








Biografija sa pregledom nauqne aktivnosti

1 Struqno-biografski podaci
Ro�en sam 10. 04. 1979. godine u Zajeqaru. U Kǌa�evcu sam zavr-
xio osnovnu xkolu i gimnaziju prirodno-matematiqkog smera kao �ak
generacije.

Godine 1998. upisao sam osnovne studije na Fiziqkom fakultetu Uni-
verziteta u Beogradu, smer Teorijska i eksperimentalna fizika. Di-
plomirao sam 2002. godine kao prvi u generaciji sa proseqnom ocenom
9,81. Postdiplomske studije na smeru ,,Teorijska fizika elementarnih
qestica i gravitacije” upisao sam 2002., a magistarski rad sa temom
Efekat dilatonskog poǉa na nekomutativnost prostorno-vremenskih ko-
ordinata sam odbranio 2006. godine na Fiziqkom fakultetu Univerziteta
u Beogradu. Doktorsku disertaciju pod naslovom Nekomutativnost i
dimenzionalnost Dp-brane odbranio sam 2008. godine tako�e na Fiziqkom
fakultetu Univerziteta u Beogradu. Mentor magistarske teze i dok-
torske disertacije bio je profesor dr Branislav Sazdovi�, nauqni
savetnik Instituta za fiziku.

Od 01. 11. 2003. godine, zaposlen sam u Centru za teorijsku fiziku
Instituta za fiziku kao istra�ivaq pripravnik, u okviru projekta
,,Gradijentne teorije gravitacije: simetrije i dinamika” Ministarstva
prosvete, nauke i tehnoloxkog razvoja Republike Srbije. Od 2006. do
2010. godine bio sam na projektu “Alternativne teorije gravitacije“,
dok sam od poqetka 2011. godine anga�ovan na projektu Ministarstva
prosvete i nauke ”Fiziqke implikacije modifikovanog prostor-vremena”.
Poqev od januara 2022. godine anga�ovan sam na projektu iz programa
IDEJE ”Quantum Gravity from Higher Gauge Theory” finansiran od strane
Fonda za nauku Republike Srbije.

Godine 2007. izabran sam u zvaǌe istra�ivaq saradnik, u oktobru
2009. u zvaǌe nauqni saradnik, a u sadaxǌe zvaǌe vixeg nauqnog sarad-
nika izabran sam januara 2014. godine. U oktobru 2019. godine sam
reizabran u zvaǌe vixi nauqni saradnik.

Od 2004.-2006. godine bio sam qlan redakcije qasopisa ,,Mladi
fiziqar”. U periodu od decembra 2004. godine do avgusta 2005. go-
dine bio sam na odslu�eǌu vojnog roka. Aktivno sam uqestvovao u
obele�avaǌu Svetske godine fizike 2005. godine, posebno u organi-
zaciji takmiqeǌa ,,Otkrivamo talente za fiziku”. Bio sam tri puta
qlan lokalnog organizacionog komiteta me�unarodne xkole i konfer-
encije iz moderne matematiqke fizike. Od aprila do jula 2008. go-
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dine bio sam na struqnom usavrxavaǌu na Institutu za nuklearna is-
tra�ivaǌa i nuklearnu energju u Sofiji (Bugarska) u okviru OP6 Mar-
ija Kiri istra�ivaqke trening mre�e ”Forces-Universe” MRTN-CT-2004-
005104. Bio sam qlan Dr�avne komisije za takmiqeǌa uqenika sredǌih
xkola xkolske 2011/2012 i 2012/2013. U periodu od 01. jula 2012.
do 24. decembra 2012. bio sam na struqnom usavrxavaǌu u Centru za
teorijsku fiziku “Arnold Zomerfeld” u Minhenu u grupi profesora
Ditera Lista, jednog od vode�ih fiziqara u oblasti teorije struna.
Godine 2015. sam odr�ao predavaǌe u SANU u okviru jednodenevnog
skupa povodom sto godina opxte teorije relativnosti (OTR). U okviru
XXXIV Republiqkog seminara nastavnika fizike 2016. godine odr�ao
sam predavaǌe po pozivu o otkri�u gravitacionih talasa ”Gravita-
cioni talasi-od otkri�a do direktne detekcije”. Rad je objavǉen u
tre�em broju qasopisa ”Nastava fizike”. Krajem 2023. godine pro-
jekat ”Quantum Gravity from Higher Gauge Theory” koji je finansiran od
strane Fonda za nauku Republike Srbije uz pomo� Zadu�bine Ilije
M. Kolarca je organizovao seriju popularnih predavaǌa iz oblasti
savremene teorijske fizike pod nazivom ”KVANTNA GRAVITACIJA
- SVETI GRAL SAVREMENE FIZIKE”. Kao qlan projekta odr�ao
sam jedno od 5 predavaǌa sa temom ”Zaxto kvantna teorija poǉa?”.

Xkolske 2013/2014 radio sam kao nastavnik fizike u odeǉeǌu tre�eg
razreda Matematiqke gimnazije, dok od xkolske 2015/2016 radim kao
nastavnik Raqunskog praktikuma 1 (2 xkolska qasa nedeǉno) i Raqun-
skog praktikuma 2 (2 xkolska qasa nedeǉno) u odeǉeǌu za decu sa poseb-
nim sposobnostima za fiziku u Zemunskoj gimnaziji. Bio sam mentor
vixe maturskih radova kao i qetiri master rada na Fiziqkom fakul-
tetu u Beogradu.

Od oktobra 2018. godine sam mentor doktorske disertacije Dani-
jela Obri�a. Disertacija je uspexno odbraǌena na Fiziqkom fakul-
tetu Univerziteta u Beogradu 18.09.2023. godine. U okviru doktorskih
studija na Fiziqkom fakultetu Univerziteta u Beogradu, profesor sam
na predmetu Teorija struna (u�a nauqna oblast Kvantna poǉa, qestice
i gravitacija).

Od 2009. godine sam o�eǌen i otac sina Stojana (2010) i �erki,
Anastasije (2012), Savke (2015) i Danice (2019).

2 Pregled nauqne aktivnosti
Moj nauqni rad je u oblasti fizike visokih energija. Anga�ovan sam
na osnovnim istra�ivaǌima u Grupi za gravitaciju, qestice i poǉa In-
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stituta za fiziku. Osnovna tema mog istra�ivaqkog rada odnosi se na
analizu bozonske strune i superstrune, nekomutativnost kao posledicu
nametnutih graniqnih uslova i T -dualizacije zatvorene (super)strune u
prisustvu koordinatno zavisnih pozadinskih poǉa i nekomutativnosti
i neasocijativnosti proisteklih iz toga. U kontekstu tragaǌa za ob-
jediǌenom teorijom svih interakcija analiziraju se i teorije u ud-
vostruqenim prostorima gde dualne transformacije postaju transfor-
macije simetrije.

2.1 Teorija bozonske strune sa dilatonom i nekomuta-
tivnost

Jedan od predmeta mog interesovaǌa je bozonska struna u prisustvu
gravitacionog poǉa Gµν(x) i antisimetriqnog tenzorskog poǉa Bµν(x).
Ovu temu sam obra�ivao tokom rada na magistarskoj i delimiqno dok-
torskoj tezi.

U ciǉu da konformna invarijantnost bude zadr�ana i na kvantnom
nivou, potrebno je dodati jox jedno pozadinsko poǉe - dilatonsko poǉe
Φ(x). Navedena tri pozadinska poǉa nisu proizvoǉna ve� moraju za-
dovoǉavati prostorno-vremenske jednaqine koje slede iz uslova kon-
formne invarijantnosti, xto formalnim jezikom znaqi da su β-funkcije
koje odgovaraju gravitacionom Gµν i antisimetriqnom Kalb-Ramonovom
poǉu Bµν jednake nuli, dok tre�a, koja odgovara dilatonu, mo�e biti
nula ili konstanta. Sluqaj u kome je β-funkcija koja odgovara dila-
tonskom poǉu jednaka konstanti zahteva dodavaǌe Liuvilovog qlana u
dejstvo.

U teoriji otvorene strune pored jednaqina kretaǌa od posebne va�-
nosti su graniqni uslovi. Mnogostrukost sa p prostornih dimenzija,
definisana skupom Dirihleovih graniqnih uslova na krajevima otvorene
strune, naziva se Dp-brana.

U analizi sam koristio kanonske metode i tretirao graniqne uslove
kao kanonske veze. Za sluqaj otvorene strune u prisustvu konstantnog
gravitacionog i antisimetriqnog tenzorskog poǉa nekomutativne rela-
cije su ve� bile izvedene drugim metodama, ukǉuquju�i i kanonski. U
novom pristupu, umesto uvo�eǌa Dirakovih zagrada rexene su veze koje
potiqu od graniqnih uslova. Dobijeno rexeǌe za koordinate, zavisi
ne samo od efektivnih koordinata ve� i od efektivnih impulsa. To
objaxǌava qiǌenicu da je Poasonova zagrada koordinata razliqita od
nule.

Moj originalni doprinos je ukǉuqivaǌe linearnog dilatonskog poǉa
Φ(x) = Φ0 + aix

i, koje je odabrano tako da pozadinska poǉa zadovoǉavaju
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prostorno-vremenske jednaqine kretaǌa. Pored oqekivane zavisnosti
nekomutativnog parametra od dilatonskog poǉa pojavǉu se i dva na prvi
pogled neoqekivana rezultata. Javǉa se jedna komutativna koordinata,
a u sluqaju dodatnih relacija izme�u pozadinskih poǉa smaǌuje se di-
menzija Dp-brane. U proxirenom prostoru koji se dobija dodavaǌem
konformnog faktora F skupu koordinata xi, mogu�e je objediniti sve
sluqajeve i to je obra�eno u radu pod rednim brojem 3., koji je objav-
ǉen u redovnoj svesci qasopisa zajedno sa radom Edvarda Vitena.

1. B. Nikolic and B. Sazdovic, Gauge symmetries decrease the number of Dp-
brane dimensions, Phys. Rev. D 74 (2006) 045024.

2. B. Nikolic and B. Sazdovic, Gauge symmetries decrease the number of Dp-
brane dimensions. II. Inclusion of the Liouville term, Phys. Rev. D 75 (2007)
085011.

3. B. Nikolic and B. Sazdovic, Noncommutativity in space-time extended by
Liouville field, Adv. Theor. Math. Phys. 14 (2010) 1.

2.2 Nekomutativnost i T-dualnost superstruna sa kon-
stantnim pozadinskim poǉima

Bozonska teorija je dobar model za analizu ali u realnosti postoje i
fermionski stepeni slobode. Na taj naqin dolazimo do modela super-
strune. Bozonska i fermionska poǉa su povezana supersimetrijom koja
je potrebna zbog konzistentnosti same teorije (eliminacija tahiona)
pa otuda i naziv superstruna. Ispostavǉa se da postoji pet konzis-
tentnih teorija superstrune: tip I, tip IIA, tip IIB i dve heterotiqke
teorije superstrune. Ove teorije me�usobno su povezane mre�om dual-
nosti. Teorija tipa IIB opisuje superstrunu sa N = 2 supersimetrijom
i fermionskim koordinatama iste kiralnosti, dok su spinori u tip IIA
teoriji suprotne kiralnosti. Tip I je superstruna sa eksplicitnom
N = 1 supersimetrijom.

U mom radu posebno mesto zauzima prouqavaǌe T -dualnih transfor-
macija tip II teorije superstrune u formulaciji qistog spinora, kao i
odnos nekomutativnosti i T -dualnosti za sluqaj konstantnih pozadisnkih
poǉa. Takav izbor pozadinskih poǉa je u skladu sa velikim skupom
uslova konzistentnosti.

Procedura T -dualizacije je takva po konstrukciji da su inicijalna
i T -dualna teorija fiziqki ekvivalentne, a ta fiziqka ekvivalentnost
ima za posledicu odr�aǌe broja bozonskih i fermionskih stepeni slo-
bode. Standardan naqin T -dualizacije je Buxerova procedura koja
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predstvǉa lokalizaciju translacione simetrije uz uvo�eǌe dodatnog
qlana u dejstvu koji nam omogu�ava ekvivalenciju sa poqetnom teorijom.
Fiksiraǌem inicijalnih koordinata D dimezionog prostora dobijamo
teoriju koja zavisi od gradijentnih poǉa i dualnih koordinata. Na
jednaqinama kretaǌa za gradijentna poǉa dobija se dualna teorija.

U literaturi je dugo vremena prouqavana samo bozonska T-dualnost.
Me�utim, nedavno, u okviru analize simetrija amplituda gluonskih
rasejaǌa, otkrivena je fermionska T -dualnost. Formalno, ona pred-
stavǉa isti tip transformacije kao i bozonska T -dualnost. Realizuje
se lokalizacijom translacione simetrije fermionskih koordinata. Pri-
menom Buxerove procedure mo�e se dobiti fermionski T -dualna teorija.

Metod razvijen u analizi bozonske strune, primenio sam na teoriju
superstruna tipa IIB. Graniqni uslovi su izabrani tako da je oquvana
N = 1 supersimetrija od inicijalne N = 2 supersimetrije tipa IIB su-
perstrune (graniqni uslovi za bozonske koordinate su Nojmanovi). Re-
xavaǌem graniqnih uslova dobija se nekomutativnost koordinata ini-
cijalnog prostora i efektivna teorija, kao inicijalna teorija na rex-
eǌu graniqnih uslova. S druge strane izvrxena je T dualizacija teorije
tipa IIB superstrune sa konstantnim pozadinskim poǉima. T -dualna
poǉa koja su neparna na transformaciju parnosti svetske povrxi Ω :
σ → −σ predstavǉaju nekomutativne parametre dok su poǉa koja su Ω
parna predstavǉaju poǉa efektivne teorije. Tako�e pokazano je i da
Nojmanovi graniqni uslovi prelaze u Dirihleove graniqne uslove.

Efektivna teorija koja se dobija u prethodno opisanom sluqaju je tip
I teorija superstrune. S obzirom da je D5-brana stabilna i u tip IIB i
tip I teoriji superstrune, analizirana je nekomutativnost i T -dualnost
tip IIB superstrune sa D5-branom. Bozonskim koordinatama brane se
name�u Nojmanovi a preostalim bozonskim koordinatama Dirihleovi
graniqni uslovi. Fermionske promenǉive zadovoǉavaju identiqne gra-
niqne uslove samo raspisane preko nezavisnih spinora u xestodimen-
zionalnom prostoru. Fiziqki smisao rezultata je isti kao i u sluqaju
kada se Nojmanovi graniqni uslovi name�u svim bozonskim koordinatama.

Tako�e, u kontetkstu nekomutativnosti, bavio sam se i fermionskim
T dualnostima tip IIB superstrune. Nametaǌem Dirihleovih graniqnih
uslova na sve koordinate dobija se nekomutativnost impulsa inicijalne
teorije. Nekomutativni parametri su (do na konstantu) neka od poǉa
fermionske T dualne teorije.

1. B. Nikolic and B. Sazdovic, Type I background fields in terms of type IIB
ones, Phys. Lett. B666 (2008) 400.

2. B. Nikolic and B. Sazdovic, D5-brane type I superstring background fields in
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terms of type IIB ones by canonical method and T-duality approach, Nucl.
Phys. B 836 (2010) 100–126.

3. B. Nikolic and B. Sazdovic, Noncommutativity relations in type IIB theory
and their supersymmetry, JHEP 08 (2010) 037.

4. B. Nikolic and B. Sazdovic, Fermionic T-duality and momenta noncommuta-
tivity, Phys. Rev. D 84 (2011) 065012.

5. B. Nikolic and B. Sazdovic, Dirichlet boundary conditions in type IIB super-
string theory and fermionic T-duality, JHEP 06 (2012) 101.

2.3 T-dualnost i udvostruqeni prostori
Kada govorimo o T-dualnosti govorimo o transformaciji koja povezuje
fiziqki ekvivalentne teorije. Ukoliko bismo udvostruqili prostor
tako da inicijalnim koordinatama xµ dodamo T-dualne koordinate yµ,
onda mo�emo govoriti o T-dualnosti kao simetriji teorije. Udvostruqa-
vaǌe prostora (double space) je jedan od pravaca istra�ivaǌa qiji je ciǉ
nala�eǌe jedinstvene teorije svih interakcija. Ideja o udvostruqenim
prostorima je stara nexto preko dve decenije. U udvostruqenom pros-
toru T-dualnost se reprezentuje matricom permutacije podskupa koor-
dinata koje dualizujemo i odgovaraju�eg podskupa T-dualnih koordi-
nata. Iz zahteva da zakon T-dualne transformacije bude isti za ud-
vostruqene koordinate ZM i ǌima T-dualne aZ

M dobijaju se izrazi za T-
dualna pozadinska poǉa preko inicijalnih pozadinskih poǉa. Pokazano
je da je T-dualizacija u okviru formalizma udvostruqenih prostora
ekvivalentna sa rezultatima iz Buxerove procedure koja se mo�e sma-
trati definicijom T-dualnosti, kako za bozonsku tako i za fermionsku.
U analizama je korix�en model tip II superstrune u formulaciji qis-
tog spinora sa konstantnim pozadinskim poǉima. Daǉi rad podrazumeva
ispitivaǌe opxteg sluqaja u kojem je jedina aproksimacija da pozadin-
ska poǉa ne zavise od pravaca du� kojih se dualizuje. Prouqavaǌe T-
dualizacije u udvostruqenim prostorima predstavǉa i mali korak ka
boǉem razumevaǌe M-teorije. Jedna T-dualizacija prevodi tipIIA/B
u tipIIB/A, a formalizam udvostruqenih prostora objediǌuje te dve
teorije u jednu, xto je jedan izuzetno vredan rezultat. Tako�e formal-
izam razvijen u ovim radovima predstavǉa malo unapre�eǌe postoje�eg
formalizma jer u sebi objediǌuje sve mogu�e podskupove koordinata po
kojima se dualizuje.

1. B. Nikolic and B. Sazdovic, Fermionic T-duality in fermionic double space,
Nucl. Phys. B917 (2017) 105-121.
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2. B. Nikolic and B. Sazdovic, T-dualization of type II superstring theory in
double space, Eur. Phys. J. C77 (2017) 197.

3. B. Nikolić and B. Sazdović, Advantage of the second-order formalism in double
space T-dualization of type II superstring, Eur. Phys. J. C 79 (2019) 819.

2.4 T-dualnost bozonske i superstrune tipa II u pri-
sustvu koordinatno zavisnih pozadinskih poǉa

Jedna od vrlo aktuelnih tema u oblasti teorije struna je prouqavaǌe
T-dualnosti i ǌeno povezivaǌe sa nekomutativnox�u zatvorene strune.
razlog zaxto je va�no razmotriti i zatvorenu strunu u kontekstu T-
dualnosti je ta xto je jedno od pobu�eǌa zatvorene strune i graviton,
prenosilac gravitacione interakcije. Prouqavaǌe zatvorene strune u
kontekstu T-dualizacije i koordinatno zavisnih pozadinskih poǉa je
va�no za neke pristupe prouqavaǌa gravitacione interakcije.

U sluqaju zatvorene bozonske strune koja propagira u prostor-vremenu
konstantne metrike i u prisustvu konstantnog Kalb-Ramonovog poǉa,
koordinate komutiraju. Zadr�avaǌem konstatne metrike i uvo�eǌem
slabog Kalb-Ramonovog poǉa koje zavisi linearno od koordinata (u
skladu sa prostorno-vremenskim jednaqinama za pozadinska poǉa) ne
gubi se translaciona simetrija teorije ali se dobija, primenom uopxt-
ene Buxerove procedure, jedan naizgled neoqekivan rezultat - nekomu-
tativnost koordinata zatvorene strune. Poxto se dobija koordinatno
zavisna nekomutativnost, dobija se i relacija neasocijativnosti tj.
Jakobijev identitet nije jednak nuli.

Sliqno kao u teoriji otvorene strune, u teoriji zatvorene strune
nekomutativnost sledi iz qiǌenice da se primenom uopxtene Buxerove
procedure dobija da izvodi T-dualnih koordinata zavise od kanonskih
impulsa i izvoda koordinata poqetne teorije. Standarno se u lit-
eraturi prouqavaju koordinatno zavisna pozadinska poǉa ali se T-
dualizacija vrxi du� izometrijskih pravaca - pravaca od kojih pozadin-
ska poǉa ne zavise uz primenu netrivijalnih uslova namotavaǌa. Pri-
mena uopxtene Buxerove procedure omogu�ava dualizaciju du� svih
pravaca i dobijaǌe nekomutativnosti i neasocijativnosti i uz trivi-
jalne uslove namotavaǌa. Tako�e u dobijenoj T-dualnoj teoriji nelo-
kalnost je manifestna, jer teorija zavisi od veliqine koja je definisana
kao integral po liniji na svetskoj povrxi.

Metod uopxtene T -dualizacije se mo�e primeniti i na superstrunu.
Zajedno sa doktorandom Danijelom Obri�em prouqavali smo tip II su-
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perstrunu u formulaciji qistog spinora sa koordinatno zavisnim Ramon-
Ramon poǉem. Ramon-Ramon poǉe ima i konstantan i linearno zavisan
qlan uz pretpostavku da je koeficijent uz koordinatno zavisni qlan in-
finitezimalan. Razmatrali smo dve mogu�nosti: opxti sluqaj i jedan
poseban sluqaj. Posebnost tog sluqaja se ogleda u tome da je konstantni
deo Ramon-Ramon poǉa simetriqan tenzor (na izmenu fermionskih in-
deksa) dok je koordinatno zavisni deo antisimetriqan. Uslovi konzis-
tentnosti ne zabraǌuju takve izbore.

Poseban sluqaj se formalno potpuno svodi na sluqaj bozonske strune
sa slabim Kalb-Ramonovim poǉem. Opxti sluqaj je dosta slo�eniji
raqunski, ali je rezultat kvalitativno isti - T -dualne bozonske koor-
dinate su nekomutativne i neasocijativne, bozonske i fermionske ko-
ordinate su nekomutativne (ra�ena je i fermionska T -dualizacija) dok
su fermionske koordinate ostale antikomutativne. T -dualne teorije
su nelokalne iz istog razloga kao i bozonska teorija sa slabim Kalb-
Ramonovim poǉem. Obra�en je i sluqaj T -dualizacije pomenute teorije
za poseban sluqaj u udvostruqenom prostoru. Iz raqunskih razloga,
potrebno je pretpostaviti i da je konstantni deo Ramon-Ramon poǉa an-
tisimetriqan tenzor. Rezultati su potpuno u skladu sa rezultatima
dobijenim analitiqkim pristupom.

1. Lj. Davidovic, B. Nikolic, B. Sazdovic, Canonical approach to the closed string
noncommutativity, Eur. Phys. J C74 (2014) 2734.

2. Lj. Davidovic, B. Nikolic, B. Sazdovic, T-duality diagram for a weakly curved
background, Eur. Phys. J C75 (2015) 576.

3. B. Nikolic and D. Obric, Noncommutativity and nonassociativity of closed
bosonic string on T-dual toroidal background, Fortsch. Phys. 66 (2018)
040009.

4. B. Nikolic and D. Obric, Directly from H-flux to the family of three nonlocal
R-flux theories, JHEP 03 (2019) 136.

5. B. Nikolic, B. Sazdovic and D. Obric, Noncommutativity and nonassociativity
of type II superstring with coordinate dependent RR field, Fortsch.Phys. 70
(2022) 2200048.

6. B. Nikolic and D. Obric, Combined fermionic and bosonic T-duality of type
II superstring theory with coordinate dependent RR field, Fortsch.Phys. 71
(2023) 2200160.
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7. B. Nikolic and D. Obric, Noncommutativity and nonassociativity of type II
superstring with coordinate dependent RR field - the general case, JHEP 12
(2022) 078.

8. B. Nikolic and D. Obric, Double space T-dualization and coordinate dependent
RR field, arXiv:2307.02438.
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1 Elementi za kvalitativnu analizu rada

1.1 Kvalitet nauqnih rezultata
1.1.1 Nauqni nivo i znaqaj rezultata, uticaj nauqnih radova

Dr Bojan Nikoli� je u svom dosadaxǌem radu objavio 45 nauqnih pub-
likacija, me�u kojima 17 radova u vrhunskim me�unarodnim qasopisima
(M21), 2 rada u istaknutim me�unarodnim qasopisima (M22), 3 rada u
me�unarodnim qasopisima (M23), 13 radova u kategoriji M33 (saopxt-
eǌe sa me�unarodnog skupa xtampano u celini), 5 radova u kategoriji
M34 (saopxteǌe sa me�unarodnog skupa xtampano u izvodu), 1 rad u kat-
egoriji M61 (predavaǌe po pozivu sa skupa nacionalnog znaqaja xtam-
pano u celini) i 4 rada iz kategorije M63 (saopxteǌe sa skupa na-
cionalnog znaqaja xtampano u celini).

Od reizbora u zvaǌe vixi nauqni saradnik (utvr�ivaǌe predloga
na sednici Nauqnog ve�a Instituta za fiziku 23.10.2018. godine), dr
Nikoli� je objavio 5 radova u kategoriji M21, 3 rada u kategoriji M33
i 1 rad u M34.

Kao pet najznaqajnijih radova kandidata mogu se uzeti:

[1] B. Nikolić and B. Sazdović, Noncommutativity in space-time extended by
Liouville field, Adv. Theor. Math. Phys. 14 (2010) 1.

M21, DOI: 10.4310/ATMP.2010.v14.n1.a1

[2] B. Nikolić and B. Sazdović, Noncommutativity relations in type IIB theory
and their supersymmetry, JHEP 08 (2010) 037.

M21, DOI: 10.1007/JHEP08(2010)037

[3] Lj. Davidović, B. Nikolić, B. Sazdović, T-duality diagram for a weakly curved
background, Eur. Phys. J. C 75 (2015) 576.

M21, DOI: 10.1140/epjc/s10052-015-3808-8

[4] B. Nikolic, B. Sazdovic, Advantage of the second-order formalism in double
space T-dualization of type II superstring, Eur. Phys. J. C79 (2019) 819.

M21, DOI: 10.1140/epjc/s10052-019-7338-7

[5] B. Nikolić and B. Sazdović, Fermionic T-duality and momenta noncommuta-
tivity, Phys. Rev. D 84 (2022) 065012.

M21, DOI: 10.1103/PhysRevD.84.065012

Rad [1] predstavǉa sistematizaciju rada na prouqavaǌu bozonske
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strune u prisustvu konstantne metrike Gµν, Kalb-Ramonovog poǉa Bµν

i dilatonskog poǉa Φ(x) koje je linearna funkcija koordinata. Ova
tematika je obra�ivana u okviru izrade magistarske teze i jednog dela
doktorske disertacije kandidata. Analiza nekomutativnosti ukazuje na
6 mogu�ih sluqajeva a tih xest sluqajeva proizilazi iz xest uslova
koje zadovoǉava gradijent dilatonskog poǉa. Tri sluqaja se odnose na
situaciju kada je tre�a beta funkcija βΦ nula, a druga tri kada je jed-
naka nenultoj konstanti i kada se uvede Liuvilov qlan u dejstvo. Svih
xest sluqajeva se mo�e objediniti u jedinstvenom zapisu pri qemu je
prostor-vreme xµ proxiren dodatnom koordinatom - konformnim fak-
torom metrike svetske povrxi F (gαβ = e2Fηαβ). Sluqajevi sa i bez
Liuvilovog qlana su povezani transformacijom sliqnosti. Rad je ob-
javǉen u svesci br.1 volumena 14 qasopisa Advances in Theoretical and
Mathematical Physics zajedno sa jox 5 radova. Autor jednog od tih pre-
ostalih pet radova je profesor Edvard Viten, vode�i nauqnik na svet-
skom nivou u oblasti teorije (super)struna.

Drugi rad predstavǉa detaǉnu analizu nekomutativnosti tip IIB
otvorene superstrune u formalaciji qistog spinora. U skladu sa skupom
uslova konzistentnosti, izabrana su konstantna pozadiska poǉa. Poxto
je u pitaǌu otvorena struna nu�no se u analizi pojavǉuju graniqni
uslovi - Nojmanovi za bozonske koordinate, dok se za fermionske pro-
menǉive biraju takvi graniqni uslovi koji supersimetriju N = 2 svode
na supersimetriju N = 1. Tretiraǌem graniqnih uslova kao kanonskih
veza i ǌihovim rexavaǌem dobijaju se relacije ne(anti)komutativnosti,
kao i efektivna teorija - inicijalna teorija na vezama. Efektivna
teorija je teorija tip I superstrune sa pozadinskim poǉima koja su
Ω parna (Ω : σ → −σ), dok su parametri nekomutativnosti Ω neparna.
Pokazano je da su efektivna pozadinska poǉa i parametri nekomuta-
tivnosti pozadinska poǉa T -dualne teorije. Jedan od rezultata je i
povezanost relacija ne(anti)komutativnosti preko supersimetriqnih
transformacija.

Tre�i rad predstavǉa primenu procedure uopxtene T -dualizacije na
zatvorenu bozonsku strunu u prisustvu tzv. slabo zakrivǉenih pozadin-
skih poǉa - konstanta metrika i koordinatno linearno zavisno Kalb-
Ramonovo poǉe. Procedura T -dualizacije se primeǌuje du� svih pra-
vaca, uz trivijalne uslove namotavaǌa. Izvrxena je simultana T-
dualizacija du� svih pravaca, kao i dve uzastopne proizvoǉne par-
cijalne T-dualizacije do potpune T-dualizacije. Glavni rezultat je
da je grupa svih mogu�ih parcijalnih T-dualizacija Abelova grupa.
T-dualizaovane teorije imaju osobinu nelokalnosti jer zavise od koor-
dinate koja je definisana kao linijski integral.
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U radu [4] razmatrana je T-dualizacija tip II superstrune u for-
mulaciji qistog spinora preko udvostruqenih prostora. Inicijalno
teorija je zadata u formalizmu prvog reda ali, integracijom fermion-
skih impulsa, dobija se teorija drugog reda. T -dualizacija je reprezen-
tovana permutacijom jednog podskupa koordinata inicijalnog prostora
sa odgovaraju�im podskupom T -dualnih koordinata. Iz zahteva da je za-
kon transformacije inicijalne udvostrqene koordinate i T -dualne ud-
vostruqene koordinate isti, dobijaju se sva T -dualna pozadinska poǉa i
potpuno slagaǌe sa analitiqkim pristupom preko Buxerove procedure.

Peti rad se bavi fermionskom T -dualizacijom tip IIB superstrune u
formulaciji qistog spinora. Fermionska dualizacija je ekstenzija ve�
postoje�e bozonske dualizacije i procedura je iste forme. Razmatran
je sluqaj otvorene strune i za bozonske koordinate su izabrani Dirih-
leovi graniqni uslovi. Kao rezultat je dobijena nekomutativnost im-
pulsa sa parametrima nekomutativnosti koji su fermionski T -dualna
poǉa.

1.1.2 Pozitivna citiranost nauqnih radova

Prema bazi Scopus Hirxov indeks kandidata je 5 (iskǉuqeni autoci-
tati), a broj ukupan citata 159, dok baza WoS daje Hirxov indeks 7.
I jedna i druga baza imaju maǌkavosti u smislu da neke publikovane
radove tretiraju kao preprinte.1

Baza Google Scholar daje Hirxov indeks 9 i broj citata 219, a neposred-
nim uvidom u radove i citate, ukrxtaju�i sa bazom INSPIRE HEP taqan
broj citata je 213. Broj citata bez autocitata i citata koautora je 28,
dok je broj citata bez autocitata 88 (minimalni zahtev MOFa je 30).

Prilog: liste citiranosti iz baza Google Scholar, Scopus i WoS kao i
detaǉan spisak radova koji citiraju radove kandidata.

1.1.3 Parametri kvaliteta qasopisa

Dr Bojan Nikoli� je tokom karijere objavio ukupno 45 publikacija
u qasopisima sa ISI liste od toga sa impakt faktorom 17 u kat-
egoriji M21, 2 kategorije M22 i 3 kategorije M23. Ukupan impakt
faktor radova je 94,002. Od reizbora u zvaǌe vixi nauqni saradnik
dr Nikoli� je objavio 5 radova kategorije M21. Ukupan impakt faktor
ovih radova je 29,054.

1Qeka se odgovor analitiqara Scopus-a jer 7 radova se klasifikuju kao preprinti
a ustvari su to radovi publikovani u qasopisima kategorije M21.
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Zbirno prikazano dr Nikoli� je objavio 2:

• 4 rada u Journal of High Energy Physics, (IF2010 = IF2012 = 4, 642,
IF2019 = 5, 875, IF2022 = 6, 376)

• 3 rada u Physical Review D, (IF2006 =IF2007 = 5, 336, IF2011 = 5, 373)

• 4 rada u European Physical Journal C, (IF2014 =IFIF2015 = 5, 436,
IF2017 = 5, 297, IF2019 = 5, 172)

• 2 rada u Nuclear Physics B(IF2010 = 4, 79, IF2017 = 3, 735)

• 4 rada u Fortschritte der Physik, (IF2008 = 2, 125, IF2018 = 3, 263,
IF2022 = 6, 099, IF2023 = 5, 532)

• 2 rada u Romanian Journal of Physics, (IF2012 = 0, 526)

• 1 rad u Advances of Theoretical and Mathematical Physics, (IF2010 =
2, 075)

• 1 rad u Physics Letters B, (IF2008 = 5, 446)

• 1 rad u International Journal of Modern Physics A, (IF20090, 982)

Posle odluke Nauqnog ve�a o utvr�ivaǌu predloga za reizbor dr
Nikoli�a u zvaǌe vixi nauqni saradnik (sednica Nauqnog ve�a Insti-
tuta za fiziku 23.10.2018. godine):

• 1 rad u European Physical Journal C (IF2019 = 5, 172)

• 2 rada u Fortschritte der Physik (IF2022 = 6, 099, IF2023 = 5, 532)

• 2 rada u Journal of High Energy Physics (IF2019 = 5, 875, IF2022 = 6, 376)

Podaci o dodatnim bibliometrijskim parametrima kvaliteta qa-
sopisa u kojima je kandidat objavǉivao radove kategorije M20 u peri-
odu od utvr�ivaǌa predloga za reizbor u zvaǌe vixi nauqni saradnik
(23.10.2018. godine) date su u doǌoj tabeli.

IF M SNIP
Ukupno 29,054 40 6,71

Usredǌeno po qlanku 5,81 7,7 1,342
Usredǌeno po autoru 13,511 14,667 3,14

2U indeksima oznaka IF stoje impakt faktori qasopisa sa kojima su izraqunate
ukupne sume iz prethodnog pasusa. Gledala se najpovoǉnija vrednost izme�u godine
objavǉivaǌa i dve godine unazad.
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1.1.4 Stepen samostalnosti i stepen uqex�a u realizaciji rezul-
tata

U oblasti istra�ivaǌa kojom se kandidat bavi uobiqajeno je da se au-
tori potpisuju abecednim redom tj. ne postoji pojam prvog autora. Ova
praksa je primeǌena u svim kandidatovim radovima. U tom smislu kan-
didatov doprinos u nauqnim radovima je potpuno ravnopravan izme�u
svih potpisanih autora.

Uzimaju�i u obzir sve kandidatove radove iz kategorija M21, M22
i M23 (22 rada) samo tri su ura�ena sa dva koautora, dok su ostali sa
jednim koautorom (mentor ili doktorand). U tom smislu doprinos kan-
didata se smatra 100%-nim kako u kvalitativnom tako i kavantitativnom
smislu. Kandidat je uqestvovao u svim fazama izrade nauqnih radova
- izboru i osmixǉavaǌu tema, diskusijama, analitiqkim proraqunima
kao i u pisaǌu samih radova. Svi radovi kandidata sa doktorandom
Danijelom Obri�em objavǉeni su u qasopisima kategorije M21 sa vi-
sokim impakt faktorima.

1.2 Anga�ovanost u formiraǌu nauqnih kadrova
Pod mentorstvom dr Nikoli�a ura�ene su qetiri master rada:

• master rad Milivoja Joji�a ”T-dualnost na torusu preko komplek-
snih parametara” ura�en je i uspexno odbraǌen 2015. godine na
Fiziqkom fakultetu Univerziteta u Beogradu,

• master rad Danijela Obri�a ”Nekomutativnost i neasocijativnost
zatvorene bozonske strune” uspexno odbraǌen na Fiziqkom fakul-
tetu Univerziteta u Beogradu 2017. godine. Rezultati rada su
publikovani u qasopisu M21 kategorije,

B. Nikolic, D. Obric, Fortschritte der Physik 66 (2018) 040009.

• master rad Nemaǌe Simovi�a ”Nekomutativnost koordinata na Dp-
brani u prisustvu konstantnih pozadinskih poǉa” uspexno odbran-
jen na Fiziqkom fakultetu Univerziteta u Beogradu 2019. godine,

• master Jovana Jaǌi�a ”Tip IIB superstruna - efektivna teorija,
nekomutativnost i T-dualnost” uspexno odbraǌen na Fiziqkom fa-
kultetu Univerziteta u Beogradu 2023. godine.

Pod mentorstvom dr Nikoli�a septembra 2023. godine student Dani-
jel Obri� odbranio je doktorsku disertaciju pod naslovom ”T-dua-
lizacija bozonske strune i tip IIB superstrune u prisustvu koordi-
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natno zavisnih pozadinskih poǉa” na Fiziqkom fakultetu Univerziteta
u Beogradu.

Kandidat je vixe puta bio qlan komisije odbranu master i dok-
torskih radova na Fiziqkom fakultetu Univerziteta u Beogradu.

Kandidat je xkolske 2013/2014 radio kao spoǉni saradnik-profesor
fizike u Matematiqkoj gimnaziji. Od xkolske 2015/2016 anga�ovan
je kao nastavnik na predmetima Raqunski praktikum 1 i 2 u posebnom
odeǉeǌu za uqenike posebno nadarene za fiziku u Zemunskoj gimnaziji
(4 qasa nedeǉno).

Kandidat je profesor na doktorskim studijama Fiziqkog fakulteta
Univerziteta u Beogradu za u�u nauqnu oblast Kvantna poǉa, qestice
i gravitacija na predmetu Teorija struna.

Prilog: ugovor o anga�ovaǌu u Zemunskoj gimnaziji, zapisnici sa
sednica Nastavno-nauqnog ve�a Fiziqkog fakulteta u Beogradu na ko-
jima su odobrene master teze i doktorska teza pomenutih kandidata,
tekstovi master teze i doktorske teze, slika web stranice fakulteta i
program predmeta Teorija struna.

1.3 Normiraǌe broja koautorskih radova, patenata i
tehniqkih rexeǌa

U reizbornom periodu (poqev od datuma utvr�ivaǌa predloga za reiz-
bor, sednica NV Instituta za fiziku 23.10.2018. godine) kandidat je
ukupno objavio: 5 iz kategorije M21, 2 iz M33 i 1 iz M34. Samo u 1
radu (M33)

B. Nikolić, D. Obrić, T. Radenković, I. Salom, M. Vojinović, Higher category
theory and n-groups as gauge symmetries for quantum gravity, J.Phys.Conf.Ser.
2667 (2023) 1 - Contribution to QTS12.

kandidat ima 4 koautora xto znaqi da u skladu sa Pravilnikom
ovaj rad nema vrednost 1 M-boda ve� 1

1+0,2(5−3)
= 0, 71. U svim ostalim

radovima kandidat ima jednog ili dva koautora, xto se u teorijskoj
fizici smatra za stoprocentni doprinos.

Ukupan normirani broj M-bodova je 42,21.
Prilog: spisak radova kandidata kao i tabele u delu Kvantitativne

analize rada kandidata.

1.4 Rukovo�eǌe projektima, potprojektima i projekt-
nim zadacima

Dr Bojan Nikoli� je rukovodio potprojektom ”T-dualizacija otvorene
i zatvorene (super)strune” u okviru projekta Ministarstva prosvete,
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nauke i tehnoloxkog razvoja ON 171031 ”Fiziqke implikacije modi-
fikovanog prostor-vremena” i Grupe za gravitaciju, qestice i poǉa
Instituta za fiziku Beograd u periodu 2011. do 2020. godine. Poxto
je projekat bio sastavǉen od ǉudi sa Instituta za fiziku u Beogradu i
Fiziqkog fakulteta u Beogradu, kandidat je efektivno bio rukovodilac
institutskog dela projekta (pisaǌe godixǌih izvextaja, finansijskih
izvextaja, kao i potpisivaǌe putnih naloga i faktura). U prilog ovome
prila�e se dopis rukovodioca projekta prof. dr Maje Buri� iz 2018.
godine pisan za potrebe reizbora.

Tako�e kandidat je predstavǉao projekat MPNTR ON 171031 u Nauq-
nom savetu Instituta za fiziku u Beogradu u periodu od 2011. do
2013. godine (Ministarstvo ukinulo nauqne savete), xto je i bio za-
datak rukovodioca projekta.

Poqev 01.01.2022. godine kandidat je qlan projekta ”Kvantna grav-
itacija preko vixih gej
 teorija” iz programa IDEJE Fonda za nauku
Republike Srbije i u okviru ǌega rukovodi projektnim zadatkom ”Is-
pitivaǌe aspekata klasiqne teorije gravitacije” (radni paket 1 pro-
jekta).

Prilog: dopisi rukovodilaca pomenutih projekata.

1.5 Aktivnost u nauqno struqnim druxtvima
Kandidat je recenzent u qasopisu Foundations of Physics.

Dr Bojan Nikoli� je u dva navrata bio qlan Dr�avne komisije DFS
za takmiqeǌe uqenika sredǌih xkola - 2003.-2005. i 2011.-2013., i kao
autor zadataka i kao pregledaq. U periodu 2004. do 2006. bio je qlan
redakcije qasopisa Mladi fiziqar, koji izdaje DFS u svrhu popular-
izacije fizike. Aktivno je uqestvovao u obele�avaǌu Svetske godine
fizike na Institutu za fiziku 2005. godine. Bio je qlan lokalnih
organizacionih komiteta vixe me�unarodnih i doma�ih konferencija i
radionica organizovanih od strane Instituta za fiziku ili Grupe za
gravitaciju, qestice i poǉa.

Prilog: E-mail u kojem se urednixtvo qasopisa zahvaǉuje za obavǉenu
recenziju. Kopija ”Mladog fiziqara”, odxtampane internet stranice
xkola i konferencija, kao i zadaci za 2. razred sredǌih xkola za
Dr�avno takmiqeǌe 2012. godine.

1.6 Uticajnost nauqnih rezultata
Citiranost kao i kvalitet qasopisa (visok IF) u kojima dr Nikoli�
publikuje govore o kvalitetu dobijenih rezultata a samim tim i o ǌi-
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hovom (potencijalnom) uticaju na nauqnu zajednicu.
S obzirom da se kandidat u izbornom periodu bavio T-dualizacijom

zatvorene strune u prisustvu koordinatno zavisnih poǉa, a to je oblast
zaqeta 2010. godine, kao i zbog relativno malog broja ǉudi koji se tom
temom bavi, broj citata 88 (bez autocitata) je zadovoǉavaju�i jer je
ostvaren ve�inom u periodu od posledǌih 13 godina.

Rad iz 2010. godine

B. Nikolic and B. Sazdovic, Noncommutativity in space-time extended by Liou-
ville field, Adv. Theor. Math. Phys. 14 (2010) 1,

je objavǉen u svesci sa jox samo 5 radova od kojih je jedan rad
delo Edvarda Vitena, vode�eg svetskog eksperta u oblasti matematiqke
fizike i teorije struna.

Rad iz 2018. godine

B. Nikolic, D. Obric, Noncommutativity and nonassociativity of closed bosonic
string on T-dual toroidal backgrounds, Fortschritte der Physik (2018) 1800009,

je u ovom qasopisu M21 kategorije objavǉen po pozivu glavnog ured-
nika prof. dr Ditera Lista (Dieter Lüst).

Prilog: liste citiranosti od Google Scholar-a i Scopus-a, kopija prve
strane qasopisa kao i e-mail glavnog urednika qasopisa Fortschritte der
Physik, prof. dr Ditera Lista.

1.7 Doprinos kandidata u realizaciji radova u centrima
u zemǉi i inostranstvu

Kandidat je znaqajno doprineo svakom radu koji je objavio. Svi radovi
objavǉeni u izbornom periodu ura�eni su sa saradnicima sa Instituta
za fiziku i doktorandom Danijelom Obri�em. Dr Nikoli� je imao
znaqajan doprinos u svakoj etapi izrade publikacije - kako u izboru
teme, tako i u diskusijama, analitiqkim proraqunima kao i u pisaǌu
samih radova i komunikaciji sa recenzentima qasopisa u toku postupka
objavǉivaǌa.

1.8 Me�unarodna nauqna saradǌa
Dr Nikoli� je doneo dve nove teme u grupu koja se bavi teorijom struna
(dr Branislav Sazdovi�, dr ǈubica Davidovi�, doktorand Ilija Ivan-
ixevi�, dr Bojan Nikoli�, dr Danijel Obri�).
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Prva je fermionska T-dualnost (proistekla iz korespondencije sa
dr Iǉom Bahmatovim3) a druga nekomutativnost zatvorene strune tokom
postdoktorskog boravka u grupi prof. Lista. U okviru prve teme dr
Nikoli� je primenio fermionsku T-dualnost na sluqaj tip II teorije
superstrune u formulaciji qistog spinora.

Drugu spomenutu temu, nekomutativnost zatvorene strune, dr Nikoli�
je uqio direktno od ǌenog autora prof. Lista tokom boravka u Min-
henu. Po povratku iz Minhena ideja je kombinovana sa uopxtenom T-
dualizacionom procedurom koja je ve� bila razvijena u Institutu za
fiziku od starne prof. dr Branislava Sazdovi�a i dr ǈubice Davi-
dovi�. Rezultat je generalizacija rezultata dobijenih u grupi dr.
Lista kao i znaqajno pojednostavǉeǌe matematiqkog dela procedure.

Tokom boravka u Minhenu uspostavǉena je saradǌa sa grupom prof.
Lista (nije formalizovana), koja se ogleda u qestoj korespondenciji i
analizi novih radova, xto doprinosi vixem kvalitetu rezultata.

1.9 Pokazateǉi uspeha u nauqnom radu
Posle prethodnog izbora u zvaǌe dr Bojan Nikoli� je odr�ao slede�a
predavaǌa po pozivu na skupovima od nacionalnog znaqaja:

M 61 B. Nikoli�, Gravitacioni talasi - od teorije do direktne de-
tekcije, Nastava fizike broj 3, maj 2016, 213-221, XXXIV Republiqki
seminar o nastavi fizike, Zlatibor 12.-14. maj 2016.

Qlan organizacionog komiteta nekoliko me�unarodnih skupova:

• IV Summer School in Modern Mathematical Physics, September 2006, Bel-
grade, Serbia

http://mphys4.ipb.ac.rs/

• V Summer School in Modern Mathematical Physics, September 2008, Bel-
grade, Serbia

http://mphys5.ipb.ac.rs/

• VI Summer School in Modern Mathematical Physics, September 2010, Bel-
grade, Serbia

http://mphys6.ipb.ac.rs/

• VII Summer School in Modern Mathematical Physics, September 2012, Bel-
grade, Serbia

3Institute of Theoretical and Mathematical Physics, Moscow State University, Leninskie Gory
119991, Moscow, Russia.
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http://mphys7.ipb.ac.rs/

• Gravity and String Theory: New ideas for unsolved problems III (In honour
of Prof. Branislav Sazdović’s retirement)

http://www.gst2018.ipb.ac.rs/

Kandidat je dobitnik nagrade Instituta za fiziku u Beogradu 2009.
godine za najboǉe ura�enu doktorsku tezu na Institutu u toku 2008.
godine.

Prilog: kopija rada, plan rada skupa, poziv organizatora.
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PREGLED KVANTITATIVNIH
POKAZATEǈA

nauqnoistra�ivaqkog rada dr Bojana Nikoli�a

Ostvareni rezultati nakon utvr�ivaǌa predloga za reizbor u zvaǌe
vixi nauqni saradnik (redovna sednica Nauqnog ve�a Instituta za
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1. B. Nikolić and B. Sazdović, Gauge symmetries decrease the number of Dp-brane

dimensions, Phys. Rev. D 74 (2006) 045024.
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Ćirković, G. Djordjević, G. Senjanović, Referees: M. Hindmarsh, Dj. Šijački, D.
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5. ⋆ B. Nikolić, From 3D torus with H-flux to torus with R-flux and back, Book of

abstacts, 10th Mathematical Physics Meeting: School and Conference on Modern

Mathematical Physics, 9.-14. Sepetember 2019, Belgrade, Serbia.

Predavanje po pozivu sa skupa nacionalnog značaja štampano u celini, M61

(1.5)
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ordinata, Fizički fakultet Univerziteta u Beogradu, 2006, mentor: prof. dr Branislav

Sazdović
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• Lj. Davidović and B. Sazdović, Noncommutativity in weakly curved background by

canonical methods, Phys. Rev. D 83 (2011) 066014.
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• B. Nikolić, B. Sazdović, T-dualization of type II superstring theory in double space,

Eur.Phys.J. C77 (2017) no.3, 197.
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• Lj. Davidović, B. Nikolić, B. Sazdović, Closed string noncommutativity in the weakly

curved background, 8th Mathematical Physics Meeting : Summer School and Con-

ference on Modern Mathematical Physics. 24-31 Aug 2014. Belgrade, Serbia.
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• B. Nikolić, B. Sazdović, Fermionic T-duality in fermionic double space, Nucl.Phys.

B917 (2017) 105-121.

• B. Nikolić, B. Sazdović, T-dualization of type II superstring theory in double space,

Eur.Phys.J. C77 (2017) no.3, 197.
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Abstract In this article we offer a new interpretation of the
T-dualization procedure of type II superstring theory in the
double space framework. We use the ghost free action of type
II superstring in pure spinor formulation in approximation
of constant background fields up to the quadratic terms. T-
dualization along any subset of the initial coordinates, xa , is
equivalent to the permutation of this subset with subset of the
corresponding T-dual coordinates, ya , in double space coor-
dinate ZM = (xμ, yμ). Requiring that the T-dual transfor-
mation law after the exchange xa ↔ ya has the same form as
the initial one, we obtain the T-dual NS–NS and NS–R back-
ground fields. The T-dual R–R field strength is determined up
to one arbitrary constant under some assumptions. The com-
patibility between supersymmetry and T-duality produces a
change of bar spinors and R–R field strength. If we dualize
an odd number of dimensions xa , such a change flips type
IIA/B to type II B/A. If we T-dualize the time-like direction,
one imaginary unit i maps type II superstring theories to type
II� ones.

1 Introduction

T-duality is a fundamental feature of string theory [1–8]. As
a consequence of T-duality there is no physical difference
between string theory compactified on a circle of radius R
and circle of radius 1/R. This conclusion can be generalized
to tori of various dimensions.

The mathematical realization of T-duality is given by
Buscher T-dualization procedure [4,5]. If the background
fields have global isometries along some directions then we
can localize that symmetry introducing gauge fields. The
next step is to add the new term in the action with Lagrange

This work is supported in part by the Serbian Ministry of Education,
Science and Technological Development, under contract No. 171031.

a e-mail: bnikolic@ipb.ac.rs
b e-mail: sazdovic@ipb.ac.rs

multipliers which forces these gauge fields to be unphysical.
Finally, we can use gauge freedom to fix initial coordinates.
Varying this gauge fixed action with respect to the Lagrange
multipliers one gets the initial action and varying with respect
to the gauge fields one gets the T-dual action.

Buscher T-dualization can be applied along directions on
which background fields do not depend [4–10]. Such a proce-
dure was used in Refs. [11–18] in the context of closed string
noncommutativity. There is a generalized Buscher procedure
which deals with background fields depending on all coor-
dinates. The generalized procedure was applied to the case
of bosonic string moving in the weakly curved background
[19,20]. It leads directly to closed string noncommutativity
[21].

The Buscher procedure can be considered as the defini-
tion of T-dualization. But there are also other frameworks
in which we can represent T-dualization which must be in
accordance with the Buscher procedure. Here we talk about
the double space formalism which was the subject of the arti-
cles about 20 years ago [22–26]. Double space is spanned by
coordinates ZM = (xμ, yμ) (μ = 0, 1, 2, . . . , D−1), where
xμ and yμ are the coordinates of the D-dimensional initial
and T-dual space-time, respectively. Interest for this subject
emerged again with Refs. [27–34], where T-duality is related
with O(d, d) transformations. The approach of Ref. [22] has
been recently improved when the T-dualization along some
subset of the initial and corresponding subset of the T-dual
coordinates has been interpreted as permutation of these sub-
sets in the double space coordinates [35,36].

Let us motivate our interest in this subject. It is well known
that T-duality is important feature in understanding M-theory.
In fact, five consistent superstring theories are connected by
a web of T and S dualities. In the beginning we are going
to pay attention to the T-duality. To obtain formulation of
M-theory it is not enough to find all corresponding T-dual
theories. We must construct one theory which contains the
initial theory and all corresponding T-dual ones.
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We have succeeded to realize such program in the bosonic
case, for both constant and weakly curved background. In
Refs. [35,36] we doubled all bosonic coordinates and obtain
the theory which contains the initial and all corresponding T-
dual theories. In such theory T-dualization along an arbitrary
set of coordinates xa is equivalent to replacement of these
coordinates with the corresponding T-dual ones, ya . There-
fore, T-duality in double space becomes symmetry transfor-
mation with respect to permutation group.

Performing T-duality in supersymmetric case generates
new problems. In the present paper we are going to extend
such an approach to the type II theories. In fact, doubling all
bosonic coordinates we have unified types IIA, IIB as well
as type II� [37] (obtained by T-dualization along time-like
direction) theories. We expect that such a program could be
a step toward better understanding M-theory.

In the present article we apply the approach of Refs. [35,
36] in the cases of complete (along all bosonic coordinates)
and partial (subset of the bosonic coordinates) T-dualization
of the type II superstring theory [1–3]. We use ghost free
type II superstring theory in pure spinor formulation [33,38–
44] in the approximation of constant background fields and
up to the quadratic terms. This action is obtained from the
general type II superstring action [45] which is given in the
form of an expansion in powers of fermionic coordinates θα

and θ̄ α . In the first step of our consideration we will limit
our analysis to the basic term of the action neglecting θα

and θ̄ α dependent terms. Later, in the discussion of proper
fermionic variables, using an iterative procedure [45], we
take into consideration higher power terms and restore the
supersymmetric invariants �

μ
±, dα and d̄α as variables in the

theory.
Rewriting the T-dual transformation laws in terms of the

double space coordinates ZM we introduce the generalized
metric HMN and the generalized current J±M . The permu-
tation matrix (T a)MN exchanges the places of xa and ya ,
where the index a marks the directions along which we
make T-dualization. The basic request is that T-dual dou-
ble space coordinates, a ZM = (T a)MN ZN , satisfy the
transformation law of the same form as initial coordinates,
ZM . It produces the expressions for the T-dual generalized
metric, aHMN = (T aHT a)MN , and the T-dual current,

a J±M = (T a J±)M . This is equivalent to the requirement that
transformations of the coordinates and background fields,
ZM → a ZM , HMN → aHMN and J±M → a J±M , are
symmetry transformations of the double space action. From
transformation of the generalized metric we obtain T-dual
NS–NS background fields and from transformation of the
current we obtain T-dual NS–R fields.

The supersymmetry case includes the new features in both
the Buscher and the double space T-duality approaches. In
the bosonic case the left and right world-sheet chiralities
have different T-duality transformations. It implies that in T-

dual theory two fermionic coordinates, θα and θ̄ α , and corre-
sponding canonically conjugated momenta, πα and π̄α (with
different world-sheet chiralities), have different supersym-
metry transformations. As shown in [46,47] it is possible
to make a supersymmetry transformation in T-dual theory
unique if we change one world-sheet chirality sector. There-
fore, compatibility between supersymmetry and T-duality
can be achieved by action on the bar variables with the oper-
ator a�, •π̄α = a�α

β
aπ̄β . As a consequence of the relation

	11
a� = (−1)d a�	11 it follows that such transformations

for odd d change space-time chiralities of the bar spinors. In
such a way the operator a� for odd d maps type IIA/B to
type IIB/A theory. Here d denotes the number of T-dualized
directions.

There is one difference compared with the bosonic string
case [35,36] where all results from the Buscher procedure
were reproduced. In the T-dual transformation laws of type
II superstring theory the R–R field strength Fαβ does not
appear. The reason is that R–R field strength couples only
with the fermionic degrees of freedom, which are not dual-
ized. This is in analogy with the term ∂+xi�+i j∂−x j in the
bosonic case, where background field�+i j couples only with
coordinates xi , which are undualized [27–29]. To reproduce
the Buscher form of the T-dual R–R field strength we should
make some additional assumptions.

There is an appendix, which contains the block-wise
expressions for the tensors used in this article and useful
relations.

2 Buscher T-dualization of type II superstring theory

In this section we will consider type II superstring action
in pure spinor formulation [38,43,44] in the approximation
of constant background fields and up to the quadratic terms.
Then we will give the overview of the results obtained by
Buscher T-dualization procedure [9,10,46,47].

2.1 Type II superstring in pure spinor formulation

The sigma model action for the type II superstring of Ref.
[45] is of the form

S =
∫

�

d2ξ(XT )M AMN X̄ N + Sλ + Sλ̄, (2.1)

where the vectors XM and X̄ N are left and right chiral super-
symmetric variables,

XM =

⎛
⎜⎜⎝

∂+θα

�
μ
+

dα
1
2 N

μν
+

⎞
⎟⎟⎠ , X̄ N =

⎛
⎜⎜⎝

∂−θ̄ α

�
μ
−

d̄α
1
2 N̄

μν
−

⎞
⎟⎟⎠ , (2.2)

123
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of which the components are defined as

�
μ
+ = ∂+xμ + 1

2
θα(	μ)αβ∂+θβ,

�
μ
− = ∂−xμ + 1

2
θ̄ α(	μ)αβ∂−θ̄ β ,

(2.3)

dα = πα − 1

2
(	μθ)α

[
∂+xμ + 1

4
(θ	μ∂+θ)

]
,

d̄α = π̄α − 1

2
(	μθ̄)α

[
∂−xμ + 1

4
(θ̄	μ∂−θ̄ )

]
, (2.4)

Nμν
+ = 1

2
wα(	[μν])αβλβ, N̄μν

− = 1

2
w̄α(	[μν])αβ λ̄β .

(2.5)

Inserting the supermatrix AMN

AMN =

⎛
⎜⎜⎝

Aαβ Aαν Eα
β �α,μν

Aμβ Aμν Ēβ
μ �μ,νρ

Eα
β Eα

ν Pαβ Cα
μν

�μν,β �μν,ρ C̄μν
β Sμν,ρσ

⎞
⎟⎟⎠ , (2.6)

in (2.1), the action gets the expanded form [45]

S =
∫

d2ξ
[
∂+θαAαβ∂−θ̄ β+∂+θαAαμ�

μ
−+�

μ
+Aμα∂−θ̄ α

+�
μ
+Aμν�

ν− + dαE
α

β∂−θ̄ β + dαE
α

μ�
μ
−

+ ∂+θαEα
β d̄β + �

μ
+Eμ

β d̄β + dαPαβ d̄β

+ 1

2
Nμν

+ �μν,β∂−θ̄ β + 1

2
Nμν

+ �μν,ρ�
ρ
−

+ 1

2
∂+θα�α,μν N̄

μν
− + 1

2
�

μ
+�μ,νρ N̄

νρ
−

+ 1

2
Nμν

+ C̄μν
β d̄β + 1

2
dαC

α
μν N̄

μν
−

+ 1

4
Nμν

+ Sμν,ρσ N̄
ρσ
−

]
+ Sλ + Sλ̄. (2.7)

The world sheet � is parameterized by ξm = (ξ0 = τ, ξ1 =
σ) and ∂± = ∂τ ± ∂σ . Superspace is spanned by bosonic
coordinates, xμ (μ = 0, 1, 2, . . . , 9), and fermionic ones,
θα and θ̄ α (α = 1, 2, . . . , 16). The variables πα and π̄α are
canonically conjugated momenta to θα and θ̄ α , respectively.
The actions for pure spinors, Sλ and Sλ̄, are free field actions

Sλ =
∫

d2ξwα∂−λα, Sλ̄ =
∫

d2ξw̄α∂+λ̄α, (2.8)

where λα and λ̄α are pure spinors and wα and w̄α are their
canonically conjugated momenta, respectively. The pure
spinors satisfy the so-called pure spinor constraints,

λα(	μ)αβλβ = λ̄α(	μ)αβλ̄β = 0. (2.9)

The matrix AMN containing type II superfields generally
depends on xμ, θα and θ̄ α . The superfields Aμν , Ēμ

α , Eα
μ

and Pαβ are physical superfields, because their first compo-
nents are supergravity fields. The fields in the first column

and first row are auxiliary superfields because they can be
expressed in terms of the physical ones [45]. The remaining
ones, �μ,νρ(�μν,ρ), Cα

μν(C̄μν
α) and Sμν,ρσ , are the curva-

tures (field strengths) for the physical superfields.
The action from which we start (2.7) could be consid-

ered as an expansion in powers of θα and θ̄ α . In the iterative
procedure presented in [45] it has been shown that each com-
ponent in the expansion can be obtained from the previous
one. Therefore, for practical reasons (computational simplic-
ity), in the first step we limit our considerations to the basic
component i.e. we neglect all terms in the action containing
θα and θ̄ α . As a consequence the θα and θ̄ α terms disap-
pear from �

μ
±, dα and d̄α and in the solutions for the physi-

cal superfields just x-dependent supergravity fields survive.
Therefore we lose explicit supersymmetry in such approxi-
mation. Later, when we discuss proper fermionic variables,
we would go further in the expansion and take higher power
terms, which means that supersymmetric invariants, �

μ
±, dα

and d̄α , would play the roles of ∂±xμ, πα and π̄α , respec-
tively.

We are going to perform T-dualization along some subset
of bosonic coordinates xa . Therefore, we will assume that
these directions are Killing vectors. Since ∂±xa appears in
�

μ
±, dα and d̄α , it essentially means that corresponding super-

fields (Aab, Ēa
α , Eα

a , Pαβ ) should not depend on xa . This
assumption regarding Killing spinors could be extended on
all space-time directions xμ, which effectively means, in the
first step, that physical superfields are constant. All auxiliary
superfields can be expressed in terms of space-time deriva-
tives of physical supergravity fields [45]. Then, in the first
step, the auxiliary superfields are zero, because all physi-
cal superfields are constant. On the other hand, having con-
stant physical superfields means that their field strengths,
�μ,νρ(�μν,ρ), Cα

μν(C̄μν
α) and Sμν,ρσ , are zero. In this

way, in the first step, we eliminated from the action terms
containing variables Nμν

+ and N̄μν
− (2.5).

This choice of background fields should be discussed from
the viewpoint of space-time field equations of type II super-
string action [48]. Let us pay attention on the space-time
field equations for type II superstring given in Appendix B
of [48]. Equation (B.7) from this set of equations represents
the back-reaction of Pαβ on the metric Gμν . If we take a con-
stant dilaton � and a constant antisymmetric NS–NS field
Bμν we obtain

Rμν − 1

2
GμνR ∼ (Pαβ)2

μν. (2.10)

If we choose the background field Pαβ to be constant, in
general, we will have a constant Ricci tensor, which means
that the metric tensor is a quadratic function of the space-time
coordinates i.e. there is back-reaction of R–R field strength
on the metric tensor. If one wants to cancel non-quadratic
terms originating from back-reaction, additional conditions
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must be imposed on the R–R field strength—the AdS5 × S5

coset geometry or self-duality condition (see Ref. [38]).
Taking into account the above analysis and arguments, our

approximation can be realized in the following way:

�
μ
± → ∂±xμ, dα → πα, d̄α → π̄α, (2.11)

and the physical superfields take the form

Aμν = κ

(
1

2
Gμν + Bμν

)
, Eα

ν = −�α
ν , Ēα

μ = �̄α
μ,

Pαβ = 2

κ
Pαβ = 2

κ
e

�
2 Fαβ, (2.12)

where Gμν is the metric tensor and Bμν is the antisymmetric
NS–NS background field. Consequently, the full action S is

S = κ

∫
�

d2ξ

[
∂+xμ�+μν∂−xν + 1

4πκ
�R(2)

]

+
∫

�

d2ξ
[−πα∂−(θα + �α

μx
μ) + ∂+(θ̄α + �̄α

μx
μ)π̄α

+ 2

κ
παP

αβπ̄β

]
, (2.13)

where

�±μν = Bμν ± 1

2
Gμν. (2.14)

The actions Sλ and Sλ̄ are decoupled from the rest and can
be neglected in the further analysis. The action, in its final
form, is ghost independent.

The NS–NS sector of the theory described by (2.13) con-
tains the gravitationalGμν , the antisymmetric Kalb–Ramond
field Bμν and the dilaton field �. In the NS–R sector there are
two gravitino fields, �α

μ and �̄α
μ, which are Majorana–Weyl

spinors of the opposite chirality in type IIA and of the same
chirality in type IIB theory. The field Fαβ is the R–R field
strength and can be expressed in terms of the antisymmetric
tensors F(k) [9,49–51]

Fαβ =
D∑

k=0

1

k! F(k)	
αβ

(k),
[
	

αβ

(k) = (	[μ1···μk ])αβ
]

(2.15)

where

	[μ1μ2···μk ] ≡ 	[μ1	μ2 · · · 	μk ] (2.16)

is the completely antisymmetrized product of gamma matri-
ces. The bispinor Fαβ satisfies the chirality condition,
	11F = ±F	11, where 	11 is a product of gamma matrices
in D = 10 dimensional space-time and the sign + corre-
sponds to type IIA, while the sign − corresponds to type IIB
superstring theory. Consequently, type IIA theory contains
only even rank tensors F(k), while type IIB contains only
odd rank tensors. Because of the duality relation, the inde-
pendent tensors are F(0), F(2) and F(4) for type IIA, while
F(1), F(3) and the self-dual part of F(5) for type IIB super-
string theory. Using the mass-shell condition (massless Dirac

equation for Fαβ ) these tensors can be solved in terms of the

potentials F(k) = d A(k−1). The factor e
�
2 is in accordance

with the conventions adopted from [52].

2.2 T-dualization along arbitrary number of coordinates

Let us start with the action (2.13) and apply the standard T-
dualization procedure [4,5,19,20]. It means that we localize
the shift symmetry for some coordinates xa . We substitute the
ordinary derivatives with covariant ones, introducing gauge
fields vaα . Then we add the term 1

2 ya F
a+− to the Lagrangian in

order to force the field strength Fa+− to vanish and preserve
equivalence between original and T-dual theories. Finally,
we fix the gauge xa = 0 and obtain

Sfix(v
a±, xi , θα, θ̄α, πα, π̄α)

=
∫

�

d2ξ

[
κva+�+abv

b−+κva+�+aj∂−x j+κ∂+xi�+ibv
b−

+ κ∂+xi�+i j∂−x j + 1

4π
�R(2) − πα�α

b vb−

+ va+�̄α
a π̄α − πα∂−(θα + �α

i x
i ) + ∂+(θ̄α + �̄α

i x
i )π̄α

+ 1

2κ
e

�
2 παF

αβπ̄β + κ

2
(va+∂−ya − va−∂+ya)

]
. (2.17)

Varying the gauge fixed action with respect to the
Lagrange multipliers ya we get the solution for the gauge
fields in the form

va± = ∂±xa, (2.18)

while varying with respect to the gauge fields va± we have

va± = −2κθ̂ab± �∓bi∂±xi − κθ̂ab± ∂±yb ± 2θ̂ab± �α±bπ±α.

(2.19)

Substituting va± in (2.17) we find

Sfix(ya, x
i , θα, θ̄α, πα, π̄α)

=
∫

�

d2ξ

[
κ2

2
∂+ya θ̂

ab− ∂−yb + κ2∂+ya θ̂
ab− �+bj∂−x j

− κ2∂+xi�+ia θ̂
ab− ∂−yb + 1

4π
�R(2)

+ κ∂+xi (�+i j − 2κ�+ia θ̂
ab− �+bj )∂−x j

−πα∂−(θα + �α
i x

i − 2�α
a θ̂ab− �+bj x

j − �α
a θ̂ab− yb)

+ ∂+(θ̄α + �̄α
i x

i + 2�̄α
a θ̂ab+ �−bj x

j + �̄α
a θ̂ab+ yb)π̄α

+ 2πα�α
a θ̂ab− �̄

β
b π̄β + 1

2κ
e

�
2 παF

αβπ̄β

]
. (2.20)

Before we read the T-dual background fields, we must express
this action in terms of the appropriate spinor coordinates,
which we will discuss in the next subsections.

Combining two solutions for the gauge fields (2.18) and
(2.19) we obtain the transformation law between initial xa
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and T-dual coordinates ya ,

∂±xa ∼= −2κθ̂ab± �∓bi∂±xi − κθ̂ab± (∂±yb − J±b). (2.21)

Its inverse is the solution of the last equation in terms of ya

∂±ya ∼= −2�∓ab∂±xb − 2�∓ai∂±xi + J±a, (2.22)

where we use ∼= to emphasize that these are T-duality rela-
tions. Here we introduced the current J±μ in the form

J±μ = ± 2

κ
�α±μπ±α, (2.23)

where

�α+μ ≡ �α
μ, �α−μ ≡ �̄α

μ, π+α ≡ πα, π−α ≡ π̄α,

(2.24)

and the expression θ̂ab± is defined in (A.9).

2.3 Relation between left and right chirality in T-dual
theory

One can see from (2.21) and (2.22) that the left and right
chiralities transform differently in T-dual theory. As a conse-
quence, in T-dual theory we will have two types of vielbeins,
two types of 	-matrices, two types of spin connections and
two types of supersymmetry transformations. We want to
have a single geometry in T-dual theory. Therefore, we will
show that all these different representations of the same vari-
ables can be connected by Lorentz transformations [46,47].

2.3.1 Two sets of vielbeins in T-dual theory

The T-dual transformations of the coordinates (2.22) can be
put in the form
(

∂±ya
∂±xi

)
=
(−2�∓ab −2�∓aj

0 δij

)(
∂±xb
∂±x j

)
+
(
J±a

0

)
,

(2.25)

which can be rewritten as

∂+(a X)μ̂ = (Q̄−1T )μ̂ν∂+xν + J+μ̂,

∂− (a X)μ̂ = (Q−1T )μ̂ν∂−xν + J−μ̂, (2.26)

where we introduced the T-dual variables a Xμ̂ = {ya, xi }.
Here and further on the left subscript a denotes the T-
dualization along xa directions. For coordinates which con-
tain both xi and ya we will use “hat” indices μ̂, ν̂. The matri-
ces

Qμ̂ν =
(

κθ̂ab+ 0
−2κ�−icθ̂

cb+ δij

)
, Q̄μ̂ν =

(
κθ̂ab− 0

−2κ�+icθ̂
cb− δij

)
,

(2.27)

and theirs inverse

Q−1
μν̂

=
(

2�−ab 0

2�−ib δ
j
i

)
, Q̄−1

μν̂
=
(

2�+ab 0

2�+ib δ
j
i

)
, (2.28)

perform T-dualization for the vector indices.
Note that different chiralities transform with different

matrices Qμ̂ν and Q̄μ̂ν . Therefore, there are two types of
T-dual vielbeins

ae
aμ̂ = eaν(Q

T )νμ̂, aē
aμ̂ = eaν(Q̄

T )νμ̂, (2.29)

with the same T-dual metric

aG
μ̂ν̂ ≡ (ae

T η ae)
μ̂ν̂ = (QGQT )μ̂ν̂ = aḠ

μ̂ν̂

≡ (aē
T η aē)

μ̂ν̂ = (Q̄G Q̄T )μ̄ν̂ . (2.30)

The Lorentz indices are underlined (denoted by a, b).
The two T-dual vielbeins are equivalent because they are

related by the particular local Lorentz transformation

aē
aμ̂ = �a

b ae
bμ̂, �a

b = eaμ(Q−1 Q̄)Tμ
ν(e

−1)νb.

(2.31)

From (2.27) and (2.28) we have

(Q−1 Q̄)Tμ
ν =

(
δab + 2κθ̂ac+ Gcb 2κθ̂ac+ Gcj

0 δij

)
, (2.32)

which produces

�a
b = δab − 2ωa

b, ωa
b = −κeaa θ̂

ab+ (eT )b
c ηcb.

(2.33)

It satisfies definition of Lorentz transformations

�T η� = η �⇒ det �a
b = ±1. (2.34)

After careful calculations we have det �a
b = (−1)d , where

d is the number of dimensions along which we perform T-
duality.

2.3.2 Two sets of 	-matrices in T-dual theory

Because in T-dual theory there are two vielbeins, there must
also be two sets of 	-matrices in curved space

a	μ̂ = (ae
−1)μ̂a 	a = (ae

−1	)μ̂,

a	̄μ̂ = (aē
−1)μ̂a 	a = (aē

−1	)μ̂. (2.35)

They are related by the expression

a	̄μ̂ = a�
−1

a	μ̂ a�, (2.36)

where a� is a spinorial representation of the Lorentz trans-
formation

a�
−1 	a

a� = (�−1)ab 	b. (2.37)
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2.3.3 Two sets of spin connections in T-dual theory

The spin connection can be expressed in terms of vielbeins
as

ωμ
ab = 1

2
(eνac

b
μν − eνbc

a
μν) − 1

2
eρaeσbccρσ e

c
μ, (2.38)

where

c
a
μν = ∂μe

a
ν − ∂νe

a
μ. (2.39)

Therefore, in T-dual theory there are two spin connections,
defined in terms of two vielbeins. As a consequence of (2.31)
they are related as

aω̄
μ̂a

b = �a
c aω

μ̂c
d (�−1)db + �a

c ∂μ̂ (�−1)cb. (2.40)

It is useful to introduce the spin connection in the form

ωμ = ωμab	
ab, (2.41)

where

	ab = 	a	b − 	b	a . (2.42)

Then from (2.37) for a� = const we obtain

aω̄
μ̂ = a�

−1
aω

μ̂
a�. (2.43)

2.3.4 Single form of supersymmetry invariants in T-dual
theory and new spinor coordinates

So far we used the action from Ref. [45] which is an expan-
sion in powers of θα and θ̄ α . We performed the procedure of
bosonic T-dualization using the first term in the expansion i.e.
θα and θ̄ α independent part of the action. Consequently, the
supersymmetric invariants, �

μ
±, dα and d̄α , in that approxi-

mation became ∂±xμ, πα and π̄α . But if we would take higher
power terms into consideration, then these invariants would
appear again in the theory. Consequently, we can use these
invariants to find proper spinor variables.

From the compatibility between supersymmetry and T-
duality we will find appropriate spinor variables changing
the bar ones. We are not going to apply such a procedure to
background fields which transformation we will find from T-
dualization. In Sect. 2.5 we will check that both T-dual grav-
itinos satisfy a single supersymmetry transformation rule.

Note that according to [38,53–59] fermionic coordinates,
θα and θ̄ α , and their canonically conjugated momenta, πα

and π̄α , are parts of the supersymmetry invariant variables,

dα = πα − 1

2
(	μθ)α

(
∂+xμ + 1

4
θ	μ∂+θ

)

d̄α = π̄α − 1

2
(	μθ̄)α

(
∂−xμ + 1

4
θ̄	μ∂−θ̄

)
. (2.44)

In T-dual theory, as a consequence of two types of 	 matri-
ces, there are two types supersymmetry invariant variables,

adα = aπα − 1

2
(a	

μ̂
aθ)α

(
∂+ a Xμ̂ + 1

4
aθa	μ̂∂+ aθ

)
,

(2.45)

ad̄α = aπ̄α − 1

2
(a	̄

μ̂
a θ̄ )α

(
∂− a Xμ̂ + 1

4
a θ̄a	̄μ̂∂− a θ̄

)
.

(2.46)

We want the two expressions to have the same 	 matrices.
Using Eq. (2.36) we can rewrite the bar expressions as

(a� ad̄)α = (a� aπ̄)α − 1

2
(a	

μ̂
a� a θ̄ )α

(
∂− a Xμ̂

+ 1

4
a θ̄ a�

−1
a	μ̂ a� ∂−a θ̄

)
. (2.47)

Therefore, if we preserve expressions for aθ
α = θα and

aπα = πα , change bar variables

•θ̄ α ≡ a�
α

β a θ̄
β , •π̄α ≡ a�α

β
aπ̄β, (2.48)

and take

�2 = 1, (2.49)

the transformation with bar variables will get the same
form as those without bar in adα . Consequently, the T-dual
supersymmetric invariant variables adα and a�α

β
ad̄β are

expressed in a unique form in terms of the true T-dual spinor
variables θα , πα , •θ̄ α and •π̄α ,

adα = dα, •d̄α = a�α
β d̄β = •π̄α − 1

2
(a	

μ̂ •θ̄ )α

× (∂− a Xμ̂ + 1

4
•θ̄ a	μ̂∂− •θ̄ ), (2.50)

if condition (2.49) is satisfied.

2.3.5 Spinorial representation of the Lorentz
transformation

In order to find expressions for the bar spinors in a T-dual
background we should first solve Eq. (2.37) and find the
expression for a�. We will do it for Bμν → 0, so that
θ̂ab+ → − 1

κ
(G̃−1)ab, where G̃ab is the ab component of

Gμν . Then from (2.33) it follows that

aω
ab → eaa(G̃

−1)ab(eT )b
b ≡ a P

ab, (2.51)

where a Pa
b is some a dependent projector on the ab sub-

space a Pa
c a Pc

b = a Pa
b. If we introduce the 	-matrices

in curved space

	μ = (e−1)μa	
a, (2.52)

we can rewrite Eq. (2.37) in the form

a�	μ =
[
	μ − 2 ((e−1)μa a P

a
b 	b

]
a�. (2.53)
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To simplify the derivation from now on we will suppose
that the metric tensor is diagonal. Then (e−1)μa a Pa

b =
δ
μ
a (e−1)aa and we have

a�	μ = [
	μ − 2 δμ

a 	a]
a�. (2.54)

For μ = a and μ = i we obtain

a� 	a = −	a
a�, a� 	i = 	i

a�. (2.55)

The 	-matrices in curved space for a diagonal metric satisfy
the algebra

{	a, 	b} = 2(G−1)ab, {	a, 	i } = 0,

{	i , 	 j } = 2(G−1)i j . (2.56)

We should find such an a� as anticommutes with all matri-
ces 	a and commutes with all matrices 	i . Let us first intro-
duce the 	11 matrix,

	11 = (i)
D(D−1)

2
1∏D−1

μ=0 Gμμ

εμ1μ2···μD	μ1	μ2 · · · 	μD ,

(2.57)

where the normalization constant is chosen so that 	11 sat-
isfies the condition (	11)2 = 1.

Then we define an analogy of the 	11 matrix in the sub-
space spanned by the T-dualized directions

a	 = (i)
d(d−1)

2

d∏
i=1

	ai = (i)
d(d−1)

2 	a1	a2 · · · 	ad , (2.58)

so that

(a	)2 =
d∏

i=1

Gaiai = 1∏d
i=1 Gaiai

. (2.59)

Their commutation (anticommutation) relations with one
	 matrix depend on the number of coordinates d, along which
we perform T-dualizations. Therefore we have

a	 	a = (−1)d+1 	a
a	, a	 	i = (−1)d 	i

a	, (2.60)

which means that the solution of Eq. (2.55) is proportional
to

a� ∼ a	 (	11)d . (2.61)

Taking into account (2.49), a�2 = 1, we obtain

a� =
√√√√ d∏

i=1

Gaiai a	 (i 	11)d . (2.62)

This is a general solution. Note that for a1
⋂

a2 = 0 we have

a1� a2� = (−1)d1d2a�, where a = a1
⋃

a2.
When the number of coordinates along which we per-

form T-duality is even (d = 2k), we have a� =
(−1)

d
2

√∏d
i=1 Gaiai a	. As a consequence of the relation

	11
a� = (−1)d a� 	11 we can conclude that in that case

bar spinors preserve chirality. When the number of coordi-
nates along which we perform T-duality is odd (d = 2k+1),

we have a� = (−1)
d−1

2

√∏d
i=1 Gaiai i a	 	11. As a conse-

quence of the above relation such a transformation changes
the chirality of the bar spinors.

In the particular case that we perform T-dualization along
only one direction, xa1 , a	 → 	a1 , d → 1 and we obtain
the result, well known in the literature [1–3,46,47],

a1� = i
√
Ga1a1 	a1 	11. (2.63)

This is the case of the transition between IIA and IIB theory,
when T-duality changes the chirality of the bar spinors.

When we perform T-dualization along all coordinates,
d → D = 10, a	 → 	11√∏D−1

μ=0 Gμμ

and from (2.62) we obtain

�� = (−1)
D
2 	11 = −	11. (2.64)

2.4 Choice of the proper fermionic coordinates and T-dual
background fields

We have already learned that in order to have compatibility
between supersymmetry and T-duality, we should choose the
dual bar variables with a bullet in accordance with (2.48).
Therefore, before we read the T-dual background fields, we
will reexpress the action (2.20) in terms of the appropriate
spinor coordinates (2.48) which, with the help of the relation

a�
2 = 1, produces

a S(ya, x
i , θα, •θ̄ α, πα, •π̄α)

=
∫

�

d2ξ

{
κ2

2
∂+ya θ̂

ab− ∂−yb + κ2∂+ya θ̂
ab− �+bj∂−x j

− κ2∂+xi�+ia θ̂
ab− ∂−yb + 1

4π
�R(2)

+ κ∂+xi (�+i j − 2κ�+ia θ̂
ab− �+bj )∂−x j

−πα∂−(θα + �α
i x

i − 2�α
a θ̂ab− �+bj x

j − �α
a θ̂ab− yb)

+ ∂+[•θ̄ γ
a�γ

α + �̄α
i x

i + 2�̄α
a θ̂ab+ �−bj x

j

+ �̄α
a θ̂ab+ yb]a�α

β•π̄β + 2πα�α
a θ̂ab− �̄

β
b a�β

γ •π̄γ

+ 1

2κ
e

�
2 παF

αβ
a�β

γ •π̄γ

}
. (2.65)

Consequently, applying the Buscher T-dualization proce-
dure [4,5] along the bosonic coordinates xa of the action
(2.13) the T-dual action gets the form

a S =
∫

�

d2ξ

[
κ∂+(a X)μ̂ a�

μ̂ν̂
+ ∂−(a X)ν̂ + 1

4π
a�R(2)

−πα∂−[θα+a�
αμ̂(a X)μ̂]+∂+[•θ̄ α+a�̄

αμ̂(a X)μ̂] •π̄α

+ 1

2κ
e
a�
2 πα a F

αβ •π̄β

]
, (2.66)
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where (a X)μ̂ = (ya, xi ), a�
αμ̂ = (a�

αa, a�
α
i ) and

a�̄
αμ̂ = (a�̄

αa, a�̄
α
i ).

Now, we are ready to read the T-dual background fields

a�
ab± = κ

2
θ̂ab∓ , (2.67)

a�±i
a = −κ�±ibθ̂

ba∓ , a(�±)ai = κθ̂ab∓ �±bi , (2.68)

a�±i j = �±i j − 2κ�±ia θ̂
ab∓ �±bj , (2.69)

a�
αa = κθ̂ab+ �α

b , a�̄
αa = κ a�

α
β θ̂ab− �̄

β
b , (2.70)

a�
α
i = �α

i − 2κ�−ibθ̂
ba+ �α

a ,

a�̄
α
i = a�

α
β(�̄

β
i − 2κ�+ibθ̂

ba− �̄β), (2.71)

e
a�
2 a F

αβ =
(
e

�
2 Fαγ + 4κ�α

a θ̂ab− �̄
γ

b

)
a�γ

β (2.72)

when a� is defined in (2.62).
The dilaton transformation in the term �R(2) originates

from quantum theory and will be discussed in Sect. 2.6.

2.5 Supersymmetry transformations of T-dual gravitinos

Note that in the expressions for the T-dual fields a�̄
αa , a�̄α

i
and a Fαβ the matrix a� appears as a consequence of the
T-dualization procedure and adoption of the bullet spinor
coordinates. In Refs. [46,47] it appears as a consequence of
the compatibility between supersymmetry and T-duality.

A supersymmetry transformation of the gravitino is
expressed in terms of covariant derivatives,

δε�
α
μ = Dμ εα + · · · , δε̄�̄

α
μ = Dμ ε̄α + · · · , (2.73)

with the same covariant derivative on both left and right
spinors,

Dμ = ∂μ + ωμ. (2.74)

In the T-dual theory, as a consequence of the two kinds of
spin connections, there are two kinds of covariant derivatives,

aD
μ̂ = ∂μ̂ + aω

μ̂, a D̄
μ̂ = ∂μ̂ + aω̄

μ̂, (2.75)

such that

aδε a�
αμ̂ = aD

μ̂εα, a δ̄ε̄ a�̄
αμ̂ = a D̄

μ̂ε̄α. (2.76)

Let us show that improvement with a� in the transformation
of the bar gravitinos just turns a D̄μ̂ to aDμ̂. In fact, from

a δ̄ε̄ a�̄
αμ̂ = a�

α
β

(
∂μ̂ε̄β + aω̄

μ̂β
γ ε̄γ

)
, (2.77)

with the help of (2.43), for constant a�, we have

a δ̄ε̄ a�̄
αμ̂ = ∂μ̂(a�

α
βε̄β) + aω

μ̂α
β a�

β
γ ε̄γ

= aD
μ̂(a�

α
βε̄β) = aδa�ε̄ a�̄

αμ̂. (2.78)

Therefore, it is clear that in order to preserve the same spin
connection for the two chiralities we should additionally

change the bar supersymmetry parameter

•ε̄α ≡ (a�)αβ a ε̄
β . (2.79)

2.6 Transformation of pure spinors

In this subsection we will find transformation laws for pure
spinors, λα and λ̄α , which are the main ingredient of the pure
spinor formalism.

It is well known that pure spinors satisfy the so-called pure
spinor constraints,

λα(	μ)αβλβ = 0, λ̄α(	μ)αβλ̄β = 0. (2.80)

After T-dualization they turn into

aλ
α(a	μ̂)αβ aλ

β = 0, a λ̄
α(a	̄μ̂)αβ a λ̄

β = 0. (2.81)

The relation between matrices a	μ̂ and a	̄μ̂ is given in (2.36).
In order to have the two cases expressed with the same gamma
matrices, as before, we preserve the expression for the unbar
variables,

aλ
α = λα. (2.82)

and change bar variables

•λ̄α = a�
α

β a λ̄
β . (2.83)

The variables wα and w̄α are canonically conjugated
momenta to the pure spinors λα and λ̄α , respectively. The
transformation laws for pure spinor momenta can be found
from the expressions for Nμν

+ and N̄μν
− (2.5) which would

appear in the action if we would take higher power terms in
θα and θ̄ α . After T-dualization these expressions become

aN+μ̂ν̂ = 1

2
awα(a	[μ̂ν̂])αβ aλ

β,

a N̄−μ̂ν̂ = 1

2
aw̄α(a	̄[μ̂ν̂])αβ a λ̄

β . (2.84)

Using Eq. (2.36) and the definition of 	[μν] (2.16) we see
that the relation between a	[μ̂ν̂] and a	̄[μ̂ν̂] is the same as
between the gamma matrices (2.36). As in the previous case,
in order to have unique set of gamma matrices, we do not
change the unbar variables,

awα = wα, (2.85)

while we choose bar variables in the form

•w̄α = a�α
β

aw̄β . (2.86)

Let us note that free field actions Sλ and Sλ̄ are invariant
under T-dualization because a�

2 = 1.
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2.7 T-dual transformation of antisymmetric fields: from IIB
to IIA theory

To find the T-dual transformation laws for antisymmetric
fields we will start with Eq. (2.72). First, as explained in
Refs. [4,5,60] the quantization procedure produces the well-
known shift in the dilaton transformation

a� = � − ln det(2�+ab) = � − ln

√
det Gab

det aGab
. (2.87)

Together with (2.72) it gives a relation between the initial
and T-dual background fields,

a F
αβ = 4

√
det Gab

det aGab
(Fαγ + 4e− �

2 κ�α
a θ̂ab− �̄

γ

b )a�γ
β.

(2.88)

For Bμν = 0 we have aGab = (G−1
E )ab = (G−1)ab, and

consequently 4
√

det Gab
det aGab = 4

√
(det Gab)2 = √| det Gab |. It

is important to stress that unlike in Eq. (2.62) for a� here we
have the absolute value under the square root. For a diagonal
metric Gμν we have det Gab = ∏d

i=1 Gaiai and taking into
account Eq. (2.62) we find

a F
αβ = id

√√√√sign

(
d∏

i=1

Gaiai

)
d∏

i=1

Gaiai

×
(
Fαγ + 4e− �

2 κ�α
a θ̂ab− �̄

γ

b

)
(a	 	d

11)γ
β .

(2.89)

Note that we are going to T-dualize all D-directions. Then
it is necessary to perform T-dualization along the time-like
direction. Here the above square root has important conse-
quences. For our signature (+,−,−, . . . ,−), the square of
the field strength (a Fαβ)2 and, consequently, the square of all
antisymmetric fields will change the sign when we perform
T-dualization along the time-like direction. This is just what
we need to obtain type I I � theories in accordance with Ref.
[37].

In a simple case when gravitino fields and Kalb–Ramond
field are zero and metric is diagonal we will express the tran-
sition from type IIB to type IIA theory. Taking d = 1 we
have

a F
αβ = i

√
sign(Gaa) Gaa Fαγ (	11	a)γ

β . (2.90)

Let us choose type IIB as a starting theory. The matrix 	11

turns F (n) to F (10−n) where

(F(n))αβ = 1

n! Fμ1μ2···μn (	
[μ1μ2···μn ])αβ. (2.91)

As a consequence of the chirality condition F	11 = −	11F
the independent tensors are F (1), F (3) and self-dual part of

F (5). So we can write

Fαγ (	11)γ
β =

(
F(1) + F(3) + 1

2
F(5)

)αβ

. (2.92)

Similarly, in T-dual theory (here it is IIA) we have

a F
αβ = (aF

(2) + aF
(4))αβ, (2.93)

where now

(aF
(n))αβ = 1

n! a F
μ̂1μ̂2···μ̂n (a	[μ̂1μ̂2···μ̂n ])αβ. (2.94)

The 	-matrices on both sides are defined in curved space.
For the initial theory it is just (2.52), while for T-dual the-
ory it is defined in the first relation in Eq. (2.35) as a	μ̂ =
(ae−1)μ̂a 	a . As a consequence of the first relation (2.29)

between the vielbeins aeaμ̂ = eaν(QT )νμ̂ we can find the
relation between the 	-matrices,

a	μ̂ = (Q−1T )μ̂ν	
ν, (2.95)

which produces

(aF
(n))αβ = 1

n! (
Q
a F)μ1μ2···μn (	

[μ1μ2···μn ])αβ, (2.96)

where

(Qa F)μ1μ2···μn = a F
μ̂1μ̂2···μ̂n (Q−1T )μ̂1μ1

× (Q−1T )μ̂2μ2 · · · (Q−1T )μ̂nμn . (2.97)

Using the standard relation between the 	-matrices,

	[μ1μ2···μn ]	a=	μμ1μ2···μna− 1

(n − 1)!G
a[μn	μ1μ2···μn−1],

(2.98)

we obtain

F (n)	a = 1

n! Fμ1μ2···μn	
[μ1μ2···μna]

− 1

(n − 1)! Fμ1μ2···μn−1
a 	[μ1μ2···μn−1]. (2.99)

Therefore, from (2.90), (2.92), (2.93), (2.96), (2.97) and
(2.99) we can find a general relation connecting antisymmet-
ric fields of Type IIA and type IIB theories,

aF
μ̂1μ̂2···μ̂n = √

signGaaGaa(nFμ1μ2···μn−1δ
a
μn

− Fμ1μ2···μn
a)(QT )μ1μ̂1(QT )μ2μ̂2 · · · (QT )μnμ̂n .

(2.100)

Under our assumptions we have

(QT )μμ̂ =
(−Gaa 0

0 δi
j

)
, (2.101)

123



197 Page 10 of 16 Eur. Phys. J. C (2017) 77 :197

and consequently

a Fi j = −i
√

signGaaGaaFi j
a, a Fi

a = −2i
√

signGaaFi ,

(2.102)

a Fi jkq = − i

2

√
signGaaGaaFi jkq

a,

a Fi jk
a = −4i

√
signGaaFi jk . (2.103)

For the space-like directions Gaa < 0 and i
√

signGaa is real.
For time-like direction

√
signGaa → √

signG00 = 1 and the
remaining imaginary unit causes squares of the antisymmet-
ric fields to get an additional minus sign and type II theories
to swap to type II� ones [37].

3 Double space formulation

In this section we will introduce double space, doubling all
bosonic coordinates xμ by corresponding T-dual ones yμ. We
will rewrite the transformation laws in double space and show
that both the equations of motion and the Bianchi identities
can be written by that single equation.

3.1 T-dualization along all bosonic directions

Applying the Buscher T-dualization procedure [4,5] along
all bosonic coordinates of the action (2.13) the T-dual action
has been obtained in Ref. [9]. This is a particular case of our
relations (2.67)–(2.72) where the T-dual background fields
are of the form

��
μν
± ≡ �Bμν ± 1

2
�Gμν = κ

2
�

μν
∓ , (3.1)

��αμ = κ�
μν
+ �α

ν , ��̄αμ = κ ��α
β �

μν
− �̄β

ν , (3.2)

e
��
2 �Fαβ =

(
e

�
2 Fαγ + 4κ�α

μ�
μν
− �̄γ

ν

)
��γ

β. (3.3)

Here we use the notation

GE
μν = Gμν − 4(BG−1B)μν, �μν = − 2

κ
(G−1

E BG−1)μν,

�� = −	11, (3.4)

and

�
μν
± = − 2

κ
(G−1

E �±G−1)μν = �μν ∓ 1

κ
(G−1

E )μν, (3.5)

so that

(�±�∓)μ
ν = 1

2κ
δμ

ν. (3.6)

From (3.1) and (3.5) it follows that

�Gμν = (G−1
E )μν, �Bμν = κ

2
�μν. (3.7)

In this case the transformation laws (2.21) and (2.22) (the
relations between the initial xμ and T-dual coordinates yμ)
get the form

∂±xμ ∼= −κ�
μν
± ∂±yν + κ�

μν
± J±ν,

∂±yμ ∼= −2�∓μν∂±xν + J±μ. (3.8)

3.2 Transformation laws in double space

Rewriting Eq. (3.8) in the form where terms multiplied by
ε±± = ±1 are on the left-hand side of the equation, we
obtain

±∂±yμ ∼= GEμν∂±xν − 2(BG−1)μ
ν∂±yν

+2(�±G−1)μ
ν J±ν, (3.9)

±∂±xμ ∼= (G−1)μν∂±yν

+2(G−1B)μν∂±xν − (G−1)μν J±ν . (3.10)

Let us introduce double space coordinates

ZM =
(
xμ

yμ

)
, (3.11)

which contain all initial and T-dual coordinates. In terms of
double coordinates Eqs. (3.9) and (3.10) are replaced by one
equation:

∂±ZM ∼= ±�MN (HN P∂±Z P + J±N ), (3.12)

where the matrix HMN is known in the literature as the gen-
eralized metric and has the form

HMN =
(

GE
μν −2 Bμρ(G−1)ρν

2(G−1)μρ Bρν (G−1)μν

)
. (3.13)

The double current J±M is defined as

J±M =
(

2(�±G−1)μ
ν J±ν

−(G−1)μν J±ν

)
, (3.14)

and

�MN =
(

0 1D

1D 0

)
, (3.15)

is a constant symmetric matrix. Here 1D denotes the identity
operator in D dimensions. Let us stress that the matrix a�

and �MN are different quantities.
By straightforward calculation we can prove the relations

HT�H = �, �2 = 1, det HMN = 1, (3.16)

which means that H ∈ SO(D, D). In calculation of deter-
minant we use the rule for block matrices

det

(
A B
C D

)
= det D det(A − BD−1C). (3.17)

In double field theory �MN is the SO(D, D) invariant metric
and denoted by ηMN .
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3.3 Equations of motion and double space action

It is well known that the equations of motion of the initial
theory are the Bianchi identities in T-dual picture and vice
versa [12,19,22,60]. As a consequence of the identity

∂+∂−ZM − ∂−∂+ZM = 0, (3.18)

known as the Bianchi identity, and Eq. (3.12), we obtain the
consistency condition

∂+[HMN ∂−ZN + J−M ] + ∂−[HMN ∂+ZN + J+M ] = 0.

(3.19)

In components it takes the form

∂+∂−xμ = − 1

κ
(G−1)μν

(
�̄α

ν ∂+π̄α + �α
μ∂−πα

)
,

∂+∂−yν = − 1

κ
GE

μν

(
��̄αμ∂+π̄α + ��αμ∂−πα

)
. (3.20)

These equations are equations of motion of the initial and
T-dual theory. Double space formalism enables us to write
both equations of motion and Bianchi identities by the single
relation (3.12).

Equation (3.19) is the equation of motion of the following
action:

S = κ

4

∫
d2ξ [∂+ZMHMN ∂−ZN + ∂+ZM J−M

+ J+M∂−ZM + L(πα, π̄α)], (3.21)

where L(πα, π̄α) is an arbitrary functional of the fermionic
momenta.

4 T-dualization of type II superstring theory as a
permutation of coordinates in double space

In this section we will derive the transformations of the gener-
alized metric and current, which are a consequence of the per-
mutation of some subset of the bosonic coordinates with the
corresponding T-dual ones. First we will present the method
in the case of the complete T-dualization (along all bosonic
coordinates) and find the expressions for T-dual background
fields. Then we will apply the results to the case of partial
T-dualization.

4.1 The case of complete T-dualization

In order to exchange all initial and T-dual coordinates let us
introduce the permutation matrix

T M
N =

(
0 1D

1D 0

)
, (4.1)

so that the double T-dual coordinate �ZM is obtained:

�ZM = T M
N Z

N =
(
yμ
xμ

)
. (4.2)

We require that the T-dual transformation law for the double
T-dual coordinate �ZM has the same form as for the initial
coordinate ZM (3.12)

∂±�ZM ∼= ±�MN (�HN P∂±�Z P + � J±N ). (4.3)

Then the T-dual generalized metric �HMN and T-dual current
� J±M are

�HMN = TMKHK LT L
N , � J±M = TMN J±N . (4.4)

Permutation of the coordinates (4.2) together with transfor-
mations of the background fields (4.4) represents the sym-
metry transformations of the action (3.21).

Using the corresponding expressions for T M
N , HMN and

J±M , we obtain from the generalized metric transformation

�Gμν = (G−1
E )μν, �Bμν = κ

2
�μν. (4.5)

Taking into account that as a consequence of (2.48) the bar
dual variable is •�π̄α = (��T )α

βπ̄β , from the current trans-
formations we have

��αμ = κ�
μν
+ �α

ν , ��̄αμ = κ ��α
β�

μν
− �̄β

ν , (4.6)

where �� = −	11.
Consequently, using double space we can easily repro-

duce the results of T-dualization, Eqs. (3.7) and (3.2). The
problem with T-dualization of the R–R field strength Fαβ

will be discussed in Sect. 5.3.

4.2 The case of partial T-dualization

Applying the procedure presented in the previous subsection
to the arbitrary subset of bosonic coordinates we will, in
fact, describe all possible bosonic T-dualizations. Let us split
the coordinate index μ into a and i (a = 0, . . . , d − 1,
i = d, . . . , D − 1) and denote T-dualization along direction
xa and ya by

T a = T a ◦ Ta, T a ≡ T 0 ◦ T 1 ◦ · · · ◦ T d−1,

Ta ≡ T0 ◦ T1 ◦ · · · ◦ Td−1, (4.7)

where◦marks the operation of composition of T-dualizations.
Permutation of the initial coordinates xa with its T-dual ya is
realized by multiplying the double space coordinate by the
constant symmetric matrix (T a)MN ,

a Z
M ≡

⎛
⎜⎜⎝

ya
xi

xa

yi

⎞
⎟⎟⎠ = (T a)MN Z

N ≡

⎛
⎜⎜⎝

0 0 1a 0
0 1i 0 0
1a 0 0 0
0 0 0 1i

⎞
⎟⎟⎠

⎛
⎜⎜⎝
xa

xi

ya
yi

⎞
⎟⎟⎠ ,

(4.8)
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where 1a and 1i are identity operators in the subspaces
spanned by xa and xi , respectively. It is easily to check the
following relations:

(T aT a)MN = δMN , (T a�T a)MN = �M
N . (4.9)

The first relation means that after two T-dualizations we get
the initial theory, while the second relation means that T a ∈
O(D, D).

Let us apply the same approach as in the case of the full T-
dualization presented in the previous subsection. We require
that the double T-dual coordinate a ZM satisfy the T-duality
transformations of the form like the initial one ZM (3.12),

∂± a Z
M ∼= ±�MN (aHNK ∂± a Z

K + a J±N ). (4.10)

Consequently, we find the T-dual generalized metric

aHMN = (T a)M
KHK L(T a)L N , (4.11)

and the T-dual current

a J±M = (T a)M
N J±N . (4.12)

Note that Eqs. (4.8), (4.11) and (4.12) are symmetry trans-
formations of the action (3.21). The left subscript a means
dualization along the xa directions.

5 T-dual background fields

In this section we will show that permutation of some bosonic
coordinates leads to the same T-dual background fields as
standard Buscher procedure [9]. The transformation of the
generalized metric (4.11) produces expressions for NS–NS
T-dual background fields (Gμν and Bμν). They are the same
as in bosonic string case obtained in Ref. [35]. Therefore, we
will just shortly repeat these results. From the transformation
of the current J±M (4.12) we will find T-dual background
fields of the NS–R sector (�α

μ and �̄α
μ). Because R–R field

strength Fαβ does not appear in T-dual transformations, we
will find its T-dual under some assumptions.

5.1 T-dual NS–NS background fields Gμν , Bμν

Requiring that the T-dual generalized metric aHMN has the
same form as the initial one HMN (3.13) but in terms of the
T-dual fields

aHMN =
(

aG
μν
E −2(a B aG−1)μν

2(aG−1
a B)μ

ν (aG−1)μν

)
, (5.1)

and using Eq. (4.11), one finds expressions for the NS–NS
T-dual background fields a�

μν
± in terms of the initial ones,

a�
μν
± =

(
g̃−1β1D−1γ − A−1(β̃ ∓ 1

2 ) 1
2 A

−1gT − 2g̃−1β1D−1(β̄T ∓ 1
2 )

1
2 D

−1γ − 2γ̄ −1βT
1 A−1(β̃ ∓ 1

2 ) γ̄ −1βT
1 A−1gT − D−1(β̄T ∓ 1

2 )

)
, (5.2)

where γ and γ̄ are defined in (A.4), g and g̃ in (A.5), while
β1, β̃ and β̄ are defined in (A.7). The quantities A and D are
given in (A.11) and (A.13), respectively. In more compact
form we have

a�
μν
± =

(
κ
2 θ̂ab∓ κθ̂ab∓ �±bi

−κ�±ibθ̂
ba∓ �±i j − 2κ�±ia θ̂

ab∓ �±bj

)
, (5.3)

where θ̂ab± has been defined in (A.9). Details regarding the
derivation of the Eqs. (5.2) and (5.3) are given in Ref. [35].
Reading the block components we obtained the NS–NS T-
dual background fields in the flat background after dualiza-
tion along the directions xa, (a = 0, 1, . . . , d − 1)

a�
ab± = κ

2
θ̂ab∓ , a�

a±i = κθ̂ab∓ �±bi , (5.4)

a�±i
a = −κ�±ibθ̂

ba∓ ,

a�±i j = �±i j − 2κ�±ia θ̂
ab∓ �±bj . (5.5)

These are just the Eqs. (2.67)–(2.69). The symmetric and
antisymmetric parts of these expressions are the T-dual metric
and T-dual Kalb–Ramond field, which are in full agreement
with the Refs. [9,20].

5.2 T-dual NS–R background fields �α
μ, �̄α

μ

Let us find the form of T-dual NS–R background fields, a�αa ,

a�
α
i , a�̄αa and a�̄

α
i . The T-dual current a J±M (4.12) should

have the same form as the initial one, Eq. (3.14), but in terms
of the T-dual background fields⎛
⎜⎜⎝

2(a�± aG−1)ab (a J )b± + 2(a�± aG−1)ai (a J )±i

2(a�± aG−1)ia (a J )a± + 2(a�± aG−1)i
j (a J )± j

−(aG−1)ab (a J )b± − (aG−1)a
i (a J )±i

−(aG−1)i a (a J )a± − (aG−1)i j (a J )± j

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

−(G−1)aμ J±μ

2(�±G−1)i
μ J±μ

2(�±G−1)a
μ J±μ

−(G−1)iμ J±μ

⎞
⎟⎟⎠ . (5.6)

On the left-hand side of this equation we split the index μ in
a and i components because in the T-dual picture the index
a has a different position, it is now up. T-dual currents are
written between the brackets to make a distinction between a
left subscript a denoting partial T-dualization and summation
indices in the subspace spanned by xa .

We can obtain the information about T-dual NS–R back-
ground fields from the lower D components of the above
equation. In order to find the solution of these equations it is
more practical to rewrite them using the block-wise form of
matrices given in the appendix and Ref. [35],
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−g̃ab (a J )b± + 2(β1)a
i (a J )±i

= 2

(
β̃ ± 1

2

)
a

b J±b + 2(β1)a
i J±i ,

−2(βT
1 )i b (a J )b± + γ̄ i j (a J )± j = γ ia J±a + γ̄ i j J± j .

(5.7)

From Eq. (3.18) of [35]

(aG
−1)μν =

(
gab −2(BG−1)a

j

2(G−1B)i b (G−1)i j

)

=
(

g̃ −2β1

−2βT
1 γ̄

)
, (5.8)

(A.4) and (A.7), we find the components of aG−1, G−1 and
BG−1, respectively. In the first equation on right-hand side
for (�±G−1)a

i just stands for (β1)a
i because δa

i = 0.
The difference

(a J )±i − J±i = (γ̄ −1)i j

[
γ ja J±a + 2(βT

1 ) j b (a J )b±
]
,

(5.9)

obtained from the second equation, we put in the first equa-
tion, which produces

2

[(
β̃ ± 1

2

)
− β1γ̄

−1γ

]
a

b J±b

= −
(
g̃ − 4β1γ̄

−1βT
1

)
ab

a J
b±. (5.10)

From the definition of the quantity Aab (A.11) we get

(a J )b± = 2

[
−A−1(β̃ ± 1

2
) + A−1β1γ̄

−1γ

]bc
J±c. (5.11)

Using the expression Aab = ĝab (proved in [35]) and Eq.
(A.12), we recognize the ab block component of Eq. (5.2).
Therefore, with the help of (5.3) it is easy to see that

(a J )b± = 2 a�
bc∓ J±c = κ θ̂bc± J±c. (5.12)

Note that now the T-dual current a J
μ̂
± is of the form

a J
μ̂
± = ± 2

κ
a�

αμ̂
± aπ±α, (5.13)

where

a�
αμ̂
+ ≡ a�

αμ̂, a�
αμ̂
− ≡ a�̄

αμ̂, aπ+α ≡ πα,

aπ−α ≡ •π̄α, (5.14)

and as before

J±μ = ± 2

κ
�α±μπ±α. (5.15)

Therefore, the a components of the T-dual NS–R fields are
of the form

a�
αa = κθ̂ab+ �α

b , a�̄
αa = κ a�

α
βθ̂ab− �̄

β
b . (5.16)

Substituting (5.11) into (5.9) we obtain

(a J )±i − J±i =
(
γ̄ −1 + 4γ̄ −1βT

1 A−1β1γ̄
−1
)
i j

γ jb J±b

− 4

[
γ̄ −1βT

1 A−1(β̃ ± 1

2
)

]
i

a J±a . (5.17)

With the help of (A.13) Eq. (5.17) transforms into

(a J )±i − J±i

= 2

[
1

2
D−1γ − 2γ̄ −1βT

1 A−1
(

β̃ ± 1

2

)]
i

a J±a .

(5.18)

From the i
a component of (5.2) and (5.3) we finally have

(a J )±i = J±i − 2κ�∓ibθ̂
ba± J±a . (5.19)

As in the previous case, using the expressions for the currents
(5.13) and (5.15), the final form of the T-dual fields is

a�
α
i = �α

i − 2κ�−ibθ̂
ba+ �α

a ,

a�̄
α
i = a�

α
β(�̄

β
i − 2κ�+ibθ̂

ba− �̄β
a ). (5.20)

Equations (5.16) and (5.20) are in full agreement with the
results from Ref. [9] given by Eqs. (2.70) and (2.71).

The upper D components of Eq. (5.6) produce the same
result for T-dual background fields.

5.3 T-dual R–R field strength Fαβ

Using the relations aH = T aHT a and a J± = T a J± we
obtained the form of the NS–NS and NS–R T-dual back-
ground fields of type II superstring theory. But we know
from the Buscher T-dualization procedure that the T-dual R–
R field strength a Fαβ has the form given in Eq. (2.72). In
this subsection we will derive this relation within the double
space framework.

