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Abstract
Knowledge-sharing communities are fundamental elements of a knowledge-based
society. Understanding how different factors influence their sustainability is of crucial
importance. We explore the role of the social network structure and social trust in
their sustainability. We analyze the early evolution of social networks in four pairs of
active and closed Stack Exchange communities on topics of physics, astronomy,
economics, and literature and use a dynamical reputation model to quantify the
evolution of social trust in them. In addition, we study the evolution of two active
communities on mathematics topics and two closed communities about startups
and compare them with our main results. Active communities have higher local
cohesiveness and develop stable, better-connected, trustworthy cores. The early
emergence of a stable and trustworthy core may be crucial for sustainable
knowledge-sharing communities.

Keywords: Networks structure; Dynamic reputation; Knowledge exchange; Stack
Exchange; Sustainability of Q&A communities

1 Introduction
The development of a knowledge-based society is one of the critical processes in themod-
ern world [1, 2]. In a knowledge-based society, knowledge is generated, shared, and made
available to all members. It is a vital resource. Sharing this resource between individuals
and organizations is a necessary process, and knowledge-sharing communities are one of
the fundamental elements of a knowledge society.
Often, these knowledge-sharing communities depend on the willingness of their mem-

bers to engage in an exchange of information and knowledge. Participation in the com-
munity is voluntary, with no noticeable material gains for members. Recent research has
shown that the process of knowledge and information exchange is strongly influenced
by trust [3, 4]. The exchange of knowledge depends on trust between a member and the
community. It is a collective phenomenon that depends on and is built through social
interactions between community members. This is why we believe it is crucial to under-
stand how trustworthy knowledge-sharing communities emerge and disappear, as well as
to unveil the fundamental mechanisms that underlie their evolution and determine their
sustainability.
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Unlike small offline knowledge-sharing groups, online communities consist of a large
number of members where repeatable mutual interactions between all members are not
possible. Thus, the trustworthiness of individuals in these communities has to be assessed
and signaled using other means. It was shown that the reputation of an individual within
the community is a strong signal of her trustworthiness that can override themain sources
of social bias [5]. The reputation helps users manage the complexity of the collaborative
environment by signaling out trustworthy members.
In the past two decades, we have witnessed the emergence of an online knowledge-

sharing community StackOverflow, which has become one of themost popular sites in the
world and the primary knowledge resource for coding. The success of Stack Overflow led
to the emergence of similar communities on various topics and formed the Stack Exchange
(SE) network.1 The advancement of Information and communication technologies (ICTs)
have enabled faster and easier creation and sharing of knowledge, but also the access to
a large amount of data that allowed a detailed study of their emergence and evolution
[6], as well as user roles [7], and patterns of their activity [8–10]. However, relatively little
attention has been paid to the sustainability of SE communities. Most research focused
on the activity and factors that influence the users’ activity in these communities. Factors
such as the need for experts and the quality of their contributions have been thoroughly
investigated [11]. It was shown that the growth of communities andmechanisms that drive
it might depend on the topic around which the community was created [12].
In this paper, we investigate the role of network structure and social trust dynamical

user reputation in the sustainability of a knowledge-sharing community. Research on the
sustainability of social groups shows that social interaction and their structure influence
the dynamics and sustainability of social groups [13–16]. Due to large number of users and
the smaller probability of repeated interactions dyadic trust between members may not
play an essential role in the group dynamics of knowledge-sharing communities. However,
it is known that the reputation of users, one of the proxies of trust in online communities,
is the primary for them to become and maintain their productive member status [17–19].
With the proliferation ofmisinformed decisions, it is crucial to understand how to foster

communities that promote collaborative knowledge exchange and understand how coop-
erative norms of trustworthy behavior emerge. The way people interact, specifically the
structure of their interactions [20], and how inclusive and trustworthy the key members
of the community can influence the sustainability of the knowledge-sharing communities.
Although the topic and early adopters are essential in establishing a new SE community,
they are not sufficient for sustainability. The current SE network has several examples of
communities where the first instance of the community did not survive the SE evaluation
process and was shut down, while the second attempt resulted in a sustainable commu-
nity. Focusing on attempts to establish a community on the same or similar topic with a
different outcome allows us to investigate the relevance of social network structure and
social trust in the sustainability of knowledge-sharing communities. They are particularly
relevant if we wish to understand why some communities established themselves in their
second attempt. For those pairs of communities, the topic is the same, and all the initial

1More information about Stack Overflow is available at: https://stackoverflow.co/ and broad introduction to Stack Ex-
change (SE) network is available at: https://stackexchange.com/tour. Visit https://area51.stackexchange.com/faq for more
details about closed and beta SE communities and the review process.

https://stackoverflow.co/
https://stackexchange.com/tour
https://area51.stackexchange.com/faq
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Figure 1 Visual abstract: Top row illustrates how user interaction via questions, answers, and comments is
translated into an undirected network of interactions between users and finally aggregated over 30 day
windows. The bottom row shows activity and corresponding dynamic reputation for one user from the
closed Literature SE community. Networks on the right illustrate differences between closed and active SE
Literature communities. Nodes are colored according to the core/periphery affiliation, while their size
corresponds to dynamic reputation on the last day of interaction that the network contains

SE platform requirements were satisfied, but something else was crucial for community
decay in the first attempt and its in the second.
Our methods and key results are summarised in a visual abstract in Fig. 1. In our main

analysis, we analyze four pairs of SE communities and study the differences in the evo-
lution of social structure and trust between closed and active communities. We have se-
lected four topics from the STEM and humanities: astronomy, physics, economics, and
literature. We focus on topics where we could find a matched pair of closed and active
communities to control for the differences in topic popularity and, partially, community
size. For this reason alone, we do not include Stack Overflow as the most popular com-
munity in our analysis. We analyze each pair’s early stages of evolution and look at the
differences between active and closed communities. Specifically, we map the interactions
onto complex networks and examine how their properties evolve during the first 180 days
of communities’ existence. Using complex network theory [21] we quantify the structure
of these networks and compare their evolution in active and closed communities on the
same topic. We pay special attention to the core-periphery structure of these networks
since it is one of the most prominent features of social networks [22]. We examine how
core-periphery structure of active and closed communities evolve and analyze their differ-
ence. We show that active communities have a higher value of local normalized clustering
and a more stable core membership. On average, the core of the sustainable communities
has higher inner connectivity.
To study the evolution of social trust, we adapted the Dynamic Interaction Based Rep-

utationModel (DIBRM) [23]. The model allows us to quantify the trust of each individual
over time. We can quantify members’ mean and total trust within the core and periph-
ery and follow their evolution through time. The mean reputation of members is higher
in sustainable communities than in closed ones, indicating higher levels of social trust.
Furthermore, the mean reputation of core members of active communities is constantly
above the mean reputation of core members in closed communities, indicating that the
creation of trust in the early stages of a community’s life may be crucial for its survival.
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Our results show that social organization and social trust in the early phases of the life of
a knowledge-sharing community play an essential role in its sustainability. Our analysis
reveals differences in the evolution of these properties in communities on different topics.
The paper is organized as follows. In Sect. 2 we give a short overview of previous re-

search. Section 3 describes the data and outlines some specific properties of each com-
munity. In Sect. 4 we describe the measures and models used for describing the local or-
ganization and measuring reputation. Section 5 shows our results. Finally, we discuss our
results and selection of model parameters and time window, as well as its consequences
in Sect. 6.

2 Previous research
The availability of data from the SE network led to detailed research on the different as-
pects of dynamics of knowledge sharing communities [6, 8–10], the roles of users [7], and
their motivations to join and remain members of these communities [24–28]. The focus
of the research in the previous decade was on the evolution of activity in SE communities
and the different factors that influence this growth. Ahmed et al. [29] have investigated
differences between technical and non-technical communities and showed that within
the first four years, technical communities have a higher growth rate, more activity, and
are more modular. The comparison of UX community in SE and Reddit [30] showed that
the Reddit community grows faster, while SE becomes less diverse and active over time.
Special attention was paid to the activities of individual users. In Ref. [31] authors argue
that while the overall quality of the answers, measured in the answer score, decays over
time, the quality of the answers of the individual user remains constant. This observation
suggests that good answerers are born and not made within the community. Reputation is
used as a proxy for the recognition of experts [32] by other members. However, contrary
to common sense, the authors show that the presence of experts can reduce the activ-
ity of other members [32]. In [12] authors explore the role of self-and cross excitation
in the temporal development of user activity. Differences between growing and declin-
ing communities and communities on STEM and humanities topics were explored. Their
results show that the early stages of growing communities are characterized by the high
cross-excitation of a small fraction of popular users. In contrast, later stages exhibit strong
long-term self-excitation in general and cross-excitation by casual users. It was also shown
that cross-excitation with power users is more important in the humanities than in STEM
communities, where casual users have a more critical role.
A relatively small number of papers focus on the sustainability of SE communities. In

Ref. [11], authors examine SE sites through an economic lens. They analyze the relation-
ship between content production based on the number of participants and activities and
show that an increase in the number of questions (input) increases the number of answers
(output). In their works, Oliveira et al. [33] investigate activity practices and identify the
tension between community spirit as proclaimed in SE guidance and individualistic values
as in reputation measurement through focus groups and interviews.
Our assumption about the relevance of the structure of social networks in the sustain-

ability of knowledge-sharing communities is supported by research on other social groups.
Various factors influence the emergence [34, 35], the evolution, and the sustainability of
the groups [13, 20, 36, 37]. The number of committedmembers [37] and theminimal level
of interdependence betweenmembers [35] are important factors for the emergence of the
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community. The levels of activity have an important role in the emergence and stability of
social groups [34, 37], while social factors, such as the size of the group, number of social
contacts, or social capital, influence their emergence and collapse [13–16].
Another important branch of research of interest in the sustainability of online com-

munities is the topic of trust. While ICTs make it easier for individuals to establish and
maintain social contacts and exchange information and goods, they are also exposed to
new risks and vulnerabilities. Social trust relationships, based on positive or negative sub-
jective expectations of another person’s future behavior, play an important but largely un-
explored role in managing those risks. Recent works show that the vital element of trust
is the notion of vulnerability in social relations, and as negative expectations of a trustee’s
behavior most often imply damage or harm to the trustor, decisions about which users to
trust in an online community become paramount [38–40].
In communities such as SE, individuals have three sources of information to rely onwhen

deciding to trust someone in a specific context: (1) knowledge of previous interactions,
(2) expectations about future interactions, and (3) indirect information gained through
a broader social network. Suppose that the number of active users in such a community
increases over amore extended period. In that case, the individuals have little or no history
together, no direct interactions, and almost no memory of past interactions. In that case,
the social network created by the community becomes a crucial source of information.
Therefore, from a network perspective, trust can be the result of reputational concerns
and can flow through indirect connections linking actors to one another [40, 41].
In that case, users rely on reputation as a public measure of the reliability of other users

active within the same community. Reputation is often quantified based on the history
of behavior valued or promoted by a set of community norms and, as such, represents a
social resource within the community [42–44]. Since reputation is public information, it
is also an incentive. Agents with high reputations are motivated to act trustworthy in the
future in order to preserve their status in the community [41]. This idea is supported by
psychological findings suggesting that trust is primarily motivated by effects produced by
the act of trust itself, regardless of more rational or instrumental outcomes of trustworthy
behavior [39].
In terms of modeling collective trust and reputation in online communities, knowledge

about past behaviors can be implemented in a trust model in different ways. When esti-
mating trust between agents in a social network, graph-based models focus on the topo-
logical information, position, and centrality of agents in a social network to estimate both
dyadic and collective measures of social trust. On the other hand, interaction-based mod-
els, such as the dynamic reputation model implemented in this paper (DIBRM) [23] es-
timate trust or reputation based on the frequency and type of agent’s interactions over
time without taking into account the structure and topology of the interactions between
different agents in a network.

3 Data
In our main analysis, we focus on pairs of closed and active SE communities matched by
topic. Astronomy, Literature, and Economics are currently active communities. All three
communities thrived the second time theywere proposed. The first attempt to create com-
munities on these topics resulted in website closure within a year. We add to the compar-
ison the early days of the Physics community and compare its evolution with the closed
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Theoretical Physics community. The topics of these communities are not identical, but
it is safe to assume that there is a high overlap in user demographics and interests. For
these reasons, we treat this pair in the same manner as others. Furthermore, to further
solidify our results we have examined the early evolution of four additional communities:
Mathematics, Mathematica, Startup Business, Startups. These communities are used to
inspect the robustness of our main analysis by comparing main communities with others
of similar size, user growth, and activity trends.
The SE data are publicly available and released at regular time intervals.We are primarily

interested in the activity and interaction data, which means that we extract the following
information for posts (questions and answers) and comments: (1) for each post or com-
ment, we extract its unique ID, the time of its creation, and unique ID of its creator - user;
(2) for every question, we extract information about IDs of all answers to that question
and ID of the accepted answer; (3) for each post, we collect information about IDs of its
related comments. The data contains information about the official SE reputation of each
user but only as a single value measuring the final reputation of the user on a day when
the data archive was released. Due to this significant shortcoming, we do not include this
information in our analysis. In SE, users can give positive or negative votes to questions
and answers and mark questions as favorites. However, the data is again provided as a fi-
nal score recorded at the release. Since this does not allow us to analyze the evolution of
scores, we omit this data from our analysis.
All SE communities follow the same path from their creation until they are considered

mature enough or closed. In aDefinition phase, a small number of SE users start by design-
ing a community by proposing hypothetical questions about a certain topic. A successful
Definition phase is followed by a Commitment phase. In this phase, interested users com-
mit to the community to make it more active. The Beta phase, which follows after the
Commitment phase, is the most important. It consists of two steps: a three-week private
beta phase, where only committed users may ask/answer/comment questions, and a pub-
lic beta phase when other members are allowed to join the community. The duration of
the public beta phase is not limited. Depending on this analysis, there are three possible
outcomes: (1) the community is considered successful and it graduates; (2) the commu-
nity is active but needs more work to graduate, which means that the public beta phase
continues; (3) the community dies and the site is closed. The community evaluation/re-
view process is guided by simple metrics: the average number of questions per day, aver-
age number of answers per question, percentage of answered questions, total number of
users and number of avid users, and average number of visits per day. However, it should
be noted that process is not straightforward and that decision criteria have substantially
changed in previous years and sometimes exceptions are made for specific communities.2

We study how the social network properties of these social communities and the social
trust created among their members evolve during the first 180 days. The first 90 days are
recognized as the minimal time a newly established community should spend in the beta
phase. We investigate a period that is twice as long since closed communities were active
between 180 and 210 days. Given that differences in the first few months of the life of the

2For example, in 2022 59 websites graduated according to new criteria established in 2019 (which excluded ques-
tions per day metric), but as explained in the announcement (https://meta.stackexchange.com/questions/374096/
congratulations-to-the-59-sites-that-just-left-beta) exception was made for the AI community which graduated although
it didn’t meet the criteria that minimum 70% questions have at least one upvoted answer.

https://meta.stackexchange.com/questions/374096/congratulations-to-the-59-sites-that-just-left-beta
https://meta.stackexchange.com/questions/374096/congratulations-to-the-59-sites-that-just-left-beta
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Table 1 Community overview for first 180 days according to SE evaluation criteria

Site Status Answered Questions per day Answer ratio

Physics Closed 83% 1.93 1.64
Active 93% 11.76 2.74

Literature Closed 79% 1.77 1.65
Active 74% 5.04 1.10

Astronomy Closed 95% 2.62 2.02
Active 96% 3.57 1.49

Economics Closed 68% 2.04 1.25
Active 84% 5.66 1.37

Stack Exchange criteria Excellent >90% >10 >2.5
Needs some work <80% < 5 <1

online community can help predict its survival and evolution [45], we focus on the early
evolution of SE sites.
Although the official review of SE communities in the beta phase ismostly based on sim-

ple activity indicators such as the number of questions or ratio of answers to questions,3

these simple metrics do not provide enough information to differentiate between closed
communities and those that have been proven to be sustainable in the long term. Thismay
explain why the official guidelines for SE community review have changed and have been
applied inconsistently.
Table 1 shows the values of someof thesemeasures at 180 days point for considered com-

munities. Although the Physics community had better metrics than Theoretical Physics
and other considered communities, we see that these differences are not as apparent if we
compare the remaining three pairs of communities. For instance, some of the parameters
for the closed Astronomy community, for example, the percentage of answered questions
and answer ratio, were better than for the community that is still active.
Another simple indicator can be the time series of active questions for the 7 days shown

in Fig. 2. The question is considered active if it had at least one activity, posted answer, or
comment, during the previous 7 days. The four pairs of compared communities show that
active communities have a higher number of active questions after 180 days. Although
this difference is evident for the Physics and Economics community, Fig. 2 shows that its
value is smaller for Astronomy and Literature. Furthermore, in the case of Astronomy, the
closed community had a higher number of active questions in the first 75 days.
The values of the measures shown in Tables 1 and A1 in Additional file 1, and Fig. 2 sug-

gest that these simplemeasures are not good indicators of long-term sustainability. There-
fore, we need a deeper understanding of the structure and dynamics of the community
to understand the factors behind its sustainability. All communities must start with the
same number of interesting questions, the same number of committed users, and satisfy
the same thresholds to enter the public beta phase. These basic aggregated statistics are
not enough to differentiate between active and closed communities. Hence, other factors
determine the sustainability of communities. We investigate the role of social interaction
structure and the dynamics of collective trust in the sustainability of SE communities.

3https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/

https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/
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Figure 2 Variations in the number of active questions in SE communities. Number of active questions within
7 days sliding windows on the four pairs of Stack Exchange websites: Astronomy, Literature, Economics and
Physics. Solid lines – active sites; dashed lines – closed sites

4 Method
We are interested in the position of trustworthymembers in SE communities and how ac-
tive and closed communities differ regarding this factor. First, wemap the interaction data
onto networks and analyze their properties and how they evolve during the first 180 days.
Furthermore, we use the dynamical reputation model to estimate the trustworthiness of
each member of the community and the dynamics of collective trust by studying the evo-
lution of the mean value of reputation in the community. The entire analysis was done in
Python, and the entire code for reproducing the results and figures is publicly available in
an online repository.4

4.1 Network mapping
We treat all user interactions, answering questions, posting questions or comments, and
accepting answers equally. We construct a network of users where the link between two
nodes, users i and j, exists if i answers or comments on the question posted by j and vice
versa, or i comments on the answer posted by j and vice versa, i accepts the answer posted
by user j. We do not consider the direction or frequency of the interaction between users
i and j; thus, the obtained networks are unweighted and undirected.
We create a network snapshot G(t, t + τ ) at the time t for the time window length τ .

Two users (i, j) are connected in a network snapshotG(t, t + τ ) if they have had at least one

4https://github.com/ana-vranic/Stack-Exchange-communities

https://github.com/ana-vranic/Stack-Exchange-communities
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interaction during the time [t, t + τ ]. Our first network accounts for interaction within
the first 30 days G[0, 30), and we slide the interaction window by one day and finish with
G[149, 179) network. This way, we create 150 interaction networks for each community.
By sliding the time window by one day, we create two consecutive networks that overlap
significantly. In this way, we can capture subtle structural changes resulting from daily
added/removed interactions.We calculate the different structural properties of these net-
works and analyze how they change over 180 days.

4.2 Clustering
There are many local and global measures of network properties [21]. These measures are
not independent. However, it was shown that the degree distribution, degree-degree cor-
relations, and clustering coefficient are sufficient to fully describemost complex networks,
including social networks [46]. Furthermore, research on the dynamics of social group
growth shows that links between persons’ friends who are members of a social group in-
crease the probability that that person will join that social group [47]. Successful social
diffusion typically occurs in networks with a high value of the clustering coefficient [48].
These results suggest that higher local cohesion should be a characteristic of sustainable
communities.
The clustering coefficient of a node quantifies the average connectivity between its

neighbors and the cohesion of its neighborhood [21]. It is a probability that two neigh-
bours of a node i are also neighbours, and is calculated using the following formula:

ci =
ei

1
2ki(ki – 1)

. (1)

Here ei is the number of links between the neighbours of the node i, while 1
2ki(ki –1) is the

maximum possible number of links determined by the degree of the node ki. The cluster-
ing coefficient of the network C is the value of the clustering averaged over all nodes. We
investigate how the clustering coefficient in an SE community changes over time by cal-
culating its value for all network snapshots. We normalize the clustering coefficients with
the value of expected clustering for the random Erdos-Renyi network with the same num-
ber of nodes N and links L: cer = p = 2L

(N(N–1)) [21, 49]. We compare normalized clustering
coefficient for active and closed communities on the same topic to better understand the
evolution of cohesion of these communities.

4.3 Core-periphery structure
Real networks, including social networks, have a distinct mesoscopic structure [22, 50].
The mesoscopic structure is manifested either through the community structure or the
core-periphery structure. Networks with a community structure consist of a certain num-
ber of groups of nodes that are densely connected, with sparse connections between
groups. Networks with core-periphery structures consist of two groups of nodes, with
higher edge density within one group, core, and between groups. However, low edge den-
sity in the second group, periphery [22]. Research on user interaction dynamics in SE
communities shows that there is a small group of highly active members who have fre-
quent interactionswith casual or low activemembers [8, 12]. These results indicate thatwe
should expect a core-periphery structure in SE communities. The classification of nodes



Vranić et al. EPJ Data Science            (2023) 12:4 Page 10 of 24

into one of these two groups provides information on their functional and dynamic roles
in the network.
To investigate the core-periphery structure of SE communities and how it evolves over

time,we analyze the core-periphery structure of every network snapshot. For this purpose,
we use the Stochastic Block Model (SBM) adapted for the inference of the core-periphery
of the network structure [22].
SBM is a model where each node belongs to one group in the given network G. For the

core-periphery structure, the number of blocks is two. Thus, the elements of the vector
θi are 1 if the node i belongs to the core or 2 for the periphery. The block connectivity
matrix {p}2x2 specifies the probability prs that nodes from group r are connected to nodes
in group s, where r, s ∈ {1, 2}.
The SBM model seeks the most probable model that can reproduce a given network

G. The probability of having model parameters θ , p given network G is proportional to
the likelihood of generating network G, P(G|θ ,p), prior on SBMmatrix P(p) and prior on
block assignments P(θ ):

P(θ ,p|G) = P(G|p, θ )P(p)P(θ ), (2)

The likelihood of generating a network G is defined as:

P(G|θ ,p) =
∏

i<j

pAij
risj (1 – prisj )

1–Aij , (3)

where the adjacencymatrix elementAij is equal to 1 whenever nodes i and j are connected
and it is 0 otherwise.
Prior on p is the uniform distribution over all block matrices whose elements satisfy

the constraint for the core-periphery structure 0 < p22 < p12 < p11 < 1. Prior on θ consists
of three parts: the probability of having 2 blocks; given the number of blocks, probability
P(n|2) of having groups of sizes {n1,n2} and probability P(θ |n) of having particular assign-
ments of nodes to blocks.
To fit the model, we follow the procedure set by the authors of Ref. [22] and use the

Metropolis-within-Gibbs algorithm. For each 30 days snapshot network, we run 50 iter-
ations and choose the model parameters θ and p according to the minimum description
length (MDL). MDL does not change much among inferred core-periphery structures,
see Fig. A1 in Additional file 1, while looking into the Adjusted Rand Index (ARI), we can
notice that difference exists. Still, the ARI between pair-wise compared partitions is sig-
nificant (ARI > 0.9), indicating the stability of the inferred structures. The definition and
detailed descriptions of MDL and ARI are given in the Additional file 1.

4.4 Dynamic reputation model
Any dynamical trust or reputation model has to take into account distinct social and psy-
chological attributes of these phenomena in order to estimate the value of any given trust
metric [43]. First, the dynamics of trust are asymmetric, meaning that trust is easier to
lose than to gain. As part of asymmetric dynamics, to make trust easier to lose, the trust
metric has to be sensitive to new experiences, recent activity, or the absence of the user’s
activity while still maintaining the non-trivial influence of old behavior. The impact of
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new experiences must be independent of the total number of recorded or accumulated
past interactions, making high levels of trust easy to lose. Finally, the trust metric must
detect and penalize behavior that deviates from community norms.
We estimate the dynamic reputation of SE users using the Dynamic Interaction Based

Reputation Model (DIBRM) [23]. This model is based on the idea of dynamic reputation,
which means that the reputation of users within the community changes continuously
over time: it should rapidly decrease when there is no registered activity from the specific
user in the community, reputation decay, and it should grow when frequent, constant in-
teractions and contributions to the community are detected. The highest growth in users’
reputations is found through bursts of activity followed by a short period of inactivity.
Our model implementation does not distinguish between positive and negative interac-

tions in SE communities. Therefore, we treat any interaction in the community, posting
a question, answer, or comment, as a potentially valuable contribution. The evaluation
criteria for SE websites that go through beta testing described in Additional file 1 do not
distinguish between positive and negative interactions. The percentage of negative inter-
actions in the communities we investigated was below 5%, see Table A2 in Additional file
1. Filtering positive interactions would also require filtering out comments because the
community does not rate them. That would eliminate a large portion of direct interac-
tions between community users, which is essential for estimating their reputation. The
only negative aspect of behavior in our model is the absence of valuable contributions -
the user’s inactivity. This behavior can be seen as a deviation from community norms as
we look at new communities in the early stages of development, where constant contribu-
tions are crucial to community growth and survival.
In DIBRM, the reputation value for each user of the community is estimated by combin-

ing two different factors: (1) reputation growth - the cumulative factor that represents the
importance of users’ activities; (2) reputation decay - the forgetting factor that represents
the continuous decrease in reputation due to inactivity. In the case of SE communities,
the forgetting factor has a literal meaning, as we can assume that active users forget users’
past contributions as their attention is captured by more recent content.
In the bottom left part of Fig. 1 we see an example of reputation dynamics for a single

user. There are bursts of reputation growth after multiple interactions are recorded, like
in the case of two interactions in a single day recorded between days 25 and 50, followed
by a period of inactivity which leads to reputation decay. In this case, the decay is inter-
rupted by a single recorded activity before the 75th day, but then an even longer inactivity
period ensued, leading to a decay that reduced the reputation of the user nearly to 0 be-
fore the 100th day. Two contrasting examples of real user reputation are explained in the
Additional file 1 (Fig. A2).
Reputation dynamics revolves around the varying influence of past and recent behav-

ior. Thus, DIBRMhas two components: cumulative factor - estimating the contribution of
themost recent activities to the overall reputation of the user; forgetting factor - estimating
the weight of past behavior. Estimating the value of recent behavior starts with the defi-
nition of the parameter storing the basic value of a single interaction Ibn . The cumulative
factor Icn then captures the additive effect of successive recent interactions. In Fig. 1 we
see this cumulative effect with two consecutive interactions (gray vertical lines) after day
150 which sudden jump in reputation previously reduced to zero. The reputational con-
tribution In of the most recent interaction n of any given user is estimated in the following
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way:

In = Ibn + Icn = Ibn
(
1 + α

(
1 –

1
Sn + 1

))
. (4)

Here, α is the weight of the cumulative part, and Sn is the number of sequential activi-
ties. If there is no interaction at tn, this part of interactions has a value of 0. An essential
property of this component of dynamic reputation is the notion of sequential activities.
Two subsequent interactions by a user are considered sequential if the time between these
two activities is less than or equal to the time parameter ta that represents the time win-
dow of interaction. This time window represents the maximum time spent by the user to
make a meaningful contribution, post a question or answer, or leave a comment,

�n =
tn – tn–1

ta
. (5)

If �n < 1, the number of sequential activities Sn will increase by one, which means that
the user continues to communicate frequently. However, large values �n significantly in-
crease the effect of the forgetting factor. This factor plays a vital role in updating the total
dynamic reputation of a user at each time step, after every recorded interaction:

Tn = Tn–1β
�n + In . (6)

Here, β is the forgetting factor. In our model implementation, the trust is updated each
day for every user regardless of their activity status. Therefore, the decay itself is a combi-
nation of β and �n: the more days pass without recorded interaction from a specific user,
the more their reputation decays. Lower values of β lead to faster trust decay, as shown in
Fig. A2 in the Additional file 1. In Fig. 1 we observe this long-tailed reputation loss when
the user hasmore than 25 inactive days between days 120 and 150, reducing the reputation
almost to 0.
For this work, we select the following values of these parameters: (1) we set the basic

reputation contribution Ibn = 1, which means that each activity contributes 1 to the dy-
namical reputation; (2) for the cumulative factor α we choose the value 2 and place higher
weight on recent successive interactions; (3) forgetting factor β we select the value 0.96;
4) the value of ta = 2. By setting α > 1 we enable faster growth of reputation due to a large
number of subsequent interactions; see Fig. A2 in Additional file 1. Furthermore, by set-
ting the value of β < 1.0, we increase the penalty for long inactivity periods; see Fig. A2 in
Additional file 1. We discuss the selection of model parameters and their consequences in
detail below. The selected values of parameters are used to measure the dynamical repu-
tation of users in all four pair SE communities. Given these parameter values, the minimal
reputation of the user immediately after having made an interaction in the SE community
is 1. This reputation will decay below 1 if the user does not perform another interaction
within the one-day window. Users with a reputation below the value 1 are considered in-
active and invisible in the community; that is, their past contributions at that time are
unlikely to impact other users.
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4.4.1 The choice of model parameters
In this work, we used snapshots of the network of 30 days. This period corresponds to the
average month, and it is common in the analyses of the structure and dynamics of social
networks [51–53]. Still, there is no well-specified procedure to choose the time window.
Previous studies have shown that if τ is small, subnetworks become sparse, while for too
large sliding windows, some important structural changes cannot be observed [52, 54].
Thus, we have analysed how the time window choice influences our results. Figure A11
in Additional file 1 shows how considered network properties and dynamical reputation
depend on the time window size for active and closed communities in case of Astronomy
communities. We observe that fluctuations of all measures are more pronounced for a
time window of 10 days than for 30 and 60 days. However, we find that while the struc-
tural properties of networks evolve at different rates over varied time windows, the trends
remain very similar. The qualitative difference observed between closed and active com-
munities is independent of the time window size, especially when comparing the 30 and
60 day windows. The 30-day time window ensures enough interaction, even for closed
communities, while the number of observation points remains relatively high. For these
reasons, we choose a sliding window of 30 days.
The initial purpose of DIBRMwas to replicate the dynamics of the official SE reputation

metric [23, 55]. In previous studies [55] the official SE reputation is obtained with ta = 2,
α = 1.4, β = 1. This configuration of model parameters implies that there is no reputation
decay and points toward the fact that the official SE reputation is hard to lose. Our ap-
plication is oriented towards estimating a reputation metric which takes into account the
fundamental properties of social trust, i.e. reputation decreases with members’ inactivity,
so we opted for a different set of parameter values.
For the basic reputation contribution of a single interaction, we selected Ibn = 1, and, at

the same time, this is the threshold value of an active user. This value is intuitive as every
interaction has the initial contribution of +1 to the user’s reputation, although the previous
works have used values of +2 and +4. Following the previous work and after examining
the median/average time between subsequent interactions of the same user, we selected
ta = 1, which alsomeans that the reputation in ourmodel will be updated every day during
the time window of the analysis, regardless of whether the user is active or not.
The combination of parameters α and β can significantly influence the dynamic of the

single user reputation, as shown in Fig A2. We show that higher values for parameter
α = 2, highlight the burst of user activity and frequent interaction. On the other hand, the
parameter beta is the forgetting factor, which at the same time determines the weight of
past interactions and the reputational punishment due to user inactivity. Here, we need to
select the parameter β value, so we include forgetting due to inactivity but do not penalize
it too much. In Fig. A2, we show how different values of parameter β influence the time
needed for a user’s reputation to fall on value In = 1 due to the user’s inactivity and value
of dynamical reputation at the moment of the last activity. The higher the value of the
parameter β and the initial dynamical reputation of the users, the longer it takes for the
user’s reputation to fall to the baseline value. For parameters β = 0.9 and In = 5, the user’s
reputation drops to value In = 1 after less than 20 days, while this time is doubled for
β = 0.96. We see that for higher values of the parameter β , the time it takes for In to drop
to 1 becomes longer and that the initial value of the reputation becomes less important.
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We estimated the difference between the number of users who had at least one activity
in the 30-day window and the number of users with a reputation greater than 1 during the
same period for different parameter β values. We calculated the root mean square error
(RMSE) between the time series of the number of active users for τ = 30 and different
values of β parameters; see Fig. A12 in Additional file 1. The minimal difference between
these two variables is for β between 0.94 and 0.96 for both active and closed communities.
Since we want to compare communities, we select β = 0.96. Our analysis reveals that the
reputational decay parameter β set at 0.96 does not reduce the number of active users
(based on their dynamic reputation) below the actual number of users who have been
active (interacted with the community) in the time window of 30 days; see Fig. A13 in
Additional file 1. Furthermore, we examine and compare the trends of two types of time
series: (1) time series of active users, according to dynamical reputation; (2) time series
of permanent users, users who were active in a given sliding window and continued to be
active in the next one. FigureA14 inAdditional file 1 shows that while the absolute number
of users differs in these time series, they follow similar trends for all communities.

5 Results
5.1 Clustering and core-periphery structure of knowledge-sharing networks
We first analyze the structural properties of SE communities and examine the difference
between active and closed ones. We calculate the normalized mean clustering coefficient
for 30-day window networks and examine how it changes over time. Figure 3 shows the
evolution of the normalized mean clustering coefficient for the eight communities. All
communities that are still active are clustered, with the value of normalized clustering co-
efficient above 5, with Physics, the only launched community, having the highest value of
normalized clustering coefficient during the first 180 days. During the larger part of the
observed period, an active community’s normalized clustering coefficient is higher than
the normalized clustering coefficient of its closed pair. For pairs where active communities
are still in the beta phase, some of closed communities have a higher value of the normal-
ized clustering coefficient in the first 50 days. After this period, active communities have
higher values of the normalized clustering coefficient. These results suggest that all com-
munities have relatively high local cohesiveness compared to random graphs, however,
the value of normalized clustering below the value 5 in the later phase of community life
may indicate its decline.
Furthermore, we examine the core-periphery structure of these communities and their

evolution. Specifically, we are interested in the evolution of connectivity in the core. Fig-
ure 4 shows the change in the number of links between nodes, averaged on the core nodes,
Lc
Nc

over time. 2Lc
Nc

is the average degree of the node in the core and, thus, Lc
Nc

is the half of
the average degree. Again, the Physics community has a much higher value of this quan-
tity than Theoretical Physics during the observed period, indicating higher connectivity
between core members. Higher connectivity between core members in the active com-
munity is also characteristic of Literature. However, this quantity has the same value for
active and closed communities at the end of the observation period. The differences be-
tween active and closed communities are not that prominent for Economics and Astron-
omy, see Fig. 4. Active and closed Economics communities have similar connectivity in
the core during the first 50 days. After this period, the connectivity in the core of the ac-
tive community is twice as large as in the closed community, and the difference grows at
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Figure 3 Normalized mean clustering coefficient of 30 days sub-networks for four pairs of Stack Exchange
websites: Astronomy, Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

Figure 4 Connectivity among users within the core and between core and periphery. Links per node in core -
top panel and links per node between core and periphery - bottom panel for the four pairs of Stack Exchange
websites: Astronomy, Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

the end of the observation period. The connectivity in the core of the closed Astronomy
community is higher than the connectivity in the core of the active community during the
first 50 days. However, as time progresses, this difference changes in favor of the active
community, while this difference disappears at the end of the observation period.
The difference between active and closed communities is observed compared to the av-

erage number of core-periphery edges per network node. The connectivity between core
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and periphery is higher for the active communities than for the closed ones, see Fig. 4,
which is very obvious if we compare Physics and Theoretical Physics communities. More-
over, the Physics community has the highest connectivity compared to all other commu-
nities. Active Literature and Economics communities have the same core-periphery con-
nectivity as their closed counterpart. The core of the active Astronomy community has
weaker connections with the periphery than the closed community during the first 50
days, see Fig. 4.
Ourmotivation to examine the core-periphery structure comes from reference [12]. The

authors have selected 10% of the most active users and examined their mutual connec-
tivity and connectivity with the remaining users. The split of 10% to 90% users according
to their activity may appear arbitrary. The core-periphery provides a more consistent net-
work division based on its structure. However, the connectivity patterns between popular-
popular and popular-casual users, shown in Fig. A3 in Additional file 1, are similar to one
observed for core-periphery in Fig. 4.
On average, the cores of active communities have a higher number of nodes than closed

communities. However, the size of the core relative to the size of the network is similar for
active and closed communities (Fig. A4 in Additional file 1). The size of the core fluctu-
ates over time for active and closed communities. The coremembership also changes over
time. This core membership is changing more for the closed communities. We quantify
this by calculating the Jaccard index between the cores of the subnetworks at the moment
ti and tj. Figure A5 in Additional file 1 shows the value of the Jaccard index between any
pair of the 150 subnetworks. The highest value of the Jaccard index is around the diago-
nal and has a value close to 1. The compared subnetworks are for consecutive days and
have a similar structure. The value of the Jaccard index decreases with the number of days
between two subnetworks |ti – tj| faster in closed communities; see Fig. A6 in Additional
file 1. This difference is the most prominent for the Literature communities, while this
difference is practically non-existent for Astronomy. The relatively high value of overlap
between cores of distant subnetworks for active communities further confirms that the
core is more stable in these communities that in their closed counterparts.

