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It is generally accepted that the dynamical mean field theory gives a good solution of the Holstein model,

but only in dimensions greater than two. Here, we show that this theory, which becomes exact in the weak

coupling and in the atomic limit, provides an excellent, numerically cheap, approximate solution for the

spectral function of the Holstein model in the whole range of parameters, even in one dimension. To

establish this, we make a detailed comparison with the spectral functions that we obtain using the newly

developed momentum-space numerically exact hierarchical equations of motion method, which yields

electronic correlation functions directly in real time. We crosscheck these conclusions with our path

integral quantum Monte Carlo and exact diagonalization results, as well as with the available numerically

exact results from the literature.

DOI: 10.1103/PhysRevLett.129.096401

The Holstein model is the simplest model that describes

an electron that propagates through the crystal and interacts

with localized optical phonons [1]. On the example of this

model, numerous many-body methods were developed and

tested [2]. The Holstein molecular crystal model is also very

important in order to understand the role of polarons

(quasiparticles formed by an electron dressed by lattice

vibrations) in realmaterials [3]. This is still a very active field

of research fueled by new directions in theoretical studies

[4–12] and advances in experimental techniques [13].

The Holstein model can be solved analytically only in

the limits of weak and strong electron-phonon coupling

[14–16]. Reliable numerical results for the ground state

energy and quasiparticle effective mass were obtained in the

late 1990s using the density matrix renormalization group

(DMRG) [17,18] and path integral quantum Monte Carlo

(QMC) methods [19], and also within variational appro-

aches [20–22]. At the time, numerically exact spectral

functions for one-dimensional (1D) systems were obtained

onlywithin the DMRGmethod [17,18]. Themain drawback

of the QMC method is that it gives correlation functions in

imaginary time and obtaining spectral functions and dy-

namical response functions is often impossible since the

analytical continuation to the real frequency is a numerically

ill-defined procedure. Interestingly, at finite temperature the

spectral functions were obtained only very recently using

finite-T Lanczos (FTLM) [23] and finite-T DMRG [24]

methods. All these methods have their strengths and weak-

nesses depending on the parameter regime and temperature.

As usually happens in a strongly interacting many-body

problem, a complete physical picture emerges only by

taking into account the solutions obtained with different

methods.

The hierarchical equations of motion (HEOM) method is

a numerically exact technique that has recently gained

popularity in the chemical physics community [25–28].

It has been used to explore the dynamics of an electron

(or exciton) linearly coupled to a Gaussian bosonic bath.

Within HEOM, we calculate the correlation functions

directly on the real time (real frequency) axis [29].

Nevertheless, the applications of the HEOM method to

the Holstein model [30–34] have been, so far, scarce

because of the numerical instabilities stemming from the

discreteness of the phonon bath on a finite lattice.

Along with numerically exact methods, a number of

approximate techniques have been developed and applied to

the Holstein model [35–38]. The dynamical mean field

theory (DMFT) is a simple nonperturbative technique that

has emerged as amethod of choice for the studies of theMott

physics within the Hubbard model [39,40]. It can also be

applied to the Holstein model giving numerically cheap

results directly on the real frequency axis [41]. This method

fully takes into account local quantum fluctuations and it

becomes exact in the limit of infinite coordination number

when the correlations become completely local. It was

soon recognized [42,43] that the DMFT gives qualitatively

correct spectral functions and conductivity for the Holstein

model in three dimensions. In low-dimensional systems the

solution is approximate as it neglects the nonlocal correla-

tions and one might expect that the DMFT solution would

not be accurate, particularly in one dimension. Surprisingly,

to our knowledge, only the DMFT solution for the Bethe

lattice was used in comparisons with the numerically exact

results for the ground state properties in one dimension

[20,44]. The quantitative agreement was rather poor, sug-

gesting that the DMFT cannot provide a realistic description

of the low-dimensional Holstein model due to the impor-

tance of nonlocal correlations [16,20,44].

In this Letter, we present a comprehensive solution of the

1D Holstein model: (i) We solve the DMFT equations in all
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parameter regimes. At zero temperature we find a remark-

able agreement of the DMFT ground state energy and

effective mass with the available results from the litera-

ture in one, two, and three dimensions. (ii) For interme-

diate electron-phonon coupling, we obtain numerically

exact spectral functions using the recently developed

momentum-space HEOM approach [45]. For strong cou-

pling we calculate the spectral functions using exact

diagonalization (ED). We find a very good agreement with

DMFT results and therefore demonstrate that the DMFT is

rather accurate, in sharp contrast to current belief in the

literature. (iii) We crosscheck the results with our QMC

calculations in imaginary time. Overall, we demonstrate

that the DMFTemerges as a unique method that gives close

to exact spectral functions in the whole parameter space of

the Holstein model, both at zero and at finite temperature.

Model and methods.—We study the 1D Holstein model

given by the Hamiltonian

H ¼ −t0
X

i

ðc†i ciþ1 þ H:c:Þ

− g
X

i

niða†i þ aiÞ þ ω0

X

i

a†i ai: ð1Þ

Here, c†i (a
†
i ) are the electron (phonon) creation operators,

t0 is the hopping parameter, and ni ¼ c†i ci. We consider

dispersionless optical phonons of frequency ω0, and g
denotes the electron-phonon coupling parameter. t0, ℏ, kB,
and lattice constant are set to 1. We consider the dynamics

of a single electron in the band. It is common to define

several dimensionless parameters: adiabatic parameter

γ ¼ ω0=2t0, electron-phonon coupling λ ¼ g2=2t0ω0, and

α ¼ g=ω0. These parameters correspond to different physi-

cal regimes of the Holstein model shown schematically in

Fig. 1(a).

In order to obtain reliable solutions in the whole para-

meter space, we use two approximate methods and three

methods that are numerically exact. In the Holstein model,

the DMFT reduces to solving the polaron impurity problem

in the conduction electron band supplemented by the self-

consistency condition [41]. The impurity problem can be

solved in terms of the continued fraction expansion, giving

the local Green’s function on the real frequency axis (see

Ref. [41] and Supplemental Material (SM) [46], Sec. I, for

details). A crucial advantage of the DMFT for the Holstein

model is that it becomes exact in both the weak coupling

and in the atomic limit, and that it can be easily applied in

the whole parameter space both at zero and at finite

temperature. The DMFT equations can be solved on a

personal computer in just a few seconds to a few minutes

depending on the parameters. On general grounds, the

DMFT is expected to work particularly well at high

temperatures when the correlations become more local

due to the thermal fluctuations [47,48]. We will compare

the DMFT with the well-known self-consistent Migdal

approximation (SCMA) [49], which becomes exact only in

the weak coupling limit; see Sec. II of SM [46].

We have recently developed the momentum-space

HEOM method [45] that overcomes the numerical insta-

bilities originating from the discrete bosonic bath. Within

thismethodwe calculate the time-dependent greaterGreen’s

function G>ðk; tÞ, which presents the root of the hierarchy

of the auxiliary Green’s functions. The hierarchy is, in

principle, infinite, and one actually solves the model by

truncating the hierarchy at certain depth D. The HEOM are

propagated independently for each allowed value of k up to
long times (ω0tmax ∼ 500). The propagation takes 5 to

10 hours on 16 cores per momentum k. The discrete

Fourier transform is then used to obtain spectral functions

without introducing any artificial broadening. Numerical

error in theHEOMsolution can originate from the finite-size

effects since themethod is applied on the latticewithN sites,

and also from the finite depthD. We always useN andD, as

given in SM [46], which correctly represent the thermody-

namic limit. Generally, for larger g we need smaller N and

largerD. This is why the EDmethod with a small number of

sites could be a better option in the strong coupling regime.

The EDmethod can be used more efficiently after the initial

Hamiltonian is transformed by applying the Lang-Firsov

transformation; see SM [46], Sec. III.

In the QMC method, we calculate the correlation func-

tion CkðτÞ ¼ hckðτÞc†kiT;0 in imaginary time. The thermal

(a)

(b) (c)

FIG. 1. (a) Schematic plot of different regimes in the ðγ; λÞ
parameter space. The white (black) circles correspond to para-

meters for which both HEOM and QMC (just QMC) calculations

were performed. The DMFT results are obtained in practically

whole space of parameters. (b) Comparison of the DMFT and

DMRG (taken from Refs. [17,20]) renormalized electron mass at

T ¼ 0. (c) Comparison of the ground state energy from the

DMFT and the global-local variational approach (taken from

Ref. [20]) at T ¼ 0.
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expectation value is performed over the states with zero

electrons and ckðτÞ ¼ eτHcke
−τH. We use the path integral

representation, the discretization of imaginary time, and

analytical calculation of integrals over the phonon coor-

dinates. We then evaluate a multidimensional sum over the

electronic coordinates by a Monte Carlo method. This

method is a natural extension of early works where such

approach was applied just to thermodynamic quantities

[50–52]. Details of the method are presented in Ref. [45].

Results at zero temperature.—In Fig. 1(b), we show the

DMFT results for the electron effective mass at the bottom

of the band,m�=m0 ¼ 1 − dReΣðωÞ=dωjEp
(where ΣðωÞ is

the self-energy), over a broad range of parameters covering

practically the whole parameter space in the ðγ; λÞ plane.

We see that the mass renormalization is in striking agree-

ment with the DMRG result [17,20] that presents the best

available result from the literature. Small discrepancies are

visible only for stronger interaction with small ω0. A

similar level of agreement can be seen in the comparison

of the ground state (polaron) energy Ep in Fig. 1(c). Here,

the results obtained with variational global-local method

[20,21] are taken as a reference. While the agreement in the

weak coupling and in the atomic limit could be anticipated

since the DMFT becomes exact in these limits, we find the

quantitative agreement in the crossover regime between

these two limits rather surprising, having in mind that the

DMFT completely neglects nonlocal correlations. It is also

interesting that this was not observed earlier. The only

difference from the standard reference of Ciuchi et al. [41]

is that we applied the DMFT to the 1D case, as opposed to

the Bethe lattice. This is, however, a key difference.

Otherwise the DMFT provides only a qualitative descrip-

tion of the Holstein model [3,16,20,44,53]. From the

technical side, the only difference as compared to the case

of the Bethe lattice is in the self-consistency equation. For

obtaining a numerically stable and precise solution, it was

crucial to use an analytical expression for the self-

consistency relation (see Sec. IB in SM [46]). We have

also calculated the effective mass for two- and three-

dimensional lattices (see Sec. IC in SM [46]) and the

agreement with the QMC calculation from Ref. [19] is

excellent. This was now expected since the importance of

nonlocal correlations decreases in higher dimensions. A

comparison with the Bethe lattice effective mass is illus-

trated in SM [46], Sec. ID.

The next step is to check if the agreement with the

numerically exact solution extends also to spectral func-

tions. Typical results at k ¼ 0 are illustrated in Fig. 2. We

note that at T ¼ 0 the DMFT quasiparticle peak is a delta

function (broadened in Fig. 2), while satellite peaks are

incoherent having intrinsic nonzero width. In HEOM, the

peak broadening due to the finite lattice size N and finite

propagation time tmax is generally much smaller than the

Lorentzian broadening used in the insets of Figs. 2(a)–2(d).

The weights of the DMFT and HEOM quasiparticle peaks

correspond to the m0=m
� ratio. The satellite peaks are also

very well captured by the DMFT solution in all parameter

regimes. For g ¼ 1 we can see two small peaks in the first

satellite structure of the HEOM solution. We find very

similar peaks also in the DMFT solution when applied on a

lattice of the same size, which is here equal to 10 (see SM

[46], Sec. IV). Hence, we conclude that these peaks are an

artefact of the finite lattice size. In the strong coupling

regime ω0 ¼ 1, g ¼ 2, the DMFT is compared with ED

since the thermodynamic limit is practically reached for

N ¼ 4; see SM [46], Sec. IV. Here, we notice a pronounced

excited quasiparticle peak [22,23] whose energy is below

Ep þ ω0. This peak,which consists of a polaron and a bound

phonon, is also very well resolved within the DMFT solu-

tion. For parameters in Fig. 2(d) the lattice sites are nearly

decoupled, approaching the atomic limit ðt0 ≪ g;ω0Þ, when
the DMFT becomes exact (see Sec. V in SM [46]). For a

comparison, we show also the SCMA spectral functions. As

the interaction increases, the SCMA solution misses the

position and the weight of the quasiparticle peak and the

satellite peaks are not properly resolved. Further compar-

isons of zero temperature spectral functions are shown in

Sec. VI of SM [46].

Results at finite temperature.—Reliable finite-T results

for the spectral functions of the Holstein model have been

obtained only very recently using the FTLM [23] and

finite-T DMRG methods [24]. Here, we calculate the

spectral functions using HEOM or ED and compare them

extensively with the DMFT. The results are crosschecked

using the QMC results in imaginary time.

Typical results for the spectral functions are shown in

Fig. 3, while additional results for other momenta and other

(a) (b)

(c) (d)

FIG. 2. (a)–(d) Integrated HEOM, DMFT, SCMA, and ED

spectral weight, IðωÞ ¼
R

ω
−∞

dνAkðνÞ, for k ¼ 0 and T ¼ 0. The

insets show comparisons of the spectral functions. IðωÞ is

obtained without broadening, whereas AðωÞ is broadened by

Lorentzians of half-width η ¼ 0.05.
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parameters are shown in Sec. VII of SM [46]. We see
that for T > 0 the satellite peaks appear also below the
quasiparticle peak. The agreement between the DMFT and
the HEOM (ED) spectral functions is very good. The
agreement remains excellent even for g ¼ 2 where the
electrons are strongly renormalized m�=m0 ≈ 10, which is
far away from both the atomic and weak coupling limits,
where the DMFT is exact. A part of the difference between
the DMFT and the HEOM (ED) results can be ascribed to
the small finite-size effects in the HEOM and ED solutions,
as detailed in SM [46], Sec. IV. In accordance with the
presented results, it is not surprising that the self-energies
are nearly k independent, as shown in SM [46], Sec. VIII.
It is also instructive to examine the difference between
the SCMA and DMFT (HEOM) solutions. For moderate
interaction [Figs. 3(a) and 3(b)], the weight of the SCMA
quasiparticle peak is nearly equal to the DMFT (HEOM)
quasiparticle weight, and the overall agreement of spectral
functions is rather good. This is not the case for stronger

electron-phonon coupling [Figs. 3(c)–3(h)] where the
SCMA poorly approximates the true spectrum.

We observe that for g ¼
ffiffiffi

2
p

and k ¼ π the DMFT and

HEOM satellite peaks are somewhat shifted with respect to

one another; see Figs. 3(c) and 3(d). This is the most

challenging regime for the DMFT, representing a crossover

(λ ¼ 1) between the small and large polaron. Nevertheless,

the agreement remains very good near the quasiparticle peak

for k ¼ 0, which will be the most important for transport in

weakly doped systems. In order to gain further confidence

into the details of the HEOM spectral functions for g ¼
ffiffiffi

2
p

,

we compare them with the available results obtained within

the finite-T DMRG and Lanczos methods. We find an

excellent agreement, as shown in Figs. 4(a) and 4(b).

The DMFTand HEOM results are crosschecked with the

path integral QMC calculations. The quantity that we

obtain in QMC is the single electron correlation function

in imaginary time, which can be expressed through the

spectral function as CkðτÞ ¼
R

∞

−∞
dω e−ωτAkðωÞ. Typical

results are illustrated in Figs. 4(c) and 4(d), while extensive

comparisons are presented in Sec. IX of SM [46]. At T ¼
0.4 we can see a small difference in CπðτÞ between the

DMFT and QMC (HEOM) results. At T ¼ 1, both for

k ¼ 0 and k ¼ π, the difference in CkðτÞ is minuscule, well

below the QMC error bar, which is smaller than the symbol

size. This confirms that nonlocal correlations are weak.

Similarly, as for the spectral functions, the SCMA corre-

lation functions show clear deviation from other solutions.

We, however, note that great care is needed when drawing

conclusions from the imaginary axis data since a very small

difference in the imaginary axis correlation functions can

correspond to substantial differences in spectral functions.

(a) (b)

(c) (d)

(e)

(g)

(h)

(f)

FIG. 3. (a)–(h) Spectral functions at T > 0 for k ¼ 0 and k ¼ π.

In panels (e)–(f) only the ED results are broadened by Lorent-

zians of half-width η ¼ 0.05, while all the curves are broadened

in (g)–(h) with the same η. All insets are shown without

broadening.

(a) (b)

(c) (d)

FIG. 4. (a), (b) Comparison of DMFT, HEOM, and finite-T
DMRG and FTLM (taken from Ref. [24]) spectral functions at

T ¼ 0.4. All the lines are here broadened by Lorentzians of half-

width η ¼ 0.05. (c), (d) DMFT, QMC, HEOM, and SCMA

imaginary time correlation functions at T ¼ 0.4 (T ¼ 1 in the

insets). Here, g ¼
ffiffiffi

2
p

, ω0 ¼ 1.
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Conclusions.—In summary, we have presented a com-

prehensive solution of the 1D Holstein polaron covering all

parameter regimes. We showed that the DMFT is a

remarkably good approximation in the whole parameter

space. This approximation is simple, numerically efficient,

and can also be easily applied in two and three dimensions.

We successfully used momentum-space HEOM and ED

methods for comparisons with the DMFT spectral func-

tions both at zero and at finite temperature. The compar-

isons showed an excellent agreement between the spectral

functions in most of the parameter space. For parameters

that are most challenging for the DMFT, a very good

agreement was found around k ¼ 0 and a reasonably good

agreement was obtained at larger values of k. All of the
results are crosschecked with the imaginary axis QMC

calculations and with the available results from the liter-

ature. Both the DMFT and HEOM methods are imple-

mented directly in real frequency, without artificial

broadening of the spectral functions. This will be crucial

in order to calculate dynamical quantities and determine a

potential role of the vertex corrections to conductivity by

avoiding possible pitfalls of the analytical continuation,

which we leave as a challenge for future work.
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ABSTRACT: This work presents a novel theoretical description
of the nonequilibrium thermodynamics of charge separation in
organic solar cells (OSCs). Using stochastic thermodynamics, we
take realistic state populations derived from the phonon-assisted
dynamics of electron−hole pairs within photoexcited organic
bilayers to connect the kinetics with the free energy profile of
charge separation. Hereby, we quantify for the first time the
difference between nonequilibrium and equilibrium free energy
profile. We analyze the impact of energetic disorder and
delocalization on free energy, average energy, and entropy. For a
high disorder, the free energy profile is well-described as
equilibrated. We observe significant deviations from equilibrium
for delocalized electron−hole pairs at a small disorder, implying that charge separation in efficient OSCs proceeds via a cold but
nonequilibrated pathway. Both a large Gibbs entropy and large initial electron−hole distance provide an efficient charge separation,
while a decrease in the free energy barrier does not necessarily enhance charge separation.

D espite years of research on the fundamental properties of
organic solar cells (OSCs), one of the essential aspects of

these materials is still under debate: what causes the efficient
dissociation of charge transfer (CT) states into free charge
carriers despite the presence of the strong Coulomb attraction?
Various mechanisms have been proposed to promote the CT
separation. On the one hand, “hot” CT states are considered to
provide sufficient excess energy for the charges to overcome
the binding energy before they relax and become trapped at
the bottom of the CT manifold.1−4 On the other hand, the
internal quantum efficiency that is independent of the
excitation energy suggests an efficient separation of “cold”
CT states.5,6 The precise mechanism of cold charge separation,
however, is to be established.
Kinetic models of charge separation suggest that delocalized

charges can efficiently escape their strong binding due to a
reduced Coulomb interaction.7−13 Furthermore, a moderate
disorder in combination with delocalization positively impacts
charge separation,10,14 while a strong disorder hampers charge
transport,15,16 traps charge carriers, and influences charge
recombination.17 Thermodynamic considerations reassessed
the widespread view that charges have to overcome large
energy barriers to become fully separated.18−22 In materials of
higher dimensionality, entropy, reflecting the number of
available states, significantly reduces the free energy
barrier.18,21,22 Hood and Kassal emphasized that relying only
on dimensionality underestimates the contribution of the
energetic disorder, σ, to the free energy for disordered organic
semiconductors.19 Assuming the canonical distribution of CT

states in energy, they predict a reduction in free energy barrier
with increased σ. For σ ≥ 100 meV, equilibrium thermody-
namic arguments suggest that charges are not bound and can
be separated under favorable kinetic conditions. The extension
of the formalism to include charge delocalization23 revealed
that the positive impact of delocalization on charge separation
cannot be rationalized in terms of equilibrium thermodynamics
alone, as it predicts an increase in the energy barrier for more
delocalized carriers. The conclusions drawn from existing
thermodynamic studies of charge separation in OSCs seem to
contradict the intuitive picture emerging from kinetic models.
Some of the weaknesses of existing thermodynamic

arguments and their possible solutions are as follows: (i)
The population of CT states described by the canonical
distribution is unrealistic. Nonequilibrated electron−hole pairs
due to an incomplete thermalization were indeed observed in
CT electroluminescence24 and photoluminescence25 measure-
ments in bulk heterojunction OSCs. Giazitzidis et al.26

proposed to correct the equilibrium free energy with the
probability distribution of finding a CT state at a certain
distance. Shi et al. emphasize that the disorder-enhanced
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dissociation is a nonequilibrium effect.14 They observed a
deviation of the actual energy barrier from the equilibrium one
by averaging Monte Carlo trajectories but neglected the
weighting of the energies by their population probability. (ii)
The finite lifetime of CT states, which may eliminate a large
percentage of possible separation pathways, is completely
neglected in previous thermodynamic studies.18,19,23 (iii) Most
of the thermodynamic considerations do not include the
coupling of electronic excitations to phonons. Such effects
were partially included in previous equilibrium thermodynamic
studies in refs 27 and 28.
Previous works gave clear suggestions that the equilibrium

free energy profile might not be adequate to study the charge
separation process. In this work, we make use of the
nonequilibrium free energy rigorously derived from the theory

of stochastic thermodynamics29,30 to connect the kinetic and
thermodynamic perspectives on charge separation and quantify
for the first time the difference between nonequilibrium and
equilibrium free energy. We perform the study for different
values of energetic disorder and delocalization and find that
this difference is strongest when charge separation efficiency is
largest. Our results therefore imply that charge separation in
efficient OSCs proceeds via cold, but nonequilibrium,
pathways.
To establish the connection between kinetic and thermody-

namic properties in the charge separation process in a
photoexcited organic bilayer, representing the donor/acceptor
interface in OSCs, we use the following procedure: (i) We
model the organic bilayer using a minimal microscopic
Hamiltonian that captures all important physical effects

Figure 1. (a) Schematic representation of the organic bilayer model. Dotted lines give the different average on-site energies of the LUMO
(superscript c) and of the HOMO (superscript v) in the donor (D) and in the acceptor (A); solid lines represent the actual on-site energies, which
vary from the average on-site energies due to the Gaussian energetic disorder σ. The different transfer integrals within the donor (JD,0

c/v,int) and the
acceptor (JA,0/1

c/v,int) as well as the coupling between the donor and acceptor (JDA
c/v) are highlighted. In the acceptor region, LUMO (subscript 0) and

LUMO+1 (subscript 1) are considered with the transfer integral JA,01
ext representing the coupling of the LUMO and LUMO+1 orbitals. Highlighted

regions at the left and the right end of the donor and acceptor, respectively, with length lc visualize contact regions. (b) Representative evolution of
an electron−hole pair in the organic bilayer: (i) donor exciton (XD), (ii) CT stateelectron in the acceptor and hole in the donor localized at the
donor/acceptor interface, (iii) CT state featuring larger intrapair separation and more delocalized carriers, (iv) contact stateelectron and hole
located in the contact region.
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delocalization, disorder, electron−hole interaction, and elec-
tron−phonon couplingin the system. We obtain the
eigenstates of this Hamiltonian that we classify as states of
excitons in the donor, CT states, and contact states; (ii) We
compute the transition rates between pairs of states obtained in
step (i) and solve the master equation to obtain the
nonequilibrium steady-state populations of all non-contact
states; (iii) We evaluate the nonequilibrium free energy profile
of CT states.
(i) The organic bilayer model used in this step has been

reported in previous publications.10,31 Here, we outline its
most important ingredients, while we provide all details in the
Supporting Information (section Model Hamiltonian therein).
We consider a lattice model with N sites corresponding to the
donor material and N sites corresponding to the acceptor
material, schematically shown in Figure 1a. The effects of
delocalization are included through electronic couplings
between neighboring sites, while the effects of disorder are
included through random on-site electron and hole energies
drawn from Gaussian distributions of standard deviation σ
centered around the site energies. An attractive electron−hole
interaction is approximated using the Ohno potential. The
model parameters were chosen such that the band offsets, band
gaps, bandwidths, and binding energies of the donor, acceptor,
and CT excitons correspond to the values for the P3HT/
PCBM interface. We then solve the eigenvalue problem of this
Hamiltonian, which provides a set of excitonic states. On the
basis of the spatial distribution of the electron and of the hole
component of the excitonic state, we classify these states as (a)
donor exciton statesstates where both the electron and the
hole are predominantly located in the donor, (b) CT states
states where the hole and the electron are located
predominantly in the donor and in the acceptor, respectively,
and (c) contact statesstates where the electron is
predominantly located in the region of length lc far away
from the interface in the acceptor, while the hole is
predominantly located in such a region in the donor (see
Figure 1b). Contact states can be considered as states of fully
separated charges. A typical spatial distribution of donor, CT,
and contact states is shown in Figure 1b. All values of the
model parameters are summarized in Table S1, Supporting
Information.
(ii) In this step we calculate the steady-state populations f x

st

of the excitonic states |x⟩ by solving the master equation

∑ ∑τ= − − +−

′

′

′∉

′ ′
g f w f w f0
x x x

x x

x x x
x C

xx x

1 st

,

st st

(1)

where wx′x is the transition rate from state |x⟩ to state |x′⟩, τx is
the lifetime of the state |x⟩, and gx is the generation rate in state
|x⟩ that is chosen to mimic the excitation by incident sunlight.
The last sum in eq 1 does not include contact states C, because
we impose that once a contact state is reached, the charges are
fully separated and cannot return back to the system. The
detailed models used for phonon-assisted transition rates wx′x,
lifetimes τx, and generation rates gx are provided in Supporting
Information (section Model Hamiltonian therein).
Electron−hole pairs evolve within a phase space of excitonic

states with a large energetic disorder and variable mean
distance between the wave function of the electron and the
hole; see Figure 1b. We assume that the charge separation
starts from states of donor excitons (Figure 1b(i)) that are
populated as a result of the absorption of natural sunlight. It
proceeds via phonon-assisted transitions between space-

separated CT states (Figure 1b(ii,iii)) and finishes once the
charges are collected at a contact state (Figure 1b(iv)) or
recombine. The expression for the charge separation efficiency

η =
∑ ∑

∑

′∈ ∉ ′

∉

w f

g

x C x C x x x

x C x

0

(2)

contains phonon-assisted transition rates wx′x toward contact
states |x′⟩ ∈ C, which are appreciable only when state |x⟩
features the electron in the acceptor and the hole in the donor
part of the bilayer. In the following, instead of considering the
full distribution, we concentrate on the steady-state popula-
tions of CT states, in which the charges are spatially separated
and reside in different regions of the bilayer, as contact states
can only be reached when |x⟩ (eq 2) is a CT state.
(iii) The theory of stochastic thermodynamics extends

equilibrium thermodynamic concepts to describe thermody-
namic quantities of out-of-equilibrium systems and processes
that are governed by Markovian dynamics. The major
advantages of stochastic thermodynamics are that it can be
applied to small-scale systems to study the effect of
fluctuations29,30,32,33 and that it is not restricted to near-
equilibrium dynamics.29,30 Stochastic thermodynamics formu-
lates the first and second laws of thermodynamics for a system
that is described by discrete microstates m of energy Em with
probability pm(t) of the system being in state m. This allows us
to define thermodynamic quantities such as the energy of the
system, E = ∑mpmEm, and the Gibbs entropy, S = −kB ∑mpm
ln pm, from the probability distributions as known from
statistical mechanics, with the major difference being that pm
can be time-dependent and out-of-equilibrium. While classical
thermodynamics provides fundamental boundaries for entropy
production (ΔS ≥ 0, second law of thermodynamics),
stochastic thermodynamics can quantify the amount of entropy
that is produced and even the entropy contribution of each
microscopic state transition.29 Stochastic thermodynamics was
used to derive thermodynamic efficiency limits of nano-
thermoelectric engines at the maximum power point34 and to
derive protocols to extract the maximum work from nanoscale
processes,35 to mention a few examples. An application of
stochastic thermodynamics to existing few-level photovoltaic
models36−38 may yield thermodynamic quantities from kinetics
but cannot capture the broad CT manifold in terms of energy,
delocalization, and electron−phonon coupling. Therefore, a
combination of our model and stochastic thermodynamics
provides a minimal, yet physically plausible, framework to
study the nonequilibrium thermodynamics of charge separa-
tion.
Previous equilibrium studies19,23 assumed the Maxwell−

Boltzmann distribution of CT states |m⟩, fm
eq ∝ e−βEm, where Em

is the energy of CT state |m⟩, while β = (kBT)
−1, with T being

the phonon-bath temperature. To study if, and to which extent,
charge separation occurs out-of-equilibrium, we formulate the
free energy Fst in the steady state as a function of the intrapair
distance r using the free energy relation from stochastic
thermodynamics29,39

∑

β −

=

=
ikjjjjjj y{zzzzzz

F r F r

D p p

p r
p r

p r

( ( ) ( ))

( )

( )ln
( )

( )m
m

m

m

st eq

KL
st eq

st
st

eq
(3)
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with the Kullback−Leibler (KL) divergence DKL(p
st∥peq)

between the steady-state probability distribution pst and the
equilibrium probability distribution peq of all CT states |m⟩.
For a given r value, the steady-state probability distribution pm

st

is obtained from the stationary populations fm
st as follows

∑

σ

σ

= × −
−

× −
−

−

ikjjjjj y{zzzzzÄ
Ç
ÅÅÅÅÅÅÅÅÅÅÅ ikjjjjj y{zzzzz

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ

p r f
r r

f
r r

( ) exp
( )

2

exp
( )

2

m m

m

k
k

k

st st
2

b
2

st
2

b
2

1

(4)

At the same time, the equilibrium distribution pm
eq is obtained

using the approach of Hood and Kassal.19

∑

β
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β
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= − × −
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− × −
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2

b
2

2

b
2

1

(5)

The KL divergence in eq 3 defines a measure of the
difference of a given probability distributionin our case pst
from a reference probability distributionhere peq. Note that
DKL ≥ 0 and that DKL takes zero if and only if pm

st = pm
eq for each

individual CT state |m⟩. If pm
st ≠ pm

eq, the CT state |m⟩ is not
equilibrated, and consequently Fst > Feq. The difference

between Fst and Feq gives us a measure of how close to
equilibrium charge separation occurs. This allows us to
connect the kinetics of charge separation, given by pst, with
thermodynamic quantities of the charge separation process.
Rearranging eq 3 gives the well-known expression of the free

energy

∑ β= +

= −

−F r p r E p r p r

E r TS r

( ) ( ) ( )ln ( )

( ) ( )

m
m m m m

st st 1 st st

st st
(6)

Using pst, we calculate the average energy Est(r), which
electron−hole pairs pass during separation, and the Gibbs
entropy Sst(r), which accounts for the accessible states.
Note that, in comparison to previous studies,18,19,23 we

replaced the counting of the states within a shell of thickness b
by a Gaussian multiplier with width σb, accounting for the
proximity of CT state |m⟩ to r, to avoid discontinuities in the
thermodynamic quantities. In the following, we take σb = 0.5
nm. A sensitivity analysis of σb is provided in Figure S4,
Supporting Information. We consider the system in the linear
regime, where occupations of all states are proportional to the
intensity of the incident radiation; the thermodynamic
quantities do not depend in this regime on the intensity of
incident radiation. This can be straightforwardly proved using
eqs 2, 4, 5, and 6.

Figure 2. (a) Exemplary distribution of electron−hole pairs in the distance−energy phase space: donor excitons (green), CT states (red), and
contact states (blue). (b) Time dependence of fully separated (Sep) and recombined states (GS) for the given network. (c) Distance dependence
of the free energy F(r), energy E(r), and entropy contribution TS(r). Solid lines represent the equilibrium values; dashed lines give the
nonequilibrium results. All curves are normalized to the equilibrium value (subscript eq) at the distance r0.
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First, we present the capabilities of the developed method by
calculating the free energy for a particular network of exciton
states at σ = 50 meV. Figure 2a shows the energy and the
intrapair distance of each electron−hole pair (donor excitons,
CT states, and contact states). The time evolution of fully
separated and of recombined electron−hole pairs, see Figure
2b, shows a separation yield of 83.3%. The temporal evolution
of the charge separation process and, in particular, hot and cold
pathways were investigated in detail in ref 31. Here, our focus
is on the thermodynamic quantities characterizing charge
separation.
Figure 2c shows Fst and Feq as a function of the intrapair

distance relative to the smallest intrapair distance r0 of all CT
states. The free energy and the energy are smallest at close
intrapair distances. The one-dimensional organic bilayer model
only shows very few CT states at short distances of r ≤ 10 nm,
which are all strongly bound; see Figure 2a. The energy at
equilibrium, Eeq, increases at short intrapair distances up to a
value of 180 meV and only increases slightly up to 220 meV for
distances beyond r − r0 ≥ 10 nm. Feq shows a similar trend,
while being up to 70 meV below Eeq. The difference is due to
entropy contribution, which increases by 50−70 meV and
shows minor fluctuations with the intrapair distance. At the

steady state, the thermodynamic quantities show significant
deviations from equilibrium. Fst increases up to 450 meV at r −
r0 ≈ 20 nm and remains roughly constant for larger distances.
The energy of occupied states even reaches values of 600 meV.
In addition, the Gibbs entropy Sst shows 2−3 times the value
of Seq. Especially, a large slope in Sst for intrapair distances
below 20 nm can be observed, which was shown to be highly
desirable for electron−hole pairs to overcome their mutual
Coulomb attraction.18

By considering equilibrated electron−hole pairs, one
imposes an instant thermalization of electron−hole pairs at
each time and every position. This, however, is a strong
assumption, as highlighted by the stationary distributions. Our
model shows that the thermodynamic quantities are not well-
captured by the equilibrium assumption, which further
suggests that photogenerated electron−hole pairs propagate
through nonequilibrated CT states of higher energy and reach
contact states before an equilibration in the density of states
(DOS) can occur. This explains the significantly higher value
in Gibbs entropy, as more CT states are available at higher
energies with respect to tail states, which consequently
increases the chance for charge separation. In realistic three-

Figure 3. (a) Distance dependence of the free energy F(r), energy E(r), and entropic contribution TS(r) for different disorder σ: 50 meV (black),
100 meV (red), and 150 meV (blue). The ⟨·⟩ labels the ensemble average over 256 configurations. r0 gives the smallest distance of CT states in
each configuration. Solid and dashed curves present the equilibrium and stationary thermodynamic quantities, respectively. All curves are
normalized to the equilibrium value (superscript eq) at the distance r0. (b) Time dependence of the separation yield (solid line) and the
recombined states (dashed line). (c) Distribution of CT states as a function of their electron participation ratio. All curves in (a−c) show averages
across 256 configurations.
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dimensional (3D) systems, the entropy may reach even higher
values and may dominate the energy contribution.18,21,22

We now study the role of the energetic disorder σ on the
thermodynamic quantities for σ ∈ {50 meV, 100 meV, 150
meV}. For each σ, we take an ensemble average over 256
configurations to gain a reliable statistics. Figure 3a shows the
thermodynamic quantities in the equilibrium and in the steady-
state as a function of the intrapair distance r − r0. First, we
analyze the equilibrium quantities. Feq decreases strongly with
increased σ. For σ ≥ 100 meV, Feq even decreases with
increased intrapair distance r as reported by Hood and
Kassal.19 The decrease in free energy with σ is mainly caused
by a decrease in the average energy of populated states during
charge separation, showing a similar distance dependence as
the free energy. The entropy contribution shows significant
differences for different σ. At σ = 50 meV, TSeq increases
monotonously with intrapair distance and reaches 35 meV. For
larger σ, TSeq is significantly reduced and reaches values of only
20 meV (10 meV) at σ = 100 meV (150 meV). At a high
disorder, the entropy contribution remains roughly constant
for r − r0 ≥ 5 nm.
For a low σ of 50 meV, significant differences between Feq

and Fst are observable. Fst, computed from realistic populations
of CT states, increases up to 300 meV at r − r0 = 15 nm, while
Feq remains roughly constant for r − r0 ≥ 3 nm. The entropy
contribution shows a large increase up to 90 meV, which
explains the difference between the free energy and energy. For
σ ≥ 100 meV, Est differs by less than 40 meV from Fst due to a

low entropy contribution. At σ = 150 meV, the entropy stays
constant (∼20 meV) within the considered region. Entropy
contributions that do not change with distance have been
observed for 1D systems without disorder,18 but also for two-
dimensional (2D) systems with large σ values.19

Figure 3b visualizes the time dependence of fully separated
and of recombined states for different σ. With increased σ, the
separation yield decreases from 69.5% (σ = 50 meV) to 49.0%
(σ = 100 meV) and 29.3% (σ = 150 meV). In addition, the
time scale on which charge separation takes place increases by
several orders of magnitude. At high σ, electron−hole pairs
thermalize within the DOS and populate tail states.
Equilibrated electron−hole pairs can only separate by
propagation through low-energy states. The density of tail
states, however, does not increase significantly with intrapair
distance. A large σ value helps to initially separate charge
carriers in space, while a low entropy slows further charge
transport. The lack of available states leads to high
recombination losses and can promote nongeminate recombi-
nationwhich is neglected in this studyas a further
limitation of charge separation.
To understand the efficient separation despite the large free

energy barrier at a low σ, we analyze the delocalization of the
CT states in terms of the participation ratio (PR, defined in eq
S22, Supporting Information), which is a measure of the
number of sites over which the electron (the hole) of the CT
state delocalize. Figure 3c visualizes the PR distribution for
different σ. At σ = 50 meV, a large spread in the PR with a high

Figure 4. (a) Distance dependence of the free energy F(r), energy E(r), and entropy contribution TS(r) for different coupling integrals: J (black),
J/2 (red), and J/4 (blue). The ⟨·⟩ labels the ensemble average over 256 configurations. r0 gives the smallest distance of CT states in each
configuration. Solid and dashed curves present the equilibrium and stationary quantities, respectively. All curves are normalized to the equilibrium
value (superscript eq) at the distance r0. (b) Time dependence of the separation yield (solid line) and the recombined states (dashed line). (c)
Frequency of electron−hole separation and (d) of state energy of CT states with electron participation ratio PR ≤ 3 mimicking localized CT states.
All curves in (a−d) show averages across 256 configurations.
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amount of delocalized CT states is observed. With a rising σ,
the amount of strongly localized CT states increases
significantly, and delocalized CT states of PR ≥ 5 vanish. All
CT states with a low state energy show low PR values (see
Figure S6, Supporting Information), that is, all energetically
strongly bound CT states are strongly localized. The main
difference between the configurations with different σ is that a
large tail in the CT manifold of ∼200−300 meV below the tail
states at σ = 50 meV is observable (see Figure S7, Supporting
Information). Several studies proposed that excitons can
transform to delocalized CT states in the presence of a
resonant coupling between donor excitons and delocalized CT
states,40,41 which can be assisted in the presence of substantial
vibronic couplings.42,43

At σ = 50 meV, strongly bound electron−hole pairs with r ≤
3 nm face a large barrier in free energy (∼300 meV), which
makes it thermodynamically unfavorable to reach larger r
values, while electron−hole pairs at distances larger than 3 nm
see a strong reduction in the free energy barrier such that they
need to overcome less than 100 meV in free energy to fully
separate (see Figure 3a). Suppose the system starts in CT state
with the smallest distance r0, that is, in a strongly bound CT
state. In that case, all the thermodynamic quantities during
charge separation are well-described by the equilibrium
populations; see Figure S2, Supporting Information. The
chance that donor excitons transform to CT states of a large
PR ratio, however, is high due to a large amount of delocalized
CT states and the energetic resonance of XD and CT states
(see Figure S7, Supporting Information). Thus, considering
the transformation of donor excitons into CT states with a
significant intrapair separation is crucial to understand the
efficiency of the charge separation process.
One of the main observations from Figure 3 is that charge

separation within OSCs with a high energetic disorder occurs
close to equilibrium. To achieve efficient OSCs, however,
typically low σ values are required.44,45 High σ hinder the
charge transport46 and strongly reduce the attainable open-
circuit voltage.47,48 For high σ, electron−hole pairs lose energy
while moving toward the contact states, matching previous
reports.49 In contrast, the rather delocalized electron−hole
pairs at σ = 50 meV do not equilibrate and lose less energy
before reaching the contact states. Our previous analysis (ref
31) showed that the separation goes via a cold pathway. The
significant deviation in free energy for a low disorder, however,
tells us that the separation of cold charge carriers does not
happen in equilibrium and that charge pairs sample a relatively
wide energy window before they eventually separate. Thus, we
emphasize that charge separation in efficient OSCs occurs out
of equilibrium. Thermodynamically, charge separation is
favored in systems of a large energetic disorder. The kinetics
of the charge carriers, however, is too slow to compete with
charge recombination. An efficient separation of delocalized
CT states in systems of low energetic disorder seems
thermodynamically not favored, while their kinetics show a
sufficient separation.
Now, we study the role of delocalization on the free energy;

see Figure 4a. We increase charge localization by scaling all
transfer integrals JA/D,0/1

c/v (see Figure 1a) with 1/2 and 1/4.
According to both descriptions, the free energy increases with
localization. Again, the energy follows the free energy closely.
For J/2 and J/4, reduced separation yields of 45.9% and 9.1%,
respectively, are observed (see Figure 4b). This agrees with the
increase in the free energy and energy barrier with a larger

localization. Interestingly, Fst deviates strongly from equili-
brium for J/2 and J/4. At large distances, Est approaches the
same value of ∼380 meV for different localization. In contrast,
significant differences in Est are observed for short distances;
strongly localized electron−hole pairs occupy states with an
energy of 130 meV (40 meV) above the equilibrium for J/4 (J/
2).
The occupation of electron−hole states at the interface

determines the measured emission spectra by electro- and
photoluminescence studies of donor−acceptor blends, which
are frequently related to the open-circuit voltage in OSCs.50,51

Our results show that, especially for a strong localization,
nonequilibrium state occupations of electron−hole pairs at the
interface need to be considered. For a large localization, the
probability of donor excitons transforming to a CT state with a
small intrapair distance is higher because the number of such
CT states strongly increases (see Figure 4c). The state
population at the interface, following exciton dissociation to a
CT state, is strongly impacted by the competition between
thermalization dynamics and recombination. The significant
deviation from equilibrium indicates that electron−hole pairs
with small intrapair distances do not fully thermalize before
recombination occurs, being in line with recent electro-
luminescence24 and photoluminescence studies.25 Strictly
assuming equilibrated states may lead to a misinterpretation
of experimental photo/electroluminescence data.
With an increased localization, the Gibbs entropy con-

tribution deviates at short distances by up to 20 meV from
equilibrium. Weak coupling integrals result in many CT states
with small intrapair distances. Figure 4c,d visualizes the
distribution of localized CT states, defined by the electron
participation ratio of PR ≤ 3, in electron−hole separation and
in CT state energy, respectively. For a large localization, the
amount of localized CT states strongly increases for all
intrapair distances. Especially at the interface, the amount of
localized CT states is significantly higher than for the reference
configuration. The distribution in energy (Figure 4d and
Figure S10, Supporting Information, for individual states) of
localized CT states shows a large spread, which can explain the
deviation of Fst from equilibrium predictions. Sst differs from
the equilibrium values as electron−hole pairs tend to
recombine before thermalization is completed. Interestingly,
Sst at short distances is roughly equal for different localizations
(see Figure S3, Supporting Information). At a larger distance,
the entropy increases more strongly with larger delocalizations.
For J/4, the Sst value remains nearly constant, indicating that
charge separation gets suppressed with an increased local-
ization.
In contrast to previous theoretical studies,23 our results

emphasize that the free energy decreases with delocalization. In
ref 23 the free energy was analyzed for electron−hole distances
of less than 4 nm for a large energetic disorder of σ ≥ 100
meV. An increase in coupling reduces the amount of electron−
hole pairs with a small intrapair distance (cf. Figure 5 of ref
23), while only a few deep trap states remain. This may explain
the predicted increase in free energy. However, efficient OSCs
are characterized by long-range exciton separation, which can
directly populate rather delocalized CT states of a large
electron−hole distance and consequently reduce the relevance
of strongly bound CT states, which comes closer to our model
(see, e.g., Figure 4c).2,4,7,12 Gluchowski et al.23 further
hypothesize that a potential improvement of the delocalization
for charge separation may occur through nonequilibrium
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kinetic effects, which are particularly included within our
model. This indicates that equilibrium thermodynamics results
may provide potentially misleading conclusions and further
underlines the relevance of our nonequilibrium thermody-
namics analysis.
In conclusion, we have presented novel physical insights into

the nonequilibrium thermodynamics of charge separation in
OSCs by combining the phonon-assisted dynamics of
electron−hole pairs within a 1D model Hamiltonian of an
organic bilayer with the free energy based on the concept of
stochastic thermodynamics. We derive thermodynamic quanti-
ties, in particular, the free energy, average energy, and entropy
contributions of charge separation based on realistic steady-
state populations for different energetic disorders and different
localizations. In contrast to previous studies, the presented
methodology accounts for the finite lifetime of CT states to
provide more realistic thermodynamic quantities. Our analysis
reveals significant deviations from equilibrium in the free
energy and Gibbs entropy for delocalized electron−hole pairs
at a small energetic disorder, representing efficient OSCs.
While previous studies showed that charge separation occurs
via cold pathways, our nonequilibrium thermodynamic analysis
reveals that the separation of cold charge carriers in efficient
OSCs proceeds out of the equilibrium. In systems of large
energetic disorder, steady-state occupations of electron−hole
pair states can be well-described as equilibrated. Furthermore,
localized electron−hole pairs with small intrapair distances
exhibit a significant nonequilibrium distribution, explaining
previous observations from photoluminescence measurements.
Our results emphasize that both a large Gibbs entropy and
delocalized CT states at the interface can support efficient
separation, while a decrease with distance in the free energy
does not necessarily correlate with an enhanced charge
separation. Overall, we believe that this work provides both
an important contribution to understanding the physics of
charge separation in organic semiconductors and a novel
theoretical approach allowing access to nonequilibrium
thermodynamic properties.
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ABSTRACT

Numerically “exact” methods addressing the dynamics of coupled electron–phonon systems have been intensively developed. Nevertheless,
the corresponding results for the electron mobility μdc are scarce, even for the one-dimensional (1d) Holstein model. Building on our recent
progress on single-particle properties, here we develop the momentum-space hierarchical equations of motion (HEOM) method to evaluate
real-time two-particle correlation functions of the 1dHolsteinmodel at a finite temperature.We compute numerically “exact” dynamics of the
current–current correlation function up to real times sufficiently long to capture the electron’s diffusive motion and provide reliable results
for μdc in a wide range of model parameters. In contrast to the smooth ballistic-to-diffusive crossover in the weak-coupling regime, we observe
a temporally limited slow-down of the electron on intermediate time scales already in the intermediate-coupling regime, which translates to a
finite-frequency peak in the optical response. Our momentum-space formulation lowers the numerical effort with respect to existing HEOM-
method implementations, while we remove the numerical instabilities inherent to the undamped-mode HEOM by devising an appropriate
hierarchy closing scheme. Still, our HEOM remains unstable at too low temperatures, for too strong electron–phonon coupling, and for too
fast phonons.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165532

I. INTRODUCTION

The electron–phonon interaction governs the transport of
charge (and energy) in systems ranging from semiconductors,1–6

organic molecular crystals, and polymers7–9 to molecular aggre-
gates relevant for photosynthesis.10–14 The simplest model of such
diverse systems is the Holstein model,15 in which an electron is
locally and linearly coupled to phonons. Well-established trans-
port theories are formulated as perturbative expansions from either
the limit of vanishing coupling (Boltzmann-like4,5,16 or Redfield-
like13,14,17 theories) or vanishing electronic bandwidth (small-
polaron/Lang–Firsov,18 Marcus,13,14,19 or Förster13,14,20 theories).
However, in many instances, the energy scales representative of
electron motion, phonons, electron–phonon interaction, and ther-
mal fluctuations are all comparable to one another.1,21–23 This cir-
cumstance calls for the development of methods beyond standard
transport theories.

Such methods are typically formulated under physically
motivated approximations. Examples include the cumulant
expansion,24–28 dynamical mean-field theory,29–33 polaron

transformation-based approaches,34–43 momentum-average
approximation,44–46 and kinetic Monte Carlo approaches.47,48

The approximate methods are generally computationally efficient
and can thus be combined with electronic-structure methods
to provide first-principles results on systems large enough that
a direct comparison with experimental results is sensible.49–55

While the agreement between numerical and experimental results
justifies the approximations introduced, it does not fully reveal their
domain of validity. This can be unveiled by comparison to results
produced by numerically “exact” methods, which do not lean on
any approximation beyond those in the Hamiltonian. Since they are
computationally intensive, numerically “exact” methods are usually
applied to model Hamiltonians only.

The numerically “exact” approaches used to study interacting
electron–phononmodels may be roughly divided into the following:
(i) quantum Monte Carlo (QMC) methods;56–63 (ii) wavefunction-
based methods considering the electron and phonons as a closed
system, such as exact diagonalization (ED)-based techniques,64–69

the density-matrix renormalization group (DMRG),70–77

thermo-field dynamics,78–80 and the hierarchy of Davydov’s
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Ansätze;81–85 (iii) methods leaning on the theory of open quantum
systems, such as the hierarchical equations of motion (HEOM),86–89

its generalizations,90,91 and hybridizations92,93 with the stochastic
Schrödinger equation.94,95

Many of the above-mentioned methods deliver practi-
cally exact results on the ground-state or equilibrium finite-
temperature properties of the Holstein model.58,65,70,76 Some of
them have recently been used to examine the model’s single-
particle properties (the electronic spectral function or linear absorp-
tion spectra).67–69,71,73,76,77,92,95,96 However, much more demanding
numerically “exact” evaluations of two-particle correlation functions
at finite temperatures, such as the ac and dc electrical conductiv-
ity, have started only recently.27,61–63,74,75,77,93,97–99 Each class of the
above-mentioned numerically “exact” methods encounters certain
issues in computations of two-particle quantities. (i) QMC meth-
ods are usually formulated directly in the thermodynamic limit
but require numerical analytical continuation to reconstruct real-
frequency spectra. A combination of statistical errors and uncer-
tainties in the analytical continuation may lead to final results
whose errors are comparable to the results themselves. Real-time
QMC simulations witness a progressive development of the infa-
mous sign (or phase) problem, which limits their applicability to
relatively short-time dynamics. (ii) ED-based methods are applied
to small clusters and typically require artificial broadening para-
meters to construct real-frequency spectra. The DMRG equations
can be propagated only for relatively short times,76,77 which may
not be long enough to reliably estimate the dc mobility.77 (iii) The
HEOM method treats small clusters but can, in principle, capture
the full decay of correlation functions.97–100 Being based on a for-
mally exact expression for the electronic reduced density matrix
(RDM), the HEOM method is undoubtedly numerically “exact.”
However, when employed on a finite system and truncated at a
finite depth, the HEOM with undamped phonon modes suffers
from numerical instabilities,101 which practically limit the maxi-
mum propagation time102 and whose overcoming requires further
algorithmic developments.101,103

In this study, we provide numerically “exact” results for the
electron mobility within the 1d Holstein model. In contrast to the
best currently available results, which are obtained by perform-
ing the numerical analytical continuation of imaginary-axis QMC
data61 (possibly combined with real-time QMC data on rather short
time scales63), our results entirely follow from real-time compu-

tations. We extend the momentum-space HEOM we developed
in Ref. 96 to follow the time evolution of finite-temperature two-
particle correlation functions up to very long (practically infinite)

real times. In addition, our momentum-space HEOM also enables
us to obtain highly accurate results for imaginary-time correlation
functions, which are the central quantities in QMC simulations.
Our imaginary-axis results help us establish the minimum chain
length and hierarchy depth needed to obtain results representa-
tive of the thermodynamic limit. The high quality of our real-time
results is ensured by checking that different sum rules (e.g., the
optical sum rule—OSR) are satisfied with high accuracy. We lower
the numerical effort with respect to existing HEOM implementa-
tions by exploiting the translational symmetry, which reduces the
number of independent dynamical variables in the formalism, and
noting that the totally symmetric phonon mode does not contribute
to the time evolution of correlation functions. We avoid numerical

instabilities in a wide range of parameter spaces by devising a specific
closing of the hierarchy. Still, the numerical instabilities inherent to
the undamped-mode HEOM prevent us from obtaining results at
low temperatures, for strong electron–phonon coupling, and when
electronic dynamics is much slower than phonon dynamics (the
so-called antiadiabatic regime).

The paper is organized as follows. Section II specifies the
model and introduces our momentum-space HEOM method for
the current–current correlation function. Technical details are pre-
sented in Appendixes A–D. In Sec. III, we provide a number of
numerical examples testing critical points of our methodology and
present our main results concerning temperature-dependent dc
mobility. Section IV is devoted to a summary and prospects for
future work.

II. THEORETICAL FRAMEWORK

A. Model and definitions

We consider the Holstein model on the 1d lattice comprising
N sites with periodic boundary conditions. In the momentum space,
its Hamiltonian reads as

H ≙ He +Hph +He−ph

≙∑
k

εk∣k⟩⟨k∣ +∑
q

ωqb
†
qbq +∑

q

VqBq. (1)

The electronic and phononic wave numbers k and q may assume
any of the N allowed values in the first Brillouin zone −π < k,
q ≤ π. The Hamiltonian He describes an electron in a free-
electron band whose dispersion εk ≙ −2J cos(k) originates from the
nearest-neighbor electronic hopping of amplitude J. The Hamil-
tonian Hph describes an optical-phonon branch with dispersion
ωq such that ωq=0 ≠ 0. The interaction term He−ph is character-
ized by its strength g and contains the purely electronic operator
Vq ≙ ∑k ∣k + q⟩⟨k∣, which increases the electronic momentum by

q, and the purely phononic operator Bq ≙
g√
N
(bq + b†

−q), which
decreases the phononic momentum by q. In the following, we set
the lattice constant al and the elementary charge e0, and the physical
constants h and kB to unity.

We focus on the dynamics of the current–current correlation
function

C jj(t) ≙ 1

Z
Tr{ j(t) j(0)e−βH}, (2)

where the current operator reads as

j ≙ −2J∑
k

sin (k)∣k⟩⟨k∣, (3)

where j(t) ≙ eiHtje−iHt , while Z ≙ Tr e−βH is the partition sum at tem-
perature T ≙ β−1. Its Fourier transform C jj(ω) ≙ ∫ +∞−∞ dt eiωtC jj(t)
[with Cjj(−t) ≙ Cjj(t)∗] determines the frequency-dependent (or
dynamical) mobility,

Re μac(ω) ≙ 1 − e−βω

2ω
C jj(ω)

≙
C jj(ω) − C jj(−ω)

2ω
, (4)
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where the second equality follows from the fluctuation–dissipation
theorem for equilibrium correlation functions, Cjj(−ω)
≙ e−βωCjj(ω). The dc mobility is μdc ≙ limω→0Re μac(ω) and
may be computed using only the real or only the imaginary part of
Cjj(t),104

μdc ≙
1

T∫
+∞

0
dt Re C jj(t)

≙ −2∫
+∞

0
dt t Im C jj(t). (5)

Cjj(t) (for t > 0) carries information on the carrier’s
dynamics resulting from a sudden (δ-like) perturbation of the
electron–phonon equilibrium. Its real part is proportional to the
velocity–velocity anticommutator correlation function, which is the
quantum counterpart of the velocity–velocity correlation function
used, e.g., to study Brownian motion. The mean-square displace-
ment (MSD) of the carrier’s position, Δx2(t) ≙ ⟨∥x(t) − x(0)∥2⟩,
where ⟨⋅ ⋅ ⋅⟩ denotes averaging with respect to e−βH/Z, grows at a
rate determined by the time-dependent diffusion constant,105

D(t) ≙ 1

2

d

dt
Δx

2(t) ≙ ∫ t

0
ds Re C jj(s). (6)

Within the model considered here, Re Cjj(t) decays to zero in the
long-time limit, so that D(t) varies from 0 at short times to D∞

≙ ∫ +∞0 ds Re C jj(s) at long times, where D∞ is the diffusion
constant related to the dc mobility by the Einstein relation (in
the units we use, μdc ≙ D∞/T). The electron’s dynamics then
exhibits a crossover from short-time ballistic dynamics, whenΔx2(t)
≙ Cjj(0)t2 and D(t) ≙ C jj(0)t, to long-time diffusive dynamics,

whenΔx2(t) ≙ 2D∞t and D(t) ≙ D∞. In addition to D(t), another
quantity useful to describe this crossover is the diffusion exponent
α(t) ≥ 0 defined by assuming that the power-law scaling Δx2(t)∝
tα(t) holds locally around instant t,106 so that

α(t) ≙ 2tD(t)
Δx2(t) . (7)

At short times, α(t) is close to 2, while it reaches the value of unity
in the long-time diffusive limit.

B. HEOM for the real-time current–current correlation
function

We formulate the HEOM method for the purely electronic
operator

ι(t) ≙ 1

Z
Trph{e−iHt je−βHeiHt}, (8)

whileC jj(t) ≙ Tre{ jι(t)}. Since the totally symmetric phononmode
(q ≙ 0 mode) couples to the unit operator in the electronic sub-
space, it does not affect the dynamics of ι(t), while its contributions
to Z and e−βH cancel out after performing the partial trace over
phonons. This decoupling of the q ≙ 0 phonon mode from the rest
of the phonon modes and the electronic states107 somewhat lowers

the number of auxiliary density operators (ADOs) ι
(n)
n (t), which

are characterized by the vector n ≙ {nqm∣q ≠ 0,m ≙ 0, 1} contain-
ing 2(N − 1) non-negative integers nqm counting individual phonon

absorption and emission events whose total number is n ≙ ∑′qm nqm.
The prime on the sum indicates the omission of the q ≙ 0 term.

The momentum conservation implies that the ADO ι
(n)
n (t) changes

the electronic momentum by kn ≙ ∑′qm qnqm, so that only N of its

N2 matrix elements are nonzero. The only nonzero matrix ele-

ments of ι
(n)
n (t) are the ones connecting the states whose momenta

differ by kn. This requirement leads to a drastic reduction in the
number of equations with respect to existing real-space HEOM
formulations.97,99,102 A more detailed discussion in this direction is
deferred to the last paragraph of Sec. III B.

The dynamics of ι(t) follows from the real-time HEOM

∂t⟨k∣ι(n)n (t)∣k + kn⟩
≙ −i(εk − εk+kn + μn)⟨k∣ι(n)n (t)∣k + kn⟩
+ i∑′

qm

√(1 + nqm)cqm ⟨k − q∣ι(n+1)n+qm
(t)∣k + kn⟩

− i∑′
qm

√(1 + nqm)cqm ⟨k∣ι(n+1)n+qm
(t)∣k + kn + q⟩

+ i∑′
qm

√
nqmcqm ⟨k + q∣ι(n−1)n−qm

(t)∣k + kn⟩
− i∑′

qm

√
nqm

cqm√
cqm
⟨k∣ι(n−1)n−qm

(t)∣k + kn − q⟩, (9)

where μn ≙ ∑′q ωq(nq0 − nq1). The ADO ι
(n)
n (t) couples to ADOs at

depths n ± 1, which are characterized by vectors n±qm whose compo-

nents are [n±qm]q′m′ ≙ nq′m′ ± δq′qδm′m. The coefficients cqm and cqm

are defined in Eqs. (A2) and (A3) of Appendix A, where we provide
a detailed derivation of Eq. (9).

The initial condition for Eq. (9) is set by the equilibrium state
of the interacting electron–phonon system [see also Eq. (8)]. In our
previous publication,96 we derived that the hierarchical representa-
tion of that equilibrium state can be obtained from the following
imaginary-time HEOM:

∂τ⟨k∣σ(n)n (τ)∣k + kn⟩
≙ −(εk + μn)⟨k∣σ(n)n (τ)∣k + kn⟩
+∑′

qm

√(1 + nqm)cqm⟨k − q∣σ(n+1)n+qm
(τ)∣k + kn⟩

+∑′
qm

√
nqmcqm⟨k + q∣σ(n−1)n−qm

(τ)∣k + kn⟩. (10)

Equation (10) is propagated in imaginary time τ from 0 to βwith the

infinite-temperature initial condition ⟨k∣σ(n)n (0)∣k + kn⟩ ≙ δn,0. The
initial condition for Eq. (9) is finally

⟨k∣ι(n)n (0)∣k + kn⟩ ≙ Z−1e (−2J) sin (k)⟨k∣σ(n)n (β)∣k + kn⟩, (11)

where the so-called electronic partition sum reads as

Ze ≙∑
p

⟨p∣σ(0)0 (β)∣p⟩. (12)

A more detailed derivation is provided in Appendix A. Here, let
us emphasize that the structure of the imaginary-time HEOM in
Eq. (10) is fully compatible with the structure of the real-timeHEOM
in Eq. (9). This is different from existing approaches, in which the
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structures of the imaginary-time and real-timeHEOMs are notman-
ifestly identical99,108 and may require appropriate rearrangement
steps to obtain the initial condition for the real-time HEOM.108

C. Closing the HEOM for the real-time current–current
correlation function

When truncated at a finite maximum depth D, the real-time
HEOM in Eq. (9) suffers from numerical instabilities appearing at
sufficiently long times, which are commonly ascribed to the dis-
crete and undamped nature of phonons.101 Such instabilities have
been observed even for not-too-strong couplings and at not-too-low
temperatures. The instabilities are particularly detrimental to eval-
uations of μdc, for which we need Cjj(t) up to times so long that
it has decayed almost to zero [Eq. (5)]. They may be eliminated by
projecting out the unstable eigenmodes of the truncated HEOM,101

which requires numerically complicated filtration algorithms, or by
deriving a new hierarchy of equations,103 whose generally nontriv-
ial relation to the original hierarchy may complicate evaluations of
physically relevant quantities. The numerical instabilities reported
in Ref. 101 were observed under the so-called time-nonlocal (TNL)
truncation scheme, which sets all ADOs at depths n > D to zero.
One may thus hope that an appropriate closing of the HEOM at
the maximum depth could eliminate numerical instabilities. While a
number of closing schemes have been proposed recently,91,109,110 we
find that none of them stabilizes Eq. (9). A possible reason behind
our observation is that these schemes were tried and tested for the
electron coupled to a phonon bath, i.e., when the spectral density
of the electron–phonon interaction is a continuous function of the
energy exchanged. On the other hand, here we deal with a discrete
spectral density consisting of a finite number δ peaks at ±ωq. In

Appendix B, we build on previous density-matrix studies111–113 and
derive in detail a specific closing of Eq. (9) that permits us to over-
come the instabilities in many (but not all) parameter regimes. Here,
let us only mention that we eliminate the ADOs at depth D + 1 from
the equations at the maximum depth D by (i) setting the ADOs with
n ≥ D + 2 to zero and (ii) solving the resulting equations at depth
D + 1, which then contain only the ADOs at depth D in the Markov
and adiabatic approximations. The structure of the resulting equa-
tions at depth D is, however, more involved than the structure of
Eq. (9) because the ADOs at depth D become mutually coupled. We
eliminate these equal-depth couplings by resorting to the random
phase approximation, which neglects momentum-averaged matrix
elements of the ADOs at depth D due to random phases at different
momenta. The above-described procedure for closing the HEOM
results in equations for maximum-depth ADOs (n ≙ D) that feature
exponential damping terms

[∂t⟨k∣ι(n)n (t)∣k + kn⟩]
close
≙ −δn,D

1

2
(τ−1k + τ−1k+kn)

× ⟨k∣ι(n)n (t)∣k + kn⟩, (13)

where τk is the carrier scattering time in the second-order per-
turbation theory and the long-chain limit [see Eq. (B7) and
Ref. 42].

In our numerical computations, we assume that phonons are
dispersionless, ωq ≡ ω0. For ω0/J ≥ 2, the closing scheme in Eq. (13)
cannot fully remove the numerical instabilities inherent to the
undamped-mode HEOM because the carrier scattering times then

become infinite for k states in the vicinity of ±π/2.26,42 We thus
obtain HEOM results for ω0/J ≥ 2 only at sufficiently high temper-
atures and for sufficiently (but not excessively) strong interactions.
For ω0/J < 2, our results summarized in Secs. III A and III E show
that the closing scheme in Eq. (13) removes the instabilities of Eq. (9)
for not too strong g or at not too low T. The instabilities remain for
strong g and at low T, while their relatively early appearance pre-
vents us from reliably computing μdc in such parameter regimes (see
Sec. III F).

D. HEOM for the imaginary-time current–current
correlation function

In order for Cjj(t) to be representative of the long-chain limit
and take all relevant phonon-assisted processes into account, both
N and D should be sufficiently large. The first proxy for how large
N and D should be follows from analyzing the current–current
correlation function Cjj(τ) in imaginary time.

While Cjj(τ) is directly accessible in QMC simulations,61,63,100

its evaluation using the HEOM method has not been considered
so far, to the best of our knowledge. The appropriate imaginary-
time HEOM is obtained from Eq. (9) by performingWick’s rotation
t → −iτ. We employ the TNL truncation of the HEOM thus
obtained, i.e., we simply set all the ADOs with n > D to zero. Cjj(τ)
is to be determined on the interval ∥0,β∥, on which it is symmetric
with respect to β/2. To enable as accurate an evaluation of Cjj(τ) as
possible, we find it useful to consider the symmetrized correlation
function

C
sym
jj (τ) ≙ 1

Z
Tr{e−βH/2eHτ

je
−Hτ

e
−βH/2

j}, (14)

on the interval ∥−β/2,β/2∥, which is related to Cjj(τ) via C jj(τ)
≙ C

sym
jj (τ − β/2) for 0 ≤ τ ≤ β. We note that the use of the sym-

metrized correlation function instead of the standard one is advan-
tageous in real-time QMC simulations114 and is also reported to be
useful in real-time HEOM computations.98,99 Nevertheless, we find
that the numerical instabilities of the real-time HEOM [Eqs. (9) and
(13)] are reflected on both Cjj(t) and C

sym
jj (t) in the same man-

ner, which is the reason why we consider the non-symmetrized
correlation function [Eq. (2)] in all our real-time computations.

We determine C
sym
jj (τ) by two independent imaginary-time

propagations: one forward from 0 to β/2 and the other backward
from 0 to−β/2. The initial condition (at τ ≙ 0) for both propagations
is obtained from the imaginary-time HEOM for the equilibrium
state of the coupled electron–phonon system [Eq. (10)], which we
(i) propagate from 0 to β/2, (ii) multiply by j from the left, and
(iii) propagate once again from 0 to β/2. Since Csym

jj (τ) is symmet-

ric around 0, the results of the forward and backward propagations
in imaginary time should coincide. We use this fact to gain insight
into the maximum hierarchy depth D that is needed to obtain con-
verged results. In more detail, we find that the relative deviation(−β/2 ≤ τ ≤ β/2)

δ
sym
jj (τ) ≙ 2 ∣C

sym
jj (τ) − Csym

jj (−τ)∣
C
sym
jj (τ) + Csym

jj (−τ) , (15)
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decreases with increasing D. Furthermore, following how C jj(τ)
≙ ∥Csym

jj (τ − β/2) + Csym
jj (β/2 − τ)∥/2 (0 ≤ τ ≤ β) changes with the

chain length N provides information about the minimum chain
length N needed to obtain results representative of the thermody-
namic limit. We, however, emphasize that the estimates for D and
N that stem from imaginary-axis data may differ from the cor-
responding estimates originating from real-time data. Whenever
possible, we also perform real-time simulations for multiple N and
D to ensure that our real-time results are also representative of the
thermodynamic limit.

E. Sum rules

To gain additional confidence in our HEOM results, we check
that certain sum rules for frequency-resolved quantities are sat-
isfied with sufficient accuracy.77,115 We compare the moments of
frequency-dependent quantities evaluated by (i) numerical integra-
tion over frequency and (ii) averaging an appropriate operator in the
equilibrium state of the coupled electron and phonon. We consider
the OSR

∫
+∞

0
dω Re μac(ω) ≙ −π

2
⟨He⟩, (16)

and the sum rules

∫
+∞

−∞

dω

2π
ω
n
C jj(ω) ≙Mn, (17)

for the first three moments (n ≙ 0, 1, 2) of the real-frequency
current–current correlation function. In Eq. (16), we use the dynam-
ical mobility computed using the first equalities in Eqs. (4) (for
ω ≠ 0) and (5) (for ω ≙ 0). The electron’s kinetic energy entering
Eq. (16) is evaluated using the quantities defined in Eqs. (10) and
(12),96

⟨He⟩ ≙ 1

Ze
∑
k

εk⟨k∣σ(0)0 (β)∣k⟩. (18)

We note that the initial conditions ι
(n)
n (t ≙ 0) [Eq. (11)] for the real-

time HEOM [Eq. (9)] do not enter Eq. (18). On the other hand, the
quantities Mn entering Eq. (17) are expressed in terms of the initial

conditions ι
(n)
n (t ≙ 0) for the real-time HEOM, and we derive the

corresponding relations in Appendix C. Strictly speaking, Eq. (16)
holds only in the long-chain limit, and in Appendix D, we demon-
strate that the corresponding finite-size corrections decrease with
increasing N. On the contrary, for any given N and D, Eq. (17)
(with the expressions obtained in Appendix C) is exact. Having all
these things considered, we conclude that checking the sum rules
in Eq. (17) provides an important self-consistency check that all
the numerical procedures (e.g., the numerical Fourier transforma-
tion) are properly implemented while providing limited information
on the adequacy of N and D employed. In addition to a test for
numerical implementation procedures, checking the OSR consti-
tutes a nontrivial test for the adequacy of both D and N employed,

which is in line with previous studies.115 It is for this reason that we
focus our discussion in Sec. III on the OSR. As a general trend, we
observe that the sum rules in Eq. (17) are satisfied with better relative
accuracy than the OSR.

III. NUMERICAL RESULTS

We limit ourselves to dispersionless optical phonons, ωq ≡ ω0,
and perform HEOM computations for three different values of ω0/J
spanning the range from the adiabatic regime of slow phonons(ω0/J ≙ 1/3) to the extreme quantum regime (ω0/J ≙ 1) and the
antiadiabatic regime of fast phonons (ω0/J ≙ 3). Since most of
our results are obtained for ω0/J ≤ 1, we use the dimensionless
interaction parameter,

λ ≙
g2

2Jω0
, (19)

that is appropriate to describe the zero-temperature transition
from free electrons (λ < 1) to polarons (λ > 1) at such phonon
frequencies.

We devote Secs. III A–III C to discussing the performance
of the closing strategy embodied in Eq. (13) (Sec. III A) and the
effects of finite N and D on the HEOM results in imaginary and
real time (Sec. III B), as well as the accuracy with which the OSR
is satisfied (Sec. III C). Section III D summarizes the most rep-
resentative HEOM results for the time evolution of Cjj and the
dynamical-mobility profile. Our most significant results, which con-
cern the temperature dependence of μdc for different values of ω0/J,
are presented in Sec. III E. To further illustrate the capabilities and
limitations of our approach, we present HEOM results for Cjj(t) for
strong electron–phonon couplings and at different temperatures in
Sec. III F.

We provide HEOM data on Cjj(t), its Fourier transformation
Cjj(ω) computed using the FFTW3 software package,116 as well
as Re μac(ω), in different parameter regimes, as a freely available
dataset. For more details, see Ref. 117, which contains all our numer-
ical data, and the supplementary material of this manuscript, which
contains their detailed description. Here, let us onlymention that the
HEOM in Eq. (9) supplemented with the closing in Eq. (13) is prop-
agated using the algorithm proposed in Ref. 118 with the time step
ω0Δt ≙ (1 − 2) × 10−2. While the maximum propagation time tmax

generally shortens with increasing g and/or T, it is a highly non-
trivial task to give its a priori estimate based only on the values of
model parameters. Fortunately, in contrast to some other numeri-
cally “exact” methods, such as the DMRG77 or real-time QMC,63 the
computational demands of the HEOMmethod do not increase with
time t and are completely determined by N,D,Δt, and the propa-
gation algorithm. We thus propagate the HEOM up to real times

that are sufficiently long so that the integral ∫ t
0 ds Re C jj(s)/T [see

Eq. (5)] as a function of t enters saturation [see, e.g., Figs. 3(b) and
3(c)]. The frequency resolution in the optical response is increased
by continuing Cjj(t) symmetrically for negative times −tmax ≤ t ≤ 0
using Cjj(−t) ≙ Cjj(t)∗, which results in the frequency step Δω/ω0

≙ π/(ω0tmax). Therefore, if one wants both a reliable result for μdc
and a finely resolved optical response, the maximum propagation
time should be sufficiently long. In practice, we used ω0tmax ≳ 500
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for small g and at relatively low T, ω0tmax ≃ 300 at intermediate
values of g and T, and ω0tmax ≲ 100 for large g or at high T.

A. Effectiveness and reliability of our closing strategy

We offer numerical examples demonstrating that the closing
in Eq. (13) actually stabilizes the real-time HEOM [Eq. (9)] without
compromising the results for μdc.

Figure 1(a) (its inset) shows the evolution of Re Cjj (Im Cjj)
with the closing in Eq. (13) and the TNL truncation in the weak-
coupling regime and at a relatively low temperature. The benefi-
cial effects of our closing strategy on HEOM stability are appar-
ent. Moreover, the HEOM [with closing in Eq. (13)] estimate for

μHEOM
dc ≙ 68.0 using Jtmax ≙ 800 agrees well with the estimate μwcldc ≙

72.5 emerging from the weak-coupling limit [see Eq. (49) in Ref. 42].
The relative difference between the two results is under 10%, which
eventually emerges as the relative error that is to be associated with
μHEOM
dc (see Sec. III B). With TNL truncation, it is much more diffi-

cult to obtain a reliable estimate of μdc. This is evident when μdc is
computed using only Re Cjj(t) [the first equality in Eq. (5)], which
under TNL truncation develops a pronounced hump for Jt ≳ 100.
The same applies to the computation using only Im Cjj(t) [the

FIG. 1. Time dependence of Re Cjj (in units of J2) employing the closing in
Eq. (13) (full black line, label “this work”) or the time-nonlocal truncation (dashed
red line, label “TNL”). The values of model parameters are ω0/J = 1, λ = 0.01,
and (a) T/J = 1, N = 160, D = 2 (in units of J2), (b) T/J = 10, N = 40, D = 3.
The insets show the time dependence of (a) Im Cjj , (in units of J2) (b) the quantity

∫
t

0
ds Re C jj(s)/T , which tends to μdc as t → +∞.

second equality in Eq. (5)], when the small-amplitude long-time
oscillations of Im Cjj around zero are amplified by multiplication
with time.

One may still argue that at higher temperatures, when carrier
scattering rates entering Eq. (13) become large, our hierarchy closing
may underestimate μdc. Such an effect may be particularly pro-
nounced for not too strong coupling when the maximum depth D
is not very large so that the exponentially damping terms in Eq. (13)
may appreciably affect the quantity at the hierarchy root, i.e., Cjj(t).
The inset of Fig. 1(b) shows that the estimate for μdc using the closing
in Eq. (13) and propagating the HEOM to sufficiently long times (we
took Jtmax ≙ 100) is approximately the same as the one using the TNL
truncation and propagating the HEOM to times before the insta-
bilities arise (up to Jt ≈ 20). Both of these estimates (μHEOM

dc ≙ 0.53)
agree reasonably well with the estimate μwcldc ≙ 0.61 emerging from
the weak-coupling limit.

B. Effects of finite N and D on the current–current
correlation function and dc mobility

We first analyze Cjj(τ). We fix g/J ≙ ω0/J ≙ T/J ≙ 1 and dis-
cuss the importance of finite-size effects for maximum hierarchy
depth D ≙ 6. Figure 2(a) shows that Cjj(τ) steadily approaches its
long-chain limit with increasing N. The approach to that limit is
quite fast because the relative deviation with respect to the results
for the longest chain studied (N ≙ 13) decreases by almost three
orders of magnitude upon increasing N from 7 to 10 [see the inset
of Fig. 2(a)]. Therefore, already, N ≙ 10 should be sufficiently large
to obtain results representative of the long-chain limit. Figure 2(b)
shows that the quality of our imaginary-time data, quantified by
the relative difference δ

sym
jj (τ) [Eq. (15)], steadily increases with

increasing D.
While Figs. 2(a) and 2(b) demonstrate a steady convergence of

the imaginary-time data toward the large-N and large-D limit as N
and D are increased, the situation on the real axis is somewhat more
complicated, which is summarized in Figs. 3(a)–3(c). Fixing D to 6,
Fig. 3(a) [Fig. 3(b)] shows that Re Cjj(t) ∥Im Cjj(t)∥ is virtually the
same for N ≙ 10, 13, and 15. For N ≙ 7, 10, and 13, we propagated
HEOM up to Jtmax ≙ 400, while we used Jtmax ≙ 300 for N ≙ 15. At
longer times (not shown here), both Re Cjj(t) and Im Cjj(t) exhibit
small-amplitude oscillations around zero. The agreement between
the results for different N in the real-time domain translates to the
overall profile of Reμac(ω) [see the inset of Fig. 3(a)]. However, the
dc mobility somewhat decreases upon increasingN from 7 to 10 and
13, while its values for N ≙ 13 and 15 are virtually the same [see the
full dots in the inset of Fig. 3(a) and Table I]. The relative differ-
ences between μdc for different values of N considered are of the
order of percent, which is also evident from the inset of Fig. 3(b)
displaying the convergence to the dc limit when only Im Cjj(t) is
used to evaluate μdc [the second equality in Eq. (5)]. The integral

−2∫ t
0 dssIm C jj(s) is expected to display long-time oscillations origi-

nating from the corresponding oscillations of Im Cjj(s) around zero.
The inset of Fig. 3(b) thus shows the smoothed data obtained using
the moving-average procedure, which is employed at sufficiently
long times to reliably compute μdc. In more detail, the moving aver-

age of the quantity −2∫ t
0 dssIm C jj(s) at instant t is computed as

the arithmetic average of its Nmove values right after t and its Nmove
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FIG. 2. (a) Current–current correlation function (in units of J2) in imaginary time
Jτ ∈ ∥0, βJ∥ for D = 6 and different chain lengths N. The inset shows the quantity

∣CN
jj(τ) − CN=13

jj
(τ)∣/CN=13

jj
(τ) for N = 7 and 10. (b) The quantity δ

sym

jj
[Eq. (15)]

as a function of imaginary time Jτ ∈ ∥−βJ/2, βJ/2∥ for a 10-site chain and differ-
ent maximum hierarchy depths D. Note the logarithmic scale on the vertical axis in
the insets of (a) and (b). The model parameters are g/J = ω0/J = T/J = 1.

values right before t. We take Nmove to be 10% of the total number
of points for which we have HEOM data. Figure 4(a) shows that the
moving-average procedure indeed smooths out the long-time oscil-

lations of the quantity −2∫ t
0 dssIm C jj(s), while the dependence of

the final result for μdc on the averaging window is much less pro-
nounced than, e.g., its dependence on the parity of D, vide infra.
The μdc estimates using the two equalities in Eq. (5) agree up to a
couple of percent (see Table I). The relative difference of the same
order of magnitude is obtained when D is increased from 6 to 8
when N ≙ 10, while decreasing D from 6 to 5 leads to a decrease
in μdc of around 10% [see Fig. 3(c) and Table I]. For N ≙ 10 and
D ≙ 7, Re Cjj(t) becomes negative at long times, which may prevent
us from reliably estimating μdc. Nevertheless, we see that follow-
ing the time evolution up to Jtmax ≙ 70 provides an estimate of μdc
that differs from the estimate for N ≙ 10,D ≙ 5, by a couple of per-
cent. We thus conclude that μdc estimates may depend on the parity
of the maximum hierarchy depth D. For sufficiently large D, the
estimates for D and D + 2 differ by a couple of percent, and those
for D and D + 1 differ by around 10%. While we find that such
a behavior of μdc as a function of D (for fixed N) is generic, the

FIG. 3. Time dependence of (a) Re Cjj and (b) Im Cjj (both in units of J2) for
D = 6 and different chain lengths N. (c) Time dependence of Re Cjj (in units of

J2) for N = 10 and different maximum hierarchy depths D. The inset in (a) shows
the frequency profile of the dynamic mobility for D = 6 and different N. Full dots
at ω = 0 represent the results for μdc using the first equality in Eq. (5) (see also
Table I). The inset in (b) shows how the result of the integration in Eq. (5) converges
toward μdc as we increase the upper integration limit. To obtain smooth curves, we
perform the moving average procedure described in the text. The inset in (c) shows
how the result of the integration in Eq. (5) converges toward μdc as we increase
the upper integration limit. The model parameters are g/J = ω0/J = T/J = 1.

magnitudes of the above-mentioned relative differences generally
decrease with temperature. The preceding discussion implies that
HEOM estimates for μdc should be taken with relative uncertainties
not surpassing 10%.
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TABLE I. Effects of finite N and D on HEOM results for the dc mobility. The HEOM is
propagated up to time Jtmax. Model parameters are g/J = ω0/J = T/J = 1.

(N,D) μdc from Re Cjj(t) μdc from Im Cjj(t) Jtmax

(10,5) 1.327 1.308 400
(10,6) 1.493 1.484 400
(10,7) 1.336 1.325 70
(10,8) 1.548 1.537 200

(7,6) 1.520 1.513 400
(13,6) 1.472 1.459 400
(15,6) 1.473 1.452 300

Without the specific HEOM closing [Eq. (13)], it would be
nearly impossible to obtain meaningful results for the dc or ac
mobility, which is apparent from Fig. 4(b) showing HEOM data for
Re Cjj(t) that use the TNL truncation. Model parameters are the
same as in Fig. 3(c), to which the results in Fig. 4(b) are to be com-
pared. Our closing smooths the local maximum in Re Cjj(t) around
Jt ≃ 4 and stabilizes the subsequent time evolution, whose oscil-
latory features under TNL truncation become more pronounced
with increasing D. In addition to Re Cjj(t), in Fig. 4(c), we show

the quantity ∫ t
0 ds Re C jj(s)/T [see Eq. (5)] under TNL truncation

(dashed lines) and our closing scheme (solid lines). While the agree-
ment between the dashed and solid lines in Fig. 4(c) is good for
Jt ≲ 10, the results obtained under TNL truncation do not show any
sign of reaching a long-time limit with increasing t. One could use
the HEOM data with TNL truncation up to Jtmax ≃ 20 (before the
instabilities become more pronounced) to extract the dc mobility
of around 1.25, and virtually the same estimate would be obtained
using the HEOM data with our closing scheme up to Jtmax ≃ 20 [see
Fig. 4(c)]. Nevertheless, if one is to obtain the optical response with
a decent frequency resolution using the HEOM data in Fig. 4(b)
up to Jtmax ≃ 20, one should probably perform additional numerical
procedures, such as the zero-padding (to effectively increase tmax),
possibly combined with signal windowing.77,96 Such procedures,

however, may affect the intensities (and to some extent the posi-
tions) of the optical-response features, mainly in the low-frequency
part that corresponds to the most challenging long-time dynamics.
On the other hand, when we propagate our stabilized HEOM up to
long real times, no additional numerical procedures on the HEOM
data for Cjj(t) are required to compute the optical response. While
the observed dependence of our HEOM results on the parity of D
could be attributed to our closing scheme, we believe that we handle
this effect in an appropriate manner because we use it to estimate
the relative error of our results for μdc. While a detailed explana-
tion of our observations is beyond the scope of this investigation,
we speculate about their possible origin as follows. In Eq. (9), μn is
the change in energy of the phononic subsystem due to the sequence
of electron–phonon interaction events described by n. At depth n,
μn/ω0 can assume values ±n,±(n − 2), . . ., while at odd depths n,
all μns are nonzero, even depths feature some vectors n for which
μn ≙ 0. At even depths, there are thus ADOs having both μn ≙ 0
and kn ≙ 0, meaning that the resonance condition εk − εk+kn + μn ≙ 0
emerging from the free-rotation term in Eq. (9) is perfectly satis-
fied. On the other hand, at odd depths, the resonance condition
is almost never perfectly met: even if kn ≙ 0 for a particular n,
μn is certainly nonzero. When the closing scheme in Eq. (13) is
applied, the behavior of all ADOs at an odd maximum depth can
be described by damped oscillations (in the lowest approximation
that neglects links to other ADOs). In the same approximation, at
an even maximum depth, there are ADOs that are exponentially
suppressed with time without displaying any oscillatory behavior.
The influence of such ADOs on the overall HEOM dynamics might
be less pronounced than the influence of ADOs exhibiting damped
oscillations.

We finish this section by briefly discussing the decrease in the
number of active variables in our momentum-space HEOM with
respect to existing real-space formulations. Namely, for an N-site
chain, the number of ADOs upon hierarchy truncation at depth D

is nrsADO ≙ ( 2N+DD
) when working in real space (q ≙ 0 phonon mode

is considered) and nms
ADO ≙ ( 2(N−1)+DD

) when working in momen-

tum space (q ≙ 0 phonon mode is not considered). As the num-
ber of entries in each ADO is at the same time reduced by a

FIG. 4. (a) Long-time evolution of the quantity −2∫
t

0
dssIm C jj(s) [black solid line, label “non-smoothed,” see Eq. (5)] and its moving averages computed for different sizes

(determined by Nmove defined in the text) of the averaging window. Percentages are to be taken from the total number of points for which HEOM data are available. (b) Time

dependence of Re Cjj (in units of J2) under the TNL truncation for different values of D. (c) Time dependence of the quantity ∫
t

0
ds Re C jj(s)/T [see Eq. (5)] under the TNL

truncation (dashed lines) and our closing in Eq. (13) (solid lines). The values of the model parameters and the color code are the same as in (b). The model parameters are
g/J = ω0/J = T/J = 1, N = 10 in all three panels, and D = 6 in panel (a).
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factor of N, the relative decrease in the number of variables that
have to be propagated upon transferring from real to momentum
space is

N2nrsADO −Nnms
ADO

N2nrsADO
≙ 1 −

2(2N − 1)(2N +D)(2N +D − 1) . (20)

For a fixed N, the savings in computer memory increase with D.
While the savings in computer memory for fixed D decrease with
N, they can be substantial on relatively short chains that are still suf-
ficiently long so that the corresponding results are representative of
the long-chain limit. For example, forN ≙ 10 andD ≙ 6 (as in Fig. 3),
the relative decrease in the number of active variables with respect to
HEOM formulations in real space is around 40%.

C. Numerical examples concerning sum rules

Figure 5(a) summarizes how the relative accuracy

δOSR ≙
∣∫ +∞0 dω Reμac(ω) − π

2
∣⟨He⟩∣∣

π
2
∣⟨He⟩∣ , (21)

with which the OSR is satisfied depends on N and D for the same
values of model parameters as in Figs. 2–4. We observe that, in the
ranges of N and D considered, δOSR generally decreases with both N
[assuming fixed D; see black circles, right vertical and top horizon-
tal axes in Fig. 5(a)] and D [assuming fixed N; see red squares, left
vertical and bottom horizontal axes in Fig. 5(a)].

Fixing D to 6 and varying N from 7 to 15, we observe the steep-
est decrease in δOSR upon increasing N from 7 to 10, while further
increases inN from 10 to 13 and 15 result in a much milder decrease
in δOSR. This observation is consistent with both the imaginary-axis
data shown in Fig. 2(a) and the real-time data presented in Figs. 3(a)
and 3(b) and Table I. Namely, the largest (and smallest) variation
in Cjj(τ), Cjj(t), and μdc upon increasing N ∈ {7, 10, 13} to the sub-
sequent value from the sequence [7,10,13,15] is observed for N ≙ 7(N ≙ 13). The decrease in δOSR with increasing N is, however, ulti-
mately limited by the fact that δOSR depends on quantities that are
themselves calculated numerically and thus bring their own numer-
ical errors into the final expression. The integral over frequencies
is computed using the trapezoidal rule, while ⟨He⟩ is computed for
finite values of N and D (we do not use its “exact” value in the
limit N,D→∞ that could be obtained using our96 or some other76

method). The error incurred when the integral ∫ +∞0 dω Reμac(ω) is
evaluated using the trapezoidal rule is of the order of (Δω/J)3,119
where the frequency step Δω is related to the maximum propaga-
tion time tmax by Δω/J ≙ π/(Jtmax). Fixing D and varying N, we
use Jtmax ≙ 300, meaning that the numerical error of the integral

∫ +∞0 dω Reμac(ω) is of the order of (π/300)3 ∼ 10−6. In other words,
N ≙ 15 is sufficiently large that δOSR is most probably not domi-
nated by finite-size effects in N but rather by the error of numerical
integration. This is further corroborated by the fact that the kinetic
energies for N ≙ 13 and N ≙ 15 differ on the seventh decimal place
(see Table II), meaning that the error of the kinetic energy forN ≙ 15
is at least an order of magnitude below the numerical integration
error. On the other hand, for N ≙ 7, δOSR is most probably limited
by the finite-size effects in ⟨He⟩. The data in Table II suggest that
the error of ∣⟨He⟩∣N=7,D=6, which can be inferred from its deviation

FIG. 5. (a) Relative accuracy δOSR [Eq. (21)] as a function of D for N = 10 (red
squares, left vertical and bottom horizontal axes) and as a function of N for D = 6
(black circles, right vertical and top horizontal axes). The dashed lines connecting
the symbols serve as guides for the eye. The model parameters are g/J = ω0/J
= T/J = 1 (λ = 0.5). For N = 10, we use Cjj(t) up to Jtmax = 200 for
D = 5, 6, and 8, while for D = 7, we take Jtmax = 70 (see also Table I).
For D = 6, we use Cjj(t) up to Jtmax = 300 for N = 7, 10, 13, and 15.
(b) Comparison of HEOM (lines) and QMC (symbols with error bars)

results for Re Cjj(t) (in units of J2) for N = 10, g/J = 1/√3, ω0/J = 1/3,
T/J = 1 (λ = 0.5), and different values of D. Solid lines (label “w c”)
employ our closing [Eq. (13)], while dashed lines (label “TNL”) use the TNL trun-
cation. (c) Comparison of HEOM results averaged over depths D − 1 and D (solid
lines) with QMC results (symbols with error bars) for D = 6, 7, and 8, while other
parameters assume the same values as in (b). QMC data are the courtesy of N.
Vukmirović.

from ∣⟨He⟩∣N=10,D=6, is of the order of 10−3. This is consistent with
the value of δOSR reported in Fig. 5(a).

A similar analysis can be repeated by fixingN and varyingD. In
practice, our criterion for choosing N and D is that δOSR ≲ 10

−4. As
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TABLE II. Kinetic energy of the electron as a function of N and D for g/J = ω0/J
= T/J = 1.

(N,D) ∣⟨He⟩∣/J
(7,6) 1.155 308 279 5
(10,6) 1.154 623 995 5
(13,6) 1.154 622 914 9
(15,6) 1.154 623 007 8

mentioned in Sec. II E and as can be seen from the supplementary
material, the relative accuracy with which the sum rules in Eq. (17)
are satisfied is generally better than δOSR.

At higher temperatures (T/ω0 ≳ 3), we find that HEOM data
for fixed N and two sufficiently large consecutive depths D − 1 and
D generally have almost the same δOSR [as in Fig. 5(a)], while there
are some differences between them already at relatively short times.

For example, for g/J ≙ 1/√3, ω0/J ≙ 1/3, and T/J ≙ 1 (λ ≙ 0.5), we
find that the differences between HEOM results for different val-
ues of D (we fix N ≙ 10) appear already for Jt ≃ 2 or ω0t ≃ 2/3 [see
Fig. 5(b)], in contrast to the situation in Figs. 3(c) and 4(c), where the
differences appear at somewhat longer times. We perform HEOM
computations with TNL truncation and our specific closing and find
that the short-time differences observed in Fig. 5(b) cannot be exclu-
sively attributed to our closing scheme as they are also present under
the TNL truncation. Actually, our closing stabilizes the evolution of
Re Cjj(t) and lowers the differences between HEOM results for dif-
ferent values of D (with respect to the TNL truncation). To reveal
whether our HEOM results are reliable, we compare them with
QMC data obtained using the methodology developed in Ref. 63.
QMC results are numerically “exact,” as their convergence with
respect to all control parameters of the simulation has been carefully
checked. In Figs. 5(b) and 5(c), we show QMC results with their sta-
tistical error bars. Figure 5(b) suggests that the difference between
HEOM (with our closing) and QMC results decreases relatively
slowly with increasing D, while HEOM dynamics for Ds of the same
parity (D ≙ 5, 7 andD ≙ 6, 8) deviate from the QMC results in a sim-
ilar manner (both deviations are positive/negative). It is known that
the convergence of a slowly converging sequence can be improved
by performing an appropriate sequence transformation, such as the
Shanks or Richardson transformation.120 Here, inspired by the rea-
soning behind the Shanks transformation, we want to improve the
convergence of the sequence Cjj(D; t) in D (for fixed N and at each
instant t) by handling the term whose decay (as a function of D)
toward zero is the slowest. Based on Fig. 5(b), one may imagine that
the dependence of Cjj(D; t) on D can be represented as

C jj(D; t) ≙ CD→∞
jj (t) + α(t)(−1)D

Da , (22)

where a > 0, α(t) is a complex number, CD→∞
jj (t) is the sought

large-D limit, while the alternating term (−1)D mimics the observed
alternation of HEOM results with respect to QMC results with the
parity of D. We use Eq. (22) to arrive at

C jj(D − 1; t) − CD→∞
jj (t)

C jj(D; t) − CD→∞
jj (t) ≙ −(D − 1

D
)a ≈ −1, (23)

where the last approximate equality holds for sufficiently large D
(the smaller a, the smaller the minimum value of D for which the
approximation is good). Equation (23) implies that

C
D→∞
jj (t) ≈ C jj(D; t) + C jj(D − 1; t)

2
, (24)

which suggests that the large-D limit of Cjj(D; t) can be approached
more rapidly by considering the transformed sequence ∥Cjj(D; t)
+ Cjj(D − 1; t)∥/2 instead of the original sequence Cjj(D; t). While
our arguments are not fully mathematically rigorous, they produce
plausible results, as revealed in Fig. 5(c), showing how the HEOM
data averaged over two consecutive depths (5 and 6, 6 and 7, 7 and
8) compare to the QMC data. We observe that the agreement with
the QMC data improves with increasing the depths over which the
averaging is performed. As a result, when averaging over depths 7
and 8, HEOM results are within the QMC error bars in the largest
portion of the time window displayed. It then seems reasonable that
our final HEOM result in this parameter regime be the average of
the results forD ≙ 7 and 8. Finally, whenever our dataset117 provides
raw data for Cjj(t) for two consecutive depths, we use the average
Cjj(t) when computing physical quantities.

D. Signatures of the electron–phonon interaction
in time and frequency domains

Figures 6(a1)–6(c3) present selected results concerning the
dynamics of the j − j correlation function, diffusion constant,
and diffusion exponent, together with the frequency profile of
the dynamical mobility. Our analysis of the parameter regimes
in which HEOM computations are free of numerical instabili-
ties [see Figs. 7(a)–7(c)] identifies three typical behaviors of the
aforementioned quantities.

In the weak-coupling regime (λ ≙ 0.01) for ω0/J ≙ 1/3 and 1,
we find a smooth crossover from the ballistic electronic motion at
short times toward the diffusive motion at long times. The rep-
resentative results for ω0/J ≙ 1 are shown in Figs. 1(a) and 1(b),
while Figs. 6(a1)–6(a3) show representative results for ω0/J ≙ 1/3.
Re Cjj(t), D(t), and α(t) are all monotonic functions of time, while
the dynamical-mobility profile has only the Drude peak at ω ≙ 0 and
bears an overall resemblance to the Drude model.

Already in the intermediate-coupling regime (λ ≙ 0.5) for
ω0/J ≙ 1/3 and 1, the ballistic-to-diffusive crossover is not
smooth. The representative results for ω0/J ≙ 1 are presented in
Figs. 3(a)–3(c), whereas Figs. 6(b1)–6(b3) show representative
results for ω0/J ≙ 1/3. Re Cjj(t), D(t), and α(t) are non-monotonic
functions of time. We observe that Re Cjj(t) < 0 on intermediate
time scales, on which the diffusion constant decreases with time.
This is clear from Eq. (6), which establishes a connection between
the sign of Re Cjj(t) and the intervals of monotonicity of D(t).
α(t) reaches a pronounced local minimum on the very same time
scale. In other words, intermediate time scales in the intermediate-
interaction regime witness a temporally limited slow-down of the
electronic motion. Depending on the parameter regime (typically
for strong g and at high T), that slow-down may be so pronounced
that the electronic motion changes its character from superdiffusive(α > 1) to subdiffusive (α < 1) over a limited time frame.While such
a change occurs for model parameters studied in Figs. 6(b1)–6(b3),
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FIG. 6. Time dependence of Re Cjj [in units of J2, (a1)–(c1)], D [in units of J, (a2)–(c2)], and the frequency dependence of Re μac [(a3)–(c3)] for (a) ω0/J = 1/3, λ =
0.01, T/J = 1, (b) ω0/J = 1/3, λ = 0.5, T/J = 1, and (c) ω0/J = 3, λ = 0.5, T/J = 10. The insets of panels (a1)–(c1) [(a3)–(c3)] display the time dependence of Im Cjj in

units of J2 (α). The dashed lines in (a2)–(c2) represent the short-time (ballistic) limit of the diffusion constant, Dbal(t) = C jj(0)t. The dashed line in the inset of (c2)
represents α(t) for the parameter regime examined in Fig. 3. The results in (a1)–(a3) emerge from HEOM computations using N = 128, D = 2, while the remaining results
are the arithmetic average of HEOM computations using: (b1)–(b3) N = 10, D = 7 and N = 10, D = 8; (c1)–(c3) N = 5, D = 18 and N = 5, D = 19.

FIG. 7. HEOM-method results for the temperature-dependent dc mobility for different interaction strengths (different values of parameter λ) and (a) ω0/J = 1/3, (b) ω0/J = 1,
and (c) ω0/J = 3. Full symbols are HEOM-method results, while dashed lines connecting them serve as guides to the eye. Double dashed–dotted lines show the theoretically

predicted26 power-law scaling μdc ∝ T−2 or μdc ∝ T−3/2 in appropriate limiting cases (no fitting procedures have been performed on the HEOM data).

it is absent for model parameters studied in Figs. 3(a)–3(c) [see the
dashed line in the inset of Fig. 6(b3)]. Apart from the Drude peak at
ω ≙ 0, the dynamical mobility features a prominent finite-frequency
peak.

The available results for ω0/J ≙ 3, which are obtained for

sufficiently strong interactions and at sufficiently high tempera-
tures, also display a non-monotonic behavior of Re Cjj(t), D(t),
and α(t). In contrast to the results for ω0/J ≙ 1/3 and 1, D(t)
increases in almost regular steps centered around integer multiples
of 2π/ω0. The first peak of Re Cjj(t) is indeed centered at 2π/ω0,

while subsequent peaks are somewhat displaced toward earlier times
[see Fig. 6(c1)]. The dynamic-mobility profile is characterized by rel-
atively broad peaks centered around integer multiples of ω0. These
features suggest that we are close to the genuine small-polaron
limit.18,32

E. Temperature dependence of the dc mobility

Figures 7(a)–7(c) present the central result of our study, the
HEOM-method results for the temperature dependence of μdc for
three different values of ω0/J. As discussed in Sec. III B, our results
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for μdc should be assigned relative errors not surpassing 10%. The
values reported in Figs. 7(a)–7(c) are obtained by averaging μdc com-
puted using only ReCjj(t) or only ImCjj(t) [Eq. (5)]. The smoothing
procedure described in Sec. III B is applied when considering only
Im Cjj(t). At elevated temperatures (T/ω0 ≳ 3), we additionally
average HEOM results for two consecutive depths, as discussed in
Sec. III C.

