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Importance of higher orders in opacity in quark-gluon plasma tomography

Stefan Stojku , Bojana Ilic , Igor Salom , and Magdalena Djordjevic *

Institute of Physics Belgrade, University of Belgrade, Serbia

(Received 4 May 2023; accepted 27 September 2023; published 16 October 2023)

We consider the problem of including a finite number of scattering centers in dynamical energy loss and
classical DGLV formalism. Previously, either one or an infinite number of scattering centers were considered in
energy loss models, while efforts to relax such approximations require a more conclusive and complete treatment.
In reality, however, the number of scattering centers is generally estimated to be 4–5 at the BNL Relativistic
Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC), making the above approximations (a
priori) inadequate and this theoretical problem significant for QGP tomography. We derived explicit analytical
expressions for dynamical energy loss and DGLV up to the fourth order in opacity, resulting in complex,
highly oscillatory, mathematical expressions. These expressions were then implemented into an appropriately
generalized DREENA framework to calculate the effects of higher orders in opacity on a wide range of high-p⊥
light and heavy flavor predictions. Results of extensive numerical analysis and interpretations of nonintuitive
results are presented. We find that, for both RHIC and the LHC, higher-order effects on high-p⊥ observables
are small, and the approximation of a single scattering center is adequate for dynamical energy loss and DGLV
formalisms.

DOI: 10.1103/PhysRevC.108.044905

I. INTRODUCTION

Quark-gluon plasma (QGP) [1–4] is a new form of mat-
ter consisting of quarks, antiquarks, and gluons that are no
longer confined. It has been created in landmark experiments
at the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) (so-called little bangs),
where heavy ions collide at ultrarelativistic energies [2,3].
Hard probes are one of the main tools for understanding and
characterizing the QGP properties [2], where hard processes
dominate interactions of these probes with QGP constituents.
These interactions are dominantly described by energy loss,
where radiative is one of the most important mechanisms at
high transverse momentum p⊥. The radiative energy loss can
be analytically computed through pQCD approaches, typi-
cally under the assumption of the optically thick or optically
thin medium [e.g., BDMPS-Z [5,6], ASW [7], (D)GLV [8,9],
HT and HT-M [10,11], AMY [12], dynamical energy loss
[13,14] and different applications and extensions of these
methods] and tested against the experimental data.

Optically thick medium corresponds to the approxima-
tion of a jet experiencing infinite scatterings with medium
constituents. While such an approximation would be ade-
quate for QGP created in the early universe (big bang), little
bangs are characterized by short, finite-size droplets of QCD
matter. Another widely used approximation is an optically
thin medium, assuming one scattering center. However, the
medium created in little bangs is typically several femtome-
ters in size (with mean free path λ ≈ 1 fm), so considering
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several scattering centers in energy loss calculations is needed.
Thus, it is evident that both approaches represent two extreme
limits to the realistic situations considered in RHIC and LHC
experiments, and relaxing these approximations to the case
of a finite number of scattering centers is necessary. Thus,
relaxing such an approximation is a highly nontrivial problem,
addressed in Ref. [8], with recently renewed interest [15–21].
Some of these approaches are analytically quite advanced,
e.g., providing full expressions for a gluon radiation spectrum
(or splitting functions) with relaxed soft-gluon approximation
in DGLV formalism [19,20] or derivation of gluon emission
spectrum with full resummation of multiple scatterings within
the BDMPS-Z framework [15,17,18]. However, in our view,
this issue requires a more conclusive and complete treat-
ment. Namely, the importance of including higher orders in
opacity effects on experimental observables is still not ad-
dressed. In relaxing this approximation, it is not only needed
to estimate these effects on, e.g., the energy loss and gluon
radiation spectrum, but also to implement these corrections
in the numerical frameworks needed to generate predictions
for high-p⊥ observables measured at RHIC and the LHC
experiments. Furthermore, most of these studies were done
in massless quarks and gluons limit and/or use the approxi-
mation of an uncorrelated medium (i.e., where the spacings
between collisions are considered to be mutually indepen-
dent, see Ref. [21] for more details). Since we, a priori, do
not know the magnitude of the effects of the inclusion of
multiple scattering centers, nor how the mentioned approxi-
mations can influence this magnitude, we find it questionable
to discuss higher-order corrections while ignoring the effects
which might potentially overshadow or alter the final effects.
For example, due to a finite-temperature medium, light quarks
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and gluons gain mass in QGP, which can significantly numer-
ically modify the importance of these effects on experimental
observables.

In this study, we start from our dynamical energy loss
formalism [13,14], computed under the approximation of an
optically thin QCD medium, i.e., one scattering center. We use
general expressions from Ref. [21] to relax this approximation
to the case of finite number of scattering centers, where ex-
plicit analytical expressions up to the fourth order in opacity
(scattering centers) are presented. These expressions are im-
plemented in our (appropriately modified) DREENA-C [22]
framework (which assumes a constant-temperature medium),
enabling us to more straightforwardly estimate the effects of
higher orders in opacity on high-p⊥ RAA and v2 observables.
Based on these results, we also provide estimates for the fully
evolving medium, while a rigorous study in this direction is
left for future work.

While the initial expressions taken from Ref. [21] were,
strictly speaking, derived in the approximation of static scat-
tering centers, we apply them here in the context of a dynamic
QCD medium. Namely, by careful calculation, we have shown
in Ref. [14] that—at least in the first order in opacity—the
generalization from the static to dynamic medium eventually
amounts to a mere appropriate replacement of the mean free
path and effective potential in the final expressions. Following
general arguments given in Ref. [8] and the expectations ex-
pressed in Ref. [21], we assume that the same prescription for
progressing from static to dynamic medium remains valid in
higher orders of opacity.

The outline of the paper is as follows: Sections II
and III present the outline of theoretical and numerical

frameworks used in this study, with more detailed analytical
results presented in the Appendixes. In the Results section,
we numerically analyze the effects of higher orders in opacity
on the gluon radiation spectrum and high-p⊥ RAA and v2

predictions. Intuitive explanations behind obtained results will
be presented. This section will also analyze a special case
of static QCD medium (extension of (D)GLV [8,9] to the
finite number of scattering centers). The main results will be
summarized in the last section.

II. THEORETICAL FRAMEWORK

In this study, we use our dynamical radiative energy loss
[13,14] formalism, which has the following features: (i) QCD
medium of finite size L and temperature T , which consists of
dynamical (i.e., moving) partons, in a distinction to models
with widely used static approximation and/or vacuum-like
propagators [5,7,8,10]. (ii) Calculations based on generalized
hard-thermal-loop approach [23,24], with naturally regulated
infrared divergences [13,14,25]. (iii) Generalization towards
running coupling [26] and finite magnetic mass [27].

However, as noted in the Introduction, this radiative energy
loss is developed up to the first order in opacity. Thus, to
improve the applicability of this formalism for QGP tomogra-
phy, it is necessary to relax this approximation. To generalize
the dynamical energy loss to finite number in scattering cen-
ters, we start from a closed-form expression—Eq. (46) from
Ref. [21] and Eq. (20) from Ref. [9]—derived for static
QCD medium [i.e., (D)GLV case [8,9]] but applicable for a
generalized form of effective potential and mean free path
λ [21]:

x
dN (n)

dx d2k
=

∫ L

0
dz1 · · ·

∫ L

zn−1

dzn

∫ n∏
i=1

(
d2qi

v2(qi ) − δ2(qi )

λ(z)

)

× CRαs
(
Q2

k

)
π2

(
−2 C(1···n) · Bn

[
cos

n∑
k=2

ω(k···n)�zk − cos
n∑

k=1

ω(k···n)�zk

])
, (1)

where |vi(qi )|2 is defined as the normalized distribution of
momentum transfers from the ith scattering center (i.e., “ef-
fective potential”), λ(i) is the mean free path of the emitted
gluon, CR is the color Casimir of the jet. Note that, for
consistency with our previous work, we denote transverse
two-dimensional (2D) vectors as bold p.

The running coupling is defined as in Ref. [26]:

αs(Q
2) = 4π

(11 − 2/3n f ) ln(Q2/�QCD)
, (2)

where Q2
k = (k2 + M2x2 + m2

g )/x, appearing in Eq. (1) above
is the off-shellness of the jet before gluon radiation [26].

ω(m...n) is the inverse of the formation time or the (longitu-
dinal) momentum,

ω(m...n) = χ2 + (k − qm − · · · − qn)2

2xE
, (3)

where n is the final scatter, while m varies from the first up
to the final scatter. χ2 ≡ M2x2 + m2

g, where x is the longitu-
dinal momentum fraction of the quark jet carried away by the
emitted gluon, M is the mass of the quark, mg = μE/

√
2 is the

effective mass for gluons with hard momenta [25], and μE is
the Debye mass (i.e., electric screening).

“Cascade” terms represent the shifting of the momentum of
the radiated gluon due to momentum kicks from the medium:

C(i1i2...im ) = (k − qi1 − qi2 − · · · − qim )

χ2 + (k − qi1 − qi2 − · · · − qim )2
. (4)

A special case of C without any momentum shifts is de-
fined as the “hard” term:

H = k
χ2 + k2

and Bi = H − Ci. (5)

In Refs. [13,14,27], we showed that, despite much more
involved analytical calculations, at first order in opacity the
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radiative energy loss in a dynamical medium has the same
form as in the static medium, except for two straightforward
substitutions in mean free path and effective potential:

λstat → λdyn, (6)

where

λ−1
stat = 6

1.202

π2

1 + n f /4

1 + n f /6
λ−1

dyn,

while the “dynamical mean free path” is given by λ−1
dyn =

3αs(Q2
v )T [13,14], with Q2

v = ET [26]. Running coupling
αs(Q2

v ) corresponds to the interaction between the jet and the
virtual (exchanged) gluon, while E is the jet’s energy.[

μ2
E

π
(
q2+μ2

E

)2

]
stat

→
[

μ2
E − μ2

M

π
(
q2+μ2

E

)(
q2+μ2

M

)
]

dyn

, (7)

where μM is magnetic screening. Thus, we assume that Eq. (1)
can also be used in our case, with the above modification of
effective potential and mean free path. In Appendixes A and
B, we use this general expression to derive an explicit expres-
sion for the gluon radiation spectrum for first, second, third,
and fourth order in opacity (dN (1)

g /dx, dN (2)
g /dx, dN (3)

g /dx,
dN (4)

g /dx, respectively).

III. NUMERICAL FRAMEWORK

To generate the results presented in this work, we used our
(appropriately generalized, see below) DREENA-C frame-
work. For completeness, we here give a brief outline of
this framework, while a detailed description is presented in
Ref. [22]. The quenched spectra of light and heavy quarks are
calculated according to the generic pQCD convolution given
by

E f d3σ

d p3
f

= Eid3σ (Q)

d p3
i

⊗ P(Ei → E f ) ⊗ D(Q → HQ). (8)

Here, the indices i and f stand for “initial” and “final,”
respectively, while Q denotes initial high-energy parton (light
quarks, heavy quarks, or gluons). Eid3σ (Q)/d p3

i is the initial
momentum spectrum for the given parton, which is calculated
according to Ref. [28], P(Ei → E f ) represents the energy
loss probability for the given particle which was calculated
within the dynamical energy loss formalism [13,14], which
includes multigluon [29] and path-length fluctuations [22,30].
D(Q → HQ) represents the fragmentation function of light
and heavy partons into hadrons, where for light hadrons, D
and B mesons, we use the DSS [31], BCFY [32], KLP [33]
fragmentation functions, respectively. The geometry is aver-
aged over by using path-length distributions, i.e., probability
distributions of the path lengths of hard partons in Pb + Pb
collisions, in the same way as in the original DREENA-C
framework [22]. They are used as weight functions when
integrating over the path-length in our numerical procedure.

We use the following parameters in the numerical pro-
cedure: �QCD = 0.2 GeV and n f = 3. The temperature-
dependent Debye chromoelectric mass μE (T ) has been
extracted from Ref. [34]. For the mass of light quarks, we

take the thermal mass M ≈ μE/
√

6, and for the gluon mass,
we use mg = μE/

√
2 [25]. The mass of the charm (bottom)

quark is M = 1.2 GeV (M = 4.75 GeV). The magnetic and
electric mass ratio is 0.4 < μM/μE < 0.6 [35,36]. All the
results presented in this paper are generated for the Pb + Pb
collision system at

√
sNN = 5.02 TeV.

As DREENA-C [22] does not include suppression from
multiple scattering centers in the medium, we now upgrade
this framework to include the second and third order in opacity
contributions. We integrate the expressions obtained from (1)
analytically for zi (see Appendixes A and B), and then nu-
merically for momenta k and qi using the quasi-Monte Carlo
method to obtain dNg/dx up to third order in opacity. Also, to
test the importance of multiple scattering centers on radiative
energy loss, we exclude the collisional [37] contributions from
the DREENA-C framework and only generate predictions
for radiative energy loss. Appendixes A and B also include
expressions for the fourth order in opacity. We implemented
fourth order into DREENA-C, but as the resulting integrals
are highly oscillatory, we could not reach convergence for this
order using our available computational resources. Notably,
this numerical complexity is significantly higher, estimated
to be ≈2 orders of magnitude larger than for the third order
(e.g., for the first order, we needed ≈25 CPU h; for the second
order ≈2500 CPU h; for the third order ≈70 000 CPU h). Nev-
ertheless, at specific points where we reached a convergence,
we found the fourth-order contribution negligible, as expected
from the results presented in the next section.

IV. RESULTS

In Fig. 1, the effect of higher orders in opacity on dNg/dx
as a function of x is shown for typical medium length L =
5 fm. In each plot, we use double axes for clarity: the lower
axis corresponds to magnetic to electric mass ratio μM/μE =
0.6 (and the curves with the peak on the left side), while the
upper axis corresponds to μM/μE = 0.4 (and the curves with
the peak on the right side). Note that, in each case, maximum
is reached for low values of x. We see that the importance
of higher orders of opacity decreases with the increase of
jet energy and mass. They also decrease with decreasing the
size of the medium, as shown in Appendix C [equivalent
figures for L = 3 fm (Fig. 6, left) and L = 1 fm (Fig. 6,
right)]. For bottom quarks, higher-order effects are negligible
independently of the jet momentum. In contrast, these effects
are moderate for charm and light quarks and can influence the
jet observables, as discussed below. Note that, due to color
triviality, the results for light quarks show the (scaled) result
for gluons, too. This holds up to the fact that, due to the
indistinguishability of the radiated gluon from the gluon in
the jet, the limits for subsequent integration of dNg/dx with
respect to x is performed from xlower = 0 to xupper = 1/2 (as
opposed to xupper = 1 for light quarks).

In Fig. 2, we show the effect of higher orders in opacity on
radiative RAA observable. Our computations have shown that
the effect on v2 is similar to the one on RAA (see Fig. 8 in Ap-
pendix D). Thus, to avoid redundancy, we further concentrate
only on RAA.
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FIG. 1. Gluon radiation spectrum dNg/dx as a function of x, for the typical medium length of L = 5 fm and various jet momenta. Different
columns correspond to light, charm, and bottom quarks. Solid black curves show the first order in opacity results, red dashed curves show the
results up to the second order, while cyan dot-dashed curves up to the third order in opacity. Curves with the peaks on the left (right) side of
each of the plots correspond to the μM/μE=0.6 (μM/μE = 0.4) case, and the numerical values should be read off on the lower (upper) x axis.

We first observe that the effect on RAA is smaller for more
peripheral collisions. This is expected because the medium is
shorter on average, so including multiple scattering centers
becomes less important.

Furthermore, we find that higher orders in opacity are
negligible for B mesons, while these effects increase with
decreasing mass, as expected from Fig. 1. The reason behind
this is the decrease in the gluon formation time with increasing
jet mass. When the gluon formation time is short, the energy
loss approaches the incoherent limit, where it was previously
shown that the effects of higher orders in opacity are negli-
gible [9]. Thus, our results are consistent with the previous
findings. On the other hand, for large gluon formation time
(massless quark and gluon limit), the higher orders in opacity
effects become significant, also in general agreement with the
previous findings [15]. In finite-temperature QGP (considered
in this study), light quarks and gluons gain mass due to Debye
screening, reducing the effects of higher orders in opacity on
the energy loss, consistent with Fig. 2.

Unexpectedly, we also observe that, for different magnetic
mass limiting cases, these effects on RAA are opposite in sign:
for μM/μE = 0.6, the inclusion of higher orders in opac-
ity reduces energy loss (and, consequently, suppression). In

contrast, for μM/μE = 0.4, the effect is both opposite in sign
and larger in magnitude. What is the reason behind these
unexpected results?

To answer this question, we go back to the effective po-
tential [27] v(q) in dynamical QCD medium, which can be
written in the following form:

v(q) = vL(q) − vT (q), (9)

where vL(q) is longitudinal (electric), and vT (q) is transverse
(magnetic), contribution to the effective potential. The general
expressions for the transverse and longitudinal contributions
to the effective potentials are

vL(q) = 1

π

(
1(

q2 + μ2
pl

) − 1(
q2 + μ2

E

)
)

,

(10)

vT (q) = 1

π

(
1(

q2 + μ2
pl

) − 1(
q2 + μ2

M

)
)

,

where μE , μM , and μpl = μE/
√

3 are electric, magnetic, and
plasmon masses, respectively. As seen from Eq. (9), this po-
tential has two contributions: electric and magnetic, where the
electric contribution is always positive due to μpl < μE . On
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FIG. 2. Radiative RAA results obtained within DREENA-C—the effects of different orders in opacity. The results are generated for the
Pb + Pb collision system at

√
sNN = 5.02 TeV, and all the other figures in the manuscript show the results for the same collision system and

energy. Different columns correspond to charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black
curves show the first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to
the third order in opacity. The upper (lower) boundary of each band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case.

the other hand, the magnetic contribution depends nontrivially
on the value of magnetic mass. That is, for μM > μpl , we see
that the magnetic contribution decreases the energy loss, while
for μM < μpl it increases the energy loss and consequently
suppression, as shown in Fig. 2, which may intuitively explain
the observed energy-loss behavior.

Furthermore, the Debye mass μE is well defined from
lattice QCD, where the perturbative calculations are also con-
sistent [34]. Thus, the electric potential is well defined in
dynamical energy loss, and we can separately test the effect
of higher orders in opacity on this contribution [by replacing
v(q) by vL(q) in the DREENA framework]. We surprisingly
find it to be negligible, as shown in Fig. 3. Thus, higher orders
in opacity essentially do not influence the electric contribution
in a dynamical QCD medium, which is an interesting and
intuitively unexpected result. That is, the higher orders mainly
influence the magnetic contribution to energy loss (keeping
the electric contribution unaffected), where the sign of the
effect depends on the magnetic mass value. For example,
as μM/μE = 0.4 is notably smaller than μpl/μE = 1/

√
3,

the higher orders in opacity are significant for this limit and
increase the suppression, in agreement with Fig. 2. On the

other hand, μM/μE = 0.6 is close to (but slightly larger than)
μpl/μE , so higher orders in opacity are small for this magnetic
mass limit and reduce the suppression, also in agreement with
Fig. 2. Additionally, note that the most recent 2 + 1 flavor
lattice QCD results with physical quark masses further con-
strain the magnetic screening to 0.58 < μM/μE < 0.64 [38].
Thus, for this range of magnetic screening, we conclude that
the effects of higher orders in opacity are small in a dynamical
QCD medium and can be safely neglected.

Furthermore, Fig. 3 raises another important question: as
is well known, only electric contribution exist in the static
QCD medium approximation [23,24] (although it has a dif-
ferent functional form compared to the electric contribution
in dynamical QCD medium). That is, the magnetic contri-
bution is inherently connected with the dynamic nature of
the QCD medium. As most existing energy loss calculations
assume (simplified) static QCD medium approximation, does
this mean that higher orders in opacity can be neglected under
such approximation?

We first note that this does not necessarily have to be the
case, because the effective potential for electric contribution is
significantly different in static compared with the dynamical
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FIG. 3. RAA results, obtained within DREENA-C when only electric contribution vL (q) to radiative energy loss is considered. Different
columns correspond to charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black curves show the
first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third order in
opacity.

medium. However, to address this question, we repeat the
same analyses as above, this time assuming the static medium
effective potential [left-hand side of Eq. (7)] and mean free
path λstat. Figure 4 shows the effects of higher orders in opac-
ity in static medium approximation. While larger than those
in Fig. 3, we see that these effects are still small (i.e., less
than 6%). Thus, for optically thin medium models with static
approximation, we show that including multiple scattering
centers has a small effect on the numerical results, i.e., these
effects can also be neglected.

Finally, we ask how the inclusion of evolving medium
would modify these results. Including higher-order effects in
evolving medium is very demanding and out of the scope of
this paper. However, it can be partially addressed by studying
how higher-order effects depend on the temperature, which
changes in the evolving medium. To address this, in Fig. 5,
we focus on D meson RAA, μM/μE = 0.6 (per agreement with
Ref. [38]) and study the effects of higher orders in opac-
ity for three different temperatures T = 200, 400, 600 MeV
(which broadly covers the range of temperatures accessible at
RHIC and the LHC). We find that the higher-order effects are
largely independent of these values. Thus, we do not expect
that including medium evolution will significantly influence

the results presented in this study, i.e., expect the effect of
multiple scattering centers to remain small.

V. SUMMARY

In this paper, we generalized our dynamical energy loss and
DGLV formalisms towards finite orders in opacity. For bottom
quarks, we find that higher orders in opacity are insignificant
due to short gluon formation time, i.e. the incoherent limit. For
charm and light quarks, including second order in opacity is
sufficient, i.e., the third order numerical results almost overlap
with the second. Surprisingly, we also find that for limits
of magnetic screening, μM/μE = 0.4 and μM/μE = 0.6, the
effects on the RAA are opposite in sign. That is, for μM/μE =
0.6 (μM/μE = 0.4), higher orders in opacity decrease (in-
crease) the energy loss and subsequently suppression. The
intuitive reason behind such behavior is the magnetic contri-
bution to the dynamical energy loss. That is, while electric
contribution remains almost insensitive to increases in the
order of opacity, magnetic screening larger (smaller) than the
plasmon mass value decreases (increases) the energy loss and
suppression, in agreement with theoretical expectations. We
also show that in the static QCD medium approximation, in
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FIG. 4. Radiative RAA results obtained within DREENA-C under the static medium approximation. Different columns correspond to
charged hadrons, D and B mesons, while different rows show different centrality classes. Solid black curves show the first order in opacity
results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third order in opacity.

which (per definition) only electric contribution remains, the
effects of higher orders in opacity on high-p⊥ observables
are small and can be safely neglected. Thus, for static QCD

FIG. 5. D meson radiative RAA results obtained within DREENA-
C for different temperatures. The left panel corresponds to 0%–5%
centrality, while the right panel corresponds to 40%–50% centrality.
The values of temperature are T = 200 MeV (the uppermost curves),
400 MeV (the middle curves), and 600 MeV (the lowest curves).
The solid black curves show the first order in opacity results, while
cyan dot-dashed curves show the results up to the third order in
opacity. The chromomagnetic and chromoelectric mass ratio is fixed
at μM/μE = 0.6.

medium, the first order in opacity is an adequate approxima-
tion for finite-size QCD medium created at RHIC and the
LHC. For dynamical energy loss, both the sign and the size
of the effects depend on the magnetic screening, as outlined
above. However, for most of the current estimates of magnetic
screening [38], these effects remain less than 5%, so they can
also be safely neglected.

The analyses presented here are obtained for a constant-
temperature medium (and adequately generalized DREENA-
C framework). However, we also tested how the effects of
including multiple scatterers depend upon temperature and
found this influence to be also small (affecting the radiative
RAA for less than 5%). Thus, we expect that including higher
orders in opacity in the evolving medium will not change
the qualitative results obtained here, but this remains to be
rigorously tested in the future.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR dNg/dx: GENERAL FORM

The gluon radiation spectrum up to the fourth order in opacity contains the following terms, which are here given in detail:(
dNg

dx

)
=

(
dN (1)

g

dx

)
+

(
dN (2)

g

dx

)
1

−
(

dN (2)
g

dx

)
2

+
(

dN (3)
g

dx

)
1

−
(

dN (3)
g

dx

)
2

−
(

dN (3)
g

dx

)
3

+
(

dN (3)
g

dx

)
4

+
(

dN (4)
g

dx

)
1

−
(

dN (4)
g

dx

)
2

−
(

dN (4)
g

dx

)
3

+
(

dN (4)
g

dx

)
4

−
(

dN (4)
g

dx

)
5

+
(

dN (4)
g

dx

)
6

+
(

dN (4)
g

dx

)
7

−
(

dN (4)
g

dx

)
8

. (A1)

Numerical integrations with respect to the momentum k are performed over 0 < |k| < 2Ex(1 − x), and the ones with respect
to momenta qi are performed over 0 < |qi| <

√
4ET [39]. The integrations with respect to angles ϕi are performed over

0 < ϕi < 2π . Under the constant-T approximation considered in this manuscript, the expressions presented below can be
analytically integrated over zi, significantly simplifying subsequent numerical calculations (see Appendix B).

In the expressions below, the following equations hold for i, j ∈ {1, 2, 3, 4}:
k · qi = |k||qi| cos ϕi, (A2)

qi · q j = |qi||q j | cos(ϕi − ϕ j ). (A3)

The first order in opacity term is given by(
dN (1)

g

dx

)
= 4CR

πx

∫ L

0
dz1

∫
d2k
π

∫
d2q1

π
αs

(
Q2

k

) 1

λdyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

)
× χ2[q1 · (q1 − k)] + (q1 · k)(k − q1)2

(χ2 + k2)[χ2 + (k − q1)2]2
sin2

(
χ2 + (k2 − q1)2

4xE
z1

)
. (A4)

After integration with respect to z1, this expression reduces to the expression used to obtain dNg/dx in the original DREENA-
C framework [22].

The second order in opacity contains two terms, which are given by(
dN (2)

g

dx

)
1

= 4CR

πx

∫ L

0

∫ L

z1

dz1dz2

∫
d2k
π

∫∫
d2q1

π

d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)

× χ2[q2 · (q1 + q2 − k)] + (q2 · k)(k − q2)2 + (k · q1)[q2 · (q2 − 2k)] + k2(q2 · q1)

(χ2 + k2)[χ2 + (k − q2)2][χ2 + (k − q1 − q2)2]

× sin

(
χ2 + (k − q1 − q2)2

4xE
z1

)
sin

(
χ2 + (k − q1 − q2)2

4xE
z1 + χ2 + (k − q2)2

2xE
z2

)
, (A5)

(
dN (2)

g

dx

)
2

= 4CR

πx

∫ L

0

∫ L

z1

dz1dz2

∫
d2k
π

∫
d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q2 − k)] + (q2 · k)(k − q2)2

(χ2 + k2)[χ2 + (k − q2)2]2
sin

(
χ2 + (k − q2)2

4xE
z1

)
sin

[
χ2 + (k − q2)2

2xE

( z1

2
+ z2

)]
. (A6)

The third order in opacity contains four terms, which are given by(
dN (3)

g

dx

)
1

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q3

π

×αs
(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q1 + q2 + q3 − k)] + (q3 · k)(k − q3)2 + [k · (q1 + q2)][q3 · (q3 − 2k)] + k2[q3 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q2 − q3)2]

× sin

(
χ2 + (k − q1 − q2 − q3)2

4xE
z1

)

× sin

(
χ2 + (k − q1 − q2 − q3)2

4xE
z1 + χ2 + (k − q2 − q3)2

2xE
z2 + χ2 + (k − q3)2

2xE
z3

)
, (A7)
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(
dN (3)

g

dx

)
2

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫∫
d2q1

π

d2q3

π

×αs
(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q1 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q1)[q3 · (q3 − 2k)] + k2(q3 · q1)

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q3)2]

× sin

(
χ2 + (k − q1 − q3)2

4xE
z1

)
sin

(
χ2 + (k − q1 − q3)2

4xE
z1 + χ2 + (k − q3)2

2xE
(z2 + z3)

)
, (A8)

(
dN (3)

g

dx

)
3

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫∫
d2q2

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q2 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q2)[q3 · (q3 − 2k)] + k2(q3 · q2)

(χ2 + k2)[χ2 + (k − q3)2](χ2 + (k − q2 − q3)2)

× sin

(
χ2 + (k − q2 − q3)2

4xE
z1

)
sin

[
χ2 + (k − q2 − q3)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q3)2

2xE
z3

]
, (A9)

(
dN (3)

g

dx

)
4

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

dz1dz2dz3

∫
d2k
π

∫
d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q3 − k)] + (q3 · k)(k − q3)2

(χ2 + k2)[χ2 + (k − q3)2]2
sin

(
χ2 + (k − q3)2

4xE
z1

)
sin

[
χ2 + (k − q3)2

2xE

(
z1

2
+ z2 + z3

)]
.

(A10)

The fourth order in opacity is given by eight terms, which are given by(
dN (4)

g

dx

)
1

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫∫
d2q1

π

d2q2

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q1+q2+q3+q4 − k)]+(q4 · k)(k−q4)2+[k · (q1+q2+q3)][q4 · (q4−2k)]+k2[q4 · (q1+q2 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q3 − q4)2]

× sin

(
χ2 + (k − q1 − q2 − q3 − q4)2

4xE
z1 + χ2 + (k − q2 − q3 − q4)2

2xE
z2 + χ2 + (k − q3 − q4)2

2xE
z3

+ χ2 + (k − q4)2

2xE
z4

)
sin

(
χ2 + (k − q1 − q2 − q3 − q4)2

4xE
z1

)
, (A11)

(
dN (4)

g

dx

)
2

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q1 + q2 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q2)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q2 − q4)2]

× sin

(
χ2 + (k − q1 − q2 − q4)2

4xE
z1 + χ2 + (k − q2 − q4)2

2xE
z2 + χ2 + (k − q4)2

2xE
(z3 + z4)

)

× sin

(
χ2 + (k − q1 − q2 − q4)2

4xE
z1

)
, (A12)
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(
dN (4)

g

dx

)
3

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q1

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q3 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q1 + q3)][q4 · (q4 − 2k)] + k2[q4 · (q1 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q3 − q4)2]

× sin

(
χ2 + (k − q1 − q3 − q4)2

4xE
z1 + χ2 + (k − q3 − q4)2

2xE
(z2 + z3) + χ2 + (k − q4)2

2xE
z4

)

× sin

(
χ2 + (k − q1 − q3 − q4)2

4xE
z1

)
, (A13)

(
dN (4)

g

dx

)
4

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q1

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q1 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q1)[q4 · (q4 − 2k)] + k2(q4 · q1)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q1 − q4)2]

× sin

(
χ2 + (k − q1 − q4)2

4xE
z1

)
sin

(
χ2 + (k − q1 − q4)2

4xE
z1 + χ2 + (k − q4)2

2xE
(z2 + z3 + z4)

)
, (A14)

(
dN (4)

g

dx

)
5

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫∫
d2q2

π

d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)

× χ2[q4 · (q2 + q3 + q4 − k)] + (q4 · k)(k − q4)2 + [k · (q2 + q3)][q4 · (q4 − 2k)] + k2[q4 · (q2 + q3)]

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q2 − q3 − q4)2]

× sin

[
χ2 + (k − q2 − q3 − q4)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q3 − q4)2

2xE
z3 + χ2 + (k − q4)2

2xE
z4

]

× sin

(
χ2 + (k − q2 − q3 − q4)2

4xE
z1

)
, (A15)

(
dN (4)

g

dx

)
6

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q2

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q2 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q2)[q4 · (q4 − 2k)] + k2(q4 · q2)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q2 − q4)2]

× sin

(
χ2 + (k − q2 − q4)2

4xE
z1

)
sin

[
χ2 + (k − q2 − q4)2

2xE

( z1

2
+ z2

)
+ χ2 + (k − q4)2

2xE
(z3 + z4)

]
, (A16)
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(
dN (4)

g

dx

)
7

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫∫
d2q3

π

d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

) μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

)
× χ2[q4 · (q3 + q4 − k)] + (q4 · k)(k − q4)2 + (k · q3)[q4 · (q4 − 2k)] + k2(q4 · q3)

(χ2 + k2)[χ2 + (k − q4)2][χ2 + (k − q3 − q4)2]

× sin

(
χ2 + (k − q3 − q4)2

4xE
z1

)
sin

[
χ2 + (k − q3 − q4)2

2xE

(
z1

2
+ z2 + z3

)
+ χ2 + (k − q4)2

2xE
z4

]
, (A17)

(
dN (4)

g

dx

)
8

= 4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k
π

∫
d2q4

π

×αs
(
Q2

k

) 1

λ4
dyn

μ2
E − μ2

M(
q2

4 + μ2
E

)(
q2

4 + μ2
M

) χ2[q4 · (q4 − k)] + (q4 · k)(k − q4)2

(χ2 + k2)[χ2 + (k − q4)2]2

× sin

(
χ2 + (k − q4)2

4xE
z1

)
sin

[
χ2 + (k − q4)2

2xE

(
z1

2
+ z2 + z3 + z4

)]
. (A18)

APPENDIX B: ANALYTICAL EXPRESSIONS FOR dNg/dx WITHIN DREENA-C

Within the DREENA-C framework, under the assumption of constant medium temperature, we can explicitly perform analytical
integrations for zi, where (i = 1, 2, 3, 4). ω(m...n) coefficients are defined in the Theoretical Framework section. The expression
for the first order in opacity then became

(
dN (1)

g

dx

)
= 2CR

πx

∫
d2k
π

∫
d2q1

π
αs

(
Q2

k

) L

λdyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) χ2[q1 · (q1 − k)] + (q1 · k)(k − q1)2

(χ2 + k2)[χ2 + (k − q1)2]2

(
1 − sin(Lω(1) )

Lω(1)

)
,

(B1)

The expressions for higher orders in opacity became

(
dN (2)

g

dx

)
1

= 2CR

πx

∫
d2k
π

∫∫
d2q1

π

d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q1 + q2 − k)] + (q2 · k)(k − q2)2 + (k · q1)[q2 · (q2 − 2k)] + k2(q2 · q1)

(χ2 + k2)[χ2 + (k − q2)2][χ2 + (k − q1 − q2)2]

× 1

ω(2)

(
ω(2) cos[(ω(2) + ω(12))]

(ω(2) + ω(12))ω(12)
+ L sin (Lω(2) ) − (ω(2) − ω(12)) cos (Lω(2) )

ω(2)ω(12)
− ω(12)

ω(2)(ω(2) + ω(12))

)
, (B2)

(
dN (2)

g

dx

)
2

= 2CR

πx

∫
d2k
π

∫
d2q2

π
αs

(
Q2

k

) 1

λ2
dyn

μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

)
× χ2[q2 · (q2 − k)] + (q2 · k)(k − q2)2

(χ2 + k2)[χ2 + (k − q2)2]2

sin (Lω(2) )[Lω(2) − sin (Lω(2) )]

ω2
(2)

, (B3)

(
dN (3)

g

dx

)
1

= 2CR

πx

∫
d2k
π

∫∫∫
d2q1

π

d2q2

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

2 + μ2
E

)(
q2

2 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)
× χ2[q3 · (q1 + q2 + q3 − k)] + (q3 · k)(k − q3)2 + [k · (q1 + q2)][q3 · (q3 − 2k)] + k2[q3 · (q1 + q2)]

(χ2 + k2)[χ2 + (k − q3)2][χ2 + (k − q1 − q2 − q3)2]

×
{

ω(3)ω(123) + 2ω(23)ω(123) − ω2
(23) − ω(3)ω(23)

ω2
(23)(ω(3) + ω(23))2ω(123)

sin[L(ω(3) + ω(23))] − ω(123) sin (Lω(3) )

ω(3)ω
2
(23)(ω(23) + ω(123))

+ sin[L(ω(3) + ω(23) + ω(123))]

ω(123)(ω(23) + ω(123))(ω(3) + ω(23) + ω(123))
− L cos[L(ω(3) + ω(23))]

ω(23)(ω(3) + ω(23))

}
, (B4)
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(
dN (3)

g

dx

)
2

= CR

πx

∫
d2k
π

∫∫
d2q1

π

d2q3

π
αs

(
Q2

k

) 1

λ3
dyn

μ2
E − μ2

M(
q2

1 + μ2
E

)(
q2

1 + μ2
M

) μ2
E − μ2

M(
q2

3 + μ2
E

)(
q2

3 + μ2
M

)

× χ2[q3 · (q1 + q3 − k)] + (q3 · k)(k − q3)2 + (k · q1)[q3 · (q3 − 2k)] + k2(q3 · q1)
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APPENDIX C: dNg/dx RESULTS FOR L = 3 AND L = 1

In this section, we show dNg/dx as a function of x for medium lengths L = 3 f m [Fig. (6)] and L = 1 f m [Fig. (7)].

FIG. 6. Gluon radiation spectrum dNg/dx as a function of x, for the medium length of L = 3 fm and various jet momenta. The panel on
the left (right) side shows the result for μM/μE = 0.4 (0.6). The figure caption is the same as for Fig. 1.

FIG. 7. Gluon radiation spectrum dNg/dx as a function of x, for the medium length of L = 1 fm and various jet momenta. The panel on
the left (right) side shows the result for μM/μE = 0.4 (0.6). The figure caption is the same as for Fig. 1.
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FIG. 8. v2 results obtained within DREENA-C – the effects of different orders in opacity. Different columns correspond to charged hadrons,
D, and B mesons, while different rows show different centrality classes. Only radiative energy loss is taken into account. Solid black curves
show the first order in opacity results, red dashed curves show the results up to the second order, while cyan dot-dashed curves up to the third
order in opacity. The lower (upper) boundary of each band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case.

APPENDIX D: v2 RESULTS UP TO THIRD ORDER IN OPACITY

We here show the results for v2 up to the third order in opacity (Fig. 8). Note that here the lower (upper) boundary of each
band corresponds to the μM/μE = 0.6 (μM/μE = 0.4) case (opposite with respect to RAA results). We observe the same behavior
as for RAA.
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We show that high-p⊥ RAA and v2 are sensitive to the early expansion dynamics, and that the high-p⊥
observables prefer delayed onset of energy loss and transverse expansion. To calculate high-p⊥ RAA and v2,
we employ our newly developed DREENA-A framework, which combines state-of-the-art dynamical energy
loss model with (3+1)-dimensional hydrodynamical simulations. The model applies to both light and heavy
flavor, and we predict a larger sensitivity of heavy flavor observables to the onset of transverse expansion. This
presents the first time when bulk QGP behavior has been constrained by high-p⊥ observables and related theory,
i.e., by so-called QGP tomography.
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Quark-gluon plasma (QGP) [1,2] is an extreme form of
matter that consists of interacting quarks, antiquarks, and
gluons. This state of matter is formed in ultrarelativistic
heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) and the Large Hadron Collider (LHC). When analyz-
ing the heavy-ion collision data, the particles formed in these
collisions are traditionally separated into high-p⊥ (rare hard
probes) and low-p⊥ particles (bulk, consisting of 99.9% of
particles formed in these collisions).

The QGP properties are traditionally explored by low-p⊥
observables [3–6], while rare high-p⊥ probes are, almost
exclusively, used to understand the interactions of high-p⊥
partons with the surrounding QGP medium. High-p⊥ physics
had a decisive role in the QGP discovery [7], but it has
been rarely used to understand bulk QGP properties. On the
other hand, some important bulk QGP properties are diffi-
cult to constrain by low-p⊥ observables and corresponding
theory/simulations [8–11]. We are therefore advocating QGP
tomography, where bulk QGP parameters are jointly con-
strained by low- and high-p⊥ physics.

During the last few years, our understanding of the very
early evolution of QGP has evolved a lot. In particular
the discovery of the attractor solutions of the evolution of
nonequilibrated systems [12–14], and models based on effec-
tive kinetic theory [15,16] have been significant milestones.
However, the exact dynamics of early evolution and hydro-
dynamization of the medium, i.e., the approach to the state
where the system can be described using fluid dynamics, are
not settled yet. Furthermore, to our knowledge, there are no
reliable methods to calculate jet energy loss in a medium
out of equilibrium. Instead of microscopic calculation of the
early-time dynamics, we take a complementary approach in
this Letter. We calculate the high-p⊥RAA and v2 in a few

*pasi@ipb.ac.rs
†magda@ipb.ac.rs

straightforward scenarios, and show how the comparison to
high-p⊥ data constrains the early evolution.

In the attractor solutions, the final evolution is fluid dy-
namical even if the initial state is quite far from equilibrium.
This allows us to entertain the notion that even if the early
state is not in local equilibrium, we could use fluid dynam-
ics to describe its evolution from very early times [17], say
from τ0 = 0.2 fm, where τ0 is the initial time of fluid dy-
namical evolution. Correspondingly, we may argue that the
temperature entering fluid dynamical evolution controls also
jet energy loss, and we may start the jet energy loss at the
same time, τq = 0.2 fm. On the other hand, we had studied the
preequilibrium energy loss in various scenarios [18], and seen
that even if the data could not properly distinguish these sce-
narios, Bjorken-type temperature evolution at very early times
tended to push RAA too low. This may suggest that applying
the equilibrium jet-medium interactions to the preequilibrium
stage (even if close enough to fluid dynamical) overestimates
the energy loss. Due to this, we here, for simplicity, assume
an opposite limit, where we start the energy loss later than the
fluid dynamical evolution: τq = 1.0 fm and τ0 = 0.2 fm.1

Frequently used toy model to study the effects of early
nonequilibrium evolution is the free-streaming approach
[19,20], where (fictional) particles are allowed to stream freely
until the initial time of fluid dynamical evolution τ0. As our
third scenario, we allow free streaming until τ0 = 1.0 fm.
Consistently with the assumed absence of interactions in the
bulk medium, we assume no jet-medium interactions during
the out-of-equilibrium stage, so that τ0 = τq = 1.0 fm. For
comparison’s sake, we also explore the old-fashioned scenario
where nothing happens before the fluid dynamical initial time
τ0 = τq = 1.0 fm, i.e., we start the fluid-dynamical evolution
at τ = 1.0 fm with zero transverse flow velocity.

1Similar scenario was suggested and studied in Ref. [66].
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When calculating how the high-p⊥ observables depend
on our different scenarios we have to ensure that the QGP
medium evolution is compatible with the observed distribu-
tions of low-p⊥ particles. We describe the medium evolution
using the (3+1)-dimensional viscous hydrodynamical model
[21]. For simplicity, we choose a constant shear viscosity to
entropy density ratio η/s = 0.12 for the cases without pre-
hydro transverse flow, and η/s = 0.16 for the free-streaming
initialization. In all the cases the initial energy density profile
in transverse plane is given by the binary collision density nBC

from the optical Glauber model:

e(τ0, x, y, b) = Ce(τ0)
(
nBC + c1n2

BC + c2n3
BC

)
. (1)

The parameters Ce, c1, and c2 are tuned separately for each
scenario, to approximately describe the observed charged
particle multiplicities and v2{4} in Pb+Pb collisions at√

sNN = 5.02 TeV. For the longitudinal profile, we keep the
parametrization used for

√
sNN = 2.76 Pb+Pb collisions [21].

The equation of state is s95p-PCE-v1 [22]. We use freeze-
out temperatures Tchem = 150 MeV and Tdec = 100 MeV for
cases without pre-hydro flow, but with free streaming we use
Tchem = 175 MeV [23] to mimic bulk viscosity around Tc

required to fit the pT distributions, and Tdec = 140 MeV.
In the free-streaming initialization massless particles

stream freely from τ = 0.2 fm to τ0 = 1.0 fm, where the
energy-momentum tensor based on the distributions of these
particles is evaluated. The energy momentum tensor is
decomposed to densities, flow velocity, and dissipative cur-
rents, which are used as the initial state of the subsequent
fluid-dynamical evolution. The switch from massless nonin-
teracting particles to strongly interacting constituents of QGP
causes large positive bulk pressure at τ0. In our calculations
bulk viscosity coefficient is always zero, and the initial bulk
pressure will approach zero according to Israel-Stewart equa-
tions.

The transverse momentum distributions of charged par-
ticles are shown in Fig. 1, and p⊥-differential elliptic flow
parameter v2{4}(p⊥) in the low momentum part (p⊥ < 2
GeV) of the bottom panels of Fig. 2. As seen, the overall
agreement with the data is acceptable.

To be able to use the high-p⊥ sector to study the bulk
behavior we need a framework that incorporates both state-
of-the-art energy loss and bulk medium simulations. With this
goal, we recently developed a fully optimized modular frame-
work DREENA-A [25], which can incorporate any, arbitrary,
temperature profile within the dynamical energy loss for-
malism (outlined below). Consequently, “DREENA” stands
for Dynamical Radiative and Elastic ENergy loss Approach,
while “A” stands for Adaptive. The framework does not have
fitting parameters within the energy loss model, allowing to
fully exploit different temperature profiles (as the only input in
the DREENA-A framework), systematically compare the data
and predictions obtained by the same formalism and parame-
ter set, and consequently constrain the bulk QGP properties
from jointly studying low- and high-p⊥ theory and data.

The initial quark spectrum is computed at next-to-leading
order [26] for light and heavy partons. To generate charged
hadrons, we use DSS [27] fragmentation functions. For D and
B mesons, we use BCFY [28] and KLP [29] fragmentation

FIG. 1. Transverse momentum spectrum of charged particles in
five centrality classes in Pb+Pb collisions at

√
sNN = 5.02 TeV,

with two initial times τ0 = 0.2 and τ0 = 1.0 fm, and free streaming
initialization (FS). ALICE data from Ref. [24].

functions, respectively. In the presence of QCD medium, the
vacuum fragmentation functions should be modified along
with parton energy loss as described by the multiscale models
[30,31]. However, for high-p⊥ > 10 GeV, which is the mo-
mentum region covered in our study,2 such modification is
small, justifying the use of vacuum fragmentation [30].

The dynamical energy loss formalism [32,33] has sev-
eral unique features: (i) QCD medium of finite size and
temperature consisting of dynamical (i.e., moving) partons;
this in distinction to medium models with widely used
static approximation and/or vacuumlike propagators [34–37].
(ii) Calculations based on generalized hard-thermal-loop ap-
proach [38], with naturally regulated infrared divergences
[32,33,39]. (iii) Calculations of both radiative [32] and colli-
sional [33] energy loss in the same theoretical framework. (iv)
Generalization towards running coupling [40], finite magnetic
mass [41]. We also recently advanced the formalism towards
relaxing the widely used soft-gluon approximation [42]. All
of these features are necessary for accurate predictions [43],
but utilizing evolving temperature profiles is highly nontrivial
within this complex energy loss framework.

We use the same parameter set to generate high-p⊥ pre-
dictions as in our earlier studies within DREENA-C [44] and
DREENA-B [45] frameworks. In particular, we use �QCD =
0.2 GeV and effective light quark flavors n f = 3. For light
quark mass, we assume to be dominated by the thermal mass
M = μE/

√
6, and for the gluon mass, we take mg = μE/

√
2

[39]. The temperature-dependent Debye mass μE is obtained
by applying procedure from Ref. [46], which leads to results
compatible with the lattice QCD [47]. The charm (bottom)
mass is M = 1.2 GeV (M = 4.75 GeV). Magnetic to electric
mass ratio is 0.4 < μM/μE < 0.6 [48–51], but for simplicity

2As the assumptions in the dynamical energy loss break down
below 10 GeV, we consider our predictions to be reliable in the region
p⊥ > 10 GeV.
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FIG. 2. Charged hadron DREENA-A RAA (top panels) and v2 (bottom panels) predictions, generated for different τ0, τq, and initialization
(see the legend, FS stands for free streaming), are compared with ALICE [24,52], CMS [53,54], and ATLAS [55,56] data. Four columns, from
left to right, correspond to 10–20 %, 20–30 %, 30–40 %, and 40–50 % centralities at

√
sNN = 5.02 TeV Pb+Pb collisions at the LHC. At low

p⊥ (p⊥ < 2 GeV) v2 is 4-cumulant v2{4}, whereas at high p⊥ (p⊥ > 5 GeV) we evaluate v2 as v2 = (1/2) (Rin
AA − Rout

AA)/(Rin
AA + Rout

AA ).

μM/μE = 0.5, leading to the uncertainty of up to 10% for
both RAA and v2 results.

The resulting DREENA-A predictions for charged hadron
RAA and v2 in four different centrality classes, and four scenar-
ios of early evolution, are shown in Fig. 2, and compared with
experimental data. As one can expect, the later the energy loss
begins, the higher the RAA, and evaluating the energy loss as
in thermalized medium already at τq = 0.2 fm is slightly dis-
favored. Furthermore, early free-streaming evolution leads to
larger RAA than fluid-dynamical evolution. On the other hand,
the behavior of v2 is different. First, if the early expansion
is fluid dynamical, we see that delaying the onset of energy
loss hardly changes v2 at all. Second, early free-streaming
evolution does not lead to better reproduction of the data, but,
in peripheral collisions, the fit is even worse. The only case
when our v2 predictions approach the data, is when both the
jet energy loss and the transverse expansion are delayed to
τ = 1 fm.

As shown in Fig. 3, heavy quarks are even more sensitive to
the early evolution. For bottom probes, the data are largely not
available, making these true predictions. For charm probes,
the available experimental data are much more sparse (and
with larger error bars) than the charged hadron data. However,
where available, comparison of our predictions with the data
suggests the same preference towards delayed energy loss
and transverse expansion as charged hadrons. These results
are important, as consistency between light and heavy flavor
is crucial (though highly nontrivial, as, e.g., implied by the
well-known heavy flavor puzzle [62]) for studying the QGP
properties.

To investigate the origin of the sensitivity of RAA and
v2 to the early evolution, we evaluate the temperature along

the paths of jets traveling in-plane (φ = 0) and out-of-plane
(φ = π/2) directions, and average over all sampled jet paths.
In Fig. 4 we show the time evolution of the average of temper-
atures in in- and out-of-plane directions, and their difference

FIG. 3. Predicted D (full curves) and B meson (dashed curves)
RAA (top panels) and v2 (bottom panels) in Pb+Pb collisions at√

sNN = 5.02 TeV. The predictions for D mesons are compared with
ALICE [57,58] (red triangles) and CMS [59] (blue squares) D meson
data, while predictions for B mesons are compared with CMS [60]
(green circles) nonprompt J/� data.
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FIG. 4. Average temperature along the jet path traversing the
system (top panel) and the difference of average temperatures in
out-of-plane and in-plane directions (bottom panel) for τ0 = 0.2 and
1.0 fm and free-streaming initialization at 10–20 % and 30–40 %
centrality classes. The average is over all sampled jet paths, and the
path ends at TC ≈ 160 MeV [61].

in 10–20 % and 30–40 % central collisions for τ0 = 0.2 and
1.0 fm, and the free-streaming initialization. The behavior
of RAA is now easy to understand in terms of average tem-
perature: Larger τq, i.e., delay in the onset of energy loss,
cuts away the large temperature part of the profile decreasing
the average temperature, and thus increasing the RAA [44,45].
Similarly, for late start of transverse expansion, i.e., τ0 = 1.0
fm, the temperature is first slightly larger and later lower
than for τ0 = 0.2 fm, and thus the RAA in τ0 = τq = 1.0 fm
and τ0 = 0.2 with τq = 1.0 cases is almost identical. On the
other hand, due to the rapid expansion of the edges of the
system, free-streaming initialization leads to lower average
temperature than any other scenario, and thus to the largest
RAA.