5.2 Dynamic reputation of users within the network of interactions
To explore the differences between active and closed communities, we focus on dynami-
cal reputation, our proxy for collective trust in these communities. The number of active
users (top panel) and the mean user reputation (bottom panel) for different SE communi-
ties are shown in Fig. 5. Except in the case of Astronomy, closed communities generated
less engaged users from the start and the number of active users saturated at lower values.
In the case of Astronomy, the closed community started with a faster-increasing number
of active users. However, within the first two months, their number dropped, while the
second time around, the community started slower but kept engaging more users. Only
in the still active Physics community is the number of active users an increasing function
over the whole 180 day period we have observed. Panels in the bottom show mean rep-
utation among active users, and we see that most of the time, it was higher in the still
active communities than in the closed ones. The Physics community kept these mean val-
ues more stable at higher levels, whereas in other communities, we note that the initial
high mean reputation decays faster. Astronomy is an exciting exception again, where we
see a second sudden increase in mean user reputation, which signals an increase in user
activity.
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Figure 5 Active users within SE communities and their mean dynamic reputation. The number of active
users (users with a reputation higher than 1) - top panel, and mean Dynamic Reputation within active users –
bottom panel for the four pairs of Stack Exchange websites: Astronomy, Literature, Economics, and Physics.
Solid lines – active sites; dashed lines - closed sites

Figure 6 Mean Dynamical reputation within the core for four pairs of Stack Exchange websites: Astronomy,
Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

In addition, we investigate whether and how the core-periphery structure is related to
collective trust in the network. Figure 6 shows the mean dynamical reputation in the core
of active and closed communities and its evolution during the observation period. There
are apparent differences between active and closed communities regarding dynamical rep-
utation. The mean dynamical reputation of core users is always higher in active commu-
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nities than in closed. The most significant difference is observed between the Physics and
Theoretical Physics communities. The difference between active communities, which are
still in the beta phase, and their closed counterparts is not as prominent. However, the ac-
tive communities have a higher mean dynamical reputation, especially in the later phase
of the observation period. The only difference in the pattern is observed for Astronomy
communities at the early stage of their life. The closed community has a higher value of
dynamic reputation than the active community. This observation is in line with similar
patterns in the evolution of mean clustering, core-periphery structure, and mean reputa-
tion.
By definition, the core consists of very active individuals. Thus we expect a higher to-

tal dynamical reputation of users in the core than the total reputation of users belong-
ing to subnetworks periphery. Figure A7 in Additional file 1 shows the ratio between the
total reputation of the core and periphery for closed and active communities and their
evolution. The ratio between the total reputation of core and periphery in Physics is al-
ways higher than in the Theoretical Physics community. A similar pattern can be observed
for Literature communities, although the difference is not as prominent as in the case of
Physics. The ratio of total dynamical reputation between core and periphery was higher
in the closed Economics community during the early days of its existence. However, this
ratio becomes higher for active communities in the later stage of their lives. Communities
around the astronomy topic deviate from this pattern, which shows the specificity of these
two communities.
To complete the description of the evolution of dynamic reputation,we examine the evo-

lution of the Gini index of dynamical reputation among the active members of SE sites,
shown in Fig. A8 in Additional file 1. Both closed and active communities have high values
of the Gini index, indicating that the dynamic reputation is distributed unequally among
users. Notably, all communities have the highest Gini index at the start, signaling that the
inequality in users’ activity at the start, and thus their dynamic reputation is the highest.
After this initial peak, the Gini index decreases, but it persists at higher levels in com-
munities that are still active than in the closed ones, except in the case of the Astronomy
community. In this case, the active community had a higher Gini index until just before
the observation period, when the Gini coefficient increased in the closed community.
Figure A9 in Additional file 1 shows the evolution of the assortativity coefficient for

users’ dynamical reputation. The observed networks are disassortative during the most
significant part of 180 days period. Users with high dynamical reputations tend to con-
nect with users with a low value of dynamical reputation in all eight communities. We
also compare the degree and betweenness centrality of the users and their dynamical rep-
utation by calculating the correlation coefficient between these measures for each slid-
ing window, see Fig. A10 and detailed explanation in Additional file 1. The correlation
between these centrality measures and dynamical reputation is very high. In active com-
munities on physics, economics, and literature topics, the correlation between centrality
measures and users’ reputation is exceptionally high, above 0.85, and does not fluctuate
much during the observation period. There is a clear difference between active and closed
communities for these three pairs. The Astronomy pair deviates from this pattern for the
first 100 days. After this period, the pattern is similar to one observed for the other three
pairs of communities. The results reveal that degree and betweenness centrality are cor-
related more with a reputation in active than in closed communities.



Vranić et al. EPJ Data Science            (2023) 12:4 Page 19 of 24

6 Discussion and conclusions
In this work, we have explored whether the structure and dynamics of social interac-
tions determine the sustainability of knowledge-sharing communities.We have adopted a
model of dynamical reputation tomeasure the collective trust ofmembers and analyzed its
dynamics. For this purpose, we use the data from the SE platform of knowledge-sharing
communities where members ask and answer questions on focused topics. We selected
four pairs of active and closed communities on the same or similar topic. Specifically, two
topics are from the STEM field, physics, and astronomy, and two are from social sciences
and humanities, economics and literature.
We have examined the evolution of the normalized average clustering coefficient in

closed and active SE communities. Our results show that active communities have sig-
nificantly higher values of clustering coefficient compared to ER graphs of the same size
in the later phase of community life than closed communities. In the early phase of com-
munities’ lives, the clear difference between active and closed communities is observed
only for the physics topic; see Fig. 3. The high value of the normalized clustering coef-
ficient observed for the active Physics community suggests that communities with high
local cohesiveness are sustainable and mature faster than others.
The core in active communities is more strongly connected with the periphery than in

closed communities, indicating that active members engage more often with occasionally
active members; see Fig. 4. These results suggest that active communities are more inclu-
sive than closed ones. Furthermore, our analysis shows that average connectivity between
core members is not as crucial to community sustainability as expected. Although active
Physics and Economics communities exhibit much higher connectivity in the core than
their closed counterparts, this is not true for communities focused on astronomy and lit-
erature. However, our results show that a member’s lifetime in the core is longer for active
communities, indicating a more stable core in active communities.
Analysis of the evolution of the core-periphery and its connectivity patterns suggests

a higher trust between active and sporadically active members. To further explore this,
we have adapted the dynamical reputation model [23], which allowed us to follow the
evolution of trust of each member.
The total dynamical reputation of core members during their first 180 days was higher

for active communities than for their closed counterparts. While relative core size is less
than 40%, Fig. A4 inAdditional file 1, the ratio between the total reputation of nodes in the
core and ones in the periphery is consistently above 0.5, indicating that the average repu-
tation of members in the core is higher than the reputation of the node in the periphery.
The ratio between the total reputation of core and periphery nodes has a higher value in
the active community of Physics, Literature, and Economics. Formost of the 180 days, this
ratio has a value higher than one. The Astronomy communities are outliers, but the core
members have a higher total reputation than members on the periphery, even for these
two communities. Our results imply that the most trusted members in the community
are the core members, who also generate more trust in active communities. They have a
higher reputation generated through interactions with both core and nodes in the periph-
ery, see Fig. 6. Furthermore, the overall levels of trust are higher in active communities,
which is reflected in the fact that themean user reputation is higher in these communities;
see Fig. 5.
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The choice of the topics and selection of SE communities of a various number of users,
question, answer and comments, see Table A1 in the Additional file 1, guarantees, up to
a certain extent, the generality of our results. However, there are certain limitations to
the generalizability of our findings. While SE communities provide very detailed data that
enable the study of the structure and dynamics of knowledge-sharing communities, we
must not ignore the fact that they have some properties that make them specific.
SE communities are about specific topics; they mostly bring together people who are

passionate about or are experts in a specific field. These communities attract people from
the general population. Since we were interested in excluding the factor of the topic in our
research, we studied and compared active and closed communities on the same topic. In
the SE network, these pairs of communities are pretty rare, which has substantially limited
our sample size, leaving the possibility for the occurrence of outliers that do not follow our
general conclusions.
To further solidify our results, we have examined the early evolution of four additional

communities: Mathematics, Mathematica, Startup Business, and Startups. Mathematics
and Mathematica communities graduated early in the process, while both communities
on startup topics were closed after spending some time in the public beta phase. Figures
A15 and A16 in the Additional file 1 show that both communities on the subject of math-
ematics exhibit a similar evolutionary path as the Physics community. They have a high
mean reputation, stable and relatively large coreswith high average trustworthiness of core
members, see Fig. A15 in Additional file 1. While the numbers of active users in these two
communities and the Physics community differ, we see that this does not influence the av-
erage reputation of users or the size of the core. This is even more evident if we compare
the Physics communitywith the closed StartupBusiness community.We see fromFig. A16
in Additional file 1 that the number of active users grows much faster for this community
than for Physics. However, the average reputation in the community is comparable with
the ones that were eventually closed, Theoretical Physics and Startups. Furthermore, the
core size is comparable with the core of Physics, but the average trustworthiness of core
members is similar to one for closed communities. These results demonstrate that even
the communities with high early activity and a number of active users will not become
sustainable if they do not develop a core of trustworthy members. Startups community
has a behavior very similar to Theoretical Physics community. The comparison between
two startup communities, shows that despite their difference in the activity levels these
communities have similar evolution path during the first 180 days.
We have also decided to map interactions to networks so that the resulting network is

unweighted and undirected. We use unweighted edges for a finer distinction between the
structure and community dynamics. The number of repeated user interactions is captured
with dynamic reputation, while the edges carry only structural information without the
number of repeated interactions. Furthermore, as we map interactions to networks using
sliding windows, the repeated presence of an edge throughout different windows gives
us partial information about the durability and the frequency of the dyadic relationship.
Similarly, we opted against directed weights as we are not interested in diffusion or flow of
information and undirected edges represent a more parsimonious view of the community
structure. However, these choices did have consequences in the choice of core-periphery
detection method, and it is possible that with different network mapping, other methods
would prove more suitable.
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Finally, there are many ways to measure collective trust and reputation in online social
communities. We have selected the dynamical reputation model because it was devel-
oped to measure reputation in SE communities. Furthermore, the model allowed us to
study the evolution of trust in communities. However, the model requires fine-tuning of
its parameters and does not distinguish positive from negative interactions. We have se-
lected our parameters to replicate the activity of the SE communities in the time window
of τ = 30 days. Our analysis shows that while the choice of the sliding window, τ , may
seem arbitrary, the different values do not influence the general conclusions; see Fig. A11
in Additional file 1. The interactions in SE communities are mostly not emotional, and
thus, the model is suitable for measuring collective trust in these communities. However,
the interaction in other knowledge-sharing communities can be much more emotional,
and therefore the dynamical reputation model needs to be adapted to measure reputation
in these communities.
Our results show that the trustworthiness of core members thus represents one of the

essential parameters for determining community sustainability. Sustainable communities
have a core of trustworthymembers. The core of sustainable communities is more densely
connected, and its connectivity with the periphery is more significant than in closed com-
munities. The observed feature is especially prominent in the Physics community, which
is the only active community considered to be mature. As we stated, active communities
on topics of astronomy, economics and literature were in the beta phase. However, since
December 2021,5 these communities graduated. The core of sustainable communities ex-
hibits higher degrees of stability during their first 180 days. Sustainable communities have
higher local cohesiveness, which is reflected in the relatively high value of the normalized
clustering coefficient. Our results show that these conclusions hold for both STEM and
humanities topics. However, we do not observe apparent differences between active and
closed Astronomy communities for some quantities. In the case of Astronomy and some-
times Economics, we find that closed communities had higher normalized clustering co-
efficients and higher core-core and core-periphery connectivity during the early phase of
community life. These observations suggest that the properties of the network during the
early phase of the community’s existencemay lead to wrong conclusions about its sustain-
ability. Our results also imply that information about community sustainability is hidden
in the evolution of different network and trust properties.
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Vranić et al. EPJ Data Science            (2023) 12:4 Page 24 of 24

50. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174.
https://doi.org/10.1016/j.physrep.2009.11.002

51. Saramäki J, Moro E (2015) From seconds to months: an overview of multi-scale dynamics of mobile telephone calls.
Eur Phys J B 88(6):1–10. https://doi.org/10.1140/epjb/e2015-60106-6

52. Krings G, Karsai M, Bernhardsson S, Blondel VD, Saramäki J (2012) Effects of time window size and placement on the
structure of an aggregated communication network. EPJ Data Sci 1(1):1. https://doi.org/10.1140/epjds4

53. Barrat A, Gelardi V, Le Bail D, Claidiere N (2021) From temporal network data to the dynamics of social relationships.
Proc R Soc Lond B, Biol Sci 288:20211164. https://doi.org/10.1098/rspb.2021.1164

54. Arnold NA, Steer B, Hafnaoui I, Parada GHA, Mondragon RJ, Cuadrado F, Clegg RG (2021) Moving with the times:
investigating the alt-right network gab with temporal interaction graphs. Proc ACM Hum-Comput Interact 5(CSCW2)
447. https://doi.org/10.1145/3479591

55. Yashkina E, Pinigin A, Lee J, Mazzara M, Adekotujo AS, Zubair A, Longo L (2019) Expressing trust with temporal
frequency of user interaction in online communities. In: Advanced information networking and applications.
Springer, Cham. https://doi.org/10.1007/978-3-030-15032-7_95

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1140/epjb/e2015-60106-6
https://doi.org/10.1140/epjds4
https://doi.org/10.1098/rspb.2021.1164
https://doi.org/10.1145/3479591
https://doi.org/10.1007/978-3-030-15032-7_95


J.S
tat.

M
ech.

(2022)
123402

PAPER: Interdisciplinary statistical mechanics

Universal growth of social groups:
empirical analysis and modeling
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Abstract. Social groups are fundamental elements of any social system. Their
emergence and evolution are closely related to the structure and dynamics of a
social system. Research on social groups was primarily focused on the growth
and the structure of the interaction networks of social system members and how
members’ group affiliation influences the evolution of these networks. The distri-
bution of groups’ size and how members join groups has not been investigated
in detail. Here we combine statistical physics and complex network theory tools
to analyze the distribution of group sizes in three data sets, Meetup groups
based in London and New York and Reddit. We show that all three distributions
exhibit log-normal behavior that indicates universal growth patterns in these
systems. We propose a theoretical model that combines social and random diffu-
sion of members between groups to simulate the roles of social interactions and
members’ interest in the growth of social groups. The simulation results show
that our model reproduces growth patterns observed in empirical data. Moreover,
our analysis shows that social interactions are more critical for the diffusion of
members in online groups, such as Reddit, than in offline groups, such as Meetup.
This work shows that social groups follow universal growth mechanisms that need
to be considered in modeling the evolution of social systems.
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1. Introduction

The need to develop methods and tools for their analysis and modeling comes with
massive data sets. Methods and paradigms from statistical physics have proven to be
very useful in studying the structure and dynamics of social systems [1]. The main
argument for using statistical physics to study social systems is that they consist of
many interacting elements. Due to this, they exhibit different patterns in their structure
and dynamics, commonly known as collective behavior . While various properties can
characterize a social system’s building units, only a few enforce collective behavior in
the systems. The phenomenon is known as universality in physics and is commonly
observed in social systems such as in voting behavior [2], or scientific citations [3]. It
indicates the existence of the universal mechanisms that govern the dynamics of the
system [1].

Social groups, informal or formal, are mesoscopic building elements of every socio-
economic system that direct its emergence, evolution, and disappearance [4]. The exam-
ples span from countries, economies, and science to society. Settlements, villages, towns,
and cities are formal and highly structured social groups of countries. Their organization
and growth determine the functioning and sustainability of every society [5]. Companies
are the building blocks of an economic system, and their dynamics are essential indica-
tors of the level of its development [6]. Scientific conferences, as scientific groups, enable
fast dissemination of the latest results, exchange, and evaluation of ideas as well as a
knowledge extension, and thus are an integral part of science [7]. The membership of
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individuals in various social groups, online and offline, can be essential when it comes
to the quality of their life [8–10]. Therefore, it is not surprising that the social group
emergence and evolution are at the center of the attention of many researchers [11–14].

The availability of large-scale and long-term data on various online social groups has
enabled the detailed empirical study of their dynamics. The focus was mainly on the
individual groups and how structural features of social interaction influence whether
individuals will join the group [15] and remain its active members [7, 16]. The study on
LiveJournal [15] groups has shown that decision of an individual to join a social group
is greatly influenced by the number of her friends in the group and the structure of their
interactions. The conference attendance of scientists is mainly influenced by their con-
nections with other scientists and their sense of belonging [7]. The sense of belonging of
an individual in social groups is achieved through two main mechanisms [16]: expanding
the social circle at the beginning of joining the group and strengthening the existing
connections in the later phase. Analysis of the evolution of large-scale social networks
has shown that edge locality plays a critical role in the growth of social networks [17].
The dynamics of social groups depend on their size [18]. Small groups are more cohesive
with continued long-term, while large groups change their active members constantly
[18]. These findings help us understand the growth of a single group, the evolution of its
social network, and the influence of the network structure on group growth. However,
how the growth mechanisms influence the distribution of members of one social system
among groups is yet to be understood.

Furthermore, it is not clear whether the growth mechanisms of social groups are uni-
versal or system-specific. The size distribution of social groups has not been extensively
studied. Rare empirical evidence of the size distribution of social groups indicates that
it follows power-law behavior [19]. However, the distribution of company sizes follows
log-normal behavior and remains stable over decades [20, 21]. Analysis of the cities’ sizes
shows that all cities’ distribution also follows a log-normal distribution [22]. In contrast,
the distribution of the largest cities resembles Zipf’s distribution [23].

A related question that should be addressed is whether we can create a unique
yet relatively simple microscopic model that reproduces the distribution of members
between groups and explains the differences observed between social systems. French
economist Gibrat proposed a simple growth model to produce companies’ and cities’
observed log-normal size distribution. However, the analysis of the growth rate of the
companies [20] has shown that growth mechanisms are different from those assumed
by Gibrat. In addition, the analysis of the growth of the online social networks showed
that the population size and spatial factors do not determine population growth, and
it deviates from Gibrat’s law [24]. Other mechanisms, for instance, growth through
diffusion, have been used to model and predict rapid group growth [25]. However, the
growth mechanisms of various social groups and the source of the scaling observed in
socio-economic systems remain hidden.

Here we analyze the size distribution of formal social groups in three data sets:
Meetup groups based in London and New York and subreddits on Reddit. We are
interested in the scaling behavior of size distributions and the distribution of growth
rates. Empirical analysis of the dependence of growth rates, shown in this work, indicates
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that growth cannot be explained through Gibrat’s model. Here we contribute with a
simple microscopic model that incorporates some of the findings of previous research
[15, 19]. We show that the model can reproduce size and growth rate distributions for
both studied systems. Moreover, the model is flexible and can produce a broad set of
log-normal size distributions depending on the value of model parameters.

The paper is organized as follows: in section 2 we describe the data, while in section 3
we present our empirical results. In section 4 we introduce model parameter and princi-
ples. In section 5 we demonstrate that model can reproduce the growth of social groups
in both systems and show the results for different values of model parameters. Finally,
in section 6, we present concluding remarks and discuss our results.

2. Data

We analyze the growth of social groups from two widely used online platforms: Reddit
and Meetup. Reddit3 enables sharing of diverse web content, and members of this plat-
form interact exclusively online through posts and comments. The Meetup4 allows people
to use online tools to organize offline meetings. The building elements of the Meetup
system are topic-focused groups, such as food lovers or data science professionals. Due
to their specific activity patterns—events where members meet face-to-face—Meetup
groups are geographically localized, and interactions between members are primarily
offline.

We compiled the Reddit data from https://pushshift.io/. This site collects data daily
and, for each month, publishes merged comments and submissions in the form of JSON
files. Specifically, we focus on subreddits—social groups of Reddit members interested
in a specific topic. We selected subreddits created between 2006 and 2011 that were
active in 2017 and followed their growth from their beginning until 2011. The consid-
ered dataset contains 17073 subreddits with 2195 677 active members, with the oldest
originating from 2006 and the youngest being from 2011. For each post under a subred-
dit, we extracted the information about the member-id of the post owner, subreddit-id,
and timestamp. As we are interested in the subreddits growth in the number of mem-
bers, for each subreddit and member-id, we selected the timestamp when a member
made a post for the first time. Finally, in the dataset, we include only subreddits active
for at least two months.

The Meetup data were downloaded in 2018 using public API. The Meetup platform
was launched in 2003, and when we accessed the data, there were more than 240 000
active groups. For each group, we extracted information about the date it had been
founded, its location, and the total number of members. We focused on the groups
founded in a period between 2003 and 2017 in big cities, London and New York, where
the Meetup platform achieved considerable popularity. We considered groups active for
at least two months. There were 4673 groups with 831 685 members in London and 4752
groups with 1059 632 members in New York. In addition, we extracted the ids of group

3 https://reddit.com/.

4 www.meetup.com.
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members, the information about organized events, and which members attended these
events. Based on this, we obtained the date when a member joined a group, the first
time she participated in a group event.

For all systems, we extracted the timestamp when the member joined the group.
Each data set has a form (uid, gid, ti), representing the connection between users and
groups. When the system has two separate partitions, the natural extension is a bipar-
tite network where links are drawn between nodes of different sets, indicating the user’s
memberships. The degree of group nodes is exactly the group size. Having the temporal
component in data, we can follow the evolution of the network. Based on this infor-
mation, we can calculate the number of new members per month Ni(t), the group size
Si(t) at each time step, and the growth rate for each group. The time step for all three
data sets is one month. The size of the group i at time step t is the number of members
that joined that group ending with the month, i.e. Si(t) =

∑k=t
k=ti0

Ni(t), where ti0 is the
time step in which the group i was created. Once the member joins the group, it has an
active status by default, which remains permanent. For these reasons, the size of con-
sidered groups is a non-decreasing function. The growth rate Ri(t) at step i is obtained
as logarithm of successive sizes Ri(t) = log(Si(t)/Si(t− 1)).

While the forms of communication between members and activities that members
engage in differ for considered systems, some common properties exist between them.
Members can form new groups and join the existing ones. Furthermore, each member
can belong to an unlimited number of groups. For these reasons, we can use the same
methods to study and compare the formation of groups on Reddit and Meetup.

3. Empirical analysis of social group growth

Figure 1 summarizes the properties of the groups in Meetup and Reddit systems. The
number of groups grows exponentially over time. Nevertheless, we notice that Reddit
has a substantially larger number of groups than Meetup. The Reddit groups are prone
to engage more members in a shorter period. The size of the Meetup groups ranges from
several members up to several tens of thousands of members, while sizes of subreddits
are between a few tens of members up to several million. The distributions of normalized
group sizes follow the log-normal distribution (see table S1 and figure S1 in SI)

P (S) =
1

S
S0
σ
√
2π

exp

⎛
⎜⎝−

(
ln
(

S
S0

)
− μ

)2

2σ2

⎞
⎟⎠, (1)

where S is the group size, S0 is the average group size in the system, and μ and σ
are parameters of the distribution. We used power-law package [26] to fit equation (1)
to empirical data and found that distribution of groups sizes for Meetup groups in
London and New York follow similar distributions with the values of parameters
μ = −0.93, σ = 1.38 and μ = −0.99 and σ = 1.49 for London and New York respectively.
The distribution of sizes of subreddits also has the log-normal shape with parameters
μ = −5.41 and σ = 3.07.
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Figure 1. The number of groups over time, normalized sizes distribution, normal-
ized log-rates distribution and dependence of log-rates and group sizes for Meetup
groups created in London and New York and subreddits. The number of groups
grows exponentially over time, while the group size distributions, and log-rates dis-
tributions follow log-normal. Logrates depend on the size of the group, implying
that the growth cannot be explained by Gibrat law.
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Figure 2. The figure shows the groups’ sizes distributions and log-rates distri-
butions. Figures in the top panels show the distribution of normalized sizes of
groups created in the same year. Distributions for the same system and different
years follow same log-normal distribution indicating existence of universal growth
patterns.

Multiplicative processes can generate the log-normal distributions [27]. If there is a
quantity with size Si(t) at time step t, it will grow so after time period δ the size of
the quantity is S(t+Δt) = S(t)r, where r represents a random number. The Gibrat law
states that growth rates r are uncorrelated and do not depend on the current size. To
describe the growth of social groups, we calculate the logarithmic growth rates Ri(t).
According to Gibrat law the distribution of logarithmic growth rates is normal, or,
as it is shown in many studies, it is better explained with Laplacian (‘tent-shaped’)
distribution [28, 29]. In figure 1 we show the distributions of log-rates for all three data
sets. Log-rates are very well approximated with a log-normal distribution. Furthermore,
the bottom panels of figure 1 show that log-rates are not independent of group size.
Figure 1 shows that these findings imply that the growth of Meetup and Reddit groups
violates the basic assumptions of Gibrat’s law [30, 31] and that it cannot be explained
as a simple multiplicative process.

We are considering a relatively significant period for online groups. The fast expan-
sion of information communications technologies (ICT) changed how members access
online systems. With the use of smartphones, online systems became more available,
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which led to the exponential growth of ICTs systems and potential change in the mech-
anisms that influence the social groups’ growth. For these reasons, we aggregate groups
according to the year they were founded for each of the three data sets and look at
the distributions of their sizes at the end of 2017 for Meetup groups and 2011 for
Reddit. For each year and each of the three data sets, we calculate the average size of
the groups created in a year y〈S y〉. We normalize the size of the groups originating in
year y with the corresponding average size sy

i = S y
i /〈S y〉 and calculate the distribution

of the normalized sizes for each year. The distribution of normalized sizes for all years
and data sets is shown in figure 2. All distributions exhibit log-normal behavior. Fur-
thermore, the distributions for the same data set and different years follow a universal
curve with the same value of parameters μ and σ. The universal behavior is observed
for the distribution of normalized log-rates as well, see figure 2 (bottom panels). These
results indicate that the growth of the social groups did not change due to the increased
growth of members in systems. Furthermore, it implies that the growth is independent
of the size of the whole data set.

4. Model

The growth of social groups cannot be explained by the simple rules of Gibrat’s law.
Previous research on group growth and longevity has shown that social connections with
members of a group influence individual’s choice to join that group [19, 25]. Individuals’
interests and the need to discover new content or activity also influence the diffusion
of individuals between groups. Furthermore, social systems constantly grow since new
members join every minute. The properties of the growth signal that describes the arrival
of new members influence both dynamics of the system [32, 33] and the structure of social
interactions [34]. The number of social groups in the social systems is not constant. They
are constantly created and destroyed.

In [19], the authors propose the co-evolution model of the growth of social net-
works. In this model, the authors assume that the social system evolves through the
co-evolution of two networks: a network of social contacts between members and a net-
work of members’ affiliations with groups. This model addresses the problem of the
growth of social networks that includes both linking between members and social group
formation. In this model, a member of a social system selects to join a group either
through random selection or according to her social contacts. In the case of random
selection, there is a selection preference for larger groups. If a member chooses to select
a group according to her social contacts, the group is selected randomly from the list of
groups with which her friends are already affiliated.

In [19], the authors demonstrate that mechanisms postulated in the model could
reproduce the power-law distribution of group sizes observed for some social networks.
However, as illustrated in section 3, the distribution of group sizes in real systems is
not necessarily power-law. Our rigorous empirical analysis shows that the distribution
of social group sizes exhibits log-normal behavior. To fill the gap in understanding how
social groups in the social system grow, we propose a model of group growth that
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Figure 3. The top panel shows bipartite (member-group) and social (member-
member) network. Filled nodes are active members, while thick lines are new links
in this time step. In the social network dashed lines show that members are friends
but still do not share same groups. The lower panel shows model schema. Example:
member u6 is a new member. First it will make random link with node u4, and then
with probability pg makes new group g5. With probability pa member u3 is active,
while others stay inactive for this time step. Member u3 will with probability 1− pg
choose to join one of old groups and with probability paff linking is chosen to be
social. As its friend u2 is member of group g1, member u3 will also join group g1.
Joining group g1, member u3 will make more social connections, in this case it is
member u1.

combines random and social diffusion between groups but follows different rules than
the co-evolution model [19].

Figure 3 shows a schematic representation of our model. Similar to the co-evolution
model [19], we represent a social system with two evolving networks, see figure 3. One
network is a bipartite network that describes the affiliation of individuals to social groups
B(VU ,VG,EUG). This network consists of two partitions, members VU and groups VG, and
a set of links EUG, where a link e(u, g) between a member u and a group g represents the
member’s affiliation with that group. Bipartite network grows through three activities:
the arrival of new members, the creation of new groups, and members joining groups.
In bipartite networks, links only exist between nodes belonging to different partitions.
However, as we explained above, social connections affect whether a member will join a
certain group or not. In the simplest case, we could assume that all members belonging
to a group are connected. However, previous research on this subject [15, 16, 19] has
shown that the existing social connections of members in a social group are only a subset
of all possible connections. For these reasons, we introduce another network G(VU ,EUU)
that describes social connections between members. The social network grows by adding
new members to the set VU and creating new links between them. The member partition
in bipartite network B(VU ,VG,EUG) and set of nodes in members’ network G(VU ,EUU)
are identical.

For convenience, we represent the bipartite and social network of members with
adjacency matrices B and A. The element of the matrix Bug equals one if member u
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is affiliated with group g, and zero otherwise. In matrix A, the element Au1u2 equals
one if members u1 and u2 are connected and zero otherwise. The neighborhood Nu of
member u is a set of groups with which the member is affiliated. On the other hand,
the neighborhood Ng of a group g is a set of members affiliated with that group. The
size Sg of set Ng equals to the size of the group g.

In our model, the time is discrete, and networks evolve through several simple rules.
In each time step, we add NU(t) new members and increase the size of the set VU. For
each newly added member, we create the link to a randomly chosen old member in the
social network G. This condition allows each member to perform social diffusion [25],
i.e. to select a group according to her social contacts. Not all members from setting VU

are active in each time step. Only a subset of existing members is active in each time
step. The activity of old members is a stochastic process determined by parameter pa;
every old member is activated with probability pa. Old members are activated in this
way, and new members make a set of active members AU at time t .

The group partition VG grows through creating new groups. Each active member
u ∈ AU can decide with probability pg to create a new group or to join an already
existing one with probability 1− pg.

If the active member u decides that she will join an existing group, she first needs to
choose a group. A member u with probability paff decides to select a group based on her
social connections. For each active member, we look at how many social contacts she
has in each group. The number of social contacts sug that member u has in the group g
equals the overlap of members affiliated with a group g and social contacts of member
u, and is calculated according to

sug =
∑
u1∈Ng

Auu1. (2)

Member u selects an old group g to join according to probability Pug that is proportional
to sug. Member-only considers groups with which it has no affiliation. However, if an
active member decides to neglect her social contacts in the choice of the social group,
she will select a random group from the set VG with which she is not yet affiliated.

After selecting the group g, a member joins that group, and we create a link in the
bipartite network between a member u and a group g. At the same time, the member
selects X members of a group g which do not belong to her social circle and creates
social connections with them. As a consequence of this action, we make X new links
in-network G between member u and X members from a group g.

The evolution of bipartite and social networks, and consequently growth of social
groups, is determined by parameters pa, pg and paff. Parameter pa determines the activity
level of members and takes values between 0 and 1. Higher values of pa result in a
higher number of active members and thus faster growth of the number of links in
both networks and the size and number of groups. Parameter pg in combination with
parameter pa determines the growth of the set VG. pg = 1 means that members only
create new groups, and the existing network consists of star-like subgraphs with members
being central nodes and groups as leaves. On the other hand, pg = 0 means that there
is no creation of new groups, and the bipartite network only grows through adding new
members and creating new links between members and groups.
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Parameter paff determines the importance of social diffusion. paff = 0 means that
social connections are irrelevant, and the group choice is random. On the other hand,
paff = 1 means that only social contacts become important for group selection.

Several differences exist between the model presented in this work and the co-
evolution model [19]. In our model, paff is constant and the same for all members.
In the co-evolution model, this probability depends on members’ degrees. The members
are activated in our model with probability pa. In contrast, in the co-evolution model,
members are constantly active from the moment they are added to a set VU until they
become inactive after time ta. Time ta differs for every member and is drawn from an
exponential distribution. In the co-evolution model, the number of social contacts mem-
bers have within the group is irrelevant to its selection. On the other hand, in our model,
members tend to choose groups more often in which there is a greater number of social
contacts. While in our model, in the case of a random selection of a group, a member
selects with equal probability a group that she is not affiliated with, in the co-evolution
model, the choice of group is preferential.

5. Results

The distribution of group sizes produced by our and co-evolution models significantly
differ. The distribution of group sizes in the co-evolution model is a power-law. Our
model enables us to create groups with log-normal size distribution and expand classes
of social systems that can be modeled.

5.1. Model properties

First, we explore the properties of size distribution depending on parameters pg and paff,
for the fixed value of activity parameter pa and constant number of members added in
each step N(t) = 30. When the group is created, its size S(t0) = 1, so the group creator
cannot make new social connections until new members arrive. While a group has less
than X members, new users will make social connections with all available members in
the group. After the group size reaches the threshold of X members, a new user creates X
connections. Our detailed analysis of the results for different parameter values X shows
that these results are independent of their value. We set the value of parameter X to
25 for all simulations presented in this work. Our detailed analysis of the results for
different parameter values X shows that these results are independent of their value.

Figure 4 shows some of the selected results and their comparison with power-law
and log-normal fits. We see that values of both pg and paff parameters, influence the
type and properties of size distribution. For low values of parameter pg, left column in
figure 4, the obtained distribution is log-normal. The width of the distribution depends
on paff. Higher values of paff lead to a broader distribution.

As we increase pg, right column in figure 4, the size distribution begins to deviate from
log-normal distribution. The higher the value of parameter pg, the total number of groups
grows faster. For pg = 0.5, half of the active members in each time step create a group,
and the number of groups increases fast. How members are distributed in these groups
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Figure 4. The distribution of sizes for different values of pg and paff and constant
pa and growth of the system. The combination of the values of parameters of pg
and paff determine the shape and the width of the distribution of group sizes.

depends on the parameter paff value. When paff = 0, social connections are irrelevant
to the group’s choice, and members select groups randomly. The obtained distribution
slightly deviates from log-normal, especially for large group sizes. In this case, large
group sizes become more probable than in the case of the log-normal distribution. The
non-zero value of parameter paff means that the choice of a group becomes dependent on
social connections. When a member chooses a group according to her social connections,
larger groups have a higher probability of being affiliated with the social connections
of active members, and thus this choice resembles preferential attachment. For these
reasons, the obtained size distribution has more broad tail than log-normal distribution
and begins to resemble power-law distribution.

The top panel of figure S3 in SI shows how the shape of distribution is changing
with the value of parameter paff and fixed values of pa = 0.1 and pg = 0.1. Preferential
selection groups according to their size instead of one where a member selects a group
with equal probability leads to a drastic change in the shape of the distribution, bottom
panel figure S3 in SI. As is to be expected, the distribution of group sizes with preferential
attachment follows power-law behavior.

5.2. Modeling real systems

The social systems do not grow at a constant rate. In [34], the authors have shown that
features of growth signal influence the structure of social networks. For these reasons,
we use the real growth signal from Meetup groups located in London and New York
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Figure 5. The time series of the number of new members (top panels). The time
series of the ratio between several old active members and total members in the
system (middle panels); its median value approximates the parameter pa, the prob-
ability that the user is active. The bottom panels show the time series of the
ratio between new groups and active members; its median value approximates the
probability that active users create a new group, parameter pg.

and Reddit to simulate the growth of the social groups in these systems. Figure 5 (top)
shows the time series of the number of new members that join each of the considered
systems each month. All three data sets have relatively low growth at the beginning,
and then the growth accelerates as the system becomes more popular.

We also use empirical data to estimate pa, pg and paff. The data can approximate
the probability that old members are active pa and that new groups are created pg.
Activity parameter pa is the ratio between the number of old members active in month
t and the total number of members in the system at time t. Figure 5 (middle) shows the
variation of parameter pa during the considered time interval for each system. The value
of this parameter fluctuates between 0 and 0.2 for London and New York based Meetup
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Table 1. Jensen Shannon divergence between group sizes distributions from model
and data. In the model we vary affiliation parameter paff and find its optimal value
(bold text).

paff JS cityLondon JS cityNY JS reddit2012

0.1 0.0161 0.0097 0.002 41
0.2 0.0101 0.0053 0.002 05
0.3 0.0055 0.0026 0.001 59
0.4 0.0027 0.0013 0.001 04
0.5 0.0016 0.0015 0.000 74
0.6 0.0031 0.0035 0.000 48
0.7 0.0085 0.0081 0.000 39
0.8 0.0214 0.0167 0.00034
0.9 0.0499 0.0331 0.000 47

groups, while its value is between 0 and 0.15 for Reddit. To simplify our simulations, we
assume that pa is constant in time and estimate its value as its median value during the
170 months for Meetup and 80 months for Reddit systems. For Meetup groups based
in London and New York pa = 0.05, while Reddit members are more active on average
and pa = 0.11 for this system.

Figure 5 bottom row shows the evolution of parameter pg for the considered sys-
tems. The pg in month t is estimated as the ratio between the groups created in
month tNgnew(t) and the total number of groups in that month Ngnew(t) + Ngold(t), i.e.

pg(t) =
Ngnew(t)

Nnew(t)+Nold(t)
. We see from figure 5 that pg(t) has relatively high values at the

beginning of the system’s existence. This is not surprising. Initially, these systems have
a relatively small number of groups and often cannot meet the needs of the content of all
their members. As the time passes, the number of groups and content scope within the
system grows, and members no longer have a high need to create new groups. Figure 5
shows that pg fluctuates less after the first few months, and thus we again assume that pg
is constant in time and set its value to the median value during 170 months for Meetup
and 80 months for Reddit. For all three systems pg has the value of 0.003.