Section III F gives an example of numerical instabilities appear-
ing for sufficiently strong g or at sufficiently low T, which prevent
us from obtaining reliable HEOM results, e.g., when λ > 1 or when
T/J < 2 and λ ≙ 1 in Fig. 7(b). Our data for λ ≙ 1 in Figs. 7(a) and
7(b) suggest that μdc enters saturation on the low-temperature side.
If we could lower the temperature further, we would enter the regime
of thermally activated transport, in which μdc grows with T, while
we obtain HEOM results only in regimes where μdc decreases with
T. Concerning the temperature dependence of μdc, we find that the
HEOM mobilities at low g and for ω0/J ≙ 1/3 and 1 are consistent
with the recently found scaling μdc ∝ T−2,26 which is shown as a
double dashed–dotted line. For stronger coupling and at sufficiently
high temperatures, the HEOM mobilities are consistent with the
scaling μdc ∝ T−3/2, which is again shown as a double dashed–dotted
line.

F. Numerical instabilities for strong electron–phonon
interactions and at low temperatures

For stronger interactions, at lower temperatures, and for larger
ω0/J, the numerical instabilities appearing already at relatively short
real times (despite employing our specific closing strategy) prevent
us from computing the long-time dynamics of Cjj(t) and thus μdc.
As an example, in Figs. 8(a) and 8(b), we present our HEOM results
in the strong-coupling regime (λ ≙ 2) for ω0/J ≙ 1 at a relatively low
temperature T/J ≙ 1 [Fig. 8(a)] and at an elevated temperature T/J
≙ 5 [Fig. 8(b)].

For T/J ≙ 1, numerical instabilities appear already for Jt ≳ 3
and become more pronounced at longer times. The maximum time
up to which reliable HEOM results for Cjj(t) can be obtained is
thus of the same order of magnitude as the maximum time that can
be reached in real-time QMC simulations, whose results are shown
as full symbols (QMC error bars are omitted here for visual clar-

ity). The inset of Fig. 8(a) shows how the integrals ∫ t
0 dsReC jj(s)/T

and −2∫ t
0 dssIm C jj(s), whose t → +∞ limit determines μdc, evolve

as functions of their upper limit t. While the numerical instabili-
ties become amplified when μdc is computed using only Im Cjj(t),
the data using only Re Cjj(t) may suggest that the maximum
time Jtmax ≙ 3 is sufficiently long to capture the electron’s diffusive

motion [∫ t
0 ds Re C jj(s)/T reaches a plateau for 2 ≤ Jt ≤ 3]. Nev-

ertheless, the corresponding mobility estimate may be unreliable.
Namely, as discussed in Ref. 42, for strong interactions and at not
too high temperatures, Re Cjj(t) exhibits a series of peaks whose
envelope decays over many phonon periods. Our HEOM computa-
tions do capture the most prominent peak centered at t ≙ 0. Still, the
numerical instabilities arise well before the completion of the first
phonon period 2π/ω0, meaning that the HEOM results fully miss
the contributions to μdc from the peaks at later times. Such contri-
butions may be appreciable because of the slowly decaying envelope,
and one may thus expect that the HEOM result underestimates the
dc mobility.

FIG. 8. Time dependence of Cjj (in units of J2) computed using the HEOM method
(lines) and the real-time QMC method developed in Ref. 63 (symbols) for ω0/
J = 1, λ = 2, and (a) T/J = 1, (b) T/J = 5. Solid (dashed) lines display Re Cjj(t)
∥Im Cjj(t)∥. The insets display time evolution of ∫

t
0

ds Re C jj(s)/T (solid lines)

and −2∫
t

0
dssIm C jj(s) (dashed lines). The HEOM computations in (a) use

N = 10 and D = 8, while (b) shows the arithmetic average of HEOM results
obtained for N = 7, D = 10 and N = 7, D = 11. QMC simulations in both (a) and
(b) use N = 10, and the respective data are the courtesy of N. Vukmirović.

For strong interactions and at higher temperatures, we do
not observe numerical instabilities [see Fig. 8(b)], and our HEOM
method can again reach much longer times than real-time QMC
methods. Higher temperatures, in combination with our closing
strategy, generally stabilize the HEOM. Since the amplitude of the
aforementioned later-time peaks is strongly suppressed at higher
temperatures,42 the HEOM method may provide reliable results
for μdc. The inset of Fig. 8(b) shows that mobility computations
using either ReCjj(t) or ImCjj(t) [the latter in conjunction with the
moving-average procedure, see the discussion of Fig. 3(b)] lead to
virtually the same HEOM result, μHEOM

dc ≙ 0.0375.
Finally, the very good agreement between theHEOMandQMC

results in Figs. 8(a) and 8(b) strongly suggests that the values of
D employed in the corresponding HEOM computations are suffi-
ciently large. One may ask themselves whether a larger value of D
could mitigate the instabilities observed in Fig. 8(a). Unfortunately,
the results of Ref. 101 show that the undamped-modeHEOM cannot
be stabilized by further increasing D.
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IV. CONCLUSION AND OUTLOOK

We develop the momentum-space HEOMmethod to compute
the real-time current–current correlation function at finite tempera-
ture for the 1d Holstein model, which provides us with direct access
to its transport properties. By exploiting the decoupling of the q ≙ 0
phonon mode and formulating the HEOM in the momentum rep-
resentation, we greatly reduce the number of variables with respect
to existing real-space HEOM implementations. This circumstance
has enabled us to obtain results that take into account all important
phonon-assisted processes (i.e.,D is sufficiently large) on chains that
are sufficiently long (i.e.,N is sufficiently large) so that the finite-size
effects are minimized. Another distinctive feature of our formal-
ism is its specific hierarchy closing strategy [Eq. (13)], which has
enabled us to overcome the numerical instabilities inherent to the
undamped-mode HEOM formulated on a finite chain and truncated
at a finite maximum hierarchy depth. We are thus in a position to
provide reliable results for the dc mobility by computing Cjj(t) up
to quite long real times by which it has almost decayed to zero, i.e.,
the electronic motion has become diffusive. A detailed analysis of
how Cjj(t) and, therefore, μdc depend on N and D suggests that our
results for temperature-dependent mobility should be considered
with uncertainties typically below 10%. Still, the instabilities remain
for strong couplings, at low temperatures, and for large phonon fre-
quencies. In such parameter regimes, we can obtain Cjj(t) only up
to relatively short real times.

Our momentum-space HEOM method, which has already
achieved substantial memory savings with respect to existing real-
space HEOM implementations (see Sec. III B), may be com-
bined with advanced propagation techniques based on the tensor
formalism80,103,121–123 or with on-the-fly filtering techniques124 to
treat longer chains or larger maximum depths. This could pave the
way toward HEOM computations at lower temperatures or stronger
interactions. In such parameter regimes, accurate results for elec-
tronic dynamics can be obtained using the hierarchy of Davydov’s
Ansätze.81,82 However, its current implementations assume that the
initial state of the electron–phonon system is factorized and that
phonons are in thermal equilibrium with the system with no elec-
trons. While following the electron’s dynamics from such a state can
provide information on the dc mobility,40,83,97 it provides no infor-
mation on the frequency-dependent mobility, which follows from
the current–current correlation function (see Sec. II A). Its com-
putation, in turn, necessitates an appropriate representation of the
thermal equilibrium state of the interacting electrons and phonons
(see Sec. II B), which has still not been addressed using the hierarchy
of Davydov’s Ansätze, to the best of our knowledge. Our study may
motivate an extension of Davydov’s Ansätze approach to compute
equilibrium correlation functions in parameter regimes that are the
most challenging for the HEOMmethod.

We also note that, at least in the limiting case of slow phonons,
an interesting physical picture for the finite-frequency peak we
observe in the optical response may be constructed based on the
transient localization scenario.125 While this approach was originally
devised to study transport limited by intermolecular vibrationsmod-
ulating the hopping amplitude, its more recent refinements126 and
applications127 have considered the Holstein model in the limit of
vanishing carrier density. A more detailed study in this direction
might be the subject of future work. We finally note that the method

proposed in this manuscript cannot be directly applied to study car-
rier transport limited by the nonlocal electron–phonon interaction
(e.g., the Peierls model).128 The developments reported here cru-
cially lean on the fact that the current operator j is a purely electronic
operator [see Eq. (3)]. In other words, the current–current corre-
lation function Cjj(t) can be computed using only the electronic
RDM (see Sec. II B). On the other hand, when the electron interacts
linearly with intermolecular phonons modulating the hopping inte-
gral, the current operator is a mixed electron–phonon operator.37,100

This means that Cjj(t) cannot be computed using only the electronic
RDM. One should thus devise a procedure to retrieve correlation
functions involving phonon operators from the HEOM formalism.
While this complex issue is well beyond the scope of this study, the
herein developed momentum-space representation of the HEOM
will remain beneficial to the overall computational performance of
such a procedure.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of HEOM com-
putations [values ofN andD employed, reference HEOM results for
the electron’s kinetic energy and moments of Cjj(ω), as well as the
relative accuracy with which different sum rules are satisfied]. The
supplementary material contains all the information needed to use
our numerical data that are deposited on the Zenodo platform (see
Ref. 117).
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APPENDIX A: DERIVATION OF THE HEOM
FOR THE REAL-TIME CURRENT–CURRENT
CORRELATION FUNCTION

The decoupling of the q ≙ 0 phonon mode from the rest of

the system permits us to consider Hamiltonians H′ph ≙ ∑′q ωqb
†
qbq

and H′e−ph ≙ ∑′q VqBq without the q ≙ 0 term, which is signaled

by primes. The Feynman–Vernon influence functional theory129

implies that the only phonon quantity that determines the dynam-
ics of ι(t) is the equilibrium free-phonon correlation function (we
assume t > 0 and q2, q1 ≠ 0),

Cq2q1(t) ≙ Tr′ph
⎧⎪⎪⎨⎪⎪⎩B
(I)
q2 (t)Bq1

e−βH
′

ph

Z′ph

⎫⎪⎪⎬⎪⎪⎭
≙ δq1 ,−q2

1

∑
m=0

cq2me
−μq2mt. (A1)

The time dependence in Eq. (A1) is in the interaction pic-

ture [signaled by the superscript (I)], B(I)q (t) ≙ eiH′phtBqe
−iH′pht , Z′ph

≙ Tr′ph e
−βH′ph is the free-phonon partition sum, while

cq0 ≙ ( g√
N
)2 1

1 − e−βωq
, μq0 ≙ +iωq, (A2)

cq1 ≙ ( g√
N
)2 1

eβωq − 1
, μq1 ≙ −iωq. (A3)

The partial trace over phonons in Eq. (8) is performed in the same
manner as in Refs. 96, 98, 99, and 108, and the final result for ι in the
interaction picture reads as

ι
(I)(t) ≙ T e

−∥Φ1(t)+Φ2(β)+Φ3(t,β)∥ j
e−βHe

Ze
. (A4)

Here, Ze ≙ Z/Z′ph is the electronic partition sum [Eq. (12)], while the
influence phases are given as

Φ1(t) ≙∑′
qm
∫

t

0
ds2∫

s2

0
ds1 V

(I)
q (s2)× e−μqm(s2−s1)

× [ cqm + cqm
2

V
(I)
−q (s1)× + cqm − cqm

2
V
(I)
−q (s1)○], (A5)

Φ2(β) ≙ −∑′
qm
∫

β

0
dτ2∫

τ2

0
dτ1

C
V−q(τ1)

× e
iμqm(τ2−τ1)cqm

C
Vq(τ2), (A6)

Φ3(t,β) ≙ −i∑′
qm
∫

t

0
ds∫

β

0
dτ V

(I)
q (s)×

× e
−μqmse

iμqm(β−τ)cqm
C
V−q(τ). (A7)

The influence phase Φ1(t) describes the pure real-time evolution,
and the hyperoperators V× and V○ entering Eq. (A5) act on an arbi-
trary operatorO as V×O ≙ ∥V ,O∥ (commutator) and V○O ≙ {V ,O}
(anticommutator), respectively. We define m ≙ 1 for m ≙ 0 and vice
versa. The influence phase Φ2(β) represents the pure imaginary-
time evolution, while Φ3(t,β) takes into account the contributions

mixing the real-time and imaginary-time evolutions. The imagi-
nary time-dependent operator in the interaction picture is defined
as V(τ) ≙ eHeτVe−Heτ , while the hyperoperator CV appearing in
Eqs. (A6) and (A7) acts on an arbitrary operator O as CVO ≙ OV .
The time ordering symbol T imposes the following hyperopera-
tor ordering: the hyperoperators depending on real time act after
the imaginary time-dependent hyperoperators; the arguments of
real time-dependent hyperoperators are chronologically ordered,
while the arguments of imaginary time-dependent hyperoperators
are anti-chronologically ordered. This ensures that the general term
in the expansion of Eq. (A4) is of the form

V
(I)
qn (sn)πn . . .V(I)q1 (s1)π1 j e

−βHe

Ze
Vpm(τm) . . .Vp1(τ1),

where n +m is even, π1, . . . ,πn ∈ {×, ○}, t ≥ sn ≥ ⋅ ⋅ ⋅ ≥ s1 ≥ 0,
β ≥ τm ≥ ⋅ ⋅ ⋅ ≥ τ1 ≥ 0, and qn + ⋅ ⋅ ⋅ + q1 + pm + ⋅ ⋅ ⋅ + p1 ≙ 0.

Starting from Eq. (A4), the HEOM [Eq. (9)] is formulated in

the standardmanner.88,96 The ADO ι
(n)
n is defined (in the interaction

picture) as

ι
(I,n)
n (t) ≙ f (n)T∏′

qm

{i∫ t

0
ds e

−μqm(t−s)[ cqm + cqm
2

V
(I)
−q (s)×

+
cqm − cqm

2
V
(I)
−q (s)○] + e−μqmt∫ β

0
dτ e

iμqm(β−τ)

× cqm
C
V−q(τ)}nqme−∥Φ1(t)+Φ2(β)+Φ3(t,β)∥ j

e−βHe

Ze
. (A8)

The rescaling factor f (n) reads as124
f (n) ≙∏′

qm

[cnqmqm nqm!]−1/2. (A9)

Equation (A8) explicitly shows that ι
(n)
n decreases the momentum

of the electronic subsystem by kn ≙ ∑′qm qnqm, meaning that only

N matrix elements ⟨k∣ι(n)n ∣k + kn⟩ connecting the free-electron states
whose momenta differ by kn assume nonzero values.

Setting t ≙ 0 in Eq. (A8) gives the following initial condition for
the real-time HEOM:

ι
(n)
n (0) ≙ j f (n)T∏′

qm

{∫ β

0
dτ e

iμqm(β−τ)cqm
C
V−q(τ)}nqm

× e
−Φ2(β) e

−βHe

Ze
. (A10)

In Eq. (A10), we may move the current operator to the left-most

position because all the hyperoperators act on the operator je−βHe/Ze

from the right. Similarly to Ref. 96, one may now recognize that

ι
(n)
n (0) is the product of operator j and the ADO σ

(n)
n (β), which

is one of the components in the hierarchical representation of the
(unnormalized) reduced density operator,

σ
(0)
0 (β) ≙ T e

−Φ2(β)e−βHe. (A11)
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To actually evaluate σ
(n)
n (β) and the normalization constant Ze

≙ Treσ
(0)
0 (β), we consider the imaginary time-dependent analog of

Eq. (A11),

σ
(0)
0 (τ) ≙ T e

−Φ2(τ)e−τHe , (A12)

where 0 ≤ τ ≤ β. As discussed in detail in Ref. 96, Eq. (A12) can be
transformed into the imaginary-time HEOM given in Eq. (10).

APPENDIX B: DERIVATION OF THE CLOSING SCHEME
IN EQ. (13)

Here, we provide a detailed derivation of our strategy for
hierarchy closing that is embodied in Eq. (13).

Let us consider the equation for ⟨k∣ι(D)D (t)∣k + kD⟩ at the maxi-

mum depth D, which contains the ADOs ι
(D+1)
D+qm

at depth D + 1. The

equation of motion for ι
(D+1)
D+qm

contains ADOs at depth D + 2, which

will be set to zero. Moreover, its coupling with the ADOs at depth
D will be restricted by assuming it couples back only to the original

ADO ι
(D)
D we are considering. With these assumptions, the equation

at depth D + 1 reads as

∂t⟨k∣ι(D+1)D+qm
(t)∣k + kD + q⟩

≙ −i(εk − εk+kD+q + μD+qm)⟨k∣ι(D+1)D+qm
(t)∣k + kD + q⟩

+ i
√(1 +Dqm)cqm ⟨k + q∣ι(D)D (t)∣k + kD + q⟩

− i
√
1 +Dqm

cqm√
cqm
⟨k∣ι(D)D (t)∣k + kD⟩. (B1)

Using the initial condition ⟨k∣ι(D+1)
D+qm

(0)∣k + kD + q⟩ ≙ 0, which is

appropriate because the imaginary-time HEOM in Eq. (10) is trun-
cated at the maximum depth D, Eq. (B1) can be formally integrated
to yield

⟨k∣ι(D+1)
D+qm

(t)∣k + kD + q⟩
≙ i
√
1 +Dqm∫

t

0
dt1 e

−i(εk−εk+kD+q+μD+qm )(t−t1)

× [√cqm e
−i(εk+q−εk+kD+q+μD)t1 f1(t1)

−
cqm√
cqm

e
−i(εk−εk+kD+μD)t1 f2(t1)]. (B2)

We have introduced the auxiliary function f1(t) representing the
slowly changing part of the ADO at depth D by factoring out the
oscillating (rapidly changing) part as follows:

⟨k + q∣ι(D)D (t)∣k + kD + q⟩ ≙ e−i(εk+q−εk+kD+q+μD)t f1(t), (B3)

and similarly for f2(t). Under the integral entering Eq. (B2), we
introduce the variable change s ≙ t − t1 and subsequently apply
the Markovian approximation f1/2(t − s) ≈ f1/2(t) to the slowly
changing part. As a result, we obtain

⟨k∣ι(D+1)
D+qm

(t)∣k + kD + q⟩
≙ i
√(1 +Dqm){√cqm∫

t

0
ds e

−i∥εk−εk+q+(δm0−δm1)ωq∥s

× ⟨k + q∣ι(D)D (t)∣k + kD + q⟩ − cqm√
cqm

×∫
t

0
ds e

−i∥εk+kD−εk+kD+q+(δm0−δm1)ωq∥s

× ⟨k∣ι(D)D (t)∣k + kD⟩}. (B4)

Using the last result, we write one of the terms that couple the equa-
tions at depthsD andD + 1 [the third term on the RHS of Eq. (9)] as
follows:

− i∑′
qm

√(1 +Dqm)cqm ⟨k∣ι(D+1)D+qm
(t)∣k + kD + q⟩

≙∑′
qm

(1 +Dqm)cqm∫ t

0
ds e

−i∥εk−εk+q+(δm0−δm1)ωq∥s

× ⟨k + q∣ι(D)D (t)∣k + kD + q⟩
−∑′

qm

(1 +Dqm)cqm∫ t

0
ds e

−i∥εk+kD−εk+kD+q+(δm0−δm1)ωq∥s

× ⟨k∣ι(D)D (t)∣k + kD⟩. (B5)

The second term on the RHS of Eq. (9) can be written and analyzed
in an analogous manner.

To evaluate Eq. (B5), we have to know the detailed structure
of the vector D that characterizes the ADOs at the maximum depth
D. We also observe that the second term on the RHS of Eq. (B5)

depends only on the quantity ⟨k∣ι(D)D (t)∣k + kD⟩ whose differential
equation we are considering. On the other hand, thematrix elements

of ι
(D)
D entering the first term on the RHS of Eq. (B5) depend on

q. This term may be neglected by invoking a sort of random phase

approximation: the matrix elements ⟨k + q∣ι(D)D (t)∣k + kD + q⟩ are
typically oscillatory functions of q, and onemay then argue that their
average over all momenta q is close to zero. A similar approximation
is also at the heart of the momentum-average approximation.44,45

In the remaining terms, we (i) exploit that for dispersionless optical
phonons (ωq ≡ ω0), cqm does not depend on q, (ii) neglect the contri-
butions containing Dqm, and (iii) evaluate the remaining integral in
Eq. (B5) by invoking the so-called adiabatic approximation, in which
the upper limit t of the integral is replaced by +∞. We furthermore
keep only the real part of the integral evaluated so that

∫
t

0
ds e

−iΩs
≈ ∫

+∞

0
ds e

−iΩs
≈ πδ(Ω). (B6)

This way, we introduce physically motivated damping of the ADOs
at the terminal level of the hierarchy. The damping effectively
replaces higher-order phonon-assisted processes that are not explic-
itly taken into account, while phonon-assisted processes involving

J. Chem. Phys. 159, 094113 (2023); doi: 10.1063/5.0165532 159, 094113-15

Published under an exclusive license by AIP Publishing

 1
1
 S

e
p
te

m
b
e
r 2

0
2
3
 0

7
:3

6
:2

7

https://pubs.aip.org/aip/jcp


The Journal

of Chemical Physics
ARTICLE pubs.aip.org/aip/jcp

at most D phonons are completely taken into account through the
HEOM. In the resulting expressions, we recognize the second-order
approximation for carrier scattering time out of the free-electron
state ∣k⟩,

1

τk
≙ 2π

g2

N
∑′
q

[(1 − e−βω0)−1δ(εk − εk−q − ω0)
+ (eβω0

− 1)−1δ(εk − εk−q + ω0)], (B7)

for which an analytical expression in the limit of infinite N has been
derived in Refs. 42 and 26. Even though we perform HEOM compu-
tations on finite chains, in Eq. (13) we use the value of τk obtained in
the infinite-chain limit. We believe that such a procedure is appro-
priate because we invested great effort to perform computations with
a sufficiently large N.

Instead of neglecting the term containing Dqm in Eq. (B5),
we may have replaced Dqm by its average value D/∥2(N − 1)∥ at
depth D [the sum ∑′qmDqm, which is equal to D, contains 2(N − 1)
terms]. Such a replacement would lead to larger damping factors
at depth D, which may have already been overestimated by using
the value of τk in the infinite-chain limit. Since the substitution
Dqm → D/∥2(N − 1)∥ does not improve the stability of the hierarchy
at low temperatures, for strong interactions, and for fast phonons,
we decided not to use it in our computations.

APPENDIX C: SUM RULES

The zeroth-moment sum rule states that

M0 ≙ ∫
+∞

−∞

dω

2π
C jj(ω) ≙ ⟨ j 2⟩. (C1)

Since j is a purely electronic operator, the evaluation of M0

necessitates only the operator ι
(0)
0 (t ≙ 0),

M0 ≙ −2J∑
k

sin (k)⟨k∣ι(0)0 (t ≙ 0)∣k⟩ ≡ C jj(t ≙ 0). (C2)

On the other hand, to evaluateMn for n ≥ 1, we need all ADOs
ι
(n)
n (t ≙ 0) at depths starting from 0 and concluding with n. The first-
moment sum rule is

M1 ≙ ∫
+∞

−∞

dω

2π
ω C jj(ω) ≙ ⟨∥ j,H∥ j⟩. (C3)

It can be shown that

∥ j,H∥ ≙ [ j,He−ph] ≙ −2J∑
q≠0,p

∥sin (p + q) − sin (p)∥∣p + q⟩⟨p∣Bq.

(C4)
Therefore,

M1 ≙ −2J∑
q≠0,p

∥sin(p + q) − sin(p)∥
× ⟨p∣Trph{Bq j

e−βH

Z
}∣p + q⟩. (C5)

The second-moment sum rule is somewhat more cumbersome to
evaluate

M2 ≙ ∫
+∞

−∞

dω

2π
ω
2
C jj(ω) ≙ ⟨∥∥ j,H∥,H∥ j⟩. (C6)

We separately evaluate the three contributions to the double
commutator

∥∥ j,H∥,H∥ ≙ ∥∥ j,H∥,He∥´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K1

+ ∥∥ j,H∥,Hph∥´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K2

+ ∥∥ j,H∥,He−ph∥´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K3

, (C7)

starting from the result for ∥j,H∥ embodied in Eq. (C4). We obtain

K1 ≙ −2J∑
q≠0,p

∥sin(p + q) − sin(p)∥(εp − εp+q)∣p + q⟩⟨p∣Bq, (C8)

K2 ≙ −2J∑
q≠0,p

∥sin(p + q) − sin(p)∥ωq
g√
N

× (∣p + q⟩⟨p∣bq − ∣p + q⟩⟨p∣b†
−q), (C9)

K3 ≙ −2J∑
q1≠0
q2≠0

∑
p

∣p + q1 + q2⟩⟨p∣Bq2Bq1

× ∥sin (p + q1 + q2) − sin (p + q1) − sin (p + q2) + sin (p)∥.
(C10)

In addition to the single-phonon-assisted ADO Trph{Bq j
e−βH

Z
},

the evaluation of ⟨K1j⟩, ⟨K2j⟩, and ⟨K3j⟩ necessitates their contri-
butions describing phonon absorption and emission, which stem

from the definition Bq ≙
g√
N
(bq + b†

−q), as well as the two-phonon-
assisted ADO Trph{Bq2Bq1 j

e−βH

Z
}. In the following, we compute

these (electronic) operators using the ideas developed in Refs. 130
and 131.

Denoting e−βH

Z
≙ ρ

eq
T , we can write

jρ
eq
T ≙ T exp

⎡⎢⎢⎢⎢⎣−∫
β

0
dτ∑′

q

C
Vq(τ)CBq(τ)

⎤⎥⎥⎥⎥⎦
× j

e−βHe

Ze

e−βH
′

ph

Z′ph
. (C11)

To evaluate phonon-assisted contributions, we introduce auxiliary
fields fq(τ) and consider their functional

jρ
eq

T, f
≙ T exp

⎡⎢⎢⎢⎢⎣−∫
β

0
dτ∑′

q

C∥Vq(τ) + fq(τ)∥CBq(τ)
⎤⎥⎥⎥⎥⎦

× j
e−βHe

Ze

e−βH
′

ph

Z′ph
. (C12)

Defining

jρ
eq

f
≙ jTrphρ

eq

T, f
, (C13)

one can show that

⎡⎢⎢⎢⎢⎣ j
δρ

eq

f

δ fq(β)
⎤⎥⎥⎥⎥⎦ f=0

≙ −Trph{Bq jρ
eq
T
}, (C14)

⎡⎢⎢⎢⎢⎣ j
δ2ρ

eq

f

δ fq2(β)δ fq1(β)
⎤⎥⎥⎥⎥⎦ f=0

≙ Trph{Bq2Bq1 jρ
eq
T
}. (C15)
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On the other hand,

ρ
eq

f
≙ T e

−Φ2, f (β) e
−βHe

Ze
, (C16)

where the influence phase Φ2, f (β) is a functional of auxiliary fields
fq(τ) [cf. Eq. (A6)],

Φ2, f (β) ≙ −∫ β

0
dτ2∫

τ2

0
dτ1∑′

qm

C∥V−q(τ1) + f−q(τ1)∥
× e

iμqm(τ2−τ1)cqm
C∥Vq(τ2) + fq(τ2)∥. (C17)

It then follows that

δρ
eq

f

δ fq1(β) ≙ T {−δΦ2, f (β)
δ fq1(β) e

−Φ2, f (β)} e−βHe

Ze
, (C18)

δ2ρ
eq

f

δ fq2(β)δ fq1(β)
≙ T {[− δ2Φ2, f (β)

δ fq2(β)δ fq1(β) +
δΦ2, f (β)
δ fq2(β)

δΦ2, f (β)
δ fq1(β) ]e

−Φ2, f (β)}
×
e−βHe

Ze
, (C19)

The explicit evaluation of the functional derivatives produces

δΦ2, f (β)
δ fq1(β) ≙ −∫

β

0
dτ∑

m

cq1m e
iμq1m(β−τ)C∥V−q1(τ) + f−q1(τ)∥,

(C20)

δ2Φ f (β)
δ fq2(β)δ fq1(β) ≙ −δq2 ,−q1∑m cq1m. (C21)

Using the definition of ADOs ι
(n)
n at t ≙ 0 [Eq. (A8)] and rescaling

factors f (n) [Eq. (A9)], we finally obtain
Trph{Bq jρ

eq
T
} ≙ −∑

m

1

f (0+qm) ι
(1)
0+qm
(t ≙ 0), (C22)

Trph{Bq2Bq1ρ
eq
T
} ≙ δq2 ,−q1(∑

m

cq1m)ι(0)0 (t ≙ 0) + ∑
m2m1

×
1

f (0++(q1m1),(q2m2)) ι
(2)
0++
(q1m1),(q2m2)

(t ≙ 0). (C23)

The contributions that differentiate between absorption and emis-
sion of a single phonon are most straightforwardly obtained by
explicitly setting up an equation of motion for such processes and
comparing the kinetic term in the equation thus obtained with the
kinetic term in Eq. (9). This procedure yields

g√
N
Trph{bq jρeqT } ≙ − 1

f (0+q0) ι
(1)
0+
q0

(t ≙ 0), (C24)

g√
N
Trph{b†

−q jρ
eq
T } ≙ − 1

f (0+q1) ι
(1)
0+
q1

(t ≙ 0). (C25)

The final result for the first-moment sum rule reads as

M1 ≙ 2J∑
q≠0,p

∑
m

sin (p + q) − sin (p)
f (0+qm)

× ⟨p∣ι(1)
0+qm
(t ≙ 0)∣p + q⟩. (C26)

The final result for the second-moment sum rule reads as

M2 ≙ ⟨K1j⟩ + ⟨K2j⟩ + ⟨K3j⟩, (C27)

where

⟨K1 j⟩ ≙ 2J∑
q≠0,p

∑
m

sin (p + q) − sin (p)
f (0+qm) (εp − εp+q)

× ⟨p∣ι(1)
0+qm
(t ≙ 0)∣p + q⟩, (C28)

⟨K2 j⟩ ≙ 2J∑
q≠0,p

∑
m

(−1)m sin (p + q) − sin (p)
f (0+qm) ωq

× ⟨p∣ι(1)
0+qm
(t ≙ 0)∣p + q⟩, (C29)

and

⟨K3 j⟩ ≙ −2J∑
q≠0,p

∑
m

4 sin (p)sin2(q/2)cqm⟨p∣ι(0)0 (t ≙ 0)∣p⟩

− 2J ∑
q2 ,q1≠0
p

∑
m2m1

⟨p∣ι(2)
0++
(q1m1),(q2m2)

(t ≙ 0)∣p + q1 + q2⟩
f (0++(q1m1),(q2m2))

× ∥sin (p + q1 + q2) − sin (p + q1) − sin (p + q2) + sin (p)∥.
(C30)

APPENDIX D: OPTICAL SUM RULE AND FINITE-SIZE
EFFECTS

We find that the relative accuracy with which the OSR is sat-
isfied increases with increasing N, see Sec. III C. This observation
suggests that the OSR formulated in Eq. (16) is strictly valid only
in the long-chain limit, while on finite chains there are finite-size
corrections that vanish as N → +∞. In the following, we provide a
derivation of the OSR for finiteN, identify the finite-size corrections,
and demonstrate that they vanish in the long-chain limit.

Let us start by noting that the current operator on an N-site
chain, defined in Eq. (3), may be expressed in the site basis as

j ≙ iJ
N−1

∑
m=0

(∣m⟩⟨m⊕ 1∣ − ∣m⊕ 1⟩⟨m∣). (D1)

The cyclic addition ⊕ ∥a⊕ b ≙ (a + b) mod N∥ takes into account
that sites 0 and N − 1 are first neighbors because of the periodic
boundary conditions. Our derivation of the OSR makes use of the
continuity equation

j̃ ≙
dP

dt
≙ −i∥P,H∥, (D2)
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where the polarization operator (in the site basis) is given as

P ≙ −
N−1

∑
m=0

m∣m⟩⟨m∣. (D3)

While the current operators j̃ and j are identical in the infinite-chain
limit, their difference on a finite chain reads as

j̃ − j ≙ −iJP̂N−1,0, (D4)

where

P̂N−1,0 ≙ N(∣N − 1⟩⟨0∣ − ∣0⟩⟨N − 1∣). (D5)

Our derivation starts from the integral I ≙ ∫ +∞−∞ dωReμac(ω),
whose integrand is expressed using the first equality in Eq. (4). Sub-
stitutingCjj(ω) in terms ofCjj(t), writing the resulting expression in
the eigenbasis {∣α⟩} of the full Hamiltonian H (H∣α⟩ ≙ Eα∣α⟩), and
performing the integrations over time and frequency, we obtain

I ≙ π∑
α′ α

⟨α′∣ j∣α⟩⟨α∣ j∣α′⟩
Eα − Eα′

e−βEα′ − e−βEα

Z
. (D6)

We can eliminate the energy difference Eα − Eα′ in the denomina-
tor of each term by expressing one of the current operators using
the continuity equation [Eq. (D2)]. We should, however, take into
account the finite-size correction entering Eq. (D4). We then obtain

I ≙ −iπ∑
α′α

⟨α′∣P∣α⟩⟨α∣ j∣α′⟩ e−βEα′ − e−βEα
Z

+ iπJ∑
α′α

⟨α′∣P̂N−1,0∣α⟩⟨α∣ j∣α′⟩
Eα − Eα′

e−βEα′ − e−βEα

Z

≙ I1 + I2. (D7)

The term I1 can then be written as

I1 ≙ −iπTr{∥P, j∥ e−βH
Z
}. (D8)

The commutator ∥P, j∥, where both operators are defined on a finite
chain, is equal to

∥P, j∥ ≙ −iHe − iJP̂N−1,0, (D9)

so that

I1 ≙ −πTre

⎧⎪⎪⎨⎪⎪⎩He
σ
(0)
0 (β)
Ze

⎫⎪⎪⎬⎪⎪⎭ − πJTre
⎧⎪⎪⎨⎪⎪⎩P̂N−1,0

σ
(0)
0 (β)
Ze

⎫⎪⎪⎬⎪⎪⎭
≙ I1,1 + I1,2. (D10)

While the term I1,1 alone gives the desired result for the OSR(I ≙ −π⟨He⟩), the terms I1,2 and I2 are finite-size corrections. The

term I2 can be transformed by applying the steps that led to Eq. (D6)
in the reverse order, which gives

I2 ≙ ∫
+∞

−∞

dω
1 − e−βω

2ω ∫
+∞

−∞

dt e
iωt

× Tr{eiHtP̂N−1,0e
−iHt

j
e−βH

Z
}

≙ ∫
+∞

−∞

dω
1 − e−βω

2ω ∫
+∞

−∞

dt e
iωt
Tre{P̂N−1,0ι(t)}. (D11)

Both I1,2 and I2 reduce to expectation values of the purely electronic
operator P̂N−1,0 with respect to the reduced (purely electronic) den-

sity matrix σ
(0)
0 (β)/Ze (for I1,2) or ι(t) (for I2) that is diagonal in the

momentum representation. For example,

Tre{P̂N−1,0ι(t)} ≙ −2i∑
k

⟨k∣ι(t)∣k⟩⟩ sin(2πnkN − 1
N
), (D12)

where the sum is over N allowed values of the wave number
k ≙ 2πnk/N, with nk being N consecutive integers. As N → +∞,(N − 1)/N → 1, and each term entering Eq. (D12) tends to zero.
In other words, the finite-size correction I2 vanishes in the infinite-
chain limit. The same reasoning may be applied to show that I1,2
vanishes in the infinite-chain limit.
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We examine the range of validity of the second-order cumulant expansion (CE) for the calculation of spectral

functions, quasiparticle properties, and mobility of the Holstein polaron. We devise an efficient numerical

implementation that allows us to make comparisons in a broad interval of temperature, electron-phonon coupling,

and phonon frequency. For a benchmark, we use the dynamical mean-field theory which gives, as we have

recently shown, rather accurate spectral functions in the whole parameter space, even in low dimensions. We

find that in one dimension, the CE resolves well both the quasiparticle and the first satellite peak in a regime of

intermediate coupling. At high temperatures, the charge mobility assumes a power law μ ∝ T −2 in the limit of

weak coupling and μ ∝ T −3/2 for stronger coupling. We find that, for stronger coupling, the CE gives slightly

better results than the self-consistent Migdal approximation (SCMA), while the one-shot Migdal approximation

is appropriate only for a very weak electron-phonon interaction. We also analyze the atomic limit and the spectral

sum rules. We derive an analytical expression for the moments in CE and find that they are exact up to the fourth

order, as opposed to the SCMA where they are exact to the third order. Finally, we analyze the results in higher

dimensions.

DOI: 10.1103/PhysRevB.107.125165

I. INTRODUCTION

The cumulant expansion (CE) method presents an alterna-

tive to the usual Dyson equation approach in the calculation

of spectral functions of interacting quantum many-particle

systems [1]. In this method, we express the Green’s function

in real time as an exponential function of an auxiliary quantity

C(t ), called the cumulant, which can be calculated perturba-

tively [2]. In the late 1960s, it was established that the lowest

order CE gives the exact solution of the problem of a core hole

coupled to bosonic excitations (plasmons or phonons) [3,4].

While there were early papers that emphasized the potential

role of CE as an approximate method to treat the elec-

tronic correlations in metals beyond the GW approximation

[5–8] and the electron-phonon interaction in semiconductors

and narrow band metals beyond the Migdal approximation

(MA) [9–11], a surge of studies of CE has appeared only

recently.

Renewed interest has emerged due to the possibility of

combining CE with ab initio band-structure calculations. The

CE for the electron-phonon interaction was used to obtain

the spectral functions of several doped transition-metal oxides

[12,13], showing a favorable comparison with angle-resolved

photoemission spectroscopy [14]. A particularly appealing

feature of the CE approach is that it describes the quasipar-

ticle part of the spectrum as well as the satellite structure

(sidebands). Combining the CE with the Kubo formula for

charge transport gives an attractive route to calculate mobility

in semiconductors beyond the Boltzmann approach, which

is applicable only for weak electron-phonon coupling [15].

This was very recently demonstrated for SrTiO3 [16] and

naphthalene [17]. CE was also applied to elemental metals

where a correction to the standard MA is discussed [18].

Similarly, the CE is successfully used to treat the electronic

correlations beyond the GW approximation [19–25]. Further-

more, CE was used to study absorption spectra in molecular

aggregates representative of photosynthetic pigment-protein

complexes [26–28].

Despite the wide use of the lowest order CE, there seems

to be a lack of studies establishing its range of validity,

which represents the central motivation for this paper. To

achieve this, we turn to simplified models of the electron-

phonon interaction. CE for the Fröhlich model [29,30] gives

the ground-state energy and the effective mass similar to

the exact quantum Monte Carlo calculations for moderate

interaction [31]. This is in contrast to the Dyson-Migdal

approach, which severely underestimates mass renormaliza-

tion. A comparison of the corresponding spectral functions

is, however, missing, since reliable quantum Monte Carlo

results are not available due to the well-known problems with

analytical continuation. The Holstein polaron model gives a

unique opportunity to explore the applicability of the CE since

various numerically exact methods are developed and applied

to this model covering different parameter regimes [32–49].

This was the approach of a very recent work by Reichman

and collaborators [50,51]. Still, there are several questions

that remained unresolved. Most importantly, a comparison of

spectral functions was made just for a small set of parameters

on a finite-size lattice, where the benchmark spectral functions

were available from the finite-temperature Lanczos results,

while the charge transport was not examined.

In our recent work [52], we established that the dynamical

mean-field theory (DMFT) [53] gives close to exact spectral

functions of the Holstein polaron for different phonon fre-

quencies, electron-phonon couplings, and temperatures even

in low dimensions, covering practically the whole parameter

space. This method is computationally very fast and precise,

which makes us ideally positioned to perform comprehen-

sive comparisons with the CE method, which is the goal of
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this paper. Within the CE, we calculate the spectral func-

tions and charge mobility for a broad set of parameters and

make detailed comparisons with DMFT and (self-consistent)

MA. We find that the one-shot MA is appropriate only for

very weak electron-phonon coupling. The validity of the CE

and self-consistent Migdal approximation (SCMA) is much

broader and for intermediate interaction CE even outperforms

SCMA. We also derive analytical CE expressions for the

ground-state energy, renormalized mass, and scattering rate

as well as the spectral sum rules, and make comparisons

between the methods. We establish a power-law behavior for

the charge mobility at high temperatures. We also compare the

performance of different methods as the bandwidth is reduced

toward the atomic limit.

The remaining part of the paper is organized as follows.

In Sec. II, we introduce the CE method and present details of

its implementation on the Holstein model. DMFT and SCMA

are here introduced as benchmark methods. Representative

spectral functions are shown in Sec. III from weak toward

the strong coupling. The high-temperature and atomic limits

are analyzed in detail, as well as the spectral sum rules. In

Sec. IV, we present the results for the effective mass and

ground-state energy. The temperature dependence of the elec-

tron mobility is analyzed in Sec. V, and Sec. VI contains our

conclusions. Some details concerning numerical implementa-

tions and additional figures for various parameters are shown

in the Appendix and in the Supplemental Material (SM) [54].

II. MODEL AND METHODS

The Holstein model is the simplest model of the lattice

electrons interacting with the phonons. It assumes a local

electron-phonon interaction and dispersionless phonons. The

Hamiltonian is given by

H = − t0
∑

〈i j〉

(c†
i c j + H.c.)

− g
∑

i

ni(a
†
i + ai ) + ω0

∑

i

a
†
i ai. (1)

Here, t0 is the hopping parameter between the nearest neigh-

bors and ω0 is the phonon frequency. ci and ai are the electron

and the phonon annihilation operators, ni = c
†
i ci, and g de-

notes the electron-phonon coupling strength. We set h̄, kB,

elementary charge e, and lattice constant to 1. We also often

use a parameter α = g/ω0. We study the model in the thermo-

dynamic limit (number of sites N → ∞). Furthermore, we

consider a dynamics of a single electron in the conduction

band and treat the electrons as spinless, since we are interested

only in weakly doped semiconductors. This is equivalent to

setting the chemical potential far below the conduction band,

i.e., considering the limit μ̃ → −∞. This case is often re-

ferred to as the Holstein polaron problem. We mostly focus

on the one-dimensional (1D) system, but we also consider the

system in 2D and 3D.

A. Cumulant expansion

1. General theory

The central quantity of this paper is the electron spectral

function Ak(ω) = (−1/π )ImGk(ω), where k is the momen-

tum and Gk(ω) is the retarded Green’s function in frequency

domain [1]. Its exact evaluation is often a formidable task,

which is why approximate techniques are usually employed.

One needs to be careful with such approaches not to violate

some analytic properties, such as the pole structure of the

Green’s function, the positivity of the spectral function, or

the spectral sum rules. At least some of these properties can

be easily satisfied if the Green’s function is not calculated

directly but instead through some auxiliary quantity, such as

the self-energy �k(ω). In the latter case, the connection with

the Green’s function is established via the Dyson equation

Gk(ω) =
1

Gk,0(ω)−1 − �k(ω)
=

1

ω − εk − �k(ω)
, (2)

where Gk,0(ω) is the noninteracting Green’s function and εk

is the noninteracting dispersion relation.

An alternative to the Dyson equation based approaches is

the so-called cumulant expansion method [19], in which the

exponential ansatz is chosen for the Green’s function in the

time domain:

Gk(t ) = Gk,0(t )eCk (t ) = −iθ (t )e−iεkt eCk (t ). (3)

Here, θ (t ) is the Heaviside step function and Ck(t ) plays the

role of an auxiliary quantity which is called the cumulant.

Both Eqs. (2) and (3) would correspond to the same Green’s

function in frequency and time domain if the cumulant Ck(t )

and the self-energy �k(ω) could be evaluated exactly [1].

In practice, however, one of these approaches is expected to

perform better. The spectral function within the CE can be

obtained as follows:

Ak(ω + εk ) =
1

π
Re

∫ ∞

0

dteiωt eCk (t ). (4)

Equation (4) circumvents the Fourier transform of the whole

Green’s function Ak(ω) = − 1
π

ImGk(ω), which is useful in

practice, as the free electron part e−iεkt typically oscillates

much more quickly than eCk (t ).

The expression for Ck(t ) in the lowest order perturbation

expansion can be obtained by taking the leading terms

in the Taylor expansion of the Dyson equation Gk(ω) =
(Gk,0(ω)−1 − �k(ω))−1 ≈ Gk,0(ω) + Gk,0(ω)�k(ω)Gk,0(ω),

taking its inverse Fourier transform and equating it to Eq. (3),

where the cumulant in the exponent is replaced with its linear

approximation eCk (t ) ≈ 1 + Ck(t ):

Ck(t ) = ieiεkt

∫ ∞

−∞

dω

2π

e−iωt�k(ω)

(ω − εk + i0+)2
. (5)

Using the spectral representation of the self-energy

�k(ω) =
∫

dν

π

|Im�k(ν)|
ω − ν + i0+ , (6)

and the contour integration over ω, Eq. (5) simplifies to [19]

Ck(t ) =
1

π

∫ ∞

−∞
dω

|Im�k(ω + εk )|
ω2

(e−iωt + iωt − 1). (7)

The corresponding spectral function satisfies the first two

sum rules, irrespective of �k(ω). This is a consequence of

the behavior of Ck(t ) for small t ; see Sec. III C. In gen-

eral, Ck(t = 0) = 0 is sufficient for the first spectral sum

rule
∫

Ak(ω)dω = 1 to be satisfied. The second sum rule

125165-2



CUMULANT EXPANSION IN THE HOLSTEIN MODEL: … PHYSICAL REVIEW B 107, 125165 (2023)

∫

Ak(ω)ωdω = εk can also be satisfied if we additionally

impose that the cumulant’s first derivative at t = 0 is van-

ishing, dCk

dt
(0) = 0. Both of these conditions are satisfied by

the cumulant function in Eq. (7), as it is a quadratic function

of time for small arguments e−iωt + iωt − 1 ≈ −ω2t2/2 for

t → 0.

The application of Eq. (7) is facilitated by the fact that

it does not contain any iterative self-consistent calculations.

However, one needs to overcome the numerical challenges

caused by the removable singularity at ω = 0 and by the

rapidly oscillating trigonometric factor e−iωt for large t . The

latter is important for the weak electron-phonon couplings,

where it is necessary to propagate Ck(t ) up to long times until

the Green’s function is sufficiently damped out. The same

problem occurs in other regimes as well (e.g., close to the

atomic limit), where the Green’s function does not attenuate

at all; see Sec. II A 4.

The numerical singularity at ω = 0 can be completely

avoided if we consider the cumulant’s second derivative

d2Ck(t )

dt2
=

∫ ∞

−∞

dω

π
Im�k(ω + εk ) e−iωt ≡ 2eiεkt σ̃k(t ), (8)

where we used Im�k(ω) < 0 and introduced σ̃k(t ) ≡
∫ ∞
−∞ Im�k(ω)e−iωt dω

2π
. Then, Ck(t ) is obtained as a double

integral over time of Eq. (8),

Ck(t ) = 2

∫ t

0

dt ′
∫ t ′

0

dt ′′eiεkt ′′
σ̃k(t ′′), (9)

where the lower boundaries of both integrals have to be zero,

as guaranteed by the initial conditions Ck(0) = dCk

dt
(0) = 0.

Using the Cauchy formula for repeated integration, this can

also be written as a single integral:

Ck(t ) = 2

∫ t

0

(t − x)eiεkxσ̃k(x)dx. (10)

This completely removed the problem of numerical sin-

gularities. Still, the problem of rapid oscillations of the

subintegral function remains due to the presence of eiεkx term.

In Sec. II A 3, we provide an elegant solution for this issue,

focusing on the case of the Holstein model.

2. Asymptotic expansion for cumulant when t → ∞

The asymptotic expansion of Ck(t ) for large times, as

we now demonstrate, completely determines the quasiparticle

properties within this method. This is one of the main moti-

vations for studying the t → ∞ limit. From Eq. (8), we see

that

i
dCk

dt
(t → ∞) = i

∫ ∞

0

d2Ck(t )

dt2
dt

= −
i

π

∫ ∞

−∞
dω|Im�k(ω + εk )|

∫ ∞

0

dte−iωt

= �k(εk ), (11)

where we used the identity
∫ ∞

0
dte−iωt = πδ(ω) − iP 1

ω
and

the Kramers-Kronig relations for the self-energy. Hence, the

cumulant function Ck(t ), and also the whole exponent in

Eq. (3) is a linear function of time Ck(t ) − iεkt ≈ −iẼkt +

const for t → ∞, where

Ẽk = εk + �k(εk ). (12)

As a consequence, the Green’s function in Fourier space has a

simple pole situated at Ẽk, as seen from the following expres-

sion:

Gk(ω) = −i

∫ ∞

0

eit (ω−εk− iCk (t )

t
)dt . (13)

Therefore, quasiparticle properties are encoded in Ẽk: its real

and imaginary parts correspond to the quasiparticle energy

and scattering rate, respectively. We note that, in our present

analysis, we implicitly assumed that dCk

dt
(t → ∞) exists and

is finite. Although this is generally true, there are a few excep-

tions. In the Holstein model, the first assumption is violated

at the atomic limit [t0 = 0; see Eq. (28)], while the second

assumption is violated at the adiabatic limit (ω0 = 0) for

k = 0 or k = ±π ; see Eqs. (18) or (19).

The knowledge that we gained about the analytic properties

of the Ck(t ) provides us with an intuitive understanding of

how the shape of the cumulant determines the shape of the

spectral function. The asymptotic limits t → ∞ [where Ck(t )

is linear] and t → 0 [where Ck(t ) is quadratic] by them-

selves, to a large extent, describe only the simple one-peak

spectral functions, while the crossover between these limits

is responsible for the emergence of satellite peaks. This can

be explained as follows: If the cumulant was quadratic over

the whole t domain Ck(t ) = ct2, the spectral function would

have a simple Gaussian shape. Similarly, the Lorentzian shape

would be obtained from the linear cumulant Ck(t ) = ct . This

suggests that the simple crossover between quadratic (at small

t ) and linear (at large t ) behaviors would also give a sim-

ple one-peak shape of the spectral function. The information

about phonon satellites is thus completely encoded in the

Ck(t ) for intermediate times t , which depends on the system

and approximation in which the cumulant function is calcu-

lated.

3. Second-order cumulant expansion for the Holstein model

Let us now concentrate on a specific example, the Holstein

model on a hypercubic lattice in n dimensions. The second-

order cumulant is given by Eq. (7), where the self-energy is

taken to be in the MA �k(ω) = �MA(ω), i.e., of the second

(lowest) order with respect to the electron-phonon coupling

g. This is in accordance with the derivation from Sec. II A 1,

since we restricted ourselves to the lowest order terms in the

Taylor expansion of the Dyson equation and of eCk (t ). An alter-

native derivation of this expression is given in Sec. I of the SM

[54]. MA is briefly discussed in Sec. II B 1. For our present

purpose, we only need the expression for the imaginary part

of the self-energy

Im�MA(ω) = −πg2[(nph + 1)ρ(ω − ω0) + nphρ(ω + ω0)],

(14)

where nph = 1/(eω0/T − 1) is the Bose factor, ρ(ω) =
1
N

∑

k δ(ω − εk ) is the density of electron states for the system

of size N , which we take in the thermodynamic limit N → ∞,

and εk = −2t0
∑n

j=1 cos k j is the noninteracting dispersion

relation.
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FIG. 1. (a)–(f) The cumulant, Green’s, and spectral function on

the example of the one-dimensional Holstein model with the follow-

ing values of the model parameters: ω0 = 0.2, g = 0.2, T = 0.3, and

t0 = 1.

The expression for the cumulant function, as seen from

Eq. (10), is related to the inverse Fourier transform of

Im�MA(ω), which in turn is completely determined by the

inverse Fourier transform of the density of states ρ̃(t ). The

latter admits a closed-form solution

ρ̃(t ) =
∫ ∞

−∞

dωe−iωt

(2π )n+1

∫

[0,2π )n

dnk δ

⎛

⎝ω + 2t0

n
∑

j=1

cos k j

⎞

⎠

=
1

2π

(
1

2π

∫ 2π

0

dke2it0t cos k

)n

=
J0(2t0t )n

2π
, (15)

where J0 is the Bessel function of the first kind of order

zero. Hence, Eqs. (10), (14), and (15) imply that the cumulant

function can be written as

Ck(t ) = −g2

∫ t

0

dx(t − x)iD(x)eixεk J0(2t0x)n, (16)

where iD(t ) = (nph + 1)e−iω0t + npheiω0t is the phonon prop-

agator in real time (for t > 0). In Fig. 1, we illustrate the

cumulant function, as well as the corresponding Green’s func-

tion and spectral function. Figures 1(a) and 1(b) show the

second derivative of the cumulant

d2Ck(t )

dt2
= −g2iD(t )eitεk J0(2t0t )n (17)

to demonstrate the rapid oscillations that are also present in

the cumulant itself. These are not easily observed by inspect-

FIG. 2. Quasiparticle lifetime τk in the CE method for T/t0 = 2

and g/t0 = 1.

ing Ck(t ) directly, as the linear behavior dominates for large

times. We observe that the k = 0 and k = π results possess an

oscillating envelope with period 2π/ω0, while intermediate

momenta have a much less regular structure. This can have

direct consequences on the spectral functions, as the satellite

peaks are expected to be at a distance ω0 from each other.

To be more explicit, oscillating envelopes suggest that there

is a much higher chance for the occurrence of satellite peaks

near the bottom (k ≈ 0) and the top (k ≈ π ) of the band, than

otherwise. However, that does not guarantee that the satellite

peaks will in fact occur. Figure 1(c) shows that ReCk(t ) is

declining faster for k > 0 than for k = 0. As a consequence,

eCk (t ) in Fig. 1(d) attenuates slower for k = 0, having enough

time to complete a full period, while k = π results are remi-

niscent of an overdamped oscillator. A similar, although much

less evident, effect can be seen in the Green’s function itself;

see Fig. 1(e). This is why the k = π spectral function in

Fig. 1(f) has a simple one-peak shape, while only the k = 0

result captures one small satellite peak.

From a numerical point of view, Eq. (16) is treated using

Levin’s collocation method [55], which is reviewed in Ap-

pendix A. It provides a controlled, accurate, and numerically

efficient way to integrate the product of trigonometric, Bessel,

and some slowly varying function. This approach avoids using

a dense t grid, which would otherwise be required, as the

subintegral function in Eq. (16) has the same type of rapid

oscillations present in d2Ck(t )/dt2.

4. Lifetime

Another question of practical importance is how long we

should propagate the cumulant function in real time until the

corresponding Green’s function attenuates. A rough estimate

of such quantity is given by the quasiparticle lifetime τk. The

lifetime is given by τk = 1/(2|ImẼk|), where Ẽk is given by

Eq. (12) and the self-energy is taken in the MA [see Eq. (14)]:

τ−1
k = 2|ImẼk| = 2g2

θ
(

4t2
0 − (εk − ω0)2

)

√

4t2
0 − (εk − ω0)2

(nph + 1)

+ 2g2
θ
(

4t2
0 − (εk + ω0)2

)

√

4t2
0 − (εk + ω0)2

nph. (18)

This is illustrated in Fig. 2. We observe that there is a con-

siderable part of the parameter space where the lifetime is
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FIG. 3. Feynman diagrams in the Migdal approximation and the

self-consistent Migdal approximation.

infinite, which means that the corresponding Green’s function

never attenuates. This occurs for ω0 > 2t0 + 2t0| cos k| in the

case of finite temperatures, and for ω0 > 4t0 sin2 k/2 in the

T = 0 case. In these regimes, one could presume that this is

reflected in the spectral functions through the appearance of

Dirac delta peaks, which is not expected at finite temperatures.

This illustrates one of the limitations of this method.

B. Benchmark methods

1. Migdal and self-consistent Migdal approximation

The Migdal approximation [56] is the simplest perturba-

tion approach, whose self-energy is represented with a single,

lowest order Feynman diagram, as shown in Fig. 3(a). The

imaginary part of the self-energy is given by Eq. (14) in the

case when there is just a single electron in the band, regardless

of the dispersion relation or the number of dimensions of

the system. The corresponding real part is obtained using the

Kramers-Kronig relations, and in 1D reads as

Re�MA(ω) = g2(nph + 1)
θ
(

(ω − ω0)2 − 4t2
0

)

sgn(ω − ω0)
√

(ω − ω0)2 − 4t2
0

+ g2nph

θ
(

(ω + ω0)2 − 4t2
0

)

sgn(ω + ω0)
√

(ω + ω0)2 − 4t2
0

.

(19)

The range of validity of the MA can be extended if we sub-

stitute the noninteracting electron propagator in Fig. 3(a) with

an interacting one. At the same time, the interacting propaga-

tor itself is expressed through the self-energy via the Dyson

equation. These relations constitute the SCMA. Figure 3 il-

lustrates that the SCMA self-energy consists of a series of

noncrossing diagrams, whose lowest order coincides with the

MA. Figure 3(b) shows the second-order contribution, while

the third-order contributions are shown in Figs. 3(c) and 3(d).

Mathematically, the self-consistency relations are straight-

forwardly derived and, in our case, read as

�SCMA(ω) = g2(nph + 1)G(ω − ω0) + g2nphG(ω + ω0),

(20a)

G(ω) =
1

(2π )n

∫ π

−π

dnk
1

ω − εk − �SCMA(ω)
, (20b)

where G(ω) is the local Green’s function. We see that in

the case of the Holstein model, the SCMA self-energy is k

independent.

2. Dynamical mean-field theory

Dynamical mean-field theory is a nonperturbative approx-

imate method, that represents a natural generalization of the

traditional mean-field theory [57]. It simplifies the original

lattice problem by mapping it to a single site impurity prob-

lem, embedded into an external bath that is described with

a frequency-dependent (i.e., dynamical) field G0(ω), which

needs to be determined self-consistently. This simplification

is reflected on the self-energy, which is assumed to be k-

independent �k(ω) = �(ω). The DMFT becomes exact in the

limit of infinite dimensions or, equivalently, infinite coordina-

tion number.

In practice, G0(ω) and �(ω) are determined self-

consistently, by imposing that the local Green’s function of

the lattice problem

G(ω) =
∫ ∞

−∞

ρ(ǫ)dǫ

ω − �(ω) − ǫ
, (21)

and the self-energy �(ω) coincide with the corresponding

quantities of the impurity problem. Here, ρ(ǫ) is the nonin-

teracting density of states. The self-consistent loop is closed

using the Dyson equation G0(ω) = (G−1(ω) + �(ω))−1. In

the case of the Holstein model, the (polaron) impurity problem

can be solved exactly, directly on the real-frequency axis, in

terms of the continued fraction expansion [53]. Furthermore,

in the one-dimensional case, Eq. (21) assumes a closed-form

solution and reads as

G(ω) = Re
1

2t0B(ω)
√

1 − 1
B(ω)2

+ iIm
−i

2t0
√

1 − B(ω)2
, (22)

where B(ω) = (ω − �(ω))/(2t0); see Supplemental Material

of Ref. [52]. We note that Eq. (22) can also be used for the

SCMA in Eq. (20).

We have very recently shown [52], by using extensive

comparisons with several numerically exact methods cover-

ing various parameter regimes, that the DMFT can provide

a rather accurate solution for the Holstein polaron even in

low dimension. Hence, the DMFT has emerged as a unique

numerical method that gives close to exact spectral functions

in practically the whole space of parameters, irrespective of

the number of dimensions. This makes the DMFT an ideal

benchmark method for comparisons with the CE results for

the Holstein model.

III. SPECTRAL FUNCTIONS

In this section, we present the CE spectral functions of

the 1D Holstein model. The DMFT is used as a benchmark,

while MA and SCMA represent the main competitors and

alternatives to the CE method. Section III A shows the results

for k = 0, whereas heat plots and the k = π results are shown

in Sec. III B. High-temperature spectral functions and spec-

tral sum rules are presented in Sec. III C. The behavior near

the atomic limit is discussed in Sec. III D. We present only
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FIG. 4. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5 and

k = 0. In the left panels T = 0.3, while T = 0.7 in the right panels.

Insets show the integrated spectral weights Ik(ω) =
∫ ω

−∞ Ak(ν )dν.

the results for ω0 = 0.5, while the results for other phonon

frequencies and various momenta are shown in Sec. II of SM

[54]. The 2D spectral functions are presented in Appendix B.

A. Low and intermediate temperatures for k = 0

In the weak-coupling limit α → 0, all these approximate

methods (DMFT, CE, SCMA, MA) provide accurate results.

In Fig. 4, we investigate how far from this strict limit each

of our methods continues to give reasonably accurate spectral

functions. In Fig. 4(a), we see that for α = 1 all methods

correctly capture the quasiparticle peak, which dominates in

the structure of the spectrum. The MA satellite peak is slightly

shifted towards higher frequencies, which becomes signifi-

cantly more pronounced at higher temperatures; see Fig. 4(b).

The limitations of the MA become more obvious for stronger

couplings, where even the position and weight of the quasi-

particle peak are inaccurate; see Figs. 4(c)–4(h).

While the quasiparticle properties of the CE and SCMA

seem to be quite similar if α is not too large, some difference

in satellite peaks is already visible in Figs. 4(b) and 4(c).

Figure 4(c) shows that SCMA gives broader satellites than

the DMFT benchmark, whereas CE slightly underestimates

the position of the satellite. Neither CE nor SCMA can be

characterized as distinctly better in this regime. On the other

hand, Figs. 4(e) and 4(g) display a clear advantage of the CE.

FIG. 5. (a)–(h) Heat maps of Ak(ω) for t0 = 1, ω0 = 0.5, and

T = 0.3. In the left panels, we present CE results, while the DMFT

benchmark is presented in the right panel. All plots use the same

color coding.

We see that it captures rather well the most distinctive features

of the solutions, which are the first few satellites. This is not

the case for SCMA.

Figures 4(f) and 4(h) demonstrate that the CE gives a

rather quick crossover toward the high-temperature limit, as

it predicts a simple broad one-peak structure for the spectral

function already for T = 0.7. This large difference between

the spectral functions for T1 = 0.3 and T2 = 0.7 can be

understood by examining the ratio of their corresponding

lifetimes τ (T1)/τ (T2) = nph(T2)/nph(T1) ≈ 8.5. This implies

that ReCk(t ) for T = 0.7 has a much steeper slope as a func-

tion time, which suppresses the appearance of satellites, as

explained in Sec. II A 3.

B. Low and intermediate temperatures for k �= 0

To proceed with the analysis of the CE ,we want to answer:

(i) Whether the conclusions that we reached for k = 0 can be

carried over to other momenta as well? (ii) Does CE continue

to be better than SCMA at much higher temperatures? The

first question is answered in Fig. 5, where we compare CE

and DMFT heat plots. Figures 5(a) and 5(b) demonstrate

that CE results are quite reminiscent of the DMFT results

for α = 1, even at nonzero momenta. The same conclusion

holds for weaker couplings as well. On the other hand, there

are differences between the results for somewhat stronger

125165-6



CUMULANT EXPANSION IN THE HOLSTEIN MODEL: … PHYSICAL REVIEW B 107, 125165 (2023)

FIG. 6. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5, and

k = π . In the left panels T = 0.3, while T = 0.7 in the right panels.

coupling α = 1.5, as shown in Figs. 5(c) and 5(d). While the

polaron bands in both of these figures are convex, the CE

predicts the first satellite to be concave, unlike the DMFT.

In other words, CE predicts that the distance between the

polaron peak and the satellites decreases as we increase the

momentum. This is counterintuitive, as the satellites are per-

ceived as the quasiparticle that absorbed or emitted a phonon,

which should consequently be just at energy distance ω0 apart.

These limitations of the CE are much more pronounced for

stronger electron-phonon couplings. While the DMFT solu-

tion in Figs. 5(f) and 5(h) exhibits a series of distinct bands,

Figs. 5(e) and 5(g) demonstrate that the polaron and satellite

bands of the CE merge into a single band at higher momenta.

However, the most noticeable feature here is the fact that the

CE is too smeared, as if the temperature is too high. This is

a consequence of the fact that the lifetime in Eq. (18) scales

as τk ∼ 1/g2. While the heat maps reveal noticeable discrep-

ancies between the DMFT and CE for k �= 0, it seems that

these differences are much less pronounced around k = π . A

more detailed comparison is presented in Fig. 6 that shows

the results for the same regimes as in Fig. 4. The DMFT

solution in Figs. 6(a)–6(d) shows that the main feature of the

spectral function is a single broad peak for α � 1.5, which

is in agreement with the CE results. This is also the case for

the SCMA, although we observe a slight tendency of the main

peak to lean toward higher frequencies at higher temperatures.

For larger interaction strengths, CE cannot fully reproduce the

sharp peaks at lower frequencies of the low-temperature spec-

tral function or the fine structure of the main peak at higher

temperatures; see Figs. 4(e)–4(h). Similarly, CE misses the

quasiparticle peak as well, situated at low energy, although it

is typically tiny and not (clearly) visible in Figs. 6(a)–6(h) (see

Appendix C). A detailed comparison of the spectral functions

for other momenta and phonon frequencies is presented in

Sec. II of the SM [54].

Overall, we find that the CE gives the most accurate results

for k = 0 and k = π and that it is less accurate for other mo-

menta. Although it cannot fully reproduce a tiny quasiparticle

peak for k = π , it describes well a wide single-peak structure,

which is the most prominent feature of the spectrum. A much

larger discrepancy for k = π , between the CE and a reliable

benchmark, was reported in Ref. [50] by examining the sys-

tem on a finite lattice system with N = 6. In Appendix C,

we examine the same parameter regime as in Ref. [50] and

show that these discrepancies are significantly reduced in the

thermodynamic limit.

C. Spectral functions at high temperatures

and spectral sum rules

In Fig. 7, we show CE, SCMA, and DMFT spectral

functions at high temperatures for the same electron-phonon

couplings as in Figs. 4 and 6. We see that CE performs very

well both for k = 0 and k = π . There are only small discrep-

ancies at stronger interactions [see, e.g., Fig. 7(c)]. In contrast,

the SCMA solution gets tilted relative to the DMFT and CE.

In addition, it poorly reproduces the low-frequency part of the

spectrum. It is not obvious whether the CE method is exact in

the high-temperature limit T → ∞. As we now demonstrate,

this can be answered by examining the spectral sum rules:

Mn(k) =
∫ ∞

−∞
Ak(ω)ωndω. (23)

These can be calculated both exactly,

M
exact
n (k) =

〈

[. . . [[ck, H], H] . . . , H]
︸ ︷︷ ︸

n times

c
†
k

〉

T

, (24)

and within the CE approximation, where by combining

Eqs. (4) and (23) we find

M
CE
n (k) = Re

[

in

(
d

dt

)n

eCk (t )

]∣
∣
∣
∣
t=0

−
n

∑

p=1

(
n

p

)

(−εk )p
M

CE
n−p(k). (25)

The difference between these quantities MCE
n (k) − Mexact

n (k)

is zero for n = 0 and n = 1, as noted in Sec. II A 1. Higher

order sum rules for the CE method are easily calculated,

while the evaluation of the exact sum rules quickly becomes

cumbersome for increasing n. The first five (0 � n � 4) sum

rules were already calculated by Kornilovitch [58]

M2(k) = ε2
k + (2nph + 1)g2, (26a)

M3(k) = ε3
k + g2ω0 + 2g2(2nph + 1)εk, (26b)

M4(k) = ε4
k + 2g2εkω0 + g2(2nph + 1)

×
(

2t2
0 + 3ε2

k + ω2
0

)

+ 3g4(2nph + 1)2. (26c)
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FIG. 7. (a)–(h) CE, DMFT, and SCMA spectral functions in 1D for t0 = 1, ω0 = 0.5, and k = 0, π .

All of these are correctly predicted by the CE. However, the

disagreement between Mexact
n and MCE

n appears for n = 5,

where we find

M
exact
5 (k) = ε5

k + 3g2ω0

(

2t2
0 + ε2

k

)

+ g2ω3
0

+ 2g2
(

2ε3
k + 5g2ω0 + εkω

2
0 + 2t2

0 εk

)

(2nph + 1)

+ 7g4εk(2nph + 1)2, (27a)

M
CE
5 (k) = M

exact
5 (k) − 2g4εk(2nph + 1)2. (27b)

Hence, CE cannot be exact in the limit T → ∞. However, we

see that there are two limits where CE can potentially be exact:

the weak-coupling limit g → 0 and the atomic limit εk → 0.

It turns out that CE is actually exact in both of these limits,

as seen from Eqs. (3), (7), and (14) for the weak-coupling and

Sec. III D for the atomic limit. We note that the SCMA gives

correct sum rules only for n � 3 [42]. This is a consequence

of the fact that SCMA ignores one of the fourth-order dia-

grams (∼g4) since it includes only the noncrossing diagrams.

Also, we numerically checked that the DMFT results are in

agreement with all of the sum rules that we listed above.

D. Atomic limit

In the atomic limit (t0 = 0), the cumulant function can be

evaluated exactly:

C(t ) = α2(−2nph − 1 + itω0 + iD(t )). (28)

This follows from Eq. (16), using J0(0) = 1. If we express

the phonon propagator as iD(t ) = 2
√

nph(nph + 1) cos[ω0(t +
i

2T
)] and use the modified Jacobi-Anger identity

e2α2
√

nph (nph+1) cos[ω0(t+ i
2T

)]

=
∞

∑

l=−∞

Il (2α2
√

nph(nph + 1))e−ilω0t e
lω0
2T , (29)

where Il are the modified Bessel functions of the first kind,

the spectral function [see Eqs. (3) and (4)] can be calculated

analytically and reads as

A(ω) = e−α2 (2nph+1)

×
∞

∑

l=−∞

Il (2α2
√

nph(nph + 1))e
lω0
2T δ(ω + α2ω0 − lω0).

(30)

In the limit T → 0, the previous expression reduces to

A(ω) = e−α2

∞
∑

l=0

α2l

l!
δ(ω + ω0(α2 − l )). (31)

This proves that CE gives correct results in the atomic limit,

as Eqs. (30) and (31) coincide with the known exact results

[1,44].

In contrast, the SCMA (let alone the MA) does not share

this property, which is easy to show at zero temperature. In

this case, Eq. (20a) and the Dyson equation imply that

G(ω) =
1

ω − g2G(ω − ω0)
. (32)

The previous equation can be solved by the iterative applica-

tion of itself in terms of the continued fraction

G(ω) =
1

ω − g2

ω−ω0− g2

ω−2ω0− g2

ω−3ω0−...

. (33)

This does not coincide with Eq. (35) from Ref. [53], which

represents the exact solution. Thus, SCMA cannot reproduce

the correct result in the atomic limit.

While the CE is exact in the atomic limit (t0 = 0), it is

not immediately obvious how far from this limit it continues

to give reliable results. This is why we now examine the

regimes with small hopping parameter t0. Since the lifetime

is infinitely large in some of these regimes (see Fig. 2), we

introduce artificial attenuation η for the Green’s function in

real time by making a replacement G(t ) → G(t )e−ηt . The

results are presented in Fig. 8. Here, the dotted line is the

analytic solution in the atomic limit (t0 = 0), determined by

Eq. (30), where the Dirac delta functions have been replaced

by Lorentzians of half-width η. It is used as a measure to see
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FIG. 8. (a)–(f) CE, DMFT, and SCMA spectral functions close to

the atomic limit. Here, we use artificial Lorentzian broadening with

half width set to η = 0.05.

how far the regime we are examining is from the exact atomic

limit. In Fig. 8(a), we see that DMFT, SCMA, and CE spectral

functions are in agreement. This regime is quite far from the

atomic limit, as indicated by the dotted line. Figure 8(b) shows

that the DMFT spectral function already consists of a series of

peaks for t0 = 0.5, while the CE and SCMA spectral functions

are too flattened out. While the CE solution significantly im-

proved in Fig. 8(c), it is still not giving satisfactory results,

even though the DMFT suggests that we are already close to

the atomic limit. Only for t0 � 0.005 does the CE solution

give accurate results; see Fig. 8(d). However, this is practically

already at the atomic limit. It is interesting to note that while

both the DMFT and the CE are exact in the weak-coupling

and in the atomic limit, their behavior in other regimes can be

quite different.

IV. QUASIPARTICLE PROPERTIES

We now investigate the quasiparticle properties obtained

from the CE method and compare them extensively to the

results obtained from the DMFT and SCMA. We note that

the lifetime within the CE was already studied in Sec. II A 4,

so we supplement that study here with the results for the

ground-state energy and the effective mass. Here we show the

results in one, two, and three dimensions. Comparison with

the MA ground-state energy, in the 1D case, is presented in

Sec. III of the SM [54].

A. Ground-state energy

The polaron band dispersion Ep,k within the CE is given by

the real part of Eq. (12), where the self-energy is taken in the

MA:

Ep,k = εk + Re�MA(εk ). (34)

Since we deal with a single electron in the band, the

ground-state energy Ep is given by Ep,k=0 evaluated at zero

temperature. In the 1D case, Ep is straightforwardly evaluated

using Eq. (19) and reads as follows:

E1D
p = −2t0 −

α2ω2
0

√

ω2
0 + 4ω0t0

. (35)

For the expression in higher dimensions, we need to go back

to Eq. (14) that holds in any number of dimensions. At T = 0,

it reads as

Im�MA(ω) = −πα2ω2
0ρ(ω − ω0). (36)

The real part of �MA(ω) is obtained using the Kramers-

Kronig relation

Re�MA(ω) = πα2ω2
0H[ρ](ω − ω0), (37)

where H[ρ](ω) = P
∫ ∞
−∞

dν
π

ρ(ν)

ω−ν
is the Hilbert transform of

the density of states ρ(ω) and P is the Cauchy principle value.

The evaluation of the Hilbert transform may be reduced to

the evaluation of the Fourier transform F , using the following

identity:

F
−1
H[ρ](t ) = −i sgn(t ) F−1[ρ](t ). (38)

The inverse Fourier transform of the density of states on the

right-hand side was already calculated in Eq. (15) for the case

of the hypercubic lattice with the nearest-neighbor hopping.

Hence, H[ρ](ω) is obtained by applying F on both sides of

Eq. (38),

H[ρ](ω) =
1

π

∫ ∞

0

dxJ0(2t0x)n sin(xω), (39)

where n is the number of dimensions. The polaron band dis-

persion then reads as

Ep,k = εk + α2ω2
0

∫ ∞

0

dxJ0(2t0x)n sin (x(εk − ω0)). (40)

Ep is thus a linear function with respect to α2, whose intercept

is εk, while its slope can be calculated accurately using the

numerical scheme described in Appendix A. In the 2D case, it

admits an analytical solution

E2D
p = −4t0 −

2α2ω2
0

π (4t0 + ω0)
K

(
4t0

4t0 + ω0

)

, (41)

where K (k) =
∫ π/2

0
dθ/

√

1 − k2 sin2 θ is the complete ellip-

tic integral of the first kind. In the case n = 3, the integral
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FIG. 9. Ground-state energy within the DMFT (solid line), CE

(dashed line), and SCMA (dotted line). Here, t0 = 1 and T = 0.

in Eq. (40) does not admit a closed-form solution and thus

requires numerical calculation.

The polaron band dispersion Ep,k (and thus the ground state

Ep) within the DMFT and SCMA is obtained numerically, as

the smallest solution of the following equation:

Ep,k = εk + Re�(Ep,k ). (42)

Results for the 1D, 2D, and 3D case are presented in Fig. 9.

The DMFT benchmark, which is known to be very accurate

[52], always gives the lowest ground-state energy predictions

in comparison to the CE and SCMA. We see that CE always

outperforms the SCMA, despite the fact that its predictions

of the energy are always a linear function of α2. In the 1D

case, we see that CE results for ω0 = 0.5 start to deviate more

significantly from the DMFT just around α = 2.5. Hence, the

range of validity for the CE is similar as for the spectral

functions in Fig. 4. The analogous conclusions can also be

drawn from ω0 = 1 data as well. In contrast, all three methods

seem to be in agreement for ω0 = 0.2 in the whole range

of presented values of α. This is a consequence of the fact

that the ground-state energy correction is small, as seen from

Eqs. (35), (40), and (41) by fixing α and decreasing ω0. How-

ever, if we fix g = ω0α and then decrease ω0, the ground-state

energy would change substantially [see, e.g., Eq. (35)], and

the CE would certainly give poorer results.

Similar trends are observed in higher dimensions as well.

Seemingly, the range of validity of the CE is increased in

higher dimensions. However, one should keep in mind that the

hopping parameter is always taken to be unity, which means

that the bandwidth of the 2D and 3D systems are, respectively,

two and three times larger than their 1D counterpart. There-

fore, the correlation is weaker for a given coupling α.

B. Effective mass

Around the bottom (|k| ≈ 0) of the conduction band, the

dispersion Ep,k assumes the following parabolic form:

Ep,k ≈ const +
k2

2m∗ , (43)

where m∗ is the effective mass, which we now calculate.
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FIG. 10. Effective mass results within the DMFT, CE, and

SCMA for t0 = 1 and T = 0.

In the 1D case, one obtains the analytical result for the

effective mass using Eqs. (19) and (34),

m∗

m0

∣
∣
∣
∣
1D,T =0

=
1

1 − (2t0+ω0 )α2
√

ω0

(4t0+ω0 )3/2

, (44)

where m0 = 1/(2t0) is the band mass which remains the same

irrespective of the number of dimensions. Results for the

higher number of dimensions are evaluated using Eq. (40).

As for the ground-state energy, the 2D case admits an analytic

solution

m∗

m0

∣
∣
∣
∣
2D,T =0

=
1

1 − 2α2ω0

π (8t0+ω0 )
E

(
4t0

4t0+ω0

) , (45)
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where E (k) =
∫ π/2

0
dθ

√

1 − k2 sin2 θ is the complete elliptic

integral of the second kind. Results in the n-dimensional case

are given by

m∗

m0

∣
∣
∣
∣
T =0

=
1

1 + πα2ω2
0

dH[ρ]

dω

∣
∣
ω=−2nt0−ω0

, (46)

and require numerical calculation in the general case. From

Eq. (46) we see that m0/m∗ is a linear function of α2. This

linear behavior has to break down at one point, as m0/m∗

cannot be negative. This happens for strong interaction, where

the CE is certainly not expected to be reliable. The mass

renormalization within the DMFT and SCMA is calculated

numerically as

m∗

m0

∣
∣
∣
∣
T =0

= 1 −
d�(ω)

dω

∣
∣
∣
∣
ω=Ep

, (47)

where Ep is the ground-state energy. Results for the DMFT,

CE, and SCMA effective mass in different parameter regimes

and for different number of dimensions are presented in

Fig. 10. In the 1D case, we see that the CE always under-

estimates, while the SCMA overestimates the results from the

DMFT benchmark. Still, CE clearly outperforms the SCMA

for ω0 = 1 and ω0 = 0.5, while the results in the vicinity of

the adiabatic limit (ω0 = 0.2) seem to be equally well (poor)

represented by both methods.

In the higher-dimensional case, we see that the CE is al-

ways a clearly better approximation than the SCMA, while

both of them overestimate the DMFT predictions. As for the

ground-state energy, we emphasize again that the hopping pa-

rameter was set to 1. As a consequence, the system has a larger

bandwidth in the higher-dimensional case and, therefore, the

correlations are weaker.

V. MOBILITY

The mobility is defined as the DC conductivity, normalized

to the concentration of charge carriers ne (and their unit charge

which we set to e = 1), i.e., μ = σ DC/ne. It can be calculated

using the Kubo formalism, which relates μ to the current-

current correlation function [1]. The latter can be written

as a sum of the so-called bubble part, which is completely

determined by the spectral functions Ak(ω) and the vertex

corrections. Within the DMFT, the vertex corrections vanish

[57,59], while estimating their contribution in the general

case is beyond the scope of this paper. In the following, we

calculate the mobility solely from the bubble part.

In the case of a 1D system with a single spinless electron

in the band, the mobility in the bubble approximation can be

written as [1,60]

μ =
4πt2

0

T

∑

k

∫ ∞
−∞ dνAk (ν)2e−ν/T sin2 k

∑

k

∫ ∞
−∞ dνAk (ν)e−ν/T

. (48)

The processing time required for the calculation of μ within

the CE method rises linearly with the number of k points we

sum over. This is not the case for the DMFT and SCMA, as

their self-energies are k independent and thus need to be calcu-

lated only once for a given parameter set. In every parameter

regime the CE was applied to, we checked that 64 sampling

points in the Brillouin zone are enough to be representative of

FIG. 11. Temperature dependence of the mobility for the CE,

DMFT, and SCMA. The dotted red (black) lines are auxiliary lines

with the power law behavior μ ∝ T −2 (μ ∝ T −3/2). Here t0 = 1.

the thermodynamic limit. This was also crosschecked using

the DMFT.

The exponential term e−ν/T in Eq. (48) has some impor-

tant implications. Despite the factor sin2 k, it implies that the

largest contribution to the mobility most commonly comes
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from the spectral functions around the bottom of the band

(k ≈ 0), as they are typically situated at lower frequencies

with respect to their higher momentum counterparts. This is

actually helpful, as we have seen that the CE is more reliable

for k ≈ 0 than for 0 < k < π . However, e−ν/T also introduces

numerical instabilities, as even a small numerical noise of

Ak (ν) at ν ≪ −1 will be inflated and give an enormous overall

error in the mobility. This is why the integrals in Eq. (48)

require introducing some kind of negative frequency cutoff
∫ ∞
−∞ →

∫ ∞
−�

. We always check that the mobility results con-

verge with respect to �. This is easily done in both the DMFT

and SCMA due to the high numerical accuracy of our numer-

ical implementations. The convergence with respect to � is

much harder to achieve within the CE, as the Green’s func-

tions are initially calculated in the time domain and require

the use of numerical Fourier transform. We have implemented

a well-known interpolation scheme [61] to increase the pre-

cision of the Fourier transform. Still, the numerical noise at

low temperatures and strong interactions prevented us from

precisely calculating the mobility in these regimes. We show

only the data where an accurate calculation was possible.

In Fig. 11, we present numerical results for the temperature

dependence of the electron mobility. For weak electron-

phonon coupling, all methods are in agreement; see Fig. 11(a)

for α � 1 and Figs. 11(b) and 11(c) for α � 0.5. Electron-

phonon scattering is weak in these regimes, which is why

the quasiparticle lifetime τk is long, and the linear time de-

pendence dominates in the cumulant function. The spectral

function and its square can thus be approximated as Ak (ω) ≈
δ(ω − Ep,k ) and A2

k (ω) ≈ τk

π
δ(ω − Ep,k ), where δ is the Dirac

delta function and Ep,k is given by Eq. (34). The mobility from

Eq. (48) thus simplifies to

μweak ≈
4t2

0

T

∑

k τke−Ep,k/T sin2 k
∑

k e−Ep,k/T
. (49)

At high temperatures, Eq. (49) further simplifies as e−Ep,k/T ≈
1. In this case, the lifetime is inversely proportional to the tem-

perature τk ∝ 1/T , as seen from Eq. (18), which implies the

power-law behavior of the mobility μweak ∝ 1/T 2. This con-

clusion holds only for very weak electron-phonon couplings,

where the assumption of weak scattering is still satisfied de-

spite the high temperatures; see Figs. 11(a) and 11(b) for

α = 0.25 and Fig. 11(c) for α =
√

2/10. This assumption is

also violated at extremely high temperatures T → ∞.

For stronger couplings, in the limit of high-temperatures

T ≫ t0, ω0, the Green’s function in the time domain is quickly

damped, which is why Ck (t ) can be approximated with just

the lowest order (quadratic) Taylor expansion around t = 0.

Hence, Eqs. (3) and (17) imply that the Green’s function can

be written as

Gk (t ) = −iθ (t )e−iεkt e− g2

2
(2nph+1)t2

, (50)

while the corresponding spectral function is given by the

Gaussian:

Ak (ω) =
e
− (ω−εk )2

2g2 (2nph+1)

√

2πg2(2nph + 1)
. (51)

Plugging this back into Eq. (48) and changing the sum over

momenta to integral, we obtain

μhigh−T =
t0

g

√
π

2nph + 1
exp

(

−
g2(2nph + 1)

4T 2

)
I1

(
2t0
T

)

I0

(
2t0
T

) ,

(52)

where I0 and I1 are modified Bessel functions of the first kind,

of zeroth and first orders, respectively. Equation (52) can be

simplified by using the following approximations: 2nph + 1 ≈
2T/ω0 and I1(2t0/T )/I0(2t0/T ) ≈ t0/T , that are valid for

large T . Such a simplified formula coincides with the mobil-

ity obtained by combining the Einstein relation, between the

mobility and diffusion coefficient, with the Marcus formula

[45,62]. Furthermore, Eq. (52) implies the power-law behav-

ior for the mobility μhigh−T ∝ T −3/2, in the limit T ≫ t0, ω0.

This is confirmed by our numerical results for a wide range of

the electron-phonon coupling strengths, where all three meth-

ods are in agreement; see Fig. 11(a) for 1/
√

2 � α � 2.5,

Fig. 11(b) for 0.5 � α � 2, and Fig. 11(c) for 0.5 � α � 1.

While the SCMA gives satisfactory results for high temper-

atures and intermediate electron-phonon couplings, it deviates

from the DMFT at lower temperatures [see, e.g., Fig. 11(a) for

α = 2.5 and Fig. 11(b) for α = 2] and also for stronger cou-

pling strengths [see, e.g., Fig. 11(a) for α > 2.5 and Fig. 11(b)

for α > 2]. At these stronger couplings, the DMFT predicts

the nonmonotonic mobility, where a region of decreasing mo-

bility with decreasing temperature is ascribed to the hopping

transport in phenomenological theories [38,62]. The strong

coupling mobility is better described by the CE than SCMA,

although low-temperature results are missing due to our in-

ability to converge the results with respect to the cutoff �. In

Appendix D, we also give mobility predictions of the MA.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have presented a comprehensive analysis

of the CE method in the context of the Holstein model. The

second-order cumulant C(t ) is calculated in a broad tempera-

ture range for three vibrational frequencies ω0/t0 = 0.2, 0.5,

and 1, covering a regime from a weak to strong electron-

phonon coupling. We mostly focused on the 1D system in the

thermodynamic limit but some of the results are shown also in

2D and 3D. To avoid numerical instabilities and to reach high

numerical precision, we derived a number of analytical ex-

pressions and we used the collocation method in calculations

of the cumulant, as well as an interpolation scheme for the

Fourier transform in corresponding calculations of the spectral

functions. The quasiparticle properties, spectral functions, and

charge mobility are shown in comparison to the DMFT and

SCMA results. The DMFT, which gives close to the exact

solution for the Holstein polaron throughout the parameter

space [52], gave a valuable benchmark and facilitated a de-

tailed analysis of the validity of the CE method.

At weak coupling (roughly corresponding to m0/m∗�0.9)

CE, DMFT, and SCMA give very similar spectral functions.

Most of the spectral weight for k = 0 is in the quasiparticle

peak, while even a small sideband (satellite) spectral weight

is rather well reproduced in all three methods. As the inter-

action increases, a clear difference in the spectral functions
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emerges. Nevertheless, the positions of the CE and DMFT

quasiparticle and the first satellite peak at low temperatures

are in rather good agreement. Furthermore, the overall spectral

weight distribution is in a decent agreement even though the

satellite peaks are more pronounced in DMFT for stronger

electron-phonon coupling. Roughly speaking, there is a de-

cent agreement in 1D up to the interactions corresponding

to m0/m∗ ∼ 0.5. Interestingly, the agreement between the

CE and DMFT spectral functions persists also for k = π ,

although CE does not capture a tiny quasiparticle peak. In

this case, the DMFT spectral weight almost merges to a single

broad peak. We note that the difference for k = π observed in

Ref. [50] is solely due to considering a lattice of finite N = 6

size. The deviation of CE from the exact solution is most obvi-

ous for intermediate momenta where the CE solution merges

to a single peak, while the satellite structure is seen in DMFT.

At high temperatures, one might suspect that the CE would

give the exact spectral functions. However, this is not the case,

as we showed that the CE gives the exact spectral moments

only up to the order n = 4. We note that in all these regimes,

the CE gives slightly better results than the SCMA, while a

single-shot MA is adequate only for very weak interactions.

The spectral functions were used to calculate the charge

mobility from the Kubo formula without the vertex correc-

tions. The agreement between DMFT and CE is quite good.

This is the case even for stronger electron-phonon coupling

where the CE even indicates nonmonotonic behavior of μ(T ),

with a region of increasing mobility with temperature which

is usually assigned to hopping conduction in phenomeno-

logical theories. For strong electron-phonon coupling, the

CE mobility results are shown only for T � t0 since a very

small numerical noise at frequencies ω ≪ Ep affects a pre-

cise calculation of mobility at lower temperatures. For high

temperatures, the mobility assumes a universal form: For

weak electron-phonon coupling μ ∝ T −2, while for stronger

coupling μ ∝ T −3/2. These high-temperature limits can be

obtained also analytically from the CE.

The CE method can be easily applied to different Hamilto-

nians, which makes it a particularly attractive method for the

calculation of electronic properties beyond the weak-coupling

limit in various systems. In particular, we argue that it will

be most useful in calculations of charge mobility, as has

already been done in ab initio calculations for SrTiO3 [16]

and naphthalene [17]. While our analysis may suggest that

the DMFT appears computationally superior to CE, we note

that the numerical efficiency that we achieved with DMFT

is restricted to the Holstein model by virtue of the analytic

solution for the impurity problem [53] and the local Green’s

function [52]. For predicting the properties of real materials,

the numerical resources within the DMFT are vastly increased

and also the issue of nonlocal correlations may emerge, while

the CE remains simple and relatively inexpensive. Of course,

for a definitive answer on the range of validity of CE in

connection with ab initio calculations, one needs to perform a

similar analysis for the Fröhlich model and for other models

which can be used for realistic description of the electronic

spectra and charge transport in real materials. A useful hint in

this direction is provided by Ref. [51], which shows that the

CE, around the bottom of the band, gives promising results

for the spectral function even in the case when the phonons

have a dispersion [63]. Another very interesting question that

we leave for further work is a possible contribution of vertex

corrections to conductivity. Based on the weak coupling result

[64], one might assume that their contribution is small for

optical phonons, but this remains to be determined in the

case of stronger coupling. Our high-temperature results for

mobility may also be quite useful when analyzing a dominant

type of electron-phonon coupling in real materials. Still, one

needs to be cautious in such analyses since we see that at lower

temperatures μ(T ) does not assume a simple universal form.
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APPENDIX A: NUMERICAL INTEGRATION SCHEME

FOR THE HIGHLY OSCILLATING FUNCTIONS

IN THE CE METHOD

We present a numerical integration scheme for the calcula-

tion of the cumulant function from Eq. (16). Since Ck(t ) will

be expressed numerically on some t-grid [t0 = 0, t1 . . . tG−1],

it is much better to divide the integral
∫ t

0
from Eq. (16) into a

sum of integrals of the form
∫ ti

ti−1
, where ti are times from the

previously defined t grid. In this manner, we do not integrate

over the same interval multiple times. To shorten the notation,

from now on, we denote a ≡ ti−1 and b ≡ ti. There are two

different types of integrals in Eq. (16), and both of them have

the following form:

I =
∫ b

a

dx g(x)eir1xJ0(r2x)n, (A1)

where g(x) is either a linear or a constant function, r1 =
εk ± ω0, and r2 = 2t0. Numerical integration of Eq. (A1) has

already been studied by Levin for arbitrary r1 and r2 and

slowly varying g(x) [55]. In the rest of this Appendix, we

review this method in the 1D (n = 1), 2D (n = 2), and 3D

(n = 3) cases. The main idea is to rewrite the subintegral

function as a scalar product of two columns |g̃(x)〉 and |J̃ (x)〉,
whose elements are functions:

I =
∫ b

a

dx〈g̃(x)|J̃ (x)〉. (A2)

Column |g̃(x)〉 consists exclusively of slowly varying func-

tions, while |J̃ (x)〉 contains highly oscillating functions, with

the property that

d|J̃ (x)〉
dx

= Â(x)|J̃ (x)〉, (A3)
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where Â(x) is a matrix of slowly varying functions. Then, the

integral from Eq. (A2) can be written as

I =
∫ b

a

dx
d

dx
〈 f̃ (x)|J̃ (x)〉 = 〈 f̃ (b)|J̃ (b)〉 − 〈 f̃ (a)|J̃ (a)〉,

(A4)

where | f̃ (x)〉 satisfies

(
d

dx
+ Â†(x)

)

| f̃ (x)〉 = |g̃(x)〉. (A5)

This is then, following Levin [55], solved by formally ex-

panding | f̃ (x)〉 =
∑M

k=1 uk (x)[ck dk . . . ]T into a basis set of

polynomials uk (x) = (x − a+b
2

)k−1 and determining the un-

known polynomial coefficients ck, dk . . . by imposing that

Eq. (A5) is exactly satisfied at M uniformly distributed

collocation points x j = a + ( j−1)(b−a)

M−1
, j = 1 . . . M. The ini-

tial problem is thus reduced to a simple linear algebra

problem.

1. 1D case

In the 1D case (n = 1), columns |g̃(x)〉 and |J̃ (x)〉 assume

the following form:

|g̃(x)〉 = [g(x) 0]T , (A6a)

|J̃ (x)〉 = eir1x[J0(r2x) J1(r2x)]T , (A6b)

where J0(x) and J1(x) are the Bessel functions of the first kind,

of zeroth and first order. The matrix Â(x), such that Eq. (A3)

holds, is given by

Â(x) =
[

ir1 −r2

r2 ir1 − 1
x

]

. (A7)

The unknown coefficients ck and dk , which determine the

column function

| f̃ (x)〉 =
M

∑

k=1

uk (x)[ck dk]T , (A8)

are obtained from the following set of 2M linear equations:

[

C Cd

Dc D

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
...

cM

d1
...

dM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(x1)
...

g(xM )

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A9)

Here, C, Cd ,Dc,D are M×M matrices that read as

Ci j = u′
j (xi ) − ir1u j (xi ); C

d
i j = r2u j (xi ), (A10a)

Di j = u′
j (xi ) −

(

ir1 +
1

xi

)

u j (xi ); D
c
i j = −r2u j (xi ).

(A10b)

2. 2D case

In the 2D case, the relevant quantities are given by

|g̃(x)〉 = [g(x) 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)2 J0(r2x)J1(r2x) J1(r2x)2]T ,

Â(x) =

⎡

⎢
⎣

ir1 −2r2 0

r2 ir1 − 1
x

−r2

0 2r2 ir1 − 2
x

⎤

⎥
⎦. (A11)

The column | f̃ (x)〉 =
∑M

k=1 uk (x)[ck dk ek]T is determined

by ck , dk , and ek , which are obtained as a solution of the

following system of 3M linear equations:

⎡

⎣

C Cd Ce

Dc D De

Ec Ed E

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
...

cM

d1
...

e1
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(x1)
...

g(xM )

0
...

0
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A12)

Here, C, Cd . . . E are M×M matrices. Elements of Ci j and Cd
i j

are the same as in Eq. (A10), while Ce
i j = Ec

i j = 0. All the

other elements are given by

Di j = u′
j (xi ) −

(

ir1 +
1

xi

)

u j (xi ),

Ei j = u′
j (xi ) −

(

ir1 +
2

xi

)

u j (xi ),

D
c
i j = −2r2u j (xi ); D

e
i j = 2r2u j (xi ); E

d
i j = −r2u j (xi ).

(A13)

3. 3D case

The procedure that was presented so far is actually quite

easily generalized to the 3D case as well. Here, the quantities

of interest are easily derived and read as

|g̃(x)〉 = [g(x) 0 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)3 J0(r2x)2J1(r2x)

J0(r2x)J1(r2x)2 J1(r2x)3]T ,

Â(x) =

⎡

⎢
⎢
⎢
⎢
⎣

ir1 −3r2 0 0

r2 ir1 − 1
x

−2r2 0

0 2r2 ir1 − 2
x

−r2

0 0 3r2 ir1 − 3
x

⎤

⎥
⎥
⎥
⎥
⎦

,

f̃ (x) =
M

∑

k=1

uk (x)[ck dk ek fk]T , (A14)
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where the coefficients ck , dk , ek , and fk satisfy

⎡

⎢
⎢
⎢
⎢
⎣

C Cd Ce C f

Dc D De D f

Ec Ed E E f

F c Fd F e F

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
...

cM

d1
...

e1
...

f1
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(x1)
...

g(xM )

0
...

0
...

0
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A15)

Here Ci j , C
d
i j , C

e
i j , Di j , D

e
i j , E

c
i j , and Ei j are the same as in

Eqs. (A10) and (A13), while C
f

i j = F c
i j = D

f

i j = Fd
i j = 0. All

other elements are given by

E
d
i j = −2r2u j (xi ); E

f

i j = 3r2u j (xi ),

D
c
i j = −3r2u j (xi ); F

e
i j = −r2u j (xi ),

Fi j = u′
j (xi ) −

(

ir1 +
3

xi

)

u j (xi ). (A16)

Thus, our numerical scheme has been completely specified.

We note that Eqs. (A10), (A13), and (A16) explicitly demon-

strate that our numerical scheme is singular at x = 0. This

does not pose any problems, as the subintegral function in

our initial expression Eq. (A1) is not highly oscillatory around

x = 0. Therefore, the trapezoid scheme can be applied there.

APPENDIX B: 2D SPECTRAL FUNCTIONS

We now examine the CE spectral functions in two di-

mensions and compare them to the results from DMFT and

SCMA. We investigate the Hamiltonian from Eq. (1) on a

square lattice and set h̄, kB and lattice constant to 1.

In the 2D case, the cumulant function is calculated from

Eq. (16) by setting n = 2, and by exploiting the numerical

integration scheme from Appendix A. The procedure for the

implementation of the DMFT and SCMA is the same as

explained in Sec. II B, with the only difference being that

Eq. (22) no longer represents the solution for the local Green’s

function from Eqs. (20b) and (21). The local Green’s function

for the square lattice is obtained as follows. Let us introduce

B(ω) ≡ (ω − �(ω))/(2t0) and rewrite Eq. (21) as

G(ω) = −
∫ ∞

−∞
dxρ̂(x)

∫ ∞

−∞
dε

eixε

ε − 2t0B(ω)
. (B1)

The integral over ε can be solved using the residue theorem. It

is thus important to note that the subintegral function has only

a single pole at εpole = 2t0B(ω) that is situated at the upper

half-plane, i.e., ImB(ω) > 0 (since Im�(ω) < 0). Hence

G(ω) = −2π i

∫ ∞

−∞
dxρ̃(x)e2ixt0B(ω)θ (x). (B2)

Here ρ̃(x) is given by Eq. (15) for n = 2. Substituting this into

Eq. (B2) and solving the integral gives

G(ω) =
K

(
2

B(ω)

)

B(ω)πt0
, (B3)

where K (k) ≡
∫ π/2

0
dθ/

√

1 − k2 sin2 θ is the complete elliptic

integral of the first kind.

Results are presented in Fig. 12. We note that in

Figs. 12(a)–12(d) [Figs. 12(i)–12(l)] the phonon frequency

ω0 = 0.2 (ω0 = 1) is smaller (larger) than both of the tem-

peratures T1 = 0.3 and T2 = 0.7 that we are considering.

Therefore, we focus on Figs. 12(e)–12(h) where T1 < ω0 <

T2, while other regimes can be analyzed analogously. We

see that most of the spectral weight is concentrated in a

smaller range of frequencies than in the 1D case; see Figs. 4

and 12(e)–12(h). This is a consequence of the fact that the

hopping parameter is always set to unity, while the 2D band-

width is twice as large in comparison with the bandwidth

in the 1D system. Spectral functions from Figs. 12(e)–12(g)

exhibit qualitatively similar behavior as results for the 1D

system in Figs. 4(a)–4(d). Here, all methods are in agree-

ment and predict that the quasiparticle peak dominates,

while there is only a single tiny satellite structure that is

more pronounced at higher temperatures. However, it seems

that the satellites are more pronounced in the 1D spectral

functions. A much more complicated multipeak structure is

predicted by the DMFT in Fig. 10(h), where a large dis-

crepancy can be observed in comparison to the CE and

SCMA results. A better agreement is observed for higher

temperatures.

It is interesting to note that while the DMFT frequently

gave sharper peaks than other methods in 1D (see Fig. 4), here

the roles are reversed. This is a consequence of the strong Van

Hove singularity at the bottom of the band of a 1D system,

which is highly relevant in our case when the concentration of

electrons is very low, while the singularity in the 2D system is

weaker and shifted to the center of the band.

