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EQUATION
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Abstract

The nonlinear Schrödinger equation or Gross-Pitaevskii equation

plays an important role in several areas of physical sciences. It is used in

various forms to describe prominent physical phenomena, such as propa-

gation of light in a nonlinear medium and the dynamics of weakly inter-

acting Bose-Einstein condensates studied in experiments with ultracold

quantum gases. Large-scale numerical simulations for realistically large

physical systems based on this equation have provided valuable insights

into the properties of many interesting phenomena. Furthermore, numer-

ical solutions of this equation are now routinely used for interpretation of

experimental data and are indispensable for day-to-day operation of many

laboratories, as well as for the design of new experimental setups.

In this chapter we review an efficient numerical algorithm for solv-

ing this nonlinear partial differential equation in three spatial coordinates
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and either real or imaginary time, based on the Crank-Nicolson split-step

semi-implicit method. Integration over imaginary time provides a direct

access to stationary solutions of the full time-dependent problem. General

spatially anisotropic solutions in three spatial variables are considered, as

well as dimensionally-reduced problems such as radially or spherically

symmetric cases.

Stability and efficiency of the presented method is ensured in the fol-

lowing way. The discretization error in both time and spatial step is of

the second order. Moreover, integration over the time variable is split into

two steps that are dealt with in a different, but optimized way. In the first

step, only local part of the equation is taken into account and integration is

performed exactly with respect to it. In this way the nonlinear term is con-

sidered in a straightforward, but optimized way that allows for a treatment

of strong nonlinearities. In the second step, spatial derivatives are consid-

ered separately. Semi-implicit nature of the algorithm also contributes to

its stability.

This method is numerically implemented using the standard C pro-

gramming language. Further computational optimization is achieved

by employing the state-of-the-art parallelization techniques for different

computing platforms: OpenMP (for shared memory multiprocessing),

OpenMP/MPI (for distributed memory systems, where each compute

node uses OpenMP to maximize performance), CUDA (for single GPG-

PUs), CUDA/MPI (for distributed memory systems, where each compute

node has GPGPU installed), as well as their hybrid combinations. The

scalability of the algorithm with the number of processors and compute

nodes is discussed.

As applications and extensions of the above developed algorithms, we

present three relevant examples from the field of ultracold atoms. The first

application illustrates how the non-equilibrium dynamics of multicompo-

nent Bose-Einstein condensates can be numerically studied, including the

excitation dynamics of a condensate with a coupling of the effective spin

and angular momentum in the second application. The third application

demonstrates how formation of vortices can be studied in a condensate

featuring contact, as well as long-range dipole-dipole interaction.

PACS: 02.60.Lj, 02.60.Jh, 02.60.Cb, 03.75.-b

Keywords: Bose-Einstein condensate, Gross-Pitaevskii equation, Dipole-

dipole interaction, OpenMP, MPI, CUDA, Crank-Nicolson method
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1. Introduction

One of the important breakthroughs in physics of the twentieth century was the

development of quantum mechanics. The key ingredient of this theory is the

Schrödinger equation: a linear equation that governs the time evolution of a

quantum system. In one of its common representations, Schrödinger equation

is a partial differential equation.

Full quantum description of an interacting many–body system easily be-

comes computationally demanding due to exponentially increasing underlying

vector space with the system size. For this reason, approximate descriptions

that capture main physical phenomena are highly sought–after. The nonlinear

Schrödinger (NLS) equation represents an effective, mean–field description of a

quantum system. It is of great relevance in the field of cold atoms, in particular

for a description and understanding of a weakly interacting bosonic systems at

low temperatures in the regime of Bose–Einstein condensation [1]. In this con-

text, the equation is widely known as Gross–Pitaevskii equation [2, 3] and it has

provided valuable theoretical understanding of experimental results. Another

field of research where the NLS equation plays a prominent role is the field of

nonlinear optics that was initiated by the discovery of lasers in 1960 [4]. As

analytical solutions of the NLS equation are limited to just a few special cases,

the NLS equation was investigated numerically starting in the seventies using

several different numerical methods [5]. The development of present–day com-

puter architectures promotes numerical simulations and enables studies of more

complex physical problems for experimentally relevant system sizes.

In this chapter we first introduce the NLS equation and derive an algorithm

for obtaining its solutions based on a split–step method. In the next step we

present an optimized implementation of this algorithm that heavily exploits par-

allelization techniques available on present–day state–of–the–art computer ar-

chitectures. In the last sections of this chapter we illustrate applications of the

described method for three examples that are currently in a research focus of

cold–atom community.
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2. Algorithm and Computational Implementation

2.1. Introduction

The time–dependent nonlinear Schrödinger equation in a dimensionless form is

given by

i
∂ψ(r, t)

∂t
=

(

−
1

2
∆ + V (r) + g|ψ(r, t)|2

)

ψ(r, t), (1)

where ∆ is the three-dimensional Laplace operator ∆ ≡ ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
. The

usual Schrödinger equation describing the time–evolution of a single–particle

wave function ψ(r, t) is recovered by eliminating the nonlinear term by setting

g = 0. The wave function depends on four variables: three spatial coordinates

r = (x, y, z) and time t. The real–valued function V (r) corresponds to an ex-

ternal potential, and before mentioned Laplacian stems from the kinetic energy.

Initial conditions are appropriately set by fixing ψ(r, t = 0) = ψinitial(r) and

then the time evolution for t > 0 is studied. The equation (1) conserves the

normalization of the function ψ(r, t)
∫

dr |ψ(r, t)|2 = 1 , (2)

which in physical terms corresponds to the conservation of the particle number,

as well as the total energy of the system,

E =

∫

drψ∗(r, t)

(

−
1

2
∆ + V (r) +

g

2
|ψ(r, t)|2

)

ψ(r, t) . (3)

In the context of cold atoms, the complex–valued function ψ(r, t) stands for

a condensate wave function – an effective single particle wave function macro-

scopically occupied by bosonic particles. The constant g is set by weak atomic

interactions that we approximate by contact interactions: repulsive interactions

yield g > 0, while attractive interactions are described by g < 0. The phase

of a system described by the nonlinear Schrödinger equation is called a Bose–

Einstein condensate (BEC). Macroscopic occupation of a single particle state (a

finite condensate fraction) is a consequence of bosonic statistics (Bose–Einstein

statistics) that becomes of key importance at very low temperatures. The phe-

nomenon of Bose–Einstein condensation was predicted in early days of quan-

tum mechanics in 1924 when the Bose–Einstein statistics was derived for the
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first time. After several decades of experimental efforts, first experimental re-

alization of a BEC with nanokelvin-cold atoms was reported in 1995 [6, 7, 8].

This success marked the onset of intense research activity in the field of cold

atoms where the description based on the nonlinear Schrödinger equation played

an important role [9, 10, 11, 12, 1, 13, 14]. Formally, the equation (1) can be

derived by using the time–dependent variational principle. The time–dependent

spatial density distribution of a condensate is given by

n(r, t) = |ψ(r, t)|2 . (4)

Equation (1) governs the time evolution of a weakly interacting BEC. An-

other relevant question concerns finding a stationary solution ψ(r) that mini-

mizes the energy

E0 =

∫

drψ∗(r)

(

−
1

2
∆ + V (r) +

g

2
|ψ(r)|2

)

ψ(r) , (5)

for a given potential V (r) and interaction constant g. For a moment we are con-

sidering a stationary problem, so ψ is a function of three spatial variables only.

To address this question we will use a variant of a well established gradient de-

scent method [15]. To this end, we introduce a label n = 0, 1, . . ., where ψ(r)0
is our initial guess for the stationary solution. In the next step, the function ψ is

incrementally changed as

ψ(r)n+1 − ψ(r)n = −ε
δE0(ψ)

δψ∗
, (6)

where ε is an optimally chosen update step. The reasoning behind equation (6)

is a general idea of the gradient descent method: we move through the space

of functions ψ(r) along the direction in which the energy functional exhibits

the fastest decay. For a stationary solution ψ0(r) it holds true
δE0(ψ)
δψ∗

= 0 and

it corresponds to an extremum (minimum) of E0. The last equation can be

rewritten as

∂ψ(r, τ)

∂τ
= −

(

−
1

2
∆ + V (r) + g|ψ(r, τ)|2

)

ψ(r, τ) . (7)

where τ = nε is a label that keeps track of propagation through the space of

functions ψ(r). We notice that equation (7) can be derived from equation (1) by

a formal replacement t→ iτ . For this reason, the variable τ is named imaginary
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time. In contrast to the energy conservation (3), imaginary time propagation by

its construction ensures that with a right choice of initial function, we will reach

a minimum of the energy functional (5) at long enough τ . Moreover, imaginary

time propagation as given in (7) does not preserve normalization (2), so this

condition should be provided additionally, either by introducing an appropriate

Lagrange multiplier or by re–normalizing ψ(r, τ) in each propagation step (6).

Finally, we note that the solution ψ0(r) which minimizes E0 evolves in time

according to the nonlinear equation (1) as

ψ(r, t) = e−iµtψ0(r) , (8)

where µ is a chemical potential

µ =

∫

drψ∗

0(r)

(

−
1

2
∆ + V (r) + g|ψ0(r)|

2

)

ψ0(r) . (9)

More recent experimental progress in the field of cold atoms has enabled

study of more complex and fascinating physical systems whose theoretical un-

derstanding necessitates generalizations and extensions of the basic NLS equa-

tion (1). One of the topics that has attracted lot of attention recently is real-

ization of a BEC of atoms with strong magnetic dipole moment [16, 17, 18].

To describe the system, we define z–axis as the polarization axis of the dipole

moments. In this case the dipole–dipole interaction is proportional to [19]

Vdd(R) =
1 − 3 cos2 θ

|R|3
, (10)

where vector R = r− r′ stands for the relative position of the two dipoles, and
θ is the angle between the vector R and the z–axis. The dipolar NLS equation
is given by

i
∂ψ(r, t)

∂t
=

„

−
1

2
∆ + V (r) + g|ψ(r, t)|2 + gdd

Z

dr
′

V
3D
dd (r − r

′)|ψ(r′, t))|2
«

ψ(r, t).

(11)

The coefficient gdd sets the strength of the dipolar interaction. Other general-

izations of the NLS equation (1) will be discussed in sections 3 (two–component

BEC) and 4 (BEC with the coupling of spin and angular momentum).
In order to further illustrate wide applicability of the NLS equation, here

we present its form used in nonlinear fiber optics. Starting with Maxwell’s
equations and using several justified approximations, it can be shown that the
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propagation of the pulse filed envelope A(x, y, t, z) along the z direction is
governed by the NLS equation of the form [20, 4]

i
∂A(x, y, t, z)

∂z
=

»

−
1

2

„

∂2

∂x2
+

∂2

∂y2
+ β

∂2

∂t2

«

+ γ|A(x, y, t, z)|2
–

A(x, y, t, z) , (12)

where the coefficient β describes dispersive effects and the coefficient γ de-

scribes nonlinear effects. In the following, we mainly consider equations (1)

and (11), but we note that all the discussed algorithms and their numerical im-

plementations can be used to simulate equation (12) as well.

2.2. Algorithm

As the NLS equation (1) has been widely used and solved numerically, various

types of numerical methods have been applied to this purpose [5]. A recent

review paper [21] provides extensive comparison of the properties of different

numerical methods used to solve the NLS equation. Broadly speaking, numeri-

cal methods for solving equation (1) are either finite difference approximations,

pseudo spectral methods or finite element methods. Depending on the applied

time–discretization scheme, a finite difference method can be explicit, implicit,

semi–implicit or split–step approximation. Here we follow derivations from ref-

erence [22, 23] and present a simple and efficient numerical method to integrate

the NLS equation (1). From the numerical point of view, real–time propagation

according to equation (1) and imaginary–time propagation (7) can be imple-

mented in a very similar manner.

In order to integrate equations (1) and (7) in time, we perform time dis-

cretization t ≡ t0 + nε, n = 0, 1, 2, . . ., ψ(r, t) → ψ(r)n. It turns out that

optimal ways to deal with spatially local and non–local terms of these equations

are different, hence we further split integration over time into two consecutive

pieces. This approximation formally corresponds to a replacement of equation

(1) by a set of two equations

i
∂ψ(r, t)

∂t
=

(

V (r) + g|ψ(r, t)|2
)

ψ(r, t) (13)

i
∂ψ(r, t)

∂t
= −

1

2
∆ψ(r, t), (14)

assuming that the result of integration of equation (13) is the initial condition

for solving equation (14). The split-step approximation given by (13) and (14)

is valid only for short-enough time interval ε and introduces a numerical error

of the order O(ε2).
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For practical reasons in a general three-dimensional situation, we further

split equation (14) into three parts treating spatial derivatives over the three spa-

tial coordinates separately. Thus, in this way we obtain a set of four consecutive

equations

i
∂ψ(r, t)

∂t
= Hi ψ(r, t) (15)

where i ∈ {1, 2, 3, 4} and we introduced

H1 = V (r) + g|ψ(r, t)|2, (16)

H2 = −
1

2

∂2

∂x2
, H3 = −

1

2

∂2

∂y2
, H4 = −

1

2

∂2

∂z2
. (17)

Accordingly, between configurations n and n + 1, we introduce three interme-

diate states labeled by n+ 1
4 , n+ 2

4 , n+ 3
4 such that

ψ(r)n+ 1
4

= exp
[

−iε
(

V (r) + g|ψ(r)n|
2
)]

ψ(r)n , (18)

and

ψ(r)n+ 2
4
− ψ(r)n+ 1

4
=

iε

4

∂2

∂x2

[

ψ(r)n+ 2
4

+ ψ(r)n+ 1
4

]

, (19)

ψ(r)n+ 3
4
− ψ(r)n+ 2

4
=

iε

4

∂2

∂y2

[

ψ(r)n+ 3
4

+ ψ(r)n+ 2
4

]

, (20)

ψ(r)n+1 − ψ(r)n+ 3
4

=
iε

4

∂2

∂z2

[

ψ(r)n+1 + ψ(r)n+ 3
4

]

. (21)

The result (18) gives an exact, analytical solution of equation (13). In this way

the nonlinear term has been properly taken into account providing a stability of

the employed numerical scheme for arbitrary strong nonlinearity coefficient g.

In the equations (19, 20, 21), we have used the semi–implicit Crank–Nicolson

method [24], which is second–order accurate in the time step ε and uncondi-

tionally stable method. The accuracy of the approximation is O(ε2).

To reduce the obtained differential equations to the algebraic form, we ad-

ditionally perform space discretizations with the discretization steps hx, hy,

and hz . To this end, we introduce integer indices i, j, k, which take values

0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz, such that ψ(xi, yj, zk)n ≡ ψi,j,k,n,

where xi ≡
(

−Nx

2 + i
)

hx, and similarly for y and z. We also approximate

second–order spatial derivatives in the standard way via the central difference
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formula:

∂2ψ(r)n
∂x2

→
1

h2
x

(ψi+1,j,k,n − 2ψi,j,k,n + ψi−1,j,k,n) , (22)

with the error of the order of h2
x. We consider large enough grids such that we

can use boundary conditions ψ(0, j, k)n ≈ 0, ψ(Nx, j, k)n ≈ 0 and similarly

in the other two spatial directions. As a result of using approximation (22) in

equation (19), we obtain a tridiagonal system of equations

−Aψi+1,j,k,n+ 2
4

+Bψi,j,k,n+ 2
4
−Aψi−1,j,k,n+ 2

4
= δi , (23)

for each j and k, where A = iε
4h2

x
, B = 1 + iε

2h2
x

and

δi = Aψi+1,j,k,n+ 1
4

+ B∗ψi,j,k,n+ 1
4

+Aψi−1,j,k,n+ 1
4
.

A solution of this tridiagonal system of equations can be cast in the form

ψi+1,j,k,n+ 2
4

= αiψi,j,k,n+ 2
4

+ βi , (24)

and from this ansatz we find the recursive relations for the solution:

αi−1 =
A

B − Aαi
, βi−1 =

δi +Aβi
B −Aαi

. (25)

From the boundary condition ψNx,j,k,n+ 2
4

= ψNx,j,k,n+ 1
4

= 0, we derive initial

values for α and β, αNx−1 = βNx−1 = 0, which we use to solve the recursive

equations (25). With another boundary condition ψ0,j,k,n+ 2
4

= 0, we finally

solve equation (24). Similar procedure is afterwards followed in y and z direc-

tion. Due to the tridiagonal form of the above system of equations, the com-

plexity of the overall algorithm is proportional to the number of discretization

points, i.e., O(NxNyNz).

Once the ground–state solution ψ0(r) is calculated using the imaginary–

time version of the above algorithm, the corresponding value of the ground–state

energyE0 of the system can be calculated by numerically integrating expression

(5). The described algorithm is implemented using the Fortran programming

language [22] and the C programming language [23]. Further computational

optimization is achieved by employing the state–of–the-art parallelization tech-

niques for different computing platforms: OpenMP (for shared memory mul-

tiprocessing) [25] and hybrid OpenMP/MPI (for distributed memory systems,

where each compute node uses OpenMP to maximize performance) [26].
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In order to solve the dipolar NLS equation (11) numerically, we need to deal

with the integral on the right–hand side of this equation efficiently. To this end,

we exploit the fact that the Fourier transform of a convolution integral is given

by a product of Fourier transforms of its components

Idd(r, t) =

∫

dr′Vdd(r− r
′)n(r′, t) =

∫

dk

(2π)3
e−ikrṼdd(k)ñ(k, t) , (26)

where we define the direct and the inverse Fourier transformation as:

Ã(k) =

∫

drA(r)eikr, A(r) =
1

(2π)3

∫

dkÃ(k)e−ikr. (27)

The Fourier transform of the geometric factor (10) stemming from the dipolar

interaction can be obtained analytically and is given by

Ṽdd(k) =
4π

3

(

3k2
z

k2
− 1

)

. (28)

The Fourier transform of n(r′, t) and the inverse Fourier transform from equa-

tion (26) are calculated numerically using optimized libraries such as FFTW

[27]. Finally, the obtained numerical value Idd(r, t) of the integral (26) is used

in the first part of the split–step approach (18) as:

ψ(r)n+ 1
4

= exp
[

−iε
(

V (r) + g|ψ(r)n|
2 + gddIdd(r)n

)]

ψ(r)n . (29)

Numerical codes implementing the described algorithm for solving the time–

dependent dipolar NLS equation are written in the Fortran and in the C pro-

gramming languages [28]. CUDA parallel version of the algorithm is developed

for single GPGPUs [29], as well as a hybrid CUDA/MPI version for distributed

memory systems, where each compute node has GPGPU installed [30].

2.3. Parallelization of the Algorithm

Let us note that the tridiagonal systems of equations (23) can be solved sepa-

rately for different values of j and k. This feature is essential and can be directly

exploited to parallelize numerical implementation of the above described algo-

rithm. In fact, this has been done for practically all available modern computer

architectures and platforms, and we briefly outline all implementations.

Initial algorithm for solving the NLS equation with the contact interaction

term using Crank-Nicolson method was published in reference [22], which also
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Figure 1. Example of 1D, 2D and 3D meshes with Nx, Ny and Nz discretization

points in x, y and z direction, respectively, and the corresponding spacings dx,

dy and dz.

includes a serial implementation in Fortran. This was followed by the imple-

mentation written in C [23], which includes serial and parallel implementation

for shared memory systems consisting of one or more multi-core CPUs using

OpenMP approach. Fortran OpenMP implementation was also provided [25],

as well as a full parallel MPI version for distributed memory systems, i.e., com-

puter clusters with multi-core CPU nodes [26]. An extension of the algorithm

to include the dipolar interaction term was published in reference [28], where

the authors provided two serial implementations, in C and Fortran. This was

followed by an implementation written in Nvidia CUDA for hardware acceler-

ators in the form of GPUs [29], and later by a comprehensive suite of programs

that includes OpenMP, MPI, CUDA, as well as their hybrid combinations [30].

To introduce the parallelization strategy, we start with the description of the

discretization scheme used by the algorithm. Let Nx, Ny and Nz be the number

of points in each direction, corresponding to the x, y and z directions in one,

two or three dimensions (1D, 2D and 3D, respectively). In other words, the

number of points in 1D is defined by Nx, in 2D by Nx and Ny, and in 3D by Nx,

Ny and Nz. Discretization points in each direction are equidistant, with their

spacing defined in dimensionless units by variables dx, dy and dz, illustrated

in Figure 1.

The mesh determines how the space is discretized, but the actual values of
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Figure 2. Main loop of the real-time propagation algorithm in 3D.

the wave function, which is also discretized by the mesh, need to be stored in

a separate array. For convenience, we refer to this array as psi variable. This

variable is defined as a vector of size Nx in 1D, as Nx× Ny matrix in 2D and as

Nx× Ny× Nz tensor in 3D. In real-time propagation, the wave function values

are complex, while in imaginary-time propagation they are purely real, which

determines the type of psi variable.

Time is discretized according to tn = t0 +nε, with the time step ε stored in

a variable dt. Taking into account the time step and the total amount of physical

time we wish to simulate, we determine the number of iterations required. The

main part of the algorithm is a loop where each iteration corresponds to one

time step of the propagation. Inside the loop, we update the wave function

by propagating it in time with respect to different parts of the Hamiltonian,

according to the split-step scheme described in section 2.2 This is illustrated in

Figure 2.

In each step of the main loop, wave function values are computed along the

discretization mesh in several smaller steps. First such substep is the calculation

of the dipolar interaction term (for programs where it is taken into account,

otherwise it is omitted). We have two further substeps in 1D, pertaining to

propagation w.r.t. H1 and H2. In 2D and 3D we follow a similar procedure

and add further substeps for H3 and H4. Each substep produces intermediate

values of the wave function that are used in the next substep. The order of the

substeps dealing with parts of the Hamiltonian with spatial derivatives (H2, H3

and H4) can be arbitrary, a feature useful in hybrid and distributed memory

algorithms. Propagation of the wave function w.r.t. H1 relies on the availability

of the dipolar interaction term value, which is computed in the first substep,

before we start with the update of the wave function.

When necessary, the dipolar interaction term is computed using the discrete

Fourier transform (DFT). DFT of a sequence is commonly implemented by re-

lying on the Fast Fourier transform (FFT) algorithm via an external library.

From equation (26) it follows that we first need a DFT of a sequence consisting
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Figure 3. Main loop of the imaginary-time propagation algorithm in 3D, which

introduces an additional step of normalization.

of absolute squares of wave function values. The resulting complex-valued se-

quence is then multiplied by the Fourier transform of the dipolar potential. This

transform is a known function (28), precomputed for a chosen spatial mesh and

stored in an array. Next, by performing the inverse DFT we get the dipolar

interaction term stored in the resulting array, which we then use to propagate

the wave function w.r.t. H1. In 2D and 3D, we need multidimensional DFT,

which can be computed by the composition of a sequence of 1D DFTs along

each direction.

The substep in which the wave function is propagated w.r.t. the Hamilto-

nian part without spatial derivatives (H1) proceeds by employing further nested

loops over mesh points. Part of the H1 is the trap potential V (r), which, like

Fourier transform of the dipolar potential, can be computed only once during the

initialization, and then reused. We assume that the trap potential is static, but in

case of a time-varying trap potential, the algorithm can be modified to update

the trap potential before this substep, i.e., at the beginning of each iteration. The

remaining substep, or substeps in 2D and 3D, propagates the wave function by

relying on the Crank-Nicolson scheme. We need to perform a backward sweep

of the mesh in each direction to determine the corresponding Crank-Nicolson

coefficients α, β and δ for each direction, followed by a forward sweep to deter-

mine the solution for the entire space range. The algorithm for imaginary-time

propagation is similar to the one discussed above, with the addition of the nor-

malization step at the end of each iteration of the main loop, as illustrated in

Figure 3. To normalize the wave function, we first need to compute its norm

and then to divide the wave function values with that norm.

We see that the algorithm is computationally very demanding, as it requires

multiple passes over the entire mesh in each iteration of the main loop. In 2D

and 3D, the total number of discretized points sharply increases, making this

problem even greater. As we have identified above, several variables can be

moved out of the main loop and computed only once, however the remaining

calculations are still very demanding, hence the need for parallelization.
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The described substeps cannot be executed concurrently, as the intermediate

values they produce are used in subsequent substeps. Instead, parallelization of

the algorithm can only be achieved by focusing on the mesh loops inside sub-

steps. This is an obvious choice for shared memory systems, as all data stored

in the memory is local and accessible to all participating processes, removing

the need for data transfers between processes. The loops themselves can eas-

ily be parallelized if they do not contain recursive relations. This is true for

the substeps dealing with the computation of the dipolar term and propagation

w.r.t. H1. Substep involving H2 cannot be easily parallelized in 1D, as it has

recursive relations in both backward and forward sweeps. In general, recursive

relations can be parallelized using the scan algorithm [31] (also known as the

generalization of prefix sum algorithm [32]), however the implementation com-

plexity of such an algorithm made us discard this approach. In 2D and 3D,

we can exploit the fact that the recursive relations appear only in the innermost

loops of the substeps involving H2, H3 and H4. Thus, we can achieve paral-

lelization by dividing the work among the processes at the level of the outermost

loop.

In addition to the above outlined parallelization that can be naturally im-

plemented on a single computer using OpenMP approach, one can also utilize

modern GPUs to parallelize the algorithm on a single node, and even combine

CPU and GPU into a hybrid algorithm. We first discuss CUDA-based paral-

lelization, introduced in reference [29]. The significant differences in architec-

ture of the GPU and its accompanying execution model on one side, and CPU

architecture with its conventional execution model on the other side, do not re-

sult in significant changes to the main algorithm for the case of Nvidia CUDA

implementation. From the algorithm’s point of view, both CPU and GPU are

shared memory systems with multiple processing units, even though they are

vastly different, and therefore can be used in a similar manner. Main loop of

the algorithm remains unchanged, as well as each substep. However, one has

to replace the FFTW library used by C/OpenMP programs with the cuFFT li-

brary, which is available in CUDA. cuFFT provides two interfaces: the native

one and the FFTW one [33]. FFTW interface is intended to be used as a drop-

in replacement for FFTW, allowing programs written primarily with FFTW in

mind to use CUDA GPUs with minimal modifications to the source code. While

this interface could be used as a temporary solution during the development of

CUDA programs, the goal of using CUDA for all computation relating to the

propagation of the wave function could only be reached with the native cuFFT
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interface. This interface is modeled after FFTW but differs from it in the way

plans are created and executed. In cuFFT, precision and data type of the trans-

form is determined by the functions initiating execution of plans, which results

in a slightly different sequence of function calls and in improved performance.

In order to use CPU and GPU at the same time for hybrid algorithms, the

work has to be divided efficiently between them. If we put aside the obvious

hardware architecture difference between CPU and GPU, we can consider the

computer with GPU as being similar to the distributed memory system consist-

ing of two computing nodes with different characteristics. Both CPU and GPU

have their own memory, and are connected through a fast interconnect, in this

case the PCI-Express. This means that we need an approach similar to the one

distributed memory algorithms use to achieve the desired parallelization. The

most important difference here is that all data is available in main (CPU) mem-

ory, and only portions of it need to be transferred to GPU memory, as opposed

to the true distributed memory systems, where no single part of the system has

all the data. Therefore, the general approach to perform this type of hybrid

computation is to:

1. designate a portion of data to be processed by GPU,

2. copy that data to GPU while simultaneously using CPU for computation

over the remaining data,

3. transfer the data back from GPU, overwriting old data, and

4. synchronize CPU and GPU.

This flow is illustrated in Figure 4.

Note that data can be offloaded from CPU to GPU in various ways [34, 35]

and, in general, any data distribution scheme which targets distributed mem-

ory systems may be used. However, we settled on a simple approach using 1D

decomposition, also known as slab decomposition. When using slab decom-

position, data is distributed along one dimension, usually the slowest-changing

one, and the remaining dimension (in 2D programs) or dimensions (in 3D pro-

grams) of data remain local. This means that we can perform computation on

the local data efficiently, and no data exchanges are necessary. Depending on

a data access pattern, in our programs we rely on decompositions either along

the x direction (discretized with the Nx spatial points), or along the y direc-

tion (discretized with the Ny spatial points). In 3D programs, there is no need
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Figure 4. Flow of data between host and device.

to decompose the data along the z direction. In case we need data from the

distributed dimension to become local in order to perform some computation

(e.g., to update the wave function values when data are decomposed along the

x direction), we have to reassemble data in host memory and decompose again

along the appropriate dimension. Figure 5 illustrates this concept.

With the decomposition scheme in place, we can consider how to divide the

computation of the wave function propagation in time between CPU and GPU.

Once the data have been distributed between CPU and GPU, on the CPU side

only the exit condition of the outer loop needs to be adjusted, so that the CPU

processes a smaller number of elements (e.g., by replacing Nx with cpuNx).

Similar changes are required on the GPU side as well, however we also need to

ensure that GPU has valid data to work with, and that data are reassembled in

host memory after the computation on GPU is done.

Therefore, in the hybrid implementation we initially distribute the data

along the slowest-changing dimension. This allows CPU and GPU to simul-

taneously perform computation of wave function propagation w.r.t. H1 and H3

parts of the Hamiltonian (and H4 when working in 3D). The propagation of the

wave function w.r.t. H2, corresponding to the x direction, can be done locally
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Figure 5. Two offload patterns used. If offloaded along x direction, the y di-

rection remains local. If we need to access whole x direction data, we need to

decompose along y direction.

only if we decompose the data along the y direction beforehand. Note that we

do not have to transfer data from GPU back to host memory at the end of each

function, due to the fact that time propagation w.r.t. H2, H3 and H4 parts of

the Hamiltonian can be done in arbitrary order in each step. Without this, the

time propagation workflow of 3D programs would have to involve the following

steps, according to Figure 2:

1. calculate the dipolar term,

2. transfer the data decomposed along x direction to GPU,

3. propagate the wave function w.r.t. H1

4. reassemble the data in host memory,

5. transfer the data decomposed along y direction to GPU,

6. propagate the wave function w.r.t. H2,

7. reassemble the data in host memory,

8. transfer the data decomposed along x direction to GPU,
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9. propagate the wave function w.r.t. H3,

10. propagate the wave function w.r.t. H4,

11. reassemble the data in host memory.

Rearranging the order of time-propagation substeps allows us to remove one

transfer of data to GPU and its subsequent reassembly in host memory:

1. calculate the dipolar term,

2. transfer the data decomposed along x direction to GPU,

3. propagate the wave function w.r.t. H1,

4. propagate the wave function w.r.t. H3,

5. propagate the wave function w.r.t. H4,

6. reassemble the data in host memory,

7. transfer the data decomposed along y direction to GPU,

8. propagate the wave function w.r.t. H2,

9. reassemble the data in host memory.

Therefore, we use the above, optimized sequence in all 3D programs, and simi-

larly in 2D.

To complete the hybrid algorithm, we also need to distribute computation of

the dipolar term between CPU and GPU, where complexity arises in performing

DFT on distributed data. Currently available FFT libraries target either CPU or

GPU for their computation, but unfortunately not both at the same time. There

are numerous attempts to develop specialized FFT libraries which would enable

this [36, 37, 38], however a full-featured library with support for R2C trans-

forms with advanced data layout is still not available. The approach we used is

to rely on existing libraries for actual transforms, but perform data distributions

manually. The libraries we use, FFTW on CPU and cuFFT on GPU, support ad-

vanced data layouts as well as working on a subset of the whole data, allowing

for an efficient implementation.

To perform the Fourier transform simultaneously on CPU host and GPU

device, we have to split the single multidimensional transform into a series of
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1D transforms along each dimension of the input data, which can be computed

on CPU and GPU independently. This approach is known as the row-column

algorithm [39], and is often used in FFT libraries. The essence of this algorithm

can best be summarized in an example of a 2D FFT. Given a matrix Nx × Ny,

we compute the DFT in the following way:

1. Transfer portion of the input array, decomposed along the x direction, to

device memory. We transfer last gpuNx×Ny consecutive array elements

to GPU. This can be done as a single memory copy operation due to the

flat allocation that was used. The choice whether to offload data to GPU

memory from the beginning or the end of the input array is arbitrary.

2. Perform DFT along the y direction on both CPU and GPU concurrently.

CPU will perform cpuNx such transformations, while the GPU will per-

form gpuNx 1D DFTs. Each of these transforms will take a subset of the

input array, which are Ny/2 + 1 elements apart. Note that CPU will

not do anything with the last gpuNx × Ny elements.

3. Copy the array with the transform back from GPU to CPU, writing over

the stale data with the relevant portion transformed on GPU. After this

step, we have the complete array transformed along the y direction resid-

ing in host memory.

4. Transfer portion of the input array, decomposed along the y direction, to

GPU memory. Similarly to step 1, we transfer last Nx×gpuNy elements

to GPU.

5. Perform DFT along the x direction on both CPU and GPU. This time,

CPU will perform cpuNy/2 + 1 such transformations, while GPU will

perform remaining gpuNy/2 transformations. The halving of the num-

ber of transformations is due to use of R2C transformations. In each

transform, elements are Ny/2 + 1 places apart, while the first element

of each transform is adjacent to the previous one.

6. Copy the array with the transform back from GPU to CPU. With this step

completed, we have the full FFT of the input array residing in host mem-

ory. This step may be omitted if the computation that follows does not

require the FFT of input data to be fully assembled in host memory. This

is the case in our algorithm, as we use the resulting transformed array
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Figure 6. Hybrid algorithm for concurrent FFT on host and device.

only for subsequent computation on GPU. Since the memory transfer is

expensive, omitting this step leads to significant performance improve-

ment.

The inverse Fourier transform can be done in an analogous way. In 3D, the

general principle remains the same, however, we do not separate the DFT into

three 1D transforms, but to one 2D and one 1D transform. We do this due to

better performance of 2D transforms, which in both libraries used is found to be

better than two 1D transforms. Figure 6 illustrates the DFT algorithm described

above.

And finally let us mention that several distributed memory implementations,

targeting computer clusters, were developed as well:

1. pure CPU version, which is built on top of the shared memory algorithm

(OpenMP/MPI),

2. pure GPU version, which is built on top of the CUDA implementation of

the shared memory algorithm (CUDA/MPI),

3. hybrid version, which is based on the algorithm described in Chapter (Hy-

brid/MPI).
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Two of the three implementations, the OpenMP/MPI and CUDA/MPI imple-

mentations, have been published in reference [30] and are available for down-

load [40, 41]. The Hybrid/MPI implementation is also publicly available [41].

The main challenges in the development of distributed memory and hybrid al-

gorithms were devising an efficient data distribution scheme that facilitates fast

data shuffling between computing resources. In the MPI implementations this

was done via a transpose operation realized in two ways, one relying on FFTW

and the other relying on MPI vector types and collective communications. Fur-

ther details can be found in reference [42].

2.4. Performance of Parallel Algorithms: Measurement Results

and Modeling

In previous section we presented various parallel implementations of programs

solving the dipolar and contact interaction GP equation without providing de-

tails of their measured performance. This section is dedicated to filling that gap.

We tested various scaling scenarios, strong and weak, from a single computing

node to the cluster. All testing was done at the PARADOX supercomputing fa-

cility located at the Scientific Computing Laboratory, Center for the Study of

Complex Systems of the Institute of Physics Belgrade.

Performance of hybrid implementations is highly dependent on the amount

of work offloaded to GPU(s), so the key to maximizing performance of these

versions is proper selection of parameters which control this feature. We used

evolutionary computation techniques to find the optimal solutions, as described

here. In the remaining subsections we give an overview of the tests and the

methodology they relied on, present the performance results and their modeling,

and finally discuss how to select the optimal algorithm for a given hardware

platform.

2.4.1. Optimization of Input Parameters for Hybrid Implementations

Hybrid implementations, running on a single computer or a cluster with mul-

tiple computing nodes, can potentially offer the best performance of all algo-

rithms presented in this thesis, by utilizing all allocated computing resources.

For this to happen, work must be divided between CPU and GPU in such a way

as to maximize their throughput and minimize their idle time. A question that

naturally arises is how to achieve this for any possible mesh size for a given

CPU/GPU combination. Unfortunately, there is no single best way to divide the
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Figure 7. Execution timeline in a hybrid system: (a) with equal data distribution,

leading to unbalanced computation time; (b) with optimized data distribution

and ideal computation load.

work, since processing powers of CPUs and GPUs vary significantly. For ex-

ample, in a computer where a powerful new GPU is paired with an older type of

CPU, more work should be offloaded to the GPU, and vice versa for computers

with a powerful CPU and low-performing GPU. Even if the installed CPU and

GPU offer similar performance in terms of floating point operations per second

(as is the case for the PARADOX cluster), the differing architectures mean that

certain portions of the algorithm are better suited to CPU or GPU. If we were

to divide the work naively, e.g., equally, this would lead to unbalanced com-

putation, as illustrated in Figure 7(a), which in turn increases the computation

time.

To get over this problem, the described hybrid implementations have an

option to manually specify each parameter that controls the work being done

on a GPU. Ideally, this flexibility would allow us to overlap computation on

CPU and GPU as much as possible, thus minimizing the execution and idle

time of each resource. The execution timeline for the ideal case looks like the

illustration in Figure 7(b).

The aforementioned parameters include the total amount of data transferred

to GPU, the number of chunks, kernel grid size parameters and a special param-

eter controlling whether some functions will even be offloaded to GPU or not,

which is useful in situations where the CPU is much more powerful than the
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GPU. In 3D programs, this amounts to 33 integer-valued parameters for which

we would like to find the optimal values for the desired mesh size on a given

computing system (with given hardware characteristics). Furthermore, there are

constraints that the parameters must satisfy. For example, the total amount of

data transferred to GPU must be divisible by the number of chunks, and the

size of a block that kernel launches must fit within the limits imposed by the

underlying GPU.

To evaluate any combination of parameters, the programs have to be exe-

cuted, and their execution time measured. The search space of 33 parameters

is clearly too large to be exhaustively traversed in a reasonable amount of time.

Fortunately, we can reduce the number of parameters we have to search through

at any single time by grouping them based on the synchronization point. Af-

ter the CPU and GPU synchronize, data have to be divided again, so the only

relevant parameters in the region between two synchronization points are the

ones controlling the division of work and the ones controlling the kernels which

are executed in that region. During a single iteration, CPU and GPU have to

synchronize four times:

1. after the FFT on local dimensions,

2. after the inverse FFT on the non-local dimension,

3. before the function performing propagation w.r.t. H2, and

4. after that function (which represents the end of a single iteration).

This gives us four distinct parameter sets to optimize: PS1 with 6 parameters,

PS2 also with 6 parameters, PS3 with 15 parameters and PS4 with 5 parameters.

We can consider each parameter set independently.

We investigated several approaches to optimization of parameter sets: naive

brute-force search, iterative optimization via gradient descent, and metaheuristic

via genetic algorithm. Our goal was not to find the best possible optimization

algorithm for our problem, but rather to implement a reasonably good one. By

this we mean the algorithm which is not difficult to implement, which will give

us a set of parameters that are close to the optimal ones, and will not take a

long time to finish. Our focus was on 3D variants of both single node and

MPI versions of hybrid programs. The concepts presented here apply equally

to 2D variants and there is no important difference between the single node and
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the MPI version, so we will not make this distinction in the remainder of this

section. We will now describe how the three approaches were implemented.

A brute-force search (BFS), or exhaustive search, considers every possible

combination of parameter values in order to find the optimal one. Even with

parameters divided into smaller sets, the exhaustive search takes too long, and

is only feasible if we narrow down the ranges of all parameters involved. Un-

fortunately, this is only possible when we have a deep understanding of the per-

formance of the CPU and GPU models used, when we can provide a reasonable

guess for the optimal solution. An alternative is to consider only certain values

along the range of a single parameter, rather than every value in the range. This

approach is feasible and we were able to find reasonably good parameter val-

ues using it. The downside is that this way we may miss the optimal values of

parameters, as they often lie between the selected test points. For instance, on

one PARADOX computing node and a mesh size 256 × 256 × 256, with the

work divided between CPU and GPU along the outermost, x dimension, if we

test only for the values of offloaded data to GPU that are multiples of 32 (i.e.,

32 × 256 × 256, 64 × 256 × 256, etc.), we will miss the optimal value which

lies around 140 × 256 × 256 (assuming all other parameters are fixed). Even

though BFS is often not feasible, it is useful as the baseline for the evaluation

of other methods we implemented.

With the BFS implemented as a baseline, we switched our focus to the im-

plementation of an iterative optimization algorithm. A well-known and widely

used algorithm is gradient descent (GD) [15]. It is an iterative procedure in

which every iteration aims to get closer to the minimum of the given function

F (x), where x represents a vector of function parameters. If the function F (x)
is defined and differentiable around some point a, then F (x) decreases fastest

in the direction of the negative gradient of F at a. GD exploits this fact and

defines b as

b = a − γ∇F (a) , (30)

so thatF (b) ≤ F (a), for γ small enough. This observation is used as a building

block for the algorithm. We start from an initial guess x0 for a location of the

minimum of F and construct a sequence xn(n ≥ 1) such that:

xn = xn−1 − γ∇F (xn−1) . (31)

This sequence will eventually converge to the local minimum, if one exists. GD

is most applicable to functions for which the gradient can be computed analyt-

ically, however it can also be used when the derivative can only be obtained
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numerically. To apply it here, the execution time of our programs will be the

function F that we minimize, and its arguments are the n = 33 parameters that

control the GPU. The execution time is measured as the average time of a sin-

gle iteration of the main time-propagation loop, sampled over a given number

of iterations. As explained earlier, we can divide the problem into four sepa-

rate minimization problems, with four sets of parameters of dimensionality mi

(i = 1, 2, 3, 4), in the same way as in BFS. To numerically compute the k-

th partial derivative of one of the minimization functions at a set of candidate

parameters a1, a2, . . . , am, we use first order approximation:

∂F

∂xk
(a1, . . . , am) ≈

F (a1, . . . , ak + hk, . . . , am) − F (a1, . . . , ak, . . . , am)

hk
,

(32)

where hk is the increment of a given parameter. Since the parameters are

integer-valued, we have to carefully choose the value of hk, to be as small as

possible, while still satisfying all the constraints that the corresponding param-

eter may have w.r.t. other parameters. We note that in order to evaluate the full

gradient of F at (a1, . . . , am) we need to execute our programs m+ 1 times.

We stress that execution times of our programs are not always the same due

to the hardware, software and OS scheduling issues, making the minimization

functions noisy. This noise affects the calculation of the gradient and could

point the algorithm in the wrong direction. We can detect this by checking if

the value of minimization function has increased in subsequent GD iteration,

and discard this move if necessary. While useful, resorting to this tactic means

that in case the GD gets stuck in a local minimum, it will not be able to get out

and thus will never reach the global minimum. A naive way to check if this

is the case would be to start over from a different initial point, and see if the

GD algorithm converges to the same minimum. There are more sophisticated

approaches to addressing this issue, which we discuss later.

In general, it is not possible to completely eliminate noise, due to inherent

problems of accurately measuring time on a computer. However, we can try

to minimize it by increasing the precision of execution time measurement of

our programs. This can be achieved by averaging execution times over larger

number of iterations of the main time-propagation loop. Unfortunately, this

also means that the total execution time of the GD algorithm will significantly

increase.

Another issue in our implementation of GD arises when we have to select

the next values of our parameters based on the output values of previous GD
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iteration. These output values are real-valued, meaning that we need to convert

them to integers somehow. Simply rounding them up or down to the nearest

integer will not be enough, especially for small value of γ . For example, if we

set the initial value of some parameter to 10, and after one GD iteration the

proposed value of that parameter is 10.2, rounding it down will reset the value

back to 10, effectively discarding the whole GD iteration. To avoid getting stuck

in this way, our implementation selects the next possible value in the direction of

change. In the example above it would mean selecting 11 as the new value. This

change makes it impossible for the algorithm to converge, but it will usually stay

close the minimum where all proposed solutions are of similar quality.

With the GD algorithm implemented as described above, we are able to

get a set of optimized parameters from a random set of initial values. How-

ever, such optimized parameters are often suboptimal, and do not have the best

performance. This is due to the fact that in most cases the GD will converge

to the nearest local minimum, and there is no guarantee that that local mini-

mum is also the global one. Using our previous example from BFS, a mesh of

256 × 256 × 256, with GD we obtain that local minima exist for all power of

two values, i.e., parameters suggest offloading 2n × 256 × 256 to the GPU. If

we randomly select a small initial value, GD will get stuck in the nearest local

minimum, which in this example will be far from the global one, thus producing

a very bad solution. We can attempt to avoid getting stuck in a local minimum

by adapting the parameter γ , also known as learning rate in machine learning

literature. Keeping the learning rate high for a first few iterations would allow

the algorithm to find the general location of the minimum, after which we could

gradually lower the learning rate until convergence is achieved, in a process

called annealing [43]. In practice this did not completely solve the problem, as

we found that the optimal learning rate to start with varies with the initial set of

parameters and the mesh size, and thus has to be manually selected. This com-

plicates attempts to automate the process of finding the optimal parameters for a

range of mesh sizes, which we needed as part of the tests of both hybrid imple-

mentations. A method to remove the manual tuning of the learning rate exists

[44], but we find it to be too complex to implement for our programs, because it

would require significant changes to the way the parameters are selected.

From the discussion above, we conclude that the GD is not the best-suited

method for the optimization in our case, mostly because our minimization func-

tion is noisy and the numerical computation of the gradient is costly. Derivative-

free optimization methods would be better suited to the problem, e.g., stochastic
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approximation algorithms like simultaneous perturbation (SPSA) [45, 46], or

metaheuristics like genetic algorithms. We decided to use a genetic algorithm

approach, as it is simple to understand and implement, as well as easy to adjust

to get the desired behavior.

Genetic algorithm (GA) is an optimization method based on natural selec-

tion that mimics the process found in biological evolution [47]. GA works by

creating a population of individual solutions, which it then evaluates and mod-

ifies, creating a new population, and iterating this process. Unlike the classical

algorithms like GD, which iterate a single candidate solution towards the opti-

mal one, the GA iterates a population of solutions in which the best individu-

als approach the optimal solution. The initial population is usually created at

random, giving the GA different points in the search space to start from. The

individual solutions are evaluated using a user-supplied fitness function, giving

each individual a score based on how well they perform the given task. Indi-

viduals with the highest score are then selected to “reproduce” and create new

offspring, after which they may be mutated randomly. The offspring form a

new population, and the process can be repeated again. The GA continues until

a suitable solution is found, or after a certain number of generations has passed.

To implement a GA, we first have to decide how to represent an individ-

ual. Individuals are created based on their blueprint, called chromosome in GA

terminology. The most often used representation is bit-string [48], where all

properties of an individual (its genes) are serialized to an array of bits, and

then concatenated. More advanced representations exist, e.g., for encoding real

values, permutations and general data structures [49, 50], however since our

individuals are sets of integer parameters, we did not develop any special rep-

resentation and instead we used ordinary arrays of integers as a chromosome.

Therefore, each gene in a chromosome is a single GPU parameter of our pro-

grams. Individuals need to be evaluated using a fitness function. In our case,

this means executing the programs with the parameters extracted from the in-

dividual’s chromosome, and reporting the execution time as fitness score, with

lower execution time being better.

Next step is the implementation of the three GA operators: selection, re-

production (crossover in GA terminology) and mutation. Each operator can be

implemented in different ways. Most common type of the selection operator is

roulette wheel selection. This is a type of fitness-proportionate selection, with

the idea to give each individual a slice of the circular roulette wheel based on

their fitness. The wheel is then spun, and when the roulette ball stops, the in-
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dividual in whose region the ball stopped is selected. In this way, the fittest

individuals have the greatest chance of being selected for reproduction, while

the ones with very low score quickly die out. We also tested an alternative type

of selection, the tournament selection. In this type of selection, we randomly se-

lect several individuals, and host a tournament for them. The individual with the

best fitness score wins, and is selected for reproduction. By changing the size of

the tournament we can control the selection pressure, e.g., by using small tour-

nament size in the first few iterations we can prevent premature convergence

and increase it in later generations when we have explored the search space

enough. In our tests, the tournament selection gave slightly better results for

smaller populations, by keeping the population diverse in early generations. For

larger population size, both selection rules performed equally. Alongside the

main selection algorithm, we also used elitist selection, where first few individ-

uals are copied to the next generation without changing their chromosome. This

prevented the loss of the best individuals in the next generation, but has to be

used carefully as it may lead to premature convergence to a suboptimal solution.

To produce the next generation, selected individuals should combine their

chromosomes and produce offspring. This is the task of the crossover opera-

tor. Crossover exchanges parts of the chromosomes, mimicking the biological

recombination from nature. In its most basic form, crossover works by ran-

domly selecting a point and exchanging segments before and after the point to

create two new offspring from two parents. This type of crossover is called

single-point crossover, and is illustrated in Figure 8(a). Other popular crossover

techniques are two-point crossover and uniform crossover, illustrated in Fig-

ures 8(b) and 8(c). Two-point crossover is similar to the single-point crossover,

just with two points instead of one. On the other hand, in the uniform crossover

each gene of the offspring is selected randomly, either from the first parent or

from the second one, with some fixed probability, typically 0.5. Using the uni-

form crossover leads to a wider exploration of the search space [51], but this

may not always result in better performance of the operator [52]. We tested

single- and two-point crossover and found that there is little difference in terms

of performance between them. Since some of our parameters have constraints,

it is important to select only the crossover points which lead to an allowed re-

combination of genes. Unfortunately, this made the implementation of uniform

crossover impossible, and we did not pursue it further.

The final step in producing the next generation is to apply the mutation op-

erator on the new population. The mutation operator randomly changes genes
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Figure 8. Three different crossover techniques in GA: a) single-point crossover,

b) two-point crossover and c) uniform crossover.

to new values, which is equivalent of performing a random walk through the

search space. Changing every gene would not be desired, so mutation operates

with a very small probability, meaning most of the genes will be left unchanged.

When chromosomes are implemented as bits, the mutation would be equivalent

to flipping a random bit. However, we could not implement mutation this way,

as random changes to the chromosome would often result in non-functioning in-

dividuals, e.g., parameter constraints would not be satisfied. Special care must

be taken to ensure that the mutation produces a healthy individual, similarly to

the crossover operator. The importance of mutation operator and its relation to

the crossover is often debated [53, 54], with its role being defined as “to main-

tain diversity within the population and inhibit premature convergence” [55], as

the crossover operator does not introduce new information to the population. In

our tests, the mutation plays a crucial role if the population size is small, e.g.,

less than 20 individuals, in accordance with references [56, 57]. If the popula-

tion size is large, e.g., over 200 individuals, the positive effects of mutation on

the population fitness are not that evident.

GA is typically iterated for a fixed number of generations, as is the case

in our implementation. Alternatively, we could have implemented some exit

clause in the main loop of the GA which would stop the evolution after the best

individuals have not been improved for some number of generations. After each

run of the GA, there is usually several highly fit individuals in the population.

Since randomness is an integral part of any GA, different runs of the algorithm

produce slightly different results. Therefore, our GA does not converge to a

single solution, but produces candidate solutions that have very similar param-

eter values and overall fitness. Among the candidate solutions, there may be
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small differences in the amount of data offloaded to GPU or the kernel param-

eters, with the execution times negligibly different. The number of generations

required to produce a good solution also varies due to the randomness in the

initial population and the population size. In our tests, it has a value between 10

and 50.

The implementation described above provides only the basis for a successful

application of GA to the problem at hand. As can be seen, there are several im-

portant parameters of GA to tune in order to get optimal results. These include

the population size, the number of generations, mutation rate, and the selection

parameters (e.g., elite selection rate, the tournament size). We did not perform

thorough testing of the performance of the GA that would allow us to obtain the

best values for these parameters, as we were more focused on the quality of the

candidate solutions GA creates. However, we observed that our GA finds good

solutions faster if the initial population size is between 100 and 200, with the

number of generations between 10 and 20, depending on the set of parameters

we wish to optimize.

To get a perspective of how the three optimization methods perform, we

tested them by comparing their final solutions, as well as by recording the num-

ber of program executions needed to get to the optimal set of parameters. For

this test, we used 3D real-time propagation hybrid program on a single comput-

ing node. All three methods were allowed to execute the program up to 1000

times. The mesh sizes used range from 80 × 80 × 80 to 600 × 600 × 600, all

of which could potentially be offloaded to GPU. We tested parameter set PS3

(with 15 parameters), which controls the execution of FFT and the kernels in

the subsequent functions that perform propagation w.r.t. H1, H3, and H4. The

BFS algorithm was used as the baseline. Note that the range of parameters and

a small number of allowed executions implies that the BFS algorithm takes the

values of parameters with large stride, potentially missing the optimal solution.

GD method is used as described, with the learning rate γ initially set to a higher

value, which was gradually decreased. We performed the GD for 60 iterations,

which amounts to 960 program executions. The GA was run on a population

of 100 individuals, for 10 generations, amounting to the same the number of

program executions as the BFS. We have used mutation rate of 5%, and the

tournament selection, with the tournament size equal to 10% of the population

size. Elitism was also included, with the top 2% of the population copied over.

All algorithms were tested five times, to minimize the effects of random initial-

ization of both GD and GA methods. The results are shown in Table 1.
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Table 1. A comparison of three optimization methods. Reported times are

given in milliseconds, for a single iteration of the main time-propagation

loop, averaged over 50 iterations. The last column contains the minimal

execution times obtained by manual tuning. The reported time for each

algorithm represents the minimal achieved value in five test runs

Mesh size BFS GD GA Best

80× 80 × 80 7 6 6 6

128× 128× 128 18 27 16 16

240× 240× 240 154 272 135 126

256× 256× 256 181 199 169 156

360× 360× 360 343 387 312 298

480× 480× 480 981 1049 868 829

512× 512× 512 1452 1628 1312 1242

600× 600× 600 2591 2984 2227 2159

From the results we conclude that the GA was the most effective optimiza-

tion method of the three approaches. As expected, GA found better solutions

than BFS due to large strides BFS had to use. The randomness in the initial

population has a big effect on the convergence of the GA method, sometimes

enabling it to find the optimal solution after just three generations. Even if the

fitness of the initial population is very bad, the GA still converges to very good

solutions after 10 generations. On the other hand, GD performed very poorly,

mainly because the noise in program execution times has often thrown it in the

wrong direction. Also, GD would get stuck in the nearest local minimum, which

often was not the global one. When the initial position of GD is near the global

minimum it converged to toward the optimal solution, which was rarely the case.

For mesh sizes larger than the tested ones (relevant for MPI-based implemen-

tations), corresponding to a larger range of parameters, GD would be even less

effective. Both BFS and GD can be made more usable if the range of parame-

ters can be narrowed, i.e., if we know the relative performance of the GPU in

comparison to the CPU. However, the GD would still be somewhat inefficient,

due to its higher susceptibility to noise.

Since the GA method is shown to be superior to the other two approaches,

we use GA as our optimization method of choice in the next two sections.
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2.4.2. Testing Methodology

All programs were tested on the PARADOX-IV cluster, which is a part of the

PARADOX supercomputing facility. This cluster is comprised of computing

nodes with two Intel Xeon E5-2670 Sandy Bridge CPUs (with a total of 2 ×

8 = 16 cores), with 32 GB of RAM and one Nvidia Tesla M2090 GPU with 6

GB of GPU RAM, each connected by InfiniBand QDR interconnect. We used

Intel’s compiler (version 2016) to compile the serial and OpenMP programs, and

CUDA 7.5 for the GPU portions of the CUDA and hybrid programs. MPI-based

implementations were compiled with Open MPI (version 1.10), which itself

relied on underlying Intel and CUDA compilers. In the case of Hybrid/MPI

programs, we performed tests using both FFTW and our own transpose routines.

We found the minimal execution times to be about the same for both approaches,

but the FFTW transpose would sometimes exhibit very bad performance due to

the creation of suboptimal communication plan. For this reason, the execution

times reported for Hybrid/MPI implementation are obtained using only our own

transpose routines.

The base of all performance evaluations was the measured execution time

of critical regions of the programs, i.e., the portions performing wave function

propagation in imaginary or in real time. This measurement excluded the time

spent in other parts of the programs, e.g., initialization of OpenMP/CUDA/MPI

environment, memory allocation and deallocation, creation and destruction of

FFTW plans, initialization of variables and I/O operations. Measuring average

execution time of a single iteration of the main time-propagation loop allows

us to predict the performance and total execution time of a given simulation,

as the number of iterations is specific to the problem at hand and may vary

significantly between different simulations. All measurements were collected

using high precision timers based on clock gettime POSIX function on

the CPU side, and CUDA event API on the GPU side. The execution time of

a single iteration of serial programs depends on the mesh size, controlled by

variables Nx, Ny and Nz. For parallel programs, we can measure speedup and

scaling efficiency as a function of the varying number of processing elements

(OpenMP threads or MPI processes).

We tested performance of 1D, 2D and 3D programs on a range of mesh

sizes, for a varying number of OpenMP threads and MPI processes, as shown in

Table 2. Mesh sizes were chosen from the corresponding range, and we did not

focus solely on mesh sizes which maximize performance of the programs, to
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obtain a more realistic assessment. We varied the number of OpenMP threads

from 1 to 16, in increments of one thread. Similarly, we tested the MPI-based

implementations by varying number of MPI processes, each bound to a different

cluster node. In this way we tested MPI-based implementations on 2, 4, 8,

12, 16, 20, 24, 28 and 32 computing nodes. Note that varying the number of

processing elements is not applicable to the single-GPU implementations of the

programs, as they always use all available processing resources on a GPU. Only

one of the two 1D and 2D programs were tested (corresponding to x direction

in 1D and x-y plane in 2D), because, performance-wise, there is no difference

between them (e.g., imag1dX-th vs. imag1dZ-th).

The main performance indicator is the execution time, the wall-clock time

of one iteration of the main loop, averaged over 5 executions of 1000 itera-

tions, reported in milliseconds. Using the results obtained, we calculated the

speedup of all programs compared to the published serial C implementation.

We were also interested in examining the scaling efficiency, or scalability, of

the OpenMP and MPI programs. We tested both strong scaling, when the mesh

size stays the same but the number of processing elements varies, and weak

scaling, when the amount of work each processing element performs stays the

same while the number of processing elements increases. More formally, given

the execution time of a single iteration of serial programs (T (1)), and the cor-

responding execution time for parallel programs performed with N process-

ing elements (T (N )), we calculated speedup as S(N ) = T (1)/T (N ) and

strong scaling efficiency as E(N ) = S(N )/N . Weak scaling is computed

as EW (N ) = TW (1)/TW (N ), where TW (1) is the execution time of a pro-

gram using single processing element performing the work assigned to it, while

TW (N ) is the execution time of a program using N processing elements per-

forming N times more work. We achieve this by increasing the mesh size.

2.4.3. Performance Test Results and Modeling of Single Node Programs

In this section we present the results obtained for single computing node

OpenMP, CUDA and hybrid programs, and compare them to the previously

published [23] serial implementation.



Table 2. Performance testing matrix, showing the mesh sizes and numbers of processing elements (threads or

processes) used to test the programs, as well as the baseline program used for comparison

Mesh size Processing elements
Program

Min Max Min Max
Baseline

OpenMP programs

imag1dX-th 1000 1000000 imag1d

real1dX-th 1000 1000000
1 16

real1d

imag2dXY-th 1000× 1000 15000× 15000 imag2dXY

real2dXY-th 1000× 1000 13000× 13000
1 16

real2dXY

imag3d-th 50× 50× 50 800× 800× 800 imag3d

real3d-th 50× 50× 50 800× 800× 800
1 16

real3d

CUDA programs

imag2dXY-cuda 1000× 1000 15000× 15000 imag2dXY

real2dXY-cuda 1000× 1000 13000× 13000
1 1

real2dXY

imag3d-cuda 50× 50× 50 600× 600× 600 imag3d

real3d-cuda 50× 50× 50 540× 540× 540
1 1

real3d

Hybrid programs

imag2dXY-hetero 1000× 1000 15000× 15000 imag2dXY-th

real2dXY-hetero 1000× 1000 13000× 13000
16+1 16+1

real2dXY-th

imag3d-hetero 50× 50× 50 600× 600× 600 imag3d-th

real3d-hetero 50× 50× 50 600× 600× 600
16+1 16+1

real3d-th

OpenMP/MPI programs

imag3d-mpi 480× 480 × 250 1920× 1920× 960 imag3d-th

real3d-mpi 480× 480 × 250 1920× 1920× 960
1×16 32×16

real3d-th

CUDA/MPI programs

imag3d-mpicuda 480× 480 × 250 1920× 1920× 960 imag3d-cuda

real3d-mpicuda 480× 480 × 250 1920× 1920× 960
1 32

real3d-cuda

Hybrid/MPI programs

imag3d-mpihetero 480× 480 × 250 1920× 1920× 960 imag3d-hetero

real3d-mpihetero 480× 480 × 250 1920× 1920× 960
1×(16+1) 32×(16+1)

real3d-hetero
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Table 3. Wall-clock execution times of a single iteration of the main

time-propagation loop of single-node OpenMP programs (in milliseconds)

for different number of OpenMP threads Nth and speedup S(16) in strong

scaling tests. The speedup is calculated w.r.t. the execution times of

previously published serial versions of programs [23], given in the second

column

Program Serial Nth = 1 Nth = 2 Nth = 4 Nth = 8 Nth = 16 S(16)
imag1dX-th 9.1 7.1 4.7 3.4 2.9 2.8 2.5

real1dX-th 15.2 14.2 10.5 8.2 7.3 7.2 2.0

imag2dXY-th 13657 7314 4215 2159 1193 798 9.2

real2dXY-th 17281 11700 6417 3271 1730 1052 11.1

imag3d-th 16064 9353 5201 2734 1473 888 10.5

real3d-th 22611 17496 9434 4935 2602 1466 11.9

Strong scaling performance test results for the OpenMP-based implemen-

tation using methodology described in the previous section are given in Ta-

ble 3 and Figure 9. They show the obtained execution times, speedups and

strong scaling efficiencies for different number of OpenMP threads. Columns

Nth = 1,Nth = 4, Nth = 8 and Nth = 16 in Table 3 correspond to the number

of threads used, while the last column shows the obtained speedup S(16) with

16 OpenMP threads compared to one OpenMP thread. Strong scaling efficiency

E(Nth) = S(Nth)/Nth in Figure 9 is calculated as a fraction of the obtained

speedup compared to a theoretical maximum. The mesh size used in 1D is 105,

in 2D 104×104, while in 3D the mesh size is 480×480×480. Execution times

and speedups of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not

reported here) are similar to those of imag1dX-th, real1dX-th, imag2dXY-th,

and real2dXY-th, respectively.

The change from C2C to R2C FFT routine has a big impact on the execution

time of single-threaded (Nth = 1) programs compared to the previous serial

programs. As we can see from the table, these improvements alone yield a

speedup of 1.3 to 1.9 in 2D and 3D programs, and somewhat smaller speedup

for 1D programs, 1.1 to 1.3. The use of additional threads brings about further

speedup (reported in the last column) of 2 to 2.5 for 1D programs, and 9 to 12 for

2D and 3D programs. In Figure 9 we see that the efficiency rapidly decreases for

1D programs, even though speedup increases with the number of threads used.
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Figure 9. Speedup in the execution time and strong scaling efficiency of

OpenMP programs compared to single-threaded runs for: (a) imag1dX-th, (b)

real1dX-th, (c) imag2dXY-th, (d) real2dXY-th, (e) imag3d-th, (f) real3d-th.

Solid lines represent fits to measured data, where fit model functions are given

in the text and obtained fit parameters are listed in Table 4. Note that the model

parameter p is fitted only to the speedup data, and then used to plot the efficiency

model curve.

This is expected, as parts of the algorithm dealing with the recursive relations

for calculation of the CN coefficients are inherently serial. In 1D, already with

Nth = 4 threads we almost achieve the maximal speedup, while still keeping

the efficiency around 50%. We also see that, as expected, speedup and efficiency

of multidimensional programs behave quite well as we increase the numbers of

threads. In particular, we note that the efficiency always remains above 60%,
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making the use of all available CPU cores worthwhile.

From Figure 9 we observe that the speedup of 1D programs saturate quickly

due to inherent serial nature of the portion of the algorithm, while in 2D and

3D the speedup behaves almost linearly. Despite their obvious differences, all

curves in Figure 9 can be successfully modeled based on Amdahl’s law [58].

Namely, the measured execution time T (Nth) of one iteration of the main loop

can be expressed as

T (Nth) = T (1)

(

s +
p

Nth

)

, (33)

whereNth is the number of threads used, T (1) is the execution time of a single-

threaded run, s is the serial fraction of the loop code, and p is the corresponding

parallel fraction. By definition, s + p = 1, and therefore the speedup can be

modeled by

S(Nth) =
T (1)

T (Nth)
=

1

1− p+ p/Nth
, (34)

where the parallel fraction of the main loop code p is the only fit parameter.

Table 4 gives the obtained model fit parameter values for the data from Figure 9.

As we can see, the fits match the obtained measurement data very well. Note

that the efficiency can be expressed in terms of the speedup model

E(Nth) =
S(Nth)

Nth
=

1

Nth

1

1 − p+ p/Nth
, (35)

and is not fitted independently. Figure 9 shows that this model with the pa-

rameter p fitted on the speedup data matches very well with the efficiency data

points.

From the obtained values of the parallel fraction of the algorithm, we see

that 2D and 3D programs are almost ideally parallelizable, with p over 95%.

In 1D case, however, the parallel fraction is around 66% for imaginary-time

propagation and around 54% for real-time propagation, due to the fact that cal-

culation of CN coefficients in the function calclux cannot be parallelized.

Note that the parallel fraction of imaginary-time 1D program is higher than that

of the real-time 1D program due to the larger amount of arithmetic operations

required to process complex-valued data in the real-time version of the serial

function calclux.

OpenMP programs were also tested for weak scalability. We were mostly

interested in 3D variants of the programs, which we tested by fixing the amount
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Table 4. Values of obtained strong scaling model fit parameter p and the

estimated fit errors for OpenMP-parallelized programs

Program p ∆p
imag1dX-th 0.662 0.004

real1dX-th 0.541 0.003

imag2dXY-th 0.9514 0.0007

real2dXY-th 0.9706 0.0004

imag3d-th 0.9635 0.0008

real3d-th 0.9762 0.0006

of work to 6,912,000 spatial points of the mesh, which corresponds to a mesh

size of 240 × 240 × 120. By increasing the number of OpenMP threads, we

also increase the mesh size to be the multiple of 6,912,000. This means that the

mesh has to be increased in such a way that, when divided among the threads,

each thread gets 6,912,000 spatial points to process. The mesh sizes that satisfy

this requirement cannot always be obtained by multiplying all three array di-

mensions with the same number, so we have to work with mesh sizes in which

the size of each dimension may be different. For such mesh sizes, we tested

all possible combinations, however no significant difference has been observed.

Table 5 contains mesh sizes we used for testing for Nth = 1, 2, 4, 8, 12, 16

threads, along with the execution times (in milliseconds) and the weak scaling

efficiency. The testing was also done for Nth = 6 and 10 threads, but the corre-

sponding mesh sizes are omitted from the table for brevity. However, Figure 10

presents complete data collected in this test, for all Nth values, averaged over

mesh sizes used. The figure shows that the real-time 3D programs have better

weak scaling efficiency, which is about 75% at 16 threads, while imaginary-time

programs demonstrate smaller, but still significant efficiency of about 60%.

To model weak scaling efficiency, we compare execution times of a single

iteration of the main loopTW (Nth), performed withNth threads, where for each

value ofNth the total amount of work is Nth times the work being performed in

a single-threaded run, i.e., the amount of work per thread is constant. The weak

scaling efficiency is defined as

EW (Nth) =
TW (1)

TW (Nth)
, (36)

where TW (1) = T (1) is the execution time of a single-threaded run for a given
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Table 5. Weak scaling efficiency of OpenMP-parallelized 3D programs.

