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T-dualization of bosonic string and type IIB superstring in presence of
coordinate dependent background fields

Abstract

Topic of this disertation is examination of non-commutative and non-associative
properties that emerge in context of closed string theory. This examination will be
carried out on two distinct models. One where we work with bosonic string and
other where we work with type IIB superstring. Furthermore, both of these models
will be analyzed in presence of coordinate dependent background fields. Subjecting
these models to T-dualization we will be able to obtain both T-dual theories and
transformation laws that connect coordinates of starting theory with T-dual one.
Utilizing transformation laws and commutative relations of starting theory we will be
able to deduce non-commutative properties of T-dual theories. Method for obtaining
T-duality will be based on Buscher procedure and its extensions. Main idea of
Buscher procedure lies in localization of translational symmetry by replacing partial
derivatives and coordinates that appear in action with covariant derivatives and
invariant coordinates. This substitution inevitably introduces additional degrees
of freedom which are encoded in gauge fields. By elimination of newly introduced
degrees of freedom with method of Lagrange multipliers and subsequently finding
equations of motion for gauge fields we obtain transformation laws. Inserting these
laws into the action we will obtain T-dual theory.

In examination of bosonic string theory, we will work with 3D space where Kalb-
Ramond background field will have infinitesimal linear dependence on one coordi-
nate, z coordinate. Dualization will be carried along two distinct chains, one where
coordinate that appears in background fields will be dualized last and other where it
will be dualized first. By comparing these two approaches we will be able do discern

what are necessary components for emergence of non-commutative properties.

Second part of thesis will be concerned with T-duality of type II superstring that
propagates in linearly coordinate dependent Ramond-Ramond field. Unlike previous
case, this theory possesses both bosonic and fermionic coordinates, however back-
ground field will only depend on bosonic part. T-duality will first focus only on
bosonic part and later we will also incorporate fermionic part. We will also present
alternative chain of duality where first we dualize fermionic coordinates and later
bosonic ones. It will be shown that both chains produce same non-commutative
relations. Finally, at the end of the thesis, we will also make analysis of same case

when we have more general Ramond-Ramond field.

Key words: String theory, non-commutativity, non-associativity, Buscher procedure
Scientific area: Physics
Scientific subfield: High energy theoretical physics



T-dualizacija bozonske strune i tip IIB superstrune u prisustvu koorinatno
zavisnih pozadinskih polja

Sazetak

Tema ove disertacije je bazirana na izucavanju nekomutativnih i neasocijativnih os-
obina koje se javljaju u kontekstu teorije struna. Ovo izucavanje ¢e biti obavljeno na
dva razlicita modela. Prvi model sa kojim ¢emo raditi je model bozonske strune dok
je drugi model za tip IIB superstrunu. Oba modela ¢e biti analizirana u prisustvu
koordinatno zavisnih pozadinskih polja. Podvrgavanjem ovih modela T-dualizaciji
bi¢emo u stanju da dobijemo T-dualne teorije i zakone transfromacija koji povezuju
koordinate pocetnih i T-dualnih teorija. Koris¢enjem datih zakona transformacije,
kao i komutativnih osobina pocetnih teorija bi¢emo u stanju da dedukujemo neko-
mutativne osobine T-dualnih teorija. Metoda za dobijanje T-dualnosti je bazirana
na BusSerovoj proceduri i njenim proSirenjima. Glavna ideja BusSerove procedure
lezi u lokalizaciji translacione simetrije, gde mi zamenjujemo parcijalne izvode i
koordinate koje se javljaju u dejstvu sa kovarijantnim izvodima i invarijantnim ko-
ordinatama. Ova smena sa sobom povlaci i uvodenje dodatnih stepeni slobode koji
su kodirani preko kalibracionih polja. Eliminacijom novih stepeni slobode preko
metode Lagranzevih mnozitelja a zatim pronalazenjem jednacina kretanja za kali-
braciona polja, dobijamo zakone transformacija izmedu koordinata. Ubacivanjem
ovih zakona transformacija u dejstvo dobijamo T-dualnu teoriju.

U proucavanje bozonske teorije struna, radi¢emo sa 3D prostorom gde uzimamo
da Kalb-Ramondovo pozadinsko polje ima infinitezimalu linearnu koordinatnu zav-
isnost od samo jedne koordinate, z koordinate. Dualizacija ¢e biti sprovedena duz
dva razlic¢ita lanca, jedan gde tek na kraju dualizujemo duz koordinate koja se javlja
u pozadinskom polju a druge gde ovu koordinatu prvu dualizujemo. Poredenjem ova
dva pristupa bi¢emo u stanju da zaklju¢imo koji su sastojci neophodni za javljanje
nekomutativnih osobina.

Drugi deo disertacije tice se T-dualizacije tip II superstrune koja se krée u linearno
koordinatno zavisnom Ramond-Ramon polju. Za razliku od ploslig slucaja, ova
teorija poseduje i bozonske i fermionske koordinate, doduse pozadinska polja zavise
samo od bozonskih koordinata. T-dualizacija ¢e se prvo fokusirati samo na bozonski
deo, nakon toga ¢emo ukljuciti i fermionske koordinate. Kao i u proslom slucaju,
predstavicemo i jos jedan alternativan lanaz dualizacije, lanac gde prvo dualizu-
jemo fermionske a zatim bozonske koordinate. Pokazat¢emo da oba lanca vode do
istih nekomutativnih relacija. Konac¢no, na kraju disertacije, izvrsicemo analizu iste
teorije ali sa opstijim slu¢ajem Ramond-Ramond polja.

Kljucne reci: Teroija struna, nekomutativnost, neasocijativnost, Buserova procedura
Naucna oblast: Fizika
Uza naucna oblast: Teorijska fizika visokih energija
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1. Introduction

In the first half ot the 20th century physics has been the subject of two massive developments.
First of these developments was switch from deterministic description of nature to one that is
probabilistic, giving rise to quantum mechanics. This change introduces many counter intuitive
ideas into physics. Some of these changes are that energies of objects are no longer continuous,
they are now discrete taking on only certain values. We have that objects are no longer
described by their positions and momenta, they are now described with object called wave
function in which every relevant quantity is encoded. Furthermore, even when position and
momenta are obtained they no longer commute, making it impossible to measure both values to
arbitrary high precision. Existence of wave function suggests that objects propagate as waves
of probability until measured, then they coalese to one of available states that was allowed by
the theory. Other development happened due to realization that speed of light is the same for
all observers. This in turn forced us to reconsider nature of space and time itself. Now, passage
of time or measurements of positions were no longer the same for different observers moving
at different speeds. Such drastic change in our understanding of reality forced us to forgo of
concepts of space and time as separate entities but to consider them as one unified object,
called space-time and theory which described motion is it was named special relativity. This
paradigm shift soon ushered in realization that our understanding of gravity is not compatible
with space-time. Now, gravity should be understood, not as a force but as a curvature of four
dimensional space-time. Theory that deals with these concepts is called general relativity.

These two developments marked the start of modern theoretical physics, however they
themselves are not compatible. Work on incorporation of quantum mechanics and general
relativity into one unifying framework started in second half of 20th century and it is still
ongoing. It should be noted that some progress has been made, quantum mechanics has been
meshed with special relativity resulting in quantum field theory. Theory where main objects
are no longer point particles but fields of energy whose excitations should be considered as
particles which we observe. Quantum field theory allowed us to construct standard model of
particle physics which to this day is the most accurate model of subatomic world. This theory
also allows us to examine how fields behave when we have fixed space-time curvature but theory
that describes full dynamics between fields and curvature is only a distant dream. Main problem
with joining of these two formalism lies in the fact that quantum mechanics is plagued with
infinities when we deal with interacting particles. While these infinities can be removed for
electrodynamics, weak and strong nuclear forces with process called renormalization, in case of
gravity divergences are non removable. This forces us to be more creative if we ever wish to
obtain theory of quantum gravity.

Even before advent of quantum field theory there were propositions on how to best deal with
emergent divergences. One idea that was proposed was to impose non-commutativity between



1. Introduction

coordinates, reminiscent of non-commutativity between coordinates and momenta. This would
in turn mean that there is minimal possible length in nature and that we can not measure
position of particle with infinite precision. When quantum field theory and renormalization
were developed, this idea was mostly forgotten. It was not until publishing of paper [!] that
non-commutativity came into consideration again. Usually, space time is treated as continuum
but in the case when we have non-commutativity between coordinates it is possible to construct
Lorentz invariant space-time. After this introduction, there were many attempts to formulate
physics through non-commutative formalism and today, quantum field theory constructed on
non-commutative space-time is one of possible extensions of standard model [2, 3]. Along with
this approach there are other possible approaches to solving problem of quantum gravity, where
two most dominant theories are string theory and loop quantum gravity. Since topic of this
thesis lies with string theory, we will discus only this approach.

String theory [1, 5, 6, 7, 8] was first developed in 60ies, where it was originally conceived not
as a theory of quantum gravity but as a theory of strong nuclear interactions. Due to advent
of quantum field theory, string theory was replaced as main contender for description of strong
nuclear force. However, it was observed that theory posseses few interesting features to be
scraped entirely. Of all features, bt far most important one was that in context of string theory
gravity naturally emerges. There was no need to forcibly mesh quantum mechanics and general
relativity. Because of this progress in string theory has switched from description of strong
nuclear force to possible description of all reality. In years following its conceivement, theory has
undergone two major revolutions. First of which was introduction of supersymmetry, making
theory applicable to both bosonic and fermionic states. Second revolution occurred when
it was noticed that by introducing supersymmetry we inevitably bring along two additional
symmetries, S and T dualities, and that there are now finite many consistent string theories.
Dualities that emerge now span a web that connects all possible supersymmetric string theories,
hinting that there should exist one over encompassing theory. It is not yet know if any of
superstring models fully describes our universe and there is still ongoing work to determine
this.

Even though there are few ongoing directions which could result in theory of quantum
gravity, it should be noted that these alternate approaches are not always mutually exclusive.
For example, coordinate non-commutativity also appears in context of string theory [9]. Where
it was shown that open strings endpoints which usually propagate along Dirichlet manifold,
in certain conditions propagate along non-commutative manifold, in turn giving rise to non-
commutative properties. Non-commutativity has also been observed in closed strings, although
for different reasons [10]. In case of close string, non-commutativity arises only if we have
theory with coordinate dependent fields. By applying T-duality to such models it has been
shown that T-dual theories are non-commutative ones. Work until now has been done only on
bosonic coordinates, it was not until 2008 that it was found that same duality can emerge in
case of fermionic coordinates [11]. This has given rise to possibility that results that have been
obtained for supersymmetric particle would naturally follow for supersymmetric string. One
of these results [12] is that there would be emergence of non-commutativity between fermionic
coordinates which is proportional to bosonic ones. It has been sugested that by working with
special configuration of background fields same result would be obtainable in string theory
[13]. For now, these connections between supersymmetric particle and string theory are only

2



1.1. Bosonic string theory in coordinate dependent background fields

speculations.

In this thesis, we will focus on examining non-commutativity for closed strings. We fill focus
on two models, one for bosonic and other for fermionic strings. Since for these string theories
non-commutativity only emerges in T-dual theories if we have coordinate dependent background
fields, we will incorporate these kind of fields into our examination. For bosonic string we will
be working with coordinate dependent Kalb-Ramond field, while in case of superstring we will
be working with coordinate dpendent Ramond-Ramond field. While our choice of bosonic
string background field has already been examined [14], approach that we will undertake is
novel and it is only based on utilization of T-duality. We will also be discussing possibility of
alternative routes for obtaining non-commutativity. For superstring, we decidet to work with
coordinate dpendent Ramond-Ramond field because this configuration of fields was used as a
basis for speculation of existence of fermionic non-commutativity [13] and our intention is to
test if there is any validity to this hypothesis. Just as in the case of bosonic string, we will test
alternative routes for obtaining T-dual theories. One where we first perform dualization along
bosonic and then fermionic coordinates and one where this direction is reversed. In both models
non-commutativity will be analized by establishing a link between coordinates of starting theory
and coordinates of T-dual theory. This link when paired with Poisson brackets of starting model
will in turn give rise to T-dual Poisson brackets. At the end of the thesis, we will also give short
examination of case when we have more general structure of Ramond-Ramond field. Where
only T-duality of bosonic coordinates will be examined.

In order to not be overwhelmed by new ideas and concepts, for the rest of this chapter we
decided to give short introduction to bosonic strings, superstrings and T-duality. Where most
concepts that will later be utilized are developed.

1.1 Bosonic string theory in coordinate dependent back-

ground fields

To gain understanding of string theory in general it is useful to begin with examination of
bosonic string theory. While this theory lacks many features that would make it suitable for
description of real world phenomena, results that are obtained here can be easily generalized
to more realistic cases. Since string theory has been historically developed as an extension of
model that describes free bosonic particle [4, 5, 6, 7, 8], it is educational for us to start at the
same point.

1.1.1 Relativistic point particle

We begin by examining the action of particle of mass m that propagates in D dimensional
space-time where we also have gravitational field described by metric tensor G,,. This particle
traces out 1-dimensional trajectory denoted with z*(7) (u = 0,1,..., D) called "world line”,
where 7 is some arbitrary parameter we call "proper time”. Particles trajectory is geodesic
thus its action has to be proportional to invariant length of world line

S = —m/ds, (1.1.1)
3



1. Introduction

where invariant length is given as

dt dz”
ds = \/ —Gw,(x)d—:i de dr. (1.1.2)

Equations of motion for particle are obtained by variation of above action with respect to x*,
thus obtaining

d* dz¥ dx?
n — 1.1.
dr? YPdr dr’ (1.1.3)
where we introduced Cristoffel symbol I') ) as
1
M, = G‘“’(x)§ (0,Gop(x) + 0,Guo () — 0,Gup()) - (1.1.4)

Action that we introduced possesses one important quality and that is invariance under
reparametrizations 7 — 7 = f(7). However, this action also posses few negative qualities.
First of which is presence of square root, in turn making any attempt at quantization quite
difficult. Second negative quality is that this action only describes massive particles. Both of
those negative qualities can be resolved by introducing additional auxiliary field e(7) and by
utilizing action that is equivalent to starting action at classical level

1 1 dzt dx” 9
S = 5/ (EG“V(ZE)E dr — €em ) dr. (]_].5)

In order to see that this new action is equivalent to the old one, we can find equation of motion

for auxiliary field e(7)

dzt dzv 5
—_— — = 1.1.
ar ar <" 0 (1.1.6)

and substitute it into the action (1.1.5), from this we recover starting action (1.1.1). This

Gw,(x)

equation can be thought of as mass-shell condition for propagation in curved space-time. In
order to see if new action is also invariant under reparametrization, let us consider infinitesimal
transformation of type

=7 =7+ 7). (1.1.7)

Coordinates x*(7) transform as scalars under reparametrization, thus for them we have

dxzt
dr
Transformation of auxiliary field can be obtained if we notice that second term in action (1.1.5)

doxt (1) = 2" (1) — 2" (1) = = \(7) (1.1.8)

must transform according to

e(t)dr = €' (7')dr’, (1.1.9)
from which we can deduce following transformation rule

doe(r) =€ (1) —e(r) = —%(Ae). (1.1.10)

Having obtained how all fields behave under reparametrization of parameter 7 it is straight-
forward to check that whole action (1.1.5) is also invariant

4



1.1. Bosonic string theory in coordinate dependent background fields

1 2 dzt dopz” 1 dxt dx” 1 dzt dzv 9
505 = 5 /dT <EGW,(.T)E dr + game,<J})W dr 50{L‘p — EGHV(ZL‘)E dr (506 —m 506
(1.1.11)

Applying partial integration to first term, neglecting surface terms and by plugging in
transformation laws it is easy to show that

505 = 0. (1.1.12)

This proves to us that by adding additional auxiliary field we can be sure that we are not
changing any underlying physics of the theory.

1.1.2 Bosonic string theory

Main idea of bosonic string theory is really simple, instead of working with action that describes
one dimensional world line in space-time we work with action that describes two dimensional
sheet which propagates in space-time. By working in D dimensional space-time, we denote the
location of the string by coordinates z#(7,0) (1 =0, 1, ..., D), due to increase in dimensionality
of the object we are analyzing, we also have increase in number of parameters needed for its
parameterization. Where we have that world-sheet surface ¥ is parameterized by 7 and o (in
future chapters we will also utilize be £° and £'). Action is formed by maximization of surface
and it has following form

S—k/@L (1.1.13)
b

Here k is called tension of the brane and it has dimmensionality of the (mass)? or (length)™2.
Brane tension is also usually represented as k = 1/(27a/), where parameter o/ is named Regge
slope. We have that du represent surface element which, in order for action to be dimensionless,
has dimensionality of (length)?. Surface element it is given by

W“=¢—@HGW@%%w&@wf§ (m,n =0,1.). (1.1.14)

Just like before, we have that G, describes metric of D dimensional space-time. We have
also took the liberty to denote drdo as d?¢, while indices m and n are world-sheet indices.

Similarly, as in case of point particle, we would like to obtain action that does not posses
square root. Again this can be accomplished by introducing additional auxiliary field, this time
we have auxiliary metric g,,, that describes intrinsic geometry of the two dimensional manifold.
It should also be noted that auxiliary metric has Lorenzian signature. Action for bosonic string
can then be transcribed as

5= [ V0" ()G ()"0, (1.1.15)
P

where ¢g™" is inverse and ¢ is determinant of g,,,.
In order to examine some interesting properties of this action we will switch to D dimensional
Minkowski spacetime. In this case action (1.1.15) reduces to

5



1. Introduction

S = E/dzﬁ\/—_ggmn(a)(x)ﬁmxuﬁnxm (1.1.16)
2 Js

Above given action has two important local symmetries. First is invariance to reparametriza-
tions of type

5Oxp, — Amamxﬂ" (1117)
6Ogmn _ /\Targmn _ aTAmgrn _ 8T)\”ng7 (1118)

Second local symmetry is invariance to Weyl scaling
dog™" = A(&)g™. (1.1.20)

While now presented just as curiosity, Weyl invariance plays a major role in derivation of consis-
tency equations for background fields. Both A and A are functions of world-sheet coordinates
€% and &L
In addition to these local symmetries, action also possess Poincaré invariance
dort = wh, ¥ + I, (1.1.21)
dog™" = 0. (1.1.22)
where w#, is antisymmetric.
Due to presence of Weyl invariance in bosonic string action we have that trance of energy-

momentum is zero, ¢""7T,,, = 0. This tensor is given as a variation of action with respect to
world-sheet metric tensor ¢g""

21 6S

Since term 0.5/0¢g™" represents equation of motion for field ¢™", we than have that energy-

1
= Op @' Opx, — Egmngklé?kx"almu (1.1.23)

momentum tensor is zero. With this result obtained, we return to examination of bosonic string
in nontrivial background fields.

1.1.3 Inclusion of background fields

We have already seen how we can incorporate space-time metric in bosonic string theory
(1.1.15).

s, — g / PES=Gg™ (0) G () O D" (1.1.24)
>

Inclusion of this tensor does not change any of local symmetries that we had in Minkowski
case. Similarly, energy-momentum tensor is also zero.

In addition to space-time metric, there are two more massless tensors that can be added
into the theory. First of these tensors is antisymmetric Kalb-Ramond field B,,. Action that
contains this tensor is given by
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k
Sy = 3 / d*6€™"(0) By (7) 02" 0, (1.1.25)
)
Where we needed to introduce two dimensional Levi-Civita tensor €”" with signature €’ = —1.

Similarly to space-time metric tensor, Kalb-Ramond field does not break reparametrization
invariance or Wayl symmetry.

Final massless tensor that can be added to theory is scalar dilaton field ®(z). This field
couples to world-sheet scalar curvature

Sy = E/d?g\/—_gcb(x)R@). (1.1.26)
2S

Including dilation field into bosonic string violates Weyl invariance of the action [15]. It is
necessary for consistency of the theory, if we want to make sensible quantum theory, that action
be locally scale invariant. That is, we need to have traceless world-sheet energy momentum
tensor. Breakdown of scale invariance in quantum field theories is usually encapsulated in
functions, where these functions arise from unltaviolet divergences in Feynman diagrams.

For theory that contains all tree terms we have following action

Emn

V=g

For this action, trace of energy-momentum tensor has following general structure

S=k /2 d2§\/—_g{ Bgm”Gw/(w) + B, (z)| Opatona” + qD(l’)R(Z)} . (1.1.27)

2T = % /—gR® + E,,\/ —gg"" Ot O’ + Bfwemn O (1.1.28)

where 3%, 3% and 8 are local functions of the coupling functions ®(z), G, (z) and B, (z).
Given  functions can be calculated in perturbation theory, where we find vacuum expectation
values of vertex operators. By performing these calculations, which are far beyond the scope of
this thesis, and demanding that trace of energy-momentum tensor be zero we arrive at following

set of equations [10]

1 g
= R — 7 Buoo B +2Dya, =0, (1.1.29)
L, =D,Bh, —2a,B!, =0, (1.1.30)
D — 26 1
® =27k o~ B 5 Buw B = Dyat + 4a* = c, (1.1.31)

Here c is undetermined constant called Schwinger term, D,, are space-time covariant deriva-

tives and R, is space-time Ricci tensor [17, 18, 19, 20, 21, 22]. Expressions for
B, =0,B,,+0,B,,+0,B,,, a,=0,P, (1.1.32)
represents field strength of Kalb-Ramond field [23, 2], while a, is dilaton gradient. First
term in 3% comes from conformal gauge Faddeev-Popov determinant [25]. In addition to these

equations we also have following relation

DY 85+ 0,6% =0, (1.1.33)

7



1. Introduction

which allows us to set 3% to constant.

By solving equations (1.1.29), (1.1.30) and (1.1.31) we will be able to find coordinate de-
pendent configuration of background fields that will be used in examination of bosonics string
non-commutativity.

1.2 Supersymmetric string theory

Having developed action for bosonic string we now focus on more complex case of superstrings.
This immediately raises the question, why? Answer lies in the fact that bosonic string theory
has few irredeemable qualities which make it unfit to be considered theory of everything. First
of these problems is the fact that theory requires 26 dimensional space-time to operate. Second
problem is existence of tachyons, making vacuum unstable. While it is true that both of these
problems could be solvable, first by compactification of extra dimensions and second could also
be solvable by finding some other stable vacuum. Third problem that theory possesses is sadly
the greatest one and it is not solvable, theory lacks fermionic states. If we ever wish to describe
real world we must have theory that deals with both bosons and fermions.

Introduction of fermionic states can be done in few different way, however all are focused
on incorporation of supersymmetry [/, 6, 7, 8]. This can be done by adding supersymmetry
at world-sheet level or at space-time level producing two different formalism, Ramond-Neveu-
Schwarz formalism and Green-Schwarz formalism respectively. While distinct, it can be shown
that these two fromulations are equivalent. These two formulations have one major flaw and
that is that they needlesly complicate introduction of nontrivial background fields. Fortunately
in last few years there has been emergence of third formulation of superstring theory, pure
spinor formulation [26, 27, 28, 29, 30]. While having more technical difficulties in obtaining
the starting action, theory shines in generalization of flat space action to one with complex
fields. Where all fields are incorporated by adding integrated massless vertex operator [31] to
the action of flat theory. This section will focus on obtaining pure spinor superstring theory.

1.2.1 Supersymmetric point particle

Just as was case for bosonic strings, in order to obtain action for supersymmetric string theory
we need to start with action for supersymmetric point particle. This action is in fact general-
ization of action for point particle that we had before and action (1.1.5) will be our starting
point.

g [ Lizg, (1.2.34)

2e 7

where we will work with flat Minkowski space-time. Since the mass term is not relevant for
examination of string theory we decided to set m to zero.

In order to obtain supersymmetry we need to expand the space from only including bosonic
coordinates z* to also including fermionic #4* ones, here index A = 1, 2, ...N denotes the number
of supersymmetry and in turn number of anticommutating spinor coordinates, since higher
order of supersymmetry does not produce any additional insight we will be only interested in
case where A = 1 and from now on we will be neglecting this index. Index a denotes spinor
components and in general for Dirac spinor it is dependent on number of dimensions D of
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space-time, where we have o = 0, 1...,2”/2. Supersymmetry is obtained by demanding that

both bosonic and fermionic coordinates transform in certain way

6o0* = €, Sort = ie*(T")ap0”,  oe = 0. (1.2.35)

Here €* is infinitesimal constant Grassmann parameter, (I'*),s are Dirac matrices. Since we
are interested only in Majorana-Weyl spinors, above relations are written in form appropriate to
these spinors. It should be noted that these transformation laws do not single out any specific
action. While there are many different supersymmetric actions that can be written we are only
interested in simplest one, this leaves us with

1 N2
_ A (T B
S_/2e (x 10° (D) 50 ) dr. (1.2.36)

This action is invariant to full super-Poincaré symmetry. Equations of motion are

=0, M*=0, (I"),sI0,0°=0. (1.2.37)

where we denoted with IT#

" = i — i0%(T") 056", (1.2.38)

Since we have that 6% always comes attached to term I'*II, and (T'*II,)? = —II?, action
possesses additional symmetry. This is local symmetry known in literature as x symmetry. By
denoting with x(7) infinitesimal Grassmann spinor parameters we can observe that action is
invariant under

(Snea = (Fu)aﬁnu/€6> (Sn$'u = iea(ru)aﬁdneﬁa 5N€ = 4@'69.0‘504 (1'2'39)

To see that action (1.2.36) is invariant under these transformations we can start by exam-
ining how IT* and e~! transform

I = 60" — i6,0%(T") 0307 — —i0%(T")030,6°
= i0(T")030,0° 4 10%(T") 050,07 — 6,0%(T") 050" — —i0%(T")030,6”

= 2i0%(T") 46,,0”. (1.2.40)
0,112 = 211,06, I1" = 4i0°(T*) 456,0°T1,, = 4i11%0°k,, (1.2.41)
Se = —e 20, = —die 0%, (1.2.42)

Finding variation of action we have

1 ; . .
0nS = 5 / (6pe 1?4 €7 16,11%) = %/ ( 4e”'I%0% ko — 4e’1H29ama> =0 (1.2.43)
While here presented for sake of completeness, existence of x symmetry is crucial for ob-
taining Green-Schwarz formulation of string theory. Now we will demonstrate procedure for
obtaining pure spinor description of superparticle. Methods that we develop here will be exactly
the same as ones needed for string.
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1.2.2 Pure spinor formulation of supersymmetric point particle

Before proceeding with pure spinor formalism it should be noted that action (1.2.36) possesess
constraints. This can easily be seen by finding conjugated momentum of fermionic coordinate

_ o8
50

where 7, is conjugate momenta of bosonic coordinate z#. While expressions for 7, and II,, are

Ta

= it (T 0507 = i (:t“ - ieal(r“)alﬁléﬁl> (D) 00", (1.2.44)

identical it should be noted that their interpretations are different, one is conjugate momenta
and other is just combination of bosonic and fermionic coordinates that is invariant under
supersymmetry transformations. If we decidet to take more complex supersymmetry invariant
combination of coordinates, these terms would not coincide. From this we see that

Aoy = o 4 10, (T")0p0” + (T")050°0° (T ),y 5, 0™ (1.2.45)

represents constrain. Since fermionic coordinates 8 and their conjugated momenta 7, satisfy
following Poisson bracket

{70, 0%} = 67 (1.2.46)
we have that constraint satisfy
{da, dg} = Wu(ru)ag. (1247)
Starting point for pure spinor particle is by replacing action (1.2.36) with following quadratic
action [32]
. . 1
S = /dT (Wﬂi" + 7o 0% + W A — 5%“7@) (1.2.48)
where 7, are now independent variables [33] and A\* are pure spinor ghost variables satisfying
pure spinor constraints
AT\ =0, (1.2.49)

their conjugated momenta are given by w, and they are defined up to gauge transformation
Sowa = (T")asA’A,,. (1.2.50)

To obtain correct correct physical states, action (1.2.48) needs to be supplemented with BRST
like operator
Q =\, (1.2.51)

where all physical states are in the cohomology of above given operator. We have that Q? = 0
and this operator carries ghost number +1, that is if we define that \* and w, carry ghost
numbers +1 and —1 respectively. This operator posseses few interesting properties, for example
in case of massless relativistic point particle we had following mass-shell relation 7,7 = 0, here
this is indirectly implied by operator (). Furthermore, we had that supersymmetric particle
action is invariant under x symmetry, here we have that pure spinor action does not posses this
symmetry but is in fact replaced by gauge invariance generated by ).

Now we would like to examine how to obtain background fields in which superparticle can
propagate. We will give example for case where ghost number is +1, then wave function can
be described as

10
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U(z,0) = A\*Au (2, 0), (1.2.52)

here A, is the superfield. By acting with () on this wave function we obtain
QU(x,0) = \*N°D,Az =0, (1.2.53)

this relation implies
(F[uupév])aﬁDaAﬁ = O; (1254)

where D, = 5= + £(I'"),56° 52 is supersymmetric derivative and (I'u,p5,)*” is totally anti-

symmetric product of five gamma matrices. Imposing following variation of wave funtion

oW (x,0) = QA = \*D,A (1.2.55)
we have following transformation for superfield

doAu(x,0) = DyA(x,0). (1.2.56)

This means that equation (1.2.54) and (1.2.56) are Maxvell equations of motion and gauge
invariance for superfield A,. It should also be noted that field A, can be transcribed as

expansion in fermionic coordinates as
Au(7,0) = ful@) + fap(2)0° + fup,(2)0°0° + ... (1.2.57)

By using wave function with ghost numbers that are different from +1 we can obtain more
background fields and their equations of motion, sadly we will omit analyzing such cases.

1.2.3 Superstring

Action for superstring follows the same philosophy as the one we had for superparticle. In short,
we want to expand spacetime by introducing fermionic coordinates and by finding some com-
bination of coordinates that is invariant to supersymmetry. This is accomplished by following
combination

1" = Ozt — i0°4(T ) apOm0”* (1.2.58)

Superstrings are defined in ten dimensional space time, therefore we have that © = 0,1...9,
while for spinors we have o = 1,2,...,16. Indices m and n are world-sheet indices as before.
Depending on the type of superstring theory, we have different number for supersymmetry. We
are mainly interested in type II superstrings, hence we will be working with N = 2 SUSY. This
way we can transcribe above equation as

1% = 0™ — i0%(T 1) ap0m0” — i0%(T ) 0pOm0”. (1.2.59)

Based on chirality of spinors, there is further subdivison of type II theory. We have type
ITA for opposite chirality and type IIB superstring theory for same chirality. Having defined
supersymmetry invariant combination of coordinates, action has following form

k

5=3

/ d*6/—gg"" 1A 11, (1.2.60)
b))

11
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This action, just as one for superparticle, is invariant under reparametrization and x trans-
formations. Action also has following constraints

1 1- _
dma = Tma + (iamxu + 50@1 (Fu)alﬁlamgﬁl + 590&1 (Fu>a!ﬁlam0ﬁl) (Pu)aﬁeﬁﬂ (1261)

1 1- _ _
e = Tma + (i@mx” + 59@1(F,i)mﬁlameﬁl + §ea1(ru)a!ﬂlameﬂl) (TW)asb”. (1.2.62)

For pure spinor formalism, we make a switch from action (1.2.59) to action for flat space-time
that is quadratic [20, 27, 28, 29]

g = / &€ (gnu,,amx#anxynmn 0D 0% + D 00T + WaD N + @amxa) : (1.2.63)
>

Here z#, 6%, 7., 0% and 7, are Green-Schwarz-Siegel matter variables where indices take
range it = 0,1..9, @ = 1,2, ...16. Pure spinors are labeled with A* and A%, while their conjugated
momenta are w, and w,, respectively. We have that pure spinors satisfy pure spinor constraints

A (TH) 45N = M) oM = 0. (1.2.64)

Similarly as in the case of superparticle, in order to obtain physical states we need to
introduce operator BRST like operator (), however in order to do that we need to transcribe
equations (1.2.61) and (1.2.62) into light-cone coordinates

do = 70 — %(F,ﬂ)a {(m“ + i(erﬂme)] , (1.2.65)
dy = o — %(F,ﬂ)a {8_:70“ + i(erﬂa_e)] : (1.2.66)
then we have
Qr = /df*)\ada, Qr = /dgAada, (1.2.67)
where
Q= [de NI Qh= - [ g )N IL, (1.2.68)

Due to pure spinor constraint equations (1.2.64) we have that Q1 and Qg are nillpotent. We
introduced following two combinations of coordinates written in light-cone coordinates

1 1 _
I =9, 2" + §9a(r~)aﬁa+eﬁ, " =0 _a" + 5ea(rﬂ)alg@_eﬁ. (1.2.69)

For ghost number zero, massless super Yang-Mills states are obtained from following uninte-
grated and integrated vertex operators

V = \*Au(2,0,0),

/df*U = /dg+ (040%An(2,0,0) + I A, (,0,0) + deW*(2,0,0) + Ni W F* (2,0,0))
(1.2.70)

12



1.2. Supersymmetric string theory

Here A, and A, are gauge fields, while W* and F* are superfield-strengths for super
Yang-Mills. We also have introduction of Lorentz currents for pure spinor variables, given as

1 - 1 ;)
NI = Swa(TP)2000, - N2 = o (T 37 (1:271)

By acting with @) on vertex operator in both integrated and unintegrated form and by
demanding that

QV =0 QU=0.V (1.2.72)

we can obtain equations of motion for fields with ghost number zero. However, we are not
only interested in background fields with ghost number zero, we are interested in all possible
background fields that are allowed by the theory. Fortunately there is finite amount of fields
that are allowed, they can be collected into a supermatrix A,y , while integrated form of vertex
operator is given by

Voo = / (XYM Ay XV, (1.2.73)
P
8+9a a—é)\ Aaﬁ Aau Eocﬂ Qa,ul/
1% 1is A A EfQ
XM | XM= | = Ayy = | 00w De o e 1.2.74
dOé ’ A ’ MN Eaﬁ Elcj PQB Oa,uy ( )
%N_ﬁ_w % 'L_w Q#y,ﬁ Q/,U/,p Cﬁ,uy S,uu,po

Here, fields A,,, Efj, EY and P8 are known as physical superfields, while superfields that are
in the first row and the first column are known as auxiliary because they can be expressed in
terms of physical ones [31]. Remaining superfields €,,, (), C%w (C_’ﬂu,,) and S, po,
curvatures (field strengths) for physical fields. This notation is in accordance with Ref [31]. By

are

acting with BRST operators ()7, and Qg on this vertex operator we obtain following equations
for background fields.

13
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(1 + D)Aaﬁ = (F“H_)BA
DA, = (T.0)sE.”,

QL

_ 1 _
DEaﬂ — _Z(F[W]QWQQW’
Dy, = —(I,0)50, E.”,

(1+D)A,5 = (T"0)5A,,,
DAVH = (Fﬂé)ﬁEga
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DE] = —Z(FW 16)°Q
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Dy = _(F[ué)ﬁaﬂEﬁ
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—_

(1+D)E~s = (T"0)4Ey,
3 = (Fue)ﬂpaﬁ’

1

wl

D.Paﬁ _ _Z(F[yu]e)acﬁwj’ DPOéﬁ — _Z<I‘[IM/]Q_)BC@HV’
DCY, = —(T(u0) a0y P, DC®,, = —(I,0)30,, P, 1.2.86
(1 + D)Qa,uw = (Fue)agu,mw (1 + D)Quu,a = (Fmg)ﬂﬂ;w,un (1 2'87)
DOy yrw = (T40)0C% 4oy Dy = (T,0)5C° 0, (1.2.88)

1 v a BYA 1 wv|
Dcamm = _Z(F[M }0) SM%/MVU Dcﬁmm = _Z(F[l }H)BSIMVMW’ (1'2'89)
DS/W:MVl = _(F[Me)aal/]caml/l’ DSMVWM = _<F[M0_)58V]éﬂullll' (1 290)
Here operators D and D are given as
0 — _ 0

D=0—, D=60“— 1.2.91
00>’ 00~ ( )

Every superfield appears in two groups of equation, reason for this is that both 6 and 6
components of the field need to be fixed. Inside each group there is iterative structure [34, 35]
which allows us to solve field equations recursively for any initial conditions. Furthermore,
there is hierarchical structure that governs these equations, making it possible to solve them
subsequently. Solutions to these equations produce fields that can be transcribed as expansions
in fermionic coordinates 8 and 6%. We will be utilize equations of motion for background fields
again in Chapter 4, where we will be discussing initial conditions that correspond to coordinate
dependent Ramond-Ramond field P®%.

1.3 T-duality

We have briefly touched upon naming convention for type IIB supersrings in previous chapter,
where we explained that II originates from N = 2 supersymmetry and B originates from the

14
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chirality that we imposed on spinors. Type ITA is theory with N = 2 supersymmetry were
spinors have opposite chirality and Type IIB is theory with N = 2 supersymmetry were spinors
have same chirality. We could have chosen to work with some other number of supersymmetry
or by having theory which is also invariant to some other symmetry group. By being able to
pick and chose with what kind of symmetry we are working, it would be expected that there
are infinite many possible string theories. However this statement is not true, there are only
five consistent string theories. These theories are: type I, type IIA, type IIB, heterotic SO(32)
and heterotic Fg x FEjg string theories.

No matter with what superstring theory we are working, they all only make sense if we work
in ten dimensional space-time. From our everyday experience it is obvious that our reality has
three spatial and one time dimension, this disparity between reality and theory forces us to
find a way to deal with six extra spatial dimensions. One way to make string theory comply
with observations is by curling up excess dimensions, where they are now circles with radius
R. This process is known as compactification [1, 5, 6, 7, &].

By compactifying dimensions there is emergence of new kind of symmetry. symmetry that
connects theories where radii of compactification is R with ones where it is 1/R. However this
is not all, this symmetry also connects different types of superstrings. We call this symmetry
T-duality [36, 37, 38, 39, 40, 41]. In addition to T-duality, string theory is also invariant under
S-duality which connects theories where constant of interaction is a with ones where it is 1/«
[12]. By working in tandem these two dualities connect every possible superstring theory. This
has given rise to speculation that there exists one theory, M theory, which works in eleven
dimensional space-time from which all other types of superstrings stem. At the time of writing
of this thesis, there has not been much progress in obtaining this elusive theory.

Our interest in T-duality comes from the wish to examine non-commutative properties of
closed strings. Since this duality connects different types of string theory, our idea is to have
one theory with standard Poisson brackets which we dualize and see what are the Poisson
brackets of dual theory. In order to be successful in this task it would be helpful to devise
procedure which would streamline this whole process. Fortunately, such procedure already
exists and it is called Buscher procedure [36, 43, 44, 45]. While understanding of procedure
is best accomplished by working on concrete examples, we would like to briefly present main

steps this procedure entails.

1.3.1 Busher procedure

Idea that lies in the hearth of Buscher procedure is localization of some isometry direction,
usually shift symmetry. Therefore, first step in procedure entails testing if the action is invariant
under global translations

S = / d*¢L(x,0x), dxt = N — §S=0. (1.3.92)
)

Localization of symmetry is accomplished by substituting partial derivatives dx* with covari-
ant ones Dx*. In case where we have coordinates that do not appear under partial derivatives,
typically when we have coordinate dependent background fields, we also need to introduce in-
variant coordinate x™ [16, 44, 47, 48]. Inclusion of invariant coordinate separates standard

form generalized Buscher procedure [16, 44, 45 19, 50].

15



1. Introduction

Oma” — Dy = Opa + ok, 2™ = / d"¢Dpat, S = / d*¢L(x™, Dx). (1.3.93)
P 2

Introduction of covariant derivatives has inevitably introduced additional gauge fields v*
into the theory. Since we demand that starting theory and T-dual one have same number of
degrees of freedom we need to eliminate excess degrees of freedom. This is accomplished by
introducing following term with Lagrange multiplier

SaddZ/dQS?/uemn Uk, (1.3.94)
>

where y,, is Lagrange multiplier and €™ is Levi Civita tensor.
Next step in procedure is utilization of gauge freedom to fix translation symmetry, this way
action becomes only function of gauge fields and Lagrange multipliers

S+ Seaq = / d*L(x,0x,y,v0v), wx(£) = constant — S+ Sugq = / d*L(y, v, 0v)
s 2

(1.3.95)

Finally, last step focuses on finding equations of motion for gauge fields and Lagrange
multipliers. First set of equations of motion, when inserted into gauge fixed action produces T-
dual action, which is now only function of Lagrange multipliers and their derivatives. Inserting
equations of motion for Lagrange multipliers into gauge fixed action eliminates all changes we
made in previous steps and brings us back to the start. By combining these two sets of equations
of motion we can obtain T-dual transformation laws, laws that connect starting coordinates
with their T-dual counterparts.

It should be noted that this procedure can be applicable even to cases when we do not have
translational symmetry [15]. This is accomplished by substituting starting action with one that
has translation symmetry, form of this new action is the same as the form of action where we
introduced covariant derivatives, invariant coordinates, Lagrange multipliers and fixed gauge.
Legality of this step is assured only if we are able to salvage original action by inserting solutions
to equations of motion for Lagrange multipliers into its substitute. It is also important to say
that, in cases where we deal with invariant coordinate, we are essentially switching from local
theory to non-local one. Recently non-locality has been become very important issue in the
quantum mechanical considerations [53].

Having gained some insight into how Buscher procedure works, in the next chapters we will
focus on applying this procedure to different types of string theory.
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2. T-duality of closed bosonic string with
H-flux

This chapter is based on work done in paper [5/]

It has been know for some time now that non-commutativity can emerge in context of
string theory [52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], however this emergence was only
in the context of open string theory with constant background field. Geometric properties
of open strings, their "openness”, gave rise to boundary conditions that must be imposed as
canonical constraints. In order for these constraints to be consistent we are led to equations
that describe boundary conditions as functions of o world-sheet coordinate. By solving these
equations we find interesting conclusion. that is we can express initial coordinates of the
theory as linear combinations of effective coordinates and effective momenta. Imposing standard
Poisson brackets between effective coordinates and effective momenta, we find that coordinates
of initial theory do not commute. This kind of non-commutativity is known as ”canonical
non-commutativity” and it is not only exclusive to the string theory. In fact canonical non-
commutativity can trace it’s origins to Yang-Mills theories [66, (67, 68, 69].

Because of their open nature, open strings have one additional peculiar property and that
is the existence of gauge fields at their endpoints [70]. This fact combined with property
of non-commutativity creates a natural bridge between string theory and non-commutative
Yang-Mills theories. Where examining properties of non-commutative quantum field theory
(renormalization [71]) or even obtaining experimental proof of particle decays that are unique to
these theories [72, 73] would allow us to give more credence to the idea of one large encompassing
theory, string theory.

On the other hand, closed strings do not posses the benefits of their open counterparts.
Their lack of borders forces us to be more creative in order to extract any kind of non-
commutative behaviour. Due to their geometric restriction, one interesting idea emerges why
not examine closed strings in coordinate dependent background fields and instead of find-
ing dependence of initial coordinates on effective coordinates and momenta we find depen-
dence of T-dual coordinates on starting coordinates and momenta? While this idea is not new
(10, 14, 74,75, 76, 77,78, 79, 80, 81, 82, 83] and in fact case that is disscused in this chapter has
already been examined in [14], in order to obtain non-commutative T-dual theory authors had
to utilize combination of standard Buscher procedure and nontrivial winding conditions. Our
goal is to accomplish the same thing by focusing only on T-duality. T-duality from one theory
to another establishes link between coordinates of theories, this link with combination of canon-
ical momenta of original theory makes it possible to write T-dual coordinate as combination of
initial coordinates and momenta. By finding Poisson brackets between T-dual coordinates and
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2. T-duality of closed bosonic string with H-flux

by enforcing standard Poisson bracket structure on original theory fascinating result emerges,
T-dual coordinates of closed bosonic string do not commute.