APPENDIX C: A DETAILED STUDY OF THE SPECTRAL

FUNCTION FOR t0 = ω0 = g = 1 and k = π

In Sec. III, we concluded that the CE successfully captures

the main features of the spectral functions both at the bottom

of the band (k ≈ 0) and at top of the band (k ≈ ±π ) if the

electron-phonon coupling is not too strong. Less promising

results were reported in Ref. [50], where CE was examined on

a finite lattice with N = 6 sites in the regime t0 = ω0 = g =
1 and k = π , using the finite-temperature Lanczos method

(FTLM) [44] as a benchmark. They found that the CE, in

addition to the fact that it does not correctly reproduce a

quasiparticle peak, predicts that the most prominent feature

of the spectrum consists of only a single broad peak, whereas

two distinct peaks are present in the FTLM solution. Here

we show that this discrepancy between the CE and FTLM is

significantly reduced in the thermodynamic limit.

Reference [50] emphasized that previous conclusions are

valid only for low-temperature solutions, while CE becomes

accurate for T � ω0. This was confirmed by the FTLM,

whose spectral functions in this case look like a single broad
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FIG. 12. (a)–(h) Comparison of the CE, DMFT, and SCMA spectral functions in 2D for k = 0 and t0 = 1. The main panels show the results

for T1 = 0.3, while T2 = 0.7 results are shown in the insets.

peak; see Fig. 1(c) from Ref. [50]. However, Fig. S9 in the

Supplemental Material of Ref. [52] demonstrates that the

spectral function in the thermodynamic limit for t0 = ω0 =
g = 1, k = π consists of a broad single-peak structure even at

T = 0. This conclusion was reached by carefully examining

the finite-size effects using the numerically exact hierarchi-

cal equations of motion method (HEOM). It was established

that the system with N = 10 lattice sites is representative

of the thermodynamic limit, although much smaller systems

are required for the k = 0 results. Furthermore, the same

figure shows that two distinct peaks emerge for N = 6 and

k = π , in accordance with the FTLM results. Hence, CE

will provide much better results in the thermodynamic limit

than previously expected. We note that for t0 = ω0 = g = 1

and finite temperatures, one might expect that the required

lattice size, representative of the thermodynamic limit, does

not exceed N = 10, as the electron experiences much more

scattering compared to the T = 0 case. This will be cross-

checked independently (using the DMFT) in the rest of this

Appendix for finite T , which satisfies the T < ω0 condi-

tion. In that case, we analyze the overall performance of

the CE.

In Fig. 13(a), we show the FTLM data, (originally from

Ref. [44]) used in Ref. [50], and compare them to the DMFT

applied on a system of finite lattice size. We exploit the

fact that the corresponding spectral functions (although cer-

tainly not as accurate in comparison with the exact solution)

provide a rough estimate of how large N should be to faith-

fully represent the thermodynamic limit; see Sec. IV from

the Supplemental Material of Ref. [52] for more details. In

accordance with the FTLM results, we see that the DMFT

spectral function for N = 6 also predicts distinct peaks around

ω ≈ 1.5 and ω ≈ 2.5, although there is an additional peak

around ω ≈ 2. Nevertheless, these results change drastically

with increasing N and practically converge for N = 10. This

is the same N as predicted by HEOM at T = 0. Therefore, the

presented FTLM results are not representative of the thermo-

dynamic limit. Additionally, Fig. 13(a) also shows that FTLM

results for T = 0.6 and T = 0.8 are quite similar. Hence, our

further analysis will be conducted for T = 0.7 case.
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FIG. 13. CE, DMFT, FTLM, and HEOM spectral functions for

t0 = ω0 = g = 1. (a) Analysis of the finite-size effects. (b) Inspecting

the convergence of HEOM data with respect to hierarchy depth D.

In Fig. 13(b), we present HEOM results for N = 10 and

compare them to CE and DMFT. We note that HEOM has

one additional parameter, the so-called hierarchy depth D.

For details, we refer the reader to Ref. [47], but we only

briefly mention that the numerically exact results are formally

obtained in the limit D → ∞. In practice, we always check

whether the results converge with respect to D, which cannot

be increased indefinitely, as finite computer memory presents

a limiting factor. We see that the HEOM results have prac-

tically converged for N = 10 and D = 8. Here, the HEOM

solution does not possess the two-peak structure predicted by

the FTLM on a smaller lattice size (N = 6). It actually gives

only a single, broad peak around ω ≈ 2, which is correctly

reproduced by both the CE and the DMFT. Although the CE

misses the quasiparticle peak around ω ≈ −1.5, we conclude

that CE gives much more accurate results for the thermody-

namic limit than for a finite system.

APPENDIX D: MOBILITY RESULTS FROM THE

ONE-SHOT MIGDAL APPROXIMATION

In Sec. V, we presented and analyzed the mobility pre-

dictions from the CE, DMFT, and SCMA methods. Here,

we supplement that study with the data from the one-shot

MA (i.e., SCMA without self-consistency). The results are

shown in Fig. 14. Since the mobility results have already been

FIG. 14. Temperature dependence of the mobility within CE,

DMFT, and MA. Here t0 = 1.

thoroughly analyzed in Sec. V, we will here give only brief

comments about the performance of the MA. Figure 14(a)

shows that MA is practically useless for α � 2.5. Here, the

results are not even qualitatively correct, regardless of the tem-

perature. Even for α = 1, the results are still not satisfactory:
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the predictions for T < 4 (T > 9) overestimate (underesti-

mate) the DMFT benchmark. MA proves to be reliable only

for very weak interactions α � 1/
√

2. Here, the results are

better for higher temperatures. This is expected as the MA

takes into account only the lowest-order Feynman diagram,

while the relevance of higher-order diagrams decreases as the

temperature is increased. Similar analysis can be repeated for

other phonon frequencies in Figs. 14(b) and 14(c).
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[63] J. Bonča and S. A. Trugman, Dynamic properties of a po-

laron coupled to dispersive optical phonons, Phys. Rev. B 103,

054304 (2021).

[64] G. D. Mahan, Mobility of polarons, Phys. Rev. 142, 366

(1966).

125165-19

https://doi.org/10.1103/PhysRevB.57.6376
https://doi.org/10.1103/PhysRevLett.81.5382
https://doi.org/10.1063/1.477305
https://doi.org/10.1103/PhysRevLett.91.256403
https://doi.org/10.1103/PhysRevB.74.075101
https://doi.org/10.1103/PhysRevB.60.14092
https://doi.org/10.1103/PhysRevB.74.245104
https://doi.org/10.1103/PhysRevLett.97.036402
https://doi.org/10.1016/j.jpcs.2008.03.023
https://doi.org/10.1103/PhysRevB.100.094307
https://doi.org/10.1103/PhysRevB.99.104304
https://doi.org/10.1103/PhysRevB.102.165155
https://doi.org/10.1103/PhysRevB.105.054311
https://doi.org/10.1103/PhysRevB.106.174303
https://doi.org/10.1103/PhysRevLett.113.166402
https://doi.org/10.1103/PhysRevB.105.224304
https://doi.org/10.1103/PhysRevB.105.224305
https://doi.org/10.1103/PhysRevLett.129.096401
https://doi.org/10.1103/PhysRevB.56.4494
http://link.aps.org/supplemental/10.1103/PhysRevB.107.125165
https://doi.org/10.1016/0377-0427(94)00118-9
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1209/epl/i2002-00187-x
https://doi.org/10.1103/PhysRevLett.64.1990
https://doi.org/10.1103/PhysRevB.63.153101
https://doi.org/10.1002/adfm.201502386
https://doi.org/10.1103/PhysRevB.103.054304
https://doi.org/10.1103/PhysRev.142.366


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

Fermionic-propagator and alternating-basis
quantum Monte Carlo methods for correlated
electrons on a lattice

Cite as: J. Chem. Phys. 158, 044108 (2023); doi: 10.1063/5.0133597

Submitted: 4 November 2022 • Accepted: 2 January 2023 •

Published Online: 24 January 2023
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ABSTRACT

Ultracold-atom simulations of the Hubbard model provide insights into the character of charge and spin correlations in and out of equi-
librium. The corresponding numerical simulations, on the other hand, remain a significant challenge. We build on recent progress in the
quantum Monte Carlo (QMC) simulation of electrons in continuous space and apply similar ideas to the square-lattice Hubbard model. We
devise and benchmark two discrete-time QMC methods, namely the fermionic-propagator QMC (FPQMC) and the alternating-basis QMC
(ABQMC). In FPQMC, the time evolution is represented by snapshots in real space, whereas the snapshots in ABQMC alternate between
real and reciprocal space. The methods may be applied to study equilibrium properties within the grand-canonical or canonical ensemble,
external field quenches, and even the evolution of pure states. Various real-space/reciprocal-space correlation functions are also within their
reach. Both methods deal with matrices of size equal to the number of particles (thus independent of the number of orbitals or time slices),
which allows for cheap updates. We benchmark the methods in relevant setups. In equilibrium, the FPQMCmethod is found to have an excel-
lent average sign and, in some cases, yields correct results even with poor imaginary-time discretization. ABQMC has a significantly worse
average sign, but also produces good results. Out of equilibrium, FPQMC suffers from a strong dynamical sign problem. On the contrary,
in ABQMC, the sign problem is not time-dependent. Using ABQMC, we compute survival probabilities for several experimentally relevant
pure states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133597

I. INTRODUCTION

The last two decades have witnessed remarkable develop-
ments in laser and ultracold-atom technologies that have enabled
experimental studies of strongly correlated electrons in and out
of equilibrium.1,2 Ultracold atoms in optical lattices2,3 and opti-
cal tweezers arrays4–6 have been used as quantum simulators for
paradigmatic models of condensed-matter physics, such as the Hub-
bard model.7,8 Recent experiments with fermionic ultracold atoms
have probed the equation of state,9 charge, and spin correlation
functions,10–13 as well as transport properties (by monitoring charge
and spin diffusion14–17).

These experimental achievements pose a significant challenge
for the theory. The level of difficulty, however, greatly depends
on whether one computes instantaneous (equal-time) correlations

or the full time/frequency dependence of dynamical correlators.
The other factor is whether one considers thermal equilibrium or
out-of-equilibrium setups.

Instantaneous correlators in equilibrium are the best-case
scenario. The average density, double occupancy, and correla-
tions between particle or spin densities on adjacent sites are still
very important. They serve as a thermometer: the temperature in
cold-atom experiments cannot be measured directly and is often
gauged in comparison with numerical simulations.11,14 For this
kind of application, current state-of-the-art methods18–43 are often
sufficient. Equal-time multipoint density correlations are also of
interest, as they hold information, e.g., about the emergence of
string patterns13,44,45 or the effect of holes on antiferromagnetic
correlations.46–48 However, measuring density at a larger number
of points simultaneously is more difficult in many algorithms. For
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example, in the Hirsch–Fye (HF) algorithm,24,49 one cannot do
this straight-forwardly, as the auxiliary Ising spins only distinguish
between singly occupied and doubly occupied/empty sites.

Of even greater interest and much greater difficulty are the
time-dependent correlations in equilibrium. These pertain to stud-
ies of transport and hydrodynamics at the level of linear response
theory.50–52 The limitations of current state-of-the-art methods here
become starkly apparent. If one is interested in long-wavelength
behavior (as is precisely the case in the study of hydrodynamic
properties52), the lattices treated in the simulation need to be suffi-
ciently large. The finite-temperature Lanczos method53,54 can only
treat up to 20 lattice sites50,55 and is unsuitable for such appli-
cations. Quantum Monte Carlo (QMC) methods can treat up to
300 sites,29,30 but only under certain conditions: doping away from
half-filling leads to a significant sign problem, which becomes
more severe as the lattice size, inverse temperature, and coupling
constant are increased. Moreover, QMC methods are formulated
in imaginary time and require ill-defined analytical continuation
to reconstruct optical conductivity or any other real-frequency
spectrum.51

Direct real-time calculations, regardless of proximity to the
equilibrium, are the most difficult.31,56–69 These present an alterna-
tive to analytical continuation in equilibrium calculations but are
necessary to describe non-equilibrium regimes, e.g., in external field
quenches.16 In the corresponding Kadanoff–Baym–Keldysh three-
or two-piece contour formalism, QMC computations are plagued
by the dynamical sign problem, which has so far been overcome
in only the smallest systems.61 The time-dependent density matrix
renormalization group70–72 produces practically exact results, how-
ever, only in one-dimensional63,64 or ladder systems.73 Simulations
based on the nonequilibrium Green’s functions formalism74 are also
possible but not numerically exact. They can, however, treat much
larger systems over much longer time scales than other real-time
approaches.64,75–77

The main goal of this work is to construct a numerically exact
way to compute spatially resolved densities in setups relevant for
optical lattice experiments. This includes general multipoint corre-
lators in real space and momentum space, and we focus on densities
of charge and spin. We are interested in both the equilibrium
expectation values and their time dependence in transient regimes.
(The latter can formally be used to access temporal correlations in
equilibrium as well.)

We take a largely unexplored QMC route78–80 toward the com-
putation of correlation functions in the square-lattice Hubbard
model. Current state-of-the-art methods, such as the continuous-
time interaction-expansion (CT-INT),31–33 the continuous-time
auxiliary field (CT-AUX),31,34 and HF,24,49 rely on the computa-
tion of large matrix determinants, which, in many cases, presents
the bottleneck of the algorithm. In CT-INT and CT-AUX, the size
of the matrices generally grows with coupling, inverse temperature,
and lattice size. In the HF, which is based on the Suzuki–Trotter
decomposition (STD), the matrix size is fixed, yet presents a mea-
sure of the systematic error: the size of the matrix scales with
both the number of time slices and the number of lattice sites. A
rather separate approach is possible, where the size of the matri-
ces scales only with the total number of electrons. This approach
builds on the path-integral MC (PIMC).81,82 In PIMC, the trajecto-
ries of individual electrons are tracked. In continuous-space models,

PIMC was used successfully even in the calculation of dynamical
response functions.83,84 The downside is that the antisymmetry of
electrons feeds into the overall sign of a given configuration, thus
contributing to the sign problem. A more sophisticated idea was
put forward in Refs. 85–87. Namely, the propagation between two
time slices can be described by a single many-fermion propagator,
which groups (blocks) all possible ways the electrons can go from
one set of positions to another—including all possible exchanges.
The many-fermion propagator is evaluated as a determinant of a
matrix of size equal to the total number of electrons. This scheme
automatically eliminates one important source of the sign problem
and improves the average sign drastically. Such permutation blocking
algorithms have been utilized with great success to compute ther-
modynamic quantities in continuous-space fermionic models.88–96

Here, we investigate and test analogous formulations in the lattice
models of interest and try generalizing the approach to real-time
dynamics.

We develop and test two slightly different QMC methods. The
Fermionic-propagator QMC (FPQMC) is a real-space method sim-
ilar to the permutation-blocking and fermionic-propagator PIMC,
respectively, developed by Dornheim et al.90 and Filinov et al.96 for
continuous models. On the other hand, the alternating-basis QMC
(ABQMC) method is formulated simultaneously in both real and
reciprocal space, whichmakesmeasuring distance- andmomentum-
resolved quantities equally simple. Themotion of electrons and their
interactions are treated on an equal footing. Both methods are based
on the STD and are straight-forwardly formulated along any part
of or the entire Kadanoff–Baym–Keldysh three-piece contour. This
allows access to both real- and imaginary-time correlation functions
in and out of equilibrium. Unlike CT-INT, CT-AUX, and HF, our
methods can also be used to treat canonical ensembles as well as
the time evolution of pure states. Our formulation ensures that the
measurement of an arbitrary multipoint charge or spin correlation
function is algorithmically trivial and cheap.

We perform benchmarks on several examples where numeri-
cally exact results are available.

In calculations of instantaneous correlators for the 2D Hub-
bard model in equilibrium, our main finding is that the FPQMC
method has a rather manageable sign problem. The average sign is
anti-correlated with coupling strength, which is in sharp contrast
with some of the standard QMC methods. More importantly, we
find that the average sign drops off relatively slowly with the lattice
size and the number of time slices—we have been able to con-
verge results with as many as eight time slices, or as many as 80
lattice sites. At strong coupling and at half-filling, we find the aver-
age sign to be very close to 1. In the temperature range relevant
for optical-lattice experiments, we find that the average occupancy
can be computed to a high accuracy with as few as two time slices;
the double occupancy and the instantaneous spin–spin correlations
require somewhat finer time discretization, but often not more than
six time-slices in total. We also document that FPQMC appears to
be sign-problem-free for Hubbard chains.

However, in calculations of the time-evolving and spatially
resolved density, we find that the FPQMC sign problem is
mostly prohibitive of obtaining results. Nevertheless, employing the
ABQMC algorithm, we are able to compute survival probabilities of
various pure states on 4 × 4 clusters—in the ABQMC formulation,
the sign-problem is manifestly independent of time and interaction
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strength, and one can scan the entire time evolution for multiple
strengths of interaction in a single run. The numerical results reveal
several interesting trends. Similarly to observations made in Ref. 97,
we find in general that the survival probability decays over longer
times when interactions are stronger. At shorter times, we observe
that the behavior depends strongly on the type of the initial state,
likely related to the average density.

The paper is organized as follows: The FPQMC and ABQMC
methods are developed in Sec. II and applied to equilibrium and
out-of-equilibrium setups in Sec. III. Section IV discusses the
FPQMC and ABQMC methods in light of other widely used QMC
algorithms. Section V summarizes our main findings and their
implications, and discusses prospects for further work.

II. MODEL AND METHOD

A. Hubbard Hamiltonian

We study the Hubbard model on a square-lattice cluster con-
taining Nc = NxNy sites under periodic boundary conditions (PBC).
The Hamiltonian reads as

H = H0 +Hint. (1)

The noninteracting (single-particle) part H0 of the Hamiltonian
describes a band of itinerant electrons

H0 = −J ∑
⟨r,r′⟩σ

c
†
rσ cr′σ =∑

kσ

εk nkσ , (2)

where J is the hopping amplitude between the nearest-neighboring
lattice sites r and r′, while the operators c†rσ (crσ) create (destroy) an
electron of spin σ on lattice site r. Under PBC, H0 is diagonal in the
momentum representation; the wave vector kmay assume any of the
Nc allowed values in the first Brillouin zone of the lattice. The free-
electron dispersion is given by εk = −2J(cos kx + cos ky). The density
operator is nkσ = c

†

kσ ckσ with ckσ = ∑r⟨k∣r⟩crσ . The Hamiltonian of
the on-site Hubbard interaction (two-particle part) reads as

Hint = U∑
r

nr↑ nr↓, (3)

where U is the interaction strength, while nrσ = c
†
rσ crσ .

If the number of particles is not fixed, Eq. (1) additionally
features the chemical-potential term −μ∑rσ nrσ = −μ∑kσ nkσ that
can be added to either H0 or Hint. Here, since we develop a
coordinate-space QMCmethod, we add it to Hint.

B. FPQMC method

Finding viable approximations to the exponential of the form
e−αH is crucial to many QMC methods. With α = 1/T (T denotes
temperature), this is the Boltzmann operator, which will play a role
whenever the system is in thermal equilibrium. In the formulation
of dynamical responses, the time-evolution operator will also have
this form, with α = it, where t is the (real) time. One possible way to
deal with these is the lowest-order STD98

e
−αH
≈ (e−ΔαH0e

−ΔαHint)Nα

, (4)

where the interval of length ∣α∣ is divided into Nα subintervals of
length ∣Δα∣ each, where Δα = α/Nα. The error of the approximation
is of the order of ∣Δα∣2∥∥H0,Hint∥∥, where the norm ∥∥H0,Hint∥∥may
be defined as the largest (in modulus) eigenvalue of the commutator∥H0,Hint∥.80 The error can in principle be made arbitrarily small by
choosing Nα large enough. However, the situation is complicated by
the fact that the RHS of Eq. (4) contains both single-particle and
two-particle contributions. The latter are diagonal in the coordinate
representation, so that the spectral decomposition of e−ΔαHint is per-
formed in terms of totally antisymmetric states in the coordinate
representation, aka the Fock states,

∣Ψi⟩ =∏
σ

Nσ

∏
j=1

c
†

rσj σ
∣∅⟩ (5)

that contain Nσ electrons of spin σ whose positions rσ1 , . . . , r
σ
Nσ

are ordered according to a certain rule. We define εint(Ψi)
≡ ⟨Ψi∣Hint∣Ψi⟩. On the other hand, the matrix element of e−ΔαH0

between many-body states ∣Ψ′i⟩ and ∣Ψi⟩ can be expressed in terms
of determinants of single-electron propagators

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∏
σ

det S(Ψ′i ,Ψi,Δα, σ), (6)

[S(Ψ′i ,Ψi,Δα, σ)]j1 j2 = ⟨r′σj1 ∣e−ΔαH0 ∣rσj2⟩. (7)

We provide a formal proof of Eqs. (6) and (7) in Appendix A. The
same equations lie at the crux of conceptually similar permutation-
blocking90 and fermionic-propagator96 PIMC methods, which are
formulated for continuous-space models. When Δα is purely real
(purely imaginary), the quantity on the right-hand side of Eq. (7)
is the imaginary-time (real-time) lattice propagator of a free particle
in the coordinate representation.80 Its explicit expressions are given
in Appendix B.

Further developments of the method somewhat depend on
the physical situation of interest. We formulate the method first
in equilibrium and then in out-of-equilibrium situations. To facil-
itate discussion, in Figs. 1(a)–1(d), we summarize the contours
appropriate for the different situations we consider.

1. FPQMC method for thermodynamic quantities

The equilibrium properties at temperature T = β−1 follow
from the partition function Z ≡ Tr e−βH , which may be computed
by dividing the imaginary-time interval ∥0,β∥ into Nτ slices of
length Δτ ≡ β/Nτ , employing Eq. (4), and inserting the spectral
decompositions of e−ΔτHint . The corresponding approximant for Z
reads as

Z ≈∑
C

Dβ(C,Δτ)e−Δτεint(C ). (8)

The configuration

C = {∣Ψi,1⟩, . . . , ∣Ψi,Nτ ⟩} (9)

resides on the contour depicted in Fig. 1(a) and consists of Nτ Fock
states ∣Ψi,l⟩ in the coordinate representation. Dβ(C,Δτ) depends
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FIG. 1. Contours appropriate for computing (a) thermodynamic quantities at tem-
perature T = 1/β, (b) time-dependent quantities after quantum quench in which
the Hamiltonian is suddenly changed from H(0) at t < 0 to H at t > 0, (c) time-
dependent quantities during evolution from a pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩, (d) the
survival probability of the initial pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩. In (a) and (b), the ver-
tical part is divided into Nτ identical slices of length Δτ. In (b)–(d), each horizontal
line is divided into Nt identical slices of length Δt. Within the FPQMC method, a
many-body state in the coordinate representation ∣Ψi,l⟩ [Eq. (5)] is associated with
each slice l. Within the ABQMC method, in addition to ∣Ψi,l⟩, each slice l features
a many-body state in the momentum representation ∣Ψk,l⟩ [Eq. (29)].

on the temperature and imaginary-time discretization through the
imaginary-time step Δτ

Dβ(C,Δτ) ≡ Nτ

∏
l=1

⟨Ψi,l⊕1∣e−ΔτH0 ∣Ψi,l⟩

=

Nτ

∏
l=1
∏
σ

det S(Ψi,l⊕1,Ψi,l,Δτ, σ) (10)

and is a product of 2Nτ determinants of imaginary-time single-
particle propagators on a lattice (this is emphasized by adding
the subscript β). The cyclic addition in Eq. (10) is the standard
addition for l = 1, . . . ,Nτ − 1, while Nτ ⊕ 1 = 1. The symbol εint(C)
stands for

εint(C) ≡ Nτ

∑
l=1

εint(Ψi,l). (11)

By virtue of the cyclic invariance under trace, the ther-
modynamic expectation value of an observable A can be
expressed as

⟨A⟩ = 1
Nτ

Nτ−1

∑
l=0

1
Z
Tr{(e−ΔτH)lA(e−ΔτH)Nτ−l}. (12)

The FPQMC method is particularly suitable for observables diago-
nal in the coordinate representation (e.g., the interaction energyHint

or the real-space charge density nrσ). Such observables will be dis-
tinguished by adding the subscript i. Equation (12), combined with
the lowest-order STD [Eq. (4)], produces the following approximant
for ⟨Ai⟩ :

⟨Ai⟩ ≈ ∑C Dβ(C,Δτ) e−Δτεint(C ) 1
Nτ
∑Nτ

l=1Ai(Ψi,l)
∑C Dβ(C,Δτ) e−Δτεint(C ) , (13)

where

Ai(Ψi,l) ≡ ⟨Ψi,l∣Ai∣Ψi,l⟩. (14)

Defining the weight w(C,Δτ) of configuration C as

w(C,Δτ) ≡ ∣Dβ(C,Δτ)∣e−Δτεint(C ), (15)

Eq. (13) is rewritten as

⟨Ai⟩ ≈ ⟨sgn(C)
1
Nτ
∑Nτ

l=1Ai(Ψi,l)⟩
w⟨sgn(C)⟩

w

, (16)

where ⟨⋅ ⋅ ⋅⟩w denotes the weighted average over all C with respect
to the weight w(C); sgn(C) ≡ Dβ(C,Δτ)/∣Dβ(C,Δτ)∣ is the sign of
configuration C, while ∣⟨sgn⟩∣ ≡ ∣⟨sgn(C)⟩w ∣ is the average sign of the
QMC simulation.

By construction, our FPQMC approach yields exact results for
the noninteracting electrons (ideal gas, U = 0) and in the atomic
limit (J = 0). In both limits, due to ∥H0,Hint∥ = 0, the FPQMC
method with arbitrary Nτ should recover the exact results. How-
ever, the performance of the method, quantified through the average
sign of the simulation, deteriorates with increasing Nτ . For Nτ = 1,
the FPQMC algorithm is sign-problem-free because it sums only
diagonal elements ⟨Ψi,1∣e−βH0 ∣Ψi,1⟩ of the positive operator e−βH0 .
The sign problem is absent also for Nτ = 2 because Dβ(C,β/2) is a
square of a real number.

An important feature of the above-presented methodology
is its direct applicability in both the grand-canonical and canon-
ical ensemble. The grand-canonical formulation is essential to
current state-of-the-art approaches31 (e.g., CT-INT or CT-AUX)
relying on the thermal Wick’s theorem, which is not valid in
the canonical ensemble.99 In the auxiliary-field QMC,22,23,25,27,28

the Hubbard–Stratonovich transformation100 decouples many-body
propagators into sums (or integrals) over one-body operators
whether the particle number is fixed or not. Working in the grand-
canonical ensemble is then analytically and computationally more
convenient because the traces over all possible fermion occupations
result in determinants.23,101 In the canonical ensemble, the compu-
tation of traces over constrained fermion occupations is facilitated
by observing that the Hubbard–Stratonovich decoupling produces
an ensemble of noninteracting systems101 to which theories devel-
oped for noninteracting systems in the canonical ensemble, such as
particle projection102,103 or recursive methods,104,105 can be applied.
While such procedures may be numerically costly and/or unsta-
ble,101 a very recent combination of the auxiliary-field QMC with
the recursive auxiliary partition function formalism105 is reported
to be stable and scale favorably with the numbers of particles and
available orbitals.106 In contrast to all these approaches, the for-
mulation of the FPQMC method does not depend on whether the
electron number is fixed or not. However, the selection of MC
updates does depend on the ensemble we work with. In the canonical
ensemble, the updates should conserve the number of electrons; in
the grand-canonical ensemble, we also need to include the updates
that insert/remove electrons. Our MC updates, together with the
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procedure used to extract MC results and estimate their statistical
error, are presented in great detail in Sec. SI of the supplementary
material.

2. FPQMC method for time-dependent quantities

Ideally, numerical simulations of quench experiments such as
those from Refs. 14, 16, and 17 should provide the time-dependent
expectation value ⟨A(t)⟩ of an observable A at times t > 0 after the
Hamiltonian undergoes a sudden change from H(0) for t < 0 to H
for t > 0. Again, in many instances,14,17 the experimentally measur-
able observableA is diagonal in the coordinate representation, which
will be emphasized by the subscript i. The computation proceeds
along the three-piece Kadanoff–Baym–Keldysh contour1

⟨Ai(t)⟩ = Tr(e−βH(0) eiHt Ai e
−iHt)

Tr(e−βH(0) eiHt e−iHt) , (17)

where one may employ the above-outlined fermionic-propagator
approach after dividing the whole contour into a number of slices,
see Fig. 1(b). While H is the Hubbard Hamiltonian given in
Eqs. (1)–(3), H(0) describes correlated electrons whose charge (or
spin) density is spatially modulated by external fields.

The immediate complication (compared to the equilibrium
case) is that there are now three operators (instead of one) that need
to be decomposed via the STD. A preset accuracy determined by the
size of both Δτ and Δt will, therefore, require a larger number of
time-slices. In turn, this will enlarge the configuration space to be
sampled and potentially worsen the sign problem in theMC summa-
tion. Even worse, the individual terms in the denominator depend
on time, so that the sign problem becomes time-dependent (dynam-
ical). The problem is expected to become worse at long times t, yet
vanishes in the t → 0 limit.

To simplify the task and yet keep it relevant, we consider the
evolution from a pure state ∣ψ(0)⟩ that is an eigenstate of real-
space density operators nrσ , so that its most general form is given by
Eq. (5). Such a setup has been experimentally realized.5,6,14,17 Replac-
ing e−βH(0)

→ ∣ψ(0)⟩⟨ψ(0)∣ in Eq. (17) leads to the expression for the
time-dependent expectation value of the observable Ai

⟨Ai(t)⟩ = ⟨ψ(0)∣eiHt Ai e
−iHt ∣ψ(0)⟩

⟨ψ(0)∣eiHt e−iHt ∣ψ(0)⟩ . (18)

Here, the STD should be applied to both the forward and backward
evolution operators, see Fig. 1(c), which requires a larger number of
time-slices to reach the desired accuracy (in terms of the systematic
error). Nevertheless, Eq. (18) is the simplest example in which the
applicability of the real-time FPQMCmethod to follow the evolution
of real-space observables may be examined.

Generally speaking, the symmetries of the model should be
exploited to enable as efficient as possible MC evaluation of Eq. (18).
Recent experimental15 and theoretical107 studies have discussed the
dynamical symmetry of the Hubbard model, according to which the
temporal evolution of certain observables is identical for repulsive
and attractive interactions of the same magnitude. The symmetry
relies on specific transformation laws of the Hamiltonian H, the

initial state ∣ψ(0)⟩, and the observable of interest Ai under the com-
bined action of two symmetry operations. The first is the bipartite
lattice symmetry, or the π-boost15 operation, which exploits the
symmetry εk = −εk+(π,π) of the free-electron dispersion and is rep-
resented by the unitary operator B. The second is the time reversal
symmetry represented by the antiunitary operator T (TiT = −i)
that reverses electron spin and momentum according to Tc

(†)
rσ T

= (−1)δσ,↓c(†)
rσ

and Tc(†)kσ T = (−1)δσ,↓c(†)
−k,σ . In Appendix C, we formu-

late our FPQMCmethod to evaluate Eq. (18) in a way that manifestly
respects the dynamical symmetry of the model (each contribution to
the MC sums respects the symmetry). Here, we only cite the final
expression for the time-dependent expectation value of an observ-
able Ai that satisfies TBAiBT = Ai when the evolution starts from a
state ∣ψ(0)⟩ satisfying TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩

⟨Ai(t)⟩ ≈ ∑C Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥
∑C Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥ . (19)

Here, the configuration resides on the contour depicted in Fig. 1(c),
which is divided into 2Nt slices in total, and contains 2Nt − 1
independent states. We assume that states ∣Ψi,l⟩ for l = 1, . . . ,Nt(l = Nt + 1, . . . , 2Nt) lie on the forward (backward) branch of the
contour, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. Ai(Ψi,Nt+1) is defined as in Eq. (14),
while

Δεint(C) ≡ Nt

∑
l=1

∥εint(Ψi,l+Nt
) − εint(Ψi,l)∥. (20)

The symbol D2t(C,Δt) stands for the following combination
of forward and backward fermionic propagators (which is also
emphasized by the subscript 2t):

D2t(C,Δt) = 2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣eiH0Δt ∣Ψi,l⟩ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩. (21)

The bipartite lattice symmetry guarantees that D2t(C,Δt)
= D2t(C,−Δt), see Eq. (C9). The numerator and denominator of the
RHS of Eq. (19) are term-by-term invariant under the transforma-
tions Δt → −Δt and Δεint(C)→ −Δεint(C) that respectively reflect
the transformation properties under the time reversal symmetry and
the fact that the dynamics of ⟨Ai(t)⟩ are identical in the repulsive
and the attractive model. Defining w(C) ≡ ∣Re{D2t(C,Δt)}∣ and
sgn(C) ≡ Re{D2t(C,Δt)}/∣Re{D2t(C,Δt)}∣, Eq. (19) is recast as

⟨Ai(t)⟩ ≈ ⟨Ai(Ψi,Nt+1) sgn(C) cos∥Δεint(C)Δt∥⟩w⟨sgn(C) cos∥Δεint(C)Δt∥⟩w . (22)

The sign problem in the MC evaluation of Eq. (22) is dynam-
ical. It generally becomes more serious with increasing time t and
interaction strength ∣U∣. Moreover, w(C) also depends on both t
and U, meaning that MC evaluations for different ts and Us should
be performed separately, using different Markov chains. It is thus
highly desirable to employ further symmetries in order to improve
the performance of the method. Particularly relevant initial states
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∣ψ(0)⟩, from both an experimental14,17 and theoretical108 viewpoint,
are pure density-wave-like states. Such states correspond to extreme
spin-density wave (SDW) and charge-density wave (CDW) patterns,
which one obtains by applying strong external density-modulating
fields. The SDW-like state can be written as

∣ψSDW(G)⟩ =∏
r1∈G

c
†

r1↑ ∏
r2∈U/G

c
†

r2↓
∣∅⟩, (23)

where G denotes the multitude of sites on which the electron spins
are polarized up, while set U contains all sites of the cluster stud-
ied. The electron spins on sites belonging to U/G are thus polarized
down. Such states have been experimentally realized in Ref. 17. The
CDW-like states have also been realized in experiment,14 and they
read as

∣ψCDW(G)⟩ =∏
r∈G

c
†

r↑c
†

r↓∣∅⟩. (24)

The sites belonging to G are doubly occupied, while the remain-
ing sites are empty. The state ∣ψCDW(G)⟩ can be obtained from the
corresponding ∣ψSDW(G)⟩ state by applying the partial particle–hole
transformation that acts on spin-down electrons only

∣ψSDW(G)⟩ =∏
r∈U

(c†r↓(1 − nr↓) + cr↓ nr↓)∣ψCDW(G)⟩, (25)

see also Refs. 109 and 110. By combining the partial particle–hole,
time-reversal, and bipartite lattice symmetries, the authors of
Ref. 108 have shown that the time evolution of spatially resolved
charge and spin densities starting from states ∣ψCDW(G)⟩ and∣ψSDW(G)⟩, respectively, obey

⟨ψCDW(G)∣eiHt(nr↑ + nr↓ − 1)e−iHt ∣ψCDW(G)⟩
= ⟨ψSDW(G)∣eiHt(nr↑ − nr↓)e−iHt ∣ψSDW(G)⟩. (26)

Equation (26) may be used to acquire additional statistics by com-
bining the Markov chains for the two symmetry-related evolutions.
The procedure is briefly described in Appendix C and applied to all
corresponding computations presented in Sec. III B.

3. ABQMC method for time-dependent quantities

In this section, we develop the so-called alternating-basis QMC
method, which is aimed at removing the dynamical character of the
sign problem in real-time FPQMC simulations. Moreover, using the
ABQMC method, the results for different real times t and different
interactions U may be obtained using just a single Markov chain, in
contrast to the FPQMC method, which employs separate chains for
each t and U.

Possible advantages of the ABQMC over the FPQMC method
aremost easily appreciated on the example of the survival probability
of the initial state ∣ψ(0)⟩

P(t) = ∣⟨ψ(0)∣e−iHt ∣ψ(0)⟩∣2, (27)

which is the probability of finding the system in its initial state after
a time t has passed. Evaluating Eq. (27) by any discrete-time QMC

method necessitates only one STD, see Fig. 1(d). The survival prob-
ability is thus the simplest example on which the applicability of
anyQMCmethod to out-of-equilibrium setups can be systematically
studied.

The FPQMC computation of P(t)may proceed via the ratio

R(t) = ⟨ψ(0)∣e−iHt ∣ψ(0)⟩⟨ψ(0)∣e−iH0t ∣ψ(0)⟩ (28)

of the survival-probability amplitudes in the presence and absence
of electron–electron interactions. However, the average sign of the
MC simulation of Eq. (28) is proportional to the survival-probability
amplitude of the noninteracting system, which generally decays very
quickly to zero, especially for large clusters.62 This means that the
dynamical sign problem in the FPQMC evaluation of Eq. (28) may
become very severe already at relatively short times t.

Instead of expressing the many-body free propagator⟨Ψ′i ∣e−iH0Δt ∣Ψi⟩ as a determinant of single-particle free propagators
[Eqs. (6) and (7)], we could have introduced the spectral decom-
position of e−iH0Δt in terms of Fock states ∣Ψk⟩ in the momentum
representation. In analogy with Eq. (5), such states are defined as

∣Ψk⟩ =∏
σ

Nσ

∏
j=1

c
†

kσj σ
∣∅⟩. (29)

The state ∣Ψk⟩ contains Nσ electrons of spin σ whose momenta
kσ1 , . . . ,k

σ
Nσ

are ordered according to a certain rule and we define
ε0(Ψk) ≡ ⟨Ψk∣H0∣Ψk⟩. In this case, the final expression for the sur-
vival probability of state ∣ψ(0)⟩ that satisfies TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩
reads as

P(t) ≈ ∣∑C Re{D (C )} cos∥ε0(C )Δt∥ cos∥εint(C )Δt∥
∑C Re{D (C )} ∣2. (30)

A derivation of Eq. (30) is provided in Appendix D. The MC eval-
uation of Eq. (30) should sample a much larger configuration space
than the MC evaluation of Eq. (28). The configuration C in Eq. (30)
also resides on the contour depicted in Fig. 1(d), but comprises
2Nt − 1 states in total:Nt Fock states ∣Ψk,l⟩ (l = 1, . . . ,Nt) andNt − 1
Fock states ∣Ψi,l⟩ (l = 2, . . . ,Nt) (again, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩). D(C) is the
product of 2Nt Slater determinants

D(C) = Nt

∏
l=1

⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩ (31)

that stem from the sequence of basis alternations between the
momentum and coordinate eigenbasis. Using the notation of
Eqs. (5) and (29), the most general Slater determinant ⟨Ψi∣Ψk⟩
entering Eq. (10) is given as

⟨Ψi∣Ψk⟩ =∏
σ

det S̃(Ψi,Ψk, σ), (32)

[̃S(Ψi,Ψk, σ)]j1 j2 = ⟨rσj1 ∣kσj2⟩ =
exp(ikσj2 ⋅ rσj1)√

Nc
, (33)

where 1 ≤ j1, j2 ≤ Nσ . The symbol ε0(C) stands for [cf. Eq. (11)]
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ε0(C) ≡ Nt

∑
l=1

ε0(Ψk,l). (34)

We note that each term in Eq. (30) is invariant under transfor-
mations ε0(C)→ −ε0(C) and Δt → −Δt, which reflect the action
of the bipartite lattice symmetry and the time reversal symmetry,
respectively. Being term-by-term invariant under the transforma-
tion εint(C)→ −εint(C), Eq. (30) explicitly satisfies the requirement
that the dynamics of P(t) for repulsive and attractive interactions of
the same magnitude are identical. Defining w(C) ≡ ∣Re{D(C)}∣ and
sgn(C) ≡ Re{D(C)}/∣Re{D(C)}∣, Eq. (30) is recast as

P(t) ≈ ∣ ⟨sgn(C ) cos∥ε0(C )Δt∥ cos∥εint(C )Δt∥⟩w⟨sgn(C)⟩
w

∣2. (35)

This choice for w is optimal in the sense that it minimizes the vari-
ance of ⟨sgn(C)⟩w ,111 whose modulus is the average sign of the
ABQMC simulation. The sign problem encountered in the MC eval-
uation of Eq. (35) does not depend on either time t or interaction
strength U, i.e., it is not dynamical. The weight w(C) in Eq. (35)
does not depend on either Δt or any other property of configuration
C (ε0, εint). Therefore, the MC evaluation of Eq. (35) may be per-
formed simultaneously (using a single Markov chain) for any U and
any t. This presents a technical advantage over the FPQMCmethod,
which may be outweighed by the huge increase in configuration
space when going from FPQMC to ABQMC. To somewhat reduce
the dimension of the ABQMC configuration space and improve
the sampling efficiency, we design the MC updates so as to respect
the momentum conservation law throughout the real-time evolu-
tion. The momentum conservation poses the restriction that all the
momentum-space states ∣Ψk,l⟩ have the same total electron momen-
tum K ≡ ∑kσk⟨Ψk,l∣nkσ ∣Ψk,l⟩ [modulo (2π, 2π)]. The MC updates
in the ABQMC method for the evaluation of the survival proba-
bility are presented in great detail in Sec. SII of the supplementary
material.

By relying on the partial particle–hole and bipartite lattice
symmetries, in Appendix D we demonstrate that the dynamics of
the survival probabilities of states ∣ψSDW(G)⟩ and ∣ψCDW(G)⟩ are
identical, i.e.,

∣⟨ψSDW(G )∣e−iHt ∣ψSDW(G)⟩∣2 = ∣⟨ψCDW(G )∣e−iHt ∣ψCDW(G)⟩∣2.
(36)

Evaluating Eq. (35), additional statistics can be acquired by
combining theMarkov chains for the P(t) calculations starting from
the two symmetry-related states ∣ψCDW(G)⟩ and ∣ψSDW(G)⟩. The
procedure is similar to that described in Appendix C, and we apply
it to all corresponding computations presented in Sec. III C.

III. NUMERICAL RESULTS

We first apply the FPQMC method to equilibrium situations
(the particle number is not fixed), see Sec. III A, and then to time-
dependent local densities during the evolution of pure states, see
Sec. III B. Section III C presents our ABQMC results for the sur-
vival probability of pure states. Our implementation of the ABQMC
method on the full Kadanoff–Baym–Keldysh contour [Eq. (17)] is
benchmarked in Sec. SVII of the supplementary material.

A. Equilibrium results: Equation of state

We start by considering the Hubbard dimer, the minimal
model capturing the subtle interplay between electron delocalization
and electron–electron interaction.112 We opt for moderate temper-
ature T/J = 1 and interaction U/J = 4, so that the expected num-
ber of imaginary-time slices needed to obtain convergent FPQMC
results is not very large. Figure 2 presents the equation of state
(i.e., the dependence of the electron density ρe = ⟨N̂↑ + N̂↓⟩/Nc on
the chemical potential μ) for a range of μ below the half-filling.
Here, N̂↑ and N̂↓ are the operators of the total number of spin-
up and spin-down electrons, respectively. Figure 2 suggests that
already Nτ = 2 imaginary-time slices suffice to obtain very good
results in the considered range of μ, while increasing Nτ from 2
to 4 somewhat improves the accuracy of the FPQMC results. It
is interesting that, irrespective of the value of Nτ , FPQMC sim-
ulations on the dimer are manifestly sign-problem-free. First, the
one-dimensional imaginary-time propagator defined in Eq. (B2) is
positive, I(JΔτ, l) = [eJΔτ + (−1)le−JΔτ]/2 for both l = 0 and 1. Sec-
ond, the configuration containing two electrons of the same spin is
of weight cosh2(JΔτ) − sinh2(JΔτ) ≡ 1, implying that the weights of
all configurations are positive. Furthermore, our results on longer
chains suggest that FPQMC simulations of one-dimensional lattice
fermions do not display a sign problem. While similar statements
have been repeated for continuum one-dimensional models of both
noninteracting85,86 and interacting fermions,87 there is, to the best
of our knowledge, no rigorous proof that the sign problem is
absent from coordinate-space QMC simulations of one-dimensional
fermionic systems. While we do not provide such a proof either,
Fig. 3 is an illustrative example showing how the FPQMC results
for the double occupancy ∑r⟨nr↑ nr↓⟩/Nc of the Hubbard chain at
half-filling approach the reference result (taken from Ref. 113) as the
imaginary-time discretization becomes finer. For allNτs considered,
the average sign of FPQMC simulations is ∣⟨sgn⟩∣ = 1.

We now apply the FPQMC method to evaluate the equation
of state on larger clusters. We focus on a 4 × 4 cluster, which may
already be representative of the thermodynamic limit at T/J ≳ 1.50
We compare our ρe(μ) results with the results of the numerical
linked-cluster expansion (NLCE) method.40–42 The NLCE results
are numerically exact and converged with respect to the control
parameter, i.e., the maximal cluster-size used. NLCE is commonly

FIG. 2. Equation of state ρ
e
(μ) for the Hubbard dimer with T/J = 1, U/J = 4.

Full red circles (green squares) are the results of FPQMC simulations employing
Nτ = 2 (Nτ = 4) imaginary-time slices, while the solid black line is computed
using the exact diagonalization. The estimated statistical error of the FPQMC data
is in all cases smaller than the symbol size.
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FIG. 3. Double occupancy of the Nc = 20-site Hubbard chain at half-filling
(μ = U/2, ρ

e
= 1) as a function of the number Nτ of imaginary-time slices. The

remaining parameters are U/J = 3 and T/J = 1. The dotted line connecting full
symbols (FPQMC results) serves as a guide to the eye. The reference result is
taken from Ref. 113. The relative deviation of the FPQMC result with Nτ = 6 from
the reference result is around 2%. The statistical error bars of the FPQMC results
are smaller than the symbol size.

used to benchmark methods and understand experimental data.9,10

Again, we keep U/J = 4, but we take T/J = 1.0408 to be able to
compare results to the data of Ref. 41. Figure 4(a) reveals that the
FPQMC results with only Nτ = 2 imaginary-time slices agree very
well (within a couple of percent) with the NLCE results over a wide
range of chemical potentials. This is a highly striking observation,
especially keeping in mind that the FPQMC method with Nτ = 2 is
sign-problem-free, see Fig. 4(b). It is unclear whether other STD-
based methods would reach here the same level of accuracy with
only two imaginary-time slices (and without the sign problem). This
may be a specific property of the FPQMCmethod. Finer imaginary-
time discretization introduces the sign problem, see Fig. 4(b), which
becomes more pronounced as the density is increased and reaches
a plateau for ρe ≳ 0.8. Still, the sign problem remains manageable.
Increasing Nτ for 2 to 6 somewhat improves the agreement of the
density ρe [the inset of Fig. 4(a)] and considerably improves the
agreement of the double occupancy [Fig. 4(c)] with the referent
NLCE results. Still, comparing the insets of Figs. 4(a) and 4(c), we
observe that the agreement between FPQMC (Nτ = 6) and NLCE
results for ρe is significantly better than for the double occupancy.
The systematic error in FPQMC comes from the time-discretization
and the finite size of the system. At Nτ = 6, it is not a priori clear
which error contributes more, but it appears most likely that the
time-discretization error is dominant. In any case, the reason why
systematic error is greater for the double occupancy than for the
average density could be that the double occupancy contains more
detailed information about the correlations in the system. This
might be an indication that measurement of multipoint density cor-
relations will generally be more difficult—it may require a finer time
resolution and/or greater lattice size.

The average sign above the half-filling, ρe = 1, mirrors that
below the half-filling. The particle–hole symmetry ensures that
ρe(μ) = 2 − ρe(U − μ), but that it also governs the average sign is not
immediately obvious from the construction of the method. A formal
demonstration of the electron-doping–hole-doping symmetry of the
average sign is, however, possible (see Appendix E). Note that we
restrict our density calculations to ρe < 1 because, in this case, the
numerical effort to manipulate the determinants [Eqs. (7) and (10)]

FIG. 4. (a) Equation of state ρ
e
(μ) for the Hubbard model on a 4 × 4 cluster

with the following values of model parameters: U/J = 4, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρ

e,FPQMC of the electron density

for different values of Nτ . The dashed lines are guides for the eye. (c) The double
occupancy ∑r⟨nr↑ nr↓⟩/Nc as a function of the FPQMC estimate ρ

e,FPQMC of the

electron density for different values of Nτ . In (a) and (c), full symbols represent
FPQMC results, the solid line shows the NLCE data taken from Ref. 41, while
the insets show the relative deviation of FPQMC results from the reference NLCE
results. The estimated statistical error of the FPQMC data is in all cases smaller
than the symbol size.

is lower (size of the corresponding matrices is given by the num-
ber of particles of a given spin). The performance of the FPQMC
algorithm to compute ρe(μ) (average time needed to propose/accept
an MC update and acceptance rates of individual MC updates) is
discussed in Sec. SIII of the supplementary material.

We further benchmark our method in the case of very strong
coupling, U/J = 24 and, again, T/J = 1.0408. Figure 5(a) com-
pares the FPQMC results on a 4 × 4 cluster using Nτ = 2, 4, and 6
imaginary-time slices with the NLCE results. At extremely low fill-
ings ρe ≲ 0.1, the relative importance of the interaction term with
respect to the kinetic term is quite small, and taking onlyNτ = 2 suf-
fices to reach a very good agreement between the FPQMC andNLCE
results, see the inset of Fig. 5(a). As the filling is increased, the inter-
action effects become increasingly important, and it is necessary to
increase Nτ in order to accurately describe the competition between
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FIG. 5. (a) Equation of state ρ
e
(μ) for the Hubbard model on a 4 × 4 cluster

with the following values of model parameters: U/J = 24, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρ

e,FPQMC of the electron density

for different values of Nτ . (c) Nearest-neighbor spin correlations∑rδ⟨S
z
rS

z

r+δ⟩/Nc

as a function of the FPQMC estimate ρ
e,FPQMC of the electron density for Nτ = 4

and 6. In (a) and (c), full symbols represent FPQMC results, the solid line shows
the NLCE data taken from Ref. 41, while the insets show the relative deviation of
FPQMC results from the reference NLCE results. The dashed or dashed-dotted
lines connecting the symbols serve as guides to the eye. The estimated statistical
error of the FPQMC data are in all cases smaller than the symbol size.

the kinetic and interaction terms. In the inset of Fig. 5(a), we see that
Nτ = 6 is sufficient to reach an excellent (within a couple of percent)
agreement between FPQMC and NLCE results over a broad range of
fillings. At very high fillings ρe ≳ 0.9 and forNτ = 6, our MC updates
that insert/remove particles have very low acceptance rates, which
may lead to a slow sampling of the configuration space. It is for this
reason that FPQMC results withNτ = 6 do not significantly improve
overNτ = 4 in this parameter regime. ForNτ = 6, an inefficient sam-
pling near the half-filling also renders the corresponding results for
the nearest-neighbor spin correlations ∑rδ⟨SzrSzr+δ⟩/Nc inaccurate,
so that they are not displayed in Fig. 5(c). Here, vector δ connects
nearest-neighboring sites, while Szr = (nr↑ − nr↓)/2 is the operator of
z projection of the local spin. At lower fillings, ρe ≲ 0.8, the agree-
ment between our FPQMC results withNτ = 6 and the NLCE results
is good, while decreasing Nτ from 6 to 4 severely deteriorates the
quality of the FPQMC results.

At this strong coupling, the dependence of the average sign on
the density is somewhat modified, see Fig. 5(b). The minimal sign is
no longer reached around half-filling but at quarter-filling, ρe ∼ 0.5,
around which ∣⟨sgn⟩∣ appears to be symmetric. Comparing Fig. 5(b)
to Fig. 4(b), we see that the average sign does not become smaller
with increasing interaction, in sharp contrast with interaction-
expansion-based methods, such as CT-INT32,33 or configuration
PIMC.89

To better understand the relation between the average sign and
the interaction, in Fig. 6(a) we plot ∣⟨sgn⟩∣ as a function of the
ratio U/(4J) of the typical interaction and kinetic energy. We
take Nτ = 6 and adjust the chemical potential using the data from
Ref. 41 so that ρe ≈ 0.5. We see that ∣⟨sgn⟩∣ monotonically increases
with the interaction and reaches a plateau at very strong interactions.
This is different from interaction-expansion-based QMC methods,
whose sign problem becomes more pronounced as the interaction is

FIG. 6. (a) The average sign as a function of the ratio between the typical interac-
tion and kinetic energies. Full symbols are results of FPQMC computations on a
4 × 4 cluster with Nτ = 6, the temperature is fixed to T/J = 1.0408, and the chem-
ical potential at each U is chosen such that ρ

e
≈ 0.5. (b) The average sign as a

function of the cluster size Nc for the values of model parameters summarized in
the figure. The FPQMC results (full symbols) are obtained using Nτ = 4 and 6. (c)
Average sign as a function of Nτ . The FPQMC results (full symbols) are obtained
on a 4 × 4 cluster for the values of model parameters summarized in the main
part of the figure. The inset shows how the FPQMC result for double occupancy
approaches the referent NLCE result as the imaginary-time discretization becomes
finer.
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increased. Moreover, for weak interactions, the performance of the
FPQMC method deteriorates at high densities, see Fig. 4(b), while
methods such as CT-INT become problematic at low densities. The
FPQMCmethod could thus become a method of choice to study the
regimes ofmoderate coupling and temperature, which are highly rel-
evant for optical lattice experiments. Figure 6(b) shows the decrease
of the average sign with the cluster size Nc in the weak-coupling and
moderate-temperature regime at filling ρe ≈ 0.8. We observe that for
both Nτ = 4 and Nτ = 6, the average sign decreases linearly with Nc.
For Nτ = 6, we observe that the decrease for Nc ≲ 40 is somewhat
faster than the decrease for Nc ≳ 40. We, however, note that the
acceptance rates of our MC updates strongly decrease with Nc and
that this decrease is more pronounced for finer imaginary-time dis-
cretizations. That is why we were not able to obtain any meaningful
result for the 10 × 10 cluster with Nτ = 6. At fixed cluster size and
filling, the average sign decreases linearly with Nτ , see the main part
of Fig. 6(c), while the double occupancy tends to the referent NLCE
value, see the inset of Fig. 6(c).

In Sec. SIV of the supplementary material, we provide an
implementation of the ABQMC method in the equilibrium setup.
Figures 7(a) and 7(b), which deal with the same parameter regimes
as Figs. 4 and 5, respectively, clearly illustrate the advantages of the
fermionic-propagator approach with respect to the alternating-basis
approach in equilibrium. The average sign of ABQMC simula-
tions with only two imaginary-time slices is orders of magnitude
smaller than the sign of FPQMC simulations with three times
finer imaginary-time discretization. Since the FPQMC and ABQMC
methods are related by an exact transformation, they should produce

FIG. 7. Average sign as a function of the electron density in ABQMC simulations
with Nτ = 2 (open circles) and FPQMC simulations with Nτ = 6 (full squares) for
T/J = 1.0408 and (a) U/J = 4 and (b) U/J = 24. The inset in panel (a) compares
ABQMC (open circles) and FPQMC (full circles) results for the double occupancy
as a function of ρ

e
(both methods employ Nτ = 2). The inset in panel (b) shows

the average sign of ABQMC simulations with Nτ = 2 as a function of cluster size
Nc at low density (ρ

e
≈ 0.06, μ/J = −5).

the same results for thermodynamic quantities (assuming that Nτ is
the same in both methods). This is shown in the inset of Fig. 7(a) on
the example of the double occupancy. The inset of Fig. 7(b) suggests
that the average sign decreases exponentially with the cluster size
Nc. Overall, our current implementation of the ABQMC method in
equilibrium cannot be used to simulate larger clusters with a finer
imaginary-time discretization.

B. Time-dependent results using FPQMC method:
Local charge and spin densities

1. Benchmarks on small clusters

In Figs. 8(a) and 8(b), we benchmark our FPQMC method for
time-dependent local densities on the example of the CDW state of
the Hubbard tetramer, see the inset of Fig. 8(b).We follow the evolu-
tion of local charge densities on initially occupied sites for different
ratios U/D, where D is the half-bandwidth of the free-electron band
(D = 2J for the tetramer). For all the interaction strengths consid-
ered, taking Nt = 2 real-time slices on each branch (four slices in
total) is sufficient to accurately describe the evolution of local densi-
ties up to times Dt ∼ 2, see full symbols in Fig. 8(a). At longer times,
2 < Dt ≤ 4, taking Nt = 3 improves results obtained using Nt = 2,
compare empty to full symbols in Fig. 8(a). Nevertheless, for the
strongest interaction considered (U/D = 1), 6 real-time slices are
not sufficient to bring the FPQMC result closer to the exact result
at times 3 ≤ Dt ≤ 4. The average sign strongly depends on time, and
it drops by an order of magnitude upon increasing Nt from 2 to 3,
see Fig. 8(b). Despite this, the discrepancy between the Nt = 3 result

FIG. 8. (a) Time-dependent population of sites occupied in the initial CDW state
of a tetramer for different interaction strengths. Solid lines represent exact results,
full symbols connected by dashed lines are FPQMC results using Nt = 2 real-time
slices, while empty symbols connected by dotted lines are FPQMC results using
Nt = 3 real-time slices. The initial CDW state is schematically depicted in panel
(b). (b) Time-dependent average sign of the FPQMC simulation using Nt = 2 (full
symbols connected by dashed lines) and Nt = 3 (empty symbols connected by
dotted lines) for different interaction strengths. In (a) and (b), FPQMC simulations
using Nt = 3 real-time slices are carried out only for 2 < Dt ≤ 4.
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and the exact result for U/D = 1 cannot be ascribed to statistical
errors but rather to the systematic error of the FPQMCmethod (the
minimum Nt needed to obtain results with certain systematic error
increases with both time and interaction strength).

2. Results on larger clusters

Figure 9(a) summarizes the evolution of local charge den-
sities on initially occupied sites of a half-filled 4 × 4 cluster, on
which the electrons are initially arranged as depicted in the inset of
Fig. 9(b). This state is representative of a CDW pattern formed by
applying strong external density-modulating fields with wave vec-
tor q = (π, 0). The FPQMC method employs four real-time slices
in total, i.e., the forward and backward branches are divided into
Nt = 2 identical slices each. On the basis of the Nt = 2 results in
Fig. 8(a), we present the FPQMC dynamics up to the maximum
time Dtmax = 2. The extent of the dynamical sign problem is shown
in Fig. 9(b).

At the shortest times, Dt ≲ 1, the results for all the interactions
considered do not significantly differ from the noninteracting result.
The same also holds for the average sign. As expected, the decrease
of ∣⟨sgn⟩∣ with time becomes more rapid as the interaction U and
time discretization Δt = t/Nt are increased. The oscillatory nature of⟨sgn⟩ as a function of time [see Eq. (22)] is correlated with the dis-
continuities in time-dependent populations observed in Fig. 9(a) for
U/D ≥ 0.5. Namely, at the shortest times and for all the interactions
considered, ⟨sgn⟩ is positive, while for sufficiently strong interac-
tions, it becomes negative at longer times. This change is indicated
in Fig. 9(b) by placing the symbols “+” and “−” next to each relevant
point. We now see that the discontinuities in populations occur pre-
cisely around instants at which ⟨sgn⟩ turns from positive to negative
values. Focusing on U/D = 1, in Figs. 9(c1)–9(c3) we show the MC
series for the population of initially occupied sites at instants before

TABLE I. Schematic representations of the initial states of small systems on which
the ABQMC method for P(t) is benchmarked.

system ∣ψCDW⟩ ∣ψSDW⟩
Dimer

Tetramer

[(c1)] and after [(c2), (c3)] ⟨sgn⟩ passes through zero. The corre-
sponding series for ⟨sgn⟩ are presented in Figs. 9(d1)–9(d3). Well
before [Figs. 9(c1) and 9(d1)] and after [Figs. 9(c3) and 9(d3)] ⟨sgn⟩
changes sign, the convergence with the number of MC steps is excel-
lent, while it is somewhat slower close to the positive-to-negative
transition point, see Figs. 9(c2) and 9(d2). Still, the convergence at
Dt = 1.4 cannot be denied, albeit the statistical error of the popu-
lation is larger than at Dt = 1.2 and 1.6. At longer times Dt ≥ 1.5,
when ⟨sgn⟩ is negative and of appreciable magnitude, the popula-
tion again falls in the physical range [0, 2]. Nevertheless, at such long
times, the systematic error may be large due to the coarse real-time
discretization.

In Sec. SV of the supplementary material, we discuss FPQMC
results for the dynamics of local charge densities starting from some
other initial states.

C. Time-dependent results using ABQMC method:
Survival probability

1. Benchmarks on small clusters

We first benchmark our ABQMC method for the survival
probability on Hubbard dimers and tetramers. The initial states

FIG. 9. (a) Time-dependent population of
sites occupied in the initial CDW state
of a 4 × 4 cluster, which is schemati-
cally depicted in the inset of panel (b).
FPQMC results using Nt = 2 real-time
slices (four slices in total) are shown for
five different interaction strengths (sym-
bols) and compared with the noninter-
acting result (solid line). (b) Magnitude
of the average sign as a function of
time for different interaction strengths.
The color code is the same as in panel
(a). For U/D = 0.5, 0.75, and 1 and Dt

≥ 1.2, symbols “+” and “−” next to each
point specify whether ⟨sgn⟩ is positive
or negative. (c) MC series for the pop-
ulation of initially occupied sites for U/D
= 1 and (c1) Dt = 1.2, (c2) Dt = 1.4, and
(c3) Dt = 1.6. (d) MC series for ⟨sgn⟩
for U/D = 1 and (d1) Dt = 1.2, (d2)
Dt = 1.4, and (d3) Dt = 1.6. Note the
logarithmic scale on the abscissa in (c)
and (d).
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are schematically summarized in Table I. In both cases, we are at
half-filling.

Figures 10(a1)–10(e2) present the time evolution of the survival
probability of the initial CDW-like and SDW-like states depicted in
Table I for the dimer (left panels, D = J) and tetramer (right pan-
els, D = 2J) for different values of U/D starting from the limit of a
weakly nonideal gas (U/D = 0.05) and approaching the atomic limit(U/D = 20). The results are obtained using Nt = 2 (full red circles)
and Nt = 4 (blue stars) real-time slices and contrasted with the exact
result (solid black lines). The ABQMC results with Nt = 2 agree
both qualitatively (oscillatory behavior) and quantitatively with the
exact result up to tmax ∼ 1/U. Increasing Nt from 2 to 4 may help
decrease the deviation of the ABQMC data from the exact result
at later times. Even when finer real-time discretization does not
lead to better quantitative agreement, it may still help the ABQMC
method qualitatively reproduce the gross features of the exact
result. The converged values of ∣⟨sgn⟩∣ for the dimer and tetramer

TABLE II. Modulus of the average sign for ABQMC simulations of P(t) on dimer and
tetramer with Nt = 2, 3, and 4.

System Nt = 2 Nt = 3 Nt = 4

Dimer 1/2 1/4 1/8
Tetramer 1/8 2.4 × 10−2 3 × 10−3

for Nt = 2, 3, and 4 are summarized in Table II. For the dimer,
increasing Nt by one reduces ∣⟨sgn⟩∣ by a factor of 2. In contrast,
in the case of the tetramer, increasing Nt by one reduces ∣⟨sgn⟩∣ by
almost an order of magnitude.

2. Results on larger clusters

We move on to discuss the survival probability dynam-
ics of different 16-electron and eight-electron states on a 4 × 4

FIG. 10. Time dependence of the sur-
vival probability of the initial state ∣ψCDW⟩
or ∣ψSDW⟩ (see Table I) for the dimer
[(a1)–(e1)] and tetramer [(a2)–(e2)] for
five different interaction strengths start-
ing from the noninteracting limit and
approaching the atomic limit: U/D
= 0.05 [(a1) and (a2)], U/D = 0.25 [(b1)
and (b2)], U/D = 1 [(c1) and (c2)],
U/D = 5 [(d1) and (d2)], and U/D
= 20 [(e1) and (e2)]. The ABQMC results
with Nt = 2 (red full circles) and Nt

= 4 (blue stars) are compared with
the exact result (black solid lines). The
dotted/dashed lines connecting subse-
quent circles/stars are guides to the
eye. In most cases, the MC error bars
are smaller than the linear size of the
symbols.
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cluster. Figures 11(a) and 11(b) present P(t) for 16-electron states
schematically depicted in their respective insets. These states are rep-
resentative of CDW patterns formed by applying strong external
density-modulating fields with wave vectors q = (π, 0) in Figs. 11(a)
and q = (π,π) in Fig. 11(b). Figures 11(c) and 11(d) present P(t) for
eight-electron states schematically depicted in their respective insets.
The ABQMC method employs Nt = 2 real-time slices. The results
are shown up to the maximum time Dtmax = 2.5, which we chose on
the basis of the results presented in Fig. 10(c2).

As a sensibility check of our ABQMC results, we first com-
pare the exact result in the noninteracting limit, see solid lines
in Figs. 11(a)–11(d), with the corresponding ABQMC prediction,
see full circles in Figs. 11(a)–11(d). While the exact and ABQMC
results agree quite well in Figs. 11(b) and 11(c), the agreement in
Figs. 11(a) and 11(d) is not perfect. Since no systematic errors are
expected in ABQMC at U = 0, the discrepancy must be due to sta-
tistical error. We confirm this expectation in Fig. 12 where we see
that the obtained curve tends to the exact one with the increasing
number of MC steps. The average sign cited in Fig. 11(d) suggests
that more MC steps are needed to obtain fully converged results.
Even though the converged average sign in Figs. 11(a)–11(c) is
of the same order of magnitude, we find that the rate of conver-
gence depends on both the number and the initial configuration of
electrons.

In Figs. 11(a)–11(d), we observe that weak interactions (U/D
≲ 0.5) do not cause any significant departure of P(t) from the cor-
responding noninteracting result. On the other hand, the effect of
somewhat stronger interactions on P(t) depends crucially on the
filling. In the 16-electron case, the increasing interactions speed up
the initial decay of P, see Figs. 11(a) and 11(b), while in the eight-
electron case interactions have little effect at Dt < 1, see Figs. 11(c)
and 11(d). This we attribute to the essential difference in the over-
all electron density and the relative role of the interaction term
in the Hamiltonian. In the 16-electron case, starting from the
moderate coupling U/D ∼ 1, there is a clear revival of the initial

FIG. 12. (a) Average sign as a function of the number of MC steps in the
ABQMC simulation of P(t) for the 16-electron initial state schematically depicted
in Fig. 11(a). (b) Time dependence of the survival probability for U = 0 extracted
using the first 1/30 of the total number of MC steps completed (1.29 × 109

steps, full red circles), the first 1/3 of the total number of MC steps completed
(1.29 × 1010 steps, full blue squares), and all the MC steps completed (3.87 × 1010

steps, full green up-triangles). These results are compared to the exact result in
the noninteracting limit, which is represented by the solid line. The vertical lines in
(a), whose colors match the colors of the symbols in (b), denote the ending points
of the simulations.

state in Fig. 11(a), while no such a revival is observed in Fig. 11(b).
Furthermore, the memory loss of the initial density-wave pattern is
more rapid in Fig. 11(a) than in Fig. 11(b), even atU = 0. The revival
of the initial state is observed in the eight-electron case as well: at

FIG. 11. Survival-probability dynamics of
the 16-electron states [in (a) and (b)]
and 8-electron states [in (c) and (d)]
that are schematically depicted in the
respective insets. The ABQMC results
are shown for five different interaction
strengths (symbols) and compared with
the noninteracting result (solid line). We
cite the converged value of the average
sign ∣⟨sgn⟩∣, as well as the total number
NMC of MC steps completed.
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t < 1/D there is barely any effect of the interaction, yet at longer
times it boosts P. However, in contrast to the 16-electron case, the
results in Figs. 11(c) and 11(d) exhibit a weaker dependence of the
survival-probability dynamics on the initial density-wave pattern.
Indeed, the exact results in the noninteracting case are identical for
both patterns in Figs. 11(c) and 11(d). Except in the case of the (π,π)
wave, the interactions lead to a persistence of the initial pattern at
longer times, t > 1/D. The precise form of temporal correlations that
develop due to interactions apparently depends on the initial spatial
arrangement of the electrons.

Section SVI of the supplementary material presents additional
ABQMC results for the time-dependent survival probability.

IV. RELATION TO OTHER ALGORITHMS

As mentioned in the introduction, a variant of the FPQMC
method was first proposed by De Raedt and Lagendijk in the
1980s.78–80 They, however, explicitly retain permutation operators
appearing in Eq. (A5) in their final expression for Z, see, e.g., Eq. (3)
in Ref. 78 or Eqs. (4.13) and (4.14) in Ref. 80. On the other hand,
we analytically perform summation over permutation operators,
thus grouping individual contributions into determinants. This is
much more efficient [as the factorial number of terms is captured in
only O(N3) steps, or even faster] and greatly improves the average
sign (cancellations between different permutations are already con-
tained in the determinant, see Fig. 7). The approach followed by De
Raedt and Lagendijk later became known as permutation-sampling
QMC, and the route followed by us is known as antisymmetric-
propagator QMC,85,86 permutation-blocking QMC,90 or fermionic-
propagator QMC.96 The analytical summation over permutation
operators entering Eq. (A5) was first performed by Takahashi and
Imada.85

Our FPQMC method employs the lowest-order STD [Eq. (4)],
which was also used in the permutation-sampling QMC method of
De Raedt and Lagendijk.78–80 The maximum number of imaginary-
time slices Nτ they could use was limited by the acceptance rates
of MC updates, which decrease quickly with increasing Nτ and
the cluster size Nc. In our present implementation of FPQMC,
we encounter the same issue, and our sampling becomes pro-
hibitively inefficient when the total number of time slices is greater
than 6–8, depending on the cluster size. To circumvent this issue,
the fermionic-propagator idea was combined with higher-order
STDs98,114–116 and more advanced sampling techniques117,118 to sim-
ulate the equilibrium properties of continuummodels of interacting
fermions in the canonical90,92 and grand-canonical96 ensembles.
More recent algorithmic developments enabled simulations with as
much as 2000 imaginary-time slices,119 which is a great improve-
ment. Whether similar ideas can be applied to lattice systems to
improve the efficiency of sampling is currently unclear. Generally,
more sophisticated STD schemes have been regarded as not use-
ful in lattice-model applications.120 It is important to note that
the success of the antisymmetric-propagator algorithms in con-
tinuous systems relies on weak degeneracy. This corresponds to
an extremely low occupancy regime in lattice models, and it is
precisely in this regime that our FPQMC method has an aver-
age sign close to 1 [see Figs. 4(b) and 5(b)], and the sampling is
most efficient [see Sec. SIII of the supplementary material]. Near
half-filling, lattice models present a fundamentally different physics,

which may ultimately require a substantially different algorithmic
approach.

We further emphasize that the low acceptance rates and the
resulting inefficiency of sampling that we encounter are directly
related to the discrete nature of space in our model. Some strategies
for treating the analogous problem in continuous-space models may
not be applicable here. For example, in continuous-space models,
acceptance rates of individual updates can be adjusted by mov-
ing electrons over shorter distances, so that the new configuration
weight is less likely to be substantially different from the old one.
In contrast, in lattice models, electronic coordinates are discrete,
and the minimum distance the electrons may cover is set by the
lattice constant; in most cases, moving a single electron by a sin-
gle lattice spacing in a single time slice is sufficient to drastically
reduce the configuration weight. There is no general rule on how
electrons should be moved to ensure that the new configuration
weight is close to the original one. This is particularly true for the
updates that insert/remove a particle, and the problem becomes
more pronounced with increasing Nτ . When each of the Nτ states∣Ψi,l⟩ [see Eq. (9)] is changed to ∣Ψ′i,l⟩, the chances that at least one
of ⟨Ψ′i,l⊕1∣e−ΔτH0 ∣Ψ′i,l⟩ is much smaller than ⟨Ψi,l⊕1∣e−ΔτH0 ∣Ψi,l⟩ [see
Eq. (10)] increase with Nτ . Our configuration weight is appreciable
only in small, mutually disconnected regions of the configuration
space, the movement between which is difficult. In Sec. V, we touch
upon possible strategies to improve sampling of such a structured
configuration space.

It is also important to compare our methods to the HF QMC
method,24,49 which is a well-established STD-based method for the
treatment of the Hubbardmodel. The HFmethod is manifestly sign-
problem-free but only at particle–hole symmetry. The sign problem
can become severe away from half-filling, or on lattices other than
the simple square lattice with no longer-range hoppings. On the
other hand, our FPQMC method is nearly sign-problem-free at
low occupancy, but also near half-filling, albeit only at strong cou-
pling [see Figs. 4(b) and 5(b)]. The other important difference is
that matrices manipulated in HF are of the size NcNτ , while in
FPQMC, the matrices are of the size <2Nc, i.e., given by the num-
ber of particles. Algorithmic complexity of the individual MC step
in FPQMC scales only linearly with Nτ , while in HF, the MC step
may go as O(N2

τ ) [determinant is O(N3), but fast updates O(N2)
are possible when the determinant is not calculated from scratch49].
Low cost of individual steps in FPQMC has allowed us to perform
as many as ∼1010 MC steps in some calculations. This advantage,
however, weighs against an increased configuration space to be sam-
pled. In HF the number of possible configurations is 2Nc Nτ (space is
spanned by NcNτ auxiliary Ising spins), while in FPQMC it is 4Nc Nτ

(although, symmetries can be used to significantly reduce the num-
ber of possible configurations). The ABQMC method manipulates
matrices of the same size as does FPQMC, but with twice the num-
ber, and the configuration space is a priori even bigger (16Nc Nτ). Our
methods also have the technical advantage that the measurements
of multipoint charge and spin correlation functions are algorithmi-
cally trivial and cheap. Especially in ABQMC, the densities in both
coordinate andmomentum space can be simply read off the configu-
ration. This is not possible in HF, where the auxiliary Ising spin only
distinguishes between singly occupied and doubly-occupied/empty
sites. Most importantly, the ABQMC/FPQMC methods can be
readily applied to canonical ensembles and pure states, which may
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not be possible with the HF method. However, the HF is commonly
used with tens of time slices for lattice sizes of orderNc = 100–200; in
FPQMC, algorithmic developments related to configuration updates
are necessary before it can become a viable alternative to the HF in a
wide range of applications.

Finally, we are unaware of any numerically exact method for
large lattice systems, which can treat the full Kadanoff–Baym–
Keldysh contour, and yield real-time correlation functions. Our
ABQMC method represents an interesting example of a real-time
QMC method with manifestly no dynamical sign problem. How-
ever, the average sign is generally poor. To push ABQMC to larger
number of time slices (as needed for calculation of the time-
dependence of observables) and lattices larger than 4 × 4 will require
further work, and most likely, conceptually new ideas.

V. SUMMARY AND OUTLOOK

We revisit one of the earliest proposals for a QMC treat-
ment of the Hubbard model, namely the permutation-sampling
QMC method developed in Refs. 78–80. Motivated by recent
progress in the analogous approach to continuous space models, we
group all permutations into a determinant, which is known as the
antisymmetric-propagator,85 permutation-blocking,90 or fermionic-
propagator96 idea. We devise and implement two slightly different
QMC methods. Depending on the details of the STD scheme, we
distinguish between (1) the FPQMC method, where snapshots are
given by real-space Fock states and determinants represent anti-
symmetric propagators between those states, and (2) the ABQMC
method, where slices alternate between real and reciprocal space rep-
resentation and determinants are simple Slater determinants. We
thoroughly benchmark both methods against the available numer-
ically exact data and then use ABQMC to obtain some new results in
the real-time domain.

The FPQMC method exhibits several promising properties.
The average sign can be close to 1 and does not drop off rapidly with
either the size of the system or the number of time slices. In 1D,
the method appears to be sign-problem-free. At present, the lim-
iting factor is not the average sign but rather the ability to sample
the large configuration space. At discretizations finer thanNτ = 6–8,
further algorithmic developments are necessary. Nevertheless, our
calculations show that excellent results for instantaneous correlators
can be obtained with very few time slices and efficiently. Average
density, double occupancy, and antiferromagnetic correlations can
already be computed with high accuracy at temperatures and cou-
pling strengths relevant for optical-lattice experiments. The FPQMC
method is promising for further applications in equilibrium setups.
In real-time applications, however, the sign problem in FPQMC is
severe.

On the other hand, the ABQMC method has a significant
sign problem in equilibrium applications but has some advantages
in real-time applications. In ABQMC, the sign problem is manifestly
time-independent, and calculations can be performed for multiple
times and coupling strengths with a single Markov chain. We use
this method to compute time-dependent survival probabilities of
different density-modulated states and identify several trends. The
relevant transient regime is short, and based on benchmarks, we esti-
mate the systematic error due to the time discretization here to be
small. Our results reveal that interactions speed up the initial decay

of the survival probability but facilitate the persistence of the initial
charge pattern at longer times. Additionally, we observe a charac-
teristic value of the coupling constant, U ∼ 0.5D, below which the
interaction has no visible effect on time evolution. These findings
bare qualitative predictions for future ultracold-atom experiments,
but are limited to dynamics at the shortest wave-lengths, as dictated
by the maximal size of the lattice that we can treat. We finally note
that, within the ABQMCmethod, uniform currents, which are diag-
onal in the momentum representation, may be straightforwardly
treated.

There is room for improvement in both the ABQMC and
FPQMC methods. We already utilize several symmetries of the
Hubbard model to improve efficiency and enforce some physi-
cal properties of solutions, but more symmetries can certainly be
uncovered in the configuration spaces. Further grouping of con-
figurations connected by symmetries can be used to alleviate some
of the sign problem or improve efficiency. Also, sampling schemes
may be improved along the lines of the recently proposed many-
configuration Markov chain MC, which visits an arbitrary number
of configurations at everyMC step.121 Moreover, a better insight into
the symmetries of the configuration space may make deterministic,
structured sampling (along the lines of quasi-MC methods122–124)
superior to the standard pseudo-random sampling.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) a detailed description
of MC updates within the FPQMC method, (ii) a detailed descrip-
tion of MC updates within the ABQMCmethod for time-dependent
survival probability, (iii) details on the performance of the FPQMC
method in equilibrium calculations, (iv) discussion on the applica-
bility of the ABQMC method in equilibrium calculations, (v) addi-
tional FPQMC calculations of time-dependent local densities, (vi)
additional ABQMC calculations of time-dependent survival prob-
ability, and (vii) formulation and benchmarks of ABQMC method
in quench setups (on the full three-piece Kadanoff–Baym–Keldysh
contour).
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APPENDIX A: MANY-BODY PROPAGATOR
AS A DETERMINANT OF SINGLE-PARTICLE
PROPAGATORS

The demonstration of Eqs. (6) and (7) can be conducted for
each spin component separately. We thus fix the spin index σ and
further omit it from the definition of the many-fermion state ∣Ψi⟩
[Eq. (5)]. Since H0 is diagonal in the momentum representation, we
express the state ∣Ψi⟩ in the momentum representation

∣Ψi⟩ =∑
{kj}

( N

∏
l=1

⟨kl∣rl⟩c†kl)∣∅⟩ (A1)

and similarly for ∣Ψ′i⟩. While the positions r1, . . . , rN are ordered
according to a certain rule, the wave vectors k1, . . . ,kN entering
Eq. (A1) are not ordered, and there is no restriction on the sum over
them. We have

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∑
{k′

l
}

∑
{kl}

e
−Δαεk1 . . . e

−ΔαεkN

× ⟨r′N ∣k′N⟩ . . . ⟨r′1∣k′1⟩⟨k1∣r1⟩⟨kN ∣rN⟩
× ⟨∅∣ck′N . . . ck′1c†k1 . . . c†kN ∣∅⟩. (A2)

The sums over {k′l} are eliminated by employing the identity80

⟨∅∣ck′N . . . ck′1c†k1 . . . c†kN ∣∅⟩
=∑

P

sgn(P) δ(k′1,kP(1)) . . . δ(k′N ,kP(N)), (A3)

where the permutation operator P acts on the set of indices{1, . . . ,N}, while sgn(P) = ±1 is the permutation parity. We then
observe that

N

∏
l=1

⟨r′l ∣kP(l)⟩ = N

∏
l=1

⟨r′P −1(l)∣kl⟩, (A4)

which permits us to perform the sums over individual kls indepen-
dently. Combining Eqs. (A2)–(A4) and changing the permutation
variable P ′ = P −1 we eventually obtain

⟨Ψ′i ∣e−ΔαH0 ∣Ψi⟩ =∑
P ′

sgn(P ′) N

∏
l=1

⟨r′P ′(l)∣e−ΔαH0 ∣rl⟩
= det S(Ψ′i ,Ψi,Δα), (A5)

where matrix S(Ψ′i ,Ψi,Δα) (here without the spin index) is defined
in Eq. (7).

APPENDIX B: PROPAGATOR OF A FREE PARTICLE
ON THE SQUARE LATTICE

Here, we provide the expressions for the propagator of a free
particle on the square lattice in imaginary [Δα = Δτ in Eq. (7)] and
real [Δα = iΔt in Eq. (7)] time. In imaginary time,

⟨r′∣e−ΔτH0 ∣r⟩ = I(2JΔτ, r′x − rx)I(2JΔτ, r′y − ry), (B1)

where the one-dimensional imaginary-time propagator (l is an
integer)

I(z, l) = 1
N

N−1

∑
j=0

cos(2πjl
N
) exp(z cos(2πj

N
)) (B2)

is related to the modified Bessel function of the first kind Il(z) via
lim
N→∞

I(z, l) = 1
π∫

π

0
dθ cos(lθ) ez cos θ

= Il(z). (B3)

In real time,

⟨r′∣e−iΔtH0 ∣r⟩ = J (2JΔt, r′x − rx)J (2JΔt, r′y − ry), (B4)

where the one-dimensional real-time propagator (l is an integer)

J (z, l) = 1
N

N−1

∑
j=0

cos(2πjl
N
) exp(iz cos(2πj

N
)) (B5)

is related to the Bessel function of the first kind J l(z) via
lim
N→∞

J (z, l) = 1
π∫

π

0
dθ cos(lθ) eiz cos θ

= i
l
Jl(z). (B6)

For finite N, J (z, 2l) is purely real, while J (z, 2l + 1) is purely
imaginary.

APPENDIX C: DERIVATION OF THE FPQMC
FORMULAE THAT MANIFESTLY RESPECT
THE DYNAMICAL SYMMETRY
OF THE HUBBARD MODEL

Here, we derive the FPQMC expression for the time-dependent
expectation value of a local observable [Eq. (18)] that manifestly
respects the dynamical symmetry of the Hubbard model.

We start by defining the operation of the bipartite lattice sym-
metry, which is represented by a unitary, hermitean, and involutive
operator B (B†

= B = B−1) whose action on electron creation and
annihilation operators in the real space is given as
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Bc
(†)
rσ B = (−1)rx+ryc(†)rσ . (C1)

In the momentum space, B is actually the so-called π-boost15

Bc
(†)
kσ B = c

(†)
k+Q,σ (C2)

that increases the electronic momentum by Q = (π,π). The time
reversal operator T is an antiunitary (unitary and antilinear), involu-
tive, and hermitean operator whose action on electron creation and
annihilation operators in the real space is given as

Tc
(†)
r↑ T = c

(†)
r↓ , Tc

(†)
r↓ T = −c

(†)
r↑ , (C3)

while the corresponding relations in the momentum space read as

Tc
(†)
k↑ T = c

(†)
−k↓, Tc

(†)
k↓ T = −c

(†)
−k↑. (C4)

Using Eqs. (C1)–(C4), consequently

BH0B = −H0, BHintB = Hint, TH0T = H0,

THintT = Hint.
(C5)

In Sec. II B 2, we assumed that the initial state ∣ψ(0)⟩ is an eigen-
state of local density operators nrσ , which means that B∣ψ(0)⟩
= eiχB ∣ψ(0)⟩, see Eq. (C1).

The denominator of Eq. (18)

Aden(t) = ⟨ψ(0)∣eiHt e−iHt ∣ψ(0)⟩ (C6)

is purely real, Aden(t) = Aden(t)∗, so that

Aden(t) ≈ 1
2
⟨ψ(0)∣(eiH0Δte

iHintΔt)Nt (e−iH0Δte
−iHintΔt)Nt ∣ψ(0)⟩

+
1
2
⟨ψ(0)∣(eiHintΔte

iH0Δt)Nt (e−iHintΔte
−iH0Δt)Nt ∣ψ(0)⟩.

(C7)

We thus obtain

Aden(t) ≈∑
C

{Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥
− Im{D2t(C,Δt)} sin∥Δεint(C)Δt∥}, (C8)

where configuration C consists of 2Nt − 1 independent states∣Ψi,2⟩, . . . , ∣Ψi,2Nt ⟩, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩, while D2t(C,Δt) and Δεint(C) are
defined in Eqs. (21) and (20), respectively. The denominator is also
invariant under time reversal, Aden(t) = Aden(−t), which is not a
consequence of a specific behavior of the initial state under time
reversal but rather follows from Aden(t) ≡ ⟨ψ(0)∣ψ(0)⟩. In other
words, Eq. (C8) should contain only contributions invariant under
the transformation Δt → −Δt. Using the bipartite lattice symmetry,
under which B∣Ψi,l⟩ = eiχl ∣Ψi,l⟩, we obtain

D2t(C,−Δt) = 2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣BBe−iH0ΔtBB∣Ψi,l⟩

×

Nt

∏
l=1

⟨Ψi,l⊕1∣BBeiH0ΔtBB∣Ψi,l⟩

=

2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣eiH0Δt ∣Ψi,l⟩ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩
= D2t(C,Δt). (C9)

Equation (C8) then reduces to

Aden(t) =∑
C

Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥. (C10)

We now turn to the numerator of Eq. (18)

Anum(t) = ⟨ψ(0)∣eiHt Ai e
−iHt ∣ψ(0)⟩, (C11)

which is also purely real, Anum(t) = Anum(t)∗, so that
Anum(t) ≈∑

C

Ai(Ψi,Nt+1){Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥
− Im{D2t(C,Δt)} sin∥Δεint(C)Δt∥}. (C12)

In the following discussion, we assume that the time reversal oper-
ation changes ∣ψ(0)⟩ by a phase factor, T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩. This,
combinedwith B∣ψ(0)⟩ = eiχB ∣ψ(0)⟩, gives the assumption on ∣ψ(0)⟩
that is mentioned before Eq. (19). We further assume that TBAiBT
= Ai. Under these assumptions, the numerator is invariant under
time reversal, Anum(−t) = Anum(t), meaning that Eq. (C12) should
contain only contributions invariant under the transformation
Δt → −Δt. Using Eq. (C9), Eq. (C12) reduces to

Anum(t) ≈∑
C

Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos∥Δεint(C)Δt∥, (C13)

and Eq. (22) follows immediately.
An example of the initial state ∣ψ(0)⟩ and the observableAi that

satisfy TB∣ψ(0)⟩ = eiχ ∣ψ(0)⟩ and TBAiBT = Ai are the CDW state∣ψCDW⟩ [Eq. (24)] and the local charge densityAi = ∑σ nrσ .While the
time-reversal operation may change a general SDW state [Eq. (23)]
by more than a phase factor, Eq. (C13) is still applicable when the
observable of interest is the local spin densityAi = nr↑ − nr↓. This fol-
lows from the transformation law T(nr↑ − nr↓)T = nr↓ − nr↑ and the
fact that the roles of spin-up and spin-down electrons in the state
T∣ψSDW⟩ are exchanged with respect to the state ∣ψSDW⟩.

We now explain how we use Eq. (26) to enlarge statistics
in computations of time-dependent local spin (charge) den-
sities when the evolution starts from state ∣ψSDW⟩ in Eq. (23)
[∣ψCDW⟩ in Eq. (24)]. Let us limit the discussion to the spin
(charge) density at fixed position r. Suppose that we obtained
Markov chains (of length NCDW) {N CDW

1 (t), . . . , N CDW
NCDW
(t)}

and {DCDW
1 , . . . ,DCDW

NCDW
} for the numerator and denominator.

Suppose also that we obtained Markov chains (of length NSDW){N SDW
1 (t), . . . , N SDW

NSDW
(t)} and {D SDW

1 , . . . ,D SDW
NSDW
} for the

numerator and denominator. Using these Markov chains, we
found that the best result for the time-dependent local spin
(charge) density is obtained by joining them into one Markov
chain {N SDW

1 (t), . . . , N SDW
NSDW
(t), N CDW

1 (t), . . . , N CDW
NCDW
(t)} of

length NSDW +NCDW for the numerator, and another Markov chain
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{D SDW
1 , . . . ,D SDW

NSDW
,DCDW

1 , . . . ,DCDW
NCDW
} of length NSDW +NCDW

for the denominator. If individual chain lengths NCDW and NSDW

are sufficiently large, the manner in which the chains are joined is
immaterial; here, we append the CDW chain to the SDW chain, and
we note that other joining possibilities lead to the same final result
(within the statistical error bars). To further reduce statistical error
bars, we also combine SDW + CDW chains at all positions r that
have the same spin (charge) density by the symmetry of the initial
state.

APPENDIX D: DERIVATION OF THE ABQMC FORMULA
FOR THE SURVIVAL PROBABILITY

We start from the survival-probability amplitude

AP(t) = ⟨ψ(0)∣e−iHt ∣ψ(0)⟩⟨ψ(0)∣ψ(0)⟩ , (D1)

whose numerator can be expressed as

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈ 1
2
⟨ψ(0)∣(e−iH0Δte

−iHintΔt)Nt ∣ψ(0)⟩ + 1
2
⟨ψ(0)∣(e−iHintΔte

−iH0Δt)Nt ∣ψ(0)⟩
= ∑

Ψi,2...Ψi,Nt

Re{ Nt

∏
l=1

⟨Ψi,l⊕1∣e−iH0Δt ∣Ψi,l⟩}e−iεint(C )Δt

= ∑
Ψi,2...Ψi,Nt

∑
Ψk,1...Ψk,Nt

Re{ Nt

∏
l=1

⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩e−iε0(C )Δt}e−iεint(C )Δt

=∑
C

{Re{D(C)} cos∥ε0(C)Δt∥ + Im{D(C)} sin∥ε0(C)Δt∥}e−iεint(C )Δt. (D2)

In going from the second to the third line of Eq. (D2), we
introduced spectral decompositions of Nt factors e

−iH0Δt . The con-
figuration C entering the last line of Eq. (D2) consists of Nt − 1
independent states ∣Ψi,2⟩, . . . , ∣Ψi,Nt ⟩ in the coordinate representa-
tion and Nt independent states ∣Ψk,1⟩, . . . , ∣Ψk,Nt

⟩ in the momentum
representation, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. D(C) and ε0(C) are defined in
Eqs. (31) and (34), respectively. By virtue of the bipartite lattice sym-
metry, under which D(C) remains invariant, while ε0(C) changes
sign, the summand containing sin∥ε0(C)Δt∥ in Eq. (D2) vanishes, so
that

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈∑
C

Re{D(C)} cos∥ε0(C)Δt∥ e−iεint(C )Δt. (D3)

This form should be used, e.g., when ∣ψ(0)⟩ is the SDW state defined
in Eq. (23). When the initial state is the CDW state defined in
Eq. (24), T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩, ⟨ψ(0)∣e−iHt ∣ψ(0)⟩ is purely real, so
that

⟨ψ(0)∣e−iHt ∣ψ(0)⟩ ≈∑
C

Re{D(C)} cos∥ε0(C)Δt∥ cos∥εint(C)Δt∥.
(D4)

Equation (30) then follows by combining Eq. (D4) with⟨ψ(0)∣ψ(0)⟩ = ∑C Re{D(C)}.
We now provide a formal demonstration of Eq. (36). The

partial particle–hole transformation is represented by a unitary, her-
mitean, and involutive operator P (P†

= P = P−1), whose action
on electron creation and annihilation operators in real space is
given as109,110

Pcr↑P = cr↑, Pc
†

r↑P = c
†

r↑, (D5)

Pcr↓P = (−1)rx+ryc†r↓, Pc
†

r↓P = (−1)rx+rycr↓. (D6)

The interaction Hamiltonian Hint thus transforms under the par-
tial particle–hole transformation as PHintP = UN̂↑ −Hint. The action
of the partial particle–hole transformation in the momentum space
reads as ∥Q = (π,π)∥

Pck↑P = ck↑, Pc
†

k↑P = c
†

k↑, (D7)

Pck↓P = c
†

Q−k,↓, Pc
†

k↓P = cQ−k,↓. (D8)

The kinetic energy, therefore, remains invariant under the par-
tial particle–hole transformation, i.e., PH0P = H0. Equations (D5)
and (D6) imply that P∣∅⟩ =∏r∈Uc

†

r↓∣∅⟩. We then find that P∣ψCDW⟩
= ∣ψSDW⟩, i.e., the partial particle–hole transformation transforms
the CDW state defined in Eq. (24) into the SDW state defined
in Eq. (23) and vice versa.108 The states ∣ψCDW⟩ and ∣ψSDW⟩
have the same number of spin-up electrons, while their num-
bers of spin-down electrons add to Nc. Using the combination of
the partial particle–hole transformation P and the bipartite lattice
transformation B defined in Appendix C, one obtains

⟨ψCDW∣e−iHt ∣ψCDW⟩ = e−iN↑(ψ)Ut⟨ψSDW∣e−iHt ∣ψSDW⟩∗, (D9)

where N↑(ψ) = ⟨ψCDW∣N̂↑∣ψCDW⟩ = ⟨ψSDW∣N̂↑∣ψSDW⟩ is the total
number of spin-up electrons in CDWand SDW states. Equation (36)
then follows immediately from Eq. (D9).

A similar procedure to that described in Appendix C is used
to combine Markov chains for the survival probabilities of the
CDW and SDW states related by the dynamical symmetry in
Eq. (D9).
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APPENDIX E: USING THE PARTICLE–HOLE SYMMETRY
TO DISCUSS THE AVERAGE SIGN OF THE FPQMC
METHOD FOR CHEMICAL POTENTIALS μ AND U − μ

The (full) particle–hole transformation is represented by a uni-
tary, hermitean, and involutive operator P f (P†

f
= P f = P

−1
f ) whose

action on electron creation and annihilation operators in real space
is defined as109,110

P f crσ P f = (−1)rx+ryc†rσ. (E1)

The corresponding formula in the momentum space reads as

P f ckσ P f = c
†

Q−k,σ. (E2)

Let us fix J,U,T, and Nτ and compute the equation of state ρe(μ)
using Eq. (13) in which Ai(Ψi,l) = ∥N↑(C) +N↓(C)∥/Nc. It is con-
venient to make the μ-dependence in εint(C,μ) explicit. In the sums
entering Eq. (13) we make the substitution

C→ C
′
= {∣Φi,l⟩ = P f ∣Ψi,l⟩∣l = 1, . . . ,Nτ} (E3)

under which

Dβ(C,Δτ) = Dβ(C ′,Δτ), (E4)

εint(C,μ) = εint(C ′,U − μ) + (U − 2 μ)Nτ Nc, (E5)

Nσ(C ′) = Nc −Nσ(C). (E6)

It then follows that

∑C Dβ(C,Δτ) e−Δτεint(C,μ)∥N↑(C) +N↓(C)∥/Nc

∑C Dβ(C,Δτ) e−Δτεint(C,μ)
= 2 −

∑C′ Dβ(C′,Δτ) e−Δτεint(C′ ,U−μ)∥N↑(C′) +N↓(C′)∥/Nc

∑C′ Dβ(C′,Δτ) e−Δτεint(C′ ,U−μ) .

(E7)

The FPQMC simulations of the ratios in the last equation are
performed for chemical potentials μ and U − μ, which are symmet-
ric with respect to the chemical potentialU/2 at the half-filling. Since
εint(C,μ) and εint(C ′,U − μ) differ by a constant additive factor, the
corresponding configuration weights differ by a constant multiplica-
tive factor, and the average signs of the two FPQMC simulations are
thus mutually equal.
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D. Tanasković, “Charge transport in the Hubbard model at high temperatures:
Triangular versus square lattice,” Phys. Rev. B 102, 115142 (2020).
56P. Werner, T. Oka, and A. J. Millis, “Diagrammatic Monte Carlo simulation of
nonequilibrium systems,” Phys. Rev. B 79, 035320 (2009).
57M. Schiró and M. Fabrizio, “Real-time diagrammatic Monte Carlo for
nonequilibrium quantum transport,” Phys. Rev. B 79, 153302 (2009).
58M. Schiró, “Real-time dynamics in quantum impurity models with diagram-
matic Monte Carlo,” Phys. Rev. B 81, 085126 (2010).
59E. Gull, D. R. Reichman, and A. J. Millis, “Numerically exact long-time behav-
ior of nonequilibrium quantum impurity models,” Phys. Rev. B 84, 085134
(2011).
60G. Cohen, D. R. Reichman, A. J. Millis, and E. Gull, “Green’s functions from
real-time bold-line Monte Carlo,” Phys. Rev. B 89, 115139 (2014).
61G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, “Taming the dynamical
sign problem in real-time evolution of quantummany-body problems,” Phys. Rev.
Lett. 115, 266802 (2015).
62M. S. Church and B. M. Rubenstein, “Real-time dynamics of strongly correlated
fermions using auxiliary field quantumMonte Carlo,” J. Chem. Phys. 154, 184103
(2021).
63C. Karrasch, D. M. Kennes, and J. E. Moore, “Transport properties of the
one-dimensional Hubbard model at finite temperature,” Phys. Rev. B 90, 155104
(2014).
64N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, andM. Bonitz, “Nonequilibrium
dynamics in the one-dimensional Fermi-Hubbard model: Comparison of the
nonequilibrium Green-functions approach and the density matrix renormaliza-
tion group method,” Phys. Rev. B 95, 165139 (2017).
65A. Akbari, M. J. Hashemi, A. Rubio, R. M. Nieminen, and R. van Leeuwen,
“Challenges in truncating the hierarchy of time-dependent reduced density
matrices equations,” Phys. Rev. B 85, 235121 (2012).
66D. Lacroix, S. Hermanns, C. M. Hinz, and M. Bonitz, “Ultrafast dynamics
of finite Hubbard clusters: A stochastic mean-field approach,” Phys. Rev. B 90,
125112 (2014).
67Z. Li, N. Tong, X. Zheng, D. Hou, J. Wei, J. Hu, and Y. Yan, “Hierarchical
Liouville-space approach for accurate and universal characterization of quantum
impurity systems,” Phys. Rev. Lett. 109, 266403 (2012).
68S. Wang, X. Zheng, J. Jin, and Y. J. Yan, “Hierarchical Liouville-space approach
to nonequilibrium dynamical properties of quantum impurity systems,” Phys.
Rev. B 88, 035129 (2013).
69R. E. V. Profumo, C. Groth, L. Messio, O. Parcollet, and X. Waintal, “Quantum
Monte Carlo for correlated out-of-equilibrium nanoelectronic devices,” Phys.
Rev. B 91, 245154 (2015).
70M. A. Cazalilla and J. B. Marston, “Time-dependent density-matrix renor-
malization group: A systematic method for the study of quantum many-body
out-of-equilibrium systems,” Phys. Rev. Lett. 88, 256403 (2002).
71S. R. White and A. E. Feiguin, “Real-time evolution using the density matrix
renormalization group,” Phys. Rev. Lett. 93, 076401 (2004).
72U. Schollwöck, “Time-dependent density-matrix renormalization-group
methods,” J. Phys. Soc. Jpn. 74, 246–255 (2005).
73C. Yang and A. E. Feiguin, “Spectral function of the two-dimensional Hubbard
model: A density matrix renormalization group plus cluster perturbation theory
study,” Phys. Rev. B 93, 081107 (2016).
74G. Stefanucci and R. van Leeuwen,NonequilibriumMany-Body Theory of Quan-

tum Systems: A Modern Introduction (Cambridge University Press, New York,
2013).
75N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, “Ultrafast dynamics
of strongly correlated fermions—Nonequilibrium Green functions and selfenergy
approximations,” J. Phys.: Condens. Matter 32, 103001 (2019).
76N. Schlünzen, J. P. Joost, and M. Bonitz, “Achieving the scaling limit for
nonequilibrium Green functions simulations,” Phys. Rev. Lett. 124, 076601
(2020).