The R–R field strength Fαβ appears in the action (2.13)
coupled with the fermionic momenta πα and π̄α along which
we do not perform T-dualization. Therefore, we did not dou-
ble these variables. It is an analog of the i j-term in approach
of Refs. [27–29] where xi coordinates are not doubled. Con-
sequently, as in [27–29] we should make some assumptions.
Let us suppose that the fermionic term L(πα, π̄α) is sym-
metric under exchange of the R–R field strength Fαβ with its
T-dual a Fαβ

L = e
�
2 πα Fαβπ̄β + e

a�
2 aπα a F

αβ
aπ̄β ≡ L + aL,

(5.21)

for some Fαβ and a Fαβ . This term should be invariant under
the T-dual transformation

aL = L + �L. (5.22)
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Taking into account the fact that two successive T-dualizations
are the identity transformation, we obtain from (5.22)

L = aL + a�L. (5.23)

Combining the last two relations we get

a�L = −�L. (5.24)

If �L has the form �L = πα �αβπ̄β and consequently

a�L = aπα a�
αβ

aπ̄β , then with the help of the first relation
of Eq. (2.48) we obtain the condition for �αβ

a�
αβ = −�αγ

a�γ
β. (5.25)

Therefore, we should find the combination of background
fields with two upper spinor indices which under T-dualization
transforms as in (5.25). Using the expression for the NS–
R fields (2.70) and the equation (a θ̂±)ab = 2

κ
�∓ab =

1
κ2 (θ̂−1± )ab [see the T-dual of (5.4) and (A.10)], it is easy
to check that there are D different solutions,

�
αβ
d = c�α

a θ̂ab− �̄
β
b , (5.26)

where d = 1, 2, . . . D and c is an arbitrary constant.
Consequently, when we T-dualize d dimensions xa (a =
0, 1, . . . d − 1), from (5.22) we can conclude that the T-dual
R–R field strength has the form

e
a�
2 a F

αβ =
(
e

�
2 Fαγ + c�α

a θ̂ab− �̄
γ

b

)
a�γ

β. (5.27)

For c = 4κ we obtain the agreement with Eq. (2.72). Note
that the fermionic term Ld(πα, π̄α) depends on d, the number
of directions along which we perform T-duality, just in Refs.
[27–29].

6 Conclusion

In this article we showed that the new interpretation of the
bosonic T-dualization procedure in the double space formal-
ism offered in [35,36] is also valid in the case of type II
superstring theory. We used the ghost free action of type II
superstring theory in a pure spinor formulation in the approx-
imation of quadratic terms and constant background fields.
One can obtain this action from the action (2.7), which could
be considered as an expansion in powers of fermionic coor-
dinates. In the first part of the analysis we neglect all terms
in the action containing powers of θα and θ̄ α . This approx-
imation is justified by the fact that the action is a result of
an iterative procedure in which every step results from the
previous one. Later, when we discuss proper fermionic vari-
ables, taking higher power terms we restore supersymmetric
invariants (�μ

±, dα , d̄α) as variables instead of ∂±xμ, πα and
π̄α .

We introduced the double space coordinate ZM =
(xμ, yμ) adding to all bosonic initial coordinates, xμ, the

T-dual ones, yμ. Then we rewrote the T-dual transformation
laws (3.8) in terms of double space variables (3.12) intro-
ducing the generalized metric HMN and the current J±M .
The generalized metric depends only on the NS–NS back-
ground fields of the initial theory. The current J±M contains
fermionic momenta πα and π̄α , along which we do not make
a T-dualization, and it depends also on NS–R background
fields. The R–R background fields do not appear in T-dual
transformation laws.

The coordinate index μ is split in a = (0, 1, . . . d−1) and
i = (d, d + 1, . . . D − 1), where index a marks subsets of
the initial and T-dual coordinates, xa and ya , along which we
make T-dualization. T-dualization is realized as permutation
of the subsets xa and ya in the double space coordinate ZM .
The main require is that T-dual double space coordinates

a ZM = (T a)MN ZN satisfy the transformation law of the
same form as the initial coordinates ZM . From this condition
we found the T-dual generalized metric aHMN and the T-
dual current a J±M . Because the initial and T-dual theory
are physically equivalent, aHMN and a J±M should have the
same form as the initial ones, H and J±M , but in terms of the
T-dual background fields. It produces the form of the NS–
NS and NS–R T-dual background fields in terms of the initial
ones which are in full accordance with the results obtained
by the Buscher T-dualization procedure [9,10].

The supersymmetry case is not a simple generalization of
the bosonic one, but it requires some new interesting steps.
The origin of the problem is the different T-duality transfor-
mations of the world-sheet chirality sectors. It produces two
possible sets of vielbeins in the T-dual theory with the same
T-dual metric. These vielbeins are related by a particular local
Lorentz transformation which depends on T-duality transfor-
mation and of which the determinant is (−1)d , where d is the
number of T-dualized coordinates. Therefore, when we per-
form T-dualization along an odd number of coordinates then
such transformation contains a parity transformation. Con-
sistency of T-duality with supersymmetry requires chang-
ing one of two spinor sectors. We redefine the bar spinor
coordinates, a θ̄ → •

a θ̄
α = a�

α
βθ̄β , and the variable aπ̄α ,

aπ̄α → •
aπ̄α = a�α

βπ̄β . As a consequence the bar NS–
R and R–R background fields include a� in their T-duality
transformations. For an odd number of coordinates d along
which T-dualization is performed, a� changes the chirality
of the bar gravitino �̄α

μ and the chirality condition for Fαβ .
We need it to relate type IIA and type IIB theories.

The transformation law (3.12) induces the consistency
condition which can be considered as equation of motion
of the double space action (3.21). It contains an arbitrary
term depending on the undualized variables L(πα, π̄α). This
is in analogy with the term ∂+xi�+i j∂−x j in the approach
presented in Refs. [27–29]. Therefore, to obtain the T-dual
transformation of the R–R field strength Fαβ we should
make some additional assumptions. Supposing that the term

123



Eur. Phys. J. C (2017) 77 :197 Page 15 of 16 197

L(πα, π̄α) is T-dual invariant and taking into account that
two successive T-dualizations act as the identity operator, we
found the form of the T-dual R–R field strength up to one
arbitrary constant c. For c = 4κ we get the T-dual R–R field
strength a Fαβ as in the Buscher procedure [9].

A T-duality transformation of the R–R field strength Fαβ

has two contributions in the form of square roots. The contri-

bution of the dilaton produces the term
√

|∏d
i=1 Gaiai |. On

the other hand the contribution of the spinorial representation
of a Lorentz transformation a� contains the same expression

without the absolute value id
√∏d

i=1 Gaiai . Therefore, the T-

dual R–R field strength a Fαβ , besides a rational expression,

contains the expression id
√

sign(
∏d

i=1 Gaiai ) (2.89). If we
T-dualize along the time-like direction (G00 > 0), the square
root does not produce an imaginary unit i , not canceling the
one in front of the square root. Therefore, T-dualization along
the time-like direction maps type II superstring theories to
type II� ones [37].

The successive T-dualizations make a group called the T-
duality group. In the case of type II superstring T-duality,
transformations are performed by the same matrices T a as
in the bosonic string case [35,36]. Consequently, the corre-
sponding T-duality group is the same.

If we want to find a T-dual transformation of Fαβ with-
out any assumptions, we should follow the approach of
[35,36] and, besides all bosonic coordinates xμ, double
also all fermionic variables πα and π̄α . In other words,
besides bosonic T-duality we should also consider fermionic
T-duality [53–59].
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Appendix A: Block-wise expressions for background
fields

In order to simplify notation we will introduce notations for
the component fields following Ref. [35].

For block-wise matrices there is a rule for inversion,

(
A B
C D

)−1

=
(

(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

)
.

(A.1)

For the metric tensor and the Kalb–Ramond background
fields we define

Gμν =
(
G̃ab Gaj

Gib Ḡi j

)
≡
(
G̃ GT

G Ḡ

)
(A.2)

and

Bμν =
(
b̃ab baj
bib b̄i j

)
≡
(
b̃ −bT

b b̄

)
. (A.3)

We also define the notation for inverse of the metric,

(G−1)μν =
(

γ̃ ab γ aj

γ ib γ̄ i j

)
≡
(

γ̃ γ T

γ γ̄

)
, (A.4)

and for the effective metric

GE
μν = Gμν − 4Bμρ(G−1)ρσ Bμν =

(
g̃ab gaj
gib ḡi j

)
≡
(
g̃ gT

g ḡ

)
.

(A.5)

Note that because Gμν is the inverse of Gμν we have

γ = −Ḡ−1Gγ̃ = −γ̄GG̃−1,

γ T = −G̃−1GT γ̄ = −γ̃GT Ḡ−1,

γ̃ = (G̃ − GT Ḡ−1G)−1, γ̄ = (Ḡ − GG̃−1GT )−1,

G̃−1 = γ̃ − γ T γ̄ −1γ, Ḡ−1 = γ̄ − γ γ̃ −1γ T . (A.6)

It is also useful to introduce a new notation for the expres-
sion

(BG−1)μ
ν =

(
b̃γ̃ − bT γ b̃γ T − bT γ̄

bγ̃ + b̄γ bγ T + b̄γ̄

)
≡
(

β̃ β1

β2 β̄

)
.

(A.7)

We denote by a hat expressions similar to the effective
metric (A.5) and non-commutativity parameters but with all
contributions from the ab subspace,

ĝab = (G̃ − 4b̃G̃−1b̃)ab, θ̂ab = − 2

κ
(ĝ−1b̃G̃−1)ab. (A.8)

Note that ĝab �= g̃ab because g̃ab is a projection of gμν on the
subspace ab. It is extremely useful to introduce background
field combinations,

�±ab = Bab ± 1

2
Gab

θ̂ab± = − 2

κ
(ĝ−1�̃±G̃−1)ab = θ̂ab ∓ 1

κ
(ĝ−1)ab, (A.9)

which are inverses to each other

θ̂ac± �∓cb = 1

2κ
δab . (A.10)

The quantity Aab is defined as

Aab = (g̃ − 4β1γ̄
−1βT

1 )ab. (A.11)

One can prove the relation [35]

(g̃−1β1D
−1)ai = (ĝ−1β1γ̄

−1)ai , (A.12)
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where Di j is defined in Eq. (3.21) of [35],

Di j = (γ̄ − 4βT
1 g̃−1β1)

i j ,

(D−1)i j =
(
γ̄ −1 + 4γ̄ −1βT

1 A−1β1γ̄
−1
)
i j

. (A.13)
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36. B. Sazdović, JHEP 08, 055 (2015)
37. C.M. Hull, JHEP 07, 021 (1998)
38. N. Berkovits, ICTP Lectures on Covariant Quantisation of Super-

strings, arXiv:hep-th/0209059
39. P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, JHEP 10, 054

(2002)
40. P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, JHEP 11, 004

(2002)
41. P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, Adv. Theor.

Math. Phys. 7, 499 (2003)
42. P.A. Grassi, G. Policastro, P. van Nieuwenhuizen, Phys. Lett. B

553, 96 (2003)
43. J. de Boer, P.A. Grassi, P. van Nieuwenhuizen, Phys. Lett. B 574,

98 (2003)
44. N. Berkovits, P. Howe, Nucl. Phys. B 635, 75 (2002)
45. P.A. Grassi, L. Tamassia, JHEP 07, 071 (2004)
46. S.F. Hassan, Nucl. Phys. B 568, 145 (2000)
47. R. Benichou, G. Policastro, J. Troost, Phys. Lett. B 661, 129 (2008)
48. M.J. Duff, TASI Lectures on Branes, Black Holes and Anti-de Sitter

Space, arXiv:hep-th/9912164v2
49. M.J. Duff, R.R. Khuri, J.X. Lu, Phys. Rep. 259, 213 (1995)
50. E. Kiritsis, Introduction to Superstring Theory (Leuven University

Press, Leuven, 1998). arXiv:hep-th/9709062
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Noncommutativity and Nonassociativity of Closed Bosonic
String on T-dual Toroidal Backgrounds

B. Nikolíc* and D. Obríc

In this article we consider closed bosonic string in the presence of constant
metric and Kalb-Ramond field with one non-zero component, Bx y = H z,
where field strength H is infinitesimal. Using Buscher T-duality procedure we
dualize along x and y directions and using generalized T-duality procedure
along z direction imposing trivial winding conditions. After first two
T-dualizations we obtain Q flux theory which is just locally well defined, while
after all three T-dualizations we obtain nonlocal R flux theory. Origin of
non-locality is variable �V defined as line integral, which appears as an
argument of the background fields. Rewriting T-dual transformation laws in
the canonical form and using standard Poisson algebra, we obtained that Q
flux theory is commutative one and the R flux theory is noncommutative and
nonassociative one. Consequently, there is a correlation between non-locality
and closed string noncommutativity and nonassociativity.

1. Introduction

Coordinate noncommutativity means that there exists minimal
possible length, which imposes natural UV cutoff. Idea of coor-
dinate noncommutativity is very old. Heisenberg suggested coor-
dinate noncommutativity to solve the problem of the occurrence
of infinite quantities before renormalization procedure was de-
veloped and accepted. The first scientific paper considering this
subject appeared 1947[1] where construction of discrete Lorentz
invariant space-time is presented. Later in the period of 1980s A.
Connes developed noncommutative geometry as a generalization
of the standard commutative geometry.[2]

Noncommutativity became again interesting for particle physi-
cists when the paper[3] appeared. In this article it is shown us-
ing propagators that open string endpoints in the presence of
the constant metric and Kalb-Ramond field become noncom-
mutative. D-brane on which the string endpoints are forced
to move becomes noncommutative manifold. After this article
many articles[4] appeared addressing the same subject but us-
ing different approaches - Fourier expansion, canonical methods,
solving of boundary conditions etc.

B. Nikolíc
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University of Belgrade
Pregrevica 118, Belgrade, Serbia
E-mail: bnikolic@ipb.ac.rs
D. Obríc
Faculty of Physics
University of Belgrade
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DOI: 10.1002/prop.201800009

In the last two articles of [4] themethod
of solving of boundary conditions is
presented. The basic idea is that open
string boundary condition is treated as
canonical constraint. Investigating the
consistency of the canonical constraint
we obtained the σ dependent form of
the boundary condition. Further, we
can proceed twofold: to introduce Dirac
brackets or solve the constraint. Solving
the constraint, we obtained the initial
coordinate as a linear combination of
the effective coordinate and momenta.
Consequently, initial coordinates are
noncommutative and the main contri-
bution to noncomutativity parameter
comes from Kalb-Ramond field as it was
expected.

Following the result of the article[5] it
can be proven that gauge fields “live” at

the open string endpoints. Consequently, many interesting pa-
pers concerning non-commutative Yang-Mills theories and their
renormalisability appeared.[6] In the papers[7] cross sections for
some decays, allowed in noncommutative Yang-Mills theories
and forbidden in commutative ones, are calculated, which offers
a possibility of the experimental check of the noncommutativity
idea and further, indirectly, idea of strings.
It is obvious that closed bosonic string in the presence of

constant background fields remains commutative. There are no
boundaries and, consequently, boundary conditions constraining
string dynamics. In the case of open string we obtained initial
coordinate in the form of linear combination of effective coordi-
nates and momenta using boundary condition. That is achieved
in the closed string case[8] using T-duality procedure and coordi-
nate dependent background.
T-duality as a fundamental feature of string theory,[9–15] unex-

perienced by point particle, makes that there is no physical dif-
ference between string theory compactified on a circle of radius
R and circle of radius 1/R. Buscher T-dualization procedure[10]

represents a mathematical frame in which T-dualization is
realized. If the background fields do not depend on some co-
ordinates then those coordinates are isometry directions. Con-
sequently, that symmetry can be localized replacing ordinary
world-sheet derivatives ∂± by covariant ones D±xμ = ∂±xμ + v

μ
±,

where v
μ
± are gauge fields. In order to make T-dual theory has the

same number of degrees of freedom, the new termwith Lagrange
multipliers is added to the action which forces the gauge fields to
be unphysical degrees of freedom. Because of the shift symme-
try, using gauge freedom we fix initial coordinates. Variation of
this gauge fixed action with respect to the Lagrange multipliers
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produces initial action and with respect to the gauge fields pro-
duces T-dual action.
Standard Buscher T-dualization was applied in closed string

case in the papers.[8,16–19] In Ref. [16] authors consider 3-torus
in the presence of constant metric and Kalb-Ramond field with
one nonzero component Bxy = Hz, where field strength H is in-
finitesimal. They systematically apply Buscher procedure and, af-
ter two T-dualizations along isometry directions, obtain theory
with Q flux which is noncommutative. In the calculations they
used nontrivial boundary conditions (winding conditions). The
result is that T-dual closed string coordinates are noncommuta-
tive for the same values of parameters σ = σ̄ with noncommuta-
tivity parameter proportional to field strength H and N3, winding
number for z coordinate.
But, except this standard Buscher procedure, there is a gen-

eralized Buscher procedure dealing with background fields
depending on all coordinates. The generalized procedure was
applied to the case of bosonic string moving in the weakly
curved background[20–22] and in the casewheremetric is quadratic
in coordinates and Kalb-Ramond field is linear function of
coordinates.[23] The generalized procedure enables us to make
T-dualization in mentioned cases along arbitrary subset of coor-
dinates.
Double space is one picturesque framework for representation

of T-duality. Double space is introduced two to three decades
ago.[24–28] It is spanned by double coordinates ZM = (xμ, yμ)
(μ = 0, 1, 2, . . . , D − 1), where xμ are the coordinates of the
initial theory and yμ are T-dual coordinates. In this space
T-dualization is represented as O(d, d) transformation.[29–33]

Permutation of the appropriate subsets of the initial and
T-dual coordinates is interpreted as partial T-dualization[34,35]

expanding Duff ’s idea.[24] The newly invented intrinsic
noncommutativity[36] is related to double space. Intrinsic
noncommutativity exists in the constant background case
because it is considered within double space framework.
In this article we will deal with closed bosonic string propagat-

ing in the constant metric and linear dependent Kalb-Ramond
field with Bxy = Hz, the same background as in [16]. This con-
figuration is known in literature as torus with H-flux. As in
the Ref. [16] we will use approximation of diluted flux, which
means that in all calculations we keep constant and linear terms
in infinitesimal field strength H. Transformation laws, relations
which connect initial and T-dual variables, we will write in canon-
ical form expressing initial momenta in terms of the T-dual co-
ordinates. Unlike Ref. [16], except T-dualization along two isom-
etry directions, we will make one step more and T-dualize along
z coordinate using generalized T-dualization procedure. During
dualization procedure we will use trivial boundary (winding) con-
ditions.
Transformation laws in canonical form enable us to express

sigma derivative of the T-dual coordinate as a linear combination
of the initial momenta and coordinates. Because initial theory is
geometrical locally and globally, its coordinates and canonically
conjugated momenta satisfy standard Poisson algebra. This fact
means that we can calculate the Poisson brackets of the T-dual
coordinates using technical instruction given in subsection 4.1.
After T-dualizations along isometry directions (along x and

y) we obtain the same background as in Ref. [16] but, obtained
Q flux theory, which is still locally well defined, is commuta-

tive. This is a consequence of the imposed trivial winding condi-
tions.Having inmind the generalized T-duality procedure,[20,21,23]

T-dualization along z coordinate produces R flux nonlocal theory
because it depends on the variable �V which is defined as line
integral. Calculating Poisson brackets of the T-dual coordinates
we obtain two nonzero Poisson brackets and show that there is a
correlation between non-locality and closed string noncommuta-
tivity.
The form of noncommutativity is such that it exists when ar-

guments of the coordinates are different, σ �= σ̄ . That is another
difference with respect to the result of Ref. [16] but there is no
contradiction because the origins of noncommutativity are differ-
ent. In this article non-locality is related with noncommutativity
of R flux theory under trivial winding conditions while in Ref. [16]
it is about noncommutativity of Q flux theory under nontrivial
winding conditions.
From the noncommutativity relations it follows that Jacobi

identity is broken i.e. nonassociativity occurs. Nonassociativity
parameter, R flux, is proportional to the field strength H. Us-
ing generalized T-duality[20,21,23] we obtain the concrete form of
nonassociativity from string dynamics. Similar as noncommu-
tativity, discovery of nonassociativity pushes the scientists to ex-
plore the effects of nonassociativity in the field of renormalis-
ability of φ4 theory[37] as well as formulation of nonassociative
gravity.[38]

At the end we add an appendix containing some conventions
used in the paper.

2. Bosonic String Action and Choice of Background
Fields

The action of the closed bosonic string in the presence of
the space-time metric Gμν (x), Kalb-Ramond antisymmetric field
Bμν (x), and dilaton scalar field �(x) is given by the following
expression[9]

S = κ

∫
	

d2ξ
√−g

×
{[

1
2
g αβGμν (x)+ εαβ

√−g
Bμν (x)

]
∂αxμ∂βxν + �(x)R(2)

}
,

(2.1)

where 	 is the world-sheet surface parameterized by ξα = (τ, σ )
[(α = 0, 1), σ ∈ (0, π )], while the D-dimensional space-time is
spanned by the coordinates xμ (μ = 0, 1, 2, . . . , D − 1). We de-
note intrinsic world sheetmetric with gαβ , and the corresponding
scalar curvature with R(2).
In order to keep conformal symmetry on the quantum level

background fields must obey space-time field equations[39]

βG
μν ≡ Rμν − 1

4
Bμρσ Bν

ρσ + 2Dμaν = 0, (2.2)

βB
μν ≡ DρBρ

μν − 2aρBρ
μν = 0, (2.3)

β� ≡ 2πκ
D − 26

6
− R − 1

24
Bμρσ Bμρσ − Dμaμ + 4a2 = c,

(2.4)
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where c is an arbitrary constant. The function β� could be a con-
stant because of the relation

DνβG
νμ + ∂μβ� = 0. (2.5)

Further, Rμν and Dμ are Ricci tensor and covariant derivative with
respect to the space-time metric Gμν , while

Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν, aμ = ∂μ�, (2.6)

are field strength for Kalb-Ramond field Bμν and dilaton gradient,
respectively. Trivial solution of these equations is that all three
background fields are constant. This case was pretty exploited in
the analysis of the open string noncommutativity.
The less trivial case would be a case where some background

fields are coordinate dependent. If we choose Kalb-Ramond field
to be linearly coordinate dependent and dilaton field to be con-
stant then the first equation (2.2) becomes

Rμν − 1
4
Bμρσ Bν

ρσ = 0. (2.7)

The field strength Bμνρ is constant and, if we assume that it is in-
finitesimal, thenwe can takeGμν to be constant in approximation
linear in Bμνρ . Consequently, all three space-time field equations
are satisfied. Especially, the third one is of the form

2πκ
D − 26

6
= c, (2.8)

which enables us to work in arbitrary number of space-time di-
mensions.
In this article we will work in D = 3 dimensions with the fol-

lowing choice of background fields

Gμν =

⎛
⎜⎝
R2
1 0 0

0 R2
2 0

0 0 R2
3

⎞
⎟⎠ , Bμν =

⎛
⎜⎝

0 Hz 0

−Hz 0 0

0 0 0

⎞
⎟⎠ , (2.9)

where Rμ(μ = 1, 2, 3) are radii of the compact dimensions. This
choice of background fields is known in geometry as torus with
flux (field strength) H.[16] Our choice of infinitesimal H can be
understood in terms of the radii as that(

H
R1R2R3

)2

= 0. (2.10)

This approximation is known in literature as the approximation
of diluted flux. Physically, this means that we work with the torus
which is sufficiently large. Consequently, we can rescale the co-
ordinates

xμ �−→ xμ

Rμ

, (2.11)

which simplifies the form of the metric

Gμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ . (2.12)

The final form of the closed bosonic string action is

S = κ

∫
	

d2ξ∂+xμ�+μν∂−xν

= κ

∫
	

d2ξ
[
1
2
(∂+x∂−x + ∂+y∂−y + ∂+z∂−z)

+ ∂+xHz∂−y − ∂+yHz∂−x
]
, (2.13)

where ∂± = ∂τ ± ∂σ is world-sheet derivative with respect to the
light-cone coordinates ξ± = 1

2 (τ ± σ ), �±μν = Bμν ± 1
2Gμν and

xμ =

⎛
⎜⎝
x
y
z

⎞
⎟⎠ . (2.14)

Let us note that we do not write dilaton term because its
T-dualization is performed separately within quantum formal-
ism and here will be skipped.

3. T-dualization of the Bosonic Closed String
Action

In this section we will perform T-dualization along three direc-
tions, one direction at time. Our goal is to find the relations con-
necting initial variables with T-dual ones called transformation
laws. Using transformation laws we will find noncommutativity
and nonassociativity relations.

3.1. T-dualization Along x Direction – from Torus with H Flux to
the Twisted Torus

Let us perform standard Buscher T-dualization[10] of action (2.13)
along x direction. Note that x direction is an isometry direction
whichmeans that action has a global shift symmetry, x−→ x+ a.
In order to perform Buscher procedure, we have to localize this
symmetry introducing covariant world-sheet derivatives instead
of the ordinary ones

∂±x −→ D±x = ∂±x + v±, (3.1)

where v± are gauge fields which transform as δv± = −∂±a. Be-
cause T-dual action must have the same number of degrees of
freedom as initial one, we have to make these fields v± be un-
physical degrees of freedom. This is accomplished by adding fol-
lowing term to the action

Sadd = κ

2

∫
	

d2ξ y1(∂+v− − ∂−v+), (3.2)

where y1 is a Lagrange multiplier. After gauge fixing, x = cons t .,
the action gets the form

Sf ix = κ

∫
d2ξ

[
1
2
(v+v− + ∂+y∂−y + ∂+z∂−z)+ v+Hz∂−y

− ∂+yHzv− + 1
2
y1(∂+v− − ∂−v+)

]
. (3.3)
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From the equations of motion for y1 we obtain that field
strength for the gauge field v± is equal to zero

F+− = ∂+v− − ∂−v+ = 0, (3.4)

which gives us the solution for gauge field

v± = ∂±x. (3.5)

Inserting this solution for gauge field into gauge fixed action (3.3)
we obtain initial action given by Eq. (2.13). Equations of motion
for v± will lead to the T-dual action. Varying the gauge fixed action
(3.3) with respect to the gauge field v+ we get

v− = −∂−y1 − 2Hz∂−y, (3.6)

while on the equation of motion for v− it holds

v+ = ∂+y1 + 2Hz∂+y. (3.7)

Inserting relations (3.6) and (3.7) into expression for gauge
fixed action (3.3), keeping terms linear in H, we obtain the
T-dual action

xS = κ

∫
	

d2ξ∂+(x X)μx�+μν∂−(x X)ν, (3.8)

where subscript x denotes quantity obtained after T-dualization
along x direction and

x Xμ =

⎛
⎜⎝
y1
y

z

⎞
⎟⎠ . (3.9)

Further we have the T-dual background fields

x�+μν = xBμν + 1
2 xGμν, xBμν = 0,

xGμν =

⎛
⎜⎝

1 2Hz 0

2Hz 1 0

0 0 1

⎞
⎟⎠ . (3.10)

Obtained background fields (3.10) define that what is known
in literature as twisted torus geometry. String theory after one
T-dualization is geometrically well defined globally and locally or,
simply, theory is geometrical (fluxH takes the role of connection).
Combining the solutions of equations of motion for La-

grange multiplier (3.5) and for gauge fields, (3.6) and (3.7), we
get the transformation laws connecting initial, xμ, and T-dual,
x Xμ, coordinates

∂±x ∼= ±∂±y1 ± 2Hz∂±y, (3.11)

where∼= denotes T-duality relation. Themomentum πx is canon-
ically conjugated to the initial coordinate x. Using the initial
action (2.13) we get

πx = δS
δẋ

= κ(ẋ − 2Hzy ′), (3.12)

where Ȧ ≡ ∂τ A and A′ ≡ ∂σ A. From transformation law (3.11) it
is straightforward to obtain

ẋ ∼= y ′
1 + 2Hzy ′, (3.13)

which, inserted in the expression for momentum πx, gives trans-
formation law in canonical form

πx
∼= κy ′

1. (3.14)

3.2. From Twisted Torus to Non-geometrical Q Flux

In this subsection we will continue the T-dualization of
action (3.8) along y direction. After x and y T-dualization we ob-
tain the structure which has local geometrical interpretation but
global omissions. Such structure is known in literature as non-
geometry.
We repeat the procedure from the previous subsection and

form the gauge fixed action

Sf ix = κ

∫
	

d2ξ
[
1
2
(∂+y1∂−y1 + v+v− + ∂+z∂−z)+ ∂+y1Hzv−

+ v+Hz∂−y1 + 1
2
y2(∂+v− − ∂−v+)

]
. (3.15)

From the equation of motion for Lagrange multiplier y2

∂+v− − ∂−v+ = 0 −→ v± = ∂±y, (3.16)

gauge fixed action becomes initial one (3.8). Varying the gauge
fixed action (3.15) with respect to the gauge fields we get

v± = ±∂±y2 − 2Hz∂±y1. (3.17)

Inserting these expressions for gauge fields into gauge fixed ac-
tion, keeping the terms linear in H, gauge fixed action is driven
into T-dual action

xy S = κ

∫
d2ξ∂+(xy X)μxy�+μν∂−(xy X)ν, (3.18)

where

(xy X)μ =

⎛
⎜⎝
y1
y2
z

⎞
⎟⎠ ,

xy�+μν = xy Bμν + 1
2 xyGμν =

⎛
⎜⎝

1
2 −Hz 0

Hz 1
2 0

0 0 1
2

⎞
⎟⎠ . (3.19)

Explicit expressions for background fields are

xy Bμν =

⎛
⎜⎝

0 −Hz 0

Hz 0 0

0 0 0

⎞
⎟⎠ = −Bμν, xyGμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

(3.20)
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Let us note that background fields obtained after two
T-dualizations are similar to the geometric background of
torus with H flux, but they should be considered only locally.
Their global properties are non-trivial and because of that the
term “non-geometry” is introduced.
Combining the equations ofmotion for Lagrangemultiplier y2

and for gauge fields v±, we obtain T-dual transformation laws

∂±y ∼= ±∂±y2 − 2Hz∂±y1. (3.21)

The y component of the initial canonical momentum πy is a vari-
ation of the initial action with respect to the ẏ

πy = δS
δ ẏ

= κ( ẏ + 2Hzx′). (3.22)

Using T-dual transformation laws (3.21) we easily get

ẏ ∼= y ′
2 − 2Hzẏ1, (3.23)

while from the transformation law (3.11), at zeroth order in H,
it holds x′ ∼= ẏ1. Inserting last two expression into πy we obtain
transformation law in canonical form

πy
∼= κy ′

2. (3.24)

After two T-dualizations along isometry directions, in the approx-
imation of the diluted flux (keeping just terms linear in H), ac-
cording to the canonical forms of the transformation laws (3.14)
and (3.24), we see that T-dual coordinates y1 and y2 are still com-
mutative. This is a consequence of the simple fact that variables
of the initial theory, which is geometrical one, satisfy standard
Poisson algebra

{
xμ(σ ), πν (σ̄ )

} = δμ
νδ(σ − σ̄ ), {xμ, xν} = {

πμ, πν

} = 0,

(3.25)

where

πμ =

⎛
⎜⎝

πx

πy

πz

⎞
⎟⎠ . (3.26)

3.3. From Q to R Flux – T-dualization Along z Coordinate

In this subsection we will finalize the process of T-dualization
dualizing along remaining z direction. For this purpose we will
use generalized T-dualization procedure.[20,21,23] The result is a
theory which is not well defined even locally and is known in
literature as theory with R-flux.
We start with the action obtained after T-dualizations along x

and y directions (3.18). The Kalb-Ramond field (3.20) depends on
z and it seems that it is not possible to perform T-dualization. Let

us assume that Kalb-Ramond field linearly depends on all coor-
dinates, Bμν = bμν + 1

3 Bμνρxρ and check if some global transfor-
mation can be treated as isometry one. We start with global shift
transformation

δxμ = λμ, (3.27)

and make a variation of action

δS = κ

3
Bμνρλ

ρ

∫
	

d2ξ∂+xμ∂−xν

= 2k
3
Bμνρλ

ρεαβ

∫
	

d2ξ [∂α(xμ∂βxν )− xμ(∂α∂βxν )]. (3.28)

The second term vanishes explicitly, while the first term is sur-
face one. Consequently, in the case of constant metric and lin-
early dependent Kalb-Ramond field, global shift transformation
is an isometry transformation. This means that we can make
T-dualization along z coordinate using generalized T-dualization
procedure.
The generalized T-dualization procedure is presented in detail

in Ref. [20]. In order to localize shift symmetry of the action (3.18)
along z direction we introduce covariant derivative

∂±z −→ D±z = ∂±z+ v±, (3.29)

which is a part of the standard Buscher procedure. The novelty is
introduction of the invariant coordinate as line integral

zinv =
∫
P
dξαDαz

=
∫
P
dξ+D+z+

∫
P
dξ−D−z = z(ξ )− z(ξ0)+ �V, (3.30)

where

�V =
∫
P
dξαvα =

∫
P
(dξ+v+ + dξ−v−). (3.31)

Here ξ and ξ0 are the current and initial point of the world-sheet
line P . At the end, as in the standard Buscher procedure, in order
to make v± to be unphysical degrees of freedom we add to the
action term with Lagrange multiplier

Sadd = κ

2

∫
	

d2ξ y3(∂+v− − ∂+v−). (3.32)

The final form of the action is

S̄ = κ

∫
	

d2ξ
[

− Hzinv(∂+y1∂−y2 − ∂+y2∂−y1)

+ 1
2
(∂+y1∂−y1 + ∂+y2∂−y2 + D+zD−z)

+1
2
y3(∂+v− − ∂−v+)

]
. (3.33)
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Because of existing shift symmetry we fix the gauge, z(ξ ) = z(ξ0),
and then the gauge fixed action takes the form

Sf ix = κ

∫
	

d2ξ
[

− H�V (∂+y1∂−y2 − ∂+y2∂−y1)

+1
2
(∂+y1∂−y1 + ∂+y2∂−y2 + v+v−)

+ 1
2
y3(∂+v− − ∂−v+)

]
. (3.34)

From the equation of motion for Lagrange multiplier y3 we
obtain

∂+v− − ∂−v+ = 0 =⇒ v± = ∂±z, �V = �z, (3.35)

which drives back the gauge fixed action to the initial action
(3.18). Varying the gauge fixed action (3.34) with respect to the
gauge fields v± we get the following equations of motion

v± = ±∂±y3 − 2β∓, (3.36)

where β± functions are defined as

β± = ±1
2
H(y1∂∓y2 − y2∂∓y1). (3.37)

The β± functions are obtained as a result of the variation of the
term containing �V

δv

(
−2κ

∫
d2ξεαβH∂α y1∂β y2�V

)

= κ

∫
d2ξ

(
β+δv+ + β−δv−

)
, (3.38)

using partial integration and the fact that ∂±V = v±. Inserting
the relations (3.36) into the gauge fixed action, keeping linear
terms in H, we obtain the T-dual action

xyzS = κ

∫
	

d2ξ∂+xyzXμ
xyz�+μν∂−xyzXν, (3.39)

where

xyzXμ =

⎛
⎜⎝
y1
y2
y3

⎞
⎟⎠ , xyz�+μν = xyzBμν + 1

2 xyzGμν, (3.40)

xyzBμν =

⎛
⎜⎝

0 −H� ỹ3 0

H� ỹ3 0 0

0 0 0

⎞
⎟⎠ , xyzGμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

(3.41)

Here we introduced double coordinate ỹ3 defined as

∂±y3 ≡ ±∂± ỹ3. (3.42)

Let us note that �V stands beside field strength H, which impli-
cates that, according to the diluted flux approximation, we calcu-
late �V in the zeroth order in H

�V =
∫

dξ+∂+y3 −
∫

dξ−∂−y3. (3.43)

Having this into account it is clear why we defined double co-
ordinate ỹ3 as in Eq. (3.42). Also it is useful to note that pres-
ence of �V , which is defined as line integral, represents the
source of non-locality of the T-dual theory. the result of the
three T-dualization is a theory with R flux as it is known in
the literature.
Combining the equations of motion for Lagrange multiplier

(3.35), v± = ∂±z, and equations of motion for gauge fields (3.36),
we obtain the T-dual transformation law

∂±z ∼= ±∂±y3 − 2β∓. (3.44)

Adding transformation laws for ∂±z and ∂−zwe get the transfor-
mation law for ż

ż ∼= y ′
3 + H(y1y ′

2 − y2y ′
1), (3.45)

which enables us to write down the transformation law in the
canonical form

y ′
3

∼= 1
κ

πz − H(xy ′ − yx′). (3.46)

Here we used the expression for the canonical momentum of the
initial theory (2.13)

πz = δS
δż

= κ ż. (3.47)

4. Noncommutativity and Nonassociativity Using
T-duality

In the open string case noncommutativity comes from the
boundary conditions which makes that coordinates xμ depend
both on the effective coordinates and on the effectivemomenta.[4]

Effective coordinates and momenta do not commute and, conse-
quently, coordinates xμ do not commute. In the closed bosonic
string case the logic is the same but the execution is different.
Using T-duality we obtained transformation laws, (3.11), (3.21)
and (3.44), which relate T-dual coordinates with the initial coordi-
nates and their canonically conjugated momenta. In this section
we will use these relations to get noncommutativity and nonas-
sociativity relations.

4.1. Noncommutativity Relations

Let us start with the Poisson bracket of the σ derivatives of two
arbitrary coordinates in the form

{A′(σ ), B′(σ̄ )} = U ′(σ )δ(σ − σ̄ )+ V (σ )δ′(σ − σ̄ ), (4.1)
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where δ′(σ − σ̄ ) ≡ ∂σ δ(σ − σ̄ ). In order to find the form of the
Poisson bracket

{A(σ ), B(σ̄ )},

we have to find the form of the Poisson bracket

{�A(σ, σ0),�B(σ̄ , σ̄0)},

where

�A(σ, σ0) =
∫ σ

σ0

dxA′(x) = A(σ )− A(σ0),

�B(σ̄ , σ̄0) =
∫ σ̄

σ̄0

dxB′(x) = B(σ̄ )− B(σ̄0). (4.2)

Now we have

{�A(σ, σ0), �B(σ̄ , σ̄0)}

=
∫ σ

σ0

dx
∫ σ̄

σ̄0

dy
[
U ′(x)δ(x − y)+ V (x)δ′(x − y)

]
. (4.3)

After integration over y we get

{�A(σ, σ0),�B(σ̄ , σ̄0)} =
∫ σ

σ0

dx
{
U ′(x)

[
θ (x − σ̄0)− θ (x − σ̄ )

]
+ V (x)

[
δ(x − σ̄0)− δ(x − σ̄ )

]}
, (4.4)

where function θ (x) is defined as

θ (x) =
∫ x

0
dηδ(η) = 1

2π

[
x + 2

∑
n≥1

1
n
sin(nx)

]

=

⎧⎪⎨
⎪⎩
0 if x = 0

1/2 if 0 < x < 2π.

1 if x = 2π

(4.5)

Integrating over x using partial integration finally we obtain

{�A(σ, σ0),�B(σ̄ , σ̄0)} = U(σ )[θ (σ − σ̄0)− θ (σ − σ̄ )]

−U(σ0)[θ (σ0 − σ̄0)− θ (σ0 − σ̄ )]−U(σ̄0)[θ (σ − σ̄0)− θ (σ0 − σ̄0)]

+U(σ̄ )[θ (σ − σ̄ )− θ (σ0 − σ̄ )]+ V (σ̄0)[θ (σ − σ̄0)− θ (σ0 − σ̄0]

−V (σ̄ )[θ (σ − σ̄ )− θ (σ0 − σ̄ )]. (4.6)

From the last expression, using the right-hand sides of the ex-
pressions in Eq. (4.2), we extract the desired Poisson bracket

{A(σ ), B(σ̄ )} = −[U(σ )−U(σ̄ )+ V (σ̄ )]θ (σ − σ̄ ). (4.7)

Let us rewrite the canonical forms of the transformation laws,
(3.14), (3.24) and (3.46), in the following way

y ′
1

∼= 1
κ

πx, y ′
2

∼= 1
κ

πy , y ′
3

∼= 1
κ

πz − H(xy ′ − yx′). (4.8)

In order to find the Poisson brackets between T-dual coordinates
yμ we will use the algebra of the coordinates and momenta of
the initial theory (3.25). It is obvious that only nontrivial Poisson
brackets will be {y1(σ ), y3(σ̄ )} and {y2(σ ), y3(σ̄ )}.
Let us first write the corresponding Poisson brackets of the

sigma derivatives of T-dual coordinates yμ using (4.8)

{y ′
1(σ ), y

′
3(σ̄ )} ∼= 2

κ
Hy ′(σ )δ(σ − σ̄ )+ 1

κ
Hy(σ )δ′(σ − σ̄ ), (4.9)

{y ′
2(σ ), y

′
3(σ̄ )} ∼= − 2

κ
Hx′(σ )δ(σ − σ̄ )− 1

κ
Hx(σ )δ′(σ − σ̄ ),

(4.10)

while all other Poisson brackets are zero. We see that these Pois-
son brackets are of the form (4.1), so, we can apply the result (4.7).
Consequently, we get

{y1(σ ), y3(σ̄ )} ∼= −H
κ

[
2y(σ )− y(σ̄ )

]
θ (σ − σ̄ ), (4.11)

{y2(σ ), y3(σ̄ )} ∼= H
κ

[
2x(σ )− x(σ̄ )

]
θ (σ − σ̄ ), (4.12)

where function θ (x) is defined in (4.5). Let us note that these two
Poisson brackets are zero when σ = σ̄ and/or field strength H
is equal to zero. But if we take that σ − σ̄ = 2π then we have
θ (2π ) = 1 and it follows

{y1(σ + 2π ), y3(σ )} ∼= −H
κ

[
4πNy + y(σ )

]
, (4.13)

{y2(σ + 2π ), y3(σ )} ∼= H
κ

[
4πNx + x(σ )

]
, (4.14)

where Nx and Ny are winding numbers defined as

x(σ + 2π )− x(σ ) = 2πNx, y(σ + 2π )− y(σ ) = 2πNy . (4.15)

From these relations we can see that if we choose such σ for
which x(σ ) = 0 and y(σ ) = 0 then noncommutativity relations
are proportional to winding numbers. On the other side, for
winding numbers which are equal to zero there is still noncom-
mutativity between T-dual coordinates.

4.2. Nonassociativity

In order to calculate Jacobi identity of the T-dual coordinates
we first have to find Poisson brackets {y1(σ ), x(σ̄ )} as well as
{y2(σ ), y(σ̄ )}. We start with

{�y1(σ, σ0), x(σ̄ )} =
{∫ σ

σ0

dηy ′
1(η), x(σ̄ )

}
, (4.16)

and then use the T-dual transformation for x-direction in canon-
ical form

πx
∼= κy ′

1. (4.17)
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From these two equations it follows

{�y1(σ, σ0), x(σ̄ )} ∼= 1
κ

{∫ σ

σ0

dηπx(η), x(σ̄ )
}

, (4.18)

which, using the standard Poisson algebra, produces

{�y1(σ, σ0), x(σ̄ )} ∼= − 1
κ

[
θ (σ − σ̄ )− θ (σ0 − σ̄ )

]

=⇒ {y1(σ ), x(σ̄ )} ∼= − 1
κ

θ (σ − σ̄ ). (4.19)

The relation {y2(σ ), y(σ̄ )} can be obtained in the same way. Be-
cause the transformation law for y-direction is of the same form
as for x-direction, the Poisson bracket is of the same form

{y2(σ ), y(σ̄ )} ∼= − 1
κ

θ (σ − σ̄ ). (4.20)

Now we can calculate Jacobi identity using noncommutativity re-
lations (4.11) and (4.12) and above two Poisson brackets

{y1(σ1), y2(σ2), y3(σ3)} ≡ {y1(σ1), {y2(σ2), y3(σ3)}}
+{y2(σ2), {y3(σ3), y1(σ1)}} + {y3(σ3), {y1(σ1), y2(σ2)}}

∼= −2H
κ2

[
θ (σ1 − σ2)θ (σ2 − σ3)

+ θ (σ2 − σ1)θ (σ1 − σ3)+ θ (σ1 − σ3)θ (σ3 − σ2)
]
. (4.21)

Jacobi identity is nonzero which means that theory with R-flux is
nonassociative. For σ2 = σ3 = σ and σ1 = σ + 2π we get

{y1(σ + 2π ), y2(σ ), y3(σ )} ∼= 2H
κ2

. (4.22)

From the last two equations, general form of Jacobi identity and
Jacobi identity for special choice of σ ’s, we see that presence of
the coordinate dependent Kalb-Ramond field is a source of non-
commutativity and nonassociativity.

5. Conclusion

In this article we have considered the closed bosonic string
propagating in the three-dimensional constant metric and Kalb-
Ramond field with just one nonzero component Bxy = Hz. This
choice of background is in accordance with consistency condi-
tions in the sense that all calculations were made in approxi-
mation linear in Kalb-Ramond field strength H. Geometrically,
this settings corresponds to the torus with H flux. Then we per-
formed standard Buscher T-dualization procedure along isom-
etry directions, first along x and then along y direction. At the
end we performed generalized T-dualization procedure along z
direction and obtained nonlocal theory with R flux. Using the re-
lations between initial and T-dual variables, called T-dual trans-
formation laws, in canonical form we find the noncommutativity
and nonassociativity relations between T-dual coordinates.
After T-dualization along x direction we obtained theory em-

bedded in geometry known in literature as twisted torus geom-

etry. The relation between initial and T-dual variables is triv-
ial, πx

∼= κy ′
1, where πx is x component of the canonical mo-

mentum of the initial theory and y1 is coordinate T-dual to x.
Consequently, flux H takes a role of connection, obtained the-
ory is globally and locally well defined and commutative, because
the coordinates and their canonically conjugated momenta sat-
isfy the standard Poisson algebra (3.25).
The second T-dualization, along y direction, produces nonge-

ometrical theory, in literature known as Q flux theory. Themetric
is the same as initial one and Kalb-Ramond field have the same
form as initial up to minus sign. But, this theory has just local
geometrical interpretation. We obtained that, in approximation
linear in H, the transformation law in canonical form is again
trivial, πy

∼= κy ′
2, where πy is y component od the canonical mo-

mentum of the initial theory and y2 is coordinate T-dual to y.
As a consequence of the standard Poisson algebra (3.25), we con-
clude that Q flux theory is still commutative. This result seems to
be opposite from the result of the reference [16] where in detailed
calculation it is shown that Q flux theory is noncommutative. The
difference is in the so called boundary condition i.e. winding con-
dition. In the Ref. [16] they imposed nontrivial winding condition
whichmixes the coordinates and their T-dual partners (condition
given in Eq. (C.18) of Ref. [16]) and the result is noncommutativ-
ity. In this article the trivial winding condition is imposed on x
and y coordinates. The consequence is that Q flux theory is com-
mutative. But as it is written in Ref. [16] on page 42, “a priori other
reasonings could as well be pursued”.
T-dualizing along coordinate zusing themachinery of the gen-

eralized T-dualization procedure[20,21,23] we obtain the nonlocal
theory (theory with R flux) and nontrivial transformation law
in canonical form. Non-locality stems from the fact that back-
ground fields are expressed in terms of the variable �V which
is defined as line integral. On the other side, dependence of the
Kalb-Ramond field on z coordinate produces the β±(x, y) func-
tions and nontrivial transformation law for πz. Consequently, co-
ordinate dependent background gives non-locality and, further,
nonzero Poisson brackets of the T-dual coordinates.We can claim
that there is a correlation between non-locality (R-flux theory)
and closed string noncommutativity and nonassociativity. In ad-
dition, nonzero Poisson bracket implies nonzero Jacobi identity
which is a signal of nonassociativity.
From the expressions (4.11), (4.12) and (4.21) it follows that

parameters of noncommutativity and nonassociativity are pro-
portional to the field strength H. That means that closed string
noncommuatativity and nonassociativity are consequence of the
fact that Kalb-Ramond field is coordinate dependent, Bxy = Hz,
where H is an infinitesimal parameter according to the approxi-
mation of diluted flux. Using T-duality and trivial winding condi-
tions we obtained noncommutativity relations. The noncommu-
tativity relations are zero if σ = σ̄ because in noncommuatativity
relations function θ (σ − σ̄ ) is present, which is zero if its argu-
ment is zero. This is also at the first glance opposite to the result
of Ref. [16], but, having in mind that origin of noncommutativ-
ity is not same, this difference is not surprising. If we made a
round in sigma choosing σ → σ + 2π and σ̄ → σ , because of
θ (2π ) = 1, we obtained nonzero Poisson brackets. From the rela-
tions (4.13) and (4.14) we see that noncommutativity exists even
in the case when winding numbers are zero, noncommutativity
relations still stand unlike the result in [16]. Consequently, we can
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speak about some essential noncommutativity originating from
non-locality.
We showed that in ordinary space coordinate dependent back-

ground is a sufficient condition for closed string noncommutativ-
ity. Some papers[36] show that noncommutativity is possible even
in the constant background case. But that could be realized using
the double space formalism. At the zeroth order the explanation fol-
lows from the fact that transformation law in canonical form is of
the form πμ

∼= κy ′
μ, where yμ is T-dual coordinate. Forming dou-

ble space spanned by ZM = (xμ, yμ), we obtained noncommua-
tive (double) space. In literature this kind of noncommutativity
is called intrinsic one.

Appendix: Light-Cone Coordinates

In the paper we often use light-cone coordinates defined as

ξ± = 1
2
(τ ± σ ). (A.1)

The corresponding partial derivatives are

∂± ≡ ∂

∂ξ± = ∂τ ± ∂σ . (A.2)

Two dimensional Levi-Civita εαβ is chosen in (τ, σ ) basis as
ετσ = −1. Consequently, in the light-cone basis the form of ten-
sor is

εl c =
(

0 1
2− 1

2 0

)
. (A.3)

The flat world-sheet metric is of the form in (τ, σ ) and light-cone
basis, respectively

η =
(
1 0
0 −1

)
, ηl c =

( 1
2 0
0 1

2

)
. (A.4)
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Abstract

In this article we offer the interpretation of the fermionic T-duality of the type II superstring theory in 
double space. We generalize the idea of double space doubling the fermionic sector of the superspace. In 
such doubled space fermionic T-duality is represented as permutation of the fermionic coordinates θα and 
θ̄α with the corresponding fermionic T-dual ones, ϑα and ϑ̄α , respectively. Demanding that T-dual transfor-
mation law has the same form as initial one, we obtain the known form of the fermionic T-dual NS–R and
R–R background fields. Fermionic T-dual NS–NS background fields are obtained under some assumptions. 
We conclude that only symmetric part of R–R field strength and symmetric part of its fermionic T-dual con-
tribute to the fermionic T-duality transformation of dilaton field and analyze the dilaton field in fermionic 
double space. As a model we use the ghost free action of type II superstring in pure spinor formulation in 
approximation of constant background fields up to the quadratic terms.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Two theories T-dual to one another can be viewed as being physically identical [1,2]. T-duality 
presents an important tool which shows the equivalence of different geometries and topologies. 
The useful T-duality procedure was first introduced by Buscher [3].
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Mathematical realization of T-duality is given by Buscher T-dualization procedure [3], which 
is considered as standard one. There are also other frameworks in which we can represent 
T-dualization which should agree with the Buscher procedure. It is double space formalism which 
was the subject of the articles about twenty years ago [4–8]. Double space is spanned by coor-
dinates ZM = (xμ yμ)T (μ = 0, 1, 2, . . . , D − 1), where xμ and yμ are the coordinates of the 
D-dimensional initial and T-dual space–time, respectively. Interest for this subject emerged re-
cently with papers [9–13], where T-duality along some subset of d coordinates is considered as 
O(d, d) symmetry transformation and [14,15], where it is considered as permutation of d initial 
with corresponding d T-dual coordinates.

Until recently only T-duality along bosonic coordinates has been considered. Analyzing the 
gluon scattering amplitudes in N = 4 super Yang–Mills theory, a new kind of T-dual symmetry, 
fermionic T-duality, was discovered [16,17]. It is a part of the dual superconformal symmetry 
which should be connected to integrability and it is valid just at string tree level. Mathemat-
ically, fermionic T-duality is realized within the same procedure as bosonic one, except that 
dualization is performed along fermionic variables. So, it can be considered as a generalization of 
Buscher T-duality. Fermionic T-duality consists in certain non-local redefinitions of the fermionic 
variables of the superstring mapping a supersymmetric background to another supersymmetric 
background. In Refs. [16,17] it was shown that fermionic T-duality maps gluon scattering ampli-
tudes in the original theory to an object very close to Wilson loops in the dual one. Calculation of 
gluon scattering amplitudes in the initial theory is equivalent to the calculation of Wilson loops 
in fermionic T-dual theory. Generalizing the idea of double space to the fermionic case we would 
get fermionic double space in which fermionic T-duality is a symmetry [18] which exchanges 
scattering amplitudes and Wilson loops. Fermionic double space can be also successfully ap-
plied in random lattice [19], where doubling of the supercoordinate was done. Relation between 
fermionic T-duality and open string noncommutativity was considered in Ref. [20].

Let us explain our motivation for fermionic T-duality. It is well known that T-duality is im-
portant feature in understanding the M-theory. In fact, five consistent superstring theories are 
connected by web of T and S dualities. We are going to pay attention to the T-duality, hoping 
that S-duality (which can be understood as transformation of dilaton background field also) can 
be later successfully incorporated into our procedure. If we start with arbitrary (of five consistent 
superstring) theory and find all corresponding T-dual theories we can achieve any of other four 
consistent superstring theories. But to obtain formulation of M-theory it is not enough. We must 
construct one theory which contains the initial theory and all corresponding T-dual ones.

In the bosonic case (which is substantially simpler that supersymmetric one) we have suc-
ceeded to realize such program. In Refs. [14,15] we doubled all bosonic coordinates and showed 
that such theory contained the initial and all corresponding T-dual theories. We can connect arbi-
trary two of these theories just replacing some initial coordinates xa with corresponding T-dual 
ones ya . This is equivalent with T-dualization along coordinates xa . So, introducing double space 
T-duality ceases to be transformation which connects two physically equivalent theories but it be-
comes symmetry transformation in extended space with respect to permutation group. We proved 
this in the bosonic string case both for constant and for weakly curved background with linear 
dependence on coordinates.

Unfortunately, this is not enough for construction of M-theory, because the T-duality for su-
perstrings is much more complicated then in the bosonic case [21]. In Ref. [22] we have tried to 
extend such approach to the type II theories. In fact, doubling all bosonic coordinates we have 
unified types IIA, IIB as well as type II� [23] (obtained by T-dualization along time-like direc-
tion) theories. There is an incompleteness in such approach. Doubling all bosonic coordinates, 
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by simple permutations of initial with corresponding T-dual coordinates, we obtained all T-dual 
background fields except T-dual R–R field strength Fαβ . To obtain aFαβ (the field strength af-
ter T-dualization along coordinates xa) we need to introduce some additional assumptions. The 
explanation is that R–R field strength Fαβ appears coupled with fermionic momenta πα and 
π̄α along which we did not performed T-dualization and consequently we did not double these 
variables. It is an analogue of ij -term in approach of Refs. [9,10] where xi coordinates are not 
doubled.

Therefore, in the first step of our approach to the formulation of M-theory (unification of 
types II theories) we must include T-dualization along fermionic variables (πα and π̄α in partic-
ular case). It means that we should doubled these fermionic variables, also. The present article 
represents a necessary step for understanding T-dualization along all fermionic coordinates in 
fermionic double space. We expect that final step in construction of M-theory will be unification 
of all theories obtained after T-dualization along all bosonic and all fermionic variables [18,19]. 
In that case we should double all coordinates in superspace, anticipating that some superpermu-
tation will connect arbitrary two of our five consistent supersymmetric string theories.

In this article we are going to double fermionic sector of type II theories adding to the coor-
dinates θα and θ̄ α their fermionic T-duals, ϑα and ϑ̄α , where index α counts independent real 
components of the spinors, α = 1, 2, . . . , 16. Rewriting T-dual transformation laws in terms of 
the double coordinates, �A = (θα, ϑα) and �̄A = (θ̄α, ϑ̄α), we define the “fermionic generalized 
metric” FAB and the generalized currents J̄+A and J−A. The permutation matrix T A

B ex-
changes θ̄ α and θα with their T-dual partners, ϑ̄α and ϑα , respectively. From the requirement that 
fermionic T-dual coordinates, ��A = T A

B�B and ��̄A = T A
B�̄B , have the same transforma-

tion law as initial ones, �A and �̄A, we obtain the expressions for fermionic T-dual generalized 
metric, �FAB = (T FT )AB , and T-dual currents, �J̄+A = TA

B J̄+B and �J−A = TA
BJ−B , in 

terms of the initial ones. These expressions produce the expression for fermionic T-dual NS–
R fields and R–R field strength. Expressions for fermionic T-dual metric and Kalb–Ramond 
field are obtained separately under some assumptions. We conclude that only symmetric part 
of R–R field strength, Fαβ

s = 1
2 (Fαβ + Fβα), and symmetric part of its fermionic T-dual, 

�F s
αβ = 1

2 (�Fαβ + �Fβα), give contribution to the dilaton field transformation under fermionic 
T-duality. We also investigate the dilaton field in double space.

2. Type II superstring and fermionic T-duality

In this section we will introduce the action of type II superstring theory in pure spinor formu-
lation and perform fermionic T-duality [16,17,20] using fermionic analogue of Buscher rules [3].

2.1. Action and supergravity constraints

In this manuscript we use the action of type II superstring theory in pure spinor formulation 
[24] up to the quadratic terms with constant background fields. Here we will derive the final form 
of the action which will be exploited in the further analysis. It corresponds to the actions used in 
Refs. [25–28].

The sigma model action for type II superstring of Ref. [29] is of the form

S = S0 + VSG , (2.1)

where S0 is the action in the flat background
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S0 =
∫
	

d2ξ
(κ

2
ηmnημν∂mxμ∂nx

ν − πα∂−θα + ∂+θ̄ απ̄α

)
+ Sλ + Sλ̄ , (2.2)

and it is deformed by integrated form of the massless type II supergravity vertex operator

VSG =
∫
	

d2ξ(XT )MAMNX̄N . (2.3)

The vectors XM and X̄N are defined as

XM =

⎛
⎜⎜⎝

∂+θα

�
μ
+

dα
1
2N

μν
+

⎞
⎟⎟⎠ , X̄N =

⎛
⎜⎜⎝

∂−θ̄ α

�
μ
−

d̄α
1
2 N̄

μν
−

⎞
⎟⎟⎠ , (2.4)

and supermatrix AMN is of the form

AMN =

⎛
⎜⎜⎝

Aαβ Aαν Eα
β �α,μν

Aμβ Aμν Ē
β
μ �μ,νρ

Eα
β Eα

ν Pαβ Cα
μν

�μν,β �μν,ρ C̄μν
β Sμν,ρσ

⎞
⎟⎟⎠ , (2.5)

where notation and definitions are taken from Ref. [29]. The actions for pure spinors, Sλ and Sλ̄, 
are free field actions and fully decoupled from the rest of action S0. The world sheet 	 is 
parameterized by ξm = (ξ0 = τ , ξ1 = σ) and ∂± = ∂τ ± ∂σ . Bosonic part of superspace is 
spanned by coordinates xμ (μ = 0, 1, 2, . . . , 9), while the fermionic one is spanned by θα and θ̄ α

(α = 1, 2, . . . , 16). The variables πα and π̄α are canonically conjugated momenta to θα and θ̄ α , 
respectively. All spinors are Majorana–Weyl ones, which means that each of them has 16 inde-
pendent real components. Matrix with superfields generally depends on xμ, θα and θ̄ α .

The superfields Aμν , Ēμ
α , Eα

μ and Pαβ are known as physical superfields, while the fields 
given in the first column and first row are auxiliary superfields because they can be expressed 
in terms of the physical ones [29]. The rest ones, �μ,νρ(�μν,ρ), Cα

μν(C̄μν
α) and Sμν,ρσ , are 

curvatures (field strengths) for physical superfields.
The expanded form of the vertex operator (2.3) is [29]

VSG =
∫

d2ξ
[
∂+θαAαβ∂−θ̄ β + ∂+θαAαμ�

μ
− + �

μ
+Aμα∂−θ̄ α + �

μ
+Aμν�

ν−

+ dαEα
β∂−θ̄ β + dαEα

μ�
μ
− + ∂+θαEα

βd̄β + �
μ
+Eμ

βd̄β + dαPαβ d̄β

+ 1

2
N

μν
+ �μν,β∂−θ̄ β + 1

2
N

μν
+ �μν,ρ�

ρ
− + 1

2
∂+θα�α,μνN̄

μν
− + 1

2
�

μ
+�μ,νρN̄

νρ
−

+ 1

2
N

μν
+ C̄μν

β d̄β + 1

2
dαCα

μνN̄
μν
− + 1

4
N

μν
+ Sμν,ρσ N̄

ρσ
−

]
. (2.6)

The supergravity constraints are the conditions obtained as a consequence of nilpotency and 
(anti)holomorphicity of BRST operators Q = ∫

λαdα and Q̄ = ∫
λ̄αd̄α , where λα and λ̄α are 

pure spinors and dα and d̄α are independent variables. Let us discuss the choice of background 
fields satisfying superspace equations of motion in the context of supergravity constraints which 
are explained in details for pure spinor formalism in Refs. [32,29].

In order to implement T-duality many restrictions should be imposed. For example, in bosonic 
case one should assume the existence of Killing vectors, which in fact means background fields 



B. Nikolić, B. Sazdović / Nuclear Physics B 917 (2017) 105–121 109

independence on corresponding suitably selected coordinates. The idea is to avoid dependence 
on the coordinate xμ and allow only dependence on the σ and τ derivatives of the coordinates, 
ẋμ and x′μ. The case with explicit dependence on the coordinate requires particular attention 
and has been considered in Ref. [30]. Similar simplifications must be imposed in consideration 
of the non-commutativity of the coordinates [31,30].

A similar situation occurs in the supersymmetric case. In order to perform fermionic T-duality 
we must avoid explicit dependence of background fields on the fermionic coordinates θα and θ̄ α

(fermionic coordinates are Killing spinors) and allow only dependence on the σ and τ deriva-
tives of these coordinates. Assumption of existence of Killing spinors produces that the auxiliary 
superfields should be taken to be zero what can be seen from Eq. (5.5) of Ref. [29].

The right-hand side of the equations of motion for background fields (see for example [33]) is 
energy-momentum tensor which is generally square of field strengths. In our case physical super-
fields Gμν , Bμν , �, �α

μ and �̄α
μ are constant (do not depend on xμ, θα , θ̄ α) and corresponding 

field strengths, �μ,νρ(�μν,ρ), Cα
μν(C̄μν

α) and Sμν,ρσ , are zero. The only nontrivial contribu-
tion of the quadratic terms in equations of motion comes from constant field strength Pαβ . It can 
induce back-reaction to the background fields. In order to analyze this issue we will use relations 
from Eq. (3.6) of Ref. [29] labeled by ( 1

2 , 32 , 32 )

DαPβγ − 1

4
(�μν)α

βC̄μν
γ = 0 , D̄αPβγ − 1

4
(�μν)α

γ Cβ
μν = 0 , (2.7)

in which derivative of Pαβ appears. Here

Dα = ∂

∂θα
+ 1

2
(�μθ)α

∂

∂xμ
, D̄α = ∂

∂θ̄α
+ 1

2
(�μθ̄)α

∂

∂xμ
, (2.8)

are superspace covariant derivatives and Cα
μν and C̄μν

α are field strengths for gravitino fields 
�α

μ and �̄α
μ, respectively. In order to perform fermionic T-dualization along all fermionic direc-

tions, θα and θ̄ α , we assume that they are Killing spinors which means

∂Pβγ

∂θα
= ∂Pβγ

∂θ̄α
= 0 . (2.9)

Taking into account that gravitino fields, �α
μ and �̄α

μ, are constant (corresponding field strengths 
are zero), from the equations (2.7) it follows

(�μ)αδ∂μPβγ = 0 . (2.10)

Note that this is more general case than equation of motion for R–R field strength,

(�μ)αβ∂μPβγ = 0,

given in Eq. (3.11) of Ref. [29] where there is summation over spinor indices. Our choice of 
constant Pαβ is consistent with this condition. It is known fact that even constant R–R field 
strength produces back-reaction on background fields. In order to cancel non-quadratic terms 
originating from back-reaction, the constant R–R field strength must satisfy additional conditions 
– AdS5 × S5 coset geometry or self-duality condition.

Taking into account these assumptions there exists solution

�
μ
± → ∂±xμ , dα → πα , d̄α → π̄α , (2.11)

and only nontrivial superfields take the form
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Aμν = κ(
1

2
gμν + Bμν) , Eα

ν = −�α
ν , Ēα

μ = �̄α
μ , Pαβ = 2

κ
P αβ = 2

κ
e

�
2 Fαβ , (2.12)

where gμν is symmetric and Bμν is antisymmetric tensor.
The final form of the vertex operator under these assumptions is

VSG =
∫
	

d2ξ

[
κ(

1

2
gμν + Bμν)∂+xμ∂−xν − πα�α

μ∂−xμ + ∂+xμ�̄α
μπ̄α + 2

κ
παP αβπβ

]
.

(2.13)

Consequently, the action S is of the form

S = κ

∫
	

d2ξ

[
∂+xμ�+μν∂−xν + 1

4πκ
�R(2)

]
(2.14)

+
∫
	

d2ξ

[
−πα∂−(θα + �α

μxμ) + ∂+(θ̄α + �̄α
μxμ)π̄α + 2

κ
παP αβπ̄β

]
,

where Gμν = ημν + gμν and

�±μν = Bμν ± 1

2
Gμν . (2.15)

All terms containing pure spinors vanished because curvatures are zero under our assumption 
that physical superfields are constant. Actions Sλ and Sλ̄ are fully decoupled from the rest action 
and can be neglected in the further analysis. The action, in its final form, is ghost independent.

Here we work both with type IIA and type IIB superstring theory. The difference is in 
the chirality of NS–R background fields and content of R–R sector. In NS–R sector there are 
two gravitino fields �α

μ and �̄α
μ which are Majorana–Weyl spinors of the opposite chirality in 

type IIA and same chirality in type IIB theory. The same feature stands for the pairs of spinors 
(θα, θ̄ α) and (πα, π̄α). The R–R field strength Fαβ is expressed in terms of the antisymmetric 
tensors F(k) = Fμ1μ2...μk

[1]

Fαβ =
D∑

k=0

1

k!F(k)(C�(k))
αβ ,

[
�

αβ

(k) = (�[μ1...μk])αβ
]

(2.16)

where

�[μ1μ2...μk] ≡ �[μ1�μ2 . . . �μk] , (2.17)

is basis of completely antisymmetrized product of gamma matrices and C is charge conjugation 
operator. For more technical details regarding gamma matrices see the first reference in [1].

R–R field strength satisfies the chirality condition �11F = ±F�11, where �11 is a product 
of gamma matrices in D = 10 dimensional space–time. The sign + corresponds to type IIA 
while sign − corresponds to type IIB superstring theory. Consequently, type IIA theory contains 
only even rank tensors F(k), while type IIB contains only odd rank tensors. For type IIA the 
independent tensors are F(0), F(2) and F(4), while independent tensors for type IIB are F(1), F(3)

and self-dual part of F(5).
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2.2. Fixing the chiral gauge invariance

The fermionic part of the action (2.14) has the form of the first order theory. We want to 
eliminate the fermionic momenta and work with the action expressed in terms of coordinates and 
their derivatives. So, on the equations of motion for fermionic momenta πα and π̄α ,

πα = −κ

2
∂+

(
θ̄ β + �̄β

μxμ
)
(P −1)βα , π̄α = κ

2
(P −1)αβ∂−

(
θβ + �β

μxμ
)

, (2.18)

the action gets the form

S(∂±x, ∂−θ, ∂+θ̄ ) = κ

∫
	

d2ξ∂+xμ�+μν∂−xν + 1

4π

∫
	

d2ξ�R(2)

+ κ

2

∫
	

d2ξ∂+
(
θ̄ α + �̄α

μxμ
)
(P −1)αβ∂−

(
θβ + �β

ν xν
)

= κ

∫
	

d2ξ∂+xμ

[
�+μν + 1

2
�̄α

μ(P −1)αβ�β
ν

]
∂−xν + 1

4π

∫
	

d2ξ�R(2) (2.19)

+ κ

2

∫
	

d2ξ
[
∂+θ̄ α(P −1)αβ∂−θβ + ∂+θ̄ α(P −1�)αμ∂−xμ + ∂+xμ(�̄P −1)μα∂−θα

]
.

In the above action θα appears only in the form ∂−θα and θ̄ α in the form ∂+θ̄ α . This means 
that the theory has a local symmetry

δθα = εα(σ+) , δθ̄α = ε̄α(σ−) , (σ± = τ ± σ) . (2.20)

We will treat this symmetry within BRST formalism. The corresponding BRST transformations 
are

sθα = cα(σ+) , sθ̄α = c̄α(σ−) , (2.21)

where for each gauge parameter εα(σ+) and ε̄α(σ−) we introduced the ghost fields cα(σ+) and 
c̄α(σ−), respectively. Here s is BRST nilpotent operator.

To fix gauge freedom we introduce gauge fermion with ghost number −1

� = κ

2

∫
d2ξ

[
C̄α

(
∂+θα + ααβ

2
b+β

)
+

(
∂−θ̄ α + 1

2
b̄−βαβα

)
Cα

]
, (2.22)

where ααβ is arbitrary non-singular matrix, C̄α and Cα are antighost fields, while b+α and b̄−α

are Nakanishi–Lautrup auxiliary fields which satisfy

sCα = b+α , sC̄α = b̄−α , sb+α = 0 sb̄−α = 0 . (2.23)

BRST transformation of gauge fermion � produces the gauge fixed and Fadeev–Popov action

s� = Sgf + SFP ,

Sgf = κ

2

∫
d2ξ

[
b̄−α∂+θα + ∂−θ̄ αb+α + b̄−αααβb+β

]
,

SFD = κ

2

∫
d2ξ

[
C̄α∂+cα + (∂−c̄α)Cα

]
. (2.24)
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The Fadeev–Popov action is decoupled from the rest and, consequently, it can be omitted in 
further analysis. On the equations of motion for b-fields

b+α = −(α−1)αβ∂+θβ , b̄−α = −∂−θ̄ β(α−1)βα , (2.25)

we obtain the final form of the BRST gauge fixed action

Sgf = −κ

2

∫
d2ξ∂−θ̄ α(α−1)αβ∂+θβ . (2.26)

2.3. Fermionic T-duality

We will perform fermionic T-duality using fermionic version of Buscher procedure similarly 
to Refs. [20] where we worked without chiral gauge fixing. After introducing Sgf the action still 
has a global shift symmetry in θα and θ̄ α directions. We introduce gauge fields vα± and v̄α± and 
replace ordinary world-sheet derivatives with covariant ones

∂±θα → D±θα ≡ ∂±θα + vα± , ∂±θ̄ α → D±θ̄ α ≡ ∂±θ̄ α + v̄α± . (2.27)

In order to make the fields vα± and v̄α± to be unphysical we add the following terms in the action

Sgauge(ϑ, v±, ϑ̄, v̄±) = 1

2
κ

∫
	

d2ξ ϑ̄α(∂+vα− − ∂−vα+)

+ 1

2
κ

∫
	

d2ξ(∂+v̄α− − ∂−v̄α+)ϑα , (2.28)

where ϑα and ϑ̄α are Lagrange multipliers. The full gauge invariant action is of the form

Sinv(x, θ, θ̄ , ϑ, ϑ̄, v±, v̄±) = S(∂±x,D−θ,D+θ̄ )

+ Sgf (D−θ,D+θ̄ ) + Sgauge(ϑ, ϑ̄, v±, v̄±) . (2.29)

Fixing θα and θ̄ α to zero we obtain the gauge fixed action

Sf ix = κ

∫
	

d2ξ∂+xμ

[
�+μν + 1

2
�̄α

μ(P −1)αβ�β
ν

]
∂−xν + 1

4π

∫
	

d2ξ�R(2) (2.30)

+ κ

2

∫
	

[
v̄α+(P −1)αβv

β
− + v̄α+(P −1)αβ�β

ν ∂−xν + ∂+xμ�̄α
μ(P −1)αβv

β
− − v̄α−(α−1)αβv

β
+
]

+ κ

2

∫
	

d2ξ ϑ̄α(∂+vα− − ∂−vα+) + κ

2

∫
	

d2ξ(∂+v̄α− − ∂−v̄α+)ϑα .

Varying the above action with respect to the Lagrange multipliers ϑα and ϑ̄α we obtain the initial 
action (2.19) because

∂+vα− − ∂−vα+ = 0 �⇒ vα± = ∂±θα , ∂+v̄α− − ∂−v̄α+ = 0 �⇒ v̄α± = ∂±θ̄ α . (2.31)

The equations of motion for vα± and v̄α± give

v̄α− = ∂−ϑ̄βαβα , v̄α+ = ∂+ϑ̄βP βα − ∂+xμ�̄α
μ , (2.32)
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vα+ = −ααβ∂+ϑβ , vα− = −P αβ∂−ϑβ − �α
μ∂−xμ . (2.33)

Substituting these expressions in the action Sf ix we obtain the fermionic T-dual action

�S(∂±x, ∂−ϑ, ∂+ϑ̄) = κ

∫
	

d2ξ∂+xμ�+μν∂−xν + 1

4π

∫
	

d2ξ ��R(2) , (2.34)

+ κ

2

∫
	

d2ξ
[
∂+ϑ̄αP αβ∂−ϑβ − ∂+xμ�̄α

μ∂−ϑα + ∂+ϑ̄α�α
μ∂−xμ − ∂−ϑ̄αααβ∂+ϑβ

]
.

It should be in the form of the initial action (2.19)

�S = κ

∫
	

d2ξ∂+xμ

[
��+μν + 1

2
��αμ(�P −1)αβ��βν

]
∂−xν + 1

4π

∫
	

d2ξ��R(2)

(2.35)

+ κ

2

∫
	

d2ξ
[
∂+ϑ̄α(�P −1)αβ∂−ϑβ + ∂+xμ(��̄�P −1)αμ∂−ϑα + ∂+ϑ̄α(�P −1��)αμ∂−xν

]

− κ

2

∫
d2ξ∂−ϑ̄α(�α−1)αβ∂+ϑβ , (2.36)

and so we get

��αμ = (P −1�)αμ , ��̄μα = −(�̄P −1)μα , (2.37)
�Pαβ = (P −1)αβ , �ααβ = (α−1)αβ . (2.38)

From the condition

��+μν + 1

2
��̄αμ (�P −1)αβ ��βν = �+μν , (2.39)

we read the fermionic T-dual metric and Kalb–Ramond field

�Gμν = Gμν + 1

2

[
(�̄P −1�)μν + (�̄P −1�)νμ

]
,

�Bμν = Bμν + 1

4

[
(�̄P −1�)μν − (�̄P −1�)νμ

]
. (2.40)

Dilaton transformation under fermionic T-duality will be presented in the section 4. Let us note 
that two successive dualizations give the initial background fields.

The T-dual transformation laws are connection between initial and T-dual coordinates. We can 
obtain them combining the different solutions of equations of motion for vα± and v̄α± (2.31) and 
(2.32)–(2.33)

∂−θα ∼= −P αβ∂−ϑβ − �α
μ∂−xμ , ∂+θ̄ α ∼= ∂+ϑ̄βP βα − ∂+xμ�̄α

μ , (2.41)

∂+θα ∼= −ααβ∂+ϑβ , ∂−θ̄ α ∼= ∂−ϑ̄βαβα . (2.42)

Here the symbol ∼= denotes the T-duality relation. From these relations we can obtain inverse 
transformation rules

∂−ϑα
∼= −(P −1)αβ∂−θβ − (P −1)αβ�β

μ∂−xμ ,

∂+ϑ̄α
∼= ∂+θ̄ β(P −1)βα + ∂+xμ�̄β

μ(P −1)βα , (2.43)

∂+ϑα
∼= −(α−1)αβ∂+θβ , ∂−ϑ̄α

∼= ∂−θ̄ β(α−1)βα . (2.44)
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Note that without gauge fixing in subsection 2.2, instead expressions for v̄α− and vα+ (first 
relations of (2.32) and (2.33)), we would have only constraints on the T-dual variables, ∂−ϑ̄α = 0
and ∂+ϑα = 0. Consequently, integration over vα± and v̄α± would be singular and we would lose 
the part of T-dual transformations (2.42) and (2.44).

3. Fermionic T-dualization in fermionic double space

In this section we will extend the meaning of the double space. We will introduce double 
fermionic space adding to the fermionic coordinates, θα and θ̄ α , the fermionic T-dual ones, 
ϑα and ϑ̄α . Then we will show that fermionic T-dualization can be represented as permutation of 
the appropriate fermionic coordinates and their T-dual partners.

3.1. Transformation laws in fermionic double space

In the same way as the double bosonic coordinates were introduced [4,14,15], we double both 
fermionic coordinate as

�A =
(

θα

ϑα

)
, �̄A =

(
θ̄ α

ϑ̄α

)
. (3.1)

Each double coordinate has 32 real components. In terms of the double fermionic coordinates 
the transformation laws, (2.41)–(2.44), can be rewritten in the form

∂−�A ∼= −�AB
[
FBC∂−�C +J−B

]
, ∂+�̄A ∼=

[
∂+�̄CFCB + J̄+B

]
�BA , (3.2)

∂+�A ∼= −�ABABC∂+�C , ∂−�̄A ∼= ∂−�̄CACB�BA , (3.3)

where “fermionic generalized metric” FAB has the form

FAB =
(

(P −1)αβ 0
0 P γδ

)
, (3.4)

and

AAB =
(

(α−1)αβ 0
0 αγ δ

)
. (3.5)

FAB is bosonic variable but we put the name fermionic because it appears in the case of fermionic 
T-duality.

The double currents, J̄+A and J−A, are fermionic variables of the form

J̄+A =
(

(�̄P −1)μα∂+xμ

−�̄α
μ∂+xμ

)
, J−A =

(
(P −1�)αμ∂−xμ

�α
μ∂−xμ

)
, (3.6)

while the matrix �AB is constant

�AB =
(

0 1
1 0

)
, (3.7)

where identity matrix is 16 × 16. By straightforward calculation we can prove the relations

�2 = 1 , detFAB = 1 . (3.8)

Consistency of the transformation laws (3.2) produces

(�F)2 = 1 , J− =F�J− , J̄+ = −J̄+�F . (3.9)
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3.2. Double action

It is well known that equations of motion of initial theory are Bianchi identities in T-dual 
picture and vice versa. As a consequence of the identities

∂+∂−�A − ∂−∂+�A = 0 , ∂+∂−�̄A − ∂−∂+�̄A = 0 , (3.10)

known as Bianchi identities, and relations (3.2) and (3.3), we obtain the consistency conditions

∂+(FAB∂−�B + J−A) − ∂−(AAB∂+�B) = 0 , (3.11)

∂−(∂+�̄BFBA + J̄+A) − ∂+(∂−�̄BABA) = 0 . (3.12)

The equations (3.11) and (3.12) are equations of motion of the following action

Sdouble(�, �̄) = (3.13)

= κ

2

∫
d2ξ

[
∂+�̄AFAB∂−�B + J̄+A∂−�A + ∂+�̄AJ−A − ∂−�̄AAAB∂+�B + L(x)

]
,

where L(x) is arbitrary functional of the bosonic coordinates.

3.3. Fermionic T-dualization of type II superstring theory as permutation of fermionic 
coordinates in double space

In order to exchange θα with ϑα and θ̄ with ϑ̄α , let us introduce the permutation matrix

T A
B =

(
0 1
1 0

)
, (3.14)

so that double T-dual coordinates are

��A = T A
B�B , ��̄A = T A

B�̄B . (3.15)

We demand that T-dual transformation laws for double T-dual coordinates ��A and ��̄A have 
the same form as for initial ones �A and �̄A (3.2) and (3.3)

∂−��A ∼= −�AB
[
�FBC∂−��C + �J−B

]
, ∂+��̄A ∼=

[
∂+��̄C�FCB + �J̄+B

]
�BA ,

(3.16)

∂+��A ∼= −�AB�ABC∂+��C , ∂−��̄A ∼= ∂−��̄C�ACB�BA . (3.17)

Then the fermionic T-dual “generalized metric” �FAB and T-dual currents, �J̄+A and �J−A, with 
the help of (3.15) and (3.2), can be expressed in terms of initial ones

�FAB = TA
CFCDT D

B , �J̄+A = TA
B J̄+B , �J−A = TA

BJ−B . (3.18)

The matrix AAB transforms as

�AAB = TA
CACDT D

B = (A−1)AB . (3.19)

Note that, as well as bosonic case, double space action (3.13) has global symmetry under trans-
formations (3.15) if the conditions (3.18) are satisfied.

From the first relation in (3.18) we obtain the form of the fermionic T-dual R–R background 
field
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�Pαβ = (P −1)αβ , (3.20)

while from the second and third equation we obtain the form of the fermionic T-dual NS–R 
background fields

��αμ = (P −1)αβ�β
μ , ��̄αμ = −�̄β

μ(P −1)βα . (3.21)

The non-singular matrix ααβ transforms as

(�α)αβ = (α−1)αβ . (3.22)

The expressions (3.20)–(3.22) are in full agreement with the relations (2.37) and (2.38) obtained 
by the standard fermionic Buscher procedure. Consequently, we showed that permutation of 
fermionic coordinates defined in (3.14) and (3.15) completely reproduces fermionic T-dual R–R 
and NS–R background fields.

3.4. Fermionic T-dual metric �Gμν and Kalb–Ramond field �Bμν

The expression �+μν + 1
2�α

μ(P −1)αβ�
β
ν appears in the action (2.19) coupled with ∂±xμ, 

along which we do not T-dualize. It is an analogue of ij -term of Refs. [9,10] where xi coordinates 
are not T-dualized, and αβ-term in [22] where fermionic directions are undualized.

Taking into account the form of the doubled action (3.13) we suppose that term L(x) has the 
form

L(x) = 2∂+xμ
(
�+μν + ��+μν

)
∂−xν ≡ L+ �L , (3.23)

where �+μν is defined in (2.15) and ��+μν is fermionic T-dual which we are going to find. This 
term should be invariant under T-dual transformation

�L = L+ �L . (3.24)

Using the fact that two successive T-dualizations are identity transformation, we obtain

L = �L+ ��L . (3.25)

Combining last two relations we get

��L = −�L . (3.26)

If �L = 2∂+xμ�μν∂−xν , we obtain the condition for �μν

��μν = −�μν . (3.27)

Using the relations (2.37) and (2.38) we realize that, up to multiplication constant, combina-
tion

�μν = �̄α
μ(P −1)αβ�β

ν , (3.28)

satisfies the condition (3.27). So, we conclude that

��+μν = �+μν + c�̄α
μ(P −1)αβ�β

ν , (3.29)

where c is an arbitrary constant. For c = 1
2 we obtain the relations (2.40). So, in double space 

formulation the fermionic T-dual NS–NS background fields can be obtained up to an arbitrary 
constant under assumption that two successive T-dualizations produce initial action.
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4. Dilaton field in double fermionic space

Dilaton field transformation under fermionic T-duality is considered [16]. Here we will dis-
cuss some new features of dilaton transformation under fermionic T-duality as well as the dilaton 
field in fermionic double space.

Because the dilaton transformation has quantum origin we start with the path integral for the 
gauge fixed action given in Eq. (2.30)

Z =
∫

dv̄α+dv̄α−dvα+dvα−dϑ̄αdϑαei Sf ix (v±,v̄±,∂±ϑ,∂±ϑ̄) . (4.1)

For constant background case, after integration over the fermionic gauge fields v̄α± and vα±, we 
obtain the generating functional Z in the form

Z =
∫

dϑ̄αdϑα det
[
(P −1α−1)αβ

]
ei �S(ϑ,ϑ̄) , (4.2)

where �S(ϑ, ϑ̄) is T-dual action given in Eq. (2.34). We are able to perform such integration 
thank to the facts that we fixed the gauge in subsection 2.2.

Note that here we multiplied with determinants of P −1 and α−1 because we integrate over 
Grassman fields vα± and v̄α±. We can choose that detα = 1, and the generating functional gets the 
form

Z =
∫

dϑ̄αdϑα det
[
(P −1)αβ

]
ei �S(ϑ,ϑ̄) . (4.3)

This produces the fermionic T-dual transformation of dilaton field

�� = � + ln det
[
(P −1)αβ

]
= � − ln detP αβ . (4.4)

Let us calculate detP αβ using the expression

(PP −1
s P T )αβ = P αβ

s − P
αγ
a (P −1

s )γ δP
δβ
a , (4.5)

where we introduce the symmetric and antisymmetric parts for initial background fields

P αβ
s = 1

2

(
P αβ + P βα

)
, P αβ

a = 1

2

(
P αβ − P βα

)
, (4.6)

and similar expressions for T-dual background fields, �P s
αβ and �P a

αβ . Taking into account that

(P · �P )αβ = δα
β , (4.7)

we obtain

P
αγ
s

�P s
γβ + P

αγ
a

�P a
γβ = δα

β , P
αγ
s

�P a
γβ + P

αγ
a

�P s
γβ = 0 . (4.8)

From these two equations we obtain

�P s
αβ =

[
(Ps − PaP

−1
s Pa)

−1
]
αβ

, (4.9)

and, consequently, we have

(PP −1
s P T )αβ =

[
(�Ps)

−1
]αβ

. (4.10)
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Taking determinant of the left and right-hand side of the above equation we get

detP αβ =
√

detPs

det �Ps

, (4.11)

which produces

�� = � − ln

√
detPs

det �Ps

. (4.12)

Using the fact that P αβ = e
�
2 Fαβ and �P αβ = e

��
2 �F αβ , fermionic T-dual transformation law 

for dilaton takes the form

�� = � − ln

√
e8(�−��)

detFs

det �Fs

, (4.13)

and finally we have

�� = � + 1

6
ln

detFs

det �Fs

. (4.14)

It is obvious that two successive T-dualizations act as identity transformation

��� = �. (4.15)

We can conclude that only symmetric parts of the R–R field strengths give contribution to 
the transformation of dilaton field under fermionic T-duality. In type IIA superstring theory R–R 
field strength Fαβ contains tensors FA

0 , FA
μν and FA

μνρλ, while in type IIB Fαβ contains FB
μ , 

FB
μνρ and self dual part of FB

μνρλω. Using the conventions for gamma matrices from the appendix 
of the first reference in [1] (see Appendix A), we conclude that symmetric part of Fαβ in type 
IIA contains scalar FA

0 and 2-rank tensor FA
μν , while in type IIB superstring theory it contains 

1-rank FB
μ and self dual part of 5-rank tensor FB

μνρλω.
Let us write the path integral for double action (3.13)

Zdouble =
∫

d�Ad�̄AeiSdouble(�,�̄) . (4.16)

Because detF = 1 and detA = 1 we obtain that dilaton field in double space is invariant under 
fermionic T-duality. Consequently, a new dilaton should be introduced (see [14,15]), invariant 
under T-duality transformations. Because of the relation (4.15) we define the T-duality invariant 
dilaton as

�inv = 1

2

(
�� + �

) = � + 1

12
ln

detFs

det �Fs

, ��inv = �inv . (4.17)

5. Concluding remarks

In this article we considered the fermionic T-duality of the type II superstring theory using 
the double space approach. We used the action of the type II superstring theory in pure spinor 
formulation neglecting ghost terms and keeping all terms up to the quadratic ones which means 
that all background fields are constant.
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Using equations of motion with respect to the fermionic momenta πα and π̄α we eliminated 
them from the action. We obtained the action expressed in terms of the derivatives ∂±xμ, ∂−θα

and ∂+θ̄ α , where θα and θ̄ α are fermionic coordinates. Because θα appears in the action in the 
form ∂−θα and θ̄ α in the form ∂+θ̄ α , there is a local chiral gauge symmetry with parameters 
depending on σ± = τ ± σ . We fixed this gauge invariance using BRST approach.

Using the Buscher approach we performed fermionic T-duality procedure and obtained the 
form of the fermionic T-dual background fields. It is obvious that two successive fermionic 
T-dualizations produce initial theory i.e. they are equivalent to the identity transformation.

In the central point of the article we generalize the idea of double space and show that 
fermionic T-duality can be represented as permutation in fermionic double space. In the bosonic 
case double space spanned by coordinates ZM = (xμ, yμ) can be obtained adding T-dual co-
ordinates yμ to the initial ones xμ. Using analogy with the bosonic case we introduced double 
fermionic space doubling the initial coordinates θα and θ̄ α with their fermionic T-duals, ϑα and 
ϑ̄α . Double fermionic space is spanned by the coordinates �A = (θα, ϑα) and �̄A = (θ̄α, ϑ̄α).

T-dual transformation laws and their inverse ones are rewritten in fermionic double space by 
single relation introducing the fermionic generalized metric FAB and currents J−A and J̄+A. 
Demanding that transformation laws for fermionic T-dual double coordinates, ��A = T A

B�B

and ��̄A = T A
B�̄B , are of the same form as those for �A and �̄A, we obtained fermionic T-dual 

generalized metric �FAB and currents �J−A and �J̄+A. These transformations act as symmetry 
transformations of the double action (3.13). They produce the form of the fermionic T-dual NS–R 
and R–R background fields which are in full accordance with the results obtained by standard 
Buscher procedure.

The expressions for T-dual metric �Gμν and Kalb–Ramond field �Bμν cannot be found from 
double space formalism because they do not appear in the T-dual transformation laws. These 
expressions, up to arbitrary constant, are obtained assuming that two successive T-dualizations 
act as identity transformation.

We considered transformation of dilaton field under fermionic T-duality. We derived the trans-
formation law for dilaton field and concluded that just symmetric parts of R–R field strengths, 
F

αβ
s and �F s

αβ , affected the dilaton transformation law. This means that in the case of type IIA 
scalar and 2-rank tensor have influence on the dilaton transformation, while in the case of type 
IIB 1-rank tensor and self-dual part of 5-rank tensor take that role.

Therefore, we extended T-dualization in double space to the fermionic case. We proved that 
permutation of fermionic coordinates with corresponding T-dual ones in double space is equiva-
lent to the fermionic T-duality along initial coordinates θα and θ̄ α .

Appendix A. Gamma matrices

In the appendix of the first reference of [1] one specific representation of gamma matrices is 
given. Here we will calculate the transpositions of basis matrices (C�(k))

αβ for k = 1, 2, 3, 4, 5, 
where C is charge conjugation operator.

The charge conjugation operator is antisymmetric matrix, CT = −C, and it acts on gamma 
matrices as

C�μC−1 = −(�μ)T . (A.1)

Now we have

(C�μ)T = (�μ)T CT = −(�μ)T C = C�μC−1C = C�μ , (A.2)
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(C�μ�ν)T = C�μ�ν �⇒ (C�[μν])T = C�[μν] , (A.3)

(C�μ�ν�ρ)T = −C�μ�ν�ρ �⇒ (C�[μνρ])T = −C�[μνρ] , (A.4)

(C�μ�ν�ρ�λ)T = −C�μ�ν�ρ�λ �⇒ (C�[μνρλ])T = −C�[μνρλ] , (A.5)

(C�μ�ν�ρ�λ�ω)T = C�μ�ν�ρ�λ�ω �⇒ (C�[μνρλω])T = C�[μνρλω] . (A.6)
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[15] B. Sazdović, J. High Energy Phys. 08 (2015) 055.
[16] N. Berkovits, J. Maldacena, J. High Energy Phys. 09 (2008) 062;

I. Bakhmatov, D.S. Berman, Nucl. Phys. B 832 (2010) 89–108;
K. Sfetsos, K. Siampos, D.C. Thompson, QMUL-PH-10-08, arXiv:1007.5142;
I. Bakhmatov, Fermionic T-duality and U-duality in type II supergravity, arXiv:1112.1983.

[17] N. Beisert, R. Ricci, A.A. Tseytlin, M. Wolf, Phys. Rev. D 78 (2008) 126004;
R. Ricci, A.A. Tseytlin, M. Wolf, J. High Energy Phys. 12 (2007) 082.

[18] M. Hatsuda, K. Kamimura, W. Siegel, J. High Energy Phys. 06 (2014) 039.
[19] W. Siegel, Phys. Rev. D 50 (1994) 2799–2805.
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B. Nikolić, B. Sazdović / Nuclear Physics B 917 (2017) 105–121 121

[29] P.A. Grassi, L. Tamassia, J. High Energy Phys. 07 (2004) 071.
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1 Introduction

String theory as a possible candidate for unification of all known interactions offers a
framework for description of both gauge interactions and gravity. Analyzing the relation
between world-sheet diffeomorphisms and transformations of the background fields for open
bosonic string [1–3] it is concluded that Kalb-Ramond field gets one additional term that
is in fact a field strength of some gauge field. In sigma-model action it looks like that
gauge fields are attached at the string endpoints moving along Dp-brane. Finiteness of
the gauge theories (UV cutoff) demands existence of some minimal length. Consequently,
noncommutativity naturally arose in open bosonic string theory in the presence of the
constant background fields [4–7].

The fact that noncommutativity appears together with gauge theory produces a new
line of investigation in quantum field theory — noncommutative gauge theories [8–10], but
not noncommutative gravity.

The open bosonic string in the presence of the constant background fields gives con-
stant noncommutativity [4–7], but, consequently, Jacobi identity is zero and associativity
is not broken. Closed string in the presence of the constant background fields remains
commutative.

Noncommutativity in open string theory comes from the boundary conditions (see [5–
7]). Coordinates and their canonically conjugated momenta are mixed in the boundary
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conditions, and because they obey standard Poisson algebra, at the end we get noncom-
mutativity of the initial coordinates. All these facts tell us about the way how we can
reach noncommutativity in the bosonic closed string case. Kalb-Ramond field must be,
at least, linearly coordinate dependent, and the generalized T-dualization procedure is a
machinery [11–19]. The noncommutativity relations are coordinate dependent and produce
nonzero Jacobi identity — nonassociativity appears in the closed string theory [13, 18, 20–
22].

The noncommutativity and nonassociativity can be considered also within superstring
theory [23, 24]. In ref. [25] we considered one special case of the type II superstring theory
in pure spinor formulation [26–30] — all physical background fields are constant except
Ramond-Ramond (RR) field strength. The RR field strength consists of the constant
part and linearly coordinate dependent one, which is infinitesimal. In accordance with
consistency conditions, we have chosen constant part of RR field strength to be symmetric
and cooordinate dependent part to be antisymmetric tensor.

The motivation for this choice of background fields is the quest for the anticommutation
relation between fermionic coordinates suggested in [30, 31]. Formally, this case is similar
to the bosonic string case with coordinate dependent Kalb-Ramond field (weakly curved
background). The difference is that in the superstring case noncommutativity parameter
depends both on the bosonic and fermionic coordinates. Also we obtained that Jacobiator
is nonzero. Both noncommutativity and nonassociativity parameters are proportional to
the infinitesimal tensor from RR field strength.

In this article we consider the same action as in [25], but we will not imply the ad-
ditional restrictions on the constant and coordinate dependent part of RR field strength
as in [25]. The fundamental difference in relation to the choice of background field in [25]
is in the fact that action with RR field strength without restrictions does not possess
translational isometry. In that sense this case can be considered as general one comparing
with [25].

We will use the generalized T-dualization procedure [16, 19] along bosonic directions.
Because this general case cannot be deduced to the form of the bosonic string with linearly
dependent Kalb-Ramond field, as it could in the case [25], we obtained more complicated
form of T-dual transformation laws and, consequently, the generalization of βµ functions
in the form of N(ξ) functions. Besides the complexity of the T-dual transformation laws
we succeeded to find expressions for noncommutativity and nonassociativity as well as the
form of the T-dual theory.

At the end we give some concluding remarks. In the appendices we present the deriva-
tion of N(ξ) functions and show their properties.

2 General type II superstring action and choice of background fields

In this section we will shortly present how we derive the action of type II superstring in
pure spinor formulation with all constant background fields except RR field strength from
the general form of that action given in [26–30].

– 2 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
8

2.1 General form of the pure spinor type II superstring action

The general form of the type II superstring action in pure spinor formalism is derived and
given in [30]. It consists of two parts and can be represent as their sum

S = S0 + VSG , (2.1)

where S0 describes the motion of string in flat background

S0 =
∫

Σ
d2ξ

(
k

2ηµν∂mx
µ∂nx

νηmn − πα∂−θα + ∂+θ̄
απ̄α

)
+ Sλ + Sλ̄ , (2.2)

while the second one contains all possible interactions

VSG =
∫

Σ
d2ξ(XT )MAMN X̄

N . (2.3)

The second part of the action is expressed in terms of the integrated form of massless type
II supergravity vertex operator VSG. The actions Sλ and Sλ̄ in (2.2) are free-field actions
for pure spinors

Sλ =
∫
d2ξωα∂−λ

α, Sλ̄ =
∫
d2ξω̄α∂+λ̄

α . (2.4)

Here, λα and λ̄α are pure spinors whose canonically conjugated momenta are ωα and ω̄α,
respectively.

The vectors XM and XN and matrix AMN are of the form

XM =


∂+θ

α

Πµ
+
dα

1
2N

µν
+

 , X̄M =


∂−θ̄

λ

Πµ
−
d̄λ

1
2N̄

µν
−

 , AMN =


Aαβ Aαν Eα

β Ωα,µν

Aµβ Aµν Ēβµ Ωµ,νρ

Eαβ Eαν Pαβ Cαµν
Ωµν,β Ωµν,ρ C̄

β
µν Sµν,ρσ

 , (2.5)

where notation is taken from refs. [25, 30]. Every component of the matrix AMN is function
of bosonic, xµ, and fermionic, θα and θ̄α, coordinates. For more details about derivation of
the components consult [30]. The superfields Aµν , Ēαµ , Eαµ and Pαβ are known as physical
superfields, superfields that are in the first row and the first column are known as auxil-
iary because they can be expressed in terms of physical ones [30]. Remaining superfields
Ωµ,νρ (Ωµν,ρ), Cαµν (C̄βµν) and Sµν,ρσ, are curvatures (field strengths) for physical fields.
Components of XM and X̄N are of the form

Πµ
+ = ∂+x

µ + 1
2θ

α(Γµ)αβ∂+θ
β , Πµ

− = ∂−x
µ + 1

2 θ̄
α(Γµ)αβ∂−θ̄β , (2.6)

dα = πα −
1
2(Γµθ)α

[
∂+x

µ + 1
4(θΓµ∂+θ)

]
,

d̄α = π̄α −
1
2(Γµθ̄)α

[
∂−x

µ + 1
4(θ̄Γµ∂−θ̄)

]
, (2.7)

Nµν
+ = 1

2ωα(Γ[µν])αβλ
β , N̄µν

− = 1
2 ω̄α(Γ[µν])αβλ̄

β . (2.8)

The world-sheet is spanned by ξm = (ξ0 = τ, ξ1 = σ), while world-sheet light-cone
partial derivatives are defined as ∂± = ∂τ ± ∂σ. Superspace contains bosonic xµ (µ =
0, 1, . . . , 9) and fermionic θα, θ̄α (α = 1, 2, . . . , 16) coordinates. Variables πα and π̄α are
canonically conjugated momenta to the fermionic coordinates θα and θ̄α, respectively.
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2.2 Choice of the background fields

In this particular case we will use the supermatrix AMN where all physical background
fields, except RR field strength Pαβ , are constant. RR fields strength will have linear
coordinate dependence on bosonic coordinate xµ. Consequently, supermatrix AMN is of
the following form

AMN =


0 0 0 0
0 k(1

2gµν +Bµν) Ψ̄β
µ 0

0 −Ψα
ν

2
k (fαβ + Cαβρ xρ) 0

0 0 0 0

 , (2.9)

where gµν is symmetric tensor, Bµν is Kalb-Ramond antisymmetric field, Ψα
µ and Ψ̄α

µ are
Mayorana-Weyl gravitino fields and fαβ and Cαβρ are constant tensors. Let us stress this
will be a classical analysis and we will not calculate the dilaton shift under T-duality
transformation.

From the consistency conditions given in ref. [30], following this choice of background
fields, it follows

γµαβC
βγ
µ = 0, γµαβC

γβ
µ = 0. (2.10)

Because all background fields are expanded in powers of θα and θ̄α, θα and θ̄α terms
in XM and X̄N will be neglected. Taking into account all imposed assumptions and
approximations, the full action S is getting the form

S =
∫

Σ
d2ξ

[
k

2Π+µν∂+x
µ∂−x

ν − πα(∂−θα + Ψα
ν ∂−x

ν) + (∂+θ̄
α + ∂+x

µΨ̄α
µ)π̄α

+2
k
πα(fαβ + Cαβρ xρ)π̄β

]
,

(2.11)

where Π±µν = Bµν ± 1
2Gµν , and Gµν = ηµν + gµν is metric tensor. The actions Sλ and Sλ̄

are fully decoupled from the rest and they will not be analyzed from now on.
It is easy to notice that fermionic momenta play the roles of the auxiliary fields in full

action. They can be integrated out finding equations for motion for both πα and π̄α

π̄β = k

2
(
F−1(x)

)
βα

(∂−θα + Ψα
ν ∂−x

ν) , (2.12)

πα = −k2
(
∂+θ̄

β + ∂+x
µΨ̄β

µ

) (
F−1(x)

)
βα

, (2.13)

where Fαβ(x) and (F−1(x))αβ are of the form

Fαβ(x) = fαβ + Cαβµ xµ , (F−1(x))αβ = (f−1)αβ − (f−1)αα1C
α1β1
ρ xρ(f−1)β1β . (2.14)

For practical reasons, we assume that Cαβµ is infinitesimal. This assumption is in accor-
dance with constraints (2.10). Substituting equations (2.12) and (2.13) into (2.11) the final
form of action is

S = k

∫
Σ
d2ξ

[
Π+µν∂+x

µ∂−x
ν + 1

2(∂+θ̄
α + ∂+x

µΨ̄α
µ)
(
F−1(x)

)
αβ

(∂−θβ + Ψβ
ν∂−x

ν)
]
.

(2.15)
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Let us note that we did not impose any conditions on tensors fαβ and Cαβµ as we did in
ref. [25]. The case considered in this article is more general than the case studied in [25],
because action does not possess translational symmetry.

3 T-dualization

Here we will make T-dualization of all bosonic directions aiming to find T-dual transforma-
tion laws — relations between T-dual coordinates and canonical variables of the original
theory. The T-dual transformation laws will be used to calculate Poisson brackets of the
T-dual coordinates.

3.1 Implementation of the generalized T-dualization procedure

In implementing of T-dualization procedure we will use generalized Buscher T-dualization
procedure [16]. The standard Buscher procedure [14, 15] is made to be used along directions
on which background fields do not depend (isometry directions), while generalized Buscher
procedure can be applied to theories with coordinate dependent background fields along
all directions. The generalized T-dualization procedure follows three steps — introduction
of covariant derivatives, invariant coordinates and additional gauge fields, which produces
additional degrees of freedom. The starting and T-dual theory must have the same number
of degrees of freedom. In order to achieve that we eliminate all excessive degrees of freedom
demanding that field strength of gauge fields (F+− = ∂+v− − ∂−v+) vanishes by addition
of Lagrange multipliers. Then we fix the gauge symmetry (shift symmetry) and action is
left with gauge fields and their derivatives. Finding equations of motion for gauge fields,
expressing in terms of the Lagrange multipliers and inserting those equations into action
we obtain T-dual action, where Lagrange multipliers have roles of T-dual coordinates.

T-duality can be performed also in the cases of the absence of shift symmetry [19].
Then we replace original action with translation invariant auxiliary action. Form of the
auxiliary action is exactly the same as the form of action where translation symmetry was
localized and gauge fixed. It produces correct T-dual theory only if original action can be
salvaged from it.

Action (2.15) is not translational invariant. Consequently, we make the following
substitutions

∂±x
µ → vµ±, (3.1)

xρ → ∆V ρ =
∫
P
dξ′

m
vρm(ξ′), (3.2)

S → S + k

2

∫
Σ
d2ξ

[
vµ+∂−yµ − v

µ
−∂+yµ

]
, (3.3)

and insert them in action (2.15). The result is auxiliary action convenient for T-dualization
procedure

Saux = k

∫
Σ
d2ξ

[
Π+µνv

µ
+v

ν
− + 1

2(∂+θ̄
α + vµ+Ψ̄α

µ)
(
F−1(∆V )

)
αβ

(∂−θβ + Ψβ
νv

ν
−)

+1
2(vµ+∂−yµ − v

µ
−∂+yµ)

]
.

(3.4)

Let us note that path P starts from ξ0 and ends in ξ. In this way action becomes non-local.
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Finding equations of motion for Lagrange multipliers

∂−v
µ
+ − ∂+v

µ
− = 0 vµ± = ∂±x

µ, (3.5)

and inserting them into (3.2) we have

∆V ρ =
∫
P
dξ′

m
∂mx

ρ(ξ′) = xρ(ξ)− xρ(ξ0) = ∆xρ. (3.6)

In absence of translational symmetry, in order to extract starting action from auxiliary
one, we impose xρ(ξ0) = 0 as a constraint. Taking all this into account, we get the starting
action (2.15).

Euler-Lagrange equations of motion for gauge fields v±(κ) give the following ones

− 1
2∂−yµ(κ) = Π+µνv

ν
−(κ) + 1

2Ψ̄α
µ

(
F−1(∆V )

)
αβ

(∂−θβ(κ) + Ψβ
νv

ν
−(κ)) (3.7)

− 1
2

∫
Σ
d2ξ
[
∂+θ̄

α(ξ) + vν1
+ (ξ)Ψ̄α

ν1

]
(f−1)αα1C

α1β1
µ (f−1)β1βN(κ+)

[
∂−θ

β(ξ) + Ψβ
ν2v

ν2
− (ξ)

]
,

1
2∂+yµ(κ) = Π+νµv

ν
+(κ) + 1

2(∂+θ̄
α(κ) + vν+(κ)Ψ̄α

ν )
(
F−1(∆V )

)
αβ

Ψβ
µ (3.8)

− 1
2

∫
Σ
d2ξ
[
∂+θ̄

α(ξ) + vν1
+ (ξ)Ψ̄α

ν1

]
(f−1)αα1C

α1β1
µ (f−1)β1βN(κ−)

[
∂−θ

β(ξ) + Ψβ
ν2v

ν2
− (ξ)

]
.

Here, function N(κ±) is obtained from variation of term containing ∆V ρ in expression for
F−1(∆V ) (details are presented in appendix A). They represent the generalization of beta
functions introduced in ref. [25]

N(κ+) = δ
(
ξ′
−((ξ′+)−1(κ+)

)
− κ−

) [
H(ξ+ − κ+)−H(ξ+

0 − κ
+)
]
, (3.9)

N(κ−) = δ
(
ξ′

+((ξ′−)−1(κ−)
)
− κ+

) [
H(ξ− − κ−)−H(ξ−0 − κ−)

]
, (3.10)

where more details on Dirac delta function and step function are given in appendix A. As
we see the expressions for derivatives of yµ are more complex comparing with those in [25],
where translational symmetry is present.

Assuming that Cαβµ is an infinitesimal, we can iteratively invert equations of mo-
tion (3.7) and (3.8) [20]. Separating variables into two parts, one finite and one infinitesimal
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proportional to Cαβµ , we have

vν−(κ) =−1
2Θ̄νν1
−

{
∂−yν1(κ)+Ψ̄α

ν1(F−1(∆V ))αβ∂−θβ(κ) (3.11)

+ 1
2Ψα

ν1(f−1)αα1C
α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

ν2 Θ̄ν2ν3
−

(
∂−yν3(κ)+Ψ̄β1

ν3 (f−1)β1β∂−θ
β(κ)

)
−
∫

Σ
d2ξ
[
∂+θ̄

α(ξ)+ 1
2
(
∂+yµ1(ξ)−∂+θ̄

γ1(ξ)(f−1)γ1γ2Ψγ2
µ1

)
Θ̄µ1ν1
− Ψ̄α

ν1

]
(f−1)αα1C

α1β1
ν1

×(f−1)β1βN(κ+)
[
∂−θ

β(ξ)− 1
2Ψβ

ν2Θ̄ν2µ2
−

(
∂−yµ2(ξ)+Ψ̄γ3

µ2(f−1)γ3γ4∂−θ
γ4(ξ)

)]}
,

vµ+(κ) = 1
2Θ̄µ1µ
−

{
∂+yµ1(κ)−∂+θ̄

α(κ)(F−1(∆V ))αβΨβ
µ1 (3.12)

+ 1
2
(
∂+yµ2(κ)−∂+θ̄

α(κ)(f−1)αα1Ψα1
µ2

)
Θ̄µ2µ3
− Ψ̄β3

µ3(f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1βΨβ

µ1

+
∫

Σ
d2ξ
[
∂+θ̄

α(ξ)+ 1
2
(
∂+yµ2(ξ)−∂+θ̄

γ1(ξ)(f−1)γ1γ2Ψγ2
µ2

)
Θ̄µ2ν1
− Ψ̄α

ν1

]
(f−1)αα1C

α1β1
µ1

×(f−1)β1βN(κ−)
[
∂−θ

β(ξ)− 1
2Ψβ

ν2Θ̄ν2µ3
−

(
∂−yµ3(ξ)+Ψ̄γ3

µ3(f−1)γ3γ4∂−θ
γ4(ξ)

)]}
.

Tensor Θ̄µν
− is inverse tensor to Π̄+µν = Π+µν + 1

2Ψ̄α
µ(f−1)αβΨβ

ν

Θ̄µν
− Π̄+νρ = δµρ , (3.13)

where

Θ̄µν
− = Θµν

− −
1
2Θµµ1
− Ψ̄α

µ1(f̄−1)αβΨβ
ν1Θν1ν

− , (3.14)

f̄αβ = fαβ + 1
2Ψα

µΘµν
− Ψ̄β

ν , (3.15)

Θµν
− Π+µρ = δµρ , Θ− = −4(G−1

E Π−G−1)µν . (3.16)

Effective metric tensor is defined as GEµν ≡ Gµν − 4(BG−1B)µν .