It should be noted that although these two types of non-commutativity are dominant in
string theory, there is one additional type of non-commutativity present in physics. This
third type of non-commutativity is based on Lie algebras, where commutator between two
coordinates is proportional to coordinate. This kind of non-commutativity is encapsulated
in k-Minkowski space-time [34, 85, 86, 87, 88, 89]. While x-Minkowski space-time is non-
commutative and associative, this behaviour is more of the outlier than norm. In general if
we have that commutator of coordinates is proportional to linear combination of coordinates,
then we expect space to be non-associative because jacobiator and associator would be nonzero.
These kind of spaces are closely linked with L, algebras [90].

In this chapter we focus on obtaining T-dual theory, T-dual transofrmation laws and T-dual
non-commutativity of simplest possible theory with coordinate dependent background fields,
three torus with H flux. To be more precise, we will deal with bosonic string theory where space-
time metric is constant and Kalb-Ramond field has only one non-zero component B,, = Hz
which depends linearly on z coordinate with infinitesimal proportionality constant H. Like we
said, this case has been examined before however we will depart from conventional method
by utilizing Buscher procedure throughout all chapter. Since standard Buscher procedure
applies only to isometry directions on which background fields do not depend, we will utilize
combination of standard and generalized procedure in order to obtain T-dual theory.

While this theory is quite simple, it’s usefulness comes from just that. It is a good testing

ground for some basic ideas before embarking on more complex case.

2.1 Bosonic String Action and Choice of Background
Fields

We begin with action for closed bosonic string in the presence of the space-time metric G, (),
Kalb-Ramond antisymmetric field B, (z), and dilaton scalar field ®(x) where action is given
as

Emn

S=k /E d2§\/—_g{ Bgm”GW(x) + \/—__gBW(a:) Ot Opa” + (ID(x)R(2)} , (2.1.1)

Where notation is indetical to one in Chapter 1.1, that is, ¥ is the world-sheet surface
parameterized by ™ = (1,0) [(m = 0,1),0 € (0,7)], while the D-dimensional space-time os
spanned by the coordinates x* (un = 0,1,2,..., D — 1). Intrinsic world-sheet metric is labeled
with g, and its corresponding scalar curvature is given as R,

We have seen in previous chapter that background fields for bosonic string must obey
following equations of motion (here presented again for sake of clarity) [10]
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1
G _— o
o = B = 7 Bupo BYY +2Dya, = 0, (2.1.2)
D =D,Bf, —2a,B!, =0, (2.1.3)
D — 26 1
B* =2~ R~ o Bupe B — Dy’ +4a” =, (2.1.4)

Where we had that c is an arbitrary constant and function 3% could also be set to a constant
because of the relation
DY 85+ 0,6% = 0. (2.1.5)

Further, we also had that R,, and D, are Ricci tensors and covariant derivative with respect
to the space-time metric G, while

By, =0,B,, +0,B,,+0,B,,, a,=0,P, (2.1.6)

were field strength for Kalb-Ramond field B, and dilaton gradient, respectively. Simplest
solution to these equations is when all three background fields are set to constants, however
this case does not provide any new insight into closed string non-commutativity. Case that we
will be examining in this chapter is one where every background field, except Kalb-Ramond
field, is set to constant. For Kalb-Ramond field we want to have linear coordinate dependence.
In order to see if our wishes are consistent with reality, we should examine equations of motion
for background fields more closely. By setting dilaton field to constant and demanding linear
coordinate dependence for Kalb-Ramond tensor, first equation (2.1.2) reduces to

1 loa
Ry = 1 BB =0, (2.1.7)

where field strength B,,, is constant. If we additionally assume that this is infinitesimal
constant H, then we are free to set space-time metric G, also to a constant in approximation
linear in B,,,. These assumptions satisfy all three space-time field equations, where the third
equation (2.1.4) takes following form

D—-26

21K e ¢ (2.1.8)

This expression allows us to chose the number of dimensions we want to work in. In order to

explore main properties of closed bosonic string in presence of coordinate dependent background
fields and in order to not make calculations needlessly complicated we will work in D = 3
dimensions with the following choice of background fields

RZ 0 0 0 Hz 0
Gw=|0 R 0|, B.=|-Hz 0 of, (2.1.9)
0 0 R 0 0 0

here R, (1 = 1,2,3) are radii of the compact dimensions. This configuration of background
fields, while simple it is not arbitrary, it represents geometry of torus with flux (field strength)
H [51]. Our choice of infinitesimal flux H can be understood in terms of the radii as

H 2
—— ] =0. 2.1.10
(RleRg) ( )
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2. T-duality of closed bosonic string with H-flux

Since H is infinitesimal this means that flux is ”diluted” and that our torus is large. This gives
us the freedom to rescale the coordinates
ok

Py — 2.1.11
o (21.11)

which simplifies the form of the metric even more

0
G = 0]. (2.1.12)
1

o O =
S = O

With this configuration of background fields, action for closed string takes following form
S = k/ d2§a+x“H+lwa,xV
)
1
= k:/ d*¢ {5 (0yx0_x + 01y0_y + 0420_2) + OrxHz0_y — Oy yHz0_x| . (2.1.13)
b

Where we have transcribed action into light-cone coordinates (more detail in Appendix A).
Metric tensor G, and Kalb-Ramond antisymmetric tensor B, are combined into new tensor
I, =B, *+ %G w- We also took liberty to relable coordinates x# as

i
= 1yl. (2.1.14)
z

T-dualization of dilaton field is performed separately within quantum formalism, since that is
not the focus of this thesis from now on we will omit the term containing this field.

2.2 T-dualization of Bosonic Closed String Action

Having established our starting point in previous section, content of this section will be based on
obtaining T-dual action and T-dual transformation laws. T-dualization will be performed one
direction at the time by utilizing standard and ,when situation demands, generalized Buscher
procedures. Results that are obtained here will be used in subsequent section as a way to obtain

non-commutative properties of T-dual theory.

2.2.1 T-dualization along x Direction - from Torus with H Flux to

Twisted Torus

We start our T-dualization journey by dualizing action (2.1.13) along z direction. Since this
x direction is an isometry direction this means that action possesses global shift symmetry
x — = + a and since background fields do not depend on this coordinate we can accomplish
our goal by utilizing standard Buscher procedure [36]. We will go through all the steps that
were highlighted in previous chapter. As it has been already explained, starting point of T-
dualization procedure is based on localization of global shift symmetry, this is accomplished by

introducing covariant derivatives that will replace partial derivatives

a:t — Dy = 31.7} + v4, (2215)
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2.2. T-dualization of Bosonic Closed String Action

where vy are gauge fields that transform as
521:|: = —8:t(1, (2216)

under local translations. By adding term with Lagrange multiplier 4

k
Sodd = 5 / d*év1 (v — 0_vy), (2.2.17)
s

to the action we are making newly added gauge fields unphysical degrees of freedom. After
gauge fixing, x = const, the action takes the following form

1
Stiw :k:/ d*¢ {5 (vyv_ +04y0_y + 0420_z) + vy Hz0_y — O yHzu_
)
1
+ 5'71 (84_?}_ — a_U+>:| . (2218)

We can find equations of motion for Lagrange multiplier «; which tell us that field strength for
the gauge field vy vanishes
F+, = a+/Uf — 67/04, =0. (2219)

Solving this equation we obtain following solution for gauge filed
vy = 04 (2.2.20)

If we wish to return to original action (2.1.13), we only need to plug these solution into gauge
fixed action (2.2.18). Varying the gauge fixed action (2.2.18) with respect to the gauge fields
vy and v_ we obtain following two equations

v_ = —0_v —2Hz20_y, (2.2.21)
vy = 0Oyy1+2Hz0,y. (2.2.22)

Utilizing these two expressions in a manner that has been described before and by neglecting
all terms that are not linear in H we are left with following T-dual action

S =k / d*€0, (,X)" Iy, 0_ (. X)Y, (2.2.23)
%

where subscript , denotes quantity obtained after T-dualization along x direction and we have
grouped coordinate into

4!
XP=19y|. (2.2.24)

z

After first T-duality theory has new altered background fields

1
xH—l—uV = a:B;u/ + ExGum

1 2Hz 0
eBuw =0, Gn=12Hz 1 0]. (2.2.25)
0 0 1
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2. T-duality of closed bosonic string with H-flux

These background fields define what is known in literature as a "twisted torus” geometry.
String theory after one T-dualization is geometrically well defined both globally and locally.
Theory is geometrical where flux H plays the role of connection. Combining the solution of
equation of motion for Lagrange multiplier (2.2.20) with equations of motion for gauge fields
(2.2.21) and (2.2.22) we get the transformation laws connecting initial coordinates x* with
T-dual coordinates ,X*

Oy = +04v £ 2H 2041y, (2.2.26)

~Y

where = denotes T-dual relation. The momentum 7, is canonically conjugated to the initial
coordinate z. Using the initial action (2.1.13) we get

68

= — =k(z—2Hz/ 2.2.2
= = k(i — 2Hzy), (22.27)

Ty

where, as before, we have denoted A = 9, A and A’ = 9, A. Combining transformation laws for

light-cone derivatives of x coordinate, we are able to obtain
&=y +2Hzy, (2.2.28)

which when utilized with the expression for momentum 7, gives us transformation law in

canonical form
e = k). (2.2.29)

2.2.2 From Twisted Torus to Non-geometrical () Flux

We continue T-dualization by performing T-dualization of action (2.2.23) along y direction.
We repeat same procedure from previous subsection and form the gauge fixed action

1
25 fiz :k;/ d*¢ {5 (04710-m +vpv_ 4+ 0420 2)+ 0 yHzo + vy Hz0_m
2

+ %72 (Oyv_ — 8_0_)} : (2.2.30)

Equations of motion for Lagrange multiplier ~5 produce
Oyv_—0_ vy =0— vy = 0py. (2.2.31)

Inserting these solutions to equations of motion into gauge fixed action becomes it returns to
its starting form (2.2.23). By varying the gauge fixed action with respect to the gauge fields
we obtain

vy = +0+79 — 2H 2017, (2.2.32)

Inserting these equations equations into gauge fixed action and by keeping only terms linear in

H, we obtain T-dual action

S =k [ PO X) L0 ()" (2.2.33)
Y
where
T
(X)) =[] (2.2.34)
z
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2.2. T-dualization of Bosonic Closed String Action

1 % —Hz 0
el = 2y B + 5MGW, oyl = Hz L 0 (2.2.35)
0o 0 3

Separating tensor 4,11, into its constituent fields we obtain following expressions for back-
ground fields

0 —-Hz O 1 00
IyB/,LI/ = HZ 0 O == _BMV7 aijuV - O 1 O . (2236)
0 0 0 0 01

Background fields that we obtained after two successive T-dualizations resemble background
fields of the starting theory, torus with H flux, but they should only be considered locally. Their
global properties are nontrivial and because of this the term "non-geometry” was introduced.
This configuration of fields is known as torus with @ flux.

Combining the equations of motion for Lagrange multipliers ¢, and equations of motion for
gauge fields v4 we can deduce T-dual transformation laws

8iy = :i:ai’)/g — ZHZ(?i’}/l. (2237)

In order to obtain canonical form of transformation laws we again need to find canonical
momentum. this time of y coordinate

08
¥ = 50 = k(y + 2Hza"). (2.2.38)
)
Adding the transformation laws (2.2.37) for 0,y and 0_y together and utilizing properties of
light-cone derivatives, we obtain

G2~ — 2H 2, (2.2.39)

Combining this expression with one for momentum 7, we obtain transformation law in canonical
form
Ty = ks (2.2.40)

Having obtained two separate transformation laws in canonical form (2.2.29), (2.2.40) we can
notice that T-dual coordinates v; and 7, are still commutative. This is a consequence of a
simple fact that variables of initial theory, which is geometrical one, satisfy standard Poisson

algebra
{z"(0),m,(0)} = ho(0c —a), {a" 2"} ={m,,m} =0, (2.2.41)
where
Ty
= (2.2.42)
7TZ

2.2.3 From @ to R Flux - T-dualization Along z Coordinate

Having dualized starting action along both x and y direction, we are left only with T-dualization
along z direction. Since background Kalb-Ramond field depends on this coordinate we will
utilize generalized T-dualization procedure [16, 44, 45 49, 50].
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2. T-duality of closed bosonic string with H-flux

Starting point is the action we obtained after performing T-dualization along x and y
coordinates (2.2.33). Since Kalb-Ramond field depends on z it seems that we are lacking
isometry along z. However this is not the case, action is indeed invariant under global shift
transformations of z coordinate. To see this let us assume for a moment that Kalb-Ramond field
linearly depends on all coordinates B,,, = bW+%Bprp and check if some global transformation
can be treated as isometry one. We start with global shift transformation

St = A, (2.2.43)

and make a variation of action

2
08 = gBWp)\“ /2 d*€0, x"0_a" = ;Bwp)\“emn /E d?€ [0 (24 0p2") — 2*(0nOpz”)] . (2.2.44)

The second term vanishes explicitly due to contraction of antisymmetric tensor €™ and
(00y) tensor, while the first term is surface one and in general this term is different from zero.
However, expression for 0.9 is topological invariant and if we have topologically trivial map
from world-sheet onto D-dimensional space-time this expression is set to zero. This means that
properties of field strength H do not play a role in ensuring our action has invariance under
shift symmetry.

There is one additional, although more technical, explanation for vanishment of surface term
which is more appropriate to the approximations used in this chapter. Because we chose to
work in linear approximation of H terms, we have that our coordinates x* satisfy 0, 0_x* =0
equations of motion for constant G, and B,,,, whose solutions are well documented in standard
string theory textbooks. From these solutions we have that, if we hold initial 7; and final 7 fixed
and if we work with trivial winding conditions (winding number is set to zero), coordinates x*
satisfy z#(o + 27) = x#(o) which ensures disappearance of surface term. Consequently in the
case of constant metric and linearly dependent Kalb-Ramon field, global shift transformation
is an isometry transformation. This means that we can make T-dualization along z coordinate
using generalized T-dualization procedure.

As has been described in previous chapter, difference between generalized [16] and standard
Buscher procedure is only in one additional step seen in the introduction of invariant coordinate.
We again start by localizing shift symmetry of the action (2.2.33) and by introducing covariant
derivative

01z — Diz =012+ vy, (2.2.45)

Now into play comes introduction of invariant coordinate as line integral

s / 4e" D,z — / A€ D,z + /P d§™D_z = 2(€) — 2(&) + AV, (2.2.46)

where

AV = /Pdfmvm = /}D(d§+v+ +dévo). (2.2.47)

Here £ and &, are the current and initial point of the world-sheet line P. At the end, as in the
standard Buscher Procedure, in order to make v, unphysical degrees of freedom we add to the

action term with Lagrange multiplier

k

Saia = 5 / d*Evy3(0 v — O_vy). (2.2.48)
¥
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2.2. T-dualization of Bosonic Closed String Action

With these additions final form of action is
_ 1 .
oS :k;/ d*¢ {5 (04710-v1 + 047202 + D1 zD_2) — Hz"™(01710-72 — 0+720-7)
by

1
+ 573(8#)_ — 8_v+)] . (2.2.49)

Because of the existing shift symmetry we fix the gauge, 2(£) = z(&), and then the gauge fixed
action takes the form

1
2y fia _k/ d’¢ [5 (047 0-71 + 04720-72 + viv-) — HAV(0:710-72 — 04720-711)
s

1
+ 573(&4), — 8v+)] . (2.2.50)

Equation of motion for Lagrange multiplier 3 gives us
Opv_ —0_vy =0 =2 vy =012, AV = Az, (2.2.51)
while equations of motion for gauge fields vy are
vy = £0173 — 207, (2.2.52)

functions A% are defined as

1
ﬁi = :|:§H(718$72 — ’)/28$’)/1>. (2253)

These functions are obtained as a result of the variation of the term containing AV (more detail
in Appendix C)

Sy (—Qk / dzgem"Ham%amAv> =k / d*¢(BT vy + B ov_), (2.2.54)
b b

using partial integration and the fact that 0.V = v.. Inserting these relations into gauge fixed
action and again keeping only terms that are linear in H, we obtain T-dual action

S =k / A€y (2o X ) 2y T O (12 X )Y (2.2.55)
b))
where
24! 1
:L‘yzxu =17 xyzH-i-uV = :(:yzB;UJ + §xyzG;u/a (2256)
73
0 —HA 0 100
B =|HA 0 0|, 4:Gu=]010 (2.2.57)
0 0 0 0 01

Here we introduced double coordinate 73, defined as
a:t’73 = :l:a:t’?g. (2258)
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2. T-duality of closed bosonic string with H-flux

One thing to note is that AV never stands alone it is always accompanied by field strength
H, which implies that, according to the diluted flux approximation, we calculate AV in zeroth
order in H

AV:/d§+3+73—/d£873. (2.2.59)
P P

This expression makes it clear why we defined double coordinate 73 as in Eq. (2.2.58). Presence
of AV, which is defined as line integral, represents the source of non-locality of the T-dual
theory. The resoult of three T-dualizations is a theory with R flux. Combining equations of
motion for Lagrange multiplier (2.2.51) with equations of motion for gauge fields (2.2.52), we
obtain the T-dual transformation law for z coordinate

Oy = 0,75 — 287, (2.2.60)
Combining 9,z and 0_z we get transformation law for 2

2254 H(nvyy — 72m) (2.2.61)

which enables us to write down the transformation law in the canonical form
1

vy = P H(xy — ya'). (2.2.62)
Here we used the expression for the canonical momentum of the initial theory (2.1.13)
05
.= — =kz. 2.2.63
Mo =55 = k% (2.2.63)

2.3 Noncommutativity and Nonassociativity Using T-

duality
Having obtained transformation laws in canonical form for all coordinates
!~ 1 ~ 1 ! ~ 1 / /
N LT Y= omy 73 = o — H(zy —yal). (2.3.64)

we can start analyzing how Poisson brackets of T-dual theory differ from starting one. In order
to find the Poisson brackets between T-dual coordinates v, we will make heavy use the algebra
of the coordinates and momenta of the initial theory

(2"(0), m,(5)} = 8"6(c — &), {a", 2"} = {mum} =0, (2.3.65)

as well as results obtained in Appendix. By examining structure of transformation laws it is
obvious that only nontrivial Poisson brackets will be {71(c),73(7)} and {~2(0),73(5)}.

2.3.1 Noncommutativity Relations

We start by examining Poisson brackets between o derivatives of T-dual coordinates v, using
(2.3.64), where only nontrivial ones are

(), 73(9)} = - Hy'(0)6(0 = 7) + l13?1/(0)5'(0 —a), (2.3.66)
}

i
(), %(6)} = =2 Hal (0)5(0 — &) — %Hx(a)é’(a _5). (2.3.67)
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2.3. Noncommutativity and Nonassociativity Using T-duality

We see that these Poisson brackets are of the form (B.0.1), so we can apply the result (B.0.9).
Consequently, we get

IIZ

2L 124(0) ~ (o)) Hio ~ 2), (2.3.68)
% 22(0) — 2(5)] H(o — ), (2.3.69)

12

{71(0),7s()}
{72(9),73(0)}

These two Poisson brackets are zero when o = ¢ and/or field strength H is equal to zero. But
if we take that 0 — & = 27 then we have H(27) = 1 and it follows

(1(0 +2m),25(0)} = — - Bl +y(o)], (2.3.10)
{720+ 27),73(0)} = — [47TN + z(0)]. (2.3.71)

where N, and N, are winding numbers defined as
z(o+21) — (o) = 27N, y(o+2m)—y(o) =27N,. (2.3.72)

From these relations we can see that if we chose o for which z(0) = 0 and y(o) = 0 then
noncommutativity relation are proportional to winding numbers. On the other side, even in
cases where winding numbers are equal to zero there is still noncommutativity between T-dual
coordinates.

2.3.2 Nonassociativity

In order to calculate Jacobi identity of the T-dual coordinates we first have to find Poisson
brackets {7v1(0),z(a)} which is presented in Appendix B, here we give only result

{r2(0),y(0)} = —%FI(U — 7). (2.3.73)

The relation for {y2(c),y(d)} is similar because the transformation law for y-direction is of
the same form as for x-direction, the Poisson bracket is of the same form Calculating Jacobi
identiry by using noncommutativity relations (2.3.68) and (2.3.69) and previous equation we
have

{11(01),72(02),73(03)} =

{n(o1), {12(02),73(03) }} + {12(02). {13(03), 11 (1)} } + {13(03), {11(01), 12(02) } }
2H 1 - _ _ _ _ _
= —ﬁ H(O’l — O'Q)H(O'Q — 0'3) + H(O‘Q — 0'1)H(0'1 — 0'3) + H(O‘l — O'3)H<O'3 — O'2> .
Jacobi identity is nonzero which means that theory with R-flux is nonassociative. For oy =
o3 =0 and 01 = 0 + 27 we get

(o +2m),72(0), 28(0)) = 2 (2374)

From the last two equations, general form of Jacobi identiy and Jacobi identity for special
choice of ¢’s, we see that presence of the coordinate dependent Kalb-Ramond field is a source
of non-commutativity and nonassociativity.
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3. From H-flux to the family of three nonlocal
R-flux theories

This chapter is based on work done in paper [91]

We have seen in previous chapter how T-duality affects theory that describes propagation
of bosonic string in presence of coordinate dependent Kalb-Ramond field. T-dualization was
performed first along x and y coordinates and finally along coordinate on which background
fields depend, that is z coordinate. Result of such chain of T-dualizations was that we had
emergence of non-locality and non-commutativity only at the end, after dualizing z coordinate.
This posses natural question, could we obtained non-commutativity earlier if we had chosen to
follow another T-duality chain? The answer to this question is positive. If we had, for example,
conducted T-dualization along xzy chain non-locality as well as non-commutativity would arise
after second T-dualization. This fact illuminates new found richness of this simple model, where
slight adjustemnts to T-duality chain give rise to whole new family of theories. It should be
noted however that final T-dual theory is unique and that all alternate T-duality chains coalesce
on same final theory which, as we have seen, was non-local and non-commutative.

Focus of this chapter is again on examining closed bosonic string with coordinate dependent
Kalb-Ramon field but along alternative T-duality chain, namely zyz chain. This order of
dualization will produce non-local theory after first T-duality and subsequent dualizations will
give us non-commutative relations. Since background fields depended only on z coordinate,
these subsequent dualizations will not affect locality of theory. Just like before, main tools for
this endeavour will consist of general and standard Buscher procedure for coordinates z and x
/vy, respectively.

3.1 Preliminary action and background fields

Starting point of this chapter is the same as of the previous one and we will not repeat its
contents. We will however, for clarity sake, only list starting action transcribed in light-cone
coordinates

S = k/ d2§3+x“H+HVa_:EV
P

= k/ d*¢ B (Oy20_x + 01y0_y + 0420_z) + OyxHz0_y — O, yHz0_x| (3.1.1)
2
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3.2. Family of three R flux non-local theories

as well as starting background fields

100 0 Hz 0
Gw=1010|, Bu=|-H2 0 0f. (3.1.2)
00 1 0 0 0

Notation is the same as before, > denotes world-sheet surface which is parametrized by 7 and
o world-sheet coordinates or, as in the case of light-cone basis, by £T and £, while space-
time coordinates are denoted with z, y and z. Space-time metric tensor G, is constant and
antisymmetric Kalb-Ramond tensor B, has infinitesimal linear coordinate dependence on z,

both of these tensors combine into tensor I, as I1,, = B,, £ %Guu-

3.2 Family of three R flux non-local theories

In this section we will perform T-dualization along zyx coordinate chain. After every T-
dualization we will write down T-dual transformation laws in canonical form and check if the
theory has become non-commutative. Since T-duality procedure is the same as in chapter
before, although in reverse, we will omit most details and only focus on main results.

3.2.1 T-dualization along z direction - shortcut to R-flux

We have already seen that theories with coordinate dependent Kalb-Ramond field are invariant

under global shift symmetry with transformations of type x# — x* + A\, where invariance is

guaranteed duo to inherent antisymmetry of tensor as well as by trivial winding conditions.

This fact makes it possible to utilize general Buscher procedure in first step of T-dualization.
By substituting partial derivatives with covariant derivatives D4z

Orz —> Dyz =042+ vy, (323)

introducing invariant coordinate z**"

2 = / dé“Dyz = / d¢t D,z —|—/ d¢ D_z = z(€) — z2(&) + AV, (3.2.4)
P P P
and adding term with Lagrange multiplier 3
K
Sadd = 5/ d2§73((9+v_ - a_U_;,_) . (325)
b

to the action (3.1.1), as well as utilizing gauge freedom to fix z(§) = 2(&,) we obtain gauge
fixed action

Stix :K/ d*¢ [HAV(0+x8y — 0pyo_x) + %(&rx@x + 0 y0_y +viv_)
2

+ %yg(&rv_ — (9_U+)} : (3.2.6)

Where AV is given as
AV = / deou, — / (de+o, +dev. ). (3.2.7)
P P
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3. From H-flux to the family of three nonlocal R-flux theories

The equation of motion for Lagrange multiplier y3 obtained from above action (3.2.6) produces
Ov_ —0_vy =0— vy =042, (3.2.8)

which drives us back to the initial action (3.1.1). On the other side, if we found equations of

motion for gauge fields v, we get
Vg = i&iyg - 25:': 5 (329)

where B* functions are obtained in exactly the same way as before however, they are now
functions of initial coordinates x and y instead of T-dual ones and we do not need to make and

substitutions )
ﬁﬂ: — :F§H<xa:!:y — yﬁq:x) . (3.2.10)

Plugging equations of motion for gauge fields v, into gauge fixed action and keeping only terms

lienar in H, we are let to T-dual action
.S = /{/ d*€0, (LX) 1y,,0_(.X)", (3.2.11)
b

where we now have following coordinates and background fields

i
1
ZX“ = Yy ) zH+,uZ/ = zB,uu + §sz/ ) (3212)
73
0 HAV 0 1 00
Bu=|-HAV 0 0|, .Gu=|010]. (3.2.13)
0 0 0 0 01

Since AV is represented as line integral which is the source of non-locality, we have that this
theory is non-local.

By combining solutions to the equation of motion for Lagrange multiplier (3.2.8) with
equations of motion for gauge fields (3.2.9) we find T-dual transformation laws

01z = +01ys F H(xdry — yosix). (3.2.14)

Finding expression for Z and combining it with canonical momentum of z coordinate from

original theory
08
T 6:

we get canonical transformation law for o derivative of T-dual coordinate 73

K3, (3.2.15)

T

1
vy = =7, + H(zy' — ya'), (3.2.16)
K

which is of the same form as in the xyz case.

Unlike in previous chapter here we will keep the symbol AV throughout, instead of intro-
ducing double coordinate 7.

Since we are dealing with exactly the same starting theory, initial coordinates satisfy stan-

dard Poisson algebra
{z"(0),2"(9)} = A{mu(0),m ()} =0, {a"(0),m,(0)} = 6",6(c —7), (3.2.17)
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3.2. Family of three R flux non-local theories

which when utilizes with expression for canonical transformation law (3.2.16) we are led to the
conclusion that theory we have just obtained is commutative. As a consequence of this, it also
follows that this theory is also associative. While this theory is also theory with R-flux as one
we obtained at the end of xyz dualization chain, their commutative properties are different.

3.2.2 T-dualization along y direction

Starting from the action that was dualized along z direction (3.2.11), we continue along our T-
dualization journey by focusing on y coordinate. In this case background fields are independent
of coordinate in question therefore we will apply standard Buscher procedure. In order to not
repeat unnecessary steps we immediately introduce gauge fixed action The gauge fixed action
is of the form

1
2Stix :/@/ d’¢ {5 (Oyx0_x +vyv_ 4+ 04730-7v3) + HAV (v_0yx — v 0_x) (3.2.18)
2

1
+ 572(00- — am)} . (3.2.19)

Where solutions to equations for motion of Lagrange multiplier 7, are
vt = Oyy, (3.2.20)
while the equations of motion for gauge fields are
vy = 017 F2HAV O,z . (3.2.21)

Inserting the expression for gauge fields (3.2.21) into gauge fixed action (3.2.18), we obtain the
T-dual action

WS =k / € 0y (X ) T O (4 X) (3.2.22)
>
where
v 1
ZyX“ = Yo , ZyHﬂ“, = zyB;w + 5 ZyG/W, (3.2.23)
3
1 9HAV 0
B =0, Gu=| —20aVv 1 0 |. (3.2.24)
0 0 1

Comparing results from zyx and xyz chain after two successive T-dualizations, we see that
fields are different. In fact this configuration of fields does not emerge at any point in previous
chapter.

Continuing the procedure by finding canonical momenta of original theory

my, = k(Y + 2Hza'), (3.2.25)
and combining them with transformation laws
0+y = £047 F2HAV Oy x, (3.2.26)
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3. From H-flux to the family of three nonlocal R-flux theories

we are left with transformation laws in canonical form

1
Zm,. (3.2.27)

K

1

/
Yo

Which are the same as in zyz case.

Having obtained two different transformation laws we can immediately notice that this the-
ory has emergent non-commutative properties. By utilizing standard Poisson algebra (3.2.17)
we find new nonzero Poisson bracket

{y2(0),15(0)} = - 24'(0)d(0 — 0) + 2(0)d'(0 — 7)], (3.2.28)

K

where ¢ = 0,0(c — ). If we take following substitutions A'(¢) = y,(o), B'(a) = y;5(0),
U'(c) = Z24/(0) and V(o) = Zx(0), we notice that above relation takes the form (B.0.1).
Utilizing result (B.0.9) from Appendix B, we find following Poisson bracket

{y2(0),y3(0)} = —g [22(0) — ()] H(o - 7). (3.2.29)

Examining case where string is winded around compactified coordinate ¢ — o+ 27 and ¢ — o

gives us

{y2(0 + 2m), ys(o)} = —% [z(0) + 47 N,], (3.2.30)

Here N, winding number defined exactly the same as in previous chapter (2.3.72). As we
can see, the non-commutativity relation (3.2.29) is of xk-Minkowski type. Calculating Jacobi
identity, it is straightforward to see that

{z(01), {72(02), 73(03) } } + {12(02), {73(03), (1) }} + {73(03), {x(01),72(02) }} = 0. (3.2.31)

Because the Jacobiator is zero, we conclude that this R-flux theory is non-commutative but
associative.

3.2.3 T-dualization along x direction

In this section we finish zyz chain of T-dualization by dualizing remaining x coordinate. Since
this section is mostly the same as one for y coordinate we will omit all but most important
results.

We immediately begin with gauge fixed action obtained from (3.2.22)

1
zySfix :/‘f/ dzf [5 <U+U— + 0472072 + 8+730_73) - HAV(U+8—72 + 0472 U—) (3-2'32)
b
1
+ 571(&4)_ - 8_v+)} . (3.2.33)

The equations of motion for Lagrange multiplier produces
vy =0y, (3.2.34)
while the equations of motion for gauge fields vy give
vy = 017 +2HAV 0475 (3.2.35)
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3.3. Quantum aspects of T-dualization in the weakly curved background

Inserting expressions for vy into gauge fixed action we get the T-dual action

S = K /E 204 oy X ) syl (2 X7 (3.2.36)
where
71 1
zy:vX'u = 2 ) zny+uu = zy:rB,uz/ + 5 zny,uy (3237)
V3
0 —HAV 0 1 00
2z By = HAV 0 0 O 010 . (3.2.38)
0 0 0 0 0 1

These fields are exactly the same as the ones obtained at the end of zyz dualization, which
is expected since T-dual theory is unique.

By combining equations of motion (3.2.35) with solutions for equation of motion of Lagrange
multiplier v, (3.2.34) and by substituting into this combination canonical momentum of original

theory
T, = ki — 2kHzy/, (3.2.39)
we are left with the canonical form of the T-dual transformation law
rol T (3.2.40)
N T 2

As we see the full set of T-dual transformation laws, (3.2.16), (3.2.27) and (3.2.40), are the
same as in previous chapter (2.3.64), up to H — —H. Since T-dualized theory is the same we
find same non-commutative

{71(0),
{72<0')7

I

(@)
)

7 2y(0) — (o)) H(o ~ 7). (3241

12

v3(0)}
_ H N _
v3(a)} - 2z(0) —x(0)] H(o — a), (3.2.42)
and non-associativite relations
{ri(o1),7v2(02),73(03) } =

(o), {12(02),73(03) 3} + {72(02), {13(03), 1 (01)}} + {73(03), {71(01),72(02) } }

= Qk—]j |:H(O'1 —09)H (09 — 03) + H(oy — 00)H (0, — 03) + H(0y — 03)H (03 — 0'2)].

which can be obtained from the corresponding ones in zyz case by replacing H — —H.

3.3 Quantum aspects of T-dualization in the weakly curved

background

Both in this and previous chapter in order to prove isometry of z coordinate and to compute the
B* functions we assumed the trivial topology and that surface terms, that occur after partial
integration, vanish. Now we shift our focus on some quantum features of these problems that
manifest in nontrivial topologies. Action that we will examine will be slightly modified, we are
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3. From H-flux to the family of three nonlocal R-flux theories

still examining bosonic string in presence of constant space-time metric tensor, but this time
we take Kalb-Ramond field which depends on all coordinates with infinitesimal field strength.
Previously discussed case, torus with H flux, is just a special case of this more general model.

Classic theory that we considered until now contained some problems. They all stem from

m
nv*

generalized Buscher procedure which demanded the introduction of invariant coordinate x
Since invariant coordinate is multivalued and in order to prove that the gauged theory and
initial one are the same we needed to consider global characteristics. By switching from classical
theory to quantum one at higher genus, situation is additionally complicated by holonomies of
the world-sheet gauge fields Fortunately, these problems can be resolved in Abelian case in the
quantum theory [37, 92, 93].

Starting point of this disscussion is partition function for bosonic string in weakly curved
background fields

Z = Z/D'YDU eis J5v G vtin [gvBV]vt g [ vdy (3.3.1)
g=0

Where by making Wick rotation 7 — —i7, we multiply term containing the metric tensor G,
by 4, while the terms which contain Kalb-Ramond field B, and Lagrange multiplier v, stay
unchanged. Then new form of partition function is

Z = Z/'DV'DU e~ 5 JsvGrutin [y vB[V]vt i [gvdy (3.3.2)
g=0

Here star represents the Hodge duality operator, while g denotes the genus of manifold. In
order to pass main idea across and not be dragged down by index calculus we oped to use
differential form notation and omit all space-time indices.

The first step in the calculation process is separation the one form Lagrange multiplier d~
into the exact part dv. (7. is single valued) and the harmonic part v, (dvy, = 0 = d'y,)

dy = dve + Y. (3.3.3)

For the closed forms the co-exact term d+,, in the Hodge decomposition is missing.

The path integral (3.3.2) goes over all degrees of freedom including local degrees of freedom
as well as the sum over different topologies. According to the (3.3.3), we can split Dy into part
containing path integral over . and the sum over all possible topologically nontrivial states
contained in ~y, (marked by H.)

Dy =Dy y . (3.3.4)

Hy

By integrating over 7., and utilizing functional representation of dirac delta

/ Deet s = §(¢), (3.3.5)

we obtain that field strength vanishes

2= [ Dus(an) e Hhra il S e, (3.3.0)
Hy

Same way as we had split Lagrange multiplier 1-form, we can split the v 1-form by expressing

it as sum of exact, co-exact and the harmonic parts

v = dr + d've + vy, (3.3.7)
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3.3. Quantum aspects of T-dualization in the weakly curved background

which means that
Dv — DxDd v, dH,. (3.3.8)

The functional integration over harmonic part v, drives to the ordinary integration over topo-
logically nontrivial periods (marked by symbol H,). After integration over dfv.. we get

7 = / DxdH, e~ 8 v CTotinfsvBVIVN " o5 Jovm, (3.3.9)
H.

Y

The last term in the exponent is responsible for nontrivial holonomies. Eliminating v, part,
the 1-form v becomes closed and the Riemann bilinear relation becomes usable

/th - é [7{1}}{ o — ?{ - f{ v] (3.3.10)

The symbols a;,b; (i = 1,2, ..., g) represent the canonical homology basis for the world-sheet.
Because of the periodicity of the Lagrange multiplier y, we have that these periods are just the
winding numbers around cycles a; and b;

Na, :% Yhy  No, = ]{ Yh - (3.3.11)
a; bl

Ai = % v, .Bz = f v, (3312)
a; b;

and inserting these expressions into 3.3.10

Denoting the periods with

g
/ vyn = Y (N, A; — N, By). (3.3.13)
z i=1
Now the partition function (3.3.9) gets the form

Z = / D dAidBie™ 5 Jsv G orinfouBlVie N2 5 (N AN, Bi) (3.3.14)

Na; Ny, €2

The periodic delta function is defined as 6(x) = 5= >, ., €™, which produces
J = /D[L‘ dAﬂZBﬂS(gAJ&(gBJ 6_% JsvGrotin [y vB[V]v . (3315)
It is useful to examine the path dependence of the variable V#, whose form is now

V() = 2(€) — 2(&) + / o, (3.3.16)

P

Let us consider two paths, P, and P», with the same initial {f and the final points £¢. Now
we will subtract from the value of V# along P, the value along path P, and obtain the integral
over closed curve P, P, ' of the harmonic form

V“[Pl] — V“[PQ} = f U]lj. (3317)

PPt
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3. From H-flux to the family of three nonlocal R-flux theories

Establishing the homology between the closed curve P, P2_1 and curve ) [niaﬁ—mib,} , (ng,m; €
Z) we get finally
VP = VE[Py] + Y (niAl' + miBL). (3.3.18)

The variable V#(£) in classical theory is path dependent if holonomies are nontrivial.
Integrating Eq.(3.3.15) over A; and B; implies that periods A; and B; are zero. Consequently

v =dx. (3.3.19)

The variable V#* becomes single valued, and the initial theory is restored
7 — /Dxe_g J5, dx G*da+ix [y, deBlz)ldz _ /D[Ee_ﬁfz d?¢02T1 4 [x)0x . (3320)

By proving that we could salvage initial theory from gauged fixed action of bosonic string
in the weakly curved background in the presence of nontrivial topologies we showed that our
choice of coordinate dependent Kalb-Ramond field is consistent with path integral quantization
process.

It is useful to compare our examination of this model with similar results. During our work
we were using only Abelian isometries with combination of standard and generalized Bushcer
procedures. There has been work done in alternate approach, where nonAmbelian isometries
were considered and only standard Buscher procedure was utilized [94]. There it was showed
that spaces with isometry maps to the nonisometry spaces, while in this and previous chapters
there was isometry in every T-dualization step. In paper [95], authors also utilized generalized
Buscher pocedure with invariant coordinates, however dualization was again conducted along
non isometry directions using extension of gauge symmetry. It is also useful to mention that
this case can be treated in double space formalism [96]. This way T-duality is represented
as rotation in space-time that is spanned by coordinates z# and their dual counterparts y,,.
Results that are obtained here are in accordance with results we obtained in this and previous
chapters.
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4. Bosonic T-duality of supersimetric string
with coordinate dependent RR-field

This chapter is based on work done in paper [97]

Having analyzed bosonic string in sufficient detail, we will from now on focus on superstring.
In bosonic string case we have seen that emergence of non-commutativity arises from the fact
that background fields depended on coordinates. To be more precise, if we had original theory
in which background fields depended on one specific coordinate we found out that T-dual theory
now has one non-commutative coordinate which is dual to original. Similar situation happens
in superstring case although on much more complex stage. While bosonic case had only three
fields (G, spacetime-metric, B, Kalb-Ramond field and ® dilaton field) which could depend
on space-time coordinates, superstring theory has plethora of fields that can depend both on
bosonic and fermionic coordinates, where dependence on fermionic part is given as an expansion.
Even through T-duality procedures for obtaining T-dual theories are the same this complexity
of fields makes it imposible to get any sensible result for any except simplest configurations.
As we shall see, near the end of this thesis, even working with field that has both symmetric
and antisymmetric part gives rise to plethora of problems.

In this chapter we will examine T-duality and subsequent non-commutativity of bosonic
part of type II superstring in presence of coordinate dependent Ramond-Ramond (RR) field.
Coordinate dependence will be linear and based only on bosonic part, furthermore just like in
H-flux theory we will set work with infinitesimal coordinate dependent part, but in order to get
(% functions we will also assume this part is antisymmetric. Motivation for this configuration
of background fields comes from Ref. [31, 13] where it has been speculated that this exact
configuration will give rise to non-commutativity of fermionic coordinates. Where these new
fermionic non-commutative relations are expected to be proportional to bosonic coordinates,
This hypothesis, if proven true, would suggest that all space-time has underlying fermionic
structure. Having seen that in bosonic case non-commutativity arises only in coordinates on
which fields in starting theory depend, does this fact prematurely kills this dream? Even
through answer to this question is that there are no new fermionic non-commutativity relations
(details are in following chapter), without doing calculations the answer is not so obvious. This
stems from the fact that, since theory contains two sets of coordinates, we expect that fermionic
coordinates emerge in bosonic T-dual transforamtion laws and vice versa.

As we have already said, this chapter will only focus on T-dualization of bosonic part of
superstring theory. Method that we will utilized has already been seen in action in dualization
of z coordinate, generalized Buscher procedure. Unlike previous case, T-duality here will not
be carried one coordinate at the time, we will dualize all bosonic coordinates at once. When
we obtain T-dual theory we will carry T-dualization once again to obtain starting theory.
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4. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

While this step seems excessive, due to sheer complexity of the theory it is necessary as an
additional check that we did not make mistakes during T-dualization. At the end of the
chapter, by utulizing T-duality transformation laws, we will examine non-commutativity and
non-associativity of the final theory.

4.1 General type II superstring action and choice of back-

ground fields

We begin by recalling type II superstring action in pure spinor formulation [26, 27, 28, 29] from
Chapter 1.1. Also we will give detailed exposition and all needed assumptions before we begin
T-dualization.

4.1.1 General form of the pure spinor type Il superstring action

Sigma model of type IIB superstring has the following form [31]
S = S() + Vsa. (4.1.1)

This general form of action is expressed as a sum of the part that describes the motion of string
in flat background

Sy = /E &2 (gnﬂyamxﬂanx”nm" 70 0 + a+éa7-ra) Sy + S5, (4.1.2)
and part that governs the modifications to the background fields
Vsg = /E (XYM Ay XV, (4.1.3)
The terms Sy and S5 in (4.1.2) are free-field actions for pure spinors
Sy = /E d*Ewa,0_N\*, Sy = /2 d*EDa 0L\ . (4.1.4)

Here, \* and A\* are pure spinors whose canonically conjugated momenta are w, and w,,
respectively. Pure spinors satisfy pure spinor constraints

A (TH) 0N = MTH) oA = 0. (4.1.5)

In general case, vectors X™ and X* as well as a supermatrix A,y are given by

(‘L@O‘ a_e_)\ Aaﬁ Aau Eﬂo/b7 Qa,m/
I - " A A, E Q,,
XM — d+ . XM= PR Ayn = Egﬁ Eﬁ; PCﬁB C;‘i, 1,  (4.1.6)
el _>\ B8 v - v
%Nf/ %Nﬁ Quy,/j Q;w,p Oﬁ;w S,umpa

where notation is the same as in Chapter 1.1. The components of matrix Ay are generally
functions of 2*, #* and 6. Components themselves are derived as expansions in powers of 6
and 0% (details are presented in Chapter 1.1 and consult [31]). The superfields A,,, El‘j‘, B and
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4.1. General type II superstring action and choice of background fields

P% are known as physical superfields, while superfields that are in the first row and the first
column are known as auxiliary because they can be expressed in terms of physical ones [31].