The affiliation parameter paff cannot estimate directly from the empirical data. For
these reasons, we simulate the growth of social groups for each data set with the time
series of new members obtained from the real data and estimated values of parameters
pa and pg, while we vary the value of paff. We compare the distribution of group sizes
obtained from simulations for different values of paff with ones obtained from empirical
analysis using Jensen Shannon (JS) divergence. The JS divergence [35] between two
distributions P and Q is defined as

JS(P ,Q) = H

(
P +Q

2

)
− 1

2
(H(P ) +H(Q)) (3)

where H(p) is Shannon entropy H(p) =
∑

x p(x) log(p(x). The JS divergence is sym-
metric and if P is identical to Q, JS = 0. The smaller the value of JS divergence, the
better is the match between empirical and simulated group size distributions. Table 1
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Figure 6. The comparison between empirical and simulation distribution for group
sizes (top panels) and log-rates (bottom panels).

shows the value of JS divergence for all three data sets. We see that for London based
Meetup groups the affiliation parameter is paff = 0.5, for New York groups paff = 0.4,
while the affiliation parameter for Reddit paff = 0.8. Our results show that social diffu-
sion is important in all three data sets. However, Meetup members are more likely to
join groups at random, while for the Reddit members their social connections are more
important when it comes to choice of the subreddit.

Figure 6 compares the empirical and simulation distribution of group sizes for con-
sidered systems. We see that empirical distributions for Meetup groups based in London
and New York are well reproduced by the model and chosen values of parameters. In
the case of Reddit, the distribution is broad, and the model reproduces the tail of the
distribution well. Figure S2 and table S2 in SI confirm that the distribution of group
sizes follow a log-normal distribution.

The bottom row of figure 6 shows the distribution of logarithmic values of growth
rates of groups obtained from empirical and simulated data. We see that the tails of
empirical distributions for all three data sets are well emulated by the ones obtained
from the model. The deviations we observe are the most likely consequence of using
median values of parameters pa, pg, and paff .
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6. Discussion and conclusions

The results of empirical analysis show that there are universal growth rules that govern
the growth of social systems. We analysed the growth of social groups for three data
sets, Meetup groups located in London and New York and Reddit. We showed that
the distribution of group sizes has log-normal behaviour. The empirical distributions of
normalised sizes of groups created in different years in a single system fall on top of each
other, following the same log-normal distributions. Due to a limited data availability,
we only study three data sets which may affect the generality of our results. However,
the substantial differences between Reddit and Meetup social systems when it comes
to their popularity, size and purpose, demonstrate that observed growth patterns are
universal.

Even though the log-normal distribution of group sizes can originate from the pro-
portional growth model, Gibrat law, we show that it does not apply to the growth of
online social groups. The monthly growth rates are log-normally distributed and depen-
dent on the size of a group. Gibrat law was proposed to describe the growth of various
socio-economical systems, including the cities and firms. Recent studies showed that the
growth of cities and firms [21, 36, 37] goes beyond Gibrat law. Still, our findings confirm
the existence of universal growth patterns, indicating the presence of the general law in
the social system’s growth.

While the growth of the social groups does not follow the Gibrat law, one could
ask whether there are other simple models of social group growth. The basic growth
model underlying any log-normal distribution is a multiplicative process. The size of
the system in time t is equal to its size in time t− 1 multiplied by some factor. In our
case, where the groups only grow and do not shrink, the factor has to be larger than one.
When we model the growth of real social groups, we need to take into account several
factors: (1) social systems grow through the addition of new members; (2) the number
of social groups is not constant, it grows with time; (3) one person can be a member of
multiple groups at the same time. The simplest model that considers all three factors but
disregards social factors, and thus a network structure, would be the one where members
randomly choose the groups they will join. The described situation is an extreme case
of our model with paff = 0, see figure 4, top left panel. By setting the values of paff = 0
and taking the value of N(t) and pg as an estimate from real data, we can reproduce a
log-normal distribution with parameters that do not match empirical data, see table 1.
While the distributions of group size in different systems follow log-normal behavior,
the parameters of these distributions differ from system to system. This indicates the
existence of additional factors in the multiplicative process that govern multiplicative
growth. The network effect is crucial in explaining many instances of collective social
dynamics, including the person’s choice to join a certain group [14]. Here we show that
members’ diffusion between groups governed by social influence allows us to use the
same model to explain the growth of groups in different social systems by tuning its
importance.
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The model proposed in [19] is able to produce only power-law distributions of group
sizes. However, our empirical analysis shows that these distributions can also have a log-
normal behavior. Thus, we propose a new model that emulate log-normal distributions.
The analysed groups grow through two mechanisms [19]: members join a group that is
chosen according to their interests or by social relations with the group’s members. The
number of members in the system is growing as well as the number of groups. While the
processes that govern the growth of social groups are the same, their importance varies
among the systems. The distributions for Meetup groups located in the London and
New York have similar log-normal distribution parameter values, while for Reddit, the
distribution is broader. Numerical simulations further confirm these findings. Different
modalities of interactions between their members can explain the observed differences.

Meetup members need to invest more time and resources to interact with their
peers. The events are localised in time and space, and thus the influence of peers in
selecting another social group may be limited. On the other hand, Reddit members
do not have these limitations. The interactions are online, asynchronous, and thus not
limited in time. The influence of peers in choosing new subreddits and topics thus
becomes more important. The values of paff parameters for Meetup and Reddit imply
that social connections in diffusion between groups are more critical in Reddit than in
Meetup.

The purpose of the research presented in this paper was to provide a model of
social group growth that can reproduce the log-normal distribution of group sizes in
different systems. The model is based on bipartite network dynamics allowing us to
study other network properties and compare them to empirical data. The empirical
data are limited and only contain explicit information about the connections between
groups and their members. The distribution of group sizes is the exact degree distri-
bution of the group partition. We show that these properties are reproduced with our
model, see figure 6. When it comes to the degree distribution of members, that is, the
number of groups a member is affiliated with, our model does not reproduce this dis-
tribution. The number of groups a member is affiliated to is equal to number of her
activities. The activity of a member is controlled with probability pa. In our model, the
probability pa is equal for all members, and thus the emerging degree distribution is
exponential [38]. We do not study the properties of the members’ partitions in detail,
as our focus is on the growth of groups’ partitions and mechanisms that influence the
members’ choice to join the groups. On the other hand, studying how groups are dis-
tributed among members could give us insight into what motivates members to be active.
Previous work proposed that each member has a lifetime [17], but different linking rules
could be considered; for example, pa could be preferential toward high-degree members,
and the age or even social connections of members could be relevant.

The results presented in this paper contribute to our knowledge of the growth of
socio-economical systems. The previous study analysed the social systems in which size
distributions follow the power-law, which is the consequence of a preferential choice
of groups during the random diffusion of members. Our findings show that preferential
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selection of groups during social diffusion and uniform selection during random diffusion
result in log-normal distribution of groups sizes. Furthermore, we show that broadness
of the distribution depends on the involvement of social diffusion in the growth process.
Our model increases the number of systems that can be modelled and help us better
understand the growth and segmentation of social systems and predict their evolution.
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Abstract. Network science provides an indispensable theoretical framework for
studying the structure and function of real complex systems. Different network
models are often used for finding the rules that govern their evolution, whereby
the correct choice of model details is crucial for obtaining relevant insights. Here,
we study how the structure of networks generated with the aging nodes model
depends on the properties of the growth signal. We use different fluctuating
signals and compare structural dissimilarities of the networks with those obtained
with a constant growth signal. We show that networks with power-law degree
distributions, which are obtained with time-varying growth signals, are correlated
and clustered, while networks obtained with a constant growth signal are not.
Indeed, the properties of the growth signal significantly determine the topology
of the obtained networks and thus ought to be considered prominently in models
of complex systems.
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1. Introduction

Emergent collective behavior is an indispensable property of complex systems [1]. It
occurs as a consequence of interactions between a large number of units that compose
a complex system, and it cannot be easily predicted from the knowledge about the
behavior of these units. The previous research offers definite proof that the interaction
network structure is inextricably associated with the dynamics and function of the
complex system [2–9]. The structure of complex networks is essential for understanding
the evolution and function of various complex systems [10–13].

The structure and dynamics of real complex systems are studied using complex
network theory [1, 10, 11]. It was shown that real networks have similar topological prop-
erties regardless of their origins [14]. They have broad degree distribution, degree–degree
correlations, and power-law scaling of clustering coefficient [11, 14]. Understanding
how these properties emerge in complex networks leads to the factors that drive their
evolution and shape their structure [2].

The complex network models substantially contribute to our understanding of the
connection between the network topology and system dynamics and uncover underlying
mechanisms that lead to the emergence of distinctive properties in real complex networks
[15–17]. For instance, the famous Barabási–Albert model [15] finds the emergence of
broad degree distribution to be a consequence of preferential attachment and network
growth. Degree–degree anti-correlations of the internet can be explained, at least to a
certain extent, by this constraint [18, 19]. Detailed analysis of the emergence of clustered
networks shows that clustering is either the result of finite memory of the nodes [20] or
occurs due to triadic closure [21].

Network growth, in combination with linking rules, shapes the network topology
[22]. While various rules have been proposed to explain the topology of real networks
[10], most models assume a constant rate of network growth, i.e., the addition of a
fixed number of nodes at each time step [15, 20, 21]. However, empirical analysis of
numerous technological and social systems shows that their growth is time-dependent
[23–26]. The time-dependent growth of the number of nodes and links in the networks
has been considered as a parameter in uncovering network growth mechanisms [27]. The
accelerated growth of nodes in complex networks is the cause of the high heterogeneity
in the distribution of web pages among websites [23] and the emergence of highly cited
authors in citation networks [26]. The accelerated growth of the number of new links
added in each time step changes the shape and scaling exponent of degree distribution
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in the Barabási–Albert model [28] and model with preferential attachment with aging
nodes [29].

The growth of real systems is not always accelerated. The number of new nodes
joining the system varies in time, has trends, and exhibits circadian cycles typical for
human behavior [24, 25, 30]. These signals are multifractal and have long-range corre-
lations [31]. Some preliminary evidence shows that the time-varying growth influences
the structure and dynamics of the social system and, consequently, the structure of
interaction networks in social systems [25, 30, 32–34]. Still, which properties of the real
growth signal have the most considerable influence, how different properties influence
the topology of the generated networks, and to what extent is an open question.

In this work, we explore the influence of real and computer-generated time-varying
growth signals on complex networks’ structural properties. We adapt the aging nodes
model [35] to enable time-varying growth. We compare the networks’ structure using the
growing signals from empirical data and randomized signals with ones grown with the
constant signal using D-measure [36]. We demonstrate that the growth signal determines
the structure of generated networks. The networks grown with time-varying signals
have significantly different topology compared to networks generated through constant
growth. The most significant difference between topological properties is observed for the
values of model parameters for which we obtain networks with broad degree distribution,
a common characteristic of real networks [10]. Our results show that real signals, with
trends, cycles, and long-range correlations, alter networks’ structure more than signals
with short-range correlations.

This paper is divided as follows. In section 2, we provide a detailed description of
growth signals. In section 3, we briefly describe the original model with aging nodes and
structural properties of networks obtained for different values of model parameters [35].
We also describe the changes in the model that we introduce to enable time-varying
growth. We describe our results in section 4 and show that the values of D-measure
indicate large structural differences between networks grown with fluctuating and ones
grown with constant signals. This difference is particularly evident for networks with
power-law degree distribution and real growth signals. The networks generated with real
signals are correlated and have hierarchical clustering, properties of real networks that
do not emerge if we use constant growth. We discuss our results and give a conclusion
in section 5.

2. Growth signals

The growth signal is the number of new nodes added in each time step. Real complex
networks evolve at a different pace, and the dynamics of link creation define the time unit
of network evolution. For instance, the co-authorship network grows through establishing
a link between two scientists when they publish a paper [37]. In contrast, the links in an
online social network are created at a steady pace, often interrupted by sudden bursts
[38]. A paper’s publication is thus a unit of time for the evolution of co-authorship
networks, while the most appropriate time unit for social networks is 1 min or 1 h.
While systems may evolve at a different pace, their evolution is often driven by the
related mechanisms reflected by the similarity of their structure [10].
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Figure 1. Growth signals for TECH (a) and MySpace (b) social groups, their ran-
domized counterparts, and random signal drawn from Poissonian distribution with
mean 1. The cumulative sums of signals’ deviations from average mean value are
shown in insets.

In this work, we use two different growth signals from real systems figure 1: (a) the
data set from TECH community from Meetup social website [39] and (b) two months
dataset of MySpace social network [40]. TECH is an event-based community where
members organize offline events through the Meetup site [39]. The time unit for TECH
is event since links are created only during offline group meetings. The growth signal
is the number of people that attend the group’s meetings for the first time. MySpace
signal shows the number of new members occurring for the first time in the dataset [40]
with a time resolution of 1 min. The number of newly added nodes for the TECH signal
is N = 3217, and the length of the signal is T s = 3162 steps. We have shortened the
MySpace signal to T s = 20 221 time steps to obtain the network with N = 10 000 nodes.
The signals in the inset of figures 1(a) and (b) show the cumulative sum of deviations
of signals from their average mean value, which is 1.017 for TECH and random TECH
signal, 0.47 for MySpace and random MySpace, and 1 for Poissonian signal.

Real growth signals have long-range correlations, trends and cycles [25, 30, 40]. We
also generate networks using randomized signals and one computer-generated white-
noise signal to explore the influence of signals’ features on evolving networks’ structure.
We randomize real signals using a reshuffling procedure. The reshuffling procedure con-
sists of E steps. We randomly select two signal values at two distinct time steps and
exchange their position in each step. The number of reshuffling steps is proportional
to the length of the signal T s, and in our case, it equals 100T s. Using this procedure,
we keep the signal length and mean value, the number of added nodes, and the proba-
bility density function of fluctuations intact, but destroy cycles, trends, and long-range
correlations. Besides, we generate a white-noise signal from a Poissonian probability dis-
tribution with a mean equal to 1. The length of the signal is T = 3246, and the number
of added nodes in the final network is the same as for the TECH signal.

We characterize the long-range correlations of the growth signals calculating Hurst
exponent [41, 42]. Hurst exponent describes the scaling behavior of time series
M(xt) = xHM(t). It takes values between 0.5 and 1 for long-range correlated signals
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and H = 0.5 for short-range correlated signals. The most commonly used method for
estimating Hurst exponent of real, often non-stationary, temporal signals is detrended
fluctuation analysis (DFA) [41]. The DFA removes trends and cycles of real signals and
estimates Hurst exponent based on residual fluctuations. The DFA quantifies the scal-
ing behavior of the second-moment fluctuations. However, signals can have deviations
in fractal structure with large and small fluctuations that are characterized by different
values of Hurst exponents [31].

We use multifractal detrended fluctuation analysis (MFDFA) [31, 43] to estimate
multifractal Hurst exponent H(q). For a given time series {xi} with length N , we first
define global profile in the form of cumulative sum equation (1), where 〈x〉 represents
an average of the time series:

Y (j) =

j∑
i=0

(xi − 〈x〉), j = 1, . . . ,N. (1)

Subtracting the mean of the time series is supposed to eliminate global trends.
Insets of figure 1 show global profiles of TECH, MySpace, their randomized signals
and Poissonian distribution. The profile of the signal Y is divided into N s = int(N/s)
non overlapping segments of length s . If N is not divisible with s the last segment will be
shorter. This is handled by doing the same division from the opposite side of time series
which gives us 2N s segments. From each segment ν, local trend pmν,s—polynomial of order

m—should be eliminated, and the variance F 2(ν, s) of detrended signal is calculated as
in equation (2):

F 2(ν, s) =
1

s

s∑
j=1

[
Y (j)− pmν,s(j)

]2
. (2)

Then the qth order fluctuating function is:

Fq(s) =

{
1

2Ns

2Ns∑
ν

[
F 2(ν, s)

] q
2

} 1
q

, q �= 0

F0(s) = exp

{
1

4Ns

2Ns∑
ν

ln
[
F 2(ν, s)

]}
, q = 0.

(3)

The fluctuating function scales as power-law Fq(s) ∼ sH(q) and the analysis of log–log
plots Fq(s) gives us an estimate of multifractal Hurst exponent H(q). Multifractal signal
has different scaling properties over scales while monofractal is independent of the scale,
i.e., H(q) is constant.

Figures 1(a) and 2 show that the TECH signal has long trends and a broad prob-
ability density function of fluctuations. The trends are erased from the randomized
TECH signal, but the broad distribution of the signal and average value remain intact.
MFDFA analysis shows that real signals have long-range correlations with Hurst expo-
nent approximately 0.6 for q = 2, figure 2. The TECH signal is multifractal, resulting
from both broad probability distribution for the values of time series and different long-
range correlations of the intervals with small and large fluctuations. Reshuffling of the
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Figure 2. Dependence of Hurst exponent on parameter q for all five signals shown
in figure 1 obtained with MFDFA.

time series does not destroy the broad distribution of values, which is the cause for the
persistent multifractality of the TECH randomized signal is figure 2.

MySpace signal has a long trend with additional cycles that are a consequence of
human circadian rhythm, figure 1(b). Circadian rhythm is an internal process that regu-
lates the sleep-wake cycle and activity, and its period for humans is 24 h [44]. Circadian
rhythm leads to periodic changes in online activity during the day and the emergence
of a well-defined daily rhythm of activity that we see in figure 1(b). MySpace signal is
multifractal for q < 0, and has constant value of H(q) for q > 0, figure 2. In MFDFA,
with negative values of q, we emphasize segments with smaller fluctuations, while for
positive q, the emphasis is more on segments with larger fluctuations [43]. Segments
with smaller fluctuations have more persistent long-range correlations in both real sig-
nals, see figure 2. Randomized MySpace signal and Poissonian signal are monofractal
and have short-range with H = 0.5 correlations typical for white noise.

Detailed MDFA analysis of real, shuffled, and computer-generated sig-
nals are shown in figure S1 and table S1 of the supplementary material
(https://stacks.iop.org/JSTAT/2021/013405/mmedia). In figure S1 we show in details
how the Fq(s) depends on s for different values of parameter q. The curve Fq(s) exhibits
different slopes for different values of q for multifractal signals, i.e., TECH, random
TECH, and MySpace. Fq(s) curves for monofractal signals are parallel. We provide the
estimated values of H(q) with estimated errors for q in a range from −4 to 4 for all five
signals in table S1 of the supplementary material.

3. Model of aging nodes with time-varying growth

To study the influence of temporal fluctuations of growth signal on network topology,
we need a model with linking rules where linking probability between network nodes
depends on time. We use a network model with aging nodes [35]. In this model, the
probability of linking the newly added node and the old one is proportional to their age
difference and an old node’s degree. In the original version of the model, one node is
added to the network and linked to one old node in each time step. The old node is
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chosen according to probability

Πi(t) ∼ ki(t)
βτα

i (4)

where ki(t) is a degree of a node i at time t, and τ i is age difference between node i
and newly added node. As was shown in [35], the values of model parameters β and α
determine the topological properties of the resulting networks grown with the constant
signal. According to this work, the networks generated using constant growth signals
are uncorrelated trees for all values of model parameters. The phase diagram in α–β
plain, obtained for β > 0 and α < 0, shows that the degree distribution P (k) ∼ k−γ with
γ = 3 is obtained only along the line β(α∗), see [35] and figure S2 in the supplementary
material. For α > α∗ networks have gel-like small world behavior, while for α < α∗ but
close to line β(α∗) networks have stretched exponential shape of degree distribution [35].

Here we slightly change the original aging model [35] to enable the addition of more
than one node and more than one link per newly added node in each time step. In each
time step, we add M � 1 new nodes to the network and link them to L � 1 old nodes
according to probability Πi given in equation (4). Again, the networks with broad degree
distribution are only generated for the combination of the model parameters along the
critical line β(α∗). This line’s position in the α–β plane changes with link density, while
the addition of more than one node in each time step does not influence its position.
Our analysis shows that the critical line’s position is independent of the growth signal’s
properties, see figure S2 in the supplementary material showing phase diagram. For
instance, for L = 1 networks and α = −1.25 and β = 1.5 we obtain networks with power-
law degree, while for L = 2 and β = 1.5 we need to increase the value of parameter α
to −1.0 in order to obtain networks with broad degree distribution. Networks obtained
for the values of model parameters β(α∗), L � 2, and constant growth have power-
law degree distribution, are uncorrelated and have a finite non-zero value of clustering
coefficient which does not depend on node degree, figure 4(b). If we fix the value of
parameter β and lower down the value of parameter α to −1.5, the resulting networks
are uncorrelated with a small value of clustering coefficient, see figure 4(a). For α < α∗ we
obtain networks with stretched exponential degree distribution, without degree–degree
correlations and small value of clustering exponent that does not depend on node degree
(see figure S2 in the supplementary material). For α � α∗ the resulting networks are
regular graphs. If we keep the value of α to 1.0 but increase the value β to 2.0 we enter
the region of small world gels, see figure 4(c). The networks created for the values of
α > α∗ are correlated networks with power-law dependence of the clustering coefficient
on the degree (see figure S2 in the supplementary material). However, these networks
do not have a power-law degree distribution.

The master equation approach is useful for studying the model with aging nodes
when M(t) = 1 [45]. However, this approach is not sufficient for time-varying growth
signals. In this work, we use numerical simulations to explore the case when M(t) is a
correlated time-varying function and study how these properties influence the structure
of generated networks for different values of parameter −∞ < α � 0 and β � 1 and
constant L.
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4. Structural differences between networks generated with different growth
signals

We generate networks for different values of L, and different growth signal profiles
M(t). To examine how these properties influence the network structure, we compare
the network structure obtained with different growth signals with networks of the same
size grown with constant signal M = 1. The M = 1 is the closest constant value to
average values of the signals, which are 1.017 for TECH, 0.47 for MySpace, and 1 for
Poissonian signals. We explore the parameter space of the model by generating networks
for pairs of values (α, β) in the range −3 � α � −0.5 and 1 � β � 3 with steps 0.5. For
each pair of (α, β) we generated networks of different link density by varying parameter
L ∈ 1, 2, 3, and for each combination of (α, β,L), we generate a sample of 100 networks
and compare the structure of the networks grown with M = 1 with the ones grown with
M(t) shown in figure 1.

We quantify topological differences between two networks using D-measure defined
in [36]

D(G,G′) = ω

∣∣∣∣∣∣
√

J(P1, . . . ,PN)

log(d+ 1)
−

√
J(P ′

1, . . . ,P
′
N)

log(d′ + 1)

∣∣∣∣∣∣+ (1− ω)

√
J(μG,μG′)

log 2
. (5)

D-measure captures the topological differences between two networks, G and G′, on a
local and global level. The first term in equation (5) evaluates dissimilarity between two
networks on a local level. For each node in the network G one can define the distance dis-
tribution P i = {pi(j)}, where pi(j) is a fraction of nodes in network G that are connected
to node i at distance j. The set of N node-distance distributions {P 1, . . . ,PN} contains a
detailed information about network’s topology. The heterogeneity of a graph G in terms
of connectivity distances is measured through node network dispersion (NND). In [36]
authors estimate NND as Jensen–Shannon divergence between N distance distributions
J(P 1, . . . ,PN) normalized by log(d+ 1), where d is diameter of network G, and show
that NND captures relevant features of heterogeneous networks. The difference between
NNDs for graph G and G′ captures the dissimilarity between the graph’s connectivity
distance profile.

However, certain graphs, such as k -regular graphs, have NND = 0 and can not be
compared using NND. For these reasons, authors also introduce average node distance
distribution of a graph μ(G) = {μ(1), . . . , μ(d)}, where μ(k) is the fraction of all pair
of nodes in the network G that are at a distance k. The Jensen–Shannon divergence
between μ(G) and μ(G′) measures the difference between nodes’ average connectivity in
a graph G and G′. This term captures the differences between nodes on a global scale.

The original definition of D-measure also includes the third term, which quantifies
dissimilarity in node α-centrality. The term can be omitted without precision loss [36].
The parameter ω in equation (5) determines the weight of each term. The extensive
analysis shows that the choice ω = 0.5 is the most appropriate for quantifying structural
differences between two networks [36].

The D-measure takes the value between 0 and 1. The lower the value of D-measure
is the more similar two networks are, with D = 0 for isomorphic graphs. The D-measure
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Figure 3. The comparison of networks grown with growth signals shown in figure 1
versus ones grown with constant signal M = 1, for value of parameter α ∈ [−3,−1]
and β ∈ [1, 3]. M(t) is the number of new nodes, and L is the number of links
added to the network in each time step. The compared networks are of the same
size.

outperforms previously used network dissimilarity measures such as Hamming distance
and graph editing distance and clearly distinguishes between networks generated with
the same model but with different values of model parameters [36].

For each pair of networks, one grown with constant and one with the fluctuating
signal, we calculate the D-measure. The structural difference between networks grown
with constant and fluctuating growth signal for fixed L and values of parameters α and β
is obtained by averaging the D-measure calculated between all possible pairs of networks,
see figure 3. We observe the non-zero value of D-measure for all time-varying signals.
The D-measure has the largest value in the region around the line β(α∗). The values
of D-measure in this region are similar to ones observed when comparing Erdös–Rényi
graphs grown with linking probability below and above critical value [36]. For values
β < β(α∗), the structural differences between networks grown with constant signal and
M(t) still exist, but they become smaller as we are moving away from the critical line.
Networks obtained with constant signal and fluctuating signals have statistically similar
structural properties in the region of small-world network gels, i.e., α > α∗.
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We focus on the region around the critical line and observe the significant structural
discrepancies between networks created for constant versus time-dependent growth sig-
nals for all signals regardless of their features. However, the value of D-measure depends
on the signal’s properties, figure 3. Networks grown with multifractal signals, TECH,
random TECH, and MySpace signals, are the most different from those created by a
constant signal. The D-measure has the maximum value for the original TECH signal,
with Dmax = 0.552, the signal with the most pronounced multifractal properties among
all signals shown in figure 2. Networks generated with randomized MySpace signal and
Poisson signal are the least, but still notably dissimilar from those created with M = 1.

Randomized MySpace signal and Poissonian signal are monofractal signals with
Hurst exponent H = 0.5. To investigate the influence of monofractal correlated sig-
nals on the network structure, we generate six signals with a different value of
H ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, see figure S3 in the supplementary material. We use
each of these signals to generate networks following the same procedure as for signals
shown in figure 1. The results shown in figure S4 of the supplementary material confirm
that short-range correlated signals create networks with different structures from ones
grown with the constant signal. The increase of the Hurst exponent leads to increases
in the D-measure. However, D-measure’s maximal value is smaller than one observed
for multifractal signals shown in figure 3.

The value of D-measure rises with a decline of α∗. This observation can be explained
by examining linking rules and how model parameters determine linking dynamics
between nodes. The ability of a node to acquire a link declines with its age and grows
with its degree. A node’s potential to become a hub, node with a degree significantly
larger than average network degree, depends on the number of nodes added to the net-
work in the T time steps after its birth. The length of the interval T decreases with
parameter α. For constant signal, the number of nodes added during this time inter-
val is constant and equal to MT . For fluctuating growth signals, the number of added
nodes during the time T varies with time. In signals that have a broad distribution of
fluctuations, like TECH signals, the peaks of the number of newly added nodes lead to
the emergence of one or several hubs and super hubs. The emergence of super hubs,
nodes connected to more than 30% of the nodes in the network, significantly alters the
network’s topology. For instance, super hubs’ existence lowers the value of average path
length and network diameter [10]. The emergence of hubs occurs for values of parame-
ter α relative close to −1.0 for signals with long-range correlations. As we decrease the
parameter α, the fluctuations present in the time-varying signals become more impor-
tant, and we observe the emergence of hubs even for the white-noise signals. The trends
present in real growth signals further promote the emergence of hubs. The impact of
fluctuations and their temporal features on the structure of complex networks increases
with link density.

The large number of structural properties observed in real networks are often conse-
quences of particular degree distributions, degree correlations, and clustering coefficient
[47]. Figure 4 shows the degree distribution P (k), dependence of average neighboring
degree on node degree 〈k〉nn(k), and dependence of clustering coefficient on node degree
c(k) for networks with average number of links per node L = 2. The significant struc-
tural differences between networks grown with real time-varying and constant signals

https://doi.org/10.1088/1742-5468/abd30b 10

https://doi.org/10.1088/1742-5468/abd30b


J.S
tat.

M
ech.

(2021)
013405

Growth signals determine the topology of evolving networks

Figure 4. Degree distribution, the dependence of average first neighbor degree on
node degree, dependence of node clustering on node degree for networks grown
with different time-varying and constant signals. Model parameters have the values
α = −1.5, β = 1.5 (a), α = −1.0, β = 1.5 (b), α = −1.0, β = 2.0 (c), and L = 2 for
all networks.
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are observed for the values of model parameters α = −1.0 and β = 1.5, figures 3 and
4(b). The degree distribution of networks generated for real signals shows the occur-
rence of super hubs in these networks. In contrast, degree distributions of networks
generated with white-noise like signals do not differ from one created with constant
signal, figure 4(b). Networks obtained for the real signals are disassortative and have a
hierarchical structure, i.e., their clustering coefficient decreases with the degree. On the
other hand, networks generated with constant and randomized signals are uncorrelated,
and their clustering weakly depends on the degree.

We observe a much smaller, but still noticeable, difference between the topologi-
cal properties of networks evolved with constant and time-varying signal for α < α∗,
figure 4(a). The difference is particularly observable for degree distribution and depen-
dence of average neighboring degree on node degree of networks grown with real TECH
signal. The fluctuations of time-varying growth signals do not influence the topological
properties of small-world gel networks, figure 4(c). For α > α∗, the super hubs emerge
even with the constant growth. Since this is the mechanism through which the fluctu-
ations alter the structure of evolving networks for α � α∗, the features of the growth
signals cease to be relevant.

5. Discussion and conclusions

We demonstrate that the resulting networks’ structure depends on the time-varying
signal features that drive their growth. The previous research [25, 30] indicated the pos-
sible influence of temporal fluctuations on network properties. Our results show that
growth signals’ temporal properties generate networks with power-law degree distribu-
tion, non-trivial degree–degree correlations, and clustering coefficient even though the
local linking rules, combined with constant growth, produce uncorrelated networks for
the same values of model parameters [35].

We observe the most substantial dissimilarity in network structure along the critical
line, the values of model parameters for which we generate broad degree distribution
networks. Figure 3 shows that dissimilarity between networks grown with time-varying
signals and ones grown with constant signals always exists along this line regardless of
the features of the growth signal. However, the magnitude of this dissimilarity strongly
depends on these features. We observe the largest structural difference between networks
grown with multifractal TECH signal and networks that evolve by adding one node in
each time step. The identified value of D-measure is similar to one calculated in the
comparison between sub-critical and super-critical Erdös–Rényi graphs [36] indicating
the considerable structural difference between these networks. Our findings are further
confirmed in figure 4(b). The networks generated with signals with trends and long-
range temporal correlations differ the most from those grown with the constant signal.
Our results show that even white-noise type signals can generate networks significantly
different from ones created with constant signal for low values of α∗.

Randomized and computer-generated signals do not have trends or cycles. Never-
theless, networks grown with these signals have a significantly different structure from
ones grown with constant M . Our results demonstrate that growth signals’ temporal
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fluctuations are the leading cause for the structural differences between networks evolved
with the constant and time-varying signal. We observe the smallest, but significant,
difference between networks generated with constant M and monofractal signal with
short-range correlations. As we increase the Hurst exponent, the value of the D-measure
increases. The most considerable differences are observed for multifractal signals TECH,
random TECH, and MySpace.

The value of D-measure declines as we move away from the critical line, figure 3. The
primary mechanism through which the fluctuations influence the structure of evolved
networks is the emergence of hubs and super hubs. For values of α � α∗, the nodes
attache to their immediate predecessors creating regular networks without hubs. For
α � α∗ graphs have stretched exponential degree distribution with low potential for the
emergence of hubs. Still, multifractal signal TECH enables the emergence of hub even
for the values of parameters for which we observe networks with stretched-exponential
degree distribution in the case of constant growth figure 4(a). By definition, small-world
gels generated for α > α∗ have super-hubs [35] regardless of the growth signal. Therefore
the effects that fluctuations produce in the growth of networks do not come to the fore
for values of model parameters in this region of α–β plane.

In this work, we focus on the role of the node growth signal in evolving networks’
structure. However, real networks do not evolve only due to the addition of new nodes,
but also through addition of new links [27–29, 38]. Furthermore, the deactivation of
nodes [48] and the links [48] influence the evolving networks’ structure. Each of these
processes alone can result in a different network despite having the same linking rules.
The next step would be to examine how different combinations of these processes influ-
ence the evolving networks’ structure. For instance, in [28], authors have examined the
influence of the time-dependent number of added links L(t) on the Barabási–Albert
networks’ structure. They show that as long as the average value of time-dependent
signal 〈L(t)〉 is independent of time, the generated networks have a similar structure
as Barabási–Albert networks, and that the degree distribution depends strongly on the
behavior of 〈L(t)〉. It would be interesting to examine how correlated L(t) signals influ-
ence networks’ structure with aging nodes, where the age of a node plays a vital role
in linking between new and old nodes. Moreover, we expect that the combination of
time-varying growth of the number of nodes and the number of links will significantly
influence these networks’ structure.

Evolving network models are an essential tool for understanding the evolution of
social, biological, and technological networks and mechanisms that drive it [10]. The
most common assumption is that these networks evolve by adding a fixed number of
nodes in each time step [10]. So far, the focus on developing growing network models was
on linking rules and how different rules lead to networks of various structural properties
[10]. Growth signals of real systems are not constant [25, 30]. They are multifractal,
characterised with long-range correlations [25], trends and cycles [40]. Research on tem-
poral networks has shown that temporal properties of edge activation in networks and
their properties can affect the dynamics of the complex system [12]. Our results imply
that modeling of social and technological networks should also include non-constant
growth. Its combination with local linking rules can significantly alter the structure of
generated networks.
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[25] Dankulov M M, Melnik R and Tadić B 2015 The dynamics of meaningful social interactions and the emergence

of collective knowledge Sci. Rep. 5 1

https://doi.org/10.1088/1742-5468/abd30b 14

https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1103/revmodphys.81.591
https://doi.org/10.1103/revmodphys.81.591
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1016/j.physrep.2016.10.004
https://doi.org/10.1088/1742-5468/aac140
https://doi.org/10.1088/1742-5468/aae84f
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1126/science.1173299
https://doi.org/10.1126/science.1173299
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/s0378-4371(01)00014-0
https://doi.org/10.1016/s0378-4371(01)00014-0
https://doi.org/10.1103/physreve.80.026123
https://doi.org/10.1103/physreve.80.026123
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1103/physreve.68.026112
https://doi.org/10.1103/physreve.68.026112
https://doi.org/10.1103/physreve.65.036123
https://doi.org/10.1103/physreve.65.036123
https://doi.org/10.1103/physreve.72.036133
https://doi.org/10.1103/physreve.72.036133
https://doi.org/10.1103/physreve.67.056104
https://doi.org/10.1103/physreve.67.056104
https://doi.org/10.1038/43604
https://doi.org/10.1038/43604
https://doi.org/10.1140/epjb/e2009-00431-9
https://doi.org/10.1140/epjb/e2009-00431-9
https://doi.org/10.1038/srep12197
https://doi.org/10.1038/srep12197
https://doi.org/10.1088/1742-5468/abd30b


J.S
tat.

M
ech.

(2021)
013405

Growth signals determine the topology of evolving networks

[26] Liu J, Li J, Chen Y, Chen X, Zhou Z, Yang Z and Zhang C-J 2019 Modeling complex networks with accelerating
growth and aging effect Phys. Lett. A 383 1396

[27] Pham T, Sheridan P and Shimodaira H 2016 Joint estimation of preferential attachment and node fitness in
growing complex networks Sci. Rep. 6 32558

[28] Sen P 2004 Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture
Phys. Rev. E 69 046107

[29] Dorogovtsev S N and Mendes J F F 2001 Effect of the accelerating growth of communications networks on their
structure Phys. Rev. E 63 025101
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High-temperature bad-metal transport has been recently studied both theoretically and in experiments as one
of the key signatures of strong electronic correlations. Here we use the dynamical mean field theory and its
cluster extensions, as well as the finite-temperature Lanczos method to explore the influence of lattice frustration
on the thermodynamic and transport properties of the Hubbard model at high temperatures. We consider the
triangular and the square lattices at half-filling and at 15% hole doping. We find that for T � 1.5t the self-energy
becomes practically local, while the finite-size effects become small at lattice size 4×4 for both lattice types and
doping levels. The vertex corrections to optical conductivity, which are significant on the square lattice even at
high temperatures, contribute less on the triangular lattice. We find approximately linear temperature dependence
of dc resistivity in doped Mott insulator for both types of lattices.

DOI: 10.1103/PhysRevB.102.115142

I. INTRODUCTION

Strong correlation effects in the proximity of the Mott
metal-insulator transition are among the most studied prob-
lems in modern condensed matter physics. At low temper-
atures, material-specific details play a role, and competing
mechanisms can lead to various types of magnetic and
charge density wave order, or superconductivity [1–5]. At
higher temperatures, physical properties become more univer-
sal, often featuring peculiarly high and linear-in-temperature
resistivity (the bad-metal regime) [6–12] and gradual metal-
insulator crossover obeying typical quantum critical scaling
laws [13–17].

There are a number of theoretical studies of transport
in the high-T regime based on numerical solutions of the
Hubbard model [10,12,13,18,19], high-T expansion [20], and
field theory [21–23]. Finding numerically precise results is
particularly timely having in mind a very recent laboratory
realization of the Hubbard model using ultracold atoms on
the optical lattice [24]. This system enables fine tuning of
physical parameters in a system without disorder and other
complications of bulk crystals, which enables a direct com-
parison between theory and experiment. In our previous
work (Ref. [25]) we have performed a detailed analysis of
single- and two-particle correlation functions and finite-size
effects on the square lattice using several complementary
state-of-the-art numerical methods, and established that a
finite-temperature Lanczos method (FTLM) solution on the
4×4 lattice is nearly exact at high temperatures. The FTLM,
which calculates the correlation functions directly on the real-
frequency axis, is recognized [25] as the most reliable method
for calculating the transport properties of the Hubbard model
at high temperatures. The dependence of charge transport and

thermodynamics on the lattice geometry has not been exam-
ined in Ref. [25] and it is the subject of this work.

