator–prey cycles [6, 39, 40, 43–45].
Since these experiments can be carried out under controlled conditions, they are suit-
able for finding the most important parameters that influence the species dynamics and
coexistence. Recently, the potential for long-term persistence of predator–prey cycles has
been experimentally studied with a planktonic predator–prey system [45]. Experiments
were conducted with parthenogenetic rotifers as predators and unicellular algae as prey
under constant environmental conditions. Although the experiments were not perturbed
by external influences, transitions between two different dynamic regimes were identi-
fied. Periods in which the predator densities follow the prey densities with a phase lag of
about π/2 (coherent oscillations) were intersected by non-coherent oscillation regimes in
which a well-defined phase relationship between the measured signals is lost. We show
that the stochasticity introduced by the presence of obstacles can be responsible for the
reversible shift from coherent to non-coherent oscillations.

We organized the paper as follows. Section 2 describes the details of the model and
simulations. In section 3, results of numerical simulations are presented and discussed.
Section 4 contains some additional comments and final remarks. Some technical details
of the calculations are given in the appendices.

2. Definition of the model and the simulation method

The environment where two interacting species coexist is represented by a two-
dimensional square lattice of linear size L=256 with periodic boundary conditions.
The lattice is initially occupied by obstacles of various shapes and sizes. Their spatial
distribution at density ρ0 is generated using the RSA method [41, 42]. This density ρ0 is
defined as the fraction of sites of the lattice that are occupied by the obstacles. Linear
obstacles are k -mers of length ℓ= 0,1, . . . ,8, shown in table 1 as objects (A1)–(A9).

To initialize the numerical simulations, N
(0)
1 predators and N

(0)
2 prey are randomly

distributed as monomers in the lattice up to the chosen densities ρ
(0)
1 =N

(0)
1 /L2 and

ρ
(0)
2 =N

(0)
2 /L2. Again, the initial spatial distribution of species on the lattice is generated

using the RSA method [41, 42]. Accordingly, each site can be either empty or occupied
by one particle: a chaser (predator), an escapee (prey) or a particle that belongs to an
obstacle.
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Table 1. Jamming coverages ρ
(x)
J for various k -mers (x ) of length ℓ(x) on a square

lattice [46].

(x ) k -mer ℓ(x) ρ
(x)
J

(A1) 0 1.0
(A2) 1 0.9067
(A3) 2 0.8465
(A4) 3 0.8102
(A5) 4 0.7867
(A6) 5 0.7699
(A7) 6 0.7578
(A8) 7 0.7479
(A9) 8 0.7405

2.1. Movement of predators and prey

The movement of individuals with escape and pursuit behavior within the lattice is
modeled as a discrete-time process. At this stage, apart from the hard-core interaction
between the species and between the species and the obstacles, there are simple rules
governing the dynamic processes at an individual level. At each Monte Carlo step,
a lattice site is selected at random. If the chosen site is unoccupied, the positions of
predators and prey remain unchanged, and a new site is randomly selected. If a predator
or prey occupies the chosen site, each species follows the hopping rules described below.
After each Monte Carlo step, the time t is updated, t→ t+1/L2, and the process
continues by randomly choosing a new lattice site. The present model includes species
with the same sighting range, σ=2. Accordingly, the decision for every step, both of
the predator and prey depends on the individuals and obstacles that are found at the
places of the first and second neighbors.

Suppose that the predator is placed in a randomly selected site of the lattice. If
the first neighbors of the selected site are entirely occupied by obstacles and predators,
the chosen predator stays at its original position. Then, the time t is updated, and the
process continues by selecting a new lattice site at random. Suppose that some of the
first neighbors of the selected site are occupied by prey. Then, we randomly select a
prey among them, remove it from the lattice, and move the chosen predator to this
empty place. However, if the first neighbors of the selected predator are not occupied
by prey, the predator executes a jump as long as there is at least one empty nearest
neighbor site. In this case, the predator moves to the vacant adjacent site surrounded by

the highest number of prey, n
(max)
2 , as its first neighbors. If two or more empty nearest

neighbor sites correspond to the same highest number of prey, n
(max)
2 , one of them is

selected at random.
Suppose that the prey is placed in a randomly selected lattice site. If there are no

empty nearest neighbors of the selected site, the chosen prey does not change its position,
and the time increases by 1/L2. The process continues by choosing a new lattice site
at random. If the selected site has empty adjacent sites, the chosen prey jumps to
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the vacant nearest neighbor site surrounded by the lowest number of predators, n
(min)
1 ,

as its first neighbors. If two or more empty nearest neighbor sites correspond to the

same lowest number of predators, n
(min)
1 , one of them is selected at random. It must be

emphasized that a prey moves to the selected site only if n
(min)
1 is less than or equal to

the number of predators surrounding it in its original position.

2.2. Non-conservative processes

We introduce into the model the following non-conservative processes and an additional
set of rules that define the population dynamics.

Rules intended for predators:

1. Predators that have eaten prey during the displacement can leave offspring at the
previously occupied site, with probability P fed

1b (birth probability of predators). To
breed, the predator must be strong enough, i.e. it must have food available in the
immediate vicinity.

2. Predators that have not eaten prey during the displacement can die with probability
P unfed
1d . It is assumed that the lack of food reduces the number of predators in the

habitat.

3. Predators can suddenly die with probability P1d (death probability of predators).

Rules intended for prey:

1. After displacement, prey can leave offspring filling an empty previously occupied site
with probability P2b (birth probability of prey).

2. Prey has a probability P2d of dying (death probability of prey).

Species mortality probabilities P1d and P2d quantitatively describe dying that could
be related to various factors and events in the ecosystem, such as the age of individuals or
diseases. Here, we list the probability values that characterize non-conservative processes
as sequences of numbers with the following structure: S = {P fed

1b , P
unfed
1d , P1d; P2b, P2d}.

2.3. Algorithm

Based on the above definitions and rules, we formulate the algorithm as follows. If a
randomly selected site of the lattice is not empty, the predator (prey) can die with
probability P1d (P2d). If the predator (prey) dies, it is removed from the lattice, and a
new site is selected. Otherwise, we apply the rules for the pursuit–evasion movement for
individuals explained above (section 2.1). If the randomly selected predator survives,
we check whether it ate the prey during the displacement. If so, the predator leaves an
offspring at the previously occupied site, with probability P fed

1b . However, if the predator
did not eat the prey during the displacement, it dies with probability P unfed

1d . Similarly,
if the randomly selected prey survives, we check whether it moved into a new position.
If so, the prey leaves an offspring at the previously occupied site, with probability P2b.
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3. Results and discussion

In the first part of this section, the group spatial chase and escape phenomena are
analyzed in the environment without heterogeneities. Then, population dynamics are
studied in an environment that contains spatial obstacles.

3.1. Dynamics of the system without obstacles

In figures 1 and 2, we present numerical results regarding the time evolution of the

normalized number of predators, Ñ1(t) =N1(t)/N
(0)
1 , and prey, Ñ2(t) =N2(t)/N

(0)
2 , for

the two representative sets of probabilities that characterize the non-conservative pro-
cesses: S1 = {0.09,0.05,0.01;0.15,0.01} and S2 = {0.25,0.10,0.01;0.20,0.01}. For both

cases, the initial numbers of species were chosen as N
(0)
1 = 2880 and N

(0)
2 = 3200, cor-

responding to the initial densities ρ
(0)
1 =N

(0)
1 /L2 = 0.0439 and ρ

(0)
2 =N

(0)
2 /L2 = 0.0488,

with the ratio ρ
(0)
1 /ρ

(0)
2 =N

(0)
1 /N

(0)
2 = 0.90. It is important to note that the time evolu-

tion of the normalized number of species Ñ1(t) and Ñ2(t) does not depend on the lattice

size L if the initial densities ρ
(0)
1 and ρ

(0)
2 of species do not change with L [22]. However,

for a lattice of fixed size L, the time evolution of Ñ1(t) and Ñ2(t) depends on the initial

number (density) of predators N
(0)
1 and prey N

(0)
2 .

Let us compare the results for two different sets of probabilities S1 and S2, shown in
figures 1(a) and 2(a). We show that the time dependencies of the normalized number

of species Ñ1(t) and Ñ2(t) are qualitatively similar. In the initial stage, the number of
predators and prey oscillates periodically with large amplitudes, rapidly decreasing in
time. After a short transient period, the system arrives at a quasi-steady state. This
state corresponds to coexisting populations of predators and prey when their densities
oscillate around some average values, which do not change over time.