Wall-clock execution times TW are given in milliseconds, efficiencies EW
in percents

imag3d-th real3d-th
Mesh size

TW EW TW EW

Nth = 1
120 × 240 × 240 699 98.2 1259 99.5

240 × 120 × 240 711 96.5 1271 100

240 × 240 × 120 686 100 1275 98.2

Nth = 2

240 × 240 × 240 718 95.5 1254 99.9

Nth = 4

240 × 240 × 480 755 90.9 1312 95.5

240 × 480 × 240 778 88.2 1301 96.3

480 × 240 × 240 754 91 1310 95.6

Nth = 8

240 × 480 × 480 875 78.4 1405 89.9

480 × 240 × 480 847 81 1393 89.1

480 × 480 × 240 886 77.5 1431 87.7

Nth = 12

360 × 480 × 480 1010 67.9 1532 81.7

480 × 360 × 480 981 69.9 1514 82.7

480 × 480 × 360 1004 68.4 1581 79.2

Nth = 16

480 × 480 × 480 1155 59.4 1680 74.5

workload (in our case, 6,912,000 spatial points). The expected execution time

of a workload assigned to a simulation with Nth threads, executed in a single-

threaded run, is NthT (1). In weak scaling tests, this workload is executed with

Nth threads and therefore the expected execution time can be modeled by

TW (Nth) = NthT (1)

(

1 − p+
p

Nth

)

. (37)

According to this argument, we model the weak scaling efficiency by a single-

parameter function

EW (Nth) =
1

p+ (1− p)Nth
. (38)
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Figure 10. Weak scaling efficiency of OpenMP-parallelized 3D programs, aver-

aged over all mesh sizes tested for each value of Nth. Solid lines represent fits

to measured data, where fit model functions are given in the text.

We fitted this model to data presented in Figure 10 and the obtained fit param-

eters are given in Table 6. As we can see from the figure, the above model is

an excellent fit to experimental data, and both 3D OpenMP-parallelized pro-

grams have high (above 95%) parallel fraction of the code, in agreement with

the results of strong scaling tests (Table 4).

Table 6. Values of obtained weak scaling model fit parameter p and the

estimated fit errors for OpenMP-parallelized programs

Program p ∆p
imag3d-th 0.958 0.002

real3d-th 0.9792 0.0009

Overall, we conclude that imaginary-time OpenMP-parallelized programs

show smaller speedup and efficiency across all tests, except in 1D. This can be

attributed to the additional step of wave function normalization in each iteration

of the imaginary-time propagation, as well as the fact that real-time programs

work with complex-valued data that require more arithmetic operations for the

same mesh size. Since much of the computation inside loops requires simple

arithmetic, the throughput of the CPU is often not fully exploited in imaginary-

time programs, thus the pressure of memory bandwidth makes these programs

less efficient. The real-time programs are also affected by this, however to a

somewhat lesser extent.
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Next, we consider the CUDA implementation of the shared memory algo-

rithm. GPU functions as a single processing element, therefore we cannot test

CUDA implementation by varying both the mesh size and the number of pro-

cessing elements. However, just varying the mesh size gives us valuable insight

into the behavior of this implementation, due to the difference in programming

models and the libraries used. Tables 7 and 8 show the execution times (in mil-

liseconds) for a number of mesh sizes tested, as well as the average speedup

〈S〉 compared to the serial programs [23]. Figure 11 shows the speedup ob-

tained for all mesh sizes tested, and horizontal lines represent average speedups

obtained for each program. Note that the dispersion of data is due to the use of

FFTW ESTIMATE flag in library calls to FFTW in the serial programs. Use of

this flag results in a choice of suboptimal FFT algorithm for some mesh sizes.

The vertical lines in Figure 11 denote the change in POTMEM parameter. The

speedups left of the first vertical line are obtained with POTMEM=2 and thus

demonstrate the best speedup. Second group of results, between the two verti-

cal lines, is obtained with POTMEM=1, and we note that the speedup decreases

slightly, while the results right of the second vertical line are obtained with

POTMEM=2, and show the smallest speedup due to the use of mapped memory.

The 2D programs in x-z plane exhibited very similar performance to those of

x-y plane, and therefore we did not include them in the figures.

Table 7. Wall-clock execution times of a single iteration of the main

time-propagation loop of single-node 2D CUDA programs (in

milliseconds) for different mesh sizes, and average speedup w.r.t. to the

execution times of serial 2D programs [23]

Program 20002 40002 60002 80002 100002 120002 Avg. speedup

imag2dXY-cuda 24.1 104.3 235.2 386.1 657.1 1150.4 10

real2dXY-cuda 29.9 112.4 266.4 444.0 749.0 1528.3 14

For small mesh sizes, the GPU remains underutilized, resulting in a smaller

speedup. For large mesh sizes, where the GPU memory usage approaches

the limit, we also see declining speedup. This is due to the inevitable use of

POTMEM parameter, which keeps some arrays in the host memory when they

cannot fit in the memory of the GPU. Overall, the CUDA implementation shows

execution times similar to the OpenMP implementation for imaginary-time

propagation, and slightly lower for real-time propagation. We stress that these

results strongly depend on the type of GPU used and that the obtained speedups
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Table 8. Wall-clock execution times of a single iteration of the main

time-propagation loop of single-node 3D CUDA programs (in

milliseconds) for different mesh sizes, and average speedup w.r.t. to the

execution times of serial 3D programs [23]

Program 1003 2003 3003 4003 5003 Avg. speedup

imag3d-cuda 10.6 79.3 298.8 674.5 1260.2 7.1

real3d-cuda 10.9 84.1 302.5 682.4 1467.4 13.5
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Figure 11. Speedup in the execution time of CUDA programs compared to the

serial programs for all tested mesh sizes: (a) imag2dXY-cuda, (b) real2dXY-

cuda, (c) imag3d-cuda, (d) real3d-cuda. Horizontal lines represent 〈S〉, while

dashed vertical lines represent different values of POTMEM parameter (see text).

may be even better for newer-generation GPUs (e.g., Kepler-, Maxwell-, Pascal-

and Volta-based GPUs).

Hybrid OpenMP/CUDA implementation was tested on a range of mesh

sizes, similarly to the OpenMP- and CUDA-based implementations. Since

OpenMP implementation showed that all cores should be used for 2D and 3D

programs, we kept the number of OpenMP threads fixed at 16 in our hybrid al-

gorithm. The parameters governing the amount of data offloaded to GPU were

optimized using our GA method from section 2.4.1 An illustrative subset of the
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results for 3D programs is shown in Table 9, which gives execution times for

a single iteration of the main loop, for different mesh sizes. A comparison of

execution times of hybrid and pure OpenMP programs withNth = 16 threads is

given in Figure 12(a), while Figure 12(b) compares the performance of hybrid

and pure CUDA programs, for all tested mesh sizes.

Table 9. Wall-clock execution times of a single iteration of the main

time-propagation loop of single-node 3D hybrid programs (in

milliseconds) for different mesh sizes. Offload parameters are optimized

using the GA optimization method

803 2003 3203 4403 5603 6803 8003

imag3d-hetero 6.3 67.1 271.4 678.9 1493.3 2750.9 4461.6

real3d-hetero 8.0 94.7 374.1 922.8 1985.2 4020.2 6676.6
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Figure 12. Speedup in the execution time of 3D hybrid programs compared to:

(a) OpenMP programs with Nth = 16 threads, (b) CUDA programs. Dashed

horizontal lines correspond to a speedup value S = 1.

From Figure 12 we see that the hybrid implementation outperforms the

OpenMP one for all mesh sizes except for the smallest one. The same applies to

the comparison of imaginary-time hybrid and CUDA programs, while real-time

hybrid program outperforms the corresponding CUDA program only for mesh

sizes larger than 400× 400× 400. Although one would expect that the speedup

of the optimized hybrid algorithm is always equal to or larger than one, we see

that this is not the case for all mesh sizes in Figure 12. This is due to the fact

that the hybrid FFT algorithm is always employed in hybrid programs, meaning
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that even if no or all data are offloaded to GPU, the splitting of FFT will still

take place. Therefore, in these limiting cases we do not obtain pure OpenMP or

CUDA algorithms that would yield maximal performance. Splitting the compu-

tation of FFT along one direction in calcpsidd2 function disables some of

the potential optimizations that libraries like FFTW and cuFFT exploit, and in-

troduces data copies between host and device which cannot be fully offset using

CUDA streams. The hybrid algorithm can compensate for this if the amount of

offloaded data to GPU is sufficiently large, which is not the case for the smallest

mesh size.

Table 10. Optimal fraction of total data offloaded to GPU for different

mesh sizes in hybrid 3D programs, obtained using the GA optimization

method

Mesh size

GPU portion of data [%]

imag3d-hetero real3d-hetero

PS1 PS2 PS3 PS4 PS1 PS2 PS3 PS4

80 × 80 × 80 20 3 60 33 23 3 40 10

120 × 120 × 120 12 10 25 28 23 10 25 27

160 × 160 × 160 15 7 31 24 44 19 34 23

200 × 200 × 200 38 27 37 28 44 26 46 26

240 × 240 × 240 38 28 40 30 38 28 47 25

280 × 280 × 280 40 31 30 33 46 22 37 25

320 × 320 × 320 33 38 29 36 45 28 69 44

360 × 360 × 360 41 33 27 36 49 33 43 31

400 × 400 × 400 38 25 30 38 46 24 47 21

440 × 440 × 440 31 35 29 39 45 35 43 32

480 × 480 × 480 16 19 22 41 45 33 62 35

520 × 520 × 520 40 31 28 46 45 25 40 37

560 × 560 × 560 38 41 30 43 36 24 35 32

600 × 600 × 600 37 27 30 43 29 29 29 28

640 × 640 × 640 36 40 30 43 24 22 24 23

680 × 680 × 680 26 38 28 38 20 16 20 20

720 × 720 × 720 23 26 25 32 17 13 17 17

760 × 760 × 760 21 22 25 27 14 14 14 13

800 × 800 × 800 19 23 23 21 11 8 12 12
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Given that pure CUDA programs performing imaginary-time propagation

demonstrated smaller speedup than the corresponding OpenMP programs (Fig-

ure 11 vs. Figure 9), it is expected that CUDA portion of the hybrid imaginary-

time propagation programs would yield smaller improvement, which is evident

when we compare hybrid implementation with the OpenMP one in Figure 12(a),

except for the largest mesh sizes. We can reach the same conclusion if we con-

sider that, in real-time propagation, CUDA implementation shows the highest

speedup of all single-node programs, and therefore the corresponding hybrid

programs show better speedup than imaginary-time propagation programs par-

allelized with OpenMP. On the other hand, when compared with the CUDA

implementation in Figure 12(b), the situation is reversed, and we see much bet-

ter performance of the hybrid imaginary-time propagation programs, while the

hybrid real-time propagation programs achieve speedup larger than one only for

mesh sizes larger than 400× 400× 400. This result can be attributed to the fact

that in real-time propagation the amount of data copied between host and device

is larger, given that some of the copied arrays are complex-valued.

Also, we can observe that the speedup in Figure 12(a) declines with mesh

size. This is due to the memory saturation of the GPU device, as only a small

portion of the data can be offloaded when the mesh is large. The amount of data

offloaded to GPU for all tested mesh sizes is given in Table 10, where we can

see that the total amount of data processed by the GPU declines with increasing

mesh size. As a result, the computation is unbalanced, given that the host has to

work with a much larger portion of the data. This is reflected in the optimization

step, where our GA quickly converges to the highest possible mesh size that can

be offloaded to the device, implying that a greater amount of device memory

would be required to get a balanced computation.

To make an optimal choice of programs to be used on a single node for a par-

ticular hardware platform, one has to perform detailed tests using the method-

ology presented in section 2.4.2 The results presented in this section apply to

hardware comparable to the one available at PARADOX supercomputing facil-

ity, but one can expect similar behavior for all modern types of CPU and GPU.

2.4.4. Performance Test Results and Modeling of MPI Programs

Following on from the previous section, here we present the results obtained

for MPI-parallelized programs, executed on a computer cluster consisting of

varying number of computing nodes, and compare them with the corresponding
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single-node programs.

MPI programs are highly dependent on the configuration of the cluster,

mainly on the speed of interconnect, but also on the distributionof processes and

threads, NUMA configuration, MPI configuration, etc. Getting the best perfor-

mance out of the programs requires some experimentation with several different

configurations. The results presented are obtained without extensive tuning of

the cluster or MPI runtime, with the aim to show the base performance.

Strong scaling of MPI-based implementations is tested in a similar way to

the single-node testing, by varying number of cluster nodes Np from 2 to 32.

On each node, a single MPI process is launched, which then uses the node’s re-

sources, either by further spawning 16 OpenMP threads in case of OpenMP/MPI

and Hybrid/MPI implementations, or by invoking the CUDA kernels utilizing

the node’s GPU in case of CUDA/MPI implementation. In this test, the base-

line used for comparison was the equivalent single-node implementation, i.e.,

OpenMP/MPI programs are compared with OpenMP programs executing with

Nth = 16 threads, CUDA/MPI programs are compared to the single-node pure

CUDA programs, and Hybrid/MPI programs is compared to the single-node

hybrid programs.

Mesh size we use in this test is 480 × 480 × 250. Since the values of Nx

and Ny parameters must be divisible by the number of processes Np, this mesh

cannot be distributed over 28 processes. In this case we use slightly modified

mesh, taking into account the multiple of 28 that is closest to 480, yielding a

mesh size of 476 × 476 × 250. Data is never distributed along z direction,

so no such requirement exists for Nz. The resulting mesh has slightly fewer

spatial points, and thus less work per process, potentially allowing for a better

performance, but in our tests the smaller mesh did not have a significant impact

on the measured execution time.

Note that strong scaling tests, where the mesh size is fixed, inevitably lead

to saturation and decrease in measured speedup and efficiency values. Whatever

the chosen mesh size, increase in the number of cluster nodes used will even-

tually yield insufficient amount of work per MPI process, such that communi-

cation will start to dominate over computation. Therefore, in our strong scaling

tests we can expect that execution times initially decrease with increasing values

of Np, but eventually performance of MPI-based programs will decline. This

issue is addressed by considering weak scaling tests.



Table 11. Wall-clock execution times of a single iteration of the main time-propagation loop of

OpenMP/MPI, CUDA/MPI and Hybrid/MPI programs (in milliseconds) for different number of MPI

processes Np and speedup S(32) in strong scaling tests. The speedup is calculated w.r.t. the baseline

execution times of the corresponding single-node programs (OpenMP, CUDA and hybrid, respectively),

given in the second column.

Program Baseline Np = 4 Np = 8 Np = 16 Np = 24 Np = 32 S(32)

imag3d-mpi 1124 541 262 134 89 64 17.5

real3d-mpi 2140 700 358 207 155 98 21.8

imag3d-mpicuda 579 438 210 103 71 59 9.8

real3d-mpicuda 800 609 291 142 95 79 10.1

imag3d-mpihetero 489 299 162 99 84 81 6.0

real3d-mpihetero 613 407 255 154 135 101 6.0
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The illustrative portion of obtained execution times of a single iteration of

the main loop for the three MPI-parallelized implementations are shown in Ta-

ble 11, together with the execution times of the corresponding baseline single-

node program. Columns Np = 4, Np = 8, Np = 16 and Np = 32 correspond

to the number of cluster nodes used, while the last column shows the obtained

speedup S(32) with Np = 32 nodes compared to baseline single-node pro-

grams.

The maximal speedup of OpenMP/MPI implementation ranges from 17 for

imaginary-time propagation to 22 for real-time propagation programs for Np =

32. The complete measurement results for speedup and efficiency are depicted

in Figure 13(a) and 13(b), where we see that the speedup grows linearly with

the number of nodes used, while the efficiency remains mostly constant in the

range between 40% and 60%, thus making the use of OpenMP/MPI programs

highly advantageous for simulations with large mesh size. In general, we can

expect even better efficiency for larger mesh sizes.

Similar behavior is observed for CUDA/MPI implementation. The obtained

speedup with Np = 32 nodes ranges from 9 to 10, with the slightly lower effi-

ciency, between 30% and 40%, as shown in Figure 13(c) and 13(d). Even though

the efficiency is lower for this implementation, the speedup still grows linearly

and the execution times are lower than for the OpenMP/MPI implementation.

This makes CUDA/MPI programs ideal choice for use on GPU-enabled com-

puter clusters. Additional benefit of using CUDA/MPI programs is their low

CPU usage (using only one CPU core per cluster node), allowing for the possi-

bility that the same cluster nodes are used for other CPU-intensive simulations

in a time-sharing fashion.

As we see in Figure 13(e) and 13(f), the linear growth of speedup is also

present for the Hybrid/MPI implementation, however, as the amount of work

per-process shrinks, the efficiency drastically drops down to 20% withNp = 32

nodes. For the mesh size used in this test, we observe that the Hybrid/MPI im-

plementation performs very well on Np < 16 processes, providing the lowest

execution times, but with Np ≥ 16 processes its execution times become larger

than for the CUDA/MPI implementation (especially for real-time propagation

programs), and eventually even for the OpenMP/MPI implementation, as illus-

trated in Figure 14. This is again due to the insufficient amount of work each

computing node performs after data are distributed among the MPI processes,

which can be seen from the amount of data offloaded to GPU for all tested val-

ues ofNp in Table 12. Similar saturation in performance will eventually happen
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Figure 13. Speedup in the execution time and strong scaling efficiency of MPI-

based programs compared to single-node runs: (a) imag3d-mpi, (b) real3d-mpi,

(c) imag3d-mpicuda, (d) real3d-mpicuda, (e) imag3d-mpihetero, (f) real3d-

mpihetero. Solid lines represent fits to measured data, where fit model functions

are given in the text and obtained fit parameters are listed in Table 13. Note that

the model parameters are fitted only to the speedup data, and then used to plot

the efficiency model curve.

for the OpenMP/MPI and CUDA/MPI implementations for larger values ofNp.

We thus conclude that Hybrid/MPI implementation has the best perfor-

mance of the three MPI-based implementations if the amount of work per pro-

cess remains high enough to justify the use of hybrid algorithm. Otherwise,

either of the other two MPI-based implementations should be considered first.

The energy efficiency of this and other MPI-based implementations was not
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Figure 14. Speedup in the execution time of Hybrid/MPI programs in strong

scaling tests compared to the other two MPI-based programs: (a) OpenMP/MPI,

(b) CUDA/MPI.

explored due to the difficulty in making precise measurements. If the energy

consumption is not an issue, Hybrid/MPI implementation will yield the best

performance, providing the cluster has powerful GPUs installed and the mesh

size used is large enough.

Table 12. Optimal fraction of total data offloaded to GPU per process for

different values of Np in Hybrid/MPI programs, obtained using the GA

optimization method in strong scaling tests

Np

GPU portion of data [%]

imag3d-mpihetero real3d-mpihetero

PS1 PS2 PS3 PS4 PS1 PS2 PS3 PS4

1 30 17.5 34.4 36.7 45.2 32.5 55 35

2 25 10 17.5 16.7 20.8 11.5 23.8 16

4 10 5.2 9.2 9.4 10 5.2 15 6.7

8 5 2.9 5.8 6.7 6.3 2.1 6.7 5

12 3.3 1.7 4.2 4.2 4 1.3 5 3.3

16 2.9 1.3 2.9 2.1 3.1 0.4 2.9 2.1

20 1.7 0.6 2.5 1 2.5 0.4 2.5 1.7

24 1.7 1.3 2.1 1.7 2.1 1.3 2.5 0.8

28 1.7 0.4 2.1 1.3 1.7 0.4 1.7 1.3

32 0.8 0.4 1.7 0.8 1.5 0.4 2.1 0.8
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We now model the speedup and strong scaling efficiency of MPI-based pro-

grams. In general, the execution time of a program can be expressed as

T (Np) = α+ βL+ γ
M

Np
+ βV

M

N 2
p

, (39)

where α represents the average time to perform serial portion of the code, L is

the communication latency associated with one MPI message, β is the frequency

of MPI messaging, γ is the average time to process one spatial point, V is related

to data transfer speed (throughput), andM is the mesh size (Nx×Ny×Nz). The

communication overhead of one all-to-all message passing instance is equal to

L+ VM/N 2
p , where each of Np processes communicates its M/Np part of the

mesh evenly to all other processes, leading to a message size of M/N 2
p . Taking

into account that in the strong scaling tests the mesh size is fixed, the above

model can be simplified to

T (Np) = T (1)

(

a+
b

Np
+

c

N 2
p

)

, (40)

while the speedup can be modeled by

S(Np) =
T (1)

T (Np)
=

1

a+ b/Np + c/N 2
p

. (41)

Table 13. Values of obtained strong scaling model fit parameters a, b and c,
as well as the estimated fit errors for MPI-parallelized programs

Program a ∆a b ∆b c ∆c

imag3d-mpi 0.008 0.006 1.6 0.2 1.4 0.4

real3d-mpi 0.026 0.006 1.1 0.1 0.2 0.3

imag3d-mpicuda 0.025 0.008 2.3 0.2 2.8 0.6

real3d-mpicuda 0.020 0.008 2.3 0.2 2.8 0.6

imag3d-mpihetero 0.104 0.009 1.7 0.2 0.9 0.5

real3d-mpihetero 0.09 0.02 2.7 0.3 -1.0 0.6

This model is fitted to the obtained strong scaling measurement data and

the results are presented in Table 13, while the corresponding model curves are
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shown as solid lines in Figure 13. As we see, the proposed model agrees very

well with the experimental data. The only exception is the speedup and effi-

ciency of real-time OpenMP/MPI program (real3d-mpi) on Np = 32 processes,

where FFTW library creates an optimal transform plan that works very well

with the given mesh size. However, changing the mesh size even slightly gives

the performance comparable to the model prediction. We note that the value of

the model parameter c is negative for real-time Hybrid/MPI program (real3d-

mpihetero), which should not be the case since is parameter is related to data

transfer speed. However, due to uncertainty of the optimization choice by the

GA method and the fact that the fraction of total data offloaded to GPU grad-

ually decreases (Table 12), leading from real hybrid algorithm to almost pure

OpenMP/MPI one with hybrid FFT, it is not surprising that the obtained value

differs from expected. Taking into account relatively large fit error ∆c/c = 60%

for this parameter, we can still use expression (41) to model performance of Hy-

brid/MPI programs.

Next, we test weak scaling of MPI-based implementations. The same num-

ber of cluster nodes (and thus MPI processes) was used as in previous tests,

while the starting mesh, which corresponds to a unit workload, had a size of

480×480×480, amounting to 110,595,000 spatial points. This number of spa-

tial points was kept constant per process, similarly to the weak test of OpenMP

programs. There is an exception to this scheme, the case when programs are

executed on Np = 28 nodes, as the scaled number of spatial points cannot be

evenly distributed among 28 processes. In this case we compare the weak scala-

bility by scaling up a starting mesh of 476× 476× 476, which has 107,850,176

spatial points, just slightly less than for other values of Np. The base of com-

parison was the execution time of a single iteration of the main loop with the

corresponding MPI-based program running as a single process (Np = 1). While

we used this configuration as the baseline, we do not recommend running MPI-

based programs with Np = 1 processes, because no special handling of such

case has been implemented. This means that MPI-parallelized programs are al-

ways transposing the data, which is unnecessary withNp = 1 as all data is local

to the single process. Instead, we recommend using single-node variants of the

programs outside cluster environment.



Table 14. Weak scaling of MPI-based programs. Wall-clock execution times TW are given in milliseconds,

efficiencies EW in percents

imag3d-mpi real3d-mpi imag3d-mpicuda real3d-mpicuda imag3d-mpihetero real3d-mpihetero
Mesh size

TW EW TW EW TW EW TW EW TW EW TW EW

Np = 1
480 × 480 × 480 1758 100 2956 100 4338 100 6346 100 1971 100 2877 100

Np = 2
480 × 480 × 960 3858 45.6 4910 60.2 3785 114.6 5430 116.9 2044 96.4 2878 100

480 × 960 × 480 3704 47.5 5035 58.7 3825 113.4 5573 113.9 1997 98.7 2928 98.3

960 × 480 × 480 3758 46.8 5506 53.7 3871 112.1 5609 113.1 2019 97.6 2980 96.5

Np = 4
480 × 960 × 960 4267 41.2 6033 49.2 2995 144.8 4278 148.3 2149 91.7 3009 95.6

960 × 480 × 960 3877 45.4 5223 56.6 3042 142.6 4318 146.9 2218 88.9 3274 87.9

960 × 960 × 480 4000 44 5063 58.4 3078 140.9 4424 143.4 2148 91.8 3106 92.6

Np = 8
960 × 960 × 960 4327 40.6 6285 47 2952 146.9 4167 152.3 2369 83.2 3338 86.2

Np = 12
1440× 960× 960 4400 40 6729 43.9 2902 149.5 4254 149.2 2335 84.4 3504 82.1

960 × 1440× 960 4268 41.2 6263 47.2 2953 146.9 4167 152.3 2412 81.7 3440 83.6

960 × 960 × 1440 4234 40.2 6299 46.9 2865 151.4 4153 152.8 2413 81.7 3351 85.9

Np = 16
1920× 960× 960 4356 40.4 6419 46 3001 144.5 4278 148.3 2392 82.4 3434 83.8

960 × 1920× 960 4266 41.2 6376 46.4 2970 146.1 4170 152.2 2552 77.2 3525 81.6

960 × 960 × 1920 4234 40.2 6508 45.4 2888 150.2 4148 153 2639 74.7 3606 79.8

Np = 24
1440× 1920× 960 4677 40 6895 42.9 2924 148.4 4266 148.8 2552 77.3 3770 76.3

1440× 960× 1920 4796 38.3 7076 41.8 2984 145.4 4235 149.8 2611 75.5 3699 77.8

1920× 1440× 960 4470 40.6 6439 45.9 3007 144.2 4286 148.1 2546 77.4 3504 82.1

1920× 960× 1440 4450 40.8 6425 46 2984 145.3 4251 149.3 2551 77.3 3550 81.1

960 × 1440× 1920 4364 41.1 6846 43.2 2879 150.7 4105 154.6 2682 73.5 3725 77.2

960 × 1920× 1440 4346 41 6806 43.4 2878 150.7 4133 153.5 2501 78.8 3562 80.8

Np = 32
1920× 1920× 960 4452 39.5 6704 44.1 3183 136.3 4518 140.5 2585 76.3 3715 77.5

1920× 960× 1920 4520 38.9 6802 43.4 3163 137.2 4480 141.7 2632 74.9 3769 76.3

960 × 1920× 1920 4301 40.9 6663 44.4 3014 143.9 4351 145.9 2776 71 3933 73.0
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Table 14 lists mesh sizes used and execution times obtained for Np = 1,

2, 4, 8, 12, 16 and 32 cluster nodes. We also tested weak scaling on Np =

20, 24 and 28, but have excluded them from the table for brevity. A complete

comparison is shown in Figure 15. The ordering of mesh dimensions had a

slightly greater impact than with single-node OpenMP programs, varying up

to 10% for the OpenMP/MPI programs, and less for the other two MPI-based

implementations. This means that for meshes of the same size, thus implying

equal work, execution times were mostly lower for those with larger values of

Nx (e.g., the execution time for a 960 × 480 × 960 mesh is lower than for a

480× 960× 960 one). However, no distinct pattern emerges that would give us

a clue as to which order is the most favorable. Upon inspection, we find that the

difference in execution times is due to the different FFT plans employed by the

FFTW and cuFFT libraries. The communication time remains mostly the same,

as is expected since the amount of data exchanged is the same.

The results of weak scaling tests warrant further discussion as the execution

times and plotted efficiencies appear misleading. On one hand, OpenMP/MPI

programs show poor scaling results, achieving only 40% efficiency, while on

the other hand the CUDA/MPI show efficiency well above 100%, a seemingly

impossible result. The lower efficiency of the OpenMP/MPI programs is due to

the very good performance of the baseline run. Here, the FFTW creates a very

good FFT and transpose plans, which exploit the fact that all data are local, and

thus have very good execution time. With Np = 2 nodes the execution time

increases significantly, and efficiency drops to about 45-55%. However, adding

more work and nodes has much smaller impact on efficiency, which only drops

to 40-45% with Np = 32 nodes. If we use Np = 2 as the baseline, we see that

the efficiency remains above 80%, a very good result.

In contrast to the OpenMP/MPI version, CUDA/MPI version performs very

badly when executed on one node. Due to message sizes, MPI implementation

used (Open MPI) relies on asynchronous copies through host memory [59] to

perform the required communication. This results in bad performance due to

a lack of overlap when copying data, as there is only one process involved.

With Np = 2 processes the situation improves, as multiple streams are used,

much like how we employ streams to overlap computation and data transfers

in implementation of the hybrid algorithm. Between Np = 4 and 16 processes

we get the best performance, and further increasing the number of processes

only slightly reduces efficiency due to the size and amount of messages passed.

If we compare the weak scaling efficiency with the best result as the baseline
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Figure 15. Weak scaling efficiency of three MPI-based implementations, aver-

aged over all mesh sizes tested for each value of Np. Solid lines represent fits

to measured data, where fit model functions are given in the text.

(obtained with Np = 16 processes), we see that the efficiency is lower than

for the OpenMP/MPI version, due to the different transpose routine used and

divided multidimensional FFT that has to be employed. However, we stress that,

in terms of absolute execution times, CUDA/MPI is faster than OpenMP/MPI

version for Np ≥ 4.

The Hybrid/MPI version behaves as expected and demonstrates weak scal-

ing efficiency of about 70-75% with Np = 32 nodes. Since data are trans-

posed only in host memory, this version does not suffer the penalty of memory

copies like the CUDA/MPI version, and therefore achieves much better effi-

ciency with small number of cluster nodes. In terms of absolute execution times,

Hybrid/MPI version is the fastest of all three implementations forNp ≥ 2 and is

therefore the algorithm of choice for distributed memory systems. Of course, it

assumes previous optimization of offloading parameters using the GA method,

which itself is time-consuming and has to be taken into consideration when

making the choice. Table 15 provides data on the optimal fraction of total data

offloaded to GPU in our weak scaling tests. As the number of processes in-

creases, one expects that the amount of data offloaded to GPU remains constant,

which is the case, as we see from the table. The only exceptions are when the
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Table 15. Optimal fraction of total data offloaded to GPU in weak scaling

tests for different mesh sizes in Hybrid/MPI programs, obtained using the

GA optimization method

Mesh size
imag3d-mpihetero real3d-mpihetero

PS1 PS2 PS3 PS4 PS1 PS2 PS3 PS4

Np = 1

480 × 480 × 480 35 20 31 44 46 30 40 35

Np = 2

480 × 480 × 960 46 33 33 47 38 29 37 38

480 × 960 × 480 50 67 17 47 45 60 19 40

960 × 480 × 480 50 15 70 34 43 15 67 35

Np = 4

480 × 960 × 960 40 65 18 47 40 63 17 37

960 × 480 × 960 50 10 67 42 40 12 75 33

960 × 960 × 480 33 29 33 40 45 22 33 40

Np = 8

960 × 960 × 960 53 25 33 47 40 27 40 28

Np = 12

1440 × 960 × 960 37 20 53 45 42 18 60 63

960 × 1440 × 960 40 38 27 47 45 35 27 35

960 × 960 × 1440 50 25 38 45 45 25 40 40

Np = 16

1920 × 960 × 960 47 13 67 27 42 13 80 30

960 × 1920 × 960 47 47 35 37 47 53 20 25

960 × 960 × 1920 50 20 33 33 47 20 40 27

Np = 24

1440 × 1920 × 960 47 40 30 53 47 33 25 63

1440 × 960 × 1920 50 17 60 45 47 13 60 70

1920 × 1440 × 960 40 20 50 40 45 20 53 27

1920 × 960 × 1440 53 13 60 45 45 10 80 25

960 × 1440 × 1920 50 30 27 47 45 30 27 27

960 × 1920 × 1440 40 50 18 45 45 50 20 30

Np = 32

1920 × 1920 × 960 47 27 33 30 47 17 40 27

1920 × 960 × 1920 50 13 60 40 47 10 80 40

960 × 1920 × 1920 47 47 40 33 47 40 23 27



Efficient Numerical Tools for Solving the Nonlinear Schrödinger ... 119

value of Ny is greater than Nx where we see a larger fraction of data offloaded

to GPU in PS2 and PS4, and when the value of Ny is smaller than Nx where we

see a smaller fraction of data offloaded to GPU in PS2 and PS4.

To model the obtained weak scaling results, we start from equation (39) for

the execution time of a single iteration of the main loop. In weak scaling tests,

the mesh size is increased proportionally to the number of MPI processes Np,

and therefore the execution time is given by

TW (Np) = α+βL+ γ
MNp

Np
+βV

MNp

N 2
p

= α+βL+ γM +βV
M

Np
. (42)

The weak scaling efficiency

EW (Np) =
TW (1)

TW (Np)
, (43)

can thus be modeled by

EW (Np) =
1

a+ b/Np
. (44)

We fitted this model to data presented in Figure 15 and the obtained fit param-

eters are given in Table 16. Note that the model is fitted to CUDA/MPI scaling

data only forNp ≥ 4. The agreement between the model and measurement data

is very good, although we note that the parameter b has negative values, contrary

to its expected relation to the communication cost. Therefore, we conclude that

the above expression can be successfully used for modeling of the performance

of all three MPI-based implementations.

To summarize, in all test results of MPI-based programs, we note an ex-

pected declining of the scaling efficiency. This is due to the introduction of

distributed transposes of data, creating overhead that negatively impacts scal-

ing efficiency. It is most evident in both strong and weak scaling tests of the

CUDA/MPI version, as the transpose algorithm is inferior to the one provided

by FFTW, used in OpenMP/MPI implementation. In our tests, all three MPI

versions of programs failed to achieve actual speedup (S(Np) > 1) on less than

Np = 4 nodes, due to the introduction of these transpose routines. We therefore

recommend using MPI versions only on Np = 4 or more cluster nodes.
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Table 16. Values of obtained weak scaling model fit parameters a and b, as

well as the estimated fit errors for MPI-parallelized programs

Program a ∆a b ∆b
imag3d-mpi 2.56 0.06 -0.9 0.3

real3d-mpi 2.32 0.05 -1.3 0.2

imag3d-mpicuda 0.70 0.02 -0.1 0.2

real3d-mpicuda 0.68 0.02 -0.1 0.2

imag3d-mpihetero 1.32 0.03 -0.6 0.2

real3d-mpihetero 1.27 0.03 -0.6 0.2

2.4.5. Selecting the Optimal Algorithm

In previous sections we presented results of detailed performance tests and asso-

ciated models for all developed programs. Here we provide general guidelines

for obtaining the best performance from each implementation.

We note that the extensive testing performed shows that the best perfor-

mance can be achieved by evenly distributing the workload among the MPI

processes and OpenMP threads, and by using mesh sizes which are optimal

for FFT. In particular, the single-node OpenMP programs have the best perfor-

mance if the number of spatial points in all directions, controlled by parameters

Nx, Ny and Nz, is divisible by the number of OpenMP threads used. Similarly,

the OpenMP/MPI implementation achieves the best performance if Nx and Ny

are divisible by a product of the number of MPI processes and the number of

OpenMP threads used.

On the other hand, CUDA implementation works best if all the data for a

given mesh size can fit into the GPU memory. In the case of a small mesh

size, CUDA programs may not be able to saturate all Streaming Multiproces-

sors (SM) of a given GPU, and in this case the OpenMP programs may be

considered first. For CUDA/MPI programs, the best performance is achieved

if Nx and Ny are divisible by a product of the number of MPI processes and

the number of SMs in the GPU used. Note that CUDA-based implementations

write output files (e.g., density profiles) by transferring data from GPU memory

to host memory, where a single thread writes to a file. Therefore, these im-

plementations may not be suitable for simulations that require the output to be

written frequently, after a small number of time propagation steps.

Best performance of hybrid implementations can be obtained by following
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the same guidelines. Furthermore, we recommend using these programs with

the optimization methods described in section 2.4.1 to optimally divide the work

between host and device. If manual tuning of offload parameters is required,

we recommend that the guidelines above are followed for both CPU and GPU

portions of the mesh. In the case of large disparity in the performance of host

or device, hybrid versions will not provide the lowest execution times, and in

such cases the pure CPU or GPU implementations with or without MPI could

be better suited.

In addition to the guidelines for mesh sizes presented above, all programs

benefit from the mesh size which is also optimal for FFT. The best FFT per-

formance on CPU with FFTW library is obtained if Nx, Ny and Nz can be

expressed as 2a3b5c7d11e13f , where e and f are either 0 or 1, and the other

exponents are non-negative integer numbers [60]. Similarly, for cuFFT the best

performance is achieved for transform sizes of the form 2a3b5c7d. In hybrid

implementations, the same applies to the host and device portions of Nx and

Ny, i.e., cpuNx, cpuNy, gpuNx and gpuNy.

2.5. Applications

The applicability and accuracy of the NLS equation for the description of BEC

properties has been established in early studies addressing time–of–flight expan-

sion and collective modes of the condensate [61, 1]. More recently, numerical

algorithms [22, 23, 25, 26] for solving the NLS equation (1), have been used

to investigate: nonlinear frequency shifts of the collective mode induced by a

harmonic modulation of interaction [62]; onset and features of Faraday waves

in BEC [63, 64, 65]; phase–separation dynamics of two–component BECs [66];

geometric resonances in a BEC with two– and three–body interactions [67];

non-equilibrium dynamics of a stirred BEC [68, 69, 70]; localization of a two–

component BEC in a random potential [71]; vortex lattice melting in the pres-

ence of impurities [72]; classification of fractional vortices in a spinor BEC

[73]; BEC dynamics in a dimple trap [74, 75, 76]; dynamics of localized impu-

rity in BEC [77]; analysis of localized states in a multi–component BEC [78];

BEC dynamics induced by a sudden change of an optical lattice geometry [79];

BEC dynamics in a gravito–optical surface trap [80]; emergence of a Bose glass

phase in a BEC in the presence of disorder [81]; vortex dynamics [82]; vortex

generation in a stirred BEC [83]; dynamics of a self–bound droplet in the pres-

ence of an attractive two–body and a very small repulsive three–body interaction
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[84, 85]. The dynamics of light bullets in a cubic–quintic nonlinear medium

based on an extension of equation (12) has been published in reference [86].

As an illustration, in section 3 we present results of the study addressing the

phase–separation dynamics of two–component BECs [66].

Furthermore, the codes [22, 23] have been extended to incorporate effects of

the spin–orbit coupling which are currently intensely explored in the systems of

cold atoms. In particular, the following subjects have been investigated: phase

separation in a spin–orbit coupled BEC [87]; soliton dynamics in spin–orbit

coupled BEC [88, 89, 90, 91]; dynamics of a BEC with spin–angular momentum

coupling [92]. In section 4 we present recently obtained results about dipole

mode and breathing mode excitations of a BEC in the presence of the coupling

of pseudo spin and angular momentum [66].

The algorithms [28, 29, 30] for solving the dipolar NLS equation (11) have

been applied to the study of: vortex dynamics in a dipolar BEC [93, 94, 95,

96]; phase separation in a binary dipolar BEC [97]; dynamics of a dipolar BEC

droplet [98]; stability and dynamics of a dipolar Bose–Fermi mixture [99, 100];

solitons in a dipolar BEC [101, 102, 103, 104, 105, 106, 107]; self–trapping of

a dipolar BEC in a double–well [108]. As a final illustration, in section 5 we

present a study of vortex formation in a dipolar BEC.

3. Phase Separation Dynamics of a Two–Component

BEC

Systems of multi–component BECs involve an additional degree of freedom and

enrich the physics that can be explored within cold atom setups. These systems

are either realized as mixtures of different bosonic atoms or different hyper-

fine states of the same atomic species. In this section we extend the previously

described numerical algorithm and apply it for a study of a two–component

system, described by two condensate wave functions ψ1(x, t) and ψ2(x, t) in

a quasi one–dimensional geometry. The ground state configuration can be ob-

tained as a minimum of the following energy functional

E0 =

∫

dx

[

(ψ∗

1(x) ψ
∗

2(x))H0

(

ψ1(x)

ψ2(x)

)

+
g11

2
|ψ1(x)|

4 +
g22

2
|ψ2(x)|

4 + g12|ψ1(x)|
2|ψ2(x)|

2

]

, (45)
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where H0 corresponds to the non–interacting Hamiltonian

H0 =

(

−
1

2

∂2

∂x2
+ V (x)

)

I2 , (46)

with I2 being a 2 × 2 identity matrix. As the total number of atoms of

each species is conserved, the normalization condition is implemented as
∫

dx|ψ1(x)|
2 =

∫

dx|ψ2(x)|
2 = 1. The expression (45) encompasses three

interaction constants: g11 for atoms of the first species, g22 for atoms of the sec-

ond species and g12 interaction constant between the atoms of the two species.

We assume that all these interactions are repulsive, i.e., g11 ≥ 0, g22 ≥ 0,

g12 ≥ 0. For g12 = 0, the two species do not ”feel” each other and energy de-

fined in (45) consists of two copies of single–component energy (5). In this case

density distributions of the two species |ψ1(x)|
2 and |ψ2(x)|

2 may fully over-

lap in space. As intra–component repulsion g12 gets stronger, two–component

mixtures may exhibit phase separation [13]. Simply, as it is energetically costly

for the two species to overlap, they spatially separate instead. In the homoge-

neous case V (x) = 0, the necessary condition for the onset of phase separation

is given by [109]

g11g22 < g2
12 . (47)

Often the two–component condensate is not prepared as the ground state

of (45), but using a dynamical protocol [110, 111, 112] that we describe in the

following. The dynamics of a two-component condensate in the mean–field

regime is governed by two coupled Gross–Pitaevskii equations [113]:

i
∂ψ1(x, t)

∂t
=

»

−
1

2

∂2

x2
+

1

2
λ

2
x

2 + g11|ψ1(x, t)|
2 + g12|ψ2(x, t)|

2

–

ψ1(x, t) , (48)

i
∂ψ2(x, t)

∂t
=

»

−
1

2

∂2

x2
+

1

2
λ

2
x

2 + g12|ψ1(x, t)|
2 + g22|ψ2(x, t)|

2

–

ψ2(x, t) . (49)

Wave functions of the condensates ψ1(x, t) and ψ2(x, t) are normalized to

unity and λ is the strength of the harmonic trap V (x) = λ2x2/2. The

non–equilibrium dynamics of a two–component BEC captured by the cou-

pled NLS equations (48) and (49) has attracted lot of theoretical interest

[114, 115, 116, 117, 118].

Initially, a single-component condensate is produced. We model this situa-

tion as a two–component BEC with g11 = g22 = g12 and prepare initial state as

the ground state of (45) for g11 = g22 = g12. At t = 0 a pulse is applied and half
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Figure 16. Time evolution of condensate widths for several values of g12: (a)

g12 = 1.01, (b) g12 = 1.04, (c) g12 = 1.06, (d) g12 = 1.3. Other parameters:

λ = 10−3, g11 = 1, g22 = 1.01.

the atoms are transfered into another hyperfine state. An important assumption

of our analysis is that the process is completely spatially symmetric, i.e. the two

BECs overlap perfectly at the initial moment. Due to the transfer, values of g22

and g12 are suddenly changed and dynamics of the two components is started.

We monitor the time dependence of the widths of the two components,

w2
1,2(t) =

∫

∞

−∞

dx x2|ψ1,2(x, t)|
2 , (50)

as well as the total width w(t) =
√

(w1(t)2 + w2(t)2) /2. Typical results ob-

tained for different final values of g12 and λ = 10−3, g11 = 1, g22 = 1.01 are

presented in Figure 16. We observe fast oscillations in the total width with a

frequency unaffected by a change in g12. These oscillations correspond to the

so–called breathing mode. In a quasi one–dimensional geometry it turns out

that their period is 2π/(
√

3λ). On top of this, we notice slow oscillations in the

width of each of the two component for g12 = 1.01 as shown in Figure 16(a).
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These out–of–phase oscillations correspond to the ”spin” mode, and their fre-

quency decreases with increase in g12. In particular, the oscillation period of

the spin mode is about 20 for g12 = 1.01 (see Figure 16(a)) and about 30 for

g12 = 1.04 (see Figure 16(b)). Above a certain threshold value of g12, oscilla-

tion amplitudes sharply increase and the width dynamics becomes aperiodic and

irregular (see Figure 16(c) for g12 = 1.06). Irregularity of the width dynamics

is even more apparent for g12 = 1.3 as shown in Figure 16(d).

In Figure 17 we show the dynamics of the ”spin density” |ψ1(x, t)|
2 −

|ψ2(x, t)|
2 for the same parameters as in Figure 16. The plots Figure 17(a)

and (b) show regular oscillations. By comparing plots Figure 17(b) and (c) we

note a sharp change in the color scales that matches the sharp increase in the

oscillation amplitude observed earlier. Finally, in Figure 17(d) we observe a

clear onset of pattern dynamics. By applying a suitable linear stability analysis,

it was shown that the onset of aperiodic motion is marked by emergence of an

unstable mode around a referent stationary state [66]. This behavior is known as

modulation instability and by investigating a range of values λ ∈
(

10−5, 10−1
)

,

we found that in a realistic experimental situation, stronger trapping potential

strength λ shifts the instability condition (47) toward higher values of g12.

4. Excitations of a BEC with Spin-Angular Momentum

Coupling

Experimental realization of an effective spin–orbit coupling in ultracold atom

systems [119, 120, 121, 122, 123, 124, 125] has allowed for new quantum

phases to be explored. Bosonic systems with spin–orbit coupling are interest-

ing as they have no direct analogues in condensed matter systems and provide a

new research playground [126, 127]. In recent references [128, 129, 130, 131]

the following Hamiltonian for a two–component bosonic system has been intro-

duced:

HSOC =

(

−
1

2
∆ +

r2

2

)

I2 +
Ω2r2

2

(

1 e−2iφ

e2iφ 1

)

, (51)

where I2 is a 2 × 2 identity matrix and the effective spin 1/2 comes from the

two bosonic components involved. The system is assumed to be effectively

two–dimensional (tightly trapped in the longitudinal direction). The value of

Ω is set by the intensity of two co–propagating Laguerre–Gauss laser beams
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Figure 17. Spin dynamics illustrated via the density difference given by

λ−1/2
(

|ψ1(x, t)|
2 − |ψ2(x, t)|

2
)

, induced by a quench of g12 and g22. Param-

eters: (a) g12 = 1.01, (b) g12 = 1.04, (c) g12 = 1.06, (d) g12 = 1.3 and

λ = 10−3, g11 = 1, g22 = 1.01.

that carry a unit of angular momentum in the opposite rotational directions.

The last, φ–dependent term, where φ is the polar angle, provides the coupling

between the spin and angular momentum, as can be explicated by using a proper

unitary transformation [129]. In this section we extend the algorithms presented

in subsection 2.2 and use them to investigate excitations of a BEC with spin-

angular momentum coupling as defined in equation (51).

The total energy per particle of the condensed state with the order parameter

(ψ1(r)ψ2(r))
T

is given by

E0 =

∫

dr

[

(ψ∗

1 ψ
∗

2)HSOC

(

ψ1

ψ2

)

+
g

2
|ψ1|

4 +
g

2
|ψ2|

4 + g|ψ1|
2|ψ2|

2

]

, (52)

where we assume spin–symmetric interactions g11 = g22 = g12 = g. Due to

off–diagonal terms in (51), which allow for the conversion of one atomic state

into the other, only the total number of atoms is conserved and the normalization

condition is given by
∫

dr
(

|ψ1(r)|
2 + |ψ2(r)|

2
)

= 1.
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To implement the spin–angular momentum coupling in the propagation rou-

tine, we split the step of imaginary–time propagation into four pieces. As usual,

in the first step we take into account harmonic potential and nonlinear terms, ac-

cording to equation (13). The second step comprises the spin–angular momen-

tum coupling, and in the last two steps we perform integrations of the type (14)

with respect to the two spatial variables x and y. Explicitly, the off–diagonal

terms from (51) are treated separately starting from

−
∂ψ1(r, τ)

∂τ
= e−2iφ c(r)ψ2(r, τ), (53)

−
∂ψ2(r, τ)

∂τ
= e2iφ c(r)ψ1(r, τ), (54)

where c(r) = 1
2Ω2r2. By differentiating the two last equations we obtain two

independent equations

∂2ψ1(r, τ)

∂τ2
= c(r)2ψ1(r, τ),

∂2ψ2(r, τ)

∂τ2
= c(r)2ψ2(r, τ) (55)

that are solved by

ψ1(r, τ) = A1(r) e
−c(r)τ +B1(r) e

c(r)τ ,

ψ2(r, τ) = A2(r) e
−c(r)τ +B2(r) e

c(r)τ . (56)

From the initial conditions for the second part of the n–th integration step at

τ ′ =
(

n+ 1
4

)

ε we obtain a set of algebraic equations for the coefficients

A1(r) + B1(r) = ψ1(r, τ
′) ,

−c(r)A1(r) + c(r)B1(r) = −e−2iφc(r)ψ2(r, τ
′) ,

A2(r) + B2(r) = ψ2(r, τ
′) ,

−c(r)A2(r) + c(r)B2(r) = −e2iφ c(r)ψ1(r, τ
′) ,

that finally leads to

A1(r) =
1

2

[

ψ1(r, τ
′) + e−2iφ ψ2(r, τ

′)
]

,

B1(r) =
1

2

[

ψ1(r, τ
′) − e−2iφ ψ2(r, τ

′)
]

,

A2(r) =
1

2

[

ψ2(r, τ
′) + e2iφ ψ1(r, τ

′)
]

,

B2(r) =
1

2

[

ψ2(r, τ
′) − e2iφ ψ1(r, τ

′)
]

. (57)
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Figure 18. The energy of the ground state E0(τ) defined in equation (52)

vs. imaginary time τ obtained for different initial conditions. In the first case,

we start from a random initial state and observe slow convergence toward the

global minimum. In the second case, initial conditions have proper dependence

on the polar angle φ, as given in equation (58) and the convergence toward the

ground state is exponentially fast as shown in the inset. Parameters: Ω = 3.2

and g = 1.

In our numerical implementation we make direct use of equations (56) and (57).

Before turning to numerical simulations, we first briefly present an impor-

tant analytical result available for g = 0. General symmetry considerations

imply that the ground state configurations of (52) for g = 0 can be expressed in

a form

φm(r, φ) =
eimφ
√

2π

(

fm(r)e−iφ

gm(r)eiφ

)

, (58)

where m is an integer. In particular for Ω < Ωc, with Ωc = 3.35 there are two

degenerate ground states m = ±1 and for Ω > Ωc the ground state configura-

tion corresponds to m = 0. The m = ±1 states are denoted as half–vortices,

and m = 0 state is named vortex–antivortex pair. In order to explore ground

state configurations for a finite value of interaction constant g, we perform min-

imization of energy functional (52) using imaginary time propagation. How

quickly we reach the ground state strongly depends on the choice of initial con-

figuration as shown in Figure 18. Starting with random initial values, we find
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that propagation routine may first reach a metastable configuration (local min-

imum of E0) and eventually, only after very long propagation time, it selects

the right minimum. With a better choice of initial configuration, motivated by

exact results (58), the right minimum is found with substantially less iterations.

Considerations of this kind are relevant whenever there are several configura-

tions that are nearly degenerate – i.e., have close values of the corresponding

energies (52) and represent local minima of the functional (52).

Figure 19. The m = 1 ground state obtained for Ω = 3.2, g = 1. We plot: (a)

the density distribution of the first component |ψ1(r)|
2, (b) the density distribu-

tion of the second component |ψ2(r)|
2, (c) the argument of ψ1(r) and (d) the

argument of ψ2(r).

Two examples of the ground state configurations are given in Figs. 19 and

20. We find that at finite values of g, ground states can also be distinguished

according to their dependence on polar angle φ, as given in equation (58). In

Figure 19 we present the ground state solution for Ω = 3.2 and g = 1. This

is a half–skyrmion configuration characterized by m = 1. We note that the
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first component is confined around the trap center and its phase dependence is

trivial. In contrast, the second bosonic species exhibits double phase winding,

see Figure 19(d). In Figure 20 we present the ground state solution for Ω = 3.5
and g = 1. The densities of the two components overlap in space, Figure 20(a)

and (b), and exhibit phase winding in opposite directions, Figure 20 (c) and (d).

This is an example of m = 0 state called a vortex–antivortex pair.

In general, quantum phases can be distinguished according to their low–

lying spectra. In cold atom experiments routinely accessible with great preci-

sion are breathing mode and dipole mode excitations. To probe these modes,

initially the system is prepared in its ground state and then a sudden quench of

the potential V (r) is performed. We now theoretically address these excitations

for the half-skyrmion and vortex–antivortex state.

Figure 20. The m = 0 ground state obtained for Ω = 3.5, g = 1. We plot: (a)

the density distribution of the first component |ψ1(r)|
2, (b) the density distribu-

tion of the second component |ψ2(r)|
2, (c) the argument of ψ1(r) and (d) the

argument of ψ2(r).
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The dynamics of a BEC with spin–angular momentum coupling is gov-
erned by two coupled time–dependent Gross-Pitaevskii equations for ψ1(r, t)
and ψ2(r, t):

i
∂ψ1

∂t
=

»

−
1

2

„

∂2

∂x2
+
∂2

∂y2

«

+V (r)+
r2Ω2

2
+g

`

|ψ1|
2 + |ψ2|

2
´

–

ψ1+
r2Ω2

2
e
−2iφ

ψ2 , (59)

i
∂ψ2

∂t
=

»

−
1

2

„

∂2

∂x2
+
∂2

∂y2

«

+V (r)+
r2Ω2

2
+g

`

|ψ2|
2 + |ψ1|

2
´

–

ψ2+
r2Ω2

2
e
2iφ
ψ1 . (60)

The trapping potential is assumed to be harmonic, initially set to V (r) = r2/2.

To induce a breathing mode, we perturb the trap strength

Vpert = (1 + η)
r2

2
, (61)

and calculate the time evolution of the width of the probability distribution,

〈r2(t)〉 =

∫ 2π

0
dφ

∫

∞

0
dr r3

[

|ψ1(r, t)|
2 + |ψ2(r, t)|

2
]

. (62)

By inspecting the corresponding Fourier transform, we identify the lowest ex-

cited frequency as the breathing mode ωB.

In a typical harmonically trapped two–dimensional system, without the

spin–orbit coupling Ω = 0, the Gross–Pitaevskii description predicts that the

breathing mode frequency is ωB = 2 (in the units of the harmonic trap fre-

quency), independent of interaction constant g [132]. Analytical arguments and

numerical results (not presented here) show that this general conclusion holds

true for the vortex–antivortex state. On the other hand, the breathing mode

frequency of a half–skyrmion state depends on both the coupling Ω and on

the interaction strength g. Illustrative results for 〈r2(t)〉 are presented in Fig-

ure 21(a) for Ω = 3.2, η = 0.1 and several values of g. From the related Fourier

transforms shown in Figure 21(b), we find that the breathing mode frequency

increases for several percent with g.

To excite a dipole mode, we consider a shift of the trap bottom in x direction,

Vpert =
r2

2
− δx

r

2

(

eiφ + e−iφ
)

, (63)

and monitor the motion of the center of mass of the system in that direction,

〈x(t)〉 =

∫ 2π

0
dφ

eiφ + e−iφ

2

∫

∞

0
dr r2

[

|ψ1(r, t)|
2 + |ψ2(r, t)|

2
]

, (64)

as well as 〈y(t)〉.
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Figure 21. Breathing mode oscillations in half–skyrmion phase: (a) 〈r2(t)〉
versus t and (b) corresponding Fourier transform. From the inset we observe

increase of the breathing mode frequency with g. Motion is induced by changing

harmonic trap potential as r2

2 → 1.01 r
2

2 , Ω = 3.2.

Figure 22. Dipole mode oscillations of half–skyrmion state in interacting case

for Ω = 3.2. Motion is induced by shifting the harmonic trap bottom for δx =
0.01. In (a) and (b) g = 1. In (c) motion of the center of mass, y(t) versus x(t),

is plotted. The trajectory radius gets smaller with increasing g. In (d) vertical

lines give results for ωLD (in the inset) and ωHD (in the main panel) obtained using

the Bogoliubov method, and dots represent Fourier transform of x(t).

In the conventional harmonically trapped system (Ω = 0), this perturba-

tion excites the Kohn mode – an oscillation with the trap frequency along x
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axis unaffected by interactions. Illustrative results for a half–skyrmion state are

presented in Figure 22 for Ω = 3.2 and they obviously exhibit more complex

behavior in comparison to the results for Ω = 0. We observe that oscillatory

motion in x direction is coupled to the motion along y direction. Moreover, we

find that there are two frequencies involved. We label them as ωLD (low) and ωHD
(high). In Figure 22(a) and 22(b) we see that two bosonic components oscillate

in–phase in both directions. The frequency ωLD exhibits a strong increase with

g, as is depicted in Figure 22(c). As the frequency ωLD gets larger, the induced

oscillation amplitude gets weaker, Figure 22(d). For the considered case, the

frequency ωHD is found to be almost independent of g, see Figure 22(c). Results

based on the complementary Bogoliubov approach, match quite well to the nu-

merical data obtained from direct numerical simulations of equations (59)–(60),

see Figure 22(c).

Figure 23. Dipole mode oscillations of the m = 0 solution in interacting case

for Ω = 3.5. Motion is induced by shifting harmonic trap bottom for δx = 0.01.

In (a) and (b) g = 0.2. In (c) trajectory of the center of mass of a single bosonic

component, y1(t) versus x1(t), is plotted. In (d) vertical lines give results for

ωLD (in the inset) and ωHD (in the main panel) obtained using Bogoliubov method

and dots represent Fourier transform of x(t).
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In the vortex–antivortex state, the two bosonic components exhibit an out–

of–phase oscillation in y direction, see Figure 23(b), and consequently the cen-

ter of mass only oscillates in x direction with the frequency ωLD that exhibits

an increase with g, see Figure 23(c). The trajectory of the center of mass of

each of the components is given by an ellipse, which is strongly elongated in x
direction, see Figure 23(d).

5. Study of Critical Velocity for Vortex Formation

As we have already seen, the programs presented in this chapter can be used

to model and study a variety of systems. In this section we demonstrate the

versatility of developed programs on a simulation of vortex formation in a BEC.

We use the MPI-based programs to simulate the effects of a moving obstacle in

an oblate atomic BEC. The obstacle, a repulsive Gaussian laser beam, moves

through the condensate and sheds quantum vortices, elementary excitation of a

superfluid [14, 13]. The vortices appear only when the obstacle is moving above

some critical speed, consistent with the Landau’s criterion of superfluidity. At

low obstacle velocities above a critical value, vortex dipoles emerge, and as the

speed is increased further, individual vortices and rotating vortex pairs are also

formed.

In the first subsection we document how our programs can be used to simu-

late the experiment reported in reference [133], and compare experimental and

numerical results. The experiment measured critical velocity for the emergence

of vortex dipoles and rotating vortex pairs in a BEC of sodium atoms (23Na),

which do not exhibit the dipolar interaction. Therefore, in this section we also

demonstrate how our programs can be modified to switch off the dipolar inter-

action term when solving NLS equation. The agreement of the results obtained

numerically and experimental observations provides an external check of the

correctness of our algorithms and their implementations.

In the second subsection we investigate the formation of vortices in a dipolar

BEC of dysprosium atoms (164Dy). Our simulations follow the same methodol-

ogy as the experiment with sodium atoms, only with atomic species exhibiting

strong dipolar interaction. We study effects of the dipolar interaction on the

critical velocity for the emergence of vortices, as well as the interplay between

contact and dipolar interaction. The visualization extensions presented in ref-

erence [42] have proven to be indispensable during these simulations, as they

allow much easier study of the results and control of the simulation.
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5.1. Formation of Vortices in a BEC

BEC is a superfluid quantum liquid and one of its hallmarks are quantized vor-

tices, which appear as elementary excitations of the system. Quantization of

vortices is connected to excitation spectrum and, according to Landau’s crite-

rion, leads to the existence of a minimal velocity an obstacle moving through

the superfluid has to have in order to generate such elementary excitations. This

critical velocity vc can be experimentally measured and, in principle, depends

on the experimental protocol used.

Figure 24. Illustration of the experimental setup used in reference [133] to study

vortex formation in a BEC of sodium atoms. A repulsive Gaussian laser beam

is initially at the center of the condensate and moves along y direction with a

constant velocity v until it reaches its final position. The beam is then switched

off during a period of 0.5 s. For sufficiently large velocity vortices and vortex

pairs are generated.

Reference [133] reports the study of vortex formation in an oblate BEC of

Nat = 3.2 × 106 sodium atoms. The trapping potential frequencies used are

(ωx, ωy, ωz) = 2π× (9, 9, 400) Hz, and the s-wave scattering length determin-

ing the strength of contact interaction was as = 51.9 a0, where a0 = 0.0529 nm

is the Bohr radius. The moving obstacle is realized by a repulsive Gaussian laser
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beam corresponding to an additional potential of the form

VB(r; t) = V0 exp

{

−2
[y − y0(t)]

2 + z2

σ2

}

, (65)

where V0 represents the strength of the beam, σ is the 1/e2 beam waist, while

y0(t) = vt determines the center of the beam position (0, y0(t), 0). In our

simulations, as in the experiment, the initial position of the beam is at the

condensate center and then it moves with the velocity v along y direction for

24 µm. Afterwards, the beam is switched off linearly during 0.5 s. Illustration

of the experimental setup is given in Figure 24. Using imaginary-time propa-

gation, we calculate the ground state of the system with the trapping potential

V (r) + VB(r; t), where V (r) corresponds to the harmonic part, with the fre-

quencies given above. The experiment measured critical velocity for the emer-

gence of vortex dipoles, pairs of vortices of the opposite sign. We numerically

addressed this setup and calculated this critical velocity for the values of the

parameters σ = 1.3 l and V0 = 250 ~ω̃, where l = 6.988 µm is the harmonic

oscillator length for the referent frequency ω̃ = ωx.

Before runnnig simulations with the parameters described above, we had to

implement the time-dependent potential V (r) + VB(r; t). Initialization of V (r)
remains the same, i.e., it is initialized before the main loop and stored in an

array, while calculation of VB(r; t) is implemented in a separate function that

is called in each iteration within the main loop. Two distinct phases of VB(r; t)

exist: one relating to the movement of the beam, and the other relating to the

beam shutdown during 0.5 s. Each phase is implemented as a separate function,

and the active phase is determined by the current time, i.e., iteration number.

Figure 25 shows several snapshots of a typical dynamical evolution of the

system. Imaginary-time propagation yields ground state of the system, which

is shown in Figure 25(a), where we plot integrated 2D density profile in y-z
plane. To model local inhomogeneities always present in the experiment, we

add uniformly distributed random noise to the wave function of the order of

10%. Such modified ground state represents initial state of the system, and

the beam starts to move along y direction at time t = 0 with the speed v =
1.26 mm/s. Figures 25(b) and 25(c) show 2D density profile of the system at

times t = 52.17 ms and t = 358.1 ms, respectively. In Figure 25(b) the beam

already reached its final position and its switch-off started. We can observe that

several vortices (vortex dipoles) are generated and that the used speed exceeds

the critical velocity. Generated vortices are stable and can be seen after extended
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Figure 25. Time evolution of 2D density profile of BEC of sodium atoms with

an obstacle moving at speed v = 1.26 mm/s > vc, when several vortices are

generated. Each panel shows integrated 2D density profile in y-z plane at dif-

ferent time t. All lengths are expressed in units of µm, and particle density is

given in units Nat/l
2.

period of time, Figure 25(c). To confirm that we indeed have vortices and not

just localized density minima, we plot the x = 0 slice of the phase of the wave

function in Figure 26. We observe characteristic braiding and jumps of the phase

in the vicinity of density minima, which is a well-known hallmark of a vortex.

When the obstacle is moving with an under-critical velocity, no vortices are

generated, as in Figure 27. The velocity v = 0.87 mm/s is just slightly lower

than the the critical one, and we can see precursors of vortices at the beam edge

in Figures 27(a) and 27(b). At higher velocities, vortices emerge, as we have
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seen in Figure 25. At even higher velocities, Figure 28, rotating vortex pairs are

generated, in addition to individual vortices.

The obtained results are in good agreement with experimental findings of

reference [133] and show that the programs developed within this thesis can be

successfully used to model BEC systems with contact interaction, even for the

most complex setup, when vortices are generated due to a moving obstacle.

5.2. Effects of Dipolar Interactions on Vortex Formation in a BEC

To further test our programs, we model vortex formation in a BEC of dyspro-

sium atoms (164Dy), which exhibit strong magnetic dipole moment. In par-

Figure 26. Time evolution of the wave function phase of BEC of sodium atoms

with an obstacle moving at speed v = 1.26 mm/s > vc, when several vortices

are generated. Each panel shows x = 0 slice of the phase of the wave function

in y-z plane at different time t. All lengths are expressed in units of µm.
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ticular, we study effects of the dipolar interaction strength for varying s-wave

scattering lengths on the critical velocity for the emergence of vortices, which

was not investigated experimentally. Dysprosium atoms have the largest mag-

netic dipole moment (m = 10µB) available in ultracold atom experiments, cor-

responding the characteristic dipole-dipole interaction length add = 132 a0.

External magnetic field can be used to align all atomic dipoles in the same di-

rection, as well as to tune their strength up to a maximal value given above.

The same applies to the s-wave scattering length, which determines the contact

Figure 27. Time evolution of 2D density profile of BEC of sodium atoms with an

obstacle moving at speed v = 0.87 mm/s . vc, when no vortices are generated.

Each panel shows integrated 2D density profile in y-z plane at different time t.
All lengths are expressed in units of µm, and particle density is given in units

Nat/l
2.
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interaction strength and which can also be tuned using the Feshbach resonance

technique. Following reference [134], we take the same range of possible values

for as as for add, i.e., up to a maximal value of 132 a0. With this we show how

the developed programs can be used to model and theoretically address new

physical phenomena, before they are studied experimentally. Such approach

is essential for the design of many upcoming experiments, since otherwise it

would be extremely difficult to predict what would be the relevant range of

physical quantities to be measured, thus making it very challenging to perform

Figure 28. Time evolution of 2D density profile of BEC of sodium atoms with

an obstacle moving at speed v = 1.4 mm/s � vc, when rotating vortex pairs

are also generated. Each panel shows integrated 2D density profile in y-z plane

at different time t. A rotating vortex pair is highlighted in panel (c). All lengths

are expressed in units of µm, and particle density is given in units Nat/l
2.
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the experiments. Having the results of detailed numerical simulations for the

particular system enables experiments to target appropriate range of all relevant

quantities, and to focus on discovering new phenomena.

Figure 29. Illustration of the setup we use to study vortex formation in a dipolar

BEC of dysprosium atoms. A repulsive Gaussian laser beam is initially outside

of the condensate and moves along y direction with a constant velocity v until

it reaches its final position on the other side. For sufficiently large velocity

vortices are generated.

The experiment follows the same methodology as in previous section and

uses the same parameters where applicable. Namely, the trap frequencies re-

main the same, i.e., (ωx, ωy, ωz) = 2π × (9, 9, 400) Hz, as well as strength

of the beam V0 = 250 ~ω̃. Due to the strong dipolar interactions affecting

the stability of the BEC, we had to use a much smaller number of atoms,

Nat = 8 × 104. This resulted in a much smaller BEC, so we had to reduce

the 1/e2 beam waist to σ = l, where l = 2.617 µm is harmonic oscillator

length corresponding to dysprosium atoms. Also, we positioned the beam out-

side of the condensate, and move it all the way to the other side, as illustrated in

Figure 29. The potential VB(r; t) has the same form (65) as in previous section,

just the center of the beam is now given by y0(t) = y00 + vt, where y00 = −15

in units of l.
Modifications to the programs presented in the previous section can be



142 Vladimir Lončar, Ivana Vasić and Antun Balaž

reused for this numerical experiment and we only need to re-enable previously

disabled calculation of the dipolar term in the main time propagation loop. As

before, the ground state of the system is obtained using imaginary-time pro-

gram, which then serves as the initial state of the real-time propagation program,

with uniformly distributed random noise of 10% added. To calculate critical ve-

locity vc for the emergence of vortices, we search for the minimal speed of the

laser beam for which two vortices appear, as illustrated in Figure 29.