Numerical methods that we use are (cluster) dynamical
mean field theory (DMFT) and FTLM. The DMFT treats an
embedded cluster in a self-consistently determined environ-
ment [26]. Such a method captures long-distance quantum
fluctuations, but only local (in single-site DMFT), or short-
range correlations (in cluster DMFT) [27]. The results are
expected to converge faster with the size of the cluster than
in the FTLM, which treats a finite cluster with periodic
boundary conditions [28]. FTLM suffers from the finite-size
effects in propagators as well as in correlations. The con-
ductivity calculation in DMFT is, however, restricted just to
the bubble diagram, while neglecting the vertex corrections.
Approximate calculation of vertex corrections is presented
in few recent works [29–34]. This shortcoming of DMFT is
overcome in FTLM where one calculates directly the current-
current correlation function which includes all contributions
to the conductivity. Also, the FTLM calculates conductivity
directly on the real-frequency axis, thus eliminating the need
for analytical continuation from the Matsubara axis which
can, otherwise, lead to unreliable results (see Supplemental
Material of Ref. [25]). Both DMFT and FTLM methods are
expected to work better at high temperatures [35] when single-
and two-particle correlations become more local, and finite-
size effects less pronounced. Earlier work has shown that the
single-particle nonlocal correlations become small for T � t
for both the triangular and the square lattices [25,36,37].

In this paper we calculate the kinetic and potential energy,
specific heat, charge susceptibility, optical and dc conductivity
in the Hubbard model on a triangular lattice and make a com-
parison with the square-lattice results. We consider strongly
correlated regime at half-filling and at 15% hole doping. In
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agreement with the expectations, we find that at high temper-
atures, T � 1.5t , the nonlocal correlations become negligible
and the results for thermodynamic quantities obtained with
different methods coincide, regardless of the lattice type and
doping. At intermediate temperatures, 0.5t � T � 1.5t , the
difference between DMFT and FTLM remains rather small.
Interestingly, we do not find that the thermodynamic quanti-
ties are more affected by nonlocal correlations on the square
lattice in this temperature range, although the self-energy be-
comes more local on the triangular lattice due to the magnetic
frustration. On the other hand, the vertex corrections to opti-
cal conductivity remain important even at high temperatures
for both lattice types, but we find that they are substantially
smaller in the case of a triangular lattice. For the doped
triangular and square lattice the temperature dependence of
resistivity is approximately linear for temperatures where the
finite-size effects become negligible and where the FTLM
solution is close to exact.

The paper is organized as follows. In Sec. II we briefly
describe different methods for solving the Hubbard model.
Thermodynamic and charge transport results are shown in
Sec. III, and conclusions in Sec. IV. The Appendix contains
a detailed comparison of the DMFT optical conductivity ob-
tained with different impurity solvers, a brief discussion of
the finite-size effects at low temperatures, and an illustration
of the density of states in different transport regimes.

II. MODEL AND METHODS

We consider the Hubbard model given by the Hamiltonian

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓ − μ
∑

iσ

niσ , (1)

where t is the hopping between the nearest neighbors on either
triangular or square lattice. c†

iσ and ciσ are the creation and
annihilation operators, U is the onsite repulsion, niσ is the
occupation number operator, and μ is the chemical potential.
We set U = 10t , t = 1, lattice constant a = 1, e = h̄ = kB =
1 and consider the paramagnetic solution for p = 1 − n =
1 − ∑

σ nσ = 0.15 hole doping and at half-filling.
We use the FTLM and DMFT with its cluster extensions

to solve the Hamiltonian. FTLM is a method based on the
exact diagonalization of small clusters (4×4 in this work). It
employs the Lanczos procedure to obtain approximate eigen-
states and uses sampling over random starting vectors to
calculate the finite-temperature properties from the standard
expectation values [28]. To reduce the finite-size effects, we
further employ averaging over twisted boundary conditions.

The (cluster) DMFT equations reduce to solving a (cluster)
impurity problem in a self-consistently determined effective
medium. We consider the single-site DMFT, as well as two
implementations of cluster DMFT: cellular DMFT (CDMFT)
[38,39] and dynamical cluster approximation (DCA) [27]. In
DMFT the density of states is the only lattice-specific quantity
that enters into the equations. In CDMFT we construct the
supercells in the real space and the self-energy obtains short-
ranged nonlocal components within the supercell. In DCA we
divide the Brillouin zone into several patches and the num-
ber of independent components of the self-energy equals the
number of inequivalent patches. The DCA results on 4×4 and

FIG. 1. DCA patches in the Brillouin zone. The irreducible Bril-
louin zone is marked by the black triangle. The dispersion relation is
shown in gray shading. Note the position of the � point in the center
of the first Brillouin zone which is not marked in this figure.

2×2 clusters are obtained by patching the Brillouin zone in a
way that obeys the symmetry of the lattice, as shown in Fig. 1.
As the impurity solver we use the continuous-time interaction
expansion (CTINT) quantum Monte Carlo (QMC) algorithm
[40,41]. In the single-site DMFT we also use the numerical
renormalization group (NRG) impurity solver [42–45].

The (cluster) DMFT with QMC impurity solver (DMFT-
QMC) gives the correlation functions on the imaginary
(Matsubara) frequency axis, from which static quantities can
be easily evaluated. The kinetic energy per lattice site is equal
to

Ekin = 1

N

∑
k

εknkσ = 2

N

∑
k

εkGk(τ = 0−), (2)

where for the triangular lattice εk = −2t[cos kx +
2 cos( 1

2 kx ) cos(
√

3
2 ky)] and for the square lattice εk =

−2t (cos kx + cos ky) (gray shading in Fig. 1). The
noninteracting band for the triangular lattice goes from
−6t to 3t with the van Hove singularity at ε = t . The
potential energy is equal to

Epot = Ud = 1

N
T

∑
k,iωn

eiωn0+
Gk(iωn)�k(iωn), (3)

where d = 〈ni↑ni↓〉 is the average double occupation. In DCA
the cluster double occupation is the same as on the lattice,
and we used the direct calculation of d in the cluster solver
to cross check the consistency and precision of the numerical
data. In CDMFT we calculated Epot from periodized quantities
G and �, where the periodization is performed on the self-
energy and then the lattice Green’s function is calculated from
it. The total energy is Etot = Ekin + Epot. The specific heat
C = dEtot/dT |n is obtained by interpolating Etot (T ) and then
taking a derivative with respect to temperature. C is shown
only in the DMFT solution where we had enough points
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at low temperatures. The charge susceptibility χc = ∂n/∂μ

is obtained from a finite difference using two independent
calculations with μ that differs by a small shift δμ = 0.1t .
In the FTLM, C and χc are calculated without taking the
explicit numerical derivative since the derivation can be done
analytically from a definition of the expectation values,

C = Cμ − T ζ 2

χc

= 1

N

1

T 2

[
〈H2〉 − 〈H〉2 − (〈HNe〉 − 〈H〉〈Ne〉)2〈

N2
e

〉 − 〈Ne〉2

]
, (4)

which is directly calculated in FTLM. Here, Cμ =
1
N

1
T 2 [〈(H − μNe)2〉−〈H−μNe〉2], ζ = 1

N2
1

T 2 [〈(H−μNe)Ne〉−
〈H − μNe〉〈Ne〉], χc = 1

N
1
T (〈N2

e 〉 − 〈Ne〉2), and Ne = ∑
iσ niσ

is the operator for the total number of electrons on the lattice.
We calculate the conductivity using DMFT and FTLM.

Within the DMFT the optical conductivity is calculated from
the bubble diagram as

σ (ω) = σ0

∫∫
dε dν X (ε)A(ε, ν)A(ε, ν + ω)

× f (ν) − f (ν + ω)

ω
, (5)

where X (ε) = 1
N

∑
k ( ∂εk

∂kx
)
2
δ(ε − εk ) is the transport function,

A(ε, ν) = − 1
π

Im[ν + μ − ε − �(ν)]−1, and f is the Fermi
function. For the square lattice σ0 = 2π and for triangular
σ0 = 4π/

√
3. For the calculation of conductivity in DMFT-

QMC we need the real-frequency self-energy �(ω), which
we obtain by Padé analytical continuation of the DMFT-QMC
�(iωn). In the DMFT with NRG impurity solver (DMFT-
NRG) we obtain the correlation functions directly on the
real-frequency axis, but this method involves certain numer-
ical approximations (see Appendix A).

In order to put into perspective the interaction strength
U = 10t and the temperature range that we consider, in Fig. 2
we sketch the paramagnetic (cluster) DMFT phase diagram
for the triangular and square lattices at half-filling adapted
from Refs. [46,47] (see also Refs. [36,37,48–54]). In the
DMFT solution (blue lines) the critical interaction for the Mott
metal-insulator transition (MIT) is Uc ∼ 2.5D, where the half-
bandwidth D is 4.5t and 4t for the triangular and the square
lattice, respectively. The phase diagram features the region
of coexistence of metallic and insulating solution below the
critical end point at Tc ≈ 0.1t . In this work we consider the
temperatures above Tc. We set U = 10t , which is near Uc for
the MIT in DMFT, but well within the Mott insulating part of
the cluster DMFT and FTLM phase diagram.

III. RESULTS

We will first present the results for the thermodynamic
properties in order to precisely identify the temperature range
where the nonlocal correlations and finite-size effects are
small or even negligible. In addition, from the thermodynamic
quantities, e.g., from the specific heat, we can clearly identify
the coherence temperature above which we observe the bad-
metal transport regime. We then proceed with the key result

FIG. 2. Sketch of the paramagnetic phase diagram at half-filling,
adapted from Refs. [46,47]. There is a region of the coexistence of
metallic and insulating solution below the critical end point at Tc. The
critical interaction is smaller in the cluster DMFT solution. Above Tc

there is a gradual crossover from a metal to the Mott insulator. In this
work we consider T > Tc and U = 10t .

of this work by showing the contribution of vertex corrections
to the resistivity and optical conductivity.

Before going into this detailed analysis, and in order to ob-
tain a quick insight into the strength of nonlocal correlations,
we compare in Fig. 3 the self-energy components in the cluster
DMFT solution at two representative temperatures. We show
the imaginary part of the DCA 4×4 self-energy at different
patches of the Brillouin zone according to the color scheme of
Fig. 1. The statistical error bar of the Im � results presented
in Fig. 3 we estimate by looking at the difference in Im �

between the last two iterations of the cluster DMFT loop.
We monitor all K points and the lowest three Matsubara fre-
quencies. At lower temperature (bottom row), this difference
is smaller than 0.05 (0.01) for the square (triangular) lattice,
respectively. At higher temperature (upper row), these values
are both 10 times lower and the error bar is much smaller
than the size of the symbol. At T = 0.4t the differences in the
self-energy components are more pronounced on the square
than on the triangular lattice, which goes along the general
expectations that the larger connectivity (z = 6) and the frus-
trated magnetic fluctuations lead to the more local self-energy.
At T ∼ 1.5t all the components of the self-energy almost
coincide for both lattices. We note that for the triangular
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FIG. 3. Imaginary part of the self-energy at the Matsubara fre-
quencies at different patches of the Brillouin zone for several
temperatures for p = 0.15 hole doping. The position of the patches
is indicated by the same colors as in Fig. 1. The solid lines are guide
to the eye.

lattice the components of the self-energy marked by red and
cyan colors are similar, but they do not coincide completely.
There are four independent patches in this case. For the square
lattice the red and cyan components of the self-energy are very
similar, while we have six independent patches.

A. Thermodynamics

1. p = 0.15

We first show the results for hole doping p = 0.15. The
results for the triangular lattice are shown in the left column of
Fig. 4, and the results for the square lattice in the right column.
Different rows correspond to the kinetic energy per lattice
site Ekin, potential energy Epot, total energy Etot, specific heat
C = dEtot/dT |n, and charge susceptibility χc. The DMFT
results are shown with blue solid lines and FTLM with red
dashed lines. The red circles correspond to DCA 4×4, light
green to DCA 2×2, green to CDMFT 2×2, and magenta to
the CDMFT 2×1 result.

The FTLM results are shown down to T = 0.2t . The
FTLM finite-size effects in thermodynamic quantities are
small for T � 0.2t (see Appendix B). The DMFT results are
shown for T � 0.05t and cluster DMFT for T � 0.2t . Over-
all, the (cluster) DMFT and FTLM results for 15% doping
look rather similar. The kinetic and potential energy do not
differ much on the scale of the plots, and the specific heat
looks similar.

The Fermi-liquid region, with C ∝ T , is restricted to very
low temperatures. For the triangular lattice we find a distinct
maximum in C(T ) at T ≈ 0.4t in FTLM, and at T ≈ 0.3t
in DMFT. This maximum is a signature of the coherence-
incoherence crossover, when the quasiparticle peak in the
density of states gradually diminishes and the bad-metal
regime starts. The increase in the specific heat for T � 2t is

FIG. 4. Kinetic, potential, total energy, specific heat, and charge
susceptibility as a function of temperature for the triangular and the
square lattice at 15% doping.

caused by the charge excitations to the Hubbard band. The
specific heat of the square lattice looks qualitatively the same.
[A very small dip in the DMFT specific heat near T = 0.4t
for the square lattice may be an artifact of the numerics,
where C is calculated by taking a derivative with respect to
temperature of the interpolated Etot (T ).] We note that the
specific heat, shown here for the fixed particle density, is
slightly different than the one for the fixed chemical potential
Cμ = dEtot/dT |μ, as in Refs. [28,51,55].

For the square lattice all thermodynamic quantities
obtained with different methods practically coincide for
T � t . This means that both the nonlocal correlations and
the finite-size effects have negligible effect on thermodynamic
quantities. For T � t the DMFT and FTLM results start to
differ. Interestingly, for the triangular lattice there is a small

115142-4



CHARGE TRANSPORT IN THE HUBBARD MODEL AT HIGH … PHYSICAL REVIEW B 102, 115142 (2020)

difference in the DMFT and FTLM kinetic energy up to higher
temperatures T ∼ 1.5t . The FTLM and DCA 4×4 results
coincide for T � t , implying the absence of finite-size effects
in the kinetic energy for both lattice types. We also note
that the agreement of the CDMFT and DMFT solutions for
the total energy on the square lattice at low temperatures is
coincidental, as a result of a cancellation of differences in Ekin

and Epot.
The intersite correlations in the square lattice lead to an in-

crease in the charge susceptibility at low temperatures (bottom
panel in Fig. 4). Here, the FTLM and DCA 4×4 results are in
rather good agreement. For the triangular lattice we found a
sudden increase of χc at low temperatures in the DCA results
(see Appendix B) but not in FTLM. These DCA points are not
shown in Fig. 4 since we believe that they are an artifact of the
particular choice of patching of the Brillouin zone. In order to
keep the lattice symmetry, we had only four (in DCA 4×4)
and two (in DCA 2×2) independent patches in the Brillouin
zone for triangular lattice (Fig. 1). The average over twisted
boundary conditions in FTLM reduces the finite-size error
(see Appendix B), and hence we believe that the FTLM result
for χc is correct down to T = 0.2t . We note that an increase of
χc cannot be inferred from the ladder dual-fermion extension
of DMFT [37] either. Still, further work would be needed to
precisely resolve the low-T behavior of charge susceptibility
for the triangular lattice.

2. p = 0

We now focus on thermodynamic quantities at half-filling
(Fig. 5). In this case, the results can strongly depend on
the method, especially since we have set the interaction to
U = 10t , which is near the critical value for the Mott MIT
in DMFT, while well within the insulating phase in the clus-
ter DMFT and FTLM. The results with different methods
almost coincide for T � 2t and are very similar down to
T ∼ t . The difference between the cluster DMFT and FTLM
at half-filling is small, which means that the finite-size effects
are small down to the lowest shown temperature T = 0.2t .
Therefore, the substantial difference between the FTLM and
single-site DMFT solutions at half-filling is mostly due to the
absence of nonlocal correlations in DMFT.

The specific heat at half-filling is strongly affected by non-
local correlations and lattice frustration. For triangular lattice
the low-temperature maximum in C(T ) has different origin
in the DMFT and FTLM solutions. The maximum in the
FTLM is due to the low-energy spin excitations in frustrated
triangular lattice, while in DMFT it is associated with the
narrow quasiparticle peak since the DMFT solution becomes
metallic as T → 0. Our DMFT result agrees very well with
the early work from Ref. [36] for T � t . At lower tempera-
tures there is some numerical discrepancy which we ascribe
to the error due to the imaginary-time discretization in the
Hirsch-Fye method used in that reference. For the square lat-
tice the DMFT and FTLM solutions are both insulating. The
maximum in the FTLM C(T ) is due to the spin excitations at
energies ∼4t2/U = 0.4t , and it is absent in the paramagnetic
DMFT solution which does not include dynamic nonlocal
correlations. The increase in C(T ) at higher temperatures is
due to the charge excitations to the upper Hubbard band.

ki
n

FIG. 5. Kinetic, potential, total energy, specific heat, and charge
compressibility as a function of temperature for the triangular and
the square lattice at half-filling.

B. Charge transport

The analysis of thermodynamic quantities has shown that
the FTLM results for static quantities are close to exact down
to T ∼ 0.5t or even 0.2t . For charge transport we show the
results for higher temperatures T � t since the finite-size ef-
fects are more pronounced in the current-current correlation
function at lower temperatures.

An indication of the finite-size effects in optical conductiv-
ity can be obtained from the optical sum rule

∫ ∞

0
dω σ (ω) = π

4Vu.c.
(−Ekin ), (6)

where Vu.c is equal to 1 and
√

3
2 for the square and triangular

lattice, respectively. The deviation from the sum rule in FTLM
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FIG. 6. Resistivity as a function of temperature.

can be ascribed to the finite charge stiffness and δ function at
zero frequency in optical conductivity [28]. The FTLM result
for dc resistivity, shown by the red lines in Fig. 6, corresponds
the temperature range where the weight of the δ-function peak
at zero frequency (charge stiffness) [28] is smaller than 0.5%
of the total spectral weight. The other finite-size effects are
small and the FTLM resistivity is expected to be close to the
exact solution of the Hubbard model. The remaining uncer-
tainty, due to the frequency broadening, is estimated to be
below 10% (see Supplemental Material in Ref. [25]). Small-
ness of the finite-size effects for the square lattice at T � t was
also confirmed from the current-current correlation function
calculated on the 4×4 and 8×8 lattices using CTINT QMC
(see Ref. [25]). For doped triangular lattice we show the con-
ductivity data for T � 1.5t since below this temperature the
weight of the charge stiffness δ function is larger than 0.5% of
the total weight, which indicates larger finite-size effects.

The DMFT resistivity is shown in Fig. 6 by the blue lines.
It is obtained using the NRG impurity solver. Numerical error
of the DMFT-NRG method is small, as we confirmed by a
comparison with the DMFT-QMC calculation followed by the
Padé analytical continuation (see Appendix A). We note that
we do not show the conductivity data in the DCA since in this
approximation we cannot reliably calculate the conductivity
beyond the bubble term. At high temperatures the bubble-term
contribution in cluster DMFT does not differ from the one in
single-site DMFT since the self-energy becomes local [25].

Since the FTLM resistivity in Fig. 6 is shown only for
temperatures when both the nonlocal correlations and the
finite-size effects are small, the difference between the DMFT
and FTLM resistivity is due to the vertex corrections. Their
contribution corresponds to the connected part of the current-
current correlation function whereas the DMFT conductivity

FIG. 7. Optical conductivity at T = 1.4.

is given by the bubble diagram. A detailed analysis of vertex
corrections for the square lattice is given in our previous work
(Ref. [25]). Here, our main focus is on the comparison of
the importance of vertex corrections for different lattices: the
numerical results show that the vertex corrections to conduc-
tivity are less important in the case of the triangular lattice.

In the doped case, the FTLM solution gives the resistiv-
ity which is approximately linear in the entire temperature
range shown in Fig. 6. This bad-metal linear-T temperature
dependence is one of the key signatures of strong electronic
correlations. The resistivity is here above the Mott-Ioffe-Regel
limit which corresponds to the scattering length one lattice
spacing within the Boltzmann theory. The Mott-Ioffe-Regel
limit can be estimated as [6] ρMIR ∼ √

2π ≈ 2.5.
At half-filling and low temperatures the result qualitatively

depends on the applied method. For the half-filled triangular
lattice at U = 10t the DMFT solution gives a metal, whereas
the nonlocal correlations lead to the Mott insulating state.
Still, similar as for thermodynamic quantities, the numerically
cheap DMFT gives an insulatinglike behavior and a rather
good approximation down to T ∼ 0.5t .

The optical conductivity, shown in Fig. 7 for T = 1.4t ,
provides further insight into the dependence of the vertex
correction on the lattice geometry. The DMFT-QMC conduc-
tivity is calculated using Eq. (5) with �(ω) obtained by the
Padé analytical continuation of �(iωn) (see Appendix A for
a comparison with DMFT-NRG). In the DMFT solution, the
Hubbard peak is determined by the single-particle processes
and it is centered precisely at ω = U . The vertex corrections
in FTLM shift the position of the Hubbard peak to lower
frequencies. The total spectral weight is the same in FTLM
and DMFT solution since it obeys the sum rule of Eq. (6),
while the kinetic energies coincide. The Ward identity for
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vertex corrections [25,31]

�conn(iν = 0) = −2T
1

N

∑
k

vk

∑
iωn

G2
k(iωn)∂kx �k(iωn) (7)

also implies that the vertex corrections do not affect the sum
rule if the self-energy is local. Here, �(iν) is the current-
current correlation function and �(iν = 0) = 1

π

∫
dω σ (ω).

The results clearly show the much stronger effect of ver-
tex corrections on the square lattice on all energy scales. In
addition to a very different ω → 0 (dc) limit, we observe
the more significant reduction of the Drude-like peak width
and a larger shift of the Hubbard peak on the square lattice,
with a more pronounced suppression of the optical weight at
intermediate frequencies. We note that a broad low-frequency
peak in conductivity is due to incoherent short-lived excita-
tions characteristic of the bad-metal regime. The structure of
the density of states in different transport regimes is discussed
in Appendix C.

IV. CONCLUSION

In summary, we have performed a detailed comparison
of the thermodynamic and charge transport properties of the
Hubbard model on a triangular and square lattice. We iden-
tified the temperatures when the finite-size effects become
negligible and the FTLM results on the 4×4 cluster are close
to exact. In the doped case, for both lattice types, the resistivity
is approximately linear in temperature for T � 1.5t . In partic-
ular, we found that the contribution of vertex corrections to the
optical and dc conductivity is smaller in the case of a triangu-
lar lattice, where it leads to ∼20% decrease in dc resistivity
as compared to the bubble term. The vertex corrections also
leave a fingerprint on the position of the Hubbard peak in the
optical conductivity, which is shifted from ω = U to slightly
lower frequencies.

On general grounds, higher connectivity and/or magnetic
frustration should lead to more local self-energy and smaller
vertex corrections in the case of triangular lattice, as it is
observed. However, the precise role of these physical mech-
anisms and possible other factors remains to be established.
Another important open question is to find an efficient ap-
proximate scheme to evaluate the vertex corrections, which
would be sufficiently numerically cheap to enable calculations
of transport at lower temperatures and in real materials. These
issues are to be addressed in the future, but we are now better
positioned as we have established reliable results that can
serve as a reference point.

With this work we also made a benchmark of several
state-of-the-art numerical methods for solving the Hubbard
model and calculating the conductivity at high temperatures.
This may be a useful reference for calculations of conduc-
tivity using a recent approach that calculates perturbatively
the correlation functions directly on the real-frequency axis
[56–59], thus eliminating a need for analytical continuation,
while going beyond the calculation on the 4×4 cluster.
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APPENDIX A: COMPARISON OF THE DMFT-NRG
AND DMFT-QMC CONDUCTIVITY

Here, we compare the DMFT results for the dc resistivity
and optical conductivity obtained with two different impurity
solvers. The optical conductivity σ (ω) is calculated according
to Eq. (5). The dc resistivity is equal to ρ = σ−1(ω → 0).

Within DMFT-NRG solver the self-energy is obtained di-
rectly on the real-frequency axis. There are three sources of
errors in this approach: discretization errors, truncation er-
rors, and (over)broadening errors. The method is based on
the discretization of the continuum of states in the bath; the
ensuing discretization errors can be reduced by performing the
calculation for several different discretization meshes with in-
terleaved points and averaging these results. It has been shown
[45] that in the absence of interactions, the discretization error
can be fully eliminated in a systematic manner. For an inter-
acting problem, the cancellation of artifacts is only approxi-
mate, but typically very good, so that this is a minor source of
errors. The truncation errors arise because in the iterative di-
agonalization one discards high-energy states after each set of
diagonalizations. For static quantities this error is negligible,
but it affects the dynamical (frequency-resolved) quantities
because they are calculated from contributions linking kept
and discarded states [61–63]. Finally, the raw spectral func-
tion in the form of δ peaks needs to be broadened in order to
obtain the smooth spectrum. If the results are overbroadened,
this can result in a severe overestimation of resistivity, and this
is typically the main source of error in the NRG for this quan-
tity. Fortunately, the resistivity is calculated as an integrated
quantity, thus, the broadening kernel width can be systemat-
ically reduced [20,64]. The lower limit is set by the possible
convergence issues in the DMFT self-consistency cycle due
to jagged aspect of all quantities, where the actual limit value
is problem dependent. In the NRG results reported in this
work, it was possible to use very narrow broadening kernel.
By studying the dependence of the ρ(T ) curves on the kernel
width, we estimate that the presented results have at most a
few percent error even at the highest temperatures considered.

The DMFT-QMC gives the self-energy �(iωn) at the
Matsubara frequencies and the analytical continuation is nec-
essary to obtain �(ω). The statistical error in QMC makes
the analytical continuation particularly challenging. However,
at high temperatures the CTINT QMC algorithm is very ef-
ficient. Running a single DMFT iteration for 10 minutes on
128 cores and using 20 or more iterations, we obtained the
self-energies with the statistical error |δ�(iω0)| ≈ 5×10−4

and |δG(iω0)| ≈ 2×10−5 at the first Matsubara frequency at
T = t . Such a small statistical error makes the Padé analytical
continuation possible for temperatures T � 2t .
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FIG. 8. DMFT-QMC (blue dots) and DMFT-NRG (red lines)
resistivity as a function of temperature. The analytical continuation
of the self-energy is performed with the Padé method. At high tem-
peratures the DMFT-NRG result agrees rather well with the RAIPT
(green dashed lines).

We have checked that Padé continuation gives similar re-
sults for �(ω) when performed on �(iωn) taken from last
few DMFT iterations. We than used �(iωn) averaged over the
last five iterations to further reduce the noise in �(iωn), be-
fore performing the Padé analytical continuation subsequently
used in the calculation of the conductivity. We also obtained
G(ω) directly by the Padé analytical continuation of G(iωn),
and checked that the result is consistent with the one cal-
culated as G(ω) = ∫

dε ρ0(ε)[ω + μ − ε − �(ω)]−1. These
cross checks have confirmed that Padé analytical continuation
is rather reliable.

Figure 8 shows the temperature dependence of resistivity
calculated with the DMFT-NRG (red lines) and DMFT-QMC
(blue dots). For the square lattice we find excellent agreement
between the two methods. For the triangular lattice we find
some discrepancy for T ∼ 1.5t , which is likely due to the
approximations in DMFT-NRG. We also find that the real-axis
iterative perturbation theory [65–67] (RAIPT) agrees rather
well with the DMFT-NRG solution for T � 2t .

It is also interesting to note how the lattice geometry can
influence the range of the Fermi liquid ρ ∝ T 2 behavior in the
DMFT solution. In the DMFT equations the lattice structure
enters only through the noninteracting density of states. We

FIG. 9. DMFT-QMC and DMFT-NRG optical conductivity at
T = 1.4.

observe ρ ∝ T 2 behavior up to much lower temperatures on
the square lattice. In this case, ρ ∝ T 2 region is hardly visible
on the scale of the plot, while ρ ∝ T 2 up to T ∼ 0.3t on the
triangular lattice. This observation is in agreement with the
extension of the C ∝ T region in C(T ), which is restricted to
lower temperatures in the case of a square lattice (Fig. 4).

A comparison of the DMFT-NRG (red lines) and DMFT-
QMC (blue lines) optical conductivity at T = 1.4t is shown in
Fig. 9. The overall agreement is very good. We, however, find
a small discrepancy at ω ∼ 10t . The DMFT-QMC result has
the Hubbard peak in σ (ω) centered exactly at ω = U , whereas
it is shifted to slightly lower frequency in the DMFT-NRG
solution. This shift is an artifact of numerical approximations
in DMFT-NRG. A position of the Hubbard peak at U = 10t
is another manifestation of the precision of analytical contin-
uation of the QMC data.

APPENDIX B: FINITE-SIZE EFFECTS
IN CHARGE SUSCEPTIBILITY

In Fig. 10 we show the charge susceptibility obtained
with different methods. The single-site DMFT result agrees
very well with the 4×4 FTLM after averaging over the
twisted boundary conditions. We show χc averaged over
Ntbc = 1, 4, 16, 64, and 128 clusters with different bound-
ary conditions. χc obtained with a single setup of boundary
conditions deviates at low temperatures from the averaged
values. The DCA results for T � 0.5t are also inconsistent.
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FIG. 10. Charge susceptibility as a function of temperature for
the triangular lattice at p = 0.15 hole doping.

We believe that this is an artifact of the particular choice of
the Brillouin zone patches. In DCA 4×4 and 2×2 we have
just four and two independent patches in the Brillouin zone
for triangular lattice, respectively.

APPENDIX C: DMFT DENSITY OF STATES

Here, we illustrate the density of states in different trans-
port regimes in the DMFT solution. The results in Fig. 11 are
obtained with the QMC solver followed by the Padé analyt-
ical continuation. We have checked that the density of states
agrees with the DMFT-NRG result.

In the Fermi-liquid regime at low temperatures there is a
peak in the density of states around the Fermi level. In the
doped case the coherence-decoherence crossover is at temper-
ature T ∼ 0.3, as we established from the specific-heat data
(see Fig. 4) and from the condition that the resistivity reaches
the Mott-Ioffe-Regel limit (see Sec. III B). In agreement with
earlier work [10,12], we see that at T ∼ 0.3 there is a peak in
the density of states even though long-lived quasiparticles are
absent. At even higher temperatures (here shown T = 1.4),
deeply in the bad-metal regime, the peak at the density of
states at the Fermi level is completely washed out.

FIG. 11. Density of states in the Fermi liquid at low temperatures
and in the bad-metal regime at high temperatures.

At half-filling the result is very sensitive to the exact posi-
tion of parameters on the U -T phase diagram (see Fig. 2). For
the triangular lattice at U = 10 the solution is metallic even
at low temperature which leads to the formation of narrow
quasiparticle peak at the Fermi level. This peak is quickly
suppressed by thermal fluctuations which is accompanied by
a sudden increase in the resistivity. For the square lattice at
U = 10 the system is insulating above for T � 0.03, while
the Mott gap gradually gets filled as the temperature increases.
We note that the low-temperature peak in optical conductivity
in Fig. 7 is not connected to the existence of quasiparticles.
It is just a consequence of a finite spectral density at the
Fermi level (the absence of an energy gap), as expected in
the bad-metal regime.
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and J. Mravlje, Phys. Rev. Lett. 123, 036601 (2019).

[26] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys. 68, 13 (1996).

[27] T. A. Maier, M. Jarrell, T. Prushke, and M. H. Hettler, Rev.
Mod. Phys. 77, 1027 (2005).
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Abstract

Complex systems are all around us and can be found in various domains of physics, biology, and social
sciences. While they differ in origin and function, their common feature is that they consist of a large
number of interacting units and that due to these interactions exhibit collective behavior. Complex
networks represent a general framework for representing interaction patterns in complex systems. The
structure of a complex network and its evolution are inevitably linked to the dynamics and function
of a complex system. Detecting the collective phenomena and understanding how they emerge from
individual interactions is important research problems. Complexity science gives us new ways to ex-
plore complex systems. Complexity science combines tools, methods, and paradigms of statistical
and computational physics, complex network theory, and computer science to describe and study dif-
ferent collective phenomena quantitatively and propose theoretical models to better understand the
mechanisms underlying dynamics and drive the evolution of complex networks.

This thesis aims to broaden the knowledge of the structure and dynamics of evolving complex
networks by analyzing the empirical data from different online social systems and providing themodels
and theories that could explain their specific characteristics. Social systems constantly evolve, and
because of that, it is necessary to understand the connections between their structure, growth, and
segmentation and how these connections influence their sustainability.

Earlier works have suggested that the properties of growth signals influence the structure and dy-
namics of evolving complex networks. In real online systems, growth signals fluctuate over time, and
they are long-range correlated and have multifractal properties. We use time series of new users from
real systems, MySpace and TECH, and computer-generated signals with specific long-range correla-
tion properties as growing signals. We combine them with a network model of aging nodes to examine
in detail how the features of these signals shape the structure of complex networks. Our results show
that the properties of the growth signal have the substantial influence on the structure of networks with
broad degree distribution. Unlike networks grown with constant signals, these networks are clustered
and correlated.

Further, we explore the influence of growth signals and linking rules on the segmentation and
growth of the social group in the social system. Empirical analysis of different socio-economic sys-
tems indicates that despite their differences, these systems often exhibit some universal properties
regarding their segmentation and growth. We analyze the Meetup groups in London and New York
and Subreddits and find that group size distribution in these systems is lognormal and universal over
time, location, and topic. We use a model that interplays two criteria for users’ linking with social
groups, random and based on social connections. We show that social interactions are an essential
factor in the emergence of the lognormal distribution. We demonstrate that mechanisms under which
users join social groups could explain the emergence of some universal properties in the social system.
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Abstract

The complex network theory allows us to determine how different network properties evolve and
understand how this evolution influences their sustainability. We use data from Stack Exchange sites
and compare the evolution of network structure for pairs of active and closed communities during
their early phase of existence. Stack Exchange sites are question-and-answer platforms where users
share knowledge on some specific topic. We compare active and closed communities on four topics,
namely astronomy, literature, economics, and physics. We analyze the structural patterns in these
communities and find that active ones are more clustered and characterized by better-connected and
stable cores. Core users are crucial for a healthy community and need to be trustworthy. Through the
dynamic reputation model, we measure the level of trust in these communities. In active communities,
core users show a higher reputation than in closed communities, indicating the importance that a
stable core develops early and has a high level of trust.

Keywords: statistical physics of complex systems, the structure and dynamics of complex net-
works, modeling online social systems
Research field: Physics
Research subfield: Statistical physics
UDC number: 536
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Сажетак

Комплексни системи се налазе свуда око нас у различитим доменима физике, биологије и
друштвених наука. Иако се разликују по пореклу и функцији, заједничка карактеристика им
је да се састоје од великог броја елемената који међусобно интерагују и због тих интеракција
испоњавају колективно понашање. Комплексне мреже представљају општи приступ за
репрезентацију образаца интеракција у комплексним системима. Структура комплексне
мреже и њена еволуција су узајамно повезане са динамиком и функцијом комплексног
система. Проналажење колективних фенома и разумевање како они настају из индивидуалних
интеракција је један од важних истраживачких проблема. Теорија комплексних система нам
пружа нове методе за истраживање комплексних система. Она комбинује методе статистичке
физике, рачунарске физике, теорије комплексних мрежа, компјутерских наука како би
квантитативно описала и проучавала различите колективне појаве и предложила теоријске
моделе ради бољег разумевања механизама који су у основи динамике и еволуције комплексних
мрежа.

Ова теза има за циљ да прошири знање о структури и динамици растућих комплексних
мрежа кроз анализу емпиријских података из различитих онлајн друштвених система и
дефинисањем модела и теорија које би могле да објасне њихове специфичне карактеристике.
Друштвени системи стално еволуирају и због тога је неопходно разумети везе између њихове
структуре, раста и сегментације и како те везе утичу на њихову одрживост.

Ранији радови сугерисали су да својства сигнала раста утичу на структуру и динамику
растућих комплексних мрежа. У реалним онлајн системима, сигнали раста флуктуирају током
времена и они су дугодометно корелисани и имају мултифрактална својства. Као сигнале
раста у овој тези, користимо временске серије нових корисника из реалних система MyS-
pace и TECH, и компјутерски генерисане сигнале са специфичним својствима дугодометних
корелација. Комбинујемо их са мрежним моделом старости чворова да бисмо детаљно
испитали како карактеристике ових сигнала утичу на структуру комплесних мрежа. Наши
резултати показују да својства сигнала раста имају најзначајнији утицај на структуру мрежа са
широким степеном дистрибуције. За разлику од мрежа које имају константан раст, ове мреже
су кластерисане и корелиране.

Даље, истражујемо како сигнал раста и правила повезивања утичу на сегментацију и раст
социјалних група. Емпиријска анализа различитих друштвено-економских система указује на
то да упркос разликама, ови системи често испољавају нека универзална својства у погледу
сегментације и раста. Проучавали смо Meetup групе настале у Лондону и Њујорку, као и
subReddit и открили да је дистрибуција величине група у овим системима логнормална и
универзална током времена, не зависи од локације и теме групе. Користили смо модел који
комбинује два критеријума за повезивање корисника са друштвеним групама, насумично или
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на основу друштвених веза. Показали смо да су друштвене интеракције битан фактор
при настанку логнормалне дистрибуције. Механизми под којима се корисници придружују
друштвеним групама могу објаснити појаву универзалних својстава у друштвеном систему.