High-p⊥ v2, on the other hand, is proportional to the
difference in temperature along in-plane and out-of-plane
directions, and to lesser extent to the average temperature.
Delaying the onset of transverse expansion to τ0 = 1.0 fm
leads to larger difference than either early fluid-dynamical or
free-streaming expansion, and thus v2 is largest in that case.
As well, delaying the onset of energy loss by increasing τq

hardly changes v2, since at early times the temperature seen
by jets in in- and out-of-plane directions is almost identical,
and no v2 is built up at that time. Early free streaming and
early fluid-dynamical expansion lead to similar differences in
temperatures. The slightly larger difference in the 10–20 %
centrality class is counteracted by slightly lower temperature,
and thus final v2 is practically identical in both cases. In the
more peripheral 30–40 % class the differences in temperature
are almost identical, but the lower average temperature leads
to lower v2 for free streaming.

The delay in transverse expansion affects the average tem-
perature along the jet in two ways. First, smaller τ0 means
larger initial gradients, faster buildup of flow, and faster dilu-
tion of the initial spatial anisotropy. Similarly, free-streaming
leads to even faster buildup of flow and dilution of spatial
anisotropies than early fluid-dynamical expansion. Second,
since the initial jet production is azimuthally symmetric, and
jets travel along eikonal trajectories, at early times both in-
and out-of-plane jets probe the temperature of the medium
almost the same way. Only with course of time will the
spatial distribution of in- and out-of-plane jets differ, and the
average temperature along their paths begins to reflect the
anisotropies of the fluid temperature. This qualitative under-
standing indicates that the obtained conclusions are largely
model independent.

The idea of using high-p⊥ theory and data to explore
QGP is not new, see, e.g., Refs. [63–73]. While some of
these approaches can achieve a reasonable agreement with the
data (see, e.g., [73–75]), this agreement relies on adjusting
fitting parameter(s) in the energy loss model, which prevents
them from constraining the bulk medium properties. These
models thus largely concentrate on investigating the nature
of parton interactions (e.g., a new phenomenon of magnetic
monopoles is systematically introduced in Ref. [73]) rather
than exploring which dynamical evolution better explains the
data. In contrast, the goal of our approach is to constrain the
bulk QGP behavior. The major advantage of our framework is
that it does not use fitting parameters in the energy loss model,
enabling us to explore the effects of different bulk medium
evolutions. We can even use RAA to make conclusions about
the bulk properties of the system, where our RAA results imply
that the energy loss during the very early evolution is weaker
than energy loss in a fully thermal system.

Furthermore, our study shows that not only is early energy
loss suppressed [64,66], but the early buildup of transverse
expansion must be delayed as well. It is not sufficient to delay
cooling as suggested in Ref. [64], but the initial anisotropy
must be diluted at much slower rate than given by either free
streaming or by fluid dynamics. We do not expect current
more sophisticated approaches to preequilibrium dynamics,
such as KøMPøST based on effective kinetic theory [15,16],
to resolve this issue. As seen in Ref. [76], except in most
peripheral collisions, both KøMPøSTing and free streaming
lead to very similar final distributions. Thus we may expect
that at the time of switching to fluid dynamics, they both have
lead to very similar flow and temperature profiles (and thus
anisotropies).

Alternatively, the initial spatial anisotropies could be much
larger than considered here. It is known that both IP-Glasma
and EKRT approaches lead to larger eccentricities than
Glauber, but we have tested that they both lead to too low
high-p⊥ v2, if the fluid dynamical evolution begins as usually
assumed in calculations utilizing IP-Glasma or EKRT ini-
tializations. Event-by-event fluctuations may enhance spatial
anisotropies as well, and by generating shorter scale struc-
tures, they may enhance the sensitivity of high-p⊥ v2 to
spatial anisotropies. However, for these additional structures
to enhance the high-p⊥ v2, they should be correlated with the
event plane, which is not necessarily the case. While we have
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postponed a study of event-by-event fluctuations to a further
work, our preliminary results do not indicate substantial influ-
ence on high-p⊥ predictions.

In summary, we presented (to our knowledge) the first ex-
ample of using high-p⊥ theory and data to provide constraints
to bulk QGP evolution. Specifically, we inferred that exper-
imental data suggest that at early times both the energy loss
and transverse expansion of the system should be significantly
weaker than in conventional models. We emphasize that the
assumption that no energy loss nor transverse expansion takes
place before τ0 = 1.0 fm is unrealistic. We are not advocating
such a scenario, but note that the only way available to us to
test our hypothesis that the early energy loss and expansion
should be suppressed was to take the limit of no energy
loss nor transverse expansion at all. Doing this significantly
improves the agreement with the data, thus supporting our
hypothesis. While our finding of delayed onset of energy loss

and transverse expansion has yet to be physically understood,
there have been several anomalies in the history of heavy-ion
physics, and our result is one more of them.

Furthermore, heavy flavor observables show large sensi-
tivity to the details of early evolution, so our conclusion
will be further tested by the upcoming high luminosity
measurements. Our results demonstrate inherent interconnec-
tions between low- and high-p⊥ physics, strongly supporting
the utility of our QGP tomography approach, where bulk
QGP properties are jointly constrained by low- and high-p⊥
data.

This work is supported by the European Research Council,
Grant No. ERC-2016-COG: 725741, and by the Ministry of
Education, Science and Technological Development of the
Republic of Serbia, under Projects No. ON171004 and No.
ON173052.
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We explore to what extent, and how, high-p⊥ data and predictions reflect the shape and anisotropy of 
the QCD medium formed in ultrarelativistic heavy-ion collisions at LHC energies. To this end, we use 
our recently developed DREENA-A framework, which can accommodate any temperature profile within 
the dynamical energy loss formalism. We show that the ratio of high-p⊥ v2 and (1 − R A A) predictions 
reaches a well-defined saturation value, which is directly proportional to the time-averaged anisotropy of 
the evolving QGP, as seen by the jets.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Quark-gluon plasma is a new form of matter created in ultra-
relativistic heavy ion collisions. The main goal of relativistic heavy 
ion physics [1–4] is to explore the properties of this new form 
of matter [5,6], which will in turn lead to a fundamental under-
standing of QCD matter at its basic level. In the QGP tomography 
approach that we advocate, the energy loss of rare high energy 
partons traversing the medium is used to map its properties.

We previously argued [7] that, at large enough values of trans-
verse momentum (high-p⊥), the ratio of the elliptic flow v2 and 
1 − R A A , where R A A is the nuclear suppression factor, saturates, 
and reflects the initial geometry of the system. However, this ar-
gument was based on analytic considerations and a simple 1-
dimensional expansion [8,9], where the geometry does not depend 
on time. To see how the evolving shape of the collision system af-
fects the high-p⊥ observables, and subsequently the v2/(1 − R A A)

ratio, we here study the behaviour of this ratio in a system that 
expands both in longitudinal and transverse directions.

Furthermore, there is experimental evidence for such satura-
tion. As shown in Fig. 1, at high values of transverse momentum 
v2 and 1 − R A A are directly proportional, which is equivalent to 
a p⊥-independent ratio of v2 and 1 − R A A . We study whether 
state-of-the-art fluid-dynamical calculations tuned to reproduce 
the low-p⊥ data, can reproduce such proportionality, and whether 
we can relate this proportionality to a physical property of the sys-
tem, namely to the anisotropy of its shape.

* Corresponding author.
E-mail address: magda@ipb.ac.rs (M. Djordjevic).
https://doi.org/10.1016/j.physletb.2022.137501
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SCOAP3.
As is the standard approach in the study of ultrarelativistic 
heavy-ion collisions, we assume the collision system to behave as 
a locally thermalised dissipative fluid. The transverse expansion of 
such a system largely depends on the initial gradients of the sys-
tem, i.e., the initial state, and also on the equation of state (EoS) 
and dissipative properties of the fluid. Thus, to provide more gen-
eral conclusions about the asymptotic behaviour of v2/(1 − R A A), it 
is necessary to explore not only one, but several, different scenar-
ios of fluid-dynamical evolution. On the other hand, it is known 
that at low-p⊥ the elliptic flow parameter v2 is proportional to 
the initial anisotropy of the system ε2,2, but the proportional-
ity constant depends on the parameters of the calculation, say, 
the freeze-out temperature. To avoid similar ambiguity we prefer 
not to randomly vary the parameters of the initialisation model, 
but constrain the calculation to reproduce the low-p⊥ data, and 
explore the universality of our results by using several different 
initialisation models, collision energies and systems. In particular, 
to initialise Pb+Pb collisions at 

√
sNN = 5.02 TeV collision energy, 

we employ optical Glauber, TRENTo, IP-Glasma and EKRT initiali-
sations, whereas we explore the sensitivity to collision energy and 
colliding nuclei by using optical Glauber initialisation for Pb+Pb 
collisions at 

√
sNN = 2.76 TeV and Xe+Xe collisions at 

√
sNN = 5.44

TeV.
We will see that the temperature evolution in different evolu-

tion scenarios is different enough to lead to observable differences 
in high-p⊥ v2 and 1 − R A A , and the ratio of these observables 
is directly related to a suitably defined measure of the system 
anisotropy. The differences in high-p⊥ v2 and 1 − R A A mean that 
constraining the calculation to reproduce the low-p⊥ data does not 
guarantee the reproduction of the high-p⊥ data. Simultaneous re-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. v2 vs 1 − R A A for p⊥>10 GeV data from 5.02 TeV Pb+Pb ALICE [10,11] (red 
triangles), CMS [14,15] (blue squares) and ATLAS [18,19] (green circles) experiments. 
The data is shown for the 40-50% centrality bin, while similar relation is obtained 
for other centralities. Each collaboration’s datapoints correspond to different values 
of p⊥ , with both v2 and 1 − R A A decreasing with increasing p⊥ .

production of both is not an aim of this study, but left for future 
work.

2. Methods

2.1. Medium evolution

Our starting point and reference we used for all collision ener-
gies and systems is a simple optical Glauber model based initiali-
sation. In Pb+Pb collisions at full LHC energy (

√
sNN = 5.02 TeV) we 

used initial times τ0 = 0.2, 0.4, 0.6, 0.8, and 1.0 fm, whereas the 
lower energy (

√
sNN = 2.76 TeV) Pb+Pb and Xe+Xe (

√
sNN = 5.44

TeV) calculations were carried out for τ0 = 0.2, 0.6, and 1.0 fm. 
The initialisation and code used to solve viscous fluid-dynamical 
equations in 3+1 dimensions are described in detail in Ref. [22], 
and parameters to describe Pb+Pb collisions at 

√
sNN = 5.02 TeV 

in Ref. [23]. In particular, we use a constant shear viscosity to en-
tropy density ratio η/s = 0.12 (Pb+Pb) or η/s = 0.10 (Xe+Xe), and 
the EoS parametrisation s95p-PCE-v1 [25].

Different initial state models lead to slightly different shapes of 
the initial state. To find if our findings are a feature of the Glauber 
model, or have broader significance, we did the Pb+Pb calculations 
at the full LHC energy using several different initial state mod-
els. The first option in this extended set, Glauber + Free streaming, 
is to use the Glauber model to provide the initial distribution of 
(marker) particles, allow the particles to stream freely from τ = 0.2
to 1.0 fm, evaluate the energy-momentum tensor of these parti-
cles, and use it as the initial state of the fluid. We evolve the fluid 
using the same code as in the case of pure Glauber initialisation. 
The EoS is s95p-PCE175, i.e., a parametrisation with Tchem = 175
MeV [26], and temperature-independent η/s = 0.16. For further 
details, see Ref. [23].

As more sophisticated initialisations, we employ EKRT, IP-
Glasma and TRENTo. The EKRT model [27–29] is based on the 
NLO perturbative QCD computation of the transverse energy and a 
gluon saturation conjecture. We employ the same setup as used in 
Ref. [30] (see also [26]), compute an ensemble of event-by-event 
fluctuating initial density distributions, average them, and use this 
average as the initial state of the fluid dynamical evolution. We 
again use the code of Molnar et al., [22], but restricted to boost-
invariant expansion. The shear viscosity over entropy density ratio 
is temperature dependent with favoured parameter values from 
the Bayesian analysis of Ref. [30]. Initial time is τ0 = 0.2 fm, and 
the EoS is the s83s18 parametrisation from Ref. [30].

IP-Glasma model [31,32] is based on Color Glass Conden-
sate [33–36]. It calculates the initial state as a collision of two 
colour glass condensates and evolves the generated fluctuating 
2

gluon fields by solving classical Yang-Mills equations. The cal-
culated event-by-event fluctuating initial states [37] were fur-
ther evolved [38] using the MUSIC code [39–41] constrained to 
boost-invariant expansion. We subsequently averaged the evalu-
ated temperature profiles to obtain one average profile per cen-
trality class. In these calculations, the switch from Yang-Mills to 
fluid-dynamical evolution took place at τswitch = 0.4 fm, shear vis-
cosity over entropy density ratio was constant η/s = 0.12, and 
the temperature-dependent bulk viscosity coefficient over entropy 
density ratio had its maximum value ζ/s = 0.13. The equation of 
state was based on the HotQCD lattice results [42] as presented in 
Ref. [43].

TRENTo [44] is a phenomenological model capable of inter-
polating between wounded nucleon and binary collision scaling, 
and with a proper parameter value, of mimicking the EKRT and 
IP-Glasma initial states. As with the EKRT initialisation, we cre-
ate an ensemble of event-by-event fluctuating initial states, sort 
them into centrality classes, average, and evolve these average ini-
tial states. Unlike in other cases, we employ the version of the 
VISH2+1 code [45] described in Refs. [46,47]. We run the code us-
ing the favoured values of the Bayesian analysis of Ref. [47]; in 
particular, allow free streaming until τ = 1.16 fm, the minimum 
value of the temperature-dependent η/s is 0.081, and the maxi-
mum value of the bulk viscosity coefficient ζ/s is 0.052. The EoS 
is the same HotQCD lattice results [42] based parametrisation as 
used in Refs. [46,47].

It is worth noticing that the initial nuclear configuration in 
all these cases is similar Woods-Saxon parametrisation of nuclear 
matter density, which is either assumed to be continuous (optical 
Glauber), or Monte-Carlo sampled to create ensembles of nucleons 
(EKRT, IP-Glasma, TRENTo). The differences in the fluid-dynamical 
initial state depend on the initial particle production, and sub-
sequent evolution before fluid-dynamical stage (none, Yang-Mills, 
free streaming).

All these calculations were tuned to reproduce, in minimum, 
the centrality dependence of charged particle multiplicity, p⊥ dis-
tributions and v2(p⊥) in Pb+Pb collisions at both collision ener-
gies, and the centrality dependence of charged particle multiplicity 
and v2{4} in Xe+Xe collisions.

2.2. Energy loss: DREENA-A

To calculate high-p⊥ R A A and v2, we used our DREENA-A 
framework [48], where ‘DREENA’ is a shorthand for “Dynamical 
Radiative ENergy Loss Approach”. ‘A’ stands for Adaptive, mean-
ing that arbitrary temperature profile can be included as input 
in the framework. The underlying dynamical energy loss formal-
ism [49,50], which is implemented in DREENA-A, has several im-
portant properties necessary for reliable high-p⊥ predictions [51]: 
i) Contrary to widely used static approximation [52–55], the QGP 
is modelled as a finite size and temperature medium, consisting 
of dynamical (i.e., moving) partons. ii) Generalised Hard-Thermal-
Loop approach [56] is used, through which infrared divergences are 
naturally regulated [49,50,57]. iii) The same theoretical framework 
is applied to both radiative [49] and collisional [50] energy loss cal-
culations. iv) Calculations are generalised to include running cou-
pling [58], and non-perturbative effects related to chromo-electric 
and chromo-magnetic screening [59,60]. The framework does not 
have free parameters in the energy loss, i.e., all the parameters are 
fixed to standard literature values. Consequently, it can fully utilise 
different temperature profiles as the only input in DREENA-A. R A A

and v2 predictions, generated under the same formalism and pa-
rameter set (and calculated in a conventional way, see e.g. [48]), 
can thus be systematically compared to experimental data to map 
out the bulk properties of QGP.
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Fig. 2. Light red (light blue) shaded areas represent the temperatures along the paths of high-p⊥ partons when traversing the medium in the in-plane (out-of-plane) direction. 
For every scenario, we show 1250 in-plane and out-of-plane trajectories. The temperature profiles are from fluid-dynamical calculations of √sNN = 5.02 TeV Pb+Pb collisions 
in the 30-40% centrality class, utilising the Glauber model (with τ0 = 1.0 fm), Glauber + free streaming (FS), IP-Glasma, and EKRT initialisations. Dark red (dark blue) curves 
represent the average temperature experienced by the particles in the in-plane (out-of-plane) directions.
While the model has several unique features in describing 
parton-medium interactions, it could still be improved by includ-
ing, e.g., flow velocity of the bulk medium and transverse gradients 
of temperature and density (see e.g., [61–64]). However, such im-
provements are in their infancy in any framework, and implement-
ing them into dynamical energy loss model while keeping all ex-
isting ingredients is challenging. Nevertheless, such improvements 
might somewhat influence the quantitative results presented in 
this manuscript, and quantifying such effects is an important fu-
ture goal.

2.3. Experimental data

We compared our predictions with data from the Pb+Pb colli-
sions at 

√
sNN = 2.76 and 5.02 TeV analysed by the LHC experi-

ments ALICE [10–13], CMS [14–17], and ATLAS [18–21]. We used 
v2 measurement obtained with the scalar product method. Since 
we are interested in the high p⊥ region, we considered data with 
p⊥ > 10 GeV. The p⊥ bins are chosen as in the v2 measure-
ments, and the R A A distributions are interpolated to the chosen 
binning. Since CMS experiment used coarser granularity in cen-
trality for R A A measurements, i.e. 10-30% and 30-50%, we assigned 
the values obtained from 10-30% (30-50%) to both 10-20% and 20-
30% (30-40% and 40-50%). Finally, combined uncertainties on the 
v2/(1 − R A A) are calculated assuming that v2 and R A A are corre-
lated.

3. Results and discussion

To gain an intuitive insight into how different initialisations 
influence high-p⊥ predictions, we show in Fig. 2 temperatures 
encountered by partons in 

√
sNN = 5.02 TeV Pb+Pb collisions as 

a function of traversed distance using four different temperature 
profiles. These plots are produced by generating initial high-p⊥
partons’ positions according to binary collision densities. Then 
these partons traverse the medium in the in-plane (red) or out-
of-plane (blue) directions, and the temperature they experience is 
plotted as a function of their path until they leave QGP. The larger 
the temperature that partons experience while traversing the QGP, 
the larger the suppression in high-p⊥ observables. Similarly, a 
larger difference between in-plane or out-of-plane temperatures is 
related to a larger high-p⊥ v2.

From Fig. 2, we observe that partons travelling in the in-plane 
and out-of-plane directions experience different temperatures in 
different scenarios, and this leads to the different behaviour of 
high-p⊥ particles. For example, based on the maximum temper-
ature encountered, we expect the largest suppression (i.e., the 
smallest R A A ) for ‘EKRT’, while ‘Glauber + FS’ are expected to lead 
3

to the largest R A A . On the other hand, from the difference in in-
plane and out-of-plane temperatures, we expect the largest v2 for 
‘Glauber, τ0 = 1 fm’, followed by ‘IP-Glasma’, while v2 for ‘EKRT’ 
should be notably smaller. The ordering of R A A and v2 is thus 
different for different evolution scenarios, and therefore it is a pri-
ori unclear what the ordering of v2/(1 − R A A) might be. In this 
section, we aim to address the following questions: i) Is the satu-
ration in v2/(1 − R A A) at high-p⊥ still observed for these different 
profiles, as expected from our previous analytical arguments and 
simple 1D Bjorken expansion [7]? ii) If yes, does this saturation 
carry information about the anisotropy of the system, and iii) What 
kind of anisotropy measure corresponds to the high-p⊥ data?

To start addressing these questions, we show in Fig. 3 how 
v2/(1 − R A A) depends on p⊥ in Pb+Pb collisions at 

√
sNN = 2.76

and 5.02 TeV using different temperature profiles.1 As seen, the 
ratio is almost independent of p⊥ above p⊥ ≈ 30 GeV, although 
IP-Glasma shows some p⊥ dependence even above this limit. We 
also confirmed that the saturation is obtained for other hydrody-
namic calculations outlined in Subsection 2.1 (not shown). Thus, 
the phenomenon of v2/(1 − R A A) saturation is indeed robust, i.e., 
holds for a variety of different transversely expanding systems.

We also observe that some profiles lead to better agreement 
with the data compared to the others. The general trend is that 
the later the transverse expansion begins (fluid dynamical or oth-
erwise), the better the fit to data. We have discussed some impli-
cations of this finding in Ref. [23], but in this paper we concentrate 
on exploring how the differences in the medium evolution are 
reflected through high-p⊥ data, and leave further comparison be-
tween predictions and the data to later studies.

To find out whether the saturation values of v2/(1 − R A A) are 
correlated with the system geometry, we evaluate the average path 
length of partons, 〈L〉, and its anisotropy

�L

〈L〉 = 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 , (1)

where 〈Lin〉 and 〈Lout〉 refer to the average path-length of high-p⊥
particles in the in-plane and out-of-plane directions. For every 
temperature profile, 〈Lin〉 and 〈Lout〉 are calculated using the Monte 
Carlo method to generate an initial hard parton position in the XY 
plane according to the binary collision densities. The parton then 
traverses the medium in the φ = 0 (or φ = π/2) direction, until 
the temperature at parton’s current position drops below critical 
temperature Tc . We use Tc=160 MeV, which is within the uncer-
tainty of the lattice QCD critical temperature of 154 ± 9 MeV [24]. 

1 To avoid cluttering the figure, at √sNN = 5.02 TeV we concentrate on the same 
four profiles as shown in Fig. 2.
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Fig. 3. Calculated and experimentally observed v2/(1 − R A A) ratio as a function of transverse momentum p⊥ in √sNN = 5.02 (upper) and 2.76 (lower) TeV Pb+Pb collisions. 
The calculations within DREENA-A framework were carried out using four different temperature profiles (Glauber with τ0 = 1.0 fm, Glauber + free streaming (FS), IP-Glasma, 
and EKRT) at √sNN = 5.02 TeV, and three at √sNN = 2.76 TeV (Glauber with initial times τ0 = 0.2, 0.6 and 1.0 fm). The data are by ALICE [10–13] (red triangles), CMS [14–17]
(blue squares) and ATLAS [18–21] (green circles) collaborations. Each panel corresponds to a different centrality (10-20%, 20-30%, 30-40%, 40-50%). The bands correspond to 
the uncertainty in the magnetic to electric mass ratio. The upper (lower) boundary of each band corresponds to μM/μE = 0.4 (0.6).
Fig. 4. Charged hadron v2/(1 − R A A) as a function of path-length anisotropies �L/L, 
for different collision systems and energies (Pb+Pb at √sNN = 2.76 and 5.02 TeV and 
Xe+Xe at √sNN = 5.44 TeV), various centrality classes and temperature profiles. For 
every profile, the point with the lowest �L/L corresponds to the 10-20% centrality 
class, the next one corresponds to 20-30%, and so on, up to 40-50% (except IP-
Glasma, where the highest centrality is 30-40%). The value of transverse momentum 
is fixed at p⊥ = 100 GeV.

We then obtain 〈Lin〉 and 〈Lout〉 by averaging the in-plane and out-
of-plane path lengths over many different partons.

In Fig. 4 we have plotted the values of v2/(1 − R A A) evalu-
ated at 100 GeV for different initialisations, collision energies and 
systems vs. the corresponding path-length anisotropies �L/〈L〉. Ex-
cept for IP-Glasma, each case is presented with four points corre-
sponding to the centrality classes 10-20%, 20-30%, 30-40%, 40-50%. 
4

We have omitted the 40-50% class of IP-Glasma since the average 
profile for this centrality class was not smooth enough to produce 
reliable v2 and R A A results.

Fig. 4 shows a surprisingly simple relation between v2/(1 −
R A A) and �L/〈L〉, independently on the collision system and en-
ergy, where the dependence is linear with a slope of almost 1. The 
saturation value is therefore dominated by the geometry of the 
system, although at small values of �L/〈L〉 there is a deviation 
from the linear proportionality. It is worth noticing that here the 
values of �L/〈L〉 are much smaller than in our earlier 1D study [7]. 
Also, even if the values of �L/〈L〉 are very different for different 
initialisations, the initial anisotropies, ε2,2, are not so different. The 
general trend is that the earlier the transverse expansion begins 
(fluid dynamical or otherwise), the smaller the �L/〈L〉 in the same 
centrality class. The time it takes the parton to reach the edge of 
the system is almost independent of τ0, but small τ0 means that 
by the time the parton reaches the edge, the system has evolved 
longer, and the initial anisotropy has been diluted more. Thus, the 
earlier the expansion begins, the lower the �L, and �L/〈L〉 depicts 
the mentioned sensitivity to the time when expansion begins.

�L/〈L〉 depends on the shape of the system, and how the shape 
evolves, but it is difficult to see how the evolution affects it. To 
change the point of view from individual jets and their paths to the 
shape of the bulk medium and its evolution, we devised a mea-
sure similar to the conventional measure of the spatial anisotropy, 
εm,n: We evaluate the average of temperature cubed encountered 
by partons propagating with angle φ with respect to the reaction 
plane:

jT (τ ,φ) ≡
∫

dxdy T 3(x + τ cosφ, y + τ sinφ,τ )n0(x, y)∫
dxdy n0(x, y)

, (2)

where n0(x, y) is the density of the jets produced in the primary 
collisions, i.e., the density of the binary collisions. This distribu-
tion is not azimuthally symmetric, and we may evaluate its second 
Fourier coefficient:
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Fig. 5. The figure on the left shows the values of v2/(1 − R A A) of charged hadrons as a function of the average jet-perceived anisotropy 〈 jT2〉 for different collision systems 
and energies (Pb+Pb at √sNN = 2.76 and 5.02 TeV and Xe+Xe at √sNN = 5.44 TeV), various centrality classes and temperature profiles. For every profile, the point with the 
lowest 〈 jT2〉 corresponds to the 10-20% centrality class, the next one corresponds to 20-30%, and so on, up to 40-50% (except IP-Glasma, where the highest centrality is 
30-40%). The value of transverse momentum is fixed at p⊥ = 100 GeV. The figure on the right shows v2/(1 − R A A) and 〈 jT2〉 ratio for every point from the figure on the 
left as a function of the centrality class.
jT2(τ ) =
∫

dxdy n0(x, y)
∫

dφ cos 2φ T 3(x + τ cos φ, y + τ sinφ, τ )∫
dxdy n0(x, y)

∫
dφ T 3(x + τ cos φ, y + τ sinφ, τ )

.

(3)

Moreover, a simple time-average of jT2,

〈 jT2〉 =
∫ τcut
τ0

dτ jT2(τ )

τcut − τ0
, (4)

where τcut is defined as the time when the centre of the fireball 
has cooled down to critical temperature Tc , is directly proportional 
to the ratio v2/(1 − R A A) as shown in Fig. 5 (without an off-shift 
observed for low values of v2/(1 − R A A) in Fig. 4).

We call this measure the average jet-perceived anisotropy of the 
system. We evaluate the ratio of v2/(1 − R A A) and 〈 jT2〉 in the p⊥
range where the v2/(1 − R A A) ratio has saturated for all models 
(p⊥ > 80 GeV), and average over all the cases shown in Fig. 5 to 
obtain

v2/(1 − R A A)

〈 jT2〉 = 1.08 ± 0.09. (5)

As shown in the right panel of Fig. 5, deviations from this be-
haviour are modest and random. This indicates that 〈 jT2〉 de-
scribes the leading term in the process creating high-p⊥ v2/(1 −
R A A), and therefore this ratio carries direct information of the sys-
tem geometry, and its anisotropy. Since unity is within one stan-
dard deviation from the average, for practical purposes we can use 
an approximation v2/(1 − R A A) = 〈 jT2〉.

The above analysis was performed on h± . However, if v2/(1 −
R A A) indeed reflects the anisotropy 〈 jT2〉, then the Eq. (5) should 
be independent of flavor. Due to large mass, R A A and v2 of heavy 
flavor particles depend on p⊥ differently from charged hadrons’ 
R A A and v2. To test whether the v2/(1 − R A A) ratio of heavy flavor 
particles also saturates at high p⊥ , and whether Eq. (5) is valid 
for them, we performed the same analysis on R A A and v2 of D 
and B mesons. We obtained that v2/(1 − R A A) indeed saturates at 
p⊥ > 20 GeV for B mesons and at p⊥ > 80 GeV for D mesons, and 
that, after saturation, the Eq. (5) is robust for all types of flavor 
(results not shown). This further supports that v2/(1 − R A A) at 
high-p⊥ directly carries information on the medium property, as 
revealed through this extensive analysis.
5

Fig. 6. Constraints to jet-perceived anisotropy (〈 jT2〉, shown on y-axis) evaluated 
from high-p⊥ > 20 GeV R A A and v2 experimental data using 〈 jT2〉 = v2/(1 − R A A)

(see Eq. (5)), for four different centrality regions (shown on x-axis): 10-20%, 20-30%, 
30-40%, 40-50%. 5.02 TeV Pb+Pb ALICE [10,11] (red triangles), CMS [14,15] (blue 
squares) and ATLAS [18,19] (green circles) data are used. For each centrality, the 
experimental constraints are compared with the average jet-perceived anisotropy 
〈 jT2〉 for various evolution scenarios, indicated on the legend.

Finally, we evaluated the favoured 〈 jT2〉 range from the ex-
perimentally measured R A A(p⊥) and v2(p⊥) for h± at different 
centralities. The 〈 jT2〉 values are obtained by fitting v2(p⊥)/(1 −
R A A(p⊥)) data shown in Fig. 3 with a constant function for p⊥ >

20 GeV using MINUIT [65] package within ROOT [66] code, taking 
uncertainties into account. The fitted ratio was then converted to 
〈 jT2〉 by assuming their equality. As shown in Fig. 6, all three ex-
periments lead to similar values of 〈 jT2〉, though the uncertainty 
is still large.

We also note that 〈 jT2〉 is a bulk-medium property, which 
can be directly evaluated from bulk-medium simulations through 
Eqs. (2)–(4), independently of high-p⊥ data. Thus, experimen-
tal data can be used to restrict the value of this quantity. In 
Fig. 6, we see that none of the evolution scenarios tested in this 
manuscript is in good agreement with the data (despite the above 
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mentioned large uncertainty), i.e., lead to smaller jet-perceived 
anisotropy than experimentally favoured. We thus show that jet-
perceived anisotropy provides an important constraint on bulk-
medium simulations, and that future bulk-medium calculations 
should be tuned to reproduce the experimentally constrained 〈 jT2〉
as well. Moreover, in the high-luminosity 3rd run at the LHC, the 
error bars for R A A(p⊥) and v2(p⊥) are expected to be signifi-
cantly reduced, which will subsequently lead to a notably better 
experimental constraint of 〈 jT2〉, also enabling better constraint 
on bulk-medium simulations.

4. Summary

In this study, we used our recently developed DREENA-A frame-
work to explore how the temperature evolution of the QGP droplet 
influences high-p⊥ v2/(1 − R A A) predictions. The framework does 
not use any free parameter within the energy loss model and con-
sequently allows to fully explore these profiles as the only input 
in the model. We showed that saturation in v2/(1 − R A A), clearly 
seen in the experimental data, is robustly obtained for the compre-
hensive set of fluid-dynamical calculations covered in this study, 
as well as different types of flavor, collision energies and collision 
systems, supporting the generality of our findings. Also, by fold-
ing spatial coordinates and temperature, we further revealed that 
this saturation value corresponds to a property of the system we 
defined as average jet-perceived anisotropy 〈 jT2〉. We also showed 
how to relate 〈 jT2〉 to experimental data, providing a new impor-
tant constraint on bulk-medium simulations. None of the evolution 
scenarios that we tested here was in good agreement with experi-
mentally inferred 〈 jT2〉 values, which argues that it is important to 
accordingly tune the bulk-medium simulations, particularly with 
the high-luminosity 3rd run at the LHC. Our approach demon-
strates the utility of the QGP tomography, i.e., the potential for 
extracting the bulk QGP properties jointly from low and high-p⊥
data.
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The suppression of high-p⊥ particles is one of the main signatures of parton energy loss during its passing
through the quark-gluon plasma medium, and is reasonably reproduced by different theoretical models. However,
a decisive test of the reliability of a certain energy-loss mechanism, apart from its path length, is its temperature
dependence. Despite its importance and comprehensive dedicated studies, this issue is still awaiting more
stringent constraints. To this end, we here propose a novel observable to extract the temperature-dependence
exponent of a high-p⊥ particle’s energy loss, based on RAA. More importantly, by combining analytical argu-
ments, full-fledged numerical calculations, and comparison with experimental data, we argue that this observable
is highly suited for testing the long-standing �E/E ∝ L2T 3 paradigm. The anticipated significant reduction of
experimental errors will allow direct extraction of temperature dependence, by considering different centrality
pairs in A + A collisions (irrespective of the nucleus size) in the high-p⊥ region. Overall, our results imply that
this observable, which reflects the underlying energy-loss mechanism, is very important to distinguish between
different theoretical models.

DOI: 10.1103/PhysRevC.103.024908

I. INTRODUCTION

The main goal of the ultrarelativistic heavy-ion program
[1–4] at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC) is inferring the features of the
created novel form of matter—quark-gluon plasma (QGP)
[5,6]—which provides an insight into the nature of the hottest
and densest known medium. Energy loss of rare high-p⊥
partons traversing the medium is considered to be one of the
crucial probes [7] of the medium properties, which also had a
decisive role in QGP discovery [8]. Comparison of predictions
stemming from different energy-loss models with experimen-
tal data tests our understanding of the mechanisms underlying
the jet-medium interactions, thereby illuminating the QGP
properties. Within this, an important goal involves a search
for adequate observables for distinguishing the energy-loss
mechanisms.

Connected to this, it is known that the temperature (T )
dependence of the energy-loss predictions may be related
to the underlying energy-loss mechanisms; e.g., pQCD ra-
diative energy loss (Baier-Dokshitzer-Mueller-Peigne-Schiff
(BDMPS) and Armesto-Salgado-Wiedemann (ASW) [9–11],
Gyulassy-Levai-Vitev (GLV) [12], light-cone path integral
(LCPI) [13] and Arnold-Moore-Yaffe (AMY) [14], higher-
twist (HT) [15], and some of their extensions [16–20]) is
typically considered to have cubic T dependence (T 3, stem-
ming from entropy, or energy density dependence), while
collisional energy loss [7,21–23] is generally considered to be
proportional to T 2. Additionally, anti-de Sitter/conformal field

*magda@ipb.ac.rs

theory (AdS/CFT)-motivated jet-energy-loss models [24,25]
display even quartic (T 4) dependence on temperature. The
different functional dependences on T found in these mod-
els are the results of the considered energy-loss mechanism
(elastic or inelastic), different treatment of the QCD medium
(finite or infinite size), and inclusion or omission of finite
temperature effects (i.e., application of temperature-modified
or vacuumlike propagators). Therefore, assessing the accurate
temperature dependence is important for disentangling rele-
vant effects for adequate description of leading parton energy
loss, and consequently for understanding the QGP properties.

For a comprehensive study on temperature (and path-
length) dependence of different energy-loss models we refer
the reader to Ref. [18]. However, even this systematic study
could not single out local T dependence, as the attempt to
simultaneously describe high-p⊥ RAA and v2 data within these
models requires some more rigorous physical justifications.
Moreover, the current error bars at the RHIC and the LHC are
still too large to resolve between different energy-loss models.
Having this in mind, we here propose a novel observable to
extract the scaling of a high-p⊥ particle’s energy loss on the
local temperature. Note that, for extracting the exact value
of the temperature-dependence exponent, this new observable
relies on the previously extracted value of the path-length
dependence coefficient [26]. We expect that this observable
will allow direct extraction of T dependence from the data in
the upcoming high-luminosity third run at the LHC, where the
error bars are expected to notably decrease.

We also propose high-p⊥ h± as the most suitable probe
for this paper, as the experimental data for h± RAA are more
abundant and with smaller error bars, compared to heavier
hadrons for all centrality classes, where this is also expected
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to hold in the future. Therefore, in this paper, we concentrate
on h± in 5.02-TeV Pb + Pb collisions at the LHC, with the
goal to elucidate this new observable, and test its robustness
to medium evolution and colliding system size. By combin-
ing full-fledged numerical predictions and scaling arguments
within our dynamical radiative and elastic energy-loss ap-
proach (DREENA) [27,28] framework, this new observable
yields the value of the temperature-dependence exponent,
which is in accordance with our previous estimate [29]. More
importantly, we utilize this observable to question the long-
standing �E/E ∝ L2T 3 paradigm, used in a wide range of
theoretical models [9–12,15–20].

II. THEORETICAL FRAMEWORK

In this paper, we use our state-of-the-art dynamical
energy-loss formalism [30–32], which includes several unique
features in modeling jet-medium interactions: (1) calculations
within the finite temperature field theory and generalized
hard-thermal-loop approach [33] (contrary to many models

which apply vacuumlike propagators [9,10,12,15]), so that
infrared divergences are naturally regulated in a highly non-
trivial manner; (2) finite size of created QGP; (3) the QCD
medium consisting of dynamical (moving) as opposed to
static scattering centers, which allows the longitudinal mo-
mentum exchange with the medium constituents; (4) both
radiative [30,31] and collisional [32] contributions calculated
within the same theoretical framework; (5) the inclusion of
a finite parton’s mass [34], making the formalism applicable
to both light and heavy flavor; and (6) the generalization
to a finite magnetic mass [35], running coupling [36], and
beyond soft-gluon approximation [37]. Note, however, that in
Ref. [37] we obtained that the effect of relaxing the soft-gluon
approximation on (fractional radiative energy loss and) RAA is
negligible, and thus can be omitted without losing the relia-
bility of the obtained results. Therefore, to avoid unnecessary
involvement of already complex expressions we here apply
their soft-gluon equivalents.

The analytical expression for the single gluon radiation
spectrum reads [27,30,35,36]

dNrad

dxdτ
= C2(G)CR

π

1

x

∫
d2q
π

d2k
π

μ2
E (T ) − μ2

M (T )

[q2 + μ2
E (T )][q2 + μ2

M (T )]
T αs(ET )αs

(
k2 + χ (T )

x

)

×
[

1 − cos

(
(k + q)2 + χ (T )

xE+ τ

)]
2(k + q)

(k + q)2 + χ (T )

[
k + q

(k + q)2 + χ (T )
− k

k2 + χ (T )

]
, (1)

where k and q denote transverse momenta of radiated and ex-
changed gluons, respectively; C2(G) = 3 and CR = 4/3 (CR =
3) for the quark (gluon) jet; while μE (T ) and μM (T ) are
electric (Debye) and magnetic screening masses, respectively.
The temperature-dependent Debye mass [27,38] is obtained
by self-consistently solving Eq. (5) from Ref. [27]. αs is the
(temperature-dependent) running coupling [27,36,39], E is

the initial parton energy, while χ (T ) = M2x2 + m2
g(T ), where

x is the longitudinal momentum fraction of the initial parton
carried away by the emitted gluon. M is the mass of the
propagating parton, while the gluon mass is considered to be
equal to its asymptotical mass mg = μE/

√
2 [40].

The analytical expression for collisional energy loss per
unit length is given by the following expression [27,32]:

dEcoll

dτ
= 2CR

πv2
αs(ET )αs

(
μ2

E (T )
)∫ ∞

0
neq(|�k|, T )d|�k|

×
[ ∫ |�k|/(1+v)

0
d|�q|

∫ v|�q|

−v|�q|
ωdω +

∫ |�q|max

|�k|/(1+v)
d|�q|

∫ v|�q|

|�q|−2|�k|
ωdω

]

×
[
|�L(q, T )|2 (2|�k| + ω)2 − |�q|2

2
+ |�T (q, T )|2 (|�q|2 − ω2)[(2|�k| + ω)2 + |�q|2]

4|�q|4 (v2|�q|2 − ω2)

]
, (2)

where neq(|�k|, T ) = N
e|�k|/T −1

+ Nf

e|�k|/T +1
is the equilibrium mo-

mentum distribution [22] including gluons, quarks, and
antiquarks. k is the four-momentum of the incoming medium
parton, v is the velocity of the initial jet, and q = (ω, �q) is the
four-momentum of the exchanged gluon. |�q|max is provided in
Ref. [32], while �T (q, T ) and �L(q, T ) are effective trans-
verse and longitudinal gluon propagators given by Eqs. (3)
and (4) from Ref. [27].

Despite the very complicated temperature dependence of
Eqs. (1) and (2), in Ref. [29] it was obtained that our dy-
namical energy-loss formalism [36] (which accommodates

some unique jet-medium effects mentioned above) has an
exceptional feature of near linear T dependence. That is,
while T 3 dependence for radiative energy loss is widely used
[9–12,14–20], from Eq. (1) it is evident that this simplified
relation is reproduced with approximations using vacuum
gluon propagators (leading to the absence of mg(T ) from the χ

expression) and neglecting running coupling. It is straightfor-
ward to show that in that case leading T dependence is �Erad

E ∝
μ2

E T ∝ T 3 (μE ∝ T ). However, Eq. (1) clearly demonstrates
that a more realistic T dependence is far from cubic, where
in Ref. [29] it was shown that asymptotic T dependence
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of our full radiative energy loss is between linear and
quadratic.

Additionally, commonly overlooked (due to being smaller
compared to radiative at high p⊥) collisional energy loss must
not be neglected in suppression predictions [41]. Moreover,
widely used dominant T 2 dependence of collisional energy
loss [7,21–23] can also be shown to be a consequence of
(i) using tree-level diagrams, and consequently introducing
artificial cutoffs to nonphysically regulate ultraviolet (and in-
frared) divergencies (e.g., in Ref. [7]) in the hard momentum
transfer sector [22]; or (ii) considering only soft momentum
exchange [21]. That is, it is straightforward to show that
Eq. (2) recovers leading T 2 dependence from Ref. [21] if
(1) only the soft gluon sector is considered, with the upper
limit of integration artificially set to |�q|max; (2) only forward
emission is accounted for (ω > 0); and (3) running coupling
is neglected. Accordingly, in Ref. [29] it was demonstrated
that complex T dependence of our collisional energy loss
(Eq. (2)) reduces not to commonly considered quadratic, but
rather to nearly linear dependence for asymptotically large
p⊥. Therefore, a state-of-the-art energy-loss model leads to a
much slower growth of the energy loss with temperature com-
pared to the common paradigm, where the widely assumed
faster growth can be reproduced only through quite drastic
simplifying assumptions.

Since the goal of this paper is the extraction of the
temperature-dependence exponent of the energy loss, this
paper will furthermore provide an opportunity to test our
dynamical energy-loss formalism on a more basic level.

III. NUMERICAL FRAMEWORK

In this paper, the predictions are generated within our fully
optimized DREENA [27,28] numerical framework, com-
prising (i) initial parton momentum distribution [42]; (ii)
energy-loss probability based on our dynamical energy-loss
formalism [30–32] (discussed in the previous section), which
includes multigluon [43] and path-length fluctuations [44],
where the path-length fluctuations are calculated according
to the procedure provided in Ref. [45] (see also Ref. [28]);
and (iii) fragmentation functions [46]. In this paper, we will
primarily use two implementations of this framework: (i)
DREENA-C, where C corresponds to constant temperature
medium; and (ii) DREENA-B, where B corresponds to one-
dimensional (1D) Bjorken QGP evolution [7].

In the first part of our paper, using the DREENA-C frame-
work, the average temperature is obtained according to the
procedure described in Refs. [28,47], which we briefly out-
line here. For each centrality region in 5.02-TeV Pb + Pb
collisions, the average temperature is estimated through T 3 ∼

dNg
dy

A⊥L [12,48], where A⊥ is the overlap area. dNg

dy is gluon ra-
pidity density, and is shown to be directly proportional to
charged particle multiplicity dNch

dη
, which is measured for all

relevant centralities in 5.02-TeV Pb + Pb collisions at the

LHC [49]. Thus, the required expression reads T = c(
dNch

dη

A⊥L )
1
3
,

where constant c can be fixed by effective temperature for
0–20% 2.76-TeV Pb+Pb collisions at LHC [50], leading to,
e.g., the average medium temperature of 348 MeV [47,50] in
most central 5.02-TeV Pb + Pb collisions at the LHC.

In the second part of this paper, where we use the
DREENA-B framework to test the sensitivity of the obtained
results, the initial temperature (T0) for each centrality is esti-
mated in accordance with Ref. [27]. That is, for each centrality

class, T0 is determined in accordance with T0 ∼ (
dNch

dη

A⊥
)

1
3

[51].
As a starting point, T0 = 500 MeV in most central 5.02-TeV
Pb + Pb collisions at the LHC is estimated from the average
medium temperature of 348 MeV [47,50] in these collisions
(see above), and a QCD transition temperature of Tc ≈ 155
MeV [52]. By knowing T0 in the most central 5.02-TeV Pb +
Pb collision, based on the expression above, it is straightfor-
ward to obtain T0s for different centralities. In both studies, the
average path lengths (L) for different centrality classes have
been calculated by integrating the path-length distributions
[28] which were obtained by following the procedure outlined
in Ref. [45], with an additional hard-sphere restriction r < RA

in the Woods-Saxon nuclear density distribution to regulate
the path lengths in the peripheral collisions.

In generating numerical predictions, all the parameters cor-
respond to standard literature values, i.e., we use no fitting
parameters. We consider a QGP with n f = 3 and 	QCD =
0.2 GeV. For the light quarks we assume that their mass is
dominated by the thermal mass M ≈ μE/

√
6. The magnetic

to electric mass ratio is assumed to be 0.4 < μM/μE < 0.6
[53,54].

IV. RESULTS AND DISCUSSION

In this section, we first address the choice of the suitable
observable for extracting energy-loss temperature depen-
dence. For this purpose, an observable which is sensitive only
to the details of jet-medium interactions (to facilitate extrac-
tion of T dependence), rather than the subtleties of medium
evolution (to avoid unnecessary complications and ensure ro-
bustness), would be optimal. RAA has such features, since it
was previously reported that it is very sensitive to energy-loss
effects [41] and the average medium properties, while being
practically insensitive to the details of medium evolution (as
opposed to v2) [26–28,55,56]. Therefore, it is plausible that
the appropriate observable should be closely related to RAA.

Our theoretical and numerical approaches described above
(where the dynamical energy loss explicitly depends on T )
are implemented in a fully optimized DREENA framework
[27,28], which makes it suitable for this paper. To more easily
interpret the obtained results, we start from a constant T
medium, i.e., DREENA-C [28]. In this framework, the local
temperature becomes the average (constant) temperature—
this makes the extraction of the temperature dependence
straightforward, which is the main advantage of that frame-
work. To confirm that, through such procedure, we indeed
extracted the local temperature dependence, we will use
DREENA-B [27] as a crosscheck, as this more complex model
incorporates medium evolution through 1D Bjorken longitu-
dinal expansion [7]. We here exploit that DREENA-C and
DREENA-B are analytically tractable, allowing us to derive
the appropriate scaling behavior. Finally, as a check of sensi-
tivity of our proposed observable to the details of the medium
evolution we employ our DREENA-A framework (“A” stands
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for “adaptive”), which employs state-of-the-art full three- plus
one-dimensional (3+1D) hydrodynamical evolution.

With the intention of extracting simple functional depen-
dence on T (of the otherwise analytically and numerically
quite complex dependence of the fractional energy loss; see
Eqs. (1) and (2)), we first provide the scaling arguments within
the DREENA-C [28] framework. These scaling (analytical)
arguments will then be followed by a full-fledged numerical
analysis. Namely, in Refs. [26–28,43] it was shown that, at
very large values of transverse momentum p⊥ and/or in pe-
ripheral collisions, the following estimates can be made:

�E/E ≈ ηT aLb,

RAA ≈ 1 − ξT aLb,
(3)

where η denotes a proportionality factor, depending on initial
parton transverse momentum and its flavor, while ξ = (n −
2)η/2, where n is the steepness of a power-law fit to the initial
transverse momentum distribution, i.e., dσ/d p2

⊥ ∝ p−n
⊥ . T

and L denote the average temperature (of the QCD medium)
along the jet path and the average path length traversed by
the energetic parton. The scaling factors for temperature and
path-length energy-loss dependence are denoted as a and b,
respectively.

We next formulate the quantity RT
AA, with the goal to isolate

the temperature dependence:

RT
AA = 1 − RAA

1 − Rref
AA

, (4)

which presents the (1 − RAA) ratio for a pair of two different
centrality classes. The centrality class that corresponds to Rref

AA
(i.e., the quantity in the denominator) is denoted as the referent
centrality, and is always lower (corresponding to a more cen-
tral collision) than centrality in the numerator. We term this
new quantity, given by Eq. (4), as a temperature-dependent
suppression ratio (RT

AA), which we will further elucidate be-
low.

Namely, by using Eq. (3), it is straightforward to isolate
average T and average path-length dependence of RT

AA:

RT
AA = 1 − RAA

1 − Rref
AA

≈ ξT aLb

ξT a
refL

b
ref

=
(

T

Tref

)a( L

Lref

)b

, (5)

which in logarithmic form reads

ln
(
RT

AA

) = ln

(
1 − RAA

1 − Rref
AA

)
≈ a ln

(
T

Tref

)
+ b ln

(
L

Lref

)
. (6)

However, the remaining dependence of the newly defined
quantity on the path length is undesired for the purpose of this
paper. So, in order to make use of the previous equation, we
first test how the two terms on the right-hand side of Eq. (6)
are related. To this end, in Fig. 1 we plot ln(L/Lref ) against
ln(T/Tref ) for several combinations of centralities, as denoted
in the caption of Fig. 1.