More details about the temporal behavior of the number of predators and prey for
the quasi-steady state stage of evolution, in the time range between t1 = 4000 u.t. and
t2 = 5000 u.t. are shown in figures 1(b) and 2(b). Our model provides the usual prediction
that in predator–prey cycles, the peaks in prey abundance precede the peaks in predator
abundance [4]. When predators are sparse, prey increase and are in abundance. As the
number of prey increases, predators also increase and are in abundance. When the
predators reach sufficiently high densities, the prey population is driven down to low
densities. With a lack of prey, the predator population reduces, and the cycle repeats.

It is interesting to compare the oscillatory behavior of the number of predators Ñ1(t)

and prey Ñ2(t) in the quasi-steady state regime obtained for two different sets of prob-
abilities, S1 and S2, that characterize the non-conservative processes (see figures 1(b)
and 2(b)). It is obvious that the change of probabilities from S1 to S2 leads to an increase
in the frequency of oscillations of the number of predators and prey. We investigate the
species fluctuations in further detail using a wavelet analysis, which reveals statistic-
ally significant associations between the dynamics of the predator and prey densities
[47, 48]. Details of the power analysis and the phase analysis (in particular, cross-wavelet
analysis and wavelet coherence (WCO)) are given in the appendix.
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Figure 1. (a) Time dependencies of the number of the normalized number of

predators Ñ1 =N1(t)/N
(0)
1 (red lines) and prey Ñ2 =N2(t)/N

(0)
2 (blue lines) on

the lattice of size L=256. Initial numbers of species are chosen as N
(0)
1 = 2880

and N
(0)
2 = 3200. Probabilities that characterize the non-conservative processes

are S1 = {0.09,0.05,0.01,0.15,0.01}. (b) Shown here are the temporal dependen-
cies of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between
t1 = 4000 u.t. and t2 = 5000 u.t., taken from the panel (a).
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Figure 2. (a) Time dependencies of the number of the normalized number of

predators Ñ1 =N1(t)/N
(0)
1 (red lines) and prey Ñ2 =N2(t)/N

(0)
2 (blue lines) on

the lattice of size L=256. Initial numbers of species are chosen as N
(0)
1 = 2880

and N
(0)
2 = 3200. Probabilities that characterize the non-conservative processes

are S2 = {0.25,0.10,0.01,0.20,0.01}. (b) Shown here are the temporal dependen-
cies of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between
t1 = 4000 u.t. and t2 = 5000 u.t., taken from the panel (a).
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Figure 3. Scalograms and time-averaged wavelet power spectra of the predator and
prey time series, Ñ1(t) (a) and Ñ2(t) (b) respectively, corresponding to the quasi-
steady state regime of evolution (t > 1000 u.t.). Probabilities that characterize the
non-conservative processes are S1 = {0.09,0.05,0.01,0.15,0.01}.

In figure 3, we show the scalograms and the time-averaged power spectra of the
signals Ñ1(t) and Ñ2(t) obtained for the same conditions as in figure 1. The scalogram
is the absolute value of the continuous wavelet transform (CWT) plotted as a function
of time and frequency (i.e. period). Time-averaged power spectra are obtained by time-
averaging the magnitude-squared scalogram over all times. The period is plotted on a
logarithmic scale. The cone of influence showing where edge effects become significant
is also plotted. Gray regions outside the dashed white line delineate regions where edge
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Figure 4. Scalograms and time-averaged wavelet power spectrum of the predator
and prey time series, Ñ1(t) (a) and Ñ2(t) (b) respectively, corresponding to the
quasi-steady state regime of evolution (t > 1000 u.t.). Probabilities that characterize
the non-conservative processes are S2 = {0.25,0.10,0.01,0.20,0.01}.

effects are significant. Here, we normalize the power of the time-averaged wavelet spec-
trum as a probability density function. CWT gives a time-frequency representation that
accurately captures the instantaneous frequencies of the signals Ñ1(t) and Ñ2(t). Both
for predators and prey, the CWT shows nearly steady-state oscillations with the same
period of about T1 = 97u.t.. This value corresponds to the position of the maximum in
the time-averaged wavelet spectra (see the right-hand-side panels in figure 3).

The scalograms and the time-averaged power spectra of the signals Ñ1(t) and Ñ2(t)
from figure 2, which correspond to the set of probabilities S2, are presented in figure 4.
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Figures 3 and 4 enable a quantitative comparison of the oscillatory behavior of the
number of predators and prey for the two sets of probability values S1 and S2 that char-
acterize the non-conservative processes. For the set S2, numerical simulations revealed
sustained oscillations with a shorter period length of T2 = 64u.t.. In the second set
of parameters S2, the probabilities P fed

1b , P unfed
1d and P2b for the non-conservative pro-

cesses related to predator feeding and prey reproduction are significantly enhanced.
The predator–prey cycles are based on a feeding relationship between two species. We
consider the case where the coupling between the predator and prey systems is much
stronger in the case of parameters from set S2. Consequently, the period of oscillations
of species in the quasi-stationary regime corresponding to the set of parameters S2 is
smaller than in the case of the set of parameters S1.

The previously mentioned reasons for the change of the period of oscillations in
species abundances are confirmed by the results of additional numerical simulations.
For instance, numerical simulations have shown that increasing the probability P2b is a
sufficient condition for decreasing the period of oscillations. Increasing the probability
P2b tends to hasten the growth of the prey population. The increased food availability
and better nutrition hasten the growth of the number of predators. Faster growth of
the predator population shortens the time required for the number of prey to reach
the maximum value. Then, the increased number of predators leads to an accelerated
decrease in the prey number. The resulting lack of food shortens the time needed for
the number of predators to reach a maximum value and begin to decline.

3.1.1. Coherence of the fluctuations Often the two signals are related in some way,
e.g. one signal may determine behavior in another. The signals may also be correl-
ated due to some influence intrinsic to both signals. Fourier-domain coherence is a
well-established technique for measuring the linear correlation between two stationary
processes as a function of frequency. Since wavelets provide local information about
data in time and scale (frequency), wavelet-based coherence allows us to measure the
time-varying correlation as a function of frequency. Consequently, a WCO is suitable
for nonstationary processes, such as predator–prey coexistence. The WCO measures the
correlations between the fluctuations of two time series (i.e. the coherence of the fluctu-
ations). Wavelet coherency is defined as the wavelet cross-spectrum (WCS) normalized
by the spectrum of each signal (see appendix).

In figure 5, we show the WCO between predators and prey obtained from the numer-
ical data shown in figure 1(a). Color coding indicates the WCO, while arrows indicate
the phase angles between the fluctuations of the two time series. The black contour
lines enclose significant areas (95% significance level). The red dots show the instantan-
eous oscillation period s̃(t) of the highest WCO within these areas (coherent oscillation
regimes). To clarify the diagram, only in regions of the time-frequency (period) plane
where WCO exceeds 0.85, is the phase of the WCS used to indicate the relative lag
between coherent components. Note that a 1/4 cycle lag between the two signals at a
particular frequency is indicated by an arrow pointing vertically down. The white dashed
line shows a cone of influence where edge effects become significant at different frequen-
cies (scales). It is evident that oscillations corresponding to the set of probabilities S1

are persistently coherent, meaning that the ups and downs of the different species in the
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Figure 5. WCO between predators and prey, corresponding to time series Ñ1(t)
and Ñ2(t) shown in figure 1(a). Values range from 0 (blue) to 1 (yellow). Cone of
influence is indicated by the dashed white lines. Red dots indicate the instantaneous
oscillation period s̃(t) of the highest WCO within the prefixed period length band
(64–256 u.t.). Significant areas (95% significance level) are enclosed by thin solid
lines. Arrows indicate the phase angles between the fluctuations of the two species.
Arrows pointing down represent a 1/4 cycle delay between the two time series.
Clockwise (counterclockwise) arrow rotation corresponds to an increase (decrease)
in phase lag between them. We use the phase display threshold of 0.85, which shows
phase arrows only where the coherence is greater than or equal to 0.85.

predator–prey community are indeed related to each other. For the whole quasi-state
regime, we observe oscillations of period of about T1 = 97 u.t. both for predators and
prey, with a significantly coherent, nearly constant phase relationship. These sustained
cycles are also reflected in the clockwise motion in the predator–prey phase plane. More
precisely, the predator densities follow the prey densities with a phase lag of about π/2
at frequencies 1/T1. A quarter delay (phase angle of π/2) between the fluctuations of
predator and prey species is typical for many predator–prey models (e.g. [49]).