Комплексна теорија мрежа нам омогућава да опишемо како се развијају различита својства
мреже и разумемо како еволуција утиче на њихову одрживост. Користили смо податке са Stack
Exchange сајтова и упоређивали еволуцију структуре мреже за парове активних и затворених
заједница током њихове ране фазе постојања. Stack Exchange сајтови су платформа за питања
и одговоре на којима корисници деле знање о некој специфичној теми. Упоредили смо
активне и затворене заједнице на четири теме, а то су астрономија, књижевност, економија
и физика. Анализирали смо структурне обрасце у овим заједницама и открили да су активне
више кластерисане и да их карактерише боље повезана и стабилност језгра. Кроз динамички
модел репутације измерили смо ниво поверења у овим заједницама. У активним заједницама,
корисници који се налазе у језгру имају већу репутацију него у затвореним заједницама, што
указује на важност да се стабилно језгро развије рано и да има висок ниво поверења.

Кључне речи: статистичка физика комплексних система, структура и динамика комплексних
мрежа, моделовање онлајн социјалних система
Научна област: Физика
Ужа научна област: Статистичка физика
УДК број: 536
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Chapter 1

Introduction

Many real systems, such as brain networks, social organizations, cities, or cells, consist of many inter-
acting units and belong to a class commonly known as complex systems. One of the most prominent
characteristics of complex systems is that they exhibit emergent collective behavior that can not be pre-
dicted based on the behavior of individual components. The interactions between system components
can be represented as a complex network [1]. The emergence of collective behavior strongly depends
on the structure of the network of interactions. The structure of the brain network and its properties
are fundamental for brain functioning, while an emergent phenomenon is human intelligence. In so-
cieties, people’s interactions lead to civilization, economy, and formation of social groups [2]. Also,
the animal populations show different levels of organization: such as patterns in bird flocks or schools
of fish [2].

Despite the differences between complex systems, they can be studied using the same techniques.
The natural extension of the complex system is the network, which consists of sets of nodes (vertices)
and links (edges). Elements in the system are nodes, while interactions between them are represented
as edges. This approximation allows us to equally approach social [3, 4] (graph of actors), biological
(network of proteins) [5, 6] or even technological systems (internet, traffic) [7, 8, 9]. The research in
complex systems mainly focuses on the interactions between its units. Knowing the structure of these
connections, we can determine the properties of the system [10]. We can construct a representation
with neurons and synapses representing connectivity in the brain network [11]. Similarly, we can de-
fine communication between people. The structure of these interactions gives us insights, for example,
how information propagates through the system. The presence of people with many connections can
lead to faster information flow.

While the relationships between individuals characterize the structure of complex networks, the
dynamics describe changes in individual behaviors over time. As real complex networks constantly
evolve, the interactions between their elements can also change [2]. Networks can exhibit the addi-
tion of new nodes, removal of existing nodes, or change in the number of edges and the strength in
these edges. While these changes occur, the structure, but also the function of the network could be
affected. The formation of clusters, hubs, and node removal directly influence network connectivity,
and robustness [12].

The application of principles of statistical physics and complex network theory in the study of
social systems lead to the creation of the new, interdisciplinary field of socio-physics [13]. It pro-
vides methods for the statistical description of the structure and dynamics of social networks. Social
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1. Introduction

networks are very dynamic, and despite their constant evolution, they show universal properties [14].

Broadly, universality is an important property of complex systems [15]. One of the well-known
examples of universality in physics is a phase transition, such as in the Ising model of magnetization
[16]. At a critical transition point, the system’s properties are independent of the specific details of the
system. In the Ising model, a critical point is a temperature at which the system undergoes the phase
transition from a disordered phase to an ordered phase. The correlation length of the system diverges
and exhibits the power-law scaling. The critical exponents, which describe the scaling of different
quantities near the critical point, are the same for the model with different interaction patterns [17]. We
also find universal behavior in systems where elements are ordered randomly, as in complex networks.
For example, the time lap between two email messages follows the power-law distribution [18], and
the exponent is universal across different platforms. Similar conclusions are found in distributions
of the votes in elections [19, 20], and citations of scientific publications [21]. Even the growth of
social groups, such as cities, follows universal patterns. The probability distribution of the city sizes
in one country follows the same laws, with a similar exponent for all countries [22, 23]. However, the
distribution of company sizes follows log-normal behavior and remains stable over decades [24, 25].
Identifying universal behavior and understanding its emergence in the system is one of the main topics
in the statistical physics of complex networks [26]. In this thesis, we will explore the structural and
dynamical properties of evolving online social networks and apply complex network models.

When constructing complex network models, the specific mechanisms that govern social inter-
action and lead to observed macroscopic properties in empirical networks must be considered [13].
Many studies confirmed that networks show power-law scaling in the distribution of the number of
connections, high clustering, and nodes tend to connect to structurally similar nodes. For that reason,
complex network models have been created to mimic properties found in real social systems [13].

The complex network theory originates from the graph theory in mathematics. The first problem
solved using graph theory was the Konigsberg problem of seven bridges. The city of Konigsberg
had seven bridges connecting the city’s parts across the river and the island in the middle. Is it possible
to find a walk that crosses all seven bridges only once? Representing the problem as a graph, Euler
managed to simplify the problem; the parts of the land are represented as nodes while bridges between
them are links, see Figure 1.1. Crossing each bridge only once is possible if each part of the land has
an even number of connections. It makes it possible to enter one part of the land from one bridge and
leave it on the other. As each node has an odd number of connections, it is impossible; see Figure. 1.1.

Figure 1.1: The Konigsberg problem of seven bridges. The left panel shows the original map of the
bridges; the right panel shows its graph representation.

Until the late 1990s, graph theory was not widely used. Back then, the most crucial model was
the Erdos-Reni model of random graphs, which considers a fixed number of nodes in the network
connected randomly, resulting in the Poisson degree distribution. When researchers got an idea to
map the World Wide Web (WWW) on the network and analyze its properties [27], they found that
degree distribution follows the power-law contrary to expected behavior from random graph model
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[28]. Because the power-law distribution is the same on all scales, such networks are called scale-free.
Besides the scale-free property, empirical analysis of various complex networks showed the small-
world property and the high clustering coefficient [29, 30]. Two seminal papers from 1999 inspired
further research in complex networks. Watts and Strogatz [31] proposed the model where rewiring
of edges on regular lattice leads to the network in which paths between any two nodes become short
(small-world) and nodes become densely connected, resulting in a high clustering coefficient. On the
other hand, Barabasi and Albert (BA) [32] introduced the model, where the network grows over time,
and the new nodes tend to connect high-degree nodes; it produces scale-free networks with few highly
connected nodes.

Different complex network models were proposed to describe the structure and dynamics of social
and technological systems. The node degree is one of many node features that determine the linking
probability, and the linking probability may be nonlinear in node degree or may depend on the age of
the node [33, 34]. In the BA model, the links are introduced through new nodes, so it was proposed
that links can be created between existing nodes in the network.

Furthermore, the BAmodel considers the constant network growth, where a fixed number of nodes
is added at each step. The research on various social systems shows time-dependent growth, and we
record the exponential growth of online systems [35]. Some models considered that nodes become
inactive or even that network grows through a nonlinear number of links [36]. On the other hand,
models with accelerated growth in the number of nodes [37] simulate exponential expansion of the
online social systems. But the growth is not only accelerated; the time series of new nodes has trends
and reflect the typical human behavior [38, 39, 40].

Research has also been devoted to using generated networks to analyze dynamic processes on
top of them. Central questions are about the spread of epidemics, information diffusion, or emo-
tional interactions among elements [18]. These systems are modeled using agent-based models, while
the robustness is often studied by percolation and diffusion phenomena in complex networks. It was
shown that scale-free networks’ connectivity is sensitive to removing highly connected nodes. On the
other hand, eliminating small degree nodes won’t affect the scale-free structure [41]. They also show
resilience to random attacks. Real-world networks are often characterized by community structure.
They are common for social networks, where people with similar interests group together. Mostly
adopted definition of a community is a group of densely connected nodes. The complex network the-
ory provides different models for generating networks with community structure but also develops the
algorithms for inferring the community structure from the underlying network.

The complex network models contribute to our knowledge, connecting the network topology and
the dynamics of the system and helping us to understand underlying mechanisms that lead to the emer-
gence of the properties of the complex networks [32, 42, 43, 44]. Complex network models must gain
insights based on empirical data and social theories, and they are data-driven and require the develop-
ment of computational approaches. The physicists showed interest in modeling complex systems by
applying statistical physics approaches. Recently, the theory of graph neural networks (GNN) emerged
from computer science, where machine learning methods are found helpful in inferring the properties
of the network [45, 46, 47]. For example, they are used to determine missing links and recommend to
users in online social networks [48, 49] or to develop generative GNNmodels that lead to the discovery
of new drugs [50, 51].

Real networks are much more heterogeneous than networks obtained in simple models. Links may
be directed or undirected, they may have temporal dependencies, or we can deal with different types
of interaction in one system. Other network representations deal with these specific features. In the
following section, we will introduce complex networks and different approaches to deal with particular
data types.
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1. Introduction

1.1 Complex networks

The graph or network G is defined as G = (V ,E), where V = {v1, v2, ...vN} is a set of N nodes
(vertices), and E = {e1, ..eL} is a set of L edges (links). The edge is pair of nodes e = (vi, vj), such
that {vi, vj} ∈ V . The most basic network representation considers unweighted and undirected
structure. The edges are unweighted, meaning that all interactions in the network are equally important.
Because the network is un-directed, edges are symmetric, so (vi, vj) implies (vj, vi). In directed
networks, this symmetry is broken. The interaction between two nodes, vi and vj , can be only in
one direction. A typical example is World Wide Web, where webpages are nodes and hyperlinks
are directed edges. In biological networks, gene regulation and neural activation can be described as a
directed network. The first column a) in Figure 1.2 shows the graphical representation of two networks
with an equal number of nodes; the first is undirected, and the second is directed.

Even though graphical representation can be useful for describing the network structure, numerical
representation allows us to characterize the statistical properties of the networks. The graph G, with
N nodes could be represented with adjacency matrix |A| = N × N [12]. The matrix elements are
equal to 1 if there is a connection between two nodes vi and vj:

Aij =

{
1 (vi, vj) ∈ E
0 (vi, vj) /∈ E.

(1.1)

Column b) on Figure 1.2 shows the adjacency matrix representation of given graphs. By conven-
tion, as self-loops are not allowed, diagonal elements Aii = 0. For an undirected network adjacency
matrix is symmetricAi,j = Aji, but in the case of a directed network matrix is not symmetric, as edges
are drawn in one direction only.

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

A = 

0 0 1 0
1 0 0 0
0 1 0 1
0 0 0 0

A = 

a) b) c)

Figure 1.2: a) Graph representation of undirected (top panel) and directed (bottom panel) network.
The same networks are represented with adjacency matrices in column b) and edge list representation
in column c).

The number of edges and nodes are dependent variables. Considering that each node can make
N − 1 connections, the maximum number of the edges in the network is Lmax = N(N − 1)/2,
as each edge is counted twice. For a directed network, it is possible to draw Lmax = N(N − 1)
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1.1. Complex networks

edges [52]. When it comes to large networks, they are sparse, meaning that the number of links is
L << Lmax. Consequently, the adjacency matrix is also a sparse structure (has many zeros) that takes
a large portion of computer memory [53]. It is common to represent the graph as an edge list. In this
case, illustrated in Figure 1.2, column c), a graph is described with the list of links that are in the graph,
G = {{vi, vj}}. Still, with this representation, we cannot distinguish between directed and undirected
graph structures, so the computational algorithm should specify if the edges are symmetric or not.

Sometimes is essential to include the specific properties of the system in the network representa-
tion. For example, to emphasize the frequent interactions between nodes, edges can be assigned with
different values; such networks are weighted. In a collaboration network, authors who collaborate
more often have stronger interaction. They can be described with an adjacency matrix, whose ele-
ments can take any real number Aij = wij and wij > 0. In general, edges may be associated with any
categorical variable. Similarly, properties can be added to nodes or the whole network structure. Edges
could be characterized by the time when the interaction between nodes happens, which includes the
temporal component in the network representation, as in phone calls networks. Finally, if two nodes
interact differently, themultigraph is an appropriate configuration where multiple edges are allowed.
The transportation network, consisting of roads and railways, could be seen as a multigraph. Figure
1.3 presents the graphical representation of discussed network representations.

directed

weighted edges

weighted nodesmultiedges

Figure 1.3: The complex networks may represent different system characteristics. The edges can be
directed, weighted or multiply. Also, nodes can be assigned with different weights or any relevant
feature.

A bipartite network consists of two types of nodes. The nodes in the same partition are not
connected, while links exist only between partitions, Figure 1.4. For many real systems, a bipartite
graph is a natural representation [53, 11]. For example, the bipartite network of people and groups has
two distinct node partitions, where links indicate the memberships. Another example is a system of
customers and products. The user and item link is created when the user bought an item. The bipartite
networks find their application in the algorithms for recommender systems, whose goal is to suggest
items that may interest the user. They are often used to find the most probable missing links in the
network.

Though the nodes in the same partition of a bipartite network are not directly connected, we can
analyze their connections by projecting the bipartite network to one partition. The primary assumption
is that two nodes in one partition could be connected if they point to the same node in the other
partition. Figure 1.4 shows two projections of the bipartite networks. Consider the network of movies
and actors. The one-mode projection of movies is an undirected network whose links indicate that two
movies share the same actors. On the other hand, another projection is a network of actors. The links
exist if two actors appear in the same movie [30, 53].

We should be aware that important information is lost when creating a one-mode projection. First,
having weighted edges in the network of actors is necessary to know in how many movies two actors
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1. Introduction

Figure 1.4: Bipartite network and two partition projections.

appear. From the one-mode projection, we can not reconstruct the original network. Moreover, two
different bipartite networks may have the same projected networks. The important consequence of the
network projection is the creation of cliques, i.e., subgraphs where all nodes are connected.
In general, it is possible to define the k-partite network. The same rules apply as before. There are k
distinct node partitions, while the edges exist only between different types of nodes.

Temporal networks. Studying real systems as static networks can give us a lot of insight into the
system’s properties. Still, real systems are not static; they evolve not only in the number of elements
but also in the number of interactions between them. Some interactions in the system may repeat in
different intervals and could be described with complex activity patterns. Including time dimension
in the network representation allows us to study the properties of the system closely. The temporal
information may matter a lot [54]. For example, if the interaction between nodes (v1, v2) happened
before in time than (v2, v3), then nodes v1, v3 might not be connected, as is the case in the static
network.

The temporal network is a collection of timestamped edges; as seen on Figure 1.5 - top panel. Each
edge is defined as (vi, vj, t,∆t), where vi and vj , are nodes t is time when interaction happen, and ∆t
is event duration [55]. The duration of the events may vary, as in the phone-call network. Also, for
many systems, the time resolution of the event duration is too small. For example, this parameter may
be neglected when people interact on social platforms or email each other because the event time is
too short; it scales in seconds.

The temporal network can be represented as a sequence of static networks that evolve in time,
G = {G(t1), G(t2), ..., G(tmax)}, as shown in Figure 1.5 - bottom panel. At each time step, we can
create the network and analyze the macroscopic properties of the given network snapshot. With this,
we can end up with graph snapshots with many disconnected components or empty graphs for some
points [56]. Sometimes, a better approach is aggregating the links over timewindows. Here, we need to
specify the time window length w. Interactions in the time interval 0 ≤ t < w enter the first snapshot.
The following snapshot takes edges w ≤ t < 2w, and so on. The time windows are not overlapping,
but generally, it is possible to slide the time window for different periods 1 ≤ δt < w. The downside
of this method is that we can not recover original data points. The larger the time window is, the more
information is lost. If the time window is set to w = tmax, there is only one snapshot, and the temporal
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Figure 1.5: Top panel represents temporal network as collection of timestamped edges. Bottom panel
represents sequence of static networks.

data are no more available [57, 58].

Multilayer networks were introduced for studying systems in which different types of interaction
exist. This formalism allows one to investigate diverse network systems and combine different data
types into one model [59]. In a multilayer or multiplex network, all nodes are present in each layer, but
their interactions among layers differ. Two nodes may be connected in one layer but not in the other.
Different online social systems may be an example of a multiplex network when users are connected on
one platform but not on the other [60]. Another example is the airline transportation network, where
each layer represents the flights of different airline companies [61].

1.2 Thesis outline

This thesis uses combined approaches of statistical physics and complex network theory to model and
analyze evolving online social systems. These systems consist of many users interacting online and
could be represented by complex networks. The main focus of the thesis is to explore the evolution of
these complex networks and understand how different dynamical processes shape their structure. We
study the growth of various online social networks using data fromMeetup, Reddit, and StackExchange
platforms and detect important structural changes in these systems, as well as the processes that lead
to the creation of groups and factors important for the emergence of sustainable communities.

In chapter 2, we provide the methodology employed for this research. We describe the fundamental
measures of complex networks and introduce basic complex network models. We review the most
common probability distributions characterizing complex systems’ properties and outline distribution
fitting methods. Finally, we introduce the multifractality of the time series and dynamical reputation
model.

Chapter 3 addresses the difference between network models where the growth in the number of
nodes is constant and when it follows a non-trivial growth signal. This research aims to quantify how
growth signals influence the structure of complex networks. Using the adapted aging model [62], we
use computer simulations to generate different kinds of complex networks. For more realistic real-
world network simulations, growing signals are time series of new users from online social platforms,
MySpace, and Tech group from Meetup. They are described with trends, cycles, and long-range cor-
relations. Often time series have multi-fractal properties. The results of this study are published in
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[63], and they show the importance of growth signals in shaping the network structure because the
scale-free networks, which represent real systems, are mainly altered.

As research on social groups mainly focuses on a single group, there are remaining questions about
the characteristics of the entire system. For example, the Tech group is only one of the groups around
which Meetup users organize; many other groups are created worldwide, so the system constantly
grows. In chapter 4, we will examine how groups on online social platforms grow. The results are
summarised in the paper [64]. This research is based on Reddit and Meetup data. From Meetup, we
created two data sets, one with groups created in London and the other with groups created in New
York, while for Reddit, we selected groups built before 2012. We are interested in explaining scaling
behavior in group size and growth rate distributions and identifying the growth mechanisms present
in the system. Using a bipartite complex network model, we can reproduce the universality found in
the system.

Even though across complex systems, we find the emergence of universal behavior, for example, the
scaling of the degree distribution of two groups is similar, different factors might influence its success.
It is well known that many online groups may suddenly fall apart. These questions are the subject of
the chapter 5, which main results are published in the paper [65]. Here, we study the question-answer
platform Stack Exchange; it has more than 200 different topic-specific sites where people help each
other answer questions. What is interesting about this system is that some sites were closed because
they did not produce enough activity. For that reason, we selected the sites with the same topic that
failed, but later, when someone proposed the site again, it stayed active. We analyze the evolution of
user interaction networks; here, we use the temporal network approach and compare active and closed
sites. We find that it is essential how the network users are distributed into a core-periphery structure
[66]. The core must select firmly connected users, but their interaction with the periphery has to be
high. In other words, a trustworthy core is needed to hold the community. Introducing the Dynamical
Reputation Model (DIBRM) [67], based on user interaction sequences, we quantify how much users
can be trusted and whether a community has a strong core. We briefly describe the Stack Exchange
sites in the appendix A. In appendix B and C discuss howwe choose parameters for the DIBRMmodel,
while in appendix D we discuss the stability of inferred core-periphery structures.

Finally, in chapter 6, we draw the main findings of this thesis.
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Chapter 2

Methodology

2.1 The measures of complex network structure

The complex system can be represented by a complex network G = (V,E), where the elements of a
system (atoms, proteins, people) map to a set ofN nodes V = {1, 2, ..., N}. The interactions between
elements map to L links between nodes, E = {e1, e2...eL}. There are a lot of measures to quantify the
structure of the network. This section describes some of the important measures and their definitions
on the undirected and unweighted networks, where the adjacency matrix A = N ×N has value 1 if
there is a connection between two nodes; otherwise, it is 0 [12]; as this network representation is mostly
used through the thesis. We list degree distribution, correlations, and shortest path measures. We also
discuss different structures found in the network, such as core-periphery or community structures.

2.1.1 Degree distribution

The simplest network measure is node degree, k. The degree of node i is the number of nodes adjacent
to node i, ki =

∑
j Aij [12, 30]. The network density is the average degree divided by N − 1, where

N is the number of nodes [68].

In the case of regular networks, such as grids, each node has an equal degree, meaning that nodes
in the network have similar roles. In the general case, the networks have a more complex structure. If
the degree sequence is skewed, we can identify nodes with high-degree (hubs). Removing hubs may
partition a connected network into several components [69].

The degree distribution is the probability, P (k), that a randomly chosen node has degree k [30, 68].
To estimate the degree distribution, we can consider the fraction of k degree nodesNk, p(k) = Nk/N .
Similarly, we can order nodes according to their degree and plot the node degree.

Here we summarize the forms of degree distributions that are mostly found in the complex network
theory:

• The Poisson distribution. The degree distribution in a random network, where all nodes have
the same connecting probability, follows Poisson distribution P (k) = (Np)ke−Np

k!
, where k is the

mean degree distribution [53].
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• Exponential distribution. P (k) = e−k/k. It is the degree distribution of the growing random
graph [53]. Even for infinite networks, all moments of distributions are finite and have a natural
scale of the order of average degree.

• In many real networks, degree distribution follows a power law [53, 30]. P (k) = k−γ , where
γ is exponent of the distribution. No natural scale exists in this distribution, so they are called
scale-free networks. In infinite networks, all higher moments diverge. If the average degree of
scale-free networks is finite, then the γ exponent should be γ > 2. Therefore, real networks
have a scale-free structure with the emergence of the hubs [30].

When plotting the degree distribution, it is common to use scaling of the axis. As many nodes have
a low degree, like for power-law or exponential distribution, it is more useful to use a logarithmic scale
[52]. Now it is easier to notice that data points follow a straight line, meaning that degree distribution
is some exponential function.

2.1.2 Degree-degree correlations

Correlation is defined through a correlation coefficient r(x, y). For two variables x and y, which
represent pairs (x1, y1), (x2, y2), ..., (xn, yn) we can define correlation coefficient [70] as:

r(x, y) =
1
n

∑n
i=1((xi − x̄)(yi − ȳ))√

1
n

∑n
i=1(xi − x̄)2

√
1
n

∑n
i=1(yi − ȳ)2

, (2.1)

where x̄ = 1
n

∑n
i=1 xi, is the average over variable x.

Using the correlation coefficient definition, we can define correlations for vertex degrees [70]. For
graph G which consists of n nodes and is characterized with with adjacency matrix A and degree
sequence d = [d1, ..., dn], correlation of vertex degree has form:

rdeg(G) =

∑n
i=1

∑n
i=1+1((di − d̄)(di − d̄)A[i, j])∑n

i=1(di − d̄)2
. (2.2)

An adjacency matrix allows us to calculate the correlations between neighboring nodes. If two
nodes are not connectedA[i, j] = 0, the degree of correlation between them does not contribute to the
r.

The degree-degree correlations in the network are measured by assortativity index. If correla-
tions are positive, networks are assortative; there is a tendency for connections to exist between similar
degree nodes [53]. The negative correlations indicate that nodes with large degree are more likely to
connect nodes with small degree, disassortative networks. The average first neighbor degree knn can
be calculated as knn =

∑
k′ k

′
P (k

′|k). The P is the conditional probability that an edge of degree k
points to a node with degree k. The norm is

∑
k′ P (k

′ |k) = 1, and detailed balance conditions [12],
kP (k

′ |k)P (k) = k
′
P (k|k′)P (k

′
) [12]. If the node degrees are uncorrelated, knn does not depend on

the degree; otherwise, increasing/decreasing function indicates positive/negative correlations in the
network [71].

The Newman defined the assortativity [72] index r in slightly different way:

r =
∑
kl

kl(ekl − qlqk)/σ2
q , (2.3)
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where ekl is that a randomly selected link connects nodes with degrees k and l, qk is a probability
that a randomly chosen node is connected to node k and equals qk = kpk/〈k〉, while σq is a variance
of the distribution qk.

2.1.3 Clustering coefficient

The clustering coefficient is a measure describing the neighborhood’s structure. In networks, exist a
tendency to form triangles or clusters [53]. It is common property of friendship networks; there is high
probability that neighbors of one nodes are connected [73]. The clustering of node i can be measured
as [31]:

ci = 2ei/(ki(ki − 1)), (2.4)

where ei is number of links among neighbors of node i and ki is node degree.

We can calculate the mean clustering coefficient by averaging it overall network nodes. It ranges
from 〈c〉 = 0 where connections between neighboring nodes do not exist; the network has a tree
structure [53]. On the other hand, 〈c〉 = 1 indicates a fully connected network [53].

Alternative definition of the clustering coefficient was proposed by Newman [74]. The network
transitivity is seen as global clustering as it takes into account whole network properties. It is calculated
as ratio of number of triangles and triples in the network. While triangle is complete subgraph of tree
nodes, a triple has tree nodes, but only two edges.

2.1.4 Paths

In the network structure, the interacting nodes are directly connected with the edge. In this represen-
tation, the distance between them is dvi,vj = 1. Distance defined like this does not have any physical
meaning, and its purpose is to describe how the position of nodes in the network structure influences
the other distant nodes.

The path between two nodes [70], vi and vj is a sequence of edges {(v1, v2), (v2, v3), ...(vk, vk+1)
, ...(vn−1, vn)}, where v1 = vi, vn = vj . In the path, the nodes are distinct. Otherwise, the sequence
is called a walk, where each node can be visited many times. Also, it is possible to define a cycle, a
path that starts and ends on the same node while other nodes in the cycle are distinct. The length of
the path, walk or cycle is the number of links in the sequence. We can easily calculate the number of
walks between two nodes using the adjacency matrix. The A2 gives us walks of length 2, the A3, the
number of walks of length 3, and so on.

The network is connected if it can define the path between every two nodes. When it is not the
case, the network is disconnected into two or more connected components. Note that the component
can be an isolated node. Also, in directed networks may happen that node vi is reachable from node
vj , but if we start from vj , we can not find the path to the vi. Such a graph is connected but is called a
weakly connected component [75].

We can find different paths between two nodes in the network, but the most important one is the
shortest path [70, 75]. The distance between two nodes d(vi, vj) is defined as the shortest path length
between two nodes. In the case of weighted networks, it is the path with minimal weight, but its length
is not necessary minimal. Distances on the network can give us insight into how similar networks are
and indicate the node’s relative importance in the network.

The radius is the minimum overall eccentricity value. In contrast, the diameter defines the largest
distance between nodes in the network [70]. These definitions apply to directed and undirected graphs.
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Also for each node u in networkG we can calculate the average length of the shortest paths to any
other node in the network [70]:

d̄(u) =
1

|V | − 1

∑
v∈V,v /∈u

d(u, v). (2.5)

The average path length of the network is then calculated as:

d̄(G) =
1

|V |
∑
u∈V

d̄(u), (2.6)

while it is also possible to define the characteristic path length of G as median value of all nodes
shortest paths.

2.1.5 D-measure

For each node i, we can define the distribution of the shortest paths between node i and all other nodes
in the network, Pi = {pi(j)}, where pi(j) is the percent of nodes at a distance j from node i. The
connectivity patterns can efficiently describe the difference between the two networks. To specify how
much G and G′ are similar we use D-measure [76]:

D(G,G
′
) = ω

∣∣∣∣∣
√
J(P1, ..PN)

log(d)
−

√
J(P

′
1, ..P

′
N)

log(d′)

∣∣∣∣∣+ (1− ω)

√
J(µG, µG′ )

log2
. (2.7)

D-measure calculates Jensen-Shannon divergence between N shortest path distributions:

J(P1, .., PN)) =
∑
i,j

pi(j)log(
pi(j)

µj
), (2.8)

where µj = (
∑N

i=1 pi(j))/N is mean shortest path distribution.

The first term in equation 2.7 compares local differences between two networks, and Jensen-
Shannon divergence between N shortest path distributions J(P1, ..., PN) is normed with network di-
ameter d(G). The second part determines global differences, computing J(µG, µG′ ) between mean
shortest path distributions. Parameter 0 ≤ ω ≤ 1 determines importance of first and second term in
D-measure. The D-measure ranges from 0 to 1. The lower D-measure is, the more similar networks
are, and structures are isomorphic for D-measure D = 0.

2.2 Community structure

Nodes can be organized into groups called communities. In social networks, communities indicate
that people share some common interests, or in biological networks, we can find that genes or neurons
with similar functions are grouped. Identifying these hidden blocks can lead to interesting insights
into the network. However, the community detection problem does not give a precise characterization
of what a community is. A standard definition of a community is densely connected subgraph [77, 78],
meaning that nodes in one community tend to associate, creating the assortative connectivity pattern.
On the contrary, nodes could be organized in disassortative communities, where connections between
groups are denser.
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2.2. Community structure

The network with k communities could be represented using k×kmatrix p. The diagonal elements
of p indicate the density inside communities, while off-diagonal elements show the density between
groups. Figure 2.1 [79] shows the matrix and networks for two communities. In the first example, (2.1
a), the diagonal elements have a higher probability, as in the classic definition of assortative community
structure. In disassortative structure (2.1 b), more connections exist between two partitions than inside
them, i.e. off-diagonal elements have higher probabilities. Bipartite networks can be represented as
a disassortative network with two groups. The links exist only between communities. Figure (2.1 c)
shows the core-periphery network. This network structure is composed of a core where nodes are well
connected with itself and with the periphery. The connectivity inside the periphery is sparse. Finally, if
there is no difference between connectivity inside and between groups, the concept of communities is
lost. We can treat the whole network as a single community, where each node has the same connectivity
probability, i.e., as Erdos Renyi random graph.

a) b) c) d)

Figure 2.1: Different communities structures (a) assortative. (b) disassortative. (c) core-periphery.
(d) Erdos Renyi random graph.

Different algorithms are used for detecting the community structure in the underlying network,
optimizing different objective functions of the network partition. Still, if the ground-truth communi-
ties are unknown, there are no guarantees that we will infer the actual number of communities and
entirely correct node assignments [80]. Even though community detection algorithms are widely used
in complex network analysis as they can give us a better understanding of network structure [80, 81].
In this section are explained two community detection models, the first one based on optimizing the
modularity function [77, 82], and the other based on the statistical inference of the Stochastic Block
Model (SBM) where is optimized the likelihood function [77, 83, 84].

2.2.1 Community detection based on modularity function optimization

The modularity [85, 82, 86] is a measure used to evaluate the quality of a partition or clustering of
nodes into communities. Partition is the division of the network with N nodes and L links into nc
communities, where each node belongs to only one group [87]. The modularity measures the degree
to which nodes in the same community are more connected to each other than expected by chance,
while taking into account the expected degree sequence of the network. The modularity has form:

Mc =
1

2L

∑
(Aij − pij), (2.9)
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2. Methodology

where the first part of equation measures number of links Aij within community c, while second
term is number of links within community if network is randomly connected pij =

kikj
2L

. If the first term
is larger than the second term, the modularity is positive and the partition is considered to be better
than random, otherwise we can not consider that nodes in given group form community structure. The
same idea can be generalized to the whole network: the modularity of the network partitioned into nc
communities is then defined as:

M =
n∑
c=1

[
Lc
L
− (

kc
2L

)2]. (2.10)

The higher modularity indicates that nodes are partitioned in better communities. When we put all
nodes into only one communityM = 0, otherwise, if each node is the community itselfLc = 0 and the
sum is negative. The Newman showed that modularity function [88] applies for weighted networks.

Maximum network modularity indicates the best partions. As too many possible partitions exist,
we need an algorithmic approach to identify the best separation. The first algorithm proposed for
modularity optimization was greedy algorithm. First, it assigns each node to a community and starts
with N communities. Then, we should merge each pair of communities and calculate the modularity
difference ∆M . We can join those two communities by identifying the pair for which the difference is
the largest. It is repeated until we get single community. The best partition is one with the largestM .

Louvain algorithm [89] is an optimization algorithm with better scalability than the greedy al-
gorithm so it can operate on very large networks. Initially, each node is in different communityand
similar to before, we calculate the difference in the modularity moving nodes to one of their neighbor-
ing community. Then we move node i to the community such that modularity becomes larger. It is
repeated with all nodes in the network, until there is no improvement in the modularity. In the second
step, we create a weighted network whose nodes are communities identified during the first step. The
weight of the links between communities is the sum of the weights between nodes [87]. The number
of links inside the community is given as a weighted self-loop. Then, the first and second steps are
repeated until there is no more change in the modularity. The obtained number of clusters when the
algorithm stops is an optimal number of communities.

The community detection algorithms tend to merge small communities, which should be indepen-
dent [90]. This consequence is easily seen in the graph consisting of N-connected cliques, where
higher modularity is if two adjacent cliques are merged into communities instead of having each
clique as a single community. This lead to the modification of the modularity function as M =
1

2L

∑
i,j[Ai,j− γ

kikj
2L

], where γ is resolution parameter [91], which controls the size of communities to
be detected. With γ < 1, detecting small communities undetected with the original model would be
possible.

2.2.2 Stochastic block model

Another approach for studying the community structure of complex networks, the Stochastic Block
Model (SBM), assumes that nodes are clustered in the groups, and the relations between nodes de-
pend on the probabilities for group memberships [83]. In one group, nodes have similar connectivity
patterns. To describe the network G(N,L) with the SBM model, we need to define the following:

• k: number of groups.

• Group assignment vector, g: gi ∈ {1, 2..k}, gives the group index of node i.

• SBM matrix, pk×k, whose elements prs are the probabilities that edges between groups r and s
exist. Note that nodes within one group have the same connection probabilities.
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2.2. Community structure

The number of possible nodes between two groups r and s:

nrs =

{
nr(nr + 1)/2 if r = s

nrns if r = s,
(2.11)

while the number of possible edges depends on the adjacency matrix Aij is

ers =
1

1 + δrs

∑
i∈r,j∈s

Aij. (2.12)

The benefit of this model is that we can generate many networks with similar network structure
[92]. When model parameters are initialized, the network can be easily generated. For each pair of
nodes i and j in network G, we draw a link if random number rij < pr,s.

The likelihood of generating network G for given model parameters is:

P (G|p, g) =
∏
i,j

Pr(i→ j|p, g) =
∏

(i,j)∈E

Pr(i→ j|p, g)
∏

(i,j)/∈E

(1− Pr(i→ j|p, g)). (2.13)

In the processes where the connection between two nodes is described with Bernoulli distribution,
the likelihood takes the form:

P (G|p, g) =
∏

(i,j)∈E

pgigj
∏

(i,j)/∈E

(1− pgigj). (2.14)

In the likelihood equation, we iterate over all pairs of nodes, separating the product over edges
present in the network and edges that are not present. As all nodes are considered independent, we
can switch the product over nodes with the product over groups such that

P (G|p, g) =
∏
(r,s)

persrs (1− prs)nrs−ers . (2.15)

As it is easier to work with the logarithm of the likelihood function, after taking the logarithm of the
likelihood function, we get the following expression:

L = log(P (G|g, p)) =
∑
r,s

er,sln
ers
nrs

+ (nrs − ers)ln(
ers − ers
nrs

). (2.16)

Instead of generating networks, the opposite task is network inference. For a given networkG, and
specified the number of communities k, we can use the SBM model to infer the nodes’ assignments
into groups, so we need to choose vector g and SBM matrix p such that the likelihood for generating
network G is maximized.

The formulation of the SBM model does not consider how to infer the optimal number of groups.
Optimizing the likelihood function for different numbers of groups would increase likelihood while
each node is not assigned to a different group. In practice, our found community structures for a
fixed number of groups, and then the likelihood function could be penalized by the number of model
parameters. One approach is calculating theMinimum description length (MDL) [84]. The variable
which has probability P(x), is described with amount of information −log2P (x). The numerator of
posterior probability could be written as

P (G|g)P (g) = P (G|p, g)P (p, g) = 2−Σ, (2.17)
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2. Methodology

whereΣ is the data’s description length (DL). TheMDL consists of two terms: Σ = −log2(p(G|p, g))−
log2P (p, g). In the first part of the equation, the amount of information necessary to describe the
model decreases with the number of groups [84]. The second contribution comes only from the
model, and as the model becomes more complex, with a larger number of groups, this part increases
[84]. The optimal solution represents the balance between these two terms in the MDL equation.

This SBM model has many variants motivated by specific properties of real data. For example,
for degree heterogeneous networks, there is degree corrected SBM [93]. In some social networks,
users can belong to more than one group, which can be modeled with mixed membership SBM. Other
extensions include application to bipartite, weighted network, and hierarchical model [94]. Many
community detection algorithms define the community as an assortative structure. With the SBM
model, such limitations do not exist, and it is possible to directly use statistical inference for discovering
core-periphery structures or even networks with bipartite structures.

2.2.3 Core-periphery structure

The core-periphery structure is characterized by a group of densely connected nodes in the core, which
are more connected to each other than to the less connected nodes in the periphery [95, 30]. The condi-
tion p11 > p12 > p22 implies that the probability of edges within the core is higher than the probability
of edges between the core and the periphery, which in turn is higher than the probability of edges
within the periphery. One way to identify the core-periphery structure is to use the degree criterion,
which assumes that the core nodes have higher degrees in the core than in the periphery. Another ap-
proach is to use k-cores [96], which are groups of nodes that are connected to at least k other members
of the group. The k-cores form a nested hierarchy, and the core-periphery structure can be detected
by identifying the densest k-core. Borgatti and Everett [97] proposed a measure similar to modularity
to detect core-periphery structures, where the goal is to minimize the number of edges in the periph-
ery. The score function ρ balances the number of observed edges in the periphery with the expected
number of edges in a null model where the nodes in the periphery are randomly connected. The opti-
mization problem seeks to maximize the score function ρ, which is defined as ρ = 1

2

∑
ij(Aij−p)gigj ,

where Aij is the adjacency matrix of the network, p is the expected probability of an edge between
two nodes, and gi is a variable that indicates whether node i belongs to the core or the periphery.