Conveniently, Fig. 1 shows a linear dependence
ln(L/Lref ) ≈ k ln(T/Tref ), with k ≈ 1.86. This leads to a
simple relation:

ln
(
RT

AA

) ≈ (a + kb) ln

(
T

Tref

)
, (7)

FIG. 1. ln(L/Lref ) vs ln(T/Tref ) in 5.02-TeV Pb+Pb collisions at
the LHC for various centrality pairs. The referent centralities (for
quantities in denominators) acquire one of the values 5–10, 10–20,
20–30, 30–40, or 40–50%, while the centralities in the numerator are
always higher (the highest one being 50–60%). The solid red line
corresponds to the linear fit to the calculated points.

so that with f = a + kb

RT
AA ≈

( T

Tref

) f
, (8)

where this simple form facilitates extraction of a.
In Eq. (8), RT

AA depends solely on T and effectively the
temperature-dependence exponent a (as k and b [26] are
known), which justifies the use of the “temperature-sensitive”
term with this new quantity. Therefore, here we propose RT

AA,
given by Eq. (4), as a new observable, which is highly suitable
for the purpose of this paper. Note, however, that this coupled
dependence of RT

AA on a and b exponents has its advantage,
since it allows using this new observable to shed light on
the underlying energy-loss mechanisms, by differentiating
between various energy-loss models on both their T and L
dependences.

The proposed extraction method is the following: We use
our full-fledged DREENA-C numerical procedure to gener-
ate predictions for RAA and thereby for the left-hand side
of Eq. (8). Calculation of average T is already outlined in
the previous section and described in detail above. We will
generate the predictions with a full-fledged procedure, where
we expect asymptotic scaling behavior (given by Eq. (8)) to be
valid at high p⊥ ≈ 100 GeV. Having in mind that values of k
and b parameters have been extracted earlier, the temperature-
dependence exponent a in the very high-p⊥ limit can then be
estimated from the slope ( f ) of a ln(RT

AA) vs ln(T/Tref ) linear
fit, done for a variety of centrality pairs.

However, before embarking on this task, we first verify
whether our predictions of RT

AA for different centrality classes,
based on the full-fledged DREENA-C framework, are con-
sistent with the available experimental data. In Fig. 2 we
compare our RT

AA vs p⊥ predictions for charged hadrons with
corresponding 5.02-TeV Pb + Pb LHC data from A Large Ion
Collider Experiment (ALICE) [57], Compact Muon Solenoid

024908-4



EXTRACTING THE TEMPERATURE DEPENDENCE IN … PHYSICAL REVIEW C 103, 024908 (2021)

FIG. 2. Charged hadron RT
AA for different pairs of centrality classes as a function of p⊥. The predictions generated within our full-fledged

suppression numerical procedure DREENA-C [28] (black curves with corresponding gray bands) are compared with ALICE [57] (red
triangles), CMS [58] (blue squares), and ATLAS [59] (green circles) data. The lower (upper) boundary of each band corresponds to
μM/μE = 0.6 (μM/μE = 0.4). Centrality pairs are indicated in the upper-left corner of each plot.

(CMS) [58], and A Toroidal LHC ApparatuS (ATLAS) [59],
for different centrality pairs as indicated in the upper-left
corner of each plot. Despite the large error bars, for all cen-
trality pairs we observe consistency between our DREENA-C
predictions and experimental data, in the p⊥ region where our
formalism is applicable (p⊥ � 10 GeV). Moreover, we also
notice the flattening of each curve with increasing p⊥ (≈100
GeV), confirming that the expecting saturating (limiting) be-
havior is reached.

Furthermore, based on the analytical relation provided by
Eq. (7), we expect linear functional dependence between
ln RT

AA and ln(T/Tref ), which we test in Fig. 3. Note that
all quantities throughout the paper are determined at p⊥ =
100 GeV, and by calculating RT

AA for various centrality pairs

(see figure captions) within the full-fledged DREENA pro-
cedure. Remarkably, from Fig. 3, we observe that ln(RT

AA)
and ln(T/Tref ) are indeed linearly related, which confirms the
validity of our scaling arguments at high p⊥ and the proposed
procedure.

Linear fit to calculated points in Fig. 3 leads to the propor-
tionality factor f = a + kb = 3.79 ≈ 4. This small value of f
would lead to k smaller than 1 if (commonly assumed) a = 3
and b = 2 are used. Such k value seems, however, implausi-
ble, as it would require (T/Tref ) to change more slowly with
centrality compared to (L/Lref ).

More importantly, the temperature exponent can now be
extracted (b ≈ 1.4 as estimated in Ref. [26]), leading to a ≈
1.2. This indicates that temperature dependence of energetic
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FIG. 3. ln(RT
AA) vs ln(T/Tref ) relation. ln(RT

AA) and ln(T/Tref ) are
calculated from the full-fledged DREENA-C framework [28], for h±

at p⊥ = 100 GeV in 5.02-TeV Pb+Pb collisions at the LHC for
different centrality pairs. The referent centrality values are 10–20,
20–30, 30–40, and 40–50%, while their counterpart values are al-
ways higher, with the highest being equal to 50–60%. The red solid
line corresponds to the linear fit to the values. Remaining parameters
are the same as in Fig. 2.

particle energy loss (at very high p⊥) is close to linear (see
Eq. (3)), that is, certainly not quadratic or cubic, as commonly
considered. This is in accordance with previously reported
dependence of fractional dynamical energy loss on T some-
where between linear and quadratic [29], and as opposed to
commonly used pQCD estimate a = 3 for radiative [9–12,14–
20] (or even a = 2 for collisional [7,21–23]) energy loss.

The extraction of T dependence, together with previously
estimated path-length dependence [26], within the DREENA
framework, allows utilizing this new observable RT

AA in dis-
criminating between energy-loss models, with the aim of
better understanding QGP properties. To this end, in Fig. 4,
we (i) test sensitivity of RT

AA on different medium evolutions
(constant temperature, 1D Bjorken [60], and full 3+1D hy-
drodynamics [61]) and (ii) compare the asymptote derived
from this study ((T/Tref )1.2(L/Lref )1.4), with the commonly
used estimate of (T/Tref )3(L/Lref )2.

Several conclusions can be drawn from Fig. 4.
(i) With respect to different models of QGP expansion, we

see that, as expected, obtained RT
AA results are similar, i.e., not

very sensitive to the details of the medium evolution. As in
DREENA-C (and DREENA-B; see the next subsection) the
temperature dependence can be analytically tracked (which
is, however, not possible in more complex DREENA-A), this
result additionally confirms that the DREENA-C framework
is suitable for the extraction of energy-loss temperature de-
pendence.

(ii) Ideally, the T dependence exponent could be directly
extracted from experimental data, by fitting a straight line
to the very high-p⊥ part (≈100 GeV) of RT

AA for practically
any centrality pair (upon L the dependence exponent is de-
termined following Ref. [26]). However, the fact that data
from different experiments (ALICE, CMS, and ATLAS) are
not ideally consistent, and that the error bars are quite sizable,

currently prevents such direct extraction. The error bars in the
upcoming high-luminosity third run at the LHC are, however,
expected to significantly decrease, which would enable the
direct extraction of the exponent a from the data.

(iii) Finally, Fig. 4 also indicates that widely considered
energy-loss dependence T 3L2 may be inconsistent with the
experimental data. Future increase in measurements precision
could provide confidence in this observation and resolve the
exact form of these dependencies from the data, through our
proposed observable. This discriminative power of the RT

AA
quantity highlights its importance in understanding the under-
lying energy-loss mechanisms in QGP.

A. Effects of medium evolution

While in Fig. 4 we showed that RT
AA results are robust with

respect to the medium evolution, the analytical procedure for
extracting temperature dependence is different in DREENA-C
and DREENA-B frameworks. A comparison of scaling fac-
tors extracted from these two procedures can be used to test
reliability of the proposed procedure. In this subsection, we
consequently utilize the DREENA-B framework [27], where
medium evolution is introduced through Bjorken 1D hydrody-
namical expansion [60], i.e., there is the following functional
dependence of T on path length:

T = T0

(τ0

l

)1/3
, (9)

where T0 and τ0 = 0.6 fm [62,63] denote initial temperature
and thermalization time of the QGP.

Proceeding in a similar manner as in constant medium
case, RT

AA (given by Eq. (4)) in the evolving medium (for cou-
pled local T and l , where l stands for traversed path length)
reads

RT
AA =

∫ L
0 T alb−1dl∫ Lref

0 (Tref )a(lref )b−1dlref

= T a
0 τ

a/3
0

∫ L
0

lb−1

la/3 dl

T a
0,refτ

a/3
0

∫ Lref

0
(lref )b−1

(lref )a/3 dlref

=
(

T0

T0,ref

)a( L

Lref

)b− a
3

, (10)

where we used Eq. (9). Again, we assess whether there is
a simple relation between logarithms of the (now initial)
temperature ratio and average path-length ratio for different
centrality pairs. Similarly to the constant T case, from Fig. 5
we infer linear dependence between these two quantities,
where the slope coefficient now acquires the value κ ≈ 1.3.
Thus, we may write

L

Lref
=

(
T0

T0,ref

)κ

⇒ T0

T0,ref
=

(
L

Lref

)1/κ

, (11)

which ensures that the RT
AA quantity has a very simple form,

depending only on average path length and exponents a, b,
and κ:

RT
AA =

(
L

Lref

) a
κ
+b− a

3

. (12)

If we substitute the value of a ≈ 1.2 obtained in the con-
stant T medium case, previously estimated b ≈ 1.4 [26], and
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FIG. 4. The discriminative power of the RT
AA quantity in resolving the energy-loss mechanism. Four panels in Fig. 2 are extended to include

comparison of our asymptotic scaling behavior (T/Tref )1.2(L/Lref )1.4 (gray dashed horizontal line) with common assumption (T/Tref )3(L/Lref )2

(gray dot-dashed horizontal line). The figure also shows comparison of RT
AAs obtained by three different numerical frameworks: constant

temperature DREENA-C (black curve), 1D Bjorken expansion DREENA-B [27] (cyan curve), and full 3+1D hydrodynamics evolution [61]
DREENA-A (magenta curve). The remaining labeling is the same as in Fig. 2.

FIG. 5. ln(L/Lref ) vs ln(T0/T0,ref ) for various pairs of centralities
in evolving medium. The assumed centrality pairs are the same as in
Fig. 1. The red solid line corresponds to the linear fit to the values.

here inferred κ ≈ 1.3, we arrive at the following estimate:

RT
AA =

(
L

Lref

)1.93

⇒ ln(RT
AA) = 1.93 ln

(
L

Lref

)
. (13)

This equation is quite suitable for testing the robustness of
the procedure for extracting the exponent a to inclusion of
the evolving medium. Namely, value 1.93 in Eq. (13) stems
from coefficient a, which is extracted from the constant T
medium case. On the other hand, if we plot ln(RT

AA), generated
by full-fledged DREENA-B calculations (i.e., in the evolving
medium) which are fundamentally different from DREENA-
C, against ln(L/Lref ) for a variety of centrality pairs, again
we observe a linear dependence (see Fig. 6). Furthermore, a
linear fit to the values surprisingly yields the exact same slope
coefficient value of 1.93 (see also Table I).

Consequently, the procedure of extracting the temperature-
dependence exponent, introduced first in the case of the
constant T medium, is applicable to the expanding medium as
well. Moreover, the fact that the same coefficient a is obtained
through two different procedures leads us to conclude that
(i) for the purpose of this paper the DREENA-C framework
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FIG. 6. Testing the validity of our procedure for temperature-
dependence extraction in the case of the expanding QCD medium.
ln(RT

AA) vs ln(L/Lref ) for h± at p⊥ = 100 GeV for different pairs
of centrality classes is plotted. Suppression predictions are obtained
from full-fledged DREENA-B [27] calculations. Referent centrality
values are 5–10, 10–20, 20–30, 30–40, 40–50, and 50–60%, while
their counterpart values are always higher, with the highest being
60–70%. The red solid line corresponds to the linear fit to the values.

(assuming a constant temperature medium) is sufficient and
(ii) the same energy-loss scaling holds in an evolving medium
(i.e., for local temperature) as well. The displayed consistency
of the results provides confidence in the general applicability
of our procedure (suggesting robustness to the applied model
of the bulk medium) and supports the reliability of the value
of extracted T dependence exponent a ≈ 1.2.

It is worth noting that the definition of RT
AA relies on the fact

that we assume that RAA = 1 if no energy loss is encountered.
Related to this, we do not study the effect of (nuclear) parton
distribution function differences on RAA, as it is generally
studied under initial-state effects. However, it is known that
initial-state effects have a sizable impact only on the low- and
moderate-p⊥ sector (lower than 6 GeV) [64–70]. Since our
numerical predictions are generated above 8–10 GeV and the
temperature dependence is extracted at very high-p⊥ values
(p⊥ ∼ 100 GeV), these effects will be negligible in this p⊥
region, and should not influence the results obtained in our
paper.

B. Effects of colliding system size

We below extend our analysis to smaller colliding systems
in order to assess generality of the conclusions presented

TABLE I. Inferred temperature-dependence exponent across dif-
ferent frameworks.

Framework Temperature dependence exponent

DREENA-C a ≈ 1.2
DREENA-B Consistent with a ≈ 1.2
DREENA-A Not analytically tractable

above. Smaller colliding systems, such as Xe + Xe, Kr +
Kr, Ar + Ar, and O + O, are important to gradually re-
solve the issue of QGP formation in small systems (such as
pA), and (except Xe + Xe, which is already in a run) are
expected to be a part of the future heavy-ion program at the
LHC [71].

As already discussed in Ref. [26], for this analysis within
the DREENA-C framework [28] (which we employ here
for simplicity, since the robustness of the procedure to the
evolving medium was demonstrated above) note that RAA de-
pends on (i) initial high-p⊥ parton distribution, (ii) medium
average T , and (iii) path-length distribution. For different
colliding systems (probably at slightly different

√
sNN = 5.44

TeV compared to the Pb + Pb system) we employ the same
high-p⊥ distributions, since in Ref. [29] it was shown that
for almost twofold increase of the collision energy (from 2.76
to 5.02 TeV) the change in corresponding initial distributions
results in a negligible change (approximately 5%) in suppres-
sion.

Regarding the average temperature, one should note that
T is directly proportional to the charged particle multiplicity,
while inversely proportional to the size of the overlap area
and average medium size [26,28,47,48], i.e., T ∝ ( dNch/dη

A⊥L )1/3.
The transition to smaller colliding systems, for a certain
fixed centrality class, leads to the following scaling: A⊥ ∝
A2/3, L ∝ A1/3 [72,73], and dNch/dη ∝ Npart ∝ A [74,75],
where A denotes atomic mass. This leads to T ∼ ( A

A
2
3 A

1
3

)1/3 ∼
const, that is, we expect that average temperature does not
change, when transitioning from large Pb + Pb to smaller
systems, for a fixed centrality class. Lastly, path-length dis-
tributions for smaller systems and each centrality class are
obtained in the same manner as for Pb+Pb [28], and are
the same as in Pb + Pb collisions up to a rescaling factor
of A1/3.

By denoting all quantities related to smaller systems with a
tilde, with Pb + Pb quantities denoted as before, it is straight-
forward to show that the temperature sensitive suppression
ratio for smaller systems satisfies

R̃T
AA = 1 − R̃AA

1 − R̃ref
AA

≈ T̃ aL̃b

T̃ a
refL̃

b
ref

≈ T aLb

T a
refL

b
ref

(Ã/A)b/3

(Ã/A)b/3

= 1 − RAA

1 − Rref
AA

= RT
AA, (14)

where we used T̃ = T and L̃/L = (Ã/A)1/3.
To validate equality of RT

AAs for different system sizes,
predicted by analytical scaling behavior (Eq. (14)), in Fig. 7
we compare our full-fledged RT

AA predictions for h± in the
Pb + Pb system with those for smaller colliding systems.
We observe that, practically irrespective of system size, RT

AA
exhibits the same asymptotical behavior at high p⊥. This
not only validates our scaling arguments, but also demon-
strates the robustness of the new observable RT

AA to system
size. Consequently, since for fixed centrality range T should
remain the same for all these colliding systems, we ob-
tained that temperature-dependence exponent a should be the
same independently of the considered colliding system (see
Fig. 3). Therefore, the proposed procedure for extracting the
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FIG. 7. Dependence of RT
AA on a system size as a function of

p⊥. Predictions for h± generated within the full-fledged DREENA-C
[28] suppression numerical procedure are compared for different
colliding systems: Pb+Pb, Xe + Xe, Kr + Kr, Ar + Ar, and O
+ O (for lines specification see legend). For clarity, the results are
shown only for three centrality pairs, as specified in the plot, although
checked for all available centrality classes. The magnetic to electric
mass ratio is fixed to μM/μE = 0.4.

temperature dependence of the energy loss is also robust to
the collision system size. As a small exception, the O + O
system exhibits a slight departure from the remaining systems
at high p⊥, which might be a consequence of the fact that this
system is significantly smaller than other systems considered
here.

V. CONCLUSIONS AND OUTLOOK

One of the main signatures of the high-p⊥ particle’s energy
loss, apart from its path length, is its temperature dependence.
Although extensive studies on both issues were performed,
not until recently was the path-length dependence resolution
suggested [26]. Here we proposed a new simple observable for
extracting temperature dependence of the energy loss, based
on one of the most common jet quenching observables—the
high-p⊥ suppression. By combining full-fledged numerical
calculations with asymptotic scaling behavior, we surprisingly
obtained that temperature dependence is nearly linear, i.e., far
from quadratic or cubic, as commonly assumed. Further, we
verified its robustness and reliability on colliding system size
and evolving QGP medium. Moreover, we demonstrated that
the same observable, due to its joint dependence on T and L
exponents, can be utilized to discriminate between different
energy-loss models on both their temperature and path-length
dependence bases. Comparison with the experimental data
also indicated a need for revising the long-standing �E/E ∝
L2T 3 paradigm.

As an outlook, the expected substantial decrease of error
bars in the upcoming third run measurements at the LHC will
allow direct extraction of the temperature-dependence expo-
nent from high-p⊥ data of this observable. This will provide a
resolving power to temperature/path-length [26] dependence
of the energy loss and test our understanding of the underlying
QGP physics.
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Shape of the quark gluon plasma droplet reflected in the high-p⊥ data
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We show, through analytic arguments, numerical calculations, and comparison with experimental data, that the
ratio of the high-p⊥ observables v2/(1 − RAA) reaches a well-defined saturation value at high p⊥, and that this
ratio depends only on the spatial anisotropy of the quark gluon plasma (QGP) formed in ultrarelativistic heavy-
ion collisions. With expected future reduction of experimental errors, the anisotropy extracted from experimental
data will further constrain the calculations of initial particle production in heavy-ion collisions and thus test our
understanding of QGP physics.
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Introduction. The major goal of relativistic heavy-ion
physics [1–4] is understanding the properties of the new form
of matter called quark gluon plasma (QGP) [5,6], which, in
turn, allows the understanding of properties of QCD matter at
its most basic level. Energy loss of rare high-momentum par-
tons traversing this matter is known to be an excellent probe
of its properties. Different observables such as the nuclear
modification factor RAA and the elliptic flow parameter v2 of
high-p⊥ particles, probe the medium in different manners, but
they all depend not only on the properties of the medium, but
also on the density, size, and shape of the QGP droplet created
in a heavy-ion collision. Thus drawing firm conclusions of
the material properties of QGP is very time consuming and
requires simultaneous description of several observables. It
would therefore be very useful if there were an observable, or
combination of observables, which would be sensitive to only
one or just a few of all the parameters describing the system.

For high-p⊥ particles, spatial asymmetry leads to different
paths, and consequently to different energy losses. Conse-
quently, v2 (angular differential suppression) carries informa-
tion on both the spatial anisotropy and material properties
that affect energy loss along a given path. On the other hand,
RAA (angular average suppression) carries information only
on material properties affecting the energy loss [7–10], so one
might expect to extract information on the system anisotropy
by taking a ratio of expressions which depend on v2 and
RAA. Of course, it is far from trivial whether such intuitive
expectations hold, and what combination of v2 and RAA one
should take to extract the spatial anisotropy. To address this,
we here use both analytical and numerical analysis to show
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that the ratio of v2 and 1 − RAA at high p⊥ depends only on
the spatial anisotropy of the system. This approach provides
a complementary method for evaluating the anisotropy of the
QGP fireball, and advances the applicability of high-p⊥ data
to a new level as, up to now, these data were mainly used to
study the jet-medium interactions, rather than inferring bulk
QGP parameters.

Anisotropy and high-p⊥ observables. In [10,11], we
showed that at very large values of transverse momentum
p⊥, the fractional energy loss �E/E (which is very complex,
both analytically and numerically, due to inclusion of multiple
effects, see Numerical results for more details) shows asymp-
totic scaling behavior

�E/E ≈ χ (p⊥)〈T 〉a〈L〉b, (1)

where 〈L〉 is the average path length traversed by the jet, 〈T 〉
is the average temperature along the path of the jet, χ is a
proportionality factor (which depends on initial jet p⊥), and a
and b are proportionality factors which determine the temper-
ature and path-length dependence of the energy loss. Based on
Refs. [12–15], we might expect values like a = 3 and b = 1 or
2, but a fit to a full-fledged calculation yields values a ≈ 1.2
and b ≈ 1.4 [11,16]. Thus the temperature dependence of the
energy loss is close to linear, while the length dependence is
between linear and quadratic. To evaluate the path length we
follow Ref. [17]:

L(x, y, φ) =
∫ ∞

0 dλ λ ρ(x + λ cos(φ), y + λ sin(φ))∫ ∞
0 dλ ρ(x + λ cos(φ), y + λ sin(φ))

, (2)

which gives the path length of a jet produced at point (x, y)
heading to direction φ, and where ρ(x, y) is the initial density
distribution of the QGP droplet. To evaluate the average path
length we take average over all directions and production
points.

If �E/E is small (i.e., for high p⊥ and in peripheral
collisions), we obtain [7,10,11]

RAA ≈ 1 − ξ 〈T 〉a〈L〉b, (3)
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where ξ = (n − 2)χ/2, and n is the steepness of a power-
law fit to the transverse momentum distribution, dN/d p⊥ ∝
1/p⊥n. Thus 1 − RAA is proportional to the average size and
temperature of the medium. To evaluate the anisotropy we
define the average path lengths in the in-plane and out-of-
plane directions,

〈Lin〉 = 1

�φ

∫ �φ/2

−�φ/2
dφ 〈L(φ)〉,

〈Lout〉 = 1

�φ

∫ π/2+�φ/2

π/2−�φ/2
dφ 〈L(φ)〉, (4)

where �φ = π/6 [18] is the acceptance angle with respect to
the event plane (in-plane) or orthogonal to it (out-of-plane),
and 〈L(φ)〉 the average path length in the φ direction. Note
that the obtained calculations are robust with respect to the
precise value of the small angle ±�φ/2, but we still keep a
small cone (±π/12) for Rin

AA and Rout
AA calculations, to have

the same numerical setup as in our Ref. [10]. Now we can
write 〈L〉 = (〈Lout〉 + 〈Lin〉)/2 and �L = (〈Lout〉 − 〈Lin〉)/2.
Similarly, the average temperature along the path length can
be split to average temperatures along paths in in- and out-of-
plane directions, 〈Tin〉 = 〈T 〉 + �T and 〈Tout〉 = 〈T 〉 − �T .
When applied to an approximate way to calculate v2 of high-
p⊥ particles [19], we obtain1

v2 ≈ 1

2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ 〈Tout〉a〈Lout〉b − ξ 〈Tin〉a〈Lin〉b

4

≈ ξ 〈T 〉a〈L〉b

(
b

2

�L

〈L〉 − a

2

�T

〈T 〉
)

, (5)

where we have assumed that ξ 〈T 〉a〈L〉b � 1, and that �L/〈L〉
and �T/〈T 〉 are small as well.

By combining Eqs. (3) and (5), we obtain

v2

1 − RAA
≈

(
b

2

�L

〈L〉 − a

2

�T

〈T 〉
)

. (6)

This ratio carries information on the anisotropy of the system,
but through both spatial (�L/〈L〉) and temperature (�T/〈T 〉)
variables. From Eq. (6), we see the usefulness of the (approx-
imate) analytical derivations, since the term (1 − RAA) in the
denominator could hardly have been deduced intuitively or
pinpointed by numerical trial and error. Figure 1 shows a lin-
ear dependence �L/〈L〉 ≈ c�T/〈T 〉, where c ≈ 4.3, with the
temperature evolution given by one-dimensional (1D) Bjorken
expansion, as sufficient to describe the early evolution of the
system. Equation (6) can thus be simplified to

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς,

where ς = 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1

2

(
b − a

c

)
≈ 0.57, (7)

1Note that the first approximate equality in Eq. (5) can be shown to
be exact if the higher harmonics v4, v6, etc., are zero, and the opening
angle where Rin

AA and Rout
AA are evaluated is zero [cf. definitions of

〈Lout〉 and 〈Lin〉, Eq. (4)].

FIG. 1. �T/〈T 〉 vs �L/〈L〉 in Pb+Pb collisions at
√

sNN =
5.02 TeV collision energy at various centralities [7,10]. The more
peripheral the collision, the larger the values. The red solid line
depicts linear fit to the values.

when a ≈ 1.2 and b ≈ 1.4. Consequently, the asymptotic
behavior of observables RAA and v2 is such that at high p⊥,
their ratio is dictated solely by the geometry of the fireball.
Therefore, the anisotropy parameter ς can be extracted from
the high-p⊥ experimental data.

Regarding the parametrization used to derive Eq. (7) (con-
stants a, b, and c), we note that a and b are well established
within our dynamical energy-loss formalism and follow from
RAA predictions that are extensively tested on experimental
data [11,16] and do not depend on the details of the medium
evolution. Regarding c, it may (to some extent) depend on
the type of implemented medium evolution, but this will not
affect the obtained scaling, only (to some extent) the overall
prefactor in Eq. (7).

Numerical results. To assess the applicability of the analyt-
ically derived scaling in Eq. (7), we calculate v2/(1 − RAA)
using our full-fledged numerical procedure for calculating the
fractional energy loss. This procedure is based on our state-of-
the-art dynamical energy-loss formalism [20,21], which has
several unique features in the description of high-p⊥ parton
medium interactions: (i) The formalism takes into account
a finite-size, finite-temperature QCD medium consisting of
dynamical (that is, moving) partons, contrary to the widely
used static scattering approximation and/or medium models
with vacuum-like propagators (e.g., [12–15]). (ii) The calcu-
lations are based on the finite-temperature generalized hard-
thermal-loop approach [22], in which the infrared divergences
are naturally regulated [20,21,23]. (iii) Both radiative [20]
and collisional [21] energy losses are calculated under the
same theoretical framework, applicable to both light and
heavy flavor. (iv) The formalism is generalized to the case
of finite magnetic [24] mass and running coupling [25] and
towards removing the widely used soft-gluon approximation
[26]. The formalism was further embedded into our recently
developed DREENA-B framework [10], which integrates ini-
tial momentum distribution of leading partons [27], energy
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loss with path-length [17] and multigluon [28] fluctuations
and fragmentation functions [29], in order to generate the
final medium modified distribution of high-p⊥ hadrons. The
framework was recently used to obtain joint RAA and v2

predictions for 5.02 TeV Pb+Pb collisions at the LHC [10],
showing a good agreement with the experimental data.

We have previously shown [30] that all the model ingredi-
ents noted above have an effect on the high-p⊥ data, and thus
should be included to accurately explain it. In that respect,
our model is different from many other approaches, which
use a sophisticated medium evolution, but an (over)simplified
energy-loss model. Our previous work, however, shows that
for explaining the high-p⊥ data, an accurate description of
high-p⊥ parton-medium interactions is at least as important
as an advanced medium evolution model. For example, the
dynamical energy-loss formalism, embedded in 1D Bjorken
expansion, explains well the v2 puzzle [10], i.e., the inability
of other models to jointly explain RAA and v2 measure-
ments. To what extent the dynamical energy-loss predic-
tions will change when embedded in full three-dimensional
evolution is at the time of this writing still unknown, but
our previous results nevertheless make it plausible that cal-
culations employing simple one-dimensional expansion can
provide valuable insight into the behavior of jets in the
medium.

Our results for the longitudinally expanding system (1D
Bjorken) and the corresponding data are shown in Fig. 2. The
gray band shows our full DREENA-B result (see above) with
the band resulting from the uncertainty in the magnetic to
electric mass ratio μM/μE [31,32]. The red line corresponds
to the 0.57ς limit from Eq. (7), where ς is the anisotropy of
the path lengths used in the DREENA-B calculations [7,10].
Importantly, for each centrality, the asymptotic regime—
where the v2/(1 − RAA) ratio does not depend on p⊥, but is
determined by the geometry of the system—is already reached
from p⊥ ≈ 20–30 GeV; the asymptote corresponds to the
analytically derived Eq. (7), within ±5% accuracy. It is also
worth noticing that our prediction of asymptotic behavior was
based on approximations which are not necessarily valid in
these calculations, but the asymptotic regime is nevertheless
reached, telling us that those assumptions were sufficient to
capture the dominant features. If, as we suspect, the high-
p⊥ parton-medium interactions are more important than the
medium evolution model in explaining the high-p⊥ data, this
behavior reflects this importance and the analytical derivations
based on a static medium may capture the dominant features
seen in Fig. 2.

Furthermore, to check if the experimental data support
the derived scaling relation, we compare our results to the
ALICE [33,34], CMS [35,36], and ATLAS [37,38] data for√

sNN = 5.02 TeV Pb+Pb collisions. The experimental data,
for all three experiments, show the same tendency, i.e., the in-
dependence on the p⊥ and a consistency with our predictions,
though the error bars are still large. Therefore, from Fig. 2, we
see that at each centrality both the numerically predicted and
experimentally observed v2/(1 − RAA) approach the same
high-p⊥ limit. This robust, straight line, asymptotic value
carries information about the system’s anisotropy, which is,
in principle, simple to infer from the experimental data.

FIG. 2. Theoretical predictions for v2/(1 − RAA) ratio of charged
hadrons as a function of transverse momentum p⊥ compared with
5.02 TeV Pb+Pb ALICE [33,34] (red triangles), CMS [35,36] (blue
squares), and ATLAS [37,38] (green circles) data. Panels correspond
to 10–20%, 20–30%, 30–40%, and 40–50% centrality bins. The gray
band corresponds to the uncertainty in the magnetic to electric mass
ratio μM/μE . The upper (lower) boundary of the band corresponds to
μM/μE = 0.4 (0.6) [31,32]. In each panel, the red line corresponds
to the limit 0.57ς from Eq. (7).
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Ideally, the experimental data (here from ALICE, CMS,
and ATLAS) would overlap with each other, and would more-
over have small error bars. In such a case, the data could
be used to directly extract the anisotropy parameter ς by
fitting a straight line to the high-p⊥ part of the v2/(1 − RAA)
ratio. While such direct anisotropy extraction would be highly
desirable, the available experimental data are unfortunately
still not near the precision level needed to implement this.
However, we expect this to change in the upcoming high-
luminosity third run at the LHC, where the error bars are
expected to be significantly reduced, so that this procedure
can be directly applied to experimental data.

It is worth remembering that the anisotropy parameter ς ,
which can be extracted from the high-p⊥ data, is not the
commonly used anisotropy parameter ε2,

ε2 = 〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (8)

where ρ(x, y) is the initial density distribution of the QGP
droplet. We may also expect, that once the transverse ex-
pansion is included in the description of the evolution, the
path-length anisotropy ς reflects the time-averaged anisotropy
of the system, and therefore is not directly related to the
initial-state anisotropy ε2. Nevertheless, it is instructive to
check how the path-length anisotropy in our simple model
relates to conventional ε2 values in the literature. For this
purpose we construct a variable

ε2L = 〈Lout〉2 − 〈Lin〉2

〈Lout〉2 + 〈Lin〉2
= 2ς

1 + ς2
. (9)

We have checked that for different density distributions ε2 and
ε2L agree within ≈10% accuracy.

We have extracted the parameters ς from the DREENA-B
results shown in Fig. 2; the corresponding ε2L results are
shown as a function of centrality in Fig. 3 and compared to
ε2 evaluated using various initial-state models in the literature
[39–42]. Note that conventional (EKRT [40], IP-Glasma [41])
ε2 values trivially agree with our initial ε2 (not shown in the
figure), i.e., the initial ε2 characterize the anisotropy of the
path lengths used as an input to DREENA-B, which we had
chosen to agree with the conventional models.2 It is, however,
much less trivial that through this procedure, in which we
calculate the ratio of v2 and 1 − RAA through full DREENA
framework, our extracted ε2L almost exactly recovers our
initial ε2. Note that ε2 is indirectly introduced in RAA and
v2 calculations through path-length distributions, while our
calculations are performed using full-fledged numerical pro-
cedure, not just Eq. (1). Consequently, such direct extraction
of ε2L and its agreement with our initial (and consequently
also conventional) ε2 is highly nontrivial and gives us a
good deal of confidence that v2/(1 − RAA) is related to the
anisotropy of the system only, and not its material properties.

2Binary collision scaling calculated using optical Glauber model
with additional cutoff in the tails of Woods-Saxon potentials, to be
exact.

FIG. 3. Comparison of ε2L (red band) obtained from our method,
with ε2 calculated using Monte Carlo (MC)-Glauber [39] (gray
band), EKRT [40] (purple band), IP-Glasma [41] (green dot-dashed
curve), and MC-KLN [42] (blue dotted curve) approaches. MC-
Glauber and EKRT results correspond to 5.02 TeV, while IP-Glasma
and MC-KLN correspond to 2.76 TeV Pb+Pb collisions at the LHC.

Summary. High-p⊥ theory and data are traditionally used to
explore interactions of traversing high-p⊥ probes with QGP,
while bulk properties of QGP are obtained through low-p⊥
data and the corresponding models. On the other hand, it
is clear that high-p⊥ probes are also powerful tomography
tools since they are sensitive to global QGP properties. We
here demonstrated this in the case of spatial anisotropy of the
QCD matter formed in ultrarelativistic heavy-ion collisions.
We used our dynamical energy-loss formalism to show that a
(modified) ratio of two main high-p⊥ observables, RAA and v2,
approaches an asymptotic limit at experimentally accessible
transverse momenta, and that this asymptotic value depends
only on the shape of the system, not on its material properties.
However, how exactly this asymptotic value reflects the shape
and anisotropy of the system requires further study employing
full three-dimensional expansion, which is our current work
in progress. The experimental accuracy does not yet allow the
extraction of the anisotropy from the data using our scheme,
but once the accuracy improves in the upcoming LHC runs,
we expect that the anisotropy of the QGP formed in heavy-ion
collisions can be inferred directly from the data. Such an
experimentally obtained anisotropy parameter would provide
an important constraint to models describing the early stages
of heavy-ion collision and QGP evolution, and demonstrate
synergy of high-p⊥ theory and data with more common
approaches for inferring QGP properties.
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a novel and effective approach in revealing 
infection progression mechanisms that 
may be a valuable alternative to detailed 
numerical simulations.

We start by introducing our COVID-19 
dynamics model.  We then extract 
COVID-19 count data[7] and select those 
countries that systematically trace not 
only confirmed cases and fatalities, 
but also active cases (Andorra, Austria, 
Czechia, Croatia, Cuba, Germany, Israel, 
New Zealand, Switzerland and Turkey), 
which allows tight constraint of numer-
ical analysis. We observe three charac-
teristic growth regimes in confirmed 
case counts, show that our model is well 
constrained by these regimes for a wide 
range of countries, and provide an intui-
tive explanation behind the emergence 
of such regimes. Our analytical results 

for the characteristic (inflection and maximum) points of 
the infective curve will allow to i) explain the nearly constant 
value of the scaling exponent in the superlinear regime of 
confirmed counts; ii) understand the relation between the 
duration of this regime and strength of social distancing; iii) 
pinpoint changes in the reproduction number from outburst 
to extinguishing the infection, and iv) constrain the main 
parameter quantifying the effect of social distancing by ana-
lyzing scaling of the infection growth with time in the sub-
linear regime. The obtained constraints provide a basis for 
successful analysis of countries that did not continuously 
track the active cases (here demonstrated for France, Italy, 
Spain, United Kingdom, and Serbia). We will finally present 
the key infection parameters inferred through combined ana-
lytical and numerical analysis.

We develop a mechanistic model (nonlinear and nonhomoge-
neous), which takes into account gradual introduction of social 
distancing (as relevant for most countries’ response), in addi-
tion to other important infection progression mechanisms. We 
start from standard compartments for epidemiological models, 
that is, susceptible (S), exposed (E), infective (I), and recov-
ered (R).[2–4] To account for social distancing and observable 
quantities, we introduce additional compartments: protected  
(P)—where individuals effectively move from susceptible 
category due to social distancing; total number of diagnosed 
(confirmed and consequently quarantined) cases (D), active cases  
(A), and fatalities (F). D, A, and F correspond to directly observ-
able (measured) quantities, but are indirect observables of I, as 
only part of infective individuals gets diagnosed, due to a large 
number of mild/asymptomatic cases.[8]

Widespread growth signatures in COVID-19 confirmed case counts are 
reported, with sharp transitions between three distinct dynamical regimes 
(exponential, superlinear, and sublinear). Through analytical and numerical 
analysis, a novel framework is developed that exploits information in these 
signatures. An approach well known to physics is applied, where one looks 
for common dynamical features, independently from differences in other 
factors. These features and associated scaling laws are used as a powerful 
tool to pinpoint regions where analytical derivations are effective, get an 
insight into qualitative changes of the disease progression, and infer the 
key infection parameters. The developed framework for joint analytical and 
numerical analysis of empirically observed COVID-19 growth patterns can 
lead to a fundamental understanding of infection progression under strong 
control measures, applicable to outbursts of both COVID-19 and other 
infectious diseases.

© 2021 The Authors. Global Challenges published by Wiley-VCH GmbH. 
This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited.

COVID-19 pandemic introduced unprecedented worldwide 
social distancing measures.[1] While interventions such as 
quarantine or vaccination have been extensively studied in 
quantitative epidemiology, effects of social distancing are 
not well understood,[2–4] and when addressed, they have been 
studied only numerically. Unique opportunity to understand 
these effects has been provided by COVID-19 tracing through 
confirmed case counts, active cases and fatalities, in a variety 
of countries with different demographic and environmental 
conditions.[5,6] We here show that focusing on analytical and 
numerical derivations in distinct epidemics growth regimes, is 
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We implement the model deterministically, as COVID-19 
count numbers are very high wherever reasonable testing 
capacities are employed. This makes model analytically trac-
table, and allows robust parameter inference through com-
bination of analytically derived expressions and tightly con-
strained numerical analysis, as we show below. Our analysis 
is applied separately to each country, as the effect of social 
distancing, initial numbers of infected and exposed cases, 
diagnosis/detection efficiency and transmission rates may 
be different. However, within a given country, we do not take 
into account different heterogeneities−demographic, spatial, 
population activity, or seasonality effects.[2,9,10] Alternatively, 
global dynamical properties of the outbreak can be analyzed 
in a probabilistic framework employing partial differential 
equations in an age-structured model.[11,12] These can readily 
be included in our model, but would lead to model structure 
which is not analytically tractable, so these extensions are left 
for future work.

Given this, the model equations are:

d /d / d /d ; d /d /(1 ( / ) )0β α= − − = +S t IS N P t P t t t Sn � (1)

d /d / ; d /d ; d /dβ σ σ γ εδ γ= − = − − =E t IS N E I t E I I R t I� (2)

εδ εδ= = − − =d /d ; d /d ; d /dD t I A t I hA mA F t mA � (3)

where N  is the total population number; β-the transmis-
sion rate; σ -inverse of the latency period; γ -inverse of the 
infectious period; δ-inverse of the detection/diagnosis  
period; ε-detection efficiency; h—the recovery rate; m-the 
mortality rate. Social distancing is included through Equation 
(1) (second equation), which represents the rate at which the 

population moves (on average) from susceptible to protected 

category. The term 1 ( / )0

α
+ t t n  corresponds to a sigmoidal depend-

ence (similar to Fermi–Dirac function, in quantitative biology 
known as the Hill function[13]). Time 0t  determines the half-
saturation, so that well before 0t  the social distancing is negli-
gible, while well after 0t  the rate of transition to the protected 
category approaches α . Parameter n  (the Hill constant) deter-
mines how rapidly the social distancing is introduced, that is, 
large n  leads to rapid transition from OFF to ON state, and 
vice versa.[13] Equation (3) considers that only a fraction of the 
infected is diagnosed, so that εδI  takes into account the diag-
nosis and the subsequent quarantine process.

To make the problem analytically tractable, we approxi-
mate the Hill function in the first relation of Equation (1) by 
unit step function, so that after 0t  the second term in Equa-
tion (1) becomes α− S and dominates over the first term, that 
is, ( ) ≈ α−S t e t. We checked that this approximation agrees 
well with full-fledged numerical simulations (Figure 1D and 
Supporting Information). In all comparisons with analyt-
ical results, numerical analysis is done with the full model, 
allowing an independent check of both analytical deriva-
tions and employed approximations. Under this assumption, 
Equations (1) and (2) reduce to:

d ( )

d
( )

d ( )

d
[ ( ) ( )] ( ) ( )

2

2 0
( )

0
0γ εδ σ σ β θ θ γ εδ{ }+ + + = − + − − +α− −I t

t

I t

t
t t e t t I tt t

	
	 (4)

We next introduce two time regions: I) 0≤t t  and II) 0>t t  
and solve Equations (4) separately within these regions, where 
corresponding solutions are denoted as ( )II t  and ( )III t . As in 
the above expressions γ εδ+  always appear together, we further 
denote γ εδ γ+ → .

Global Challenges 2021, 5, 2000101

Figure 1.  Comparison of the model (dashed blue curves) with the data in the case of Germany (grey circles) for A) confirmed case counts, B) active 
cases, C) fatalities. D) Exponential, superlinear, and sublinear fit to confirmed case data, is shown. Arrows “weak” and “strong” indicate, respectively, 
the regions with a small and large magnitude of social distancing. The full grey curve denotes susceptibles ( ( )S t ), where the dashed grey curve shows 
an approximation to ( )S t . The dashed green curve denotes the number of infectious cases ( ( )I t ), where the dashed blue curve is ( )′I t , whose maxima 
indicate ( )I t  inflection points. The confirmed case counts in the three regimes are shown on E) log–linear, F) log–log and G) linear–log scale.
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For ( )II t , we take ( 0) 0= ≡I t I , and restrict to dominant  
(positive) Jacobian eigenvalue, leading to the exponential 
regime:

( )I 0

1
2

[ ( ) ( ) 4 ]2

=
γ σ γ σ βσ− + + − +

I t I e
t� (5)

By shifting 0− →t t t, ( )III t  is determined by

d ( )

d
( )

d ( )

d
( ) ( )

2
II

2
II

IIγ σ σ β γ+ + = −α−I t

t

I t

t
e I tt � (6)

Equation  (6) is highly nontrivial, due to variable coefficient 

(σβ α−e t). By substituting variable 
2

2
βσ

α
→ = − α−

t x
i

e
t

 it can be 

shown that Equation (6) reduces to transformed form of Bessel 
differential equation:[14]

d
d

(1 2 )
d
d

02
2

2 1 1
2

1
2 2

1
2 2

1
21α β γ α ν γ( )+ − + + − =γx

y

x
x

y

x
x y � (7)

whose general solution for noninteger ν  is given by:

( ) , ,1 1 2 1
1 1 1ν β ν β( ) ( )= + − 

α γ γy x x C J x C J x � (8)

where ( , )νJ x  represents Bessel function of the first kind, and 
,1 2C C  are arbitrary constants. In our case 

1α γ σ
α= + , 11 1γ β= = , 

while ν γ σ
α= −  is indeed noninteger. If we return to t  variable, 

taking into account the following relation between standard 
and modified ( ( , )νI x ) Bessel functions of the first kind:[15,16] 
( , ) ( , )ν ν= ν−I x i J ix , the general solution of Equation (6) reads:

( ) ( 1) ,
2

1

( 1) ,
2

1

II 2
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2
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γ σ
α

βσ
α

γ σ
α

γ σ
α
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α

γ σ
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
 


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





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
 






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
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γ σ
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γ
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α

σ
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α

−

+
−

−

I t e C I
e

C I
e

t
t

t

� (9)

To determine 1C , 2C , we use the following boundary condi-
tions: (0) ( )II I 0=I I t  and (0) ( )II I 0=′ ′I I t , where the first derivative 
in region II has the following expression:
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,
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In obtaining the expression above, the following identities 
were frequently used:[15,16]

d ,

d
1, , ; 1, 1,

2 ,ν ν ν ν ν ν ν ν( ) ( ) ( ) ( ) ( ) ( )= − − − − + =I x

x
I x

x
I x I x I x

I x

x
	(11)

After derivations, where the following relation[16]

1, , , 1,
2sin( )ν ν ν ν πν

π
( ) ( ) ( ) ( )+ − − − − =I x I x I x I x

x
� (12)

together with sin(( 1) ) sin( )ν π νπ± = −  and the identity 
relating modified Bessel function of the first and second kind 

( , )
2

( , ) ( , )

sin
ν π ν ν

νπ
= − −

K x
I x I x

 are used,[15,16] we finally obtain a 

surprisingly simple result:

γ σ
α

βσ
α

γ σ
α

βσ
α

=

−









−



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


γ σ

α

− +

−

I t I t e

K
e

K

t

t

( ) ( )

,
2

,
2

II I 0
2 � (13)

where ( , )νK x  is the modified Bessel function of the 
second kind.

At maximum and inflection points, 0II =′I  and 0II =′′I , 
respectively. After extensive simplification of the results, this 
leads to ( 0,free= α−y R e t, where /0,free β γ=R  is the basic reproduc-
tion number in the absence of social distancing:[6,17])

1,
2

,
2γ σ

α
γσ

α
γ
σ

γ σ
α

γσ
α

− +








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




yK y K y � (14)
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γ σ
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γσ
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− +








 =

+







+







−







yK y

y

K y � (15)

Equations  (14) and  (15) have to be solved numerically, but, 
as γ  and σ  are constants, we, interestingly, obtain that solu-
tions will depend only on α . Since, for the analysis of super-
linear and sublinear regimes, only the left inflection point and 
the maximum are important, we will further omit the second 
solution of Equation (15) (Equation (14) has one solution), and 
denote ( ) ( )1 α α= ≡y f fi i i , ( )m m α=y f  (these two solutions are 
presented as upper and lower curves on Figure  2C, respec-
tively), so that the effective reproduction numbers at inflection 
and maximum points ( e,iR  and e,mR ) are:

α
α

≡ =
≡ =

α

α

−

−

R R e f

R R e f

t

t

i

m

( ),

( ).
e, i 0,free i

e, m 0,free m

� (16)

From this follows the length of superlinear regime (between 
inflection and maximum points):

α
α
α

∆ ≡ − =








t t t

f

f

1
ln

( )

( )
m i

i

m

� (17)

We further Taylor expand ( )III t  around the inflection point:
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1 1 ( ) ( ) ( )

II I 0
2

2

γ σ
α

γσ
α

α

γ σ
α

βσ
α

γσ
γ σ

α ( )( )

=

−









−









−
+

− − + −










γ σ− +

O

I t I t e

K f

K

f t t t t

t
i

i i i

i

� (18)

In the superlinear regime ( ) ( )s≈ − υD t t t , where υ  is the 
scaling exponent and st  marks the beginning of this regime. By 
Taylor expanding ( )D t  around it , using Equations (18) and (3):

υ
α

γσ
γ σ

α α
α

= +
+

−










k
f

f

f
1

1
[ ( ) 1] ln

( )

( )
i

i

m

� (19)

which is always larger than 1, as expected for the superlinear 
regime. As ti  is localized toward the beginning of the regime, 
we estimate − ≈ ∆

i st t t
k

, where 3,4≈k .
Finally, to provide analytical constrain on α , we Taylor 

expand ( )I tII  around the maximum:

γ σ
α

γσ
α
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γ σ
α

βσ
α

γσ α ( )( )
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




−









− − − + −





γ σ− +

I t I t e

K f

K

f t t t t

t
( ) ( )

,
2
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2

1
2

1 ( ) ( ) ( )

II I 0
2

m

m m
2

m
3

m

O

� (20)

As ( ) 0m α <f , we see that the quadratic term in Equation (20) 
is always negative, that is, ( )D t  curve enters sublinear 
regime around maximum of the infection. By fitting ( )D t  

to ( ) ( )m m
3+ − − −c d t t f t t  in this regime, and by using 

Equation (20) together with Equation (3), we obtain:

γσ α= −f

d
f

6
[1 ( )]m � (21)

which allows to directly constrain α.
We first numerically analyze outburst dynamics in the coun-

tries that continuously updated[18] three observable categories  
(D, A , and F). For a large majority of countries active cases were 
either not tracked or were not continuously updated, so the 
analysis is done for ten countries listed in the outline above.

In the exponential regime, the analytical closed-form solu-
tion is given by Equation  (5). From this, and the initial slope 
of ln( )D  curve (once the number of counts are out of the 
stochastic regime), β  can be directly determined, while the 
corresponding eigenvector sets the ratio of 0I  to 0E . The inter-
cept of the initial exponential growth of D  at 0=t  sets the 
product of 0I  and εδ . h  and m  can also be readily con-
strained, as from Equation (3), they depend only on integrals of 
the corresponding counts; here note that − − =d( )/dD A F t hA. 
Also,[17,19,20] 1/3σ =  day 1−  and 1/4γ =  day 1− , characterize fun-
damental infectious process, which we assume not to change 
between different countries.

Only parameters related with the intervention meas-
ures ( , , ,0α εδt n ) are left to be inferred numerically, leading 
to tightly constrained numerical results. For this, we indi-
vidually performed joint fit to all three observable quantities 
( , ,A D F) for each country. The errors are estimated through 
Monte-Carlo[21,22] simulations, assuming that count numbers 
follow Poisson distribution.

Representative numerical results are shown in Figure  1 for 
Germany, while other countries are shown in the Supporting 

Global Challenges 2021, 5, 2000101

Figure 2.  The dependence on the effective social distancing strength (α ) of A) ∆t, the duration of the superlinear regime, B) υ , the scaling exponent 
of the superlinear regime, C) Re , effective reproduction number at the left inflection point (Re,i) and the maximum (Re,m) of I t( ). α∆ ≈t 1/  indicates 
that the time, in which the change from Re,i  to Re,m  is exhibited, is approximately inversely proportional to α . “ →exp sub” indicates the region of α  
where we predict a direct transition from exponential to sublinear growth. D) Comparison of α  constrained from analytical derivations (the grey bands) 
and numerical analysis, with countries indicated on the horizontal axis by their abbreviations. Results obtained by independent numerical analysis are 
presented by red dots with corresponding errorbars.
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Information. In Figure 1A–C (and Supporting Information) we 
see a good agreement of our numerical analysis with all three 
classes of the case counts. In Figure  1D, we see sharp transi-
tions between the three growth patterns indicated in the figure: 
i) exponential growth, observed as a straight line in log–linear 
plot in Figure 1E; ii) superlinear growth, a straight line in log–
log plot in Figure  1F; iii) sublinear growth, a straight line in 
linear–log plot in Figure 1G.