In above expressions ∆V is a quantity in the zeroth order in Cαβµ

∆V ρ=
∫
dξ+vρ++

∫
dξ−vρ− (3.17)

= 1
2

∫
P
dξ+Θ̄ρ1ρ

−

[
∂+yρ1−∂+θ̄

α(f−1)αβΨβ
ρ1

]
− 1

2

∫
P
dξ−Θ̄ρρ1

−

[
∂−yρ1 +Ψ̄α

ρ1(f−1)αβ∂−θβ
]
.
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Using (3.7) and (3.8) and inserting them into (3.4), we get T-dual action

ST−dual = k

∫
P
d2ξ

[
1
4Θ̄µν
− ∂+yµ∂−yν (3.18)

+ 1
8Θ̄µµ1
− Ψ̄α

µ1(f−1)αα1C
α1β1
ρ ∆V ρ(f−1)β1βΨβ

ν1Θ̄ν1ν
− ∂+yµ∂−yν

+ 1
2∂+θ̄

α
(

(F−1(∆V ))αβ + 1
2(f−1)αα1C

α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β

− 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β + 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β3

ν (f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
∂−θ

β

+ 1
4∂+yµΘ̄µµ1

− Ψ̄α
µ1

(
(F−1(∆V ))αβ + 1

2(f−1)αα1C
α1β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
× ∂−θβ

− 1
4∂+θ̄

α
(

(F−1(∆V ))αβ + 1
2(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β1
ρ ∆V ρ(f−1)β1β

)
Ψβ
ν1Θ̄ν1ν

−

× ∂−yν

]
.

Let us note that above we kept terms up to the first order in Cαβµ .
T-dual action contains all terms as initial action (2.15) up to the change xµ → yµ.

Consequently, T-dual background fields are of the form

?Πµν
+ = 1

4Θ̄µν
− + 1

8Θ̄µµ1
− Ψ̄α

µ1

[
(F−1(∆V ))αβ+(f−1)αα1C

α1β1
ρ ∆V ρ(f−1)β1β (3.19)

− 1
2(f−1)αα1Ψα1

µ2 Θ̄µ2ν2
− Ψ̄β1

ν2 (f−1)β1β+ 1
2(f−1)αα1C

α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

µ2 Θ̄µ2ν2
− Ψ̄β1

ν2 (f−1)β1β

+ 1
2(f−1)αα1Ψα1

µ2 Θ̄µ2ν2
− Ψ̄β3

ν2 (f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ2 Θ̄µ2µ3
− Ψ̄α2

µ3 (f−1)α2α3C
α3β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν3 Θ̄ν3ν2
− Ψ̄β1

ν2 (f−1)β1β

]
Ψβ
ν1Θ̄ν1ν

− ,

?(F−1(x))αβ = (F−1(∆ȳ))αβ+ 1
2(f−1)αα1C

α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β (3.20)

− 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β+ 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β3

ν (f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β ,

?Ψ̄µα = 1
2Θµν
− Ψ̄α

ν ,
?Ψνβ =−1

2Ψβ
µΘµν
− . (3.21)

Comparing background field of T-dual theory with background fields from [25] we imme-
diately notice that background fields have become more complex. However, this is just an
illusion. In both cases background field are exactly the same only difference is that here
we did not introduce tensor Π̆+µν = Π+µν + 1

2Ψ̄α
µF
−1(∆V )αβΨβ

ν and its inverse, therefore
we are missing ingredients to express our fields in more compactified format.
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3.2 T-dualization of T-dual theory

Since the initial theory is not symmetric under translations, T-dual action that is obtained
from auxiliary action (3.4) and it is now invariant to translations of T-dual coordinates.
Consequently, we can dualize T-dual theory by generalized Buscher procedure. We start
with the introduction of following substitutions

∂±yµ → D±yµ = ∂±yµ + u±µ → D±yµ = u±µ, (3.22)
∆ȳρ → ∆ūρ, (3.23)

∆ūρ = 1
2

∫
P
dξ+Θ̄ρ1ρ

−

[
u+ρ1 − ∂+θ̄

α(f−1)αβΨβ
ρ1

]
− 1

2

∫
P
dξ−Θ̄ρρ1

−

[
u−ρ1 + Ψ̄α

ρ1(f−1)αβ∂−θβ
]
, (3.24)

S → S + 1
2(u+µ∂−x

µ − u−µ∂+x
µ) . (3.25)

From the first line we see that gauge is fixed choosing y(ξ) = const. Inserting these
substitutions into (3.18) we obtain

Sgauge fix = κ

∫
P
d2ξ

[
1
4Θ̄µν
− u+µu−ν (3.26)

+ 1
8Θ̄µµ1
− Ψ̄α

µ1(f−1)αα1C
α1β1
ρ ∆ūρ(f−1)β1βΨβ

ν1Θ̄ν1ν
− u+µu−ν

+ 1
2∂+θ̄

α
(
(F−1(∆ū))αβ + 1

2(f−1)αα1C
α1α2
ρ ∆ūρ(f−1)α2α3Ψα3

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β

− 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β + 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β3

ν (f−1)β3β2C
β2β1
ρ ∆ūρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β3
ρ ∆ūρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
∂−θ

β

+ 1
4u+µΘ̄µµ1

− Ψ̄α
µ1

(
(F−1(∆ū))αβ + 1

2(f−1)αα1C
α1β3
ρ ∆ūρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
× ∂−θβ

− 1
4∂+θ̄

α
(
(F−1(∆ū))αβ + 1

2(f−1)αα1Ψα1
µ Θ̄µµ1

− Ψ̄α2
µ1 (f−1)α2α3C

α3β1
ρ ∆ūρ(f−1)β1β

)
Ψβ
ν1Θ̄ν1ν

−

× u−ν

+ 1
2(u+µ∂−x

µ − u−µ∂+x
µ)
]
.

Using equations of motion for Lagrange multipliers, we return to the T-dual action. Finding
equations of motion for gauge fields, we have

u+µ(κ) = 2Π̄+νµ∂+x
ν(κ)− ∂+x

ν(κ)Ψ̄α
ν (f−1)αα1C

α1β1
ρ ∆xρ(f−1)β1βΨβ

µ (3.27)
+ ∂+θ̄

α(κ)(F−1(∆x̄))αβΨβ
µ

−
∫

Σ
d2ξ
(
∂+θ̄

α(ξ) + ∂+x
µ1(ξ)Ψ̄α

µ1

)
(f−1)αα1C

α1β1
µ (f−1)β1βN(κ−)

×
(
∂−θ

β(ξ) + Ψβ
ν∂−x

ν(ξ)
)
,
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u−ν(κ) = −2Π̄+νµ∂−x
µ(κ) + Ψ̄α

ν (f−1)αα1C
α1β1
ρ ∆xρ(f−1)β1βΨβ

µ∂−x
µ(κ) (3.28)

− Ψ̄α
ν (F−1(∆x̄))αβ∂−θβ(κ)

+
∫

Σ
d2ξ
(
∂+θ̄

α(ξ) + ∂+x
µ(ξ)Ψ̄α

µ

)
(f−1)αα1C

α1β1
ν (f−1)β1βN(κ−)

×
(
∂−θ

β(ξ) + Ψβ
ν1∂−x

ν1(ξ)
)
.

Here we have that ∆xµ = x(ξ)− x(ξ0), and inserting these equations into the gauge fixed
action, keeping all terms linear with respect to Cµνρ and selecting ξ0 such that x(ξ0) = 0,
we obtain our original action (2.15).

4 Non-commutative relations

In this section we will establish a relationship between Poisson brackets of original and
T-dual theory using results from the previous one. Original theory is a geometric one,
which means that canonical variables xµ(ξ) and πµ(ξ) satisfy standard Poisson algebra

{xµ(σ), πν(σ̄)} = δµν δ(σ − σ̄), {xµ(σ), xν(σ̄)} = 0, {πµ(σ), πν(σ̄)} = 0. (4.1)

We will find Poisson structure of T-dual theory using relations (3.7) and (3.8) and ex-
pressing them in terms of the coordinates and momenta of the initial theory. Replacing
gauge fields with solutions of equations of motion for Lagrange multipliers, we get T-dual
transformation laws in Lagrangian form. Because we implement here canonical approach,
the next step is removing of all terms that are proportional to ∂τxµ(ξ). The most of the
terms of this type will get incorporated into expression for canonical momenta πµ(ξ), but
term that is non-local and which is dependent on function N(ξ±) remains. One way of
removing this term is to first use equations of motion for coordinate xµ(ξ), and then replace
remaining ∂τxµ term with canonical momentum. By doing all the steps that were outlined,
we have following relationship between T-dual coordinate and variables of starting theory

∂σyν(σ) = 2Bνµ∂σxµ −Gνµ(Π̄+ + Π̄T
+)−1ν1µ

[
πν1

k
− 1

2Ψ̄α
ν1

(
F−1(x)

)
αβ
∂−θ

β (4.2)

− 1
2∂+θ̄

α
(
F−1(x)

)
αβ

Ψβ
ν1 −

[
Π+µ1µ2 + 1

2Ψ̄α
µ1

(
F−1(x)

)
αβ

Ψβ
µ2

]
(δµ1
ν2 δ

µ2
ν1 − δ

µ1
ν1 δ

µ2
ν2 )∂σxν2

+ 1
2Ψ̄α

µ1(f−1)αα1C
α1β1
ρ xρ(σ)(f−1)β1βΨβ

µ2(δµ1
ν2 δ

µ2
ν1 − δ

µ1
ν1 δ

µ2
ν2 )(Π̄+ + Π̄T

+)−1ρν2

×
[
πρ
k
− 1

2Ψ̄γ
ρ(f−1)γγ1∂−θ

γ1 − 1
2∂+θ̄

γ(f−1)γγ1Ψγ1
ρ + Π̄+ρρ1∂σx

ρ1 − Π̄+ρ1ρ∂σx
ρ1

]]
.

To find Poisson bracket between T-dual coordinates, we can start by finding Poisson
bracket of sigma derivatives of T-dual coordinates and then integrating twice (see [25]).
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Implementing this procedure we have that Poisson bracket for sigma derivatives is given as

{∂σ1yν1(σ1), ∂σ2yν2(σ2)} = (4.3)

= 2
k

(Π̄+ + Π̄T
+)−1µ1µ2

[
Gν1µ1Bν2µ2∂σ2δ(σ1 − σ2)−Bν1µ1Gν2µ2∂σ1δ(σ1 − σ2)

]
+ 1
k

Ψ̄α
ν3(f−1)αα1C

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
Gν1µ1Bν2µ2x

ρ(σ1)∂σ2δ(σ1 − σ2)−Bν1µ1Gν2µ2x
ρ(σ2)∂σ1δ(σ1 − σ2)

]
.

Then we integrate with respect to σ1 (σ2), where we set boundaries as σ0 (σ̄0) and σ (σ̄).
Extracting only Poisson bracket terms that contain σ and σ̄, we have

{yν1(σ), yν2(σ̄)} = 2
k

(Π̄+ + Π̄T
+)−1µ1µ2

[
Gν1µ1Bν2µ2 +Bν1µ1Gν2µ2

]
H(σ − σ̄) (4.4)

+ 1
k

Ψ̄α
ν3(f−1)αα1G

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
Gν1µ1Bν2µ2x

ρ(σ̄) +Bν1µ1Gν2µ2x
ρ(σ)

]
H(σ − σ̄).

Here, H(σ− σ̄) is same step function defined in appendix A. It should be noted that these
Poisson brackets are zero when σ = σ̄. However, in cases where string in curled around
compactified dimension, that is cases where σ − σ̄ = 2π, we have following situation

{yν1(σ + 2π), yν2(σ)} = 2
k

(Π̄+ + Π̄T
+)−1µ1µ2

[
Gν1µ1Bν2µ2 +Bν1µ1Gν2µ2

]
(4.5)

+ 1
k

Ψ̄α
ν3(f−1)αα1C

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
4πGν1µ1Bν2µ2N

ρ +
(
Gν1µ1Bν2µ2 +Bν1µ1Gν2µ2

)
xρ(σ)

]
.

We used fact that H(2π) = 1. The symbol Nµ denotes winding number around compact-
ified coordinate, if is defined as

xµ(σ + 2π)− xµ(σ) = 2πNµ. (4.6)

Let us note that if we choose xµ(σ) = 0 than Poisson bracket has linear dependence on
winding number. In cases where we don’t have any winding number, we still have non-
commutativity that is proportional to background fields.

Using the expression for sigma derivative of yν (4.2) and expression for Poisson bracket
of sigma derivatives (4.3), we can find non-associative relations. Procedure is the same as
for finding Poisson brackets of T-dual theory, we find Poisson bracket of sigma derivatives
and integrate with respect to sigma coordinate, this time integral is done trice. Going
along with this procedure we have following final result

{yν(σ), {yν1(σ1), yν2(σ2)}} = Gνµ
k2 (Π̄+ + Π̄T

+)−1ρµ (4.7)

× Ψ̄α
ν3(f−1)αα1C

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
Gν1µ1Bν2µ2H(σ − σ2) +Bν1µ1Gν2µ2H(σ − σ1)

]
H(σ1 − σ2).
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Since Jacobi identity is non-zero for T-dual theory we have that coordinate dependent RR
field produces non-associative theory. However putting σ1 = σ2 = σ̄ and σ = σ̄ + 2π we
have that Jacobi identity disappears

{yν(σ̄ + 2π), {yν1(σ̄), yν2(σ̄)}} = 0. (4.8)

5 Conclusion

In this article we examined type II superstring propagating in presence of coordinate de-
pendent RR field. This choice of background was in accordance with consistency conditions
for background field and all calculations were made in approximation that are linear with
respect to coordinate dependent part of RR field. We have also excluded parts that were
non-linear in fermionic coordinates and neglected pure spinor actions. Using equations of
motion for fermionic momenta we obtained action that was expressed in terms of bosonic
coordinates, their derivatives and derivatives of fermionic coordinates. Unlike [25] we do not
impose any conditions on the constant and coordinate dependent part of RR field strength,
so, it is not possible to deduce this case to the form of the weakly curved background one.

Action with our choice of background fields did not possess translation symmetry,
therefore we needed to use Buscher procedure that was extended to such cases. By substi-
tuting starting action with auxiliary action we gave up on locality in order to be able to
find T-dual theory. Finding equations of motion of newly introduced Lagrange multipliers
we were able to salvage starting action giving us assurance that auxiliary action we selected
would produce correct T-dual theory. After this we found equations of motion for gauge
fields and by inserting them into action, we found T-dual theory.

Having found T-dual theory, we applied T-dual procedure once again as a more thor-
ough way of checking if action we obtained was in fact correct T-dual of starting action.
Unlike starting action, T-dual action possessed translation symmetry and was non-local
from the start by virtue of having dual coordinate ∆V µ. Applying steps of generalized
Buscher procedure [16, 19] we obtained starting action, again confirming that our choice
of auxiliary action was correct.

We obtained non-commutativity relations in context of T-dual theory, where we used
T-dual transformation laws as a bridge between Poisson brackets of starting theory and
T-dual theory. T-dual transformation laws were expressed as functions of coordinates
and momenta of original theory and using their standard Poisson algebra, we got non-
commutativity in T-dual theory. From expression for Poisson brackets (4.4) we can see
that non-commutativity is proportional to infinitesimal part of RR field as well as to
symmetrised inverse of field Π̄. Non-commutativity relations are zero in case when σ = σ̄,
while in case where σ = σ̄ + 2π we see the emergence of winding numbers.

Taking into account Poisson brackets of sigma derivatives and expression for sigma
derivative of T-dual coordinate we were able to find non-associative relation for T-dual
theory. In general case this relation was non-zero and it was proportional to infinitesimal
constant Cµνρ . In special case when we put σ1 = σ2 = σ̄ and σ = σ̄ + 2π we noticed that
non-associativity relation disappears. During the implementation of the T-dualization
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procedure and calculations, we obtained generalization of βµ functions in the form of the
N -functions.

It should be noted that since we did not preform T-dualization along fermionic coor-
dinates their Poisson structure would remain the same as in original theory. Furthermore,
since background fields do not depend on fermionic coordinates it should be expected, as
in the case of bosonic coordinates [18], that T-duality would leave Poisson brackets be-
tween fermionic fields the same. We expect that, if proposed non-commutative relations
from [30, 31] are even possible, we would need at least RR field that depends both on
fermionic and bosonic coordinates.
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A Obtaining N(κ±) terms

In this paper function N(κ±) emerged in T-dual transformation laws as a consequence of
variation of term that was proportional to ∆V . Here we will present derivation of this
function.

δ
(
F−1(∆V )

)
αβ

δvµ+(κ) = −(f−1)αα1C
α1β1
l (f−1)β1β

∫
P
dξ′

m δv
ρ
m(ξ′)

δvµ+(κ) = (A.1)

= −(f−1)αα1C
α1β1
µ (f−1)β1β

∫
P
dξ′

+
δ(ξ′+ − κ+)δ(ξ′− − κ−)

= −(f−1)αα1C
α1β1
µ (f−1)β1β

∫ tf

ti

dt
dξ′+

dt
δ(ξ′(t)+ − κ+)δ(ξ′−(t)− κ−)

= −(f−1)αα1C
α1β1
µ (f−1)β1β

∫ ξ+

ξ0
+
duδ(u− κ+)δ

(
ξ′
−((ξ′+)−1(u)

)
− κ−

)
= −(f−1)αα1C

α1β1
µ (f−1)β1βδ

(
ξ′
−((ξ′+)−1(κ+)

)
− κ−

) [
H(ξ+ − κ+)−H(ξ+

0 − κ
+)
]

= −(f−1)αα1G
α1β1
µ (f−1)β1βN(κ+).

In third line we have parametrized the path with parameter t where ξ′+(ti) = ξ0
+ and

ξ′+(tf ) = ξ+. In fourth line we introduced substitution u = ξ′+(t), in delta function this
substitute is inverted. Fifth line is obtained by using following integration rule for Dirac
delta function ∫ σ

σ0
dηf(η)δ(η − η̄) = f(η̄) [H(σ − η̄)−H(σ0 − η̄)] . (A.2)
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Here, H(x) is a step function defined as

H(x) =
∫ x

0
dηδ(η) = 1

2π
[
x+

∑
n≥2

1
n

sin(nx)
]

=


0 if x = 0
1/2 if 0 < x < 2π
1 if x = 2π

. (A.3)

Procedure for obtaining N(κ−) is similar.

B Properties of N(κ±) terms

Here ve will list some properties of N(κ±) function.

N(κ+) +N(κ−) = N(κ0), (B.1)
N(κ+)−N(κ−) = N(κ1), (B.2)

Where κ0 and κ1 represent τ and σ coordinates respectevly∫
Σ
d2ξ∂+N(κ+) = 1,

∫
Σ
d2ξ∂−N(κ+) = 0, (B.3)∫

Σ
d2ξ∂−N(κ−) = 1,

∫
Σ
d2ξ∂+N(κ−) = 0. (B.4)

These relationships can be checked directly by applying partial derivatives to expressions
from A.∫

Σ
d2ξ∂+N(κ+) =

∫
Σ
d2ξδ

(
ξ′
−((ξ′+)−1(κ+)

)
−κ−

)
∂+
[
H(ξ+−κ+)−H(ξ+

0 −κ
+)
]

=
∫

Σ
d2ξδ

(
ξ′
−((ξ′+)−1(κ+)

)
−κ−

)
δ(ξ+−κ+) =

∫
dξ−δ

(
ξ′
−((ξ′+)−1(ξ+)

)
−κ−

)
. (B.5)

In appendix A we had following parametrisation of path P: ξ′+(ti) = ξ0
+ and ξ′+(tf ) =

ξ+. Applying inverse parametrisation we have (ξ′+)−1(ξ+
0 ) = ti and (ξ′+)−1(ξ+) = tf .

With these we have∫
dξ−δ

(
ξ′
−((ξ′+)−1(ξ+)

)
− κ−

)
=
∫

Σ
dξ−δ

(
ξ′
−(
tf
)
− κ−

)
=
∫

Σ
dξ−δ

(
ξ− − κ−

)
= 1. (B.6)

Same rules apply for N(κ−), N(κ0) and N(κ1). In cases where F−1(x)αβ is antisym-
metric we can transfer partial derivatives from ∂±V

mu to N(κ±) and obtain standard β±

functions.
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1 Introduction

Noncommutativity of coordinates has come into focus of physics about hundred years ago

when the problem with infinite value of physical quantities occurred. The solution was

proposed by Heisenberg in the form of noncommutative coordinates. But after developing

of renormalization procedure coordinate noncommutativity was forgotten as a tool for

cancelling of infinities.

Commuting of coordinates means that there is no minimal possible length in Nature

i.e. that we can measure the position of particle with infinite precision. The return of

noncommutativity into physics starts with the article of Hartland Snyder [1]. Usually we

treat space-time as continuum but Snyder showed that there is Lorentz invariant discrete

space-time. Consequently, this means that commutator of coordinates is nonzero, and

noncommutativity parameter dictates the scale at which noncommutativity exists.

In the paper [2] existence of noncommutative manifold was shown using propagators

in open bosonic string theory with constant metric and constant Kalb-Ramond field. This

result is proven in many articles [3–12] after that but using different mathematical meth-

ods. Obtained noncommutativity with constant noncommutativity parameter is known
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in literature as canonical noncommutativity. Consequently, canonical noncommutativity

implies that theory is still associative one.

One of the first application of canonical noncommutativity was in Yang-Mills (YM)

theories [13–16]. Noncommutative YM theories are constructed and their renormalisability

properties are analyzed. It turned out that some processes forbidden in commutative YM

are allowed in noncommutative YM theories. Consequently, cross sections for those decays

and processes are calculated [17, 18]. Such predictions offer the possibility of indirect check

of idea of noncommutativity.

The next type of noncommuatativity which is considered in literature is Lie-algebraic

one, which means that commutator of two coordinates is proportional to the coordinate.

The κ-Minkowski space-time is an example of this kind of noncommutativity and it is

considered in various contexts [19–24]. The κ-Minkowski space is noncommutative but

it is easy to check that is associative one. But, in general, if the commutator of the

coordinates is proportional to the some linear combination of coordinates, then the space

is nonassociative because jacobiator and associator are nonzero. For example, such spaces

are closely related to the L∞ algebra [25].

The mathematical framework for T-dualization is standard Buscher procedure [26, 27].

It consists of the localization of the shift symmetry and adding a term with Lagrange

multiplier in order to make gauge fields unphysical degrees of freedom. Also there is an

improvement of standard Buscher procedure developed and applied in refs. [28–31], gener-

alized Buscher procedure. In the application of the generalized procedure of T-dualization

there is one additional step with respect to the standard one. We introduce invariant

coordinate in order to localize shift symmetry in the coordinate dependent backgrounds.

The first articles addressing the subject of coordinate dependent backgrounds appear

in the last ten years [32–43]. A 3-torus with constant metric and Kalb-Ramond field

with just one nonzero component, Bxy = Hz, was considered within standard Buscher

procedure [33]. Authors made two successive T-dualzation along isometry directions x and

y, and, using nontrivial winding conditions, obtained noncommutativity with parameter

proportional to field strength H and winding number N3.

Using generalized T-duality procedure [30, 44] we obtained coordinate dependent non-

commutativity and, consequently, nonassociativity. Also it is shown that final theory is

nonlocal. In ref. [30] the bosonic string is considered in the weakly curved background —

constant metric and linearly coordinate dependent Kalb-Ramond field with infinitesimal

field strength, while in [44] we consider the same model as in [33], but T-dualizing along

all three directions and imposing trivial winding conditions. Obtained nonlocality comes

from the coordinate dependent background, or more precisely, from invariant coordinates.

At the end of T-dualization procedure background fields depend on ∆V , defined as line

integral. Nonlocality has been become very important issue in the quantum mechanical

considerations [45].

In this article we will deal with closed bosonic string propagating in the constant

metric and linear dependent Kalb-Ramond field with Bxy = Hz, the same background as

in [33, 44]. But our goal here is to examine the influence of order of T-dualizations. In

ref. [44] we T-dualize first along isometry directions, first along x and then along y, and at
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the end, along direction z. The first T-dualization produces configuration known as twisted

torus which is commutative, and it is globally and locally well defined. After second T-

dualization we obtained nongeometric theory with Q flux which is still locally well defined

and it is commutative. The final T-dualization along z direction produces nonlocal theory

which is noncommutative and nonassociative one. This line of T-dualizations we will call

xyz one.

But what it will happen, if we change the order of T-dualizations, regrading (non)lo-

cality issue as well as (non)commutativity and (non)associativity? It is quite obvious that

nothing will be changed if we T-dualize along line yxz, because the first two directions,

which are T-dualized, are isometry ones. Some nontrivial issues could be expected if

we T-dualize first along z direction. In this article we will present T-dualization of the

model from [33, 44] along the T-dualization line zyx. After every step of T-dualization

we will rewrite the T-dual transformation law in canonical form using the expressions for

canonical momenta of the initial theory. Also we will check whether the obtained theory

is commutative or not and, consequently, we will see whether it is associative or not.

The fact which is quite sure is that all three theories which we will obtain from the

T-dualization line zyx are nonlocal. The explanation comes from the fact that background

field Bµν is z dependent and according to the generalized T-dualization procedure, after T-

dualization along z, we obtain quantity ∆V which is defined as line integral. Consequently,

the theory is nonlocal. But because y and x T-dualizations do not affect ∆V , all three

theories obtained in zyx T-dualization line are nonlocal. That is a difference with respect

to the xyz T-dualization line considered in [44].

The interesting thing is that transformation laws can be obtained from the corre-

sponding ones in [44] by replacing H → −H, but because in this article we T-dualize in

the opposite direction, that produces theories of the different commutative and associative

features with respect to [44]. After first T-dualization we get commutative and associative

theory which is the same as in xyz case from [44]. But the second T-dualization here

produces noncommutative and associative theory of κ-Minkowski type. That is different

with respect to the xyz case, where second theory in the line is both commutative and

associative. At the end we obtain the same theory as in [44] which is nonassociative and

noncommutative. The noncommutativity and nonassociativity parameters have one addi-

tional “−” sign comparing with the corresponding ones in [44]. In this article as well as

in [44], we impose trivial winding conditions which means xµ(σ + 2π) = xµ(σ) + 2πNµ,

where Nµ is a winding number.

At the end we comment some quantum aspects of the problem and add two appendices.

The first one contains conventions regarding light-cone coordinates, while the second one is

related to the mathematical details concerning derivation of two kinds of Poisson brackets

appearing in the article.

2 Bosonic string action and choice of background fields

In this section we will introduce the action for bosonic string propagating in 3D space with

constant metric and Kalb-Ramond field which single component is different from zero,
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Bxy = Hz. This model is well known in literature as torus with H-flux. Since we are

working with the same model as in [33, 44], for completeness we will repeat most of the

steps from introductory part in the [44].

The closed bosonic string which propagates in the presence of the space-time metric

Gµν(x), Kalb-Ramond field Bµν(x), and dilaton field Φ(x) is described by action [46–48]

S = κ

∫
Σ
d2ξ
√
−g
{[

1

2
gαβGµν(x) +

εαβ√
−g

Bµν(x)

]
∂αx

µ∂βx
ν + Φ(x)R(2)

}
, (2.1)

where world-sheet surface Σ is parameterized by ξα = (τ , σ) [(α = 0 , 1), σ ∈ (0 , π)],

while xµ (µ = 0, 1, 2, . . . , D− 1) are space-time coordinates. Intrinsic world sheet metric is

denoted by gαβ , and the corresponding scalar curvature with R(2).

Conformal symmetry on the quantum level is not preserved for any choice of back-

ground fields. If we want to keep conformal symmetry on the quantum level, background

fields must obey the space-time field equations [49]

βGµν ≡ Rµν −
1

4
BµρσBν

ρσ + 2Dµaν = 0 , (2.2)

βBµν ≡ DρB
ρ
µν − 2aρB

ρ
µν = 0 , (2.3)

βΦ ≡ 2πκ
D − 26

6
−R− 1

24
BµρσB

µρσ −Dµa
µ + 4a2 = c , (2.4)

where c is an arbitrary constant. From

DνβGνµ + ∂µβ
Φ = 0 , (2.5)

it follows that third beta function, βΦ, is equal to an arbitrary constant. Here Rµν and Dµ

are Ricci tensor and covariant derivative with respect to the space-time metric Gµν . Field

strength for Kalb-Ramond field Bµν and dilaton gradient are defined as

Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , aµ = ∂µΦ . (2.6)

One of the solutions of these equations which is important for us here is the solution

where some background fields are coordinate dependent. Let us choose Kalb-Ramond field

to be linearly coordinate dependent and dilaton field to be constant. The equation (2.2)

turns into

Rµν −
1

4
BµρσBν

ρσ = 0 . (2.7)

If we assume that field strength is infinitesimal, then we take Gµν to be constant in ap-

proximation linear in Bµνρ. Consequently, the third equation (2.4) is of the form

2πκ
D − 26

6
= c . (2.8)

The constant c is arbitrary, and fixing its value at c = −23πκ
3 , we obtain D = 3, dimension

of the space in which we will work further.
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The choice of background fields in the case we will consider is

Gµν =

R2
1 0 0

0 R2
2 0

0 0 R2
3

 , Bµν =

 0 Hz 0

−Hz 0 0

0 0 0

 , (2.9)

where Rµ(µ = 1, 2, 3) are radii of the compact dimensions. In terms of radii, the imposed

condition that H is infinitesimal, can be rewritten as(
H

R1R2R3

)2

= 0 . (2.10)

Physically, infinitesimality of H means that we work with sufficiently large torus (diluted

flux approximation). If we rescale the coordinates

xµ 7−→ x′µ = Rµx
µ , (2.11)

where indices on the right hand-side of equation are not summed, the form of the met-

ric simplifies

Gµν =

 1 0 0

0 1 0

0 0 1

 . (2.12)

Taking all assumption into consideration, the action is of the form

S = κ

∫
Σ
d2ξ∂+x

µΠ+µν∂−x
ν (2.13)

= κ

∫
Σ
d2ξ

[
1

2
(∂+x∂−x+ ∂+y∂−y + ∂+z∂−z) + ∂+xHz∂−y − ∂+yHz∂−x

]
,

where ∂± = ∂τ ± ∂σ is world-sheet derivative with respect to the light-cone coordinates

ξ± = 1
2(τ ± σ), Π±µν = Bµν ± 1

2Gµν and

xµ =

 x

y

z

 . (2.14)

T-dualization of dilaton is done within quantum formalism and here it will not be presented.

3 Family of three R flux non-local theories

In this section we will perform T-dualization of closed bosonic string equipped by H-

flux torus background fields, one direction at time. T-dualization procedure will go along

zyx line. We will show that all three theories are nonlocal with R-flux. Also we will

find expressions connecting initial and T-dual variables, so called T-dual transformation

laws. Using transformation laws in canonical form, we will check after every step whether

obtained theory is (non)commutative and/or (non)associative.
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3.1 T-dualization along z direction — shortcut to R-flux

Unlike the cases considered in [33, 44], where T-dualization drives along xyz line, let us

do that in opposite direction and perform generalized T-dualization [28] of action (2.13)

along z direction.

3.1.1 T-dualization procedure

It looks like that this direction is not isometry one. But we can show that it can be treated

like isometry direction. Let us consider the global transformation

δxµ = λµ , (3.1)

and vary the action with respect to this transformation

δS =
κ

3
Bµνρλ

ρ

∫
Σ
d2ξ∂+x

µ∂−x
ν =

2k

3
Bµνρλ

ρεαβ
∫

Σ
d2ξ[∂α(xµ∂βx

ν)− xµ(∂α∂βx
ν)] . (3.2)

The second term vanishes as a consequence of contraction of antisymmetric (εαβ) and

symmetric (∂α∂β) tensors, while the first one, surface term, survives, and it is, in general,

different from zero. But, the expression δS is an topological invariant, so it vanishes if the

map from the world-sheet to D-dimensional space-time is topologically trivial. Essentially,

infinitesimal field strength H does not affect the vanishing of the surface term.

There is one more explanation of vanishing of this surface term. It is more technical

and adjusted to the approximation we used in this article which essence is the explanation

in paragraph above. Because we work in the approximation up to the linear terms in H, xµ

satisfies equation of motion for constant Gµν and Bµν , ∂+∂−x
µ = 0, which solution is well

known in literature. If the winding number is equal to zero, it holds xµ(2π + σ) = xµ(σ),

and since the configuration in the initial τi and final moment τf is fixed, the surface term

vanishes.

So, in the weakly curved background case (H-flux torus background is such like that),

z direction is an isometry one. Localization of the shift symmetry of the action (2.13) along

z starts with introducing the covariant derivative

∂±z −→ D±z = ∂±z + v± , (3.3)

where v± is a gauge field. In order to make gauge fields unphysical ones, we introduce term

with Lagrange multiplier

Sadd =
κ

2

∫
Σ
d2ξy3(∂+v− − ∂−v+) . (3.4)

These two steps are the part of the standard Buscher procedure. Because of coordinate

dependent background field Bµν , generalized T-dualization procedure has an additional

step, introducing of an invariant coordinate

zinv =

∫
P
dξαDαz =

∫
P
dξ+D+z +

∫
P
dξ−D−z = z(ξ)− z(ξ0) + ∆V , (3.5)

– 6 –
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where

∆V =

∫
P
dξαvα =

∫
P

(dξ+v+ + dξ−v−) . (3.6)

The form of the action is now

S̄ = κ

∫
Σ
d2ξ

[
Hzinv(∂+x∂−y − ∂+y∂−x) +

1

2
(∂+x∂−x+ ∂+y∂−y +D+zD−z)

+
1

2
y3(∂+v− − ∂−v+)

]
. (3.7)

Fixing the gauge, z(ξ) = z(ξ0), we get gauged fixed action in the form

Sfix = κ

∫
Σ
d2ξ

[
H∆V (∂+x∂−y − ∂+y∂−x) +

1

2
(∂+x∂−x+ ∂+y∂−y + v+v−)

+
1

2
y3(∂+v− − ∂−v+)

]
. (3.8)

The equation of motion for Lagrange multiplier y3 obtained from above action (3.8)

produces

∂+v− − ∂−v+ = 0 =⇒ v± = ∂±z , (3.9)

which drives us back to the initial action (2.13). On the other side, if we found equations

of motion for gauge fields v±, we get

v± = ±∂±y3 − 2β∓ , (3.10)

where β± functions are defined as

β± = ∓1

2
H(x∂∓y − y∂∓x) . (3.11)

The β± functions stem from the variation of the term containing ∆V . The derivation of

beta functions β± is based on the relation ∂±∆V = v±. In the derivation of the beta

functions there is one nontrivial technical point and that is vanishing of the surface term

after one partial integration. That surface term is of the same form as in eq. (3.2), so

the same reasons for surface term vanishing hold here. Mathematical details regarding

derivation of β± functions can be found in refs. [28–31, 44].

Inserting the relations (3.10) into the gauge fixed action, keeping linear terms in H,

we obtain the T-dual action

zS = κ

∫
Σ
d2ξ∂+zX

µ
zΠ+µν∂−zX

ν , (3.12)

where

zX
µ =

 x

y

y3

 , zΠ+µν = zBµν +
1

2
zGµν , (3.13)

zBµν =

 0 H∆V 0

−H∆V 0 0

0 0 0

 , zGµν =

 1 0 0

0 1 0

0 0 1

 . (3.14)

Let us note that presence of ∆V , defined as line integral, represents the source of

nonlocality of the T-dual theory.
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3.1.2 T-dual transformation law

Combining the equations of motion for Lagrange multiplier (3.9) and for gauge fields (3.10),

we obtain T-dual transformation laws

∂±z ∼= ±∂±y3 ∓H(x∂±y − y∂±x) , (3.15)

where ∼= is used here to mark T-dual relation. Momentum of the initial theory (2.13)

canonically conjugated to the coordinate z is of the form

πz =
∂L
∂ż

= κż , (3.16)

where L is a Lagrangian density defined as S =
∫

Σ d
2ξL. Calculating ż using T-dual

transformation law (3.15), we get the T-dual transformation law in canonical form

y′3
∼=

1

κ
πz +H(xy′ − yx′) , (3.17)

which is of the same form as in the xyz case.

In all further expressions we will keep the symbol ∆V , but we must have in mind

that we used equations of motion for Lagrange multipliers (3.9) at the end of T-dulization

procedure along z coordinate, so, having in mind (3.6) and (3.15), we get

∆V = ∆z ∼=
∫
dξ+∂+y3 −

∫
dξ−∂−y3 ≡ ỹ3 . (3.18)

The variable ∆V is multiplied by infinitesimal field strength H, so, in the above expression

we used ∂±z ∼= ±∂±y3, as a consequence of diluted flux approximation.

3.1.3 (Non)commutativity and (non)associativity

The initial theory is geometric one and its variables satisfy the standard Poisson algebra

{xµ(σ), xν(σ̄)} = {πµ(σ), πν(σ̄)} = 0 , {xµ, πν(σ̄)} = δµνδ(σ − σ̄) , (3.19)

where xµ are the coordinates of the initial theory, while πµ are their canonically conju-

gated momenta. Using expression (3.17) and standard Poisson algebra (3.19), we obtain

that coordinates of the theory obtained after one T-dualization, zX
µ, are commutative.

Consequently, Jacobiator is equal to zero, which means that theory is associative.

Summarizing this first step of T-dualization, obtained theory is commutative and as-

sociative nonlocal R-flux theory. Comparing with the results of the ref. [44] after first

T-dualization, qualitatively we obtain the same result, but with the essential difference

that here obtained theory is nonlocal R-flux theory unlike that in [44] which is geometrical

one, locally and globally well defined.

3.2 Step 2 — T-dualization along y direction

Our starting point is the action given in eq. (3.12). The background fields are independent

of y, so, we apply standard Buscher procedure. This means that, unlike the previous

case, we perform just first two steps in T-dualization procedure and skip the third one —

introducing of invariant coordinate. The T-dualization procedure is already presented, so,

we will skip explaining procedure steps further.
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3.2.1 T-dualization procedure

The gauge fixed action is of the form

Sfix = κ

∫
Σ
d2ξ

[
1

2
(∂+x∂−x+ v+v− + ∂+y3∂−y3) +H∆V (v−∂+x− v+∂−x)

]
+
κ

2

∫
Σ
d2ξy2(∂+v− − ∂−v+) . (3.20)

Varying with respect to the Lagrange multiplier y2 we get

v± = ∂±y , (3.21)

while the equations of motion for gauge fields are

v± = ±∂±y2 ∓ 2H∆V ∂±x . (3.22)

Inserting the expression for gauge fields (3.22) into gauge fixed action (3.20), we obtain the

T-dual action

zyS = κ

∫
Σ
d2ξ ∂+ zyX

µ
zyΠ+µν ∂− zyX

ν , (3.23)

where

zyX
µ =

 x

y2

y3

 , zyΠ+µν = zyBµν +
1

2
zyGµν , (3.24)

zyBµν = 0 , zyGµν =

 1 −2H∆V 0

−2H∆V 1 0

0 0 1

 . (3.25)

Let us note that after two T-dualizations in the xyz case in [44] we also obtained that

T-dual Kalb-Ramond field is zero.

3.2.2 T-dual transformation law

Combining equations of motion (3.21) and (3.22) we get the corresponding transforma-

tion law

∂±y ∼= ±∂±y2 ∓ 2H∆V ∂±x . (3.26)

Let us now prescribe the transformation law in canonical form. The momentum canonically

conjugated to the initial coordinate y is obtained by variation of the initial action (2.13)

with respect to the ẏ and it is of the form

πy = κ(ẏ + 2Hzx′) , (3.27)

while from transformation law (3.26) we have

ẏ ∼= y′2 − 2H∆V x′ . (3.28)

Combining last two equations and using the fact that, in the approximation linear in H,

∆V and z are T-dual to each other, we get

y′2
∼=

1

κ
πy . (3.29)

As we see the transformation law is the same as in the xyz case.
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3.2.3 (Non)commutativity and (non)associativity

In this paragraph we will calculate Poisson brackets of the coordinates zyX
µ using trans-

formation laws in canonical form given by eqs. (3.17) and (3.29).

With the help of the standard Poisson algebra (3.19) and instructions from appendix

B, it is easy to see that

{x(σ), x(σ̄)} = {y2(σ), y2(σ̄)} = {y3(σ), y3(σ̄)} = {x(σ), y2(σ̄)} = {x(σ), y3(σ̄)} = 0 .

(3.30)

The only non-zero Poisson bracket is

{y′2(σ), y′3(σ̄)} ∼=
H

κ

[
2x′(σ)δ(σ − σ̄) + x(σ)δ′(σ − σ̄)

]
, (3.31)

where δ′ ≡ ∂σδ(σ − σ̄). This result is obtained by straightforward calculation using T-

dual transformation laws, (3.17) and (3.29), and standard Poisson algebra (3.19). The

relation (3.31) is of the form (B.1), where A′(σ) = y′2(σ), B′(σ̄) = y′3(σ̄), U ′(σ) = H
κ 2x′(σ)

and V (σ) = H
κ x(σ). With these substitutions in mind, we have that final expression is of

the form (B.8)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) . (3.32)

For σ → σ + 2π and σ̄ → σ we have

{y2(σ + 2π), y3(σ)} ∼= −
H

κ
[x(σ) + 4πNx] , (3.33)

because θ(2π) = 1 (B.6), while Nx is winding number for x coordinate

x(σ + 2π)− x(σ) = 2πNx . (3.34)

As we can see the noncommutativity relation (3.32) is of κ-Minkowski type. It is straight-

forward to see that

{x(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), x(σ1)}}+ {y3(σ3), {x(σ1), y2(σ2)}} ∼= 0 .

(3.35)

Because the Jacobiator is zero, we conclude that this R-flux theory is noncommutative

and associative one.

3.3 Step 3 — T-dualization along x direction

In this subsection we will finish T-dualization procedure not repeating the mathematical

details, but giving just the important equations and results.

The gauge fixed action is given by the following equation

Sfix = κ

∫
Σ
d2ξ

[
1

2
(v+v− + ∂+y2∂−y2 + ∂+y3∂−y3)−H∆V (v+∂−y2 + ∂+y2 v−)

]
+
κ

2

∫
Σ
d2ξy1(∂+v− − ∂−v+) . (3.36)
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The equations of motion for Lagrange multiplier produces

v± = ∂±x , (3.37)

while the equations of motion for gauge fields v± give

v± = ±∂±y1 + 2H∆V ∂±y2 . (3.38)

Inserting expressions for v± into gauge fixed action we get the T-dual action

zyxS = κ

∫
Σ
d2ξ∂+ zyxX

µ
zyxΠ+µν zyx X

ν , (3.39)

where

zyxX
µ =

 y1

y2

y3

 , zyxΠ+µν = zyxBµν +
1

2
zyxGµν (3.40)

zyxBµν =

 0 −H∆V 0

H∆V 0 0

0 0 0

 , zyxGµν =

 1 0 0

0 1 0

0 0 1

 . (3.41)

Combining the equations of motion (3.37) and (3.38) we obtain the T-dual transfor-

mation law

∂±x ∼= ±∂±y1 + 2H∆V ∂±y2 . (3.42)

It directly follows that

ẋ ∼= y′1 + 2H∆V ẏ2 . (3.43)

From the initial action (2.13) it is obvious that momentum canonically conjugated to x is

of the form

πx = κẋ− 2κHzy′ . (3.44)

The T-dual transformation law for y (3.26), in the approximation linear in H, produces

that y′ ∼= ẏ2. Taking into account the relation (3.43), we get the canonical form of the

T-dual transformation law

y′1
∼=

1

κ
πx . (3.45)

As we see the full set of T-dual transformation laws, (3.17), (3.29) and (3.45), are the same

as in the case where T-dualization was along xyz line [44] up to H → −H. The full T-

dualized theory is of the same form as in [44] with the expressions for noncommutativity

{y1(σ), y3(σ̄)} ∼=
H

κ
[2y(σ)− y(σ̄)] θ(σ − σ̄) , (3.46)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) , (3.47)

and nonassociativity

{y1(σ1), y2(σ2), y3(σ3)} ≡
{y1(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), y1(σ1)}}+ {y3(σ3), {y1(σ1), y2(σ2)}} ∼=
2H

κ2
[θ(σ1 − σ2)θ(σ2 − σ3) + θ(σ2 − σ1)θ(σ1 − σ3) + θ(σ1 − σ3)θ(σ3 − σ2)] , (3.48)

which can be obtained from the corresponding ones in xyz case [44] by replacing H → −H.
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4 Quantum aspects of T-dualization in the weakly curved background

In proving isometry and computing the β± functions we assumed the trivial topology and

the surface term occurring there vanishes. Now we want to discuss some quantum as-

pects of the considered problems in nontrivial topologies. We will consider the action for

bosonic string in the weakly curved background — constant metric and Kalb-Ramond field

depending on all coordinates and with infinitesimal field strength. Torus with infinitesimal

H-flux is special case of this model.

On th classical level there are a few problems in the theory. In order to perform the

generalized T-dualization procedure the invariant coordinate xµinv is introduced. But it

is multivalued and the proof of equivalence of gauged and initial theories needs the part

considering global characteristics. Moreover, in the quantum theory at higher genus, the

holonomies of the world-sheet gauge fields complicate the situation a little bit. Fortunately,

these problems can be resolved in Abelian case in the quantum theory [50–52].

First, we make Wick rotation τ → −iτ , which makes the term which contains metric

tensor Gµν gets multiplier i, while the terms which contain Kalb-Ramond field Bµν and

Lagrange multiplier yµ stay unchanged. Then the partition function is of the form

Z =
∞∑
g=0

∫
DyDv e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v+ iκ

2

∫
Σ vdy . (4.1)

We use differential forms and omit the space-time indices to simplify writing of equations.

The Hodge duality operator is denoted by star. The index g denotes the genus of manifold.

The first step in the calculation process is separation the one form dy into the exact

part dye (ye is single valued) and the harmonic part yh (dyh = 0 = d†yh)

dy = dye + yh. (4.2)

For the closed forms the co-exact term d†yco in the Hodge decomposition is missing.

The path integral (4.1) goes over all degrees of freedom including local degrees of

freedom as well as the sum over different topologies. Consequently, according to the (4.2),

we substitute Dy with the path integral over ye and the sum over all possible topologically

nontrivial states contained in yh (marked by Hy)

Dy → Dye
∑
Hy

. (4.3)

The integration over ye induces vanishing of the field strength

Z =

∫
Dv δ(dv) e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Hy

e
iκ
2

∫
Σ vyh . (4.4)

The 1-form v can be expressed as sum of exact, co-exact and the harmonic parts

v = dx+ d†vce + vh, (4.5)
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which means that

Dv → DxDd†vce dHv. (4.6)

The functional integration over harmonic part vh drives to the ordinary integration over

topologically nontrivial periods (marked by symbol Hv). After integration over d†vce we get

Z =

∫
DxdHv e

−κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Hy

e
iκ
2

∫
Σ vyh . (4.7)

The last term in the exponent is responsible for nontrivial holonomies. Eliminating

vce part, the 1-form v becomes closed and the Riemann bilinear relation becomes usable∫
Σ
vyh =

g∑
i=1

[ ∮
ai

v

∮
bi

yh −
∮
ai

yh

∮
bi

v
]
. (4.8)

The symbols ai, bi (i = 1, 2, . . . , g) represent the canonical homology basis for the world-

sheet. Because of the periodicity of the Lagrange multiplier y, its periods are just the

winding numbers around cycles ai and bi

Nai =

∮
ai

yh, Nbi =

∮
bi

yh . (4.9)

Denoting the periods with

Ai =

∮
ai

v, Bi =

∮
bi

v , (4.10)

we get ∫
Σ
vyh =

g∑
i=1

(NbiAi −NaiBi). (4.11)

Now the partition function (4.7) gets the form

Z =

∫
Dx dAidBie−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Nai ,Nbi∈Z

e
iκ
2

∑g
i=1(NbiAi−NaiBi). (4.12)

The periodic delta function is defined as δ(x) = 1
2π

∑
n∈Z e

inx, which produces

Z =

∫
Dx dAidBiδ

(κ
2
Ai

)
δ
(κ

2
Bi

)
e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v . (4.13)

It is useful to examine the path dependence of the variable V µ, which form is now

V µ(ξ) = xµ(ξ)− xµ(ξ0) +

∫
P
vµh . (4.14)

Let us consider two paths, P1 and P2, with the same initial ξα0 and the final points ξα.

Now we will subtract from the value of V µ along P1 the value along path P2 and obtain

the integral over closed curve P1P
−1
2 of the harmonic form

V µ[P1]− V µ[P2] =

∮
P1P

−1
2

vµh . (4.15)
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Establishing the homology between the closed curve P1P
−1
2 and curve

∑
i

[
niai + mibi

]
,

(ni,mi ∈ Z) we get finally

V µ[P1] = V µ[P2] +
∑
i

(niA
µ
i +miB

µ
i ). (4.16)

The variable V µ(ξ) in classical theory is path dependent if holonomies are nontrivial.

Integrating eq. (4.13) over Ai and Bi implies that periods Ai and Bi are zero. Conse-

quently

v = dx. (4.17)

The variable V µ becomes single valued, and the initial theory is restored

Z =

∫
Dxe−

κ
2

∫
Σ dxG

?dx+iκ
∫
Σ dxB[x]dx =

∫
Dxe−κ

∫
Σ d

2ξ∂xΠ+[x]∂̄x . (4.18)

Consequently, starting with partition function of the gauged fixed action of bosonic

string in the weakly curved background, within path integral formalism and in the presence

of nontrivial topologies, we came to the partition function of the initial theory. That means

that introducing coordinate dependent Kalb-Ramond field is consistent with path integral

quantization process.

5 Conclusion

In this article we studied the 3D closed bosonic string propagating in the geometry known

as torus with H-flux — constant metric and Kalb-Ramond field with just one nonzero

component, Bxy = −Byx = Hz. The choice of background fields is consistent with the

consistency conditions if we work in the diluted flux approximation which assumes that

in all calculations we keep just the constant terms and those linear in the infinitesimal

field strength H. Our goal was to study the T-dualization line which goes in the oppo-

site direction from the standard one. First, we T-dualize z direction, then y and at the

end along x direction — so-called zyx T-dualization line. We analyzed in every step the

(non)commutativity and (non)associativity of the obtained theory and made comparisons

with the case of xyz T-dualization line considered in [33, 44].

The common fact for all three theories obtained in the process of T-dualization step by

step is that all three ones are nonlocal R-flux theories. The nonlocality comes as a result

of the first step in T-dualization procedure, T-dualization along z direction. Generalized

T-dualization procedure has one additional step with respect to the standard Buscher

procedure and that is introduction of invariant coordinate. In the process of T-dualization

invariant coordinate turns into variable ∆V which is defined as line integral. Consequently,

this means that obtained theory is nonlocal. Further T-dualizations does not affect ∆V

and, all three theories are nonlocal ones. As we know, in the case of xyz T-dualization

line [44], we obtained three different theories in geometrical sense — twisted torus, Q-flux

theory (which is local) and nonlocal R-flux theory.

The dualization along z direction produces nonlocal R-flux theory unlike the xyz

case [33, 44] where the theory obtained after first T-dualization is locally and globally

well defined. Because initial theory is geometrical one, its variables satisfy standard Pois-
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son algebra (3.19). Using (3.19) and T-dual transformation law written in the canonical

form (3.17), we showed that theory obtained after T-dualization along z coordinate (using

generalized T-dualization procedure) is commutative and, consequently, associative one

as in [44].

The second step in T-dualization is T-dualization along y direction. Using standard

Buscher procedure, we obtained the form of the T-dual theory and the corresponding T-

dual transformation law, which is rewritten in the canonical form (3.29) in terms of the

coordinates and momenta of the initial theory. Using standard Poisson algebra (3.19) and

T-dual transformation laws in canonical form, (3.17) and (3.29), we easily proved that

theory after two T-dualizations is noncommutative, but it is still associative one. In this

article we used trivial winding condition (3.34) and showed that T-dual coordinates y2(σ)

and y3(σ̄) are commutative for equal arguments, σ = σ̄, but they are noncommutative

if σ − σ̄ = 2π. The result is qualitatively similar to the result of [33], where after two

T-dualizations the obtained theory is noncommutative one. But, the difference is in the

winding condition which is nontrivial in [33], mixing different coordinates. The different

winding condition induces the noncommutativity for σ = σ̄ (for more details see [33]).

On the other hand in the analysis presented in [44] (xyz T-dualization line) the theory

obtained after two T-dualizations is commutative under trivial winding condition.

The final step in T-dualization procedure is T-dualization along x direction. The

theory after full T-dualization is the same as in xyz case [44] with the noncommutativity

and nonassociativity parameters which can be obtained from those in xyz case [44] adding

“−” sign. This is a consequence of the fact that the full set of T-dual transformation

laws is the same as in [44] up to the replacing H → −H. This difference up to the “−”

sign stems from the initial actions. In this article we start from (2.13), while in [44] the

starting action for z T-dualization is Q-flux action, formally the same as (2.13) up to the

replacing H → −H.

Finishing the discussion of the results obtained in this paper it is interesting to make

comparison with some similar efforts. We studied the abelian isometries using both stan-

dard and generalized T-duality procedure, while in the paper [53] nonabelian isometries

using standard Buscher procedure are considered. The authors of [53] showed that spaces

with isometry maps to the nonisometry spaces, while in this paper there is isometry in

every T- dualization step. One of their conclusions that T-dual transformations are more

than continuous isometry can be added to the concluding remarks of this paper. In the

ref. [43] generalized T-duality and nongeometric background are considered, but using low

energy effective action, unlike here, where we used sigma model action. The paper [54]

deals with T-dualizations along nonisometry directions like in [31], using extension of gauge

symmetry, while the authors of [31] use the generalized T-dualization procedure introduc-

ing invariant coordinates (in [54] they call them “covariant” coordinates). In this paper we

use this generalized T-dualization procedure but all directions considered here are isome-

try ones. It is useful to mention that in the paper [55] bosonic string in the presence of

the weakly curved backgrounds is considered using double space formalism as well as the

influence of the order of T-dualizations. The double space formalism gives the result which

is in accordance with the result of the current paper.
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Consequently, we conclude that in the case of the full T-dualization the form of the

T-dual theory do not depend on the order of T-dualization, while parameters of noncom-

mutativity and nonassociativity change sign.

A Light-cone coordinates

In the paper we often use light-cone coordinates defined as

ξ± =
1

2
(τ ± σ) . (A.1)

The corresponding partial derivatives are

∂± ≡
∂

∂ξ±
= ∂τ ± ∂σ . (A.2)

Two dimensional Levi-Civita εαβ is chosen in (τ, σ) basis as ετσ = −1. Consequently,

in the light-cone basis the form of tensor is

εαβlc =

(
0 1

2

−1
2 0

)
. (A.3)

The flat world-sheet metric is of the form in (τ, σ) and light-cone basis, respectively

ηαβ =

(
1 0

0 −1

)
, ηlcαβ =

(
1
2 0

0 1
2

)
. (A.4)

Let us stress that in whole article we use standard notation for τ and σ derivatives —

Ȧ ≡ ∂τA and A′ ≡ ∂σA, where A is an arbitrary variable.

B Two types of Poisson brackets used in the paper

In this paper, we have seen that T-dual transformation laws connect derivatives of T-dual

coordinates with coordinates and momenta of initial theory. While initial theory satisfies

standard Poisson brackets, in order to find Poisson brackets for T-dual theory, we first need

to find Poisson brackets between σ derivatives of T-dual coordinates. This type of Poisson

bracket will, in general case, be some function of initial coordinates, Dirac delta functions

and their derivatives with respect to σ. Having this in mind, general case for our Poisson

brackets will have following form

{A′(σ), B′(σ̄)} = U ′(σ)δ(σ − σ̄) + V (σ)δ′(σ − σ̄) , (B.1)

where δ′(σ− σ̄) ≡ ∂σδ(σ− σ̄). For terms A′(σ), U ′(σ) and B′(σ̄), symbol ′ stands for partial

derivative with respect to σ and σ̄, respectively. If we want to calculate the Poisson bracket

{A(σ), B(σ̄)} ,

first we have to calculate the following one

{∆A(σ, σ0),∆B(σ̄, σ̄0)} , (B.2)
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where

∆A(σ, σ0) =

∫ σ

σ0

dxA′(x) = A(σ)−A(σ0) , ∆B(σ̄, σ̄0) =

∫ σ̄

σ̄0

dxB′(x) = B(σ̄)−B(σ̄0) .

(B.3)

Substituting the expressions (B.3) into (B.2), we have

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

∫ σ

σ0

dx

∫ σ̄

σ̄0

dy
[
U ′(x)δ(x− y) + V (x)δ′(x− y)

]
. (B.4)

After integration over y we get

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

=

∫ σ

σ0

dx{U ′(x) [θ(x− σ̄0)− θ(x− σ̄)] + V (x) [δ(x− σ̄0)− δ(x− σ̄)]}, (B.5)

where θ(x) is defined as

θ(x) =

∫ x

0
dηδ(η) =

1

2π

x+ 2
∑
n≥1

1

n
sin(nx)

 =


0 if x = 0

1/2 if 0 < x < 2π ,

1 if x = 2π

(B.6)

where δ(x) = 1
2π

∑
n∈Z e

inx. Finally, integrating over x, we obtain

{∆A(σ,σ0),∆B(σ̄, σ̄0)}=U(σ)[θ(σ−σ̄0)−θ(σ−σ̄)]−U(σ0)[θ(σ0−σ̄0)−θ(σ0−σ̄)]

−U(σ̄0)[θ(σ−σ̄0)−θ(σ0−σ̄0)]+U(σ̄)[θ(σ−σ̄)−θ(σ0−σ̄)]

+V (σ̄0)[θ(σ−σ̄0)−θ(σ0−σ̄0]−V (σ̄)[θ(σ−σ̄)−θ(σ0−σ̄)]. (B.7)

From the last expression, using (B.3), we extract the searched Poisson bracket

{A(σ), B(σ̄)} = −[U(σ)− U(σ̄) + V (σ̄)]θ(σ − σ̄) . (B.8)

In order to calculate Jacobiator we have to find Poisson brackets of type {y(σ), x(σ̄)},
where y(σ) is coordinate T-dual to initial one x(σ). Having this in mind, we start with the

following Poisson bracket

{∆y(σ, σ0), x(σ̄)} =

{∫ σ

σ0

dηy′(η), x(σ̄)

}
, (B.9)

and using T-dual transformation law in canonical form

π ∼= κy′ , (B.10)

we get

{∆y(σ, σ0), x(σ̄)} ∼=
1

κ

{∫ σ

σ0

dηπ(η), x(σ̄)

}
, (B.11)

where π(σ) is momentum canonically conjugated to the coordinate x(σ). Initial theory is

geometric one which variables satisfy standard Poisson algebra, so, the final result is of

the form

{∆y(σ, σ0), x(σ̄)} ∼= −
1

κ
[θ(σ − σ̄)− θ(σ0 − σ̄)] =⇒ {y(σ), x(σ̄)} ∼= −

1

κ
θ(σ − σ̄) .

(B.12)
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[21] D. Kovačević and S. Meljanac, Kappa-Minkowski spacetime, Kappa-Poincaré Hopf algebra
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Combined Fermionic and Bosonic T-duality of Type II
Superstring Theory with Coordinate Dependent RR Field

B. Nikolíc and D. Obríc*

We investigate effects of fermionic T-duality on type II superstring in presence
of Ramond-Ramond (RR) field that has infinitesimal linear dependence on
bosonic coordinate x𝝁. Other fields are assumed to be constant. Procedure
that we employ for obtaining fermionic T-dual theory is Buscher procedure,
where we will consider two distinct cases. One, where action has not been
T-dualized along bosonic coordinates and other where it has. By analyzing
these two cases, their actions and T-dual transformation laws, we obtain
some insight into how background fields transform and what are necessary
ingredients for emergence of fermionic non-commutativity.

1. Introduction

T-duality represents a map that connects different superstring
theories, mapping geometry and topology from one theory to
another.[1] This symmetry was originally developed with bosonic
coordinates in mind, where two theories are connected by trans-
formation laws that establish a link between coordinates.[2] It
was not until 2008 that it has been noticed that the same dual-
ity can emerge in case of fermionic coordinates. In their paper[3]

Berkovits and Maldacena showed that tree level superstring the-
ories in presence of supersymmetric background fields posses
new kind of symmetry. Symmetry that maps supersymmetric
background fields of one theory to supersymmetric backgrounds
of other theory, where dilaton and RR fields are now different.
Just like in case of bosonic T-duality, mathematical machinery
for obtaining T-dual theories is Buscher procedure[4,5] applied to
fermionic coordinates 𝜃𝛼 and �̄�𝛼 .
Busher T-dualization procedure including its extension to

fermionic coordinates[6–9] and its generalizations[10–12] mainly
follow the same steps. We notice some global symmetry in the
theory, usually shift symmetry, which is then localized by replac-
ing partial derivatives with covariant ones. Covariant derivatives
come with new gauge fields that insert new degrees of freedom
into the theory, these degrees of freedom are eliminatedwith help
of Lagrange multipliers. Next step is utilizing gauge freedom to
fix starting coordinates. After that, finding equations of motion
for gauge fields and inserting their solutions into the action we
obtain T-dual theory. Extension of procedure for fermionic coor-
dinates does not introduce any new steps into the play. However,
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extending the procedure to include coor-
dinate dependent background fields does
introduce one additional step. Namely,
we need to replace all coordinates with
invariant ones constructed as integrals of
covariant derivatives. This step is neces-
sary in order to preserve local shift sym-
metry.
In our previous paper[13] we demon-

strated that T-dual of type II superstring
which ismoving in coordinate dependent
RR field possesses non-commutative
Poisson brackets. Since T-duality was

performed only along bosonic coordinates it produced non-
commutativity only between bosonic T-dual coordinates. In addi-
tion to this, we had that background fields that were constants in
original theory became functions of both bosonic and fermionic
coordinates in dual theory. This has left us with one open ques-
tion: Would fermionic T-duality of starting theory or even theory
that has been dualized along bosonic coordinates produce non-
commutative relations between fermionic coordinates? While
it has been shown that, in case of closed bosonic string, non-
commutativity arises only in coordinates that had appeared in
background fields of starting theory[14], it is not clear if that is the
case for fermionic coordinates, especially when we have emer-
gence of new coordinate dependence in background fields after
bosonic T-duality.
In this article, our goal is to find what effects fermionic T-

duality has on action where RR field has dependence on bosonic
coordinates and do these effects change for fully dualized action.
By obtaining background fields in different stages of T-duality we
can determine how geometry of theory changes and when the
theory makes the switch from being local to non-local one. At the
end we provide few notes on how fermionic T-duality interacts
with bosonic T-duality in providing new non-commutative rela-
tions.

2. Type II Superstring, Choice of Fields and
Bosonic T-Duality

In this section we will present action for type II superstring in
pure spinor formulation. We will also define background fields
in which string propagates. Finally, we present action that has
been T-dualized along bosonic coordinates.

2.1. Type II Superstring in Pure Spinor Formulation

The most general form of type II superstring action in pure
spinor formalism[15–19] is given as

S = S0 + VSG. (2.1)
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First term is action for string that propagates in flat background
fields.

S0 = ∫Σ
d2𝜉

(
k
2
𝜂𝜇𝜈𝜕mx

𝜇𝜕nx
𝜈𝜂mn − 𝜋𝛼𝜕−𝜃

𝛼 + 𝜕+�̄�
𝛼�̄�𝛼

)
+ S𝜆 + S�̄�,

(2.2)

where terms S𝜆 and S�̄�represent actions that are composed of
pure spinors and their canonical momenta. The pure spinors sat-
isfy pure spinor constraints

𝜆𝛼(Γ𝜇)𝛼𝛽𝜆
𝛽 = �̄�(Γ𝜇)𝛼𝛽 �̄�

𝛽 = 0. (2.3)

All modifications to flat background fields are accomplished
by introducing second term in equation (2.1). This term is an
integrated vertex operator for massless type II supergravity

VSG = ∫Σ
d2𝜉(XT )MAMNX̄

N . (2.4)

In general case matrix AMN is composed of physical fields, their
curvatures (field strengths) and auxiliary fields that can be ex-
pressed with physical ones. These fields are some functions of
both bosonic coordinates x𝜇 and fermionic coordinates 𝜃𝛼 and
�̄�𝛼 . Dependence of fields on fermionic coordinates is given as ex-
pansion in powers of 𝜃𝛼 and �̄�𝛼 . In our particular case, we will
set all background fields except RR field to be constant. Further
more, in order to simplify calculations, all terms that are non-
linear in fermionic coordinates 𝜃𝛼 and �̄�𝛼 will be neglected. With
these assumptions in mind we have that vectors XM and X̄M and
matrix AMN have following form

XM =
⎛⎜⎜⎜⎝
𝜕+𝜃

𝛼

𝜕+x
𝜇

𝜋𝛼
1
2
N𝜇𝜈

+

⎞⎟⎟⎟⎠
, X̄M =

⎛⎜⎜⎜⎝
𝜕−�̄�

𝜆

𝜕−x
𝜇

�̄�𝜆
1
2
N̄𝜇𝜈

−

⎞⎟⎟⎟⎠
,

AMN =

⎡⎢⎢⎢⎢⎣

0 0 0 0
0 k( 1

2
g𝜇𝜈 + B𝜇𝜈) Ψ̄𝛽

𝜇
0

0 −Ψ𝛼
𝜈

2
k
(f 𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌) 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
. (2.5)

Pure spinor contribution to vectors XM and X̄M are encoded in

N𝜇𝜈

+ = 1
2
𝜔𝛼(Γ[𝜇𝜈])𝛼𝛽𝜆

𝛽 , N̄𝜇𝜈

− = 1
2
�̄�𝛼(Γ[𝜇𝜈])𝛼𝛽 �̄�

𝛽 . (2.6)

Since this term does not contribute to the vertex operator, we have
that pure spinor actions are decoupled from the rest. This allows
us to neglect pure spinor parts from now on.
Our choice of matrix AMN is composed of following fields:

symmetric tensor g𝜇𝜈 , Kalb-Ramon antisymmetric tensor B𝜇𝜈 ,
Mayorana-Weyl gravitino fields Ψ𝛼

𝜇
and Ψ̄𝛼

𝜇
, Ramond-Ramond

field 2
k
(f 𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌) where f𝛼𝛽 and C𝛼𝛽

𝜌
are constant tensors. We

have also assumed that dilaton field Φ is constant. This means
that factor eΦ is included in constants f𝛼𝛽 and C𝛼𝛽

𝜌
. This choice of

background fields is accompanied with following condition

𝛾
𝜇

𝛼𝛽
C𝛽𝛾

𝜇
= 0, 𝛾

𝜇

𝛼𝛽
C𝛾𝛽

𝜇
= 0. (2.7)

String propagates in superspace spanned by bosonic coordi-
nates x𝜇 (𝜇 = 0, 1, …, 9) and fermionic ones 𝜃𝛼 , �̄�𝛼 with 16
independent real components each. Fermionic coordinates are
accompanied by their canonically conjugated momenta 𝜋𝛼 and
�̄�𝛼 . Both fermionic coordiantes and their momenta are given as
Majorana-Wejl spinors. World sheet Σ that string sweeps in this
superspace is parameterized by 𝜉m (𝜉0 = 𝜏, 𝜉1 = 𝜎). By combin-
ing these parameters we can define light-cone parametrization
𝜉± = 1

2
(𝜏 ± 𝜎) and light-cone partial derivatives ∂± = ∂𝜏 ± ∂𝜎 .

Inserting all these assumptions into action (2.1) and integrat-
ing out fermionicmomenta, we are left with following expression

S = k∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈

+ 1
2
(𝜕+�̄�

𝛼 + 𝜕+x
𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽
(𝜕−𝜃

𝛽 + Ψ𝛽

𝜈
𝜕−x

𝜈)
]
, (2.8)

where we have introduced following tensors

Π±𝜇𝜈 = B𝜇𝜈 ±
1
2
G𝜇𝜈 , (2.9)

F𝛼𝛽 (x) = f 𝛼𝛽 + C𝛼𝛽

𝜇
x𝜇 ,

(F−1(x))𝛼𝛽 = (f −1)𝛼𝛽 − (f −1)𝛼𝛼1C
𝛼1𝛽1
𝜌

x𝜌(f −1)𝛽1𝛽 . (2.10)

To obtain meaningful T-dual transformation laws we need to
assume that x𝜇 dependent part of tensor (F−1(x))𝛼𝛽 is antisym-
metric and infinitesimal. This additional assumption does not
infringe on constraint (2.7).,[15]

Having obtained one of relevant actions , we will now focus on
bosonic T-dualization of (2.8) to obtain our second action of in-
terest.

2.2. Bosonic T-dualization

Bosonic T-dualization of action (2.8) is given in detail in [13].
Here we will only summarize the most important results.
One way to obtain T-duality is by Buscher procedure. This pro-

cedure is based on localization of translation symmetry. When
we localize symmetry we replace all partial derivatives with co-
variant ones, while in cases where background fields depend on
coordinates we also need to introduce invariant coordinate. In-
variant coordinate is non-local addition to action and it is the sole
reason for emergence of non-commutative behavior in closed
strings. Introduction of covariant derivatives and invariant coor-
dinates produces additional gauge fields in action, which in turn
add new degrees of freedom to the theory. T-dual and original
theory represent same physical system and we expect that those
two theories carry exact same degrees of freedom. Because of
this, we remove all newly introduced degrees of freedomwith La-
grange multipliers. By utilizing gauge freedom of action we can
fix bosonic coordinates to be some constant, in essence remov-
ing them from action. This gauge fixed action is only a function
of gauge fields and Lagrange multipliers. Finding equation of
motion for Lagrange multipliers and inserting them into action
we can restore original action. On the other hand, finding equa-
tions of motion for gauge fields and inserting them into action
we obtain T-dual action.

Fortschr. Phys. 2023, 71, 2200160 © 2022 Wiley-VCH GmbH.2200160 (2 of 8)
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Action (2.8), due to antisymmetric part of tensor F−1
𝛼𝛽
(x) is in-

variant under global translations of bosonic coordinates. Follow-
ing steps of Busher procedure, described in preceding paragraph,
we obtain following T-dual action

bS = k
2 ∫Σ

d2𝜉
[
1
2
Θ̄𝜇𝜈𝜕+y𝜇𝜕−y𝜈 + 𝜕+�̄�

𝛼
(
bF−1(V (0))

)
𝛼𝛽
𝜕−𝜃

𝛽

+ 𝜕+y𝜇
bΨ̄𝜇𝛼

(
bF−1(V (0))

)
𝛼𝛽
𝜕−𝜃

𝛽

+𝜕+�̄�𝛼
(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽𝜕−y𝜈

]
. (2.11)

Here, y𝜇 is a dual coordinate, left superscript
b denotes bosonic

T-duality and V0 represents following integral

ΔV (0)𝜌 = 1
2 ∫P

d𝜉+Θ̆𝜌1𝜌

−

[
𝜕+y𝜌1 − 𝜕+�̄�

𝛼(f −1)𝛼𝛽Ψ𝛽

𝜌1

]

− 1
2 ∫P

d𝜉−Θ̆𝜌𝜌1
−

[
𝜕−y𝜌1 + Ψ̄𝛼

𝜌1
(f −1)𝛼𝛽𝜕−𝜃

𝛽
]
. (2.12)

T-dual tensors that appear in action have following interpreta-
tion: Θ̄𝜇𝜈

− is inverse tensor of Π̄+𝜇𝜈 = Π+𝜇𝜈 +
1
2
Ψ̄𝛼

𝜇
(F−1(x))𝛼𝛽Ψ𝛽

𝜈
=

Π̆+𝜇𝜈 −
1
2
Ψ̄𝛼

𝜇
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌 x𝜌(f −1)𝛽1𝛽Ψ

𝛽
𝜈
, defined as

Θ̄𝜇𝜈

− Π̄+𝜈𝜌 = 𝛿𝜇
𝜌
, (2.13)

where

Θ̄𝜇𝜈

− = Θ̆𝜇𝜈

− + 1
2
Θ̆𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌

V (0)𝜌(f −1)𝛽1𝛽Ψ
𝛽1
𝜈1
Θ̆𝜈1𝜈

− , (2.14)

Θ̆𝜇𝜈

− Π̆+𝜈𝜌 = 𝛿𝜇
𝜌
, Θ̆𝜇𝜈

− = Θ𝜇𝜈

− − 1
2
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f̄ −1)𝛼𝛽Ψ𝛽

𝜈1
Θ𝜈1𝜈

− (2.15)

f̄ 𝛼𝛽 = f 𝛼𝛽 + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
, (2.16)

Θ𝜇𝜈

− Π+𝜇𝜌 = 𝛿𝜇
𝜌
, Θ− = −4(G−1

E Π−G
−1)𝜇𝜈 . (2.17)

Tensor (bF−1$(V(0))$)𝛼𝛽 is T-dual to (F
−1(x))𝛼𝛽 ,

(
bF−1(V (0))

)
𝛼𝛽

=
(
F−1(V (0))

)
𝛼𝛽

− 1
2

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜇
Θ̄𝜇𝜈

− Ψ̄𝛽1
𝜈

×
(
F−1(V (0))

)
𝛽1𝛽

. (2.18)

Finally, bΨ̄𝜇𝛼 and bΨ𝜈𝛽 are T-dual gravitino fields, given as

bΨ̄𝜇𝛼 = 1
2
Θ̄𝜇𝜈Ψ̄𝛼

𝜈
+ 1
4
Θ̄𝜇𝜇1

− Ψ̄𝛽

𝜇1

(
F−1(V (0))

)
𝛽𝛽1

Ψ𝛽1
𝜈
Θ𝜈𝜈1

− Ψ̄𝛼

𝜈1

= 1
2
Θ𝜇𝜈

− Ψ̄𝛼

𝜇
, (2.19)

bΨ𝜈𝛽 = −1
2
Ψ𝛽

𝜇
Θ̄𝜇𝜈

− − 1
2
Ψ𝛽

𝜇
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜈1
Θ̄𝜈1𝜈

−

= −1
2
Ψ𝛽

𝜇
Θ𝜇𝜈

− . (2.20)

Having obtained actions (2.8) and (2.11), we can now consider
dualization along fermionic coordinates.

3. Fermionic T-duality

In this section the objectives are to find fermionic T-dual trans-
formation laws and actions that have been T-dualized along
fermionic coordinates for case where we performed bosonic T-
duality and case where we have not.
Bosonic T-duality relies on utilization of symmetries of

action to produce T-dual action and T-dual transformation
laws. This task is usually accomplished by utilizing Busher
procedure.[4,5,10–12] The main idea of fermionic T-duality is essen-
tially the same, we utilize isometries of fermionic coordinates to
generate T-dual action and T-dual transformation laws.[3,6–8] Just
like in bosonic case, we localize translational symmetry by intro-
ducing covariant derivatives and, in cases where necessary, in-
variant coordinates. After this we introduce term that eliminates
additional degrees of freedom and gauge fix existing symmetry.
From this point on, finding equations of motion for gauge fields
and inserting those equations of motion into gauge fixed action
we obtain T-dual action.
Before proceeding with fermionic variant of Buscher proce-

dure, we can notice that our actions (2.8) and (2.11) do not
posses terms proportional to ∂+𝜃

𝛼 and 𝜕−�̄�
𝛼 . This means that our

fermionic coordinates have following local symmetry

𝛿𝜃𝛼 = 𝜖𝛼(𝜎+), 𝛿�̄�𝛼 = 𝜖𝛼(𝜎−), (𝜎± = 𝜏 ± 𝜎). (3.1)

We need to fix this symmetry before obtaining T-dual theory, one
way to do this is through BRST formalism. This symmetry has
following corresponding BRST transformations for fermionic
fields

s𝜃𝛼 = c𝛼(𝜎+), s�̄�𝛼 = c̄𝛼(𝜎−). (3.2)

Here s is BRST nilpotent operator, c𝛼 and c̄𝛼 represent ghost fields
that correspond to gauge parameters ϵ

𝛼 and 𝜖𝛼 respectively. In
addition to ghost fields we also have following BRST transforma-
tions

sC𝛼 = b+𝛼 , sC̄𝛼 = b̄−𝛼 , sb+𝛼 = 0, sb̄−𝛼 = 0. (3.3)

where C̄𝛼 and C𝛼 are anti-ghosts, b+𝛼 and b̄−𝛼 are Nakanishi-
Lautrup auxiliary fields.
Fixing of gauge symmetry is accomplished by introduction of

gauge fermion, where we have decided to follow in the same
choice as[9]

Ψ = k
2 ∫Σ

d2𝜉
[
C̄𝛼

(
𝜕+𝜃

𝛼 + 1
2
𝛼𝛼𝛽b+𝛽

)
+
(
𝜕−�̄�

𝛼 + 1
2
b̄−𝛽𝛼

𝛽𝛼
)
C𝛼

]
,

(3.4)

here 𝛼𝛼𝛽 is arbitrary invertible matrix.
Applying BRST transformation to gauge fermion we obtain

gauge fixed action and Fadeev-Popov action

Sgf =
k
2 ∫Σ

d2𝜉
[
b̄−𝛼𝜕+𝜃

𝛼 + 𝜕−�̄�
𝛼b+𝛼 + b̄𝛼𝛼

𝛼𝛽b+𝛽
]
, (3.5)

SF−P = k
2 ∫Σ

d2𝜉
[
C̄𝛼𝜕+c

𝛼 + (𝜕−c̄
𝛼)C𝛼

]
. (3.6)
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Fadeev-Popov term contains only ghosts and anti-ghosts and
it is decoupled from the actions (2.8) and (2.11). From this point
on, this termwill be ignored. Gauge fixing term contains auxiliary
fields b̄−𝛼 and b+𝛼 that can be removed with equations of motion

b̄−𝛼 = −𝜕−�̄�𝛽 (𝛼−1)𝛽𝛼 , b+𝛼 = −(𝛼−1)𝛼𝛽𝜕+𝜃
𝛽 , (3.7)

giving us

Sgf = − k
2 ∫Σ

d2𝜉𝜕−�̄�
𝛼(𝛼−1)𝛼𝛽𝜕+𝜃

𝛽 . (3.8)

Inserting guage fixing term into (2.8) and (2.11) gives us actions
that can be dualized with Buscher procedure.

3.1. Type II superstring - Fermionic T-Duality

Since both action (2.8) and gauge fixing term (3.8) are trivially
invariant to global translations of fermionic coordinates, we lo-
calize this translational symmetry by replacing partial derivatives
with covariant ones

𝜕±𝜃
𝛼 → D±𝜃

𝛼 = 𝜕±𝜃
𝛼 + u𝛼±, (3.9)

𝜕±�̄�
𝛼 → D±�̄�

𝛼 = 𝜕±�̄�
𝛼 + ū𝛼±. (3.10)

New gauge fields u𝛼± and ū
𝛼
± introduce new degrees of freedom

that are removed by addition of term

Sadd =
k
2 ∫Σ

d2𝜉
[
z̄𝛼(𝜕+u

𝛼

− − 𝜕−u
𝛼

+) + (𝜕+ū
𝛼

− − 𝜕−ū
𝛼

+)z𝛼
]
. (3.11)

Gauge freedom can be utilized to fix fermionic coordinates
such that 𝜃𝛼 = 𝜃𝛼0 = const and �̄�𝛼 = �̄�𝛼0 = const. This in turn re-
duces our covariant derivatives to

D±𝜃
𝛼 → u𝛼±, D±�̄�

𝛼 → ū𝛼±. (3.12)

With all this in mind, we have following action

Sgf = k∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈 + 1

2
(ū𝛼+ + 𝜕+x

𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽

× (u𝛽− + Ψ𝛽

𝜈
𝜕−x

𝜈) − 1
2
ū𝛼−(𝛼

−1)𝛼𝛽u
𝛽

+ + 1
2
z̄𝛼(𝜕+u

𝛼

− − 𝜕−u
𝛼

+)

+ 1
2
(𝜕+ū

𝛼

− − 𝜕−ū
𝛼

+)z𝛼
]
. (3.13)

On one side we have equations of motion for Lagrange multi-
pliers �̄�𝛼 and 𝜒𝛼

𝜕+u
𝛼

− − 𝜕−u
𝛼

+ = 0 → u𝛼± = 𝜕±𝜃
𝛼 , (3.14)

𝜕+ū
𝛼

− − 𝜕−ū
𝛼

+ = 0 → ū𝛼± = 𝜕±�̄�
𝛼 . (3.15)

Inserting solutions for these equations into action (3.13) we
obtain starting action plus gauge fixing term. Variation of action

with respect to gauge fields produces following set of equations of
motion

u𝛼− = −
(
F𝛼𝛽 (x)𝜕−z𝛽 + Ψ𝛼

𝜇
𝜕−x

𝜇
)
, (3.16)

u𝛼+ = −𝛼𝛼𝛽𝜕+z𝛽 , (3.17)

ū𝛼+ = 𝜕+z̄𝛽F
𝛽𝛼(x) − 𝜕+x

𝜇Ψ̄𝛼

𝜇
, (3.18)

ū𝛼− = 𝜕−z̄𝛽𝛼
𝛽𝛼. (3.19)

Utilizing these equations we can remove gauge fields from ac-
tion, resulting in action that depends only on Lagrange multipli-
ers and bosonic coordinates

f S = k∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈 + 1

2
𝜕+z̄𝛼Ψ𝛼

𝜇
𝜕−x

𝜇

+1
2
𝜕+z̄𝛼F

𝛼𝛽 (x)𝜕−z𝛽 −
1
2
𝜕+x

𝜇Ψ̄𝛼

𝜇
𝜕−z𝛼 −

1
2
𝜕−z̄𝛼𝛼

𝛼𝛽𝜕+z𝛽

]
.

(3.20)

Just like in the bosonic case, we have that left superscript f de-
notes fermionic T-duality. From here we can deduce background
fields of feriomionic T-dual theory

f Π̄+𝜇𝜈 = Π+𝜇𝜈 , (3.21)

f
(
F−1(x)

)𝛼𝛽 = F𝛼𝛽 (x), (3.22)

f Ψ̄𝜇𝛽
f
(
F−1(x)

)𝛽𝛼 = −Ψ̄𝛼

𝜇
→ f Ψ̄𝜇𝛽 = −Ψ̄𝛼

𝜇

(
F−1(x)

)
𝛼𝛽
, (3.23)

f
(
F−1(x)

)𝛼𝛽 fΨ𝜇𝛽 = Ψ𝛼

𝜇
→ fΨ𝜇𝛽 =

(
F−1(x)

)
𝛽𝛼
Ψ𝛼

𝜇
. (3.24)

Unlike bosonic case, fermionic T-dual theory is local. This
can be attributed to the fact that background fields do not de-
pend on fermionic coordinates. This in turn means that the-
ory is geometric and we should not expect emergence of non-
commutative phenomena.

3.2. Type II Superstring - Full T-Duality

To obtain fully dualized theory we start with action that is al-
ready T-dualized along bosonic coordinates (2.11). Procedure for
fermionic T-duality is mostly the same as described before. The
only difference comes from the fact that bosonic T-duality intro-
duced non-local term V0 which depends on 𝜃𝛼 and �̄�𝛼 and now
we need to introduce invariant fermionic coordinates in order for
action to exhibit to local shift symmetry

D±𝜃
𝛼 = 𝜕±𝜃

𝛼 + u𝛼±, (3.25)

D±�̄�
𝛼 = 𝜕±�̄�

𝛼 + ū𝛼±, (3.26)

𝜃𝛼inv = ∫P
d𝜉mDm𝜃

𝛼 = ∫P
d𝜉m(𝜕m𝜃

𝛼 + u𝛼m) = Δ𝜃𝛼 + ΔU𝛼 , (3.27)

�̄�𝛼inv = ∫P
d𝜉mDm�̄�

𝛼 = ∫P
d𝜉m(𝜕m�̄�

𝛼 + ū𝛼m) = Δ�̄�𝛼 + ΔŪ𝛼. (3.28)
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Fixing gauge symmetry as before, setting fermionic coordi-
nates to constants, we deduce following relations

D±𝜃
𝛼 → u𝛼±, D±�̄�

𝛼 → ū𝛼±, 𝜃𝛼inv → ΔU𝛼 , �̄�𝛼inv → ΔŪ𝛼.

(3.29)

With these relations we obtain action that is only a function of
gauge fields, lagrange multipliers and dual coordinates

bSgf =
k
2 ∫Σ

d2𝜉
[
1
2
Θ̄𝜇𝜈𝜕+y𝜇𝜕−y𝜈 + ū𝛼+

(
bF−1(V (0))

)
𝛼𝛽
u𝛽−

+𝜕+y𝜇bΨ̄𝜇𝛼
(
bF−1(V (0))

)
𝛼𝛽
u𝛽− + ū𝛼+

(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽𝜕−y𝜈

−ū𝛼−(𝛼
−1)𝛼𝛽u

𝛽

+ + z̄𝛼(𝜕+u
𝛼

− − 𝜕−u
𝛼

+) + (𝜕+ū
𝛼

− − 𝜕−ū
𝛼

+)z𝛼

]
.

(3.30)

In order to simplify calculations we introduce the following
two substitutions

(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽𝜕−y𝜈 + 𝜕−z𝛼 = Z−𝛼 ,

𝜕+y𝜇
bΨ̄𝜇𝛼

(
bF−1(V (0))

)
𝛼𝛽

− 𝜕+z̄𝛽 = Z̄+𝛽 . (3.31)

Now, our action can be expressed as

bSgf =
k
2 ∫Σ

d2𝜉
[
1
2
Θ

𝜇𝜈

𝜕+y𝜇𝜕−y𝜈 + ū𝛼+
(
bF−1(V (0))

)
𝛼𝛽
u𝛽− + Z̄+𝛽u

𝛽

−

+ ū+
𝛼
Z−𝛼 − ū−

𝛼
(𝛼−1)𝛼𝛽u

+
𝛽
+ 𝜕−z̄𝛼u

+
𝛼
− ū−

𝛼
𝜕+z𝛼

]
. (3.32)

Similar to the first case, we can always revert to starting action
by finding equations of motion for Lagrange multipliers and in-
serting their solutions into the action. In both cases equations of
motion are the same so we take the freedom to omit them here.
Equations of motion for gauge fields differ in this case. Since

we have that V(0) depends on fermionic coordinates, equations of
motion have additional term that depends on invariant coordi-
nate.

u𝛼+ = −(𝛼)𝛼𝛽𝜕+z𝛽 , ū𝛽− = 𝜕−z̄𝛼(𝛼)
𝛼𝛽 , (3.33)

ū𝛼+ = −Z̄+𝛽
bF𝛽𝛼(V (0)) − 𝛽−

𝜈
(V (0), U(0)) bΨ̄𝜈𝛼 , (3.34)

u𝛽− = −bF𝛽𝛼(V (0))Z−𝛼 − 𝛽+
𝜇
(V (0), U(0)) bΨ𝜇𝛽 . (3.35)

The beta functions, 𝛽±
𝜇
(V (0), U(0)), are obtained by varying V(0)

(see[13] for more details). They are given as

𝛽±
𝜇
(V (0), U(0))

= ∓1
8
𝜕∓

[
Ū𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
U𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
± 1
8

[
Ū𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕∓
[
U𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
.

(3.36)

Inserting equations of motion for gauge fields into action
(3.32) and keeping only terms linear with respect to C𝛼𝛽

𝜇
, we ob-

tain fully dualized action

bf S = k
2 ∫Σ

d2𝜉

×
[1
2
Θ̄𝜇𝜈

− 𝜕+y𝜇𝜕−y𝜈 − Z̄+𝛼
bF𝛼𝛽 (V (0))Z−𝛽 − 𝜕−z̄𝛼(𝛼)

𝛼𝛽𝜕+z𝛽
]
.

(3.37)

Expanded, we have

bf S = k∫Σ
d2𝜉

[1
4
Θ𝜇𝜈

− 𝜕+y𝜇𝜕−y𝜈 −
1
4
𝜕+y𝜇Θ𝜇𝜈

− Ψ̄𝛼

𝜈
𝜕−z𝛼

−1
4
𝜕+z̄𝛼Ψ𝛼

𝜇
Θ𝜇𝜈

− 𝜕−y𝜈 +
1
2
𝜕+z̄𝛼

bF𝛼𝛽 (V (0))𝜕−z𝛽

−1
2
𝜕−z̄𝛼(𝛼)

𝛼𝛽𝜕+z𝛽

]
. (3.38)

From here, we can read background fields of T-dual theory

bf Π̄𝜇𝜈

+ = 1
4
Θ̄𝜇𝜈

− − 1
2
bΨ̄𝜇𝛼

(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽 = Θ𝜇𝜈

− ,

bf
(
F−1(x)

)𝛼𝛽 = bF𝛼𝛽 (x) = F𝛼𝛽 (x) + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
,

bf Ψ̄𝜇

𝛼

bf
(
F−1(x)

)𝛼𝛽 = bΨ̄𝜇𝛽 = 1
2
Θ𝜇𝜈

− Ψ̄𝛽

𝜈

→ bf Ψ̄𝜇

𝛼
= 1
2
Θ̄𝜇𝜈

− Ψ̄𝛽

𝜈

(
F−1(x)

)
𝛽𝛼
,

bf
(
F−1(x)

)𝛼𝛽 bfΨ𝜈

𝛽
= bΨ𝜈𝛼 = −1

2
Ψ𝛼

𝜇
Θ𝜇𝜈

−

→ bfΨ𝜈

𝛽
= −1

2

(
F−1(x)

)
𝛽𝛼
Ψ𝛼

𝜇
Θ̄𝜇𝜈

− . (3.39)

Comparing background fields in different stages of T-
dualization we notice that both fermionic T-duality and bosonic
T-duality affect all field, where all T-dual theories now have co-
ordinate dependent fields. It should also be noted that non-
commutative relations in theory emerge only after performing
bosonic T-duality. Fermionic T-dual coordinates are always only
proportional to fermionic momenta therefore Poisson brackets
between fermionic coordiantes always remain zero.

3.3. Bosonic T-Duality of Fermionic T-Dual Theory

For completion sake, we will also T-dualize fermionic T-dual ac-
tion (3.20) along x𝜇 coordinates. In this specific case, where only
RR field depends on bosonic coordinate, we expect that bosonic
and ferionic T-dualities commute. Therefore, this section can be
thought of as a check for calculations from previous section.
Bosonic T-duality is mostly the same as fermionic one,[10–13]

where only difference is the lack of introduction of Fadeev-Popov
and gauge fixing actions. We again start by localizing transla-
tional symmetry, inserting Lagrangemultipliers and fixing gauge

Fortschr. Phys. 2023, 71, 2200160 © 2022 Wiley-VCH GmbH.2200160 (5 of 8)
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fields. This produces following auxiliary action

f Saux = 𝜅 ∫ d2𝜉
[
v𝜇+Π+𝜇𝜈v

𝜈

− + 1
2
𝜕+z̄𝛼 f

𝛼𝛽𝜕−z𝛽

+1
2
𝜕+z̄𝛼C

𝛼𝛽

𝜇
𝜕−z𝛽ΔV𝜇 + 1

2
𝜕+z̄𝛼Ψ𝛼

𝜇
v𝜇− − 1

2
v𝜇+Ψ̄𝛼

𝜇
𝜕−z𝛼

− 1
2
𝜕−z̄𝛼𝛼

𝛼𝛽𝜕+z𝛽 +
1
2
y𝜇(𝜕+v

𝜇

− − 𝜕−v
𝜇

+)
]
. (3.40)

Introducing the variables

Y+𝜇 = 𝜕+y𝜇 − 𝜕+z̄𝛼Ψ𝛼

𝜇
, Y−𝜇 = 𝜕−y𝜇 − Ψ̄𝛼

𝜇
𝜕−z𝛼 , (3.41)

the action (3.40) gets much simpler form

f Saux = 𝜅 ∫ d2𝜉
[
v𝜇+Π+𝜇𝜈v

𝜈

− + 1
2
𝜕+z̄𝛼 f

𝛼𝛽𝜕−z𝛽

+ 1
2
𝜕+z̄𝛼C

𝛼𝛽

𝜇
𝜕−z𝛽ΔV𝜇 − 1

2
Y+𝜇v

𝜇

− + 1
2
v𝜇+Y−𝜇

]
. (3.42)

Varying the above action with respect to gauge fields v𝜇+ and v𝜇−,
we get, respectively,

Π+𝜇𝜈v
𝜈

− = −
(1
2
Y−𝜇 + 𝛽+𝜇(V)

)
, (3.43)

v𝜈+Π+𝜈𝜇 = 1
2
Y+𝜇 − 𝛽−𝜇(V) , (3.44)

where 𝛽±𝜇 are the beta functions obtained from coordinate de-
pendent term in the action

𝛽±𝜇 = ∓1
8

(
z̄𝛼C

𝛼𝛽

𝜇
𝜕∓z𝛽 − 𝜕∓z̄𝛼C

𝛼𝛽

𝜇
z𝛽
)
. (3.45)

Inserting (3.43) and (3.44) into the auxiliary action (3.42), keeping
the terms linear in C𝛼𝛽

𝜇
, we obtain fully T-dualized action (first

fermionic, then bosonic T-dualization)

fbS = 𝜅 ∫ d2𝜉
[1
2
𝜕+z̄𝛼F

𝛼𝛽 (ΔV)𝜕−z𝛽 +
1
4
Y+𝜇(Π−1

+ )𝜇𝜈Y−𝜈

]
. (3.46)

Expanding above action we prove that it is identical to one given
in (3.38).

4. Few Notes on Non-commutativity

In paper[13] it has been shown that bosonic T-duality produces
non-commutative relations between bosonic T-dual coordinates.
With this in mind, following question naturally arises: can we
expect emergence of same behavior for fermionic coordinates af-
ter fermionic T-dualization? To get the answer for this question
we have to express fermionic T-dual coordinates as some com-
bination of starting coordinates and their momenta and connect
T-dual Poisson brackets with Poisson brackets of original theory.
Original theory is geometric theory with regular Poisson struc-
ture

{x𝜇(𝜎),𝜋𝜈(�̄�)} = 𝛿𝜇
𝜈
𝛿(𝜎 − �̄�),

{𝜃𝛼(𝜎),𝜋𝛽 (�̄�)} = {�̄�𝛼(𝜎), �̄�𝛽 (�̄�)} = 𝛿𝛼
𝛽
𝛿(𝜎 − �̄�), (4.1)

where all other Poisson brackets vanish.
We start with case that has only been T-dualized along

fermionic coordinates. To find how T-dual coordinates depend
on starting ones and their momenta we can begin by find-
ing fermionic momenta of starting theory. It is useful to re-
member that starting theory did not posses terms that are pro-
portional to ∂+𝜃

𝛼 and 𝜕−�̄�
𝛼 and that this symmetry was fixed

with BRST formalism. Addition of gauge fixing term intro-
duced modification to momenta of starting theory and to ob-
tain correct non-commutative relations we should be working
with theories that have gauge fixing term in them. With this in
mind, it is easy to find fermionic momentum of original theory
(3.13)

𝜋𝛽 = − k
2

[
(𝜕+�̄�

𝛼 + 𝜕+x
𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽

− 𝜕−�̄�
𝛼(𝛼−1)𝛼𝛽

]
, (4.2)

�̄�𝛼 = k
2

[(
F−1(x)

)
𝛼𝛽
(𝜕−𝜃

𝛽 + Ψ𝛽

𝜈
𝜕−x

𝜈) − (𝛼−1)𝛼𝛽𝜕+𝜃
𝛽
]
. (4.3)

Since we want to obtain Poisson brackets for equal 𝜏 we want
to find 𝜎 partial derivatives of dual coordinate

𝜕𝜎z𝛼 = 𝜕+z𝛼 − 𝜕−z𝛼 = 2
k
�̄�𝛼 , (4.4)

𝜕𝜎 z̄𝛼 = 𝜕+z̄𝛼 − 𝜕−z̄𝛼 = −2
k
𝜋𝛼. (4.5)

Momenta of original theory commute with each other and
with x𝜇 coordinates, therefore we deduce that there has been no
change to geometric structure of this theory.
For fully dualized theory, transformation laws (3.33) (3.34)

(3.35) all depend on dual bosonic coordinate however, when we
insert transformation laws that connect original bosonic coordi-
nates with T-dual ones (more details in[13])

𝜕+y𝜇 = 2
[
𝜕+x

𝜈Π̄+𝜈𝜇 + 𝛽−
𝜇
(x)

]
+ 𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
, (4.6)

𝜕−y𝜈 = −2
[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝛽+
𝜇
(x)

]
− Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (4.7)

into transformation laws for fermionic coordinates (3.33), (3.34)
and (3.35) we again obtain relations (4.4) and (4.5).
On a first glance it would seem that fermionic T-duality has not

produced any new Poisson brackets, however this is not the case.
While it is true that there are no modifications to Poisson brack-
ets between fermions, we have new Poisson bracket structure be-
tween fermions and bosons. This can be seen from 𝜎 derivative
of bosonic T-dual coordinate

y′
𝜇
≅

𝜋𝜇

𝜅
+ 𝛽0

𝜇
(x), (4.8)

where 𝛽0
𝜇
(x) is combination 𝛽+

𝜇
(x) + 𝛽−

𝜇
(x) given as

𝛽0
𝜇
(x) = 1

2
𝜕𝜎

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
−1
2

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕𝜎
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
.

(4.9)
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Finding Poisson brackets between 𝜎 derivatives of coordinates
and integrating twice we obtain following relations

{y𝜇(𝜎), z̄𝛽 (�̄�)} =
1
k

[
�̄�𝛼(𝜎) + x𝜈1 (𝜎)Ψ̄𝛼

𝜈1
− 2

(
�̄�𝛼(�̄�) + x𝜈1 (�̄�)Ψ̄𝛼

𝜈1

)]
× (f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽H(𝜎 − �̄�), (4.10)

{y𝜇(𝜎), z𝛼(�̄�)} =
1
k
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽

×
[
𝜃𝛽 (𝜎) + Ψ𝛽

𝜈2
x𝜈2 (𝜎) − 2

(
𝜃𝛽 (�̄�) + Ψ𝛽

𝜈2
x𝜈2 (�̄�)

)]
×H(𝜎 − �̄�). (4.11)

5. Conclusions

In this article we examined effects of fermionic T-duality per-
formed on action of type II superstring in pure spinor formal-
ism. We carried out our investigation in two cases, one where we
performed fermionic T-duality on previously non dualized action
and in second case where we had action that was already dualized
along bosonic coordinates. Starting (non dualized) action that we
worked with described closed string that propagates in presence
of Ramond-Ramond field with linear coordinate dependence. We
made a decision to only consider dependence on bosonic coordi-
nates, furthermore this dependence was tied to infinitesimal an-
tisymmetric term C𝛼𝛽

𝜇
. Rest of the background fields were held

constant. Terms in action that were non-linearly dependent on
fermionic coordinates were neglected. These choices were in ac-
cordance with consistency conditions for background fields and
were made in order to keep calculations manageable.
On the other hand, bosonic T-duality of starting action pro-

vided us with theory that was non-local. Unlike starting the-
ory that only dependent on coordinates through RR field, this
theory manifested coordinate dependence on all background
fields. Furthermore, bosonic T-dual coordinates now exhibit non-
commutative properties.
Before we could start with T-dualization we noticed that both

cases posses additional local symmetry which removed terms
proportional to ∂+𝜃

𝛼 and 𝜕−�̄�
𝛼 . In order to obtain correct T-dual

theory this symmetry was fixed through BRST formalism. In
both cases procedure for obtaining fermionic T-duality was the
same, we employed Buscher T-dualizing procedure. Procedure is
based on localization of translational symmetry where we replace
partial derivatives with covariant ones. Introduction of covariant
derivatives carries with itself new degrees of freedom in shape
of gauge fields. By demanding that starting and T-dual theory
give description of same physical system we inevitably demand
for both theories to posses same degrees of freedom. Thus, all
additional degrees of freedom must be removed with Lagrange
multipliers. By utilizing gauge freedomwe can also remove all in-
stances of fermionic coordinates in action obtaining action that is
only a function of gaguge fields and Lagrange multipliers. Find-
ing equations ofmotion for gauge fields of this gauge fixed action
and inserting their solutions into the action we obtain T-dual the-
ory.
Carrying Buscher procedure for fermionic coordinates of non

dualized action we obtain local theory where all fields depend

on bosonic coordinates. This theory is commutative, its Poisson
brackets are identical to Poisson brackets of starting theory.
Buscher procedure in case of theory that has been dual-

izied along bosonic coordinates does not change coordinate
dependence of the background fields. All fields are still de-
pendent on both bosonic and fermionic coordinates and the-
ory is still non-local. However, this theory posseses two ad-
ditional non-trivial Poisson brackets. We have emergence of
non-commutativity between bosonic and fermionic coordinates,
where non-commutativity is proportional to infinitesimal con-
stant C𝛼𝛽

𝜇
.

Same result is obtained even in case where we first perform
fermionic and then bosonic T-duality. Commutativity between
different dualities was expected since fully T-dual theory must be
unique. Only distinction between different paths of T-dualization
procedures can be noticed in intermediate theories, where most
important change is transition of theory from being local to non-
local.
We suspect that it is possible to obtain T-dual theory that is

fully non-commutative, theory that has non-commutativity even
between fermionic coordinates, but we would need starting the-
ory that has background fields that depend on both bosonic and
fermionic coordinates.
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Noncommutativity and Nonassociativity of Type II
Superstring with Coordinate Dependent RR Field

B. Nikolíc, D. Obríc,* and B. Sazdovíc

In this paper we will consider noncommutativity that arises from bosonic
T-dualization of type II superstring in presence of Ramond-Ramond (RR) field,
which linearly depends on the bosonic coordinates x𝝁. The derivative of the
RR field C𝜶𝜷

𝝁 is infinitesimal. We will employ generalized Buscher procedure
that can be applied to cases that have coordinate dependent background
fields. Bosonic part of newly obtained T-dual theory is non-local. It is defined
in non-geometric space spanned by Lagrange multipliers y𝝁. We will apply
generalized Buscher procedure once more on T-dual theory and prove that
original theory can be salvaged. Finally, we will use T-dual transformation laws
along with Poisson brackets of original theory to derive Poisson bracket
structure of T-dual theory and nonassociativity relation. Noncommutativity
parameter depends on the supercoordinates x𝝁, 𝜽𝜶 and �̄�𝜶 , while
nonassociativity parameter is a constant tensor containing infinitesimal C𝜶𝜷

𝝁 .

1. Introduction

In 1982 emerged a model[1] that would offer the possibility of
obtaining bosonic coordinates of space-time as emergent prop-
erties of more fundamental fermionic coordinates. While this
model worked with supersymmetric particle, this approach sug-
gested that maybe we can express bosonic coordinates as a Pois-
son bracket of fermionic coordinates. In addition to these Pois-
son brackets, Poisson brackets between bosonic coordinates as
well as between bosonic and fermionic coordinates would remain
zero. Later, in paper,[2] it has been suggested that the same result
can be obtained in context of string theory in case of coordinate
dependent RR field. It is also suggested that unlike supersym-
metric particle model, coordinate dependent RR field would pro-
duce full spectrum of non-commutative relations, bosonic coor-
dinates themselves would become non-commutative. In this pa-
per our goal is to determine if coordinate dependent RR field,
while remaining background fields are as simple as consistency
relations allow, can produce suggested non-commutative rela-
tions.
Superstring theory, as a theory of extended objects propagat-

ing in space-time, is defined in 10 dimensions.[3,4] In order to
establish link between this mathematical model and real world
observations, surplus space-like dimensions are compactified

B. Nikolíc, D. Obríc, B. Sazdovíc
Institute of Physics Belgrade
University of Belgrade
Pregrevica 118, Serbia
E-mail: dobric@ipb.ac.rs

DOI: 10.1002/prop.202200048

on circles of radius R. From this kind of
geometry arises new kind of symmetry, T-
duality, that links theories that have radii
of compactification R with ones that have
radii of compactification 𝛼′∕R.[5,6] Exis-
tence of T-duality between different theo-
ries implies that those theories are phys-
ically equivalent and it gives us a way
to explore how geometry and topology of
one theory is connected to other. This
connection between different geometries
makes T-duality a useful tool in examin-
ing emergence of non-commutativity in
context of closed strings.[7]

While in string theory both open and
closed strings, under certain conditions,
exhibit emergence of non-commutativity,
mechanisms that enable this emergence
are different. In case of open string,

we have that endpoints of string that propagates in pres-
ence of constant metric and Kalb-Ramond field become non-
commutative.[8] Basic idea of open string non-commutativity
is that initial coordinates can be expressed as linear combi-
nation of effective coordinates and momenta by employing
boundary conditions. In case of closed string, we do not have
string endpoints therefore we don’t have emergence of non-
commutativity when string propagates in presence of con-
stant background fields. In order to achieve same effect as
in case of open string, we have to use coordinate depen-
dent background fields. By finding T-dual of theories with this
kind of geometry we obtain T-dual theory in non-geometric
background, where T-dual coordinates are expressed as lin-
ear combinations of original coordinates and their conjugated
momenta.
Mathematical framework for obtaining T-dual theories is stan-

dard Buscher procedure.[9,10] Procedure is based on existence of
shift symmetry in relevant action and its implementation can be
summarized in few steps. First step is localization of translational
symmetry by introduction of covariant derivatives and introduc-
tion of Lagrange multipliers that make newly introduced gauge
fields nonphysical. By gauge fixing and finding equations of mo-
tion of both gauge fields and Lagrange multipliers we obtain T-
dual transformation laws. These transformation laws inserted
into gauge fixed action produce T-dual action. For cases where
we have coordinate dependent background fields there exist gen-
eralized Buscher procedure,[11–15] this extension has one addi-
tional step, replacement of all initial coordinates with invariant
coordinates. Further extension of generalized Buscher procedure
is possible[16] and it is applicable to theories that do not posses
shift symmetry.
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In this article we will deal with closed superstring propagating
in presence of linearly coordinate dependent Ramond-Ramond
(RR) field using type II superstring model in pure spinor formu-
lation. All calculationswewill do in approximation of diluted flux,
which means that in all calculations we keep constant and linear
terms in infinitesimal derivative of the RR field strength. Rest of
the fields, metric, Kalb-Ramond and gravitino fields are constant.
Furthermore all dependence of background field on fermionic
terms will be neglected for mathematical simplicity. This choice
of field configuration is in full accordance with consistency equa-
tions for background fields.[17]

Because we are currently only interested in non-commutative
relations between bosonic coordinates, T-dualization procedure
will be applied only on bosonic part of action. To find T-dual ac-
tion and T-dual transformation laws we will employ extension
of generalized Buscher procedure that works with coordinate de-
pendent background fields.[11] After finding T-dual theory, wewill
apply Buscher procedure once more to see if we can obtain orig-
inal theory.
Transformation laws that connect variables from initial with

variables from T-dual theory will be written in canonical form,
where initial momenta are expressed in terms of the T-dual coor-
dinates. By inverting these transformation laws we obtain how
sigma derivatives of T-dual theory depend on linear combina-
tions of coordinates and momenta of original theory. Taking into
account that original theory is geometrical, both locally and glob-
ally, we have that its coordinate and conjugated momenta sat-
isfy standard Poisson brackets. By using this fact we are able to
find Poisson structure of sigma derivatives of T-dual coordinates
and by doing integration, Poisson structure of T-dual coordinates
is obtained.
The form of obtained non-commutativity is such that non-

commutativity exists when arguments are different, 𝜎 ≠ �̄�. Im-
posing trivial winding conditions, we obtain string winding num-
bers from Poisson brackets.
In the end, we give conclusions and in appendix we present

some technical details regarding derivation of 𝛽±
𝜇
functions.

2. General Type II Superstring Action and Choice of
Background Fields

Starting point of this investigation will be action of type II super-
string theory in pure spinor formulation.[18–21] We will present
and explain assumed approximations in order to obtain type II
pure spinor action with non-constant RR field-strength. It turns
out that ghost fields are neglected and only quadratic terms are
considered. Final form of this kind of action will be used in sub-
sequent sections.