Another way to detect core-periphery structure is to use the inference method based on fits to a
Stochastic Block Model (SBM) [98, 93]. In this method, we fit the observed network to a block model
with two groups, such that edge probabilities have the form p11 > p12 > p22. Vector θi = r indicates
that node i is in block r, while SBM matrix {p}2x2, specify the probability prs that nodes from group
r are connected to nodes in group s. The SBM model is looking for the most probable model that can
reproduce a given network G [66]. Probability of having model parameters θ, p given network G is
proportional to the likelihood of generating network G, prior of SBM matrix P (p) and prior on block
assignments P (θ): P (θ, p|G) = P (G|θ, p)P (p)P (θ), while the likelihood function takes following
form: P (G|θ, p) =

∏
i<j p

Aij
risj(1− prisj)1−Aij , where Aij is a number of edges between nodes i and j.

The prior P (p) is modified for core-periphery model such that P (p) ∼ I0<p22<p12<p11<1, while prior
P (θ) consists of three parts: probability of having 2 blocks; given the number of layers probability
P (n|2) of having groups of sizes n1, n2 and the probability P (θ|n) of having particular assignments
of nodes to blocks.
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2.3. The probability distributions

2.3 The probability distributions

The shape of degree distribution is important for getting the first insight into the characteristics of
the complex network. When nodes are generated randomly, and any two nodes are linked with the
same probability p, we expect the binomial distribution. For larger networks it is Poisson distribution
P (k) = 1

k!
e−〈k〉〈k〉k, where 〈k〉 = Np. A different approach is to add one node and connect it randomly

to the network at each time step. The obtained network then has the exponential degree distribution
P (k) = e−λk. These are exponentially bounded distributions, meaning they decay exponentially or
faster for the large values [53].

On the other hand, heavy-tailed distributions decay slower than exponential, and the events for large
values are rare but still possible. For example, in the preferential attachment model, degree distribution
emerges to the power law [53]. Also, many empirical data exhibit the heavy-tailed distribution. Even
if they look like a power law, after statistical analysis, it may be concluded that the data deviate from
the power law and could be equally good or even better fitted with some other distribution. Commonly
used alternative distributions are lognormal distribution, stretched-exponential or power-law with an
exponential cutoff.

This section gives an overview of relevant distributions and methods for fitting data and testing the
quality of the performed fit. Figure 2.2 shows how different distributions look on linear (first column)
and log-log scale (second column).

2.3.1 The properties of distributions

Power-law distribution. The power-law distribution [99, 100] is defined as

p(k) = Ck−γ, (2.18)

where parameter γ is an exponent of the power-law distributionwhile the C is the normalizing constant.

The distribution can take discrete and continuous values, defined for positive values k > 0, so
there is a lower bound to the power-law function kmin. For the discrete case C = 1/ζ(γ, kmin), while
in the continuous case C = (γ − 1)kγ−1

min .

The power-law distribution is called scale-free distribution. If we scale the value k for the factor
2, the ratio of p(x)/p(2x) is constant and does not depend on the k [52]. We’ll find that these criteria
are not satisfied by any other distribution

p(k)

p(2k)
=

Ak−γ

A(2k)−γ
= 2γ, (2.19)

The scale-free function is defined as p(bx) = g(b)p(x). The solution of this equation is p(x) =
p(1)x−γ , where γ = −p(1)/p

′
(1) leads us to the conclusion that if the function is self-similar, it has

to be power-law.

Lognormal distribution. The variable x has the lognormal distribution if the random variable
y = ln(x) is distributed as normal distribution [101]

f(y) =
1

2πσ
e−(y−µ)2/2σ2

, (2.20)

where µ is the mean, and σ is the standard deviation. The density distribution of the lognormal distri-
bution is defined as

f(x) =
1

xσ
√

2π
e−(log(x)−µ)2/2σ2

. (2.21)
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Figure 2.2: Probability distributions on a linear and double logarithmic scale.
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The lognormal distribution has finite mean eµ+1/2σ2 , and the variance e2µ+σ2
(eσ

2−1). [99]. Despite
the finite moments, the lognormal distribution can be similar to the power-law distribution. If the
variance is large, then the probability function on the log-log plot appears linear for a large range of
values.

Using the multiplicative processes, we can generate the lognormal distribution [52, 99]. The
lognormal distribution is generated by processes that economist Gibrat called the law of proportionate
effect. If we start from the organism of size S0, at each time step, the organism may grow or shrink
according to the random variable ε [99]

St = εtSt−1. (2.22)

When the system’s state at time t is proportional to the state at the previous time step, we have the
multiplicative process. The ε is a proportionality constant that can change over time. The current state
depends only on the initial size S0 and the ε variables.:

St = εtSt−1 = εtεt−1...ε2ε1S0. (2.23)

If εt is drawn from the lognormal distribution, then St also follows lognormal, as the product of
lognormal distributions is again lognormal. Still, the ε distribution does not determine the distribution
of the St. Taking the logarithm of the equation:

ln(St) = ln(S0) +
t∑
i=0

ln(εi). (2.24)

The sum of the logarithms of the εt, according to the Central Limit Theorem (CLT), follows the
normal distribution. The CLT states that the sum of identically distributed random variables with finite
variance converges to the normal distribution. If ln(St) is normally distributed, then St follows the
lognormal distribution [99].

The multiplicative processes generate the lognormal distribution. Introducing a threshold in the
multiplicative process leads to the power law. For example, in the Champernowne model [52], individ-
uals are divided into classes according to their income. The minimum income is m. People between
incomes m and γm are in the first class, and the second class is people with incomes between γm and
γ2m. The individuals can change their class, so it is described as a multiplicative process, but with
a threshold, as income can not be lower than m. If we fix γ = 2, and consider that with probability
pi,i−1 = 2/3, the change is from higher to lower class. In contrast, with probability, pi,i+1 = 1/3 in-
dividual goes to a higher class. In this process, the distribution of incomes emerges as the power-law
distribution.

Power law with exponential cutoff. The density function has the following form

p(k) = Ck−γe−λk. (2.25)

where k > 0 and γ > 0. This function combines the power-law and exponential terms responsible for
an exponentially bounded tail [53]. Taking the logarithm ln(p(k)) = lnC − γlnk − λk, when k <<
1/λ the second term dominates, so distribution follows the power-law, with exponent γ. Otherwise,
the λx term dominates, resulting in an exponential cutoff for high values.

Streched exponential The stretched exponential distribution is defined as:

p(k) = ckβ−1e−(λk)β . (2.26)

the parameter β is stretching exponent determining the properties of the function p(k) [53]. For β = 1,
the function is exponential. For β < 1, it is hard to distinguish the distribution from the power law.
We have a compressed exponential function for β > 1, so k varies in the narrow range.
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2.3.2 Estimating the distribution parameters

The maximum likelihood estimation(MLE) is a method where we consider that data comes from a
particular distribution, so we want to maximize the likelihood of the data to find the distribution pa-
rameters. For a given set of i.i.d. observations x1, x2, ...xn, sampled from the distribution p(x), we
can define the likelihood function [102]. The likelihood function tells us how likely it is to have the
given data if the distribution parameters are θ

L(θ|x1, ...xn) =
i=n∏
i=1

p(xi|θ). (2.27)

The parameter that maximizes the likelihood function is θmax ∈ argmaxL(θ|x1, ...xn).

We can solve the equation and derive the expression for maximum likelihood parameters. The
parameters can be obtained with numerical optimization for distributions where an analytical solu-
tion is unavailable. In practice is much easier to work with the logarithm of the likelihood function,
log(L) =

∑i=N
i=1 p(θ|xi), because then the product changes to summation. For the power-law distri-

bution, the exponent is calculated as γ = 1 + n[
∑
ln ki

kmin
]−1. For a discrete distribution, the solution

may be obtained by optimizing the log-likelihood function log(L) = log
∏n

i=1
k−γi

ζ(γ,kmin)
.

We can use the MLE [103] method to fit any distribution to the data. Even if obtained distribution
looks like a power law, and some parameters are estimated, it does not have to be that data are truly
from the power-law distribution. With the MLE method alone, it is impossible to distinguish between
different distributions, and we do not know how accurate the obtained results are. To determine the
quality of the fit, we need to use another statistical method called the goodness-of-the-fit test. The
main idea is based on calculating the distance between distributions of empirical data and the model
using Kolmogorov-Smirnov statistics. The Kolmogorov Smirnov statistics is the maximum distance
between the CDF of the data and the fitted model, D = max|S(x)− P (x)|.

First, we fit empirical data to get model parameters and calculate the KS statistics of this fit [103].
Then, many synthetic data sets are generated with model-optimized model parameters. Then each
synthetic data set is fitted, and KS statistics are obtained relative to its model. From there, we can
calculate p-value, the fraction of times that KS-statistics in synthetic distributions is larger than in
empirical data. If p − value < 0.1, we reject the hypothesis that this distribution describes the em-
pirical data. Otherwise, the model can not be rejected. Failing to reject the hypothesis does not mean
the model is a correct distribution for the data. Other distributions might fit the data equally good or
even better. To have an accurate p-value, we need a large sample. For a small number of synthetic
distributions, it is possible to have a high p-value, even if the distribution is the wrong model for the
data. Finally, we need to be confident in obtained results. The same procedure can be repeated for
different distributions. If the p-value for the power law is high, while for alternative distribution, it is
low, we can conclude that the power law is a more probable fit.

Another method, the likelihood ratio test, allows us to compare two distributions directly [103].
The distribution with a higher likelihood under empirical data is a better fit. We can calculate the
likelihood ratio, or it is easier to obtain the likelihood ratio’s logarithm because its sign determines
which distribution is a better fit. For given two distributions p1(x)and p2(x).

The likelihoods are defined as L1 =
∏n

i=1 p1(x) and L2 =
∏n

i=1 p2(x), or the ratio of likelihoods
as R = L1

L2
=
∏n

i=1
p1(x)
p2(x)

. Taking the logarithm, we obtain the log-likelihood ratio

R =
n∑
i=1

[logp1(xi)− logp2(xi)] . (2.28)
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As data xi are independent, by central limit theorem, their sum R becomes normally distributed,
with expected variance σ2. We can approximate the variance as

σ2 =
1

n

n∑
1

[(li − li)− (< l >(1) − < l >(2))].

When R > 0, the first distribution is a better fit to the data, and then R < 0, the other one should
be chosen. When R = 0, it is not possible to distinguish between two distributions. The sign of R is
not enough criteria to conclude which distribution is a better fit, and it is a random variable subject to
statistical fluctuations. We need a log-likelihood ratio that is sufficiently positive or negative to ensure
that its sign does not result from fluctuations.

If we are suspected that the expectation value of the log-likelihood ratio is zero, the observed sign
of is simply the product of fluctuations and can not be trusted. The probability that the measured
log-likelihood ratio has a magnitude as large or larger than the observed value R is given as

p =
1√

2πnσ2

∫ −|R|
−∞

e−x
2/2nσ2

dx+

∫ ∞
|R|

e−x
2/2nσ2

dx. (2.29)

Here we use the standard two-tail hypothesis test [103], assuming that the null hypothesis is R =
0. If the p-value is larger than a threshold, the R sign is unreliable, and the test does not favor any
distribution. If p is small, p < 0.1, then it is unlikely that the observed sign is obtained by chance, so
we reject the null hypothesis that R = 0.

2.4 Network models

The interest in analyzing real-world networks allowed us to describe their statistical properties and for-
mulate models to explain essential data features. With network models, we can understand the origins
of the properties of complex networks, what mechanisms influence the generation of the network, and
how network properties emerge [30, 53]. This section considers the random network and small-world
models, which are static models, as the number of nodes is fixed. Even though the random network
model is not applicable to real networks, it is important historically as one of the first network models.
The small-world model explains how properties of real networks, such as high clustering and small
distances may emerge. On the other hand, generative models, such as models of preferential attach-
ment, where the network grows according to specific growing rules, are important for understanding
how network structure is created. They allow us to explore different growingmechanisms, and by com-
paring obtained networks with real data, we can conclude which growth processes have an influence
on the network structure.

2.4.1 Random network model

The random graph model was introduced by mathematicians Paul Erdős and Alfred Rényi in 1959. In
this model, connections between nodes are chosen randomly, and every link has the same probability
of existing. The graph is characterized only by a number of the nodes N and the linking probability
p, so Erdős-Rényi graph is written as G(n, p).

The creation of ER random network consists of the following steps:

• We start with N isolated nodes.
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• Between each N(N − 1)/2 pair of nodes we create link with probability p; sampling random
number r ∈ (0, 1), we create link if r ≤ p, see Figure 2.3.

p = 0 p = 0.01 p = 0.1

Figure 2.3: Erdős-Rényi graph with N = 100 nodes and different linking probabilities p.

We should note that this process is stochastic. The networks G(N, p) with the same parameters
do not need to have the same structure; i.e. they differ in the number of links. Therefore, the single
random graph is only one of all the possible realizations in the statistical ensemble.

Two simple quantities that could be estimated are the average number of links and the average
degree. For a complete graph with N nodes, the number of edges is N(N − 1)/2. As the probability
of drawing every edge is p, the average number of links is given as

〈L〉 =
N(N − 1)

2
p. (2.30)

We conclude that the network’s density equals probability p. The average degree is approximated
as 〈k〉 = 2〈L〉/N , leading to:

〈k〉 = (N − 1)p. (2.31)

The degree distribution of ER random graph follows the binomial distribution [53].

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k. (2.32)

The probability that the node has degree k is given with the second term pk, while the probability
that other N-1-k links are not created is given with the third part of the equation. Finally, there are(
N−1
k

)
combinations for one node to have k links from N − 1 possible links.

The binomial distribution describes very well small networks, see Figure 2.4. For larger networks,
we find that they are sparse and that the average degree is much smaller than a number of nodes
〈k〉 << N . In this limit, binomial distribution becomes the Poisson, as could be shown in Figure 2.4,
which now depends only on one parameter 〈k〉

p(k) =
1

k!
e−〈k〉〈k〉k. (2.33)
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Figure 2.4: Degree distribution of ER graph. The degree distribution of small networks follows
binomial. Larger networks are better approximated with Poison distribution, and degree distribution
for fixed average degree < k > becomes independent of the network size.

The random graph has a very small average path length, it is given as 〈l〉 = lnN
ln(pN)

that is charac-
teristic of many large networks [104]. The clustering coefficient is proportional to linking probability,
〈C〉 = p, so we find a small clustering coefficient in large random networks, contrary to real-world
networks.

Figure 2.3 shows how the network becomes more connected by increasing the linking probability
p. When p = 0, all nodes are disconnected. In the other limit, p = 1, the network is fully connected.
Between those two probabilities exists critical probability, where the giant component appears. The
giant component is a sub-graph whose size is proportional to the network size. In other words, the
network does not have disconnected components. Such change in the network is a phase transition in
network connectivity and is related to percolation theory.

The phase transition occurs when the average degree is 〈k〉 = 1, which gives us: pc = 1
N−1

,
meaning that all nodes have degree larger than one [53]. When the 〈k〉 < 1, the network is in the sub-
critical regime where all components are small. In the critical regime, the size of the giant component
is proportional to the N2/3. In the supercritical regime, 〈k〉 > 1, the probability of a giant component
appearing is 1.

2.4.2 Small-world networks

Inspired by the idea that real-world networks are highly clustered and the average distance is small,
Watts and Strogatz [31] proposed the "small-world" model. The model starts from the regular lattice,
and with rewiring links, the network starts to resemble small-world property. The procedure is the
following:

• At the beginning, nodes are placed on the ring lattice, see Figure 2.5, and each node is connected
to k/2 first neighbors on the left and the right side. Initially, the clustering coefficient is high,
c = 3/4.

• For each link in the network, with probability p, we choose a random node to rewire the link.
This connects long-distance nodes, decreasing the network’s average path length, Figure 2.5.
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The model interpolates between the regular graph when the probability is p = 0 and the random
graph with p = 1 when all links are randomly rewired. Short distances and high clustering are present
in the network for the relatively small probabilities ranging from p ≈ 0.01− 0.1 [31].

p = 0.0 p = 0.05 p = 0.8

Figure 2.5: Watts and Strogatz graph model creation, for different rewiring probabilities.

Even though the small-world network model lacks the power-law degree distribution found in real-
world networks, it is an important model that motivated the research on random graphs.

2.4.3 Barabási-Albert model

The ER random graph model andWS small-world model are static models where the number of nodes
is fixed. It is one of the reasons why they can not fully explain the properties of real systems. The size
of real systems does not remain constant; real networks grow. Growth means that at each time step,
new nodes are added to the network. The simplest model that produces scale-free networks is the
Barabasi-Albert model [32].

• The model starts from the small number, n0 randomly connected nodes, withm0 links.

• At each time step, a new node with m links joins the network. A new node creates links with
the nodes already present in the network, following the linking rules; in this case, preferential
attachment rules.

The preferential attachment is important for generating a system with scale-free properties. In
the real system, the linking between nodes is not a random process; the preference for specific types
of nodes exists. For example, popular web pages can quickly get more visits, or it is expected that
already popular papers will get more citations. This effect is also called rich-get-richer or preferential
attachment.

The simplest formulation of the preferential attachment model is that new nodes tend to connect
with high-degree nodes. The linking probability Π is then proportional to node degree k [105]

Π(ki) =
ki∑
j kj

. (2.34)

As at each step one node arrives, we can estimate the number of nodes at the time step t, N(t) =
n0 + t, with links L(t) = m0 +mt.

First, we can calculate the evolution of network degrees in time [105].
dki
dt

= mΠ(ki) = m
ki∑
j kj

= m
ki

m0 + 2mt
. (2.35)
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Note that the new node that arrived at time point ti has degreem, as it links tom old nodes. Solving
the equation, we get that at t > ti, it has a degree that grows as the square root of time; it also shows
that younger nodes easily acquire a larger degree

ki(t) = m

(
t

ti

) 1
2

. (2.36)

With this equation, we can calculate the probability that node has a degree smaller than k [105] as
P [ki(t) < k] = P (ti >

m1/βt
k1/β ). Assuming that we add nodes in constant time intervals, we have

P (ti) = 1/(m0 + t). The cumulative probability is then P (ti >
m1/βt

k1/β ) = 1 − t
t+m0

(
m
k

)1/β . Finally,
the degree distribution has the following form

P (k) =
∂P [ki(t) < k]

∂k
∼ 2m2k−3. (2.37)

Degree distribution follows power-law, and for large k is approximated with P (k) = k−γ , where
γ = 3. As the network grows, nodes with larger degrees become bigger, and we end up with few
nodes with many links, called hubs. Figure 2.6 - left pane shows generated BA network, consisting
of N = 100 nodes, where even on this scale, we can notice the emergence of hubs. The right pane
of Figure 2.6 shows obtained degree distribution of a larger network with N = 104 nodes. The
degree distribution is also independent of the time and size of the system, meaning the emergence of
a stationary scale-free state. If we varym, the slope of distributions is the same, but they are parallel.
After rescaling p(k)/m2, they fall on the same line [53].

100 101 102

k

10 7

10 5

10 3

10 1

P(
k)

P(k) k 3

Figure 2.6: Barabasi-Alber model. The left panel shows the BA network, with 100 nodes. The right
panel shows the degree distribution for BA network of 104 nodes that follow the power-law.

The network diameter, represents the maximum distance in network, d ∼ lnN
lnlnN

[104]. The
diameter grows slower than lnN , making the distances in the BA model smaller than in the random
graph. The difference is found for large N. It is known that the BA network has hubs that shorten the
path between less connected nodes. Also, if hubs are removed from the network, the network easily
partitions into several components, losing its properties. The clustering coefficient of the BA model
follows C ∼ lnN2

N
[104]. It differs from clustering found in random networks, and BA networks are

generally more clustered.

The combination of the growth and preferential attachment linking is crucial for getting scale-
free networks [32]. For example, eliminating the preferential attachment; in a growing network with
random linking, degree distribution is stationary but follows exponential. In contrast, the absence of
growth leads to the non-stationary degree distribution. When a number of nodes is fixed, the network
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2. Methodology

grows only in the number of links, such that randomly chosen node i connects to node j according
to probability Π. In the beginning, the degree distribution follows the power law, the same as in the
BA model. As more links are added to the network, the distribution changes its shape; first, the peak
appears, while at the end network becomes a complete graph, where all nodes have the same degree.

2.4.4 Nonlinear preferential attachment model

In the nonlinear preferential attachment model linking probability also depends on the node degree.
The dependence is not linear and has the following a form [106]:

Π(ki) = ki
β. (2.38)

The probability that a newly added node attaches to node i depends on the existing i-th node degree
ki and the parameter β. When β = 1, the model is the BA model, where degree distribution follows
the power law. When β = 0, linking probability becomes uniform; i.e., it corresponds to a random
network model, and the degree distribution is Poisson; there is exponential decay.

For β > 1, preferential attachment effects are increased, leading to super hubs’ emergence. The
hub-and-spoke network appears in this regime, where almost all nodes are connected to a few high-
degree nodes [106].

On the other hand, if β < 1, the model is in a so-called sub-linear preferential attachment regime.
The linking probability is not random, so degree distribution does not follow Poisson, but also, the
preference toward high-degree nodes is too weak for having the pure power law. Instead, degree dis-
tribution converges to stretched exponential.

2.4.5 Aging model

To understand how aging can impact the network structure, we look into probability dependent on two
parameters, nodes degree k and age of node i at the time point t τi = (t − ti), where ti is the time
when node i is added to the network [33]

Πi(t) ∼ kiτ
α
i . (2.39)

The parameter α controls the linking probability dependence on the nodes’ age, as could be seen
on Figure 2.7. If α = 0, the aging of nodes is disregarded. If α > 0 is positive, the older nodes are
more likely to create connections. In this regime, the preferential attachment stays present, and the
high-degree and older nodes are preferred. For very high α, each node is connected to the oldest node
in the network. The scale-free properties are present; the power-law exponent γ deviates from γ = 3.
It is found that γ ranges between 2 and 3. When α is negative, aging overcomes the role of preferential
attachment, and scale-free properties are lost. For significant negative α network becomes a chain; the
youngest nodes are those who get connected.

In the general aging model, the non-linearity on the node degree is introduced, so this model has
two tunable parameters α and β. The probability that a link is created between the new node and the
existing node is defined as [62]

Πi(t) ∼ ki(t)
βταi . (2.40)
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2.4. Network models

Figure 2.7: Dependence of parameter α and network structure. Network topology vary from chain
network to the case where each node is connected to youngest node.

As before, depending on model parameters network evolves into different structures:

• For example if we fix β = 1 and α = 0 generated networks are scale-free; degree distribution
is P (k) ∼ k−γ with γ = 3.

• In the case of nonlinear preferential attachment β 6= 1 andα = 0 scale-free properties disappear.

• Scale-free property can be produced along the critical line β(α∗) in the α − β phase diagram,
see Figure 2.8.

• For α > α∗ networks have gel-like small world behavior.

• For α < α∗ and near critical line β(α∗) degree distribution has stretched exponential shape.

Figure 2.8: Phase diagram of aging network model.
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2.5 Fractal analysis

The study of time series is an important approach in understanding complex systems [107], and the
analysis of scaling laws and fractality in time series is particularly useful in characterizing their dy-
namics. With the Hurst exponentH , we can describe the degree of self-similarity or self-affinity across
different scales of time in time series x(t):

x(t) = aHx(at).

In other words, having self-similarity, means that if we rescale time t by a factor a, the time-series
values x(t) are rescaled by a factor aH . Monofractal [108, 109] time series is characterized by a
single scaling exponent that applies across all time scales. On the other hand, time series is called
multifractal.

2.5.1 Long and short-term correlations

The autocovariance function C(s) can be used to quantify the degree of persistence or correlation of a
stationary time series [107], where themean and variance do not changewith time. The autocovariance
function measures the linear dependence between the increments ∆xi and ∆xi+s at a lag s, where
∆xi = xi − xi−1, of time series {xi}, i = 1...N , and it is defined as the expected value of their
product:

C(s) = 〈∆xi∆xi+s〉 =
1

N − s

N−s∑
i=1

∆xi∆xi+s. (2.41)

If the time series is uncorrelated, C(s) is zero for all lags s. If the time series has short-range
correlations, C(s) decays exponentially with lag s, indicating that the correlations decay quickly with
distance in time:

C(s) = exp(−s/tc),
and this behavior is typical of time series generated by autoregressive processes,

∆xi = c∆xi−1 + εi,

with random uncorrelated offsets εi and c = exp(−1/tc).

If the time series has long-range correlations, C(s) decays as a power-law with lag s, indicating
that the correlations persist over long time scales. This behavior is typical of self-similar or fractal
time series, and it is characterized by a power-law exponent γ such that:

C(s) = s−γ.

Fourier filtering techniques can model this type of behavior. The Hurst exponent H is related to
the power-law exponent γ byH = 1− γ/2. Therefore, if we can estimate the Hurst exponent, we can
infer the degree of persistence or long-range correlations of the time series.

Due to the presence of noise in the data and non-stationarity, directly calculating the auto-
covariance functionC(s) can be a challenging task. This is because non-stationarities make it difficult
to define C(s) properly, as its average may not be well-defined. Additionally, on large scales, C(s)
fluctuates around zero, which makes it impossible to determine the correct correlation exponent γ.
Therefore, instead of computing C(s), it is common to estimate the Hurst exponent H .
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2.5.2 Rescaled range analysis

The rescaled range analysis (R/S) method proposed by Hurst [110]. is a popular technique to estimate
the Hurst exponent of a time series. It is a simple method that works well for a wide range of self-
similar processes. For time series xi, we can define the profile Yν for each segment of the size s:

Yν(j) =

j∑
i=1

(xνs+i − 〈xνs+i〉s).

Constant trends in the data are removed by removing the average values over segment 〈xνs+i〉s. From
there we can define the range between minimum and maximum value of obtained profile as Rν(s) =

maxYν(j)−minYν(j), and standard deviation is Sν(s) =
√

1
s

∑
Y 2
ν (j).

Finally, the rescaled range is averaged over all segments to obtain the fluctuation function F(s),

FRS(s) =
1

Ns

∑ Rν(s)

Sν(s)
∼ sH ,

where the H is the Hurst exponent. The Hurst exponent can be estimated from the slope of the
line in a log-log plot of R(s)/S(s) versus s. Values H < 1/2 indicate long-term anti-correlated data
while H > 1/2 long-term positively correlated data [107].

2.5.3 Fluctuation analysis

The fluctuation analysis is a method that relies on the principles of random walk theory [107]. It
involves taking a time series xi of lengthN and creating a global profile by calculating the cumulative
sum using equation 2.42. In this equation, 〈x〉 represents the average value of the time series.

Y (j) =

j∑
i=0

(xi − 〈x〉), j = 1, ..., N. (2.42)

Figure 2.9 shows examples of multifractal, monofractal and white noise signal with their global
profiles.

The profile of the signal Y is divided into Ns = int(N/s) non-overlapping segments of length s.
The last segment will be shorter ifN is not divisible with s. That is handled by doing the same division
from the opposite side of the time series, giving us 2Ns segments. Then we calculate the fluctuations
in each segment F 2(ν, s) and, finally, average overall subsequences, obtaining the mean fluctuation.
From the scaling of the function, we can determine the Hurst exponent

F2(s) = [
1

2Ns

∑
F 2(ν, s)]1/2 ∼ sH . (2.43)

Themost straightforward way to calculate the fluctuations is to consider the difference in the values
at the endpoints of each segment. It is the same as eliminating the linear trend from each segment.

F 2(ν, s) = [Y (νs)− Y ((ν + 1)s)]2

Figure 2.10 shows the global profile of the multifractal signal, divided in segments of the length s =
1000. On the top panel, each segment s is approximated with linear function.
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Figure 2.9: Multifractal, monofractal and white noise signals.

The trends present in the time series do not have to be linear [111]. The middle and bottom panel
in Figure 2.10 show that the segments of the signal could be very well approximated with some higher
order functions: quadratic or cubic. In general, using the detrended fluctuation analysis (DFA) we
could remove the polynomial trend of the order m [112]. From each segment ν, local trend pmν,s -
polynomial of order m - should be eliminated, and the variance F 2(ν, s) of a detrended signal is
calculated as in equation:

F 2(ν, s) =
1

s

s∑
j=1

[
Y (j)− pmν,s(j)

]2
. (2.44)
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Figure 2.10: Detrending of multifractal signal for the segments of length s = 1000. Panel A- linear
detrending, panel B-quadratic detrending, panel C- cubic detrending.
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2.5.4 Multifractality of the signals

The scaling behavior in many data may be more complicated, resulting that interwoven subset of time
series have different scaling exponents. This property is known as multifractality. The multifractality
may be caused by the time series values’ large probability distribution [113, 114]. In this situation,
shuffling time series cannot eliminate the multifractal features. The source of multifractality may also
come from different small and large fluctuations correlations. If density function is distribution with
finite moments, the shuffled time series will lose multifractal properties as correlations are easily de-
stroyedwith randomization. In situationswheremultifractality is caused by both types, the randomized
time series has weaker multifractality.

Multifractal detrended fluctuation analysis (MFDFA) is used [113, 114] to estimate multifractal
Hurst exponent H(q)

Fq(s) =

{
1

2Ns

2Ns∑
ν

[
F 2(ν, s)

] q
2

} 1
q

, q 6= 0.

The MFDFA for q = 2 is equivalent to the DFA method. The value of H(0), which corresponds
to the limit F (q), q− > 0, cannot be calculated directly because the exponent diverges. Instead, the
logarithmic averaging procedure has to be considered.

F0(s) = exp

{
1

4Ns

2Ns∑
ν

ln
[
F 2(ν, s)

]}
, q = 0. (2.45)

The fluctuating function scales as power-law Fq(s) ∼ sH(q) and the analysis of log-log plots Fq(s)
gives us an estimate of multifractal Hurst exponent H(q), see Figure 2.11.
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Figure 2.11: Dependence of the fluctuating functions on the scale for monofractal, multifractal and
white noise signals, and the Dependence of the Hurst exponent H on the scale 1 q for different types
of signal (bottom right).
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For monofractal time series, the scaling properties of all segments are the same, regardless of their
size or magnitude of change. This means that the value of H(q) will be the same for all values of q
[113, 107]. If the series exhibits multifractal behavior, then the scaling properties of different segments
of the series will be different, and the value of H(q) will vary depending on the magnitude of change in
the segment being analyzed. Positive values of q will indicate segments with large fluctuations, while
negative values of q will describe the scaling of segments with small fluctuations [107].

2.6 Dynamical reputation model

Consider a system where each component has an activity pattern that could be mapped to the discrete
signal, representing the moments when the event happened, such as the activity pattern when users are
sending an email or communicating, sharing opinions and information within the community. Users’
behavior directly influences their position in the community, which is measured through reputation.
The trust among users depends on the amount of interaction between them, which means the trust
changes over time. The computational model needs to capture the dynamic property of the trust.
Furthermore, the important property of trust is that it is easier lost than gained; the frequency of
interaction also matters. The trust between users who interact frequently should increase faster than
between users who rarely interact.

With Dynamic Interaction Based Reputation Model (DIBRM) [67], we can quantify the user rep-
utation Rn after each interaction using equation 2.46, where n is the number of interaction n ∈ 1, N

Rn = Rn−1β
∆n + In. (2.46)

The first part of the equation considers the reputation value after the previous interaction Rn−1,
weighted with coefficient β∆

n . Depending on the frequency of the interaction, reputation will rise or
decay. Parameter β ranges from 0 < β < 1 is forgetting factor. The ∆n measures time between two
interactions tn and tn−1:

∆n =
tn − tn−1

ta
, (2.47)

where ta is the characteristic time window of interaction. In the second part of the equation, In is the
reputation gained within each interaction. The basic value of each interaction is given as Ibn, and the
parameter α is the weight of the cumulative part

In = Ibn(1 + α(1− 1

An + 1
)). (2.48)

When ∆n < 1, a user is frequently active, meaning that the time between two interactions is less
than the characteristic time window. The number of sequential activities An increases by 1. On the
other hand, when ∆n > 1 is large, the reputation decays, while the number of activities resets to
An = 1.

For example, if we set the characteristic window size and basic value of interaction to ta = 1day,
Ibn = 1, we can analyze the influence of the parameters α and β on the user reputation. Lower α
and β values lead to faster reputation decline, as shown in Figure 2.12 - left panel. With lower β, the
reputation may quickly drop close to the reputation threshold, under which we don’t consider the user
as active. In contrast, with larger values of β, reputation stays high even if a user is inactive for a larger
period. The parameter α is the most important influence on burst behavior, where larger α leads to
higher reputation values.

If a user is frequently active, we can record the reputation after each day. On the other hand, if
tn − tn−1 > 1day we need to interpolate the reputation values for each day between two interactions,
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Figure 2.12: Left panel shows the dynamics of user reputation obtained in DIBRM model for different
model parameters α and β. Right panel shows the dependence of parameter β and number of days to
reputation from starting value In drops below threshold In = 1.

tn−1 < td < tn. To do that, we consider that due to inactivity, reputation will only decay, so it could
be calculated as Rd = Rn−1β

∆d , where ∆d = (td − tn−1)/ta.

When a user becomes inactive, its reputation starts to decline, and when it drops below the reputa-
tion threshold user does not have any influence on the community. We can approximate the dependence
of parameter β and time δt needed for reputation to reach this level as β = (R0

Ri
)
ta
δt . In the examples in

Figure 2.12, - right panel, the parameter ta = 1day, while we vary different starting reputation levels
In. For β values below 0.96, the decay is fast, and within two to four months of inactivity, even high
reputation values are reduced below the threshold. On the other hand, with values of β, the decay
process is more differentiated, and the high reputation becomes harder to lose, surviving up to a year
of inactivity. For β equal to 0.96, reputation with starting value 5 needs around one month to decay
below the threshold. For higher reputations, 500 or 1000, the decay period is around 5 months.

In this model, the user’s reputation changes continuously through time, decreases when the user is
inactive, and grows with frequent and constant user contribution. The reputation has highest growth
when user shows burst in activity. With model parameters, Ibn, ta, α, β, the dynamic of user reputation
may be controlled and adapted to different communities. If the community has its reputation system,
we can also fit the model parameters to mimic the actual reputation dynamic. In this thesis DIBRM
model is used to analyze Stack Exchange communities, Chapter 5, while in Appendix B, we suggest
the procedure to estimate the model parameters for this specific system.
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Chapter 3

Evolving complex network structure
dependence on the properties of growth
signals

Complex networks grow by adding new nodes, and growing network models consider growth constant
over time. This approximation is sufficient for explaining how properties of complex networks can
emerge; for example, we find power-law degree distribution in the Barabasi-Albert model [32]. Models
mainly focus on linking rules and their influence on the topology of complex networks.

Still, the growth of real systems changes over time. In online social networks, new users join daily,
and the users’ activity might have bursty nature. We can consider a co-authorship network, where links
are created between scientists when they publish a paper [115, 116]. The dynamics of real networks
can be complex and highly influenced by nonlinear signals. The growth signal, the number of new
nodes in each time step, has cycles and trends. Circadian cycles are directly reflected in growth signals,
and we also find long-range correlations and multifractal properties [108].

In this chapter, we study how growth signals influence the network structure. We explain the
properties of growth signals, both real and computer-generated, and analyze networks created with a
growing network model where the interplay between aging and preferential attachment shapes their
structure. We are interested in incorporating non-constant growth signals into the model and measur-
ing their impact on complex networks. Differences between networks with the same number of nodes
and links can be observed by analyzing connectivity patterns. Figure 3.1 summarizes our goals.

3.1 Aging network model with growth signal

To enable nonlinear network growth in the number of nodes, we need to adapt the existing models
such that at each time step, we can addM ≥ 1 new nodes that make L ≥ 1 links with existing nodes
in the network. The master equation Nk, k degree nodes can be written as:

∂tNk =

M(t)∑
j=1

rk−j−→kNk−j −
M(t)∑
j=1

rk−→k+jNk +M(t)δk,L. (3.1)
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Figure 3.1: The open question is how nonlinear signals, in combination with the network model,
influence the network’s structure. Under what circumstances do networks have the scale-free, hub-
spoke, or chain structure?

We addM(t) nodes with L links at each time step. As multiple links between two nodes are not
allowed, we’ll getM(t) new nodes with degree L, which describes the third term in the equation. Old
nodes can increase their degree from 1 toM(t), as different new nodes can choose the same node. The
first term in the equation describes nodes with degree k ∈ {k−M(t), . . . , k−1} that getting degree k,
while in second term nodes with degree k entering degree k ∈ {k+ 1, . . . , k+M(t)}. The quantities
rk−j−→k and rk−→k+j are the rates that express the transitions of a node from class with degree k − j
to one with degree k and from class with degree k to class with degree k + j respectively.

For the model, we choose the aging model where linking probability depends on network degree
k and its age τ , Πi(t) ∼ ki(t)

βταi . With this linking probability, the master equation was solved for
M(t) = const. = 1, using approach [34]. WhenM(t) is the correlated function, the equation is not
solvable analytically. Instead, we use numerical simulations to study the influence of the signalM(t)
on the network structure. When we add only one link per node L = 1, networks are uncorrelated
trees. To obtain the clustered structures, we need to use L > 1; each new node can create more than
one link. Finally, we focus on the aging model parameters −∞ < α ≤ −1 and β ≥ 1. We expect a
critical line β(α∗)where scale-free networks can be found. Under critical line, networks have stretched
exponential degree distribution, and for large β small-world networks are present.