Figure 6 shows the WCO between predators and prey obtained from the time series
shown in figure 2(a). The dominant type of dynamics is characterized by regular, coher-
ent oscillations with a nearly constant predator–prey phase difference. In fact, the two
species fluctuate at a significant periodicity of T2 = 64 u.t. but the arrows now indicate
a phase angle noticeably smaller than π/2. These phase differences are notably con-
stant over all different numerical simulation replicates. An increase in the probability of
predator breeding P fed

1b tends to accelerate the growth of the number of predators. The
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Figure 6. WCO between predators and prey, corresponding to time series Ñ1(t)
and Ñ2(t) shown in figure 2(a). Values range from 0 (blue) to 1 (yellow). Cone of
influence is indicated by the dashed white lines. Red dots indicate the instantaneous
oscillation period s̃(t) of the highest WCO within the prefixed period length band
(32–256 u.t.). Significant areas (95% significance level) are enclosed by thin solid
lines. Arrows indicate the phase angles between the fluctuations of the two species.
Arrows pointing down represent a 1/4 cycle delay between the two time series.
Clockwise (counterclockwise) arrow rotation corresponds to an increase (decrease)
in phase lag between them. We use the phase display threshold of 0.85, which shows
phase arrows only where the coherence is greater than or equal to 0.85.

faster growth of the predator population slows the growth of the number of prey. These
processes shorten the time between reaching two successive maxima, i.e. the maxima
for the time dependencies of predators Ñ1(t) and prey Ñ2(t).

3.2. Dynamics of the system with obstacles

Here, we consider in more detail the influence of the length ℓ and density ρ0 of the linear
segments that cause the obstacles on the temporal behavior of the number of predators
Ñ1(t) and prey Ñ2(t). Simulations have been performed for linear segments (k -mers) of
lengths ℓ= k− 1, k = 1,2, . . . ,9 (see, table 1), and for a wide range of obstacle densities,
ρ0 = 0− 0.25, below the corresponding percolation thresholds [50, 51]. As the density
of obstacles is increased above a percolation threshold p∗c , the initial large cluster of
empty lattice space breaks into tiny non-communicating components so that connectiv-
ity between both sides of the lattice disappears. In this case, spatially separated groups
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of predators and prey can be formed on the lattice during the initialization process.
These artificial situations will not be considered in this paper.

We begin the analysis of habitat heterogeneity’s impact on predator–prey coexist-
ence dynamics with a quantitative description of the interaction of individuals with
obstacles. In our model, there is a hard-core interaction between the individuals and
the obstacles. We consider that grid nodes that form the obstacles are inaccessible
to predators and prey. When the obstacle is located at the place of the first neigh-
bor, it affects the individual’s decision about where to go. Accordingly, predators and
prey will never choose a direction of movement towards a neighboring node where an
obstacle is located. They ‘see’ the obstacles and ‘wisely’ determine the direction of their
movement , following the movement rules provided in section 2.1. It is stated that prey
always move towards lower predator concentration. Predators, in the absence of prey as
their immediate neighbors, move towards higher prey concentration. Although collisions
of individuals with obstacles (in the sense of particle collision with a wall) do not form-
ally exist, it is necessary to quantitatively characterize their interaction with obstacles.
Therefore, we count the movements of predators and prey in which at least one first
neighbor is occupied by an obstacle while selecting the direction of their motion. The
number of such ‘encounters’ between predators (prey) and obstacles per unit of time
normalized to one individual, is called the collision frequency, ν.

The temporal behavior of the collisional frequencies of predators (ν1) and prey
(ν2) for the quasi-steady state stage of evolution (t= 4000− 6000) in the presence
of obstacles (4-mers) are shown in figure 7. The numerical results correspond to
a set of probabilities S1 = {0.09,0.05,0.01,0.15,0.01}, and two densities of 4-mers,
ρ0 = 0.15, 0.25. At both densities of the obstacles, the collision frequency of prey ν2
is higher than the collision frequency of predator ν1. Indeed, when avoiding predators,
prey move towards areas where the predator population is smaller. These areas often
contain a higher concentration of obstacles. The movement of prey towards regions of
higher concentration of obstacles increases the collision frequency of ν2. As expected,
increasing the density of obstacles ρ0 increases the collision frequencies of both species
with obstacles.

In figure 8, we show the time-averaged wavelet power spectrum (WPS)

of the time-series Ñ1(t) and Ñ2(t) obtained for the set of probabilities S1 =
{0.09,0.05,0.01,0.15,0.01}, in the presence of obstacles (9-mers) at various densities
ρ0 = 0, 0.10, 0.15, 0.20, 0.25. It is observed that the maximum of the global WPS shifts
to higher values with the increase in the density of obstacles ρ0. This shift indicates an
increase in the mean oscillation period T of the time series Ñ1(t) and Ñ2(t). The period
T grows from T ≈ 97 u.t. to T ≈ 112 u.t. when the density of obstacles ρ0 increases
from 0 to 0.25. Hence, the presence of obstacles in the habitat slightly slows down the
dynamics of a group chasing and escaping between predators and prey. In addition,
increasing the density of obstacles ρ0 leads to a broadening of the peak in the global
WPS. Time-averaged WPS measures the averaged variance of the time-series Ñ1(t) and

Ñ2(t) at scale s (see appendix). Accordingly, the presence of obstacles increases the

deviations of the oscillatory period T of the time-series Ñ1(t) and Ñ2(t) from its mean
value.
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Figure 7. Collisional frequencies of predators (ν1) and prey (ν2) in the pres-
ence of obstacles (4-mers) at densities ρ0 = 0.15, 0.25. Numerical results corres-
pond to the set of probabilities S1 = {0.09,0.05,0.01,0.15,0.01}, and two densities
ρ0 = 0.15, 0.25 of 4-mers. Shown here are the temporal dependences of the ν1 and
ν2 in the oscillatory region of the quasi-steady state, between t1 = 4000 u.t. and
t2 = 6000 u.t..

Comparisons of the time-averaged WPS obtained for various obstacle lengths
k = 1,2,4,8 are shown in figure 9. We note that changing the length and shape of
obstacles at a fixed density ρ0 = 0.15 has almost no effect on the global WPS.

3.2.1. Coherence of the fluctuations In the absence of obstacles, the oscillations are
persistently coherent, without the non-coherent breaks in the time-series Ñ1(t) and

Ñ2(t) (see figures 5 and 6). In the following, we present the results of our analysis of the
WCO between predators and prey obtained in the cases when the habitat is covered with
obstacles at various concentrations ρ0 ⩽ 0.25. We show that the presence of obstacles is
responsible for the reversible shift from coherent to non-coherent oscillations.

In figure 10, we compare WCO for the two values of obstacle density, ρ0 = 0.15, 0.25.
For comparison, we show the results obtained for obstacles of very different lengths,
namely, for monomers and 8-mers (table 1). The numerical results correspond to the set
S1 = {0.09,0.05,0.01,0.15,0.01} of probabilities that characterize the non-conservative
processes. Thick solid lines indicate the 95% significance level. Arrows that indicate
phase angles between fluctuations of the two species are only shown where the value of
the WCO is greater than or equal to the threshold of 0.85. For lower density ρ0 = 0.15,
the dynamics can be characterized by regular oscillations in time with a nearly constant
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Figure 8. Time-averaged WPS of the predator and prey time-series, Ñ1(t)
(a) and Ñ2(t) (b) respectively, obtained for 9-mers (k =9) as obstacles at densities
ρ0 = 0, 0.10, 0.15, 0.20, 0.25. Probabilities that characterize the non-conservative
processes are S1 = {0.09,0.05,0.01,0.15,0.01}.

predator–prey phase lag of about π/2 at frequencies corresponding to maximum WCO
values (i.e. around T1 = 97u.t.). For higher density of obstacles ρ0 = 0.25, significant
regions of the time-frequency (period) plane reveals a wide distribution of different phase
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Figure 9. Time-averaged WPS of the predator and prey time-series, Ñ1(t) (a) and
Ñ2(t) (b) respectively, obtained for various k -mers (k = 1, 2, 4, 8) as obstacles at
density ρ0 = 0.15. Probabilities that characterize the non-conservative processes are
S1 = {0.09,0.05,0.01,0.15,0.01}.

angles. We also note a tendency for regions with significant WCO to be decomposed
into disjoint areas, especially in the case of long obstacles (see figure 10(d)).