Figure 30 shows several 2D density profiles of a typical dynamical evolu-

Figure 30. Time evolution of 2D density profile of BEC of dysprosium atoms

for as = 66a0 and add = 44a0, with an obstacle moving at speed v = vc =

0.16 mm/s, when two individual vortices are generated. Each panel shows in-

tegrated 2D density profile in y-z plane at different time t. All lengths are

expressed in units of µm, and particle density is given in units Nat/l
2.
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tion of the system for velocity v = vc = 0.16 mm/s. The ground state, obtained

through imaginary-time propagation is shown in Figure 30(a). The beam, ini-

tially outside of the condensate, moves along the y direction, as seen in Fig-

ures 30(b) through 30(f). In Figure 30(c) the precursors of the vortices form on

the edges of the beam, which then separate from the beam if v ≥ vc, a situa-

tion seen in Figure 30(d). In Figures 30(e) and 30(f) we see that the generated

vortices are stable, and survive for long propagation times.

as = 44 a0

as = 66 a0

as = 99 a0

as = 132 a0

v
c
  (
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/s
)
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0 11 22 33 44 55 66 77 88 99 110 121 132

Figure 31. Critical velocity vc for the emergence of vortices generated by a

moving obstacle as a function of the characteristic dipolar interaction length

add (in units of a0) for varying values of the s-wave scattering length as.

Figure 31 shows results of our numerical study of the dipolar interaction ef-

fects on the critical velocity. We see that for large values of the s-wave scattering

length, i.e., for the contact interaction comparable or larger than the dipole in-

teraction, effects of decreasing add are very small and probably could not be

experimentally measured. On the other hand, when contact interaction is tuned

down so that the dipole interaction starts to dominate the behavior of the system,

critical velocity depends much stronger on add and could be easily measured in

future experiments.

The above study represents an example on how our programs can be used

to verify and compare results of current experiments, as well as to theoretically

investigate new phenomena and plan future experiments.

Conclusion

In this chapter we have reviewed an efficient numerical algorithm for solving the

nonlinear Schrödinger equation. The stability and efficiency of the used finite
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difference approach is ensured through properly chosen discretization schemes:

the split-step Crank-Nicolson method for the time derivatives and central dif-

ference formula for the spatial derivatives. In a computational implementa-

tion, the presented numerical algorithm is well suited for various paralleliza-

tion techniques. We have exploited several parallelization approaches available

on present-day computer architectures: OpenMP (for shared memory multipro-

cessing), OpenMP/MPI (for distributed memory systems, where each compute

node uses OpenMP to maximize performance), CUDA (for single GPGPUs),

CUDA/MPI (for distributed memory systems, where each compute node has

GPGPU installed), as well as their hybrid combinations. For efficient hybrid

implementations it is essential to divide the work in a way that is suited to the

performances of the available computer architecture. To this purpose additional

input parameters are introduced and it is shown that their optimal values can

be set using a variant of a genetic algorithm. Both strong and weak scalabil-

ity of the algorithm are explicitly demonstrated by detailed measurements and

subsequent analysis. The scalability is proved to be of high importance as par-

allel versions of the algorithm allow for efficient studies of realistically large

system sizes, which are needed in order to make a direct connection to actual

physical experiments. As illustrative examples, three applications of the pre-

sented algorithms to the topics of current interest in the field of cold atomic

BECs were presented. In section 3 a study of phase separation dynamics of a

two–component BEC is performed. In section 4 we addressed excitations of a

BEC with the coupling of spin and angular momentum and finally in section 5

we investigated vortex formation dynamics in a stirred BEC in the presence of

dipolar interactions.
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[19] Góral, K., and Santos, L. Ground state and elementary excitations of

single and binary Bose-Einstein condensates of trapped dipolar gases.

Phys. Rev. A 66 (2002), 023613.

[20] Agrawal, G. P. Nonlinear Fiber Optics. Academic Press, 2012.

[21] Antoine, X., Bao, W., and Besse, C. Computational methods for the dy-

namics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Com-

put. Phys. Commun. 184 (2013), 2621–2633.

[22] Muruganandam, P., and Adhikari, S. Fortran programs for the time-

dependent Gross-Pitaevskii equation in a fully anisotropic trap. Comput.

Phys. Commun. 180 (2009), 1888–1912.
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[25] Young-S., L. E., Vudragović, D., Muruganandam, P., Adhikari, S. K.,
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Strong synthetic magnetic fields have been successfully implemented in periodically driven optical lattices.
However, the interplay of the driving and interactions introduces detrimental heating, and for this reason it is
still challenging to reach a fractional quantum Hall state in cold-atom setup. By performing a numerical study,
we investigate stability of a bosonic Laughlin state in a small atomic sample exposed to driving. We identify
an optimal regime of microscopic parameters, in particular interaction strength U and the driving frequency
ω, such that the stroboscopic dynamics supports the basic ν = 1/2 Laughlin state. Moreover, we explore slow
ramping of a driving term and show that the considered protocol allows for the preparation of the Laughlin state
on experimentally realistic time-scales.

DOI: 10.1103/PhysRevA.100.053624

I. INTRODUCTION

Cold atoms in optical lattices provide a highly tunable
platform for quantum simulations of relevant many-body
Hamiltonians [1,2]. Since early experiments with quantum
gases, there has been a strong interest in the realization of
fractional quantum Hall (FQH) states in these setups [3–17].
Despite numerous experimental achievements and a variety of
theoretical proposals, FQH physics has still not been reached
in cold-atom experiments.

A milestone in the field has been recently achieved by the
realization of artificial gauge potentials [18–28]. In particular,
the topological index of a resulting energy band of an optical
lattice featuring a strong synthetic magnetic field has been
directly probed [22]. At first glance, both key requirements for
the emergence of FQH states—atomic interactions and strong
synthetic magnetic fields—are now experimentally available.
However, there are several specific details in the implemen-
tation of strong synthetic magnetic fields for cold atoms that
make the realization of FQH states still challenging.

The most advanced recent realizations of artificial gauge
potentials exploit periodically driven optical lattices [19–28].
Using Floquet theory, the stroboscopic dynamics of a nonin-
teracting driven system can be related to an effective time-
independent Hamiltonian [29–32]. This approach, Floquet
engineering, enriches the set of quantum models that can be
simulated in cold-atom experiments. However, general argu-
ments and numerical studies [33–35] suggest that the interplay
of interactions and driving in a thermodynamically large
system introduces heating, leading to a featureless infinite-
temperature state in the long-time limit.

Although this general result might sound discouraging,
the heating process can be very slow in some driven sys-
tems for specific regime of microscopic parameters. There,
the system can be described by a physically interesting

“prethermal” Floquet state on experimentally relevant time-
scales [36–42]. Moreover, the onset of thermalization in a
finite-size interacting system may exhibit unexpected features,
not found in the thermodynamic limit [43,44]. Heating rates
and resulting instabilities have been recently investigated both
theoretically and experimentally for the driven Bose-Hubbard
model in the weakly interacting regime [38,45–47]. Moreover,
experimental studies of the driven Fermi-Hubbard model in a
honeycomb lattice have established a timescale of the order of
100 tunneling times for the regime where the effective-model
description applies [48,49].

In this paper, we consider small systems of several inter-
acting bosonic atoms in a periodically driven optical lattice
featuring synthetic magnetic flux. The focus of our study is
on finding optimal microscopic parameters that would allow
to prepare and probe the basic bosonic Laughlin state in this
setup. To this end, we employ exact numerical simulations of
the driven Bose-Hubbard model [50] for small system sizes.

From one point of view, it is expected that a small driven
system exhibits low heating rates for a driving frequency set
above a finite bandwidth of an effective model [33]. However,
driving a system with such a high frequency may lead to
undesirable effects, such as coupling of the lowest band to
higher bands of the underlying optical lattice, thus making the
initial description based on the lowest-band Hubbard model
inapplicable. These effects have been addressed in a recent
study [51] where an optimal intermediate frequency window
for Floquet engineering has been established.

In our study, we go a step further in the search for the
optimal regime that might allow for the bosonic Laughlin
states under driving. In particular, for a realistic, intermediate
value of a driving frequency, the interaction term complicates
the effective model by introducing several higher-order terms.
Their effect on the topological states has been addressed only
recently [52,53] and it has been found that typically these

2469-9926/2019/100(5)/053624(9) 053624-1 ©2019 American Physical Society

https://orcid.org/0000-0002-1101-8877
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.053624&domain=pdf&date_stamp=2019-11-27
https://doi.org/10.1103/PhysRevA.100.053624
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terms work against the topological state. For this reason,
the stability of the Laughlin state at intermediate driving
frequency requires a separate study, that we perform here.
Moreover, we numerically investigate an experimentally rel-
evant preparation protocol for the Laughlin state in a driven
system [54]. For a reference, we note that a simpler but closely
related question concerning the static (undriven systems) has
gained lot of attention [6,7,15,55].

The paper is organized as follows: in Sec. II we introduce
the model under study and briefly review key features of
the particle-entanglement spectra that we will exploit in the
identification of the Laughlin-like state. Then, in Sec. III A we
investigate general heating effects of interacting bosons ex-
posed to the driving. By extending this approach, in Sec. III B
we construct the stroboscopic time-evolution operator and
inspect its eigenstates in order to identify possible FQH states.
Finally, in Sec. IV we address the possibility of accessing
these states in an experiment through a slow ramp of the
driving term.

II. MODEL AND METHOD

In this section we first introduce the driven model and
explain the basis of Floquet engineering. Then we summarize
several key features of the particle-entanglement spectra that
we use to characterize the bosonic Laughlin states.

A. Driven model

Properties of bosonic atoms in a deep optical lattice can
be realistically described within the framework of the Bose-
Hubbard model [1]. We consider a basic driving scheme
[50] that introduces a uniform, synthetic magnetic flux into
a square optical lattice here spanned by the two vectors ex
and ey. The corresponding Hamiltonian is given by the driven
Bose-Hubbard model

Ĥ (t ) = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy

∑
m,n

(eiωt â†
m,n+1âm,n + H.c.)

+ κ

2

∑
m,n

sin [ω t − (m + n − 1/2) φ]n̂m,n

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (1)

where operators âm,n (â†
m,n) annihilate (create) a boson at

lattice position (m, n), and local density operators are n̂m,n =
â†

m,nâm,n. Jx and Jy are tunneling amplitudes and U is the
on-site local repulsive interaction. We use the units where
h̄ = 1 and the lattice constant a = 1. The driving scheme is
defined by the driving frequency ω, the driving amplitude
κ and by a phase φ. In the following we set φ = π/2 and
κ/ω = 0.5. These values were recently used in an experi-
mental realization of the Harper-Hofstadter model [22]. The
derivation of this model is briefly reviewed in Appendix. We
assume periodic boundary conditions implemented using the
vectors R1 = 4 ex, R2 = −ex + ey, as presented in Fig. 1. This
choice is compatible with the driving term and it allows us
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FIG. 1. Lattice geometry used throughout the paper. The paral-
lelogram gives the exemplary lattice size (Lx, Ly ) = (4, 8). The color
scale is defined by mod (m + n, 4), in accordance with the driving
term from Eq. (1). The vectors R1 = 4 ex, R2 = −ex + ey are used to
implement periodic boundary conditions. The small rectangle gives
the magnetic unit cell for the effective model in Eq. (3).

to exploit translational symmetry by working in the fixed
quasimomentum basis.

Formally, by using the Floquet theory [29,30,56], it can be
shown that the full time-evolution operator corresponding to
this model is given by

Û (t, t0) = e−iK̂ (t )e−i(t−t0 )Ĥeff eiK̂ (t0 ), (2)

where K̂ (t ) is a periodic “kick” operator K̂ (t ) = K̂ (t + 2π/ω)
and Ĥeff is a time-independent effective Hamiltonian. The
full-time evolution operator is periodic as well and conse-
quently the (quasi)eigenenergies of Ĥeff are defined up to
modulo ω. The last equation gives formal mapping of a
periodically driven system to an effective model that captures
the stroboscopic time evolution of the model.

In the noninteracting regime, U = 0, there are several well
controlled approximations to obtain the effective Hamilto-
nian. These techniques are the essence of Floquet engineering,
an approach where the driving scheme is implemented in
such a way to yield a sought-after effective model. How-
ever, according to general analytical arguments and numer-
ical insights, the corresponding effective model of a driven
interacting many-body system in the thermodynamic limit
exhibits nonphysical features [33,34]. In particular, the system
thermalizes and in the long-time limit its steady state is
a featureless, infinite-temperature state, independent of the
initial state.

Here we consider small samples of several bosonic atoms.
Due to a finite spectrum bandwidth, we expect the high-
frequency expansion to be relevant for a finite range of the
driving frequency. Within these assumptions, the leading-
order (in 1/ω) effective Hamiltonian is

Ĥeff = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− J ′
y

∑
m,n

(ei(m+n)φ â†
m,n+1âm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1). (3)
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FIG. 2. (a) The energy spectrum En of the model from Eq. (3) in the kx = 0, ky = 0 sector for Np = 4 and different values of interaction
U/Jx = 1, 10, 40 and U/Jx = ∞ (hard-core bosons). The top part of the spectrum is at ≈(U/Jx )Np(Np − 1)/2. (Not shown for U/Jx = 40.)
For a high ratio U/Jx the spectrum splits into bands. The lowest band corresponds to hard-core bosons. (b) The low-lying part of the particle-
entanglement spectrum − ln ξn of the ground-state incoherent superposition, Eq. (6), in the region A momentum sectors kA

y = 0 and kA
y = π/6,

and for Np = 6,U/Jx = 2.5. (c) The particle-entanglement gap � of the incoherent superposition Eq. (6) as a function of interaction strength
U for Np = 4, 5, 6.

The Hamiltonian (3) features complex hopping phases
ei(m+n)φ that result in a uniform synthetic magnetic flux φ per
lattice plaquette. Due to the driving, the renormalized hopping
amplitude along the y direction turns into

J ′
y ≡ κ

2ω
sin(φ/2) Jy. (4)

For the values φ = 2πα, where the flux density α is set to α =
1/4, and κ/ω = 0.5, the tunneling amplitude along y direction
in the effective model is J ′

y ≈ Jy × 0.1768.
In a certain regime of microscopic parameters, the ground

state of the model defined in Eq. (3) is given by the lattice
version of the Laughlin state [7,9,57–59]. The Laughlin state
is stabilized for the filling factor ν = Np/Nφ = 1/2, where
Nφ = αLx × Ly is the total number of fluxes (Nφ being an
integer) and Np is the number of bosons, and for a strong-
enough repulsion U . Another important requirement for the
Laughlin state is to avoid the strong hopping anisotropy and to
keep Jx ≈ J ′

y, so we set Jx = 0.2Jy. We consider system sizes
Np = 4, 5, 6 and the respective lattices sizes (Lx, Ly) = (4, 8),
(4, 10), and (4, 12), see Fig. 1, where we expect the ground
state to correspond to the ν = 1/2 Laughlin state. The Hilbert
space sizes for kx = ky = 0 are dimH = 6564, 108 604, and
1 913 364 respectively. For this choice of microscopic param-
eters, the model ground state of Eq. (3) is approximately
twofold degenerate. The two ground-states are found in the
sectors kx = 0, ky = 0 and kx = 0, ky = π . We denote them
by |ψ0,0

LGH〉 and |ψ0,π
LGH〉.

As we are mainly interested in the driven regime, not only
the ground state, but the full spectrum of the model from
Eq. (3) plays a role. A rough argument is that the system does
not absorb energy provided that the driving frequency ω is set
above the bandwidth of the effective model. Several spectra
of the model from Eq. (3) for kx = 0, ky = 0 are presented
in Fig. 2(a). It can be seen that the ground-state energy is
weakly affected by the value of U � Jx, while the top part of
the spectrum with few states is found at UNp(Np − 1)/2. For
higher values of U the spectrum splits into bands where the
lowest band corresponds to the hard-core bosons and higher
bands include double and higher occupancies.

B. Particle-entanglement spectra

There are several ways to characterize the ground states
of the model from Eq. (3) as the Laughlin states. Usually,
the starting point in this direction is the identification of
the twofold degeneracy expected in the implemented torus
geometry for ν = 1/2. Another relevant quantity is the over-
lap of the numerically obtained state with the Laughlin an-
alytical wave function in the torus geometry [9,59]. More
direct evidence can be obtained through the calculation of the
relevant topological index (Chern number) or the quantized
Hall conductance. An additional convincing approach, that
we pursue here, is based on the analysis of the entanglement
spectra of the relevant states.

In the following we will use the particle-entanglement
spectrum (PES) [59,60] to distinguish possible topologically
nontrivial states. In order to obtain this type of entanglement
spectrum, we partition Np particles into two sets of NA and
NB = Np − NA particles. For a given mixed state ρ, we con-
struct a reduced density matrix ρA = trBρ by performing a
partial trace over NB particles. The resulting PES is given by
− ln ξn, where ξn are eigenvalues of ρA. The related particle-
entanglement entropy is given by [61,62]

SA = −tr(ρA ln ρA). (5)

By partitioning particles, we keep the geometry of the
system unchanged. For this reason, we will inspect the PES
for the different momentum sectors kA

y of the remaining NA

particles. An example of a PES is presented in Fig. 2(b). As
proposed in Refs. [59,60], we have considered the incoherent
superposition of the almost twofold degenerate ground state
of Eq. (3) as the density matrix

ρGS = 1
2

(∣∣ψ0,0
LGH

〉〈
ψ0,0

LGH

∣∣ + ∣∣ψ0,π
LGH

〉〈
ψ0,π

LGH

∣∣). (6)

For simplicity, we only present the PES for the two mo-
menta kA

y = 0 and kA
y = π/6. We observe a clear particle-

entanglement gap �. In addition, the counting of low-lying
modes below this gap (ten modes for kA

y = 0 and nine modes
for kA

y = π/6, at NA = 3, Np = 6) corresponds to the Laugh-
lin state [59,60]. In this way the PES encodes topological
features of the state ρ in the form of well defined number
of excitations per momentum sector kA

y [59,60]. This type of
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TABLE I. Counting of modes NL (kA
y ) in the PES of the Laughlin

state for several system sizes and particle partitions. The last column
lists the NL (kA

y ) values for each momentum sector kA
y = 2π i/Ly, i =

0, . . . , Ly − 1.

Np (Lx, Ly ) NA PES: NL (kA
y )

4 (4, 8) 2 3, 2, 3, 2, 3, 2, 3, 2
5 (4, 10) 2 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
6 (4, 12) 3 10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9

analysis is useful as it can identify topological features even
without model states, as done for the case of fractional Chern
insulators [63,64].

In the following we will consider specific particle partitions
NA = 2, Np = 4; NA = 2, Np = 5; and NA = 3, Np = 6. For
these cases the counting of excitations NL(kA

y ) per momentum
sector kA

y is well established and given in Table I. In Fig. 2(c)
we show the particle-entanglement gap of the mixtures,
Eq. (6), obtained at different values of U . Numerical results
for the obtained PES indicate that a reasonably large gap is
found starting at U ∼ 0.5Jx and the characteristic features of
the Laughlin state persist with a further increase in U . We note
that at lower values of the flux density, α < 1/4, the Laughlin
state can be found at even lower values of the repulsion U
[9,59].

By analyzing the effective model from Eq. (1), we have
obtained a guidance for the regime of microscopic parameters
and for the geometry of the small system that can give rise to
Laughlin states. In the next sections our aim is to go beyond
the effective model from Eq. (3) and to identify topological
states supported by the full driven dynamics as captured by
the model given in Eq. (1).

III. DRIVEN DYNAMICS

In this section we discuss the full driven dynamics as
captured by the model given in Eq. (1).

A. Heating

First we address the onset of heating following the standard
procedure discussed in Refs. [42,65]. The initial state of the
system is prepared using the ground state of the effective
model

|ψ (t = 0)〉 = e−iK̂ (t=0)
∣∣ψ0,0

LGH

〉
(7)

and we monitor the stroboscopic time-evolution t = N T ,
T ≡ 2π/ω governed by the full driven model defined in
Eq. (1). In our numerical simulations, we approximate the
micromotion operator K̂ (t = 0) using the leading-order high-
frequency expansion; see Eq. (A12). The quantity of interest
is the expectation value of the effective Hamiltonian (3):

〈Ĥeff(t = NT )〉K = 〈ψ (t )|e−iK̂ (t=0)Ĥeffe
iK̂ (t=0)|ψ (t )〉. (8)

We expect this quantity to reasonably correspond to the
ground-state energy of the effective model E0 in the regime
of very high frequency. On the other hand, for a “low”
driving frequency we expect the system to quickly reach the

infinite-temperature β → 0 regime defined by

lim
β→0

〈Ĥeff〉 = 1

dimH tr(Ĥeff ). (9)

For this reason we monitor the normalized total energy

Q(t = NT ) = 〈Ĥeff(t = NT )〉K − E0

limβ→0〈Ĥeff〉 − E0
(10)

and we present it in Fig. 3(a), for U/Jx = 10. In agreement
with the known results [65], we find that the thermalization is
quick for both a “high” driving frequency ω/Jx � 20 and for
a “low” driving frequency ω/Jx � 10. For the intermediate
values of ω, the heating process is slow [65] and the total
energy exhibits a slow exponential growth captured by Q(t =
NT ) ≈ 1 − b exp(−c t ), t 
 1. An example of this behavior
is given for ω/Jx = 15 in Fig. 3(a). The heating process can
also be monitored through the particle-entanglement entropy
SA as a function of time. In Fig. 3(b) for Np = 5 and low
driving frequency we find that this quantity quickly saturates
to its maximal value. Indeed, for a thermal state at infinite
temperature, SA is given by

Smax
A ≈ ln

(
Lx Ly + NA − 1

NA

)
, (11)

marked by the horizontal, dot-dashed line in Fig. 3(b). Except
for the highest frequency considered (ω/Jx = 50), we find
that, in the process of heating, the particle-entanglement gap
of the initial state quickly closes (not shown in the plots).

Here we briefly discuss finite-size effects by comparing
numerical results for the normalized total energy for Np = 4,
Np = 5, and Np = 6. In line with the known results [33,34,38],
the “high-frequency” regime with low heating rates moves
toward higher ω as the system size increases. However, we
find that the estimates obtained in this section (ω/Jx � 20 for
the high- and ω/Jx � 10 for the low-frequency regime, for
U/Jx = 10) apply to all the three sizes Np = 4, 5, 6, at least
for the time-scales that we consider. A comprehensive study of
the leading finite-size effects in driven systems can be found
in Refs. [33,42,65].

B. The stroboscopic time-evolution operator

In order to better understand the limitations of the effective
model, here we time evolve all relevant basis states for a sin-
gle driving period T = 2π/ω and construct the stroboscopic
time-evolution operator

ÛF ≡ Û (t0 + T, t0 = 0) (12)

such that Û (NT + t0) = Û N
F . In the next step, for a system

size Np = 4, (Lx, Ly) = (4, 8) we fully diagonalize this oper-
ator and inspect its eigenstates |n〉. Following the described
procedure, we obtain the long-time limit

lim
N→∞

〈Ĥeff(NT )〉K =
∑

n

|〈n|ψ (t = 0)〉|2〈n|Ĥeff|n〉K , (13)

where we define

〈n|Ĥeff|n〉K = 〈n|e−iK̂ (t=0)Ĥeffe
iK̂ (t=0)|n〉. (14)

Results for Q(t = NT ) from Eq. (10) obtained in this way
are summarized in Fig. 3(c), where we make a comparison
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FIG. 3. (a) The normalized total energy Q(t = NT ) from Eq. (10), and the (b) particle-entanglement entropy SA(t = NT ), Eq. (5), during
the time evolution governed by Eq. (1) for several driving frequencies ω/Jx = 50, 20, 15, 10. Parameters: Np = 5, U/Jx = 10. Note that the
asymptotic value of SA for ω/Jx = 10 and ω/Jx = 15 matches the one given in Eq. (11), as presented by the horizontal, dot-dashed line. (c) The
long-time limit limN→∞ Q(NT ) for Np = 4 and the on-site interactions U/Jx = 1, 10 and U/Jx = ∞ (hard-core bosons). The lines are only
guides to the eye.

between the long-time energies for the case of hard-core
bosons (U → ∞) and soft-core bosons (finite values of U ).
The obtained results indicate that heating rates of hard-core
bosons are closer to the case of U/Jx = 1 in comparison to
U/Jx = 10, which is expected from the bandwidths shown
in Fig. 2(a). Overall we observe that the “high-frequency
regime” is wider for lower ratios U/Jx.

In Fig. 4, we make a comparison between the exact driven
model captured by ÛF and Ĥeff. In Figs. 4(a) and 4(b) we
inspect the distribution of expectation values 〈n|Ĥeff|n〉K . By
comparing these values to the eigenenergies of the effective
model, Eq. (3), we get an insight into the pertinence of the
effective description [33,34]. In particular, for an interacting
system in the thermodynamic limit, the distribution is flat
and the effective description is useless. We state again that
we consider only small atomic samples. For this reason, it
is expected that for high values of ω the full stroboscopic
description nicely matches to the effective model values. Such
an example is given in Fig. 4(a) for U/Jx = 1 and ω/Jx = 20.
As the value of ω gets lower the distribution becomes flatter,
as can be seen in Fig. 4(b) for U/Jx = 10 by comparing results
for ω/Jx = 50 and ω/Jx = 10.

The intermediate regime of frequencies, e.g., ω/Jx = 20
for U/Jx = 10, is of the main experimental relevance [51].
We now investigate whether the driven stroboscopic dynamics
supports some Laughlin-like states, by calculating the PES of

the mixture

ρF = 1
2 (|n0(0, 0)〉〈n0(0, 0)| + |n0(0, π )〉〈n0(0, π )|), (15)

where |n0(kx, ky)〉 is the state from the kx, ky sector with the
lowest expectation value 〈n|Ĥeff|n〉K . The results are presented
in Fig. 4(c). We find that the states with a well defined gap
and the Laughlin-like PES can be found down to ω/Jx � 10
for U/Jx = 1, and down to ω/Jx � 20 for U/Jx = 10. Having
established existence of these states for small samples of Np =
4 particles, in the next section we discuss dynamical protocol
which can be exploited to prepare these states.

IV. SLOW RAMP

The question about an optimal adiabatic protocol that can
be used to prepare the Laughlin state in a cold-atom setup
has gained lot of attention [6,7,15,55]. The situation becomes
even more complex once the full driving process is taken
into account. A general wisdom is that, by starting from a
topologically trivial state, the topological index of a thermo-
dynamically large system cannot be changed adiabatically.
We consider a small atomic sample and follow the proposal
of Ref. [15]. Our main contribution is that we extend this
protocol to the case of the driven, interacting Bose-Hubbard
model.
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FIG. 4. Properties of the eigenstates |n〉 of the stroboscopic time-evolution operator ÛF , Eq. (12), in the kx = 0, ky = 0 sector for Np = 4.
Expectation values 〈n|Ĥeff|n〉K defined in Eq. 14 for (a) U/Jx = 1, ω/Jx = 10, 20 and (b) U/Jx = 10, ω/Jx = 10, 15, 20, 50. The black solid
lines mark eigenenergies of Ĥeff, Eq. (3). Note that in (b) we do not include few states from the top of the spectrum of Ĥeff, Eq. (3), for clarity.
(c) The particle-entanglement gap � of the incoherent superposition ρF , Eq. (15), for U/Jx = 1 and U/Jx = 10, Np = 4. The lines are only
guides to the eye.
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FIG. 5. (a) The expectation value E (t ) defined in Eq. (19) and (b) the particle-entanglement gap �(t ) of ρ(t ), Eq. (18), during the time
evolution governed by Eq. (17) for several driving frequencies ω/Jx = 25, 20, 15, 10. Parameters: Np = 5, U/Jx = 10, η/Jx = 0.05. (c) The
overlap tr [ρ(t )ρF ] of the time evolved state with the target eigenstates of ÛF for ω/Jx = 25, 20. Parameters: Np = 4, U/Jx = 10, η/Jx = 0.05.

A. Model

Following results of Ref. [15], we consider a slow ramp
of the tunneling amplitude along y direction, Jy(t ), as well as
a slow ramp of the driving amplitude κ (t ). Namely, we start
from a series of decoupled wires along the x direction and start
coupling them. More precisely, initial states are selected as the
ground states of Ĥini:

Ĥini = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1). (16)

For the filling factors that we consider, the ground states of
the Ĥini are simple noninteracting states with the ground state
energy E0,ini = −2JxNp. Out of the several degenerate ground
states, we select those where atoms occupy every second wire.
There are two such states and we label them as |ψ+〉 (even
wires occupied) and |ψ−〉 (odd wires occupied). These states
have finite projections only onto the sectors kx = 0, ky = 0
and kx = 0, ky = π of the driven model from Eq. (1). There-
fore we may expect the two initial states |ψ±(t = 0)〉 to be
transformed into the two Laughlin states during the ramp.

Having prepared the initial state, we slowly restore the
tunneling amplitude along the y direction, Jy(t ), and slowly
ramp up the driving amplitude κ (t ). The time-evolution is
governed by

Ĥsr(t ) = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy(t )
∑
m,n

(eiωt â†
m,n+1âm,n + H.c.)

+ κ (t )

2

∑
m,n

sin [ωt − (m + n − 1/2) φ]n̂m,n

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (17)

where Jy(t ) = Jy tanh(η t ), κ (t ) = κ tanh(η t ), η being the
ramping rate. In the long-time limit, we recover the original
Hamiltonian from Eq. (1). During the ensuing time evolution
we construct the mixture

ρ(t ) = 1
2 (|ψ+(t )〉〈ψ+(t )| + |ψ−(t )〉〈ψ−(t )|). (18)

We monitor stroboscopically the energy expectation value

E (t ) = tr(ρ(t )Ĥeff ) (19)

and the PES of ρ(t ).

B. Results

In Fig. 5(a) we present the energy expectation value
from Eq. (19) for U/Jx = 10 and several driving frequencies
ω/Jx = 25, 20, 15, 10. Our numerical results indicate that
ramps with the rates up to η/Jx ∼ 0.1 work reasonably well.
Slower ramps give better results, but are less practical [15]. By
construction, the initial state is a noninteracting state with par-
ticles delocalized along the x direction and therefore the initial
energy is E (t = 0) = −2 Np Jx. During the ramp with the rate
η/Jx = 0.05, for the regime of high driving frequencies, down
to approximately ω/Jx = 20, we find that the energy initially
decreases and reaches an almost constant value at around
tJx ∼ 20. On the other hand, for ω/Jx = 15, the system slowly
heats up during the ramping process, and for ω/Jx = 10 the
system quickly reaches the infinite-temperature state.

One of our main results is summarized in Fig. 5(b), where
we plot the particle-entanglement gap of ρ(t ), from Eq. (18),
as a function of time. In the high-frequency regime ω/Jx �
20, starting around tJx ∼ 20 we find a persistent particle-
entanglement gap, marking the onset of a topologically non-
trivial state. It is even more interesting that, even for ω/Jx ∼
15, the state seems to exhibit a finite gap on intermediate
time-scales. This is not the case for ω/Jx � 10, where the
gap quickly vanishes. In Fig. 5(c), we present the value of
the overlap tr [ρ(t )ρF ], of the time-evolved mixed state with
the relevant state from Eq. (15) for Np = 4. Clearly, the slow
ramp of the type given in Eq. (17) allows for the preparation
of the relevant eigenstates of ÛF with high fidelity (better than
1%).

In Figs. 6(a) and 6(b) we show the time evolution of the
PES in the two momentum sectors kA

y = 0 and kA
y = π/6 for

Np = 6, U/Jx = 5, and η/Jx = 0.05. The PES of the initial
state is easy to understand. As the Ly/2 wires are occupied
by single atoms, the reduced density matrix is proportional
to the identity matrix with the proportionality factor yielding
− ln ξn = ln (2

(Ly/2
NA

)
) ≈ 3.69. During the ramp we find that

additional modes in PES are gaining weight and moving down
in the spectrum. Finally, the state ρ(t ) reached around t ≈
50T exhibits a well defined gap and the correct counting of the
low-lying modes: there are ten low-lying modes for kA

y = 0
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FIG. 6. The low-lying part of the particle-entanglement spectra
− ln ξn of ρ(t ), Eq. (18), during the time evolution governed by
Eq. (17) in the (a) kA

y = 0 and (b) kA
y = π/6 momentum sectors. The

low-lying part of the PES in the sectors (c) kA
y = 0 and (d) kA

y = π/6,
at two instances of time t = 0 and t/T = 100. Parameters: Np =
6, U/Jx = 5, ω/Jx = 15, η/Jx = 0.05.

and nine low-lying modes for kA
y = π/6; see Figs. 6(c) and

6(d) and also Table I.
In Fig. 7 we discuss a satisfactory range of ramping rates

η for a given interaction strength U and a given driving
frequency ω that we fix at ω/Jx = 15. The obtained numerical
results suggest that at weaker interaction strengths U/Jx � 2,
slower ramping rates are needed. One way to explain this
behavior is by using the effective model and arguing that the
gap protecting the Laughlin state is smaller at weaker U . On
the other hand, for stronger interaction strengths U/Jx � 8 the
particle-entanglement gap closes at later stages as the heating
process becomes dominant. Finally, in the intermediate range
U/Jx ∼ 5, faster ramps with η/Jx = 0.1 lead to the sought-
after state ρ(t ) from Eq. (18), with persistent features in
the PES up to t = 500T . These results indicate that, when
optimizing the ramping protocol in an actual experiment, there
will be a tradeoff between the unfavorable heating and a faster
ramping into the desired state, as both of these processes are
promoted by interactions.

V. CONCLUSIONS

The technique of Floquet engineering has been success-
fully exploited for the implementation of synthetic magnetic
fields in driven optical lattices. Following up on these achieve-
ments and on a long-standing pursuit for the FQH states in
cold-atom setups, in this paper we have addressed possible
realization of the bosonic Laughlin state in a small atomic
sample in a periodically driven optical lattice. While a thermo-
dynamically large interacting system generally heats up into
an infinite-temperature state under driving, the heating pro-
cess can be controlled to some extent in a few-particle system.

We have assumed a realistic driving protocol and finite on-
site interactions, and we have identified the FQH state based
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FIG. 7. The particle-entanglement gap �(t ) as a function of time
during the time evolution governed by Eq. (17), for several inter-
action strengths (a) U/Jx = 1.25 (b) U/Jx = 5 and (c) U/Jx = 10,
and several ramping rates η/Jx = 0.025, 0.05, 0.1. Other parameters:
Np = 5, ω/Jx = 15.

on analysis of its particle-entanglement spectra. Results of our
numerical simulations show that the stroboscopic dynamics
of Np = 4, 5, 6 particles supports the topological ν = 1/2
Laughlin state down to ω/Jx = 20 for U/Jx = 10, and down
to ω/Jx = 15 for U/Jx = 1, for the driving amplitude κ/ω =
0.5. These results are in reasonable agreement with the recent
estimates of the optimal heating times [51] that take into
account the contribution of the higher bands of the under-
lying optical lattice. In addition, we have investigated slow
ramping of the driving term and found that it allows for the
preparation of the Laughlin state on experimentally realistic
time-scales of the order of 20 h̄/Jx, where h̄/Jx is the tunneling
time. Interestingly, we find that some topological features per-
sist during an intermediate stage even in the regime where the
system exhibits a slow transition into the infinite-temperature
state (e.g., ω/Jx = 15 for U/Jx = 10).

In the future, we plan to address the preparation scheme for
the relevant correlated states in a driven honeycomb lattice,
which exhibits lower heating rates in comparison to a cubic
lattice according to the recent experiments [48,49]. Another
highly relevant question, that we have not tackled and that we
postpone to future investigation, concerns suitable experimen-
tal probes of topological features. The recent progress in the
field has led to the development of several detection protocols
specially suited for the cold-atom systems [66–71]. For the
type of systems considered in this paper, the most promising
are results of the recent study [71] showing that fractional
excitations can be probed even in small systems of several
bosons.
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APPENDIX: DRIVEN OPTICAL LATTICES

In this Appendix we review the derivation of the model
given in Eq. (1). The system is described by

Ĥlab(t ) = ĤBH + Ĥdrive(t ) + ω V̂ , (A1)

where we start with the Bose-Hubbard model

ĤBH = −Jx

∑
m,n

(â†
m+1,nâm,n + H.c.)

− Jy

∑
m,n

(â†
m,n+1âm,n + H.c.)

+ U

2

∑
m,n

n̂m,n(n̂m,n − 1), (A2)

and we introduce an offset ωV̂ :

V̂ =
∑
m,n

n n̂m,n. (A3)

This shifted Bose-Hubbard model is exposed to a suitable
resonant driving scheme:

Ĥdrive(t ) = κ

2

∑
m,n

sin

(
ωt − φm,n + φ

2

)
n̂m,n,

φm,n = (m + n) φ. (A4)

We assume periodic boundary conditions compatible with the
driving term (A4) in the laboratory frame. To this purpose
we use vectors R1 = 4 ex and R2 = −ex + ey as presented in
Fig. 1. For simplicity, we work in the rotating frame

|ψrot(t )〉 = eiωtV̂ |ψlab(t )〉 (A5)

and derive the Schrödinger equation

i
d|ψrot(t )〉

dt
= Ĥrot(t )|ψrot(t )〉, (A6)

where

Ĥrot(t ) = (eiωtV̂ Ĥlab(t )e−iωtV̂ − ωV̂ ). (A7)

Now we calculate Ĥrot(t ) explicitly. The only nontrivial action
of this rotation on Ĥlab comes from the nearest-neighbor
hopping along y direction. Indeed, we have

eiωtV̂ â†
m,nâm,n′e−iωtV̂ = eiωt (n−n′ )â†

m,nâm,n′ . (A8)

In total we obtain

Ĥrot(t )=−Jx

∑
m,n

(â†
m+1,nâm,n + H.c.) + U

2

∑
m,n

n̂m,n(n̂m,n−1)

+ eiωt Ĥ1 + e−iωt Ĥ−1 + e−iωt (Ly−1)ĤLy−1

+ eiωt (Ly−1)Ĥ−Ly+1, (A9)

with

Ĥ1 = −Jy

OBC∑
m,n

(
â†

m,n+1âm,n − i

4
κei(−φm,n+ φ

2 )n̂m,n

)
,

Ĥ−1 = Ĥ†
1 , (A10)

Ĥ−Ly+1 = −Jy

∑
m

â†
m,0âm−Ly,Ly−1, ĤLy−1 = Ĥ†

−Ly+1.

(A11)

In the terms Ĥ−Ly+1 and ĤLy−1 we take into account periodic
boundary conditions along the direction parallel to R2 as im-
posed in the laboratory frame. In order to limit the complexity
of the numerical calculation, we keep translational invariance
and impose the periodic boundary conditions in both direc-
tions in the rotating frame. This implies that we will neglect
“phasors” e−iωt (Ly−1) and eiωt (Ly−1). Under these assumptions,
we can recast Eq. (A9) into the time-dependent Hamiltonian
given in Eq. (1). In practice, this would require engineering
additional non-trivial terms in the laboratory frame.

The leading order of the kick operator is given by

K̂ (t = 0) ≈ − κ

2ω

∑
m,n

cos(φm,n − φ/2)n̂m,n. (A12)
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Quantum scars of bosons with correlated hopping
Ana Hudomal 1✉, Ivana Vasić 1, Nicolas Regnault2,3 & Zlatko Papić4

Recent experiments on Rydberg atom arrays have found evidence of anomalously slow

thermalization and persistent density oscillations, which have been interpreted as a many-

body analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred

eigenstates originate from a “hard” kinetic constraint: the neighboring Rydberg atoms cannot

be simultaneously excited. Here we propose a realization of quantum many-body scars in a

1D bosonic lattice model with a “soft” constraint in the form of density-assisted hopping. We

discuss the relation of this model to the standard Bose-Hubbard model and possible

experimental realizations using ultracold atoms. We find that this model exhibits similar

phenomenology to the Rydberg atom chain, including weakly entangled eigenstates at high

energy densities and the presence of a large number of exact zero energy states, with distinct

algebraic structure.

https://doi.org/10.1038/s42005-020-0364-9 OPEN

1 Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia. 2 Joseph Henry Laboratories and Department of Physics, Princeton
University, Princeton, NJ 08544, USA. 3 Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université,
Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris, France. 4 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
✉email: ana.hudomal@ipb.ac.rs

COMMUNICATIONS PHYSICS |            (2020) 3:99 | https://doi.org/10.1038/s42005-020-0364-9 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-0364-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-0364-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-0364-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-020-0364-9&domain=pdf
http://orcid.org/0000-0002-2782-2675
http://orcid.org/0000-0002-2782-2675
http://orcid.org/0000-0002-2782-2675
http://orcid.org/0000-0002-2782-2675
http://orcid.org/0000-0002-2782-2675
http://orcid.org/0000-0002-1101-8877
http://orcid.org/0000-0002-1101-8877
http://orcid.org/0000-0002-1101-8877
http://orcid.org/0000-0002-1101-8877
http://orcid.org/0000-0002-1101-8877
mailto:ana.hudomal@ipb.ac.rs
www.nature.com/commsphys
www.nature.com/commsphys


Semiclassical studies of chaotic stadium billiards have
revealed the existence of remarkable non-chaotic eigenfuc-
tions called “quantum scars”1. Scarred eigenfunctions dis-

play anomalous enhancement in regions of the billiard that are
traversed by one of the periodic orbits in the classical limit when
ℏ → 0. It was shown that quantum scars lead to striking
experimental signatures in a variety of systems, including
microwave cavities2, quantum dots3, and semiconductor quan-
tum wells4.

A recent experiment on a quantum simulator5, and subsequent
theoretical work6,7, have shown that quantum many-body scars
can occur in strongly interacting quantum systems. The experi-
ment used a one-dimensional Rydberg atom platform in the
regime of the Rydberg blockade5,8,9, where nearest-neighbor
excitations of the atoms were energetically prohibited. The
experiment observed persistent many-body revivals of local
observables after a “global quench”10 from a certain initial state.
In contrast, when the experiment was repeated for other initial
configurations, drawn from the same type of “infinite” tempera-
ture ensemble, the system displayed fast equilibration and no
revivals. These observations pointed to a different kind of out-of-
equilibrium behavior compared to previous studies of quantum
thermalization in various experimental platforms11–15.

In both single-particle and many-body quantum scars, the
dynamics from certain initial states leads to periodic revivals of
the wave function. In the former case, this happens when the
particle is prepared in a Gaussian wave packet initialized along a
periodic orbit1, while in the latter case the revivals can be inter-
preted as a nearly-free precession of a large emergent su(2) spin
degree of freedom16,17. Another similarity between single- and
many-body quantum scars is the existence of non-ergodic
eigenstates. In the single-particle case, such eigenstates are
easily identified by their non-uniform probability density that
sharply concentrates along classical periodic orbits. In the many-
body case, non-ergodic eigenstates are broadly defined as those
that violate eigenstate thermalization hypothesis (ETH)18,19.
Scarred eigenstates violate the ETH in a number of ways: for
example, they appear at evenly spaced energies throughout the
spectrum6,20,21, they have anomalous expectation values of local
observables compared to other eigenstates at the same energy
density, and their entanglement entropy obeys a sub-volume law
scaling20.

In recent works, the existence of atypical eigenstates has been
taken as a more general definition of quantum many-body
scaring. For example, highly excited eigenstates with low entan-
glement have previously been analytically constructed in the non-
integrable AKLT model22,23. A few of such exact eigenstates are
now also available for the Rydberg atom chain model24. The
collection of models that feature atypical eigenstates is rapidly
expanding, including perturbations of the Rydberg atom
chain20,25,26, theories with confinement27–29, Fermi–Hubbard
model beyond one dimension30,31, driven systems32, quantum
spin systems33,34, fractional quantum Hall effect in a one-
dimensional limit35, and models with fracton-like dynamics36–39.
In a related development, it was proposed that atypical eigenstates
of one Hamiltonian can be “embedded” into the spectrum of
another, thermalizing Hamiltonian40, causing a violation of a
“strong” version of the ETH41,42. This approach allows to engi-
neer scarred eigenstates in models of topological phases in arbi-
trary dimensions43. From a dynamical point of view, it has been
shown that models with scarred dynamics can be systematically
constructed by embedding periodic on-site unitary dynamics into
a many-body system44.

A feature shared by many scarred models is the presence of
some form of a kinetic constraint. In the Rydberg atom chain,
the constraint results from strong van der Waals forces, which

project out the neighboring Rydberg excitations45. Such Hilbert
spaces occur, for example, in models describing anyon excitations
in topological phases of matter46–50 and in lattice gauge
theories51–53, including the Rydberg atom system54,55. Recent
works on periodically driven optical lattices have started to
explore such physics56,57. On the other hand, kinetic constraints
have been investigated as a possible pathway to many-body
localization without disorder58. In classical systems, non-
thermalizing behavior without disorder is well known in the
context of structural glasses59–61. The mechanism of this type of
behavior is the excluded volume interactions that impose kinetic
constraints on the dynamics62,63. Similar type of physics has
recently been explored in quantum systems where a “quasi many-
body localized" behavior was proposed to occur in the absence of
disorder64–74.

In this paper, we investigate the relation between kinetic con-
straints, slow dynamics and quantum many-body scars. In con-
trast to previous work, which focused on models of spins and
fermions that are closely related in one dimension due to the
Jordan–Wigner mapping, here we study one-dimensional models
of bosons with density-assisted hoppings, which realize both
“hard” and “soft” kinetic constraints, whilst being non-integrable.
Depending on the form of the hopping term, we demonstrate that
the models encompass a rich phenomenology, including regimes
of fast thermalization, the existence of periodic revivals and
many-body scars, as well as the Hilbert space fragmentation that
has been found in recent studies of fractonic models36–39. Unlike
the experimentally realized Rydberg atom system, we find evi-
dence of many-body scars in a bosonic model without a hard
kinetic constraint, i.e., with a fully connected Hilbert space. We
identify initial states that give rise to periodic many-body revivals
in the quantum dynamics, and we introduce a “cluster approx-
imation” that captures the scarred eigenstates that are responsible
for periodic revivals. We discuss possible experimental realiza-
tions of these models using ultracold atoms.

Results
Models and their Hilbert spaces. A fundamental ingredient of
kinetically constrained models is “correlated hopping”: a particle
can hop depending on the state of its neighbors. In this paper we
consider a system of Np bosons on a one-dimensional lattice with
L sites. We consider models where the total filling factor, ν = Np/
L, is conserved, and we will mainly present results in the dense
regime, ν = 1. We have studied models with ν < 1 and ν > 1, but
we found them to be either too constrained or not constrained
enough, and therefore less interesting. We emphasize that the
bosons in our study are not hard-core, i.e., the occupancy of any
lattice site can take any value from 0 to Np.

We study three different models, defined by the Hamiltonians:

H1 ¼ �J
XL
j¼1

byj bjþ1nj þ nj�1b
y
j bj�1

� �
; ð1Þ

H2 ¼ �J
XL
j¼1

njb
y
j bjþ1 þ byj bj�1nj�1

� �
; ð2Þ

H3 ¼ �J
XL
j¼1

njþ1b
y
j bjþ1nj þ nj�1b

y
j bj�1nj

� �
: ð3Þ

All three models contain a free-boson hopping term, byj bjþ1,

which is dressed in various ways by density operators, nj ¼ byj bj.
We will show that the position of the density operator nj
completely changes the behavior of these models, ranging from
fast thermalization to the breakup of the Hamiltonian into
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disconnected, exactly solvable sectors. For example, note that H1

and H2 are related to each other via free-boson hopping,

H2 ¼ H1 � J
X
j

byj bjþ1 þ byj bj�1

� �
; ð4Þ

which can be easily proven using bosonic commutation relations.
We will see below that this innocuous free-boson hopping leads
to surprisingly different dynamical properties of the two models.

The motivation behind introducing three different models in
Eqs. (1)–(3) can be summarized as follows. Hamiltonian H1

describes a model where a particle cannot hop to the left if that
site is not already occupied by at least one particle, and cannot
hop to the right if it is the only particle left on its initial site. This
introduces constraints to the system. Conversely, there are no
such constraints in the case of H2. Indeed, the hopping
coefficients are only modified in intensity by the particle-
number operator. Hamiltonian H3 introduces additional con-
straints compared to H1. The number of unoccupied sites and
their positions remain constant under the action of this
Hamiltonian. This leads to different connectivity of the Hilbert
space in each of the models, as we explain in the next Section.

We consider periodic boundary conditions (L + 1 ≡ 1) and set
ℏ = J = 1. With periodic boundary conditions, all three
Hamiltonians H1, H2 and H3 have translation symmetry, thus
their eigenstates can be labeled by momentum quantum number,
k, quantized in units of 2π/L. In addition, H3 has inversion
symmetry. We denote by I = 0 and I = 1 the sectors that are even
and odd under inversion, respectively.

Without restrictions on the boson occupancy, the Hilbert space
of H1, H2 and H3 grows very rapidly. For L = Np = 12, the
Hilbert space size of the k = 0 sector is 112720 (the largest one we
will consider for H1 and H2). As previously mentioned (see also
the next Section), the Hilbert space of H3 splits into many
disconnected components, thus it is possible to consider only one
connected component at a time and disregard the unoccupied
sites whose positions do not change. This is more relevant when

looking at properties such as thermalization, than fixing the filling
factor. However, the boundary conditions are in that case no
longer periodic, and the system does not have translation
symmetry. Considering only a system with the size L/2, filling
factor ν = 2, open boundary conditions and minimal number of
particles per site equal to 1 is completely equivalent to
considering the largest component of the full system which has
the size L, filling factor ν = 1, periodic boundary conditions and
no restrictions on the occupancies. The Hilbert space size of the
symmetric invariant sector of the largest connected component of
L = Np = 22 is 176484 and this is the largest sector that we will
consider for H3.

Graph structure of the models. Since we will be interested in the
dynamical properties, it is convenient to first build some intuition
about the structure of the Hamiltonians of the three models in
Eqs. (1)–(3). A Hamiltonian can be viewed as the adjancency
matrix of a graph whose vertices are Fock states of bosons,
n1; n2; ¼ ; nLj i. If the Hamiltonian induces a transition between
two Fock states, the corresponding vertices of the graph are
connected by a link. The graphs that show how the configuration
space is connected have very different structure for the three
Hamiltonians H1, H2, and H3, as can be observed in Fig. 1.

The entire graph of H2 is well connected and it has the same
structure as the graph of the standard Bose-Hubbard model: the
particle-number operators in H2 do not introduce any con-
straints, but only affect the magnitude of the hopping coefficients.
In contrast, the H1 graph shows several clusters of configurations
that are weakly connected to the rest of the graph. “Weakly
connected” means that there is a small number of connections
leading outside the cluster and that their respective hopping
coefficients are smaller in magnitude than those of the
surrounding connections within the cluster. A state that is
initially located inside a cluster is therefore more likely to stay
inside during an initial stage of the time evolution, which
increases the probability of revivals and slows down the growth of

Fig. 1 Connectivity of the Hilbert space. Adjacency graph for a H1, b H2, c H3, all for L = Np = 3. d–f same as a, b and c but for L = Np = 6. To avoid clutter,
we do not label the vertices in d–f. All graphs are weighted, i.e., the line thickness is proportional to the magnitude of the corresponding hopping coefficient.
Several different clusters of configurations are visible in the case of H1. The clusters start to form already for L = 3 (for example, the configurations 012-
021-003 in a) and become more prominent for L = 6 d. In the case of H2, almost all configurations are well connected to the rest of the graph. The graphs
for H3 show that the Hilbert space is highly reducible: its graph splits into many disconnected components.
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entanglement entropy. We will provide a more quantitative
description and examples that illustrate this in Section “Quantum
scars in H1 and H3 models”. Finally, the graph of H3, due to even
stronger constraints, is actually disconnected, which is an
example of Hilbert space fragmentation that was previously
shown to cause non-ergodic behavior in fracton-like models37,38.
This predicts that thermalization and dynamics in the three
models will be very different, which we will confirm in the
following Section. However, we note that the number of
connections and the topology of the graph is not the only
relevant factor for the dynamics. The magnitude of the hopping
coefficients between different configurations is also important
(Supplementary Note 1).

We note that the relation between H1 and H3 is reminiscent of
the relation between the quantum East model75 and the “PXP”
model describing the atoms in the Rydberg blockade
regime6,20,45. Like H3, the PXP model is doubly constrained
and inversion symmetric, while H1 and the quantum East model
are asymmetric versions of those two models with only a single
constraint. The graph of the quantum East model is similar to
that of H1, in that it contains bottlenecks which slow down the
growth of entanglement entropy75.

Dynamics and entanglement properties. We now investigate the
phenomenology of the models introduced in Eqs. (1)–(3). We use
exact diagonalization to obtain the complete set of energy
eigenvalues and eigenvectors, from which we evaluate the level
statistics and the distribution of entanglement entropies for the
three models. Furthermore, we probe dynamical properties of the
models by studying a global quench, simulated via Krylov
iteration.

The energy level statistics is a standard test for thermalization
of models that cannot be solved exactly. A convenient way to

probe the level statistics is to examine the probability distribution
P(r)76 of ratios between consecutive energy gaps sn = En+1 − En,

r ¼ minðsn; snþ1Þ
maxðsn; snþ1Þ

: ð5Þ

The advantage of studying P(r), instead of P(sn), is that there is
no need to perform the spectrum unfolding procedure—see
ref. 77. For standard random matrix theory ensembles, both P(r)
and the mean 〈r〉 are well known78. When computing the same
quantities in a microscopic physical model, it is crucial to resolve
all the symmetries of the model.

The probability distribution P(r) of the ratios of two
consecutive energy gaps is shown in Fig. 2a–c for the three
Hamiltonians H1, H2, and H3 respectively, and two momentum
or inversion sectors. In all three cases, the energy levels repel, i.e.,
the distribution tends to zero as r → 0. For H2, the distribution is
particularly close to the Wigner–Dyson (non-integrable) line. For
H1, the distribution is also consistent with Wigner–Dyson when
we restrict to the middle 1/3 of the spectrum (and after removing
special states with E = 0). We exclude the edges of the spectrum
because they contain degeneracies which are not symmetry-
related. However, such states do not appear to have a major effect
on the level statistics distribution, which is still closer to the
Wigner–Dyson than the Poisson distribution even if they are
included. The level statistics of H3 within the largest connected
component of the Hilbert space is shown in Fig. 2c and is also
consistent with the Wigner–Dyson distribution without restrict-
ing the spectrum. However, we will demonstrate below that the
dynamics in some smaller connected components of H3 can be
exactly solved.

As a complementary diagnostic of thermalization, we next
compute the entanglement entropy of all eigenstates. We divide
the lattice into two sublattices, A and B, of lengths LA and

Fig. 2 Level statistics and entanglement. a–c Probability distribution of the ratios of two consecutive energy gaps. a H1 (middle third of the spectrum
without E = 0 states, L = Np = 12), b H2 (full spectrum, L = Np = 12) and c H3 (largest connected component of L = Np = 22). The black dashed line shows
the Poisson distribution, which corresponds to the integrable case, while the red dashed line is the distribution of the Gaussian orthogonal ensemble, which
corresponds to the thermalizing case. d–f Entanglement entropies SL/2 of all eigenstates plotted as a function of the eigenstate energy per particle, E/Np. d
H1 (L = Np = 12, LA = 6, k = 0), e H2 (same) and f H3 in the largest connected component of L = Np = 20, LA = 10, I = 0. The inset shows all connected
components for L = Np = 12, LA = 6, k = 0.
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LB = L − LA. For a given pure state ψj i, the entanglement
entropy is defined as

SA ¼ �trAðρAln ρAÞ; ð6Þ
where ρA ¼ trB ψj i ψh j is the reduced density matrix of the
subsystem A. The scatter plots, showing entanglement entropy of
all eigenstates Enj i as a function of their energy En, are displayed
in Fig. 2d–f. Here we take into account the translation symmetry
of the system and work in the momentum sector k = 0 for H1 and
H2, and consider only the largest connected component and the
inversion sector I = 0 for H3. The results for other sectors are
qualitatively similar.

Entanglement entropy distribution in Fig. 2d, e reveals a
striking difference between the Hamiltonians H1 and H2, even
though they only differ by a free-boson hopping term, Eq. (4).
The model H1 is constrained, which leads to a large spread of the
entropy distribution and many low-entropy eigenstates including
in the bulk of the spectrum. From this perspective, H1 is
reminiscent of PXP model20,25. By contrast, H2 has no such
constraints and in this case the entanglement entropy is
approximately a smooth function of the eigenstate energy. The
Hamiltonian H3 is doubly constrained, and this is reflected in its
entanglement distribution, which also shows a large spread and
several disconnected bands, reminiscent of an integrable system
like the XY model79.

Global quenches. The constraints in the models in Eqs. (1), (2),
and (3) have significant effects on the dynamics governed by
these Hamiltonians. We probe the dynamics by performing a
global quench on the system. We assume the system is isolated
and prepared in one of the Fock states, ψ0

�� �
, at time t = 0. We

restrict to ψ0

�� �
being product states which are not necessarily

translation-invariant, as such states are easier to prepare in
experiment. However, our results remain qualitatively the same if
we consider translation-invariant ψ0

�� �
. After preparing the sys-

tem in the state ψ0

�� �
, which is not an eigenstate of the Hamil-

tonian, the system is let to evolve under unitary dynamics,

ψðtÞj i ¼ exp � i
_
Ht

� �
ψ0

�� �
: ð7Þ

where H is one of the Hamiltonians of interest. From the time-
evolved state, we evaluate the quantum fidelity,

FðtÞ ¼ jhψ0jψðtÞij2; ð8Þ
i.e., the probability for the wave function to return to the initial
state. In a general many-body system, fidelity is expected to decay
as FðtÞ � expð�LðJtÞ2Þ. It thus becomes exponentially sup-
pressed in the system size for any fixed time t*, i.e.,
Fðt�Þ � expð�cLÞ, where c is a constant. In scarred models, such

as the Rydberg atom chain, fidelity at the first revival peak
occurring at a time T still decays exponentially, but exponentially
slower, i.e., FðTÞ � expð�c0LÞ, with c0 � c. In ref. 20, for a finite
system with L ≲ 32 atoms, the fidelity at the first revival can be as
high as ~70%, and several additional peaks at times nT are also
clearly visible.

We first consider the Hamiltonian H1. Several configurations
exhibit periodic revivals of the fidelity F(t), which can in some
cases be higher than 90%. Most of these configurations involve a
very dense cluster of bosons such as :::0N10:::j i. In contrast, a
completely uniform configuration :::111:::j i thermalizes very
quickly. Here we focus on periodically-reviving configurations
with density being as uniform as possible. One family of such
reviving configurations involves n unit cells made of three lattice
sites:

210210¼ 210j i � ð210Þnj i: ð9Þ

Time evolution of the fidelity for the initial state ð210Þnj i for
different system sizes L = 3n is shown in Fig. 3a. The initial state
is assumed to be the product state, e.g., ψ0

�� � ¼ 210j i for L = 3.
The frequency of the revivals in Fig. 3 is approximately the same
for all system sizes. We emphasize that similar results are
obtained for a translation-symmetric initial state, e.g.,
ψ0

�� � ¼ 1ffiffi
3

p 210j i þ 021j i þ 102j ið Þ. Both cases converge in the

large system limit, and the differences are only significant for
L = 3 when the revival frequency of the initial state with
transition symmetry differs from the frequencies of other system
sizes.

In Fig. 3b we compare the fidelity for the initial state in Eq. (9)
when it is evolved by all three Hamiltonians in Eqs. (1)–(3). The
initial state is fixed to be ð210Þ5�� �

. We observe that the dynamics
with H3 has very prominent revivals; in fact as we will later show,
these revivals are perfect and their period is approximately twice
the revival period for H1. In contrast, for H2 the fidelity quickly
drops to zero without any subsequent revivals.

Finally, in Fig. 3c we plot the time evolution of entanglement
entropy. As expected from the fast decay of the fidelity, the
entropy for H2 rapidly saturates to its maximal value. Moreover,
as expected from the perfect revivals in H3, the entropy in that
case oscillates around a constant value close to zero. For H1, we
observe a relatively slow growth of entropy, with oscillations
superposed on top of that growth, again similar to PXP model6.
For the initial state that is not translation-invariant, it is
important how we cut the system, e.g., :::210j210:::j i versus
:::2102j10:::j i. In the first case, the entanglement entropy remains
zero for H3 because no particle can hop from one subsystem to
the other, while in the second case the entropy oscillates around a
constant value, which is the case in Fig. 3c.

Fig. 3 Dynamics of quantum fidelity and entanglement entropy for initial configurations in Eq. (9). a Time evolution of fidelity F(t) in Eq. (8) for system
sizes L = 3n. The evolution is governed by the Hamiltonian H1, different colors represent different system sizes L. b Fidelity evolution F(t) for the
Hamiltonians H1, H2 and H3 and system size L = 15. c Entanglement entropy evolution SLA ðtÞ for the same cases as in b.
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In Fig. 4 we show the H1 evolution of two local observables,
density correlations between two adjacent sites 〈n1n2(t)〉 and
density on the first site 〈n1(t)〉, starting from the initial state
ð210Þnj i. Unlike fidelity and entanglement entropy, these
observables can be easily measured in experiment. Both
observables robustly oscillate with approximately the same
frequency as the fidelity. The heights of the first few revival
peaks are approximately converged for the system sizes ranging
from L = 6 to L = 15, which suggests that revivals in such local
observables can be observed in the thermodynamic limit. In the
following Section, we will show that the oscillations observed in
the dynamics from ð210Þnj i state in Eq. (9) and their frequency
can be explained using a tractable model that involves only a
small subset of all configurations in the Hilbert space, thus
providing a realization of quantum scars in a correlated bosonic
system. Our starting point will be the model H3, whose graph
explicitly separates into disconnected subsets which makes the toy
model exact, hence we can analytically calculate the revival
frequency. Based on these results, we then introduce an
approximation scheme that describes the dynamics from the
same initial state under the H1 Hamiltonian.

Quantum scars in H1 and H3 models. The quench dynamics of
fidelity and entanglement entropy in Fig. 3 suggest that H1 and
H3 models are candidate hosts for many-body scarred eigenstates
that can be probed by initializing the system in product states
ð210Þnj i. We now analyze the structure of these states using our
approach called “cluster approximation” that is introduced in
detail in Methods.

The dynamics of H3 within the sector containing the state
ð210Þnj i can be solved exactly, as shown in Methods. The
connected component of the state ð210Þnj i consists of all possible
combinations of patterns 210 and 120. This means that triplets of
sites evolve independently, and dynamically the system behaves
as a collection of independent two level systems (spins-1/2). From
this observation, it can be shown that revivals will be perfect with
a period T3 = π/2. The same period is obtained for initial product
state ð210Þnj i and its translation-invariant version; if the initial
state is both translation-invariant and inversion-symmetric, the
period is doubled.

In contrast to the free dynamics in H3, the H1 model exhibits
decaying revivals and does not admit an exact description. In
order to approximate the quench dynamics and scarred
eigenstates in H1, we project the Hamiltonian to smaller
subspaces of the full Hilbert space. These subspaces contain
clusters of states which are poorly connected to the rest of the
Hilbert space and thereby cause dynamical bottlenecks. As
explained in Methods, the clusters can be progressively expanded
to yield an increasingly accurate description of the dynamics from
a given initial state.

For our initial state ð210Þnj i, the minimal cluster is defined as
one that contains all the states given by tensor products of 210,
120 and 300 patterns. Similar to the H3 case, within this
approximation, triplets of sites again evolve independently, and
the dimension of the reduced Hilbert space is dimHc ¼ 3L=3. The
time-evolved state within the cluster is given by

ψc
nðtÞ

�� � ¼ cosnð4tÞ ð210Þnj i þ ¼ ; ð10Þ
where the dots denote other configurations. The fidelity is

Fc
nðtÞ ¼ jhψc

nð0Þjψc
nðtÞij2 ¼ j cosð4tÞj2n: ð11Þ

As in the case of H3, this result is also valid for the translation-
invariant initial state. We see that the period of revivals is T1 = π/
4, which is the same as for H3 with a translation and inversion
symmetric initial state.

The result of the cluster approximation is compared against the
exact result for system size L = 15 in Fig. 5. The frequency of the
fidelity revival, shown by the blue line in Fig. 5a, is accurately
reproduced in this approximation, however the approximation
does not capture the reduction in the magnitude of F(t). Similarly,
the dynamics of entanglement entropy, blue line in Fig. 5b, is only
captured at very short times. In particular, we observe that the
maximum entanglement within the cluster remains bounded even
at long times t ~ 10, while the exact entropy continues to increase
and reaches values that are several times larger.

To obtain a more accurate approximation, we can expand the
minimal cluster with several neighboring configurations on the
graph. We define the extended cluster as a set of all states which
can be obtained using tensor products of the configurations 210,
120, 300, and 111. The enlarged cluster clearly contains the
minimal cluster studied above, but it also includes additional
configurations, resulting in a much better prediction for the first
revival peak height, while still allowing for analytical treatment.

Fig. 4 Evolution of local observables for the Hamiltonian H1. a
Correlations between adjacent sites 〈n1n2(t)〉 for different system sizes and
the initial state ð210Þnj i. b Density on one site 〈n1(t)〉.

Fig. 5 Comparison of the full dynamics against the minimal cluster (1)
and extended cluster (2) approximation schemes. We consider the
system size L = 15 with the initial state ð210Þ5�� E

. a Time evolution of the
fidelity. The frequency of revivals is approximately the same in both cases,
but the results for the extended cluster show better agreement with the
results for the full Hilbert space. b Time evolution of the entanglement
entropy.
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The dimension of the extended cluster grows as dimH~c ¼ 4L=3,
and is thus exponentially larger than the minimal cluster
approximation. Nevertheless, the extended cluster dimension is
still exponentially smaller compared to the full Hilbert space, and
within this approximation it is possible to numerically simulate
the dynamics of larger systems, L ≲ 30—see Fig. 6a. The revivals
are no longer perfect, while their frequency is independent of the
system size and closer to the frequency of revivals for the full
Hilbert space compared to to the minimal cluster approximation
in Fig. 5. The overlap between the eigenstates of the Hamiltonian
H1 reduced to both the minimal and extended cluster and the
state ð210Þ8�� �

is given in Fig. 6b. The eigenstates that correspond
to the minimal cluster approximately survive in the extended
cluster, where they form a band with the highest overlap.

For the initial product state (210)n, it is possible to analytically
obtain the fidelity within the improved approximation for
arbitrary system size. Similar to the previous methods, it can be
shown (see Supplementary Note 2)

F~cL¼3nðtÞ ¼ 4njb2 cosðαtÞ þ d2 cosðβtÞj2n; ð12Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ffiffiffiffiffi

57
pp

� 4:06815, β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� ffiffiffiffiffi

57
pp

� 1:20423,
b ≈ 0.694113 and d ≈ 0.134933. Eq. (12) is in excellent agreement
with the numerical results in Fig. 6a. It was also found to be a very
good approximation for the translation-invariant initial state
when L ≥ 9 (data not shown).

Figure 7a shows that the logarithm of the fidelity per site,
log ðFðTÞÞ=L, at the first peak, saturates at a finite value for large
L. In the improved cluster approximation, the first peak height
decays as e−0.04L (Supplementary Note 2). For a completely
random state, the fidelity would be F � 1=dimH. In the case ν = 1
and large L, the Hilbert space dimension grows with the system

size as

dimH ¼ 2L� 1

L

� �
� 2L

L

� �
� 4Lffiffiffiffiffiffi

πL
p : ð13Þ

This back-of-the-envelope estimate suggests the fidelity of a
random state is F ~ e−1.39L, which decays considerably faster than
the first peak height in Fig. 7. The improved cluster approxima-
tion correctly reproduces the short-time dynamics, including the
first revival peak, and sets a lower bound for the first peak height
– see Figs. 5 and 7b.