Transition between the growth patterns can be qualitatively 
understood from Equation (3), and ( )I t  curve in Figure  1D. 
The exponential growth has to break after the inflection point 
of ( )I t , that is, once the maximum of its first derivative ( ( )′I t  
in Figure 1D) is reached. In the superlinear regime, confirmed 
counts case ( ( )D t ) curve is convex ( ( ) 0′′ >D t ), so this regime 
breaks once ( )′I t  (dashed blue curve) becomes negative. Equiv-
alently, ( )D t  curve becomes concave (enters sublinear regime) 
once the maximum of the ( )I t  is reached. Note that the growth 
of ( )D t  can reemerge if the social distancing measures are alle-
viated. Our model can account for this by allowing transition 
from protected back to susceptible category, which is out of 
the scope of this study, but may improve the agreement with 
the data at later times (see Figure  1A–C). In addition to this 
numerical/intuitive understanding, we also showed that we 
analytically reproduce the emergence of these growth regimes 
(Equations  (6), (14), (15)). Can we also analytically derive the 
parameters that characterize these regimes?

The exponential regime is straightforward to explain, as 
described above. The superlinear regime is in between the 
left inflection point and the maximum of ( )I t , so that infec-
tive numbers grow, but with a decreasing rate. While the 
derivations are straightforward in the exponential regime, 
they are highly non-trivial during the subsequent subexpo-
nential (superlinear and sublinear) growth. As the superlinear 
regime spans the region between the left inflection point  
( , ( ) 0i i′′ =t I t ) and the maximum ( , ( ) 0m m′ =t I t ), its duration 
is ∆ = −t t tm i  given by Equation  (17), with 1/α≈  depend-
ence, so that weak measures lead to protracted superlinear 
growth (see Figure  2A). This tendency is also confirmed by 
independent numerical analysis in Figure  2A, where for each 
individual country we numerically infer α  and extract the 
length of the superlinear regime. Therefore, the duration of 
the superlinear regime indicates the effectiveness of introduced 
social distancing.

The scaling exponent υ  of the superlinear regime is given 
by Equation  (19), and shown in Figure  2B, where we predict 
that all countries are roughly in the same range of 1.2 1.5υ< <  
(surprisingly, weakly dependent on α ), despite significant dif-
ferences in the applied measures, demographic and environ-
mental factors. This result is (independently from our model) 
confirmed from case count numbers (the slope in Figure  1F, 
and equivalently for other countries, see Figure 2B).

How the effective reproduction number eR  changes during 
this regime, that is, between the left inflection point and the 
maximum of ( )I t ? eR  quantifies the average number of sec-
ondary cases per infectious case, so that 1e >R  signifies disease 
outburst, while for 1e <R  the disease starts to be eliminated 
from the population.[17] The Equation (16) provides expressions 
for e,iR  (at the inflection point) and e,mR  (at the maximum). 
Interestingly, from Figure  2C, we observe that e,iR  and e,mR  

do not depend on 0,freeR  and are, respectively, significantly larger 
and smaller than  1, which shows that transition from infec-
tion outburst to extinguishing happens during the superlinear 
growth. Consequently, the steepness of eR  change over the 
superlinear regime significantly increases (larger change over 
smaller time interval, see Figure 2C) with the measure strength.

Finally, in the sublinear regime, in a wide vicinity of ( )I t  
maximum (which marks the beginning of the sublinear 
growth) leading non-linear term of ( )D t  is cubic ( 3≈ t , with neg-
ative prefactor). This is consistent with the expansion of ( )I t  
around mt , which has leading negative quadratic ( 2t ) depend-
ence (see Equations (3) and (20)). The ratio between the prefac-
tors in ( )D t  expansion is given by Equation (21), from which we 
see that α  can be directly constrained, as shown in Figure 2D. 
For the ten countries with consistent tracking of ,D A, and F ,  
we independently numerically determined α  and compared 
it with analytical results coming from Equation (21), obtaining 
an excellent agreement between our derivations and numerical 
results. The obtained α  values should be understood as an 
effective epidemic containment measure—that is, estimating 
the true result of the introduced measures, which can be used 
to evaluate the practical effectiveness of the official policies.

To demonstrate how constraining α  can aid numerical anal-
ysis in the cases when A  is not continuously tracked, we next 
analyze five additional countries listed in the outline above, 
so that altogether our study covers majority of COVID-19 hot-
spots, which (at the time of this analysis) are close to satura-
tion in confirmed counts. Furthermore, in the specific cases of 
UK and Italy, where we analytically obtained both very low and 
very constrained α  (0.01 0.04α< < ), we chose five times larger 
parameter span in α  in the numerical analysis, to confirm 
that these low values are indeed preferred by the exhaustive 
numerical search. For example, the finally obtained α  for Italy 
(0.033 0.005)±  and UK (0.025 0.005± ), together with previously 
obtained agreements shown in Figure 2A–C, strongly confirm 
that the observed growth patterns provide invaluable informa-
tion for successful analysis of the infection progression data.

To further illustrate this, the synergy of analytical deriva-
tions and numerical analysis presented above enables us to, 
directly from the publicly available data, infer key infection 
parameters necessary to assess epidemics risks (provided in 
Table S1, Supporting Information). We estimate these param-
eters by the same model/analysis, for a number of diverse 
countries, allowing their direct comparison. In Figure  3, we 
show together case fatality rate (CFR), infected fatality rate 
(IFR) and infection attack rate (AR).[17,24] CFR is the number 
of fatalities per confirmed cases. CFR can, in principle, be 
inferred directly from the data, but since different coun-
tries are in different phases of infection, we project forward 
the number of confirmed cases until a saturation is reached 
for each country, from which we calculate CFR. IFR (crucial 
parameter for assessing the risks for infection progression 
under different scenarios) is the number of fatalities per total 
number of infected cases, which is a genuine model esti-
mate, due to the unknown total number of infected cases. 
AR (necessary for understanding the virus recurrence risk) 
is also determined from our model and provides an estimate 
of the fraction of the total population that got infected and 
possibly resistant.

Global Challenges 2021, 5, 2000101
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From Figure  3, we see that CFR takes very different values 
for different countries, from below 2%  (New Zealand) to above 
20%  (France). On the other hand, IFR is consistent with a con-
stant value (the dashed red line in the figure) of 0.3 0.4%≈ − . 
In distinction to IFR, AR also takes diverse values for different 
countries, ranging from 1%≈  to as high as 15%≈  (though 
with large errorbars). Although diverse, these AR values are 
well bellow the classical herd immunity threshold of 60–70%

To summarize, we here developed a novel quantitative frame-
work through which we showed that: i) The emergence of three 
distinct growth regimes in COVID-19 case counts can be repro-
duced both analytically and numerically. ii) Typically, a brief 
superlinear regime is characterized by a sharp transition from 
outburst to extinguishing the infection, where effective reproduc-
tion number changes from much larger to much smaller than 
one; more effective measures lead to shorter superlinear growth, 
and to a steeper change of the effective reproduction number. iii) 
Scaling exponent of the superlinear regime is surprisingly uni-
form for countries with diverse environmental and demographic 
factors and epidemics containment policies; this highly non-trivial 
empirical result is well reproduced by our model. iv) Scaling pref-
actors in the sublinear regime contain crucial information for 
analytically constraining infection progression parameters, so 
that they can be straightforwardly extracted through numerical 
analysis. Interestingly, we found that the number of COVID-19 
fatalities per total number of infected is highly uniform across 
diverse analyzed countries, in distinction to other (highly variable) 
infection parameters, and about twice higher than commonly 
quoted for influenza (0.3–0.4% compared to 0.1–0.2%), which 
may be valuable for direct assessment of the epidemics risks.

While state-of-the-art approach in epidemiological modeling 
uses computationally highly demanding numerical simu-
lations, the results above demonstrate a shift of paradigm 
toward simpler, but analytically tractable models, that can both 
explain common dynamical features of the system and be used 
for straightforward and highly constrained parameter infer-
ence. This shift is based on a novel framework that relates uni-
versal growth patterns with characteristic points of the infec-
tive curve, followed by analytical derivations in the vicinity 
of these points, in an approach akin to those in a number of 

physics problems. The framework presented here can be, in 
principle, further extended toward, for example, including sto-
chastic effects or different heterogeneities such as age-struc-
ture. However, these are non-trivial tasks, and it remains to 
be seen to what extent the analytical results can be obtained 
in those more complex models. Overall, as our approach does 
not depend on any COVID-19 specifics, the developed frame-
work can also be readily applied to potential outbursts of 
future infections.
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Figure 3.  CFR, IFR, and AR, inferred for countries whose abbreviations are indicated on the horizontal axis, are denoted, respectively, by blue, grey, and 
green dots, with errorbars indicated by corresponding bands. The dashed red horizontal line stands for IFR consistent with a mean value (indicated in 
the legend). Values for PRC are from ref. [23].
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Abstract
High p⊥ theory and data are commonly used to study high p⊥ parton interactions with QGP, while low p⊥ data and
corresponding models are employed to infer QGP bulk properties. On the other hand, with a proper description of
high p⊥ parton-medium interactions, high p⊥ probes become also powerful tomography tools, since they are sensitive
to global QGP features, such as different temperature profiles or initial conditions. This tomographic role of high p⊥
probes can be utilized to assess the spatial anisotropy of the QCD matter. With our dynamical energy loss formalism,
we show that a (modified) ratio of RAA and v2 presents a reliable and robust observable for straightforward extraction of
initial state anisotropy. We analytically estimated the proportionality between the v2/(1−RAA) and anisotropy coefficient
ε2L, and found surprisingly good agreement with full-fledged numerical calculations. Within the current error bars, the
extraction of the anisotropy from the existing data using this approach is still inaccessible. However, with the expected
accuracy improvement in the upcoming LHC runs, the anisotropy of the QGP formed in heavy ion collisions can be
straightforwardly derived from the data. Such a data-based anisotropy parameter would present an important test to
models describing the initial stages of heavy-ion collision and formation of QGP, and demonstrate the usefulness of
high p⊥ theory and data in obtaining QGP properties.

Keywords: Quark-gluon plasma, High p⊥ probes, Initial anisotropy

1. Introduction

Understanding the properties of the new form of matter named Quark-Gluon Plasma (QGP) is the major
goal of relativistic heavy ion physics [1, 2]. However, to explore the properties of QGP, one needs good
probes. With regards to that, it is commonly assumed that high p⊥ theory and data are good probes for
exploring the high p⊥ parton interactions with QGP, while low p⊥ theory and data are considered as good
probes for bulk QGP properties. Contrary to this common assumption, the goal of this contribution is to
demonstrate that high p⊥ particles can also be useful independent probes of bulk QGP properties.

To put it simply, the main idea is that when high p⊥ particles transverse QGP, they lose energy, where
this energy loss is sensitive to bulk QGP properties, such as its temperature profiles or initial conditions.
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Consequently, with a realistic and sophisticated high p⊥ parton energy loss model, high p⊥ probes can
indeed become powerful tomographic tools. So, in this contribution, we will present how we can use these
probes to infer some of the bulk QGP properties, i.e., for precision QGP tomography. Note that only the
main results are presented here; for a more detailed version, see [3], and references therein.

2. DREENA framework

To achieve the goal of utilizing high p⊥ theory and data for inferring the bulk QGP properties, as pre-
viously implied, a reliable high p⊥ parton energy loss model is necessary. With this goal in mind, we de-
veloped a dynamical energy loss formalism [4, 5], which takes into account some more realistic and unique
features, such as: i) The calculations are performed within finite temperature field theory and generalized
Hard-Thermal-Loop [6] approach, in which the infrared divergences are naturally regulated, excluding the
need for artificial cutoffs. ii) The formalism assumes QCD medium of finite size and finite temperature,
consisting of dynamical partons (i.e., energy exchange with medium constituents is included), in distinction
to commonly considered static scatterers approximation and/or models with vacuum-like propagators. iii)
Both radiative [4] and collisional [5] energy losses are calculated within the same theoretical framework,
and are equally applicable to light and heavy flavors. iv) The formalism is generalized to include a finite
chromomagnetic mass [7], running coupling, and to relax the widely used soft-gluon approximation [8].
Finally, the formalism is integrated in a numerical framework DREENA (Dynamical Radiative and Elastic
ENergy loss Approach) [9, 10], to provide predictions for high p⊥ observables.

Within this framework, we generated a wide set of high p⊥ predictions using 1D Bjorken expansion [11]
(i.e., DREENA-B framework [10]). Thus we obtained a good joint agreement with a wide range of high p⊥
RAA and v2 data, by applying the same numerical procedure, the same parameter set, and no fitting param-
eters in model testing. That is, there is no v2 puzzle [12] within our model, which then strongly suggests
that the model provides a realistic description of high p⊥ parton-medium interactions. Moreover, our pre-
liminary findings suggest that, within our formalism, moving from 1D Bjorken to full 3D hydrodynamical
expansion does not significantly affect the agreement of our predictions with high p⊥ RAA and v2 data [13].
Consequently, in order to adequately address the high p⊥ measurements, a proper description of high p⊥
parton interactions with the medium appears to be much more important than an advanced medium evo-
lution description. Furthermore, we have also analyzed the sensitivity of high p⊥ RAA and v2 to different
initial stages, giving an additional insigth in the usefulness of both high p⊥ observables in the precision QGP
tomography [14].

3. Inferring QGP anisotropy through high p⊥ theory and data

As one example of QGP tomography, in this contribution, we will address how to infer the QGP
anisotropy from high p⊥ RAA and v2 data. The initial state anisotropy is one of the main properties of
QGP and a major limiting factor for precision QGP tomography. However, despite its essential impor-
tance, it is still not possible to directly infer the initial anisotropy from experimental measurements. Several
theoretical studies [15, 16, 17, 18] have provided different methods for calculating the initial anisotropy,
leading to notably different predictions, with a notable effect in the resulting predictions for both low and
high p⊥ data. Therefore, approaches for inferring anisotropy from the data are necessary. Optimally, these
approaches should be complementary to existing predictions, i.e., based on a method that is fundamentally
different from models of early stages of QCD matter.

To this end, we here propose a novel approach to extract the initial state anisotropy. Our method is based
on inference from high p⊥ data, by using already available RAA and v2 measurements, which will moreover
be measured with much higher precision in the future. Such an approach is substantially different from the
existing approaches, as it is based on the inference from experimental data (rather than on calculations of
early stages of QCD matter) exploiting the information from interactions of rare high p⊥ partons with the
QCD medium. This also presents an improvement/optimization in utilizing high p⊥ data as, to date, these
data were mostly constrained on studying the parton-medium interactions, rather than assessing bulk QGP
parameters, such as spatial asymmetry.
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In the literature, the initial state anisotropy is quantified in terms of eccentricity parameter ε2

ε2 =
〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (1)

where ρ(x, y) denotes the initial density distribution of the formed QGP. Regarding high p⊥ observables, we
note that v2 is sensitive to both the anisotropy of the system and its size, while RAA is sensitive only to the
size of the system. Therefore, it is plausible that the adequate observable for extracting eccentricity from
high p⊥ data depends on both v2 and RAA, and the question is how.

To address this question, we will use the dynamical energy loss formalism, and DREENA-B framework
outlined above. For high p⊥, the fractional energy loss scales as [3] ΔE/E ∼ χ〈T 〉a〈L〉b, where 〈T 〉 stands
for the average temperature along the path of high p⊥ parton, 〈L〉 is the average path-length traversed by the
parton, χ is a proportionality factor that depends on the initial parton transverse momentum, and a and b are
exponents which govern the temperature and path-length dependence of the energy loss. Within our model,
a ≈ 1.2 and b ≈ 1.4, which is contrary to simpler models, and consistent with a wide range of experimental
data [19, 20]. From this simple scaling argument, we can straightforwardly obtain the following expressions
for RAA and v2 (for more details we refer the reader to [3]):

RAA ≈ 1 − ξ(χ)〈T 〉a〈L〉b, v2 ≈ 1
2

Rin
AA − Rout

AA

Rin
AA + Rout

AA

≈ ξ(χ)〈T 〉a〈L〉b
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
, (2)

where we see that ξ(χ)〈T 〉a〈L〉b corresponds to 1− RAA. Therefore, if we divide v2 by (1− RAA), we see that
this ratio is given by the following simple expression:

v2

1 − RAA
≈
(

b
2
ΔL
〈L〉 −

a
2
ΔT
〈T 〉
)
. (3)

Note that, while this ratio exposes the dependence on the asymmetry of the system (through spatial (ΔL/〈L〉)
and temperature (ΔT/〈T 〉) parts), the dependence only on spatial anisotropy is still not isolated. However,
by plotting together spatial and temperature anisotropy, we obtain a linear dependence [3], with a propor-
tionality factor given by c ≈ 4.3. Therefore, v2/(1 − RAA) reduces to the following expression:

v2

1 − RAA
≈ 1

2

(
b − a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 ≈ 0.57ς, where ς =

〈Lout〉 − 〈Lin〉
〈Lout〉 + 〈Lin〉 and

1
2

(b − a
c

) ≈ 0.57. (4)

Consequently, the asymptotic scaling behavior of observables v2 and RAA, at high p⊥, reveals that their
(moderated) ratio is determined only by the geometry of the initial QGP droplet. Therefore, the anisotropy
parameter ς could, in principle, be directly obtained from the high p⊥ experimental data.

Fig. 1. A) Comparison of theoretical predictions for charged hadron v2/(1 − RAA) as a function of p⊥ with 5.02 TeV Pb + Pb
CMS [21, 22] (blue squares), ALICE [23, 24] (red triangles) and ATLAS [25, 26] (green circles) data. Each panel corresponds to
different centrality range, as indicated in the upper right corners, while red lines denote the limit 0.57ς from Eq. (4). B) Comparison
of ε2L (red band) extracted from our full-fledged calculations, with ε2 obtained from MC-Glauber [15] (gray full curve), EKRT [16]
(cyan dashed curve), IP-Glasma [17] (green dot-dashed curve) and MC-KLN [18] (blue dotted curve) models. MC-Glauber and EKRT
curves correspond to 5.02 TeV, whereas IP-Glasma and MC-KLN curves correspond to 2.76 TeV Pb + Pb collisions at the LHC.

To test the adequacy of the analytical estimate given by Eqs. (2)-(4), Fig. 1A is displayed, which
comprises our v2/(1 − RAA) predictions (gray bands), stemming from our full-fledged recently developed
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DREENA-B framework (outlined in the previous section), the ALICE, CMS and ATLAS data, and analyt-
ically derived asymptote 0.57ς (red lines). Importantly, for each centrality range and for p⊥ � 20 GeV,
v2/(1 − RAA) is independent on p⊥, and approaches the asymptote, i.e., is determined by the geometry of
the system - depicted by the solid red line, up to 5% accuracy. Moreover, the experimental data for all three
experiments also display the independence on the p⊥ and agree with our predictions, although the error bars
are rather large. Therefore, we conclude that our scaling estimates are valid and that v2/(1 − RAA) indeed
carries the information about the anisotropy of the fireball, which can be simply (from the straight line fit to
data at high p⊥ limit) and robustly (in the same way for each centrality) inferred from the experimental data.

However, note that the anisotropy parameter ς is not the widely-considered anisotropy parameter ε2
(given by Eq. (1)). To facilitate comparison with ε2 values in the literature, we define ε2L =

〈Lout〉2−〈Lin〉2
〈Lout〉2+〈Lin〉2 =

2ς
1+ς2 , and in Fig. 1B compare it with the results from different initial-state models [15, 16, 17, 18]. First, we
should note that as a starting point, our initial ε2, through which we generate our path-length distributions,
agrees with EKRT and IP-Glasma. However, what is highly non-trivial is that, as an outcome of this proce-
dure, in which v2/(1 − RAA) is calculated (based on the full-fledged DREENA-B framework), we obtain ε2L

which practically coincides with our initial ε2 and also with some of the conventional initial-state models.
As an overall conclusion, the straightforward extraction of ε2L and its agreement with values of the prevail-
ing initial-state models’ eccentricity (and our initial ε2) is highly non-trivial and supports v2/(1 − RAA) as a
reliable and robust observable for anisotropy. Additionally, the width of our ε2L band is smaller than the dif-
ference in the ε2 values obtained by using different models (e.g., MC-Glauber vs. MC-KLN). Therefore, our
approach provides genuine resolving power to distinguish between different initial-state models, although
it may not be possible to separate the finer details of more sophisticated models. This resolving power,
moreover, comes from an entirely different perspective, i.e., from high p⊥ theory and data, supporting the
usefulness of utilizing high p⊥ theory and data for inferring the bulk QGP properties.
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We show that high-p⊥ RAA and v2 are way more sensitive to the initial
time of fluid-dynamical expansion τ0 than the distributions of low-p⊥ par-
ticles, and that the high-p⊥ observables prefer relatively late τ0 ∼ 1 fm/c.
To calculate high-p⊥ RAA and v2, we employ our DREENA-A framework,
which combines state-of-the-art dynamical energy loss model with 3+1-
dimensional hydrodynamical simulations. Elliptic flow parameter v2 is also
more sensitive to τ0 than RAA. This presents an example of applying QGP
tomography to constrain a bulk QGP parameter with high-p⊥ observables
and related theory.
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1. Introduction

Quark–gluon plasma (QGP) is a new form of matter that consists of
interacting quarks, antiquarks, and gluons. It is formed in ultrarelativis-
tic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and
the Large Hadron Collider (LHC). In these experiments, the bulk proper-
ties of QGP are usually explored by low-p⊥ observables. Rare high-energy
probes are, on the other hand, almost exclusively used to understand the
interactions of high-p⊥ partons with the surrounding QGP medium. We
are advocating high-p⊥ QGP tomography, where bulk QGP parameters are
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jointly constrained by low- and high-p⊥ physics. For instance, we have pre-
viously demonstrated how the anisotropy of the QGP formed in heavy-ion
collisions is reflected in the high-p⊥ observables [1].

In these proceedings, we analyse how high-p⊥ RAA and v2 depend on the
initial time τ0, i.e. the time of onset of fluid-dynamical expansion, comple-
menting the more detailed study provided in Ref. [2]. The dynamics before
thermalisation, and τ0, and, therefore, the associated energy loss phenom-
ena, are not established yet. To avoid speculation and to provide a baseline
calculation for further studies, we assume free streaming of high-p⊥ parti-
cles before τ0 and neglect the pre-equilibrium evolution of the medium (we
explore the effects of pre-equilibrium evolution elsewhere [2]). After τ0, the
QCD medium is described as a relativistic viscous fluid and high-p⊥ probes
start to lose energy through interactions with this medium. Consequently,
the initial time τ0 is an important parameter, which affects both the evolu-
tion of the system and interactions of the high-p⊥ particles with the medium.

We describe the medium evolution by the 3+1-dimensional viscous hy-
drodynamical model from Ref. [3] and we use the optical Glauber model for
the initial state (see [2] for more details). The model parameters are tuned
so that the transverse momentum distributions of charged particles for six
different τ0 values in the range from 0.2 fm/c to 1.2 fm/c agree with exper-
imental data (see Fig. 1 in [2]), which is also true for p⊥-differential elliptic
flow parameter v2(p⊥) (shown in the low-momentum part (p⊥ < 2 GeV) of
the lower panels of Fig. 1).

Fig. 1. Charged hadron DREENA-A RAA (upper panels) and v2 (lower panels)
predictions, generated for six different τ0 (indicated on the legend), are compared
with ALICE [4, 5], ATLAS [6, 7], and CMS [8, 9] data. Four columns, from
left to right, correspond to 10–20%, 20–30%, 30–40%, and 40–50% centralities at√
sNN = 5.02 Pb+Pb collisions at the LHC.
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To evaluate the high-p⊥ parton energy loss, we use our recently devel-
oped DREENA-A framework, the details of which are outlined in [10]. The
resulting predictions for charged hadron RAA in four different centrality
classes, and for τ0 in the range of 0.2–1.2 fm, are shown in the upper panel
of Fig. 1, and compared with experimental data. In the lower panel of Fig. 1,
we show a similar comparison of predicted high-p⊥ v2 to data. In distinc-
tion to the low-p⊥ distributions, we see that high-p⊥ predictions can be
resolved against experimental data, and that the later onset of fluid dynam-
ics is clearly preferred by both RAA and v2. This resolution is particularly
clear for v2 predictions, which approach the high-p⊥ tail of the data, as τ0
is increased. It also increases for higher centralities, as analysed below.

What is the reason behind such sensitivity? One proposal [11] was that
jet quenching may start later than the fluid dynamical evolution. We test
this scenario by introducing a separate quenching start time τq ≥ τ0. In
Fig. 2 (A) we show the high-p⊥ RAA and v2 in 20–30% centrality for τ0 =
0.2 fm, and τq values in the range of 0.2–1.2 fm. The sensitivity to τq is
similar in other centralities, for larger τ0 and for heavy flavour. RAA shows
similar sensitivity to τq as to τ0; compare Figs. 2 (A) and 1. The v2 is
surprisingly insensitive to τq, and way below the data, not supporting this
scenario.

Fig. 2. (A) DREENA-A predictions for charged hadron RAA (left) and v2 (right)
in 20–30% centrality class of

√
sNN = 5.02 TeV Pb+Pb collisions at the LHC,

generated for τ0 = 0.2 fm and six different τq. The predictions are compared with
ALICE [4, 5], ATLAS [6, 7], and CMS [8, 9] data. (B) The average temperature
along the jet path traversing the system in out-of-plane and in-plane directions.
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We next investigate if the origin of the sensitivity is due to the difference
in the temperature profiles. For this, we evaluate the average temperature
along the paths of jets travelling in-plane and out-of-plane directions. In
Fig. 2 (B), we show the resulting temperature evolution in 10–20% and 30–
40% centrality for τ0 = 0.2 and 1.2 fm. As τ0 is increased, the differences
between in-plane and out-of-plane temperature profiles also increase. Since
v2 is proportional to the difference in suppression along in-plane and out-of-
plane directions, a larger difference along these directions leads to larger v2,
and causes the observed dependency on τ0. As well, for fixed τ0, increasing
τq hardly changes v2 since at early times, the average temperature in- and
out-of-plane directions is almost identical, and no v2 is built up at that time
in any case. Furthermore, the more peripheral the collision, the larger the
difference in average temperatures, which leads to higher sensitivity of v2
to τ0 as seen in the lower panels of Fig. 1. Consequently, the temperature
profile differences are a major contributor to such sensitivity.

We here presented how high-p⊥ theory and data can be used to constrain
a parameter weakly sensitive to bulk QGP evolution. We used high-p⊥ RAA

and v2 to infer that experimental data prefer late onset of fluid dynamical
behaviour. v2 shows a higher sensitivity to τ0 than RAA, and we showed
that v2 is affected by τ0 due to differences in the in- and out-of-plane tem-
perature profiles. This demonstrates inherent interconnections between low-
and high-p⊥ physics, supporting our proposed QGP tomography approach.

This work is supported by the European Research Council, grant ERC-
2016-COG: 725741, and by the Ministry of Science and Technological De-
velopment of the Republic of Serbia.

REFERENCES

[1] S. Stojku et al., arXiv:2110.02029 [nucl-th].
[2] S. Stojku et al., Phys. Rev. C 105, L021901 (2022).
[3] E. Molnár, H. Holopainen, P. Huovinen, H. Niemi, Phys. Rev. C 90, 044904

(2014).
[4] ALICE Collab. (S. Acharya et al.), J. High Energy Phys. 2018, 013 (2018).
[5] ALICE Collab. (S. Acharya et al.), J. High Energy Phys. 2018, 103 (2018).
[6] ATLAS Collab., ATLAS-CONF-2017-012.
[7] ATLAS Collab. (M. Aaboud et al.), Eur. Phys. J. C 78, 997 (2018).
[8] CMS Collab. (V. Khachatryan et al.), J. High Energy Phys. 2017, 039

(2017).
[9] CMS Collab., Phys. Lett. B 776, 195 (2018).

[10] D. Zigic et al., arXiv:2110.01544 [nucl-th].
[11] C. Andres et al., Phys. Lett. B 803, 135318 (2020).

http://arxiv.org/abs/arXiv:2110.02029
http://dx.doi.org/10.1103/PhysRevC.105.L021901
http://dx.doi.org/10.1103/PhysRevC.90.044904
http://dx.doi.org/10.1103/PhysRevC.90.044904
http://dx.doi.org/10.1007/jhep11(2018)013
http://dx.doi.org/10.1007/jhep07(2018)103
http://dx.doi.org/10.1140/epjc/s10052-018-6468-7
http://dx.doi.org/10.1007/jhep04(2017)039
http://dx.doi.org/10.1007/jhep04(2017)039
http://dx.doi.org/10.1016/j.physletb.2017.11.041
http://arxiv.org/abs/arXiv:2110.01544
http://dx.doi.org/10.1016/j.physletb.2020.135318


UNIVERSITY OF BELGRADE

FACULTY OF PHYSICS

Stefan Stojku

PROPERTIES OF QUARK-GLUON PLASMA
INFERRED FROM HIGH-p⊥ DATA

Doctoral Dissertation

Belgrade, 2023



ii



ÓÍÈÂÅÐÇÈÒÅÒ Ó ÁÅÎÃÐÀÄÓ

ÔÈÇÈ×ÊÈ ÔÀÊÓËÒÅÒ

Ñòåôàí Ñòîjêó

ÎÄÐÅ�ÈÂÀ�Å ÎÑÎÁÈÍÀ

ÊÂÀÐÊ-ÃËÓÎÍÑÊÅ ÏËÀÇÌÅ ÏÎÌÎ�Ó

ÂÈÑÎÊÎÅÍÅÐÃÈJÑÊÈÕ ×ÅÑÒÈÖÀ

äîêòîðñêà äèñåðòàöèjà

Áåîãðàä, 2023. ãîäèíà





Thesis Defense Committee

Thesis advisor:

Dr. Magdalena Djordjevi�c
Research Professor
Institute of Physics Belgrade
University of Belgrade

Committee member:

Dr. Bojana Ili�c
Assistant Research Professor
Institute of Physics Belgrade
University of Belgrade

Committee member:

Prof. Dr. Maja Buri�c
Professor
Faculty of Physics
University of Belgrade

Committee member:

Prof. Dr. Voja Radovanovi�c
Professor
Faculty of Physics
University of Belgrade

v





Acknowledgements

This thesis was completed under the mentorship of Dr. Magdalena Djordjevi�c, Research Pro-
fessor, at the Laboratory for High Energy and Nuclear Physics, at the Institute of Physics
Belgrade, University of Belgrade. The presented research was supported by the European
Research Council under the grant ERC-2016-COG: 725741 and by the Ministry of Science,
Technological Development and Innovations of the Republic of Serbia.

I would like to express gratitude to my supervisor, Dr. Magdalena Djordjevic, for introduc-
ing me to the �eld and for competent guidance and support through my Ph.D. studies. Her
intuition, knowledge, and perseverance are a continuing source of inspiration.

I thank Dr. Bojana Ili�c for supervising the last part of my thesis. Her help and guidance
were very useful for successfully completing this part of the project.

I want to thank the rest of our group, and especially Lidija �Zivkovi�c, Jussi Auvinen, Pasi
Huovinen, Igor Salom and Marko Djordjevi�c, whom I collaborated with during my Ph.D. stud-
ies. I am grateful to Du�san �Zigi�c for valuable discussions.

Du�sica, thank you for always being kind and helpful.

Many thanks to Bithika, Ana, Sanja, Veljko, and Du�san for a pleasant and productive work
environment at the Institute of Physics Belgrade and all the amusing co�ee breaks.

I am very grateful to my friends, who have made everything much more enjoyable. Alek-
sandra, thank you for your enduring friendship, all the travels, and adventures we've shared,
and for being there whenever I needed it. Iva, thank you for always having the time, patience,
and warm understanding for me. Ljubica, Filip, and Miljana, I am very grateful for all the
joyful evenings we've spent together and for your help and support. Thank you, Milo�s, Bojana,
Jelena and Marta, for all the laughter and helpful conversations. Thank you, Barbara, Tijana,
Tamara, Rade, for your love and friendship.

I am grateful to my family for being such a positive presence in my life. Finally, I thank
my wonderful parents, Marinela and Dorel, for their unwavering support and devotion.

vii





Abstract

Quark-gluon plasma (QGP) is a new form of matter created in the Little Bangs: collisions
of heavy ions at ultrarelativistic energies at the Large Hadron Collider (LHC) and Relativistic
Heavy Ion Collider (RHIC). It consists of decon�ned quarks, antiquarks, and gluons. According
to modern cosmology, quark-gluon plasma is believed to have existed shortly after the Big Bang.
Thus, the study of quark-gluon plasma is of fundamental importance, giving us insight into this
new form of matter governed by strong interaction while advancing our understanding of the
early universe.

After the collision of two nuclei, most of the created particles (∼ 99.9%), which constitute
quark-gluon plasma, have low energy and form the thermalized medium. A small number
(∼ 0.1%) of particles are highly energetic � they are created early in the evolution of the
medium, and traverse it while interacting with it through the strong force. In that way, these
particles carry information on the properties of the medium. This fact is the central idea of
the research presented in this thesis. The results will demonstrate how the theory, numerical
calculations, and data related to the high-p⊥ particles can be used with low-p⊥ physics to
extract essential properties of this new form of matter.

The results are organized into three main sections: the �rst one is related to the early stages
of quark-gluon plasma formation, the second is related to the anisotropy of the quark-gluon
plasma created in heavy-ion collisions, and �nally, the third one will deal with the extension of
the dynamical energy loss formalism to the case of multiple scattering centers.

The collective motion of low-p⊥ particles, which form the medium created in heavy-ion col-
lisions, is commonly described by applying relativistic hydrodynamics. However, the dynamics
before the initial hydrodynamical evolution of quark-gluon plasma have yet to be established.
We aim to use high-p⊥ theory and data to explore the early stages of QGP formation be-
fore the onset of hydrodynamics. As a �rst step, we aim to determine the initial time of
hydrodynamical transverse expansion (τ0), an important parameter that has been only weakly
constrained through low-p⊥ physics. To this avail, we �rst focus on a simpli�ed model with
no pre-equilibrium transverse evolution and use high-p⊥ numerical simulations and comparison
with experimental data to constrain the value of this parameter. Since the model with no pre-
equilibrium evolution is considered too simpli�ed, we extend it to include more sophisticated
pre-equilibrium evolution scenarios in the next step. Both approaches consistently show that
the experimental data prefers the late onset of transverse expansion and energy loss in the
medium.

Anisotropy of the quark-gluon plasma created in heavy-ion collisions (which can be thought
of as the measure of the deviation of a droplet of quark-gluon plasma from the spherical shape)
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Abstract

is one of the fundamental properties of this medium. However, it is still impossible to infer this
parameter's values directly from the experimental measurements despite its essential impor-
tance. Our research will demonstrate how this can be achieved using high-p⊥ data. Namely, we
�rst focus on a simpli�ed model, where the medium expands only in the longitudinal direction.
We then move on to the realistic hydrodynamical description of the model, with both longi-
tudinal and transversal expansion, and explore whether its anisotropy can be related to the
high-p⊥ observables RAA and v2. According to our analysis, the anisotropy of the medium can
be directly related to a modi�ed ratio of these high-p⊥ observables, v2/(1 − RAA). Moreover,
we propose a new observable � jet-perceived anisotropy, which is proportional to this ratio but
can also be calculated directly from the hydrodynamical medium evolution. We argue that
future hydrodynamical calculations should be tuned to reproduce the values of jet-perceived
anisotropy obtained from the experimental data.

Finally, we will consider the problem of high-p⊥ particles experiencing multiple scatterings
(opacity expansion) within the medium. Namely, most of the existing radiative energy loss
formalisms incorporate either the optically thin or the optically thick approximation. In the
optically thin approximation, a jet encounters a single scattering center before radiating gluons.
This approximation is used in the dynamical energy loss formalism, which describes the energy
loss of high-p⊥ partons in the medium. On the other hand, in the optically thick approximation,
jets encounter in�nite scattering centers before radiating gluons. Since the size of the medium
created in Little Bangs is several fm, and the mean free path is λ ≈ 1fm, it is clear that neither
of these approximations is realistic. We thus derive the expressions for radiative energy loss
within the dynamical energy loss formalism up to the 4th order in opacity and implement them
into our appropriately generalized numerical framework to generate the predictions for light and
heavy probes. Our �ndings suggest that higher-order e�ects are negligible for RHIC and LHC
and that the optically thin approximation is adequate for the dynamical energy loss formalism.

Keywords: quark-gluon plasma, high-p⊥ data, early stages, anisotropy, opacity
Research �eld: Physics
Research sub�eld: High-energy and nuclear physics
UDC number: 539.12 (043.3)
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Sa�etak

Êâàðê-ãëóîíñêà ïëàçìà jå íîâî ñòà»å ìàòåðèjå êîjå íàñòàjå ó åêñïåðèìåíòèìà êîjè
óê§ó÷ójó ñóäàðå òåøêèõ jîíà óáðçàíèõ äî óëòðàðåëàòèâèñòè÷êèõ áðçèíà ó Âåëèêîì ñóäà-
ðà÷ó õàäðîíà (LHC) è ó Ðåëàòèâèñòè÷êîì ñóäàðà÷ó òåøêèõ jîíà (RHIC). Îíà ñå ñàñòîjè
îä ñëîáîäíèõ êâàðêîâà, àíòèêâàðêîâà è ãëóîíà. Íà îñíîâó ìîäåðíå êîñìîëîãèjå, êâàðê-
ãëóîíñêà ïëàçìà jå ïîñòîjàëà óáðçî íàêîí Âåëèêîã ïðàñêà, òå jå ïðîó÷àâà»å êâàðê-ãëóîíñêå
ïëàçìå îä ôóíäàìåíòàëíå âàæíîñòè. Òèìå ñòè÷åìî óâèä ó íîâî ñòà»å ìàòåðèjå ÷èjå îñî-
áèíå îäðå¢ójå jàêà èíòåðàêöèjà, óíàïðå¢ójó£è ðàçóìåâà»å ðàíîã óíèâåðçóìà.

Íàêîí ñóäàðà äâà jåçãðà, âå£èíà íàñòàëèõ ÷åñòèöà (∼ 99.9%) êîjå ÷èíå êâàðê-ãëóîíñêó
ïëàçìó èìà íèñêó åíåðãèjó è ôîðìèðà òåðìàëèçîâàí ìåäèjóì. Ìàëè áðîj (∼ 0.1%) ÷åñòèöà
èìà âèñîêó åíåðãèjó - îíå íàñòàjó ðàíî ó åâîëóöèjè ñèñòåìà, ïðîëàçå êðîç ìåäèjóì èíòåðà-
ãójó£è ñà »èì ïîñðåäñòâîì jàêå èíòåðàêöèjå, è íà òàj íà÷èí íîñå èíôîðìàöèjó î »åãîâèì
îñîáèíàìà. Îâî jå ãëàâíà èäåjà èñòðàæèâà»à êîjå £å áèòè èçëîæåíî ó îâîj äèñåðòàöèjè.
Ðåçóëòàòè £å ïîêàçàòè êàêî òåîðèjà, íóìåðè÷êè ïðîðà÷óíè è ïîäàöè êîjè ñó ó âåçè ñà
âèñîêîåíåðãèjñêèì ÷åñòèöàìà ìîãó áèòè êîðèø£åíè çàjåäíî ñà ôèçèêîì íèñêîåíåðãèjñêèõ
÷åñòèöà êàêî áè ñå îäðåäèëå âàæíå îñîáèíå êâàðê-ãëóîíñêå ïëàçìå.

Ðåçóëòàòè ñó ïîäå§åíè ó òðè îäå§êà: ïðâè jå âåçàí çà ïî÷åòíå ñòàäèjóìå åâîëóöèjå
êâàðê-ãëóîíñêå ïëàçìå, äðóãè çà àíèçîòðîïèjó êâàðê-ãëóîíñêå ïëàçìå íàñòàëå ó ñóäàðèìà
òåøêèõ jîíà, äîê ñå òðå£è áàâè ïðîøèðå»åì äèíàìè÷êîã ôîðìàëèçìà ãóáèòêà åíåðãèjå íà
ñëó÷àj âèøåñòðóêèõ öåíòàðà ðàñåjà»à ó ìåäèjóìó.

Óîáè÷àjåíî jå äà ñå êîëåêòèâíî êðåòà»å íèñêîåíåðãèjñêèõ ÷åñòèöà êîjå ÷èíå ìåäèjóì
íàñòàî ó ñóäàðèìà òåøêèõ jîíà îïèñójå ïðèìåíîì ðåëàòèâèñòè÷êå õèäðîäèíàìèêå. Ìå¢ó-
òèì, äèíàìèêà ïðå ïî÷åòíîã âðåìåíà õèäðîäèíàìè÷êå åâîëóöèjå êâàðê-ãëóîíñêå ïëàçìå
jîø óâåê íèjå îäðå¢åíà. Íàø öè§ jå äà óïîòðåáèìî òåîðèjó è ïîäàòêå âåçàíå çà âèñîêîå-
íåðãèjñêå ÷åñòèöå êàêî áèñìî èñòðàæèëè ðàíå ôàçå åâîëóöèjå êâàðê-ãëóîíñêå ïëàçìå, ïðå
ïî÷åòêà øèðå»à ìåäèjóìà ó òðàíñâåðçàëíîj ðàâíè, êîjå jå äîáðî îïèñàíî ðåëàòèâèñòè÷-
êîì õèäðîäèíàìèêîì. Æåëèìî äà îäðåäèìî ïî÷åòíî âðåìå õèäðîäèíàìè÷êå òðàíñâåð-
çàëíå åêñïàíçèjå (τ0), êîjå jå âàæàí ïàðàìåòàð, à äî ñàäà íåäîâî§íî ïðåöèçíî îäðå¢èâàí
êîðèø£å»åì ôèçèêå íèñêîåíåðãèjñêèõ ÷åñòèöà. Êàêî áèñìî îâî îñòâàðèëè, ïðâî ðàçìà-
òðàìî jåäíîñòàâàí ìîäåë áåç åâîëóöèjå ìåäèjóìà ó òðàíñâåðçàëíîj ðàâíè ïðå îñòâàðèâà»à
ðàâíîòåæå, è êîðèñòèìî íóìåðè÷êå ñèìóëàöèjå âèñîêîåíåðãèjñêèõ ÷åñòèöà è ïîðå¢å»å ñà
åêñïåðèìåíòàëíèì ïîäàöèìà êàêî áèñìî îäðåäèëè âðåäíîñò îâîã ïàðàìåòðà. Èìàjó£è ó
âèäó äà ñå íå ñìàòðà äà jå ìîäåë áåç åâîëóöèjå ìåäèjóìà ïðå îñòâàðèâà»à ðàâíîòåæå ðåàëè-
ñòè÷àí, ó íàðåäíîì êîðàêó, ïðîøèðójåìî ãà óê§ó÷èâà»åì åâîëóöèjå ìåäèjóìà ïðå τ0. Îáà
îâà ïðèñòóïà äîñëåäíî ïîêàçójó äà ñå ïîêëàïà»å ñà åñêïåðèìåíòàëíèì ïîäàöèìà äîáèjà ó
ñëó÷àjó êàñíèjåã ïî÷åòêà òðàíñâåðçàëíå åêñïàíçèjå è ãóáèòêà åíåðãèjå âèñîêîåíåðãèjñêèõ
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Abstract

÷åñòèöà ó ìåäèjóìó.

Àíèçîòðîïèjà êâàðê-ãëóîíñêå ïëàçìå íàñòàëå ó ñóäàðèìà òåøêèõ jîíà � ìåðà îäñòó-
ïà»à íàñòàëîã ìåäèjóìà îä ñôåðíîã îáëèêà � jåäíà jå îä »åãîâèõ ôóíäàìåíòàëíèõ îñî-
áèíà. Ìå¢óòèì, óïðêîñ âàæíîñòè îâå îïñåðâàáëå, jîø óâåê íèjå ìîãó£å îäðåäèòè »åíå
âðåäíîñòè äèðåêòíî èç åêñïåðèìåíòàëíèõ ïîäàòàêà. Íàøå èñòðàæèâà»å ïîêàçójå êàêî
ñå îâî ìîæå èçâåñòè êîðèø£å»åì âèñîêîåíåðãèjñêèõ ïîäàòàêà. Íàèìå, ïðâî ðàçìàòðàìî
ïîjåäíîñòàâ§åí ìîäåë, ãäå ñå ìåäèjóì øèðè ó ëîíãèòóäèíàëíîì ïðàâöó. Íàêîí òîãà, ïðå-
ëàçèìî íà ðåàëèñòè÷àí, õèäðîäèíàìè÷êè îïèñ ìåäèjóìà, êîjè ñå øèðè è ó òðàíñâåðçàëíîj
ðàâíè, è èñïèòójåìî äà ëè »åãîâà ïðîñòîðíà àíèçîòðîïèjà ìîæå áèòè ïîâåçàíà ñà âèñî-
êîåíåðãèjñêèì îïñåðâàáëàìà RAA è v2. Íà îñíîâó íàøå àíàëèçå, àíèçîòðîïèjà ìåäèjóìà
ñå ìîæå äèðåêòíî ïîâåçàòè ñà ìîäèôèêîâàíèì îäíîñîì îâèõ âèñîêîåíåðãèjñêèõ îïñåðâà-
áëè, v2/(1−RAA). Íà îñíîâó îâîãà, ïðåäëàæåìî íîâó îïñåðâàáëó � jet-perceived anisotropy
(½òåìïåðàòóðà êîjó âèäå ¶åòîâè"), êîjà jå ïðîïîðöèîíàëíà îâîì ìîäèôèêîâàíîì îäíîñó,
àëè êîjà ñå ìîæå è äèðåêòíî èçðà÷óíàòè èç õèäðîäèíàìè÷êå åâîëóöèjå ìåäèjóìà. Òâð-
äèìî äà áóäó£è õèäðîäèíàìè÷êè ïðîðà÷óíè òðåáà äà áóäó ïîäåøåíè äà ðåïðîäóêójó »åíå
âðåäíîñòè äîáèjåíå èç åêñïåðèìåíòàëíèõ ïîäàòàêà.

Êîíà÷íî, ðàçìàòðàìî ïðîáëåì âèøåñòðóêèõ öåíòàðà ðàñåjà»à âèñîêîåíåðãèjñêèõ ÷å-
ñòèöà ó ìåäèjóìó. Íàèìå, âå£èíà ïîñòîjå£èõ ôîðìàëèçàìà êîjè îïèñójó ãóáèòêå åíåðãèjå
âèñîêîåíåðãèjñêèõ ÷åñòèöà óê§ó÷ójå ðàñåjà»å íà jåäíîì èëè íà áåñêîíà÷íîì áðîjó öåíòàðà
ðàñåjà»à. Íà îñíîâó ïðâå îä îâèõ àïðîêñèìàöèjà, ¶åò íàèëàçè íà jåäàí öåíòàð ðàñåjà»à
ïðå íåãî øòî èçðà÷è ãëóîíå � îíà jå êîðèø£åíà ó äèíàìè÷êîì ôîðìàëèçìó ãóáèòêà åíåð-
ãèjå âèñîêîåíåðãèjñêèõ ÷åñòèöà. Ó äðóãîj àïðîêñèìàöèjè, ¶åòîâè íàèëàçå íà áåñêîíà÷àí
áðîj öåíòàðà ðàñåjà»à ïðå íåãî øòî èçðà÷å ãëóîíå. Ñ îáçèðîì íà òî äà jå âåëè÷èíà ìåäè-
jóìà êîjè íàñòàjå ó ñóäàðèìà òåøêèõ jîíà âåëè÷èíå íåêîëèêî ôåìòîìåòàðà, à äà jå ñðåä»è
ñëîáîäàí ïóò ïàðòîíà ó ìåäèjóìó λ ≈ 1fm, jàñíî jå äà íèjåäíà îä îâèõ àïðîêñèìàöèjà íèjå
ðåàëèñòè÷íà. Èçâåëè ñìî èçðàçå çà ðàäèjàòèâíå ãóáèòêå åíåðãèjå ó îêâèðó äèíàìè÷êîã
ôîðìàëèçìà ãóáèòêà åíåðãèjå äî ÷åòâðòîã ðåäà ó ðàçâîjó ïî áðîjó öåíòàðà ðàñåjà»à, è
èìïëåìåíòèðàëè èõ ó àäåêâàòíî óîïøòåí íóìåðè÷êè ôîðìàëèçàì êàêî áèñìî ïðîèçâåëè
ïðåäâè¢à»à çà ëàêå è òåøêå ÷åñòèöå. Ðåçóëòàòè ñóãåðèøó äà ñó åôåêòè óê§ó÷èâà»à êî-
íà÷íîã áðîjà öåíòàðà ðàñåjà»à ìàëè è äà jå êîðèø£å»å jåäíîã öåíòðà ðàñåjà»à ïðèêëàäíà
àïðîêñèìàöèjà çà äèíàìè÷êè ôîðìàëèçàì ãóáèòêà åíåðãèjå.

Ê§ó÷íå ðå÷è: êâàðê-ãëóîíñêà ïëàçìà, âèñîêîåíåðãèjñêè ïîäàöè, ðàíè ñòàäèjóìè, àíèçî-
òðîïèjà, âèøåñòðóêè öåíòðè ðàñåjà»à
Íàó÷íà îáëàñò: Ôèçèêà
Óæà íàó÷íà îáëàñò: Ôèçèêà âèñîêèõ åíåðãèjà è íóêëåàðíà ôèçèêà
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Chapter 1

Introduction

After all, there are other thrills in other domains:

the thrill of pure science is just as pleasurable as

the pleasure of pure art. The main thing is to ex-

perience that tingle in any department of thought

or emotion. We are liable to miss the best of life if

we do not know how to tingle, if we do not learn to

hoist ourselves just a little higher than we generally

are in order to sample the rarest and ripest fruit of

art which human thought has to o�er.

Lectures on Literature

Vladimir Nabokov

This doctoral dissertation is devoted to the study of quark-gluon plasma. According to
modern cosmology, quark-gluon plasma was present shortly after the Big Bang, and today, it
is created in so-called Little Bangs � collisions of heavy ions at ultrarelativistic energies. The
properties of this new form of matter are governed by the laws of quantum chromodynamics, the
theory which describes the strong interaction between quarks and gluons. In order to introduce
the reader to the phenomena discussed in the following Chapters, we here give an overview of
quantum chromodynamics, quark-gluon plasma, and how it can be theoretically modeled, as
well as of the heavy-ion experiments where it is created.