Remaining superfields €, ., (Qu.,), C%uw (C_*ﬁu,,) and S, po,

physical fields. Components of vectors XM and X* are defined as

are curvatures (field strengths) for

1 1- _
" = o, ot + 5ea(w)aﬁmeﬁ, " = o_a" + 5ew(ru)aﬁa,eﬁ, (4.1.7)
1 1
da = Tq — é(Plﬂ)a l&rx” + Z(QF#8+¢9):| s
B 1
do = Tto = 5 (Tub)a la_x# + Z(ewa_e)} : (4.1.8)
1 _ 1 -
N® = éwa(l‘[“"])o‘ﬁ)\ﬁ, N* = §@a<rwul)aﬁw. (4.1.9)

The world sheet ¥ is parameterized by ¢™ = (£ = 7,¢! = o) and world sheet light-cone
partial derivatives are defines as 0 = 0, £ 0,. Superspace in which string propagates is
spanned both by bosonic z# (u = 0,1, ...,9) and fermionic 6%, 8% (o = 1,2, ..., 16) coordinates.
Variables m, and 7, represent canonically conjugated momenta of fermionic coordinates 6
and 6°, respectively. Fermionic coordinates and their canonically conjugated momenta are
Majorana-Weyl spinors. It means that each of these spinors has 16 independent real valued
components.

4.1.2 Choice of the background fields

Background fields that we will work with are all constants except except RR field P*3. This
field will have linear coordinate dependence only on bosonic coordinates x*. These fields can
not be chosen at random, infact they must satisfy consistency relations outlined in Chapter

1.1. These consistency relations impose following form on supermatrix Ay

0 0 0 0
0 (%9, + Buw) v 0
A = 29K i ® 4.1.10
MN 0 - %(faﬁ + Opaﬁxp> 0 ( )
0 0 0 0

Here g,,, is symmetric tensor, By, is again Kalb-Ramond antisymmetric field, ¥ and \Iffj are
Mayorana-Weyl gravitino fields, and finally, f** and C’;“B are constants. Dilaton field ® is
assumed to be constant, so, the factor e® is included in f*?# and C’;"ﬁ . This will be a classical
analysis and we will not calculate the dilaton shift under T-duality transformation. Based on
the chirality of spinors, there are type IIA superstring theory for opposite chirality and type
I1B superstring theory for same chirality.

Since background fields must satisfy consistency relations we have one additional restriction
imposed

Th,C =0, Th,ClP =0. (4.1.11)
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4. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

Remaining constraints [31] are trivial and applied only to non-physical fields.

In addition to choice of supermatrix, in order to simplify calculation of bosonic T-duality,
because all background fields are expanded in powers of #% and 6%, all % and §* non-linear
terms in XM and X" will be neglected. This greatly simplifies components of these two vectors
and they now have following form

I — O, dy — Tay, do — Ta. (4.1.12)

Taking into account all these assumptions, the action (4.1.1) takes the form

) _ _
S = / d*¢ [§H+W<9+x“8,x” — Ma(0-0% + W70 ") + (0,07 + 0, 2" V)7,
b))
2 (4.1.13)
+oma( 7+ Ot

Here, we combined flat space-time metric 7, with g,, to obtain metric tensor G, = 1, + g
This tensor is again combinet with Kalb-Ramon field to obtain I, = B,, + %GW which is
the same tensor we had introduced when we dealt with bosonic string.

Fermionic momenta m, and 7, that appear in above action play the role of auxiliary fields
which can be removed by finding their equations om motion and inserting them back into the
action.

7T5:

(F7H (@) 4o (0-0% + ¥50_a"), (4.1.14)

(4.1.15)

T =— —

I =

(04607 + &J:”@ﬁ) (F’l(:c))ﬁa :

where we took the liberty to denote two new substitutions F*?(x) and (F~1(z))as of the form

Fa) = £+ C2% . (F7 (@))ap = (f Das = (F Daa C2P (f s a®.  (4.1.16)

m

If we wish to invert previous equations and T-dual transformation laws, as well as to simplify
calculations, we must take into account two additional assumptions. First assumption has
already been touched upon and that is need for infinitesimal C’z‘ﬁ. This is reminiscent of diluted
flux approximation for bosonic string and in fact this assumption plays exactly the same role as
did assumption for H. Second assumption is that (f~")aa, C3*7 (f~') s, is antisymmetric under
exchange of first and last index. In other words, tensor (F~!(z)),s has only antisymmetric part
that depends on z* and it is infinitesimal. These two additional assumptions do not in any way,
shape or form infringe on consistency relations for background fields or alter the properties of
other fields.
Substituting equations (4.1.14) and (4.1.15) into (4.1.13) the final form of action is

1 _ _
S = n/ d*¢ |:H+u,,a+l’“al’y + 5(8+6°‘ + 0zt Uy) (Ffl(x))aﬁ (0_6° + WPo_a¥)| . (4.1.17)
)
Having obtained this action, we can safely proceed with T-dualization.
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4.2. T-dualization

4.2 T-dualization

In this section T-duality will be performed along all bosonic coordinates in order to find rela-
tions that connect T-dual coordinates with coordinates and momenta of original theory. These
transformation laws will then be used in subsequent chapters to find non-commutativity rela-
tions between coordinates of T-dual theory.

Starting point for considering T-duality will be generalized Buscher T-dualization procedure
[44]. This procedure works when we have theories with coordinate dependent background
fields. Standard Buscher procedure [30, 43], which we had partially utilized in previous two
chapters, is designed to be applied along isometry directions on which background fields do
not depend and is not applicable here. The shift symmetry in the generalized procedure is
localized by introduction of covariant derivatives, invariant coordinates and additional gauge
fields. These newly introduced gauge fields produce additional degrees of freedom. Since we
expect that starting and T-dual theory have exactly the same number of degrees of freedom
we need to eliminate all excessive degrees of freedom. This is accomplished by demanding
that field strength of gauge fields (F,_ = 0,v_ — 0_vy) vanishes by addition of Lagrange
multipliers. Next step in procedure is fixing the gauge symmetry such that starting coordinates
are constant and action is only left with gauge fields and its derivatives. From this gauge
fixed action, finding equations of motion for gauge fields, expressing gauge fields as function
of Lagrange multipliers and inserting those equations into action we can obtain T-dual action,
were Lagrange multipliers of original theory now play the role of T-dual coordinates.

Action (4.1.17) is invariant to translation symmetry, by the virtue of antisymmetric part of
F 51, tensor (f1C,,f)ap. Following antisymmetricity of this tensor, we can rewrite the action
(4.1.17) in the following way

S=k / d*¢ {Hwaﬂﬂa_aﬁ + %em”am(ea + ) (F7H(2)) 5 00(07 + ¥J2")| . (4.2.1)
>

Let us now consider the global shift symmetry dz# = M and vary the action (4.2.1)

K

08 = 5

(frOLf ) ap N / d*E€™ 0, (0% + Woa”)0, (07 + Vo) (4.2.2)
)
where m,n are indices of the twodimensional worldsheet. After one partial integration, we
first obtain surface term, which we neglect because we are interested only in trivial topologies
with trivial winding conditions. Second term which we obtain is identically zero because it is
product of symmetric, 9,,0,, and antisymmetric, €™", tensor. So, the shift isometry exists.
In order to find T-dual action we have to implement following substitutions

Orx* — Dozt = Opa + 0l (4.2.3)

—=al = / d€™ Dyatt = a#(§) — at (&) + AVH AV = / g™l (€), (4.2.4)
P P

S =S5+ g / d*E MOy, — "0,y . (4.2.5)
)

Here we decided that y, will play the role of Lagrange multiplier and subsequently the role
of T-dual coordinate, which is different from bosonic string case where we had 7, occupying
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4. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

that role. Reason for this comes down to aesthetics. Because of the shift symmetry we are
allowed to fix the gauge, z#(§) = 2(&) and, inserting these substitutions into action (4.1.17),
we obtain auxiliary action suitable for T-dualization

1 _ _
Stiz = K / d*¢ {Hﬂwviv” + 5(éwa + o UY) (F—I(AV))aﬁ (0_0° + Why”)
. . (4.2.6)
+§(Ui8_yu —v"04y,)

Similarly as before, working with invariant coordinate we have necessary introduction of non-
locality into the theory. Also, path P that is taken in expression for AV? goes from some
starting point &, to end point &.

In order to check if substitutions we had introduced are valid and that they will lead to
correct T-dual theory of starting action, we need to be able to obtain original action by finding
solutions to equations of motion for Lagrange multipliers. Equations of motion for Lagrange

multipliers give us

O_v —0p =0 = off =0. 2" (4.2.7)

Inserting this result into (4.2.4) we get the following
AVP — / dE™ Dz (€) = 27(€) — 2°(€0) = Aa”. (4.2.8)
P

Since, we had shift symmetry in original action, we can let z*(y) be any arbitrary constant.
Taking all this into account and inserting (4.2.7), (4.2.8) into (4.2.6) we obtain our starting
action (4.1.17).

Before we obtain equations for motion for gauge fields, we would like to make following

substitution in action

Yy, = 0yy, — 0.0" (F—l(AV))aB v Y, =0_y,+ U, (F‘l(AV))aﬂ 0_60°,  (4.2.9)

3 1< - ) 1 T f— ey -
My =Ty + 505 (FHAV)),5 00 =111, — S Vil Daa CoPH (f 1) g, sV AVP, (4.2.10)

g 1o .
H+;U/ = HJr;w + §\I/M(f 1>aﬁqj,§- (4211)

These substitutions allow us to write down gauge fixed action into more manageable form

_ 1 1 1, -
Stiz = n/ d*¢ lﬂwviv” + §viY,M - §UEY+M +50:0° (FH(AV)),,0-07| . (4.2.12)
P

This action produces following equations of motion for gauge fields

_ 1 _ 1 _
Mot = —GYo+ GV, Tl = 5Yi = 6,(1V). (4.2.13)

Here, function 3%(V) is obtained from variation of term containing AV” in expression for
F~Y(AV) (details are presented in Appendix C)
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5 (V) =304 [0+ VB (F Yo O ()30 + WLV

B VT (e O ()55 [0+ WLV, (4.2.14)
BHV) :i (0% + VU ] (Faa OO (1) 30— [07 + W5, V™

‘41;5— [ 4 VT (o O (V)05 07 + W2 V7], (4.2.15)

Here we have took advantage of the fact that dLV* = v/{ (more details in Appendix C). Let us
note that V* in the expressions for beta functions is actually V(O because it stands besides
C’/‘jﬁ. We omit index (0) just in order to simplify the form of the expressions.

In order to find how gauge fields depend on Lagrange multipliers, we need to invert equations
of motion (4.2.13). Since Cﬁﬁ is an infinitesimal constant, these equations can be inverted
iteratively [14]. We separate variables into two parts, one finite and one proportional to Cﬁﬂ .
After doing this we have

_ 1 1
v _ _Qvrl +(1/(0) B |
v” Sk QY_M—FBH (V )}, ol [2

Functions /Biu(V(O)) are obtained by substituting first order of expression for vy into By,(V),

Y., — B, (V)@ (4.2.16)

where V() is given by

1 1 .
— 5 [ 4676 0.y, — 0,8 aal] - /P A€~ 6 [0y, + T2, (F )00
(4.2.17)
Where ©" is inverse tensor of I, = 11, + 3V (F~'(AV)) 5 V7, defined as
0" 1l,,, = o, (4.2.18)
where
a4 S\UY 1 o 1\ o — a1p1 — 1 Aviv
O = O + SO L (f Daa, CoP VO (1) 5 sWP1EMY, (4.2.19)
o o 1 _ _
O, =60k, O =0 - —@*_‘“l\w (FHap¥l 077 (4.2.20)
[P = ff 4 \1:0‘@“”\115 (4.2.21)
O, =08, O_ = —4(G5'TI_.G™")". (4.2.22)

Tensor G = G, — 4(BG1B),,, is known in the literature as the effective metric.

Inserting equations (4.2.16) into (4.2.6), keeping only terms that are linear in C3” we obtain
T-dual action
K

1 —
_/E 50 Yo + 0,07 (FH(AV)),, 0-07]. (4.2.23)

bo _
S_Q
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4. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

Comparing starting action (4.1.17) with T-dual action, were we note that dLz* transforms into
d1y, and z* transforms into V' we can deduce that T-dual action has following arguments.

b = i(:);w’ (4.2.24)
1 A\ UV T, —
(E V), = (FHV0) = 5 (VO e (), (4229
e PPV = %@uv@g (F ™)., (4.2.26)
1 ALY
(bFfl(V(O)»aﬁ byvB _5 (Ffl(v(())))aﬁ \Ifﬁ@li . (4.2.27)

In order to express T-dual gravitino background fields in terms of its components, it is useful
to calculate inverse of field *F_, 61

[e% «@ 1 o VAT,
bFﬁ%v@):ﬁ’Wv@)+§@ﬁ@ﬁm5 (4.2.28)
With this equation at hand it is straightforward to obtain T-dual gravitino fields. Here we
present T-dual gravitino fields expanded in terms of their components

- 1. - 1_ = =
b « INTL] -1 2 ENT L]
Jre — 5@# T 4 Z@ﬁ#l\yﬁl (F (V(O))>Bﬁ1 vy (4.2.29)

v1?

1 — 1 _
by,vB B My B i « -1
\\J = —_Ppre” — _prettiy ) (F (‘/(0)))

5V v, (4.2.30)

aay
Here superscript ® denotes bosonic T-duality. The general conclusion is that all background
fields get the linear corrections in C’ﬁ‘ﬁ comparing with the results of the case with constant
background fields [10]. Also the coordinate dependence is present in all T-dual background
fields.

From the above equations we see how background fields of original theory transform under
T-duality. It should be noted that these actions are of the same form taking into account that
initial coordinates x# are replaced by y, after T-dualization.

4.3 'T-dualization of T-dual theory

Requirement that original theory and T-dual one describe the same physics it should be possible
that we can switch from one onto other by cycling T-duality. That is, applying T-duality twice
does not introduce any changes. In this chapter we would like to do just that, we will apply
T-duality procedure onto already dualized theory in order to get back to starting theory. This
fact is actually a way to test if our calculations were correct.

When we started with T-duality in previous chapter, we started by testing if theory pos-
sessed translational invariance. Here, duo to presence of AV©® we do not need to conduct
such a test, theory is invariant. This can be easily deduced by checking eq. (4.2.17) and taking
notice that every instance of dual coordinate y, is accompanied with partial derivative. We
begin T-dualization by implementing following substitutions
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4.4. Non-commutative relations

aiy# —>D:|:y“ = 8iyu + Uty — D:‘:y‘u = Uy, (431)
AVOr AU ©p,
1 < o
AU(O)P 25 /Pdf—&-@mp [u+p1 _ 8+9a(f 1)04,8\1151]
1 — A\PP1 ST —
-5 /Pdg O [u_p, + V% (f)apd-0"] | (4.3.3)
Yy, U =uy, —0.0° (F‘l(AU(O)))aB v (4.3.4)
Yo Uy =uy + 05 (FHAUD)) 0-6° (4.3.5)
bS PS4 g/ d*(uy, 02" —u_,0 2. (4.3.6)
b

We denoted newly introduced gauge fields with u. while x* are Lagrange multipliers. In first
line we immediately fixed gauge by choosing y(§) = const. Inserting these substitutions into
(4.2.23) we get

k 1., o
bStip = 5 /E d*¢ [59'1 UrUoy + 040 (F 1(AU<°>))Q5 0_0° + (uy,0_x" —u_u(’Lx“)]. (4.3.7)
Finding equations of motion for Lagrange multipliers and inserting solution to those equations
into gauge fixed action we return to the starting point of this chapter, T-dual action. On the

other hand, finding equations of motion for gauge fields

Uiy =2 [(xm”ﬁw +8; (:c)] + 0,0 (F(x),,, V2, (4.3.8)
Uy = —2 [ﬁﬂ,,a_xv + 5;(93)} — g (F (@), 067, (4.3.9)

and inserting these equations into the gauge fixed action, keeping all terms linear with respect
to C4,, we obtain our original action (4.1.17). Here we use the freedom to choose Az* =

z(§) — x(&), with (&) = 0.

4.4 Non-commutative relations

We have already seen is simpler case that T-dual transformation laws, that connect dual and
original theory through their coordinates, along with Poisson bracket of original theory can be
combined in such a way to generate Poisson algebra of T-dual theory. This chapter continues on
this philosophy however we will be interested only in Poisson brackets of one half of the theory,
bosonic half. We leave examination of completely dualized theory as well as examination of
full Poisson algebra to following chapter.

Starting theory was geometric theory whose were space-time coordinates x#(£) and their
conjugated momenta 7,(£). It is natural to impose standard Poisson bracket structure on such
a theory

{2"(0), m,(0)} = 00(0 = 5), {a"(0),2"(9)} =0, {mu(0) m(7)} = 0. (4.4.1)
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4. Bosonic T-duality of supersimetric string with coordinate dependent RR-field

Since we have applied T-duality twice to this case we have two sets of transformation laws
that connect gauge wields with Lagrange multipliers. First set was presented in (4.2.16) and
other set was given by (4.3.8) and (4.3.9). These laws are equivalent and no matter the choice
there is no difference in results. We will chose to start with relations (4.3.8) and (4.3.9) and
using solutions to equations of motion for Lagrange multipliers z#, uy, = 0+y,, we obtain
following T-dual transformation laws

Osyp 2 2[00 Ty + B, (2)] +0:0° (F7'(x)),, W), (4.4.2)
0 y, = —2 [ﬁﬂw&:ﬁ n B:[(x)] — 02 (F\(2),,0-6°, (4.4.3)

where symbol = denotes T-dual transformation. Subtracting these two equations and by uti-
lizing properties of light-cone coordinates (Appendix A), we get

I v VT — 1 no — 1 ST —
Y, = 0 2" +0, H+,,#+B:[+ﬁu+§8+9 (FH () \If§+§\11,, (FH(x)),,0-0" . (4.4.4)

Taking into account that bosonic momenta, 7, of original theory are of the form
0 v VT 1= o — 1 el —
T, = ,{[Hwa_x - 0ua MLy + 505 (F7 (), 0-0° + 50.0° (F7\(2)),,, xyfj], (4.4.5)
and () = BF + ,;, we obtain
Y, =+ Bz (4.4.6)

Here () (x) is given by

1 _ _
ﬁg(ff) 2580 [ea + \Ilgl} (f_l)amcglﬂl (f_1)616 [95 + \Ijixuz}

[0+ T () O (550, [0 + W] (44.7)

To find Poisson bracket between T-dual coordinates, we can start by finding Poisson bracket
of sigma derivatives of T-dual coordinates and then integrating twice (see [13, 17, 54], Appendix
B ). Implementing this procedure we have that Poisson bracket is given as

{,(0),y1,(0)} =

1 B _ B (4.4.8)
Sr 20000 = 820001 [ Koa(0) + Koy 0)] (o = ),
where, for the sake of simplicity, we introduced
K,.(0) = (éa(U) + xt (U)‘I’/OL) (F Daar C P (1) 3500 (49

“T (D O () (0°(0) + 2" ().

Here, H(o — &) is same step function defined in Appendix B. Due to how we defined Heaviside
step function H we have that these Poisson brackets are zero when o = &. However, in cases
where string in curled around compactified dimension, that is cases where 0 — & = 27, we have

following situation
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4.4. Non-commutative relations

1
(0 +2m), 4 (0)} = 5 (2051807 — 85200, ] | Kinnea (0) + Koo (9) (4.4.10)
NP (£ Yo Ol () g W 00002013 — OL10L201° + 00013000 — 04012817

Here we used fact that H(27) = 1, while N” is winding number around compactified coordinate

defined as

(o + 27) — 2#(0) = 2nN*¥. (4.4.11)

From this relation we can see that if we choose 2#(0) = 0 than Poisson bracket has linear
dependence on winding number. In cases where we do not have any winding number, we still
have non-commutativity that is proportional to background fields.

Using the expression for sigma derivative of y, (4.4.6) and expression for Poisson bracket
of T-dual coordinates (4.4.8), we can find non-associative relations. Procedure is the same as
for finding Poisson brackets of T-dual theory, we find Poisson bracket of sigma derivative and
integrate with respect to sigma coordinate, this time integration is done once. Going along
with this procedure we have the final result

{9(9), {Yn (01), Y (02)}} = iH(Ul = 02) U5, (f Dacr O™ (F )55,

2k
X [H(oy — 0)[2611 512615 — 2616512615 — 511 6#2 513 + 611 5+25145] (4.4.12)

+H(0y — 0)[2011 612512 — 2511 12618 — G 512 5Hs 4 5#15u25u3]] _

vy Yvg vo Vv Vv vg Y1 vy Vv Vv

Since Jacobi identity is non-zero for T-dual theory we have that coordinate dependent RR
field produces non-associative theory. However putting ¢ = 0o = ¢ and 0, = ¢ + 27 we have
following Jacobi identity

{90(0), {91, (0 + 27), 4, (0) } } =
\I/zl (f—l)aalcf;x;m (f_l)fhﬁ\llﬁg [255155225513 — QML H2 §H3 _ 551 SH2§H8 4 S 5#2(;#3] )

vy Yvg Vv v, “va vo Yy Vv

(4.4.13)

Examining equation (4.4.6), we notice that 0,y, is not only a linear combination of initial
coordinate and its momenta but also has terms that are proportional to fermionic coordinates.
This might lead us to believe that T-dual theory would have nontrivial Poisson bracket between
T-dual coordinate and fermionic coordinates. However, this is not the case, and it can be
directly calculated by finding Poisson bracket between sigma derivative of T-dual coordinate
and fermion coordinates (more details in Appendix B).

{0°(0),yu(0)} =0, {0%(0), yu(0)} = 0. (4.4.14)

We will examine if these Poisson brackets go through any change when we also dualize
fermionic coordinates.
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5. Fermionic T-duality of supersimetric string
with coordinate dependent RR-field

This chapter is based on work done in paper [95]

Up until now we have only been interested in T-duality of bosonic coordinates, which is
reminiscent of historical development of said topic. Even through T-duality was originally con-
ceived with bosonic coordinates in mind [35] it is possible to extend it to fermionic coordinates
also [11, 99, , ]. Fermionic T-duality, just as was case before, maps supersymmetric
background fields and fermionic coordinates of one theory to supersymmetric backgrounds and
coordinates of other theory. While actors in this play are different it is surprising that method
for obtaining fermionic T-duality is the same as before, Buscher procedure [36, 13]. Even in
cases where background fields depend on fermionic coordinates generalized procedure is appli-
cable. Since we had enough opportunity to see both standard and generalized procedures at
work, this favorable circumstance greatly reduces difficulty of this chapter.

In this chapter we continue the work that has been started in previous chapter, we finish
dualization of action that has been dualized along bosonic coordinates. Main reason we are
interested in this endeavor is to find out if such a theory will give rise to non-commutative
relations of the type {0, 0} ~ 2. While it was already hinted that we will fail short in our quest,
without doing explicit calculations this is not obvious. This raises one question, why is it not
obvious that there will be no fermionic non-commutativity? Have we not seen that in bosonic
case, when we do not have background fields that depend on coordinates we can not expect
emergence of non-commutativity in dual theory no mater the order in which we chose to do T-
dualization. Answer to this question lies in one little caveat of superstring case, while it is true
that background fields of starting theory did not depend on fermionic coordinate, by performing
bosonic T-duality we have introduced non-local part which was encoded in AV#. This term
now possesses dependence on fermionic coordinate and appears in all backgroundfields of T-dual
theory. This fact opens another question, if we had decided to perform fermionic T-duality first
and then bosonic, then we would not have to worry about appearance of fermionic coordinates
in background fields, does this mean that order of T-dualiy is important in superstring case?
Sadly, answer to this question is again negative and throughout this chapter we will carry on
explicit calculations that show this fact.

To summarise, this chapter will deal with fermionic T-duality of both theory that has already
been dualized along bosonic coordinates and one which has not been dualized. By obtaining
transforamtion laws for both cases we will examine non-commutative relations as we have done

many times before.
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5.1. Type II superstring action and action dualized along bosonic coordinates

5.1 Type II superstring action and action dualized along

bosonic coordinates

Actions that we will work with are superstring action in pure spinor formalism with coordinate
dependent RR field as well as its T-dual. Both of these actions have already been presented in
previous chapter and here we will only give quick summary.

5.1.1 Type II superstring in pure spinor formulation

For the first action we have

1 _ _
S = k/ d*¢ {Hwy&r:p“@_ﬂc” + 5((%00‘ + 0, a"WY) (F‘l(x))aﬁ (0_6° + ¥Po_a¥)|, (5.1.1)
)
where again tensors that appear in above expression have following form

1
Mep = By % 56 (5.1.2)

2

F(x) = [P+ Ca . (F7H(@))ag = (FDas = (J aan O3 2" (f pus - (5.1.3)

Since this is a logical follow up to previous chapter, properties of the (F~'(z)),s tensor
are the same as before. We are working with tensor that has antisymmertic and infinitesimal
coordinate dependent part. Rest of the symbols have following meaning: z* (u = 0,1,...,9) are
bosonic coordinates, #* and % are fermionic coordinates with 16 independent real components
each which are Majorana-Wejl spinors, uperspace is parameterized by ™ (€0 = 7. ¢! = ¢) and
light-cone partial derivatives 04 = 0, + 0.

5.1.2 Bosonic T-dual action

Action that is obtained after T-dualizing (5.1.1)

k ]- A\ UV e -
'S =3 /E de[g@” sy 0-yo + 0.0 ("F1 (VD)) 0-0°

(5.1.4)
+ 0y, T (CFTLVO)) L 0_0° + 0,00 ((FH V) bqf”/fa_yy] .

y,, represents T-dual coordinate, left superscript b denotes bosonic T-duality and V° repre-
sents following integral

AV Or —

1 v _ 1 o _
-2 / 4ET6 [0, — 0.0°(f )as W] - 5 / A&~ 6" [0y, + TS (f)asd07]
P P

2
(5.1.5)

As we can see AV 7 does indeed contain fermionic coordinates and by association so do
background fields. This is the main differentiating fact between type II superstring theory and
its bosonic counterpart.
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5. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

T-dual tensors that appear in action have following interpretation: ©*” is inverse tensor of
My, =1, + %\Iffj (F‘l(:c))aﬁ W8 =11, — %\Iffj(f_l)aalCg‘lﬁlx”(f_l)glg‘l!f, defined as

0" 14, = o, (5.1.6)

Remaining properties are listed in great detain in previous chapter (4.2.19), (4.2.20), (4.2.21),
(4.2.22). While background fields are given as

1 _ _
(CFvO),, = (F'v®),, - 5 (FHVO) 0, VRO T5 (FTHVO)) L o (5.LT)

Tensor (bF_l(V(O)))aB is T-dual to (F~'(z)),, and T-dual gravitino fields are given as

_ 1. 1. - 1 -

b a VAT 14,8 -1 0 B1 VYT V. T o

W= COMY 4 OMI (FTHV) whery, = Jem, (5.1.8)
| - = 1

b\pv v o -1 a1 Q1Y v

W= - — SRt (FTH(V)),, WO = o wier. (5.1.9)

Having presented these two theories we can focus on main part of this chapter, fermionic
T-duality.

5.2 Fermionic T-duality

No matter on which theory we decide to dualize first we have to note one thing and that is
that both actions (5.1.1) and (5.1.4) do not posses terms proportional to 9,6 and 9_#*. This
means that our fermionic coordinates have following local symmetry

50% = e*(o™), 00°=e(07), (o =71+0). (5.2.1)

We need to fix this symmetry before obtaining T-dual theory, one way to do this is through
BRST formalism. This symmetry has following corresponding BRST transformations for
fermionic fields

s0% = c*(o™), s0% = c*(07). (5.2.2)

Here s is BRST nilpotent operator, ¢* and ¢* represent ghost fields that correspond to

gauge parameters €¢* and €* respectively. In addition to ghost fields we also have following
BRST transformations

$Cy =bya, 8C,=b_n, sbia=0, sb_o=0. (5.2.3)

where C, and C, are anti-ghosts, by, and b_, are Nakanishi-Lautrup auxiliary fields.
Fixing of gauge symmetry is accomplished by introduction of gauge fermion, where we have
decided to follow procedure that has been outlined in [102]

U= g /z ¢ |Cu (0507 + %aaﬁb+5) + (000 + %b_ﬁaﬁa)oa}, (5.2.4)

here a®? is arbitrary invertible matrix.
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5.2. Fermionic T-duality

Applying BRST transformation to gauge fermion we obtain gauge fixed action and Fadeev-
Popov action

Sy = g /E PE[Dad 0% + 00+ Bo0bs], (5.2.5)
Sp_p = g / d2¢ [C_'a8+c°‘ + (a_aa)ca]. (5.2.6)
b

Fadeev-Popov term contains only ghosts and anti-ghosts and it is decoupled from the actions
(5.1.1) and (5.1.4). From this point on, this term will be ignored. Gauge fixing term contains
auxiliary fields b_, and b, that can be removed with equations of motion

l_)_a = —8_§ﬁ(a_1)5a, b+a == —(a_l)a58+65, (527)
giving us
k _
Sy = / €08 (0 )030.0°. (5.2.8)
by

Inserting guage fixing term into (5.1.1) and (5.1.4) gives us actions that can be dualized with
Buscher procedure.

5.2.1 Type II superstring - fermionic T-duality

In order to not be overwhelmed we will work with non dualized theory first. Buscher procedure
that we apply here, after finding gauge fixing term, does not in any significant way differ from
one we applied before.

Since both action (5.1.1) and gauge fixing term (5.2.8) are trivially invariant to global trans-
lations of fermionic coordinates, we localize this translational symmetry by replacing partial
derivatives with covariant ones

819“ — Diﬁa = 8i6’“ + ui, (529)
0:0% — D10 = 0.0 + us. (5.2.10)

New gauge fields u¢ and u9 introduce new degrees of freedom that are removed by addition
of term

Sadd = g/ d*€ [Zo(04u® — O_uS) + (940% — 0-u%)za] - (5.2.11)
b))

Gauge freedom can be utilized to fix fermionic coordinates such that 6% = 0ff = const and

0* = 05 = const. This in turn reduces our covariant derivatives to

D 6% — u, D0 — u. (5.2.12)

With all this in mind, we have following action
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5. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

v 1 —Q N - v
Stiz = k/2d2§ [HJFW&F:I:“@JE + §(u+ + 0zt Uy) (F 1(5B>)a5 (ué + WPo_a) o~
1 1 1 o
3 (@ g + SEa(Oput = 0uS) + S(01” - ajﬁ)za]
On one side we have equations of motion for Lagrange multipliers ¥, and x,
Opul —0_uil =0 — ul =040 (5.2.14)
0pu —o_uf =0 —  uf=0.0" (5.2.15)

Inserting solutions for these equations into action (5.2.13) we obtain starting action plus
gauge fixing term.

Variation of action with respect to gauge fields produces following set of equations of motion

u® = — (F*P(2)0_zg + U30_a") (5.2.16)
us = —a*P9, 2, (5.2.17)
u§ = 0,25 F" (x) — 012" W, (5.2.18)
a® = 0_zgal”. (5.2.19)

Utilizing these equations we can remove gauge fields from action, resulting in action that
depends only on Lagrange multipliers and bosonic coordinates

1 1
IS = k/ d*¢ [H+M,,8+:v“(‘9_x” + §8+2a111ﬁ8_x“ + §0+ZQF“5(:E)8_2/3
2 (5.2.20)
1 - 1
«@ = af
—§8+x“\lfua_za — 58_zaa 8+25].

Just like in the bosonic case, we have that left superscript / denotes fermionic T-duality.
From here we can deduce background fields of feriomionic T-dual theory

fﬁ+,u11 = H+,u1/7 (5221)
T (F @)™ = F(a), (5.2.22)
ST — /Ba T, O T, T —
T80 (FH2)" ==00 - JU,5=-00(F 1(95))&5, (5.2.23)
_ afs - _ o
TFEH @) =05 = T, = (FH(2)),, . (5.2.24)

Unlike bosonic case, fermionic T-dual theory is local. This can be attributed to the fact
that background fields do not depend on fermionic coordinates. This in turn means that theory
is geometric and we should not expect emergence of non-commutative phenomena.

5.2.2 Fermionic T-duality of bosonic T-dual theory

To obtain fully dualized theory we start with action that is already T-dualized along bosonic
coordinates (5.1.4). Procedure for fermionic T-duality is mostly the same as described before.
The only difference comes from the fact that bosonic T-duality introduced non-local term V°
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5.2. Fermionic T-duality

which depends on # and 6% and now we need to introduce invariant fermionic coordinates in
order for action to exhibit local shift symmetry

DL0° = 0.60° + u2, (5.2.25)

D0 = 0.0* + a2, (5.2.26)

b= [ de D0 = [ dem(0,0° + uz) = A0+ AU (5.9.27)
P P

= [ 6D, = [ 0,00+ ) = A+ AT (5.2.28)
P P

Fixing gauge symmetry as before, setting fermionic coordinates to constants, we deduce

following relations

D10% — ug, D% — ., 6>  — AU®, 0>  — AU, (5.2.29)

muv mu

With these relations we obtain action that is only a function of gauge fields, lagrange
multipliers and dual coordinates

k 1- —a -
beix - 5/ d2€ [§@“Va+yua—yu +uy (bF 1(V(O)))aﬁ u?
P

40,y T (bFfl(V(O)))aﬂ u? 4+ s (bF_l(V(O)))aB "OPH_y, — a® (o) apul (5.2.30)
0 (Opu® — O_u) + (04u® — a_ai)za} .

In order to simplify calculations we introduce the following two substitutions

(bF*l(v@)))aﬁ "UBO_y, 4+ 0_2q = Z_a, 01y, ore (bFfl(vm)))aﬁ — 0,23 = Zyp. (5.2.31)

Now, our action can be expressed as

k 1 )
bei:L’ = 5/ d2§ [Eguya—kyua—yu + a(—xi- (bF_l(V(O)))a,B ué + Z+5u€ + ﬂ?f-Z—a
. (5.2.32)

—a* (™Y apull + 0 _Zaus — a‘i@+za.]

Similar to the first case, we can always revert to starting action by finding equations of
motion for Lagrange multipliers and inserting their solutions into the action. In both cases
equations of motion are the same so we take the freedom to omit them here.

Equations of motion for gauge fields differ in this case. Since we have that V(© depends

on fermionic coordinates, equations of motion have additional term that depends on invariant

coordinate.
W8 = —(a) P25, T = O za(0), (5.2.33)
W} = —Zp "FO(VO) = 8, (v, UO) P, (5.2.34)
uf = _bphayOyz_ — B:(V(O),U(O)) byyrb (5.2.35)



5. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

The beta functions, B;*L(V(O), U©), are obtained by varying V© (see [07] and Appendix C
for more details). They are given as

1 _
Br(vO U == gax [0+ VU (D aan O ()i [UP + W1,V

1.- _
+ 3 [T+ VUL (f ) ac CP (f ) 502 [U° + W5 V2] (5.2.36)

Inserting equations of motion for gauge fields into action (5.2.32) and keeping only terms
linear with respect to Cﬁ‘ﬂ, we obtain fully dualized action

k 1- _
s = 5 /Z d*¢ [§@ﬁ”a+yua,y,, ~ 2. P FP VO Z 5 — 0 2,(a)*P0, 25 (5.2.37)

Expanded, we have

1 1 = 1
IS = k/ d*¢ L—l@ﬁ”myua% - 18+yu@’i”\1138,2a — 18+2a‘llz@‘iya,y,,
>

1 ] (5.2.38)
+§8+2abFa5(V(0))8_zg - ia_2a<0é)aﬁa+25i|.
From here, we can read background fields of T-dual theory
bfﬁiy _ %éwj _ %bq]ua (bF—l(V(O)))aﬁ b\IjVﬂ — @;iu7
o 1 vE
U(FT @)™ =F (@) = FOa) + U0,
_ _ 1 _ B 1 B _ (5239)
bqug bf (F_1($))a5 _ bgmb _ 5@5!’\1/5 N bf\I;g = 5@‘1”\1}5 (F_l(x))ﬁa,
— ap v va 1 e’ v v 1 — oYYl
FT ()" Mg =t = —ounet Mg = =2 (FH (), DO

Comparing background fields in different stages of T-dualization we notice that both fermionic
T-duality and bosonic T-duality affect all field, where all T-dual theories now have coordinate
dependent fields. It should also be noted that non-commutative relations in theory emerge only
after performing bosonic T-duality. Fermionic T-dual coordinates are always only proportional
to fermionic momenta therefore Poisson brackets between fermionic coordiantes always remain

Zero.

5.2.3 Bosonic T-duality of fermionic T-dual theory

For completion sake, we will also T-dualize fermionic T-dual action (5.2.20) along z* coordi-
nates. In this specific case, where only RR field depends on bosonic coordinate, we expect that
bosonic and ferionic T-dualities commute. Therefore, this section can be also thought of as a
check for calculations from previous section.

We again start by localizing translational symmetry, inserting Lagrange multipliers and
fixing gauge fields. This produces following gauge fixed action
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5.3. Few notes on non-commutativity

1 1
ISt = K / d*¢ [vfﬁnﬂwvz + 5047 PO 25 + §a+zacgﬁa_zﬁAw

1 1
+ E&réa\llzvﬁ——v

_ 1 1
SIS0z — 50 Za0 sz + Sy, (0" a_vi)] . (5.2.40)

Introducing the variables
Vi =04y, — 012V, Y =0y, — \I’fja,za : (5.2.41)
the action (5.2.40) gets much simpler form

1 1
fozx = fi/d2§ [UiH_Hu/Uz + §@+2afo‘ﬁa_25 + §a+2aCﬁB8_ZBAV“

|
SVt +2U+Y ] (5.2.42)

Varying the above action with respect to gauge fields vy and v", we get, respectively,

1
07 =— (§Y“ + BW(V)) , (5.2.43)
5 1
i, = §Y+# — B_u,(V), (5.2.44)
where 34, are the beta functions obtained from coordinate dependent term in the action
1
Bew=Fg (2C57 0525 — 052..C5° 23) . (5.2.45)

Inserting (5.2.43) and (5.2.44) into the auxiliary action (5.2.42), keeping the terms linear in
C’fjﬁ, we obtain fully T-dualized action (first fermionic, then bosonic T-dualization)

1 1
S =k / d*¢ {ﬁ&rzaF“’B(AV)@_z/j + ZYW(H;l)“VY_,, : (5.2.46)

Expanding above action, it can easily be seen that it is identical to one given in (5.2.38).

5.3 Few notes on non-commutativity

We have already saw that bosonic T-duality produces non-commutative relations between
bosonic T-dual coordinates. Now we want to see how these relations are modified by fermionic
T-duality and if new ones emerge. Procedure for finding non-commutativity is exactly the same
as in all the chapters leading to here, we impose standard Poisson bracket structure on starting
theory and utilize T-dual transformation laws. Only difference here is that we have additional
starting Poisson brackets, brackets containing fermionic coordinates

{2"(0),m,(0)} = 6L(0 —7), {0%(0),mp(a)} = {6%(0),7s(0)} = 05(0 — ),  (5.3.1)
where all other Poisson brackets vanish.
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5. Fermionic T-duality of supersimetric string with coordinate dependent RR-field

We start with case that has only been T-dualized along fermionic coordinates. To find
how T-dual coordinates depend on starting ones and their momenta we can begin by finding
fermionic momenta of starting theory. It is useful to remember that starting theory did not
posses terms that are proportional to 9,0% and 0_6® and that this symmetry was fixed with
BRST formalism. Addition of gauge fixing term introduced modification to momenta of starting
theory and to obtain correct non-commutative relations we should be working with theories
that have gauge fixing term in them. With this in mind, it is easy to find fermionic momentum
of original theory (5.2.13)

k _ _ _
my =~ [0 + 0,270) (F7 (@), — 98 (0 ). (5.2
o= B[ (F @), (0-0° 4 W20_0") — (07 )aps”]. (5.3.3)

Since we want to obtain Poisson brackets for equal 7 we want to find ¢ partial derivatives

of dual coordinate

1 1

OpZe = 5(3+za —0_z4) & ETTQ, (5.3.4)
1 1
OpZe = 5(8+2a —0_Z,) ¥ —Ewa. (5.3.5)

Fermionic Momenta of original theory commute with each other and with x* coordinates,
therefore we deduce that there has been no change to geometric structure of this theory.

For fully dualized theory, transformation laws (5.2.33) (5.2.34) (5.2.35) all depend on dual
bosonic coordinate however, when we insert transformation laws that connect original bosonic
coordinates with T-dual ones

Dy = 2 [awﬁw n 5;(:,;)] +0,0° (F'(x)),, V2, (5.3.6)
0y, = —2 [ﬁﬂu,@,m” + 5;(9[;)] — 02 (F (), 0-0°, (5.3.7)

into transformation laws for fermionic coordinates (5.2.33), (5.2.34) and (5.2.35) we again obtain
relations (5.3.4) and (5.3.5).

On a first glance it would seem that fermionic T-duality has not produced any new Poisson
brackets, however this is not the case. While it is true that there are no modifications to
Poisson brackets between fermions, we have new Poisson bracket structure between fermions
and bosons. This can be seen from o derivative of bosonic T-dual coordinate

%%%+@@, (5.3.8)

where ) (z) is combination Sf(x) 4 8, (z) we encountered before

1 _ _
Bul@) =505 [0% + 2" U5 | (F Daar O (f1)ps [07 + 97,27

I

[ ) (O (s [0 + W] (539)
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5.3. Few notes on non-commutativity

Finding Poisson brackets between o derivatives of coordinates and integrating twice we
obtain following relations

{yu(0), z5(0)} =

17 _ _ _ _ (5.3.10)
2 [7(0) + 27 (0) 8, = 2(5°(0) + 27 (0)82) | (F e O3 (V)i (0 — ),
{uu(0),2a(0)} =
1 ) (5.3.11)

S C M ()55 [07(0) + WE,07(0) = 2(87(0) + W1,07(@)) | H (o — o).

Having failed to obtain non-commutativity relations between fermionic coordinates, not
to mention ones that are proportional to bosonic ones, we conclude that hypothesis made in
[31, 13] is not correct. Furthermore, having gained some insight how T-duality affects non-
commutativity, we suspect that fermionic non-commutativity relations are possible but only in
case where background fields depend on those coordinates.
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6. Bosonic T-duality of supersymmetric string
with coordinate dependent RR field - general
case

This chapter is based on work done in paper [105]

In previous two chapters we have seen how T-duality affects type II superstring theory with
coordinate dependent Ramond-Ramond field. During that presentation our ability to obtain
both T-dual theory and T-dual transformation laws depended on two premises, one was that
coordinate dependent part of RR field was infinitesimal and other was that it is antisymmetric.
First of these assumptions was necessary in order to invert transformation laws while second
one was introduced only in order to obtain 3% functions. It is sufficient to say that latter of
these assumptions can be removed and since 3% functions do not play any role in T-dual action
we expect the form of action to remain the same.

Here we will deal with theory whose coordinate dependent part of Ramond-Ramond field
has both symmetric and antisymmetric part, where we will only focus on bosonic T-duality.
This simple modification produces more general forms of 3% functions, N* functions. Where
B* functions were dependent on some combination of coordinates and their derivatives, N*
are functions that depend on path of path integral that has been introduced with invariant
coordinate. We expect that this departure from antisymmetric tensor to general one would not
affect theory that much, however this can not be further from the truth. Even though final
T-dual theory is the same, transforamtion laws and non-commutative relations are drastically
more complex. This rise in complexion makes it impossibile to deduce Poisson brackets of
T-dual theory the same way as we did before.

Since we have already obtained both bosonic duality and full duality of type II superstring
it is natural to wonder why go this extra step. The answer to this question lies in the fact that,
if we ever wish to work with more complex background fields it will not be possible to impose
antisymmetric restrictions on all fields. By working out the kinks of such approach on case
when the fields are relatively simple we hope that all future extensions to background fields

would follow the same procedure for obtaining T-dual transformation laws.