The evolution of the entanglement entropy for the extended
cluster approximation is shown in Fig. 5b. Inside the cluster,
entropy remains approximately constant with periodic oscilla-
tions that have the same frequency as the wave function revivals.
Any further growth of the entanglement entropy can be
attributed to the spreading of the wave function outside the
cluster. To illustrate the “leakage” of the wave function outside
the cluster, in Fig. 8 we compute the time evolution of the overlap
with a cluster, i.e., the probability to remain inside a cluster at
time t,

OCluster ¼
X

a2Cluster
jhajψðtÞij2: ð14Þ

We consider several initial configurations that lie inside or
outside the cluster. The configurations initially inside the cluster
mostly stay there, and the configuration ð210Þ4�� �

that has the
highest revivals also has the highest overlap. Similarly, config-
urations initially outside the cluster continue to have negligible
overlaps. The overlap starting from the configuration ð210Þ4�� �

Fig. 6 Cluster approximations. a Fidelity F(t), for the Hamiltonian H1 and
initial states ð210Þnj i, in the extended cluster approximation for various
system sizes. b Eigenstate overlap with the initial state jð210Þ8i plotted on a
log scale, for both cluster approximations. In the case of degenerate
eigenstates the sum of their overlaps is shown.

Fig. 7 First peak height. a Logarithm (base 10) of the first revival peak
divided by the system size, log ðFðTÞÞ=L, seems to saturate at a finite value
in the thermodynamic limit. b Comparison of the logarithm of the first
revival peak height for the full dynamics and the improved cluster
approximation. The approximation serves as a lower bound.

Fig. 8 Evolution of the probability to remain inside the minimal cluster.
OCluster, as defined in Eq. (14). Initial configurations are indicated in the
legend. Solid lines: configurations initially inside the cluster. Dashed lines:
configurations initially outside the cluster (all except jð111Þ4i are randomly
chosen). Similar results are obtained for the extended cluster (not shown).
System size L = 12.
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approximately predicts the revival peak heights for the full
dynamics.

We now summarize the relation between H3 and H1 from the
point of view of the cluster approximation. For the initial state
ð210Þnj i, the two models yield similar dynamics, compare Eq.
(23) and Eq. (12). The only difference is that the revival frequency
is doubled in the latter case, which can be easily explained by the
symmetry of the initial state and that of the Hamiltonian.
Hamiltonian H3 is inversion-symmetric. If the initial state is also
chosen to be inversion-symmetric, the frequency of the revivals
doubles. The period is then T inv

3 ¼ π=4, which is equal to the
period of revivals T1 of H1 in the cluster approximation. This is
also proven analytically in Methods, see Eq. (27). For comparison,
the revival period for the full Hilbert space is approximately 0.77,
which is slightly less than π/4 ≈ 0.79. The Hamiltonian H1 is not
inversion-symmetric, so the frequency does not double for an
inversion-symmetric initial state, but the revivals are lower in that
case. This shows that it is important for the symmetry of the
initial state to match the symmetry of the Hamiltonian.

Finally, the eigenstates of H1, projected to the subspace of the
minimal cluster approximation, form several degenerate bands
whose eigenenergies are equally spaced in integer multiples of 4.
Interestingly, some of these eigenstates approximately survive in
the full H1 model, and they are precisely the eigenstates that have
the highest overlap with the configurations ð210Þnj i, see Fig. 9a.
In small system sizes, such as L = 6, the surviving eigenstates are
also the lowest entropy eigenstates in the middle of the spectrum,
which is reminiscent of quantum scars in the PXP model20. In
larger systems, e.g., L = 12, the surviving eigenstates are slightly
lower in entropy than their neighbors, but are far from being the
lowest entropy eigenstates, as can be seen in Fig. 9. The lowest
entropy eigenstates have high overlaps with other configurations,
such as ð3100Þ3�� �

, as shown in Fig. 9b, c. In the case of ð210Þnj i,
the eigenstates surviving in the full system belong to every other
band of eigenstates in the cluster approximation and the number
of the surviving eigenstates is n + 1. For even system sizes this
counting includes a zero-energy eigenstate. In Methods we
discuss in more details the generalization of the cluster
approximations to the states of the form ðN10:::0Þnj i, which
were also found to have robust revivals and high overlaps with
some low-entropy eigenstates.

Discussion
In this paper, we have introduced three models of bosons with
“soft” kinetic constraints, i.e., density-dependent hopping. We
have demonstrated that some of these models exhibit similar
phenomenology to other realizations of quantum many-body

scars, for example the Rydberg atom system5. We have studied
quantum dynamics of these systems by performing global
quenches from tensor-product initial states. We have shown that
both the connectivity of the Hilbert space and the relative mag-
nitude of the hopping coefficients have dramatic effects on the
dynamics. For certain initial configurations, the constraints can
lead to slow thermalization and revivals in the quantum fidelity.
The revival frequency can be predicted by considering an expo-
nentially reduced subset of the Hilbert space. For a family of
initial configurations of the form ð210Þnj i, we have derived
analytical expressions for the evolution of quantum fidelity within
this approximation, which accurately capture the revival fre-
quency obtained from exact numerical data. One notable differ-
ence between scarred dynamics in the present bosonic models
and the PXP model is that the revivals exist in the absence of a
hard kinetic constraint, i.e., in the fully connected Hilbert space.
Our cluster approximation also explains the structure of some
low-entropy eigenstates in the middle of the many-body spec-
trum. In addition, we have calculated the evolution of two local
observables which are experimentally measurable, density corre-
lations between two neighboring sites and density on a single site,
and both of them show robust oscillations over a range of system
sizes. We have also shown that the introduced models contain
additional special properties, like the exponentially large zero-
energy degeneracy which is related to the bipartite structure of
the model.

We now comment on the possible experimental realizations of
the models we studied. The implementation of a correlated
hopping term (nkb

y
i bj) in optical lattices has attracted lot of

attention due to a possible onset of quantum phases related to
high-Tc superconductivity80. An early theoretical proposal
exploits asymmetric interactions between the two atomic states in
the presence of a state-dependent optical lattice80. As a result, the
obtained effective model corresponds to the inversion-symmetric
form of H1. In addition, the same term has been found to feature
as a higher-order correction of the standard Bose-Hubbard
model81–84. Although in this case the term typically represents a
modification of the regular hopping term of the order of several
percent, its contribution was directly measured85,86. More
recently, the set of quantum models accessible in cold-atom
experiments has been enriched through the technique of Floquet
engineering87. As a notable example, a suitable driving scheme
can renormalize or fully suppress the bare tunneling rate88. On
top of that, by modulating local interactions an effective model
with the density-dependent tunneling term has been engi-
neered89. For the models considered in this paper the most
promising is a more recent driving scheme exploiting a double
modulation of a local potential and on-site interactions90. Related

Fig. 9 Non-ergodic eigenstates. a Overlap of the configuration ð210Þ4
��� E

with all the eigenstates of H1, H
c
1 and H~c

1 versus the eigenstate energy for sector
k = 0 and system size L = Np = 12. b Same for ð3100Þ3

��� E
. c Entanglement entropy, eigenstates which have the highest overlap with some product states

are marked in different colors.
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sophisticated driving schemes have already enabled a realization
of dynamical gauge fields56,57,91 where both the amplitude and
the phase of the effective tunneling are density-dependent.
Although these experimental proposals explain how to realize
some of the correlated hopping terms present in our models using
ultracold atoms in optical lattices, finding a scheme that exactly
realizes our models requires further study. We emphasize that
other models which would exhibit non-ergodic dynamics and
scarred eigenstates as a result of the same mechanism that was
explained in this work could be built, for example a linear
combination of H1 and H2.

Note added: During the completion of this work, we became
aware of ref. 92 which identified non-thermal eigenstates and slow
dynamics in the quantum East model. Moreover, a recent study93

proposed a Floquet scheme for a bosonic model with density-
assisted hopping, finding signatures of quantum many-
body scars.

Methods
In order to more efficiently describe the dynamics of our models, we introduce a
method—"cluster approximation", that is based on Hilbert space truncation
inspired by the bipartite graph structure of H1. Before providing details about the
cluster approximation for H1 and its generalizations, we present an exact solution
for the perfect revivals in H3 model, which serves as a motivation for the more
complicated case of H1.

Bipartite lattice and zero modes. The graph of H1 is bipartite, i.e. all the basis
configurations can be divided into two disjoint sets, and the action of the
Hamiltonian connects configurations in one set only to the configurations in the
other and vice-versa (the Hamiltonian is off-diagonal). One way to sort config-
urations into these two sets is by parity of the quantity

Δa ¼
jneven � nodd þ Cj

2
; ð15Þ

where C = 0 if L is even and C = 1 if L is odd. We define neven and nodd as the total
numbers of particles at even and odd sites, respectively,

neven ¼
XL1
l¼1

n2l ; nodd ¼
XL2
l¼1

n2l�1; ð16Þ

where L1 = L2 = L/2 if L is even, and L1 = (L − 1)/2, L2 = (L + 1)/2 if L is odd. If
only nearest-neighbor hoppings are allowed and if no two odd sites are coupled (if
the system has open boundary conditions for any L or periodic boundary condi-
tions for L-even), each hopping either increases neven by one and decreases nodd by
one, or vice-versa. This means that each hopping can change Δa only by ±1.

In special cases, like H1 at filling factor ν = 1, it is also possible to define
quantities like Δa for odd system sizes and periodic boundary conditions. This is a
consequence of the constraints imposed by H1, i.e., the fact that a particle cannot
hop to an empty site to its left (Supplementary Note 3). Note that H2 in the same
geometry is not bipartite.

Another way to sort configurations into two sets is by parity of the distance
from the configuration 111:::111j i, which we define as

da ¼ minnf 111:::111h jHn
1 aj i ≠ 0g: ð17Þ

In this case, the two sets are the configurations with even and with odd distances
da. One hopping can change da only by ±1 or 0. Changes by other values are not
possible by definition if the Hamiltonian is Hermitian (all hoppings are reversible).
Both da and Δa have the same parity, thus da must always change after one hopping
in even system sizes or in systems with open boundary conditions. As a
consequence, da cannot change by 0 if Δa can only change by ±1.

The graphs of bipartite systems do not contain any loops of odd dimension
(triangles, pentagons, heptagons and so on). Moreover, the energy spectra of
bipartite systems are symmetric around zero. Their Hamiltonians anticommute
with the operator ð�1ÞΔa . The presence of such an operator in a bipartite lattice
leads to exact zero energy states in the spectrum94,95. It can be shown that the
exponentially growing number of zero modes of H1 is related to the difference
between the numbers of elements in the two sets of its bipartite graph
(Supplementary Note 4). Additionally, the algebraic structure of zero energy
eigenstates can be explained by the structure of the graph – such eigenstates can be
constructed as superpositions of configurations from only one of the sets. Similar
properties are found for H2 for even L, as its graph is also bipartite in that case. The
properties of the zero-energy manifold are discussed in more detail in
Supplementary Note 4.

Perfect revivals in the H3 model. We start with a warmup calculation for H3

acting on L = 3 sites. The connected subspace of 210 contains only two

configurations, 120 and 210. The Hamiltonian reduced to this subspace is

H0
3 ¼ � 0 2

2 0

� �
; ð18Þ

where the basis vectors are

1

0

� �
¼ 210j i; 0

1

� �
¼ 120j i: ð19Þ

The eigenvalues of H 0
3 are E1 = −2 and E2 = 2. The initial state ψ1ðt ¼ 0Þ�� � ¼

210j i evolves as
ψ1ðtÞ
�� � ¼ cosð2tÞ 210j i � i sinð2tÞ 120j i; ð20Þ

and the state ψ2ðt ¼ 0Þ�� � ¼ 120j i evolves as
ψ2ðtÞ
�� � ¼ �i sinð2tÞ 210j i þ cosð2tÞ 120j i: ð21Þ

Previous results can be straightforwardly generalized to larger systems. Let the
length of the system be L = 3n for simplicity. The connected component of the
state ð210Þnj i consists only of combinations of patterns 210 and 120, which means
that triplets of sites evolve independently. From Eq. (20), the initial state
ψnðt ¼ 0Þ�� � ¼ ð210Þnj i evolves as

ψL¼3nðtÞ
�� � ¼ cosnð2tÞ ð210Þnj i

þ ð�iÞnsinnð2tÞ ð120Þnj i þ :::
ð22Þ

where “. . . ” denotes contributions of the basis configurations other than ð210Þnj i
or ð120Þnj i. The fidelity is

FL¼3nðtÞ ¼ jhψnð0ÞjψnðtÞij2 ¼ j cos 2tj2n: ð23Þ
It follows that the revivals are perfect, with a period T3 = π/2. This result is also

valid for the translation-invariant initial state ð210Þnj iT,

ð210Þnj iT � 1ffiffiffi
3

p ð210Þnj i þ ð021Þnj i þ ð102Þnj ið Þ; ð24Þ

as the connected subspaces of 210, 021 and 102 do not overlap and therefore evolve
independently.

However, an initial state that is both translation symmetric and inversion
symmetric has different dynamics. The inverse of the configuration ð210Þnj i is the
configuration ð012Þnj i, which is a translation of the state ð120Þnj i that belongs to
the connected subspace of ð210Þnj i. The initial state

ψinv
n ðt ¼ 0Þ�� � ¼ 1ffiffiffi

2
p ð210Þnj iT þ 1ffiffiffi

2
p ð120Þnj iT ð25Þ

evolves as

ψinv
n ðtÞ�� � ¼ cosn2t þ ð�iÞnsinn2tð Þ ψinv

n ðt ¼ 0Þ�� �þ ::: ð26Þ
and the fidelity is

Finv
n ðtÞ ¼ jhψinv

n ð0Þjψinv
n ðtÞij2

¼ jcosn2t þ ð�iÞnsinn2tj2:
ð27Þ

The frequency of the revivals is now doubled, so the period is T inv
3 ¼ π=4.

Cluster approximations for the H1 model. Here we introduce a scheme for
approximating the dynamics from initial states (210)n in the H1 model. As can be
observed in Fig. 3, the revival periods are approximately the same for different
system sizes. We first focus on the non-trivial case L = 6. Figure 10 shows part of
the graph that contains the initial state, 210210j i. Configurations labeled inside the
ellipses denote representatives of an orbit of translation symmetry, i.e., the con-
figurations are translation-invariant such as the one in Eq. (24).

The minimal subcluster of the graph is highlighted in blue color in Fig. 10. This
cluster is indeed weakly connected to the rest of the configuration space, as it has
only 3 connections that lead outside this cluster (dashed lines) and their hopping
coefficients are slightly lower in magnitude than those inside the cluster, meaning
that the probability is higher to stay inside the cluster than to leave. The hopping
coefficients leading outside are not significantly smaller than the coefficients
staying inside, but in combination with the relatively small number of connections
this has significant effects on the dynamics. This effect is even more pronounced
when the difference in magnitudes is further increased by squaring the particle-
number operators (see Supplementary Note 1).

The minimal cluster from Fig. 10 contains all the states given by tensor products
of 210, 120 and 300 configurations. The set of configurations belonging to this
cluster could have been chosen differently, but this particular choice has at least
two advantages. Firstly, inside this cluster, the evolution of the configuration
210210j i can be thought of as two subsystems 210 evolving separately. The
evolution of all such configurations at different system sizes can be reduced to the
evolution of L = 3 subsystems 210, similar to the case of H3 in the connected
subspace of (210)n. Secondly, this definition allows easy generalization to different
system sizes L = 3n with initial states (210)n. We would like to emphasize that the
cluster was not chosen arbitrarily. The calculations of the probability density
distribution starting from the initial configuration 210210j i and evolving with H1
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have shown that the probability density stays high in this region of the Hilbert
space as long as the revivals in fidelity are visible. The configurations important for
the dynamics were then identified by analyzing the structure of the graph around
the initial configuration.

As an example, consider system size L = 3. The reduced Hilbert space of the
cluster Hc is spanned by the (non-translation-invariant) configurations

1

0

0

0
B@

1
CA ¼ 300j i;

0

1

0

0
B@

1
CA ¼ 210j i;

0

0

1

0
B@

1
CA ¼ 120j i: ð28Þ

The Hamiltonian reduced to this subspace is

Hc
1 ¼ �

0 2
ffiffiffi
3

p
0

2
ffiffiffi
3

p
0 2

0 2 0

0
B@

1
CA; ð29Þ

and its eigenvalues are E1 = −4, E2 = 4, E3 = 0. The initial configuration 210j i
evolves according to

ψc
1ðtÞ

�� � ¼� i
2
sinð4tÞ ffiffiffi

3
p

300j i þ 120j i
� �

þ cosð4tÞ 210j i:
ð30Þ

By generalizing this result to larger systems, it is easy to prove Eqs. (10) and (11).
The minimal clusters can be expanded by adding several neighboring

configurations. For similar reasons as in the case of minimal clusters, the extended
clusters are defined as sets of all states which can be obtained using tensor products
of the configurations 210, 120, 300 and 111. In the case of L = 6, the enlarged
cluster can be observed in Fig. 10. It contains the minimal cluster studied
previously, but it also includes additional configurations shown in green ellipses.
Again, the approximation could be improved by including more configurations,
but this particular choice is well suited for analytical treatment (Supplementary
Note 2) and, as shown above, it gives a good prediction for the first revival peak
height.

Generalization to other clusters. Building on the previous observation that some
of the low-entropy eigenstates have large weight on ð3100Þ3�� �

product state, we
have investigated periodic revivals from such a larger class of initial states. We find
that robust revivals are associated with initial product states of the form�����ððN � 1Þ1 0:::0|{z}

N�2

Þn
+
; ð31Þ

where N is the length of the unit cell (L = Nn). For example, some of these
configurations are ð3100Þnj i, ð41000Þnj i and ð510000Þnj i. Combinations of those
patterns such as 310041000j i also exhibit similar properties, but we will restrict
ourselves to the simpler former cases.

We can construct a generalization of the cluster approximation for
configurations of the form in Eq. (31). As in the case of ð210Þnj i, the dynamics
inside one unit cell explains the dynamics of the full system. The generalized
clusters can be chosen in such a way that their Hilbert spaces are spanned by N
configurations

ij i ¼ ððN þ 1� iÞði� 1Þ 0:::0|{z}
N�2

Þn
������

+
; ð32Þ

where i takes values 1, 2, …N. If we consider only one unit cell (n = 1), the graph
that connects these configurations has a linear structure without any loops, i.e.,

each configuration ij i is solely connected to the configurations i± 1j i, except the
two configurations at the edges, 1j i and Nj i, which are only connected to 2j i and
N � 1j i, respectively.

The projection of the Hamiltonian H1 to this cluster, which we denote by Hc
1,

has a very simple structure: it has the form of a tight-binding chain with the only
nonzero matrix elements on the upper and lower diagonals:

Hc
1;i;iþ1 ¼ Hc

1;iþ1;i ¼ ðN � iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðN þ 1� iÞ

p
: ð33Þ

The dynamics within a single unit cell under Hc
1 corresponds to density

fluctuations between the first and the second site. Following the same procedure as
previously, we can now diagonalize Hc

1 and compute the fidelity time series for the
initial configuration ðN � 1Þ10:::0j i. This result can be directly generalized to
configurations of the form ððN � 1Þ10:::0Þnj i. The derivation is valid for both
translation-invariant and non-translation-invariant initial configurations, as the
cluster in Eq. (32) is disconnected from its translated copies. We stress that this
disconnection, namely the absence of a hopping term between 1ðN � 1Þ0:::0j i and
0N0:::0j i, is a consequence of the constraints imposed by H1 and it would not hold
for H2. In this way, we have calculated the time evolution of the fidelity starting
from the configurations ð3100Þnj i (for n = 1, 2, 3, 4), ð41000Þnj i (n = 1, 2, 3) and
ð510000Þnj i (n = 1, 2), and compared it with the exact numerical results for the full
H1. The cluster approximation captures both the revival frequency and the height
of the first peak. Similar to the ð210Þnj i case, the approximation can be improved
by adding further configurations to the clusters. Moreover, if we want to consider
translation-invariant initial states, we can follow the same recipe for ð210Þnj i by
summing translated patterns with the required phase factors given in terms of
momenta in multiples of 2π/N. We have checked that revivals appear in these
momentum sectors, with roughly the same frequency.

We note that the configurations with larger units cells thermalize more quickly
on shorter timescales, but slower at long times. Initially, the states starting from
configurations with smaller N have lower entanglement entropies than those with
larger N. The Hilbert spaces of large N unit cells are larger, so the entanglement
entropy starting from these configurations rapidly grows to the maximal value for
that unit cell. However, the only way for the wave function to spread through the
entire Hilbert space is that a unit cell reaches a state close to 111. . . 111, so that
particles can hop to the other unit cells. This is less likely for large N, and therefore
such configurations need long times to fully thermalize. As a result, smaller N
entanglement entropies grow faster and after long enough time they overtake those
for larger N. For example, in the case of L = 12 and translation-invariant initial
states, (210)4 overtakes (3100)3 and (510000)2 around t ~ 2, and (3100)3 overtakes
(510000)2 around t ~ 80 (Supplementary Fig. 3).

Finally, we note that non-thermal behavior reminiscent of the one studied here
was previously observed in an unconstrained Bose-Hubbard model, for example in
the context of “arrested expansion”96,97 and quenches from superfluid to Mott
insulator phase98,99. In these cases, the main ingredient is the strong on-site
interaction, which causes the energy spectrum to split into several bands. Due to
the large energy differences between bands, the dynamics of an initial state from a
particular band is at first limited only to the eigenstates that belong to the same
band. Additionally, these energy bands are approximately equally spaced, which
can lead to revivals in fidelity if several bands are populated. In contrast, our
models do not feature on-site interaction, and the mechanism which slows down
the spread of the wave function is correlated hopping, which suppresses
connections between certain configurations and modifies the hopping amplitudes
between others, thus creating bottlenecks that separate different clusters of states.

Data availability
The data that support the plots within this paper and other findings of this study are
available at https://doi.org/10.5518/810100.

Fig. 10 Minimal and extended clusters. Hamiltonian H1 and system size L = Np = 6. Configurations labeled inside the ellipses are representatives of an
orbit of translation symmetry. The minimal cluster is defined by the blue configurations, while green configurations represent the additional components of
the extended cluster. Gray arrows connect to configurations outside the extended cluster. The numbers bellow the graph show the distance da from the
configuration 111111 evaluated using Eq. (17).
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Condensation versus long-range interaction: Competing quantum phases in bosonic optical lattice
systems at near-resonant Rydberg dressing
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1Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt am Main, Germany
2Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade,

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
(Received 10 January 2017; published 15 June 2017)

Recent experiments have shown that (quasi)crystalline phases of Rydberg-dressed quantum many-body systems
in optical lattices (OL) are within reach. Rydberg systems naturally possess strong long-range interactions due
to the large polarizability of Rydberg atoms. Thus a wide range of quantum phases has been predicted, such as
a devil’s staircase of lattice-incommensurate density wave phases as well as the more exotic lattice supersolid
order for bosonic systems, as considered in our work. Guided by results in the “frozen”-gas limit, we study
the ground-state phase diagram at finite hopping amplitudes and in the vicinity of resonant Rydberg driving
while fully including the long-range tail of the van der Waals interaction. Simulations within real-space bosonic
dynamical mean-field theory yield an extension of the devil’s staircase into the supersolid regime where the
competition of condensation and interaction leads to a sequence of crystalline phases.

DOI: 10.1103/PhysRevA.95.063608

I. INTRODUCTION

Despite the high tunability of ultracold atomic systems as
analog quantum emulators, strong long-range correlations still
represent an important challenge in the field. While Feshbach
resonances give access to tunable local interactions [1], recent
experimental breakthroughs allow for the trapping, cooling,
and control of ultracold polar molecules, as well as magnetic
[2] and Rydberg atoms [3]. The significance of Rydberg
excitations for creating strong nonlocal correlations has been
pointed out [4–6].

Recent experiments have studied the statistical properties of
dissipative Rydberg gases [7,8] and especially of superatoms
[9–11], where the Rydberg blockade effect was analyzed.
Using electromagnetically induced transparency, the occur-
rence of diffusive Förster energy transport has been shown
[12]. Also, ultralong-range Rydberg molecule formation has
already been observed [13], while crystallization of Rydberg
atoms has been achieved up to a small number of excitations
in the “frozen” limit [14,15]. There the system behaves like
a spin- 1

2 model with imbalanced interactions, as analyzed in
numerous theoretical works [15–20], predicting a series of lat-
tice incommensurate ordered phases (“devil’s staircase”). The
opposite limit of weak Rydberg dressing has extensively been
investigated in theory [6,21–25], predicting the formation of
(droplet) supersolids (SSs), while its experimental realization
remains an open challenge [9,26–28].

II. SYSTEM

In this work we focus on the far less understood interme-
diate regime of finite hopping at near-resonant and coherent
excitation of the Rydberg state. Previous work in this regime
so far has considered only either the nearest-neighbor (NN)
limit for the interactions in a Gutzwiller mean-field simulation
[29] or the low-dimensional case [30] with vanishing single-

*geissler@th.physik.uni-frankfurt.de

particle hopping [31]. In the following we will introduce our
approach for obtaining a ground-state phase diagram. The
combination of a frozen-limit model and a real-space extension
of bosonic dynamical mean-field theory (RB-DMFT) allows
for an efficient quantitative analysis of the phase diagram for
an arbitrary range of the interaction. We first introduce the
two-species frozen-limit model, which we solve in the Hartree
approximation. Then we outline the calculation of the phase
diagram using RB-DMFT. Finally, we discuss the obtained
quantum phases and the different types of long-range order
observed.

Considering both ground |g〉 and Rydberg excited |e〉 states,
our full grand-canonical Hamiltonian (in natural units h̄ = 1)
can be written in terms of bosonic annihilation operators b̂σ,i

acting on site i of a square optical lattice (OL), where n̂σ
i =

b̂
†
σ,i b̂σ,i and σ = g,e:

H = H2BH,kin +
N∑
i

(H2BH,loc,i + HR,i + HvdW,i), (1)

with the kinetic energy given by hopping of strength J

and ηJ between all pairs of NN 〈i,j 〉 as H2BH,kin =
−J

∑
〈i,j〉 (b̂†g,i b̂g,j + ηb̂

†
e,i b̂e,j + H.c.) and local interaction

terms for a two-species model included in

H2BH,loc,i = U

[
n̂

g

i

2

(
n̂

g

i − 1
)+ λn̂

g

i n̂
e
i + λ̃

n̂e
i

2

(
n̂e

i − 1
)]

−μ
(
n̂

g

i + n̂e
i

)
, (2)

where U,λU , and λ̃U are the strengths of the three Hubbard
interaction terms and μ is the chemical potential. The excited
electronic (Rydberg) states of the atoms are populated via
coherent driving, which leads to Rabi oscillations. This process
is induced by the interaction with the laser light field [see, for
example, Eq. (A.11) in Chap. V of [32]]. So, when using the
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interaction picture, for a given atom we have

H
(I )
R = − d̂ · E0 cos(ωLt)

=�
2

(
e−iωLt + eiωLt

)
σ̂+(t)

+ �
2

∗(
e−iωLt + eiωLt

)
σ̂−(t). (3)

The time dependence of the (pseudospin-flip) σ̂± operators
is given by the transition frequency ω0, while ωL is the
frequency of the light field. If we thus insert σ̂±(t) = σ̂±

0 e±iω0t

into (3) while also replacing σ̂±
0 by appropriate products of

bosonic creation and annihilation operators, we obtain the full
expression in the interaction picture:

H
(I )
R =�

2 (e−i�t + ei(ωL+ω0)t )b̂†eb̂g

+ �
2

∗
(e−i(ωL+ω0)t + ei�t )b̂†gb̂e. (4)

We can then assume that the Rabi frequency �, as given
by the dipole moment of the transition and the strength
of the light field, is a real quantity. The detuning � =
ωL − ω0 defines the slow time scale. Terms oscillating with
fast frequencies can be discarded if � � ωL + ω0, yielding
the rotating-wave approximation [33]. The time-independent
Hamiltonian in the rotating-wave approximation follows from
the unitary transformation, defined by the time-dependent
unitary transformation matrix U = U (t) = b̂

†
gb̂g + ei�t b̂

†
eb̂e:

HR = UH
(I )
R U−1 + i

dU

dt
U−1 = �

2
(b̂†gb̂e + b̂†eb̂g) − �n̂e.

(5)

This follows straight from [U, d
dt

] = −( dU
dt

), which simply has
to be inserted into the Schrödinger equation, while the wave
function transforms as ψ̃ = Uψ . Thus the Rabi process for
each lattice site in the rotating-wave approximation takes the
following form:

HR,i = �
2 (b̂†g,i b̂e,i + b̂

†
e,i b̂g,i) − �n̂e

i . (6)

In addition we also consider the nonlocal van der Waals
(vdW) interaction between Rydberg states. At distances
relevant in OLs, it is dominated by its long-range tail; thus
for atoms at sites i and j

HvdW,i = VvdW

2

∑
j �=i

n̂e
i n̂

e
j

|i − j|6 , (7)

where VvdW = C6/a
6, with the vdW coefficient C6 and

the lattice parameter a. This model has been previously
investigated only in the limit of NN interactions by applying
Gutzwiller mean-field theory [29]. In our study we go beyond
this common approximation and show that the phase diagram
is far richer.

Many of the above model parameters are easily adjustable
in experiments, some even over several orders of magnitude.
The Rabi parameters can be directly controlled via the laser
intensity (Rabi frequency �, which also depends on the matrix
elements of the chosen transition) and laser detuning � [1],
while the vdW interaction is determined by the Rydberg level
considered. The remaining parameters are not as simple to
control. The hopping of Rydberg-excited atoms is not yet
an experimentally well controlled parameter since the OL,

trapping the ground-state (GS) atoms, is not the same for
Rydberg states by default. Often, it is even of opposite sign
[34–36]. Here we focus on the limiting case η = 0, motivated
by the fact that the Rydberg part of the Hilbert space is
dominated by the vdW interaction and the Rabi frequency,
while the total kinetic energy contribution from |e〉 will be
small compared to |g〉 due to low Rydberg fractions (similar
to [6], see Appendix B). As the Rydberg states are perturbed
by the Rabi process, their localization will be lifted anyway
due to hybridization of |e〉 with |g〉.

Local interactions are fixed by considering the quantum
Zeno effect [37–39]. It describes the observation that loss
channels with a bare loss rate γ0 � U are strongly suppressed
in the lattice, as this corresponds to a strong measurement of
the lossy states, thus keeping them fixed at zero occupation.
Experiments have shown the large cross section of molecular
ion formation in Rydberg gases [9]. Due to the different
electronic structures of such ions, they are not trapped by the
confining potential, implying a large bare loss rate γ0. The local
quantum states susceptible to molecule formation or ionization
correspond to Fock states of the form |ng � 0,ne > 0〉. We can
model their loss-induced suppression by choosing “arbitrary”
large values for both λ and λ̃ (2).

III. FROZEN-LIMIT MODEL

Due to the many possible spatial crystalline orderings, an
efficient method to distinguish them is needed. Therefore
we first analyze the frozen limit, where all spatial hopping
terms are zero (J = 0). This allows for a simple analytical
investigation of the ground-state manifold with few approxi-
mations. Moreover, it makes for a useful exact starting point
for considering finite hopping (J �= 0), which we simulate
within RB-DMFT. Assuming a mean lattice filling n̄ < 1,
where n̄ = ∑

i(〈n̂g

i 〉 + 〈n̂e
i 〉)/N , only empty or singly occupied

sites are to be expected. We may also assume that such a
system always has a spatially periodic ground state. For such
crystalline order, we consequently need to consider only those
sites i of the full Hamiltonian which are nonempty in order to
calculate the energy:

Hi =�
2 (b̂†g,i b̂e,i + b̂

†
e,i b̂g,i) − �n̂e

i

− μ
(
n̂

g

i + n̂e
i

)+ VvdW

2

∑
j �=i

n̂e
i n̂

e
j

|i − j|6 .
(8)

Any periodic superlattice structure can be constructed
from a set of spanning vectors [one per spatial dimension,
Fig. 1(a1)], which in our case are restricted to the discrete set of
points given by the OL. Applying the Hartree approximation
for a given set of spanning vectors (a1,a2) (given in units
of lattice spacings a), the Hamiltonian reduces to a set
of self-consistent single-site problems with at most A

(a1,a2)
cluster

different self-consistent values ne
j = 〈n̂e

j 〉, where A
(a1,a2)
cluster is the

area (in units of lattice sites) spanned by the given vectors.
Due to low filling n̄ < 1 we consider only two values (ne

A,ne
B),

where each corresponds to one of the two sublattices defined
by their sets of sites A and B [indicated by open and solid
circles in Fig. 1(a2)] of a checkerboard version of the spanned
superlattice.
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(a1) (a2) (c1)

(b)

(c2)

FIG. 1. (a1) Spanning vectors (a1,a2) define the Bravais cell
of a superlattice for the underlying OL (gray). Black solid circles
correspond to occupied sites, while the remaining sites are empty.
(a2) Possible checkerboard generalizations of (a1), where spanning
vectors connect two different sublattices (solid and open circles).
Mapping to the striped versions (I and II) is explained in the text. In
(b) and (c) different crystalline phases of the frozen-limit model can
be distinguished by A

(a1,a2)
cluster (explained in the text). (b) shows devil’s

staircases (for values of the long-range interaction, increasing from
bottom to top, as given in the legend) for the logarithmic approach to
�/� = −3/4 at μ0/� = −1/4 [solid lines in (c1) and (c2)]. Phases
above white lines in (c1) and (c2) correspond to two-sublattice order
with canted state orientation.

For given vectors (a1,a2) two further versions are indicated
by I and II in Fig. 1(a2), where one of the two transformations
a1/2 → a′

1/2 = a1/2 + a2/1 was applied. This allows for energy
optimization via canted state orientation, which is equivalent
to canted Ising antiferromagnetic (CIAF) order and becomes
important for increased lattice fillings. Generally, frozen states
(within the Hartree approximation) can be written as

|
〉 =
∏
C

N∏
i∈C

(cos φi |↓〉 i + eiθi sin φi |↑〉 i), (9)

where the state of the full system is given by a product over a
lattice of unit cells C containing N sites each, with an internal
structure given by the set of φi ∈ [0,π/2] and θi ∈ [0,2π ] for
i = 1, . . . ,N . Setting at least one φi �∈ {0,π/2} yields CIAF
order. In the case of the Mott-like frozen limit, the not yet
specified quasispin states can, in principle, be any set of two
bosonic Fock states, including the empty vacuum state |ng =
0,ne = 0〉. Note that the use of different particle numbers for
the states at site i, for example, the combination of an empty
site with any allowed Fock state on this site, implies φi =
0,π/2. Also note that θi = π combined with (↓ , ↑) = (g,e)
corresponds to a dark state, as is used for an s-state to s-state
transition (required for isotropically interacting 87Rb Rydberg
states) to suppress decay via the intermediary p state. An
example of CIAF order is schematically shown in Fig. 2, where
the two sublattices correspond to the A and B sites.

FIG. 2. Schematic representation of a one-dimensional CIAF
state in an optical lattice. Colored circles correspond to the ground
(blue, bottom row) and excited (red, top row) Fock states, and the
opacity is related to the amplitudes in the local linear combinations
(9). A complete polarization of the state is suppressed by the Rabi
process induced by the incident light field (small black waves and
arrows).

For the interaction energy for each sublattice within the
Hartree approximation we obtain (A ↔ B)

H Hartree
vdW,A = VvdW n̂e

A

⎛
⎝∑

j∈A\0

〈
ne

A

〉
j6

+
∑
j∈B

〈
ne

B

〉
j6

⎞
⎠, (10)

where j points from a given site (0) of A to any site of both A

and B. Thus the site-averaged grand-canonical potential f is
simply given by f = ∑

i 〈Hi〉/A(a1,a2)
cluster = ∑

i=A,B
〈Hi 〉

2 n̄ with
the vdW interaction evaluated by (10).

Minimizing f with respect to a set Vs of spanning vectors
then yields the many-body ground-state phase diagram in the
frozen limit for n̄ < 1, as shown in Figs. 1(b) and 1(c). For this
variational minimization it is useful to represent the remaining
sums over the sublattices A and B as functions of the spanning
vectors,

V a2
a1

=
∑

j∈A\0

1

j6
, W a2

a1
=
∑
j∈B

1

j6
,

while it is furthermore helpful to introduce

R = Ra2
a1

= max
(
V a2

a1
,W a2

a1

)
/min

(
V a2

a1
,W a2

a1

)
(11)

as the crystal-structure-dependent ratio of the long-range
interaction sums. The dependence of Ra2

a1
on the spanning

vectors is shown by the contour lines in Fig. 3. It should
be noted that there is no dependence on the actual form
of the interaction, as we use a scale-free long-range interaction
in the present case. In order to perform the minimization
procedure, we generate a set Vs (as shown in Fig. 3), which
needs to at least represent the whole range of superlattices,
which can in principle be expected in the regime under
consideration. In our frozen model (8) the on-site interaction
U is neglected for n̄ < 1. With � as the energy scale, only
VvdW , �, and μ remain as tunable parameters, defining the
region to be investigated.

Especially, VvdW is important for the choice of Vs , as
it defines the blockade radius Rb = (C6/�)1/6 for Rydberg
excitations, which corresponds to a radius of up to 5 OL sites
for VvdW � 104�. On a square lattice this would correspond
to a volume of up to 25 lattice sites. In order to allow for
even lower fillings, enabled by the chemical potential or the
detuning, we will consider volumes of up to 12 × 12 lattice
sites. The complete set Vs of spanning vectors used here
is shown in Fig. 3, modulo similarity transformations for
each pair.

If we then also define V = VvdW min(V a2
a1

,W a2
a1

) and use the
Rabi frequency � as the energy scale, the self-consistency
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FIG. 3. Each colored (grayscale) marker represents a pair of tested spanning vectors (each in units of lattice spacing a) from the set Vs .
Their coordinates are given by the larger vector, after a combined scaling and rotation of both vectors, so that the smaller vector is mapped onto
(0,1). They can thus appear only outside of the unit circle (thick black line). Their color and size correspond to the area of each crystal unit
cell. In addition, also some contour lines for R

(x,y)
(0,1) are shown. Crossed markers correspond to crystal structures actually appearing as ground

states of the atomic limit model in the blue-detuned regime for VvdW < 104�.

conditions for ne
A/B = 〈n̂e

A/B〉 in the many-body ground state
are given by

ne
A/B =1 − ne

A/B |V (ne
B/A + Rne

A/B

)− �

+
√

1 + (
V
(
ne

B/A + Rne
A/B

)− �
)2|

. (12)

The solutions of this effective model, where R is just the
ratio of any inter- and intrasublattice interactions, are shown
in Fig. 4 for some relevant values of R (compare Fig. 3).

As f = ∑
i=A,B

〈Hi 〉
2 n̄ within these limits and approxima-

tions, its minimization with respect to our set Vs yields the
many-body ground-state phase diagram in the atomic limit for

FIG. 4. Various solutions of the effective frozen model (12) for
R = 2,7. Shown are the Rydberg fractions ne for each of the two
sublattices, which are respectively indexed by whether the sublattice
with high or low Rydberg fraction is considered. Canting appears if
nlow

e �= n
high
e and at least one of them is not equal to unity.

n̄ < 1, as shown in Figs. 1(b) and 1(c). In the comparison of
all lattice structures from the set Vs , as shown in Fig. 3, the
configurations of minimal energy anywhere in the analyzed
parameter region [compare parameter ranges in Figs. 1(b)
and 1(c)] are marked by crosses. Those points primarily
accumulate where they correspond to either triangular order,
a2 = (

√
3/2,1/2), or a square lattice, a2 = (1,0). Points with

increased R > 10, on the other hand, are more susceptible
to the formation of CIAF order (as can be seen in Fig. 4).
If one then considers only one of the two sublattices, for
example, the one with the increased Rydberg fraction, it again
resembles triangular order more closely, which is possible
without the canted order while keeping the lattice filling
constant. On the other hand, no spanning vectors with minimal
energy are to be found beyond a radius of 2; in particular, the
point (2,0) is the most distant (see Fig. 3), which rules out
stripelike order.

From (8) in the Hartree approximation it furthermore
follows that the chemical potential μ0, determining the
transition to the vacuum state, is given by

μ0 = −� + √
�2 + �2

2
. (13)

Approaching this limit by varying either μ, �, or � yields
a devil’s staircase of fractional lattice-commensurate fillings
[see Fig. 1(b)], stabilized by the long-range interactions. Note
that our ansatz allows only for fillings of the form 1

n
with n ∈ N

(see also [40,41]).

IV. ITINERANT CASE WITHIN RB-DMFT

We now use the frozen-limit results as an exact starting point
for our RB-DMFT simulations since both models map to each
other in the Hartree approximation for vanishing J and n̄ < 1.
However, for nonzero J we cannot expect the crystal symmetry
to always be given by the frozen-limit results. Therefore other
crystalline structures corresponding to similar mean interatom
distances are also simulated. Furthermore, RB-DMFT requires
a truncation of the local Fock space. Since a hard cutoff,
using only the first Nc Fock states, strongly restricts the
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maximum observable local particle number in a condensate,
we instead use a soft cutoff utilizing the coherent-tail state ∝∑∞

n=Nc

αn√
n!

|n〉 [42], where Nc = 4, leading to a negligible error
in the calculated observables, which is maximal for values of
J/� > 0.1, where it is on the order of a few percent (< 3%).
The ground state is then found by comparing the resulting
lattice-averaged grand-canonical potentials f = 〈H 〉/Acluster

for each of the considered crystal structures. In order to allow
for checkerboard order on all cluster types (even those of
odd-valued volume), we always simulate clusters generated
by the spanning vectors (2 · a1,2 · a2).

Calculating f is not straightforward within RB-DMFT,
as the kinetic energy Ekin = 〈H2BH,kin〉 is given in terms of
nonlocal expectation values 〈b̂†σ,i b̂σ,j 〉, which therefore cannot
directly be calculated from the self-consistent local Anderson
impurity models used by RB-DMFT. But it can be shown that
within the RB-DMFT self-consistency conditions, Ekin can
also be written in terms of connected local Green’s functions
GC

σ,i and Anderson impurity hybridization functions �σ,i , for
which we will now give a short introduction regarding their
role within DMFT.

A. Kinetic energy and connected Green’s functions

Starting from the connected normal real-space Green’s
function at equal times, with time ordering fixed by the
infinitesimal time difference ε < 0, we have

lim
ε→0−

GCn
σ,ji(ε,0) = − (〈b̂†σ,i b̂σ,j 〉 − 〈b̂†σ,i〉〈b̂σ,j 〉)

= lim
ε→0+

∞∑
n=−∞

eiωnε

β
GCn

σ,ji(iωn) (14)

for the connected Green’s functions GCn
σ,ji(iωn) in bosonic

Matsubara frequencies. The anomalous part is accordingly
given by

lim
ε→0−

GCa
σ,ji(ε,0) = − (〈b̂σ,i b̂σ,j 〉 − 〈b̂σ,i〉〈b̂σ,j 〉)

= lim
ε→0+

∞∑
n=−∞

eiωnε

β
GCa

σ,ji(iωn). (15)

Thus expressing the total kinetic energy in terms of connected
real-space Green’s functions yields

Ekin = −
∑
ijσ

J σ
ij 〈b̂†σ,i b̂σ,j 〉

=
∑
ijσ

J σ
ij

(
lim

ε→0+

∞∑
n=−∞

eiωnε

β
GCn

σ,ji(iωn) − φ∗
σ,iφσ,j

)
,

where φσ,i = 〈b̂σ,i〉 is the local condensate order parameter of
the atomic state σ at lattice site i, while J σ

ij is the matrix of
allowed hoppings in the system. This expression can be further
simplified by employing both the local [(16) as in (36) from
[43]] and lattice [(17) as in (37) from [43]] Dyson equations
in Nambu notation, as regularly used within RB-DMFT. Here
we suppress the state index σ , as this part of the derivation is
independent of the atomic state. In Nambu notation for n � 0
the real-space lattice Green’s functions are represented as
GCn

ji (+iωn) = [GC
ji(iωn)]11 and GCn

ji (−iωn) = [GC
ji(iωn)]22,

while the anomalous term is given by GCa
ji (+iωn) =

[GC
ji(iωn)]12 = GCa

ji (−iωn) and [GC
ji(iωn)]12 = [GC

ji(iωn)]∗21.
So

GC
i (iωn)−1 = iωnσz + μ12 + �i(iωn) − �i(iωn), (16)

[GC(iωn)−1]ij = Jij 12 + δij [iωnσz + μ12 − �i(iωn)], (17)

where the Pauli matrix σz is used due to Nambu notation. These
equations are given in terms of local self-energies �i(iωn),
the Anderson impurity hybridization function �i(iωn), and
the local impurity Green’s function GC

i (iωn) := [GC(iωn)]ii
(DMFT self-consistency). Inserting �i(iωn) from (16) in (17),
combined with a matrix multiplication by GC(iωn) from the
right, where we are interested in only the diagonal elements,
yields∑

j

[GC(iωn)−1]ij [GC(iωn)]ji

=
∑

j

{Jij 12 − δij [�i(iωn) − GC
i (iωn)−1]}[GC(iωn)]ji .

Further using the self-consistency property of the impurity
Green’s function leads to the identities∑

j

Jij [GC(iωn)]ji = �i(iωn)GC
i (iωn), (18)

where only the diagonal parts are of interest to us. Considering
the symmetries in Nambu notation, they allow us to simplify
our expression for Ekin:

Ekin = 2

β
lim

ε→0+

∑
iσn�0

Re
{[

�σ,i(iωn)GC
σ,i(iωn)

]
11e

iωnε
}

−
∑
ijσ

J σ
ij φ

∗
σ,iφσ,j − Tr[�σ,i(0)GC

σ,i(0)]

2β
. (19)

The remaining problem is due to the cutoff imposed on the
Matsubara frequencies in the numerics, which implies that the
limit of equal times is not simply given by setting ε = 0. One
can instead account for the cutoff by requiring that the particle
number is given correctly:

− 1

β

∑
n

GC
R,σ,ii(iωn)eiωnε + φ∗

σ,iφσ,i
!= 〈

n̂σ
i

〉
AIM

. (20)

For every site and species this yields a value of ε, which can be
used to calculate the kinetic energy in the local representation
(19), thereby allowing the complete calculation of the lattice-
averaged grand-canonical potential f for each of the various
crystal structures.

B. Hybridization functions �σ,i of the effective impurity model

The essence of RB-DMFT simulations is the mapping of
a lattice model onto a set of self-consistent quantum impurity
models. The primary aim of the mapping for each site is an
optimal representation of the total action S in terms of an
effective local impurity action Seff. Suppressing the pseudospin
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σ , one has

S[b∗,b] =
∫ β

0
dτ

(∑
i

b∗
i (τ )

∂bi(τ )

∂τ
+ H

)
= S0 + C + �S,

(21)

with H given by the model Hamiltonian (1) in terms of the
boson fields bi(τ ) as functions of imaginary time τ . For a given
site i ≡ 0 we also introduce both

S0 =
∫ β

0
dτ

(
b∗

0
∂b0

∂τ
− μb∗

0b0 + U

2
|b0|4

)
,

�S =
∫ β

0
dτ
∑
〈0,i〉

(−t0ib
∗
0bi − t∗0ib

∗
i b0).

In an approximative way, by integrating over the rest of the
system, we derive the effective action Seff for a given site i ≡ 0
via

Seff =S0 +
∫ β

0
dτ
∑
〈0,i〉

−(t0ib
∗
0〈bi〉C + t∗0ib0〈b∗

i 〉C)

− 1

2

∫ β

0
dτ

∫ β

0
dη[b∗

0(τ ) b0(τ )]M(τ,η)[b0(η) b∗
0(η)]T ,

where we introduce the cavity expectation value 〈·〉C for the
system where the site of interest has been removed:

〈x〉C =
∏

i �=0

∫
Db∗

i Dbix exp(−C)∏
i �=0

∫
Db∗

i Dbi exp(−C)
. (22)

Then one further obtains

M11(τ,η) =
∑
i,j

t0i t
∗
0j [〈bi(τ )b∗

j (η)〉C − 〈bi(τ )〉C〈b∗
j (η)〉C],

M22(τ,η) =
∑
i,j

t∗0i t0j [〈b∗
i (τ )bj (η)〉C − 〈b∗

i (τ )〉C〈bj (η)〉C],

M12(τ,η) =
∑
i,j

t0i t0j [〈bi(τ )bj (η)〉C − 〈bi(τ )〉C〈bj (η)〉C],

M21(τ,η) =
∑
i,j

t∗0i t
∗
0j [〈b∗

i (τ )b∗
j (η)〉C − 〈b∗

i (τ )〉C〈b∗
j (η)〉C].

On the other hand, we use exact diagonalization to solve
the effective impurity model, representing the hybridization
function in (16) for each site via a corresponding effective
impurity bath. In this case for each site i ≡ 0 an effective
impurity model is defined as (with the internal degrees of
freedom reinstated)

H eff
imp =

∑
σ

⎡
⎢⎣−μb̂

†
σ,0b̂σ,0 + Uσ

2
n̂σ

0

(
n̂σ

0 − 1
)− b̂

†
σ,0

⎛
⎝∑

j

tσ 〈b̂σ,j 〉C
⎞
⎠− b̂σ,0

⎛
⎝∑

j

tσ 〈b̂σ,j 〉C
⎞
⎠†
⎤
⎥⎦

+
⎛
⎝VvdW

∑
j �=0

〈
n̂e

j

〉
|j|6 − �

⎞
⎠b̂

†
e,0b̂e,0 + �

2
(b̂†g,0b̂e,0 + b̂

†
e,0b̂g,0) + Uλn̂

g

0 n̂
e
0

+
∑
l,σ

[
εl,σ â

†
l,σ âl,σ +

(
Vl,σ â

†
l,σ b̂σ,0 + V ∗

l,σ âl,σ b̂
†
σ,0 + Wl,σ âl,σ b̂σ,0 + W ∗

l,σ â
†
l,σ b̂

†
σ,0

)]
︸ ︷︷ ︸

H ′
imp

,

(23)

where σ = g,e, so Ug = U and Ue = λ̃U . The hybridization
function matrix �σ,0(iωn) of this impurity model is given by
all the bath terms H ′

imp, which include any of the bath creation

and annihilation operators â
†
l,σ and âl,σ . It has the form

�σ,0(iωn) =
(

�11
σ (iωn) �12

σ (iωn)
�21

σ (iωn) �22
σ (iωn)

)
, (24)

where the different matrix elements are given by

�11
σ (iωn) =

∑
l

(
V ∗

l,σ Vl,σ

εl,σ − iωn

+ W ∗
l,σ Wl,σ

εl + iωn

)
,

�22
σ (iωn) =

∑
l

(
W ∗

l,σWl,σ

εl,σ − iωn

+ V ∗
l,σ Vl,σ

εl + iωn

)
,

�12
σ (iωn) =

∑
l

(
V ∗

l,σ W ∗
l,σ

εl − iωn

+ V ∗
l,σW ∗

l,σ

εl,σ + iωn

)
,

�21
σ (iωn) =

∑
l

(
Wl,σ Vl,σ

εl,σ − iωn

+ Vl,σ Wl,σ

εl + iωn

)
.

All parameters V,W,ε are fixed self-consistently, so that the
effective impurity-bath hybridization is the best fit of the actual
impurity-lattice hybridization as extracted from (16). When
self-consistency has been achieved, the relation �σ,0(iωn) ≡
Mσ (iωn) holds, where Mσ (iωn) is the representation of
Mσ (τ,η) = Mσ (τ − η) in terms of Matsubara frequencies.

V. RB-DMFT PHASE DIAGRAM

Minimizing f , as calculated in the described RB-DMFT
scheme, with respect to the relevant crystal orders yields the
ground-state phase diagram shown by the lines in Fig. 5(e).
For selected points, we also show the spatial distribution of
important local observables, such as the occupation numbers
nσ

i , squared condensate order parameters |φσ
i |2, and 〈b̂†g,i b̂e,i〉,

with the latter related to in-plane magnetization of the
pseudospin. The phase boundaries are obtained from kinks
(second order) and jumps (first order) in the spatially averaged
observable n̄e = ∑

i〈n̂e
i 〉/A(a1,a2)

cluster [see Fig. 5(e)], which acts as
an order parameter. Thus we find various ground-state phases,
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(d)

FIG. 5. Lines in (e) show the phase diagram of the two-species extended Bose-Hubbard model with vdW-interacting excited Rydberg
species (1). Shown is the dependence of the average GS Rydberg fraction n̄e on detuning and hopping, while the fixed parameters of the
model are given in the inset. The occurrence of a finite condensate order parameter at finite J is marked by the green (gray) line with dots.
Transitions between different phases of supersolid (SS) order above this line, as well as between density wave (DW) ordered phases below, are
separated by black lines (circles for second order, points for first order). As it has the simplest order beyond a homogeneous superfluid (SF),
we specifically label the checkerboard supersolid (CB-SS) in the diagram. All DMFT results in the region between the red (gray) line without
dots and vacuum have lattice-averaged grand-canonical potentials f > 0. (e) Lattice-averaged Rydberg fraction n̄e (with the smallest values
for �/� < 0), which is strongly related to the effective lifetime of Rydberg states [21]. (a)–(d), the inset in (e), and (f)–(i) show depictions
of the spatial distribution of specified local observables. These plots correspond to different points indicated in the phase diagram in (e). If
mentioned in a diagram, the values for excited states are rescaled by the indicated factor.

starting with the well-known homogeneous superfluid (SF) and
the devil’s staircase in the density wave (DW) regime at small
hopping, separated by a peculiar series of supersolids. We can
distinguish two distinct regimes of supersolids, dominated by
either weak or strong Rydberg dressing, arising due to two
competing effects. One is the melting, induced by a large
hopping amplitude J , while the other is the crystallizing effect
of the detuning �. Since blue detuning facilitates Rydberg
crystallization at higher densities, as well as a higher Rydberg
fraction in general, the latter effect is easily understood.

Traversing the phase diagram in the supersolid regime,
starting at high � [Fig. 5(e), inset] and reducing its value
continuously, one first finds a series of GS supersolids with
growing wavelength, until there is a sudden drop in the
wavelength, accompanied by a rising Rydberg condensate and
a fast drop of the Rydberg fraction for the sites with the highest
admixture of the Rydberg state [Figs. 5(a)–5(d)]. Contrary to
the devil’s staircase in the DW regime, the staircase in the SS
regime does not end in an empty or homogeneous system, but
instead with short-wavelength supersolids, most notably the
checkerboard supersolid (CB-SS) [see also Fig. 5(c) and 5(d)],
which is the only previously predicted SS phase [29]. The
competition between crystallizing and melting effects becomes
especially evident in the two cases where two supersolids meet,
which both have the same number of sites in their unit cells,
while their spanning vectors differ [Figs. 5(c) and 5(d) and
5(h) and 5(i)]. There the crystallizing effect dominates for
small hopping, as the excitations minimize interaction energy

by maximizing their NN distances. For increased hopping the
system then prefers the configuration with slightly reduced
NN distances while restoring a spatial order commensurate
with the OL. Additionally, the eight-site unit cells are almost
degenerate, while the unit cell less favored by VvdW has a
transition into SF at lower J . Regarding the two distinct SS
regimes with strong and weak dressings, the narrow phase
dominated by a long-range order with a unit cell of 32 sites
[Fig. 5(a)] implies crossover behavior. This phase marks the
boundary between the two regimes, as it consists mostly
of CB-SS (with the CB order strongly visible in 〈b̂†g,i b̂e,i〉),
interspersed by a low density of strongly dressed atom or
impurities suppressing the short-range CB order.

Another noteworthy configuration appears in a band
with a width �/� ≈ 0.2, starting slightly above resonance
[Fig. 5(b)]. There the ground-state condensate and the nearly
Fock state Rydberg excited atoms are spatially separated from
one another, as is the case for most of the interaction-dominated
part of the SS regime. But in addition, the excitations are
aligned in a triangular lattice, while the condensate is arranged
on its dual honeycomb lattice, at least as much as possible on
a square lattice.

Finally, since the effective total decay rate of excitations
is directly proportional to the fraction ne of their occupation
[21], this quantity [Fig. 5(e)] implies that the region with low
Rydberg occupation should be most suitable for experiment.
Even at detunings � > 0, Rydberg blockade causes a value
of n̄e which is nearly two orders of magnitude less than the
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FIG. 6. Here we show the different averaged order parameters one may use to distinguish the different supersolid phases as explained in
the text. (a) and (b) Spatially averaged condensate order parameters |φσ | = ∑

i |φσ
i |/A. Averages are normalized by the size A of the system

simulated within RB-DMFT. Both species have opposite but spatially constant phases, as one might expect from a dark state. (c) Difference
quotient �f/�J of the mean grand-canonical potential f by the hopping amplitude J . (d) Spatial average of the local fluctuations 〈b̂†

g,i b̂e,i〉
induced by the Rabi term (6) of the Hamiltonian (1). A nonzero value is related to in-plane magnetization of the pseudospins σ = {g,e}, while its

magnitude grows near resonance and with total particle number. (e) and (f) Spatial variance Var(|φσ |) = |φσ |2 − |φσ |2 of the condensate order
parameters. Note that for the excited state the maximum is close to �/� ≈ 0, while in the ground state �/� > 1 leads to the largest values.
Lines correspond to those shown in Fig. 5(e), where circles represent second-order transitions, simple lines represent first-order transitions,
and the line with crosses signifies the regime of f > 0, as explained in Fig. 5(e).

full resonant excitation of single atoms, thus increasing the
feasibility of realizing the corresponding supersolids.

In conclusion, while dressed models break down close to
resonant Rydberg dressing, the combined effort of an analyti-
cally solvable frozen-limit model and RB-DMFT simulations
at finite hopping allows for the analysis of the rich phase
diagram of (1). In particular we find two distinct regimes of
supersolid order dominated by either weak or strong dressing
reminiscent of the bistable behavior in nonitinerant dissipative
systems [44–46]. Due to our limitation to periodic systems
with finite unit cells, the behavior at the crossover remains an
open question. It should also be noted that the Rabi frequency
was taken to be in the range of a few megahertz, while so far
realized values of hopping amplitudes reach only a fraction of
this. But considering the phase diagram of the Bose-Hubbard
model, the transition to supersolid phases can be expected at
strongly reduced hopping for values of μ close to zero where
the assumption of low filling n̄ < 1 breaks down, leaving this
regime open for further research.
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APPENDIX A: FURTHER OBSERVABLES

The phase boundaries for finite hopping J , shown in
Fig. 5(e), were obtained via the spatially averaged values of
the local observables, which act as order parameters of the
system. As can be seen in Fig. 6, they exhibit either jumps
or kinks at certain points in the phase diagram, allowing us
to determine the phase boundaries as well as the order of the
phase transitions. As the Rydberg fraction n̄e exhibits the most
prominent changes [see Fig. 5(e)], it was used to obtain the
phase boundaries between the various SS and DW phases.
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FIG. 7. (a) and (b) Averaged occupation numbers n̄σ = ∑
i n

σ
i /A, where A is the normalization due to the considered number of sites. Note

that �/� > 0 favors n̄e over n̄g in the DW phases. (c) The inverse of the average lattice filling becomes an integer in the DW regime. The values
of these integers correspond to the area defined by the spanning vectors introduced earlier (e.g., equal to 12 in the lower left; compare also
Fig. 1 in the main text). Lines correspond to those shown in Fig. 5(e), where circles represent second-order transitions, simple lines represent
first-order transitions, and the line with crosses signifies the regime of f > 0, as explained in Fig. 5(e). The dashed lines represent the case of
resonant detuning � = 0.

Due to the complex nature of the model (1), additional
observables allow for further characterization of its ground-
state phases. While nonzero condensate order parameters
φσ

i = 〈b̂σ,i〉 determine the occurrence of a superfluid (SF)ON
[see Figs. 6(a) and 6(b)], the suppression of the spatial average
|φe| at large �/� is a result of the dominant interactions. The

spatial variance Var(|φσ |) = |φσ |2 − |φσ |2 of the condensate
order parameters [see Figs. 6(e) and 6(f)] further extends
and justifies the picture of two supersolid regimes due to
the distinct behavior at small and large �/�. A vanishing
value of these variances marks the loss of crystalline order
and thus the transition from SS to a homogeneous SF. The
large spatial variances in φσ

i , on the other hand, are due to
suppressed condensation on sites occupied by atoms strongly
dressed with a Rydberg state. At the crossover between the
two SS regimes, the observable related to the Rabi process
(6), 〈b̂†g,i b̂e,i〉, also undergoes a significant change in behavior
[see Fig. 6(d)]. Regarding the transitions between the various
supersolid phases, we want to point out that divergences of
�f/�J [see Fig. 6(c)] are almost absent in between SS phases
and remarkably also at the SS-SF transition.

Note that in the region where the ground-state contribution
n̄g vanishes [see Fig. 7(a)], the Rydberg states become almost
pure number states [compare Figs. 7(b) and 7(c)]. As the
corresponding property, namely, that n̄e nearly equals 1

q
, where

q is the area of the unit cell corresponding to the inverse of
the mean lattice filling at a vanishing condensate fraction,
also extends into the region with a finite condensate, the
Rydberg state can be understood to remain in a Fock state
even for increased hopping amplitudes. Condensation then
happens purely in the ground-state species, which implies that
the condensate part spatially separates from the long-range
interacting part of the system.

APPENDIX B: INFLUENCE OF RYDBERG HOPPING

To further probe our assumption that we can limit itinerant
behavior to the |g〉 component, namely, by setting η = 0, we

also compare our results to selected simulations with η = 1.
As can be seen in the comparison of the average Rydberg
fraction n̄e, shown in Fig. 8, hopping of Rydberg states has
only a minor influence on the phases observed in the paper. It
primarily leads to changes in parameter regions, where given
phases are almost degenerate. This can be seen as one of the
four-site unit cells vanishes for the chosen parameters, leading
to one less step in Figs. 8(c) and 8(d). Otherwise, there are
only small deformations of the boundaries.

(a) (b)

(c) (d)

FIG. 8. (a), (c), and (d) Averaged Rydberg-state occupation
numbers ne = n̄e of (mostly) converged RB-DMFT simulations for
parameters as given in the main text, except for η, which is given in
the legend, with (a) �/� = −1, (c) −0.415, and (d) −0.303. The
dashed lines in (a) mark Jc/� where f changes sign, so results at
low J/� have a higher energy as the vacuum state |ng = 0,ne = 0〉.
(b) The position of the sign change corresponds to a kink in the
logarithmic plot |f |.
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APPENDIX C: COHERENT-TAIL-
STATE TRUNCATION

In order to benchmark the choice of the Fock-space
truncation, where we used a soft cutoff scheme, which
replaces the highest Fock state Nc by the coherent-tail state
∝ ∑∞

n=Nc

αn√
n

[42], we probed the influence of a changed
truncation (i.e., changing Nc) on the observables and especially
on the lattice-averaged grand-canonical potential f . We did
this in a parameter region where the largest deviations are
expected. As the lattice filling increases above 3 atoms per
site, thus close to the used cutoff Nc = 4, for small � and
large hopping [see Fig. 7(a)], we chose �/� = −0.8 and
J/� > 0.05 for the benchmark. Figures 9(a), 9(b) and 9(c)

depict the observables φ̄e,n̄e, and 〈b̂†gb̂e〉, which have the
largest deviations. As can be seen, changing Nc from 4 (used
for all the main results) to 5 barely has any influence on
these observables. The most pronounced changes appear for
J/� > 0.1, with only minor numerical changes in the values
of the observables, while the SF ↔ CB-SS is shifted only
very slightly. This can be seen from the kink in n̄e, as shown
in Fig. 9(b) and its inset. f also experiences only minor
deviations, which have a maximum around J/� ≈ 1.3, as
shown in the inset of Fig. 9(d). We therefore conclude that
our results can be considered converged with respect to the
Fock-space cutoff.

(a) (c)

(b) (d)

FIG. 9. The lattice-averaged observables (a) φ̄e, (b) n̄e, and (c)

〈b̂†
gb̂e〉 as functions of J/� for �/� = −0.8, with the remaining

parameters as in Fig. 5 and with a truncation scheme as given in the
legends. (d) The lattice-averaged grand-canonical potential f . All the
insets depict each deviation for the two truncation schemes, Nc = 5
and Nc = 4 (the latter subtracted from the former).
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We investigate properties of an ultracold, two-component bosonic gas in a square optical lattice at unit filling.
In addition to density-density interactions, the atoms are subject to coherent light-matter interactions that couple
different internal states. We examine the influence of this coherent coupling on the system and its quantum
phases by using Gutzwiller mean-field theory as well as bosonic dynamical mean-field theory. We find that the
interplay of strong interspecies repulsion and coherent coupling affects the Mott insulator to superfluid transition
and shifts the tip of the Mott lobe toward higher values of the tunneling amplitude. In the strongly interacting
Mott regime, the resulting Bose-Hubbard model can be mapped onto an effective spin Hamiltonian that offers
additional insights into the observed phenomena.
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I. INTRODUCTION

Due to their highly controllable properties, systems of
ultracold atoms are promising platforms for quantum sim-
ulations. One of the early successes in this direction was the
observation of a superfluid-Mott insulator transition in a lattice
Bose gas [1,2], as a prototype of a quantum phase transition.
With recent advances in experimental techniques, present-day
cold-atom experiments feature finite-range interactions, for
example, in Rydberg dressed systems [3,4], as well as artificial
gauge potentials that mimic magnetic fields [5,6]. All these
achievements bring these setups closer to simulating complex
condensed-matter systems.

Multicomponent systems, such as mixtures of different
atoms or different hyperfine states of the same atomic species,
introduce additional degrees of freedom that can be treated
as pseudospin. In the weakly interacting limit, depending on
the ratio of intracomponent and intercomponent interactions,
two-component mixtures may exhibit phase separation [7].
The process of phase separation is substantially altered by
introducing a coherent coupling term that enables a conversion
of one internal atomic state into the other [8–19].

The binary bosonic mixtures in deep optical lattices [20–22]
realize the two-component Bose-Hubbard model that hosts a
rich phase diagram [23,24]. Despite intense experimental and
theoretical efforts in the past two decades, there are many
open questions related to the properties of bosonic mixtures
in the strongly interacting regime. The demixing transition
[25,26] and effects of the coherent coupling [27–29] have
been addressed only recently in this regime of strong repulsive
interactions in lattice models.

In this paper we investigate the phase diagram of a
two-component Bose gas on a square lattice subject to
coherent coupling between the two species. The interest
in the properties of a two-dimensional coherently coupled
system is both practical, as these systems are experimentally
available, and conceptual with respect to the results for the
related one-dimensional system [27,28]. It is well known that
quantum fluctuations play a decisive role in low-dimensional
models, such that continuous symmetries cannot be broken

for homogeneous one-dimensional systems and no long-range
order can form. Furthermore, mean-field approaches are
inapplicable in one dimension, and their accuracy increases
with higher dimensions. Specifically, in the case that we study,
a simple mean-field treatment might rule out one of the phases
found in recent studies of one-dimensional lattice systems
[27,28]. Thus, properties of a two-dimensional system require
a separate study that we present in the following sections.

The remainder of the paper is organized as follows: In the
next section we introduce the main model of our study and
briefly outline the methods that we use throughout the paper.
In Sec. III we address the case of finite bosonic coherences. In
particular, we examine the neutral to polarized phase transition
on top of the underlying condensate. The results for the case
of stronger local interactions that lead to the superfluid-Mott
transition with coherent coupling are presented in Sec. IV. The
case of imbalanced hopping amplitudes is the subject of Sec. V.
Finally, our main conclusions are summarized in Sec. VI.

II. MODEL AND METHODS

We investigate the phase diagram of an extended Hubbard
model describing a two-component Bose gas in a square
optical lattice with an additional coherent coupling term. In
second quantization the model explicitly reads

ĤBH = −
L∑

〈i,j〉
(taâ

†
i âj + tbb̂

†
i b̂j + H.c.)