2.1. General Form of the Pure Spinor Type II Superstring Action

Sigma model of type IIB superstring has the following
form[17]

S = S0 + VSG. (2.1)

This general form of action is expressed as a sum of the part that
describes the motion of string in flat background

S0 = ∫Σ
d2𝜉

(
𝜅

2
𝜂𝜇𝜈𝜕mx

𝜇𝜕nx
𝜈𝜂mn − 𝜋𝛼𝜕−𝜃

𝛼 + 𝜕+�̄�
𝛼�̄�𝛼

)
+ S𝜆 + S�̄� , (2.2)

and part that governs the modifications to the background fields

VSG = ∫Σ
d2𝜉(XT )MAMNX̄

N . (2.3)

Modifications to the flat background are introduced by integrated
form of massless type II supergravity vertex operator VSG. The
terms S𝜆 and S�̄� in (2.2) are free-field actions for pure spinors

S𝜆 = ∫Σ
d2𝜉𝜔𝛼𝜕−𝜆

𝛼 , S�̄� = ∫Σ
d2𝜉�̄�𝛼𝜕+�̄�

𝛼 . (2.4)

Here, 𝜆𝛼 and �̄�𝛼 are pure spinors whose canonically conjugated
momenta are 𝜔𝛼 and �̄�𝛼 , respectively. Pure spinors satisfy pure
spinor constraints

𝜆𝛼(Γ𝜇)𝛼𝛽𝜆
𝛽 = �̄�(Γ𝜇)𝛼𝛽 �̄�

𝛽 = 0 . (2.5)

In general case, vectors XM and XN as well as a supermatrix
AMN are given by

XM =

⎛⎜⎜⎜⎜⎝
𝜕+𝜃

𝛼

Π𝜇

+

d𝛼
1
2
N𝜇𝜈

+

⎞⎟⎟⎟⎟⎠
, X̄M =

⎛⎜⎜⎜⎜⎜⎝

𝜕−�̄�
𝜆

Π𝜇
−

d̄𝜆
1
2
N̄𝜇𝜈

−

⎞⎟⎟⎟⎟⎟⎠
,

AMN =

⎡⎢⎢⎢⎢⎣
A𝛼𝛽 A𝛼𝜈 E𝛼

𝛽 Ω𝛼,𝜇𝜈

A𝜇𝛽 A𝜇𝜈 Ē𝛽
𝜇

Ω𝜇,𝜈𝜌

E𝛼
𝛽 E𝛼

𝜈
P𝛼𝛽 C𝛼

𝜇𝜈

Ω𝜇𝜈,𝛽 Ω𝜇𝜈,𝜌 C̄𝛽
𝜇𝜈 S𝜇𝜈,𝜌𝜎

⎤⎥⎥⎥⎥⎦
, (2.6)

where notation is in accordance with Ref [17]. The components
of matrix AMN are generally functions of x𝜇 , 𝜃𝛼 and �̄�𝛼 . Compo-
nents themselves are derived as expansions in powers of 𝜃𝛼 and
�̄�𝛼 (for details consult[17]). The superfields A𝜇𝜈 , Ē

𝛼
𝜇
, E𝛼

𝜇
and P𝛼𝛽 are

known as physical superfields, while superfields that are in the
first row and the first column are known as auxiliary because they
can be expressed in terms of physical ones.[17] Remaining super-
fields Ω𝜇,𝜈𝜌 (Ω𝜇𝜈,𝜌), C

𝛼
𝜇𝜈 (C̄

𝛽
𝜇𝜈) and S𝜇𝜈,𝜌𝜎 , are curvatures (field

strengths) for physical fields. Components of vectors XM and X̄N

are defined as

Π𝜇

+ = 𝜕+x
𝜇 + 1

2
𝜃𝛼(Γ𝜇)𝛼𝛽𝜕+𝜃

𝛽 , Π𝜇

− = 𝜕−x
𝜇 + 1

2
�̄�𝛼(Γ𝜇)𝛼𝛽𝜕−�̄�

𝛽 ,

(2.7)

d𝛼 = 𝜋𝛼 −
1
2
(Γ𝜇𝜃)𝛼

[
𝜕+x

𝜇 + 1
4
(𝜃Γ𝜇𝜕+𝜃)

]
,

d̄𝛼 = �̄�𝛼 −
1
2
(Γ𝜇�̄�)𝛼

[
𝜕−x

𝜇 + 1
4
(�̄�Γ𝜇𝜕−�̄�)

]
, (2.8)

Fortschr. Phys. 2022, 70, 2200048 © 2022 Wiley-VCH GmbH.2200048 (2 of 9)

 15213978, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202200048 by U

niversity O
f B

elgrade, W
iley O

nline L
ibrary on [01/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

N𝜇𝜈

+ = 1
2
𝜔𝛼(Γ[𝜇𝜈])𝛼𝛽𝜆

𝛽 , N̄𝜇𝜈

− = 1
2
�̄�𝛼(Γ[𝜇𝜈])𝛼𝛽 �̄�

𝛽 . (2.9)

The world sheet Σ is parameterized by 𝜉m = (𝜉0 = 𝜏, 𝜉1 = 𝜎)
and world sheet light-cone partial derivatives are defines as
𝜕± = 𝜕𝜏 ± 𝜕𝜎 . Superspace in which string propagates is spanned
both by bosonic x𝜇 (𝜇 = 0, 1,… , 9) and fermionic 𝜃𝛼 , �̄�𝛼 (𝛼 =
1, 2,… , 16) coordinates. Variables 𝜋𝛼 and �̄�𝛼 represent canoni-
cally conjugated momenta of fermionic coordinates 𝜃𝛼 and �̄�𝛼 ,
respectively. Fermionic coordinates and their canonically conju-
gated momenta are Majorana-Weyl spinors. It means that each
of these spinors has 16 independent real valued components.

2.2. Choice of the Background Fields

In this particular case we will work with the supermatrix AMN
where all background fields, except RRfield strengthP𝛼𝛽 , are con-
stants. RR field strength will have linear coordinate dependence
on bosonic coordinate x𝜇 . With these restrictions in mind, super-
matrix AMN has the following form

AMN =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0

0 𝜅

(
1
2
g𝜇𝜈 + B𝜇𝜈

)
Ψ̄𝛽

𝜇
0

0 −Ψ𝛼
𝜈

2
𝜅
(f 𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌) 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
. (2.10)

Here g𝜇𝜈 is symmetric tensor, B𝜇𝜈 is Kalb-Ramond antisymmetric
field, Ψ𝛼

𝜇
and Ψ̄𝛼

𝜇
are Mayorana-Weyl gravitino fields, and finally,

f 𝛼𝛽 and C𝛼𝛽
𝜌

are constants. Let us stress that dilaton field Φ is
assumed to be constant, so, the factor eΦ is included in f 𝛼𝛽 and
C𝛼𝛽

𝜌
. This will be a classical analysis and we will not calculate the

dilaton shift under T-duality transformation. Based on the chiral-
ity of spinors, there are type IIA superstring theory for opposite
chirality and type IIB superstring theory for same chirality.
This particular choice of supermatrix imposes following re-

striction on background fields

𝛾
𝜇

𝛼𝛽
C𝛽𝛾

𝜇
= 0, 𝛾

𝜇

𝛼𝛽
C𝛾𝛽

𝜇
= 0. (2.11)

Remaining constraints[17] are trivial and applied only to non-
physical fields.
In addition to choice of supermatrix, in order to simplify cal-

culation of bosonic T-duality, because all background fields are
expanded in powers of 𝜃𝛼 and �̄�𝛼 , all 𝜃𝛼 and �̄�𝛼 non-linear terms
in XM and X̄N will be neglected. With this in mind, components
of these two vectors reduce into the following form

Π𝜇

± → 𝜕±x
𝜇 , d𝛼 → 𝜋𝛼 , d̄𝛼 → �̄�𝛼. (2.12)

Taking into account all these assumptions, the action (2.1) takes
the form

S = ∫Σ
d2𝜉

[
𝜅

2
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈 − 𝜋𝛼(𝜕−𝜃

𝛼 + Ψ𝛼

𝜈
𝜕−x

𝜈)

+ (𝜕+�̄�
𝛼 + 𝜕+x

𝜇Ψ̄𝛼

𝜇
)�̄�𝛼 +

2
𝜅
𝜋𝛼(f

𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌)�̄�𝛽

]
. (2.13)

Here, new tensor Π±𝜇𝜈 = B𝜇𝜈 ±
1
2
G𝜇𝜈 is introduced, where G𝜇𝜈 =

𝜂𝜇𝜈 + g𝜇𝜈 is metric tensor. Terms for S𝜆 and S�̄� are fully decoupled
from action and they will not be considered from now on.
Before considering T-duality, we can notice that fermionic mo-

menta act as auxiliary fields in full actions. These fields can be in-
tegrated out and final action will be function of only coordinates
and their derivatives. Finding equations for motion for both 𝜋𝛼

and �̄�𝛼 we get following two equations

�̄�𝛽 =
𝜅

2

(
F−1(x)

)
𝛽𝛼

(
𝜕−𝜃

𝛼 + Ψ𝛼

𝜈
𝜕−x

𝜈
)
, (2.14)

𝜋𝛼 = −𝜅

2

(
𝜕+�̄�

𝛽 + 𝜕+x
𝜇Ψ̄𝛽

𝜇

)(
F−1(x)

)
𝛽𝛼
, (2.15)

where F𝛼𝛽 (x) and (F−1(x))𝛼𝛽 are of the form

F𝛼𝛽 (x) = f 𝛼𝛽 + C𝛼𝛽

𝜇
x𝜇 ,

(F−1(x))𝛼𝛽 = (f −1)𝛼𝛽 − (f −1)𝛼𝛼1C
𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽 x
𝜇 . (2.16)

In order to invert previous equations and T-dual transforma-
tion laws, as well as to simplify calculations, we take two addi-
tional assumptions. First assumption is that C𝛼𝛽

𝜇
is infinitesimal.

Second assumption is that (f −1)𝛼𝛼1C
𝛼1𝛽1
𝜇 (f −1)𝛽1𝛽 is antisymmetric

under exchange of first and last index. In other words, tensor
(F−1(x))𝛼𝛽 has only antysimetric part that depends on x𝜇 and it
is infinitesimal. These assumptions are in full accordance with
constraints.[17]

Substituting equations (2.14) and (2.15) into (2.13) the final
form of action is

S = 𝜅 ∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈

+ 1
2
(𝜕+�̄�

𝛼 + 𝜕+x
𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽
(𝜕−𝜃

𝛽 + Ψ𝛽

𝜈
𝜕−x

𝜈)
]
. (2.17)

In the following sections, this form of action will be used for in-
vestigation of bosonic T-duality and for obtaining transformation
laws between starting and T-dual coordinates.

3. T-dualization

In this section T-duality will be performed along all bosonic coor-
dinates in order to find relations that connect T-dual coordinates
with coordinates and momenta of original theory. These trans-
formation laws will then be used in subsequent chapters to find
non-commutativity relations between coordinates of T-dual the-
ory.
Starting point for considering T-duality will be general-

ized Buscher T-dualization procedure.[11] Standard Buscher
procedure[9,10] is designed to be applied along isometry directions
on which background fields do not depend. Generalized Buscher
procedure can be applied to theories with coordinate dependent
background fields. The shift symmetry in the generalized proce-
dure is localized by introduction of covariant derivatives, invari-
ant coordinates and additional gauge fields. These newly intro-
duced gauge fields produce additional degrees of freedom. Since
we expect that starting and T-dual theory have exactly the same

Fortschr. Phys. 2022, 70, 2200048 © 2022 Wiley-VCH GmbH.2200048 (3 of 9)
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number of degrees of freedom we need to eliminate all exces-
sive degrees of freedom. This is accomplished by demanding that
field strength of gauge fields (F+− = 𝜕+v− − 𝜕−v+) vanishes by ad-
dition of Lagrange multipliers. Next step in procedure is fixing
the gauge symmetry such that starting coordinates are constant
and action is only left with gauge fields and its derivatives. From
this gauge fixed action, finding equations of motion for gauge
fields, expressing gauge fields as function of Lagrange multipli-
ers and inserting those equations into actionwe can obtain T-dual
action, were Lagrange multipliers of original theory now play the
role of T-dual coordinates.
In cases where shift symmetry is absent, T-duality can still be

performed by extending generalized Buscher procedure.[16] This
extension is based on replacing original action with translation
invariant auxiliary action. Form of this auxiliary action is exactly
the same as the form of action where translation symmetry was
localized and gauged fixed, that is, derivatives have been replaced
with gauge fields and coordinates with integrals of gauge fields.
Auxiliary action gives correct T-dual theory only if original action
can be salvaged from it. In cases where this is possible, original
theory is obtained by finding equations of motion with respect
to Lagrange multipliers and inserting their solutions into auxil-
iary action.
Action (2.17) is invariant to translation symmetry, by the virtue

of antisymmetric part of F−1
𝛼𝛽
, tensor (f −1C𝜇f

−1)𝛼𝛽 . Following an-
tisymmetricity of this tensor, we can rewrite the action (2.17) in
the following way

S = 𝜅 ∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈

+ 1
2
𝜖mn𝜕m(�̄�

𝛼 + x𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽
𝜕n(𝜃

𝛽 + Ψ𝛽

𝜈
x𝜈)

]
. (3.1)

Let us now consider the global shift symmetry 𝛿x𝜇 = 𝜆𝜇 and
vary the action (3.1)

𝛿S = −𝜅

2
(f −1C𝜇f

−1)𝛼𝛽𝜆
𝜇 ∫Σ

d2𝜉𝜖mn𝜕m(�̄�
𝛼 + Ψ̄𝛼

𝜈
x𝜈)𝜕n(𝜃

𝛽 + Ψ𝛽

𝜌
x𝜌) ,

(3.2)

where m, n are indices of the twodimensional worldsheet. After
one partial integration, we obtain one surface term and one term
which is identically zero because it is summation of symmetric,
𝜕m𝜕n, and antisymmetric, 𝜖mn, tensor. The surface term is zero
for trivial topology. So, the shift isometry exists.
In order to find T-dual action we have to implement following

substitutions

𝜕±x
𝜇 → D±x

𝜇 = 𝜕±x
𝜇 + v𝜇±, (3.3)

x𝜌 → x𝜇inv = ∫P
d𝜉mDmx

𝜇 = x𝜇(𝜉) − x𝜇(𝜉0) + ΔV𝜇 ,

ΔV𝜇 = ∫P
d𝜉mv𝜌m(𝜉), (3.4)

S → S + 𝜅

2 ∫Σ
d2𝜉

[
v𝜇+𝜕−y𝜇 − v𝜇−𝜕+y𝜇

]
. (3.5)

Because of the shift symmetry we fix the gauge, x𝜇(𝜉) = x𝜇(𝜉0)
and, inserting these substitutions into action (2.17), we obtain
auxiliary action suitable for T-dualization

Saux = 𝜅 ∫Σ
d2𝜉

[
Π+𝜇𝜈v

𝜇

+v
𝜈

− + 1
2
(𝜕+�̄�

𝛼 + v𝜇+Ψ̄𝛼

𝜇
)
(
F−1(ΔV)

)
𝛼𝛽

× (𝜕−𝜃
𝛽 + Ψ𝛽

𝜈
v𝜈−) +

1
2
(v𝜇+𝜕−y𝜇 − v𝜇−𝜕+y𝜇)

]
. (3.6)

It should be noted that, path P that is taken in expression forΔV𝜌

goes from some starting point 𝜉0 to end point 𝜉. Introduction of
this element makes this action non-local, however, this is a nec-
essary step in order to find T-dual theory of coordinate dependent
background fields.[11]

In order to check if substitutions we had introduced are valid
and that they will lead to correct T-dual theory of starting action,
we need to be able to obtain original action by finding solutions to
equations of motion for Lagrange multipliers. Equations of mo-
tion for Lagrange multipliers give us

𝜕−v
𝜇

+ − 𝜕+v
𝜇

− = 0 ⇒ v𝜇± = 𝜕±x
𝜇. (3.7)

Inserting this result into (3.4) we get the following

ΔV𝜌 = ∫P
d𝜉′m𝜕mx

𝜌(𝜉′) = x𝜌(𝜉) − x𝜌(𝜉0) = Δx𝜌. (3.8)

Since, we had shift symmetry in original action, we can let x𝜌(𝜉0)
be any arbitrary constant. Taking all this into account and insert-
ing (3.7), (3.8) into (3.6) we obtain our starting action (2.17).
Before we obtain equations for motion for gauge fields, we

would like to make following substitution in action

Y+𝜇 = 𝜕+y𝜇 − 𝜕+�̄�
𝛼
(
F−1(ΔV)

)
𝛼𝛽
Ψ𝛽

𝜇
,

Y−𝜇 = 𝜕−y𝜇 + Ψ̄𝛼

𝜇

(
F−1(ΔV)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (3.9)

Π̄+𝜇𝜈 = Π+𝜇𝜈 +
1
2
Ψ̄𝛼

𝜇

(
F−1(ΔV)

)
𝛼𝛽
Ψ𝛽

𝜈

= Π̆+𝜇𝜈 −
1
2
Ψ̄𝛼

𝜇
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌

(f −1)𝛽1𝛽Ψ
𝛽

𝜈
ΔV𝜌, (3.10)

Π̆+𝜇𝜈 ≡ Π+𝜇𝜈 +
1
2
Ψ̄𝛼

𝜇
(f −1)𝛼𝛽Ψ𝛽

𝜈
. (3.11)

With these substitutions in mind we have that auxiliary action
takes the following form

Saux = 𝜅 ∫Σ
d2𝜉

[
Π̄+𝜇𝜈v

𝜇

+v
𝜈

− + 1
2
v𝜇+Y−𝜇 −

1
2
v𝜇−Y+𝜇

+ 1
2
𝜕+�̄�

𝛼
(
F−1(ΔV)

)
𝛼𝛽
𝜕−𝜃

𝛽
]
. (3.12)

This action produces following equations of motion for gauge
fields

Π̄+𝜇𝜈v
𝜈

− = −( 1
2
Y−𝜇 + 𝛽+

𝜇
(V)), Π̄+𝜇𝜈v

𝜇

+ = 1
2
Y+𝜈 − 𝛽−

𝜈
(V). (3.13)

Here, function 𝛽±(V) is obtained from variation of term con-
taining ΔV𝜌 in expression for F−1(ΔV) (details are presented in
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Appendix A)

𝛽−
𝜇
(V) = 1

4
𝜕+

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
− 1
4

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕+
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
,

(3.14)

𝛽+
𝜇
(V) = 1

4

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕−
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
− 1
4
𝜕−

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
.

(3.15)

Here we have took advantage of the fact that 𝜕±V
𝜇 = v𝜇± (more

details in Appendix A). Let us note that V𝜇 in the expressions for
beta functions is actually V (0)𝜇 because it stands besides C𝛼𝛽

𝜇
. We

omit index (0) just in order to simplify the form of the expres-
sions.
In order to find how gauge fields depend on Lagrange multi-

pliers, we need to invert equations of motion (3.13). Since C𝛼𝛽
𝜇

is an infinitesimal constant, these equations can be inverted
iteratively.[22] We separate variables into two parts, one finite and
one proportional to C𝛼𝛽

𝜇
. After doing this we have

v𝜈− = −Θ̄𝜈𝜇

−

[1
2
Y−𝜇 + 𝛽+

𝜇
(V (0))

]
, v𝜇+ =

[1
2
Y+𝜈 − 𝛽−

𝜈
(V (0))

]
Θ̄𝜈𝜇

− .

(3.16)

Functions 𝛽±𝜇(V
(0)) are obtained by substituting first order of

expression for v± into 𝛽±𝜇(V), where V
(0) is given by

ΔV (0)𝜌 = ∫P
d𝜉mv(0)𝜌m

= 1
2 ∫P

d𝜉+Θ̆𝜌1𝜌

−

[
𝜕+y𝜌1 − 𝜕+�̄�

𝛼(f −1)𝛼𝛽Ψ𝛽

𝜌1

]
− 1
2 ∫P

d𝜉−Θ̆𝜌𝜌1
−

[
𝜕−y𝜌1 + Ψ̄𝛼

𝜌1
(f −1)𝛼𝛽𝜕−𝜃

𝛽
]
. (3.17)

Where Θ̄𝜇𝜈
− is inverse tensor of Π̄+𝜇𝜈 = Π+𝜇𝜈 +

1
2
Ψ̄𝛼

𝜇
(F−1(ΔV))𝛼𝛽Ψ𝛽

𝜈
, defined as

Θ̄𝜇𝜈

− Π̄+𝜈𝜌 = 𝛿𝜇
𝜌
, (3.18)

where

Θ̄𝜇𝜈

− = Θ̆𝜇𝜈

− + 1
2
Θ̆𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌

V (0)𝜌(f −1)𝛽1𝛽Ψ
𝛽1
𝜈1
Θ̆𝜈1𝜈

− , (3.19)

Θ̆𝜇𝜈

− Π̆𝜈𝜌 = 𝛿𝜇
𝜌
, Θ̆𝜇𝜈

− = Θ𝜇𝜈

− − 1
2
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f̄ −1)𝛼𝛽Ψ𝛽

𝜈1
Θ𝜈1𝜈

− (3.20)

f̄ 𝛼𝛽 = f 𝛼𝛽 + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
, (3.21)

Θ𝜇𝜈

− Π+𝜇𝜌 = 𝛿𝜇
𝜌
, Θ− = −4(G−1

E Π−G
−1)𝜇𝜈 . (3.22)

TensorGE𝜇𝜈 ≡ G𝜇𝜈 − 4(BG−1B)𝜇𝜈 is known in the literature as the
effective metric.
Inserting equations (3.16) into (3.6), keeping only terms that

are linear in C𝛼𝛽
𝜇
we obtain T-dual action

S⋆ = 𝜅

2 ∫Σ

[1
2
Θ̄𝜇𝜈

− Y+𝜇Y−𝜈 + 𝜕+�̄�
𝛼
(
F−1(ΔV)

)
𝛼𝛽
𝜕−𝜃

𝛽
]
. (3.23)

Comparing starting action (2.17) with T-dual action, were we note
that 𝜕±x

𝜇 transforms into 𝜕±y𝜇 and x𝜇 transforms into V (0), we
can deduce that T-dual action has following arguments.

⋆Π̄𝜇𝜈

+ = 1
4
Θ̄𝜇𝜈

− , (3.24)(
⋆F−1(V (0))

)
𝛼𝛽

=
(
F−1(V (0))

)
𝛼𝛽

− 1
2

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜇
Θ̄𝜇𝜈

− Ψ̄𝛽1
𝜈

(
F−1(V (0))

)
𝛽1𝛽
, (3.25)

⋆Ψ̄𝜇𝛼
(
⋆F−1(V (0))

)
𝛼𝛽

= 1
2
Θ̄𝜇𝜈

− Ψ̄𝛼

𝜈

(
F−1(V (0))

)
𝛼𝛽
, (3.26)

(
⋆F−1(V (0))

)
𝛼𝛽

⋆Ψ𝜈𝛽 = −1
2

(
F−1(V (0))

)
𝛼𝛽
Ψ𝛽

𝜇
Θ̄𝜇𝜈

− . (3.27)

In order to express T-dual gravitino background fields in terms
of its components, it is useful to calculate inverse of field ⋆F−1

𝛼𝛽

⋆F𝛼𝛽 (V (0)) = F𝛼𝛽 (V (0)) + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
. (3.28)

With this equation at hand it is straightforward to obtain T-dual
gravitino fields. Here we present T-dual gravitino fields expanded
in terms of their components

⋆Ψ̄𝜇𝛼 = 1
2
Θ̄𝜇𝜈Ψ̄𝛼

𝜈
+ 1
4
Θ̄𝜇𝜇1

− Ψ̄𝛽

𝜇1

(
F−1(V (0))

)
𝛽𝛽1

Ψ𝛽1
𝜈
Θ𝜈𝜈1

− Ψ̄𝛼

𝜈1
, (3.29)

⋆Ψ𝜈𝛽 = −1
2
Ψ𝛽

𝜇
Θ̄𝜇𝜈

− − 1
2
Ψ𝛽

𝜇
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜈1
Θ̄𝜈1𝜈

− . (3.30)

The general conclusion is that all background fields get the linear
corrections in C𝛼𝛽

𝜇
comparing with the results of the case with

constant background fields.[23] Also the coordinate dependence
is present in all T-dual background fields.
From the above equations we see how background fields of

original theory transform under T-duality. It should be noted that
these actions are of the same form taking into account that initial
coordinates x𝜇 are replaced by y𝜇 after T-dualization.

4. T-dualization of T-dual Theory

From requirement that original theory and T-dual theory be phys-
ically equivalent, it should be possible to obtain original theory
from T-dual one by applying T-duality procedure a second time.
Since original action possessed translation symmetry, we have
that this symmetry is inherited by T-dual action. T-dual theory is
invariant to translations of T-dual coordinate. However, even in
cases where starting action is not invariant to translation symme-
try we can expect emergence of this symmetry in T-dual theory.
This is a natural consequence of introducingΔV (0) and of the fact

Fortschr. Phys. 2022, 70, 2200048 © 2022 Wiley-VCH GmbH.2200048 (5 of 9)
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that T-dual theory is intrinsically a non-local one. T-dualization
of T-dual theory is obtained with generalized Buscher procedure
and steps are identical as before.

𝜕±y𝜇 →D±y𝜇 = 𝜕±y𝜇 + u±𝜇 → D±y𝜇 = u±𝜇 , (4.1)

ΔV (0)𝜌 →ΔU(0)𝜌, (4.2)

ΔU(0)𝜌 =1
2 ∫P

d𝜉+Θ̆𝜌1𝜌

−

[
u+𝜌1 − 𝜕+�̄�

𝛼(f −1)𝛼𝛽Ψ𝛽

𝜌1

]
−1
2 ∫P

d𝜉−Θ̆𝜌𝜌1
−

[
u−𝜌1 + Ψ̄𝛼

𝜌1
(f −1)𝛼𝛽𝜕−𝜃

𝛽
]
, (4.3)

Y+𝜇 →U+𝜇 = u+𝜇 − 𝜕+�̄�
𝛼
(
F−1(ΔU(0))

)
𝛼𝛽
Ψ𝛽

𝜇
(4.4)

Y−𝜇 →U−𝜇 = u−𝜇 + Ψ̄𝛼

𝜇

(
F−1(ΔU(0))

)
𝛼𝛽
𝜕−𝜃

𝛽 (4.5)

⋆S →⋆S + 𝜅

2 ∫Σ
d2𝜉(u+𝜇𝜕−x

𝜇 − u−𝜇𝜕+x
𝜇) . (4.6)

In first line we immediately fixed gauge by choosing y(𝜉) =
const. Inserting these substitutions into (3.23) we get

⋆Sgfix = k
2 ∫Σ

d2𝜉
[1
2
Θ̄𝜇𝜈

− U+𝜇U−𝜈 + 𝜕+�̄�
𝛼
(
F−1(ΔU(0))

)
𝛼𝛽
𝜕−𝜃

𝛽

+(u+𝜇𝜕−x𝜇 − u−𝜇𝜕+x
𝜇)
]
. (4.7)

Finding equations of motion for Lagrangemultipliers and insert-
ing solution to those equations into gauge fixed action we return
to the starting point of this chapter, T-dual action. On the other
hand, finding equations of motion for gauge fields

u+𝜇 = 2
[
𝜕+x

𝜈Π̄+𝜈𝜇 + 𝛽−
𝜇
(x)

]
+ 𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
, (4.8)

u−𝜈 = −2
[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝛽+
𝜇
(x)

]
− Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (4.9)

and inserting these equations into the gauge fixed action, keeping
all terms linear with respect to C𝜇𝜈

𝜌
„ we obtain our original action

(2.17). Here we use the freedom to choose Δx𝜇 = x(𝜉) − x(𝜉0),
with x(𝜉0) = 0.

5. Non-commutative Relations

Having found T-dual action and equations that link T-dual co-
ordinate with original coordinates in previous chapters, in this
chapter wewill focus on establishing a relationship between Pois-
son brackets of original and T-dual theory. Furthermore, we will
mainly focus on Poisson brackets between bosonic variables and
their momenta. Original theory is a geometric one with variables
x𝜇(𝜉) and 𝜋𝜇(𝜉). Therefore, it is natural to impose standard Pois-
son structure on original theory

{x𝜇(𝜎),𝜋𝜈(�̄�)} = 𝛿𝜇
𝜈
𝛿(𝜎 − �̄�), {x𝜇(𝜎), x𝜈(�̄�)} = 0,

{𝜋𝜇(𝜎),𝜋𝜈(�̄�)} = 0. (5.1)

In order to find Poisson brackets of T-dual theory, we need to
find T-dual transformation laws which connect the initial and T-
dual coordinates. Starting with relations (4.8) and (4.9) and using
equations of motion for Lagrange multipliers x𝜇 , u±𝜇 = 𝜕±y𝜇 , we
obtain T-dual transformation laws

𝜕+y𝜇 ≅ 2
[
𝜕+x

𝜈Π̄+𝜈𝜇 + 𝛽−
𝜇
(x)

]
+ 𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
, (5.2)

𝜕−y𝜇 ≅ −2
[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝛽+
𝜇
(x)

]
− Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (5.3)

where symbol ≅ denotes T-dual transformation. Subtracting
these two equations, we get

y′
𝜇
≅ Π̄+𝜇𝜈𝜕−x

𝜈 + 𝜕+x
𝜈Π̄+𝜈𝜇 + 𝛽+

𝜇
+ 𝛽−

𝜇

+ 1
2
𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
+ 1
2
Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 . (5.4)

Taking into account that bosonic momenta, 𝜋𝜇 of original theory
are of the form

𝜋𝜇 = 𝜅

[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝜕+x
𝜈Π̄+𝜈𝜇 +

1
2
Ψ̄𝛼

𝜇

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽

+ 1
2
𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜈

]
, (5.5)

and 𝛽0
𝜇
= 𝛽+

𝜇
+ 𝛽−

𝜇
, we obtain

y′
𝜇
≅

𝜋𝜇

𝜅
+ 𝛽0

𝜇
(x) . (5.6)

Here 𝛽0
𝜇
(x) is given by

𝛽0
𝜇
(x) = 1

2
𝜕𝜎

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
− 1
2

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕𝜎
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
.

(5.7)

To find Poisson bracket between T-dual coordinates, we can
start by finding Poisson bracket of sigma derivatives of T-dual co-
ordinates and then integrating twice (see [13, 24, 25], B ). Imple-
menting this procedure we have that Poisson bracket is given as

{y𝜈1 (𝜎), y𝜈2 (�̄�)}

≅ 1
2k
[2𝛿𝜇1

𝜈1
𝛿𝜇2
𝜈2

− 𝛿𝜇2
𝜈1
𝛿𝜇1
𝜈2
]
[
K𝜇1𝜇2

(�̄�) + K𝜇2𝜇1
(𝜎)

]
H(𝜎 − �̄�) , (5.8)

where, for the sake of simplicity, we introduced

K𝜇𝜈(𝜎) =
(
�̄�𝛼(𝜎) + x𝜇1 (𝜎)Ψ̄𝛼

𝜇1

)
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽Ψ
𝛽

𝜈

−Ψ̄𝛼

𝜈
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
(
𝜃𝛽 (𝜎) + Ψ𝛽

𝜈1
x𝜈1 (𝜎)

)
. (5.9)

Here, H(𝜎 − �̄�) is same step function defined in Appendix B. It
should be noted that these Poisson brackets are zero when 𝜎 = �̄�.
However, in cases where string in curled around compactified
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dimension, that is cases where 𝜎 − �̄� = 2𝜋, we have following
situation

{y𝜈1 (𝜎 + 2𝜋), y𝜈2 (𝜎)}

≅ 1
2k
[2𝛿𝜇1

𝜈1
𝛿𝜇2
𝜈2

− 𝛿𝜇2
𝜈1
𝛿𝜇1
𝜈2
]
[
K𝜇1𝜇2

(𝜎) + K𝜇2𝜇1
(𝜎)

]
+ 𝜋

k
N𝜇Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇2

(f −1)𝛽1𝛽Ψ
𝛽

𝜇3
[𝛿𝜇1

𝜇
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

− 𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜇

+ 𝛿𝜇1
𝜇
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

− 𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜇
] . (5.10)

Here we used fact that H(2𝜋) = 1, while N𝜌 is winding number
around compactified coordinate defined as

x𝜇(𝜎 + 2𝜋) − x𝜇(𝜎) = 2𝜋N𝜇. (5.11)

From this relation we can see that if we choose x𝜇(𝜎) = 0 than
Poisson bracket has linear dependence on winding number. In
cases where we do not have any winding number, we still have
non-commutativity that is proportional to background fields.
Using the expression for sigma derivative of y𝜈 (5.6) and ex-

pression for Poisson bracket of T-dual coordinates (5.8), we can
find non-associative relations. Procedure is the same as for find-
ing Poisson brackets of T-dual theory, we find Poisson bracket of
sigma derivative and integrate with respect to sigma coordinate,
this time integration is done once. Going along with this proce-
dure we have the final result

{y𝜈(𝜎), {y𝜈1 (𝜎1), y𝜈2 (𝜎2)}}

≅ 1
2k

H(𝜎1 − 𝜎2)Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇2

(f −1)𝛽1𝛽Ψ
𝛽

𝜇3

×

[
H(𝜎1 − 𝜎)[2𝛿𝜇1

𝜈
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

− 2𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈

− 𝛿𝜇1
𝜈
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

+ 𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈
]

+H(𝜎2 − 𝜎)[2𝛿𝜇1
𝜈
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

− 2𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈

− 𝛿𝜇1
𝜈
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

+ 𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈
]

]
.

(5.12)

Since Jacobi identity is non-zero for T-dual theory we have that
coordinate dependent RR field produces non-associative theory.
However putting 𝜎 = 𝜎2 = �̄� and 𝜎1 = �̄� + 2𝜋 we have following
Jacobi identity

{y𝜈(�̄�), {y𝜈1 (�̄� + 2𝜋), y𝜈2 (�̄�)}}

≅ Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇2

(f −1)𝛽1𝛽Ψ
𝛽

𝜇3
[2𝛿𝜇1

𝜈
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

− 2𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈

− 𝛿𝜇1
𝜈
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

+ 𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈
] . (5.13)

Examining equation (5.6), we notice that 𝜕𝜎y𝜇 is not only a lin-
ear combination of initial coordinate and its momenta but also
has terms that are proportional to fermionic coordinates. This
might lead us to believe that T-dual theory would have nontrivial
Poisson bracket between T-dual coordinate and fermionic coor-
dinates. However, this is not the case, and it can be directly cal-

culated by finding Poisson bracket between sigma derivative of
T-dual coordinate and fermion coordinates (more details in B).

{𝜃𝛼(𝜎), y𝜇(�̄�)} ≅ 0, {�̄�𝛼(𝜎), y𝜇(�̄�)} ≅ 0. (5.14)

6. Conclusion

In this article we examined type II superstring propagating in
presence of coordinate dependent RR field. This choice of back-
ground was in accordance with consistency conditions for back-
ground field and all calculations were made in approximation
that are linear with respect to the space-time derivative of the RR
field,C𝛼𝛽

𝜇
, which is infinitesimal one.We have also excluded parts

that were non-linear in fermionic coordinates and neglected pure
spinor actions. Using equations of motion for fermionic mo-
menta we obtained action that was expressed in terms of bosonic
coordinates, their derivatives and derivatives of fermionic coordi-
nates.
Action with our choice of background fields possessed transla-

tion symmetry, therefore we use generalized Buscher procedure
that was developed for such cases. By substituting starting action
with auxiliary action we gave up on locality in order to be able to
find T-dual theory. Finding equations of motion of newly intro-
duced Lagrange multipliers we were able to salvage starting ac-
tion giving us assurance that auxiliary action we selected would
produce correct T-dual theory. After this we found equations of
motion for gauge fields and by inserting them into action, we
found T-dual theory.
Having found T-dual theory, we applied T-dual procedure once

again as a more thorough way of checking if action we obtained
was in fact correct T-dual of starting action. Unlike starting ac-
tion, T-dual action was non-local from the start by virtue of con-
taining V (0) term. Applying steps of generalized Buscher pro-
cedure we obtained starting action, again confirming that our
choice of auxiliary action was correct.
We obtained non-commutativity relations in context of T-dual

theory, where we used T-dual transformation laws as a bridge
between Poisson brackets of starting theory and T-dual theory.
T-dual transformation laws were expressed in terms of coordi-
nates and momenta of original theory, which produced non-
commutativity in T-dual theory. From expression for Poisson
brackets (5.8) we can see that non-commutativity is proportional
to infinitesimal part of RR field. Non-commutativity relations are
zero in case when 𝜎 = �̄�, while in case where 𝜎 = �̄� + 2𝜋 we see
the emergence of winding numbers. Noncommutativity param-
eters are linearly dependent on bosonic coordinates x𝜇 as well as
on fermionic ones, 𝜃𝛼 and �̄�𝛼 .
Taking into account Poisson brackets of T-dual coordinates

and expression for sigma derivative of T-dual coordinate we were
able to find non-associative relation for T-dual theory. In gen-
eral case this relation was non-zero and it was proportional to
infinitesimal constant, which is proportional to C𝛼𝛽

𝜇
. In special

case when we put 𝜎1 = 𝜎2 = �̄� and 𝜎3 = �̄� + 2𝜋 we noticed that
non-associativity relation remains constant.
It should be noted that since we did not preform T-dualization

along fermionic coordinates their Poisson structure would re-
main the same as in original theory. However, unlike original the-
ory, T-dual coordinates depend on sigma derivatives of fermionic
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coordinates. This dependence does not affect the Poisson brack-
ets of the T-dual coordinates and fermionic coordinates (5.14). So,
T-dual SUSY algebra has non zero Poisson bracket of the bosonic
coordinates, while the rest ones are zero. In further investigation
we will study fermionic T-dualization and we expect the effect on
the algebra of the fermionic coordinates.

Appendix A: Obtaining 𝜷±
𝝁
Terms

In this paper function 𝛽±
𝜇
(V) emerged in T-dual transformation

laws as a consequence of variation of term that was proportional
to ΔV . Here we will present derivation of this function.
Here we will use substitutions 𝜕+Θ̄𝛼 = 𝜕+�̄�

𝛼 + v𝜈1+ Ψ̄𝛼
𝜈1
, 𝜕−Θ𝛽 =

𝜕−𝜃
𝛽 + Ψ𝛽

𝜈2
v𝜈2− , also we will use F𝛼𝛽𝜌 to represent term containing

infinitesimal constant

∫Σ
d2𝜉𝜕+Θ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕−Θ𝛽 = ∫Σ

d2𝜉𝜖mn𝜕mΘ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕nΘ𝛽

= ∫Σ
d2𝜉

[1
2
𝜖mn𝜕mΘ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕nΘ𝛽

− 1
2
𝜖mn𝜕nΘ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕mΘ𝛽

]
= −1

2 ∫Σ
d2𝜉

[
𝜖mnΘ̄𝛼F𝛼𝛽𝜌𝜕mΔV (0)𝜌𝜕nΘ𝛽

+1
2
𝜖mn𝜕nΘ̄𝛼F𝛼𝛽𝜌𝜕mΔV (0)𝜌Θ𝛽

]
= −1

2 ∫Σ
d2𝜉𝜖mn𝜕mΔV (0)𝜌

[
Θ̄𝛼F𝛼𝛽𝜌𝜕nΘ𝛽 − 𝜕nΘ̄𝛼F𝛼𝛽𝜌Θ𝛽

]
= −1

2 ∫Σ
d2𝜉𝜖mnv𝜌m

[
Θ̄𝛼F𝛼𝛽𝜌𝜕nΘ𝛽 − 𝜕nΘ̄𝛼F𝛼𝛽𝜌Θ𝛽

]
= ∫Σ

d2𝜉v𝜌m𝛽
m
𝜌
. (A.1)

Variation with respect to gauge field v𝜌±, and setting F𝛼𝛽𝜌 =
−(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇 (f −1)𝛽1𝛽 produces desired 𝛽

±
𝜌
functions (3.14), (3.15)

in equations of motion (3.13). Here we have used the prop-
erty that (f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇 (f −1)𝛽1𝛽 , ie. F𝛼𝛽𝜌, is antisymmetric under ex-

change of 𝛼 and 𝛽, this, in combination with the fact that we can
express 𝜕+Θ̄𝜕−Θ as 𝜖nm𝜕nΘ̄𝜕mΘ, removes all terms proportional
to 𝜕+𝜕−, using identity 𝜖

mnΘ̄𝜕m𝜕nΘ = 0.
It should be noted that 𝛽±𝜇(V) functions are not unique, we

could have obtained different function simply by not using us-
ing symmetrization in (A.1). In case of non-symmetric 𝛽±𝜇(V),
all results that have been obtained would take a simpler form.
We have chosen to work with symmetric function because re-
sults that are deduced from this case can be easily reduced, by
neglecting terms, to simpler case.

Appendix B: Poisson Bracket Between Sigma
Derivatives of T-dual Coordinate

In this article, in order to find Poisson brackets of the T-dual coor-
dinates we had to find first Poisson brackets of the sigma deriva-

tive of T-dual coordinates, y′
𝜇
≡ 𝜕𝜎y𝜇(𝜎). In this section we will

demonstrate how to obtain Poisson brackets from Poisson brack-
ets that contain sigma derivatives. We will use canonical form of
the T-dual transformation law (5.6) and standard Poisson alge-
bra, because the initial theory is geometric one. First, we have to
calculate the following Poisson bracket

{𝜕𝜎1y𝜈1 (𝜎1), 𝜕𝜎2y𝜈2 (𝜎2)}

= 1
2k

[
K𝜈2𝜈1

(𝜎2)𝜕𝜎2𝛿(𝜎2 − 𝜎1) − K𝜈1𝜈2
(𝜎1)𝜕𝜎1𝛿(𝜎1 − 𝜎2)

+ 𝜕𝜎1K𝜈1𝜈2
(𝜎1)𝛿(𝜎1 − 𝜎2) − 𝜕𝜎2K𝜈2𝜈1

(𝜎2)𝛿(𝜎2 − 𝜎1)
]
, (B.1)

where K𝜇𝜈(𝜎) is given by (5.9).
On the other side we have

{Δy𝜈1 (𝜎0, 𝜎),Δy𝜈2 (�̄�0, �̄�)}

= ∫
𝜎

𝜎0

d𝜎1 ∫
�̄�

�̄�0

d𝜎2{𝜕𝜎1y𝜈1 (𝜎1), 𝜕𝜎2y𝜈2 (𝜎2)}

= {y𝜈1 (𝜎), y𝜈2 (�̄�)} − {y𝜈1 (𝜎), y𝜈2 (�̄�0)} − {y𝜈1 (𝜎0), y𝜈2 (�̄�)}

+ {y𝜈1 (𝜎0), y𝜈2 (�̄�0)} , (B.2)

where

Δy𝜇(𝜎0, 𝜎) ≡ ∫
𝜎

𝜎0

d𝜎1𝜕𝜎1y𝜇(𝜎1) = y𝜇(𝜎) − y𝜇(𝜎0) . (B.3)

Combining the equations (B.1) and (B.2) we have

{Δy𝜈1 (𝜎0, 𝜎),Δy𝜈2 (�̄�0, �̄�)} =
1
2k ∫

𝜎

𝜎0

d𝜎1 ∫
�̄�

�̄�0

d𝜎2

×
[
K𝜈2𝜈1

(𝜎2)𝜕𝜎2𝛿(𝜎2 − 𝜎1) − K𝜈1𝜈2
(𝜎1)𝜕𝜎1𝛿(𝜎1 − 𝜎2)

+ 𝜕𝜎1K𝜈1𝜈2
(𝜎1)𝛿(𝜎1 − 𝜎2) − 𝜕𝜎2K𝜈2𝜈1

(𝜎2)𝛿(𝜎2 − 𝜎1)
]
. (B.4)

By applying partial integration, it is straightforward to extract the
Poisson bracket of T-dual coordinates given by (5.8).
In paper[13] it has been shown that Poisson brackets between

𝜎 derivatives of coordinates have following form

{𝜕𝜎1X𝜇(𝜎1), 𝜕𝜎2Y𝜈(𝜎2)} ≅ 𝜕𝜎1K𝜇𝜈(𝜎1)𝛿(𝜎1 − 𝜎2)

+ L𝜇𝜈(𝜎1)𝜕𝜎1𝛿(𝜎1 − 𝜎2). (B.5)

Applying integrating twice and using partial integration this
equation reduces to

{X𝜇(𝜎1), Y𝜈(𝜎2)} ≅ −
[
K𝜇𝜈(𝜎1) − K𝜇𝜈(𝜎2) + L𝜇𝜈(𝜎2)

]
𝛿(𝜎1 − 𝜎2).

(B.6)

In our case, we can bring equation (B.1) to the form of equa-
tion (B.5) by making following substitutions
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𝜕𝜎1K𝜈1𝜈2
(𝜎1) = 𝜕𝜎1K𝜈1𝜈2

(𝜎1), 𝜕𝜎2K𝜈2𝜈1
(𝜎2) = 𝜕𝜎2K𝜈2𝜈1

(𝜎2),

K𝜈1𝜈2
(𝜎1) = −L𝜈1𝜈2 (𝜎1), K𝜈2𝜈1

(𝜎2) = −L𝜈2𝜈1 (𝜎2).
(B.7)

Because we chose to work with symmetric 𝛽±
𝜇
function we obtain

duplicated terms in (B.5).
Same procedure can be applied to find Poisson bracket be-

tween T-dual coordinate and fermionic momenta. That is, we
start from Poisson bracket for sigma derivative of T-dual coordi-
nate and fermionic momenta, then integrate once and compare
left and right hand sides.
The step functionH(x) is defined as

H(x) = ∫
x

0
ds𝛿(s) = 1

2𝜋
Σn∈Z ∫

x

0
eins =

⎧⎪⎨⎪⎩
0 if x = 0

1∕2 if 0 < x < 2𝜋 .

1 if x = 2𝜋

(B.8)
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Abstract In one of our previous papers we generalized the
Buscher T-dualization procedure. Here we will investigate
the application of this procedure to the theory of a bosonic
string moving in the weakly curved background. We obtain
the complete T-dualization diagram, connecting the theories
which are the result of the T-dualizations over all possible
choices of the coordinates. We distinguish three forms of
the T-dual theories: the initial theory, the theory obtained T-
dualizing some of the coordinates of the initial theory and
the theory obtained T-dualizing all of the initial coordinates.
While the initial theory is geometric, all the other theories are
non-geometric and additionally non-local. We find the T-dual
coordinate transformation laws connecting these theories and
show that the set of all T-dualizations forms an Abelian group.

1 Introduction

T-duality is a property of string theory that was not encoun-
tered in any point particle theory [1–4]. Its discovery was sur-
prising, because it implies that there exist theories, defined for
essentially different geometries of the compactified dimen-
sions, which are physically equivalent. The origin of T-
duality is seen in the possibility that, unlike a point particle,
the string can wrap around compactified dimensions. But,
no matter if one dimension is compactified on a circle of
radius R or rather on a circle of radius l2s /R, where ls is the
fundamental string length scale, the theory will describe the
string with the same physical properties. The investigation of
T-duality does not cease to provide interesting new physical
implications.

Work supported in part by the Serbian Ministry of Education, Science
and Technological Development, under contract No. 171031.

a e-mail: ljubica@ipb.ac.rs
b e-mail: bnikolic@ipb.ac.rs
c e-mail: sazdovic@ipb.ac.rs

The prescription for obtaining the equivalent T-dual the-
ories is given by the Buscher T-dualization procedure [5,6].
The procedure is applicable along the isometry directions,
which allows the investigation of the backgrounds which do
not depend on some coordinates. It is found that T-duality
transforms geometric backgrounds to the non-geometric
backgrounds with Q flux which are locally well defined, and
these to different types of non-geometric backgrounds, back-
grounds with R flux which are not well defined even locally
[7,8]. A similar prescription can be used to obtain fermionic
T-duality [9,10]. It is argued that the better understanding
of T-duality should be sought for by doubling the coordi-
nates, investigating the theories in which the background
fields depend on both the usual space-time coordinates and
their doubles [11–14], which would make the T-duality a
manifest symmetry.

T-duality enables the investigation of the closed string
non-commutativity. The coordinates of the closed string are
commutative when the string moves in a constant back-
ground. In a 3-dimensional space with the Kalb–Ramond
field depending on one of the coordinates, successive T-
dualizations along isometry directions lead to a theory with
Q flux and the non-commutative coordinates [15–17]. The
novelty in the research is the generalized T-dualization pro-
cedure, realized in [18], addressing the bosonic string mov-
ing in the weakly curved background–constant gravitational
field and coordinate dependent Kalb–Ramond field with an
infinitesimal field strength. The non-commutativity charac-
teristics of a closed string moving in the weakly curved back-
ground was considered in [19].

The generalized procedure is applicable to all the space-
time coordinates on which the string backgrounds depend. In
Ref. [18], it was first applied to all initial coordinates, which
produces a T-dual theory; it was then applied to all the T-dual
coordinates and the initial theory was obtained. In this paper,
we will investigate the application of the generalized T-du-
alization procedure to an arbitrary set of coordinates. Let us
denote the T-dualization along the direction xμ by Tμ and
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the T-dualization along dual direction yμ by Tμ. Choosing d
arbitrary directions, we denote

T a = ◦dn=1T
μn , T i = ◦Dn=d+1T

μn , T = ◦Dn=1T
μn , (1)

Ta = ◦dn=1Tμn , Ti = ◦Dn=d+1Tμn ,
˜T = ◦Dn=1Tμn , (2)

where μn ∈ (0, 1, . . . , D − 1), and ◦ denotes the compo-
sition of T-dualizations. We will apply T-dualizations (1) to
the initial theory, and T-dualizations (2) to its completely T-
dual theory (obtained in [18]). We will prove the following
composition laws:

T i ◦ T a = T , Ti ◦ Ta = ˜T , Ta ◦ T a = 1, (3)

where 1 denotes the identical transformation (T-dualization
not performed). Therefore, the elements 1, T a and Ta , with
d = 1, . . . , D, form an Abelian group. We will find the
explicit form of the resulting theories and the corresponding
T-dual coordinate transformation laws. These results com-
plete the T-dualization diagram connecting all the theories
T-dual to the initial theory.

Throughout the whole article (except for Sect. 9) we
assume that the Kalb–Ramond field depends on all coordi-
nates. In that case all T-dual theories, except the initial theory,
are non-geometric and non-local because they depend on the
variable Vμ, which is a line integral of the derivatives of the
dual coordinates. To all of these theories there corresponds a
flux which is of the same type as the R flux unlike the non-
geometric theories with Q flux, which have a local geometric
description.

In Sects. 9.1 and 9.2, we present an example of the 3-
dimensional torus, T 3 with H-flux, where Kalb–Ramond
field depends only on coordinate x3. Then T-dualizations
along the isometry directions x1 and x2 lead to geometric
background and the T-dualization along x3 leads to non-
geometric background. In Sect. 9.1 putting D = 3, d = 1, 2
with Bμν depending on x3 we reproduce the T-duality chain
of Refs. [15–17].

In Sect. 9.2 we will compare the results of our paper
with those of Ref. [8]. In our manuscript, the background
fields’ argument, the variable Vμ, incorporates all features
of the non-geometric spaces. First, as pointed out in Ref. [8]
it “eludes a geometric description even locally” because it
is a line integral of the derivative. Second, we obtain non-
associativity and breaking of Jacobi identity typical for the
so called R-flux backgrounds. In Sect. 9.3 we present exam-
ple of the 4-dimensional torus T 4 to generalize the case of
Ref. [20] to critical surface.

The generalized T-dualization procedure originates from
the Buscher T-dualization procedure. The first rule in the
prescription is to replace the derivatives with the covariant
derivatives. The new point in the prescription is the replace-
ment of the coordinates in the background fields’ argument

with the invariant coordinates. The invariant coordinates are
defined as the line integrals of the covariant derivatives of the
original coordinates. Both covariant derivatives and invariant
coordinates are defined using the gauge fields. These fields
should be nonphysical, so one requires that their field strength
should be zero. This is realized by adding the corresponding
Lagrange multipliers’ terms. As a consequence of the transla-
tional symmetry one can fix the coordinates along which the
T-dualization is performed and obtain a gauge fixed action.
An important cross-way in the T-dualization procedure is
determined by the equations of motion of the gauge fixed
action. Two equations of motion obtained varying this action
are used to direct the procedure either back to the initial
action or forward to the T-dual action. For the equation of
motion obtained varying the action over the Lagrange mul-
tipliers, the gauge fixed action reduces to the initial action.
For the equation of motion obtained varying the action over
the gauge fields one obtains the T-dual theory. Comparing
the solutions for the gauge fields in these two directions, one
obtains the T-dual coordinate transformation laws.

2 T-duality in the weakly curved background

Let us consider the closed bosonic string propagating in the
background with metric field Gμν , Kalb–Ramond field Bμν

and a dilaton field �, described by the action [3,4]

S[x] = κ

∫

�

d2ξ
√−g

[(1

2
gαβGμν(x) + εαβ

√−g
Bμν(x)

)

×∂αx
μ∂βx

ν + 1

4πκ
�(x)R(2)

]

. (4)

The integration goes over a 2-dimensional world-sheet �

parametrized by ξα (ξ0 = τ, ξ1 = σ ), gαβ is the intrinsic
world-sheet metric, R(2) corresponding 2-dimensional scalar
curvature, xμ(ξ), μ = 0, 1, . . . , D − 1 are the coordinates
of the D-dimensional space-time, κ = 1

2πα′ with α′ being
the Regge slope parameter and ε01 = −1.

2.1 Weakly curved background

The requirement of the quantum conformal invariance of the
world-sheet results in the space-time equations of motion
for the background fields. In the lowest order in the slope
parameter α′ these equations are

Rμν − 1

4
Bμρσ B

ρσ
ν + 2Dμ∂ν� = 0,

DρB
ρ
μν − 2∂ρ�Bρ

μν = 0,

4(∂�)2 − 4Dμ∂μ� + 1

12
BμνρB

μνρ

+4πκ(D − 26)/3 − R = 0. (5)
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Here Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν is the field strength
of the field Bμν , and Rμν and Dμ are the Ricci tensor and the
covariant derivative with respect to the space-time metric.
We will consider one of the simplest coordinate dependent
solutions of (5), the weakly curved background. This back-
ground was considered in Refs. [21–23], where the influence
of the boundary conditions on the non-commutativity of the
open bosonic string has been investigated. The same approx-
imation was considered in [16,19] in context of the closed
string non-commutativity.

The weakly curved background is defined by

Gμν(x) = const,

Bμν(x) = bμν + 1

3
Bμνρx

ρ ≡ bμν + hμν(x),

�(x) = const, (6)

with bμν, Bμνρ = const. This background is the solu-
tion of the space-time equations of motion if the constant
Bμνρ is taken to be infinitesimal and all the calculations
are done in the first order in Bμνρ , so that the curvature
Rμν can be neglected as the infinitesimal of the second
order. Through the whole manuscript (with the exception
of Sect. 9) we assume that the background has the topology
of D-dimensional torus T D , where the Kalb–Ramond field
depends on all coordinates. In Sects. 9.1 and 9.2 we give an
example of the 3-dimensional torus, T 3, with H-flux, where
the Kalb–Ramond field depends only on the coordinate x3,
while in Sect. 9.3 we give an example of the 4-dimensional
torus T 4 with constant background fields.

The assumption that Bμνρ is infinitesimal means that we
consider the D-dimensional torus so large that for any choice
of indices

Bμνρ

RμRνRρ

� 1 (7)

holds [16], where Rμ are the radii of the torus. The H -
flux background, considered in Refs. [8,16], is of the same
type as the weakly curved background. However, this back-
ground depends just on x3 and corresponds to the examples
addressed in Sect. 9 of our paper. The background considered
in the rest of the article depends on all coordinates.

In this paper we will investigate the T-dualization proper-
ties of the action (4) describing the closed string moving in
the weakly curved background. Taking the conformal gauge
gαβ = e2Fηαβ , the action (4) becomes

S[x] = κ

∫

�

d2ξ ∂+xμ�+μν(x)∂−xν, (8)

with the background field composition equal to

�±μν(x) = Bμν(x) ± 1

2
Gμν(x), (9)

and the light-cone coordinates given by

ξ± = 1

2
(τ ± σ), ∂± = ∂τ ± ∂σ . (10)

2.2 Complete T-dualization

The T-dualization of the closed string theory in the weakly
curved background was presented in [18]. The procedure is
related to a global symmetry of the theory

δxμ = λμ. (11)

The symmetry still exists in the presence of the nontrivial
Kalb–Ramond field (6), but only in the case of the trivial
mapping of the world-sheet into the space-time, because in
that case the variation of the action (8)

δS = κ

3
εαβBμνρλρ

∫

d2ξ∂αx
μ∂βx

ν (12)

after partial integration, using the identity εαβ∂α∂β = 0,
becomes

δS = κ

3
Bμνρλρεαβ

∫

d2ξ∂α(xμ∂βx
ν), (13)

which is equal to zero. This means that classically, directions
which appear in the argument of Kalb–Ramond field are also
Killing directions. However, the standard Buscher procedure
cannot be applied to them, because background fields depend
on the coordinates but not on their derivatives.

The T-dual picture of the theory, obtained on applying the
T-dualization procedure to all the coordinates, is given by

S[y] = κ

∫

d2ξ ∂+yμ
��

μν
+
(

�V (y)
)

∂−yν

= κ2

2

∫

d2ξ ∂+yμ�
μν
−
(

�V (y)
)

∂−yν, (14)

where

�
μν
± ≡ − 2

κ
(G−1

E �±G−1)μν = θμν ∓ 1

κ
(G−1

E )μν, (15)

with

GEμν ≡ Gμν − 4(BG−1B)μν,

θμν ≡ − 2

κ
(G−1

E BG−1)μν, (16)

being the effective metric and the non-commutativity param-
eter in Seiberg–Witten terminology of the open bosonic string
theory [24]. The T-dual background fields are equal to

�Gμν
(

�V (y)
) = (G−1

E )μν
(

�V (y)
)

,

�Bμν
(

�V (y)
) = κ

2
θμν

(

�V (y)
)

, (17)
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and their argument is given by

�Vμ(y) = −κ

2

(

�
μν
0− + �

μν
0+
)

�yν

+κ

2

(

�
μν
0− − �

μν
0+
)

�ỹν

= −κθ
μν
0 �yν + (g−1)μν�ỹν . (18)

Here �
μν
0± is the zeroth order value of the field composition

�
μν
± defined in (15) and gμν = Gμν − 4b2

μν and θ
μν
0 =

− 2
κ
(g−1bG−1)μν are the zeroth order values of the effective

fields (16). The variable�ỹμ is the double of the dual variable
�yμ = yμ(ξ)−yμ(ξ0), defined as the following line integral:

�ỹμ =
∫

P
(dτ y′

μ + dσ ẏμ) =
∫

P
dξαεβ

α∂β yμ, (19)

taken along the path P , from the point ξα
0 (τ0, σ0) to the point

ξα(τ, σ ).
The fact that we are working with the weakly curved

background ensures that the T-dual background fields are the
solution of the space-time equations (5). Because both dual
metric �Gμν and dual Kalb–Ramond field �Bμν are linear in
coordinates with infinitesimal coefficients, the dual Christof-
fel symbol ��

νρ
μ and dual field strength �Bμνρ are constant

and infinitesimal. In Eq. (114) of Sect. 8 we will show that
T-dual dilaton field is •� = � − ln det

√
2�+, where �

is constant and �+ is linear in coordinates with infinitesi-
mal coefficients. So, •� is also linear in coordinates with
infinitesimal coefficients, and ∂μ

•� is constant and infinites-
imal. Consequently, Dμ∂ν

•�, ∂ρ
•�Bρ

μν and (∂μ
•�)2 are

infinitesimals of the second order. So, all T-dual space-time
equations, for the metric, for the Kalb–Ramond field and for
dilaton field, are infinitesimals of the second order and as
such are neglected.

The initial theory (8) and its completely T-dual theory (14)
are connected by the T-dual coordinate transformation laws
(eq. (42) of Ref. [18])

∂±xμ = −κ�μν
(

�V
)

∂±yν ∓ 2κ�
μν
0±β∓

ν

(

V
)

, (20)

and its inverse (eq. (66) of Ref. [18])

∂±yμ ∼= −2�∓μν(�x)∂±xν ∓ 2β∓
μ (x), (21)

where β±
μ (x) = ∓ 1

2hμν(x)∂∓xν . It is shown that

T : S[xμ] → S[yμ], ˜T : S[yμ] → S[xμ], (22)

and therefore

T ◦ ˜T = 1. (23)

3 T-dualization along arbitrary subset of coordinates
T a : S[xµ] → S[xi , ya]

In this section, we will learn what theory is obtained if one
chooses to apply the T-dualization procedure to the action (8),
along arbitrary d coordinates xa , T a : S[xμ] → S[xi , ya],
with T a = ◦dn=1T

μn , μn ∈ (0, 1, . . . , D − 1).
The closed string action in the weakly curved background

(6) has a global symmetry (11). One localizes the symmetry
for the coordinates xa , by introducing the gauge fields vaα
and substituting the ordinary derivatives with the covariant
derivatives

∂αx
a → Dαx

a = ∂αx
a + vaα. (24)

The covariant derivatives are invariant under standard gauge
transformations

δvaα = −∂αλa . (25)

In the case of the weakly curved background, in order to
obtain the gauge invariant action one should additionally sub-
stitute the coordinates xa in the argument of the background
fields with their invariant extension, defined by

�xainv ≡
∫

P
dξα Dαx

a =
∫

P
(dξ+D+xa + dξ−D−xa)

= xa − xa(ξ0) + �V a, (26)

where

�V a ≡
∫

P
dξαvaα =

∫

P
(dξ+va+ + dξ−va−). (27)

To preserve the physical equivalence between the gauged and
the original theory, one introduces the Lagrange multipliers
ya and adds term 1

2 ya F
a+− to the Lagrangian, which will force

the field strength Fa+− ≡ ∂+va− − ∂−va+ = −2Fa
01 to vanish.

In this way, the gauge invariant action

Sinv[xμ, xainv, ya]
= κ

∫

d2ξ
[

∂+xi�+i j
(

xi ,�xainv

)

∂−x j

+ ∂+xi�+ia
(

xi ,�xainv

)

D−xa

+ D+xa�+ai
(

xi ,�xainv

)

∂−xi

+ D+xa�+ab
(

xi ,�xainv

)

D−xb

+ 1

2
(va+∂−ya − va−∂+ya)

]

(28)

is obtained, where the last term is equal to 1
2 ya F

a+− up to the
total divergence. Now, we can fix the gauge taking xa(ξ) =
xa(ξ0) and obtain the gauge fixed action

Sfix[xi , va±, ya]

123
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= κ

∫

d2ξ
[

∂+xi�+i j
(

xi ,�V a)∂−x j

+ ∂+xi�+ia
(

xi ,�V a)va− + va+�+ai
(

xi ,�V a)∂−xi

+ va+�+ab
(

xi ,�V a)vb− + 1

2
(va+∂−ya − va−∂+ya)

]

.

(29)

This action reduces to the initial one for the equations of
motion obtained varying over the Lagrange multipliers. The
T-dual action is obtained for the equations of motion for the
gauge fields.

3.1 Regaining the initial action

Varying the gauge fixed action (29) over the Lagrange mul-
tipliers ya one obtains the equations of motion

∂+va− − ∂−va+ = 0, (30)

which have the solution

va± = ∂±xa . (31)

On this solution the background fields’ argument �V a

defined in (27) is path independent and reduces to

�V a(ξ) = xa(ξ) − xa(ξ0). (32)

The gauge fixed action (29) reduces to the initial action (8),
but the background fields’ argument is �Va instead of xi .
However, the action (8) is invariant under the constant shift
of coordinates, so shifting coordinates by xa(ξ0) one obtains
the exact form of the initial action.

3.2 The T-dual action

Using the equations of motion for the gauge fields, we elim-
inate them and obtain the T-dual action.

The equations of motion obtained varying the gauge fixed
action (29) over the gauge fields va± are

�±ai
(

xi ,�V a)∂∓xi + �±ab
(

xi ,�V a)vb∓ + 1

2
∂∓ya

= ±β±
a

(

xi , V a), (33)

where

β±
a

(

xi , V a) = ∓1

2

[

hai (x
i )∂∓xi + hab(x

i )∂∓V b

+hai
(

V a)∂∓xi + hab
(

V a)∂∓V b
]

(34)

is the contribution from the background fields’ argument
�V a , defined in a same way as in Ref. [18], by δV Sfix =
−κ

∫

d2ξ(β+
a δva+ +β−

a δva−). If the initial background �+μν

does not depend on the coordinates xa , the corresponding
beta functions are zero β±

a = 0.

Multiplying Eq. (33) by 2κ�̃ab∓ , defined in (A.7), the
inverse of the background fields composition �±ab, one
obtains

va∓ = −2κ�̃ab∓
(

xi ,�V a)
[

�±bi
(

xi ,�V a)∂∓xi + 1

2
∂∓yb

∓β±
b

(

xi , V a)
]

. (35)

Substituting (35) into the action (29), we obtain the T-dual
action

S[xi , ya]
= κ

∫

d2ξ

[

∂+xi�+i j
(

xi ,�V a(xi , ya)
)

∂−x j

− κ ∂+xi�+ia
(

xi ,�V a(xi , ya)
)

× �̃ab−
(

xi ,�V a(xi , ya)
)

∂−yb

+ κ ∂+ya�̃
ab−
(

xi ,�V a(xi , ya)
)

×�+bi
(

xi ,�V a(xi , ya)
)

∂−xi

+ κ

2
∂+ya�̃

ab−
(

xi ,�V a(xi , ya)
)

∂−yb

]

, (36)

where

�+i j ≡ �+i j − 2κ�+ia�̃
ab− �+bj . (37)

In order to find the explicit value of the background fields
argument �V a(xi , ya), it is enough to consider the zeroth
order of the equations of motion for the gauge fields va± (35)

v
(0)a
± = −2κ�̃ab

0±
[

�0∓bi∂±x (0)i + 1

2
∂±y(0)

b

]

. (38)

Here �̃ab
0± and �0∓bi stand for the zeroth order values of �̃ab±

and �∓bi , and they are defined in (A.11).
Substituting (38) into (27) we obtain

�V (0)a(xi , ya)

= −κ
[

�̃ab
0+�0−bi + �̃ab

0−�0+bi

]

�x (0)i

−κ
[

�̃ab
0+�0−bi − �̃ab

0−�0+bi

]

�x̃ (0)i

−κ

2

[

�̃ab
0+ + �̃ab

0−
]

�y(0)
b − κ

2

[

�̃ab
0+ − �̃ab

0−
]

�ỹ(0)
b . (39)

Here

�ỹ(0)
a =

∫

P
(dτ y(0)′

a + dσ ẏ(0)
a ),

�x̃ (0)i =
∫

P
(dτ x (0)′i + dσ ẋ (0)i ), (40)

are the variables T-dual to the coordinates ya and xi in the
zeroth order in Bμνρ , for bμν = 0, which we call the double
variables.
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Thus, we obtain the explicit form of the T-dual action
and conclude that it is given in terms of the original coor-
dinates xi and the dual coordinates ya originating from the
Lagrange multipliers. However, the background fields’ argu-
ment depends not only on these variables but on their doubles
as well. Because of this the theory is non-local as the double
variables x̃ i and ỹa are defined as line integrals.

The action (36) can be obtained from the initial action (8)
under the following substitutions of the coordinate deriva-
tives and the background fields:

∂±xi → ∂±xi , ∂±xa → ∂±ya, (41)

�+i j → •�+i j , �+ia → •� a
+i ,

�+ai → •�a
+i , �+ab → •�ab+ , (42)

where the dual background fields are

•�+i j = �+i j ,
•� a

+i = −κ�+ib�̃
ba− ,

•�a
+i = κ�̃ab− �+bi ,

•�ab+ = κ

2
�̃ab− , (43)

with�+i j ,�+μν , and �̃ab− defined in (37), (9), and (A.7). The
argument of all T-dual background fields is [xi , V a(xi , ya)].
According to (27) and (39), it is non-local and consequently
non-geometric. Calculating the symmetric and antisymmet-
ric part of the T-dual field compositions (43), we find that the
T-dual metric and Kalb–Ramond field are equal to

•Gi j = Gi j = Gi j − Gia(G̃
−1
E )abGbj

−2κ
(

Bia θ̃
abGbj + Gia θ̃

abBbj

)

− 4Bia(G̃
−1
E )abBbj ,

•Bi j = Bi j = Bi j − κ

2
Gia θ̃

abGbj − Bia(G̃
−1
E )abGbj

−Gia(G̃
−1
E )abBbj − 2κBia θ̃

abBbj ,

•Gab = (G̃−1
E )ab,

•Bab = κ

2
θ̃ab,

•Ga
i = κθ̃abGbi + 2(G̃−1

E )abBbi ,

•Ba
i = κθ̃abBbi + 1

2
(G̃−1

E )abGbi , (44)

where G̃Eab and θ̃ab are defined in (A.6) and (A.10). The
T-dual background fields have the same form as in the flat
background [1,5,25] but in the present case fields Bμν , G̃−1ab

E
and θ̃ab are coordinate dependent.

Comparing the solutions for the gauge fields (31) and (35),
we obtain the T-dual coordinate transformation law

∂∓xa ∼= −2κ�̃ab∓
(

xi ,�V a(xi , ya)
)

×
[

�±bi
(

xi ,�V a(xi , ya)
)

∂∓xi + 1

2
∂∓yb

∓β±
b

(

xi , V a(xi , ya)
)

]

. (45)

4 Inverse T-dualization Ta : S[xi , ya] → S[xµ]

In this section we will show that T-dualization of the action
S[xi , ya], given by (36), along already treated directions ya
leads to the original action.

So, let us localize the global symmetry of the coordinates
ya

δya = λa, (46)

of the action (36). Note that this is the symmetry, despite the
coordinate dependence of the metric (44), due to the invari-
ance of the background fields’ argument [18]. Following the
T-dualization procedure, we substitute the ordinary deriva-
tives with the covariant ones

D±ya = ∂±ya + u±a, (47)

where u±a are gauge fields which transform as δu±a =
−∂±λa . We also substitute coordinates ya in the background
fields’ argument with the invariant coordinates

yinv
a =

∫

P
(dξ+D+ya + dξ−D−ya)

= ya(ξ) − ya(ξ0) + �Ua, (48)

where

�Ua =
∫

P
(dξ+u+a + dξ−u−a). (49)

In this way, adding the Lagrange multiplier term which makes
the introduced gauge fields nonphysical, we obtain the gauge
invariant action

Sinv[xi , ya, yinv
a , za]

= κ

∫

d2ξ

[

∂+xi�+i j
(

xi ,�V a(xi , yinv
a )

)

∂−x j

− κ ∂+xi�+ia
(

xi ,�V a(xi , yinv
a )

)

× �̃ab−
(

xi ,�V a(xi , yinv
a )

)

D−yb

+ κ D+ya�̃
ab−
(

xi ,�V a(xi , yinv
a )

)

×�+bi
(

xi ,�V a(xi , yinv
a )

)

∂−xi

+ κ

2
D+ya�̃

ab−
(

xi ,�V a(xi , yinv
a )

)

D−yb

+ 1

2
(u+a∂−za − u−a∂+za)

]

, (50)

which after fixing the gauge by ya(ξ) = ya(ξ0) becomes

Sfix[xi , u±a, z
a]

= κ

∫

d2ξ

[

∂+xi�+i j
(

xi ,�V a(xi ,�Ua)
)

∂−x j

− κ ∂+xi�+ia
(

xi ,�V a(xi ,�Ua)
)

× �̃ab−
(

xi ,�V a(xi ,�Ua)
)

u−b
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+ κ u+a�̃
ab−
(

xi ,�V a(xi ,�Ua)
)

×�+bi
(

xi ,�V a(xi ,�Ua)
)

∂−xi

+ κ

2
u+a�̃

ab−
(

xi ,�V a(xi ,�Ua)
)

u−b

+ 1

2
(u+a∂−za − u−a∂+za)

]

, (51)

where �V a is defined in (39) and �Ua in (49).

4.1 Regaining the T-dual action

The equations of motion obtained varying the gauge fixed
action (51) over the Lagrange multipliers za

∂+u−a − ∂−u+a = 0, (52)

have the solution

u±a = ∂±ya . (53)

On this solution the variable �Ua defined by (49) is path
independent and reduces to

�Ua(ξ) = ya(ξ) − ya(ξ0), (54)

and the gauge fixed action (51) reduces to the action (36).

4.2 Regaining the initial action

The equations of motion obtained varying the gauge fixed
action (51) over the gauge fields u±a are

κ�̃ab∓
(

xi ,�V a(xi ,�Ua)
)

×
[1

2
u∓b + �±bi

(

xi ,�V a(xi ,�Ua)
)

∂∓xi
]

+ 1

2
∂∓za

= ±κ�̃ab
0∓β±

b

(

xi , V a(xi ,Ua)
)

, (55)

where terms �̃ab
0∓β±

b are the contribution from the variation
over the background field argument

δU Sfix = −κ2
∫

d2ξ
(

δu+a�̃
ab
0−β+

b + δu−a�̃
ab
0+β−

b

)

. (56)

Here β±
a is of the same form as (34) and �̃ab

0∓ is defined in
(A.11).

Let us show that for the equations of motion (55), the
gauge fixed action (51) will reduce to the initial action (8).
Using the fact that �̃ab∓ is inverse to 2κ�±ab, these equations
of motion can be rewritten as

u∓a = −2�±ai
(

xi ,�V a(xi ,�Ua)
)

∂∓xi

−2�±ab
(

xi ,�V a(xi ,�Ua)
)

∂∓zb

±2β±
a

(

xi , V a(xi ,Ua)
)

. (57)

Substituting (57) into (51), using the definition (37) and the
first relation in (A.22) one obtains

S[xi , za]
= κ

∫

�

d2ξ
[

∂+xi�+i j∂−x j + ∂+xi�+ia∂−za

+ ∂+za�+ai∂−xi + ∂+za�+ab∂−zb
]

. (58)

The explicit form of the argument of the background fields
is obtained substituting the zeroth order of Eq. (57) into (49)

U (0)
a = −2bai x

(0)i +Gai x̃
(0)i − 2babz

(0)b +Gabz̃
(0)b. (59)

Consequently, the argument of the background fields �V a ,
defined in (39), is just

V (0)a(xi ,Ua) = za . (60)

So, the action (58) is equal to the initial action (8) with xμ =
(xi , za).

Comparing the solutions for the gauge fields (53) and (57),
we obtain the T-dual transformation law

∂∓ya ∼= −2�±ai (x
i , za)∂∓xi − 2�±ab(x

i , za)∂∓zb

±2β±
a

(

xi , za
)

. (61)

Substituting ∂∓ya to (45) with the help of (60) one finds
∂±xa = ∂±za . Therefore, (61) is the transformation inverse
to (45), which confirms the relation T a ◦ Ta = 1.

5 T-dualization along all undualized coordinates
T i : S[xi , ya] → S[ yµ]

In this section we will T-dualize the action (36), applying
the T-dualization procedure to the undualized coordinates xi .
Substituting the ordinary derivatives ∂±xi with the covariant
derivatives

D±xi = ∂±xi + wi±, (62)

where the gauge fields wi± transform as δwi± = −∂±λi , sub-
stituting the coordinates xi in the background field arguments
with

�xiinv =
∫

P
(dξ+D+xi + dξ−D−xi ), (63)

and adding the Lagrange multiplier term, we obtain the gauge
invariant action

Sinv[xi , xiinv, y]
= κ

∫

d2ξ

[

D+xi�+i j
(

�xiinv,�V a(�xiinv, ya)
)

D−x j

− κ D+xi�+ia
(

�xiinv,�V a(�xiinv, ya)
)
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× �̃ab−
(

�xiinv,�V a(�xiinv, ya)
)

∂−yb

+ κ ∂+ya�̃
ab−
(

�xiinv,�V a(�xiinv, ya)
)

×�+bi
(

�xiinv,�V a(�xiinv, ya)
)

D−xi

+ κ

2
∂+ya�̃

ab−
(

�xiinv,�V a(�xiinv, ya)
)

∂−yb

+ 1

2
(wi+∂−yi − wi−∂+yi )

]

. (64)

Substituting the gauge fixing condition xi (ξ) = xi (ξ0) one
obtains

Sfix[xi , wi±, y]
= κ

∫

d2ξ

[

wi+�+i j
(

�W
)

w
j
−

− κ wi+�+ia
(

�W
)

�̃ab−
(

�W
)

∂−yb

+ κ ∂+ya�̃
ab−
(

�W
)

�+bi
(

�W
)

wi−
+ κ

2
∂+ya�̃

ab−
(

�W
)

∂−yb

+ 1

2
(wi+∂−yi − wi−∂+yi )

]

, (65)

where �Wμ = [

�Wi ,�V a(�Wi , ya)
]

with �Wi defined
by

�Wi ≡
∫

P
(dξ+wi+ + dξ−wi−), (66)

and �V a = �V a(�Wi , ya) is defined in (39), where argu-
ment xi is replaced by �Wi .

5.1 Regaining the T-dual action

The equations of motion for the Lagrange multipliers yi are

∂+wi− − ∂−wi+ = 0, (67)

and they have the solution

wi± = ∂±xi . (68)

For this solution the background field argument �Wi defined
in (66) reduces to

�Wi (ξ) = xi (ξ) − xi (ξ0), (69)

so that the argument �Va becomes

�V a(�Wi , ya) = �V a(xi , ya), (70)

and therefore the gauge fixed action (65) reduces to the action
(36).

5.2 From the gauge fixed action to the completely T-dual
action

The equations of motion obtained varying the gauge fixed
action (65) over wi± are

�±i j (�W )w
j
∓ − κ�±ia(�W )�̃ab∓ (�W )∂∓yb + 1

2
∂∓yi

= ±2κ�±i j�
jμ
∓ β±

μ (W ), (71)

where

β±
μ (V ) = ∓1

2
hμν(V )∂∓V ν . (72)

Terms �±i j�
jμ
∓ β±

μ (W ) are the contribution from the back-
ground fields’ argument, defined by

δU Sfix = −2κ2
∫

d2ξ
(

δwi+�+i j�
jμ
− β+

μ

+δwi−�−i j�
jμ
+ β−

μ

)

, (73)

calculated using (A.15), (A.16), and (39).
Using the fact that the background field composition �±i j

is invese to 2κ�
i j
∓ defined by (A.22), we can rewrite the

equation of motion (71) expressing the gauge fields as

wi∓ = 2κ�
i j
∓(�W )

[

κ�± ja(�W )�̃ab∓ (�W )∂∓yb

−1

2
∂∓y j

]

± 2κ�
iμ
0±β±

μ (W ). (74)

Using the second relation in (A.23), we obtain

wi∓ = −κ�
iμ
∓ (�W )

[

∂∓yμ ∓ 2β±
μ (W )

]

. (75)

Substituting (75) into the gauge fixed action (65), we
obtain

S[y]
= κ

∫

d2ξ

[

∂+yi
(

κ�
i j
− − κ2�ik−�+kl�

l j
−
)

∂−y j

+
(

− κ2�
i j
−�+ jk�

ka− + κ

2
�ia− − κ2�

i j
−�+ jb�̃

ba−
)

× ∂+yi ∂−ya

+
(

− κ2�
aj
− �+ jk�

ki− + κ

2
�ai− − κ2�̃ab− �+bj�

j i
−
)

× ∂+ya ∂−yi + ∂+ya
(κ

2
�̃ab− − κ2�ai− �+i j�

jb
−

− κ2�ai− �+ic�̃
cb− − κ2�̃ac− �+ci�

ib−
)

∂−yb

]

. (76)

Using (A.22), (A.27), and (A.29) one can rewrite this action
as

S[y] = κ2

2

∫

d2ξ ∂+yμ�
μν
−
(

�W
)

∂−yν . (77)
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In order to find the background fields’ argument �Wi , we
consider the zeroth order of Eqs. (75), and we conclude that

�Wi = −κθ
iμ
0 �yμ + (g−1)iμ�ỹμ. (78)

Using (A.28) and (A.23), we find that �V a(�Wi , ya)
defined in (39) equals

�V a(�Wi , ya) = −κθ
aμ
0 �yμ + (g−1)aμ�ỹμ. (79)

Therefore, we conclude that the background fields’ argument
is equal to (18), so that the action (77) is the completely T-dual
action (14), which is in agreement with Ref. [18]. Comparing
the solutions for the gauge fields (68) and (75), we obtain the
T-dual transformation law

∂∓xi ∼= −κ�
iμ
∓
(

�V (y)
)

[

∂∓yμ ∓ 2β±
μ

(

V (y)
)

]

. (80)

One can verify that two successive T-duality transforma-
tions (45) and (80) correspond to the total T-duality transfor-
mation (20). Indeed, the relation (80) is just the i th compo-
nent of this transformation. Substituting ∂±xi from (80) into
(45), using (A.25) and (A.29), we obtain

∂±xa = −κ�
aμ
±
(

�V
)

[

∂±yμ ± 2β∓
μ

(

V
)

]

,

which is just the ath component of the complete T-duality
transformation. So, we confirm that T a ◦ T i = T .

6 Inverse T-dualization along arbitrary subset of the
dual coordinates Ti : S[ yµ] → S[xi , ya]

Finally, in this section we will show that the T-dualization of
the completely T-dual action (14), along arbitrary subset of
the dual coordinates yi leads to T-dual action (36). So, let us
start with the T-dual action

S[y] = κ2

2

∫

d2ξ ∂+yμ�
μν
−
(

�V (y)
)

∂−yν, (81)

which is globally invariant to the constant shift of coordinates
yμ

δyμ = λμ. (82)

We localize this symmetry for the coordinates yi and obtain
the locally invariant action

Sinv[y, yinv
i , zi ]

= κ2

2

∫

d2ξ
[

D+yi�
i j
−
(

�V (yinv
i , ya)

)

D−y j

+ D+yi�
ia−
(

�V (yinv
i , ya)

)

∂−ya

+∂+ya�
ai−
(

�V (yinv
i , ya)

)

D−yi

+ ∂+ya�
ab−
(

�V (yinv
i , ya)

)

∂−yb

+ 1

κ
(u+i∂−zi − u−i∂+zi )

]

, (83)

where D±yi = ∂±yi + u±i are the covariant derivatives.
The gauge fields u±i transform as δu±i = −∂±λi and the
invariant coordinates are defined by yinv

i = ∫

P (dξ+D+yi +
dξ−D−yi ). After fixing the gauge by yi (ξ) = yi (ξ0), the
action becomes

Sfix[ya, u±i , z
i ]

= κ2

2

∫

d2ξ
[

u+i�
i j
−
(

�V (�Ui , ya)
)

u− j

+ u+i�
ia−
(

�V (�Ui , ya)
)

∂−ya

+ ∂+ya�
ai−
(

�V (�Ui , ya)
)

u−i

+ ∂+ya�
ab−
(

�V (�Ui , ya)
)

∂−yb

+ 1

κ
(u+i∂−zi − u−i∂+zi )

]

, (84)

where �Ui = ∫

P (dξ+u+i + dξ−u−i ).

6.1 Regaining the T-dual action

The equations of motion obtained varying the gauge fixed
action (84) over the Lagrange multipliers

∂+u−i − ∂−u+i = 0, (85)

have the solution

u±i = ∂±yi . (86)

On this solution the variable �Ui reduces to

�Ui (ξ) = yi (ξ) − yi (ξ0), (87)

and therefore

�Vμ(�Ui , ya) = �Vμ(y). (88)

So, the action (84) becomes the action (81).

6.2 Obtaining the T-dual action

The equations of motion obtained varying the action (84)
over u±i are

κ�
i j
∓
(

�V (�Ui , ya)
)

u∓ j + κ�ia∓
(

�V (�Ui , ya)
)

∂∓ya

+∂∓zi = ±2κ�
iμ
0∓β±

μ

(

V (Ui , ya)
)

, (89)

where β±
μ are given by (72). The terms with beta function

come from the variation over the argument Ui

δU Sfix = −κ2
∫

d2ξ
(

δu+i�
iμ
0−β+

μ + δu−i�
iμ
0+β−

μ

)

, (90)
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and are calculated using (A.15) and (18). Using the fact that
2κ�∓i j is the inverse of �

i j
±, the equation (89) can be rewrit-

ten as

u∓i = −2�±i j
(

�V (�Ui , ya)
)

[

κ�
ja
∓
(

�V (�Ui , ya)
)

×∂∓ya + ∂∓z j ∓ 2κ�
jμ
0∓β±

μ

(

V (Ui , ya)
)

]

. (91)

Substituting (91) into the gauge fixed action (84), using
(A.25) we obtain

S[zi , ya]
= κ2

2

∫

d2ξ
[ 2

κ
∂+zi�+i j∂−z j + 2∂+zi�+i j�

jb
− ∂−yb

− 2∂+ya�
ai− �+i j∂−z j + ∂+ya�̃

ab− ∂−yb
]

, (92)

which with the help of (A.29) becomes

S[zi , ya] = κ2

2

∫

d2ξ
[ 2

κ
∂+zi�+i j∂−z j

−2∂+zi�+ia�̃
ab− ∂−yb + 2∂+ya�̃

ab− �+bj∂−z j

+∂+ya�̃
ab− ∂−yb

]

. (93)

In order to find the argument of the background fields
�V (�Ui , ya), one considers the zeroth order of Eqs. (91)
and obtains

�U (0)
i = −

[

�0+i j + �0−i j

]

�z(0) j

+
[

�0+i j − �0−i j

]

�z̃(0) j

−κ
[

�0+i j�
ja
0− + �0−i j�

ja
0+
]

�y(0)
a

+κ
[

�0+i j�
ja
0− − �0−i j�

ja
0+
]

�ỹ(0)
a , (94)

where the double variables are defined in analogy with (40).
Substituting (94) into (18), we obtain

�V i (�Ui , ya) = �zi , (95)

and

�V a(�Ui , ya) = −κ
[

�̃ab
0+�0−bi + �̃ab

0−�0+bi

]

�z(0)i

−κ
[

�̃ab
0+�0−bi − �̃ab

0−�0+bi

]

�z̃(0)i

−κ

2

[

�̃ab
0+ + �̃ab

0−
]

�y(0)
b

−κ

2

[

�̃ab
0+ − �̃ab

0−
]

�ỹ(0)
b , (96)

which is exactly (39) with zi = xi . So, we can conclude that
the action (93) is equal to the T-dual action (36).

Comparing the solutions for the gauge fields (86) and (91),
we obtain the T-dual transformation law

∂∓yi ∼= −2�±i j
(

�zi ,�V a(�Ui (z
i , ya), ya)

)

×
[

κ�
ja
∓
(

�zi ,�V a(�Ui (z
i , ya), ya)

)

∂∓ya + ∂∓z j

∓2κ�
jμ
0∓β±

μ

(

zi , V a(Ui (z
i , ya), ya)

)

]

. (97)

These transformations are inverse to (80), so that T i ◦ Ti =
1. Successively applying (97) and (61), using (A.29) and
(A.25), we obtain the i th component of the inverse law of
the total T-dualization (21). Its ath component is (61), so we
confirm that Ta ◦ Ti = T̃ .

7 Group of the T-dual transformation laws

In this section we will recapitulate the coordinate transfor-
mation laws between the theories considered. In Sect. 3, we
performed the T-dualization procedure along the coordinates
xa

T a : S[xμ] → S[xi , ya], (98)

and obtained the following coordinate transformation law:
(45)

∂∓xa ∼= −2κ�̃ab∓
(

xi ,�V a(xi , ya)
)

×
[

�±bi
(

xi ,�V a(xi , ya)
)

∂∓xi + 1

2
∂∓yb

∓β±
b

(

xi , V a(xi , ya)
)

]

(99)

where V a and β±
a are given by (39) and (34). In the zeroth

oder this law implies

x (0)a ∼= V (0)a(xi , ya). (100)

In Sect. 4, starting from the action S[xi , ya] we performed
the T-dualization procedure along the coordinates ya

Ta : S[xi , ya] → S[xμ], (101)

and obtained the transformation law (61)

∂∓ya ∼= −2�±aμ(x)∂∓xμ ± 2β±
a (x), (102)

which is the law inverse to (99) and in the zeroth order it
implies

y(0)
a

∼= U (0)
a (x). (103)

Multiplying the transformation law (99) from the left side
by �±ca(x) ∼= �±ca

(

xi ,�V a(xi , ya)
)

, using (100), we
obtain the transformation law (102). So, we confirm that
T a ◦ Ta = 1.
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In Sect. 5, starting once again from the action S[xi , ya], we
performed the T-dualization procedure along the undualized
coordinates xi

T i : S[xi , ya] → S[yμ], (104)

and obtained the coordinate transformation law (80)

∂∓xi ∼= −κ�
iμ
∓
(

�V (y)
)

[

∂∓yμ ∓ 2β±
μ

(

V (y)
)

]

, (105)

where Vμ and β±
μ are given by (18) and (72). In the zeroth

order it gives

x (0)i ∼= V (0)i (y). (106)

The two successive T-duality transformations (99) and (105)
give the complete transformation (20), so that T a ◦T i = T .

In Sect. 6, starting from the completely T-dual action S[y],
we performed the T-dualization procedure along the coordi-
nates yi

Ti : S[yμ] → S[xi , ya], (107)

and obtained (97)

∂∓yi ∼= −2�±i j
(

�xi ,�V a(�Ui (x
i , ya), ya)

)

×
[

κ�
ja
∓
(

�xi ,�V a(�Ui (x
i , ya), ya)

)

∂∓ya + ∂∓x j

∓2κ�
jμ
0∓β±

μ

(

xi , V a(Ui (x
i , ya), ya)

)

]

, (108)

with Va , Ui , and β±
μ given by (79), (94), and (72). In the

zeroth order this law implies

y(0)
i

∼= U (0)
i (xi , ya). (109)

Multiplying (108) from the left by

�ki∓
(

�xi ,�V a(y)
) ∼= �ki∓

(

�xi ,�V a(�Ui (x
i , ya), ya)

)

,

using (106), we obtain the transformation law (105), so that
T i ◦ Ti = 1. Successively applying (108) and (102), using
(A.29) and (A.25), we obtain the i th component of the inverse
law of the complete T-dualization (21). Its ath component is
(102), so we confirm that Ta ◦ Ti = T̃ .

We can conclude that the elements 1, T a and Ta , with
d = 1, . . . , D, form an Abelian group. The element T a is
the inverse of the element Ta .

8 Dilaton field in the weakly curved background

The T-duality transformation of the dilaton field in the weakly
curved background was considered in Ref. [26]. For com-
pleteness and further use, we give here a brief recapitulation
of some basic steps of the treatment.

It is well known that a dilaton transformation has a quan-
tum origin. So, let us start with the path integral for the gauge
fixed action

Z =
∫

dv
μ
+dv

μ
−dyμe

i Sfix(v±,∂±y), (110)

where

Sfix(v±, ∂±y) = S0 + S1 , (111)

with S1 being the infinitesimal part of the action

S0 = κ

∫

d2ξ [vμ
+�0+μνv

ν− + 1

2
(v

μ
+∂−yμ − v

μ
−∂+yμ)] ,

S1 = κ

∫

d2ξ v
μ
+hμν(V )vν− . (112)

For a constant background (S1 = 0) the path integral is
Gaussian and it equals (det �0+μν)

−1. In our case the back-
ground is coordinate dependent and thus the integral is not
Gaussian. The fact that we work with an infinitesimal param-
eter enables us to show that the final result is formally the
same as in the flat case [26],

Z =
∫

dyμ
1

det(�+μν(V ))
ei

�S(y), (113)

where �S(y) = κ2

2

∫

d2ξ ∂+yμ �
μν
− (V )∂−yν is the complete

T-dual action and �+μν(V ) = Bμν(V ) + 1
2Gμν . Conse-

quently, although for the weakly curved background the func-
tional integration over v± is of the third degree, it produces
formally the same result as in the flat space (where the action
is Gaussian),

•� = � − ln det
√

2�+ab. (114)

Using the expressions for T-dual fields (43) we can find
the relations between the determinants

det(2�±ab) = 1

det(2 •�ab± )
=
√

det Gab

det •Gab

=
√

det Gμν

det •Gμν

, (115)

where because of the relation �±ab = Bab± 1
2Gab we put in

the factor 2 for convenience. The symbol •Gμν denotes met-
ric in the whole space-time after partial T-dualization along
xa directions. With the help of last relation we can show
that the change of space-time measure in the path integral is
correct
√

det Gμν dxidxa → √

det Gμν dxi
1

det(2 �+ab)
dya

= √

det •Gμν dxidya, (116)

when we performed T-dualization T a along xa directions.
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9 Comparison with the existing facts

9.1 T-dualization chain for the background with H flux

In this section we will compare our results with the T-du-
alization chain of Ref. [16]. The coordinates of the D = 3-
dimensional torus will be denoted by x1, x2, x3. Because
of the different notation, the background fields considered in
this paper and those considered in [16], which will be denoted
G and B, are related by

Bμν = −2Bμν, Gμν = Gμν, μ, ν = 1, 2, 3. (117)

Nontrivial components of the background considered in
Ref. [16] are

Gμν = δμν, B12 = Hx3, (118)

which in our notation corresponds to the background fields

Gμν = δμν, B12 = −1

2
Hx3. (119)

Let us first compare the results in the case d = 1, corre-
sponding to the transition

T 1 : torus with H-flux → twisted torus.

To do so, let us perform T-dualization along the direction
x1, T 1 : S[x] → S[y1, x2, x3], for the string moving in the
background (119). The indices take the values a, b ∈ {1} and
i, j ∈ {2, 3}. Because the only nontrivial component of the
Kalb–Ramond field is Bai = − 1

2 Hx3δi2 , the effective fields
are just G̃E

μν = δμν and θ̃ab = 0. So, the T-dual background
fields (44), in the linear order in H , are

•Gi j = δi j ,
•Bi j = 0,

•Gab = δab, •Bab = 0,

•Ga
i = −Hx3δi2,

•Ba
i = 0. (120)

Therefore

•Gμν =
⎛

⎝

1 −Hx3 0
−Hx3 1 0

0 0 1

⎞

⎠ = •Gμν, (121)

and

•Bμν = 0 = •Bμν, (122)

so our result is in agreement with that of Ref. [16].
Now, let us make the comparison in the case d = 2, which

corresponds to the transition

T 1 ◦ T 2 : torus with H-flux → Q-flux non-geometry.

Instead to perform T 2 dualization, from twisted torus to Q-
flux non-geometry as in [16], we will start from the initial
background with H -flux and perform T-dualizations along
x1 and x2, T 1 ◦ T 2 : S[x] → S[y1, y2, x3]. The indices
take the values a, b ∈ {1, 2} and i, j ∈ {3}. Because the
only nontrivial contribution to the Kalb–Ramond field Bab is
B12 = − 1

2 Hx3, the effective background fields are G̃E
ab =

δab, ḠE
i j = δi j , and the only nonzero component of θ̃ab is

θ̃12 = 1
κ
Hx3. The T-dual background fields linear in H are

therefore

•Gi j = δi j ,
•Gab = δab, •Gai = 0, (123)

and

•Bi j = 0, •B12 = 1

2
Hx3, •Ba

i = 0. (124)

Consequently

•Gμν =
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ = •Gμν, (125)

•Bμν = −2 •Bμν =
⎛

⎝

0 −Hx3 0
Hx3 0 0

0 0 0

⎞

⎠ , (126)

so the results of this paper and [16] in this case coincide.

9.2 Non-associativity of R-flux background and breaking
of Jacobi identity

In Refs. [18,19] we obtained T-dual transformation laws con-
necting T-dual coordinates yμ with the initial coordinates
xμ. Here we will reduce our case to the 3-dimensional torus
with H-flux considered in [8]. Then, the full T-dualization
along all coordinates corresponds to the so-called R-flux.
So, we are going to calculate its characteristic features: non-
associativity relation and breaking of Jacobi identity.

We will work in the background of Sect. 9.1 consisting of
euclidean flat metric Gμν and Kalb–Ramond field with one
nontrivial component B12 = − 1

2 Hx3. T-dual transformation
laws for coordinates yμ (μ = 1, 2, 3) are of the form

y′
1

∼= 1

κ
π1 + 1

2
Hx3x ′2, (127)

y′
2

∼= 1

κ
π2 − 1

2
Hx3x ′1, (128)

y′
3

∼= 1

κ
π3, (129)

where π1, π2, π3 are canonically conjugated momenta for
coordinates x1, x2, x3, respectively. The initial space is a
geometric one, so, the standard Poisson algebra is satisfied,
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{xμ(σ ), πν(σ̄ )} = δμ
νδ(σ − σ̄ ),

{xμ, xν} = {πμ, πν} = 0. (130)

From (127)–(129) we obtain

{y′
μ(σ ), y′

ν(σ̄ )} = − 1

2κ
Hεμνρx

′ρδ(σ − σ̄ ), (131)

which, after two partial integrations, produces

{yμ(σ ), yν(σ̄ )} = 1

2κ
Hεμνρ

[

xρ(σ ) − xρ(σ̄ )
]

θ(σ − σ̄ ),

(132)

where εμνρ is the 3-dimensional Levi-Civita tensor (ε123 =
1) and the function θ(σ ) is defined as

θ(σ ) ≡
⎧

⎨

⎩

0 if σ = 0
1/2 if 0 < σ < 2π, σ ∈ [0, 2π ].
1 if σ = 2π

(133)

Using the standard Poisson algebra (130) and transformation
laws (127)–(129), after one partial integration, we get

{{yμ(σ1), yν(σ2)}, yρ(σ3)}
= 1

2κ2 Hεμνρ [θ(σ2 − σ1)θ(σ1 − σ3)

+θ(σ1 − σ2)θ(σ2 − σ3)] , (134)

Now we have all ingredients to calculate the non-
associativity relation

{{yμ(σ1), yν(σ2)}, yρ(σ3)} − {yμ(σ1), {yν(σ2), yρ(σ3)}}
= 1

2κ2 Hεμνρ [2θ(σ3 − σ2)θ(σ2 − σ1)

+θ(σ1 − σ3)θ(σ3 − σ2) + θ(σ3 − σ1)θ(σ1 − σ2)]

(135)

and breaking of Jacobi identity

{yμ(σ1), yν(σ2), yρ(σ3)}
≡ {{yμ(σ1), yν(σ2)}, yρ(σ3)}+{{yν(σ2), yρ(σ3)}, yμ(σ1)}

+{{yρ(σ3), yμ(σ1)}, yν(σ2)}
= 1

κ2 Hεμνρ [θ(σ1 − σ2)θ(σ2 − σ3)

+ θ(σ3 − σ1)θ(σ1 − σ2) + θ(σ2 − σ3)θ(σ3 − σ1)] .

(136)

For example, for σ1 = 2π + σ and σ2 = σ3 = σ one has

{yμ(2π + σ), yν(σ ), yρ(σ )} = − 1

κ2 Hεμνρ. (137)

In the approach of this article, the background of the T-
dual theory depends on the non-local variable Vμ, which
incorporates the main features of the non-geometric spaces.

Reducing our procedure to three dimensions and using the
backgrounds of Refs. [8,16,27], we showed that our structure
of arguments of background fields proves the proposal of
Refs. [8,27] that non-associativity and breaking of Jacobi
identity are features of R-flux background.

9.3 Critical surface

Let us generalize the discussion of Ref. [20] where the
critical surface, which separates equivalent sections of back-
ground fields, generalizes the critical radius. Using the dila-
ton field analysis, namely the relation (115), we can conclude
that T-duality maps the theories with a given

det(2�±ab)

into the theories with

1/ det(2�±ab),

so that all different theories are in the region

det(2�±ab) ≤ 0.

The theories which background fields satisfy the condition
det(2�±ab) = 1, are mapped into each other under T-
duality. This is a generalization of the critical radius and can
be consider as a critical surface. So, relation (115) implies√

det Gab =
√

det •Gab, which means that a dual volume is
equal to the initial one. At the critical surface the extended
symmetry should be expected.

Let us, following [20], give an example of the relation
between the original and T-dual background fields. We will
consider the initial background in the 4-dimensional torus
T 4 given by

Gμν = gδμν, Bμν = bi Ei
μν, (138)

where

E1 =

⎡

⎢

⎢

⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤

⎥

⎥

⎦

, E2 =

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎦

,

E3 =

⎡

⎢

⎢

⎣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎤

⎥

⎥

⎦

, (139)

satisfies

Ei E j = −δi j I + εi jk Ek, ε123 = 1. (140)
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The zero modes of the T-dual metric and T-dual Kalb–
Ramond field (17) for the initial fields (138) are

�Gμν = (G−1
E )μν = g

g2 + b2 I (141)

and

�Bμν = κ

2
θμν = −1

2

bi

g2 + b2 Ei , (142)

with b2 = bibi . They have the same form as the initial fields
(138)

�Gμν = �gδμν,
�Bμν = �bi Ei

μν, (143)

with

�g = g

g2 + b2 , �b = − bi

g2 + b2 . (144)

One easily shows

�g2 + �b2 = 1

g2 + b2 . (145)

In spheric coordinates one has

(g, b1, b2, b3) = (r cos θ, r sin θ cos ϕ,

r sin θ sin ϕ cos ϕ1, r sin θ sin ϕ sin ϕ1),

(146)

so g2 + b2 = r2, and using (144) one obtains

(�g, �b1
, �b2

, �b3
)

=
(

1

r
cos θ,−1

r
sin θ cos ϕ,−1

r
sin θ sin ϕ cos ϕ1,

−1

r
sin θ sin ϕ sin ϕ1

)

. (147)

Therefore, T-duality transforms (r, θ, ϕ, ϕ1) to

(�r , �θ, �ϕ, �ϕ1) =
(

1

r
,−θ, ϕ, ϕ1

)

. (148)

From the relation �±G−1�∓ = − 1
4GE we find

det(2�±μν) = g2

�g2 = (g2 + b2)2 = r4 . (149)

Backgrounds corresponding to r = 1 are mapped into them-
selves. The subset of this is the fixed surface with the condi-
tion

det(2�±μν) = r4 = 1 , θ = 0

or g = 1, bi = 0.

10 Conclusion

In this paper, we considered the closed string propagat-
ing in the weakly curved background (6), composed of a
constant metric Gμν and a linearly coordinate dependent
Kalb–Ramond field Bμν , with infinitesimal field strength. We
investigated the application of the generalized T-dualization
procedure on the arbitrary set of coordinates and obtained
the following T-duality diagram:

Let us stress that generalized T-dualization procedure
enables the T-dualization along arbitrary direction, even if
the background fields depend on these directions. The con-
sequence of this procedure is that the arguments of the back-
ground fields, such as �V a , are non-local. They are non-local
by definition, as they are the line integrals of the gauge fields.
Once the explicit form is obtained the non-locality is seen in
a fact that they depend on double coordinates x̃ and ỹ, which
are the line integrals of the τ and σ derivatives of the original
coordinates. To all the theories considered, except the initial
theory, there corresponds the non-geometric, non-local flux.

The generalized T-dualization procedure was first applied
along arbitrary d (d = 1, . . . , D − 1) coordinates xa =
{xμ1 , . . . , xμd }. We obtained the T-dual action S[xi , ya],
given by Eq. (36) with the dual background fields equal to

•�+i j = �+i j ,
•� a

+i = −κ�+ib�̃
ba− ,

•�a
+i = κ�̃ab− �+bi ,

•�ab+ = κ

2
�̃ab− . (150)

The argument of all background fields, [xi , V a(xi , ya)],
depends nonlinearly on coordinates xi , ya through their dou-
bles x̃ i , ỹa [see (39) and (40)]. All actions S[xi , ya] are phys-
ically equivalent, but they are described with coordinates
xi = {xμd+1 , . . . , xμD }, for the untreated directions and dual
coordinates ya = {yμ1 , . . . , yμd }, for the dualized directions.
The case d = D corresponds to the completely T-dual action
with the T-dual fields κ

2 �
μν
−
(

V (y)
)

and the case d = 0 to the
initial action with the background �+μν(x).

Applying the procedure to the T-dual action along dual
directions ya = {yμ1 , . . . , yμd } we obtained the initial
theory, and applying it to the untreated directions xi =
{xμd+1 , . . . , xμD } we obtained the completely T-dual the-
ory. All these derivations confirmed that the set of all T-
dualizations forms an Abelian group. The neutral element
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of the group is the unexecuted T-dualization, while the T-
dualizations along some subset of original directions T a is
inverse to the T-dualizations along the set of the correspond-
ing dual directions Ta .
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Appendix A: The background field compositions

The background field compositions�±μν of the initial theory
are

�±μν = Bμν ± 1

2
Gμν, (A.1)

whereGμν and Bμν are the initial metric and the initial Kalb–
Ramond field. The background field compositions �

μν
± of the

T-dual theory are

�
μν
± ≡ − 2

κ
(G−1

E �±G−1)μν = θμν ∓ 1

κ
(G−1

E )μν, (A.2)

with GEμν being the effective metric

GEμν ≡ Gμν − 4(BG−1B)μν, (A.3)

and θμν being the parameter of non-commutativity

θμν ≡ − 2

κ
(G−1

E BG−1)μν. (A.4)

These background field compositions satisfy

�±μν�
νρ
∓ = �

ρν
± �∓νμ = 1

2κ
δρ
μ. (A.5)

Let us define the analogs of �
μν
± in the d- and D − d-

dimensional subspaces determined by coordinates xa =
{xμ1 , . . . , xμd } and xi = {xμd+1 , . . . , xμD }, where d =
1, 2, . . . , D − 1. The effective metrics in these subspaces
are defined by

G̃Eab ≡ Gab − 4Bac(G̃
−1)cd Bdb,

ḠEi j ≡ Gi j − 4Bik(Ḡ
−1)kl Bl j , (A.6)

where G̃ab ≡ Gab and Ḡi j ≡ Gi j . Using these we define
the following field compositions:

�̃ab± ≡ − 2

κ
(G̃−1

E )ac�±cd(G̃
−1)db,

�̄
i j
± ≡ − 2

κ
(Ḡ−1

E )ik�±kl(Ḡ
−1)l j , (A.7)

which are in fact the inverses of 2κ�∓ab and 2κ�∓i j

�̃ab± �∓bc = �∓cb�̃
ba± = 1

2κ
δac ,

�̄
i j
±�∓ jk = �∓k j �̄

j i
± = 1

2κ
δik . (A.8)

Analogously as the fields theta �
μν
± defined in the whole

space by (A.2), the theta fields defined in the subspaces can
be separated into antisymmetric and symmetric parts as

�̃ab± = θ̃ab ∓ 1

κ
(G̃−1

E )ab,

�̄
i j
± = θ̄ i j ∓ 1

κ
(Ḡ−1

E )i j , (A.9)

where

θ̃ab ≡ − 2

κ
(G̃−1

E )acBcd(G̃
−1)db,

θ̄ i j ≡ − 2

κ
(Ḡ−1

E )ik Bkl(Ḡ
−1)l j . (A.10)

In the zeroth order the quantities �±μν , �
μν
± , ˜�ab± , and

�̄
i j
± reduce to

�0±μν = bμν ± 1

2
Gμν,

�
μν
0± = − 2

κ
(g−1)μρ�0±ρσ (G−1)σν = θ

μν
0 ∓ 1

κ
(g−1)μν,

˜�ab
0± = − 2

κ
(g̃−1)ac �0±cd(G̃

−1)db = θ̃ab0 ∓ 1

κ
(g̃−1)ab,

�̄
i j
0± = − 2

κ
(ḡ−1)ik �0±kl(Ḡ

−1)l j = θ̄
i j
0 ∓ 1

κ
(ḡ−1)i j ,

(A.11)

where the zeroth order effective metrics are

gμν = Gμν − 4bμρ(G−1)ρσbσν,

g̃ab = Gab − 4bac(G̃
−1)cdbdb,

ḡi j = Gi j − 4bik(Ḡ
−1)klbl j , (A.12)

and the zeroth order non-commutativity parameters are

θ
μν
0 = − 2

κ
(g−1)μρbρσ (G−1)σν,

θ̃ab0 = − 2

κ
(g̃−1)ac bcd(G̃

−1)db

θ̄
i j
0 = − 2

κ
(ḡ−1)ik bkl(Ḡ

−1)l j . (A.13)
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Quantities �0±μν , �
μν
0±, ˜�ab

0±, and �̄
i j
0± satisfy

�0±μν�
νρ
0∓ = �

ρν
0±�0∓νμ = 1

2κ
δρ
μ,

�0±ab�̃
bc
0∓ = �̃cb

0±�0∓ba = 1

2κ
δca,

�0±i j �̄
jk
0∓ = �̄

k j
0±�0∓ j i = 1

2κ
δki . (A.14)

The non-commutativity parameters theta �
μν
± , �̃ab± , and

�̄
i j
± can be expressed as

�
μν
± = �

μν
0± − 2κ�

μρ
0±hρσ �σν

0±,

�̃ab± = �̃ab
0± − 2κ�̃ac

0±hcd�̃db
0±,

�̄
i j
± = �̄

i j
0± − 2κ�̄ik

0±hkl�̄
l j
0±. (A.15)

Appendix A.1: Relations between field compositions

In Sect. 3.2 we introduced the background field composition

�±i j ≡ �±i j − 2κ�±ia�̃
ab∓ �±bj , (A.16)

and analogously we define

˜�±ab ≡ �±ab − 2κ�±ai �̄
i j
∓�± jb. (A.17)

Here we will show that these quantities are the inverses of
the ordinary non-commutativity parameters theta, projected
to the i- and a-subspaces [see (A.22)].

Let us express the tensors �±μν and �
μν
± , which satisfy

(A.5), in a block-wise form as

�±μν =
(

�±i j �±ib

�±aj �±ab

)

, �
μν
± =

(

�
i j
± �ib±

�
aj
± �ab±

)

.

(A.18)

We will use the definition of block-wise inversion, which
states that the inverse of the matrix of the form

M =
(

A B
C D

)

(A.19)

equals

M−1

=
(

(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

)

.