J. Chem. Phys. 158, 044108 (2023); doi: 10.1063/5.0133597 158, 044108-20

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/physrevx.5.041041
https://doi.org/10.1103/revmodphys.83.349
https://doi.org/10.1103/revmodphys.83.349
https://doi.org/10.1134/1.1800216
https://doi.org/10.1103/physrevb.72.035122
https://doi.org/10.1209/0295-5075/82/57003
https://doi.org/10.1103/PhysRevLett.81.2514
https://doi.org/10.1103/PhysRevLett.99.250201
https://doi.org/10.1209/0295-5075/90/10004
https://doi.org/10.1016/j.phpro.2010.09.034
https://doi.org/10.1103/physrevb.96.041105
https://doi.org/10.1103/physrevlett.97.187202
https://doi.org/10.1103/physreva.84.053611
https://doi.org/10.1016/j.cpc.2012.10.008
https://doi.org/10.1103/physrevresearch.4.043201
https://doi.org/10.1103/prxquantum.2.020344
https://doi.org/10.1103/prxquantum.2.020344
https://doi.org/10.1103/physrevb.104.075155
https://doi.org/10.1126/science.abe7165
https://doi.org/10.1103/physrevresearch.3.033204
https://doi.org/10.1103/physreva.106.013310
https://doi.org/10.1103/physreva.106.013310
https://doi.org/10.1103/PhysRevLett.123.036601
https://doi.org/10.1126/science.aau7063
https://arxiv.org/abs/2208.04047
https://doi.org/10.1080/000187300243381
https://doi.org/10.1103/PhysRevB.102.115142
https://doi.org/10.1103/physrevb.79.035320
https://doi.org/10.1103/physrevb.79.153302
https://doi.org/10.1103/physrevb.81.085126
https://doi.org/10.1103/physrevb.84.085134
https://doi.org/10.1103/physrevb.89.115139
https://doi.org/10.1103/physrevlett.115.266802
https://doi.org/10.1103/physrevlett.115.266802
https://doi.org/10.1063/5.0049116
https://doi.org/10.1103/physrevb.90.155104
https://doi.org/10.1103/physrevb.95.165139
https://doi.org/10.1103/physrevb.85.235121
https://doi.org/10.1103/physrevb.90.125112
https://doi.org/10.1103/physrevlett.109.266403
https://doi.org/10.1103/physrevb.88.035129
https://doi.org/10.1103/physrevb.88.035129
https://doi.org/10.1103/physrevb.91.245154
https://doi.org/10.1103/physrevb.91.245154
https://doi.org/10.1103/physrevlett.88.256403
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1143/jpsjs.74s.246
https://doi.org/10.1103/physrevb.93.081107
https://doi.org/10.1088/1361-648x/ab2d32
https://doi.org/10.1103/PhysRevLett.124.076601


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

77J.-P. Joost, N. Schlünzen, H. Ohldag, M. Bonitz, F. Lackner, and I. Březinová,
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Spectral and thermodynamic properties of the Holstein polaron: Hierarchical equations
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We develop a hierarchical equations of motion (HEOM) approach to compute real-time single-particle
correlation functions and thermodynamic properties of the Holstein model at finite temperature. We exploit the
conservation of the total momentum of the system to formulate the momentum-space HEOM whose dynamical
variables explicitly keep track of momentum exchanges between the electron and phonons. Our symmetry-
adapted HEOM enable us to overcome the numerical instabilities inherent to the commonly used real-space
HEOM. The HEOM method is then used to study the spectral function and thermodynamic quantities of chains
containing up to ten sites. The HEOM results compare favorably to existing literature. To provide an independent
assessment of the HEOM approach and to gain insight into the importance of finite-size effects, we devise a
quantum Monte Carlo (QMC) procedure to evaluate finite-temperature single-particle correlation functions in
imaginary time and apply it to chains containing up to twenty sites. QMC results reveal that finite-size effects
are quite weak, so that the results on 5 to 10-site chains, depending on the parameter regime, are representative
of larger systems. A detailed comparison between the HEOM and QMC data place our HEOM method among
reliable methods to compute real-time finite-temperature correlation functions in parameter regimes ranging
from low- to high-temperature, and weak- to strong-coupling regime.

DOI: 10.1103/PhysRevB.105.054311

I. INTRODUCTION

The coupling of electronic excitations (electrons or exci-
tons) to quantum lattice vibrations fundamentally determines
physical properties of a wide variety of systems. The exam-
ples include organic semiconductors [1–3] and photosynthetic
pigment–protein complexes [4–6]. In such systems, the den-
sity of excitations, which are typically excited by light or
introduced by doping, is low. An electronic excitation in the
field of phonons is most simply modeled within the Holstein
molecular-crystal model [7], in which the excitation is lo-
cally and linearly coupled to intramolecular vibrations. The
distinctive feature of organic semiconductors and photosyn-
thetic complexes is that the energy scales of the electronic
(excitonic) bandwidth, phonon energy, and electron (exciton)–
phonon couplings are all comparable to one another and
to the thermal energy. In other words, there is no obvious
small parameter in which a perturbation expansion can be
performed, and the standard weak-coupling (Redfield-like [8])
and strong-coupling (Förster-like [9] or Marcus-like [10])
theories do not properly describe excitation dynamics [11].
Numerical studies are thus indispensable in tackling the most
interesting intermediate-coupling regime.

Thermodynamic and dynamic properties of the Holstein
model have been investigated using a host of numerical
methods. The most popular ones are the exact diagonal-
ization on finite lattices [12–18], quantum Monte Carlo

*veljko.jankovic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

(QMC) methods [19–26], the density matrix renormaliza-
tion group [27–29], variational techniques [30–34], and the
momentum-average approximation [35,36]. The majority of
these approaches were restricted to ground-state considera-
tions, while the evaluation of finite-temperature (real-time)
correlation functions has received limited attention. Early
approaches to the finite-temperature single-particle spec-
tral properties of the Holstein model were restricted to
analytical [37] and numerical [12,38] studies on two-site
systems. These were followed by the dynamical mean-field
theory [39]. Recently, Bonča and collaborators have ex-
amined the Holstein polaron’s spectral function using the
finite-temperature Lanczos method [40,41]. They have also
investigated the thermodynamics and spectral functions of
the Holstein polaron employing a finite-temperature time-
dependent density-matrix renormalization group method [42].
Two-particle correlation functions, such as the conductivity,
resistivity, mobility, or diffusion constant, were computed by
performing different types of unitary transformations [43–50],
or by resorting to the dynamical mean field theory [51,52], the
momentum-average approximation [53], QMC [54], or finite-
temperature time-dependent density matrix renormalization
group [55].

On the other hand, within the chemical-physics com-
munity, the method of choice to investigate the dynamical
properties of the Holstein model is the hierarchical equa-
tions of motion (HEOM) method [56–59]. The HEOM
method is a numerically exact density-matrix technique to
calculate the dynamics of a quantum system of interest (here,
electronic excitations) that is linearly coupled to a Gaus-
sian bath (here, phonons). Starting from the exact result of
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VELJKO JANKOVIĆ AND NENAD VUKMIROVIĆ PHYSICAL REVIEW B 105, 054311 (2022)

the Feynman–Vernon influence functional theory [60], the
problem is formulated as an infinite hierarchy of dynami-
cal equations for the reduced density matrix (RDM), which
completely describes the system of interest, and the so-called
auxiliary density matrices (ADMs). While the systematic hi-
erarchy truncation schemes do exist [61,62], the number of
ADMs that are necessary to obtain converged results can
be quite high, which severely limits the applicability of the
HEOM method. The HEOM method has been employed to
examine the excitonic dynamics and absorption and emission
spectra in Holstein-like models of photosynthetic molecu-
lar aggregates [63–68], as well as to study the equilibrium
(e.g., the exciton–polaron size) and dynamical (e.g., mobility)
properties of the canonical Holstein model [69–72]. Never-
theless, two aspects have received limited attention in the
HEOM-method investigations of the Holstein model. (i) The
translational symmetry, which reduces the numerical com-
plexity of standard density-matrix techniques [73,74], has not
been combined with the HEOM method. (ii) The HEOM
method is usually applied to situations in which nuclear de-
grees of freedom constitute a genuine thermodynamic bath,
i.e., the spectral density of the electron–phonon interaction is a
continuous function. Its applications to the canonical Holstein
model, for which the spectral density consists of delta-like
peaks, may face serious numerical problems [75] and have
treated relatively small systems [76,77] and/or relatively short
time scales [71]. Developing novel techniques to improve the
numerical stability of the HEOM method for discrete oscilla-
tor modes is thus an active line of research [75,78].

In this paper, we devise a momentum-space HEOM
method suitable to compute real-time single-particle correla-
tion functions and thermodynamic properties of the Holstein
Hamiltonian at finite temperature. Our momentum-space for-
mulation enhances the numerical stability of the HEOM
method with respect to its real-space formulation. We then
compute the spectral function and various thermodynamic
quantities of the one-dimensional Holstein model containing
up to ten sites and find quite good agreement with literature
results in a wide range of model parameters. To provide an
independent check of our HEOM results and to understand
the importance of finite-size effects, we also present QMC re-
sults for imaginary-time single-particle correlation functions
at finite temperature, which are obtained on chains containing
up to 20 sites. We conclude that finite-size effects are not
pronounced, while the HEOM and QMC results in imaginary
time agree exceptionally well.

The paper is organized as follows. Having specified the
model (Sec. II A) and the correlation functions we evaluate
(Sec. II B), in Sec. II C we develop the HEOM approach,
while in Sec. II D we develop the QMC approach. Section III
discusses our HEOM method in light of the well-known weak-
coupling (Sec. III A) and strong-coupling (Sec. III B) theories,
whereas Sec. III C provides an interesting perspective on the
artificial broadening of spectral lines, which is widely used
in graphic representations of spectral functions. Section IV
is devoted to a detailed presentation of the numerical results
for the one-dimensional Holstein model. We first present the
results of the HEOM method in different parameter regimes
(Secs. IV C–IV E), and then transform them to imaginary
time to enable a direct comparison with the QMC data and

to discuss finite-size effects (Sec. IV G). Section V provides
further discussion of the methodologies used in this work,
while Sec. VI summarizes our main results.

II. MODEL AND METHOD

A. Holstein model

We study the Holstein Hamiltonian on a one-dimensional
lattice containing N sites with periodic boundary conditions
(PBC). We work in the limit of low excitation (electron or
exciton) density, in which it is enough to consider only the
subspaces containing no excitations and a single excitation.
The zero-excitation subspace is spanned by the collective state
|vac〉, in which all units are unexcited. For the time being,
we assume that the energy of the collective unexcited state
sets the zero of our energy scale. An orthonormal basis in the
single-excitation subspace is the so-called local basis {| j〉| j},
whose basis state | j〉 contains a single excitation localized on
site j. We develop the theory in the momentum representation,
in which the Holstein Hamiltonian reads as

H = He + Hph + He−ph. (1)

He is the tight-binding Hamiltonian of free electronic exci-
tations that can hop between nearest-neighboring sites with
hopping amplitude J

He =
∑

k

εk|k〉〈k|. (2)

In Eq. (2), the dimensionless wave number k (expressed in
units of inverse lattice spacing) may assume any of the N

allowed values in the first Brillouin zone (IBZ) −π < k �

π , while the free-electron dispersion is εk = εe − 2J cos(k),
where εe is the on-site vertical excitation energy. The free-
phonon Hamiltonian is

Hph =
∑

q

h̄ωqb†
qbq, (3)

where ωq denotes the dispersion relation of optical phonons,
for which ω0 �= 0 (in the center of the Brillouin zone), while
bq and b†

q are the phonon annihilation and creation operators.
The electron–phonon interaction is conveniently written as

He−ph =
∑

q

VqBq. (4)

The purely electronic operator Vq increases the momentum of
the electronic subsystem by q,

Vq =
∑

k

|k + q〉〈k|, (5)

while the purely phononic operator Bq decreases the momen-
tum of phonons by q,

Bq =
γ

√
N

(bq + b
†
−q ), (6)

where γ is the constant of the local electron–phonon coupling.
The operator Vq satisfies V−q = V †

q , and the same holds for Bq.

B. Single-particle correlation functions

The single-particle spectral function, which contains com-
plete information about the single-particle spectrum, is
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proportional to the imaginary part of the retarded (causal)
Green’s function in the real-frequency domain. The corre-
sponding expression in the real-time domain reads as [79]

GR(k, t ) = −iθ (t )〈{ck (t ), c
†
k
}〉. (7)

Here, ck and c
†
k

are electron annihilation and creation opera-
tors, which in the low-density limit should be replaced by

ck → |vac〉〈k|, c
†
k

→ |k〉〈vac|, (8)

while θ (t ) is the step function. Temporal evolution of the
annihilation operator ck (t ) = eiHt/h̄cke−iHt/h̄ entering Eq. (7)
is governed by the total Hamiltonian H . The averaging is
performed in the thermal equilibrium of the coupled electron–
phonon system at temperature T = (kBβ )−1

〈·〉 = Tr

(
·

e−βH

Z

)
, Z = Tr e−βH . (9)

In HEOM computations, we will separately compute the
time-dependent greater

G>(k, t ) = −i〈ck (t )c†
k
〉 (10)

and lesser

G<(k, t ) = i〈c†
k
ck (t )〉 (11)

Green’s functions for t > 0. In QMC computations, we com-
pute the imaginary-time counterpart of the greater Green’s
function

C(k, τ ) = 〈ck (τ )c†
k
〉p, (12)

where 0 � τ � β h̄ is the imaginary time, while ck (τ ) =
eHτ/h̄cke−Hτ/h̄ is the imaginary time-dependent operator. The
subscript p denotes that the average is taken over the space of

purely phononic states 〈O〉p = Trp(Oe−βH )
Trp(e−βH ) .

Knowing G>, the single-particle spectral function A(k, ω)
is obtained using the fluctuation–dissipation theorem [79]. In
the following, we shift the zero of the energy scale to the
on-site vertical excitation energy εe, as is commonly done
in the literature. It is physically plausible to assume that
βεe ≫ 1, i.e., that thermal fluctuations alone cannot bridge
the gap between the unexcited and singly-excited states. The
fluctuation–dissipation theorem then reduces to

A(k, ω) = −
1

2π
Im G>(k, ω). (13)

A more detailed discussion is provided in Sec. I of the Sup-
plemental Material (SM) [80]. While A(k, ω) describes the
addition of an electron to the system with initially no elec-
trons, the following quantity

A+(k, ω) =
1

2π
Im G<(k, ω) (14)

describes the removal of an electron from the system. The
electron-addition and electron-removal spectral functions are
not mutually independent, which is discussed in Sec. I of
SM [80] and Sec. IV F.

The comparison between HEOM and QMC results is most
conveniently done by transforming HEOM results to the

imaginary-time domain

CHEOM(k, τ ) =
∫ +∞

−∞
dω e−ωτ A(k, ω) (15)

and comparing CHEOM(k, τ ) with C(k, τ ).

C. HEOM method for single-particle correlation functions

1. Preliminaries

Employing the low-density replacements [Eq. (8)] in
Eqs. (10) and (11), we obtain

G>(k, t ) = −i〈k|ρ>
k (t )|vac〉 (16)

ρ
(I,>)
k

(t ) = Trph

(
U

(I )
e−ph(t )|k〉〈vac|

e−βHph

Zph

)
(17)

G<(k, t ) = i〈k|ρ<
k (t )|vac〉 (18)

ρ
(<,I )
k

(t ) = Trph

(
U

(I )
e−ph(t )

e−βH

Z
|k〉〈vac|

)
(19)

While Eqs. (16) and (18) are formulated in the Schrödinger
picture, Eqs. (17) and (19) are written in the interaction picture
with respect to the noninteracting part He + Hph of the total
Hamiltonian and the evolution operator U

(I )
e−ph(t ) reads as (T

is the chronological time-ordering sign)

U
(I )
e−ph(t ) = T exp

[
−

i

h̄

∫ t

0
ds H

(I )
e−ph(s)

]
. (20)

In Eq. (17), Zph = Trphe−βHph , while Trph denotes the partial
trace over phonons. The computation of G> proceeds in the
zero-excitation subspace, as signalized by the free-phonon
thermal distribution that is characteristic for the unexcited
system. On the other hand, the computation of G< requires a
precomputation of the thermal-equilibrium state of the cou-
pled electron–phonon system, and it thus proceeds in the
single-excitation subspace. While the computation of G> is
analogous to the computation of the absorption spectrum of a
molecular aggregate, the computation of G< is analogous to
the computation of the emission spectrum. In both cases, the
HEOM computations are less demanding than they usually
are because the objects propagated in time are not two-sided
(density matrix-like), but one-sided (wave function-like). This
is reflected in Eqs. (17) and (19) by the absence of the back-
ward evolution operator U

(I )†
e−ph(t ). Equation (17) represents

temporal evolution starting from the initial state that is fac-
torized, and the manipulations that are necessary to rewrite it
as HEOM should be similar to the ones employed in the stan-
dard HEOM derivation [58,60]. Recasting Eq. (19) in form of
HEOM is more complicated because the initial condition for
time evolution cannot be factorized.

2. HEOM method to compute G>(k, t )

According to the Feynman–Vernon influence functional
theory [60], the only phonon quantity that enters the reduced
electronic description is the thermal free-phonon correlation
function

Cq2q1 (t ) = Trph

{
B(I )

q2
(t )B(I )

q1
(0)

e−βHph

Zph

}
. (21)
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The time dependence of phonon operators is with respect to
the free-phonon Hamiltonian Hph, which is emphasized by the
superscript (I ). The correlation function Cq2q1 (t ) is a sum of
two complex exponential (oscillating) terms (t > 0)

Cq2q1 (t ) = δq2,−q1 (h̄ω0)2
1∑

m=0

cq2me−μq2mt , (22)

where

cq0 =
(

γ

h̄ω0

√
N

)2

[1 + nBE(ωq, T )], μq0 = +iωq, (23)

cq1 =
(

γ

h̄ω0

√
N

)2

nBE(ωq, T ), μq1 = −iωq, (24)

while nBE(ωq, T ) = (eβ h̄ωq − 1)−1 is the number of phonons
excited in mode q at temperature T .

Integrating out phonons on the right-hand side of Eq. (17),
we obtain

ρ
(I,>)
k

(t ) = U (I,>)(t )|k〉〈vac|, (25)

where the reduced evolution superoperator U (I,>)(t ) is given
by

U (I,>)(t ) = T exp

[
−ω2

0

∑

qm

∫ t

0
ds2

×
∫ s2

0
ds1 V (I )

q (s2)C cqme−μqm (s2−s1 ) V
(I )
−q (s1)C

]
.

(26)

The action of the hyperoperator V C on an arbitrary operator
O is defined as V CO = V O. The hyperoperator notation is
similar to that used in Ref. [67]. The time-ordering sign T

enforces the chronological order of the arguments of hyper-
operators V C (later times are moved to the left). The structure
of U (I,>)(t ) suggests that this superoperator conserves the mo-
mentum of the electronic subsystem. In other words, the only
nontrivial matrix element of ρ>

k (t ) is 〈k|ρ>
k (t )|vac〉, which is

in agreement with Eq. (16).
Starting from Eq. (25), the HEOM is derived in the

standard manner [58]. The ADMs are characterized by the
vector n = {nqm|q ∈ IBZ, m = 0, 1} of nonnegative integers
nqm � 0 that count the order of phonon assistance. The ADM
σ

(I,>,n)
k,n

(t ), which appears on the depth n =
∑

qm nqm of the
hierarchy, is defined as

σ
(I,>,n)
k,n

(t ) = T

{
∏

qm

[
iω2

0 cqm

∫ t

0
ds e−μqm (t−s) V

(I )
−q (s)

]nqm

× U (I,>)(t )

}
|k〉〈vac|. (27)

By virtue of the conservation of the electronic momentum,
the only nontrivial matrix element of σ

(>,n)
k,n

(t ) will be 〈k −
kn|σ (>,n)

k,n
(t )|vac〉, where

kn =
∑

qm

qnqm (28)

is the electronic momentum carried by σ
(>,n)
k,n

. Defining the
auxiliary Green’s function (AGF) at depth n characterized by
vector n

G(>,n)
n (k − kn, t ) = −i〈k − kn|σ (>,n)

k,n
(t )|vac〉, (29)

we obtain the following HEOM for Green’s functions

∂t G
(>,n)
n (k − kn, t )

= −i
(
k−kn

+ μn

)
G(>,n)

n (k − kn, t )

+ i
∑

qm

G
(>,n+1)
n+

qm
(k − kn − q, t )

+ iω2
0

∑

qm

nqmcqmG
(>,n−1)
n−

qm
(k − kn + q, t ). (30)

In the last equation, we introduce

μn = −i
∑

qm

μqmnqm =
∑

q

ωq(nq0 − nq1), (31)

while k = εk/h̄ is the angular frequency of the free-electron
state |k〉. The greater Green’s function is then obtained as
the root of the hierarchy, G>(k, t ) = G

(>,0)
0 (k, t ). The hierar-

chy presented in Eq. (30) is propagated separately for each
allowed value of k (there are N mutually independent hierar-
chies) with the initial condition

G(>,n)
n (k, t = 0) = −iδn,0, (32)

which follows from Eqs. (27) and (29).
In the zero-temperature limit, the hierarchy in Eq. (30)

reduces to the hierarchy presented in Refs. [35,36]. Our
HEOM may thus be regarded as an extension of the hierarchy
in Refs. [35,36] to nonzero temperatures. Due to the zero-
temperature assumption, the hierarchy in Refs. [35,36] has
only a single branch (our m = 0 branch). Since the thermal (or
incoherent) phonon occupations are identically equal to zero,
phonon-assisted processes proceed via virtual (or coherent)
phonons, that are first created from the phonon vacuum and
subsequently destroyed. On the other hand, our hierarchy has
two branches describing phonon-assisted processes that pro-
ceed via thermal phonons and in which the order of phonon
absorption and emission events is immaterial. One may at-
tempt to solve Eq. (30) by Fourier or Laplace transform, as
was done in Refs. [35,36]. This would transform the hierar-
chy of first-order linear differential equations into a (sparse)
system of linear algebraic equations. While such a route is
certainly possible, here, we opt for solving Eq. (30) directly
in the time domain, after which the spectral properties are
computed using the discrete Fourier transform.

3. HEOM method to compute G<(k, t )

The main obstacle in the derivation of HEOM for the lesser
Green’s function is the fact that the density matrix ρ<

k (0) at the
initial instant is not factorizable, see Eq. (19). Nevertheless,
one may always write

e−βH

Z
=

e−βHe

Ze

e−βHph

Zph
× T exp

[
−

1

h̄

∫ β h̄

0
dτH e−ph(τ )

]
,

(33)
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where Zph is the free-phonon partition sum, Ze = Z/Zph is
still unknown electronic partition sum (it contains all the ef-
fects due to the electron–phonon interaction), while H e−ph(τ )
denotes the electron–phonon coupling in the imaginary-time
interaction picture

H e−ph(τ ) = e(He+Hph )τ/h̄He−phe−(He+Hph )τ/h̄. (34)

Inserting Eq. (33) in Eq. (19), the partial trace over phonons
can be straightforwardly computed to obtain

ρ
(I,<)
k

(t ) =
(
U (I,<)(t, β h̄)

e−βHe

Ze

)
|k〉〈vac|. (35)

The exact evolution superoperator U (I,<)(t, β h̄) is the time-
ordered exponential of the sum of three influence phases

U (I,<)(t, β h̄) = T exp{−[�1(t ) + �2(β h̄)

+�3(t, β h̄)]}, (36)

�1(t ) = ω2
0

∑

qm

∫ t

0
ds2

∫ s2

0
ds1 V (I )

q (s2)C

×cqme−μqm (s2−s1 ) V
(I )
−q (s1)C, (37)

�2(β h̄) = −ω2
0

∑

qm

∫ β h̄

0
dτ2

∫ τ2

0
dτ1

CV −q(τ1)

×cqmeiμqm (τ2−τ1 ) CV q(τ2), (38)

�3(t, β h̄) = −iω2
0

∑

qm

∫ t

0
ds

∫ β h̄

0
dτ V (I )

q (s)C

×cqme−μqmseiμqm (β h̄−τ ) CV −q(τ ). (39)

The influence phase �1(t ) has already appeared in the deriva-
tion of HEOM for G> [see Eq. (26)] and it represents the pure
real-time evolution. The influence phase �2(β h̄) is represen-
tative of the pure imaginary-time evolution, while �3(t, β h̄)
contains cross contributions among real- and imaginary-time
evolutions. We note that similar expressions have been ob-
tained in the course of the derivation of the HEOM for
the initial states that cannot be factorized into a purely
electronic and purely phononic part [72,81]. In contrast to
Refs. [72,81], here, the backward evolution operator is miss-
ing from Eqs. (17) and (19), so that the hyperoperators V C

and CV act only from one side. The action of the hyperopera-
tor CV on an arbitrary operator O is defined as CV O = OV .
The parentheses on the right-hand side of Eq. (35) stress
that all the hyperoperators CV −q(τ ) that act from the right
should be applied before operator |k〉〈vac|. The time-ordering
sign T in Eq. (36) enforces the chronological order of the
real-time arguments s of hyperoperators V C (later times are
moved to the left) and the anti-chronological order of the
imaginary-time arguments τ of hyperoperators CV (later times
are moved to the right). There is no specific ordering of
the real-time instants with respect to the imaginary-time in-
stants because the hyperoperators V C and CV act on operator
e−βHe/Ze from opposite sides. The anti-chronological ordering
of the imaginary-time arguments of operators CV is nec-
essary in order to maintain the correct chronological order
in the general term of the expansion of Eq. (35) [see also

Eqs. (19), (20), and (33)], whose operators are ordered as
follows: V (I )

qn
(sn) . . .V (I )

q1
(s1) [e−βHe/Ze] V pm

(τm) . . .V p1 (τ1),
where t � sn � · · · � s1 � 0 and β h̄ � τm � · · · � τ1 � 0,
n + m is even, and qn + · · · q1 + pm + . . . p1 = 0. The ADM
σ

(I,<,n)
k,n

(t ) at depth n is defined as

σ
(I,<,n)
k,n

(t, β h̄)

=

{
T

∏

qm

[
iω2

0

∫ t

0
ds cqme−μqm (t−s)V

(I )
−q (s)C

+ ω2
0 e−μqmt

∫ β h̄

0
dτ cqmeiμqm (β h̄−τ ) CV −q(τ )

]nqm

×U (I,<)(t, β h̄)
e−βHe

Ze

}
|k〉〈vac|. (40)

The AGF on level n that is characterized by vector n is then
defined analogously to Eq. (29)

G(<,n)
n (k − kn, t ) = i〈k − kn|σ (<,n)

k,n
(t, β h̄)|vac〉 (41)

and the HEOM for lesser Green’s functions assume the form
of Eq. (30). The initial condition under which the hierarchy for
G< is solved is obtained by setting t = 0 in Eq. (40), which
results in

σ
(n,<)
k,n

(0, β h̄)

=

{
T

∏

qm

[
ω2

0

∫ β h̄

0
dτ cqmeiμqm (β h̄−τ ) CV −q(τ )

]nqm

× e−�2 (β h̄) e−βHe

Ze

}
|k〉〈vac|. (42)

Setting n = 0 and n = 0 in Eq. (42), we recognize that
σ

(0,<)
k,0

(0, β h̄) is, up to the factor |k〉〈vac|, identical to the
expression for the electronic RDM, see Eqs. (35) and (40).
The equilibrium state of the coupled electron–phonon system
has been computed in different ways. The imaginary-time
HEOM was formulated only for a specific spectral density
of the electron–phonon coupling and its structure was not
compatible with the structure of the real-time HEOM [81].
The correlated equilibrium state was also computed by the
technique of stochastic unraveling [72,82] or by finding the
steady state of the real-time HEOM [83]. In the follow-
ing section, we derive the imaginary-time HEOM for the
correlated electron–phonon equilibrium that is specifically
suited for the single-mode Holstein model and whose form
is fully compatible with the real-time HEOM derived in this
section.

4. HEOM method to compute the thermal equilibrium of coupled

electrons and phonons

Taking the partial trace of Eq. (33) over phonons we
obtain the following expression for the (normalized) thermal-
equilibrium RDM for an electron that is coupled to phonons

ρeq(β h̄) = T e−�2 (β h̄) e−βHe

Ze
. (43)
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However, the normalization constant Ze is not known. To
compute Ze, let us consider the unnormalized and imaginary
time-dependent analog of Eq. (43)

ρun,eq(τ ) = T e−�2 (τ ) e−Heτ/h̄ (44)

where 0 � τ � β h̄. The imaginary-time HEOM is then ob-
tained as usually, while the definition of the unnormalized
ADM at level n reads as

σ (n,un,eq)
n (τ ) = T

∏

qm

[
ω2

0

∫ τ

0
dτ ′ cqmeiμqm (τ−τ ′ ) CV −q(τ ′)

]nqm

× e−�2 (τ ) e−Heτ/h̄. (45)

Because of the momentum conservation, the ADM
σ

(n,un,eq)
n (τ ) has only N nonzero matrix elements,

〈k − kn|σ (n,un,eq)
n (τ )|k〉, and it turns out that the imaginary-

time HEOM can be solved independently for each of N

allowed values of k. The imaginary-time HEOM

∂τ 〈k − kn|σ (n,un,eq)
n (τ )|k〉

= −
(
k−kn

+ μn

)
〈k − kn|σ (n,un,eq)

n (τ )|k〉

+
∑

qm

〈k − kn − q|σ (n+1,un,eq)
n+

qm
(τ )|k〉

+ ω2
0

∑

qm

nqmcqm〈k − kn + q|σ (n−1,un,eq)
n−

qm
(τ )|k〉 (46)

is then solved with the initial condition that can be inferred
from Eq. (45) and that reads as [81]

〈k − kn|σ (n,un,eq)
n (0)|k〉 = δn,0. (47)

This initial condition assumes that all free-electron levels
are equally populated, which is in agreement with the fact
that point τ = 0 corresponds to the infinite-temperature limit.
Furthermore, thermal fluctuations are so strong that they
completely suppress the effects due to the electron–phonon
interaction, so that all ADMs are initially equal to zero. Once
the imaginary-time propagation of Eq. (45) is done, the nor-
malization constant Ze is obtained as

Ze =
∑

k

〈k|σ (0,un,eq)
0 (β h̄)|k〉, (48)

so that the normalized ADMs in thermal equilibrium read as

σ (n,eq)
n = Z−1

e σ (n,un,eq)
n (β h̄). (49)

Finally, the initial condition for the real-time propagation of
HEOM for G< reads as

G(<,n)
n (k − kn, 0) = i〈k − kn|σ (n,eq)

n |k〉. (50)

5. Thermodynamic properties

Thermodynamic properties of the Holstein model have
been extensively investigated using the QMC method in com-
bination with the Feynman’s path-integral theory [20–22] or
the canonical Lang–Firsov transformation of the electron–
phonon Hamiltonian [25] or the density-matrix renormaliza-
tion group [42]. The algorithm presented in Refs. [20–22], in
which the purely electronic model resulting from the analyti-
cal elimination of the nuclear degrees of freedom is simulated
using the QMC, is very close in spirit to the method developed

here. It is mainly for this reason that we here compute the
same thermodynamic quantities as in Refs. [20–22].

The kinetic energy of the electron is a purely electronic
quantity and it thus depends only on the electronic RDM
σ

(0,eq)
0

Ekin =
∑

k

εk fk =
∑

k

εk〈k|σ (0,eq)
0 |k〉, (51)

where fk = 〈k|σ (0,eq)
0 |k〉 ∈ [0, 1] is the population of elec-

tronic state with momentum k. The electron–phonon inter-
action energy is a mixed quantity that is linear in phonon
coordinates. Even though our approach mainly deals with re-
duced, i.e., purely electronic quantities, the results of Ref. [84]
suggest that the interaction energy should be extracted from
ADMs at depth 1 as follows:

Ee−ph =
γ

√
N

∑

kq

〈|k + q〉〈k|(bq + b
†
−q)〉

= h̄ω0

∑

q

1∑

m=0

√
cqm

∑

k

〈k − q|σ (1,eq)
0+

qm
|k〉. (52)

The fermion–boson correlation function contains information
on how the electron distorts its surroundings by following how
the presence of an electron on a site affects the nuclear motion
on sites that are r lattice constants away

ϕr =
γ

Ee−ph

∑

j

〈| j〉〈 j|(b j+r + b
†
j+r )〉

=
h̄ω0

Ee−ph

∑

q

eiqr

1∑

m=0

√
cqm

∑

k

〈k − q|σ (1,eq)
0+

qm
|k〉. (53)

This quantity has been used to gain insight into the spatial
extent of the polaron [21,22,70].

D. QMC method for single-particle correlation function

We used a QMC method to calculate the single-particle
correlation function in imaginary time. The method is based
on the path-integral representation of the correlation func-
tion. In this representation, it is possible to integrate out the
phononic degrees of freedom. For this reason, one ends up
with the sum over electronic coordinates that is performed us-
ing the Monte Carlo method. Our approach essentially follows
the path of early studies in Refs. [20–22] with a difference
that we extend these studies (where only thermodynamic
quantities were calculated) to calculate the imaginary-time
correlation function. In addition, we formulate the method in
such a way that phase space of electronic coordinates can be
directly sampled. This is significantly more convenient than
the sampling based on the Metropolis algorithm, which needs
initial equilibration of the system and which suffers from the
possibility of trapping the system in local minima. The QMC
method that we used is also similar to the stochastic path
integral method developed in the chemical physics commu-
nity [82]. Within that method, phonon degrees of freedom
are integrated out and the problem is eventually reduced to
the problem of dynamics of the electronic subsystem in the
presence of noise.
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In more detail, to evaluate the imaginary time correlation
function

C(k, τ ) =
Trp

(
e−(β− τ

h̄
)Hph cke− τ

h̄
H c

†
k

)

Trpe−βHph
(54)

we calculate it in the site basis

Cab(τ ) =
Trp

(
e−(β− τ

h̄
)Hph cae− τ

h̄
H c

†
b

)

Trpe−βHph
(55)

and then we perform the transformation

C(k, τ ) =
1

N

N−1∑

a=0

N−1∑

b=0

eik(b−a)Cab(τ ). (56)

We calculate Cab(τ ) starting from

Cab(τ )

=
∫

d{x}d{y}〈{x}|e−(β− τ
h̄

)Hph |{y}〉〈a{y}|e− τ
h̄

H |b{x}〉∫
d{x}d{y}〈{x}|e−(β− τ

h̄
)Hph |{y}〉〈{y}|e− τ

h̄
Hph |{x}〉

(57)

where {x} and {y} denote the vectors containing the coordi-
nates of all phonon modes. The term 〈{x}|e−(β− τ

h̄
)Hph |{y}〉 is

expressed in an analytical form, since the following identity
holds for a single phonon mode

〈x|e−αHph |y〉 =
√

mω0

2π h̄ sinh(αh̄ω0)
·

× e
− mω0

2h̄ sinh(αh̄ω0 ) [(x2+y2 ) cosh(αh̄ω0 )−2xy]
, (58)

while the analogous term for multiple phonon modes is a
simple product of the terms for each mode (m denotes the
mass of the oscillator that can be set to 1 without the loss of
generality). To evaluate the matrix elements 〈a{y}|e− τ

h̄
H |b{x}〉

and 〈{y}|e− τ
h̄

Hph |{x}〉 we discretize the imaginary time τ by
dividing it into K steps of duration �τ = τ

K
. We make use of

the Suzuki-Trotter expansion of first order, which has a small
controllable error of order (�τ )2

e− �τ
h̄

H ≈ e− �τ
h̄

Hph e− �τ
h̄

He−ph e− �τ
h̄

He . (59)

We then have

〈a{y}|e− �τ
h̄

H |b{x}〉

=
∫

d{z}
∑

c

〈{y}|e− �τ
h̄

Hph |{z}〉

× 〈a{z}|e− �τ
h̄

He−ph |c{x}〉〈c|e− �τ
h̄

He |b〉. (60)

The term involving the electron-phonon interaction can be
evaluated as

〈a{z}|e− �τ
h̄

He−ph |c{x}〉 = δace− �τ
h̄

Cxaδ({z} − {x}), (61)

where C = γ

h̄ω0

√
2h̄mω3

0 and xa denotes the coordinate of the
phonon at site a. The term containing He reads

〈c|e− �τ
h̄

He |b〉 =
1

N

∑

k

e−�τεk eik(c−b) ≡ f (c − b) (62)

and we denote it as f (c − b) in what follows. We thus obtain

〈a{y}|e− τ
h̄

H |b{x}〉

=
∑

i1...iK−1

f (a − i1) f (i1 − i2) . . . f (iK−1 − b)

×
∫

d{x}(1) . . . d{x}(K−1)〈{y}|e− �τ
h̄

Hph |{x}(1)〉

× 〈{x}(1)|e− �τ
h̄

Hph |{x}(2)〉 . . . 〈{x}(K−1)|e− �τ
h̄

Hph |{x}〉

× e
− �τ

h̄
C(x(1)

a +x
(2)
i1

+...+x
(K−1)
iK−2

+xiK−1 ) (63)

and

〈{y}|e− τ
h̄

Hph |{x}〉

=
∫

d{x}(1) . . . d{x}(K−1)〈{y}|e− �τ
h̄

Hph |{x}(1)〉

× 〈{x}(1)|e− �τ
h̄

Hph |{x}(2)〉 . . . 〈{x}(K−1)|e− �τ
h̄

Hph |{x}〉.
(64)

After substitution of expressions (58), (63), and (64) to
Eq. (57) we obtain

Cab(τ ) =
N

D
, (65)

with

N =
∑

i1...iK−1

f (a − i1) f (i1 − i2) . . . f (iK−1 − b)

×
∫

d{x}d{y}d{x}(1) . . . d{x}(K−1)

× e−Q({x},{y},{x}(1),...,{x}(K−1) )e−L({x},{y},{x}(1),...,{x}(K−1) ) (66)

and

D =
∫

d{x}d{y}d{x}(1) . . . d{x}(K−1)e−Q({x},{y},{x}(1),...,{x}(K−1) ).

(67)

The term Q({x}, {y}, {x}(1), . . . , {x}(K−1)) in Eqs. (66) and (67)
denotes the quadratic form of phonon coordinates, that con-
tains the terms of second order only (i.e., the square of a
phonon coordinate or the product of two phonon coordinates),
while the term L({x}, {y}, {x}(1), . . . , {x}(K−1)) denotes the
linear term that contains a linear combination of phonon co-
ordinates. The integrals in Eqs. (66) and (67) are the Gaussian
integrals that can be evaluated analytically using the formula
for the Gaussian integral

∫
dnze− 1

2 z·A·zeb·z = (2π )n/2(det A)−1/2e
1
2 b·A−1·b, (68)

where z is a real vector of dimension n, A is a real symmetric
positive definite matrix of dimension n × n, b is a vector of
dimension n, det A is the determinant of matrix A and A−1 is
its inverse. We then obtain

Cab(τ ) =
∑

i1...iK−1

f (a − i1) f (i1 − i2) . . . f (iK−1 − b)e
1
2 b·A−1·b,

(69)
where A is the matrix representing the quadratic form Q and
b is the vector representing the linear form L. To evaluate the
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last sum, we introduce the replacement of variables

a − i1 = j1, i1 − i2 = j2, . . . , iK−2 − iK−1 = jK−1. (70)

The sum then takes the form

Cab(τ ) =
∑

j1... jK−1

f ( j1) f ( j2) . . . f ( jK−1)

× f

(
a − b −

K−1∑

i=1

ji

)
e

1
2 b·A−1·b. (71)

To evaluate the last sum, we treat the non-negative function

g( j1, . . . , jK−1) = f ( j1) f ( j2) . . . f ( jK−1) (72)

as the probability density. We perform Monte Carlo summa-
tion by choosing random integers j1, j2, . . . , jK−1 that follow
the distribution h( j) = f ( j)∑

j f ( j) and perform the summation

of the term f (a − b −
∑K−1

i=1 ji)e
1
2 b·A−1·b. The replacement of

variables introduced in Eq. (70) enabled us to directly sample
the phase space of electronic coordinates rather than to per-
form sampling based on the Metropolis algorithm. The results
presented in this work were obtained from 105 samples of
electronic coordinates, unless otherwise stated. The integer K

that defines the discretization of imaginary time was chosen
so that �τ ≈ 0.05 h̄

J
.

We used the same ideas to calculate the thermodynamic
expectation values using the QMC method. The details of the
method for these cases are given in Sec. II of SM [80].

III. RELATION OF THE HEOM METHOD

TO EXISTING RESULTS

A. Weak-coupling limit

In the weak-coupling limit, the electron–phonon interac-
tion constant is the smallest energy scale in the problem. It is
then reasonable to treat the interaction within the second-order
perturbation theory. In the HEOM approach, the second-order
approximation is performed by truncating the hierarchy at
depth 1 and solving the resulting equations for ADMs at
depth 1 in the Markov and adiabatic approximations [58,85].
One eventually obtains the Rayleigh–Schrödinger perturba-
tion theory expression for the self energy [79]. More details
are provided in Sec. III of SM [80].

B. Strong-coupling limit

In the opposite, strong-coupling limit, the electronic
coupling J is the smallest energy in the problem. The Hol-
stein Hamiltonian then reduces to N independent single-site
problems (the so-called independent-boson models), whose
analytic solution is known [79]. In the following discussion,
we assume for simplicity that phonons are dispersionless, i.e.,
ωq = ω0 for all q. In Sec. IV of SM [80], we demonstrate
how the exact solution presented here is recast as the Lang–
Firsov formula [86] for the single-site Green’s function. The
crux of the derivation is to note that, in the single-site limit,
the hyperoperators appearing in the evolution superoperator
become time independent, which renders the time-ordering
sign ineffective [67]. Here, we repeat the zero-temperature

FIG. 1. [(a1),(b1),(c1)] Time dependence of the real part of the
envelope G̃>(k = 0, t ) of the greater Green’s function in the zone
center for three different values of the broadening parameter η. For a
precise definition of G̃>(k, t ), see Eq. (80). [(a2),(b2),(c2)] Spectral
function A(k = 0, ω) in the zone center for three different values of
the broadening parameter η. The computation is performed on a N =
8-site chain with kBT/J = 0.4, h̄ω0/J = 1, and γ /J =

√
2, while the

maximum hierarchy depth is set to D = 7.

result

G>(ω) = −2π i e−γ 2/(h̄ω0 )2

×
+∞∑

n=0

1

n!

(
γ

h̄ω0

)2n

δ

(
ω +

γ 2

h̄2ω0
− nω0

)
. (73)

C. Artificial broadening of spectral lines

For graphic representations of the spectral function
[Eq. (13)], the δ functions entering Eq. (73) are commonly re-
placed by their Lorentzian representation, δ(x) → η/[π (x2 +
η2)], where the small parameter η is the artificial broad-
ening of the peaks. The discussion in Sec. IV of SM [80]
suggests that the artificial broadening can be introduced in
the exact result embodied in Eq. (26) by simply replacing
μqm → μqm + η. On the level of the HEOM, this replacement
is reflected as an artificial damping at rate nη of the AGFs
at depth n, see Eqs. (30) and (31). The excellent agreement
between the analytical and numerical results in the single-site
limit with different levels of artificial broadening is demon-
strated in Figs. 1 and 2 in Sec. IV of SM [80]. The replacement
μqm → μqm + η, however, changes the physical situation we
are dealing with by effectively replacing the discrete phonon
spectrum by a continuous one.

To elaborate on the last point, we recall that the thermal
free-phonon correlation function Cq2q1 (t ) [Eq. (21)] can be
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(a) (c)

(d)

(b)

FIG. 2. Dependence of various thermodynamic quantities on the
maximum hierarchy depth D (full dots) and comparison with QMC
results (solid line). Vertical distance between the solid line and
dashed lines is equal to the standard deviation of the sample con-
taining 10 different realizations of the QMC algorithm. The model
parameters assume the following values: kBT/J = 1, h̄ω0/J = 1,
γ /J =

√
2, N = 8, Nθ = 6. (a) Negative kinetic energy of the elec-

tron [Eq. (51)] in units of J multiplied by a factor of 10 (averaging
over TBC is performed). (b) Negative electron–phonon interaction
energy [Eq. (52)] in units of J (averaging over TBC is performed).
(c) Population of the zero-momentum electronic state multiplied by
a factor of 100. TBC are used to generate fk for NNθ = 48 values
of k in the IBZ and the overall normalization is such that the sum of
these NNθ values of fk is equal to 1. (d) Fermion–boson correlation
function [Eq. (53)] at distance of a single lattice spacing multiplied
by a factor of 100 (PBC are used).

written as follows [87]:

Cq2q1 (t ) = δq2,−q1

h̄

π

∫ +∞

−∞
dω J (ω)

eiωt

eβ h̄ω − 1
, (74)

where the spectral density of the electron–phonon interaction
for the (single-mode) Holstein model

J (ω) =
π

h̄

(
γ

√
N

)2

[δ(ω − ω0) − δ(ω + ω0)] (75)

has two discrete peaks at ±ω0. In Sec. V of SM [80], we
demonstrate that the replacement μqm → μqm + η means that,
on the level of the spectral density, delta peaks should be
replaced by Lorentizans characterized by the full width at half
maximum η. Equation (75) is then replaced by the so-called
underdamped Brownian oscillator spectral density [88]

J (ω) = �

[
ωη

(ω − ω0)2 + η2
+

ωη

(ω + ω0)2 + η2

]
, (76)

where � = γ 2/(Nh̄ω0) is the appropriate polaron binding
energy. The demonstration in Sec. V of SM [80] leans on the
fact that the artificial broadening is the smallest energy scale in
the problem, i.e., η ≪ ω0 and h̄η ≪ kBT . These assumptions

are commonly satisfied whenever spectral lines are artificially
broadened [36,40].

As a numerical example beyond the single-site limit, in
Fig. 1 we discuss how different levels of artificial broad-
ening η affect the Green’s function in real time [panels
(a1)–(c1)] and the spectral function [panels (a2)–(c2)] in
the intermediate-coupling regime and at relatively low tem-
perature. The broadening renders our HEOM method more
numerically stable by ensuring that all dynamical quantities
decay to zero on a time scale ∼η−1, compare Figs. 1(b1)
and 1(c1) to Fig. 1(a1), in which the Green’s function at long
times oscillates around zero. However, we see that already
η/ω0 = 0.01 greatly underestimates the decay time of the
Green’s function, which means that the width of the quasipar-
ticle peak and its first phonon replica is greatly overestimated,
compare Figs. 1(b2) and 1(c2) to Fig. 1(a2). In the following,
we will not introduce any artificial broadening to our HEOM.

IV. NUMERICAL RESULTS

We assume that the phonons are dispersionless, ωq = ω0,
and focus on the so-called extreme quantum regime, h̄ω0/J =
1, in which the approximate treatments specifically developed
for the adiabatic and antiadiabatic regimes are not appropriate.
Furthermore, we limit our investigations to the most challeng-
ing crossover regime γ /J =

√
2, in which the dimensionless

electron–phonon coupling constant is λ = γ 2/(2Jh̄ω0) = 1.
As the default value of the temperature, we choose kBT/J =
1. All of these dimensionless ratios (h̄ω0/J , γ /J , and kBT/J)
will be changed, one at a time, to examine the applicability of
the HEOM method in various parameter regimes (low-/high-
temperature, weak-/strong-coupling, adiabatic/antiadiabatic
regime).

A. Hierarchy rescaling, rotating-wave system, and twisted

boundary conditions

The HEOM for G> and G< are both of the same form, see
Eq. (30). It is known that propagating such a form of HEOM
produces numerical instabilities, especially for very strong
electron–phonon couplings [61]. Equation (27) suggests that
the ADM at depth n scales as the (2n)th power of the interac-
tion strength, meaning that, for sufficiently strong interaction,
the magnitude of ADMs increases with n. However, it is de-
sirable that the magnitude of ADMs at deeper hierarchy levels
be smaller than at shallower levels. This is accomplished by
performing the hierarchy rescaling introduced in Ref. [61]. We
define the dimensionless time t̃ = ω0t and rescale the AGFs
as follows:

G̃(n)
n (k − kn, t̃ ) = ω−n

0 f (n)G(n)
n

(
k − kn, ω

−1
0 t̃

)
, (77)

where the rescaling factor f (n) reads as

f (n) =
∏

qm

[
c

nqm

qm nqm!
]−1/2

, (78)

054311-9
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while the factor ω−n
0 renders G̃(n)

n dimensionless. The dimen-
sionless and rescaled HEOM then reads as

∂̃t G̃(n)
n (k − kn, t̃ )

= −i
k−kn

+ μn

ω0
G̃(n)

n (k − kn, t̃ )

+ i
∑

qm

√
1 + nqm

√
cqm G̃

(n+1)
n+

qm
(k − kn − q, t̃ )

+ i
∑

qm

√
nqm

√
cqm G̃

(n−1)
n−

qm
(k − kn + q, t̃ ). (79)

The numerical stability of the HEOM method is fur-
ther enhanced by performing the transition to the so-called
rotating-wave system by separating out the rapidly oscillating
from the slowly changing component (the envelope) of G̃(n)

n as
follows:

G̃(n)
n (k − kn, t̃ ) = exp

(
−i

k−kn
+ μn

ω0
t̃

)

× G̃ (n)
n (k − kn, t̃ ). (80)

We propagate the HEOM for the envelope G̃ (n)
n (k − kn, t̃ ) us-

ing the fourth-order Runge–Kutta method. We use the time
step �̃t = ω0�t = 0.02 in all the computations to be pre-
sented.

Having computed G>/<(k, t̃ ) for 0 � t̃ � t̃max, the spectral
analysis is performed by first continuing the Green’s function
symmetrically for −̃tmax � t̃ � 0 according to G>/<(k, −̃t ) =
−G>/<(k, t̃ )∗ and then multiplying it with the Hann window
function

w (̃t ) = cos2

(
π t̃

2̃tmax

)
, −̃tmax � t̃ � t̃max. (81)

The maximum time t̃max is always long enough so that the sig-
nal windowing accurately captures the spectral content of the
short-time dynamics and yet eliminates the long-time oscil-
lations of G>/< around zero, which originate from finite-size
effects. In most cases, we take t̃max = 500.

The imaginary-time HEOM [Eq. (46)] is rescaled in a
similar manner. Its propagation in dimensionless imaginary
time τ̃ = ω0τ is performed from 0 to β h̄ω0. Typical number
of imaginary-time steps that is sufficient to obtain converged
results for the electron–phonon equilibrium is of the order of
100.

The number of dynamical variables G(n)
n (k − kn, t ) enter-

ing the HEOM is in principle infinite. Nevertheless, converged
results are obtained by truncating the hierarchy at certain
maximum depth D. The number of active variables at depth
n, 0 � n � D, is (n + 2N − 1

n ), while their total number in the
hierarchy is

nactive =
D∑

n=0

(
n + 2N − 1

n

)
=

(
2N + D

D

)
. (82)

The dimensionality of the hierarchy grows very fast with
increasing the maximum depth D and even faster with in-
creasing the system size N . This limits the applicability of
the HEOM method to relatively small systems and moderate
maximum depths.

FIG. 3. (a) Electronic distribution over momenta fk for different
temperatures. TBC are used to generate fk in NNθ points in the IBZ
and the overall normalization is such that the sum of these NNθ

values of fk is equal to 1. (b) Fermion–boson correlation function ϕr

for different temperatures (PBC are observed). Other model param-
eters assume the following values: h̄ω0/J = 1, γ /J =

√
2, N = 8,

Nθ = 6, D = 7.

To reduce the influence of the finite-size effects on the
thermodynamic quantities and to obtain A(k, ω) with a de-
cent k-space resolution, we employ the twisted boundary
conditions (TBC) [89], which are widely used to minimize
one-body finite-size effects both at vanishing [40,41] and fi-
nite [90,91] electron densities. In practice, the free-electron
dispersion relation εk appearing in Eq. (2) is replaced by εkθ =
εe − 2J cos(k + θ ), where θ is the twist angle. Even though
the computations are performed on a finite chain of length
N , the N allowed k points can be continuously connected by
varying the twist angle through the range [0, 2π/N ). A typical
choice for the values of the twist angle is θm = 2πm/(NNθ ),
where m = 0, . . . , Nθ − 1.

B. Estimate of the maximum hierarchy depth

In computations based on HEOM it is always necessary to
study if the depth D is sufficiently large so that the relevant
quantities do not significantly change when D is increased
further.

We show an example of such study for different thermo-
dynamic quantities in Figs. 2(a)–2(d). Their dependence on D

is shown in full dots in these figures. The computations are

054311-10



SPECTRAL AND THERMODYNAMIC PROPERTIES … PHYSICAL REVIEW B 105, 054311 (2022)

FIG. 4. Time dependence of the real [(a1)–(a5)] and imaginary part [(b1)–(b5)] of the envelope G̃>(k = 0, t ) of the greater Green’s function
at k = 0 for temperatures ranging from kBT/J = 0 [in (a1) and (b1)] to kBT/J = 1 [in (a5) and (b5)]. [(c),(d)] Time dependence of the envelope
G̃>(k = 0, t ) during the initial (c) and later (d) stages of temporal evolution for different temperatures. Other model parameters assume the
following values: h̄ω0/J = 1, γ /J =

√
2, N = 8, Nθ = 6, D = 7.

performed on a lattice with N = 8 sites, the twist angle θ may
assume Nθ = 6 different values, while D is varied between
5 and 9. The results of the HEOM method are compared
with QMC results represented by solid lines in Figs. 2(a)–
2(d), while the width of the interval delimited by dashed
lines is a measure of the statistical noise in QMC data. It
is estimated by performing 10 different realizations of the
QMC algorithm and computing the standard deviation of thus
generated sample. The agreement between the HEOM and
QMC results is remarkable. As a good compromise between
the numerical effort and accuracy, we opt in this case for the
maximum depth D = 7, so that the number of active variables
is nactive = 245 157.

An example of the estimate of D when the results for
G>(k, t ) and A(k, ω) are concerned is presented in Figs. 3
and 4 in Sec. VI of SM [80]. The figures demonstrate that
the results in both time and frequency domains do not change
significantly when D is increased from 7 to 8. At the same
time, the late-time revival of oscillations in Re G>(k = 0, t )
for D = 6 indicates that D = 6 may not be sufficient to obtain
convergent results. These observations suggest that taking
D = 7 produces meaningful results for both G>(k, t ) and
A(k, ω) in this case.

C. Variations in temperature

The effects of the temperature variations on the electronic
momentum distribution and the fermion–boson correlation

function are studied in Figs. 3(a) and 3(b), respectively. The
TBC are employed to obtain the electronic momentum dis-
tribution on a relatively dense grid in the IBZ, as specified in
greater detail in the caption of Fig. 3. As the temperature is in-
creased, the momentum distribution flattens. At the same time,
the corresponding real-space distribution fr = 1

N

∑
k eikr fk

shrinks and develops a more pronounced peak at r = 0, which
suggests that the spatial extent of the polaron is decreased.
This is also apparent from Fig. 3(b). These observations are
in agreement with earlier results [47]. The results presented in
Fig. 3(a) are further supported by their remarkable agreement
with the corresponding QMC results, see Fig. 5 in Sec. VII of
SM [80].

In Fig. 4 we present how temperature variations affect
the time dependence of the envelope G̃>(k = 0, t ) of the
greater Green’s function in the zone center. At zero tem-
perature, the phonon-assisted processes proceed via virtual
(coherent) phonons. There is no net energy exchange between
the electron and the phonon subsystem, which is seen as the
persistent oscillations in both the real and imaginary parts
of G̃>(k = 0, t ), see Figs. 4(a1) and 4(b1). As the temper-
ature is increased, the oscillations in G̃>(k = 0, t ) become
damped, see Figs. 4(a2)–4(b5), which is a direct consequence
of the energy exchange between the electron and thermally
excited (incoherent) phonons. The higher the temperature, the
more pronounced the damping of G̃>(k = 0, t ). According
to Fig. 4(c), the damping sets in already at the very initial
stages of time evolution. Because of the finite-size effects,
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FIG. 5. (a) Spectral functions A(k = 0, ω) for different temper-
atures. For the sake of graphical presentation, the spectral functions
are renormalized so that the intensity of the QP peak at h̄ωQP/J ≈ −3
is equal to unity for all the temperatures examined. (b) Integrated
spectral weight I (k = 0, ω) [Eq. (83)] at different temperatures. The
sum rule limω→+∞ I (k = 0, ω) = 1 is satisfied. Other model param-
eters assume the following values: h̄ω0/J = 1, γ /J =

√
2, N = 8,

Nθ = 6, D = 7.

the envelopes at higher T do not decay to zero, but rather
oscillate around it, see Fig. 4(d). At the latest instants we
examine, the oscillation amplitude of Re G̃(k = 0, t ) drops to
less than 10% of its value around t = 0, compare the vertical-
axis scales of Figs. 4(a2)–4(a5) and 4(d). At the same time,
the amplitude of the imaginary part drops to less than 1% of
its initial value, which is equal to unity, see also Eq. (32).
Transforming the data in Fig. 4 to the frequency domain,
the corresponding spectral functions for k = 0 at different
temperatures are shown in Fig. 5(a). For the sake of graphical
presentation, the spectral functions in Fig. 5(a) are normalized
so that the quasiparticle (QP) peak, which is located around
h̄ωQP/J ≈ −3, is of unit intensity. The position of the QP
peak agrees very well with the results from the variational
ground-state study [33], the cluster perturbation theory [92],
and the momentum average approximation [36]. Figure 5(b)
presents the integrated spectral weight

I (k, ω) =
∫ ω

−∞
dω′ A(k, ω′) (83)

at k = 0 for different temperatures. At zero temperature, the
peaks of A(k = 0, ω) are quite narrow and their structure
closely resembles the single-site vibronic progression, see the

narrowest peaks in Fig. 5(a) and the step-like increments in
I (k = 0, ω) in Fig. 5(b). The small, but finite, peak width is
the consequence of performing time propagation on a finite
chain and up to finite maximum time tmax and employing the
Hann windowing procedure [Eq. (81)]. As the temperature is
increased, the peaks become broadened, and the intensity of
the QP peak is redistributed towards lower energies, see the
bottom left parts of Figs. 5(a) and 5(b). The peak broadening
is determined by the decay time of the envelope G̃>(k =
0, t ), see Fig. 4, and is larger at higher temperature. The
spectral-intensity shift originates from the process in which
the electron destroys one or more thermally excited phonons.
The higher is the temperature, the larger is the number of ther-
mal phonons and the more pronounced is the shift, compare
I (k = 0, ω) curves for different temperatures in the region
ω < ωQP in Fig. 5(b). The integrated spectral density satisfies
the sum rule for the spectral function

∫
dω A(k, ω) = 1, see

the upper right part of Fig. 5(b).
The momentum- and energy-resolved spectral functions

A(k, ω) for three different temperatures are compared in
Figs. 6(a)–6(c). At zero temperature, our result for A(k, ω),
see Fig. 6(a), agrees quite well with the zero-temperature
results of the cluster perturbation theory [92] and the mo-
mentum average approximation [36], as well as with the
low-temperature results of the finite-temperature Lanczos
method [40]. For a single electron on an infinite chain, the QP
peak at ωQP(k) is a delta function, while satellite peaks are of
nonzero width. In that case, the lowest-energy polaronic band,
which is energetically narrow enough so that it is entirely
below the minimum energy for inelastic scattering h̄ωQP(k =
0) + h̄ω0, is perfectly coherent, while higher-energy bands
formed by satellite peaks are incoherent [39]. On finite chains
studied here, the width of the QP peak is essentially de-
termined by the frequency resolution π/tmax [we continue
G>(k, t ) to negative times −tmax � t � 0], so that the lowest-
lying band in Fig. 6(a) may be regarded as perfectly coherent.
The satellite peaks at each k display some structure, mainly
due to the finite chain length N , and are thus somewhat wider,
see the band whose minimum lies at h̄ω/J ≈ −2 in Fig. 6(a).
This band may be regarded as incoherent. As the tempera-
ture is increased, in addition to the broadening of the bands,
the spectral intensity redistributes towards the region ω <

ωQP(k). This intensity redistribution is most pronounced in the
vicinity of the zone center, where the QP weight is apprecia-
ble. At kBT/J = 0.6, due to the moderate spectral-intensity
redistribution, the (broadened) polaronic band together with
the associated one-phonon replica can still be recognized,
see Fig. 6(b). On the other hand, at kBT/J = 1, the spectral-
intensity redistribution and the broadening are so pronounced
that all the features of the zero-temperature spectrum merge
into a continuum-like structure, see Fig. 6(c).

D. Variations in the electron–phonon coupling constant

The stronger the electron–phonon coupling, the larger the
maximum depth of the hierarchy needed to obtain meaningful
results. To keep the numerical effort within reasonable lim-
its, varying the electron–phonon coupling we varied both the
maximum depth D and the number of sites N . The precise
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FIG. 6. Spectral function A(k, ω) at temperatures (a) T = 0,
(b) kBT/J = 0.6, and (c) kBT/J = 1. Other model parameters as-
sume the following values: h̄ω0/J = 1, γ /J =

√
2, N = 8, Nθ = 6,

D = 7.

values of the model parameters that are changed together with
the electron–phonon coupling are summarized in Table I.

As the dimensionless electron–phonon coupling constant λ

is increased from 0.5 to 1 and 2 (γ /J is increased from 1 to√
2 and 2), the electronic momentum distribution flattens, see

TABLE I. Values of model parameters that are changed together
with the electron–phonon coupling constant.

Regime γ /J λ N Nθ D nactive

Weak-coupling 1 0.5 10 5 6 230 230
Intermediate-coupling

√
2 1 8 6 7 245 157

Strong-coupling 2 2 6 8 9 293 930

FIG. 7. (a) Electronic distribution in the momentum space for
different values of the electron–phonon coupling constant γ (or λ).
TBC are used to generate fk in NNθ points in the IBZ and the overall
normalization is such that the sum of these NNθ values of fk is equal
to 1. (b) Fermion–boson correlation function (PBC are observed) for
different values of the electron–phonon coupling constant γ (or λ).
Other model parameters assume the following values: kBT/J = 1,
h̄ω0/J = 1, while the values of N, Nθ , and D are summarized in
Table I.

Fig. 7(a), which together with the narrowing of the peak of
the fermion–boson correlation function displayed in Fig. 7(b)
suggests that the polaron becomes more localized. Increasing
the electron–phonon coupling strength thus has similar effects
on the equilibrium polaron properties as increasing the tem-
perature, compare Figs. 3 and 7, which is in line with existing
studies [47]. The results presented in Fig. 7(a) are further sup-
ported by their remarkable agreement with the corresponding
QMC results, see Fig. 6 in Sec. VII of SM [80].

Spectral properties for different interaction strengths and
temperatures are summarized in Figs. 8(a1)–8(c2). The zero-
temperature results presented in Figs. 8(a1) and 8(c1) compare
favorably to available zero-temperature [36,92] and low-
temperature [40,42] results for A(k, ω). Moreover, our result
for the polaronic band ωQP(k) (under TBC) in the weak-
coupling regime, see Fig. 8(a1), is in good agreement with
the ground-state polaronic dispersion relation obtained in
Ref. [33]. In the strong-coupling regime and at T = 0, see
Fig. 8(c1), a clearly observable peak appears above the QP
peak h̄ωQP/J ∼ −4.4 and below its one-phonon replica, in
our case at around h̄ωBP/J ∼ −3.55. This peak corresponds

054311-13
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FIG. 8. Spectral function A(k, ω) (measured in units h̄/J) for
different electron–phonon interaction strengths [γ /J = 1 in (a1) and
(a2), γ /J =

√
2 in (b1) and (b2), γ /J = 2 in (c1) and (c2)] and

different temperatures [kBT/J = 0 in (a1)–(c1) and kBT/J = 1 in
(a2)–(c2)]. The optical-phonon energy is h̄ω0/J = 1, while the val-
ues of N, Nθ , and D are summarized in Table I.

to the so-called bound polaron state, in which a phonon is
bound to the polaron [33,40]. At kBT/J = 1, our data pre-
sented in Fig. 8(b2) overall agree with the results of the
finite-temperature Lanczos method, see Fig. 2(d) of Ref. [40].
The spectral-intensity shift below the polaronic band becomes
both larger and more intensive as the electron–phonon cou-
pling is increased. In the weak- and intermediate-coupling
regimes, the smearing of the (shifted) polaronic band makes
it barely recognizable at finite temperature, see Figs. 8(a2)
and 8(b2). On the other hand, in the strong-coupling regime,
see Fig. 8(c2), the peaks at finite T are clearly recogniz-
able, mutually separated by h̄ω0/J , and resemble the vibronic
progression in the single-site limit. Previous studies [92] sug-
gested that the physical effects in the strong-coupling regime
are predominantly local, which is also reflected in the very
narrow polaronic band observed in Fig. 8(c1).

E. Variations in the optical phonon frequency

Here, we vary both the phonon energy h̄ω0/J and the
coupling constant γ /J in such a way that we remain in the
strong-coupling regime λ = 2, which limits our investigations
to N = 6-site chains. The temperature is fixed to its default

TABLE II. Values of model parameters that are changed together
with the optical phonon frequency.

Regime h̄ω0/J γ /J N Nθ D nactive

Adiabatic 0.2
√

0.8 6 8 11 1 352 078
Extreme quantum 1 2 6 8 9 293 930
Antiadiabatic 3

√
12 6 8 9 293 930

value kBT/J = 1, while the precise values of the model pa-
rameters varied are summarized in Table II.

The adiabatic regime, h̄ω0/J = 0.2, is numerically most
challenging for the HEOM method. At the temperature
we consider, kBT/J = 1, the number of thermally excited
phonons is large [kBT/(h̄ω0) = 5], and the hierarchical cou-
plings are strong because they are determined by the product
of the large electron–phonon coupling constant and the large
number of thermally excited phonons. Therefore, one should
study in more detail how the results for G>(k, t ) and A(k, ω)
change with the maximum hierarchy depth D. In Figs. 7 and 8
in Sec. VIII of SM [80] we compare the real-time and real-
frequency data in the adiabatic regime for maximum hierarchy
depths D = 9, 10, and 11. While the real-time data for D = 10
and 11 are to some extent similar, their spectral content seems
to be very different. A comparison between the QMC and
HEOM results, which is performed in Fig. 9 in Sec. VIII of
SM [80], reveals that, as D is increased from 9 to 11, the
agreement between the QMC and HEOM results in imaginary
time becomes better. This favorable comparison suggests that
the HEOM results for A(k, ω) obtained using D = 11, which

FIG. 9. Spectral function A(k, ω) (measured in units h̄/J) for dif-
ferent values of the adiabaticity ratio [h̄ω0/J = 0.2 in (a1) and (a2),
h̄ω0/J = 3 in (b1) and (b2)] and temperature [T = 0 in (a1) and (b1),
kBT/J = 1 in (a2) and (b2)]. The changes in the electron–phonon in-
teraction strength that are necessary to remain in the strong-coupling
regime (λ = 2) are summarized in Table II. The vertical-axis ranges
in (a1) and (a2) are different.
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are shown in Figs. 9(a1) (at T = 0) and 9(a2) (at kBT/J = 1),
may be representative of the true result.

In the antiadiabatic regime, h̄ω0/J = 3, the temperature
we study is relatively low, kBT/(h̄ω0) = 1/3, so that the
zero-temperature spectrum in Fig. 9(b1) is quite similar to
the finite-temperature spectrum in Fig. 9(b2). The spectrum
consists of the polaronic band, the QP peak being located at
h̄ωQP/J ∼ −4.9, which is accompanied by its single-phonon
and two-phonon replicas, whose minima lie at approxi-
mately h̄(ωQP + ω0)/J and h̄(ωQP + 2ω0)/J , respectively. In
contrast to the zero-temperature bands in Fig. 9(b1), the
finite-temperature bands in Fig. 9(b2) are somewhat broad-
ened. The bandwidth Wpol(T = 0) of the polaronic band at
T = 0 agrees reasonably well with the Lang–Firsov predic-
tion Wpol(T = 0)/W0 = exp ( − γ 2/(h̄ω0)2) (W0 = 4J is the
bare bandwidth), while the corresponding finite-temperature
expression Wpol(T )/W0 = exp ( − γ 2 coth(β h̄ω0/2)/(h̄ω0)2)

underestimates the width of the lowest-lying band in
Fig. 9(b2).

F. Electron-removal spectral function

Figure 10(a) presents the electron-removal spectral func-
tion A+(k, ω) defined in Eq. (14) for γ /J =

√
2, h̄ω0/J = 1,

and kBT/J = 0.4. We observe a prominent band whose mini-
mum is situated at the quasiparticle peak h̄ωQP/J ∼ −3 along
with its single-phonon replica, which is much less intense and
starts at h̄(ωQP + ω0)/J . The bands at frequencies ω < ωQP

are not well resolved, but one can still glimpse certain wide
structures whose minima lie at h̄(ωQP − nω0)/J , n = 1, 2, 3,
and whose intensity diminishes as n is increased. The re-
sults summarized in Fig. 10(a) overall agree with the results
for A+(k, ω) presented in Ref. [42] for the same parameter
regime. A+(k, ω) satisfies the sum rule

∫ +∞

−∞
dω A+(k, ω) = fk (84)

where fk is the population of electronic state with momentum
k.

According to the fluctuation–dissipation theorem [79],
A(k, ω) and A+(k, ω) are not mutually independent and are
related by

A(k, ω) = N eβ h̄ωA+(k, ω). (85)

The normalization constant N enters Eq. (85) because A and
A+ satisfy different sum rules, while its value

N =
∑

k

∫ +∞

−∞
dω A(k, ω)e−β h̄ω (86)

is determined by the requirement that the number of electrons
is equal to unity. To numerically check the validity of Eq. (85),
in Fig. 10(b) we plot the spectral function A(k = 0, ω) in
the zone center computed using G>(k = 0, t ) [Eq. (13), solid
line] and G<(k = 0, t ) [Eqs. (14), (85), and (86), dashed line].
Figure 10(c) presents the relative deviation between the results
obtained in these two manners. While already Fig. 10(a) indi-
cates that the agreement is good, Fig. 10(c) reveals that the
relative difference between the data originating from G> and

FIG. 10. (a) Momentum- and energy-resolved electron-removal
spectral function A+(k, ω) for γ /J =

√
2, h̄ω0/J = 1, and kBT/J =

0.4. Note the logarithmic scale of the color bar. [(b),(c)] Numerical
verification of the fluctuation–dissipation theorem for A and A+.
(b) Spectral function A(k = 0, ω) in the zone center obtained using
Eq. (13) (solid line, labeled “from G>”) and using Eqs. (14), (85),
and (86) (dashed line, labeled “from G<”). (c) Relative deviation (in
10−3) of A(k = 0, ω) obtained from G> with respect to A(k = 0, ω)
obtained from G<.

G< oscillates around zero and is smaller than 1%. These re-
sults offer further support for the correctness of our numerical
implementation of the HEOM method.

G. Finite-size effects

The numerical cost of the HEOM method significantly
increases with the chain length N , see Eq. (82). In all previ-
ous computations, N was restricted to relatively small values
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FIG. 11. Imaginary-time correlation function C(k, τ ) [Eqs. (12)
and (15)] (a) in the zone center k = 0 and (b) at the zone edge k = π

computed using QMC with different chain lengths (empty sym-
bols) and HEOM (solid line). Insets present the ratio of QMC and
HEOM results for N = 8 (full left-triangles) and the ratio of QMC
results for N = 8 and N = 20 (empty right-triangles). The model
parameters assume the following values: kBT/J = 0.4, h̄ω0/J = 1,
and γ /J =

√
2.

(between 6 and 10). It is therefore highly important to under-
stand how the finite-size effects influence the results presented
so far. To that end, we compare the imaginary-time corre-
lation functions obtained from the HEOM spectral function
[Eq. (15)] and the QMC computations [Eq. (12)]. In addi-
tion to examining finite-size effects, the comparison of the
HEOM and QMC results provides an independent check of
the HEOM results, which makes this study self-contained.

In Figs. 11(a) and 11(b) we compare the QMC results for
different chain lengths (empty symbols) with the HEOM re-
sult (solid line) for kBT/J = 0.4, h̄ω0/J = 1, and γ /J =

√
2.

A more detailed comparison between the QMC and HEOM
results for the fixed chain length is performed by calculating
their mutual ratio, see the full left-triangles in the insets. The
influence of the chain length on the imaginary-time results can
be inferred from the ratio of QMC results for two very differ-
ent chain lengths, see the empty right-triangles in the insets.
The QMC results in Fig. 11(a) are virtually independent of N

as long as N � 8, and the agreement between the QMC results
for an 8-site and a 20-site chain is up to 0.3%, see the empty
right-triangles in the inset of Fig. 11(a). The oscillations of the
ratio QMC8/QMC20 reflect the statistical noise in the QMC
data. The HEOM result (for N = 8) agrees with the corre-
sponding QMC result up to 0.6%, see the full left-triangles in
the inset of Fig. 11(a). Apart from the oscillations that reflect
QMC statistical noise, there is also a systematic deviation of
the QMC from the HEOM data that increases with τ . Keeping

in mind that C(k, βJ ) is proportional to the equilibrium pop-
ulation of state |k〉, we may conclude that the aforementioned
systematic deviation reflects small differences between the
momentum distribution function obtained within QMC and
HEOM methods, see also Fig. 5(b) in Sec. VII of SM [80]. At
the zone edge, the QMC and HEOM results exhibit somewhat
worse agreement, see the full left-triangles in the inset of
Fig. 11(b), yet their relative difference is smaller than 5% for
all τ . The systematic deviation between the HEOM and QMC
data is hidden by the very strong noise in the QMC data. The
statistical noise is much stronger at the zone boundary than
in the zone center, compare the ranges of the vertical axes
in the insets of Figs. 11(a) and 11(b), and, in principle, it
could be eliminated by increasing the statistical sample of the
QMC computation. We have checked that this is indeed the
case by performing QMC calculations for N = 8 sites with
the statistical sample that is 10 and 100 times larger than
the one used in Figs. 11(a) and 11(b). The results of these
calculations are presented in Figs. 10(a)–10(d) in Sec. IX
of SM [80]. There, we observe that increasing sample size
reduces the statistical noise in the QMC data and ultimately
reveals a small systematic deviation between the HEOM and
QMC data whose magnitude is consistent with the small
differences between the HEOM and QMC momentum distri-
bution functions, see also Fig. 11(a) and Fig. 5 of SM [80].
This relatively low-temperature regime is challenging for both
the QMC and HEOM methods. While QMC necessitates finer
discretization of the quite long imaginary-time interval over
which the algorithm is performed, the HEOM may encounter
problems with the long-time weakly damped oscillations in
the Green’s functions, see Figs. 4(a2) and 4(b2).

As the temperature is increased, the finite-size effects be-
come less pronounced, even for reduced interaction strengths.
This may be concluded from Figs. 12(a) and 12(b), which
is obtained for kBT/J = 1, h̄ω0/J = 1, and γ /J = 1. There,
both in the zone center [Fig. 12(a)] and at the zone edges
[Fig. 12(b)], QMC results depend very weakly on N (empty
right-triangles in the insets) and agree quite well (up to 1%)
with the HEOM results (full left-triangles in the insets).

For strong electron–phonon coupling and at elevated tem-
peratures, the finite-size effects are also not very pronounced
and the HEOM results agree very well with the QMC results,
see Figs. 13(a) and 13(b) that are plotted for kBT/J = 1,
h̄ω0/J = 1, and γ /J = 2. Similar conclusions may be drawn
in the adiabatic and antiadiabatic regime, see Figs. 11 and 12
in Sec. X of SM [80], which display quite a good agreement
between the QMC and HEOM imaginary-time correlation
functions and suggest that the results obtained on N = 6-site
chains are representative of larger systems.

The imaginary-time results presented in this section do
establish that the HEOM-method results on short chains are
representative of larger systems and strongly suggest that the
spectral functions presented in Secs. IV C–IV E are close to
the true result. We put some caution on this claim by noting
that the operator that transforms the real-frequency spectral
function to imaginary-time correlation function has a non-
trivial null-space. For this reason, several different spectral
functions may yield the same correlation function in imagi-
nary time within the given small uncertainty. Therefore the
agreement of imaginary-time correlation functions obtained
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FIG. 12. Imaginary-time correlation function C(k, τ ) [Eqs. (12)
and (15)] (a) in the zone center k = 0 and (b) at the zone edge k = π

computed using QMC with different chain lengths (empty symbols)
and HEOM (solid line). Insets present the ratio of QMC and HEOM
results for N = 10 (full left-triangles) and the ratio of QMC re-
sults for N = 10 and N = 20 (empty right-triangles). The model
parameters assume the following values: kBT/J = 1, h̄ω0/J = 1,
and γ /J = 1.

by QMC and by transforming the HEOM spectral function
does not provide a definite proof that HEOM spectral func-
tions are accurate but it does provide a strong evidence. In
our most recent paper [93], we compared the HEOM spectral
functions with literature results for spectral functions obtained
using the real-time/frequency numerically exact methods
such as the finite-temperature Lanczos method [40,41] and the
density-matrix renormalization group method [42]. Excellent
agreement between our results and the literature results gives
a definite proof of accuracy of HEOM for parameter values
where literature results were available.

We note however that the number of sites when finite-size
effects become negligible depends both on the parameters
of the model and the physical quantity of interest. For ex-
ample, in our previous work on the mobility in the Holstein
model [49] we found that for small electron-phonon interac-
tion when the mean free path is large, several tens of sites
are required to obtain the converged result. Large number of
sites is also necessary to obtain the long-time result if one is
interested in the transport at finite bias [94].

V. DISCUSSION

Despite the unfavorable scaling of the amount of compu-
tational resources with system size [Eq. (82)], our HEOM
approach to evaluate real-time correlation functions at finite

FIG. 13. Imaginary-time correlation function C(k, τ ) [Eqs. (12)
and (15)] (a) in the zone center k = 0 and (b) at the zone edge k = π

computed using QMC with different chain lengths (empty symbols)
and HEOM (solid line). Insets present the ratio of QMC and HEOM
results for N = 6 (full left-triangles) and the ratio of QMC results for
N = 6 and N = 20 (empty right-triangles). The model parameters
assume the following values: kBT/J = 1, h̄ω0/J = 1, and γ /J = 2.

temperatures occupies a special place in the gamut of numer-
ical tools for interacting electron–phonon systems.

The exact diagonalization is a method of choice to accu-
rately compute ground-state and finite-temperature spectral
properties of relatively small clusters. However, obtaining
real-time correlation functions is quite challenging. Further-
more, strictly speaking, the spectral function is a set of
delta peaks on the frequency axis, and to get smooth spec-
tra, one has to introduce artificial broadening. As discussed
in Sec. III C, this artificial broadening actually changes the
physical system we are dealing with by replacing a finite
number of phonon modes by a thermodynamic reservoir con-
sisting of infinitely many phonon modes. Even though the
spectra become representative of the thermodynamic limit,
the value of the broadening is to be chosen carefully [95].
On the one hand, it should be sufficiently large to remove
finite-size effects, i.e., to damp the long-time oscillations in
G>(k, t ), see Fig. 4, to zero. On the other hand, it should be
sufficiently small not to overbroaden the genuine features of
spectra, i.e., not to affect the short-time decay of G>(k, t ),
see Fig. 4. In other words, even though the results are ex-
act, the arbitrariness in the broadening casts doubts on the
exactness of the physical quantities that may be obtained
from the broadened data (e.g., the conductivity in the so-
called bubble or independent-particle approximation [96], in
which the current–current (two-particle) correlation function
is approximated as the product of two single-particle cor-
relation functions). QMC may treat larger clusters, as we
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demonstrated, and thus minimize finite-size effects without
introducing artificial broadenings. However, QMC methods
to evaluate dynamic correlation functions may face severe
problems. On the one hand, to obtain correlation functions
on the real-frequency axis, one may perform the analytic
continuation from the imaginary-frequency axis, which is
in principle an ill-posed problem. On the other hand, one
may attempt to directly evaluate correlation functions on the
real-time axis, in which case the infamous sign problem is
encountered. The difficulties in extracting real-time or real-
frequency data from the results on the imaginary axis may
be appreciated by contrasting Fig. 13 of the main text and
Figs. 11 and 12 in Sec. X of SM [80], which are obtained
in very different parameter regimes. The imaginary-time data
in these cases are both qualitatively (the overall shape of the
curves) and quantitatively (the vertical-axis ranges) similar to
one another. Nevertheless, the spectral functions presented in
Figs. 8(c2), 9(a2), and 9(b2) are considerably different from
one another. In contrast to the above-discussed approaches,
the HEOM method presented here deals directly with the
real-time correlation functions and provides numerically exact
results for the cluster of given size. HEOM data can be safely
used to further compute physical quantities of interest, and
the results will be numerically exact for the given system size.
Even though we employed HEOM on relatively short chains,
artificial broadening parameters are not necessary to obtain
results representative of larger systems, which is demonstrated
by the very good agreement between the imaginary-time
correlation functions emerging from HEOM and QMC com-
putations.

Another quantity relevant for the single-polaron prob-
lem is the phonon spectral function, which can be obtained
from the greater Green’s function in the phonon sector
D>(q, t ) = −i〈[bq(t ) + b

†
−q(t )][b−q + b†

q]〉. Its computation
using the HEOM formalism developed here is complicated
by at least two factors. Firstly, the partial trace over phonons
lies at the heart of the HEOM formalism, meaning that
correlation functions of mixed electron–phonon operators
are not straightforwardly accessible from the purely elec-
tronic ADMs. Some other formalisms, such as the dissipaton
equations of motion [62] or the generalized hierarchical
equations [97,98], provide prescriptions to evaluate corre-
lation functions of mixed electron–phonon operators using
the ADMs. Secondly, while the hierarchy for G>/<(k, t )
is single-sided [there is no backward evolution operator in
Eqs. (16)–(19)], the hierarchy for D>(q, t ) would be double-
sided. The numerical effort to obtain D>(q, t ) would thus be
greater than in the case of G>/<(k, t ).

Strictly speaking, the phonon spectral function in the zero-
density limit, i.e., for one electron on an infinite chain, would
be equal to the free-phonon spectral function directly acces-
sible from Eq. (22) [99]. Even though our formulation is
restricted to the single-electron case, the numerical results,
which would be obtained on finite chains, would actually cor-
respond to finite electron densities [99]. At low temperatures,
the phonon spectra of the Holstein model on a finite chain
feature the free-phonon line (bare, unrenormalized phonon
line) at ω = ω0 and a band that replicates the polaron band
and whose minimum is at (q, ω) = (0, 0) [42,99,100]. The

minimum of the polaron band is at ω = 0 because the zero-
momentum phonon couples to the (constant) electron density,
see Eq. (5). These features may be identified already in the
single-site limit, when the phonon spectral function may be
directly evaluated

iD>(t ) = [1 + nBE(ω0, T )]e−iω0t + 4

(
γ

h̄ω0

)2

+ nBE(ω0, T )eiω0t .

As the temperature is increased, the free-phonon line at neg-
ative frequency ω = −ω0 acquires appreciable intensity, the
reflected polaron band appears at ω < 0, while the polaron
band broadens at larger momenta [42].

Generally speaking, the extension of the developed method
beyond the single-excitation case is not straightforward. This
is most directly seen on the example of the equilibrium RDM
(Sec. II C 4) within the Holstein model of mutually nonin-
teracting spinless fermions (the many-fermion version of the
present model). The expression for the RDM [Eq. (43)] and
the definition of the ADM σ

(n,un,eq)
n (τ ) [Eq. (45)] remain

the same as in the single-electron case, the only difference
being that Vq =

∑
k c

†
k+q

ck , cf. Eq. (5). However, the number
of their nonzero matrix elements is significantly increased
so that Tr(c†

q1
. . . c†

ql
cp1 . . . cpm

σ
(n,un,eq)
n ) �= 0 only if l = m

and q1 + · · · + ql − (p1 + · · · + pm) = kn. The evolution of
single-particle quantities (singlets) depends on the evolution
of two-particle quantities (doublets) etc., and one has to trun-
cate the hierarchy induced by many-body effects and yet
keep the hierarchy stemming from the electron–phonon in-
teraction. One possibility is to employ the cluster-expansion
method, see e.g., Ref. [74]. Another possibility, particularly
appealing when studying time-dependent (exciton–)polaron
formation triggered by a laser excitation [101], is the dy-
namics controlled truncation scheme, see Refs. [67,102]. For
the Holstein–Hubbard model, an extension of the present ap-
proach is even more complicated, and the HEOM formalism
has been successfully applied only to the Holstein–Hubbard
dimer [103,104], where a direct enumeration of many-
body states and the separation of different spin sectors are
feasible.

Another aspect of our HEOM approach that is worth
discussing is its symmetry-adapted formulation in the mo-
mentum space. While the application of the HEOM method to
single-mode situations is not new [70,71,77], previous studies
implemented the method in the real space, without exploiting
its translational symmetry. In contrast to perturbative theories,
which lean on approximations that have to be carried out in a
specific basis (e.g., the momentum eigenbasis for the Redfield
theory or the coordinate eigenbasis for the Marcus/Förster
theory), the HEOM permits us to calculate the properties of
interest in any basis. Furthermore, the equilibrium RDM of
the electronic subsystem [Eq. (43)], as well as the Green’s
functions [Eq. (10)], can also be represented in any basis.
However, the most convenient representation is the one in
which the electronic RDM is diagonal. In that representation,
the effects of the electron–phonon interaction on the reduced
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electronic properties (i.e., the polaronic effects) are taken into
account in the simplest possible way. The corresponding ba-
sis is known as the global basis [105], or pointer/preferred
basis [68] in the framework of decoherence theory [106,107].
According to the momentum-conservation law, the electronic
single-particle density matrix is diagonal in the eigenbasis
{|k〉} of the electronic momentum. We thus conclude that our
momentum-space HEOM is indeed formulated in the pre-
ferred basis for the Holstein Hamiltonian.

Our optimal formulation of the problem comes with an-
other advantage. The authors of Ref. [75] pointed out that
the temporal propagation of the real-space HEOM method
developed in Ref. [71] exhibits an exponential-instability wall.
Having hit that wall, the observables diverge, and advanced
techniques have to be employed to extract long-time dynamics
of the single-mode Holstein model. All the results presented
here unambiguously demonstrate that exploiting the transla-
tional symmetry of the model, i.e., transferring to the preferred
basis of the problem, renders the equations numerically stable
and thus obviates the need for advanced tools to mitigate
potential instabilities. We propagated our symmetry-adapted
HEOM in various parameter regimes up to quite long times
ω0tmax ∼ 500 with a moderate time step ω0�t = 0.02, see
Fig. 4, and observed no sign of numerical instabilities in our
data.

VI. CONCLUSIONS

We develop a novel HEOM-based approach that is
specifically suited for evaluation of real-time single-particle
correlation functions and thermodynamic properties of the
Holstein Hamiltonian at finite temperature. The conservation
of the total momentum enables us to formulate the hierar-
chy in the momentum space, so that its dynamical variables
describe multiphonon absorption and emission processes in
which the momentum is exchanged between the electron and
quantum vibrations. Our momentum-space formulation is su-
perior to the commonly used real-space formulation because it
circumvents known numerical problems that arise during the
propagation of the real-space HEOM.

We use our HEOM approach to compute the spectral func-
tion and thermodynamic quantities of the one-dimensional

Holstein model containing up to 10 sites. Our results agree
quite well with the available results of the finite-temperature
Lanczos method, the coupled-cluster theory, and the momen-
tum average approximation. A further support to the HEOM
approach comes from the comparison with imaginary-time
data obtained using our QMC approach that provides access
to the properties of larger chains. QMC results demonstrate
that finite size effects are not pronounced and that relatively
short chains, containing 5–10 sites, capture the behavior char-
acteristic for longer chains.

All these results suggest that our HEOM approach may
greatly contribute to future studies of finite-temperature
Holstein polaron dynamics. Using advanced propagation tech-
niques [108], our approach may become viable for larger or
higher-dimensional systems and in multimode situations. It
is interesting to note that our study is concurrent with other
works aiming at extending the methods commonly applied
to molecular systems (chemical-physics realm) to band-like
situations (condensed-matter realm) [109]. Our method may
contribute to revealing the (exciton-)polaron formation dy-
namics, which is highly relevant for a proper interpretation of
ultrafast experimental signals in molecular aggregates [105],
organic semiconductors [110], and photosynthetic pigment–
protein complexes [101]. Finally, the HEOM developed
here may be readily used to study finite-temperature trans-
port properties of the Holstein model by approximating a
two-particle correlation function as the product of two single-
particle correlation functions [96].
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[42] D. Jansen, J. Bonča, and F. Heidrich-Meisner, Finite-
temperature density-matrix renormalization group method
for electron-phonon systems: Thermodynamics and Holstein-
polaron spectral functions, Phys. Rev. B 102, 165155 (2020).

[43] M. Grover and R. Silbey, Exciton migration in molecular
crystals, J. Chem. Phys. 54, 4843 (1971).

[44] D. R. Yarkony and R. Silbey, Variational approach to exci-
ton transport in molecular crystals, J. Chem. Phys. 67, 5818
(1977).

[45] R. Silbey and R. W. Munn, General theory of electronic trans-
port in molecular crystals. I. Local linear electron–phonon
coupling, J. Chem. Phys. 72, 2763 (1980).

[46] K. Hannewald and P. A. Bobbert, Anisotropy effects in
phonon-assisted charge-carrier transport in organic molecular
crystals, Phys. Rev. B 69, 075212 (2004).

[47] Y.-C. Cheng and R. J. Silbey, A unified theory for charge-
carrier transport in organic crystals, J. Chem. Phys. 128,
114713 (2008).

[48] F. Ortmann, F. Bechstedt, and K. Hannewald, Theory of charge
transport in organic crystals: Beyond Holstein’s small-polaron
model, Phys. Rev. B 79, 235206 (2009).
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ABSTRACT

We present a rigorous theoretical description of excitonic dynamics in molecular light-harvesting aggregates photoexcited by weak-intensity
radiation of arbitrary properties. While the interaction with light is included up to the second order, the treatment of the excitation–
environment coupling is exact and results in an exact expression for the reduced excitonic density matrix that is manifestly related to the
spectroscopic picture of the photoexcitation process. This expression takes fully into account the environmental reorganization processes
triggered by the two interactions with light. This is particularly important for slow environments and/or strong excitation–environment cou-
pling. Within the exponential decomposition scheme, we demonstrate how our result can be recast as the hierarchy of equations of motion
(HEOM) that explicitly and consistently includes the photoexcitation step.We analytically describe the environmental reorganization dynam-
ics triggered by a delta-like excitation of a single chromophore and demonstrate how our HEOM, in appropriate limits, reduces to the Redfield
equations comprising a pulsed photoexcitation and the nonequilibrium Förster theory. We also discuss the relation of our formalism to the
combined Born–Markov–HEOM approaches in the case of excitation by thermal light.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029914., s

I. INTRODUCTION

Recent years have seen vigorous interest in unveiling the basic
physical mechanisms governing the electronic solar energy conver-
sion in photosynthetic systems.1–4 The developments in this field are
expected to provide new ways of improving the light-to-charge con-
version in artificial systems, e.g., organic photovoltaics (OPVs).5 A
thorough understanding of the solar energy conversion in molecu-
lar light-harvesting systems calls for a detailed description of light
absorption, excitation energy transfer (EET), charge separation, and
charge transport.6,7 Our current understanding of these steps has
been shaped by ultrafast spectroscopy experiments, which can pro-
vide insights into the dynamics of electronic excitations on time
scales as short as a couple of femtoseconds.8–11 Such experiments,
therefore, can also temporally resolve nuclear motions induced by
photoexcitation, i.e., nuclear reorganization processes, which take
place on ∼10 fs–100 fs time scales. Moreover, photosynthetic EET
falls into the so-called intermediate coupling regime,2,3,12 in which

the energy scales representative of electronic couplings, excitation–
environment couplings, and static disorder in local transition
energies are comparable to one another. Correspondingly, a proper
interpretation of ultrafast experimental signatures necessitates
development of explicitly time-dependent theoretical approaches
that can accurately capture the non-Markovian dynamical inter-
play between temporal evolution of electronic excitations and their
environment.3,12 Examples of such methods include hierarchical
equations of motion (HEOM)13 and some wavefunction-based
methods.14

Apart from the nonperturbative treatment of the interaction
with the environment, a comprehensive theoretical analysis of the
dynamics of electronic excitations created during ultrafast spec-
troscopy experiments should explicitly consider the exciting radi-
ation field. However, the explicit inclusion of the photoexcitation
process has received only a limited attention so far. The photoex-
citation is commonly assumed to be infinitely short, i.e., delta-
like, so that it instantaneously produces excited-state populations,
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whose further evolution on ultrashort time scales is followed.15,16

On the other hand, theoretical methods of nonlinear spectroscopy,17

which explicitly keep track of the interaction with exciting pulses,
have been employed in conjunction with HEOM to examine cer-
tain features of spectroscopic signals.18 However, there has not
been much discussion on how to explicitly include the photoexci-
tation and respect the nonperturbative treatment of the excitation–
environment coupling.19 The importance of the photoexcitation
step is typically discussed within the debate on the relevance of
the results of ultrafast experiments for the photosynthetic operation
in vivo.20–24 It is argued that due to different properties of natural
sunlight compared to laser pulses employed in experiments, pho-
toexcitation of photosynthetic complexes under natural conditions
triggers different dynamics from the one observed in ultrafast exper-
iments. Nevertheless, under the common assumption that the elec-
tronic system is initially unexcited, any nontrivial dynamics under
both excitation conditions is ultimately induced by the interaction
with the radiation. In a nonlinear spectroscopy experiment, the sig-
nal depends on the appropriate power of the exciting field, i.e., the
perturbation expansion in the interaction with radiation is appro-
priate.17,25 Similarly, the weakness of the excitation of photosyn-
thetic complexes under natural conditions makes the second-order
treatment of the interaction with light plausible.20–22,24

Indeed, it has been shown20 that the excited-state dynamics of
a molecular system weakly driven by light of arbitrary properties is
completely determined by the first-order radiation correlation func-
tion and the reduced evolution superoperator. It can be said that the
information required for constructing the dynamics under arbitrary
(weak) driving can only be obtained by ultrafast spectroscopy,21

which provides access to the reduced evolution superoperator. How-
ever, the analysis conducted in Ref. 20 is quite general and does not
provide any details on the form and properties of this superoper-
ator. Certainly, it should contain information about the nonequi-
librium evolution of the environment taking place between con-
secutive interactions with light.26 Along these lines, attempts have
been made to examine the importance of these dynamical environ-
mental effects for the second-order light-induced dynamics by aug-
menting the usual quantum master equation by terms that depend
on the delay between the two interactions.27 The analysis of the
second-order photoinduced dynamics in Ref. 28 suggested that the
nonequilibrium bath evolution between the two interactions with
light is reflected in the so-called photoinduced correlation term. Let
us note that the analyses conducted in Refs. 26–28 are essentially
perturbative in the excitation–environment coupling.

On the other hand, in the field of ultrafast semiconduc-
tor optics,29–31 the photoexcitation step and the nonequilibrium
dynamics of thus induced electronic excitations are typically stud-
ied within the density matrix (DM) theory complemented with the
so-called dynamics controlled truncation (DCT) scheme.29,32 The
DCT scheme classifies DMs according to the lowest power with
which they scale in the exciting field and, therefore, provides a
recipe to analyze the dynamics up to any given order in the exciting
field in terms of a finite number of electronic DMs. A DCT-based
approach has been recently applied by one of us to study exci-
ton generation and subsequent charge separation in photoexcited
OPVs.33,34 However, the truncation of the environment-assisted
branch of the hierarchy within the DCT scheme still has to be per-
formed separately,31 and it is commonly done in a low order in the

excitation–environment coupling.29,33,35 In a similar vein, the
explicit consideration of the excitation by incoherent light is
also combined with a Redfield-like treatment of the excitation–
environment coupling.36–38 The individual excitation and de-
excitation events may be treated within the Born–Markov quantum
optical approximation39,40 or by constructing the Bloch–Redfield
quantum master equation.37,41 Adopting the standpoint of the the-
ory of open quantum systems, the effects of incoherent radiation
may be taken into account by introducing an appropriate spectral
density of the light–matter coupling.36,38,42

While the explicit inclusion of the light–matter coupling is typ-
ically accompanied by a perturbative treatment of the excitation–
environment coupling, there are also studies concentrating on a
(numerically) exact treatment of the latter, at the expense of a
less transparent inclusion of the former.43–45 When the semiclassi-
cal description of light–matter interaction is appropriate, the time-
dependent electric field can be straightforwardly incorporated in the
HEOM formalism,45,46 whose relation to the spectroscopic picture of
sequential interactions with light is notmanifest.When the quantum
description of light–matter interaction is in place,43,44 the interaction
with the radiation is treated from the standpoint of quantum optics
using the so-called hybrid master-equation–HEOM approach.47 In
essence, the interaction with radiation appears in the form ofMarko-
vian corrections to HEOM. In the end, there are also studies that
propose a numerically exact treatment of both the couplings to envi-
ronment and radiation,48 which, however, comes with a complex
formalism and huge computational costs.

In this work, we build on the results of Ref. 20. Our approach is
based on the two cornerstones of the theory of photosynthetic exci-
tons.49 Section II introduces the Frenkel exciton model of a molec-
ular light-harvesting aggregate. In Sec. III, we shed new light on the
existing approaches45,46 to include the interaction with pulsed laser
fields into the HEOM formalism. We realize that there is a close
connection between the space on which the EET dynamics has to
be formulated and the maximum order up to which the interac-
tion with the exciting field has to be included. This is very similar to
the situation in the nonlinear response-function theory.17 We obtain
a new form of HEOM that explicitly includes the interaction with
pulsed laser fields up to the second order in the field, which is fully
consistent with the single-exciton Frenkel Hamiltonian commonly
employed in the study of light-induced coherent EET. The analysis
of Sec. III is actually not limited to the second-order response, and
we provide a prescription for treating laser-induced nonlinearities
of arbitrary order in conjunction with a numerically exact treatment
of the interaction of photoinduced electronic excitations with the
environment. Section IV presents the central result of our analysis,
which is valid for weak light of arbitrary properties. There, we per-
form a second-order treatment of the light–matter coupling and a
nonperturbative treatment of the excitation–environment coupling
to obtain an expression for weak light-induced excitonic dynam-
ics that is manifestly related to the spectroscopic picture and fully
includes the dynamical interplay between nonequilibrium electronic
dynamics and environmental reorganization processes. The exact
result that we obtain does not allow easy analytical manipulations,
and we demonstrate how it can be recast as HEOM, both in the
case of semiclassical (Sec. V, which actually rederives the second-
order results of Sec. III) and quantum (Sec. VI) treatments of the
interaction with light. In addition, we analytically solve for the
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environmental reorganization dynamics triggered by a delta-like
excitation of a single molecule (Sec. V A) and relate our results to
existing approaches, such as the Redfield theory with photoexcita-
tion (Sec. V B), the nonequilibrium Förster theory (Sec. V C), and
hybrid Born–Markov–HEOM approaches (Sec. VI). These discus-
sions further emphasize the advantages of our method, which are
once again summarized in Sec. VII.

II. MODEL HAMILTONIAN

The system of interest consists of a molecular aggregateM that
is in contact with the thermal bath B representing its environment
and with the radiation R. The total Hamiltonian reads as

H ≙ HM +HB +HR +HM−B +HM−R. (1)

The electronic excitations of the aggregate are described within
the Frenkel exciton model49–52

HM ≙∑
j

εjB
†

j Bj +∑
jk

JjkB
†

j Bk. (2)

In Eq. (2), εj are the so-called site energies, while Jjk are resonance

couplings (we take Jkk = 0). The operators Bj and B†

j describe the
destruction and creation of an excitation on site j, respectively, and
they obey Paulion commutation relations.29,50,52

The environment is assumed to be composed of sets of inde-
pendent harmonic oscillators associated with each site

HB ≙∑
jξ

h̵ωξb
†

jξbjξ . (3)

The oscillators are labeled by site index j and mode index ξ, and
phonon creation and annihilation operators b†

jξ
and bjξ satisfy Bose

commutation relations. The interaction of aggregate excitations and
the environment is taken to be linear in mode displacements and
local to each chromophore (Holstein-like coupling53),

HM−B ≙∑
jξ

B
†

j Bjgjξ(b†

jξ + bjξ) ≡∑
j

B
†

j Bjuj, (4)

where uj is the collective environment coordinate associated with
chromophore j. The coupling constants g jξ may be related to the dis-
placement of the equilibrium configuration of mode ξ between the
ground and excited electronic states of chromophore j.50,51

The coupling between aggregate excitations and the radiation
is taken in the dipole and rotating-wave approximations

HM−R ≙ −μeg ⋅ E
(+)
− μge ⋅ E

(−). (5)

The dipole-moment operator μ is assumed to be a purely elec-

tronic operator μ ≙ ∑j dj(B†

j + Bj) ≙ μeg + μge, where transition
dipole moment dj of chromophore j does not depend on environ-
mental coordinates (Condon approximation), part μeg contains only
operators B†, while μge contains only operators B. E(±) denotes the
positive- and negative-frequency parts of the (time-independent)
operator of the (transversal) electric field so that we treat both elec-
tronic excitations and the radiation generating them on the quantum
level.