+ 1

2

L∑
i

[Uan̂ia(n̂ia − 1) + Ubn̂ib(n̂ib − 1)]

+
L∑
i

(Uabn̂ian̂ib − �â
†
i b̂i + H.c.), (1)

where â
(†)
i and b̂

(†)
i are the annihilation (creation) operators for

bosonic species a and b, respectively, and n̂ia and n̂ib are their
number operators. The tight-binding hopping amplitudes of
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BORNHEIMER, VASIĆ, AND HOFSTETTER PHYSICAL REVIEW A 96, 063623 (2017)

the respective species are denoted as ta and tb, and Ua and Ub

are their on-site interaction. Interactions are generally assumed
to be local and repulsive in this study. An on-site interaction
between particles of different species is designated as Uab, and
the term proportional to � allows for the conversion of one
bosonic species into another on the same site. This last term is
called the coherent coupling term. Local terms in the Hubbard
Hamiltonian are summed over lattice sites 1, . . . ,L, and in the
first term 〈i,j 〉 stands for the sum over all nearest-neighbor
sites i and j of the square lattice. Throughout the paper we
will consider the case of Ua = Ub = U and we set all scales by
fixing U = 1. Our aim in this paper is to investigate possible
ground states of the model (1).

Multicomponent bosonic systems are usually realized as
mixtures of two hyperfine states of a single element. One of
first experiments used sympathetically cooled |F = 1,mf =
−1〉 and |F = 2,mf = 2〉 hyperfine states of 87Rb [30]
for the realization of a spinor Bose-Einstein condensate.
In a subsequent study [8], coherent coupling between two
condensates of hyperfine states of 87Rb gas was implemented
as a two-photon transition. The authors were able to transfer
the complete population of the |F = 1,mf = −1〉 state of 87Rb
to the |F = 2,mf = 1〉 state using a combination of radio
frequency and a microwave field in an abrupt way, compared
to the other time scales of the system. The choice of hyperfine
states was motivated by the fact that the two states feel nearly
identical confining potentials, can be conveniently coherently
coupled and imaged selectively. In the more recent study [9], a
very similar setup has been exploited to explore the Josephson
effect through the measurement of the full time dynamics of
spinor condensates. The mixing and demixing dynamics in
the presence of coherent coupling of the two 87Rb states was
experimentally addressed in Ref. [10].

In present-day experiments, coherent conversion is a very
useful tool that expands a pool of phenomena that can be
addressed in cold-atom experiments. For example, in order
to introduce long-range interactions in cold-atom samples,
a coherent coupling of a ground-state atom with a Rydberg
excited state is used [3,31]. An application and detailed
derivation of the coherent coupling term in the context of
Rydberg dressing is given in a recent paper [32]. As another
notable example we mention the recent realization of artificial
gauge fields [5] in synthetic dimensions, which is directly
based on a specially tailored coherent coupling of several
internal atomic states [33,34].

It is well known that by reducing the ratio of the tunneling
amplitude ta,b over the repulsive interaction strength U at
commensurate lattice filling, bosons exhibit a superfluid to
Mott insulator transition [2,35]. On top of this, an effective
magnetic ordering emerges on the Mott side in two-component
bosonic mixtures [23,24]. These results are typically obtained
for � = 0 in the regime of γ � 1, where we introduce the
ratio between inter- and intraspecies interaction γ = Uab/U .
In the opposite case of γ � 1, it is energetically favorable for
the two bosonic species to be spatially separated [7]. However,
a finite � will suppress this tendency by enabling a conversion
between the two species. In this way, it allows us to address
the regime γ > 1. Note that the model (1) conserves only the
total number of particles and not the particle numbers of each
species separately. In the limiting case γ � 1, only atoms of

one species are present as the system avoids the high energy
cost of Uab.

This reasoning already suggests that in addition to the
well-understood superfluid to Mott phase transition, for the
model (1) we are able to distinguish another phase transition
characterized by the polarization order parameter,

ñi = 〈n̂ia〉 − 〈n̂ib〉
〈n̂ia〉 + 〈n̂ib〉 . (2)

A strong interspecies interaction Uab favors a polarized phase
with finite ñi . In contrast, the � term favors strong local
coherence 〈a†

i bi + b
†
i ai〉 that corresponds to a neutral phase

with ñi = 0. To establish boundaries between different phases
as a function of the physical parameters of the Hamiltonian (1),
we will use two approximate methods that we briefly outline
here.

Features of the lattice Bose gas can be explored conve-
niently by means of the Gutzwiller mean-field theory [36,37],
which amounts to decoupling nonlocal terms as

â
†
i âj ≈ φ∗

i âj + φj â
†
i − φ∗

i φj , (3)

where φ
(∗)
i = 〈â(†)

i 〉 is a condensate order parameter that is
obtained in a self-consistent way. The approximation becomes
an exact description in several limits: in the limit of infinite
lattice coordination number z, in the atomic limit (t = 0);
and in the weakly interacting limit, in the superfluid phase.
However, for a vanishing condensate order parameter the
lattice sites are completely decoupled within Gutzwiller
mean-field theory and the description of the Mott domain is
oversimplified. In order to go beyond this limitation, we will
use bosonic dynamical mean field theory (BDMFT) [38–42].

Formally, BDMFT is derived as a second-order expansion
of the full model (1) in terms of the inverse lattice coordination
number. In comparison to Gutzwiller mean-field theory, we
increase the order of the expansion by one [43]. The approx-
imate effective problem obtained in this way is given by a
bosonic Anderson impurity model. Parameters of the effective
model are set by imposing a self-consistency in terms of the
condensate order parameter and the local Green’s function.
The effective bosonic Anderson impurity model is solved
using exact diagonalization. The main approximation of the
method is the assumption of the locality of self-energies, which
is consistent with the second-order expansion in the inverse
of the coordination number [43,44]. The method captures
local correlations exactly but treats nonlocal correlations at
the mean-field level. In order to consider states that break
translational symmetries, we use real-space BDMFT [41] in
this paper. We address a lattice size of 6 × 6 with periodic
boundary conditions, with a special focus on a possible two-
sublattice ordering. By performing additional calculations for
larger lattices, we estimate finite-size effects on the transition
points of our phase diagrams to be of the order 2% in relative
units.

Both the Gutzwiller mean-field theory and BDMFT are
implemented in the grand-canonical ensemble. To this end,
we introduce a single chemical potential μ, ĤBH → ĤBH −
μ

∑L
i (â†

i âi + b̂
†
i b̂i ), as the model (1) conserves only the total

number of particles. In the next sections we present and discuss
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results for the different ground states of model (1), obtained
by using these approaches.

III. THE SUPERFLUID REGIME

In this section we present the Gutzwiller analysis of the
coherently coupled spinor Bose gas in the superfluid phase.
In order to address states with a finite condensate fraction, we
choose relatively high tunneling amplitudes ta/U = tb/U =
1/4. As the neutral to polarized phase transition is driven
by the strong intercomponent interactions Uab, we plot the
polarization order parameter ñi , defined in Eq. (2), over the
ratio γ = Uab/U in Fig. 1(a).

Results for the model (1) without coherent coupling are
plotted for reference (red solid line), and the transition from
ñi = 0 to |ñi | = 1 is found at γc = 1. We understand from
previous works that it is energetically favorable to have
components of both species on each lattice site only in
the case of weak interspecies repulsion. Strong interspecies
repulsion leads to the polarized phase, where only particles
of one species can be found on a single lattice site. For fixed
atom densities the system will thus undergo phase separation.
We notice that positive and negative values of 〈n̂a,i〉 − 〈n̂b,i〉
(ñi = ±1) appear equally as results of numerical calculations
with different initial conditions. This indicates two degenerate
ground states in the polarized phase, as we will confirm in
the following. In these calculations, initial parameters of the
self-consistent loop or root search routines determine which
of the ground states is selected, whereas in actual experiments
the occurrence probabilities for both ground states are equal.

We now turn to the effects of a finite coherent coupling term
and set �/U = 0.1. While the polarization order parameter
changes abruptly for vanishing coherent coupling [red solid
line in Fig. 1(a)], it exhibits a continuous change for finite
coherent coupling [blue dashed line in Fig. 1(a)]. Moreover,
we notice that the coherent coupling shifts the transition point
γc to higher values of the interspecies interaction. The same
qualitative behavior was reported in Refs. [16,28] in the quasi-
one-dimensional geometry for the regime of weak interactions,
both with and without a lattice. Within Gross-Pitaevskii theory,
it was found analytically that the polarized phase sets in at
Uc

ab = Ua,b + 2�/n. For the parameters given in Fig. 1, this
relation yields a transition point at γc = 1.2. However, since
the mentioned derivation is strictly valid only in the weakly
interacting limit, where all bosons are condensed, the phase
transition in Fig. 1 is expected to appear at a slightly different
value of γ . In particular, we find that as the ratio t/U is lowered
further, the transition point between the polarized and neutral
phase is shifted in favor of the neutral phase. The region of the
neutral phase extends toward higher values of γ and deviations
with respect to the result obtained in the weakly interacting
limit become more pronounced. This effect is further explored
in the next section.

The observation of discontinuities in the polarization order
parameter [Fig. 1(a)] draws our attention to the order of the
observed phase transitions. We analyze this in Figs. 1(c) and
1(d), where the grand potential and its first derivative are
plotted as functions of γ . As we use the grand-canonical
description at zero temperature and explicitly include the
chemical potential term, the grand potential is given by the

expectation value of our mean-field Hamiltonian. For � = 0,
we find that the first derivative of the grand potential is
discontinuous at γc. This leads us to the conclusion that the
neutral to polarized phase transition is of first order for � = 0.
In contrast, we observe a cusp in the same derivative for finite
�, implying that the phase transition is of second order.

To explore this in more detail, we plot the lowest energy
eigenvalue of the mean-field Hamiltonian as a function of the
condensate order parameters in Figs. 2 and 3 (left series).
In both cases, for vanishing and for finite �, we find a
single energy minimum for the neutral phase at γ < γc [see
Figs. 2(a1) and 3(a1)]. The condensate order parameters φa and
φb corresponding to this minimum are equal. In the polarized
regime for γ > γc, however, two degenerate energy minima
are present [Figs. 2(a4) and 3(a4)]. The degeneracy stems from
the fact that the ground state breaks the symmetry between the
two species, while the Hamiltonian is symmetric with respect
to the interchange of these two species. In the polarized phase
with � = 0, the condensate order parameter of one of the
species is strictly zero, while the other one has a finite value.
In contrast, both order parameters are finite but nonequal at
finite values of �, as also shown in Fig. 1(b).

Having established the properties of the neutral and polar-
ized phase, we now discuss the transition between them.

For � = 0 and γ = γc, we find an infinitely degenerate

energy minimum for constant
√

φ2
a + φ2

b . In the vicinity of
the transition point, a single minimum at φa = φb for γ <

γc abruptly transforms into two minima found at “distant”
positions in the φ space for γ > γc. The lowest eigenvalue of
the Gutzwiller mean-field Hamiltonian plotted along the unit
density line over α = arctan(φa/φb) (right series of Fig. 2)
provides the reason for that. The energy has a parabolic shape
at around α = 45◦. The coefficient of this parabola changes
from being positive in the neutral phase, which results in a
minimum at α = 45◦, to being negative in the polarized phase,
which results in two well-separated minima at α = 0◦,90◦.

At finite �, we do not find an abrupt change in the minima
at the transition point. The neutral minimum at φa = φb splits
into two degenerate minima that evolve towards their final
values with increasing γ . Accordingly, the energy plot along
the unity density line (right series, Fig. 3) is not a parabola that
simply flips the sign of its coefficient, but one that develops
a bump at α = 45◦ and thus gradually shifts its minima away
from that point.

IV. SUPERFLUID-MOTT TRANSITION

Strong on-site interactions suppress density fluctuations
and deplete the condensate. At commensurate densities, this
mechanism drives a transition from a superfluid into a Mott
insulator state. In this section we map out the phase diagram
of the model defined in Eq. (1) as a function of the tunneling
amplitude t/U and coherent coupling �/t by using BDMFT
at zero temperature.

In the limit of vanishing coherent coupling � → 0, for
γ > 1 (interspecies interaction stronger than intraspecies
interaction) our BDMFT simulations, implemented in the
grand-canonical ensemble, recover the well-known results for
the Mott insulator to superfluid transition for a single bosonic
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(a)

(b)

(c)

(d)

FIG. 1. (a) Absolute value of the polarization order parameter |ñi | defined in Eq. (2), (b) condensate order parameters φa and φb,
(c) lowest eigenvalue of the mean-field Hamiltonian �GP , which corresponds to the grand-canonical potential at zero temperature, and
(d) its first derivative. These are plotted as a function of the dimensionless interaction ratio γ = Uab/U for unit filling na + nb = 1 and hopping
amplitudes ta/U = tb/U = 1/4.

species on a square lattice [39,45]. At finite � and t = 0
(the atomic limit) and at a total filling 〈nai + nbi〉 = 1, the
ground state has no polarization. This can easily be seen by
considering a single-site Hamiltonian in the subspace spanned
by |1,0〉 = a

†
i |0〉 and |0,1〉 = b

†
i |0〉, which is given by(−μ −�

−� −μ

)
. (4)

The ground state is |GS〉 = (|0,1〉 + |1,0〉)/√2 and it is
neutral, since 〈GS|nai − nbi |GS〉 = 0. In the following we
investigate a range of tunneling amplitudes ta/U = tb/U =
t/U ∈ [0.001,0.1] and coherent couplings �/t ∈ [0,1]. We
scan phase diagrams spanned by t/U and μ/U at fixed �/t

to access points with total unit filling, as shown in Fig. 4 for
γ = 8/5.

We begin our analysis with a small fixed ratio �/t . In
Fig. 4(a) we present the absolute value of the polarization
order parameter |ñ| [Eq. (2)] for �/t = 0.12. Increasing the
tunneling t/U from a starting point near the atomic limit,
we encounter a transition from the neutral into the polarized
state, before reaching the tip of the first Mott lobe. With
further increase of t/U , we find a second transition from
the polarized Mott state into the polarized condensate state
[see Fig. 4(a)]. At stronger �/t � 0.28, we find that the
whole Mott lobe is neutral and around the tip of the lobe,
we have a transition from the neutral Mott directly into the
polarized superfluid. An example of this behavior is shown
in Fig. 4(b). Finally, for �/t > 0.44, there is a transition
from the neutral Mott insulator into the neutral superfluid,

followed by a second transition from a neutral into a polarized
superfluid state [see Fig. 4(c)]. The change in the polarization
on the superfluid side of the diagrams as a function of the
chemical potential μ [Figs. 4(a)–4(c), a vertical cut] can be
understood as follows: by increasing the chemical potential
μ, the total density increases (not explicitly shown in figures)
and the enhanced contribution of repulsive interactions can
overcome the effect of the coupling � that favors a neutral
state.

A complete phase diagram as a function of �/t and t/U

at unit filling obtained from the previous type of calculation is
presented in Fig. 5(a). The color plot gives the polarization
|ñ|, the black squares form a transition line between the
polarized and unpolarized states, and gray circles show the
Mott insulator (left part) to superfluid (right part) transition
line. The two transition lines marking the Mott insulator to
superfluid transition and those marking the neutral to polarized
transition coincide in the intermediate region. The Mott region
extends up to t/U ≈ 0.06 for a fully polarized Mott to
polarized superfluid transition (weak �/t), which is very close
to the result for the Mott-lobe tip in a single-component case.
At strong �/t we have a neutral Mott to neutral superfluid
transition that takes place at a higher value of t/U ≈ 0.074,
as strong Uab plays a more pronounced role in this case. In the
horizontal cut shown in Fig. 5(b) we explicitly show that at
weak �/t there are two second-order phase transitions. These
transitions merge into a single transition point with a jump in
polarization |ñ| at intermediate �/t , as shown in Fig. 5(c).
At even stronger �/t , we find two separate transitions of the
second order again.
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FIG. 2. Left series: Lowest energy eigenvalue �GP /U of the
Gutzwiller mean-field Hamiltonian for �/U = 0 plotted versus
the condensate order parameters φa and φb. White data points mark
the position of the minimum, white solid lines mark unit density
and white dashed lines the area of 0.02 around the minimum. Right
series: �GP /U plotted along unit density lines (see white solid lines
in left series) over the angle α = arctan(φa/φb). Other Hamiltonian
parameters are ta/U = tb/U = 1/4 and μ/U = 1.

In order to explain the neutral-polarized transition on the
Mott side, we complement numerical BDMFT results with an
insight obtained from an effective spin Hamiltonian, which
is valid in the limit of strong interactions. The spin model is
derived via second-order perturbation theory in the hopping
amplitude and for unit filling. Starting from model (1), it is
expressed in the pseudospin basis |↑〉 = |na = 1,nb = 0〉 and
|↓〉 = |na = 0,nb = 1〉 [23,24,46]. Equivalently, one can also
use the Schrieffer-Wolff transformation [47] to obtain the same

FIG. 3. Left series: Lowest energy eigenvalue �GP /U of the
Gutzwiller mean-field Hamiltonian for �/U = 0.1 plotted versus
the condensate order parameters φa and φb. White data points mark
the position of the minimum, white solid lines mark unit density
and white dashed lines the area of 0.02 around the minimum. Right
series: �GP /U plotted along unit density lines (see white solid lines
in left series) over the angle α = arctan(φa/φb). Other Hamiltonian
parameters are ta/U = tb/U = 1/4 and μ/U = 1.

effective Hamiltonian [27,28]:

Ĥeff = −Jzz

∑
〈i,j〉

Ŝz
i Ŝ

z
j − J⊥

∑
〈i,j〉

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

)

− Jz

∑
i

Ŝz
i − 2�

∑
i

Ŝx
i , (5)

where we introduce Ŝl
i = (1/2)(â†

i ,b̂
†
i )σ l(âi

b̂i
) using the Pauli

matrices σ l with l = x,y,z. For the parameters considered
in this section (ta/U = tb/U = t/U ), the spin coupling
constants simplify to Jzz = 4t2(2γ − 1)/γU , J⊥ = 4t2/γU ,
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FIG. 4. Phase diagrams in the plane t/U -μ/U for γ = Uab/U = 8/5. The color maps show the polarization |ñi | defined in Eq. (2) for
(a) �/t = 0.12, (b) �/t = 0.28, and (c) �/t = 0.56. Dots show the Mott insulator to superfluid transition lines, and crosses mark lines of
constant density 〈na + nb〉 = 1 on the superfluid side.

and Jz = 0. Based on the model (5), in the strongly interacting
limit of the Bose-Hubbard model with coherent coupling from
Eq. (1), we expect to find different phases depending on the
magnitude of the coefficients Jz, Jzz, J⊥, and �. In particular,
the spin ordering along the z direction is equivalent to the
finite polarization order parameter from Eq. (2), while spin
alignment along the x direction corresponds to the neutral
phase. At the transition line of the neutral and polarized
phase we expect the spin couplings J⊥ and �, that favor spin
alignment in the x direction, to be comparable to the z-ordering
term Jzz. This reasoning leads to an approximate condition for
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FIG. 5. (a) The phase diagram of the model at unit filling for
γ = Uab/U = 8/5. The color map shows the polarization |ñ| defined
in Eq. (2). Dots show the superfluid to Mott insulator transition line,
and the squares give neutral to polarized transition line. Bottom plots:
cuts through the phase diagram for (b) �/t = 0.06 and (c) �/t =
0.34. Condensate order parameters and polarization |ñ| are plotted as
functions of t/U in (b) and (c).

the transition line

�c

t
∝

(
1 − 1

γ

)
t

U
. (6)

We fit the numerical data according to this argumentation
to �c/t ∝ αt/U , where α is the fitting parameter [27]. For
small t/U , we find �c/t ≈ 3.2t/U for γ = 8/5 (see Fig. 5)
and �c/t ≈ 2.15t/U for γ = 4/3. These fitting constants
explicitly fulfill the (1 − 1/γ ) dependence in Eq. (6).

V. IMBALANCED HOPPING AMPLITUDES

Up to now we considered two fully equivalent bosonic
components described by ta = tb and Ua = Ub = U . As a
consequence, two degenerate solutions with ±ñ were found in
the polarized regime. In this section we address a more general
case of imbalanced hopping amplitudes ta �= tb. This setting
is experimentally available when two internal states of the
same atomic species “perceive” different lattice depths, as in
the so-called state-dependent optical lattices [22]. Moreover,
the situation naturally occurs in Rydberg dressing [32] or in
coherent coupling of atoms and molecules [48–50], where the
two coupled states exhibit different properties.

We first investigate how the immobility of one bosonic com-
ponent (tb = 0) affects the superfluid-Mott transition of the
second coupled component. The BDMFT phase diagram in the
ta/U − �/U plane at unit filling is presented in Fig. 6. We find
that the imbalance in hopping amplitudes introduces a finite
polarization ñ and that the system is neutral only for ta/U = 0.
A finite polarization value on the Mott side of the diagram can
be understood from the effective spin model defined in Eq. (5)
that captures low-energy properties of the Hamiltonian (1)
deep in the Mott domain. For the parameters considered in
this section, the coefficients of the spin model (5) simplify to

Jzz = 2
t2
a + t2

b

U

(
2 − 1

γ

)
, (7)

Jz = 8
t2
a − t2

b

U
, (8)

J⊥ = 4tatb

γU
, (9)
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FIG. 6. (a) The phase diagram of the model at unit filling for
γ = Uab/U = 8/5, tb = 0. The color map shows the polarization
|ñ| defined in Eq. (2). Stars show the superfluid to Mott insulator
transition line for tb = 0, and the dots give the same line for
the balanced case ta = tb. Bottom plots: cuts through the phase
diagram for (b) �/U = 0.006 and (c) �/U = 0.07. Condensate
order parameters and polarization |ñ| are plotted as functions of ta/U

in (b) and (c).

where we typically consider 1 < γ < 2. According to Eq. (5),
the coefficient Jz plays the role of an effective chemical
potential that selects which of the two species is preferred in
the polarized phase.

With an increase in the tunneling amplitude ta/U , a
transition from the polarized Mott state into the polarized
superfluid state sets in, as shown in Figs. 6(b) and 6(c). As
the coupling strength � gets stronger, the transition points
shown by star symbols in Fig. 6(a) are shifted toward higher
values of ta/U . In Fig. 6(a) we make a direct comparison
of the transition lines obtained in the balanced (ta = tb) and
imbalanced (tb = 0) case. The two curves coincide at � = 0,
which corresponds to the fully polarized regime (ñ ≈ 1). As
the tunneling imbalance favors polarization, for weak � the
superfluid transition occurs at smaller ta/U in the imbalanced
case in comparison to the balanced case. At stronger values of
�, as the contribution of immobile species gets stronger, we
find the opposite effect: mixing with an immobile component
reduces density fluctuations and as a result, we find that the
Mott region extends well beyond the maximal value of t/U

obtained in the balanced case. Additionally, we find that the
coherent coupling introduces a finite condensate fraction of the
immobile species in the region close to the transition boundary.
However, for the parameter values that we have explored the
effect is very weak.

We now investigate features of the Mott phase at unit
filling for the case of imbalanced tunneling amplitudes in more
detail. We consider both positive and negative tunneling matrix
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FIG. 7. (a) Absolute value of the polarization order parameter
|ñi | in the ta − tb plane obtained by BDMFT. (b) Auxiliary function
χ defined in Eq. (10). Parameters: γ = Uab/U = 8/5, μ = 0.2Uab,
�/U = 5 × 10−3.

elements. The tunneling matrix elements of the Bose-Hubbard
model (1) can be controlled by periodic shaking [51,52] Ĥps =
K cos(ωt)

∑
j j n̂j . Within Floquet theory, this type of shaking

creates a Floquet spectrum with an effective hopping teff =
tJ0(K/ω), where J0 is the Bessel function. Experimentally,
this type of driving is realized by sinusoidally detuning the
counterpropagating laser beams that constitute the optical
lattice [53,54]. The effective hopping teff was measured by
analyzing the expansion behavior of the condensate along this
optical lattice, and it was found that up to K/ω ≈ 6, the data
is in good agreement with the Bessel function renormalization
of teff [53]. In the region between 2.4 < K/ω < 5.5, the
Bessel function is negativeJ0(K/ω) < 0 and thus the effective
hopping teff has an inverted sign. This corresponds to an
inverted curvature of the respective energy band and the
interference pattern from the time-of-flight analysis is shifted
by half a Brillouin zone.

In Fig. 7(a) we present the absolute value of the polarization
order parameter |ñ| as a function of tunneling rates ta
and tb. Other parameters of the Hamiltonian (1) are set
to γ = Uab/U = 8/5, �/U = 5 × 10−3, and Ua = Ub = U .
We limit ourselves to small absolute values of the ratios |ta|/U

and |tb|/U and unit filling 〈na + nb〉 = 1, so that the system
is in the Mott phase. Low values of the polarization are found
for very weak tunneling amplitudes, in the region given by
|ta,b| < tc, where we have tc/U ≈ 2.5 × 10−3 for the data
shown in Fig. 7. Along the diagonals ta = ±tb, the neutral
phase with ñ = 0 extends up to the largest values of ta and
tb. We notice a clear difference in the extension of the neutral
phase for the case of ta = tb in comparison with the case of
ta = −tb.

In order to explain the features observed in Fig. 7(a), we
use the effective spin model defined in Eq. (5) that captures
low-energy properties of the Hamiltonian (1) deep in the Mott
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FIG. 8. Absolute value of the polarization order parameter |ñi |
as a function of the hopping amplitude for tb = ta (left column) and
tb = −ta (right column). Parameters: μ = 0.2Uab, (a), (b) γ = 8/5,
(c), (d) �/U = 0.002. In the two top plots (a) and (b), the value of
the coherent coupling term is varied. In the two bottom plots, (c) and
(d), we vary the value of γ . For ta = −tb we find that our results do
not depend on the value of γ .

domain. We notice that Jzz increases quadratically both with
ta and tb, which leads to the largest increment in this spin
coupling term isotropically around ta = tb = 0. In contrast,
Jz depends on the difference of the square of both hopping
amplitudes and exhibits the strongest increase perpendicular
to the diagonals ta = ±tb. In our analysis, the value of � is
kept constant. Thus, it is the dominant quantity in the region
around ta,b ≈ 0 where all other spin couplings (7)–(9) are
weak and where we find the neutral phase accordingly. The
asymmetry between the negative and positive side of ta in
the plot shown in Fig. 7(a) arises due to the J⊥ coupling.
For hopping amplitudes of the same sign, the J⊥ coupling is
positive. As such, it lowers the energy of the neutral phase and
thus shifts the phase transition to higher values of ta,b. The
opposite is true for hopping amplitudes of different sign.

To sum up the implications of the spin model and compare
these to our numerical results, we examine the interplay of spin
coupling amplitudes with the help of an auxiliary function χ .
All spin couplings that favor the polarized phase are marked
with a positive sign, while the spin couplings favoring the
neutral phase carry a negative sign:

χ = Jzz + |Jz| − J⊥ − �. (10)

The roots of this function give an estimate for the neutral
to polarized phase transition line, and the resulting plot in

Fig. 7(b) qualitatively recovers the structure of the numerical
phase diagram.

We now investigate how the transitions from Fig. 7 are
affected by the change in the interaction ratio γ and in the
coherent coupling �. It turns out that the corresponding ta − tb
plots look qualitatively similar to the plot Fig. 7(a). In order
to make a quantitative comparison, we plot the absolute value
of the polarization |ñ| as a function of ta for ta = tb (Fig. 8,
left column) and for tb = −ta (Fig. 8, right column). In the
plots shown in Figs. 8(a) and 8(b), we set γ = 8/5 and vary
�. Our results show good agreement with the expectation
tc/U ≈ √

�/U from Eq. (6) for the transition point tc. For
the two cases considered (ta = tb and ta = −tb) only the
proportionality constants are different.

In the plots presented in Figs. 8(c) and 8(d) we keep
the value �/U = 2 × 10−3 fixed and change γ . For ta = tb
our results are well approximated by tc ≈ (1 − 1/γ )−1/2, in
agreement with Eq. (6). In contrast, for ta = −tb we find
that our results do not depend on the value of γ . This can
be explained by looking at the spin coupling constants from
Eqs. (7)–(10). As mentioned earlier, the J⊥ coupling opposes
the impact of the � term for hopping amplitudes of different
sign. The relevant contribution to the auxiliary function χ

[defined in Eq. (10)] that leads to the aforementioned γ

invariance, however, is given by the sum Jzz + |J⊥|. The γ

parts of both terms cancel, leaving χ independent of γ .

VI. SUMMARY AND DISCUSSION

In this work, we focused on a two-component mixture
of coherently coupled bosons in a square optical lattice.
We analyzed the phase transition between the polarized
[finite ñi , Eq. (2)] and the neutral phase, driven by an
interplay of the coherent coupling � and the interspecies
repulsion Uab at unit filling 〈nia + nib〉 = 1 in the
parameter region where interactions set the energy scale
�,ta,tb < Ua = Ub = U = 1 < Uab.

By comparing Gutzwiller results with more demanding
BDMFT calculations, we found that the former provide
a reasonable description of the system in the superfluid
regime. We investigated the energy landscape of the mean-
field Hamiltonian as a function of the two condensate order
parameters and established that the coherent coupling leads to
a second-order phase transition between the polarized and the
neutral phase. Furthermore, we found that the neutral phase is
suppressed as the ratio of inter- and intraspecies interactions γ

increases.
On the Mott side of the phase diagram, where BDMFT

calculations provide a necessary extension of the simpler
mean-field theory, for the balanced case ta = tb we found the
polarized phase to be favored only at very low values of the
coherent coupling [Fig. 5(a)]. From this, we concluded that
the long-range order of the condensate seems to favor the
polarized phase. To better understand our numerical results
in the Mott phase, we used an effective spin model that
provides a low-energy description of the full model. From the
coupling constants of the effective model we inferred that the
polarized to neutral transition line is approximately given by
�c

t
∝ (1 − 1/γ ) t

U
, in very good agreement with our numerical

results (Fig. 5). The dominance of the neutral phase in the
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deep Mott regime at unit filling agrees well with the other
findings in this paper, as well as in the literature, especially
with recent density matrix renormalization group calculations
[27]. Furthermore, our BDMFT results indicate three possible
transitions with increasing t/U , depending on the value
of coherent coupling � and interaction ratio γ = Uab/U :
polarized Mott states turn into a polarized superfluid, the
polarized Mott phase turns directly into a neutral superfluid,
and from the neutral Mott phase there is a transition to a neutral
superfluid. The tip of the Mott lobe is positioned at the smallest
value of t/U in the first case, while the lobe extends up to the
largest value of the tunneling amplitude for the third case.

Finally, we explored the effects of imbalanced hopping
amplitudes ta �= tb for the two species. Our results show that
the strong coherent coupling with an immobile state reduces
density fluctuations and consequently extends the Mott region.
For now, we considered the case of γ > 1 and found that �

enforces a neutral phase for ta = ±tb on the Mott side. An
interesting asymmetry that shows up in the two latter cases was
traced back to the sign change of one of the coupling constants
in the effective spin model. In future work, we plan to consider
the case of γ = 1/2 and ta = −tb, where recent calculations

[29] suggested an occurrence of the xy-antiferromagnetic
phase.
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Realization of strong synthetic magnetic fields in driven optical lattices has enabled implementation of
topological bands in cold-atom setups. A milestone has been reached by a recent measurement of a finite Chern
number based on the dynamics of incoherent bosonic atoms. The measurements of the quantum Hall effect in
semiconductors are related to the Chern-number measurement in a cold-atom setup; however, the design and
complexity of the two types of measurements are quite different. Motivated by these recent developments, we
investigate the dynamics of weakly interacting incoherent bosons in a two-dimensional driven optical lattice
exposed to an external force, which provides a direct probe of the Chern number. We consider a realistic driving
protocol in the regime of high driving frequency and focus on the role of weak repulsive interactions. We find that
interactions lead to the redistribution of atoms over topological bands both through the conversion of interaction
energy into kinetic energy during the expansion of the atomic cloud and due to an additional heating. Remarkably,
we observe that the moderate atomic repulsion facilitates the measurement by flattening the distribution of atoms
in the quasimomentum space. Our results also show that weak interactions can suppress the contribution of some
higher-order nontopological terms in favor of the topological part of the effective model.

DOI: 10.1103/PhysRevA.98.053625

I. INTRODUCTION

Ultracold atoms in optical lattices provide a perfect plat-
form for quantum simulations of various condensed-matter
phenomena [1]. Yet, since charge-neutral atoms do not feel the
Lorentz force, a big challenge in this field was realization of
synthetic magnetic fields. After years of effort, artificial gauge
potentials for neutral atoms were implemented by exploiting
atomic coupling to a suitable configuration of external lasers
[2,3]. These techniques were further extended to optical lat-
tices, leading to the realization of strong, synthetic, magnetic
fields. As a result, important condensed-matter models—the
Harper-Hofstadter [4] and the Haldane model [5]—are nowa-
days available in cold-atom setups [6–9]. The key property
of these models is their nontrivial topological content. In the
seminal TKNN paper [10] it was shown that the quantization
of the Hall conductivity observed in the integer Hall effect can
be directly related to the topological index of the microscopic
model—the Chern number.

Cold-atom realizations of topological models exploit peri-
odic driving, either through laser-assisted tunneling [6,7] or
by lattice shaking [8]. Using Floquet theory [11,12], a period-
ically driven system can be related to the time-independent ef-
fective Hamiltonian that corresponds to a relevant condensed-
matter system. The mapping is known as Floquet engineering
and its important features in the context of optical lattices are
discussed in Refs. [13–20]. Because of important differences
of cold-atom setups and their condensed-matter counterparts,
new quench protocols for probing topological features were
proposed [21–25]. Following up on these studies, the de-
flection of an atomic cloud as a response to external force
was used to experimentally measure the Chern number in a
nonelectronic system for the first time [26].

While Floquet engineering is a highly flexible and pow-
erful technique, it poses several concerns. One of the main
open questions is related to the interplay of driving and
interactions which can heat up the system to a featureless,
infinite-temperature regime according to general considera-
tions [27,28]. In particular, it is shown that an initial Bose-
Einstein condensate in a periodically driven optical lattice
may become unstable due to two-body collisions [29] or
through the mechanism of parametric resonance [28,30–36].
The preparation protocol, stability and a lifetime of strongly
correlated phases, expected in the regime of strong interac-
tions under driving is a highly debated topic at the moment
[28,37,38].

In order to further explore the role of weak atomic inter-
actions in probing topological features, here we consider the
dynamics of weakly interacting incoherent bosons in a driven
optical lattice exposed to an external force. The setup that we
consider includes all basic ingredients for the Chern-number
measurement [22,26]—the Chern number of the topological
band can be extracted from the center-of-mass motion of
atomic cloud in the direction transverse to the applied force.
We assume an ideal initial state where the lowest topological
band of the effective model is almost uniformly populated.
The optimal loading sequence necessary to reach this state is
considered in Refs. [39,40]. Following the recent experimen-
tal study [26], we assume that atoms are suddenly released
from the trap and exposed to a uniform force. We perform nu-
merical simulations for the full time-dependent Hamiltonian
and take into account the effects of weak repulsive interac-
tions between atoms within the mean-field approximation. We
make a comparison between the dynamics governed by the
effective and time-dependent Hamiltonian and delineate the
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contribution of interactions to the center-of-mass response and
to the overall cloud expansion dynamics. Our results show that
interactions lead to the undesirable atomic transitions between
topological bands [41], but we also find that a weak atomic
repulsion can facilitate the Chern-number measurements in
several ways.

The paper is organized as follows. In Sec. II we describe
the model and introduce a method that we apply for the
description of incoherent bosons. In Sec. III we address the
dynamics of noninteracting incoherent bosons, and then in
Sec. IV we address the regime of weak repulsive interactions.
Finally, we summarize our results in Sec. V. Appendixes A
to F provide further details.

II. MODEL AND METHOD

In this section, we first present the driven model introduced
in Ref. [26], and then derive the corresponding effective model
and discuss its basic characteristics. At the end, we explain our
choice of the initial state and outline the method that we use
to treat the dynamics of weakly interacting incoherent bosons.

A. Effective Floquet Hamiltonian

Interacting bosons in a two-dimensional optical lattice can
be described by the Bose-Hubbard Hamiltonian

ĤBH = −Jx

∑
l,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

− Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

+ U

2

∑
l,m

n̂l,m(n̂l,m − 1), (1)

where â
†
l,m and âl,m are creation and annihilation operators

that create and annihilate a particle at the lattice site (l, m) =
laex + maey (a is the lattice constant), n̂l,m = â

†
l,mâl,m is the

number operator, Jx and Jy are the hopping amplitudes along
ex and ey , and U is the on-site interaction. In the derivation
of the model (1) we use the single-band tight-binding approx-
imation [1]. Although the experimental setup [26] is actually
three dimensional, with an additional confinement in the third
direction, our study is simplified to a two-dimensional lattice.

In order to engineer artificial gauge field in the experiment
[26], hopping along ex was at first inhibited by an additional
staggered potential

Ŵ = �

2

∑
l,m

(−1)l n̂l,m, (2)

and then restored using resonant laser light. The experimental
setup can be described by a time-dependent Hamiltonian

H̃ (t ) = ĤBH + V̂ (t ) + Ŵ , (3)

where V̂ (t ) is a time-dependent modulation

V̂ (t ) = κ
∑
l,m

n̂l,m

[
cos

(
lπ

2
− π

4

)
cos

(
ωt − mπ

2
+ φ0

)

+ cos

(
lπ

2
+ π

4

)
cos

(
−ωt − mπ

2
+ π

2
+ φ0

)]
,

(4)

κ is the driving amplitude, and ω = � is the resonant driving
frequency. We set the relative phase φ0 between the optical-
lattice potential and the running waves used for laser-assisted
tunneling to φ0 = π/4.

Using Floquet theory, the time-evolution operator corre-
sponding to the Hamiltonian (3) can be represented as

Û (t, t0) = e−iŴ t e−iK̂ (t )e−i(t−t0 )Ĥeff eiK̂ (t0 )eiŴ t0 , (5)

where Ĥeff is the full time-independent effective Hamiltonian
that describes slow motion and K̂ (t ) is the time-periodic kick
operator that describes micromotion [13,14].

For the moment, in this subsection we first consider the
noninteracting model U = 0. We also assume that the driving
frequency ω is the highest energy scale, but that it is still low
enough that the lowest-band approximation used in deriving
Eq. (1) is still valid. In the leading order of the high-frequency
expansion, the effective Hamiltonian Ĥeff is given by

Ĥeff,0 = J ′
x

∑
l,m

[ei((m−l−1)π/2−π/4)â
†
l+1,mâl,m + H.c.]

− J ′
y

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (6)

where the renormalized hopping amplitudes are J ′
x = Jxκ√

2ω
=

Jy and J ′
y = Jy (1 − 1

2
κ2

ω2 ). A schematic representation of this
model is presented in Fig. 1(a). The unit cell is shaded
and the full lattice is spanned by the vectors R1 = (4, 0)
and R2 = (1, 1). Particle hopping around a plaquette in the
counterclockwise direction acquires a complex phase −π

2 and
the model is equivalent to the Harper-Hofstadter Hamiltonian
[4] for the case α = 1/4 [4]. The explicit form of the kick
operator K̂ (t ) from Eq. (3) is given in Appendix A.

Following Refs. [13,14], we find that additional corrections
of the order J 2

x /ω contribute to the system’s dynamics and we
introduce another approximation for the effective Hamiltonian

Ĥeff,1 = Ĥeff,0 + J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m

+ â
†
l+2,mâl,m + â

†
l−2,mâl,m). (7)

The derivation of Hamiltonian (7) is given in Appendix A and
its schematic representation is given in Fig. 1(b). The J 2

x /ω

correction introduces next-nearest-neighbor hopping along x

direction with opposite signs for lattice sites with either even
or odd x-coordinate l. This term does not change the total
complex phase per plaquette, but the unit cell is now doubled
and thus the first Brillouin zone is halved. A similar term
was engineered on purpose in order to implement the Haldane
model [8].

In the next subsection we investigate properties of energy
bands of both effective Hamiltonians, Ĥeff,0 and Ĥeff,1. We
use the units where h̄ = 1 and a = 1. Unless otherwise stated,
we set the parameters to the following values: lattice size
100 × 100 sites, hopping amplitudes J ′

x = Jy = 1 ≡ J , and
the driving amplitude κ = 0.58ω. This value of the driving
amplitude was chosen to be the same as in the experiment
[26]. In order to set the renormalized hopping amplitude
along ex to J ′

x = 1, the initial hopping amplitude has to be

053625-2
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FIG. 1. Schematic representation of the model. The unit cells
are shaded. (a) Effective Hamiltonian without correction, Ĥeff,0 (6).
Vertical links correspond to real hopping amplitudes (along ey direc-
tion), while the horizontal links to the right of lattice sites labeled
A, B, C, and D correspond to complex hopping amplitudes with
phases 3π

4 , π

4 , − π

4 , and − 3π

4 , respectively (when hopping from left
to right). (b) Effective Hamiltonian with correction, Ĥeff,1 (7). Red
lines represent positive next-nearest-neighbor hopping amplitudes
(connecting uppercase letters), while the blue lines represent negative
next-nearest-neighbor hopping amplitudes (connecting lowercase
letters). Nearest-neighbor hopping amplitudes are the same as in (a).

Jx = √
2ω/κ = 2.44, and the correction term is therefore pro-

portional to J 2
x /ω = 5.95/ω, so it cannot be safely neglected

unless the driving frequency is very high.

B. Band structure

Momentum-space representations of the effective Hamil-
tonians Ĥeff,0 and Ĥeff,1, denoted by Ĥeff,0(k) and Ĥeff,1(k),
respectively, are derived in Appendix B. Band structures for
the effective Hamiltonian Ĥeff,0 without the J 2

x /ω correction,
Eq. (B1), as well as for the effective Hamiltonian Ĥeff,1

including the correction term, Eq. (B2), are shown in Fig. 2
for the two values of driving frequencies ω = 20 and ω = 10.

The Hamiltonian Ĥeff,0 is the Harper-Hofstadter Hamilto-
nian for the flux α = 1/4. It has four energy bands, where
the middle two bands touch at E = 0 and can therefore be
regarded as a single band; see Fig. 2(a). The topological
content of these bands is characterized by the topological
index called the Chern number. The Chern number is the
integral of the Berry curvature [42] over the first Brillouin
zone divided by 2π ,

cn = 1

2π

∫
FBZ

�n(k) · dS, (8)

where n denotes the band number and the Berry curvature
is �n(k) = i∇k × 〈un(k)|∇k|un(k)〉, expressed in terms of
eigenstates of the effective Hamiltonian |un(k)〉. The Chern
numbers of the three well-separated bands are c1 = 1, c2 =
−2, and c3 = 1.

Because the correction from Eq. (7) includes next-nearest-
neighbor hopping terms, the elementary cell in real space
is doubled [see Fig. 1(b)] and, as a consequence, the first
Brillouin zone for the Hamiltonian Ĥeff,1 is reduced by a
factor of 2 compared to Ĥeff,0. There are now eight lattice
sites in the unit cell and eight energy bands, but the number
of gaps depends on the driving frequency. The new bands
touch in pairs, in such a way that there are always maximally
three well-separated bands. When the driving frequency is
high enough, the correction is small and the gaps between
the three bands remain open; see Fig. 2(b). The original band
structure of Ĥeff,0 is recovered in the limit ω → ∞. The
Berry curvature and the Chern number can be calculated using
the efficient method presented in Ref. [43]. Our calculations
confirm that the Chern numbers of Ĥeff,1 are equal to those
of Ĥeff,0 (c1 = 1, c2 = −2, and c3 = 1), as long as the gaps
between the energy bands are open. The gaps close when the
driving frequency is too low, see Fig. 2(c), and the Chern
numbers of the subbands can no longer be properly defined.

C. Dynamics of incoherent bosons

We need to take into account a contribution of weak, repul-
sive interactions. Full numerical simulations of an interacting
many-body problem are computationally demanding, so we
need a reasonable, numerically tractable approximation. To
this end we will use the classical field method [44], which

π/2 π 3π/2 2π

E
/
J

ky

c1 = 1

c2 = −2

c3 = 1

π/4 π/2 3π/4 π

E
/
J

kyω = 20
π/4 π/2 3π/4 π

E
/
J

kyω = 10

-1

-2

-3
0

(a)
0

(b)

0

1

2

3

-1
-2
-3
-4

0
1
2
3
4

0
(c)

-1
-2
-3
-4
-5

0
1
2
3
4
5

FIG. 2. Energy bands of the effective Hamiltonians. (a) Ĥeff,0(k) Eq. (B1), which is without the J 2
x /ω correction term. (b) Ĥeff,1(k)

Eq. (B2), which includes the correction term. Driving frequency ω = 20; gaps are open. (c) Same as (b), but with ω = 10. Gaps are closed.
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belongs to a broader class of truncated Wigner approaches
[45]. This method is similar to the approach used to treat
incoherent light in instantaneous media [46,47], known in
optics as the modal theory.

The underlying idea of the method is to represent the
initial state as an incoherent mixture of coherent states |ψ〉,
âl,m|ψ〉 = ψl,m|ψ〉 [44]. This is explained in more detail in
Appendix C. In our study, we sample initial configurations of
these coherent states with

|ψ (t = 0)〉 =
Nm∑
k=1

eiφk |k〉, (9)

where φk ∈ [0, 2π ) are random phases and the states |k〉
correspond closely to the lowest-band eigenstates of Ĥeff.
Each of Nsamples initial states is time evolved and physical
variables can be extracted by averaging over an ensemble of
different initial conditions.

The time evolution of each of these coherent states is
governed by

i
dψl,m(t )

dt
=

∑
ij

Hlm,ij (t )ψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (10)

where Hlm,ij (t ) = 〈l, m|Ĥ (t )|i, j 〉 are matrix elements of
Ĥ (t ) from Eq. (3), F is the external force, and interactions
U contribute with the last, nonlinear term. Formally, Eq. (10)
takes the form of the Gross-Pitaevskii equation [48–50]. The
performances and limitations of the method are discussed and
reviewed in Ref. [51].

For comparison, we also consider the related time evolu-
tion governed by the effective Hamiltonian

i
dψl,m(t )

dt
=

∑
ij

heff
lm,ijψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (11)

where heff
lm,ij = 〈l, m|ĥeff|i, j 〉, with ĥeff being either Ĥeff,0

from Eq. (6), or Ĥeff,1 from Eq. (7). Equation (11) should
be considered only as a tentative description of the sys-
tem: the mapping between Ĥ (t ) and Ĥeff is strictly valid only
in the noninteracting regime and the interaction term may
introduce complex, nonlocal, higher-order corrections [27].
However, we expect their contribution to be small in the limit
U → 0, and for time scales which are not too long [52–55].

In the following we use Nm = 300 modes and accom-
modate Np = 300 particles per mode, so in total in the
simulations we have N = NmNp = 90 000 bosons. Typical
densities in real space are up to 100 particles per site and
we choose the values of U in the range U ∈ [0, 0.05]. Other
parameters: J ′

x = Jy = 1, κ/ω = 0.58, ω = 10, 20, and F =
0.25J/a. The correction terms are non-negligible in this
frequency range. In practice, we first numerically diagonalize
the Hamiltonian (C2) from Appendix C and set our parameters
in such a way that the lowest Nm modes have high overlap
with the lowest band of the effective model. In the next step,
we sample initial configurations (9). For each of Nsamples =
1000 sets of initial conditions we then time evolve Eq. (10)
and extract quantities of interest by averaging over resulting

TABLE I. Four different cases: the same effective Hamiltonian
is always used for the initial state and band definitions, either with
or without the correction. The evolution is governed either by the
time-dependent Hamiltonian or by the same effective Hamiltonian
as the one that was used for the initial state and calculation of band
populations.

Case Initial state Band populations Evolution

1 Ĥeff,1 Ĥeff,1 Ĥeff,1

2 Ĥeff,1 Ĥeff,1 Ĥ (t )

3 Ĥeff,0 Ĥeff,0 Ĥeff,0

4 Ĥeff,0 Ĥeff,0 Ĥ (t )

trajectories. This value of Nsamples is chosen to be high enough,
so that the fluctuations are weak. We present and discuss
results of our numerical simulations in the following sections.

III. NONINTERACTING CASE

We start by addressing the dynamics of noninteracting
bosons. In this case we set U = 0 in Eq. (10) and numerically
solve the single-particle Schrödinger equation without further
approximations. Our aim is to numerically validate and com-
pare the two approximations, Eqs. (6) and (7), for the effective
Hamiltonian. To this purpose, we juxtapose results of the
two approximative schemes with the numerically exact results
obtained by considering the full time evolution governed
by Ĥ (t ). For clarity, the four different time evolutions that
we consider in this section are summarized in Table I. We
calculate the center-of-mass position x(t ) and plot the results
in Fig. 3. In this way we also find the regime of microscopic

49
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(c)
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(d)
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(b)
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/
a
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Ĥ(t)
Ĥeff,1

γeff,1(t)

x
/
a

Ĥ(t)
Ĥeff,0

γeff,0(t)

t (ms)

Ĥ(t)
Ĥeff,1

γeff,1(t)

Ĥ(t)
Ĥeff,0

γeff,0(t)

FIG. 3. Anomalous drift x(t ). Dashed purple lines: numerical
simulations using the time-dependent Hamiltonian Ĥ (t ) (cases 2 and
4 from Table I). Solid green lines: effective Hamiltonians Ĥeff,1 (c)
and (d) and Ĥeff,0 (a) and (b) (cases 1 and 3). Dotted black lines:
theoretical prediction (14) from γeff,1(t ) or γeff,0(t ). (a) Initial states
and band populations obtained using the effective Hamiltonian Ĥeff,0

without the correction (cases 3 and 4). Driving frequency ω = 20.
(b) ω = 10. (c) Hamiltonian Ĥeff,1 with the J 2

x /ω correction (cases 1
and 2). Driving frequency ω = 20. (d) ω = 10.
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parameters where the Chern-number measurement can be
optimally performed.

First, we consider the basic Harper-Hofstadter Hamiltonian
(6) and select the occupied modes |k〉 of the initial state (C1)
as eigenstates of the model from Eq. (9) for ĥeff = Ĥeff,0. As
explained in the previous section, at the initial moment t0 =
0, the confinement is turned off and the force F = −F ey is
turned on. As a consequence of the applied external force and
the nonzero Chern number of the lowest band of the model
(6), the particles exhibit an anomalous velocity in the direction
perpendicular to the force [56]. In the ideal case, when the
lowest band is fully populated, the theoretical prediction for
the center-of-mass position in the ex direction is [26]

x(t ) = x(t0) + c1
2Fa2

πh̄
t, (12)

where c1 = 1 is the Chern number (8) of the lowest band.
However, even in the ideal case, due to the sudden quench
of the linear potential, a fraction of particles is transferred to
the higher bands. To take this effect into account, the authors
of Ref. [26] introduced a filling factor γ (t )

γ (t ) = η1(t ) − η2(t ) + η3(t ), (13)

where ηi (t ) are populations of different bands of Hamiltionian
(6) from Eq. (C4) in Appendix C and the plus and minus signs
in Eq. (13) are defined according to the Chern numbers c1 =
1, c2 = −2, and c3 = 1. The final theoretical prediction is
then [26]

x(t ) = x(t0) + c1
2Fa2

πh̄

∫ t

0
γ (t ′)dt ′. (14)

In Fig. 3(a) we consider the anomalous drift for a high
value of the driving frequency ω = 20, where we expect
the expansion in 1/ω to be reliable. We find an excellent
agreement between the prediction (14) (dotted black line)
and numerical calculation based on Ĥeff,0 (solid green line).
However, some deviations between the full numerical results
(dashed purple line) and the results of the approximation
scheme (solid green line) are clearly visible. These deviations
are even more pronounced for ω = 10, Fig. 3(b).

Now we turn to the effective model (7). In this case we
select the modes of the initial state as eigenstates of Eq. (9)
for ĥeff = Ĥeff,1. Moreover, we also consider band populations
(C4) of the same model. In the case when ω = 20, Fig. 3(c),
the anomalous drift obtained using the effective Hamiltonian
(7) (solid green line) closely follows the theoretical prediction
(14). Moreover, from the same figure we can see that the
effective Hamiltonian Ĥeff,1 reproduces the behavior of the
time-dependent Hamiltonian very well. All three curves al-
most overlap for intermediate times (5–40 ms); see Fig. 3(c).
We attribute the long-time (>45 ms) deviations to the finite-
size effects introduced by the next-nearest-neighbor hopping
terms, which cause the atomic cloud to reach the edge of
the lattice faster. This effect is explained in more detail in
Sec. IV B.

For a lower driving frequency ω = 10, the effective and the
time-dependent Hamiltonians do not agree so well anymore;
see Fig. 3(d). The finite-size effects can be observed even
earlier in this case (around 25 ms). This happens because the
next-nearest-hopping terms are inversely proportional to the
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FIG. 4. Time evolution of the filling factor γ (t ) for driving
frequency ω = 20. Solid purple lines: evolution governed by the
time-dependent Hamiltonian Ĥ (t ) (cases 2 and 4 from Table I).
Dashed green lines: evolution governed by the effective Hamiltonian
Ĥeff,1 or Ĥeff,0 (cases 1 and 3). Dotted black lines: green lines shifted
in order to compare them with purple lines. Shift is chosen so
that the two lines approximately overlap. (a) Initial states and band
populations obtained using the effective Hamiltonian Ĥeff,0, which is
without the J 2

x /ω correction term (cases 3 and 4). (b) Hamiltonian
Ĥeff,1 which is with the correction term (cases 1 and 2).

driving frequency. It is interesting to note that the prediction
(14) is close to numerical data for short times even in this case
when the gaps of the effective model are closed, see Fig. 2(c),
and the Chern number of the lowest band is not well defined.
In fact, it is surprising that the anomalous drift even exists in
this case, as all subbands are now merged into a single band.
We attribute this effect to our choice of the initial state. When
the gaps are closed, it is hard to set the parameters in such
a way that the lowest band is completely filled. The top of
this band usually remains empty and the particles thus do not
“see” that the gap is closed.

Time evolution of the filling factor γ (t ) is plotted in Fig. 4
for four different cases from Table I—evolution using the
effective Hamiltonian without correction Ĥeff,0 [γeff,0(t ), case
3, dashed green line in Fig. 4(a)], the effective Hamiltonian
with correction Ĥeff,1 [γeff,1(t ), case 1, dashed green line in
Fig. 4(b)], or the time-dependent Hamiltonian Ĥ (t ) [γ (t ),
cases 2 and 4, solid purple lines]. At the initial moment γ (t0 =
0) < 1, because the initial state was multiplied by the operator
e−iK̂ (0). This introduces a shift between γ (t ) and γeff,1(t ).
Apart from the shift, these two curves behave similarly, unlike
the γeff,0(t ) curve that exhibits completely different behavior.
Because of this, we use only γeff,1(t ) to estimate the value of
the prediction (14).

We find that the values of γeff,1(t ) for ω = 20 are high:
�0.95; see Fig. 4. For this reason, up to 50 ms the center-of-
mass position x(t ) exhibits roughly linear behavior with some
additional oscillations. Interestingly, the anomalous drift x(t )
exhibits quadratic behavior on short time scales in all cases
from Fig. 3. In Appendix D, we explain this feature using the
time-dependent perturbation theory and Fermi’s golden rule.

IV. INTERACTING CASE

We now investigate the effects of weak repulsive interac-
tions. We work in the high-frequency regime and set ω = 20.
As shown in Sec. II B, for U = 0 the effective Hamiltonian
with correction, Ĥeff,1, is in this case equivalent to the Harper-
Hofstadter Hamiltonian with flux α = 1/4. Moreover, the
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γeff,1(t ). (b) Corresponding γeff,1(t ) = η1(t ) − η2(t ) + η3(t ), obtained from simulations using the effective Hamiltonian Ĥeff,1.

same approximative form of the full effective model accu-
rately reproduces the behavior of the time-dependent Hamil-
tonian up to 50 ms and thus provides a good starting point for
the study of weakly interacting particles. We first consider the
anomalous drift of the center of mass of the atomic cloud and
then we inspect the expansion dynamics more closely in terms
of atomic density distributions in real and momentum space.

A. Anomalous drift and dynamics of band populations

To simulate the dynamics of many incoherent bosons, we
use the classical field method presented in Sec. II C and
propagate Eq. (10) in time. We assume that at t0 = 0 atoms are
uniformly distributed over the lowest band of Ĥeff,1. For this
reason, the initial state is the same as the one that we use in the
noninteracting regime. In this way, the dynamics is initiated
by an effective triple quench: at t0 = 0 the confining potential
is turned off, atoms are exposed to the force F = −F ey , and
also the interactions between particles are introduced. The
total number of particles is set to N = 90 000, which amounts
to approximately 100 particles per lattice site in the central
region of the atomic cloud. We consider only weak repulsion
U � 0.05.

The anomalous drift x(t ) obtained using the full time-
dependent Hamiltonian is shown in Fig. 5(a) for several
different values of the interaction strength U . In comparison
to the noninteracting regime, we find that the weak repulsive
interactions inhibit the response of the center of mass to the
external force. In particular, at t = 50 ms the drift is reduced
by about 15% for U = 0.005 and it is further lowered by an
increase in U . Finally, at U = 0.05, the anomalous drift is
barely discernible. Interestingly, for weak U ∈ (0.001, 0.01)
we find that the drift x(t ) in the range of t ∈ (10, 50) ms
looks “more linear” as a function of time in comparison to
the noninteracting result.

We now analyze the anomalous drift in terms of the filling
factor γ (t ) and compare the results of Eq. (10) with the
description based on Eq. (11). By solving Eq. (11) we obtain
the filling factor γeff,1(t ) following Eq. (C4) and present

our results in Fig. 5(b). Whenever the results of Eq. (10)
reasonably agree with the results obtained from Eq. (11), we
are close to a steady-state regime with only small fluctuations
in the total energy, as Eq. (11) preserves the total energy of
the system. In this regime, during the expansion dynamics
the interaction energy is converted into the kinetic energy and
atoms are transferred to higher bands of the effective model.
Consequently, the filling factor γeff,1(t ) is reduced. Typically,
we find three different stages in the decrease of γeff,1(t ).

In an early stage, t � t1 = 5 ms, a fast redistribution of
particles over the bands of the effective model sets in due to
the sudden quench of U . The factor γeff,1(t ) decays quadrat-
ically as a function of time down to γeff,1(t1) ≈ 0.75 for
U = 0.01, and γeff,1(t1) ≈ 0.25 for U = 0.05. In this process
the interaction energy of the system is quickly lowered as
described in Appendix E. At later times t > 5 ms, we observe
a linear decay of the filling factor γeff,1(t ) as a function of
time, that finally turns into an exponential decay at even later
times (t > 10 ms). Similar regimes are observed in other dy-
namical systems. For example, a decay rate of an initial state
suddenly coupled to a bath of additional degrees of freedom
exhibits these three stages [57]. The initial quadratic decay is
often denoted as “the Zeno regime.” For longer propagation
times, Fermi’s golden rule predicts the linear decay. At even
longer time scales, when the repopulation of the initial state
is taken into account, the time-dependent perturbation theory
yields the exponential regime, known under the name of the
Wigner-Weisskopf theory [57].

We now investigate this last regime in more detail. For
the population of the lowest band η1(t ), an exponential decay
function f (t ) = a + b e−ct provides high quality fits for t ∈
(10, 50) ms; see Fig. 6(a) for an example. Similarly, the pop-
ulations of two higher bands can also be fitted to exponential
functions. The obtained exponential decay coefficients c for
the lowest band population are plotted as a function of the
interaction strength U in Fig. 6(b). The resulting dependence
is approximately quadratic: c(U ) = α0 + α1U + α2U

2. For
small values of U , the exponents c(U ) obtained for the
dynamics governed by Ĥ (t ) and Ĥeff, 1 agree very well and
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Ĥ(t)
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exhibit linear behavior. At stronger interaction strengths U �
0.03, the approximation of Eq. (11) becomes less accurate as
it omits the quadratic contribution in c(U ) found in the full
time evolution. In addition, the values of the exponents c are
affected by the force strength F and driving frequency ω.

As we now understand some basic features of γeff,1(t ), we
make an explicit comparison between the numerical results
for the anomalous drift and the expectation (14). The dashed
lines in Fig. 5(a) correspond to the theoretical prediction
(14) calculated from γeff,1(t ). For the intermediate interaction
strengths U � 0.01, we find a very good agreement between
the two. From this we conclude that the interaction-induced
transitions of atoms to higher bands are the main cause of the
reduced anomalous drift x(t ) as a function of U . When the
interactions become strong enough (U ∼ 0.02), the numerical
results start to deviate from the theoretical prediction (14) with
γeff,1(t ). In this regime, Eq. (11) does not provide a reliable
description of the dynamics, as higher-order corrections need
to be taken into account.

B. Real and momentum-space dynamics

So far we have considered the averaged response of the
whole atomic cloud. We now inspect the expansion dynamics
in a spatially resolved manner. The real-space probability
densities at the initial moment and after 50 ms (75 driving
periods) are shown in Figs. 7 and 8, and the corresponding
momentum-space probability densities in Appendix F.

At the initial moment, the atomic cloud is localized in
the center of the lattice. By setting r0 = 20 in the confining
potential of Eq. (C2) and populating the lowest-lying states,
we fix the cloud radius to r = 20, Fig. 7(a). The cloud density
is of the order of 100 atoms per lattice site and a weak density
modulation is visible along x direction. After the confining
potential is turned off, and the external force in the −ey

direction is turned on, the cloud starts to expand and move
in the +ex direction. As shown in the previous subsection,
the band populations and therefore the anomalous drift are
significantly altered by the interaction strength, and this is also
the case with the expansion dynamics; see Figs. 7 and 8.

In the noninteracting case, Fig. 7(b), the atomic cloud
nearly separates into two parts moving in opposite directions

y
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Ĥ(t)
U = 0

t/T = 75
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FIG. 7. Real-space density distribution, noninteracting case U =
0. (a) Initial state. (b) After 50 ms (75 driving periods), evolution
using the time-dependent Hamiltonian Ĥ (t ). (c) Evolution using
effective Hamiltonian without correction Ĥeff,0. (d) Evolution using
effective Hamiltonian with correction Ĥeff,1.

along x axes (while the center of mass still moves in the +ex

direction). By comparing Fig. 7(c) and Fig. 7(d), we conclude
that this effect stems from the next-nearest-neighbor hopping
along x present in the effective Hamiltonian (7), as it does
not happen in the effective model without the correction term
(6). This type of separation was already observed in Ref. [22],
where the next-nearest-neighbor hopping terms were also
present. When the interactions between particles are included,
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FIG. 8. Real-space density distribution after 50 ms (75 driving
periods), interacting case. U is given in units where J = 1. (a) Evo-
lution using the time-dependent Hamiltonian Ĥ (t ), U = 0.01. (b)
Same with U = 0.05. (c) Evolution using the effective Hamiltonian
Ĥeff,1, U = 0.01. (d) Same with U = 0.05.
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this separation is not so prominent [Fig. 8(a), U = 0.01],
and it almost completely disappears when the interactions are
strong enough [Fig. 8(b), U = 0.05]. This is also the case
when the evolution is governed by the effective Hamiltonian
Ĥeff,1; see Figs. 8(c) and 8(d). Atomic cloud widths dx =√

〈x2〉 − 〈x〉2 during the expansion are plotted in Fig. 9. We
observe a slow expansion of the cloud in y direction, Fig. 9(b),
and much faster expansion along x direction, Fig. 9(a), which
comes about as a consequence of the cloud separation. On top
of this, we observe that the interactions enhance expansion
along y. Surprisingly, the opposite is true for the dynamics
along x. This counterintuitive effect is often labeled as self-
trapping and its basic realization is known for the double-
well potential [58,59]. In brief, strong repulsive interactions
can preserve the density imbalance between the two wells,
as the system cannot release an excess of the interaction
energy. In our case, the situation is slightly more involved
as the cloud splitting is inherent (induced by the corrections
of the ideal effective Hamiltonian). Apart from this, due to
the driving the total energy is not conserved. However, our
numerical results indicate that the interaction energy is slowly
released in the second expansion stage, Fig. 14. Effectively,
in this way the interactions cancel out the contribution of the
next-nearest-neighbor hopping and favor the measurement of
the properties of the model (6). In Fig. 10(a) we show that
deviations between different approximations based on Ĥ (t ),

Ĥeff,1, and Ĥeff,0 in the anomalous drift x(t ) nearly vanish at
U = 0.01.

Another desirable effect might be that the interactions
make the momentum-space probability density more ho-
mogeneous, see Appendix F, so that the real-space prob-
ability density becomes more localized. We can quantify
momentum-space homogeneity using the inverse participation
ratio R(t ) = 1∑

i P 2
i (t )

, where Pi (t ) = |ψi (t )|2 is the probability

that the state ψi is occupied at time t . Minimal value of
the inverse participation ratio (IPR) is 1 and it corresponds
to a completely localized state, while the maximal value is
equal to the total number of states (in our case 10 000) and
corresponds to the completely delocalized state, where the
particles have the same probability of being at any quasi-
momentum k. As stated before, the first Brillouin zone of
the lowest band has to be as homogeneously populated as
possible in order to properly measure the lowest band Chern
number. From Fig. 10(b), we see that IPR increases in time
when the interaction coefficient U is large enough, so we
can conclude that the interactions are actually beneficial for
measuring the Chern number, as they can “smooth out” the
momentum-space probability density. In Fig. 10(c) we give
estimates for the Chern number that can be extracted from
our numerical data for different values of U . We find the best
estimate c1 ∼ 0.99 for the intermediate interaction strength
U ∼ 0.01.

C. Staggered detuning

Here we briefly consider the effects of staggered detuning
that was introduced in the experimental study [26] during the
loading and band mapping sequences. This detuning can be
described by an additional term

δ

2

∑
l,m

[(−1)l + (−1)m]n̂l,m (15)

in the Hamiltonians Ĥ (t ) and Ĥeff,1. We will ignore the
higher-order [at most O( 1

ω2 )] corrections that this term intro-
duces to the effective Hamiltonian. Staggered detuning does
not break the symmetry of the effective Hamiltonian Ĥeff,1,
but if δ is large enough, it can cause a topological phase
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∫ t

0 γeff,1(t ′)dt ′)/[x(t ) − x(t0)].
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transition and make all bands topologically trivial. By numer-
ically calculating the Berry curvature and Chern numbers c′

i ,
we find that this transition occurs at δc ≈ 1.38 J ; see Fig. 11.
This value is lower than the one for the ordinary Harper-
Hofstadter Hamiltonian for α = 1/4, which is δc = 2 J [26],
due to the different hopping amplitudes J ′

x and J ′
y , and due to

the additional J 2
x /ω correction that we consider.

We now investigate how this topological transition can be
probed through the dynamical protocol used in the exper-
iment. We again numerically calculate the anomalous drift
and the evolution of the filling factor, but now with staggered
detuning (15) included in the Hamiltonian Ĥinitial (C2) used
to obtain the initial state, in the equations of motion (10) and
(11), and in the definitions of the band populations ηi (t ) (C4).
Using these results, we repeat the procedure for the extraction
of the lowest band Chern number from numerical data that
was carried out in the previous section. The Chern number
obtained by comparing the anomalous drift to the prediction
calculated from the filling factor is then averaged over the
time interval t ∈ (20, 40) ms. This interval was chosen in
order to avoid the initial quadratic regime and the finite-
size effects at later times. The resulting lowest band Chern
numbers for several different values of detuning δ in both the
noninteracting case and the case of intermediate interaction
strength U = 0.01 are presented in Fig. 11.

We can see that the calculated value of the Chern number
decreases from c1 = 1 to c1 = 0 with increasing detuning
δ. The obtained value of the Chern number is lower than 1
even before the phase transition occurs. This is due to our
choice of the initial state, which is not perfectly homogeneous
in momentum space. Close to the phase transition, both the
energy bands and the Berry curvature have pronounced peaks
at the same regions of the first Brillouin zone, and these
regions are initially less populated. Because of this, the Berry
curvature at these regions contributes less to the anomalous
drift, which lowers the measured Chern number. This effect is

somewhat reduced by the interactions, as they smooth out the
momentum-space probability density, and might also cancel
out the detuning term. Similar interplay of interactions and
staggering was observed in the fermionic Hofstadter-Hubbard
model [60]. The obtained results are in line with experimental
measurements [26].