A representative example of the occurrence of short episodes of irregular, non-
coherent oscillations without any significant phase relationship induced by the presence
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Figure 10. WCO between predators and prey, corresponding to time-series Ñ1(t)
and Ñ2(t), obtained for monomers (k =1) and 8-mers (k =8) as obstacles, at two
densities ρ0: (a) k =1, ρ0 = 0.15; (b) k =8, ρ0 = 0.15; (c) k =1, ρ0 = 0.25; (d) k =8,
ρ0 = 0.25. Values range from 0 (blue) to 1 (yellow). Cone of influence is indicated by
the dashed white lines. Red dots indicate the instantaneous oscillation period s̃(t) of
the highest WCO within the prefixed period length band (64–256 u.t.). Significant
areas (95% significance level) are enclosed by thin solid lines. Arrows indicate the
phase angles between the fluctuations of the two species. We use the phase display
threshold of 0.85, which shows phase arrows only where the coherence is greater
than or equal to 0.85.

of obstacles is given in figure 11. The numerical results correspond to the set of probabil-
ities S1 = {0.09,0.05,0.01,0.15,0.01} and a high density ρ0 = 0.25 of 9-mers as obstacles.
Figure 11(a) shows the WCO between predators and prey obtained from the time-series
shown in figure 11(b). In order to make it easier to connect the results on both panels,
dashed vertical lines border an arbitrarily chosen time interval t= 4770− 5540 u.t.
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Figure 11. (a) WCO between predators and prey, corresponding to time-series
Ñ1(t) and Ñ2(t), obtained for 9-mers (k =9) as obstacles, at density ρ0 = 0.25. Red
dots indicate the instantaneous oscillation period s̃(t) of the highest WCO within
the prefixed period length band (64–256 u.t.). Significant areas (95% significance
level) are enclosed by thin solid lines. Arrows indicate the phase angles between
the fluctuations of the two species. We use the phase display threshold of 0.85,
which shows phase arrows only where the coherence is greater than or equal to
0.85. (b) Shown here are the temporal dependencies of the normalized number
of predators Ñ1 (red lines) and prey Ñ2 (blue lines) in the oscillatory region of
the quasi-steady state, between t1 = 4000 u.t. and t2 = 6500 u.t. obtained under the
same conditions as in panel (a). Dashed vertical lines on both panel border a time
interval t= 4770− 5540 u.t. Solid vertical lines at t1 = 5040 u.t. and t2 = 5228 u.t.
indicate the time span of irregular oscillations.
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Coherent oscillation regime is a contiguous time interval for which the dominant
scale s̃(t) is within a statistically significant area in the time-scale plane (see appendix).
The time intervals that do not meet this condition constitute the non-coherent oscilla-
tion regimes. Solid vertical lines in figure 11 border a time interval without significant
WCO between predator and prey. Non-coherent oscillations arise between t1 = 5040 u.t.
and t2 = 5228 u.t. Indeed, the appearance of more irregular time-series can be observed
in figure 11(b), in which the phase relationship between prey and predator is lost in
oscillatory regions between solid vertical lines, although both populations continue to
oscillate. Within significant regions of the time-frequency (period) plane, we observe
that the predator density follows the prey density with a phase difference of ∆> π/2.

Dominant phase difference values ∆̃(t) (see appendix) range from 90◦ to ≈ 120◦, with

a mean value of ⟨∆̃⟩= 105◦± 15◦ for the entire time interval. Since the dominant scale
s̃(t) constitutes the line of the strongest co-oscillating component of both signals in

the time-scale plane, it can be concluded that value ⟨∆̃⟩= 105◦± 15◦ is the dominant
predator—prey phase difference that characterizes coherent regions.

In the time range between dashed vertical lines in figure 11 (δt= 4770− 5540 u.t.), we
observe a reversible shift from coherent to non-coherent oscillations that are triggered by
the presence of obstacles. Outside this region, oscillations with a dominant predator–
prey phase difference ⟨∆̃⟩ ≈ 105◦ are established. The central part inside this region
corresponds to the regime of incoherent oscillations. However, inside significant areas
that are enclosed between dashed vertical lines we detect predator–prey cycles with
phase shift of π/2. Here, we observe that the regime of coherent oscillations gives way to
a noncoherent time-series spontaneously, but the system also shows a tendency to return
to the dominant dynamical regime with a defined phase relationship. It is important
to note that the regime of incoherent oscillations also appears when another parameter
set, S2, determines non-conservative processes. As in the case of parameter set S1,
decoherence of oscillations occurs if the obstacle density is sufficiently high. This is
confirmation that the presence of obstacles can induce incoherent oscillations, regardless
of the characteristics of the non-conservative processes.

In figure 12, we show the scalograms and scale-averaged power spectra (SAWS) of

the signals Ñ1(t) and Ñ2(t) obtained under the same conditions as in figure 11. Scale-
averaged WPS is obtained by scale-averaging the magnitude-squared scalogram over all
scales. In fact, the SAWS is a time-series of the average variance in a certain band [47].
In the case of figure 11, it is the 16–1024 u.t. band on the period scale. Thus, SAWS
can be used to examine modulation of one time-series by another, or modulation of one
frequency by another within the same time-series. The variance plot for predators and
prey (2nd and 4th panel in figure 12) shows a distinct period between vertical lines
when variance is low. Both time series show consistent changes over time. According
to figures 11 and 12, we can see that periods with low values of SAWS coincide with
regions without significant WCO between predator and prey.
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Figure 12. Scalograms and SAWS of the predator and prey time-series, Ñ1(t)
(a) and Ñ2(t) (b) respectively, obtained for 9-mers (k =9) as obstacles at dens-
ity ρ0 = 0.25. Data correspond to the quasi-steady state regime of evolution
(t > 1000 u.t.). SAWS is obtained by scale-averaging the magnitude-squared sca-
logram over all scales. As in figure 11, dashed vertical lines on both panels bor-
der a time interval t= 4770− 5540 u.t.. Solid vertical lines at t1 = 5040 u.t. and
t2 = 5228 u.t. indicate time span of irregular oscillations.

4. Concluding remarks

In this paper, we have developed an intuitively plausible model for understanding the
impact of habitat spatial heterogeneities on the population dynamics of predator–prey
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systems. We study a stochastic lattice model describing group chase and escape with
sight-limited predators and prey using numerical simulations. Five probabilities that
control the breeding and physiological dying of predators and prey were introduced
into the model. The habitat heterogeneities are built by randomly selecting a fraction
of the sites of the square lattice that are considered forbidden for the species.

In the absence of obstacles, numerical simulations reveal sustained oscillations with
a nearly constant predator–prey phase difference. Numerical simulations have shown
that changing the probabilities for non-conservative processes can increase or decrease
the period of coherent oscillations in the abundance of species and change the relat-
ive lag between coherent components. After introducing obstacles into the model, we
observe the breaks in the oscillation regimes, with random transitions between coher-
ent and non-coherent oscillating regimes. Our model suggests that stochasticity intro-
duced by obstacles is probably responsible for the reversible shift from coherent to
non-coherent oscillations. At a sufficiently small scale, heterogeneities in the environ-
ment can decrease the ability of predators to catch prey by modifying the movement
of individuals. Indeed, obstacles reduce the spatial spread of particles. By changing the
trajectory of predators, obstacles increase the probability that a predator explores a
place he had already gone through and previously cleared of prey. Therefore, obstacles
decrease the encounter rate of the predator with prey. Furthermore, predators could
lose time to handle obstacles they encounter during their search for prey. Accumulation
of a high number of obstacles encountered could decrease the time available to search
for prey. Consequently, the handling of obstacles could also decrease the attack rate.
We consider that obstacles, at sufficiently high densities, decompose the habitat into
areas of various sizes and shapes, where predators and prey are partially isolated from
the rest of the habitat. The local dynamics in these areas are determined by the size
and shape of these regions, due to the influence of obstacles on, for example, encounter
and attack rates. Impaired communication among individuals in different habitat areas
further promotes the development of different dynamics within these isolated units. In
other words, the spatial separation of habitats leads to the development of local oscil-
latory regimes with different phase relationships. Consequently, density fluctuations of
obstacles make predator–prey dynamics in different parts of the habitat very hetero-
geneous. This heterogeneity of the coexistence dynamics reduces or even prevents the
establishment of overall oscillations with a defined phase relationship. Note that we have
shown that periods with low values of SAWS coincide with short episodes of irregular,
non-coherent oscillations (figure 12). If the signal of interest is contaminated by noise or
interference, it can affect the wavelet analysis and result in small scale-averaged power
values. Noisy signals often have components that may not contribute significantly to
the overall power at each scale, leading to smaller values in the scale-averaged spectra.
In general, stochasticity or external perturbations can obscure or prevent predator–prey
oscillations, and our simulations suggest that stochasticity introduced by obstacles is
probably responsible for the reversible shifts from coherent to more-erratic oscillations
that we observe in our model.