We assume that at the initial instant t0 of our dynamics, the
total statistical operator W(t0) representing the state of the com-
bined system of aggregate excitations, environment, and radiation
can be factorized as follows:

W(t0) ≙ ∣g⟩⟨g∣⊗ ρ
g
B ⊗ ρR. (6)

In Eq. (6), the aggregate is taken to be initially unexcited, the state
of the environment ρgB is adapted to the collective electronic ground
state |g⟩ of the aggregate [T ≙ (kBβ)−1 is the temperature],

ρ
g
B ≙

exp(−βHB)
TrB exp(−βHB) , (7)

while ρR describes the state of the radiation.

III. EQUATIONS OF MOTION: SEMICLASSICAL
TREATMENT OF LIGHT–MATTER INTERACTION

The excitation by an arbitrary time-dependent (classical) elec-
tric field E(t) can be incorporated into the HEOM formalism
by taking that the total purely electronic Hamiltonian is HM

+ HM−R(t).45,46 Here, HM−R(t) is obtained from HM−R in Eq. (5)
by replacing electric-field operators E(±) by the corresponding time-
dependent quantities E

(±)(t). Indeed, all the steps in the deriva-
tion conducted in Ref. 54 can be repeated to obtain equations of
motion for the reduced DM (RDM) ρ(t) ≡ σ0(t) and auxiliary DMs
(ADMs) σn(t). ADMs are fully specified by vector n of non-negative
integers nj ,m,

n ≙

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n0,0,n0,1, . . .)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n0

, . . . , (nN−1,0,nN−1,1, . . .)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nN−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (8)

The index j = 0, . . ., N − 1 enumerates chromophores, while index
m, in principle, does not have an upper limit and is related to the
following expansion of the bath correlation function in terms of
exponentially decaying factors (t > 0):

Cj(t) ≙ TrB{u(I)j (t)uj(0)ρgB} ≙∑
m

cj,m e−μj,mt . (9)

The time dependence of the collective coordinate u(I)j (t) in Eq. (9)
is with respect to the free-phonon Hamiltonian [Eq. (3)]. While
expansion coefficients cj ,m may be complex, the decay rates μj ,m are
assumed to be real and positive. We note that apart from the expo-
nential decomposition scheme [Eq. (9)] adopted in this work, there
are other decompositions of Cj(t) from which a HEOM approach
may be derived.55 The bath correlation function is commonly
expressed in terms of the so-called spectral density Jj(ω),

Cj(t) ≙ h̵

π ∫
+∞

−∞

dω Jj(ω) eiωt

eβh̵ω − 1
, (10)

which conveniently combines information on the density of
environmental-mode states and the respective coupling strengths to
electronic excitations.50,51
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The equation of motion for ADM σn(t) reads as54

∂tσn(t) ≙ − i
h̵
∥HM , σn(t)∥ + i

h̵
[μegE(+)(t) + μgeE

(−)(t), σn(t)]
−
⎛⎝∑j ∑m nj,mμj,m

⎞⎠σn(t) + i∑
j

∑
m

[Vj, σn+j,m(t)]
+ i∑

j

∑
m

nj,m(cj,m
h̵2

Vjσn−j,m(t) − c∗j,m

h̵2
σn−j,m(t)Vj), (11)

where Vj ≙ B†

j Bj. Since the coupling to the radiation is explicitly
included in the electronic Hamiltonian, the HEOM in Eq. (11) treats
nonperturbatively not only the interaction with the bath, as usu-
ally, but also that with light. Keeping in mind that our formulation
of the model Hamiltonian supports states with an arbitrary num-
ber of excitations, the result embodied in Eq. (11) is quite general.
In principle, it can describe in great detail various nonlinear effects
(nonlinear with respect to the exciting electric field). However, once
we fix the highest order in the electric field we are interested in,
there will be many elements of the DMs that do not contribute to
the optical response up to that order. In other words, solving cou-
pled equation (11) as it stands, we obtain much more information
than necessary to reconstruct the optical response up to a given
order. Moreover, we lack the intuitive physical picture characteristic
of nonlinear spectroscopy, which is in terms of Liouville pathways,
block structure of the statistical operator and evolution superopera-
tor, etc.17,25 In order to circumvent these deficiencies, it is enough to
make a projection of the dynamics on relevant excitonic subspaces.
The second-order response is fully characterized by the reduction
to the subspace that can accommodate at most one excitation. This
is discussed in greater detail further in this section and in Sec. SI
of the supplementary material. Practically, the appropriate reduc-
tion to obtain the second-order response consists in the following
replacements in the model Hamiltonian:

Bj → ∣g⟩⟨ j∣, B
†

j → ∣ j⟩⟨g∣, B
†

j Bk → ∣ j⟩⟨k∣. (12)

In Eq. (12), | j⟩ is the collective singly excited state featuring a
selective excitation of site j.

Therefore, to obtain the second-order response, we should
calculate the expectation values ng ,n(t) ≡ ⟨g|σn(t)|g⟩, ye ,n(t)
≡ ⟨e|σn(t)|g⟩, and nēe,n(t) ≡ ⟨e∣σn(t)∣ē⟩, where {|e⟩} is an arbi-
trary basis of singly excited states (the notation is similar to that in
Ref. 29). If n = 0, these three expectation values, respectively, rep-
resent the ground-state population, optical coherences, and singly
excited-state populations and intraband coherences. Since the elec-
tronic subsystem starts from |g⟩⟨g| and since the light–matter cou-
pling HM−R is the only part of the Hamiltonian that can cause tran-
sitions from the ground state to singly excited states, the following
scaling relations hold:56

ng,n(t) ≙ δn,0 + +∞

∑
k=1

n
(2k)
g,n (t), n(2k)g,n (t)∝ E

2k, (13a)

ye,n(t) ≙ +∞

∑
k=0

y
(2k+1)
e,n (t), y(2k+1)e,n (t)∝ E

2k+1, (13b)

nēe,n(t) ≙ +∞

∑
k=1

n
(2k)
ēe,n (t), n(2k)ēe,n (t)∝ E

2k. (13c)

In other words, optical coherences are dominantly linear in the
applied field, while excited-state populations are at least quadratic
in the applied field. The environmental assistance, which actually
enters through vector n,57 does not affect the scaling laws (13).32

Formulating equations of motion for ye ,n(t) and nēe,n(t) actu-
ally enables us to formulate operator equations for sectors eg and ee
of σn(t). Namely, using Eqs. (13) and keeping only terms that are at
most of the second order in the applied field, we form the following
equations for the eg sector σeg ,n(t) and for the ee sector σee ,n(t):

∂tσeg,n(t) ≙ − i
h̵
∥HM , σeg,n(t)∥ − ⎛⎝∑j ∑m nj,mμj,m

⎞⎠σeg,n(t)
+ δn,0

i
h̵
E
(+)(t)μeg + i∑

j

∑
m

Vjσeg,n+j,m(t)
+ i∑

j

∑
m

nj,m
cj,m

h̵2
Vjσeg,n−j,m(t), (14)

∂tσee,n(t) ≙ − i
h̵
∥HM , σee,n(t)∥ − ⎛⎝∑j ∑m nj,mμj,m

⎞⎠σee,n(t)
+

i
h̵
E
(+)(t)μegσ†

eg,n(t) − i
h̵
σeg,n(t)μgeE(−)(t)

+ i∑
j

∑
m

[Vj, σee,n+j,m(t)]
+ i∑

j

∑
m

nj,m
cj,m

h̵2
Vjσee,n−j,m(t)

− i∑
j

∑
m

nj,m
c∗j,m

h̵2
σee,n−j,m(t)Vj, (15)

where now V j → | j⟩⟨j|. By reducing our dynamics to the sub-
space containing at most one excitation, we transform Eq. (11) into
coupled equations describing the evolution of optical coherences
[Eq. (14)] and excited-state populations and intraband coherences
[Eq. (15)]. The crucial step in the transformation is the applica-
tion of scaling laws in Eqs. (13), which ensure that our dynamics
is consistently up to the second order in the exciting field.

Instead of the path we have taken, one could have started from
the model Hamiltonian in which the low-density replacements of
Eq. (12) are performed and solved Eq. (11) without ever consider-
ing the scaling laws in Eqs. (13). In that case, one would in prin-
ciple obtain the solution that is exact to all orders in the exciting
field. However, this exactness is only apparent because the proper
treatment of higher orders in the exciting field requires enlarging
the space on which the Hamiltonian is formulated, as we discuss
in more detail in Sec. SI of the supplementary material. Temporal
evolutions of higher-order sectors of the DM (which are not taken
into account) would then influence evolutions of optical coherences,
excited-state populations, and intraband coherences. For example,
as demonstrated in Ref. 29, already in the third order in the elec-
tric field, equations of motion for optical coherences are coupled to
equations of motion for biexcitonic amplitudes (coherences between
the ground state and doubly excited states), meaning that a sepa-
rate equation governing the evolution of | jk⟩⟨g| block of σn(t) has
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to be formulated. This discussion emphasizes that once we treat the
photogeneration step explicitly, we should be aware of the close con-
nection between the largest order in the exciting field we include
and the space on which the dynamics has to be formulated. Should
we limit ourselves to the Frenkel Hamiltonian for the singly excited
states and, at the same time, explicitly describe the excitation gener-
ation by light, we should do that only up to the second order in the
applied field.

The presented framework can be considered as a DM equiv-
alent of the response-function approach adopted in the theory of
nonlinear spectroscopy.17 Our focus is on obtaining temporal evo-
lution of various DM elements for a given waveform of the exciting
electric field. This is different from the computation of nonlinear
response functions, which represent the response of the system to
a series of delta-like excitations. Nevertheless, there are two com-
mon assumptions underlying both our DM and response-function
computations: (1) the electronic system is initially unexcited and (2)
the number of interactions with the exciting field completely deter-
mines the excitonic subspace on which the computations have to be
performed. Previous computations of coherent EET dynamics under
the influence of laser fields58 were practically limited to pulses of
certain shapes due to the complications brought about by the time-
dependent driving. On the other hand, our approach is valid for arbi-
trarily shaped laser pulses, and its treatment of the time-dependent
driving is intuitive and consistently keeps track of interactions up to
the second order.

The presented framework can be generalized to include pro-
cesses that are of higher orders in the laser field. To that end, we
recall that the central theorem of the DCT scheme mentioned in the
Introduction (for more details, see Ref. 29 and references therein)
guarantees that the expectation value of the normal-ordered prod-
uct of nB excitonic operators B†, B with respect to any σn(t) entering
Eq. (11) is at least of the order nB in the applied laser field, i.e.,

TrM

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
B†

j1
. . .BjnB´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nB

σn(t)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
≙ O(EnB). The scaling relations [Eq. (13)],

which are valid for the second-order dynamics, thus represent a
particular instance of the more general DCT scaling relations. This
formulation of the central theorem of the DCT scheme is some-
what different from the original one in that an arbitrary-order envi-
ronmental assistance of the original formulation is replaced by the
expectation value with respect to an arbitrary ADM σn(t). The for-
mulation presented in this paragraph relies on the results of Ref. 57,
which provide a formal correspondence between the environmental
assistance of order 2nE and the HEOM’s ADMs on level nE. There-
fore, while the DCT scheme has been typically used to study optical
field-induced processes in conjunction with a perturbative treatment
of the interaction with the environment,29–35 the results presented in
this section open up the possibility to simultaneously study arbitrary
nonlinear effects induced by arbitrarily time-varying optical fields
and yet treat the interaction with the environment in a numerically
exact manner. The practical procedure may be summarized as fol-
lows. For a given order nB in the exciting field, one formulates equa-
tions of motion for all possible expectation values of nB normally
ordered excitonic operators starting from Eq. (11). It may happen
that some of these expectation values actually do not contribute to
the optical response up to order nB. For example, the central the-

orem of the DCT scheme predicts that the biexcitonic amplitudes
TrM{Bj1Bj2σn(t)} should contribute to the second-order response.
However, on closer inspection, these quantities are completely
decoupled from equations of motion for the expectation values of
Bj (optical coherences) and B†

j1
Bj2 (excited-state populations and

intraband coherences) and it turns out that they contribute to the
third-order optical response. The details of the model Hamiltonian
combined with the specific Paulion statistics of excitonic creation
and annihilation operators may thus lower the number of expecta-
tion values that contribute to the optical response up to any given
order. Using the ideas presented in Sec. SI of the supplementary
material, one can then determine the subspace on which the laser-
induced excited-state dynamics has to be formulated. Further anal-
ysis is beyond the scope of this work, in which we concentrate on
the weak-light second-order treatment. For the generalization of
our approach to the third-order dynamics, we refer the reader to
Sec. VII of Ref. 29.

Let us conclude this section by noting that the results we have
presented so far rely heavily on the form of the light–matter interac-
tion Hamiltonian in the semiclassical approximation. If we want to
treat light quantum mechanically, too, the results of Ref. 20 suggest
that, up to the second order in the exciting field, the only information
we need about light is its first-order (two-point) correlation function
(indices i, j label Cartesian components of a vector),

G
(1)
ij (τ2, τ1) ≙ TrR{{E(−)(τ2)}i{E(+)(τ1)}j ρR}. (16)

In the developments presented up to now, such a quantity does
not directly enter Eqs. (11), (14), and (15). However, for (classi-
cal, transform-limited) pulses, this correlation function factorizes
into products of expectation values of single electric-field operators,
which define classical values of the electric field,59–61

G
(1)
ij (τ2, τ1) ≙ E(−)i (τ2)E(+)j (τ1), (17a)

E
(±)
i (τ) ≙ TrR{{E(±)(τ)}i ρR}. (17b)

As will be demonstrated in more detail in Sec. V, it is precisely this
factorization that enables us to formulate Eqs. (14) and (15) as they
stand.

IV. GENERAL THEORY OF WEAK LIGHT-INDUCED
DYNAMICS

This section presents the central result of our exact descrip-
tion of the dynamics triggered by weak light of arbitrary properties.
While the derivation is elementary in all its steps, it is cumbersome
and thus presented in Sec. SII of the supplementary material. Here,
we only analyze the final result for the reduced excited-state density
matrix

ρ
(I)
ee (t) ≙ ∫ t

t0
dτ2 ∫

τ2

t0
dτ1
Ð→

U
(I)

red(t, τ2, τ1)A(I)(τ2, τ1)
+ ∫

t

t0
dτ2 ∫

τ2

t0
dτ1 A

(I)†(τ2, τ1)←ÐU (I)red(t, τ2, τ1). (18)

In Eq. (18), superscript (I) denotes the interaction picture with
respect toHM , τ1 and τ2 are the instants at which the interaction with
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the radiation occurs, and the purely electronic operator A(I )(τ2, τ1)
reads as

A
(I)(τ2, τ1) ≙ 1

h̵2
∑
i,j
G
(1)
ij (τ2, τ1){μ(I)eg (τ1)}j∣g⟩⟨g∣{μ(I)ge (τ2)}i. (19)

The arrow above the reduced propagator sign indicates the direction
of its action on the corresponding operator. The reduced propagator
acting on the right reads as (T is the chronological time-ordering
sign)

Ð→

U
(I)

red(t, τ2, τ1) ≙T exp[Ð→Wc(τ2, τ1) +Ð→Wp(t, τ2) +Ð→Wc−p(t, τ2, τ1)],
(20a)

Ð→

Wc(τ2, τ1) ≙ − 1
h̵2
∑
j
∫

τ2

τ1
ds2 ∫

s2

τ1
ds1 V

(I)
j (s2)C

× Cj(s2 − s1)V(I)j (s1)C, (20b)

Ð→

Wp(t, τ2) ≙ − 1
h̵2
∑
j
∫

t

τ2
ds2 ∫

s2

τ2
ds1 V

(I)
j (s2)×

× (Cr
j (s2 − s1)V(I)j (s1)× + i Ci

j(s2 − s1)V(I)j (s1)○),
(20c)

Ð→

Wc−p(t, τ2, τ1) ≙ − 1
h̵2
∑
j
∫

t

τ2
ds2 ∫

τ2

τ1
ds1 V

(I)
j (s2)×

× Cj(s2 − s1)V(I)j (s1)C. (20d)

In Eq. (20c), Cr/i
j denote the real and imaginary parts of the bath cor-

relation function Cj [Eq. (9)], whereas the action of hyperoperators
V
×,○,C
j on an operatorO is defined asV×j O ≙ ∥Vj,O∥,V j

○O = {V j,O},

VC
j O ≙ VjO. A similar expression holds for the propagator acting on

the left, as detailed in Sec. SII of the supplementary material.
Equations (18)–(20) present an exact solution (with respect to

the aggregate–environment coupling) of the dynamics of an exci-
tonic systemweakly driven by light of arbitrary properties. The prin-
cipal novelty compared to a similar analysis conducted in Refs. 20
and 21 is that, here, we provide an exact expression for the reduced
evolution superoperator that is compatible with the interaction with
light, i.e., it explicitly depends on the interaction instants τ1 and τ2
with the radiation and the observation instant t. The two summands
on the right-hand side of Eq. (18) are Hermitian adjoints of one
another, and they represent the two Liouville pathways from |g⟩⟨g|
to |e⟩⟨e| that differ by the time order of the radiation interactions
with the bra and ket.17

The RDM evolution can be conveniently represented in terms
of diagrams showing how the state of electronic excitations changes
due to interactions with radiation and due to absorptions and emis-
sions of elementary environmental excitations.62,63 In this discus-
sion, we assume that the instants τ1 and τ2 are fixed. We further
focus on the first-order term of the reduced evolution superoperator
[Eq. (20a)] and we also fix instants s1 and s2 [Eqs. (20b)–(20d)] that
describe a single environmentally assisted process. In Figs. 1(a)–1(c),
we present the three primitive diagrams corresponding to the hyper-
operators in Eqs. (20b)–(20d), respectively. The diagram in Fig. 1(a)

FIG. 1. Primitive diagrams describing the changes that the state of the electronic
system undergoes due to the interaction with the radiation and environment-
assisted processes. Only the diagrams characteristic for the first-order approxima-
tion to the reduced propagator [Eq. (20a)] in the first term of Eq. (18) are presented.
The instants τ1 and τ2 at which the electronic system interacts with light, as well
as the instants s1 and s2 determining the environmental assistance, are fixed. The
arrows at τ1 and τ2 depict interactions with light, which are reflected in changes
in the ket and bra of RDM. Circumferences represent the bath correlation func-
tion Cj (s2 − s1). The observation time t satisfies t ≥ τ2 ≥ τ1 ≥ t0. Diagram (a)
corresponds to Eq. (20b), diagram (b) corresponds to Eq. (20c), and diagram (c)
corresponds to Eq. (20d).

describes a single-phonon-assisted process during which the elec-
tronic subsystem is in a state of optical coherence. The diagram in
Fig. 1(b) describes a single-phonon-assisted process during which
the electronic subsystem is entirely in the excited-state manifold.
The single-phonon-assisted process represented by the primitive
diagram in Fig. 1(c) starts when the electronic subsystem is in a state
of optical coherence and ends when it is entirely in the excited-state
manifold. There, the phonon propagator straddles two temporal sec-
tors defined by the interactions with the radiation. These so-called
straddling evolutions62,63 fully capture the nonequilibrium dynam-
ics of the bath during different periods of photoinduced evolution.26

They are intimately connected to the quantum coherence between
electronic excitations and environment, and their presence is crucial
to accurately describe photoinduced electronic dynamics.

Let us point out another viewpoint on the result embodied in
Eq. (18). Due to the assumption of the initially unexcited system, any
nontrivial dynamics is ultimately induced by the interaction with
the radiation because the environment alone cannot cause transi-
tions from the ground- to the excited-statemanifold. This is reflected
by the fact that the hyperoperator VC in Eqs. (20b) and (20d) acts
after the first and before the second interaction with the radiation,
while hyperoperators V×/○j in Eqs. (20c) and (20d) act only after
both interactions with radiation; see also Figs. 1(a)–1(c). Therefore,
Eq. (18) can be reformulated by introducing a global time-ordering
sign as follows:

ρ
(I)
ee (t) ≙ ∫ t

t0
dτ2 ∫

τ2

t0
dτ1

1
h̵2
∑
i,j
G
(1)
ij (τ2, τ1)

× T{ exp[Ð→Wc(τ2, τ1) +Ð→Wp(t, τ2) +Ð→Wc−p(t, τ2, τ1)]
×

C{μ(I)ge (τ2)}i{μ(I)eg (τ1)}Cj }∣g⟩⟨g∣ + H.c. (21)
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In Eq. (21), we introduced hyperoperator CV as CVO = OV for any
operatorsV andO. This viewpoint will be useful in our discussion in
Sec. V C, where we emphasize the similarities between the descrip-
tions of the second-order photoexcitation process starting from the
ground state and the Förster energy transfer from an excited donor
to an unexcited acceptor.

Even though the result embodied in Eqs. (18)–(20) is remark-
able, it is not very useful for actual computations, principally due to
the time-ordering sign that renders analytical manipulations diffi-
cult. Nevertheless, whenever the bath correlation function Cj(t) can
be represented in the form given in Eq. (9), Eq. (18) can be recast
as an infinite hierarchy of equations of motion for the RDM and
ADMs.54 However, the details of this procedure now depend on the
form of operator A(I )(τ2, τ1) [Eq. (19)], i.e., on the temporal and
statistical properties of the radiation.

V. EXCITATION BY WEAK (COHERENT) LASER PULSES

As has been recently discussed in Refs. 60 and 61, a pulse of light
may be understood as a classical-like state of the electromagnetic
field, whose energy density is localized and which can be specified by
the spatial position around which it is localized, propagation direc-
tion, polarization, and spectral distribution. In essence, the quantum
state representing the classical pulse whose bandwidth is determined
by its spectral distribution is a coherent state that, as first realized by
Glauber,59 factorizes the 2n-point radiation correlation function into
the product of 2n expectation values of the electric-field operator. In
particular, G(1)ij (τ2, τ1) is then factorized as predicted by Eq. (17) so

that A(I )(τ2, τ1) [Eq. (19)] assumes the form

A
(I)(τ2, τ1) ≙ 1

h̵2
[μ(I)eg (τ1) ⋅ E(+)(τ1)]∣g⟩⟨g∣[μ(I)ge (τ2) ⋅ E(−)(τ2)].

(22)

In other words, the result is the same as if we used the semiclas-
sical form of the light–matter coupling from the very beginning,
without any reference to electric-field operators. Therefore, further
developments toward the HEOM have to result in Eqs. (14) and (15)
that govern time evolution of optical coherences and excited-state
populations and intraband coherences, respectively.

While the hierarchy counterpart of Eq. (18) for the RDM in the
excited-state sector is Eq. (15), our previous discussion has not dealt
with the RDM counterpart of the hierarchy for optical coherences
[Eq. (14)]. In Sec. SII of the supplementary material, we demonstrate
that the exact solution (with respect to the excitation–environment
coupling) in the eg sector reads as

ρ
(I)
eg (t) ≙ ∫ t

t0
dτ U(I)red (t, τ) ih̵μ(I)eg (τ)E(+)(τ)∣g⟩⟨g∣, (23)

where the reduced propagator for optical coherences reads as [see
Eqs. (20a) and (20b)]

U
(I)
red (t, τ) ≙Ð→U (I)red(t, t, τ) ≙ T exp[Ð→Wc(t, τ)]. (24)

The manipulations that are necessary to recast Eqs. (23) and
(18) as the HEOM presented in Eqs. (14) and (15), respectively,

proceed as usually.54 For the sake of completeness, here, we only
present the definitions of ADMs (in the interaction picture) for
optical coherences,

σ
(I)
eg,n(t) ≙ ∫ t

t0
dτ T
⎧⎪⎪⎨⎪⎪⎩∏j ∏m [∫

t

τ
ds e−μj,m(t−s)i

×
cj,m

h̵2
V
(I)
j (s)C]nj,mU(I)red (t, τ)

⎫⎪⎪⎬⎪⎪⎭
×

i
h̵
μ
(I)
eg (τ)E(+)(τ)∣g⟩⟨g∣, (25)

and for excited-state populations and intraband coherences (cr/ij,m

denote the real/imaginary part of complex coefficients cj ,m),

σ
(I)
ee,n(t) ≙ ∫ t

t0
dτ2 ∫

τ2

t0
dτ1 T

⎧⎪⎪⎨⎪⎪⎩∏j ∏m [∫
t

τ2
ds e−μj,m(t−s)

×
⎛⎝i

crj,m

h̵2
V
(I)
j (s)× − cij,m

h̵2
V
(I)
j (s)○⎞⎠

+∫
τ2

τ1
ds e−μj,m(t−s) i

cj,m

h̵2
V
(I)
j (s)C]nj,m

×
Ð→

U
(I)

red(t, τ2, τ1)⎫⎪⎪⎬⎪⎪⎭A
(I)(τ2, τ1) + H.c. (26)

Before discussing the relation of the HEOM embodied in
Eqs. (14) and (15) to existing theories of the dynamics of electronic
excitations induced by weak laser pulses, let us briefly comment on
the way in which the photoexcitation enters the HEOM. The elec-
tric field explicitly enters the hierarchy for optical coherences only
on the level of RDM; see Eq. (14). Environmentally assisted opti-
cal coherences then act as source terms for environmentally assisted
excited-state populations and intraband coherences; see Eq. (15).
Moreover, the source term for the ee sector of ADM characterized
by vector n comprises only the eg sector of ADM characterized by
the same vector n. The hierarchy is schematically presented in Fig. 2
for N = 2 chromophores and K = 1 terms in the decomposition of
the bath correlation function Cj(t) in Eq. (9).

A. Impulsive photoexcitation of pure-dephasing
spin–boson model: Analytical results

Let us now concentrate on the case of only one chromophore.
The Hamiltonian [Eq. (1)] then reads as

H ≙ εe∣e⟩⟨e∣ +∑
ξ

h̵ωξb
†

ξbξ +∑
ξ

gξ ∣e⟩⟨e∣(b†

ξ + bξ)
− deg ⋅ (E(+)(t)∣e⟩⟨g∣ + E

(−)(t)∣g⟩⟨e∣). (27)

Equation (27) is actually the pure-dephasing spin–boson Hamilto-
nian (or the independent-boson Hamiltonian, see Ref. 64), in which
εe is the energy splitting between the two local energy levels (the
ground state |g⟩ and the singly excited state |e⟩), and there is no tun-
neling between the two levels. The hyperoperators appearing in the
reduced evolution superoperator [Eqs. (20)] are time-independent,
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FIG. 2. Schematic representation of the HEOM for optical coherences and excited-
state populations and intraband coherences in the case of excitation by a weak
laser pulse. For the sake of simplicity, the aggregate comprises N = 2 chro-
mophores and only K = 1 term in the exponential decomposition of the bath
correlation function Cj (t) is taken into account. Individual DMs are represented

by circles, while the driving by the electric field E
(+)(t), which directly affects

only the optical-coherence RDM, is presented by the straight horizontal arrow. D
denotes the level of the hierarchy, and each DM is accompanied by the corre-
sponding vector n; see Eq. (8). Curved dashed arrows represent hierarchical links
between optical-coherence DMs, while curved solid arrows represent hierarchi-
cal links between excited-state DMs. The fact that DM σeg ,n(t) acts as the source
term in the EOM for σee ,n(t) is reflected in the diagram by the presence of curved
dashed-dotted arrows pointing from σeg ,n(t) toward σee ,n(t).

meaning that the time-ordering signs are not effective. This circum-
stance enables us to obtain analytical insights into the photoexci-
tation dynamics of the pure-dephasing spin–boson model in the
impulsive limit.

The waveform of the positive-frequency part of the electric field
is taken to be

E
(+)(t) ≙ e E0δ(t)e−iΩpt , (28)

where vector e defines the polarization of the pulse, Ωp is its central
frequency, and E0 is its amplitude. If the initial instant is t0 < 0, the
excited-state RDM for t > 0 reads as50

ρee(t) ≙ 1
h̵2
∣(deg ⋅ e)E0∣2∣e⟩⟨e∣ ≡ Pe∣e⟩⟨e∣. (29)

At the same time, the optical-coherence RDM

ρeg(t) ≙ i
h̵
(deg ⋅ e)E0 e−iεet/h̵ e−g(t)∣e⟩⟨g∣ (30)

exponentially decays to zero25 on a time scale determined by the
temporal behavior of the lineshape function

g(t) ≙ 1
h̵2 ∫

t

0
ds2 ∫

s2

0
ds1 C(s1). (31)

In a certain sense, Eqs. (29) and (30) formally demonstrate that the
propagation scheme adopted in, e.g., Ref. 54, is physically sensible.
Namely, optical coherences generated upon impulsive photoexcita-
tion quickly decay to zero, and more importantly, they do not act as
sources for excited-state populations and intraband coherences for
t > 0; see Eqs. (14), (15), and (28). Therefore, upon a delta-like pho-
toexcitation, it is justified to propagate only the excited-state dynam-
ics. The reduced propagator for the excited-state sector [Eq. (20a)]
then becomes the reduced propagator used in Ref. 54.

Although the excited-state RDM does not evolve in time, the
impulsive photoexcitation triggers environmental reorganization

processes, whose dynamics is encoded in ADMs. Using the defi-
nition of the first-tier excited-state ADM in Eq. (26) and special-
izing to the single-chromophore case and impulsive excitation, we
obtain

σee,0+m(t) ≙ −2 cimh̵2 1 − e
−μmt

μm
Pe∣e⟩⟨e∣. (32)

In essence, the only nontrivial contribution comes from the anti-
commutator with |e⟩⟨e|, which produces a factor of 2. A similar
analysis can be conducted for dth-tier (d ≥ 1) excited-state ADM
with the final result

σee,0+m1...md
(t) ≙ (−2)d d

∏
p=1

⎛⎝
cimp

h̵2
1 − e−μmp t

μmp

⎞⎠Pe∣e⟩⟨e∣. (33)

Therefore, within the pure-dephasing spin–boson model, we can
analytically compute the nonequilibrium environmental dynamics
initiated by a delta-like photoexcitation. The result embodied in
Eq. (33) becomes particularly interesting in the archetypal case of
overdamped Brownian oscillator spectral density

J(ω) ≙ 2λ ωγ

ω2 + γ2
, (34)

when only the coefficient c0 connected to the Drude pole μ0 = γ has
an imaginary part [see also Eq. (10)]

c0 ≙ λ ⋅ h̵γ[cot(βh̵γ
2
) − i]. (35)

In this case, the only excited-state ADMs that exhibit a nontrivial
temporal evolution are the ones featuring an exclusive excitation of
the Drude pole. After performing suitable rescalings, which ensure
that ADMs are dimensionless and indeed decay to zero in high
enough hierarchical orders,65 we finally obtain for d ≥ 0

⟨e∣σrescee,0+m1...md
(t)∣e⟩/Pe ≙ δm1 ,0 . . . δmd ,0

2d√
d!
( λ

h̵γ
)d/2

× [1 + cot2(βh̵γ
2
)]−d/4(1 − e−γt)d. (36)

In Fig. 3, we present the time evolution of the RDM and first
four nontrivial ADMs that is predicted by Eq. (36). The numerical
computations of the dynamics of impulsively photoexcited spin–
boson model performed in Ref. 54 (see Fig. 1 and the correspond-
ing discussion) employed the high-temperature approximation, in
which the expansion of the bath correlation function [Eq. (9)] con-
tains only the Drude contribution (term with m = 0). Interest-
ingly, our analytical result [Eq. (36)] demonstrates that, in that
case, the high-temperature approximation actually gives an exact
solution.

Let us also note that the procedure outlined can be repeated
to obtain optical-coherence ADMs. However, judging by Eq. (25),
there will be no restrictions on ms that can be excited. This is not at
variance with constraints present in Eq. (36) because, in the impul-
sive limit, optical coherences are not sources for purely excited-state
dynamics.
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FIG. 3. Time evolution of the RDM and first four nontrivial ADMs following the
impulsive excitation of the pure-dephasing spin–boson model. The spectral density
of the excitation–environment interaction is assumed to be of the Drude–Lorentz
type; see Eq. (34). The results are obtained using Eq. (36) with the following values
of model parameters: reorganization energy λ = 100 cm−1, bath relaxation time
γ−1 = 100 fs, and temperature T = 300 K.

B. Redfield theory with photoexcitation

Here, we discuss how, in the limit of weak excitation–
environment interaction, our results for ρ(I)ee (t) and ρ

(I)
eg (t) reduce

to the results of Refs. 29 and 35, where the photoexcitation is treated
up to the second order in the optical field, while the environment-
induced relaxation processes are described within the Redfield the-
ory. Our strategy is similar to the one used in Ref. 54 to accomplish
a similar goal.

If we assume that the characteristic decay time of the bath cor-
relation function Cj(t) is short compared to the time scales of the
dynamics we are interested in, we can employ the Markov approxi-
mation to reduce Eqs. (18) and (23) to a system of coupled second-
order equations for the excited-state and optical-coherence sectors
of the RDM.50,51 The final result is commonly written in the exci-
ton basis {|x⟩}, defined by HM |x⟩ = h̵ωx|x⟩, and assumes the form of
Redfield equations with photoexcitation. The optical coherence yx(t)
= ⟨x|ρeg(t)|g⟩ evolves according to
∂tyx(t) ≙ −iωxyx(t) + i

h̵
μx ⋅ E

(+)(t) −∑
x′
(∑̃

x

Γxx̃x̃x′)yx′(t), (37)

while exciton populations and interexciton coherences nx̄x(t)
≙ ⟨x∣ρee(t)∣x̄⟩ obey

∂tnx̄x(t) ≙ −i(ωx − ωx̄)nx̄x(t) − i
h̵
μ
∗

x̄ ⋅ E
(−)(t) yx(t)

+
i
h̵
y
∗

x̄ (t)μx ⋅ E(+)(t) − ∑̄
x′x′

Rx̄xx̄′x′nx̄′x′(t). (38)

In Eq. (37), the damping matrix Γxx′ x̄x̄′ is defined as

Γxx′ x̄x̄′ ≙∑
j

⟨x∣ j⟩⟨ j∣x′⟩⟨x̄∣ j⟩⟨ j∣x̄′⟩∫ +∞

0
ds

Cj(s)
h̵2

ei(ωx̄′−ωx̄)s, (39)

while the Redfield tensor Rx̄xx̄′x′ appearing in Eq. (38) assumes the
standard form

Rx̄xx̄′x′ ≙ −Γx̄′ x̄xx′ − Γ
∗

x′xx̄x̄′ + δx̄′ x̄ ∑̃
x

Γxx̃x̃x′ + δx′x ∑̃
x

Γ
∗

x̄x̃x̃x̄′ . (40)

We have also introduced elements of the dipole-moment operator
in the excitonic basis μx = ⟨x|μeg |g⟩. Although quite standard, the
derivation of Eqs. (37) and (38) from Eqs. (18) and (23) deserves
attention, and we present it in Sec. SIII of the supplementary
material.

In applications, it is common to neglect the imaginary parts
of the Redfield tensor,29,50 which give rise to renormalizations of
transition frequencies. However, as discussed in Ref. 66, this is not
correct, especially when we discuss the Redfield equation without
the secular approximation. Moreover, as the following discussion
demonstrates, the application of Eqs. (37) and (38) to describe laser-
induced dynamics of electronic excitations that are strongly coupled
to relatively slow nuclear motions runs into more serious difficul-
ties than those caused by neglecting renormalizations of transition
frequencies or applying the secular approximation.

In Figs. 5(a1)–5(d2), we compare the photoinduced electronic
dynamics of a dimer (see Fig. 4) treated by our HEOM formalism
incorporating the photoexcitation [Eqs. (14) and (15)] and the Red-
field formalism incorporating the photoexcitation [Eqs. (37) and
(38)]. Relevant parameters of the model dimer are summarized in
the caption of Fig. 4.

For the weakest excitation–environment coupling [see
Figs. 5(a1) and 5(a2)], the results predicted by the two approaches
are quite similar, as expected. However, as the excitation–
environment coupling is increased, the dynamics predicted by the

FIG. 4. Scheme of the model dimer. The difference between local energy levels is
Δε01 = ε0 − ε1 = 100 cm−1, and the electronic coupling is J01 = 100 cm−1. The
transition dipole moment of site 1 is assumed to be perpendicular to the polar-
ization vector of the exciting field, whereas the magnitude of the projection of
the transition dipole moment of site 0 onto the polarization vector is deg. Each
chromophore is in contact with its thermal bath (schematically represented by
the motion lines below chromophore numbers), and the spectral density of the
excitation–environment interaction is assumed to be the Drude–Lorentz spectral
density [see Eq. (34)] whose parameters γ and λ are identical on both sites. The

bath relaxation time is γ−1 = 100 fs, while the temperature is T = 300 K. The ini-
tially unexcited dimer is excited by a weak laser pulse (characterized by the pulse
central frequency Ωp and duration τp, see Fig. 5) or by weak incoherent light
(characterized by the central frequency ωc and correlation time τc , see Figs. 6
and 7).
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FIG. 5. Time evolution of the optical
coherence modulus [(a1)–(d1)] and
population [(b2)–(d2)] of site 0 following
a pulsed photoexcitation of the model
dimer (see Fig. 4). The computation
is performed using the HEOM formal-
ism incorporating the photoexcitation
[Eqs. (14) and (15), solid curves]
and the Redfield theory incorporating
the photoexcitation [Eqs. (37) and
(38), dashed-dotted curves], while
the envelope of the photoexcitation
is represented by shaded areas. The
waveform of the excitation is E(+)(t) =
E0 exp(−iΩpt − t

2/(2τ2p))/(τp
√
2π),

where the duration of the pulse is
τp = 20 fs, while the central frequency
Ωp is tuned to the vertical transition
frequency of site 0. The reorganization
energy assumes the following values:
λ = 2 cm−1 in (a1) and (a2), λ = 20
cm−1 in (b1) and (b2), λ = 100 cm−1 is
(c1) and (c2), and λ = 500 cm−1 in (d1)
and (d2).

Redfield theory deviates both qualitatively (e.g., absence of oscilla-
tory features) and quantitatively from the numerically exact results
[see Figs. 5(b1)–5(d2)]. The reasons for such deviations are summa-
rized in the following.

First, the relaxation tensor employed in Eqs. (37) and (38)
is time-independent, i.e., it cannot accurately capture the very
first steps of the nuclear reorganization dynamics initiated by

photoexcitation. In the derivation of Eqs. (37) and (38), we obtained
time-local equations because we ceased to keep track of the exact
instants of the interaction with light by formally setting the differ-
ence between the observation instant t and the last instant of the
interaction with light τ to infinity. Such an approximation is rea-
sonable whenever the bath correlation time and/or the excitation–
environment coupling are small enough. These conditions are
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typically satisfied in ultrafast semiconductor optics,30,31 which
explains the success of methods relying on equations such as
Eqs. (37) and (38) to describe ultrafast semiconductor dynamics.
On the other hand, in view of the intermediate regime to which
photosynthetic EET belongs,2,3,12 transient features of light-triggered
nuclear reorganization dynamics become crucial to properly char-
acterize electronic dynamics in photosynthetic aggregates. In other
words, one has to keep track of the exact instants τ1 and τ2 of the
interaction with light, which our formalism manifestly does. One
may hope to partially cure the deficiencies of the dynamics predicted
by Eqs. (37) and (38) by replacing the time-independent Redfield
tensor by its time-dependent counterpart; see, e.g., Ref. 27. However,
as argued in the supplementary material of Ref. 28, such a replace-
ment in a time-local equation for RDM would have to rely on the
rather arbitrary instant t0 in which we prescribe the initial condition
[Eq. (6)], which would give a reasonable description only in the limit
of impulsive excitation at t0. For pulses of finite duration, the cor-
rect description of ultrafast dynamics has to be on the time-nonlocal
level.

Second, the derivation presented in the supplementary material
suggests that Eqs. (37) and (38) neglect the nonequilibrium dynam-
ics of the bath in the period between the two interactions with light.
Again, our formalism manifestly includes such dynamics through
the HEOM for optical coherences. On the other hand, the change
in the bath state in the period between the two interactions with the
light can be partially taken into account, even on the time-local level,
through the so-called photoinduced correlation term that was iden-
tified in Ref. 28 (and also, in a more specialized setting, in Ref. 27).
In the language of the standard density matrix theory, the pho-
toinduced correlation term arises from the combined action of the
environmental assistance and the interaction with the exciting field.
While the neglect of such a term can be justified in semiconductor
optics,30,31 its effect on the dynamics may be nontrivial in the case of
slow bath and/or strong excitation–environment coupling.

C. Nonequilibrium generalization of Förster theory

As pointed out in Ref. 54, the Förster limit67 cannot be directly
obtained from the analytical results presented there, simply because
the initial environmental density matrix ρ

g
B is assumed to describe

the equilibrium of environmental modes when there are no elec-
tronic excitations in the system. However, in the following, we
demonstrate how, under appropriate approximations, the results of
Ref. 54, i.e., our results in the limit of ultrashort excitation, lead to
the nonequilibrium generalization of the Förster theory proposed in
Refs. 68 and 69.

Let us limit our discussion to an aggregate containing two chro-
mophores [see Fig. 4], one acting as the excitation donor (D, chro-
mophore 0 in Fig. 4) and the other acting as the excitation acceptor
(A, chromophore 1 in Fig. 4). Let an impulsive excitation selec-
tively excite D at t = 0. Disregarding the dynamics of thus induced
optical coherences, the reduced excited-state dynamics for t > 0 is
described by

ρ
(I)
ee (t) ≙ T exp[Ð→Wp(t, 0)]∣D⟩⟨D∣, (41)

where we have dropped out the normalization constant similar
to Pe in Eq. (29). We are interested in the rate at which the
population of A,

PA(t) ≙ ⟨A∣ŨDA(t, 0)ρ(I)ee (t)Ũ†

DA(t, 0)∣A⟩, (42)

changes. In the last equation, a tilde over the operator denotes the
interaction picture with respect to the electronic Hamiltonian of the
noninteracting chromophores (εD|D⟩⟨D| + εA|A⟩⟨A|) and

ŨDA(t, 0) ≙ T exp[− i
h̵ ∫

t

0
ds H̃DA(s)] (43)

with HDA = JDA(|A⟩⟨D| + |D⟩⟨A|) being the DA electronic coupling.
Within the Förster theory, the population transfer from D to A

is induced by two actions of HDA on opposite sides of |D⟩⟨D|, while
environmental degrees of freedom are mere spectators in that pro-
cess. Nevertheless, they do adapt to the change in the electronic state
induced by the transfer, but they alone cannot induce it if we assume
(as is usual) that no environmental mode couples to both D and
A.68 The situation is somehow similar to the photoexcitation pro-
cess (see Sec. IV), where the excited-state sector ee is reached from
the ground-state sector gg by applying two HM−R from the oppo-
site sides of |g⟩⟨g|. The phonons just adapt to the new electronic
configuration, but they alone cannot bring about to the ground-
to-excited state transition. Having all these things considered, it
seems reasonable to attempt to replace all time-dependent opera-
tors V(I)j (t) in Eq. (41) by time-independent operators V j and to

transform Eq. (42) by expanding ŨDA(t, 0) and keeping only contri-
butions in which two H̃DA(τ) act from the opposite sides of ρ(I)ee (t).
The above-described analogy with the photoexcitation process is
most conveniently exploited from the standpoint of Eq. (21). The
analogy then suggests that the Förster limit be obtained by enforcing
the global chronological order in the hyperoperator product acting
on |D⟩⟨D|, which results in the following expression for the rate of
population transfer from D to A:

k
F
AD(t) ≙ 2

h̵2 ∫
t

0
dτ Re{⟨A∣T[H̃DA(t)C exp[Ð→Wp(t, 0)]

×
C
H̃DA(τ)]∣D⟩⟨D∣∣A⟩}. (44)

We then partition the integration domain in
Ð→

Wp(t, 0) as fol-

lows [
Ð→

F p(s2, s1) denotes the hyperoperator under integral signs in
Eq. (20c)]:

Ð→

Wp(t, 0) ≙ ∫ τ

0
ds2 ∫

s2

0
ds1
Ð→

F p(s2, s1) + ∫ t

τ
ds2 ∫

s2

τ
ds1

×
Ð→

F p(s2, s1) + ∫ t

τ
ds2 ∫

τ

0
ds1
Ð→

F p(s2, s1). (45)

Let us now analyze Eq. (44) order by order in
Ð→

Wp(t, 0). This anal-
ysis bears certain resemblance to that conducted in Refs. 70 and

71. The approximation V
(I)
j (s) ≈ Vj is performed only after the

global time-ordering prescription has been applied. Let us focus on
the first-order term. The first summand on the right-hand side of
Eq. (45) describes the single-phonon assistance before the first inter-
actionHDA takes place at instant τ. Uponmaking the approximation

V
(I)
j (s) ≈ Vj, we conclude that the corresponding contribution is

equal to zero (cf. Sec. V A). The second summand in Eq. (45) is
effective after the first interaction HDA, when the electronic state is
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that of D/A coherence, |D⟩⟨A|. It is then easily checked that [see also
Eq. (31)]

T[H̃DA(t)C ∫ t

τ
ds2 ∫

s2

τ
ds1
Ð→

F p(s2, s1) CH̃DA(τ)]∣D⟩⟨D∣
≈ −J

2
DA e−i(εD−εA)(t−τ)[gD(t − τ) + g

∗

A(t − τ)]∣A⟩⟨A∣. (46)

We may anticipate that after the resummation, this term produces
the well-known factors characteristic of donor emission [e−g

∗

D(t−τ)]
and acceptor absorption [e−gA(t−τ)]. In the third summand in
Eq. (45), one superoperator acts before, and the other after, the first
interactionHDA. This summand is expected to take into account cor-
rections to the aforementioned donor emission factor due to the fact
that the donor environment has not yet adapted to the electronic
excited state. In greater detail,

T[H̃DA(t)C ∫ t

τ
ds2 ∫

τ

0
ds1
Ð→

F p(s2, s1) CH̃DA(τ)]∣D⟩⟨D∣
≈ −J

2
DA e−i(εD−εA)(t−τ)

2i
h̵2 ∫

t

τ
ds2 ∫

τ

0
ds1 C

i
D(s2 − s1)∣A⟩⟨A∣.

(47)

One can convince themselves that the final result for the excitation
transfer rate kFAD(t) in this limit reads as

k
F
AD(t) ≙ 2J2DA

h̵2 ∫
t

0
dτ Re{ exp(i(εD − εA)(t − τ) − g∗D(t − τ)

− gA(t − τ) + 2i
h̵2 ∫

t

τ
ds2 ∫

τ

0
ds1 C

i
D(s2 − s1))}. (48)

To enable a direct comparison with Eq. (20) or Eq. (24) of Ref. 68,
one should perform change of variables t − τ = τ′ and calculate all
bath correlation functions by definition, starting from the general
expression for uj [Eq. (3)].

VI. EXCITATION BY WEAK INCOHERENT LIGHT

Here, we study in more detail the excitation by (weak) inco-
herent light, for which the factorized part [Eq. (17)] of the first-
order light correlation function [Eq. (16)] identically vanishes. The
HEOM, as formulated here, leans on the exponential decomposition
of the environmental correlation function Cj(t) [see Eq. (9)]. There-

fore, it may be expected that if we can expand G
(1)
ij (τ2 − τ1) as a

weighted sum of exponential factors, we can proceed to formulate
HEOM in the usual manner. We concentrate on thermal (chaotic)
light whose propagation direction and polarization are well defined.
It is known that quantum and classical theory predict the same form
of the first-order light correlation function for such light,72

G
(1)(τ) ≙ I0 exp(iωcτ − τ/τc). (49)

In Eq. (49), I0 is the intensity, ωc is the central frequency, while τc
is the coherence time of the radiation. In view of the well-defined
polarization, we omit subscripts i, j labeling Cartesian coordinates
of the electric field. This form of the first-order radiation correlation
function has been used to gain insight into the dynamics of open20

and closed73 quantum systems weakly driven by light. Here, moti-
vated by the aforementioned exponential decomposition, we show
how the following light correlation function

G
(1)(τ) ≙∑

l

I0,l exp(iωc,lτ − τ/τc,l) (50)

can be used to recast Eq. (18) as the HEOM.
For incoherent light, the optical coherences defined in Eq. (23)

are exactly equal to zero. Nevertheless, the general scheme of the
hierarchy is still analogous to that we outlined in the case of clas-
sical excitation (see Fig. 2). One can introduce the following objects
that act in the eg sector and are thus analogous to optical coherences,
cf. Eq. (23),

ρ
(I)
eg,l(t) ≙ ∫ t

t0
dτ U(I)red (t, τ) ih̵μ(I)eg (τ)∣g⟩⟨g∣

× I0,l exp∥iωc,l(t − τ) − (t − τ)/τc,l∥, (51)

where the dipole-moment operator μeg is the projection of μeg on
the polarization direction. These optical coherence-like objects are
counted by index l appearing in Eq. (50). In other words, each
term in the exponential decomposition of the first-order radiation
correlation function adds a new layer to the HEOM for “optical
coherences,” which reads as

∂tσeg,l,n(t) ≙ − i
h̵
[HM , σeg,l,n(t)] + (iωc,l − τ

−1
c,l )σeg,l,n(t)

−
⎛⎝∑j ∑m nj,mμj,m

⎞⎠σeg,l,n(t) + δn,0
i
h̵
I0,lμeg

+ i∑
j

∑
m

Vjσeg,l,n+j,m(t)
+ i∑

j

∑
m

nj,m
cj,m

h̵2
Vjσeg,l,n−j,m(t). (52)

Nevertheless, the HEOM for singly excited-state populations and
intraband coherences does not feature any additional layers stem-
ming from the decomposition in Eq. (50) and it reads as

∂tσee,n(t) ≙ − i
h̵
∥HM , σee,n(t)∥ − ⎛⎝∑j ∑m nj,mμj,m

⎞⎠σee,n(t)
+

i
h̵
μeg(∑

l

σ†

eg,l,n(t)) − i
h̵
(∑

l

σeg,l,n(t))μge
+ i∑

j

∑
m

[Vj, σee,n+j,m(t)] + i∑
j

∑
m

nj,m
cj,m

h̵2
Vj

× σee,n−j,m(t) − i∑
j

∑
m

nj,m
c∗j,m

h̵2
σee,n−j,m(t)Vj. (53)

Our results embodied in Eqs. (52) and (53) are significant
because they provide a viable route toward a description of exci-
tonic dynamics triggered by thermal light. This description consis-
tently combines both specific temporal and statistical properties of
the radiation and a nonperturbative treatment of the excitation–
environment coupling. It is well known that, in principle, the only
sensible representation of thermal light is statistical, in terms of a
set of all possible realizations. The recently suggested representa-
tion of natural incoherent light as an ensemble of transform-limited
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pulses74 would suggest that the dynamics it induces be computed by
propagating the HEOM embodied in Eqs. (14) and (15) for indi-
vidual ensemble realizations and then averaging over them. This
would present a formidable task since propagating Eqs. (14) and (15)
for one ensemble member is already numerically expensive.
Equations (52) and (53) demonstrate how such complications can be
circumvented within the second-order treatment of the interaction
with light. The fact that the exponential decomposition of the first-
order radiation correlation function does not affect the complexity
of the HEOM in the excited-state sector is numerically advanta-
geous. Namely, propagating the HEOM for “optical coherences”
[Eq. (52)] is significantly less numerically demanding than propa-
gating the HEOM in the excited-state sector [Eq. (53)]. Since the
dynamics of “optical coherences” in our second-order treatment is
not affected by the dynamics in the excited-state sector, we con-
clude that the overall numerical complexity of the problem as we
formulate it is not significantly greater than in the case of pulsed
photoexcitation [Eqs. (14) and (15)].

The proposed theory is valid in the limit of weak light–matter
interaction. To provide a more quantitative criterion of this weak-
ness, we recall that the maximum normal surface solar irradiance
at sea level on a clear day is Imax ≈ 1 kW/m2.75 The electric field
amplitude corresponding to this irradiance can be estimated by

E0 ≙
√

2Imax
cε0

(c is the speed of light, while ε0 is the vacuum per-
mittivity), and we obtain E0 ≈ 870 V/m. Keeping in mind that the
magnitude of the transition dipole moment of the bacteriochloro-
phyll molecule is deg ≈ 6 D,49 we can estimate the magnitude of the
interaction energy of electronic excitations and radiation by E0deg ∼

10−3 cm−1. We see that this interaction energy is orders of magni-
tude smaller than the energies characteristic for excitonic couplings,
exciton–environment interactions, and static disorder in transition
energies (∼10 cm−1–100 cm−1).2 Keeping in mind that the lunar
irradiance or the solar irradiance in habitats of some photosynthetic
bacteria are even smaller than the maximum solar irradiance upon
which the above estimates were based, we conclude that the weak-
light assumption is well satisfied in various photosynthetically rele-
vant situations. The same conclusion may be reached by estimating
the rate of solar photons incident on a photosynthetic complex. To
that end, we start from the fact that the normal surface solar irradi-
ance of the photosynthetically available radiation (400 nm–700 nm)
of the solar spectrum is IPAR ≈ 540 W/m2.75 In typical photo-
synthetic complexes, bacteriochlorophyll molecules most strongly
absorb at wavelengths around λ ≈ 700 nm–800 nm.49 Taking that
the typical linear dimension of a photosynthetic complex is a ∼ 10
Å,2 we may estimate that the number of solar photons incident on a

complex per unit time is dN
dt
≙ IPAR

λa2

2πh̵c ≃ 2000s
−1, which agrees well

with the estimate provided in Ref. 36. The actual photon absorption
rate, which also depends on the effective absorption cross section
and the degree of radiation attenuation due to the specific habi-
tat conditions, may be even smaller. The corresponding temporal
scale is thus orders of magnitude longer than time scales typical for
EET, excitation recombination, or extraction, which corroborates
the plausibility of our weak-light assumption.

In the following, we compare our Eqs. (52) and (53)
with the existing descriptions of photoexcitation by incoherent
light.43,44,47 We concentrate on the light correlation function in
Eq. (49). The aforementioned approaches exploit the fact that the

coherence time of natural sunlight τc ∼ 1 fs76,77 is at least an order
of magnitude shorter than the time scales typical for electronic cou-
plings and nuclear reorganization processes (which assume values
of ∼10 cm−1–100 cm−1).2 We may then argue that we can disregard
the nonequilibrium environmental dynamics taking place between
the two interactions with the radiation, which was crucial to cor-
rectly describe excitonic dynamics induced by a pulsed photoexcita-
tion; see the discussion accompanying Figs. 1(c) and 5(a1)–5(d2). In
other words, we may assume that both interactions with the radia-
tion occur essentially at the same instant, which means that Eq. (49)
should be replaced by

G
(1)(τ) ≙ 2I0τc δ(τ). (54)

This is the so-called white-noise model (WNM) of the radiation.48

In this case, one has to propagate only the HEOM for excited-
state populations and interband coherences and Eq. (53) should be
replaced by

∂tσee,n(t) ≙ − i
h̵
∥HM , σee,n(t)∥ − ⎛⎝∑j ∑m nj,mμj,m

⎞⎠σee,n(t)
+ δn,0

2I0τc
h̵2

μeg ∣g⟩⟨g∣μge + i∑
j

∑
m

[Vj, σee,n+j,m(t)]
+ i∑

j

∑
m

nj,m
cj,m

h̵2
Vjσee,n−j,m(t)

− i∑
j

∑
m

nj,m
c∗j,m

h̵2
σee,n−j,m(t)Vj. (55)

In Figs. 6(a) and 6(b), we confront the dynamics of the dimer
described in Fig. 4 that is triggered by suddenly turned on inco-
herent light and governed by Eqs. (52) and (53) (label “full”) and
Eq. (55) (label “WNM”) for different values of light coherence times
τc. Figure 6(a) presents the dimensionless source term for the total
excited-state population for G(1)(τ) given in Eq. (49) (curves labeled
as “full”),

Sfull(t) ≙ i
h̵
TrM{μegσ†

eg,0(t) − σeg,0(t)μge}, (56)

and for G(1)(τ) given in Eq. (54) (the curve labeled as “WNM”),

SWNM ≙
2I0τc
h̵2

TrM{μeg ∣g⟩⟨g∣μge}. (57)

Instead of presenting the data in absolute units, the dimensionless
source term in Fig. 6(a) and the total population in Fig. 6(b) are
given in units of γτcI0d

2
eg/(h̵γ)2. The reason for choosing this unit

is our second-order treatment of exciton–light interaction, which
ensures that the excited-state populations and intraband coherences
scale linearly in the light intensity I0 [Eqs. (49), (50), and (54)] and
quadratically in the transition dipole moment deg (see Fig. 4). On the
formal side, one can convince themselves that γτcI0d

2
eg/(h̵γ)2 is the

appropriate unit for our purposes by analyzing Eqs. (52), (53), and
(55). The presence of the factor γτc in the unit enables us to com-
pare on the same plot the data for different light coherence times.
The value of this unit is estimated by recalling that the energy scale
of the exciton–light interaction is E0deg ∼ 10−3 cm−1 and that we
use γ−1 = 100 fs (see the caption of Fig. 4). Therefore, for τc = 1.3
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FIG. 6. (a) Source term [in units of γτcI0d2eg/(h̵γ)2] in the equation for the total

excited-state population of the model dimer (see Fig. 4) when the dynamics is
governed by Eq. (55) (WNM, dashed line) and when the dynamics is governed by
Eqs. (52) and (53) for τc = 1.30 fs (solid line), τc = 13.0 fs (dashed-dotted line),
and τc = 130 fs (double dashed-dotted line). (b) Total excited-state population [in
units of γτcI0d2eg/(h̵γ)2] after a sudden turn-on of incoherent light with τc = 1.30 fs

(solid line), τc = 13.0 fs (dashed-dotted line), τc = 130 fs (double dashed-dotted
line), and τc → 0 (WNM, dashed line).

fs, γτcI0d
2
eg/(h̵γ)2 ≃ 4 × 10−12 and for τc = 13 fs, γτcI0d

2
eg/(h̵γ)2

≃ 4×10−11, while for τc = 130 fs, γτcI0d
2
eg/(h̵γ)2 ≃ 4×10−10. The value

of τc determines the time scale on which the source term for the total
excited-state population Sfull(t) reaches a constant value upon a sud-
den turn-on of incoherent radiation [see Fig. 6(a)]. For the shortest
τc examined, the source term Sfull(t) saturates within the initial ∼10 fs
of the dynamics and the value it reaches excellently agrees with the
source term SWNM predicted by the WNM of the radiation. This is
also reflected in Fig. 6(b), in which the total exciton populations pre-
dicted by the twomodels display a perfect agreement for the shortest
τc. As τc is increased so that it becomes comparable to time scales of
nuclear reorganization processes, the agreement between the results
predicted by Eqs. (52), (53), and (55) deteriorates [see Figs. 6(a) and
6(b)] because the WNM cannot capture the nonequilibrium bath
dynamics between the two interactions with the radiation. The larger
is the coherence time τc, the more pronounced are the deviations of
the exact dynamics from the WNM results.

We now turn our attention to the dynamics of interexciton
coherences, which is displayed in Figs. 7(a)–7(d) for different values
of the reorganization energy λ.

The initial (sub-picosecond) oscillatory dynamics of the
interexciton coherence that is clearly observed for lower values

of λ [see Figs. 7(a) and 7(b)] is directly related to the oscilla-
tions displayed by the populations in the site basis upon an ultra-
fast excitation [see Figs. 5(a2) and 5(b2)].66 As the reorganization
energy is increased, the oscillatory features gradually disappear, cf.
Figs. 5(b1)–5(d2), and certain steady behavior of the interexciton
coherence, similar to a steady increase in the total exciton population
observed in Fig. 6, sets in. In Figs. 7(b)–7(d), we see that the imag-
inary part of the interexciton coherence saturates in ∼1 ps after the
excitation starts. On the other hand, the real part of the interexciton
coherence in Fig. 7(b) exhibits a steady increase for t ≳ 1.25 ps, while
the corresponding start of the steady increased is shifted to ∼0.75 ps
and ∼1.5 ps in Figs. 7(c) and 7(d), respectively. The time scale on
which the steady increase in the interexciton coherence sets in is inti-
mately related to the time scale on which the populations in the site
basis [see Figs. 5(b2)–5(d2)] reach their limiting values following a
very short photoexcitation. By virtue of basis transformation,66 the
latter is closely connected to the time scale of the dephasing of the
interexciton coherence generated by a very short photoexcitation.
Therefore, the oscillatory features under incoherent illumination
originate from the sudden turn-on of the excitation at t = 024,78 and
they disappear on the time scale on which the interexciton coher-
ence dephases after a short photoexcitation.48 We note, in passing,
that the magnitude of the interexciton coherence becomes much
larger than populations, which is also in line with previous stud-
ies.24,48,74,78 The light-induced coherences observed in Figs. 7(a) and
7(b) are not expected to be directly relevant to excitation harvesting
under natural conditions, which proceeds via nonequilibrium steady
states.24 Such states arise from a combination of the steady increase
in populations and coherences [see Figs. 6(b) and 7(a)–7(d)] due to
continuous generation and the steady excitation decay by trapping at
the reaction center and recombination.What may be relevant for the
efficiency of light harvesting driven by incoherent light are the rela-
tions among the RDM elements that establish themselves on time
scales typical for excitation trapping and recombination, which are
generally much longer than the time scales covered in this study.
Further development of this idea is the topic of the accompanying
paper.79

This section explicitly deals with incoherent light whose first-
order correlation function is of the form given in Eqs. (49) and (50).
In the literature,43,44,47 it is common to formulate equations simi-
lar to Eq. (55), which tacitly lean on the WNM in which the source
term describing the generation of state |e⟩ (from the ground state)
by incoherent sunlight is given in terms of the number of photons
of energy εe at the temperature of the Sun’s photosphere (∼6000 K).
In Sec. SIV of the supplementary material, we demonstrate how our
description reduces to the above-described quantum-optical limit by
virtue of the Weisskopf–Wigner approximation,80 which has to be
performed in the exciton basis.39 In essence, exploiting the weakness
of the excitation–light coupling, the quantum-optical approaches
tacitly assume that the effects of this coupling can be simply added to
the dynamics in the absence of radiation in the form of Markovian
corrections that do not feature any modifications due to the pres-
ence of the environment.43,44,47 While such approaches do include a
radiative recombination term, our approach does not contain such
a term. As demonstrated in greater detail in Sec. SIV of the supple-
mentary material, the reason for the absence of the radiative recom-
bination term in Eqs. (52) and (53) or in Eq. (55) is the fact that
our dynamics starts from the initially unexcited system and that it
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FIG. 7. Dynamics of the real (solid lines) and imaginary (dashed lines) parts of the
interexciton coherence [in units of γτcI0d2eg/(h̵γ)2] in the model dimer (see Fig. 4)

for different values of the reorganization energy: (a) λ = 2 cm−1, (b) λ = 20 cm−1,
(c) λ = 100 cm−1, and (d) λ = 500 cm−1. Light coherence time is τc = 1.3 fs.

consistently keeps track of interactions with light up to the sec-
ond order. To describe nonequilibrium stationary states under inco-
herent light, our theoretical framework has to be augmented by
additional drain terms that should take into account excitation
recombination and possibly some other mechanisms by which the
excitations may be lost (e.g., trapping at the reaction center). In
our opinion, this feature of our formalism does not render it less
suitable for steady-state calculations under incoherent light; see the
accompanying paper.79 However, a fully self-consistent approach to
obtain the steady-state under incoherent light is still out of our reach
because it asks for a solution to the fundamental problem of the
nonadditivity of the excitation–light and excitation–environment
coupling.19

VII. CONCLUSION

We have conducted a detailed theoretical investigation of the
dynamics of electronic excitations in molecular aggregates induced
by weak radiation of arbitrary properties. Starting from initially
unexcited aggregate, our approach combines a perturbative treat-
ment of the coupling to radiation with an exact treatment of the
excitation–environment coupling in a manner that is manifestly
compatible with the spectroscopic view of the photoexcitation. We
express the reduced excited-state dynamics entirely in terms of the
first-order radiation correlation function and the reduced evolution
superoperator, for which we provide an exact expression within the
Frenkel exciton model. The changes that the state of electronic exci-
tations undergoes due to the photoexcitation and the interaction
with the environment can be conveniently represented diagrammat-
ically, in terms of elementary processes assisted by single quanta of
environmental excitations. The fact that our general expression for
the excited-state dynamics explicitly keeps track of the instants at

which the two interactions with light occur means that the corre-
sponding differential equation is time-nonlocal. Within the expo-
nential decomposition scheme, we outline how this temporal non-
locality can be circumvented by setting up a suitable HEOM scheme
that explicitly takes into account the photoexcitation step. Such
developments, however, turn out to heavily depend on radiation
properties.

In the case of excitation by transform-limited pulses, when
the radiation correlation function factorizes into the product of
(classical) electric fields at two interaction instants, we relate the
HEOM arising from our results to the HEOM obtained by con-
sidering the (semiclassical) light–matter coupling as a part of the
aggregate Hamiltonian. The insights from nonlinear spectroscopy
and semiconductor optics analyzed using the DCT scheme turn out
to be crucial in establishing that relationship. Namely, the order in
which the light–matter coupling is taken into account determines
the subspace of the excitation Fock space on which the photoin-
duced dynamics should be formulated and vice versa. We demon-
strate that the second-order response to light should be formulated
on the subspace containing atmost one excitation. The second-order
results [Eqs. (14) and (15)] presented in Sec. III may be extended to
treat laser-induced nonlinear effects of an arbitrary order and yet
retain the numerically exact treatment of the interaction of photoin-
duced excitations with the environment. We believe that this result
may be of relevance for future treatments of laser-induced coherent
EET.

We analyze in detail the dynamics triggered by an impul-
sive excitation of a single chromophore, where we provide analyt-
ical results for environmental reorganization dynamics, which is
encoded in ADMs. We further identify the approximations under
which our general result reduces to the widely employed Redfield
theory with photoexcitation and nonequilibrium Förster theory.
Our comparison between the dynamics predicted by the HEOM
and Redfield theory with photoexcitation further corroborates the
advantages of our approach, which exactly describes light-induced
environmental reorganization processes and fully takes into account
the nonequilibrium evolution of the bath between the two interac-
tions with light.

In the case of excitation by thermal light, we compare
our approach to the widely used hybrid Born–Markov–HEOM
approach, which treats the light–matter coupling within quantum-
optical approximations. Since we employ the exponential decom-
position scheme, the formulation of the HEOM relies on an
exponential decomposition of the radiation correlation function.
We find that the HEOM thus obtained is not significantly more
numerically expensive than the HEOM as it is usually formulated.
This is because additional layers stemming from the decompo-
sition of radiation correlation function exist only in its optical-
coherence-like part, which may be solved completely indepen-
dently from its excited-state part. This paves the way toward viable
simulations of the dynamics triggered by natural incoherent light
that respect both the specific properties of the radiation and the
need for a nonperturbative treatment of excitation–environment
coupling.

We believe that despite its unfavorable numerical cost, the
approach outlined here can be useful in further investigations of
light–induced dynamics in both photosynthetic light-harvesting
aggregates and OPVs. In particular, in both types of systems, the
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relation of the insights gained in ultrafast spectroscopies to the actual
operation under natural sunlight illumination has provoked long-
standing debates. Our method promises to bridge these two stand-
points and establish a new more suitable common viewpoint on
energy conversion in these systems. Further work on bridging the
two standpoints is under way in our respective research groups.

SUPPLEMENTARY MATERIAL

See the supplementary material for (a) a more detailed discus-
sion of the second-order response to excitation by coherent light, (b)
a detailed derivation of the exact evolution superoperator, (c) deriva-
tion of the Redfield equation comprising photoexcitation, and (d) a
discussion of the quantum-optical limit in the case of excitation by
incoherent light.
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20T. Mančal and L. Valkunas, “Exciton dynamics in photosynthetic complexes:
Excitation by coherent and incoherent light,” New J. Phys. 12, 065044 (2010).
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61A. Chenu, A. M. Brańczyk, and J. E. Sipe, “First-order decomposition of thermal
light in terms of a statistical mixture of single pulses,” Phys. Rev. A 91, 063813
(2015).
62A. Ishizaki and Y. Tanimura, “Nonperturbative non-Markovian quantum mas-
ter equation: Validity and limitation to calculate nonlinear response functions,”
Chem. Phys. 347, 185–193 (2008).
63Y. Tanimura and S. Mukamel, “Description of nonlinear optical response using
phase space wave packets,” J. Phys. Chem. 97, 12596–12601 (1993).
64G. Mahan,Many-Particle Physics (Kluwer Academic, New York, 2000).
65Q. Shi, L. Chen, G. Nan, R.-X. Xu, and Y. Yan, “Efficient hierarchical Liouville
space propagator to quantum dissipative dynamics,” J. Chem. Phys. 130, 084105
(2009).
66A. Ishizaki and G. R. Fleming, “On the adequacy of the Redfield equation
and related approaches to the study of quantum dynamics in electronic energy
transfer,” J. Chem. Phys. 130, 234110 (2009).
67T. Förster, “Delocalized excitation and excitation transfer bulletin No. 18,”
Technical Report No. FSU-2690-18, Department of Chemistry, Florida State
University, Tallahassee, 1964.
68S. Jang, Y. Jung, and R. J. Silbey, “Nonequilibrium generalization of Förster–
Dexter theory for excitation energy transfer,” Chem. Phys. 275, 319–332
(2002).
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AFFILIATIONS

1Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade,

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
2Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic

a)Author to whom correspondence should be addressed: veljko.jankovic@ipb.ac.rs
b)Electronic mail:mancal@karlov.mff.cuni.cz

ABSTRACT

We formulate a comprehensive theoretical description of excitation harvesting in molecular aggregates photoexcited by weak inco-
herent radiation. An efficient numerical scheme that respects the continuity equation for excitation fluxes is developed to com-
pute the nonequilibrium steady state (NESS) arising from the interplay between excitation generation, excitation relaxation, dephas-
ing, trapping at the load, and recombination. The NESS is most conveniently described in the so-called preferred basis in which
the steady-state excitonic density matrix is diagonal. The NESS properties are examined by relating the preferred-basis description
to the descriptions in the site or excitonic bases. Focusing on a model photosynthetic dimer, we find that the NESS in the limit of
long trapping time is quite similar to the excited-state equilibrium in which the stationary coherences originate from the excitation–
environment entanglement. For shorter trapping times, we demonstrate how the properties of the NESS can be extracted from the
time-dependent description of an incoherently driven but unloaded dimer. This relation between stationary and time-dependent pictures
is valid, provided that the trapping time is longer than the decay time of dynamic coherences accessible in femtosecond spectroscopy
experiments.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029918., s

I. INTRODUCTION

The observation of unexpectedly long-lived oscillatory fea-
tures of ultrafast spectroscopic signals measured on photosynthetic
pigment–protein complexes1,2 has generated much excitement dur-
ing the past decade. The idea that (dynamic) coherences modu-
lating these signals may be directly relevant to natural light har-
vesting,3,4 which is triggered by stationary incoherent sunlight,5,6

has been driving intense research activities in the field.7,8 Insights
from ultrafast spectroscopies are indispensable in determining the
underlying Hamiltonian of the system under investigation, from
which the dynamics of excitation energy transfer (EET) under
any excitation condition may be inferred (as long as the excita-
tion is sufficiently weak).6,7,9–11 A number of experimental1,2 and
theoretical12,13 studies speculating about a positive impact of
coherences and entanglement on the biological EET have been

performed on the so-called unloaded systems. Such systems fea-
ture no transmission of photoinduced excitations to the reaction
center (RC or load) from which the excitation energy is eventually
harvested. Furthermore, the time scales addressed in these stud-
ies are generally much shorter than those representative of exci-
ton recombination, either radiative or nonradiative.14 Direct exper-
imental insights into the dynamics of molecular aggregates initiated
by incoherent light are limited.15 Therefore, at present, the possi-
ble relevance of some sort of quantum coherence for EET under
natural conditions is best examined within appropriate theoretical
models.

Such models should contain a realistic description of pho-
toexcitation by natural incoherent light, whose intensity is essen-
tially constant from the molecular viewpoint. Thus, the physi-
cally plausible description of natural light harvesting should feature
continuous generation of electronic excitations by light, their
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continuous delivery to the RC, and their continuous loss by recom-
bination.6,16–20 The EET is then studied from the standpoint of
nonequilibrium steady states (NESSs), which arise as a result of
excitation photogeneration, phonon-induced relaxation, dephasing,
trapping at the RC, and recombination. Furthermore, the cou-
pling between the radiation and absorbing pigments is, in gen-
eral, weak so that its second-order treatment is reasonable. Then,
the only information we need about the radiation is its first-
order correlation function,9 which can be either modeled by appro-
priate expressions9,21 or obtained by a suitable ensemble aver-
age.21,22 Excitation and de-excitation events can be treated within
the Born–Markov approximation23 by Lindblad dissipators24,25 or
by establishing the Bloch–Redfield quantum master equation.17,26

Approaching the problem from the perspective of open quantum
systems, one can introduce an appropriate spectral density of light–
matter coupling20,27–29 and possibly treat it even beyond the second
order.29

Reasonable models of photosynthetic EET should not over-
look the non-Markovian interplay between photoinduced electronic
excitations and nuclear reorganization processes,30,31 whose rele-
vance is emphasized by ultrafast spectroscopic studies. To that end,
a number of studies attempt to combine an explicit treatment of
the photoexcitation step with a nonperturbative approach to the
excitation–environment coupling.24,25,29,32–34 The method of choice
for an exhaustive treatment of excitation–environment coupling are
hierarchical equations of motion (HEOM).35,36 In the accompanying
paper,34 we combine HEOMwith a second-order treatment of light–
matter coupling for light of arbitrary properties. Our method cor-
rectly captures light-induced reorganization processes and nonequi-
librium evolution of the bath between the two interactions with
light.

Recently, a number of groups have suggested that station-
ary coherences in the energy basis (interexciton coherences) or
local basis (intersite coherences) under incoherent illumination
may improve the light-harvesting efficiency in photosynthetic sys-
tems.17,37–39 However, the majority of the existing theoretical
approaches to NESSs in photosynthetic light harvesting typically
feature a simplified treatment of the photoexcitation18,19,40 or a sim-
plified treatment of excitation relaxation and dephasing.17,18,38–40

Also, efficient algorithms that avoid the explicit temporal propaga-
tion in the computation of NESSs induced by natural incoherent
light have just begun to be developed.41 Therefore, there is still an
urge to construct theoretical methods that circumvent the disparity
between the time scales of EET dynamics and incoherent excitation
sources and yet meet the two requirements outlined in the above
text.

Another pertaining issue is the origin of stationary coher-
ences, i.e., whether they are primarily induced by incoherent radi-
ation or by the coupling to the protein environment. The authors
of Ref. 29 argued that the NESS coherences ultimately stem from
the entanglement of electronic excitations with the environment.
This entanglement has been systematically studied both analyti-
cally42,43 and numerically42,44 within the undriven and unloaded
spin–boson model. The two-level system displays noncanonical
equilibrium statistics,45,46 whose deviation from the canonical equi-
librium statistics can be conveniently measured by a single param-
eter.42 This parameter can be interpreted as the angle by which
the basis in which the system’s Hamiltonian (or the system–bath

interaction Hamiltonian) is diagonal should be rotated to obtain
the diagonal reduced density matrix (RDM). The basis in which
the RDM is diagonal is thus singled out by the environment,
and the corresponding basis states are known as the preferred (or
pointer) states within the framework of the decoherence theory.47,48

The concept of preferred basis is useful whenever representation-
dependent issues, such as the ones we are after in this study,
arise.

In this paper, we extend the ideas developed in Ref. 42 to
examine the properties of the NESS that arise in an incoherently
driven and loaded excitonic aggregate. Adapting the algorithm pre-
sented in Ref. 49, we devise a procedure to find the NESS of our
recently proposed HEOM that incorporates incoherent photoex-
citation34 and to properly define light-harvesting efficiency under
incoherent illumination. Our theoretical approach fully respects the
continuity equation for excitation fluxes. The NESS is most con-
veniently described in the so-called preferred basis in which the
steady-state RDM is diagonal. Such a description of a driven and
loaded aggregate may be regarded as analogous to the normal-mode
description of a system of coupled harmonic oscillators. While our
theoretical method is quite general and applicable to arbitrary exci-
tonic networks, we investigate the properties of the NESS using the
appropriately parameterized model dimer. For realistic values of the
load extraction time, we conclude that light-induced coherences are
completely irrelevant in the NESS, which is then close to the non-
canonical equilibrium of the undriven and unloaded dimer. We find
that the NESS of the driven and loaded dimer is intimately related
to the dynamics of the driven but unloaded dimer, which takes place
on the time scale of the excitation trapping at the load. This close
connection between the dynamic and stationary picture is correct,
provided that the load extraction time is longer than the time scale
of coherence dephasing, which is, in principle, accessible in ultrafast
spectroscopies.

This paper is structured as follows: The model and method are
presented in Secs. II and III, respectively. In Sec. IV, we discuss the
relation of the preferred-basis description of the NESS to more stan-
dard descriptions conducted in the site or excitonic basis. Section V
presents numerical results with an emphasis on the relation between
the time-dependent and stationary picture. In Sec. VI, we outline
how the methodology presented in this work could be applied to
multichromophoric systems. Section VII concludes this paper by
summarizing its principal findings.

II. MINIMAL MODEL

We consider the simplest EET system, a molecular aggregate
composed of two mutually coupled chromophores (a dimer and
a spin–boson-like model50). Although a similar model has been
repeatedly used by many authors to gain insight into fundamen-
tals of light harvesting under incoherent illumination,17,19,29,38,39,51,52

our analysis uses a rigorous theoretical approach to investigate in
greater detail certain properties of the NESS that have not received
enough attention so far. The dimer system can be considered as
the minimal model of a photosynthetic antenna with delocalization
in which one can study the effects of energy relaxation, dephas-
ing, and (static) disorder in local transition energies (the so-called
asymmetric dimer, see Sec. V A). To be specific, we speak about
the model dimer, while we note that the model and the method to
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be presented are quite general and applicable to multichromophoric
situations.

Electronic excitations of the model dimer are modeled within
the Frenkel exciton model,53,54 and the corresponding Hamiltonian
reads as

HM ≙∑
j

εj∣lj⟩⟨lj∣ +∑
jk

Jjk∣lj⟩⟨lk∣. (1)

In Eq. (1), |lj⟩ is the singly excited state localized on chromophore
j and εj is its vertical excitation energy, while Jjk are resonance cou-
plings (we take Jkk ≡ 0). We limit our discussion to the manifold of
singly excited states, which is justified under the assumption that the
driving by the radiation is sufficiently weak. The aggregate is in con-
tact with the thermal bath, which represents its protein environment
and is modeled as a collection of independent oscillators labeled by
site index j and mode index ξ,

HB ≙∑
jξ

h̵ωξb
†

jξbjξ . (2)

The phonon creation and annihilation operators b†

jξ
and bjξ entering

Eq. (2) satisfy Bose commutation relations. The aggregate is driven
by weak radiation, and the generation of excitations is described in
the dipole and rotating-wave approximations,

HM−R ≙ −μeg ⋅ E
(+)
− μge ⋅ E

(−). (3)

In Eq. (3), operators E(±) are the positive- and negative-frequency
part of the (time-independent) operator of the (transversal) elec-
tric field, while the eg part of the dipole-moment operator
reads as

μeg ≙ μ
†

ge ≙∑
j

dj ∣lj⟩⟨gj∣. (4)

We assume that transition dipole moment dj of chromophore j does
not depend on nuclear coordinates (Condon approximation). The
interaction of photoinduced excitations with the environment is
taken to be in Holstein form, i.e., it is local and linear in oscillator
displacements,

HM−B ≙∑
j

∣lj⟩⟨lj∣∑
ξ

gjξ(b†

jξ + bjξ) ≡∑
j

Vjuj. (5)

We assume that there are two possible channels through which
photogenerated excitons may decay. The first one is their transfer to
the charge-separated state in the RC, the case in which they are use-
fully harvested. On the other hand, exciton recombination, either
radiative or nonradiative, is detrimental to the efficiency of EET.
While our description of exciton photogeneration and the subse-
quent phonon-induced relaxation is exact (see Sec. III and Ref. 34),
the description of exciton trapping by the RC and exciton recom-
bination is only effective and relies on the results of more elab-
orate treatments performed in Refs. 55 and 56. There, it is real-
ized that EET from one chromophore to another, as well as the
radiative decay to the ground state, is actually mediated by the
bath of environmental photons. Performing a second-order treat-
ment of the appropriate interaction Hamiltonians, one ends up with

effective Liouville superoperators LRC and Lrec that describe the
excitation trapping and recombination on the level of reduced exci-
tonic dynamics, respectively. In Secs. III and IV, we provide more
details in the form of these effective Liouvillians and the manner in
which they enter our description.

III. METHODS

We use our exact description of weak-light-induced exciton
dynamics in molecular aggregates, which is developed in the accom-
panying paper.34 The radiation correlation function, which is the
only property of the radiation entering our reduced description, is
modeled by the following expression:57

G
(1)(τ) ≙ ⟨E(−)(τ)E(+)(0)⟩

R
≙ I0 exp(iωcτ − τ/τc), (6)

where I0, ωc, and τc are the intensity, central frequency, and coher-
ence time of the radiation, respectively. The radiation is assumed
to have well defined directions of propagation and polarization.
The weak-light assumption underlying our theoretical approach is
well satisfied in a wide variety of photosynthetically relevant situa-
tions. For example, for a bacteriochlorophyll molecule irradiated by
ambient sunlight, the excitation–light interaction may be estimated
to be of the order of 10−3 cm−1 (see the accompanying paper34

and Ref. 25). This energy scale is much smaller than the typical
energy scales (∼10 cm−1–100 cm−1) of resonance couplings or the
excitation–environment coupling. Also, the number of photons per
unit time incident on a single photosynthetic complex under sun-
light at the surface of the Earth can be estimated to be of the order
of 1000 s−1 (see the accompanying paper34 and Ref. 20). In other
words, the corresponding time scale is orders of magnitude longer
than time scales typical for excitation transport, trapping at the load,
and recombination.

For the sake of simplicity, we assume that the baths on both
sites are identical, but uncorrelated. The bath correlation function,
which is the only property of the bath entering the reduced descrip-
tion, can be decomposed into the optimized exponential series58

(t ≥ 0),

C(t) ≙ ⟨uj(t)uj(0)⟩B ≙ K−1

∑
m=0

cm e−μmt + 2Δδ(t). (7)

In Eq. (7), the collective bath coordinate uj is defined in Eq. (5) and
the expansion coefficients cm may be complex, while the correspond-
ing decay rates μm, as well as the white-noise-residue strength Δ, are
assumed to be real and positive. The bath correlation function is usu-
ally expressed in terms of the environmental spectral density J(ω)
[β ≙ (kBT)−1, where T is the temperature],

C(t) ≙ h̵

π ∫
+∞

0
dω J(ω) eiωt

eβh̵ω − 1
, (8)

which conveniently combines information on the density of
environmental-mode states and the respective coupling strengths to
electronic excitations.53,54 We explicitly treat only K = NBE + NJ

terms in Eq. (7), where NBE and NJ are the numbers of explicitly
treated poles of the Bose–Einstein function and the bath spectral
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density, respectively. We assume the environmental spectral density
of the overdamped Brownian oscillator,

J(ω) ≙ 2λ ωγ

ω2 + γ2
, (9)

where λ is the reorganization energy, while γ−1 is the characteristic
time scale for the decay of the bath correlation function C(t).

The exponential decompositions embodied in Eqs. (6) and (7)
enable us to formulate the problem as HEOM incorporating pho-
toexcitation. As demonstrated in Ref. 34, the hierarchy consists of
two parts: one in the eg sector and another in the ee sector. Each
density matrix σn(t) is uniquely characterized by vector n of non-
negative integers nj ,m, where index j enumerates chromophores,
while index m counts terms in the decomposition of C(t) [Eq. (7)].
In order to describe excitation harvesting by the RC and recombina-
tion, we augment our formalism by effective Liouvillians describing
these two processes. As demonstrated in Ref. 55, these Liouvillians
appear on each level of HEOM. Performing the appropriate rescal-
ings, which ensure that auxiliary density operators (ADOs) are all
dimensionless and consistently smaller in deeper levels of the hier-
archy,59 we obtain the following equations describing the NESS we
are interested in (γn =∑j ,mnj ,mμm):

0 ≙ −
i

h̵γ
[HM , σ

ss
eg,n] − γn

γ
σsseg,n + (iωc

γ
− (τcγ)−1)σsseg,n

−
Δ

h̵2γ
∑
j

Vjσ
ss
eg,n + δn,0

i

h̵γ
I0μeg

+ i∑
j

K−1

∑
m=0

√
1 + nj,m

¿ÁÁÀ ∣cm∣(h̵γ)2Vjσ
ss
eg,n+j,m

+ i∑
j

K−1

∑
m=0

√
nj,m

cm/(h̵γ)2√∣cm∣/(h̵γ)2Vjσ
ss
eg,n−j,m

, (10)

0 ≙ −
i

h̵γ
[HM , σ

ss
ee,n] − γn

γ
σssee,n −

Δ

h̵2γ
∑
j

V
×

j V
×

j σ
ss
ee,n

+
i

h̵γ
μeg σ

ss†
eg,n −

i

h̵γ
σsseg,n μ

†
eg + γ

−1
Lrec∥σssee,n∥

+ γ−1LRC∥σssee,n∥ + i∑
j

K−1

∑
m=0

√
1 + nj,m

¿ÁÁÀ ∣cm∣(h̵γ)2 V
×

j σ
ss
ee,n+j,m

+ i∑
j

K−1

∑
m=0

√
nj,m

cm/(h̵γ)2√∣cm∣/(h̵γ)2 Vjσ
ss
ee,n−j,m

− i∑
j

K−1

∑
m=0

√
nj,m

c∗m/(h̵γ)2√∣cm∣/(h̵γ)2 σssee,n−j,mVj. (11)

In the NESS, the continuity equation for exciton currents
should be valid, i.e., the number of generated excitons per unit time
must balance the sum of the recombination and trapping exciton
fluxes. This is physically clear, and it is seen from a more formal per-
spective by taking the trace (with respect to the electronic system of
interest) of Eq. (11) in which n = 0. This results in

Jgen − JRC − Jrec ≙ 0. (12)

In the continuity equation [Eq. (12)], we define all currents to be
positive, while the sign is determined by the “direction” of the cur-
rent (± if it leads to an increase/a decrease in the exciton number).
In more detail, the definitions of currents, which are dimensionless
in our description, are

Jgen ≙
2

h̵γ
Im TrM{σsseg,0μ†

eg}, (13)

JRC ≙ −γ
−1TrM{LRC[σssee,0]}, (14)

Jrec ≙ −γ
−1TrM{Lrec[σssee,0]}. (15)

Let us immediately note that currents Jgen, JRC, and Jrec are
written in a basis-invariant manner. This feature is quite appeal-
ing, since one can express currents in terms of populations and
coherences in any particular basis. The light-harvesting efficiency is
defined as

η ≙
JRC

Jgen
. (16)

As discussed in the accompanying paper34 and in Sec. VI, for realistic
values of the light coherence time τc ∼ 1 fs, the expression for the
generation current may be further simplified to

Jgen ≙ 2
I0γτc(h̵γ)2 TrM{μeg ∣g⟩⟨g∣μge}. (17)

In other words, possible enhancements in η due to coherences in
any basis ultimately originate from the expression for the trapping
Liouvillian LRC, as detailed in Sec. IV.

IV. DIFFERENT BASES

In the literature on the physics of photosynthetic light harvest-
ing, two bases play special roles. The first one is basis {|lj⟩| j} of singly
excited states localized on single chromophores (local or site basis).
While Hamiltonian parameters are usually known in the local basis,
the description of absorption properties of a photosynthetic aggre-
gate is usually performed in the excitonic basis {|xj⟩| j}, i.e., in the
basis of stationary states of the isolated-aggregate Hamiltonian HM .
Claims about possible impact of coherences on the efficiency of pho-
tosynthetic light harvesting are usually made with the coherences in
the excitonic or local basis in mind.

Tomasi and Kassal have recently classified different types
of possible coherent enhancements of light harvesting efficiency
according to the basis in which the excitation decay mechanisms
are defined.37 Let us now focus on the trapping at the RC. Two
forms for the Liouvillian LRC∥ρ∥ are widely used in the litera-
ture.17,19,38–40 If site j0 is closest to the RC so that it is essentially
the sole site coupled to it, one uses the so-called localized-trapping
Liouvillian,17,19,40

L
loc
RC∥ρ∥ ≙ τ−1RC(∣RC⟩⟨lj0 ∣ρ∣lj0⟩⟨RC∣ − 1

2
{∣lj0⟩⟨lj0 ∣, ρ}), (18)
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where τRC is the characteristic time scale on which the populations
are delivered from site j0 to the RC. However, even in such a situa-
tion, the excitation transfer to the RC should be regarded as the mul-
tichromophoric Förster transfer60,61 so that it is more appropriate to
employ the so-called delocalized-trapping Liouvillian,17,40

L
deloc
RC ∥ρ∥ ≙ τ−1RC∑

j

∣⟨xj∣lj0⟩∣2(∣RC⟩⟨xj∣ρ∣xj⟩⟨RC∣ − 1

2
{∣xj⟩⟨xj∣, ρ}).

(19)

The recombination occurs due to both radiative and nonra-
diative processes. In other words, the lifetime of chromophores’
excited states is determined not only by the fluorescent decay
but also to a great extent by the conversion of the singlet states
to triplets. While the radiative recombination is most naturally
described in the excitonic basis, the nonradiative processes likely
occur in a different basis of states, depending on how the triplet
states are coupled among themselves. Overall, it is not possi-
ble to say that recombination occurs straightforwardly in nei-
ther the delocalized nor local basis. For definiteness, we assume
that the (nonradiative) recombination may occur from each site
with the same rate constant τrec, and the appropriate Liouvillian
reads as

L
loc
rec∥ρ∥ ≙ τ−1rec∑

j

(∣g⟩⟨lj∣ρ∣lj⟩⟨g∣ − 1

2
{∣lj⟩⟨lj∣, ρ}). (20)

The fact that we have chosen the local version of the recombination
should not, however, influence our results because the recombina-
tion process is generally much slower than every other process and
it occurs on the time scale of nanoseconds, i.e., several orders of
magnitude slower than trapping and other processes (see Sec. V). In
situations in which the radiative decay is the major loss channel, it
may be more appropriate to consider the recombination Liouvillian
in the excitonic basis,

L
deloc
rec ∥ρ∥ ≙∑

j

τ−1j (∣g⟩⟨xj∣ρ∣xj⟩⟨g∣ − 1

2
{∣xj⟩⟨xj∣, ρ}), (21)

where τ−1j is the Weisskopf–Wigner spontaneous emission rate25

from excitonic state |xj⟩.
If we assume the trapping at the RC to be governed by Eq. (18),

the trapping current JRC in Eq. (14) depends only on site popula-
tions and on both exciton populations and interexciton coherences.
If, on the other hand, we assume that the trapping is governed
by Eq. (19), JRC is expressed in terms of exciton populations only,
while its expression in the local basis contains both site popula-
tions and intersite coherences. This has been recognized in recent
studies, which ascertain that possible coherent enhancements of the
efficiency can be achieved only when the coherence occurs in a
basis different from that in which the trapping or recombination is
modeled.17,37

However, we feel that the notion of coherent efficiency
enhancements is not defined well enough. The word “enhancement”
would suggest that there is a reference value of the efficiency (which
should be smaller than unity) with respect to which we can expect
to achieve an enhancement. Moreover, since the enhancement is
supposed to be coherent, one could imagine that the aforemen-
tioned reference value should depend on populations only so that

the subsequent inclusion of coherences should enhance the effi-
ciency above that reference value. Whatever the form of the effective
trapping and recombination Liouvillians is, there will always be a
basis in which JRC is entirely expressed in terms of basis-state pop-
ulations only. Such a basis will be denoted as {|pj⟩| j} and termed
the preferred basis of the NESS under investigation. The trapping
current is then expressed only in terms of the RDM diagonal ele-
ments so that the efficiency value calculated in the preferred basis
could be regarded as the reference value above which coherent
enhancements due to non-zero values of coherences in some other
basis (e.g., in the local or excitonic basis) may be possible. How-
ever, our definition of the efficiency [Eq. (16)] is basis-independent,
and the fact that the coherences in the excitonic or local basis
are non-zero should not be expected to bring about any efficiency
enhancements.

While the above discussion about coherent efficiency enhance-
ments is quite general, it will not be the main topic of our numerical
investigations, which focus on a model photosynthetic dimer and
in which the efficiency is close to unity (see Sec. V A). Our cen-
tral question is how the stationary state of the incoherently driven
and loaded molecular system looks like and how it relates to the
two standard pictures: the picture of local states and the delocalized-
states picture. Nevertheless, to the best of our knowledge, our work is
among the first works that properly describe the principal physical
features of excitation harvesting under incoherent light and prop-
erly define the light-harvesting efficiency.20,38,39 The arguments of
the previous paragraph suggest that, once a proper description of
the state in which the photosynthetic systems under incoherent illu-
mination and load find themselves, the involvement of the coher-
ences in the description of photosynthetic light harvesting should
be critically reassessed. We thus believe that future applications of
our NESS methodology to larger systems (see Sec. VI) could sig-
nificantly contribute to the debate on possible coherent efficiency
enhancements.

The excited-state sector of the steady-state RDM ρssee in the
preferred basis reads as

ρssee ≡ σ
ss
ee,0 ≙∑

j

pj ∣pj⟩⟨pj∣. (22)

The preferred basis is determined by the competition between
excitation generation, pure dephasing, energy relaxation, excitation
trapping at the RC, and recombination.

The excitonic (or site) basis and the preferred basis of the NESS
are connected through a unitary transformation. For our model
dimer, the most general transformation of that kind can be param-
eterized by four real parameters so that the basis vectors in the
preferred basis are expressed in terms of the basis vectors in the
excitonic basis as follows:62

(∣p0⟩∣p1⟩) ≙ eiφpx/2(
eiψpx 0

0 e−iψpx
)( cos θpx sin θpx

− sin θpx cos θpx
)⎛⎝e

iΔpx 0

0 e−iΔpx

⎞⎠(∣x0⟩∣x1⟩).
(23)

Due to the phase freedom, we can immediately remove parame-
ters φpx and ψpx from further discussion so that we are left with
only two parameters, θpx and Δpx. From our subsequent discussion,
it will emerge that the rotation angle θpx is closely related to the
analogous rotation angle, which measures the deviation from the
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non-canonical statistics in the undriven and unloaded system (no
generation, trapping, and recombination).42 The phase Δpx is inti-
mately connected to the rates of excitation trapping and recombina-
tion, which remove excitations from the system.

The parameters θpx and Δpx can be related to the Bloch angles
θxB and ϕ

x
B that are commonly used to characterize the basis in which

the RDM is diagonal.42,44 Specifically, one can always normalize ρssee
to obtain ρ̃ ss

ee whose trace is unity and whose eigenvalues will be
denoted as p̃j. For the model dimer, the operator ρ̃ ss

ee can always be
expressed as

ρ̃ ss
ee ≙

1

2
(I + a ⋅ σ), (24)

where I is the 2 × 2 unity matrix, while σ = {σ1, σ2, σ3} are three Pauli
matrices. Let σ3 be diagonal in the excitonic basis (i.e., σ3 = |x0⟩⟨x0|
− |x1⟩⟨x1|) and let ax be the corresponding vector in Eq. (24). Then,
it can be shown that the spherical angles θxB and ϕxB on the Bloch
sphere are related to parameters θpx and Δpx as follows:

cos θxB ≙
ax3∣ax∣ ≙ sgn(2p̃0 − 1) ⋅ cos(2θpx), (25)

tanϕxB ≙
ax2
ax1
≙ − tan(2Δpx). (26)

Equations (25) and (26) relate θpx and Δpx to the Bloch angles θ
x
B and

ϕxB, respectively, that are straightforwardly obtained from vector ax.
In a similar manner, one obtains parameters θpl and Δpl of the uni-
tary transformation that connects the preferred and the local basis.
The rotation angle θpx can always be chosen in the range (0, π/4),
while Δpx ∈ (−π/4, π/4). This is discussed in greater detail in Sec. SI
of the supplementary material.

V. NUMERICAL RESULTS

A. Model parameterization and numerical
implementation

Numerical computations are performed on an asymmetric
dimer, which is schematically presented in Fig. 1. The parameters
of our model are summarized in Table I.

In brief, we selectively and resonantly (h̵ωc = ε0) excited site
0 by weak-intensity radiation whose coherence time τc assumes
the value representative of the natural sunlight.63,64 Such a selec-
tive excitation of one site was also a feature of previous studies on
model dimers.17,19 As mentioned in Sec. III, the propagation direc-
tion and the polarization vector of the radiation are assumed to be
well defined.While the transition dipolemoment of site 1 is assumed
to be orthogonal to the polarization vector, the magnitude of the
projection of the transition dipole moment of site 0 onto the polar-
ization vector will be further denoted as deg . While we assume the
selective excitation of site 0, the excitation trapping at the load is
modeled by Eq. (18) or Eq. (19) in which we assume that the load
is coupled only to site 1, i.e., j0 = 1 in Eqs. (18) and (19). Such an

assumption is motivated by our wish to include the spatial trans-
fer of excitations within our dimer model. The difference Δε01 = ε0
− ε1 between the local energy levels, resonance coupling J01, and bath
relaxation time γ−1 assumes values typical of the Fenna–Matthews–
Olson (FMO) complex.65,66 The value of the recombination time

FIG. 1. Scheme of the model dimer. The electronic parameters of the dimer are
the resonance coupling J01 and the difference between the local energy levels
Δε01. The dimer is excited by thermal light (schematically represented by Sun and
chaotic signal) characterized by the central frequency ωc and coherence time τc

[see Eq. (6)]. The transition dipole moment of site 1 is assumed to be perpendicular
to the radiation polarization vector, whereas the magnitude of the projection of
the transition dipole moment of site 0 onto the polarization vector is deg. Each
chromophore is in contact with its thermal bath (schematically represented by the
motion lines below chromophore numbers) characterized by the reorganization
energy λ, correlation time γ−1, and temperature T [see Eqs. (8) and (9)]. The time
scale of the excitation harvesting, which is governed by Eq. (18) or Eq. (19), is τRC.
The time scale of the excitation loss in recombination events, which is governed
by Eq. (20), is τrec.

constant τrec is chosen on the basis of the measured exciton life-
time in the FMO complex67,68 and is similar to the value used in
previous theoretical studies.17,19,40,69 Let us note that the recombina-
tion time scale is significantly longer than all other time scales in the
problem. Also, in our model dimer, it is quite unlikely that an exci-
tation would be prevented from reaching the RC during its lifetime.
Therefore, the recombination is not probable, the precise value of
τrec is not important, and the light-harvesting efficiency will always
be close to 1 in the model dimer.19,38 The recombination is explicitly
treated in order to formulate the continuity equation [Eq. (12)], and
the efficiency η is not of primary interest in this work, which will be
focused on other relevant properties of the NESS. Within our sim-
plified model, there is a certain level of arbitrariness in the choice

TABLE I. Values of model parameters used in computations.