V. CONCLUSIONS

Motivated by the recent experimental results reporting the
Chern numbers of topological bands in cold-atom setups,
we studied numerically bosonic transport in a driven optical
lattice. The considered driving scheme and the range of micro-
scopic parameters were chosen to be close to those in a recent
experimental study [26]. The driving frequency was set to be
high enough in order to avoid strong energy absorption for the
relevant time scales. Additionally, the system was restricted to
a two-dimensional lattice, even though the actual experimen-
tal setup had continuous transverse degrees of freedom. This
restriction stabilizes the system [29,31,41] and leads to lower
heating rates than those in the experiment. It corresponds to
the case of strongly confined third dimension.

We investigated bosonic dynamics for the full time-
dependent Hamiltonian, the effective Floquet Hamiltonian,
and included the effects of weak repulsive interactions be-
tween atoms using the mean-field approximation. In the non-
interacting case, we found that the effective Hamiltonian and
its band structure depend on the frequency of the drive ω

through an additional J 2
x /ω correction term. The initial state

was set as a mixture of incoherent bosons homogeneously
populating the lowest band, but a possible direction of future
research could be to simulate the full loading sequence of an
initial Bose-Einstein condensate and to try to obtain the inco-
herent state through driving, as it was done in the experiment.

The main focus of this work is on the effects of weak in-
teractions. For a weak atomic repulsion, atomic transitions to
higher effective bands obtained in our simulations mainly oc-
cur due to a release of the initial interaction energy during the
atomic-cloud expansion. Although the effect is undesirable,
it can be properly taken into account in the extraction of the
Chern number. At larger interaction strengths, the transitions
are more pronounced as the system absorbs energy from the
drive. In this regime the good agreement between the full and
effective description is lost and the measurement should be-
come more complicated. In addition to causing redistribution
of atoms over bands, our results show that weak interactions
can also be beneficial in measuring the Chern number. Their
desirable effect comes about due to smoothening the atomic
distribution over the topological band and due to canceling
out the contribution of some less relevant terms to the bosonic
dynamics.
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APPENDIX A: EFFECTIVE MODEL

After a unitary transformation into the rotating frame ψ̃ =
e−iŴ tψ , where ψ̃ and ψ are the old and the new wave
functions, and Ŵ is the staggered potential, the new time-
dependent Hamiltonian that describes the experimental setup
is given by [26]

Ĥ (t ) = Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m) + V̂ (+1)eiωt + V̂ (−1)e−iωt + U

2

∑
l,m

n̂l,m(n̂l,m − 1), (A1)

where

V̂ (+1) = κ/2
∑
l,m

n̂l,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A2)

V̂ (−1) = κ/2
∑
l,m

n̂l,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A3)

g(l, m) = cos(lπ/2 − π/4)ei(φ0−mπ/2) + cos(lπ/2 + π/4)ei(mπ/2−φ0−π/2). (A4)

The kick operator is given by

K̂ (t ) = 1

iω

(
V̂ (+1)eiωt − V̂ (−1)e−iωt

) + O

(
1

ω2

)
(A5)

and the effective Hamiltonian by

Ĥeff = Ĥ0︸︷︷︸
Ĥ

(0)
eff

+ 1

ω
[V̂ (+1), V̂ (−1)]︸ ︷︷ ︸

Ĥ
(1)
eff

+ 1

2ω2
([[V̂ (+1), Ĥ0], V̂ (−1)] + [[V̂ (−1), Ĥ0], V̂ (+1)])︸ ︷︷ ︸

Ĥ
(2)
eff

+O

(
1

ω3

)
. (A6)

If we assume that the driving frequency is high and interactions are weak, the interaction term and almost all O( 1
ω2 ) terms

can be neglected. After substituting Eqs. (A1), (A2), and (A3) into Eq. (A6) we obtain

Ĥ
(0)
eff = − Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (A7)

Ĥ
(1)
eff = 1

ω

[
κ

2

∑
l,m

â
†
l,mâl,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m),

(A8)
κ

2

∑
l,m

â
†
l,mâl,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

]
= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4.

We will now separately calculate each term:

Ĥ1 = − Jxκ

2ω

∑
lodd,m,l′,m′

g∗(l′,m′)[â†
l+1,mâl,m + â

†
l−1,mâl,m, â

†
l′,m′ âl′,m′ ]

= − Jxκ

2ω

∑
lodd,m

[(g∗(l, m) − g∗(l + 1,m))â†
l+1,mâl,m + (g∗(l, m) − g∗(l − 1,m))â†

l−1,mâl,m], (A9)

Ĥ2 = − Jxκ

2ω

∑
leven,m,l′,m′

g(l′,m′)[â†
l′,m′ âl′,m′ , â

†
l+1,mâl,m + â

†
l−1,mâl,m]

= Jxκ

2ω

∑
leven,m

[(g(l, m) − g(l + 1,m))â†
l+1,mâl,m + (g(l, m) − g(l − 1,m))â†

l−1,mâl,m], (A10)

Ĥ3 = J 2
x

ω

∑
lodd,m,l′even,m

′
[â†

l+1,mâl,m + â
†
l−1,mâl,m, â

†
l′+1,m′ âl′,m′ + â

†
l′−1,m′ âl′,m′ ]

= J 2
x

ω

∑
lodd,m

(2â
†
l+1,mâl+1,m + â

†
l+3,mâl+1,m + â

†
l−1,mâl+1,m − 2â

†
l,mâl,m − â

†
l+2,mâl,m − â

†
l−2,mâl,m)

= J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A11)
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Ĥ4 = κ2

4ω

∑
l,m,l′,m′

g(l, m)g∗(l′,m′)[â†
l,mâl,m, â

†
l′,m′ âl′,m′ ] = 0. (A12)

Using trigonometric identities and

g(l, m) − g(l ± 1,m) = ±
√

2( sin[(2l ± 1 − 1)π/4]ei(π/4−mπ/2) + sin[(2l ± 1 + 1)π/4]ei(mπ/2−3π/4)), (A13)

we can rewrite the sum of terms (A9) and (A10) in a more convenient form:

Ĥ1 + Ĥ2 = Jxκ√
2ω

∑
l,m

(ei[(m−l)π/2−π/4]â
†
l,mâl−1,m + e−i[(m−l−1)π/2−π/4]â

†
l,mâl+1,m). (A14)

The only O( 1
ω2 ) (Ĥ (2)

eff ) term that cannot be neglected in the parameter range that we use is [26]

Jy

2

κ2

ω2

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m). (A15)

Finally, the effective Hamiltonian becomes

Ĥeff,1 = Jxκ√
2ω

∑
l,m

(ei[(m−l−1)π/2−π/4]â
†
l+1,mâl,m + e−i[(m−l)π/2−π/4]â

†
l−1,mâl,m) − Jy

(
1 − 1

2

κ2

ω2

)∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

(A16)

+ J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A17)

with the renormalized nearest-neighbor hopping amplitudes J ′
x = Jxκ√

2ω
= Jy and J ′

y = Jy (1 − 1
2

κ2

ω2 ), and a next-nearest-neighbor

along ex hopping term proportional to J 2
x

ω
in (A17).

APPENDIX B: EFFECTIVE HAMILTONIAN IN MOMENTUM SPACE

If we choose the unit cell as in Fig. 1(a) [lattice sites A = (1, 0), B = (2, 0), C = (3, 0), and D = (4, 0)], the momentum-space
representation of the effective Hamiltonian without correction Ĥeff,0 (6) is given by a 4 × 4 matrix

Ĥeff,0(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 J ′
xe

−i 3π
4 − J ′

ye
−ik·R2 0 J ′

xe
−i 3π

4 −ik·R1 − J ′
ye

ik·(R2−R1 )

J ′
xe

i 3π
4 − J ′

ye
ik·R2 0 J ′

xe
−i π

4 − J ′
ye

−ik·R2 0

0 J ′
xe

i π
4 − J ′

ye
ik·R2 0 J ′

xe
i π

4 − J ′
ye

−ik·R2

J ′
xe

i 3π
4 +ik·R1 − J ′

ye
ik·(R1−R2 ) 0 J ′

xe
−i π

4 − J ′
ye

ik·R2 0

⎞
⎟⎟⎟⎟⎟⎠, (B1)

where R1 and R2 are the lattice vectors R1 = (4, 0) and R2 = (1, 1) and k is in the first Brillouin zone, which is given by the
reciprocal lattice vectors b1 = π

2 (1,−1) and b2 = 2π (0, 1).

When the J 2
x

ω
correction is included in the effective Hamiltonian, Ĥeff,1 (7), the unit cell is doubled, see Fig. 1(b), and the first

Brillouin zone is therefore halved. If we now choose the lattice sites a = (1, 0), B = (2, 0), c = (3, 0), D = (4, 0), A = (2, 1),
b = (3, 1), C = (4, 1), and d = (5, 1) for the unit cell, the momentum-space representation of the effective Hamiltonian will be
an 8 × 8 matrix

Ĥeff,1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2J2
x

ω
J ′

xe
−i 3π

4 − J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 ) 0 −J ′

ye
ik·R2 0 −J ′

ye
ik·R1

J ′
xe

i 3π
4

2J2
x

ω
J ′

xe
−i π

4
J2
x
ω

(1 + eik·R1 ) −J ′
y 0 −J ′

ye
ik·R2 0

− J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4 − 2J2

x
ω

J ′
xe

i π
4 0 −J ′

y 0 −J ′
ye

ik·R2

J ′
xe

i( 3π
4 −k·R1 ) J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4

2J2
x

ω
−J ′

ye
−ik·(R1−R2 ) 0 −J ′

y 0

0 0 0 −J ′
ye

ik·(R1−R2 ) 2J2
x

ω
J ′

xe
−i 3π

4
J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 )

−J ′
ye

−ik·R2 0 −J ′
y 0 J ′

xe
i 3π

4 − 2J2
x

ω
J ′

xe
−i π

4 − J2
x
ω

(1 + eik·R1 )

0 −J ′
ye

−ik·R2 0 −J ′
y

J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4

2J2
x

ω
J ′

xe
i π

4

−J ′
ye

−ik·R1 0 −J ′
ye

−ik·R2 0 J ′
xe

i( 3π
4 −k·R1 ) − J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4 − 2J2

x
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

053625-11



ANA HUDOMAL et al. PHYSICAL REVIEW A 98, 053625 (2018)

π/4

π/2

−π/2 −π/4 π/4 π/2 3π/4 π

k
x
a

kya

7

π/4

π/2

k
x
a

5

π/4

π/2

k
x
a

3

π/4

π/2

k
x
a

1

−π/2 −π/4 π/4 π/2 3π/4 π

kya

8

6

4

2

FIG. 12. Eight energy subbands of Ĥeff,1(k) for the driving frequency ω = 20. Subbands 1 and 2 form the lowest band with Chern number
c1 = 1, subbands 3, 4, 5, and 6 form the middle band with c2 = −2, and subbands 7 and 8 form the highest band with c3 = 1.

with the lattice vectors R1 = (4, 0) and R2 = (2, 2). The
reciprocal lattice vectors are then b1 = π

2 (1,−1) and b2 =
π (0, 1).

The energy bands of Ĥeff,1(k) are shown in Figs. 2 and 12.

APPENDIX C: DESCRIPTION OF INCOHERENT BOSONS

In a typical condensed-matter system constituent particles
are electrons. Due to their fermionic statistics, at low enough
temperatures, and with Fermi energy above the lowest band,
that band of the topological model is uniformly occupied,
and consequently the transverse Hall conductivity can be
expressed in terms of the Chern number (8) [10]. In con-
trast, weakly interacting bosons in equilibrium form a Bose-
Einstein condensate in the band minima and only probe the
local Berry curvature [21].

Yet in the experiment [26] the Chern number was suc-
cessfully measured using bosonic atoms of 87Rb. This was
possible because in the process of ramping up the drive (4),
the initial Bose-Einstein condensate was transferred into an
incoherent bosonic mixture. Conveniently, it turned out that
the bosonic distribution over the states of the lowest band
of the effective Floquet Hamiltonian was nearly uniform.
Motivated by the experimental procedure, we model the initial

bosonic state by a statistical matrix

ρ(t = 0) =
Nm∏
k=1

|k,Np〉〈k,Np|, (C1)

where the states |k〉 = a
†
k|0〉 approximately correspond to the

lowest-band eigenstates of Ĥeff and each of these Nm states is
occupied by Np atoms |k,Np〉 = N (a†

k )Np |0〉.
A procedure for selecting the states |k〉 is described in

Refs. [22,26]. In order to probe the Chern number of the low-
est band, the states |k〉 should correspond closely to the
lowest-band eigenstates of Ĥeff. At the same time, in the
experiment in the initial moment the atomic cloud is spatially
localized. According to Refs. [22,26] the optimal approach is
to consider a steep confining potential and to use the low-lying
eigenstates of

Ĥinitial = ĥeff +
(

r

r0

)ζ

, (C2)

where in our calculations ĥeff is either Ĥeff,0 from Eq. (6)
or Ĥeff,1 from Eq. (7) and the parameters of the confining
potential are set to r0 = 20, ζ = 20.
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FIG. 13. Population in higher bands, comparison of numerical results (solid line) with the Fermi’s golden rule in the first and second
approximation (dashed lines). Band populations are calculated for an initial BEC in an eigenstate of the effective Hamiltonian and then
averaged over (approximately) all states in the first band. (a) Initial state and evolution from the effective Hamiltonian with correction Ĥeff,1,
Eq. (7). (b) Without the correction, Ĥeff,0, Eq. (6).

The dynamics of the initial state (C1) is induced by a
double quench: at t0 = 0 the atomic cloud is released from
the confining potential and exposed to a uniform force of
intensity F along the y direction. During the whole procedure
the driving providing the laser-assisted tunneling, defined in
Eq. (4), is running.

The main observables of interest are the center-of-mass
position along x direction

x(t ) =
〈∑

l,m

l|ψl,m(t )|2
〉

(C3)

and the population of the ith band of the effective model

ηi (t ) =
〈 ∑

|k〉∈ith band

∣∣∣∣∣∑
l,m

αk∗
lmψlm(t )

∣∣∣∣∣
2〉

, (C4)

where the states |k〉 = ∑
l,m αk

lm|l, m〉 correspond to the eigen-
states of the effective model. Here, angle brackets 〈 〉 denote
averaging over Nsamples sets of initial conditions.

In the case of noninteracting particles, these and other
quantities can be numerically accessed by solving the single-
particle time-dependent Schrödinger equation for Nm differ-
ent initial states |k〉. This is equivalent to sampling the initial
state according to Eq. (9).

In the end, we give two technical remarks. First, all our
calculations are done in the rotating frame; see Eq. (A1) in
Appendix A. The staggered potential (2) is removed in this
way. Second, in the case when the evolution is governed by
the time-dependent Hamiltonian (10), the initial state is mul-
tiplied by the operator e−iK̂ (0) in order to properly compare
these results to the ones obtained from the evolution governed
by the effective Hamiltonian (11); see Eq. (5).

APPENDIX D: INITIAL QUADRATIC REGIME

For simplicity, we will consider only the case without
the confining potential and with very weak force F = 0.01.

The initial state is a Bose-Einstein condensate in one of the
eigenstates of the effective Hamiltonian. The results are later
averaged over all first band eigenstates.

Fermi’s golden rule predicts that the probability for transi-
tion from an initial state ψi to a final state ψf , induced by
a perturbation �Ĥ , is proportional to the square of matrix
elements |〈ψi |�Ĥ |ψf 〉|2. In this case, the perturbation is
�Ĥ = F ŷ. If we assume that the probability of a particle be-
ing in the initial state is always Pi (t ) = |ψi (t )|2 ≈ 1, Fermi’s
golden rule predicts [61]

P
FGR1
i→f (t ) = 1

h̄2 |〈ψi |�Ĥ |ψf 〉|2t2. (D1)

If we now also consider transitions from the other states to
the initial state, but keep the assumption that the populations
in other states are small Pj �=i (t ) = |ψj �=i (t )|2 � 1, the time-
dependent perturbation theory then predicts [61]

P
FGR2
i→f (t ) = |〈i|�Ĥ |f 〉|2 1 − 2 e− �

2h̄
t cos

(Ef −Ei

h̄
t
) + e− �

h̄
t

(Ef − Ei )2 + �2

4

,

(D2)

where � = 2π
h̄

|〈i|�Ĥ |f 〉|2 and Ei (Ef ) is the energy of the
initial (final) state.

We plot the numerical results and both theoretical predic-
tions from Fermi’s golden rule in Fig. 13. Here we can see
that all three curves agree well for short times, the second
approximation longer remains close to the numerical results,
and that the initial quadratic regime is reproduced by theory.
This is the so-called quantum Zeno regime [57].

APPENDIX E: ENERGY

Time evolution of kinetic and interaction energy per par-
ticle for different interaction strengths is plotted in Fig. 14.
Here we define the kinetic energy per particle as the expec-
tation value of the time-dependent Hamiltonian (A1) divided
by the total number of particles Ekin(t ) = 1

N
〈∑l,m,i,j ψ∗

l,m(t )
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FIG. 14. (a) Kinetic energy per particle (expectation value of the time-dependent Hamiltonian Ekin(t ) = 1
N

〈∑l,m,i,j ψ∗
l,m(t )

Hlm,ij (t )ψi,j (t )〉 divided by the total number of particles N ) for several different interaction strengths. (b) Interaction energy per particle

Eint (t ) = 1
N

U

2 〈 ∑
l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. U is given in units where J = 1.

Hlm,ij (t )ψi,j (t )〉, while the interaction energy per particle

is Eint (t ) = 1
N

U
2 〈∑

l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. Both ener-
gies grow with increasing interaction coefficient U .

When the interactions are strong enough and after long
enough time, the atoms become equally distributed between
the eigenstates of the Hamiltonian Ĥ (t ). As the energy
spectrum of Ĥ (t ) is symmetric around zero, the expectation
value of Ĥ (t ) (kinetic energy) should be zero when all
bands are equally populated. We can see this in Fig. 14(a),
where the kinetic energy approaches zero at t ≈ 50 ms for the
case U = 0.05.

The interaction energy at first rapidly decreases, as the
cloud rapidly expands after turning off the confinement

potential V̂conf , and after that continues to slowly decrease as
the cloud slowly expands; see Fig. 14(b).

These considerations also provide a possibility to discuss
the applicability of the approximative method introduced in
Sec. IV. As we work in the regime of high frequency ω =
20, we find that for weak interaction, at short enough times
of propagation, the energy is approximately conserved. At
stronger values of U � 0.01 we observe a slow increase in
the total energy on the considered time scales. In both cases
we do not find the onset of parametric instabilities [31]. If
present, these instabilities are signaled by an order of magni-
tude increase in energy on a short time scale, that we do not
find.
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Ĥeff,1

t/T = 0
U = 0

−π/2 π/2 π 3π/2 2π

kya
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FIG. 15. Momentum-space density distribution in all bands, η1(k) + η2(k) + η3(k). U is given in units where J = 1. Left: evolution using
the time-dependent Hamiltonian Ĥeff,1. Right: evolution using the time-dependent Hamiltonian Ĥ (t ). (a), (b) Initial state. (c), (d) Final state
after 50 ms (75 driving periods), noninteracting case U = 0. (e), (f) U = 0.01. (g), (h) U = 0.05.
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In addition, the two-body interaction can deplete the occu-
pancies of initial coherent modes [29,41] and limit the validity
of our approach. In principle, these types of processes can be
addressed by including quantum fluctuations along the lines
of the full truncated Wigner approach [45]. Yet, we set our
parameters in such a way that these additional contributions
are small.

APPENDIX F: MOMENTUM-SPACE DENSITY
DISTRIBUTION

The momentum-space probability densities at the initial
moment and after 75 driving periods (50 ms) are shown in
Fig. 15. The interactions deplete the lowest band, but also
smooth out the density distribution.
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Recently, the frustrated XY model for spins 1=2 on the honeycomb lattice has attracted a lot of attention
in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of
some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to
realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram
of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we
investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in
the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the
effective frustrated XY model and the properties of the chiral spin state. This gapped phase displays a chiral
order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is
zero).

DOI: 10.1103/PhysRevLett.120.157201

The last few decades have seen growing interest in the
quest for exotic spin states [1]. Significant progress has been
made both from the theoretical and experimental sides [2–4].
The best candidates are found in two-dimensional systems.
Disordered phases are expected to occur in complex
geometries, such as the kagome lattice [5–8], or in frustrated
bipartite lattices, such as the square lattice with second-
neighbor couplings [9,10]. Among basic lattices, the
honeycomb hosts free Majorana fermions due to Kitaev
anisotropic interactions [11], and raises questions when
starting from the Hubbard model [12–14]. In such context
and motivated by quantum magnets [15], frustrated
Heisenberg models on the honeycomb lattice have been
recently explored [16–29]. In parallel, some materials were
found to realize the XXZ version of this model [30], and
theoretical and numerical studies suggested that the XY
version possibly hosted a chiral spin liquid state, with
seemingly contradictory results [31–38]. As suggested in
Ref. [39], in the intermediate frustration regime the ground-
state physics could bemapped to a fermionicHaldanemodel
[40] with topological Bloch bands at a mean-field level, as a
result of Chern-Simons (ChS) gauge fields [41–45].
However, the topological nature of this spin state is still
elusive.
Our objectives are twofold in this Letter. Motivated by

cold atom experiments [46,47], we first study the phase
diagram of the bosonic Kane-Mele-Hubbard (BKMH)
model using bosonic dynamical mean-field theory

(B-DMFT) [48–54]. The Kane-Mele model [55] is the
standard model with spin-orbit coupling that displays a Z2

topological classification. Still, it has not yet been studied
for interacting bosons, and for interacting fermions at the
Mott transition it becomes magnetically ordered in the xy
plane, with quantum fluctuations stabilizing the Neel
ordering [56–58]. We explore the Mott regime of this
model and show that it allows for a tunable realization of
the frustrated XY model on the honeycomb lattice. Second,
we use exact diagonalization (ED) and theoretical argu-
ments to study the resulting XY model. We observe that an
intermediate frustration regime hosts a chiral spin state with
spontaneously broken time-reversal (T ) and parity (P)
symmetries, associated with antiferromagnetic ordering
and the onset of local currents. Based on the calculation
of the Chern number, we conclude that this state has no
intrinsic topological order.
We start our analysis with the bosonic version of

the Kane-Mele model [55] on the honeycomb lattice
[Fig. 1(a)], which contains two species of bosons labeled
by σ ¼ ↑;↓. In the presence of repulsive Bose-Hubbard
interactions, the Hamiltonian reads

H¼−t1
X
σ;hiji

½b†σ;ribσ;rj þH:c:� þ it2
X
σ;⟪ik⟫

νσik½b†σ;ribσ;rk −H:c:�

þU
2

X
σ;i

nσ;riðnσ;ri − 1ÞþU↑↓

X
i

n↑;rin↓;ri : ð1Þ
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Here, b†σ;riðbσ;riÞ are creation (annihilation) operators at site
i, and nσ;ri ¼ b†σ;ribσ;ri is the density operator. t1ðt2Þ is the
amplitude of hopping to the first (second) neighbors, and
ν↑ik ¼ −ν↓ik ¼ 1ð−1Þ for a left turn (right turn) on the
honeycomb lattice. We assume a filling of one boson
per site hn↑;ri þ n↓;rii ¼ 1. The Haldane model [40] for
spinless fermions has been realized through Floquet engi-
neering in cold atoms [59]. Similarly, spin-orbit models
have been proposed in optical lattices setups [60–62] and
experimentally achieved with photons [63–66]. All the
ingredients required for a successful implementation of
Eq. (1) are thus available.
I. B-DMFT on BKMH model.—The ground-state phase

diagram of the BKMH model obtained from B-DMFT
[48–53] is shown in Fig. 1(b). In order to address unusual
states breaking translational symmetry, we use real-space
B-DMFT [54,67–69]. Local effective problems represented
by the Anderson impurity model are solved using exact
diagonalization [54]. As found for the bosonic Haldane
model at the same filling [70], three phases are competing:
a uniform superfluid (SF), a chiral superfluid (CSF) and a
Mott insulator (MI) (they are distinguished by the behav-
iors of the order parameter hbσ;rii and of the local currents

Jσij ¼ Imhb†σ;ribσ;rji [54]).
We here focus on the MI phase. As shown in Fig. 1(b),

the system enters the Mott phase when intraspecies (U) and
interspecies (U↑↓) interactions become strong enough. The
internal structure of the MI phase is richer than in the
bosonic Haldane model [70] and comprises different

regimes. Applying standard perturbation theory [71], one
rewrites the Hamiltonian (1) in terms of pseudospin-1=2
operators Sþri ¼ Sxri þ iSyri ¼ b†↑;rib↓;ri , S−ri ¼ Sxri − iSyri ¼
b†↓;rib↑;ri and Szri ¼ ðn↑;ri − n↓;riÞ=2 as follows:

H ¼ −
X
hiji

½J1ðSþri S−rj þ H:c:Þ − K1SzriS
z
rj �

þ
X
⟪ik⟫

½J2ðSþri S−rk þ H:c:Þ þ K2SzriS
z
rk �; ð2Þ

where Ji ¼ t2i =U↑↓ and Ki ¼ t2i ð1=U↑↓ − 2=UÞ. We
observe that the spin-1=2 frustrated XY model is realized
when U ¼ 2U↑↓ (for which Ki ¼ 0). Frustration is asso-
ciated with the positive sign of the J2 term, which combines
the sign of the bosonic exchange and the phase of π
accumulated in the hoppings between second neighbors.
The fermionic Kane-Mele model does not include such
frustrating terms [56,72].
The properties of this effectiveXY model depend only on

the ratio J2=J1 ¼ ðt2=t1Þ2. In the classical limit, a coplanar
ansatz [16,54,73] provides the following phase diagram: the
ferromagnetic (FM) phase is stable for J2=J1 ≤ 1=6, above
which degenerate incommensurate spiral waves become
energetically favored. Their wave vectors live on closed
contours in the Brillouin zone. In the case of the Heisenberg
model, quantum fluctuations were predicted to lift this
degeneracy via an order-by-disorder mechanism [18].
B-DMFT on the BKMH model captures already devia-

tions from this classical picture. In Figs. 2(a)–2(d), we
study the coplanar spin ordering (arrows), in the presence
of an external staggered magnetic field hz, breaking the P
symmetry (bond-center reflection which interchanges sub-
lattices A and B):

Hz ¼ hz

�X
i∈A

Szri −
X
j∈B

Szrj

�
: ð3Þ

It corresponds to a staggered chemical potential in the boson
language [74] and we will understand its role hereafter. We
directly infer some of the ordered phases: at low J2=J1, all
spins are aligned in a FM order, while at large J2=J1, we
recover a 120° order. For U↑↓=U ¼ 0.5; t1=U ¼ 0.025 in
the range 0.36≲ J2=J1 ≲ 1.23 we observe a different
configuration of spiral waves [Fig. 2(c)]. In addition, we
find an exotic intermediate regime when 0.25≲ J2=J1 ≲
0.36 (we notice that positions of phase boundaries are
affected by hz), characterized by a chiral spin state (CSS)
with no coplanar magnetic order [Fig. 2(b)]. This is
reminiscent of the debated intermediate phase found in
numerical studies on the XY model [31–38]. On the one
hand, density matrix renormalization group [33,34] and
coupled cluster method [35] results evidenced an antiferro-
magnetic Ising ordering, breaking P while preserving trans-
lational invariance. On the other hand, this observation was
not reported in ED [31,32] nor variational Monte Carlo

(a)
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0 0.01 0.02 0.03

MI Spiral

120o

FM

SF

CSF

(b)

FIG. 1. (a) Honeycomb lattice and its first Brillouin zone.
(b) Phase diagram of the BKMH model obtained using B-DMFT
containing Mott insulator, uniform superfluid, and chiral super-
fluid phases with different regimes of the MI phase marked in
italic. The central gray region corresponds to the states with no
coplanar order. Parameters U↑↓=U ¼ 0.5, μ=U↑↓ ¼ 0.5, lattice
of 96 sites. “Pentagons” mark parameter values that we further
explore in Figs. 2(a)–2(d).
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[36–38] analyses, raising questions about the exact nature of
this intermediate phase.
Mapping the model onto a fermionic one and performing

a mean-field analysis [39,54], it was proposed that an
intermediate frustration stabilizes a phase with spontane-
ously broken P and T . This phase is characterized by
antiferromagnetic correlations and ChS fluxes staggered
within the unit cell as in the celebrated Haldane model [40]
and the authors suggested that it realizes the chiral spin
liquid state of Kalmeyer-Laughlin [75,76]. In this context,
we plot in Fig. 2(e), the response for the magnetization hSzrii
with respect to the field hz. All phases except the CSS are
characterized by a trivial response to the perturbation:
hSzrii ∼ hz, whereas hSzrii is strongly fluctuating in the CSS
(however we do not observe spontaneous symmetry break-
ing with B-DMFT). These results cannot be explained in
the context of a simple coplanar ansatz, but could be related
to a breaking of the degeneracy between two mean-field
solutions in the ChS field theory description [54].

II. ED on frustrated XY model.—We complete the study
of the effective frustrated XY model using ED and
previously unaddressed probes such as the responses to
P and T breaking perturbations and the topological
description of the ground state. We consider lattices of
24–32 sites, with periodic boundary conditions, and fixed
total magnetization Sztot ¼ 0 if not stated otherwise. First,
phase boundaries are derived from the maxima of fidelity
metric g [54], which probes the first derivative of the
ground-state wave function [77–79]. The phase diagram of
the XY model deduced from the ED calculations is given in
Fig. 3(a). In agreement with the B-DMFT and previous
numerical studies, we observe three phase transitions at
J2=J1 ≈ 0.21; 0.36, and 1.32. Small deviations in these
values from the B-DMFT results could be due to the finite
size of ED clusters or nonperturbative interaction effects
(the XY model does not describe correctly the physics of
the Mott phase when ti=U are too large). The nature of the
phases detected with ED is verified by looking at the
coplanar static structure factor

SSpiralðqÞ ¼ 2
X
i;j∈A

eiq·ðri−rjÞhSxriSxrji: ð4Þ

Spiral waves display a maximum of SSpiral at some wave
vector(s) q in the first Brillouin zone. We observe [54] that
the phase in the region J2=J1 ≲ 0.21 corresponds to FM
order since Sspiral has a peak at q ¼ Γ. The phase at
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FIG. 2. Results of the B-DMFT for different values of
ðt2=t1Þ2 ¼ J2=J1 for hz=U ¼ 10−3, U↑↓=U ¼ 0.5, t1=U ¼
0.025 on a lattice of 24 sites. (a)–(d) Different spin configura-
tions. The color palette gives hSzrii, while arrows depict ordering
in the xy plane. (a) Uniform state with ferromagnetic ordering;
(b) chiral spin state with no coplanar order; (c) a configuration of
spiral states, in which each pseudospin is aligned with only one of
its three first neighbors and antialigned with two of its six second
neighbors; (d) a 120° configuration. (e) Absolute value of jhSzriij.
For each ratio ðt2=t1Þ2 we plot the result for all 24 sites and
compare it to the classical solution. Pentagons mark results
presented in (a)–(d). Note that for finite values of hz the border
between the 120° Mott state and CSF is slightly shifted in favor of
the Mott state.

(c)

(a)

(b)

(d) (e)

FIG. 3. Results of the ED. (a) Phase diagram of the frustrated
XY model. (b)–(d) Variation of the observables with the dimen-
sionless parameter J2=J1 for different values of hz, with
J02 ¼ 0.01J1, on a lattice of 6 × 2 unit cells. (b) Difference of
the average Ising magnetization on two sublattices m. (c) Scalar
spin chirality χ. (d) Pseudospin density wave structure factor
SPSDWðΓÞ. (e) Schematic representation of the perturbation
term HJ0

2
.
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0.36≲ J2=J1 ≲ 1.32 corresponds to a spiral wave with
collinear order (structure factor has maxima at three M
points) as expected from the order by disorder mechanism.
At 1.32≲ J2=J1 the ground state is the 120° order spiral
wave (structure factor has a peak at two Dirac points K). In
the intermediate frustration regime (0.21≲ J2=J1 ≲ 0.36)
Sspiral is flat in reciprocal space and we expect the ground
state to be disordered in the xy plane. We notice that the
exact positions of the phase transitions, especially collinear
order ↔ 120° order, are sensitive to the lattice choice [54].
The ground state in all phases is located in the same sector
of the total momentum at point Γ. Based on the ChS field
theory predictions, the order-by-disorder arguments and
numerical observations, the CSS ↔ collinear order, and
collinear order↔ 120° order phase transitions are expected
to be first order, whereas the FM ↔ CSS phase transition
to be second order.
We analyze the linear response to perturbations breaking

P and T . We are interested in the relative magnetization
between the two sublattices m ¼ hmrii ¼ hSzri − Szriþu3i, as
well as the scalar spin chirality χ ¼ hSri · ðSriþu1 × Sriþu2Þi.
Here we suppose that i ∈ A and ui are vectors between first
neighbor sites defined in Fig. 1(a). When calculating the
chirality χ, we add a perturbation corresponding to
the second-neighbor hopping of the Haldane model, of
amplitude J02 and phase π=2 [as shown in Fig. 3(e)]:

HJ0
2
¼ J02

X
⟪ik⟫

ðe�iπ=2Sþri S
−
rk þ H:c:Þ: ð5Þ

We are interested in the limit hz, J02 ≪ J1. Results of the ED
calculations are presented in Figs. 3(b)–3(c). The CSS
reveals itself by sharp responses to such external fields.
Moreover, the scaled quantities m=hz and χ=ðhzJ02Þ tend to
diverge when hz, J02 → 0, giving a strong indication for
spontaneous symmetry breaking. This justifies our defi-
nition of the CSS, the properties of which can be observed
experimentally by tracking on-site populations of bosons
nσ;ri and currents Jσij ¼ Imhb†σ;ribσ;rji [80]. One can probe
the antiferromagnetic ordering without breaking P and T
by calculating the pseudospin density wave (PSDW)
structure factor [31,32]:

SPSDWðqÞ ¼
X
i;j

eiq·ðri−rjÞhmrimrji: ð6Þ

We observe in Fig. 3(d) that SPSDWðqÞ has a peak at q ¼ Γ
in the intermediate frustration regime. These features are
hardly affected by moderate Ising interactions Ki=J1 ∼ 0.1
in Eq. (2) [81].
The observed spin configuration of the CSS could

describe the chiral spin liquid of Kalmeyer and Laughlin
[75,76]. Yet, we know that chiral spin liquids are charac-
terized by a topological degeneracy in the thermodynamic
limit on a compact space [82–84]. In a two-dimensional

system with periodic boundaries one should have a fourfold
degenerate ground state with two topological degeneracies
per chirality sector. Still, because of finite size effects, one
only expects an approximate degeneracy in simulations.
In Figs. 4(a)–4(b), we show the low-energy spectrum as a

function of J2=J1, resolved in different sectors of total
momentum Q. As mentioned previously, the ground state
always belongs to the sector Q ¼ Γ. In the intermediate
frustration regime, we observe the onset of a gapped doubly
degenerate ground-state manifold. The first excited state
has the same momentum Q ¼ Γ, but lies in the opposite
sector of P. The first excited state also moves away in
energy when the perturbationsHz andHJ0

2
are switched on.

We probe the robustness of the low energy quasidegen-
erate state sector by performing Laughlin’s gedanken
experiment and pumping a quantum of magnetic flux
through one of the nontrivial loops of the torus [85–87].
Numerically, this is achieved using twisted boundary
conditions in a translational symmetry preserving manner.
The results are given in Fig. 4(c). We observe that the same
states in the sector Q ¼ Γ are nontrivially gapped for all
twists. For the pumping of a single flux quantum we could
not observe a spectral flow in the ground-state manifold,
that, however, does not imply that the manifold is topo-
logically trivial [88–90]. The topological nature of the
ground-state manifold is unambiguously determined by
calculating the Chern number [91–94]:

C ¼ 1

2π

Z
2π

0

Z
2π

0

Bðθ1; θ2Þdθ1dθ2: ð7Þ
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FIG. 4. ED calculations of the low energy spectra as a function
of J2=J1 showing (using red circles) the formation of a quasi-
degenerate twofold ground-state manifold (a) on a lattice of 4 × 3
unit cells for various SzTot; (b) on a lattice of 4 × 4 unit cells in the
SzTot ¼ 0 sector only. (c) Low energy spectrum as a function of the
twist angle θ1 for J2=J1 ¼ 0.3 and θ2 ¼ 0 on a lattice of 4 × 3
unit cells. (d) Berry curvature calculated using the non-Abelian
formalism resulting in a vanishing Chern number shown for
J2=J1 ¼ 0.3, hz=J1 ¼ J02=J1 ¼ 0.02 on a lattice of 4 × 3

unit cells.
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Here θ1 and θ2 are two angles of twisted boundary
conditions and Bðθ1; θ2Þ is the Berry curvature [95]. We
notice that two phases θi (i ¼ 1, 2) introduced in the spin
languagewould correspond to four phases θσi in the language
of bosons of the BKMH model, for which the spin
component θ↑i − θ↓i ¼ θi is fixed and the Uð1Þ component

θ↑i þ θ↓i is free [96]. Since the two quasidegenerate ground
states lie in the same symmetry sector and cannot be
separated unless twists are trivial (P cannot be used with
twisted boundary conditions), we evaluate the Berry curva-
ture using the gauge-invariant non-Abelian formulation
[97–99]: Bðθ1; θ2Þδθ1δθ2 ¼ Im lnDet½Mðθ1; θ2Þ�, where
elements of the matrix M are obtained as follows:

Mijðθ1;θ2Þ ¼ hϕiðθ1;θ2Þjϕμ1ðθ1þ δθ1;θ2Þi
× hϕμ1ðθ1þ δθ1;θ2Þjϕμ2ðθ1þ δθ1;θ2þ δθ2Þi
× hϕμ2ðθ1þ δθ1;θ2þ δθ2Þjϕμ3ðθ1;θ2þ δθ2Þi
× hϕμ3ðθ1;θ2þ δθ2Þjϕjðθ1;θ2Þi: ð8Þ

Here, δθ1 and δθ2 refer to the numerical mesh along the θ1
and θ2. i; j; μi ¼ 1, 2 are indices of states jϕ1i and jϕ2i in the
ground-statemanifold and the summation overμi is implicit.
In Fig. 4(d), we show a typical shape of the Berry curvature.
We find that the Chern number is zero in the intermediate
frustration regime. This result suggests that the intermediate
phase in the frustrated XY model is most likely to be a CSS
with no topological order, as suggested inRefs. [33–35], and
not the Kalmeyer-Laughlin state, with gauge fluctuations
beyond the mean-field solution making the phase topologi-
cally trivial as in the fermionic Kane-Mele model [56–58].
To conclude, we studied the phase diagram of the

bosonic Kane-Mele-Hubbard model on the honeycomb
lattice. We have shown that an effective frustrated XY
model appears in the Mott insulator phase. This model
possesses an intermediate frustration regime with a non-
trivial chiral spin state, which breaks both P and T . It
displays a finite scalar spin chirality order and an anti-
ferromagnetic Ising ordering, while remaining translation-
ally invariant. Measuring the Chern number associated with
this state reveals its nontopological nature.
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Transport of Strongly Correlated Bosons in an Optical
Lattice
Arya Dhar, Christian Baals, Bodhaditya Santra, Andreas Müllers, Ralf Labouvie,
Thomas Mertz, Ivana Vasic, Agnieszka Cichy, Herwig Ott,* and Walter Hofstetter
The transport of strongly correlated bosons in a three-dimensional optical
lattice is studied within the Bose–Hubbard approximation. The transport is
induced by a small displacement of the overall harmonic trapping potential.
The subsequent relaxation dynamics is monitored by high precision density
measurements with the help of scanning electron microscopy. Good
agreement with a real space time-dependent Gutzwiller mean-field descrip-
tion is found.
1. Introduction

Transport properties are among the most characteristic features
of materials. Understanding and engineering the transport of
mass, charge, spin, or heat opens the door for the development
of new devices with new functionality. For strongly correlated
materials, transport properties are especially difficult to describe,
yet, their understanding is mandatory to fully exploit their
application potential. Model systems, such as ultracold quantum
gases, are a class of tunable systems, which contain essential
aspects of real materials but are still conceptually simple enough
to be amenable to advanced theoretical modeling from first
principles, thus enabling quantum simulations of strongly
correlated condensed matter systems.[1] They are therefore ideal
candidates to understand the connection between microscopic
interaction mechanisms and global transport properties.
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Ultracold quantum gases have often
been studied in the context of being the
ground state of a many-body Hamilto-
nian.[2] In recent years, however, increasing
interest is focused on non-equilibrium
dynamics, especially with respect to trans-
port processes.[3,4] A paradigmatic class of
quantum gases are lattice gases, where the
particles are residing and moving in a
periodic potential, created by interfering
laser beams. Optical lattices allow for easy
control of the tunneling and interaction
parameters, thus tuning the correlations in
the system. At the same time, the system can be mapped onto
seminal model hamiltonians such as the Hubbard and the Bose-
Hubbard model.[5] The superfluid to Mott-insulator transition of
a bosonic gas[6] is a good example how microscopic interaction
and hopping mechanisms determine the quantum phases in the
lattice. Similarly, the interplay between onsite correlations and
hopping, and the resultingmetal to Mott-insulator transition has
been realized and studied with interacting spin-1/2 fermions in
an optical lattice.[7,8]

Transportprocesses inoptical latticeshavea long traditionin the
researchofultracoldquantumgases.[9] Inorder todirectlymeasure
transport in optical lattices, two experimental schemes have been
developed: the motion of the particles under the influence of a
constant force and the motion of a trapped atomic gas after a
displacement. In the first case, the generic dynamics are Bloch
oscillations,[10,11] whose contrast is strongly affected by the
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Figure 1. Setup. A cloud of ultracold bosons residing in a parabolic trap
with superimposed three-dimensional optical lattice is shifted out of its
equilibrium position. The subsequent relaxation dynamics is studied with
high precision density measurements. The sketched optical lattice on the
right side of the gas extends homogeneously over the whole cloud.
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presence of interactions with the same species or collisions with
another species.[12] Thedipolaroscillation inadisplaced trap[9,13,14]

is conceptually related to Bloch oscillation, as the physical
displacementofaparabolic trapcanbedescribedby theapplication
of a constant force. However, the inhomogeneity of the system
effectively emulates a varying local force on the atoms.

Within the Bose-Hubbard model, the generic expected
phenomenology is straightforward: below the quantum phase
transition to the Mott-insulator, the system is superfluid, while
for a Mott-insulator, transport should be essentially blocked.
Thus, in a trap displacement experiment, one expects an
oscillation of the whole cloud in the superfluid phase and the
absence of motion in the insulating regime. This simple
phenomenology is spoiled by several effects: the first is the
inhomogeneity of the system. In local density approximation,
this leads to a spatially varying chemical potential and the gas
develops a shell structure.[15] Superfluid motion is therefore
never fully suppressed. Moreover, the finite temperature, particle
hole excitations and the finite system size allow for a finite
mobility even in the Mott-insulating phase.[16] The overall
motion of the gas in the Mott-insulating phase is therefore
nontrivial and its theoretical description requires modeling and
simulating the real-space density distribution.

This was addressed in an early theoretical study,[17] where
interacting bosons in one- and two-dimensional optical lattices
were subject to a instantaneous displacement of a harmonic
confining trap, and the resulting dynamics of the many-body
system was investigated by time-dependent Gutzwiller theory.
While for weak interactions damped Bloch-type oscillations were
found, strong repulsive onsite interactions in 1d lead to the
formation of a Mott-insulator and complete blockade of the
dynamics. In two spatial dimensions, on the other hand, at
longer times a “melting” of the displaced Mott-insulator was
observed and, depending on the lattice geometry, also
thermalization toward an equilibrium state in the shifted trap.

The above considerations motivate a precision comparison
between experiment and theory, which allows to benchmark
theoreticalmodels and simulation techniques, and tounderstand in
moredetail, forexample, towhichextentcorrelationsbetweenlattice
sites have to be considered to describe the systemdynamics. Earlier
works have primarily focussed on the transport of weakly and
strongly interacting atoms in one-dimensional systems,[9,13,14]

where powerful numerical tools are available.[14] The experimental
signature of the transport was deduced from time offlight imaging.
However, to the best of our knowledge, the effects of interaction on
the transport of bosonic atoms in a three-dimensional optical lattice
has not been studied in detail with high precision both from an
experimental and numerical perspective.

In this work, we combine powerful experimental and
numerical in situ techniques to study the center of mass
motion of a bosonic quantum gas in a three-dimensional optical
lattice. Displacing the overall harmonic confinement by a small
amount, we induce the dynamics. By a high precision density
measurement, we monitor the density distribution with high
spatial resolution. Varying the lattice depth, we map out the
transport through the superfluid to Mott-insulator transition.
Slicing the cloud into different parts, we can also compare the
inner part of the cloud with the edges. The experimental results
are compared to time dependent mean-field calculations within
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
the Gutzwiller ansatz. This method has been widely used to
study time-dependent bosonic lattice problems, such as the
creation of molecular Bose-Einstein condensate by dynamically
melting a Mott-insulator,[18] many-body dynamics after a sudden
shift of the harmonic trap,[17] creation of exotic condensates via
quantum-phase-revival dynamics,[19] the Higgs-amplitude mode
of strongly correlated lattice bosons,[20] collective modes of a
harmonically trapped, strongly interacting Bose gas in an optical
lattice,[21] quantum dynamics of interacting bosons in a three-
dimensional disordered optical lattice,[22] and many more.[23–32]

We also present results from a projection operator approach[33,34]

with a finite energy cut-off, which we find to agree well with the
Gutzwiller ansatz for our parameters.
2. Experimental Setup and Theoretical Model

The experimental sequence starts by preparing a Bose-Einstein
condensate of 87Rb atoms in an optical dipole trap, formed by a
single beam CO2 laser.

[35] The atomic gas is cigar-shaped and the
axial trap oscillation frequency is 10Hz, while the two transverse
oscillations frequencies are 145Hz in the horizontal and 80Hz in
the vertical direction, respectively. The latter is reduced due to the
gravitational sag. We then adiabatically switch on an anisotropic
three-dimensional optical lattice, whose depths can be tuned
individually in all three directions. After a short settling time, the
dipole trap is shifted in the horizontal direction within 2ms by
about 1mmwith the help of a piezo actuated mirror, thus forcing
the system out of equilibrium, (see Figure 1). The subsequent
relaxation dynamics is imaged with the help of scanning electron
microscopy (SEM)[36,37] for evolution times up to 150ms. During
the imaging procedure, the dynamics of the atomic cloud is frozen
out in the optical lattice by increasing its strength to a value where
tunneling is suppressed. FromtheSEMimageof theatomic cloud,
the size and the center- of-mass of the cloud are determined
(Figure 2). Furthermore, the images are dissected into different
slices for a detailed spatially resolved analysis of the mass
transport. The optical lattice has a tetragonal symmetry with a
lattice spacing of dz ¼ 547 nm in the axial direction and
dx ¼ dy ¼ 387 nm in the two transverse directions. Due to
geometrical constraints of the experimental setup, the orientation
of the two transverse lattice axes is rotated by 45 degrees with
respect to the vertical and horizontal direction.

The lattice depth is expressed in units of the recoil energy,
E ¼ �h2k2= 2mð Þ, where k ¼ π=d is the lattice vector and m is the
mass of the atoms. As there are two different lattice constants in
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 8)
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Figure 2. Scanning electron microscopy image of the BEC for s ¼ 11. From Gaussian fits to the density distribution, we extract the center-of-mass of the
cloud. For a more detailed analysis, we additionally slice the cloud into different segments and analyze the slices individually. Exemplary, on the right
panel, we plot the radial atomic density for the second slice.
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the present setup, we define individual dimensionless lattice
depths,

sα ¼ Vα

Eα
ð1Þ

where the index α ¼ x; y; z denotes the corresponding lattice
height Vα and recoil energy Eα. The values of sα control the ratio
of the interaction energy to the tunneling amplitude, giving rise
to the different quantum phases of a Mott-insulator and a
superfluid.

The experimental system can be suitably described by the
Bose-Hubbard model in the lowest band approximation

H ¼ �
X
hi;ji

Jij b̂
†
i b̂j þ h:c:

� �
þU

2

X
i

n̂i n̂i � 1ð Þ

þ
X
i

ei � μð Þn̂i

ð2Þ

where b̂
†
i b̂i
� �

creates (annihilates) a bosonic particle at site i, n̂i

is the number operator at site i, Jij denotes the tunneling
amplitude between nearest neighboring sites hi; ji arising from
the different lattice constants along the three directions forming
the optical lattice, U is the onsite interaction energy, ei is the
potential energy at site i and m is the chemical potential.

The tunneling couplings Jij can take two different values,
depending whether the particle moves along the transverse x- or
y-direction (Jx ¼ Jy), or along the z-direction (Jz). Within the tight
binding approximation, the tunneling couplings Jα can be
related to the lattice parameter with the following approximative
expression,[38] valid for each lattice axis:

Jα �
4ffiffiffi
π

p sα
3=4Eαe

�2
ffiffiffi
sα

p
; α ¼ x; y; z: ð3Þ

The interaction energy for a tetragonal lattice reads[2]

U �
ffiffiffi
8
π

r
s3=4klaEr ð4Þ
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where s, kl, and Er are the geometric means of the individual
lattice directions. More precise values of the tunneling energy
and the interaction energy can be retrieved by a band structure
calculation, which we have used in this work. The values of U/J
addressed in this work ranges from 0.60 to 8.21, where
J ¼ 2 Jx þ Jy þ Jz

� �
.

To numerically study the relaxation dynamics after the shift of
the dipole trap center, we use the time-dependent Gutzwiller
mean-field approach, which is a well-established method,
especially for higher dimensional systems.[39,40] We first
calculate the ground state density distribution at T ¼ 0 for the
given experimental parameters (see Figure 3). We then time
evolve the system in the shifted trapping potential. To verify the
results obtained from this approach at higher values of the
interaction strengths, we retained first-order corrections due to
correlations within the realm of the projection operator approach
and compared the results obtained from both approaches.

To obtain the ground state, we use the time independent
Gutzwiller variational ansatz

jψGWi ¼
Y
�l

X
n

c lð Þ
n nil
�� ð5Þ

where l denotes the site index and nij denotes the Fock
occupation basis. The Gutzwiller state becomes exact in the limit
of large and small interactions. In order to find the ground state,
we minimize the energy functional of the full Hamiltonian with
respect to this state.

E ¼ hψGW Ĥ
�� ��ψGWi

hψGW ψGWi�� ð6Þ

This effectively reduces to a minimization with respect to the
coefficients, c lð Þ

n .
After computing the ground state, we proceed to study the

time dependence by considering the coefficients in the
Gutzwiller state as time dependent, that is, c lð Þ

n tð Þ.
By applying the time-dependent variational principle, we

obtain the equations of motion for all of the coefficients,
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http://www.advancedsciencenews.com
http://www.pss-b.com


Figure 3. The ground state density distribution in the y ¼ 0 plane for
three values of s ¼ 7 (top), 13 (middle), 16 (bottom) as simulated using
Gutzwiller approximation. The density is given in atoms per lattice site.
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i@tc
lð Þ
n ¼ � Jl;l0

X
l0

c lð Þ
n�1

ffiffiffi
n

p
ϕl0 þ c lð Þ

nþ1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ϕ�
l0

h i

� μn�U
2
n n� 1ð Þ � ein

� �
c lð Þ
n

ð7Þ

where the sum over l0 goes over all the nearest neighboring sites
to l, and ϕl ¼ hali is the condensate fraction at site l. The above
equation corresponds to a set of Nc � L first order coupled
differential equations, where Nc is the size of the local Hilbert
space and L is the total number of sites.

To analyze the dynamics of the Bose-Hubbard model beyond
mean-field theory, we have also implemented the projection
operator approach.[33,34,41] This method uses a canonical
transformation such that it systematically eliminates hopping
processes which connect states with a large energy difference.
This energy cut-off is typically chosen as the onsite interaction
energy U. This will generate an effective low-energy
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
Hamiltonian for the system in the strongly interacting limit.
It should be noted that choosing this energy cut-off as infinity
leads to the Gutzwiller mean-field approximation. The projection
operator method gives improved phase boundaries for the
superfluid to Mott-insulator transition, which are very close to
the numerically exact Monte Carlo data in three spatial
dimensions.[33]

To understand the projection operator approach, let us first
divide our model Hamiltonian into two parts, one containing the
interaction and one-body terms, and the other having the kinetic
energy part:

H ¼ H0 þ
X
hiji

Tij ð8Þ

where H0 ¼ U
2

P
in̂i n̂i � 1ð Þ � μn̂i þ ein̂i, and Tij ¼ �Jijb̂

†
i b̂j is

the anisotropic hopping rate. The kinetic energy can be written
as Tij ¼

P
βTij, where

Tβ
ij ¼ �Jij

X
n

gnβ jnþ 1iijn� βij ihnjjhn� βþ 1j ð9Þ

where gnβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ n� βþ 1ð Þp

. Tβ
ij connects local states

differing in energy by eβij ¼ βU þ ei � ej, where
β ¼ 0;�1;�2 . . .. Let us now introduce an energy scale, ΔE
such that we consider a hopping process to be a low-energy
process if eβij

��� ��� < ΔE. For each bond hiji, we introduce a set
βij : β 2 βij if the above condition is satisfied for the low energy
process.

We improve the variational ansatz to

ψ tð Þi ¼ e�iS tð Þ�� ��ψGWi ð10Þ

where ψGWi ¼ Q
l

P
nc

lð Þ
n tð Þjnil is the Gutzwiller wave function,

and the canonical transformation, S introduces correlations
between different lattice sites. The operatorS is defined in such
a way that higher order hopping terms in H�, as defined below,
are systematically removed up to the order J J==Uð Þm�1,

H� ¼ exp iSð ÞHexp �iSð Þ: ð11Þ

We limit ourselves to the leading approximation m ¼ 1,

S � �i
X
hiji

X
β=2βij

Tβ
ij

eβij
ð12Þ

The energy cut-off is set as U. From the time dependent
variational principle, we obtain improved equations of motion
for the coefficients c lð Þ

n tð Þ.[41]
3. Results

We first analyze the motion of the whole cloud during the
relaxation process. The results are summarized in Figure 4,
where the center-of-mass dynamics of the entire cloud after the
sudden shift of the dipole trap center is plotted for different
values of s ¼ sx ¼ sy ¼ 1:25sz. Figure 4 constitutes the main
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4 of 8)
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Figure 4. Time evolution of the center-of-mass after the harmonic trapping potential center is suddenly shifted. The experiment has been performed for
different values of the lattice strength s as indicated in each of the subplots. Experimental data are shown in orange, the numerical simulation using time
dependent Gutzwiller approximation is shown in blue. The magenta dashed line shows the position of the equilibrium position.
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result of this work. An immediate look at the figure reveals the
remarkable agreement obtained between the experimental and
theoretical results for all the s values which have been
considered.

We now discuss some important features of the time
evolution as shown in Figure 4. For small values of s, there
are large oscillations of the center-of-mass around the new trap
center, shown by both theoretical and experimental results.
These oscillations can be attributed to the dipolar oscillations set
in by the sudden shift in the trap center.

The large amplitude of the oscillations can be traced back to
the superfluid ground state covering the entire cloud. As the
cloud is shifted by only two lattice sites, the whole cloud remains
in the lowest band upon the displacement. The amplitude of the
oscillations as obtained through the numerical simulations is
found to be slightly more than that observed in the experiment.
This can be due to the finite temperature effect in the
experiments, which decreases the condensate fraction in the
cloud, and introduces thermal fraction. On the contrary, the
numerical simulations are carried out at zero temperature with
the entire cloud being in the superfluid phase. The frequency
difference of about 10 percent, which is visible for s ¼ 7 and
s ¼ 10, is most likely due to a long term drift of the dipole
trapping potential between the initial calibration measurement
and the actual experimental runs.
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
More interesting features in the dynamics appear for
increasing lattice depth. The relaxation dynamics is not only
slowed down by the decreasing tunneling coupling, the results
change also qualitatively. Already for s ¼ 11, there are practically
no oscillations sustained for longer times. The center-of-mass
overshoots the new trap center, but then slowly converges to the
equilibrium value. We attribute the absence of oscillations to the
interplay between the interaction and closed single particle
orbits, which are due to the fact that the bandwidth is smaller
than the chemical potential. Going from s ¼ 12 to s ¼ 13 shows a
remarkable difference in the initial dynamics of the center-of-
mass of the cloud. The system displays the initial fast movement
for both the s values. For s ¼ 12, it reaches the equilibrium value,
whereas for s ¼ 13, even for longer timescales, a small offset
remains (see Figure 5, where we show the experimental data for
a 5 times longer times scale).

Hereafter the systemmovement becomes significantly slower.
For larger s values, the center-of-mass is not able to reach the new
trap center in the timescales observed in the experiment. This is
caused by the decrease of the condensate fraction and rise in the
Mott-insulating region in the cloud, which prohibits the
transport of the bosonic atoms. Higher values of s correspond
to higher interaction strengths between the atoms, leading to
localized wavefunctions describing them. For s ¼ 16, the
movement of the entire cloud is practically negligible compared
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim5 of 8)
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Figure 5. COM dynamics for longer times as observed in the experiment
for higher values of s.

Figure 6. Ground state condensate fraction, explained in the text, for
different slices marked by green dashed lines for various s values.
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to the shift due to presence of the incompressible Mott-
insulating region encompassing a vast region of the cloud.

To confirm our results, we looked at the ground state density
distribution for the extreme values of s from the numerical
simulations using Gutzwiller approximation and indeed, we find
the superfluid and Mott-insulating phases in the cloud as shown
in Figure 3. It shows the existence of superfluid phase in the
entire cloud for s ¼ 7 whereas for s ¼ 13, a thinMI shell arises in
the intermediate region of the cloud, and a clear density plateau
for s ¼ 16 implies the appearance of Mott-insulating region at
the central part with superfluid wings. The simulations were
carried out with typical system sizes of 25� 25� 180 sites along
x,y,z directions, respectively. The larger number of sites along
the z direction, which has the weakest trapping amplitude, were
taken in accordance with the experiment. The choice of chemical
potential was done such that the total number of particles were
�30000. Depending on the s-value, a convergence test was
performed to select the appropriate occupation cut-off on a
single site.

To have a deeper understanding of the movement of the
atoms, we sliced the cloud in several sections as shown in
Figure 2. The width of each of the slices is 100 pixels, which
correspond to �15 μm. The slices are paired because of the
mirror symmetry. Each slice is integrated in the axial direction to
get a 1D profile, which is fitted with a Gaussian function to
determine its center. The error of this center is given by the
standard deviation σ from the Gaussian fit divided by

ffiffi
I

p
, where I

is the summed intensity of the corresponding slice.
Since the movement of the atoms is related to the superfluid

nature of the atomic cloud, it is instructive to first look at the
condensate fraction of the different parts of the cloud, defined as

Φ ¼
X
i2slice

ϕ2i
ni

ð13Þ

where ϕi ¼ hbii at site i. This quantity cannot be measured in the
current experimental setup and we resort to the numerical
simulations, having already established the reliability on the data
obtained from time-dependent Gutzwiller method. Figure 6
Phys. Status Solidi B 2019, 256, 1800752 1800752 (
shows the condensate fraction of different slices corresponding
to different values of s. For s ¼ 7, we see that the entire cloud has
condensate fraction close to 1. As the lattice depth increases, the
condensate fraction in the inner slices decreases much faster
than in the outer wings. This is a clear signature of the increasing
Mott-insulating character in the inner sections of the cloud.
Consequently, we expect for all lattice parameters a larger
mobility of the atoms towards the edges of the cloud.

Figure 7 shows the comparison between experiment and
theory for the individual slices for s ¼ 13. The experimental data
for all slices look very similar. A closer look reveals that the outer
slices show a slightly faster motion toward the equilibrium
position as compared to the inner slices. For all slices, no
oscillations are visible. The theoretical simulation shows a
similar trend with respect to the motion: the inner slices have a
slower initial motion towards the equilibrium position. This is
compatible with the onset of a Mott-insulator shell in the trap
center at s ¼ 13. For the outer slices, however, the simulations
predict clearly visible oscillations. This is in contrast to the
experimental findings. From an analysis of the numerical data,
we find that the outer shells indeed host a superfluid and can
therefore undergo a damped oscillation. Two reasons can be
responsible for the absence of oscillations in the experiment: In
the experiment, we have a finite temperature of about T ¼ 30 nK.
This is already sufficient to smear out the shell structure of the
Mott-insulator plateaus significantly,[16] thus smearing out the
dynamics of the slices. Another consequence of the finite
temperature is the appearance of a normal (thermal) component
at the edges of the cloud, which is not undergoing superfluid
behavior. The appearance of a thermal component goes along
with a depletion of the superfluid fraction. Note that the
bandwidth of the optical lattice for s � 12 is smaller than the
thermal energy. This interpretation is compatible with the fact
that the overall center-of-mass motion shows very good
agreement, indicating the presence of an effective smearing
out taking place in the experiment. A comparison of the
individual slices for a lattice depth of s ¼ 16 shown in Figure 8
shows qualitatively similar results. Again, the outer slices show
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim6 of 8)
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Figure 7. Comparison of the center-of-mass dynamics for different slices
from the experiment (orange) and numerical simulations (blue) for
s ¼ 13. The slices are defined in Figure 2.

Figure 9. COM dynamics for a smaller system size obtained from time-
dependent Gutzwiller (blue) and the projection operator approach
method (magenta).
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residual oscillations. Note that these oscillations persist, even
though the cloud is well in the Mott-insulating regime. In
addition to the above two reasons, one should also take into
account the fact that the Gutzwiller approximation overestimates
the condensate fraction, as discussed in ref. [33]. This can also
contribute to the discrepancy between the theory and experi-
mental results for the motion of the outer slices.

The results obtained from the time-dependent Gutzwiller
method ignores quantum correlations between the different
lattice sites. We implement an independentmethod based on the
projection operator approach to include additional quantum
correlations. The main motivation for this endeavour is to
investigate the validity of the approximation in the Gutzwiller
method. As discussed before, the projection operator approach
with an infinite energy cut-off reduces to the Gutzwiller mean-
field theory. Keeping a finite energy cut-off equal to the
corresponding U, we can thus include hopping processes which
Figure 8. Comparison of the center-of-mass dynamics for different slices
from the experiment (orange) and numerical simulations (blue) for
s ¼ 16. The slices are defined in Figure 2.

Phys. Status Solidi B 2019, 256, 1800752 1800752 (
do not change the energy more than the energy cut-off, thus
retaining quantum correlations with neighboring sites. How-
ever, for the projection operator approach, we are limited by
smaller system sizes. Figure 9 shows the COM dynamics for a
smaller system size (12� 12� 14 along x� y� z) for s ¼ 16
obtained from time-dependent Gutzwiller projection operator
approach method. Indeed they show remarkable agreement for
timescales studied in this work. This result thus confirms the
validity of the Gutzwiller approximation in this parameter
regime.
4. Conclusions

We have studied transport of interacting bosons in an optical
lattice, for a range of interaction strengths across the superfluid
to Mott-insulator quantum phase transition, by using a high
resolution scanning electron microscopy technique. We have
clearly observed dipolar oscillations in the superfluid regime,
whereas in the presence of a pronounced Mott-plateau the
system showed a strongly suppressed mobility due to sup-
pressed tunneling. We compared our experimental findings to
simulations based on time-dependent Gutzwiller theory, and
found very good agreement. For smaller system sizes, the time
dependent Gutzwiller method was successfully benchmarked
with the projection operator approach. Several open questions
will be the subject of future research. These include the possible
melting of the Mott-insulator at long time scales and the
dependence of thermalization dynamics on the lattice geometry,
as indicated by earlier studies.[17] Furthermore, it would be of
interest to take into account by more advanced simulation
techniques also the tunneling dynamics of the normal bosonic
component at finite temperature.
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Electronic Floquet Vortex States Induced by Light

Ahmadabadi, Iman

We propose a scheme to create an electronic Floquet vortex state by irradiating the
circularly-polarized laser light on the two-dimensional semiconductor. We study the
properties of the Floquet vortex states analytically and numerically using methods
analogous to the techniques used for the analysis of superconducting vortex states,
while we exhibit that the Floquet vortex created in the current system has the wider
tunability. To illustrate the impact of such tunability in quantum engineering, we
demonstrate how this vortex state can be used for quantum information processing.



Study of 1D soft bosons via the MCTDH approach

Apostoli, Christian

In this work we explore some of the capabilities of the multiconfiguration time-
dependent Hartree approach (MCTDH), a general and powerful method to compute
quantum dynamics simulations. Its strength lies in the particular ansatz it uses for the
many-body wave function: a superposition, with time-dependent coefficients, of
direct-product states which are built from a time-dependent one-particle basis.
When one applies the time-dependent variational principle to this ansatz, a set of
coupled equations is found for the coefficients and the one-particle basis functions.
This ensures that, during a numerical solution of these equations, at every time the
system is represented in a variationally optimal basis. We apply the MCTDH
approach to a 1D system of soft bosons that undergoes a quantum phase transition
from a standard Luttinger Liquid to a Cluster Luttinger Liquid (CLL). We simulate this
system in real-time, and introduce a method for computing the energy of the low-
lying excited states by observing the response of the system to a weak time-
dependent periodic potential. In the Tonks-Girardeau condition, our results are in
good accordance with the Bogolyubov spectrum.



Signatures of Many-Body Localization in the Dynamics of Two-Level Systems in
Glasses (jointly presented with Federico Balducci)

Artiaco, Claudia
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Glasses Abstract: We investigate the quantum dynamics of two-level systems (TLSs)
in glasses at low temperatures (1 K and below). We study an ensemble of TLSs
coupled to phonons. By integrating out the phonons within the framework of the
GKSL master equation, we derive the explicit form of the interactions among TLSs
and of the dissipative terms. We find that the dynamics of the system shows clear
signatures of many-body localization physics (in particular a power-law decay of the
concurrence, which measures pairwise entanglement also in non-isolated systems)
even in the presence of dissipation, if the latter is not too large. This feature can be
ascribed to the presence of strong, long-tailed disorder characterizing the
distributions of the model parameters. Our findings show that assuming ergodicity
when discussing TLS physics might not be justified for all kinds of experiments on
low-temperature glasses.

Signatures of Many-Body Localization in the Dynamics of Two-Level Systems in
Glasses (jointly presented with Claudia Artiaco)

Balducci, Federico

Signatures of Many-Body Localization in the Dynamics of Two-Level Systems in
Glasses Abstract: We investigate the quantum dynamics of two-level systems (TLSs)
in glasses at low temperatures (1 K and below). We study an ensemble of TLSs
coupled to phonons. By integrating out the phonons within the framework of the
GKSL master equation, we derive the explicit form of the interactions among TLSs
and of the dissipative terms. We find that the dynamics of the system shows clear
signatures of many-body localization physics (in particular a power-law decay of the
concurrence, which measures pairwise entanglement also in non-isolated systems)
even in the presence of dissipation, if the latter is not too large. This feature can be
ascribed to the presence of strong, long-tailed disorder characterizing the
distributions of the model parameters. Our findings show that assuming ergodicity
when discussing TLS physics might not be justified for all kinds of experiments on
low-temperature glasses.