Here, obstacles are represented by non-overlapping k -mers that are randomly placed
on the lattice. It would be interesting to perform a similar investigation with obstacles
of various shapes. We can introduce anisotropy in the deposition procedure for obstacle
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shapes. This simple modification introduces a preferential direction in the obstacle ori-
entations and, depending on the aspect ratio of the deposited shapes, imposes specific
‘patterning’ on the habitat. This would allow us to study the role that the spatial
structure of the habitat plays in the pursuit–evasion processes.
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Appendix. Wavelet analysis

The wavelet transform decomposes signals over dilated and translated functions called
‘mother wavelets’ ψ(τ). Throughout our analysis, we used the Morlet wavelet ψ(τ) =
π−1/4 exp(iω0τ)exp(−τ 2/2). The CWT of a signal x (t) is calculated as the convolution
of the signal with a localized complex-valued wavelet function ψ(τ) centered at time t
and dilated by the scale parameter s:

Wx(s, t) =
1

s1/2

ˆ
dt ′x(t ′)ψ∗

(
t ′− t

s

)
. (A1)

Here, the asterisk denotes the complex conjugate. The wavelet coefficients, Wx(s, t),
represent the contribution of the scales (the s values) to the signal at different time
positions (the t values).

To quantify the statistical relationship between two non-stationary signals x (t)
and y(t), the WCS is defined as the smoothed product of the corresponding wavelet
transforms:

Wx,y(s, t) =
⟨
Wx(s, t)W

∗
y (s, t)

⟩
. (A2)

Here, ⟨· · · ⟩ denotes a smoothing operator in both scale and time. The WCS is a measure
of the distribution of power of two signals. Local WPS of a signal x (t) at time t and
scale s is defined as Wx,x(s, t) = ⟨Wx(s, t)W

∗
x (s, t)⟩. The global (time-averaged) WPS is

defined as the time average of the local WPS and measures the averaged variance of
the signal x (t) at scale s. We use the maximum of global WPS to estimate the mean
oscillation period of the signal.

WCO is defined as the amplitude of the WCS divided by the square roots of the
two local WPS:

WCOx,y(s, t) =
|Wx,y(s, t)|√

Wx,x(s, t)
√
Wy,y(s, t)

. (A3)

The WCO estimates the relationship between the two signals at time t and scale s,
normalized into the range 0⩽WCO⩽ 1.
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The dominant scale s̃(t) is defined for every time instance t as the scale parameter
that has maximum WCO at time t over all scales in a prefixed band [s1,s2]. The stat-
istical significance of the WCO is tested against red noise using Monte Carlo (MC)
methods [52, 53]. Surrogate time series (N =1000) are generated with the same first-
order autoregression coefficients as the original time series. For each pair, the WCO is
calculated and then the significance level is estimated for each scale from the ensemble of
MC results, using a 95% significance level. As a coherent oscillation regime, we define a
maximum contiguous time interval for which the dominant scale s̃(t) is inside a statistic-
ally significant area (95% significance level) in the time-scale plane. Inserting dominant

scale s̃(t) into the WCS yields the dominant phase difference ∆̃(t) between the two
signals at every time instance.
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A B S T R A C T

Percolation properties of the Random Sequential Adsorption (RSA) of objects of various shapes
on simple three-dimensional (3D) cubic lattice are studied numerically by means of Monte
Carlo simulations. Depositing objects are ‘‘lattice animals’’, made of a certain number of nearest
neighbor sites on a lattice. The aim of this work is to investigate the impact of the geometrical
properties of the shapes on the values of percolation threshold 𝜃∗p . We analyzed all lattice
animals of size 𝑛 ⩽ 5.

Thanks to an extensive database of studied objects, we found that the number of nearest
neighbors 𝑁1 and the radius of gyration 𝑅𝑔 of the objects are correlated with the values of
percolation threshold 𝜃∗p . For lattice animals of the same size, the percolation threshold 𝜃∗p
decreases with an increase in the number of the object’s nearest neighbors 𝑁1. If objects of
the same size 𝑛 have the same number of nearest neighbors 𝑁1, their percolation threshold 𝜃∗p
decreases with an increase in the radius of gyration 𝑅𝑔 .

1. Introduction

A connected subgraph of a lattice is called a lattice animal. It can also be viewed as a finite set of lattice sites connected
by a network of nearest neighbor bonds. In mathematics, and combinatorics in particular, terms polyominoes and polycubes are
frequently used. A polyomino of size 𝑛 is an edge-connected set of 𝑛 squares on the square lattice 2 (the set of integers is denoted
by ). A polycube of size 𝑛 is a face-connected set of 𝑛 cubes in the cubic lattice 3. Because the square (cubic) lattice is self-dual,
polyominoes (polycubes) are equivalent to lattice animals on the dual lattice.

Depending on the problem to be solved, fixed and free animals are distinguished. Fixed animals are considered distinct if they
have different shapes or orientations. Free animals, on the other hand, are distinguished only by shape, not by orientation. In
the mathematical literature, fixed polycubes are most discussed in the context of simple combinatorial problem — enumeration.
Enumeration deals with determining the number of polycubes corresponding to a certain parameter, usually their size or perimeter
[1]. It is very interesting that to this day there is no known analytic formula for calculation of the number of fixed 𝑑-dimensional
polycubes of size 𝑛, 𝐴𝑑 (𝑛), 𝑑 > 1. The only known methods for computing 𝐴𝑑 (𝑛) are based on explicitly or implicitly enumerating
all the polyominoes or polycubes using various numerical algorithms [1–4]. Furthermore, the enumeration of lattice animals has
traditionally served as a benchmark for computer performance and algorithm design [5–7].
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Extensive studies of lattice animals can also be found in statistical-physics literature, where fixed polycubes are usually referred
to as strongly embedded lattice animals. Lattice animals play an important role in computing the mean cluster density in percolation
processes [7,8]. Series expansions for the percolation probability or the average cluster size can be obtained as weighted sums over
the number of lattice animals 𝑔𝑛,𝑝, enumerated according to their size 𝑛 and perimeter 𝑝 [9]. Lattice animals have also been suggested
as a model of branched polymers with excluded volume [10,11].

Recently, we have carried out extensive numerical simulations of random deposition of large collections of lattice animals and
their binary mixtures on three-dimensional (3D) cubic lattices [12,13]. Random sequential adsorption (RSA) is a process in which
particles of different shapes and sizes are constantly trying to attach themselves to randomly chosen places on the 𝑛-dimensional
substrate [14]. If the incoming particle does not overlap any previously attached particles, it binds irreversibly. A quantity of central
interest is the fraction of the substrate occupied by the deposited objects, 𝜃(𝑡), at time 𝑡. Because of the blocking effect by the already
deposited particles, the limiting value 𝜃J is less than the close packing [15–17]. Due to the absence of relaxation, the formation of
the limiting jammed state is governed by the infinite memory correlation effects.

In Refs. [12,13], we have found that the number of different orientations that lattice animals can take when placed on a cubic
lattice exerts a decisive influence on the adsorption kinetics near the jamming limit 𝜃J. The results also suggested absence of
correlation between the number of possible orientations of the object and the corresponding values of the jamming density 𝜃J.
Depending on the local geometry of the objects making the mixture, the jamming coverage of a mixture 𝜃mix

J can be either greater
than both single-component jamming coverages or can be in between these values. The first case is the most common, while in the
second case, the jamming density of the mixture is very close to the higher jamming density for the pure component shapes.

During the RSA process, the number of deposited objects on the substrate increases so that they form clusters. A cluster is a
group of occupied sites, so each site has at least one occupied nearest-neighbor site. Percolation assumes the existence of a large
cluster that extends from one side to the opposite one of the system. In other words, percolation theory is based on finding the
minimum coverage fraction for which a complete path of adjacent sites crossing the entire system becomes possible. This value
of the fraction of the total area is named the effective percolation threshold 𝜃p. This transition is a geometrical phase transition
where the critical concentration 𝜃p separates a phase of finite clusters from a phase where an infinite cluster is present. Forming
long-range connectivity in disordered systems is important in many physical, chemical, and even sociological systems [18–20].
The percolation problem attracts considerable interest due to its applications in numerous practical issues, such as conductivity in
composite materials, flow through porous media, polymerization, and behavior of scale-free random networks [21–26,26–33].