(A.20)

Applying (A.20) to the first matrix in (A.18), Eq. (A.5)
implies

2κ�
i j
∓ = (

�±i j − 2κ�±ia�̃
ab∓ �±bj

)−1
,

2κ�ib∓ = −2κ�̄
i j
∓�± ja(�±ab − 2κ�±ak�̄

kl∓�±lb)
−1,

2κ�
aj
∓ = −2κ�̃ab∓ �±bi (�±i j − 2κ�±ic�̃

cd∓ �±d j )
−1,

2κ�ab∓ = (�±ab − 2κ�±ai �̄
i j
∓�± jb)

−1, (A.21)

and we can conclude that (A.16) and (A.17) are the inverses
of 2κ�

i j
∓ and 2κ�ab∓ , respectively. So, we can write

�±i j�
jk
∓ = �

k j
∓ �± j i = 1

2κ
δki ,

˜�±ab�
bc∓ = �cb∓ ˜�±ba = 1

2κ
δca, (A.22)

and

�ib∓ = −2κ�̄
i j
∓�± ja�

ab∓ ,

�
aj
∓ = −2κ�̃ab∓ �±bi�

i j
∓. (A.23)

Applying (A.20) to the second matrix in (A.18), Eq. (A.5)
implies

2κ�∓i j = (�
i j
± − 2κ�ia±˜�ab∓�

bj
± )−1,

2κ�∓ib = −2κ�∓i j�
ja
± (�ab± − 2κ�ak± �∓kl�

lb±)−1,

2κ�∓aj = −2κ˜�ab∓�bi± (�
i j
± − 2κ�ic±˜�∓cd�

d j
± )−1,

2κ�∓ab = (�ab± − 2κ�ai± �∓i j�
jb
± )−1, (A.24)

so using (A.8) we conclude that

�̄
i j
± = �

i j
± − 2κ�ia±˜�ab∓�

bj
± ,

�̃ab± = �ab± − 2κ�ai± �∓i j�
jb
± , (A.25)

and

�∓ib = −2κ�∓i j�
ja
± �∓ab,

�∓aj = −2κ˜�∓ab�
bi±�∓i j . (A.26)

Let us derive some useful relations between these quan-
tities. Equation (A.5), for μ = a, ν = i and μ = i , ν = a,
becomes

�±ab�
bi∓ = −�±aj�

j i
∓ ,

�±i j�
ja
∓ = −�±ib�

ba∓ , (A.27)

while taking μ = a, ν = b and μ = i , ν = j we obtain

�±ac�
cb∓ + �±ai�

ib∓ = 1

2κ
δba ,

�±ia�
aj
∓ + �±ik�

k j
∓ = 1

2κ
δ
j
i . (A.28)

Multiplying Eq. (A.27) from the left with �̃ca∓ and from the
right with �̄∓ik we get the relation

�ci∓�±ik = −�̃ca∓ �±ak, (A.29)

while multiplying Eq. (A.28) from the right with �̄ki∓ and
from the left with �̃±ac, we obtain

�ka∓ ˜�±ac = −�̄ki∓�±ic. (A.30)

123



Eur. Phys. J. C (2015) 75 :576 Page 17 of 17 576

References

1. A. Giveon, M. Porrati, E. Rabinovici, Phys. Rep. 244, 77–202
(1994)

2. E. Alvarez, L. Alvarez-Gaume, Y. Lozano, Nucl. Phys. Proc. Suppl.
41, 1 (1995)

3. B. Zwiebach,AFirst Course in String Theory, 2nd edn. (Cambridge
University Press, 2009)

4. K. Becker, M. Becker, J.H. Schwarz, String Theory and M-
Theory—A Modern Introdution (Cambridge University Press,
2007)

5. T.H. Buscher, Phys. Lett. B 201(4), 466 (1988)
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Abstract We consider the closed string moving in a weakly
curved background and its totally T-dualized background.
Using T-duality transformation laws, we find the structure
of the Poisson brackets in the T-dual space corresponding
to the fundamental Poisson brackets in the original theory.
From this structure we see that the commutative original
theory is equivalent to the non-commutative T-dual theory,
whose Poisson brackets are proportional to the background
fluxes times winding and momentum numbers. The non-
commutative theory of the present article is more nonge-
ometrical than T-folds and in the case of three space-time
dimensions corresponds to the nongeometric space-time with
R-flux.

1 Introduction

It is well known that the open string endpoints, attached
to a Dp-brane, are non-commutative [1–12]. The non-
commutativity is implied by the fact that for the solution
of the boundary conditions the initial coordinate is given as a
linear combination of the effective coordinate and the effec-
tive momentum, which have a nonzero Poisson bracket (PB).
In the constant background case, the coefficient in front of
the momenta is proportional to the Kalb–Ramond field Bμν ,
whose presence is crucial in gaining the non-commutativity.

The closed string does not have endpoints and in the flat
space the boundary conditions are satisfied automatically.
But, to understand the closed string non-commutativity, we
are going to use a explanation similar to the open string case.
We will express the closed string coordinates in terms of
the coordinates and momenta of some other space. The rela-
tion between different spaces will be established using the
T-duality transformations.

a e-mail: ljubica@ipb.ac.rs
b e-mail: bnikolic@ipb.ac.rs
c e-mail: sazdovic@ipb.ac.rs

The T-dualization along isometry directions, and the con-
struction of T-dual theory was first realized through a Buscher
procedure [13,14]. The procedure is in fact a localization
of the translation invariance symmetry, in which beside the
covariantization of derivatives one adds the Lagrangian mul-
tiplier term to the action, which ensures the physical equiv-
alence of the initial and the T-dual theory.

In flat space, T-duality relates σ -derivatives of the coor-
dinates of the original theory with the momenta of its T-dual
theory, and vice versa. As the momenta of the original the-
ory are taken to be commutative, it follows that the coor-
dinates commute as well. So, in flat space there is no non-
commutativity of the closed string T-dual coordinates. This
is in agreement with the fact that T-duality is a canonical
transformation in the flat space, and with the fact that PB’s
are invariant under such transformations.

The closed string non-commutativity was first observed
in the papers [15], and investigated further in [16–20], where
it was found that the commutators of the coordinates are
proportional to the flux and the winding number.

Let us briefly describe the result of Ref. [16], following its
notation. After T1-dualization along the X1 coordinate, one
obtains the twisted torus with coordinates Y a(a = 1, 2, 3)

and f -flux. After additional T2-dualization along X2 = Y 2

one obtains the nongeometric background with coordinates
Za and Q-flux. Using the standard Buscher prescription one
cannot perform T3-dualization along the coordinate X3 =
Y 3 = Z3 because the Kalb–Ramond field Bab depends on
Z3. But it is argued in Refs. [16,21,22] that T3-dualization
leads to a nongeometric background with R-flux configura-
tion and W a coordinates presented in the T-duality chain,

Habc, Xa T1−→ f a
bc, Y a T2−→ Qab

c , Za T3−→ Rabc, W a . (1.1)

In the paper [16], the non-commutativity of the nongeomet-
ric background (Za with Q-flux) has been obtained using
its T2-duality connection Za = Za(Y a) with the geometric
background (twisted torus with Y a and f -flux).
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In our paper [23], we performed a generalized Buscher
T-dualization procedure along all the coordinate directions.
It corresponds to the T = T1 ◦ T2 ◦ · · · ◦ TD-duality relation
yμ = yμ(xμ), connecting the beginning and the end of the
T-duality chain:

Hμνρ, xμ T1−→ ( f1)μνρ, xμ
1

T2−→ ( f2)μνρ, xμ
2

T3−→ · · ·
TD−→ ( fD)μνρ, xμ

D = yμ, (1.2)

where ( fi )μνρ and xμ
i , (i = 1, 2, . . . , D) are fluxes and

the coordinates of the corresponding configuration. In D-
dimensional space-time it is possible to perform T-duality
along any subset of coordinates. For simplicity, in the present
article we will T-dualize all the directions. The general case
will be published separately.

We considered the bosonic string moving in a background
with constant metric Gμν = const and the linear Kalb–
Ramond field Bμν = bμν + 1

3 Bμνρxρ , where the field
strength of the Kalb–Ramond field Bμνρ is infinitesimally
small (for more details see the introductory part of Sect. 2).
The T-dual theory obtained is of the same form as the initial
theory, so that the T-dual string moves in the T-dual back-
ground, but in the doubled space given by the coordinates
yμ, ỹμ. The dual coordinates satisfy the following condi-
tions: ẏμ = ỹ′

μ, y′
μ = ˙̃yμ. The improvement, in compar-

ison to the standard Buscher procedure, is the covarianti-
zation of the coordinates xμ. In fact, because xμ is gauge
dependent, it is replaced by the gauge invariant expression
�xμ

inv = ∫
dξα Dαxμ. As pointed out in [21,22], the T-dual

background of the present paper is of the ‘new class that is
even more nongeometrical than T -folds’. Unlike the T-folds,
this background is not a standard manifold even locally. In
our formulation, this stems from the fact that the argument of
the background fields �xμ

inv is the line integral. Some authors
argued that such a spaces (for D = 3 known as R-flux back-
ground) involve nonassociative geometries [24].

In the canonical formalism, the T-dual variables can be
expressed in terms of the original ones in the simple form
y′
μ

∼= 1
κ
πμ − β0

μ [x] and �πμ ∼= κx ′μ + κ2θ
μν
0 β0

ν [x] . The
infinitesimal expression β0

μ is an improvement in compari-
son to the flat background case. Because the coordinates and
momenta of the original theory do not commute, β0

μ is the
source of the closed string non-commutativity.

We will follow the main idea of Ref. [16], using the T-
duality transformation laws between the T-dual backgrounds
in order to study the non-commutativity of the coordinates.
In the paper [16], the T2-duality connects coordinates Za =
Za(Y a) of the nongeometric background (Za with Q-flux)
and the geometric background (twisted torus with Y a and
f -flux). We performed the T-dualization procedure along all
the coordinates, and we obtained the T-duality transformation
yμ = yμ(xμ) of the locally nongeometric background (the
end of the chain (1.2) with yμ and fD-flux) and the geometric

background (torus with H -flux in the beginning of the chain
(1.2)). In both approaches it was assumed that the geometric
backgrounds (described by Y a in [16] and by Xa in our paper)
have the standard commutation relations. The PB between the
yμ is proportional to the flux Bμνρ and the winding number
Nμ of the initial theory. In addition, we obtain the complete
algebra of the T-dual coordinates and momenta in terms of
the fluxes.

For D = 3, the case of the present article corresponds to
T-duality, T = T1 ◦ T2 ◦ T3, which connects the coordinates
W a = W a(Xa) of the nongeometric background (W a with
R-flux) and the geometric background (torus with Xa and
H -flux). In comparison to Ref. [16], this procedure contains
one T -dualization more, T3-dualization along the coordinate
X3 = Y 3 = Z3, which cannot be done using the standard
Buscher prescription because the Kalb–Ramond field Bab

depends on Z3. Thus, in terms of Ref. [16], we obtained the
non-commutativity of the nongeometric background, with
R-flux configuration. This background does not look like the
conventional space even locally.

At the end we give three appendices. In the first one we
derive in detail the expression for the dual momentum �πμ,
while in the second one we present a list of the fluxes used
in the paper. The third appendix contains the mathematical
details regarding the transition from PB {�X,�Y } to PB
{X, Y }.

2 Bosonic string in the weakly curved background
and its T-dual picture

Let us consider the closed string moving in the D-dimensional
space-time, in the coordinate xμ(τ, σ ), μ = 0, . . . , D − 1
dependent background, described by the action

S [x] = κ

∫

�

d2ξ ∂+xμ�+μν [x] ∂−xν . (2.1)

We suppose that all the coordinates are compact, with radii
Rμ. The background is defined by the space-time metric Gμν

and the antisymmetric Kalb–Ramond field Bμν ,

�±μν [x] = Bμν [x] ± 1

2
Gμν [x] . (2.2)

The light-cone coordinates are

ξ± = 1

2
(τ ± σ), ∂± = ∂τ ± ∂σ , (2.3)

and the action is given in the conformal gauge (the world-
sheet metric is taken to be gαβ = e2Fηαβ ).

World-sheet conformal invariance is required as a con-
dition of having a consistent theory on the quantum level
[25–28]. This results in the following space-time equations
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for the background fields:

Rμν − 1

4
Bμρσ B ρσ

ν = 0, Dρ Bρ
μν = 0, (2.4)

in the lowest order in the slope parameter α′ and for the
constant dilaton field � = const. Here

Bμνρ = ∂μ Bνρ + ∂ν Bρμ + ∂ρ Bμν (2.5)

is the field strength of the field Bμν , and Rμν and Dμ are
Ricci tensor and the covariant derivative with respect to the
space-time metric.

We will consider a weakly curved background [11,12,16,
23,29–31] defined by

Gμν [x] = const,

Bμν [x] = bμν + hμν [x] = bμν + 1

3
Bμνρxρ,

bμν, Bμνρ = const. (2.6)

Here, the constant Bμνρ is infinitesimally small, which,
according to [15,16,18–20], means that we will assume that
the D-dimensional torus is so large that for any μ, ν, ρ

Bμνρ

Rμ Rν Rρ

� 1, (2.7)

where Rμ(μ = 0, 1, . . . D − 1) are the radii of the torus. For
simplicity we will take R0 = R1 = · · · = RD−1 and rescale
the background fields according to Appendix A of Ref. [16].
The background (2.6) is the solution of Eq. (2.4) in the first
order in the Bμνρ approximation of closed string theory of
Eq. (2.1).

2.1 T-dual bosonic string

The T-dualization of closed string theory in a weakly curved
background was the subject of investigation in [23]. There
we presented the T-dualization procedure performed along
all the coordinates, in a background which depends on these
coordinates. Here we will give a short overview of the most
important results.

The T-dual picture of the theory is given by

�S [y] = κ

∫
d2ξ ∂+yμ

��
μν
+ [�V [y]] ∂−yν

= κ2

2

∫
d2ξ ∂+yμ�

μν
− [�V [y]] ∂−yν, (2.8)

with

�
μν
± ≡ − 2

κ
(G−1

E �±G−1)μν = θμν ∓ 1

κ
(G−1

E )μν,

G Eμν ≡ Gμν − 4(BG−1 B)μν. (2.9)

The dual background fields, defined in analogy with Eq. (2.2)
as ��

μν
± = � Bμν ± 1

2
�Gμν , have the form

�Gμν [�V [y]] = (G−1
E )μν [�V [y]],

�Bμν [�V [y]] = κ

2
θμν [�V [y]]. (2.10)

Using the terminology introduced in the open string case,
they are equal to the inverse of the effective metric G E

μν and
proportional to the non-commutativity parameter θμν . Their
argument is given by

�V μ [y] = −κθ
μν
0 �yν + (g−1)μν�ỹν, (2.11)

where

�yμ =
∫

P

(dτ ẏμ + dσ y′
μ) = yμ(ξ) − yμ(ξ0),

�ỹμ =
∫

P

(dτ y′
μ + dσ ẏμ),

(2.12)

and

gμν = Gμν − 4(bG−1b)μν, θ
μν
0 = − 2

κ
(g−1bG−1)μν

(2.13)

are constant finite parts of the effective metric and the non-
commutativity parameter. The variable �ỹμ is path indepen-
dent on the zeroth order equation of motion. T-dual theory is
defined in the doubled space, defined by the two coordinates
yμ and ỹμ, related by the expressions ẏμ = ỹ′

μ, y′
μ = ˙̃yμ.

2.2 Transformation laws

The T-duality transformation connecting the variables of the
closed string theory in the weakly curved background and its
T-dualized string theory is [23]

∂±xμ ∼= −κ�
μν
± [�V ]

[
∂±yν ± 2β∓

ν [V ]
]
, (2.14)

with

β±
μ [x] = 1

2
(β0

μ ± β1
μ) = ∓1

2
hμν [x] ∂∓xν,

β0
μ [x] = hμν [x] x ′ν, β1

μ [x] = −hμν [x] ẋν . (2.15)

From Eq. (2.14) we can find the transformation law for ẋμ

and x ′μ:

ẋμ ∼=−κθμν [�V ] ẏν +(G−1
E )μν [�V ] y′

ν +(g−1)μνβ0
ν [V ]

+κθ
μν
0 β1

ν [V ] (2.16a)

x ′μ ∼= (G−1
E )μν [�V ] ẏν − κθμν [�V ] y′

ν − κθ
μν
0 β0

ν [V ]

−(g−1)μνβ1
ν [V ] . (2.16b)

Using the expression for the canonical momentum of the
original theory,

πμ = δS

δ ẋμ
= κ

[
Gμν ẋν − 2Bμν [x] x ′ν] , (2.17)
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and the T-dual canonical momentum,

�πμ = δ �S

δ ẏμ

= κ(G−1
E )μν [�V [y]] ẏν

−κ2θμν [�V [y]] y′
ν − κ(g−1)μνβ1

ν [V [y]], (2.18)

derived in Appendix A, we rewrite the above transformations
in canonical form:

x ′μ ∼= 1

κ

�πμ − κθ
μν
0 β0

ν [V ], (2.19a)

πμ
∼= κy′

μ + κβ0
μ [V ], (2.19b)

with β0
μ [V ] defined in Eq. (2.15). It is shown in Ref. [23]

that the T-dual of the T-dual action is the original one. The
corresponding T-dual transformation of the variables law is
the inverse of Eq. (2.14),

∂±yμ
∼= −2�∓μν [�x] ∂±xν ∓ 2β∓

μ [x], (2.20)

and so the transformation laws for ẏμ and y′
μ are equal to

ẏμ
∼= −2Bμν [x] ẋν + Gμνx ′ν + β1

μ [x], (2.21a)

y′
μ

∼= Gμν ẋν − 2Bμν [x] x ′ν − β0
μ [x]. (2.21b)

Using Eqs. (2.17) and (2.18) we obtain the canonical form
of the T-dual transformations,

y′
μ

∼= 1

κ
πμ − β0

μ [x] , (2.22a)

�πμ ∼= κx ′μ + κ2θ
μν
0 β0

ν [x]. (2.22b)

In the zeroth order one has x (0)μ ∼= V μ, and it is easy to see
that Eq. (2.22) is the inverse of Eq. (2.17).

Because the T-dual theory is defined in the doubled space,
we will need the canonical expression for ỹ′

μ = ẏμ. Using
Eqs. (2.21a) and (2.17), we obtain

ỹ′
μ

∼= − 2

κ

(

B [�x] + 1

2
h [x]

)

μν

(G−1)νρπρ

+
(

G E [�x] − 2h [x] G−1b
)

μν
x ′ν . (2.23)

3 Non-commutativity relations between canonical
variables

We want to establish the relation between the Poisson struc-
tures of the original and T-dual theory. The initial theory is
the geometric one, described by the canonical variables xμ

and πμ. Thus, we choose the standard form of the PB’s in
the original space, which are

{xμ(σ ), πν(σ̄ )} = δμ
ν δ(σ − σ̄ ), {xμ(σ ), xν(σ̄ )} = 0,

{πμ(σ), πν(σ̄ )} = 0. (3.1)

The T-dual theory is the nongeometric one, defined in the
doubled space, with two coordinates yμ and ỹμ, connected

by relations ẏμ = ỹ′
μ, y′

μ = ˙̃yμ. Using the T-duality transfor-
mation laws, we search for the corresponding Poisson struc-
ture in T-dual theory i.e. the expressions for the PB’s between
the T-dual string coordinates yμ(σ ), ỹμ(σ ) and momenta
�πμ(σ ). This is done considering the brackets between

�Yμ(σ, σ0) =
σ∫

σ0

dη Y ′
μ(η) = Yμ(σ ) − Yμ(σ0) (3.2)

Yμ = yμ, ỹμ and calculating the equal time commutators.
The fact that T-dual coordinates under T-duality transform
to both coordinate and momentum dependent expressions
enables non-commutativity. The relation of the form

{X ′
μ(σ ), Y ′

ν(σ̄ )} ∼= K ′
μν(σ )δ(σ − σ̄ ) + Lμν(σ )δ′(σ − σ̄ )

(3.3)

implies the following relation (derived in Appendix C)
between the coordinates

{Xμ(τ, σ ), Yν(τ, σ̄ )}
∼= − [

Kμν(σ ) − Kμν(σ̄ ) + Lμν(σ̄ )
]
θ(σ − σ̄ ), (3.4)

where θ(σ ) is the step function defined in Eq. (8.6).
In flat space the coordinate dependent part of the Kalb–

Ramond field is absent, hμν = 0, and consequently β0
μ = 0.

Thus, from Eqs. (2.22a) and (2.22b) follows y′
μ

∼= 1
κ
πμ and

�πμ ∼= κx ′μ. Therefore, the PB of the canonical variables of
the T-dual theory remain the standard ones, the same as in the
original theory. So, the nontrivial infinitesimal expressionβ0

μ,
which exists only in the coordinate dependent backgrounds,
is the source of the closed string non-commutativity.

Using the transformation laws (2.22a) and (2.23), we cal-
culate the PB’s {y′

μ, y′
ν}, {y′

μ(σ ), ỹ′
ν(σ̄ )} and {ỹ′

μ(σ ), ỹ′
ν(σ̄ )}

and express them in the form of Eq. (3.3) with K and L equal:

1. {y′
μ, y′

ν}

Kμν [x] = 3

κ
hμν [x] = 1

κ
Bμνρxρ, Lμν = 0, (3.5)

2. {y′
μ, ỹ′

ν}

Kμν

[
x, x̃

]= 3

κ
hμν

[
x̃
]− 6

κ

[
h [x] G−1b+bG−1h [x]

]

μν
,

Lμν [x] = 1

κ
gμν − 6

κ

[
h [x] G−1b + bG−1h [x]

]

μν
,

(3.6)

with

x̃ ′μ = 1

κ
(G−1)μνπν + 2(G−1 B)μνx ′ν . (3.7)
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Using Eqs. (2.6) and (7.2), expressions (3.6) can be
rewritten in terms of the fluxes:

Kμν

[
x, x̃

] = 1

κ
Bμνρ x̃ρ − 3

2κ
�E

ρ,μνxρ,

Lμν [x] = 1

κ
gμν − 3

2κ
�E

ρ,μνxρ, (3.8)

3. {ỹ′
μ, ỹ′

ν}

Kμν [x] = 3

κ
hμν [x] + 24

κ
[bh [x] b]μν

+ 6

κ

[
h

[
x̃
]

b − bh
[
x̃
]]

μν
, Lμν = 0. (3.9)

In terms of fluxes it becomes

Kμν = − 1

κ

[
Bμνρ − 6gμα Qαβ

ρgβν

]
xρ

+
[

− 3

2κ

(
�E

μ,νρ − �E
ν,μρ

)
+ 4

κ
Bμνσ (G−1b)σρ

]

x̃ρ,

(3.10)

where �E
ν,μρ and Qμνρ are defined in Eqs. (7.1) and (7.5).

For the above values of K and L, the relation (3.4) gives

{yμ(σ), yν(σ̄ )} ∼= − 1

κ
Bμνρ

[
xρ(σ ) − xρ(σ̄ )

]
θ(σ − σ̄ ), (3.11)

{yμ(σ), ỹν(σ̄ )} ∼= −
{

1

κ
Bμνρ

[
x̃ρ(σ ) − x̃ρ(σ̄ )

]

− 3

2κ
�E

ρ,μν

[
xρ(σ ) − xρ(σ̄ )

]

+ 1

κ
gμν − 3

2κ
�E

ρ,μν xρ(σ̄ )

}

θ(σ − σ̄ ), (3.12)

{ỹμ(σ), ỹν(σ̄ )} ∼= −
{

− 1

κ

[
Bμνρ − 6gμα Qαβ

ρ gβν

] [
xρ(σ ) − xρ(σ̄ )

]

+
[

− 3

2κ

(
�E

μ,νρ − �E
ν,μρ

)
+ 4

κ
Bμνσ (G−1b)σρ

]

× [
x̃ρ(σ ) − x̃ρ(σ̄ )

]
}

θ(σ − σ̄ ). (3.13)

After two-dimensional reparametrization, the σ depen-
dent part takes the form
[
Xμ( f (σ )) − Xμ( f (σ̄ ))

]
θ [ f (σ ) − f (σ̄ )],

where f (σ ) is a monotonically increasing function with
properties f (0) = 0 and f (2π) = 2π . Therefore, the PB
between different points is not reparametrization invariant.
For fixed points, it can be fit to be arbitrary small, by the
appropriate choice of the function f (σ ). So, only PB’s at the
same point are physically significant.

Taking σ = σ̄ we find that all PB’s vanish, and conse-
quently the coordinates commute. But, taking σ = σ̄ +2π in
the non-commutativity relation between the dual coordinates

y’s (3.11), we obtain the closed string non-commutativity
relation

{yμ(σ + 2π), yν(σ )} ∼= −2π

κ
Bμνρ Nρ. (3.14)

Here, Nμ = 1
2π

[xμ(σ + 2π) − xμ(σ )] is the winding num-
ber of the original coordinates. In Sec. 4, we will compare
this relation with the result of Refs. [16,18–20].

Similarly, from Eqs. (3.12) and (3.13), we obtain

{yμ(σ + 2π), ỹν(σ )} + {yμ(σ ), ỹν(σ + 2π)} ∼=
−4π

κ2 Bμνρ pρ + π

κ

(
3�E

ρ,μν − 8Bμνλbλ
ρ

)
Nρ, (3.15)

and

{ỹμ(σ + 2π), ỹν(σ )}
∼= 2π

κ

[−Bμνρ − 6gμα Qαβ
ρgβν + 2Bμν

λgλρ

+3
(
�E

μ,νλ − �E
ν,μλ

)
bλ

ρ

]
Nρ

+ π

κ2

[
3
(
�E

μ,νρ − �E
ν,μρ

)
pρ − 8Bμνλbλ

ρ

]
pρ. (3.16)

Using Eq. (3.7) and integrating from σ to σ + 2π we have

1

2π

[
x̃μ(σ + 2π) − x̃μ(σ )

]

= 1

κ
(G−1)μν pν + 2(G−1)μρbρλNλ, (3.17)

where

pμ = 1

2π

σ+2π∫

σ

dηπμ(η). (3.18)

To complete the algebra, using the expressions (2.22) and
(2.23) and after one σ integration, we find that the algebra of
yμ, ỹμ and �πμ is of the following form:
{

yμ(σ ), �πν(σ̄ )
} ∼= δμ

νδ(σ − σ̄ ) + κhμρ [x(σ )] θ
ρν
0 × δ

(σ − σ̄ ) + κhμρ

[
x ′(σ̄ )

]
θ

ρν
0 θ(σ − σ̄ ), (3.19)

{
ỹμ(σ ), �πν(σ̄ )

}

∼=
[
−2bG−1 − 3h [x(σ )] G−1−2κbh [x(σ )] θ0

] ν

μ
δ(σ − σ̄ )

−
[
3h

[
x ′(σ̄ )

]
G−1 + 2κbh

[
x ′(σ̄ )

]
θ0

] ν

μ
θ(σ − σ̄ ), (3.20)

{�πμ(σ ), �πν(σ̄ )} ∼= 0. (3.21)

Note that at the zeroth order one has {yμ(σ ), �πν(σ̄ )} =
δν
μδ(σ − σ̄ ) and {ỹμ(σ ), �πν(σ̄ )} = −2b ν

μ δ(σ − σ̄ ), so both
doubled space variables yμ and ỹμ have a nontrivial PB with
�πμ.

4 Comparison with the previous results

Let us mention that the case considered in the present
paper is different from that of Ref. [16]. In Ref. [16], the
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non-commutativity relations in the nongeometric back-
ground with Q-flux where established, which are given
in terms of winding numbers on the twisted torus N 3 =

1
2π

(
Y 3(σ + 2π) − Y 3(σ )

)
. In the present article, the non-

commutativity of the nongeometric background, which is not
standard even locally and for D = 3 turns to R-flux back-
ground, was obtained in terms of the winding numbers on
the torus with H -flux Nμ = 1

2π
(Xμ(σ + 2π) − Xμ(σ )).

4.1 The brief overview of the results of Ref. [16]

Before comparing the results of our paper with those of Ref.
[16] let us shortly reexpress the result of Ref. [16] using its
notation. From the last identification in Eq. (2.17) and the
first relation in (2.25) of Ref. [16] it follows that

Y 1
H = Y 2

0 Y 3
0 + · · · . (4.1)

Using the expression for Gab(Y3) for the twisted torus (Table
1) of Ref. [16] we find

π1 = Ẏ 1 − HY 3
0 Ẏ 2

0 , π2 = Ẏ 2 − HY 3
0 Ẏ 1

0 , (4.2)

and consequently

π01 = Ẏ 1
0 , πH2 = Ẏ 2

H − Y 3
0 Ẏ 1

0 = Ẏ 2
H − Y 3

0 π01. (4.3)

The T2-duality along Y 2, from the twisted torus to the
nongeometric background produces

Z1 ∼= Y 1 = Y 1
0 + HY 2

0 Y 3
0 , Z2′ ∼= Ẏ 2 − HY 3

0 Ẏ 1
0

= π2 = π02 + H
(

Ẏ 2
H − Y 3

0 π01

)
. (4.4)

Thus, we find the PB

{Z1(σ ), Z2′
(σ̄ )} ∼= {Y 1(σ ), π2(σ̄ )}

= H
[
Y 3

0 (σ ) − Y 3
0 (σ̄ )

]
δ2π (σ − σ̄ ). (4.5)

Note that δ2π (σ − σ̄ ) is a 2π periodic δ-function, δ2π (α) =∑
n∈Z δ(α − 2πn), so the periodic parts in the bracket in

front of the δ-function disappear and we obtain

{Z1(σ ), Z ′2(σ̄ )} = H N 3(σ − σ̄ )δ2π (σ − σ̄ ). (4.6)

Here N 3 is the winding number of Y 3
0 , which has the general

form

Y 3
0 (σ ) = N 3σ + Y 3

periodic(σ ). (4.7)

The expression αδ2π (α) is zero for α = 0, but it is different
from zero for α = 2nπ (n ∈ Z , n 
= 0).

The integration over σ̄ , from σ̄0 to σ̄ , produces

{Z1(σ ), Z2(σ̄ )} − {Z1(σ ), Z2(σ̄0)}
= − 1

2π
H N 3 [F(σ − σ̄ ) − F(σ − σ̄0)], (4.8)

where

2π

α∫

α0

dηηδ2π (η) = F(α) − F(α0), (4.9)

and

F(α) =
∑

n 
=0

1

n2 e−inα + iα
∑

n 
=0

1

n
e−inα + α2

2
. (4.10)

The function F(α) is even, F(−α) = F(α), and F(0) = π2

3 .
So, the result for the PB itself,

{Z1(σ ), Z2(σ̄ )} = − 1

2π
H N 3 [F(σ − σ̄ ) + C], (4.11)

is in fact equation (4.41) of Ref. [16] up to some integration
constant C . The undetermined constant C corresponds to the
contribution of the zero modes of the undetermined com-
mutators, because one started with the σ -derivative of the
coordinate Z2. The choice of Ref. [16] in subsection 4.4.2
is C = 0, which produces the expression (4.41) of Ref. [16]
and the non-commutativity at the same point, σ = σ̄ ,

{Z1(σ ), Z2(σ )} = − 1

2π
H N 3 F(0) = −π

6
H N 3. (4.12)

As was pointed out in Ref. [16], ‘other reasonings could
as well be pursued’. Following the line of our paper one may
require that coordinates are commutative at the same point
(σ = σ̄ ), which produces

C = −F(0) = −π2

3
. (4.13)

Thus, with this choice one has

{Z1(σ ), Z2(σ̄ )} = H N 3
[

F(σ − σ̄ ) − π2

3

]

, (4.14)

and one obtains the non-commutativity for σ = 2π + σ̄ ,

{Z1(σ + 2π), Z2(σ )} = π H N 3. (4.15)

4.2 Similarities and differences

Although we analyzed the different cases, let us compare
some general features of the results considered. In both
approaches the commutators are infinitesimally small and
they close on some winding numbers. Note that, in gen-
eral, we can connect any geometric background with every
nongeometric background from the chain of T-duality (1.2).
Using the T-duality transformations we can calculate the non-
commutativity of the coordinates of the nongeometric back-
ground in terms of the winding numbers of the geometrical
background.

For arbitrary σ and σ̄ , the σ -dependence is different. In
Ref. [16], up to the integration constant C , it is equal to

F(σ − σ̄ ) + C,
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and in the present article, up to the integration constant C1,
it is

[
xμ(σ ) − xμ(σ̄ )

]
θ(σ − σ̄ ) + C1.

The constants appear because in both approaches we started
with the sigma derivatives of the coordinates. In the papers
considered, the values of the constants are taken to be C =
0 and C1 = 0. For these choices, the non-commutativity
appears for σ = σ̄ in Ref. [16] and for σ = σ̄ + 2π in the
present article. For the other choice, C = −F(0) = −π2

3
and C1 = 0, in both cases the coordinates commute at the
same point σ = σ̄ and have nontrivial PB for σ = σ̄ + 2π .

The main difference between the two approaches is the
origin of non-commutativity. The nontrivial boundary con-
ditions given in Eq. (2.25) of Ref. [16] are the source of the
non-commutativity in that article. Because Ref. [16] does
not consider T3-dualization, the β0

μ-functions (introduced in
Eq. (2.15)) are zero and there is no non-commutativity of
this kind. On the other hand, in the case considered in this
paper, just these β0

μ functions are the sources of the non-
commutativity, even in the absence of the nontrivial bound-
ary conditions of Ref. [16]. For complete non-commutativity
relations one should take into account both kinds of non-
commutativity.

5 Concluding remarks

In the present article we derived the closed string non-
commutativity relations. We considered the theory describ-
ing a string moving in a weakly curved background. Its T-
dual theory is obtained performing the T-dualization proce-
dure along all the coordinates [23]. The T-dual transformation
laws play a central role in our approach. These laws connect
the world-sheet derivatives of the coordinates and momenta
in the original and the T-dual theory. The zero orders are
transformation laws of the constant background and they do
not lead to the non-commutativity. The term β0

μ, which is
infinitesimally small and bilinear in the xμ coordinates, plays
a key role in obtaining the non-commutativity relations.

In the original space we choose the standard Poisoon
brackets. The T-dual coordinates yμ have two terms: one
linear in the original momenta and the other bilinear in the
original coordinates. This explains the nontrivial PB {yμ, yν}
of Eq. (3.11), which is linear in the coordinates. Note that in
the case of an open string moving in the flat background
coordinate is linear function in both effective momenta and
coordinates. Therefore, the corresponding PB is constant.

The T-dual momenta �πμ are bilinear expressions in the
original coordinates. Thus, the PB of the T-dual momenta
vanishes, see Eq. (3.21), but the PB between the T-dual coor-

dinates and the momenta (3.19) obtained an additional term
linear in the coordinates.

In the doubled space there exists the additional coordinate
ỹμ. It consists of a term linear in the original momenta, but
with the coefficient linear in the original coordinate and the
other terms bilinear in the original coordinates. Thus, it pro-
duces a nontrivial PB with all variables (yμ, ỹμ, �πμ), see
Eqs. (3.12), (3.13), and (3.20).

The general structure of the non-commutativity relations
is

{Yμ(σ ), Yν(σ̄ )} = {Fμνρ

[
xρ(σ ) − xρ(σ̄ )

]

+F̃μνρ

[
x̃ρ(σ ) − x̃ρ(σ̄ )

]}θ(σ − σ̄ ), (5.1)

where Yμ = (yμ, ỹν) and Fμνρ and F̃μνρ are the constant and
infinitesimally small fluxes. At the same points, for σ = σ̄ all
PB’s are zero. In the important particular case for σ = σ̄ +2π

we get

{Yμ(σ + 2π), Yν(σ )}
= 2π

[

(Fμνρ + 2F̃μναbα
ρ )Nρ + 1

κ
F̃μν

ρ pρ

]

, (5.2)

where Nμ and pμ are the winding numbers and momenta of
the original theory. We rewrite it in the form

{Yμ(σ + 2π), Yν(σ )}
=

∮

Cρ

Fμνρdxρ +
∮

C̃ρ

F̃μνρdx̃ρ, (5.3)

where Cρ and C̃ρ are cycles around which the closed string
is wrapped. Note that the ‘wrapping’ of the auxiliary coordi-
nate x̃μ is in accordance with Eq. (3.17) and represents a lin-
ear combination of momenta pμ and winding numbers Nμ.
This generalizes the conjecture of Ref. [32] on the relation
between the closed string non-commutativity and fluxes.

In terms of Ref. [16] for the three-dimensional torus
xμ → Xa, (a = 1, 2, 3) our case corresponds to the non-
commutativity of the nongeometric background with W a

coordinates and R-fluxes obtained after the successive per-
formation of all three T-dualizations along all three coordi-
nates. It relates the W a with the Xa coordinates of the torus
with H -flux, and so the PB closes on the winding number
of the Xa-coordinates. We hope that these results will con-
tribute to a better understanding of the strangest, uncommon
R-flux configurations where the non-commutativity appears
as a consequence of the nontrivial β0

μ-functions. Note that
Ref. [16] uses T2-duality (performed along Y 2) and the rela-
tion Za = Za(Y a) to obtain the non-commutativity of the
nongeometric background with Q-flux in terms of the wind-
ing of the Y a-coordinates. There the non-commutativity orig-
inates from the nontrivial boundary conditions. To obtain the
general structure of the closed string non-commutativity for
arbitrary background of the chain (1.2) one should find its
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T-duality transformations with all other backgrounds of the
chain and calculate both kinds of non-commutativity origi-
nating from nontrivial boundary conditions as well as from
nontrivial β0

μ functions.
The term of the action with the constant part of the Kalb–

Ramond field bμν is topological. Thus, it does not contribute
to the equations of motion. In the open string case it con-
tributes to the boundary conditions and it is a source of the
open string non-commutativity. In the closed string case it is
absent from boundary conditions as well. Classically, we can
gauge it away and the Kalb–Ramond field becomes infinites-
imally small. But if bμν = 0 one loses topological contribu-
tions. In order to investigate the global structure of the theory
with holonomies of the world-sheet gauge fields in quantum
theory we should preserve such a term.

Putting bμν = 0 the non-commutativity relations (3.14),
(3.15), and (3.16) get a simpler form,

{yμ(σ + 2π), yν(σ )} = −2π

κ
Bμνρ Nρ,

{yμ(σ + 2π), ỹν(σ )} = − 1

κ
Gμν − 2π

κ2 Bμν
ρ pρ,

{ỹμ(σ + 2π), ỹν(σ )} = −6π

κ
Bμνρ Nρ. (5.4)
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Appendix A: The momentum in T-dual theory

Let us here calculate the T-dual momentum given in
Eq. (2.18). The T-dual theory depends on the two variables
yμ, ỹμ, which are connected by the relations ẏμ = ỹ′

μ,

y′
μ = ˙̃yμ. Therefore, to obtain the momentum canonically

conjugated to yμ, we should vary the action with respect to
both ẏμ and ỹ′

μ.
First, let us calculate the contribution from the background

fields argument. With the help of the relation

�
μν
− [x] = �

μν
0− − 2κ�

μρ
0−hρσ [x] �σν

0−, (6.1)

we rewrite the T-dual action (2.8) as

�S [y] = �S0−κ3
∫

d2ξ ∂+yμ�
μρ
0−hρσ [�V [y]] �σν

0−∂−yν,

�S0 = κ2

2

∫
d2ξ ∂+yμ�

μν
0−∂−yν . (6.2)

Using the expression

∂±V μ = −κ�
μν
0±∂±y(0)

ν , (6.3)

we obtain

�S [y] = �S0 + κ

∫
d2ξ ∂+V μhμν [�V ] ∂−V ν

= �S0 + κ

∫
d2ξ�V μhμν

[
∂−V

]
∂+V ν . (6.4)

Because of the relation

hμν

[
∂−V

]
∂+V ν = ∂0β

0
μ [V ] + ∂1β

1
μ [V ] , (6.5)

the action becomes

�S [y] = �S0 + κ

∫
d2ξ

[
κ�yμθ

μν
0 + �ỹμ(g−1)μν

]

×
(
∂0β

0
ν [V ] + ∂1β

1
ν [V ]

)
. (6.6)

So, the contribution to the T-dual momentum coming
from the T-dual background fields argument is obtained from
Eq. (6.6), integrating over σ by parts in �ỹμ(g−1)μν∂1β

1
ν .

Using ỹ′
μ = ẏμ we obtain

� �πμ = −κ(g−1)μνβ1
ν [V ] . (6.7)

Therefore, the total T-dual momentum is

�πμ = κ(G−1
E )μν [�V [y]] ẏν

−κ2θμν [�V [y]] y′
ν − κ(g−1)μνβ1

ν [V [y]] . (6.8)

Appendix B: Fluxes

The field strength of the original Kalb–Ramond field is given
by Eq. (2.5). The original metric Gμν is constant, and there-
fore the corresponding Christoffel connection is zero. The
effective metric G E

μν is linear in the coordinates and the cor-
responding Christoffel connection,

�E
μ,νρ = 1

2

(
∂νG E

μρ + ∂ρG E
μν − ∂μG E

νρ

)

= −4

3

(
Bμσν(G

−1b)σρ + Bμσρ(G−1b)σν

)
, (7.1)

is an infinitesimally small constant. It will be used in the
following form:

�E
μ,νρxμ = 4

(
h [x] G−1b + bG−1h [x]

)

νρ
(7.2)

and

(�E
μ,νρ − �E

ν,μρ)xρ = 8hμν [bx]

−4
(

h [x] G−1b − bG−1h [x]
)

μν
. (7.3)

We express the dual Kalb–Ramond field [23] as

�Bμν [�V ] = �bμν + Qμν
ρ�V ρ, (7.4)
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where �bμν = κ
2 θ

μν
0 and

Qμν
ρ = −1

3

[
(g−1)μσ (g−1)ντ − κ2θ

μσ
0 θντ

0

]
Bστρ. (7.5)

This will be used as

Qμν
ρ xρ = −(g−1)μρ

[
h [x] + 4bG−1h [x] G−1b

]

ρσ
(g−1)σν

= −
[
g−1h [x] g−1 + κ2θ0h [x] θ0

]μν
. (7.6)

Appendix C: PB’s between pure coordinates

Starting with the PB of the σ derivatives of the coordinates

{X ′
μ(σ ), Y ′

ν(σ̄ )} ∼= K ′
μν(σ )δ(σ − σ̄ ) + Lμν(σ )δ′(σ − σ̄ ),

(8.1)

let us find the expression for the PB between the coordinates,
{Xμ(σ ), Yν(σ̄ )}. From Eq. (8.1) it follows that �Xμ(σ, σ0)

and �Yμ(σ, σ0) defined by

�Xμ(σ, σ0) =
σ∫

σ0

dη X ′
μ(η) = Xμ(σ ) − Xμ(σ0),

�Yμ(σ, σ0) =
σ∫

σ0

dη Y ′
μ(η) = Yμ(σ ) − Yμ(σ0)

(8.2)

satisfy

{�Xμ(σ, σ0),�Yν(σ̄ , σ̄0)}

∼=
σ∫

σ0

dη

σ̄∫

σ̄0

dη̄
[
K ′

μν(η)δ(η − η̄) + Lμν(η)δ′(η − η̄)
]
.

(8.3)

Integrating over η̄ and using

σ∫

σ0

dη f (η)δ(η − σ̄ )

= f (σ̄ ) [θ(σ − σ̄ ) − θ(σ0 − σ̄ )] , (8.4)

we obtain

{�Xμ(σ, σ0),�Yν(σ̄ , σ̄0)}

∼=
σ∫

σ0

dη
[
K ′

μν(η) [θ(η − σ̄0) − θ(η − σ̄ )]

+Lμν(η) [δ(η − σ̄0) − δ(η − σ̄ )] ], (8.5)

where the function θ(σ ) is defined as

θ(σ ) ≡
σ∫

0

dηδ(η) = 1

2π

⎛

⎝σ + 2
∑

n≥1

1

n
sin nσ

⎞

⎠

=
⎧
⎨

⎩

0 if σ = 0
1/2 if 0 < σ < 2π, σ ∈ [0.2π ].
1 if σ = 2π

(8.6)

Integrating by parts over η and using Eq. (8.4) we get

{�Xμ(σ, σ0),�Yν(σ̄ , σ̄0)}
∼= Kμν(σ ) [θ(σ − σ̄0) − θ(σ − σ̄ )]

−Kμν(σ0) [θ(σ0 − σ̄0) − θ(σ0 − σ̄ )]

−Kμν(σ̄0) [θ(σ − σ̄0) − θ(σ0 − σ̄0)]

+Kμν(σ̄ ) [θ(σ − σ̄ ) − θ(σ0 − σ̄ )]

+Lμν(σ̄0) [θ(σ − σ̄0) − θ(σ0 − σ̄0)]

−Lμν(σ̄ ) [θ(σ − σ̄ ) − θ(σ0 − σ̄ )]. (8.7)

The relation

{Xμ(τ, σ ), Yν(τ, σ̄ )} ∼= − [
Kμν(σ ) − Kμν(σ̄ ) + Lμν(σ̄ )

]

×θ(σ − σ̄ ) (8.8)

solves Eq. (8.7), up to additive constant.
For Xμ = Yμ, the antisymmetry of the left hand side under

the replacement μ ↔ ν and σ ↔ σ̄ produces the conditions
Lμν = Lνμ and Kμν + Kνμ = Lμν .
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Abstract In this article we present bosonic T-dualization
in double space of the type II superstring theory in the pure
spinor formulation. We use the action with constant back-
ground fields obtained from the general case under some
physically and mathematically justified assumptions. Unlike
Nikolić and Sazdović (EPJ C 77:197, 2017), where we used
the first-order theory, in this article fermionic momenta are
integrated out. Full T-dualization in double space is repre-
sented as a permutation of the initial xμ and T-dual coordi-
nates yμ. Requiring that a T-dual transformation law of the
T-dual double coordinate �ZM = (yμ, xμ) to be of the same
form as for initial one ZM = (xμ, yμ), we obtain the form
of the T-dual background fields in terms of the initial ones.
The advantage of using the action with integrated fermionic
momenta is that it gives all T-dual background fields in terms
of the initial ones. In the case of the first-order theory Nikolić
and Sazdović (2017) a T-dual R-R field strength was obtained
out of the double space formalism under additional assump-
tions.

1 Introduction

T-duality is a feature which cannot be met in the point-particle
theory and represents a novelty brought about by string the-
ory [2–9]. The basic mathematical framework, in which T-
dualization is performed, is the Buscher procedure [5,6].
The starting point of the procedure is the existence of global
isometries along some directions. In the next step we localize
that symmetry introducing world-sheet covariant derivatives
(instead of ordinary ones) and gauge fields. In order to make
the gauge field an unphysical degree of freedom, a term with

This work was supported in part by the Serbian Ministry of Education,
Science and Technological Development, under contract no. 171031.

a e-mail: bnikolic@ipb.ac.rs
b e-mail: sazdovic@ipb.ac.rs

Lagrange multipliers is added to the action. The final phase of
the procedure is using gauge freedom to fix the initial coordi-
nates. Variation of the gauge fixed action with respect to the
Lagrange multipliers produces the initial action, while vari-
ation with respect to the gauge fields gives a T-dual action.
Combining these equations of motion the relations connect-
ing initial and T-dual coordinates are obtained. These rela-
tions are known in the literature as T-dual transformation
laws.

Why is T-duality so important? The answer is concerned
with M-theory. Five consistent superstring theories are con-
nected by a web of T- and S-dualities. It is a well-known fact
in the case of type II superstring theories that T-dualization
along one spatial dimension transforms type IIA(B) to type
IIB(A) theory, while T-dualization along the time-like direc-
tion produces type II� theory, of which the R-R field strength
is the initial one multiplied by the imaginary unit [1,10].
Using double space enables one to unify all three theories.
This could be a way toward better understanding M-theory.

The basic presumption for implementing the Buscher T-
dualization procedure is the existence of global isometry
along some directions. Effectively, it means that we can
find the coordinate basis in which background fields do not
depend on those directions [5–9,11,12].

Except the standard Buscher procedure, there is a gen-
eralized Buscher procedure dealing with T-dualization along
directions on which the background fields depend. In the gen-
eralized Buscher procedure, to be compared with the standard
one, an additional ingredient is present and that is an invari-
ant coordinate, xμ

inv = ∫
dξαDαxμ, where Dα is a world-

sheet covariant derivative. So far the generalized procedure
was applied in two cases: the bosonic string moving in the
weakly curved background [13–15] and the case where the
metric is quadratic in the coordinates and the Kalb–Ramond
field is a linear function of the coordinates [16]. In the first
case isometry is not obvious but actually exists, while in the
second case isometry is absent.
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The Buscher T-dualization procedure was used in Refs.
[17–24] in the context of closed string noncommutativity. In
these articles there was considered the coordinate dependent
background—a constant metric and a Kalb–Ramond field
with only one nonzero component, Bxy = Hz, where the
field strength H is infinitesimal.

The Buscher T-dualization procedure can be considered
as a definition of T-dualization. But there is a illuminating
way of representing T-duality representation using double
space and a permutation group. The name “double” comes
from the way it is constructed. The double space coordinate
ZM consists of initial coordinates xμ and their T-dual ones,
yμ, ZM = (xμ, yμ) (μ = 0, 1, 2, . . . , D − 1). The for-
malism emerged about 20 years ago and it was addressed in
Refs. [25–29]. In recent years the interest for this formal-
ism was revived [30–37]. In these recent articles T-duality
is related with O(d, d) transformations. On the other hand,
in Refs. [1,25,38–40], T-dualization along some subset of
directions is represented as a permutation of that subset of ini-
tial coordinates and the corresponding T-dual ones. T-duality
becomes a symmetry transformation in double space.

In Ref. [1] we demonstrated the equivalence of the
Buscher approach and the double space one for type II super-
string theory. But there is one detail which has to be empha-
sized. In the mentioned article we used the pure spinor type
II superstring action with constant background fields in the
form of the first-order theory, i.e., the fermionic momenta,
πα and π̄α , are not integrated out. In that case the process
of T-dualization is mathematically simple, but the price to
pay is that the T-dual R-R field strength Pαβ could not be
obtained within the double space formalism. The reason is
that the R-R field strength is coupled only with the fermionic
degrees of freedom which are not dualized. To reproduce the
Buscher form of the T-dual R-R field strength we made some
additional assumptions.

In this article we will integrate out the momenta and obtain
the theory in terms of the derivatives of the bosonic coordi-
nates, xμ, and the fermionic coordinates, θα and θ̄ α . After the
fermionic momenta are integrated out, the R-R field strength
is coupled with ∂±xμ. It turns out that Buscher T-dualization
with such an action is slightly more complicated, but, as
expected, gives the same result as in the case of the first-order
theory. The mathematical framework for double space T-
dualization is the same as in [1]. We rewrite the T-dual trans-
formation laws in terms of the double space coordinates ZM ,
introducing the generalized metric ȞMN , the generalized
current J̌±M and the permutation matrix T M

N , which swaps
the initial coordinates xμ and T-dual ones yμ. Requiring that
the T-dual double space coordinates, �ZM = T M

N ZN , sat-
isfy the transformation law of the same form as the initial
coordinates, ZM , we obtain the expressions for the T-dual
generalized metric, �ȞMN = (T ȞT )MN , and T-dual cur-
rent, � J̌±M = (T J̌±)M .

There is an advantage when we perform T-duality within
the double space formalism. The main benefit of the using
the action with integrated fermionic momenta is that we get
all T-dual background fields.

2 Buscher T-dualization of type II superstring theory
with integrated fermionic momenta

In this section we will introduce the type II superstring action
in a pure spinor formulation [41–48] in the approximation of
constant background fields and up to the quadratic terms.
Then we will integrate out the fermionic momenta and apply
the standard Buscher procedure. This leads to more compli-
cated calculations, but in double space an advantage occurs.

2.1 Type II superstring in the pure spinor formulation

The general form of the action is borrowed from [49] and it
is of the form

S =
∫

	

d2ξ(XT )M AMN X̄ N + Sλ + Sλ̄, (2.1)

where the vectors XM and X̄ N are the left and right chiral
supersymmetric variables

XM =

⎛

⎜
⎜
⎝

∂+θα

�
μ
+

dα
1
2 N

μν
+

⎞

⎟
⎟
⎠ , X̄ M =

⎛

⎜
⎜
⎝

∂−θ̄ α

�
μ
−

d̄α
1
2 N̄

μν
−

⎞

⎟
⎟
⎠ , (2.2)

of which the components are defined as

�
μ
+ = ∂+xμ + 1

2
θα(μ)αβ∂+θβ,

�
μ
− = ∂−xμ + 1

2
θ̄ α(μ)αβ∂−θ̄ β , (2.3)

dα = πα − 1

2
(μθ)α

[

∂+xμ + 1

4
(θμ∂+θ)

]

,

d̄α = π̄α − 1

2
(μθ̄)α

[

∂−xμ + 1

4
(θ̄μ∂−θ̄ )

]

, (2.4)

Nμν
+ = 1

2
wα([μν])αβλβ, N̄μν

− = 1

2
w̄α([μν])αβλ̄β .

(2.5)

The supermatrix AMN is of the form

AMN =

⎛

⎜
⎜
⎝

Aαβ Aαν Eα
β �α,μν

Aμβ Aμν Ēβ
μ �μ,νρ

Eα
β Eα

ν Pαβ Cα
μν

�μν,β �μν,ρ C̄μν
β Sμν,ρσ

⎞

⎟
⎟
⎠ . (2.6)
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The world sheet 	 is parameterized by ξm = (ξ0 =
τ, ξ1 = σ) and ∂± = ∂τ ± ∂σ . Superspace is spanned by
the bosonic coordinates xμ (μ = 0, 1, 2, . . . , 9) and the
fermionic ones θα and θ̄ α (α = 1, 2, . . . , 16). The variables
πα and π̄α are canonically conjugate momenta to θα and θ̄ α ,
respectively. The actions for the pure spinors, Sλ and Sλ̄, are
the free field actions

Sλ =
∫

d2ξwα∂−λα, Sλ̄ =
∫

d2ξw̄α∂+λ̄α, (2.7)

where λα and λ̄α are pure spinors and wα and w̄α are
their canonically conjugate momenta, respectively. The pure
spinors satisfy the so-called pure spinor constraints

λα(μ)αβλβ = λ̄α(μ)αβλ̄β = 0. (2.8)

This action (2.1) for type II superstring in the pure spinor
formulation is general and it is constructed as an expansion
in powers of θα and θ̄ α (for details see [49]).

Our plan is to implement full T-dualization, which means
that we T-dualize along all bosonic directions xμ. Conse-
quently, we will assume that the background fields do not
depend on them. On the other hand, because of the way how
the action is constructed, for practical reasons (mathematical
simplification), we will consider just the first components
in the expansion in powers of θα and θ̄ α . Effectively, this
means that the nonzero background fields are constant. The
background fields from the first and last columns and rows
in the matrix AMN are zero (a detailed explanation could be
found in [1,49]). The fields surviving these approximations
are known in the literature as physical superfields because
their first components are supergravity fields.

Finally, all our assumptions produce

�
μ
± → ∂±xμ, dα → πα, d̄α → π̄α, (2.9)

where the physical superfields take the form

Aμν = κ

(
1

2
gμν + Bμν

)

+ 1

4π
ημν�, Eα

ν = −�α
ν ,

Ēα
μ = �̄α

μ, Pαβ = 1

2κ
Pαβ. (2.10)

Here gμν is a symmetric and Bμν is an antisymmetric tensor.
Consequently, the full action S is

S = κ

∫

	

d2ξ

[

∂+xμ�+μν∂−xν + 1

4πκ
�R(2)

]

+
∫

	

d2ξ

[

− πα∂−
(
θα + �α

μx
μ
)

+∂+
(
θ̄ α + �̄α

μx
μ
)
π̄α + 1

2κ
παP

αβπ̄β

]

, (2.11)

where Gμν = ημν + gμν is the metric tensor and

�±μν = Bμν ± 1

2
Gμν. (2.12)

We will neglect the Tseytlin term in the further analysis
because, for a constant dilaton field �, it is proportional to the
Euler characteristic. Consequently, on some given manifold
that term is constant. The actions Sλ and Sλ̄ are decoupled
from the rest and the action, in its final form, is ghost inde-
pendent.

2.2 Full bosonic T-dualization using Buscher rules

Let us now integrate out the fermionic momenta from the
action (2.11) and obtain the theory expressed in terms of the
supercoordinates (xμ, θα, θ̄α) and their world-sheet deriva-
tives. For the equations of motion for fermionic momenta πα

and π̄α ,

πα = −2κ∂+
(
θ̄ β + �̄β

μx
μ
)
(P−1)βα,

π̄α = 2κ(P−1)αβ∂−
(
θβ + �β

μx
μ
)
, (2.13)

the action gets the form

S = κ

∫

	

d2ξ∂+xμ
[
�+μν + 2�̄α

μ(P−1)αβ�β
ν

]
∂−xν

+ 2κ

∫

	

d2ξ
[
∂+θ̄ α(P−1)αβ∂−θβ

+ ∂+θ̄ α(P−1�)αμ∂−xν + ∂+xμ(�̄P−1)μα∂−θα
]
.

(2.14)

We will perform bosonic T-dualization of the action (2.14)
along all directions xμ using the Buscher T-dualization rules.
In order to gauge global symmetry δxμ = λμ, we introduce
covariant derivatives, D±xμ = ∂±xμ + v

μ
±, instead of the

ordinary ones, ∂±xμ, where v
μ
± are gauge fields. Fixing the

gauge (xμ = const.) means effectively that ordinary deriva-
tives ∂±xμ are replaced with gauge fields v

μ
± in the initial

action (2.14), while, in order to make v
μ
± unphysical degrees

of freedom, we add to the action

Sadd = κ

2

∫
d2ξ

(
v

μ
+∂−yμ − v

μ
−∂+yμ

)
. (2.15)

The gauged fixed action is of the form

S f i x = S + Sadd

= κ

∫
d2ξ

[

v
μ
+�+μνv

ν− + 2
(
∂+θ̄ α + �̄α

μv
μ
+
)
(P−1)αβ

(
∂−θβ + �β

ν vν−
) + 1

2
(v

μ
+∂−yμ − v

μ
−∂+yμ)

]

. (2.16)

Varying the gauge fixed action (2.16) with respect to the
Lagrange multipliers yμ, we find that the field strength for
gauge fields v

μ
± is equal to zero,
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∂+v
μ
− − ∂−v

μ
+ = 0 ⇒ v

μ
± = ∂±xμ. (2.17)

In this way we restore the initial theory from the gauge fixed
action. Let us note that we omitted the dilaton term because
this is a classical analysis while the dilaton is treated within
the quantum formalism.

Varying the gauge fixed action with respect to the gauge
fields v

μ
+ and v

μ
−, we get the equations, respectively,

�+μνv
ν− + 2�̄α

μ(P−1)αβ

(
∂−θβ + �β

νv
ν−
) + 1

2
∂−yμ = 0,

(2.18)

vν+�+νμ + 2
(
∂+θ̄ α + �̄α

νv
ν+
)
(P−1)αβ�β

μ − 1

2
∂+yμ = 0.

(2.19)

Here we introduce the notation

�̌+μν ≡ �+μν + 2�̄α
μ(P−1)αβ�β

ν = B̌μν + 1

2
Ǧμν,

(2.20)

where B̌μν and Ǧμν are the antisymmetric and symmetric
parts of �̌+μν , respectively. These expressions are in fact
the Kalb–Ramond field Bμν and metric Gμν improved by
some expressions consisting of the NS-R and R-R back-
ground fields. The above expressions for the gauge fields
can be rewritten in the form

�̌+μνv
ν− + 2�̄α

μ(P−1)αβ∂−θβ + 1

2
∂−yμ = 0, (2.21)

vν+�̌+νμ + 2∂+θ̄ α(P−1)αβ�β
μ − 1

2
∂+yμ = 0. (2.22)

Using the relations

�̌
μν
− �̌+νρ = 1

2κ
δμ

ρ, �̌
μν
− = − 2

κ

(
Ǧ−1

E �̌−Ǧ−1
)μν

,

(2.23)

where

�̌
μν
− = �

μν
− − 4κ�

μρ
− �̄α

ρ(P̃−1)αβ�β
λ�

λν−

= �̌μν + 1

κ

(
Ǧ−1

E

)μν

, (2.24)

P̃αβ ≡ Pαβ + 4κ�α
μ�

μν
− �̄β

ν, (2.25)

�
μν
− = − 2

κ

(
G−1

E �−G−1
)μν

, �
μρ
− �+ρν = 1

2κ
δμ

ν,

(2.26)

we get

v
μ
− = −κ�̌

μν
− ∂−

[
yν + 4�̄α

μ(P−1)αβθβ
]
, (2.27)

v
μ
+ = κ∂+

[
yν − 4θ̄ α(P−1)αβ�β

ν

]
�̌

νμ
− . (2.28)

Equation (2.23) is proved by direct calculation and using
the definition of P̃αβ .

Inserting the expressions (2.27) and (2.28) into the expres-
sion for the gauge fixed action (2.16) we obtain the T-dual
action

�S = κ

∫
d2ξ

[κ

2
∂+yμ�̌

μν
− ∂−yν

+2κ∂+yμ�̌
μν
− �̄α

ν(P
−1)αβ∂−θβ

− 2κ∂+θ̄ α(P−1)αβ�β
μ�̌

μν
− ∂−yν

+ 2∂+θ̄ α(P−1 − 4κP−1��̌−�̄P−1)αβ∂−θβ
]
.

(2.29)

Introducing T-dual background fields marked by �, we write
the T-dual action in the form of the initial action (2.14)

�S = κ

∫
d2ξ

[
∂+yμ

(
��+ + 2��̄�P−1��

)μν

∂−yν

+ 2∂+yμ(��̄�P−1)μα∂−θα

+ 2∂+θ̄ α(�P−1��)α
μ∂−yμ + 2∂+θ̄ α(�P−1)αβ∂−θ

]
.

(2.30)

Comparing the last two equations, we get the T-dual back-
ground fields in terms of the initial ones,

��
μν
+ + 2��̄μα(�P−1)αβ

��βν = κ

2
�̌

μν
− , (2.31)

��̄μβ(�P−1)βα = κ�̌
μν
− �̄β

ν(P
−1)βα, (�P−1)αβ

��βμ

= −κ(P−1)αβ�β
ν�̌

νμ
− , (2.32)

(�P−1)αβ = (P−1)αβ − 4κ(P−1)αγ �γ
μ�̌

μν
− �̄δ

ν(P
−1)δβ .

(2.33)

By direct calculation, solving the above four equations, we
finally get

��
μν
+ = κ

2
�

μν
− , (2.34)

��αμ = −κ�α
ν�

νμ
− , ��̄μα = κ�

μν
− �̄α

ν, (2.35)
�Pαβ = P̃αβ, (2.36)

which is in full agreement with the case where we T-dualize
the same model in the form of the first-order theory.

Combining the equations of motion for the Lagrange mul-
tiplier (2.17) with the equations of motion for the gauge fields,
(2.28) and (2.28), we obtain the relation between the initial
xμ and T-dual coordinates yμ

∂±xμ ∼= −κ�̌
μν
±

[
∂±yν + 4�α±ν(P

−1∓ )αβ∂±θ
β
∓
]
. (2.37)

The inverse of this relation is also useful and it is of the form

∂±yμ ∼= −2�̌∓μν∂±xν − 4�α±μ(P−1∓ )αβ∂±θ
β
∓. (2.38)
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Here we use the notation

θα+ ≡ θα, θα− ≡ θ̄ α, (2.39)

Pαβ
+ ≡ Pαβ, Pαβ

− ≡ Pβα, (2.40)

�α+μ ≡ �α
μ, �α−μ ≡ �̄α

μ, (2.41)

�̌
μν
+ ≡ −�̌

νμ
− . (2.42)

As we see, the two chirality sectors transform differently
under T-dualization. The form of the T-dualization transfor-
mation laws is of the same form as in [1]. Consequently, in
accordance with the results of Refs. [1,50,51], we introduce
the proper fermionic coordinates

•θα+ = θα+, •θ̄ α− = −(11θ̄−)α, (2.43)

and the correct form of the T-dual fields is

��
μν
+ = κ

2
�

μν
− , (2.44)

��αμ = −κ�α
ν�

νμ
− , ��̄μα = −κ�

μν
− (11�̄)αν, (2.45)

�Pαβ = −(P̃11)
αβ. (2.46)

3 T-dualization of type II superstring in double space

In this section we will demonstrate another framework in
which we can perform the T-dualization procedure. Unlike
the case of the T-dualization of type II superstring theory in
the form of the first-order theory [1] where the T-dual R-R
field strength is not obtained within double space framework,
here we will see that, when fermionic momenta are integrated
out, the double space formalism gives all T-dual background
fields. Before the T-dualization procedure we will introduce
double space and the corresponding quantities.

3.1 T-dual transformation law in double space

Let us introduce the double space coordinate

ZM =
(
xμ

yμ

)

, (3.1)

and rewrite the T-dual transformation laws (2.37)–(2.38) in
the form

±∂±yμ ∼= ǦE
μν∂±xν + κǦE

μρ�̌ρν∂±yν

+ 4κGE
μρ�

ρλ
± �α±λ(P

−1∓ )αβ∂±θ
β
∓, (3.2)

±∂±xμ ∼= (Ǧ−1)μν∂±yν + 2(Ǧ−1 B̌)μν∂±xν

+4(Ǧ−1)μρ�α±ρ(P−1∓ )αβ∂±θ
β
∓. (3.3)

These two equations can be rewritten in double space as

±�MN ∂±ZN ∼= ȞMN ∂±ZN + J̌±M , (3.4)

where the generalized metric is of the form

ȞMN =
(
ǦE

μν κǦE
μρ�̌ρν

2(Ǧ−1)μρ B̌ρν (Ǧ−1)μν

)

, (3.5)

and the double current is

J̌±M = 4

(
κǦE

μρ�̌
ρν
±

(Ǧ−1)μν

)

J±μ, J±μ = �α±μ(P−1∓ )αβ∂±θ
β
∓.

(3.6)

The matrix

� =
(

0 1D

1D 0

)

, (3.7)

where 1D denotes the unity matrix in D dimensions, known in
double field theory (DFT) as the invariant SO(D, D) metric.

Note that generalized metric is not of the standard form
because its components contain the improved Kalb–Ramond
field B̌μν and the improved metric Ǧμν . Those additional
factors in B̌μν and Ǧμν have a bilinear form in the NS-R
fields �α

μ and �̄α
μ. Still, we have

ȞT�Ȟ = �, �2 = 1, det Ȟ = 1, (3.8)

which means that Ȟ ∈ SO(D, D).

3.2 Full T-dualization in double space

Let us introduce the permutation matrix

T M
N =

(
0 1D

1D 0

)

, (3.9)

and define the T-dual double coordinate �ZM as

�ZM = T M
N Z

N . (3.10)

We require that the T-dual transformation law for the T-
dual double coordinate �ZM has the same form as for initial
double coordinate ZM (3.4)

±�MN ∂±�ZN ∼= �ȞMQ∂±�ZQ + � J̌±M , (3.11)

which implies that T-dual generalized metric and double cur-
rent are of the form, respectively,

�ȞMN = TM PȞPQT Q
N , � J̌±M = TMN J̌±N . (3.12)

Let us make explicit the first equation in (3.12):
(

�Ǧμν
E κ�Ǧμρ

E
��̌ρν

2(�Ǧ−1)μρ
� B̌ρν (�Ǧ−1)μν

)
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=
(

(Ǧ−1)μν 2(Ǧ−1)μρ B̌ρν

κǦE
μρ�̌ρν ǦE

μν

)

. (3.13)

Equating the (2, 2) block components we get

(�Ǧ−1)μν = ǦE
μν, (3.14)

which produces

�Ǧμν =
(
Ǧ−1

E

)μν

. (3.15)

Using (2, 1) the block components equation

2(�Ǧ−1)μρ
� B̌ρν = κǦE

μρ�̌ρν, (3.16)

combining with (3.14), we obtain

� B̌μν = κ

2
�̌μν. (3.17)

Using these two results we have

��̌
μν
± = �Bμν ± 1

2
�Ǧμν = κ

2

[

�̌μν ± 1

κ

(
Ǧ−1

E

)μν
]

= κ

2
�̌

μν
∓ .

(3.18)

The obtained equation coincides with the equation obtained
by the standard Buscher procedure (2.31). The block com-
ponents (1, 1) and (1, 2) give, respectively,

�Ǧμν
E = (Ǧ−1)μν, �Ǧμρ

E
��̌ρν = 2

κ
(Ǧ−1)μρ B̌ρν. (3.19)

Combining the last two equations produces

��̌μν = 2

κ
B̌μν, (3.20)

and, furthermore, we have

��̌−μν = 2

κ
�̌+μν. (3.21)

Using the relations between the initial and T-dual NS-NS
background fields obtained above and the second equation
in (3.12), we get

� Jμ
± = κ�̌

μν
± J±ν, (3.22)

where the T-dual current � Jμ
± has the same form as the initial

one but in terms of the T-dual background fields and proper
fermionic coordinates (for details see [1])

� Jμ
± ≡ ��

αμ
± (�P−1∓ )αβ∂±•θβ

∓. (3.23)

The proper fermionic coordinates are defined as

•θα+ = θα+, •θα− = −(11θ−)α. (3.24)

From Eq. (3.23) we have

��̌
μν
+ = ��

μν
+ + 2��̄αμ(�P−1)αβ

��βν, (3.25)
��̌−μν = ��−μν − 4κ��−μρ

��̄ρα(� P̃−1)αβ
��βλ��−λν,

(3.26)

and, solving these equations, we get

��αμ = ±κ�α
ν�

νμ
− , ��̄αμ = ±κ�

μν
− (11�̄)αν ,

�Pαβ = − (
Pαγ + 4κ�α

μ�μν�̄γ
ν

)
(11)γ

β . (3.27)

Here the double space formalism produces (3.18) and (3.27)
i.e. all relations (2.44)–(2.46), up to the sign of the T-dual
NS-R background fields. This uncertainty in sign is a conse-
quence of the fact that in both equations, (3.25) and (3.26),
the NS-R fields, ��αμ and ��̄αμ, appear in a bilinear com-
bination. In comparison with the case where the fermionic
momenta are not integrated out [1], this is an improvement
because the double formalism gives all T-dual background
fields. In Ref. [1] we did not obtain the relation for the T-
dual R-R background field and we had to impose additional
conditions. Here the calculation is slightly more complicated,
but we obtain all fields within one formalism. The reason is
that in [1] the R-R field is coupled by fermionic momenta
which are not T-dualized. Consequently, after integration of
the fermionic momenta, there appears a coupling between
the R-R field strength with bosonic coordinates xμ which
results in Eq. (3.27).

4 Conclusion

In this article we considered the type II superstring theory in a
pure spinor formulation with constant background fields. We
integrated out the fermionic momenta and obtained the theory
quadratic in world-sheet derivatives of bosonic and fermionic
coordinates. Our goal was to show the advantage of the T-
dualization within the double space formalism comparing to
the first-order theory [1].

At the beginning we explained how we obtained the action
with constant background field from the general one derived
in [49]. The assumed shift symmetry along the bosonic direc-
tions xμ means that the background fields do not depend on
xμ. On the other hand, for technical simplicity of the cal-
culations, we take just the first terms in the expansions of
background fields in powers of θα and θ̄ α . All these assump-
tions result in constant background fields. In the final form
of the action, just physical superfields are present, while the
auxiliary fields and field strengths are zero.
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The main mathematical difference from Ref. [1] is that
the fermionic momenta are integrated out. In this way we
obtained a theory which is quadratic in the world-sheet
derivatives of the coordinates, ∂±xμ, ∂±θα and ∂±θ̄ α . It is
important to emphasize that in such a formulation R-R field
strength Pαβ is coupled with the derivatives of the bosonic
coordinates ∂±xμ. Then we applied the Buscher procedure
and, beside some slightly more complicated mathematical
calculations, we obtained the same result as in the case for
the first-order theory [1].

Our contribution was to show the benefit in performing
a T-dualization procedure in double space using the action
(2.14), to be compared with the results obtained for the action
(2.11) in Ref. [1].

The double space is spanned by the coordinates ZM =
(xμ, yμ), where xμ are initial bosonic coordinates and yμ
are corresponding the T-dual ones. The T-dual transforma-
tion laws are rewritten in terms of the double space coordi-
nates introducing the generalized metric ȞMN and the cur-
rent J̌±M . Note that their components are expressed in terms
of the improved Kalb–Ramond field and the metric contain-
ing additional terms bilinear in the NS-R background fields
�α

μ and �̄α
μ. Requiring that T-dual double space coordinates

�ZM = T M
N ZN satisfy a transformation law of the same

form as the initial coordinates ZM we found the T-dual gen-
eralized metric �ȞMN and the T-dual current � J±M . The T-
dual generalized metric should have the same form as the
initial ones, so, in this way we obtain relations which pro-
duce the expressions for T-dual background fields in terms
of the initial ones, which agrees with that obtained applying
the Buscher procedure.

In Ref. [1] we obtained the expressions for the T-dual NS-
NS background fields as well as for the NS-R fields. But
because we T-dualized along the bosonic directions which
are not coupled with R-R field strength, the double space
formalism did not give us the expression for the T-dual R-R
field strength. These expressions were obtained under some
additional assumptions out of the double space formalism.

Here we succeeded in obtaining the expressions for all T-
dual background fields, which showed that there is an advan-
tage in performing double space T-dualization in the second-
order theory where the fermionic momenta are integrated
out.

After having summarized the results of this article it is
interesting to discuss their significance and relation to the
results of other articles addressing the same or similar sub-
jects. For example, in Ref. [52] the authors construct the type
II model with T-duality as a manifest symmetry. The way of
construction is partially similar to the one from [49] used in
this paper. In [49] they used (anti)holomorphicity and nilpo-
tency conditions, while in [52] instead of nilpotency con-
ditions they used conditions originating from κ symmetry.

But in [52] they do not study the problem of the RR field
strength as well as an interchange between types IIA/B in
the T-dualization process, which are the subjects addressed
in this article. Furthermore, in [53] one version of the dou-
bled superspace is discussed. It is pretty similar to the space
we used in this article, but it is obtained by multiplication
of the left and right chiral sectors with N = 1 supersym-
metry in D = 10. The space which is obtained is spanned
by the initial bosonic coordinates, their T-dual ones and two
fermionic coordinates. Our doubled coordinate contains just
the bosonic part of this doubled supercoordinate because we
consider here just bosonic T-dualization and, consequently,
we do not consider a fermionic sector. The obvious difference
is that in [53] they obtained a type II action in the Green–
Schwarz formalism, while we study here a pure spinor action.
In [54] the geometry of superspace is developed with a type
II model as the main example. One of the things discussed is
the relation of some sectors with pure spinor fields. Finnaly,
it is useful to mention also Ref. [55]. In this article a reduc-
tion of type IIA/B superstring theory from 10d to 9d is done,
which effectively could be T-dualization. The L∞ isomor-
phisms relate two coefficient L∞ algebras. Also one derived
the Buscher rules for the RR field strength, which is done in
this article using simpler mathematical methods.
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Izdavač: Institut za fiziku, Beograd, Srbija

Izdanje: Prvo izdanje
(SFIN year XXXIII Series A: Conferences, No. A1 (2020))
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P R E F A C E

This volume contains some reviews and original research contributions,
which are related to the 10th Mathematical Physics Meeting: School
and Conference on Modern Mathematical Physics, organized by
the Institute of Physics, Belgrade (Serbia), September 9–14, 2019. The
programme of this meeting was mainly oriented towards some recent de-
velopments in gravity and cosmology, string and quantum field theory, and
some relevant mathematical methods. We hope that articles presented here
will be valuable literature not only for the participants of this meeting but
also for many other PhD students and researchers in modern mathematical
and theoretical physics. We are grateful to all authors for writing their
contributions for these proceedings.

The previous nine meetings in this series of schools and conferences on
modern mathematical physics were also held in Serbia: Sokobanja 2001,
Kopaonik 2002, Zlatibor 2004, Belgrade 2006, 2008, 2010, 2012, 2014, and
2017. The corresponding proceedings of all these meetings were published
by the Institute of Physics Belgrade, and are available in the printed form
as well as online at the websites. According to an agreement with the jour-
nal Symmetry, several papers are published in the special issue “Selected
Papers: 10th Mathematical Physics Meeting”.

This jubilary tenth meeting took place at two different venues — the
opening and the first day of lectures was held in the grand lecture hall of the
Serbian Academy of Sciences and Arts, while the lectures for the remaining
five days were held at the Mathematical Institute. Both venues are located
in Belgrade downtown, across the road of each other. We hope that all
attendees of this meeting will recall it as a useful and pleasant event, and
will wish to participate again in the future.

We wish to thank all lecturers and other speakers for their interesting
and valuable talks. We also thank all participants for their active partic-
ipation. Financial support of our sponsors, Ministry of Education, Sci-
ence and Technological Development of the Republic of Serbia, Belgrade;
Telekom Srbija; Open access journal “Symmetry”, and the support of our
media partner, Open access journal “Entropy”, were very significant for
realization of this activity.

April 2020 E d i t o r s

B. Dragovich
I. Salom
M. Vojinović

vii



10th MATHEMATICAL PHYSICS MEETING:
School and Conference on

Modern Mathematical Physics

Belgrade, September 9 - 14, 2019

Organizers

• Institute of Physics, Belgrade, Serbia
• Faculty of Mathematics, Belgrade, Serbia
• Mathematical Institute, Belgrade, Serbia
• Faculty of Science, Kragujevac, Serbia
• Serbian Academy of Sciences and Arts, Serbia

Co-organizers

• Institute of Nuclear Sciences “Vinča”, Belgrade, Serbia
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Dejan Stojković (Buffalo, USA)
Mihai Visinescu (Bucharest, Romania)
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From 3D torus with H-flux to torus with R-flux
and back∗

Bojan Nikolić†

Institute of Physics Belgrade, University of Belgrade
Pregrevica 118, Belgrade, Serbia

Danijel Obrić‡

Institute of Physics Belgrade, University of Belgrade
Pregrevica 118, Belgrade, Serbia

Abstract

In this article we study 3D closed bosonic string propagating in the constant
metric and Kalb-Ramond field with one non-zero component, Bxy = Hz, where
field strength H is infinitesimal. We will T-dualize along line x → y → z, which
means that we T-dualize first along x coordinate, then along y and, finally, along
z coordinate. After first two T-dualizations we obtain Q flux theory which is
just locally well defined, while after all three T-dualizations we obtain nonlocal
R flux theory. The Q flux theory is commutative one and the R flux theory is
noncommutative and nonassociative one. After that we reverse the T-dualization
line and T-dualize along z → y → x. All three theories are nonlocal, but after
the first T-dualization we obtain commutative and associative theory, while after
we T-dualize along y, we get noncommutative and associative theory. T-dualizing
along x, we come to the theory which is both noncommutative and nonassociative.
The form of the final T-dual action does not depend on the order of T-dualization
while noncommutativity and nonassociativity relations could be obtained from
those in the x→ y → z case by replacing H → −H.

1. Introduction

Heisenberg suggested coordinate noncommutativity in order to solve the
problem of infinities before developing of renormalization procedure. In
the paper [1] discrete Lorentz invariant space-time is constructed, which
means that coordinates are noncommutative.

Noncommutativity came into the focus of interest with the appearance
of the paper [2], where it is shown that open string endpoints in the presence

∗ This work has been supported by the Serbian Ministry of Science and Technological
Development, under contract No. 171031.
† e-mail address: bnikolic@ipb.ac.rs
‡ e-mail address: dobric@ipb.ac.rs
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of the constant metric and Kalb-Ramond field became noncommutative.
After this article many others [3] appeared addressing the same subject
but using different approaches.

The closed bosonic string in the presence of constant metric and Kalb-
Ramond filed remains commutative, because there are no boundary condi-
tions constraining string dynamics. Noncommutativity could be achieved
[4] but using T-duality procedure and coordinate dependent Kalb-Ramond
field.

T-duality as a fundamental feature of string theory [5, 6, 7, 8, 9, 10, 11]
is realized within Buscher T-dualization procedure [6] which can consid-
ered as definition of T-dualization. It is applicable along directions on
which background fields do not depend. In order to work with coordinate
dependent backgrounds generalized T-dualization procedure is developed
[12, 13, 14].

Here we will study closed bosonic string in the presence of the constant
metric and linear dependent Kalb-Ramond field with just one nonzero com-
ponent, Bxy = Hz, the background already analyzed in [15]. In all calcu-
lations we keep constant and linear terms in infinitesimal field strength H.
We will use transformation laws, relations which connect initial and T-dual
variables, in canonical form, expressed in terms of the coordinates and mo-
menta. Our task is to T-dualize along T-dualization chain x → y → z
and in opposite direction and examine the influence of the T-dualization
sequence on the form of the final theory (theory obtained after three T-
dualizations) as well as on the noncommutativity and nonassociativity pa-
rameters.

T-dualizations along x and y produces the Q-flux background [15],
which is still locally well defined, but the theory is commutative. Applying
the generalized T-duality procedure [12, 13, 14], z T-dualization gives R
flux theory which is nonlocal one because it depends on the non-locally
defined variable ∆V . Nonzero Poisson brackets of the T-dual coordinates
shows that there is a connection of non-locality and closed string noncom-
mutativity.

The form of noncommutativity is proportional to the infinitesimal field
strength H and difference of the initial coordinates. When arguments of the
coordinates are different, σ 6= σ̄, there exists noncommutativity. The conse-
quence of the coordinate dependent noncommutativity relations is broken
Jacobi identity - nonassociativity occurs. Nonassociativity parameter is
proportional to the field strength H.

In the second part of the article we will T-dualize first along z and then
along isometry directions y and finally along x. After first T-dualization
we get commutative and associative theory as in xyz case. The second
T-dualization produces noncommutative and associative theory. In the
xyz case, theory second in the T-dualization chain is both commutative
and associative. The action of the final theory is the same as in xyz case
which is nonassociative and noncommutative. The noncommutativity and
nonassociativity parameters have one additional ”−” sign comparing with
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the corresponding ones in [16].

2. Action and T-dualization procedure

In this section we will present the construction of the model and give some
important details of the T-dualization procedure.

2.1. Model

The closed bosonic string action is of the form [5]

S = κ

∫
Σ
d2ξ
√
−g

{[
1

2
gαβGµν(x) +

εαβ√
−g

Bµν(x)

]
∂αx

µ∂βx
ν + Φ(x)R(2)

}
,

(1)
where world-sheet surface Σ is parameterized by ξα = (τ , σ) [(α = 0 , 1),
σ ∈ (0 , π)], while xµ (µ = 0, 1, 2, . . . , D − 1) are space-time coordinates.
Intrinsic world sheet metric is denoted by gαβ, and the corresponding scalar

curvature with R(2). Here Gµν is, in the general case, coordinate dependent
metric, Bµν is coordinate dependent Kalb-Ramond field, while Φ is dilaton
field.

If we intend to have conformal symmetry on the quantum level, back-
ground fields are not arbitrarily chosen i.e. they must obey the space-time
field equations [17]

βGµν ≡ Rµν −
1

4
BµρσBν

ρσ + 2Dµaν = 0 , (2)

βBµν ≡ DρB
ρ
µν − 2aρB

ρ
µν = 0 , (3)

βΦ ≡ 2πκ
D − 26

6
−R− 1

24
BµρσB

µρσ −Dµa
µ + 4a2 = c , (4)

where c is an arbitrary constant. It holds

DνβGνµ + ∂µβ
Φ = 0 , (5)

which means that third beta function, βΦ, can be zero or nonzero constant.
The notation is in the standard form: Rµν and Dµ are Ricci tensor and
covariant derivative with respect to the space-time metric Gµν , while field
strength for Kalb-Ramond field Bµν and dilaton gradient are defined as

Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , aµ = ∂µΦ . (6)

Choosing Kalb-Ramond field to be linearly coordinate dependent and
dilaton field to be constant, we obtain (2)

Rµν −
1

4
BµρσBν

ρσ = 0 . (7)
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Assuming that Kalb-Ramond field strength is infinitesimal we can take Gµν
to be constant but in approximation linear in Bµνρ. As a consequence the
third equation (4) becomes

2πκ
D − 26

6
= c . (8)

The arbitrary constant c can be fixed, c = −23π
3 , which gives D = 3.

The background fields are of the form

Gµν =

 R2
1 0 0

0 R2
2 0

0 0 R2
3

 , Bµν =

 0 Hz 0
−Hz 0 0

0 0 0

 , (9)

where Rµ(µ = 1, 2, 3) are radii of the compact dimensions. If we rescale
the coordinates

xµ 7−→ x′µ = Rµx
µ , (10)

the form of the metric simplifies

Gµν =

 1 0 0
0 1 0
0 0 1

 . (11)

After all the action gets the form

S = κ

∫
Σ
d2ξ∂+x

µΠ+µν∂−x
ν (12)

= κ

∫
Σ
d2ξ

[
1

2
(∂+x∂−x+ ∂+y∂−y + ∂+z∂−z)

+ ∂+xHz∂−y − ∂+yHz∂−x] ,

where ∂± = ∂τ ± ∂σ, and

Π±µν = Bµν ±
1

2
Gµν , xµ =

 x
y
z

 . (13)

2.2. T-dualization procedure

In the standard Buscher procedure, the starting point is assumption that
the target space has isometries. Our background is coordinate dependent
so it is useful to examine if the isometry exists. Let us start with the
coordinate shift

δxµ = λµ = const, (14)
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and assume that all the coordinates are compact. As Bµν is linear in
coordinate, we have

δS =
κ

3
Bµνρλ

ρ
∫
d2ξ∂+x

µ∂−x
ν

=
κ

3
Bµνρλ

ρεαβ
∫
d2ξ∂αx

µ∂βx
ν . (15)

This is proportional to the total divergence

δS =
κ

3
Bµνρλ

ρεαβ
∫
d2ξ∂α(xµ∂βx

ν) = 0, (16)

which vanishes in the case of the closed string and the topologically trivial
mapping of the world-sheet into the space-time. So, the isometry exists
even in the case we have chosen.

To localize the global symmetry, we introduce the gauge fields vµα and
substitute the ordinary derivatives with the covariant ones

∂αx
µ → Dαx

µ = ∂αx
µ + vµα. (17)

The covariant derivatives are gauge invariant under the following transfor-
mation law for the gauge fields

δvµα = −∂αλµ, (λµ = λµ(τ, σ)). (18)

This replacement is not sufficient to make the action locally invariant be-
cause the background field Bµν is coordinate dependent. The coordinate
xµ, should be replaced with the invariant coordinate

∆xµinv ≡
∫
P
dξαDαx

µ =

∫
P

(dξ+D+x
µ + dξ−D−x

ν)

= xµ − xµ(ξ0) + ∆V µ, (19)

where

∆V µ ≡
∫
P
dξαvµα =

∫
P

(dξ+vµ+ + dξ−vµ−). (20)

In order to make gauge fields vµα nonphysical degrees of freedom, the
corresponding field strength

Fµαβ ≡ ∂αv
µ
β − ∂βv

µ
α, (21)

must vanish. Technically, this can be achieved by introducing the Lagrange
multiplier yµ, and the appropriate additional term in the Lagrangian

Sadd =
κ

2

∫
d2(vµ+∂−yµ − v

µ
−∂+yµ), (22)

where the last term is equal 1
2yµF

µ
+− up to the total divergence. At the end

of procedure we fix gauge freedom in the way that xµ(ξ) = xµ(ξ0).
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3. T-dualization along chain x→ y → z

In this section we will make T-dualization along chain x → y → z, step
by step. Our goal is to find transformation laws, and using them we will
calculate noncommutativity and nonassociativity relations.

3.1. Twisted torus geometry from torus with H-flux

Because background fields do not depend on coordinate x, T-dualization
along direction x is performed within standard Buscher procedure (without
introduction of invariant coordinate). Here we will repeat the standard and
generalized Buscher procedure explained above, while in other cases we will
just give the final results.

Since x direction is an isometry one, action has a global shift symmetry,
x −→ x+a. Localizing this symmetry we replace ordinary derivatives with
the covariant ones

∂±x −→ D±x = ∂±x+ v± , (23)

where v± are gauge field. In order to have T-dual action with the same
number of degrees of freedom as initial one, we have to add following term
to the action

Sadd =
κ

2

∫
Σ
d2ξy1(∂+v− − ∂−v+) , (24)

where y1 is a Lagrange multiplier. Symmetry enables us to fix gauge,
x = const., which produces

Sfix = κ

∫
d2ξ

[
1

2
(v+v− + ∂+y∂−y + ∂+z∂−z)

+ v+Hz∂−y − ∂+yHzv−

+
1

2
y1(∂+v− − ∂−v+)

]
. (25)

On the equations of motion for y1 field strength for the gauge field v±
is equal to zero

F+− = ∂+v− − ∂−v+ = 0 . (26)

Vanishing of the field strength gives us the solution

v± = ∂±x . (27)

Applying this solution from gauge fixed action (25) we restore initial action
(12). Varying the gauge fixed action with respect to the gauge fields we get

v− = −∂−y1 − 2Hz∂−y , (28)

v+ = ∂+y1 + 2Hz∂+y . (29)
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Using (28) and (29) from gauge fixed action (25) we get the T-dual action

xS = κ

∫
Σ
d2ξ∂+(xX)µxΠ+µν∂−(xX)ν , (30)

where

xX
µ =

 y1

y
z

 , (31)

and T-dual background fields

xΠ+µν = xBµν +
1

2
xGµν , xBµν = 0 , xGµν =

 1 2Hz 0
2Hz 1 0

0 0 1

 .

(32)
Geometry described by background fields (32) defines so called twisted torus
geometry. String theory after one T-dualization is geometrical (flux H takes
the role of connection).

Combining two sets of equations of motion, (27), (28) and (29), we get
the transformation laws

∂±x ∼= ±∂±y1 ± 2Hz∂±y , (33)

where ∼= denotes T-duality relation. From the initial action (12) we can
easily find canonical momentum πx

πx =
δS

δẋ
= κ(ẋ− 2Hzy′) , (34)

where Ȧ ≡ ∂τA and A′ ≡ ∂σA. Transformation law (33) produces the
relation

ẋ ∼= y′1 + 2Hzy′ , (35)

which, combined with the expression for πx, enables us to find transforma-
tion law in canonical form

πx ∼= κy′1 . (36)

The initial theory described by action (12) is geometrical one and their
coordinates and canonical momenta satisfy standard Poisson algebra

{xµ(σ), πν(σ̄)} = δµνδ(σ − σ̄) , {xµ, xν} = {πµ, πν} = 0 . (37)

Using this algebra it is simply to show that obtained theory (30) is com-
mutative one

{xXµ, xX
ν} = 0 . (38)
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3.2. The second step - Q-flux theory

In this subsection the starting action is the action obtained after T-duali-
zation along x (30). Because y is an isometry direction T-dualization along
y direction will be performed according to standard Buscher procedure.

Let us construct the gauge fixed action starting with (30)

Sfix = κ

∫
Σ
d2ξ

[
1

2
(∂+y1∂−y1 + v+v− + ∂+z∂−z)

+ ∂+y1Hzv− + v+Hz∂−y1 +
1

2
y2(∂+v− − ∂−v+)

]
. (39)

The equation of motion for Lagrange multiplier y2 produces

∂+v− − ∂−v+ = 0 −→ v± = ∂±y . (40)

Application of these equations of motions transfers action (39) to (30).
Varying the gauge fixed action with respect to the gauge fields are

v± = ±∂±y2 − 2Hz∂±y1 . (41)

Putting these expressions into gauge fixed action, we get T-dual action

xyS = κ

∫
d2ξ∂+(xyX)µxyΠ+µν∂−(xyX)ν , (42)

where the background fields are

xyBµν =

 0 −Hz 0
Hz 0 0
0 0 0

 = −Bµν , xyGµν =

 1 0 0
0 1 0
0 0 1

 , (43)

and

(xyX)µ =

 y1

y2

z

 , xyΠ+µν = xyBµν +
1

2
xyGµν =

 1
2 −Hz 0
Hz 1

2 0
0 0 1

2

 .

(44)
We see that background fields look like those of torus with H flux (12).

Their global properties are non-trivial and that is a reason why the term
nongeometry is introduced.

Using T-dual transformation laws in Lagrangian form

∂±y ∼= ±∂±y2 − 2Hz∂±y1 , (45)

in combination with the expression for canonical momentum of the initial
theory

πy =
δS

δẏ
= κ(ẏ + 2Hzx′) . (46)
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we get T-dual transformation law in canonical form

πy ∼= κy′2 . (47)

From standard Poisson algebra (37) it follows that theory obtained by two
T-dualizations along isometry directions is still commutative

{xyXµ, xyX
ν} = 0 . (48)

3.3. Full T-dualized theory

Kalb-Ramond field is dependent on z but this direction is still isometry
one (see subsection 2.2). For T-dualization along z we use generalized T-
dualization procedure [12, 13, 14].

Starting action is the one obtained in the previous step (42). The
first step in the T-dualization procedure is localizing shift symmetry of
the action (42) along z direction. This means that we have to introduce
covariant derivative

∂±z −→ D±z = ∂±z + v± . (49)

Then we introduce the invariant coordinate as line integral

zinv =

∫
P
dξαDαz =

∫
P
dξ+D+z+

∫
P
dξ−D−z = z(ξ)− z(ξ0) + ∆V , (50)

where

∆V =

∫
P
dξαvα =

∫
P

(dξ+v+ + dξ−v−) . (51)

In order to make v± to be nonphysical degrees of freedom we add to the
action term with Lagrange multiplier

Sadd =
κ

2

∫
Σ
d2ξ y3(∂+v− − ∂+v−) . (52)

The final form of the action is

S̄ = κ

∫
Σ
d2ξ

[
−Hzinv(∂+y1∂−y2 − ∂+y2∂−y1) (53)

+
1

2
(∂+y1∂−y1 + ∂+y2∂−y2 +D+zD−z) +

1

2
y3(∂+v− − ∂−v+)

]
.

The final step in the procedure is gauge fixing, z(ξ) = z(ξ0), and then the
gauge fixed action is of the form

Sfix = κ

∫
Σ
d2ξ [−H∆V (∂+y1∂−y2 − ∂+y2∂−y1) (54)

+
1

2
(∂+y1∂−y1 + ∂+y2∂−y2 + v+v−) +

1

2
y3(∂+v− − ∂−v+)

]
.
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We restore initial theory (42) from the gauge fixed action using equation
of motion for Lagrange multiplier y3

∂+v− − ∂−v+ = 0 =⇒ v± = ∂±z , ∆V = ∆z . (55)

Varying the gauge fixed action (54) with respect to the gauge fields we get

v± = ±∂±y3 − 2β∓ , (56)

where β± are functions defined as

β± = ±1

2
H(y1∂∓y2 − y2∂∓y1) . (57)

They are a result of the variation of the term containing ∆V . Using rela-
tions (56) from the gauge fixed action, we obtain the T-dual action

xyzS = κ

∫
Σ
d2ξ∂+xyzX

µ
xyzΠ+µν∂−xyzX

ν , (58)

where background fields are

xyzBµν =

 0 −H∆ỹ3 0
H∆ỹ3 0 0

0 0 0

 , xyzGµν =

 1 0 0
0 1 0
0 0 1

 , (59)

and

xyzX
µ =

 y1

y2

y3

 . (60)

The double coordinate ỹ3 is defined as

∂±y3 ≡ ±∂±ỹ3 , (61)

while, because it stands together with H, we calculate ∆V in the zeroth
order

∆V =

∫
dξ+∂+y3 −

∫
dξ−∂−y3 . (62)

Because ∆V is defined as line integral, the nonlocality occures in the T-dual
theory. The result of the three T-dualization is a theory with R flux.

Lagrangian form of the T-dual transformation law is

∂±z ∼= ±∂±y3 − 2β∓ . (63)

while its canonical form is

y′3
∼=

1

κ
πz −H(xy′ − yx′) . (64)
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4. Noncommutativity and nonassociativity

In this section we will calculate noncommutativity and nonassociativity
relations using canonical forms of the transformation laws.

4.1. Noncommutativity relations

Rewriting the relations (36), (47) and (64) as

y′1
∼=

1

κ
πx , y′2

∼=
1

κ
πy , y′3

∼=
1

κ
πz −H(xy′ − yx′) . (65)

we conclude that nontrivial Poisson brackets will be {y1(σ), y3(σ̄)} and
{y2(σ), y3(σ̄)}. Using the result presented in the Appendix A and the
relations

{y′1(σ), y′3(σ̄)} ∼=
2

κ
Hy′(σ)δ(σ − σ̄) +

1

κ
Hy(σ)δ′(σ − σ̄) , (66)

{y′2(σ), y′3(σ̄)} ∼= −
2

κ
Hx′(σ)δ(σ − σ̄)− 1

κ
Hx(σ)δ′(σ − σ̄) , (67)

we get the Poisson brackets of the T-dual coordinates

{y1(σ), y3(σ̄)} ∼= −
H

κ
[2y(σ)− y(σ̄)] θ(σ − σ̄) , (68)

{y2(σ), y3(σ̄)} ∼=
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) . (69)

If σ = σ̄ then these two Poisson brackets are zero. But if we choose that
σ − σ̄ = 2π then θ(2π) = 1 and it follows

{y1(σ + 2π), y3(σ)} ∼= −
H

κ
[4πNy + y(σ)] , (70)

{y2(σ + 2π), y3(σ)} ∼=
H

κ
[4πNx + x(σ)] , (71)

where Nx and Ny are winding numbers defined as

x(σ + 2π)− x(σ) = 2πNx , y(σ + 2π)− y(σ) = 2πNy . (72)

4.2. Nonassociativity

Let us start calculating Poisson brackets {y1(σ), x(σ̄)} and {y2(σ), y(σ̄)}.
Similar to the calculations presented in Appendix A, we start with

{∆y1(σ, σ0), x(σ̄)} = {
∫ σ

σ0
dηy′1(η), x(σ̄)} . (73)
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Using the T-dual transformation in canonical form (36), we obtain

{∆y1(σ, σ0), x(σ̄)} ∼=
1

κ
{
∫ σ

σ0
dηπx(η), x(σ̄)} , (74)

which produces further

{∆y1(σ, σ0), x(σ̄)} ∼= −
1

κ
[θ(σ − σ̄)− θ(σ0 − σ̄)]

=⇒ {y1(σ), x(σ̄)} ∼= −
1

κ
θ(σ − σ̄) . (75)

The relation {y2(σ), y(σ̄)} can be obtained in the same way

{y2(σ), y(σ̄)} ∼= −
1

κ
θ(σ − σ̄) . (76)

Now it is straightforward to calculate Jacobi identity using (68), (69) and
above Poisson brackets

{y1(σ1), y2(σ2), y3(σ3)} ≡
{y1(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), y1(σ1)}}

+ {y3(σ3), {y1(σ1), y2(σ2)}} ∼=

−2H

κ2
[θ(σ1 − σ2)θ(σ2 − σ3) + θ(σ2 − σ1)θ(σ1 − σ3)

+ θ(σ1 − σ3)θ(σ3 − σ2)] . (77)

Jacobi identity is nonzero which means that theory with R-flux is in general
nonassociative. For σ2 = σ3 = σ and σ1 = σ + 2π we get

{y1(σ + 2π), y2(σ), y3(σ)} ∼=
2H

κ2
. (78)

5. Reversed T-dualization chain z → y → x

Our intention is to T-dualize (12) in opposite direction to find the form
of noncommutativity and nonassociativity relations. Because we T-dualize
first along z, all three theories are R-flux ones.

The T-dualization procedure is presented and already applied three
times. So, omitting all technical steps, the T-dual action is of the form

zS = κ

∫
Σ
d2ξ∂+zX

µ
zΠ+µν∂−zX

ν , (79)

where

zX
µ =

 x
y
y3

 , zΠ+µν = zBµν +
1

2
zGµν , (80)
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zBµν =

 0 H∆V 0
−H∆V 0 0

0 0 0

 , zGµν =

 1 0 0
0 1 0
0 0 1

 . (81)

T-dual transformation laws are

∂±z ∼= ±∂±y3 ∓H(x∂±y − y∂±x) . (82)

Momentum of the initial theory (12) canonically conjugated to the coordi-
nate z is of the form

πz = κż , (83)

so, the T-dual transformation law in canonical form is

y′3
∼=

1

κ
πz +H(xy′ − yx′) . (84)

From the expressions (84) and (37), we get that coordinates zX
µ are

commutative. Consequently, Jacobiator is equal to zero, which means that
theory is associative.

After T-dualization along y direction the T-dual action is

zyS = κ

∫
Σ
d2ξ ∂+ zyX

µ
zyΠ+µν ∂− zyX

ν , (85)

where

zyX
µ =

 x
y2

y3

 , zyΠ+µν = zyBµν +
1

2
zyGµν , (86)

zyBµν = 0 , zyGµν =

 1 −2H∆V 0
−2H∆V 1 0

0 0 1

 . (87)

The canonical form of the T-dual transformation law is

y′2
∼=

1

κ
πy . (88)

The only non-zero Poisson bracket is

{y′2(σ), y′3(σ̄)} ∼=
H

κ

[
2x′(σ)δ(σ − σ̄) + x(σ)δ′(σ − σ̄)

]
. (89)

Using the instructions from Appendix A, the solution is of the form (107)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) . (90)
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For σ − σ̄ = 2π, we have

{y2(σ + 2π), y3(σ)} ∼= −
H

κ
[x(σ) + 4πNx] , (91)

where Nx is winding number for x coordinate defined as

x(σ + 2π)− x(σ) = 2πNx . (92)

It is straightforward to calculate the Jacobiator

{x(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), x(σ1)}}
+ {y3(σ3), {x(σ1), y2(σ2)}} ∼= 0 . (93)

Because it is zero, we conclude that this R-flux theory is noncommutative
and associative one.

The full T-dualozed action is

zyxS = κ

∫
Σ
d2ξ∂+ zyxX

µ
zyxΠ+µν zyx X

ν , (94)

where

zyxX
µ =

 y1

y2

y3

 , zyxΠ+µν = zyxBµν +
1

2
zyxGµν (95)

zyxBµν =

 0 −H∆V 0
H∆V 0 0

0 0 0

 , zyxGµν =

 1 0 0
0 1 0
0 0 1

 . (96)

The canonical form of the T-dual transformation law is the same as in
the case x→ y → z

y′1
∼=

1

κ
πx . (97)

The set of T-dual transformation laws, (84), (88) and (97), is the same as
in the xyz case up to H → −H. Consequently, we have

{y1(σ), y3(σ̄)} ∼=
H

κ
[2y(σ)− y(σ̄)] θ(σ − σ̄) , (98)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) , (99)

and nonassociativity

{y1(σ1), y2(σ2), y3(σ3)} ≡
{y1(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), y1(σ1)}}

+ {y3(σ3), {y1(σ1), y2(σ2)}} ∼=
2H

κ2
[θ(σ1 − σ2)θ(σ2 − σ3) + θ(σ2 − σ1)θ(σ1 − σ3)

+ θ(σ1 − σ3)θ(σ3 − σ2)] . (100)
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6. Conclusion

In this article we considered closed bosonic string propagating in the con-
stant metric and Kalb-Ramond field with just one nonzero component,
Bxy = −Byx = Hz. We worked in the approximation linear in H. We
T-dualized along chain xyz and in opposite direction. Our goal was to ex-
amine the influence of the sequence of T-dualizations on the full T-dualized
theory, geometrical features and noncommutativity and nonassociativity of
the coordinates.

T-dualizing along chain xyz we concluded that the first theory is geo-
metrical, commutative and associative, the second one is nongeometrical,
commutative and associative, while the full T-dualized theory is nongeo-
metrical R flux theory which is noncommuattive and nonassociative. When
we reversed the direction of T-dualizations we obtained that all three the-
ories are non geometrical R flux ones. But the first one is both commu-
tative and associative, the second one is noncommutative and associative,
while the third one is both nonassociative and noncommutative. The cor-
responding parameters can be obtained from those in xyz case by replacing
H → −H. The form of the full T-dualized theory does not depend on the
sequence of T-dualizations.

A Important Poisson bracket

Let us start with the Poisson bracket of the σ derivatives of two arbitrary
functions in the form

{A′(σ), B′(σ̄)} = U ′(σ)δ(σ − σ̄) + V (σ)δ′(σ − σ̄) , (101)

where δ′(σ − σ̄) ≡ ∂σδ(σ − σ̄). Our task is to find

{A(σ), B(σ̄)} ,

from
{∆A(σ, σ0),∆B(σ̄, σ̄0)} ,

where

∆A(σ, σ0) =

∫ σ

σ0
dxA′(x) = A(σ)−A(σ0) ,

∆B(σ̄, σ̄0) =

∫ σ̄

σ̄0
dxB′(x) = B(σ̄)−B(σ̄0) . (102)

It is obvious that

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

∫ σ

σ0
dx

∫ σ̄

σ̄0
dy

[
U ′(x)δ(x− y) + V (x)δ′(x− y)

]
,

(103)
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and after integration over y we get

{∆A(σ, σ0),∆B(σ̄, σ̄0)} (104)

=

∫ σ

σ0
dx{U ′(x) [θ(x− σ̄0)− θ(x− σ̄)] + V (x) [δ(x− σ̄0)− δ(x− σ̄)]},

where θ(x) is defined as

θ(x) =

∫ x

0
dηδ(η) =

1

2π

x+ 2
∑
n≥1

1

n
sin(nx)

 =

 0 if x = 0
1/2 if 0 < x < 2π .
1 if x = 2π

(105)
Integrating over x, finally we get

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

U(σ)[θ(σ − σ̄0)− θ(σ − σ̄)]− U(σ0)[θ(σ0 − σ̄0)− θ(σ0 − σ̄)]

− U(σ̄0)[θ(σ − σ̄0)− θ(σ0 − σ̄0)] + U(σ̄)[θ(σ − σ̄)− θ(σ0 − σ̄)]

+ V (σ̄0)[θ(σ − σ̄0)− θ(σ0 − σ̄0]− V (σ̄)[θ(σ − σ̄)− θ(σ0 − σ̄)].(106)

From the last expression, we extract the desired Poisson bracket

{A(σ), B(σ̄)} = −[U(σ)− U(σ̄) + V (σ̄)]θ(σ − σ̄) . (107)
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Lj. Davidović and B. Sazdović
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Representation of T-duality of type II pure spinor
superstring in double space∗

Bojan Nikolić†

Branislav Sazdović‡

Institute of Physics Belgrade, University of Belgrade
Pregrevica 118, 11080 Belgrade, Serbia

Abstract

In this article we present a new way of representation of T-duality using dou-
ble space. Double space is obtained by adding T-dual coordinates to the initial
ones. T-dualization in double space is represented by permutation of appropri-
ate directions from initial and T-dual space. We did this both for bosonic and
fermionic T-dualization of type II superstring theory propagating in the constant
background fields. Obtained results are in full correspondence with the results of
standard Buscher procedure.

1. Introduction

T-duality as a fundamental characteristic of string dynamics [1, 2, 3, 4, 5],
unexprerienced by point-like particle, makes that there is no difference in
physical content between string theories compactified on a circle of radius R
and circle of radius 1/R. It is very important for understanding M-theory,
because five consistent superstring theories are connected by web of T and
S dualities.

Buscher T-dualization procedure [2] represents a mathematical environ-
ment for performing T-duality. In order to make T-dualization along some
directions, they should be isometry ones. Effectively, this means that back-
ground fields do not depend on those coordinates [2, 3, 4, 5, 6, 7]. Further,
we localize noticed symmetry in standard way introducing world-sheet co-
variant derivatives, ∂±x

µ → D±x
µ = ∂±x

µ+vµ±, where vµ± are gauge fields.
In order to have the same number of degrees of freedom in T-dual theory as
in the initial one, the new term with Lagrange multipliers is added to the
action. Using gauge freedom we fix initial coordinates and get the gauge

∗ This work has been supported by the Serbian Ministry of Education, Science and
Technological Development, under contract No. 171031.
† e-mail address: bnikolic@ipb.ac.rs
‡ e-mail address: sazadovic@ipb.ac.rs
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fixed action. Varying gauge fixed action with respect to the Lagrange mul-
tipliers one gets the initial action and varying with respect to the gauge
fields one gets T-dual action.

This standard T-dualization procedure was used in the papers [8, 9,
10, 11, 12] in the context of closed string noncommutativity. There is a
generalized Buscher procedure which deals with background fields depend-
ing on all coordinates. The new step in this procedure is introducing of
gauge invariant coordinate for the directions on which background fields
depend on. The generalized procedure was applied to the case of bosonic
string moving in the weakly curved background [13, 14]. It leads directly
to closed string noncommutativity [15].

Double space formalism is a framework in which we can represent T-
dualization in a simple and elegant way. It is spanned by double coordinates
ZM = (xµ, yµ) (µ = 0, 1, 2, . . . , D−1), where xµ and yµ are the coordinates
of the D-dimensional initial and T-dual space-time, respectively. It was
the subject of the articles about twenty years ago [16, 17, 18, 19, 20], but
interest for it occured again [21, 22, 23, 24, 25]. In all these papers T-duality
is represented as O(d, d) symmetry transformations.

In Refs.[26, 27] we doubled all bosonic coordinates and obtain the the-
ory which contains the initial and all corresponding T-dual theories. In
such theory partial T-dualization (T-dualization along some of the initial
directions xa) is represented as permutation of the corresponding coordi-
nate subsets, xa and ya, which is a generalization of ideas given in [16].

When one says T-duality, one means bosonic T-duality. But since re-
cently we can also speak about fermionic T-duality. Analyzing the gluon
scattering amplitudes in N = 4 super Yang-Mills theory fermionic T-
duality was discovered [28, 29]. Mathematically, fermionic T-duality is
realized within Buscher procedure, except that dualization is performed
along fermionic directions, θα and θ̄α.

In the present paper we are going to extend approach of double space
to the type II theories both in the case of bosonic and fermionic T-duality
[28, 30, 31]. We will show that double space method gives the same results
as in the case of applying of standard Buscher procedure.

Here we start applying the approach of Refs.[26, 27] in the case of partial
bosonic T-dualization of the type II superstring theory [1] and then in the
case of fermionic T-duality. Generally, we use type II pure spinor action
from [32]. This action is given in the form of an expansion in powers of
fermionic coordinates θα and θ̄α. In both cases we simplify the action using
different assumptions explained in the paper. As a result in both cases we
obtain same action, which describes ghost free type II superstring theory
in pure spinor formulation [33, 34, 35] in the approximation of constant
background fields and up to the quadratic terms.

Bosonic T-dual transformation laws can be rewritten via double space
coordinates ZM . In order to achieve that we introduce the generalized
metric HMN and the generalized current J±M . The permutation ma-
trix (T a)MN makes permutation of xa and ya, where index a marks the
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directions along which we make partial bosonic T-dualization. The T-
dual coordinate is defined as aZ

M = (T a)MNZ
N and it has to obey

the T-dual transformation law of the same form as initial coordinates,
ZM . This demand produces the expressions for T-dual generalized met-
ric, aHMN = (T aHT a)MN , and T-dual current, aJ±M = (T aJ±)M . From
transformation of the generalized metric we obtain T-dual NS-NS back-
ground fields and from transformation of the current we obtain T-dual NS-
R fields. The transformation law for R-R field strength we get imposing
additional assumtions because it is coupled by fermionic degrees of freedom
along which we do not dualize.