The results presented in this dissertation are based on the following publications [1, 2, 3, 4, 5]:

1. Stefan Stojku, Jussi Auvinen, Marko Djordjevic, Magdalena Djordjevic, Pasi Huovinen,
Initial Time τ0 Constrained by High-p⊥ Data, Acta Phys. Pol. B Proc. Suppl. 16,
1-A156 (2023)

2. Stefan Stojku, Jussi Auvinen, Marko Djordjevic, Pasi Huovinen, and Magdalena Djord-
jevic, Early evolution constrained by high-p⊥ quark-gluon plasma tomography, Physical
Review C 105, L021901 (2022)

3. Magdalena Djordjevic, Stefan Stojku, Marko Djordjevic, and Pasi Huovinen, Shape of
the quark gluon plasma droplet re�ected in the high- p⊥ data, Physical Review C 100,
031901(R) (2019)

1



1. Introduction

4. Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, Pasi Huovinen, Magdalena Djordjevic,
Jet-perceived anisotropy revealed through high-p⊥ data, Physics Letters B 835, 137501
(2022)

5. Stefan Stojku, Bojana Ilic, Igor Salom, Magdalena Djordjevic, Importance of higher orders
in opacity in QGP tomography, Physical Review C 108, 044905 (2023)

1.1 Quantum chromodynamics - the theory of the strong

interaction

In the high-energy heavy-ion collisions, a decon�ned phase of matter is created, which consists
of interacting quarks, antiquarks, and gluons: quark-gluon plasma [6, 7, 8, 9]. This section
will give a brief overview of quantum chromodynamics (QCD): the theory that describes the
strong interaction that acts between quarks, mediated by gluons [10], and is central to all our
descriptions of quark-gluon plasma. QCD is a non-abelian gauge theory with the symmetry
group SU(3)c [10]. The index "c" comes from color. There are three charges in the theory
(red, green, and blue), analogous to the three colors seen by the human eye. When compared
to quantum electrodynamics (QED), the main complication in QCD arises since the gluons
carry the color charges themselves and can therefore interact with each other. The theory has
a rich phase diagram, and its non-abelian structure encodes important phenomena observed:
con�nement and asymptotic freedom, which we will discuss in more detail below.

1.1.1 The Eightfold Way

The middle of the twentieth century brought numerous advances in accelerator and detector
technology, which enabled the discovery of many elementary particles [11, 12]. The list of
strongly decaying mesons and baryons grew longer during these years � see Figure 1.1 for a
brief timeline of particle discoveries. A theoretical framework was needed to make it possible
to understand or at least classify the newly discovered particles.

In the late 1940s, there were ideas to organize the elementary particles inspired by the
isospin formalism. A proposal made independently by Gell-Mann [13] (then at Caltech) and
Ne'eman turned out to be successful: it was called The Eightfold Way, which takes its name
from the Noble Eightfold Path of Buddhism. This classi�cation scheme is based on the SU(3)
symmetry group, and particles are classi�ed into multiplets characterized by parity and spin
numbers. Several experimental discoveries supported this new theory. First was the discovery
of the η resonance in 1961, which �t perfectly into the octet of pions and kaons. The second
was the discovery of Ω− baryon in the Brookhaven Laboratory [14].

In 1964, Gell-Mann [13] and Zweig [15] independently proposed an interpretation of the
Eightfold way, according to which hadrons were composed of smaller particles, which Gell-
Mann named quarks, a word which appears in James Joyce's Finnegans Wake: "Three quarks
for Muster Mark!" This proposal suggested that all hadrons are composite particles, made up of
two or three quarks - this reduced hundreds of known hadronic particles to three fundamental
constituents: these were called up, down, and strange quarks [12]. Quarks belong to the 3-
dimensional representation of the SU(3)f (�avor) group. Mesons are qq̄ states (therefore, they
are baryons of spin 0 or 1) which belong to the 8-dimensional or singlet representations of
SU(3). Baryons are qqq bound states (and therefore fermions with spin 1/2 or 3/2), and they
belong to 10-dimensional, 8-dimensional, and singlet representations of the SU(3) group.
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1.1. Quantum chromodynamics - the theory of the strong interaction

Figure 1.1: Timeline of particle discoveries during the twentieth century. Figure adapted
from [11].

The �avor symmetry group was expanded with the discovery of new quark �avors. After
the discovery of the c (charm) quark by Richter and Ting, the symmetry group was expanded
to SU(4), and after the discovery of t and b quarks, the �avor symmetry group was expanded
to SU(6). Therefore, quarks come in six �avors, and we group them into three generations:(

u
d

)
,

(
c
s

)
,

(
t
b

)
. (1.1)

In addition to this, another degree of freedom was proposed: color [16, 17]. The following
example shows why this new degree of freedom is required. Namely, the ∆++ baryon consists
of three up quarks: uuu and has a spin of 3/2. Its spin wave function is symmetric in the
sz = +3/2 state. In the ground state, its orbital wave function is also symmetric. Therefore,
its total wave function is symmetric, violating the Pauli principle. This issue can be solved
by adding another degree of freedom (color) and requiring that the baryon wave function be
antisymmetric with respect to this new quantum number. This new symmetry group is called
SU(3)c, and the quark wavefunction is a color triplet [10]:

ψ(x) =

ψr(x)
ψb(x)
ψg(x)

 . (1.2)

Mesons always have the color-symmetric wave function:

Ψc,mesons =
1√
3

(RR̄ +GḠ+BB̄). (1.3)
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On the other hand, baryons have the color-antisymmetric wave function:

Ψc,baryons =
1√
6

(RGB −RBG+GBR−GRB +BRG−BGR). (1.4)

Figure 1.2: Deep inelastic scattering experiment. Figure adapted from DESY.

In the early days, quarks were deemed only a mathematical formality, and even Gell-Mann
believed that they were only a mathematical convenience and not real objects that we could
observe in experiments: "It is fun to speculate about the way quarks would behave if they
were physical particles of �nite mass (instead of purely mathematical entities as they would be
in the limit of in�nite mass). [...] A search for stable quarks of charge -1/3 or +2/3 and/or
stable di-quarks of charge -2/3 or +1/3 or +4/3 at the highest energy accelerators would help
to reassure us of the non-existence of real quarks." [13]

However, the experiments conducted in 1968 at Stanford Linear Accelerator Center (SLAC)
� deep inelastic scattering [18, 19] � were the �rst that demonstrated that quarks indeed are real
objects in nature, and not a mere mathematical convenience, see Figure 1.2. These experiments
are analogous to Rutherford's experiment, which studied scattering patterns of alpha particles
on atoms. Here, the inelastic scattering of electrons on liquid hydrogen (and later deuterium)
targets was studied, and the results were strikingly similar to those obtained in Rutherford's
experiment: most of the incident particles pass right through. At the same time, a small
fraction of them experience large de�ection. This result indicates that the proton's charge is
not uniformly spread over its volume but instead concentrated in lumps, in the same way as
Rutherford's experiment demonstrated that the atom's positive charge is concentrated in the
nucleus. However, in the case of the proton, the scattering pattern indicated the existence of
three lumps of charge [20] � compelling evidence supporting the existence of quarks.

4



1.1. Quantum chromodynamics - the theory of the strong interaction

1.1.2 Fundamental properties of QCD

The QCD Lagrangian. To describe the two fundamental properties of QCD relevant to
understanding quark-gluon plasma, we will start with the QCD Lagrangian. It has the standard
form of a Yang-Mills Lagrangian for a non-abelian gauge theory [21]:

L =

nq∑
k=1

ψ̄k(iγ
µDµ −mk)ψk −

1

4
F a
µνF

µνa. (1.5)

The index a is summed over the generators of the symmetry group G of the theory, which is
SU(3) in the case of QCD. The fermion multiplets ψk belong to the fundamental representation
of SU(3). γµ are the Dirac gamma matrices, and the nq quark �avors are summed over. The
constants mk represent the quark masses.

The covariant derivative is given by:

Dµψ = (∂µ − igsAaµ
λa

2
)ψ. (1.6)

The second part of the Lagrangian is the kinetic term, where the �eld strength tensor is
given by:

F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (1.7)

The coupling constant is given by gs =
√

4παs, with the value of αs discussed below. The
λa are Gell-Mann matrices (a = 1 . . . 8 for SU(3)), and fabc are the structure constants of the
su(3)c algebra. The potentials A

µa belong to the adjoint representation of SU(3) and represent
the gluons, the carriers of the strong interaction. From the form of the QCD Lagrangian (by
substituting Eq. 1.7 in Eq. 1.5), we see that the interaction part of the Lagrangian gives rise to
gluon self-interactions, i.e., 3- and 4-gluon vertices (Fig. 1.3). This feature was not present in
quantum electrodynamics, where the mediators of the force (photons) do not carry charge.

Figure 1.3: Interaction vertices in quantum chromodynamics. The �rst diagram shows the
quark-gluon interaction, while the two diagrams on the right show the 3- and 4- gluon vertices.

Asymptotic Freedom. An important milestone in developing QCD theory was the dis-
covery of asymptotic freedom. Namely, when we look at the renormalization-group running
coupling for, e.g., massless λφ4 theory or quantum electrodynamics, we see that the e�ective
coupling is larger at high energy, equivalent to a short distance. Physically, we interpret this
by the fact that a charge is screened by the production of virtual pairs in the vacuum, and as
we approach the charge, we leave behind the screening cloud around it [22].

Until 1973, only the cases of theories with the positive β function were known. However,
in 1973, Politzer [23], Gross [24], and Wilczek showed that non-abelian gauge theories allow
for a negative β function, meaning that charge decreases at short distances in these theories.
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1. Introduction

For this discovery, Politzer, Gross, and Wilczek were jointly awarded the 2004 Nobel Prize in
Physics [25].

Namely, the lowest-order renormalization-group β function for a non-abelian gauge theory
is [22]:

β = − g3
s

48π2
(11Nc − 2Nf ). (1.8)

Here, Nc refers to the number of colors, and Nf refers to the number of quark �avors. This
expression is negative for Nf < 5.5Nc, which is ful�lled for SU(3) with six quark �avors, and
thus, the running coupling gs decreases with the increasing energy scale. Figure 1.4 summarizes
the experimental con�rmations of asymptotic freedom.

The leading-order behavior of the coupling in QCD is given by [23, 24, 26, 27]:

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)
12π

(11Nc − 2Nf ) ln(Q
2

µ2
)
. (1.9)

Here, Q2 is the momentum transfer. The Equation 1.9 relates αs(Q
2) with αs(µ

2) at a
di�erent scale � the parameter µ is called the renormalization point or the subtraction point.
This equation explicitly shows the asymptotic freedom: the coupling approaches zero as Q2 →
∞. This fact signi�es that perturbative QCD should work well at high Q2 (small distances)
but break down at small Q2 (large distances), where the coupling increases.

It is common to introduce the QCD scale parameter, ΛQCD, in the following way:

Λ2
QCD = µ2 exp

(
− 12π

(11Nc − 2Nf )

1

αs(µ2)

)
. (1.10)

We can thus rewrite the expression for the running coupling:

αs(Q
2) =

12π

(11Nc − 2Nf ) ln( Q2

Λ2
QCD

)
. (1.11)

This is the commonly used parametrization of αs(Q
2) and ΛQCD parameter is equal to the

energy scale where αs(Q
2) diverges, i.e. αs(Q

2)→∞ when Q2 → Λ2
QCD [28].

Con�nement. While there is a wealth of experimental evidence for the existence of quarks,
they have never been observed as free particles, despite many experimental attempts [29]. This
fact is explained by the color con�nement, a hypothesis that particles are always con�ned
to color singlet states and that particles with non-zero color charge cannot propagate as free
particles. While there is still no analytical proof of color con�nement within any non-abelian
gauge theory [30], it has been corroborated by the nonperturbative methods of lattice QCD [31,
32].

The likely origin of this phenomenon can also be understood qualitatively. Quarks interact
by exchanging virtual gluons, which are themselves color-charged. When quarks are close to
each other, the strong force between them is relatively weak. However, as they are pulled
apart, the strong force becomes stronger, and the energy within the force �eld connecting them
increases. At a certain point, the energy between the quarks becomes su�cient to create new
quark-antiquark pairs from the vacuum. This phenomenon results in the creation of a �ux tube
between the quarks, often referred to as a QCD string or a color �ux tube. We can think of
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1.1. Quantum chromodynamics - the theory of the strong interaction

Figure 1.4: A summary of the measurements of the dependence of the running coupling αs(Q)
on the energy scale Q. The coupling is large at small Q (large distances) and goes to zero at
large Q (small distances). Figure adapted from [28].

this �ux tube as a stretchy rubber band that exerts a pulling force, attempting to bring the
quarks back together. This force counteracts the separation force that's acting on the quarks.
See Figure 1.5 for an illustration.

Consequently, quarks are permanently con�ned within color-neutral composite particles like
mesons or baryons. When we attempt to isolate a single quark from a larger particle (hadron),
the energy required to stretch the �ux tube increases signi�cantly. At a certain threshold, this
energy becomes high enough to trigger the creation of new quark-antiquark pairs, e�ectively
preventing the isolation of individual quarks. We can also see that from the form of the
Equation 1.11 - it is divergent in the limit of small momentum transfers (large distances), i.e.,
it becomes energetically more favorable to create a new quark-antiquark pair than to isolate a
quark from a hadron.

Figure 1.5: Left-hand side illustrates gluon-gluon interactions among gluons exchanged by two
quarks. The right-hand side shows how the �eld lines between charges behave in the case of
QED (b) and QCD (c). Figure adapted from [29].

The spectra of quarkonium states (a bound state of a heavy quark and its own antiquark [33])
can be modeled within non-relativistic models, where the potential has the following form
(Cornell potential) [34, 35]:

V (r) = σr − α

r
, (1.12)

where σ represents the string tension, r is the distance between the quark and the antiquark,
while α is the Coulomb-like constant.
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1. Introduction

Figure 1.6 shows a temperature dependence of the quark potential for a 3-�avor QCD. This
plot shows that the obtained data agrees well with the Cornell potential in the low-temperature
regime (T < 0.5Tc, where Tc is the QCD critical temperature). At higher temperature values,
the deviation from the Cornell potential is more pronounced, thus suggesting the possibility of
a di�erent phase of (decon�ned) matter.

Figure 1.6: The heavy quark potential as a function of temperature. The band shows the
Cornell potential in units of the square root of string tension, with α = 0.25 ± 0.05. The
temperature varies from T/Tc = 0.58 (top) to T/Tc = 1.15 (bottom). Figure adapted from [35].

1.2 Heavy-ion collisions

In a typical heavy-ion experiment at the Large Hadron Collider or at the Relativistic Heavy Ion
Collider, nuclei are accelerated to nearly the speed of light using powerful electromagnetic �elds.
These nuclei are stripped of their electrons, and Lorentz-contracted along the beam direction
in the center-of-mass frame, resembling two thin discs. After a collision of two such nuclei, they
pass through each other, depositing kinetic energy in a tiny volume and causing temperatures
of the order T ≈ 300 MeV [7], (equal to 3 · 1012 K). For the sake of comparison, we should note
that this temperature is �ve orders of magnitude hotter than the center of the Sun (which is
about 1.6 · 107 K [36]). The produced hot and dense nuclear matter evolves through several
stages, each characterized by di�erent physical properties and exhibiting di�erent phenomena.
These stages are collectively called the "evolution of QCD matter" because they are governed
by the strong nuclear force described by quantum chromodynamics (QCD). As we will see,
the length and properties of speci�c stages can vary depending on factors such as the collision
energy, the size of the system, and the type of colliding nuclei.

Figure 1.7 shows a space-time diagram of the main stages that QCD matter created in
heavy-ion collisions goes through. These stages are:

• Initial state: The collision starts with the two colliding nuclei approaching each other
at ultra-relativistic energies. Before the nuclear overlap and particle production, the
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1.2. Heavy-ion collisions

colliding nuclei are characterized by their nucleon distributions, typically described using
models such as the Glauber model [37], which we will describe in more detail later.

• Pre-equilibrium: Immediately after the collision (i.e., at τ < τ0, where τ0 is the time
of onset of the hydrodynamical description), the highly energetic and dense system of
nucleons is in the pre-equilibrium phase. The dynamics before the initial time τ0 are not
yet properly understood, and the study of this stage is one of the aims of this doctoral
dissertation.

• Quark-gluon plasma: Quarks and gluons are in a decon�ned, albeit strongly interacting
state. The QGP created in the collision expands collectively in a nearly perfect �uid-like
manner [8]. This hydrodynamic expansion is driven by pressure gradients and is described
well by the equations of relativistic viscous hydrodynamics. An overview of this approach
will be given in more detail later.

• Hadronization: As the quark-gluon plasma expands and cools, it eventually reaches a
point where the energy density is low enough for quarks and gluons to recombine and form
color-neutral hadrons (e.g., mesons and baryons). This process is known as hadronization.
It marks the end of the QGP phase. As the hadrons interact with each other through
various scattering processes, their abundances can change. However, particle interactions
become less frequent as the system cools and expands further. Eventually, the interactions
become so sparse that the particle abundances are �xed. This stage is referred to as the
chemical freeze-out.

At chemical freeze-out, the relative abundances of di�erent particle species are deter-
mined, and the particle ratios are no longer changing. The chemical freeze-out tempera-
ture and chemical potentials are crucial parameters that determine the hadron composi-
tion and relative particle yields at this stage.

• Kinetic freeze-out: After chemical freeze-out, where the particle ratios are �xed, and the
particle species are no longer changing through inelastic interactions, the system continues
to expand and cool. As the system cools down further, the particle interactions become
less frequent, and the mean free paths between particle collisions become larger.

At kinetic freeze-out, the particle scattering cross sections become small enough that
the particles essentially stop interacting, allowing them to move freely without further
rescattering. This stage marks the end of the particle interactions and the time when the
particle momenta are frozen.

Kinetic freeze-out is essential for understanding the �nal-state distributions of particles
measured in heavy-ion collision experiments. The particle momentum distributions at
kinetic freeze-out carry valuable information about the system's properties during the
earlier stages, such as the temperature, collective �ow, and other transport properties [37].

• Detection and Measurement: The �nal stage of the evolution is detecting and measuring
the produced particles in particle detectors. Experimental observables, such as particle
yields, momentum distributions, and correlations, provide crucial information about the
properties of the evolving QCD matter.

1.2.1 Important concepts and physical quantities: an overview

The following section gives an overview of the most important theoretical concepts and ob-
servables related to the study of heavy-ion collisions. Familiarity with these is necessary to
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1. Introduction

Figure 1.7: Space-time diagram of the di�erent stages of evolution of QCD matter created in
heavy-ion collisions. The beam axis is denoted by z, and t is time. The Lorentz-invariant
proper time (τ =

√
t2 − z2) is constant along the hyperbolic curves that separate di�erent

stages. Figure adapted from [38].

understand the results presented in this thesis. We will also show examples of related experi-
mental data.

Participants and spectators. When considering two colliding nuclei, one assumes that
nucleons travel along parallel trajectories, and one can separate participants from specta-
tors [37]. Nucleons that do not encounter other nucleons on their paths are called spectators,
and those that interact with each other are called participants. The participants that su�ered
at least one inelastic collision are called wounded nucleons. These two terms are often used
interchangeably since, at very high energies, inelastic processes dominate the collisions [39].

Impact vector and the reaction plane. An important concept is the impact vector
~b [37] - the vector that connects the centers of the colliding nuclei in the plane perpendicular to
the trajectory of the nuclei. Its length is called the impact parameter. It is not measurable, but
it in�uences the geometry and future evolution of the system. [39] It is common to introduce
a coordinate system whose z-axis is along the beam trajectory, and the x-axis is along the
direction of the impact vector. The plane spanned by this coordinate system's x and z axes is
called the reaction plane. Figure 1.8 illustrates this.

Rapidity y is used as a measure of relativistic velocity, and it is de�ned in the following
way [37]:

y =
1

2
ln
E + p‖
E − p‖

. (1.13)

Here, E =
√
~p2 +m2 is the energy of the particle with mass m and 3-momentum ~p, while

p‖ is the magnitude of its longitudinal momentum. Rapidity is additive with respect to Lorentz
boosts along the z-axis, which is its main advantage when compared with standard velocity.
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1.2. Heavy-ion collisions

Figure 1.8: Illustration of QGP created in a heavy ion collision. The usual setup of the
coordinate system is shown: the z-axis is along the beam trajectory, and the x-axis is along the
direction of the impact vector. The plane spanned by this coordinate system's x and z axes
is called the reaction plane. The initial spatial anisotropy (ε) is converted to the momentum
anisotropy (v2). Figure adapted from [40].

One similarly de�nes pseudorapidity [37]:

η =
1

2
ln
|~p|+ p‖
|~p| − p‖

= − ln

(
tan

(
θ

2

))
. (1.14)

Here, θ is the angle between the particle 3-momentum (~p) and the positive direction of the
z-axis.

In the massless limit, pseudorapidity and rapidity become the same, while in the case of
�nite mass, their relations are more complicated. The y = 0 region is called the mid-rapidity
region and is particularly interesting. The particles in this region are either new particles
created during the collision or already present in the beams but underwent several rescatterings,
signi�cantly altering their initial completely longitudinal momenta [37].

The relation between pseudorapidity and rapidity distributions in the midrapidity region is
straightforward � they are related through the particle transverse velocity:

dN

dηd2p⊥

∣∣∣∣
η=0

=
p⊥
m⊥

dN

dyd2p⊥

∣∣∣∣
y=0

. (1.15)

Here, m⊥ is called the particle's transverse mass, and it is given by m⊥ =
√
m2 + p2

⊥, where
p⊥ is the transverse component of the particle's momentum.

Particle multiplicity [41] � an essential quantity that characterizes the collision event �
refers to the number of particles produced in a speci�c collision. When two nuclei collide at high
energies, many new particles are created due to the collision. These particles can be various
types of hadrons (such as pions, kaons, protons, and others) and other particles like photons,
electrons, and muons [37]. Naturally, the number and types of particles produced depend on
factors such as the collision energy, participant number, and the nature of the colliding nuclei.

As already explained, particle multiplicity is typically measured within a speci�c region,
such as the midrapidity region, which is of particular interest. The multiplicity distribution
refers to the statistical distribution of the number of particles produced in many similar collision
events.

Figure 1.9 shows the experimentally measured charged multiplicities at midrapidity,
dNch/dη|η=0/(〈Npart〉/2) as a function of the participant number, 〈Npart〉 from [41]. The
charged multiplicity is scaled by the number of participant pairs, 〈Npart/2〉. The results from
ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), ALICE (A Large Ion
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Collider Experiment) collaborations are compared with the RHIC data. A moderate increase
of dNch/dη|η=0/(〈Npart〉/2) is observed, from about 4.6 (in the peripheral collisions, equivalent
to a smaller number of participants) to 8.8 (in the central collisions, equivalent to a larger
number of participants).

Figure 1.9: Experimentally measured charged particles multiplicities at midrapidity scaled
with the number of participant pairs as a function of 〈Npart〉. The results from LHC are for the
Pb+Pb collision system at

√
sNN = 2.76 TeV (ATLAS � blue circles, ALICE � red stars, CMS

� open circles), while the RHIC results (multiplied with 2.15 to facilitate comparison) are for
Au+Au at

√
sNN = 200 GeV (open squares). Figure adapted from [41].

Boost invariance was initially introduced in a seminal paper by Richard Feynman [42].
In the context of heavy-ion collisions, it pertains to a signi�cant concept that governs the
behavior of speci�c quantities in the collisions when observed from di�erent reference frames
related through Lorentz boosts. This concept becomes relevant in scenarios where particular
quantities associated with a particle collision remain unchanged under Lorentz boosts along
the beam axis. For instance, the thermodynamic properties like temperature, pressure, and
energy density employed in the hydrodynamic description of heavy-ion collisions are considered
Lorentz scalars [37]. Consequently, they solely depend on transverse coordinates and the proper
time τ =

√
t2 − z2. It is generally considered that boost invariance is a good approximation for

the central region in very high-energy heavy-ion collisions.

The principle of boost invariance is notably evident in the (pseudo)rapidity distribution of
generated particles. This phenomenon leads to a plateau-like con�guration within the pseudora-
pidity distribution around the midrapidity region (around η = 0). Figure 1.10 shows the results
from the ALICE collaboration [43] of the charged-particle pseudorapidity density (dNch/dη) as
a function of pseudorapidity for di�erent centrality classes in Pb+Pb collisions at

√
sNN = 5.02

TeV. The plot shows a characteristic plateau-like structure around η = 0, a consequence of the
boost invariance.

Transverse energy (often denoted as ET ) is an important observable used to characterize
the energy the produced particles carry in the transverse direction to the beam axis. It can be
calculated in several ways, but the de�nition used in practice is [44]:

ET =
M∑
j=1

Ej sin(θj), (1.16)

where Ej is the energy measured by the j-th tower of the calorimeter, while θj is its polar
angle. The sum runs over all the towers of the calorimeter. ET can also be de�ned so that the
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1.2. Heavy-ion collisions

Figure 1.10: Charged-particle pseudorapidity density dNch/dη as a function of pseudorapidity
measured by the ALICE collaboration for di�erent centrality classes in Pb+Pb collisions at√
sNN = 5.02 TeV. Figure adapted from [43].

sum goes over single-particle paths, but in order to match the calorimeter-related de�nition,
Ejs have to be replaced by single-particle energies [44].

Figure 1.11 shows the summary of some experimental measurements of 〈ET/dη〉/〈dNch/dη〉,
which is a measure of the average transverse energy per particle, as a function of the participant
number 〈Npart〉. We observe that 〈ET/dη〉/〈dNch/dη〉 increases about 1.25 times when going
from

√
sNN = 200 GeV to

√
sNN = 2.76 TeV.

Figure 1.11: 〈ET/dη〉/〈dNch/dη〉 versus 〈Npart〉 for two collision systems at di�erent center-
of-mass energies. It shows the results from ALICE (red circles) for Pb+Pb at

√
sNN =

2.76 TeV [44], STAR [45] (blue stars) and PHENIX [46, 47] (open squares) for Au+Au at√
sNN = 200 GeV. Figure adapted from [44].

Centrality [37] refers to a measure of how head-on or central the collision is between the
two colliding nuclei � it is an essential concept as it helps categorize di�erent types of collisions
based on the degree of overlap and interaction between the colliding nuclei.

During a heavy-ion collision, the nuclei pass through each other, and the extent of overlap or
interaction between them varies depending on the impact parameter de�ned above. Intuitively,
a collision with a small impact parameter indicates a more central collision with a higher
degree of overlap. In contrast, a large impact parameter indicates a peripheral collision with
less overlap.

Centrality is usually de�ned as a percentage of the total nuclear cross section [48], and the
collisions are divided into centrality classes or bins. These classes represent di�erent impact
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parameter ranges, with the most central collisions falling into the lowest centrality bins (e.g.,
0-5% centrality) and the most peripheral collisions assigned to the highest centrality bins (e.g.,
90-100% centrality). The centrality percentile c of a A+A collision can be expressed as [49]:

c =

∫ b
0
dσ
db′
db′∫∞

0
dσ
db′
db′

=
1

σAA

∫ b

0

dσ

db′
db′, (1.17)

where σAA is the total inelastic nucleus-nucleus cross section, b is the impact parameter and
dσ/db′ is the impact parameter distribution.

Figure 1.12: An illustration of classifying events into di�erent centrality classes. The �gures
represent results obtained within the Monte Carlo Glauber model for Pb+Pb collisions at√
sNN = 2.76TeV. The plot on the left shows the impact parameter distribution of events �

the larger the impact parameter b, the higher the centrality class. The plot on the right shows
the number of participants distribution � the larger the number of participants, the lower the
centrality class. Di�erent centrality classes are marked on the plots. Figure adapted from [49].

Figure 1.12 shows an example of how Pb+Pb at
√
sNN = 2.76 TeV collision events are

generated theoretically within the Monte Carlo Glauber model [49] (described in more detail
in Section 1.3) are sorted into centrality classes.

Nuclear modi�cation factor. The observable which is commonly used to quantitatively
describe the energy loss of high-p⊥ particles is the nuclear modi�cation factor RAA. If we con-
sider a case with no medium e�ects, the yields of high-p⊥ particles would grow with the number
of partonic interactions, which is proportional to the number of nucleon-nucleon collisions. If
we look at single-inclusive hadronic spectra at midrapidity, we could write [50]:

dNAA→h

d2p⊥dy
= 〈NAA

coll 〉
dNpp→h

d2p⊥dy
. (1.18)

Here, 〈NAA
coll 〉 is the average number of nucleon-nucleon collisions. The nucleon-nucleon

spectrum is obtained experimentally in p+p collisions. To characterize deviations from this
scenario, we introduce the nuclear modi�cation factor. In other words, to obtain information on
the thermodynamic and transport properties of the QCD medium produced in nucleus-nucleus
(A+A) collisions, we need to compare the results for a given observable with the results in
proton-proton collisions ("QCD vacuum") [51]. Schematically:

RAA =
Y ield( A + A)

Y ield( p + p)
=

”hot/dense QCD medium”

”QCD vacuum”
. (1.19)
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1.2. Heavy-ion collisions

More concretely, we can de�ne the nuclear modi�cation factor in the following way [37]:

RAA(pT , φ) =
1

Ncoll

dNAA

dp⊥dφ

dNpp

dp⊥dφ

, (1.20)

where dNAA/dp⊥dφ is the spectrum of a particular kind of particles in A + A collisions,
dNpp/dp⊥dφ is the spectrum in p + p collisions, φ is the angle in transversal (orthogonal to
the beam direction) plane, and Ncoll is the number of binary collisions. The angular-averaged
version is given as:

RAA(p⊥) =
1

2π

∫ 2π

0

RAA(p⊥, φ)dφ. (1.21)

Intuitively, if a collision between two nuclei were a simple superposition of p+ p collisions, the
value of RAA would be 1. It is between 0 and 1 if the medium suppresses the production of hard
particles. Therefore, RAA re�ects the suppression of high-p⊥ particles due to the energy loss in
the medium formed in heavy-ion collisions (i.e., larger suppression corresponds to the smaller
value of RAA). See Figure 1.13 for an illustration of hot versus cold nuclear matter e�ects,
which compares A+A collisions with p+A collisions. The creation of quark-gluon plasma in
p+A collisions is still an open question [52, 53].

Figure 1.13: Hot versus cold nuclear matter e�ects: an illustration of a nucleus-nucleus (A+A)
collision versus a proton-nucleus (p+A) collision. The gray-shaded area on the illustration on
the left shows the QGP medium formed in the collision. The hard partons are suppressed as
they traverse the medium. Whether QGP is created in p+A collisions is still an open question
(see e.g. [52]). Figure adapted from [53].

Collective �ow. Important information about the quark-gluon plasma can be obtained if
we consider the di�erences in particle production in di�erent directions. Namely, the momentum
distribution of the particles produced in a nucleus-nucleus collision can be represented in the
following way [54, 55]:

dN

dyd2p⊥
=

dN

2πdyp⊥dp⊥

[
1 +

∑
n

2vn cos(n(φ− ψRP ))

]
. (1.22)

Here, ψRP is the angle that de�nes the reaction plane. The re�ection symmetry with respect
to the reaction plane causes the sine terms from this expansion to vanish [56]. The coe�cients
in this expansion are, in general, dependent on transverse momentum and rapidity and are
given by:

vn(p⊥, y) = 〈cos[n(φ− ψRP ]〉. (1.23)

The average runs over the particles, summed over all the events, for a particular (p⊥, y) bin.
For individual events, all vn are non-vanishing. [39] In particular, v1 is called the directed �ow,
v2 is the elliptic �ow and v3 is the triangular �ow. Using the word '�ow' for these coe�cients
re�ects that they quantify the phenomena that arise due to the collective motion of particles,
the hydrodynamics-like expansion of matter created in heavy-ion collisions.
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An approximate way to calculate v2 of high-p⊥ particles is given by [57]:

v2 ≈
1

2

Rin
AA −Rout

AA

Rin
AA +Rout

AA

. (1.24)

Here, Rin
AA is related to the suppression of particles in the in-plane (φ = 0) direction, and

Rout
AA is related to the particles in the out-of-plane (φ = π/2) direction. See Figure 1.8 for an

illustration: the x-axis corresponds to the in-plane direction, while the y-axis corresponds to the
out-of-plane direction. Intuitively said, the v2 coe�cient of high-p⊥ particles re�ects the spatial
anisotropy of the medium: particles traversing the medium in the in-plane and out-of-plane
directions traverse di�erent path lengths and consequently have di�erent suppressions.

1.2.2 The QCD phase diagram

The phase diagram of QCD matter is often depicted with temperature (T ) on the vertical axis
and baryon chemical potential (µB) on the horizontal axis [58], see Figure 1.14. However, since
the exact behavior of QCD matter at various values of (µB, T ) is still an active area of research,
the phase diagram is subject to ongoing re�nement and exploration. Di�erent regions of the
phase diagram represent distinct phases or crossovers between them.

Hadronic phase: Nuclear matter exists in the hadronic phase at low temperatures and
densities. In this phase, quarks and gluons are con�ned within composite particles � hadrons,
such as protons and neutrons.

Quark-gluon plasma (QGP) phase: As the temperature and density increase, the phase
diagram predicts a transition to the quark-gluon plasma phase. In this phase, the energy
density is high enough so that quarks and gluons are decon�ned, resulting in a plasma of
almost free quarks and gluons. The QGP phase is believed to have existed shortly after the Big
Bang and can be created arti�cially in high-energy heavy-ion collision experiments. Figure 1.14
shows di�erent areas of the phase diagram accessible by di�erent experimental facilities.

Crossover region: At low baryon chemical potentials, the transition from the hadronic phase
to the QGP phase is expected to be smooth. There is no clear boundary between the two phases
in this region, and the system's properties change gradually. Lattice gauge theories generally
predict that the cross-over occurs at Tc(µB = 0) = 154±9 MeV and εc = 0.18−0.5 GeV/fm3 [59].

First-order phase transition: The transition may become a �rst-order phase transition at
higher baryon chemical potentials, such as those encountered in the core of neutron stars. In
this case, a distinct boundary exists between the hadronic and the QGP phases, with a jump
in thermodynamic quantities like energy density or pressure at the transition point.

Exotic phases: The phase diagram also suggests the existence of other exotic phases under
extreme conditions, such as the color superconductor phase [60]: at extremely high densities,
quark matter may undergo a color superconducting phase transition. In this phase, matter
exists as a degenerate Fermi gas of quarks where Cooper pairs are formed.

1.2.3 Experimental observations and empirical evidence for the

existence of quark-gluon plasma

Experimental measurements relevant to the study of QCD matter at extreme conditions are
conducted in particle accelerators, which are sophisticated and complex research facilities. The
two most relevant accelerators for studying the physics of quark-gluon plasma are RHIC and
LHC.
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1.2. Heavy-ion collisions

Figure 1.14: A sketch of the phase diagram of QCD matter. Values of (µB, T ) accessible by
di�erent experiments are also shown on the plot. Figure adapted from GSI [61].

The Relativistic Heavy Ion Collider (RHIC) is a particle accelerator facility located
at Brookhaven National Laboratory in Upton, New York, USA. It is one of the world's most
powerful and versatile heavy-ion colliders designed to study nuclear matter under extreme con-
ditions. It is a crucial facility for exploring the quark-gluon plasma. It is a circular accelerator
that spans approximately 3.8 kilometers in circumference [34]. It can accelerate various types
of ions, including gold (Au), copper (Cu), and others, as well as protons. The primary pur-
pose of RHIC is to collide heavy ions at extremely high energies, up to 200 GeV per nucleon
pair. RHIC has had several large and sophisticated experimental detectors, including the STAR
(Solenoidal Tracker at RHIC) and PHENIX (Pioneering High Energy Nuclear Interaction eX-
periment), BRAHMS (Broad Range Hadron Magnetic Spectrometers) and PHOBOS (PHOton
and heavy IOn Spectrometer).

Figure 1.15: A depiction of a Pb+Pb collision at the ALICE experiment [62], one of the three
major experiments at CERN in Geneva, Switzerland.

The Large Hadron Collider (LHC) is currently the world's largest and most powerful
particle accelerator. It is located at CERN (European Organization for Nuclear Research) near

17
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Geneva, Switzerland. The LHC is a circular accelerator spanning a circumference of about 27
kilometers. The primary purpose of the LHC is to accelerate protons and heavy ions (e.g., lead)
to nearly the speed of light and collide them at extremely high energies. The highest collision
energies for lead-lead (Pb + Pb) and xenon-xenon (Xe + Xe) systems are 5.02 TeV and 5.44
TeV, respectively. The LHC has four primary particle detectors - ATLAS (A Toroidal LHC
ApparatuS), CMS (Compact Muon Solenoid), ALICE (A Large Ion Collider Experiment),
and LHCb (Large Hadron Collider beauty). These detectors capture the results of proton-
proton and heavy-ion collisions, providing valuable data for analysis. Of these, ALICE [63] is
dedicated solely to the study of heavy-ion collisions. A depiction of a heavy-on collision in the
ALICE detector with particles �ying out of the collision point towards the detectors is shown
in Figure 1.15.

In this section, we will brie�y overview the breakthrough results indicating that quark-gluon
plasma is formed in a heavy-ion collision.

In the Au+Au collisions at
√
sNN = 130GeV, it was reported by the PHENIX collaboration

at RHIC [64] that the spectra from central collisions were signi�cantly suppressed with respect
to proton-proton spectra scaled with the number of binary collisions. This is deemed [53] the
most important discovery of RHIC physics. In order to con�rm that the observed e�ect is due
to the creation of hot nuclear matter in Au+Au collisions and not an e�ect of cold nuclear
matter, measurements in deuteron-gold (d+Au) collisions were performed at RHIC in 2003,
and the obtained �ndings were so de�nitive that the results from all four RHIC experiments
were featured on the cover of Physical Review Letters that year (the cover is shown on the
left-hand side of the Figure 1.16).

Figure 1.16: The image on the left shows the cover of Physical Review Letters (Volume 91,
Number 7, August 2003), with all four RHIC experiments showing de�nitive signs of quark-
gluon plasma creation. The plot on the right shows the RAA of charged hadrons (h±) and
neutral pions (π0) in the d+Au and Au+Au collisions systems at

√
sNN = 200GeV from the

PHENIX collaboration from that volume [65]. Figure adapted from [53].

The right-hand side of Figure 1.16 shows the nuclear modi�cation factor RAA as a function
of transverse momentum p⊥ for non-identi�ed charged hadrons (h

±) and neutral π-mesons (π0)
in Au+Au and d+Au collisions at

√
sNN = 200GeV [65]. We can draw several conclusions from

this plot. Namely, the suppression of both h± and π0 is observed in the Au+Au collision system
but not in d+Au. This demonstrates that the suppression is due to the e�ects of a hot nuclear
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1.3. The initial state

medium formed in Au+Au collisions. Moreover, h± and π0 show di�erent suppression patterns
in both collision systems � therefore, particle identi�cation is important in these measurements,
as di�erent particle species behave di�erently.

Another important signal of the creation of quark-gluon plasma is the collective �ow of parti-
cles created in the collision, quanti�ed by the �rst several coe�cients in the Fourier expansion of
the azimuthal angle distribution (see Eq. 1.22). Figure 1.17 shows a summary of the anisotropy
parameter (v2) measurements for various hadron species (π,K, p,Λ) from STAR [66, 67, 68, 69]
and PHENIX [70] experiments at RHIC. The non-zero value of v2 in these experiments repre-
sents conclusive evidence of strong collective behavior of matter produced in Au+Au collisions.

Figure 1.17: A summary of measurements of the anisotropy parameter (v2) at RHIC. The plot
shows STAR [66, 67, 68, 69] (solid symbols) and PHENIX [70] (open symbols) measurements
for various hadron species (π,K, p,Λ) in Au+Au collisions at

√
sNN = 200GeV. Figure adapted

from [7].

1.3 The initial state

The initial state refers to the state of the colliding nuclei before they interact and form
quark-gluon plasma (see Fig. 1.7). An abundance of theoretical models have been developed
to describe the initial state in heavy-ion collisions � they aim to understand the distribution
of relevant quantities, such as the energy density and temperature that set the stage for the
subsequent evolution of the system. In this Section, we will give an overview of some of the
di�erent models of the initial state in heavy-ion collisions that have been utilized to produce
the results presented in this thesis.

1.3.1 Glauber Model: the basics

We here give a short overview of the Glauber Model, since it is one of the initial-state models
used to generate the results in this thesis. The Glauber model is a theoretical model which
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is used to calculate the geometric quantities pertaining to the heavy-ion collision, such as the
impact parameter (b) and the number of participants (Npart) [71]. The aim of employing Monte
Carlo implementations of the Glauber model (Monte Carlo Glauber) is to i) stochastically
calculate the positions of nucleons in each nucleus and then ii) simulate their collision process
event-by-event by assuming nucleons travel in straight lines along the beam axis. The nucleons
are marked as either participants or spectators and geometric properties are calculated by
conducting numerous nucleus-nucleus collision simulations. These calculated properties are
then used to determine the average values for di�erent centrality classes, which classify the
events in a manner that was explained earlier, in the Section 1.2. See Figure 1.12 for an
example.

To begin with, in the Glauber model of nuclear collisions, the Woods-Saxon nuclear density
distribution is commonly used to describe the spatial distribution of nucleons (protons and
neutrons) within the colliding nuclei. [72]

The formula gives the modi�ed Woods-Saxon nuclear density distribution:

ρ(r) = ρ0

1 + w( r
R

)2

1 + exp( r−R
a

)
. (1.25)

The values of the parameters are given in [73]. Here, ρ0 is the nuclear density in the center
of the nucleus, R is the radius of the nucleus (R = (6.62± 0.06) fm for the 208Pb nucleus [49],
while for 136Xe it is R = (4.7964± 0.0047) fm [74]), a is the parameter which dictates how fast
does the nuclear density fall o� near the edge of the nucleus (a = (0.546 ± 0.010) fm), and w
is the parameter which describes the deviations from the spherical shape (w = 0 for the 208Pb
nucleus).

Figure 1.18: A typical Glauber Monte Carlo-generated event of a Pb+Pb collision at the LHC
energy. Solid circles represent wounded nucleons, while dotted circles represent the spectators.
Figure adapted from [75].

The other input required for the calculations within the Glauber Model is the nucleon-
nucleon inelastic cross section (σNNinel ), which depends on the collision energy [75]. It is estimated
to have the value of σinelNN = 42 mb at the RHIC energy of

√
sNN = 200GeV, while at the LHC,

it is estimated to be around σinelNN = (64± 5) mb at
√
sNN = 2.76 TeV [49].
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1.3. The initial state

After having assembled the nuclei according to the nuclear density distribution, Glauber
Monte Carlo proceeds by drawing the value of the impact parameter from a distribution
dN/db ∝ b [48]. In a nucleus-nucleus collision, it is commonly assumed that the collision
can be broken down into a series of independent binary nucleon-nucleon interactions.

In the simplest variant of the Monte Carlo approach, a nucleon-nucleon collision is considered
to occur when the distance (d) between the nucleons in the plane perpendicular to the beam
axis satis�es [48]:

d ≤
√
σinelNN

π
, (1.26)

with σinelNN being the total inelastic nucleon-nucleon cross section.

Nucleons are not con�ned to speci�c spatial coordinates in the optical approximation (Op-
tical Glauber Model) [48, 76]. Instead, this model suggests that at su�ciently high energies,
nucleons possess enough momentum, leading to minimal de�ection as nuclei pass through one
another. This theory also assumes that nucleons move independently within the nucleus, and
the nucleus's size greatly surpasses the range of the nucleon-nucleon force. By presuming
independent linear trajectories for nucleons, it becomes possible to derive simple analytical
expressions for the cross-section of nucleus-nucleus interactions. Moreover, these expressions
aid in determining the count of interacting nucleons and nucleon-nucleon collisions. These
calculations are established in relation to the fundamental nucleon-nucleon cross-section.

Figure 1.19 shows results produced within the Monte Carlo Glauber and Optical Glauber
models. The plot on the left shows the total cross section for a A + B collision (which is the
integral of dσ/db distributions) as a function of the nucleon-nucleon inelastic cross section σNN .
As the nucleon-nucleon cross section becomes more point-like, the two results obtained from
these approaches converge [48]. The plot on the right shows the results for simple geometric
quantities: the number of participantsNpart and the number of binary nucleon-nucleon collisions
Ncoll as functions of the impact parameter b. The two approaches give results that almost
completely overlap.

Figure 1.19: An example of results obtained within the Glauber Monte Carlo and the Optical
Glauber models. The plot on the left shows the total cross-section as a function of the nucleon-
nucleon inelastic cross-section. The plot on the right shows the number of participants and
binary nucleon-nucleon collisions as a function of the impact parameter b, obtained within the
optical approximation (lines) and Glauber Monte Carlo (symbols). Figure adapted from [48].
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1.3.2 Color glass condensate

IP-Glasma [77, 78] (impact parameter glasma) is a model based on color glass condensate [79]:
a new form of hadronic matter, hypothesized to exist at very high energies. The development
of this model was motivated by the experimental results from HERA.

Earlier in this Chapter, in Section 1.1, deep inelastic scattering experiments were described.
In these experiments, an electron emits a virtual photon which then scatters o� a quark in a
hadron. We can introduce the Bjorken x variable in a frame-independent way:

x =
Q2

2p ·Q. (1.27)

Here, p is the momentum of the hadronic target, and Q is the virtual photon momentum
transferred to the hadron in the rest frame [79].

HERA (Hadron Elektron Ring Anlage, or Hadron Electron Ring Accelerator) was a particle
accelerator located at the DESY laboratory in Germany, which collided electrons or positrons
with protons to study the structure of protons: one of the key contributions of HERA was to
provide precise measurements of parton distribution functions (PDFs). In this context, quarks
and gluons are collectively re�ered to as partons. Namely, at very small values of Bjorken-
x, the measurements at HERA indicated that the gluon density in the proton becomes very
high [80, 81]. This is relevant because, at high energies and densities, the gluon density in
a hadron can become so large that saturation e�ects become important. Moreover, HERA
data indicated that at small Bjorken-x, the gluon distribution function increases much more
rapidly than expected. This was seen as evidence of high parton densities and the possibility
of a saturated gluon state. See the left plot of Figure 1.20 for the gluon distribution function
measured by the ZEUS collaboration at HERA.

Thus, these �ndings led to the idea of color glass condensate. The term color in its name
originates from the fact that gluons possess color charge. The term glass is used because the
associated �elds exhibit gradual changes over natural time scales, analogous to glass which
appears solid on short time scales despite being liquid or disordered on longer time scales. The
term condensate is applied due to the dense accumulation of massless gluons. This density
saturates at 1/αs >> 1, akin to a Bose-Einstein condensate.

As we can see on Figure 1.20, the gluon density xG(x,Q2) rises with decreasing x (or
increasing resolution Q2). Note that at a �xed Q2, decreasing x corresponds to the higher
interaction energy. In other words, the density of gluons per unit area per unit rapidity of a
hadron increases as x decreases. [8] These low-x gluons are densely packed in the transverse
directons, however � the interaction strength must be weak, αs � 1. This dense but weakly
coupled system is called a color glass condensate. Moreover, on the central and right plots
in Figure 1.20, we see that MSTW2008 next-to-leading order results for parton distribution
functions [81] corroborate that gluons dominate the dynamics in the small-x region.

The IP-Glasma initial state model [77, 78] is based on color glass condensate [82, 83, 84, 85].
It calculates the initial state as a collision of two color glass condensates and evolves the
generated �uctuating gluon �elds by solving classical Yang-Mills equations [77, 78].

As for the other models used in this thesis, the Eskola-Kajantie-Ruuskanen-Tuominen
(EKRT) model [86, 87, 88] is based on the NLO perturbative QCD computation of the trans-
verse energy and a gluon saturation conjecture. The Reduced Thickness Event-by-event Nuclear
Topology model (TRENTo) [89] is a phenomenological model capable of interpolating between
wounded nucleon and binary collision scaling, and with a proper parameter value, of mimick-
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1.4. Hydrodynamical description of a heavy-ion collision

Figure 1.20: The Figure on the left shows the ZEUS gluon distribution functions. The �gures in
the center and on the right show MSTW2008 next-to-leading order (NLO) parton distribution
functions (PDFs) at scale Q2 = 10 GeV and Q2 = 104GeV for the LHC. Figure adapted
from [79, 80, 81].

ing the EKRT and IP-Glasma initial states. The Monte Carlo Kharzeev-Levin-Nardi model
(MC-KLN) is an initial state model based on the color glass condensate [90].

1.4 Hydrodynamical description of a heavy-ion collision

At �rst, due to the e�ects such as asymptotic freedom and color screening, quark-gluon plasma
created in heavy-ion collisions at ultrarelativistic energies was expected to behave as a weakly in-
teracting gas [91]. However, the early success of calculations based on relativistic hydrodynam-
ics in explaining the experimental data has motivated its extensive application to describe this
medium, and it has become the standard approach in the �eld. This section brie�y overviews
the hydrodynamical description of QGP formed in ultrarelativistic heavy ion collisions.

Within the hydrodynamical description, in a heavy-ion collision [37, 92], a large kinetic
energy of colliding nuclei causes the creation of a large number of particles in a small volume.
These particles then collide with each other very often to reach a state of local thermal equilib-
rium. After reaching thermal equilibrium, various quantities can be attributed to the system,
such as the �eld of temperature T (x), chemical potentials µi(x), and �ow velocity uµ(x). The
subsequent evolution of the system can be described by applying hydrodynamical equations of
motion until the particles become so dilute that local thermal equilibrium is no longer a viable
assumption, and they continue to move as free particles.

A hydrodynamic description of the system o�ers numerous advantages [92]:

1. We can characterize the system using various thermodynamic variables.

2. Utilizing familiar quantities such as temperature and pressure, we can develop an intuitive
understanding of the evolving QCD medium created in heavy-ion collisions.

3. The models are relatively straightforward.

4. With knowledge of the initial state and the equation of state of nuclear matter, we can
determine system dynamics without delving into microscopic interactions.
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1.4.1 The Bjorken model

A straightforward hydrodynamical model without transverse expansion is the Bjorken
model [93, 94]. This model is based on the assumption that the rapidity distribution of charged
particles, dNch/dy, remains constant within the mid-rapidity region (see Fig. 1.10 and the
corresponding discussion). This holds in a narrow rapidity range near y = 0. Consequently,
the central region remains invariant under Lorentz boosts along the beam axis, as discussed
earlier in this Chapter, in Section 1.2. Since it does not depend on transverse coordinates,
this one-dimensional model lends itself to simple analytical treatment. The Bjorken model has
been employed to derive certain results presented in this thesis, which will be elaborated upon
in the subsequent Chapters. See Figure 1.21 for a schematic depiction of Bjorken evolution.

Figure 1.21: The schematic depiction of Bjorken evolution. Two Lorentz-contracted nuclei
collide, leading to the creation of highly excited in the region between them. This medium
thermalizes after τ0, and the subsequent longitudinal expansion is hydrodynamical. Figure
adapted from [95].

We de�ne the proper time:
τ =
√
t2 − z2. (1.28)

If we assume boost invariance, the result should be independent of rapidity. In this case,
initial conditions are given as [94]:

p(τ); ε(τ); uµ = γ(1, 0, 0, z/t). (1.29)

Here, p is the pressure, ε is the energy density and uµ is the four-velocity of a �uid element,
z is its longitudinal coordinate, and γ is the Lorentz factor.