Δε01 (cm
−1) 100

J01 (cm
−1) 100

γ−1 (fs) 100
T (K) 300
h̵ωc ε0
τc (fs) 1.3
τrec (ns) 1.0
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of the appropriate value of τRC. Specifically, a more elaborate treat-
ment of excitation harvesting should explicitly consider both the
forward and backward excitation transfer from the absorbing aggre-
gate to the state of the primary electron donor in the RC, as well
as the primary charge separation, after which the excitation may
be considered as usefully harvested.70–72 Previous theoretical works
employing a simplified description of excitation harvesting, as we do
here, typically assumed that τRC is of the order of picoseconds.66,69

On the other hand, experiments on various species of photosyn-
thetic bacteria, as well as computational studies, suggest that the
appropriate value of our parameter τRC may be as large as a couple
of tens of picoseconds.71,73–75 The reported values of the reorgani-
zation energy in the FMO complex range from tens to hundreds
of inverse centimeters.75–77 Having all these things considered, the
values of τRC and λ will be varied in wide yet physically relevant
ranges in order to examine how they impact the properties of the
NESS.

The NESS is obtained by solving coupled Eqs. (10) and (11) by
adapting the algorithm that was introduced in Ref. 49. The computa-
tional approach of Ref. 49 was developed to compute the equilibrium
RDM of an undriven and unloaded system and it relies on the Jacobi
iterative procedure to solve a diagonally dominant system of linear
algebraic equations. The procedure is repeated until a convergence
criterion, which, in Ref. 49, was related to the magnitude of the ADO
elements, is satisfied. Here, we deal with a driven and loaded sys-
tem, and our computations are terminated once the continuity equa-
tion [Eq. (12)] is satisfied with a desired numerical accuracy. More
details on our numerical scheme to compute the NESS of a driven
and loaded dimer can be found in Sec. SII of the supplementary
material.

B. Results: Long trapping times

Figures 2 and 3 summarize the dependence of the parameters
of the unitary transformation between the preferred and excitonic
(local) basis on the reorganization energy and the trapping time at
the RC. The trapping is assumed to be governed by the localized
Liouvillian [see Eq. (18)], while the recombination is described by
the Liouvillian in Eq. (20). When the trapping at the RC is so slow
that τRC is (much) longer than characteristic time scales for exci-
tation dephasing and energy relaxation, phases Δpx and Δpl tend to
zero [see Figs. 2(a) and 3(a) for τRC ∼ 20 ps–100 ps]. These time
scales are still much shorter than those relevant for recombination.
Therefore, the obtained NESS is expected to be quite similar to the
equilibrium state of an undriven and unloaded aggregate.29 To con-
firm this expectation, in Figs. 4(a) and 4(b), we plot angles θpx and θpl
as functions of the reorganization energy for different values of τRC.
We conclude that, as τRC is increased, angles θpx and θpl tend to the
values specific to the thermal equilibrium of undriven and unloaded
dimers (in which we may formally identify τRC, τrec → +∞). For
small reorganization energies, angle θpx tends to zero [see Fig. 4(a)],
and the preferred basis is close to the excitonic basis. At the same
time, the limiting value reached by θpl as the reorganization energy is
decreased [see Fig. 4(b)] corresponds to the angle of the rotation by
which the excitonic basis is transformed into the local basis (themix-
ing angle θxl is given as tan(2θxl) = 2J01/Δε01). As the reorganization
energy is increased, the preferred basis continuously changes from
the excitonic basis [in which HM is diagonal, see Eq. (1)] toward

FIG. 2. Dependence of transformation parameter (a) Δpx and (b) θpx between the
preferred and excitonic basis on the reorganization energy λ and the trapping time
τRC at the RC. Trapping at the RC is governed by the localized-trapping Liouvillian
[Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20). Both
axes feature logarithmic scale and the scale of the color bar in (a) is linear, while
that of the color bar in (b) is logarithmic. The maximal value on the color bar in (a)
is π/4.

the local basis [in which HM–B is diagonal, see Eq. (5)].
42 Therefore,

the magnitude of θpx increases [see Fig. 4(a)], while the magnitude
of θpl decreases [see Fig. 4(b)] with the increase in reorganization
energy.

C. Results: Short trapping times. Relation
between stationary and time-dependent pictures

On the other hand, when the trapping at the RC is faster, phases
Δpx and Δpl increase in magnitude [see Figs. 2(a) and 3(a)], while the
values of angles θpx and θpl start to deviate from the respective values
in the thermal equilibrium [see Figs. 2(b) and 3(b)]. These devia-
tions are more pronounced as the trapping time is decreased and
the reorganization energy is increased [see the lower right corners of
Figs. 2(b) and 3(b)]. At the same time, the magnitude of phase Δpx
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FIG. 3. Dependence of transformation parameter (a) Δpl and (b) θpl between the
preferred and local basis on the reorganization energy λ and the trapping time
τRC at the RC. Trapping at the RC is governed by the localized-trapping Liouvillian
[Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20). Both
axes feature logarithmic scale and the scale of the color bar in (a) is linear, while
that of the color bar in (b) is logarithmic. The maximal value on the color bar in (b)
is π/4.

is large in the region of fast trapping and relatively small reorganiza-
tion energy [see the lower left corner in Fig. 2(a)], while the increase
that |Δpl| displays as the trapping time is reduced is virtually the same
for all considered values of reorganization energy [see Fig. 3(a)].
It was suggested that the trapping time practically determines the
temporal frame in which the intrinsic dimer’s dynamics is interro-
gated.29 It is therefore interesting to examine if the dependence of
the transformation parameters between the excitonic (or site) and
the preferred basis of the NESS on the trapping time (vertical cuts
in Figs. 2 and 3) can somehow be recovered from the dynamics
of the unloaded dimer initiated by suddenly turned-on incoherent
light.

To gain some intuition on the relation between the station-
ary and time-dependent pictures, let us consider the differential
equation

FIG. 4. Dependence of transformation parameter (a) θpx (between the preferred
and excitonic basis) and (b) θpl (between the preferred and site basis) on the
reorganization energy λ for fixed values of the trapping time at the RC (τRC = 25
ps, 50 ps, and 100 ps) and for the undriven and unloaded dimers (formally, τRC,
τrec → +∞). Trapping at the RC is governed by the localized-trapping Liouvillian
[Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20).

df (t)
dt
≙ G −Df (t). (27)

This equation models the system, characterized by quantity f, that
is subjected to continuous pumping (source term G) and contin-
uous decay (decay rate D). It resembles the equation for the total
excited-state population that may be obtained by taking the trace
of the temporal counterpart of Eq. (11) for n = 0 (on the level of
the RDM). The stationary point of Eq. (27) is f ss = G/D. If one
considers the driven system in the absence of decay channels, its

dynamics is governed by df ul(t)
dt
≙ G (the superscript “ul” specifies

that the system is unloaded). To solve the last equation, we assume
that the driving is suddenly turned on at instant t = 0 and that the
initial condition is f ul(0) = 0 (which would correspond to the initially
unexcited system). One immediately realizes that f ul(D−1) = f ss,
i.e., the steady-state solution f ss under constant driving and decay
can be obtained from the temporal evolution f ul(t) of the driven sys-
tem without decay channels at instant t = D−1 corresponding to the
characteristic decay time.
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In the following, we develop the above-described simple argu-
ment in the situation of our interest. While the argument is quite
formal, some of its parts will be specifically developed for the case
of our model dimer, and in Sec. VI, we discuss its validity in
multichromophoric situations.

Let us first note that there is a hierarchy of temporal scales char-
acteristic for the dimer’s dynamics under weak incoherent light. The
shortest time scales (roughly speaking, tens to hundreds of femtosec-
onds) stem from the intrinsic dimer’s dynamics. The time scale of
the trapping at the load is of the order of 1 ps–10 ps in the pho-
tosynthetically relevant range of parameters. The longest time scale
characterizes the excitation loss by recombination, and it is of the
order of nanoseconds. The assumption of weak light actually means
that the radiation is so weak that the number of incident photons
per unit time is very small and the corresponding time scale is the
longest time scale in the problem (we may loosely say that the light
intensity is so low that the absorption of incident radiation is the
rate-limiting process).

We now concentrate on the NESS Eqs. (10) and (11). Within
our second-order treatment of the light–matter interaction, one can
first solve Eq. (10) and obtain the steady-state in the eg sector,{σsseg,n∣n}, and then use this solution to compute the source term
in the ee sector [the third term on the RHS of Eq. (11)]. Given the
known source term in the ee sector, which will be denoted as G,
Eq. (11) can be recast as

0 ≙ G − (Â + D̂)ρss, (28)

where ρss is the HEOM-space representation of the RDM and ADMs
and Â is the HEOM-space representation of the hierarchical links
between DMs [it comprises terms 1, 2, and 5–7 on the RHS of
Eq. (11)], while D̂ is the HEOM-space representation of the recom-
bination and trapping at the load [term 4 on the RHS of Eq. (11)].
Equation (28) is solved by

ρ
ss
≙ (Â + D̂)−1G. (29)

While the matrix Â is off-diagonal in the HEOM space and
non-symmetric, the matrix D̂ is diagonal in the HEOM space.What-
ever the form of the trapping and recombination Liouvillians is, all
the matrix elements of D̂ are of the same magnitude, ∼ τ−1RC (due
to the above-mentioned hierarchy of dimer’s temporal scales, the
recombination rate, τ−1rec, is completely irrelevant). Moreover, the
eigenvalues of matrix Â, which represent the rates of the internal
dimer’s dynamics, are much larger than τ−1RC. Therefore, computing
the inverse (Â+D̂)−1, we can regard D̂ as a small isotropic correction
to Â. In the lowest-order approximation, the spectral decomposition
of (Â + D̂)−1 can be formulated as

(Â + D̂)−1 ≈∑
k

(ak + dk)−1∣aRk ⟩⟨aLk ∣, (30)

where ak, ∣aRk ⟩, and ⟨aLk ∣ are the eigenvalues and right and left eigen-

vectors of matrix Â, respectively, while dk are the elements of D̂ (they
are all approximately the same).

Let us now focus on the temporal counterparts of Eqs. (10)
and (11) in which the trapping and recombination Liouvillians

are omitted. Within our second-order treatment of the light–matter
interaction, one can first solve the dynamics in the eg sector
[Eq. (10)] and then use this solution as a known time-dependent
source term in Eq. (11), which describes the ee sector we are pri-
marily interested in. However, as advocated in the accompany-
ing paper,34 for realistic values of the light coherence time (of the
order of 1 fs for natural sunlight), this source term is approxi-
mately time-independent (see also the expression for the gener-
ation current in the limit of short coherence time of light) and
thus equal to G introduced in the above discussion. The temporal
counterpart of Eq. (11) without trapping and recombination then
reads as

∂tρ
ul(t) ≙ G − Âρul(t). (31)

Assuming that the light is abruptly turned on at t = 0 and that
ρul(0) = 0, the solution is

ρ
ul(t) ≙ ∫ t

0
ds e

−Â(t−s)
G. (32)

In the spectral representation of Â, the solution reads as

ρ
ul(t) ≙∑

k

(∫ t

0
ds e

−ak(t−s))∣aRk ⟩⟨aLk ∣G⟩. (33)

It is known from the literature78 that, for the spin–boson model
whose coupling to the environment has the overdamped Brownian
oscillator spectral density [Eq. (9)], at least one of the eigenvalues
of matrix Â is equal to zero, while non-zero eigenvalues appear in
complex conjugate pairs and have positive real parts. Assuming that
a0 = 0, the time-dependent solution for a driven but unloaded system
[Eq. (32)] can be recast as

ρ
ul(t) ≙ t∣0R⟩⟨0L∣G⟩ +∑

k≠0

1 − e−akt

ak
∣aRk ⟩⟨aLk ∣G⟩. (34)

The same observations enable us to recast the spectral form of the
NESS solution under driving and load as

ρ
ss
≈

1

d0
∣aR0 ⟩⟨aL0 ∣G⟩ +∑

k≠0

1

ak
(1 + dk

ak
)−1∣aRk ⟩⟨aLk ∣G⟩. (35)

Remembering that d0 ∼ τ
−1
RC and that |dk/ak| is sufficiently smaller

than 1 for all k ≠ 0, we can approximate e−ak/τRC ≈ 0 in Eq. (34) and(1 + dk/ak)−1 ≈ 1 in Eq. (35) to finally obtain that

ρ
ul(τRC) ≈ ρss ≈ τRC∣aR0 ⟩⟨aL0 ∣G⟩ +∑

k≠0

1

ak
∣aRk ⟩⟨aLk ∣G⟩. (36)

We have just demonstrated that the dimer’s NESS can be recon-
structed from the time evolution of the initially unexcited, driven,
but unloaded dimer at instant t ∼ τRC after a sudden turn-on
of the driving. This result establishes an interesting relationship
between the stationary (with load) and time-dependent (without
load) pictures under incoherent driving.

While the physical relevance of the sudden turn-on of incoher-
ent light may be questionable (see Ref. 6 and references therein),
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this formal argument demonstrates that there is a formal connec-
tion between this seemingly unphysical setting and theNESS picture.
However unphysical the sudden turn-on may be, the final-value the-
orem from the theory of Laplace transforms ensures that Eq. (32)
in which the load is added, i.e., Â → Â + D̂, can be used to obtain
the NESS in Eq. (29) by temporal propagation up to sufficiently long
time t → +∞.

In the following, we concentrate on a numerical demonstration
of this relationship. First, we propagate the temporal counterparts of
Eqs. (10) and (11) in which the trapping and recombination Liou-
villians are omitted [see Figs. 5(a1)–5(d2)]. The RDM elements [in
Figs. 5(a1)–5(d2), in the excitonic basis] are measured in units of
I0d

2
eg/(h̵γ)2 and not in absolute units, as is customarily done. Our

reason for choosing this unit lies in our perturbative treatment of

the interaction with light, which ensures that singly excited-state
populations and intraband coherences are proportional to the light
intensity I0 [see Eq. (6)] and to the excited-state oscillator strength
d2eg (see the caption of Fig. 1). Analyzing Eqs. (10) and (11), one

can readily conclude that I0d
2
eg/(h̵γ)2 is the natural unit to measure

populations and coherences. The absolute value of this unit may be
estimated by using the estimate for the magnitude of the excitation–

light interaction given in Sec. III,
√

I0d2eg ∼ 10−3 cm−1, so that for

the value of γ given in Table I, we obtain I0d
2
eg/(h̵γ)2 ≃ 4 × 10−10.

Second, we use the RDM σee ,0(τRC) at t = τRC to determine the trans-
formation parametersΔ and θ by virtue of Eqs. (24)–(26). The results
emerging from these real-time computations are confronted with
the results emerging from NESS computations in Figs. 5(a3)–5(d4)

FIG. 5. (a1)–(d1) Time dependence of populations of exciton states |x0⟩ (solid line) and |x1⟩ (dashed line) of the incoherently driven and unloaded model dimer for different
values of the reorganization energy. [(a2)–(d2)] Time dependence of the real (solid line) and imaginary (dashed line) parts of the interexciton coherence of the incoherently
driven and unloaded model dimer for different values of the reorganization energy. Both exciton populations and interexciton coherences are measured in units of I0d

2
eg/(h̵γ)

2.

The excitation is suddenly turned on at t = 0. Dependence of the transformation parameters Δpx [(a3)–(d3)] and θpx [(a4)–(d4)] between the excitonic basis and the preferred
basis of the NESS on the trapping time constant τRC ∈ (1, 10) ps for different values of the reorganization energy. Solid lines are computed using time traces of a driven
and unloaded model dimer at t = τRC, while squares emerge from the computation of the NESS using Eqs. (10) and (11). The scale on the abscissa (τRC) in (a3)–(d4) is
logarithmic. Trapping at the RC is governed by the localized-trapping Liouvillian [Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20). The values of
the reorganization energy are 20 cm−1 [(a1)–(a4)], 50 cm−1 [(b1)–(b4)], 200 cm−1 [(c1)–(c4)], and 400 cm−1 [(d1)–(d4)].
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for a couple of values of the reorganization energy. It is observed
that the two methods predict quite similar values of transformation
parameters Δpx and θpx for all the examined values of the reorga-
nization energy and trapping time. This result, together with the
RDM dynamics initiated by a sudden turn-on of incoherent radi-
ation, can help us better understand the dependence of Δpx and
Δpl on τRC for τRC ∼ 1 ps–10 ps. The discontinuous change from
−π/4 to π/4 that phase Δpx undergoes at around 2 ps–3 ps [see the
bright area in Fig. 2(a)] should be attributed to the fact that the
real part of interexciton coherence in an incoherently driven but
unloaded dimer becomes equal to zero at around 2 ps–3 ps [see
solid curves in Figs. 5(a2)–5(d2)]. The imaginary part of the interex-
citon coherence saturates somewhat earlier [see dashed curves in
Figs. 5(a2)–5(d2)]. As τRC is further increased,Δpx decreases because
the real part of the interexciton coherence is increasing [see also
Eq. (26)].

The relation between the NESS and RDMdynamics in real time
leans on the above-mentioned hierarchy of time scales of the dimer’s
dynamics, i.e., on the fact that the trapping time scale is long enough.
Specifically, in time traces of a driven and unloaded dimer for
t ≳ 1 ps, one observes that the behavior of both exciton populations
[Figs. 5(a1)–5(d1)] and interexciton coherences [Figs. 5(a2)–5(d2)]
displays certain steadiness. In other words, populations, as well as
the real part of the interexciton coherence, linearly increase in time,
while the imaginary part of the interexciton coherence reaches a
constant value (see also the accompanying paper).34 When the trap-
ping time constant is τRC ≳ 1 ps so that at t = τRC, the steadiness
has already been established, the dynamical quantities of a driven
but unloaded dimer may be used to quite accurately reconstruct the
NESS. On the other hand, when τRC ≲ 1 ps so that the steadiness has
not been established yet, the reconstruction of the NESS from the
quantities of a driven and unloaded dimer computed at τRC would
be less accurate. This is particularly clear for low values of the reorga-
nization energy [see Figs. 5(a3) and 5(a4)], when oscillations in the
interexciton coherence are damped on a time scale of ∼ 200 fs–300 fs
[see Fig. 5(a2)]. A similar situation can be expected for slow bath
when the bath correlation time γ−1 is long enough.35 In such cases,
the reconstruction of NESS from the dynamics of the incoherently
driven and unloaded dimer is not accurate because τRC is compara-
ble to the time scales of the intrinsic dimer’s dynamics. At this point,
it is useful to remember that the information extracted from ultra-
fast spectroscopic signals can be used to determine the Hamiltonian
parameters of the system under consideration, i.e., to determine the
rate constants Re{ak} and the frequencies Im{ak} of the oscillatory
features of the intrinsic dimer’s dynamics that enter Eqs. (30) and
(32)–(36).6,7,9–11 The dynamics of a driven but unloaded system in
which the driving is abruptly turned on at t = 0 [see Eq. (32) and
Figs. 5(a1)–5(d2)] can be formally regarded as the interference of all

possible outcomes e−Â(t−s)G of ultrafast experiments in which the
delta-like excitation is centered at instant s ∈ (0, t) and which freely
evolve for the time interval of length t–s. The initial condition is set
by the ratios (the initial condition has to be dimensionless!) of the
components of the generation vector G, which can be shown to be
basically proportional to the square of the transition dipolemoments
and dependent on their mutual alignments (see Sec. VI). The oscil-
latory features stemming from the abruptly turned-on incoherent
light in Figs. 5(a2) and 5(b2) are thus tightly connected to the oscilla-
tory features characteristic of the excitation by very short pulses. The

time scales on which the oscillatory features can be observed thus
set the lower limit on τRC for which the above-described relation-
ship between the stationary and dynamic pictures is valid. Therefore,
the decay time of dynamical coherences observed in spectroscopies
may still be relevant in the natural setting, although the dynamical
coherences themselves are absent in the NESS.79 In Sec. SIII of the
supplementary material, we estimate the time scales characteristic of
exciton decoherence by suitable fitting procedures. For the values of
model parameters adopted in this work, we find that the character-
istic decay times of exciton coherence are shorter than reasonable
values of τRC.

The previous discussion was conducted for interexciton coher-
ences. Similar conclusions can be also reached in the site basis (see
Fig. 3). While we have already discussed the limit of long trap-
ping time in Fig. 4(b), the case of relatively short τRC ∼ 1 ps–10 ps
is analyzed in greater detail in Fig. S2 of the supplementary
material. The analysis is completely analogous to that accompanying
Figs. 5(a1)–5(d4).

The choice of instant t = τRC at which time-dependent quan-
tities are extracted to obtain the properties of the NESS is some-
what arbitrary because τRC is not really the time, but the charac-
teristic time scale of the trapping. This is also apparent from our
formal demonstration of the relation between the stationary and
time-dependent pictures in which we only used the fact that all dk
are of the order of τ−1RC, while their precise values were not impor-
tant. Moreover, in the results presented so far, we used the trapping
[Eq. (18)] and recombination [Eq. (20)] Liouvillians that are diag-
onal in the local basis. It is, therefore, not obvious if and how the
above-discussed relation between the dynamic and stationary pic-
tures under incoherent driving changes when the trapping or recom-
bination Liouvillian that is diagonal in the excitonic basis [Eqs. (19)
and (21)] is employed. In Figs. 6(a) and 6(b), which are analogous
to Figs. 2(a) and 2(b), respectively, we examine the dependence of
the transformation parameters Δpx and θpx on λ and τRC under the
assumption of delocalized trapping, while we retain the recombina-
tion Liouvillian in Eq. (20). The main features of Figs. 2(a) and 2(b)
are clearly recognizable in Figs. 6(a) and 6(b). This is particularly
true at long trapping times. However, at short trapping times, the
maximum that |Δpx| reaches in Fig. 2(a) at τRC ∼ 2 ps–3 ps is shifted
toward τRC ∼ 1 ps–2 ps in Fig. 6(a). A similar discussion applies to
Fig. 6(b), where the decrease that θpx exhibits as τRC is increased
from 1 ps is shifted to shorter trapping times with respect to Fig. 2(b).
We believe that the maximum in |Δpx|, which occurs at τRC ∼ 1 ps–
2 ps for delocalized trapping, should still be interpreted to originate
from the fact that the real part of the interexciton coherence in the
driven and unloaded dimer changes its sign on a picosecond time
scale. If the real part of the interexciton coherence is equal to zero at
instant t0, it is not guaranteed that the magnitude of Δpx (computed
from the NESS) reaches it maximal value of π/4 exactly at τRC = t0
[this is also observed in Figs. 5(a3)–5(d3)]. Our point here is that the
magnitude of Δpx reaches π/4 at τRC ∼ t0 irrespective of the precise
form of the trapping Liouvillian.

D. Further results

In the following, we discuss how the variations in the electronic
parameters of the model, particularly in the difference Δε01 between
local energy levels, affect the properties of the NESS. We fix the
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FIG. 6. Dependence of transformation parameter (a) Δpx and (b) θpx between the
preferred and excitonic basis on the reorganization energy λ and the trapping time
τRC at the RC. Trapping at the RC is governed by the delocalized-trapping Liouvil-
lian [Eq. (19)], while the recombination is described by the Liouvillian in Eq. (20).
Both axes feature logarithmic scale and the scale of the color bar in (a) is linear,
while that of the color bar in (b) is logarithmic. The maximal value on the color bar
in (a) is π/4. To facilitate the comparison with Fig. 2, the ranges of color bars in (a)
and (b) are identical to the ranges of color bars in Figs. 2(a) and 2(b), respectively.

reorganization energy to 150 cm−1. Figures 7(a) and 7(b) present
the dependence of transformation parameters Δpx and θpx on τRC
and Δε01. We varied Δε01 from 30 cm−1 to 300 cm−1 on the basis
of the literature values of site-energy differences in the FMO com-
plex.65,75 Let us first focus on the long trapping times when the mag-
nitude of the phase Δpx is small [see the upper half of Fig. 7(a)], and
the NESS obtained is quite similar to the excited-state equilibrium.
For small values of Δε01 for which J01/Δε01 ≳ 2, exciton delocaliza-
tion prevails over the localizing effect of the environment, which is
reflected in relatively small values of the rotation angle θpx [see the
upper left part of Fig. 7(b)]. As the local energy levels become more
off-resonant, the environment-induced localization becomes more
pronounced than exciton delocalization so that the rotation angle
from the excitonic basis to the preferred basis of the NESS increases.

FIG. 7. Dependence of transformation parameter (a) Δpx and (b) θpx between the
preferred and excitonic basis on the site-energy difference Δε01 and the trapping
time τRC at the RC. Trapping at the RC is governed by the localized-trapping Liou-
villian [Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20).
Both axes feature a logarithmic scale and the scale of the color bar in (a) is linear,
while that of the color bar in (b) is logarithmic. The maximal value of the color bar
in (a) is π/4. The reorganization energy assumes the value of 150 cm−1.

However, when Δε01 is large enough so that Δε01/J01 ≳ 2, the exci-
tonic basis is already localized enough and, for the chosen value of
λ, the localizing effect of the environment is effectively suppressed.
This leads to a decrease in the rotation angle θpx. As the trapping
time is shortened, the deviations from the above-established picture
become more pronounced. The magnitude of Δpx reaches its maxi-
mum at τRC = 1 ps–10 ps depending on the particular value of Δε01
[see Fig. 7(a)], while angle θpx exhibits a minimum in the very same
region of the Δε01 − τRC space [see Fig. 7(b)].

VI. POSSIBLE APPLICATIONS TO
MULTICHROMOPHORIC AGGREGATES

So far, we have employed our novel theoretical approach to
study in great detail the NESS of an incoherently driven and loaded
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dimer. The dimer represents the only model in which one can rep-
resent the character of the NESS by only two parameters—the angle
of the basis rotation θ with respect to a chosen basis and the phase
Δ that is closely connected with the excitation decay rates—and
the difference between different NESSs is easy to understand. In
other words, the dimer is the only model, where relatively simple
“understanding” of the role of different parameters in establish-
ing the preferred basis can be derived. Whether our results can
be translated to larger systems is, of course, an important ques-
tion. This section aims at presenting the basic steps that have to be
taken in order to apply our NESS formalism to multichromophoric
situations.

We start from the fact that the realistic coherence time of light
τc ∼ 1 fs is much shorter than any other time scale in the problem.
All our results for the dimer are obtained by solving Eqs. (10) and
(11) and do not lean on any assumption about the coherence time
τc entering Eq. (6). In the accompanying paper,34 we have argued
that, in the limit of small τc, the first-order light correlation function
defined in Eq. (6) may be replaced by

G
(1)(τ) ≙ 2I0τcδ(τ), (37)

which represents the so-called white-noise model of the radiation.29

Equation (10) is then omitted from further discussion, while the
source term (the third term) of Eq. (11) reads as34

S
WNM
n ≙ δn,0

2I0γτc(h̵γ)2 μeg ∣g⟩⟨g∣μ†
eg . (38)

We recall that the operator μeg = e ⋅ μeg is the projection of the dipole-
moment operator μeg onto the radiation polarization vector e. Using
the definition of μeg in Eq. (4), the matrix elements of the source
term in the basis {|bj⟩| j} of the single-excitation manifold can be
expressed as

⟨bk∣SWNM
n ∣bj⟩ ≙ δn,0 2I0γτc(h̵γ)2 ∑k′j′(dk′ ⋅ e)(dj′ ⋅ e)⟨bk∣lk′⟩⟨lj′ ∣bj⟩. (39)

The basis {|bj⟩| j} is, in principle, arbitrary; it can be the local basis
(b = l), the excitonic basis (b = x), the preferred basis (b = p), or
any other basis in the single-excitation manifold. Equation (39) is
in the form in which the rotational average can be straightforwardly
performed with the final result,80

⟨bk∣SWNM
n ∣bj⟩(avg) ≙ δn,0 2I0γτc(h̵γ)2 1

3
∑
k′j′
(dk′ ⋅ dj′)⟨bk∣lk′⟩⟨lj′ ∣bj⟩

≙ δn,0
2I0γτc(h̵γ)2 1

3
dbk ⋅ d

∗

bj , (40)

where dbk ≙ ∑k′ dk′⟨bk∣lk′⟩ is the transition dipole moment of
state |bk⟩. In a typical situation, the system of interest consists
of many photosynthetic complexes in solution, and the rotational
average is performed over random orientation of individual chro-
mophores’ dipole moments with respect to the polarization direc-
tion. The source term in Eq. (40) depends only on relative ori-
entations of transition dipole moments, which are known for the

widely investigatedQy-band excitations of the FMO complex.81 Rep-
resenting Eq. (11) in basis {|bj⟩| j} and using the rotationally aver-
aged source term given in Eq. (40), we obtain a description of
incoherent-light driven EET that exploits both the light incoherence
(short τc) and experimentally available data on relative orientations
of transition dipole moments. Such a description features a much
more realistic excitation condition than the one we have employed
in the study of model dimer (the selective excitation of a local
site).

Our NESS approach can also be used to follow the pathways of
light-induced excitations from the point of their generation, through
the chromophore network, to the point of their extraction at the
load. To elaborate this, we compute the |bk⟩⟨bk| matrix element of
Eq. (11) for the RDM (n = 0) and obtain

J
bk
gen − J

bk
RC − J

bk
rec + ∑

k′(≠k)

J
bkbk′ + J

bk
res ≙ 0. (41)

In Eq. (41), Jbkgen is the excitation generation flux into the singly
excited state |bk⟩,

J
bk
gen ≙

2

h̵γ
Im⟨bk∣σsseg,0μ†

eg ∣bk⟩, (42)

JbkRC is the excitation trapping flux from |bk⟩,
J
bk
RC ≙ −γ

−1⟨bk∣LRC[σssee,0]∣bk⟩, (43)

and Jbkrec is the excitation recombination flux from |bk⟩,
J
bk
rec ≙ −γ

−1⟨bk∣Lrec[σssee,0]∣bk⟩, (44)

while Jbkbk′ (for k′ ≠ k) is the net flux of excitations that are exchanged
between states |bk⟩ and |bk′⟩,

J
bkbk′
≙

2

h̵γ
Im{⟨bk∣HM ∣bk′⟩⟨bk′ ∣σssee,0∣bk⟩} + 2∑

j

K−1

∑
m=0

¿ÁÁÀ ∣cm∣(h̵γ)2
× Im{⟨bk′ ∣lj⟩⟨lj∣bk⟩⟨bk∣σssee,0+j,m ∣bk′⟩}. (45)

The last term in Eq. (41), Jbkres, stems from the residual term 2Δδ(t)
in the decomposition of the bath correlation function into the opti-
mized exponential series [see Eq. (7)]. This term can therefore be
made arbitrarily small by explicitly treating a sufficient number K
of exponentially decaying terms in Eq. (7) and will not be con-
sidered in the further discussion. For the sake of completeness,
let us also note that, if the light incoherence is exploited on the
level of Eqs. (37)–(40), Eq. (42) for the generation flux should be
replaced by

J
bk
gen ≙

2I0γτc(h̵γ)2 ∣dbk ∣2. (46)

Similar to Eq. (12), all the fluxes entering Eq. (41) are dimen-
sionless and the sign in front of them is determined by the
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“direction” of the flux (± if it leads to an increase/a decrease in the
population of state |bk⟩). One can prove that the (global) continu-
ity equation [Eq. (12)] is obtained by adding Eq. (41) for different
states |bk⟩. Therefore, Eq. (41) can be regarded as the local continu-
ity equation in the basis {|bk⟩}. Here, the term “local” is in nomanner
connected to the local basis because Eq. (41) is formulated in an
arbitrary basis {|bj⟩| j}. The local continuity equation establishes the
balance (on the level of a single-excitation state) between the excita-
tion generation, trapping, and recombination on the one hand and
the excitation flow from the considered state toward other states on
the other hand.

We believe that the local continuity equation is a potentially
interesting feature of our NESS picture because it enables us to
track the steady-state excitation pathways. The excitation flux Jbkbk′

satisfies Jbkbk′ ≙ −Jbk′ bk , and it is positive when the net excita-
tion flow is directed from bk′ to bk, while it is negative when the
net excitation flow is directed from bk to bk′ . One may, therefore,
identify the states in which the generation, trapping, and recom-
bination predominantly occur and then individuate the pathways
along which the excitations travel. Such a discussion can be per-
formed in an arbitrary basis of singly excited states, enabling one
to follow the excitation pathways in the local, excitonic, or preferred
basis.

We conclude this section by discussing the generality of the
relationship between the stationary and time-dependent pictures
that we established for the model dimer in Sec. V C. This relation-
ship relies on the hierarchy of time scales of the dimer’s dynamics
under incoherent light that is also introduced in Sec. V C. On the
other hand, in a multichromophoric aggregate, the rates of excita-
tion transfer between various states can be of the different orders
of magnitude, and the excitation may be trapped in certain states
so that the recombination time scale may also become important.
As an example, let us take a single unit of the FMO complex that,
despite the fact that its contribution to direct light harvesting is
minor, has become a paradigmatic system to discuss quantum effects
in biological systems.82 It is known that the intraunit energy transfer
predominantly proceeds on subpicosecond time scales.83 The exci-
tation transfer from the considered unit of the FMO complex to the
RC typically occurs on a ∼20 ps time scale, while the decay time
of the lowest FMO level is around 250 ps.84 We may thus spec-
ulate that the hierarchy of time scales introduced in Sec. V C is
valid in this example and that the reconstruction of the NESS from
the dynamics of the driven but unloaded system is possible. How-
ever, in this multichromophoric example, the value of the efficiency
genuinely depends on a complex interplay between the excitation
generation, relaxation, dephasing, trapping at the RC, and recom-
bination and, as such, it cannot be predicted in advance (as is the
case for the dimer model). This is even more pronounced in pho-
tosynthetically more relevant situations in which the excitations ini-
tially created in antenna complexes reach the RC after many steps
of the relatively slow interpigment transfer.20 The application of
our NESS formalism to such situations is out of the scope of this
paper.

VII. DISCUSSION AND CONCLUSION

We have provided a detailed and rigorous theoretical descrip-
tion of light harvesting by a molecular aggregate under conditions

that are representative of photosynthetic light harvesting as it occurs
in nature. The picture established in this work takes into account the
excitation generation by means of weak incoherent light and their
subsequent relaxation and dephasing, as well as excitation trapping
by a load (the RC) and recombination. While the generation, relax-
ation, and dephasing are described in a (numerically) exact manner,
which we have reported in the accompanying paper, the excitation
trapping and recombination are included on the level of effective
Liouvillians.

This piece of research addresses a recurrent question of the
possible relevance of quantum coherent effects (understood in
a very broad sense) for the natural light harvesting. Our NESS
approach provides a physically transparent definition of the light-
harvesting efficiency [Eq. (16)] that is basis-invariant so that we
are in a position to embark upon the study of possible coher-
ent enhancements of the efficiency. Recent reports have suggested
that these coherent enhancements strongly depend on the basis
in which the effective trapping and/or recombination Liouvillians
are diagonal. Here, we use the fact that the state of an incoher-
ently driven and loaded aggregate is most naturally represented and
studied in the so-called preferred basis of the NESS in which the
steady-state RDM is diagonal. This definition of the preferred basis
implies that this basis sublimes the joint effect of excitation gen-
eration, relaxation, dephasing, trapping, and recombination. The
preferred-basis description of the NESS under driving and load can
be seen as an analog of the description of a system of coupled har-
monic oscillators in terms of normal modes. While finding that
the preferred basis is highly nontrivial, as demonstrated through-
out this paper, this concept may shed new light on the debate
on the role of coherences in the energy transfer under incoherent
light.

We have examined the properties of the preferred basis of the
NESS of an incoherently driven and loaded dimer by studying the
manners in which it is connected to two widely used representa-
tions: namely, those employing the excitonic and the local bases.
The recombination time scale is, in general, significantly longer
than any other time scale in the problem so that, in the limit of
long trapping time, the NESS is very similar to the previously stud-
ied excited-state equilibrium of an undriven and unloaded system.
We also find that the NESS under driving and load carries infor-
mation that is encoded in the temporal evolution of the unloaded
system driven by the suddenly turned-on incoherent light. If the
radiation is abruptly turned on at t = 0, the properties of the NESS
that arises due to the excitation trapping with time constant τRC
can be quite reliably extracted from the RDM at t ∼ τRC. We con-
clude that the trapping time scales for which such a relation between
the NESS and the dynamics of the driven but unloaded system is
sensible are basically determined by the time scales of decoher-
ence and relaxation, which are accessible in ultrafast spectroscopy
experiments. Since realistic trapping times are, in general, much
longer than decoherence and relaxation time scales, the relation we
found between the steady-state and time-dependent pictures is quite
general.

We again note that our theoretical and computation approach
to obtain the NESS under incoherent driving is general and not
limited to the model dimer studied here. We opted for the dimer
because the relationships between basis vectors of the preferred
basis and the excitonic or local basis can be parameterized by only
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two real parameters, which have certain physical significance and
whose dependence on model parameters can be studied in a sys-
tematic manner. In the case of a more complex excitonic aggregate,
one should resort to more involved parameterizations of unitary
matrices.

SUPPLEMENTARY MATERIAL

See the supplementary material for (a) the derivation of equa-
tions for the transformation parameters θ andΔ, (b) detailed numer-
ical procedure to compute the nonequilibrium steady state, (c) anal-
ysis of the dynamics initiated by a delta-like photoexcitation, and (d)
the comparison of transformation parameters θpl and Δpl obtained
from stationary and time-dependent pictures in the case of fast
trapping.
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ABSTRACT: We investigated the charge separation process in organic
semiconductor bilayers from the moment of creation of a donor exciton to
the time when all charge pairs have either recombined or reached external
contacts. The system was modeled using a one-dimensional microscopic
Hamiltonian that includes the effects of carrier delocalization, electron−hole
interaction, static disorder, and carrier−phonon interaction. Transition rates
between excitonic states were modeled using modified Redfield approach
which takes into account polaronic effects by exact treatment of diagonal
exciton−phonon interaction. An efficient numerical scheme was developed
that enabled us to obtain the time dependence of energy-resolved populations
of relevant exciton states on a time scale as long as 1 μs. Our results indicated
that charge separation proceeds via the so-called cold pathway in which donor excitons convert to relaxed charge-transfer excitons
which further transform to the states of separated charges. We found that for lower disorder strengths the time scale for conversion
of donor excitons to charge transfer excitons is ∼(1−10) ps, while further separation to free charges takes place on the time scale
reaching ∼1 ns. These time scales are extended for larger disorder strengths because diffusion of donor excitons to the interface and
transport of separated charges toward external contacts are slowed down. We also found that charge separation yield has a rather
weak dependence on electron−phonon interaction strength.

■ INTRODUCTION

Operation of organic photovoltaic (OPV) devices is based on
separation of electron−hole pairs (excitons) generated by
incident sunlight into free charges. Although significant
research efforts have been put in the last two decades to
understand and improve the performance of OPVs, the details
of charge separation mechanism are still not fully understood.
The active region in OPVs typically consists of two organic
semiconductor materials. The conventional picture of the
charge separation process at the interface of these materials is
as follows.1−3 Incident sunlight initially generates bound
excitons in the donor material (donor excitons, XD) which
then migrate to the interface of two materials into so-called
charge transfer (CT) excitons, which consist of an electron in
the acceptor material and a hole in the donor material that are
both localized close to the interface. The next step in the
separation process is transformation of CT excitons into charge
separated (CS) states in which electron in the acceptor and
hole in the donor are spatially separated. Electrons and holes in
CS states are free to migrate toward external contacts and form
current in external circuit.
The challenge to this conventional picture comes from the

fact that in most efficient OPV devices almost each absorbed
photon produces one electron−hole pair in external circuit,
that is, internal quantum efficiency is close to one.4 Since

binding energy of electrons and holes in CT states is much
larger than thermal energy at room temperature,1 it remained
unclear how is separation of electrons and holes from CT
states possible. Along this line, there were suggestions that in
the course of separation process excitons do not reach strongly
bound CT states but remain in energetically higher and weakly
bound CT states (so-called hot CT states) and further
transform into CS states from these states.5,6 In such a picture,
this transfer has to occur before relaxation to cold states7 and it
was therefore believed that it takes place on very short sub-
picosecond time scale. On the other hand, the conventional
picture which involves separation from low energy strongly
bound CT states (so-called cold CT states) was not
abandoned. In particular, experimental results which show
that internal quantum efficiency is nearly independent of the
energy of the initial state point in favor of this picture.8−10

In our previous theoretical work,11,12 we first investigated
exciton dynamics on a sub-picosecond time scale using a fully
quantum mechanical model of the heterojunction based on
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density matrix theory. Our results indicated that donor
excitons generated by a pulsed photoexcitation predominantly
remain in these states and that there is no significant charge
transfer on this time scale.12 To assess the possibility of charge
separation on longer time scale, we used a master equation
approach to find steady-state populations of relevant states and
calculate the charge separation yield.13 Our analysis indicated
that efficient separation of charges from an initial strongly
bound CT state is possible. Strong binding of the electron and
hole in a CT state is overcome due to a sequence of transitions
to higher energy and more loosely bound CT states from
which further transitions to CS states take place. We found that
the separation process is most efficient at moderate values of
disorder and that it is enhanced by charge carrier
delocalization.13

However, our previous efforts did not take into account
polaronic effects, which are sometimes regarded as highly
important for a realistic description of exciton and charge
dynamics in organic semiconductors.14 Namely, when the
strength of (static) disorder is comparable to the magnitude of
electronic couplings, and both of these are comparable to the
coupling of electronic excitations to vibrations, there is no
obvious small parameter in which a perturbation expansion can
be performed. Techniques that can circumvent this problem
exist, for example wave function-based methods15 or
hierarchical equations of motion.16 However, their direct
application to the problem of long-time charge separation, in
which we necessitate an accurate description of processes
occurring on time scales spanning the range from femto-
seconds (nuclear dynamics) to at least nanoseconds (recombi-
nation), is computationally prohibitive. The application of
these numerically exact techniques is thus typically limited to
ultrafast dynamics.17,18 A similar situation is encountered in
photosynthetic excitonic complexes, where, however, one can
find various approximate approaches taking into account the
competition between delocalization, disorder, and polaronic
effects at least partially.19−21 One of these approaches, which is
suited for disordered excitonic systems, is the so-called
modified Redfield theory.22,23 In such systems, due to disorder,
the overlap between different excitonic wave functions is
expected to be small, so that the off-diagonal exciton−phonon
couplings should be much smaller than the diagonal ones. The
modified Redfield theory takes advantage of this circumstance
by treating the diagonal part of the exciton−phonon
interaction exactly, while its off-diagonal part is treated
perturbatively.
In this work, we analyze in detail exciton dynamics on long

time scales reaching ∼1 μs, when all charge pairs have either
recombined or reached external contacts. We have extended
our previous model where transition rates between different
exciton states were calculated assuming relatively weak
electron−phonon coupling to include polaronic effects in the
framework of modified Redfield approach. We obtain
spectrally resolved time dependence of populations of exciton
states from which we construct a full picture of charge
separation process starting from generation of donor or CT
exciton and ending with fully separated charges in external
contacts. From the results obtained, we identify the time scales
for different parts of the charge separation process and
establish the effect of most relevant system parameters on
these time scales. Our results point in favor of conventional
cold separation mechanism.

■ MODEL AND METHOD

Model. The model that we use to study charge separation
on an organic bilayer is essentially the same as the one we have
used in our recent studies of the same phenomenon.13

Therefore, the model itself is presented in greater detail in
section S1.1 of the Supporting Information (SI), while here we
only describe its features that are relevant to the formulation of
the theoretical approach. Figure 1a provides a schematic
diagram of our model.

The interface between two organic semiconductors of
different electronic properties is described using a one-
dimensional electron−hole lattice model, in which each of
the materials is modeled within the standard semiconductor
model. As we have already discussed,13 our model takes into
account on a fully quantum level all the physical effects that are
regarded as relevant for the problem of charge separation in
OPVs. Namely, the model includes electron and hole
delocalization, attractive electron−hole interaction that binds
them into excitons, static disorder, which is omnipresent in
organic semiconductors, as well as the interaction of electrons
and holes with nuclear degrees of freedom.

Figure 1. (a) Scheme of the one-dimensional electron−hole lattice
model used to describe charge separation at the donor/acceptor
interface. It consists of N donor and N acceptor sites, each of which
can accommodate a number of single-electron and single-hole levels
presented by horizontal lines. To mimic the existence of higher-than-
LUMO orbitals that are energetically close to the LUMO level of the
widely used electronic acceptor PCBM, we take two single-electron
levels per acceptor site.13 Energies of single-carrier levels differ from
site to site due to the diagonal static disorder, while two-sided vertical
arrows standing on the left of each level represent its dynamical
modulation by Holstein-like interaction with nuclear degrees of
freedom. In a free-charge state, the electron (the hole) is mainly
located in the spatial region within the rectangle in the acceptor part
(the donor part) of the interface. More details can be found in ref 13
and section S1.4 of the SI. (b) Diagram outlining the main steps that
have to be taken in order to compute the dynamics in a single
disorder realization. Relevant equations and sections of the main text
and SI are given in parentheses.
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While the model itself is formulated in the electron−hole
picture, theoretical developments are conducted in the
excitonic basis, that is, in the basis of stationary states of an
electron−hole pair that are compatible with our model
interface. We limit our discussion to the subspace of singly
excited states {|x⟩}, in which the model Hamiltonian assumes
the following form:

∑ ∑

∑

ω ω= ℏ | ⟩⟨ | + ℏ

+ Γ | ̅⟩⟨ | +

μ

μ μ μ

μ

μ
μ μ

†

̅
̅

†

H x x b b

x x b b( )

x

x

xx

xx

(1)

In eq 1, ℏωx is the vertical excitation energy of exciton state
|x⟩, and index μ labels phonon modes whose energies are ℏωμ,

while μ
†b (bμ) are the corresponding Bose creation (annihila-

tion) operators. The third term in eq 1 is the exciton−phonon

interaction, whose coupling constants Γμ

̅xx
satisfy Γ = Γμ μ

̅ ̅
*

xx xx .
The exciton−phonon interaction Hamiltonian stems from

the electron−phonon and hole−phonon interaction Hamil-
tonians, which are taken to be of the Holstein type. Each site is
assumed to be equipped with a set of phonon modes, and the
relevant parameter sets on all sites (phonon frequencies and
local electron−phonon and hole−phonon interaction con-
stants) are taken to be identical. The limit of macroscopic
phonon bath is taken by introducing the appropriate spectral
density.
Based on their spatial properties, exciton states can be

classified as donor, acceptor, CT, CS, and free-charge states. In
the last three groups of states, the electron is predominantly
located in the acceptor, and the hole is mainly in the donor.
The discrimination between CT, CS, and free-charge states is
established essentially on the basis of the mean electron−hole
separation. The electron and hole in a CT state are quite close
to one another and pinned to the interface. In a CS state, their
mutual separation is somewhat larger. In free-charge states,
charges are mainly located on the opposite edges of the
interface, so that these states mimic the ones from which
carrier extraction to electrodes is possible. In that spirit, we
take that, once an exciton reaches a free-charge state, it
permanently remains in that state. As discussed in ref 13, the
disorder in on-site transition energies is crucial to identify free-
charge states. Here, we introduce disorder by drawing electron
and hole on-site energies from the Gaussian distribution with
standard deviation σ and center at an appropriate energy. For
more details, see refs 12, 13 and Section S1.2 of SI.
The model Hamiltonian is parametrized so that the values of

band gaps, bandwidths, band offsets, and binding energies of
the donor, acceptor, and CT exciton within our model agree
with the literature values for typical OPV materials. In
particular, we choose the values of model parameters to be
representative of the prototypical P3HT/PCBM interface, as
detailed in Section S1.4 of SI and ref 13.

■ METHOD

The exciton dynamics governed by Hamiltonian H is studied
using the modified Redfield theory. As has been mentioned in
Introduction, the essential criterion for the applicability of the
modified Redfield theory is the smallness of the off-diagonal
exciton−phonon couplings, which are treated perturbatively,
with respect to the diagonal ones, which are treated exactly. In
Results, we present numerical evidence that our model system

satisfies this criterion. Here, let us only mention that the
magnitude of exciton−phonon couplings is governed by the
spatial-proximity factor, which is determined by the electron
and hole overlap in the two exciton states.13 In order to
achieve high coupling between two (different) exciton states,
both the electron and the hole in these states have to overlap, a
condition that is difficult to meet in the presence of static
disorder whose strength is comparable to electronic couplings.
The modified Redfield theory has become a standard tool in

the chemical physics community,19,20,24 where it is commonly
applied to study exciton dynamics within models containing a
relatively small number of chromophores (∼10), that is, a
relatively small number of excitonic states.25,26 To the best of
our knowledge, our work is among the first works employing
the modified Redfield theory to describe excitonic dynamics in
a condensed-phase system, in which the number of relevant
excitonic levels is of the order of 1000. Therefore, the main
steps toward the derivation of the relevant equations of motion
are presented in the main body of the paper, whereas further
technical details can be found in section S2 of the SI. Our
presentation relies on the results of ref 27, which, in fact, in the
limit of the macroscopic bath, present a lucid rederivation of
the modified Redfield theory.
As the first step, the total Hamiltonian is rewritten as

= +H H V0 (2)

where the unperturbed Hamiltonian H0 contains the diagonal
part of the exciton−phonon interaction

∑ ∑ ∑ω ω= | ⟩ ℏ + Γ + ⟨ | + ℏ
μ

μ
μ μ

μ

μ μ μ
† †

i
kjjjjjjj

y
{zzzzzzzH x b b x b b( )

x

x xx0

(3)

while the perturbation V contains its off-diagonal part

∑= Γ | ̅⟩⟨ | +
μ

μ
μ μ

′

̅
̅

†V x x b b( )
xx

xx

(4)

In eq 4, the prime on the sum indicates that only terms in
which ̅ ≠x x are considered.
Hamiltonian H0 can be diagonalized by performing the

polaron transformation

= −U e S (5)

where

∑
ω

=
Γ

ℏ
| ⟩⟨ | −

μ

μ

μ
μ μ
†S x x b b( )

x

xx

(6)

In the polaron frame, Hamiltonan H0 becomes (an operator
in the polaron frame is denoted by a tilde above its symbol)

∑ ∑ω ω̃ = = ℏ∼ | ⟩⟨ | + ℏ
μ

μ μ μ
† †H U H U x x b b

x

x0 0

(7)

where energies of excitonic states are renormalized due to the
adaptation of the nuclei to the excited-state configuration

∑ω ω
ω

ω λℏ∼ = ℏ −
[Γ ]

ℏ
≡ ℏ −

μ

μ

μ
x x

xx
x x

2

(8)

Hamiltonian V in the polaron frame reads as

∑̃ = = | ̅⟩⟨ |
μ

μ
† ′

̅
̅

V U VU x x M
xx

xx

(9)
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where the transition from exciton state |x⟩ to exciton state | ̅⟩x
is mediated by the dressed phonon operator

∑ ∑ ∑
ω

ω

= Γ
Γ − Γ

ℏ
−

+ −
Γ

ℏ

μ

μ

μ

μ

ν

ν ν

ν
ν ν

μ μ

μ

μ

̅ ̅
̅ ̅ †

†

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑikjjjjjj y{zzzzzz

M b b

b b

exp ( )

2

xx xx
xx xx

xx

(10)

This should be contrasted with the undressed phonon
operator that mediates the same transition within the Redfield
theory

∑ ∑| = Γ +
μ

μ

μ

μ
μ μ̅ ̅
†M b b( )xx xxRed

(11)

We see that, while the Redfield theory does not take into
account neither the displacements (with respect to the ground
state) of equilibrium nuclear configurations in excited states
nor multiphonon processes, the modified Redfield theory takes
into account both these effects.28 The presence of the

displaced phonon operator ω+ − Γ ℏμ μ
μ

μ
†b b 2 /( )xx in eq 10,

which is characteristic for the equilibrium configuration of the
nuclei when the electronic subsystem is in state |x⟩, means that
the first effect is taken into account. Processes in which an
arbitrary number of vibrational quanta is exchanged with the
bath to accomplish the transition | ⟩ → | ̅⟩x x are taken into
account in eq 10 by the presence of the exponential of phonon
operators.
We assume that the initial density matrix is factorized as

ρ
β ω

β ω
= | ⟩⟨ | ⊗

− ∑ ℏ + Γ +

− ∑ ℏ + Γ +

μ μ μ μ
μ

μ μ

μ μ μ μ
μ

μ μ

† †

† †

ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑx x
b b b b

b b b b
(0)

exp ( ( ))

Tr exp ( ( ))

x x

B x x

0 0
0 0

0 0

(12)

so that the excitonic subsystem is taken to be in excitonic state
|x0⟩, while the nuclear degrees of freedom have already adapted
themselves to the displaced equilibrium configuration corre-

sponding to the excited state |x0⟩. In eq 12, β = −k T( )B
1, T is

the temperature, and TrB denotes (partial) trace over phonon
bath. Such an initial condition tacitly assumes that the
adaptation of nuclear degrees of freedom to the displaced
equilibrium characteristic for excited states is much faster than
the population transfer between excited states. Its relevance to
the problem of charge separation in OPVs can be understood
from our recent investigations of the phenomenon in
question.12 Namely, we have concluded that, on a sub-
picosecond time scale after photoexcitation, the majority of
excitons are found in strongly bound donor or CT states,
which act as traps for ultrafast charge separation. The escape
from these states, therefore, occurs on time scales much longer
than typical time scales for nuclear relaxation, which are of the
order of 100 fs. Moreover, the fact that our origin of the time
axis loosely corresponds to t ∼ 100 fs to 1 ps after the
photoexcitation is not of particular importance for our analysis,
which targets processes that happen on much longer time
scales. Bearing in mind that we estimate time scales (i.e., orders
of magnitude), we can safely think about t = 0 as the moment
of exciton generation. The initial condition (eq 12) in the
polaron frame reads as

ρ
β ω

β ω

∼ = | ⟩⟨ | ⊗
− ∑ ℏ

− ∑ ℏ

μ μ μ μ

μ μ μ μ

†

†

ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑx x
b b

b b
(0)

exp

Tr expB

0 0

(13)

Working in the polaron frame in this case is thus technically
advantageous, since all partial traces over phonon bath are
computed in its canonical equilibrium.
By employing the usual second-order perturbation theory

with respect to ̃V , together with Markovian approximation, we
obtain that population f x(t) of exciton state |x⟩ evolves
according to

∑ ∑∂ = − +
′ ≠

′
′ ≠

′ ′f t w f t w f t( ) ( ) ( )t x
x x

x x x
x x

xx x
( ) ( ) (14)

where transition rates wxx′ from state |x′⟩ to state |x⟩ are
expressed in terms of the Fourier component of the correlation
function of dressed phonon operators

∫ ∑τ τ
′

=
ℏ

⟨ ⟩′
ω ω τ

μν

μ ν
−∞

+∞ ∼ − ∼
′ ′w e M M

1
d ( )xx

i
x x xx2

( ) (0)
eq

x x

(15)

In the last equation, time dependence of phonon operators
is with respect to the free-phonon Hamiltonian appearing in
H̃0 (see eq 7), whereas the averaging ⟨ ⟩... eq is with respect to

the canonical equilibrium of the phonon bath (see eq 13).
More details are provided in section S2.1 of the SI. The
calculation of the phonon correlation function appearing in eq
15 is a straightforward, but rather tedious task, whose technical
details are presented in section S2.2 of the SI. Here, we only
quote the final result in the form that is commonly
encountered in the literature

∫ τ
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λ λ λ τ
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′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′

′ ′ ′

′ÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑÄÇÅÅÅÅÅÅÅÅÅ ikjjjy{zzzikjjjy{zzzÉÖÑÑÑÑÑÑÑÑÑ

w e

g g g

i

g g g

i g g

i

1
d

exp
1
( ( ) 2 ( ) ( ))

exp ( 2 )

( )
1

( )
1

( )

2
1

( )
1

( )

2

xx
i

x x x x x x xx xx xx

x x x x x x xx xx xx

x x xx x x xx x x x x
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x x

(16)

Transition rates within the modified Redfield theory are
entirely expressed in terms of quantity

∑τ τ̈ = ⟨ | | ⟩
μ μ

μ μ̅ ̅ ̅ ̅
g M M( ) ( )
x x x x x x x x, Red

(0)
Red eq

2 2 1 1

2 1

2 2 2 1 1 1

(17)

and its integrals. The quantity τ̈
̅ ̅

g ( )
x x x x,2 2 1 1

represents the

(equilibrium) correlation function of undressed phonon
operators mediating the transition between states | ̅ ⟩x2 and
|x2⟩ and the transition between states | ̅ ⟩x1 and |x1⟩, see eq 11.
The function τ̇

̅ ̅
g ( )
x x x x,2 2 1 1

and the so-called line shape function

τ
̅ ̅

g ( )
x x x x,2 2 1 1

are defined as

∫τ̇ = ̈
τ

̅ ̅ ̅ ̅
g sg s( ) d ( )
x x x x x x x x,

0
,2 2 1 1 2 2 1 1 (18)
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∫ ∫τ = ̈
τ

̅ ̅ ̅ ̅
g s s g s( ) d d ( )
x x x x

s

x x x x,
0

2
0

1 , 1
2 2 1 1

2

2 2 1 1 (19)

while quantity λ
̅ ̅x x x x,2 2 1 1

represents a generalization of the

expression for λx (see eq 8) and reads as

∑λ
ω

=
Γ Γ

ℏ
μ

μ μ

μ
̅ ̅

̅ ̅
x x x x

x x x x

,2 2 1 1

2 2 1 1

(20)

We note here that the derivation in section S2.1 of the SI
actually results in rate eqs (eq 14) with time-dependent
modified Redfield rates, wxx′(t), which are given by eq 16 in
which the integration limits − ∞ and +∞ are replaced by −t
and t, respectively. Therefore, strictly speaking, the dynamics
predicted by eq 14 is not correct for times t shorter than the
decay time of the phonon correlation function entering eq 15.
On these time scales, non-Markovian effects become
important. This circumstance, however, is not expected to
affect our principal conclusions. Physically relevant treatment
of short-time dynamics should proceed from an initial
condition that should be appropriate for a sudden exciton
photogeneration and that is different from that in eq 12. In the
Discussion, we discuss why we believe the details of short-time
dynamics are not particularly relevant for the long-time
separation dynamics, which is of primary interest in this work.
Equation 15 nicely illustrates why this approach bears the

name modified Redfield theory. Namely, population transition
rates within the Redfield theory are also expressed in terms of
the Fourier component of the correlation function, this time of
undressed phonon operators (eq 11)19

∫ ∑τ τ=
ℏ

⟨ | | ⟩ω ω τ

μν
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+∞
−

′ ′
′w e M M

1
d ( )xx

i
x x xx

Red
2

( )
Red
(0)

Red eq
x x

(21)

Note also that, in eq 21, there is no renormalization of
excitonic energies, that is, ω ω∼ =x x. Evaluating eq 21, we obtain
the familiar expression for rates in the case when only one
phonon can be exchanged with the bath to perform transition |

x′⟩ → |x⟩

∑

∑

π
δ ω ω ω ω

π
δ ω ω ω

ω

=
ℏ

|Γ | ℏ − ℏ + ℏ ℏ

+
ℏ
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μ
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μ
μ
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′ ′ ′

′ ′

w n

n

2
( ) ( )

2
( )

(1 ( ))

xx xx x x

xx x x

Red 2
BE

2

BE (22)

with = −β −n E e( ) ( 1)E
BE

1.
As mentioned in the model description, index μ enumerating

phonon modes can be understood as composite index (iξ),
where i labels individual sites, while ξ counts individual
phonon modes on each site. Bearing in mind our assumption
that sets of phonon modes and local electron−phonon and
hole−phonon interaction constants are identical on each site,
the passage to the limit of macroscopic phonon bath is most
conveniently done by introducing the spectral function (for E
> 0)

∑ δ ω= − ℏ
ξ

ξ ξJ E g E( ) ( )2

(23)

In eq 23, gξ are local carrier−phonon interaction constants.
Under the aforementioned assumptions, correlation function

τ̈
̅ ̅

g ( )
x x x x,2 2 1 1

factorizes as follows

τ τ̈ = ̈
̅ ̅ ̅ ̅

g P g( ) ( )
x x x x x x x x, ,
2 2 1 1 2 2 1 1 (24)

where quantity
̅ ̅

Px x x x,2 2 1 1
depends only on spatial properties of

exciton states involved, while
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β τ τ
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depends only on spectral density J(E). Analogous factoriza-
tions also hold for τ̇

̅ ̅
g ( )
x x x x,2 2 1 1

, τ
̅ ̅

g ( )
x x x x,2 2 1 1

, and λ
̅ ̅x x x x,2 2 1 1

, as

detailed in section S2.3 of the SI. Here, let us only mention
that quantity

̅ ̅
Px x x x,2 2 1 1

is a generalization of the spatial proximity

factor Px′x,xx′, which is the only quantity entering the Redfield
population transition rates

π
ω ω ω ω=

ℏ
|ℏ − ℏ | ℏ − ℏ′ ′ ′ ′ ′w P J n

2
( ) ( )xx x x xx x x x x

Red
, (26)

Equation 26 can be obtained from eq 22 by passing to the
limit of macroscopic bath, while

=
>

+ − <

lmooonooon E
n E E

n E E
( )

( ), 0

1 ( ), 0

BE

BE (27)

In this work, we assume that the spectral density is of the
Drude−Lorentz form

π
λ

γ

γ
=

·ℏ

+ ℏ
J E

E

E
( )

2

( )2 2
(28)

The parameter λ, which can be interpreted as the polaron
binding energy, measures the overall strength of carrier−
phonon coupling. The inverse of parameter γ, γ−1, is the
characteristic time scale of the decay of bath correlation
function τ̈g( ) in eq 25. The Drude−Lorentz spectral density is
widely employed in computational studies of excitonic
dynamics in models of photosynthetic excitonic aggregates29,30

and OPVs,18,31,32 mainly due to the existence of relatively
simple analytical expressions for τ̈g( ).
The exciton recombination is taken into account on the

same level as in our recent work.13 Equation 14 is then
augmented by the following term

τ∂ = − −f t f t( ( )) ( )t x x xrec
1

(29)

where lifetime τx of state |x⟩ basically depends on the overlap
of moduli of electron and hole distributions in that state. The
recombination events are assumed to be unidirectional and
they are tracked by following the time evolution of the ground-
state (GS) population

∑ τ∂ = −f t f t( ) ( )t

x

x xGS
1

(30)

Further details are given in section S1.3 of the SI and in ref
13.
Our aim is to examine pathways of charge separation on

time scales spanning a very broad range, from shortest time
scales stemming from nuclear dynamics (∼10−100 fs) all the
way to time scales characteristic for recombination events
(∼100 ps to 10 ns). Computational approaches that rely on
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the direct propagation of eq 14 complemented with eq 29 are
thus quite expensive, especially keeping in mind that we want
to follow populations of ∼1000 excitonic levels. Rewriting eqs
14 and 29 in matrix form, we formulate an efficient algorithm
to calculate exponent of a nonsymmetric matrix, which
completely obviates the need for direct temporal propagation.
The details of our numerical scheme are presented in sections
S2.5 and S2.6 of the SI. The flow diagram summarizing the
main steps in the computation of the dynamics in a single
disorder realization is given in Figure 1b.

■ RESULTS

Calculations of the time dependence of populations of various
types of exciton states were performed using the approach
presented in previous section. The default parameters in the
calculations were: polaron binding energy λ = 80 meV,
disorder strength σ = 100 meV, temperature T = 300 K, γ = 10
ps−1. Some of these parameters were varied to understand the
effect of relevant factors on time scales of charge separation
process. The values of the parameters that were varied will be
explicitly specified in the presentation of results in this section,
while for all other parameters the default values will be
assumed. The transition rates were evaluated within modified
Redfield theory using eq 16. Two different types of initial
conditions (see eq 12) were considered. The first type assumed
that initial state (state |x0⟩ in eq 12) is an XD state with energy
in the range (E − ΔE, E + ΔE) (with ΔE = 50 meV) which has
highest matrix element for its optical generation. The second
type assumed that initial state is the lowest-energy CT state
among those whose recombination lifetime is shorter than 10
ns. The first type of initial conditions is chosen to mimic the
effect of external excitation by a short pulse of central
frequency E/ℏ. We will examine the dynamics starting from
initial donor states of different energies E in order to
understand how excess electronic energy supplied by the
excitation of high-energy donor states affects charge separation
pathways and time scales. As quantitatively demonstrated in
Figure S2 of the SI, higher lying donor states also display a
higher degree of carrier delocalization. Whether or not the
excess electronic energy or better carrier delocalization can
enhance separation of initial donor excitons has been the
subject of experimental studies performed both on sub-
picosecond5 and much longer33 time scales. The second type
of initial conditions was chosen to understand the separation
process once the exciton reached the lowest energy CT state.
Such an initial condition is also experimentally relevant. In refs
34 and 35, it was concluded that charge separation
predominantly occurs upon the fast relaxation to the bottom
of the CT manifold, on time scales ranging from tens to
hundreds of picoseconds.35 Moreover, the authors of ref 9
succeeded in selectively exciting (from the ground state) the
low energy interface-pinned CT state. The condition on the
exciton recombination lifetime was introduced to avoid the
possibility of selecting some state whose energy was
significantly lowered due to effects of disorder, while its
overlap of electron and hole wave functions is so small that it
essentially does not represent the conventional CT state with
both electron and hole being close to the interface. In Figure
S3 of the SI, we present numerical evidence that our criterion
for the choice of the initial CT state indeed gives a CT state
with small electron−hole separation and quite localized
carriers. In the calculation, we include all exciton states with
energies lower than Einit + 20kBT, where Einit is the energy of

initial state. All of the results presented were averaged over 256
realizations of disorder, which is sufficient to get converged
results for quantities presented.13 In Figure 2a−d we present

disorder-averaged densities of XD, CT, CS, and free-charge
states, respectively. The vertical arrows indicate the energy
range in which the initial XD (Figure 2a) and CT (Figure 2b)
state is located.
Our approach is based on the assumption that off-diagonal

exciton−phonon coupling parameters (which can be quantified
by the terms Px x x x,i f f i

when xi ≠ xf) are much smaller than the

diagonal exciton−phonon coupling parameters (which can be
quantified by the terms Px x x x,i i i i

). To check if this assumption is

satisfied we present in Figure 3 the average over different
disorder realizations of the quantity

=
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which is basically the dependence of Px x x x,i f f i
on the energies of

states Exi and Exf . The results are presented for two disorder

strengths, σ = 50 meV and σ = 100 meV. In each disorder
realization, as well as on both axes in Figure 3, the energies Ei,f

have been rescaled to the [0,1] range using the formula

= −

−
e

E E

E E

min

max min

, where E is the unrescaled energy, e is the

rescaled energy which is shown on the axes, Emin and Emax are
the minimal and maximal energy of exciton states considered
for a given realization of disorder. Neither of the afore-
mentioned energies is renormalized in the sense of eq 8. The
reasons for such a rescaling will be given together with the
presentation of energy−temporal pathways of charge separa-
tion, see Figure 6a−d. The results in Figure 3 point out that
h E E( , )i f is much smaller for states of different energies than

for states of close energies, as can be evidenced by the fact that
the off-diagonal contributions are at least an order of
magnitude smaller than the diagonal contributions. Such
results confirm our assumption that off-diagonal exciton−
phonon coupling parameters are much smaller than the

Figure 2. Disorder-averaged densities of (a) XD, (b) CT, (c) CS, and
(d) free-charge states (in arbitrary units). The vertical arrows indicate
energy ranges in which the initial (a) XD and (b) CT state is located.
The excitonic DOS in a single disorder realization is computed by
broadening each exciton level by a Gaussian with standard deviation
of 5 meV.
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diagonal exciton−phonon coupling parameters. We also
checked the sensitivity of our results to the parameter of the
spectral function γ. The results shown in Figures S7 and S8 of
the SI indicate that the change of γ within reasonable limits

γ ∈ − −(10 20) ps 1 has almost no effect on time dependence
of populations.
To understand the time evolution of populations of various

types of exciton states, we present in Figure 4 these
dependences at four different values of disorder strength σ

for initial XD state with energy of around 2200 meV, see the
middle vertical arrow in Figure 2a. First step in the separation
process is the transformation from the initial XD state to a CT
state. In the initial XD state, electron and hole wave functions
have strong overlap which means that the electron and the hole
are localized around the same position in space. To transform
into a CT state both electron and hole need to reach the
interface and the effects of disorder slow down this process.
This effect can be clearly seen from Figure 4. While for lowest
disorder strength CT excitons outnumber XD excitons already
at around 1 ps, for largest disorder strength this happens more
than 100 ps after initial excitation. These time scales are
comparable to the XD exciton recombination time and there is
therefore a possibility that the XD exciton will recombine
before transforming into a CT exciton. In Figure 5 (left panels)
we present the time dependence of the number of excitons that
have recombined from various groups of exciton states. For
strong disorder the exciton remains in the donor for long time
and therefore a significant portion of these excitons gets
recombined (around 50% for σ = 100 meV, see bottom left
panel in Figure 5). For low disorder strength a large portion of
XD excitons transform into CT excitons before recombining

Figure 3. Dependence of spatial proximity factor h E E( , )i f (eq 31)

averaged over different disorder realizations on rescaled energy of the
initial and final state for two different values of disorder strength σ.
Standard deviation of the Gaussian function used to broaden the
spatial proximity factor is σE = 5 meV. The data are shown for exciton
states considered when the initial state is XD state with energy around
2200 meV.

Figure 4. Time dependence of the number of CT excitons, acceptor (XA) excitons, XD excitons, CS excitons, free charges (free), and recombined
pairs (GS) when initial state is XD state with energy around 2200 meV. The results are shown at four different values of disorder strength σ.
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and recombination from XD states is no longer the dominant
source of recombination (see top left panel in Figure 5).
From Figure 4 we see that time scale for further separation

from CT state toward free charges also strongly depends on
disorder strength σ and increases as σ increases. This can be
evidenced from the increase of time when free charge
population reaches saturation. In our previous work,13 we
investigated the separation from lowest CT state in detail and
found that for low and moderate disorder strength it can be
understood in terms of a four-state kinetic model involving the
ground state, the lowest CT state, intermediate CT states and
CS states. In this model an exciton that escapes from
intermediate CT states to CS states reaches external contacts
without any additional obstacles. For larger disorder strengths
additional obstacle is caused by slow transport from CS state
toward external contacts. For all disorder strengths the states
from which conversion to free charges takes places are
predominantly CS states. This can be seen from right panels
in Figure 5. Despite the fact that almost all excitons that
separate into free charges pass through CS states, their
populations remain relatively small at all times. This is a
consequence of the fact that no exciton remains for a long
period of time in a CS stateit either makes a transition to
other CS or CT states or converts into free charges. To
additionally verify the statements of this paragraph regarding
further evolution of an exciton that has reached a CT state, we
have performed the computation where initial state is a low
energy CT state chosen according to the criterion discussed in
the first paragraph of this section. The results obtained are
given in Figure S9 of SI and also demonstrate an increase of
time scale for conversion into free charges from ∼ −(1 10) ns

at low and moderate disorder strength σ = −(50 75) meV
toward ∼1 μs time scale at σ = 125 meV. In this case, all
recombination events take place from CT states, as shown in

the left part of Figure S10 of the SI, and free states are again
predominantly reached by transitions from CS states, as
presented in the right part of that figure.
Next, we would like to gain insight in time evolution of

exciton energies which will unravel whether hot or cold charge
separation mechanism is in place. For this reason, we calculate
the time evolution of spectral distribution of excitons defined
as

∑ ω σ= − ℏ
∈

A E t
N t

g E f t( , )
1

( )
( , ) ( )G

X x G

x E x
(32)

where N t( )X is the total excitonic population at time t and

σ = −
σ π σ( )g x( , ) expE

x1

2 2E E

2

2 is the Gaussian function with

standard deviation σE. The summation in eq 32 is performed
over all exciton states from group G. This distribution for
various exciton groups is shown in Figure 6 along with
corresponding densities of states. More precisely, the quantity
aG(e, t) shown in Figure 6 is aG(e, t) = AG(E, t), where the
relation between the rescaled energy e and the unrescaled
energy E is presented in the discussion of Figure 3. Spectral
distribution and density of states obtained in this way were
then averaged over different realizations of disorder. We
believe that this way of energy rescaling is excellent to gain
insight into energy−temporal pathways of various groups of
excitons. On the other hand, if the rescaling were not
performed, lowest energy CT states would have quite different
energies for various realizations of disorder, see Figure 2b. In
the course of averaging over different realizations of disorder,
lowest energy CT states for some configurations would be at
the same energy as some high-energy states of other
configurations and it would be hard to gain insight into
exciton pathways in the course of charge separation. From
Figure 6a we see that donor excitons that do not recombine or

Figure 5. Left panels: Time dependence of the number of recombined pairs from CT states (CT to GS), from XA states (XA to GS) and from XD
states (XD to GS). Right panels: Time dependence of the number of free charges created from CT states (CT to free) and from CS states (CS to
free). The results are presented at two different values of disorder strength σ. Initial state is XD state with energy around 2200 meV.
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convert to CT states relax to lower energies. Since the
beginning of creation of CT states (at about 0.1−1 ps, see
Figure 6b), the low energy part of CT manifold is populated,
and the energy distribution is further shifted toward lower
energies as the time progresses. CS states become populated at
about similar times as CT states and only cold CS states are
populated, as seen in Figure 6c. Figure 6d shows the
distribution of energies of free charges that were created and
also indicates that only low energy free charges are created.

Note that our model does not consider further evolution of

free charges after their creation. Consequently, the energies of

free charges in Figure 6d correspond to the moment of time

when they were created. The results in Figure 6 clearly point in

favor of cold separation mechanism since only low energy CT

and CS excitons are present in the system and only low energy

free charges are generated. We obtain the same conclusion

from analogous figures obtained for different initial XD

Figure 6. Energy- and time-resolved population of XD states [aXD(e, t)], CT states [aCT(e, t)], CS states [aCS(e, t)], and free charges [afree(e, t)].
Gaussian broadening of σE = 5 meV was used to calculate these quantities. The energy of free charges is taken at the moment of time when they are
created. Initial state is XD state with energy around 2200 meV. Corresponding DOS (in arbitrary units) for each group of states is given as a
reference in panels on the right. Energy axis has been rescaled in such a way that 0 corresponds to lowest energy in a certain configuration, while 1
corresponds to highest energy of that configuration.
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energies (depicted by vertical arrows in Figure 2a) and for
different disorder strengths, see Figures S11−S13 of the SI.
To further support the charge separation mechanism

proposed, we present in Figure 7 the quantity defined as

∑= [ − ]
∈ ∈

N t f t w f t w( ) ( ) ( )G G

x G x G
x x x x x xT

,
2 1

1 1 2 2

1 2 1 2 1 2

(33)

This quantity represents the net number of exciton
transitions per unit time from the states of group G1 to the
states of group G2. Figure 7 shows that dominant transitions in
the system up to ∼1 ps are the transitions from XD to CT
states. After this time, for lower disorder strength of σ = 50
meV, the dominant transitions in the system are those from
CT to CS states and from CS to the states of free charges.
Interestingly, the value of NT for these two groups of
transitions is almost the same at those times (as can be seen
in Figure 7), suggesting that almost each conversion between
CT and CS states is followed by conversion from CS to free
charge states. For larger times (after ∼1 ns) recombination of a
small number of remaining CT excitons dominates. For larger
disorder strength of σ = 100 meV, we see that from
∼ −(10 1000) ps XD recombination dominates. Nevertheless,
there is again the balance between CT to CS and CS to free
charge conversion, which become dominant events at times
after ∼10 ns. All these results unambiguously imply that the
dominant pathway of excitons that avoid recombination is
from XD, via cold CT to cold CS states, and eventually to free-
charge states.
We further study the impact of polaron binding energy on

exciton dynamics in general and charge separation yield in
particular. Similarly as in ref 13, the separation yield is defined
as the long-time limit of the total free-charge population. In

Figure 8 we present the dependence of separation yield from
initial XD state on polaron binding energy at two different

values of disorder strength in cases where transition rates were
modeled using modified Redfield (eq 16) and Redfield (eq 26)
approaches. The effect of electron−phonon interaction, whose
strength is in our model quantified by polaron binding energy,
on exciton transport is twofold. On the one hand, the increase
in electron−phonon interaction increases the phonon-assisted
scattering between exciton states and hence the transition rates
between the states. This effect is included both in Redfield and
modified Redfield rates. On the other hand, the increase in
electron−phonon interaction tends to “dress” the carriers by
the respective phonon cloud, which leads to a decrease in the
transition rates between the states. This effect is captured only
within the modified Redfield approach. As a consequence of
previous facts, the transition rates always increase with increase
in electron−phonon interaction strength within Redfield
approach. For this reason, the separation yield is a
monotonously increasing function of λ within Redfield
approach. On the other hand, within modified Redfield
approach, the transition rates and the separation yield are
not monotonous functions of λ, which can be seen in Figure 8.
The maximum in the dependence of the yield on λ is more
pronounced for smaller disorder strength. In this case, relative
role of localization induced due to polaron effects in
comparison to localization induced by disorder is larger,
leading to a more pronounced dependence of yield on λ.
Nevertheless, we see from Figure 8 that in practice the
separation yield depends only weakly on λ. This is true in
particular in the range from 10 to 100 meV, which is the range
of realistic values of λ.14,36 Some quantitative differences
between separation yield from Redfield and modified Redfield
approach exist, as can be seen in Figure 8. The separation yield
is consistently smaller in the modified Redfield than in the
Redfield approach, and the difference between the two yields
increases as the magnitude of the carrier−phonon interaction
is increased. Nevertheless, the overall conclusions regarding
the time scales for conversion between different exciton types
and separation mechanism are not expected to be affected by
the choice between the two models for transition rates. This is
confirmed by the results presented in Figure S5 of the SI,
which compares the dynamics of excitonic populations and

Figure 7. Time dependence of the number of transitions per unit time
between most relevant groups of exciton states for disorder strengths
of σ = 50 and 100 meV. Initial state is XD state with energy around
2200 meV.

Figure 8. Dependence of separation yield on polaron binding energy
λ when transition rates are modeled within modified Redfield theory
for disorder strength of σ = 50 meV (label MR-50) and σ = 100 meV
(label MR-100) and when transition rates are modeled within
Redfield theory for disorder strength of σ = 50 meV (label R-50) and
σ = 100 meV (label R-100). Initial state is XD state with energy
around 2200 meV.
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recombination events produced by modified Redfield and
Redfield transition rates. Since the excitonic dynamics in the
two cases is similar, see Figure S5a,c,e, the correlation between
the values of the respective transition rates is expected, as
evidenced by Figure S6 of the SI, which shows pairs (wR, wMR)
of transition rates predicted by Redfield (wR) and modified
Redfield (wMR) approaches. For most transitions, the two
models predict transition rates that are of the same order of
magnitude. However, the difference in the separation yields
presented in Figure 8 means that the most important
transitions for the full charge separation (from XD to CT
and from CT to CS states), which involve a significant spatial
transfer of charge, are somewhat slower in the modified
Redfield than in the Redfield approach. The effect is more
pronounced for stronger couplings to vibrations and is also
reflected in recombination data in Figure S5b,d,f. Higher
recombination probabilities from both XD and CT states
within the modified Redfield approach (with respect to the
Redfield approach) reflect smaller escape rates from XD
toward CT and from CT toward CS states. The preceding
discussion clearly demonstrates that the approach adopted in
this work takes into account (at least partially) the “dressing”
of electronic excitations by phonons. For completeness, we
present in Figure S14 of the SI the dependence of separation
yield from initial CT state on λ. This dependence exhibits the
same features as in the case of initial XD state, with a slight
difference that it is somewhat more pronounced.
In our previous work,13 we used the transition rates which

are equivalent to Redfield rates, with somewhat different
spectral function (Ohmic with exponential cutoff instead of
Drude−Lorentz). Since we have established that exciton
dynamics and separation mechanism are expected to be similar
both within Redfield and modified Redfield approach and we
have previously shown13 that the choice between Drude−
Lorentz and Ohmic (with exponential cutoff) spectral function
does not strongly affect the separation yield from initial XD
state, it is expected that all the trends obtained when a
particular parameter of the Hamiltonian is changed (such as
transfer integrals, band offsets, on-site Coulomb interaction,
temperature, energy of initial donor state, electric field
strength) will remain qualitatively similar as in our previous
study. For example, we found in our previous work13 (in
agreement with other studies17,32) that the dependence of
charge separation yield on electric field is a monotonously
increasing function that is nearly constant at fields below
∼106−107 V/m, which then increases and eventually reaches
one at fields on the order ∼107−108 V/m and we expect
overall similar behavior here. Because of these expectations and
the fact that the evaluation of modified Redfield rates is
significantly more computationally prohibitive than the
evaluation of Redfield rates, we do not repeat the analysis of
these dependences from our previous work here.

■ DISCUSSION

Connection to Experimental Results. We now discuss
the connection of our results to available experimental results
from the literature. The most common experimental technique
for investigating the time dependence of populations is pump−
probe transient absorption spectroscopy. Within this techni-
que, one initially excites the system by the pump pulse that
creates excitons and then probes the system by another optical
pulse. Optical response to the second pulse gives information
about populations of certain groups of exciton states. Two time

scales were typically identified in the signals obtained from the
application of this technique to polymer/fullerene blends: a
very short ∼100 fs time scale and a longer ∼10 ps time
scale.34,37−40 The longer ∼10 ps time scale originates from
conversion of XD to CT excitons. On the other hand, the short
time scale may originate from ultrafast transfer of excitons
generated very close to the interface which do not need to
diffuse to the interface to convert into CT excitons. We will
discuss in particular the results on P3HT/PCBM blend since
the parameters of our model were chosen to mimic this system.
In ref 41, the authors analyzed exciton and charge dynamics in
P3HT/PCBM blends of varying degree of disorder: (i)
regiorandom P3HT; (ii) regioregular P3HT; (iii) annealed
regioregular P3HT. They found that in cases (i) and (ii)
recombination from CT states occurs with a time constant of 2
ns with more recombination events in case (i). Such results are
in overall agreement with our results regarding the time scale
for recombination (see Figure 5) and its independence on
disorder strength. The time scale for conversion of XD to CT
states is less than 100 fs in cases (i) and (ii) in ref 41; however,
one should note that these samples consist of a blend where
there is a PCBM molecule close to each P3HT chain and
therefore XD excitons do not need to diffuse to the interface to
transform to CT states. On the other hand, our model mimics
the P3HT/PCBM bilayer and predicted XD to CT conversion
time scales should be compared to annealed samples [case (iii)
in ref 41] where regions of pure P3HT are formed. The time
scale for XD to CT conversion in case (iii) in ref 41 was
reported to be approximately 9 ps and is comparable to our
results, see Figure 6a,b, or Figure 4.
Since excitons in different states may respond to the same

probe, it is difficult to reliably distinguish between different
groups of states in a typical transient absorption experiment. It
turns out in practice that XD excitons can be reliably identified
but that it is quite difficult to distinguish between CT and CS
states.11 These difficulties can be circumvented in a time-
delayed collection-field experiment, which exclusively measures
free (extractable) charges.42 Charge generation by an energy-
selective photoexcitation is followed by application of a high
reverse bias voltage to extract free charges. In a recent study
employing this experimental technique,33 it is shown that the
relaxation to the bottom of the CT manifold cannot be
avoided, no matter how large the excess energy stemming from
the excitation of high-energy donor states is. Moreover, the
authors demonstrate that the majority of recombination, as
well as the separation events occur starting from CT manifold,
and that most photogenerated species either recombine or
transform into free carriers within a couple of nanoseconds
following the photoexcitation. The results we present in this
work, in particular the energy- and time-resolved pathways
summarized in Figures 6 and S7−S9, and the resolution of
separation and recombination events performed in Figure 5 are
thus in agreement with the central conclusions of ref 33.
Dynamics of excitons in polymer/fullerene blends was also

studied using several other time-resolved techniques. In ref 40,
interpretation of polarization-sensitive transient absorption
measurement of P3HT/PCBM blends implied the time-scale
of ∼ −(0.1 20) ps for the formation of CT states and up to
∼100 ps time scale for further conversion into free charges. In
ref 43 time-resolved electric field-induced second harmonic
method was used to monitor the charge separation process. It
was shown that the charges separate by several nanometers
during the first several picoseconds, while further separation
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and formation of free carriers takes place on a subnanosecond
time scale. In ref 7 the authors used time-resolved two-photon
photoemission technique to visualize the time dependence of
spectral distribution of excitons in a phthalocyanine/fullerene
blend. They found that formation of CT states and their
further relaxation occurs on a picosecond time scale. Time
scales in these experiments are comparable with what we
obtain for lower values of disorder strength.
Discussion on Theoretical Approach and Model.

Theoretical and simulation studies that investigated time
dependence of exciton populations in organic heterojunctions
were certainly performed in the past. Nevertheless, the studies
based on model Hamiltonians were restricted to short (sub-
picosecond) time scales.17,18,32,44−49 Consequently, these
studies could capture at most the process of XD to CT
conversion and could not capture further charge separation.
Some of these studies also included polaronic effects to a
certain extent.17,18,32,44,45,49 The studies on longer time scales
were exclusively based on the assumption that electrons and
holes are hopping between a predefined set of sites and
relevant properties are typically extracted from a kinetic Monte
Carlo simulation.50−56 Such studies typically do not include
polaronic and delocalization effects, while in some cases
delocalization is added through its effect on site energies56 and
polaronic effects are sometimes added if hopping rates are
calculated using the Marcus expression.52 On the other hand,
our study starts from a model Hamiltonian whose parameters
were chosen to mimic a particular bilayer and includes both
the effects of delocalization and polaronic effects in the same
approach.
The modified Redfield theory interpolates between widely

used theories of exciton/charge transport to which it reduces
in appropriate limits.25 Standard Redfield rates (eq 26) are
obtained from eq 16 by neglecting all terms ̇

̅ ̅
g
x x x x,2 2 1 1

,
̅ ̅

g
x x x x,2 2 1 1

,

λ
̅ ̅x x x x,2 2 1 1

in which ̅ =x x2 2 or ̅ =x x1 1. In this limit, electronic

couplings are treated in all orders, while the interaction with
phonons is considered in the second order. The path toward
the Förster and Marcus transition rates is presented in section
S2.4 of the SI. In these limits, the interaction with phonons is
treated in all orders, while electronic couplings are considered
in the second order. The modified Redfield theory can thus be
regarded as a viable route to go beyond all conventional limits
and include both delocalization and the most important part of
the couplings to vibrations in a nonperturbative manner. It is
applicable to transitions in which the spatial overlap between
the carriers in the excitonic states involved is relatively small. In
our model, the disorder strength is comparable to electronic
couplings, so that the carriers in excitonic states are only
partially delocalized. This is shown in Figure S4, which
presents data on the participation ratio of the electron and hole
in various excitonic states. We see in Figure S4 that in the XD,
CT, and CS states that are mainly involved in the separation
process (see blue traces in Figure 6), the carriers are localized
on only a couple of neighboring units. Full charge separation is
achieved by transitions (from XD to CT, from CT to CS, and
to CS to free-charge states) in which the spatial positions of
the electron and hole are significantly changed. Therefore, the
spatial overlap of the initial and final states in transitions that
are crucial to reach free-charge states is expected to be small,
and the rates predicted by the modified Redfield theory are
expected to be reliable.

As already mentioned, the initial condition embodied in eq
12 is appropriate to describe the dynamics starting on time
scales ∼100 fs to 1 ps after a sudden photoexcitation event.
Our approach is not intended to capture ultrafast dynamics
right after exciton photogeneration. Should one want to
examine such dynamics, and still treat polaronic effects on the
level presented in our study, one should resort to the so-called
nonequilibrium modified Redfield theory.28,57 The appropriate
initial condition to describe sudden photogeneration in
excitonic state |x0⟩ is of the form given on the right-hand
side of eq 13, where nuclear degrees of freedom have not had
time to accommodate themselves to the displaced equilibrium
characteristic for |x0⟩, but are in their canonical equilibrium
(which is associated with the ground state). A derivation that is
similar to (but somewhat more involved than) that presented
in section S2.1 of the SI produces rate equations (eq 14) with
time-dependent nonequilibrium modified Redfield rates, which
capture non-Markovian effects and dynamical interplay
between nuclear relaxation toward equilibrium in electronically
excited state and population transfer. It is shown that, already
after a couple of γ−1 (in our case, a couple of hundreds of
femtoseconds) after exciton photogeneration, time-dependent
nonequilibrium modified Redfield rates reach their asymptotic
values, which coincide with the modified Redfield rates given
in eq 16.57 In other words, nuclear relaxation toward nuclear
equilibrium in excited states (see phonon factor of the initial
condition in eq 12) is completed a couple of hundreds of
femtoseconds after a sudden photogeneration. Our recent
analysis12 of ultrafast exciton dynamics triggered by a short
photoexcitation suggests that, on sub-picosecond time scales
following exciton photogeneration, population transfer mainly
occurs within the manifold of donor states, while transitions
toward states of spatially separated charges predominantly take
place on much longer time scales. These conclusions are not
expected to change when polaronic effects are taken into
account. We thus believe that, in order to gain insight into time
scales and pathways of long-time charge separation, it is
reasonable to use time-independent modified Redfield rates
(eq 16) along with the initial condition in eq 12.
Next, we comment on the possible influence of the

dimensionality of the model on the results. Our main
conclusion is that the main path of charge separation includes
the transition from XD states to low energy CT states (step 1),
followed by conversion of CT states to CS states (step 2) and
eventual transport from CS states to free charge states (step 3).
We will discuss next how the effect of dimensionality could
affect the transport over these routes. Step 2 involves the
transition from low energy CT state to intermediate CT state
with somewhat larger energy and larger electron−hole
separation and the transition from that state to some CS
state. Since only a few transitions constitute this step, the effect
of dimensionality is not expected to play any role on this step.
On the other hand, the effect of dimensionality might be
important when charge (or exciton) transport over larger
distance takes place. In this case, additional dimensions might
help the charge to find additional routes if direct one-
dimensional route is not accessible. As a consequence, one
might expect that higher dimensionality might accelerate steps
1 and 3. The results of our previous work13 suggest that step 2
is actually the rate limiting step for low and moderate disorder
strengths (say up to σ ∼ 80 meV). Therefore, for these
disorder strengths, steps 1 and 3 are already fast enough and
their further acceleration will not enhance the separation yield.
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On the other hand, steps 1 and 3 do become rate limiting for
larger disorder strengths and it is possible that higher
dimensionality will accelerate these steps and increase the
separation yield.
Next, we comment on the extent by which dimensionality

affects the efficiency of steps 1 and 3 and consequently the
separation yield. An important point to note in this regard is
that the exciton states in our model exhibit a certain degree of
delocalization. As a consequence, a donor exciton in step 1 can
reach a CT state after making only a few transitionsit does
not need to travel slowly site by site. In a similar manner, an
electron and a hole in step 3 can also reach the free charge
state in a few steps only and not by passing each site. It is
therefore important to note that our model is different than
frequently used hopping models in which an exciton (or a
charge) is localized at a site and can usually hop only to nearest
neighbor sites. In such models, the transport can be very slow
in one dimension in the presence of disorder and adding new
dimensions strongly accelerates the transport. For example, in
ref 56 the authors showed that separation yield at low electric
fields in one dimension is rather low (between 10−4 and 10−2

depending on the parameters) and that the separation yield in
2D model can be 2 orders of magnitude larger than in 1D
model. In our model, the transport is already relatively efficient
in 1D as can be evidenced by reasonably large separation yields
of at least 20% even at highest disorder strength (see Figure
4d). Therefore, we expect that additional dimension will only
slightly increase the separation yield at large disorder strength,
while it will hardly affect it at low and moderate disorder
strengths.
This expectation can rigorously be confirmed only by

extending the model to higher dimensions which is at present a
significant challenge both from computational and conceptual
side. On the computational side, higher dimension introduces
a significantly larger number of relevant exciton states, which
then introduces the need for a much larger number of
transition rates that need to be calculated and a larger
eigenvalue problem and the system of linear equations that
need to be solved to obtain time dependence of populations.
On the conceptual side, real morphology of the materials near
the interface is not well-known. Ideally, one would like to start
in the simulation from the atomic structure of the materials
near the interface, then parametrize an effective model similar
to ours and use that model further. However, in the case of
P3HT/PCBM several questions arise regarding for example
the orientation of P3HT chains with respect to the interface,
the sharpness of the interface, the amount of order/disorder in
each of the materials near the interface, etc.

■ CONCLUSIONS

In conclusion, we presented the method for simulation of
charge separation process in organic semiconductor bilayers
from the creation of exciton in the donor to the final time
(which can be as long as 1 μs later), when there are no more
charge pairs present in the system. In the course of separation
process, donor excitons first relax to lower energies and
eventually transform into a CT state. Charge transfer excitons
then convert into CS and free-charge states via intermediate
CT states which have higher energies and larger electron−hole
separation. In more disordered systems the processes of
conversion between XD and CT states and the conversion
from CT toward free carrier states are slowed down and charge
separation yield is lowered since some XD or CT excitons

recombine before they convert to other exciton types.
Polaronic effects were included in the computations and it
turned out that in relevant range of electron−phonon
interaction parameters charge separation yield rather weakly
depends on electron−phonon interaction strength. Computa-
tion results indicate that it is the conventional cold charge
separation mechanism that takes place in organic hetero-
junctions.
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ABSTRACT: We study incoherent charge separation in a lattice
model of an all-organic bilayer. Charge delocalization is taken into
account by working in the basis of electron−hole pair eigenstates,
and the separation is described as a series of incoherent hops
between these states. We find that relatively weak energetic disorder,
in combination with good charge delocalization, can account for
efficient and weakly field- and temperature-dependent separation of
the strongly bound charge transfer (CT) state. The separation
efficiency is determined by the competition between the
recombination from the initial CT state and the escape toward
intermediate CT states, from which free-charge states can be reached with certainty. The separation of donor excitons also
exhibits quite high yields, less bound excitons separating more efficiently. Overall, our results support the notion that efficient
charge separation can be achieved even out of strongly bound pair states without invoking coherent effects.

■ INTRODUCTION

The outstanding problem of charge carrier photogeneration at
an interface between an electron-donating (donor) and an
electron-accepting (acceptor) organic material has inspired
coordinated and interdisciplinary research efforts in the field of
organic photovoltaics (OPVs).1−4 A photoexcitation of such an
interface creates strongly bound donor (or acceptor) excitons
that, after the diffusion to the donor/acceptor (D/A) interface,
dissociate forming the charge transfer (CT) state. Although the
magnitude of the Coulomb interaction between the electron
and hole in the CT state is much larger than the thermal energy
at room temperature, the subsequent charge separation and
eventual formation of free charges that can be extracted at the
electrodes is very efficient.5,6

Numerous mechanisms have been invoked to understand the
origins of such an efficient conversion of strongly bound
excitons to free charges. One group of mechanisms (coherent
mechanisms) suggests that free-charge generation occurs on an
ultrafast (100 fs) time scale by virtue of the high-energy (“hot”)
CT states in which electrons and holes are highly delocalized
and spatially separated.7−10 The charge separation competes
with the subpicosecond exciton relaxation toward strongly
bound and localized CT states, which are regarded as traps for
further separation.7 Another group of mechanisms (incoherent
mechanisms) conceives charge separation as a much slower
process that starts from the strongly bound (“cold”) CT states
and converts them into free carriers by means of the hopping
between localized states that is possibly assisted by the
interfacial electric field.6,11−14 The characteristic time scale for
the incoherent charge separation is of the order of tens to
hundreds of picoseconds.11,12 However, what actually drives the

separation from “cold” CT states despite their strong binding
and pronounced localization remains elusive.2

The coherent and incoherent separation mechanisms do not
contradict each other, and both may be at play in an efficient
OPV cell.15 Indeed, from our recent theoretical studies,16,17

which focus upon the ultrafast dynamics following photo-
excitation of a model heterointerface, emerges that on
picosecond time scales after photoexcitation the majority of
charges are still bound in states of donor or CT excitons. In
other words, there is some (coherent) charge separation on
subpicosecond time scales, but the vast majority of charges
remains in strongly bound states on picosecond time scales,
which is in agreement with recent experimental results.13

Therefore, examining charge separation on longer time scales is
crucial to fully understand charge photogeneration in OPVs.
Recent theoretical studies have challenged the common view

that the separation from the CT state requires surmounting an
immense energy barrier.18−21 These studies emphasize the
influence of the entropy on charge separation. In this context,
the entropy is related to the number of configurations in which
an electron−hole pair may be arranged. It is suggested that the
combined effect of entropy and disorder20 or entropy and
carrier delocalization21 can substantially reduce (or even
eliminate) the Coulomb barrier, so that the electron and hole
in the CT state are not thermodynamically bound and thus
might separate if there are no kinetic obstacles.
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The charge separation from the strongly bound CT state has
been extensively studied within the framework of the Onsager−
Braun model22,23 and its modifications.24 Basically, the
separation probability is determined by the competition
between the electric field- and temperature-dependent
dissociation of a localized electron−hole pair and its
recombination to the ground state. While such a treatment
has been revealed successful in reproducing experimental
photodissociation yields in bulk molecular D/A crystals,25 it
has been recognized as unsuitable for conjugated polymer/
fullerene blends.26 The reasons for this inadequacy may be
summarized as follows. First, the Onsager−Braun model
employs the approximation of localized point charge carriers,
which does not hold in a polymer/fullerene blend. In this
regard, it has been proposed that the hole delocalization along
conjugated segments of polymer chains can enhance charge
separation27−29 because the kinetic energy of hole oscillations
along chains lowers the Coulomb barrier between the electron
and hole. The combination of the effects due to the hole
delocalization and the presence of dark interfacial dipoles30,31

has been demonstrated to reproduce the essential features of
experimental photocurrent data.32 Furthermore, the combina-
tion of the on-chain hole delocalization and the dimensional
(entropic) effects has been suggested as the main reason for
weakly field-dependent and very efficient charge separation in
polymer/fullerene bilayers.33 Second, for the Onsager−Braun
model to reproduce experimental data, the mobility-lifetime
product should assume unrealistically high values, meaning that
either carrier mobility or pair lifetime should be unrealistically
large. Kinetic Monte Carlo (kMC) studies have demonstrated
that efficient and weakly field- and temperature-dependent
charge separation can be achieved when relevant parameters are
carefully chosen on the basis of experimental data.34,35 Third,
the Onsager−Braun model does not capture the effects of the
(energetic and/or spatial) disorder on charge separation. In ref
36, an analytical treatment of charge separation in a one-
dimensional disordered chain is presented, and it was suggested
that, at least at low interfacial electric fields, the disorder may
enhance the separation of geminate electron−hole pairs. Recent
kMC results also point toward the beneficial role of not too
strong energetic disorder on charge separation.37

Here, we investigate the separation of geminate electron−
hole pairs in a one-dimensional lattice model of a bilayer. The
model takes into account energetic disorder, carrier delocaliza-
tion, carrier−carrier interaction, carrier recombination, and the
interaction of carriers with the phonon bath and the interfacial
electric field. The carrier delocalization is properly taken into
account by transferring the description of charge separation
from the usually used position space to the space spanned by
the exciton basis states, that is, by stationary states of an
electron−hole pair on the model interface. The charge
separation is then concieved as a sequence of transitions
between exciton basis states that are mediated by the
interaction with the phonon bath. The separation yield is
computed from the stationary solution to the rate equations for
basis states populations in two cases, for the separation starting
from CT states and donor exciton states. We find that
moderate energetic disorder and carrier delocalization promote
efficient and relatively weakly field-dependent separation of the
strongly bound CT exciton. In this process, the vital role is
played by long-lived intermediate CT states, from which further
charge separation proceeds practically without obstacles. The
separation of the strongly bound donor exciton is also efficient,

but requires quite strong electric fields to occur with certainty.
On the other hand, more separated and weakly bound donor
excitons separate with efficiency close to 1.