Further we apply the method in the case of fermionic T-dualization. We
are going to double fermionic sector of type II theories adding to the coordi-
nates θα and θ̄α their fermionic T-duals, ϑα and ϑ̄α, where α = 1, 2, . . . , 16.
Rewriting T-dual transformation laws in terms of the double coordinates,
ΘA = (θα, ϑα) and Θ̄A = (θ̄α, ϑ̄α), we define the ”fermionic generalized
metric” FAB and the generalized currents J̄+A and J−A. The permu-
tation matrix T AB exchanges θ̄α and θα with their T-dual partners, ϑ̄α
and ϑα, respectively. From the requirement that fermionic T-dual coordi-
nates, ?ΘA = T ABΘB and ?Θ̄A = T ABΘ̄B, have the same T-dual trans-
formation law as initial ones, ΘA and Θ̄A, we obtain the expressions for
fermionic T-dual generalized metric, ?FAB = (T FT )AB, and T-dual cur-
rents, ?J̄+A = TABJ̄+B and ?J−A = TABJ−B, in terms of the initial ones.
These expressions produce the expressions for fermionic T-dual NS-R fields
and R-R field strength. Expressions for fermionic T-dual metric and Kalb-
Ramond field are obtained separately under some assumptions.

In this article we will not present explicitely the transformation of dila-
ton field, which demands quantum treatment.

2. Pure spinor action of type II action

The sigma model of pure spinor type II superstring action for type II su-
perstring [32] is of the form

S =

∫
d2ξ

[
∂+θ

αAαβ∂−θ̄
β + ∂+θ

αAαµΠ̄µ + ΠµAµα∂−θ̄
α + ΠµAµνΠ̄ν

+ dαE
α
β∂−θ̄

β + dαE
α
µΠ̄µ + ∂+θ

αEα
β d̄β + ΠµĒµ

β d̄β + dαPαβ d̄β

+
1

2
NµνΩµν,β∂−θ̄

β +
1

2
NµνΩµν,ρΠ̄

ρ +
1

2
∂+θ

αΩα,µνN̄
µν +

1

2
ΠµΩµ,νρN̄

νρ

+
1

2
NµνC̄µν

β d̄β +
1

2
dαC

α
µνN̄

µν +
1

4
NµνSµν,ρσN̄

ρσ

]
+ Sλ + Sλ̄ , (1)

where

Πµ = ∂+x
µ +

1

2
θα(Γµ)αβ∂+θ

β , Π̄µ = ∂−x
µ +

1

2
θ̄α(Γµ)αβ∂−θ̄

β , (2)
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dα = πα −
1

2
(Γµθ)α

[
∂+x

µ +
1

4
(θΓµ∂+θ)

]
,

d̄α = π̄α −
1

2
(Γµθ̄)α

[
∂−x

µ +
1

4
(θ̄Γµ∂−θ̄)

]
, (3)

Nµν =
1

2
wα(Γ[µν])αβλ

β , N̄µν =
1

2
w̄α(Γ[µν])αβλ̄

β . (4)

Type II superfields generally depends on xµ, θα and θ̄α. The superfields
Aµν , Ēµ

α, Eαµ and Pαβ are physical superfields, because their first com-
ponents are supergravity fields. The fields Ωµ,νρ(Ωµν,ρ), C

α
µν(C̄µν

α) and
Sµν,ρσ, are curvatures (field strengths) for physical superfields. The rest
fields are auxiliary superfirlds because they can be expressed in terms of
the physical ones [32].

The world sheet Σ is parameterized by ξm = (ξ0 = τ , ξ1 = σ) and ∂± =
∂τ±∂σ. Superspace is spanned by bosonic coordinates xµ (µ = 0, 1, 2, . . . , 9)
and fermionic ones θα and θ̄α (α = 1, 2, . . . , 16). The variables πα and π̄α
are canonically conjugated momenta to θα and θ̄α, respectively. The actions
for pure spinors, Sλ and Sλ̄, are free field actions

Sλ =

∫
d2ξwα∂−λ

α , Sλ̄ =

∫
d2ξw̄α∂+λ̄

α , (5)

where λα and λ̄α are pure spinors and wα and w̄α are their canonically
conjugated momenta, respectively. The pure spinors satisfy so called pure
spinor constraints

λα(Γµ)αβλ
β = λ̄α(Γµ)αβλ̄

β = 0 . (6)

3. Bosonic T-dualization

In this section we will introduce approximated action and then apply stan-
dard Buscher procedure on some subset of coordinates xa. Then we will
compare obtained result with the result following from double space for-
malism.

3.1. Simplification of action

The action (1) could be considered as an expansion in powers of θα and
θ̄α. For computational simplicity, in the first step we neglect all terms
in the action containing θα and θ̄α. As a consequence θα and θ̄α terms
disappear from Πµ

±, dα and d̄α and in the solutions for physical superfields,
just x-dependence of the supergravity fields survives.

Let us make T-dualization along some subset of bosonic coordinates
xa. So, we will assume that these directions are isometry ones. It essen-
tially means that corresponding superfields (Aab, Ēa

α, Eαa, Pαβ) should
not depend on xa. This assumption could be extended on all space-time
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directions xµ which means that physical superfields are constant. Accord-
ing to [32], auxiliary superfields are zero, because all physical superfields
are constant. Further, constant physical superfields means that their field
strengths, Ωµ,νρ(Ωµν,ρ), C

α
µν(C̄µν

α) and Sµν,ρσ, are zero.
Background fields obey space-time field equations [36], which are some

kind of consistency conditions. The equation (B.7) from this set of equa-
tions represents the backreaction of Pαβ on the metric Gµν . If we take
constant dilaton Φ and constant antisymmetric NS-NS field Bµν we obtain
that

Rµν −
1

2
GµνR ∼ (Pαβ)2

µν . (7)

If we choose the background field Pαβ to be constant, in general, we will
have constant Ricci tensor which means that metric tensor is quadratic
function of space-time coordinates. If one wants to cancel non-quadratic
terms originating from back-reaction, additional conditions must be im-
posed on R-R field strength (see the first reference in [33]).

Taking into account above analysis and arguments, our approximation
is realized in the following way

Πµ
± → ∂±x

µ , dα → πα , d̄α → π̄α , (8)

and physical superfields take the form

Aµν = κ(
1

2
Gµν +Bµν) , Eαν = −Ψα

ν , Ēαµ = Ψ̄α
µ ,

Pαβ =
2

κ
Pαβ =

2

κ
e

Φ
2 Fαβ , (9)

where Gµν is metric tensor and Bµν is antisymmetric NS-NS background
field.

Consequently, the full action S is

S = κ

∫
Σ
d2ξ

[
∂+x

µΠ+µν∂−x
ν +

1

4πκ
ΦR(2)

]
(10)

+

∫
Σ
d2ξ

[
−πα∂−(θα + Ψα

µx
µ) + ∂+(θ̄α + Ψ̄α

µx
µ)π̄α +

2

κ
παP

αβπ̄β

]
,

where

Π±µν = Bµν ±
1

2
Gµν . (11)

Actions Sλ and Sλ̄ are decoupled from the rest and can be neglected in the
further analysis.
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3.2. Buscher T-dualization

Let some shift symmetry along xa directions exists. The first step in
Buscher procedure is that we localize the noticed shift symmetry. We sub-
stitute the ordinary derivatives with covariant ones, introducing gauge fields
vaα. Then we add the term 1

2yaF
a
+− to the Lagrangian in order to force the

field strength F a+− to vanish and preserve equivalence between original and
T-dual theories. Finally, we fix the gauge xa = 0 and obtain gauge fixed
action

Sfix(va±, x
i, θα, θ̄α, πα, π̄α) =∫

Σ

d2ξ
[
κva+Π+abv

b
− + κva+Π+aj∂−x

j + κ∂+x
iΠ+ibv

b
−+

+ κ∂+x
iΠ+ij∂−x

j +
1

4π
ΦR(2) − παΨα

b v
b
−

+ va+Ψ̄α
a π̄α − πα∂−(θα + Ψα

i x
i) + ∂+(θ̄α + Ψ̄α

i x
i)π̄α +

1

2κ
e

Φ
2 παF

αβ π̄β

+
κ

2
(va+∂−ya − va−∂+ya)

]
. (12)

Varying the gauge fixed action with respect to the Lagrange multipliers ya
we get the solution for gauge fields in the form

va± = ∂±x
a , (13)

which produces the initial action, while varying with respect to the gauge
fields va± we have

va± = −2κθ̂ab±Π∓bi∂±x
i − κθ̂ab± ∂±yb ± 2θ̂ab±Ψα

±bπ±α . (14)

Substituting va± in (12) we find

Sfix(ya, x
i, θα, θ̄α, πα, π̄α) =∫

Σ

d2ξ

[
κ2

2
∂+yaθ̂

ab
− ∂−yb + κ2∂+yaθ̂

ab
− Π+bj∂−x

j − κ2∂+x
iΠ+iaθ̂

ab
− ∂−yb

+ κ∂+x
i(Π+ij − 2κΠ+iaθ̂

ab
− Π+bj)∂−x

j +
1

4π
ΦR(2)

− πα∂−(θα + Ψα
i x

i − 2κΨα
a θ̂

ab
− Π+bjx

j − κΨα
a θ̂

ab
− yb)

+ ∂+(θ̄α + Ψ̄α
i x

i + 2κΨ̄α
a θ̂

ab
+ Π−bjx

j + κΨ̄α
a θ̂

ab
+ yb)π̄α

+ 2παΨα
a θ̂

ab
− Ψ̄β

b π̄β +
1

2κ
e

Φ
2 παF

αβ π̄β

]
. (15)

Combining two solutions for gauge fields (13) and (14) we obtain trans-
formation law between initial xa and T-dual coordinates ya

∂+(aX)µ̂ = (Q̄−1T )µ̂ν∂+x
ν + J+µ̂ , ∂− (aX)µ̂ = (Q−1T )µ̂ν∂−x

ν + J−µ̂ ,
(16)
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where we introduced the T-dual variables aXµ̂ = {ya, xi}. For coordinates
which contain both xi and ya we will use ”hat” indices µ̂, ν̂. The matrices

Qµ̂ν =

(
κθ̂ab+ 0

−2κΠ−icθ̂
cb
+ δij

)
, Q̄µ̂ν =

(
κθ̂ab− 0

−2κΠ+icθ̂
cb
− δij

)
, (17)

and theirs inverse

Q−1
µν̂ =

(
2Π−ab 0

2Π−ib δji

)
, Q̄−1

µν̂ =

(
2Π+ab 0

2Π+ib δji

)
, (18)

perform T-dualization for vector indices. Here we introduced the currents
J±µ̂

J+µ̂ =

(
J+a

0

)
, J−µ̂ =

(
J−a

0

)
, (19)

where

J±µ = ±2

κ
Ψα
±µπ±α , (20)

Ψα
+µ ≡ Ψα

µ , Ψα
−µ ≡ Ψ̄α

µ , π+α ≡ πα , π−α ≡ π̄α , (21)

and θ̂ab± is defined by the relation

θ̂ac±Π∓cb =
1

2κ
δab . (22)

Note that different chiralities transform with different matrices Qµ̂ν and
Q̄µ̂ν . So, there are two types of T-dual vielbeins

ae
aµ̂ = eaν(QT )νµ̂ , aē

aµ̂ = eaν(Q̄T )νµ̂ , (23)

with the same T-dual metric

aG
µ̂ν̂ ≡ (ae

T η ae)
µ̂ν̂ = (QGQT )µ̂ν̂ = aḠ

µ̂ν̂ ≡ (aē
T η aē)

µ̂ν̂ = (Q̄GQ̄T )µ̄ν̂ .
(24)

The two T-dual vielbeins are related by particular local Lorentz transfor-
mation

aē
aµ̂ = Λab ae

bµ̂ , Λab = eaµ(Q−1Q̄)Tµν(e−1)νb . (25)

From (17) and (18) we have

(Q−1Q̄)Tµν =

(
δab + 2κθ̂ac+ Gcb 2κθ̂ac+ Gcj

0 δij

)
, (26)

which produces

Λab = δab − 2ωab , ωab = −κeaaθ̂ab+ (eT )b
c ηcb . (27)
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It satisfies definition of Lorentz transformations

ΛT ηΛ = η =⇒ det Λab = ±1 , (28)

and it holds det Λab = (−1)d, where d is the number of dimensions along
which we perform T-duality.

Existence of the local Lorentz transformation which connects two sets
of vielbeins means that in T-dual picture we can take that, for example,
nonbar variables remain the same while bar variables must be multiplied
by matrix aΩ, which is a spinorial representation of that local Lorentz
symmetry. Skipping technical details explained in details in [37], we give
here the final form of the matrix aΩ

aΩ =

√√√√ d∏
i=1

Gaiai aΓ (iΓ11)d , (29)

where

aΓ = (i)
d(d−1)

2

d∏
i=1

Γai = (i)
d(d−1)

2 Γa1Γa2 · · ·Γad . (30)

It is easy to check that aΩ
2 = 1.

Let we introduce proper fermionic variables

aθ
α = θα , aπα = πα ,

•θ̄α ≡ aΩ
α
β aθ̄

β , •π̄α ≡ aΩα
β
aπ̄β . (31)

Using the action (15) and proper fermionic variables, we read T-dual back-
ground fields

aΠ
ab
± =

κ

2
θ̂ab∓ , (32)

aΠ±i
a = −κΠ±ibθ̂

ba
∓ , a(Π±)ai = κθ̂ab∓Π±bi , (33)

aΠ±ij = Π±ij − 2κΠ±iaθ̂
ab
∓Π±bj , (34)

aΨ
αa = κθ̂ab+ Ψα

b , aΨ̄
αa = κ aΩ

α
β θ̂

ab
− Ψ̄β

b , (35)

aΨ
α
i = Ψα

i − 2κΠ−ibθ̂
ba
+ Ψα

a , aΨ̄
α
i = aΩ

α
β(Ψ̄β

i − 2κΠ+ibθ̂
ba
− Ψ̄β) ,(36)

e
aΦ
2 aF

αβ = (e
Φ
2 Fαγ + 4κΨα

a θ̂
ab
− Ψ̄γ

b )aΩγ
β . (37)

3.3. Double space

Above expressions for T-dual background fields in the case of full T-duali-
zation are

?Πµν
± ≡ ?Bµν ± 1

2
?Gµν =

κ

2
Θµν
∓ , (38)

?Ψαµ = κΘµν
+ Ψα

ν ,
?Ψ̄αµ = κ?Ωα

β Θµν
− Ψ̄β

ν , (39)
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e
?Φ
2
?Fαβ = (e

Φ
2 Fαγ + 4κΨα

µΘµν
− Ψ̄γ

ν)?Ωγ
β . (40)

Here we use the notation

GEµν = Gµν − 4(BG−1B)µν , Θµν = −2

κ
(G−1

E BG−1)µν , ?Ω = −Γ11, (41)

and

Θµν
± = −2

κ
(G−1

E Π±G
−1)µν = Θµν ∓ 1

κ
(G−1

E )µν . (42)

In this case the T-dual transformation laws (16) obtain the form

∂±x
µ ∼= −κΘµν

± ∂±yν + κΘµν
± J±ν , ∂±yµ ∼= −2Π∓µν∂±x

ν + J±µ . (43)

In terms of double coordinates

ZM =

(
xµ

yµ

)
, (44)

the relations (16) are replaced by one

∂±Z
M ∼= ±ΩMN

(
HNP∂±ZP + J±N

)
, (45)

where the matrix HMN is generalized metric and has the form

HMN =

(
GEµν −2Bµρ(G

−1)ρν

2(G−1)µρBρν (G−1)µν

)
. (46)

The double current J±M is defined as

J±M =

(
2(Π±G

−1)µ
νJ±ν

−(G−1)µνJ±ν

)
, (47)

and

ΩMN =

(
0 1D

1D 0

)
, (48)

is constant symmetric matrix. Here 1D denotes the identity operator in D
dimensions.

It is known that equations of motion of initial theory are Bianchi iden-
tities in T-dual picture and vice versa [9, 13, 16, 38]. From Bianchi identity

∂+∂−Z
M − ∂−∂+Z

M = 0 , (49)

and relation (45), we obtain the consistency condition

∂+

[
HMN∂−Z

N + J−M
]

+ ∂−
[
HMN∂+Z

N + J+M

]
= 0 . (50)
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The equation (50) is equation of motion of the following action

S =
κ

4

∫
d2ξ

[
∂+Z

MHMN∂−Z
N + ∂+Z

MJ−M + J+M∂−Z
M + L(πα, π̄α)

]
,

(51)
where L(πα, π̄α) is arbitrary functional of fermionic momenta.

Let us split coordinate index µ into a and i (a = 0, · · · , d − 1, i =
d, · · · , D − 1) and denote T-dualization along direction xa and ya as

T a = T a ◦Ta , T a ≡ T 0 ◦T 1 ◦ · · · ◦T d−1 , Ta ≡ T0 ◦T1 ◦ · · · ◦Td−1 , (52)

where ◦marks the operation of composition of T-dualizations. Permutation
of the initial coordinates xa with its T-dual ya we realize by multiplying
double space coordinate by the constant symmetric matrix (T a)MN

aZ
M ≡


ya
xi

xa

yi

 = (T a)MNZ
N ≡


0 0 1a 0
0 1i 0 0
1a 0 0 0
0 0 0 1i



xa

xi

ya
yi

 , (53)

where 1a and 1i are identity operators in the subspaces spanned by xa and
xi, respectively. We demand that double T-dual coordinate aZ

M satisfy
the T-duality transformations of the form as initial one ZM (45)

∂± aZ
M ∼= ±ΩMN

(
aHNK ∂± aZ

K + aJ±N
)
. (54)

From this relation we find the T-dual generalized metric

aHMN = (T a)MKHKL(T a)LN , (55)

and T-dual current

aJ±M = (T a)MNJ±N . (56)

Demanding that the T-dual generalized metric aHMN has the same
form as the initial one HMN (46)

aHMN =

(
aG

µν
E −2(aB aG

−1)µν
2(aG

−1
aB)µ

ν (aG
−1)µν

)
, (57)

we obtain the T-dual NS-NS background fields

aΠ
ab
± = κ

2 θ̂
ab
∓ , aΠ

a
±i = κθ̂ab∓Π±bi , (58)

aΠ±i
a = −κΠ±ibθ̂

ba
∓ , aΠ±ij = Π±ij − 2κΠ±iaθ̂

ab
∓Π±bj , (59)

which are in full agreement with those from the Refs.[6, 14].
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The T-dual current aJ±M (56) should have the same form as initial one
(47) but in terms of the T-dual background fields

2(aΠ± aG
−1)ab (aJ)b± + 2(aΠ± aG

−1)ai (aJ)±i
2(aΠ± aG

−1)ia (aJ)a± + 2(aΠ± aG
−1)i

j (aJ)±j
−(aG

−1)ab (aJ)b± − (aG
−1)a

i (aJ)±i
−(aG

−1)ia (aJ)a± − (aG
−1)ij (aJ)±j

 =

 −(G−1)aµJ±µ
2(Π±G

−1)i
µJ±µ

2(Π±G
−1)a

µJ±µ
−(G−1)iµJ±µ

 .

(60)
From the lower D components of the above equation, after straightforward
calculation we get

aΨ
αa = κθ̂ab+ Ψα

b , aΨ̄
αa = κ aΩ

α
β θ̂

ab
− Ψ̄β

b . (61)

aΨ
α
i = Ψα

i − 2κΠ−ibθ̂
ba
+ Ψα

a , aΨ̄
α
i = aΩ

α
β(Ψ̄β

i − 2κΠ+ibθ̂
ba
− Ψ̄β

a) . (62)

which is in full agreement with results obtained applying standard Buscher
procedure. The upper D components of Eq.(60) produce the same result
for T-dual background fields.

The R-R field strength Fαβ appears in the action (10) coupled with
fermionic momenta πα and π̄α along which we do not perform T-dualization.
Let us suppose that fermionic term L(πα, π̄α) (51) in the form

L = e
Φ
2 πα F

αβπ̄β + e
aΦ
2 aπα aF

αβ
aπ̄β ≡ L+ aL , (63)

for some Fαβ and aF
αβ. This term should be invariant under T-dual trans-

formation
aL = L+ ∆L . (64)

Taking into account the fact that two successive T-dualization are identity
transformation, we obtain that the T-dual R-R field strength has the form

e
aΦ
2 aF

αβ = (e
Φ
2 Fαγ + cΨα

a θ̂
ab
− Ψ̄γ

b )aΩγ
β . (65)

For c = 4κ we obtain the agreement with the expression (37).

4. Fermionic T-dualization

4.1. Action

We start with the action (1). In order to perform fermionic T-duality we
must avoid explicit dependence of background fields on the fermionic coor-
dinates θα and θ̄α and allow only dependence on the σ and τ derivatives of
these coordinates. This assumption produces that the auxiliary superfields
are zero what can be seen from Eq.(5.5) of Ref.[32].

We choose that Gµν , Bµν , Φ, Ψα
µ and Ψ̄α

µ are constant, and correspond-

ing field strengths, Ωµ,νρ(Ωµν,ρ), C
α
µν(C̄µν

α) and Sµν,ρσ, are zero. The only
nontrivial contribution of the quadratic terms in equations of motion (see



292 B. Nikolić and B. Sazdović

[36]) comes from constant field strength Pαβ. In order to analyze this issue
we will use relations from Eq.(3.6) of Ref.[32] labeled by (1

2 ,
3
2 ,

3
2)

DαPβγ − 1

4
(Γµν)α

βC̄µν
γ = 0 , D̄αPβγ − 1

4
(Γµν)α

γCβµν = 0 . (66)

Here

Dα =
∂

∂θα
+

1

2
(Γµθ)α

∂

∂xµ
, D̄α =

∂

∂θ̄α
+

1

2
(Γµθ̄)α

∂

∂xµ
, (67)

are superspace covariant derivatives and Cαµν and C̄µν
α are field strengths

for gravitino fields Ψα
µ and Ψ̄α

µ, respectively. In order to perform fermionic

T-dualization along all fermionic directions, θα and θ̄α, we assume that
they are Killing spinors which means

∂Pβγ

∂θα
=
∂Pβγ

∂θ̄α
= 0 . (68)

From the equations (66) it follows

(Γµ)αδ∂µPβγ = 0 . (69)

Our choice of constant Pαβ is consistent with this condition.
Under these assumptions the final form of the action is given by the

expression (10). The fermionic part of the action (10) has the form of the
first order theory. On the equations of motion for fermionic momenta πα
and π̄α,

πα = −κ
2
∂+

(
θ̄β + Ψ̄β

µx
µ
)

(P−1)βα , π̄α =
κ

2
(P−1)αβ∂−

(
θβ + Ψβ

µx
µ
)
,

(70)
the action gets the form

S(∂±x, ∂−θ, ∂+θ̄) = κ

∫
Σ

d2ξ∂+x
µΠ+µν∂−x

ν +
1

4π

∫
Σ

d2ξΦR(2)

+
κ

2

∫
Σ

d2ξ∂+

(
θ̄α + Ψ̄α

µx
µ
)

(P−1)αβ∂−
(
θβ + Ψβ

νx
ν
)

= κ

∫
Σ

d2ξ∂+x
µ

[
Π+µν +

1

2
Ψ̄α
µ(P−1)αβΨβ

ν

]
∂−x

ν +
1

4π

∫
Σ

d2ξΦR(2) (71)

+
κ

2

∫
Σ

d2ξ
[
∂+θ̄

α(P−1)αβ∂−θ
β + ∂+θ̄

α(P−1Ψ)αµ∂−x
ν

+ ∂+x
µ(Ψ̄P−1)µα∂−θ

α
]
.
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We notice that theory has a local symmetry

δθα = εα(σ+) , δθ̄α = ε̄α(σ−) , (σ± = τ ± σ) . (72)

The corresponding BRST transformations are

sθα = cα(σ+) , sθ̄α = c̄α(σ−) , (73)

where for each gauge parameter εα(σ+) and ε̄α(σ−) we introduced the ghost
fields cα(σ+) and c̄α(σ−), respectively. Here s denotes BRST nilpotent
operator.

To fix gauge freedom we introduce gauge fermion with ghost number
−1

Ψ =
κ

2

∫
d2ξ

[
C̄α

(
∂+θ

α +
ααβ

2
b+β

)
+

(
∂−θ̄

α +
1

2
b̄−βα

βα
)
Cα

]
, (74)

where ααβ is arbitrary non singular matrix, C̄α and Cα are antighost fields,
while b+α and b̄−α are Nakanishi-Lautrup auxillary fields which satisfy

sCα = b+α , sC̄α = b̄−α , sb+α = 0 sb̄−α = 0 . (75)

BRST transformation of gauge fermion Ψ produces the gauge fixed and
Fadeev-Popov action

sΨ = Sgf + SFP ,

Sgf =
κ

2

∫
d2ξ

[
b̄−α∂+θ

α + ∂−θ̄
αb+α + b̄−αα

αβb+β
]
,

SFD =
κ

2

∫
d2ξ

[
C̄α∂+c

α + (∂−c̄
α)Cα

]
. (76)

The Fadeev-Popov action is decoupled from the rest and, consequently, it
can be omitted in further analysis. On the equations of motion for b-fields

b+α = −(α−1)αβ∂+θ
α , b̄−α = −∂−θ̄β(α−1)βα , (77)

we obtain the final form of the BRST gauge fixed action

Sgf = −κ
2

∫
d2ξ∂−θ̄

α(α−1)αβ∂+θ
β . (78)

4.2. Fermionic T-duality using Buscher rules

As in the bosonic case we introduce gauge fields vα± and v̄α± and replace
ordinary world-sheet derivatives with covariant ones

∂±θ
α → D±θ

α ≡ ∂±θα + vα± , ∂±θ̄
α → D±θ̄

α ≡ ∂±θ̄α + v̄α± . (79)
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In order to make the fields vα± and v̄α± to be unphysical we add the following
terms in the action

Sgauge(ϑ, v±, ϑ̄, v̄±) =
1

2
κ

∫
Σ

d2ξϑ̄α(∂+v
α
− − ∂−vα+) +

1

2
κ

∫
Σ

d2ξ(∂+v̄
α
− − ∂−v̄α+)ϑα ,

(80)
where ϑα and ϑ̄α are Lagrange multipliers. The full gauge invariant action

is of the form

Sinv(x, θ, θ̄, ϑ, ϑ̄, v±, v̄±) = S(∂±x,D−θ,D+θ̄)

+ Sgf (D−θ,D+θ̄) + Sgauge(ϑ, ϑ̄, v±, v̄±) . (81)

Fixing θα and θ̄α to zero we obtain the gauge fixed action

Sfix = κ

∫
Σ

d2ξ∂+x
µ

[
Π+µν +

1

2
Ψ̄α
µ(P−1)αβΨβ

ν

]
∂−x

ν +
1

4π

∫
Σ

d2ξΦR(2)

+
κ

2

∫
Σ

[
v̄α+(P−1)αβv

β
− + v̄α+(P−1)αβΨβ

ν∂−x
ν

+ ∂+x
µΨ̄α

µ(P−1)αβv
β
− − v̄α−(α−1)αβv

β
+

]
+
κ

2

∫
Σ

d2ξϑ̄α(∂+v
α
− − ∂−vα+) +

κ

2

∫
Σ

d2ξ(∂+v̄
α
− − ∂−v̄α+)ϑα . (82)

Varying the above action with respect to the Lagrange multipliers we
obtain the initial action (71) because

∂+v
α
− − ∂−vα+ = 0 =⇒ vα± = ∂±θ

α , ∂+v̄
α
− − ∂−v̄α+ = 0 =⇒ v̄α± = ∂±θ̄

α .
(83)

On the other side, the equations of motion for vα± and v̄α± give

v̄α− = ∂−ϑ̄βα
βα , v̄α+ = ∂+ϑ̄βP

βα − ∂+x
µΨ̄α

µ , (84)

vα+ = −ααβ∂+ϑβ , vα− = −Pαβ∂−ϑβ −Ψα
µ∂−x

µ . (85)

Substituting these expressions in the action Sfix we obtain the fermionic
T-dual action

?S(∂±x, ∂−ϑ, ∂+ϑ̄) = κ

∫
Σ

d2ξ∂+x
µΠ+µν∂−x

ν +
1

4π

∫
Σ

d2ξ ?ΦR(2) ,

+
κ

2

∫
Σ

d2ξ
[
∂+ϑ̄αP

αβ∂−ϑβ

− ∂+x
µΨ̄α

µ∂−ϑα + ∂+ϑ̄αΨα
µ∂−x

µ − ∂−ϑ̄αααβ∂+ϑβ
]
. (86)

We read fermionic T-dual background fields

?Ψαµ = (P−1Ψ)αµ ,
?Ψ̄µα = −(Ψ̄P−1)µα , (87)
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?Pαβ = (P−1)αβ ,
?ααβ = (α−1)αβ . (88)

From the condition

?Π+µν +
1

2
?Ψ̄αµ (?P−1)αβ ?Ψβν = Π+µν , (89)

the fermionic T-dual metric and Kalb-Ramond field are

?Gµν = Gµν +
1

2

[
(Ψ̄P−1Ψ)µν + (Ψ̄P−1Ψ)νµ

]
,

?Bµν = Bµν +
1

4

[
(Ψ̄P−1Ψ)µν − (Ψ̄P−1Ψ)νµ

]
. (90)

We obtain T-dual transformation laws combining the different solutions
of equations of motion for vα± and v̄α± (83) and (84)-(85)

∂−θ
α ∼= −Pαβ∂−ϑβ −Ψα

µ∂−x
µ , ∂+θ̄

α ∼= ∂+ϑ̄βP
βα − ∂+x

µΨ̄α
µ , (91)

∂+θ
α ∼= −ααβ∂+ϑβ , ∂−θ̄

α ∼= ∂−ϑ̄βα
βα . (92)

From these relations we can obtain inverse transformation rules

∂−ϑα ∼= −(P−1)αβ∂−θ
β − (P−1)αβΨβ

µ∂−x
µ ,

∂+ϑ̄α ∼= ∂+θ̄
β(P−1)βα + ∂+x

µΨ̄β
µ(P−1)βα , (93)

∂+ϑα ∼= −(α−1)αβ∂+θ
β , ∂−ϑ̄α ∼= ∂−θ̄

β(α−1)βα . (94)

4.3. Fermionic T-dualization using double space

Now we will extend the meaning of the double space and double both
fermionic coordinate as

ΘA =

(
θα

ϑα

)
, Θ̄A =

(
θ̄α

ϑ̄α

)
. (95)

The transformation laws, (91)-(94), can be rewritten in the form

∂−ΘA ∼= −ΩAB
[
FBC∂−ΘC + J−B

]
, ∂+Θ̄A ∼=

[
∂+Θ̄CFCB + J̄+B

]
ΩBA ,

(96)

∂+ΘA ∼= −ΩABABC∂+ΘC , ∂−Θ̄A ∼= ∂−Θ̄CACBΩBA , (97)

where ”fermionic generalized metric” FAB has the form

FAB =

(
(P−1)αβ 0

0 P γδ

)
, (98)
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and

AAB =

(
(α−1)αβ 0

0 αγδ

)
. (99)

The double currents, J̄+A and J−A, are of the form

J̄+A =

(
(Ψ̄P−1)µα∂+x

µ

−Ψ̄α
µ∂+x

µ

)
, J−A =

(
(P−1Ψ)αµ∂−x

µ

Ψα
µ∂−x

µ

)
. (100)

Let us introduce the permutation matrix

T AB =

(
0 1
1 0

)
, (101)

so that double T-dual coordinates are

?ΘA = T ABΘB , ?Θ̄A = T ABΘ̄B . (102)

As in the case of bosonic T-dualization, from demand that T-dual transfor-
mation laws for T-dual coordinates ?ΘA and ?Θ̄A have the same form as for
initial ones ΘA and Θ̄A we get the fermionic T-dual ”generalized metric”
?FAB and T-dual currents, ?J̄+A and ?J−A
?FAB = TACFCDT DB , ?J̄+A = TABJ̄+B ,

?J−A = TABJ−B . (103)

The matrix AAB transforms as

?AAB = TACACDT DB = (A−1)AB . (104)

From the first relation in (103) we obtain the form of the fermionic
T-dual R-R background field

?Pαβ = (P−1)αβ , (105)

while from the second and third equation we obtain the form of the fermionic
T-dual NS-R background fields

?Ψαµ = (P−1)αβΨβ
µ ,

?Ψ̄αµ = −Ψ̄β
µ(P−1)βα . (106)

The non singular matrix ααβ transforms as

(?α)αβ = (α−1)αβ . (107)

As in the case of bosonic T-dualization, in the same way how we ob-
tained the double action (51), we get the double action corresponding to
the fermionic T-dual transformation law

Sdouble(Θ, Θ̄) = (108)

=
κ

2

∫
d2ξ

[
∂+Θ̄AFAB∂−ΘB + J̄+A∂−ΘA + ∂+Θ̄AJ−A

− ∂−Θ̄AAAB∂+ΘB + L(x)
]
,
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where L(x) is arbitrary functional of the bosonic coordinates. In order to
find fermionic T-dual metric and Kalb-Ramond field we suppose that term
L(x) has the form

L(x) = 2∂+x
µ (Π+µν + ?Π+µν) ∂−x

ν ≡ L+ ?L . (109)

This term should be invariant under T-dual transformation

?L = L+ ∆L . (110)

Using the fact that two successive T-dualization are identity transforma-
tion, we obtain

L = ?L+ ?∆L . (111)

Combining last two relations we get

?∆L = −∆L . (112)

If ∆L = 2∂+x
µ∆µν∂−x

ν , we obtain the condition for ∆µν

?∆µν = −∆µν . (113)

Using the relations (87) and (88) we realize that, up to multiplication
constant, combination

∆µν = Ψ̄α
µ(P−1)αβΨβ

ν , (114)

satisfies the condition (113). So, we conclude that

?Π+µν = Π+µν + cΨ̄α
µ(P−1)αβΨβ

ν , (115)

where c is an arbitrary constant. For c = 1
2 we obtain the relations (90).

5. Conclusions

In this article we showed that the new interpretation of T-dualization pro-
cedure in double space formalism offered in [26, 27] is also valid in the case
of type II superstring theory - both for bosonic and fermionic T-dualization.
We used the ghost free action of type II superstring theory in pure spinor
formulation in the approximation of quadratic terms and constant back-
ground fields. One can obtain this action from action (1) under some set
of assumptions.

We introduced the double space coordinate ZM = (xµ, yµ) adding to
all bosonic initial coordinates, xµ, the T-dual ones, yµ. Then we rewrote
the T-dual transformation laws (43) in terms of double space variables (45)
introducing the generalized metric HMN and the current J±M . Further,
we split initial coordinates xµ in two parts: xa are directions along which
we made T-dulization and the rest ones xi.
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T-dualization is realized as permutation of the subsets xa and ya in the
double space coordinate ZM . Demanding that T-dual double space coor-
dinates aZ

M = (T a)MNZ
N satisfy the T-dual transformation law of the

same form as the initial coordinates ZM we found the T-dual generalized
metric aHMN and the T-dual current aJ±M . Consequently, we obtained
the form of NS-NS and NS-R T-dual background fields in terms of the ini-
tial ones which are in full accordance with the results obtained by Buscher
T-dualization procedure [6, 7].

In order to obtain T-dual R-R field strength Fαβ we should make some
additional assumptions. Supposing that term L(πα, π̄α) (51) is T-dual in-
variant and taking into account that two successive T-dualizations act as
identity operator, we found the form of T-dual R-R field strength up to
one arbitrary constant c. For c = 4κ we get the T-dual R-R field strength
aF

αβ as in Buscher procedure [6].
In the case of fermionic T-duality, using equations of motion with re-

spect to the fermionic momenta πα and π̄α, we eliminated them from the
action. Then we fixed local chiral gauge invariance using BRST approach.

Using the Buscher approach we performed fermionic T-duality proce-
dure and obtained the form of the fermionic T-dual background fields.
Analogously with the bosonic case we introduced double fermionic space
doubling the initial coordinates θα and θ̄α with their fermionic T-duals,
ϑα and ϑ̄α. Double fermionic space is spanned by the coordinates ΘA =
(θα, ϑα) and Θ̄A = (θ̄α, ϑ̄α). Demanding that T-dual transformation laws
for fermionic T-dual double coordinates, ?ΘA = T ABΘB and ?Θ̄A = T ABΘ̄B,
are of the same form as those for ΘA and Θ̄A, we obtained the form of the
fermionic T-dual NS-R and R-R background fields which are in full ac-
cordance with the results obtained by standard Buscher procedure. The
expressions for T-dual metric ?Gµν and Kalb-Ramond field ?Bµν cannot
be found from double space formalism because they do not appear in the
T-dual transformation laws. These expressions, up to arbitrary constant,
are obtained assuming that two successive T-dualization act as identity
transformation.
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Abstract. Higher category theory can be employed to generalize the notion of a gauge group
to the notion of a gauge n-group. This novel algebraic structure is designed to generalize notions
of connection, parallel transport and holonomy from curves to manifolds of dimension higher
than one. Thus it generalizes the concept of gauge symmetry, giving rise to a topological action
called nBF action, living on a corresponding n-principal bundle over a spacetime manifold.
Similarly as for the Plebanski action, one can deform the topological nBF action by adding
appropriate simplicity constraints, in order to describe the correct dynamics of both gravity
and matter fields. Specifically, one can describe the whole Standard Model coupled to gravity
as a constrained 3BF or 4BF action. The split of the full action into a topological sector and
simplicity constraints sector is adapted to the spinfoam quantization technique, with the aim
to construct a full model of quantum gravity with matter. In addition, the properties of the
gauge n-group structure open up a possibility of a nontrivial unification of all fields. An n-group
naturally contains additional novel gauge groups which specify the spectrum of matter fields
present in the theory, in a similar way to the ordinary gauge group that prescribes the spectrum
of gauge vector bosons in the Yang-Mills theory. The presence and the properties of these new
gauge groups has the potential to explain fermion families, and other structure in the matter
spectrum of the theory.

1. Introduction
The formulation of a quantum theory of gravity represents one of the fundamental open
problems in modern theoretical physics. Among the many approaches to this problem, some
have developed into vast research frameworks, such as Loop Quantum Gravity, which aims to
formulate a model of quantum gravity (QG) in a nonperturbative fashion, both canonically and
covariantly [1, 2, 3]. The covariant approach aims to give a tentative rigorous definition of the
path integral for the gravitational field,

Z =

∫
Dg eiS[g] . (1)

One of the essential assumptions is a triangulation of a spacetime manifold, and the path integral
is introduced as a discrete state sum of the gravitational field configurations, living on the
simplicial complex structure. This approach to quantization of gravity is usually called the
spinfoam quantization method. It is performed via the following three steps:
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(1) one reformulates the classical action S[g] as a constrained BF action, separating the
topological BF part and the constraint part of the action;

(2) one employs the underlying Lie group structure of the BF sector of the action, in order to
define a triangulation-independent state sum Z;

(3) finally, one deforms the topological state sum by applying the simplicity constraints, and
therefore redefining it into a triangulation-dependent state sum, which plays the role of a
definition for the path integral (1).

This type of quantization prescription has been implemented in a number of cases, for various
choices of the gravitational action, of the Lie group, and of the spacetime dimension. Historically
the first spinfoam model was the Ponzano-Regge model [4], defined in 3 spacetime dimensions.
In 4 dimensions multiple models have been formulated, differing in the choice of the Lie group
and the way one imposes the simplicity constraints [5, 6, 7, 8, 9]. While all these models do
represent definitions of the gravitational path integral, none of them are able to include matter
fields in a seamless way. Introducing the latter into a spinfoam QG model has so far had only
limited success [10], predominantly due to the lack of the tetrad fields in the topological part of
the model.

Recently, a new approach has been developed to address the issue of matter fields, which
employs the framework of higher gauge theory (see [11] for a review). Specifically, one uses the
notion of a categorical ladder to generalize the BF action (based on a Lie group) to a 2BF
action (based on the so-called 2-group structure), and further to a 3BF action (based on a
3-group structure). A convenient choice of the Poincaré 2-group gives rise to the needed tetrad
fields in the topological sector of the action [12], while an additional extension to the 3-group
naturally introduces the matter fields (fermions and scalars) into the model [13]. The steps of
the categorical ladder and their corresponding structures are summarized as follows:

categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed
module

differential Lie
crossed module

2BF theory tetrad fields

Lie 3-group
Lie 2-crossed

module
differential Lie

2-crossed module
3BF theory

scalar and
fermion fields

The main aim of this work is to provide a short review of the classical pure BF , 2BF and
3BF actions, in order to demonstrate the categorical ladder procedure and the construction of
higher gauge theories. In other words, we mainly focus on the step 1 of the spinfoam quantization
programme, with a very short review of step 2 of the programme.

The layout of the paper is as follows. Section 2 deals with first three examples of nBF theories,
namely BF , 2BF and 3BF actions, and their construction using the categorical ladder. After
this, in Section 3 we briefly present an application of a 3BF theory to the Standard Model of
elementary particles coupled to Einstein-Cartan gravity. As it turns out, the scalar and fermion
fields are naturally associated to a new gauge group, generalizing the role of an ordinary gauge
group in the Yang-Mills theory. This opens up a possibility of an algebraic classification of
matter fields, and (more speculatively) a possibility of the explanation of the three fermion
families. Finally, Section 4 contains some discussion and our conclusions.

The notation and conventions are as follows. Spacetime indices are denoted by the Greek
letters µ, ν, . . . , and are raised and lowered by the spacetime metric gµν = ηabe

a
µe

b
ν , where

eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. The local Lorentz indices are
denoted by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using
the Minkowski metric ηab with signature (−,+,+,+). All other indices that appear in the paper
depend on the context, and their use is explicitly defined in the text where they appear. We
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work in the natural system of units where c = ℏ = 1, and G = l2p, where lp is the Planck length.
The exterior product in the space of differential forms is denoted with the standard “wedge”
symbol, ∧.

2. nBF theories
We begin by giving a short review of nBF theories, for n = 1, 2, 3, which represent the most
interesting cases for physics.

2.1. BF theory
A BF theory and its various applications in physics are already well known in the literature,
see for example [14, 15, 16], so here we merely give a brief definition. Given a Lie group G, and
its corresponding Lie algebra as g, one defines the BF action in the form (we discuss only the
4-dimensional spacetime manifolds M4):

SBF =

∫
M4

⟨B ∧ F⟩g . (2)

Here, F ≡ dα+α∧α is the curvature 2-form for the g-valued connection 1-form α ∈ Λ1(M4)⊗g,
while B ∈ Λ2(M4) ⊗ g is a g-valued Lagrange multiplier 2-form. Also, ⟨ , ⟩g denotes a G-
invariant nondegenerate symmetric bilinear form over g.

Varying the action (2) with respect to B and α, one obtains the equations of motion:

F = 0 , ∇B ≡ dB + α ∧B = 0 . (3)

The first equation implies that α is a flat connection, in the sense that α = 0 up to gauge
transformations. The second equation then implies that B is covariantly constant. From these
one can deduce that there are no local propagating degrees of freedom, and therefore the theory
is said to be topological.

2.2. 2BF theory
Once we have introduced the BF model, we procceed to first step of the categorical ladder,
generalizing the algebraic notion of a group to the notion of a 2-group. This leads to the
generalization of the BF theory to the 2BF theory, also sometimes called BFCG theory
[11, 17, 18, 19].

The categorical ladder is a procedure of generalizing various notions in mathematics, using
the framework of category theory, and works as follows. One starts from the notion of a group
as an algebraic structure, and notes that it can be understood as a category with only one object
and invertible morphisms [11]. Then, one employs the fundamental idea that a category can be
generalized to the so-called higher categories, which have not only objects and morphisms, but
also 2-morphisms (maps between morphisms), 3-morphisms (maps between 2-morphisms), and
so on. This tower of n-categories is known as the categorical ladder. Applying the construction to
groups, it is straightforward to introduce the notion of a 2-group as a 2-category consisting of only
one object, where all the morphisms and all 2-morphisms are invertible. It was demonstrated

that every strict 2-group is equivalent to a crossed module (H
∂→ G ,▷), see [13] for detailed

definitions. Here G and H are groups, ∂ is a homomorphism from H to G, while ▷ : G×H → H
is an action of G on H.

Just like an ordinary Lie group G has a naturally associated connection α and gives rise to
a BF theory, a Lie 2-group has a naturally associated 2-connection (α , β), described by the
usual g-valued 1-form α ∈ Λ1(M4) ⊗ g and an h-valued 2-form β ∈ Λ2(M4) ⊗ h, where h is a
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Lie algebra of the Lie group H. This 2-connection gives rise to the so-called fake 2-curvature
(F ,G), defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧▷ β . (4)

Here α∧▷ β means that α and β are multiplied as forms using ∧, and simultaneously multiplied
as algebra elements using ▷, see [13]. The curvature pair (F ,G) is called “fake” due of the
presence of the additional term ∂β in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module, one can introduce the
so-called 2BF action, as a generalization of the BF action, as follows [17, 18]:

S2BF =

∫
M4

⟨B ∧ F⟩g + ⟨C ∧ G⟩h . (5)

Here the 2-form B ∈ Λ2(M4) ⊗ g and the 1-form C ∈ Λ1(M4) ⊗ h are Lagrange multipliers.
Also, ⟨ , ⟩g and ⟨ , ⟩h denote the G-invariant nondegenerate symmetric bilinear forms over the
Lie algebras g and h, respectively. As a consequence of the axiomatic structure of a crossed
module (see [13]), the bilinear form ⟨ , ⟩h is H-invariant as well. See [17, 18] for review and
references.

The equations of motion for a 2BF theory are an extension of the equations of motion of a
BF theory. Varying with respect to B and C one obtains

Fα = 0 , Ga = 0 , (6)

while varying with respect to α and β one obtains the equations for the multipliers,

∇B + C ∧T β = 0 , ∇C − ∂B = 0 . (7)

Here the map T is defined in [13]. A rigorous Hamiltonian analysis of the model demonstrates
that in this case as well there are no local propagating degrees of freedom [20, 21] (see also [22]).
Therefore the 2BF theory is also topological.

2.3. 3BF theory
When constructing more realistic (nontopological) models by adding constraints to BF and 2BF
models, it becomes apparent that the group G with a constrained BF action can successfully
describe ordinary gauge vector bosons, while the so-called Poincaré 2-group with a constrained
2BF action can successfully describe general relativity. However, neither of these can suitably
accomodate matter fields, such as fermions or scalars. Nevertheless, it turns out that this can
be remedied if we make one further step in the categorical ladder, passing from the notion of a
2-group to the notion of a 3-group. As we shall see in the next Section, the notion of a 3-group
will prove to be an excellent structure for the description of all fields that are present in the
Standard Model, coupled to Einstein-Cartan gravity. Moreover, a 3-group contains one more
gauge group, which is novel and specifies the spectrum of scalar and fermion fields present in
the theory. This is an unexpected and beautiful result, absent from ordinary gauge theory.

Applying the categorical ladder once more, one can introduce the notion of a 3-group in
the framework of higher category theory, as a 3-category with only one object where all the
morphisms, 2-morphisms and 3-morphisms are invertible. Also, the equivalence between a 2-
group and a crossed module has been generalized to the equivalence between a strict 3-group

and a 2-crossed module [23]. A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,▷ , { , }), is an
algebraic structure specified by three Lie groups G, H and L, together with the homomorphisms
δ and ∂, an action ▷ of the group G on all three groups, and a G-equivariant map

{ , } : H ×H → L .
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called the Peiffer lifting. The maps ∂, δ, ▷ and the Peiffer lifting satisfy certain axioms, so that
the resulting structure is equivalent to a 3-group [13].

Based on a given 2-crossed module (L
δ→ H

∂→ G ,▷ , { , }), one can introduce a gauge
invariant topological 3BF action over the manifold M4 as follows. Denoting g, h and l as
Lie algebras corresponding to the groups G, H and L, respectively, the Lie 3-group structure
allows one to introduce a 3-connection (α, β, γ) given by the algebra-valued differential forms
α ∈ Λ1(M4) ⊗ g, β ∈ Λ2(M4) ⊗ h and γ ∈ Λ3(M4) ⊗ l. The corresponding fake 3-curvature
(F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧▷ β − δγ ,

H = dγ + α ∧▷ γ + {β ∧ β} ,
(8)

see [23, 24] for details. Note that γ is a 3-form, while its corresponding field strength H is a
4-form, requiring that the spacetime manifold be at least 4-dimensional. Also, for this reason,
going beyond 3-groups and 4-groups in the categorical ladder does not have many applications
in realistic 4-dimensional physics. A 3BF action is defined as

S3BF =

∫
M4

⟨B ∧ F⟩g + ⟨C ∧ G⟩h + ⟨D ∧H⟩l , (9)

where B ∈ Λ2(M4)⊗g, C ∈ Λ1(M4)⊗h and D ∈ Λ0(M4)⊗ l are Lagrange multipliers valued in
the respective algebras. Note that exclusively in 4 spacetime dimensions the Lagrange multiplier
D corresponding to H is a 0-form, i.e. a scalar function. As before, the bilinear forms ⟨ , ⟩g,
⟨ , ⟩h and ⟨ , ⟩l are G-invariant, nondegenerate and symmetric, over the algebras g, h and l,
respectively.

The equations of motion can be obtained by varying the action with respect to the multipliers
B, C and D,

F = 0 , G = 0 , H = 0 , (10)

and by varying with respect to the connections α, β and γ,

∇B + C ∧T β −D ∧S γ = 0 , ∇C − ∂B −D ∧(X1+X2) β = 0 , ∇D + δC = 0 . (11)

See [13] for the detailed definitions of the maps T , S, X1 and X2.

3. The Standard Model 3-group
At this point we are finally ready to construct a realistic classical action, featuring the full
Standard Model of elementary particles coupled to Einstein-Cartan gravity. The action is based

on a so-called Standard Model 3-group, which is a 2-crossed module ( L
δ→ H

∂→ G , ▷ , { , } )
with a following choices for the Lie groups:

G = SO(3, 1)× SU(3)× SU(2)× U(1) , H = R4 ,

L = C4 ×G64 ×G64 ×G64 .

We choose the group G as a product of the Lorentz group and the usual internal gauge symmetry
group of the Standard Model. The group H is chosen to be the group of spacetime translations,
motivated by the Poincaré 2-group construction [12]. Finally, we choose the group L as a product
of C4 accouning for the doublet of complex scalar fields, and three copies of the 64-dimensional
Grassmann algebra G64, representing three families of fermions. The maps δ, ∂ and { , } are
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trivial, while the map ▷ is chosen in a natural way, in accord with the usual action of the gauge
group G onto translations and various components of matter fields. It is defined in detail in [13].

Once the 3-group has been completely specified, the corresponding action can be written as
a 3BF action with suitable constraint terms, as follows:

S =

∫ ⟨B∧F⟩︷ ︸︸ ︷
Bα ∧ Fα +B[ab] ∧R[ab] +

⟨C∧G⟩︷ ︸︸ ︷
ea ∧∇βa +

⟨D∧H⟩︷ ︸︸ ︷
ϕA(∇γ)A + ψ̄A(

→
∇γ)A − (γ̄

←
∇)Aψ

A 3BF

−
∫
λ[ab] ∧

(
B[ab] − 1

16πl2p
ε[ab]cd ec ∧ ed

)
+

1

96πl2p
Λ εabcd e

a ∧ eb ∧ ec ∧ ed GR and CC

+

∫
λα ∧

(
Bα − 12Cα

βMβab e
a ∧ eb

)
+ ζαab

(
Mαab εcdef e

c ∧ ed ∧ ee ∧ ef − Fα ∧ ea ∧ eb
)

YM

+

∫
λA ∧

(
γA −HabcA e

a ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcA ε

cdef ed ∧ ee ∧ ef − (∇ϕ)A ∧ ea ∧ eb
)

Higgs

−
∫

1

12
χ
(
ϕAϕA − v2

)2

εabcd e
a ∧ eb ∧ ec ∧ ed Higgs potential

+

∫
λ̄A ∧

(
γA +

i

6
εabcd e

a ∧ eb ∧ ec
(
γdψ

)A
)
− λA ∧

(
γ̄A − i

6
εabcd e

a ∧ eb ∧ ec
(
ψ̄γd

)
A

)
Dirac

−
∫

1

12
YABC ψ̄

AψBϕC εabcd e
a ∧ eb ∧ ec ∧ ed Yukawa

+

∫
2πi l2p ψ̄Aγ5γ

aψA εabcd e
b ∧ ec ∧ βd . spin-torsion

Here the first row represents the topological 3BF part, while the remaining rows represent
various constraint terms, each corresponding to one sector of the theory. Taking all together,
the equations of motion obtained from the action S are equivalent to the full set of equations of
motion for all Standard Model fields, coupled to the Einstein-Cartan theory of gravity.

The key novelty of the above structure is the role of the group L, which prescribes the
spectrum of scalar and fermion fields present in the theory, via the ⟨D∧H⟩ term in the topological
sector of the action.

4. Conclusions
Let us summarize the results of the paper. In Section 2 we have introduced the nBF theories
for n = 1, 2, 3, and explanied in brief terms how the categorical ladder procedure can be applied
to generalize the notion of a group to the notions of a 2-group and a 3-group, which represent
more powerful ways to describe the gauge symmetry of a physical theory. These structures
were employed in Section 3 to construct the constrained 3BF action for the Standard Model
of elementary particles coupled to the Einstein-Cartan gravity in the usual way. Within that
framework, the spectrum of scalar and fermion fields happens to be determined by a new gauge
group, in a way similar to that of the ordinary gauge group determining the spectrum of gauge
vector bosons in Yang-Mills theory. This opens up a very interesting possibility of applying the
structure of a 3-group to classify matter fields, and possibly gain some insight into why there
are three families of fermions.

These results complete the first step of the spinfoam quantization programme, as outlined
in the Introduction. The second step has also been performed in [25], for a general case of a

Lie 2-crossed module (L
δ→ H

∂→ G ,▷ , { , }). The resulting state sum is a novel topological
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invariant of a 4-dimensional manifold, and has the following form:

Z = |G|−|Λ0|+|Λ1|−|Λ2||H||Λ0|−|Λ1|+|Λ2|−|Λ3| |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|

×
∏

(jk)∈Λ1

∫
G

dgjk
∏

(jkℓ)∈Λ2

∫
H

dhjkℓ

∏
(jkℓm)∈Λ3

∫
L

dljkℓm

×
∏

(jkℓ)∈Λ2

δG

(
∂(hjkℓ) gkℓ gjk g

−1
jℓ

) ∏
(jkℓm)∈Λ3

δH

(
δ(ljkℓm)hjℓm (gℓm ▷ hjkℓ)h

−1
kℓm h−1

jkm

)
×

∏
(jkℓmn)∈Λ4

δL

(
l−1
jℓmn hjℓn ▷′ {hℓmn, (gmngℓm) ▷ hjkℓ}p l−1

jkℓn(hjkn ▷′ lkℓmn)ljkmnhjmn ▷′ (gmn ▷ ljkℓm)
)
.

(12)

Here gij , hijk, lijkl are elements from groups G,H,L, respectively, which are assigned to simplices
of the triangulation whose vertices are numerated by indices i, j, . . . In other words, gij are
assigned to edges, hijk are assigned to triangles, and lijkl are assigned to tetrahedra of the
simplicial complex representing a compact 4-manifold, which has a total number of Λ0 vertices,
Λ1 edges, Λ2 triangles, Λ3 tetrahedra, and Λ4 4-simplices.

Of course, when building a realistic theory, we are in fact not interested in a topological theory,
but instead in a theory which contains local propagating degrees of freedom. Thus the state sum
Z should be appropriately deformed. This is the task of step 3 of the spinfoam quantization
programme, by imposing the simplicity constraints on Z. The classical action from Section 3
manifestly distinguishes the topological sector from the simplicity constraints. Imposing those
constraints should thus complete the spinfoam quantization programme, and would ultimately
lead us to a tentative model of quantum gravity with matter, by providing a rigorous definition
for the path integral

Z =

∫
Dg

∫
Dϕ eiS[g,ϕ] , (13)

which is a generalization of (1) in the sense that it contains matter fields as well as gravity, at
the quantum level.

In addition to the construction of a full quantum theory of gravity, there are also many
additional possible studies of the classical constrained 3BF action. For example, a full
Hamiltonian analysis of the 3BF action has been done for the example of scalar electrodynamics
[26], and then also for a general choice of a Lie 3-group [27], and the complete gauge symmetry
group has been discussed in detail [27, 28]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mechanism, and some work
has already begun in this area. Finally, one can also study in more depth the mathematical
structure and properties of the simplicity constraints. The list is not conclusive, and there may
be many other interesting topics to study.
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Institute of Physics, University of Belgrade, Serbia

Abstract

We discuss the generalized T-dualization procedure, its connection
to the standard procedure, and the results of its application to the
arbitrary set of coordinates of the closed string moving in the weakly
curved background. This background consists of a constant metric
and linearly coordinate dependent Kalb-Ramond field with infinites-
imal strength. We unite all the results into a T-dualization diagram,
representing all T-dual theories, the ways to obtain the theories from
one another and the T-dual coordinate transformation laws connect-
ing the corresponding coordinates.
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T-duality is a symmetry seen in the string spectrum. It was observed
that for toroidal compactifications [1], where one dimension is compactified
on a circle of radius R and the corresponding dual dimension is compactified
on a circle of radius 1/R, one obtains the discription of a string with the
same physical properties. So, there exist different string theories, describ-
ing the string in the geometrically different backgrounds, with the same
predictions. Such a symmetry is not present in any point particle theory
[2, 3, 4, 5], and because of that the explanation for T-duality was sought for
in a fact that strings can wrap around compactified dimensions. Investiga-
tion of T-duality lead to a discovery of a Buscher T-dualization procedure
[6, 7], which gave a prescription how to find the T-dual theory for same
known theory. The procedure is applicable along isometry directions, what
allowed the investigation of a backgrounds which do not depend on some
coordinates. This procedure enabled the investigation of the properties of
the background connected by T-duality. It was discovered that geometric
backgrounds transform to the non-geometric backgrounds and these to dif-
ferent non-geometric backgrounds, which differ in a form of the background
fluxes, some of which are not locally well defined [8, 9]. T-duality is also
investigated for the double string theories, where T-duality is a manifest
symmetry [10, 11, 12, 13].

In this talk we will discuss the results of T-dualizations done for the
closed string moving in the weakly curved background, using the general-
ized T-dualization procedure, defined in our paper [14]. This background
depends on all the space-time coordinates and as such was not a candi-
date for T-dualization using the standard T-dualization procedures. In
paper [14], we presented generalized T-dualization procedure applicable to
all space-time directions regardless of the possible background coordinate
dependence. We obtained the T-dual theory which is a result of T-dualizing
all the initial coordinates. In paper [15], we broadened the investigation by
considering T-dualization of an arbitrary set of coordinates of both initial
and its completely T-dual theory. We will recapitulate the results here and
discuss further investigations. We obtained the T-dualization diagram de-
scribing the relation between all string theories T-dual to the string moving
in a weakly curved background, their backgrounds and giving the T-duality
laws connecting the corresponding coordinates.

So, let us start by the action describing a closed string moving in a
coordinate dependent background

S[x] = κ

∫
Σ
d2ξ ∂+x

µΠ+µν(x)∂−x
ν , ∂± = ∂τ ± ∂σ (1)

given in the conformal gauge gαβ = e2F ηαβ . The background field compo-
sition is defined by

Π±µν(x) = Bµν(x)±
1

2
Gµν(x). (2)

It consists of a symmetric metric tensor Gµν = Gνµ and an antisymmetric
Kalb-Ramond field Bµν = −Bνµ. The background must obey the following
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space-time equations of motion

Rµν −
1

4
BµρσB

ρσ
ν = 0, DρB

ρ
µν = 0, (3)

in order to have a consistent quantum theory. We will consider one of the
simplest coordinate dependent solutions, the weakly curved background,
composed of a constant metric and linearly coordinate dependent Kalb-
Ramond field which has an infinitesimal field strength

Gµν(x) = const, Bµν(x) = bµν +
1

3
Bµνρx

ρ, bµν , Bµνρ = const. (4)

What are the backgrounds T-dual to this background? As, the standard
T-dualization procedure is applicable to coordinate directions which do not
appear as background field arguments, and the weakly curved background
depends on all space-time coordinates, this procedure could not provide the
answer to this question. So, a generalization of a T-dualization procedure
which does not have this limitation had to be made. The main difference
between the procedures obviously must be connected to background fields
argument. We presented the new T-dualization procedure in [14].

Both procedures are built as a localization of a global coordinate shift
symmetry δxµ = λµ = const. One introduces the gauge fields vµα and
substitutes the ordinary derivatives with the covariant ones

∂αx
µ → Dαx

µ = ∂αx
µ + vµα. (5)

Imposing the following transformation law for the gauge fields

δvµα = −∂αλ
µ, (λµ = λµ(τ, σ)) (6)

one obtains that δDαx
µ = 0. If the background does not depend on the

coordinates which are T-dualized the gauge invariant action is already ob-
tained. But, what if the background depends on all the coordinates? The
additional step must be introduced. It consists of a substitution of back-
ground field argument (the coordinate xµ), by the invariant argument (in-
variant coordinate) defined as a line integral of the covariant derivatives of
the original coordinate

∆xµinv ≡
∫
P
dξαDαx

µ = xµ − xµ(ξ0) + ∆V µ, (7)

where

∆V µ ≡
∫
P
dξαvµα. (8)

Consequently the arguments of the background fields will be nonlocal.
Here, they are defined as the line integrals of the gauge fields, and as such
are nonlocal. Later, once the explicit form of T-dual theories is obtained
the non locality will appear as dependence on double coordinates.
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In order to obtain the physically equivalent theories, one must make the
introduced gauge fields nonphysical which is done by requiring that there
field strength

Fµ
αβ ≡ ∂αv

µ
β − ∂βv

µ
α (9)

must be zero. This is achieved by adding the Lagrange multiplier yµ term to
the Lagrangian. Finally, the gauge invariant action, physically equivalent
to the initial action is

Sinv = κ

∫
d2ξ

[
D+x

µΠ+µν(∆xinv)D−x
ν +

1

2
(vµ+∂−yµ − vµ−∂+yµ)

]
. (10)

Fixing the gauge xµ(ξ) = xµ(ξ0), one obtains

Sfix[y, v±] = κ

∫
d2ξ

[
vµ+Π+µν(∆V )vν− +

1

2
(vµ+∂−yµ − vµ−∂+yµ)

]
. (11)

The gauge fixed action is the main crossway of the procedure, for an
appropriate equation of motion it can transform both to initial action and to
the T-dual action. For the equation of motion obtained varying the action
over the Lagrange multipliers ∂+v

µ
− − ∂−v

µ
+ = 0, with solution vµ± = ∂±x

µ,
the gauge fixed action reduces to the initial action. For the equation of
motion obtained varying the action over the gauge fields Π∓µν [∆V ]vν± +
1
2∂±yµ = ∓β∓

µ [V ], where βα
µ [V ] ≡ ∂µBνρϵ

αβV ν∂βV
ρ, one obtains the T-

dual theory. Comparing the solutions for the gauge fields in these two
directions, one obtains the T-dual coordinate transformation laws. So, for
application along all directions we obtain the following connection

S[x] = κ

∫
Σ
d2ξ ∂+x

µΠ+µν(x)∂−x
ν ⇔ ⋆S[y] =

κ2

2

∫
d2ξ ∂+yµΘ

µν
− (∆V )∂−yν ,

(12)
with ∆V µ = V µ(ξ)− V µ(ξ0), V µ = (g−1)µν [(2bG−1) ρ

ν yρ + ỹν ]. The dual
background field composition is defined by

Θµν
± = −2

κ
(G−1

E Π±G
−1)µν = θµν ∓ 1

κ
(G−1

E )µν , (13)

and consequently the T-dual background are

Gµν ⇔ ⋆Gµν(y, ỹ) = (G−1
E )µν(∆V ),

Bµν(x) ⇔ ⋆Bµν(y, ỹ) =
κ

2
θµν(∆V ), (14)

where GEµν and θµν are the effective metric and the noncommutativity
parameter for open bosonic string, which are

GEµν = Gµν − 4(BG−1B)µν , θ
µν = −2

κ
(G−1

E BG−1)µν . (15)
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But what if one does not consider T-dualization over all coordinates,
but only some set of coordinates. To investigate this problem, let us mark
a T-dualization along direction xµ by Tµ and a T-dualization along dual
direction yµ by Tµ. Also mark the T-dualizations along some d initial
directions, all other D − d initial directions, and all initial directions by

T a = ◦dn=1T
µn , T i = ◦Dn=d+1T

µn , T = ◦Dn=1T
µn (16)

and T-dualizations along corresponding dual directions by

Ta = ◦dn=1Tµn , Ti = ◦Dn=d+1Tµn , T̃ = ◦Dn=1Tµn (17)

µn ∈ (0, 1, . . . , D − 1). We showed in [15] that these T-dualizations form
an Abelian group

T i ◦ T a = T , Ti ◦ Ta = T̃ , Ta ◦ T a = 1. (18)

We showed that all the theories T-dual to the theory of the closed bosonic
string are the part of the T-dualization diagram, given by

S[xµ]
-
S[yµ].�

S[xi, ya]

�
�
�

�
�
����
�

�
�

�
��	

@
@
@
@

@
@@R@

@
@

@
@

@@I

T a Ta T iTi

T

T̃

This diagram clearly describes the connection between arbitrary theory and
the initial and completely T-dual theory. The explicit form of the theory
obtained T-dualizing some set (marked by a) of the initial coordinates is
the following

S[xi, ya] = κ

∫
d2ξ

[
∂+x

iΠ+ij(x
i,∆V a(xi, ya))∂−x

j

−κ∂+x
iΠ+ia(x

i,∆V a(xi, ya))Θ̃
ab
− (xi,∆V a(xi, ya))∂−yb

+κ∂+yaΘ̃
ab
− (xi,∆V a(xi, ya))Π+bi(x

i,∆V a(xi, ya))∂−x
i

+
κ

2
∂+yaΘ̃

ab
− (xi,∆V a(xi, ya))∂−yb

]
. (19)

The new background field compositions Π±ij and Θ̃ab
± are defined as the

inveres of the ordinary background field compositions Θjk
∓ and Π∓bc reduced

to the appropriate d and D − d dimensional subspaces

Π±ijΘ
jk
∓ = Θkj

∓ Π±ji =
1

2κ
δki , (20)
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Θ̃ab
±Π∓bc = Π∓cbΘ̃

ba
± =

1

2κ
δac . (21)

It can be shown that

Π+ij ≡ Π+ij − 2κΠ+iaΘ̃
ab
−Π+bj . (22)

The argument of the background fields is

∆V (0)a(xi, ya) = −κ
[
Θ̃ab

0+Π0−bi + Θ̃ab
0−Π0+bi

]
∆x(0)i

− κ
[
Θ̃ab

0+Π0−bi − Θ̃ab
0−Π0+bi

]
∆x̃(0)i

− κ

2

[
Θ̃ab

0+ + Θ̃ab
0−

]
∆y

(0)
b − κ

2

[
Θ̃ab

0+ − Θ̃ab
0−

]
∆ỹ

(0)
b , (23)

where ∆xµ(ξ) = xµ(ξ)− xµ(ξ0) and ∆yµ(ξ) = yµ(ξ)− yµ(ξ0) while ∆x̃µ(ξ)
and ∆ỹµ(ξ) are their duals, defined by

∆x̃µ(ξ) =

∫
P
dξα εβα ∂βx

µ, ∆ỹ(ξ) =

∫
P
dξα εβα ∂βyµ. (24)

Calculating the symmetric and antisymmetric part of the background fields
we obtain the T-dual metric and Kalb-Ramond field:

•Gij = Gij = Gij −Gia(G̃
−1
E )abGbj

−2κ
(
Biaθ̃

abGbj +Giaθ̃
abBbj

)
− 4Bia(G̃

−1
E )abBbj

•Bij = Bij = Bij −
κ

2
Giaθ̃

abGbj −Bia(G̃
−1
E )abGbj

−Gia(G̃
−1
E )abBbj − 2κBiaθ̃

abBbj

•Gab = (G̃−1
E )ab

•Bab =
κ

2
θ̃ab

•Ga
i = κθ̃abGbi + 2(G̃−1

E )abBbi

•Ba
i = κθ̃abBbi +

1

2
(G̃−1

E )abGbi. (25)

As the constituents of the dual background field there appear the effec-
tive metric in the d-dimensional subspace a, defined by

G̃Eab ≡ Gab − 4Bac(G̃
−1)cdBdb, (26)

the non-commutativity parameter in the same subspace

θ̃ab ≡ −2

κ
(G̃−1

E )acBcd(G̃
−1)db, (27)
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which combined give the new theta function Θ̃ab
± = θ̃ab ∓ 1

κ(G̃
−1
E )ab.

Every arrow in the T-duality diagram is accompanied with the appropri-
ate T-dual coordinate transformation law. These are obtained comparing
the solutions for the gauge fields in a T-dualization procedures performed
between two actions in both directions. The laws for transitions

T a : S[xµ] → S[xi, ya], Ta : S[xi, ya] → S[xµ],

which are inverse to each other, are given by

∂∓x
a ∼= −2κΘ̃ab

∓ (xi,∆V a(xi, ya)) ·

·
[
Π±bi(x

i,∆V a(xi, ya))∂∓x
i +

1

2
∂∓yb ∓ β±

b (x
i, V a(xi, ya))

]
x(0)a ∼= V (0)a(xi, ya) (28)

and its inverse

∂∓ya ∼= −2Π±aµ(x)∂∓x
µ ± 2β±

a (x),

y(0)a
∼= U (0)

a (x). (29)

These relations enable an investigation of the closed string non-commu-
tativity and other geometric properties of the T-dual backgrounds. One
can determine the geometric structure for an arbitrary sigma model in
a T-duality diagram, find the connection between the Poisson structures
of T-dual theories and the relations between non-commutativity parame-
ters. The coordinates of the closed string are commutative when the string
moves in a constant background. In a three dimensional space with the
Kalb-Ramond field depending on one of the coordinates, successive T-
dualizations along isometry directions lead to a theory with Q flux and
the non-commutative coordinates [16, 17, 18]. Using the generalized T-
dualization procedure, we found the non-commutativity characteristics of
a closed string moving in the weakly curved background [15] comparing the
initial and completely T-daul theory. One can expect the further investi-
gations will reveal novelties regarding the form of the fluxes of all T-dual
background forming a diagram. For now it is known that all fluxes are of
type R.
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Closed string noncommutativity in the weakly
curved background∗
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Abstract

We consider the closed bosonic string moving in the weakly curved background.
Using T-duality transformation laws we calculate the Poisson brackets of the co-
ordinates in the T-dual space assuming that initial theory is geometric one, which
means that standard Poisson algebra is obeyed. The result is that the commutative
initial theory is equivalent to the non-commutative T-dual theory. All noncommu-
tativity parameters are infinitesimal and proportional to the Bµνρ, field strength
of Kalb-Ramond field Bµν . In addition we find the algebra of the T-dual wind-
ing numbers and momenta in terms of the winding numbers and momenta of the
initial theory.

1. Introduction

In order to obtain noncommutativity in the open string case it is enough
to consider the open string in the presence of the constant gravitational
Gµν and Kalb-Ramond field Bµν and use the boundary conditions [1, 2].
Treating boundary conditions as canonical constraints and solving them,
one gets the initial coordinates expressed in terms of the Ω even effective
coordinates and momenta, where Ω is world-sheet parity transformation
Ω : σ → −σ. Because effective variables have nonzero Poisson bracket (PB),
the PB between initial coordinates is also nonzero. The noncommutativity
parameter is proportional to the Kalb-Ramond field Bµν .

There is one interesting thing which we noted in the open string case.
The effective metric and the noncommutativity parameter are (up to some
constants) the backgroud fields of the T-dual theory. As we know T-dual
theory is physically equivalent to the initial one in the sense they have the
same degrees of freedom - one at the scale R and the T-dual one at the scale
1/R. The mathematical realization of the T-duality goes through Buscher
procedure [3]. As a result of the procedure we get the relation between
initial and T-dual variables which we call transformation laws.

∗ Work supported in part by the Serbian Ministry of Education and Science, under
contract number No.171031.

† e-mail address: ljubica, bnikolic, sazdovic@ipb.ac.rs
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The closed strings do not have endpoints, so in the constant background
there are no boundary conditions. To obtain noncommutativity in the
closed string case we have to use T-duality as a helping tool. But, in the
constant background case, T-duality relates σ-derivatives of the coordinates
of one theory with the momenta of its T-dual one. Assuming that momenta
of the initial theory commute (geometric theory) it follows that the T-dual
coordinates commute as well. Consequently, in the constant background
case there is no closed string non-commutativity.

It is obvious that T-duality is just one part of the solution in order to get
the closed string noncommutativity. The second part is coordinate depen-
dent background obeying the space-time field equations [4, 5]. Considering
the closed string in the constant gravitational field Gµν and Kalb-Ramond
field depending on one coordinate, the closed string non-commutativity was
first observed in the paper [6], and investigated further in [7, 8, 9]. In these
articles 3-torus is considered, where Bµν depends on one coordinate and T-
dualization is performed along two other coordinates (isometry directions)
using standard Buscher procedure [3].

One can ask if it is possible to do that in the background where Bµν
depends on all space-time coordinates. The answer is affirmative but in
order to achieve that we have to use the generalized T-duality procedure
presented in details in [10] and to apply it to the weakly curved back-
ground. The weakly curved background used in the present article is de-
fined by constant gravitational Gµν = const and the linear Kalb-Ramond
field Bµν = bµν + 1

3Bµνρx
ρ, where the field strength Bµνρ is supposed to

be infinitesimal. Such background obeys space-time field equations [4, 5]
in the linear approximation in Bµνρ.

We perform the generalized T-dualization procedure [10] along all the
coordinates and obtain the T-duality transformation law, ∂±yµ = ∂±yµ(∂±x),
where ∂± are world-sheet partial derivatives. Using canonical formalism,
the T-dual coordinates are expressed in terms of the original variables,
y′µ

∼= 1
κπµ − β0

µ[x], where πµ are canonically conjugated momenta to the

coordinates xµ. The infinitesimal expression β0
µ is the correction in com-

parison to the flat background case. Assuming that the coordinates and
momenta of the original theory satisfy standard Poisson algebra (initial
theory is geometric one), we get the coordinate noncommutativity rela-
tions in the T-dual picture. In addition, we obtain the complete algebra of
the T-dual winding numbers and momenta.

2. Generalized T-duality and noncommutativity

We consider the closed bosonic string moving in the D-dimensional space-
time described by the action

S[x] = κ

∫
Σ
d2ξ ∂+x

µ
(
Bµν [x] +

1

2
Gµν [x]

)
∂−x

ν , (1)

where the light-cone coordinates are defined as ξ± = 1
2(τ ± σ) and the cor-

responding derivatives ∂± = ∂τ ±∂σ. In order to keep conformal invariance
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on the quantum level, the background fields have to obey the following
one-loop consistency conditions [4, 5]

Rµν −
1

4
BµρσB

ρσ
ν = 0, DρB

ρ
µν = 0 . (2)

Here Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is the field strength of the field Bµν ,
and Rµν and Dµ are Ricci tensor and the covariant derivative with respect
to the space-time metric.

The solution of the equations in the first order in Bµνρ, so called the
weakly curved background, [7, 10, 11, 12], is defined by

Gµν [x] = const,

Bµν [x] = bµν + hµν [x] = bµν +
1

3
Bµνρx

ρ, bµν , Bµνρ = const. (3)

Here, the field strength Bµνρ is infinitesimal.
Applying the generalized T-dualization procedure [10] on the closed

string propagating in the weakly curved background, we obtain the T-dual
action

⋆S[y] =
κ2

2

∫
d2ξ ∂+yµΘ

µν
− [∆V [y]]∂−yν , (4)

where

Θµν
± ≡ −2

κ
(G−1

E Π±G
−1)µν = θµν ∓ 1

κ
(G−1

E )µν ,

GEµν ≡ Gµν − 4(BG−1B)µν , Π±µν = Bµν ±
1

2
Gµν . (5)

The argument ∆V is defined nonlocally as

∆V µ[y] = −κθµν0 ∆yν + (g−1)µν∆ỹν , (6)

where

∆yµ =

∫
P
(dτ ẏµ + dσy′µ) = yµ(ξ)− yµ(ξ0), ∆ỹµ =

∫
P
(dτy′µ + dσẏµ), (7)

and

gµν = Gµν − 4(bG−1b)µν , θµν0 = −2

κ
(g−1bG−1)µν . (8)

It is obvious from the definitions (7) that these two coordinates are related
by the following expressions, ẏµ = ỹ′µ, y

′
µ = ˙̃yµ.

The transformation laws connecting initial and T-dual coordinates play
the key role in our considerations. To be more precise, we obtain from T-
dualization procedure the relations between world-sheet derivatives of the
initial and T-dual coordinates

∂±x
µ ∼= −κΘµν

± [∆V ]
[
∂±yν ± 2β∓

ν [V ]
]
, (9)
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where

β±
µ [x] =

1

2
(β0

µ ± β1
µ) = ∓1

2
hµν [x]∂∓x

ν ,

β0
µ[x] = hµν [x]x

′ν , β1
µ[x] = −hµν [x]ẋ

ν . (10)

Because we use the canonical formalism, we must have these transformation
laws in the canonical form

x′µ ∼=
1

κ
⋆πµ − κθµν0 β0

ν [V ], (11)

πµ ∼= κy′µ + κβ0
µ[V ] , (12)

where πµ and ⋆πµ are canonically conjugated momenta to the coordinates
xµ and yµ, respectively. It is shown in Ref. [10] that the T-dual of the
T-dual action is the initial one. If we want to have T-dual coordinates in
terms of the initial ones, we just have to invert the relation (9)

∂±yµ ∼= −2Π∓µν [∆x]∂±x
ν ∓ 2β∓

µ [x]. (13)

The canonical form of the T-dual transformations is

y′µ
∼=

1

κ
πµ − β0

µ[x], (14)

⋆πµ ∼= κx′µ + κ2θµν0 β0
ν [x]. (15)

Our intention is to calculate the PB’s of the T-dual variables yµ and
ỹµ using PB algebra of the initial variables. Consequently, we assume that
initial theory is geometric which means that coordinates xµ and momenta
πν satisfy standard PB algebra

{xµ(σ), πν(σ̄)} = δµν δ(σ − σ̄), {xµ(σ), xν(σ̄)} = 0, {πµ(σ), πν(σ̄)} = 0.
(16)

In this article we will calculate, besides already mentioned PB algebra of
the T-dual coordinates, also the algebra of the T-dual winding numbers
and momenta. For both purposes, the first step is introducing the quantity

∆Yµ(σ, σ0) =

∫ σ

σ0

dη Y ′
µ(η) = Yµ(σ)− Yµ(σ0), (17)

where Yµ = (yµ, ỹµ). The second step is to calculate their PB’s. It is obvious
that key relation which we have to calculate is PB between σ derivatives
of Y ’s. When we calculate it in three possible cases it turns out that it can
be written in the form

{X ′
µ(σ), Y

′
ν(σ̄)} ∼= K ′

µν(σ)δ(σ − σ̄) + Lµν(σ)δ
′(σ − σ̄) . (18)
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Integrating this relation by parts over σ and σ̄, after straightforward cal-
culation, we extract PB we are searching for

{Xµ(τ, σ), Yν(τ, σ̄)} ∼= − [Kµν(σ)−Kµν(σ̄) + Lµν(σ̄)] θ(σ − σ̄) , (19)

where θ(σ) is the step function defined as

θ(σ) =

 0 if σ = 0
1/2 if 0 < σ < 2π, σ ∈ [0, 2π].
1 if σ = 2π

(20)

This is a general form of the relation. Using transforation laws we calcu-
late PB’s in three cases: {y′µ(σ), y′ν(σ̄)}, {y′µ(σ), ỹ′ν(σ̄)} and {ỹ′µ(σ), ỹ′ν(σ̄)},
and express them in the form of (18). Reading the corresponding values of
K and L and using (19), we get the noncommutativity relations for T-dual
closed string coordinates

{yµ(σ), yν(σ̄)} ∼= −1

κ
Bµνρ[x

ρ(σ)− xρ(σ̄)]θ(σ − σ̄), (21)

{yµ(σ), ỹν(σ̄)} ∼= −
{1

κ
Bµνρ[x̃

ρ(σ)− x̃ρ(σ̄)]− 3

2κ
ΓE
ρ,µν [x

ρ(σ)− xρ(σ̄)]

+
1

κ
gµν −

3

2κ
ΓE
ρ,µν x

ρ(σ̄)
}
θ(σ − σ̄), (22)

{ỹµ(σ), ỹν(σ̄)} ∼= −
{
− 1

κ

[
Bµνρ − 6gµαQ

αβ
ρgβν

]
[xρ(σ)− xρ(σ̄)] (23)

+
[
− 3

2κ

(
ΓE
µ,νρ − ΓE

ν,µρ

)
+

4

κ
Bµνσ(G

−1b)σρ

]
[x̃ρ(σ)− x̃ρ(σ̄)]

}
θ(σ − σ̄) ,

where

x̃′µ =
1

κ
(G−1)µνπν + 2(G−1B)µνx

′ν . (24)

Here the infinitesimal fluxes are defined as

ΓE
µ,νρ =

1

2

(
∂νG

E
µρ+∂ρG

E
µν−∂µG

E
νρ

)
= −4

3

(
Bµσν(G

−1b)σρ+Bµσρ(G
−1b)σν

)
,

(25)

Qµν
ρ = −1

3

[
(g−1)µσ(g−1)ντ − κ2θµσ0 θντ0

]
Bστρ. (26)

For σ = σ̄ we obtain that all PB’s vanish, and consequently, coordinates
commute. Also we can consider σ = σ̄ + 2π, which is the same point on
the world-sheet as our first choice σ = σ̄. Taking σ = σ̄ + 2π, three non-
commutativity relations take the form

{yµ(σ + 2π), yν(σ)} ∼= −2π

κ
BµνρN

ρ , (27)
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{yµ(σ + 2π), ỹν(σ)}+ {yµ(σ), ỹν(σ + 2π)} ∼= −4π

κ2
Bµνρp

ρ

+
π

κ

(
3ΓE

ρ,µν − 8Bµνλb
λ
ρ

)
Nρ, (28)

and

{ỹµ(σ + 2π), ỹν(σ)} ∼=
∼=

2π

κ

[
−Bµνρ − 6gµαQ

αβ
ρgβν + 2Bµν

λgλρ + 3
(
ΓE
µ,νλ − ΓE

ν,µλ

)
bλρ

]
Nρ

+
π

κ2

[
3
(
ΓE
µ,νρ − ΓE

ν,µρ

)
pρ − 8Bµνλb

λ
ρ

]
pρ , (29)

where Nµ = 1
2π [xµ(σ + 2π)− xµ(σ)] is winding number of the initial coor-

dinates and

pµ =
1

2π

∫ σ+2π

σ
dηπµ(η) , (30)

is mean value of the momentum πµ. Note that all three PB’s are propor-
tional to the Kalb-Ramond field strength which means they are infinitesi-
mal.

In addition we can obtain the algebra of the T-dual winding number
and momenta defined as

∆yµ(2π, 0) = 2π⋆Nµ , ∆ỹµ(2π, 0) = 2π⋆Pµ , (31)

while we introduced earlier

∆xµ(2π, 0) = 2πNµ , ∆x̃µ(2π, 0) = 2πPµ . (32)

Using (17), (18), transformation laws and above definitions we have

{⋆Nµ,
⋆Nν} =

1

πκ
BµνρN

ρ , (33)

{⋆Nµ,
⋆Pν} =

1

πκ
BµνρP

ρ − 3

4πκ
ΓE
ρ,µνN

ρ , (34)

{⋆Pµ,
⋆Pν} = − 1

πκ

(
Bµνρ − 6gµαQ

αβ
ρgβν

)
Nρ

+
1

π

[
− 3

2κ
(ΓE

µ,νρ − ΓE
ν,µρ) +

4

κ
Bµνσ(G

−1b)σρ

]
P ρ .
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3. Concluding remarks

In the present article we considered the theory describing the closed bosonic
string moving in the weakly curved background and derived the non-com-
mutativity relations using canonical approach.

We applied generalized T-duality procedure and obtained the transfor-
mation laws connecting the initial and T-dual variables. They, expressed
in the canonical form, have the central role in calculation of the PB’s of the
T-dual coordinates yµ and ỹµ. Infinitesimal Kalb-Ramond field strength,
as a part of the function βµ, gives the main contribution to the noncommu-
tativity parameters. The result is that we showed the physical equivalence
of the commutative initial theory and noncommutative T-dual one in linear
approximation in the field strength Bµνρ.

The general structure of the non-commutativity relations is

{Yµ(σ), Yν(σ̄)} = {Fµνρ [x
ρ(σ)− xρ(σ̄)] + F̃µνρ [x̃

ρ(σ)− x̃ρ(σ̄)]}θ(σ − σ̄) ,
(35)

where Yµ = (yµ, ỹν) and Fµνρ and F̃µνρ are the constant and infinitesimally
small fluxes. At the same points, for σ = σ̄ all PB’s are zero. In the
important particular case for σ = σ̄ + 2π we get

{Yµ(σ + 2π), Yν(σ)} = 2π

[
(Fµνρ + 2F̃µναb

α
ρ )N

ρ +
1

κ
F̃µν

ρpρ

]
, (36)

where Nµ and pµ are winding numbers and momenta of the original theory.
In addition we calculated the PB algebra of the T-dual winding numbers
and momenta in terms of the initial ones.
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Preface

The Workshop series ‘Lie Theory and Its Applications in Physics’ is designed
to serve the community of theoretical physicists, mathematical physicists and
mathematicians working on mathematical models for physical systems based on
geometrical methods and in the field of Lie theory.

The series reflects the trend towards a geometrisation of the mathematical
description of physical systems and objects. A geometric approach to a system
yields in general some notion of symmetry which is very helpful in understanding
its structure. Geometrisation and symmetries are meant in their widest sense, i.e.,
representation theory, algebraic geometry, infinite-dimensional Lie algebras and
groups, superalgebras and supergroups, groups and quantum groups, noncom-
mutative geometry, symmetries of linear and nonlinear PDE, special functions.
Furthermore we include the necessary tools from functional analysis and number
theory. This is a big interdisciplinary and interrelated field.

The first three workshops were organised in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium ‘Quantum Theory and Symmetries’ in Cracow
(2001), the 5th, 7th, 8th and 9th were organised in Varna (2003, 2007, 2009, 2011),
the 6th was part of the 4th Symposium ‘Quantum Theory and Symmetries’ in Varna
(2005), but has its own volume of Proceedings.

The 10th Workshop of the series (LT-10) was organized by the Institute of
Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences (BAS)
in June 2013 (17–23), at the Guest House of BAS near Varna on the Bulgarian Black
Sea Coast.

The overall number of participants was 71 and they came from 21 countries.
The scientific level was very high as can be judged by the speakers. The

plenary speakers were: Loriano Bonora (Trieste), Branko Dragovich (Belgrade),
Ludvig Faddeev (St. Petersburg), Malte Henkel (Nancy), Evgeny Ivanov (Dubna),
Toshiyuki Kobayashi (Tokyo), Ivan Kostov (Saclay), Karl-Hermann Neeb (Erlan-
gen), Eric Ragoucy (Annecy), Ivan Todorov (Sofia), Joris Van Der Jeugt (Ghent),
George Zoupanos (Athens).

The topics covered the most modern trends in the field of the Workshop:
Symmetries in String Theories and Gravity Theories, Conformal Field Theory,

v



vi Preface

Integrable Systems, Representation Theory, Supersymmetry, Quantum Groups,
Vertex Algebras and Superalgebras, Quantum Computing.

There is some similarity with the topics of preceding workshops, however, the
comparison shows how certain topics evolve and that new structures were found
and used. For the present workshop we mention more emphasis on: representation
theory, quantum groups, integrable systems, vertex algebras and superalgebras,
on conformal field theories, applications to the minimal supersymmetric standard
model.

The International Organizing Committee was: V.K. Dobrev (Sofia) and H.-D.
Doebner (Clausthal) in collaboration with G. Rudolph (Leipzig).

The Local Organizing Committee was: V.K. Dobrev (Chairman), V.I. Doseva,
A.Ch. Ganchev, S.G. Mihov, D.T. Nedanovski, T.V. Popov, T.P. Stefanova, M.N.
Stoilov, N.I. Stoilova, S.T. Stoimenov.
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Complete T-Dualization of a String in a Weakly
Curved Background

Lj. Davidović, B. Nikolić, and B. Sazdović

Abstract We apply the generalized Buscher procedure, to a subset of the initial
coordinates of the bosonic string moving in the weakly curved background, com-
posed of a constant metric and a linearly coordinate dependent Kalb-Ramond field
with the infinitesimal strength. In this way we obtain the partially T-dualized action.
Applying the procedure to the rest of the original coordinates we obtain the totally T-
dualized action. This derivation allows the investigation of the relations between the
Poisson structures of the original, the partially T-dualized and the totally T-dualized
theory.

1 Bosonic String in the Weakly Curved Background

Let us consider the closed string moving in the coordinate dependent background,
described by the action [1]

SŒx� D �

Z
˙

d2� @Cx�˘C��Œx�@�x�: (1)

The background is defined by the space-time metric G�� and the antisymmetric
Kalb-Ramond field B��

˘˙��Œx� D B��Œx�˙ 1

2
G��Œx�: (2)

The light-cone coordinates are

�˙ D 1

2
.� ˙ �/; @˙ D @� ˙ @� ; (3)

and the action is given in the conformal gauge (the world-sheet metric is taken to be
g˛ˇ D e2F �˛ˇ).
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The world-sheet conformal invariance is required, as a condition of having a
consistent theory on a quantum level. This leads to the space-time equations for the
background fields, which equal

R�� � 1

4
B���B

��
� D 0; D�B

�
�� D 0; (4)

in the lowest order in slope parameter ˛0 and for the constant dilaton field ˚ D
const . Here B��� D @�B�� C @�B�� C @�B�� is the field strength of the field
B�� , and R�� and D� are Ricci tensor and covariant derivative with respect to the
space-time metric.

We will consider a weakly curved background [2, 3], defined by

G��Œx� D const;

B��Œx� D b�� C h��Œx� D b�� C 1

3
B���x

�; b��; B��� D const: (5)

Here, the constant B��� is infinitesimal. The background (5) is the solution of the
field equations (4) in the first order in B���.

2 Partial T-Dualization

In the paper [3], we generalized the Buscher prescription for a construction of
a T-dual theory. This prescription, unlike the standard one [4], is applicable to
the string backgrounds depending on all the space-time coordinates, such as the
weakly curved background. We performed the procedure along all the coordinates
and obtained T-dual theory. The noncommutativity of the T-dual coordinates we
investigated in [5]. In the present paper we consider the partial T-dualization, i.e. the
application of the procedure to some without subset of the coordinates. We construct
the partially T-dualized theory. The noncommutativity of the coordinates in similar
theories was considered in [6].

Let us mark the T-dualization along the coordinate x� by T�, and separate the
coordinates into two subsets .xi ; xa/ with i D 0; : : : ; d � 1 and a D d; : : : ;D � 1

and mark the T-dualizations along these subsets of coordinates by

T i � T0 ı � � � ı Td�1; T a � Td ı � � � ı TD�1: (6)

In this section we will find the partially T-dualized action performing T-dualization
along coordinates xa, T a W S .
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The closed string action in the weakly curved background has a global symmetry

ıx� D ��: (7)

Let us localize this symmetry for the coordinates xa

ıxa D �a.�; �/; a D d; : : : ;D � 1; (8)

by introducing the gauge fields va˛ and substituting the ordinary derivatives with the
covariant ones

@˛x
a ! D˛x

a D @˛x
a C va˛: (9)

The gauge invariance of the covariant derivatives is obtained by imposing the
following transformation law for the gauge fields

ıva˛ D �@˛�a: (10)

Also, substitute xa in the argument of the background fields with its invariant
extension, defined by

�xainv �
Z
P

d�˛ D˛x
a D

Z
P

.d�CDCxa C d��D�xa/

D xa � xa.�0/C�V a; (11)

where

�V a �
Z
P

d�˛va˛ D
Z
P

.d�CvaC C d��va�/: (12)

The line integral is taken along the path P , from the initial point �˛0 .�0; �0/ to the
final one �˛.�; �/. To preserve the physical equivalence between the gauged and
the original theory, one introduces the Lagrange multiplier ya and adds the term
1
2
yaF

aC� to the Lagrangian, which will force the field strength F aC� � @Cva� �
@�vaC D �2F a

01 to vanish. In this way, we obtain the gauge invariant action

Sinv D �

Z
d2�

h
@Cxi˘Cij Œxi ; �xainv�@�xj C @Cxi˘CiaŒxi ; �xainv�D�xa

CDCxa˘Cai Œxi ; �xainv�@�xi CDCxa˘CabŒxi ; �xainv�D�xb

C1

2
.vaC@�ya � va�@Cya/

i
; (13)

where the last term is equal to 1
2
yaF

aC� up to the total divergence. Now, we can use
the gauge freedom to fix the gauge xa.�/ D xa.�0/. The gauge fixed action equals
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Sf ix D �

Z
d2�

h
@Cxi˘Cij Œxi ; �V a�@�xj C @Cxi˘CiaŒxi ; �V a�va�

C vaC˘Cai Œxi ; �V a�@�xi C vaC˘CabŒxi ; �V a�vb�

C 1

2
.vaC@�ya � va�@Cya/

i
: (14)

The equations of motion for the Lagrange multiplier ya, @Cva� � @�vaC D 0, have a
solution va˙ D @˙xa, which turns the gauge fixed action to the initial one.

2.1 The Partially T-Dualized Action

The partially T-dualized action will be obtained after elimination of the gauge fields
from the gauge fixed action (14), using their equations of motion. Varying over the
gauge fields va˙ one obtains

˘˙ai Œxi ; �V a�@�xi C˘˙abŒxi ; �V a�vb� C 1

2
@�ya D ˙ˇȧ Œxi ; V a�; (15)

where ˇȧ Œx
i ; V a� is the infinitesimal contribution from the background fields

argument. Using the inverse of the background fields composition 2�˘˙ab , defined
by Qab˙ � � 2

�
. QG�1E /ac˘˙cd . QG�1/db; where QGab � Gab and QGEab � Gab �

4Bac. QG�1/cdBdb , we can extract the gauge fields va˙ from Eq. (15)

va� D �2� Qab� Œxi ; �V a�
h
˘˙bi Œxi ; �V a�@�xi C 1

2
@�yb � ˇḃ Œx

i ; V a�
i
: (16)

Substituting (16) into the action (14), we obtain the partially T-dualized action

S�Œx
i ; ya� D �

Z
d2�

�
@Cxi N̆Cij Œxi ; �V a.xi ; ya/�@�xj

C�

2
@Cya Qab� Œxi ; �V a.xi ; ya/�@�yb

�� @Cxi˘CiaŒxi ; �V a.xi ; ya/� Qab� Œxi ; �V a.xi ; ya/�@�yb

C� @Cya Qab� Œxi ; �V a.xi ; ya/�˘Cbi Œxi ; �V a.xi ; ya/�@�xi
�
; (17)

where

N̆Cij � ˘Cij � 2�˘Cia Qab� ˘Cbj : (18)
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In order to find the explicit value of the background fields argument�V a.xi ; ya/,
one substitutes the zeroth order of the equations of motion (16) into (12) and obtains

�V .0/a D ��
h Qab

0C˘0�bi C Qab
0�˘0Cbi

i
�x.0/i

� �
h Qab

0C˘0�bi � Qab
0�˘0Cbi

i
� Qx.0/i

� �

2

h Qab
0C C Qab

0�
i
�y

.0/

b � �

2

h Qab
0C � Qab

0�
i
� Qy.0/b ; (19)

where Qab
0˙ stands for the zeroth order value of Qab˙ , which can be written as

Qab
0˙ � �2

�
. Qg�1/ac ˘0˙cd . QG�1/db D Q
ab0 � 1

�
. Qg�1/ab; (20)

where Qgab D Gab � 4bac. QG�1/cd bdb; Q
ab0 � � 2
�
. Qg�1/ac bcd . QG�1/db and

� Qy.0/a D
Z
.d�y.0/0a C d� Py.0/a /; � Qx.0/i D

Z
.d�x.0/0i C d� Px.0/i /: (21)

Initial theory, the partially T-dualized theory and the totally T-dualized theory
obtained in [3] are physically equivalent theories. In the next section we will
partially T-dualize the partially T-dualized theory.

3 The Total T-Dualization of the Initial Action

The T-dual theory, derived in [3], a result of T-dualization of the initial action along
all the coordinates, is given by

?SŒy� D �

Z
d2� @Cy� ?˘��

C Œ�V.y/� @�y� D �2

2

Z
d2� @Cy���� Œ�V.y/�@�y�;

(22)
with


��

˙ � �2
�
.G�1E ˘˙G�1/�� D 
�� � 1

�
.G�1E /��; (23)

where

GE�� � G�� � 4.BG�1B/��; 
�� � �2
�
.G�1E BG�1/��: (24)
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The T-dual background fields are equal to

?G��Œ�V.y/� D .G�1E /��Œ�V.y/�; ?B��Œ�V.y/� D �

2

��Œ�V.y/�: (25)

The argument of the background fields is given by

�V �.y/ D ��
��0 �y� C .g�1/��� Qy�; (26)

where�y� D y�.�/�y�.�0/ and Qy� D R
.d�y0�Cd� Py�/, while g�� D G���4b2��

and 
��0 D � 2
�
.g�1bG�1/�� .

Let us now show that the same result will be obtained applying the T-dualization
procedure to the coordinates xi of the partially T-dualized theory (17), T i W
S�Œx

i ; ya�. Substituting the ordinary derivatives @˙xi with the covariant derivatives

D˙xi D @˙xi C vi˙; (27)

where the gauge fields vi˙ transform as ıvi˙ D �@˙�i , and substituting the
coordinates xi in the background field arguments by

�xiinv D
Z
P

.d�CDCxi C d��D�xi /; (28)

we obtain the gauge invariant action, which after fixing the gauge by xi .�/ D xi .�0/

becomes

Sf ix� D �

Z
d2�

�
viC N̆Cij Œ�V ��vj� C �

2
@Cya Qab� Œ�V ��@�yb

�� viC˘CiaŒ�V �� Qab� Œ�V ��@�yb C � @Cya Qab� Œ�V ��˘Cbi Œ�V ��vi�

C1

2
.viC@�yi � vi�@Cyi /

�
: (29)

Here �V i is defined by

�V i �
Z
P

.d�CviC C d��vi�/; (30)

and �V a is defined in (19), whose arguments are in this case �V i and ya.
The totally T-dualized action will be obtained by eliminating the gauge fields

from the gauge fixed action, using their equations of motion. Varying the action
(29) over the gauge fields vi˙ one obtains

N̆˙ij vj� � �˘˙ia Qab� @�yb C 1

2
@�yi D ˙ˇi̇ : (31)
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Using the fact that the background field composition N̆˙ij is inverse to 2�ij
� ,

we can rewrite the equation of motion (31) expressing the gauge fields as

vi� D 2�
ij
�
h
�˘˙ja Qab� @�yb � 1

2
@�yj ˙ ˇj̇

i
: (32)

Using ˘˙abbi� D �˘˙ajji
� ; we note that


ij
�˘˙ja Qab� D �ic�˘˙ca Qab� D � 1

2�
ib� ; (33)

and obtain

vi� D ��i�
� @�y� ˙ 2�

ij
�ˇj̇ : (34)

Substituting (34) into (29), the action becomes

S D �

Z
d2�

h
@Cyi



�ij� � �2ik� N̆Ckllj�

�
@�yj (35)

C @Cya



� �2aj� N̆Cjkki� C �

2
ai� � �2 Qab� ˘Cbjji�

�
@�yi

C @Cyi



� �2ij� N̆Cjkka� C �

2
ia� � �2ij�˘Cjb Qba�

�
@�ya

C @Cya

�
2

Qab� � �2ai� N̆Cij jb� � �2ai� ˘Cic Qcb� � �2 Qac� ˘Cciib�
�
@�yb

i
:

Using N̆˙ijjk
� D 

kj
� N̆˙j i D 1

2�
ıki ; Q̆˙abbc� D cb� Q̆˙ba D 1

2�
ıca;˘˙abbi� D

�˘˙ajji
� ; ˘˙ijja

� D �˘˙ibba� and ci� N̆˙ik D � Qca�˘˙ak , one can rewrite
this action as

S D �2

2

Z
d2� @Cy���� @�y�: (36)

In order to find the background fields argument �V i , we consider the zeroth
order of Eq. (34)

vi0� D ��i�
0�@�y�; (37)

and conclude that

�V i D ��
i�0 �y� C .g�1/i�� Qy�: (38)

Using the integral form of the variables and the relations ˘˙accb� C ˘˙aiib� D
1
2�
ıba ; ib� D �2� Nij

�˘˙jaab� ; aj
� D �2� Qab�˘˙bi

ij
�, we obtain that

�V a.�V i ; ya/ defined in (19) equals
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�V a.�V i ; ya/ D ��
a�0 �y� C .g�1/a�� Qy�: (39)

Therefore, we conclude that action (36) is the totally T-dualized action (22).
In this paper we performed the partial T-dualizations and obtained the T-duality

chain

SŒx��
T a

�! S�Œx
i ; ya�

T i

�! ?SŒy��: (40)

The first action describes the geometrical background, while the second and the third
describe the non-geometrical backgrounds with nontrivial fluxes. From this chain
one can find the relations between the arbitrary two coordinates in the chain. These
general T-duality coordinate transformation laws are used in the investigation of
the relations between the Poisson structures of the original, the partially T-dualized
and the totally T-dualized theory [5]. Their canonical form will be used in deriving
the complete closed string non-commutativity relations, which are the important
features of the non-geometrical backgrounds.
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T-dualization of a weakly curved background

Lj. Davidović, B. Nikolić and B. Sazdović

Institute of Physics, University of Belgrade, Belgrade, Serbia

Abstract. We consider a string moving in a weakly curved background, composed of a
constant metric and a linearly coordinate dependent Kalb-Ramond field with an infinitesimal
strength. We discuss the T-dualization procedure which we developed for a closed bosonic
string moving in a weakly curved background. The procedure is a generalization of a Buscher
T-dualization procedure and enables the T-dualization of the nonisometry directions. The same
procedure is used to investigate the T-duals of an open bosonic string as well. The generalized
T-dualizations give insight to the connection between the geometrical properties of the T-dual
spaces.

1. Introduction
In string theory there exists a symmetry, T-duality, which allows the physical equivalence of the
string living on the different geometrical structures of the compactified dimensions. The string
living in a space with one dimension compactified on a radius R, has the same physical features
as a string leaving in a space with one dimension compactified on a radius α′

R , where α′ is a Regge
slope parameter. T-duality was first described in the context of toroidal compactification in [1]
(thoroughly explained in [2]), it can be generalized to the arbitrary toroidal compactification
[3], and extended to the non-flat conformal backgrounds [4]. The origin of T-duality is seen in
a possibility that, unlike a point particle, the string can wrap around compactified dimensions.

The first T-dualization procedure, the prescription for obtaining a theory which is T-dual of
a given theory, was defined by Buscher [5]. The procedure was done for a string sigma model,
describing a string moving in a background composed of a metric Gµν , an antisymmetric field
Bµν and a dilaton field Φ. It is required that the metric admits at least one continuous abelian
isometry which leaves the action invariant. The procedure is founded in gauging the isometry by
introducing the gauge fields vµα. In order to preserve the physical content of the original theory,
one requires that the new fields vµα are nonphysical, which is achieved by the requirement that
the gauge fields have a vanishing field strength Fµαβ = ∂αv

µ
β −∂βvµα. This requirement is included

in the theory by adding the Lagrange multiplier term yµF
µ
01 into the Lagrangian. Fixing the

gauge one obtains the gauge fixed Lagrangian which carries the information on both initial and
a T-dual theory. The integration over the Lagrange multipliers yµ, simply recovers the original
theory. The integration over the gauge fields vµα, produces the T -dual theory.

The standard T-dualization procedure is applicable along directions which do not appear as
the background field arguments. The generalized T-dualization procedure which is applicable
along an arbitrary coordinate was done in Refs. [6, 7, 8]. The procedure is founded in the
standard procedure and keeps the main rules of the standard procedure. In order to gauge the
global isometry, one introduces the gauge fields vµα, as usual. The replacement of the derivatives
∂αx

µ with the covariant ones Dαx
µ, does not as before make the whole action invariant. The
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obstacle is the background field Bµν depending on xµ, which is not locally gauge invariant. So, as
a new rule we substitute the argument of the background fields by an invariant argument ∆xµinv,
defined as the line integral of the covariant derivatives of the original argument. As before,
in order to obtain the theory physically equivalent to the original one, we add the Lagrange
multiplier term. Using the local gauge freedom we fix the gauge taking xµ(ξ) = xµ(ξ0). The
obtained gauge fixed action reduces to to the original action for the equations of motion for the
Lagrange multiplier. The T-dual theory is obtained for the equations of motion for the gauge
fields vµα.

The generalized T-dualization procedure was investigated for a string moving in a weakly
curved background composed of a constant metric, a linearly coordinate dependent Kalb-
Ramond field with an infinitesimal filed strength and a constant dilaton field. It was first
applied to all space-time coordinates in Ref. [6], and a T-dual was obtained. In Ref. [8],
the procedure was applied to an arbitrary set of the initial coordinates. Choosing d arbitrary
directions, we denote T a = ◦dn=1T

µn , T i = ◦Dn=d+1T
µn , and T = ◦Dn=1T

µn , where Tµ stands for

a T-dualization along direction xµ and Ta = ◦dn=1Tµn , Ti = ◦Dn=d+1Tµn , T̃ = ◦Dn=1Tµn , where Tµ
stands for the T-dualization along a dual direction yµ. Performing the generalized procedure we
proved the following composition laws:

T i ◦ T a = T , Ti ◦ Ta = T̃ , Ta ◦ T a = 1, (1)

where 1 denotes the identical transformation (T-dualization not performed). We found the
explicit forms of the resulting theories and the corresponding T-dual coordinate transformation
laws. These results complete the T-dualization diagram connecting all the theories T-dual to
the initial theory.

S[xµ] -S[yµ].�

S[xi, ya]

�
�
�
�
�
����
�
�
�
�
��	

@
@
@
@
@
@@R@

@
@

@
@
@@I

T a Ta T iTi

T

T̃

The initial theory, describing the bosonic string moving in the weakly curved background
is defined on the geometrical space. All its T-dual theories are non-geometric and non-local
because they depend on variable V µ, which is a line integral of the derivatives of the dual
coordinates. To all of these theories there corresponds a flux which is of the same type as the R
flux unlike the non-geometric theories with Q flux, which have a local geometric description.

2. Bosonic string action
Let us consider the action [9, 10] describing the propagation of the bosonic string in a background
composed of a space-time metric Gµν , a Kalb-Ramond field Bµν and a dilaton field Φ

S[x] = κ

∫
Σ
d2ξ
√
−g
[(1

2
gαβGµν(x) +

εαβ√
−g

Bµν(x)
)
∂αx

µ∂βx
ν +

1

4πκ
Φ(x)R(2)

]
. (2)

The integration goes over two-dimensional world-sheet Σ parametrized by ξα (ξ0 = τ, ξ1 = σ),
gαβ is intrinsic world-sheet metric, R(2) corresponding 2-dimensional scalar curvature, xµ(ξ), µ =
0, 1, ..., D − 1 are the coordinates of the D-dimensional space-time, κ = 1

2πα′ and ε01 = −1.
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In order to have a world-sheet conformal invariance on the quantum level, the background
fields have to obey the space-time equations of motion which in the lowest order in slope
parameter α′, have the following form

Rµν −
1

4
BµρσB

ρσ
ν + 2Dµ∂νΦ = 0,

DρB
ρ
µν − 2∂ρΦB

ρ
µν = 0,

4(∂Φ)2 − 4Dµ∂
µΦ +

1

12
BµνρB

µνρ −R+ 4πκ
D − 26

3
= 0 , (3)

where Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is the field strength of the field Bµν , and Rµν and Dµ are
Ricci tensor and covariant derivative with respect to space-time metric. We consider the weakly
curved background, defined by

Gµν = const, Bµν(x) = bµν +
1

3
Bµνρx

ρ ≡ bµν + hµν(x), Φ = const. (4)

The Kalb-Ramond field strength Bµνρ is taken to be infinitesimal. All the calculations are done
in the first order in Bµνρ. In this approximation the weakly curved background is the solution
of the space-time equations of motion (3).