Numerous research papers have been published on percolations in three dimensions, which include some findings for more
complex systems [34–38]. The study of irreversible deposition and percolation properties on 3D cubic lattices has mostly been
focused on 𝑘-mers [39–41] and 𝑘 × 𝑘 × 𝑙 (𝑙 = 1, 𝑘) cubic objects [42,43]. Tarasevich and Cherkasova [39] have examined the
percolation and jamming properties of dimers on simple 3D cubic lattices. In [41], the research of Tarasevich and Cherkasova
has been extended to larger 𝑘-mers (2 ⩽ 𝑘 ⩽ 64) to determine the relation between the jamming coverage and the size of the
deposited 𝑘-mers for simple cubic lattices. The study has revealed that the ratio between the percolation threshold and the jamming
coverage exhibits a nonuniversal behavior, decreasing to zero with an increase in 𝑘. These findings suggest that the percolation
phase transition occurs for all values of 𝑘.

In the present study the percolation properties are analyzed for various shapes formed by connected sites on a 3D lattice. All
lattice animals of size 𝑛 = 1 – 5 (41 different shapes) are studied. Object size is the number 𝑛 of nodes that a lattice animal covers
on the grid. The number of examined lattice animals represents a good basis for studying the impact of the geometrical properties
of the shapes on the jamming coverage 𝜃J and on the values of percolation threshold 𝜃∗p. Here, the relationship between the values
of the percolation threshold 𝜃∗p of objects and the number of first neighbors 𝑁1 and the gyration radius 𝑅𝑔 of objects has been
thoroughly analyzed. Random deposition of lattice animals on 3D lattices is a complex problem and it is difficult to develop even
a qualitative understanding of the effects of shape on the packing density and percolation properties.

The paper is organized as follows. Section 2 describes the model and the details of the simulations. The percolation properties
of lattice animals are analyzed in Section 3. Finally, Section 4 contains some additional comments.

2. Definition of the model and the simulation method

We are focusing solely on the free lattice animals on a simple cubic lattice (the term ‘‘free’’ is omitted in the following text).
Table 1 shows all polycubes of size 𝑛 = 1, 2, 3, and 4. Polycubes of size 𝑛 = 1, 2, 3 are planar with a maximum of twelve different
orientations (object V3). There are eight tetracubes (fourth-order polycubes), of which five are planar [44]. Polycubes are usually
counted with mirror pairs (so-called chiral twins) distinguished, as would be natural for the cubical case in ordinary space. For
example, a tetracube A4 and its mirror image B4 are considered distinct because there is no rigid motion that transforms one onto
the other.

All polycubes of size 𝑛 = 5 (pentacubes) are shown in Table 2. There are 29 distinct three-dimensional pentacubes [44]. As it can
be seen, twelve pentacubes are flat and correspond to solid pentominoes. Among the nonplanar pentacubes, there are five that have
at least one plane of symmetry (A5, L35, Q5, T15, T25) and each of them is its own mirror image. The remaining twelve nonplanar
pentacubes form six chiral pairs: {J15, L15}, {J25, L25}, {J45, L45}, {N15, S15}, {N25, S25}, {V15, V25}. For two flats (I5, X5) of
the 29 pentacubes, there are only three possible orientations. Ten pentacubes have twelve orientations and each of the remaining
17 pentacubes has 24 orientations.

As stated in Section 1, the structure of a polycube can be represented by means of a lattice animal that has a vertex for each
cube and an edge for each two cubes that share a square. Several examples of lattice animals that are equivalent to corresponding
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Table 1
All polycubes (x) of size 𝑛 = 1, 2, 3, 4 and their number of orientations 𝑚.
(x) m Shape (x) m Shape

(M) 1 (I4) 3

(D) 3 (L4) 24

(I3) 3 (O4) 3

(V3) 12 (P4) 8

(A4) 12 (S4) 12

(B4) 12 (T4) 12

Table 2
All polycubes (x) of size 𝑛 = 5 and their number of orientations 𝑚.

(x) m Shape (x) m Shape (x) m Shape (x) m Shape

(A5) 24 (L25) 24 (S15) 24 (V25) 12

(F5) 24 (L35) 24 (S25) 24 (W5) 12

(I5) 3 (L45) 24 (T5) 12 (X5) 3

(J15) 12 (N5) 24 (T15) 12 (Y5) 24

(J25) 24 (N15) 24 (T25) 24 (Z5) 12

(J45) 24 (N25) 24 (U5) 12

(L5) 24 (P5) 24 (V5) 12

(L15) 12 (Q5) 24 (V15) 12

polycubes presented in Tables 1 and 2 are shown in Table 3. An overview of all lattice animals of size 𝑛 ⩽ 5 is given in our previous
works [12,13] (see, e.g. large Tables 1 and 2 in [13]). Table 4 shows the number of possible orientations 𝑚 for polycubes of size
𝑛 ⩽ 6 and the number of objects 𝐴𝑚

3 (𝑛) with the specified number of orientations. Polycubes of size 𝑛 ⩽ 5 can have 1, 3, 8, 12 or 24
different orientations.

The numerical algorithm used to deposit a lattice animal at randomly chosen places on the 3D substrate was already described in
details in the previous papers [12,13]. Therefore, we shall present it briefly, giving the algorithm additions necessary for determining
the percolation threshold.

The primary lattice animal is a group of connected sites in the cubic lattice that contains the origin (0, 0, 0). We call that point
the head of an object. At each Monte Carlo step, a lattice site is selected randomly. If the chosen site is unoccupied, deposition of
the object is tried in one of the 24 orientations, which is chosen randomly. Then, we fix the head of the object at the selected site
and search whether all necessary sites are unoccupied. If so, we occupy these sites and place the object. If the attempt fails, a new
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Table 3
Several lattice animals (x) of size 𝑛 = 5 and their number of orientations 𝑚. All lattice animals of size 𝑛 ⩽ 5 are displayed in our
previous works [12,13].
(x), 𝑚 Shape (x), 𝑚 Shape (x), 𝑚 Shape

(A5),24 (L45),24 (T25),24

(I5),3 (N15),24 (V5),12

(L15),12 (S25),24 (Y5),24

Table 4
Shown here is the number of polycubes 𝐴𝑚

3 (𝑛) of size 𝑛 with the specified number of possible orientations
𝑚 = 1, 3, 4, 6, 8, 12, 24. The results are shown for all polycubes of size 𝑛 ⩽ 6.

𝐴1
3 𝐴3

3 𝐴4
3 𝐴6

3 𝐴8
3 𝐴12

3 𝐴24
3 𝑁 =

∑

𝑚 𝐴𝑚
3

n = 1 1 1
n = 2 1 1
n = 3 1 1 2
n = 4 2 1 4 1 8
n = 5 2 10 17 29
n = 6 1 1 3 34 127 166

site and orientation are selected randomly, and so on. The numerical algorithm that searches all possible object orientations and
selects the random orientation of a lattice animal is given in the previous paper [12]. We have verified that using different heads
for all examined objects gives quantitatively the same results for the temporal evolution of density 𝜃(𝑡) and the jamming limit 𝜃J.

The coverage of the surface is increased in the RSA process up to the percolation threshold, when the opposite edges of the
system are connected via some path of nearest neighbor sites occupied by the particles. The tree-based union/find algorithm was
used to determine the percolation threshold [45,46]. This is the most challenging and time-consuming step of the procedure. Each
cluster of connected sites is stored as a separate tree, having a single ‘‘root’’ site. All cluster sites possess pointers to the root site,
so it is simple to ascertain whether two sites are members of the same cluster. When a deposited object connects two separate
clusters, they are amalgamated by adding a pointer from the root of the smaller cluster to the root of the larger one. This procedure
is repeated until the percolation threshold is reached, i.e., until a single cluster connects the opposite sides of the lattice.

The Monte Carlo simulations are performed on a 3D cubic lattice of linear size up to 𝐿max = 512. Periodic boundary conditions
are used in all directions. The data are averaged over 1024 independent runs for each investigated lattice animal. The time is counted
by the number of attempts to select a lattice site and scaled by the total number of lattice sites 𝐿3 ≈ 10–100 million.