Finally, we need to define the new nodes’ time series. We focus on the growth of two real systems,
the TECH [117] community in the Meetup website and on two months of MySpace [118] social
network. Besides these signals, we use randomized MySpace and TECH signals and uncorrelated
Poissonian signals.

3.1.1 Characteristics of growth signals

MySpace signal is the number of new members who appear for the first time in the data. Here, the
time step is one minute. The MySpace signal has T = 3162 steps, with N = 10000 members. To
describe the properties of the signal, we use Multifractal detrended analysis and calculate the Hurst
exponent on different scales, showing the right pane of the Figure, 3.2. It is multifractal q < 0 and
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3.1. Aging network model with growth signal

becomes constant for q > 0; it has long-range correlations as H(q = 2) = 0.6. My Space signal
has cycles characteristic of the human circadian rhythm, Figure 3.2. We can easily destroy trends and
cycles if we randomize theMySpace signal. The randomization is done with the reshuffling procedure,
where we keep the number of nodes, length, and the mean value of the signal. The inset of the original
and randomized signals show the time series’ global profile; we find that trends are destroyed. Also,
the randomized MySpace signal no longer has long-range correlations; the Hurst exponent indicates
short-range correlations H = 0.5, and the signal becomes monofractal.
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Figure 3.2: MySpace signal, the random MySpace signal (left pane) and the dependence of multifrac-
tal Hurst exponent H(q) of the scale q (right pane).
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Figure 3.3: TECH signal, the random TECH signal (left pane) and the dependence of multifractal
Hurst exponent H(q) of the scale q (right pane).

The TECH is a group from the Meetup website that gathers users interested in technology. Using
theMeetup website, they organize offline events. The time unit in this time series is an event since then
are created links between events. The TECH time series M(t) represents the number of users who
joined the TECH community and visited the event for the first time. The time series length is T = 3162
steps, andwe countN = 3217members in the TECH community for a given period, Figure 3.3. TECH
signal has long-range correlations with Hurst exponent H(q = 2) = 0.6. Also, we find that TECH
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3. Evolving complex network structure dependence on the properties of growth signals

is multifractal, as the Hurst exponent is not constant across the scales. The multifractality originates
not only from signal trends but also from the broad probability distribution of time series. If we
randomize the TECH signal, we can easily destroy trends and cycles, but the signal keeps multifractal
properties, meaning that broad probability distribution can not be eliminated. Therefore, we generate
the uncorrelated signal from the Poissonian probability distribution. The length of this signal is T =
3246, while we keep the number of nodes N the same as in the TECH signal.

3.1.2 Structural differences between evolving complex networks

We can compare the networks with the same number of nodes and links generated with growth signals
with different properties. We use a growing network model where we vary parameters −3 < α ≤ −1
and −3 ≤ β ≤ 1. We also vary the network density, L ∈ {1, 2, 3}. For each set of model parameters
α, β, L and each signalM(t), we create the sample of 100 networks. Besides this, for the same set of
parameters, we generate the sample of networks with N = 10000 and N = 3217 nodes grown with
constant signalM(t) = 1; one node is added to the network at each time step. To examine how different
growing signals influence the structure of networks, we use D-measure [76], defined methodology
chapter. We equally consider the global and local properties, setting parameter w = 0.5. We compare
the networks grown with the constant and fluctuating signal with D-measure for all network pairs
between two samples and average the result. The advantage this measure has is that it can measure the
distance between two network structures, even if they are generated with the same model; that was not
the case with Hamming distance or graph editing distance [76].

Figure 3.4 presents the results for D-measure. The most significant distance between networks
is along the critical line β(α∗) of the aging model. The fluctuations present in the signal mainly
influence the scale-free networks. Structural differences exist for networks away from this line, but
they are much smaller. The D-measure is close to zero for gel small-world networks, β > β∗. Under
critical line, β < β∗, the D-measure depends on the properties of the signal. If we fix network density
L, the position of the critical line is independent of the properties of the signal. Still, with higher link
density, the critical line slightly moves toward larger β; see Figure 3.4.

In the region around the critical line, we find that the D-measure depends on the properties of the
signal. Multifractal signals TECH has the most considerable impact on network structure; the maxi-
mum value of the D-measure is Dmax = 0.552. Similar behavior is discovered for other multifractal
signals, random TECH and MySpace. The difference exists for networks generated with uncorrelated
signals: random MySpace and Poisson, but it is much smaller.

D-measure rises for lower α. In the case of a constant signal, the number of nodes added to the
network is equal for each time step, so at the time interval T , the network hasMT nodes. In fluctuating
signal, the number of nodes added during time interval T vary. Hubs emerge faster in signals, such as
TECH, where there are peaks in the number of new users. As we decrease the parameterα, fluctuations
in the signal become more critical, and the hubs emerge even for uncorrelated signals. The trends in
the real signals further promote the emergence of hubs in the network.

3.1.3 The structure of networks

We examine degree distribution, degree correlations, and clustering coefficient of networks generated
by real signals. These measures have provided a sufficient set for describing the structure of complex
networks. Results showed that multifractals influence networks more than monofractals; it is most
prominent in scale-free networks.

Figure 3.5 shows properties of networks generated with model parameters L = 2, α = −1.0, β =
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Figure 3.4: The comparison of networks grown with growth signals shown in figures 3.3 and 3.2
versus ones grown with constant signal M = 1, for the value of parameter α ∈ [−3,−1] and β ∈
[1, 3]. M(t) is the number of new nodes, and L is the number of links added to the network in each
time step. The compared networks are of the same size.

1.5, that lie on the critical line. The degree distributions P (k) of networks generated with real signals
TECH and MySpace have super-hubs emerged. Degree distributions generated with randomized and
white noise signals do not differ from the degree distribution of networks generated with the constant
signal. Networks generated with real signals average neighboring degree 〈k〉nn(k) and clustering
coefficient c(k) depend on node degree. In contrast, networks generated with constant and randomized
signals weakly depend on the degree k.

We also find structural differences between networks, obtained with model parameters under the
critical line α < α∗, see Figure 3.5. The difference is mainly found in the TECH signal. Degree
distribution P (k) shows the emergence of hubs in networks grown with TECH signal, while the ran-
domized and Poisson signals are more similar to networks grown with the constant signal. MySpace
signal, whose generalized Hurst exponentH(q) weakly depends on scale parameter q and whose long-
range correlations and trends are easily destroyed, do not influence the structure of networks more than
constant or randomized signal.

The properties of the time-varying signal do not influence the topological properties of small-
world gel networks, Figure 3.5. Here model promotes the existence of hubs. As this is the mechanism
through which the fluctuations alter the structure of evolving networks, the properties of the signal are
not relevant.
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Figure 3.5: Degree distribution, the dependence of average first neighbor degree on node degree, the
dependence of node clustering on node degree for networks grown with different time-varying and
constant signals. Model parameters have value α = −1.0, β = 1.5 and L = 2 for all networks. The
networks are from the scale-free class. Model parameters have value L = 2, α = −1.5, β = 1.5. The
networks have stretched exponential degree distribution. Model parameters have value L = 2, α =
−1.0, β = 2.0. Generated networks have small-world properties.
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3.2. Long range correlated signals

3.2 Long range correlated signals

The previous section showed that the growth signal of real systems has complex dynamics. Besides
long-range correlations, we also find multifractal properties, and it is hard to isolate individual effects
and analyze their influence separately. When this is the case, synthetic signals with specific charac-
teristics can help to verify our findings in real systems. The long-range correlated properties can be
included in time series using Fourier filtering transform method [119].

The long range correlated data have power-law correlations C(s) =< xixi+s >= s−γ character-
ized with coefficient γ. Hurst exponent depends on γ as H = 1 − γ

2
. The Fourier transform gives us

the power spectrum of the time series S(f), which is a function of the frequency f . For the long-range
correlated data, it depends on coefficient β = 1− γ and has the form:

S(f) ∼ f−β. (3.2)

We can generate the data using Fourier filtering with β = 2H − 1, as following:

• First generate one-dimensional sequence of uncorrelated random numbers ui from Gaussian
distribution with σ = 1.

• Calculate the Fourier transform of the generated sequence, uq, the spectrum is flat as data cor-
respond to white noise.

• Then filter the power spectrum with f−β/2, so the function will follow the power spectrum
expected for data with long-range correlations.

• Calculate the inverse Fourier transform xi. It converts data to the time domain where the signal
has desired long-range correlations.

The Fourier filtering method generates the Gaussian distributed data, so data are without broad
distributions, nonlinear or multifractal properties. Using this method, we generated the signals for
different values of the Hurst exponent; see Figure 3.6. The obtained signals are round to integers, and
the mean values of signals are close to 4.

As before, we focus on the region of the model phase diagramwith negative α and positive β as the
transition line from stretched-exponential across scale-free to the small world-gel networks are found.
We take a range of parameters −3 ≤ α ≤ −0.5 and 1 ≤ β ≤ 3 with steps 0.5, and we also vary the
number of links each new node can create L ∈ 1, 2, 3. For each combination of (α, β, L), we generate
the sample of 100 networks and compare the structure of the network grown with fluctuating signals
with different Hurst exponentH ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and constant signalM = 4. The results
represented by D-measure, shown in Figure 3.7, are obtained by averaging the D-measure between all
possible pairs of generated networks.

The higher values of the D-measure are found in the region of critical line β(α∗). The most con-
siderable influence is on networks with scale-free distribution. Comparing D-distance in only one
point of the phase diagram, for example, L = 1, α = −2.5, β = 2.5, we find that when the Hurst
exponent is more prominent, correlations in the signal make a bigger impact on the network structure.
D-measure between networks grown by signal with Hurst exponent H = 1.0 and the constant signal
is D(H = 1.0,M = 4) = 0.405, while between networks grown with a signal with H = 0.8 and
the constant signal is D(H = 0.8,M = 4) = 0.316. For α > α∗, networks have similar structural
properties, and D-measure is close to 0. In the region of networks with stretched exponential degree
distribution, α < α∗ differences are small.
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Figure 3.6: Monofractal signals generated with Fourier filtering method for different Hurst exponents

Figure 3.7: D-distance between networks generated with different long-range correlated signals with
a fixed value of Hurst exponent and networks generated with constant signal M=4.
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3.3. Conclusions

We further explore the assortativity index and clustering coefficient of generated networks. Figure
3.8 are results for several aging model parameters that show the difference between networks this
model can produce. All networks are disassortative, with a negative degree-degree correlation index.
For the parameters below critical line values, α = −2.5, β = 1.5 r does not depend on the Hurst
exponent. Above the critical line are small-world networks, and they are disassortative. The minimum
value of the assortativity index is r = −1, for L = 1, indicating the presence of hubs connecting many
nodes. The assortativity index grows slightly with link density.

In the region of critical parameters, the assortativity index depends on the value of the Hurst
exponent. Signals With Hurst exponent H > 0.8 have a larger influence on the assortativity index.
Networks become more disassortative; see the line for parameters L = 1, α = −2.5, β = 2.5 in
Figure 3.8. The long-range correlations have a stronger effect on the evolution of networks with lower
density.
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Figure 3.8: Mean assortativity index for networks generated with different model parameters α, β, L
and different long-range correlated signals with Hurst exponent H .

Figure 3.8 shows the mean clustering coefficient. For L = 1, networks are uncorrelated trees
with clustering coefficient 0. For network density L > 1, nodes are organized into clusters. Under
the critical line, for the parameter, L = 3, α = −2.5, β = 1.5, the clustering coefficient is constant
and low. Similar values are obtained for the clustering coefficient for critical parameters L = 3, α =
−1.5, β = 2.0, but for Hurst exponentH > 0.8 clustering coefficient increases. Small world networks,
L = 3, α = −1.5, β = 2.5 are clustered, the value of < c > is high. The value of clustering for
networks created with the constant signal is 0.8. Networks grown with white noise signals and signals
with H=0.6 have higher clustering values, while networks grown with signals with a Hurst exponent
larger than 0.6 have the same clustering value below 0.8.

3.3 Conclusions

In this chapter, we focused on the properties of growth signals and their influence on the system. The
network grows at a constant rate in the simplest complex network models. In reality, growth signals
are not constant, they are temporally correlated, and the main question is what impact they have on
the complex networks. We combined the aging model with nonlinear growth while we used real and
computer-generated long-range correlated signals for growing signals. The network structure depends
on the type of signals.

The aging model can generate different complex networks depending on the model parameters.
Our results showed that the most significant difference between networks generated with a constant
and fluctuating signal is found on the critical line, where networks have broad degree distribution.
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3. Evolving complex network structure dependence on the properties of growth signals

While temporal correlations do not affect the degree distribution, the networks generated with fluctu-
ating signals are more clustered and have more significant degree-degree correlations. The D-measure
indicates that structural differences exist even for networks generated with white noise. For multifrac-
tal signals, we find the larger values of the D-measure. Furthermore, if we focus only on monofractal
signals, characterized by the fixed value of Hurst exponent, H , the difference between networks rises
with H .

Away from the critical line, the fluctuations do not have a strong influence on the network structure;
D-measure is close to zero. In small-world networks, super-hubs emerge, and no matter how strong
correlations, trends, or cycles exist in the signal, the structure of small-world networks does not change.
Similar conclusions are found under the critical line, where networks with stretched exponential degree
distribution appear. As α << α∗, the new nodes attach to close ancestors, and monofractals do not
impact the network structure. Only signals withmultifractal properties may contribute to the formation
of hubs, which is reflected in larger D-measure between networks.

Previous research on temporal networks [54] has shown that edge activation properties impact the
complex system’s dynamics. Also, different studies indicated the importance of fluctuating signals
[27, 40, 35]. Our results imply that modeling the social and technological networks should include
non-constant growth. In combination with local linking rules, the properties of growth signals can
significantly alter the network structure.
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Chapter 4

The growth of social groups

The evolving complex networks have a tendency to separate into connected fragments, communities,
or groups of nodes. These communities are formed around certain topics and interests; they could
also evolve and influence network structure and members’ behavior. The distribution of the sizes
of these communities has a universal shape. To understand how the dynamics and structure of the
networks affect the distribution of community sizes, we combine empirical approaches and theoretical
modeling. We analyze real-world social networks and collect data about their structure and community
sizes, while theoretical modeling involves developingmodels able to capture essential features of social
networks and explain the emergence of the universal distribution of group sizes.

4.1 Empirical analysis of the social group growth

Two popular online platforms, Reddit and Meetup, are organized into different groups. On Reddit
1, users create subreddits, where they share web content and discussion on specific topics, so their
interactions are online through posts and comments. The Meetup groups 2 are also topic-focused,
but the primary purpose of these groups is to help users in organizing offline meetings. As meetings
happen face-to-face, Meetup groups are geographically localized, so we’ll focus on groups created in
two towns, London and New York.

The Meetup data cover groups created from 2003, when the Meetup site was founded, until 2018,
when we downloaded data using theMeetup API.We extracted the groups from London and NewYork
that were active for at least two months. There were 4673 groups with 831685 members in London
and 4752 groups with 1059632 members in New York. For each group, we got information about
organized meetings and users who attended them. From there, for each user, we can find the date
when the user participated in a group event for the first time; it is considered the date when the user
joined a group.

The Reddit data were downloaded from the https://pushshift.io/ site. This site collects posts and
comments daily; data are publicly available in JSONfiles for eachmonth. The selected subreddits were
created between 2006 and 2011, and we filtered those active in 2017. We removed subreddits active for
less than two months. The obtained dataset has 17073 subreddits with 2195677 active members. For

1https://www.reddit.com/
2www.meetup.com
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each post, we extracted the subreddit-id, user-id, and the date when the user created the post. Finally,
we selected the date when each user posted on each subreddit for the first time.

4.1.1 The empirical analysis of social groups

We have information about when the user attended the group event for eachMeetup group. In contrast,
we have detailed data about user activity for the subreddit, so we can extract the information when a
user creates a post for the first time. Those dates are considered as the timestamp when a user joins
to the group. So both datasets have the same structure: (g, u, t), where t is the timestamp when user
u joined group g. For each time step, we can calculate the number of new members in each group
Ni(t), and the group size Si(t). The group size at time step t is Si(t) =

∑k=t
k=t0

Ni(t), where t0 is
month when group is created. The group size is increasing over time, as we do not have information if
the user stopped to be active. Also, we calculate the growth rate as the logarithm of successive sizes
R = log(Si(t)/Si(t− 1)).

Even thoughMeetup and Reddit are different online platforms, we find some common properties of
these systems; see Figure 4.1. The number of groups and the number of new users grow exponentially.
Still, subreddits are larger groups thanMeetups. The distribution of groups sizes follows the lognormal
distribution:

P (S) =
1

Sσ
√

2π
exp(−(ln(S)− µ)2

2σ2
), (4.1)

where S is the group size and µ, and σ are parameters of the distribution.

The distributions for Meetup group sizes in London and New York follow a similar lognormal
distribution, with parameters µ = −0.93, σ = 1.38 for London and µ = −0.99 and σ = 1.49 for New
York. The group sizes distribution of Subreddits is a broad lognormal distribution that resembles the
power law; it has parameters µ = −5.41 and σ = 3.07. Still, we used the log-likelihood ratio method
and showed that lognormal distribution is a better fit for these data than the power-law. The Result
section is given a detailed analysis that supports these findings.

The simplest model that generates the lognormal distribution is the multiplicative process [99].
Gibrat used this model to explain the growth of firms. The main assumption of this model is that
growth rates R = log St

St−∆t
do not depend on the size S and that they are uncorrelated. Further, this

implies the lognormal distribution of the sizes, while the distribution of growth rates appears to be
a normal distribution, [120], [121]. Figure 4.2 shows the distribution of the logrates that follow a
lognormal distribution, contrary to the Gibrat law. Furthermore, logrates depend on the group size
4.2. For these reasons, the Gibrat law can not explain the growth of online social groups. Similar
conclusions are shown in recent studies about cities or the growth of the internet [122, 123].

The growth of online social groups has universal behavior independent of the group’s size. If
we aggregate the groups created in the same year y, and each group size normalizes with average size
< Sy >, syi = Syi / < Sy >wewill find that group sizes distributions for the same dataset and different
years fall on the same line, Figure 4.2. The same characteristics are observed for the distribution of
the normalized logrates 4.2. The growth is universal over time, and the group sizes distribution does
not change from year to year.
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Figure 4.1: The number of groups over time, normalized sizes distribution, normalized log-rates
distribution and dependence of log-rates and group sizes for Meetup groups created in London from
08-2002 until 07-2017 that were active in 2017 and subreddits created in the period from 01-2006 to
the 12-2011 that were active in 2017.
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4. The growth of social groups

Figure 4.2: The figure shows the groups’ sizes distributions and log-rates distributions. Each distribu-
tion collects groups founded in the same year and is normalized with its mean value. The group sizes
are at the end of 2017 for meetups and 2011 for subreddits.
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4.2 Theoretical model of social group growth

Meetup and Reddit engage members in different activities. Still, there are some underlying processes
same in both systems. Each member can create new groups and join existing ones. Both systems grow
in the number of groups and users, and each user can belong to an arbitrary number of groups. In the
previous section, we identified the universal patterns in the growth of social groups, but the growth
can not be modeled with the Gibrat law.

The complex network models allow us to simulate the growth of these systems considering all
types of members’ activities. We can identify how model parameters shape growth by varying linking
rules. Regarding the user’s group choice, it was shown that social connections play an important
role [124, 125]. On the other hand, users can be driven by personal interests. Diffusion between
groups could also be enhanced with rich-get-richer phenomena, where users join larger groups. With
a complex network model, we can easily incorporate the nonlinear growth in the number of users and
groups, as it is an important parameter that shapes the structure and dynamics of the complex network
[126, 127, 63].

The evolution of the social groups has been studied using the co-evolution model in the reference
[125]. This model consists of two evolving networks: the bipartite network, which stores connections
between users and groups, and the affiliation network of social connections. At each time step, active
users create new connections in the affiliation network; i.e., they make new friends. They also join
existing groups or create new ones, which updates the bipartite network. The group selection can
be random with probability proportional to the group size; otherwise, the group is selected through
social contacts. Using this model, authors have reproduced the power-law group size distribution
found in several communities, such as Flickr or LiveJournal. The empirical analysis of Meetup and
Reddit groups showed that group size distribution could be lognormal, meaning that some different
mechanisms control the growth of the groups.

We propose a model that is based on the co-evolution model. The main difference between those
two models is how model parameters are defined. First of all, in the co-evolution model user becomes
inactive after period ta, which is drawn from an exponential distribution with the rate λ, while in our
model probability that the user is active is constant, and the same for each user. The second difference
is how groups are chosen. While in the co-evolution model probability that the user selects a group
through social linking depends on the friend’s degree, we give preference to groups where a user has
a larger number of social contacts. We also modified the rules for random linking, so users choose a
group with uniform probability.

4.2.1 Groups growth model

The representation of the model is given in Figure 4.3. The model consists of two networks:

• Bipartite network B(VU , VG, EUG), where VU is set of users, VG set of groups and EUG set of
links between users and groups, where link e(u, g) indicates that user u is member of group g.

• Social network G(VU , EUU) describes the social connections e(u, v) between users u and v, and
V (U) is set of users same as in bipartite network.

The bipartite and social networks evolve. New users NU(t) are added to the network at each step.
It is how the set of users VU in the bipartite and social network can grow. At arrival, each new member
connects to a randomly selected user in the social network G. This allows new members to choose a
group based on social contacts [124]. The activity of old members is a stochastic process; old members
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are activated with probability pa. The set of active usersAU has newmembersNU(t) and old members
who decided to be active in that time step.

The active users can create a new group with probability pg. By this, group node g is added to the
set of group nodes VG in bipartite networkB. If an active user does not create a new group, it will join
the existing one with probability 1− pg, see lower panel on Figure 4.3. When the user creates a new
group or joins an existing one, the link e(u, g) is made in the bipartite network B.

Figure 4.3: The top panel shows bipartite (member-group) and social (member-member) networks.
Filled nodes are active members, while thick lines are new links in this time step. In the social
network, dashed lines show that members are friends but do not share the same groups. The lower
panel shows the model schema, where pg is the probability that the user creates a new group, while
paff is the probability that group choice depends on social connections. Example: member u6 is a
new member. First, it will make a random link with node u4, with probability, pg makes a new group
g5. With probability, pa member u3 is active, while others stay inactive for this time. Member u3

will, with probability 1− pg choose to join one of the old groups, and with probability paff linking is
chosen to be social. As its friend u2 is a member of a group g1, member u3 will also join group g1.
When member u3 joins group g1, it will make more social connections; in this case, it is member u1.

When joining existing groups, users may be influenced by social connections. This linking happens
with probability paff . The second case is that the user chooses a random group with probability
1− paff .

Social linking depends on the properties of a bipartite and social network. The networks can be
represented with matrices B and A, so if a link between two nodes exists, they have element 1. The
neighborhood of user u, Nu in a bipartite network is a set of groups in which the user is a member.
Similarly, we define the neighborhood of group g as Ng, as a set of users who belong to the group.
From there, we can define the probability Pug that the user u will choose group g. This probability is
proportional to the number of social contacts that the user has in the group

Pug =
∑
u1∈Ng

Auu1 . (4.2)

After selecting group g, user u is introduced to new members in the group and can make new
social contacts. In the simplest case, we could assume that all members belonging to a group are
connected. However, previous research on this subject [117, 128, 125] has shown that the existing
social connections of members in a social group are only a subset of all possible connections. We
selectX randommembers ui from a group g and make new connections in the social network e(u, ui).
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4.2. Theoretical model of social group growth

The model parameters pa and pg are important for controlling the number of users and groups.
With larger parameter values pa, more users become active, and the number of links in bipartite and
social networks grows faster. Parameter pg controls the rate at which new groups are created. For
example, if pg = 0, users will not create new groups. Also, if pg = 1, users will only create new
groups, and the resulting network will consist of star-like subgraphs. In real systems, we do not expect
extreme values for probabilities pa and pg. First, not all members are constantly active, and we do
not find a burst in the creation of the groups. From real data, we notice that there is always a higher
number of users than groups in social systems. The parameter paff how users choose groups, and with
higher paff social connections become more important.

4.2.2 Dependence of the group size distribution on model parameters

Before applying the group growth model on Meetup and Reddit, we consider the system where at each
time step, a constant number of users is added N(t) = 30. We also fix the probability that the user
is active to pa = 0.1, so we can, in more detail, explore the influence of parameters pg and paff . We
plot the group size distribution after the 60 steps of simulation. The values of pg and the pa influence
the number of groups, their maximum size, and the shape of group size distribution. With probability
pg = 0.1, users create a large number of groups, over 104, while with pg = 0.5, they are on the order
of magnitude 105.

Figure 4.4 show the obtained group size distributionswith power-law and lognormal fits. Users join
randomly chosen groups for a lower parameter value pg = 0.1 and paff = 0. Group size distributions
are approximated with lognormal. When the affiliation parameter is larger, paff = 0.5, the lognormal
distribution becomes broader, and so on, we find the larger maximum group size. If we increase the
parameter pg = 0.5, every second active user will create a group. At this group creation rate, the group
size distribution deviates from lognormal, but it is not explained with power-law either, right column
on Figure 4.4.

Figure 4.4: The distribution of sizes for different values of pg and paff and constant pa and growth of
the system. The combination of the values of parameters of pg and paff determine the shape and the
width of the distribution of group sizes.
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Finally, we compare how group size distribution depends on different rules in random linking. In
our model, the probability that the user chooses a random group is uniform. In contrast, in the co-
evolution model [125], probability depends on the group size, as in the preferential attachment model.
Instead of random linking, if we incorporate preferential linking, users with probability 1− paff tend
to choose larger groups, and group size distribution changes significantly. Similar to the co-evolution
model, we find the power-law distribution. Figure 4.5 shows the results from a model where we add a
constant number of new users at each time step. The probabilities pa and pg are fixed, and the affiliation
parameter takes values 0, 0.5 and 0.8. If we consider random linking, a top panel on Figure 4.5, the
distribution becomes broader with larger paff . On the other hand, with preferential linking, group size
distribution is a power law, and the paff parameter does not have a large impact on the distribution
shape.

Figure 4.5: Groups sizes distributions for groups model, where at each time step the constant number
of users arrive, N = 30 and old users are active with probability pa = 0.1. Active users make new
groups with probability pg = 0.1, while we vary affiliation parameter paff . With probability, 1−paff ,
users choose a group randomly. The group sizes distribution (top row) is described with a lognormal
distribution. The distribution has a larger width with a higher affiliation parameter, paff . The bottom
row presents the case where with probability 1 − paff , users prefer larger groups. For all values of
parameter paff , we find the power-law group sizes distribution.
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4.3 The growth of real social groups

The social systems do not grow at a constant rate. In Ref. [63], authors have shown that features of
growth signal influence the structure of social networks. For these reasons, we use the real growth
signal from Meetup groups located in London and New York and Reddit community to simulate the
growth of the social groups in these systems. Figure 4.6 top panel shows the time series of the number
of new members that join each of the three systems each month. All three systems have relatively low
growth initially, which accelerates as the system becomes more popular.

Figure 4.6: The time series of the number of new members (top panel), the ratio between old mem-
bers and total members in the system (middle panel), and the ratio between new groups and active
members(bottom panel) for Meetup groups in London, Meetup groups in New York, and subreddits.

We also use empirical data to estimate pa, pg and paff . Probabilities that old members are active pa
and that new groups are created pg can be approximated directly from the data. Activity parameter pa
is the ratio between the number of old members active in month t and the total number of members in
the system at time t. Figure 4.6 middle row shows the variation of parameter pa during the considered
time interval for each system. The values of this parameter fluctuate between 0 and 0.2 for London,
and New York-based Meetup groups, while for Reddit, it ranges between 0 and 0.15. To simplify our
simulations, we assume that pa is constant in time and estimate its value as its median value during
the 170 months for Meetup systems and 80 months of the Reddit system. For Meetup groups based in
London and New York, pa = 0.05, while Reddit members are more active on average, and pa = 0.11
for this system.

Figure 4.6 bottom row shows the evolution of parameter pg for the three considered systems. The
pg in month t is estimated as the ratio between the groups created in month t Ngnew(t) and the total
number of groups that monthNgnew(t)+Ngold(t), i.e., pg(t) = Ngnew(t)

Nnew(t)+Nold(t)
. We see from Figure 4.6

that pg(t) has relatively high values at the beginning of the system’s existence. In the beginning, these
systems have a relatively small number of groups and often cannot meet the needs for the content of all
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their members. As time passes, the number of groups and content offerings within the system grows,
and members no longer have a high need to create new groups. Figure 4.6 shows that pg fluctuates
less after the first few months, and thus we again assume that pg is constant in time and set its value to
median value during 170 months for Meetup and 80 months for Reddit. For all three systems, pg has
the value of 0.003.

The affiliation parameter paff cannot estimate directly from the empirical data. For these reasons,
we simulate the growth of social groups in each of the three systems with the time series of new
members obtained from the real data and estimated values of parameters pa and pg, while we vary
the value of paff . For each of the three systems, we compare the distribution of group sizes obtained
from simulations for different values of paff with ones obtained from empirical analysis using Jensen
Shannon (JS) divergence. The JS divergence [129] between two distributions P and Q is defined as

JS(P,Q) = H

(
P +Q

2

)
− 1

2
(H(P ) +H(Q)) , (4.3)

whereH(p) is Shannon entropyH(p) =
∑

x p(x)log(p(x). The JS divergence is symmetric, and if P
is identical toQ, JS = 0. The smaller the JS divergence value, the better the match between empirical
and simulated group size distributions. Table 4.1 shows the value of JS divergence for all three systems.
We see that for London-based Meetup groups; the affiliation parameter is paff = 0.5, for New York
groups paff = 0.4, while the affiliation parameter for Reddit paff = 0.8. Our results show that social
diffusion is important in all three systems. However, Meetup members are more likely to join groups at
random, while for Reddit members, their social connections are more important regarding the choice
of the subreddit.

Table 4.1: Jensen Shannon divergence between group sizes distributions from model (in the model,
we vary affiliation parameter paff) and data.

paff JS cityLondon JS cityNY JS reddit2012
0.1 0.0161 0.0097 0.00241
0.2 0.0101 0.0053 0.00205
0.3 0.0055 0.0026 0.00159
0.4 0.0027 0.0013 0.00104
0.5 0.0016 0.0015 0.00074
0.6 0.0031 0.0035 0.00048
0.7 0.0085 0.0081 0.00039
0.8 0.0214 0.0167 0.00034
0.9 0.0499 0.0331 0.00047

Figure 4.7 compares the empirical and simulation distribution of group sizes for three considered
systems. We see that empirical distributions for Meetup groups based in London and New York are
perfectly reproduced by the model and chosen values of parameters. In the case of Reddit, the dis-
tribution is very broad, and the model well reproduces the tail of the distribution. The bottom row
of Figure 4.7 shows the distribution of logarithmic values of growth rates of groups obtained from
empirical and simulated data. We see that the tails of empirical distributions for all three systems are
well emulated by the ones obtained from the model. However, there are deviations that are the most
likely consequence of using median values of parameters pa, pg, and paff .
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4.3. The growth of real social groups

Figure 4.7: The comparison between empirical and simulation distribution for group sizes (top panel)
and logrates (bottom panel).

4.3.1 Distributions fit

We compute the log-likelihood ratio R and p-value between different distributions and lognormal fit
[103] to determine the best fit for the group size distributions. Distribution with a higher likelihood is
a better fit. The log-likelihood ratio R has a positive or negative value, indicating which distribution
represents a better fit. To choose between two distributions, we need to calculate the p-value to be
sure that R is sufficiently positive or negative and that it is not the result of chance fluctuation from
the result close to zero. If the p-value is small, p < 0.1, it is unlikely that the sign of R is the chance
of fluctuations, and it is an accurate indicator of which model fits better.

Table 4.2 summarizes the findings for empirical data on group size distributions from Meetup
groups in London and New York and Reddit. Using the maximum likelihood method, we obtain the
parameters of the distributions [103]. The results indicate that lognormal distribution best fits all three
systems. Figure 4.8 shows the distributions of empirical data and lognormal fit on data. For Meetup
data, we present fit on stretched exponential distribution, which fits a large portion of data well. For
subreddits, distribution is broad and potentially resembles power-law. Still, the lognormal distribution
is a more suitable fit.

We use the same methods to estimate the fit for simulated group size distributions on Meetup
groups in London, New York, and Subreddits. Table 4.3 shows the results of the log-likelihood ratio
R and p-value between different distributions. We conclude that lognormal distribution is most suit-
able for simulated group size distributions. We confirm our observations by plotting lognormal and
stretched exponential fit on data, Figure 4.9.
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Table 4.2: The likelihood ratio R and p-value between different candidates and lognormal distribution
for fitting the distribution of groups sizes of Meetup groups in London, New York and in Red-
dit. According to these statistics, the lognormal distribution represents the best fit for all communities.

distribution
Meetup

city London
Meetup
city NY Reddit

R p R p R p

exponential -8.64e2 8.11e-32 -8.22e2 6.63e-26 -3.85e4 1.54e-100
stretched

exponential -3.01e2 1.00e-30 -1.47e2 7.78e-8 -7.97e1 5.94e-30

power law -4.88e3 0.00 -4.57e3 0.00 -9.39e2 4.48e-149
truncated
power law -2.39e3 0.00 -2.09e3 0.00 -5.51e2 2.42e-56

Figure 4.8: The comparison between lognormal and stretched exponential fit to London and NY data,
and between lognormal and power law for Subreddits. The parameters for lognormal fits are 1) for
city London µ = −0.93 and σ = 1.38, 2) for city NY µ = −0.99 and σ = 1.49, 3) for Subreddits
µ = −5.41 and σ = 3.07.

Table 4.3: The likelihood ratio R and p-value between different candidates and lognormal distribu-
tion for fitting the distribution of simulated group sizes of Meetup groups in London, New York
and Reddit. According to these statistics, the lognormal distribution represents the best fit for all
communities.

distribution
Meetup

city London
Meetup
city NY Reddit

R p R p R p

exponential -6.27e4 0.00 -5.11e4 0.00 -1.26e5 7.31e-125
stretched

exponential -1.01e4 1.96e-287 -6.69e3 1.46e-93 -1.39e4 0.00

power law -2.29e5 0.00 -3.73e5 0.00 -4.38e4 0.00
truncated
power law -9.28e4 0.00 -1.55e5 0.00 -9.12e4 0.00
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4.3. The growth of real social groups

Figure 4.9: The comparison between lognormal and stretched exponential fit to simulated group size
distributions. The parameters for lognormal fits are 1) for city London µ = −0.97 and σ = 1.43, 2)
for city NY µ = −0.84 and σ = 1.38, 3) for Subreddits µ = −1.63 and σ = 1.53.

4.3.2 Users partition in bipartite network - degree distribution

So far, the group growth model has focused on the degree distribution of groups and under what rules
the universalities in the system reflected in the lognormal distribution of group sizes emerge. The
model parameter pa controls the users’ activity level; otherwise, it shapes the degree distribution of
users in the bipartite network. As this probability is constant and uniform among all users, we do
not expect rich properties of users’ degree distribution. The expected distribution is exponential for
growing random graph [130], and the groups’ growth model produces the same property. In Figure
4.10, blue dots show degree distributions of modeled Meetup and Reddit systems. This distribution is
very well fitted with exponential form. Furthermore, in empirical data, these distributions are long-
tailed, green dots in Figure 4.10, so the model can not reproduce the degree distribution of the users.
In real systems, the probability that the user is active does not have to be uniform and constant. The
previous work proposed that each user has a specific lifetime [131], but different linking rules could
play an important role in shaping users’ degree distribution. For example, pa could be preferential
toward high-degree users or even be time-dependent.
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Figure 4.10: Users degree distributions from empirical data are compared to degree distributions
observed by groups growth model.
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4.4 Conclusions

We apply complex network theory and statistical physics methods to describe the evolution of online
social groups, Meetups in London and NewYork and Reddits. Instead of studying user interaction
networks in a single group, which is a common approach, we are interested in quantifying how users
interact with the system of multiple groups and determining which processes drive the growth of
groups. Similar systems have been analyzed before. For example, it was found that the distribution
of the cities or firms follows the lognormal and stays stable, showing universal behavior. Contrary,
the previous work on online social groups indicated that group size distributions of LiveJournal and
Youtube follow power-law [125]. On the other hand, for Meetup and Reddit, we find the emergence of
lognormal distribution of group sizes, and the distribution of Reddit is much broader. Furthermore,
these systems grow exponentially in the number of groups and new users.

Meetup and Reddit may be platforms with different purposes, but on the lower level, both systems
could be described with the same processes users perform: they can join existing groups or create new
ones. Also, in these systems, new users constantly arrive. As we find the lognormal distribution in
group sizes, our first attempt was to describe this system with the Gibrat model. It is a proportional
growth size model, where group size distribution converges to the lognormal distribution while the
log rates take the normal distribution. The second condition still needs to be met, so we need to use a
more intricate method.

To explore the growth of these systems in more detail, we used a model where the social system
is presented with evolving bipartite and social networks [125]. The bipartite network has partitions of
users and groups, and a link exists if a user is a group member. The social network describes the social
connections between members. At each time step, new users arrive in the system, following the time
series of new users, and with probability, pa old members also decide to be active. The active users
can create a new group with probability pg; otherwise, they will join existing groups. Their decision to
select a group based on social connection is determined with probability paff ; otherwise, the choice
is random.

We estimated model parameters pa, pg, and paff from empirical data. We saw that model ap-
proximates well the empirical distributions. For Meetup groups in London and New York, the paff
parameter is smaller, while for Reddit, paff is higher, resulting in broader group size distribution. It
also means that for Reddit members, social connections are more important for the choice of groups.