Introducing the light-cone coordinates

ξ± =
1

2
(τ ± σ)

and their derivatives ∂± = ∂τ ± ∂σ, taking a conformal gauge gαβ = e2F ηαβ, the action (2) can
be written as

S[x] = κ

∫
Σ
d2ξ ∂+x

µΠ+µν(x)∂−x
ν , (5)

where

Π±µν(x) = Bµν(x)± 1

2
Gµν(x). (6)

3. The Generalized Buscher T-dualization procedure
The standard T-dualization procedure, enables one to find a T-dual of a given theory, applying
the procedure to the coordinate directions which do not appear as the background field
arguments. The generalized T-dualization procedure does not have this limitation. Both
procedures are grounded in a localization of a global coordinate shift symmetry δxµ = λµ =
const. The first rule of the procedures is the introduction of the gauge fields vµα and the
substitution of the ordinary derivatives with the covariant derivatives, defined by

∂αx
µ → Dαx

µ = ∂αx
µ + vµα. (7)

If one imposes the following transformation law for the gauge fields

δvµα = −∂αλµ, (λµ = λµ(τ, σ)) (8)

one obtains δDαx
µ = 0. In the case when the background does not depend on the coordinates,

along which the T-dualization is performed, the first step is sufficient to obtain the gauge
invariant action. However if the background depends on all the coordinates, an additional
rule must be introduced. The new rule reads: Substitute the background field argument (the
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coordinate xµ), by the invariant argument (invariant coordinate), defined as a line integral of
the covariant derivatives of the original coordinate

∆xµinv ≡
∫
P
dξαDαx

µ = xµ − xµ(ξ0) + ∆V µ, ∆V µ ≡
∫
P
dξαvµα. (9)

The invariant coordinate is by definition nonlocal. The consequence of this will be a nonlocal
T-dual theory, defined on the doubled geometrical space composed of the dual coordinate yµ
and its double ỹµ.

The common rule of the procedures is the addition of the Lagrange multiplier term which
makes the introduced gauge fields nonphysical, by requiring that there field strength

Fµαβ ≡ ∂αv
µ
β − ∂βv

µ
α (10)

must be zero. This enables the physical equivalence of the theories. Following these rules we
built the gauge invariant action.

The main object and the main crossway of the procedure are the gauge fixed action and their
equations of motion, because for the equation of motion obtained varying the action over the
Lagrange multipliers, one returns to the initial action. On the other hand for the equation of
motion obtained varying the gauge fixed action over the gauge fields one obtains the T-dual
theory. Comparing the solutions for the gauge fields in these two directions, one obtains the
T-dual coordinate transformation laws. These laws are used in investigation of the relations
between the non-commutativity characteristics of the spaces connected by T-duality.

The generalized procedure, can be generalized once more in order to allow the T-dualization
of the backgrounds which do not have a global symmetry. The generalization was made in Ref.
[7] for a bosonic string moving in a weakly curved background of the second order, which consists
of the coordinate dependent metric and Kalb-Ramond field. One postulates the auxiliary action
which inherits two important features of the gauge fixed action. It reduces to the initial theory for
the equations of motion for the Lagrange multipliers and to the T-dual action for the equations
of motion for the auxiliary fields.

3.1. Complete T-dualization
If one applies the T-dualization procedure to all coordinates, one obtains a following gauge
invariant action

Sinv = κ

∫
d2ξ
[
D+x

µΠ+µν(∆xinv)D−x
ν +

1

2
(vµ+∂−yµ − v

µ
−∂+yµ)

]
, (11)

which is physically equivalent to the initial action. Fixing the gauge by xµ(ξ) = xµ(ξ0), one
obtains the gauge fixed action

Sfix[y, v±] = κ

∫
d2ξ
[
vµ+Π+µν(∆V )vν− +

1

2
(vµ+∂−yµ − v

µ
−∂+yµ)

]
. (12)

In order to find a T-dual action one has to integrate out the gauge fields from (12).
The equations of motion with respect to the gauge fields vµ± are

Π∓µν(∆V )vν± +
1

2
∂±yµ = ∓β∓µ (V ), (13)

with the right hand side coming from the variation of the background fields argument, with
β±µ (x) = ∓1

2hµν [x]∂∓x
ν . The equation of motion can be rewritten as

vµ±(y) = −κΘµν
± [∆V (y)]

[
∂±yν ± 2β∓ν [V (y)]

]
, (14)
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where

Θµν
± [∆V ] = −2

κ
(G−1

E Π±G
−1)µν = θµν [∆V ]∓ 1

κ
(G−1

E )µν [∆V ], (15)

and GEµν ≡ [G−4BG−1B]µν , θµν ≡ − 2
κ(G−1

E BG−1)µν are the open string background fields: the
effective metric and the non-commutativity parameter respectively. They are defined in analogy
with the flat space-time open string background fields introduced in [11]. Tensors Π∓µν and
Θµν
± are connected by Θµν

± Π∓νρ = 1
2κδ

µ
ρ . Substituting (14) into the action (12), we obtain T-dual

action
?S[y] ≡ Sfix[y] =

κ2

2

∫
d2ξ ∂+yµΘµν

− [∆V (0)(y)]∂−yν , (16)

where we neglected the term β−µ β
+
ν as the infinitesimal of the second order, and the argument

is given by
∆V (0)µ(y) = −κθµν0 ∆y(0)

ν + (g−1)µν∆ỹ(0)
ν . (17)

Comparing the initial action (5) with the T-dual action (16), we see that they are equal under
following transformations ∂±x

µ → ∂±yµ and Π+µν [x]→ κ
2 Θµν
− [∆V (0)], which implies

Gµν → ?Gµν = (G−1
E )µν [∆V (0)],

Bµν [x] → ?Bµν =
κ

2
θµν [∆V (0)], (18)

where (G−1
E )µν and θµν are introduced in (15).

The initial background consisted of a constant metric and a linearly coordinate dependent
Kalb-Ramond field with an infinitesimal field strength. The T-dual background consists of
coordinate dependent metric and Kalb-Ramond field, with the argument ∆V µ, which is the
linear combination of yµ and its double ỹµ. Note that the variable V µ and consequently T-dual
action is not defined on the geometrical space (defined by the coordinate yµ) but on the so called
doubled target space [12] composed of both yµ and ỹµ.

3.2. Partial T-dualization
If one choses only a subset of the initial coordinates, say d coordinates xa, and performs T-
dualization procedure along these coordinates, one obtains the following gauge invariant action

Sinv[x
µ, xainv, ya] = κ

∫
d2ξ
[
∂+x

iΠ+ij(x
i,∆xainv)∂−x

j

+ ∂+x
iΠ+ia(x

i,∆xainv)D−x
a +D+x

aΠ+ai(x
i,∆xainv)∂−x

i

+ D+x
aΠ+ab(x

i,∆xainv)D−x
b +

1

2
(va+∂−ya − va−∂+ya)

]
.

(19)

This action is obtained localizing the global shift symmetry only for the coordinates xa, by
introducing the gauge fields vaα. The ordinary derivatives ∂αx

a were substituted by the covariant
derivatives Dαx

a = ∂αx
a+vaα. The covariant derivatives are invariant under the standard gauge

transformations δvaα = −∂αλa. The coordinates xa in the argument of the background fields were
substituted by their invariant extension, defined by ∆xainv ≡

∫
P dξ

αDαx
a = xa− xa(ξ0) + ∆V a,

where ∆V a ≡
∫
P dξ

αvaα. The physical equivalence is preserved by adding the Lagrange multiplier
term (the last term in the action). Fixing the gauge by xa(ξ) = xa(ξ0) one obtains the gauge
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fixed action

Sfix[xi, va±, ya] = κ

∫
d2ξ
[
∂+x

iΠ+ij(x
i,∆V a)∂−x

j

+ ∂+x
iΠ+ia(x

i,∆V a)va− + va+Π+ai(x
i,∆V a)∂−x

i

+ va+Π+ab(x
i,∆V a)vb− +

1

2
(va+∂−ya − va−∂+ya)

]
. (20)

This action reduces to the initial one for the equations of motion obtained varying over the
Lagrange multipliers. The T-dual action is obtained for the equations of motion for the gauge
fields. It reads

S[xi, ya] = κ

∫
d2ξ

[
∂+x

iΠ+ij(x
i,∆V a(xi, ya))∂−x

j

−κ ∂+x
iΠ+ia(x

i,∆V a(xi, ya))Θ̃
ab
− (xi,∆V a(xi, ya))∂−yb

+κ ∂+yaΘ̃
ab
− (xi,∆V a(xi, ya))Π+bi(x

i,∆V a(xi, ya))∂−x
i

+
κ

2
∂+yaΘ̃

ab
− (xi,∆V a(xi, ya))∂−yb

]
. (21)

The T-dual background fields compositions are the inverses of the already known background
compositions, divided into two coordinate subspaces, the subspace formed by the coordinates
we T-dualize and the subspace formed by the rest of the coordinates. The background field

compositions Π±ij and Θ̃ab
± are defined as the inverses of the background field compositions Θjk

∓
and Π∓bc, which are the parts of Θµν

∓ and Π∓µν in an appropriate subspace

Π±ijΘ
jk
∓ = Θkj

∓Π±ji =
1

2κ
δki ,

Θ̃ab
±Π∓bc = Π∓cbΘ̃

ba
± =

1

2κ
δac . (22)

It can be shown that
Π+ij ≡ Π+ij − 2κΠ+iaΘ̃

ab
−Π+bj . (23)

The argument of the background fields is

∆V (0)a(xi, ya) = −κ
[
Θ̃ab

0+Π0−bi + Θ̃ab
0−Π0+bi

]
∆x(0)i

− κ
[
Θ̃ab

0+Π0−bi − Θ̃ab
0−Π0+bi

]
∆x̃(0)i

− κ

2

[
Θ̃ab

0+ + Θ̃ab
0−

]
∆y

(0)
b −

κ

2

[
Θ̃ab

0+ − Θ̃ab
0−

]
∆ỹ

(0)
b . (24)

Calculating the symmetric and antisymmetric part of the background fields we obtain a T-dual
metric and a T-dual Kalb-Ramond field

•Gij = Gij = Gij −Gia(G̃−1
E )abGbj

−2κ
(
Biaθ̃

abGbj +Giaθ̃
abBbj

)
− 4Bia(G̃

−1
E )abBbj ,

•Bij = Bij = Bij −
κ

2
Giaθ̃

abGbj −Bia(G̃−1
E )abGbj

−Gia(G̃−1
E )abBbj − 2κBiaθ̃

abBbj ,
•Gab = (G̃−1

E )ab,

•Bab =
κ

2
θ̃ab,

•Gai = κθ̃abGbi + 2(G̃−1
E )abBbi,

•Ba
i = κθ̃abBbi +

1

2
(G̃−1

E )abGbi. (25)
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As the constituents of the T-dual background field there appear the effective metric in the
subspace a, defined by G̃Eab ≡ Gab − 4Bac(G̃

−1)cdBdb, the non-commutativity parameter in
the same subspace θ̃ab ≡ − 2

κ(G̃−1
E )acBcd(G̃

−1)db, which combined give the new theta function

Θ̃ab
± = θ̃ab ∓ 1

κ(G̃−1
E )ab.

4. Open string T-dualization
In paper [13] we investigated a T-duality of an open string moving in a weakly curved
background. The open string moving in a weakly curved background was a subject of
investigation in our papers [14, 15, 16]. Solving the boundary conditions at the open string
end-points, one obtains the effective closed string described by the effective closed string theory
Seff , defined on the doubled space (qµ, q̃µ). As the effective theory is closed string theory, one
can try to apply the generalized T-dualization procedure to this theory. The effective theory
is defined on the doubled theory, just as the T-duals of the closed string theory moving in the
weakly curved background. So, the application in this case resembles the application of the
T-dualization procedure to the T-dual theories.

The effective theory of the open string moving in the weakly curved background, obtained
for the solution of the boundary conditions equals

Seff = κ

∫
dτ

∫ π

−π
dσ ∂+q

µ Πeff
+µν(q, 2bq̃) ∂−q

ν , (26)

where

Πeff
±µν(q, 2bq̃) ≡ Beff

µν (2bq̃)± 1

2
Geffµν (q). (27)

The effective variable is qµ(σ), an even part of the initial coordinate. The effective metric and
the Kalb-Ramond field are explicitly given by

Geffµν (q) = GEµν(q) := (G− 4B2(q))µν ,

Beff
µν (2bq̃) = −κ

2

(
gE∆θ(2bq̃)gE

)
µν
, (28)

where ∆θµν is the infinitesimal part of the non-commutativity parameter θµν =

− 2
κ

[
G−1
E BG−1

]µν
= θµν0 − 2

κ

[
g−1
E (h + 4bhb)g−1

E

]µν
. In paper [13] we applied the generalized

Buscher T-dualization procedure, to the effective theory along all effective directions qµ.
Following the procedure we find the gauge fixed action

Sfix = κ

∫
d2ξ
[
vµ+Πeff

+µν(∆V, 2b∆Ṽ )vν− +
1

2
(vµ+∂−%µ − v

µ
−∂+%µ)

]
, (29)

obtained from the effective action (26), by substituting the light-cone derivatives ∂±q
µ with

the covariant derivatives D±q
µ = ∂±q

µ + vµ±, where vµ± are the gauge fields, which transform as
δvµ± = −∂±λµ. The argument of the background fields is substituted with an invariant argument,
which is obtained substituting the effective coordinate qµ and its double q̃µ with an invariant
effective coordinate and its double, defined by the following line integrals of the gauge fields
∆V µ =

∫
P (dξ+vµ+ + dξ−vµ−), and ∆Ṽ µ =

∫
P (dξ+vµ+ − dξ−v

µ
−). The physical equivalence was

achieved by adding the Lagrange multiplier term 1
2(vµ+∂−%µ − v

µ
−∂+%µ) and the gauge is fixed

with qµ(ξ) = qµ(ξ0).
The T-dual theory was obtained for the equation of motion for the gauge fields. The T-dual

action reads
?S = κ

∫
d2ξ∂+%µ

κ

2
(Θeff
− )µν(∆V (%), 2b∆Ṽ (%))∂−%ν , (30)
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where

(Θeff
± )µν(x, y) ≡ Θµν

± (Geff (x), Beff (y)) = θµνeff (y)∓ 1

κ
(G−1

E )µν(x), (31)

θµνeff := θµν(Geff (x), Beff (y)) = − 2
κ

(
G−1
E (Geff (x), Beff (y))Beff (y)G−1

eff (x)
)µν

and the

argument is

V µ
0 (%) = (g−1

E )µν(Geff , Beff )%̃ν = (g−1
E )µν %̃ν ,

Ṽ µ
0 (%) = (g−1

E )µν(Geff , Beff )%ν = (g−1
E )µν%ν . (32)

The T-dual metric ?Gµν which depends on the first variable ∆V µ and the T-dual Kalb-Ramond
field ?Bµν , which depends on the second variable 2bµν∆Ṽ ν are

?Gµν = (G−1
E )µν(∆V ),

?Bµν =
κ

2
(θeff )µν(2b∆Ṽ ) =

κ

2
∆θµν(2b∆Ṽ ). (33)

We see, that the effective metric has transformed to its inverse and that the Kalb-Ramond field
has transformed to the infinitesimal part of the non-commutativity parameter.

Finally, we searched for the open string theory S̃ such that its effective theory is ?Seff exactly.
We found

S̃[y] = κ

∫
Σ
d2ξ ∂+yµΠ̃µν

+ (y)∂−yν , (34)

with

G̃ = −(CT )−1GC−1,

B̃(y) = ±(CT )−1(b− h(C−1y))C−1, (35)

where C makes a connection between the variables of the effective theory of S̃ and the T-dual
theory (30)

qµ(y) = Cµν(g−1
E )νρ%̃ρ ,

q̄µ(y) = ∓Cµν2(G−1bg−1
E )νρ%ρ. (36)

In the closed string moving in the weakly curved background case, the T-duality transforms
the geometrical background into a doubled non-geometrical background. It transforms a
constant metric to a coordinate dependent effective metric inverse, while the linearly coordinate
dependent Kalb-Ramond field is transformed into a coordinate dependent non-commutativity
parameter. In the open string case, the T-dual theory remains geometric. T-duality transforms
the constant metric of the weakly curved background to a constant T-dual metric, while the
coordinate dependent Kalb-Ramond field transforms again to the coordinate dependent field.

In paper [17] a generalization of the standard analysis of the open bosonic string moving in
a flat background is addressed. The T-dualization was performed in two ways, first in terms
of non-constant vector fields in which case the Buscher T-dualization procedure can not be
applied and second in terms of the field strengths of the gauge fields. The role of the gauge
fields, which live on the string boundary, is to restore the symmetries of the closed string: the
local gauge symmetry of the Kalb-Ramond field and the general coordinate transformations, at
the string end-points. The investigation lead to a discovery of the geometrical features of the
non-geometry.
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Conclusion
The generalized T-dualization procedure, enabled T-dualization over the non isometry
directions. It gives the new insights into a connection between the spaces connected by T-duality.
It enabled further investigations of the closed string non-commutativity [18]. Comparing the
solutions for the gauge fields which transform the gauge fixed actions into the initial or the T-
dual actions, one obtains the T-dual coordinate transformation laws. Using these laws one can
find how does for example a standard Poisson bracket transform. It is obtained that the original
theory which is commutative is equivalent to the non-commutative T-dual theory, whose Poisson
brackets are proportional to the background fluxes times winding and momentum numbers. The
obtained results add novelty to the form and the origin of different non-commutative structures.
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[9] B. Zwiebach, A First Course in String Theory, (Cambridge University Press, 2004).

[10] K. Backer, M. Backer and J. Schwarz, String Theory and M-theory, (Cambridge University Press, 2007).
[11] N. Seiberg, E. Witten, J. High Energy Phys. 09 (1999) 032.
[12] C. Hull, JHEP 10 (2005) 065; A. Dabholkar and C. Hull, JHEP 05 (2006) 009; C. Hull, JHEP 07 (2007) 080;

J. Shelton, W. Taylor and B. Wecht, JHEP 10 (2005) 085; A. Dabholkar and C. Hull, JHEP 09 (2003)
054; A. Flournoy and B. Williams, JHEP 01 (2006) 166; T. Kugo, B. Zwiebach, Prog. Theor. Phys. 87
(1992) 801; O. Hohm, C. Hull and B. Zwiebach, JHEP 08 (2010) 008; O. Hohm, C. Hull and B. Zwiebach,
JHEP 07 (2010) 016; B. Wecht, Class.Quant.Grav. 24 21 (2007) S773; D. Lust, JHEP 12 (2010) 084;
D.Mylonas, P. Schupp and R. Szabo, arXiv:1207.0926 [hep-th].
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Гравитациони таласи - шта се то
таласа
Бојан Николић
Институт за физику
Универзитет у Београду
мејл: @..

100 година опште теорије релативности 2015.
4:43–50

Кључни појмови

гравитациони таласи, ОТР, детекција гравитационих таласа

Резиме

У тренутку настанка опште теорије релативности (ОТР) у физици су били
познати механички и електромагнетни таласи. Једна од последица ОТР је
постојање гравитационих таласа. Свака маса која врши неко периодично
кретање је извор таласа, али су они недетектабилни због високог нивоа
шума на фреквенцијама на којима се очекује њихова детекција. Извори
гравитационих таласа би могли бити бинарни системи неутронских звезда
(ротирају релативно великом фреквенцијом) као и догађаји у којима
долази до значајне прерасподеле маса (судари галаксија и сл.). Чињеница
је да гравитациони таласи до данас нису директно детектовани али постоје
велики експерименти који покушавају то да остваре (LIGO и његови
”наследници”).
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. Увод
Камен бачен у воду изазива појаву трансверзалних таласа на њеној површини, треперење
гласнихжица омогућава да чујемо саговорника, земљотреси изазивају појаву цунами таласа итд.
Све наведено су примери механичких таласа. За простирање механичких таласа је потребна
материјална средина. Поремећај настао на једном месту преноси се таласом кроз материјалну
средину. Механички таласи се не простиру кроз вакуум. Положај честице средине у датом
тренутку t у тачки r⃗ (колоквијално ”поремећај”) u(r⃗, t) задовољава хомогенуталасну једначину(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

v2
∂2

∂t2

)
u(r⃗, t) = 0 . (1)

Величина v представља брзину таласа у датој материјалној средини (није једнака брзини честице
материјалне средине). Поремећај u(r⃗, t) може бити ортогоналан на правац простирања таласа
(трансверзални талас) или колинеаран са правцем простирања таласа (лонгитудиналан талас).

У другој половини 19. века енглески физичар Џејмс Кларк Мексвел је, обједињавајући
дотадашња експериментална сазнања, написао једначине електромагнетног поља познате у
литератури каоМексвелове једначине. Једноставна анализа тих једначинапоказује да у простору
где нема наелектрисања и струја електрично E⃗ и магнетно поље B⃗ задовољавају хомогене
таласне једначине. Простије речено, око простора у коме су задате расподеле наелектрисања
и струја постоји електромагнетно (ЕМ) поље. Енергија ЕМ поља се преноси дуж правца који је
ортогоналан на векторе јачине електричног и магнетног поља - ЕМ талас је трансверзалан. За
разлику од механичких таласа, ЕМ таласи се простиру и кроз вакуум и то највећом брзином
у природи c = 3 × 108m/s. Херцовим експериментом (1888) потврђено је постојање ЕМ
таласа. Питање које су поставили научници тога времена тицало се средине кроз коју се ЕМ
талас простире. По аналогији са механичким таласима морала је постојати нека средина која
преноси таласе. Тада је уведен појам етера. Међутим, Мајкелсон-Морлијев експеримент као и
многа унапређења овог експеримента потврдили су да је брзина светлости иста у свим правцима
и да не зависи од избора референтног система - једноставније речено, етера, у облику како су га
научници замишљали, нема. И тада (1905) се родила специјална теорија релативности (СТР).

Почетак 20. века физика је ”сачекала” са познавањем две врсте таласа. Али човек који
је формулисао СТР, Алберт Ајнштајн, вредно је радио на новој теорији гравитације полазећи
од једног основног захтева - закони физике морају бити инваријантни на избор референтног
система (инерцијалног или неинерцијалног). И дошао је до теорије која је на фундаментално
нов начин интерпретирала гравитацију - формулисана је Општа теорија релативности (ОТР)
1915. године.

. Основе ОТР
У Њутновој теорији гравитације маса је извор гравитационог поља. Свако друго тело одређене
масе које се нађе у датом гравитационом пољу је изложено деловању привлачне силе. Њутн је
дао аналитички облик за гравитациону интеракцију две тачкасте масе (сила којом тело 1 делује
на тело 2)

F⃗ = −G
m1m2

|r⃗2 − r⃗1|3
(r⃗2 − r⃗1) , (2)

где је G = 6.67 × 10−11Nm2/kg2 Њутнова гравитациона константа. Из Њутновог
закона гравитације се види да је сила пропорционална масама тела, обрнуто пропорционална
међусобном растојању, привлачна и колинеарна са вектором релативног положаја.

44 Гравитациони таласи - шта се то таласа?



По Њутновој теорији гравитација је СИЛА. И по том питању није било никаквих
квалитативних помака до почетка 20. века. А онда се појавио Алберт Ајнштајн, прво са својом
специјалном теоријом релативности. Једна од револуционарних ствари коју је Ајнштајн тада
увео у физику је обједињеност простора и времена у један просторно-временски континуум тј.
време више није параметар већ координата. Један од два постулата СТР захтева инваријантност
физичких закона у односу на избор инерцијалног референтног система (други се тиче брзине
светлости).

Сам Ајнштајн није био задовољан. Сматрао је да физички закони морају бити инваријантни
и односу на избор инерцијалног и неинерцијалног система тј. увидео је да у ”причу” мора да
укључи и гравитацију. Математичким језиком речено, какву год трансформацију координата
да направимо закони физике морају очувати свој облик (строго речено инваријантност на
дифеоморфизме).

Овде нећемо улазити у суптилне детаље извођења Ајнштајнових једначина за гравитационо
поље. Ајнштајн је једначине извео користећи се законом одржања тензора енргије-импулса
као и особинама неких геометријских величина. У савременој литератури извођење иде из
одговарајућег дејства применом методе минимума дејства. Било како било, једначине за
гравитационо поље су облика

Rµν − 1

2
gµνR =

8πG

c4
Tµν , [µ = 0, 1, 2, 3] (3)

где је, најгрубље речено, на левој страни ГЕОМЕТРИЈА, а на десној страни МАТЕРИЈА.
Прецизније речено, лева страна једначине је комбинација Ричијевог тензора кривине и скаларне
кривине, док је на десној страни тензор енергије-импулса материје/енергије (може се односити
и на електромагнетно поље).

Ова једначина успоставља везу између геометрије простор-времена и материје која својим
присуством ”закривљује” тај простор-време. У Ајнштајновој слици гравитација није сила већ
ГЕОМЕТРИЈА простор-времена. Наравно, добра физичка теорија има особину да објашњава
познате феномене и предвиђа неке нове. У оквиру Ајнштајнове теорије успешно је објашњена
појава скретања светлосних зрака који пролазе близу Сунца, затим прецесија Меркуровог
перихела. Теорија предвиђа постојање сингуларитета (основ за теорију Великог праска) као и
црних рупа, за чије постојање постоје индиректни докази. Такође једна од последица ОТР је и
постојање гравитационих таласа.

. Гравитациони таласи у ОТР
Метод који користимо при математичком опису таласа је метод позадинског поља. Талас
(мала пертурбација) се простире кроз простор описан одређеном метриком која задовољава
Ајнштајнове једначине.

Математички доказ постојања гравитационих таласа у ОТР је врло једноставан. Уколико
посматрамо Ајнштајнове једначине (3) далеко од извора поља (тј. маса) и метрику узмемо у
облику

gµν = g(0)µν + hµν , (4)

где је hµν мала пертурбација (талас) и g
(0)
µν метрика простора у коме посматрамо талас, тада

Ајнштајнове једначине (уз још неке додатне претпоставке) имају облик таласне једначине(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

)
hµν = 0 , (5)
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где је c брзина светлости у вакууму. Позадинска метрика g
(0)
µν може бити и метрика равног

простора као и метрика закривљеног простора1. У оба случаја исход је је исти, таласна
једначина за малу пертурбацију метрике hµν . Може се даље показати да је талас трансверзалан.
Математички делује све поприлично једноставно. Гравитациони таласи постоје уколико је ОТР
”добра” теорија. Потврде ОТР у случајевима скретања светлосног зрака, прецесије Меркуровог
перихела и индиректан доказ постојања црних рупа нас охрабрују да верујемо у ОТР.

Наравно, логично питање је шта се то таласа. Механичи талас је пренос осцилација кроз
околну материјалну средину. Електромагнетни талас је пренос електричног и магнетног поља
наелектрисане честице која се креће убрзано (нпр. осцилује). У случају гравитационих таласа,
математички речено, таласа се метрика. Растојање између две инфинитезимално блиске тачке у
простору са метриком gµν(x) је

ds2 = Σ3
µ=0Σ

3
ν=0gµν(x)dx

µdxν . (6)

Уколико десну страну ставимо под квадратни корен и интегралимо од тачке A до тачке B,
добићемо растојање између тачака у закривљеном простору. ”Таласање” метрике слободније
речено значи и таласање растојање између две тачке. Уколико бисмо детектовали те осцилације
растојања између тела то би значило и да смо успели да детектујемо гравитационе таласе.

. Детекција гравитационих таласа
Директна детекција гравитационих таласа је веома компликована због изузетно слабог ефекта
који таласи изазивају у детекторима. Амплитуда гравитационог таласа опада са растојањем као
∼ 1/r. Тако да је веома тешко детектовати и таласе који настају услед спајања црних рупа
јер им је амплитуда занемарљиво мала када дођу до Земље. До 2014. године није остварена
директна детекција гравитационих таласа. Међутим, постоји низ експеримената који указују на
то да гравитациони таласи заиста постоје. На пример, еволуција орбитирања бинарних пулсара
потпуно је је у складу са губицима енергије кроз гравитационо зрачење које предвиђа ОТР. За
откриће те посебне врсте пулсара додељена је и Нобелова награда 1993. године (Расел Халс и
Џозеф Тејлор Јуниор).

Људи непрекидно раде на разним видовима детектора којима би регистровали
гравитационе таласе. Први и најједноставнији детектори су тзв. Веберове шипке. Друга
група детектора су интерферометарски детектори, а у новије време се развијају и граде
високофреквентни детектори гравитационих таласа.

.. Веберове шипке
Једноставан уређај за детекцију очекиваног таласног кретања је тзв. Веберова шипка - велика,
чврста метална шипка изолована од спољашњих вибрација. Овај тип детектора је био први
који је коришћен. Принцип рада овог детектора је једноставан. Упадни гравитациони талас
побуђује резонантно осциловање шипке, а шипка онда својим осциловањем појачава тај ефекат
на детектабилниниво. Савремене варијанте оваквих детектора су охлађене до екстремнониских
температура и опремљене квантним интерференционим уређајима за детекцију вибрација (на

1Математички, закривљеност простора подразумева да је тензор кривине различит од нуле. Самим
тим су и компоненте метрике функције координата простор-времена. Постоји могућност да је тензор
кривине нула а да је метрика зависна од координате. У том случају простор је раван и погодним избором
координата можемо прећи на метрику равног простора.
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Слика 
AURIGA детектор

Слика 
MiniGRAIL детектор

пример, ALLEGRO). Проблем са овим детекторима што се они могу користити само за врло јаке
гравитационе таласе.

MiniGRAIL је антена за детекцију гравитационих таласа сферног облика. Ова антена се
налази на Универзитету у Лајдену (Холандија), а састоји се од сфере масе 1150 килограма
охлађене на температуру 20 mK. Облик сфере омогућава детекцију из свих праваца.
Фреквенције које овај детектор најбоље ”хвата” су интервалу 2-4 kHz, па је погодан за детекцију
гравитационих таласа који настају у бинарним пулсарима и спајањем мањих црних рупа.
Сличног типа је ултрахладни детектор AURIGA који се налази на INFN-у у Италији. Он се
састоји од алуминијумског цилиндра дужине 3 метра који је охлађен на температуру реда
величине ∼ mK.
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Слика 
LISA

.. Интерферометри
Ова група детектора користи ласерску интерферометрију за детекцију гравитационих таласа.
Светлост крећући се кроз простор прати закривљење просторно-временског континума.
Принцип рада ових детектора је да се измери ефекат интерференције ласерских зрака при чему
је путна разлика настала ”скраћивањем” или ”издуживањем” простора.

Данас постоје само интерферометри на Земљи. Тренутно најосетљивији
интерферометарски детектор је LIGO (Laser Interferometer Gravitational Wave Observatory).
LIGO има три детектора: један је у Ливингстону (држава Луизијана) а друга два су у Хенфорду
(држава Вашингтон). Сви они се састоје од по два велика крака дужине 2-4 километра који су
под правим углом. Ласерски зраци путују унутар кракова у цевима дијаметра 1 метар. Промене
у дужини које ласерски зрак прелази услед проласка гравитационог таласа би у принципу
требало да региструје детектор у виду неке (ласерске) интерференционе слике. Нажалост, LIGO
није успео да детектује гравитационе таласе. Очекује се да унапређене верзије овог детектора
веће осетљивости (VIRGO, GEO 600, TAMA 300) доведу до детекције гравитационих таласа.

Интерферометарски детектори имају и своја ограничења. Прва од њих је шум који настаје
као последица тога што ласерски извор производи фотоне у произвољним тренуцима. Ако уз то
користимо и мало јачи ласер онда сами фотони својим импулсом могу да уздрмају детекторска
огледала. Други проблем је проблем Брауновог кретања, а ни сеизмички шум се не може
занемарити.

Због проблема које имају земаљски детектори, планира се и градња детектора у орбити око
Земље (еLISA). Три сателита би формирала троугао при чему би свака страница била око 5
милиона километара. Тиме се добија добар вакуум, али и даље остаје проблем фотонског шума
као и проблем са космичким зрачењем.

.. Високофреквентни детектори
Тренутно постоје два оперативна детектора који раде на горњој граници спектра (10−7−105Hz).
Један је на Универзитету у Бирмингему (Енглеска) а други је на INFN-у у Ђенови (Италија).
Трећи се гради на Универзитету у Чонкингу (Кина). Детектор у Бирмингему мери промене у
стању поларизације микроталасног зрака који кружи по кругу пречника око 1 метра. Детектор у
Ђенови је резонантна антена која се састоји од два спрегнута сферна суперпроводна хармонијска
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Слика 
VIRGO детектор

Слика 
Распред детектора у свету

оцилатора пречника неколико центиметара. Осцилатори када нису спрегнути имају резонантне
фреквенције које су скоро једнаке. Кинески детектор би требало да буде у стању да детектује
таласе фреквенције реда 10 GHz.

. Закључак
ОТР је у времену када је настала успела да објасни неке феномене који су били познати
научницима попут скретања светлосних зрака у близини великих звезда и прецесију
Меркуровог перихела. Свака ”права” физичка теорија не објшњава само постојеће и познате
феномене већ предвиђа и неке нове. Гравитациони таласи су један од тих феномена.
Постојање гравитационих таласа теоријски је поткрепљено општом теоријом релативности јер
следи из Ајнштајнових једначина гравитационог поља. Откриће бинарних пулсара (систем
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две неутронске звезде), који губе енергију потпуно у складу са предвиђањима ОТР, даје
експериментални основ постојању гравитационих таласа. Пошто амплитуда таласа опада као
са растојањем као ∼ 1/r ефекти гравитационог зрачења које се мере на Земљи су врло мали, па
је и детекција прилично отежана. Граде се савремени детектори високе осетљивости који дају
наду у коначну директну детекцију гравитационих таласа.

ДОДАТНА ЛИТЕРАТУРА
1. C. M. Misner, K. S. orne, J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, 1973.
2. L.D. Landau, E.M. Lifshitz, e Classical eory of Fields, Pergsmon Press, 1971.
3. http://en.wikipedia.org/wiki/Gravitational-wave observatory.
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Subject Re: RS2016

From Ljubisa Nesic <nesiclj@junis.ni.ac.rs>

To Bojan Nikolic <bnikolic@ipb.ac.rs>, Ivan Dojcinovic
<ivan.dojcinovic@ff.bg.ac.rs>

Date 2016-02-23 14:07

Dragi Bojane,
drago mi je sto si privhatio da drzis predavanje o talasima.
prosledjujem tvoj mail predsedniku DFS. Nadam se da ce ti dati odgovarajuca uputstva.

Ljubisa

On 2/23/2016 1:54 PM, Bojan Nikolic wrote:
Dragi Ljubisa,

hvala na pozivu. Sve je jasno sem jednog tehnickog detalja. Sta ja tacno treba da
uradim da bih bio clan DFS? Kome treba da platim i koliko?

Pozdrav,
Bojan

On 22 Feb 2016 17:05, rep.seminar@ff.bg.ac.rs wrote:
Postovani Bojane,
imam izuzetno zadovoljstvo da vas, ispred Strucnog odbora republickog
seminara o nastavi fizike za 2016. godinu
(http://www.dfs.rs/seminar2016/), pozovem da odrzite plenarno
predavanje vezano za otkrice gravitacionih talasa.
Seminar ce biti odrzan na Zlatiboru od 12. do 14. maja a rok za
pisanje rada je 14. mart. Radovi ce, nakon recenzije,  biti objavljeni
u 3. broju casopisa Nastava fizike koji smo pokrenuli prosle godine.
Na sajtu seminara mozete naci i upustvo za pisanje rada, odnosno
odgovarajuci template a vi, kao predavac po pozivu, imate na
raspolaganju do 10 strana. Ukoliko imate bilo kakav tehnicki problem
slobodno se obratite. DFS ce snositi troskove vaseg puta i smestaja
ali je potrebno da budete clan drustva.
Imajte u vidu da ce na seminaru biti takodje i jedno uvodno predavanje o OTR.

Ljubisa Nesic
predsednik Komisije za seminare DFS

---
This email has been checked for viruses by Avast antivirus software.
https://www.avast.com/antivirus
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З А П И С Н И К 
са X седнице Изборног и Наставно-научног већа  одржане у среду 20. септембра 2017. године 

 

Седници присуствује 42 члана Изборног и Наставно-научног већа. 

 
Службено одсутни:  проф. др Маја Бурић 

проф. др Воја Радовановић  

проф. др Бећко Касалица 

доц. др Михајло Ваневић 

   доц. др Иван Виденовић 

 

Оправдано одсутни: проф. др Владимир Милосављевић 

проф. др Иванка Милошевић 

проф. др Татјана Вуковић 

проф. др Владан Вучковић 

доц. др Саша Дмитровић 

доц. др Немања Ковачевић 

доц. др Драган Реџић 

доц. др Никола Шишовић 

Др Милош Скочић  

Марјан Ћирковић 

Нора Тркља 

   Светислав Мијатовић 

 

Неоправдано одсутни: проф. др Илија Марић 

   доц. др Владимир Миљковић 

    

 

 Седница је започела у 11:10 часова одавањем поште минутом ћутања преминулом др 

Душану Михајловићу, некадашњем доценту и библиотекару Физичког факултета у пензији. Декан 

Факултета проф. др Јаблан Дојчиловић предложио је, затим, следећи     
    

Д н е в н и    р е д  

 
1. Усвајање Записника са IX седнице Изборног и Наставно-научног већа Физичког факултета.  

Изборно веће 

2. Разматрање предлога катедара у вези са покретањем поступка за избор наставника Физичког факултета и то:  

a) Катедре за физику атома, молекула, јонизованих гасова, плазме и квантну оптику у вези са расписивањем 

конкурса за избор једног ванредног професора за ужу научну област Физика атома и молекула  

b) катедара Института за метеорологију у вези са расписивањем конкурса за избор једног доцента за ужу 

научну област Климатологија и примењена метеорологија  

3. Усвајање Извештаја Комисије за избор наставника Физичког факултета и то:  

a) једног ванредног професора за ужу научну област Квантна и математичка физика  

b) једног доцента за ужу научну област  Физика јонизованих гасова и плазме  

c) једног доцента за ужу научну област  Настава физике  

4. Покретање поступка за избор НОРЕ ТРКЉА у звање  истраживач-сарадник 

5. Усва јање Извештаја Комисије за избор у научнo звањe и то: 

a) др ВЛАДИМИРА СТОЈАНОВИЋА у звање виши научни сарадник 

b) др БРАНИСЛАВЕ МИСАИЛОВИЋ у звање научни сарадник 

Наставно-научно веће 

6. Одређивање Комисије за оцену испуњености услова и оправданост предложене теме за израду докторске 

дисертације за: 



20. септембар 2017. 

 
a) ЈАСМИНУ АТИЋ, дипломираног инжењера електротехнике, којa је пријавила докторску дисертацију под 

називом: „ТРАНСПОРТ ЕЛЕКТРОНА, РАЗВОЈ ЛАВИНА И ПРОПАГАЦИЈА СТРИМЕРА У ЈАКО 

ЕЛЕКТРОНЕГАТИВНИМ ГАСОВИМА“ 

7. Усвајање Извештаја Комисије за оцену испуњености услова и оправданост предложене теме за израду 

докторске дисертације и одређивање ментора за:  

a) НИКОЛУ ИВАНОВИЋА, дипломираног физичара, који је пријавио докторску дисертацију под називом: 

„ПРОУЧАВАЊЕ ОБЛИКА СПЕКТРАЛНИХ ЛИНИЈА Ne I И Ne II У ПРИКАТОДНОЈ ОБЛАСТИ АБНОРМАЛНОГ 

ТИЊАВОГ ПРАЖЊЕЊА“ 

b) ВЕЉКА ЈАНКОВИЋА, дипломираног физичара, који је пријавио докторску дисертацију под називом: 

„EXCITON DYNAMICS AT PHOTOEXCITED ORGANIC HETEROJUNCTIONS“ (Динамика ексцитона на органским 

хетороспојевима побуђеним светлошћу) 

8. Усвајање Извештаја Комисије за преглед и оцену докторске дисертације и одређивање Комисије за одбрану 

дисертације за: 

a) АЛЕКСАНДРУ ДИМИТРИЕВСКУ, дипломираног физичара, која је предала докторску дисертацију под 

називом: „MEASUREMENT OF THE W BOSON MASS AND THE CALIBRATION OF THE MUON MOMENTUM WITH 

THE ATLAS DETECTOR“ (Мерење масе W бозона и калибрација импулса миона на детектору ATLAS) 

b) ЈЕЛЕНУ ПЕШИЋ, дипломираног физичара, која је предала докторску дисертацију под називом: 

„INVESTIGATION OF SUPERCONDUCTIVITY IN GRAPHENE AND RELATED MATERIALS BASED ON Ab-INITIO“ 

(Истраживање суперпроводности у графену и сличним материјалима коришћењем ab-initio метода) 

c) ГОРДАНУ МИЛУТИНОВИЋ-ДУМБЕЛОВИЋ, дипломираног физичара, која је предала докторску дисертацију 

под називом: „МЕТОДE МЕРЕЊА ОДНОСА ГРАНАЊА ХИГСОВОГ БОЗОНА У ПРОЦЕСИМА H→μ+μ− И H→ZZ∗ 

НА 1.4 TeV НА БУДУЋЕМ ЛИНЕАРНОМ СУДАРАЧУ CLIC“ 

9. Усвајање пријављене теме за израду мастер рада, одређивање руководиоца и Комисије за одбрану рада за:  

a) ВЛАДАНА СИМИЋА, студента мастер студија физике, смер Општа физика, који је пријавио мастер рад под 

називом: "НУМЕРИЧКЕ СИМУЛАЦИЈЕ ПРОЦЕСА ХЛАЂЕЊА ГРАНУЛАРНОГ ГАСА" 

b) МИРЈАНУ РАКИЋЕВИЋ, студента мастер студија физике, смер Општа физика, која је пријавила мастер рад 

под називом: "ПРОУЧАВАЊЕ ДИЕЛЕКТРИЧНИХ И ОПТИЧКИХ КАРАКТЕРИСТИКА ПОЛИЕТИЛЕН ТЕРЕФТАЛАТ 

МЕМБРАНЕ МОДИФИКОВАНЕ ЈОНСКИМ СНОПОВИМА" 

c) НИКОЛУ ВУЈИЧИЋА, студента мастер студија метеорологије, који је пријавио мастер рад под називом: 

"КВАЗИ - РЕЗОНАНТНИ РOЗБИЈЕВИ ТАЛАСИ И ПОПЛАВЕ ТОКОМ МАЈА 2014 У СРБИЈИ" 

d) МИЛЕНУ ЛАЗАРЕВИЋ, студента мастер студија метеорологије, која је пријавила мастер рад под називом: 

"ТРАНСПОРТ САХАРСКОГ ПЕСКА ИЗНАД СРБИЈЕ ТОКОМ ПЕРИОДА 2012-2016" 

e) ДАНИЈЕЛА ОБРИЋА, студента мастер студија физике, смер Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: "НЕКОМУТАТИВНОСТ И НЕАСОЦИЈАТИВНОСТ ЗАТВОРЕНЕ БОЗОНСКЕ 

СТРУНЕ" 

f) СТЕВАНА ЂУРЂЕВИЋА, студента мастер студија физике, смер Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: "УТИЦАЈ ОРИЈЕНТАЦИЈЕ d-WAVE СУПЕРПРОВОДИНИКА НА 

ЏОЗЕФСОНОВУ СТРУЈУ У СПОЈЕВИМА СА НЕХОМОГЕНИМ ФЕРОМАГНЕТОМ" 

g) МИЛКУ ПОЛЕДИЦА, студента мастер студија физике, смер Теоријска и експериментална физика, која је 

пријавила мастер рад под називом: "ОДРЕЂИВАЊЕ НЕУТРАЛИЗАЦИОНИХ РАСТОЈАЊА ПРИ ИНТЕРАКЦИЈИ 

ВИШЕСТРУКО НАЕЛЕКТРИСАНИХ ЈОНА СА ПОВРШИНОМ ЧВРСТОГ ТЕЛА" 

h) НЕМАЊУ СТЕВИЋА, студента мастер студија физике, смер Примењена и компјутерска физика, који је 

пријавио мастер рад под називом: "ПРОЈЕКТОВАЊЕ И ИЗРАДА МИКРОКОНТРОЛЕРСКОГ 

ТЕРМОХИГРОМЕТРА " 

10. Усвајање пријављене теме за израду дипломског рада, одређивање руководиоца и Комисије за одбрану рада 

за:  

a) АНДРИЈАНУ ЂОМЛИЈА, апсолвента физике, смер Теоријска и експериментална физика, која је пријавила 

дипломски рад под називом: "ОДРЕЂИВАЊЕ ПАРАМЕТАРА ЛАСЕРСКИ ИНДУКОВАНЕ ПЛАЗМЕ АНАЛИЗОМ 

ВРЕМЕНСКИ РАЗЛОЖЕНИХ СПЕКТРОСКОПСКИХ МЕРЕЊА" 

11. Усвајање рецензије рукописа "Аномално ширење спектралних линија водоника у пражњењима" аутора др 

Николе Цветановића.  

12. Давање сагласности Физичког факултета на ангажовање у настави и то:  
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a) проф. др Лазара Лазића за предмет Метеорологија и Моделовање загађења у атмосфери (на основним 

студијама Хемија животне средине) 

b) проф. др Илије Марића за предмет Философија природних наука (на интегрисаним основним и мастер 

студијама Настава хемије) 

c) проф. др Душана Поповића за предмет Физика (на интегрисаним основним и мастер студијама Настава 

хемије) 

d) доц. др Саве Галијаша за предмет Физика (на основним студијама Хемија и Хемија животне средине и 

интегрисаним основним и мастер студијама Настава хемије) 

e) проф. др Владимира Милосављевића за предмет Одабрана поглавља физике (на основним студијама 

Хемија и Хемија животне средине и интегрисаним основним и мастер студијама Настава хемије)и Основи 

физике (на основним студијама Биохемије) 

f) доц. др Славице Малетић за предмет Основи физике (на основним студијама Биохемије) 

g) проф. др Братислава Обрадовића за предмет Унапређени оксидациони процеси (на докторским 

студијама) 

h) Марјана Ћирковића за извођење наставе на Шумарском факултету Универзитета у Београду  

i) др Браниславе Мисаиловић за извођење наставе из предмета Физика на Војној академији Универзитета 

одбране 

13. Разматрање предлога катедара Института за метеорологију у вези са избором проф. др Иване Тошић за шефа 

Катедре за општу метеорологију. 

14. Питања наставе, науке и финансија.  

15. Захтеви за одобрење одсуства. 

16. Усвајање извештаја са службених путовања. 

17. Дописи и молбе упућене Наставно-научном већу. 

18. Обавештења. Текућа питања. Питања и предлози.  

Пошто је усвојен предложени Дневни ред, прешло се на 

 

1. тачку 

 

Усвојен је Записник са IX седнице Изборног и Наставно-научног већа Физичког факултета.  

 

Изборно веће 

 

2. тачка 

На предлог катедара донета је одлука о покретању поступка за избор наставника Физичког 

факултета и то:  

a) на предлог Катедре за физику атома, молекула, јонизованих гасова, плазме и квантну 

оптику донета је одлука о расписивању конкурса за избор једног ванредног професора за 

ужу научну област Физика атома и молекула  

Комисија: др Срђан Буквић, редовни професор ФФ 

  др Владимир Милосављевић, редовни професор ФФ 

  др Братислав Маринковић, научни саветник ИФ 

 

b) на предлог катедара Института за метеорологију донета је одлука о расписивању конкурса 

за избор једног доцента за ужу научну област Климатологија и примењена метеорологија  

Комисија:  др Ивана Тошић, редовни професор ФФ 
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   др Владимир Ђурђевић, ванредни професор ФФ 

др Мирослава Ункашевић, редовни професор ФФ 

    

3. тачка 

 

Поводом Извештаја Комисије за избор наставника Физичког факултета Изборно веће је донело 

следеће одлуке:  

a) након јавног гласања у коме су учествовали редовни и ванредни професори Факултета, 

једногласно, са 29 гласова ЗА, др ТАТЈАНА ВУКОВИЋ је изабрана у звање ванредног 

професора за ужу научну област Квантна и математичка физика  

b) након јавног гласања у коме су учествовали редовни и ванредни професори и доценти 

Факултета, једногласно, са 38 гласова ЗА, др НИКОЛА ШИШОВИЋ је изабран у звање 

доцента за ужу научну област  Физика јонизованих гасова и плазме  

c) након јавног гласања у коме су учествовали редовни и ванредни професори и доценти 

Факултета са 37 гласова ЗА и једним УЗДРЖАНИМ гласом, др САША ИВКОВИЋ је изабран у 

звање доцента за ужу научну област  Настава физике  

 

4. тачка 

 

Изборно веће је донело одлуку о покретању поступка за избор НОРЕ ТРКЉА у звање  

истраживач-сарадник. 

Комисија: др Иван Дојчиновић, ванредни професор ФФ 

  др Братислав Обрадовић, ванредни професор ФФ 

  др Милорад Кураица, редовни професор ФФ 

 

5. тачка 

 

Изборно веће је усвојило Извештај Комисије и донело одлуку о избору у научнo звањe и то: 

a) након јавног гласања у коме су учествовали редовни и ванредни професори Факултета 

једногласно, са 29 гласова ЗА (од укупно 37 колико чини изборно тело), донета је одлука о 

избору др ВЛАДИМИРА СТОЈАНОВИЋА у звање виши научни сарадник 

b) након јавног гласања у коме су учествовали редовни и ванредни професори и доценти 

Факултета једногласно, са 38 гласова ЗА (од укупно 53 колико чини изборно тело), донета 

је одлука о избору др БРАНИСЛАВЕ МИСАИЛОВИЋ у звање научни сарадник 

Наставно-научно веће 

 

6. тачка 

 

Одређена је Комисија за оцену испуњености услова и оправданост предложене теме за 

израду докторске дисертације за: 
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a) ЈАСМИНУ АТИЋ, дипломираног инжењера електротехнике, којa је пријавила докторску 

дисертацију под називом: „ТРАНСПОРТ ЕЛЕКТРОНА, РАЗВОЈ ЛАВИНА И ПРОПАГАЦИЈА 

СТРИМЕРА У ЈАКО ЕЛЕКТРОНЕГАТИВНИМ ГАСОВИМА“ 

Комисија: др Саша Дујко, виши научни сарадник ИФ 

  др Ђорђе Спасојевић, ванредни професор ФФ 

  др Срђан Буквић, редовни професор ФФ 

  др Зоран Љ. Петровић, научни саветник ИФ 

   

7. тачка 

 

Усвојен је Извештај Комисије за оцену испуњености услова и оправданост предложене теме за 

израду докторске дисертације и одређен ментор за:  

a) НИКОЛУ ИВАНОВИЋА, дипломираног физичара, који је пријавио докторску дисертацију 

под називом: „ПРОУЧАВАЊЕ ОБЛИКА СПЕКТРАЛНИХ ЛИНИЈА Ne I И Ne II У ПРИКАТОДНОЈ 

ОБЛАСТИ АБНОРМАЛНОГ ТИЊАВОГ ПРАЖЊЕЊА“ 

Ментор:  др Никола Шишовић, доцент ФФ 

 

b) ВЕЉКА ЈАНКОВИЋА, дипломираног физичара, који је пријавио докторску дисертацију под 

називом: „EXCITON DYNAMICS AT PHOTOEXCITED ORGANIC HETEROJUNCTIONS“ (Динамика 

ексцитона на органским хетороспојевима побуђеним светлошћу) 

Ментор:  др Ненад Вукмировић, научни саветник ИФ 

 

8. тачка 

 

Усвојен је Извештај Комисије за преглед и оцену докторске дисертације и одређена Комисија 

за одбрану дисертације за: 

a) АЛЕКСАНДРУ ДИМИТРИЕВСКУ, дипломираног физичара, која је предала докторску 

дисертацију под називом: „MEASUREMENT OF THE W BOSON MASS AND THE CALIBRATION 

OF THE MUON MOMENTUM WITH THE ATLAS DETECTOR“ (Мерење масе W бозона и 

калибрација импулса миона на детектору ATLAS) 

Комисија: др Ненад Врањеш, научни сарадник ИФ 

  др Петар Аџић, редовни професор ФФ 

  др Маја Бурић, редовни професор ФФ 

  др Воја Радовановић, редовни професор ФФ 

  др Лидија Живковић, научни саветник ИФ 

  др Мартен Бонекамп, CEA Saclay, Париз (Француска) 

 

b) ЈЕЛЕНУ ПЕШИЋ, дипломираног физичара, која је предала докторску дисертацију под 

називом: „INVESTIGATION OF SUPERCONDUCTIVITY IN GRAPHENE AND RELATED MATERIALS 

BASED ON Ab-INITIO“ (Истраживање суперпроводности у графену и сличним материјалима 

коришћењем ab-initio метода) 

Комисија:  др Радош Гајић, научни сарадник ИФ 

  др Иванка Милошевић, редовни професор ФФ 
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  др Милан Кнежевић, редовни професор ФФ 

  др Ђорђе Спасојевић, ванредни професор ФФ 

  др Зоран Поповић, научни саветник ИНН Винча 

dr Kurt Hingerl, Johannes Kepler Univerzitet, Austrija 

 

c) ГОРДАНУ МИЛУТИНОВИЋ-ДУМБЕЛОВИЋ, дипломираног физичара, која је предала 

докторску дисертацију под називом: „МЕТОДE МЕРЕЊА ОДНОСА ГРАНАЊА ХИГСОВОГ 

БОЗОНА У ПРОЦЕСИМА H→μ+μ− И H→ZZ∗ НА 1.4 TeV НА БУДУЋЕМ ЛИНЕАРНОМ СУДАРАЧУ 

CLIC“ 

Комисија: др Иванка Божовић-Јелисавчић, научни саветник ИНН Винча 

  др Воја Радовановић, редовни професор ФФ 

  др Јован Пузовић, ванредни професор ФФ 

 

9. тачка 

 

Усвојена је пријављена тема за израду мастер рада, одређен руководилац и Комисија за 

одбрану рада за:  

a) ВЛАДАНА СИМИЋА, студента мастер студија физике, смер Општа физика, који је пријавио 

мастер рад под називом: "НУМЕРИЧКЕ СИМУЛАЦИЈЕ ПРОЦЕСА ХЛАЂЕЊА ГРАНУЛАРНОГ 

ГАСА" 

Комисија: др Слободан Врховац, научни саветник ИФ, руководилац рада 

  др Андријана Жекић, ванредни професор ФФ 

  др Зорица Поповић, доцент ФФ 

 

b) МИРЈАНУ РАКИЋЕВИЋ, студента мастер студија физике, смер Општа физика, која је 

пријавила мастер рад под називом: "ПРОУЧАВАЊЕ ДИЕЛЕКТРИЧНИХ И ОПТИЧКИХ 

КАРАКТЕРИСТИКА ПОЛИЕТИЛЕН ТЕРЕФТАЛАТ МЕМБРАНЕ МОДИФИКОВАНЕ ЈОНСКИМ 

СНОПОВИМА" 

Комисија: др Славица Малетић, доцент ФФ, руководилац рада 

  др Душан Поповић, ванредни професор ФФ 

  др Драгана Церовић, научни сарадник ФФ 

 

c) НИКОЛУ ВУЈИЧИЋА, студента мастер студија метеорологије, који је пријавио мастер рад 

под називом: "КВАЗИ - РЕЗОНАНТНИ РOЗБИЈЕВИ ТАЛАСИ И ПОПЛАВЕ ТОКОМ МАЈА 2014 У 

СРБИЈИ" 

Комисија: др Владимир Ђурђевић, доцент ФФ, руководилац рада 

  др Катарина Вељовић, доцент ФФ 

  др Немања Ковачевић, доцент ФФ 

 

d) МИЛЕНУ ЛАЗАРЕВИЋ, студента мастер студија метеорологије, која је пријавила мастер рад 

под називом: "ТРАНСПОРТ САХАРСКОГ ПЕСКА ИЗНАД СРБИЈЕ ТОКОМ ПЕРИОДА 2012-2016" 

Комисија: др Владимир Ђурђевић, доцент ФФ, руководилац рада 

  др Лазар Лазић, редовни професор ФФ 



20. септембар 2017. 

 
  др Катарина Вељовић, доцент ФФ 

   

e) ДАНИЈЕЛА ОБРИЋА, студента мастер студија физике, смер Теоријска и експериментална 

физика, који је пријавио мастер рад под називом: "НЕКОМУТАТИВНОСТ И 

НЕАСОЦИЈАТИВНОСТ ЗАТВОРЕНЕ БОЗОНСКЕ СТРУНЕ" 

Комисија: др Бојан Николић, виши научни сарадник ИФ, руководилац рада 

  др Воја Радовановић, редовни професор ФФ 

  др Душко Латас, доцент ФФ 

 

f) СТЕВАНА ЂУРЂЕВИЋА, студента мастер студија физике, смер Теоријска и експериментална 

физика, који је пријавио мастер рад под називом: "УТИЦАЈ ОРИЈЕНТАЦИЈЕ d-WAVE 

СУПЕРПРОВОДИНИКА НА ЏОЗЕФСОНОВУ СТРУЈУ У СПОЈЕВИМА СА НЕХОМОГЕНИМ 

ФЕРОМАГНЕТОМ" 

Комисија: др Зорица Поповић, доцент ФФ, руководилац рада 

  др Славица Малетић, доцент ФФ 

  др Божидар Николић, доцент ФФ 

  др Предраг Мирановић, редовни професор ПМФ Подгорица 

 

g) МИЛКУ ПОЛЕДИЦА, студента мастер студија физике, смер Теоријска и експериментална 

физика, која је пријавила мастер рад под називом: "ОДРЕЂИВАЊЕ НЕУТРАЛИЗАЦИОНИХ 

РАСТОЈАЊА ПРИ ИНТЕРАКЦИЈИ ВИШЕСТРУКО НАЕЛЕКТРИСАНИХ ЈОНА СА ПОВРШИНОМ 

ЧВРСТОГ ТЕЛА" 

Комисија: др Сава Галијаш, доцент ФФ, руководилац рада 

  др Славица Малетић, доцент ФФ 

  др Владимир Срећковић, виши научни сарадник ИФ 

 

h) НЕМАЊУ СТЕВИЋА, студента мастер студија физике, смер Примењена и компјутерска 

физика, који је пријавио мастер рад под називом: "ПРОЈЕКТОВАЊЕ И ИЗРАДА 

МИКРОКОНТРОЛЕРСКОГ ТЕРМОХИГРОМЕТРА " 

Комисија: др Иван Белча, редовни  професор ФФ, руководилац рада 

  др Бећко Касалица, ванредни професор ФФ 

  др Ненад Тадић, истраживач сарадник ФФ 

 

10. тачка 

 

Усвојена је пријављена тема за израду мастер рада, одређен руководилац и Комисија за 

одбрану рада за:  

a) АНДРИЈАНУ ЂОМЛИЈА, апсолвента физике, смер Теоријска и експериментална физика, која 

је пријавила дипломски рад под називом: "ОДРЕЂИВАЊЕ ПАРАМЕТАРА ЛАСЕРСКИ 

ИНДУКОВАНЕ ПЛАЗМЕ АНАЛИЗОМ ВРЕМЕНСКИ РАЗЛОЖЕНИХ СПЕКТРОСКОПСКИХ 

МЕРЕЊА" 

Комисија: др Срђан Буквић, редовни професор ФФ, руководилац рада 

  др Никола Шишовић, доцент ФФ 
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  др Милош Скочић, истраживач-сарадник ФФ 

 

11. тачка 

 

Наставно-научно веће је усвојило рецензију рукописа "Аномално ширење спектралних линија 

водоника у пражњењима" аутора др Николе Цветановића и прихватило предлог рецензената да 

се рукопис публикује као монографско научно дело.  

 

12. тачка 

 

Наставно-научно веће је ДАЛО САГЛАСНОСТ на ангажовање у настави и то:  

a) проф. др Лазара Лазића за предмет Метеорологија и Моделовање загађења у атмосфери 

(на основним студијама Хемија животне средине) на Хемијском факултету Универзитета у 

Београду 

b) проф. др Илије Марића за предмет Философија природних наука (на интегрисаним 

основним и мастер студијама Настава хемије) на Хемијском факултету Универзитета у 

Београду 

c) проф. др Душана Поповића за предмет Физика (на интегрисаним основним и мастер 

студијама Настава хемије) на Хемијском факултету Универзитета у Београду 

d) доц. др Саве Галијаша за предмет Физика (на основним студијама Хемија и Хемија 

животне средине и интегрисаним основним и мастер студијама Настава хемије) на 

Хемијском факултету Универзитета у Београду 

e) проф. др Владимира Милосављевића за предмет Одабрана поглавља физике (на 

основним студијама Хемија и Хемија животне средине и интегрисаним основним и мастер 

студијама Настава хемије)и Основи физике (на основним студијама Биохемије) на 

Хемијском факултету Универзитета у Београду 

f) доц. др Славице Малетић за предмет Основи физике (на основним студијама Биохемије) 

на Хемијском факултету Универзитета у Београду 

g) проф. др Братислава Обрадовића за предмет Унапређени оксидациони процеси (на 

докторским студијама) на Хемијском факултету Универзитета у Београду 

h) Марјана Ћирковића за извођење наставе на Шумарском факултету Универзитета у 

Београду  

i) др Браниславе Мисаиловић за извођење наставе из предмета Физика на Војној академији 

Универзитета одбране 

Такође, Наставно-научно веће је донело одлуку да пренесе овлашћење на декана Факултета 

да одобри ангажовања у настави на факултетима са којима имамо споразум о извођењу наставе 

за све захеве који пристигну накнадно, како наставни процес не би трпео због кашњења других 

факултета.   
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13. тачка 

На предлог катедара Института за метеорологију донета је одлука да се проф. др Ивана Тошић 

изабере за шефа Катедре за општу метеорологију. 

14. тачка 

Питања наставе 

Продекан за наставу, доц. др Славица Малетић, обавестила је чланове Већа да је тренутно у 

току III уписни рок за упис студената у I годину основних студија. Не рачунајући уписни рок који је у 

току и на коме се за упис пријавило 3 кандидата, ове године смо у  I годину уписали укупно 95 

студената, по смеровима:  

Смер 
Уписано 

Буџет+ Самоф. 

Општа физика 14+0 

Теоријска и експериментална 35+0 

Примењена и компјутерска 21+2 

Метеорологија 22+1 

Укупно 92+3 

 

Свечани пријем студената одржаће се у петак 29. септембра 2017. године у 12 сати у сали 60 у 

Цара Душана 13 и продекан је позвала наставнике и сараднике да му присуствују и представе се 

новим студентима Факултета.  

Настава на основним студијама почиње у понедељак 2. октобра, а на мастер студијама две 

недеље касније, у понедељак 16. октобра.  

Због уписа у наредну годину студија, продекан је подсетила наставнике да је све усмене 

испите потребно завршити до 30. септембра.  

На конкурс за ангажовање у настави студената докторских и мастер студија пријавио се 31  

кандидат. Сви пријављени кандидати испуњавају услове конкурса. У току идуће недеље ће бити 

заказан састанак шефова катедара и шефова смерова ради договора о ангажовању пријављених 

студената и њиховог распореда по предметима.  
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Питања финансија 

Продекан за финансије проф. др Иван Белча обавестио је чланове Већа да ће упутити предлог 

Савету Факултета за усвајање ребаланса буџета Факултета за ову годину, с обзиром да смо имали 

непланиране трошкове (санација штете од поплаве, набавка рачунарске опреме ради отказивања 

постојеће и др).  

Питања науке 

У одсуству продекана за науку, декан је обавестио чланове Већа да је у току ре-акредитација 

Факултета као Научно-истраживачке организације.  

Још увек нема вести из Министарства о термину расписивања новог конкурса за пројекте.  

15. тачка 

Наставно-научно веће је одобрило плаћено одсуство наставницима и сарадницима и то:  

a) доц. др Ивану Виденовићу у периоду од 18. септембра до 6. октобра 2017. године ради 

студијског боравка у Међународној агенцији за атомску енергију у Бечу (Аустрија) 

b) проф. др Петру Аџићу у периоду од 22. септембра до 10. октобра 2017. године ради 

присуствовања седницама Савета CERN-а у Женеви (Швајцарска) 

c) проф. др Јовану Пузовићу у периоду од 4. до 15. октобра 2017. године ради рада на 

NA61/SHINE експерименту у Превесину (Француска) 

d) Наставно-научно веће је одобрило и неплаћено одсуство др Милошу Бургеру у периоду од 

1. октобра до краја текуће године, односно пројектног циклуса, ради наставка 

усавршавања на Универзитету у Мичигену (САД) 

 

16. тачка  

Проф. др Иван Дојчиновић обавестио је дописом чланове Већа о притисцима који се врше на 

њега како би се повукао са места председника Друштва физичара Србије.  

 

Седница је завршена у 12:25 часова. Наредна седница Изборног и Наставно-научног већа 

планира се за 18. октобар.  

   

Београд, 26.9.2017.      ДЕКАН ФИЗИЧКОГ ФАКУЛТЕТА  
        Проф. др Јаблан Дојчиловић, с.р. 



 

З А П И С Н И К 
са VIII седнице Изборног и Наставно-научног већа Физичког факултета 

одржане у среду 31. маја 2023. године 

 

 

Седници присуствује 39 чланова Изборног и Наставно-научног већа.  

 
Службено одсутни:  проф. др Милорад Кураица 

   проф. др Иванка Милошевић  

   проф. др Братислав Обрадовић 

 

Оправдано одсутни: доц. др Александра Гочанин 

   доц. др Сузана Путниковић 

   доц. др Милош Скочић 

   др Марјан Ћирковић 

 

Неоправдано одсутни:  проф. др Зоран Борјан 

   проф. др Предраг Миленовић 

   доц. др Сава Галијаш 

   доц. др Саша Ивковић 

   доц. др Владимир Миљковић 

   доц. др Драган Реџић 

 

 

 Декан Факултета, проф. др Иван Белча, отворио је седницу у 11.05 часова и предложио 

следећи 

 

Д н е в н и   р е д 

 
1. Усвајање Записника са VII седнице Изборног и Наставно-научног већа Физичког факултета.  

Изборно веће 

2. Покретање поступка за избор др ДРАГАНА ПРЕКРАТА у звање научни сарадник. 

3. Усвајање Извештаја Комисије за избор ЛУКЕ РАЈАЧИЋА у звање истраживач-сарадник.  

Наставно-научно веће 

4. Усвајање Извештаја Комисије за преглед и оцену докторске дисертације и одређивање Комисије за одбрану 
дисертације за:  
a) АНУ ВРАНИЋ (2017/8006), мастер физичара, која је предала докторску дисертацију под називом: 

"EVOLVING COMPLEX NETWORKS: STRUCTURE AND DYNAMICS" (Растуће комплексне мреже: структура и 
динамика), урађену под менторством др Марије Митровић Данкулов, вишег научног сарадника Института 
за физику 

b) ДАНИЈЕЛА ОБРИЋА (8013/2018), мастер физичара, који је предао докторску дисертацију под називом: "T-
DUALIZATION OF BOSONIC STRING AND TYPE IIB SUPERSTRING IN PRESENCE OF COORDINATE DEPENDENT 
BACKGROUND FIELDS" (Т-дуализација бозонске струне и тип IIB суперструне у пристуству координатно 
зависних позадинских поља), урађену под менторством др Бојана Николића, вишег научног сарадника 
Института за физику 

c) ТИЈАНУ РАДЕНКОВИЋ (2017/8009), мастер физичара, која је предала докторску дисертацију под називом: 
"ВИШЕ ГРАДИЈЕНТНЕ ТЕОРИЈЕ И КВАНТНА ГРАВИТАЦИЈА", урађену под менторством др Марка Војновића, 
вишег научног сарадника Института за физику 

5. Усвајање пријављене теме за израду мастер рада, одређивање ментора и Комисије за одбрану рада за:  
a) САЛИХИЈА МУХАМАДА, студента мастер студија смера Примењена и компјутерска физика, који је пријавио 

мастер рад под називом: "ФОТОКАТАЛИТИЧКЕ ПРИМЕНЕ ОКСИДНИХ СЛОЈЕВА ФОРМИРАНИХ ПЛАЗМЕНОМ 
ЕЛЕКТРОЛИТИЧКОМ ОКСИДАЦИЈОМ НИОБИЈУМА" (Photocalalytic applications of oxide coatings formed by 
plasma electrolytic oxidation of niobium) 

b) АНУ РАНЂЕЛОВ, студента мастер студија смера Теоријска и експериментална физика, која је пријавила 
мастер рад под називом: "ГЕНЕРИСАЊЕ КВАНТНО КОРЕЛИСАНИХ ПАРОВА ФОТОНА ПУТЕМ СПОНТАНЕ 
ПАРАМЕТАРСКЕ КОНВЕРЗИЈЕ ФОТОНА У НЕЛИНЕАРНОМ КРИСТАЛУ" 
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c) НИКОЛУ САВИЋА, студента мастер студија смера Теоријска и експериментална физика, који је пријавио 
мастер рад под називом: "КЛАСИЧНИ И КВАНТНИ ХАОС У РАСЕЈАЊУ ВИСОКО ЕКСЦИТОВАНИХ СТРУНА" 

d) ТИЈАНУ ТАДИЋ, студента мастер студија смера Примењена и компјутерска физика, која је пријавила мастер 
рад под називом: "АНАЛИЗА СИМУЛАЦИЈА РАЗВИЈAНИХ КОРИШЋЕЊЕМ ПЛАТФОРМЕ myPhysicsLab" 

e) НАТАШУ СИМИЋ, студента мастер студија смера Примењена и компјутерска физика, која је пријавила 
мастер рад под називом: "КОРИШЋЕЊЕ УЛТРАБРЗЕ ВИДЕО КАМЕРЕ У ПРАЋЕЊУ И АНАЛИЗИ ДИНАМИКЕ 
ФИЗИЧКИХ ПРОЦЕСА" 

6. Давање сагласности на избор др ДРАГАНА ПРЕКРАТА у звање асистента са докторатом за ужу научну област 
Општа физика на Фармацеутском факултету Универзитета у Београду 

7. Давање сагласности на ангажовање наставника на другој институцији и то:  
a) проф. др Драгане Вујовић за извођење наставе из предмета Ваздухоплова метеорологија (45+0+1) у 

зимском семестру школске 2023/24 године на Основним академским студијама Војне академије 
Министарства одбране Републике Србије 

b) доц. др Браниславе Вучетић за извођење вежби из предмета Физика А (0+60+20) у зимском семестру 
школске 2023/24 године на Основним академским студијама Војне академије Министарства одбране 
Републике Србије 

c) Никодина Недића за извођење вежби из предмета Физика А (0+60+20) у зимском семестру школске 
2023/24 године на Основним академским студијама Војне академије Министарства одбране Републике 
Србије 

d) доц. др Зорана Поповића за извођење наставе из предмета Програмирање у физици 1 и 2 и Квантна 
механика 1 и 2 у школској 2023/24 години на Природно-математичком факултета Универзитета у Бањој 
Луци (БиХ, Република Српска) 

8. Одређивање жирија за доделу Годишње награде за научни рад младом истраживачу, жребом из редова 
редовних професора Физичког факултета.  

9. Усвајање докумената потребних за реакредитацију Центра за квантну теоријску физику као центра изврсности 
и то:  

a) Плана развоја Центра за квантну теоријску физику 

b) Плана развоја научно-истраживачког подмлатка Центра 

10. Питања наставе, науке и финансија.  

11. Захтеви за одобрење одсуства. 

12. Усвајање извештаја са службених путовања. 

13. Дописи и молбе упућене Наставно-научном већу. 

14. Обавештења. Текућа питања. Питања и предлози.  

 

 

 Пошто је усвојен предложени Дневни ред, прешло се на  

 

1. тачку 

 

 Усвојен је Записник са VII седнице Изборног и Наставно-научног већа Физичког 

факултета.  

 

Изборно веће 

 

2. тачка 

 

Покренут је поступак за избор др ДРАГАНА ПРЕКРАТА у звање научни сарадник. 

 Комисија: др Маја Бурић, редовни професор ФФ 

   др Никола Коњик, доцент ФФ 

   др Марко Војиновић, виши научни сарадник ИФ 
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3. тачка 

 

Усвојен је Извештај Комисије за избор ЛУКЕ РАЈАЧИЋА у звање истраживач-сарадник.  

 

 

Наставно-научно веће 

 

4. тачка 

 

 Усвојен је Извештај Комисије за преглед и оцену докторске дисертације и одређена 

Комисија за одбрану дисертације за:  

a) АНУ ВРАНИЋ (2017/8006), мастер физичара, која је предала докторску дисертацију под 
називом: "EVOLVING COMPLEX NETWORKS: STRUCTURE AND DYNAMICS" (Растуће 
комплексне мреже: структура и динамика), урађену под менторством др Марије 
Митровић Данкулов, вишег научног сарадника Института за физику 
Комисија: др Сунчица Елезовић Хаџић, редовни професор ФФ 
  др Светислав Мијатовић, доцент ФФ 
  др Антун Балаж, научни саветник ИФ 

 
b) ДАНИЈЕЛА ОБРИЋА (8013/2018), мастер физичара, који је предао докторску 

дисертацију под називом: "T-DUALIZATION OF BOSONIC STRING AND TYPE IIB 
SUPERSTRING IN PRESENCE OF COORDINATE DEPENDENT BACKGROUND FIELDS" (Т-
дуализација бозонске струне и тип IIB суперструне у пристуству координатно зависних 
позадинских поља), урађену под менторством др Бојана Николића, вишег научног 
сарадника Института за физику 
Комисија: др Маја Бурић, редовни професор ФФ 
  др Воја Радовановић, редовни професор ФФ 
  др Бранислав Цветковић, научни саветник ИФ 
 

c) ТИЈАНУ РАДЕНКОВИЋ (2017/8009), мастер физичара, која је предала докторску 
дисертацију под називом: "ВИШЕ ГРАДИЈЕНТНЕ ТЕОРИЈЕ И КВАНТНА ГРАВИТАЦИЈА", 
урађену под менторством др Марка Војиновића, вишег научног сарадника Института за 
физику 
Комисија: др Маја Бурић, редовни професор ФФ 
  др Воја Радовановић, редовни професор ФФ 
  др Бранислав Цветковић, научни саветник ИФ 

 

 
5. тачка 

 
 Усвојена је пријављена тема за израду мастер рада, одређен ментор и Комисијае за 
одбрану рада за:  

a) САЛИХИЈА МУХАМАДА, студента мастер студија смера Примењена и компјутерска 
физика, који је пријавио мастер рад под називом: "ФОТОКАТАЛИТИЧКЕ ПРИМЕНЕ 
ОКСИДНИХ СЛОЈЕВА ФОРМИРАНИХ ПЛАЗМЕНОМ ЕЛЕКТРОЛИТИЧКОМ ОКСИДАЦИЈОМ 
НИОБИЈУМА" (Photocalalytic applications of oxide coatings formed by plasma electrolytic 
oxidation of niobium) 
Комисија: др Стеван Стојадиновић, редовни професор ФФ, ментор 
  др Марија Петковић Беназзоуз, научни сарадник ФФ 
  др Ненад Радић, научни саветник ИХТМ 
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b) АНУ РАНЂЕЛОВ, студента мастер студија смера Теоријска и експериментална физика, 

која је пријавила мастер рад под називом: "ГЕНЕРИСАЊЕ КВАНТНО КОРЕЛИСАНИХ 
ПАРОВА ФОТОНА ПУТЕМ СПОНТАНЕ ПАРАМЕТАРСКЕ КОНВЕРЗИЈЕ ФОТОНА У 
НЕЛИНЕАРНОМ КРИСТАЛУ" 
Комисија: др Александра Гочанин, доцент ФФ, метор 
  др Душан Арсеновић, научни саветник ИФ, ментор 
  др Милорад Кураица, редовни професор ФФ 
  др Предраг Ранитовић, научни саветник ФФ 
 

c) НИКОЛУ САВИЋА, студента мастер студија смера Теоријска и експериментална физика, 
који је пријавио мастер рад под називом: "КЛАСИЧНИ И КВАНТНИ ХАОС У РАСЕЈАЊУ 
ВИСОКО ЕКСЦИТОВАНИХ СТРУНА" 
Комисија: др Марија Димитријевић Ћирић, редовни професор ФФ, ментор 
  др Михаило Чубровић, научни сарадник ИФ, ментор 
  др Драгољуб Гочанин, доцент ФФ 
 

d) ТИЈАНУ ТАДИЋ, студента мастер студија смера Примењена и компјутерска физика, која 
је пријавила мастер рад под називом: "АНАЛИЗА СИМУЛАЦИЈА РАЗВИЈAНИХ 
КОРИШЋЕЊЕМ ПЛАТФОРМЕ myPhysicsLab" 
Комисија: др Зоран Николић, редовни професор ФФ, ментор 
  др Едиб Добарџић, ванредни професор ФФ 
  др Ненад Тадић, доцент ФФ 
 

e) НАТАШУ СИМИЋ, студента мастер студија смера Примењена и компјутерска физика, 
која је пријавила мастер рад под називом: "КОРИШЋЕЊЕ УЛТРАБРЗЕ ВИДЕО КАМЕРЕ У 
ПРАЋЕЊУ И АНАЛИЗИ ДИНАМИКЕ ФИЗИЧКИХ ПРОЦЕСА" 
Комисија:  др Зоран Николић, редовни професор ФФ, ментор 
  др Иван Петронијевић, научни сарадник ФФ 
  др Небојша Поткоњак, научни сарадник ИНН Винча 
 

6. тачка 
 

 Наставно-научно веће је ДАЛО САГЛАСНОСТ на избор др ДРАГАНА ПРЕКРАТА у звање 
асистента са докторатом за ужу научну област Општа физика на Фармацеутском факултету 
Универзитета у Београду. 

 
7. тачка 

 
 Наставно-научно веће је ДАЛО САГЛАСНОСТ на ангажовање наставника на другој 
институцији и то:  

a) проф. др Драгане Вујовић за извођење наставе из предмета Ваздухоплова 
метеорологија (45+0+1) у зимском семестру школске 2023/24 године на Основним 
академским студијама Војне академије Министарства одбране Републике Србије 

b) доц. др Браниславе Вучетић за извођење вежби из предмета Физика А (0+60+20) у 
зимском семестру школске 2023/24 године на Основним академским студијама Војне 
академије Министарства одбране Републике Србије 

c) Никодина Недића за извођење вежби из предмета Физика А (0+60+20) у зимском 
семестру школске 2023/24 године на Основним академским студијама Војне академије 
Министарства одбране Републике Србије 
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d) доц. др Зорана Поповића за извођење наставе из предмета Програмирање у физици 1 
и 2 и Квантна механика 1 и 2 у школској 2023/24 години на Природно-математичком 
факултета Универзитета у Бањој Луци (БиХ, Република Српска) 

 
8. тачка 

 
 Жребом  из редова редовних професора Физичког факултета одређен је жири за 
доделу Годишње награде за научни рад младом истраживачу: 

- проф. др Марија Димитријевић Ћирић 
- проф. др Владимир Милосављевић 
- проф. др Ђорђе Спасојевић 
- резервни члан жирија проф. др Горан Попарић 

 
9. тачка 

 
 Наставно-научно веће је усвојило документа потребна за реакредитацију Центра за 
квантну теоријску физику као центра изврсности и то:  

a) План развоја Центра за квантну теоријску физику 

b) План развоја научно-истраживачког подмлатка Центра 

 

10. тачка 

 

 Питања наставе 

 Продекан за наставу, доц. др Зорица Поповић, обавестила је чланове Већа да је 

расписан Конкурс за упис студената у прву годину студија школске 2023/24 године.  Наставно-

научно веће је, на предлог продекана, именовало комисије за упис и то:  

 Комисија за израду задатака за пријемни испит из математике:  

- проф. др Татјана Вуковић 

- проф. др Божидар Николић 

- доц. др Светислав Мијатовић 

Комисија за израду задатака за пријемни испит из физике: 

- доц. др Зоран Поповић 

- др Горан Сретеновић 

Комисија за жалбе кандидата на ранг листу: 

- проф. др Андријана Жекић 

- проф. др Воја Радовановић 

- проф. др Иван Белча 

- проф. др Ивана Тошић 

- доц. др Зорица Поповић 

 

 Представник истраживача на Наставно-научном већу, студент докторских студија 

Душан Ђорђевић изнео је примедбе на рад Комисије за такмичења Друштва физичара Србије. 

После дискусије у којој је учествовало више чланова Већа, донет је закључак да Факултет треба 

више да се укључи у рад комисија за такмичење ДФС-а, с обзиром да на такмичења иду ђаци 

који су у великом броју наши будући студенти. Наставно-научно веће је затим дало предлог 

Комисије за задатке у саставу:  

- проф. др Воја Радовановић 
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- проф. др Божидар Николић 

- проф. др Зоран Николић 

- проф. др Горан Попарић 

- проф. др Милош Вићић 

- проф. др Братислав Обрадовић 

- Душан Ђорђевић и  

- Ђорђе Богдановић.  

 

11. тачка 

 

 Наставно-научно веће је одобрило одсуства следећим наставницима и сарадницима:  

a) Ириди Лазић у периоду од 31. маја до 17. јуна 2023. године ради учешћа на летњој 

школи FERS High Level Course on Data Science and Machine Learning for Climate Research 

која се одржава у Беринору (Италија) 

b) Лазару Марковићу у периоду од 1. јуна до 31. августа 2023. године ради студијског 

боравка на Универзитету у Торину (Италија) 

c) проф. др Марији Димитријевић Ћирић, доц. др Николи Коњику и Ђорђу Богдановићу у 

периоду од 5. до 10. јуна 2023. године ради стручне посете Институту Руђер Бошковић у 

Загребу (Хрватска) 

d) проф. др Андријани Жекић и Милици Милојевић у периоду од 14. до 16. јуна 2023. 

године ради учешћа на 28. Конференцији Српског кристалографског друштва, која се 

одржава у Чачку (Србија) 

e) доц. др Драгољубу Гочанину, доц. др Александри Гочанин, Ивани Стојиљковић и 

Душану Ђорђевићу у периоду од 18. јуна до 1. јула 2023. године ради студијског 

боравка на Институту за квантну информацију у Бечу (Аустрија) 

f) проф. др Ивану Дојчиновићу од 19. до 23. јуна 2023. године ради учешћа на 14th Serbian 

Conference on Spectral Line Shapes in Astrophysics која се одржава у Бајиној Башти 

(Србија) 

g) Дарку Савићу у периоду од 27. до 29. јуна 2023. године ради учешћа на конференцији 

International Conference on Hydro Climate Extremes and Society, која се одржава у Новом 

Саду (Србија) 

h) Ириди Лазић у периоду од 27. до 29. јуна 2023. године ради учешћа на конференцији 

International Conference on Hydro Climate Extremes and Society, која се одржава у Новом 

Саду (Србија) 

i) Милица Тошић у периоду од 27. до 29. јуна 2023. године ради учешћа на конференцији 

International Conference on Hydro Climate Extremes and Society, која се одржава у Новом 

Саду (Србија) 

j) проф. др Иванки Милошевић у периоду од 30. јуна до 9. јула 2023. године ради учешћа 

на International Conferences and Exhibition on Nanotechnologies, Organic Electronics & 

Nanomedicine која се одржава у Солуну (Грчка) 

k) Милици Тошић у периоду од 27. августа до 3. септембра 2023. године ради учешћа на 

летњој школи Mediterranean Machine Learning Summer School која се одржава у Солуну 

(Грчка) 
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l) проф. др Милораду Кураици и проф. др Братиславу Обрадовићу у периоду од 15. до 24. 

септембра 2023. године ради учешћа на конференцији 16th International Conference 

"Gas Discharge Plasma and Their Applications" - GDPA 2023, која се одржава у Уфи (Русија) 

m) проф. др Марији Димитријевић Ћирић у периоду од 16. до 23. септембра 2023. године 

ради учешћа на конференцији Workshop on Noncommutative and generalized geometry 

in string theory, gauge theory and related physical models која се одржава на Крфу (Грчка) 

n) проф. др Славици Малетић у периоду од 20. до 23. септембра 2023. године ради 

учешћа на 26. конгресу СЦТМ који се одржава у Орхриду (Македонија) 

o) проф. др Владимиру Милосављевићу у периоду од 20. октобра до 15. новембра 2023. 

године ради учешћа на конференцији 69. AVC - International Symposium and Exhibition 

која се одржава у Портланду (САД) 

 

 

Седница је завршена у 11.50 часова.  

 

 

Београд, 14.6.2023.      ДЕКАН ФИЗИЧКОГ ФАКУЛТЕТА 

        Проф. др Иван Белча, с.р. 
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T-dualization of bosonic string and type IIB superstring in presence of

coordinate dependent background fields

Abstract

Topic of this disertation is examination of non-commutative and non-associative

properties that emerge in context of closed string theory. This examination will be

carried out on two distinct models. One where we work with bosonic string and

other where we work with type IIB superstring. Furthermore, both of these models

will be analyzed in presence of coordinate dependent background fields. Subjecting

these models to T-dualization we will be able to obtain both T-dual theories and

transformation laws that connect coordinates of starting theory with T-dual one.

Utilizing transformation laws and commutative relations of starting theory we will be

able to deduce non-commutative properties of T-dual theories. Method for obtaining

T-duality will be based on Buscher procedure and its extensions. Main idea of

Buscher procedure lies in localization of translational symmetry by replacing partial

derivatives and coordinates that appear in action with covariant derivatives and

invariant coordinates. This substitution inevitably introduces additional degrees

of freedom which are encoded in gauge fields. By elimination of newly introduced

degrees of freedom with method of Lagrange multipliers and subsequently finding

equations of motion for gauge fields we obtain transformation laws. Inserting these

laws into the action we will obtain T-dual theory.

In examination of bosonic string theory, we will work with 3D space where Kalb-

Ramond background field will have infinitesimal linear dependence on one coordi-

nate, z coordinate. Dualization will be carried along two distinct chains, one where

coordinate that appears in background fields will be dualized last and other where it

will be dualized first. By comparing these two approaches we will be able do discern

what are necessary components for emergence of non-commutative properties.

Second part of thesis will be concerned with T-duality of type II superstring that

propagates in linearly coordinate dependent Ramond-Ramond field. Unlike previous

case, this theory possesses both bosonic and fermionic coordinates, however back-

ground field will only depend on bosonic part. T-duality will first focus only on

bosonic part and later we will also incorporate fermionic part. We will also present

alternative chain of duality where first we dualize fermionic coordinates and later

bosonic ones. It will be shown that both chains produce same non-commutative

relations. Finally, at the end of the thesis, we will also make analysis of same case

when we have more general Ramond-Ramond field.

Key words: String theory, non-commutativity, non-associativity, Buscher procedure

Scientific area: Physics

Scientific subfield: High energy theoretical physics
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T-dualizacija bozonske strune i tip IIB superstrune u prisustvu koorinatno

zavisnih pozadinskih polja

Sažetak

Tema ove disertacije je bazirana na izučavanju nekomutativnih i neasocijativnih os-

obina koje se javljaju u kontekstu teorije struna. Ovo izučavanje će biti obavljeno na

dva različita modela. Prvi model sa kojim ćemo raditi je model bozonske strune dok

je drugi model za tip IIB superstrunu. Oba modela će biti analizirana u prisustvu

koordinatno zavisnih pozadinskih polja. Podvrgavanjem ovih modela T-dualizaciji

bićemo u stanju da dobijemo T-dualne teorije i zakone transfromacija koji povezuju

koordinate početnih i T-dualnih teorija. Korǐsćenjem datih zakona transformacije,

kao i komutativnih osobina početnih teorija bićemo u stanju da dedukujemo neko-

mutativne osobine T-dualnih teorija. Metoda za dobijanje T-dualnosti je bazirana

na Bušerovoj proceduri i njenim proširenjima. Glavna ideja Bušerove procedure

leži u lokalizaciji translacione simetrije, gde mi zamenjujemo parcijalne izvode i

koordinate koje se javljaju u dejstvu sa kovarijantnim izvodima i invarijantnim ko-

ordinatama. Ova smena sa sobom povlači i uvo�enje dodatnih stepeni slobode koji

su kodirani preko kalibracionih polja. Eliminacijom novih stepeni slobode preko

metode Lagranževih množitelja a zatim pronalaženjem jednačina kretanja za kali-

braciona polja, dobijamo zakone transformacija izme�u koordinata. Ubacivanjem

ovih zakona transformacija u dejstvo dobijamo T-dualnu teoriju.

U proučavanje bozonske teorije struna, radićemo sa 3D prostorom gde uzimamo

da Kalb-Ramondovo pozadinsko polje ima infinitezimalu linearnu koordinatnu zav-

isnost od samo jedne koordinate, z koordinate. Dualizacija će biti sprovedena duž

dva različita lanca, jedan gde tek na kraju dualizujemo duž koordinate koja se javlja

u pozadinskom polju a druge gde ovu koordinatu prvu dualizujemo. Pore�enjem ova

dva pristupa bićemo u stanju da zaključimo koji su sastojci neophodni za javljanje

nekomutativnih osobina.

Drugi deo disertacije tiče se T-dualizacije tip II superstrune koja se krće u linearno

koordinatno zavisnom Ramond-Ramon polju. Za razliku od plošlig slučaja, ova

teorija poseduje i bozonske i fermionske koordinate, doduše pozadinska polja zavise

samo od bozonskih koordinata. T-dualizacija će se prvo fokusirati samo na bozonski

deo, nakon toga ćemo uključiti i fermionske koordinate. Kao i u prošlom slučaju,

predstavićemo i jos jedan alternativan lanaz dualizacije, lanac gde prvo dualizu-

jemo fermionske a zatim bozonske koordinate. Pokazaćemo da oba lanca vode do

istih nekomutativnih relacija. Konačno, na kraju disertacije, izvršićemo analizu iste

teorije ali sa opštijim slučajem Ramond-Ramond polja.

Ključne reči: Teroija struna, nekomutativnost, neasocijativnost, Bušerova procedura

Naučna oblast: Fizika

Uža naučna oblast: Teorijska fizika visokih energija
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y) КАТАРИНУ ЛОЈАНИЦУ, мастер студента физике, смер Општа физика, која је пријавила мастер рад под називом: 

„ВОЛУМЕТРИЈСКА АНАЛИЗА ЗАСНОВАНА НА МЕРЕЊУ ВРЕМЕНА РЕВЕРБЕРАЦИЈЕ ЗВУЧНИХ ТАЛАСА“ 

z) СТЕФАНА ЈОКУ, мастер студента физике, смер Теоријска и експериментална физика, који је пријавио мастер рад под 

називом: "ЕНТРОПИЈА ЦРНИХ РУПА У 3D ГРАВИТАЦИЈИ" 

7. Усвајање пријављене теме за израду дипломског рада, одређивање руководиоца и Комисије за одбрану рада за: 

a) ДРАГАНУ СТАНИМИРОВИЋ,  апсолвента физике, смер Општа физика, која је пријавила дипломски рад под називом: 

"ПРИМЕНА САВРЕМЕНИХ НАСТАВНИХ МЕТОДА У ОБРАДИ НАСТАВНЕ ТЕМЕ ПРИТИСАК" 

8. Давање сагласности на ангажовање наставника и сарадника и то:  

a) др ДЕЈАНА ЈАНЦА, ванредног професора Физичког факултета за држање наставе из предмета Вазухопловна 

метеорологија на Војној академији Министарства одбране РС 

b) др БРАНИСЛАВЕ ВУЧЕТИЋ, доцента Физичког факултета, за држање наставе из предмета Физика А на Војној академији 

Министарства одбране РС 

c) НИКОДИНА НЕДИЋА, истраживача Физичког факултета, за држање вежби из предмета Физика А на Војној академији 

Министарства одбране РС 

d) др СРЋАНА БУКВИЋА, редовног профсора Физичког факултета, за држање наставе из предмета Методе мјерења на 

Природно-математичком факултету Универзитета у Бањој Луци 

e) др ЗОРАНА ПОПОВИЋА, доцента Физичког факултета, за држање наставе из предмета Програмирање у физици 1 и 2, 

Квантна механика 1 и 2 на Природно-математичком факултету Универзитета у Бањој Луци 

f) др АЛЕКСАНДРЕ ДИМИЋ, доцента Физичког факултета, за држање наставе из предмета Биофотоника на Докторским 

студијама Универзитета у Београду  

9. Усвајање рецензије рукописа "Атмосферски електрицитет" аутора доц. др Немање Ковачевића.  

10. Избор представника Факултета у Већу групација природно-математичких наука из реда редовних професора.  

11. Питања наставе, науке и финансија.  

12. Захтеви за одобрење одсуства. 

13. Усвајање извештаја са службених путовања. 

14. Дописи и молбе упућене Наставно-научном већу. 

15. Обавештења. Текућа питања. Питања и предлози.  

 

 

 Пошто је усвојен предложени Дневни ред, прешло се на  

1. тачку 

Усвојен је Записник са VII седнице Изборног и Наставно-научног већа Физичког факултета.  

Изборно веће 

 

2. тачка 

  

 Усвојен је предлог Катедре за квантну и математичку физику у вези са избором проф. др Часлава 

Брукнера у звање гостујући професор  

Комисија:  др Иванка Милошевић, редовни професор ФФ 

  др Татјана Вуковић, редовни професор ФФ 

др Милан Дамњановић, редовни професор ФФ у пензији 

 

3. тачка 

 

Изборно веће је усвојило Извештај комисије за избор наставника Физичког факултета и то: 

a) после краће дискусије и јавног гласања, једногласно, са 26 гласова ЗА од укупно 33 колико чини 

изборно тело, донета је одлука о избору др ДАРКА ТАНАСКОВИЋА у звање ванредног 

професора са до 30% радног времена за ужу научну област Физика кондензоване материје  
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b) после краће дискусије и јавног гласања, једногласно, са 26 гласова ЗА од укупно 33 колико чини 

изборно тело, донета је одлука о избору др МИЛИЦЕ МИЛОВАНОВИЋ у звање ванредног 

професора са до 30% радног времена за ужу научну област Статистичка физика  

Наставно-научно веће 

 

 

4. тачка 

 

 Усвојен је Извештај Комисије за оцену испуњености услова и оправданост предложене теме за 

израду докторске дисертације и одређен ментор за:  

a) АНУ ВРАНИЋ, мастер физичара, која је пријавила докторску дисертацију под називом 

„EVOLVING COMPLEX NETWORKS: STRUCTURE AND DYNAMICS“ (Растуће комплексне мреже: 

структура и динамика) 

Ментор: др Марија Митровић Данкулов, виши научни сарадник ИФ 

 

b) БОЈАНУ БОКИЋ, мастер физичара, која је пријавила докторску дисертацију под називом: 

„ДИНАМИКА ПРОСТИРАЊА ЕИРИЈЕВИХ СНОПОВА У ФОТОРЕФРАКТИВНИМ СРЕДИНАМА“ 

Ментор: др Бранислав Јеленковић, научни саветник ИФ у пензији 

 

 

5. тачка 

 

Одређена је Комисија за преглед и оцену докторске дисертације за: 

a) ТАТЈАНУ МАРКОВИЋ - ТОПАЛОВИЋ (8011/2016), дипломираног физичара, која је пријавила 

докторску дисертацију под називом: „ЕДУКАЦИОНА ВИЗУЕЛИЗАЦИЈА ФИЗИЧКИХ ФЕНОМЕНА У 

ПАРКУ НАУКЕ И ШКОЛСКОМ ПРОСТОРУ" под менторством др Андријане Жекић, редовног 

професора Физичког факултета 

Комисија:  др Мићо Митровић, редовни професор ФФ 

  др Јаблан Дојчиловић, редовни професор ФФ у пензији 

  др Милена Давидовић, доцент Грађевинског факултета 

 

b) МАРЈАНА ЋИРКОВИЋА (8011/2013), мастер физичара, који је пријавио докторску дисертацију 

под називом: "ПРОДУКЦИЈА KS
0
 МЕЗОНА У НЕЕЛАСТИЧНИМ p+p СУДАРИМА НА ЕНЕРГИЈИ ОД 

158 GeV МЕРЕНА NA61/SHINE  ДЕТЕКТОРОМ НА  SPS-У У CERN-У" под менторством  др Јована 

Пузовића, редовног професора Физичког факултета 

Комисија:  др Јован Пузовић, редовни професор ФФ 

  др Предраг Миленовић, ванредни професор ФФ 

   др Татјана Шуша, научни саветник Института Руђер Бошковић 

 

6. тачка 

 

 Усвојена је пријављена тема за израду мастер рада, одређен руководилац и Комисија за одбрану 

рада за: 

a) ЂУРЂИЈУ ЈЕЛЕНKОВИЋ, мастер студента физике, смер Примењена и компјутерска физика, која је 

пријавила мастер рад под називом: "МЕРЕЊЕ КОЕФИЦИЈЕНТА АПСОРПЦИЈЕ ЗВУКА МАТЕРИЈАЛА 

КОЈИ СЕ КОРИСТЕ У ПОЗОРИШНИМ И КОНЦЕРТНИМ ДВОРАНАМА" 
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Комисија: др Горан Попарић, редовни професор ФФ, руководилац рада 

  др Бећко Касалица, редовно професор ФФ 

  др Мирјана Војновић, научни сарадник ФФ 

 

b) СТЕФАНА ЂОРЂЕВИЋА, мастер студента физике, смер Теоријска и експериментална физика, који 

је пријавио мастер рад под називом: „ЕНТРОПИЈА ХОКИНГОВОГ ЗРАЧЕЊА У 2D ДИЛАТОНСКОЈ 

ГРАВИТАЦИЈИ“ 

Комисија: др Воја Радовановић, редовни професор ФФ, руководилац рада 

  др Маја Бурић, редовни професор ФФ 

  др Драгољуб Гочанин, доцент ФФ 

  др Александра Димић, доцент ФФ 

 

c) АНАСТАСИЈУ МИЛАДИНОВИЋ, мастер студента физике, смер Примењена и компјутерска 

физика, која је пријавила мастер рад под називом: "СЕМИ-СТОХАСТИЧКИ МОДЕЛ ЕЛАСТИЧНОГ 

РАСЕЈАЊА ЕЛЕКТРОНА НА АТОМУ ВОДОНИКА" 

Комисија: др Горан Попарић, редовни професор ФФ, руководилац рада 

  др Сава Галијаш, доцент ФФ 

  др Мирјана Војновић, научни сарадник ФФ 

 

d) ЈОВАНУ ЈЕЛИЋ, мастер студента физике, смер Примењена и компјутерска физика, која је 

пријавила мастер рад под називом: "РАЗВОЈ ЕКСПЕРИМЕНТАЛНЕ ПОСТАВКЕ ЗА ДЕТЕКЦИЈУ 

ПОЈЕДИНАЧНИХ МОЛЕКУЛА ПРИМЕНОМ ФЛУОРЕСЦЕНТНЕ КОРЕЛАЦИОНЕ СПЕКТРОСКОПИЈЕ" 

Комисија:  др Александар Крмпот, виши научни сарадник ИФ, руководилац рада 

  др Братислав Обрадовић, редовни професор ФФ 

  др Милорад Кураица, редовни професор ФФ 

 

e) АЛЕКСУ ДЕНЧЕВСКОГ, мастер студента физике, смер Примењена и компјутерска физика, који је 

пријавио мастер рад под називом: "КАРАКТЕРИЗАЦИЈА И СИНХРОНИЗАЦИЈА ПОБУДНОГ, 

УПРАВЉАЧКОГ И ДЕТЕКЦИОНОГ СИСТЕМА МИКРОСКОПА СА СТРУКТУРИСАНИМ 

ПРОСВЕТЉАВАЊЕМ" 

Комисија:  др Михаило Рабасовић, научни сарадник ИФ, руководилац рада 

  др Иван Белча, редовни професор ФФ 

  др Стеван Стојадиновић, редовни професор ФФ 

 

f) ДРАГАНУ РУЛИЋ, мастер студента физике, смер Општа физика, која је пријавила мастер рад под 

називом: "УПОРЕДНА АНАЛИЗА ПАРАМЕТАРА ФОТОЛУМЕНИСЦЕНТНИХ СИГНАЛА ВОДЕНИХ 

РАСТВОРА" 

Комисија:  др Владимир Милосављевић, редовни професор ФФ, руководилац рада 

  др Горан Попарић, редовни професор ФФ 

  др Душан Поповић, ванредни професор ФФ 

 

g) ЈОВАНА ЈАЊИЋА, мастер студента физике, смер Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: "ТИП II-B СУПЕРСТРУНА  - ЕФЕКТИВНА ТЕОРИЈА, 

НЕКОМУТАТИВНОСТ И  T-ДУАЛНОСТ"  

Комисија: др Бојан Николић, виши научни сарадник ИФ, руководилац рада 

  др Воја Радовановић, редовни професор ФФ 

  др Марија Димитријевић, редовни професор ФФ 
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h) ЈЕЛЕНУ СТОШИЋ, мастер студента физике, смер Општа физика, која је пријавила мастер рад под 

називом: "ПОЈМОВИ МАСЕ, ГРАВИТАЦИОНЕ СИЛЕ, СИЛЕ ЗЕМЉИНЕ ТЕЖЕ И ТЕЖИНЕ У 

УЏБЕНИЧКОЈ ЛИТЕРАТУРИ" 

Комисија: др Мићо Митровић, редовни професор ФФ, руководилац рада 

  др Андријана Жекић, редовни професор ФФ 

  Нора Тркља Боца, истраживач-сарадник ФФ 

 

i) ВАСИЛИЈА МАТИЋА, мастер студента физике, смер Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: "ЈЕДНОСТАВАН МОДЕЛ АУТОЛОКАЛИЗАЦИЈЕ ВИБРОНСКИХ 

ПОБУЂЕЊА У АЛФА-ХЕЛИКОИДАЛНИМ БИОМОЛЕКУЛИМА" 

Комисија:  др Далибор Чевизовић, в. н. сарадник ИНН Винча, руководилац рада 

  др Ђорђе Спасојевић, редовни професор ФФ 

  др Зорица Поповић, доцент ФФ 

 

j) РАТОМИРА САВИЋА, мастер студента физике, смер Општа физика, који је пријавио мастер рад 

под називом: "УЛОГА ПЛАТФОРМИ ЗА УПРАВЉАЊЕ УЧЕЊЕМ У ШКОЛСКОЈ НАСТАВИ ФИЗИКЕ" 

Комисија: др Андријана Жекић, редовни професор ФФ, руководилац рада 

  др Горан Попарић, редовни професор ФФ 

  др Саша Ивковић, доцент ФФ 

 

k) ЕМИЛИЈУ ПОПОВИЋ, мастер студента физике, смер Општа физика, који је пријавио мастер рад 

под називом: "ПРИМЕРИ И АНАЛИЗА ИЗАЗОВА У НАСТАВИ ФИЗИКЕ НА ДАЉИНУ" 

Комисија: др Андријана Жекић, редовни професор ФФ, руководилац рада 

  др Горан Попарић, редовни професор ФФ 

  др Саша Ивковић, доцент ФФ 

 

l) ЂОРЂА БОГДАНОВИЋА, мастер студента физике, смер Теоријска и експериментална физика, 

који је пријавио мастер рад под називом: "L БЕСКОНАЧНО АЛГЕБРА И BRST КВАНТИЗАЦИЈА" 

Комисија: др Воја Радовановић, редовни професор ФФ, руководилац рада 

  др Марија Димитријевић Ћирић, редовни професор ФФ 

  др Никола Коњик, доцент ФФ 

 

m) МИШУ ТОМАНА, мастер студента физике, смер Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: " L БЕСКОНАЧНО АЛГЕБРЕ ЕЛЕКТРОДИНАМИКЕ НА 

КОМУТАТИВНОМ И НЕКОМУТАТИВНОМ ПРОСТОРУ" 

Комисија: др Марија Димитријевић Ћирић, ред. проф. ФФ, руководилац рада  

  др Воја Радовановић, редовни професор ФФ 

  др Никола Коњик, доцент ФФ  

 

n) САЊУ ЈОВАНОВИЋ, мастер студента метеорологије, која је пријавила мастер рад под називом: 

"АНАЛИЗА СИНОПТИЧКОГ СЛУЧАЈА ПРОЛАСКА ИНТЕНЗИВНОГ ЦИКЛОНА ПРЕКО ЕВРОПЕ У 

ПЕРИОДУ ОД 3. ДО 7. ФЕБРУАРА 2020. ГОДИНЕ" 

Комисија: др Катарина Вељовић Корачин, доцент ФФ, руководилац рада 

  др Немања Ковачевић, доцент ФФ 

  др Лазар Лазић, редовни професор ФФ у пензији 
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o) АЛЕКСАНДРУ СТЕВКОВ, мастер студента метеорологије, који је пријавио мастер рад под 

називом: "ПРОСТОРНО-ВРЕМЕНСКА АНАЛИЗА СУША У СЕВЕРНОЈ МАКЕДОНИЈИ ПРИМЕНОМ 

РАЗЛИЧИТИХ ИНДЕКСА ЗА МОНИТОРИНГ СУШЕ" 

Комисија:  др Ивана Тошић, редовни професор ФФ, руководилац рада 

  др Владимир Ђурђевић, ванредни професор ФФ 

  др Драгана Вујовић, ванредни професор ФФ 

 

p) ХАНУ ШИФ, мастер студента физике, смер Теоријска и експериментална физика, која је 

пријавила мастер рад под називом: "БЕНД КОРЕПРЕЗЕНТАЦИЈЕ И ТОПОЛОШКЕ ФАЗЕ КВАЗИ-

ЈЕДНОДИМЕНЗИОНАЛНИХ СИСТЕМА СА МАГНЕТНИМ УРЕЂЕЊЕМ" 

Комисија: др Саша Дмитровић, доцент ФФ, руководилац рада 

  др Татјана Вуковић, редовни професор ФФ 

  др Наташа Лазић, научни сарадник ФФ 

 

q) ИВАНУ СТОЈИЉКОВИЋ, мастер студента физике, смер Теоријска и експериментална физика, 

која је пријавила мастер рад под називом: "ИМПЛЕМЕНТАЦИЈА ПРОТОКОЛА ЗА ДЕТЕКЦИЈУ 

КВАНТНИХ КОРЕЛАЦИЈА У ПРОГРАМСКОМ ПАКЕТУ QISKIT" 

Комисија: др Александра Димић, доцент ФФ, руководилац рада 

  др Иванка Милошевић, редовни професор ФФ 

  др Татјана Вуковић, редовни професор ФФ 

  др Саша Дмитровић, доцент ФФ 

 

r) ДУШАНА ЂОРЂЕВИЋА, мастер студента физике, смер Теоријска и експериментална физика, који 

је пријавио мастер рад под називом: "NONCOMMUTATIVE FIVE - DIMENSIONAL CHERN - SIMONS 

GRAVITY",Nekomutativna petodimenziona Черн-Сајмонсова гравитација 

Комисија: др Драгољуб Гочанин, доцент ФФ, руководилац рада 

  др Воја Радовановић, редовни професор ФФ 

  др Марија Димитријевић Ћирић, редовни професор ФФ 

 

s) АЛЕКСАНДРУ ТРНАВАЦ, мастер студента физике, смер Примењена и компјутерска физика, која 

је пријавила мастер рад под називом: "МОДЕЛОВАЊЕ ИНТЕРАКЦИЈА У НЕФИЗИЧКИМ 

СИСТЕМИМА - АНАЛИЗА ГРАВИТАЦИОНОГ МОДЕЛА У МЕЂУНАРОДНОЈ ТРГОВИНИ" 

Комисија:  др Зоран Николић, ванредни професор ФФ, руководилац рада 

  др Едиб Добарџић, ванредни професор ФФ 

  др Јасна Атанасијевић, ванредни професор ПМФ Нови Сад 

 

t) МД РАШАДУЛ ИСЛАМ, мастер студента физике, смер Примењена и компјутерска физика, који је 

пријавио мастер рад под називом: "DEVELOPMENT OF OPTIMIZED SOLUTIONS FOR BIG DATA 

ANALYTICS ON THE INTERNET USING THE PYTHON PANDAS LIBRARY" (РАЗВОЈ ОПТИМИЗОВАНИХ 

РЕШЕЊА ЗА АНАЛИЗУ ВЕЛИКИХ КОЛЕКЦИЈА ПОДАТАКА НА ИНТЕРНЕТУ КОРИШЋЕЊЕМ PYTHON 

PANDAS БИБЛИОТЕКЕ) 

Комисија:  др Зоран Николић, ванредни професор ФФ, руководилац рада 

  др Едиб Добарџић, ванредни професор ФФ 

  др Милош Вићић, редовни професор ФФ 

 

u) ЈОВАНУ ПЕТКОВИЋ, мастер студента физике, смер Примењена и компјутерска физика, која је 

пријавила мастер рад под називом: "ЕЛЕКТРИЧНА КАРАКТЕРИЗАЦИЈА И ЕМИСИОНИ СПЕКТРИ 

ДИЕЛЕКТРИЧНОГ БАРИЈЕРНОГ ПРАЖЊЕЊА СА СЕГМЕНТИРАНОМ ЕЛЕКТРОДОМ" 
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Комисија: др Никола Шкоро, виши научни сарадник ИФ, руководилац рада 

  др Стеван Стојадиновић, редовни професор ФФ 

  др Горан Сретеновић, научни сарадник ФФ 

 

v) НЕДУ БАБУЦИЋ, мастер студента физике, смер Примењена и компјутерска физика, која је 

пријавила мастер рад под називом: "УНАПРЕЂЕЊЕ ИНТЕРФЕРОМЕТРИЈЕ МЕТОДОМ 

СОПСТВЕНОГ МЕШАЊА СИГНАЛА ЛАСЕРСКЕ ДИОДЕ" 

Комисија: др Ненад Сакан, научни сарадник ИФ, руководилац рада 

  др Милорад Кураица, редовни професор ФФ 

  др Братислав Обрадовић, редовни професор ФФ 

 

w) ЈЕЛЕНУ МАРКОВИЋ, мастер студента физике, смер Примењена и компјутерска физика, која је 

пријавила мастер рад под називом: "НУМЕРИЧКА АНАЛИЗА РАДИО-ФРЕКВЕНТНИХ НАПОНСКИХ 

СИГНАЛА ЗА МЕРЕЊЕ СНАГЕ ПРЕДАТЕ ПЛАЗМИ У ФРЕКВЕНТНОМ И ВРЕМЕНСКОМ ДОМЕНУ"  

Комисија: др Невена Пуач, научни саветник ИФ, руководилац рада 

  др Горан Попарић, редовни професор ФФ 

  др Стеван Стојадиновић, редовни професор ФФ 

 

x) АЛЕКСАНДРА ЗЕЧЕВИЋА, мастер студента метеорологије, који је пријавио мастер рад  под 

називом: „ПРОЈЕКЦИЈА ПРОИЗВОДЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ У ВЈЕТРОПАРКУ КРНОВО 

(НИКШИЋ) НА ОСНОВУ АНАЛИЗЕ И ПРОГНОЗЕ МЕТЕОРОЛОШКИХ ВЕЛИЧИНА"  

Комисија: др Драгана Вујовић, ванредни професор ФФ, руководилац рада 

  др Лазар Лазић, редовни професор ФФ, у пензији 

  др Дејан Јанц, ванредни професор ФФ 

 

y) КАТАРИНУ ЛОЈАНИЦУ, мастер студента физике, смер Општа физика, која је пријавила мастер 

рад под називом: „ВОЛУМЕТРИЈСКА АНАЛИЗА ЗАСНОВАНА НА МЕРЕЊУ ВРЕМЕНА 

РЕВЕРБЕРАЦИЈЕ ЗВУЧНИХ ТАЛАСА“ 

Комисија:  др Зоран Николић, ванредни професор ФФ, руководилац рада 

  др Бећко Касалица, редовни професор ФФ 

  др Зоран Поповић, доцент ФФ 

 

z) СТЕФАНА ЈОКУ, мастер студента физике, смер Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: "ЕНТРОПИЈА ЦРНИХ РУПА У 3D ГРАВИТАЦИЈИ" 

Комисија: др Бранислав Цветковић, научни саветник ИФ, руководилац рада 

  др Душко Латас, доцент ФФ 

  др Драгољуб Гочанин, доцент ФФ 

 
7. тачка 

 

Усвојена је пријављена тема за израду дипломског рада, одређен руководилац и Комисија за 

одбрану рада за: 

a) ДРАГАНУ СТАНИМИРОВИЋ,  апсолвента физике, смер Општа физика, која је пријавила 

дипломски рад под називом: "ПРИМЕНА САВРЕМЕНИХ НАСТАВНИХ МЕТОДА У ОБРАДИ 

НАСТАВНЕ ТЕМЕ ПРИТИСАК" 

Комисија: др Горан Попарић, редовни професор ФФ, руководилац рада 

  др Андријана Жекић, редовни професор ФФ 

  др Мирјана Војновић, научни сарадник ФФ 
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8. тачка 

 

Дата је сагласност на ангажовање наставника и сарадника и то:  

a) др ДЕЈАНА ЈАНЦА, ванредног професора Физичког факултета за држање наставе из предмета 

Вазухопловна метеорологија на Војној академији Министарства одбране РС 

b) др БРАНИСЛАВЕ ВУЧЕТИЋ, доцента Физичког факултета, за држање наставе из предмета Физика 

А на Војној академији Министарства одбране РС 

c) НИКОДИНА НЕДИЋА, истраживача Физичког факултета, за држање вежби из предмета Физика А 

на Војној академији Министарства одбране РС 

d) др СРЋАНА БУКВИЋА, редовног профсора Физичког факултета, за држање наставе из предмета 

Методе мјерења на Природно-математичком факултету Универзитета у Бањој Луци 

e) др ЗОРАНА ПОПОВИЋА, доцента Физичког факултета, за држање наставе из предмета 

Програмирање у физици 1 и 2, Квантна механика 1 и 2 на Природно-математичком факултету 

Универзитета у Бањој Луци 

f) др АЛЕКСАНДРЕ ДИМИЋ, доцента Физичког факултета, за држање наставе из предмета 

Биофотоника на Докторским студијама Универзитета у Београду  

  

9. тачка 

 

Усвојена је рецензија рукописа "Атмосферски електрицитет" аутора доц. др Немање Ковачевића.  