6.1 Action and choice of background fields

Since this is only generalization of work done before and action that we will work with has
already been mentioned few times we will just quickly list it here again, without going in any
detail what the symbols mean (for detailed exposition consult Chapter 4 and Chapter 5 )
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6.2. T-dualization - general case

S =k / d*¢ {mexﬂa_:p + = (8+9 + 0,20y (F7Y (@), (0-07 + ¥J0_a")| . (6.1.1)
P
with

F(z) = [+ CFat . (F'(#))ap = (fas = (f Daa Co7a? (f ™ )pus - (6.1.2)

where this time we do not impose any conditions on tensors f** and C’/‘fﬁ, except that C’ﬁ‘ﬁ

is infinitesimal. Having done this we can focus on main point of this chapter T-duality.

6.2 T-dualization - general case

This section will deal with problem of obtaining T-dual theory and transformation laws that

connect dual and original theory. Where these laws will be used in subsequent sections.

6.2.1 Implementation of the generalized T-dualization procedure

In every chapter until now where we dealth with T-duality we relied on either standard [36, 43] or
generalized [16] Buscher procedures. This stemmed from the fact that actions were invariant to
shift symmetry. Which, in case with coordinate dependent background fields, was a consequence
of antisymmetry. Because we decided to work with field that has symmetric part thus rendering
any invariance of to translations invalid, we can not rely on dualization methods we utilized
before.

Thankfully, there has been development on this front and there are methods for obtaining
T-duality in the cases with absence of shift symmetry [15]. In fact method that has been
developed is mostly identical to generalized Buscher procedure, where we replace original action
with auxiliary one which does possess translation invariance. Shape of this action is exactly
the same as the form of action where translation symmetry was localized and gauge fixed. In
order for this action to produce correct T-dual theory we need to be able to salvaged original
action from it.

Following this philosophy we insert following substitutions into action (6.1.1) in order to
make it invariant to translations

Oyt — vl (6.2.1)
W AVP = / de™op (€1, (6.2.2)
P
S =S+ g / d*E WOy, — v 04y, , (6.2.3)
>

The result is auxiliary action convenient for T-dualization procedure

Sauz = k'/ d2€ [H%UVIU—&-/U +5 (8+€a + U+ ) (F71<Av>)aﬁ <a*0ﬁ + \IJEUZ)
b

1 (6.2.4)

+§(Uiaf?lu - U’i@yu)} :
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6. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

The shape of this action is exactly the same as one we had when we worked with antisymmetric
field. Let us note that path P starts from &, and ends in €. In this way action becomes non-local.

Finding equations of motion for Lagrange multipliers
O_vt — 0t =0 ol = dyat, (6.2.5)

and inserting them into (6.2.2) we have

AV = [ dg9,a0(€) = 27(6) - 5°(6s) = Ao (6.2.6)
P

In absence of translational symmetry, in order to extract starting action from auxiliary one,
we impose () = 0 as a constraint. Taking all this into account, we get the starting action
(6.1.1).

Euler-Lagrange equations of motion for gauge fields v (k) give the following ones

_%a_yw) T () + %qu (FH(AV)), , (0-6(r) + Wi ()

: ) ] (6.2.7)
73 / d€[0,0°(€) + v (TS T (f oo O (f e N (67) [0-0°(€) + W5, 07 (€)]
%myu(@ = I,,,0% (k) + %(aﬁa(m) +UL(R)E) (FTHAV) . Ty
(6.2.8)

_% /Z d2§ [a+9_a(§) + Uil (f)@fjﬂ (f_l)aalcﬁlﬂl(f_1>B15N(K/_> [a_gﬁ(g) + \1152032 (f)} :

Here, function N(x*) is obtained from variation of term containing AV? in expression for
F7Y(AV) (details are presented in Appendix D). They represent the generalization of beta
functions introduced in Ref.[97]

Nty =0(€ (€)1 6) = v

) [H(E = wT) = H(ET —r1)], (6.2.9)
N) =6(€5((€7) M) = ) [HE = w7) = H(& —n7)], (6.2.10)

where more details on Dirac delta function and step function are given in Appendix A. As we
see the expressions for derivatives of y,, are more complex comparing with those in Chapter 4,
where translational symmetry is present.

Assuming that C%” is an infinitesimal, we can iteratively invert equations of motion (6.2.7)
and (6.2.8) [11]. Separating variables into two parts, one finite and one infinitesimal propor-
tional to C’/‘jﬂ, we have
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6.2. T-dualization - general case

(k) =~ {a_ymm) 05, (F(AV)as0-0% (1)

U (T o 2 AV (s W30 (0 () + WA (F)3,00-0%())
- 1 - 5 - (6.2.11)
— [ [0 + 5 (9 (€) = 08O W32 0, | (e O
X
X ()N () [0-07(6) — 506 (0.9 €) + T2 (F)212,0-070) ) }
(k) = %éw{mym(n) = 0,0° () (P (AV))as ¥,
1 _ M _
5 (O (8) = 020 () (F ™ Wit ) O (F7) 30, O AV ()30,
(6.2.12)

_ 1 _ w _
A€ |040°(8) + 5 (949a(8) = D107 () (F 132 ) 020, | (), Ot

+
T

X (F Yo N(5) [0-0°(€) = SWEO™ (011 (€) + W2 (F )50, 0-074(6)) }

Tensor ©" is inverse tensor to Iy, = I, + 3U%(f1asPl, which satisfy 611, =
6% Whose properties are given in detail in equations (4.2.20), (4.2.21), (4.2.22). In above
expressions AV is a quantity in the zeroth order in C’ﬁﬁ , which has the same shape as we have

encountered before

AVOr — / detof + / dé v’

1 : _ 1 . _
_ - / AT 07 [0y, — 0.0°(f asV? ] — = / e~ [0 y,, + U (f1)apd_07] .
P P

2 2
(6.2.13)
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6. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

Using (6.2.7) and (6.2.8) and inserting them into (6.2.4), we get T-dual action
b 2 1< %
S=k [ d°¢|-020,y,0_y,
R

1 T, — o - Aviv
RO (7)o OO AVP(F ) 5,505, 6770, 1,0,

8

4500 ((F AV s + 5 a, O AV ) WO T ()
S e TR O T (F Yo 5 (o W O T ()55, O AVP(F )5
U D WO () O AV (f )y, WO () 5,5) 067

+ 0@ T (7 AV + 5 (F o C AV (), WEG B (7))
x 0_0°

1 _ _ 1, Q1 AL T g [ f— as b1 — Aviv
- Za+9a ((F 1(Av))aﬁ + §(f 1)oza1\llu o \Ijm (f 1)aza30p3ﬁ AVP(f 1),31,3> \1151@—

X 8_yl,] .
(6.2.14)

Let us note that above we kept terms up to to the first order in C’fjﬁ.
T-dual action contains all terms as initial action (4.1.17) up to the change z* — y,. Con-
sequently, T-dual background fields are of the form

v 1 A\ UY 1 A 1Ty — — a101 —
Y = 201 4+ O | (FHAV ag + (faes O AV (F )y
1

L .- a1 QH2v2 81 ( £— - alas - as QM2V2 81 ( £—
- §(f l)aalqjuz@ﬁ \1152 (f 1),31,3 + §(f 1)04041C’p AVp(f l)azas‘yug@ﬁ \1152 (f 1),81,8
1 e B
+ §(f 1)(1&1\1/#;@52 qufg(f 1)536205261Avp(f 1),31,3
1 - a1 Q\H2U3 T 00 [ £— o - > V3V T B[ £— AUV
- Z_L<f 1)01041\11;;2@li MJ\IJ;@ (f l)a2a3Cp353AVp(f 1)6362\1153@_3 \ijz (f 1),31,3] \1151@— )
(6.2.15)
_ _ 1 — alasg - as QMUY B ( £—
YFH@))asg = (F7HAV))agp + S Daar Cor 2 AVP(f ) apas U0 W (f )55
1 o S _ 1 ot A _ _
- é(f l)CYOél\II,ul@‘Li \IIEI (f 1)515 + §(f l)aal\pul@i \1153 (f 1)535205251Avp(f 1)515
L . a1 & T — o — A1V, —
- Z(f 1)04&1\1]# @limlljuf(f 1>a2a30p3ﬁ3AVp(f 1)5352\11%6—1 \P§1<f 1)5157
(6.2.16)
b — Lo ge by, — — 2RO 6.2.17
_5— v Vﬁ__éu—' ( )

Comparing background field of T-dual theory with background fields from Chapter 4 we im-
mediately notice that background fields have become more complex. However, this is just an
illusion. In both cases background field are exactly the same only difference is that here we
did not introduce tensor I1;,, = Il ,, + %\I/l‘jF “1HAV),5¥7 and its inverse, therefore we are
missing ingredients to express our fields in more compactified format.
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6.2. T-dualization - general case

6.2.2 T-dualization of T-dual theory - general case

Having obtained T-dual theory we would like to check if this result is correct, best way to do
this is to apply T-duality procedure again. Since the initial theory was not symmetric under
translations, we had to introduce auxiliary action (6.2.4) which was invariant. This action
produced T-dual theory which is invariant to translations of T-dual coordinates. Because
of this we can dualize T-dual theory by generalized Buscher procedure. We start with the
introduction of following substitutions

O0+yy — D1y, = 01y, + usy — Diyy = upy, (6.2.18)

AV? AU, (6.2.19)
AU? :% /P AT [usy, — 0L0°(f)ap Tl ]

—% /P dE 0" [u_y, + U (f1)ap0_0°] (6.2.20)

S =S+ %(uﬂﬁ_x“ —u_,0yat). (6.2.21)

From the first line we see that gauge is fixed by choosing y(§) = const. Inserting these substi-
tutions into (6.2.14) we obtain

1.
Z@liVU+MU_V

"Stiw = K / d2¢
P

1o = y
+ g@*_““ U (faa COPPAUP (1) 5,800 O Uy u_y

4500 (AU 3 (o C AU () WO T ()5
U e T OB (Y5 5 (o U O T (), O ALY (F )5
U e W T () AP () WO T () 5) 067
00, (AU + 5 o O ATy WS B (F)5)

x 0_0°

1 Yl - L. a1 QUMIT 0 [ £— asf1 - AUV
= 108 (P (AU 5 WO (s G AU )3, 05,07
X Uy

_|_

N | —

(g O_at — u_ﬂ&ra:“)] :

(6.2.22)

Using equations of motion for Lagrange multipliers, we return to the T-dual action. Finding
equations of motion for gauge fields, we have
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6. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

Uip(k) = 201,042 (k) — 042" (K) TS (f ™ aa, CO P AP (F71) 5,507
+ 0.0%(r)(FH(AT))ap V)

— [ (0,076 + 0 (03, ) (e G (s N )
X (8_95(5) + \Iffa_x”(g)), (6.2.23)

u_y (k) = — 2104, 0_2"(K) + T f Vo, COP AL (1) 5,5W00_aH (k)
— U (FH(A))asd-0" ()

+ [ (0,00 + 0 (OF) (o O N ()
X (8_95(@ + 0P 9 (g)) . (6.2.24)

Here we have that Az* = x(§) —x(&), and inserting these equations into the gauge fixed action,
keeping all terms linear with respect to C4” and selecting &, such that x(&p) = 0, we obtain our
original action (4.1.17).

6.3 Non-commutative relations - general case

In order to find Poisson structure of T-dual theory we will be using relations (6.2.7) and
(6.2.8) by expressing them in terms of coordinates and momenta of the initial theory. While
this method worked flawlessly in previous chapters, here we would still be left with terms
containing d,2*(¢) which come from function N(¢%). This means that it is impossible to find
same 7 Poisson brackets. One way to circumvent this is by first using equations of motion for
coordinate z#(£) and then replacing remaining d,z* term with canonical momentum. By doing
all the steps that were outlined, we have following relationship between T-dual coordinate and
variables of starting theory

0 (F (), 0-0°

o o 1_
oy (0) = 2By, 051" — G, (14 + HI)_IVIM[ E 2V

1 no — 1 e - 1 SH2 1 SH2 V2
B §8+(9 (F 1($))a,6’ \Ilgl o |:H+:“1N2 - é\pﬂl (F 1($>)aﬂ ‘1152] (652 551 o (551 (slljz )&,:L* (6 3 1)
1. . . .O.
+ 5V (F aca O 2 (o) (f71)ps W3, (013007 — 011 002) (T + 113) 710

T 1- _ 1. - 9 v
X [f — éklfg(f 1)7718,971 — §8+97(f l)wmqul + 114, Opa? — H+p1p8(,q:p1}] .

To find Poisson bracket between T-dual coordinates, we can start by finding Poisson bracket
of sigma derivatives of T-dual coordinates and then integrating twice (see Appendix B). Imple-
menting this procedure and utilizing Poisson brackets of original theory

{2"(0), m,(9)} = 056(0 = 7), {2"(0),2"(9)} =0, {mu(0),m(7)} = 0. (6.3.2)
we have that Poisson bracket for sigma derivatives is given as
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6.3. Non-commutative relations - general case

{801 Yo (01)7 affzym (02)} =

2 o o
= E(HJr + H£>71“1#2 GV1#1BV2#28026(01 - UQ) - BV1#1GV2M28015(01 - 02)]

1. . . . . (6.3.3)
T e O3 ()0 W (G008 a2 (I, T b (4 Tt

k, Vg \" 3T e K3~ 4

X [GVUM BV2M2xp(O-1)aU25(O-1 - 02) - BVUM GV2#2:EP(O-2)8015<0-1 - 02)]'

Integrating with respect to o1 (03), where we set boundaries as oq (7p) and o (7). Extracting
only Poisson bracket terms that contain ¢ and &, we have

U2 e _
[0 (0), 90 (0)} 2 (L + 1) 7942 G B + By Gon | H (o = )

1- o o o o
UL D G () s Wi (B0 + 070y ) (T - TT) 7Hews (I - TT5) e (6.3.4)

k H3 " pha M3 " pa

X GVIHlBVQHZ'Z‘p<5-) + BV1,LL1GV2/L2xp(O-):| I:I(U - 5‘)

Here, H(o — &) is same step function defined in Appendix A. It follows from definition of step
functions we have that Poisson brackets are zero for 0 = . However, in cases where string
in curled around compactified dimension, that is cases where ¢ — ¢ = 27, we have following
situation

2 . v
{y, (0 + 27),y,,(0)} = E(HJF + Hi) Ly oo [valezm + By, G,,zm]

1. . . . .
U s 5 ()W (51835 -+ G20k )T T s (11, 4 17]) e (6.3.5)

k M3 4 M3 e

X 47TGV1/L1 Buzuz N? + (valBuzuz + Bl/wl vaz)xp<‘7)] .

We used fact that H(27) = 1. As we had before, symbol N* denotes winding number around
compactified coordinate, if is defined as

(o + 27) — 2#(0) = 2nN*¥. (6.3.6)

Putting z#(¢) = 0 we have that Poisson bracket has linear dependence on winding number.
In cases where we don’t have any winding number, we still have non-commutativity that is
proportional to background fields.

Using the expression for sigma derivative of y, (6.3.1) and expression for Poisson bracket
of sigma derivatives (6.3.3), we can find non-associative relations. Procedure is the same as
for finding Poisson brackets of T-dual theory, we find Poisson bracket of sigma derivatives and
integrate with respect to sigma coordinate, this time integral is done trice. Going along with
this procedure we have following final result

[00(0), {ai (1), ()} = SO, 4 7)1

k.2
X T8 (F aa Co P (f ) pa W0, (812 8% + 01484 ) (TL + TT) s (IT, + IIE) ~tea> - (6.3.7)

X GVlMlBlQMH(U - 02) + BV1M1 GVquF[(U - Ul)] H<‘71 - 02)'
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6. Bosonic T-duality of supersymmetric string with coordinate dependent RR field - general
case

Since Jacobi identity is non-zero for T-dual theory we have that coordinate dependent RR field
produces non-associative theory. However putting o; = 0o = ¢ and ¢ = ¢ + 27 we have that

Jacobi identity disappears

{00 +27), {41 (7), 41, (0) } } = 0. (6.3.8)

Comparing these non-commutative relations with ones obtained in Chapter 4, we can ob-

serve that theory now has both different non-commutative and non-associative structure.
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7. Conclusion

At the end of this thesis we would like to present general summary of the work that has been
done thus far, as well as possibility of future extension of said work. It should also be stated that
results that have been presented, while original, are natural progression of work that has been
done by string field community and that they should not be examined in isolation. With such
rich history and vastness that accompanies string theory, author hopes that work exhibited in
this thesis was more or less self contained and that it did not leave too many readers confused.

Work done in this thesis, while covering few different topics, could best be examined by
splitting them in two main groups, first group that focuses on work based on bosonic string
and second where we focus on work based on type II supertring. Even though both groups are
connected with overarching methodologies and some results can be carried over from one group
to other, this split is best thought of as ideological one where we make separation between theory
which is toy model and one which has a chance for describing real world. Methodology that
connected these two groups was the Buscher [36, 13] procedure as well as its derivatives [16, 45].
This procedure was instrumental in obtaining T-dual theory as well as transformation laws that
connected coordinates of original and dual theories. Tasked with such monumental task, it is a
miracle that this procedure is rather simple, where whole procedure can be summarised in few
steps. First step was to examine if action was invariant to translational symmetry and if it was
then second step would be to localize this symmetry. Localization was done by interchanging
all partial derivatives with covariant ones. This way we introduced additional gauge fields
which, in order to obtain correct T-dual theory, would have to be eliminated. Elimination
of gauge fields marks the beginning of third step and this is done by introducing Lagrange
multiplier term into action. Following this, fourth step is utilizing gauge freedom to fix starting
coordinates to constants which leaves action that only depends on gauge fields and Lagrange
multipliers. Finding equations of motion for Lagrange multipliers and gauge fields, where
inserting the latter into action, we obtain T-dual theory. There are two main extensions to
this procedure, case when background fields depend on background fields and case when we do
not have translational symmetry. First case can be dualized by intoducing invariant coordinate
in step two, this coordinate is given as a path integral of covariant derivative and with its
introduction T-dual theory becomes non-local. Second one of these extensions is accomplished
by neglecting steps one, tow and three and introducing auxiliary action which is invariant to
translations. By sheer luck, shape of auxiliary is the same one as of the action which has been
gauge fixed. Both extensions to procedure produce non-local T-dual theory.

First major topic that was examined in this thesis was bosonic string with coordinate
dependent Kalb-Ramond field. While this theory has been examined before by many different
authors [10, 14, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], it was not sufficiently examined with
apparatus of Buscher procedure. Even though this analysis is original it should be best thought
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7. Conclusion

out as a stepping stone for more physically relevant case, stepping stone where we get to
familiarize ourselves more with generalized Bushcer procedure. In Chapter 2 we began our
work on this theory by performing T-duality first along coordinates on which background
fields did not depend, namely x and y coordinates and finally dualizing along direction on
which Kalb-Ramond field depended, z coordinate. By doing T-duality in this order we have
gone through three distinct theories which had different geometric interpretations. After first
dualization we obtained twisted torus, theory which was well defined both locally and globally.
Second dualization produces theory which was named torus with ) flux and while this theory
was locally well defined we could not say the same for its global structure. Final dualization
produced theory which was non-local and non-commutative, theory with R flux. By examining
transformation laws of final theory we were able to obtain Poisson brackets between T-dual
coordinates which possessed both non-commutative and non-associative properties.

Having saw what properties emerge in fully dualized bosonic string with coordinate depen-
dent Kalb-Ramond field, in Chapter 3 we examined if can obtain these properties earlier in
dualization chain by altering order of T-duality. We focused on duality chain that starts with
z coordinate and finishes with x coordinate. This way we showed that right from the first
T-duality we obtain theory that is non-local, however this theory was still commutative. Only
after second dualization, we obtained one half of non-commutative relations and after finding
fully dualized theory all non-commutative relations were salvaged. By obtaining T-duality by
two different directions we observed that non-commutativity is only possible after perform-
ing dualization along coordinate on which background fields depend. This way only T-dual
coordinates of ones that appear in background fields are non-commutative.

Having exhausted bosonic string case, remainder of this thesis was focused on type II su-
perstring in pure spinor formalism [26, 27, 28, 29] with coordinate dependent Ramond-Ramond
field. All remaining fields were constants or set to zero. This choice of the fields was moti-
vated by papers [31, 13] where it has been speculated that this exact combination of fields
would produce non-commutative relations between fermionic coordinates that are proportional
to bosonic ones. In order to find transformation laws and T-dual theory we utilized two ad-
ditional assumptions, first was that Ramond-Ramond field demended only infinitesimally on
coordinates and second one was that term which contained coordinate was antisymmetric.
Whith all these assumptions we have conducted T-duality of bosonic coordinates in Chapter
4. Since background field depended on all bosonic coordinates we had to utilize generalized
Buscher procedure and in turn obtained T-dual theory was non-local. Transformation laws
that we obtained we combined with momenta of original theory in order to transcribe them in
canonical form. Having transcribed dual coordiantes as linear combination of momenta and co-
ordinates of original theory we found non-commutative relations of T-dual theory. By enforcing
special conditions on world-sheet coordinate o, we found out how non-commutativity depends
on winding numbers N,,. It should also be mentioned that in this chapter we subjected T-dual
theory under dualization of dual coordinates, this way we were able to obtain original theory
in turn giving us confirmation that T-dualization was carried on correctly.

After examining bosonic duality we focused on fermionic duality of type II superstring.
Having seen, in case of bosonic string, that non-commutativity emerges only when we dualize
along coordinate on which background fields depend we wanted to see if same rule applies in
fermionic case. In Chapter 5 we first carried out fermionic T-duality of previously non-dualized
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theory where we found out that this new theory is commutative. Next, we dualized theory which
has already been dualized along bosonic coordinates obtaining fully dual theory. In this case we
had emergence of two new Poisson brackets, brackets between dual bosonic and dual fermionic
coordinates. However we have not been able to prove that hypothesis from papers [31, 13] is
correct. There were no additional Poisson brackets between two fermionic coordinates. Finally,
for completion sake, we have also conducted bosonic dualization of theory that has been only
dualized along bosonic coordinates, proving that these two T-dualities commute.

Final part of this thesis focused again on bosonic duality of type II superstring but with
one less assumption imposed on Ramond-Ramond field. We examined how properties of trans-
formation laws and dual theory when field has both symmetric and antisymmetric part. This
small modification removed translational invariance of the theory and made us rely on extension
of Buscher procedure that works on such cases. Overcoming this minor setback by working
with auxiliary action, we proceed to find transformation laws. By introducing symmetric part
of the field we were not able to obtain 3% functions that have appeared in previous dualizations
but have instead derived their generalization, N(k¥) functions. These functions were not only
dependent of coordinates and their derivatives like their predecessor but were also dependent on
choice of path in line integral that appeared in definition of invariant coordinate. This sudden
increase in complexity made it impossible to obtain canonical transformation laws in manner
that was similar as before. We had to rely both on equations of motion as well as canonical
momenta of original theory. Having obtained canonical transformation laws we were finally
able to deduce non-commutative relations of T-dual theory which, when compared to case with
antisymmetric field, are now different. On the other hand, since neither 5% nor N(x*) func-
tions do not play any role in T-dual theory, T-dual action that was obtained was the same as
in Chapter 4. Similarly as we did with antisymmetric field, we also performed T-duality of
already dualized theory where we were able to return to starting action.

Having done all this work, following question arises: What to do next? There are two
main directions that extension to this work can follow. First extension focuses on bosonic
string where instead of following standard wisdom and working only with coordinate dependent
Kalb-Ramond field we could incorporate also coordinate dependent space-time metric. This
extension would produce transformation laws that depend on N(x*) functions thus making
it possible to obtain non-commutativity for such field configurations. Furthermore this line
or research would be able to shed some light on type of changes that affect nontrivial space-
time metric after T-duality. Other possible line of research is focused on type II superstring
where we also include fermionic coordinates in background fields. Since background fields are all
interconnected it is reasonable to expect that such inclusion would produce configuration where
no field can remain constant. Having seen what are the requirements for non-commutativity,
we wager that such configuration would certainly produce non-commutative relations between
fermionic coordinates. However, we are not certain what would be the form these relations
take.
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A. Light-cone coordinates

Throughout this thesis we have often relied on usage of light-cone (Ic) coordinates. Here we
will give basic overview of both lc coordinates and some tensors expressed in this basis. We

begin by defining lc coordinates as
1

¢t = 5(7 + o). (A.0.1)
This definition naturally lends itself to introduction of corresponding partial derivatives
0y = 0 _ 0.+ 0 (A.0.2)
+ = afi - T o U

With light-cone coordinates and their partial derivatives defined we can cast our gaze on two
tensors that endow string theory world-sheet, two dimensional Levi-Civita tensor and world-
sheet metric tensor.

We begin first with two dimensional Levi-Civita tensor €™ which is defined in (7, o) basis

TO

= —1. Consequently, in light-cone basis the form of this tensor is

€le = (_Ol ) . (A03)

On the other hand the flat world-sheet metric is of the following form in (7,0) and light-cone

(3 0) = (5Y) (R4

In both cases subscript lc denotes light-cone basis.

as €

O N

basis. respectively

o

N[ =
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B. Poisson brackets

Throughout this thesis, we have seen that T-dual transformation laws connect derivatives of T-
dual coordinates with coordinates and momenta of initial theory. While initial theory satisfies
standard Poisson brackets, in order to find Poisson brackets for T-dual theory, we first need to
find Poisson brackets between o derivatives of T-dual coordinates. This type of Poisson bracket
will, in general case, be some function of initial coordinates, Dirac delta functions and their
derivatives with respect to ¢. Having this in mind, general case for our Poisson brackets will
have following form

{A(0),B'(5)} =U'(0)0(c —7) 4+ V(0)d'(c — ), (B.0.1)

where ¢'(c — ) = 0,0(c — 7). For terms A’(0), U'(c) and B'(), symbol ’ stands for partial
derivative with respect to o and &, respectively. If we want to calculate the Poisson bracket

{A(0), B(9)},
first we have to calculate the following one
{AA(0,00), AB(7,50)}, (B.0.2)

where

AA(0, 00) = / T dnA'(x) = A(0) — Aoo),  AB(6.50) = / " deB(x) = B(5) — B(y).

0

(B.0.3)
Substituting the expressions (B.0.3) into (B.0.2), we have
{AA(0,00),AB(7,00)} = / dm/ dy [U'(z —y)+V(x)d'(z—y)]. (B.0.4)
After integration over y we get
{AA(0,00),AB(G,50)} =
0’ . _ ~ _ ~ ~ ~ (B.0.5)
= / dz{U'(z) [H(z — 50) — H(z — 7)] + V() [6(z — 70) — 6(z — )]},
o0
where we utilized following property of Dirac delta functions
| dnswit =) = @) [Ho =) = Hoo = )], (.0
00
and where H(z) is Heaviside step function defined as
- 0 ifx=0
_ 1 I :
H(a:):/ dné(n):§ x+22;sm(nx)] =4 1/2 if0<z <27, (B.0.7)
0 n>1 1 if v =2rm
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B. Poisson brackets

where §(z) = % nez €. Finally, integrating over x, we obtain

Ulo)[H (o ~a0) = (o =) = Ulo)lHloo ~a0) = Ao =) o
—U(00)[H (0 — 00) — H (09 — 00)| + U(0)[H (0 — &) — H(09 — 7)]
+V(30)[H (0 — G0) — H(0og — &o] = V(3)[H(0 — &) — H(0g — 7)]
From the last expression, using (B.0.3), we extract the searched Poisson bracket
{A(0),B(6)} = —[U(0) = U(6) + V(5)|H(c — 7). (B.0.9)

In order to calculate Jacobiator we have to find Poisson brackets of type {y(o), z(7)}, where
y(o) is coordinate T-dual to initial one x(o). Having this in mind, we start with the following
Poisson bracket

{Ay(o,00),2(0)} = { / " dny (), 2(3)} (B.0.10)

0

and using T-dual transformation law in canonical form
TRy, (B.0.11)

we get
{Ay(o, 0p), } —{/ dnm(n (B.0.12)

where 7(o) is momentum canonically conjugated to the coordinate x(c). Initial theory is
geometric one which variables satisfy standard Poisson algebra, so, the final result is of the
form

L [H(o —6) — H(oy— )] = {ylo),2(0)} = _%H(U _5). (B.0.13)

IIZ

{Ay(o,00),2(7)}

RIH
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C. Obtaining (3, terms

During our examination of both bosonic string theory and superstring theory we have several
instances where we had to find variation of term that contained AV. Variation of this term
gave rise to ﬁfj(V) functions in T-dual transformation laws. While In case of bosonic string
theory we have slightly touched this issue, here we would like to give proper exhibition that
this problem entails. Even through we focus only on superstring case procedure that will be
presented is applicable to both cases, bosonic case and superstring case.

We decided to obtain Bff(V) functions for superstring however, we will use following sub-
stitutions 9,0% = 9,0% + v*! \i!f}l, 0.0°% =0_60° + ‘11521}12, also we will use Fi, to represent
term containing infinitesimal constant, in order to bring this exposition as close as we can to
bosonic string case.

/ d*0,0°F,5,AV V9 0° = / d*€€™ 0,0 Fo5,AV 009,08
b 3

1 _ 1 _
— /E d2¢ [ﬁem"am@aFaﬁpAv@Pan@ﬂ - §em”an@aFaﬁpAv<0>ﬂam@ﬂ

1 ~ _
- / e[ 0 Frg 0 AV090,07 — €70, 67 Fryp, 0, AV 06| (C.0.1)
¥

1 a _
- _5 / d2§5mnamAV(0)p [QaFaﬁpan@ﬂ - ﬁn@aFaﬁﬂGﬁ]
b

_ —% /E d2eem P [@aFaﬁpan@ﬁ —anéaFaﬁp@ﬁ] _ /2 €t B

Variation with respect to gauge field v, and setting Fug, = —(f™")aa, O3 (f 1) 5,5 pro-
duces desired (5 functions (4.2.14), (4.2.15) in equations of motion (4.2.13). On the other
hand setting Fig, to 2H (factor of 2 comes from the fact that term containing Kalb-Ramond
field was already transcribed as sum of two parts, effectively having two identical terms to one
given in first line of above equation), ©% to v; and ©% to v, we obtain 3* functions for bosonic
case (2.2.53). Fermionic beta functions are obtained in exactly the same manner where only
difference stems from using gauge fields 74+ and u4 instead of v.

Here we have used the property that F,g,, is antisymmetric under exchange of o and §3,
this, in combination with the fact that we can express 9,00_0 as €"0,00,,0, removes all
terms proportional to 0,0_, using identity €""00,,0,0 = 0. While surface terms disappear
from the requirement that we are working with trivial topology

It should be noted that 84,(V) functions are not unique, we could have obtained different
function simply by not using using symmetrization in (C.0.1). In case of non-symmetric 84,(V),
all results that have been obtained would take a simpler form. We have chosen to work with
antisymmetric function because results that are deduced from this case can be easily reduced,
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C. Obtaining ﬁfj terms

by neglecting terms, to simpler case.
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D. Obtaining N(xk¥) terms

Functions N(k¥) emerged in Chapter 6 during calculation of T-dual transformation laws as a
consequence of variation of term that was proportional to AV. Here we will present derivation
of this function.

S (F7HAV)) s

= _<f71)aa1 p 61 51 / glm £ =

dvl (k) 5U+ K)
= am O (s [ S w3(E
(e O (Vs / o) — k) (1)~ w) (D.0.1)

= (Do Vs [ w0 (e (€ w) - )

&
= (e O (F ) (€7 (€57 (6) = w7 ) [H(E" = 1%) = H(&H — )
= _<f71)aa1G5151(fil)ﬁlﬁNOiJr)'

In third line we have parametrized the path with parameter ¢ where &7 (¢;) = &" and
" (t;) = ¢+, In fourth line we introduced substitution u = &7 (¢), in delta function this
substitute is inverted. Fifth line is obtained by using following integration rule for Dirac delta

function

/ " dnfn)s(n— ) = £@) [H(o —1) — H(oo— )] (D.0.2)

0
Here, H(z) is a step function defined in Appendix B equation (B.0.7).
Procedure for obtaining N (k™) is similar.

D.1 Properties of N(k¥) terms

Here we will list some properties of N(k¥) function.
These functions can be combined in same way as 5% functions in order to get 7 and o

representations

where x° and k! represent 7 and ¢ coordinates respectevly
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D. Obtaining N(x¥) terms

Acting with partial derivatives on N (k1) (N (k7)) and integrating over world-sheet we have

following relations
/d2§8+N(m+) =1, /d2§8_N(m+) =0, (D.1.3)
% %
/d2§8_N(/f_) =1, /d2§8+N(m_) =0. (D.1.4)
% P

These relationships can be checked directly by applying partial derivatives to expressions from
D. Here we give explicit calculations to first of these relation

[ deoontet) = [ (s (€)1 ) — )0 [ 1) - B 5]
b )
— d25/* 1H\—1/, .+ _—6+_+: ) 1= 1+H\—1/¢+ — k). 1.
[ sa(em €y ) = w)ate —wt) = [ ass(em (€€ —x) (D15)
At the beginning of this Appendix we had following parametrisation of path P : &7 (t;) = &7
)

and &7 (t;) = €. Applying inverse parametrisation we have (¢7)71(¢f) = t; and (&7)71(¢F) =
ts. With these we have

Jass(e e e —n) = [ass(e () - )
- /Edg—a(g— - w) ~ 1. (D.1.6)

Same rules apply for N(x~), N(x°) and N(x'). In cases where F~'(x),5 is antisymmetric
we can transfer partial derivatives from 9.V* to N(k¥) and obtain standard $* functions.
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Noncommutativity and Nonassociativity of Closed Bosonic
String on T-dual Toroidal Backgrounds

B. Nikoli¢* and D. Obrié

In this article we consider closed bosonic string in the presence of constant
metric and Kalb-Ramond field with one non-zero component, B,, = Hz,
where field strength H is infinitesimal. Using Buscher T-duality procedure we
dualize along x and y directions and using generalized T-duality procedure
along z direction imposing trivial winding conditions. After first two
T-dualizations we obtain Q flux theory which is just locally well defined, while
after all three T-dualizations we obtain nonlocal R flux theory. Origin of
non-locality is variable AV defined as line integral, which appears as an
argument of the background fields. Rewriting T-dual transformation laws in
the canonical form and using standard Poisson algebra, we obtained that Q
flux theory is commutative one and the R flux theory is noncommutative and
nonassociative one. Consequently, there is a correlation between non-locality

and closed string noncommutativity and nonassociativity.

1. Introduction

Coordinate noncommutativity means that there exists minimal
possible length, which imposes natural UV cutoff. Idea of coor-
dinate noncommutativity is very old. Heisenberg suggested coor-
dinate noncommutativity to solve the problem of the occurrence
of infinite quantities before renormalization procedure was de-
veloped and accepted. The first scientific paper considering this
subject appeared 194711l where construction of discrete Lorentz
invariant space-time is presented. Later in the period of 1980s A.
Connes developed noncommutative geometry as a generalization
of the standard commutative geometry.?

Noncommutativity became again interesting for particle physi-
cists when the paperP! appeared. In this article it is shown us-
ing propagators that open string endpoints in the presence of
the constant metric and Kalb-Ramond field become noncom-
mutative. D-brane on which the string endpoints are forced
to move becomes noncommutative manifold. After this article
many articles” appeared addressing the same subject but us-
ing different approaches - Fourier expansion, canonical methods,
solving of boundary conditions etc.
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In the last two articles of ¥ the method
of solving of boundary conditions is
presented. The basic idea is that open
string boundary condition is treated as
canonical constraint. Investigating the
consistency of the canonical constraint
we obtained the o dependent form of
the boundary condition. Further, we
can proceed twofold: to introduce Dirac
brackets or solve the constraint. Solving
the constraint, we obtained the initial
coordinate as a linear combination of
the effective coordinate and momenta.
Consequently, initial coordinates are
noncommutative and the main contri-
bution to noncomutativity parameter
comes from Kalb-Ramond field as it was
expected.

Following the result of the article®! it
can be proven that gauge fields “live” at
the open string endpoints. Consequently, many interesting pa-
pers concerning non-commutative Yang-Mills theories and their
renormalisability appeared.”®! In the papers” cross sections for
some decays, allowed in noncommutative Yang-Mills theories
and forbidden in commutative ones, are calculated, which offers
a possibility of the experimental check of the noncommutativity
idea and further, indirectly, idea of strings.

It is obvious that closed bosonic string in the presence of
constant background fields remains commutative. There are no
boundaries and, consequently, boundary conditions constraining
string dynamics. In the case of open string we obtained initial
coordinate in the form of linear combination of effective coordi-
nates and momenta using boundary condition. That is achieved
in the closed string case® using T-duality procedure and coordi-
nate dependent background.

T-duality as a fundamental feature of string theory,*% unex-
perienced by point particle, makes that there is no physical dif-
ference between string theory compactified on a circle of radius
R and circle of radius 1/ R. Buscher T-dualization procedurel!’)
represents a mathematical frame in which T-dualization is
realized. If the background fields do not depend on some co-
ordinates then those coordinates are isometry directions. Con-
sequently, that symmetry can be localized replacing ordinary
world-sheet derivatives 8, by covariant ones Dy x* = 9. x* + vf,
where v! are gauge fields. In order to make T-dual theory has the
same number of degrees of freedom, the new term with Lagrange
multipliers is added to the action which forces the gauge fields to
be unphysical degrees of freedom. Because of the shift symme-
try, using gauge freedom we fix initial coordinates. Variation of
this gauge fixed action with respect to the Lagrange multipliers

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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produces initial action and with respect to the gauge fields pro-
duces T-dual action.

Standard Buscher T-dualization was applied in closed string
case in the papers.B1619 [n Ref. [16] authors consider 3-torus
in the presence of constant metric and Kalb-Ramond field with
one nonzero component B,, = Hz, where field strength H s in-
finitesimal. They systematically apply Buscher procedure and, af-
ter two T-dualizations along isometry directions, obtain theory
with Q flux which is noncommutative. In the calculations they
used nontrivial boundary conditions (winding conditions). The
result is that T-dual closed string coordinates are noncommuta-
tive for the same values of parameters o = & with noncommuta-
tivity parameter proportional to field strength Hand N;, winding
number for z coordinate.

But, except this standard Buscher procedure, there is a gen-
eralized Buscher procedure dealing with background fields
depending on all coordinates. The generalized procedure was
applied to the case of bosonic string moving in the weakly
curved background®®?? and in the case where metric is quadratic
in coordinates and Kalb-Ramond field is linear function of
coordinates.?®! The generalized procedure enables us to make
T-dualization in mentioned cases along arbitrary subset of coor-
dinates.

Double space is one picturesque framework for representation
of T-duality. Double space is introduced two to three decades
ago.” ¥ 1t is spanned by double coordinates ZM = (x*, y,)
(k=0,1,2,..., D—1), where x* are the coordinates of the
initial theory and y, are T-dual coordinates. In this space
T-dualization is represented as O(d, d) transformation.**-*
Permutation of the appropriate subsets of the initial and
T-dual coordinates is interpreted as partial T-dualization/**3’]
expanding Duff’s idea.?¥ The newly invented intrinsic
noncommutativity®® is related to double space. Intrinsic
noncommutativity exists in the constant background case
because it is considered within double space framework.

In this article we will deal with closed bosonic string propagat-
ing in the constant metric and linear dependent Kalb-Ramond
field with B,, = Hz, the same background as in [16]. This con-
figuration is known in literature as torus with H-flux. As in
the Ref. [16] we will use approximation of diluted flux, which
means that in all calculations we keep constant and linear terms
in infinitesimal field strength H. Transformation laws, relations
which connect initial and T-dual variables, we will write in canon-
ical form expressing initial momenta in terms of the T-dual co-
ordinates. Unlike Ref. [16], except T-dualization along two isom-
etry directions, we will make one step more and T-dualize along
z coordinate using generalized T-dualization procedure. During
dualization procedure we will use trivial boundary (winding) con-
ditions.

Transformation laws in canonical form enable us to express
sigma derivative of the T-dual coordinate as a linear combination
of the initial momenta and coordinates. Because initial theory is
geometrical locally and globally, its coordinates and canonically
conjugated momenta satisfy standard Poisson algebra. This fact
means that we can calculate the Poisson brackets of the T-dual
coordinates using technical instruction given in subsection 4.1.

After T-dualizations along isometry directions (along x and
y) we obtain the same background as in Ref. [16] but, obtained
Q flux theory, which is still locally well defined, is commuta-
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tive. This is a consequence of the imposed trivial winding condi-
tions. Having in mind the generalized T-duality procedure,?%21:3]
T-dualization along z coordinate produces R flux nonlocal theory
because it depends on the variable AV which is defined as line
integral. Calculating Poisson brackets of the T-dual coordinates
we obtain two nonzero Poisson brackets and show that there is a
correlation between non-locality and closed string noncommuta-
tivity.

The form of noncommutativity is such that it exists when ar-
guments of the coordinates are different, o # &. That is another
difference with respect to the result of Ref. [16] but there is no
contradiction because the origins of noncommutativity are differ-
ent. In this article non-locality is related with noncommutativity
of R flux theory under trivial winding conditions while in Ref. [16]
it is about noncommutativity of Q flux theory under nontrivial
winding conditions.

From the noncommoutativity relations it follows that Jacobi
identity is broken i.e. nonassociativity occurs. Nonassociativity
parameter, R flux, is proportional to the field strength H. Us-
ing generalized T-duality??*?'?3] we obtain the concrete form of
nonassociativity from string dynamics. Similar as noncommu-
tativity, discovery of nonassociativity pushes the scientists to ex-
plore the effects of nonassociativity in the field of renormalis-
ability of ¢* theoryl®” as well as formulation of nonassociative
gravity.l’®!

At the end we add an appendix containing some conventions
used in the paper.

2. Bosonic String Action and Choice of Background
Fields

The action of the closed bosonic string in the presence of
the space-time metric G, (x), Kalb-Ramond antisymmetric field
B, (x), and dilaton scalar field ®(x) is given by the following
expressionl’]

S:K[dzé:\/?g
)}

1 af
>< {[7g°‘ﬁGM(x)+ ¢ B,w(x):| aax“af,qu:(x)R(Z)},

2 Na
(2.1)

where ¥ is the world-sheet surface parameterized by §* = (z, o)
[(@ =0,1), 0 € (0, )], while the D-dimensional space-time is
spanned by the coordinates x* (u =0,1,2,..., D — 1). We de-
note intrinsic world sheet metric with g4, and the corresponding
scalar curvature with R®.

In order to keep conformal symmetry on the quantum level
background fields must obey space-time field equations®

¢ 1

o = Ruv = 7 Bupo B + 2D, =0, (2.2)
ﬁfy = Dﬂ Bpl/-v - zap Bp;w =0, (23)
D —26 1
B® =2nk c— — R= 35780 B" — Dua" +4a* =,
(2.4)

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



ADVANCED
SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

where c is an arbitrary constant. The function 8% could be a con-
stant because of the relation
D', + 0,8° =0. (2.5)
Further, R, and D, are Ricci tensor and covariant derivative with
respect to the space-time metric G,,,, while

By, =9,B,+9d,B,, +9,B,,, a,=09,, (2.6)
are field strength for Kalb-Ramond field B,,, and dilaton gradient,
respectively. Trivial solution of these equations is that all three
background fields are constant. This case was pretty exploited in
the analysis of the open string noncommoutativity.

The less trivial case would be a case where some background
fields are coordinate dependent. If we choose Kalb-Ramond field
to be linearly coordinate dependent and dilaton field to be con-
stant then the first equation (2.2) becomes

1

R - B

uv 4 1o B,” =0.