3. Results

Values of the percolation thresholds for the infinitely large lattice 𝜃∗p are obtained using the usual finite-size scaling analysis of
the percolation behavior on three-dimensional lattices [47]. In such systems one assumes that the effective percolation threshold
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Fig. 1. Finite-size scaling of the percolation threshold 𝜃𝑝 against 𝐿−1∕𝜈 , with 𝜈 = 7∕8. The results are given for various lattice animals, as indicated in the legend
(see, Tables 1 and 2).

Fig. 2. Standard deviations 𝜎 of the percolation threshold on double logarithmic scale for four arbitrarily chosen lattice animals, as indicated in the legend (see,
Tables 1 and 2). Straight lines correspond to the best fit according to the power law of Eq. (2) with the values of the exponent 𝜈 given on each plot.

𝜃p(𝐿) (the mean value of threshold measured for a finite lattice of linear size 𝐿) approaches the asymptotic value 𝜃p(𝐿) → 𝜃∗p for
𝐿 → ∞ via the power law:

𝜃p(𝐿) − 𝜃∗p ∝ 𝐿−1∕𝜈 . (1)

Here the constant 𝜈 is the critical exponent that governs the divergence of the correlation length as 𝜉 ∝ |𝜃p − 𝜃∗p|
−𝜈 . It should be

noted that the universality class of random percolation in 3D is very well identified and the critical exponents are known, namely,
𝜈 = 0.8774(13) ≈ 7∕8 [48,49]. The latter relationship allows us to extrapolate the threshold for an infinite system, 𝐿 → ∞. This kind
of behavior, which is expected for systems without long-range correlations, has been observed in previous studies of percolation of
extended objects on 3D lattices [40–43,49].

The effective percolation threshold 𝜃p(𝐿) for each object was calculated for seven values of the linear lattice size 𝐿 =
32, 64, 96, 128, 192, 256, 320. We plotted the mean value 𝜃p(𝐿) of the threshold for various lattice sizes against 𝐿−1∕𝜈 which
confirmed the validity of the finite-size scaling in the system and enabled us to determine the asymptotic value of the percolation
threshold 𝜃∗p. Finite-size scaling of the lattice threshold 𝜃p(𝐿) against 𝐿−1∕𝜈 for 𝜈 = 0.8774(13) ≈ 7∕8 [48,49] is illustrated in Fig. 1
for ten arbitrarily chosen lattice animals. Values of the obtained percolation thresholds 𝜃∗p for all examined objects are given in
Tables 5 and 6 together with the corresponding jamming coverages 𝜃J.
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Table 5
For each lattice animal (𝑥) of size 𝑛 = 1, 2, 3, 4 with 𝑚 possible orientations, 𝜃(𝑥)J and 𝜃∗p(𝑥) are the jamming
coverage and percolation threshold, respectively. Error estimates concerning the last digits are indicated between
parentheses. Here, 𝑁1 is the number of first neighbors and 𝑅𝑔 is radius of gyration.

Shape (x), size 𝑛 m 𝑁1 𝑅𝑔 𝜃(𝑥)J 𝜃∗p(𝑥)

(M), 𝑛 = 1 1 6 0.0000 1.0000(0) 0.3122(9)

(D), 𝑛 = 2 3 10 0.5000 0.9184(1) 0.2566(9)

(I3), 𝑛 = 3 3 14 0.8165 0.8390(2) 0.2125(11)
(V3), 𝑛 = 3 12 13 0.6667 0.8788(2) 0.2396(10)

(A4), 𝑛 = 4 12 16 0.7906 0.8178(2) 0.2260(11)
(B4), 𝑛 = 4 12 16 0.7906 0.8178(2) 0.2260(11)
(I4), 𝑛 = 4 3 18 1.1180 0.7808(3) 0.1801(11)
(L4), 𝑛 = 4 24 17 0.9354 0.8339(2) 0.2004(11)
(O4), 𝑛 = 4 3 16 0.7071 0.8079(3) 0.2419(12)
(P4), 𝑛 = 4 8 15 0.7500 0.7941(3) 0.2414(12)
(S4), 𝑛 = 4 12 16 0.8660 0.8149(2) 0.2206(11)
(T4), 𝑛 = 4 12 16 0.8292 0.8114(3) 0.2214(12)

Table 6
For each lattice animal (𝑥) of size 𝑛 = 5 with 𝑚 possible orientations, 𝜃(𝑥)J and 𝜃∗p(𝑥) are the jamming coverage and
percolation threshold, respectively. Error estimates concerning the last digits are indicated between parentheses.
Here, 𝑁1 is the number of first neighbors and 𝑅𝑔 is the radius of gyration.

Shape (x) m 𝑁1 𝑅𝑔 𝜃(𝑥)J 𝜃∗p(𝑥)

(A5) 24 18 0.8485 0.7716(2) 0.2258(11)
(F5) 24 19 0.9798 0.7860(3) 0.2069(10)
(I5) 3 22 1.4142 0.7369(4) 0.1555(10)
(J15) 12 20 1.0583 0.7635(2) 0.1899(11)
(J25) 24 19 0.9381 0.7839(2) 0.2092(11)
(J45) 24 20 1.0198 0.7958(3) 0.1934(11)
(L5) 24 21 1.2329 0.7695(3) 0.1715(11)
(L15) 12 20 1.0583 0.7635(3) 0.1899(11)
(L25) 24 19 0.9381 0.7839(2) 0.2092(11)
(L35) 24 19 0.9798 0.7774(3) 0.2026(11)
(L45) 24 20 1.0198 0.7957(2) 0.1934(11)
(N5) 24 20 1.1314 0.7866(3) 0.1860(9)
(N15) 24 19 0.9798 0.7842(2) 0.2079(13)
(N25) 24 18 0.8944 0.7790(3) 0.2243(11)
(P5) 24 19 0.8944 0.8017(3) 0.2201(13)
(Q5) 24 18 0.8000 0.7826(3) 0.2355(11)
(S15) 24 19 0.9798 0.7841(2) 0.2079(13)
(S25) 24 18 0.8944 0.7790(3) 0.2243(11)
(T5) 12 20 1.0198 0.7500(3) 0.1899(11)
(T15) 12 17 0.8485 0.7582(3) 0.2388(11)
(T25) 24 19 0.8944 0.7863(2) 0.2136(12)
(U5) 12 20 1.0198 0.7611(3) 0.1939(10)
(V5) 12 21 1.1314 0.7628(3) 0.1758(9)
(V15) 12 19 0.9381 0.7647(3) 0.2130(11)
(V25) 12 19 0.9381 0.7647(3) 0.2130(11)
(W5) 12 19 1.0583 0.7615(3) 0.2033(12)
(X5) 3 18 0.8944 0.7007(3) 0.2273(12)
(Y5) 24 20 1.0954 0.7595(3) 0.1877(13)
(Z5) 12 20 1.0954 0.7643(2) 0.1888(10)

According to the scaling theory, the standard deviation 𝜎 of the percolation threshold measured for a finite lattice 𝐿 satisfies the
power law:

𝜎 ∝ 𝐿−1∕𝜈 . (2)

In Fig. 2 the standard deviation 𝜎 vs. 𝐿 is shown on a double logarithmic scale for several arbitrarily chosen lattice animals. For
all lattice animals we confirmed the power law of Eq. (2) with the mean value of the exponent 𝜈 = 0.882 ± 0.022. Therefore, these
results are in good agreement with the universal value 𝜈 ≈ 7∕8 [48,49].

Upon examining the percolation threshold values 𝜃∗p for all objects of size 𝑛 ⩽ 5 (see, Tables 5 and 6), we concluded that the
number of object orientations 𝑚 is not correlated with the values of 𝜃∗p. The coverage kinetics is known to be slowed down with
the increase in the number of possible placements 𝑚 of the shape [12]. However, it is not difficult to notice some other geometric
properties of the deposited shapes that affect their percolation properties. Each lattice shape is surrounded by the first neighboring
sites on the lattice. The obtained results show that the number of an object’s nearest neighbor sites 𝑁1 significantly influences its
percolation characteristics. For instance, when considering objects of size 𝑛 = 4, object I4 has the highest number of first neighbors
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(𝑁1 = 18) and the lowest percolation threshold value (𝜃∗p = 0.1801(11)). Object I5, which is a shape of size 𝑛 = 5, has the highest
number of first neighbors (𝑁1 = 22) and hence corresponds to the smallest value of the percolation threshold (𝜃∗p = 0.1555(10)).
Objects L5 and V5 have slightly higher percolation thresholds because they have one less first neighbor than object I5. All other
objects of size 5 have fewer first neighbors (𝑁1 ⩽ 20) and, hence, higher percolation threshold values. Qualitatively, we can say
that the value of 𝜃∗p depends on the object’s capability to make connections with other depositing objects. The number of nearest
neighbors 𝑁1 seems to be a quantity closely related to the connectivity. Indeed, we observe that the object T15, with the largest
threshold (𝜃∗p = 0.2388(11)), has the smallest number 𝑁1 of the first neighboring sites on the lattice, i.e. 𝑁1 = 17.