 

10. тачка 

 

 Изабрани су представници Факултета у Већу групација природно-математичких наука из реда 

редовних професора.  

Представници:   проф. др Андријана Жекић 

  проф. др Братислав Обрадовић 

 

11. тачка 

 

Питања наставе 

 Продекан за наставу доц. др Славица Малетић обавестила је чланове већа да данас почиње пријава 

кандидата за упис у прву годину студија. Пријава траје до петка 25.6, а пријемни испити се полажу у 

понедељак 28. и уторак 29. јула.  

 Продекан је замолила шефове катедара да јој пошаљу распоред наставника и сарадника по 

предметима за јесењи семестар.   

 На предлог продекана Наставно-научно веће је расписало конкурс за ангажовање у настави 

студената докторских  и мастер студија. Услови су исти као и ранијих година. Потребан је просек оцена са 

студија најмање 8.5, и највише две поновљене године.  

 Наставно-научно веће је оформило комисију за студенте по старом програму који се пребацују на 

наставни план по Болоњи:  

- проф. др Андријана Жекић 

- проф. др Владан Вучковић 

- проф. др Горан Попарић 

- проф. др Воја Радовановић 

- доц. др Зорица Поповић 
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 Питања науке 

 Продекан за науку проф. др Стеван Стојадиновић обавестио је чланове Већа да ће се идуће среде 

одржати састанак Колегијума докторских студија.  

 

 Питања финансија 

 Продекан за финансије проф. др Горан Попарић подсетио је чланове Већа да нам предстоји 

плаћање поновне акредитације Факултета. Ради нешто неповољније финансијске ситуације, варијабила за 

часова је враћена на редовних 5%.  

 

 

12. тачка 

 

Наставно-научно веће је усвојило плаћена одсуства следећим наставницим и сарадницима:  

a) др Иванки Милошевић у периоду од 05. 07. до 10. 07. 2021. године ради учешћа на 

међународном научном скупу NANOTEXNOLOGY 2021 који се одржава у Солуну, Грчка. 

b) др Зорици Поповић у периоду од 24. 06. до 29. 06. 2021. године ради посете Природно 

математичком факултету Универзитета Црне Горе у Подгорици која се реализује у оквиру 

Билатералног пројекта Србија-Црна Гора. 

c) Кристини Мојсиловић од 1. 07. до 30. 07. 2021. године боравак као гостујући истраживач на 

Војном институту технологије (Wojskowa Akademia Techniczna, Wydzialu Nowych Technologii 

i Chemii односно Military University of Technology, Faculty of Advanced Technologies & 

Chemistry) у Варшави, Пољска. 

d) Јелени Пајовић у периоду од 19. 07. до 19. 10. 2021. године ради посете Универзитету у 

Колораду, Болдер, САД. 

 

13. тачка 

 

 Наставно-научно веће је усвојило извештај са службеног путовања проф. др Зорана Николића који је 

у периоду од 3. до 6. јуна 2021. године учествовао на међународној конференцији X International Conference 

on Social and Technological Development STED 2021, која је одржана у Требињу, Босна и Херцеговина.  

 

14. тачка 

 

 Секретар Факултета Лелица Вуковић Радош замолила је чланове Већа да је убудуће на време 

обавесте о неплаћеном одсуству, зато што се све промене у радном односу морају спроводити кроз ЦРОСО 

регистар, а било какво ретроактивно уписивање промене није могуће.  

 Лелица Вуковић Радош је, такође обавестила чланове Већа да је члан Савета Факултета проф. др 

Милорад Кураица дао оставку на чланство. Уместо њега је потребно изабрати новог члана Савета из редова 

наставника Факултета. Наставно-научно веће је донело одлуку да тај избор остави за септембар када ће 

бити потребно бирати и члана Савета уместо доц. др Зорице Поповић, која ће преузети дужност продекана 

за наставу.  

 

 Седница је завршена у 11:52 часова.  
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Београд, 29.6.2021. год.       ДЕКАН ФИЗИЧКОГ ФАКУЛТЕТА 
         Проф. др Иван Белча, с.р. 
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З А П И С Н И К 
са XI седнице Наставно-научног већа одржане у среду 30. септембра 2015. 

 
 
Седници присуствује 49 чланова Наставно-научног већа 
 
Службено одсутни:  проф. др Милорад Кураица 

   проф. др Обрадовић Братислав 

   Мирослав Поповић 

 

Оправдано одсутни:  проф. др Срђан Буквић 

   проф. др Стеван Ђениже 

   проф. др Владимир Милосављевић 

   проф. др Владан Вучковић 

   мр Саша Ивковић 

   Марјан Ћирковић 

   Биљана Николић 

  

 

 Декан Факултета проф. др Јаблан Дојчиловић отворио је седницу у 13:15 часова и 
предложио следећи 
 

Д н е в н и   р е д 

1. Усвајање Записника са X седнице Изборног и Наставно-научног већа.  

2. Избор 11 чланова Савета Физичког факултета из редова наставника за мандатни период 2015-2018 година 

3. Одређивање Комисије за оцену испуњености услова и оправданост предложене теме за израду докторске 

дисертације за: 

a) БЛАНКУ ШКИПИНА, дипломираног физичара, која је пријавила докторску дисертацију под називом: 

„ПОВРШИНСКЕ ФОТОДИЕЛЕКТРИЧНЕ ОСОБИНЕ ПОЛИМЕРНИХ КОМПОЗИТА“ 

4. Усвајање Извештаја Комисије за оцену испуњености услова и оправданост предложене теме за израду 

докторске дисертације и одређивање ментора за: 

a) МИЛОША ДРАЖИЋА, дипломираног физичара, који је пријавио докторску дисертацију под називом: 

„ТЕОРИЈА ЕЛЕКТРОНСКОГ ТРАНСПОРТА КРОЗ КВАНТНЕ ТАЧКЕ И МОЛЕКУЛЕ“ 

5. Усвајање пријављене теме за израду мастер рада, одређивање руководиоца и Комисије за одбрану рада за: 

a) МИЛИВОЈА ЈОЈИЋА, студента мастер студија физике, смер Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: „Т-ДУАЛИЗАЦИЈА НА ТОРУСУ ПРЕКО КОМПЛЕКСНИХ ПАРАМЕТАРА“ 

6. Усвајање пријављене теме за израду дипломског рада, одређивање руководиоца и Комисије за одбрану рада 

за: 

a) ИВАНА ГОРГИЕВСКОГ, апсолвента метеорологије, који је пријавио дипломски рад под називом: 

„КАРАКТЕРИСТИКА ЛЕТЊИХ И ЗИМСКИХ ОЛУЈА“ 

7. Разматрање захтева Хемијског факултета у вези са давањем сагласности на ангажовање наставника и 

сарадника Физичког факултета за школску 2015/2016 годину и то: 

a) проф. др Лазара Лазића за предмет Метеорологија и Моделовање загађења у атмосфери (на основним 

студијама Хемија животне средине) 

b) проф. др Илије Марића за предмет Философија природних наука (на интегрисаним основним и мастер 

студијама Настава хемије) 

c) проф. др Душана Поповића за предмет Физика (на интегрисаним основним и мастер студијама Настава 

хемије) 

d) доц. др Саве Галијаша за предмет Физика (на основним студијама Хемија и Хемија животне средине и 

интегрисаним основним и мастер студијама Настава хемије) 

e) проф. др Владимира Милосављевића за предмет Одабрана поглавља физике (на основним студијама 

Хемија и Хемија животне средине и интегрисаним основним и мастер студијама Настава хемије)и Основи 

физике (на основним студијама Биохемије) 



30. октобар 2015. 

 

f) доц. др Славице Малетић за предмет Основи физике (на основним студијама Биохемије) и Физика (на 

основним студијама Хемија и Хемија животне средине и интегрисаним основним и мастер студијама 

Настава хемије) 

g) доц. др Зорице Поповић за предмет Физика (на основним студијама Хемија и Хемија животне средине и 

интегрисаним основним и мастер студијама Настава хемије)  

h) проф. др Братислава Обрадовића за предмет Унапређени оксидациони процеси (на докторским 

студијама) 

8. Разматрање захтева Биолошког факултета у вези са давањем сагласности на ангажовање проф. др Илије 

Марића за извођење наставе из предмета Философија природних наука на основним академским студијама 

Биологија.  

9. Избор шефова смерова основних и мастер студија.  

10. Питања наставе, науке и финансија. 

11. Захтеви за одобрење одсуства. 

12. Усвајање извештаја са службених путовања. 

13. Дописи и молбе упућене Наставно-научном већу. 

14. Обавештења. Текућа питања. Питања и предлози.  

 

 

Пошто је усвојен предложени Дневни ред, прешло се на 

 

1. тачку 

 

Усвојена је примедба на Записник са претходне седнице коју је изнео проф. др Јован Пузовић. 

Примедба се односила на тачку 11, став 4 у који треба додати реч „кандидат“, те треба да гласи 

„кандидат за редовног професора мора имати педагошко искуство у високошколској установи“ 

(уместо „редовни професор мора имати педагошко искуство у високошколској установи“).  

 

2. тачка 

 

Поводом избора 11 чланова Савета Физичког факултета из редова наставника за мандатни 
период 2015-2018 година, изабрана је Изборна комисија у саставу:  

- проф. др Дејан Јанц 
- доц. др Зоран Поповић 
- Весна Ковачевић 
Савет Физичког факултета из редова запослених на Факултету ће чинити још 2 представника 

административно-техничког особља и 2 представника истраживача. Они ће своје представнике 

изабрати на посебним скуповима.  

Након што су чланови Већа дали своје предлоге, утврђена је листа кандидата за чланове 

Савета и то:  

1. Буквић Срђан 
2. Бурић Маја 
3. Вељовић Катарина 
4. Вићић Милош 
5. Вујовић Драгана 
6. Вуковић Татјана 
7. Вучковић Владан 
8. Димитријевић-Ћирић Марија 
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9. Дмитровић Саша 
10. Дојчиновић Иван 
11. Жекић Андријана 
12. Касалица Бећко 
13. Милошевић Иванка 
14. Митровић Мићо 
15. Обрадовић Братислав 
16. Попарић Горан 
17. Поповић Душан 
18. Поповић Зорица 

 

Након тога се приступило тајном гласању. Гласало је укупно 47 чланова Већа, чиме је 

задовољен услов за двотрећинском већином. Комисија је пребројала гласове, те је декан 

прочитао списак 11 кандидата који су добили највише гласова и који ће бити чланови Савета 

Физичког факултета за мандатни период 2015-2018 година:  

1. Вељовић Катарина 

2. Вујовић Драгана 

3. Попарић Горан 

4. Поповић Зорица 

5. Поповић Душан 

6. Вучковић Владан 

7. Бурић Маја 

8. Дојчиновић Иван 

9. Жекић Андријана 

10. Касалица Бећко 

11. Митровић Мићо 

 

3. тачка 

 

Одређена је Комисија за оцену испуњености услова и оправданост предложене теме за 

израду докторске дисертације за: 

a) БЛАНКУ ШКИПИНА, дипломираног физичара, која је пријавила докторску дисертацију под 

називом: „ПОВРШИНСКЕ ФОТОДИЕЛЕКТРИЧНЕ ОСОБИНЕ ПОЛИМЕРНИХ КОМПОЗИТА“ 

Комисија: др Душко Дудић, научни сарадник ИНН Винча 

  др Јаблан Дојчиловић, редовни професор ФФ 

  др Душан Поповић, ванредни професор ФФ 

  др Драгана Церовић, научни сарадник Висока текстилна струк. школа 

 

4. тачка 

 

Усвојен је Извештај Комисије за оцену испуњености услова и оправданост предложене теме за 

израду докторске дисертације и одређен ментор за: 
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a) МИЛОША ДРАЖИЋА, дипломираног физичара, који је пријавио докторску дисертацију под 

називом: „ТЕОРИЈА ЕЛЕКТРОНСКОГ ТРАНСПОРТА КРОЗ КВАНТНЕ ТАЧКЕ И МОЛЕКУЛЕ“ 

Ментор: др Виктор Церовски, виши научни сарадник ИФ 

 

5. тачка 

 

Усвојена је пријављена тема за израду мастер рада, одређен руководилац и Комисија за 

одбрану рада за: 

a) МИЛИВОЈА ЈОЈИЋА, студента мастер студија физике, смер Теоријска и експериментална 

физика, који је пријавио мастер рад под називом: „Т-ДУАЛИЗАЦИЈА НА ТОРУСУ ПРЕКО 

КОМПЛЕКСНИХ ПАРАМЕТАРА“ 

Комисија: др Бојан Николић, научни сарадник ИФ, руководилац рада 

  др Воја Радовановић, редовни професор ФФ 

  др Маја Бурић, редовни професор ФФ 

  Драгољуб Гочанин, истраживач  

 

6. тачка 

 

Усвојена је пријављена тема за израду дипломског рада, одређен руководилац и Комисија за 

одбрану рада за: 

a) ИВАНА ГОРГИЕВСКОГ, апсолвента метеорологије, који је пријавио дипломски рад под 

називом: „КАРАКТЕРИСТИКА ЛЕТЊИХ И ЗИМСКИХ ОЛУЈА“ 

Комисија: др Млађен Ћурић, редовни професор ФФ, руководилац рада 

  др Дејан Јанц, ванредни професор ФФ 

  др Катарина Вељовић, доцент ФФ 

 

7. тачка 

 

На захтев Хемијског факултета Наставно-научно веће је ДАЛО САГЛАСНСТ на ангажовање 

наставника и сарадника Физичког факултета за школску 2015/2016 годину и то: 

a) проф. др Лазара Лазића за предмет Метеорологија и Моделовање загађења у атмосфери 

(на основним студијама Хемија животне средине) 

b) проф. др Илије Марића за предмет Философија природних наука (на интегрисаним 

основним и мастер студијама Настава хемије) 

c) проф. др Душана Поповића за предмет Физика (на интегрисаним основним и мастер 

студијама Настава хемије) 

d) доц. др Саве Галијаша за предмет Физика (на основним студијама Хемија и Хемија 

животне средине и интегрисаним основним и мастер студијама Настава хемије) 

e) проф. др Владимира Милосављевића за предмет Одабрана поглавља физике (на 

основним студијама Хемија и Хемија животне средине и интегрисаним основним и мастер 

студијама Настава хемије)и Основи физике (на основним студијама Биохемије) 
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f) доц. др Славице Малетић за предмет Основи физике (на основним студијама Биохемије) и 

Физика (на основним студијама Хемија и Хемија животне средине и интегрисаним 

основним и мастер студијама Настава хемије) 

g) доц. др Зорице Поповић за предмет Физика (на основним студијама Хемија и Хемија 

животне средине и интегрисаним основним и мастер студијама Настава хемије)  

h) проф. др Братислава Обрадовића за предмет Унапређени оксидациони процеси (на 

докторским студијама) 

 

8. тачка 

 

На захтев Биолошког факултета Наставно-научно веће је ДАЛО САГЛАСНОСТ на ангажовање 

проф. др Илије Марића за извођење наставе из предмета Философија природних наука на 

основним академским студијама Биологија.  

 

9. тачка 

 

Наставно-научно веће је за руководиоце смерова основних и мастер студија именовало: 

- проф. др Јаблана Дојчиловића за руководиоца смера Општа физика 

- проф. др Воју Радовановића за руководиоца смера Теоријска и експериментална физика 

- проф. др Ивана Белчу за руководиоца смера Примењена и компјутерска физика 

- проф. др Лазара Лазића за руководиоца смера Метеорологија 

 

10. тачка 

 

Наставно-научно веће разматрало је списак кандидата пријављених на конкурс за ангажовање 

студената докторских и мастер студија за извођење дела наставе на основним студијама. 

Продекан за наставу проф. др Иван Дојчиновић предочио је члановима Већа списак пријављених 

кандидата од којих је један број кандидата предложио и предметни наставник за извођење 

наставе из свог предмета, док је један број пријављених кандидат нераспоређен по предметима. 

Према условима конкурса, потребно је да кандидат има просечну оцену на основним студијама 

најмање 8.5 и да дужина његових студија не прелази шест година. По овом питању развила се 

дужа дискусија, с обзиром да четири кандидата које су предложили предметни наставници не 

испуњавају услове конкурса. Након расправе је донета одлука да ти кандидати не могу бити 

ангажовани, те је Наставно-научно веће усвојило следећи списак кандидата и њихово ангажовање 

по предметима:  

 

Р.б. Име и презиме Предмет 
Година 

уписа 
Година дипломирања 

Просечна 

оцена и смер 

1. Марко Миливојевић 
- Механика  

- Квантна механика I и II 

- Симетрије у физици 

2008. 2012. 
9,63 

Б 

2. Нора Тркља 
- Физика атома 

- Примењена спектроскопија 
2008. 2012. 

9,37 

Б 
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- Лабораторија физике I и II 

3. Горан Сретеновић 
- Лабораторији физике 3 и 4 

- Физика (за хемичаре) 
2002. 2006. 

9,15 

А 

4. Милош Скочић 
- Лабораторија физике 3 и 4 

- Физика јонизованих гасова 

- Обрада резултата мерења 

2005. 2010. 
8,53 

Ц 

5. Милош Бургер - Увод у информационе системе 2004. 2010. 
9,00 

Ц 

6. Бранислава Мисаиловић 
- Физика у школи 1 

- Физика у школи 2 
2005. 2010. 

8,71 

Ц 

7. Јелена Пајовић 
- Физика чврстог стања А, Б, Ц 

- Лабораторија физике I и II 
2007. 2011. 

9,85 

Б 

8. Биљана Радиша  
- Савремена физика I 

- Методика наставе (ФФХ) 
2008. 2012. 

9,60 

А 

9. Светислав Мијатовић 
- Лабораторија физике I и II 

- Физичка механика 

- Молекуларна физика и ТД 

2009. 2013. 
10,00 

Б 

10. Петар Бокан - Лабораторија физике I и II 2008. 2013. 
8,98 

Б 

11. Драгољуб Гочанин  - Статистичка физика I и II 2009. 2013. 
9,84 

Б 

12. Вељко Јанковић - Квантна статистичка физика 2009. 2013. 
9,97 

Б 

13. Срђан Ставрић - Теорија кондензoваног стања 2009. 2013. 
9,92 

Б 

14. Драгутин Јовковић - Лабораторија физике I и II 2009. 2014. 
9,13 

Б 

15. Стефан Мијин - Теоријска физика плазме 2011. 2015. 
9,97 

Б 

17. Катарина Милетић - Лабораторија физике I и II 2010. 2014. 
9,52 

Ц 

18. Илија Иванишевић 
- Методи математичке физике 

- Основи математичке физике 
2010. 2014. 

9,66 

Б 

19. Данило Николић - Основи електродинамике 2011. 2015. 
10,00 

Б 

20. Ненад Тадић - Електроника 2006. 2011. 
9,07 

Ц 

21. Никола Коњик 
- Електродинамика I и II 

- Теорија елементарних честица 
2009. 2013. 

9,66 

Б 

22. Немања Ковачевић - Метеоролошка мерења 2000. 2005. 
9,31 

М 

23. Сузана Путниковић 
- Општа метеорологија 1 

- Климатологија 
2006. 2010. 

9,73 

М 

26. Владимир Чубровић - Физика (за хемичаре) 2004. 2010. 
9,28 

Ц 
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Нераспоређени кандидати:  

Р.б. Име и презиме Предмет 
Година 

уписа 
Година дипломирања 

Просечна 

оцена 

1. Александра Димић  2010. 2014. 
10,00 

Б 

2. Виолета Станковић  2009. 2014. 
8,69 

Ц 

3. Милош Вујовић  2008. 2014. 
8,62 

М 

4. Ана Ђулаковић  2010. 2013. 
8,79 

А 

5. Ивана Дугалић  2011. 2014. 
9,59 

А 

6. Марија Јанковић  2010. 2015. 
9,95 

Б 

7. Јелена Костић  2011. 2014. 
9,19 

А 

8. Вукашин Милошевић  2011. 2015. 
10,00 

Б 

9. Јана Петровић  2011. 2014. 
9,42 

А 

10. Јелена Репић  2011. 2014. 
9,19 

А 

11. Инес Скоко  2010. 2014. 
9,57 

М 

12. Весна Стојанац   2012. 
8,84 

А 

 

Кандидати чије ангажовање није одобрено: 

Р.б. Име и презиме Предмет 
Година 

уписа 

Година 

дипломирања 

Просечна 

оцена и смер 

1.  Милица Васиљевић - Лабораторија физике 3 и 4 2008. 2014. 
8,21 

Нови Сад 

2.  Иван Крстић - Физика (за хемичаре) 2003. 2010. 
9,11 

Ц 

3.  Иван Петронијевић - Физика (за хемичаре) 2001. 2010. 
8,06 

Ц 

4.  Филип Маринковић - Физика (за хемичаре) 2004. 2010. 
8,00 

Ц 

 

 Након одлуке о кандидатима који ће бити ангажовани у делу наставе на основним 

студијама, предметни наставник на курсу Физика за студенте хемије, проф. др Душан Поповић, 

обавестио је Наставно-научно веће да више не жели да изводи наставу на том предмету. Декан je 

професора Поповића упутио да своју намеру у писменој форми достави Катедри за општи курс 

физике на првој години студија.  

 

 Продекан за наставу проф. др Иван Дојчиновић обавестио је чланове Већа да је на I годину 

основних студија школске 2015/2016 године уписано 169 студената. У оквиру уписне квоте је 
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уписано 165 студената чиме су попуњена сва места, а 4 студента мимо квоте су уписана по другим 

основама. Проф. др Иван Дојчиновић је затим подсетио чланове Већа, да је, после 6 година, њему 

ово последњи дан на месту продекана за наставу, а од нове школске године 1. октобра дужност 

продекана преузима доц. др Славица Малетић. Наставно-научно веће се проф. др Ивану 

Дојчиновићу захвалило аплаузом.   

 

11. тачка 

 

Наставно-научно веће је одобрило плаћено одсуство проф. др Душану Поповићу у периоду од 

6. до 10. новембра 2015. године ради учешћа на конференцији „6th International Conference on 

Nanotechnology“ која се одржава у Риму (Италија).  

Наставно-научно веће НИЈЕ ОДОБРИЛО продужетак неплаћеног одсуства Мирославу 

Поповићу, који се се од јануара 2013. године налази на усавршавању на Калифорнијском 

универзитету у Берклију (САД). 

 

 

Седница је завршена у 13:30 часова.  

 

 

 

Београд, 15.10.2015.      ДЕКАН ФИЗИЧКОГ ФАКУЛТЕТА 

 

        Проф. др Јаблан Дојчиловић 

 

 

 



 

З А П И С Н И К 
са X седнице Изборног и Наставно-научног већа одржане у среду 11. септембра 2019. године 

 

Седници присуствује 41 члан Изборног и Наставно-научног већа.  

Службено одсутни:  проф. др Предраг Миленовић 

   проф. др Андријана Жекић  

   проф. др Марија Димитријевић-Ћирић  

   Марјан Ћирковић 

 

Оправдано одсутни:  проф. др Ђорђе Спасојевић 

   проф. др Зоран Борјан 

   доц. др Сава Галијаш 

   проф. др Маја Бурић 

    доц. др Драган Реџић 

   др Биљана Николић 

 

Неоправдано одсутни: проф. др Милорад Кураица 

проф. др Мићо Митровић 

   проф. др Драгана Вујовић 

   проф. др Владан Вучковић 

   проф. др Илија Марић 

   доц. др Саша Ивковић 

   доц. др Владимир Миљковић 

   Филип Маринковић 

   Марко Миливојевић 

 

    

 Декан Факултета проф. др Иван Белча отворио је седницу у 11:15 часова и предложио 

следећи  

Д н е в н и   р е д  

1. Усвајање Записника са IX седнице Изборног и Наставно-научног већа Физичког факултета.  

Изборно веће 

2. Разматрање предлога Катедре за физику језгра и честица о покретању поступка за избор једног доцента за ужу 

научну област Физика честица и поља.  

3. Усвајање Извештаја Комисије за избор наставника Физичког факултета и то: 

a) једног редовног професора за ужу научну област Примењена физика 

b) једног ванредног професора за ужу научну област Физика облака 

4. Усвајање Извештаја Комисије за избор у научно звање и то:  

a) др ТОМИСЛАВЕ ВУКИЋЕВИЋ у звање научни саветник,  

b) др АЛЕКСАНДРА ЋИРИЋА у звање научни сарадник. 

Наставно-научно веће 

5. Одређивање Комисије за преглед и оцену докторске дисертације за: 

a) АЛЕКСАНДРУ ДИМИЋ, дипломираног физичара, која је предала докторску дисертацију под називом: 

"DETECTION OF QUANTUM CORRELATIONS" (Детекција квантних корелација) 

b) ДРАГОЉУБА ГОЧАНИНА, дипломираног физичара, који је предао докторску дисертацију под називом: 
"FIELD THEORY IN SO(2,3)* MODEL OF NONCOMMUTATIVE GRAVITY" (Теорија поља у SO(2,3)* моделу 
некомутативне гравитације) 
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c) СРЂАНА СТАВРИЋА, дипломираног физичара, који је предао докторску дисертацију под називом: "FIRST-

PRINCIPLES STUDY OF THE STRUCTURAL AND ELECTRONIC PROPERTIES OF METALS ADSORBED ON TWO-

DIMENSIONAL MATERIALS" (Ab initio истраживање структурних и електронских особина метала 

адсорбованих на дводимензионалним материјалима) 

d) ДУШАНА ВУДРАГОВИЋА, дипломираног физичара, који је предао докторску дисертацију под називом: " 
FARADAY WAVES IN ULTRACOLD DIPOLAR BOSE GASES" (Фарадејеви таласи у ултрахладним диполним Бозе 
гасовима) 

6. Усвајање извештаја Комисије за преглед и оцену докторске дисертације и одређивање Комисије за одбрану 

дисертације за:  

a) ВЛАДИМИРА ВЕЉИЋА, дипломираног физичара, који је предао докторску дисертацију под називом: 

„QUANTUM KINETIC THEORY FOR ULTRACOLD DIPOLAR FERMI GASES“ (наслов на српском језику: „КВАНТНА 

КИНЕТИЧКА ТЕОРИЈА ЗА УЛТРАХЛАДНЕ ДИПОЛНЕ ФЕРМИ ГАСОВЕ“) 

b) МАРКА МИЛИВОЈЕВИЋА, дипломираног физичара, који је предао докторску дисертацију под називом: 

„SPIN-ORBIT INTERACTION IN LOW DIMENSIONAL SYSTEMS: SYMMETRY BASED APPROACH” (наслов на 

српском језику: „СПИН-ОРБИТ ИНТЕРАКЦИЈА У НИСКОДИМЕНЗИОНАЛНИМ СИСТЕМИМА: СИМЕТРИЈСКИ 

ПРИСТУП) 

c) НИКОЛУ КОЊИКА, дипломираног физичара, који је предао докторску дисертацију под називом: 

„ФЕНОМЕНОЛОГИЈА НЕКОМУТАТИВНОГ СКАЛАРНОГ ПОЉА У РАВНОМ И ЗАКРИВЉЕНОМ ПРОСТОРУ“ 

d) ИВАНЕ ВУКАШИНОВИЋ, дипломираног физичара, која је предала докторску дисертацију под називом: 

"ЗАВИСНОСТ ДИСТРИБУЦИЈЕ РАДИОНУКЛИДА U- И Th- СЕРИЈЕ 
40

K И 
137

Cs ОД ФИЗИЧКО-ХЕМИЈСКИХ 

ОСОБИНА ЗЕМЉИШТА У СИСТЕМУ ЗЕМЉИШТЕ-БИЉКА" 

7. Усвајање пријављене теме за израду дипломског рада, одређивање руководиоца и Комисије за одбрану рада 

за: 

a) ЈЕЛЕНУ ТАСИЋ, апсолвента физика, смера Општа физика, која је пријавила дипломски рад под називом: 

„КОМПАРАТИВНЕ МЕТОДЕ МОДЕЛИРАЊА СЛОБОДНОГ ПАДА И ВУЧНЕ СИЛЕ  – ЕКСПЕРИМЕНТИ У ФИЗИЦИ“ 

8. Усвајање пријављене теме за израду мастер рада, одређивање руководиоца и Комисије за одбрану рада за: 

a) ДАНИЛА РАКОЊЦА, студента мастер студија смера Теоријска и експериментална физика, који је пријавио 

мастер рад под називом: „ТРОДИМЕНЗИОНА ПОЕНКАРЕОВА ГРАДИЈЕНТНА ТЕОРИЈА: НАРУШЕЊЕ 

ПАРНОСТИ У ADS СЕКТОРУ“ 

b) ПЕТРА МИТРИЋА, студента мастер студија смера Теоријска и експериментална физика, који је пријавио 

мастер рад под називом: „КАНОНСКА СТРУКТУРА ТЕЛЕПАРАЛЕЛНЕ ФОРМУЛАЦИЈЕ ОПШТЕ ТЕОРИЈЕ 

РЕЛАТИВНОСТИ“ 

c) ВЕЉКА МАКСИМОВИЋА, студента мастер студија смера Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: „МОГУЋНОСТИ ЗА УНАПРЕЂЕЊЕ МЕРЕЊА МАСЕ W БОЗОНА НА 

ЕКСПЕРИМЕНТУ АТЛАС” 

d) СУЗАНА МИЛАДИЋ, студента мастер студија смера Теоријска и експериментална физика, која је пријавила 

мастер рад под називом: „СПИНСКА РЕЗОНАНЦА И РЕЛАКСАЦИЈА У КВАНТНИМ ТАЧКАМА УНУТАР InSb 

НАНОЖИЦА“ 

e) НЕМАЊЕ СИМОВИЋА, студента мастер студија смера Теоријска и експериментална физика, који је 

пријавио мастер рад под називом: „НЕКОМУТАТИВНОСТ ОТВОРЕНЕ БОЗОНСКЕ СТРУНЕ У ПРИСУСТВУ 

КОНСТАНТНИХ ПОЗАДИНСКИХ ПОЉА“ 

f) ЛУКУ РАЈАЧИЋА, студента мастер студија смера Теоријска и експериментална физика, који је пријавио 

мастер рад под називом: "ИНТЕРАКТИВНИ КИНЕТИЧКИ МОДЕЛ ПРИКАТОДНЕ ОБЛАСТИ АБНОРМАЛНОГ 

ТИЊАВОГ ПРАЖЊЕЊА У НЕОНУ СА РАВНОМ КАТОДОМ" 

g) ЛУКУ БЛАГОЈЕВИЋА, студента мастер студија смера Теоријска и експериментална физика, који је пријавио 

мастер рад под називом: "PRODUCTION AND DISTRIBUTION OF KNOWLEDGE: AN AGENT BASED MODEL" 

(Продукција и дистрибуција знања: модел заснован на агентима) 

h) МИЛИЦУ ЂЕКИЋ, студента мастер студија физике, смер Општа физика, која је пријавила мастер рад под 

називом: "ПРОУЧАВАЊЕ  УТИЦАЈА  БОМБАРДОВАЊА ЈОНИМА N
5+

 НА СПЕКТРАЛНЕ КАРАКТЕРИСТИКЕ 

ПОЛИМЕРА ПОЛИЕТИЛЕНТЕРЕФТАЛАТА" 

i) ЈЕЛЕНУ ПЕТРОВИЋ, студента мастер студија метеорологије, које је пријавила мастер рад под називом: 

"ПРОГНОЗА ИНДЕКСА ЗАЛЕЂИВАЊА ВАЗДУХОПЛОВА У ЛЕТУ" 
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9. Усвајање извештаја о рецензији рукописа "Даљинска мерења у метеорологији", аутора др Немање 

Ковачевића.  

10. Питања наставе, науке и финансија.  

11. Захтеви за одобрење одсуства. 

12. Усвајање извештаја са службених путовања. 

13. Дописи и молбе упућене Наставно-научном већу. 

14. Обавештења. Текућа питања. Питања и предлози.  

 

 

 Пошто је усвојен предложени Дневни ред, прешло се на  

1. тачку 

Усвојен је Записник са IХ седнице Изборног и Наставно-научног већа Физичког факултета.  

 

Изборно веће 

 

2. тачка 

 

Изборно веће је подржало предлог Катедре за физику језгра и честица и донело одлуку о 

расписивању конкурса за избор једног доцента за ужу научну област Физика честица и поља. 

Комисија:  др Маја Бурић, редовни професор ФФ 

  др Воја Радовановић, редовни професор ФФ 

  др Бранислав Цветковић, научни саветник ИФ 

 

3. тачка 

  

 Усвојен је Извештај Комисије и донета одлука о избору наставника Физичког факултета и 

то: 

a) након тајног гласања у коме су учествовали редовни професори Факултета, са 15 

гласова ЗА и 2 УЗДРЖАНА, утврђен је предлог за избор др МИЛОША ВИЋИЋА у звање 

редовног професора за ужу научну област Примењена физика  

b) након гласања у коме су учествовали редовни и ванредни професори Факултета, 

једногласно, са 27 гласова ЗА утврђен је предлог за избор др ВЛАДАНА ВУЧКОВИЋА у 

звање ванредног професора за ужу научну област Физика облака  

 

4. тачка 

 

Усвојен је Извештај Комисије за избор у научно звање и то: 

a) након гласања у коме су учествовали редовни професори Физичког факултета, 

једногласно је, са  17 гласова ЗА (од укупно 21 колико чини изборно тело) утврђен је 

предлог за избор др ТОМИСЛАВЕ ВУКИЋЕВИЋ у звање научни саветник 

b) након гласања у коме су учествовали редовни професори, ванредни професори и 

доценти, Изборно веће је једногласно, са  36 гласова ЗА (од укупно 52 колико чини 
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изборно тело), утврђен предлог за избор др АЛЕКСАНДРА ЋИРИЋА у звање научни 

сарадник.  

 

5. тачка 

 

Одређена је Комисија за преглед и оцену докторске дисертације за: 

 

a) АЛЕКСАНДРУ ДИМИЋ, дипломираног физичара, која је предала докторску дисертацију 

под називом: "DETECTION OF QUANTUM CORRELATIONS" (Детекција квантних 

корелација) 

Комисија:  др Боривоје Дакић, доцент ФФ Универзитета у Бечу 

  др Иванка Милошевић, редовни професор ФФ 

  др Татјана Вуковић, ванредни професор ФФ 

  др Антун Балаж, научни саветник ИФ 

  др Милан Дамњановић, редовни професор ФФ 

 

b) ДРАГОЉУБА ГОЧАНИНА, дипломираног физичара, који је предао докторску 
дисертацију под називом: "FIELD THEORY IN SO(2,3)* MODEL OF NONCOMMUTATIVE 
GRAVITY" (Теорија поља у SO(2,3)* моделу некомутативне гравитације) 
Комисија:  др Воја Радовановић, редовни професор ФФ 
  др Марија Димитријевић-Ћирић, ванредни професор ФФ 
  др Бранислав Цветковић, научни саветник ИФ 

 

c) СРЂАНА СТАВРИЋА, дипломираног физичара, који је предао докторску дисертацију под 

називом: "FIRST-PRINCIPLES STUDY OF THE STRUCTURAL AND ELECTRONIC PROPERTIES OF 

METALS ADSORBED ON TWO-DIMENSIONAL MATERIALS" (Ab initio истраживање 

структурних и електронских особина метала адсорбованих на дводимензионалним 

материјалима) 

Комисија: др Жељко Шљиванчанин, научни саветник ИНН Винча 

  др Татјана Вуковић, ванредни професор ФФ 

  др Иванка Милошевић, редовни професор ФФ 

 

d) ДУШАНА ВУДРАГОВИЋА, дипломираног физичара, који је предао докторску 
дисертацију под називом: " FARADAY WAVES IN ULTRACOLD DIPOLAR BOSE GASES" 
(Фарадејеви таласи у ултрахладним диполним Бозе гасовима) 
Комисија:  др Антун Балаж, научни саветник ИФ 
  др Ивана Васић, виши научни сарадник ИФ 
  др Милан Дамњановић, редовни професор ФФ 
  др Милан Кнежевић, редовни професор ФФ 

 

5. тачка 

 

 Усвојен је извештај Комисије за преглед и оцену докторске дисертације и одређена 

Комисија за одбрану дисертације за:  
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a) ВЛАДИМИРА ВЕЉИЋА, дипломираног физичара, који је предао докторску дисертацију 

под називом: „QUANTUM KINETIC THEORY FOR ULTRACOLD DIPOLAR FERMI GASES“ 

(наслов на српском језику: „КВАНТНА КИНЕТИЧКА ТЕОРИЈА ЗА УЛТРАХЛАДНЕ ДИПОЛНЕ 

ФЕРМИ ГАСОВЕ“) 

Комисија: др Антун Балаж, научни саветник ИФ 

  др Ивана Васић, виши научни сарадник 

  др Милан Дамњановић, редовни професор ФФ 

  др Милан Кнежевић, редовни професор ФФ 

 

b) МАРКА МИЛИВОЈЕВИЋА, дипломираног физичара, који је предао докторску 

дисертацију под називом: „SPIN-ORBIT INTERACTION IN LOW DIMENSIONAL SYSTEMS: 

SYMMETRY BASED APPROACH” (наслов на српском језику: „СПИН-ОРБИТ ИНТЕРАКЦИЈА 

У НИСКОДИМЕНЗИОНАЛНИМ СИСТЕМИМА: СИМЕТРИЈСКИ ПРИСТУП) 

Комисија:  др Татјана Вуковић, ванредни професор ФФ 

  др Милан Дамњановић, редовни професор ФФ 

  др Владимир Дамљановић, виши научни сарадник ИФ 

  др Саша Дмитровић, доцент ФФ 

  др Наташа Лазић, научни сарадник ФФ 

 

c) НИКОЛУ КОЊИКА, дипломираног физичара, који је предао докторску дисертацију под 

називом: „ФЕНОМЕНОЛОГИЈА НЕКОМУТАТИВНОГ СКАЛАРНОГ ПОЉА У РАВНОМ И 

ЗАКРИВЉЕНОМ ПРОСТОРУ“ 

Комисија:  др Воја Радовановић, редовни професор ФФ 

  др Марија Димитријевић-Ћирић, ванредни професор ФФ 

  др Анђело Самсаров, научни сарадник Инст. Р. Бошковић Загреб 

  др Душко Латас, доцент ФФ 

  др Бранислав Цветковић, научни саветник ИФ 

 

d) ИВАНУ ВУКАШИНОВИЋ, дипломираног физичара, која је предала докторску 

дисертацију под називом: "ЗАВИСНОСТ ДИСТРИБУЦИЈЕ РАДИОНУКЛИДА U- И Th- 

СЕРИЈЕ 40K И 137Cs ОД ФИЗИЧКО-ХЕМИЈСКИХ ОСОБИНА ЗЕМЉИШТА У СИСТЕМУ 

ЗЕМЉИШТЕ-БИЉКА" 

Комсија:  др Драгана Тодоровић, научни саветник ИНН Винча 

  др Јован Пузовић, редовни професор ФФ 

  др Милош Вићић, ванредни професор ФФ 

 

7. тачка 

 

Усвојена је пријављена тема за израду дипломског рада, одређен руководилац и Комисија 

за одбрану рада за: 

a) ЈЕЛЕНУ ТАСИЋ, апсолвента физика, смера Општа физика, која је пријавила дипломски 

рад под називом: „КОМПАРАТИВНЕ МЕТОДЕ МОДЕЛИРАЊА СЛОБОДНОГ ПАДА И 

ВУЧНЕ СИЛЕ – ЕКСПЕРИМЕНТИ У ФИЗИЦИ“ 
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Комисија: др Мићо Митровић, редовни професор ФФ, руководилац рада 

  др Андријана Жекић, ванредни професор ФФ 

  др Бранислава Мисаиловић,  научни сарадник ФФ 

 

8. тачка 

 

Усвајена је пријављена тема за израду мастер рада, одређен руководилац и Комисија за 

одбрану рада за: 

a) ДАНИЛА РАКОЊЦА, студента мастер студија смера Теоријска и експериментална 

физика, који је пријавио мастер рад под називом: „ТРОДИМЕНЗИОНА ПОЕНКАРЕОВА 

ГРАДИЈЕНТНА ТЕОРИЈА: НАРУШЕЊЕ ПАРНОСТИ У ADS СЕКТОРУ“ 

Комисија:  др Бранислав Цветковић, научни саветник ИФ, руководилац рада 

 др Марија Димитријевић-Ћирић, ванредни професор ФФ 

 др Душко Латас, доцент ФФ 

 

b) ПЕТРА МИТРИЋА, студента мастер студија смера Теоријска и експериментална физика, 

који је пријавио мастер рад под називом: „КАНОНСКА СТРУКТУРА ТЕЛЕПАРАЛЕЛНЕ 

ФОРМУЛАЦИЈЕ ОПШТЕ ТЕОРИЈЕ РЕЛАТИВНОСТИ“ 

Комисија:  др Бранислав Цветковић, научни саветник ИФ, руководилац рада 

 др Душко Латас, доцент ФФ 

 др Воја Радовановић, редовни професор ФФ 

 

c) ВЕЉКА МАКСИМОВИЋА, студента мастер студија смера Теоријска и експериментална 

физика, који је пријавио мастер рад под називом: „МОГУЋНОСТИ ЗА УНАПРЕЂЕЊЕ 

МЕРЕЊА МАСЕ W БОЗОНА НА ЕКСПЕРИМЕНТУ АТЛАС” 

Комисија:  др Ненад Врањеш, виши научни сарадник ИФ, руководилац рада 

  др Петар Аџић, редовни професор ФФ у пензији  

 др Душко Латас, доцент ФФ 

 

d) СУЗАНА МИЛАДИЋ, студента мастер студија смера Теоријска и експериментална 

физика, која је пријавила мастер рад под називом: „СПИНСКА РЕЗОНАНЦА И 

РЕЛАКСАЦИЈА У КВАНТНИМ ТАЧКАМА УНУТАР InSb НАНОЖИЦА“ 

Комисија:  др Едиб Добарџић, ванредни професор ФФ, руководилац рада 

  др Зоран Поповић, доцент ФФ 

  Марко Миливојевић, истраживач сарадник ФФ  

 

e) НЕМАЊЕ СИМОВИЋА, студента мастер студија смера Теоријска и експериментална 

физика, који је пријавио мастер рад под називом: „НЕКОМУТАТИВНОСТ ОТВОРЕНЕ 

БОЗОНСКЕ СТРУНЕ У ПРИСУСТВУ КОНСТАНТНИХ ПОЗАДИНСКИХ ПОЉА“ 

Комисија:  др Бојан Николић, виши научни сарадник ИФ, руководилац рада 

  др Воја Радовановић, редовни професор ФФ 

  др Марија Димитријевић-Ћирић, ванредни професор ФФ 
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f) ЛУКУ РАЈАЧИЋА, студента мастер студија смера Теоријска и експериментална физика, 

који је пријавио мастер рад под називом: "ИНТЕРАКТИВНИ КИНЕТИЧКИ МОДЕЛ 

ПРИКАТОДНЕ ОБЛАСТИ АБНОРМАЛНОГ ТИЊАВОГ ПРАЖЊЕЊА У НЕОНУ СА РАВНОМ 

КАТОДОМ" 

Комисија:  др Ђорђе Спасојевић, редовни професор ФФ, руководилац рада 

  др Срђан Буквић, редовни професор ФФ 

  др Никола Ивановић, доцент Пољопривредног факулета 

 

g) ЛУКУ БЛАГОЈЕВИЋА, студента мастер студија смера Теоријска и експериментална 

физика, који је пријавио мастер рад под називом: "PRODUCTION AND DISTRIBUTION OF 

KNOWLEDGE: AN AGENT BASED MODEL" (Продукција и дистрибуција знања: модел 

заснован на агентима) 

Комисија: др Александра Алорић, научни сарадник ИФ, руководилац рада 

  др Ђорђе Спасојевић, редовни професор ФФ 

  др Зорица Поповић, доцент ФФ 

 

h) МИЛИЦУ ЂЕКИЋ, студента мастер студија физике, смер Општа физика, која је 

пријавила мастер рад под називом: "ПРОУЧАВАЊЕ  УТИЦАЈА  БОМБАРДОВАЊА 

ЈОНИМА N5+ НА СПЕКТРАЛНЕ КАРАКТЕРИСТИКЕ ПОЛИМЕРА 

ПОЛИЕТИЛЕНТЕРЕФТАЛАТА" 

Комисија: др Славица Малетић, доцент ФФ, руководилац рада 

  др Драгана Церовић, виши научни сарадник ФФ 

  др Јаблан Дојчиловић, редовни професор ФФ 

 

i) ЈЕЛЕНУ ПЕТРОВИЋ, студента мастер студија метеорологије, које је пријавила мастер 

рад под називом: "ПРОГНОЗА ИНДЕКСА ЗАЛЕЂИВАЊА ВАЗДУХОПЛОВА У ЛЕТУ" 

Комисија: др Драгана Вујовић, ванредни професор ФФ, руководилац рада 

  др Лазар Лазић, редовни професор ФФ 

  др Владан Вучковић, ванредни професор ФФ 

 

9. тачка  

 

 Усвојен је Извештај комисије о рецензији рукописа „Даљинска мерења у метеорологији”, 

аутора др Немање Ковачевића. 

 

10. тачка 

 

 Питања наставе 

 Продекан за наставу, доц. др Славица Малетић, обавестила је чланове Већа да настава за 

све године почиње у уторак 1. октобра, када ће се одржати и свечани пријем бруцоша. Да би 

студенти стигли да упишу наредну годину студија, сви испити се морају завршити до 20. 

септембра. Из истог разлога продекан је замолила наставнике да на време архивирају записнике 

са испита, а затим их обавезно одштампане и потписане предају судентској служби.  
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 Продекан је члановима Већа предложила календар за наредну годину студија у којој су 

оба семестра скраћена на по 13 недеља. Настава је скраћена по препоруци Универзитета, а према 

налогу Министарства просвете, пошто се у лето 2020. године у Београду одржавају Европске 

летње универзитетске игре. Ради смештаја учесника Универзијаде у јулу месецу ће бити исељени 

студенски домови, па семестар, као и јунски и јулски испитни рок морају да се заврше раније.  

 После краће дискусије, са 1 гласом ПРОТИВ, 5 УЗДРЖАНИХ и 35 гласова ЗА, усвојен је 

календар за наредну школску годину.  

 Наставно-научно веће усвојило је списак студената докторских и мастер студија који су се 

пријавили на конкурс за ангажовање у настави.  

 Ради одласка у пензију проф. др Илије Марића, од идуће школске године предмет 

Философија природних наука укида се као изборни предмет на основним студијама. Проф. др 

Илија Марић биће ангажован за наставу на мастер студијама.  

 Доц. др Славица Малетић обавестила је чланове Већа да се у другом уписном року за упис 

студената у I годину основних студија на Факултет уписало још 17 студената. Сенат ће ових дана 

одлучивати о расписивању трећег уписног рока, с обзиром да је остало доста места за упис на 

више факултета.  

 

 Питања науке 

 На предлог продекана за науку проф. др Стевана Стојадиновића, оформљена је Комисија 

за упис на докторске студије и то:  

- проф. др Воја Радовановић 

- проф. др Горан Попарић 

- проф. др Ивана Тошић 

  Поводом дописа проф. др Татјане Вуковић, доц. др Саше Дмитровића, доц. др Зорана 

Поповића и др Јовице Јововића, оформљена је Комисија за израду правилника о распоређивању 

средстава стечених на основу пројеката које ће финансирати Фонд за науку Републике Србије.  

 Комисија: проф. др Стеван Стојадиновић 

   проф. др Горан Попарић 

   проф. др Татјана Вуковић 

   Лелица Вуковић-Радош 

 

13. тачка 

 

 Наставно-научно веће је одобрило плаћена одсуства следећим наставницима и 

сарадницима:  

a) проф. др Мићи Митровићу у периоду од 10.09. до 12.09.2019. године, ради 

учествовања на Међународној конференцији Collaborative Conference on Crystal Growth 

(3CG 2019), у Милану, Италија. 

b) др Бранислави Мисаиловић у периоду од 10.09. до 12.09.2019. године, ради 

учествовања на Међународној конференцији „Collaborative Conference on Crystal 

Growth (3CG 2019)”, у Милану, Италија. 

c) проф. др Владимиру Ђурђевићу  
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- у периоду од 16.09. до 20.09.2019. године, ради учешћа на радионици 

нумеричког моделирања атмосфере „SEE Network” пројекта, у Загребу, 

Хрватска; 

- у периоду од 6.10. до 11.10.2019. године, ради учешћа на конфренцији 

„Interdisciplinary Endeavor in Technology: Energy Nanoscale, Environment”, у 

Сплиту, Хрватска; 

- у периоду од 13.10. до 15.10.2019. године, ради учешћа на састанку Н2020 

пројекта Терефика, у Паризу, Француска. 

d) Николи Коњику, Драгољубу Гочанину и Александри Димић у периоду од 16.09. до 

26.09.2019. године, ради учешћа на конференцији „Humboldt Kolleg Frontiers in Physics: 

From the Electroweak to the Planck Scales” и „Workshop on Quantum Geometry, Field 

Theory and Gravity”, на Крфу, Грчка 

e) проф. др Милораду Кураици и проф. др Братиславу Обрадовићу  

- у периоду од 18.09. до 23.09. 2019. године, ради учешћа на 25th Congress of 

SCTM у Охриду, Северна Македонија. 

- у периоду од 26.09. до 05.10.2019. године ради посете Институту за физику 

Националне академије Белорусије у Минску. 

f) проф. др Стевану Стојадиновићу и проф. др Растку Василићу, у периоду од 20.09. до 

19.10.2019. године ради одласка на службени пут у оквиру пројекта FUNCOAT из 

програма Хоризонт 2020, у Ахен, Немачка. 

g) проф. др Ивану Виденовићу у периоду од 20.10. до 26.10.2019. године ради учешћа на 

састанку Regional Workshop on Nuclear Safety and Security Education, у оквиру 

регионалног пројекта техничке сарадње Међународне агенције за атомску енергију 

RER/0/043 Enhancing Capacity Building Activities in the European Nuclear and Radiation 

Safety Organiyations for the Safe Operation of Facilities, у Атини, Грчка. 

 

 Наставно-научно веће је условно одобрило проф. др Зорану Борјану коришћење једне 

слободне школске године од 1. октобра 2019. до 30. септембра 2020. године, уколико катедре на 

којима професор држи наставу одреде одговарајућу замену.   

 

14. тачка 

 

Усвојен је предлог Катедре за Општу и Динамичку метеорологију и изабран проф. др Лазар 

Лазић за члана Колегијума докторских студија. 

 

15. тачка 

 

 Жребом су одређени чланови жирија за доделу Годишње награде Физичког факултета за 

научни рад младом истраживачу и то: 

- проф. др Јован Пузовић 

- проф. др Мићо Митровић 

- проф. др Иванка Милошевић 
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16. тачка 

 

Поводом молбе за сагласност за учешће Физичког факултета на програму мастер студија 

Оптика и биофотоника за биомедицину на Универзитету у Београду, развила се дискусија у којој је 

учествовало више чланова Већа. Пруступило се и гласању, приликом чега је утврђено да је 

седница изгубила кворум потребан за одлучивање, те је одлука о овом питању одложена.  

 

 

 

Седница је завршена у 13 часова.  

 

 

 

Београд, 20.9.2019.      ДЕКАН ФИЗИЧКОГ ФАКУЛТЕТА  
        Проф. др Иван Белча, с.р. 
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Табела 5.1 Спецификација  предмета  на студијском програму докторских студија 

Назив предмета: Теорија струна 

Наставник или наставници: Бојан Николић 

Статус предмета: изборни 

Број ЕСПБ: 15 

Услов: Квантна теорија  градијентних поља,  Суперсиметрија 

Циљ предмета 

Разумевање основа теорије струна, као теорије која претендује на уједињење свих 
интеракција.   

Исход предмета  

Студенти су припремљени за истраживачки рад у овој области.  

Садржај предмета 
Теоријска настава 

 

1. Бозонска струна. Дејство.                                                                                                        -
Kaнонска квантизација.                                                                                                              -
Квантизација на светлосном конусу.  
2. Koнформна теорија поља и интеракција струна.                                                                        -
BRST квантизација .                                                                                                                                   
-Позадинска поља.                                                                                                                                       
-Вертексни оператори.                                                                                                                                                 
3. Ramond-Neveu-Schwarz струне (са суперсиметријом светске површи)                                                 
4, Green-Schwarz струне (са суперсиметријом простор-времена).                                                              
5. T-дуалност .                                                                                                                                                      
-Dp-бране.                                                                                                                                                                                                                                               
6. ТипI,типII,хетеротичке теорије струна.                                                                                                        
-M-теорија.  
 

 

Практична настава  

 

Студенти решавају самостално домаће задатке уз контролу наставника 
 

 

Препоручена литература  

 

1. K. Becker, M Becker, J. H. Schwarz, String theory and M_theory, A modern introduction, 
Cambridge Univerzity press, UK, 2007. 
2.  M. B. Green, J. H. Schwarz, E. Witten, Superstring theory,   
(vol. I i II) Cambridge Univerzity press, UK, 1987. 
3. B. Zwiebach, A first course in string theory, Cambridge University press, 2004. 
 

Број часова  активне наставе Теоријска настава: 5 Практична настава: 

Методе извођења наставе 
 

Предавања, консултације,израда домаћих задатака. 
 

Оцена  знања (максимални број поена 100) 

Писмени испит 40% 

Усмени испит 40 % 

Домаћи задаци 10 % 

Семинари 10 % 

Начин провере знања могу бити различити : писмени испит, усмени испит, семинар, израда домаћих 

задатака 

*максимална дужна 1 страница А4 формата 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1 Specification of subjects in the doctoral studies study program 

 

Name of the subject:  String theory 

Teacher(s): Bojan Nikolic 

Status of the subject: optional 

Number of ЕСПБ points: 15 

Condition: Quantum theory of gauge fields, Supersymmetry 

Goal of the subject 

Understanding foundations of string theory as theory which unifies all known interactions 

 

 

Outcome of the subject 

Students are prepared for research work in the domain of string theory 

 

 

Content of the subject 

Theoretical lectures 

1. Bosonic string. Action. Canonical and light-cone quantization 

2. Conformal field theory and string interactions. Background fields. Vertex operators. BRST 

quantization 

3. RNS superstring 

4. GS superstring 

5. T-duality. Dp-branes 

6. Type I, type II, heterotic string. M-theory 

 

Practical lectures 

Solving computational problems in string theory 

 

 

Recommended literature 

1. K. Becker, M Becker, J. H. Schwarz, String theory and M_theory, A modern introduction, 
Cambridge Univerzity press, UK, 2007. 
2.  M. B. Green, J. H. Schwarz, E. Witten, Superstring theory,   
(vol. I i II) Cambridge Univerzity press, UK, 1987. 

3. B. Zwiebach, A first course in string theory, Cambridge University press, 2004. 

 

 

Number of active classes  Theory: 5 Practice: 



Methods of delivering lectures: written examination, oral examination, seminar, homework 

 

 

 

Evaluation of knowledge (maximum number of points 100) 

written examination 40 %, oral examination 40 %, seminar 10 %, homework 10 % 

Weays of testing the knowledge may vary: (written tests, oral exam, project presentation, seminars 

ets...... 

*maximum length 1 А4 page 
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II РАЗРЕД 

Група П 

Друштво Физичара Србије 
СЕНТА 
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Министарство Просвете и Науке Републике Србије 

ЗАДАЦИ 
 

1. На дугачком глатком хоризонталном столу лежи даска масе 

kg 22 m  и дужине m 1L . На левом крају даске постављено је 

тело  масе kg 11 m . Коефицијент трења између даске и тела 

једнак је μ . Тело 1m  везано је лаком нерастегљивом нити са тегом 

kg 1M  преко глатког лаког котура (види слику). Дати систем 

почне да се креће. а) При којим вредностима коефицијента трења μ  ће тело 1m  и даска 2m  да се крећу 

као једна целина (без проклизавања)? б) Израчунајте минималну вредност коефицијента трења minμ  при 

којој је могуће кретање без проклизавања. в) За 2/μμ min  израчунајте укупно време t  од почетка 

кретања које је тело 1m  провело на дасци? Узети да је 2m/s 10g . (20 п) 
 

2. Један мол хелијума као идеалног гаса врши кружни циклус приказан на 

pV  дијаграму на слици. Тај циклус се састоји из два дела у којима постоји 

линеарна зависност притиска p  од запремине V , и једне изобаре. Познато је 

да је на изобари 3–1 над гасом извршен рад 31A   031 A , а при томе је 

температура гаса смањена α  пута. Стања 2 и 3 припадају истој изотерми. 

Тачке 1 и 2 припадају правој која пролази кроз координатни почетак. 

а) Изведите општи израз зависности укупног рада A  гаса у циклусу од рада 

31A ; б) Пет независних експеримената је извршено са истом количином 

хелијума и истим циклусом у којима је за различите вредности 31A  израчунаван укупан рад A  гаса у 

циклусу, и добијени су следећи резултати: 
 

J]/[31A  200 300 400 500 600 

J]/[A  105 145 200 255 295 
 

Користећи дату табелу нацртајте график  31AfA  ; в) на основу резултата под а) и б) израчунајте 

температуре 1T  у тачки 1 за сваки појединачни експеримент, знајући да је 0,05%5/Δδ 313131  AAA . 

Универзална гасна константа износи K) J/(mol38  , R  . (25 п) 
 

3. Доњи крај вертикалне стаклене цеви дужине L2  је затопљен, док је горњи отворен ка 

атмосфери. У доњој половини цеви налази се идеални гас на температури 0T , док се у горњој 

половини налази жива (види слику). а) Ако цев почнемо лагано да загревамо, до које 

минималне температуре треба загрејати гас у цеви да би он истиснуо живу у потпуности? б) 

Ако цев почнемо лагано да хладимо, изведите општи израз промене температуре гаса у цеви. 

Атмосферски притисак 0p  је дат у милиметрима живиног стуба  LH 0 . (15 п) 

 

4. У суду који мирује запремине 3dm30  V  , и који има чврсте и савршено топлотно непропусне зидове 

налазе се ваздух при нормалним условима  K273 ,Pa10 0
5

0    T   p   и вода масе g9в   m  . У једном 

тренутку суд почне да се креће транслаторно брзином v . После успостављања топлотне равнотеже ваздух 

у суду има релативну влажност %50φ    . Израчунајте коликом брзином v  се креће суд. Узети да су: 

специфична топлота испаравања воде J/kg102,2λ 6     , специфични топлотни капацитет воде 

 KkgJ/4200    c , притисак засићене водене паре при нормалним условима Pa600  p  , специфична 

топлотна капацитативност ваздуха при константној запремини  KkgJ/720     cV , средња моларна маса 

ваздуха kg/mol029,0   M  , моларна маса воде kg/mol 018,0OH2
M , универзална гасна константа 

K)J/(mol318   , R . Притисак засићене водене паре при температури од C100    t  износи 
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Pa105
0    pp  . Релативна влажност ваздуха φ  се дефинише као однос масе водене паре пm  у некој 

запремини и масе коју би имала засићена водена пара зас
пm  у истој тој запремини: зас

пп /φ mm . (20 п) 
 

5. На растојању d  од хоризонталне, бесконачне равне, танке и равномерно наелектрисане плоче, брзина 

електрона је износила 0v , при чему је правац брзине заклапао угао α  са вертикалом. Плоча је 

наелектрисана негативним наелектрисањем, при чему је површинска густина наелектрисања (по 

апсолутној вредности) constσ  .  

а) Претпостављајући да је електрично поље довољно јако да електрон сво време остаје са исте стране 

наелектрисане плоче, наћи најмање растојање mind  електрона од плоче током кретања. Колико времена τ  

протекне од почетка кретања електрона до тачке минималног растојања од плоче? 

б) Ако је електрично поље такво да путања електрона тангира наелектрисану плочу, наћи координате те 

тачке. 

в) Нека је електрично поље такво да електрон пролази кроз плочу. Колики је угао β  (мерен у односу на 

вертикалу као и α ) под којим електрон улеће у област испод наелектрисане плоче. Колика је брзина 

електрона (који се налази испод плоче) на растојању h  од плоче? 

Задатак решити без примене закона одржања енергије. Силу теже као и утицај електрона на прерасподелу 

наелектрисања на плочи занемарити. (20 п) 

 

*  *  *  *  *  *  *  *  *  * 
ПОМОЋ 

 

Електрично поље бесконачне, површински равномерно наелектрисане плоче постоји са обе њене стране. Интензитет 

вектора јачине електричног поља око плоче једнак је  0ε2/σE , где је σ  површинска густина наелектрисања, а 0ε  

диелектрична пропустљивост вакуума. На пробно позитивно наелектрисање (са једне или друге стране равни) делује 

одбојна сила ако је плоча позитивно наелектрисана, а привлачна ако је плоча негативно наелектрисана. Сила око 

плоче делује увек дуж правца нормале на плочу.  

 

Неке основне тригонометријске једнакости и формуле: 

  

1αcosαsin 22       2/αcos1α/2sin2   

αctg1/1αsin 2      2/αcos1α/2cos2   

αtg1/1cosα 2  αcos2sinαα2sin   

 αtg1/2tgαα2 tg 2  αsinαcosα2cos 22   

  βsinαcosβcosαsinβαsin     βsinαsinβcosαcosβα cos   
 

Парабола 


















a

x

a

x
1

2
1  има нуле у ax 21  , ax 2 , а минимум за ax

2

1
 . 

 

*  *  *  *  *  *  *  *  * 

Задатке припремили: др Сања Тошић, Институт за физику, Београд 

                                    др Бојан Николић, Институт за физику, Београд 

Рецензент: др Драган Д. Маркушев, Институт за физику, Београд  

Председник Комисије за такмичење ДФС: др Александар Крмпот, Институт за физику, Београд 
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II РАЗРЕД 

Група П 

Друштво Физичара Србије 
СЕНТА 

21.04.2012. 
Министарство Просвете и Науке Републике Србије 

РЕШЕЊА ЗАДАТАКА 

 

Р1. а) Означимо силу затезања нити са T  а силу трења са трF . Напишимо други Њутнов закон за 

сва три тела:  

тр11 FTam  , тр22 Fam  , TMgMa 1 . (3 п) 

 

Из ових једначина следи да су: 

Mm

FMg
a






1

тр

1  и 
2

тр

2
m

F
a  . (2 п) 

 

Приликом кретања без проклизавања важи да је 21 aa   (1 п), па је: 
 

2

тр

1

тр

m

F

Mm

FMg





 тј. g

Mmm

Mm
F




21

2
тр . (2 п) 

 

При томе сила трења не прелази вредност gm1μ . Значи, за кретање без проклизавања је 
 

gmg
Mmm

Mm
F 1

21

2
тр μ


 , (2 п) 

одакле је 

 

 
.μ

211

2

Mmmm

Mm


  (2 п) 

 

б) Минимална вредност коефицијента трења minμ  при којој је могуће кретање без проклизавања, 

на основу претходног резултата, износи 

 

 
.

2

1
μ

211

2
min 




Mmmm

Mm
 (2 п) 

 

За све вредности minμμ   нема проклизавања, док ће за minμμ   тело 1m  клизити по дасци. 

 

в) На основу претходне анализе видимо да се за minμμ   тело 1m  и даска 2m  крећу различитим 

убрзањима  21 aa  . У том случају су 
 

g
Mm

mM
a






1

1
1

μ
 и g

m

m
a

2

1
2

μ
 . (2 п) 

 

Релативно убрзање релa  износи  4/12/μμ min  : 

 

4

μμ

2

1

1

1
21рел

g
g

m

m

Mm

mM
aaа 













 . (2 п) 
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Време клизања по дасци налазимо из формуле 

 

 

2

2

рел

t
aL  , па је s. 9,0

2

рел


a

L
t  (2 п) 

 

* * * 

 

Р2. а) Ако температуру хелијума у тачки 1 означимо са 1T , онда је по услову задатка 13 αTT  . 

Рад 31A  извршен над гасом дуж изобаре износи 

 

   1ανν)( 11313131  RTTTRVVpA . (1 п) 

Одатле је, за 1ν  ,  

 1α

31

1



R

A
T . (1 п) 

 

Укупан рад гаса у циклусу добија се као површина троугла 

 

  1312
2

1
VVppA  . (1 п) 

 

За изобарски процес важи да је TV ~ , па можемо да пишемо да је 

 

 1α113  VVV . (1 п) 

 

Пошто тачке 1 и 2 леже на правој која пролази кроз координатни почетак, онда је 

 

1

1

2
2 p

V

V
p  , (1 п) 

док тачке 2 и 3 припадају истој изотерми па је 

 

3322 VpVp  . (1 п) 

 

Искористивши последње три једначине добијамо, уз 13 pp  , да је 

 

11

1

3
2 α pp

V

V
p  . (1 п) 

 

Сада можемо да напишемо да је, за 1ν  , 

 

     
 

.
2

1α
1α1α

2

1
1α1α

2

1
31111 ARTVpA


  (2 п) 

 

Последња једначина представља општи израз зависности укупног рада A  гаса у циклусу од рада 
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31A  дуж изобаре, и видимо да се може изразити у облику линеарне функције   3131 kAAfA  , 

где је k  коефицијент правца ове функције, који износи 

 

 
2

1α 
k . (1 п) 

 

б) На основу дате табеле у поставци и услова задатка 0,02%2/Δδ 313131  AAA  добијамо да је 

0,02%2/Δδ  AAA , па график цртамо помоћу табеле 
 

J]/[31A  200±4 300±6 400±8 500±10 600±12 

J]/[A  105±2 145±3 200±4 245±5 295±6 

(1 п) 

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

 

 

A
 /

 [
J]

A
31

 / [J]

(4 п) 
Када нацртамо поменути график, узмемо две тачке са праве и то тако да прву тачку узимамо 

између прве две (1 п) A(250 Ј, 125 Ј), а другу између последње две експерименталне тачке (1 п) 

B(550 Ј, 275 Ј). На основу њих добијамо коефицијент правца праве 

 

 
 

.
2

1
 

300

150

250550

125275

A31B31

AB 










AA

AA
k  (1 п) 

 

Грешка коефицијента правца износи 

 

05,0
300

124

150

62

2

1

A31B31

B31A31
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BA 






 




























AA

AA

AA

AA
kk . (1 п) 

  

Сада је 
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  .105,00,5 -1k  (1 п) 

 

Сада се, на основу 
 

2

1α 
k  може израчунати α  као 

 

 
  412α     

2

1α 2



 kk ,  (1 п) 

 

чија је грешка једнака 

 
4,0

12
α4α

12

12
2

α

α














k

k

k

k
, (1 п) 

па је на крају 

 

 .4,00,4α   (1 п) 

 

Сада се, на основу 
 1α

31

1



R

A
T  и 

 


















1α

α

31

31
11

A

A
TT  (1 п) допуни табела са траженим 

температурама: 

 

J]/[31A  200±4 300±6 400±8 500±10 600±12 

J]/[A  105±2 145±3 200±4 245±5 295±6 

K]/[1T  8±1 12±2 16±2 20±3 24±4 

(1 п) 
 

* * * 

 

Р3. а) Претпоставимо да је гас у цеви истиснуо живу за дужину x  (види слику). 

Нађимо општи израз зависности температуре T  гаса у цеви од почетне 

температуре 0T  за овај процес. Из једначине стања идеалног гаса следи да за 

почетни и крајњи положај нивоа живе имамо једнакост 

 

      
T

xLSxLgp

T

SLgLp 


 ρρ 0

0

0 , (3 п) 

 

што уз дефиницију атмосферског притиска gLgHp ρρ 00   

даје 

  
T

xLxL

T

L 


22

0

2

. (1 п) 

Одавде следи да је 

 




















L

x

L

x
TT 1

2
10 . (1 п) 

 



50. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ  

УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2011/2012. ГОДИНЕ. 

 7 

Функција  xfT   има облик параболе као на слици. Парабола има максимум тачно на средини 

између њених корена Lx 21   и Lx 2 , а то је вредност 2/Lx  . За ту вредност x  добијамо да 

је 

00max
8

92/
1

2

2/
1 T

L

L

L

L
TT 

















 . (2 п) 

 

Област између 0/ Lx  и 2/1/ Lx  представља област стабилних равнотежних стања живе (1 

п). Ниво живе се у тој области подиже загревањем гаса (повећањем температуре). Уколико у 

неком тренутку у овој области пре достизања maxT  прекинемо загревање, ниво живе ће престати 

да се креће. Ако после тога наставимо са загревањем гаса и ниво живе ће наставити да се подиже 

све дотле док гас не достигне maxT , када равнотежа живе постаје нестабилна, и жива комплетно 

излази из цеви (област неравнотежних стања живе) (1 п). Значи тражена минимална температура 

minT  при којој треба загрејати гас да би он у потпуности истиснуо живу из цеви износи 

 

.
8

9
0maxmin TTT   (2 п) 

 

Стања која су описана датом параболом за област 2/1/ Lx  не разматрамо јер нису физички 

оправдана тј. описују парадоксалне ситуације: све тачке параболе у тој области одговарале би 

спуштању нивоа живе приликом загревања гаса! 

б) Уколико гас у цеви почнемо да хладимо из почетног стања 0T , ниво живе ће почети да се 

спушта, али ће притисак гаса бити исти (изобарски процес), па из једначине стања идеалног гаса 

следи да је 

 

     
T

xLSgLp

T

SLgLp 


 ρρ 0

0

0 , (2 п) 

што даје 

,10 









L

x
TT  (2 п) 

 

тј. зависност положаја нивоа живе у цеви од температуре је линеарна. 

 

* * * 

 

Р4. У почетном тренутку маса водене паре пm  је много мања у односу на масу воде вm  у суду: 

 

g 9g 15,0 в

0

OH

п
2  m

RT

pVM
m ,  (1 п) 

 

па можемо сматрати да се сва вода у почетном тренутку налазила у течном стању. По покретању 

суда и успостављеној температури у њему нема више од g 9п m  водене паре при влажности од 

5,0%50φ    . Да би при тој температури вода била засићена потребно је да у тој запремини 

буде g 18/φп

зас

п   mm  водене паре тј. 1 мол. Познато је да вода при атмосферском притиску 

ври при температури од C100    t , што значи да је притисак засићене водене паре при 
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температури од K3731    T   једнак Pa105

0    p  . Из једначине стања идеалног гаса следи да 1 

мол водене паре при притиску од Pa105   и температури од K373  заузима запремину од 

 

V
p

RT
V  3

0

1
1 dm 31 ,  (1 п) 

 

па можемо да закључимо да је у суду успостављена температура K3731    T   (2 п). 

Из услова задатка јасно је да се запремина суда не мења, и да су зидови суда топлотно 

непропусни тј. енергија коју поседују ваздух и вода не губи се разменом топлоте са околином. 

Ради једноставности посматрајмо суд из референтног система који се креће брзином v . У том 

систему наш суд је на почетку имао брзину v  а затим је нагло стао. Ваздух и вода су имали, 

као целина, кинетичку и унутрашњу енергију. По заустављању суда укупна енергија воде и 

ваздуха остаје иста, али се кинетичка енергија воде и ваздуха, као целине, претворила у допунску 

унутрашњу енергију. Из једначине стања идеалног гаса маса ваздуха m  у суду износи 

 

g 6,39
0

0 
RT

VMp
m ,  (1 п) 

 

па је укупна маса воде и ваздуха у суду g 6,48в mm . Укупна промена унутрашње енергије 

система последица је загревања ваздуха, загревања воде и њеног испаравања. Ако израчунамо 

сваки појединачни допринос тој промени имамо: За загревање ваздуха до C100   потребна је 

количина топлоте 

  J 2850011  TTmcQ V .  (3 п) 

 
Промена унутрашње енергије воде зависи само од почетног и крајњег стања система а не од 

природе процеса пре том преласку, па можемо сматрати да смо воду прво загрејали до 

C100    t , а затим је превели у пару. За загревање воде потребно је утрошити количину топлоте 

 
 

  J 378001в2  TTcmQ .  (3 п) 

 

За стварање водене паре потребна је количина топлоте 

 

J 19800λ3  mQ .  (3 п) 

 

Укупна промена унутрашње енергије посматраног система једнака је кинетичкој енергији коју су 

имали вода и ваздух током кретања: 

 

 
111

2

в

2
QQQU

vmm



,  (3 п) 

па је тражена брзина суда 

 

.
s

m
 10

g 6,48

J 26430
22 3

в

111 





mm

QQQ
v  (3 п) 

 

* * * 
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Р5. Електрично поље бесконачно наелектрисане плоче је по интензитету једнако  0ε2σE , где 

је 0ε  диелектрична пропустљивост вакуума. У нашем случају  је плоча негативно наелектрисана, 

а последица тога је да се електрон по правцу ортогоналном на плочу изнад ње креће успорено, а 
испод убрзано са убрзањем интензитета  

 

.
ε2

σ

0m

e

m

eE

m

F
a   (2 п) 

 

Кретање по правцу паралелном са плочом је кретање са константном брзином (1 п). Поставимо 

координатни систем тако да је x оса паралелна са плочом, y оса ортогонална на њу и усмерена ка 

плочи а координатни почетакје у полазној тачци електрона. 

 

а) Компоненте брзине електрона су 

 

const.αsin0  vvx    и   .2αcos22

0

2 ayvvy   (2 п) 

 

У тачки где је електрон најближи плочи важи 0yv  (1 п). Одатле добијамо да је  y  координата 

те тачке .
σ

αcosε 2

0

2

0

e

mv
Y   Минимално растојање које се тражи је 

 

.min Ydd    (2 п) 

 

С друге стране знамо да је atvvy  αcos0 , па из услова 0yv  имамо да је тражено време  

 

.
σ

αcosε2αcos
τ 000

e

mv

a

v
   (1 п) 

 

б) У овом случају важи dY  , а x  координата тачке додира је  

 

.
σ

α2sinε
αsinτ 0

2

0
0

e

mv
vX    (2 п) 

 

в) Једначине кретања електрона изнад плоче су  

 

αsin0tvx     и   .
2

1
αcos 2

0 attvy    (1 п) 

 

Када електрон пролази кроз плочу имамо Xx   и .dy   (1 п)  

Други услов даје два решења за временске тренутке проласка електрона кроз плочу  

 

 .
2αcos

τ
2αcosαcos 22

0

22

00

a

adv

a

advv
t





  

 

Пошто је очигледно   tt τ  физичког смисла има само краће време јер оно одговара пролазу 

кроз плочу, тако да је тражено време  tt  (2 п). Компоненте брзине у тој тачци су  
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αsin0vvx     и   .2αcos 22

0 advvy    (1 п) 

 

Интензитет брзине је ,22

0

22 advvvv yx   па је угао β  дат једначином  

 

.
2

αsin
βsin

2

0

0

adv

v

v

vx


  (2 п) 

 

Даље се електрон креће дуж y  правца убрзано са убрзањем a , а константном брзином дуж x  

осе. На растојању h испод плоче, по услову задатка, брзина је 

 

 .22

0 dhavv    (2 п) 

 



50. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ  

УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2011/2012. ГОДИНЕ. 

 1 

II РАЗРЕД 

Група О и С 

Друштво Физичара Србије 
СЕНТА 

21.04.2012. 
Министарство Просвете и Науке Републике Србије 

ЗАДАЦИ 

 

1. На дугачком глатком хоризонталном столу лежи даска 

масе kg 22 m  и дужине m 1L . На левом крају даске 

постављено је тело  масе kg 11 m . Коефицијент трења 

између даске и тела једнак је μ . Тело 1m  везано је лаком 

нерастегљивом нити са тегом kg 1M  преко глатког лаког 

котура (види слику). Дати систем почне да се креће. а) При којим вредностима коефицијента 

трења μ  ће тело 1m  и даска 2m  да се крећу као једна целина (без проклизавања)? б) Израчунајте 

минималну вредност коефицијента трења minμ  при којој је могуће кретање без проклизавања. в) 

За 2/μμ min  израчунајте укупно време t  од почетка кретања које је тело 1m  провело на дасци? 

Узети да је 2m/s 10g . (20 п) 

 

2. Један мол хелијума као идеалног гаса врши кружни циклус 

приказан на pV  дијаграму на слици. Тај циклус се састоји из два дела 

у којима постоји линеарна зависност притиска p  од запремине V , и 

једне изобаре. Познато је да је на изобари 3–1 над гасом извршен рад 

31A   031 A , а при томе је температура гаса смањена α  пута. Стања 2 

и 3 припадају истој изотерми. Тачке 1 и 2 припадају правој која 

пролази кроз координатни почетак. а) Изведите општи израз 

зависности укупног рада A  гаса у циклусу од рада 31A ; б) Пет 

независних експеримената је извршено са истом количином хелијума и истим циклусом у којима 

је за различите вредности 31A  израчунаван укупан рад A  гаса у циклусу, и добијени су следећи 

резултати: 

 

J]/[31A  200 300 400 500 600 

J]/[A  105 145 200 255 295 

 

Користећи дату табелу нацртајте график  31AfA  ; в) на основу резултата под а) и б) 

израчунајте температуре 1T  у тачки 1 за сваки појединачни експеримент, знајући да је 

0,05%5/Δδ 313131  AAA . Универзална гасна константа износи K) J/(mol38  , R  . (25 п) 

 

3. Гвоздена кугла пречника cm 8d  извади се из воде која кључа и постави на површину дебеле 

ледене плоче температуре C 01 t . До које ће дубине кугла утонути у лед? Претпоставити да 

кугла предаје топлоту само леду испод себе и да тоне праволинијски дуж нормале на површину 

ледене плоче (површина ледене плоче је нормална на правац дејства гравитационог поља 

Земље). Занемарити загревање воде и топлотну проводљивост леда и воде. Притисак околног 

ваздуха је mbar 1013p , густине гвожђа и леда су  
3kg/m 7800ρ   и 

3

0 kg/m 917ρ   

респективно, специфична топлота гвожђа је  KkgJ/ 460 c  и топлота топљења леда 

MJ/kg 33,0q . Коментарисати добијени резултат у контексту промене потенцијалне енергије 

куглице. (15 п) 
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4. Из округлог отвора истиче вертикалан млаз воде. На једном месту пречник хоризонталног 

попречног пресека млаза износи mm 0,2d  а на другом, које је за cm 2l  ниже, пречник 

попречног пресека истог млаза је 5,1n  пута мањи. Изведите општи израз и израчунајте бројну 

вредност величине tVQ  /  – запремине воде која за једну секунду истекне кроз поменути 

отвор. Узети да је 2m/s 10g , густина воде  3g/cm 1ρ  , а коефицијент површинског напона воде 

mN/m. 73γ   (20 п) 

 

5.  Два тачкаста наелектрисања Q9  и Q  фиксирамо дуж x - осе на међусобном растојању 

cm 50l  тако да чине изоловани систем, као на слици. Треће наелектрисање 1Q  може да се 

креће слободно дуж x - осе у свакој од приказаних области I, II или III. а) Израчунати тачан 

положај наелектрисања 1Q  на x - оси у 

приказаним областима, у коме ће баш 

1Q  бити у равнотежи. б) При којој 

вредности предзнака наелектрисања 1Q  

(+ или –) ће његова равнотежа бити 

стабилна? (Равнотежу ћемо звати 

стабилном уколико при малом померају наелектрисања 1Q  из равнотежног положаја дође до 

појаве сила које ће тежити да то наелектрисање врате у равнотежни положај). (20 п) 

 

 

*  *  *  *  *  *  *  *  *  * 
 

ПОМОЋ 

 

 

Запремина кугле износи 

3π
3

4
RV   

 где је R  полупречник кугле. 

  

R

 

 

Запремина цилиндра износи 

HRV 2π  

где је R  полупречник основе 

цилиндра, а H  је његова висина. 

 

 
 

Задатке припремили: др Сања Тошић, Институт за физику, Београд 

                                    др Бојан Николић, Институт за физику, Београд 

Рецензент: др Драган Д. Маркушев, Институт за физику, Београд  

Председник Комисије за такмичење ДФС: др Александар Крмпот, Институт за физику, Београд 
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II РАЗРЕД 

Група О и С 

Друштво Физичара Србије 
СЕНТА 

21.04.2012. 
Министарство Просвете и Науке Републике Србије 

РЕШЕЊА ЗАДАТАКА 

 

Р1. а) Означимо силу затезања нити са T  а силу трења са трF . Напишимо други Њутнов закон за 

сва три тела:  

тр11 FTam  , тр22 Fam  , TMgMa 1 . (3 п) 

 

Из ових једначина следи да су: 

Mm

FMg
a






1

тр

1  и 
2

тр

2
m

F
a  . (2 п) 

 

Приликом кретања без проклизавања важи да је 21 aa   (1 п), па је: 
 

2

тр

1

тр

m

F

Mm

FMg





 тј. g

Mmm

Mm
F




21

2
тр . (2 п) 

 

При томе сила трења не прелази вредност gm1μ . Значи, за кретање без проклизавања је 
 

gmg
Mmm

Mm
F 1

21

2
тр μ


 , (2 п) 

одакле је 

 

 
.μ

211

2

Mmmm

Mm


  (2 п) 

 

б) Минимална вредност коефицијента трења minμ  при којој је могуће кретање без проклизавања, 

на основу претходног резултата, износи 

 

 
.

2

1
μ

211

2
min 




Mmmm

Mm
 (2 п) 

 

За све вредности minμμ   нема проклизавања, док ће за minμμ   тело 1m  клизити по дасци. 

 

в) На основу претходне анализе видимо да се за minμμ   тело 1m  и даска 2m  крећу различитим 

убрзањима  21 aa  . У том случају су 
 

g
Mm

mM
a






1

1
1

μ
 и g

m

m
a

2

1
2

μ
 . (2 п) 

 

Релативно убрзање релa  износи  4/12/μμ min  : 
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4

μμ

2

1

1

1
21рел

g
g

m

m

Mm

mM
aaа 













 . (2 п) 

 
Време клизања по дасци налазимо из формуле 

 

2

2

рел

t
aL  , па је s. 9,0

2

рел


a

L
t  (2 п) 

 

* * * 

 

Р2. а) Ако температуру хелијума у тачки 1 означимо са 1T , онда је по услову задатка 13 αTT  . 

Рад 31A  извршен над гасом дуж изобаре износи 

 

   1ανν)( 11313131  RTTTRVVpA . (1 п) 

Одатле је, за 1ν  ,  

 1α

31

1



R

A
T . (1 п) 

 

Укупан рад гаса у циклусу добија се као површина троугла 

 

  1312
2

1
VVppA  . (1 п) 

 

За изобарски процес важи да је TV ~ , па можемо да пишемо да је 

 

 1α113  VVV . (1 п) 

 

Пошто тачке 1 и 2 леже на правој која пролази кроз координатни почетак, онда је 

 

1

1

2
2 p

V

V
p  , (1 п) 

док тачке 2 и 3 припадају истој изотерми па је 

 

3322 VpVp  . (1 п) 

 

Искористивши последње три једначине добијамо, уз 13 pp  , да је 

 

11

1

3
2 α pp

V

V
p  . (1 п) 

 

Сада можемо да напишемо да је, за 1ν  , 

 

     
 

.
2

1α
1α1α

2

1
1α1α

2

1
31111 ARTVpA


  (2 п) 
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Последња једначина представља општи израз зависности укупног рада A  гаса у циклусу од рада 

31A  дуж изобаре, и видимо да се може изразити у облику линеарне функције   3131 kAAfA  , 

где је k  коефицијент правца ове функције, који износи 
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1α 
k . (1 п) 

 

б) На основу дате табеле у поставци и услова задатка 0,02%2/Δδ 313131  AAA  добијамо да је 

0,02%2/Δδ  AAA , па график цртамо помоћу табеле 
 

J]/[31A  200±4 300±6 400±8 500±10 600±12 

J]/[A  105±2 145±3 200±4 245±5 295±6 

(1 п) 
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Када нацртамо поменути график, узмемо две тачке са праве и то тако да прву тачку узимамо 

између прве две (1 п) A(250 Ј, 125 Ј), а другу између последње две експерименталне тачке (1 п) 

B(550 Ј, 275 Ј). На основу њих добијамо коефицијент правца праве 
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Сада је 
 

  .105,00,5 -1k  (1 п) 
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TT  (1 п) допуни табела са траженим 

температурама: 

 

J]/[31A  200±4 300±6 400±8 500±10 600±12 

J]/[A  105±2 145±3 200±4 245±5 295±6 

K]/[1T  8±1 12±2 16±2 20±3 24±4 

(1 п) 
 

* * * 

 

Р3. По услову задатка  mbar 1013p , температура кугле после вађења из воде је C. 1002 t  (1 

п) После стављања на лед, кугла почиње да га топи. Топећи лед кугла истовремено кроз њега и 

пропада. Пропадање кроз лед престаје када се температура кугле изједначи са температуром леда 

.1t  (1 п)  Маса гвоздене кугле износи 

 

.πρ
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кк dVm    (1 п) 

 

Запремина истопљеног леда лV  добија се као збир запремине цилиндра висине 
2

d
h   и пречника 

основе d   ( h  је коначна дубина пропадања) и запремине полулопте пречника d ,  
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Маса истопљеног леда износи 
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.ρ л0л Vm   (2 п) 

 

По условима задатка, сва топлота која се ослобађа хлађењем кугле троши се на топљење леда. Из 

закона одржања енергије 

 

tcmqm  кл , (3 п) 

 

где је C 100 t , добија се коначна дубина продирања кугле 

 










 


q

tcd
h

0ρ

ρ4
1

6
. (2 п) 

 

Заменом бројних вредности добија се да је 

 

cm 7,7h . (1 п) 

 

Коментар - упоредити ред величине промене потенцијалне енергије кугле ghmк  са енергијом 

хлађења кугле tcm к . Величина gh  је реда величине јединице (у Ј/kg) док је 410~tc  тј. 

ghtc  . Због тога је промена потенцијалне енергије ghmк  занемарена у закону одржања 

енергије (једначини топлотног биланса) (2 п). 

 

* * * 

 

Р4. Захваљујући деловању сила површинског напона, течност која истиче кроз отвор тежи да 

смањи своју слободну површину па се због тога попречни пресек млаза смањује. На основу 

слике и једначине континуитета можемо да напишемо да је, уз ndd /' , 

 

 ''vSSv   







 '

4

π

4

π
22

v
n

d
v

d
  .' 2vnv    (3 п) 

 

Посматрајмо горњи пресек млаза  vd , . Притисак p  у њему је већи од 

атмосферског 0p  и износи: 
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Аналогно томе притисак у доњем пресеку млаза  ',' vd  износи: 
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На основу Бернулијеве једначине за ова два пресека можемо да 

напишемо да је 
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Из последње једначине се сређивањем добија да је 
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Запремина воде tVQ  /  која за једну секунду истекне кроз поменути отвор може се добити 

као: 
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* * * 

 

Р5. a) Један од начина решавања задатака може бити и следећи: претпоставимо да је 

наелектрисање 1Q  позитивно. У области I 

(на слици под а)) на наелектрисање 1Q  дуж 

x - осе делују две супротно усмерене силе: 

1F  и 2F . Сила 1F  потиче од стране 

наелектрисања Q9 , и у било којој тачки ове 

области та сила ће бити већа од силе 2F  

која потиче од наелектрисања Q , јер је 

(веће по интензитету) наелектрисање Q9  

увек ближе наелектрисању 1Q  него 

наелектрисање Q . Због тога је положај 

равнотеже 1Q  у области I немогућ. (2 п) 

У области II (на слици под б)) обе силе 1F  и 

2F  усмерене су дуж x - осе у свакој тачки 

ове области на исту страну: ка 

наелектрисању Q . Због тога је положај 

равнотеже 1Q  у области II немогућ. (2 п) 

У области III (на слици под в)) обе силе 1F  

и 2F  су супротно усмерене дуж x - осе, као 

и у области I, али је сада (мање по 

интензитету) наелектрисање Q  увек 

ближе 1Q  него наелектрисање Q9 . То значи 

да је могуће наћи такву тачку на x - оси у 

којој ће силе  1F  и 2F  бити једнаке по 

интензитету: 21 FF  . Због тога је 
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положај равнотеже 1Q  у области III могућ. (2 п) 

Ако међусобно растојање између 1Q  и Q  означимо са r , онда ће растојање између Q9  и 1Q  

бити rl  . Једнакост сила нам даје 
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што после скраћивања даје  

rrl 3 , (1 п) 

одакле је 

2
1

l
r   и 

4
2

l
r  . (1 п) 

 

Корен 2r  не задовољава физички услов задатка (у тој тачки силе 1F  и 2F  јесу једнаке по 

интензитету, али су усмерене на исту страну) (1 п). Значи 1Q  је у равнотежном положају када је  

1rr  . (1п) 

Истоветна анализа само са претпоставком да је 1Q  негативно доводи до истог резултата (види 

слику). (3 п) 

б) Да би одредили предзнак наелектрисања 1Q  при којем ће равнотежа бити стабилна, 

анализираћемо померај 1Q  из равнотежног положаја у два случаја, када је: (i) 1Q  позитивно (ii) 

1Q  негативно. 

(i) Уколико је 1Q  позитивно, његов померај улево доводи до пораста сила 1F  и 2F . Сила 1F  расте 

спорије (наелектрисање Q9  је увек даље од Q ). Следи да је 2F  по интензитету већа од 1F , и на 

наелектрисање 1Q  ће деловати резултујућа сила која је такође усмерена улево. Под дејством 

резултујуће силе наелектрисање 1Q  ће се удаљавати од 

равнотежног положаја. Исто ће се десити и ако 1Q  

померимо удесно. Сила 2F  ће слабити брже од силе 1F  

па је резултујућа сила усмерена удесно, а наелектрисање 

1Q  ће се, под дејством те резултујуће силе, удаљавати 

од равнотежног положаја. Ова анализа нам указује на 

то да је у случају позитивног предзнака наелектрисања 

1Q  равнотежа у области III нестабилна. (3 п) 

(ii) Уколико је 1Q  негативно, његов померај улево 

доводи до пораста сила 1F  и 2F . Сила 1F  расте спорије 

(наелектрисање Q9  је увек даље од Q ). Следи да је 

2F  по интензитету већа од 1F , и на наелектрисање 1Q  ће деловати резултујућа сила која је такође 

усмерена удесно. Под дејством резултујуће силе наелектрисање 1Q  ће се враћати ка 

равнотежном положају. Исто ће се десити и ако 1Q  померимо удесно. Сила 2F  ће слабити брже 

од силе 1F  па је резултујућа сила усмерена улево, а наелектрисање 1Q  ће се, под дејством те 

резултујуће силе, враћати ка равнотежном положају. Ова анализа нам указује на то да је у 

случају негативног предзнака наелектрисања 1Q  равнотежа стабилна. (3 п) 

Интензитет наелектрисања 1Q  је за ову анализу небитан. 

* * * 
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Subject Re: RS2016

From Ljubisa Nesic <nesiclj@junis.ni.ac.rs>

To Bojan Nikolic <bnikolic@ipb.ac.rs>, Ivan Dojcinovic
<ivan.dojcinovic@ff.bg.ac.rs>

Date 2016-02-23 14:07

Dragi Bojane,
drago mi je sto si privhatio da drzis predavanje o talasima.
prosledjujem tvoj mail predsedniku DFS. Nadam se da ce ti dati odgovarajuca uputstva.

Ljubisa

On 2/23/2016 1:54 PM, Bojan Nikolic wrote:
Dragi Ljubisa,

hvala na pozivu. Sve je jasno sem jednog tehnickog detalja. Sta ja tacno treba da
uradim da bih bio clan DFS? Kome treba da platim i koliko?

Pozdrav,
Bojan

On 22 Feb 2016 17:05, rep.seminar@ff.bg.ac.rs wrote:
Postovani Bojane,
imam izuzetno zadovoljstvo da vas, ispred Strucnog odbora republickog
seminara o nastavi fizike za 2016. godinu
(http://www.dfs.rs/seminar2016/), pozovem da odrzite plenarno
predavanje vezano za otkrice gravitacionih talasa.
Seminar ce biti odrzan na Zlatiboru od 12. do 14. maja a rok za
pisanje rada je 14. mart. Radovi ce, nakon recenzije,  biti objavljeni
u 3. broju casopisa Nastava fizike koji smo pokrenuli prosle godine.
Na sajtu seminara mozete naci i upustvo za pisanje rada, odnosno
odgovarajuci template a vi, kao predavac po pozivu, imate na
raspolaganju do 10 strana. Ukoliko imate bilo kakav tehnicki problem
slobodno se obratite. DFS ce snositi troskove vaseg puta i smestaja
ali je potrebno da budete clan drustva.
Imajte u vidu da ce na seminaru biti takodje i jedno uvodno predavanje o OTR.

Ljubisa Nesic
predsednik Komisije za seminare DFS

---
This email has been checked for viruses by Avast antivirus software.
https://www.avast.com/antivirus

Institute of Physics Belgrade Roundcube Webmai... https://mail.ipb.ac.rs/roundcube/?_task=mail&_...

1 of 1 7/4/18, 2:29 PM

























Subject Publikation of your recent paper in Fortschritte der Physik

From Dieter Luest <dieter.luest@lmu.de>

To <bnikolic@ipb.ac.rs>, <dobric@ipb.ac.rs>

Date 2018-01-29 10:02

Dear Dr. Nikolic and dear Dr. Obric,

I am just reading your interesting paper "Noncommutativity and nonassociativity of closed bosonic string .."  (arXiv:1801.08772).

Would you be interested to publish this paper in "Fortschritte der Physik" ?

As editor of the journal I would be very happy to publish this paper and I can promise very speedy publication.

For your information, you can go to the web-side of the journal to see, which papers are currently published in the journal:

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3978/earlyview

Best regards, Dieter Lüst

*****************************************************

*                      Prof. Dieter Luest

*    Max-Planck-Institute for Physics                       *

*                   Foehringer Ring 6                                 *

*          D-80805 Muenchen; Germany                    *

*              Phone: +49-89-32354 282                       *

*                   Fax: +49-89-32354 501                       *

*           E-mail: luest@mppmu.mpg.de                   *

*      wwwth.mppmu.mpg.de/members/luest/          *

*

*                                and

*

*          Ludwig-Maximilians-Universitaet                *

*                  Arnold-Sommerfeld-Center                  *

*                       Theresienstrasse 37                         *

*          D-80333 Muenchen, Germany                    *

*             Phone: +49-89-2180 4372

*                  Fax: +49-89-2180 4186                        *

* E-mail: luest@theorie.physik.uni-muenchen.de

*   www.theorie.physik.uni-muenchen.de/~luest/ *

*                                                                                     *

*****************************************************
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Dr. Michael Haack
Theresienstr. 37
80333 München
Germany
Telefon: 089/2180-4377
Telefax: 089/2180-4186
michael.haack@lmu.de

January 17, 2012

Dr. Bojan Nikolic
Institute of Physics
Pregrevica 118
11080 Belgrade
Serbia

Invitation for Dr. Bojan Nikolic

To whom it may concern

It is my pleasure to invite Dr. Bojan Nikolic from the Institute of Physics, Belgrade,
to visit the Arnold Sommerfeld Center for Theoretical Physics (ASC) at the LMU in
Munich.

Dr. Nikolic is being invited to do research within Prof. Lüst’s group for mathematical
physics and string theory. It is agreed that Dr. Nikolic will visit the ASC in the period of
six months from July 1 to December 24, 2012, provided his local expenses in Munich, as
well as the required health insurance, will be covered by the home institute in Belgrade.

If you need any further information, please do not hesitate to contact me.

Sincerely,

Michael Haack
Scientific Manager of the Arnold Sommerfeld Center
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1997/98 Александар Стаматовић; 1998/99 Душан Арсеновић; 
1998/99-2003/04 Драган Маркушев

“Понекад видите прелепе људе 
без мозга. Понекад имате ружне људе који су 
интелигентни, попут научника. Наш терен је 
управо такав. На први поглед делује срамотно, 
али се лопта по њему креће нормалном брзи-
ном.” Овако је тренер Челсија Хозе Мурињо 
одговорио челницима Барселоне, који су 
имали примедбе на стање  у коме се налази 
травната подлога на Станфорд Бриџу, стадиону 
Челсија, непосредно пред четвртфинални меч 
овогодишње Лиге шампиона.  С друге стране, 
аналитичари телевизијског магазина фудбал-
ске Лиге шампиона израчунали су да је чак 
90% победника Лиге или Купа шампиона у пос-
ледњих 20 година носило дресове скроз или 
делимично црвене боје. Остатак су освојили 
тимови са потпуно или делимично белим дресо-
вима. Физичари би рекли да успех екипе у Лиги 
шампиона зависи од таласне дужине светлости 
коју емитује материјал од којег је начињен 
дрес, а и сами тренери виде да фудбалски терен 
личи на научнике. Кад се томе дода да ће 2006. 
година бити обележена Светским фудбалским 
првенством  у Немачкој, као и сећањем на нашег 
сународника који нас је најбоље представљао у 
свету својом изузетном игром главом, било је 
јасно да морамо мало детаљније да проучимо 
везе између фудбала и физике. Као резултат 
тога, настао је овај број Младог физичара 
- на задовољство свих пријатеља физике и 
фудбала.

Часопис за све пријатеље физике

Прва страна 
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Највећа галаксија је централна галаксија галактичког 

грозда Абел 2029 удаљеног 1070 милиона светлосних 

година у правцу сазвежђа Девице. Ова галаксија има 

пречник од 5.6 милиона светлосних година што је 80 пута 

више од пречника наше галаксије, док јој је маса сразмерно 

томе вероватно пола милиона пута већа и вероватно 

садржи 100 милиона милијарди звезда. Ако се неко још 

увек пита има ли живота у свемиру, овде ће га сигурно 

наћи. Можда је Џорџ Лукас имао у виду баш ову “ galaxy 

far, far away ”...

Најсветлији објект у свемиру је квазар APM08279+5255 

откривен марта 1998. године у сазвежђу Стрелца. 

Процењено је да је његова сјајност између 4 и 5 милиона 

милијарди пута већа од сјајности Сунца или као 50000 

просечних галаксија. Астрофизичари верују да су квазари 

супермасивне црне рупе које гутају колосалне количине 

материје и делимично је претварају у енергију. Ово је једини 

познати начин на који би се могла објаснити екстремна 

сјајност квазара. Овај квазар би морао да прогута читаву 

једну планету величине Сатурна сваке секунде и претвори 

је у енергију да би могао да има оволику снагу.

Најсјајнија звезда у нашој галаксији  је LBV 1806-20 

удаљена 45000 светлосних година од земље, и има сјајност 

која је процењена на 5 до 40 милиона сјајности Сунца. Маса 

јој је најмање 150 већа од Сунчеве а пречник најмање 200 

пута већи. Ова звезда је толико топла да већину зрачења 

заправо израчи у ултраљубичастом и делимично чак у 

рентгенском делу спектра. И поред своје енормне масе, 

због оволике потрошње енергије ова звезда има веома 

кратак животни век, реда милион година, што је око 10000 

пута мање од процењеног животног века нашег Сунца.

Највиша планина у Сунчевом систему је Олимпус Монс 

на Марсу. Висина његовог врха од подножја (обзиром да 

се на Марсу наравно не може дефинисати “надморска” 

висина) износи 25 км, што је скоро три пута више од Монт 

Евереста. Но и поред велике висине има веома благ нагиб 

својих падина обзиром да му је пречник преко двадесет 

пута већи од висине. Ова планина је чисто вулканског 

порекла, а оволику висину омогућава нижа марсовска 

гравитација, 37% земаљске. Оволика планина не би могла 

постојати на Земљи, јер би се урушила под сопственом 

тежином, тачније услед огромног притиска у подножју би 

почела да “тече”, слично глечерима.

Најближа црна рупа (која је позната) је удаљена “свега” 

1600 светлосних година од Земље и позната је под ознаком 

V4641 Sgr. Открили су је астрономи са Масачусетског 

технолошког института јануара 2000. Црна рупа сама по 

себи јасно не може бити виђена, и једино може бити 

откривена на основу понашања материје у њеној близини, 

нпр. ако има звезду пратиоца и ако има довољно материје 

коју апсорбује при чему се обично јавља јак одлив зрачења, 

нпр. рентгентског. Сасвим је извесно да постоје и црне 

рупе које су нам ближе али које су усамљене и као такве 

немогуће за детекцију било којом познатом техником.

Најсјајнија супернова модерних времена је SN 1987А 

која је 1987. године експлодирала у Великом Магелановом 

Облаку, на удаљености од 164000 светлосних година. Иако 

су већина претходно виђених супернова, нпр. супернове 

из 1054. или 1604. године, биле знатно сјајније обзиром 

да су се налазиле у нашој Галаксији, ова супернова је 

прва супернова од открића телескопа која се појавила у 

непосредној близини (Велики Магеланов Облак је мала 

сателитска галаксија наше Галаксије). Све остале супернове 

су виђене у удаљеним галаксијама. На врхунцу сјајности 

имала је звездану магнитуду 3 и могла се јасно видети 

голим оком. Супернове су главни извор свих елемената 

тежих од гвождја. Огроман број атома наших тела је 

некада давно настао у центру супернова, тако да смо сви 

ми на неки начин “звездана деца”.

Рекорде припремио: Новица Пауновић

Mф рекорди
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Svaki put kad platite dodatni ~as fizike

ili kupite kartu za bioskop vi koristite

novac. Kad malo porastete, po~e}ete i da ga

zara|ujete. Tada }ete shvatiti da je novac

vrlo va`an. A {ta je zapravo novac? Da li

ste se ikad pitali kako se prave nov~anice

i kako se spre~ava wihovo krivotvorewe?

Ko su qudi ~iji se portreti nalaze na

wima? Pa`qiviji me|u vama su sigurno

primetili da na nov~anicama ima i formu-

la. [ta one zna~e?

Pripremaju}i ovaj broja “Mladog fizi~a-

ra” trudili smo se da odgovorimo na ova pi-

tawa. Verujem da }ete u`ivati ~itaju}i

sadr`aj koji smo spremili i da }e vas to

obogatiti. Ne}ete saznati kojih sedam bro-

jeva }e biti izvu~eni u slede}em kolu lotoa

i prikupiti gomilu novca, va{e bogatstvo

}e biti druga~ije. A kakvo je ono - otkrijte

sami.

Kad smo ve} kod novca, moram da vas obaves-

timo da }e Mladi fizi~ar ubudu}e biti

malo skupqi. Svi vi koji ste se ranije pret-

platili dobi}ete na vreme svoje primerke,

samo za nove pretplatnike va`e nove cene.

Ipak, morate prizanati da jedan primerak

jo{ uvek ko{ta mawe od bioskopske karte.

A kad smo ve} kod bioskopa, verovatno ste

gledali “An|ele 2”. Da li ste primetili ko

je na kraju prvi poqubio Sofiju? Pa nar-

avno, na{ redovni ~itaoc - Marko!

^asopis za sve priijateqe fizike
Otkrijte zanimqivu fiziku
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100 godina od Ajn{tajnovih otkri}a

Ove godine se navr{ava ta~no sto godina od

~uvene, i po mi{qewu mnogih, za fiziku

~udesne 1905. Tada je Albert Ajn{tajn

objavio tri nau~na rada koja }e, kako se kas-

nije ispostavilo, promeniti pogled na svet

i izazvati revoluciju u nauci. Ujediwene

nacije su zbog tih radova proglasile ovu

godinu za svetsku godinu fizike, koju se u

nekim zemqama naziva i Ajn{tajnovom go-

dinom. 

Prvi Ajn{tajnov rad je bio o fotoelek-

tri~nom efektu u kome je dokazano da se

svetlost mo`e pona{ati kao snop ~estica

sa diskretnim energijama. U ovom radu je

uveden pojam kvanta energije kao diskretne

“porcije” energije koja se mo`e predati

fizi~kom objetku. Drugi rad se ticao Bra-

unovog kretawa i nudio je eksperimentalnu

potvrdu za teoriju o toploti.  Tre}i rad je

uveo specijalnu teoriju relativnosti i

uzdrmao temeqe, do tada op{te prihva}ene,

Wutnove mehanike u koju se bezrezervno

verovalo. Za rad o fotoelektri~nom efek-

tu Ajn{tajn je nagra|en Nobelovom nagra-

dom 1921. godine.

[irom sveta se ova godina se obele`ava

na razli~ite na~ine. 

Nema~ka je 19. januara zapo~ela obele-

`avawe. Tom prilikom je nema~ki kance-

lar Gerhard [reder u Berlinu otvorio niz

kongresa, izlo`bi i drugih manifestacija

~iji je ciq da Ajn{tajnovo delo i wegov

lik pribli`i narodu. Iako je Ajn{tajn

1933. godine, zbog dolaska nacista na vlast,

napustio zauvek svoju rodnu zemqu, Nema~-

ka `eli da na ovaj na~in oda po~ast “slo-

bodnom duhu, mirotvorcu, gra|aninu sveta i

vizionaru”.

Po~etak godine Ajn{tajna zvani~no je

obele`en i u Velikoj Britaniji. Sve~anost

je odr`ana u Muzeju nauke u Londonu uz pre-

mijerno izvo|ewe salta na biciklu i dru-

gim akrobacijama. Ovu vratolomiju je izveo

Ben Valas, britanski {ampion u akro-

batskoj vo`wi biciklom, a osmislila ju je

Helen Cerski, fizi~arka sa univerziteta

u Kembrixu. Ona je za ovu priliku napravi-

la  kompjuterski model da bi projektovala

salto. Nazvana Ajn{tajnov skok, vratolo-

mija ima za ciq da maksimalno pomeri

granice onoga {to qudi mogu da urade na

biciklu. Bicikl je simboli~no izabran da

ozna~i po~etak godine Ajn{tajna u Brita-

niji i godinu fizike u svetu, zato {to je

nau~nik tvrdio da je do svoje teorije do{ao

voze}i bicikl. Tokom godine u Velikoj

Britaniji odr`a}e se na stotine mani-

festacija sa igra~kim ta~kama, filmovima

i poezijom, da bi mladima od 11 do 14 godi-

na bila pribli`ena genijalna otkri}a Al-
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