■ MODEL AND METHODS

Model Hamiltonian, Exciton States, and Their Classi-
fication. To describe the bilayer of two organic semi-
conductors, we employ the standard semiconductor model on
a lattice with multiple single-electron and single-hole states per
site. The model to be presented is quite general and may also
be used (upon appropriate adjustments) to study the electric
field-assisted charge generation in other D/A structures. The
numerical computations are performed on a one-dimensional
system consisting of 2N sites located on a lattice of constant a.
The sites 0,...,N − 1 represent the donor part, while sites
N,...,2N − 1 represent the acceptor part of the bilayer. The
single-electron levels on lattice site i are counted by index βi, so
that Fermi operators ciβi

† (ciβi) create (destroy) an electron on

site i and in single-electron state βi. The single-hole levels on
site i are counted by index αi, and Fermi operators diαi

† (diαi)

create (annihilate) a hole in single-hole state αi on site i. The
phonon bath is assumed to consist of a multitude of localized
phonon modes on each lattice site, and the sets of phonon
modes on all sites are identical. The Bose operators biλ

† (biλ)
create (annihilate) a phonon on site i and in phonon mode λ.
The model Hamiltonian assumes the form:

= + + +− −H H H H Hc p c p c f (1)

where Hc describes interacting carriers:
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λ
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(3)

describes the phonon bath, Hc−p accounts for the interaction of
carriers with the phonon bath:

∑ ∑

∑ ∑
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whereas Hc−f represents the interaction of carriers with the
interfacial electric field F, which is assumed to be uniform
throughout the system:

∑ ∑= · − ·
β

β β

α

α α−
† †H q c c q d dF r F r

i

i i i

i

i i ic f

i

i i

i

i i

(5)

In eq 2, we take that quantities ε(iβi)(jβj′)
c (ε(iαi)(jαj′)

v ), which

represent electron (hole) on-site energies and transfer integrals,
assume nonzero values only for particular combinations of their
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indices. In more detail, we assume that ε(iβi)(jβj′)
c ≠ 0 when it

represents

(1) on-site energy εiβi
c of single-electron level βi on site i, for i

= j and βi = βi′;
(2) negative electron transfer integral between single-

electron levels on nearest-neighboring sites belonging

to the same band βi, −Jiβi
c,int, for i and j both belonging to

the same part of the bilayer, |i − j| = 1, and βi = βj′;
(3) negative electron transfer integral between single-

electron levels on nearest-neighboring sites belonging

to different bands, −Jiβiβj′
c,ext, for i and j both belonging to

the same part of the bilayer, |i − j| = 1, and βi ≠ βj′; or
(4) negative electron transfer integral between different parts

of the bilayer, −JDA
c , for i = N − 1 and j = N or vice versa.

The Coulomb interaction (eq 2) is taken into account in the
lowest monopole−monopole approximation, and the inter-
action potential Vij is assumed to be the Ohno potential:

=

+ ( )
V

U

1

ij
r

r

2
ij

0 (6)

where U is the on-site Coulomb interaction, rij is the distance
between sites i and j, r0 = q2/(4πε0εrU) is the characteristic
length, and εr is the relative dielectric constant. Charge carriers
are assumed to be locally and linearly coupled to the phonon
bath (Holstein-type interaction), as given in eq 4. In eq 5, q > 0
is the elementary charge, ri is the position vector of site i, and
vector F is assumed to be perpendicular to the interface and
directed opposite the internal electric field of a space-separated
electron−hole pair (vide infra). The interfacial electric field
may originate from the different Fermi levels of the
electrodes,38 or from some other source.39

Similar to other numerical studies, which obtain charge
separation efficiency by tracking the faith of a single electron−
hole pair, we confine ourselves to the subspace of a single
electron−hole pair. We describe charge separation in the
exciton basis, whose basis vectors are stationary states of an
electron−hole pair supported by the model interface. The most
general state of an electron−hole pair can be written as

ψ| ⟩ = ∑ | ⟩
α α β β α

† †

β

x c d 0
i i j

x
j i( )( )i

j j

i j j i
, where |0⟩ is the vacuum of

electron−hole pairs. The exciton basis states are obtained by
solving the eigenvalue problem (Hc + Hc−f)|x⟩ = ℏωx|x⟩, which
in the basis of single-particle states localized at lattice sites reads
as
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We take into account the diagonal static disorder; that is, on-
site energies εiβi

c and εiαi
v depend on site index i. The disorder is

the essential element of our model, because disorder-induced
localization effects enable us to isolate exciton states that are
similar to states of free charges, as will be detailed in the next
paragraph.

It is convenient to classify the exciton basis states in a
manner similar to that we employed in our previous
studies,16,17 where we differentiated between

(1) donor exciton (XD) states, in which both carriers are
mainly in the donor part of the bilayer,

(2) acceptor exciton (XA) states, in which both carriers are
mainly in the acceptor part of the bilayer, and

(3) space-separated exciton states, in which the electron is
mainly in the acceptor, while the hole is mainly in the
donor part of the bilayer.

Here, we are interested in full charge separation, which results
in almost free carriers capable of producing electric current.
Therefore, we have to individuate exciton states of our model
that resemble these free-carrier states. To this end, we
introduce the notion of the contact region of the bilayer,
which consists of sites 0,...,lc − 1 in the donor part and sites
2N − lc,...,2N − 1 in the acceptor part of the bilayer. If both
electron and hole are primarily located in the contact region
(the electron in its acceptor part and the hole in its donor part),
we consider them as fully separated carriers. More quantita-
tively, we say that space-separated exciton state x is a contact
state (state of fully separated carriers) if

∑ ∑ ∑ ψ| | ≥
α β

α β
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−
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i
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and
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i j N l
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2

2 1

( )( )
2

i j
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c (9)

The space-separated states that are not contact states will be
further referred to as CT states. We point out that the
localization induced by disorder is crucial to identify contact
states. In the perfectly ordered system, there are no space-
separated states that meet the criteria of spatial localization
given in eqs 8 and 9.

Theoretical Approach to Incoherent Charge Separa-
tion. Our aim is to analyze the incoherent charge separation,
that is, charge separation that occurs on long time scales so that
coherent features are not pronounced and consequently carrier
dynamics can be well described in terms of populations only.
Here, we work in the basis of electron−hole pair states x and
study charge separation by finding a stationary solution to an
appropriate equation for populations f x of exciton states.
Similar to ref 36, we assume that contact states act as absorbing
states in the course of charge separation; that is, once an
exciton reaches a contact state, it is removed from the system.
This removal may be interpreted as the extraction of the fully
separated electron and hole at the electrodes. Therefore, we
find the stationary solution to equations for populations f x of
exciton states x that do not belong to the group of contact
states (further denoted as C). These equations are Pauli master
equations in which the interaction with the phonon bath leads
to transitions between exciton states. The time evolution of the
population of exciton state x ∉ C is described by

∑ ∑τ= − − +−

′
′

′∉
′ ′

f

t
g f w f w f

d

d
x

x x x
x

x x x
x C

xx x

1

(10)

where gx is the generation rate of state x (the number of
excitons generated per unit time in state x), τx is the lifetime of
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exciton state x, wx′x is the rate of phonon bath-induced
transition from state x to state x′, while the condition x′ ∉ C on
the summation in the fourth term is due to the assumption of
absorbing contact states.
We are searching for the stationary solution f x

0 to eq 10,
which satisfies

∑ ∑τ= − − +−

′
′

′∉
′ ′g f w f w f0

x x x
x

x x x
x C

xx x

1 0 0 0

(11)

With the stationary populations of exciton states at hand, we
can compute the separation probability:

φ =
∑ ∑

∑
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x C x C x x x

x C x
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(12)

and the recombination probability:

ρ
τ

=
∑

∑
∉

−

∉

f

g

x C x x

x C x

1 0

(13)

Using eq 10, it can be shown that φ + ρ = 1. Different choices
of gx allow us to investigate incoherent charge separation
starting from different initial states.
The phonon bath-assisted transition rates from exciton state

x to exction state x′, wx′x, can be obtained using the Fermi
golden rule. First, it is convenient to rewrite the carrier−
phonon bath interaction Hc−p (eq 4) in the relevant subspace of
single electron−hole excitations as16
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where the interaction constants in the exciton basis read as
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Therefore, the phonon bath-assisted transition rate from state x
to state x′ is

∑

∑
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where nBE(E) = (eβE − 1)−1 is the Bose−Einstein occupation
number at temperature T = (kBβ)

−1. The right-hand side of eq
16 can be simplified by assuming that all of the interaction
constants giβiλ

c and giαiλ
v are independent of site and band indices

and equal to gλ. Introducing the spectral density J(E) by

∑ δ ω= | | − ℏ
λ

λ λJ E g E( ) ( )2

(17)

we obtain

π
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where
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whereas
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The transition rates wx′x do not depend solely on the energy
difference ℏωx′ − ℏωx between exciton states x′ and x, but also
on spatial properties (e.g., spatial localization and mutual
overlap) of these states, which is described by quantity Px′x (the
so-called spatial proximity factor). The spatial proximity factor
between exciton states of the same character is in general much
larger than that between states of different characters. In other
words, for the same energy difference ℏωx′ − ℏωx, the
transition probability wx′x (eq 18) is much larger when states x′
and x are of the same character than when their characters are
different. The last point will be repeatedly used in further
discussion.

Parametrization of the Model Hamiltonian. The values
of model parameters used in our computations are summarized
in Table 1. They are selected so that the values of band gaps,

bandwidths, band offsets, and binding energies of the donor,
acceptor, and CT exciton that emerge from our model are in
agreement with the literature values for typical OPV materials.
While the present values are largely chosen to be representative
of the P3HT/PCBM interface, we emphasize that our aim is to
unveil fundamental physical effects responsible for very efficient
charge separation at an all-organic bilayer. Therefore, many of
the parameters listed in Table 1 will be varied (within
reasonable limits), and the effects of these variations on charge

Table 1. Values of Model Parameters Used in Computations

parameter value

N 30

lc 11

a (nm) 1.0

U (eV) 0.65

εr 3.0

εD,0
c (eV) 2.63

JD,0
c,int (eV) 0.1

εD,0
v (eV) −0.3

JD,0
v,int (eV) −0.15

εA,0
c (eV) 1.565

εA,1
c (eV) 1.865

JA,0
c,int (eV) 0.05

JA,1
c,int (eV) 0.025

JA,01
c,ext (eV) 0.02

εA,0
v (eV) −1.03

JA,0
v,int (eV) −0.15

JDA
c (eV) 0.1

JDA
v (eV) −0.1

σ (meV) 50

η 1.5

Ec (meV) 10

τ0 (ps) 250

AA/D 0.5

T (K) 300
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separation yield will be rationalized. This is also of practical
relevance, because the trends observed in such variations may
suggest which material properties should be tuned to maximize
the separation efficiency.
Actual computations are performed on the model system

having one single-electron level per site in the donor and one
single-hole level per site in both the donor and the acceptor. To
mimic the presence of higher-than-LUMO orbitals energetically
close to the LUMO level, which is a situation typical of
fullerenes,40,41 we take two single-electron levels per acceptor
site. The HOMO level of the ordered donor material is taken as
the zero of the energy scale. The model is schematically
depicted in Figure 1. The choice of the values of model

parameters is almost the same as in our recent investigation of
ultrafast dynamics at a D/A heterointerface.16 Therefore, here,
we only briefly summarize the essential features of this
parameter set, while the details can be found in our recent
article.
Within each region of the bilayer, the on-site energies of

electrons and holes are drawn from a Gaussian distribution
function. For example, the probability density that the energy of
the electron on donor site i (0 ≤ i ≤ N − 1) is in the vicinity of
εi,0
c can be expressed as

ε
σ π

ε ε

σ
= −

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟f ( )

1

2
exp

( )

2
i

i
,0
c ,0

c
D,0
c 2

2
(21)

where εD,0
c is the average electron on-site energy in the donor,

and σ is the standard deviation of the Gaussian distribution. We
assume that the deviations of on-site energies from their
average values are uncorrelated; this assumption regards both
on-site energies of electrons (holes) on different sites and on-
site energies of electrons and holes on the same site. The
disorder strength is determined by parameter σ, which typically

assumes values of the order of 100 meV.42 To obtain analytical
insights into charge separation efficiency, we opt for a lower
value of σ = 50 meV, which does lead to localization effects, but
does not completely destroy charge delocalization. Moreover,
the disorder-averaged values of relevant quantities, such as
exciton binding energies, LUMO−LUMO, and HOMO−
HOMO offsets, assume values that are quite close (within
few tens of meV) to the respective values in the ordered
system, which will thus often be used in the discussion.
The lattice constant a is comparable to typical distances

between neighboring constitutive elements of ordered poly-
mers43 (fullerene aggregates44). The number N of lattice sites
in the donor and acceptor is then chosen so that the length of
the model bilayer is similar to the linear dimensions of the
polymer/fullerene bilayers used in experiments.26,29,32 Our
choice of the value of the hole transfer integral JD,0

v,int is motivated
by the literature values of the HOMO bandwidth along the π-
stacking direction of the regioregular P3HT45,46 and the values
of the hole transfer integral along the π-stacking direction of the
same material.47,48 Such a choice tacitly assumes that the hole
transport in the donor part of the bilayer takes place among
different polymer chains. However, our Hamiltonian is quite
general, so that a different selection of the values of its
parameters can describe a different physical situation, for
example, the hole transport along a polymer chain. The single-
particle and optical gap of the ordered donor part of the bilayer
are tuned to be around 2.43 and 2.0 eV, respectively,49,50 so
that the exciton binding energy of the ordered donor material is
around 0.43 eV. The electronic parameters of the acceptor
(transfer integrals JA,0

c,int, JA,1
c,int, and JA,01

c,ext and the energy difference
εA,1
c − εA,0

c between average values of electronic on-site
energies) are selected so that the single-electron density of
states (DOS) of the ordered acceptor part reproduces the most
important features of the DOS of fullerene aggregates.40,51 The
single-particle gap and the binding energy of the ordered
acceptor part are tuned to the values of around 2.2 and 0.45
eV.49 The values of the LUMO−LUMO (ca. 0.97 eV) and
HOMO−HOMO (ca. 0.73 eV) offsets between the donor and
acceptor part of the ordered bilayer are chosen by adjusting the
energy differences ΔXD−CT and ΔXA−CT between the lowest
excited state of the heterojunction (the lowest CT state) and
the lowest exciton states in the donor and acceptor to the
typical literature values.49,52,53 The magnitudes of the transfer
integrals JDA

c and JDA
v between the two materials are taken to be

similar to the values obtained in ref 54.
For the spectral density of the phonon bath, we take the

Ohmic spectral density:55

η= −J E E( ) e E E/ c (22)

which is characterized by two parameters: the dimensionless
parameter η describes the strength of the system−bath
coupling, while Ec is the energy cutoff determining the energy
range of phonon modes that are strongly coupled to the system.
For the Holstein-like system−bath coupling and in the limiting
case of a charge carrier localized on a single lattice site, the
polaron binding energy is given by Epol = ∑λ|gλ|

2/(ℏωλ).
56 In

terms of spectral density J(E), and specifically for the Ohmic
spectral density, the polaron binding energy can be expressed as

∫ η= =
+∞

E E
J E

E
Ed

( )
pol

0
c (23)

Figure 1. Schematic view of the model system indicating different
transfer integrals and average on-site energies listed in Table 1. The
dashed lines represent average on-site energies, while the solid lines
represent actual on-site energies, which vary from site to site due to
the diagonal static disorder. The contact region of the bilayer is
denoted by rectangles. F is the vector of the interfacial electric field.
The plot on the right presents the single-particle DOS for electrons in
the isolated acceptor (full line) and donor (dashed line) regions of the
bilayer averaged over different disorder realizations. For each disorder
realization, the electronic states of the isolated regions are obtained by
diagonalizing the free-electron Hamiltonian (the first term on the
right-hand side of eq 2) in which the D/A coupling JDA

c is set to 0. The
DOS for that disorder realization is computed by broadening each of
the single-electron states obtained by a Gaussian whose standard
deviation is equal to 10 meV.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b03114
J. Phys. Chem. C 2018, 122, 10343−10359

10347

http://dx.doi.org/10.1021/acs.jpcc.8b03114


It is equal to the geometry relaxation energy Λrel upon charging
a molecule and to one-half of the reorganization energy Λreorg.

56

In ref 40, the relaxation energy of the PC60BM anion was
estimated to be Λrel = 15 meV. The authors of ref 57 found that
the polaron binding energy in a long straight polythiophene
chain is of the order of 10 meV. We use these estimates and
take the polaron binding energy Epol = 15 meV (the
reorganization energy is then Λreorg = 30 meV). We assume
that the system−bath coupling is strongest for the low-
frequency phonon modes and therefore take that Ec = 10 meV
and η = 1.5. All of these assumptions will be reassessed in the
Discussion.
There are different kinds of recombination processes that

limit the efficiency of organic solar cells.58 The recombination
of an electron−hole pair that originates from the absorption of
a single photon is geminate recombination. On the other hand,
an electron and a hole undergoing a nongeminate recombina-
tion event do not originate from the same photon. Here, we
consider only geminate recombination, which at a D/A
interface may occur as (a) the recombination of excitons
photogenerated in a neat donor or acceptor material, or (b) the
recombination of excitons in CT states. The recombination can
be further classified as radiative or nonradiative. In neat
polymers, recombination predominantly occurs via non-
radiative processes.59 In D/A blends, the major part of charges
recombine nonradiatively either at the interface or in the donor
material.60 However, there is no simple model that describes
the rate of nonradiative recombination in terms of microscopic
material properties. It is intuitively clear that the smaller is the
overlap between the electron and hole probability densities, the
smaller is the rate of their recombination and the larger is the
lifetime of the pair. In previous model studies of charge
separation at D/A interfaces, the last point has been recognized
as the steep dependence of the exciton lifetime on the
electron−hole separation,61 so that the recombination is
assumed to occur exclusively from the strongly bound CT
state,32,36,61 or a formula describing the aforementioned
distance dependence is proposed.33 Here, to each exciton
state x, be it a state in the neat material or a CT state, we assign
the lifetime τx that is inversely proportional to the weighted
overlap of the electron and hole wave function moduli:

∑ ∑τ τ ϕ ϕ ϕ ϕ= | || | + | || |
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In the last expression, the moduli of the wave function of the
electron and hole in exciton state x are defined as
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while τ0 and AA/D are constants that are determined so that the
lifetimes of the lowest CT, XD, and XA states in the ordered
system agree with the values reported in the literature. The
expression for the lifetime given in eq 24 captures the
previously described trend. Singlet exciton lifetimes in a variety
of conjugated polymers used in organic solar cells are of the
order of hundreds of picoseconds.59 Time-resolved photo-
luminescence measurements yield the singlet exciton lifetime in
neat P3HT around 470 ps and in neat PCBM around 740 ps.62

From the transient absorption measurements performed in
blends of P3HT and different fullerenes, the lifetime of the CT
state was determined to be around 3 ns.63 For the values of
model parameters listed in Table 1, the lifetime of the lowest
CT state in the ordered system is τCT

ord ≈ 2.5 ns, the lifetime of
the lowest XD state in the ordered system is τXD

ord ≈ 400 ps, and
the lifetime of the lowest XA state in the ordered system is τXA

ord

≈ 800 ps.

■ NUMERICAL RESULTS

In this section, we present the results concerning the yield of
charge separation starting from CT and donor states. In all of
the computations, we average over different disorder
realizations, and all of the results to be presented are averaged
over 256 disorder realizations. To facilitate the discussion, in
Figure 2a−e we present disorder-averaged DOS for different

groups of exciton states. Similar to our recent study, we
discriminate between CT states belonging to CT0 and CT1

bands.16 We say that a CT state belongs to the CT0 (CT1)
band if its electron primarily belongs to the electronic band in
the acceptor part of the bilayer arising from the single-electron
level of average energy εA,0

c (εA,1
c ).

Charge Separation from the Strongly Bound CT State.
As starting states for the charge separation process, here we
consider CT states belonging to the CT0 band. One particular
CT state out of all of the states in the CT0 band is chosen by
requiring that the mean electron−hole separation, which for
exciton state x reads as

∑ ψ⟨ ⟩ = | − || |
α

α β−

β

r i jx

i
i j
x

e h ( )( )
2

i
j j

i j

(27)

be minimal. We will further refer to such a state as the strongly
bound CT state. The strongly bound CT state is located on the
lower edge of the disorder-averaged DOS of CT excitons
belonging to the CT0 band; see the vertical double-sided arrow
in Figure 2b. We set the generation rate gx appearing in eq 10
to be different from zero only for the strongly bound CT state.

Figure 2. Disorder-averaged exciton DOS (in arbitrary units and at F =
0) for (a) donor exciton states, (b) CT states belonging to CT0 band,
(c) contact states, (d) CT states belonging to CT1 band, and (e)
acceptor exciton states. The horizontal arrows in (a) indicate
approximate energies of XD states serving as initial states of charge
separation. The vertical double-sided arrow in (b) indicates the energy
range of the CT states acting as initial states of charge separation. The
DOS in a single disorder realization is obtained by broadening each
exciton level by a Gaussian whose standard deviation is equal to 10
meV.
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The field-dependent separation yield from this state is
presented by circles in Figure 3a. The separation yield is above

0.6 for all of the examined values of the electric field down to F
= 0. Figure 3b presents the low-energy tail of the DOS of
contact states (see Figure 2c) along with the distribution of
energies of the lowest-energy contact state. Figure 3c shows the
low-energy tail of the DOS of CT states (see Figure 2b)
together with the distribution of energies of the initial strongly
bound CT state. The disorder-averaged energy difference
between the lowest-energy contact state and the initial CT state
may serve as an estimate of the average energy barrier that an
electron−hole pair in the initial CT state has to surmount to
reach the nearest free-charge state. We obtain the average
barrier of approximately 0.13 eV (∼5 kBT at room temper-
ature), which is lower (at least by a factor of 2) than usually
assumed when considering separation of the strongly bound
CT exciton.64 Further discussion reveals that the actual barrier
to be overcome is smaller than the energy difference between
the lowest-energy contact state and the initial CT state. The
intermediate CT states, lying between the initial CT state and
the lowest-energy contact state and exhibiting larger electron−
hole distances as compared to the initial CT state, are crucial to
the successful separation of the initial strongly bound pairs.
Stronger electric field is beneficial to exciton separation, which,
combined with the fact that the separation yield is above 0.5
even at F = 0, implies that it exhibits relatively weak
dependence on the magnitude of the electric field.

It is instructive to analyze the results presented in Figure 3a
from the viewpoint of single disorder realizations. In Figure
4a−d we present distributions of the separation yield in single

disorder realizations at different strengths of the electric field. A
distinctive feature of all of the histograms is a quite small
number of disorder realizations for which the separation yield
assumes values in an intermediate range (say between 0.2 and
0.8). Even at zero electric field, the number of disorder
realizations in which the separation yield is high (above 0.8) is
greater than the number of those in which the separation yield
is low (below 0.2), which can account for the mean separation
yield above 0.5 even at zero field. As the electric field is
increased, the number of disorder realizations in which the
separation yield is low or intermediate decreases, while the
number of disorder realizations in which the separation yield is
high increases; see Figure 4b−d. At F = 107 V/m, the
separation yield is between 0.95 and 1 for somewhat less than
90% of disorder realizations, see Figure 4d, meaning that the
mean yield is close to 1. Relevant to this discussion are also the
relative positions of the lower-energy tails of the DOS of CT
states belonging to the CT0 band and the DOS of contact
states, which are presented in Figure S1a−d. We observe that
the effect of increasing F on the DOS tails consists of
decreasing the energy difference between the edges of CT and
contact DOS. For sufficiently strong field, the lowest contact
state is situated energetically below the strongly bound CT
state.
We now establish which factors primarily determine the

separation yield and propose an analytical formula that is
capable of reproducing the separation yield in single disorder
realizations (and consequently the mean separation yield) quite
well. Let us begin by noticing that the initial CT state is usually
strongly coupled (by means of phonon bath-assisted
transitions) to only a couple of exciton states, which are of
CT character and whose electron−hole separation (and
consequently the lifetime) is larger than in the initial CT
state. We further refer to these states as intermediate states.
Moreover, intermediate states are in general very well coupled
to other space-separated states, meaning that, in principle, there
is no kinetic obstacle for an exciton in the intermediate state to

Figure 3. (a) Field-dependent yield of charge separation from the
strongly bound CT state. The data labeled by “full” are obtained by
numerically solving eq 10, while the data labeled by “simple” are
computed using eq 34. The low-energy edges of the disorder-averaged
DOS (full lines) for (b) contact states and (c) CT states belonging to
the CT0 band. The bars depict histograms of the distribution of the
energy of (b) the lowest-energy contact state and (c) the initial
strongly bound CT state. The width of the bins on the energy axis is
10 meV, while F = 0.

Figure 4. Histograms showing the distribution of the yield of charge
separation from the strongly bound CT state for different strengths of
the electric field: (a) F = 0, (b) F = 106 V/m, (c) F = 5 × 106 V/m,
and (d) F = 107 V/m. The width of the bins for the separation yield is
0.05.
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undergo a series of phonon bath-assisted transitions in which
the electron−hole separation gradually increases, and finally
reach a contact state. However, because the coupling among the
initial state and intermediate states is appreciable, the
“implosion” of the pair, that is, the back-transfer from
intermediate states to the initial CT state followed by the
recombination event, should not be omitted from the analysis.
The recombination from intermediate states, as well as from all
of the subsequent states paving the way toward contact states, is
not probable, because the lifetimes of all of these states are
quite long as compared to the inverse transition rates among
them. In other words, the recombination occurs almost
exclusively from the initial CT state. We may therefore assume
that the only rate-limiting step during charge separation is the
escape from the initial strongly bound CT state xinit. The
separation yield is then determined by the competition between
the recombination rate in the initial CT state, the escape rate
from the initial CT state toward intermediate states, and the
back-transfer rate from intermediate states to the initial CT
state. This competition may be described using a simple kinetic
model whose variables are populations of the initial CT state
and intermediate states (which are considered as a single state).
Recombination is possible only from the initial CT state, while
contact states may be reached from intermediate states. The
stationarity of the initial CT state population f init

0 demands that

τ= + −−g w f w f( )
init init

1
inter,init init

0
init,inter inter

0
(28)

while a similar condition for the stationary population f inter
0 of

intermediate states reads as

+ =w w f w f( )init,inter contact,inter inter
0

inter,init init
0

(29)

In eqs 28 and 29, ginit is the generation rate of the initial CT
state, τinit is its lifetime, winter,init is the total escape rate from the
initial CT state xinit toward intermediate states xinter:

∑=w w
x

x xinter,init

inter

inter init

(30)

and winit,inter is the total back-transfer rate to the initial CT state
from intermediate states:

∑=w w
x

x xinit,inter

inter

init inter

(31)

The total escape rate from all of the intermediate states toward
contact states is

∑ ∑=
′

w w
x x

x xcontact,inter

inter f

f inter

(32)

where, for each intermediate state xinter, the summation over
final states xf is carried out only over the states from which
further transitions toward contact states are possible (it should
not include the transitions back to the initial CT state). An
adaptation of eq 12 to the problem at hand gives the following
expression for the separation yield:

φ =
w f

g

contact,inter inter
0

init (33)

Combining eqs 28, 29, and 33, we obtain the following
expression for the separation yield:

φ

τ

=
+ +− ( )w

1

1 ( ) 1
w

winit inter,init
1 init,inter

contact,inter (34)

We point out that all four quantities (τinit, winter,init, winit,inter, and
wcontact,inter) entering eq 34 are characteristic of each disorder
realization; that is, eq 34 contains no free parameters. It is then
remarkable that it reproduces quite well the field-dependent
separation yield for each disorder realization, and consequently
the disorder-averaged separation yield, which is presented by
squares in Figure 3a.
The preceding discussion suggests that the barrier the initial

CT exciton has to surmount to reach a contact state is
determined by the energy difference ℏωinter − ℏωinit between
the initial CT state and the intermediate CT state exhibiting
strongest coupling to the initial state. In Figure 5a,b we present

distributions of energies of the intermediate (Figure 5a) and
the initial (Figure 5b) CT state at F = 0. We estimate that the
average energy difference ⟨ℏωinter − ℏωinit⟩ is around 0.07 eV,
which is smaller than the average energy difference between the
lowest contact state and the initial CT state. Therefore, already
at F = 0, the average energy barrier opposing the separation
from the initial CT state is ∼3 kBT at room temperature. For
stronger F, the height of the barrier decreases, and the barrier is
almost eliminated at F ≳ 107 V/m, as is presented in more
detail in Figure S2a−d.
Equation 34 gives the separation yield that is always an upper

bound to the true separation yield obtained by numerically
solving rate equations embodied in eq 10. Deriving eq 34, we
assume that there is only one rate-limiting step in the process of
charge separation from the initial CT state (the escape from the
initial CT state to intermediate states), while further transitions
from intermediate states toward contact states occur with
certainty. However, in reality, some of these further transitions
may present another obstacle to full charge separation, and, to
fully reproduce the numerical data, eq 34 should be corrected
so as to take other rate-limiting steps into account (it turns out
that such corrections are really important only for strong
enough disorder, vide infra). We can elaborate more on the last
point by noticing that eq 34 is actually a version of the Rubel’s
formula36 that describes the separation of an exciton initially in
state 1 through a series of incoherent hops 1 ⇌ 2 ⇌...⇌ n ⇀ n
+ 1 among localized states, which terminates when free-charge
state n + 1 is reached:

Figure 5. Histograms showing distributions of energies of (a) the
intermediate CT state (which is most strongly coupled to the initial
CT state) and (b) the initial CT state. The histograms are computed
for F = 0.
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One of the main assumptions behind the Rubel’s formula is that
the recombination event is possible only from the initial CT
state 1, its rate being τ1

−1. This assumption is satisfied in our
computations, as we obtain that the major part of
recombination events occurs from the initial CT state, so that
we may identify τinit in eq 34 with τ1 in eq 35. The first rate-
limiting step is the escape from the initial CT state to more
separated (and thus longer-lived) intermediate states, which
justifies the identification of winter,init in eq 34 with w21 in eq 35.
Further rate-limiting steps are taken into account in eq 35 by

the term ∑ ∏= =
−

+i

n

j

i w

w2 2
j j

j j

1,

1,

, which takes care of the fact that, at

each step j that has to be completed to reach state i, there is a
competition between the escape rate wj+1,j toward the free-
charge state n+1 and the back-transfer rate wj−1,j toward the
initial state 1. Rubel et al. have assumed that the pathway from
the initial to the final state is such that hops are possible only
between neighboring states in the sequence 1 ⇌ 2 ⇌...⇌ n ⇀
n+1, while in our model hops are in principle possible among
any two exciton states. Thus, in our model it is difficult to
isolate particular separation paths and ensure that they do not
interfere among themselves. Nevertheless, as evidenced by
quite good agreement between the results presented in Figure
3a, taking into account only the first rate-limiting step is a
reasonable approximation to the full numerical data. This
approximation is, however, plausible only for not too strong
disorder. For stronger disorder, disorder-induced localization
effects become more pronounced, and, on its way toward
contact states, an exciton may reach a state exhibiting strong
localization. Because of its strong localization, this state is
poorly coupled to other states, meaning that it may act as
another recombination center, or it may “reflect” excitons
toward the initial state; that is, it acts as a trap state for charge
separation. Neither of these two possibilities is captured by eq
34; therefore, it cannot accurately reproduce the separation
yield for stronger disorder, as we discuss in the next paragraph.
We continue our discussion on the effects of disorder by

investigating the separation yield for different disorder strengths
σ at zero electric field. Along with the data emerging from
numerically solving eq 10, in Figure 6 we present the data
obtained by means of eq 34. We observe that the dependence
of φ on σ is not monotonic. For very low values of σ (typically
σ < 20 meV in our one-dimensional model), contact states are
generally absent from the spectrum (the disorder is so weak
that disorder-induced localization effects are not pronounced),
and consequently the separation yield within our model is
exactly equal to zero in the majority of disorder realizations.
This is different from predictions of other models describing
incoherent charge separation,36,37 according to which the
separation yield is different from zero for all of the values of
disorder strength down to σ = 0. Therefore, the predictions of
our model are not reliable for too low disorder. Bearing in mind
that typical disorder strength in organic semiconductors is
considered to be of the order of 100 meV,42 the
aforementioned feature of our model does not compromise
its relevance. For stronger disorder (typically σ > 20 meV),
contact states start to appear in the spectrum, and their number
grows with increasing σ. At the same time, the average energy
difference ⟨ℏωinter − ℏωinit⟩ between the intermediate state and

the initial CT state decreases (see Figure S3), and the escape
rate winter,init from the initial CT state to intermediate states
increases (see eq 18). Because the disorder is still not too
strong, further separation from intermediate states is much
more probable than the “implosion” of the pair, meaning that
typically winit,inter/wcontact,inter ≪ 1. The last statement, combined
with the fact that τinit essentially does not depend on σ, gives
that the separation yield determined by eq 34 increases with
increasing σ. However, there exists an optimal disorder strength
σopt for which the separation yield attains a maximum value, so
that for σ > σopt an increase in the disorder strength leads to a
decreased separation yield. In our numerical computations, σopt
is around 60 meV, in good agreement with the results of ref 37,
which also point toward the existence of the optimal disorder
strength. Although for strong disorder the number of contact
states is large, the pronounced disorder-induced localization
starts to impede phonon-assisted transitions among exciton
states. The number of trap states for charge separation (cf.,
previous paragraph) increases, meaning that there is more than
just a single rate-limiting step during the separation of the initial
electron−hole pair. This leads to an increased probability of the
“implosion” of the pair into the initial CT state or the pair
recombination directly from trap states. Therefore, the
separation yield is decreased. As can be inferred from Figure
6, the yield computed using eq 34 (circles) is again an upper
bound to the separation yield obtained by numerically solving
rate equations (eq 10, squares) and approximates it quite well
only for σ ≲ σopt, while for σ > σopt the two separation yields
exhibit opposite trends with increasing disorder strength. While
the true separation yield decreases for σ > σopt, the yield given
by eq 34 monotonically increases in the entire examined range
of disorder strength, consistent with the fact that ⟨ℏωinter −
ℏωinit⟩ monotonically decreases with increasing σ. Equation 34
does not capture further rate-limiting steps in the course of
charge separation, and the highly successful escape from the
initial CT state to intermediate states does not guarantee full
charge separation.
The apparent simplicity of our model enables us to

systematically study the effects of variations of different
model parameters on the efficiency of charge separation
starting from the strongly bound CT state. Let us first examine
how the variations in the electron delocalization in the acceptor

Figure 6. Yield of charge separation from the strongly bound CT state
at F = 0 for different strengths σ of the diagonal static disorder. The
gray area indicates the range of disorder strength in which the
predictions of our model are not reliable. The data labeled by “full” are
obtained by numerically solving rate equations (eq 10), while the data
labeled by “simple” are computed using eq 34.
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(mimicked by variations in the transfer integral JA,0
c,int) and in the

hole delocalization in the donor (mimicked by variations in the
transfer integral JD,0

v,int) affect the separation yield. We obtain that
better delocalization of carriers promotes higher separation
yields; see Figure 7a,b. This can be rationalized using eq 34,

which determines the separation yield as a function of only a
couple of parameters, and following the variation of these
parameters with varying carrier delocalization. When the
separation yield is high (greater than 0.8 already at zero field
and for the lowest investigated values of JA,0

c,int and JD,0
v,int, cf., the

discussion of Figure 4a−d), reasonable variations in JA,0
c,int and

JD,0
v,int do not dramatically influence the separation yield, which
remains high. When the separation yield is low or intermediate
(less than 0.8 at zero field and for the lowest investigated values
of JA,0

c,int and JD,0
v,int), it exhibits a pronounced increase with

increasing transfer integrals JA,0
c,int and JD,0

v,int. Better carrier
delocalization leads to an increase in the escape rate winter,init

from the initial CT state, which, along with the fact that τinit
remains largely unaffected by variations in JA,0

c,int and JD,0
v,int, means

that the separation yield determined by eq 34 is higher.
Next, we comment on the variations that the separation yield

undergoes when the magnitude of the on-site Coulomb
interaction U is changed. In Figure 7c we observe that weaker
electron−hole interaction leads to more efficient charge
separation from the strongly bound CT state. Again, this
beneficial effect of weaker Coulomb interaction may be
attributed to the product τinitwinter,init being (on average) larger
for weaker Coulomb interaction. On a more intuitive level, the
trends in the separation yield presented in Figure 7a−c may be
rationalized by following the changes in the disorder-averaged
energy difference ⟨ℏωinter − ℏωinit⟩ with changing the degree of
carrier delocalization and the strength of the electron−hole
interaction. In Figure S4a1−c3, we compare values of ⟨ℏωinter −
ℏωinit⟩, as well as the energy distributions of the initial and
intermediate CT state, for different JA,0

c,int, JD,0
v,int, and U. We

conclude that better carrier delocalization and weaker
electron−hole interaction favor lower values of ⟨ℏωinter −
ℏωinit⟩, or, in other words, lower the separation barrier from the
CT state. Let us also note that each of the effects studied can
on its own improve the separation from the strongly bound CT
state, because its binding energy strongly depends both on the

degree of carrier delocalization and on the Coulomb
interaction; compare to the discussion of the results (Figure
11a−c) concerning charge separation from the closely
separated donor exciton state.
We have also studied the temperature dependence of the

process of charge separation from the strongly bound CT state.
We observe an approximately 6-fold decrease in the separation
yield when the temperature is decreased from 300 to 100 K; see
Figure 8a. On temperature reduction from 300 to below 50 K,

the separation yield reduces for more than an order of
magnitude. These observations are in agreement with other
numerical studies of charge separation from the strongly bound
CT state,34 and with experimentally obtained temperature
dependence of the photocurrent under an excitation at the low-
energy edge of the CT manifold.65

The effect of the variations in the LUMO−LUMO offset on
the separation yield was studied by changing average on-site
energies εA,0

c , εA,1
c , and εA,0

v in the acceptor part of the bilayer
(see Figure 1) by the same amount, keeping all of the other
model parameters listed in Table 1 unchanged. In first
approximation, these variations manifest themselves in Figure
2a−e as rigid translations of the DOS of space-separated
exciton states (Figure 2b−d) with respect to the DOS of donor
and acceptor exciton states (Figure 2a,e). Figure 8b presents
the dependence of the separation yield at zero electric field on
the LUMO−LUMO offset. For the LUMO−LUMO offset
greater than approximately 0.5 eV, we observe that the
separation yield monotonically decreases with decreasing the
LUMO−LUMO offset; see Figure 8b. A decrease in the
LUMO−LUMO offset leads to a decreased energy difference
between the lowest acceptor (and also donor) state and the
initial CT state; see also Figure 2a−e. We may thus expect that
a sufficient decrease in the LUMO−LUMO offset results in the
involvement of acceptor and donor states in the separation
from the strongly bound CT state. The transitions from the
space-separated manifold toward the acceptor (donor)
manifold are in general much less probable than those inside
the space-separated manifold. However, once an exciton enters
the acceptor (donor) manifold, it can easily recombine, because
the typical lifetime of acceptor (donor) states is shorter than
the lifetime of the initial CT state. In other words, the fact that
acceptor (donor) states participate in the separation of the
strongly bound CT exciton is seen as a decrease in the
separation yield, which is due to the enhanced recombination
from acceptor (donor) states. This is shown in more detail in
Figure S5a,b, which provide data on recombination from
different groups of exciton states. While the recombination
from acceptor states can partially account for the decrease in

Figure 7. Field-dependent separation yield from the strongly bound
CT state for different values of (a) the electron transfer integral JA,0

c,int in
the acceptor, (b) the hole transfer integral JD,0

v,int in the donor, and (c)
the on-site Coulomb interaction U.

Figure 8. Yield of charge separation from the strongly bound CT state
at zero electric field as a function of (a) the temperature (in Arrhenius
representation) and (b) the LUMO−LUMO offset. The reported
values of the LUMO−LUMO offset refer to the ordered system.
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the separation yield observed for LUMO−LUMO offsets below
0.65 eV, the recombination from donor states is reflected in the
decrease seen for LUMO−LUMO offsets below 0.4 eV. We can
estimate these numbers using Figure 2a−e and having in mind
that the LUMO−LUMO offset for that arrangement of exciton
energies is ca. 0.97 eV. A rigid translation of Figure 2b−d by
approximately 0.3 eV (upward in energy) makes the initial CT
state energetically close to the acceptor states in the low-energy
tail of the acceptor DOS, meaning that they can participate in
the separation of the initial CT state. Similarly, a rigid
translation of Figure 2b−d by approximately 0.55 eV makes
the initial CT state energetically close to the donor states in the
low-energy tail of the donor DOS. However, to understand the
behavior of the separation yield in the whole range of LUMO−
LUMO offsets displayed in Figure 8b, we have to remember
that lower LUMO−LUMO offset promotes better coupling
between the two parts of the bilayer, which is mediated by the
D/A couplings JDA

c and JDA
v . As a consequence, reducing the

LUMO−LUMO offset enhances the electron−hole overlap in
CT states, thus decreasing their lifetime and increasing the
recombination from CT states, which is shown in Figures S6
and S5b. Therefore, enhanced recombination from CT states
can explain the decrease in the separation yield observed for
LUMO−LUMO offsets above approximately 0.65 eV.
Charge Separation from a Donor Exciton State. Here,

we aim at understanding which factors control charge
separation starting from a donor exciton state. In numerical
computations, the generation rate gx appearing in eq 10 is set to
a nonzero value only for donor states. We have noted in our
previous publications that the low-energy (closely separated
and strongly bound) donor states are essentially isolated from
the manifold of space-separated states and thus act as trap states
for the separation of the initial donor excitons on subpico-
second time scales.16,17 On the contrary, higher-energy (more
separated and loosely bound) donor states exhibit appreciable
coupling to the space-separated manifold, and we may thus
expect that charge separation starting from these states should
be more probable than that starting from closely separated
donor states.
We perform computations of the yield of the separation of

donor excitons of different energies. We focus on the energy
windows centered around Einit = 2.0 eV (the optical gap of the
ordered donor material), Einit = 2.1 eV, and Einit = 2.2 eV
(significantly above the optical gap of the ordered donor
material), which is indicated by horizontal arrows in Figure 2a.
Because the precise energies of donor states are determined by
the disorder, we choose the initial donor state among the states
that lie in the 50 meV-wide energy windows centered around
the aforementioned energies. One particular donor state out of
the chosen states is selected by the requirement that the
squared modulus of the dipole moment for the direct
generation of donor exciton state x, which is proportional to

ψ∑
α β α β∈i i i

x
D; ( )( )

2

i i i i
,16 be maximum. In other words, among

donor states in a given energy window, we select the state
whose direct generation from the ground state is most
probable. Such a choice of the initial donor state is motivated
by our recent computations in which we have observed that
quite a high fraction of photogenerated excitons remain in the
initially photoexcited donor state on a picosecond time scale
following the excitation.16

In Figure 9, we compare the yields of charge separation
starting from donor states of different energies. As we have

expected, charge separation starting from a higher-energy donor
state is more efficient than that starting from a closely separated
donor state. The yield of the separation from a donor state
situated around Einit = 2.2 eV is practically field-independent
and greater than 0.9 for all of the examined values of the electric
field down to F = 0. The yield is somewhat higher for Einit = 2.2
eV than for Einit = 2.1 eV. On the other hand, the yield of the
separation from a closely separated donor state (Einit = 2.0 eV)
is lower: it is almost constant for electric fields F ≲ 5 × 107 V/
m, its value being around 0.6, after which it rises and reaches
values close to 1 at F ∼ 108 V/m. The value of the electric field
at which the separation from a closely separated donor state
occurs with certainty is almost an order of magnitude larger
than in the case of charge separation from the strongly bound
CT state, see Figure 3a, which is consistent with the fact that
the binding energy of the donor exciton is larger than the
binding energy of the CT exciton.
Let us now analyze in more detail the separation of the

closely separated donor exciton (Einit = 2.0 eV). Our data
suggest that the major part of recombination events occur from
donor exciton states. This is consistent with the fact that
phonon bath-assisted transitions starting from the closely
separated donor exciton state couple it most strongly to other
donor states, while coupling to the space-separated manifold is
in principle much weaker (we note that its coupling to an
acceptor state is practically negligible). The states of the space-
separated manifold to which the closely separated donor state
can couple are typically well spatially separated, long-lived, and
exhibit good coupling to other space-separated states. In other
words, despite the weak coupling, once an exciton in the closely
separated donor state performs a transition to the space-
separated manifold, it is highly probable that it will eventually
reach a fully separated state. Instead of finding the stationary
solution to the full set of rate equations (eq 10) for all exciton
states (excluding contact states), we may compute the
separation yield by solving the rate equations in which we
explicitly consider only donor states x ∈ XD and treat exciton
states x′ that are not of donor character as absorbing states:

∑ ∑τ= − − +−

′
′

′∈
′ ′g f w f w f0

x x x
x

x x x
x

xx x

1 0 0

XD

0

(36)

The separation yield, computed by inserting the solution to eq
36 into an expression analogous to eq 12, which reads as

Figure 9. Field-dependent yield of charge separation starting from
donor exciton states of different energies. The data represented by
filled symbols are obtained by solving the full set of rate equations (eq
10). The data represented by empty circles are obtained by solving the
reduced set of rate equations (eq 36) in case Einit = 2.0 eV.
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is presented in case Einit = 2.0 eV by empty circles in Figure 9.
We note that the agreement between the two results (full and
empty circles in Figure 9) is quite good, thus validating our
simple picture of charge separation from a low-energy donor
state. The same procedure can be repeated when considering
the separation starting from higher-energy donor states, but the
agreement between the results obtained by solving eq 36 and
the full system of rate equations (eq 10) is worse. An analysis of
recombination events suggests that, in these cases, the acceptor
exciton states are an equally important recombination channel
as the donor exciton states. When the initial donor state is
loosely bound, its direct coupling to acceptor states cannot be
neglected. Further discussion on the limits of validity of the
simple picture of charge separation from donor states embodied
in eq 36 is presented in the next paragraph.
We now turn to the influence of the diagonal static disorder

on the yield of charge separation starting from donor exciton
states of different energies at zero electric field. We focus our
attention on the initial donor states whose energies are around
Einit = 2.0 eV and Einit = 2.2 eV. Together with the separation
yield emerging from numerically solving the full set of rate
equations given in eq 10 (the true separation yield), in Figure
10a,b we also present the data obtained by solving the reduced

set of rate equations (eq 36). We observe that the separation
yield exhibits similar trends with varying disorder strength as
when the separation starts from the strongly bound CT state
(cf., Figure 6). In particular, for not too strong disorder, the
yield increases with increasing disorder strength, it attains the
maximum value when the disorder assumes its optimal value,
after which it decreases. For all of the examined values of
disorder strength, the yield of the separation starting from the
donor state of energy Einit = 2.2 eV is higher than in the case
Einit = 2.0 eV; compare data represented by circles in Figure
10a,b, which again suggests that excitons initially in higher-
energy donor states separate more efficiently than those initially
in lower-energy donor states. While the maximum yield of
separation starting from the donor state of energy Einit = 2.0 eV
is around 0.7, the maximum yield in the case Einit = 2.2 eV is
above 0.9. For both initial states of charge separation, the yield
computed by numerically solving the reduced set of rate

equations (squares in Figure 10a,b) is an upper bound to the
true separation yield (circles in Figure 10a,b) for all of the
examined values of σ. For Einit = 2.0 eV, the separation yield
computed by solving the reduced set of rate equations
reproduces the true separation yield very well when the
disorder strength is from around 40 meV to around 90 meV,
while for stronger disorder the agreement between the yields
computed in two manners deteriorates. This suggests that, for
moderate disorder strength, our simple picture of charge
separation from the closely separated donor state, embodied in
eq 36, is plausible. At stronger disorder, the localization effects
become more important, and recombination may occur from
states that do not belong to the donor manifold as well. On the
other hand, the agreement between the two separation yields in
case Einit = 2.2 eV, see Figure 10b, is less satisfactory than that
in case Einit = 2.0 eV.
We have also examined the dependence of the separation

yield starting from the closely separated donor state on the
magnitude of electron (JD,0

c,int) and hole (JD,0
v,int) transfer integrals

in the donor part of the bilayer. We find that reasonable
variations in these quantities do not induce major changes in
the separation yield; see Figure 11a,b. The reason for this

behavior is the fact that the donor exciton binding energy,
which is a rough measure of the energy barrier that has to be
overcome for free charges to form, is not strongly dependent
on the carrier delocalization in the donor. The factor that
primarily determines the binding energy of the donor exciton is
the strength of the Coulomb interaction. In Figure 11c we
present the field-dependent separation yield for different values
of the on-site Coulomb interaction U. As anticipated, we find
that lowering U leads to a higher separation yield.
The temperature-dependent separation yield at zero electric

field is shown in Figure 12a. We see that lower temperature
leads to lower separation yield because the phonon bath-
assisted processes transferring an exciton in a donor state to the
space-separated manifold (and, eventually, to a state of fully
separated charges) are weaker. The separation yield exhibits a
6-fold decrease when the temperature is lowered from the room
temperature to around 50 K. The intensity of the temperature

Figure 10. Separation yield at zero electric field for different strengths
σ of the diagonal static disorder. The initial state of charge separation
is a donor exciton state of energy around (a) Einit = 2.0 eV and (b) Einit
= 2.2 eV. The data labeled by “full” are obtained by numerically solving
the full set of rate equations (eq 10), whereas the data labeled by
“simple” emerge from the numerical solution to the reduced set of rate
equations (eq 36). Similar to Figure 6, the gray area indicates the range
of disorder strength in which the predictions of our model are not
reliable.

Figure 11. Field-dependent yield of charge separation starting from
the closely separated donor exciton state (Einit = 2.0 eV) for different
values of (a) the electron transfer integral JD,0

c,int in the donor, (b) the
hole transfer integral JD,0

v,int in the donor, and (c) the on-site Coulomb
interaction U.
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variation-induced effect on the separation yield is somewhat
smaller than in case of the separation starting from the strongly
bound CT state; compare to Figure 8a.
In the end, we examine how the value of the LUMO−

LUMO offset affects charge separation from the closely
separated donor state. Figure 12b presents the separation
yield as a function of the LUMO−LUMO offset for the values
of model parameters listed in Table 1 (JDA

v ≠ 0, circles), as well
as for JDA

v = 0 (squares), that is, when states of acceptor excitons
are excluded from the computation. For the LUMO−LUMO
offset above approximately 0.6 eV, we observe that the
separation yield in both cases is essentially the same and
weakly dependent on the particular value of the LUMO−
LUMO offset. This indicates that, in this range of LUMO−
LUMO offsets, charge separation starting from the closely
separated donor state does not involve acceptor exciton states,
which once again validates our simple picture of charge
separation from that state (formally embodied in eq 36).
However, when the LUMO−LUMO offset is below 0.6 eV, the
separation yield in case JDA

v ≠ 0 starts to decrease with
decreasing the LUMO−LUMO offset. On the other hand, in
case JDA

v = 0, a similar decrease in the separation yield is
observed only when the LUMO−LUMO offset is lower than
approximately 0.4 eV. The different behavior of the separation
yield in the two cases signalizes that, when the LUMO−LUMO
offset assumes values lower than ca. 0.6 eV, states of acceptor
excitons are involved in charge separation, and the observed
decrease is due to the recombination from acceptor states. As
we have already noted in the analysis of Figure 8b, when the
LUMO−LUMO offset is around 0.6 eV, the low-energy tails of
the CT and acceptor exciton DOS become energetically close.
Further analysis of recombination events from different groups
of exciton states, which is presented in Figure S7, shows that
the contribution of the recombination from acceptor states to
the total recombination probability becomes appreciable when
the LUMO−LUMO offset is around 0.6 eV. When acceptor
states are excluded from the computation, the independence of
the separation yield on the LUMO−LUMO offset is disturbed
when the energy of the strongly bound CT state is
approximately equal to the energy of the initial donor state,
which occurs for the LUMO−LUMO offset below around 0.4
eV. For even smaller values of the LUMO−LUMO offset, all of
the space-separated states are energetically above the initial
donor state, meaning that full charge separation can be achieved
only by means of energetically upward processes. The decrease
in the separation yield with decreasing LUMO−LUMO offset

can then be attributed to an increased probability of
recombination from donor states.

■ DISCUSSION

This section is devoted to a more detailed discussion of some
aspects of our model.
Let us start by commenting on our results in view of the

reduced dimensionality of our model. Although formally one-
dimensional, the proposed model of a bilayer can be regarded
as a two (or three-)-dimensional model consisting of
periodically repeated chains similar to that shown in Figure 1
that are isolated from each other; that is, the transfer integrals
between (neighboring) chains are equal to zero. We have
established that, within our one-dimensional model, the degree
of charge delocalization, quantified by the values of the electron
and hole transfer integrals, is one of the factors influencing the
(CT exciton) separation efficiency; see Figure 7a,b. On simple
grounds, better delocalization is beneficial to charge separation
because it increases the mean distance (in the direction of a
single chain, which is perpendicular to the D/A interface)
between the electron and hole located in the acceptor and
donor, respectively. If we assigned nonzero values to transfer
integrals coupling different chains, the charges could also
delocalize along the direction perpendicular to the chains
(parallel to the D/A interface) and further increase their
separation. Therefore, it may be expected that the separation
yield would be enhanced in such a genuinely two (or three-
)-dimensional model. This line of reasoning is supported by
studies highlighting the beneficial role of hole delocalization
along polymer chains in charge separation,28,33 particularly if we
keep in mind that the values of the intrachain transfer integrals
are typically larger than those employed in this study. We may
also say that the separation yields we obtain using an effectively
one-dimensional model are the lower limit to those that would
be obtained in a higher-dimensional system. Another possible
interpretation of our results is that they suggest that, to describe
fundamental reasons for efficient charge separation at all-
organic bilayers, it is more important to properly account for
charge delocalization than for dimensionality effects.
Next, we discuss our assumptions concerning the strength of

the carrier−bath interaction. We take that the polaron binding
energy is Epol = 15 meV, which is significantly lower than values
commonly reported in electronic-structure studies of single
PCBM molecules.44,66 The selection of the values of model
parameters implicitly suggests that each lattice site may be
imagined to substitute a polymer chain or a group of fullerene
molecules. In this regard, carrier transfer from one site to
another should not be interpreted as transfer between single
molecules supporting localized carrier states, but rather as
transfer between two aggregates of molecules supporting
delocalized carrier states. It has been demonstrated recently
that, in such a case, the definition of Epol (given in the text
between eqs 22 and 23) should be corrected so as to take into
account delocalization effects, which can substantially reduce
Epol.

67 Having all of these things considered, we believe that our
choice of the magnitude of Epol is reasonable. Larger Epol (while
keeping all other model parameters fixed) would result in a
higher separation yield, because the phonon bath-induced
transition rates (eq 18) would be larger. In this sense, our
results may also be regarded as the lower limit to the separation
yield computed for larger Epol.
Another common choice for the spectral density J(E) (eq

17) when studying charge separation in photosynthetic55 and

Figure 12. Yield of charge separation starting from the closely
separated donor state (Einit = 2.0 eV) at zero electric field as a function
of (a) the temperature (in Arrhenius representation) and (b) the
LUMO−LUMO offset. The reported values of the LUMO−LUMO
offset refer to the ordered system. In (b), we present results in which
acceptor states are included (JDA

v ≠ 0) and excluded (JDA
v = 0) from the

computation.
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OPV systems51,68 is the so-called Drude−Lorentz spectral
density. Because of its algebraic decay at high energies, the
Drude−Lorentz spectral density generally favors coupling to a
wider range of phonon modes than does the Ohmic spectral
density employed here. In Figure S8a−d, we find that the
Drude−Lorentz spectral density promotes higher separation
yield than the ohmic spectral density.
The next comment concerns the number of disorder

realizations over which the averaging is performed and our
definition of the contact region and contact states (eqs 8 and
9). In Figure S9a,b, we present the dependence of the (average)
separation yield at zero electric field on the number of disorder
realizations over which we average. We see that averaging over
more than 200−300 disorder realizations does not lead to
substantial changes in the separation yield. Figure S10a,b
confirms that our results remain qualitatively (and to a good
extent quantitatively) the same when the linear dimension lc of
the contact region and the threshold probability on the right-
hand sides of eqs 8 and 9 are varied within reasonable limits.
In the end, we note that an approach to the separation of

strongly bound CT state similar to ours (eq 34) has been
recently implemented in ref 37. We point out that eq 34 can,
for moderate disorder, reproduce the separation yield in single
disorder realizations without any tunable parameters. On the
other hand, the authors of ref 37 reproduce the nonmonotonic
dependence of the separation yield on the disorder strength
using a formula similar to eq 34, which contains disorder-
averaged transition rates and a tunable parameter. Let us also
mention that eq 34 bears certain similarity to the exciton
dissociation probability in unintentionally doped polymer
materials proposed by Arkhipov et al.69 These authors also
assumed that the formation of free carriers is a two-step
process: the initial exciton dissociates by the electron transfer to
the dopant, while the subsequent charge separation is due to
combined effects of the internal electric field, hole delocaliza-
tion, and carrier recombination. However, the phenomenon of
our interest, that is, the formation of free charges at D/A
interfaces, is significantly different from free-charge formation
in lightly doped conjugated polymers. The model introduced in
ref 69 was devised to rationalize the weak field and temperature
dependence exhibited by the free-charge yield in doped
polymers, which is much smaller than unity. To understand
very efficient charge separation at organic D/A interfaces, this
model was further amended in refs 28 and 30−32.

■ CONCLUSION

Using a one-dimensional model of an all-organic bilayer, we
have modeled and investigated the process of incoherent charge
separation. Our model is microscopic, its parameters have clear
physical significance, and their values are selected on the basis
of literature data on OPV materials. The main advantage of our
model is that it properly takes into account carrier
delocalization, whose importance for efficient charge separation
in OPV systems has been repeatedly recognized.26−28,30,32,33

However, many studies on charge separation at organic
heterointerfaces either employ the approximation of point-like
charges,34,35,61,70 or account for delocalization effects in an
effective way (e.g., by introducing the carrier effective
mass26,28,30,32,33 or evenly smearing charge throughout the
delocalization region27). On the other hand, here, carrier
delocalization is fully and naturaly taken into account by
working in the exciton basis. The charge separation is then
conceived as a sequence of environment-assisted transitions

among exciton basis states that terminates once a free-charge
state is reached. Another important ingredient of our model is
the diagonal static disorder, which is crucial to identify the
counterparts of free-charge states within our description. We
emphasize that the model and method employed in this study
are very general. They may be potentially used, upon
appropriate Hamiltonian modifications and suitable choice of
the values of model parameters, to describe field-dependent
charge generation in many different physical systems, for
example, in a neat polymer materal,14,71 or at an interface
between two polymer materials.
We obtain that the synergy between moderate energetic

disorder and carrier delocalization can explain quite high and
relatively weakly field-dependent separation efficiencies ob-
served in solar cells photoexcited at the low-energy edge of the
CT manifold;6 see Figure 3a. At electric fields typically
encountered in a working organic solar cell (F ∼ 5−10 V/
μm), the efficiency of the separation of the strongly bound CT
exciton is above 0.8. Our analytical treatment, which is sensible
for not too strong disorder, reveals that the separation of the
strongly bound CT exciton is actually governed by only a
couple of parameters, see eq 34, among which the most
important are the recombination rate from the initial CT state
and the escape rate toward more separated and long-lived
intermediate states. Because further separation from inter-
mediate states can proceed without kinetic obstacles, the
competition between the two aforementioned rates describes
the separation quite well. However, strong disorder destroys
this simple picture, because full charge separation then involves
more than just a single rate-limiting step; compare the two
curves in Figure 6. The remedy may then be enhancing carrier
delocalization; see Figure 7a,b. This result is also in agreement
with conclusions of ref 6, which emphasize that, in most
efficient solar cells, the “cold” CT state is only weakly bound
and quite delocalized. Moreover, we observe a much milder
temperature dependence of the separation yield than the
(predominantly) exponential one predicted by the Onsager−
Braun model, see Figure 8a, in agreement with experimental65

and theoretical studies.34 The fact that larger LUMO−LUMO
offsets favor more efficient free-charge generation out of the
strongly bound CT state is attributed to an increased
recombination probability from acceptor and donor states
observed for smaller LUMO−LUMO offsets; see Figure 8b.
The separation of donor excitons is also quite efficient, and

its yield depends on the exciton energy; see Figure 9. The
electric field required to separate the closely separated donor
exciton with certainty is almost an order of magnitude higher
than that needed to separate the strongly bound CT exciton.
Our results suggest that the separation of the closely separated
donor exciton exhibits only one rate-limiting step, that is, the
escape to the space-separated manifold. Carrier delocalization
does not strongly influence this escape; see Figure 11a,b. The
donor exciton separation shows weak temperature dependence,
see Figure 12a, while its decrease with decreasing the LUMO−
LUMO offset is attributed to the recombination from acceptor
states, as in Figure 12b. Relatively weak disorder is beneficial to
donor exciton separation, while strong disorder suppresses it;
see Figure 10a,b.
In summary, our results provide unambiguous evidence that

efficient charge separation can be achieved even out of strongly
bound pair states and are supported by experiments6,13

suggesting that free-charge generation predominantly occurs
on long time scales, from localized initial conditions.
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K.; Vohlídal, J. Photogeneration of Free Charge Carriers in Tenuously
Packed π Conjugated Polymer Chains. Polym. Adv. Technol. 2011, 22,
2075−2083.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b03114
J. Phys. Chem. C 2018, 122, 10343−10359

10359

http://dx.doi.org/10.1021/acs.jpcc.8b03114


Identification of Ultrafast Photophysical Pathways in Photoexcited
Organic Heterojunctions

Veljko Jankovic ́ and Nenad Vukmirovic*́

Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, 11080 Belgrade, Serbia

*S Supporting Information

ABSTRACT: The exciton dissociation and charge separation occurring on
subpicosecond time scales following the photoexcitation are studied in a model
donor/acceptor heterojunction using a fully quantum approach. Higher-than-
LUMO acceptor orbitals which are energetically aligned with the donor LUMO
orbital participate in the ultrafast interfacial dynamics by creating photon-
absorbing charge-bridging states in which charges are spatially separated and
which can be directly photoexcited. Along with the states brought about by single-
particle resonances, the two-particle (exciton) mixing gives rise to bridge states in
which charges are delocalized. Bridge states open up a number of photophysical
pathways that indirectly connect the initial donor states with states of spatially
separated charges and compete with the efficient progressive deexcitation within the manifold of donor states. The diversity and
efficiency of these photophysical pathways depend on a number of factors, such as the precise energy alignment of exciton states,
the central frequency of the excitation, and the strength of carrier−phonon interaction.

■ INTRODUCTION

Tremendous research efforts have been devoted to under-
standing the microscopic mechanisms governing efficient and
ultrafast (happening on a ≲ 100 fs time scale) free-charge
generation observed in time-resolved experiments on donor/
acceptor (D/A) heterojunction organic photovoltaic (OPV)
devices.1−4 The photogenerated exciton in the donor material
is commonly believed to transform into the charge transfer
(CT) exciton.5,6 In the CT exciton, the electron and hole are
tightly bound and localized at the D/A interface. The Coulomb
barrier preventing the electron and hole in the CT state from
further charge separation and formation of a charge separated
(CS) state is much higher than the thermal energy at room
temperature, so that the actual mechanism of the emergence of
spatially separated charges on such short time scales remains an
open question.7−10

Electronically hot CT states, which are essentially resonant
with the initial states of donor excitons and exhibit significant
charge delocalization,11,12 are believed to be precursors to
separated charges present on ultrafast time scales following the
excitation.1,2,13−16 The delocalization of carriers can also reduce
the Coulomb barrier and allow the transition from CT to
CS exciton.3,17−19 The ultrafast exciton dissociation and
charge separation are not purely electronic processes, but
are instead mediated by the carrier−phonon coupling.17,20−26

The phonon-mediated ultrafast exciton dissociation and charge
separation can proceed via the so-called intermediate bridge
states,20,25 the vibronically hot CT states,17 or can occur
without any intermediate CT state.24 The exciton states of
mixed donor and CS character are found to open up different
photophysical pathways for ultrafast dissociation of initial

donor excitons, which are concurrent with vibronically assisted
transitions within the donor exciton manifold.23

We have recently investigated the exciton dynamics occurring
on a subpicosecond time scale following the excitation of the
model D/A heterojunction.27 Our model explicitly takes into
account the physical mechanisms regarded as highly relevant
for the ultrafast heterojunction dynamics, such as the carrier
delocalization and the carrier−phonon interaction. Moreover,
the exciton generation, exciton dissociation, and further charge
separation are treated on equal footing and on a fully quantum
level, which is essential to correctly describe processes taking
place on ultrafast time scales. For the model parameters
representative of a low-bandgap polymer/fullerene blend, we
found that the major part of space-separated charges present
on 100 fs time scales after the excitation originates from the
direct optical generation from the ground state rather than
from the ultrafast population transfer from initially generated
donor excitons. The resonant mixing between single-electron
states in the two materials leads to the redistribution of oscil-
lator strengths between states of donor excitons and space-
separated charges, the latter becoming accessible by direct
photoexcitation.
In this study, we aim at giving a more detailed description of

the ultrafast heterojunction dynamics in terms of particular
photophysical pathways along which it proceeds. In order to
keep the numerical effort within reasonable limits, we still use
one-dimensional model of a heterojunction, but we extend it by
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taking into account more than only one single-electron (single-
hole) state per site. The model parameters are chosen to be
representative of the prototypical blend of poly-3-hexylthio-
phene (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester
(PCBM). The aforementioned extension of the model is
important in many aspects. First, the degeneracy of the LUMO,
LUMO+1, and LUMO+2 orbitals of the C60 molecule is
broken in its functionalized derivative PCBM,28−30 giving rise
to three energetically close bands of electronic states of PCBM
aggregates. This fact was shown to be important for efficient
and ultrafast charge separation observed in D/A blends
containing PCBM as the acceptor.14,25,31 Upon the function-
alization of C60, together with the degeneracy of its LUMO,
LUMO+1, and LUMO+2 orbitals, the degeneracy of its LUMO+3,
LUMO+4, and LUMO+5 orbitals, which are situated at around
1 eV above the LUMO, LUMO+1, and LUMO+2 orbitals, is
also broken. Second, according to the results of Ma and Troisi,32

the precise energy alignment of higher-than-LUMO orbitals of
the acceptor can modulate the exciton dissociation rate by
orders of magnitude by opening up new exciton dissociation
channels. The LUMO−LUMO offset in the P3HT/PCBM blend
can be quite large (around 1 eV)33−35 and thus comparable to
the energy separation between LUMO and LUMO+3 orbitals
of the PCBM molecule. It can therefore be expected that
the electronic states of a PCBM aggregate, which arise from
LUMO+3, LUMO+4, and LUMO+5 orbitals of the PCBM
molecule may play nontrivial role in the ultrafast interfacial
dynamics. Surprisingly, it seems that the effect of these orbitals
has not received enough attention in previous model studies
of the P3HT/PCBM heterojunction. The ultrafast electron
transfer observed in ref 36 has been ascribed to the energy
overlap between the state of the photoexcited electron and the
electronic states of the fullerene aggregate. The result presented
in Figure 3e of ref 36 suggests that this overlap involves the
electronic states of the fullerene aggregate stemming from the
LUMO+3, LUMO+4, and LUMO+5 orbitals of the PCBM
molecule.
Our results indicate that the exciton states in which the

charges are delocalized throughout the heterojunction play a
crucial role in the ultrafast heterojunction dynamics. In the low-
energy part of the exciton spectrum, such states emerge due
to the resonant mixing between different exciton (i.e., two-
particle) states, and we denote them as bridge states. However,
in the high-energy region of the exciton spectrum, such states
form as a consequence of the resonant mixing between single-
electron states in the donor and acceptor (states originating
from LUMO+3, LUMO+4, and LUMO+5 orbitals of the
PCBM molecule). The relevant exciton states of this kind are
those in which the charges are spatially separated (the electron
is mainly in the acceptor, while the hole is mainly in the donor)
and we denote them as photon-absorbing charge-bridging
(PACB) states,28,37,38 since they can be directly reached by a
photoexcitation. Exciting well above the lowest donor state, we
find that excitons are generated in both donor and PACB states,
while the major part of space-separated charges present on a
100 fs time scale following the excitation resides in PACB
states. The deexcitation of initial PACB excitons proceeds via
the donor exciton manifold, while single-phonon-assisted
processes involving a PACB state and CT and CS states
belonging to the low-energy part of the spectrum are virtually
absent. The donor excitons mainly deexcite within the donor
exciton manifold and, before reaching the lowest donor exciton
state, may perform transitions to bridge states, which are

gateways into the space-separated manifold. The lowest donor
state, being essentially decoupled from the space-separated
manifold, is a trap state for exciton dissociation. The bridge
states can be either intermediate or final states in the course of
the charge separation. Once a space-separated state is reached,
the gradual energy loss within the space-separated manifold
leads to the population of low-energy CT states on a pico-
second time scale. The participation of PACB excitons in
the total exciton population strongly depends on the central
frequency of the excitation. The probability of a bridge state
being accessed during the exciton deexcitation sensitively depends
on the distribution of initially generated excitons, the energy level
alignment, and the carrier−phonon interaction strength.

■ MODEL AND METHODS

Model Hamiltonian. We use the standard semiconductor
Hamiltonian with multiple single-electron/single-hole states
per site. The model heterojunction consists of 2N sites located
on a one-dimensional lattice of constant a: sites 0,..., N − 1
belong to the donor part, while sites N,..., 2N − 1 belong to the
acceptor part of the heterojunction. The single-electron levels
on site i are counted by index βi, so that Fermi operators
ciβi
† (ciβi) create (destroy) electrons on site i and in single-elec-

tron state βi. Analogously, single-hole levels on site i are
counted by index αi, so that Fermi operators diαi

† (diαi) create

(destroy) holes on site i and in single-hole state αi. Each site
contributes a number of localized phonon modes and the corre-
sponding Bose operators biλi

† (biλi) create (annihilate) phonons

belonging to mode λi on site i. The Hamiltonian has the form

= + + +− −H H H H Hc p c p c f (1)

where Hc describes interacting carriers
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is the phonon part of the Hamiltonian, Hc−p accounts for the
carrier−phonon interaction
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whereas Hc−f represents the interaction of carriers with the
external electric field E(t)

∑= − +
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† †H E t d c d d c( ) ( )
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(5)

In our model, quantities ϵ(iβi)(jβj′)
c (ϵ(iαi)(jαj′)

v ), which represent

electron (hole) on-site energies and transfer integrals, are
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nonzero only for certain combinations of their indices. Namely,

ϵ(iβi)(jβ′j)
c is nonzero when it represents

(1) on-site energy ϵiβi
c of electron level βi on site i for i = j and

βi = βi′;
(2) negative electron transfer integral between nearest

neighbors of band βi, − Jiβi
c,int, for i and j both belonging

to the same part of the heterojunction, |i − j| = 1, and
βi = βj′;

(3) negative electron transfer integral between nearest

neighbors of different bands, − Jiβiβj′
c,ext, for i and j both

belonging to the same part of the heterojunction, |i − j| = 1,
and βi ≠ βj′;

(4) negative electron transfer integral between different parts
of the heterojunctions, − JDA

c , for i = N − 1 and j = N or
vice versa.

The Coulomb interaction described by eq 2 is taken into
account in the lowest monopole−monopole approximation
and the interaction potential Vij is assumed to be the Ohno
potential

=

+ ( )
V

U

1

ij
r

r

2
ij

0 (6)

where U is the on-site Coulomb interaction, rij is the distance
between sites i and j, r0 = e2/(4πε0εr U) is the characteristic
length, and εr is the relative dielectric constant. Charge
carriers are assumed to be locally and linearly coupled to
the set of phonon modes (Holstein-type interaction), as
given in eq 4. We assume that the frequency of the
external electric field is such that it creates electron−hole
excitations, the interband matrix elements of the dipole
moment being diαiβi

cv , and neglect all intraband dipole matrix

elements.
Theoretical Framework. Ultrafast exciton dynamics

governed by the model Hamiltonian defined in eqs 1−5 is
treated using the density matrix formalism complemented with
the dynamics controlled truncation (DCT) scheme.27,39−42

Exciton generation (from initially unexcited heterojunction) by
means of a pulsed excitation and subsequent evolution of
thus created nonequilibrium state of the system are treated on
equal footing. We consider the case of weak excitation and low
carrier densities. The carrier branch of the hierarchy of
equations produced by the density matrix formalism can
then be truncated retaining only contributions up to the
second order in the exciting field. The truncation of the phonon
branch of the hierarchy is performed to ensure the con-
servation of the particle-number and energy after the pulsed
excitation.42

It is advantageous to formulate theory in the subspace of
single electron−hole excitations, which is spanned by the
so-called exciton basis. The most general electron−hole pair

state is of the form ψ| ⟩ = ∑ | ⟩
α α β β α

† †

β

x c d 0
i i j

x
j i( )( )i
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i j j i
, where |0⟩ is the

vacuum of electron−hole pairs. The exciton basis states are
obtained by solving the eigenvalue problem Hc|x⟩ = ℏωx|x⟩,

which in the basis of single-particle states localized at lattice
sites reads as
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The operator which creates an exciton in state x is defined
through

∑ ψ=
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The total Hamiltonian (eq 1), in which we keep only operators
whose expectation values are at most of the second order in the
exciting field, can be expressed in terms of exciton creation and
annihilation operators as
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Dipole-moment matrix elements for the direct generation
(from the ground state) of excitons in state x are given as

∑ ∑ ψ=
α β

α β α β
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while exciton−phonon matrix elements describing transitions
from exciton state x to exciton state x ̅ assisted by phonon (iλi)
are
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Active variables in our formalism are electronic density matrices
yx = ⟨Xx⟩ and nxx̅ = ⟨Xx ̅

†Xx⟩, along with their single-phonon-
assisted counterparts yx(iλi)

− = ⟨Xxbiλi⟩, yx(iλi)
+ = ⟨Xxbiλi

† ⟩, and

nxx̅(iλi)
+ = ⟨Xx ̅

†Xxbiλi
† ⟩. The equations of motion for these variables

are given in the Supporting Information. Since the phonon
branch of the hierarchy is truncated at the level of second-order
phonon assistance, our treatment of the electron−phonon
interaction does not capture properly the processes with
higher-order phonon assistance, which are important for
stronger electron−phonon interaction. In this case, the feed-
back effects of electronic excitations on phonons would have
to be taken into account as well. To this end, in our recent
publication27 we performed a computation of subpicosecond
dynamics using surface hopping approach (which, however,
treats lattice dynamics classically) and found that the feedback
effects were not very pronounced. In order to treat the electron−
phonon interaction more accurately, other approaches based on
state-of-the-art multiconfigurational techniques,23 infinite resum-
mation within Green’s function formalism43,44 or variational
ansaẗze for the wave function of electron−phonon system45 can
be used.
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The early stages of our numerical experiment (during and
immediately after the pulsed excitation) are dominated by
exciton coherences with the ground state yx and their phonon-
assisted counterparts. The corresponding coherent exciton
populations |yx|

2 are not a measure of the number of truly
bound electron−hole pairs and generally decay quickly after the
pulsed excitation, converting into incoherent exciton popula-
tions. This conversion from coherent to incoherent exciton
populations is in our model mediated by the carrier−phonon
interaction. The incoherent exciton populations are defined as

̅ = − | |n n yxx xx x

2
(12)

They represent numbers of Coulomb-correlated electron−hole
pairs and typically exist for a long time after the decay of
coherent populations. The incoherent populations of various
groups X of exciton states are defined as

∑= ̅
∈

N nX

x X

xx
incoh

(13)

and are frequently and conveniently normalized to the total
exction population

∑=N n
x

xxtot
(14)

which is conserved after the excitation. Once created from
coherent populations, incoherent populations redistribute
among various exciton states, the redistribution being mediated
by the carrier−phonon interaction. In order to gain insight
into the pathways along which these redistribution processes
proceed, we define energy- and time-resolved exciton
populations φX(E, t) of states belonging to group X as
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so that φX(E, t)ΔE is the number (normalized to Ntot) of
excitons from group X residing in the states whose energies are
between E and E + ΔE. Bearing in mind eq 12, relating the
coherent, incoherent, and total exciton population of state x,
quantity φX(E, t) can be decomposed into its coherent
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and incoherent part
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x X

xx x
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The plots of φX
coh as a function of E and t provide information

about states in which excitons are initially generated (the
initial exciton distribution) and the time scale on which the
conversion from coherent to incoherent exciton populations
takes place. The plots of φX

incoh as a function of E and t reveal
actual pathways along which (incoherent) excitons are
redistributed, starting from the initial exciton distribution.
Parameterization of the Model Hamiltonian. Our

model is parametrized with the aim of describing ultrafast
exciton dissociation and charge separation in the direction
perpendicular to the D/A interface. This is motivated by recent
studies of ultrafast exciton dissociation46 and charge separation19

in two-dimensional models of a D/A polymeric heterojunction
which have suggested that these processes crucially depend
on the electronic properties and geometry in the direction

perpendicular to the interface. In actual computations, we take
one single-electron level per site in the donor and one single-
hole level per site in both the donor and acceptor. In order to
mimic the presence of higher-than-LUMO orbitals energetically
close to the LUMO level (which is a situation typical of fullerenes),
as well as to investigate the effects of single-electron levels
situated at around 1.0 eV above the LUMO level on the exciton
dissociation, we take four single-electron levels per site in the
acceptor. Different types of electronic couplings are schematically
indicated in Figure 1, while the values of model parameters

used in computations are summarized in Table 1. These values
are selected so that the main characteristics of the single-
particle and exciton spectrum (band widths, band alignments,
exciton and charge transfer state binding energies) within the
model correspond to the ones observed in P3HT/PCBM
material system. We take the HOMO level of the donor material
to be the zero of the energy scale.
The value of the lattice spacing a agrees with the typical

distance between constitutive elements of organic semicon-
ductors. The number of sites in a single material N = 11 is
reasonable since typical linear dimensions of phase segregated
domains in bulk heterojunction morphology are 10−20 nm.47

The value of the transfer integral JD,0
v,int was chosen so as to agree

with the HOMO bandwidth along the π-stacking direction of
the regioregular P3HT48,49 and the values of the hole transfer
integral along the π-stacking direction of the same material.50,51

The electron transfer integral JD,0
c,int should be of similar

magnitude as the hole transfer integral along the π-stacking
direction.50 Energies of the single-electron and single-hole
levels in the donor, as well as the on-site Coulomb interaction
U, were chosen so that the lowest donor exciton state is located
at around 2.0 eV, while the HOMO−LUMO gap (single-
particle gap) is around 2.4 eV, i.e., the binding energy of the
donor exciton is around 0.4 eV.52,53

Electron transfer integrals in the acceptor JA,0
c,int, JA,1

c,int and
JA,01
c,ext, together with the energy difference ϵA,1

c − ϵA,0
c between

Figure 1. Illustration of the model system indicating different transfer
integrals present in Table 1. The plot on the right shows the single-
particle DOS for electrons in the neat donor (blue curve) and acceptor
(magenta curve) materials obtained using the values of relevant
parameters listed in Table 1. The electronic states of the isolated
materials are computed by diagonalizing the free-electron Hamiltonian
(the first term on the right-hand side of eq 2) in which the D/A
coupling is set to 0. The DOS was then calculated by broadening each
of the states obtained by a Gaussian with the standard deviation of
10 meV.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.7b05582
J. Phys. Chem. C 2017, 121, 19602−19618

19605

http://dx.doi.org/10.1021/acs.jpcc.7b05582


single-electron states, are chosen to reproduce the most important
features of the low-energy part of the electronic density of
states (DOS) of fullerene aggregates,14,25 such as the combined
(total) bandwidth of 0.4−0.5 eV and the presence of two
separated groups of allowed states. Let us note that, because of
the reduced dimensionality of our model, we cannot expect to
reproduce details of the actual DOS, but only its gross features.
We therefore believe that taking two instead of three orbitals
energetically close to the LUMO orbital is reasonable within
our model. The electronic DOS in the acceptor produced by
our model is shown in the inset of Figure 1. Magnitudes of
transfer integrals in the acceptor are also in agreement with the
values reported in the literature.54,55 We have also included the
single-electron fullerene states which are located at around 1 eV
above the lowest single-electron state. It is well-known that
these states in C60 are also triply degenerate and that this
degeneracy is lifted in PC60BM. Since we use a model system,
we take, for simplicity, that the degeneracy is lifted in the same
manner as in the case of lowest single-electron levels, i.e., we take
JA,0
c,int = JA,2

c,int, JA,1
c,int = JA,3

c,int, JA,01
c,int = JA,23

c,int , and ϵA,3
c − ϵA,2

c = ϵA,1
c − ϵA,0

c ,
while ϵA,2

c − ϵA,0
c = 1.0 eV. For the magnitudes of the energy

difference ϵA,0
c − ϵA,0

v and the transfer integral JA,0
v,int listed in

Table 1, the single-particle gap in the acceptor part of the
heterojunction assumes the value of 2.2 eV, which is similar to
the literature values for PCBM.52

The energy differences ΔXD−CT and ΔXA−CT between the
lowest excited state of the heterojunction (the lowest CT state)
and the lowest exciton states in the donor and acceptor
respectively, are directly related to LUMO−LUMO and
HOMO−HOMO energy offsets between the materials.
Literature values of ΔXD−CT representative of P3HT/PCBM

blends are usually calculated for the system consisting of one
PCBM molecule and one oligomer and range from 0.7 eV33 to
1.3 eV.34 Liu and Troisi35 obtained ΔXD−CT = 0.97 eV and
pointed out that taking into account partial electron
delocalization over fullerene molecules can significantly lower
the XD-CT energy difference. For parameters listed in Table 1,
ΔXD−CT = 0.68 eV, which is a reasonable value, since we do
account for carrier delocalization effects. The LUMO−LUMO
offset ΔEDA

c (see Figure 1) produced by the model parameters
is around 0.96 eV and the lowest CT state is located at 1.32 eV.
The energy difference ΔXA−CT = 0.42 eV, so that the HOMO−
HOMO offset is around 0.73 eV and the lowest XA state is
approximately at 1.74 eV, both of which compare well with
the available data.52 The magnitudes of the transfer integrals JDA

c

and JDA
v between the two materials are taken to be similar to the

values obtained in ref 28.
Interband matrix elements of the dipole moment diαiβi

cv are

assumed not to depend on band indices αi,βi and to be equal on
all sites belonging to the single material, diαiβi

cv = dD
cv for i = 0,..., N

− 1 and diαiβi
cv = dA

cv for i = N,..., 2N − 1. Since the focus of our

study is on the dissociation of donor excitons, in all the
computations we set dA

cv = 0.
We assume that each site contributes one low-frequency and

one high-frequency phonon mode. The energies of the phonon
modes, as well as the carrier−phonon interaction constants,
are taken to be equal in both parts of the heterojunction.
The phonon mode of energy 185 meV, present in both
materials, was shown to be important for ultrafast charge
transfer in the P3HT/PCBM blend,26 while low-energy
(≲ 10 meV) phonon modes of P3HT exhibit strong coupling
to carriers.56 The strength of the carrier−phonon interaction
can be quantified by the polaron binding energy, which can be
estimated using the result of the second-order weak-coupling
perturbation theory at T = 0 in the vicinity of the point k = 0:57

∑ ∑ϵ = ϵ =
| |

+ −
ω= = ℏ

| |( )

g

J2

1

1 1i

i

i

i

J

b
pol

1

2

b,
pol

1

2 2

2

2
ip,

(18)

where ϵb,i
pol are the contributions of high- and low-frequency

phonon modes to the polaron binding energy. The values of
g1 and g2 in Table 1 are obtained assuming that ϵb

pol = 50 meV
and ϵb,1

pol = ϵb,2
pol and setting |J| = 125 meV.

Classification of Exciton States. The classification of
exciton states is unambiguous only for JDA

c = JDA
v = 0

(noninteracting heterojunction), when each exciton state

ψ(iαi)(jβj)
x
(0)

can be classified as a donor exciton state (XD), a

space-separated state, an acceptor exciton state (XA) or a state
in which the electron is in the donor, while the hole is in the
acceptor (eDhA). Because eDhA states are very well separated
(in energy) from other groups of exciton states, we will not
further consider them. In the group of space-separated states,
CT and CS states can further be distinguished by the mean
electron−hole distance

∑ ψ⟨ ⟩ = | | | − |
α

α β−

β

r i jx

i
i j
x

e h ( )( )
2

i
j j

i j

(0)

(0)

(19)

If the electron−hole interaction is set to zero, the mean
electron−hole distance for all the space-separated states is equal
to N. For the nonzero Coulomb interaction, we consider a

Table 1. Values of Model Parameters Used in Computations

parameter value

N 11

a (nm) 1.0

U (eV) 0.65

εr 3.0

ϵD,0
c (eV) 2.63

JD, 0
c,int (eV) 0.1

ϵD,0
v (eV) −0.3

JD, 0
v,int (eV) −0.15

ϵA,0
c (eV) 1.565

ϵA,1
c (eV) 1.865

ϵA,2
c (eV) 2.565

ϵA,3
c (eV) 2.865

JA,0
c,int (eV) 0.05

JA,1
c,int (eV) 0.025

JA,2
c,int (eV) 0.05

JA,3
c,int (eV) 0.025

JA,01
c,ext (eV) 0.02

JA,12
c,ext (eV) 0.02

JA,23
c,ext (eV) 0.02

ϵA,0
v (eV) −1.03

JA,0
v,int (eV) −0.15

JDA
c (eV) 0.1

JDA
v (eV) −0.1

ℏωp, 1 (meV) 10.0

g1 (meV) 42.0

ℏωp, 2 (meV) 185.0

g2 (meV) 94.0

T (K) 300.0
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space-separated state as a CS state if its mean electron−hole
distance is larger than (or equal to) N, otherwise we consider it
as a CT state.
In general case, when at least one of JDA

c , JDA
v is different from

zero (interacting heterojunction), it is useful to explicitly
separate the D/A interaction from the interacting-carrier part of
the Hamiltonian (eq 2),

= +H H Hc c
(0)

DA (20)

where

∑

∑

= − +

+ +
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β
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(21)

is the D/A interaction, and Hc
(0) describes interacting carriers

at the noninteracting heterojunction. Exciton states of the non-

interacting heterojunction ψ(iαi)(jβj)
x
(0)

and corresponding exciton

energies ℏωx
(0) are obtained solving the electron−hole pair

eigenproblem of Hc
(0). Exciton states of the interacting hetero-

junction ψ(iαi)(jβj)
x are linear combinations of exciton states of the

noninteracting heterojunction

∑ψ ψ=
α β α β

C
i j
x

x

xx i j
x

( )( ) ( )( )i j i j
(0)

(0)

(0)

(22)

and their character is obtained using this expansion. Namely,
for each group X(0) of the exciton states of the noninteracting
heterojunction, we compute the overlap of state x (of the
interacting heterojunction) with states belonging to this group

∑= | |
∈

C C
X
x

x X

xx
2

(0)

(0) (0)

(0)

(23)

The character of state x is then the character of the group X(0)

for which the overlap CX(0)
x is maximum.

The electron in a space-separated state is predominantly
located in the acceptor part of the heterojunction, while the
hole is located in the donor part. Since there is a number of
single-electron levels per acceptor site, the electron in a space-
separated state can be in different electronic bands originating
from these single-electron levels. A useful quantity for further
classification of space-separated states is

∑ ∑β ψ= | |
α

α β

=

−

p ( )
x

j N

N

i
i j
x

2 1

( )( )
2

i

i

(24)

which represents the conditional probability that, given that the
electron in state x is in the acceptor, it belongs to the electronic
band stemming from the single-electron level β. The index of
the electronic band βx to which the electron in space-separated
state x predominantly belongs is then the value of β for which
the conditional probability px is maximal. In other words, space-
separated state x belongs to the CTβx band.
Let us note here that, because of the large energy separation

between the lower two (0 and 1) and the higher two (2 and 3)
single-electron levels in the acceptor, the electronic coupling
JA,12
c,ext, which couples space-separated states belonging to CT0

and CT1 bands to the ones belonging to CT2 and CT3 bands, is
not effective. Therefore, the space-separated states from CT0

and CT1 bands are very weakly mixed with (and essentially

isolated from) space-separated states of CT2 and CT3 bands,
which permits us to separately analyze these two subgroups of
space-separated states.

Role of the Donor−Acceptor Coupling and the
Resonant Mixing Mechanism. In this section, we show
that the D/A coupling is at the root of the resonant mixing
mechanism, which explains the presence of space-separated
(and XA) states that have a certain amount of donor character,
can be reached by means of a photoexcitation, and act as
gateways to the space-separated manifold for the initial donor
excitons. However, the precise role of the D/A coupling is
different in different energy regions of the exciton spectrum.
In the low-energy region of the exciton spectrum, which is
dominated by the space-separated states belonging to CT0

and CT1 bands, this coupling leads to the resonant mixing
of two-particle (exciton) states. On the other hand, in the
high-energy region of the exciton spectrum, in which space-
separated states belong to CT2 and CT3 bands, it gives rise to
the resonant mixing of single-electron states in the donor and
acceptor.
To better appreciate the role of couplings JDA

c , JDA
v , it is

convenient to schematically represent exciton wave functions

ψ(iαi)(jβj)
x
(0)

and ψ(iαi)(jβj)
x in the coordinate space. For the clarity of

the discussion, we assume that we have only one single-electron
and single-hole state per site throughout the system. This
assumption does not compromise the validity of the conclusions
to be presented in the case of more single-particle states per site.
On the abscissa of our coordinate space is the hole coordinate,
while the electron coordinate is on the ordinate.
The wave functions of exciton states x(0) of the non-

interacting heterojunction are confined to a single quadrant of
our coordinate space, see Figure 2a. For example, the wave

function of a donor exciton state is nonzero only when both
electron and hole coordinates are between 0 and N − 1, and
similarly for other groups of exciton states. Because of the D/A
interaction HDA (eq 21), exciton states x of the interacting
heterojunction are mixtures of different exciton states x(0) of the
noninteracting heterojunction, see eq 22. Therefore, the
wave function of a general exciton state at the interacting
heterojunction is not confined to the quadrant which is in
Figure 2a labeled by its prevalent character, but is nonzero also
in other quadrants. The D/A interaction HDA is written in the
noninteracting-heterojunction exciton basis as

Figure 2. (a) At the noninteracting heterojunction, the wave function
of each exciton state is confined to a single quadrant in the position
space of the electron and hole. (b) The points at which the sums in
eq 26 are evaluated: the points relevant to the computation of the first
and the second sum are grouped by red ellipses, the points relevant to
the computation of the third and the fourth sum are grouped by blue
rectangles.
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The points at which the sums in the last equation (disregarding
band indices) are to be evaluated are presented in Figure 2b.
The first two sums in eq 26 are nonzero only when one state is
of XD, and the other is of space-separated character. Similarly,
the other two sums in eq 26 are nonzero only when one state is
of XA, and the other is of space-separated character. Therefore,
if JDA

c ≠ 0 and JDA
v = 0, XA states of the interacting

heterojunction are identical to XA states of the noninteracting
heterojunction, while XD (space-separated) states of the
interacting heterojunction are generally combinations of XD
and space-separated states of the noninteracting heterojunction.
Similarly, if JDA

c = 0 and JDA
v ≠ 0, XD states of the interacting

heterojunction are identical to XD states of the noninteracting
heterojunction, while XA (space-separated) states of the inter-
acting heterojunction are generally combinations of XA and
space-separated states of the noninteracting heterojunction.
The exact mechanism of this mixing is different in different

parts of the exciton spectrum. Let us start with the lower-energy
part of the spectrum, which contains space-separated states
belonging to CT0 and CT1 bands. Single-electron states in the
acceptor which originate from levels 0 and 1 do not exhibit
strong resonant mixing with single-electron states in the donor,
thanks to the large energy separation between these two groups
of states. Therefore, the relevant partitioning of the interacting-
carrier Hamiltonian Hc is the one embodied in eq 20. Coeffi-
cients Cxx

(0) in the expansion of exciton state x (of the inter-
acting heterojunction) in terms of exciton states x(0) (of the
noninteracting heterojunction) are obtained as solutions to the
eigenvalue problem

∑ δ ω ωℏ + = ℏ
̅ ̅ ̅

h C C( )
x

x x x x x xx x xx
(0)

(0) (0) (0) (0) (0) (0) (0)

(27)

Since hx ̅
(0)
x
(0) contains products of two exciton wave functions,

|hx ̅
(0)
x
(0)| is generally much smaller than |JDA

c/v
|. Therefore, most of

the states in the lower-energy part of the interacting
heterojunction are almost identical to the respective states
of the noninteracting heterojunction. However, whenever
|hx ̅

(0)
x
(0)|∼ |ℏωx ̅

(0) − ℏωx
(0)|, there exists at least one state of the

interacting heterojunction which is a mixture of states x ̅
0 and

x(0) (which have different characters!) of the noninteracting
heterojunction. In other words, states x ̅

(0) and x(0), which are
virtually resonant in energy, exhibit resonant mixing to form
the so-called bridge states of the interacting heterojunction.
Apart from their dominant character, which is obtained as
previously explained, bridge states also have nontrivial overlaps

with noninteracting-heterojunction states of other characters.
For example, if JDA

v = 0, all the bridge states of the interacting
heterojunction are of mixed XD and space-separated character;
if JDA

c = 0, all the bridge states of the interacting heterojunction
are of mixed XA and space-separated character; if both
couplings are nonzero, bridge states of the interacting hetero-
junction are of mixed XD, XA, and space-separated character.
The emergence of bridge states in the low-energy part of the
exciton spectrum requires subtle energy alignment of exciton,
i.e., two-particle, states. Bridge states formed by resonances
between two-particle states are thus rather scarce. Having a
certain amount of the donor character, bridge states acquire
oscillator strengths from donor states and can thus be directly
generated from the ground state. In the rest of our paper, it is
convenient to consider as a bridge state any state (in the lower-
energy part of the exciton spectrum) of dominant CS, CT, or
XA character whose amount of donor character is at least 0.01.
On the other hand, in the high-energy region of the exciton

spectrum, which contains space-separated states belonging to
CT2 and CT3 bands, there is significant mixing between single-
electron states in the acceptor stemming from levels 2 and 3
and single-electron states in the donor. In this case, instead of
the decomposition of the interacting-carrier part of the
Hamiltonian given in eq 20, it is more convenient to separate
the carrier−carrier interaction (last three terms in eq 2) from
the part describing noninteracting carriers (first two terms in
eq 2). The latter part of the interacting-carrier Hamiltonian then
gives rise to single-electron states of the whole heterojunction
which are delocalized on both the donor and acceptor as a
consequence of the resonant mixing between single-electron
states in the two materials. Since one single-electron state of the
entire system generally participates in many two-particle states,
exciton states having at least one carrier delocalized throughout
the heterojunction are ubiquitous in the high-energy region of
the spectrum. They also generally have greater amount of
donor character than the bridge states in the low-energy part of
the spectrum, vide inf ra, making them easily accessible from the
ground state by a (suitable) photoexcitation. The dominant
character of these states can be different and to our further
discussion are relevant space-separated (CT and CS) states of
CT2 and CT3 bands with partial donor character, which will be
further termed photon-absorbing charge-bridging (PACB)
states. This term has been repeatedly used in the literature to
denote space-separated states in which charges are delocalized
throughout the system.28,37,38 We note that the PACB states
within our model do not have any other immediate relationship
with PACB states reported in ab initio studies of D/A interfaces
apart from the charge-bridging property and relatively large
oscillator strengths permitting their direct optical generation.
The bridge states owe their name to the fact that they

indirectly connect, via phonon-assisted processes, a state of
pure XD character to a state of pure space-separated character.
In our model, these two states cannot be involved in a single-
phonon-assisted process because of the form of exciton−
phonon matrix elements Γxx̅

iλi (eq 11), which contain products of
exciton wave functions taken at the same point. Therefore,
single-phonon-assisted transitons among exciton states of the
same character are most intensive and probable. A state of pure
XD character can, however, also be coupled (via processes
mediated by a donor phonon) to a bridge state, which can then
be coupled to a state of pure space-separated character
(via single-phonon processes mediated by acceptor phonons).
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In the remaining part of our study, we will for ease of
presentation adopt the following classification of the exciton
states. Since space-separated states belonging to CT2 and CT3

bands which are relevant to our study are PACB states, we will
not discriminate between CT and CS states in CT2 and CT3

bands, but rather refer to all of them as PACB states. We will,
however, distinguish between CS and CT states in CT0 and
CT1 bands and, for brevity of discussion, we will denote them
simply as CS and CT states. This classification facilitates the
understanding of the role that PACB states play in ultrafast
interfacial dynamics by enabling direct comparison between
results obtained with all four and only two lower orbitals per
acceptor site, vide inf ra. The comparison is plausible since there
is a well-defined correspondence between XA, CT, and CS
states in the lower-energy part of the exciton spectrum
(four orbitals per acceptor site) and the corresponding states
when only two orbitals per acceptor site are taken into account.
The part of the exciton spectrum which is relevant for our study
is shown in Figure 3.

■ NUMERICAL RESULTS

In this section, we present results for the exciton dynamics at
the model heterojunction during and after its pulsed excitation.
The form of the excitation is

ω
τ

θ θ= − + −
⎛

⎝
⎜

⎞

⎠
⎟E t E t

t
t t t t( ) cos( ) exp ( ) ( )0 c

2

G
2 0 0

(28)

where ωc is its central frequency, 2t0 is its duration, τG is the
characteristic time of the Gaussian envelope, and θ(t) is the
Heaviside step function. In all the computations, we set t0 =
50 fs and τG = 20 fs. Computing the energy- and time-resolved
exciton populations φX(E, t) (eqs 16 and 17) or the exciton
DOS, we represent δ functions by a Gaussian with the standard
deviation of 10 meV.
We start with the analysis of the ultrafast exciton dynamics

when model parameters assume the values listed in Table 1 and

the system is excited at the bright donor state located around
ℏωc = 2.35 eV, which is significantly above the lowest donor
state. We also present the results obtained taking into account
only two lower single-electron levels (of energies ϵA,0

c and ϵA,1
c )

in the acceptor per site, while the values of all other model
parameters are as listed in Table 1. The comparison of these
results helps us understand the effects that the presence of two
higher single-electron levels in the acceptor has on ultrafast
exciton dynamics in our model.
In Figure 4a we show the time dependence of the total

coherent exciton population Ntot
coh = ∑x |yx|

2, total incoherent
exciton population Ntot

incoh =∑x n ̅xx, and total exciton population
Ntot (eq 14). Exciting well above the lowest donor state, the
conversion from coherent to incoherent exciton populations is
rapid and is completed in a couple of tens of femtoseconds after
the end of the pulsed excitation. Figure 5a−e presents density
plots of energy- and time-resolved distributions φX

coh(E, t) of
coherent exciton populations for different groups of exciton
states X. Comparing the ranges of color bars in Figure 5a−e, we
conclude that the excitation predominantly generates donor
excitons. We observe in Figure 5a that the initially populated
donor states are the states located around 2.35 and 2.42 eV,
together with the lowest donor state at around 2 eV. Even
though we pump well above the lowest donor state, this state is
prone to the direct optical generation because of its very large
dipole moment Mx (eq 10) for direct generation from the
ground state and the spectral width of the pulse. Apart
from donor states, PACB states are also initially populated
(see Figure 5b). In Figure 5c−e we see that energy positions of
the bright spots in the density plots on the left correspond very
well to the energy positions of red bars, which indicate bridge
states of dominant CS, CT, and XA character, on the right.
In other words, these states can be directly optically generated
from the ground state, as already discussed.
The time dependence of normalized incoherent populations

of different groups of exciton states is presented in Figure 4b.
Figure 4c shows normalized incoherent populations in the
model with only two accessible electronic states (of energies
ϵA,0
c and ϵA,1

c ) at each acceptor site. Comparing panels b and c of
Figure 4, we conclude that the presence of PACB states
significantly affects exciton dynamics on ultrafast time scales.
In the presence of only two lower electronic levels in the
acceptor, the number of donor excitons decreases, while the
numbers of CS, CT, and XA excitons increase after the excita-
tion (see Figure 4c). On the other hand, taking into account
the presence of higher-lying electronic orbitals in the acceptor
and pumping well above the lowest donor exciton, the popula-
tions of XD, XA, CT, and CS states increase, while the popula-
tion of PACB states decreases after the excitation. The fact that
donor states acquire population after the end of the pulse may
at first seem counterintuitive, since initially generated donor
excitons are expected to dissociate, performing transitions to
the space-separated manifold. Having significant amount of
donor character, PACB states are well coupled (via single-
phonon-assisted processes) to the manifold of donor excitons,
while their coupling to space-separated states belonging to CT0

and CT1 bands is essentially negligible (see also the paragraph
following eq 24). Therefore, instead of performing single-
phonon-assisted transitions to lower-energy space-separated
states, initially generated PACB excitons perform transitions
toward donor states, i.e., the number of donor excitons increases
at the expense of excitons initially generated in PACB states.
While, at the end of the pulse, excitons in PACB states comprise

Figure 3. Exciton states relevant for our study divided in different groups.
In the third (the fourth) column (from the left), blue and magenta lines
denote CS (CT) states belonging to CT0 and CT1 band, respectively.
Ultrafast exciton dynamics proceeds along the photophysical pathways
denoted by (1)−(8), which are further specified in the Numerical Results
section. The solid arrows [pathways (1), (3), (6), (7), and (8)] indicate
the deexcitation processes occurring within one group of exciton states,
whereas the dashed arrows [pathways (2), (4), and (5)] denote
transitions among different groups of exciton states. The black (red) bolt
denotes the direct photoexcitation of excitons in donor (PACB) states.
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around 11% of the total exciton population, 900 fs after the
pulse their participation in the total population reduces to 4%.
At the same time, the normalized number of donor excitons
increases from around 85% to around 89% of the total exciton
population, meaning that some of the donor excitons are con-
verted into XA, CT, and CS states, which is seen in Figure 4b as
the increase in the populations of these states.
In the model with four accessible electronic orbitals per

acceptor site, the major part of space-separated states that are
populated on 100 fs time scales following the excitation are
directly generated PACB states. This conclusion is in line with

our recent results regarding ultrafast photophysics in a model
where the LUMO−LUMO offset is comparable to the effective
bandwidth of the LUMO band of the acceptor.27 Namely, we
have recognized that the resonant mixing between single-
electron states in the LUMO bands of the two materials is at
the root of the ultrafast direct optical generation of space-
separated charges. Here, the same mechanism is responsible
for the observed direct generation of excitons in PACB states,
which now acquire nonzero oscillator strengths due to the

Figure 4. Time dependence of (a) the total exciton population and its
coherent and incoherent parts, (b,c) normalized incoherent popula-
tions of different groups of exciton states. In panels a and b, we take
four single-electron levels per acceptor site, while in panel c we take
only two lower single-electron levels (ϵA,0

c and ϵA,1
c ) per acceptor site.