The hydrodynamic equations read:

dε

dτ
+
ε+ p

τ
= 0. (1.30)

By using the ideal equation of state, ε = 3p, we get the following solutions for the energy
density and the temperature:

ε(τ) =
ε0
τ 4/3

, (1.31)

T (τ) =
T0

τ 1/3
. (1.32)

Hence, within the Bjorken model, we observe a straightforward analytical relationship between
temperature and proper time.
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1.4. Hydrodynamical description of a heavy-ion collision

1.4.2 Equations of motion

Hydrodynamical equations of motion are essentially conservation laws. In the ideal (non-
viscous) case, the local conservation laws can be written as [96]:

∂µT
µν
id = 0, (1.33)

∂µj
µ
B = 0, (1.34)

where T µνid is the energy-momentum tensor, and jµB are the net baryon four-currents. The
energy-momentum tensor and net baryon currents can be expressed as:

T µνid = (ε+ P )uµuν − Pgµν , (1.35)

JµB = ρBu
µ. (1.36)

Here, ε is the energy density, P is the pressure, ρB is the baryon density, and uµ is the �ow
four-vector. Dissipative e�ects like viscosity or heat conductivity are neglected here, and the
�uid is assumed to always be in perfect local equilibrium. [92] In order to close this system of
equations, one also needs to add an equation of state (EoS) as a local restraint on the variables:

p = p(ε, ρB). (1.37)

A quantity that is very important in hydrodynamics [50] is the speed of sound squared, c2
s,

and it is extracted from the equation of state:

c2
s =

∂p

∂ε
. (1.38)

If we take the ideal equation of state (ε = 3p), we get c2
s = 1/3. Equations of state with

the speed of sound approaching this value are called hard. In contrast, a soft equation of state
predicts a speed of sound that is smaller than in the ideal case. This indicates that the medium
being described by the EoS has more complex interactions between its constituents and that
an increase in energy density does not translate as e�ciently into a change of pressure.

Ideal hydrodynamics, which includes no dissipative e�ects, was �rst used to describe heavy-
ion collisions, and it described the experimental data surprisingly well, as shown in Figure 1.22.

In order to improve these results and to learn more about the properties of matter created in
heavy-ion collisions, viscous hydrodynamics was introduced. Naturally, it reduces to the case of
ideal hydrodynamics in the vanishing limit of the dissipative transport coe�cients (e.g., shear
viscosity, bulk viscosity, heat conductivity). It can be implemented in the �rst order through
the Navier-Stokes formalism [96], which is simple but introduces unphysical signal propagation
at in�nite speed. The second-order formalism is called the Israel-Stewart formalism [96], which
solves this problem. Figure 1.23 shows an example of results obtained within a state-of-the-
art viscous hydrodynamical calculation. It shows root-mean-squared 〈v2

n〉1/2 as a function of
transverse momentum p⊥, calculated by using MUSIC viscous hydrodynamical model, with
IP-Glasma as the initial state model [97]. We observe remarkable agreement with experimental
data from ATLAS.

A signi�cant quantity in the viscous hydrodynamical description is the shear viscosity, η.
In everyday life, we have the notion of viscosity as a �uid's resistance to �ow. Microscopically,
it measures the strength of interactions between the particles that make up a �uid. The lower
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Figure 1.22: Early success of ideal (non-viscous) hydrodynamics. The anisotropy parameter v2

is a function of the transverse momentum p⊥. The theoretical (hydrodynamical) predictions
(represented by lines) are compared with the experimental data from the PHENIX collaboration
at RHIC (represented by symbols) for di�erent hadron species (π,K, p). The collision system
is Au+Au at

√
sNN = 130 GeV. Figure adapted from [96].

Figure 1.23: An example of state-of-the-art viscous hydrodynamical calculations. The �gure
shows root-mean-square anisotropic �ow coe�cients 〈v2

n〉1/2 as a function of transverse momen-
tum p⊥. The value of shear viscosity over entropy is constant, η/s = 0.2. The theoretical
results obtained within the IP-Glasma + MUSIC model (represented by lines) are compared
with experimental data from ATLAS (represented by symbols) and show excellent agreement.
Figure adapted from [97].

value of the shear viscosity means that �uid �ows more easily, i.e., disturbances of a part of a
�uid are more readily transmitted to adjacent parts. In the opposite limit � ideal gas, which
has no interactions among its constituents � the shear viscosity is in�nite [91]. It is common
to consider the ratio between shear viscosity and the entropy density, η/s, as this facilitates
comparison of the strength of interaction per constituent among vastly di�erent systems on
di�erent energy scales. By using AdS/CFT correspondence, a universal lower limit for the value
of η/s was posited, which is expected to hold for a wide class of quantum �eld theories [98]:

η

s
=

~
4πkB

≈ 6.08 · 10−13 Ks. (1.39)

It is common to cite this value in natural units, i.e., as 1/(4π).
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Figure 1.24 shows η/s as a function of temperature for substances that can be found in
nature [99]. We see that water, a ubiquitous substance, as well as others that are produced in
specially prepared conditions, such as liquid helium and an ultracold Fermi gas, have the values
of η/s that are well above the lower boundary from Equation 1.39. On the other hand, the
values of η/s for quark-gluon plasma are not far from the lower boundary [99, 100, 101, 102, 103].
Because of this fascinating property, quark-gluon plasma is sometimes referred to as the perfect
�uid.

Figure 1.24: Shear viscosity over entropy density ratio for various �uids in nature. Tc denotes
the various critical temperatures: for water and helium, it is the temperature at the critical
endpoint of liquid-gas phase transition; for ultracold Fermi gases � the temperature of super�uid
transition; for QCD � the decon�nement temperature. The theoretical curves for QGP are
from [100, 101]. The solid red square is the upper boundary for (η/s)QGP from [102]. The
open red squares represent a lattice result of the upper boundary for (η/s)QGP from [103]. The
dashed line denotes the lower limit from AdS/CFT (1/(4π)). Figure adapted from [99].

Figure 1.25 shows a realistic QGP temperature pro�le obtained by using a 3+1-dimensional
viscous hydrodynamical model described in detail in [104]. The energy-momentum tensor is
decomposed into densities, �ow velocity and dissipative currents, while the relativistic �uid-
dynamical equations are the usual local conservation of energy-momentum and net-charge cur-
rents [104]. These equations are closed by adding an equation of state, together with the
equations that describe the evolution of dissipative quantities [104]. The temperature pro�le
obtained through this model is one of the pro�les utilized to generate the results in this thesis,
with temperature given as a function of spatial coordinates in the mid-rapidity plane. With in-
creasing proper time τ , we can observe that the system cools, and the initial spatial anisotropy
dilutes.

1.5 Outline of this thesis

The results shown in this thesis will demonstrate how high-p⊥ theory and data can be used in
conjunction with low-p⊥ (i.e., viscous hydrodynamical calculations) physics in order to extract
important properties of the new form of matter described in this Chapter: the quark-gluon
plasma.

The thesis follows this outline: Chapter 2 provides a concise overview of the employed
research methodology. It introduces the state-of-the-art dynamical energy loss formalism, uti-
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Figure 1.25: A depiction of the QGP evolution: the temperature is given in MeV. The initial
state is calculated within the Glauber model, while the subsequent evolution is hydrodynamical.
The initial time is τ0 = 1fm, the collision system is Pb+Pb at

√
sNN = 5.02TeV. This is one

of the pro�les generated as input for high-p⊥ calculations to obtain some results in this thesis,
which will be presented in the subsequent chapters.

lized for studying the energy loss of rare high-p⊥ probes traversing the quark-gluon plasma.
This formalism is integrated into the DREENA framework, serving as the primary tool for
calculating the necessary observables required for subsequent analyses.

In Chapter 3, the results pertaining to the study of the early stages of quark-gluon plasma
formation will be shown. In particular, our primary goal is to constrain the value of the initial
time of the medium's hydrodynamical (transverse) expansion. To achieve this, we �rst focus on
the hydrodynamical temperature pro�les which were generated with no pre-equilibrium evolu-
tion in the transverse direction, and we constrain the value of the initial time of hydrodynamical
(transverse) expansion through high-p⊥ simulations and comparison with data. However, since
this is not believed to be a realistic model of the evolution of quark-gluon plasma created in
heavy-ion collisions, we then explore how this picture changes once we include pre-equilibrium
evolution in our hydrodynamical model.

Chapter 4 contains the results related to the study of the anisotropy of quark-gluon plasma
created in heavy-ion collisions and how it can be constrained by using high-p⊥ data. We �rst
explore a simpli�ed picture: a 1D Bjorken evolution of the medium with no transverse expansion
and whether we can relate high-p⊥ observables to the anisotropy of this medium. Afterward, in
order to ensure the universality of our �ndings, we proceed to the full-�edged medium evolution
and explore the relationship between high-p⊥ data and the anisotropy of the medium in a diverse
variety of cases, which include di�erent collision systems, collision energies, initial states, and
subsequent hydrodynamical evolution models.

Chapter 5 will address the importance of higher orders in opacity in the energy loss of high-
p⊥ probes. Namely, the radiative energy loss formalism embedded in the original DREENA
framework considers the medium as optically thin: a jet encounters a single scattering cen-
ter before radiating gluons. This is opposed to the optically thick approximation, where jets
encounter in�nite scattering centers. However, since the size of the medium created in heavy-
ion collisions is several fm, it is reasonable to expect both approximations to be unrealistic.
Thus, we implement a �nite number of scattering centers into radiative energy loss within the
DREENA framework and show how this a�ects the high-p⊥ observables.

Chapter 6 will summarize the main �ndings of this thesis.

The Appendices contain supplementary results that could create clutter in the main body
of the text.
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Chapter 2

Methodology

The main idea behind the research presented in this thesis is to use rare high-p⊥ particles
to study the properties of quark-gluon plasma created in relativistic heavy-ion collisions -
QGP tomography. It has already been established that high-p⊥ particles are excellent tools
for studying the properties of quark-gluon plasma for several important reasons: i) they are
created in the early stages of QGP formation and thus carry information on the entire evolution
of the system; ii) they signi�cantly interact with the medium; iii) they can be studied by
applying perturbative QCD techniques. However, to use high-p⊥ particles for QGP tomography,
a reliable and comprehensive description of their energy loss in the QCD medium is required.
The dynamical energy loss formalism [105, 106] has been developed and embedded within
DREENA numerical framework [107, 108, 109], with state-of-the-art features outlined in this
Chapter. Within this proper description of their interaction with the medium, high-p⊥ particles
become excellent tomography tools, i.e., high-p⊥ probes. This framework has been utilized to
generate predictions for high-p⊥ observables, which were subsequently employed in theoretical
analyses within this thesis. Furthermore, in Chapter 5, we will generalize this formalism to a
�nite number of scattering centers in the medium.

2.1 The dynamical energy loss formalism

Historically, Gyulassy, Levai and Vitev, the creators of the GLV model [110, 111, 112, 113,
114], addressed the energy loss of an energetic (massless) parton traversing a �nite quark-
gluon plasma, which was also generalized to all orders in opacity (i.e., number of scattering
centers that a jet experiences in the medium), using the reaction-operator approach [112].
Djordjevic and Gyulassy further expanded the GLV model by introducing the heavy quark
mass M in the radiative energy loss in static �nite-size quark-gluon plasma, thus creating the
DGLV model [115]. Remarkably, they discovered that the general result is obtained by shifting
all frequencies in the GLV series by (m2

g + x2M2)/(2xE), where mg is the e�ective gluon mass,
x is the fraction of the energy carried by the radiated gluon, while E is the initial energy of the
jet [115]. Moreover, in the massless limit, DGLV recovers GLV results.

However, the DGLV model assumes that the QGP medium consists of randomly distributed
static scattering centers, where collisional energy loss is equal to zero [115]. Some studies [116]
have suggested that radiative energy loss alone is not su�cient to explain the heavy �avor RAA
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2. Methodology

results from RHIC.

Thus, to address this issue, the dynamical energy loss was developed, which is our most
sophisticated model. It has the following features:

• Radiative energy loss [105], applicable to both light and heavy �avor;

• Collisional energy loss, calculated under the same theoretical framework, applicable to
both light and heavy �avor [106];

• The formalism considers QCD medium of �nite size (L) and temperature (T ), which
consists of dynamical (i.e., moving) partons, in a distinction to models with widely used
static approximation and vacuum-like propagators [117, 118, 110, 119];

• Calculations are based on generalized Hard-Thermal-Loop approach [22, 120], with nat-
urally regulated infrared divergences [105, 121, 122].

• The formalism is generalized to �nite magnetic mass [123] and running coupling [124];

• Recently, soft-gluon approximation has been relaxed, expanding the applicability region
of this formalism [125].

It was previously shown [126] that all the model ingredients noted above a�ect the high-p⊥
data and thus should be included to explain it accurately.

Figure 2.1: One hard thermal loop diagram, which gives the 0th order collisional and radiative
rates. Figure adapted from [106].

Figure 2.1 shows the one hard thermal loop (HTL) diagram from which we can obtain the
0th order radiative and collisional diagrams. The contribution to the collisional energy loss
is obtained by "cutting" (putting on shell) the parton propagators. On the other hand, the
radiative contribution is obtained by cutting through parton and gluon propagators. [106]

Collisional energy loss within the dynamical energy loss formalism has been developed
by M. Djordjevic in [106]. It refers to the processes with the same number of incoming and
outgoing particles. It is computed in the �nite-temperature QCD medium from the diagram
shown on Figure 2.2.

The e�ective gluon propagator shown in Figure 2.2 has both transverse and longitudinal
contributions. In Coulomb gauge the gluon propagator has the following form [106]:

Dµν(ω, ~q) = −P µν∆T (ω, ~q)−Qµν∆L(ω, ~q), (2.1)

where q = (ω, ~q) is the 4-momentum of the gluon, while ∆T and ∆L are e�ective transverse
and longitudinal gluon propagators given by [106, 108]:

∆−1
T = ω2 − ~q2 − µE(T )2

2
− (ω2 − ~q2)µE(T )2

2~q2
(1 +

ω

2|~q| ln |
ω − |~q|
ω + |~q| |), (2.2)
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2.1. The dynamical energy loss formalism

Figure 2.2: Feynman diagram represents the collisional energy loss in the �nite temperature
QCD medium. The dashed circle denotes the e�ective gluon propagator. Figure adapted
from [106].

∆−1
L = ~q2 + µE(T )2(1 +

ω

2|~q| ln |
ω − |~q|
ω + |~q| |), (2.3)

where µE(T ) is the electric screening (the Debye mass) [108].

The only nonzero terms in transverse (Pµν) and longitudinal (Qµν) projectors are the fol-
lowing [106]:

P ij = δij − qiqj

|~q|2 , (2.4)

Q00 = 1. (2.5)

The analytical expression for collisional energy loss per unit length is given by the following
expression [106]:

dEcoll
dτ

=
2CR
πv2

αs(ET )αs(µ
2
E(T ))

∫ ∞
0

neq(|~k|, T )d|~k|

×
[ ∫ |~k|/(1+v)

0

d|~q|
∫ v|~q|

−v|~q|
ωdω +

∫ |~q|max

|~k|/(1+v)

d|~q|
∫ v|~q|

|~q|−2|~k|
ωdω

]
(2.6)

×
[
|∆L(q, T )|2 (2|~k|+ ω)2 − |~q|2

2
+ |∆T (q, T )|2 (|~q|2 − ω2)((2|~k|+ ω)2 + |~q|2)

4|~q|4 (v2|~q|2 − ω2)
]
,

where neq(|~k|, T ) = Nc

e|~k|/T−1
+

Nf

e|~k|/T +1
is the equilibrium momentum distribution [127] including

gluons, quarks and antiquarks, where Nc is the number of colors and Nf is the number of
�avors. Temperature is denoted by T , µE(T ) is the electric (Debye) screening mass, while the
running coupling is given by α2

s, which can be factorized as αs(µ
2
E)αs(ET ) [128], where E is

the energy of the jet. CR = 4/3 (CR = 3) for the quark (gluon) jet, k is the 4-momentum of the
incoming medium parton, v is velocity of the initial jet and q = (ω, ~q) is the 4-momentum of
the exchanged gluon. |~q|max is provided in Ref. [106], while ∆T (q, T ) and ∆L(q, T ) are e�ective
transverse and longitudinal gluon propagators, given by Equations 2.2 and 2.3.

Radiative energy loss within the dynamical energy loss formalism has been developed
by M. Djordjevic in [105]. It originates from processes in which there are more outgoing than
incoming particles. In the original numerical framework, it is calculated up to the 1st order in
opacity (see Figure 2.3). In Chapter 5, we will expand this approach and include higher orders
in opacity in the radiative energy loss.
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2. Methodology

Figure 2.3: The diagrams represent radiative energy loss contributions that come from 1HTL
(upper diagram) and 2HTL (lower diagram) gluon propagator. Figure adapted from [106].

The general form of the 1st order in opacity term for gluon radiation spectrum in a �nite-
size medium with dynamical constituents is given by (see Chapter 5 and Appendix B for more
details):

(
dN

(1)
g

dx

)
=

4CR
πx

∫ L

0

dz1

∫
d2k

π

∫
d2q1

π
αs(Q

2
k)

1

λdyn

µ2
E − µ2

M

(q2
1 + µ2

E)(q2
1 + µ2

M)

χ2(q1 · (q1 − k)) + (q1 · k)(k− q1)2

(χ2 + k2)(χ2 + (k− q1)2)2
sin2

(
χ2 + (k2 − q1)2

4xE
z1

)
. (2.7)

Here, k is the 2D momentum of the radiated gluon, while q is the 2D momentum of the
exchanged gluon [105]. µE(T ) is the electric screening [108], while µM(T ) is the magnetic
screening [108]. λdyn is the dynamical mean free path, given by λ−1

dyn = 3αs(Q
2
v)T , with Q

2
v =

ET [105]. Running coupling αs(Q
2
v) corresponds to the interaction between the jet and the

virtual (exchanged) gluon, while E is the jet's energy [124]. Q2
k which appears in αs(Q

2
k) is

the o�-shellness of the jet prior to the gluon radiation and is equal to Q2
k =

k
2+M2x2+m2

g

x
[124],

whereM is the jet mass, x is the longitudinal momentum fraction of the jet carried away by the
emitted gluon, while mg(T ) = µE(T )/

√
2 is the e�ective mass for gluons in �nite-temperature

QCD medium [108]. L is the size of the medium, while χ2 is given by χ2 = M2x2 +m2
g.

2.2 The numerical framework

The dynamical energy loss formalism is embedded in the DREENA framework, a fully optimized
computational procedure that generates predictions for high-p⊥ observables for various collision
systems, collision energies, centralities, and probes.

By the scheme presented in Figure 2.4, the suppressed spectrum of light and heavy particles
can be expressed within the DREENA framework as a generic pQCD convolution:

Efd
3σ

dp3
f

=
Eid

3σ(Q)

dp3
i

⊗ P (Ei → Ef )⊗D(Q→ HQ). (2.8)
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2.2. The numerical framework

Here, indices i and f stand for 'initial' and '�nal', respectively, while Q denotes initial light
or heavy high-energy parton (light or heavy quarks or gluons). Eid

3σ(Q)/dp3
i is the initial

momentum spectrum for the given particle, which is calculated according to [129] (step 1 on
the scheme), P (Ei → Ef ) represents the energy loss probability for the given particle which was
calculated within the dynamical energy loss formalism (step 2 on the scheme), which includes
multi-gluon [130] �uctuations, referring to the probability of jet radiating a number of gluons
(0, 1, 2...). In the approximation that the �uctuations of gluon numbers are uncorrelated, the
probabilty that the jet radiates a particular number of gluons can be modeled by the Poisson
distribution [130].

D(Q→ HQ) represents the fragmentation function of light and heavy partons into hadrons
(step 3 on the scheme), where for light hadrons, D and B mesons, we use Daniel de F.-
Sassot-Stratmann (DSS) [131], Braaten-Cheung-Fleming-Yuan (BCFY) [132], Kartvelishvili-
Likhoded-Petrov (KLP) [133] fragmentation functions, respectively.

Figure 2.4: Schematic representation of the QCD convolution upon which the DREENA frame-
work is based. Figure adapted from [134].

Various versions of the DREENA framework have been developed, but the three versions
relevant to this thesis are DREENA-C, DREENA-B, and DREENA-A.

DREENA-C (C � constant) is fully described in [107]. It is the simplest version of the
DREENA framework, as in it, the QGP medium is modeled in the simplest possible way:
as a constant (average) temperature medium. The average temperature is determined by T =

c

(
dNch
dy

A⊥L̄

)
[107]. Here, A⊥ is the overlap area, L̄ is the average size of the medium for a particular

centrality region [107]. dNch

dy
is the experimentally measured charged particle multiplicity [107],

measured for 5.02 TeV Pb+Pb collisions at the LHC across di�erent centralities [135], while c is
a constant, which can be �xed through ALICE measurement of e�ective temperature for 0-20%
centrality at 2.76 TeV Pb+Pb collisions at LHC [136]. Path-length �uctuations are included
in the framework [137], with an additional hard-sphere restriction in the Woods-Saxon nuclear
density distribution to regulate the path lengths in the peripheral collisions [107]. DREENA-C
does not have any free parameters. It keeps all the dynamical energy loss formalism ingredients,
and is thus appropriate for studying the jet-medium interactions. It was previously used by the
author of this thesis to extract the temperature dependence of high-p⊥ particles' energy loss in
the medium. [138] Within this thesis, DREENA-C was used as a basis for the implementation
of higher orders in opacity in the radiative energy loss, and the associated �ndings will be
presented in Chapter 5.

DREENA-B (B � Bjorken), described in detail in [108], was developed as the intermedi-
ate step towards DREENA with realistic, hydrodynamical medium evolution. It models the
medium as a simple 1D Bjorken evolution (described in Section 1.4), where the medium ex-
pands in the longitudinal direction but not in the transverse direction. We used DREENA-B
as a simple model to explore whether high-p⊥ observables can be related to the anisotropy of
quark-gluon plasma formed in heavy-ion collisions, as described in Chapter 4.
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2. Methodology

DREENA-A (A � adaptive), the details of which can be found in [109], is the most ad-
vanced version of the DREENA framework. It can be used to calculate high-p⊥ observables
RAA and v2 on an arbitrary smooth hydrodynamical background while retaining all the sophis-
ticated details of the jet-medium interactions pertaining to the dynamical energy loss formalism
described earlier. Moreover, it was recently extended and is able to utilize arbitrary event-by-
event �uctuating temperature pro�les [139] and calculate predictions for higher harmonics (v3

and higher). In order to produce predictions for high-p⊥ observables within DREENA-A, the
only required input is a temperature pro�le that describes the space-time evolution of the quark-
gluon plasma. The framework is fully optimized and parallelized, allowing it to use modern
multicore workstations. It was used to study the early stages of quark-gluon plasma evolution
(the results of which were presented in Chapter 3), as well as to explore the connection between
the anisotropy of quark-gluon plasma created in heavy-ion collisions and high-p⊥ data (Chapter
4).
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Chapter 3

Early Stages of Quark-Gluon Plasma

Evolution Explored through High-p⊥ Data

In this Chapter, based on [1, 2], we present results related to examining the initial phases in
the evolution of quark-gluon plasma. As the Introduction outlines, following the collision of
two nuclei in a heavy-ion experiment, the created medium evolves through various stages (refer
to Figure 1.7). We will employ high-p⊥ theory and data to constrain the value of the initial
time τ0, which signi�es the onset of the hydrodynamical evolution of the quark-gluon plasma.

Our analysis (presented in [1, 2]) reveals that high-p⊥ RAA and v2 exhibit greater sensitivity
to the QGP initial time, τ0, in comparison to the distributions of low-p⊥ particles. The high-
p⊥ observables indicate a preference for a relatively later onset of hydrodynamical expansion,
around τ0 ∼ 1 fm/c. Notably, the elliptic �ow parameter v2 displays more pronounced sensi-
tivity to τ0 than RAA, attributed to the di�erences in the evolution of temperature pro�les in
the in-plane and out-of-plane directions.

Additionally, we incorporate pre-equilibrium evolution within our model and demonstrate
that high-p⊥ RAA and v2 are responsive to the initial dynamics of expansion. The high-p⊥
observables consistently prefer a delayed initiation of energy loss and transverse hydrodynamical
expansion.

3.1 Determination of quark-gluon plasma initial time

3.1.1 Introduction

In this section, we analyze how high-p⊥ RAA and v2 depend on the QGP initial time τ0, i.e., the
onset time of �uid-dynamical expansion. The dynamics before the initial time τ0 and applicabil-
ity of hydrodynamics and, therefore, the associated energy loss phenomena are not established
yet. Some simple scenarios for mapping the pre-equilibrium energy loss were discussed in
Ref. [140]. To avoid speculation and provide a baseline calculation for further studies, in this
section, we assume free streaming of high-p⊥ particles before the initial time τ0, neglecting the
medium's pre-equilibrium evolution. After the initial time τ0, the QCD medium is described
as a relativistic viscous �uid, and high-p⊥ probes start to lose energy through interactions with
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3. Early Stages of Quark-Gluon Plasma Evolution Explored through High-p⊥ Data

this medium. Consequently, the initial time τ0 is an important parameter, a�ecting both the
system's evolution and interactions of the high-p⊥ particles with the medium.

The conventional approach to �x the initial time is to carry out hydrodynamical simulations
with various values of τ0, calculate the distributions of low-p⊥ particles, compare them to data,
and keep varying τ0 until the best possible �t to the data is achieved. However, an analysis
employing sophisticated Bayesian statistics has shown that low-p⊥ data provides only weak
limits to the initial time, τ0 = 0.59±0.41 fm/c with 90% credibility [141], and further constraints
would be instrumental.

When calculating how the high-p⊥ observables depend on τ0, one has to ensure that the QGP
medium evolution is compatible with the observed distributions of low-p⊥ particles. We describe
the medium evolution using the 3+1-dimensional viscous hydrodynamical model from Ref. [104].
For simplicity, we ignore pre-equilibrium evolution in the transverse plane, i.e. vr(x, y, τ0) = 0,
choose a constant shear viscosity to entropy density ratio η/s = 0.12, and base the initial
transverse energy density pro�le eT on the binary collision density nBC from the optical Glauber
model:

eT (τ0, x, y, b) = Ce(τ0) fBC ,

fBC = nBC + c1n
2
BC + c2n

3
BC . (3.1)

The parameters Ce, c1, and c2 are tuned separately for each τ0 value to approximately
describe the observed charged particle multiplicities and v2{4} in Pb+Pb collisions at

√
sNN =

5.02 TeV. vn{4} (four-particle cumulant vn) is de�ned as vn{4}4 = −cn{4}, where diagonal
cumulants cn{4} are measurable quantities [142]. The initial (i.e. hydro initialization) time τ0

has been varied from 0.2 fm to 1.2 fm. For the longitudinal pro�le, we keep the parametrization
used for

√
sNN = 2.76 Pb+Pb collisions in Ref. [104]. Likewise, the decoupling temperature

Tdec = 100 MeV, and the equation of state s95p-PCE-v1 [143] is the same as in that article.
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Figure 3.1: The agreement of low-p⊥ data for all the temperature pro�les with various values of
the initial time τ0. The �gure shows the transverse momentum spectrum of charged particles in
�ve centrality classes in Pb+Pb collisions at

√
sNN = 5.02TeV, with the initial time τ0 varied

from 0.2 fm to 1.2 fm. ALICE data is taken from [144].

The transverse momentum distributions of charged particles are shown in Fig. 3.1, and
p⊥-di�erential elliptic �ow parameter v2(p⊥) in the low momentum part (p⊥ < 2 GeV) of the
lower panels of Fig. 3.2 (note that the scale on the v2(p⊥) plots is logarithmic). The overall
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3.1. Determination of quark-gluon plasma initial time

Figure 3.2: Charged hadron DREENA-A RAA (upper panels) and v2 (lower panels) predictions,
generated for six di�erent τ0 (indicated on the legend), are compared with ALICE [144, 145],
CMS [146, 147] and ATLAS [148, 149] data. Four columns, from left to right, correspond to
10�20%, 20�30%, 30�40% and 40�50% centralities at

√
sNN = 5.02 Pb+Pb collisions at the

LHC. At low p⊥ (p⊥ < 2 GeV) v2 is 4-cumulant v2{4}, whereas at high p⊥ (p⊥ > 5 GeV) we
evaluate v2 as v2 = (1/2) (Rin

AA − Rout
AA)/(Rin

AA + Rout
AA). Note that the p⊥ scale in the upper

(RAA) row is regular, while in the lower (v2), it is logarithmic.

agreement with the data is acceptable, and consistently with Ref. [141], we observe only a weak
dependence on τ0�especially v2(p⊥) is almost independent of τ0.

3.1.2 High-p⊥ RAA and v2 results

The next step in our study is to generate the high-p⊥ predictions for the six temperature pro�les
(with di�erent values of τ0) and to compare them with the experimental data. To achieve this,
we use the DREENA-A framework described in Chapter 2.

In particular, collisional and radiative energy losses are computed by using Equations 2.6
and 2.7, we use ΛQCD = 0.2 GeV and e�ective light quark �avors nf = 3. For light quark mass,
we assume to be dominated by the thermal mass M =µE/

√
6, and for the gluon mass, we

take mg = µE/
√

2 [122]. The temperature-dependent Debye mass µE is obtained by applying
procedure from [150], which leads to results compatible with the lattice QCD [151]. The
charm (bottom) mass is M = 1.2GeV (M = 4.75GeV). Magnetic to electric mass ratio is 0.4 <
µM/µE < 0.6 [152, 153, 154, 155], but for simplicity, we take µM/µE = 0.5, leading to the
uncertainty of up to 10% for both RAA and v2 results.

The resulting DREENA-A predictions for charged hadron RAA in four di�erent centrality
classes, and τ0 in the range of 0.2�1.2 fm, are shown in the upper panel of Fig. 3.2, and
compared with experimental data. In the lower panel of Fig. 3.2, we show a similar comparison
of predicted high-p⊥ v2 to data (note that the scale is logarithmic). In distinction to the low-
p⊥ distributions, we see that high-p⊥ predictions can be resolved against experimental data
and that the later onset of hydrodynamical expansion is preferred by both RAA and v2. This
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Figure 3.3: This �gure shows the predictions for high-p⊥ observables obtained within DREENA-
A for heavy �avor with di�erent values of the initial time τ0. Predicted D (full curves) and
B meson (dashed curves) RAA (upper panels) and v2 (lower panels) in Pb+Pb collisions at√
sNN = 5.02 TeV. The predictions for D mesons are compared with ALICE [156, 157] (red

triangles) and CMS [158] (blue squares) D meson data, while predictions for B mesons are
compared with CMS [159] (green circles) non-prompt J/Ψ data. The predictions are generated
on each panel for six di�erent τ0 (indicated in the legend).

resolution is apparent for v2 predictions, which approach the high-p⊥ tail of the data, as τ0

is increased. One can also observe that this resolution (i.e., di�erence between the adjacent
predicted curves) increases for higher centralities, which we will analyze below.

Furthermore, we obtain that heavy quarks (charm and bottom) are even more sensitive to
τ0, as shown in Fig. 3.3. The data are mainly unavailable for bottom probes, which makes these
true predictions, to be tested against upcoming high luminosity LHC Run 3 data. The available
experimental data for charm probes are much more sparse (with larger error bars) than the
charged hadron data. However, where available, a comparison of our predictions with the data
suggests the same tendency as for charged hadrons, i.e., a preference towards later onset of
hydrodynamical expansion. These results are signi�cant for studying the properties of QGP,
as consistency between light and heavy �avor is crucial and highly non-trivial, as con�rmed by
the well-known heavy �avor puzzle: unexpected similar suppression of light and heavy probes
observed at RHIC [160].
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3.1. Determination of quark-gluon plasma initial time

Figure 3.4: Exploring whether later quenching time can explain the observed sensitivity of
high-p⊥ predictions on τ0. The panel shows DREENA-A predictions for charged hadron RAA

(left) and v2 (right) in 20�30% centrality class of
√
sNN = 5.02 TeV Pb+Pb collisions at the

LHC, generated for τ0 = 0.2 fm and six di�erent τq (indicated on the legend). The predictions
are compared with ALICE [144, 145], ATLAS [148, 149] and CMS [146, 147] data.

3.1.3 Can later quenching time explain the observed sensitivity of

high-p⊥ observables to τ0?

Ref. [161] proposed that jet quenching may start later than the bulk QCD medium's thermal-
ization and subsequent �uid dynamical evolution. To test this scenario, we follow that work
and introduce a separate quenching start time τq ≥ τ0. In Fig. 3.4 we show the high-p⊥ RAA

and v2 in 20-30% centrality for τ0 = 0.2fm, and τq values in the range of 0.2�1.2 fm. The sen-
sitivity to τq is similar in other centralities, for larger τ0, and heavy �avor. RAA shows similar
sensitivity to τq as to τ0; compare Figs. 3.4 and 3.2. The v2 is surprisingly insensitive to τq and
way below the data, consequently not supporting the idea that quenching can start later than
hydrodynamical evolution.

To investigate the origin of the sensitivity of RAA and v2 to τ0 and τq, we evaluate the
temperature along the paths of jets traveling in-plane (φ = 0) and out-of-plane (φ = π/2)
directions, and average over all sampled jet paths. To explain the sensitivity of v2, in Fig. 3.5 we
show the resulting temperature evolution in 10�20% and 30-40% central collisions for τ0 = 0.2
and 1.2 fm. As τ0 is increased, the di�erences between in-plane and out-of-plane temperature
pro�les also increase. Since v2 is proportional to the di�erence in suppression along in-plane and
out-of-plane directions, a larger di�erence along these directions leads to larger v2. It causes
the observed dependency on τ0. As well, for �xed τ0, increasing τq hardly changes v2 since at
early times the average temperature in- and out-of-plane directions is almost identical, and no
v2 is built up at that time in any case. Furthermore, the more peripheral the collision, the
larger the di�erence in average temperatures, which leads to higher sensitivity of v2 to τ0 as
seen in the lower panels of Fig. 3.2.

The change in τ0 a�ects the average temperature along the jet path in two ways. First,
smaller τ0 means more signi�cant initial gradients, faster �ow build-up, and faster initial spatial
anisotropy dilution. Second, since the initial jet production is azimuthally symmetric, and
jets travel along eikonal trajectories, at early times, both in- and out-of-plane jets probe the
temperature of the medium almost the same way. The average temperature of both is almost
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Figure 3.5: Average temperature along the jet path traversing the system in out-of-plane (full
curve) and in-plane (dashed curve) directions. The average is over all sampled jet paths, and
the path ends at the critical temperature, TC ≈ 160 MeV [162]. The centrality of the collision
and τ0 is indicated on the legend of each panel.

identical at τ0 = 0.2 fm. Only over time will the spatial distribution of in- and out-of-plane
jets di�er, and the average temperature along their paths begins to re�ect the anisotropies of
the �uid temperature. The qualitative understanding above is essential, as it shows that the
obtained conclusions are largely model-independent, even though we arrived at them through
our DREENA-A framework.

From Fig. 3.5, we can also understand the increase in RAA with larger τ0 and τq as seen in
Figs. 3.2 and 3.4. Larger τ0 or τq cuts away the large temperature part of the pro�le, decreasing
the average temperature and thus increasing the angular averaged RAA.

As mentioned above, here we do not include any pre-equilibrium evolution along the lines
of, e.g., Refs. [163, 164, 165, 166]. We do not expect pre-equilibrium evolution to destroy
the sensitivity of high-p⊥ observables to τ0 [140], but it may a�ect the favored value of τ0.
Reproduction of high-p⊥ v2 requires that the spatial anisotropy is not smeared away too fast.
Since pre-equilibrium evolution is expected to reduce the anisotropy [164, 167], it is possible
that when it is included, the favored τ0 is even larger than seen here. In order to test these
assumptions, in the following section of this Chapter, we will explore di�erent scenarios, which
include pre-equilibrium evolution.

To summarize Section 3.1, we presented an example of using high-p⊥ theory and data
to constrain a weakly sensitive parameter to bulk QGP evolution � the initial time of �uid-
dynamical expansion, τ0. Speci�cally, we used high-p⊥ RAA and v2 to infer that experimental
data prefer late onset of hydrodynamical expansion. The heavy �avor shows considerable
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sensitivity to τ0, so the upcoming high luminosity measurements will further test our conclusion.
v2 shows a higher sensitivity to τ0 than RAA, and we showed that v2 is a�ected by τ0 because
of di�erences in the in- and out-of-plane temperature pro�les.

3.2 Constraining the early stages of quark-gluon plasma

formation through high-p⊥ data

In this Section, we will take an approach to studying the early stages of quark-gluon plasma
formation, which is complementary to the one described in the �rst part of this Chapter.
Namely, we here introduce the pre-equilibrium evolution of the medium.

3.2.1 Introduction: pre-equilibrium evolution

During the last few years, our understanding of the very early evolution of QGP has evolved a
lot. In particular, the discovery of the attractor solutions of the evolution of non-equilibrated
systems [168, 169, 170], and models based on e�ective kinetic theory [171, 172] have been
signi�cant milestones. However, the exact dynamics of early evolution and hydrodynamization
of the medium� -i.e., the approach to the state where the system can be described using �uid
dynamics� -are still being settled.

Furthermore, to our knowledge, there are no reliable methods to calculate jet energy loss in
a medium out of equilibrium. Instead of microscopic calculation of the early-time dynamics, we
take a complementary approach. We calculate the high-p⊥ RAA and v2 in a few straightforward
scenarios and show whether the comparison to high-p⊥ data could constrain the early evolution.

In the attractor solutions, the �nal evolution is �uid dynamical even if the initial state is
quite far from equilibrium. This fact allows us to entertain the notion that even if the early
state is not in local equilibrium, we could use �uid dynamics to describe its evolution from very
early times [173], say from τ0 = 0.2 fm, where τ0 is the initial time of �uid dynamical evolution.
Correspondingly, we may argue that the temperature entering �uid dynamical evolution also
controls the jet energy loss, and we may start the jet energy loss at the same time, τq = 0.2
fm, which is our �rst scenario. On the other hand, we studied the pre-equilibrium energy loss
in various scenarios [140], and see that even if the data could not properly distinguish these
scenarios, Bjorken-type temperature evolution at very early times tended to push RAA too
low. This �nding may suggest that applying the equilibrium jet-medium interactions to the
pre-equilibrium stage (even if close enough to �uid dynamical) overestimates the energy loss.
Due to this, we here, for simplicity, assume an opposite limit, where we start the energy loss
later than the �uid dynamical evolution: τq = 1.0 fm and τ0 = 0.2 fm, which is our second
scenario (a similar scenario was proposed in [161]).

Frequently used toy model to study the e�ects of early non-equilibrium evolution is the free
streaming approach [174, 164], where (�ctional) particles are allowed to stream freely until the
initial time of �uid dynamical evolution τ0. As our third scenario, we allow free streaming until
τ0 = 1.0 fm. Consistently with the assumed absence of interactions in the bulk medium, we
assume no jet-medium interactions during the out-of-equilibrium stage so that τ0 = τq = 1.0 fm.
For comparison's sake, as the fourth scenario, we also explore the �old-fashioned� scenario where
�nothing� happens before the �uid dynamical initial time τ0 = τq = 1.0 fm, i.e. we start the
�uid-dynamical evolution at τ = 1.0 fm with zero transverse �ow velocity.
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In the same manner as in the previous section, when calculating how the high-p⊥ observables
depend on our di�erent scenarios, we must ensure that the QGP medium evolution is compatible
with the observed distributions of low-p⊥ particles. We describe the medium evolution using
the 3+1-dimensional viscous hydrodynamical model [104]. For simplicity, we choose a constant
shear viscosity to entropy density ratio η/s = 0.12 for the cases without pre-hydro transverse
�ow, and η/s = 0.16 for the free-streaming initialization. In all the cases, the initial energy
density pro�le in the transverse plane is given by the binary collision density nBC from the
optical Glauber model (see Equation 3.1).

The parameters Ce, c1 and c2 are tuned separately for each scenario, to approximately de-
scribe the observed charged particle multiplicities and v2{4} in Pb+Pb collisions at

√
sNN =

5.02 TeV. For the longitudinal pro�le, we keep the parametrization used for
√
sNN = 2.76

Pb+Pb collisions [104]. The equation of state is s95p-PCE-v1 [143]. We use freeze-out tem-
peratures Tchem = 150 MeV and Tdec = 100 MeV for cases without pre-hydro �ow but with
free streaming, we use Tchem = 175 MeV [175] to mimic bulk viscosity around the critical
temperature Tc required to �t the pT distributions, and Tdec = 140 MeV.

In the free-streaming initialization massless particles stream freely from τ = 0.2 fm to
τ0 = 1.0 fm, where the energy-momentum tensor based on the distributions of these particles
is evaluated. The energy-momentum tensor is decomposed into densities, �ow velocity, and
dissipative currents, which are used as the initial state of the subsequent �uid-dynamical evo-
lution. The switch from massless non-interacting particles to strongly interacting constituents
of QGP causes large positive bulk pressure at τ0. In our calculations, the bulk viscosity coe�-
cient is always zero, and the initial bulk pressure will approach zero according to Israel-Stewart
equations [104].

Figure 3.6: Agreement with low-p⊥ data for all the temperature pro�les that we explore. The
�gure shows the transverse momentum spectrum of charged particles in �ve centrality classes
in Pb+Pb collisions at

√
sNN = 5.02TeV, with two initial times τ0 = 0.2 and τ0 = 1.0fm, and

free streaming initialization (FS). ALICE data is taken from [144].

The transverse momentum distributions of charged particles are shown in Fig. 3.6, and p⊥-
di�erential elliptic �ow parameter v2{4}(p⊥) in the low momentum part (p⊥ < 2 GeV) of the
lower panels of Fig. 3.7. As seen, the overall agreement with the data is acceptable.
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Figure 3.7: Charged hadron DREENA-A RAA (upper panels) and v2 (lower panels) predictions,
generated for di�erent τ0, τq, and initialization (see the legend, FS stands for free streaming),
are compared with ALICE [144, 145], CMS [146, 147] and ATLAS [148, 149] data. Four
columns, from left to right, correspond to 10�20%, 20�30%, 30�40% and 40�50% centralities at√
sNN = 5.02 Pb+Pb collisions at the LHC. At low p⊥ (p⊥ < 2 GeV) v2 is 4-cumulant v2{4},

whereas at high p⊥ (p⊥ > 5 GeV) we evaluate v2 as v2 = (1/2) (Rin
AA−Rout

AA)/(Rin
AA +Rout

AA). Note
that the p⊥ scale in the upper (RAA) row is regular, while in the lower (v2), it is logarithmic.

3.2.2 High-p⊥ RAA and v2 results

We then use DREENA-A to generate high-p⊥ predictions for the four described scenarios of
early evolution and compare them with the experimental data. We use the same parameter set
as already described in this Chapter (Subsection 3.1.2).

The resulting DREENA-A predictions for charged hadron RAA and v2 in four di�erent
centrality classes, and four scenarios of early evolution, are shown in Fig. 3.7 and compared
with experimental data. We here focus on these four limiting cases, while the results for
more sophisticated initializations can be found in Appendix A. As one can expect, the later the
energy loss begins, the higher the RAA, and evaluating the energy loss as in thermalized medium
already at τq = 0.2 fm is slightly disfavored. Furthermore, early free-streaming evolution leads
to larger RAA than �uid-dynamical evolution. On the other hand, the behavior of v2 is di�erent.
First, if the early expansion is �uid dynamical, we see that delaying the onset of energy loss
barely changes the value of v2. Second, early free-streaming evolution does not lead to better
data reproduction, but in peripheral collisions, the �t is even worse. The only case when our
v2 predictions approach the data is when both the jet energy loss and the transverse expansion
are delayed to τ = 1 fm.

As shown in Fig. 3.8, heavy quarks are even more sensitive to early evolution. The data
are mainly unavailable for bottom probes, making these true predictions. The available exper-
imental data for charm probes are much more sparse (with larger error bars) than the charged
hadron data. However, where available, a comparison of our predictions with the data suggests
the same preference towards delayed energy loss and transverse expansion as charged hadrons.
As mentioned, these results are signi�cant, as consistency between light and heavy �avor is
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Figure 3.8: Heavy �avor predictions for the four explored scenarios of early evolution. Predicted
D (full curves) and B meson (dashed curves) RAA (upper panels) and v2 (lower panels) in
Pb+Pb collisions at

√
sNN = 5.02 TeV. The predictions for D mesons are compared with

ALICE [156, 157] (red triangles) and CMS [158] (blue squares) D meson data, while predictions
for B mesons are compared with CMS [159] (green circles) non-prompt J/Ψ data.

crucial (though highly non-trivial, as implied by the well-known heavy �avor puzzle [160]) for
studying the QGP properties.

3.2.3 Explaining the observed sensitivity

To investigate the origin of the sensitivity of RAA and v2 to the early evolution, we evaluate
the temperature along the paths of jets traveling in-plane (φ = 0) and out-of-plane (φ = π/2)
directions, and average over all sampled jet paths. In Fig. 3.9 we show the time evolution of
the average temperatures in in- and out-of-plane directions, and their di�erence in 10�20% and
30-40% central collisions for τ0 = 0.2 and 1.0 fm, and the free streaming initialization.

The behavior of RAA is now easy to understand in terms of average temperature: Larger
τq, i.e., a delay in the onset of energy loss cuts away the large temperature part of the pro�le,
decreasing the average temperature, and thus increasing the RAA. Similarly, for the late start
of the transverse expansion, i.e., τ0 = 1.0 fm, the temperature is �rst slightly larger and later
lower than for τ0 = 0.2 fm, and thus the RAA in τ0 = τq = 1.0 fm and τ0 = 0.2 with τq = 1.0
cases is almost identical. On the other hand, due to the rapid expansion of the edges of the
system, free streaming initialization leads to lower average temperature than any other scenario,
and thus to the largest RAA.
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Figure 3.9: Average temperature along the jet path traversing the system (upper panel) and
the di�erence of average temperatures in out-of-plane and in-plane directions (lower panel) for
τ0 = 0.2 and 1.0 fm and free-streaming initialization at 10-20% and 30-40% centrality classes.
The average is over all sampled jet paths, and the path ends at the critical temperature,
TC ≈ 160 MeV [162].

High-p⊥ v2, on the other hand, is proportional to the di�erence in temperature along in-
plane and out-of-plane directions and to a lesser extent, to the average temperature. Delaying
the onset of transverse expansion to τ0 = 1.0 fm leads to a larger di�erence than early �uid-
dynamical or free streaming expansion; thus, v2 is the largest. As well as delaying the onset
of energy loss by increasing τq hardly changes v2, since at early times the temperatures that
are seen by jets in in- and out-of-plane directions are almost identical, and no v2 is built up at
that time. Early free streaming and early �uid-dynamical expansion lead to similar di�erences
in temperatures. The slightly larger di�erence in the 10-20% centrality class is counteracted
by slightly lower temperature, and thus �nal v2 is practically identical in both cases. The
temperature di�erences are almost identical in the more peripheral 30-40% class, but the lower
average temperature leads to lower v2 for free streaming.

The delay in transverse expansion a�ects the average temperature along the jet in two
ways. First, smaller τ0 means more signi�cant initial gradients, faster �ow build-up, and faster
initial spatial anisotropy dilution. Similarly, free-streaming leads to an even faster �ow build-
up and dilution of spatial anisotropies than early �uid-dynamical expansion. Second, since
the initial jet production is azimuthally symmetric, and jets travel along eikonal trajectories,
at early times, both in- and out-of-plane jets probe the temperature of the medium almost
the same way. Only over time will the spatial distribution of in- and out-of-plane jets di�er,
and the average temperature along their paths begins to re�ect the anisotropies of the �uid
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temperature. This qualitative understanding indicates that the obtained conclusions are largely
model-independent.

The idea of using high-p⊥ theory and data to explore QGP is not new; see e.g. Refs. [176,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186]. While some of these approaches can achieve a
reasonable agreement with the data (see e.g. [180, 187, 188]), this agreement relies on adjusting
�tting parameter(s) in the energy loss model, which prevents them from constraining the bulk
medium properties. These models thus largely concentrate on investigating the nature of par-
ton interactions (e.g., a new phenomenon of magnetic monopoles is systematically introduced
in [180]) rather than exploring which dynamical evolution better explains the data. In contrast,
the goal of our approach is to constrain the bulk QGP behavior. The major advantage of our
framework is that it does not use �tting parameters in the energy loss model, enabling us to
explore the e�ects of di�erent bulk medium evolutions. We can even use RAA to make conclu-
sions about the bulk properties of the system, where our RAA results imply that the energy
loss during the very early evolution is weaker than energy loss in a fully thermal system.

Furthermore, our study shows that not only is early energy loss suppressed [177, 179], but
the early build-up of transverse expansion must be delayed as well. It is insu�cient to delay
cooling, as suggested in Ref. [177]. However, the initial anisotropy must be diluted much slower
than given by free streaming or �uid dynamics. We do not expect current more sophisticated
approaches to pre-equilibrium dynamics, like KøMPøST (a stylized acronym formed from the
names of its authors: Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney) based on e�ective
kinetic theory [171, 172], to resolve this issue. This approach uses nonequilibrium Green's
functions to propagate the initial energy-momentum tensor to the phase where hydrodynamics
is applicable [171]. As seen in Ref. [166], except in most peripheral collisions, both KøMPøSTing
and free streaming lead to very similar �nal distributions. Thus we may expect that at the
time of switching to �uid dynamics, they both have led to very similar �ow and temperature
pro�les (and thus anisotropies).

Alternatively, the initial spatial anisotropies could be way larger than considered here. It is
known that both IP-Glasma and EKRT approaches lead to larger eccentricities than Glauber,
but we have tested that they both lead to too low high-p⊥ v2 if the �uid dynamical evolution
begins as usually assumed in calculations utilizing IP-Glasma or EKRT initializations (refer to
Appendix A for these results). Event-by-event �uctuations may enhance spatial anisotropies
as well, and by generating shorter-scale structures, they may enhance the sensitivity of high-p⊥
v2 to spatial anisotropies. However, for these additional structures to enhance the high-p⊥ v2,
they should be correlated with the event plane1 [189, 139], which is not necessarily the case.

In summary, in this Chapter, we presented (to our knowledge) the �rst example of using
high-p⊥ theory and data to provide constraints to bulk QGP evolution. Speci�cally, we inferred
that experimental data suggest that the system's energy loss and transverse expansion at early
times should be signi�cantly weaker than in conventional models. We emphasize that the
assumption that no energy loss nor transverse expansion takes place before τ0 = 1.0 fm is
unrealistic. We are not advocating such a scenario, but note that the only way to test our
hypothesis that the early energy loss and expansion should be suppressed was to take the limit
of no energy loss nor transverse expansion. This approach signi�cantly improves the agreement
with the data, thus supporting our hypothesis. While our �nding of delayed onset of energy
loss and transverse expansion has yet to be physically understood, there have been several
anomalies in the history of heavy-ion physics, and this result is one more of them.