Relaxation dynamics of the three-dimensional Coulomb Glass model

Bhandari, Preeti

We consider the relaxation properties of electron glass, which is a system in which all
the electron states are localized and the dynamics occurs through phonon-assisted
hopping amongst these states. We model the system by a lattice of localized states
which have random energies and interact through the Coulomb interaction. The
presence of disorder and the long-range interaction makes the system glassy which
results in slow dynamics towards reaching equilibrium, aging (system dynamics
depending on the history), and memory effects. Further, a much-discussed question
is whether there is an equilibrium transition to glassy phase or not as the
temperature is lowered. The wide range of timescales involved in such systems
makes it more difficult to solve numerically. We have modeled the kinetics of site-
occupation numbers as Ising spins by Kawasaki Dynamics (spin-exchange) as in our
system only half the sites are occupied and the number of particles is conserved.
The master equation governing the dynamics is solved in mean-field approximation.
We use the eigenvalue distribution of the dynamical matrix to characterize relaxation
laws as a function of localization length at low temperatures. Our results
demonstrate the dominant role played by the localization length on the relaxation
laws. For very small localization lengths we find a crossover from exponential
relaxation at long times to a logarithmic decay at intermediate times. No logarithmic
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decay at the intermediate times is observed for large localization lengths.

Quasiparticle dynamics of symmetry resolved entanglement after a quench: the
examples of conformal field theories and free fermions

Bonsignori, Riccarda

The time evolution of the entanglement entropy is a key concept to understand the
structure of a non-equilibrium quantum state. In a large class of models, such
evolution can be understood in terms of a semiclassical picture of moving
quasiparticles spreading the entanglement throughout the system. However, it is not
yet known how the entanglement splits between the sectors of an internal local
symmetry of a quantum many-body system. Here, guided by the examples of
conformal field theories and free-fermion chains, we show that the quasiparticle
picture can be adapted to this goal, leading to a general conjecture for the charged
entropies whose Fourier transform gives the desired symmetry resolved
entanglement . We point out two physically relevant effects that should be

easily observed in atomic experiments: a delay time for the onset of  which

grows linearly with  (the difference from the charge  and its mean value), and

an effective equipartition when  is much smaller than the subsystem size.


(q)Sn

(q)Sn

|Δq| q

|Δq|

Lieb-Robinson bounds and out-of-time order correlators in a long-range spin
chain

Colmenarez Gomez, Luis Andres

Lieb-Robinson bounds quantify the maximal speed of information spreading in
nonrelativistic quantum systems. We discuss the relation of Lieb-Robinson bounds to
out-of-time order correlators, which correspond to different norms of commutators

 of local operators. Using an exact Krylov space-time evolution

technique, we calculate these two different norms of such commutators for the
spin-1/2 Heisenberg chain with interactions decaying as a power law  with

distance . Our numerical analysis shows that both norms (operator norm and
normalized Frobenius norm) exhibit the same asymptotic behavior, namely, a linear
growth in time at short times and a power-law decay in space at long distance,
leading asymptotically to power-law light cones for  and to linear light cones
for . The asymptotic form of the tails of  is described by short-time

perturbation theory, which is valid at short times and long distances.


C(r, t) = [A(t), B]

1/rα

r

α < 1
α > 1 C(r, t) t/rα

Extraction of many-body Chern number from a single wave function

Dehghani, Hossein

"The quantized Hall conductivity of integer and fractional quantum Hall (IQH and
FQH) states is directly related to a topological invariant, the many-body Chern
number. The conventional calculation of this invariant in interacting systems requires
a family of many-body wave functions parameterized by twist angles in order to
calculate the Berry curvature. In this work, we demonstrate how to extract the Chern
number given a single many-body wave function, without knowledge of the
Hamiltonian. We perform extensive numerical simulations involving IQH and FQH
states to validate these methods. We also propose an ancilla-free experimental
scheme for the measurement of this invariant. Specifically, we use the statistical
correlations of randomized measurements to infer the MBCN of a wavefunction." 
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Correspondence principle for quantum many-body scars

Desaules, Jean-Yves

Quantum many-body scars represent a weak form of ergodicity breaking that gives
rise to robust periodic revivals in kinetically constrained quantum systems, such as
the PXP model describing strongly-interacting Rydberg atoms. By analogy to
quantum scars in single-particle quantum billiards, the many-body scarred
eigenstates are distinguished by their anomalous overlap with the so-called
quasimodes, i.e., the wave functions that concentrate along classical periodic orbits.
While the classical orbits in the PXP model have previously been constructed using
the Time-Dependent Variational Principle (TDVP), the corresponding quasimodes
have only been found numerically. Here we introduce a new approach to
constructing quasimodes in the PXP model based on the subspace symmetrised
over permutations on each sublattice. We show that this method is amenable to
analytic treatment and leads to an efficient construction of the quasimodes, allowing
to study the dynamics of the PXP model in large systems on the order of hundreds
of atoms. Finally, our approach provides a tractable way of introducing quantum
fluctuations at all orders on top of the classical equations of motion defined by the
TDVP.



The effect of intrinsic quantum fluctuations on the phase diagram of anisotropic
dipolar magnets

Dollberg, Tomer

LiHoF4 is a quantum magnet known to be a good physical realization of the
transverse field Ising model with dipolar interactions. Results from previous studies,
using various Monte Carlo techniques and mean-field analyses, show a persistent
discrepancy with experimental results for the  phase diagram. Namely, in the
low  regime, the experimental phase boundary separating the ferromagnetic and
paramagnetic phases has a much smaller dependence on magnetic field in
comparison to the theoretical predictions. In this work we propose a mechanism
which may account for the discrepancy. Offdiagonal terms of the dipolar interaction,
more dominant in the disordered paramagnetic phase, reduce the energy of the
paramagnetic phase, and consequently reduce the critical temperature. Using
classical Monte Carlo simulations, in which we explicitly take the modification of the
Ising states due to the offdiagonal terms into account, we show that the inclusion of
the these terms reduces  markedly at zero transverse field. We also show that the
effect is diminished with increasing transverse field, leading to the above mentioned
field dependence of the critical temperature.



− TBx

Bx

Tc

Vortices and Fractons

Doshi, Darshil

We discuss a simple and experimentally available realization of fracton physics. We
note that superfluid vortices conserve total dipole moment and trace of the
quadrupole moment of vorticity. This establishes a relation to a traceless scalar
charge theory in two spatial dimensions. We also consider the limit where the
number of vortices is large and show that emergent vortex hydrodynamics conserves
these moments too. Finally, we compare the motion of vortices and of fractons on
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curved surfaces; and find that they agree. This opens a route to experimental study
of the interplay between fracton physics and curved space. Our conclusions also
apply to charged particles in strong magnetic field. (Reference : D Doshi, A Gromov
- arXiv preprint arXiv:2005.03015, 2020)

Anomalous Diffusion in Dipole- and Higher-Moment Conserving Systems

Feldmeier, Johannes

The presence of global conserved quantities in interacting systems generically leads
to diffusive transport at late times. Here, we show that systems conserving the dipole
moment of an associated global charge, or even higher moment generalizations
thereof, escape this scenario, displaying subdiffusive decay instead. Modelling the
time evolution as cellular automata for specific cases of dipole- and quadrupole-
conservation, we numerically find distinct anomalous exponents of the late time
relaxation. We explain these findings by analytically constructing a general
hydrodynamic model that results in a series of exponents depending on the number
of conserved moments, yielding an accurate description of the scaling form of
charge correlation functions. We analyze the spatial profile of the correlations and
discuss potential experimentally relevant signatures of higher moment conservation.



Incommensurability-induced sub-ballistic narrow-band-states in twisted bilayer
graphene

Gonçalves, Miguel

We study the localization properties of electrons in incommensurate twisted bilayer
graphene for small angles, encompassing the narrow-band regime, by numerically
exact means. Sub-ballistic states are found within the narrow-band region around
the magic angle. Such states are delocalized in momentum-space and follow non-
Poissonian level statistics, in contrast with their ballistic counterparts found for close
commensurate angles. Transport results corroborate this picture: for large enough
systems, the conductance decreases with system size for incommensurate angles
within the sub-ballistic regime. Our results show that incommensurability effects are
of crucial importance in the narrow-band regime. The incommensurate nature of a
general twist angle must therefore be taken into account for an accurate description
of magic-angle twisted bilayer graphene.



Quantum scars of bosons with correlated hopping

Hudomal, Ana

Recent experiments on Rydberg atom arrays have found evidence of anomalously
slow thermalization and persistent density oscillations, which have been interpreted
as a many-body analog of the phenomenon of quantum scars. Periodic dynamics
and atypical scarred eigenstates originate from a "hard" kinetic constraint: the
neighboring Rydberg atoms cannot be simultaneously excited. Here we propose a
realization of quantum many-body scars in a 1D bosonic lattice model with a "soft"
constraint in the form of density-assisted hopping. We discuss the relation of this
model to the standard Bose-Hubbard model and possible experimental realizations
using ultracold atoms. We find that this model exhibits similar phenomenology to
the Rydberg atom chain, including weakly entangled eigenstates at high energy
densities and the presence of a large number of exact zero energy states, with
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distinct algebraic structure.

Model wavefunctions for interfaces between lattice quantum Hall states

Jaworowski, Błażej

While the physics of the edges between topological orders and vacuum has been
thoroughly investigated, less is known about the properties of interfaces between
different topological orders. Such systems have recently attracted significant
attention, partly due to their potential applications in quantum computing. However,
they are difficult to study numerically in a bottom-up manner, because relatively
large system sizes are needed to capture their properties correctly. In this work, we
overcome this obstacle by employing the conformal field theory to create model
wavefunctions for interfaces between two different Laughlin states on the lattice.
These objects can be studied using Monte Carlo methods for systems much larger
than available within the exact diagonalization approach. We study their properties
such as the entanglement entropy scaling and the correlation functions. Similar
wavefunctions are also created for systems with localized anyons, allowing to extract
the charge, the density profile and the mutual statistics of these excitations. Within
our approach, we can explicitly simulate the crossing of the interface by the anyons
and show that some of them lose their fractional statistics in such a process, which is
in accordance with earlier “top-down” results obtained from field theory, and is
possibly related to the entanglement entropy scaling at the interface.



Floquet Gauge Pump

Kumar, Abhishek

Gauge pumps are spatially-resolved probes that can reveal discrete symmetries due
to nontrivial topology. We introduce the Floquet gauge pump whereby a
dynamically engineered Floquet Hamiltonian is employed to reveal the inherent
topology of the ground state in interacting systems. We demonstrate this concept in
a 1D XY model with periodically driven couplings and a transverse field. In the high-
frequency limit, we obtain a Floquet Hamiltonian consisting of the static XY and
dynamically generated Dzyaloshinsky-Moriya interactions (DMI) terms. We show that
anisotropy in the couplings facilitates a magnetization current across a dynamically
imprinted junction. In fermionic language, this corresponds to an unconventional
Josephson junction with both hopping and pairing tunneling terms. The
magnetization current depends on the phases of complex coupling terms, with the
XY interaction as the real and DMI as the imaginary part. It shows 4π periodicity
revealing the topological nature of the ground state manifold in the ordered phase,
in contrast to the trivial topology in the disordered phase. We discuss the
requirements to realize the Floquet gauge pump with interacting trapped ions.



Emergent Bloch oscillations in a kinetically constrained Rydberg spin lattice

Magoni, Matteo

We explore the relaxation dynamics of elementary spin clusters of a kinetically
constrained spin system. Inspired by experiments with Rydberg lattice gases, we
focus on the situation in which an excited spin leads to a "facilitated" excitation of a
neighboring spin. We show that even weak interactions that extend beyond nearest
neighbors can have a dramatic impact on the relaxation behavior: they generate a
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linear potential, which under certain conditions leads to the onset of Bloch
oscillations of spin clusters. These hinder the expansion of a cluster and more
generally the relaxation of many-body states towards equilibrium. This shows that
non-ergodic behavior in kinetically constrained systems may occur as a consequence
of the interplay between reduced connectivity of many-body states and weak
interparticle interactions. We furthermore show that the emergent Bloch oscillations
identified here can be detected in experiment through measurements of the
Rydberg atom density, and discuss how spin-orbit coupling between internal and
external degrees of freedom of spin clusters can be used to control their relaxation
behavior.

Quantifying the efficiency of state preparation via quantum variational
eigensolvers

Matos, Gabriel

Recently, there has been much interest in the efficient preparation of complex
quantum states using low-depth quantum circuits, such as Quantum Approximate
Optimization Algorithm (QAOA). While it has been numerically shown that such
algorithms prepare certain correlated states of quantum spins with surprising
accuracy, a systematic way of quantifying the efficiency of QAOA in general classes
of models has been lacking. Here, we propose that the success of QAOA in
preparing ordered states is related to the interaction distance of the target state,
which measures how close that state is to the manifold of all Gaussian states in an
arbitrary basis of single-particle modes. We numerically verify this for the ground
state of the quantum Ising model with arbitrary transverse and longitudinal field
strengths, a canonical example of a non-integrable model. Our results suggest that
the structure of the entanglement spectrum, as witnessed by the interaction
distance, correlates with the success of QAOA state preparation. We conclude that
QAOA typically finds a solution that perturbs around the closest free-fermion state.



Improved qQuantum transport calculations for interacting nanostructures

Minarelli, Emma

Nanoelectronics devices such as semiconductor quantum dots and single molecule
transistors exhibit a rich range of physical behavior due to the interplay between
orbital complexity, strong electronic correlations and device geometry.
Understanding and simulating the quantum transport through such nanostructures is
essential for rational design and technological applications. In this poster, I present
theoretical reformulations electrical conductance formulae for interacting
mesoscopic quantum transport calculations in linear response, and demonstrate the
improvement over standard methods with several example applications using the
numerical renormalization group technique. I will treat reformulations of the Meir-
Wingreen formula in the context of non-proportionate coupling set-ups and by
means of perturbative verification of the Ng ansatz; of the Oguri formula in non-
Fermi Liquid states and of the Kubo formula for conductance.



Anyonic molecules in atomic fractional quantum Hall liquids: a quantitative
probe of fractional charge and anyonic statistics

Muñoz de las Heras, Alberto
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We study the quantum dynamics of massive impurities embedded in a strongly
interacting two-dimensional atomic gas driven into the fractional quantum Hall
(FQH) regime under the effect of a synthetic magnetic field. For suitable values of
the atom-impurity interaction strength, each impurity can capture one or more
quasi-hole excitations of the FQH liquid, forming a bound molecular state with novel
physical properties. An effective Hamiltonian for such anyonic molecules is derived
within the Born-Oppenheimer approximation, which provides renormalized values
for their effective mass, charge and statistics by combining the finite mass of the
impurity with the fractional charge and statistics of the quasi-holes. The
renormalized mass and charge of a single molecule can be extracted from the
cyclotron orbit that it describes as a free particle in a magnetic field. The anyonic
statistics introduces a statistical phase between the direct and exchange scattering
channels of a pair of indistinguishable colliding molecules, and can be measured
from the angular position of the interference fringes in the differential scattering
cross section. Implementations of such schemes beyond cold atomic gases are
highlighted, in particular in photonic systems.

Phases and Quantum Phase Transitions in an Anisotropic Ferromagnetic Kitaev-
Heisenberg-  Magnet

Nanda, Animesh

We study the spin-  ferromagnetic Heisenberg-Kitaev-  model in the anisotropic

(Toric code) limit to reveal the nature of the quantum phase transition between the
gapped  quantum spin liquid and a spin ordered phase (driven by Heisenberg
interactions) as well as a trivial paramagnet (driven by pseudo-dipolar interactions,

). The transitions are obtained by a simultaneous condensation of the Ising electric
and magnetic charges-- the fractionalized excitations of the  quantum spin liquid.
Both these transitions can be continuous and are examples of deconfined quantum
critical points. Crucial to our calculations are the symmetry implementations on the
soft electric and magnetic modes that become critical. In particular, we find strong
constraints on the structure of the critical theory arising from time reversal and lattice
translation symmetries with the latter acting as an anyon permutation symmetry that
endows the critical theory with a manifestly self-dual structure. We find that the
transition between the quantum spin liquid and the spin-ordered phase belongs to a
self-dual modified Abelian Higgs field theory while that between the spin liquid and
the trivial paramagnet belongs to a self-dual  gauge theory. We also study the
effect of an external Zeeman field to show an interesting similarity between the
polarised paramagnet obtained due to the Zeeman field and the trivial paramagnet
driven the pseudo-dipolar interactions. Interestingly, both the spin liquid and the
spin ordered phases have easily identifiable counterparts in the isotropic limit and
the present calculations may shed insights into the corresponding transitions in the
material relevant isotropic limit.
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Restricted Boltzmann machine representation for the groundstate and excited
states of Kitaev Honeycomb model

Noormandipour, Mohammadreza

In this work, the capability of restricted Boltzmann machines (RBMs) to find solutions
for the Kitaev honeycomb model is investigated. The measured groundstate (GS)
energy of the system is compared and shown to reside within a few percent error of
the analytically derived value of the energy per plaquette. Moreover, given a set of
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single shot measurements of exact solutions of the model, an RBM is used to
perform quantum state tomography and the obtained result has a  overlap with
the exact analytic result. Furthermore, the possibility of realizing anyons in the RBM
is discussed and an algorithm is given to build these anyonic excitations and braid
them as a proof of concept for performing quantum gates and doing quantum
computation.

97%

Exotic Phases in Rydberg Lattice Models

Ohler, Simon

Interacting systems of Rydberg atoms have attracted much attention recently, partly
due to their strong interactions and high stability. Furthermore, experimental
techniques have been proposed to include synthetic gauge fields and correlated
hopping, where the excitation transport between two atoms depends on the
quantum state of a third atom. In our work, we are considering a system of Rydberg
atoms on a two-dimensional hexagonal lattice, including both synthetic gauge fields
and correlated hopping. We numerically obtain a rich phase diagram,including two
disordered regimes where we find evidence to support the existence of a chiral spin-
liquid-state.



Systematic large flavor fTWA approach to interaction quenches

Osterkorn, Alexander

Studying the out-of-equilibrium quantum dynamics in two-dimensional lattice
models is challenging due to the lack of a general purpose simulation method. A
new semiclassical approach to compute the quantum dynamics of fermions was
recently developed by Davidson et. al [1], the fermionic truncated Wigner
approximation (fTWA). Here, we adopt the method and combine it with the limit of
high fermion degeneracy  as a well-defined semiclassical expansion parameter. On
the poster we consider the well-known problem of an interaction quench in the two-
dimensional Hubbard model to show that the method correctly describes
prethermalization [2]. In addition we discuss whether the long-time thermalization
dynamics is reproduced as well. As a second application we consider quenches in
ordered phases of the large-  Hubbard-Heisenberg model and show that the
semiclassical time-evolution leads to dephasing and subsequent decay of the order
parameter. [1] SM Davidson et. al., Annals of Physics 384, pages 128-141 (2017) [2] A
Osterkorn and S Kehrein, arXiv:2007.05063
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Topological phonons in oxide perovskites controlled by light

Peng, Bo

Oxide perovskites have received widespread attention ever since their discovery due
to the multiple physical properties they exhibit, including ferroelectricity,
multiferroicity, and superconductivity. One prominent absence in this list of
properties that oxide perovskites exhibit is electronic topological order. This is a
consequence of the large band gaps of oxide perovskites, which make the band
inversions necessary for topology impossible. We find that topological phonons –
nodal rings, nodal lines, and Weyl points – are ubiquitous in oxide perovskites in
terms of structures (tetragonal, orthorhombic, and rhombohedral), compounds
(BaTiO , PbTiO , and SrTiO ), and external conditions (photoexcitation, strain, and3 3 3
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temperature). In particular, in the tetragonal phase of these compounds all types of
topological phonons can simultaneously emerge when stabilized by
photoexcitation, whereas the tetragonal phase stabilized by thermal fluctuations
only hosts a more limited set of topological phonon states. In addition, we find that
the photoexcited carrier density can be used to control the emergent topological
states, for example driving the creation/annihilation of Weyl points and switching
between nodal lines and nodal rings. Overall, we propose oxide perovskites as a
versatile platform in which to study topological phonons and their manipulation with
light [1]. Reference: [1] Bo Peng, Yuchen Hu, Shuichi Murakami, Tiantian Zhang,
Bartomeu Monserrat. Topological phonons in oxide perovskites controlled by light.
Science Advances 6, eabd1618 (2020).

Higher-order and fractional discrete time crystals in clean long-range interacting
systems

Pizzi, Andrea

Discrete time crystals are periodically driven systems characterized by a response
with periodicity , with  the period of the drive and . Typically,  is an
integer and bounded from above by the dimension of the local (or single particle)
Hilbert space, the most prominent example being spin-  systems with  restricted

to . Here we show that a clean spin-  system in the presence of long-range

interactions and transverse field can sustain a huge variety of different `higher-order'
discrete time crystals with integer and, surprisingly, even fractional . We
characterize these (arguably prethermal) non-equilibrium phases of matter
thoroughly using a combination of exact diagonalization, semiclassical methods, and
spin-wave approximations, which enable us to establish their stability in the
presence of competing long- and short-range interactions. Remarkably, these
phases emerge in a model with continous driving and time-independent
interactions, convenient for experimental implementations with ultracold atoms or
trapped ions.
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Anatomy of Z2 fluxes in anyon Fermi liquids and Bose condensates

Pozo Ocaña, Óscar

We study in detail the properties of pi-fluxes embedded in a state with a finite
density of anyons that form either a Fermi liquid or a Bose-Einstein condensate. By
employing a recently developed exact lattice bosonization in 2D, we demonstrate
that such pi-flux remains a fully deconfined quasiparticle with a finite energy cost in a
Fermi liquid of emergent fermions coupled to a Z2 gauge field. This pi-flux is
accompanied by a screening cloud of fermions, which in the case of a Fermi gas with
a parabolic dispersion binds exactly 1/8 of a fermionic hole. In addition there is a
long-ranged power-law oscillatory disturbance of the liquid surrounding the pi-flux
akin to Friedel oscillations. These results carry over directly to the pi-flux excitations
in orthogonal metals. In sharp contrast, when the pi-flux is surrounded by a Bose-
Einstein condensate of particles coupled to a Z2 gauge field, it binds a superfluid
half-vortex, becoming a marginally confined excitation with a logarithmic energy
cost divergence.



Anomalous localization in spin chains coupled to non-local degree of freedom

Rahmanian Koshkaki, Saeed
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It has recently been predicted that many-body localization survives the presence of
coupling to a non-local degree of freedom, such as a cavity mode [PRL 122, 240402
(2019)]. This poster presents recent results on anomalous properties of localization in
such a setup. First, we show that in a central qudit model, an inverted mobility edge
occurs, meaning that infinite temperature states are localized while low energy
states are delocalized. This model may be directly realized by extending recent work
on artificial cavities using atom-like mirrors [Nature 569.7758: 692 (2019)]; similar
results hold for central spin models or cavity QED with appropriate cavity non-
linearity. Second, we suggest a platform for realizing time crystals in cavity QED and
in the absence of drive.

Simulating hydrodynamics on NISQ devices with random circuits

Richter, Jonas

An important milestone towards “quantum supremacy” has been recently achieved
by using Google’s noisy intermediate-scale quantum (NISQ) device Sycamore to
sample from the output distribution of (pseudo-)random circuits involving up to 53
qubits. We argue that such random circuits provide tailor-made building blocks for
the simulation of quantum many-body systems on NISQ devices. Specifically, we
propose a two-part algorithm consisting of a random circuit followed by a trotterized
Hamiltonian time evolution, which we numerically exemplify by studying the buildup
of spatiotemporal correlations in one- and two-dimensional quantum spin systems.
Importantly, we find that the emerging hydrodynamic scaling of the correlations is
highly robust with respect to the size of the Trotter step, opening the door to reach
nontrivial time scales with a small number of elementary gates. While errors within
the random circuit are shown to be irrelevant for our approach, we furthermore
unveil that meaningful results can be obtained for noisy time evolutions with error
rates achievable on near-term hardware.



Generative Model Learning For Molecular Electronics

Rigo, Jonas

The use of single-molecule transistors in nanoelectronics devices requires a deep
understanding of the generalized `quantum impurity' models describing them.
Microscopic models comprise molecular orbital complexity and strong electron
interactions while also treating explicitly conduction electrons in the external circuit.
No single theoretical method can treat the low-temperature physics of such systems
exactly. To overcome this problem, we use a generative machine learning approach
to formulate effective models that are simple enough to be treated exactly by
methods such as the numerical renormalization group, but still capture all
observables of interest of the physical system.



Scattering Processes via Tensor Network Simulations

Rigobello, Marco

Scattering processes are a crucial ingredient for the investigation of the fundamental
interactions. Working in the framework of Hamiltonian lattice quantum field theory,
we attack this problem via numerical tensor network simulations. We focus on the
theory of quantum electrodynamics in  spacetime dimensions but develop a 1 + 1
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set of tools which are relevant for a broader class of  dimensional quantum field
theories. Specifically, we identify a matrix product state representation of the initial
momentum wave packet and compute its real-time dynamics. The outcome of some
scattering simulations is presented.

1 + 1

Long-range Ising chains: eigenstate thermalization and symmetry breaking of
excited states

Russomanno, Angelo

We use large-scale exact diagonalization to study the quantum Ising chain in a
transverse field with long-range power-law interactions decaying with exponent .
Analyzing various eigenstate and eigenvalue properties, we find numerical evidence
for ergodic behavior in the thermodynamic limit for , i.e. for the slightest
breaking of the permutation symmetry at . Considering an excited-states
fidelity susceptibility, an energy-resolved average level-spacing ratio and the
eigenstate expectations of observables, we observe that a behavior consistent with
eigenstate thermalization first emerges at high energy densities for finite system
sizes, as soon as . We argue that ergodicity moves towards lower energy
densities for increasing system sizes. While we argue the system to be ergodic for
any , we also find a peculiar behaviour near  suggesting the proximity to
a yet unknown integrable point. We further study the symmetry-breaking properties
of the eigenstates. We argue that for weak transverse fields the eigenstates break
the  symmetry, and show long-range order, at finite excitation energy densities for
all the values of  we can technically address ( ). Our contribution settles
central theoretical questions on long-range quantum Ising chains and are also
interesting for the nonequilibrium dynamics of trapped ions.
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Pyrochlore  Heisenberg antiferromagnet at finite temperature

Schäfer, Robin

We use a combination of three computational methods to investigate the
notoriously difficult frustrated three-dimensional pyrochlore S=12 quantum
antiferromagnet, at finite temperature T: canonical typicality for a finite cluster of
2×2×2 unit cells (i.e., 32 sites), a finite-T matrix product state method on a larger
cluster with 48 sites, and the numerical linked cluster expansion (NLCE) using
clusters up to 25 lattice sites, including nontrivial hexagonal and octagonal loops.
We calculate thermodynamic properties (energy, specific heat capacity, entropy,
susceptibility, magnetization) and the static structure factor. We find a pronounced
maximum in the specific heat at , which is stable across finite size clusters
and converged in the series expansion. At  (the limit of convergence of
our method), the residual entropy per spin is , which is relatively large

compared to other frustrated models at this temperature. We also observe a
nonmonotonic dependence on T of the magnetization at low magnetic fields,
reflecting the dominantly nonmagnetic character of the low-energy states. A
detailed comparison of our results to measurements for the  material

 yields a rough agreement of the functional form of the specific heat
maximum, which in turn differs from the sharper maximum of the heat capacity of
the spin ice material .
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Scattering of mesons in quantum simulators
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Surace, Federica Maria

Simulating real-time evolution in theories of fundamental interactions represents
one of the central challenges in contemporary theoretical physics. Cold-atom
platforms represent promising candidates to realize quantum simulations of non-
perturbative phenomena in gauge theories, such as vacuum decay and hadron
collisions, in extreme conditions prohibitive for direct experiments. In this work, we
demonstrate that present-day quantum simulators can give access to S-matrix
measurements of elastic and inelastic meson collisions in Abelian gauge theories,
mimicking experiments with linear particle accelerators. Considering for definiteness
a -dimensional -lattice gauge theory realizable with Rydberg-atom arrays,

we solve the meson scattering problem exactly in the limit of large fermion mass and
for arbitrary coupling strength.

(1 + 1) Z2

Neural network wave functions and the sign problem

Szabó, Attila

Neural quantum states are a promising approach to study many-body quantum
physics. However, they face a major challenge when applied to lattice models:
Neural networks struggle to converge to ground states with a nontrivial sign
structure. In this talk, I present a neural network architecture with a simple, explicit,
and interpretable phase ansatz, which can robustly represent such states and
achieve state-of-the-art variational energies for both conventional and frustrated
antiferromagnets. In the first case, the neural network correctly recovers the Marshall
sign rule without any prior knowledge. For frustrated magnets, our approach
uncovers low-energy states that exhibit the Marshall sign rule but does not reach the
true ground state, which is expected to have a different sign structure. I discuss the
possible origins of this "residual sign problem" as well as strategies for overcoming
it, which may allow using neural quantum states for challenging spin liquid
problems.



Separation-dependent emission pathways of quantum emitters

Talukdar, Jugal

System-environment interactions have been studied extensively for many decades
and recent developments in quantum optics and circuit QED provide intriguing
possibilities for realizing non-linear environments. The Bose-Hubbard lattice for
photons, e.g., has been realized experimentally using superconducting circuits,
thereby providing an exciting platform to study effective interactions between
quantum emitters mediated by the engineered photonic environment. We consider
a collection of macroscopically separated two-level emitters coupled to a non-linear
environment and study the dissipative dynamics. Specifically, we report our
theoretical progress on understanding the criteria for the existence of specific
emission pathways as a function of the positions of the emitters.



Continuous matrix product operator approach to finite temperature quantum
states

Tang, Wei
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We present an algorithm for studying quantum systems at finite temperature using
continuous matrix product operator representation. The approach handles both
short-range and long-range interactions in the thermodynamic limit without
incurring any time discretization error. Moreover, the approach provides direct
access to physical observables including the specific heat, local susceptibility, and
local spectral functions. After verifying the method using the prototypical quantum
XXZ chains, we apply it to quantum Ising models with power-law decaying
interactions and on the infinite cylinder, respectively. The approach offers
predictions that are relevant to experiments in quantum simulators and the nuclear
magnetic resonance spin-lattice relaxation rate.

Semiclassical theory of finite temperature dynamics of the sine-Gordon model

Vörös, Dániel

We investigate the finite temperature dynamics of the sine-Gordon model by
studying its dynamical correlation functions at low temperatures in the semiclassical
approach. Going beyond previous analyses based on perfectly reflective or
transmissive collision dynamics of the gapped solitonic excitations, we focus on the
generic case when both transmissive and reflective scatterings are present. We
argue that the behaviour of the correlation functions is qualitatively different from
both special cases, in particular, the autocorrelation function decays in time neither
exponentially nor as a power-law, but assumes a squeezed exponential form.
Supporting our claim, we perform numerical simulations utilizing the exact S-matrix
of the model.



Vortex-Phase in Non-Centrosymmetric Antiferromagnets

Wolba, Benjamin

In this work we consider two-dimensional, non-centrosymmetric antiferromagnets,
for which the competition between exchange and Dyzaloshinskii-Moriya interaction
leads to the formation of spatially modulated phases of the staggered order
parameter. Within the framework of Ginzburg-Landau theory we show that by
applying a magnetic field parallel to the c-axis, which thus induces easy-plane
anisotropy, one can stabilize a square lattice of vortices close to Neel temperature.
Upon decreasing temperature, this vortex phase undergoes spontaneous symmetry
breaking into a rectangular phase, which was not anticipated before. We discuss the
relevance of our results for the chiral antiferromagnet Ba2CuGe2O7.



The Mott Transition as a Topological Phase Transition

Wong, Patrick

We show that the Mott metal-insulator transition in the standard one-band Hubbard
model can be understood as a topological phase transition. Our approach is
inspired by the observation that the mid-gap pole in the self-energy of a Mott
insulator resembles the spectral pole of the localized surface state in a topological
insulator. We use numerical renormalization group--dynamical mean-field theory to
solve the infinite-dimensional Hubbard model and represent the resulting local self-
energy in terms of the boundary Green's function of an auxiliary tight-binding chain
without interactions. The auxiliary system is of generalized Su-Schrieffer-Heeger 
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model type; the Mott transition corresponds to a dissociation of domain walls.

Dipolar dimer liquid

Zhang, Junyi

Motivated by water, we proposed a lattice liquid model of dipolar dimers. We show
that on bipartite lattice it can be exactly mapped to annealed Ising models on
random graphs. With exactly solved Ising models, we cannot only prove the
existence of the liquid-liquid phase transition, but also bound the critical
temperature tightly around  , which is also confirmed by Monte Carlo
simulation.



= 3.5JkBTc

Random multipolar driving: tunably slow heating through spectral engineering

Zhao, Hongzheng

We study heating in interacting quantum many-body systems driven by random
sequences with multipolar correlations, corresponding to a polynomially
suppressed low frequency spectrum. For , we find a prethermal regime, the
lifetime of which grows algebraically with the driving rate, with exponent . A
simple theory based on Fermi's golden rule accounts for this behaviour. The
quasiperiodic Thue-Morse sequence corresponds to the  limit, and
accordingly exhibits an exponentially long-lived prethermal regime. Despite the
absence of periodicity in the drive, and in spite of its eventual heat death, the
prethermal regime can host versatile non-equilibrium phases, which we illustrate
with a random multipolar discrete time crystal.



n−

n ≥ 1
2n + 1

n → ∞

Subdiffusive dynamics and critical quantum correlations in a disorder-free
localized Kitaev honeycomb model

Zhu, Guo-Yi

Disorder-free localization has recently emerged as a mechanism for ergodicity
breaking in homogeneous lattice gauge theories. In this work we show that this
mechanism can lead to unconventional states of quantum matter as the absence of
thermalization lifts constraints imposed by equilibrium statistical physics. We study a
Kitaev honeycomb model in a skew magnetic field subject to a quantum quench
from a fully polarized initial product state and observe nonergodic dynamics as a
consequence of disorder-free localization. We find that the system exhibits a
subballistic entanglement growth and quantum correlation spreading, which is
otherwise typically associated with thermalizing systems. In the asymptotic steady
state the Kitaev model develops volume-law entanglement and power-law decaying
dimer quantum correlations at an energy density where the equilibrium model only
displays paramagnetic and noncritical properties. Our work sheds light onto the
potential for disorder-free localized lattice gauge theories to realize quantum states
in two dimensions with properties beyond what is possible in an equilibrium context.
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Recent experiments on Rydberg atom arrays have found evidence of anomalously slow thermalization and persistent density oscillations, which have been

interpreted as a many-body analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred eigenstates originate from a "hard" kinetic

constraint: the neighboring Rydberg atoms cannot be simultaneously excited. Here we propose a realization of quantum many-body scars in a 1D bosonic

lattice model with a "soft" constraint in the form of density-assisted hopping. We discuss the relation of this model to the standard Bose-Hubbard model and
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Utkarsh Agrawal
uagrawal@umass.edu
(mailto:uagrawal@umass.edu)
University of Massachusetts, Amherst

Universality and Quantum Criticality in

Quasiperiodic Spin Chains

Quasiperiodic systems are aperiodic but
deterministic, so their critical behaviour di�ers from
that of clean systems as well as disordered ones.
Quasiperiodic criticality was previously understood
only in the special limit where the couplings follow
discrete quasiperiodic sequences. Here we consider
generic quasiperiodic modulations; we find,
remarkably, that for a wide class of spin chains,
generic quasiperiodic modulations flow to discrete
sequences under a real-space renormalization group
transformation. These discrete sequences are
therefore fixed points of a \emph{functional}
renormalization group. This observation allows for an
asymptotically exact treatment of the critical points.
We use this approach to analyze the quasiperiodic
Heisenberg, Ising, and Potts spin chains, as well as a
phenomenological model for the quasiperiodic many-
body localization transition.
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Shah Saad Alam
sa59@rice.edu (mailto:sa59@rice.edu)
Rice University

Dynamical Fermionization in One-

Dimensional Spinor Gases

One dimensional ultracold gases exhibit novel
quantum phenomena, one of which is dynamical
fermionization. When a 1D strongly repulsive gas is
released from a harmonic confinement potential, the
momentum distribution of the gas asymptotically
approaches that of a free Fermi gas. Evidence of
dynamical fermionization has been experimentally
observed in spinless bosons, and theoretically
demonstrated to exist for 1D hardcore spinless
bosons, fermions and even anyons. We extend this
analysis to 1D spinor gases in a harmonic trap, based
on analytical methods and results previously
developed in the group. We also show numerical
results for two spin-1�2 bosons.*
(Accepted PRL Jun 2021)
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Jackson Ang'ong'a
angonga2@illinois.edu
(mailto:angonga2@illinois.edu)
University of Illinois, Urbana-
Champaign

Towards a synthetic lattice o� Rydberg

levels �or quantum simulation

Rydberg atoms in optical tweezer arrays present a
versatile platform for quantum simulation, metrology
and quantum information processing. We present a
scheme that extends the capabilities of this platform
by adding a synthetic dimension where several
Rydberg levels are coupled by microwave fields to
create a lattice. The near arbitrary ability to engineer a
generic tight-binding Hamiltonian in the synthetic
dimension, in addition to strong dipole-dipole
interactions present in Rydberg atomic gases, allows
new capabilities for the exploration of interaction
e�ects in topological and disordered systems.
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Ron Belyansky
ron.belyansky@gmail.com
(mailto:ron.belyansky@gmail.com)
University of Maryland

Frustration-induced anomalous

transport and strong photon decay in

waveguide QED

We study the propagation of photons in a one-
dimensional environment consisting of two non-
interacting species of photons frustratingly coupled
to a single spin-1�2. The ultrastrong frustrated
coupling leads to an extreme mixing of the light and
matter degrees of freedom, resulting in the
disintegration of the spin and a breakdown of the
“dressed-spin”, or polaron, description. Using a
combination of numerical and analytical methods, we
show that the elastic response becomes increasingly
weak at the e�ective spin frequency, showing instead
an increasingly strong and broadband response at
higher energies. We also show that the photons can
decay into multiple photons of smaller energies. The
total probability of these inelastic processes can be as
large as the total elastic scattering rate, or half of the
total scattering rate, which is as large as it can be. The
frustrated spin induces strong anisotropic photon-
photon interactions that are dominated by inter-
species interactions. Our results are relevant to state-
of-the-art circuit and cavity quantum
electrodynamics experiments.
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Eliot Bohr
eliot.bohr@nbi.ku.dk
(mailto:eliot.bohr@nbi.ku.dk)
University of Copenhagen Niels Bohr
Institute

Towards quasi-continuous

superradiance on the 7.5 kHz clock

transition o� 88-Sr

Lasing in the superradiant or “bad cavity” regime has
attracted interest in the optical clock community as it
o�ers an alternative to conventional lasers limited by
the thermal noise fluctuations of reference cavities. 
In our experiment, we investigate pulsed lasing using
cold 88�Sr atoms in a cavity.  We constructed an ultra-
stable reference cavity system in order to
characterize the spectral properties of the emission. 
We present results on dynamics of pulsed lasing at
mK temperatures and discuss updates to the
experiment which we are currently developing to
increase the duration of these pulses.

 

Kieran Bull
pykb@leeds.ac.uk
(mailto:pykb@leeds.ac.uk)
University of Leeds

Systematic construction o� scarred

many-body dynamics in 1D lattice

models

We introduce a family of non-integrable 1D lattice
models that feature robust periodic revivals under a
global quench from certain initial product states, thus
generalizing the phenomenon of many-body scarring
recently observed in Rydberg atom quantum
simulators. Our construction is based on a systematic
embedding of the single-site unitary dynamics into a
kinetically-constrained many-body system. We
numerically demonstrate that this construction yields
new families of models with robust wave-function
revivals, and it includes kinetically-constrained
quantum clock models as a special case. We show
that scarring dynamics in these models can be
decomposed into a period of nearly free clock
precession and an interacting bottleneck, shedding
light on their anomalously slow thermalization when
quenched from special initial states.
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Eli Chertkov
eli.chertkov@gmail.com
(mailto:eli.chertkov@gmail.com)
University of Illinois, Urbana-
Champaign

Numerical evidence �or many-body

localization in two and three-

dimensions

Disordered quantum systems that exhibit many-body
localization (MBL), the interacting generalization of
Anderson localization, break the usual paradigm of
quantum statistical mechanics and do not reach
thermal equilibrium at long times. These systems
exhibit a myriad of interesting properties, such as
unusual entanglement and dynamics, and have been a
subject of intense theoretical, numerical, and
experimental study. Many properties of MBL are due
to the existence of quasilocal integrals of motion
known as localized bits, or “l-bits.” In this work, we
present a new, general algorithm for constructing
l-bits. While past numerical investigations of MBL
have been primarily limited to one-dimensional chains,
we show that our method can be used in arbitrary
dimension. Our numerical results reveal some
signatures of MBL in two and three-dimensional
disordered Hamiltonians.
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Elvia Colella
elvia.colella@uibk.ac.at
(mailto:elvia.colella@uibk.ac.at)
Innsbruck University

Open Quantum-System Simulation o�

Faraday's Induction Law via Dynamical

Instabilities

We propose a novel type of cavity-QED set up to
study the physics of dynamical gauge potentials.
Atomic tunneling along opposite directions in the two
legs of the ladder is mediated by photon scattering
from transverse pump lasers to two distinct cavity
modes. The steady-state atomic motion along the
legs of the ladder leads either to a pure chiral current,
screening the induced dynamical magnetic field as in
the Meissner e�ect, or generates simultaneously
chiral and particle currents. For su�ciently
strongpump the system enters into a dynamically
unstable regime exhibiting limit-cycle and period-
doubled oscillations. An electromotive force is
induced in this dynamical regime as expected from an
interpretation based on Faraday’s law of induction for
the time-dependent synthetic magnetic flux.

Ceren Dag
cbdag@umich.edu
(mailto:cbdag@umich.edu)
University of Michigan

Topologically induced prescrambling

and dynamical detection o� topological

phase transitions at infinite temperature

We report a numerical observation where the infinite-
temperature out-of-time-order correlators (OTOCs)
directly probe quantum phase transitions at zero
temperature, in contrast to common intuition where
low energy quantum e�ects are washed away by
strong thermal fluctuations at high temperature. By
comparing numerical simulations with exact analytic
results, we determine that this phenomenon has a
topological origin and is highly generic, as long as the
underlying system can be mapped to a 1D Majorana
chain. Using the Majorana basis, we show that the
infinite-temperature OTOCs probe zero-temperature
quantum phases via detecting the presence of
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Majorana zero modes at the ends of the chain that is
associated with 1D Z2 topological order. Hence, we
show that strong zero modes also a�ect OTOCs and
scrambling dynamics. Our results demonstrate an
intriguing interplay between information scrambling
and topological order, which leads to a new
phenomenon in the scrambling of generic non-
integrable models: topological order induced
prescrambling, paralleling the notion of
prethermalization of two-time correlators, that
defines a time-scale for the restricted scrambling of
topologically-protected quantum information.

Anna Dawid-Lekowska
Anna.Dawid@fuw.edu.pl
(mailto:Anna.Dawid@fuw.edu.pl)
University of Warsaw

Phase Detection with Neural Networks:

Interpreting the Black Box

Neural networks (NNs) usually hinder any insight into
the reasoning behind their predictions. We
demonstrate how influence functions can unravel the
black box of NN when trained to predict the phases of
the one-dimensional extended spinless Fermi-
Hubbard model at half-filling. Results provide strong
evidence that the NN correctly learns an order
parameter describing the quantum transition in this
model. We demonstrate that influence functions
allow to check that the network, trained to recognize
known quantum phases, can predict new unknown
ones within the data set. Moreover, we show they can
guide physicists in understanding patterns
responsible for the phase transition. This method
requires no a priori knowledge on the order parameter,
has no dependence on the NN’s architecture or the
underlying physical model, and is therefore applicable
to a broad class of physical models or experimental
data.

[1] A. Dawid et al. 2020. New J. Phys. 22 115001

 

mailto:Anna.Dawid@fuw.edu.pl
mailto:Anna.Dawid@fuw.edu.pl
mailto:Anna.Dawid@fuw.edu.pl
mailto:Anna.Dawid@fuw.edu.pl
mailto:Anna.Dawid@fuw.edu.pl
mailto:Anna.Dawid@fuw.edu.pl
mailto:Anna.Dawid@fuw.edu.pl


Giulia De Rosi
giulia.derosi88@gmail.com
(mailto:giulia.derosi88@gmail.com)
UPC – Universitat Politècnica de
Catalunya

Thermal instability, evaporation, and

thermodynamics o� 1D liquids in weakly

interacting Bose-Bose mixtures

Giulia De Rosi, Grigori E. Astrakharchik, and Pietro
Massignan
UPC - Universitat Politècnica de Catalunya
(Barcelona)

We study the low-temperature thermodynamics of
weakly interacting uniform liquids in one-dimensional
attractive Bose-Bose mixtures. The Bogoliubov
approach is used to simultaneously describe quantum
and thermal fluctuations. First, we investigate in
detail two di�erent thermal mechanisms driving the
liquid-to-gas transition, the dynamical instability, and
the evaporation, and we draw the phase diagram.
Then, we compute the main thermodynamic
quantities of the liquid, such as the chemical potential,
the Tan’s contact, the adiabatic sound velocity, and
the specific heat at constant volume. The strong
dependence of the thermodynamic quantities on the
temperature may be used as a precise temperature
probe for experiments on quantum liquids.

G. De Rosi, G. E. Astrakharchik, and P. Massignan, Phys.
Rev. A 103, 043316 (2021)
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Novel Interband Topological Invariant

in Condensed Matter

The physical significance of a recently-proposed
gauge-invariant interband index is not immediately
clear in condensed matter systems. In this poster
presentation, I summarize some results from 3+ years
of my work on the index. These include potentially
new applications in topological insulators, exciton
selection rules, and the topological characterizations
of ‘valleys’.
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Emerging long-range magnetic

phenomena in a quantum gas coupled to

a cavity

Dissipative and coherent processes are at the core of
the evolution of many-body systems. Their
competition and interplay can lead to new phases of
matter, instabilities, and complex non-equilibrium
dynamics. However, probing these phenomena at a
microscopic level in a setting of well-defined,
controllable coherent and dissipative couplings often
proves challenging. In our setup, we realize such a
quantum many-body system using a 87Rb spinor
Bose-Einstein condensate (BEC) strongly coupled to a
single optical mode of a lossy cavity. Two transverse
laser fields incident on the BEC allow for cavity-
assisted Raman transitions between di�erent
motional states of two neighboring spin levels.

In a first set of experiments, adjusting the imbalance
between the drives enables us to tune the
competition between coherent dynamics and
dissipation, with the appearance of a dissipation-
stabilized phase and bistability. We relate the
observed phases to microscopic elementary
processes in the open system by characterizing the
properties of the underlying polariton modes.
Moreover, we report on recent results showing
collective spin dynamics in a cavity via superradiant
Raman scattering. We identify the collective nature of
the transitions and leverage the leaking photon field
to gain real-time, non-destructive readout of the
system’s dynamics.

Together, our results open new avenues for
investigating non-Hermitian systems, spin-orbit
coupling in dissipative settings, and transport
phenomena in light-matter systems.
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Higher-Order Weyl Semimetals

We investigate higher-order Weyl semimetals
(HOWSMs) having bulk Weyl nodes attached to both
surface and hinge Fermi arcs. We identify a new type
of Weyl node, which we dub a 2nd-order Weyl node,
that can be identified as a transition in momentum
space in which both the Chern number and a higher
order topological invariant change. As a proof of
concept we use a model of stacked higher order
quadrupole insulators (QI) to identify three types of
WSM phases: 1st order, 2nd order, and hybrid order.
The model can also realize type-II and hybrid-tilt
WSMs with various surface and hinge arcs. After a
comprehensive analysis of the topological properties
of various HOWSMs, we turn to their physical
implications that show the very distinct behavior of
2nd-order Weyl nodes when they are gapped out. We
obtain three remarkable results: (i) the coupling of a
2nd-order Weyl phase with a conventional 1st-order
one can lead to a hybrid-order topological insulator
having coexisting surface cones and flat hinge arcs
that are independent and not attached to each other.
(ii) A nested 2nd-order inversion-symmetric WSM by
a charge-density wave (CDW) order generates an
insulating phase having coexisting flatband surface
and hinge states all over the Brillouin zone. (iii) A
CDW order in a time-reversal symmetric higher-order
WSM gaps out a 2nd-order node with a 1st-order
node and generates an insulating phase having
coexisting surface Dirac cone and hinge arcs.
Moreover, we show that a measurement of charge
density in the presence of magnetic flux can help to
identify some classes of 2nd-order WSMs. Finally, we
show that periodic driving can be utilized as a way for
generating HOWSMs. Our results are relevant to
metamaterials as well as various phases of Cd3As2,
KMgBi, and rutile-structure PtO2 that have been
predicted to realize higher order Dirac semimetals.

Tomohiro Hashizume
tomohiro.hashizume@strath.ac.uk
(mailto:tomohiro.hashizume@strath.ac.uk)

Deterministic �ast scrambling with

neutral atom arrays

    Fast scramblers are the systems which can
propagate the information across the system in a
timescale which only scales logarithmically with the
system size. We propose a deterministic fast-
scrambling circuit, which can be implemented in the
near-future experiments using neutral atoms. The
protocol utilizes the highly non-local geometry
created by the shu�ing of atoms using optical
tweezers. We show that Page-scrambled state, a pure
state in which every random subsystem are maximally
entangled, can be generated with our protocol in the
number of operations which only increases
logarithmically with the system size. We also show
that the proposed circuit has high resistance against
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University of Strathclyde the depolarization noise. This makes the circuit an
ideal circuit to be used for the quantum teleportation
protocols.
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Champaign

Quantum Cluster-states o� Ultracold

Polar Molecules

Ultracold molecules have seen recent success as a
tool in ultracold chemistry, probing fundamental
physics, and quantum simulation. The plentiful array
of internal states in molecules enables their use in a
wide range of studies. As such, certain states of
ultracold polar molecules demonstrate the ability to
interact coherently over long times through coupling
of their electric dipole moments, a quality of interest
towards e�orts in producing stable and noise-
resistant qubits. This dipolar exchange interaction can
entangle qubits through microwave coupling of
anisotropic rotational states in 23Na87Rb and
synthesize a cluster-state, opening the door for
cluster-state computing. To resolve and process
information after measurement, cluster-state
computing relies on the ability to monitor constituent
qubits of the state non-destructively and selectively.
Presented here is a non-demolition imaging scheme
that takes advantage of anisotropic rotational states
of polar molecules. Additionally, described here are
methods of fabrication and manipulation of 23Na87Rb
qubits for future work towards cluster-state
computing.

With Garrett Williams
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Collective Effects o� Quantum Emitters

Recent studies have shown that sub-wavelength sized
rings of quantum emitters possess subradiant
eigenmodes which mimic high-Q optical resonators.
We add a continuously pumped atom as a gain
medium in the ring’s center creating a minimalistic
coherent light source. The system behaves like a
thresholdless laser, featuring a narrow linewidth well
below the natural linewidth of the constituent atoms.
We also show that by placing an extra resonant
absorptive dipole at the ring center, such a structure
becomes a highly e�cient single-photon absorber
with tailorable frequency. Interestingly, for exactly
nine emitters in a nonagon, as it appears in a common
biological light-harvesting complex (LHC2), we find a
distinct minimum for its most dark state decay rate
and a maximum of the e�ective absorption cross-
section, surpassing that for a single absorptive
emitter. Furthermore we show the implementation of
nanoscale non-classical light sources via weak
coherent illumination. At the generic tailored
examples of regular chains we show that the fields
emitted perpendicular to the illumination direction
exhibit a strong directional confinement with genuine
quantum properties as antibunching.

Ana Hudomal
a.hudomal@leeds.ac.uk
(mailto:a.hudomal@leeds.ac.uk)

Quantum scars o� bosons with

correlated hopping

Recent experiments have shown that preparing an
array of Rydberg atoms in a certain initial state can
lead to anomalously slow thermalization and
persistent density oscillations [1]. This type of non-
ergodic behavior has been attributed to the existence
of “quantum many-body scars”, i.e., atypical
eigenstates that have high overlaps with a small
subset of vectors in the Hilbert space. Periodic
dynamics and many-body scars are believed to
originate from a “hard” kinetic constraint: due to
strong interactions, two neighboring Rydberg atoms
cannot be simultaneously excited. Here we propose a
realization of quantum many-body scars in a 1D
bosonic lattice model with a “soft” constraint in the
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University of Leeds form of density-assisted hopping [2]. We find that
this model exhibits similar phenomenology to the
Rydberg atom chain, including weakly entangled
eigenstates at high energy densities and the presence
of a large number of exact zero energy states, with
distinct algebraic structure. We discuss the relation of
this model to the standard Bose-Hubbard model and
possible experimental realizations using ultracold
atoms.
 
References:
[1] H. Bernien et al., Nature 551, 579 (2017).
[2] A. Hudomal, I. Vasic, N. Regnault, and Z. Papic,
Commun. Phys. 3, 99 (2020).
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An overview o� the SU(N) Fermi

Hubbard model: Quantum magnetism

and transport properties

The SU�2) symmetric Fermi Hubbard model (FHM)
plays an essential role in the understanding of
strongly correlated fermionic many-body systems.
When the system is in the one particle per site and
strongly interacting limit U >> t , it is e�ectively
described by the Heisenberg Hamiltonian. In this limit,
extending the typical SU�2) symmetry to SU�N) has
been predicted to give exotic phases of matter in the
ground state, with complicated dependence of the
ground state on N. In this overview we discuss the
N-dependence of thermodynamic properties,
magnetic correlations and transport properties of the
SU�N) Fermi Hubbard model at finite temperature and
away from the Heisenberg limit. In particular we
address the question of what signatures of the exotic
ground states survive at finite-temperature,
especially in the currently experimentally relevant
regime near or above the superexchange energy. Our
results are obtained with Exact Diagonalization,
Numerical Linked Cluster Expansions and
Determinant Quantum Monte Carlo and span a wide
range of interaction strengths, temperatures, fillings
and values of N.
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Shelving spectroscopy o� strontium

intercombination line in a vapor cell

The relaxation dynamics of quantum many-body
systems after a quench is so far a mostly unsolved
problem.We plan on using a quantum gas microscope
to study the relaxation dynamics of a 2D strontium
gas in an optical lattice. The quantum gas microscope
approach will allow us to probe the spatial
distribution of atoms with single atom and single
lattice site resolution.

In this poster, I present the experimental apparatus
that was designed for our experiment. I discuss the
challenges that were addressed and how we chose to
circumvent them. More precisely, I tackle the topics of
collimation and cooling of a strontium gas from
several hundreds of degrees to a few µK. I also present
the design of the optical dipole traps for the lattices
and a transport of a cold atomic cloud. Finally, a
section of the poster summarizes the  constraints on
achieving detection of single atoms in a 2D lattice
with an in situ imaging.

Thomas Kiely
tgk37@cornell.edu
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Cornell University

Superfluidity in the 1D Bose-Hubbard

Model

We study superfluidity in the 1D Bose-Hubbard model
using an infinite variational matrix product state
technique. We determine the superfluid density as a
function of the Hubbard parameters by calculating
the energy cost of phase twists in the thermodynamic
limit. As the system is critical, correlation functions
decay as power laws and the entanglement entropy
grows with the bond dimension of our variational
state. We relate the resulting scaling laws to the
superfluid density. We compare two di�erent
algorithms for optimizing the infinite matrix product
state and develop a physical explanation why one of
them (VUMPS) is more e�cient than the other
(iDMRG). Finally, we comment on finite-temperature
superfluidity in one dimension and how our results
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can be realized in cold atom experiments.

Francisco Machado
fmachado@berkeley.edu
(mailto:fmachado@berkeley.edu)
University of California, Berkeley

Long-Range Prethermal Phases o�

Nonequilibrium Matter

Recent developments in atomic, molecular and optical
systems have enabled unprecedented access to novel
out-of-equilibrium behavior—even in strongly
interacting many-body systems. Such techniques have
led to an explosion of excitement in this field, with
particular attention being given to periodically driven
system. In such systems the discrete time translation
symmetry of the evolution can lead to entirely new
phases of matter, but also to one major hurdle: the
heating problem. More specifically, a generic strongly
interacting driven system will continuously absorb
energy from the drive until it approaches the infinite
temperature state at late times, destroying any
interesting out-of-equilibrium behavior.

Here, I will discuss how Floquet prethermalization
enables us to overcome this problem and realize novel
out-of-equilibrium phases. By focusing on high-
frequency driven systems, the heating absorption rate
from the drive becomes exponentially small, enabling
a parametrically large time scale for observing out-of-
equilibrium phenomena. I will discuss our work
extending this approach to long-range interacting
systems and how an emergent symmetry can arise
(protected by the time translation symmetry of the
drive). Leveraging this emergent symmetry, I will
present an example how a novel time crystalline phase
can be stabilized — the one dimensional prethermal
time crystal— and discuss a recent experimental
observation of this phenomena.
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Quantum simulation o� nonequlibrium

dynamics o� quantum mean-field

models using measurement and

�eedback

Measurement-based feedback control has a long
history in quantum optics and quantum information.
However, its potential as a tool to engineer quantum
simulations has remained largely unexplored. We
consider nonequilibrium dynamics of p-spin models
which describe an Ising-like model on a completely
connected graph with p-body interactions. To
simulate these models, we consider the collective spin
of an ensemble on N qubits and approximate the
dynamics by weakly measuring one projection of the
collective spin, followed by unitary evolution
conditioned on the measurement outcome. Using the
proposed protocol we explore dynamical quantum
phase transitions (DQPT�I) for some relevant values
of p. Furthermore, we explore emergence of chaotic
dynamics in the delta-kicked p-spin models,
characterizing it via the largest Lyapunov exponent of
the simulated quantum trajectories. Finally, we
consider our feedback simulation protocol in a 1D
model of a free space atom-light interface, which
includes the e�ects of decoherence induced by
di�usive scattering of photons. We provide numerical
evidence that the simulated DQPT�I could be
accessible in state of the art atom-light interface
experiments.
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Aharonov-Bohm caging o� N bosons in

a lattice o� rings

We study a system of a few ultracold bosons loaded
into the states with orbital angular momentum l=1 of
a one-dimensional staggered lattice of rings. By
analyzing the strong-interaction limit, we
demonstrate how the geometry of the system can be
engineered to produce complex tunnelings that yield
a pi flux through the plaquettes. We find nontrivial
topological band structures and we demonstrate how
the system is able to exhibit Aharonov-Bohm caging
in N-particle subspaces even in the presence of a
dispersive single-particle spectrum. All the analytical
results are benchmarked through exact
diagonalization simulations.
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Modified fluctuation-dissipation

relation in driven-dissipative systems

Fluctuation-dissipation relations (FDRs) and time-
reversal symmetry (TRS), two pillars of statistical
mechanics, are both broken in generic driven-
dissipative systems. These systems rather lead to
non-equilibrium steady states far from thermal
equilibrium. Driven-dissipative Ising-type models,
however, are widely believed to exhibit e�ective
thermal critical behavior near their phase transitions.
Contrary to this picture, we show that both the FDR
and TRS are broken even macroscopically at, or near,
criticality. This is shown by inspecting di�erent
observables, both even and odd operators under time-
reversal transformation, that overlap with the order
parameter. Remarkably, however, a modified form of
the FDR as well as TRS still holds, but with drastic
consequences for the correlation and response
functions as well as the Onsager reciprocity relations.
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Fragile topology and flat-band

superconductivity

Recent theoretical works unveiled that crystalline
symmetries can stabilize topologically fragile Bloch
bands that challenge our very notion of topology: one
can trivialize these bands through the addition of
trivial Bloch bands. Here, we show via auxiliary-field
Monte Carlo simulations how fragile topology
enhances the superfluid weight and hence the
superconducting critical temperature. This feature is
particularly relevant in flat-band systems where the
conventional contribution to the superfluid weight
vanishes and might explain the high transition
temperature observed in magic-angle twisted bilayer
graphene.

Lukas Rammelmüller
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Approaching a Quantum Phase

Transition one Atom at a Time

Experiments with only a few individual atoms allow us
to shed light on the crossover from few- to many-
body physics. In this spirit, we investigate a few-body
counterpart of the well-studied phenomenon of a
magnetic impurity in the vicinity of an s -wave
superconductor. Already for few particles we find a
ground-state level crossing between a non-magnetic
and a magnetic sector, which corresponds to a
fermion-parity changing sharp quantum phase
transition. This transition occurs as the impurity
strength is increased while the fermions interact
attractively and can be explained by the tendency of
the system to form a single-particle gap due to pair
formation. We obtain numerically sound results by
exactly solving the problem with FCI in a truncated
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Hilbert space. To improve convergence we exploit a
trick known in the nuclear theory community, namely
the use of an e�ective potential, which essentially
constitutes a particularly e�ective renormalization
procedure allowing us to more e�ciently obtain
physical observables free from a cuto� dependence.
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Superdiffusive emergent hydrodynamics

in trapped ion quantum simulators

Generic short-range interacting quantum systems
with a conserved quantity exhibit universal di�usive
transport at late times. We employ non-equilibrium
quantum field theory and semi-classical phase-space
simulations to show how this universality is replaced
by a more general transport process in a long-range
XY spin chain at infinite temperature with couplings
decaying algebraically with distance as r^ {−α}. While
di�usion is recovered for α>1.5, longer-ranged
couplings with 0.5<α≤1.5 give rise to e�ective
classical Lévy flights; a random walk with step sizes
drawn from a distribution with algebraic tails. We find
that the space-time dependent spin density profiles
are self-similar, with scaling functions given by the
stable symmetric distributions. As a consequence, for
0.5<α≤1.5 autocorrelations show hydrodynamic tails
decaying in time as t^{−1/(2α−1) }and linear-response
theory breaks down. We also discuss the recent
observation of these unconventional hydrodynamics
in a trapped ion quantum simulator.
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Condensed bosons get squeezed and

enter the lowest landau level in a

rotating �rame

Motivated by a recent experiment, we model
interacting bosons in a harmonic trap with a rotating
elliptical deformation. The system Hamiltonian in the
rotating frame is equivalent to the Hamiltonian for a
charged particle in a uniform magnetic field.  Bosons
condensed in the lowest landau level can serve as a
route to study fractional quantum hall physics and
strong interaction e�ects in a flat band with neutral
cold atoms. We show how bosons in this situation can
dynamically enter the lowest landau level. We use a
time-dependent variational wavefunction approach
to e�ciently model the dynamics. We find that our
approach reliably captures a dynamical squeezing of
the Bose gas observed in the experiment. We also find
that the bosons macroscopically occupy the lowest
landau level only if the elliptical deformation is
switched o� slowly over a particular timescale. We
estimate this timescale and provide an intuitive
understanding of the phenomena.

Grace Sommers
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Princeton University

From hard spheres to hard-core spins

A system of hard spheres exhibits physics that is
controlled only by their density. This comes about
because the interaction energy is either infinite or
zero, so all allowed configurations have exactly the
same energy. The low-density phase is liquid, while
the high-density phase is crystalline, an example of
“order by disorder” as it is driven purely by entropic
considerations. Here we study a family of hard spin
models, which we call hard-core spin models, where
we replace the translational degrees of freedom of
hard spheres with the orientational degrees of
freedom of lattice spins. Their hard-core interaction
serves analogously to divide configurations of the
many spin system into allowed and disallowed
sectors. We present detailed results on the square
lattice in $d=2$ for a set of models with $Z_N$
symmetry, which generalize Potts models, and
their $U�1)$ limits, for ferromagnetic and
antiferromagnetic senses of the interaction, which we
refer to as exclusion and inclusion models. As the
exclusion and inclusion angles are varied, we find a
Kosterlitz-Thouless phase transition between a
disordered phase and a phase with quasi-long-ranged
order, which is the form order by disorder takes in
these systems. These results follow from a set of
height representations, an ergodic cluster algorithm,
and transfer matrix calculations.

Reference: Grace M. Sommers, Benedikt Placke,
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Roderich Moessner, and S. L. Sondhi, Phys. Rev. B 103,
104407 (2021).

Varsha Subramanyan
varshas2@illinois.edu
(mailto:varshas2@illinois.edu)
University of Illinois, Urbana-
Champaign

Quasinormal Modes and Hawking-

Unruh Effect in Quantum Hall Systems

In this work, we take a closer look at wavepacket
scattering through a quantum point contact (QPC) in
an integer quantum Hall system. We model the QPC
as a hyperbolic potential which takes the form of an
inverted harmonic oscillator (IHO) in the lowest
Landau level. The symmetry isomorphisms that this
system shares with 1D quantum phase space as well
as as (2+1�D Rindler spacetime leads to parallels of
relativistic phenomena in this non-relativistic
scattering setup. We exploit this connection to study
quantum Hall parallels to quasinormal modes, the
Hawking-Unruh e�ect, quantum optics etc.

Federica Maria Surace
federicamsurace@gmail.com
(mailto:federicamsurace@gmail.com)
SISSA

Scattering o� mesons in quantum

simulators

Simulating real-time evolution in theories of
fundamental interactions represents one of the
central challenges in contemporary theoretical
physics. Cold-atom platforms stand as promising
candidates to realize quantum simulations of non-
perturbative phenomena in gauge theories, such as
vacuum decay and hadron collisions, in prohibitive
conditions for direct experiments. In this work, we
demonstrate that present-day quantum simulators
can imitate linear particle accelerators, giving access
to S-matrix measurements of elastic and inelastic
meson collisions in low-dimensional abelian gauge
theories. Considering for definiteness a (1 + 1)-
dimensional Z2-lattice gauge theory realizable with
Rydberg-atom arrays, we present protocols to
observe and measure selected meson–meson
scattering processes. We provide a benchmark
theoretical study of scattering amplitudes in the
regime of large fermion mass, including an exact
solution valid for arbitrary coupling strength. This
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allows us to discuss the occurrence of inelastic
scattering channels, featuring the production of new
mesons with di�erent internal structures. We present
numerical simulations of realistic wavepacket
collisions, which reproduce the predicted cross
section peaks. This work highlights the potential of
quantum simulations to give unprecedented access to
real-time scattering dynamics.

Joseph Szabo
szabo.48@osu.edu
(mailto:szabo.48@osu.edu)
Ohio State University

Detecting quantum phases by probing

ancillary qubits

Understanding the role of entanglement and its
dynamics in composite quantum systems lies at the
forefront of quantum matter studies. Here we
investigate competing entanglement dynamics in an
open Ising-spin chain that allows for exchange with an
external central qudit probe. We propose a new
metric dubbed the multipartite entanglement loss
(MEL) that provides an upper bound on information
entropy shared between the spins and qudit probe,
serving to unify physical spin-fluctuations, Quantum
Fisher Information (QFI), and bipartite entanglement
entropy. We find interestingly that collective spin-
fluctuations which serve as a witness for multipartite
spin-spin entanglement, can also be used to quantify
the composite entanglement shared between spins
and qudit environment. In addition to studying the
entanglement dynamics of the qudit in a weak probe
capacity, we also study how just a single, non-local
ancillary qubit is able to distribute entanglement and
operator content. Using entanglement entropy and
out-of-time-order correlations, we find that in the
weak coupling regime, the non-local nature of central
qubit allows for rapid entanglement distribution and
in the strong coupling limit, the star-local system
develops sub-ballistic growth of entanglement and
slow operator growth.
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Jugal Talukdar
jugal.talukdar@ou.edu
(mailto:jugal.talukdar@ou.edu)
University of Oklahoma, Norman

Separation-dependent emission

pathways o� quantum emitters

System-environment interactions have been studied
extensively for many decades and recent
developments in quantum optics and circuit QED
provide intriguing possibilities for realizing non-linear
environments. The Bose-Hubbard lattice for photons,
e.g., has been realized experimentally using
superconducting circuits, thereby providing an
exciting platform to study e�ective interactions
between quantum emitters mediated by the
engineered photonic environment. We consider a
collection of macroscopically separated two-level
emitters coupled to a non-linear environment and
study the dissipative dynamics. Specifically, we report
our theoretical progress on understanding the criteria
for the existence of specific emission pathways as a
function of the positions of the emitters.
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Agnes Valenti
avalenti@phys.ethz.ch
(mailto:avalenti@phys.ethz.ch)
ETH Zurich

Correlation-Enhanced Neural Networks

as Interpretable Variational Quantum

States

Variational methods have proven to be excellent tools
to approximate ground states of complex many body
Hamiltonians. Generic tools like neural networks are
extremely powerful, but their parameters are not
necessarily physically motivated. Thus, an e�cient
parametrization of the wave-function can become
challenging. In this letter we introduce a neural-
network based variational ansatz that retains the
flexibility of these generic methods while allowing for
a tunability with respect to the relevant correlations
governing the physics of the system. We illustrate the
success of this approach on topological, long-range
correlated and frustrated models. Additionally, we
introduce compatible variational optimization
methods for exploration of low-lying excited states
without symmetries that preserve the interpretability
of the ansatz.