2.7)
The field strength B,,, is constant and, if we assume that it is in-
finitesimal, then we can take G, to be constant in approximation
linear in B,,,,. Consequently, all three space-time field equations
are satisfied. Especially, the third one is of the form

D-26 _

2
K G

c, (2.8)

which enables us to work in arbitrary number of space-time di-
mensions.

In this article we will work in D = 3 dimensions with the fol-
lowing choice of background fields

RR 0 0 0 Hz 0
Gw=|0 R o], B,=|-Hz o o], (9
0 0 R 0 0 0

where R, (u = 1, 2, 3) are radii of the compact dimensions. This
choice of background fields is known in geometry as torus with
flux (field strength) H.1S! Our choice of infinitesimal H can be
understood in terms of the radii as that

H 2
=0
RiRR;

This approximation is known in literature as the approximation
of diluted flux. Physically, this means that we work with the torus
which is sufficiently large. Consequently, we can rescale the co-
ordinates

(2.10)

xH

K —, (2.11)
R,

which simplifies the form of the metric
1 0 0

Gu=]0 10 (2.12)
0 0 1
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The final form of the closed bosonic string action is

S=« / d*Ed, %", ,,0_x"
z

5.1
kK | d°& E(E)era,x—l— 0,yd_y +9,.20_2)
b

+ 0, xHz0_y — a+sza,x], (2.13)

where 9. = 9, £ 9, is world-sheet derivative with respect to the
light-cone coordinates £ = 1(r +0), I, = B,, £ 1G,, and

X
(2.14)

Let us note that we do not write dilaton term because its
T-dualization is performed separately within quantum formal-
ism and here will be skipped.

3. T-dualization of the Bosonic Closed String
Action

In this section we will perform T-dualization along three direc-
tions, one direction at time. Our goal is to find the relations con-
necting initial variables with T-dual ones called transformation
laws. Using transformation laws we will find noncommutativity
and nonassociativity relations.

3.1. T-dualization Along x Direction — from Torus with H Flux to
the Twisted Torus

Let us perform standard Buscher T-dualization!'" of action (2.13)
along x direction. Note that x direction is an isometry direction
which means that action has a global shift symmetry, x — x + a.
In order to perform Buscher procedure, we have to localize this
symmetry introducing covariant world-sheet derivatives instead
of the ordinary ones

aix —> Dix = aix + vy, (31)

where vy are gauge fields which transform as v, = —d,4a. Be-
cause T-dual action must have the same number of degrees of
freedom as initial one, we have to make these fields v, be un-
physical degrees of freedom. This is accomplished by adding fol-
lowing term to the action

Sadd = %/ d*Eyi (00— — 0-vy), (3-2)
z

where y; is a Lagrange multiplier. After gauge fixing, x = const.,
the action gets the form

1
Sfix = K / de [E (vyv_ +0,y0_y+9,20_2)+ v, Hzo_y

1
—0;yHzv_ + £Y1(3+U— - 3,v+)] . (3.3)
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From the equations of motion for y; we obtain that field
strength for the gauge field v, is equal to zero

F, =d.,v_—d v, =0, (3.4)
which gives us the solution for gauge field
vy = dix. (3.5)

Inserting this solution for gauge field into gauge fixed action (3.3)
we obtain initial action given by Eq. (2.13). Equations of motion
for v, willlead to the T-dual action. Varying the gauge fixed action
(3.3) with respect to the gauge field v, we get

v = —0_y; —2Hz0_y, (3.6)
while on the equation of motion for v_ it holds
vy = 0491 +2Hz0, y. (3.7)

Inserting relations (3.6) and (3.7) into expression for gauge
fixed action (3.3), keeping terms linear in H, we obtain the
T-dual action

«S= K/ A*ED (x X) " T4 0_ ( X)", (3.8)
z

where subscript , denotes quantity obtained after T-dualization
along x direction and

Y1
Xi=1y (3.9)
z
Further we have the T-dual background fields
1
xn+u\/ = xB;w + 5xGuw xB;w = 0,
1 2Hz O
Gu=|2Hz 1 o0 (3.10)
0 0 1

Obtained background fields (3.10) define that what is known
in literature as twisted torus geometry. String theory after one
T-dualization is geometrically well defined globally and locally or,
simply, theory is geometrical (lux H takes the role of connection).
Combining the solutions of equations of motion for La-
grange multiplier (3.5) and for gauge fields, (3.6) and (3.7), we
get the transformation laws connecting initial, x¥*, and T-dual,
«X#, coordinates
Bix = :I:aiyl + ZHZBiY, (311)
where = denotes T-duality relation. The momentum 7, is canon-
ically conjugated to the initial coordinate x. Using the initial
action (2.13) we get

8S . ,
Ty = — = k(¥ — 2Hzy'),

o (3.12)
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where A= 9, Aand A’ = 3, A. From transformation law (3.11) it
is straightforward to obtain
Xy +2Hzy, (3.13)
which, inserted in the expression for momentum 7, gives trans-
formation law in canonical form

Ty =Ky

(3.14)

3.2. From Twisted Torus to Non-geometrical Q Flux

In this subsection we will continue the T-dualization of
action (3.8) along y direction. After x and y T-dualization we ob-
tain the structure which has local geometrical interpretation but
global omissions. Such structure is known in literature as non-
geometry.

We repeat the procedure from the previous subsection and
form the gauge fixed action

1
Six = /c/ d% |:E (04 y10-y1 + viv_ 4+ 0420_2) + 0, y1 Hzv_
z

1
+vy Hzo_y; + Eyz(&_v_ — 8_v+)] . (3.15)
From the equation of motion for Lagrange multiplier y,
04v_ —0_vy =0 —> vy = 04+, (3.16)

gauge fixed action becomes initial one (3.8). Varying the gauge
fixed action (3.15) with respect to the gauge fields we get
Vy = :I:Bi))z — ZHZBiyl (317)
Inserting these expressions for gauge fields into gauge fixed ac-

tion, keeping the terms linear in H, gauge fixed action is driven
into T-dual action

oS =k [ 0,0 T (X" (3.18)
where
Y1
@X)=1r]|:
z
i —Hz 0
1 1
xyH-Hw = xy B/;_u + Exy G/l,v = Hz 2 0 (319)
1
o o !
Explicit expressions for background fields are
0 —Hz 0 1 0 0
wBuw=|Hz 0 0|=-B., 4Gu.=|0 10
0 0 0 0 0 1
(3.20)
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Let us note that background fields obtained after two
T-dualizations are similar to the geometric background of
torus with H flux, but they should be considered only locally.
Their global properties are non-trivial and because of that the
term “non-geometry” is introduced.

Combining the equations of motion for Lagrange multiplier y,
and for gauge fields v, we obtain T-dual transformation laws

3iy = :tain — ZHZBiyl. (321)

The y component of the initial canonical momentum , is a vari-
ation of the initial action with respect to the y

8S

=5y = k(y +2Hzx'). (3.22)
Y

Using T-dual transformation laws (3.21) we easily get

y =y, — 2Hzy, (3.23)

while from the transformation law (3.11), at zeroth order in H,
it holds x’ = y;. Inserting last two expression into 7, we obtain
transformation law in canonical form
Ty Z Ky, (3.24)
After two T-dualizations along isometry directions, in the approx-
imation of the diluted flux (keeping just terms linear in H), ac-
cording to the canonical forms of the transformation laws (3.14)
and (3.24), we see that T-dual coordinates y; and y, are still com-
mutative. This is a consequence of the simple fact that variables
of the initial theory, which is geometrical one, satisfy standard
Poisson algebra

{x"(0), 7.(6)} = 8".8(c —6), (¥, x"}={m.m}=0,

(3.25)
where
TTx
= | 7y (3.26)
Ty

3.3. From Qto R Flux — T-dualization Along z Coordinate

In this subsection we will finalize the process of T-dualization
dualizing along remaining z direction. For this purpose we will
use generalized T-dualization procedure.?*??3 The result is a
theory which is not well defined even locally and is known in
literature as theory with R-flux.

We start with the action obtained after T-dualizations along x
and y directions (3.18). The Kalb-Ramond field (3.20) depends on
zand it seems that it is not possible to perform T-dualization. Let
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us assume that Kalb-Ramond field linearly depends on all coor-
dinates, By, = by, + 1 B,.,,%” and check if some global transfor-
mation can be treated as isometry one. We start with global shift
transformation

Sxl = A, (3.27)
and make a variation of action
_ kK P 42 W v
88 = S Buyh’ | d'0.x"0.x
Zk p af 2 o v n v
= ?BMW)A € g A°E[0, (x"dpx") — xM (3, 0p%")]. (3.28)

The second term vanishes explicitly, while the first term is sur-
face one. Consequently, in the case of constant metric and lin-
early dependent Kalb-Ramond field, global shift transformation
is an isometry transformation. This means that we can make
T-dualization along z coordinate using generalized T-dualization
procedure.

The generalized T-dualization procedure is presented in detail
in Ref. [20]. In order to localize shift symmetry of the action (3.18)
along z direction we introduce covariant derivative
04z2—> Diz=04+z+ v, (3.29)
which is a part of the standard Buscher procedure. The novelty is
introduction of the invariant coordinate as line integral

2" = | dg“D,
J e pz
= / ds+D+z+/ds*D_z=z(g)—z(go)+AV, (3.30)
P P
where
(3.31)

AV:/dS"‘va =f(d.§+v++d$’v,).
P P

Here & and & are the current and initial point of the world-sheet
line P. At the end, as in the standard Buscher procedure, in order
to make v to be unphysical degrees of freedom we add to the
action term with Lagrange multiplier

K
Sus =5 [ @ pforv — 0.0, (332)
T
The final form of the action is
S= K/ d’e [ — HZ™ (3, y10_y; — 94y20_y1)
x
1
+ 5(3+Y137Y1 4+ 0.y,0_y, + D,zD_2)
1
+3 Valdsv- a,m] : (3.33)
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Because of existing shift symmetry we fix the gauge, z(§) = z(&),
and then the gauge fixed action takes the form

Sfix = K/ dzf |:— HAV(8+yla,y2 — 8+Y28,Y1)
z
1
+5 (0 y10-y1 + 01 y20-y2 + v1v-)

+ %yg(ihv, — 8,v+)i| . (3.34)

From the equation of motion for Lagrange multiplier y; we
obtain

dyv.—0 v, =0=> v, =0:2, AV =Az (3.35)
which drives back the gauge fixed action to the initial action
(3.18). Varying the gauge fixed action (3.34) with respect to the
gauge fields v, we get the following equations of motion

vy = 0. y; — 287, (3.36)
where B functions are defined as

4 1
B+ = = H(yidsy, = yadey). (3.37)

The B* functions are obtained as a result of the variation of the
term containing AV

8, <_2K / d*&e* Ho,y19p72A v)

=k / d*e (B ov, + B 6v_), (3.38)

using partial integration and the fact that 9, V = v.. Inserting
the relations (3.36) into the gauge fixed action, keeping linear
terms in H, we obtain the T-dual action

y2S =K f A2E 04 s X" e Ty 0 12 X, (3.39)
z
where
Y1
xYZX# =|v| wlliw=xBu+ iszG,w, (3.40)
Y3
0 —HAJ; 0 100
xyz B/J,v = HA?Z» 0 0 s xyzGMv = 010
0 0 0 0 01
(3.41)
Here we introduced double coordinate y; defined as
8iY3 = :i:8i?3. (342)
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Let us note that AV stands beside field strength H, which impli-
cates that, according to the diluted flux approximation, we calcu-
late AV in the zeroth order in H

AV:/d§+8+y3 —fds—a_yg. (3.43)

Having this into account it is clear why we defined double co-
ordinate ¥; as in Eq. (3.42). Also it is useful to note that pres-
ence of AV, which is defined as line integral, represents the
source of non-locality of the T-dual theory. the result of the
three T-dualization is a theory with R flux as it is known in
the literature.

Combining the equations of motion for Lagrange multiplier
(3.35), v+ = 0.2, and equations of motion for gauge fields (3.36),
we obtain the T-dual transformation law
9.z +d,y; — 287 (3.44)
Adding transformation laws for 9.z and d_z we get the transfor-
mation law for 2

2=y, + H(yiy, — y201)s (3.45)
which enables us to write down the transformation law in the
canonical form

~

Y3 7, — H(xy' — yx). (3.46)

1
K
Here we used the expression for the canonical momentum of the
initial theory (2.13)

Ty, = — =Kz
6z

(3.47)

4. Noncommutativity and Nonassociativity Using
T-duality

In the open string case noncommutativity comes from the
boundary conditions which makes that coordinates x* depend
both on the effective coordinates and on the effective momenta.
Effective coordinates and momenta do not commute and, conse-
quently, coordinates x* do not commute. In the closed bosonic
string case the logic is the same but the execution is different.
Using T-duality we obtained transformation laws, (3.11), (3.21)
and (3.44), which relate T-dual coordinates with the initial coordi-
nates and their canonically conjugated momenta. In this section
we will use these relations to get noncommutativity and nonas-
sociativity relations.

4.1. Noncommutativity Relations

Let us start with the Poisson bracket of the o derivatives of two
arbitrary coordinates in the form

{A(0), B'(6)} = U'(0o)8(c — &)+ V(0)8' (0 — &), (4.1)
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where §'(c — &) = 9,8(c — &). In order to find the form of the
Poisson bracket

{A(o), B(6)},
we have to find the form of the Poisson bracket

{AA(o, 00), AB(G, 09)},

where
A Ao, 00) = ’ dxA'(x) = Alo) — A(o),
AB(&,60) = 76 dxB'(x) = B(5) — B(6). (4.2)
Now we have
{A A(o, 0), AB(&, 50)}
= /0: dx/&: dy [U'(x)8(x —y) + V()8 (x — y)] - (4.3)

After integration over y we get

o

{AA(0, 00), AB(G, Go)} = f dx {U'(x) [0(x — Go) — O(x — 5)]

90

+ V(%) [8(x — &) — 8(x — &)]} . (44)

where function 6(x) is defined as

x 1 1
— - 2% Zsi
0(x) /(; and(n) 7 |:x + ; " sm(nx)}
0 ifx=0
=1{1/2 if0<x<2m. (4.5)

1 if x =27
Integrating over x using partial integration finally we obtain
{AA(o, 00), AB(G, 69)} = U(o)[f(0 — &9) — O(0 — )]
= U(00)[6(00 — Go) — (00 — &)] = U(d0)[0 (0 — Go) — (00 — Go)]
+U(@6)[0(0 — &) — O(00 — 5)] + V(60)[0(0 — Go) — 6 (00 — Go]
—V(©6)[0(0c — &) —0O(op — G)]. (4.6)

From the last expression, using the right-hand sides of the ex-
pressions in Eq. (4.2), we extract the desired Poisson bracket

{A(o), B(6)} = —[U(o) — U(6) + V(0)]0(c — O). (4.7)

Let us rewrite the canonical forms of the transformation laws,
(3.14), (3.24) and (3.46), in the following way

! o~ / ! o~ 1 ’ /
VWS —m, Y= -my, y;=-—m— H(xy —yx). (4.8)
K K K
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In order to find the Poisson brackets between T-dual coordinates
Y. we will use the algebra of the coordinates and momenta of
the initial theory (3.25). It is obvious that only nontrivial Poisson
brackets will be {y; (o), y3(6)} and {y»(c), y3(5)}-

Let us first write the corresponding Poisson brackets of the
sigma derivatives of T-dual coordinates y, using (4.8)

~

N

1
1(0). y3(6)} = —Hy'(0)d(c — &) + — Hy(0)8'(0 = 3).  (49)

2 1
(15(0). (6)) = == H¥ (0)3(c — &) — - Hx(0)8'(0 — &),
(4.10)

while all other Poisson brackets are zero. We see that these Pois-
son brackets are of the form (4.1), so, we can apply the result (4.7).
Consequently, we get

- H _ -
(o). y3(6) = —— [2y(0) = y(6)]6(0 — &), (4.11)

H
(r200). 13(6)) = —= [2x(0) = x(5)] 60 = ). (+12)
where function 6 (x) is defined in (4.5). Let us note that these two
Poisson brackets are zero when o = & and/or field strength H
is equal to zero. But if we take that 0 — & = 27 then we have
6(27) = 1 and it follows

H
{yi(o +27), y3(0)} = —— [47 N, + y(0)], (4.13)

K

H
{y2(0 + 27), y3(0)} = — [47 N, + x(0)], (4.14)

where N, and N, are winding numbers defined as

x(0 +27) — x(0) =27 N,, y(0 +27)—y(o) =2 N,. (4.15)
From these relations we can see that if we choose such o for
which x(0) = 0 and y(o) = 0 then noncommutativity relations
are proportional to winding numbers. On the other side, for
winding numbers which are equal to zero there is still noncom-
mutativity between T-dual coordinates.

4.2. Nonassociativity
In order to calculate Jacobi identity of the T-dual coordinates

we first have to find Poisson brackets {y:(c), x(G)} as well as
{y2(0), y(6)}. We start with

{Ay1(0, 00), %(0)} = {/ dny; (), x(f})}, (4.16)

and then use the T-dual transformation for x-direction in canon-
ical form

T =Ky

(4.17)
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From these two equations it follows

1 o

{Ayi(o, 09), x(0)} = < {/ anm.(n), x(&)} , (4.18)
)

which, using the standard Poisson algebra, produces
o~ 1 - _
{Ayi(0. 00). %(6)) = = — [0(c — &) — (00 — 5)]
o~ 1 -
= {y1(0), %(0)} = —;9(0 — ). (4.19)

The relation {y,(0), y(6)} can be obtained in the same way. Be-
cause the transformation law for y-direction is of the same form
as for x-direction, the Poisson bracket is of the same form

1
{y2(0). y(6)} = —0(0 = 5). (4.20)

Now we can calculate Jacobi identity using noncommutativity re-
lations (4.11) and (4.12) and above two Poisson brackets

{y1(01). y2(02). y3(03)} = {y1(01). {y2(02). y3(03)}}
+{2(02). {y3(03). y1(01)}} + {y3(03). {y1(01). y2(02)}}
= —— [0(01 — 02)0(02 — 03)
+ 0(0; — 01)0(01 — 03) + O(01 — 03)0 (03 — 02)] . (4.21)

Jacobi identity is nonzero which means that theory with R-flux is
nonassociative. For 0, = 03 = 0 and 0y = 0 + 27 we get

2H

K2

12

{yi(o +27), y2(0), y3(0)} (4.22)

From the last two equations, general form of Jacobi identity and
Jacobi identity for special choice of ¢’s, we see that presence of
the coordinate dependent Kalb-Ramond field is a source of non-
commutativity and nonassociativity.

5. Conclusion

In this article we have considered the closed bosonic string
propagating in the three-dimensional constant metric and Kalb-
Ramond field with just one nonzero component B, = Hz. This
choice of background is in accordance with consistency condi-
tions in the sense that all calculations were made in approxi-
mation linear in Kalb-Ramond field strength H. Geometrically,
this settings corresponds to the torus with H flux. Then we per-
formed standard Buscher T-dualization procedure along isom-
etry directions, first along x and then along y direction. At the
end we performed generalized T-dualization procedure along z
direction and obtained nonlocal theory with R flux. Using the re-
lations between initial and T-dual variables, called T-dual trans-
formation laws, in canonical form we find the noncommutativity
and nonassociativity relations between T-dual coordinates.

After T-dualization along x direction we obtained theory em-
bedded in geometry known in literature as twisted torus geom-
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etry. The relation between initial and T-dual variables is triv-
ial, m, = ky;, where m, is x component of the canonical mo-
mentum of the initial theory and y; is coordinate T-dual to x.
Consequently, flux H takes a role of connection, obtained the-
ory is globally and locally well defined and commutative, because
the coordinates and their canonically conjugated momenta sat-
isfy the standard Poisson algebra (3.25).

The second T-dualization, along y direction, produces nonge-
ometrical theory, in literature known as Q flux theory. The metric
is the same as initial one and Kalb-Ramond field have the same
form as initial up to minus sign. But, this theory has just local
geometrical interpretation. We obtained that, in approximation
linear in H, the transformation law in canonical form is again
trivial, r, = ky}, where 7, is y component od the canonical mo-
mentum of the initial theory and y, is coordinate T-dual to y.
As a consequence of the standard Poisson algebra (3.25), we con-
clude that Q flux theory is still commutative. This result seems to
be opposite from the result of the reference [16] where in detailed
calculation itis shown that Q flux theory is noncommutative. The
difference is in the so called boundary condition i.e. winding con-
dition. In the Ref. [16] they imposed nontrivial winding condition
which mixes the coordinates and their T-dual partners (condition
given in Eq. (C.18) of Ref. [16]) and the result is noncommutativ-
ity. In this article the trivial winding condition is imposed on x
and y coordinates. The consequence is that Q flux theory is com-
mutative. But as itis written in Ref. [16] on page 42, “a priori other
reasonings could as well be pursued”.

T-dualizing along coordinate z using the machinery of the gen-
eralized T-dualization procedure/?'23l we obtain the nonlocal
theory (theory with R flux) and nontrivial transformation law
in canonical form. Non-locality stems from the fact that back-
ground fields are expressed in terms of the variable AV which
is defined as line integral. On the other side, dependence of the
Kalb-Ramond field on z coordinate produces the 8*(x, y) func-
tions and nontrivial transformation law for 7,. Consequently, co-
ordinate dependent background gives non-locality and, further,
nonzero Poisson brackets of the T-dual coordinates. We can claim
that there is a correlation between non-locality (R-flux theory)
and closed string noncommutativity and nonassociativity. In ad-
dition, nonzero Poisson bracket implies nonzero Jacobi identity
which is a signal of nonassociativity.

From the expressions (4.11), (4.12) and (4.21) it follows that
parameters of noncommutativity and nonassociativity are pro-
portional to the field strength H. That means that closed string
noncommuatativity and nonassociativity are consequence of the
fact that Kalb-Ramond field is coordinate dependent, B,, = Hz,
where H is an infinitesimal parameter according to the approxi-
mation of diluted flux. Using T-duality and trivial winding condi-
tions we obtained noncommutativity relations. The noncommu-
tativity relations are zero if 0 = & because in noncommuatativity
relations function 6(o — &) is present, which is zero if its argu-
ment is zero. This is also at the first glance opposite to the result
of Ref. [16], but, having in mind that origin of noncommutativ-
ity is not same, this difference is not surprising. If we made a
round in sigma choosing 0 — o + 27 and ¢ — o, because of
0(2r) = 1, we obtained nonzero Poisson brackets. From the rela-
tions (4.13) and (4.14) we see that noncommutativity exists even
in the case when winding numbers are zero, noncommutativity
relations still stand unlike the result in [16]. Consequently, we can
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speak about some essential noncommutativity originating from
non-locality.

We showed that in ordinary space coordinate dependent back-
ground is a sufficient condition for closed string noncommutativ-
ity. Some papers*® show that noncommutativity is possible even
in the constant background case. But that could be realized using
the double space formalism. At the zeroth order the explanation fol-
lows from the fact that transformation law in canonical form is of
the form 7, = «y;,, where y, is T-dual coordinate. Forming dou-
ble space spanned by ZM = (x*, y,), we obtained noncommua-
tive (double) space. In literature this kind of noncommutativity
is called intrinsic one.

Appendix: Light-Cone Coordinates

In the paper we often use light-cone coordinates defined as

1
£t = (T +0). (A.1)

The corresponding partial derivatives are

d
=0, £0,.

0L =
+ 9%

(A2)

Two dimensional Levi-Civita ¢*# is chosen in (t, o) basis as
€™ = —1. Consequently, in the light-cone basis the form of ten-

sor is
1
2 .
0

(0
Elc = _1
2

The flat world-sheet metric is of the form in (z, ) and light-cone
basis, respectively

(10 (30
n= 0-1)" Nie = 0% .
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1 Introduction

String theory as a possible candidate for unification of all known interactions offers a
framework for description of both gauge interactions and gravity. Analyzing the relation
between world-sheet diffeomorphisms and transformations of the background fields for open
bosonic string [1-3] it is concluded that Kalb-Ramond field gets one additional term that
is in fact a field strength of some gauge field. In sigma-model action it looks like that
gauge fields are attached at the string endpoints moving along Dp-brane. Finiteness of
the gauge theories (UV cutoff) demands existence of some minimal length. Consequently,
noncommutativity naturally arose in open bosonic string theory in the presence of the
constant background fields [4-7].

The fact that noncommutativity appears together with gauge theory produces a new
line of investigation in quantum field theory — noncommutative gauge theories [8-10], but
not noncommutative gravity.

The open bosonic string in the presence of the constant background fields gives con-
stant noncommutativity [4-7], but, consequently, Jacobi identity is zero and associativity
is not broken. Closed string in the presence of the constant background fields remains
commutative.

Noncommutativity in open string theory comes from the boundary conditions (see [5—
7]). Coordinates and their canonically conjugated momenta are mixed in the boundary



conditions, and because they obey standard Poisson algebra, at the end we get noncom-
mutativity of the initial coordinates. All these facts tell us about the way how we can
reach noncommutativity in the bosonic closed string case. Kalb-Ramond field must be,
at least, linearly coordinate dependent, and the generalized T-dualization procedure is a
machinery [11-19]. The noncommutativity relations are coordinate dependent and produce
nonzero Jacobi identity — nonassociativity appears in the closed string theory [13, 18, 20—
22].

The noncommutativity and nonassociativity can be considered also within superstring
theory [23, 24]. In ref. [25] we considered one special case of the type II superstring theory
in pure spinor formulation [26-30] — all physical background fields are constant except
Ramond-Ramond (RR) field strength. The RR field strength consists of the constant
part and linearly coordinate dependent one, which is infinitesimal. In accordance with
consistency conditions, we have chosen constant part of RR field strength to be symmetric
and cooordinate dependent part to be antisymmetric tensor.

The motivation for this choice of background fields is the quest for the anticommutation
relation between fermionic coordinates suggested in [30, 31]. Formally, this case is similar
to the bosonic string case with coordinate dependent Kalb-Ramond field (weakly curved
background). The difference is that in the superstring case noncommutativity parameter
depends both on the bosonic and fermionic coordinates. Also we obtained that Jacobiator
is nonzero. Both noncommutativity and nonassociativity parameters are proportional to
the infinitesimal tensor from RR field strength.

In this article we consider the same action as in [25], but we will not imply the ad-
ditional restrictions on the constant and coordinate dependent part of RR field strength
as in [25]. The fundamental difference in relation to the choice of background field in [25]
is in the fact that action with RR field strength without restrictions does not possess
translational isometry. In that sense this case can be considered as general one comparing
with [25].

We will use the generalized T-dualization procedure [16, 19] along bosonic directions.
Because this general case cannot be deduced to the form of the bosonic string with linearly
dependent Kalb-Ramond field, as it could in the case [25], we obtained more complicated
form of T-dual transformation laws and, consequently, the generalization of 3, functions
in the form of N (&) functions. Besides the complexity of the T-dual transformation laws
we succeeded to find expressions for noncommutativity and nonassociativity as well as the
form of the T-dual theory.

At the end we give some concluding remarks. In the appendices we present the deriva-
tion of N (&) functions and show their properties.

2 General type Il superstring action and choice of background fields

In this section we will shortly present how we derive the action of type II superstring in
pure spinor formulation with all constant background fields except RR field strength from
the general form of that action given in [26-30].



2.1 General form of the pure spinor type II superstring action

The general form of the type II superstring action in pure spinor formalism is derived and
given in [30]. It consists of two parts and can be represent as their sum

S =5+ Vs, (2.1)

where Sy describes the motion of string in flat background
Sp = /Z &2 (I;nwamx“(?n:c”nm” a0 0% + 8+§“7_ra) 4 Sy + S5, (2.2)
while the second one contains all possible interactions
Vse = /E Pe(XTM Ay n XN (2.3)

The second part of the action is expressed in terms of the integrated form of massless type
IT supergravity vertex operator Vsg. The actions Sy and S5 in (2.2) are free-field actions
for pure spinors

Sy = / 2w d N, S5 = / D N (2.4)

Here, A* and A% are pure spinors whose canonically conjugated momenta are w, and @q,
respectively.
The vectors XM and XV and matrix Ay are of the form

6+0a 879’\ Aa,B Aaz/ EaB Qa,uu

v | Wl g | I A A Bl Qu (2.5)
do | | B By P Co |
%N iy %N r Quvg Qv C’Blw Syvpo

where notation is taken from refs. [25, 30]. Every component of the matrix A,y is function
of bosonic, z#, and fermionic, #* and 6%, coordinates. For more details about derivation of
the components consult [30]. The superfields A,,, E'I‘j, E7 and P8 are known as physical
superfields, superfields that are in the first row and the first column are known as auxil-
iary because they can be expressed in terms of physical ones [30]. Remaining superfields
Quvp Qwp)y C% (CPL) and S,y 5o, are curvatures (field strengths) for physical fields.
Components of XM and X are of the form

1 1_ _
I = o ak + 590‘(1““)&5&05, " = o_az* + §9a(rﬂ)aﬁa,eﬁ, (2.6)
Ao = 7o — %(rﬂe)a R i(erﬂme) ,
o = 7o — %(rﬂé)a [ax“ + i(erﬂae)} , (2.7)
1 _ 1 _
vo__ vya 0 v - v[ya Y8
N¥ = iwa(F[" D gA?, N¥ = iwa(r[" DEFOS (2.8)

The world-sheet is spanned by ¢ = (¢ = 7,¢! = o), while world-sheet light-cone
partial derivatives are defined as 0+ = 0, + 0,. Superspace contains bosonic z* (u =
0,1,...,9) and fermionic 6%, #* (a = 1,2,...,16) coordinates. Variables 7, and 7, are
canonically conjugated momenta to the fermionic coordinates 8 and 6%, respectively.



2.2 Choice of the background fields

In this particular case we will use the supermatrix Ap;ny where all physical background
fields, except RR field strength PP, are constant. RR fields strength will have linear
coordinate dependence on bosonic coordinate z#. Consequently, supermatrix Apsy is of
the following form

0 0 0 0
0 k(39 + Bu) v 0

Anrn — 29ur T Buw Iz 2.9

MNT o —wg 2(fP 09y 0 (29)
0 0 0 0

where g, is symmetric tensor, By, is Kalb-Ramond antisymmetric field, ¥{; and \ifl‘j are
Mayorana-Weyl gravitino fields and f* and CE‘B are constant tensors. Let us stress this
will be a classical analysis and we will not calculate the dilaton shift under T-duality
transformation.

From the consistency conditions given in ref. [30], following this choice of background
fields, it follows

Because all background fields are expanded in powers of 6% and 6%, #* and 6% terms
in XM and XV will be neglected. Taking into account all imposed assumptions and
approximations, the full action S is getting the form

S:/EdQ.f

k v a a v N I 0\ =
§H+“y6+x“8_3: - 7Ta(6_9 + \I/V(?_J? ) + (8+9 + 84_3:'”\:[/“)7'(&

(2.11)
+27T (f* 4+ C¥PzP)7
k [0 14 B 9
where 111, = B, + %GW, and G, = Ny + guw is metric tensor. The actions Sy and S5
are fully decoupled from the rest and they will not be analyzed from now on.

It is easy to notice that fermionic momenta play the roles of the auxiliary fields in full
action. They can be integrated out finding equations for motion for both m, and 7,

k

5= (F’l(at))/ja (0_0% + T20_a"), (2.12)
To = —g (0,07 + 01 2mw)) (F‘l(m))ﬁa : (2.13)

where F*%(z) and (F~1(z))ap are of the form
FP(z) = [P+ CpPat . (FH@))ag = (f Dap = (F Daaa Cp e (f )pip - (2.14)

For practical reasons, we assume that C*3 u is infinitesimal. This assumption is in accor-
dance with constraints (2.10). Substituting equations (2.12) and (2.13) into (2.11) the final
form of action is

S =k / d?¢ |11, 0, 2"0_ 2" + %(méa + 02t 0s) (P ()  (0-0° + W0 a")| .
by

’ (2.15)




Let us note that we did not impose any conditions on tensors f*# and Cﬁ‘ﬁ as we did in
ref. [25]. The case considered in this article is more general than the case studied in [25],
because action does not possess translational symmetry.

3 T-dualization

Here we will make T-dualization of all bosonic directions aiming to find T-dual transforma-
tion laws — relations between T-dual coordinates and canonical variables of the original
theory. The T-dual transformation laws will be used to calculate Poisson brackets of the
T-dual coordinates.

3.1 Implementation of the generalized T-dualization procedure

In implementing of T-dualization procedure we will use generalized Buscher T-dualization
procedure [16]. The standard Buscher procedure [14, 15] is made to be used along directions
on which background fields do not depend (isometry directions), while generalized Buscher
procedure can be applied to theories with coordinate dependent background fields along
all directions. The generalized T-dualization procedure follows three steps — introduction
of covariant derivatives, invariant coordinates and additional gauge fields, which produces
additional degrees of freedom. The starting and T-dual theory must have the same number
of degrees of freedom. In order to achieve that we eliminate all excessive degrees of freedom
demanding that field strength of gauge fields (Fy_ = dyv_ — 0_v4) vanishes by addition
of Lagrange multipliers. Then we fix the gauge symmetry (shift symmetry) and action is
left with gauge fields and their derivatives. Finding equations of motion for gauge fields,
expressing in terms of the Lagrange multipliers and inserting those equations into action
we obtain T-dual action, where Lagrange multipliers have roles of T-dual coordinates.

T-duality can be performed also in the cases of the absence of shift symmetry [19].
Then we replace original action with translation invariant auxiliary action. Form of the
auxiliary action is exactly the same as the form of action where translation symmetry was
localized and gauge fixed. It produces correct T-dual theory only if original action can be
salvaged from it.

Action (2.15) is not translational invariant. Consequently, we make the following

substitutions
Orat — vl (3.1)
R R 32
P
k
S S+ 5/ d*¢ [V O_y, — 101y, (33)
)

and insert them in action (2.15). The result is auxiliary action convenient for T-dualization
procedure

1 _ _
nﬂwﬁwz+§¢umqw¢Wﬁ(F*%AvD (0_0° + Why¥)

«Q

&M:k/d%
b

1 (3.4)
+§(v’fr@_yu - v”(%ryu)} .

Let us note that path P starts from &y and ends in £. In this way action becomes non-local.

-5



Finding equations of motion for Lagrange multipliers
O_v — 9.t =0 v =0dyat, (3.5)

and inserting them into (3.2) we have
AV? = [ gm0t () = a?(6) - a? (o) = A’ (36)
P

In absence of translational symmetry, in order to extract starting action from auxiliary
one, we impose z”(§y) = 0 as a constraint. Taking all this into account, we get the starting
action (2.15).

Euler-Lagrange equations of motion for gauge fields vy (k) give the following ones

= 5P nlr) = )+ 7 (7 (AV)(0-0°(6) + Wit () (37)
= 5 JLPEI0FE) + v OB o C " (1N () 0-6%(6) + W02 (9),

%myu(r») = TL40 () + é@éa(n) T (R)T) (FHAV)) w) (3.8)

«

- [ E048°(€) v (€81 oo O (£ )N () [0-0%() + W,0(©)].

Here, function N (k%) is obtained from variation of term containing AV? in expression for
F~Y(AV) (details are presented in appendix A). They represent the generalization of beta
functions introduced in ref. [25]

2
=
=N
\_—i_
I
(o)

(€7 (€N D) = w7 [HE = wD) = HEG - D], (39)
N ) =a(&M (€)M ) —wt) [HE —rT) = H(& —x0)],  (3.10)

where more details on Dirac delta function and step function are given in appendix A. As
we see the expressions for derivatives of y, are more complex comparing with those in [25],
where translational symmetry is present.

Assuming that Cﬁﬁ is an infinitesimal, we can iteratively invert equations of mo-
tion (3.7) and (3.8) [20]. Separating variables into two parts, one finite and one infinitesimal



proportional to C’ﬁ‘ﬁ, we have

o (k) ——é@i”l{a_ym)wzw1<Av>>aga_eﬁ<n> (3.11)

1 — (e5Ne% — a3 Q2 T, —
—1—5\113‘1(]” l)amel PAVP(f l)azas\l’ufgf3(6*%/3(“)4'\1’5;(]0 1)6168795("{))

- /E PE[0F )+ 5 (9593, (€ 08 (O s W2 )0 T, ] (F s O3
< (F )N () [0-07(6) — 505,07 (01 () + T (S )rrs0-67(0))] }
ol () = ;eﬁlﬂ{mym (k) = 0:.0° (k) (F~ (AV))ag ¥, (3.12)

1 - _ o\ A papis = Ba ¢ e _
5 (0910 () = 0407 (R)(F g W3 ) O W () 30, O AVP(F )y

_ 1 - A2V T — a1
- /E @%€[0:0%()+ 5 (914 (§) = 01 () (™)1 V]2 ) 0" 03, | (/M O

< (5N () [0-07(6) — 505,07 (04 () + T35 (™ )ars0-67(0))] }

Tensor ©" is inverse tensor to I, = I, + 2 0(f~1 a N2
+u +u 2 0 B*v

O Iy, = ok, (3.13)
where
A\ MUY v 1 T ([ f— v
oM = e —56‘1“1\1'M1(f Daplh 071, (3.14)
_ 1 -
FaB — paB i\pz@ﬁ A (3.15)
Oy =64,  O_ = —4(GZ'TI_G™H)™. (3.16)

Effective metric tensor is defined as Ggu = G — 4(BG_1B)W.

In above expressions AV is a quantity in the zeroth order in C’fjﬂ

AVp:/dﬁJrvi—F/df_vf (3.17)

1 _ o L o
25/1>d§+@glp[a+ypl_8+9 (f 1)aﬁ‘1’51]_§/pdf O [0y + W5, (f 1 )apd-0"].



Using (3.7) and (3.8) and inserting them into (3.4), we get T-dual action

1-_
St-auat =k [ &% L@*‘”c‘uyua_yy (3.18)
P

1~ = _ o — A1V
+§®iﬂl\pul(f 1)a010p151AVp(f 1)515\11516—1 a‘i‘yﬂa—yl’

#5048 (FHAV)as + 5 (D CFH AV sy U8 T ()
- %(f*l>m\lleé*i”@ﬁl(f*)m + %(f*)mlwzlé‘i”@fs(f*)agﬁzq‘f?ﬁlAVP(f*%la
_ i( SV WETOMI GO (1), OB AT 5 5 WEGM T ( f—l)w) 9.6

+ imyuéﬁm v ((FI(AV))ag + %(f*l)wlOﬁlBSAV”(f*l)agaz\Pff@il”@ffl(f 1)ﬂ1ﬂ)
x 0_6°

1 no — 1 — a1 Q ST — «@ — V1V
= 30 ((F AV 5 o WO () AV (), ) 0,0
X 8_yyl .

Let us note that above we kept terms up to the first order in Cﬁﬁ .
T-dual action contains all terms as initial action (2.15) up to the change z* — y,.
Consequently, T-dual background fields are of the form

v 1~ v 1~ TEe] — — «@ —
I =19‘i +§95‘*‘1‘I’m (FHAV)) g+ (f Daan CoPLAVP (7155 (3.19)
1 e = 1, N _ oy = B o
= 3 D U0 W (F ) 505+ 5 (5 aar O AV (F ™ ana U302 (£ )05
1, . o B iag = B ¢ o _
+§(f 1)0[&1\11#%@‘:2 2‘1’53(f 1)5352C§251Avp(f l)ﬂlﬂ
1 — a1 0 T — «@ — A\V3V2.T, — V1V
= 1 Do WO W (f ) g O AV (1) 3,5, W2 O W (£ 1) 3y | 07,0227,
H(F! =(F YAy (a0 OO AVP () gy, WO G (1 3.20
(F7(@))ap = (7 (A9))ag + 5 (f Daar G (f7)azas V2O W (7 )5 (3.20)
1, . o A= B e 1, . o A _ _
= 30 o U OB (F )05+ 5 (F e U O B ()30, O AV (£ )5,
1 — a1 0 T — « — NV1VAT, —
= 1 (F Do U QMU (7100, O P AV (1) 3y, WO WP (f 1) 5y,
_ 1 1
xPre — — QMY U, =——0lOM. 21
2@— v V,B 2 ,u@— (3 )

Comparing background field of T-dual theory with background fields from [25] we imme-
diately notice that background fields have become more complex. However, this is just an
illusion. In both cases background field are exactly the same only difference is that here
we did not introduce tensor 11, ,, = I, ,, + %\IIZ‘F “L(AV)asVY and its inverse, therefore
we are missing ingredients to express our fields in more compactified format.



3.2 T-dualization of T-dual theory

Since the initial theory is not symmetric under translations, T-dual action that is obtained
from auxiliary action (3.4) and it is now invariant to translations of T-dual coordinates.
Consequently, we can dualize T-dual theory by generalized Buscher procedure. We start
with the introduction of following substitutions

O+yu — Diyy = 0+yy +uty — Diyy = usy, (3.22)
AyP — Au’, (3.23)
AW = ;/deé’i”’ [u+p1 — a+§a(f—1)aﬁqf§1}
- % /P dE=6" [u_, + 08, (F)apd-07] . (3.24)
S— S+ %(uﬂﬁ_w“ —u_,04at). (3.25)
From the first line we see that gauge is fixed choosing y(§) = const. Inserting these

substitutions into (3.18) we obtain

1-
Sgauge fix — /'43/ d2§ [4®ﬁyu+uu—v (3.26)
P

1A \T - o' ~ — 1414
+§9liﬂllpz1(f l)aalcplﬁlAup(f 1)515\1151@j Ut pU—y
1 - _ _ 1 _ — — ~ UV T, —
+ 5040 (F7HAD)ag + 5 (1 Vaas O 2 AT (f s U O W ()55
1, o Ay _ 1, o ALy _ PO
- i(f l)aoél‘I/ul@li \I’gl(f 1)515 + §(f l)aalq/ulgli \1’53(-}0 1)635205261Aup(f 1>515

1. a1 Q) T — « = - QV1V —
= U oo UG O U (™ oy O AT () 5y, W20 T () 515 ) 90

1 _ = o _ _ 1, . o — — QV1V], -
+Zu+#@’i’“\11m ((F I(Au))aﬁ+§(f l)aa10plﬁ3Aup(f 1)3352\115?971 \I"gl(f 1),313)

x 9_6°

1 no -1 — 1 —1 a1 QMU o2 £—1 asBi AP £—1 B Qriv
- Za-i-e ((F (Au))ap + i(f )am\I/p Sl \I/,ul (f )a2a3Cp Al (f )ﬁlﬁ)qjm@—

X U_y,

1
+ i(uﬂﬁ,:ﬁ“ — uu&r:ﬁ“)] :
Using equations of motion for Lagrange multipliers, we return to the T-dual action. Finding
equations of motion for gauge fields, we have

(k) = 201012 (1) — Ora” ()DL (F e CIV AP (15,00 (3.27)
+ 0.0° () (F (A)) o)

— [ E(0:07(©) + 010 (U, ) (o G (s N ()

x (0-6°(6) + Who_a"(€)),



Uy () = ~20T D2 (k) + T o, CIV A (F ), W00t () (3.28)
— WS (FH(AR))a50-0% (k)

+ [ (0207 + 00O F2) (oo CE ()N (1)

x (a_eﬁ (€) + Ul §_a (g)) .

Here we have that Azt = x(£) — x(&y), and inserting these equations into the gauge fixed
action, keeping all terms linear with respect to C4” and selecting & such that x(&) =0,
we obtain our original action (2.15).