With results in this chapter, we contribute to the knowledge of the growth and segmentation of
the socio-economic systems. Our work was motivated by the Co-evolution model [125]. The authors
explore the social groups in which group size distribution scales as power-law. We identified different
universality class, the system where group size distribution follows log normal. Further, we marked
off a set of linking rules which led to lognormal group size distribution and compared these two cases.
By this, we expanded the classes of social systems that can be modeled.
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Chapter 5

The sustainability of evolving
knowledge-based communities

One of the key findings from the research on complex networks is that the structure of social interac-
tions plays a significant role in their sustainability [117, 132]. Social interactions can be positive and
negative, playing a vital role in shaping network dynamics. Positive interactions, such as cooperation,
can lead to the formation of clusters or communities within the network, promoting its sustainability
[133, 134]. In contrast, negative interactions, such as competition, can lead to the breakdown of the
network structure and decrease its sustainability [135, 132]. Social interactions can also influence the
emergence of collective behavior, which can significantly impact its sustainability [117, 132]. In this
chapter, we study Stack Exchange communities’ structure, dynamics, and sustainability.

The Stack Exchange (SE) is a network of question-answer websites on diverse topics. In the
beginning, the focus was on computer programming questions with Stack Overflow 1 community. Its
popularity led to the Stack Exchange network, which counts more than 100 communities on different
topics. The SE communities are self-moderating, and the questions and answers can be voted, allowing
users to earn Stack Exchange reputation and privileges on the site.

The new site topics are proposed through site Area51 2, and if the community finds them rele-
vant, they are created. Every proposed StackExchange site needs interested users to commit to the
community and contribute by posting questions, answers, and comments. After a successful private
beta phase site reaches the public beta phase, other members can join the community. The site can be
in the public beta phase for a long time until it meets specific SE evaluation criteria for graduation.
Otherwise, it may be closed with a decline in users’ activity. However, SE criteria for graduation have
not been applied consistently on every SE site, as many sites graduated without reaching all required
thresholds. As those measures only quantify the overall number of questions, answers, or highly active
users, we want to understand how the SE community structure evolves and identify factors that influ-
ence sustainability. The need to share knowledge with others motivates users to use Q-A platforms.
Still, the fact that they interact with each other reveals their sense of belonging to the community and
the presence of trust among users. Our proxy for measuring trust in the community is the Dynamic
Interaction Based Reputation Model.

1More information about StackOverflow is available at https://stackoverflow.co/, and a broad introduc-
tion to the SE network is available at: https://stackexchange.com/tour.

2Visit https://area51.stackexchange.com/faq for more details about closed and beta SE communities
and the review process.
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5. The sustainability of evolving knowledge-based communities

We focused analysis on four pairs of SE communities with the same topic. Astronomy, Literature,
and Economics are active communities 3 The first time, these communities were unsuccessful and thus
closed. We also compare closed Theoretical Physics with the Physics site, considering that those two
topics engage similar type of users.

5.1 Network properties of Stack Exchange data

On Stack Exchange sites, the interaction between users happens through posts. As we are interested
in examining the characteristics of the users, we map interaction data to the networks. Using com-
plex network theory, we can quantify the properties of obtained networks and compare different SE
communities, e.g., alive and closed SE sites.

In the user interaction network, the link between two nodes, user i and j, exists if user i answers
or comments on the question posted by user j or user i comments on the answer posted by user j. The
created network is undirected and unweighted, meaning that we do not consider multiple interactions
between users or the direction of the interaction.

The first approach is to aggregate all interactions in the first 180 days and study the properties of
the static network. Many local and global network measures are dependent [12], and it was shown
that degree distribution, degree-degree correlations, and clustering coefficient are sufficient for the
description of the properties of complex networks [136].

We calculate the degree distribution, Figure 5.1, and compare the distributions of active and
closed communities of the same topic. Degree distributions between active and closed communities
follow similar lines.
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Figure 5.1: Degree distribution of four pairs of Stack Exchange websites: Physics, Economics, As-
tronomy and Literature.

If we take a look into neighbor degree depending on the node degree knn(k), Figure 5.2, we find
that there are structural differences between networks formed in the active and closed communities.
On average, k-degree users in active communities have neighbors with a larger degree than is the
case in closed communities. The results are consistent for Physics, Economics, and Literature. For
Astronomy, we find different behavior, where the knn(k) distributions of closed communities are on
top of the distributions of the active ones.

A study on dynamics of social group growth shows that links between one’s friends that are mem-
bers of a social group increase the probability that that individual will join the social group [128].

3Astronomy, Literature, and Economics graduated on December 2021, and during our research, they were still in the
public beta phase.
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Figure 5.2: Neighbor degree dependence on the node degree of four pairs of Stack Exchange websites:
Physics, Economics, Astronomy and Literature.

Furthermore, successful social diffusion typically occurs in networks with a high value of clustering
coefficient [137]. These results suggest that high local cohesion should be a characteristic of sustain-
able communities. The dependence of the clustering coefficient on the node degree is shown in Figure
5.3. As expected, we find that active communities are more clustered.
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Figure 5.3: Clustering coefficient dependence on the node degree of four pairs of Stack Exchange
websites: Physics, Economics, Astronomy and Literature.

Instead of creating a static network from the data in the first 180 days of community life, we study
how network snapshots evolve. At each time step t, we create network snapshot G(t, t + τ) for the
time window of the length τ . We fix the time window to τ = 30 days and slide it by t = 1 day through
time. A discussion of how the length of the sliding window influences the results is given in Appendix
A. Sliding the time window by one day; we can capture changes in the network structure daily, as two
30 days of consecutive networks overlap significantly.

Here we investigate how the SE community’s clustering coefficient changes with time by calculat-
ing its value for all network snapshots. We compare the behavior of clustering for active and closed
communities on the same topic to better understand how the cohesion of these communities is changing
over time. Figure 5.4 shows the evolution of the mean clustering coefficient for all eight communities.
All communities still alive are clustered, with the value of the mean clustering coefficient higher than
0.1. Physics, the only launched community, has a clustering coefficient value above 0.2 for the first
180 days.

During the larger part of the observed period, an active community’s clustering coefficient is higher
than its closed pair’s clustering coefficient. Let’s compare active communities with their closed coun-
terpart. The closed communities have a higher value of the mean clustering coefficient in the early
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Figure 5.4: Mean clustering coefficient of four pairs of Stack Exchange websites: Physics, Eco-
nomics, Astronomy and Literature.

phase, while later communities that are still active have higher clustering coefficient values. These
results suggest that all communities have relatively high local cohesiveness and that lower clustering
coefficient values may indicate its decline in the later phase of community life.

5.2 Core-periphery structure

Previous research on Stack Exchange communities has attempted to explain how different types of
users interact. In Question-Answer communities are expected to be popular and casual users [138,
139]. Popular users generate the majority of interactions in the system; they are experts in the com-
munity and take care of answering questions and engaging the discussions through comments. As
popular users, they considered the 10% of the most active users and showed that popular users are
highly connected with themselves and casual users.

We tested this theory on all eight communities. We focused on 30 days of sub-networks and showed
how the Number of links per node among popular users and between popular and casual users evolves,
Figure 5.5. We also compare active and closed communities of the same topic, so links per node in
active sites are more significant than in closed communities.

Although we find the difference between active and closed communities, the split according to 10%
most active users does not guarantee that all popular users will be considered. Furthermore, the smaller
group of frequently active users is similar to the core users in the core-periphery structure. This is why
we will detect the core of each 30-day network. By this, separation is based on the network structure
and is more consistent, as using the algorithmic approach, we optimize the connectivity inside the
core, periphery, and among them. The core-periphery structure has a core that is a densely connected
group of nodes, while the periphery has a low density [77, 66].

We use the Stochastic Block Model (SBM) to infer the core-periphery structure of each 30 days
network snapshot and analyses how the core structure evolves. The SBM algorithm is adapted for
inferring the core-periphery structure, [66]. For each 30 days network, we run the sample of 50 iter-
ations and choose the model parameters according to the minimum description length. As stochastic
models start from the random configuration, they can converge to different states, so we analyzed the
stability of the inferred structures. More details are given in the appendix. We found that obtained
structures differ, but the minimum description length does not fluctuate much. Also, different similar-
ity measures between inferred core configurations take values higher than 0.9, indicating that the core
structure is stable.

The Number of users in the core of active communities is higher than in closed communities, the
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Figure 5.5: Links per node among popular users (top 10% of users) and between popular and casual
users (everyone but popular users) of four pairs four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

top panel on Figure 5.6. On the other hand, we do not find a big difference between the fraction of core
users in the closed and active communities. Furthermore, the fraction of users in core differs from the
10%, and it is constantly changing, bottom panel 5.6.
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Figure 5.6: The size of the core (top) and a fraction of users in the core (bottom) of four pairs four
pairs of Stack Exchange websites: Physics, Economics, Astronomy and Literature.

The Number of users is constantly changing. To quantify the stability of the core structure, we
compute the Jaccard’s coefficient between core users in networks at time points t1 and t2. The Jaccard
coefficient range from 0 to 1, so the larger values of the Jaccard index indicate the more similar cores.
The highest values are found around diagonal elements where we compare networks closer in time,
see Figure 5.7. The core membership changes over time, and the change is more frequent in closed
communities.
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Figure 5.7: Jaccard index between core users in sub-networks at time points t1 and t2 for four pairs
of Stack Exchange websites: Physics, Economics, Astronomy and Literature.

The average Jaccard index between cores in networks separated by time interval ti − tj with the
standard deviation confidence interval are shown in Figure 5.8. The Jaccard index decreases with the
relative time difference between networks faster in closed communities. The relatively high overlap
between distant networks confirms that active networks have a more stable core.
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Figure 5.8: Jaccard index between core users in 30 days sub-networks for all possible pairs of 30 days
sub-networks separated by time interval |ti − tj| for four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

Finally, we examine how the users’ connectivity in and between the core and periphery evolves. In
Figure 5.9, we show the L/N in the core, which is proportional to the average degree of the network
2L/N . The Physics community has more than twice the connectivity than closed Theoretical Physics.
For Literature, we also find higher connectivity. Still, at the end of the observation period, the con-
nectivity in the active site drops and becomes similar to that in the closed one. The difference between
active and closed sites is unclear for Economics and Astronomy. At the beginning of the period, con-
nectivity is similar for the sites on the economic topic. After 50 days of community life, connectivity
in active communities is starting to rise, while in the case of closed economics, it is dropping. As-
tronomy connectivity is higher in closed communities in the first 50 days. After this period, we find a
sudden rise in the connectivity of active astronomy, but again it drops and becomes comparable to the
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connectivity values in the closed site. Similar conclusions can be drawn for the connectivity between
the core and periphery. The largest difference between active and closed sites is observed in Physics.
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Figure 5.9: Number of links per node in core (top panel) and between core and periphery (bottom
panel) for four pairs of Stack Exchange websites: Physics, Economics, Astronomy and Literature.

5.3 Dynamical Reputation on Stack Exchange communities

We further explore the difference between active and closed communities through the dynamic repu-
tation model. With this model, we calculate each user’s reputation in the community, and reputation
is directly connected with the collective trust in the network.
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Figure 5.10: Number of active users (top panel) and mean reputation (bottom panel) of four pairs of
Stack Exchange websites: Physics, Economics, Astronomy and Literature.
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Dynamical reputation model, introduced in section 2.6, has three parameters. We explored dif-
ferent parameter combinations to find the set of parameters the most suitable for a given system of
Stack Exchange communities. First, the basic reputation is set to Ibn = 1. The cumulative factor is
α = 2, as we want to emphasize the frequent interactions. The parameter β controls the reputation
decay due to user inactivity. After the last activity, the user has a positive reputation for some period
and is still impacting the other users. We optimized the Number of users with a reputation larger than
1 according to the number of users in the 30 days network and concluded that parameter β = 0.96. A
more detailed discussion about the choice of parameters is in the appendix B.

With selectedmodel parameters, we calculated the reputation of each user. If a user has a reputation
larger than 1, it is considered active, but when the reputation drops below this threshold means that
the user has not been active long enough; it does not make a valuable contribution to the community.
The Number of active users and their mean reputation for different SE sites is shown in Figure 5.10.

From the properties of networks, we found that active communities are more cohesive and have
a more stable core. Furthermore, we focus our analysis on the dynamic reputation of the core users.
Figure 5.11 shows the evolution of mean user reputation within the core. Active communities have a
larger reputation than their closed counterpart. As it is previously suggested, the largest difference is
found in the Physics community. For other communities, the difference is not so striking; on average,
the core of active communities has a larger reputation than the core of closed communities.
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Figure 5.11: Dynamical reputation within the core of four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

In the network’s core are active users, and we expect a higher dynamic reputation than the total
reputation of users belonging to the periphery. The ratio between core and periphery in Physics is
always higher than in Theoretical Physics, and similar conclusions are observed in the Literature. In
the early days of Economics, we find a different pattern; the core-periphery reputation ratio is larger
for closed Economics, but later it changes in favor of active Economics. Astronomy shows different
behavior where the closed community where dominant; closed astronomy had a larger core-periphery
reputation ratio.

The distribution of the dynamic reputation of SE communities is skewed. We calculated the Gini
coefficient to better express the difference between distribution reputations. This measure quantifies
the inequality among users’ reputations. The Gini coefficient is calculated based on reputation values
for each day; see Figure 5.13. The Gini coefficient is larger than 0.5 in the first 180 days. Also,
the active communities showed more reputation inequality, and dynamical reputation has a larger
variation.

Further, we investigate how the properties of user interaction networks correlate with the user’s
reputation. For example, we can measure the assortativity coefficient among connected users in the
network. For each 30 days user interaction network, we calculate the reputation assortativity, using
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Figure 5.12: Ratio between the total reputation within network core and periphery of four pairs of
Stack Exchange websites: Physics, Economics, Astronomy and Literature.
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Figure 5.13: Gini index of dynamic reputation within the population of four pairs of Stack Exchange
websites: Physics, Economics, Astronomy and Literature.

the reputation value observed on the last day of the time window in which the network is constructed.
With this measure, we quantify whether users tend to connect with users with similar reputations or
not. Figure 5.14 shows results where we compare each SE community’s active and closed sites. Assor-
tativity has small values in all communities’ reputations, not larger than |0.3|. In active communities,
this is a mostly negative measure showing expected user behavior: popular users, who often have a
high dynamical reputation, interact with users with low dynamical reputations. Astronomy is an out-
lier again; during the first 100 days active community had a positive reputation for assortativity, and
after this period, it started behaving similarly to other active communities.
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Figure 5.14: Dynamic Reputation assortativity in the network of interactions of four pairs of Stack
Exchange websites: Physics, Economics, Astronomy and Literature.
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Finally, we are interested in how dynamical reputation correlates with network measures. We
compare the node’s centrality in the 30-day network and the node’s reputation on the last day of the
30-day sliding window. The correlation coefficient between dynamic reputation and node degree is
very high; see the top panel on 5.15. The bottom panel shows correlations between dynamic reputation
and betweenness centrality in the network, which are also high. We find that correlations are mostly
higher in active communities; only for astronomy do they take similar values during the observed
period.
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Figure 5.15: Coefficient of correlation between users’ Dynamic Reputation and users’ network degree
(top) and users’ betweenness centrality (bottom) of four pairs of Stack Exchange websites: Physics,
Economics, Astronomy and Literature.

5.4 Conclusions

The Stack Exchange sites bring together users interested in knowledge sharing. They create different
topic communities where each member can post topic-related questions and get the correct answer
from other users. The SE developed, in one sense, the trust among users, as many people see the SE
as a valuable source of knowledge and seek their answers directly in these communities. Not all SE
sites were launched, and some were closed because they did not fulfill the Stack Exchange criteria of
the successful community. These criteria rely on basic measures such as the number of active users,
posted questions, and answers, so we were interested in investigating the structure and dynamics of
SE communities to understand how trustworthy and self-sustainable community emerges.

This chapter presented results on four pairs of SE communities: Astronomy, Literature, Economics
and Physics. The first time each of them failed to create a sustainable network, but later the same topic
was proposed communities are still active. While this sample may be small, we wanted to focus only
on communities on the same topic, so our comparison between closed and active communities is not
topic related. Also, we chose two communities from STEM and two from humanities which allowed
us to remove field-related biases.

We studied how network properties evolve during the first 180 days. To closely examine the struc-
ture, we constructed the sub-networks within a 30days window. Sliding window by day, we contin-
uously measure the structure of the network. The clustering coefficient is higher in active commu-
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nities. The previous study suggested two groups of users in Q-A communities, popular and casual
users [139]. This observation motivated us to closely analyze the network segmentation in the core-
periphery structure. Based on Bayesian Stochastic modeling, we identify each 30-day network core
user. Furthermore, using the DIBRM model[67], we quantify each user’s reputation. This reputation
is our proxy of trust, and its dynamics reflect some of the essential properties of trust. When a user is
frequently active, the reputation increases; when inactivity declines, the user becomes less important.

Used methods have several parameters which need to be tuned according to specific systems prop-
erties. First of all, we showed that the choice of the sliding window does not influence our conclusions,
as observed system properties follow similar patterns for different values of sliding windows. Tuning
the DIBRM parameters was more changeling. Our primary assumption was that the number of users
with a positive reputation should resemble the number in the 30-day window.

Our results suggest that core members are important for the sustainability of the community. The
core members have a high reputation and contribute to the community’s survival. The core is more
connected in active communities, and larger connectivity is found between the core and periphery
in active communities. The most noticeable difference between closed and active communities is in
Physics. Physics is the only community that graduated after 90 days, while other active communities
stayed in the beta phase for a couple of years; recently, their status changed to beta. On the other
hand, closed Astronomy showed larger network properties than active one, but as time progressed,
this changed in favor of the active community. The larger mean reputation and its dynamics among
core users in active networks are important indicators of a thriving community.
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Chapter 6

Conclusions

In this thesis, we studied the complex network models to understand the evolution of online social
systems. The complex systems change over time, even though we often find the system’s collective
behavior that stays universal. The specific interactions among elements could lead to different kinds
of organizational patterns. This thesis aims to understand the factors that drive the system’s growth
and change its structural properties and sustainability. The underlying methodology is introduced in
chapter 2. The first part explained the most important properties of network structure and the growing
network models. The second part describes the statistical methods useful for the empirical analysis of
the properties of the complex system.

In chapter 3, we discussed how nonlinear growth signal shapes the structure of the complex net-
work. The previous models combined linking rules with constant growth; however, empirical analysis
of various real systems and agent-based simulation [39, 40] have indicated that properties of growth
signal influence the dynamics of complex systems, as well as the structure of its interaction network.
To investigate the connection between the features of the growth signal and the structure of an evolv-
ing network, we added one more parameter in the growth of the aging network model, the fluctuat-
ing growth signal, and examined how network properties change with the signal features. The most
considerable influence is found on scale-free networks. Many interaction networks from social, tech-
nological, or biological systems have scale-free structures; they are correlated and clustered. These
results suggested that it is important to study growing signals’ properties. Signals from natural sys-
tems show trends and cycles and are characterized by long-range temporal correlations. The structure
of the generated complex networks depends on the signal properties, and it is necessary to quantify
these properties as they affect the network’s topology differently. For example, the most significant
difference between networks generated with fluctuating and constant signals is found for signals with
multi-fractal properties. This difference is more negligible for monofractal signals or uncorrelated
white noise. Fluctuating signals promote the creation of hubs in the network and shorten the paths
between nodes.

Chapter 4 presented the results of the universal characteristics of the growth of online social
groups—the growth of the system influence the structure of the interaction network. The distribu-
tion of the sizes of the complex systems usually follows some universal curve. In many cases, it is
lognormal or power-law. The distribution of the dimensions of the city sizes could be explained with
Zipf law [140]. The number of citations scales as lognormal distribution [21]. In this thesis, we empir-
ically analyzed the growth of online social systems. They consist of groups whose growth is universal.
The empirical analyses of Meetup groups and Reddits showed their group size distribution follows
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6. Conclusions

universal lognormal distribution, stable over time. This research aimed to examine the structure and
dynamics of the interaction network. We proposed the bipartite group model to gain a deeper under-
standing of the factors that affect the growth of social groups in a complex system. The growth in
this model is driven by fluctuating signals, similar to the paper presented in chapter 3: we use a time
series of new members from Meetup and Reddit. The number of groups also grows as each user can
create a new one; otherwise, the user joins the old group, and different linking rules determine his
decision. One option is that the user joins a group where she already has friends; it’s determined with
affiliating probability paff , while with probability 1− paff , the user chooses a random group. Group
size distribution in this model is lognormal. The width of the lognormal distribution depends on the
probability paff ; it becomes broader with a larger probability paff .

In chapter 5, we focused on the factors that influence the sustainability of evolving complex net-
works. Specifically, we investigated the sustainability of social groups on the Question-Answers plat-
form Stack Exchange. Each site goes through several phases before being successful and launched.
During that period, the site may be closed. We selected several topics in which sites for the first time
were closed, but in the second attempt, they survived and are still active. We provide a detailed anal-
ysis of active and closed Stack Exchange sites, compare their properties and identify what is crucial
for the community’s survival. We map user interactions observed in 30 days onto complex networks.
Further, we slide the window by one day and follow the evolution of the network.

According to the clustering properties of these networks, sustainable communities have a higher
value of local cohesiveness. We use the Bayesian stochastic blockmodeling approach [66] to determine
the core-periphery structure of these networks. We find that sustainable communities develop stable,
better-connected cores. To analyze the evolution of collective trust in SE communities, we modify
the Dynamic InteractionBased Reputation Model [67] (DIBR) model. We use the DIBR model to
measure the user’s reputation based on the frequency of their activity and its evolution during the first
180 days. The trust between core members of active communities develops early and is higher than in
closed communities during the first 180 days. The early emergence of a stable, trustworthy core may
be a crucial factor in determining a knowledge-sharing community’s sustainability.

The question raised by this study is how trust emerges among users in question answers commu-
nities where the users tend to share knowledge and their communication is neutral or positive. Some
communities started promoting hate speech on different online platforms, resulting in the banning.
But, banned users remained in the online world; they moved their communities to alternative platforms
without strict policies, such as Voat. Later, Voat users also formed no-hate speech topics, and there is
an open question does the emergence of trust differ among different communities? On the other hand,
exploring higher-order representations of online communities would be interesting. Threads, where
more people reply to one post, could be studied using simplicial complexes to reveal complex network
structure patterns. Furthermore, the research that employs agent-based modeling allows us to connect
closer the actions of single users with the emergence of collective phenomena and the rise and fall of
trust in the system.

The results from this thesis contribute to our knowledge about the structure and dynamics of evolv-
ing complex networks and how they are mutually linked. We explored different factors that influence
network growth, structural properties, and sustainability. The growth signal impacts the network’s
structural properties, while social interactions affect group segmentation. The sustainability of evolv-
ing networks depends on core-periphery structure, the core’s stability, and users’ ability to form a
trustworthy core. Research presented in this thesis confirms that dynamics is linked with the struc-
ture of its interaction network, while the structure directly determines the function, organization, and
sustainability of complex systems.

Complex network theory is a rapidly growing field, but many open research questions exist. With
the increase in the availability of the data of various complex systems, the analysis of complex networks
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becomes evenmore popular and shows excellent potential for future work. While wemostly understand
how to describe the network’s structure, and many methods are adapted to deal with evolving complex
networks, we still need insights into how to design networks in order to control their properties, prevent
epidemic outbreaks, and enhance or diminish information diffusion. Incorporating spatial or temporal
constraints in networkmodels could provide a more accurate picture of systems evolution. Community
detectionmethods are beneficial for understanding network structure and function, but it lacksmethods
that easily adapt to network changes over time. The current development of deep learning on graphs
could fill existing gaps and provide more accurate predictions of complex network systems’ behavior.
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Appendix A

Stack Exchange

Stack Exchange data are public and regularly released. As closed communities were active between
180 and 210 days, we extracted only the first 180 days of data. Given that the first few months can be
crucial for the further development of the community [141], we are interested in the early evolution
of Stack Exchange sites.

Detailed information about questions, answers, and comments is available for each SE community.
Each post is labelled with a unique ID, the user’s ID who made the post, and the creation time. On
Stack Exchange, users interact on several layers and those interactions are considered positive:

• Posting an answer to the question; for every question, we extract the IDs of its answers

• Posting a comment on the question or answer; for every question and answer, we selected the
IDs of its comments

• Accepting answer; for each question, we selected the accepted answer ID

Even though posts can be voted on and downvoted, information about a user who voted is absent,
so we do not consider these interactions between users. Comments can not be downvoted, while we
find only around 3% negatively voted answers and questions, Table A.1.

Table A.1: Percentage of negatively voted interactions.

Site Status Questions Answers

Physics
Beta 5% 4%

Closed 1% 2%

Astronomy
Beta 3% 3%

Closed 2% 1%

Economics
Beta 4% 4%

Closed 7% 4%

Literature
Beta 2% 5%

Closed 2% 1%
Average 3.2% 3%
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A. Stack Exchange
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Figure A.1: Number of active questions within seven days sliding windows. Solid lines - active sites;
dashed lines - closed sites.

A.1 Comparison between active and closed SE communities

Table A.2 compares the first 180 days between closed and active communities. Regarding basic statis-
tics, active communities had a larger number of users, questions, answers and comments. Another
simple indicator if the community will graduate or decline can be time series of active questions for
seven days in Figure A.1. The question is active if it had at least one activity, posted answer, or com-
ment during the previous seven days. We find that live communities have more active questions after
the first three months. Still, this difference is smaller for literature and astronomy. For astronomy, we
observe that closed communities had more active questions in the early period of community life.

Table A.2: Community overview for first 180 days, Number of users nu, number of questions nq,
number of answers na, number of comments nc.

Site Status First Date nu nq na nc

Astronomy
Closed 09/22/10 336 474 953 1444
Beta 09/24/13 405 644 959 2170

Economics
Closed 10/11/10 275 368 458 1253
Beta 11/18/14 648 1024 1410 3553

Literature
Closed 02/10/10 284 318 523 1097
Beta 01/18/17 478 910 907 3301

Physics
Closed 09/14/11 281 349 564 2213
Launched 08/24/10 1176 2124 4802 15403

Similarly, the official Stack Exchange community evaluation process considers simplemetrics 1. To
determine the success of sites they measure how many questions are answered, how many questions
are posted per day, and how many answers are posted per question. There are two measures: the
number of avid users and the number of visits that are not easily interpreted from the data. The site
is healthy if it has ten questions per day, 2.5 answers per question and more than 90% of answered
questions. For less than 80% of answered questions, five questions per day and 1 question per answer
site needs some work.

We calculated Stack Exchange statistics for astronomy, economics, literature and physics and re-
sults are presented in Table A.3. After 180 days, only live physics is a healthy site while other live
communities are at least in two criteria labelled as okay. Closed sites mostly need some work; the

1https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/
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A.1. Comparison between active and closed SE communities

exception is closed astronomy. For example, it has excellent percent of answered questions and okay
answer ratio.

Table A.3: Community overview for first 180 days according to SE criteria.

Site Status Answered Questions per day Answer ratio

Astronomy
Closed 95 % 2.62 2.02
Beta 96 % 3.57 1.49

Economics
Closed 68 % 2.04 1.25
Beta 84 % 5.66 1.37

Literature
Closed 79 % 1.77 1.65
Beta 74 % 5.04 1.10

Physics
Closed 83 % 1.93 1.64
Beta 93 % 11.76 2.74

Stack Exchange criteria excellent > 90 % >10 > 2.5
needs some work < 80 % < 5 < 1

These simple measurements presented in tables A.2 and A.3 and Figure A.1 do not provide us clear
indications about community sustainability. Only for physics topics the difference between active and
closed communities is evident, while for other communities, it is not so clear. Thus, we need deeper
insights into the structure and dynamics of these communities to understand. The structure of social
interactions within communities and the dynamics of collective trust may provide a better explanation
of why some communities succeed, and others die.
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Appendix B

Selection of Dynamical Reputation Model
parameters

The Dynamical Reputation Model(DIBRM) has several tuning parameters. In previous studies, the
model [67, 142] was used to approximate real reputation on Stack Exchange sites [142], so model
parameters were ta = 2, β = 1, α = 1.4, while the basic reputation value Ibn was +2 or +4. As
β = 1, the forgetting factor is not considered. Our goal was to describe how reputation influences
the sustainability of the community. Further, we wanted to resemble the concept of trust. Our tuning
procedure differs from previous studies on Stack Exchange sites, and we ended up with different model
parameters.

For basic reputation contribution, we selected Ibn = 1. With these values, each interaction has
an initial contribution +1.

For characteristic time ta we choose ta = 1. The median/average time between subsequent
interactions is 1day. If the time window between two interactions is less than 1day, their reputation
will rise; otherwise, the reputation decays.
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Figure B.1: Single users reputations, left panel shows sporadically active user, while user on right
makes frequent interactions.

The parameter α represents the cumulative factor. The burst in activity and recent interactions
lead to higher reputation values with larger parameter α. Figure B.1 represents the reputations of two
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B. Selection of Dynamical Reputation Model parameters

selected users from SE. The first is sporadically active, while the second makes frequent interactions.
We calculate the reputation of these two users for different parameters (α, β). We selected α = 2.

The reputation decay determines the forgetting factor β. We set the parameter on β = 0.96.
The reputation should reflect the properties of the trust. This means we do not expect β to be high,
as inactive users keep larger reputation values. In Figure B.1 for β = 0.99, even for the little active
user, reputation stays higher during the observed period. With lower β, it may drop to the reputation
threshold and indicate that the user stopped to be active.

We compared the number of users with an estimated reputation higher than 1 for different parame-
ters β. We concluded that β close to 0.96 approximates the number of users with recorded interactions
in a given 30-day sliding window. For each pair of communities, we calculated the number of users
with at least one interaction in every 30-day sliding window. Then we estimated several times in series
expressing the number of users with a reputation higher than 1 for fixed β. Then we calculated the
root mean square error (RMSE) between those time series for the first 200 days. Values of RMSE are
shown in Figure B.2. For each community, we can find parameter β that minimizes RMSE. Although
β does not have a unique value across communities, it varies between 0.95 and 0.96.
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Figure B.2: RMSE between the number of active users in a sliding window of 30 days and the number
of users with reputation > 1 for 0.94 < β < 0.97 with step 0.001.

Figure B.3 compares the number of users in the 30-day sliding window and the number of users
for these optimal values β = 0.954 and β = 0.96. For β = 0.96, we observe that the estimated
number of active users in most communities is consistently slightly higher than the actual number of
users who have made at least one interaction in that sliding window. This means that the dynamic
reputation model sometimes overestimates the user’s reputation, but it is far more important because
it never underestimates the real number of active users. Since we base our calculations of total and
average reputation within the community only on users whose reputation is higher than the threshold,
this is important as the model disregards no active users due to the value of the decay parameter.
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Figure B.3: Number of active users in a sliding window of 30 days and number of users with dynamic
reputation higher than 1 for β = 0.954 and β = 0.96 which provide the best fit to the number of users
in 30 days sub-networks for each community.

Finally, it’s important that our dynamic reputation captures the trend of long-term user activity. In
Figure B.4, solid lines show the time series of an estimated dynamic reputation for β = 0.96 while
dashed lines show the number of active users in a given sliding window and continued to be active
in the next one. Although the total estimated number of active users is expectedly to be higher, the
two-time series follows similar trends in different communities.
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Figure B.4: Solid lines represent the number of users with dynamic reputation higher than 1 for
β = 0.96 while dashed lines are the number of users within 30 days sliding window who were active
and remained to be active.
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Appendix C

The choice of the sliding window

To study the evolution of Stack Exchange communities, we chose to at each time step t analyze the
structure of interaction networks created in the period [t, t + τ). By this, we have better insight into
how network properties evolve. However, it is not defined what value the sliding window should take.
The previous studies showed that the value of a sliding window determines how much information is
saved. If τ is small, sub-networks are sparse, while for a large sliding window, important changes in the
measures may not be detected [57, 58]. We analyze how network properties and dynamic reputation
depend on the window size. For example, we use Astronomy and compare the active and closed
communities, Figure C.1 Similar conclusions can be observed for other pairs of communities. The
time window of 30 days approximates one month.

We show the network properties for sub-networks of 10, 30, and 60 days sliding windows. For a
sliding window of 10 days, results may be too noisy, and we may not observe some important trends
in the community. The number of users for beta astronomy seems to fluctuate around some mean
value. On the larger scale, 30 days window, it is more apparent that the number of users slightly
increases over time. Contrary, for too large an aggregation window (60 days), important information
about the time series can be lost, such as the local minimum of the number of users around time
step 80 that is observed for the 30-day sliding window. From network measures such as L/N and
clustering, we conclude that the difference between closed and active sites is more transparent with a
larger aggregation window. Still, on each scale, beta sites show a higher number of nodes, number of
links per node and clustering coefficient.

As before, we study the structure of created sub-networks through the lens of core-periphery struc-
ture. On small scales, within the window of 10 days, there are often few or even no nodes in the core,
and it can affect the calculation of other measures of interest. Such behaviour is more typical for closed
communities. With the size of the sliding window, the number of nodes in the core increases and the
results of core-periphery measures and dynamical reputation between core users and between core
and periphery users become smoother. Finally, the choice of the sliding window does not change the
conclusion that core users in the beta communities produce more activity and make a strong core.
However, our main results are shown for a sliding window of 30 days, as it creates a good compromise
between large and small time scales.
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C. The choice of the sliding window
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Figure C.1: Results for different sliding windows. For astronomy, solid blue lines- active, orange
dashed lines - closed site.
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Appendix D

Robustness of core-periphery algorithm

Precision and recall
Consider the network G(V, L), with a set of nodes V and a set of links between them L. The

stochastic community detection algorithms may converge to different configurations. To quantify the
similarity between the obtained structures and the algorithm’s robustness, we run 50 iterations and
calculate several similarity measures between pairwise partitions C and C ′ .

The core-periphery structure has two groups, so confusion matrix [143] can be defined as:

partition C
core periphery

partition core nTP nFN
C
′ periphery nFP nTN

The diagonal elements correspond to the number of nodes found in the same class in both node
configurations. The number of nodes in the core found in C and C ′ is denoted as true positive nTP ,
while the number of nodes in the periphery in C and C ′ is denoted as true negative nTN . The off-
diagonal elements of the confusion matrix indicate the number of nodes differently classified. We can
define the number of nodes found in the first configuration C in the core but in C ′ in the periphery as
a false positive, nFP , similarly the number of nodes found in the periphery in the partition C, and in
the core in partition C ′ as a false positive, nFP .

From the confusion matrix, we can write the precision P = nTP/(nTP + nFP ) and recall R =
nTN/(nTN + nFN). These measures range from 0 to 1. The precision (recall) corresponds to the
proportion of instances predicted to belong (not belong) to the considered class and which indeed do
(do not) [143].

The F1 measure is the harmonic mean of precision and recall [143]:

F1 = 2
P ·R
P +R

=
2nTP

2nTP + nFN + nFP
. (D.1)

It can be interpreted as a measure of overlap between true and estimated classes; it is 0 for no overlap
to 1 if the overlap is complete.
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D. Robustness of core-periphery algorithm

The Jaccard’s coefficient is the ratio of two classes’ intersection to their union [143]. It can also
be expressed in terms of a confusion matrix:

J =
Ccore ∩ C

′
core

Ccore ∪ C ′core
=

nTP
nTP + nFP + nFN

. (D.2)

Normalized mutual information (NMI) is similarity measure between to partitions C and C ′

based on information theory [144]:

NMI(C,C
′
) =

MI(C,C
′
)

(H(C) +H(C ′)/2
. (D.3)

whereMI is mutual information between setsC andC ′ , whileH(C) is entropy of given partition.
The entropy is defined as H(C) = −

∑|C|
i=1 P (i)log(P (i)), where P (i) = |Ui|/N is the probability

that an object is randomly classified as i (in this special case i = 0, the node belongs to the core, or
i = 1, the node belongs to the periphery). The mutual information between sets C and C ′ measures
the probability that the randomly chosen node is a member of the same group in both partitions:

MI(C,C) =
∑
i

∑
j

P (i, j)log(
P (i, j)

P (i)P ′(j)
). (D.4)

where P (i, j) = |Ui ∩ Uj|/N .

NMI ranges from 0 when the partitions are independent to 1 if they are identical.

Adjusted rand index. For the set of nodes V , with n nodes, consider all possible combination of
pairs (vi, vj). We can select the number of the pairs where nodes belong to the same group in both
partitions, C and C ′ , denoted as a. Similarly, as b, we can define the number of pairs whose nodes
belong to different groups in partitions. Then, unadjusted rand index [145] is given as RI = a+b

(n2)
,

where
(
n
2

)
is number of all possible pairs. The RI between two randomly assigned partitions is not

close to zero; for that reason, it is common to use the adjusted rand index [146], defined as:

ARI =
RI − E[RI]

max(RI)− E[RI]
, (D.5)

where E[RI] is expected value of RI, andmax(RI) is maximum value of RI .
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For example, we show an analysis of an inferred sample of core-periphery structures for 30 days of
closed Astronomy, Stack Exchange networks, Figure D.1. We represent the mean minimum descrip-
tion length (MDL) and the mean number of nodes in the core with standard deviation. MDL does not
change much between inferred core-periphery structures; the difference between obtained configura-
tions is still notable in the number of nodes in the core. To investigate the similarity between obtained
core-periphery configurations in the sample more deeply, we calculate several measures between pair-
wise partitions, such as normalized mutual information, adjusted rand index, F1 measure and Jaccard
index. These measures are greater than 0.5 and, in most cases, greater than 0.9, indicating the stability
of the inferred core-periphery structures.
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Figure D.1: Minimum description length, number of nodes in the core, normalized mutual informa-
tion, adjusted rand index, F1 measure and Jaccard index, among 50 samples for 30-days sub-networks.
Results are given for closed astronomy.
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