Botao Wang
botao@pks.mpg.de
(mailto:botao@pks.mpg.de)
Max Planck Institute for the Physics of
Complex Systems

Engineering artificial gauge potentials

�or rapid adiabatic state preparation

The implementation of static artificial magnetic fields
in ultracold atomic systems has been established as a
powerful tool, e.g. for simulating quantum-Hall
physics with charge-neutral atoms. Taking an
interacting bosonic flux ladder as a minimal model, we
investigate protocols for adiabatic state preparation
based on ramping up the vector potential (in the form
of Peierls phases), which is engineered to give rise to
the desired magnetic flux. We find that the time
required for adiabatic state preparation dramatically
depends on the spatial pattern of Peierls phases used
to create the flux. This is explained by the fact that,
while di�erent patterns (i.e. vector potentials) just
correspond to di�erent gauges for static fluxes, they
induce di�erent electric fields during the ramp.
Remarkably, we find that for an optimal choice, it
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allows for preparing the ground state almost
instantaneously. This can be related to counter-
diabatic driving and may open up new possibilities for
robust state preparation.
 
Authors: Botao Wang, Xiaoyu Dong, F. Nur ünal, and
André Eckardt
 
 
 

Dariusz Wiater
dariusz.wiater@fuw.edu.pl
(mailto:dariusz.wiater@fuw.edu.pl)
University of Warsaw

Spin dynamics in ultracold collisions

between Yb+ ion and Li atoms in the

quantum regime

Significant advances in precision measurements in the
quantum regime have been achieved with trapped
ions and atomic gases at the lowest possible
temperatures. These successes have inspired ideas to
merge the two systems [1]. Remarkably, in spite of its
importance, experiments with ion-atom mixtures
remained firmly confined to the classical collision
regime, but recently bu�er gas cooling of a single ion
in a Paul trap to the quantum regime of ion-atom
collisions has been realized[2]. The collision energy as
small as 1.15�0.23) times the s-wave energy (or 9.9�2.0)
μK) has been achieved for a trapped ytterbium ion in
an ultracold lithium gas. We have observed a
deviation from classical Langevin theory by studying
the spin-exchange dynamics, indicating quantum
e�ects in the collisions. Here, we present a theoretical
description of the quantum ion-atom scattering used
to guide and interpret the recent experiment [2]. By
developing a theoretical model of measured energy-
dependent spin-exchange rate constants, we have
obtained singlet and triplet ion-atom scattering
lengths. Next, we identify experimentally accessible
Feshbach resonances in the mentioned systems and
predict their properties. Control of both elastic
scattering and related cooling rates, as well as
inelastic spin-changing collisions, with the magnetic
field is proposed and investigated to guide ongoing
experimental e�orts. Ion-atom Feshbach resonances
in analogy to well-established techniques for neutral
systems will be an important tool to manipulated
ultracold ion-atom mixtures.

[1] Tomza et al, Rev. Mod. Phys. 91, 035001 (2019).
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[2] Feldker et al, Nature Physics volume 16, pages
413�416�2020)

Garrett Williams
grw5@illinois.edu
(mailto:grw5@illinois.edu)
University of Illinois, Urbana-
Champaign

Quantum Cluster-states o� Ultracold

Polar Molecules

Ultracold molecules have seen recent success as a
tool in ultracold chemistry, probing fundamental
physics, and quantum simulation. The plentiful array
of internal states in molecules enables their use in a
wide range of studies. As such, certain states of
ultracold polar molecules demonstrate the ability to
interact coherently over long times through coupling
of their electric dipole moments, a quality of interest
towards e�orts in producing stable and noise-
resistant qubits. This dipolar exchange interaction can
entangle qubits through microwave coupling of
anisotropic rotational states in 23Na87Rb and
synthesize a cluster-state, opening the door for
cluster-state computing. To resolve and process
information after measurement, cluster-state
computing relies on the ability to monitor constituent
qubits of the state non-destructively and selectively.
Presented here is a non-demolition imaging scheme
that takes advantage of anisotropic rotational states
of polar molecules. Additionally, described here are
methods of fabrication and manipulation of 23Na87Rb
qubits for future work towards cluster-state
computing. 

With Michael Highman
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Tianrui Xu
tianrui_xu@berkeley.edu
(mailto:tianrui_xu@berkeley.edu)
University of California, Berkeley

Non-Equilibrium Dynamics o� a BCS

Superconductor

Recently developed experimental tools that control
and probe many-body quantum systems have
provided access to new time and length scales of
various quantum systems. Techniques such as pump-
probe experiments and cavity quantum
electrodynamics have enabled us to explore and
understand the phases and orders of previously
di�cult-to-study many-body systems such as the
Cuprate superconductors.

Here, I will present our theoretical investigations of a
non-equilibrium BCS system with a time-varying order
parameter. We focus on the transient dynamics of
such systems, and developed a theory using the Baym-
Kadano�-Keldysh formalism that enables us to study
the dynamics of the system in contact with a thermal
bath for dissipation. We then use our theory to look at
two di�erent types of gap dynamics. First, we try to
understand some measurements of a type of pump-
probe experiment: the time- and angle-resolved
photoemission spectroscopy (tr-ARPES), and discuss
the limit of the quasi-static method currently used to
understand these measurements. Second, we study
the gap dynamics of a BCS system initially prepared in
some time-reversal-breaking states, and found a
possible Higgs mode in such systems.

Hong Yang
yanghongphy@gmail.com
(mailto:yanghongphy@gmail.com)
The University of Tokyo

Symmetry-protected Topological Phases

in Spin�ul Bosons with a Flat Band

We theoretically demonstrate that interacting
symmetry-protected topological (SPT) phases can be
realized with ultracold spinful bosonic atoms loaded
on the lattices which have a flat band at the bottom of
the band structure. Ground states of such systems are
not conventional Mott insulators in the sense that the
ground states possess not only spin fluctuations but
also non-negligible charge fluctuations. The SPT
phases in such systems are determined by both spin
and charge fluctuations at zero temperature. We find
that the many-body ground states of such systems
can be exactly obtained in some special cases, and
these exact ground states turn out to serve as
representative states of the SPT phases. As a
concrete example, we demonstrate that spin-1 bosons
on a sawtooth chain can be in an SPT phase protected
by Z2×Z2 spin rotation symmetry or time-reversal
symmetry, and this SPT phase is a result of spin
fluctuations. We also show that spin-3 bosons on a
kagome lattice can be in an SPT phase protected by
D2 point group symmetry, but this SPT phase is,
however, a result of charge fluctuations.
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[1] Hong Yang, Hayate Nakano, and Hosho Katsura,
Phys. Rev. Research 3, 023210 (2021)

 

Jeremy Young
jeremy.young@jila.colorado.edu
(mailto:jeremy.young@jila.colorado.edu)
JILA, University of Colorado, and NIST

Asymmetric blockade and multi-qubit

gates via dipole-dipole interactions

Due to their strong and tunable interactions, Rydberg
atoms can be used to realize fast two-qubit
entangling gates. We propose a generalization of a
generic two-qubit Rydberg-blockade gate to multi-
qubit Rydberg-blockade gates which involve both
many control qubits and many target qubits
simultaneously. This is achieved by using strong
microwave fields to dress nearby Rydberg states,
leading to asymmetric blockade in which control-
target interactions are much stronger than control-
control and target-target interactions. The
implementation of these multi-qubit gates can
drastically simplify both quantum algorithms and
state preparation. To illustrate this, we show that
large Greenberger-Horne-Zeilinger (GHZ) states can
be created using very few gates with high fidelities.
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Yaakov Yudkin
yaakov.yudkin@gmail.com
(mailto:yaakov.yudkin@gmail.com)
Bar-Ilan University

Efimov Energy Level Rebounding �rom

the Atom-Dimer Continuum

Efimov physics with its ladder of weakly bound three-
atomic molecules (trimers) is a fundamental building
block of universal few-body physics. The van der
Waals interaction, which governs the collisions
between ultracold atoms, was found to provide a new
twist to the concept of universality in the regime
where no weakly bound two-body bound states
(dimers) exist. The opposite regime (where the dimer
exists) does not follow the same rule and behaves
increasingly non-universal, especially for the two
lowest Efimov energy levels. To probe this challenging
regime we create a coherent superposition of dimers
and trimers and extract the energy di�erence from a
measurement of their time evolution. As a result we
reveal yet another twist, this time within the non-
universality of the first excited Efimov energy level.
Instead of merging with the atom-dimer continuum it
rebounds from it and becomes a deeper bound state
again. Instead of a tangential approach between the
two levels we observe a rather narrow resonance,
providing a new challenge and a possible guide for
realistic few-body theories.   
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Transport in optical lattices with flux
A. Hudomal1, I. Vasić1, H. Buljan2, W. Hofstetter3, and A. Balaž1
1 Scientific Computing Laboratory, Center for the Study of Complex Systems,

Institute of Physics Belgrade, University of Belgrade, Serbia
2 Department of Physics, University of Zagreb, Croatia

3 Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
e-mail: hudomal@ipb.ac.rs

Different condensed matter systems, such as elec-
trons in a crystal lattice, can be simulated using ul-
tracold atoms in optical lattices. Unlike electrons,
atoms are electrically neutral and therefore do not
feel the effects of magnetic field. Artificial gauge
potentials have been recently realized in cold-atom
experiments with periodically driven optical lattices
[1, 2]. In such systems, atoms subjected to a constant
external force gain an anomalous velocity in the direc-
tion transverse to the direction of the applied force.

Taking into consideration realistic experimental
conditions, we perform numerical simulations in or-
der to investigate the dynamics of atomic clouds and
relate it to the Chern number of the effective model.
We consider incoherent bosons and the full time-
dependent Hamiltonian. The effects of weak repulsive
interactions between atoms are taken into account us-
ing the mean-field approximation.

Our results show that driving, external force and
interactions all cause heating and transitions to
higher bands, which have significant effects on the
dynamics. It turns out that weak interactions can be
beneficial, because they make the momentum-space
probability density more homogeneous. In the future,
we also plan to study the details of the atomic-cloud
expansion dynamics, and to simulate the full loading
sequence of an initial Bose-Einstein condensate, as it
was done in the experiment [2].

Figure 1: Density profile of an atomic cloud during ex-
pansion dynamics after release from a trap in the presence
of an artificial gauge field and external force.

[1] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat,
T. Uehlinger, D. Greif, and T. Esslinger, Nature
515, 237 (2014).

[2] M. Aidelsburger, M. Lohse, C. Schweizer, M.
Atala, J. T. Barreiro, S. Nascimbène, N. R.
Cooper, I. Bloch, and N. Goldman, Nat. Phys.
11, 162 (2015).
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Görg1, Nathan Goldman2, Gregor Jotzu1, Michael Messer1,
Kilian Sandholzer1, Rémi Desbuquois1, and Tilman Esslinger1

— 1Institute for Quantum Electronics, ETH Zurich, Zurich, Switzer-
land — 2CENOLI, Université Libre de Bruxelles, Brussels, Belgium
The appearance of topological properties in lattice systems caused by
a non-trivial topological band structure in the bulk is closely related to
the existence of chiral edge modes via the bulk-edge correspondence.
These edge states appear at the interface of two spatial regions with a
distinct topology, which for example naturally arise at the boundaries
of a sample surrounded by vacuum. In cold atom systems, these edge
modes are difficult to detect, since the underlying harmonic trapping
potential does not feature sharp boundaries. Therefore, we propose a
different method to design topological interfaces within the bulk of the
system. We illustrate this scheme by an optical lattice realization of
the Haldane model, where a spatially varying lattice beam leads to the
appearance of distinct topological phases in separated regions of space.
The versatility of the method allows to tune the position, the localiza-
tion length and the chirality of the edge modes. We numerically study
the propagation of wave packets in such a system and demonstrate
the feasibility to experimentally detect chiral edge states. Finally, we
show that the edge modes, unlike the bulk states, are topologically pro-
tected against the effects of disorder, which makes a random potential
a powerful tool to detect edge states in cold atom setups.

Q 53.16 Thu 17:00 P OGs
Transport dynamics in optical lattices with flux — ∙Ana
Hudomal1, Ivana Vasić1, Walter Hofstetter2, and Antun
Balaž1 — 1Scientific Computing Laboratory, Center for the Study
of Complex Systems, Institute of Physics Belgrade, University of Bel-
grade, Serbia — 2Institut für Theoretische Physik, Johann Wolfgang
Goethe-Universität, Frankfurt am Main, Germany
Recent cold atom experiments have realized artificial gauge fields in
periodically modulated optical lattices [1,2]. We study the dynamics
of atomic clouds in these systems by performing numerical simula-
tions using the full time-dependent Hamiltonian and comparing these
results to the semiclassical approximation. Under constant external
force, atoms in optical lattices with flux exhibit an anomalous velocity
in the transverse direction. We investigate in detail how this transverse
drift is related to the Berry curvature and Chern number, taking into
account realistic experimental conditions.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).

Q 53.17 Thu 17:00 P OGs
Towards the investigation of collective scattering in
nanofiber-trapped atomic ensembles — ∙Adarsh S. Prasad,
Jakob Hinney, Samuel Rind, Philipp Schneeweiss, Jürgen Volz,
Christoph Clausen, and Arno Rauschenbeutel — TU Wien -
Atominstitut, Stadionallee 2, 1020 Wien, Austria
We realize an efficient optical interface between guided light and laser-
cooled atoms which are arranged in two linear arrays in a two-color
evanescent-field dipole trap created around an optical nanofiber [1]. In
this configuration, the probability of a nanofiber-guided photon being
absorbed and then re-emitted into free space by a trapped atom is as
high as 10%. For a periodic array of atoms, interference of the fields
scattered by different atoms result in a collective emission into a cone
with a well-defined angle with respect to the fiber axis. We plan to
study this collective emission and its dependence on various experimen-
tal parameters. The next step will be to adjust the periodicity of the
atomic array to fulfill the Bragg condition such that fiber-guided light
is strongly back-reflected [2]. Here, the interaction between the atomic
array and the fiber-guided light depends strongly on the polarization
of the light field. In particular, light that is polarized in (orthogonal
to) the plane of atoms will be weakly (strongly) reflected. We want
to implement such highly reflecting atomic arrays, which could then
be used to implement cavity quantum electrodynamics experiments in
which the resonator itself is made of quantum emitters.
[1] E. Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010).
[2] Fam Le Kien et. al., Phys. Rev. A 90, 063816 (2014).

Q 53.18 Thu 17:00 P OGs
Setup of a new micro-structured linear Paul trap with in-
tegrated solenoids and reduced axial micromotion — ∙H.
Siebeneich, D. Kaufmann, T. Gloger, P. Kaufmann, M. Jo-
hanning, and ch. Wunderlich — Department Physik, Universität
Siegen, 57068 Siegen, Germany

We present the status of a new 3d segmented ion trap setup with
integrated solenoids, in which an improved design allows for a sub-
stantial reduction of axial micromotion and for an increased magnetic
gradients. Our trap consists of three layers of gold plated alumina,
where the segmented outer layers provide the trapping potentials [1],
and the middle layer contains solenoids that are used to create a mag-
netic field gradient [2]. The gradient gives rise to coupling between
the ions’ internal and motional states. The trap is mounted on a ce-
ramic chip carrier that, at the same time, acts as an ultra-high vacuum
interface, featuring about 100 thick-film printed current and voltage
feedthroughs. The thick film interface has been improved by replacing
previously used Ag-Pd layers by Au layers which reduced their resis-
tivity by a factor of eight. The previously high resistivity used to be a
a bottleneck for achieving high solenoid currents and thus a magnetic
gradient. The shape of the solenoids was redesigned, leading to an
expected reduction of axial micromotion by four orders of magnitudes.
[1] S.A. Schulz et al.: Sideband cooling and coherent dynamics in a
microchip multi-segmented ion trap, New Journal of Physics, Volume
10, April 2008 [2] D. Kaufmann et al.: Thick-film technology for ultra
high vacuum interfaces of micro-structured traps, Appl Phys B (2012)
107:935-943

Q 53.19 Thu 17:00 P OGs
Design and construction of a Perpetual Atom Laser Machine
— ∙Chun-Chia Chen, Shayne Bennetts, Benjamin Pasquiou, and
Florian Schreck — Institute of Physics, University of Amsterdam,
Amsterdam, The Netherlands
We have developed a machine aimed at producing a perpetual atom
laser, a long standing goal within atomic physics. Continuous pro-
duction of Bose-Einstein condensate (BEC) or an atom laser requires
two incompatible cooling processes, laser cooling a gas sample, then
cooling evaporatively until degeneracy is reached. In order to produce
a perpetual output these stages take place simultaneously in different
parts of our machine. To protect the condensate from scattered pho-
ton heating we use a combination of physical separation, baffles and a
"transparency" beam. Our machine has now demonstrated a perpet-
ual MOT of 2× 109 88Sr atoms with temperatures as low as 20𝜇K on
a 7.4-kHz wide laser cooling transition with a continuous loading rate
of 7×108 atoms/s. Using a different set of parameters and location we
have also demonstrated a perpetual MOT of 2× 108 88Sr at 2𝜇K with
a loading rate of 9 × 107 atoms/s which we have successfully loaded
into a dipole trap. By switching to the 0.5% abundance 84Sr isotope
we are able to evaporate to BECs of 3×105 84Sr atoms. Critically, for
the second location we have validated the effectiveness of our architec-
ture in protecting a BEC from scattered broad-linewidth laser cooling
light, which is used in the first cooling stages. We will describe our
design and the performance demonstrated so far.

Q 53.20 Thu 17:00 P OGs
Optical trapping of neutral mercury — ∙Holger John and
Thomas Walther — Technische Universität Darmstadt, Institut für
Angewandte Physik, Schlossgartenstraße 7, 64289 Darmstadt
Laser-cooled mercury constitutes an interesting starting point for var-
ious experiments, in particular in light of the existence of bosonic and
fermionic isotopes. On the one hand the fermionic isotopes could be
used to develop a new time standard based on an optical lattice clock
employing the 1𝑆0 - 3𝑃0 transition. Another interesting venue is the
formation of ultra cold Hg-dimers employing photo-association and
achieving vibrational cooling by employing a special scheme.

The laser system is based on an interference-filter stabilized external
cavity diode laser with excellent spectral properties combined with a
home built non-cryogenic fiber amplifier for the 1015nm fundamental
wavelength with a slope-efficiency of more than 35% delivering up to
4W of pump limited output power. The fundamental wavelength is fre-
quency doubled twice to reach the cooling transition at 253.7 nm. The
challenging requirements meeting the natural linewidth of 1.27MHz
are mastered by use of a ULE reference resonator.

After integrating a 2D-MOT as an atom source to the vacuum sys-
tem the first measurements of ultra-cold atoms with the new laser
system will be reported.

Q 53.21 Thu 17:00 P OGs
Diffusion of Single Atoms in Bath — ∙Daniel Adam, Farina
Kindermann, Tobias Lausch, Daniel Mayer, Felix Schmidt,
Steve Haupt, Michael Hohmann, Nicolas Spethmann, and Ar-
tur Widera — TU Kaiserslautern, Department of Physics, Kaiser-
slautern, Germany
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Erlangen 2018 – Q Tuesday

Q 35: Quantum Gases (Fermions) II

Time: Tuesday 14:00–16:15 Location: K 1.022

Q 35.1 Tue 14:00 K 1.022
Artificial gauge potentials in periodically driven opti-
cal lattices: numerical simulations of atomic transport
— ∙Ana Hudomal1, Ivana Vasić1, Hrvoje Buljan2, Walter
Hofstetter3, and Antun Balaž1 — 1Scientific Computing Labo-
ratory, Center for the Study of Complex Systems, Institute of Physics
Belgrade, University of Belgrade, Serbia — 2Department of Physics,
University of Zagreb, Croatia — 3Institut für Theoretische Physik,
Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
Artificial gauge potentials have been recently realized in cold-atom
experiments with periodically driven optical lattices [1,2]. In such sys-
tems, atoms subjected to a constant external force gain an anomalous
velocity in the direction transverse to the direction of the applied force.
Taking into consideration realistic experimental conditions, we perform
numerical simulations in order to investigate the dynamics of atomic
clouds and relate it to the Chern number of the effective model. We
use the full time-dependent Hamiltonian and take into account the
effects of weak repulsive interactions between atoms. The results are
compared to the semiclassical approximation.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).

Q 35.2 Tue 14:15 K 1.022
Experimental characterization and control of Floquet states
in a periodically driven two-body quantum system — ∙Kilian
Sandholzer, Rémi Desbuquois, Michael Messer, Frederik
Görg, Joaquín Minguzzi, Gregor Jotzu, and Tilman Esslinger
— Institute for Quantum Electronics, ETH Zürich, Zürich, Switzer-
land
Floquet engineering is a powerful tool to modify properties of a static
system such as opening topological gaps or controlling magnetic or-
der. The versatility of cold atom experiments offers the possibility to
implement many of these schemes. Nonetheless, preparing a certain
Floquet state that has the desired properties in this out-of-equilibrium
situation is a more difficult task, especially when the driving frequency
is close to a characteristic energy scale of the system. In this work, we
prepare fermionic atoms in a driven optical lattice such that the system
can be described by two interacting particles on a double well poten-
tial with a periodically modulated tilt. In the case of near-resonant
driving we achieve to enter adiabatically individual Floquet states by
using a two-step ramping protocol. In addition, the fast coherent dy-
namics inherently connected to the drive are studied in detail. Finally,
an analytical derivation of the effective time-independent Hamiltonian
of the realized system is presented and then compared to numerical
studies and experimental data.

Q 35.3 Tue 14:30 K 1.022
Dynamics of driven interacting many-body systems —
∙Michael Messer, Frederik Görg, Kilian Sandholzer, Joaquín
Minguzzi, Rémi Desbuquois, and Tilman Esslinger — Institute
for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
Periodic driving can be used to coherently control the properties of
a many-body state and to engineer new phases which are not acces-
sible in static systems. The successful implementation of a periodi-
cally driven Fermi-Hubbard model on a 3D hexagonal lattice offers the
possibility to explore the intriguing dynamics of Floquet many-body
systems. A theoretical analysis of driven many-body Hamiltonians is
inherently challenging, however, in combination with our experiments
a deeper understanding seems feasible.

By controlling the detuning between shaking frequency and interac-
tions, and setting a variable strength of the periodic drive, we achieve
independent control over the single particle tunneling and the magnetic
exchange energy. This control allows us to investigate the dynamics
and build-up of nearest-neighbor spin-spin correlations. Furthermore,
we explore possible mechanisms behind the formation of correlations in
interacting Floquet systems. In addition, we can analyze the creation
of double occupancies, as one mechanism to form excitations.

Q 35.4 Tue 14:45 K 1.022
Enhancement and sign change of magnetic correlations in
a driven quantum many-body system — ∙Frederik Görg1,
Michael Messer1, Kilian Sandholzer1, Joaquín Minguzzi1,

Gregor Jotzu1,2, Rémi Desbuquois1, and Tilman Esslinger1 —
1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzer-
land — 2Max Planck Institute for the Structure and Dynamics of Mat-
ter, 22761 Hamburg, Germany
Strong periodic driving can be used to control the properties of inter-
acting quantum systems. In solid state experiments, ultrashort laser
pulses are employed to tune the charge order as well as magnetic and
superconducting properties of materials. At the same time, continuous
driving has been used in cold atom experiments to engineer novel ef-
fective Floquet-Hamiltonians which feature for example a topological
bandstructure. We realize a strongly interacting Fermi gas in a peri-
odically driven hexagonal optical lattice and investigate its charge and
magnetic properties. We first demonstrate that in the high-frequency
regime, the effective description of the many-body system by a renor-
malized tunnelling amplitude remains valid by comparing our results to
an equivalent static system. When driving at a frequency close to the
interaction energy, we show that anti-ferromagnetic correlations can
be enhanced or even switched to ferromagnetic ordering. Our observa-
tions can be explained by a microscopic model, in which the particle
tunnelling and magnetic exchange energies can be controlled indepen-
dently. Therefore, Floquet engineering constitutes an alternative route
to experimentally investigate unconventional pairing.

Q 35.5 Tue 15:00 K 1.022
Manipulating and probing excitations of a Chern insulator
by Floquet engineering an optical solenoid — ∙Botao Wang,
Nur Ünal, and André Eckardt — Max Planck Institute for the
Physics of Complex Systems, Dresden, Germany
The realization of artificial gauge fields in optical lattice systems has
paved a way to the experimental investigation of various topological
quantum effects. Here we propose a realistic scheme for realizing tun-
able local (solenoid type) artificial magnetic fields by means of Floquet
engineering. We show that such an optical solenoid field can be used
to coherently manipulate and probe Chern insulator states of the Hof-
stadter Hamiltonian. In particular, we investigate the possibility to
create local quasiparticle and quasihole excitations, to coherently pop-
ulated edge modes, and to achieve quantized charge pumping. All
these effects are manifested on the spatial density distributions, which
can be measured directly in quantum-gas microscopes.

Q 35.6 Tue 15:15 K 1.022
Characterizing topology by dynamics: Chern number from
linking number — ∙Matthias Tarnowski1,2, Nur Ünal3,
Nick Fläschner1,2, Benno Rem1,2, André Eckardt3, Klaus
Sengstock1,2,4, and Christof Weitenberg1,2 — 1Institut für
Laserphysik, Universität Hamburg, 22761 Hamburg, Germany — 2The
Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
— 3Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer
Straße 38, 01187 Dresden, Germany — 4Zentrum für Optische Quan-
tentechnologien, Universität Hamburg, 22761 Hamburg, Germany
Topology plays an important role in modern solid state physics de-
scribing intriguing quantum states such as topological insulators. It is
an intrinsically non-local property and therefore challenging to access,
often studied only via the resulting edge states. Here, we report on
a new approach by connecting the Chern number with the dynamical
evolution of highly excited states of the system and demonstrate it ex-
perimentally with cold atoms in hexagonal optical lattices. We study
the contour of dynamically created vortex pairs in momentum space
following a sudden quench into the system of interest and infer the
Chern number of the post-quench Hamiltonian from the topology of
the contour, quantified by the linking number with the static vortices.
Our work exploits a direct mapping between two topological indices
and allows detecting topology by the naked eye.

Q 35.7 Tue 15:30 K 1.022
1D fermionic Floquet topological insulators with Hubbard in-
teraction — ∙Haixin Qiu1 and Johann Kroha1,2 — 1Physikalisches
Institut and Bethe Center for Theoretical Physics, Universität Bonn,
Nussallee 12, 53115 Bonn, Germany — 2Center for Correlated Matter,
Zhejiang University, Hangzhou, Zhejiang 310058, China
The fermionic Rice-Mele model is a standard model for quantum
ratchet transport in periodically driven, one-dimensional, bipartite
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Rostock 2019 – Q Tuesday

Q 25: Poster: Quantum Optics and Photonics I

Time: Tuesday 16:30–18:30 Location: S Atrium Informatik

Q 25.1 Tue 16:30 S Atrium Informatik
Unequal-time correlations in Bose-Einstein condensates —
∙Linda Shen1,2 and Martin Gärttner2 — 1Institut für Theo-
retische Physik, Philosophenweg 16, 69120 Heidelberg, Germany —
2Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Hei-
delberg, Germany
We develop measurement schemes for unequal-time correlation func-
tions in a Bose-Einstein condensate (BEC). Both the spectral and
statistical components of the two-point correlation function are in-
vestigated out of equilibrium. Thereby, the time-evolution of a BEC
is computed numerically using classical-statistical simulation methods
based on the Gross-Pitaevskii equation.

The spectral correlation function is approached by linear response
methods, which are in principle applicable to both numerical computa-
tions as well as experimental measurements. The statistical correlation
function can be computed directly in the classical-statistical approx-
imation. Extracting the unequal-time statistical function experimen-
tally, however, requires involved techniques in order to avoid quantum
back action effects. We propose to use a non-invasive measurement
protocol where the system is weakly coupled to an ancillary system.

In thermal equilibrium, the spectral and statistical components are
related by the fluctuation-dissipation theorem. Measuring both will al-
low a better understanding of how the fluctuation-dissipation theorem
builds up as the system approaches equilibrium.

Q 25.2 Tue 16:30 S Atrium Informatik
Quantum Droplets with Tilted Dipoles — ∙Manuel Schmitt1,
Vladimir Veljić2, Antun Balaž2, and Axel Pelster1 —
1Research Center OPTIMAS and Department of Physics, Technische
Universität Kaiserslautern, Germany — 2Scientific Computing Labo-
ratory, Center for the Study of Complex Systems, Institute of Physics
Belgrade, University of Belgrade, Serbia
Since 2005 there have been many striking advancements in Bose-
Einstein condensates (BECs) with dipolar interactions, the most re-
cent one being the discovery of quantum droplets, which are stabilized
due to quantum fluctuations [1, 2]. With a variational approach we
investigate the influence of a tilted dipole axis on quantum droplets
in a wave guide-like setup [3]. At first we generalize for one quantum
droplet the energy functional for the extended Gross-Pitaevskii theory
to tilted dipoles and determine the resulting deformation of the cloud
as well as its stability as a function of the tilting angle. Furthermore,
we consider two quantum droplets in a trap and calculate how their
equilibrium distance depends on the tilting of the dipole axis. With
this we gain new insight into the emergence of filaments of dipolar
BECs.

[1] M. Schmitt et al., Nature 539, 259 (2016)
[2] L. Chomaz et al., Phys. Rev. X 6, 041039 (2016)
[3] I. Ferrier-Barbut et al., Phys. Rev. Lett. 116, 215301 (2016)

Q 25.3 Tue 16:30 S Atrium Informatik
Many-body Multifractality in Fock space for Interact-
ing Bosons — Jakob Lindinger, Andreas Buchleitner, and
∙Alberto Rodríguez — Physikalisches Institut, Albert-Ludwigs-
Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg,
Germany
We analyse the many-body multifractality of the Bose-Hubbard Hamil-
tonian’s eigenstates in Fock space, for arbitrary values of the interpar-
ticle interaction. For the ground state, generalized fractal dimensions
unambiguously signal, even for small system sizes, the emergence of
a Mott insulator. We show that the scaling of the derivative of any
generalised fractal dimension with respect to the interaction strength
encodes the critical point of the superfluid to Mott insulator transition,
and we establish that the transition can be quantitatively character-
ized by one single wavefunction amplitude from the exponentially large
Fock space [1]. Furthermore, multifractality of the excited eigenstates
is investigated and the possible existence of localization in Fock space
is thoroughly studied.

[1] J. Lindinger, A. Buchleitner, A. Rodríguez, arXiv:1810.06369

Q 25.4 Tue 16:30 S Atrium Informatik
Dynamics in multi-species bosonic systems — Tobias Brün-
ner, ∙Gabriel Dufour, Alberto Rodríguez, and Andreas

Buchleitner — Physikalisches Institut, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
The dynamics of bosons in multimode systems is determined by an in-
volved interplay between interactions and indistinguishability-induced
many-particle interference. We construct a formalism to investigate
systematically the dynamics of multiple bosonic species, distinguish-
able by an internal degree of freedom which is insensitive to the time
evolution. We unveil how interparticle interactions lead to a hierar-
chy of interaction-induced interference processes, such that even the
dynamics of single-particle observables is influenced by the degree of
indistinguishability (DOI). Time-averaged expectation values of ob-
servables dominated by two-particle interference are shown to correlate
with a measure of the DOI for initial Fock states [1]. Time-resolved fea-
tures of the dynamics, such as the frequency content of the signals, are
also influenced by the DOI and reveal the interacting or non-interacting
nature of the system. We show that this can be understood from the
symmetry properties of the Hamiltonian based on group-theoretical
arguments [2].

[1] T. Brünner, G. Dufour, A. Rodríguez, A. Buchleitner,
Phys. Rev. Lett. 120, 210401 (2018)
[2] T. Brünner, PhD Thesis, Albert-Ludwigs-Universität Freiburg
(2018). https://doi.org/10.6094/UNIFR/16683

Q 25.5 Tue 16:30 S Atrium Informatik
Rotational cooling of molecules in a BEC — ∙Martin Will,
Tobias Lausch, and Michael Fleischhauer — University of Kaiser-
slautern, 67663 Kaiserslautern, Germany
We discuss the rotational cooling of homonuclear diatomic molecules
in a Bose-Einstein-condensate (BEC) . For typical molecules there is
no frictionless rotation since the dominant cooling occurs via emission
of particle-like phonons. Only for macro-dimers, whose size becomes
larger than the condensate healing length, a Landau-like, critical angu-
lar momentum exists below which phonon emission is suppressed. We
find that the phonon-induced angular momentum relaxation is much
faster than the cooling of linear motion of impurities in a BEC. This
also leads to a finite lifetime of angulons, quasi-particles of rotating
molecules coupled to orbital angular-momentum phonons. The life-
times are however still smaller than typical angulon binding energies.
We analyze the dynamics of rotational cooling for homo-nuclear di-
atomic molecules based on a quantum Boltzmann equation including
single- and two-phonon scattering and discuss the effect of thermal
phonons. For typical molecules two-phonon scattering becomes rele-
vant at finite temperature.

Q 25.6 Tue 16:30 S Atrium Informatik
Coexistence of phase transitions and hysteresis near the
onset of Bose-Einstein condensation — Michael Maennel3

and ∙Klaus Morawetz1,2 — 1Münster University of Ap-
plied Sciences,Stegerwaldstrasse 39, 48565 Steinfurt, Germany —
2International Institute of Physics- UFRN,Campus Universitário
Lagoa nova,59078-970 Natal, Brazil — 3Informatik DV,Petersstr.
14,04109 Leipzig, Germany
Multiple phases occurring in a Bose gas with finite-range interaction
are investigated [2]. In the vicinity of the onset of Bose-Einstein con-
densation (BEC), the chemical potential and the pressure show a van
der Waals-like behavior indicating a first-order phase transition for
weak interactions like Hartree-Fock or Popov approximation. How-
ever, for strong interactions there remains a multivalued region for the
T-matrix approximation even after the Maxwell construction, which is
interpreted as a density hysteresis [1]. This unified treatment of nor-
mal and condensed phases becomes possible due to the recently found
scheme to eliminate self-interactions in the T-matrix approximation,
which allows one to calculate properties below and above the critical
temperature [3,4]. [1] Phys. Rev. A 87 (2013) 053617, [2] New J.
Phys. 12 (2010) 033013, [3] J. Stat. Phys. 143 (2011) 482, [4] Phys.
Rev. B 84 (2011) 094529

Q 25.7 Tue 16:30 S Atrium Informatik
Dynamics of weakly interacting bosons in optical lattices with
flux — ∙Ana Hudomal1, Ivana Vasić1, Hrvoje Buljan2, Walter
Hofstetter3, and Antun Balaž1 — 1Scientific Computing Labo-
ratory, Center for the Study of Complex Systems, Institute of Physics
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Belgrade, University of Belgrade, Serbia — 2Department of Physics,
Faculty of Science, University of Zagreb, Croatia — 3Institut für The-
oretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am
Main, Germany
Realization of strong synthetic magnetic fields in driven optical lattices
has enabled implementation of topological bands in cold-atom setups
[1,2]. A milestone has been reached by a recent measurement of a finite
Chern number based on the dynamics of incoherent bosonic atoms [2].
Motivated by these recent developments, we investigate the dynamics
of weakly interacting incoherent bosons in a two-dimensional driven
optical lattice exposed to an external force, which provides a direct
probe of the Chern number [3]. We find that interactions lead to the
redistribution of atoms over topological bands both through the con-
version of interaction energy into kinetic energy during the expansion
of the atomic cloud and due to an additional heating. Remarkably, we
observe that the moderate atomic repulsion facilitates the measure-
ment by flattening the distribution of atoms in the quasimomentum
space.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).
[3] A. Hudomal et al., Phys. Rev. A 98, 053625 (2018).

Q 25.8 Tue 16:30 S Atrium Informatik
Quench dynamics and boundary condition dependence of the
one-dimensional extended Bose Hubbard model — ∙Sebastian
Stumper, Junichi Okamoto, and Michael Thoss — Insitute of
Physics, University of Freiburg, Freiburg, Germany
The one-dimensional extended Bose Hubbard model exhibits a variety
of quantum phases due to its competing interactions. For large on-site
interactions, a Mott insulating (MI) phase exists, while a charge den-
sity wave (CDW) phase becomes dominant for large nearest-neighbour
interactions. In between these phases, there exists a topologically non-
trivial phase of a Haldane insulator (HI), which is characterized by a
non-local string order (Phys. Rev. Lett. 97, 260401 (2006)). Ground
state properties and low energy spectra are, however, very sensitive to
the treatment of boundary conditions (arXiv:1403.2315 (2014)). We
study an open chain of the extended Bose Hubbard model for various
configurations of chemical potentials applied at the edges using the
density matrix renormalization group method (Comput. Phys. Com-
mun. 225, 59 (2018)). Without edge potentials, the CDW and HI
phases show a non-degenerate ground state, and the order parameters
change signs in the middle of the chain. This feature is robust against
finite size scaling and is explained by a simple effective picture for
the low energy states. On the other hand, with large edge potentials,
the sign change of the order parameters disappears, and we recover
uniform bulk ground states. Furthermore, we simulate quenched dy-
namics with initial states from MI, HI and CDW phases and discuss
the results in terms of our findings on the equilibrium cases.

Q 25.9 Tue 16:30 S Atrium Informatik
Staggered-immersion cooling of a quantum gas in optical lat-
tices — ∙Bing Yang1,2,3, Hui Sun1,2,3, Chun-jiong Huang2,3,
Han-yi Wang1,2,3, You-jin Deng2,3, Han-ning Dai1,2,3, Zhen-
sheng Yuan1,2,3, and Jian-wei Pan1,2,3 — 1Physikalisches Insti-
tut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 226,
69120 Heidelberg, Germany — 2Hefei National Laboratory for Physi-
cal Sciences at Microscale and Department of Modern Physics, Univer-
sity of Science and Technology of China, Hefei, Anhui 230026, China
— 3CAS Centre for Excellence and Synergetic Innovation Centre in
Quantum Information and Quantum Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China
Here we realize efficient cooling of ten thousand ultracold bosons in
staggered optical lattices. By immersing Mott-insulator samples into
removable superfluid reservoirs, thermal entropy is extracted from the
system. Losing less than half of the atoms, we lower the entropy of a
Mott insulator by 65-fold, achieving a record-low entropy per particle
of 0.0019 𝑘B (𝑘B is the Boltzmann constant). We further engineer the
sample to a defect-free array of isolated single atoms and successfully
transfer it into a coherent many-body state. The present staggered-
immersion cooling opens up an avenue for exploring novel quantum
matters and promises practical applications in quantum information
science.

Q 25.10 Tue 16:30 S Atrium Informatik
Simulation of the Quantum Rabi Model with Ultracold Ru-
bidium Atoms in the Deep Strong Coupling Regime —
∙Geram Hunanyan1, Johannes Koch1, Martin Leder1, Enrique

Rico2,3, Carlos Sabin4, Enrique Solano2,3, and Martin Weitz1

— 1Institut für Angewandte Physik Bonn, Wegelerstr. 8, D-53115
Bonn, Germany — 2Department of Physical Chemistry, University of
the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
— 3IKERBASQUE, Basque Foundation for Science, Maria Diaz de
Haro 3, E-48013 Bilbao, Spain — 4Instituto de Fisica Fundamental,
CSIC, Serrano 113-bis, E-28006 Madrid, Spain
The Quantum Rabi Model (QRM) has been applied to describe the dy-
namics of a two-level quantum system interacting with a single bosonic
mode. Although a fair quantity of experiments explore the strong
coupling regime of the QRM, where due to the still limited coupling
strength the system can be transformed to the widely known Jaynes-
Cummings Model, researchers are just beginning to exploit the regime
where the full QRM must be considered. Our experimental imple-
mentation to simulate the QRM uses ultracold rubidium atoms in an
optical lattice potential, with the effective two-level quantum system
being simulated by different Bloch bands in the first Brillouin zone.
The bosonic mode is represented by the oscillations of the atoms in
an optical dipole trapping potential. We experimentally observe the
atomic dynamics in the deep strong coupling regime. The present
status of results will be presented.

Q 25.11 Tue 16:30 S Atrium Informatik
Probing the mott-insulator state in optical lattices with pho-
toassociation collisions — ∙Hui Sun, Bing Yang, Zhen-sheng
Yuan, and Jian-wei Pan — Physikalisches Institut, Ruprecht-Karls-
Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg,
Germany
The photoassociation collision is a process two colliding atoms form
an excited molecular state after absorbing a photon, which can be
used to remove doublons in optical lattices. In this work, we present
the detection of a bosonic Mott-insulator state in optical lattices via
photoassociation collisions. The photoassociation frequency and colli-
sion strength in the 0−g molecular channel are calibrated in ultracold
quantum gases of Rb87. Then we measure the density distributions of
two-dimensional Mott-insulator states in optical lattices after illumi-
nated by a photoassociation light, which is 13.6 cm−1 red detuned to
the D2 line. From the density profiles, we extract the temperatures
of the Mott-insulators and demonstrate an improvement of the mea-
surement precision. This new method extends our ability to probe this
ultracold strongly correlated systems.

Q 25.12 Tue 16:30 S Atrium Informatik
Probing Equilibration of Isolated Quantum Systems in a
Spinor Bose-Einstein Condensate — ∙Stefan Lannig, Rodrigo
Rosa-Medina Pimentel, Maximilian Prüfer, Philipp Kunkel,
Alexis Bonnin, Helmut Strobel, and Markus K. Oberthaler
— Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Hei-
delberg
If and how isolated quantum systems eventually reach thermal equi-
librium is still an open question. To address this we experimentally
investigate the spin dynamics of a Bose-Einstein condensate of 87Rb.
In particular, we focus on the long-time dynamics in the 𝐹 = 1 hyper-
fine manifold, which realises a spin-1 system. We prepare the system in
different out-of-equilibrium states and probe its subsequent evolution
by applying a new readout technique which allows to simultaneously
extract multiple spin projections. We observe that the kinetic temper-
ature, leading to a finite non-condensed fraction, impacts the coherent
evolution and relaxation of the spin observables.

Using local control of the spin orientation and atomic density we
aim at further exploring and understanding the relaxation processes
involved in the temporal evolution of a 1-d spinor system. We in-
vestigate the response of the system to controlled local perturbations
which can be connected to spatial and temporal correlations offering
new observables for characterisation of general many-particle quantum
dynamics.

Q 25.13 Tue 16:30 S Atrium Informatik
Non-equilibrium dynamics of interacting Bosons in an opti-
cal lattice — ∙Jens Benary1, Christian Baals1,2, Jian Jiang1,
and Herwig Ott1 — 1Department of Physics and OPTIMAS re-
search center, Technische Universität Kaiserslautern, 67663 Kaiser-
slautern, Germany — 2Graduate School Materials Science in Mainz,
55128 Mainz, Germany
We study the non-equilibrium dynamics of ultracold Bose gases using
a scanning electron microscope. In our latest setup an optical system
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SKM 2021 – DY Wednesday

DY 7: Focus Session: Facets of Many-Body Quantum Chaos (organised by Markus Heyl and
Klaus Richter) (joint session DY/TT)

This session covers the same topics as the TT-DY-MA symposium with the same name and five invited
speakers on Tuesday, September 28th.

Time: Wednesday 10:00–13:00 Location: H6

DY 7.1 Wed 10:00 H6
Probing many-body quantum chaos with quantum simu-
lators using randomized measurements — Lata K Joshi1,2,
∙Andreas Elben1,2,3, Amit Vikram4,5, Benoit Vermersch1,2,6,
Victor Galitski4, and Peter Zoller1,2 — 1Center for Quan-
tum Physics, University of Innsbruck, Innsbruck A-6020, Austria —
2Institute for Quantum Optics and Quantum Information of the Aus-
trian Academy of Sciences, Innsbruck A-6020, Austria — 3Institute
for Quantum Information and Matter and Walter Burke Institute for
Theoretical Physics, California Institute of Technology, Pasadena, CA
91125, USA — 4Joint Quantum Institute, University of Maryland,
College Park, MD 20742, USA — 5Condensed Matter Theory Cen-
ter, Department of Physics, University of Maryland, College Park,
MD 20742, USA — 6Univ. Grenoble Alpes, CNRS, LPMMC, 38000
Grenoble, France
Randomized measurements provide a novel toolbox to probe many-
body quantum chaos in quantum simulators, utilizing observables such
as out-of-time ordered correlators and spectral form factors (SFFs).
Here, I will focus on a protocol to access the SFF, characterizing the
energy eigenvalue statistics, in quantum spin models. In addition,
I will introduce partial spectral form factors (pSFFs) which refer to
subsystems of the many-body system and reveal unique insights into
energy eigenstate statistics. I will show that our randomized measure-
ment protocol allows to access both, SFF and pSFFs. It provides thus
a unified testbed to probe many-body quantum chaotic behavior, ther-
malization and many-body localization in closed quantum systems.

DY 7.2 Wed 10:15 H6
Exploring the bound on chaos due to quantum criticality —
∙Mathias Steinhuber, Juan-Diego Urbina, and Klaus Richter
— University of Regensburg, Regensburg, Germany
The ‘bound on chaos’ proposed by Maldacena, Shenker and Stan-
ford [1] predicts a temperature-dependent upper bound on the initial
exponential growth rate 𝜆OTOC ≤ 2𝜋𝑇 for out-of-time-order correla-
tors (OTOCs) in quantum systems with chaotic classical limit. We
explore the temperature dependence of the quantum Lyapunov expo-
nent 𝜆OTOC in Bose-Hubbard systems near criticality of the ground
state [2]. We find the conditions for a non-trivial temperature depen-
dence satisfying the bound, indicating the requirement that the sys-
tem shows signatures of classical instability at the ground state while
reaching the semiclassical regime at the same time. This is guaranteed
by many-body systems with a well defined mean-field limit close to a
bifurcation [3].

[1] Maldacena J., Shenker S. H. & Stanford D. A bound on chaos.
Journal of High Energy Physics 2016, 106 (2016).

[2] Hummel, Q., Geiger, B., Urbina, J. D. & Richter, K. Reversible
Quantum Information Spreading in Many-Body Systems near Crit-
icality. Phys. Rev. Let. 123, 160401 (2019).

[3] Eilbeck, J., Lomdahl, P. & Scott, A. The discrete self-trapping
equation. Physica D: Nonlinear Phenomena 16, 318-338 (1985).

DY 7.3 Wed 10:30 H6
Critically slow operator dynamics in constrained many-body
systems — ∙Johannes Feldmeier1,2 and Michael Knap1,2 —
1Technical University of Munich — 2Munich Center for Quantum Sci-
ence and Technology (MCQST)
The far-from-equilibrium dynamics of generic interacting quantum sys-
tems is characterized by a handful of universal guiding principles,
among them the ballistic spreading of initially local operators. Here,
we show that in certain constrained many-body systems the structure
of conservation laws can cause a drastic modification of this universal
behavior. As an example, we study operator growth characterized by
out-of-time-order correlations (OTOCs) in a dipole-conserving fracton
chain. We identify a critical point with sub-ballistically moving OTOC
front, that separates a ballistic from a dynamically frozen phase. This

critical point is tied to an underlying localization transition and we
use its associated scaling properties to derive an effective description
of the moving operator front via a biased random walk with long wait-
ing times. We support our arguments numerically using classically
simulable automaton circuits.

DY 7.4 Wed 10:45 H6
Universal equilibration dynamics of the Sachdev-Ye-Kitaev
model — ∙Soumik Bandyopadhyay, Philipp Uhrich, Alessio
Paviglianiti, and Philipp Hauke — INO-CNR BEC Center and De-
partment of Physics, University of Trento, Via Sommarive 14, I-38123
Trento, Italy
The Sachdev-Ye-Kitaev (SYK) model was introduced in the context
of explaining the properties of “strange metals," and has been found
to manifest the characteristics of a quantum theory which is holo-
graphically dual to extremal charged black holes with two-dimensional
anti-de Sitter horizons. Being maximally chaotic, black holes are the
best known scramblers of quantum information in nature. Same fea-
tures are shared by the SYK model, which has triggered a massive
interest in its chaotic dynamics. Yet, many questions about the dy-
namics of the SYK model remain open. In this presentation, we shall
be discussing the equilibration process of a fermionic system under
the SYK Hamiltonian evolution. Our study, based on a state-of-the-
art exact diagonalization method, reveals that the system exhibits an
universal equilibration process. By devising a master equation for dis-
ordered systems, we successfully explain some of the key features of
this dynamics. We infer the universality from the spectral analysis of
the corresponding Liouvillian. We expect our findings shed light on
challenging questions for systems far from equilibrium, such as, ther-
malization of closed and disordered quantum many-body systems.

DY 7.5 Wed 11:00 H6
Periodic orbit sums and their relation to JT gravity corre-
lators — ∙Fabian Haneder, Torsten Weber, Camilo Moreno,
Juan Diego Urbina, and Klaus Richter — University of Regens-
burg, Germany
Jackiw-Teitelboim (JT) gravity is a two-dimensional dilaton gravity
theory originally used to describe the near-horizon physics of charged,
static black holes, but has recently garnered much attention due to
its exact duality to a particular double-scaled Hermitian matrix model
[1]. Applications are believed to be as a toy model for the black hole
information paradox, the AdS/CFT correspondence, and holography
and quantum gravity more generally.

The duality with a matrix model suggests the existence of a clas-
sical chaotic system which, after semiclassical (periodic orbit) quan-
tisation [2], leads to the same spectral correlations. Finding such a
system would solve the long-standing problem of identifying a single
dual, rather than an ensemble of theories, as expected from orthodox
AdS/CFT.

In this contribution, we will give a very brief overview of the
JT/matrix model duality and show the structural similarity of JT cor-
relators and stochastically projected periodic orbit sums, at the level
of the one-point function, as well as propose a candidate dual system.

[1] P. Saad, S. Shenker, D. Stanford, arXiv:1903.11115
[2] See e.g. M. Gutzwiller, Chaos in classical and quantum mechan-

ics, Springer 2019

DY 7.6 Wed 11:15 H6
Entanglement entropy of fractal states — Giuseppe De
Tomasi1 and ∙Ivan Khaymovich2 — 1T.C.M. Group, Cavendish
Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, United King-
dom — 2Max Planck Institute for the Physics of Complex Systems
In this talk we will discuss the relations between entanglement (and
Renyi) entropies and fractal dimensions 𝐷𝑞 of many-body wavefunc-
tions.

As a simple example we introduce a new class of sparse random pure
states being fractal in the corresponding computational basis and show
that their entropies reach the upper bound of Page value for fractal di-

1
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mension larger than the subsystem size (𝐷𝑞 > 0.5 for equipartitioning)
and grow linearly with 𝐷𝑞 otherwise.

Moreover this dependence poses the upper bound for entanglement
and Renyi entropies for any multifractal states and uncovers the re-
lation between multifractality and entanglement properties of many-
body wavefunctions.

15 min. break.

DY 7.7 Wed 11:45 H6
Chaos for Interacting Bosons and Random Two-Body Hamil-
tonians — Lukas Pausch1, Edoardo Carnio1,2, Andreas
Buchleitner1,2, and ∙Alberto Rodríguez3 — 1Physikalisches In-
stitut, Albert-Ludwigs-Universität-Freiburg, Hermann-Herder-Straße
3, D-79104, Freiburg, Germany — 2EUCOR Centre for Quan-
tum Science and Quantum Computing, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Straße 3, D-79104, Freiburg, Germany —
3Departamento de Física Fundamental, Universidad de Salamanca, E-
37008 Salamanca, Spain
We investigate the chaotic phase of the Bose-Hubbard model [1] in re-
lation to the bosonic embedded random-matrix ensemble, which mir-
rors the dominant few-body nature of many-particle interactions, and
hence the Fock space sparsity of quantum many-body systems. Within
the chaotic regime, mean and fluctuations of the fractal dimensions of
Bose-Hubbard eigenstates show clear fingerprints of ergodicity and are
well described by the embedded ensemble, which is furthermore able
to capture the energy dependence of the chaotic phase. Despite such
agreement, the distributions of the fractal dimensions for these two
models depart from each other and from the Gaussian orthogonal en-
semble as Hilbert space grows.

[1] L. Pausch et al, Phys. Rev. Lett. 126, 150601 (2021).

DY 7.8 Wed 12:00 H6
Orthogonal quantum many-body scars — ∙Hongzheng
Zhao1, Adam Smith Smith2, Florian Mintert1, and Johannes
Knolle1,3,4 — 1Blackett Laboratory, Imperial College London, Lon-
don, United Kingdom — 2School of Physics and Astronomy, Univer-
sity of Nottingham, University Park, Nottingham, United Kingdom —
3Department of Physics TQM, Technical University of Munich, Mu-
nich, Germany — 4Munich Center for Quantum Science and Technol-
ogy, Munich, Germany
Quantum many-body scars have been put forward as counterexamples
to the Eigenstate Thermalization Hypothesis. These atypical states
are observed in a range of correlated models as long-lived oscillations
of local observables in quench experiments starting from selected ini-
tial states. The long-time memory is a manifestation of quantum
non-ergodicity generally linked to a sub-extensive generation of en-
tanglement entropy, the latter of which is widely used as a diagnostic
for identifying quantum many-body scars numerically as low entan-
glement outliers. Here we show that, by adding kinetic constraints
to a fractionalized orthogonal metal, we can construct a minimal
model with orthogonal quantum many-body scars leading to persis-
tent oscillations with infinite lifetime coexisting with rapid volume-
law entanglement generation. Our example provides new insights
into the link between quantum ergodicity and many-body entangle-
ment while opening new avenues for exotic non-equilibrium dynamics
in strongly correlated multi-component quantum systems. Reference:
https://arxiv.org/abs/2102.07672

DY 7.9 Wed 12:15 H6
Genuine many-body quantum scarring in a periodic Bose-
Hubbard ring — ∙Quirin Hummel and Peter Schlagheck —
Université de Liège (Belgium)
Quantum scars have been known for decades to exist in quantum sys-
tems of low dimensionality (e.g. “quantum billiards”): While most

eigenstates of a classically chaotic system are typically spread across
the accessible phase space, individual states exist that are concentrated
along unstable classical periodic orbits. On the other hand, recent
studies in many-body quantum systems that admit no known mean-
ingful classical limits have revealed eigenstates - now termed “quan-
tum many-body scars” - that feature quantum mechanical properties
reminiscent of scenarios of quantum scarring. An unambiguous classi-
fication as scars in the original sense, however, remains controversial,
if not fundamentally impossible due to the lack of a classical limit.
In order to bridge this gap, we investigate the phenomenon of quan-
tum scarring in the prototypical Bose-Hubbard model, a many-body
quantum system that combines both, a well-defined formally classical
description and the typical high-dimensionality of many-body systems
identified with the number of sites that constitute the one-body state
space.

DY 7.10 Wed 12:30 H6
Quantum scars of bosons with correlated hopping — ∙Ana
Hudomal1,2, Ivana Vasić2, Nicolas Regnault3,4, and Zlatko
Papić1 — 1School of Physics and Astronomy, University of Leeds,
United Kingdom — 2Institute of Physics Belgrade, University of
Belgrade, Serbia — 3Joseph Henry Laboratories and Department of
Physics, Princeton University, USA — 4Laboratoire de Physique de
l’École Normale Supérieure, ENS, CNRS, Paris, France
Recent experiments have shown that preparing an array of Rydberg
atoms in a certain initial state can lead to unusually slow thermaliza-
tion and persistent density oscillations [1]. This type of non-ergodic
behavior has been attributed to the existence of “quantum many-body
scars”, i.e., atypical eigenstates that have high overlaps with a small
subset of vectors in the Hilbert space. Periodic dynamics and many-
body scars are believed to originate from a “hard” kinetic constraint:
due to strong interactions, no two neighbouring Rydberg atoms are
both allowed to be excited. Here we propose a realization of quantum
many-body scars in a 1D bosonic lattice model with a “soft” constraint:
there are no restrictions on the allowed boson states, but the ampli-
tude of a hop depends on the occupancy of the hopping site. We find
that this model exhibits similar phenomenology to the Rydberg atom
chain, including weakly entangled eigenstates at high energy densities
and the presence of a large number of exact zero energy states [2].

[1] H. Bernien et al., Nature 551, 579 (2017).
[2] A. Hudomal et al., Commun. Phys. 3, 99 (2020).

DY 7.11 Wed 12:45 H6
Quantum local random networks and the statistical robust-
ness of quantum scars — ∙Federica Maria Surace1,2, Mar-
cello Dalmonte1,2, and Alessandro Silva1 — 1International
School for Advanced Studies (SISSA), via Bonomea 265, 34136 Tri-
este, Italy — 2The Abdus Salam International Centre for Theoretical
Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
We investigate the emergence of quantum scars in a general ensemble
of random Hamiltonians (of which the PXP is a particular realiza-
tion), that we refer to as quantum local random networks. We find
two types of scars, that we call stochastic and statistical. We iden-
tify specific signatures of the localized nature of these eigenstates by
analyzing a combination of indicators of quantum ergodicity and prop-
erties related to the network structure of the model. Within this par-
allelism, we associate the emergence of statistical scars to the presence
of motifs in the network, that reflects how these are associated to links
with anomalously small connectivity (as measured, e.g., by their be-
tweenness). Most remarkably, statistical scars appear at well-defined
values of energy, predicted solely on the basis of network theory. We
study the scaling of the number of statistical scars with system size:
below a threshold connectivity, we find that the number of statistical
scars increases with system size. This allows to define the concept of
statistical stability of quantum scars.

2
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Transport dynamics in optical lattices with flux 

 

A. Hudomal1, I. Vasić1, H. Buljan2, W. Hofstetter3, and A. Balaž1 

1Scientific Computing Laboratory, Center for the Study of Complex Systems, 

Institute of Physics Belgrade, University of Belgrade, Serbia 

2Department of Physics, University of Zagreb, Croatia 

3Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, 

Frankfurt am Main, Germany 

e-mail:ana.hudomal@ipb.ac.rs 

 

 

Recent cold atom experiments have realized artificial gauge fields in periodically modulated optical lattices 

[1,2]. We study the dynamics of atomic clouds in such systems by performing numerical simulations using the 

full time-dependent Hamiltonian and compare results with the semiclassical approximation. Under constant 

external force, atoms in optical lattices with flux exhibit an anomalous velocity in the transverse direction. We 

investigate in detail how this transverse drift is related to the Berry curvature and Chern number, taking into 

account realistic experimental conditions. 

 

REFERENCES 

[1] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 

(2014). 

[2] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, 

N. Goldman, Nat. Phys. 11, 162 (2015). 
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Excitation spectra of a Bose-Einstein condensate with  

an angular spin-orbit coupling 

 

I. Vasić and A. Balaž 

Scientific Computing Laboratory, Center for the Study of Complex Systems,  

Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia 

e-mail:ivana.vasic@ipb.ac.rs  

 

 
 

A theoretical model of a Bose-Einstein condensate with an angular spin-orbit coupling has recently been 

proposed [1,2] and it has been established that a half-skyrmion represents the ground state in a certain regime 

of spin-orbit coupling and interaction. We investigate low-lying excitations of this phase by using the 

Bogoliubov method and numerical simulations of the time-dependent Gross-Pitaevskii equation [3]. We find 

that a sudden shift of the trap bottom results in a complex two-dimensional motion of the system's center of 

mass. This response is markedly different from the response of a competing phase, and comprises two 

dominant frequencies. Moreover, the breathing mode frequency of the half-skyrmion is set by both the spin-

orbit coupling and the interaction strength, while in the competing state it takes a universal value. Effects of 

interactions are especially pronounced at the transition between the two phases. 

 

REFERENCES 

[1] M. DeMarco and H. Pu, Phys. Rev. A 91, 033630 (2015). 

[2] Y.-X. Hu, C. Miniatura, and B. Grémaud, Phys. Rev. A 92, 033615 (2015). 

[3] I. Vasić and A. Balaž, Phys. Rev. A 94, 033627 (2016). 
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Searching for quantum scars in constrained bosonic models 
 

A. Hudomal1, I. Vasić1, N. Regnault2 and Z. Papić3  
1Scientific Computing Laboratory, Center for the Study of Complex Systems, 

Institute of Physics Belgrade, University of Belgrade, Serbia 
2Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, 

 CNRS, Sorbonne Université, Université Paris-Diderot,  
Sorbonne Paris Cité, Paris, France 

3School of Physics and Astronomy, University of Leeds, United Kingdom 
e-mail: hudomal@ipb.ac.rs 

 

 
Recent experiments on arrays of Rydberg atoms have shown that preparing a system in a certain 
initial state can lead to unusually slow thermalization and persistent density oscillations [1]. This 
type of non-ergodic behavior has been attributed to the existence of “quantum many-body 
scars”, i.e., atypical, weakly-entangled eigenstates of the system that have high overlaps with a 
small subset of vectors in the Hilbert space. Periodic dynamics and many-body scars are believed 
to originate from a “hard” kinetic constraint: due to strong interactions, no two neighbouring 
atoms are both allowed to be in an excited Rydberg state. Here we investigate quantum many-
body scars in a 1D bosonic lattice model with a “soft” constraint: there are no restrictions on the 
allowed boson states and the particles can hop freely, but the amplitude of a hop depends on the 
occupancy of the hopping site. We find that this model exhibits similar phenomenology to the 
Rydberg atom chain, including weakly entangled eigenstates at high energy densities and the 
presence of a large number of exact zero energy states, with distinct algebraic structure. We 
discuss the relation of this model to the standard Bose-Hubbard model and possible 
experimental realizations using ultracold atoms. 
 
REFERENCES 
[1] H. Bernien et al., Nature 551, 579 (2017). 
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Probing fractional Hall states in driven optical lattices 
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Driven optical lattices enrich the set of quantum models that can be simulated in cold-atom 
experiments [1, 2]. General arguments suggest that the interplay of strong interactions and 
driving in a thermodynamically large system introduces heating, leading to a featureless infinite-
temperature state in the long-time limit [3, 4]. Recently, several papers have focused on a 
possibility of prethermalization, arguing that some strongly correlated states can be probed on 
experimentally relevant timescales, before reaching the infinite-temperature limit [5, 6]. We 
investigate ways to prepare and probe fractional Hall states in a few-particle bosonic sample in a 
driven optical lattice. 
 
REFERENCES 
[1] G. Jotzu et al., Nature (London) 515, 237 (2014). 
[2] M. Aidelsburger et al., Nat. Phys. 11, 162 (2015). 
[3] L. D’Alessio, M. Rigol, Phys. Rev. X 4, 041048 (2014). 
[4] A. Lazarides, A. Das, R. Moessner, Phys. Rev. E 90, 012110 (2014). 
[5] T. Mori, T. Kuwahara, K. Saito, Phys. Rev. Lett. 116, 120401 (2016). 
[6] D. A. Abanin et al., Phys. Rev. B 95, 014112 (2017). 
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Ground state and collective modes of dipolar BECs 
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We study the effects of the dipole-dipole interaction on the ground state and collective modes of 
quasi-one-dimensional dipolar Bose-Einstein condensates of atomic gases of chromium 52Cr, 
erbium 168Er, and dysprosium 164Dy. Through extensive numerical simulations and detailed 
variational treatment, we analyze the dependence of condensate widths on the dipole-dipole 
interaction strength, as well as the interaction-induced frequency shifts of collective oscillation 
modes. Furthermore, we show that the Gaussian variational approach gives a good qualitative 
description of the system's ground state, and an excellent quantitative description of the 
condensates' low-lying excitation modes. 
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Transport of cold bosonic atoms in optical lattices 
 

I. Vasić and J. Vučičević 
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Cold atoms in optical lattices provide a clean realization of the Hubbard model. While the focus of early 

experiments was on understanding quantum phase transitions driven by the interplay of hopping and 

local interactions [1], more recent experiments aim at studying quantum transport in these setups. The 

onset of bad-metal behavior, characterized by the resistivity linear in temperature, has been investigated 

recently [2,3]. While the conductivity of the fermionic version of the model has been addressed in much 

detail both from the theoretical and experimental perspective, far less is known about transport in the 

bosonic version [4]. We investigate conductivity in the strongly-interacting regime of the Bose-Hubbard 

model. We address the high-temperature regime and use numerically exact calculations for small lattice 

sizes. At weak tunneling, we find multiple peaks in the optical conductivity that stem from the Hubbard 

bands present in the many-body spectrum. This feature is slowly reduced as the tunneling rate gets 

stronger. Further, we find the regime of linear resistivity. When the interactions are very strong, the 

leading inverse-temperature coefficient in conductivity is proportional to the tunneling amplitude. As 

the tunneling becomes stronger, this dependence takes quadratic form. 
 

REFERENCES 
[1] I. Bloch et al., Rev. Mod. Phys. 80, 885 (2008).  
[2] P.T. Brown et al., Science 363, 379 (2019).  
[3] J. Vučičević et al., Phys. Rev. Lett. 123, 036601 (2019).  
[4] N.H. Lindner, A. Auerbach, Phys. Rev. B 81, 054512 (2010).  
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Searching For Quantum Scars In Constrained
Bosonic Models

Ana Hudomala, Ivana Vasića, Nicolas Regnaultb and Zlatko Papićc

aScientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics
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bLaboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne
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Abstract. Recent experiments on arrays of Rydberg atoms have shown that preparing a system in
a certain initial state can lead to unusually slow thermalization and persistent density oscillations
[1]. This type of non-ergodic behavior has been attributed to the existence of “quantum many-body
scars”, i.e., atypical, weakly-entangled eigenstates of the system that have high overlaps with a
small subset of vectors in the Hilbert space. Periodic dynamics and many-body scars are believed
to originate from a “hard” kinetic constraint: due to strong interactions, no two neighbouring atoms
are both allowed to be in an excited Rydberg state. Here we investigate quantum many-body scars
in a 1D bosonic lattice model with a “soft” constraint: there are no restrictions on the allowed boson
states and the particles can hop freely, but the amplitude of a hop depends on the occupancy of the
hopping site. We find that this model exhibits similar phenomenology to the Rydberg atom chain,
including weakly entangled eigenstates at high energy densities and the presence of a large number
of exact zero energy states, with distinct algebraic structure. We discuss the relation of this model
to the standard Bose-Hubbard model and possible experimental realizations using ultracold atoms.

REFERENCES

1. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M.
Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 551, 579-584 (2017).
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Abstract. Cold atoms in optical lattices provide a clean realization of the Hubbard model. While
the focus of early experiments was on understanding quantum phase transitions driven by the
interplay  of  hopping  and  local  interactions  [1],  more  recent  experiments  aim  at  studying
quantum  transport  in  these  setups.  The  onset  of  bad-metal  behavior,  characterized  by  the
resistivity linear in temperature, has been investigated recently [2, 3].  While the conductivity of
of  the  fermionic  version  of  the  model  has  been  addressed  in  much  detail  both  from  the
theoretical and experimental perspective, far less is known about transport in the bosonic version
[4]. We investigate conductivity in the strongly-interacting regime of the Bose-Hubbard model.
We address the high-temperature regime and use numerically exact calculations for small lattice
sizes. At weak tunneling, we find multiple peaks in the optical conductivity that stem from the
Hubbard  bands  present  in  the  many-body  spectrum.  This  feature  is  slowly  reduced  as  the
tunneling  rate  gets  stronger.  Further,  we  find  the  regime  of  linear  resistivity.  When  the
interactions  are  very  strong,  the  leading  inverse-temperature  coefficient  in  conductivity  is
proportional  to the tunneling amplitude. As the tunneling becomes stronger,  this dependence
takes quadratic form.
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