4 Non-commutative relations

In this section we will establish a relationship between Poisson brackets of original and
T-dual theory using results from the previous one. Original theory is a geometric one,
which means that canonical variables x#(&) and 7,(&) satisfy standard Poisson algebra

{2"(0),m,(0)} = 6,0(0 — ), {a"(0),2"(9)} =0, {mu(0),m(3)} =0. (4.1)

We will find Poisson structure of T-dual theory using relations (3.7) and (3.8) and ex-
pressing them in terms of the coordinates and momenta of the initial theory. Replacing
gauge fields with solutions of equations of motion for Lagrange multipliers, we get T-dual
transformation laws in Lagrangian form. Because we implement here canonical approach,
the next step is removing of all terms that are proportional to 9;z*(§). The most of the
terms of this type will get incorporated into expression for canonical momenta 7,(§), but
term that is non-local and which is dependent on function N(£%) remains. One way of
removing this term is to first use equations of motion for coordinate z*(§), and then replace
remaining 0,x* term with canonical momentum. By doing all the steps that were outlined,
we have following relationship between T-dual coordinate and variables of starting theory

Ty,

Ooyu(0) = 2By 052" — Guu(ﬁ+ + ﬁz)_mul k

-5 (P @), 000 (42)

- S0 (P @) v, -

5 Iy + E\Tla (F_1($))

2#1

aB

VARG A
1- _ _
S (o O 07 (0) ()5, W (342002 — 0042 (L + T1T)~197

2#1

T 1- _ 1. ., . _ _
X [kp -5 1)y 0-67 — F0+07(f Dy OO + T pp, Opa? — H+plpa¢,me.

To find Poisson bracket between T-dual coordinates, we can start by finding Poisson
bracket of sigma derivatives of T-dual coordinates and then integrating twice (see [25]).

~10 -



Implementing this procedure we have that Poisson bracket for sigma derivatives is given as

{06191 (1), 00y, (02) } = (4.3)
2=

= (L + ) 792Gy Brays00,0(01 = 02) = By G0, 8(01 = 02)|

1
K

X [GylulB,,Mxp(al)&,Q&(al — 02) — By Guops 0 (02) 05,6 (01 — 02)}.

W5, (F ™o O (F 1), 0, (0304 + 00y ) (T + T THeoi (I - TIT) ks

Then we integrate with respect to o1 (02), where we set boundaries as oy (0¢) and o (7).
Extracting only Poisson bracket terms that contain ¢ and o, we have

_ 2 = o _

{311 (0) 900 (0} = (g + T5) 42 Gy By + Buygy Gy | H (0 = 0) (4.4)
Tor oo _ e N

+ U0 () aaa G (7)1 U0, (83878 + 61 0y ) (TLy. + ILE) ~Hab (I - II) ~Hoeare

k
X | Guryiy Brapa”(0) + Buyy G2 (0) | H (o = 7).

Here, H(o — &) is same step function defined in appendix A. It should be noted that these
Poisson brackets are zero when ¢ = ¢. However, in cases where string in curled around
compactified dimension, that is cases where ¢ — & = 2w, we have following situation

2 e
{9 (0 4 2m), g (0)} = 7 (I + ITF) e |Guipis Buaps + Buap G| (4.5)
1

U0 (T aen O3 (571 58 W0, (G307 + G0y ) (T + L)~ 1ot (T - TIT) ~ st

X {47TGV1u1Buzu2Np + (Grip Buows + BVlHlGV2#2)xp(O—):|'

We used fact that H(27) = 1. The symbol N* denotes winding number around compact-
ified coordinate, if is defined as

zH (o + 2m) — a2t (o) = 2 N*H. (4.6)

Let us note that if we choose z#(0) = 0 than Poisson bracket has linear dependence on
winding number. In cases where we don’t have any winding number, we still have non-
commutativity that is proportional to background fields.

Using the expression for sigma derivative of y, (4.2) and expression for Poisson bracket
of sigma derivatives (4.3), we can find non-associative relations. Procedure is the same as
for finding Poisson brackets of T-dual theory, we find Poisson bracket of sigma derivatives
and integrate with respect to sigma coordinate, this time integral is done trice. Going
along with this procedure we have following final result

Gup 5 | 5T\
{00(0), {yn (01), s (02)}} = =3 (T + ) (4.7)
XU (Faon O3 (F 71080, (042044 + 00y ) (I + TIE) THei (I o TIT) ~ ks

X [GV1M1BV2M2H(U —02) + BV1M1GV2M2H(U - 01)]H(01 — 02).
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Since Jacobi identity is non-zero for T-dual theory we have that coordinate dependent RR
field produces non-associative theory. However putting oy = 0o = ¢ and 0 = 7 + 27 we
have that Jacobi identity disappears

{yv(6 + 2”)7 {qu (5)7 Yva (5)}} =0. (4'8)

5 Conclusion

In this article we examined type II superstring propagating in presence of coordinate de-
pendent RR field. This choice of background was in accordance with consistency conditions
for background field and all calculations were made in approximation that are linear with
respect to coordinate dependent part of RR field. We have also excluded parts that were
non-linear in fermionic coordinates and neglected pure spinor actions. Using equations of
motion for fermionic momenta we obtained action that was expressed in terms of bosonic
coordinates, their derivatives and derivatives of fermionic coordinates. Unlike [25] we do not
impose any conditions on the constant and coordinate dependent part of RR field strength,
S0, it is not possible to deduce this case to the form of the weakly curved background one.

Action with our choice of background fields did not possess translation symmetry,
therefore we needed to use Buscher procedure that was extended to such cases. By substi-
tuting starting action with auxiliary action we gave up on locality in order to be able to
find T-dual theory. Finding equations of motion of newly introduced Lagrange multipliers
we were able to salvage starting action giving us assurance that auxiliary action we selected
would produce correct T-dual theory. After this we found equations of motion for gauge
fields and by inserting them into action, we found T-dual theory.

Having found T-dual theory, we applied T-dual procedure once again as a more thor-
ough way of checking if action we obtained was in fact correct T-dual of starting action.
Unlike starting action, T-dual action possessed translation symmetry and was non-local
from the start by virtue of having dual coordinate AV*. Applying steps of generalized
Buscher procedure [16, 19] we obtained starting action, again confirming that our choice
of auxiliary action was correct.

We obtained non-commutativity relations in context of T-dual theory, where we used
T-dual transformation laws as a bridge between Poisson brackets of starting theory and
T-dual theory. T-dual transformation laws were expressed as functions of coordinates
and momenta of original theory and using their standard Poisson algebra, we got non-
commutativity in T-dual theory. From expression for Poisson brackets (4.4) we can see
that non-commutativity is proportional to infinitesimal part of RR field as well as to
symmetrised inverse of field II. Non-commutativity relations are zero in case when ¢ = 7,
while in case where 0 = & + 27 we see the emergence of winding numbers.

Taking into account Poisson brackets of sigma derivatives and expression for sigma
derivative of T-dual coordinate we were able to find non-associative relation for T-dual
theory. In general case this relation was non-zero and it was proportional to infinitesimal
constant C4”. In special case when we put o1 = 02 = ¢ and 0 = 7 + 27 we noticed that
non-associativity relation disappears. During the implementation of the T-dualization

~12 -



procedure and calculations, we obtained generalization of 3, functions in the form of the
N-functions.

It should be noted that since we did not preform T-dualization along fermionic coor-
dinates their Poisson structure would remain the same as in original theory. Furthermore,
since background fields do not depend on fermionic coordinates it should be expected, as
in the case of bosonic coordinates [18], that T-duality would leave Poisson brackets be-
tween fermionic fields the same. We expect that, if proposed non-commutative relations
from [30, 31] are even possible, we would need at least RR field that depends both on
fermionic and bosonic coordinates.
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A Obtaining N (k%) terms

In this paper function N (k%) emerged in T-dual transformation laws as a consequence of
variation of term that was proportional to AV. Here we will present derivation of this
function.

0 (F_I(AV))QB _ ﬁl movh (&)
5’[)5']'_(!{) _(f )aoqc 313/ 5 6’[)_,’_(//»') (A]-)
= = e G s / dgo(g = K)o — )
£/+

e O (s [t S0 — () )

1

= (Vo COP(f 515/ dus(u— r (€ (€ (w) — )

= —(F Dam O (F Dppd (€7 (€)M ) = w7 ) [HIET = 1) = HigT — n")]
= —(FNaea G (F s N (K7),

In third line we have parametrized the path with parameter ¢ where &1 (t;) = &7 and
&7 (ty) = &*. In fourth line we introduced substitution u = &7 (t), in delta function this
substitute is inverted. Fifth line is obtained by using following integration rule for Dirac
delta function

/U " dnfm)o(n —7) = £(7) [H(o —7) — H(oo — 7). (A.2)
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Here, H(z) is a step function defined as

H(x) = / dnd(n [:L’ + Z — sin nm)}

n>2
0 if z=0

=<1/2 if O<z<2m . (A.3)
1 if =27

Procedure for obtaining N (k™) is similar.

B Properties of N (k%) terms

Here ve will list some properties of N (x%) function.

Where £° and k! represent 7 and o coordinates respectevly
/ B0, N (k) = 1, / 60N (r+) = 0, (B.3)
b b))
/ PEO_N (k™) = 1, / P60, N (k™) = 0. (B.4)
b b))

These relationships can be checked directly by applying partial derivatives to expressions
from A.

[0 N (et = [ des(e () ) —n o [H(E —rh) — H(&H —rh)
= [ (6 (€N )~ )aleT —wt) = [de s (€7 (€N TEN) —wT). (B5)
)
In appendix A we had following parametrisation of path P: ¢/ (t;) = &+ and &7 (¢ §) =

¢+. Applying inverse parametrisation we have (¢'7)71(¢f) = t; and (¢7)~1(¢t) = ty.
With these we have

Jasmo(e (€M et) —n) = [asa(e (k) )
:/Edg—a (€ -n)=1 (B.6)

Same rules apply for N(k7), N(k") and N(x!). In cases where F~1(z),s is antisym-
metric we can transfer partial derivatives from 9+ V™u to N (k%) and obtain standard S+
functions.
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1 Introduction

Noncommutativity of coordinates has come into focus of physics about hundred years ago
when the problem with infinite value of physical quantities occurred. The solution was
proposed by Heisenberg in the form of noncommutative coordinates. But after developing
of renormalization procedure coordinate noncommutativity was forgotten as a tool for
cancelling of infinities.

Commuting of coordinates means that there is no minimal possible length in Nature
i.e. that we can measure the position of particle with infinite precision. The return of
noncommutativity into physics starts with the article of Hartland Snyder [1]. Usually we
treat space-time as continuum but Snyder showed that there is Lorentz invariant discrete
space-time. Consequently, this means that commutator of coordinates is nonzero, and
noncommutativity parameter dictates the scale at which noncommutativity exists.

In the paper [2] existence of noncommutative manifold was shown using propagators
in open bosonic string theory with constant metric and constant Kalb-Ramond field. This
result is proven in many articles [3—12] after that but using different mathematical meth-
ods. Obtained noncommutativity with constant noncommutativity parameter is known



in literature as canonical noncommutativity. Consequently, canonical noncommutativity
implies that theory is still associative one.

One of the first application of canonical noncommutativity was in Yang-Mills (YM)
theories [13-16]. Noncommutative YM theories are constructed and their renormalisability
properties are analyzed. It turned out that some processes forbidden in commutative YM
are allowed in noncommutative YM theories. Consequently, cross sections for those decays
and processes are calculated [17, 18]. Such predictions offer the possibility of indirect check
of idea of noncommutativity.

The next type of noncommuatativity which is considered in literature is Lie-algebraic
one, which means that commutator of two coordinates is proportional to the coordinate.
The k-Minkowski space-time is an example of this kind of noncommutativity and it is
considered in various contexts [19-24]. The x-Minkowski space is noncommutative but
it is easy to check that is associative one. But, in general, if the commutator of the
coordinates is proportional to the some linear combination of coordinates, then the space
is nonassociative because jacobiator and associator are nonzero. For example, such spaces
are closely related to the Lo, algebra [25].

The mathematical framework for T-dualization is standard Buscher procedure [26, 27].
It consists of the localization of the shift symmetry and adding a term with Lagrange
multiplier in order to make gauge fields unphysical degrees of freedom. Also there is an
improvement of standard Buscher procedure developed and applied in refs. [28-31], gener-
alized Buscher procedure. In the application of the generalized procedure of T-dualization
there is one additional step with respect to the standard one. We introduce invariant
coordinate in order to localize shift symmetry in the coordinate dependent backgrounds.

The first articles addressing the subject of coordinate dependent backgrounds appear
in the last ten years [32-43]. A 3-torus with constant metric and Kalb-Ramond field
with just one nonzero component, B;, = Hz, was considered within standard Buscher
procedure [33]. Authors made two successive T-dualzation along isometry directions z and
y, and, using nontrivial winding conditions, obtained noncommutativity with parameter
proportional to field strength H and winding number Nj.

Using generalized T-duality procedure [30, 44] we obtained coordinate dependent non-
commutativity and, consequently, nonassociativity. Also it is shown that final theory is
nonlocal. In ref. [30] the bosonic string is considered in the weakly curved background —
constant metric and linearly coordinate dependent Kalb-Ramond field with infinitesimal
field strength, while in [44] we consider the same model as in [33], but T-dualizing along
all three directions and imposing trivial winding conditions. Obtained nonlocality comes
from the coordinate dependent background, or more precisely, from invariant coordinates.
At the end of T-dualization procedure background fields depend on AV, defined as line
integral. Nonlocality has been become very important issue in the quantum mechanical
considerations [45].

In this article we will deal with closed bosonic string propagating in the constant
metric and linear dependent Kalb-Ramond field with B, = Hz, the same background as
in [33, 44]. But our goal here is to examine the influence of order of T-dualizations. In
ref. [44] we T-dualize first along isometry directions, first along = and then along y, and at



the end, along direction z. The first T-dualization produces configuration known as twisted
torus which is commutative, and it is globally and locally well defined. After second T-
dualization we obtained nongeometric theory with @ flux which is still locally well defined
and it is commutative. The final T-dualization along z direction produces nonlocal theory
which is noncommutative and nonassociative one. This line of T-dualizations we will call
Tyz one.

But what it will happen, if we change the order of T-dualizations, regrading (non)lo-
cality issue as well as (non)commutativity and (non)associativity? It is quite obvious that
nothing will be changed if we T-dualize along line yxz, because the first two directions,
which are T-dualized, are isometry ones. Some nontrivial issues could be expected if
we T-dualize first along z direction. In this article we will present T-dualization of the
model from [33, 44] along the T-dualization line zyz. After every step of T-dualization
we will rewrite the T-dual transformation law in canonical form using the expressions for
canonical momenta of the initial theory. Also we will check whether the obtained theory
is commutative or not and, consequently, we will see whether it is associative or not.

The fact which is quite sure is that all three theories which we will obtain from the
T-dualization line zyx are nonlocal. The explanation comes from the fact that background
field B, is z dependent and according to the generalized T-dualization procedure, after T-
dualization along z, we obtain quantity AV which is defined as line integral. Consequently,
the theory is nonlocal. But because y and x T-dualizations do not affect AV, all three
theories obtained in zyz T-dualization line are nonlocal. That is a difference with respect
to the xyz T-dualization line considered in [44].

The interesting thing is that transformation laws can be obtained from the corre-
sponding ones in [44] by replacing H — —H, but because in this article we T-dualize in
the opposite direction, that produces theories of the different commutative and associative
features with respect to [44]. After first T-dualization we get commutative and associative
theory which is the same as in zyz case from [44]. But the second T-dualization here
produces noncommutative and associative theory of k-Minkowski type. That is different
with respect to the zyz case, where second theory in the line is both commutative and
associative. At the end we obtain the same theory as in [44] which is nonassociative and
noncommutative. The noncommutativity and nonassociativity parameters have one addi-

tional “—”

sign comparing with the corresponding ones in [44]. In this article as well as
in [44], we impose trivial winding conditions which means z#(o + 27) = z#(0) + 2 N*,
where N* is a winding number.

At the end we comment some quantum aspects of the problem and add two appendices.
The first one contains conventions regarding light-cone coordinates, while the second one is
related to the mathematical details concerning derivation of two kinds of Poisson brackets

appearing in the article.

2 Bosonic string action and choice of background fields

In this section we will introduce the action for bosonic string propagating in 3D space with
constant metric and Kalb-Ramond field which single component is different from zero,



B,y = Hz. This model is well known in literature as torus with H-flux. Since we are
working with the same model as in [33, 44], for completeness we will repeat most of the
steps from introductory part in the [44].

The closed bosonic string which propagates in the presence of the space-time metric
G (), Kalb-Ramond field By, (), and dilaton field ®(z) is described by action [46-48]

gob
V=9

where world-sheet surface ¥ is parameterized by &% = (7,0) [(« = 0,1), 0 € (0,7)],

S = ﬁ/2d2§\/jg{ BQO‘BGW(QT) + By ()| Oqzt0pa” + @(az)R(z)} , (2.1)

while z# (. =0,1,2,..., D — 1) are space-time coordinates. Intrinsic world sheet metric is
denoted by g, and the corresponding scalar curvature with R®.

Conformal symmetry on the quantum level is not preserved for any choice of back-
ground fields. If we want to keep conformal symmetry on the quantum level, background
fields must obey the space-time field equations [49]

1
Bl = Buv = 1 Bupo B + 2Dya, =0, (2.2)
B = D,B" 1 —2a,B”,, =0, (2.3)
D —26 1
® =2k o — R— 5 Bupw B — Dy + 40’ = ¢, (2.4)
where c is an arbitrary constant. From
D¥BS, +0,8*° =0, (2.5)

it follows that third beta function, 5%, is equal to an arbitrary constant. Here R,, and D,
are Ricci tensor and covariant derivative with respect to the space-time metric G, Field
strength for Kalb-Ramond field B,,, and dilaton gradient are defined as

By = 0uByy+ 0,By, + 0,Bu, a,=0,9. (2.6)

One of the solutions of these equations which is important for us here is the solution
where some background fields are coordinate dependent. Let us choose Kalb-Ramond field
to be linearly coordinate dependent and dilaton field to be constant. The equation (2.2)
turns into

1 o
R;u/ - ZB,upaByp =0. (27)

If we assume that field strength is infinitesimal, then we take G, to be constant in ap-
proximation linear in B,,,,. Consequently, the third equation (2.4) is of the form

D-26

5 c. (2.8)

2K

The constant c is arbitrary, and fixing its value at ¢ = — 23; E we obtain D = 3, dimension

of the space in which we will work further.



The choice of background fields in the case we will consider is

R? 0 0 0 HzO0
Gw=|0R 0|, Bu=|-Hz0 0|, (2.9)
0 0 R3 0 00

where R, (1 = 1,2, 3) are radii of the compact dimensions. In terms of radii, the imposed
condition that H is infinitesimal, can be rewritten as

_H i -0 (2.10)
RiRsR3) '

Physically, infinitesimality of H means that we work with sufficiently large torus (diluted
flux approximation). If we rescale the coordinates

s 2 = R o, 2.11
m

where indices on the right hand-side of equation are not summed, the form of the met-
ric simplifies
100
Guw=\10101]. (2.12)
001

Taking all assumption into consideration, the action is of the form
S=k / d*€04 2T 0_a” (2.13)
b
1
= ,‘-{/ d?¢ {2 (O4x0_x + 04y0_y + 0420_2) + OrxHz0_y — O yHz0_x| ,
b

where d+ = 0; + 0, is world-sheet derivative with respect to the light-cone coordinates
¢t =3(r+0), Dy = By + 3G and

x
=y, (2.14)
z

T-dualization of dilaton is done within quantum formalism and here it will not be presented.

3 Family of three R flux non-local theories

In this section we will perform T-dualization of closed bosonic string equipped by H-
flux torus background fields, one direction at time. T-dualization procedure will go along
zyzx line. We will show that all three theories are nonlocal with R-flux. Also we will
find expressions connecting initial and T-dual variables, so called T-dual transformation
laws. Using transformation laws in canonical form, we will check after every step whether
obtained theory is (non)commutative and/or (non)associative.



3.1 T-dualization along z direction — shortcut to R-flux

Unlike the cases considered in [33, 44|, where T-dualization drives along zyz line, let us
do that in opposite direction and perform generalized T-dualization [28] of action (2.13)
along z direction.

3.1.1 T-dualization procedure

It looks like that this direction is not isometry one. But we can show that it can be treated
like isometry direction. Let us consider the global transformation

Szt = AP, (3.1)

and vary the action with respect to this transformation

08 = gBWp/\” /E d*€0, M _x¥ = %Bﬂwveaﬁ /Z A*E[Da (21 Dpa") — 2 (0adpx”)] . (3.2)

The second term vanishes as a consequence of contraction of antisymmetric (e*?) and
symmetric (0,03) tensors, while the first one, surface term, survives, and it is, in general,
different from zero. But, the expression §S is an topological invariant, so it vanishes if the
map from the world-sheet to D-dimensional space-time is topologically trivial. Essentially,
infinitesimal field strength H does not affect the vanishing of the surface term.

There is one more explanation of vanishing of this surface term. It is more technical
and adjusted to the approximation we used in this article which essence is the explanation
in paragraph above. Because we work in the approximation up to the linear terms in H, x*
satisfies equation of motion for constant G, and B, 0;0_x# = 0, which solution is well
known in literature. If the winding number is equal to zero, it holds a* (27 + o) = z#(0),
and since the configuration in the initial 7; and final moment 7y is fixed, the surface term
vanishes.

So, in the weakly curved background case (H-flux torus background is such like that),
z direction is an isometry one. Localization of the shift symmetry of the action (2.13) along
z starts with introducing the covariant derivative

Orz —> Dyz =042z + v, (33)

where vy is a gauge field. In order to make gauge fields unphysical ones, we introduce term
with Lagrange multiplier

Suan = /E Peys(Dsv- —0_vy). (3.4)

These two steps are the part of the standard Buscher procedure. Because of coordinate
dependent background field B,,,, generalized T-dualization procedure has an additional

step, introducing of an invariant coordinate

2 = /PdgaDaz = /Pd§+D+z + /Pdg—D_z = 2(&) — 2(&) + AV, (3.5)



where
AV = /P v, = /P (dE*vs +dEv. ). (3.6)

The form of the action is now

_ : 1
S = /@/ d%¢ [Hzm”(0+:1:6y — 04y0_x) + 5(0+:r8,a: +04y0_y+ DyzD_z)
b

+ % ys(Dp0_ — a_u)} . (3.7)

Fixing the gauge, z(£) = 2(&), we get gauged fixed action in the form

Stiz = KJ/ d?¢ [HAV(8+x8_y — 01yd_z) + %(&rxa_x + 04y0_y +vyv_)
b

+ %yg(&w_ — 8_U+)] . (3.8)

The equation of motion for Lagrange multiplier y3 obtained from above action (3.8)
produces
Oyv_ —0_vy =0 = vy =012, (3.9)
which drives us back to the initial action (2.13). On the other side, if we found equations
of motion for gauge fields v4, we get

vg = +04y3 — 267, (3.10)

where %t functions are defined as
pE = HF%H(x@:Fy —yOzx). (3.11)

The A% functions stem from the variation of the term containing AV. The derivation of
beta functions S* is based on the relation LAV = wvi. In the derivation of the beta
functions there is one nontrivial technical point and that is vanishing of the surface term
after one partial integration. That surface term is of the same form as in eq. (3.2), so
the same reasons for surface term vanishing hold here. Mathematical details regarding
derivation of 3% functions can be found in refs. [28-31, 44].

Inserting the relations (3.10) into the gauge fixed action, keeping linear terms in H,
we obtain the T-dual action

S=kK / 2604, XF T4, 0- . X", (3.12)
by
where
1
XP= |y , Al = 2 Buy + 520#1/, (3.13)
Y3

0 HAV 0 100
B =|-HAV 0 0], :Guw=[10101]. (3.14)

0 0 O 001

Let us note that presence of AV, defined as line integral, represents the source of
nonlocality of the T-dual theory.



3.1.2 T-dual transformation law

Combining the equations of motion for Lagrange multiplier (3.9) and for gauge fields (3.10),
we obtain T-dual transformation laws

O+rz =2 +0+ys F H(x0+ry — yoix), (3.15)

~

where = is used here to mark T-dual relation. Momentum of the initial theory (2.13)

canonically conjugated to the coordinate z is of the form

_ oL _
0%

where £ is a Lagrangian density defined as S = [y d’¢L. Calculating # using T-dual

K2, (3.16)

Tz

transformation law (3.15), we get the T-dual transformation law in canonical form

1
ys = —m + H(xy' — ya'), (3.17)

which is of the same form as in the zyz case.

In all further expressions we will keep the symbol AV, but we must have in mind
that we used equations of motion for Lagrange multipliers (3.9) at the end of T-dulization
procedure along z coordinate, so, having in mind (3.6) and (3.15), we get

AV = Az = /d§+6+y3 — /df_a_yg =13. (3.18)

The variable AV is multiplied by infinitesimal field strength H, so, in the above expression
we used 01z = +01ys, as a consequence of diluted flux approximation.

3.1.3 (Non)commutativity and (non)associativity

The initial theory is geometric one and its variables satisfy the standard Poisson algebra
{z"(0),2"(0)} = {mu(0),m, ()} =0, {2*,7m,(5)} = 6",0(c —5), (3.19)

where x# are the coordinates of the initial theory, while 7, are their canonically conju-
gated momenta. Using expression (3.17) and standard Poisson algebra (3.19), we obtain
that coordinates of the theory obtained after one T-dualization, ,X*, are commutative.
Consequently, Jacobiator is equal to zero, which means that theory is associative.

Summarizing this first step of T-dualization, obtained theory is commutative and as-
sociative nonlocal R-flux theory. Comparing with the results of the ref. [44] after first
T-dualization, qualitatively we obtain the same result, but with the essential difference
that here obtained theory is nonlocal R-flux theory unlike that in [44] which is geometrical
one, locally and globally well defined.

3.2 Step 2 — T-dualization along y direction

Our starting point is the action given in eq. (3.12). The background fields are independent
of y, so, we apply standard Buscher procedure. This means that, unlike the previous
case, we perform just first two steps in T-dualization procedure and skip the third one —
introducing of invariant coordinate. The T-dualization procedure is already presented, so,
we will skip explaining procedure steps further.



3.2.1 T-dualization procedure

The gauge fixed action is of the form

Sflm = ﬁ/ d2£ |:; (8+x8_:c + V4V— + 0+y38_y3) + HAV(U_8+Z‘ - U+8_JZ‘)
P

K

5 /Ed2£y2(8+v —0_vy). (3.20)

Varying with respect to the Lagrange multiplier ys we get

+

vy = 0vry, (3.21)
while the equations of motion for gauge fields are
vy = 204y F2HAVOLx. (3.22)

Inserting the expression for gauge fields (3.22) into gauge fixed action (3.20), we obtain the
T-dual action

@S =k /E d*€ 01 2y XH oMy O— 2y XY, (3.23)
where
v 1
zyX'LL =1 Y2 ) zyHJr;w = zyB;w + 5 zyG;ux ) (3.24)
Y3
1 —2HAV O
2yBu =0, 2Guw=| —2HAV 1 0]. (3.25)
0 0 1

Let us note that after two T-dualizations in the xyz case in [44] we also obtained that
T-dual Kalb-Ramond field is zero.
3.2.2 T-dual transformation law

Combining equations of motion (3.21) and (3.22) we get the corresponding transforma-
tion law
O+y =2 +0+ys F2HAV O+ . (3.26)

Let us now prescribe the transformation law in canonical form. The momentum canonically
conjugated to the initial coordinate y is obtained by variation of the initial action (2.13)
with respect to the ¢ and it is of the form

my = k(y 4+ 2Hz2'), (3.27)
while from transformation law (3.26) we have
U2 yh—2HAV Y . (3.28)

Combining last two equations and using the fact that, in the approximation linear in H,
AV and z are T-dual to each other, we get

12

1
—Ty . (3.29)

/
Yy
2 K

As we see the transformation law is the same as in the zyz case.



3.2.3 (Non)commutativity and (non)associativity

In this paragraph we will calculate Poisson brackets of the coordinates ., X" using trans-
formation laws in canonical form given by egs. (3.17) and (3.29).

With the help of the standard Poisson algebra (3.19) and instructions from appendix
B, it is easy to see that

{z(0),2(0)} = {y2(0),42(7)} = {y3(0),y3()} = {2(0),92(0)} = {z(0),y3(0)} = 0.

(3.30)
The only non-zero Poisson bracket is
/ ! (= ~Y H / — / _
{v2(0),43(0)} = — [22/(0)d(0 — &) + 2(0)d' (0 = 7)] , (3.31)

where §' = 0,6(c — 7). This result is obtained by straightforward calculation using T-
dual transformation laws, (3.17) and (3.29), and standard Poisson algebra (3.19). The
relation (3.31) is of the form (B.1), where A'(c) = y}(0), B'(5) = y4(5), U'(0) = £22/(0)
and V(o) = %m(a). With these substitutions in mind, we have that final expression is of
the form (B.8)

(2(0). 95(0)} = = (o) ~ #(0)] (0 ). (332)

For 0 = 0 4+ 27 and ¢ — o we have
L H
{a(0 +27), 43(0)} =~ [a(0) + 4] (33
because 0(2r) = 1 (B.6), while NV, is winding number for x coordinate
x(o+27) —x(0c) = 27N, . (3.34)

As we can see the noncommutativity relation (3.32) is of k-Minkowski type. It is straight-
forward to see that

{z(o1),{y2(02),y3(03) } } + {y2(02), {ys(03), 2(01) }} + {ys(03),{z(01),92(02)}} = 0.
(3.35)
Because the Jacobiator is zero, we conclude that this R-flux theory is noncommutative
and associative one.

3.3 Step 3 — T-dualization along x direction

In this subsection we will finish T-dualization procedure not repeating the mathematical
details, but giving just the important equations and results.
The gauge fixed action is given by the following equation

1
Stiz = n/ d*¢ [2 (v+v— + 01y20-y2 + O1y30-y3) — HAV (v4:0_y2 + 01y v-)
X

K

T3

/E d*Ey1 (O4v_ — O_vy). (3.36)

~10 -



The equations of motion for Lagrange multiplier produces

vy = 0+, (3.37)
while the equations of motion for gauge fields vy give
vy = +0+y1 +2HAV Orys. (3.38)
Inserting expressions for vy into gauge fixed action we get the T-dual action
zyacS = /"3/‘ d2§8—|— zszM zyacH+uV 2YT Xuv (339)
b
where
Y1 1
zy:vXM = Y2 ) zyacHJr,uV = zyacB,uV + 5 zny,ul/ (340)
Y3
0 —HAV DO 100
2yaBuw = | HAV o 0], 2yeGu = 1010 | . (3.41)
0 0 0 001

Combining the equations of motion (3.37) and (3.38) we obtain the T-dual transfor-
mation law
Orx = +01y1 +2HAVO1ys . (3.42)
It directly follows that
T Xy +2HAV . (3.43)

From the initial action (2.13) it is obvious that momentum canonically conjugated to x is
of the form

T = ki — 26Hzy' . (3.44)
The T-dual transformation law for y (3.26), in the approximation linear in H, produces
that ¢y = go. Taking into account the relation (3.43), we get the canonical form of the
T-dual transformation law

1
= T (3.45)

As we see the full set of T-dual transformation laws, (3.17), (3.29) and (3.45), are the same
as in the case where T-dualization was along zyz line [44] up to H — —H. The full T-
dualized theory is of the same form as in [44] with the expressions for noncommutativity

(1(0), 5(0)} = L [29(0) ~ y(&)] 00 — ), (3.46)

{y2(0), y3(0)} = *% 22(0) — 2(3)]0(c — 7), (3.47)
and nonassociativity

{y1(01),y2(02),y3(03)} =

{y1(01),{y2(02), y3(o3)}} + {y2(02), {y3(03),y1(01) }} + {ys(o3), {y1(01), y2(02) } } =
2/{—[3 [0(o1 — 02)0(02 — 03) + 0(02 — 01)0(01 — 03) + 0(01 — 03)0(03 — 02)] , (3.48)

which can be obtained from the corresponding ones in xyz case [44] by replacing H — —H.

- 11 -



4 Quantum aspects of T-dualization in the weakly curved background

In proving isometry and computing the 8% functions we assumed the trivial topology and
the surface term occurring there vanishes. Now we want to discuss some quantum as-
pects of the considered problems in nontrivial topologies. We will consider the action for
bosonic string in the weakly curved background — constant metric and Kalb-Ramond field
depending on all coordinates and with infinitesimal field strength. Torus with infinitesimal
H-flux is special case of this model.

On th classical level there are a few problems in the theory. In order to perform the
generalized T-dualization procedure the invariant coordinate zf, ~is introduced. But it
is multivalued and the proof of equivalence of gauged and initial theories needs the part
considering global characteristics. Moreover, in the quantum theory at higher genus, the
holonomies of the world-sheet gauge fields complicate the situation a little bit. Fortunately,
these problems can be resolved in Abelian case in the quantum theory [50-52].

First, we make Wick rotation 7 — —i7, which makes the term which contains metric
tensor G, gets multiplier 4, while the terms which contain Kalb-Ramond field B, and
Lagrange multiplier y, stay unchanged. Then the partition function is of the form

00
7 Z/DQDU e—% JsvG*vtik [guB[V]v+E [ udy ) (41)
g=0

We use differential forms and omit the space-time indices to simplify writing of equations.
The Hodge duality operator is denoted by star. The index g denotes the genus of manifold.

The first step in the calculation process is separation the one form dy into the exact
part dy. (y. is single valued) and the harmonic part y, (dy, = 0 = d'yp,)

dy = dye + yn. (4.2)

For the closed forms the co-exact term d'y., in the Hodge decomposition is missing.

The path integral (4.1) goes over all degrees of freedom including local degrees of
freedom as well as the sum over different topologies. Consequently, according to the (4.2),
we substitute Dy with the path integral over y, and the sum over all possible topologically
nontrivial states contained in y; (marked by Hy)

Dy — Dy Y _. (4.3)
Hy

The integration over g, induces vanishing of the field strength

Z= / Do d(dv) e 5 0@ vHin Sy vBIVIe S % o, (4.4)
Hy

The 1-form v can be expressed as sum of exact, co-exact and the harmonic parts

v=dz+ dve + v, (4.5)

- 12 —



which means that
Dv — DaDd v, dH,. (4.6)

The functional integration over harmonic part vy drives to the ordinary integration over
topologically nontrivial periods (marked by symbol H,). After integration over dfv.. we get

7 — /Ddev 67% Js; v G *v+ik [guB[V]v Ze% Js VY (47)
Hy

The last term in the exponent is responsible for nontrivial holonomies. Eliminating
Vee part, the 1-form v becomes closed and the Riemann bilinear relation becomes usable

/Evyhzg[]ivjiyh—]iyh]iv] (4.8)

The symbols a;,b; (i = 1,2,...,g) represent the canonical homology basis for the world-
sheet. Because of the periodicity of the Lagrange multiplier y, its periods are just the
winding numbers around cycles a; and b;

N, Zjé Yn,  Nb, Z]é Yh - (4.9)
a; b;

3 7

Ai :j{ v, Bi :% v, (4.10)
a; b;

g
/ vyp = Z(NbiAi — N, Bj). (4.11)
z i=1

Denoting the periods with

we get

Now the partition function (4.7) gets the form

7 — /Dx dAidBiefg Js; v G *v+ik [guB[V]v Z 6% Zgzl(NbiAi*NaiBi). (4'12)
Na; Ny, €Z
The periodic delta function is defined as §(x) = % nez e which produces
7= / D dA;dB;6 (gAi) 5 (g&) e 5 JsvGrutin [gvBIVy (4.13)

It is useful to examine the path dependence of the variable V#, which form is now
VH(E) = 2#(€) ~ at(60) + [ o (414)
P

Let us consider two paths, P; and P,, with the same initial £ and the final points £“.
Now we will subtract from the value of V# along P; the value along path P, and obtain
the integral over closed curve P1P2_1 of the harmonic form

VHE[P] — VH[P] = ﬁ - vl (4.15)

~ 13 -



Establishing the homology between the closed curve P1P2_1 and curve Zl [niai + mibi],
(ni,m; € Z) we get finally

VAP = VI[P + > (ni Al +mBl). (4.16)
i
The variable V#(§) in classical theory is path dependent if holonomies are nontrivial.
Integrating eq. (4.13) over A; and B; implies that periods A; and B; are zero. Conse-

quently
v =dz. (4.17)

The variable V#* becomes single valued, and the initial theory is restored
7 — /Dxe_; Js, de G*da+ik [y, deBlz]de _ /Dl‘e_nfx d?¢0211 4 [x]0x ) (418)

Consequently, starting with partition function of the gauged fixed action of bosonic
string in the weakly curved background, within path integral formalism and in the presence
of nontrivial topologies, we came to the partition function of the initial theory. That means
that introducing coordinate dependent Kalb-Ramond field is consistent with path integral
quantization process.

5 Conclusion

In this article we studied the 3D closed bosonic string propagating in the geometry known
as torus with H-flux — constant metric and Kalb-Ramond field with just one nonzero
component, By, = —B,, = Hz. The choice of background fields is consistent with the
consistency conditions if we work in the diluted flux approximation which assumes that
in all calculations we keep just the constant terms and those linear in the infinitesimal
field strength H. Our goal was to study the T-dualization line which goes in the oppo-
site direction from the standard one. First, we T-dualize z direction, then y and at the
end along x direction — so-called zyz T-dualization line. We analyzed in every step the
(non)commutativity and (non)associativity of the obtained theory and made comparisons
with the case of xyz T-dualization line considered in [33, 44].

The common fact for all three theories obtained in the process of T-dualization step by
step is that all three ones are nonlocal R-flux theories. The nonlocality comes as a result
of the first step in T-dualization procedure, T-dualization along z direction. Generalized
T-dualization procedure has one additional step with respect to the standard Buscher
procedure and that is introduction of invariant coordinate. In the process of T-dualization
invariant coordinate turns into variable AV which is defined as line integral. Consequently,
this means that obtained theory is nonlocal. Further T-dualizations does not affect AV
and, all three theories are nonlocal ones. As we know, in the case of zyz T-dualization
line [44], we obtained three different theories in geometrical sense — twisted torus, Q-flux
theory (which is local) and nonlocal R-flux theory.

The dualization along z direction produces nonlocal R-flux theory unlike the zyz
case [33, 44] where the theory obtained after first T-dualization is locally and globally
well defined. Because initial theory is geometrical one, its variables satisfy standard Pois-
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son algebra (3.19). Using (3.19) and T-dual transformation law written in the canonical
form (3.17), we showed that theory obtained after T-dualization along z coordinate (using
generalized T-dualization procedure) is commutative and, consequently, associative one
as in [44].

The second step in T-dualization is T-dualization along y direction. Using standard
Buscher procedure, we obtained the form of the T-dual theory and the corresponding T-
dual transformation law, which is rewritten in the canonical form (3.29) in terms of the
coordinates and momenta of the initial theory. Using standard Poisson algebra (3.19) and
T-dual transformation laws in canonical form, (3.17) and (3.29), we easily proved that
theory after two T-dualizations is noncommutative, but it is still associative one. In this
article we used trivial winding condition (3.34) and showed that T-dual coordinates y2(c)
and y3(0) are commutative for equal arguments, o = &, but they are noncommutative
if 0 — & = 27. The result is qualitatively similar to the result of [33], where after two
T-dualizations the obtained theory is noncommutative one. But, the difference is in the
winding condition which is nontrivial in [33], mixing different coordinates. The different
winding condition induces the noncommutativity for 0 = & (for more details see [33]).
On the other hand in the analysis presented in [44] (zyz T-dualization line) the theory
obtained after two T-dualizations is commutative under trivial winding condition.

The final step in T-dualization procedure is T-dualization along x direction. The
theory after full T-dualization is the same as in zyz case [44] with the noncommutativity
and nonassociativity parameters which can be obtained from those in zyz case [44] adding
“—” sign. This is a consequence of the fact that the full set of T-dual transformation
laws is the same as in [44] up to the replacing H — —H. This difference up to the “—”
sign stems from the initial actions. In this article we start from (2.13), while in [44] the
starting action for z T-dualization is @Q-flux action, formally the same as (2.13) up to the
replacing H - —H.

Finishing the discussion of the results obtained in this paper it is interesting to make
comparison with some similar efforts. We studied the abelian isometries using both stan-
dard and generalized T-duality procedure, while in the paper [53] nonabelian isometries
using standard Buscher procedure are considered. The authors of [53] showed that spaces
with isometry maps to the nonisometry spaces, while in this paper there is isometry in
every T- dualization step. One of their conclusions that T-dual transformations are more
than continuous isometry can be added to the concluding remarks of this paper. In the
ref. [43] generalized T-duality and nongeometric background are considered, but using low
energy effective action, unlike here, where we used sigma model action. The paper [54]
deals with T-dualizations along nonisometry directions like in [31], using extension of gauge
symmetry, while the authors of [31] use the generalized T-dualization procedure introduc-
ing invariant coordinates (in [54] they call them “covariant” coordinates). In this paper we
use this generalized T-dualization procedure but all directions considered here are isome-
try ones. It is useful to mention that in the paper [55] bosonic string in the presence of
the weakly curved backgrounds is considered using double space formalism as well as the
influence of the order of T-dualizations. The double space formalism gives the result which
is in accordance with the result of the current paper.
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Consequently, we conclude that in the case of the full T-dualization the form of the
T-dual theory do not depend on the order of T-dualization, while parameters of noncom-
mutativity and nonassociativity change sign.

A Light-cone coordinates

In the paper we often use light-cone coordinates defined as

1
¢* =5(r+0). (A1)
The corresponding partial derivatives are
0+ = 0 _ O0r £ 0, A2
+ = 8§7i = Ur o - ( . )
Two dimensional Levi-Civita ¢*? is chosen in (1,0) basis as €77 = —1. Consequently,

in the light-cone basis the form of tensor is

exf = (_0 > : (A.3)

The flat world-sheet metric is of the form in (7,0) and light-cone basis, respectively

10 . 10
TNap = (0_1> ) Uiyg: <(2) %) : (A4)

Let us stress that in whole article we use standard notation for 7 and o derivatives —
A=0.A and A’ = 9, A, where A is an arbitrary variable.