From Tables 5 and 6, it can be seen that there are objects of the same size 𝑛, with the same number of first neighbors 𝑁1, whose
percolation thresholds 𝜃∗p differ significantly. The geometric characteristic of the objects that can be related to these changes in the
percolation properties of the objects is the radius of gyration 𝑅𝑔 . The radius of gyration is defined as the root-mean-square average
of the distance of all lattice nodes occupied by the object from the center of mass of the object. Actually, the radius of gyration 𝑅𝑔
of a lattice animal of size 𝑛 that fills the nodes of the grid with coordinates {𝑟𝑖} = {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)}, 𝑖 = 1,… , 𝑛 is given by the expression

𝑅𝑔 =

[

1
𝑛

𝑛
∑

𝑖=1
𝑠2𝑖

]1∕2

, (3)

where

𝑠2𝑖 = (𝑥𝑖 − 𝑥𝑐 )2 + (𝑦𝑖 − 𝑦𝑐 )2 + (𝑧𝑖 − 𝑧𝑐 )2, (4)

and

𝑥𝑐 =
1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖, 𝑦𝑐 =

1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖, 𝑧𝑐 =

1
𝑛

𝑛
∑

𝑖=1
𝑧𝑖. (5)

For two lattice animals having the same size, the one with the larger radius of gyration is the more extended or less spherical one.
If the value of 𝑅𝑔 is small, then we can say the object is relatively compact.

In Figs. 3(a) and 4(a), the dependence of the percolation threshold 𝜃∗p on the radius of gyration 𝑅𝑔 is shown for all lattice animals
with a size of 𝑛 ≤ 5. Figs. 3(b) and 4(b) are included for a simpler insight into the number of nearest neighbors 𝑁1 for each studied
object. Due to the greater diversity of lattice animals of size of 𝑛 = 5, let us first analyze the results shown in Fig. 4. It is clear that for
lattice animals of the same size, the percolation threshold decreases with an increase in the number of the object’s nearest neighbors.
Indeed, the values of the percolation threshold 𝜃∗p for objects with 𝑁1 = 18 first neighbors are in the range of 0.223 ≲ 𝜃∗p ≲ 0.236.
For objects with a greater number of neighbors, the range of the percolation threshold values shifts towards lower values. Thus, for
𝑁1 = 19, the percolation threshold is in the range of 0.201 ≲ 𝜃∗p ≲ 0.221, for 𝑁1 = 20, it is 0.186 ≲ 𝜃∗p ≲ 0.194, and for 𝑁1 = 21, the
range is of 0.170 ≲ 𝜃∗p ≲ 0.175. Objects with 𝑁1 = 17 and 𝑁1 = 22 first neighbors have the highest and lowest percolation threshold
values, respectively. Qualitatively the same correlation between the percolation threshold values and the number of first neighbors
of objects of size 𝑛 < 5 can be seen in Fig. 3.

If objects of the same size 𝑛 have the same number of nearest neighbors 𝑁1, their percolation threshold 𝜃∗p decreases with an
increase in the radius of gyration 𝑅𝑔 (see, Figs. 3 and 4). The radius of gyration 𝑅𝑔 can be considered as a measure of the compactness
of an object. More compact objects have smaller linear dimensions along the lattice directions. For example, objects A5 and I5 are
of the same size 𝑛 = 5 (see, Table 3), while their radii of gyration differ significantly. Object I5 is elongated and has a large radius of
gyration (𝑅𝑔 = 1.4142). Object A5 is compact and rounded, so its radius of gyration is considerably smaller (𝑅𝑔 = 0.8485). Compact
objects cover space more efficiently and have a lower connecting probability. Compact objects tend to form dense, isolated islands
on the lattice. Then, the connectivity in the system is poor at low densities, and percolation sets in at larger density values. This
suggests that, for various objects of the same size, the percolation threshold 𝜃∗𝑝 of more compact and rounded shapes (smaller 𝑅𝑔)
exceeds the 𝜃∗𝑝 of the elongated ones (larger 𝑅𝑔).

4. Concluding remarks

Our previous work [32] investigated percolation and jamming phenomena for random sequential deposition of objects of various
shapes and sizes on a two dimensional (2D) triangular lattice. Self-avoiding lattice steps made the shapes. It has been shown that
for various planar objects of the same length, the percolation threshold 𝜃∗p of more compact shapes (hexagons, triangles) exceeds
the 𝜃∗p of elongated ones (line segments, angled objects). The present study reached similar conclusions by examining a significantly
broader class of objects, lattice animals in three dimensions. A systematic approach is made by examining a wide variety of object
shapes.

Our results suggest that for lattice animals of the same size:
(i) the percolation threshold 𝜃∗p decreases with an increase in the number of the object’s nearest neighbors 𝑁1;
(ii) The percolation threshold 𝜃∗p for compact and rounded objects is higher than for elongated ones. This behavior of the percolation
threshold value is consistent with the size of the radius of gyration 𝑅𝑔 of the lattice animal. If two objects are of the same size and
have the same number of nearest neighbors 𝑁1, the object with the larger radius of gyration 𝑅𝑔 is less compact or more extended.
Therefore, as the object’s radius of gyration 𝑅𝑔 increases, the percolation threshold value 𝜃∗p decreases.

It is important to emphasize that there are lattice animals of the same size 𝑛 = 5, which have an equal number of nearest
neighbors 𝑁1 and the same 𝑅𝑔 value, but their percolation thresholds differ slightly (see, Fig. 4). Examples of such shapes are
objects P5 and T25, or F5 and L35. We have not been able to identify any other geometric characteristic of the shape that would
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Fig. 3. Dependence of the percolation threshold 𝜃∗p on the radius of gyration 𝑅𝑔 (Eq. (3)) for all lattice animals of size 𝑛 = 2, 3, 4, as indicated in the legend.
Both panels display the same results. On the right side of each symbol (circle), the name of the corresponding object (panel (a)) and the number of its first
neighbors 𝑁1 (panel (b)) are listed. Next to the symbols corresponding to chiral pairs, the names of both objects are listed. For 𝜃∗p the error bars do not exceed
the size of the symbols.

correlate with this variation in the percolation threshold. In most cases, objects with greater anisotropy have a lower percolation
threshold. A more detailed analysis of additional geometric characteristics of the shapes will be the subject of future work.

The model considered here is highly idealized and is not intended to reproduce a particular experimentally studied system.
However, this work aims to encourage the development of more advanced models that can reproduce concrete experimental systems.
Specifically, percolation theory has been successfully used to study the well-known sol–gel transition [50], in which the percolation
threshold determines the point at which a system shifts from a liquid to a gel state. This transition is governed by the ability
of molecules to form a network that traps solvent molecules, creating a semi-solid structure. It is well known that the shape of
a molecule affects the gelation process by influencing how molecules interact, the number and strength of contact points, their
conformational flexibility, and the nature of their self-assembly [51–55]. These factors collectively determine the efficiency and
stability of the gel network formed. Examining these points requires a systematic approach using a wide variety of extended objects
on a 3D lattice. Accordingly, the percolation of various shapes on 3D lattice could be an interesting topic for further research that
will provide a better description of the gelation process.



Chinese Journal of Physics 90 (2024) 853–863

861

D. Stojiljković et al.

Fig. 4. Dependence of the percolation threshold 𝜃∗p on the radius of gyration 𝑅𝑔 (Eq. (3)) for all lattice animals of size 𝑛 = 5. Both panels display the same
results. On the right side of each symbol (circle), the name of the corresponding object (panel (a)) and the number of its first neighbors 𝑁1 (panel (b)) are
listed. Next to the symbols corresponding to chiral pairs, the names of both objects are listed. For 𝜃∗p the error bars do not exceed the size of the symbols.
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