1The event plane is de�ned by the azimuthal angle Ψn � it is the plane which maximizes anisotropy vn [189].
One can de�ne a normalized low-p⊥ �ow vector for the n-th harmonic as Qn = |vn|einΨn , with the event plane
angle given as Ψn = arctan

(
ImQn

ReQn

)
/n [139]. One can de�ne similar quantities for high-p⊥ �ow coe�cients [139].
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Furthermore, heavy �avor observables show signi�cant sensitivity to the details of early
evolution, so the upcoming high-luminosity measurements will further test our conclusion.
Our results demonstrate inherent interconnections between low- and high-p⊥ physics, strongly
supporting the utility of our QGP tomography approach, where bulk QGP properties are jointly
constrained by low- and high-p⊥ data.
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Chapter 4

The Anisotropy of Quark-Gluon Plasma

Constrained through High-p⊥ Data

This Chapter is based on [3, 4]. We show, through analytic arguments, numerical calculations,
and comparison with experimental data, that the ratio of the high-p⊥ observables v2/(1−RAA)
reaches a well-de�ned saturation value at high p⊥, and that this ratio depends only on the spatial
anisotropy of the quark-gluon plasma (QGP) formed in ultrarelativistic heavy-ion collisions. To
this end, we use our state-of-the-art dynamical energy loss formalism embedded in the DREENA
framework. In the �rst step, the medium is modeled as a simple 1+1D Bjorken expansion and
later by full hydrodynamical simulations. We show that the ratio of high-p⊥ v2 and (1−RAA)
predictions directly re�ects the time-averaged anisotropy of the evolving QGP, as seen by the
jets and introduce a new observable (jet-perceived anisotropy) to quantify this e�ect.

4.1 In the Bjorken-expanding medium

4.1.1 Introduction

The quark-gluon plasma, created at the LHC and RHIC experiments by colliding heavy ions
at ultra-relativistic energies, can be of di�erent sizes, densities, and shapes, depending on
the colliding nuclei's size and the collision's energy and centrality. In non-central collisions, the
overlap region of the colliding nuclei has an ellipsoidal shape. Thus in the standard experimental
setup, in which the colliding nuclei and collision energy are �xed (e.g. in Pb+Pb collisions at√
sNN = 5.02TeV collision energy at the LHC), the centrality of collision de�nes both the size

and shape of the created QGP �reball.

The eccentric shape of the collision system leads to corresponding anisotropy in the az-
imuthal distribution of �nal particles (so-called elliptic and triangular �ows), where the elliptic
�ow parameter v2 is the second Fourier coe�cient of the azimuthal distribution of produced
particles (see Equation 1.22 in Chapter 1).

The mechanism of how the initial spatial anisotropy is converted to �nal momentum
anisotropy is di�erent for low- and high-p⊥ particles:
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• For low-p⊥ particles, the eccentric shape leads to di�erent pressure gradients in di�erent
directions a�ecting the strength of collective motion in di�erent directions, and thus to
azimuthal variation in the particle emission.

• For high p⊥ particles, eccentricity leads to di�erent paths and consequently di�erent
energy losses of high-p⊥ jets when they traverse the medium in the in-plane and out-of-
plane directions.

While the observed anisotropies of �nal state particles have an essential role in studying
the properties of the QCD matter, to extract, say, the shear viscosity coe�cient over entropy
density ratio η/s from the �nal state distributions, one must know the initial state anisotropy
as well.

However, despite its essential importance, it still needs to be possible to infer the initial
anisotropy from experimental measurements directly. It is possible to measure the anisotropy
at the last point of interaction, i.e., at freeze-out, using Hanbury-Brown interferometry [190].
Alternatively, one can measure event-by-event �uctuations of the anisotropy by measuring
�uctuations of elliptic and triangular �ows [191]. However, it is not possible to measure the
average initial state anisotropy.

Several theoretical studies [192, 193, 194, 90] have provided di�erent methods for calculating
the initial density distribution of the matter produced in heavy-ion collisions and, thus, the
initial anisotropy. These approaches, however, lead to notably di�erent predictions. Since an
accurate estimate of anisotropy is a major limiting factor for precision QGP tomography, it
is evident that alternative approaches for inferring anisotropy are necessary. Optimally, these
approaches should complement the existing predictions and rely on a method that is not based
on models of early stages of QCD matter.

With this goal in mind, we propose a novel approach where the anisotropy of the droplet of
quark-gluon plasma can be inferred from the already available high-p⊥ measurements. Namely,
the energy loss of rare high-momentum partons traversing this matter is known to be an excel-
lent probe of its properties [107, 108, 109]. Di�erent observables probe the medium di�erently,
such as the nuclear modi�cation factor RAA and the elliptic �ow parameter v2 of high-p⊥ par-
ticles. However, they all depend not only on the properties of the medium but also on the
density, size, and shape of the QGP droplet created in a heavy-ion collision. Thus drawing
�rm conclusions about the material properties of QGP is very time-consuming and requires
a simultaneous description of several observables. It would therefore be instrumental if there
were an observable, or combination of observables, which would be sensitive to only one or just
a few of all the parameters describing the system.

For high-p⊥ particles, spatial asymmetry leads to di�erent paths, and consequently to dif-
ferent energy losses. Consequently, v2 (angular di�erential suppression) carries information on
both the spatial anisotropy and material properties that a�ect energy loss along a given path.
On the other hand, RAA (angular average suppression) carries information only on material
properties a�ecting the energy loss [107, 108, 195, 196], so one might expect to extract informa-
tion on the system anisotropy by taking a ratio of expressions which depend on v2 and RAA. Of
course, it is far from trivial whether such intuitive expectations hold, and what combination of
v2 and RAA one should take to extract the spatial anisotropy. To address this, we here use both
analytical and numerical analysis to show that the ratio of v2 and 1−RAA at high p⊥ depends
only on the spatial anisotropy of the system. This approach provides a complementary method
for evaluating the anisotropy of the QGP �reball, and advances the applicability of high-p⊥ data
to a new level as, up to now, these data were mainly used to study the jet-medium interactions
rather than inferring bulk QGP parameters.
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4.1.2 Anisotropy and high-p⊥ observables

In [108, 197], it was shown that at very large values of transverse momentum p⊥, the fractional
energy loss ∆E/E (which is otherwise very complex, both analytically and numerically, due to
inclusion of multiple e�ects; see Chapter 2 for more details) shows asymptotic scaling behavior

∆E/E ≈ χ(p⊥)〈T 〉a〈L〉b, (4.1)

where 〈L〉 is the average path length traversed by the jet, 〈T 〉 is the average temperature along
the path of the jet, χ is a proportionality factor (which depends on initial jet p⊥), and a and
b are proportionality factors which determine the temperature and path-length dependence of
the energy loss. Based on Refs. [117, 118, 110, 119], we might expect values like a = 3 and
b = 1 or 2, but a �t to a full-�edged calculation yields the following values [138, 197, 198]:

a ≈ 1.2,

b ≈ 1.4.

Thus the temperature dependence of the energy loss is close to linear, while the length depen-
dence is between linear and quadratic. To evaluate the path length, we follow Ref. [137]:

L(x, y, φ) =

∫∞
0

dλλ ρ(x+ λ cos(φ), y + λ sin(φ))∫∞
0

dλ ρ(x+ λ cos(φ), y + λ sin(φ))
, (4.2)

which gives the path length of a jet produced at point (x, y) heading to direction φ, and where
ρ(x, y) is the initial density distribution of the QGP droplet. To evaluate the average path
length we take average over all directions and production points.

If ∆E/E is small (i.e., for high p⊥ and in peripheral collisions), we obtain [130, 107, 108, 197]

RAA ≈ 1− ξ〈T 〉a〈L〉b, (4.3)

where:

ξ =
(n− 2)

2
χ, (4.4)

where χ is a proportionality factor [107] and n is the steepness of a power-law �t to the initial
transverse momentum distribution:

dN

dp⊥
∝ 1

pn⊥
. (4.5)

Thus 1−RAA is proportional to the average size and temperature of the medium. To evaluate
the anisotropy, we de�ne the average path lengths in the in-plane and out-of-plane directions,

〈Lin〉 =
1

∆φ

∫ ∆φ/2

−∆φ/2

dφ 〈L(φ)〉, (4.6)

〈Lout〉 =
1

∆φ

∫ π/2+∆φ/2

π/2−∆φ/2

dφ 〈L(φ)〉,

where ∆φ = π/6 [199] is the acceptance angle with respect to the event plane (in-plane) or
orthogonal to it (out-of-plane), and 〈L(φ)〉 the average path length in φ direction. Note that the
obtained calculations are robust with respect to the precise value of the small angle ±∆φ/2, but
we still keep a small cone (±π/12) for Rin

AA and Rout
AA calculations to have the same numerical

setup as in our Ref. [108]. Now we can write:

〈L〉 =
〈Lout〉+ 〈Lin〉

2
, (4.7)
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Figure 4.1: The anisotropy expressed through temperature (∆T/〈T 〉) versus the anisotropy
expressed through path-lengths (∆L/〈L〉) in Pb+Pb collisions at

√
sNN = 5.02 TeV collision

energy at various centralities (5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%) [107,
108]. The more peripheral the collision, the larger the values. The red solid line depicts a linear
�t to the values.

and

∆L =
〈Lout〉 − 〈Lin〉

2
. (4.8)

Similarly, the average temperature along the path length can be split to average temperatures
along paths in in- and out-of-plane directions:

〈Tin〉 = 〈T 〉+ ∆T, (4.9)

and
〈Tout〉 = 〈T 〉 −∆T. (4.10)

When applied to an approximate way to calculate v2 of high-p⊥ particles (refer to the de�nition
of v2 in Chapter 1), we obtain

v2 ≈
1

2

Rin
AA −Rout

AA

Rin
AA +Rout

AA

≈ ξ〈Tout〉a〈Lout〉b − ξ〈Tin〉a〈Lin〉b
4

≈ ξ〈T 〉a〈L〉b
(
b

2

∆L

〈L〉 −
a

2

∆T

〈T 〉

)
, (4.11)

where we have assumed that ξ〈T 〉a〈L〉b � 1, and that ∆L/〈L〉 and ∆T/〈T 〉 are small as well.
Note that the �rst approximate equality in Eq. (4.11) can be shown to be exact if the higher
harmonics v4, v6, etc., are zero, and the opening angle where Rin

AA and Rout
AA are evaluated is

zero (cf. de�nitions of 〈Lout〉 and 〈Lin〉, Eq. (4.6)).
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By combining Eqs. (4.3) and (4.11), we obtain:

v2

1−RAA

≈
(
b

2

∆L

〈L〉 −
a

2

∆T

〈T 〉

)
. (4.12)

This ratio carries information on the anisotropy of the system, but through both spatial
(∆L/〈L〉) and temperature (∆T/〈T 〉) variables. From Eq. (4.12), we see the usefulness of
the (approximate) analytical derivations, since the term (1 − RAA) in the denominator could
hardly have been deduced intuitively or pinpointed by numerical trial and error. Figure 4.1
shows a linear dependence:

∆L

〈L〉 ≈ c
∆T

〈T 〉 , (4.13)

where c ≈ 4.3, with the temperature evolution given by one-dimensional Bjorken expansion, as
su�cient to describe the early evolution of the system. Eq. (4.12) can thus be simpli�ed to

v2

1−RAA

≈ 1

2

(
b− a

c

) 〈Lout〉 − 〈Lin〉
〈Lout〉+ 〈Lin〉

≈ 0.57ς,

where ς =
〈Lout〉 − 〈Lin〉
〈Lout〉+ 〈Lin〉

and
1

2
(b− a

c
) ≈ 0.57, (4.14)

when a ≈ 1.2 and b ≈ 1.4. Consequently, the asymptotic behavior of observables RAA and v2 is
such that, at high p⊥, their ratio is dictated solely by the geometry of the �reball. Therefore,
the anisotropy parameter ς can be extracted from the high-p⊥ experimental data.

Figure 4.2: Theoretical predictions for v2/(1− RAA) ratio of charged hadrons as a function of
transverse momentum p⊥ compared with 5.02 TeV Pb + Pb ALICE [144, 145] (red triangles),
CMS [146, 147] (blue squares) and ATLAS [148, 149] (green circles) data. Panels correspond
to 10-20%, 20-30%, 30-40%, and 40-50% centrality bins. The gray band corresponds to the
uncertainty in the magnetic to electric mass ratio µM/µE. The upper (lower) boundary of the
band corresponds to µM/µE = 0.4 (0.6) [152, 153]. In each panel, the red line corresponds to
the limit 0.57ς from Eq. (4.14).

Regarding the parametrization used to derive Eq. (4.14) (constants a, b and c), we note
that a and b are well established within our dynamical energy loss formalism and follow from
RAA predictions that are extensively tested on experimental data [197, 198] and do not depend
on the details of the medium evolution. Regarding c, it may (to some extent) depend on the
type of the implemented medium evolution, but this will not a�ect the obtained scaling, only
(to some extent) the overall prefactor in Eq. (4.14).
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4.1.3 Numerical results

To assess the applicability of the analytically derived scaling in Eq. (4.14), we calculate v2/(1−
RAA) using our full-�edged numerical procedure for calculating the fractional energy loss de-
scribed in Chapter 2.

The formalism was further embedded into DREENA-B framework [108], which includes all
the ingredients of the dynamical energy loss formalism, and models the medium as a 1+1D
Bjorken expansion (see Chapters 1 and 2 for more details).

The framework was recently used to obtain joint RAA and v2 predictions for 5.02 TeV Pb+Pb
collisions at the LHC [108], showing a good agreement with the experimental data.

It was previously shown [126] that all the model ingredients a�ect the high-p⊥ data and
thus should be included to explain it accurately. In that respect, DREENA-B di�ers from
many other approaches, which use a sophisticated medium evolution, but an (over)simpli�ed
energy loss model. However, it was shown that, for explaining the high-p⊥ data, an accurate
description of high-p⊥ parton-medium interactions is at least as important as an advanced
medium evolution model. For example, the dynamical energy loss formalism, embedded in 1D
Bjorken expansion, explains well the v2 puzzle [108], i.e., the inability of other models to jointly
explain RAA and v2 measurements.

Our results for the longitudinally expanding system (1D Bjorken) and the corresponding
data are shown in Fig. 4.2. The gray band shows our full DREENA-B result (see above) with
the band resulting from the uncertainty in the magnetic to electric mass ratio µM/µE [152,
153]. The red line corresponds to the 0.57ς limit from Eq. (4.14), where ς is the anisotropy
of the path lengths used in the DREENA-B calculations [108, 107]. Signi�cantly, for each
centrality, the asymptotic regime � where the v2/(1 − RAA) ratio does not depend on p⊥ but
is determined by the geometry of the system � is already reached from p⊥ ∼ 20�30 GeV; the
asymptote corresponds to the analytically derived Eq. (4.14), within ±5% accuracy. It is also
worth noting that our asymptotic behavior prediction was based on approximations that are
not necessarily valid in these calculations. However, the asymptotic regime is nevertheless
reached, meaning those assumptions were su�cient to capture the dominant features. If, as
we suspect, the high-p⊥ parton-medium interactions are more important than the medium
evolution model in explaining the high-p⊥ data, this behavior re�ects this importance, and the
analytical derivations based on a static medium may capture the dominant features seen in
Fig. 4.2.

Furthermore, to check if the experimental data support the derived scaling relation, we
compare our results to the ALICE [144, 145], CMS [146, 147] and ATLAS [148, 149] data for√
sNN = 5.02 TeV Pb+Pb collisions. The experimental data for all three experiments show the

same tendency, i.e., the independence on the p⊥ and consistency with our predictions, though
the error bars are still considerable. Therefore, from Fig. 4.2, we see that at each centrality, both
the numerically predicted and experimentally observed v2/(1−RAA) approach the same high-
p⊥ limit. This robust, straight-line, asymptotic value carries information about the system's
anisotropy, which is, in principle, simple to infer from the experimental data.

Ideally, the experimental data (here from ALICE, CMS, and ATLAS) would overlap and
have small error bars. In such a case, the data could directly extract the anisotropy parameter
ς by �tting a straight line to the high-p⊥ part of the v2/(1 − RAA) ratio. While such direct
anisotropy extraction would be highly desirable, the available experimental data are unfortu-
nately still not near the precision level needed to implement this. However, we expect this to
change in the upcoming high-luminosity 3rd run at the LHC, where the error bars are expected
to be signi�cantly reduced so that this procedure can be directly applied to experimental data.
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4.1.4 The anisotropy parameter

It is worth remembering that the anisotropy parameter ς, which can be extracted from the
high-p⊥ data, is not the commonly used anisotropy parameter ε2 [200],

ε2 =
〈y2 − x2〉
〈y2 + x2〉 =

∫
dx dy (y2 − x2) ρ(x, y)∫
dx dy (y2 + x2) ρ(x, y)

, (4.15)

where ρ(x, y) is the initial density distribution of the QGP droplet. We may also expect that
once the transverse expansion is included in the description of the evolution, the path-length
anisotropy ς re�ects the time-averaged anisotropy of the system (and indeed, we will see that
this is the case in the upcoming section), and therefore is not directly related to the initial-state
anisotropy ε2. Nevertheless, it is instructive to check how the path-length anisotropy in our
simple model relates to conventional ε2 values in the literature. For this purpose, we construct
a variable [3]:

ε2L =
〈Lout〉2 − 〈Lin〉2
〈Lout〉2 + 〈Lin〉2

=
2ς

1 + ς2
. (4.16)

We have checked that ε2 and ε2L agree within ∼10% accuracy for di�erent density distributions.

We have extracted the parameters ς from the DREENA-B results shown in Fig. 4.2; the
corresponding ε2L results are shown as a function of centrality in Fig. 4.3 and compared to
ε2 evaluated using various initial-state models in the literature [192, 193, 194, 90]. Note that
conventional (EKRT [193], IP-Glasma [194]) ε2 values trivially agree with our initial ε2 (not
shown in the Figure), i.e., the initial ε2 characterize the anisotropy of the path lengths used
as an input to DREENA-B, which we had chosen to agree with the conventional models 1.
It is, however, much less trivial that, through this procedure, in which we calculate the ratio
of v2 and 1 − RAA through complete DREENA framework, our extracted ε2L almost exactly
recovers our initial ε2. Note that ε2 is indirectly introduced in RAA and v2 calculations through
path-length distributions, while our calculations are performed using full-�edged numerical
procedure, not just Eq. (4.1). Consequently, such direct extraction of ε2L and its agreement
with our initial (and consequently also conventional) ε2 is highly non-trivial and gives us a good
deal of con�dence that v2/(1 − RAA) is related to the anisotropy of the system only, and not
its material properties.

High-p⊥ theory and data are traditionally used to explore interactions of traversing high-
p⊥ probes with QGP, while bulk properties of QGP are obtained through low-p⊥ data and
the corresponding models. On the other hand, high-p⊥ probes are also powerful tomography
tools since they are sensitive to global QGP properties. We demonstrated this in the spatial
anisotropy of the QCD matter formed in ultrarelativistic heavy-ion collisions. We used our
dynamical energy loss formalism and DREENA-B framework to show that a (modi�ed) ratio of
two main high-p⊥ observables, RAA and v2, approaches an asymptotic limit at experimentally
accessible transverse momenta and that this asymptotic value depends only on the shape of
the system, not on its material properties. However, how exactly this asymptotic value re�ects
the shape and anisotropy of the system requires further study employing full three-dimensional
expansion, the results of which will be shown in the upcoming section of this Chapter.

The experimental accuracy still needs to allow the extraction of the anisotropy from the
data using our scheme. However, once the accuracy improves in the upcoming LHC runs, we
expect the anisotropy of the QGP formed in heavy-ion collisions can be inferred directly from
the data. Such an experimentally obtained anisotropy parameter would provide an essential

1Binary collision scaling calculated using optical Glauber model with additional cut-o� in the tails of Woods-
Saxon potentials, to be exact.
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4. The Anisotropy of Quark-Gluon Plasma Constrained through High-p⊥ Data

Figure 4.3: Comparison of ε2L (red band) obtained from our method, with ε2 calculated using
Monte Carlo (MC) Glauber [192] (gray band), EKRT [193] (the purple band), IP-Glasma [194]
(green dot-dashed curve), and MC-KLN [90] (blue dotted curve) approaches. MC-Glauber and
EKRT results correspond to 5.02 TeV, while IP-Glasma and MC-KLN correspond to 2.76 TeV
Pb+ Pb collisions at the LHC.

constraint to models describing the early stages of heavy-ion collision and QGP evolution and
demonstrate the synergy of high-p⊥ theory and data with more common approaches for inferring
QGP properties.
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4.2. Exploring the anisotropy of the fully evolving medium through high-p⊥ data

4.2 Exploring the anisotropy of the fully evolving

medium through high-p⊥ data

We previously argued that, at large enough values of transverse momentum (high-p⊥), the
ratio of the elliptic �ow v2 and 1−RAA, where RAA is the nuclear suppression factor, saturates
and re�ects the initial geometry of the system. However, this argument was based on analytic
considerations and a simple 1-dimensional expansion [93, 108], where the geometry does not
depend on time. To see how the evolving shape of the collision system a�ects the high-p⊥
observables and, subsequently, the v2/(1−RAA) ratio, we here study the behavior of this ratio
in a system that expands both in longitudinal and transverse directions.

Furthermore, there is experimental evidence for such saturation. As shown in Fig. 4.4,
at high values of transverse momentum, v2 and 1 − RAA are directly proportional, which is
equivalent to a p⊥-independent ratio of v2 and 1 − RAA. We here explore whether state-of-
the-art �uid-dynamical calculations tuned to reproduce the low-p⊥ data can reproduce such
proportionality and whether we can relate this proportionality to a physical property of the
system, namely to the anisotropy of its shape.

Figure 4.4: Direct proportionality of high-p⊥ v2 and 1 − RAA, which suggests that their ratio
is p⊥-independent. The �gure shows v2 vs 1−RAA for p⊥> 10 GeV data for charged hadrons
from 5.02 TeV Pb+Pb ALICE [144, 145] (red triangles), CMS [146, 147] (blue squares) and
ATLAS [148, 149] (green circles) experiments. The data is shown for the 40-50% centrality
bin, while similar relation is obtained for other centralities (see Fig. B.1 in Appendix B).
Each collaboration's datapoints correspond to di�erent values of p⊥, with both v2 and 1−RAA

decreasing with increasing p⊥.

In line with the standard approach in the study of ultrarelativistic heavy-ion collisions, we
assume the collision system behaves as a locally thermalized dissipative �uid. The transverse
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4. The Anisotropy of Quark-Gluon Plasma Constrained through High-p⊥ Data

expansion of such a system largely depends on the initial gradients of the system, i.e., the
initial state, and also on the equation of state (EoS) and dissipative properties of the �uid.
Thus, to provide more general conclusions about the asymptotic behavior of v2/(1 − RAA), it
is necessary to explore not only one but several di�erent �uid-dynamical evolution scenarios.
On the other hand, it is known that at low-p⊥, the elliptic �ow parameter v2 is proportional to
the initial anisotropy of the system ε2,2 [201]. However, the proportionality constant depends
on the calculation parameters, say the freeze-out temperature. To avoid similar ambiguity, we
prefer not to vary the initialization model's parameters randomly but constrain the calculation
to reproduce the low-p⊥ data and explore the universality of our results using several di�erent
initialization models, collision energies, and systems. In particular, to initialize Pb+Pb col-
lisions at

√
sNN = 5.02 TeV collision energy, we employ optical Glauber [48], TRENTo [89],

IP-Glasma [77, 78], and EKRT [86, 87, 88] initializations. In addition, we explore the sensi-
tivity to collision energy and colliding nuclei by using optical Glauber initialization for Pb+Pb
collisions at

√
sNN = 2.76 TeV and Xe+Xe collisions at

√
sNN = 5.44 TeV.

We will see that the temperature evolution in di�erent evolution scenarios is di�erent enough
to lead to observable di�erences in high-p⊥ v2 and 1−RAA, and the ratio of these observables
is directly related to a suitably de�ned measure of the system anisotropy. The di�erences in
high-p⊥ v2 and 1 − RAA mean that constraining the calculation to reproduce the low-p⊥ data
does not guarantee to reproduce the high-p⊥ data. Simultaneous reproduction of both is not
an aim of this study but is left for future work.

4.2.1 Medium evolution

Our starting point and reference for all collision energies and systems is a simple optical Glauber
model-based initialization. In Pb+Pb collisions at full LHC energy (

√
sNN = 5.02 TeV) we used

initial times τ0 = 0.2, 0.4, 0.6, 0.8, and 1.0 fm, whereas the lower energy (
√
sNN = 2.76 TeV)

Pb+Pb and Xe+Xe (
√
sNN = 5.44 TeV) calculations were carried out for τ0 = 0.2, 0.6, and

1.0 fm. The initialization and code used to solve viscous �uid-dynamical equations in 3+1
dimensions are described in detail in Ref. [104], and parameters to describe Pb+Pb collisions
at
√
sNN = 5.02 TeV are the same as in the previous Chapter. In particular, we use a constant

shear viscosity to entropy density ratio η/s = 0.12 (Pb+Pb) or η/s = 0.10 (Xe+Xe), and the
EoS parametrization s95p-PCE-v1 [143].

Di�erent initial state models lead to slightly di�erent shapes of the initial state. To �nd
if our �ndings are a feature of the Glauber model or have broader signi�cance, we did the
Pb+Pb calculations at the full LHC energy using several di�erent initial state models. The
�rst option in this extended set, Glauber + Free streaming, is to use the Glauber model to
provide the initial distribution of (marker) particles, allow the particles to stream freely from
τ = 0.2 to 1.0 fm, evaluate the energy-momentum tensor of these particles, and use it as the
initial state of the �uid. We evolve the �uid using the same code as in the case of pure Glauber
initialization. The EoS is s95p-PCE175, i.e., a parametrisation with Tchem = 175 MeV [175], and
temperature-independent η/s = 0.16. For further details, see the second part of the previous
Chapter.

As more sophisticated initializations, we employ EKRT, IP-Glasma, and TRENTo.

• The EKRT model [86, 87, 88] is based on the NLO perturbative QCD computation of
the transverse energy and a gluon saturation conjecture. We employ the same setup as
used in Ref. [202] (see also [175]), compute an ensemble of event-by-event �uctuating
initial density distributions, average them, and use this average as the initial state of the
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�uid dynamical evolution. We again use the code of Molnar et al., [104] but restricted to
boost-invariant expansion. The shear viscosity over entropy density ratio is temperature
dependent with favored parameter values from the Bayesian analysis of Ref. [202]. Initial
time is τ0 = 0.2 fm, and the EoS is the s83s18 parametrisation from Ref. [202].

• IP-Glasma model [77, 78] is based on Color Glass Condensate [82, 83, 84, 85]. It calcu-
lates the initial state as a collision of two color glass condensates and evolves the gen-
erated �uctuating gluon �elds by solving classical Yang-Mills equations. The calculated
event-by-event �uctuating initial states [203] were further evolved [204] using the MUSIC
code [205, 206, 207] constrained to boost-invariant expansion. We subsequently averaged
the evaluated temperature pro�les to obtain one average pro�le per centrality class. In
these calculations, the switch from Yang-Mills to �uid-dynamical evolution took place at
τswitch = 0.4 fm, shear viscosity over entropy density ratio was constant η/s = 0.12, and
the temperature-dependent bulk viscosity coe�cient over entropy density ratio had its
maximum value ζ/s = 0.13. The equation of state was based on the HotQCD lattice
results [208] as presented in Ref. [209].

• TRENTo [89] is a phenomenological model capable of interpolating between wounded
nucleon and binary collision scaling, and with a proper parameter value, of mimicking
the EKRT and IP-Glasma initial states. As with the EKRT initialization, we create
an ensemble of event-by-event �uctuating initial states, sort them into centrality classes,
average, and evolve these average initial states. Unlike in other cases, we employ the
version of the VISH2+1 code [210] described in Refs. [211, 212]. We run the code using
the favored values of the Bayesian analysis of Ref. [212]; in particular, allow free streaming
until τ = 1.16 fm, the minimum value of the temperature-dependent η/s is 0.081, and
the maximum value of the bulk viscosity coe�cient ζ/s is 0.052. The EoS is the same
HotQCD lattice results [208] based parametrization used in Refs. [211, 212].

It is worth noticing that the initial nuclear con�guration in all these cases is similar Woods-
Saxon parametrization of nuclear matter density, which is either assumed to be continuous
(optical Glauber) or Monte-Carlo sampled to create ensembles of nucleons (EKRT, IP-Glasma,
TRENTo). The di�erences in the �uid-dynamical initial state depend on the initial particle
production and subsequent evolution before the �uid-dynamical stage (none, Yang-Mills, free
streaming).

All these calculations were tuned to reproduce, in minimum, the centrality dependence of
charged particle multiplicity, p⊥ distributions and v2(p⊥) in Pb+Pb collisions at both collision
energies, and the centrality dependence of charged particle multiplicity and v2{4} in Xe+Xe
collisions.

4.2.2 Numerical and experimental results

To calculate high-p⊥ RAA and v2, we used the DREENA-A framework [109], described in more
detail in Chapter 2.

We succinctly note that the framework does not have free parameters in the energy loss, i.e.,
all the parameters are �xed to standard literature values. Consequently, it can fully utilize dif-
ferent temperature pro�les as the only input in DREENA-A. RAA and v2 predictions, generated
under the same formalism and parameter set (and calculated in a conventional way, see [109]),
can thus be systematically compared to experimental data to map out the bulk properties of
QGP.
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In the context of the results presented in this Chapter, it is worth noting that while the
model has several unique features in describing parton-medium interactions, it could still be
improved by including, e.g., the �ow velocity of the bulk medium and transverse gradients of
temperature and density (see, e.g., [213, 214, 215, 216]). However, such improvements are in
their infancy in any framework, and implementing them into the dynamical energy loss model
while keeping all existing ingredients is challenging. Nevertheless, such improvements might
somewhat in�uence the quantitative results presented in this Chapter, and quantifying such
e�ects is an important future goal.

We compared our predictions with data from the Pb+Pb collisions at
√
sNN = 2.76 and

5.02 TeV analysed by the LHC experiments ALICE [144, 145, 217, 218], CMS [146, 147, 219,
220], and ATLAS [148, 149, 221, 222]. We used v2 measurement obtained with the scalar
product method (de�ned in [149]). Since we are interested in the high p⊥ region, we considered
data with p⊥ > 10 GeV. The p⊥ bins are chosen as in the v2 measurements, and the RAA

distributions are interpolated to the chosen binning. Since the CMS experiment used coarser
granularity in centrality for RAA measurements, i.e., 10-30% and 30-50%, we assigned the values
obtained from 10-30% (30-50%) to both 10-20% and 20-30% (30-40% and 40-50%). Finally,
combined uncertainties on the v2/(1 − RAA) are calculated assuming that v2 and RAA are
correlated.

To gain an intuitive insight into how di�erent initializations in�uence high-p⊥ predictions,
we show in Fig. 4.5 temperatures encountered by partons in

√
sNN = 5.02 TeV Pb+Pb collisions

as a function of traversed distance using four di�erent temperature pro�les. These plots are
produced by generating initial high-p⊥ partons' positions according to binary collision densities.
Then these partons traverse the medium in the in-plane (red) or out-of-plane (blue) directions,
and the temperature they experience is plotted as a function of their path until they leave QGP.
The larger the temperature that partons experience while traversing the QGP, the larger the
suppression in high-p⊥ observables. Similarly, a larger di�erence between in-plane or out-of-
plane temperatures is related to a larger high-p⊥ v2.

From Fig. 4.5, we observe that partons traveling in the in-plane and out-of-plane directions
experience di�erent temperatures in di�erent scenarios, leading to the di�erent behavior of
high-p⊥ particles. For example, based on the maximum temperature encountered, we expect
the largest suppression (i.e., the smallest RAA) for 'EKRT'. In contrast, 'Glauber + FS' is
expected to lead to the largest RAA. On the other hand, from the di�erence in in-plane and
out-of-plane temperatures, we expect the largest v2 for 'Glauber, τ0 = 1 fm', followed by 'IP-
Glasma', while v2 for 'EKRT' should be notably smaller. The ordering of RAA and v2 is thus
di�erent for di�erent evolution scenarios, and therefore it is a priori unclear what the ordering
of v2/(1−RAA) might be.

In this section, we aim to address the following questions:

• Is the saturation in v2/(1− RAA) at high-p⊥ still observed for these di�erent pro�les, as
expected from our previous analytical arguments and simple 1D Bjorken expansion?

• If yes, does this saturation carry information about the anisotropy of the system?

• What kind of anisotropy measure corresponds to the high-p⊥ data?

To start addressing these questions, we show in Fig. 4.6 how v2/(1−RAA) depends on p⊥ in
Pb+Pb collisions at

√
sNN = 2.76 and 5.02 TeV using di�erent temperature pro�les. To avoid

cluttering the Figure, at
√
sNN = 5.02 TeV, we concentrate on the same four pro�les as shown in

Fig. 4.5. The ratio is almost independent of p⊥ above p⊥ ≈ 30 GeV, although IP-Glasma shows
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Figure 4.5: Light red (light blue) shaded areas represent the temperatures along the paths
of high-p⊥ partons when traversing the medium in the in-plane (out-of-plane) direction. For
every scenario, we show 1250 in-plane and out-of-plane trajectories. The temperature pro�les
are from �uid-dynamical calculations of

√
sNN = 5.02 TeV Pb+Pb collisions in the 30-40%

centrality class, utilizing the Glauber model (with τ0 = 1.0 fm), Glauber + free streaming
(FS), IP-Glasma, and EKRT initializations. Dark red (dark blue) curves represent the average
temperature experienced by the particles in the in-plane (out-of-plane) directions.

some p⊥ dependence even above this limit. We also con�rmed that the saturation is obtained
for other hydrodynamic calculations outlined in the Medium evolution subsection (not shown).
Thus, we con�rm that the phenomenon of v2/(1−RAA) saturation is indeed robust, i.e., holds
for a variety of di�erent transversely expanding systems.

We also observe that some pro�les lead to better agreement with the data than others. The
general trend is that the later the transverse expansion begins (�uid dynamical or otherwise),
the better the �t to the data. We have discussed some implications of this �nding in Chapter
3. However, here, we explore how the di�erences in the medium evolution are re�ected through
high-p⊥ data and leave further comparisons between predictions and the data to later studies.

To �nd out whether the saturation values of v2/(1 − RAA) are correlated with the system
geometry, we evaluate the average path length of partons, 〈L〉, and its anisotropy

∆L

〈L〉 =
〈Lout〉 − 〈Lin〉
〈Lout〉+ 〈Lin〉

, (4.17)

where 〈Lin〉 and 〈Lout〉 refer to the average path-length of high-p⊥ particles in the in-plane and
out-of-plane directions. For every temperature pro�le, 〈Lin〉 and 〈Lout〉 is calculated using the
Monte Carlo method to generate an initial hard parton position in the XY plane according
to the binary collision densities. The parton then traverses the medium in the φ = 0 (or
φ = π/2) direction until the temperature at the parton's current position drops below critical
temperature Tc. We use Tc=160 MeV, which is within the uncertainty of the lattice QCD
critical temperature of 154 ± 9 MeV [162]. We then obtain 〈Lin〉 and 〈Lout〉 by averaging the
in-plane and out-of-plane path lengths over many di�erent partons.

In Fig. 4.7 we have plotted the values of v2/(1 − RAA) evaluated at 100 GeV for di�erent
initializations, collision energies, and systems vs. the corresponding path-length anisotropies
∆L/〈L〉. Except for IP-Glasma, each case is presented with four points corresponding to the
centrality classes 10-20%, 20-30%, 30-40%, and 40-50%. We have omitted the 40-50% class of
IP-Glasma since the average pro�le for this centrality class was not smooth enough to produce
reliable v2 and RAA results.

Figure 4.7 shows a surprisingly simple relation between v2/(1 − RAA) and ∆L/〈L〉, inde-
pendently on the collision system and energy, where the dependence is linear with a slope of
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Figure 4.6: Calculated and experimentally observed v2/(1 − RAA) ratio for charged hadrons
as a function of transverse momentum p⊥ in

√
sNN = 5.02 (upper) and 2.76 (lower) TeV

Pb+Pb collisions. The calculations within DREENA-A framework were carried out using four
di�erent temperature pro�les (Glauber with τ0 = 1.0 fm, Glauber + free streaming (FS),
IP-Glasma, and EKRT) at

√
sNN = 5.02 TeV, and three at

√
sNN = 2.76TeV (Glauber with

initial times τ0 = 0.2, 0.6 and 1.0 fm). The data are by ALICE [144, 145, 217, 218] (red
triangles),CMS [146, 147, 219, 220] (blue squares) and ATLAS [148, 149, 221, 222] (green
circles) collaborations. Each panel corresponds to a di�erent centrality (10-20%, 20-30%,30-
40%, 40-50%). The bands correspond to the uncertainty in the magnetic-to-electric mass ratio.
Each band's upper (lower) boundary corresponds to µM/µE = 0.4 (0.6).

almost 1. Therefore, the system's geometry dominates the saturation value, although, at small
values of ∆L/〈L〉, there is a deviation from the linear proportionality. It is worth noticing
that here the values of ∆L/〈L〉 are much smaller than in our earlier 1D study, presented in
Section 4.1. Also, even if the values of ∆L/〈L〉 are very di�erent for di�erent initializations; the
initial anisotropies, ε2,2, are not so di�erent. The general trend is that the earlier the transverse
expansion begins (�uid dynamical or otherwise), the smaller the ∆L/〈L〉 in the same centrality
class. The time it takes the parton to reach the system's edge is almost independent of τ0.
However, small τ0 means that the system has evolved longer by the time the parton reaches the
edge, and the initial anisotropy has been diluted more. Thus, the earlier the expansion begins,
the lower is the ∆L and ∆L/〈L〉 depicts the mentioned sensitivity to the time when expansion
begins.

4.2.3 Are these results robust?

Di�erent collision system. In order to con�rm that the saturation of v2/(1−RAA) is observed
in other collision systems, we show this ratio (obtained within DREENA-A) as a function of
p⊥ for Xe+Xe collisions at

√
sNN = 5.44 TeV on Figure 4.8. We observe that v2/(1 − RAA)

saturates at high values of transverse momentum, which justi�es our usage of data related to
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4.2. Exploring the anisotropy of the fully evolving medium through high-p⊥ data

Figure 4.7: Charged hadron v2/(1−RAA) as a function of path-length anisotropies ∆L/L, for
di�erent collision systems and energies (Pb+Pb at

√
sNN = 2.76 and 5.02 TeV and Xe+Xe

at
√
sNN = 5.44 TeV), various centrality classes and temperature pro�les, as indicated on the

legend. For every pro�le, the point with the lowest ∆L/L corresponds to the 10-20% centrality
class, the next one corresponds to 20-30%, and so on, up to 40-50% (except IP-Glasma, where
the highest centrality is 30-40%). The value of transverse momentum is �xed at p⊥ = 100 GeV,
and the linear �t yields a slope of ≈ 1.

this collision system in further analyses.
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Figure 4.8: v2/(1−RAA) ratio for charged hadrons as a function of transverse momentum p⊥ in√
sNN = 5.44 TeV Xe+Xe collisions. The calculations within the DREENA-A framework were

carried out using three di�erent temperature pro�les (Glauber with initial times τ0 = 0.2, 0.6
and 1.0 fm). Each panel corresponds to a di�erent centrality (10-20%, 20-30%,30-40%, 40-50%).
The bands correspond to the uncertainty in the magnetic-to-electric mass ratio. Each band's
upper (lower) boundary corresponds to µM/µE = 0.4 (0.6).
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4. The Anisotropy of Quark-Gluon Plasma Constrained through High-p⊥ Data

Di�erent energy loss model. Furthermore, we explore if we can reproduce the same
results if we switch to a di�erent energy loss model. In particular, we investigate if the saturation
of v2/(1 − RAA) is still present at high p⊥ and whether we can correlate its values to the
anisotropy of path lengths ∆L/L. As explained in Chapter 2, the formalism embedded in the
DREENA-A procedure includes radiative and collisional energy loss mechanisms. To test the
behavior of v2/(1−RAA) for di�erent energy loss models, we use DREENA-A but modi�ed so
that it calculates high-p⊥ RAA and v2 taking into account only radiative (or only collisional)
energy loss mechanisms.

Figure 4.9 shows v2/(1−RAA) calculated within the DREENA-A framework, but focusing
exclusively on radiative energy loss (with collisional energy loss arti�cially set to zero). We
observe that the obtained v2/(1 − RAA) ratio saturates at high values of p⊥, con�rming the
robustness of this phenomenon with respect to the change in the energy loss model.

Figure 4.9: Calculated observed v2/(1−RAA) ratio for charged hadrons as a function of trans-
verse momentum p⊥ in

√
sNN = 5.02 Pb+Pb collisions, considering only radiative energy loss.

The calculations within the DREENA-A framework were carried out using four di�erent tem-
perature pro�les (Glauber with τ0 = 1.0 fm, Glauber + free streaming (FS), IP-Glasma, and
EKRT) at

√
sNN = 5.02 TeV. Each panel corresponds to a di�erent centrality (10-20%, 20-30%,

30-40%, 40-50%). The bands correspond to the uncertainty in the magnetic-to-electric mass
ratio. Each band's upper (lower) boundary corresponds to µM/µE = 0.4 (0.6).

Moreover, we conduct a similar analysis as beforehand, i.e., we plot the values of v2/(1−RAA)
(obtained taking into account only radiative energy loss) at 100 GeV as a function of the
anisotropy of path lengths ∆L/L, refer to Figure 4.10, and we again observe linear dependence
with a slope that is close to 1.

Now we conduct the equivalent analysis but take into account only collisional energy loss
(with radiative energy loss arti�cially set to zero), and the results are shown in Figures 4.11
and 4.12. We again observe that v2/(1 − RAA) saturates at high transverse momentum, and
we observe a linear dependence between v2/(1 − RAA) and ∆L/L. However, the slope value
is di�erent than 1, but this is to be expected since neither radiative or collisional energy loss
alone is su�cient to explain the experimental data adequately.

From these results, we conclude that the phenomenon of v2/(1 − RAA) saturation and its
relation to the anisotropy of the system is indeed robust and energy loss model-independent.

4.2.4 Jet-perceived anisotropy

∆L/〈L〉 depends on the shape of the system, and how the shape evolves, but it is not easy
to see how the evolution a�ects it. To change the point of view from individual jets and their
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4.2. Exploring the anisotropy of the fully evolving medium through high-p⊥ data

Figure 4.10: Charged hadron v2/(1 − RAA) (calculated by taking into account only radiative
energy loss) as a function of path-length anisotropies ∆L/L, for Pb+Pb at

√
sNN = 5.02

TeV, various centrality classes and temperature pro�les, as indicated on the legend. For every
pro�le, the point with the lowest ∆L/L corresponds to the 10-20% centrality class, the next
one corresponds to 20-30%, and so on, up to 40-50% (except IP-Glasma, where the highest
centrality is 30-40%). The value of transverse momentum is �xed at p⊥ = 100 GeV, and the
linear �t yields a slope of ≈ 1.

Figure 4.11: Calculated observed v2/(1 − RAA) ratio for charged hadrons as a function of
transverse momentum p⊥ in

√
sNN = 5.02 Pb+Pb collisions, taking into account only collisional

energy loss. The calculations within the DREENA-A framework were carried out using four
di�erent temperature pro�les (Glauber with τ0 = 1.0 fm, Glauber + free streaming (FS), IP-
Glasma, and EKRT) at

√
sNN = 5.02 TeV. Each panel corresponds to a di�erent centrality

(10-20%, 20-30%,30-40%, 40-50%).

paths to the shape of the bulk medium and its evolution, we devised a measure similar to
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4. The Anisotropy of Quark-Gluon Plasma Constrained through High-p⊥ Data

Figure 4.12: Charged hadron v2/(1− RAA) (calculated by taking into account only collisional
energy loss) as a function of path-length anisotropies ∆L/L, for Pb+Pb at

√
sNN = 5.02

TeV, various centrality classes and temperature pro�les, as indicated on the legend. For every
pro�le, the point with the lowest ∆L/L corresponds to the 10-20% centrality class, the next
one corresponds to 20-30%, and so on, up to 40-50% (except IP-Glasma, where the highest
centrality is 30-40%). The value of transverse momentum is �xed at p⊥ = 100 GeV, and the
linear �t yields a slope of ≈ 0.7.

the conventional measure of the spatial anisotropy (e.g. ε2 de�ned in Equation 4.15, or higher
eccentricity coe�cients given in, e.g., [200]): We evaluate the average of temperature cubed
encountered by partons propagating with angle φ with respect to the reaction plane [4]:

jT (τ, φ) ≡
∫

dxdy T 3(x+ τ cosφ, y + τ sinφ, τ)n0(x, y)∫
dxdy n0(x, y)

, (4.18)

where n0(x, y) is the density of the jets produced in the primary collisions, i.e., the density of
the binary collisions. This distribution is not azimuthally symmetric, and we may evaluate its
second Fourier coe�cient:

jT2(τ) =

∫
dxdy n0(x, y)

∫
dφ cos 2φT 3(x+ τ cosφ, y + τ sinφ, τ)∫

dxdy n0(x, y)
∫

dφT 3(x+ τ cosφ, y + τ sinφ, τ)
. (4.19)

Moreover, a simple time-average of jT2,

〈jT2〉 =

∫ τcut
τ0

dτ jT2(τ)

τcut − τ0

, (4.20)

where τcut is de�ned as the time when the center of the �reball has cooled down to critical
temperature Tc, is directly proportional to the ratio v2/(1−RAA) as shown in Fig. 4.13 (without
an o�-shift observed for low values of v2/(1−RAA) in Fig. 4.7).
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Figure 4.13: The plot on the left shows the values of v2/(1 − RAA) of charged hadrons as a
function of the average jet-perceived anisotropy 〈jT2〉 for di�erent collision systems and energies
(Pb+Pb at

√
sNN = 2.76 and 5.02 TeV and Xe+Xe at

√
sNN = 5.44 TeV), various centrality

classes and temperature pro�les, as indicated on the legend. For every pro�le, the point with
the lowest 〈jT2〉 corresponds to the 10-20% centrality class, the next one corresponds to 20-30%,
and so on, up to 40-50% (except IP-Glasma, where the highest centrality is 30-40%). The value
of transverse momentum is �xed at p⊥ = 100 GeV, and the linear �t yields a slope of ≈ 1. The
plot on the right shows v2/(1− RAA) and 〈jT2〉 the ratio for every point from the plot on the
left as a function of the centrality class.

We call this measure the average jet-perceived anisotropy of the system. We evaluate the
ratio of v2/(1−RAA) and 〈jT2〉 in the p⊥ range where the v2/(1−RAA) ratio has saturated for
all models (p⊥ > 80 GeV), and average over all the cases shown in Fig. 4.13 to obtain

v2/(1−RAA)

〈jT2〉
= 1.08± 0.09. (4.21)

As shown in the right panel of Fig. 4.13, deviations from this behavior are modest and random.
This indicates that 〈jT2〉 describes the leading term in the process creating high-p⊥ v2/(1−RAA),
and therefore this ratio carries direct information on the system geometry and its anisotropy.
Since unity is within one standard deviation from the average for practical purposes we can use
an approximation v2/(1−RAA) = 〈jT2〉.

The above analysis was performed on h±. However, if v2/(1 − RAA) indeed re�ects the
anisotropy 〈jT2〉, then the Eq. (4.21) should be independent of �avor. Due to large mass, RAA

and v2 of heavy �avor particles depend on p⊥ di�erently from charged hadrons' RAA and v2.
To test whether the v2/(1−RAA) ratio of heavy �avor particles also saturates at high p⊥, and
whether Eq. (4.21) is valid for them, we performed the same analysis on RAA and v2 of D and B
mesons. We obtained that v2/(1−RAA) indeed saturates at p⊥ > 20 GeV for B mesons and at
p⊥ > 80 GeV for D mesons, and that, after saturation, the Eq. (4.21) is robust for all types of
�avor (results not shown). This further supports that v2/(1−RAA) at high-p⊥ directly carries
information on the medium property, as revealed through this extensive analysis.

Finally, we evaluated the favored 〈jT2〉 range from the experimentally measured RAA(p⊥)
and v2(p⊥) for h± at di�erent centralities. The 〈jT2〉 values are obtained by �tting v2(p⊥)/(1−
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4. The Anisotropy of Quark-Gluon Plasma Constrained through High-p⊥ Data

Figure 4.14: Constraints to jet-perceived anisotropy (〈jT2〉, shown on y-axis) evaluated from
high-p⊥ > 20 GeV RAA and v2 experimental data using 〈jT2〉 = v2/(1 − RAA) (see Eq. 4.21),
for four di�erent centrality regions (shown on the x-axis): 10-20%, 20-30%, 30-40%, 40-50%.
5.02 TeV Pb+Pb ALICE [144, 145] (red triangles), CMS [146, 147] (blue squares) and AT-
LAS [148, 149] (green circles) data are used. For each centrality, the experimental constraints
are compared with the average jet-perceived anisotropy 〈jT2〉 for various evolution scenarios
indicated in the legend.

RAA(p⊥)) data shown in Fig. 4.6 with a constant function for p⊥ > 20 GeV using MINUIT [223]
package within ROOT [224] code, taking uncertainties into account. The �tted ratio was then
converted to 〈jT2〉 by assuming their equality. As shown in Fig. 4.14, all three experiments
lead to similar values of 〈jT2〉, though the uncertainty is still large.

We also note that 〈jT2〉 is a bulk-medium property, which can be directly evaluated from
bulk-medium simulations through Eqs. (2)�(4), independently of high-p⊥ data. Thus, experi-
mental data can be used to restrict the value of this quantity. In Fig. 4.14, we see that none of
the evolution scenarios tested in this manuscript is in good agreement with the data (despite the
above-mentioned large uncertainty), i.e., lead to smaller jet-perceived anisotropy than experi-
mentally favored. We thus show that jet-perceived anisotropy provides an important constraint
on bulk-medium simulations and those future bulk-medium calculations should be tuned to re-
produce the experimentally constrained 〈jT2〉 as well. Moreover, in the high-luminosity 3rd run
at the LHC, the error bars for RAA(p⊥) and v2(p⊥) are expected to be signi�cantly reduced,
which will subsequently lead to a notably better experimental constraint of 〈jT2〉, also enabling
better constraint on bulk-medium simulations.