N[ —
[eol IE

B Two types of Poisson brackets used in the paper

In this paper, we have seen that T-dual transformation laws connect derivatives of T-dual
coordinates with coordinates and momenta of initial theory. While initial theory satisfies
standard Poisson brackets, in order to find Poisson brackets for T-dual theory, we first need
to find Poisson brackets between o derivatives of T-dual coordinates. This type of Poisson
bracket will, in general case, be some function of initial coordinates, Dirac delta functions
and their derivatives with respect to ¢. Having this in mind, general case for our Poisson
brackets will have following form

{A'(0), B'(3)} = U'(0)d(c — &) + V(o) (0 — 5), (B.1)

where §' (0 —7) = 0,0(0c — 7). For terms A’(0), U'(0) and B’(7), symbol ' stands for partial
derivative with respect to o and &, respectively. If we want to calculate the Poisson bracket

{A(0),B(2)},
first we have to calculate the following one

{AA(0,00),AB(5,00)}, (B.2)
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where

AA(o,00) = /U dzA'(x) = A(o) — A(oy), AB(G,50) = [U drB'(z) = B(5) — B(59) .
" " (B.3)
Substituting the expressions (B.3) into (B.2), we have
{AA(0,00),AB(5,50)} = /U dx /0 dy [U'(2)é(z —y) + V(x)d'(x —y)] . (B.4)

After integration over y we get
{AA(0,00),AB(7,00)} =
_ / de{U" (@) [0(z — 50) — 0(z — 3)] + V(2) [5(x — 50) — 5z — &)}, (B.5)

0

where 0(x) is defined as

- 1 1 0 ifz=0
Q(x):/o dné(n) = — |:x+2znsin(nx)] =1 1/2if0 <z < 27, (B.6)

27 .
n>1 1 ifz=2m

where 6(z) = == e Finally, integrating over z, we obtain
27 nez Y. g g

{AA(0,00),AB(7,00)}=U(0)[0(c—00)—0(c—07)]—U(00)[0(c0—00)—0(c0—07)]
—U(60)[0(0 —50)—0(00—00)]4+U(0)[0(c —5) —6(c0—0)]
+V(60)[0(0 —50) —0(00—00] =V (5)[0(0 —5)—0(c0—05)]. (B.7)

From the last expression, using (B.3), we extract the searched Poisson bracket
{A(0), B(9)} = =[U(0) = U(a) + V(3))0(0 — 7). (B.8)

In order to calculate Jacobiator we have to find Poisson brackets of type {y(o),z()},
where y(o) is coordinate T-dual to initial one z(o). Having this in mind, we start with the
following Poisson bracket

to o0 a(@)) = { [ a0 o)} (B.9)

0

and using T-dual transformation law in canonical form

TRy, (B.10)
we get
ol a(@)} = { [ dnm.ala)} (B.11)

where 7(0) is momentum canonically conjugated to the coordinate x(o). Initial theory is
geometric one which variables satisfy standard Poisson algebra, so, the final result is of
the form

{89(0,00),2(0)} =~ 100 — ) — 000 — )] = {u(0),2(2)} = ~8(0 ~0).
(B.12)
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Combined Fermionic and Bosonic T-duality of Type Il
Superstring Theory with Coordinate Dependent RR Field

B. Nikoli¢ and D. Obri¢*

We investigate effects of fermionic T-duality on type Il superstring in presence
of Ramond-Ramond (RR) field that has infinitesimal linear dependence on
bosonic coordinate x*. Other fields are assumed to be constant. Procedure
that we employ for obtaining fermionic T-dual theory is Buscher procedure,
where we will consider two distinct cases. One, where action has not been
T-dualized along bosonic coordinates and other where it has. By analyzing
these two cases, their actions and T-dual transformation laws, we obtain
some insight into how background fields transform and what are necessary

ingredients for emergence of fermionic non-commutativity.

1. Introduction

T-duality represents a map that connects different superstring
theories, mapping geometry and topology from one theory to
another.l!l This symmetry was originally developed with bosonic
coordinates in mind, where two theories are connected by trans-
formation laws that establish a link between coordinates.[?! Tt
was not until 2008 that it has been noticed that the same dual-
ity can emerge in case of fermionic coordinates. In their paper®!
Berkovits and Maldacena showed that tree level superstring the-
ories in presence of supersymmetric background fields posses
new kind of symmetry. Symmetry that maps supersymmetric
background fields of one theory to supersymmetric backgrounds
of other theory, where dilaton and RR fields are now different.
Just like in case of bosonic T-duality, mathematical machinery
for obtaining T-dual theories is Buscher procedure!*’! applied to
fermionic coordinates # and §°.

Busher T-dualization procedure including its extension to
fermionic coordinates!®®! and its generalizations!!*"2] mainly
follow the same steps. We notice some global symmetry in the
theory, usually shift symmetry, which is then localized by replac-
ing partial derivatives with covariant ones. Covariant derivatives
come with new gauge fields that insert new degrees of freedom
into the theory, these degrees of freedom are eliminated with help
of Lagrange multipliers. Next step is utilizing gauge freedom to
fix starting coordinates. After that, finding equations of motion
for gauge fields and inserting their solutions into the action we
obtain T-dual theory. Extension of procedure for fermionic coor-
dinates does not introduce any new steps into the play. However,
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extending the procedure to include coor-
dinate dependent background fields does
introduce one additional step. Namely,
we need to replace all coordinates with
invariant ones constructed as integrals of
covariant derivatives. This step is neces-
sary in order to preserve local shift sym-
metry.

In our previous paper’*! we demon-
strated that T-dual of type II superstring
which is moving in coordinate dependent
RR field possesses non-commutative
Poisson Dbrackets. Since T-duality was
performed only along bosonic coordinates it produced non-
commutativity only between bosonic T-dual coordinates. In addi-
tion to this, we had that background fields that were constants in
original theory became functions of both bosonic and fermionic
coordinates in dual theory. This has left us with one open ques-
tion: Would fermionic T-duality of starting theory or even theory
that has been dualized along bosonic coordinates produce non-
commutative relations between fermionic coordinates? While
it has been shown that, in case of closed bosonic string, non-
commutativity arises only in coordinates that had appeared in
background fields of starting theory'!*], it is not clear if that is the
case for fermionic coordinates, especially when we have emer-
gence of new coordinate dependence in background fields after
bosonic T-duality.

In this article, our goal is to find what effects fermionic T-
duality has on action where RR field has dependence on bosonic
coordinates and do these effects change for fully dualized action.
By obtaining background fields in different stages of T-duality we
can determine how geometry of theory changes and when the
theory makes the switch from being local to non-local one. At the
end we provide few notes on how fermionic T-duality interacts
with bosonic T-duality in providing new non-commutative rela-
tions.

2. Type Il Superstring, Choice of Fields and
Bosonic T-Duality

In this section we will present action for type II superstring in
pure spinor formulation. We will also define background fields
in which string propagates. Finally, we present action that has
been T-dualized along bosonic coordinates.

2.1. Type Il Superstring in Pure Spinor Formulation

The most general form of type II superstring action in pure
spinor formalism!>1?1 is given as

S=Sy+ Vie. (2.1)

© 2022 Wiley-VCH GmbH.
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First term is action for string that propagates in flat background
fields.

S, = /d2§<§n,,v0mx"0nxvnm” — 7,0 6"+ aj“&u) +5,+5S;,
p
(2.2)

where terms S, and Sjrepresent actions that are composed of
pure spinors and their canonical momenta. The pure spinors sat-
isfy pure spinor constraints

A4 A = A(T¥),,47 = 0. (2.3)

All modifications to flat background fields are accomplished
by introducing second term in equation (2.1). This term is an
integrated vertex operator for massless type II supergravity

Vie = / PEXTIMA, XN (2.4)
))

In general case matrix A,y is composed of physical fields, their
curvatures (field strengths) and auxiliary fields that can be ex-
pressed with physical ones. These fields are some functions of
both bosonic coordinates x# and fermionic coordinates 6* and
6. Dependence of fields on fermionic coordinates is given as ex-
pansion in powers of % and #*. In our particular case, we will
set all background fields except RR field to be constant. Further
more, in order to simplify calculations, all terms that are non-
linear in fermionic coordinates §* and #* will be neglected. With
these assumptions in mind we have that vectors X and X™ and
matrix A,y have following form

0,6° 9_6%
XM = 0, x" M = a_x"
7, [ z, |
1 \THv 1 Xruv
7 Ne 2=
[0 0 0 0
0 k(:g, +B,) L2 0
Ay = L ) (2.5)
0 —pe 2+ Colxr) 0
0 0 0

Pure spinor contribution to vectors X and XM are encoded in

N¢V=%wa(rwvl)w, N = =, (0, 2. (2:6)

N~

Since this term does not contribute to the vertex operator, we have
that pure spinor actions are decoupled from the rest. This allows
us to neglect pure spinor parts from now on.

Our choice of matrix A,y is composed of following fields:
symmetric tensor g,,, Kalb-Ramon antisymmetric tensor B,,,
Mayorana-Weyl gravitino fields VY and ‘i’z, Ramond-Ramond

field %(f ¥ + C4’x’) where f*/ and C%/ are constant tensors. We
have also assumed that dilaton field ® is constant. This means
that factor ¢” is included in constants f/ and C%”. This choice of
background fields is accompanied with following condition

ri,Clr =0, yiCP=0. (2.7)

aff " u
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String propagates in superspace spanned by bosonic coordi-
nates x* (4 = 0, 1, ..., 9) and fermionic ones 6%, §* with 16
independent real components each. Fermionic coordinates are
accompanied by their canonically conjugated momenta z, and
7. Both fermionic coordiantes and their momenta are given as
Majorana-Wejl spinors. World sheet X that string sweeps in this
superspace is parameterized by &" (&0 = 7, ¢! = ). By combin-
ing these parameters we can define light-cone parametrization
&= %(T + o) and light-cone partial derivatives d, = d, + 9.

Inserting all these assumptions into action (2.1) and integrat-
ing out fermionic momenta, we are left with following expression

S= k/dzf [H+Ma+x“a_xv
z
1 na N — v
+ (0,0 +0.x" Pi) (F ' (x)),,,(0-60" + ¥o_x") |, (2.8)

where we have introduced following tensors

1
My =By £ 3G (2.9)

*uv
af — faf aff \.p
F(x) ="+ CFx",

(F_l(x))aﬂ = (f_l)aﬂ - (f_l)uuxl Czlﬁlxp(f_l)ﬁlﬂ : (210)

To obtain meaningful T-dual transformation laws we need to
assume that x* dependent part of tensor (F~'(x)),; is antisym-
metric and infinitesimal. This additional assumption does not
infringe on constraint (2.7).,11%]

Having obtained one of relevant actions , we will now focus on
bosonic T-dualization of (2.8) to obtain our second action of in-
terest.

2.2. Bosonic T-dualization

Bosonic T-dualization of action (2.8) is given in detail in [13].
Here we will only summarize the most important results.

One way to obtain T-duality is by Buscher procedure. This pro-
cedure is based on localization of translation symmetry. When
we localize symmetry we replace all partial derivatives with co-
variant ones, while in cases where background fields depend on
coordinates we also need to introduce invariant coordinate. In-
variant coordinate is non-local addition to action and it is the sole
reason for emergence of non-commutative behavior in closed
strings. Introduction of covariant derivatives and invariant coor-
dinates produces additional gauge fields in action, which in turn
add new degrees of freedom to the theory. T-dual and original
theory represent same physical system and we expect that those
two theories carry exact same degrees of freedom. Because of
this, we remove all newly introduced degrees of freedom with La-
grange multipliers. By utilizing gauge freedom of action we can
fix bosonic coordinates to be some constant, in essence remov-
ing them from action. This gauge fixed action is only a function
of gauge fields and Lagrange multipliers. Finding equation of
motion for Lagrange multipliers and inserting them into action
we can restore original action. On the other hand, finding equa-
tions of motion for gauge fields and inserting them into action
we obtain T-dual action.

© 2022 Wiley-VCH GmbH.
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Action (2.8), due to antisymmetric part of tensor F;}(x) is in-
variant under global translations of bosonic coordinates. Follow-
ing steps of Busher procedure, described in preceding paragraph,
we obtain following T-dual action

k 1o Fo (b
bs = E/Zdzg[ze)“ 0,y,0_y, +9.0° ("7 (V1)) o6
+0,y, v ("FH(V)), ﬁa_oﬂ

+6+0_“(bF’l(V(O)))aﬂb‘I’“ﬂd_yv]. (2.11)

Here, y, is a dual coordinate, left superscript ? denotes bosonic
T-duality and V° represents following integral

1 " .
AV(O)ﬂ = E Ad€+®ilﬂ [aJrYﬂl _aJro (f 1)aﬂlyl€1]
1 -@rm pa (£-1 p
- E/Pdg % [a_ym + 9 ()06 ] (2.12)

T-dual tensors that appear in action have following interpreta-

. Sy s = _ I \Ga (- _
tion: @ is inverse tensor of I, ,, =TI, + E\PM(F 1(x))mﬂ‘l‘f =
= 1\ya£— a; f; _

I = 30, G 2 (F ), P, defined as

61, = 6, (2.13)
where

QUY — QHV 1 pa (£-1 ay p 0) -1 B V1V
6 = O + 2O (), CHAVON(FT), WO, (214
QHVTT 4 QMY v 1 pa (F- Vv
O"1L,,, = 6%, 0" =" — z@fﬂlwm(f "ap ¥l 01 (2.15)
_ 1 _

af _ fof 4 Lpamuvph
FoO=f7 4 SWOm, (2.16)

O I, =6,  © =-4(G;'T.G)". (2.17)

Tensor ("F~'$(V®)$),, is T-dual to (F~(x)),,,

_ — 1 — a QUYL
(FHVO)),, = (F1(V),, = S (F(VO),, ¥rere)

x (F1(V)) (2.18)

hB*

Finally, "®#* and "¥"# are T-dual gravitino fields, given as

e = ZO 4 2OMW (FU(VO)) | whem

= %@quﬂ;, (2.19)
by = —%qﬂjé@ - %Tg@gm B (F(VO)),, wnen

= _%wﬁ@gV_ (2.20)

Having obtained actions (2.8) and (2.11), we can now consider
dualization along fermionic coordinates.
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3. Fermionic T-duality

In this section the objectives are to find fermionic T-dual trans-
formation laws and actions that have been T-dualized along
fermionic coordinates for case where we performed bosonic T-
duality and case where we have not.

Bosonic T-duality relies on utilization of symmetries of
action to produce T-dual action and T-dual transformation
laws. This task is usually accomplished by utilizing Busher
procedure.l*>1012l The main idea of fermionic T-duality is essen-
tially the same, we utilize isometries of fermionic coordinates to
generate T-dual action and T-dual transformation laws.>¢8] Just
like in bosonic case, we localize translational symmetry by intro-
ducing covariant derivatives and, in cases where necessary, in-
variant coordinates. After this we introduce term that eliminates
additional degrees of freedom and gauge fix existing symmetry.
From this point on, finding equations of motion for gauge fields
and inserting those equations of motion into gauge fixed action
we obtain T-dual action.

Before proceeding with fermionic variant of Buscher proce-
dure, we can notice that our actions (2.8) and (2.11) do not
posses terms proportional to 9, 8% and d_67. This means that our
fermionic coordinates have following local symmetry
80% = €“(c*), 60" =¢&%(c7), (ot =rtzo0). (3.1)
We need to fix this symmetry before obtaining T-dual theory, one
way to do this is through BRST formalism. This symmetry has
following corresponding BRST transformations for fermionic
fields

0% = (o), 0% =&(o). (3.2)
Here sis BRST nilpotent operator, ¢* and ¢” represent ghost fields
that correspond to gauge parameters € and é* respectively. In
addition to ghost fields we also have following BRST transforma-
tions

sC =b

a = Ytar

sC,=b_,, sb,,=0, sb

+a

=0. (3.3)
where C, and C, are anti-ghosts, b,, and b_, are Nakanishi-
Lautrup auxiliary fields.

Fixing of gauge symmetry is accomplished by introduction of

gauge fermion, where we have decided to follow in the same
choice as!’!

Y= % /Zdzf[ffa(aj“ + %a“ﬂbﬂ,) + (a_é“ + %B_ﬂaﬁﬂ)ca],
(3.4)

here a®’ is arbitrary invertible matrix.
Applying BRST transformation to gauge fermion we obtain
gauge fixed action and Fadeev-Popov action

k T a na 7 A,
Sq =3 /Zdzf[b_adﬁ +0_0b,, +b,a"’b,,], (3.5)

Se_p= ;/Zdzg[qa+c“ +(0_2")C,]. (3.6)
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Fadeev-Popov term contains only ghosts and anti-ghosts and
it is decoupled from the actions (2.8) and (2.11). From this point
on, this term will be ignored. Gauge fixing term contains auxiliary
fields b_, and b, , that can be removed with equations of motion

Efa = _6féﬁ(a_1)ﬂa’ b+a = _(a_l)aﬁaJroﬂ’ (37)
giving us

k T -
Sy = _E/Edzga_e (@ ")gp0,6”. (3.8)

Inserting guage fixing term into (2.8) and (2.11) gives us actions
that can be dualized with Buscher procedure.

3.1. Type |l superstring - Fermionic T-Duality

Since both action (2.8) and gauge fixing term (3.8) are trivially
invariant to global translations of fermionic coordinates, we lo-
calize this translational symmetry by replacing partial derivatives
with covariant ones

9,0 — D,0" =0,6° + ", (3.9)
9.0 - D,0" = 0,6 + 7", (3.10)

New gauge fields u} and 7% introduce new degrees of freedom
that are removed by addition of term

Suc=§ [@el 00 —o )0 —0 )] 31

Gauge freedom can be utilized to fix fermionic coordinates
such that 6% = 6 = const and 8 = 65 = const. This in turn re-
duces our covariant derivatives to

D 9“—>ui, D, 0" -

=+

. (3.12)

R

With all this in mind, we have following action
v Lia Fa (-
Sy = dezf[H+Mv6+x”6_x (0 + 0,00 (F (),

x (W +¥o_x") - %ai(a-l)aﬂu’j +22,(0,u" — 0_u?)

1
2
+ %(djt“_ - a_ai)za]. (3.13)

On one side we have equations of motion for Lagrange multi-
pliers 7, and g,

6, (3.14)
6°. (3.15)

dut —out=0 - =o,

HR R

u
0,0 =00 =0 — @

Inserting solutions for these equations into action (3.13) we
obtain starting action plus gauge fixing term. Variation of action
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with respect to gauge fields produces following set of equations of
motion

U = —<F“ﬂ(x)d_zﬂ + ‘Pid_x“), (3.16)
ul = —a90,z,, (3.17)
0 = 0,2,F" (x) — 0, %" ¥, (3.18)
0 =0_z,a". (3.19)

Utilizing these equations we can remove gauge fields from ac-
tion, resulting in action that depends only on Lagrange multipli-
ers and bosonic coordinates

/3 v 1 ~ a
fs=k /Z d*e [Hﬂ,vay 0_x"+ 20,2,¥0_x"

+%0+2aF“ﬂ(x)6_zﬂ - %0+x’“i—‘l‘id_za - %a_zaa“ﬂagﬁ .
(3.20)
Just like in the bosonic case, we have that left superscript/ de-

notes fermionic T-duality. From here we can deduce background
fields of feriomionic T-dual theory

i, =1,,, (3.21)
F(F ') = F(x), (3.22)
T, (F )" == > 8, = -W(F W), (3.23)
NF )W, =0 — W, = (F(x), ¥ (3.24)

Unlike bosonic case, fermionic T-dual theory is local. This
can be attributed to the fact that background fields do not de-
pend on fermionic coordinates. This in turn means that the-
ory is geometric and we should not expect emergence of non-
commutative phenomena.

3.2. Type |l Superstring - Full T-Duality

To obtain fully dualized theory we start with action that is al-
ready T-dualized along bosonic coordinates (2.11). Procedure for
fermionic T-duality is mostly the same as described before. The
only difference comes from the fact that bosonic T-duality intro-
duced non-local term V° which depends on % and 6% and now
we need to introduce invariant fermionic coordinates in order for
action to exhibit to local shift symmetry

D,6" = 9,0" +u’, (3.25)
D,8" = 9,0" + 1", (3.26)

0, = [ derD,0 = [dgn0,00 1) = a0+ avn, B
P P

iny

inv

o = / "D, 8" = / de™(0,,0° + %) = AD" + AT".  (3.28)
P P
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Fixing gauge symmetry as before, setting fermionic coordi-
nates to constants, we deduce following relations

D, 0" — u‘f_r D,0" — ﬂi, 91?'W - AU%, égw - AU“.
(3.29)

With these relations we obtain action that is only a function of
gauge fields, lagrange multipliers and dual coordinates

k 1o, b
PSy = 3 /Zdzg[zeﬂ 9,y,0-y, +aL ("F (V) uf
+9,y, P ("F (V) ol +al (CET(VO)) PeroLy,

=0 (@) + 2, (0, 4" — 0_u) + (0, 0" — a,aj)za].

(3.30)

In order to simplify calculations we introduce the following
two substitutions

(CFN(V)),, 0y, +o 2, =27,
9.y, ¥ ("FH(VY)),, = 0,2, = Z,y. (3.31)

Now, our action can be expressed as
b k 2e | 1am —a (bp—1,1/(0) b5 8
Sy = 3 Zal i3 E@ 0,y,0_y, +us("F(V ))aﬂm +Z

+0Z_, 0 (a7 Uy + 0_Z,u) — 00,2, |. (3.32)

Similar to the first case, we can always revert to starting action
by finding equations of motion for Lagrange multipliers and in-
serting their solutions into the action. In both cases equations of
motion are the same so we take the freedom to omit them here.

Equations of motion for gauge fields differ in this case. Since
we have that V(% depends on fermionic coordinates, equations of
motion have additional term that depends on invariant coordi-
nate.

up =—@"0,z,, W =0z(@" (3-33)
W = =Z,, " (V) = g (VO UO) (3.34)
u = bR vz - ﬂ:(V(O), U0 byws, (3.35)

The beta functions, f(V'%, UY), are obtained by varying V¥
(seel®] for more details). They are given as

ﬁi(v(o), U(O))

H

[0 Vo | (1), o) [ U7+ 2, V]
08 [ ]

(3.36)
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Inserting equations of motion for gauge fields into action
(3.32) and keeping only terms linear with respect to Cz”, we ob-
tain fully dualized action

k
o_ k[ 2
s Z/Ed.f

x [%éﬁvmﬂa_yv —Z, (VO Z, - a_za(a)“ﬁagﬂ}

(3.37)
Expanded, we have
bf 2 1 v 1 o
S=k [ d 5[-@*_ 0,y,0_y, — ~0,y,0" %% _z,
5 4 H 4 H v
Loz weema y, + Lo,z Fr vy 2
4 +Ca T~ Y 2 +<a —<p
1 - aﬁ
~0.2,(a)70,7)|. (3.38)

From here, we can read background fields of T-dual theory

hf-ﬁiv — %@ﬁv _ %b\ijua (bF—l(V(O)))aﬂb\Pvﬂ =",

U (E ()" = E ) = F () + SO,
bf\_PZ bf(F—l(x))(lﬂ — b\Pyﬂ — %@;:V\ijf

- Ve = lem W (F ),

b — af gy _ bgva _ 1 o v
T(F ()" Yy =W =-Sver
- v = —%(F‘l(x))ﬂa‘PZ@fv. (3.39)

Comparing background fields in different stages of T-
dualization we notice that both fermionic T-duality and bosonic
T-duality affect all field, where all T-dual theories now have co-
ordinate dependent fields. It should also be noted that non-
commutative relations in theory emerge only after performing
bosonic T-duality. Fermionic T-dual coordinates are always only
proportional to fermionic momenta therefore Poisson brackets
between fermionic coordiantes always remain zero.

3.3. Bosonic T-Duality of Fermionic T-Dual Theory

For completion sake, we will also T-dualize fermionic T-dual ac-
tion (3.20) along x* coordinates. In this specific case, where only
RR field depends on bosonic coordinate, we expect that bosonic
and ferionic T-dualities commute. Therefore, this section can be
thought of as a check for calculations from previous section.
Bosonic T-duality is mostly the same as fermionic one,'*13]
where only difference is the lack of introduction of Fadeev-Popov
and gauge fixing actions. We again start by localizing transla-
tional symmetry, inserting Lagrange multipliers and fixing gauge

© 2022 Wiley-VCH GmbH.

oQ ‘T *€20T ‘8L6E1TST

1uoy/:sdny wouy papeoy

ASULOIT SUOWWO)) 2A1EaI1) 2[qearjdde ay) Aq paureAoS are sa[onIE Y oSN Jo Sa[nI 10§ AIRIqI AUIuQ K3[TAY UO (SUONIPUOI-PUEB-SULId}/W0D KA[IM" IeIqrjautuoy/:sdny) suonipuo) pue swia, ay) 23S “[$70z/c0/10] Uo Areiqr auruQ L[ip ‘opeis[eg JO Ansioatun £q 09100220z doxd/z001°01/10p/wod Kafim'”



ADVANCED
SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

fields. This produces following auxiliary action
fsaux =K / dzf I:Vf:—HJrqui + %a+zafaﬁa,zﬂ

el 4 1. a 1 u pao
=0,2,C00_z;,AV" + 56+zﬂ‘l’ﬂvf - Ev;lpﬂa_za

- %6_Zaa"ﬁ0+zﬂ + %yy(aﬂﬁ - a_vi)]. (3.40)

Introducing the variables

Y, =0,y,- 0,2, Y, =dy,-¥oz, (3.41)

the action (3.40) gets much simpler form

1. _
_;c/dz VAT, v +§d+zaf"ﬁa_zﬁ

+30,z,c70 z,av - Ly, v“+1v+Y,]. (3.42)
2 2 2 "

Varying the above action with respect to gauge fields v/ and v*,

we get, respectively,

I, v = —(%Y_ﬂ + ﬂW(V)) , (3.43)

wWI, = 1 - BV, (3.44)

+7 v
where f,, are the beta functions obtained from coordinate de-
pendent term in the action

B, = :% (2,002, - 0.2,C%). (3.45)

Inserting (3.43) and (3.44) into the auxiliary action (3.42), keeping
the terms linear in Cz/’ , we obtain fully T-dualized action (first
fermionic, then bosonic T-dualization)

ﬂ’S:K/dzf[%d+2aF"ﬁ(AV)a_zﬁ+1Y (I 1) VY_V]. (3.46)

Expanding above action we prove that it is identical to one given
in (3.38).

4. Few Notes on Non-commutativity

In paper!®®! it has been shown that bosonic T-duality produces
non-commutative relations between bosonic T-dual coordinates.
With this in mind, following question naturally arises: can we
expect emergence of same behavior for fermionic coordinates af-
ter fermionic T-dualization? To get the answer for this question
we have to express fermionic T-dual coordinates as some com-
bination of starting coordinates and their momenta and connect
T-dual Poisson brackets with Poisson brackets of original theory.
Original theory is geometric theory with regular Poisson struc-
ture

{x(0),7,(6)} = 8"5(c - 5),
{9"(0'),7rﬂ(5')} = {9“(6) T 6‘)} = 6;5(0' - 0), (4.1)

Fortschr. Phys. 2023, 71, 2200160

2200160 (6 of 8)

www.fp-journal.org

where all other Poisson brackets vanish.

We start with case that has only been T-dualized along
fermionic coordinates. To find how T-dual coordinates depend
on starting ones and their momenta we can begin by find-
ing fermionic momenta of starting theory. It is useful to re-
member that starting theory did not posses terms that are pro-
portional to 9,60% and d_0% and that this symmetry was fixed
with BRST formalism. Addition of gauge fixing term intro-
duced modification to momenta of starting theory and to ob-
tain correct non-commutative relations we should be working
with theories that have gauge fixing term in them. With this in
mind, it is easy to find fermionic momentum of original theory
(3.13)

Tp = _IEC [( 6% +9 xm{m)(F (x))lx/i - a—éa(a_l)“ﬂ]’ (4.2

Nl?v

o5(0-6" +¥0_x") — (a *l)nﬁaﬁﬁ]. (4.3)

Since we want to obtain Poisson brackets for equal = we want
to find o partial derivatives of dual coordinate

0,2, =0,2,—0_2z, = %n"a, (4.4)
_ _ _ 2
0,2, = 0,2, —0_Z, = _Eﬁ“' (4.5)

Momenta of original theory commute with each other and
with x* coordinates, therefore we deduce that there has been no
change to geometric structure of this theory.

For fully dualized theory, transformation laws (3.33) (3.34)
(3.35) all depend on dual bosonic coordinate however, when we
insert transformation laws that connect original bosonic coordi-
nates with T-dual ones (more details in(**l)

d,y, = 2[0+x”1=l+m + ﬁ;(x)] +0,0%(F(x)),, ¥, (4.6)
ay, = —Z[HW e ﬂ*(x)] ¥ (F(x),,0.07, (4.7)

into transformation laws for fermionic coordinates (3.33), (3.34)
and (3.35) we again obtain relations (4.4) and (4.5).

On a first glance it would seem that fermionic T-duality has not
produced any new Poisson brackets, however this is not the case.
While it is true that there are no modifications to Poisson brack-
ets between fermions, we have new Poisson bracket structure be-
tween fermions and bosons. This can be seen from ¢ derivative
of bosonic T-dual coordinate

V3

Y, = — +Bl(x), (4.8)

H K H

1R

where ﬁg (x) is combination g (x) + f, (x) given as

BL%) = 20, [0 4 %0 F [(F1),0, Co () [0 + W0 7]

—% [é“ + x”l‘i‘jl] (F ), C2(F71),.10, [9ﬁ + ‘I"V’val].

0“’1 "

(4.9)
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Finding Poisson brackets between o derivatives of coordinates
and integrating twice we obtain following relations

1,000, 2,(6)} = [0%(0) + 5 (017, = 2(8%(5) + 1 (3)8: )|

X (F )y € (F ), Hlo = ), (4.10)
1,000,206} = 1 e, G2 ()

x [0”(5) +¥ %% (0) - 2(0” (6) + ¥/ " (5))]

x H(o - 5). (4.11)

5. Conclusions

In this article we examined effects of fermionic T-duality per-
formed on action of type II superstring in pure spinor formal-
ism. We carried out our investigation in two cases, one where we
performed fermionic T-duality on previously non dualized action
and in second case where we had action that was already dualized
along bosonic coordinates. Starting (non dualized) action that we
worked with described closed string that propagates in presence
of Ramond-Ramond field with linear coordinate dependence. We
made a decision to only consider dependence on bosonic coordi-
nates, furthermore this dependence was tied to infinitesimal an-
tisymmetric term Cy’. Rest of the background fields were held
constant. Terms in action that were non-linearly dependent on
fermionic coordinates were neglected. These choices were in ac-
cordance with consistency conditions for background fields and
were made in order to keep calculations manageable.

On the other hand, bosonic T-duality of starting action pro-
vided us with theory that was non-local. Unlike starting the-
ory that only dependent on coordinates through RR field, this
theory manifested coordinate dependence on all background
fields. Furthermore, bosonic T-dual coordinates now exhibit non-
commutative properties.

Before we could start with T-dualization we noticed that both
cases posses additional local symmetry which removed terms
proportional to 0,0 and d_6“. In order to obtain correct T-dual
theory this symmetry was fixed through BRST formalism. In
both cases procedure for obtaining fermionic T-duality was the
same, we employed Buscher T-dualizing procedure. Procedure is
based on localization of translational symmetry where we replace
partial derivatives with covariant ones. Introduction of covariant
derivatives carries with itself new degrees of freedom in shape
of gauge fields. By demanding that starting and T-dual theory
give description of same physical system we inevitably demand
for both theories to posses same degrees of freedom. Thus, all
additional degrees of freedom must be removed with Lagrange
multipliers. By utilizing gauge freedom we can also remove all in-
stances of fermionic coordinates in action obtaining action that is
only a function of gaguge fields and Lagrange multipliers. Find-
ing equations of motion for gauge fields of this gauge fixed action
and inserting their solutions into the action we obtain T-dual the-
ory.

Carrying Buscher procedure for fermionic coordinates of non
dualized action we obtain local theory where all fields depend
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on bosonic coordinates. This theory is commutative, its Poisson
brackets are identical to Poisson brackets of starting theory.

Buscher procedure in case of theory that has been dual-
izied along bosonic coordinates does not change coordinate
dependence of the background fields. All fields are still de-
pendent on both bosonic and fermionic coordinates and the-
ory is still non-local. However, this theory posseses two ad-
ditional non-trivial Poisson brackets. We have emergence of
non-commutativity between bosonic and fermionic coordinates,
where non-commutativity is proportional to infinitesimal con-
stant C?/.

Same result is obtained even in case where we first perform
fermionic and then bosonic T-duality. Commutativity between
different dualities was expected since fully T-dual theory must be
unique. Only distinction between different paths of T-dualization
procedures can be noticed in intermediate theories, where most
important change is transition of theory from being local to non-
local.

We suspect that it is possible to obtain T-dual theory that is
fully non-commutative, theory that has non-commutativity even
between fermionic coordinates, but we would need starting the-
ory that has background fields that depend on both bosonic and
fermionic coordinates.
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Noncommutativity and Nonassociativity of Type Il
Superstring with Coordinate Dependent RR Field

B. Nikolié, D. Obrié,* and B. Sazdovié¢

In this paper we will consider noncommutativity that arises from bosonic
T-dualization of type Il superstring in presence of Ramond-Ramond (RR) field,
which linearly depends on the bosonic coordinates x*. The derivative of the
RR field Cl‘fﬁ is infinitesimal. We will employ generalized Buscher procedure
that can be applied to cases that have coordinate dependent background
fields. Bosonic part of newly obtained T-dual theory is non-local. It is defined
in non-geometric space spanned by Lagrange multipliers y . We will apply
generalized Buscher procedure once more on T-dual theory and prove that
original theory can be salvaged. Finally, we will use T-dual transformation laws

on circles of radius R. From this kind of
geometry arises new kind of symmetry, T-
duality, that links theories that have radii
of compactification R with ones that have
radii of compactification &'/R.>®l Exis-
tence of T-duality between different theo-
ries implies that those theories are phys-
ically equivalent and it gives us a way
to explore how geometry and topology of
one theory is connected to other. This
connection between different geometries

along with Poisson brackets of original theory to derive Poisson bracket
structure of T-dual theory and nonassociativity relation. Noncommutativity
parameter depends on the supercoordinates x*, % and 6%, while
nonassociativity parameter is a constant tensor containing infinitesimal C;fﬁ.

1. Introduction

In 1982 emerged a model!l that would offer the possibility of
obtaining bosonic coordinates of space-time as emergent prop-
erties of more fundamental fermionic coordinates. While this
model worked with supersymmetric particle, this approach sug-
gested that maybe we can express bosonic coordinates as a Pois-
son bracket of fermionic coordinates. In addition to these Pois-
son brackets, Poisson brackets between bosonic coordinates as
well as between bosonic and fermionic coordinates would remain
zero. Later, in paper,[zl it has been suggested that the same result
can be obtained in context of string theory in case of coordinate
dependent RR field. It is also suggested that unlike supersym-
metric particle model, coordinate dependent RR field would pro-
duce full spectrum of non-commutative relations, bosonic coor-
dinates themselves would become non-commutative. In this pa-
per our goal is to determine if coordinate dependent RR field,
while remaining background fields are as simple as consistency
relations allow, can produce suggested non-commutative rela-
tions.

Superstring theory, as a theory of extended objects propagat-
ing in space-time, is defined in 10 dimensions.** In order to
establish link between this mathematical model and real world
observations, surplus space-like dimensions are compactified
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makes T-duality a useful tool in examin-
ing emergence of non-commutativity in
context of closed strings.[”]

While in string theory both open and
closed strings, under certain conditions,
exhibit emergence of non-commutativity,
mechanisms that enable this emergence
are different. In case of open string,
we have that endpoints of string that propagates in pres-
ence of constant metric and Kalb-Ramond field become non-
commutative.l®l Basic idea of open string non-commutativity
is that initial coordinates can be expressed as linear combi-
nation of effective coordinates and momenta by employing
boundary conditions. In case of closed string, we do not have
string endpoints therefore we don’t have emergence of non-
commutativity when string propagates in presence of con-
stant background fields. In order to achieve same effect as
in case of open string, we have to use coordinate depen-
dent background fields. By finding T-dual of theories with this
kind of geometry we obtain T-dual theory in non-geometric
background, where T-dual coordinates are expressed as lin-
ear combinations of original coordinates and their conjugated
momenta.

Mathematical framework for obtaining T-dual theories is stan-
dard Buscher procedure.l”1 Procedure is based on existence of
shift symmetry in relevant action and its implementation can be
summarized in few steps. First step is localization of translational
symmetry by introduction of covariant derivatives and introduc-
tion of Lagrange multipliers that make newly introduced gauge
fields nonphysical. By gauge fixing and finding equations of mo-
tion of both gauge fields and Lagrange multipliers we obtain T-
dual transformation laws. These transformation laws inserted
into gauge fixed action produce T-dual action. For cases where
we have coordinate dependent background fields there exist gen-
eralized Buscher procedure,!''"1] this extension has one addi-
tional step, replacement of all initial coordinates with invariant
coordinates. Further extension of generalized Buscher procedure
is possiblel!®! and it is applicable to theories that do not posses
shift symmetry.

© 2022 Wiley-VCH GmbH.
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In this article we will deal with closed superstring propagating
in presence of linearly coordinate dependent Ramond-Ramond
(RR) field using type II superstring model in pure spinor formu-
lation. All calculations we will do in approximation of diluted flux,
which means that in all calculations we keep constant and linear
terms in infinitesimal derivative of the RR field strength. Rest of
the fields, metric, Kalb-Ramond and gravitino fields are constant.
Furthermore all dependence of background field on fermionic
terms will be neglected for mathematical simplicity. This choice
of field configuration is in full accordance with consistency equa-
tions for background fields.!*”]

Because we are currently only interested in non-commutative
relations between bosonic coordinates, T-dualization procedure
will be applied only on bosonic part of action. To find T-dual ac-
tion and T-dual transformation laws we will employ extension
of generalized Buscher procedure that works with coordinate de-
pendent background fields.['!) After finding T-dual theory, we will
apply Buscher procedure once more to see if we can obtain orig-
inal theory.

Transformation laws that connect variables from initial with
variables from T-dual theory will be written in canonical form,
where initial momenta are expressed in terms of the T-dual coor-
dinates. By inverting these transformation laws we obtain how
sigma derivatives of T-dual theory depend on linear combina-
tions of coordinates and momenta of original theory. Taking into
account that original theory is geometrical, both locally and glob-
ally, we have that its coordinate and conjugated momenta sat-
isfy standard Poisson brackets. By using this fact we are able to
find Poisson structure of sigma derivatives of T-dual coordinates
and by doing integration, Poisson structure of T-dual coordinates
is obtained.

The form of obtained non-commutativity is such that non-
commutativity exists when arguments are different, ¢ # 6. Im-
posing trivial winding conditions, we obtain string winding num-
bers from Poisson brackets.

In the end, we give conclusions and in appendix we present
some technical details regarding derivation of £ functions.

2. General Type Il Superstring Action and Choice of
Background Fields

Starting point of this investigation will be action of type II super-
string theory in pure spinor formulation.['*-2!] We will present
and explain assumed approximations in order to obtain type II
pure spinor action with non-constant RR field-strength. It turns
out that ghost fields are neglected and only quadratic terms are
considered. Final form of this kind of action will be used in sub-
sequent sections.

2.1. General Form of the Pure Spinor Type Il Superstring Action

Sigma model of type IIB superstring has the following
form7!

S=Sy+ V. (2.1)
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This general form of action is expressed as a sum of the part that
describes the motion of string in flat background

S, = /2 dZ§<§n“vdmx“dnxvl1m” —7,0.0° + dﬁ“ﬁa)
+S,+5S;, (2.2)

and part that governs the modifications to the background fields
Vge = / dEXTMA XN (2.3)
z

Modifications to the flat background are introduced by integrated
form of massless type II supergravity vertex operator V.. The
terms S, and S; in (2.2) are free-field actions for pure spinors

S, = /dzéa)aaja, S; =/d2§cbad+ﬁ". (2.4)
z z

Here, 4% and 1¢ are pure spinors whose canonically conjugated
momenta are @, and @,, respectively. Pure spinors satisfy pure
spinor constraints

Ay A = AT 7 = 0. (2.5)

In general case, vectors XM and XV as well as a supermatrix
A,y are given by

2,0 0.0
M 7
XM= L XM I}i
d, [ d, [
1 \guv 1 \yuv
2N+ zNi
p
Aa[)‘ Aav Erx Qa,}lv
A A E’ Q
A _ up Hv u Hvp , 2.6
A - N (26
qu,ﬂ Qﬂv,ﬂ Cﬁﬂv Suww

where notation is in accordance with Ref [17]. The components
of matrix A,y are generally functions of x#, % and 8*. Compo-
nents themselves are derived as expansions in powers of % and
6 (for details consult'"”)). The superfields A, E%, E¢ and P*/ are
known as physical superfields, while superfields that are in the
first row and the first column are known as auxiliary because they
can be expressed in terms of physical ones.!'”] Remaining super-
fields Q,,, (@,,,), C*,, (C?,) and S, ,, are curvatures (field
strengths) for physical fields. Components of vectors X and XV
are defined as

1 o 1 1_11 0
I =9, %" + 50 (M),50,0”, TI* =0_x*+ 79 (*),40_0”,
(2.7)

d, =z, - =(,0), [6+x“ + %(erﬂaﬂ)],

Qul
Il

« Ty —

Nl—= N

(T,8), [a_x*‘ + %(érﬂa_é)], (2.8)

© 2022 Wiley-VCH GmbH.
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1 vy NJHV 1_
Ewa(r[t ]) ﬁ/lﬁ, Nv =z

N = 2o

@, (T, 2°. (2.9)

The world sheet ¥ is parameterized by &" = (£° = 7, & = o)
and world sheet light-cone partial derivatives are defines as
0, = 0, + 0,. Superspace in which string propagates is spanned
both by bosonic x* (4 =0,1,...,9) and fermionic 8%, §* (a =
1,2,...,16) coordinates. Variables r, and 7, represent canoni-
cally conjugated momenta of fermionic coordinates 6% and 6°,
respectively. Fermionic coordinates and their canonically conju-
gated momenta are Majorana-Weyl spinors. It means that each
of these spinors has 16 independent real valued components.

2.2. Choice of the Background Fields

In this particular case we will work with the supermatrix A,
where all background fields, except RR field strength P*/, are con-
stants. RR field strength will have linear coordinate dependence
on bosonic coordinate x*. With these restrictions in mind, super-
matrix A,y has the following form

0 0 0 0
. )
x(lg, +B ) 7 0
Ay = (38, + 5, " . (2.10)
0 —pe 2(f* + Celxr) 0
0 0 0 0

Here g, is symmetric tensor, B, is Kalb-Ramond antisymmetric
field, ¥} and ‘?Z are Mayorana-Weyl gravitino fields, and finally,
fe# and C;‘]'ﬂ are constants. Let us stress that dilaton field @ is
assumed to be constant, so, the factor e® is included in f*/ and
C%. This will be a classical analysis and we will not calculate the
dilaton shift under T-duality transformation. Based on the chiral-
ity of spinors, there are type IIA superstring theory for opposite
chirality and type IIB superstring theory for same chirality.

This particular choice of supermatrix imposes following re-
striction on background fields
y:ﬁC/’jy =0, y;‘ﬁc;ﬂ =0. (2.11)

Remaining constraints!'’] are trivial and applied only to non-
physical fields.

In addition to choice of supermatrix, in order to simplify cal-
culation of bosonic T-duality, because all background fields are
expanded in powers of ¢ and 8°, all % and #* non-linear terms
in X™ and XV will be neglected. With this in mind, components
of these two vectors reduce into the following form
m -ox" d,-mr, d, -7, (2.12)
Taking into account all these assumptions, the action (2.1) takes
the form

+uv

= /dz.»: [zn 0,50_x" — 7,(0_0% + W 0_x")
z

no NP\ = 2 a a _
+ 0,0+ 0,0 V)7, + (7 + cﬂﬂxﬂ)nﬂ] . (2.13)
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Here, new tensor I1, ,, = B, + 5 GHV is introduced, where G, =
N + 8, 1S metric tensor. Terms for S, and S; are fully decoupled
from action and they will not be considered from now on.
Before considering T-duality, we can notice that fermionic mo-
menta act as auxiliary fields in full actions. These fields can be in-
tegrated out and final action will be function of only coordinates
and their derivatives. Finding equations for motion for both z,

and 7, we get following two equations

7 =§(F’1(x))ﬂa(a_0" +P9_x"), (2.14)
n =5 (aﬁﬂ + a+x”lif§)(F-1(x))ﬂa, (2.15)
where F*#(x) and (F~'(x)),, are of the form

Faﬂ faﬁ CZﬁ X",

( )aﬁ (f )aﬁ (f aa1 Calﬂ] (f )ﬁlﬂ xH. (216)

In order to invert previous equations and T-dual transforma-
tion laws, as well as to simplify calculations, we take two addi-
tional assumptions. First assumption is that C;"’ is infinitesimal.

Second assumption is that (f~'),,, C;' ) 5, is antisymmetric
under exchange of first and last index. In other words, tensor
(F7'(x))4p has only antysimetric part that depends on x* and it
is infinitesimal. These assumptions are in full accordance with
constraints.[7]

Substituting equations (2.14) and (2.15) into (2.13) the final
form of action is

S = K/dzf [1m,,,0,x"0_x"
z
1 na o — v
+3(0.6 +0,. 5" (F'(x)) (00" + Wlo_x")| . (2.17)

In the following sections, this form of action will be used for in-
vestigation of bosonic T-duality and for obtaining transformation
laws between starting and T-dual coordinates.

3. T-dualization

In this section T-duality will be performed along all bosonic coor-
dinates in order to find relations that connect T-dual coordinates
with coordinates and momenta of original theory. These trans-
formation laws will then be used in subsequent chapters to find
non-commutativity relations between coordinates of T-dual the-
ory.

Starting point for considering T-duality will be general-
ized Buscher T-dualization procedure.''! Standard Buscher
procedurel®19 is designed to be applied along isometry directions
on which background fields do not depend. Generalized Buscher
procedure can be applied to theories with coordinate dependent
background fields. The shift symmetry in the generalized proce-
dure is localized by introduction of covariant derivatives, invari-
ant coordinates and additional gauge fields. These newly intro-
duced gauge fields produce additional degrees of freedom. Since
we expect that starting and T-dual theory have exactly the same

© 2022 Wiley-VCH GmbH.
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number of degrees of freedom we need to eliminate all exces-
sive degrees of freedom. This is accomplished by demanding that
field strength of gauge fields (F,_ = d,v_ — d_v, ) vanishes by ad-
dition of Lagrange multipliers. Next step in procedure is fixing
the gauge symmetry such that starting coordinates are constant
and action is only left with gauge fields and its derivatives. From
this gauge fixed action, finding equations of motion for gauge
fields, expressing gauge fields as function of Lagrange multipli-
ers and inserting those equations into action we can obtain T-dual
action, were Lagrange multipliers of original theory now play the
role of T-dual coordinates.

In cases where shift symmetry is absent, T-duality can still be
performed by extending generalized Buscher procedure.['®) This
extension is based on replacing original action with translation
invariant auxiliary action. Form of this auxiliary action is exactly
the same as the form of action where translation symmetry was
localized and gauged fixed, that is, derivatives have been replaced
with gauge fields and coordinates with integrals of gauge fields.
Auxiliary action gives correct T-dual theory only if original action
can be salvaged from it. In cases where this is possible, original
theory is obtained by finding equations of motion with respect
to Lagrange multipliers and inserting their solutions into auxil-
iary action.

Action (2.17) is invariant to translation symmetry, by the virtue
of antisymmetric part of F, |, tensor (f~'C,f™"),. Following an-
tisymmetricity of this tensor, we can rewrite the action (2.17) in
the following way

S = K/dzf [1,,,0,x"0_x"
z
1 mn na Ny — v
+ e d,,(0 +x“P”)(F 1(x))aﬁ0n(0ﬁ +Wx )]. (3.1)

Let us now consider the global shift symmetry 6x# = A* and
vary the action (3.1)

K — na P& oY
58 = —E(f "Cf ) ap A /Edzgemnam(o +%0x")0,(0" + ¥ix"),
(3.2)
where m, n are indices of the twodimensional worldsheet. After
one partial integration, we obtain one surface term and one term

which is identically zero because it is summation of symmetric,

0,,0,, and antisymmetric, ¢, tensor. The surface term is zero

for trivial topology. So, the shift isometry exists.
In order to find T-dual action we have to implement following
substitutions

0,x" > D,x! =0, x" +Vl, (3-3)
X == /dmemx" = xM(&) — x/(&) + AV*,
P
AVH = /dgmvfn(f), (3.4)
P

S— S+ g /dzé’[vid_yu -"9,y,]- (3.5)
z
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Because of the shift symmetry we fix the gauge, x#(&) = x*(&;)
and, inserting these substitutions into action (2.17), we obtain
auxiliary action suitable for T-dualization

v 1 no NI —
Saux = K/Zdzf [Hﬂwv:-V_ + z(a+9 +V:_lP”)(F 1(AV)){1/]

X (0_0" + W) + %(Vﬁd_yﬂ - vfd+yy)] . (3.6)

It should be noted that, path P thatis taken in expression for AV”
goes from some starting point & to end point &. Introduction of
this element makes this action non-local, however, this is a nec-
essary step in order to find T-dual theory of coordinate dependent
background fields.!'!]

In order to check if substitutions we had introduced are valid
and that they will lead to correct T-dual theory of starting action,
we need to be able to obtain original action by finding solutions to
equations of motion for Lagrange multipliers. Equations of mo-
tion for Lagrange multipliers give us

ovi—o0v"=0 = vi=09.x" 3.7)

Inserting this result into (3.4) we get the following
AVP = /df’mamx”(.f’) = x"(§) — x° (&) = Ax". (3.8)
P

Since, we had shift symmetry in original action, we can let x* (&)
be any arbitrary constant. Taking all this into account and insert-
ing (3.7), (3.8) into (3.6) we obtain our starting action (2.17).

Before we obtain equations for motion for gauge fields, we
would like to make following substitution in action

Y., = 0.y, - 0,0 (F(aV), ¥,
Y, =0y, +¥;(F(AV)), 0.6, (3.9)
mn, =I,, + %\?Z(F’I(AV))W‘P’V’
—11,,, - %lif;(f-l)wl CHPI (1), WA VY, (3.10)
T,y = M, + 290 (), 97, (3.11)

With these substitutions in mind we have that auxiliary action
takes the following form

= | 1,
Saux = K/d2§ [Hﬂtvv:—v— + ivi Yﬂl - EV;—Y+#
z

1. -0/
+50,0°(F 1(AV))aﬂa_6ﬁ] . (3.12)
This action produces following equations of motion for gauge

fields

_ 1 _ 1 _
v = —(5 B (V) I, v = EY-H -8,(V). (3.13)

Here, function f*(V) is obtained from variation of term con-
taining AV” in expression for F~'(AV) (details are presented in
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Appendix A)

_ 1 na VI - x - v
B (V) = ZaJr [9 + V1l]1v1](f 1)“1C/41ﬁ1(f 1)ﬂ]ﬂ[9ﬂ+‘1"€2v2]

"
1 N Vo — a _ y
[ v e e o v

(3.14)

1 Aa VI -1 ayfy (£-1 P by
- 1[9 +V1‘I’V1](f ao, Cp P (f )ﬁlﬂa—[‘g +Tvzvz]

1 aa Vi -1 o fy (-1 V2
—Zd_[G +V ‘I‘Vl](f Vo, P (F )ﬁ1ﬂ|:9ﬂ+lpfzv ]
(3.15)

Here we have took advantage of the fact that 9, V# =/ (more
details in Appendix A). Let us note that V* in the expressions for
beta functions is actually V" because it stands besides C;/. We
omit index (0) just in order to simplify the form of the expres-
sions.

In order to find how gauge fields depend on Lagrange multi-
pliers, we need to invert equations of motion (3.13). Since C}‘:”
is an infinitesimal constant, these equations can be inverted
iteratively.[?2] We separate variables into two parts, one finite and
one proportional to CZ/’ . After doing this we have

v gl +(1/0)
Vo= =02V, + BV )],

—u

W= [%Y+V - ﬁ;(v“’))](:)y*,
(3.16)

Functions f,,(V\?) are obtained by substituting first order of
expression for v, into g, ,(V), where V is given by

AVOr — /dézmvgz)ﬂ
P

1 3 e
3 /P dc?@@ﬂ[mpl —0,0°(f 1)a,,~11/;]]

- % /P de- & [iyﬂl +9 (f-l)aﬁa,aﬂ]. (3.17)
Where O is inverse tensor of II v = +
SWe(F1(AV)),, W7, defined as
o" L, = 6%, (3.18)
where

DV UV 1 o — e — AV v
0" =" + E@fﬂﬂy”l(f Dy CoPVOP(f), DO, (3.19)

SHVTT QMY v 1 pa (F— Vv
6T, =38y, O =0r—-emPs (), ¥ e (3.20)
- 1 _

aff _ faf Zwa Vi1
f =ff 4 S W0, (3.21)
"L, = &, O_ = —4(G;'TI_.G )" (3.22)
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Tensor G, = G,, — 4(BG™' B),,, is known in the literature as the
effective metric.
Inserting equations (3.16) into (3.6), keeping only terms that
are linear in CZ" we obtain T-dual action
K 1=, o e
S* = > /Z [E(aﬁ Y, Y., +0,6°(F 1(AV))aﬂa_6”]. (3.23)
Comparing starting action (2.17) with T-dual action, were we note

that 0, x* transforms into d,y, and x* transforms into V©, we
can deduce that T-dual action has following arguments.

T = %@fn (3.24)

(FFH V), = (F(V),,

-3, e (V) .29
. 1= vdaf oo
e (* 1(V(0)))aﬁ = 5@/1 P (F 1(v(0)))aﬁ, (3.26)
— v, 1 — QHY
(*F l(V(O)))aﬂ*qJ P _E(F 1(V(0)))a,;lyﬁ®f . (3.27)

In order to express T-dual gravitino background fields in terms
of its components, it is useful to calculate inverse of field *F;;

1 _
* af 0)y — ] 0) =\ (T YARVT]
FO(VO) = F(VO) + Swrer . (3.28)

With this equation at hand it is straightforward to obtain T-dual
gravitino fields. Here we present T-dual gravitino fields expanded
in terms of their components

N1 1_1v_a 1= 1\ — 1 QY1 o
R = E@‘ W+ Z@f“ ‘I’fﬁ(F l(V(O)))ﬂﬂl‘l’f () ‘I‘Vl, (3.29)
lysa 1 = ~
Vb — __WhQHY _ P 1 \pa ~1(v/(0) o @V1V
W = WO - SWIeM s (F(VO)),, W6 (3.30)

The general conclusion is that all background fields get the linear
corrections in CZ” comparing with the results of the case with
constant background fields.[?*! Also the coordinate dependence
is present in all T-dual background fields.

From the above equations we see how background fields of
original theory transform under T-duality. It should be noted that
these actions are of the same form taking into account that initial
coordinates x* are replaced by y, after T-dualization.

4. T-dualization of T-dual Theory

From requirement that original theory and T-dual theory be phys-
ically equivalent, it should be possible to obtain original theory
from T-dual one by applying T-duality procedure a second time.
Since original action possessed translation symmetry, we have
that this symmetry is inherited by T-dual action. T-dual theory is
invariant to translations of T-dual coordinate. However, even in
cases where starting action is not invariant to translation symme-
try we can expect emergence of this symmetry in T-dual theory.
This is a natural consequence of introducing AV and of the fact
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that T-dual theory is intrinsically a non-local one. T-dualization
of T-dual theory is obtained with generalized Buscher procedure
and steps are identical as before.

dtyy —>Diyﬂ = 6iyﬂ +u,, — Diyﬂ = Uy, (4.1)
AV SAUOP, (4.2)

1 & 0% (£~
AU =5 /pd«?@i‘”[”w —0,0°(f 1)@‘1’51]

1 . —

-5 /P de=érn [u_/,l e 1)aﬁa_9ﬁ] , (43)

Yoy = Up, =ty — a+éa<F_l (A U(O)))aﬁqlz (4.4)
Y, U, =u_, +% (F'(au")) o6’ (4.5)
*§ *S+ g /Z dE(u,,0 5" — u_,0,x"). (4.6)

In first line we immediately fixed gauge by choosing y(£) =
const. Inserting these substitutions into (3.23) we get

*Seix = > /d2 50U, U, +0,8°(F1(AaU")) 0.6

+(u,, 0" —u_,0,x")] . (4.7)
Finding equations of motion for Lagrange multipliers and insert-
ing solution to those equations into gauge fixed action we return
to the starting point of this chapter, T-dual action. On the other
hand, finding equations of motion for gauge fields

u,, = 2[@ ©TL,,, + ﬁ‘(x)] +0,8°(F' (), ¥, (4.8)

u, = —z[ R ] ¥ (F ) ,,0.0" (4.9)
and inserting these equations into the gauge fixed action, keeping
all terms linear with respect to C#¥,, we obtain our original action
(2.17). Here we use the freedom to choose Ax* = x(&) — x(&,),
with (&) =

5. Non-commutative Relations

Having found T-dual action and equations that link T-dual co-
ordinate with original coordinates in previous chapters, in this
chapter we will focus on establishing a relationship between Pois-
son brackets of original and T-dual theory. Furthermore, we will
mainly focus on Poisson brackets between bosonic variables and
their momenta. Original theory is a geometric one with variables
x*(€) and z, (£). Therefore, it is natural to impose standard Pois-
son structure on original theory

{¥"(0), 7,(6)} = 6}6(0 = 5), {x"(0),x"(6)} =0,

{,(0), 7,(6)} = 0. (5.1)
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In order to find Poisson brackets of T-dual theory, we need to
find T-dual transformation laws which connect the initial and T-
dual coordinates. Starting with relations (4.8) and (4.9) and using
equations of motion for Lagrange multipliers x*, u,, = d,y,, we
obtain T-dual transformation laws

0,y, = 2[0+x”1=l+m + ﬁ;(x)] +0,0°(F (%) 9, (5.2)

af p’

oy, =- [ I )] ~ ¥ (F(x),,0.0", (5.3)

where symbol = denotes T-dual transformation. Subtracting
these two equations, we get

Y, 21L,,0.x" + 0, x'TL,, + By + f,

=~

1. za/pe [
+ 59,0 (F'(x)),, ¥ + E‘I’V(F '(x)),,0-0". (5.4)

Taking into account that bosonic momenta, #, of original theory
are of the form

7rM=K[l_I d_x" +6x”l'[

+uv’—

1 Ta B
+E‘PM(F (%)),,;0-0
+ 16 6°(F! ph 55
20,0"(F'(),, %] 55)
and ﬂo B + B, we obtain
+ B0(x). (5.6)
Here f3)(x) is given by
0 _ 1 na v — a f
ﬁ”(x)_iao[e +X‘lPV1:|(f rmlc] ](f

[0” + ‘I’fz xvz]

[6"+x”1‘{'“](f‘ Yoy CP )00, [9ﬂ+lyﬂ Vz].

NlH

(5.7)
To find Poisson bracket between T-dual coordinates, we can
start by finding Poisson bracket of sigma derivatives of T-dual co-

ordinates and then integrating twice (see [13, 24, 25], B ). Imple-
menting this procedure we have that Poisson bracket is given as

{r,(0).v,,3)}
~ lk[zamaﬂz 826101[K,,,,,(6) + K, (0)] H(e = 5), (5.8)

l*zﬂl

where, for the sake of simplicity, we introduced
Kuv (6) = <§a (5) + x# (a)‘i‘“ )(f_l)m cuh (f—l

Hy 1 H
_‘i"‘of(f aal C‘11ﬁ1(f ﬂ ﬂ(eﬂ(ﬂ') +\{]€1xv1 (6)) (59)

Here, H(c — &) is same step function defined in Appendix B. It
should be noted that these Poisson brackets are zero when ¢ = 5.
However, in cases where string in curled around compactified
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dimension, that is cases where ¢ — & = 2z, we have following
situation

v, (6 +27),y, (o)}

1R

Ha My

1 ,
Spl20018) = 8,26]1] [K,,,, () + K, (c)]

T T — a — 4 4
N ) G 100100 = 30000

X "y

+ 8118151 — G (5.10)
H V2 N Vi Va o H

Here we used fact that H(2x) = 1, while N is winding number
around compactified coordinate defined as

x*(c + 21) — x*(0) = 2z N*. (5.11)

From this relation we can see that if we choose x#(s) = 0 than
Poisson bracket has linear dependence on winding number. In
cases where we do not have any winding number, we still have
non-commutativity that is proportional to background fields.

Using the expression for sigma derivative of y, (5.6) and ex-
pression for Poisson bracket of T-dual coordinates (5.8), we can
find non-associative relations. Procedure is the same as for find-
ing Poisson brackets of T-dual theory, we find Poisson bracket of
sigma derivative and integrate with respect to sigma coordinate,
this time integration is done once. Going along with this proce-
dure we have the final result

{Yv (6)’ {le (61)’ sz (62)}}

1 oty ag e
= ﬁH(Gl - Uz)qlm(f 1)ua1 Cyzﬂ (f 1)¢7lﬁqj,’i3

X I_I(O-1 — 6)[26#15#26”3 — 25H1§H2 513 — §H1 GH2 §H3 + 5#16”25#3]
v Ty vy Viovy oV VoV vy V) VoV

+H(O’2 — 6)[26!‘15#26”3 — 25H1§H2 513 — §H1 M2 §H3 + 6#15”25#3]
VoTv v, V) VoV v vy vy Vi oVy oV
(5.12)

Since Jacobi identity is non-zero for T-dual theory we have that
coordinate dependent RR field produces non-associative theory.
However putting 6 = 0, = 6 and o; = 6 + 27 we have following
Jacobi identity

) v, (6 +27),y,, (3)}}

= W (F 7)o, C (), Y0 (281617810 — 2600612610

Ha

— 816128 + 816/25). (5.13)

Examining equation (5.6), we notice that d,y, is not only a lin-
ear combination of initial coordinate and its momenta but also
has terms that are proportional to fermionic coordinates. This
might lead us to believe that T-dual theory would have nontrivial
Poisson bracket between T-dual coordinate and fermionic coor-
dinates. However, this is not the case, and it can be directly cal-
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culated by finding Poisson bracket between sigma derivative of
T-dual coordinate and fermion coordinates (more details in B).

{0°(0). v, (0)} =0, {0%(0).y,(6)} = 0. (5:14)

6. Conclusion

In this article we examined type II superstring propagating in
presence of coordinate dependent RR field. This choice of back-
ground was in accordance with consistency conditions for back-
ground field and all calculations were made in approximation
that are linear with respect to the space-time derivative of the RR
field, CZ” , which is infinitesimal one. We have also excluded parts
that were non-linear in fermionic coordinates and neglected pure
spinor actions. Using equations of motion for fermionic mo-
menta we obtained action that was expressed in terms of bosonic
coordinates, their derivatives and derivatives of fermionic coordi-
nates.

Action with our choice of background fields possessed transla-
tion symmetry, therefore we use generalized Buscher procedure
that was developed for such cases. By substituting starting action
with auxiliary action we gave up on locality in order to be able to
find T-dual theory. Finding equations of motion of newly intro-
duced Lagrange multipliers we were able to salvage starting ac-
tion giving us assurance that auxiliary action we selected would
produce correct T-dual theory. After this we found equations of
motion for gauge fields and by inserting them into action, we
found T-dual theory.

Having found T-dual theory, we applied T-dual procedure once
again as a more thorough way of checking if action we obtained
was in fact correct T-dual of starting action. Unlike starting ac-
tion, T-dual action was non-local from the start by virtue of con-
taining V© term. Applying steps of generalized Buscher pro-
cedure we obtained starting action, again confirming that our
choice of auxiliary action was correct.

We obtained non-commutativity relations in context of T-dual
theory, where we used T-dual transformation laws as a bridge
between Poisson brackets of starting theory and T-dual theory.
T-dual transformation laws were expressed in terms of coordi-
nates and momenta of original theory, which produced non-
commutativity in T-dual theory. From expression for Poisson
brackets (5.8) we can see that non-commutativity is proportional
to infinitesimal part of RR field. Non-commutativity relations are
zero in case when o = &, while in case where ¢ = 6 + 27 we see
the emergence of winding numbers. Noncommutativity param-
eters are linearly dependent on bosonic coordinates x# as well as
on fermionic ones, % and §°.

Taking into account Poisson brackets of T-dual coordinates
and expression for sigma derivative of T-dual coordinate we were
able to find non-associative relation for T-dual theory. In gen-
eral case this relation was non-zero and it was proportional to
infinitesimal constant, which is proportional to CZ” . In special
case when we put 6, = 0, = & and o; = 6 + 27 we noticed that
non-associativity relation remains constant.

It should be noted that since we did not preform T-dualization
along fermionic coordinates their Poisson structure would re-
main the same as in original theory. However, unlike original the-
ory, T-dual coordinates depend on sigma derivatives of fermionic
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coordinates. This dependence does not affect the Poisson brack-
ets of the T-dual coordinates and fermionic coordinates (5.14). So,
T-dual SUSY algebra has non zero Poisson bracket of the bosonic
coordinates, while the rest ones are zero. In further investigation
we will study fermionic T-dualization and we expect the effect on
the algebra of the fermionic coordinates.

Appendix A: Obtaining ﬂf Terms

In this paper function f; (V) emerged in T-dual transformation
laws as a consequence of variation of term that was proportional
to AV. Here we will present derivation of this function.
Here we will use substitutions 9,0 = 9, 0% + v v, 0.0 =
0_0" + ¥’ v, also we will use F,
vy P
infinitesimal constant

to represent term containing

/ d*é0,0°F,;,AV0 0 = / d*&e™0,,0°F,, AVO?0,60F
z z

/ d2 =e™9, 0°F,,, AVO9,0F

1 L (1)
— 370,67, AV! Wam@ﬂ]

- _% /Z e[ O1F,,0,V0,0/
+%em"an®”FaﬁpamAv<0)ﬂ®ﬁ]

= _% /2 dge™ 9, AVO [O°F,, 0,0 - 0,6°F,, O]

- _% /2 dge™v [6°F,, 0,0 - 0,0°F,, 0]

= /d2§v;ﬁ;”. (A1)
z

Variation with respect to gauge field v}, and setting F,;, =
(e cph (f™")s, produces desired f* functions (3.14), (3.15)
in equations of motion (3.13). Here we have used the prop-
erty that (f7'),,, calF1y s> i€ F,p,, is antisymmetric under ex-
change of « and B, this, in combination with the fact that we can
express 0,00_0 as €""9,00,,0, removes all terms proportional
to 0, 0_, using identity €""®9,,0,0 = 0.

It should be noted that 4, (V) functions are not unique, we
could have obtained different function simply by not using us-
ing symmetrization in (A.1). In case of non-symmetric g, (V),
all results that have been obtained would take a simpler form.
We have chosen to work with symmetric function because re-
sults that are deduced from this case can be easily reduced, by
neglecting terms, to simpler case.

Appendix B: Poisson Bracket Between Sigma
Derivatives of T-dual Coordinate

In this article, in order to find Poisson brackets of the T-dual coor-
dinates we had to find first Poisson brackets of the sigma deriva-
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tive of T-dual coordinates, y/ = 9,y,(c). In this section we will
demonstrate how to obtain Poisson brackets from Poisson brack-
ets that contain sigma derivatives. We will use canonical form of
the T-dual transformation law (5.6) and standard Poisson alge-
bra, because the initial theory is geometric one. First, we have to
calculate the following Poisson bracket

{ao'l))vl 61)’ D'ZYVZ(GZ)}

0,)9,,6(0; — 01) = K, ,,(01)9,,6(01 — 03)

1
=% K, (

+0,K,,,,(01)8(01 = 03) = 0,,K,,,, (03)8(0;, — 01) |, (B.1)

03" VY1

where K, (o) is given by (5.9).

Hv

On the other side we have
{Ay,, (00, 0), Ay, (6,,5)}
= / do_l / dGZ{aal le (O-l » Yo, sz (O-Z)}
oy Gy

{le (O' sz (O' } {Y\/l sz 0—0 } {le (O—O sz (6)}

+{y,,(60),,(50)} (B:2)
where
AY}( 00,0 / dal ao'l Yu (0'1) Yu( ) Yy (0-0) . (B3)

Combining the equations (B.1) and (B.2) we have

o 1 o c
{AYV] (60’6)’AY\/2(60’O—)}= ﬁ/ d"l/ do,

X | K

V2V1 (

03)0,,6(0; — 01) — K

V1va

(61)0,,6(01 — 03)

+ 9, K, ,,(01)8(01 — 03) = 9, K, , (6,)6(0; — 0'1)]' (B.4)
By applying partial integration, it is straightforward to extract the
Poisson bracket of T-dual coordinates given by (5.8).

In paper!®! it has been shown that Poisson brackets between
o derivatives of coordinates have following form
{o, X

) an'z Yv 0—2)} = an'l K#V(O'])(S(Ul - 0—2)

0'1)4

+L,,(01)0,,6(c; — 0y). (B.5)

Applying integrating twice and using partial integration this
equation reduces to

{Xu (0-1 62)} = [ Hv 61) (62) + Luv(gl)]é(al - 62)'
(B.6)
In our case, we can bring equation (B.1) to the form of equa-

tion (B.5) by making following substitutions
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aal Kv1 V) (Gl) = ao'l Kv1 vy (O-l)’ aaz KV2V1 (62) = aaz KV2V1 (62)’

K (O-l) = _Lvlvz(al)’ KV2V1 (0-2) = _LV2V1 (62)’

Viva

(B.7)

Because we chose to work with symmetric £ function we obtain
duplicated terms in (B.5).

Same procedure can be applied to find Poisson bracket be-
tween T-dual coordinate and fermionic momenta. That is, we
start from Poisson bracket for sigma derivative of T-dual coordi-
nate and fermionic momenta, then integrate once and compare
left and right hand sides.

The step function H(x) is defined as

0 if x=0

H(x):/ dsé(s):%EneZ/ e =11/2 if 0<x<2r.
0 0 1 if x=2x

(B.8)
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Abstract. Higher category theory can be employed to generalize the notion of a gauge group
to the notion of a gauge n-group. This novel algebraic structure is designed to generalize notions
of connection, parallel transport and holonomy from curves to manifolds of dimension higher
than one. Thus it generalizes the concept of gauge symmetry, giving rise to a topological action
called nBF' action, living on a corresponding n-principal bundle over a spacetime manifold.
Similarly as for the Plebanski action, one can deform the topological nBF' action by adding
appropriate simplicity constraints, in order to describe the correct dynamics of both gravity
and matter fields. Specifically, one can describe the whole Standard Model coupled to gravity
as a constrained 3BF or 4BF action. The split of the full action into a topological sector and
simplicity constraints sector is adapted to the spinfoam quantization technique, with the aim
to construct a full model of quantum gravity with matter. In addition, the properties of the
gauge n-group structure open up a possibility of a nontrivial unification of all fields. An n-group
naturally contains additional novel gauge groups which specify the spectrum of matter fields
present in the theory, in a similar way to the ordinary gauge group that prescribes the spectrum
of gauge vector bosons in the Yang-Mills theory. The presence and the properties of these new
gauge groups has the potential to explain fermion families, and other structure in the matter
spectrum of the theory.

1. Introduction

The formulation of a quantum theory of gravity represents one of the fundamental open
problems in modern theoretical physics. Among the many approaches to this problem, some
have developed into vast research frameworks, such as Loop Quantum Gravity, which aims to
formulate a model of quantum gravity (QG) in a nonperturbative fashion, both canonically and
covariantly [1, 2, 3]. The covariant approach aims to give a tentative rigorous definition of the
path integral for the gravitational field,

Z = /Dg sl (1)

One of the essential assumptions is a triangulation of a spacetime manifold, and the path integral
is introduced as a discrete state sum of the gravitational field configurations, living on the
simplicial complex structure. This approach to quantization of gravity is usually called the
spinfoam quantization method. It is performed via the following three steps:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
[ of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1
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(1) one reformulates the classical action S[g] as a constrained BF' action, separating the
topological BF part and the constraint part of the action;

(2) one employs the underlying Lie group structure of the BF sector of the action, in order to
define a triangulation-independent state sum Z;

(3) finally, one deforms the topological state sum by applying the simplicity constraints, and
therefore redefining it into a triangulation-dependent state sum, which plays the role of a
definition for the path integral (1).

This type of quantization prescription has been implemented in a number of cases, for various
choices of the gravitational action, of the Lie group, and of the spacetime dimension. Historically
the first spinfoam model was the Ponzano-Regge model [4], defined in 3 spacetime dimensions.
In 4 dimensions multiple models have been formulated, differing in the choice of the Lie group
and the way one imposes the simplicity constraints [5, 6, 7, 8, 9]. While all these models do
represent definitions of the gravitational path integral, none of them are able to include matter
fields in a seamless way. Introducing the latter into a spinfoam QG model has so far had only
limited success [10], predominantly due to the lack of the tetrad fields in the topological part of
the model.

Recently, a new approach has been developed to address the issue of matter fields, which
employs the framework of higher gauge theory (see [11] for a review). Specifically, one uses the
notion of a categorical ladder to generalize the BF action (based on a Lie group) to a 2BF
action (based on the so-called 2-group structure), and further to a 3BF action (based on a
3-group structure). A convenient choice of the Poincaré 2-group gives rise to the needed tetrad
fields in the topological sector of the action [12], while an additional extension to the 3-group
naturally introduces the matter fields (fermions and scalars) into the model [13]. The steps of
the categorical ladder and their corresponding structures are summarized as follows:

categorical algebraic linear topological degrees of
structure structure structure action freedom
Lie group Lie group Lie algebra BF theory gauge fields
. Lie crossed differential Lie

Lie 2-group module crossed module 2BF theory | tetrad fields

Lie 3-group Lie 2-crossed differential Lie 3BF theory scalar and

module 2-crossed module fermion fields

The main aim of this work is to provide a short review of the classical pure BF, 2BF and
3BF actions, in order to demonstrate the categorical ladder procedure and the construction of
higher gauge theories. In other words, we mainly focus on the step 1 of the spinfoam quantization
programme, with a very short review of step 2 of the programme.

The layout of the paper is as follows. Section 2 deals with first three examples of n BF’ theories,
namely BF, 2BF and 3BF actions, and their construction using the categorical ladder. After
this, in Section 3 we briefly present an application of a 3BF' theory to the Standard Model of
elementary particles coupled to Einstein-Cartan gravity. As it turns out, the scalar and fermion
fields are naturally associated to a new gauge group, generalizing the role of an ordinary gauge
group in the Yang-Mills theory. This opens up a possibility of an algebraic classification of
matter fields, and (more speculatively) a possibility of the explanation of the three fermion
families. Finally, Section 4 contains some discussion and our conclusions.

The notation and conventions are as follows. Spacetime indices are denoted by the Greek
letters p,v,..., and are raised and lowered by the spacetime metric g, = nabeaueb,,, where
e?, are the tetrad fields. The inverse tetrad is denoted as e*,. The local Lorentz indices are
denoted by the Latin letters a,b,c, ..., take values 0,1, 2,3, and are raised and lowered using
the Minkowski metric 74, with signature (—, 4+, +, +). All other indices that appear in the paper
depend on the context, and their use is explicitly defined in the text where they appear. We
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work in the natural system of units where c=h =1, and G = lf,, where [, is the Planck length.
The exterior product in the space of differential forms is denoted with the standard “wedge”
symbol, A.

2. nBF theories
We begin by giving a short review of nBF theories, for n = 1, 2,3, which represent the most
interesting cases for physics.

2.1. BF theory

A BF theory and its various applications in physics are already well known in the literature,
see for example [14, 15, 16], so here we merely give a brief definition. Given a Lie group G, and
its corresponding Lie algebra as g, one defines the BF action in the form (we discuss only the
4-dimensional spacetime manifolds My):

SBF:/M <B/\./T>g. (2)

Here, F = da+aAa is the curvature 2-form for the g-valued connection 1-form o € A'(M4)®g,
while B € A>(My) ® g is a g-valued Lagrange multiplier 2-form. Also, (_, ), denotes a G-
invariant nondegenerate symmetric bilinear form over g.

Varying the action (2) with respect to B and «, one obtains the equations of motion:

F=0, VB=dB+aAB=0. (3)

The first equation implies that « is a flat connection, in the sense that a = 0 up to gauge
transformations. The second equation then implies that B is covariantly constant. From these
one can deduce that there are no local propagating degrees of freedom, and therefore the theory
is said to be topological.

2.2. 2BF theory

Once we have introduced the BF model, we procceed to first step of the categorical ladder,
generalizing the algebraic notion of a group to the notion of a 2-group. This leads to the
generalization of the BF theory to the 2BF theory, also sometimes called BFCG theory
[11, 17, 18, 19].

The categorical ladder is a procedure of generalizing various notions in mathematics, using
the framework of category theory, and works as follows. One starts from the notion of a group
as an algebraic structure, and notes that it can be understood as a category with only one object
and invertible morphisms [11]. Then, one employs the fundamental idea that a category can be
generalized to the so-called higher categories, which have not only objects and morphisms, but
also 2-morphisms (maps between morphisms), 3-morphisms (maps between 2-morphisms), and
so on. This tower of n-categories is known as the categorical ladder. Applying the construction to
groups, it is straightforward to introduce the notion of a 2-group as a 2-category consisting of only
one object, where all the morphisms and all 2-morphisms are invertible. It was demonstrated

that every strict 2-group is equivalent to a crossed module (H 2 ,>), see [13] for detailed
definitions. Here G and H are groups, d is a homomorphism from H to G, whilet>: Gx H - H
is an action of G on H.

Just like an ordinary Lie group G has a naturally associated connection a and gives rise to
a BF theory, a Lie 2-group has a naturally associated 2-connection («, ), described by the
usual g-valued 1-form a € A'(My) ® g and an h-valued 2-form B € A%2(My) ® b, where b is a
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Lie algebra of the Lie group H. This 2-connection gives rise to the so-called fake 2-curvature
(F,G), defined as
F=da+aAha-00, G=dB+an” . (4)

Here a A 8 means that « and § are multiplied as forms using A, and simultaneously multiplied
as algebra elements using >, see [13]. The curvature pair (F,G) is called “fake” due of the
presence of the additional term 9 in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module, one can introduce the
so-called 2BF action, as a generalization of the BF' action, as follows [17, 18]:

SwF:[;QBAFﬁ+KCAQW (5)

Here the 2-form B € A?(M,) ® g and the 1-form C € A'(My) ® b are Lagrange multipliers.
Also, (_,-)g and (_, ) denote the G-invariant nondegenerate symmetric bilinear forms over the
Lie algebras g and b, respectively. As a consequence of the axiomatic structure of a crossed
module (see [13]), the bilinear form (_,_)y is H-invariant as well. See [17, 18] for review and
references.

The equations of motion for a 2B F theory are an extension of the equations of motion of a
BF theory. Varying with respect to B and C one obtains

Fr=0, G*=0, (6)
while varying with respect to a and 3 one obtains the equations for the multipliers,
VB+CA g=0, VC -8B =0. (7)

Here the map 7 is defined in [13]. A rigorous Hamiltonian analysis of the model demonstrates
that in this case as well there are no local propagating degrees of freedom [20, 21] (see also [22]).
Therefore the 2BF' theory is also topological.

2.8. 3BF theory
When constructing more realistic (nontopological) models by adding constraints to BF' and 2BF
models, it becomes apparent that the group G with a constrained BF' action can successfully
describe ordinary gauge vector bosons, while the so-called Poincaré 2-group with a constrained
2BF action can successfully describe general relativity. However, neither of these can suitably
accomodate matter fields, such as fermions or scalars. Nevertheless, it turns out that this can
be remedied if we make one further step in the categorical ladder, passing from the notion of a
2-group to the notion of a 3-group. As we shall see in the next Section, the notion of a 3-group
will prove to be an excellent structure for the description of all fields that are present in the
Standard Model, coupled to Einstein-Cartan gravity. Moreover, a 3-group contains one more
gauge group, which is novel and specifies the spectrum of scalar and fermion fields present in
the theory. This is an unexpected and beautiful result, absent from ordinary gauge theory.
Applying the categorical ladder once more, one can introduce the notion of a 3-group in
the framework of higher category theory, as a 3-category with only one object where all the
morphisms, 2-morphisms and 3-morphisms are invertible. Also, the equivalence between a 2-
group and a crossed module has been generalized to the equivalence between a strict 3-group

and a 2-crossed module [23]. A Lie 2-crossed module, denoted as (L Sada >, {-,-}),is an
algebraic structure specified by three Lie groups G, H and L, together with the homomorphisms
0 and 0, an action > of the group G on all three groups, and a G-equivariant map

{(,}:HxH=L.
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called the Peiffer lifting. The maps 0, §, > and the Peiffer lifting satisfy certain axioms, so that
the resulting structure is equivalent to a 3-group [13].

Based on a given 2-crossed module (L gl a ,>>,{_,_}), one can introduce a gauge
invariant topological 3BF action over the manifold My as follows. Denoting g, h and [ as
Lie algebras corresponding to the groups G, H and L, respectively, the Lie 3-group structure
allows one to introduce a 3-connection («, 3,7) given by the algebra-valued differential forms
a € MMy ®g, B€ A(Myg) @b and v € A3(My) ® . The corresponding fake 3-curvature
(F,G,H) is then defined as

F=da+aAa—-08, G=dB+aAn” B—dy,
H=dy+an" v+ {BAB},

(8)

see [23, 24] for details. Note that « is a 3-form, while its corresponding field strength H is a
4-form, requiring that the spacetime manifold be at least 4-dimensional. Also, for this reason,
going beyond 3-groups and 4-groups in the categorical ladder does not have many applications
in realistic 4-dimensional physics. A 3BF' action is defined as

SgBF—/M <B/\./.">g+<C/\g>h+<D/\'H>[, (9)

where B € A2(My)®g, C € AL(My)®bh and D € A°(My) @I are Lagrange multipliers valued in
the respective algebras. Note that exclusively in 4 spacetime dimensions the Lagrange multiplier
D corresponding to H is a O-form, i.e. a scalar function. As before, the bilinear forms (-, _) g
<,,,)h and (_,_), are G-invariant, nondegenerate and symmetric, over the algebras g, h and I,

respectively.
The equations of motion can be obtained by varying the action with respect to the multipliers

B, C and D,
F=0, Gg=0, H=0, (10)

and by varying with respect to the connections «, # and ~,
VB+CAT B—=DAS v =0, VC — 0B — D AMHX) g — VD+6C=0. (11)

See [13] for the detailed definitions of the maps 7, S, X7 and Xj.

3. The Standard Model 3-group
At this point we are finally ready to construct a realistic classical action, featuring the full
Standard Model of elementary particles coupled to Einstein-Cartan gravity. The action is based

on a so-called Standard Model 3-group, which is a 2-crossed module ( L Sgla s>y {o,2))
with a following choices for the Lie groups:

G =S50(3,1) x SU(3) x SU(2) x U(1), H=R*,

L=C*x G x G x G% .

We choose the group G as a product of the Lorentz group and the usual internal gauge symmetry
group of the Standard Model. The group H is chosen to be the group of spacetime translations,
motivated by the Poincaré 2-group construction [12]. Finally, we choose the group L as a product
of C* accouning for the doublet of complex scalar fields, and three copies of the 64-dimensional
Grassmann algebra G%, representing three families of fermions. The maps d, d and {_, _} are
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trivial, while the map > is chosen in a natural way, in accord with the usual action of the gauge
group G onto translations and various components of matter fields. It is defined in detail in [13].

Once the 3-group has been completely specified, the corresponding action can be written as
a 3BF action with suitable constraint terms, as follows:

(BAF) (CAG) (DAH)
— —
S = /Ba AF* + B A Rigy) +ea A VB + 6™ (V)4 + 0a(V)? = (7 V) ar? 3BF
1 bled 1 a, b, e, d
— Alab] (B[ab] = glted s Ay Acupeae® Al AeS Ae GR and CC
/ 16712 ¢ 96712

+

A
AYA (Ba —12 CQBMgab e A eb) + Ca“b (Mmb Ecdef €5 N e nenel —F, Aea A eb) YM

+ /)\A A lva — Hapea€® A e’ A ec) S+ AA A (HabcA e eu A ee A er — (Vo)aAea A eb) Higgs

B /%2 N (¢A¢A _ 1}2)2 cubed € AP A€ A e Higgs potential
+ / Aa A ('yA + éEabcd e*Ne’ Aef (vdw)A) -2 A ("yA - ésabcd e NeP nef (zﬁd)A) Dirac

- / 1—12 YaBc @AqubC Cabed €& A e A el A el Yukawa

+ /27ri lf, 1/?,4757”1/1’4 Cabed € A €S A /J’d . spin-torsion

Here the first row represents the topological 3BF part, while the remaining rows represent
various constraint terms, each corresponding to one sector of the theory. Taking all together,
the equations of motion obtained from the action S are equivalent to the full set of equations of
motion for all Standard Model fields, coupled to the Einstein-Cartan theory of gravity.

The key novelty of the above structure is the role of the group L, which prescribes the
spectrum of scalar and fermion fields present in the theory, via the (DAH) term in the topological
sector of the action.

4. Conclusions
Let us summarize the results of the paper. In Section 2 we have introduced the nBFE theories
for n = 1,2, 3, and explanied in brief terms how the categorical ladder procedure can be applied
to generalize the notion of a group to the notions of a 2-group and a 3-group, which represent
more powerful ways to describe the gauge symmetry of a physical theory. These structures
were employed in Section 3 to construct the constrained 3BF action for the Standard Model
of elementary particles coupled to the Einstein-Cartan gravity in the usual way. Within that
framework, the spectrum of scalar and fermion fields happens to be determined by a new gauge
group, in a way similar to that of the ordinary gauge group determining the spectrum of gauge
vector bosons in Yang-Mills theory. This opens up a very interesting possibility of applying the
structure of a 3-group to classify matter fields, and possibly gain some insight into why there
are three families of fermions.

These results complete the first step of the spinfoam quantization programme, as outlined
in the Introduction. The second step has also been performed in [25], for a general case of a

Lie 2-crossed module (L Saba ,>>,{-,-}). The resulting state sum is a novel topological
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invariant of a 4-dimensional manifold, and has the following form:

_ —[Ao|+[A1]—|Az] [Ao|—|A1]+|Az2|—]As] —|Ao|+|A1|—[A2|+|As|—|A4]
Z = |G| |H| IL|

< 1] /dgjk 11 /dhjke 1T /dljkem

(Gk)eM G (JkOEA |y (Jktm)EAs T,
X H e (a(hjkl) 9kt Gik 9;;) H om (5(ljkem)hj£m (gem > hjke) Ry, h;klm)
(jkO)EA2 (jktm)€As

X H 5L (l]_éinn hjgn I>, {hémny (gmngém) > hjkg}p lg_klln(hjkn I>, lkémn)ljkmnhjmn \>/ (gmn > ljkgm)) .

(Fktmn)€N,

(12)
Here g;j, hijk, lijr are elements from groups G, H, L, respectively, which are assigned to simplices
of the triangulation whose vertices are numerated by indices 4,j,... In other words, g;; are
assigned to edges, h;j; are assigned to triangles, and [;j;; are assigned to tetrahedra of the
simplicial complex representing a compact 4-manifold, which has a total number of Ag vertices,
A1 edges, As triangles, A3 tetrahedra, and Ay 4-simplices.

Of course, when building a realistic theory, we are in fact not interested in a topological theory,
but instead in a theory which contains local propagating degrees of freedom. Thus the state sum
Z should be appropriately deformed. This is the task of step 3 of the spinfoam quantization
programme, by imposing the simplicity constraints on Z. The classical action from Section 3
manifestly distinguishes the topological sector from the simplicity constraints. Imposing those
constraints should thus complete the spinfoam quantization programme, and would ultimately
lead us to a tentative model of quantum gravity with matter, by providing a rigorous definition

for the path integral
Z = /Dg/ms eSlodl (13)

which is a generalization of (1) in the sense that it contains matter fields as well as gravity, at
the quantum level.

In addition to the construction of a full quantum theory of gravity, there are also many
additional possible studies of the classical constrained 3BF action. For example, a full
Hamiltonian analysis of the 3BF' action has been done for the example of scalar electrodynamics
[26], and then also for a general choice of a Lie 3-group [27], and the complete gauge symmetry
group has been discussed in detail [27, 28]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mechanism, and some work
has already begun in this area. Finally, one can also study in more depth the mathematical
structure and properties of the simplicity constraints. The list is not conclusive, and there may
be many other interesting topics to study.
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