68



4.2. Exploring the anisotropy of the fully evolving medium through high-p⊥ data

4.2.5 Summary

In this study, we used the recently developed DREENA-A framework to explore how the tem-
perature evolution of the QGP droplet in�uences high-p⊥ v2/(1−RAA) predictions. The frame-
work does not use any free parameter within the energy loss model and consequently allows
us to fully explore these pro�les as the only input in the model. We showed that saturation
in v2/(1 − RAA), clearly seen in the experimental data is robustly obtained for the compre-
hensive set of �uid-dynamical calculations covered in this study, as well as di�erent types of
�avor, collision energies, and collision systems, supporting the generality of our �ndings. Also,
by folding spatial coordinates and temperature, we further revealed that this saturation value
corresponds to a property of the system we de�ned as average jet-perceived anisotropy 〈jT2〉.
We also showed how to relate 〈jT2〉 to experimental data, providing a new important con-
straint on bulk-medium simulations. None of the evolution scenarios that we tested here were
in good agreement with experimentally inferred 〈jT2〉 values, which argues that it is important
to tune the bulk-medium simulations accordingly, particularly with the high-luminosity 3rd run
at the LHC. Our approach demonstrates the utility of QGP tomography, i.e., the potential for
extracting the bulk QGP properties jointly from low and high-p⊥ data.
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Chapter 5

Importance of Higher Orders in Opacity

in QGP Tomography

This Chapter is based on [5]. It considers the problem of including a �nite number of scattering
centers in dynamical energy loss and classical DGLV formalism. Previously, one or an in�nite
number of scattering centers were considered in radiative energy loss calculations, while e�orts
to relax such approximations require a more conclusive and complete treatment. In reality,
however, the number of scattering centers is generally estimated to be 4-5 at RHIC and the
LHC, making the above approximations (a priori) inadequate and this theoretical problem
signi�cant for QGP tomography.

We derived explicit analytical expressions for dynamical energy loss and DGLV up to the
4th order in opacity, resulting in complex - highly oscillatory - mathematical expressions. These
expressions were then implemented into an appropriately generalized DREENA framework to
calculate the e�ects of higher orders in opacity on a wide range of high-p⊥ light and heavy
�avor predictions. Results of extensive numerical analysis and interpretations of nonintuitive
results are presented here. We demonstrate that, for both RHIC and the LHC, higher-order
e�ects on high-p⊥ observables are minor, and the approximation of a single scattering center is
adequate for dynamical energy loss and DGLV formalisms.

5.1 Introduction

Hard probes are one of the main tools for understanding and characterizing the QGP prop-
erties [7], where hard processes dominate interactions of these probes with QGP constituents.
These interactions are dominantly described by energy loss, where radiative is one of the most
important mechanisms at high transverse momentum (p⊥) [105]. The radiative energy loss can
be analytically computed through pQCD approaches, typically under the assumption of the op-
tically thick or optically thin medium (e.g., Baier-Dokshitzer-Mueller-Peigne-Schi�-Zakharov
(BDMPS-Z) [117, 225], Armesto-Salgado-Wiedemann (ASW) [118], (D)GLV [110, 115], Higher-
Twist (HT) and Higher-Twist Majumder (HT-M) [119, 226], Arnold-Moore-Ya�e (AMY) [227],
dynamical energy loss [105, 121] and di�erent applications/extensions of these methods) and
tested against the experimental data.

71



5. Importance of Higher Orders in Opacity in QGP Tomography

Optically thick medium corresponds to the approximation of a jet experiencing in�nite
scatterings with medium constituents. While such an approximation would be adequate for
QGP created in the early universe (Big Bang), Little Bangs are characterized by short, �nite-
size droplets of QCD matter. Another widely used approximation is an optically thin medium,
assuming one scattering center. However, the medium created in Little Bangs is typically several
fm in size (with mean free path λ ≈ 1 fm), so considering several scattering centers in radiative
energy loss calculations is needed. Thus, it is evident that both approaches represent two
extreme limits to the realistic situations considered in RHIC and LHC experiments, and relaxing
these approximations to the case of a �nite number of scattering centers is necessary (see
Figure 5.1 for an illustration). Thus, relaxing such approximation is a highly nontrivial problem,
�rst addressed in [110], with recently renewed interest [228, 229, 230, 231, 232, 233, 234].
Some of these approaches are analytically quite advanced, e.g., providing full expressions for
a gluon radiation spectrum (or splitting functions) with relaxed soft-gluon approximation in
DGLV formalism [232, 233] or derivation of gluon emission spectrum with full resummation of
multiple scatterings within the BDMPS-Z framework [228, 230, 231]. However, in our view,
this issue requires a more conclusive and complete treatment. Namely, the importance of
including higher orders in opacity e�ects on experimental observables is still not addressed. In
relaxing this approximation, it is not only needed to estimate these e�ects on, e.g., the energy
loss and gluon radiation spectrum, but also to implement these corrections in the numerical
frameworks needed to generate predictions for high-p⊥ observables measured at RHIC and
the LHC experiments. Furthermore, most of these studies were done in massless quarks and
gluons limit and/or use the assumption of an uncorrelated medium. Since we, a priori, do
not know the magnitude of the e�ects of the inclusion of multiple scattering centers, nor how
the mentioned approximations can in�uence this magnitude, we �nd it questionable to discuss
higher order corrections while ignoring the e�ects which might potentially overshadow or alter
the �nal e�ects. For example, due to a �nite temperature medium, light quarks and gluons
gain mass in QGP, which can signi�cantly numerically modify the importance of these e�ects
on experimental observables.

Figure 5.1: A parton in the medium experiences several scatterings before radiating a gluon.

In this study, we start from our dynamical energy loss formalism [105, 121], computed under
the approximation of an optically thin QCD medium, i.e., one scattering center. We use general
expressions from [234] to relax this approximation to the case of a �nite number of scattering
centers, where explicit analytical expressions up to the 4th order in opacity (scattering centers)
are presented. These expressions are implemented in the (appropriately modi�ed) DREENA-
C [107] framework (which assumes a constant temperature medium � refer to Chapter 2),
enabling us to more straightforwardly estimate the e�ects of higher orders in opacity on high-
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p⊥ RAA and v2 observables. Based on these results, we also provide estimates for the fully
evolving medium, while a rigorous study in this direction is left for future work.

While the initial expressions taken from [234] were, strictly speaking, derived in the ap-
proximation of static scattering centers, we apply them here in the context of a dynamic QCD
medium. Namely, by careful calculation, we have shown in [121] that � at least in the �rst
order in opacity � the generalization from the static to dynamic medium eventually amounts
to a mere appropriate replacement of the mean free path and e�ective potential in the �nal
expressions. Following general arguments given in [110] and the expectations expressed in [234],
we assume that the same prescription for progressing from static to dynamic medium remains
valid in higher orders of opacity.

The outline of this Chapter is as follows: Sections 5.2 and 5.3 present the outline of the-
oretical and numerical frameworks used in this study, with more detailed analytical results
presented in the Appendices. In the Results section, we will numerically analyze the e�ects of
higher orders in opacity on the gluon radiation spectrum and high-p⊥ RAA and v2 predictions.
Intuitive explanations behind obtained results will be presented. This section will also analyze
a particular case of static QCD medium (extension of (D)GLV [110, 115] to the �nite number
of scattering centers). The main results will be summarized in the last section.

5.2 Theoretical framework

In this study, we use our dynamical radiative energy loss [105, 121] formalism described in
Chapter 2.

However, as the Introduction notes, this radiative energy loss is developed up to the �rst
order in opacity. Thus, to improve the applicability of this formalism for QGP tomography, it is
necessary to relax this approximation. To generalize the dynamical energy loss to �nite number
in scattering centers, we start from a closed-form expression - Eq. (46) from [234] and Eq. (20)
from [115] - derived for static QCD medium (i.e., (D)GLV case [110, 115]) but applicable for
a generalized form of e�ective potential v(qi) (qi are the momenta of the exchanged gluons),
and mean free path λ [234].

x
dN (n)

dx d2k
=

∫ L

0

dz1 · · ·
∫ L

zn−1

dzn

∫ n∏
i=1

(
d2qi

v2(qi)− δ2(qi)

λ(z)

)

× CRαs(Q
2
k)

π2

(
−2C(1···n) ·Bn

[
cos

n∑
k=2

ω(k···n)∆zk − cos
n∑
k=1

ω(k···n)∆zk

] )
, (5.1)

here |vi(qi)|2 is de�ned as the normalized distribution of momentum transfers from the ith

scattering center (i.e., "e�ective potential"), λ(i) is the mean free path of the emitted gluon,
CR is the color Casimir of the jet (CR = 4/3 (CR = 3) for the quark (gluon) jet), ∆zi are
distances between scattering centers. Note that we denote transverse 2D vectors as bold p for
consistency with our previous work.

The running coupling is de�ned as in [124]:

αs(Q
2) =

4π

(11− 2
3
nf ) ln( Q2

ΛQCD
)
, (5.2)

here Q2
k =

k
2+M2x2+m2

g

x
, appearing in Eq. (5.1) above is the o�-shellness of the jet before gluon

radiation [124], where x is the longitudinal momentum fraction of the quark jet carried away
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by the emitted gluon, M is the mass of the quark, mg = µE/
√

2 is the e�ective mass for gluons
with hard momenta [122], and k is the momentum of the radiated gluon.

ω(m...n) is the inverse of the formation time or the (longitudinal) momentum

ω(m...n) =
χ2 + (k− qm − . . .qn)2

2xE
, (5.3)

where n is the �nal scatter, while m varies from the �rst to the �nal scatter. χ2 ≡M2x2 +m2
g,

where k is the momentum of the radiated gluon, qi are the momenta of the exchanged gluons,
x is the longitudinal momentum fraction of the quark jet carried away by the emitted gluon, M
is the mass of the quark, mg = µE/

√
2 is the e�ective mass for gluons with hard momenta [122],

and µE is the Debye mass (i.e., electric screening).

`Cascade' terms represent the shifting of the momentum of the radiated gluon due to mo-
mentum kicks from the medium:

C(i1i2...im) =
(k− qi1 − qi2 − . . .− qim)

χ2 + (k− qi1 − qi2 − . . .− qim)2
. (5.4)

A special case of C without any momentum shifts is de�ned as the `Hard' term:

H =
k

χ2 + k2
, and Bi = H−Ci. (5.5)

In [105, 121, 123], we showed that, despite much more involved analytical calculations, the
radiative energy loss in a dynamical medium has the same form as in the static medium, except
for two straightforward substitutions in mean free path and e�ective potential:

λstat → λdyn, (5.6)

where:

λ−1
stat = 6

1.202

π2

1 + nf/4

1 + nf/6
λ−1

dyn, (5.7)

while the 'dynamical mean free path' is given by [105, 121]:

λ−1
dyn = 3αs(Q

2
v)T, (5.8)

with Q2
v = ET [124]. Running coupling αs(Q

2
v) corresponds to the interaction between the jet

and the virtual (exchanged) gluon, while E is the jet's energy.

[
µ2
E

π(q2+µ2
E)2

]
stat

→
[

µ2
E − µ2

M

π(q2+µ2
E)(q2+µ2

M)

]
dyn

, (5.9)

here µM is magnetic screening. Thus, we assume that the Eq. (5.1) can also be used in our
case, with the above modi�cation of e�ective potential and mean free path. In the Appendix C,
we use this general expression to derive an explicit expression for the gluon radiation spectrum

for 1st, 2nd, 3rd and 4th order in opacity (
dN

(1)
g

dx
,
dN

(2)
g

dx
,
dN

(3)
g

dx
,
dN

(4)
g

dx
, respectively).
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5.3. Numerical framework

5.3 Numerical framework

To generate the results presented in this work, we used the (appropriately generalized, see
below) DREENA-C framework, described in more detail in Chapter 2.

We use the following parameters in the numerical procedure: ΛQCD = 0.2 GeV and nf = 3.
Temperature-dependent Debye chromoelectric mass µE(T ) has been extracted from [150]. For
the mass of light quarks, we take the thermal mass M ≈ µE/

√
6, and for the gluon mass, we

use mg = µE/
√

2 [122]. The mass of the charm (bottom) quark is M = 1.2 GeV (M = 4.75
GeV). The magnetic and electric mass ratio is 0.4 < µM/µE < 0.6 [152, 153]. All the results
presented in this Chapter are generated for the Pb+Pb collision system at

√
sNN = 5.02 TeV.

As DREENA-C (see Chapter 2 and [107]) does not include suppression from multiple
scattering centers in the medium, we now upgrade this framework to include the 2nd and 3rd

order in opacity contributions. We integrate the expressions obtained from (5.1) analytically
for zi (i.e., distance at which i-th scattering occurs, see Appendices C.1 and C.2), and then
numerically for momenta k and qi using the quasi-Monte Carlo method to obtain dNg

dx
up to 3rd

order in opacity. Also, to test the importance of multiple scattering centers on radiative energy
loss, we exclude the collisional contributions from the DREENA-C framework and only generate
predictions for radiative energy loss. At the same time, we show the results for full (radiative
and collisional) energy loss in Appendices E, and F. Appendix C also includes expressions
for the 4th order in opacity. We implemented 4th order into DREENA-C, but as the resulting
integrals are highly oscillatory, we could not reach convergence for this order using our available
computational resources. Notably, this numerical complexity is signi�cantly higher, estimated
to be ∼ 2 orders of magnitude larger than for the 3rd order (e.g., for the 1st order, we needed
∼ 25 CPUh; for the 2nd order ∼ 2500 CPUh; for the 3rd order ∼ 70000 CPUh). Nevertheless,
we found the 4th order contribution negligible at speci�c points where we reached a convergence,
as expected from the results presented in the next section.

5.4 Numerical results

In Fig. 5.2, the e�ect of higher orders in opacity on dNg

dx
as a function of x is shown for typical

medium length L = 5fm. In each plot, we use double axes for clarity: the lower axis corresponds
to magnetic to electric mass ratio µM/µE=0.6 (and the curves with the peak on the left side),
while the upper axis corresponds to µM/µE=0.4 (and the curves with the peak on the right
side) - note that, in each case, maximum is reached for low values of x.

The importance of higher orders in opacity decreases with increased jet energy and mass.
They also decrease with decreasing the medium size, as shown in Appendix D (equivalent
�gures for L = 3fm and L = 1fm). For bottom quarks, higher-order e�ects are negligible
independently of the jet momentum. In contrast, these e�ects are moderate for charm and
light quarks and can in�uence the jet observables, as discussed below. Note that, due to color
triviality, the results for light quarks show the (scaled) result for gluons, too. This holds up to
the fact that, due to the indistinguishability of the radiated gluon from the gluon in the jet,
the limits for subsequent integration of dNg/dx with respect to x is performed from xlower = 0
to xupper = 1/2 (as opposed to xupper = 1 for light quarks).

Before employing the full-�edged procedure to obtain high-p⊥ observables, we �rst calculated
the fractional energy loss in the medium (∆E/E), which is shown in Figure 5.3 as a function of
transverse momentum p⊥ for various quark �avors (bottom, charm, and light quarks), as well as
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Figure 5.2: Gluon radiation spectrum dNg/dx as a function of x, for the typical medium length
of L = 5fm and various jet momenta. Di�erent columns correspond to light, charm, and
bottom quarks. Solid black curves show the 1st order in opacity results, red dashed curves show
the results up to the 2nd order, while cyan dot-dashed curves up to the 3rd order in opacity.
Curves with the peaks on the left (right) side of each of the plots correspond to the µM/µE = 0.6
(µM/µE = 0.4) case, and the numerical values should be read o� on the lower (upper) x-axis.

for gluons. The path-length is �xed to L = 3fm, and we show the results for µM/µE = 0.4 and
µM/µE = 0.6. Fractional energy loss can be used as a proxy observable to estimate the behavior
of RAA � the larger the fractional energy loss, the smaller the expected RAA. From this panel,
we again observe that the e�ect of including higher orders of opacity is more pronounced with
the decreasing parton mass (lowest for bottom quarks and highest for gluons). We also observe
that the e�ect of including higher orders in opacity is more pronounced in the µM/µE = 0.4
case than in the µM/µE = 0.6 case. Moreover, we see that the e�ect has a di�erent sign in
these two cases (inclusion of higher orders in opacity increases the fractional energy loss in the
µM/µE = 0.4, and decreases it in the µM/µE = 0.6 case). Its behavior is consistent with the
behavior of radiative RAA (shown in Figure 5.4).

In Fig. 5.4, we show the e�ect of higher orders in opacity on radiative RAA observable.
Our computations show that the e�ect on v2 is similar to that on RAA (see Appendix E for v2

results). Thus, we concentrate only on RAA to avoid redundancy.

We �rst observe that the e�ect on RAA is smaller for more peripheral collisions. This is
expected, as the medium is shorter on average, so including multiple scattering centers becomes
less important.

Furthermore, we �nd that higher orders in opacity are negligible for B mesons, while these
e�ects increase with decreasing mass, as expected from Fig. 5.2 and Fig. 5.3. The reason
behind this is the decrease in the gluon formation time with increasing jet mass. When the gluon
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Figure 5.3: Fractional radiative energy loss (∆E/E) as a function of transverse momentum � the
e�ects of di�erent orders in opacity. The results are generated for the Pb+Pb collision system
at
√
sNN = 5.02 TeV. The path length is �xed to L = 3fm. Di�erent columns correspond to the

bottom quark, charm quark, light quark, and gluons. The upper (lower) row corresponds to
the µM/µE = 0.4 (µM/µE = 0.6) case. Solid black curves show the 1st order in opacity results,
red dashed curves show the results up to the 2nd order, while cyan dot-dashed curves up to the
3rd order in opacity.

formation time is short, the energy loss approaches the incoherent limit, where it was previously
shown that the e�ects of higher orders in opacity are negligible [115]. Thus, our results are
consistent with the previous �ndings. On the other hand, for large gluon formation time
(massless quark and gluon limit), the higher orders in opacity e�ects become signi�cant, also
in general agreement with the previous �ndings [228]. In �nite temperature QGP (considered
in this study), light quarks and gluons gain mass due to Debye screening, reducing the e�ects
of higher orders in opacity on the energy loss, consistently with Fig. 5.4.

Unexpectedly, we also observe that, in accordance with Fig. 5.3, for di�erent magnetic mass
limiting cases, these e�ects on RAA are opposite in sign: for µM/µE=0.6, the inclusion of
higher orders in opacity reduces energy loss (and, consequently, suppression). In contrast, for
µM/µE=0.4, the e�ect is both opposite in sign and more signi�cant in magnitude. What is the
reason behind these unexpected results?

To answer this question, we go back to the e�ective potential [123] v(q) in dynamical QCD
medium, which can be written in the following form

v(q) = vL(q)− vT (q) , (5.10)

here vL(q) is longitudinal (electric), and vT (q) is transverse (magnetic), contribution to the
e�ective potential. The general expressions for the transverse and longitudinal contributions
to the e�ective potentials are [123]:

vL(q) =
1

π

(
1

(q2 + µ2
pl)
− 1

(q2 + µ2
E)

)
, vT (q) =

1

π

(
1

(q2 + µ2
pl)
− 1

(q2 + µ2
M)

)
,(5.11)

here µE, µM and µpl = µE/
√

3 are electric, magnetic and plasmon masses, respectively. As seen
from Eq. (5.10), this potential has two contributions - electric and magnetic, where the electric
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Figure 5.4: Radiative RAA results obtained within DREENA-C � the e�ects of di�erent orders
in opacity. The results are generated for the Pb+Pb collision system at

√
sNN = 5.02 TeV,

and all the other �gures in the manuscript show the results for the same collision system and
energy. Di�erent columns correspond to charged hadrons, D, and B mesons, while di�erent
rows show di�erent centrality classes. Solid black curves show the 1st order in opacity results,
red dashed curves show the results up to the 2nd order, while cyan dot-dashed curves up to the
3rd order in opacity. The upper (lower) boundary of each band corresponds to the µM/µE = 0.6
(µM/µE = 0.4) case.

contribution is always positive due to µpl < µE. On the other hand, magnetic contribution
depends non-trivially on the value of magnetic mass. That is, for µM > µpl, we see that
magnetic contribution decreases the energy loss. In contrast, for µM < µpl, it increases the
energy loss and consequently suppression, as shown in Fig. 5.4, which may intuitively explain
the observed energy loss and RAA behavior.

Furthermore, the Debye mass µE is well de�ned from lattice QCD, where the perturbative
calculations are consistent [150]. Thus, the electric potential is well de�ned in dynamical energy
loss, and we can separately test the e�ect of higher orders in opacity on this contribution (by
replacing v(q) by vL(q) in the DREENA framework). Surprisingly, we �nd it negligible, as
shown in Fig. 5.5. Thus, higher orders in opacity essentially do not in�uence the electric
contribution in a dynamical QCD medium, which is an interesting and intuitively unexpected
result. That is, the higher orders mainly in�uence the magnetic contribution to energy loss
(keeping the electric contribution una�ected), where the sign of the e�ect depends on the
magnetic mass value. For example, as µM/µE=0.4 is notably smaller than µpl/µE = 1/

√
3, the

higher orders in opacity are signi�cant for this limit and increase the suppression, in agreement
with Fig. 5.4. On the other hand, µM/µE=0.6 is close to (but slightly larger than) µpl/µE, so
higher orders in opacity are small for this magnetic mass limit and reduce the suppression, also
in agreement with Fig. 5.4. Additionally, note that the most recent 2+1 �avor lattice QCD
results with physical quark masses further constrain the magnetic screening to 0.58 < µM/µE <
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Figure 5.5: RAA results, obtained within DREENA-C when only electric contribution (vL(q))
to radiative energy loss is considered. Di�erent columns correspond to charged hadrons, D,
and B mesons, while di�erent rows show di�erent centrality classes. Solid black curves show
the 1st order in opacity results, red dashed curves show the results up to the 2nd order, while
cyan dot-dashed curves up to the 3rd order in opacity.

0.64 [235]. Thus, for this range of magnetic screening, we conclude that the e�ects of higher
orders in opacity are minor in a dynamical QCD medium and can be safely neglected.

Furthermore, Fig. 5.5 raises another important question: as it is well known, only electric
contribution exists in static QCD medium approximation [22, 120] (though it has a di�erent
functional form compared to the electric contribution in dynamical QCD medium). That is, the
magnetic contribution is inherently connected with the dynamic nature of the QCD medium. As
most existing energy loss calculations assume (simpli�ed) static QCD medium approximation,
does this mean higher orders in opacity can be neglected under such approximation?

We �rst note that this does not necessarily have to be the case because the e�ective potential
for electric contribution is signi�cantly di�erent in static compared to the dynamical medium.
However, to address this question, we repeat the same analyses as above, this time assuming
the static medium e�ective potential (left-hand side of Eq. (5.9)) and mean free path (λstat).
Fig. 5.6 shows the e�ects of higher orders in opacity in static medium approximation (DGLV
case). While larger than those in Fig. 5.5, these e�ects are still minor (i.e., less than 6%). Thus,
for optically thin medium models with static approximation, we show that including multiple
scattering centers has a negligible e�ect on the numerical results, i.e., these e�ects can also be
neglected.

Finally, we ask how the inclusion of evolving medium would modify these results. Including
higher-order e�ects in the evolving medium is very demanding and out of the scope of this
manuscript. However, it can be partially addressed by studying how higher-order e�ects depend
on the temperature, which changes in the evolving medium. To address this, in Fig. 5.7, we
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Figure 5.6: Radiative RAA results obtained within DREENA-C under the static medium ap-
proximation. Di�erent columns correspond to charged hadrons, D, and B mesons, while dif-
ferent rows show di�erent centrality classes. Solid black curves show the 1st order in opacity
results, red dashed curves show the results up to the 2nd order, while cyan dot-dashed curves
up to the 3rd order in opacity.
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Figure 5.7: D meson radiative RAA results obtained within DREENA-C for di�erent temper-
ature values. The left panel corresponds to 0-5% centrality, while the right panel corresponds
to 40-50% centrality. The values of temperature are T = 200 MeV (the uppermost curves),
400 MeV (the middle curves), and 600 MeV (the lowest curves). The solid black curves show
the 1st order in opacity results, while cyan dot-dashed curves show the results up to the 3rd

order in opacity. The chromomagnetic and chromoelectric mass ratio is �xed to µM/µE = 0.6.

focus on D meson RAA, µM/µE = 0.6 (per agreement with [235]) and study the e�ects of
higher orders in opacity for three di�erent temperature values T = 200, 400, 600 MeV (which
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broadly covers the range of temperatures accessible at RHIC and the LHC). See Appendix G
for the entire panel, which also includes the results up to the 2nd order in opacity. We �nd that
the higher-order e�ects are largely independent of these values. Thus, we do not expect that
including medium evolution will signi�cantly in�uence the results presented in this study, i.e.,
expect the e�ect of multiple scattering centers to remain small.

5.5 Summary

In this Chapter, we generalized our dynamical energy loss and DGLV formalisms towards �nite
orders in opacity. For bottom quarks, we �nd that higher orders in opacity are insigni�cant
due to short gluon formation time, i.e., the incoherent limit. For charm and light quarks,
including 2nd order in opacity is su�cient, i.e., the 3rd order numerical results almost overlap
with the 2nd. Surprisingly, we also �nd that for limits of magnetic screening, µM/µE = 0.4 and
µM/µE = 0.6, the e�ects on the RAA are opposite in sign. For µM/µE = 0.6 (µM/µE = 0.4),
higher orders in opacity decrease (increase) the energy loss and subsequently suppression. The
intuitive reason behind such behavior is the magnetic contribution to the dynamical energy
loss. That is, while electric contribution remains almost insensitive to increases in the order of
opacity, magnetic screening larger (smaller) than plasmon mass value decreases (increases) the
energy loss and suppression, in agreement with the theoretical expectations. We also show that
in the static QCD medium approximation, in which (per de�nition) only electric contribution
remains, the e�ects of higher orders in opacity on high-p⊥ observables are minor and can be
safely neglected. Thus, for static QCD medium, the �rst order in opacity is an adequate
approximation for �nite-size QCD medium created in the RHIC and the LHC. For dynamical
energy loss, both the e�ect's sign and size depend on the magnetic screening, as outlined above.
However, for most of the current estimates of magnetic screening [235], these e�ects remain less
than 5%, so they can also be safely neglected.

The analyses presented here are obtained for a constant temperature medium (and ade-
quately generalized DREENA-C framework). However, we also tested how the e�ects of in-
cluding multiple scatterers depend upon temperature and found this in�uence to be also small
(a�ecting the radiative RAA for less than 5%). Thus, we expect that including higher orders in
opacity in the evolving medium will not change the qualitative results obtained here, but this
remains to be rigorously tested.
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Chapter 6

Conclusions

Quark-gluon plasma is a new form of matter created in heavy-ion collisions at ultrarelativistic
energies, consisting of decon�ned quarks, antiquarks, and gluons. Most particles created after
such a collision form the thermalized medium, while a tiny fraction is the high-energy/high-p⊥
particles. In this thesis, we utilized high-p⊥ theory and data to infer properties of quark-gluon
plasma. Namely, with a proper description of the energy loss of rare high-energy particles,
it becomes evident that they become excellent tools for quark-gluon plasma tomography. To
this avail, we used the state-of-the-art dynamical energy loss formalism, which can accurately
describe the interaction of the high-p⊥ particles with the medium. This Chapter will summarize
the most important research results presented in this thesis.

In Chapter 3, we demonstrated how high-p⊥ theory and data can be used to constrain τ0 �
the initial time, i.e., the time of onset of hydrodynamical evolution of quark-gluon plasma �
a parameter that has previously been only weakly constrained through low-p⊥ data. First, we
explored a simpli�ed scenario with no pre-equilibrium medium evolution. We determined high-
p⊥ observables on a set of temperature pro�les with various initial times (in the range 0.2fm
≤ τ0 ≤ 1.2fm), which all give good agreement with low-p⊥ spectra, and the obtained predictions
were compared with high-p⊥ RAA and v2 experimental results. We observed that high-p⊥
predictions show sensitivity to τ0 and that they can be resolved against the experimental data.
Moreover, the data prefers later thermalization time (τ0 ∼ 1fm). In order to try to explain these
�ndings, we entertained the notion that jet quenching may start later than the thermalization
of the medium. We tested this scenario by introducing quenching time τq ≥ τ0. However, while
RAA shows sensitivity to τq, we �nd that v2 is entirely insensitive to τq (for a given temperature
pro�le with a particular τ0), thus refuting the idea that jet quenching can start later than the
medium thermalization. Finally, we show that the obtained sensitivity of high-p⊥ RAA and
v2 to τ0 is due to the di�erences in temperatures that jets see while traversing the medium in
the in-plane and out-of-plane directions. Larger τ0 cuts away the large-temperature part of the
pro�le (decreasing its average temperature), which explains the behavior of RAA; furthermore,
pro�les with larger τ0 show a more signi�cant di�erence between in-plane and out-of-plane
temperatures, which explains the behavior of v2.

In the second part of Chapter 3, we introduce pre-equilibrium evolution into our calculations.
Namely, we consider four limiting scenarios, i.e., four temperature pro�les with various values
of hydrodynamics initial time (τ0) and quenching time (τq): i) no pre-equilibrium transverse
expansion until τ0 = τq = 0.2fm; ii) no pre-equilibrium transverse expansion until τ0 = 0.2fm
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and τq = 1fm; iii) free streaming from τ = 0.2fm until τ0 = τq = 1fm; iv) no pre-equilibrium
transverse expansion until τ0 = τq = 1fm. All these four pro�les give good agreement with
low-p⊥ spectra and low-p⊥ v2. High-p⊥ RAA and v2 have been calculated on these pro�les and
compared with the experimental data. As expected, the later the energy loss begins, the higher
the RAA and starting the energy loss already at τq = 0.2fm is disfavored. On the other hand,
if the early expansion is �uid-dynamical, delaying the onset of energy loss barely changes the
value of v2. Moreover, the free streaming case leads to an even worse �t for the data. The
only case in which v2 predictions approach the data is when both the energy loss and transverse
expansion are delayed to τ = 1fm. We also generated heavy-�avor RAA and v2, which show
even stronger sensitivity to the early evolution. To investigate the origin of this sensitivity
of RAA and v2 to the early evolution, we again evaluate the average temperature along the
paths of jets traversing the medium in the in-plane and out-of-plane directions, as well as their
di�erence. From this, we �nd that delaying the onset of transverse expansion to τ0 = 1.0fm
leads to a larger di�erence in temperatures than either early �uid-dynamical or free-streaming
expansion, which allows enough v2 to be built up in that case.

Chapter 4 presents the results of the study of the anisotropy of quark-gluon plasma created in
heavy-ion collisions. We propose a novel approach where this vital bulk parameter is extracted
from the already available experimental data. To begin with, we considered a simple 1+1D
longitudinally-expanding Bjorken model. Even though this model does not include transverse
expansion (and is therefore not realistic), simple scaling arguments related to the dynamical
energy loss model can be applied within it. By using these scaling arguments, we deduce that,
at high p⊥, the ratio of v2 and 1 − RAA is expected to depend only on the anisotropy of the
system, through the anisotropy of path lengths, ∆L/L. In order to test this, we employ the
full-�edged DREENA-B framework to calculate v2/(1 − RAA) as a function of the transverse
momentum. We obtain that it indeed saturates at p⊥ > 20GeV, and its value at high p⊥ is
equal to the value predicted by the scaling arguments. Finally, we construct a proxy variable
from ∆L/L, which closely resembles ε2 (the parameter usually used to quantify the spatial
anisotropy of QGP), and calculate its values by using our full-�edged v2/(1−RAA) predictions.
In this way, we can recover the ε2 from conventional initial state models � a highly non-trivial
result which con�rms that v2/(1 − RAA) indeed carries information on the anisotropy of the
system.

In the second part of this Chapter, we explore the relation between high-p⊥ data and
anisotropy in a fully evolving medium. In order to check the universality of our �ndings,
we study a large set of temperature pro�les generated by using various initial state models
(Glauber, Glauber + free streaming, EKRT, IP-Glasma, TRENTo), subsequent hydrodynam-
ical evolutions (3+1D hydrodynamical model, MUSIC, VISHNU) for di�erent collision sys-
tems and energies: Pb + Pb at 5.02TeV and 2.76TeV and Xe + Xe at 5.44TeV. We calculate
v2/(1 − RAA) within DREENA-A, and obtain that v2/(1 − RAA) saturates at high p⊥ for all
the examined temperature pro�les. Moreover, we �nd a simple linear dependence between the
values of v2/(1−RAA) at high-p⊥ and the anisotropy of path lengths, ∆L/L. However, in order
to relate the anisotropy inferred from high-p⊥ predictions more directly to the properties of the
evolving medium, we introduce a new observable, jet-perceived anisotropy 〈jT2〉, which explicitly
depends on the medium evolution. We �nd that it is directly proportional to v2/(1−RAA), with
a slope close to unity. We estimate jet-perceived anisotropy from hydrodynamical evolutions
and compare the values with the values obtained from the v2 and RAA experimental measure-
ments. None of the tested evolutions reproduce the experimentally obtained jet-temperature
anisotropy. However, since jet-perceived anisotropy is a medium property, we argue that future
hydrodynamical calculations should be tuned to reproduce the experimentally obtained 〈jT2〉.

Finally, in Chapter 5, we study the e�ects of including a �nite number of scattering centers

84



in radiative energy loss within the dynamical energy loss formalism. Contrary to most energy
loss models, usually based on optically thick or optically thin approximation, we derive the
analytical expressions up to the 4th order in opacity within the dynamical energy loss formalism.
We implement them into the DREENA-C framework and calculate radiative RAA and v2 (we
observe similar behavior in these two observables). The e�ects of higher orders in opacity on
RAA are minor for more peripheral collisions, as expected. Furthermore, we �nd that higher
orders in opacity are negligible for B mesons, while these e�ects increase with decreasing mass.
Unexpectedly, we observe that the e�ects are opposite in sign for di�erent magnetic mass
limiting cases: for µM/µE = 0.6, the inclusion of higher orders in opacity reduces the energy
loss, while for µM/µE = 0.4 the e�ect has the opposite sign and a much larger magnitude. The
intuitive reason behind such behavior is the magnetic contribution to the dynamical energy
loss. While the electric contribution is almost insensitive to the higher orders in opacity, the
magnetic screening larger (smaller) than plasmon mass decreases (increases) the energy loss,
thus explaining the observed behavior. We also explored the static QCD medium approximation
(which has only the electric contribution). In this case, we found that the �rst order in opacity
is an adequate approximation for a �nite-size QCD medium created in heavy-ion collisions. In
the dynamical medium, both the magnitude and the sign of the e�ects depend on the magnetic
screening. However, for the most current estimates of its value, we conclude that the e�ects
remain less than 5% and can be safely neglected.

All these results demonstrate the usefulness of high-energy particles for studying the proper-
ties of quark-gluon plasma. Our results advance the applicability of high-p⊥ data and show the
interconnections between the low- and high-p⊥ sector, which can be jointly used to constrain
the properties of this new form of matter.

85





Appendix A

High-p⊥ RAA and v2 for various
pre-equilibrium evolution scenarios

In the second part of Chapter 3, we showed high-p⊥ RAA and v2 results for four limiting sce-
narios (see Figure 3.7). In order to con�rm the universality of our �ndings, we here include an
expanded panel with three additional temperature pro�les with more sophisticated initializa-
tions: EKRT, IP-Glasma, and TRENTo.

• In the case of EKRT initialization [86, 87, 88], we employ the same setup as used in
Ref. [202] (see also [175]), compute an ensemble of event-by-event �uctuating initial den-
sity distributions, average them, and use this average as the initial state of the �uid dy-
namical evolution. We use the code of Molnar et al., [104] but restricted to boost-invariant
expansion. The shear viscosity over entropy density ratio is temperature dependent with
favored parameter values from the Bayesian analysis of Ref. [202]. Initial time is τ0 = 0.2
fm, and the EoS is the s83s18 parametrisation from Ref. [202].

• In the case IP-Glasma initialization [77, 78], the calculated event-by-event �uctuating
initial states [203] were further evolved [204] using the MUSIC code [205, 206, 207] con-
strained to boost-invariant expansion. We subsequently averaged the evaluated temper-
ature pro�les to obtain one average pro�le per centrality class. In these calculations,
the switch from Yang-Mills to �uid-dynamical evolution took place at τswitch = 0.4 fm,
shear viscosity over entropy density ratio was constant η/s = 0.12, and the temperature-
dependent bulk viscosity coe�cient over entropy density ratio had its maximum value
ζ/s = 0.13. The equation of state was based on the HotQCD lattice results [208] as
presented in Ref. [209].

• In the case of TRENTo initialization [89], we create an ensemble of event-by-event �uc-
tuating initial states, sort them into centrality classes, average, and evolve these average
initial states. Unlike in other cases, we employ the version of the VISH2+1 code [210]
described in Refs. [211, 212]. We run the code using the favored values of the Bayesian
analysis of Ref. [212]; in particular, allow free streaming until τ = 1.16 fm, the minimum
value of the temperature-dependent η/s is 0.081, and the maximum value of the bulk
viscosity coe�cient ζ/s is 0.052. The EoS is the same HotQCD lattice results [208] based
parametrization used in Refs. [211, 212].
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A. High-p⊥ RAA and v2 for various pre-equilibrium evolution scenarios

Figure A.1: Charged hadron DREENA-A RAA (upper panels) and v2 (lower panels) predictions,
generated for various initializations and subsequent hydrodynamical evolutions, are compared
with ALICE [144, 145], CMS [146, 147] and ATLAS [148, 149] data. Four columns, from left
to right, correspond to 10�20%, 20�30%, 30�40% and 40�50% centralities at

√
sNN = 5.02

Pb+Pb collisions at the LHC. The chromomagnetic to chromoelectric mass ratio is set to
µM/µE = 0.5. Note that the p⊥ scale in the upper (RAA) row is regular, while in the lower
(v2), it is logarithmic.

We calculated high-p⊥ RAA and v2 for all these pro�les, and the results are shown in Fig-
ure A.1. We con�rm that the only case in which our results simultaneously match both RAA

and v2 experimental data is in the case when both the transverse expansion and the energy loss
are delayed to τ0 = 1.0 fm.
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Appendix B

Direct proportionality of high-p⊥ v2 and
1−RAA for various centrality classes

In the second part of Chapter 4, Fig 4.4 shows the direct proportionality of v2 and 1−RAA at
high p⊥ in the 40-50% centrality bin. We here demonstrate that this holds for other centrality
classes as well � see Fig. B.1, which shows the direct proportionality of high-p⊥ v2 and 1−RAA

for three di�erent centrality classes (10-20%, 20-30%, 30-40%).
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0
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v
2
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30-40%

Figure B.1: Direct proportionality of high-p⊥ v2 and 1 − RAA, which suggests that their ratio
is p⊥-independent. The �gure shows v2 vs 1−RAA for p⊥> 10 GeV data for charged hadrons
from 5.02 TeV Pb+Pb ALICE [144, 145] (red triangles), CMS [146, 147] (blue squares) and
ATLAS [148, 149] (green circles) experiments. The data is shown for the 10-20%, 20-30% and
30-40% centrality bins. Each collaboration's datapoints correspond to di�erent values of p⊥,
with both v2 and 1−RAA decreasing with increasing p⊥.
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Appendix C

Analytical expressions for dNg/dx for

higher orders in opacity

C.1 General form

The gluon radiation spectrum up to the 4th order in opacity contains the following terms, which
are here given in detail:
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(C.1)

Numerical integrations with respect to the momentum k are performed over 0 < |k| <
2Ex(1−x), and the ones with respect to momenta qi are performed over 0 < |qi| <

√
4ET [236].

The integrations with respect to angles ϕi are performed over 0 < ϕi < 2π. Under the constant
T approximation used here, the expressions presented below can be analytically integrated over
zi, signi�cantly simplifying subsequent numerical calculations (see Appendix B.2).

In the expressions below, the following equations hold for i, j ∈ {1, 2, 3, 4}:

k · qi = |k||qi| cosϕi, (C.2)

qi · qj = |qi||qj| cos(ϕi − ϕj). (C.3)
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C. Analytical expressions for dNg/dx for higher orders in opacity

The 1st order in opacity term is given by:(
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After integration with respect to z1, this expression reduces to the expression used to obtain
dNg/dx in the original DREENA-C framework [107].
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The 3rd order in opacity contains four terms, which are given by:(
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C.1. General form
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The 4th order in opacity is given by eight terms, which are given by:
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C. Analytical expressions for dNg/dx for higher orders in opacity

(
dN

(4)
g

dx

)
5

=
4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k

π

∫∫∫
d2q2

π

d2q3

π

d2q4

π

αs(Q
2
k)

1

λ4
dyn

µ2
E − µ2

M

(q2
2 + µ2

E)(q
2
2 + µ2

M )

µ2
E − µ2

M

(q2
3 + µ2

E)(q
2
3 + µ2

M )

µ2
E − µ2

M

(q2
4 + µ2

E)(q
2
4 + µ2

M )

χ2(q4 · (q2 + q3 + q4 − k)) + (q4 · k)(k− q4)
2 + (k · (q2 + q3))(q4 · (q4 − 2k)) + k2(q4 · (q2 + q3))

(χ2 + k2)(χ2 + (k− q4)
2)(χ2 + (k− q2 − q3 − q4)

2)

sin

(
χ2 + (k− q2 − q3 − q4)

2

2xE
(
z1
2

+ z2) +
χ2 + (k− q3 − q4)

2

2xE
z3 +

χ2 + (k− q4)
2

2xE
z4

)
sin

(
χ2 + (k− q2 − q3 − q4)

2

4xE
z1

)
, (C.15)

(
dN

(4)
g

dx

)
6

=
4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k

π

∫∫
d2q2

π

d2q4

π

αs(Q
2
k)

1

λ4
dyn

µ2
E − µ2

M

(q2
2 + µ2

E)(q
2
2 + µ2

M )

µ2
E − µ2

M

(q2
4 + µ2

E)(q
2
4 + µ2

M )

χ2(q4 · (q2 + q4 − k)) + (q4 · k)(k− q4)
2 + (k · q2)(q4 · (q4 − 2k)) + k2(q4 · q2)

(χ2 + k2)(χ2 + (k− q4)
2)(χ2 + (k− q2 − q4)

2)

sin

(
χ2+(k−q2−q4)

2

4xE
z1

)
sin

(
χ2+(k−q2−q4)

2

2xE
(
z1
2
+z2)+

χ2+(k−q4)
2

2xE
(z3+z4)

)
, (C.16)

(
dN

(4)
g

dx

)
7

=
4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k

π

∫∫
d2q3

π

d2q4

π

αs(Q
2
k)

1

λ4
dyn

µ2
E − µ2

M

(q2
3 + µ2

E)(q
2
3 + µ2

M )

µ2
E − µ2

M

(q2
4 + µ2

E)(q
2
4 + µ2

M )

χ2(q4 · (q3 + q4 − k)) + (q4 · k)(k− q4)
2 + (k · q3)(q4 · (q4 − 2k)) + k2(q4 · q3)

(χ2 + k2)(χ2 + (k− q4)
2)(χ2 + (k− q3 − q4)

2)

sin

(
χ2+(k−q3−q4)

2

4xE
z1

)
sin

(
χ2+(k−q3−q4)

2

2xE
(
z1
2
+z2+z3)+

χ2+(k−q4)
2

2xE
z4

)
, (C.17)

(
dN

(4)
g

dx

)
8

=
4CR

πx

∫ L

0

∫ L

z1

∫ L

z2

∫ L

z3

dz1dz2dz3dz4

∫
d2k

π

∫
d2q4

π

αs(Q
2
k)

1

λ4
dyn

µ2
E − µ2

M

(q2
4 + µ2

E)(q
2
4 + µ2

M )

χ2(q4 · (q4 − k)) + (q4 · k)(k− q4)
2

(χ2 + k2)(χ2 + (k− q4)
2)2

sin

(
χ2 + (k− q4)

2

4xE
z1

)
sin

(
χ2 + (k− q4)

2

2xE
(
z1
2

+ z2 + z3 + z4)

)
. (C.18)

C.2 In a constant-temperature medium

Within the DREENA-C framework, under the assumption of constant medium temperature,
we can explicitly perform analytical integrations for zi, where (i = 1, 2, 3, 4). ω(m...n) coe�cients
are de�ned in the Theoretical framework section. The expression for the 1st order in opacity
then became: (
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C.2. In a constant-temperature medium

The expressions for higher orders in opacity became:
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C. Analytical expressions for dNg/dx for higher orders in opacity
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Appendix D

Higher orders in opacity results for

dNg/dx for L = 3 and L = 1

This section shows dNg/dx as a function of x for medium lengths L = 3 fm and L = 1 fm. Here,
the �gures are more conventional, with µM/µE = 0.6 and µM/µE = 0.4 cases separately shown.
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Figure D.1: Gluon radiation spectrum dNg/dx as a function of x, for the medium length of
L = 1 fm and various jet momenta. Di�erent columns correspond to light, charm, and bottom
quarks. Solid black curves show the 1st order in opacity results, red dashed curves show the
results up to the 2nd order, while cyan dot-dashed curves up to the 3rd order in opacity. The
chromomagnetic and chromoelectric mass ratio is µM/µE = 0.4.
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D. Higher orders in opacity results for dNg/dx for L = 3 and L = 1
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Figure D.2: Gluon radiation spectrum dNg/dx as a function of x, for the medium length of
L = 1 fm and various jet momenta. Di�erent columns correspond to light, charm, and bottom
quarks. Solid black curves show the 1st order in opacity results, red dashed curves show the
results up to the 2nd order, while cyan dot-dashed curves up to the 3rd order in opacity. The
chromomagnetic and chromoelectric mass ratio is µM/µE = 0.6.
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Figure D.3: Gluon radiation spectrum dNg/dx as a function of x, for the medium length of
L = 3 fm and various jet momenta. Di�erent columns correspond to light, charm, and bottom
quarks. Solid black curves show the 1st order in opacity results, red dashed curves show the
results up to the 2nd order, while cyan dot-dashed curves up to the 3rd order in opacity. The
chromomagnetic and chromoelectric mass ratio is µM/µE = 0.4.
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Figure D.4: Gluon radiation spectrum dNg/dx as a function of x, for the medium length of
L = 3 fm and various jet momenta. Di�erent columns correspond to light, charm, and bottom
quarks. Solid black curves show the 1st order in opacity results, red dashed curves show the
results up to the 2nd order, while cyan dot-dashed curves up to the 3rd order in opacity. The
chromomagnetic and chromoelectric mass ratio is µM/µE = 0.6.
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Appendix E

v2 results for higher orders in opacity

Figure E.1 shows the results for v2 up to the 3rd order in opacity, with only radiative energy
loss taken into account, while Figure E.2 shows the results which include both radiative and
collisional energy loss. Note that here the lower (upper) boundary of each band corresponds to
the µM/µE = 0.6 (µM/µE = 0.4) case (opposite with respect to the RAA results). We observe
the same behavior as RAA.
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Figure E.1: v2 results obtained within DREENA-C, with only radiative energy loss taken into
account. The panel shows three centrality classes. Di�erent columns correspond to charged
hadrons, D, and B mesons, while di�erent rows show di�erent centrality classes. Solid black
curves show the 1st order in opacity results, red and dashed curves show the results up to the
2nd order, while cyan and dot-dashed curves up to the 3rd order in opacity. The lower (upper)
boundary of each band corresponds to the µM/µE = 0.6 (µM/µE = 0.4) case.
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Figure E.2: v2 results obtained within DREENA-C, with both radiative and collisional energy
loss taken into account. The panel shows all centrality classes. Di�erent columns correspond to
charged hadrons, D, and B mesons, while di�erent rows show di�erent centrality classes. Solid
black curves show the 1st order in opacity results, red and dashed curves show the results up
to the 2nd order, while cyan and dot-dashed curves up to the 3rd order in opacity. The lower
(upper) boundary of each band corresponds to the µM/µE = 0.6 (µM/µE = 0.4) case.
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Appendix F

RAA results for higher orders in opacity

with full energy loss

In this Appendix, the results for RAA generated by taking into account full energy loss in
DREENA (that is, both radiative and collisional energy loss mechanisms). We observe the
same behavior as in the case when only radiative energy loss is included, as expected.

The �gure F.1 shows the RAA results (with both radiative and collisional energy loss) for
µM/µE = 0.4 and µM/µE = 0.6. The same conclusions hold as in the case when only radiative
energy loss is included (Figure 5.4 in Chapter 5 and the corresponding discussion in Section
5.4).

The Figure F.2 shows the RAA results (with both radiative and collisional energy loss) for
µM/µE = 1√

3
. In this way, we test the e�ect of higher orders in opacity on the contribution

of the electric potential in dynamical energy loss (see Equations 5.10 and 5.11 in Section 5.2
and the corresponding discussion), by replacing v(q) by vL(q) in the DREENA framework.
Surprisingly, we �nd it negligible, as shown in Fig. 5.5 and Fig. F.2. Thus, higher orders in
opacity essentially do not in�uence the electric contribution in a dynamical QCD medium.
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F. RAA results for higher orders in opacity with full energy loss
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Figure F.1: RAA results obtained within DREENA-C, with both radiative and collisional energy
loss considered. The panel shows all centrality classes. Di�erent columns correspond to charged
hadrons, D, and B mesons, while di�erent rows show di�erent centrality classes. Solid black
curves show the 1st order in opacity results, red and dashed curves show the results up to the
2nd order, while cyan and dot-dashed curves up to the 3rd order in opacity. The lower (upper)
boundary of each band corresponds to the µM/µE = 0.4 (µM/µE = 0.6) case.
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Figure F.2: RAA results obtained within DREENA-C, with both radiative and collisional energy
loss considered. The panel shows all centrality classes. Di�erent columns correspond to charged
hadrons, D, and B mesons, while di�erent rows show di�erent centrality classes. Solid black
curves show the 1st order in opacity results, red and dashed curves show the results up to
the 2nd order, while cyan and dot-dashed curves up to the 3rd order in opacity. The ratio of
chromomagnetic and chromoelectric mass is �xed to µM/µE = 1√

3
.
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Appendix G

Higher orders in opacity: full

temperature-dependence panel

We here show the entire panel with RAA results up to the 3rd order in opacity for the D meson,
in the temperature range 155�600MeV, which broadly covers the range of energies accessible
at the LHC and RHIC. From Figure G.1, we see that the higher orders in opacity e�ects are
largely independent of the temperature, and we do not expect the inclusion of full medium
evolution to change our conclusions substantially.
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G. Higher orders in opacity: full temperature-dependence panel
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Figure G.1: Full panel representing the e�ects of higher orders in opacity for di�erent medium
temperatures. We show D meson radiative RAA results obtained within DREENA-C for dif-
ferent temperature values. The left column corresponds to 0-5% centrality, while the right
column corresponds to 40-50% centrality. The values of temperature are denoted on each plot.
The solid black curves show the 1st order in opacity results, and the dashed red curves show
the results up to the 2nd order in opacity, while the cyan dot-dashed curves show the results
up to the 3rd order in opacity. The lower (upper) boundary of each band corresponds to the
µM/µE = 0.4 (µM/µE = 0.6) case.
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