The dotted vertical lines denote the end of the excitation.

Figure 5. Density plots of φX
coh(E,t) for (a) XD, (b) PACB, (c) CS,

(d) CT, and (e) XA states. Each density plot is complemented with
the plot of the corresponding exciton DOS. In panels b−e, exciton
DOS plots contain amounts of the donor character of exciton states
(see eq 23) [in panels c−e, as long as it is greater than 0.01].
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energy alignment between single-electron states stemming from
the donor LUMO orbital and higher-than-LUMO acceptor
orbitals. On the contrary, if only electronic orbitals close to
the LUMO orbital are taken into account, populations of
space-separated states present on 100 fs time scales after the
excitation mainly reside in bridge states, which are formed by
two-particle resonant mixing. The populations of bridge states
are dominantly built by phonon-assisted transitions from
initially generated donor excitons (since the direct generation
of excitons in bridge states is not very pronounced for the
excitation studied). Therefore, in our model, the PACB states
can enhance the generation of space-separated charges on
ultrafast time scales by allowing for their direct optical genera-
tion and not by acting as intermediate states of charge
separation starting from initial donor excitons.
In order to understand the photophysical pathways of

ultrafast exciton dynamics, in Figure 6a−e we depict the
density plots of φX

incoh(E,t) for various groups X of exciton
states. For the completeness of the discussion, in the
Supporting Information we provide the density plots of
φX
incoh(E,t) in the model with only two lower electronic orbitals

per acceptor site and compare them to the plots presented
here. As already explained, the excitons initially generated
in PACB states (red bolt in Figure 3) undergo deexcitation
within the PACB manifold (pathway (1) in Figure 3) followed
by phonon-mediated transitions toward the manifold of donor
states (pathway (2) in Figure 3; see Figure 6b). Donor excitons
(either the ones initially generated in higher-lying bright states
(black bolt in Figure 3) or the ones originating from PACB
excitons) are involved in a series of ultrafast phonon-assisted
transitions toward lower-energy states. Most of these transitions
happen within the XD manifold (pathway (3) in Figure 3; see
the series of more or less bright bands in the density plot
of Figure 6a), which is consistent with the fact that donor
excitons comprise the largest part of the total exciton popu-
lation at every instant. The deexcitation within the XD manifold
proceeds until the lowest XD state is reached. In fact, we see
that already for t ≳ 250 fs, XD population resides mainly in the
lowest donor state at around 2 eV and the donor state at
around 2.13 eV. The lowest donor state is almost uncoupled
from the space-separated manifold, acting as a trap state for
exciton dissociation, which is in line with other studies.23

The other donor state (at around 2.13 eV) acting as a trap state
for exciton dissociation is specific to our computation.
In the course of the deexcitation from the higher-lying donor

states and before reaching a trap state for exciton dissociation,
a donor exciton can perform a transition to a bridge state
(pathway (4) in Figure 3). As seen in Figure 6c−e, the energy
positions of the bright bands in the density plots on the left
match exactly the energy positions of red bars displaying the
amount of donor character of dominantly space-separated or
XA states on the right. Figure 7b−d depicts probability distri-
butions of the electron and hole in representative bridge states
of different dominant characters, while Figure 7a shows the
same quantities for particular PACB states. All the bridge states
exhibit carrier delocalization throughout the system; this prop-
erty makes them accessible from the initial states of donor
excitons. The same holds for PACB states: since the carriers in
these states are delocalized throughout the heterojunction,
these states inherit oscillator strengths from donor excitons
and may thus be directly accessed by an optical excitation.
Moreover, this property enables efficient phonon-assisted
coupling between PACB states and donor states. The bridge

states gain significant populations during the first 100 fs
following the excitation (pathway (4) in Figure 3) and con-
comitantly the excitons initially generated in PACB states perform
phonon-mediated transitons toward donor states (pathway (2) in
Figure 3).
Once the exciton has reached a bridge state, it can deexcite

within the manifold of its dominant character (pathways (6)−(8)
in Figure 3) or it can perform a transiton to the CT manifold
(pathway (5) in Figure 3) followed by a number of downward
transitions within this manifold (pathway (7) in Figure 3; see the

Figure 6. Density plots of φX
incoh(E,t) for (a) XD, (b) PACB, (c) CS, (d)

CT, and (e) XA states. Each density plot is accompanied by the plot of
the corresponding exciton DOS. In panels b−e, the exciton DOS plots
contain the amount of the donor character of exciton states (see eq 23)
[in panels c−e, as long as it is greater than 0.01].

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.7b05582
J. Phys. Chem. C 2017, 121, 19602−19618

19611

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.7b05582/suppl_file/jp7b05582_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.7b05582


series of more or less bright bands between 1.3 and 2.2 eV in the
density plot of Figure 6d). The gradual deexcitation within the
CT manifold leads to the delayed buildup of populations of low-
energy CT states (pathway (7) in Figure 3; see bright bands at
around 1.62 and 1.32 eV in the density plot in Figure 6d), which
happens on a picosecond time scale. Apart from mediating the
charge separation, bridge states can also act as competing
final states. In our computation, at every instant, virtually all CS
excitons reside in bridge states of dominant CS character, and the
progressive deexcitation within the CS manifold (pathway (6) in
Figure 3) is not pronounced (see Figure 6c). Analogous situation
is observed analyzing the energy- and time-resolved populations
of XA states (pathway (8) in Figure 3) in Figure 6e. This 2-fold
role of bridge states observed in our computations is in agreement
with conclusions of previous studies.20

Ultrafast Exciton Dynamics for Various Central
Frequencies. The exact photophysical pathways along which

the exciton dynamics proceeds on ultrafast time scales strongly
depend on the frequency of the excitation, the exciton dis-
sociation being more pronounced for larger excess energy.1,58

Here, we examine ultrafast exciton dynamics for three different
excitations of central frequencies ℏωc = 2.35, 2.25, and 2 eV
(excitation at the lowest donor state). As the central frequency
of the excitation is decreased, i.e., as the initially generated
donor excitons are closer in energy to the lowest donor state,
the conversion from coherent to incoherent exciton population
is slower and the time scale on which exciton coherences with
the ground state dominate the interfacial dynamics is longer
(see Figure 8b). At the same time, the participation of excitons

in PACB states in the total exciton population is decreased,
whereas donor excitons comprise larger part of the total
population (see Figure 8a). Namely, as the central frequency is
lowered toward the lowest donor state, the initial optical
generation of excitons in PACB states is less pronounced and
the pathways (1) and (2) in Figure 3 become less important,
while the possible photophysical pathways of the initially
generated donor excitons become less diverse. Therefore, the
phonon-assisted processes responsible for the conversion from
coherent to incoherent exciton populations and for the ultrafast
phonon-mediated transitions from donor states toward space-
separated states are less effective. As a consequence, the con-
version from coherent to incoherent exciton populations is
slower, and initially generated donor excitons tend to remain
within the manifold of donor states (pathway (3) in Figure 3,
down to the lowest donor state, is preferred to pathways (4)−
(7), which may lead to space-separated states). The latter fact is
especially pronounced exciting at the lowest donor state, which
is very weakly coupled to the space-separated manifold, when
around 80% of the total exciton population lies in the lowest
donor state, meaning that the ultrafast charge transfer upon
excitation at this state is not significant. In the Supporting
Information, we present the density plots of φX

incoh(E,t) for
different groups of exciton states X and excitations of different
central frequencies.

Influence of Small Variations of the LUMO−LUMO
Offset on Ultrafast Exciton Dynamics. In this work, we deal
with rather large LUMO−LUMO offsets, when the bridge
states emerge as a consequence of the energy resonance
between two-particle (exciton) states. The energies of these
states, as well as their number and amount of the donor
character, are therefore very sensitive to the particular exciton
energy level alignment at the heterojunction. On the other
hand, the properties of PACB states are not expected to be
particularly sensitive to the details of the energy level alignment,

Figure 7. Probability distributions of the electron (left) and hole
(right) in representative (a) PACB states and bridge states of
dominant (b) CS, (c) CT, and (d) XA character.

Figure 8. Time dependence of (a) the normalized number of excitons
in donor and PACB states, and (b) the total coherent exciton
population, for different central frequencies of the excitation. For
convenience, the total coherent population shown in panel b is
normalized so that its maximal value is equal to 1.
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since they originate from resonances between single-electron
states in the donor and acceptor. In order to demonstrate
this difference between bridge states and PACB states, we
performed computations with different, but very close, values of
the LUMO−LUMO offset. The LUMO−LUMO offset is
varied by changing all the parameters ϵA,0

c ,ϵA,1
c ,ϵA,2

c ,ϵA,3
c ,ϵA,0

v in
Table 1 by the same amount, keeping all the other model
parameters fixed. The effects of small variations of LUMO−
LUMO offset are studied for JDA

v = 0, when all the bridge states
are of mixed XD and space-separated character and, since dA

cv = 0,
XA states do not participate in the ultrafast exciton dynamics.
The exclusion of XA states from the dynamics significantly
decreases the numerical effort and at the same time allows us
to concentrate on the dynamics of ultrafast electron transfer,
instead of considering both electron transfer and exciton
transfer. The main qualitative features of the ultrafast exciton
dynamics described earlier remain the same, as detailed in the
Supporting Information.
The system is excited at ℏωc = 2.35 eV. Figure 9a presents

the time dependence of the normalized number excitons in

PACB states, while Figure 9b shows the normalized number of
excitons in space-separated states 900 fs after the excitation for
different LUMO−LUMO offsets ranging from 950 to 980 meV
in steps of 5 meV. Small variations of the LUMO−LUMO
offset between 955 and 975 meV weakly affect the portion of
PACB excitons in the total exciton population. However, for
the LUMO−LUMO offset of 980 meV, the normalized number
of excitons in PACB states is somewhat higher than for the
other considered values, while this number is somewhat smaller
for the LUMO−LUMO offset of 950 meV. Namely, for larger
LUMO−LUMO offsets, the lowest state of CT2 band is closer
to the central frequency of the excitation, and the direct optical
generation of excitons in PACB states is more pronounced.
For smaller LUMO−LUMO offsets, the initial generation of

excitons in PACB states is to a certain extent suppressed
because the energy difference between the lowest state of CT2

band and the central frequency of the excitation is larger.
On the other hand, the relative number of space-separated
excitons can change up to three times as a result of small
changes in the LUMO−LUMO offset. The different behavior
displayed by the relative numbers of PACB excitons and space-
separated excitons is a consequence of different mechanisms
by which PACB states and bridge states emerge. The peak in
the normalized number of space-separated excitons observed
for the LUMO−LUMO offset of 965 meV signalizes that the
exciton-level alignment at this point favors either (i) formation
of more bridge states of dominant space-separated character
than at other points or (ii) formation of bridge states that
couple more strongly to initial donor states than bridge states at
other points.

Influence of Carrier−Phonon Interaction Strength
and Temperature on Ultrafast Exciton Dynamics. We
have analyzed the ultrafast exciton dynamics for different
strengths of the carrier−phonon coupling, exciting the system
at ℏωc = 2.35 eV. The polaron binding energy ϵpol

b (eq 18),
which is a measure of the carrier−phonon interaction strength,
assumes values of 20, 50, and 70 meV.
Since the carrier−phonon interaction mediates the con-

version from coherent to incoherent exciton populations,
weaker carrier−phonon coupling makes this conversion
somewhat slower (see Figure 10a). We note that, for all the
interaction strengths considered, the total coherent population
decays 100 times (compared to its maximal value) in ≲100 fs
following the excitation, meaning that the conversion is in all
three cases relatively fast.
The normalized number of excitons in PACB states is smaller

for stronger carrier−phonon interaction (see Figure 10b).
The characteristic time scale for the decay of the population of
PACB states is shorter for stronger carrier−phonon interaction,
which is a consequence of stronger phonon-mediated coupling
among PACB states and donor states (pathway (2) in Figure 3).
For larger interaction strength, the populations of CS and
CT states comprise larger part of the total exciton population
(see Figure 10d,e). Namely, the stronger the carrier−phonon
interaction, the more probable the transitions from donor
excitons to bridge states (pathway (4) in Figure 3) and the
larger the populations of CS and CT states (pathways (5)−(7)
in Figure 3). The relative number of acceptor excitons does not
change very much with the carrier−phonon interaction
strength (see Figure 10b). The variation in the relative number
of donor excitons brought about by the changes in the inter-
action strength is governed by a number of competing factors.
First, stronger carrier−phonon interaction favors larger number
of donor excitons, since phonon-assisted transitions from
PACB to XD states (pathway (2) in Figure 3) are more
pronounced. Second, for stronger interaction, the transitions
from XD to bridge states are more probable (pathway (4) in
Figure 3). Third, since phonon-mediated transitions are most
pronounced between exciton states of the same character,
stronger interaction may also favor deexcitation of donor
populations within the XD manifold (down to the lowest
XD state, pathway (3) in Figure 3) to possible transitions (via
bridge states) to the space-separated manifold (pathways (4)−
(7) in Figure 3). From Figure 10c we see that, as a result of all
these factors, the relative number of donor excitons does not
change monotonously with the interaction strength.

Figure 9. (a) Time dependence of the normalized number of PACB
excitons for different LUMO−LUMO offsets Δ. (b) The relative
number of excitons in space-separated (CT and CS) states 900 fs after
the excitation for different LUMO−LUMO offsets Δ.
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In order to understand how the changes in carrier−phonon
interaction strength affect the photophysical pathways along
which the ultrafast exciton dynamics proceeds, in Figure 11a−l
we present energy- and time-resolved incoherent populations of
various groups of exciton states (in different rows) and for
different interaction strengths (in different columns).
While for the strongest studied interaction initially generated

higher-lying donor excitons and excitons in PACB states leave
the initial states rapidly (see Figure 11i,j), for the weakest
studied interaction strength, significant exciton population
remains in these states during the first picosecond of the
exciton dynamics (see Figure 11a,b). The deexcitation of donor
excitons takes place predominantly within the XD manifold
(pathway (3) in Figure 3) for all three interaction strengths
(compare the ranges of color bars in Figure 11a,e,i). For the
weakest studied interaction, the lowest donor state, which is
a trap for the exciton dissociation, is largely bypassed in the
course of the deexcitation, whereas for stronger carrier−
phonon interactions, this state acquires significant population
already from the beginning of the excitation. Energy- and time-
resolved populations of CS states are very nearly the same for
all three interaction strengths studied (see Figure 11c,g,k).
The major part of the CS population resides in bridge states,
and the deexcitation within the subset of CS states (pathway
(6) in Figure 3) is not very pronounced. On the other hand,
the deexcitation within the subset of CT states (pathway (7) in
Figure 3), down to the lowest CT state, is observed for all the
interaction strengths considered (see the series of more or
less bright bands in Figure 11d,h,l). While for the weakest
interaction the largest portion of the CT population resides in

the bridge state of CT character located at around 2.2 eV, for
the strongest interaction, the major part of the CT population
is located in the lowest state of CT1 band at around 1.63 eV.
The carrier−phonon coupling thus acts in two different ways.

On the one hand, stronger carrier−phonon interaction
enhances exciton dissociation and subsequent charge separation
by (i) enabling phonon-assisted transitons from a donor state
to space-separated states via bridge states (pathways (4) and
(5) in Figure 3) and (ii) enabling phonon-assisted transitions
within the space-separated manifold once a space-separated
state is reached (pathways (6) and (7) in Figure 3). On the
other hand, stronger carrier−phonon coupling is detrimental to
exciton dissociation and further charge separation because
(i) it makes donor states more easily accessible from initially
generated PACB excitons (pathway (2) in Figure 3), and,
similarly, it may favor backward transitions from a bridge state
to a donor state with respect to transitions to the space-sepa-
rated manifold and (ii) downward phonon-assisted transitions
make low-energy CT states, which are usually considered as
traps for charge separation, populated on a picosecond time
scale following the excitation (pathway (7) in Figure 3).
In the Supporting Information we examine the temperature

dependence of the ultrafast heterojunction dynamics. We find
that the effect of temperature variations on exciton dynamics
occurring on subpicosecond time scales is not particularly pro-
nounced, as has been repeatedly recognized in the literature.59−61

■ DISCUSSION AND CONCLUSION

Using a relatively simple, but physically grounded model of an
all-organic heterointerface, we have investigated subpicosecond
dynamics of exciton dissociation and charge separation in the
framework of the density matrix theory complemented with the
DCT scheme. Our model is constructed as an effective model
intended to describe the dynamics of excitation transport in the
direction perpendicular to the interface, and it is parametrized
using the literature data for the P3HT/PCBM blend.
Apart from the electronic states of the fullerene aggregate

that originate from molecular orbitals close to the LUMO
orbital of PCBM, we also account for the electronic states
stemming from orbitals situated at around 1 eV above the
LUMO orbital. Our analysis reveals the importance of the
space-separated states that inherit nonzero oscillator strengths
from donor states (bridge states and PACB states) and exhibit
charge delocalization in ultrafast exciton dynamics. Depending
on the energy region of the exciton spectrum, the origin of
these states is different. In the low-energy region of the spec-
trum, bridge states are formed as a consequence of the resonant
mixing among exciton (i.e., two-particle) states, while in the
opposite part of the spectrum the resonant mixing between
single-electron states in the two materials brings about the
formation of PACB states.
The resonant mixing has been suggested to be the key

physical mechanism responsible for the presence of separated
charges on ultrafast time scales following the excitation of a D/A
heterojunction.1,11,12,62−65 Employing the model of reduced
dimensionality and studying its subpicosecond dynamics on a
fully quantum level, we reach similar conclusions, and thus
believe that our one-dimensional model is capable of describing
the essential physics behind ultrafast interfacial processes.
Our one-dimensional model does not provide a detailed description
of, e.g., the role of fullerene cluster size and packing in the
ultrafast dynamics. However, it takes into account the most
important consequences of the aforementioned effects, i.e., the

Figure 10. (a) Time dependence of the total coherent exciton
population Ntot

coh for different carrier−phonon interaction strengths. For
convenience, Ntot

coh is normalized so that its maximum assumes the
same value for all studied interaction strengths. Dynamics of
normalized incoherent excition populations of (b) PACB and XA,
(c) XD, (d) CS, and (e) CT states, for different interaction strengths.
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delocalization of electronic states and the accessibility of delo-
calized states of space-separated charges from the states of
donor excitons.64 The effects of the dimensionality of the
model become crucial on somewhat longer time and length
scales. Namely, on ≳10 ps time scales, the diffusion-controlled
charge separation by incoherent hops throughout the respective
materials takes place,66 and one has to take into consideration
all possible separation paths the electron and hole can follow,
which can be done correctly only within a three-dimensional
model of the heterojunction. The effects of electric polarization
and screening at realistic interfaces are rather complex and
strongly dependent on the details of the interface.67 Here,
however, we take a minimal model of the electron−hole inter-
action that reproduces the most important features of the
energetics of exciton states obtained from experimental data or
from more sophisticated models of polarization and screening

at interfaces. In that sense, our model can be considered as an
effective model whose parameters were adjusted to yield realistic
energetics of relevant exciton states.
While the PACB states in our model enhance ultrafast charge

separation by acting as additional interfacial photon-absorbing
states, the most important characteristic of the bridge states is
not their direct accessibility from the ground state, but their
good coupling with the manifold of donor states. Therefore, for
donor excitons, the bridge states act as gateways to the space-
separated manifold, so that the populations of low-lying space-
separated states are built by progressive deexcitation within the
space-separated manifold on a picosecond time scale following
the excitation.
The ultrafast exciton dynamics strongly depends on the

central frequency of the excitation. While exciting well above
the lowest donor state, there are a number of photophysical

Figure 11. Energy- and time-resolved incoherent exciton populations φX
incoh(E, t) for different carrier−phonon interaction strengths: (a−d) g1 =

26.7 meV, g2 = 59.7 meV; (e−h) g1 = 42.2 meV, g2 = 94.3 meV; (i−l) g1 = 54.0 meV, g2 = 111.6 meV. Groups of exciton states: (a,e,i) XD states;
(b,f,j) PACB states; (c,g,k) CS states; (d,h,l) CT states.
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pathways enabling subpicosecond exciton dissociation, exciting
at the lowest donor state, the major part of generated excitons
reside in this state, and ultrafast exciton dissociation is not
pronounced. Stronger carrier−phonon interaction enhances
phonon-mediated transitions from donor states to bridge states
and is thus beneficial to exciton dissociation on ultrafast time
scales.
Our results indicate that the number of space-separated

charges that are present 1 ps after photoexcitation is rather
small, being typically less than 10% of the number of excited
electron−hole pairs (see, e.g., Figures 4 and 10). On the other
hand, in most efficient solar cell devices internal quantum
efficiencies (IQE) close to 100% have been reported. In light of
an ongoing debate on the origin of high IQE and the time scale
necessary for the charge separation process to occur, our results
indicate that longer time scales are needed to separate the
charges. Many of the photophysical pathways that we identify
eventually lead to occupation of low-lying CT states (e.g.,
in Figure 3, the pathway starting from initial donor excitons
(black bolt)[ → (3)] → (4) → (5) → (7) or the pathway
starting from initial PACB excitons (red bolt)[ → (1)] →

(2)[ → (3)] → (4) → (5) → (7)). We also find that on
subpicosecond time scales a large portion of excitons remains in
donor states. Therefore, a mechanism that leads to escape of
charges from low-lying CT states and donor states on longer
time scales and consequently to high IQE needs to exist.
Several recent experimental68,69 and theoretical70−72 studies
have provided evidence that the separation of charges residing
in these states is indeed possible. Along these lines, our model
could potentially be part of a multiscale model of the OPV
devices, as it yields the populations of different states at ∼1 ps
after photoexcitation. The output of our model could then be
used as input for a semiclassical model that would consider the
charge separation and transport on a longer time scale.
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We present a detailed investigation of ultrafast (subpicosecond) exciton dynamics in the lattice model of

a donor/acceptor heterojunction. Exciton generation by means of a photoexcitation, exciton dissociation, and

further charge separation are treated on equal footing. The experimentally observed presence of space-separated

charges at �100 fs after the photoexcitation is usually attributed to ultrafast transitions from excitons in the

donor to charge-transfer and charge-separated states. Here, we show, however, that the space-separated charges

appearing on �100-fs time scales are predominantly directly optically generated. Our theoretical insights into

the ultrafast pump-probe spectroscopy challenge usual interpretations of pump-probe spectra in terms of ultrafast

population transfer from donor excitons to space-separated charges.

DOI: 10.1103/PhysRevB.95.075308

I. INTRODUCTION

The past two decades have seen rapidly growing research

efforts in the field of organic photovoltaics (OPVs), driven

mainly by the promise of economically viable and environ-

mentally friendly power generation [1–5]. In spite of vigorous

and interdisciplinary research activities, there is a number of

fundamental questions that still have to be properly answered

in order to rationally design more efficient OPV devices. It

is commonly believed [1,6] that photocurrent generation in

OPV devices is a series of the following sequential steps.

Light absorption in the donor material creates an exciton,

which subsequently diffuses towards the donor/acceptor (D/A)

interface where it dissociates producing an interfacial charge

transfer (CT) state. The electron and hole in this state are

tightly bound and localized at the D/A interface. The CT state

further separates into a free electron and a hole [the so-called

charge-separated (CS) state], which are then transported to

the respective electrodes. On the other hand, several recent

spectroscopic studies [7–10] have indicated the presence of

spatially separated electrons and holes on ultrafast (�100 fs)

time scales after the photoexcitation. These findings challenge

the described picture of free-charge generation in OPV devices

as the following issues arise. (i) It is not expected that an

exciton created in the donor can diffuse in such a short time

to the D/A interface since the distance it can cover in 100 fs is

rather small compared to the typical size of phase segregated

domains in bulk heterojunctions. [11] (ii) The mechanism by

which a CT state would transform into a CS state is not clear.

The binding energy of a CT exciton is rather large [6,12] and

there is an energy barrier preventing it from the transition to a

CS state, especially at such short time scales.

To resolve question (ii), many experimental [7,8,13,14]

and theoretical [15–19] studies have challenged the implicit

assumption that the lowest CT state is involved in the process.

These studies emphasized the critical role of electronically

hot (energetically higher) CT states as intermediate states

before the transition to CS states. Having significantly larger

*veljko.jankovic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

electron-hole separations, i.e., more delocalized carriers, com-

pared to the interface-bound CT states, these hot CT states

are also more likely to exhibit ultrafast charge separation and

thus bypass the relaxation to the lowest CT state. The time

scale of the described hot exciton dissociation mechanism is

comparable to the time scale of hot CT exciton relaxation to the

lowest CT state [8,18]. Other studies suggested that electron

delocalization in the acceptor may reduce the Coulomb barrier

[9,20,21] and allow the transition from CT to CS states.

Experimental results of Vandewal et al. [22], who studied

the consequences of the direct optical excitation of the lowest

CT state, suggest that the charge separation can occur very

efficiently from this state. To resolve issue (i), it has been

proposed that a direct transition from donor excitons to CS

states provides an efficient route for charge separation [23,24].

All the aforementioned studies implicitly assume that an

optical excitation creates a donor exciton and address the

mechanisms by which it can evolve into a CT or CS state

on a ∼100-fs time scale. In this work, we demonstrate

that the majority of space-separated charges that are present

∼100 fs after photoexcitation are directly optically generated,

in contrast to the usual belief that they originate from optical

generation of donor excitons followed by some of the proposed

mechanisms of transfer to CT or CS states. We note that in a

recent theoretical work Ma and Troisi [25] concluded that

space-separated electron-hole pairs significantly contribute

to the absorption spectrum of the heterojunction, suggesting

the possibility of their direct optical generation. A similar

conclusion was also obtained in the most recent study of

D’Avino et al. [26]. These works, however, do not provide

information about the relative importance of direct optical

generation of space-separated charges in comparison to other

hypothesized mechanisms of their generation. On the other

hand, in the framework of a simple, yet physically grounded

model, we simulate the time evolution of populations of

various exciton states during and after optical excitation.

Working with a model Hamiltonian whose parameters have

clear physical meanings, we are able to vary model parameters

and demonstrate that these variations do not violate our

principal conclusion that the space-separated charges present

at ∼100 fs following photoexcitation originate from direct

optical generation. In addition, we numerically investigate the

2469-9950/2017/95(7)/075308(15) 075308-1 ©2017 American Physical Society
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ultrafast pump-probe spectroscopy and find that the signal

on ultrafast time scales is dominated by coherences rather

than by state populations. This makes the interpretation of

the experimental spectra in terms of state populations rather

difficult.

The paper is organized as follows. Section II introduces

the model, its parametrization, and the theoretical treatment

of ultrafast exciton dynamics. The central conclusion of our

study is presented in Sec. III, where we also assess its

robustness against variations of most of the model parameters.

Section IV is devoted to the theoretical approach to ultrafast

pump-probe experiments and numerical computations of the

corresponding pump-probe signals. We discuss our results and

draw conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we lay out the essential elements of the

model (Sec. II A) and of the theoretical approach (Sec. II B)

we use to study ultrafast exciton dynamics at a heterointer-

face. Section II C presents the parametrization of the model

Hamiltonian and analyzes its spectrum.

A. One-dimensional lattice model of a heterojunction

In this study, a one-dimensional two-band lattice semi-

conductor model is employed to describe a heterojunction.

It takes into account electronic couplings, carrier-carrier,

and carrier-phonon interactions, as well as the interaction of

carriers with the external electric field. There are 2N sites

in total, see Fig. 2(a); first N sites (labeled by 0, . . . ,N − 1)

belong to the donor part of the heterojunction, while sites

labeled by N, . . . ,2N − 1 belong to the acceptor part. Each

site i has one valence-band and one conduction-band orbital

and also contributes localized phonon modes counted by

index λi . The model Hamiltonian is pictorially presented in

Fig. 1(a), the total Hamiltonian being

H = Hc + Hp + Hc−p + Hc−f . (1)

Interacting carriers are described by

Hc =

2N−1
∑

i=0

⎛

⎜

⎝
H i

e + H i
h +

2N−1
∑

j=0

j �=i

(

H ij
e + H

ij

h

)

+

2N−1
∑

j=0

H
ij

e−h

⎞

⎟

⎠
,

(2)

the phonon Hamiltonian is

Hp =

2N−1
∑

i=0

H i
p, (3)

the carrier-phonon interaction is

Hc−p =

2N−1
∑

i=0

(

H i
e−p + H i

h−p

)

, (4)

while the interaction of carriers with the external exciting field

E(t) is given as

Hc−f =

2N−1
∑

i=0

H i
c−f . (5)

(a)

(b)

FIG. 1. (a) Illustration of the model Hamiltonian used in our

study. (b) Active variables in the density matrix formalism and their

interrelations in the resulting hierarchy of equations. The direction

of a straight arrow indicates that in the equation for the variable at

its start appears the variable at its end. Loops represent couplings to

higher-order phonon-assisted density matrices which are truncated so

that the particle number and energy of the free system are conserved.

In Fig. 1(a), Fermi operators c
†
i and d

†
i (ci and di) create

(destroy) electrons and holes on site i, whereas Bose operators

b
†
iλi

(biλi
) create (destroy) phonons in mode λi on site i. ǫc

i

and ǫv
i are electron and hole on-site energies, while J c

ij and

J v
ij denote electron and hole transfer integrals, respectively.

The carrier-phonon interaction is taken to be of the Holstein

form, where a charge carrier is locally and linearly coupled

to dispersionless optical modes, and gc
iλi

and gv
iλi

are the

interaction strengths with electrons and holes, respectively.

Electron-hole interaction is accounted for in the lowest

monopole-monopole approximation and Vij is the carrier-

carrier interaction potential. Interband dipole matrix elements

are denoted by dcv
i .

B. Theoretical approach to exciton dynamics

We examine the ultrafast exciton dynamics during and

after pulsed photoexcitation of a heterointerface in the pre-

viously developed framework of the density matrix theory

complemented with the dynamics controlled truncation (DCT)

scheme [27–29] (see Ref. [30] and references therein), starting

from initially unexcited heterojunction. We confine ourselves

to the case of weak optical field and low carrier densities,

in which it is justified to work in the subspace of single-

075308-2



ORIGIN OF SPACE-SEPARATED CHARGES IN . . . PHYSICAL REVIEW B 95, 075308 (2017)

exciton excitations (spanned by the so-called exciton basis)

and truncate the carrier branch of the hierarchy of equations

for density matrices retaining only contributions up to the

second order in the optical field. The phonon branch of

the hierarchy is truncated independently so as to ensure the

particle-number and energy conservation after the pulsed

excitation, as described in detail in Ref. [30].

In more detail, the exciton basis is obtained solving the

eigenvalue problem

∑

i ′j ′

(

δi ′iǫ
c
jj ′ − δj ′jǫ

v
ii ′ − δi ′iδj ′jVij

)

ψx
i ′j ′ = h̄ωxψ

x
ij , (6)

where indices i,i ′ (j,j ′) correspond to the position of the

hole (electron) and quantities ǫc
mn (ǫv

mn) denote on-site electron

(hole) energies (for m = n) or electron (hole) transfer integrals

(for m �= n) in the donor, in the acceptor, or between the donor

and the acceptor. The creation operator for the exciton in the

state x is then defined as

X†
x =

∑

ij

ψx
ijc

†
jd

†
i . (7)

As we pointed out [30], the total Hamiltonian, in which only

contributions whose expectation values are at most of the

second order in the optical field are kept, can be expressed

in terms of exciton operators X
†
x,Xx as

H =
∑

x

h̄ωxX
†
xXx +

∑

iλi

h̄ωiλi
b
†
iλi

biλi

+
∑

x̄x

iλi

(

Ŵ
iλi

x̄x X
†
x̄Xxb

†
iλi

+ Ŵ
iλi∗
x̄x X†

xXx̄biλi

)

−E(t)
∑

x

(M∗
x Xx + MxX

†
x), (8)

where the exciton-phonon coupling constants are given as

Ŵ
iλi

x̄x = gc
iλi

∑

j

ψ x̄∗
ji ψx

ji − gv
iλi

∑

j

ψ x̄∗
ij ψx

ij , (9)

while the dipole moment for the generation of the state x from

the ground state is

Mx =
∑

i

ψx∗
ii dcv

i . (10)

Active variables in our formalism are the coherences between

exciton state x and the ground state, yx = 〈Xx〉, exciton

populations (for x̄ = x), and exciton-exciton coherences (for

x̄ �= x) nx̄x = 〈X
†
x̄Xx〉, together with their single-phonon-

assisted counterparts yx(iλi )− = 〈Xxbiλi
〉, yx(iλi )+ = 〈Xxb

†
iλi

〉,

and nx̄x(iλi )+ = 〈X
†
x̄Xxb

†
iλi

〉. Their mutual interrelations in the

resulting hierarchy are schematically shown in Fig. 1(b), while

the equations themselves are presented in Ref. [31]. In order

to quantitatively monitor ultrafast processes at the model

heterojunction during and after its pulsed photoexcitation,

the incoherent population of exciton state x, which gives the

number of truly bound (Coulomb-correlated) electron-hole

pairs in the state x,

n̄xx = nxx − |yx |
2, (11)

will be used. Coherent populations of exciton states, |yx |
2,

dominate early stages of the optical experiment, typically

decay quickly due to different scattering mechanisms (in our

case, the carrier-phonon interaction), and do not represent

bound electron-hole pairs. The populations of truly bound

electron-hole pairs build up on the expense of coherent exciton

populations. We frequently normalize n̄xx to the total exciton

population in the system,

Ntot =
∑

x

nxx, (12)

which, together with the expectation value of the Hamiltonian

〈H 〉, is conserved in the absence of the external field.

Probabilities fe(t,r) [fh(t,r)] that an electron (a hole) is

located at site r at instant t can be obtained using the so-called

contraction identities (see, e.g., Ref. [29]) and are given as

fe(t,r) =

∑

x̄x

(
∑

rh
ψ x̄∗

rhr
ψx

rhr

)

nx̄x(t)
∑

x nxx(t)
, (13)

fh(t,r) =

∑

x̄x

(
∑

re
ψ x̄∗

rre
ψx

rre

)

nx̄x(t)
∑

x nxx(t)
. (14)

Consequently, the probability that an electron is in the acceptor

at time t is

P e
A(t) =

2N−1
∑

r=N

fe(t,r). (15)

C. Model parameters and Hamiltonian spectrum

The model Hamiltonian was parameterized to yield values

of band gaps, bandwidths, band offsets, and exciton binding

energies that are representative of typical OPV materials. The

values of model parameters used in numerical computations

are summarized in Table I. While these values largely

correspond to the PCPDTBT/PCBM interface, we note that

our goal is to reach general conclusions valid for a broad class

of interfaces. Consequently, later in this study, we also vary

most of the model parameters and study the effects of these

variations. Figures 2(a) and 2(b) illustrate the meaning of some

of the model parameters.

All electron and hole transfer integrals are restricted to

nearest neighbors. The single-particle band gap of the donor

Eg,D , as well as the offset �Ec
DA between the lowest single-

electron levels in the donor and acceptor, assume values that are

representative of the low-band-gap PCPDTBT polymer used in

the most efficient solar cells [32,33]. The single-particle band

gap of the acceptor Eg,A and electron/hole transfer integrals

J
c/v

A are tuned to values typical of fullerene and its derivatives

[34,35]. Electron/hole transfer integrals J
c/v

D in the donor were

extracted from the conduction and valence bandwidths of the

PCPDTBT polymer. To obtain the bandwidths, an electronic

structure calculation was performed on a straight infinite

polymer. The calculation is based on the density functional

theory (DFT) in the local density approximation (LDA),

as implemented in the QUANTUM ESPRESSO [36] package.

Transfer integrals were then obtained as 1/4 of the respective

bandwidth. The values of the transfer integral between the two

materials are chosen to be similar to the values obtained in the
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TABLE I. Values of model parameters used in calculations.

Parametera Value

Eg,D (meV) 1500

Eg,A (meV) 1950

�Ec
DA (meV) 500

|J c
D| (meV) 105

|J v
D| (meV) 295

|J c
A| (meV) 150

|J v
A| (meV) 150

|J c
DA|,|J v

DA| (meV) 75

εr 3.0

N 11

a (nm) 1.0

U (meV) 480

h̄ωp,1 (meV) 10

g1 (meV) 28.5

h̄ωp,2 (meV) 185

g2 (meV) 57.0

T (K) 300

t0 (fs) 50

aEg,D (Eg,A) is the single-particle band gap in the donor (accep-

tor). �Ec
DA denotes LUMO-LUMO energy offset. J

c/v

D (J
c/v

A ) are

electron/hole transfer integrals in the donor (acceptor). J
c/v

DA are

electron/hole transfer integrals between the donor and acceptor. εr

is the relative dielectric constant. N is the number of lattice sites in

the donor and acceptor (2N sites in total). a is the lattice constant. U

denotes the on-site Coulomb interaction. h̄ωp,1/2 are energies of local

phonon modes, while g1/2 are carrier-phonon coupling constants. T

denotes temperature. The duration of the pulse is 2t0.

ab initio study of P3HT/PCBM heterojunctions [37]. We set

the number of sites in a single material to N = 11, which is

reasonable having in mind that the typical dimensions of phase

segregated domains in bulk heterojunction morphology are

considered to be 10–20 nm [11]. The electron-hole interaction

potential Vij is modeled using the Ohno potential

Vij =
U

√

1 +
( rij

a0

)2
, (16)

where rij is the distance between sites i and j , and a0 =

e2/(4πε0εrU ) is the characteristic length. The relative dielec-

tric constant εr assumes a value typical for organic materials,

while the magnitude of the on-site Coulomb interaction U

was chosen so that the exciton binding energy in both the

donor and the acceptor is around 300 meV. Following common

practice when studying all-organic heterojunctions [38,39], we

take one low-energy and one high-energy phonon mode. For

simplicity, we assume that energies of both phonon modes,

as well as their couplings to carriers, have the same values in

both materials. The high-frequency phonon mode of energy

185 meV (≈1500 cm−1), which is present in both materials,

was suggested to be crucial for ultrafast electron transfer in the

P3HT/PCBM blend [40]. Recent theoretical calculations of

the phonon spectrum and electron-phonon coupling constants

in P3HT indicate the presence of low-energy phonon modes

(�10 meV) that strongly couple to carriers [41]. The chosen
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FIG. 2. (a) One-dimensional lattice model of a heterojunction.

Various types of electronic couplings (in the donor, in the acceptor,

and among them) are indicated. There is an energy offset between

single-electron/hole levels in the donor and acceptor. (b) Band

alignment produced by our model. (c) Energies of exciton states,

in particular of donor excitons (black lines), CT (red lines), and CS

(blue lines) states. Exciton wave function square moduli are shown

for the lowest donor, CT, and CS state.

values of phonon-mode energies fall in the ranges in which

the phonon density of states in conjugated polymers is large

[42] and the local electron-vibration couplings in PCBM are

pronounced [43]. We estimate the carrier-phonon coupling

constants from the value of polaron binding energy, which

can be estimated using the result of the second-order weak-

coupling perturbation theory at T = 0 in the vicinity of the

point k = 0 [44]:

ǫ
pol

b =

2
∑

i=1

g2
i

2|J |

1
√

(

1 +
h̄ωp,i

2|J |

)2
− 1

. (17)

We took g2/g1 = 2 and estimated the numerical values

assuming that ǫ
pol

b = 20 meV and |J | = 125 meV. The electric

field is centered around t = 0 and assumes the form

E(t) = E0 cos(ωct)θ (t + t0)θ (t0 − t), (18)

where ωc is its central frequency, θ (t) is the step function,

and the duration of the pulse is 2t0. The time t0 should be

chosen large enough so that the pulse is spectrally narrow

enough (the energy of the initially generated excitons is

around the central frequency of the pulse). On the other hand,

since our focus is on processes happening on subpicosecond

time scale, the pulse should be as short as possible in order
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to disentangle the carrier generation during the pulse from

free-system evolution after the pulse. Trying to reconcile

the aforementioned requirements, we choose t0 = 50 fs. We

note that the results and conclusions to be presented do not

crucially depend on the particular value of t0 nor on the

wave form of the excitation. This is shown in greater detail

in Ref. [31], see Figs. 1 and 2, where we present the dynamics

for shorter pulses of wave forms given in Eqs. (18) and (33).

Interband dipole matrix elements dcv
i are zero in the acceptor

(i = N, . . . ,2N − 1), while in the donor they all assume the

same value dcv so that dcvE0 = 0.2 meV (weak excitation).

Figure 2(c) displays part of the exciton spectrum produced

by our model. Exciton states can be classified according to the

relative position of the electron and the hole. The classification

is straightforward only for the noninteracting heterojunction

(J
c/v

DA = 0), in which case any exciton state can be classified

into four groups: (a) both the electron and the hole are in

the donor [donor exciton (XD) state], (b) both the electron

and the hole are in the acceptor (acceptor exciton state), (c)

the electron is in the acceptor, while the hole is in the donor

(space-separated exciton state), and (d) the electron is in the

donor, while the hole is in the acceptor.

Space-separated excitons can be further discriminated

according to their mean electron-hole distance defined as

〈re−h〉x =
∑

ij

|i − j |
∣

∣ψx
ij

∣

∣

2
. (19)

When the electron-hole interaction is set to zero, the mean

electron-hole distance for all the states from group (c) is equal

to N . For the nonzero Coulomb interaction, we consider a

space-separated exciton as a CS exciton if its mean electron-

hole distance is larger than (or equal to) N , otherwise we

consider it as a CT exciton. In the general case, the character

of an exciton state is established by calculating its overlap

with each of the aforementioned groups of the exciton states

at the noninteracting heterojunction; this state then inherits the

character of the group with which the overlap is maximal.

III. NUMERICAL RESULTS

Here, the results of our numerical calculations on the model

system defined in Sec. II are presented. In Sec. III A, we

observe that the populations of CT and CS states predomi-

nantly build up during the action of the excitation, and that

the changes in these populations occurring on ∼100-fs time

scales after the excitation are rather small. This conclusion,

i.e., the direct optical generation as the principal source of

space-separated charges on ultrafast time scales following the

excitation, is shown in Sec. III B to be robust against variations

of model parameters. Since the focus of our study is on the

ultrafast exciton dynamics at photoexcited heterojunctions, all

the computations are carried out for 1 ps in total (involving the

duration of the pulse).

A. Interfacial dynamics on ultrafast time scales

Figure 3(a) shows the time dependence of the numbers

of donor, CT, and CS excitons for the 100-fs-long excitation

with central frequency h̄ωc = 1500 meV, which excites the

system well above the lowest donor or space-separated exciton

(a)

(b)

0 0.2 0.4 0.6 0.8
0

1×10
-5

2×10
-5

3×10
-5

4×10
-5

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8
0

0.1

0.2

FIG. 3. (a) Time dependence of the numbers of donor (XD), CT,

and CS excitons. The inset shows the time dependence of these

quantities normalized to the total exciton population in the system. (b)

Probability that at time t an electron is located at site r as a function of

r for various values of t . In the legend, the probability that at instant

t an electron is located in the acceptor is given, while the inset shows

its full time dependence. Dotted vertical lines indicate the end of the

excitation.

state, see Fig. 2(c). The number of all three types of excitons

grows during the action of the electric field, whereas after

the electric field has vanished, the number of donor excitons

decreases and the numbers of CT and CS excitons increase.

However, the changes in the exciton numbers brought about

by the free-system evolution alone are much less pronounced

than the corresponding changes during the action of the electric

field, as is shown in Fig. 3(a). The population of CS excitons

builds up during the action of the electric field, so that after

the first 100 fs of the calculation, CS excitons comprise 7.6%

of the total exciton population, see the inset of Fig. 3(a). In

the remaining 900 fs, when the dynamics is governed by

the free Hamiltonian, the population of CS excitons further

increases to 9.6%. A similar, but less extreme, situation is

also observed in the relative number of CT excitons, which at

the end of the pulse form 14% of the total population and

in the remaining 900 fs of the computation their number

further grows to 24%. Therefore, if only the free-system
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evolution were responsible for the conversion from donor to

CT and CS excitons, the population of CT and CS states at

the end of the pulsed excitation would assume much smaller

values than we observe. We are led to conclude that the

population of CT and CS excitons on ultrafast (�100-fs)

time scales is mainly established by direct optical generation.

Transitions from donor to CT and CS excitons are present,

but on this time scale are not as important as is currently

thought.

Exciton dissociation and charge separation can also be

monitored using the probabilities fe(t,r) [fh(t,r)] that an

electron (a hole) is located on site r at instant t , as well as

the probability P e
A(t) that an electron is in the acceptor at time

t , see Eqs. (13)–(15). Figure 3(b) displays quantity fe as a

function of site index r at different times t . The probability of

an electron being in the acceptor is a monotonically increasing

function of time t , see the inset of Fig. 3(b). It increases,

however, more rapidly during the action of the electric field

than after the electric field has vanished: in the first 100 fs of

the calculation, it increases from virtually 0 to 0.070, while in

the next 100 fs it only rises from 0.070 to 0.104, and at the end

of the computation it assumes the value 0.210. The observed

time dependence of the probability that an electron is located

in the acceptor further corroborates our hypothesis of direct

optical generation as the main source of separated carriers on

ultrafast time scales. If only transitions from donor to CT and

CS excitons led to ultrafast charge separation starting from a

donor exciton, the values of the considered probability would

be smaller than we observe.

The rationale behind the direct optical generation of space-

separated charges is the resonant coupling between donor

excitons and (higher-lying) space-separated states, which

stems from the resonant mixing between single-electron states

in the donor and acceptor modulated by the electronic coupling

between materials, see the level alignment in Fig. 2(b). This

mixing leads to higher-lying CT and CS states having non-

negligible amount of donor character and acquiring nonzero

dipole moment from donor excitons; these states can thus be

directly generated from the ground state. It should be stressed

that the mixing, in turn, influences donor states, which have

certain amount of space-separated character.

B. Impact of model parameters on ultrafast exciton dynamics

Our central conclusion was so far obtained using only one

set of model parameters and it is therefore important to check

its sensitivity on system parameters. To this end, we vary one

model parameter at a time, while all the other parameters retain

the values listed in Table I.

We start by investigating the effect of the transfer integral

between the donor and acceptor J
c/v

DA . Higher values of J
c/v

DA

favor charge separation, since the relative numbers of CT and

CS excitons, together with the probability that an electron is in

the acceptor, increase, whereas the relative number of donor

excitons decreases with increasing J
c/v

DA , see Figs. 4(a)–4(c).

In light of the proposed mechanism of ultrafast direct optical

generation of space-separated charges, the observed trends can

be easily rationalized. Stronger electronic coupling between

materials leads to stronger mixing between donor and space-

separated states, i.e., a more pronounced donor character of
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FIG. 4. Time dependence of the relative number of (a) donor and

CT, (b) CS excitons, and (c) the probability P e
A that an electron is

in the acceptor, for different values of the transfer integrals |J c
DA| =

|J v
DA| = JDA between the donor and the acceptor. Dotted vertical

lines indicate the end of the excitation.

CT and CS states and consequently a larger dipole moment for

direct creation of CT and CS states from the ground state.

The results concerning the effects of the energy offset

�Ec
DA between LUMO levels in the donor and acceptor

are summarized in Figs. 5(a)–5(c). The parameter �Ec
DA

determines the energy width of the overlap region between

single-electron states in the donor and acceptor, see Fig. 2(b).

The smaller is �Ec
DA, the greater is the number of virtually

resonant single-electron states in the donor and in the acceptor

and therefore the greater is the number of (higher-lying) CT

and CS states that inherit nonzero dipole moments from donor

states and may thus be directly excited from the ground state.
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FIG. 5. Time dependence of the relative number of (a) donor and

CT, (b) CS excitons, and (c) the probability P e
A that an electron is in

the acceptor, for different values of the LUMO-LUMO energy offset

�Ec
DA. Dotted vertical lines indicate the end of the excitation.
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FIG. 6. Time dependence of the relative number of (a) donor and

CT and (b) CS excitons, for different values of electronic coupling

in the acceptor J c
A. (c) Squared moduli of dipole matrix elements (in

arbitrary units) for direct generation of CS excitons from the ground

state for different values of electronic coupling in the acceptor J c
A.

Dotted vertical lines indicate the end of the excitation. Note that,

globally, squared moduli of dipole matrix elements are largest for

|J c
A| = 200 meV (completely filled bars).

This manifests as a larger number of CT and CS excitons, as

well as a larger probability that an electron is in the acceptor,

with decreasing �Ec
DA.

Figures 6(a)–6(c) show the effects of electron delocalization

in the acceptor on the ultrafast dynamics at the model hetero-

junction. Delocalization effects are mimicked by varying the

electronic coupling in the acceptor. While increasing |J c
A| has

virtually no effect on the relative number of donor excitons,

it leads to an increased participation of CS and a decreased

participation of CT excitons in the total exciton population.

CT states, in which the electron-hole interaction is rather

strong, are mainly formed from lower-energy single-electron

states in the acceptor and higher-energy single-hole states

in the donor. These single-particle states are not subject to

strong resonant mixing with single-particle states of the other

material. However, CS states are predominantly composed

of lower-energy single-hole donor states and higher-energy

single-electron acceptor states; the mixing of the latter group

of states with single-electron donor states is stronger for larger

|J c
A|, just as in case of smaller �Ec

DA, see Fig. 2(b). Therefore

the dipole moments for direct generation of CS excitons

generally increase when increasing |J c
A|, see Fig. 6(c), whereas

the dipole moments for direct generation of CT excitons at the

same time change only slightly, which can account for the

trends of the participation of CS and CT excitons in Figs. 6(a)

and 6(b).

We now turn our attention to the effects that the strength

of the carrier-phonon interaction has on the ultrafast exciton

dynamics at heterointerfaces. In Figs. 7(a)–7(d), we present

the results with the fixed ratio g2/g1 = 2.0 and the polaron

binding energies defined in Eq. (17) assuming the values of

approximately 20, 40, 60, and 140 meV, in ascending order

of g1. We note that it is not straightforward to predict the
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FIG. 7. Time dependence of the relative number of (a) donor, (b)

CT, (c) CS excitons, and (d) the probability P e
A that an electron is in

the acceptor, for different strengths of the carrier-phonon interaction.

Dotted vertical lines indicate the end of the excitation.

effect of the variations of carrier-phonon interaction strength

on the population of space-separated states. Single-phonon-

assisted processes preferentially couple exciton states of the

same character, i.e., a donor exciton state is more strongly

coupled to another donor state, than to a space-separated

state. On the one hand, stronger carrier-phonon interaction

implies more pronounced exciton dissociation and charge

separation because of stronger coupling between donor and

space-separated states. On the other hand, stronger carrier-

phonon interaction leads to faster relaxation of initially

generated donor excitons within the donor exciton manifold to

low-lying donor states. Low-lying donor states are essentially

uncoupled from space-separated states, i.e., they exhibit low

probabilities of exciton dissociation and charge separation.

Our results, shown in Figs. 7(a)–7(d), indicate that stronger

carrier-phonon interaction leads to smaller number of CT and

CS excitons, as well as the probability that an electron is in

the acceptor, and to greater number of donor excitons. We

also note that stronger carrier-phonon interaction changes the

trend displayed by the population of CS states. While for

the weakest interaction studied CS population grows after the

excitation, for the strongest interaction studied CS population

decays after the excitation. This is a consequence of more

pronounced phonon-assisted processes leading to population

of low-energy CT states once a donor exciton performs a

transition to a space-separated state. This discussion can

rationalize the changes in relevant quantities summarized in

Figs. 7(a)–7(d); the magnitudes of the changes observed are,

however, rather small. In previous studies [38,45], which did

not deal with the initial exciton generation step, stronger

carrier-phonon interaction is found to suppress quite strongly

the charge separation process. The weak influence of the

carrier-phonon interaction strength on ultrafast heterojunction

dynamics that we observe supports the mechanism of ultrafast

direct optical generation of space-separated charges. If the

charge separation process at heterointerfaces were mainly
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driven by the free-system evolution, greater changes in the

quantities describing charge separation efficiency would be

expected with varying carrier-phonon interaction strength.

Additionally, we have performed computations for a fixed

value of ǫ
pol

b [Eq. (17)] and different values of the ratio

g2/g1 among coupling constants of high- and low-frequency

phonon modes. The result, which is presented in Ref. [31] (see

Fig. 4), shows that the increase of the ratio g2/g1 increases

the number of CT excitons and decreases the number of donor

excitons, while the population of CS states exhibits only a weak

increase. Stronger coupling to the high-frequency phonon

mode (with respect to the low-frequency one) enhances charge

separation by decreasing the number of donor excitons, but at

the same time promotes phonon-assisted processes towards

more strongly bound CT states, so that the population of CS

states remains nearly constant.

Our formalism takes into account the influence of phonons

on excitons. However, if this influence were too strong, the

hierarchy of equations would have to be truncated at a higher

level, which would make it computationally intractable. When

the effects of lattice motion on excitons are strong, one has,

in turn, to consider the feedback of excitons on phonons,

which is not captured by the current approach. The feedback

of excitons on the lattice motion can be easily included

in a mixed quantum/classical approach, where excitons are

treated quantum mechanically, while the lattice motion is

treated classically. To estimate the importance of the feedback

of excitons on the lattice motion, we have performed the

computation using the surface hopping approach [46,47] (see

Ref. [31] for more details). In Fig. 3 of Ref. [31], we show

the time dependence of the probability that an electron is

in the acceptor obtained from simulations with and without

feedback effects. The result is nearly the same in both cases,

suggesting that feedback effects are small. As a consequence,

our approach is sufficient for properly taking into account the

influence of phonons on excitons.

We have also studied the influence of the temperature on

the ultrafast exciton dynamics at a heterojunction. It exhibits a

weak temperature dependence, see Fig. 5 of Ref. [31], which

is consistent with existing theoretical [48] and experimental

[49] insights, and also with the mechanism of direct optical

generation of space-separated carriers.

Finally, the consequences of introducing diagonal static

disorder in our model will be studied. It is done by drawing

the (uncorrelated) on-site energies of electrons and holes in the

donor and the acceptor from Gaussian distributions centered

at the values that can be obtained from Table I. We have

for simplicity assumed that the standard deviations of all the

Gaussian distributions are equal to σ . As we do not intend to

obtain any of the system properties by a statistical analysis of

various realizations of disorder, but merely to check whether or

not the presence of disorder may significantly alter qualitative

features of the proposed picture of ultrafast exciton dynamics

at heterointerfaces, we present our results only for a couple

of different disorder realizations and compare them to the

results for ordered system. In Figs. 8(a)–8(d), we show the

time dependence of the relative number of space-separated

(CS and CT) excitons and of the probability P e
A for three

different realizations of disorder with standard deviations σ =

50 and 100 meV. For these disorder realizations, the quantities
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FIG. 8. (a) and (b) Time dependence of the relative number of

space-separated (CT and CS) excitons for three different disorder

realizations (r1, r2, and r3). (c) and (d) Time dependence of the

probability that an electron is in the acceptor for three different

disorder realizations. Time evolution of the respective quantities in

ordered system is shown on each graph for comparison. Disorder is

diagonal (affects only on-site energies), static, and Gaussian, standard

deviations being σ = 50 [(a) and (c)] and 100 meV [(b) and (d)].

we use to describe ultrafast heterojunction dynamics show

qualitatively similar behavior to the case of the ordered system.

Namely, changes in the relative number of space-separated

excitons and the probability of an electron being in the acceptor

are more pronounced during the action of the pulse than after

its end. The characteristic time scales of these changes (for

the disorder realizations studied) are not drastically different

from the corresponding time scale in the ordered system. The

presence of disorder in our model does not necessarily lead

to less efficient charge separation as monitored by the two

aforementioned quantities. Our results based on the considered

disorder realizations are in agreement with the more detailed

study of the effects of disorder on charge separation at model

D/A interfaces [16], from which emerged that regardless of

the degree of disorder, the essential physics of free hole and

electron generation remains the same.

In summary, we find that regardless of the particular

values of varied model parameters (J
c/v

DA,�Ec
DA,J c

A, carrier-

phonon coupling constants), the majority of CT and CS states

that are present at ∼100 fs after photoexcitation have been

directly generated during the excitation. Trends in quantities

describing ultrafast heterojunction dynamics that we observe

varying model parameters can be explained by taking into

consideration the proposed mechanism of ultrafast direct

optical generation of space-separated charges.

IV. ULTRAFAST SPECTROSCOPY SIGNATURES

Exciton dynamics on ultrafast time scales is typically

probed experimentally using the ultrafast pump-probe spec-

troscopy, see, e.g., Refs. [7,8]. In such experiments, the

presence of space-separated charges on ultrafast time scales

after photoexcitation has been established and the energy
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resonance between donor exciton and space-separated states

was identified as responsible for efficient charge generation

[7], in agreement with our numerical results. However, while

our results indicate that the majority of space-separated

charges that are present at ∼100 fs after photoexcitation have

been directly optically generated, interpretation of experiments

[7] suggests that these states become populated by the

transition from donor exciton states. To understand the origin

of this apparent difference, we numerically compute ultrafast

pump-probe signals in the framework of our heterojunction

model. In Sec. IV A, we present the theoretical treatment of

ultrafast pump-probe experiments adapted for the system at

hand. Assuming that the probe pulse is deltalike, we obtain an

analytic expression relating the differential transmission �T

to the nonequilibrium state of the system “seen” by the probe

pulse. The expression provides a very clear and direct interpre-

tation of the results of ultrafast pump-probe experiments and

allows to distinguish between contributions stemming from

exciton populations and coherences, challenging the existing

interpretations. It is used in Sec. IV B to numerically compute

differential transmission signals.

A. Theoretical treatment of the ultrafast pump-probe

spectroscopy

In a pump-probe experiment, the sample is firstly irradiated

by an energetic pump pulse and the resulting excited (nonequi-

librium) state of the sample is consequently examined using a

second, weaker, probe pulse, whose time delay with respect to

the pump pulse can be tuned [50–52]. Our theoretical approach

to a pump-probe experiment considers the interaction with the

pump pulse as desribed in Sec. II B and Ref. [30], i.e., within

the density matrix formalism employing the DCT scheme

up to the second order in the pump field. The interaction

with the probe pulse is assumed not to change significantly

the nonequilibrium state created by the pump pulse and is

treated in the linear response regime. The corresponding

nonequilibrium dipole-dipole retarded correlation function is

then used to calculate pump-probe signals [52,53].

To study pump-probe experiments, we extended our two-

band lattice semiconductor model including more single-

electron (single-hole) energy levels per site. Multiple

single-electron (single-hole) levels on each site should be

dipole-coupled among themselves in order to enable probe-

induced dipole transitions between various exciton states.

We denote by c
†
iβi

(ciβi
) creation (annihilation) operators for

electrons on site i in conduction-band orbital βi ; similarly, d
†
iαi

(diαi
) create (annihilate) a hole on site i in valence-band orbital

αi . The dipole-moment operator in terms of electron and hole

operators assumes the form

P =
∑

i

βi αi

(

dcv
i c

†
iβi

d
†
iαi

+ H.c.
)

+
∑

i

βi �=β′
i

dcc
i c

†
iβi

ciβ ′
i
−

∑

i

αi �=α′
i

dvv
i d

†

iα′
i
diαi

. (20)

Intraband dipole matrix elements dcc
i (dvv

i ) describe electron

(hole) transitions between different single-electron (single-

hole) states on site i, as opposed to the interband matrix

elements dcv
i , which are responsible for the exciton generation.

Performing transition to the exciton basis, which is defined

analogously to Eq. (6), dipole matrix elements for transitions

from the ground state to exciton state x are

Mx =
∑

i

βi αi

dcv
i ψx∗

(iαi )(iβi )
, (21)

while those for transitions from exciton state x to exciton state

x̄ are

Mx
x̄ =

∑

i

αi �=α′
i

∑

j

βj

ψ x̄∗
(iαi )(jβj )d

vv
i ψx

(iα′
i )(jβj )

−
∑

i

βi �=β′
i

∑

j

αj

ψ x̄∗
(jαj )(iβ ′

i )
dcc

i ψx
(jαj )(iβi )

. (22)

Operator P [Eq. (20)] expressed in terms of operators

Xx,X
†
x assumes the form (keeping only contributions whose

expectation values are at most of the second order in the pump

field)

P =
∑

x

(MxX
†
x + M∗

x Xx) −
∑

x̄x

Mx
x̄ X

†
x̄Xx . (23)

We concentrate on the so-called nonoverlapping regime

[52], in which the probe pulse, described by its electric field

e(t), acts after the pump pulse. We take that our system meets

the condition of optical thinness, i.e., the electromagnetic

field originating from probe-induced dipole moment can be

neglected compared to the electromagnetic field of the probe.

In the following considerations, the origin of time axis t = 0 is

taken to be the instant at which the probe pulse starts. The pump

pulse finishes at t = −τ , where τ is the time delay between (the

end of) the pump and (the start of) the probe. The pump creates

a nonequilibrium state of the system which is, at the moment

when the probe pulse starts, given by the density matrix ρ(0),

which implicitly depends on the pump-probe delay τ .

In the linear-response regime, the probe-induced dipole

moment dp(t) for t > 0 is expressed as [52]

dp(t) =

∫

dt ′ χ (t,t ′) e(t ′), (24)

where χ (t,t ′) is the nonequilibrium retarded dipole-dipole

correlation function

χ (t,t ′) = −
i

h̄
θ (t − t ′) Tr(ρ(0)[P (t),P (t ′)]). (25)

Time dependence in Eq. (25) is governed by the Hamiltonian

of the system in the absence of external fields [Eq. (8)]:

HE(t)=0 = H0 + He-ph, (26)

where H0 is the noninteracting Hamiltonian of excitons in

the phonon field [the first two terms in Eq. (8)], while He-ph

accounts for exciton-phonon interaction [the third term in

Eq. (8)]. For an ultrashort probe pulse, e(t) = e0δ(t), the

probe-induced dipole moment assumes the form

dp(t) = e0χ (t,0) = e0

(

−
i

h̄

)

Tr(ρ(0)[P (t),P (0)]). (27)

Probe pulse tests the possibility of transitions between various

exciton states, i.e., it primarily affects carriers. Therefore,
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as a reasonable approximation to the full time dependent

operator P (t) appearing in Eq. (27), operator P (0)(t), evolving

according to the noninteracting Hamiltonian H0 in Eq. (26),

may be used. This leads us to the central result for the

probe-induced dipole moment:

dp(t) = e0

(

−
i

h̄

)

Tr(ρ(0)[P (0)(t),P (0)]). (28)

Deriving the commutator in Eq. (28), in the expression for

dp(t) we obtain two types of contributions, see Eq. (A3) in

Appendix. Contributions of the first type oscillate at frequen-

cies ωx corresponding to probe-induced transitions between

the ground state and exciton state x, while those of the second

type oscillate at frequencies ωx̄ − ωx corresponding to probe-

induced transitions between exciton states x̄ and x. Here, we

focus our attention to the process of photoinduced absorption

(PIA), in which an exciton in state x performs a transition

to another state x̄ under the influence of the probe field.

Therefore we will further consider only the second type of

contributions.

The frequency-dependent transmission coefficient T (ω) is

defined as (we use SI units)

T (ω) = 1 +
cμ0

Sh̄
Im

[

h̄ω
dp(ω)

e(ω)

]

, (29)

where dp(ω) and e(ω) are Fourier transformations of dp(t) and

e(t), respectively, while S is the irradiated area of the sample.

The differential transmission is given as

�T (τ ; ω) = T neq(τ ; ω) − T eq(ω). (30)

The transmission of a system, which is initially (before the

action of the probe) unexcited, is denoted by T eq(ω). The

transmission of a pump-driven system T neq(τ ; ω) depends on

the time delay τ between the pump and the probe through the

nonequilibrium density matrix ρ(0). Since our aim is to study

the process of PIA and since T eq(ω) is expected to reflect

only transitions involving the ground state, we will not further

consider this term. After a derivation, the details of which are

given in Appendix, we obtain the expression for the part of the

differential transmission signal �TPIA(τ ; ω) accounting for the

PIA:

�TPIA(τ ; ω) ∝ Im

[

∑

xx ′

(

(

MxM
x
x ′

)∗ h̄ω

h̄ω − (h̄ωx ′ − h̄ωx) + iη
yx ′ (0) − MxM

x
x ′

h̄ω

h̄ω + (h̄ωx ′ − h̄ωx) + iη
y∗

x ′ (0)

)

+
∑

x̄xx ′

(

Mx
x ′M

x̄
x

h̄ω

h̄ω + (h̄ωx ′ − h̄ωx) + iη
y∗

x ′ (0)yx̄(0) − Mx ′

x Mx
x̄

h̄ω

h̄ω − (h̄ωx ′ − h̄ωx) + iη
y∗

x̄ (0)yx ′ (0)

)

+
∑

x̄xx ′

(

Mx
x ′M

x̄
x

h̄ω

h̄ω + (h̄ωx ′ − h̄ωx) + iη
n̄x ′x̄(0) − Mx ′

x Mx
x̄

h̄ω

h̄ω − (h̄ωx ′ − h̄ωx) + iη
n̄x̄x ′ (0)

)

]

. (31)

In the last equation, we have explicitly separated the coherent contributions by introducing the correlated parts of exciton

populations and exciton-exciton coherences n̄x̄x = nx̄x − y∗
x̄yx [see also Eq. (11) defining incoherent exciton populations], while

η is a positive parameter effectively accounting for the spectral line broadening [53]. yx(0) denotes the value of the electronic

density matrix yx at the moment when the probe pulse starts, and similarly for n̄x̄x(0). The coherences between exciton states

and the ground state yx(0), as well as correlated parts of exciton-exciton coherences n̄x̄x(0) (x̄ �= x), are expected to approach

zero for sufficiently long time delays between the pump and the probe [54]. In this limit, Eq. (31) contains only the incoherent

exciton populations n̄xx :

�TPIA(τ ; ω) ∝
∑

xx ′

∣

∣Mx
x ′

∣

∣

2

[

−
η · h̄ω

(h̄ω + (h̄ωx ′ − h̄ωx))2 + η2
+

η · h̄ω

(h̄ω − (h̄ωx ′ − h̄ωx))2 + η2

]

n̄x ′x ′ (0). (32)

This expression is manifestly negative when it describes probe-

induced transitions from exciton state x ′ to some higher-energy

exciton state x. The last conclusion is in agreement with

the usual experimental interpretation of pump-probe spectra,

where a negative differential transmission signal corresponds

either to PIA or to stimulated emission [51]. Our expression

[Eq. (31)] demonstrates, however, that this correspondence

can not be uniquely established in the ultrafast regime, where

it is expected that both coherences between exciton states and

the ground state yx(0) and exciton-exciton coherences n̄x̄x(0)

(x̄ �= x), along with incoherent exciton populations n̄xx(0),

play significant role. This is indeed the case in our numerical

computations of pump-probe spectra, which are presented in

the following subsection. For each studied case, we separately

show the total signal [full Eq. (31)], the y-part of the signal

[the first two terms in Eq. (31)], and the n̄-part of the signal

[the third term in Eq. (31)]. We note that it would be possible

to further separate the n̄-part of the signal into the contribution

stemming from incoherent exciton populations n̄xx [Eq. (32)]

and exciton-exciton coherences n̄x̄x (x̄ �= x). As shown in more

detail in Ref. [31] (see Fig. 7), the overall n̄-part of the signal

is qualitatively very similar to its contribution stemming from

incoherent exciton populations. Therefore, for the simplicity of

further discussion, we may consider the n̄-part of the signal as

completely originating from incoherent exciton populations.

B. Numerical results: ultrafast pump-probe signals

In order to compute pump-probe signals and at the same

time keep the numerics manageable, we extended our model
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by introducing only one additional single-electron level both

in the donor and in the acceptor and one additional single-hole

level in the donor. Additional energy levels in the donor and the

corresponding bandwidths are extracted from the aforemen-

tioned electronic structure calculation on the infinitely long

PCPDTBT polymer. The additional single-electron level is

located at 1160 meV above the single-electron level used in all

the calculations and the bandwidth of the corresponding zone

is estimated to be 480 meV. The additional single-hole level

is located at 1130 meV below the single-hole level used in all

the calculations and the bandwidth of the corresponding zone

is estimated to be 570 meV. The additional single-electron

level in the acceptor is extracted from an electronic structure

calculation on the C60 molecule. The calculation is based

on DFT using either LDA or B3LYP exchange-correlation

functional (both choices give similar results) and 6-31G basis

set and was performed using the NWCHEM package [55]. We

found that the additional single-electron level lies around 1000

meV above the single-electron level used in all the calculations.

The bandwidth of the corresponding zone is set to 600 meV,

see Table I.

In this section, we assume that the waveform of the pump

pulse is

E(t) = E0 cos(ωct) exp

(

−
t2

τ 2
G

)

θ (t + t0)θ (t0 − t), (33)

where we take τG = 20 fs and t0 = 50 fs, while the probe is

e(t) = e0δ(t − (t0 + τ )), (34)

with variable pump-probe delay τ . The intraband dipole matrix

elements dcc
i ,dvv

i in Eq. (20) are assumed to be equal in the

whole system:

dcc
i = dvv

i = d intra = 1
2
dcv. (35)

The positive parameter η, which effectively accounts for the

line broadening, is set to η = 50 meV. We have checked

that variations in η do not change the qualitative features

of the presented PIA spectra, see Fig. 6 in Ref. [31]. In

actual computations of the signal given in Eq. (31), we

should remember that the pump pulse finishes at instant t0,

while in Eq. (31), all the quantities are taken at the moment

when the probe starts, which is now t0 + τ ; in other words,

yx(0) → yx(t0 + τ ), n̄x̄x(0) → n̄x̄x(t0 + τ ) when we compute

pump-probe signals using Eq. (31) and the pump and probe

are given by Eqs. (33) and (34), respectively.

In Figs. 9(a) and 9(b), we show the PIA signal from space-

separated states after the excitation by the pump at 1500 meV.

The frequency ω in Eq. (31) is set to 1000 meV, which is (for the

adopted values of model parameters) appropriate for observing

PIA from space-separated states. At small pump-probe delays

(τ � 300 fs), we see that the oscillatory features stemming

from coherences between exciton states and the ground state

(y-part of the signal) dominate the dynamics. At larger delays,

the part originating from established (incoherent) exciton

populations (n̄-part of the signal) prevails, see Fig. 9(b), and

the shape of the signal resembles the shapes of signals from

space-separated states in Fig. 4(c) of Ref. [7]. The signal

decreases at larger delays, which correlates very well with

the fact that the numbers of CT and CS excitons increase,

(a) (b)

(c) (d)
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FIG. 9. Differential transmission signal �TPIA [Eq. (31)] as a

function of the pump-probe delay for (a) pump at 1500 meV (826 nm)

and probe at 1000 meV (1240 nm) testing PIA dynamics from space-

separated states, and (c) pump resonant with the lowest donor exciton

(1210 meV, 1025 nm) and probe at 1130 meV (1096 nm) testing

PIA dynamics from donor states. The inset of (c) shows the coherent

exciton population |yXD0
|2 of the lowest donor state XD0. (b) The

same signal as in (a) at longer pump-probe delays (>300 fs). (d)

n̄ part of the signal shown in (c); the inset displays the incoherent

exciton population n̄XD0
of the lowest donor state.

see Fig. 3(a). In other words, at larger pump-probe delays, at

which the influence of coherences between exciton states and

the ground state is small, the signal can be unambiguously

interpreted in terms of charge transfer from the donor to the

acceptor.

Figures 9(c) and 9(d) display PIA signal from donor

excitons following the pump excitation at the lowest donor

exciton (1210 meV). The frequency ω in Eq. (31) is set to

1130 meV. The overall signal shape is qualitatively similar to

the shape of donor exciton PIA signal in Fig. 4(a) of Ref. [7],

but its interpretation is rather different. While the authors of

Ref. [7] suggest that the monotonically increasing PIA signal

from donor excitons reflects their transfer to space-separated

states, our signal predominantly originates from coherences

between donor states and the ground state [y-part of the

signal in Fig. 9(c)]. Furthermore, the shape of the total signal

matches very well the decay of the coherent population

of the lowest donor exciton, see the inset of Fig. 9(c),

while the shape of the n̄-part of the signal corresponds well to

the changes in the incoherent population of the lowest donor

state, see the inset of Fig. 9(d). This incoherent population

does not decay during our computation: immediately after the

pump pulse, it rises and at longer times it reaches a plateau,

which signals that the donor exciton population is “blocked”

in the lowest donor state. The lowest donor exciton is very

strongly dipole-coupled to the ground state, its population

comprising around 75% of the total generated population.

Therefore, according to our numerical results, the observed

PIA signal from donor excitons in this case mimics the

conversion from coherent to incoherent exciton population
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of the lowest donor state. This, however, does not necessarily

mean that the concomitant charge transfer is completely absent

in this case. Instead, the presence of coherences between

exciton states and the ground state, which dominate the

signal for all pump-probe delays we studied, prevents us

from attributing the signal to the population transfer from

donor excitons to space-separated states. The aforementioned

conversion from coherent to incoherent exciton population of

the lowest donor state is rather slow because of the relatively

weak coupling between low-lying donor excitons on the one

hand and space-separated states on the other hand (this weak

coupling was also appreciated in Ref. [7]). On the other hand,

pumping well above the lowest donor and space-separated

states, the couplings between these species are stronger and

more diverse than for the pump resonant with the lowest donor

exciton; this situation resembles the one encountered for the

excitation condition in Fig. 4(c) of Ref. [7].

In conclusion, our computations yield spectra which overall

agree with experimental spectra [7], and we find that the shape

of the spectrum in Figs. 9(c) and 9(d) originates from the decay

of coherences between donor excitons and the ground state,

rather than from transitions from donor excitons to space-

separated states.

V. DISCUSSION AND CONCLUSION

We studied ultrafast exciton dynamics in a one-dimensional

model of a heterointerface. Even though similar theoretical

models have been lately proposed [38,56], we believe that our

theoretical treatment goes beyond the existing approaches,

since it treats both the exciton generation and their further

separation on equal footing and it deals with all the relevant

interactions on a fully quantum level. Namely, the vast majority

of the existing theoretical studies on charge separation at

heterointerfaces does not treat explicitly the interaction with

the electric field which creates excitons from an initially

unexcited system [17,19,38,45,56], but rather assumes that

the exciton has already been generated and then follows

its evolution at the interface between two materials. If we

are to explore the possibility of direct optical generation

of space-separated charges, we should certainly monitor the

initial process of exciton generation, which we are able to

achieve with the present formalism. We find that the resonant

electronic coupling between donor and space-separated states

not only enhances transfer from the former to the latter

group of states [7,15], but also opens up a new pathway to

obtain space-separated charges: their direct optical generation

[25,26]. While this mechanism has been proposed on the basis

of electronic structure and model Hamiltonian calculations

(which did not include any dynamics), our study is, to the

best of our knowledge, the first to investigate the possibility

of direct optical generation of separated charges studying the

ultrafast exciton dynamics at a heterointerface. We conclude

that the largest part of space-separated charges which are

present ∼100 fs after the initial photoexcitation are directly

optically generated, contrary to the general belief that they

originate from ultrafast transitions from donor excitons.

Although the D/A coupling in our model is restricted to

only two nearest sites (labeled by N − 1 and N ) in the

donor and acceptor, there are space-separated states which

acquire nonzero dipole moment from donor excitons. The

last point was previously highlighted in studies conducted on

two- [25] and three-dimensional [26] heterojunction models,

in which the dominant part of the D/A coupling involves more

than a single pair of sites. We thus speculate that the main

conclusions of our study would remain valid in a more realistic

higher-dimensional model of a heterointerface. While there is

absorption intensity transfer from donor to space-separated

states brought about by their resonant mixing, the absorption

still primarily occurs in the donor part of a heterojunction.

Our results show that on ultrafast time scales the direct

optical generation as a source of space-separated carriers is

more important than transitions from donor to space-separated

states. This, however, does not mean that initially generated

donor excitons do not transform into space-separated states.

They indeed do, see Figs. 3(a) and 3(b), but the characteristic

time scale on which populations of space-separated states

change due to the free-system evolution is longer than 100 fs.

The ultrafast generation of separated charges at heteroin-

terfaces is more pronounced when the electronic coupling

between materials is larger or when the energy overlap region

between single-electron states in the donor and acceptor is

wider, either by increasing the electronic coupling in the

acceptor or decreasing the LUMO-LUMO offset between

the two materials, see Fig. 2(b). Our results are therefore

in agreement with studies emphasizing the beneficial effects

of larger electronic couplings among materials [56], charge

delocalization, [17,21,38,56], and smaller LUMO-LUMO

offset [57] on charge separation. We find that strong carrier-

phonon interaction suppresses charge separation, in agreement

with previous theoretical studies [38,45] in which the effects

of variations of carrier-phonon coupling constants have been

systematically investigated. However, changes in the quantities

we use to monitor charge separation with variations of carrier-

phonon coupling strength are rather small, which we interpret

to be consistent with the ultrafast direct optical generation of

space-separated charges. Our theoretical treatment of ultrafast

exciton dynamics is fully quantum, but it is expected to be valid

for not too strong coupling of excitons to lattice vibrations,

since the phonon branch of the hierarchy is truncated at a

finite order, see Sec. I in Ref. [31]. Results of our mixed

quantum/classical approach to exciton dynamics show that

the feedback effect of excitons on the lattice motion, which

is expected to be important for stronger exciton-phonon

interaction, is rather small. We therefore expect that more

accurate treatment of exciton-phonon interaction is not crucial

to describe heterojunction dynamics on ultrafast time scales.

If one wants to treat more accurately strong exciton-phonon

interaction and yet remain in the quantum framework, other

theoretical approaches, such as the one adopted in Ref. [45],

have to be employed.

Despite a simplified model of organic semiconductors, our

theoretical treatment takes into account all relevant effects.

Consequently, our approach to ultrafast pump-probe experi-

ments produces results that are in qualitative agreement with

experiments and confirms the previously observed dependence

of the exciton dynamics on the excess photon energy [7]. Our

results indicate that the interpretation of ultrafast pump-probe

signals is involved, as it is hindered by coherences (dominantly

by those between exciton states and the ground state) which
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cannot be neglected on the time scales studied. Time scales on

which coherent features are prominent depend on the excess

photon energy. We find that higher values of the excess photon

energy enable faster disappearance of the coherent part of

the signal since they offer diverse transitions between exciton

states which make conversion from coherent to incoherent

exciton populations faster. Pumping at the lowest donor

exciton, our signal is (at subpicosecond pump-probe delays)

dominated by its coherent part, conversion from coherent to

incoherent exciton populations is slow, and therefore it cannot

be interpreted in terms of exciton population transfer between

various states.
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APPENDIX: DETAILS OF THE THEORETICAL

TREATMENT OF PUMP-PROBE EXPERIMENTS

The commutator in Eq. (28) is to be evaluated in the

nonequilibrium state ρ(0) at the moment when the probe pulse

starts. Therefore, deriving this commutator, only contributions

whose expectation values are at most of the second order in

the pump field should be retained. The commutation relations

of exciton operators, which are correct up to the second order

in the pump field, read as

[Xx,X
†
x̄] = δxx̄ −

∑

x̄ ′x ′

C x̄ ′x ′

x̄x X
†
x̄ ′Xx ′ , (A1)

where four-index coefficients C x̄ ′x ′

x̄x are given as

C x̄ ′x ′

x̄x =
∑

j̄ β̄j
jβj

⎛

⎝

∑

iαi

ψ x̄ ′∗
(iαi )(j̄ β̄j )

ψx ′

(iαi )(jβj )

⎞

⎠

⎛

⎝

∑

iαi

ψ x̄
(iαi )(j̄ β̄j )

ψx∗
(iαi )(jβj )

⎞

⎠ +
∑

īᾱi
iαi

⎛

⎝

∑

jβj

ψ x̄ ′∗
(īᾱi )(jβj )

ψx ′

(iαi )(jβj )

⎞

⎠

⎛

⎝

∑

jβj

ψ x̄
(īᾱi )(jβj )

ψx∗
(iαi )(jβj )

⎞

⎠.

(A2)

The final result for the commutator [P (0)(t),P (0)] is

[P (0)(t),P (0)] =
∑

x

|Mx |
2(e−iωx t − eiωx t ) −

∑

x̄1x1

∑

xx ′

(

M∗
x Mx ′C

x̄1x1

x ′x e−iωx t − MxM
∗
x ′C

x̄1x1

xx ′ eiωx t
)

X
†
x̄1

Xx1

−
∑

xx ′

(

MxM
x
x ′

)∗
e−iωx tXx ′ +

∑

xx ′

MxM
x
x ′e

iωx tX
†
x ′ +

∑

xx ′

(

MxM
x
x ′

)∗
e−i(ωx′ −ωx )tXx ′

−
∑

xx ′

MxM
x
x ′e

i(ωx′ −ωx )tX
†
x ′ +

∑

x̄xx ′

Mx
x ′M

x̄
x ei(ωx′ −ωx )tX

†
x ′Xx̄ −

∑

x̄xx ′

Mx ′

x Mx
x̄ e−i(ωx′ −ωx )tX

†
x̄Xx ′ . (A3)

The expectation values [with respect to ρ(0)] of the operators appearing in the last equation are simply the active purely electronic

density matrices of our formalism computed when the probe pulse starts, i.e., Tr(ρ(0)Xx) = yx(0) and Tr(ρ(0)X
†
x̄Xx) = nx̄x(0).

As already mentioned, in order to study the process of PIA, in Eq. (A3) only terms which oscillate at differences of two

exciton frequencies should be retained. Computing the Fourier transformation of dp(t) [Eq. (28)], we obtain integrals of the type
∫ +∞

0

dt ei(ω−�+iη)t =
i

ω − � + iη
, (A4)

where we have introduced a positive infinitesimal parameter η to ensure the integral convergence. Physically, introducing η

effectively accounts for the line broadening. For simplicity, we assume that only one value of η is used in all the integrals of the

type (A4). Using the computed Fourier transformation dp(ω) in Eqs. (29) and (30), we obtain the result for �TPIA(τ ; ω) given in

Eq. (31).
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Dynamics of exciton formation and relaxation in photoexcited semiconductors
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We investigate the dynamics of the exciton formation and relaxation on a picosecond time scale following a

pulsed photoexcitation of a semiconductor. The study is conducted in the framework of the density matrix theory

complemented with the dynamics controlled truncation scheme. We truncate the phonon branch of the resulting

hierarchy of equations and propose the form of coupling among single-phonon-assisted and higher-order phonon-

assisted density matrices so as to ensure the energy and particle-number conservation in a closed system. Time

scales relevant for the exciton formation and relaxation processes are determined from numerical investigations

performed on a one-dimensional model for the values of model parameters representative of a typical organic

and inorganic semiconductor. The exciton dynamics is examined for different values of central frequency of

the exciting field, temperature, and microscopic model parameters, such as the strengths of carrier-carrier and

carrier-phonon couplings. We find that for typical organic semiconductor parameters, formation of bound excitons

occurs on a several-hundred-femtosecond time scale, while their subsequent relaxation and equilibration take

at least several picoseconds. These time scales are consistent with recent experimental studies of the exciton

formation and relaxation in conjugated polymer-based materials.

DOI: 10.1103/PhysRevB.92.235208 PACS number(s): 71.35.−y, 71.10.−w

I. INTRODUCTION

The continual and ever-increasing demand for economic

and efficient ways of utilizing solar energy drives a huge

part of current research activities. In particular, organic

solar cells have developed rapidly in the past decade and

have become promising candidates for economically viable

large-scale power generation due to their flexibility, cost

effectiveness, relatively simple fabrication techniques, and

mass production [1,2]. Processes upon which the operation of

solar cells is based are the light absorption in a semiconducting

material and the subsequent conversion of photons into mobile

charge carriers that produce an electric current [3,4]. An

optical excitation of a semiconductor creates an exciton, i.e.,

an electron-hole pair in which Coulomb attraction between

oppositely charged electron and hole prevents their separa-

tion. In a conventional inorganic semiconductor, relatively

weak Coulomb interaction (primarily due to large dielectric

constant) results in the exciton binding energy of the order of

10 meV [5–7]. Thus, thermal excitations are likely to split the

exciton in an electron and a hole. On the other hand, in a typical

organic semiconductor, the attraction between an electron

and a hole is much stronger (mainly due to low dielectric

constant), the exciton binding energy being of the order of or

larger than 500 meV [3,8]. Therefore, while optical absorption

in an inorganic semiconductor results in almost immediate

generation of free charges, in an organic semiconductor it

leads to formation of tightly bound electron-hole pairs, which

should be separated in order to generate current [1,3,4]. This

last conclusion has an enormous impact on the design and

geometry of organic photovoltaic devices.

Photoexcitation of a semiconductor creates electron-hole

pairs in a highly nonequilibrium state. Apart from the Coulomb

interaction, which primarily induces correlations, the carrier-

phonon interaction is also vital for a thorough understanding

*veljko.jankovic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

of nonequilibrium processes taking place in photoexcited

semiconductors. Theoretical approaches for treating these pro-

cesses are most often based on the density matrix theory [9,10]

or the nonequilibrium Green’s functions formalism [11].

Density matrix theory has become the preferred technique

in the treatment of experiments with ultrashort pulses since it

deals with quantities that depend on one time argument and

are directly related to observables.

Previous theoretical studies of the exciton formation pro-

cess after an ultrafast optical excitation of a semiconductor

were typically focused on inorganic semiconductors. Early

studies were conducted in the framework of the semiclassical

Boltzmann approach [12,13]. The fully microscopic and

quantum theory for the interacting system of electrons, holes,

photons, and phonons, capable of treating a wide variety of

optical and excitonic effects after an ultrafast optical excitation

of a semiconductor, was elaborated in Refs. [14–18]. On the

other hand, the exciton formation from an initial state of

two opposite charges in organic semiconductors was typically

modeled by simulating the time evolution of empirical Hamil-

tonians applied to small systems, where the effects of the lattice

are not included or are treated classically [19,20].

The main aim of this work was to investigate the dynamics

of exciton formation on short (up to several ps) time scale. This

time scale is of particular relevance for the operation of organic

solar cells since it has been well established that the exciton

separation at the interface of donor and acceptor materials

occurs on a subpicosecond time scale [21,22]. However, the

details of the exciton formation and separation process and the

factors that determine its efficiency are still not well under-

stood. In recent years, significant insights have been obtained

from subpicosecond time-resolved experiments performed

both on neat materials [23,24] and blends [25–29]. The results

of all these experiments highlight the importance of nonequi-

librium nature of excitons formed after photoexcitation.

In our study, we employ the Hamiltonian which includes

all relevant physical effects in the system: electronic coupling

which leads to band formation, electron-hole interaction
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which causes exciton formation, electron-phonon interaction

that leads to relaxation, and the interaction with external

electromagnetic field. We do not, however, include the effects

of stimulated emission which lead to radiative recombination

of excitons since we are interested in the exciton dynamics

on a short time scale, where these effects are negligible. From

the time evolution of relevant quantities, we identify the time

scale of the processes of formation of free charges and bound

excitons and their subsequent relaxation. Rather than focusing

on the details of one particular material system, we have chosen

a Hamiltonian whose parameters can be easily varied so that

we can identify the influence of different physical effects on

relevant time scales. The study is conducted in the framework

of the density matrix formalism combined with the so-called

dynamics controlled truncation (DCT) scheme, first developed

in 1994 by Axt and Stahl [30,31]. This method is particularly

suited for a system described by a pair-conserving Hamiltonian

which is initially unexcited and was successfully applied to

study the dynamics of exciton formation for near-band-gap

excitations and low-excitation densities [32–34]. Here, we

truncate the phonon branch of the hierarchy so as to ensure

that the resulting equations are compatible with the energy and

particle-number conservation in a closed system. Furthermore,

we propose the form of coupling between single-phonon-

assisted and higher-order phonon-assisted electronic density

matrices which is compatible with the energy conservation in

a closed system.

The paper is organized as follows. In Sec. II, the general

form of the Hamiltonian, along with the equations which de-

scribe the exciton formation process, is presented. Section III

is devoted to the results of our numerical investigations of

the exciton formation process which are carried out on a

one-dimensional model system. The discussion of our results

in light of recent experimental investigations of ultrafast

exciton dynamics is presented in Sec. IV, whereas concluding

remarks are given in Sec. V.

II. THEORETICAL FRAMEWORK

We use the standard two-band semiconductor model which

takes into account the interaction of carriers with the external

electromagnetic field applied to the semiconductor, as well as

carrier-carrier and carrier-phonon interactions. We will work

in the electron-hole picture which is particularly suited for

describing the effects which arise after the optical excitation of

an initially unexcited semiconductor. Notation from Ref. [35]

will be used. The Hamiltonian has the form

H = Hc + Hph + Hc-ph + Hc-f, (1)

where Hc describes interacting carriers

Hc =
∑

q∈CB

ǫc
qc

†
qcq −

∑

q∈VB

ǫv
qd

†
qdq

+
1

2

∑

pqkl∈CB

V cccc
pqklc

†
pc

†
kclcq +

1

2

∑

pqkl∈VB

V vvvv
pqkl d

†
qd

†
l dkdp

+
∑

pq ∈ VB

kl ∈ CB

(

V vccv
plkq − V vvcc

pqkl

)

c
†
kd

†
qdpcl, (2)

Hph =
∑

μ

�ωμb†μbμ (3)

is the free-phonon Hamiltonian, Hc-ph describes the carrier-

phonon interaction

Hc-ph =
∑

pq ∈ CB

μ

(

γ μ
pqc

†
pcqb

†
μ + γ μ∗

pq c†qcpbμ

)

−
∑

pq ∈ VB

μ

(

γ μ
pqd

†
qdpb†μ + γ μ∗

pq d†
pdqbμ

)

, (4)

whereas the coupling to the optical field is given by

Hc-f = −E(t)

⎛

⎜

⎜

⎜

⎝

∑

p ∈ VB

q ∈ CB

Mvc
pqdpcq +

∑

p ∈ CB

q ∈ VB

Mcv
pqc

†
pd†

q

⎞

⎟

⎟

⎟

⎠

. (5)

Fermi operators c
†
q (cq) create (annihilate) an electron of

energy ǫc
q in the single-particle state q in the conduction band,

while Fermi operators d
†
q (dq) create (annihilate) a hole of

energy −ǫv
q in the single-particle state q in the valence band.

Matrix elements of the Coulomb interaction potential V (x − y)

are defined as

V
λpλqλkλl

pqkl =
∫

dx dy φ
λp∗
p (x)φ

λq

q (x)V (x − y)φ
λk∗
k (y)φ

λl

l (y),

(6)

where φ
λp

p (x) are single-particle eigenfunctions for an electron

in the state p and in the band λp. Bose operators b†μ (bμ) create

(annihilate) a phonon in mode μ, while γ
μ
pq are carrier-phonon

matrix elements. We neglect intraband contributions to the

carrier-field interaction and retain only interband dipole matrix

elements.

We note that the Hamiltonian of interacting carriers

[Eq. (2)] includes the limiting cases of Wannier and Frenkel

excitons. Namely, when single-particle eigenfunctions are of

the Bloch form labeled by a wave vector k, then under suitable

approximations, described, e.g., in Ref. [36], we obtain the

Hamiltonian describing the limiting case of Wannier excitons.

On the other hand, if single-particle eigenfunctions are taken

to be atomic states labeled by a position vector R, then using

approximations that exploit localization properties of this basis

set the Hamiltonian appropriate for the limiting case of Frenkel

excitons is obtained [37].

We study the dynamics of exciton formation in photoexcited

semiconductors in the framework of the density matrix theory.

Differential equations for dynamic variables are formed and,

due to the many-body nature of the problem, an infinite

hierarchy of differential equations is obtained. The main

approximation is then the truncation of the hierarchy, which

can be based upon different physical pictures. The Hamiltonian

defined by Eqs. (1)–(5) has the property that only the

interaction with the optical field can change the number of pair

excitations. The DCT scheme relies upon the aforementioned

property of the Hamiltonian and classifies higher-order density

matrices according to their leading order in the optical

field [30,35,38]. Namely, when the system is initially in the
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ground state represented by the vacuum of electron-hole pairs,

the expectation value of the normal-ordered product of ne

electron operators c† and c, nh hole operators d† and d and

an arbitrary number of phonon operators b† and b is at least

of the order m = max{ne,nh} in the applied field. Therefore,

higher-order density matrices are also of higher order in the

optical field and only a finite number of electronic density

matrices contributes to the optical response at any given

order in the optical field. The DCT scheme truncates only

the electronic branch of the hierarchy and can be used along

with any strategy to deal with the phonon-assisted branch

of the hierarchy [7]. We limit ourselves to the case of weak

optical field and low carrier densities, in which it is justified to

neglect biexcitonic effects and keep only contributions up to

the second order in the optical field. In Refs. [32,35] a reduced

treatment of the phonon branch of the hierarchy, which can be

combined with the DCT scheme for the electronic branch of the

hierarchy, was presented. This treatment includes correlation

expansion for phonon-assisted variables combined with the

Markov approximation. As a result, phonon-assisted variables

are eliminated from the formalism and only two types of

electronic density matrices remain. These are the interband

transition amplitude (excitonic amplitude)

Yab = 〈dacb〉 (7)

and the electron-hole pair density (excitonic population)

Nabcd = 〈c†ad
†
bdccd〉. (8)

In this study, we adopt a different strategy for dealing with

the phonon-assisted density matrices. In order to facilitate the

truncation of the phonon-assisted branch of the hierarchy,

the following generating functions for the phonon-assisted

electronic density matrices are defined [35]:

Y
αβ

ab = 〈dacbF̂
αβ〉, (9)

N
αβ

abcd = 〈c†ad
†
bdccd F̂

αβ〉, (10)

F αβ = 〈F̂ αβ〉 =

〈

exp

(

∑

ρ

αρb
†
ρ

)

exp

(

∑

ρ

βρbρ

)〉

, (11)

where {αρ} and {βρ} are arbitrary sets of real parameters.

As a consequence of the generating-function property, all

phonon-assisted electronic density matrices can be obtained

as derivatives of these functions taken at αμ = βμ = 0. The

electron and hole populations and correlations 〈c†acb〉 and

〈d†
adb〉, as well as their phonon-assisted counterparts, do

not have to be considered as independent variables in the

formalism since they can be eliminated in favor of N by

identities (contraction identities) that are exact within the

second-order treatment [35,38]. The differential equations for

variables Y
αβ

ab and N
αβ

abcd are given in Appendix A.

The most general form of an electron-hole pair state is [36]

|p〉 =
∑

a ∈ VB

b ∈ CB

ψabc
†
bd

†
a |0〉, (12)

where |0〉 represents the state in which the conduction band is

completely empty and the valence band is completely filled.

The excitonic basis is defined by the eigenvalue problem

Hc|p〉 = E|p〉 which can be transformed into equations for

amplitudes ψab:

(

ǫc
b − ǫv

a

)

ψx
ab +

∑

p ∈ VB

q ∈ CB

(

V vccv
pqba − V vvcc

pabq

)

ψx
pq = �ωxψ

x
ab. (13)

The excitonic basis is orthonormal
∑

a ∈ VB

b ∈ CB

ψ x̄∗
ab ψx

ab = δxx̄ . (14)

We perform all calculations in the excitonic basis and expand

all density matrices in the excitonic basis, for example,

Yab =
∑

x

ψx
ab yx, (15)

Nabcd =
∑

x̄x

ψ x̄∗
ba ψx

cd nx̄x, (16)

and similarly for the corresponding phonon-assisted electronic

density matrices; in the case of single-phonon assistance, the

explicit definitions are

Yabμ+ ≡ 〈dacbb
†
μ〉 =

∑

x

ψx
abyxμ+ , (17a)

Nabcdμ+ ≡ 〈c†ad
†
bdccdb

†
μ〉 =

∑

x̄x

ψ x̄∗
ba ψx

cdnx̄xμ+ . (17b)

The creation operator for the exciton in the state x can be

defined as

X†
x =

∑

a ∈ CB

b ∈ VB

ψx
bac

†
ad

†
b . (18)

The number of excitons in the state x, after performing the de-

coupling (which is exact up to the second order in the op-

tical field) 〈c†ad†
bdccd〉 = 〈c†ad†

b〉〈dccd〉 + δ〈c†ad†
bdccd〉, where

δ〈c†ad†
bdccd〉 stands for the correlated part of the electron-hole

pair density, can be expressed as the sum

〈X†
xXx〉 = |yx |2 + n̄xx, (19)

where n̄x̄x = nx̄x − y∗
x̄yx . The first term in Eq. (19) de-

scribes the so-called coherent excitons, whereas the second

term describes the incoherent excitons. Namely, an optical

excitation of a semiconductor first induces single-particle

excitations in form of optical polarizations and carrier den-

sities. Optical polarizations decay very fast due to various

scattering mechanisms present [15]. Therefore, their squared

moduli, which are usually referred to as coherent excitonic

populations [32], do not provide information about the true

excitonic populations, which are the consequence of Coulomb-

induced correlations between electrons and holes and which

typically exist in the system for a long time after the decay

of optical polarizations [7]. In order to describe true excitons,

which are atomlike complexes of electrons and holes bound

by the Coulomb attraction, we have to consider two-particle

correlations between them, and not single-particle quanti-

ties [15]. The last conclusion justifies identification of the term

δ〈c†ad†
bdccd〉 with the incoherent excitonic populations.
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The dynamic equations for the relevant variables should be

compatible with the energy conservation in a system without

external fields. Our system, however, interacts with external

optical field, but, since we consider a pulsed excitation, the

energy of the system should be conserved after the field has

vanished. The total energy of the system, i.e., the expectation

value of the Hamiltonian 〈H 〉 defined in Eqs. (1)–(5), is

expressed as

E = Ec + Eph + Ec-ph + Ec-f, (20)

where the carrier energy is

Ec =
∑

x

�ωx nxx, (21)

the phonon energy is

Eph =
∑

μ

�ωμ 〈b†μbμ〉, (22)

the carrier-phonon interaction energy is

Ec-ph = 2
∑

x̄xμ

Re
{

Ŵ
μ
x̄xnx̄xμ+

}

, (23)

and the carrier-field interaction energy is

Ec-f = −E(t)
∑

x

(

M∗
xyx + y∗

x Mx

)

. (24)

In Eqs. (20)–(24) we have kept only contributions up to

the second order in the external field and transferred to the

excitonic basis. We also introduce excitonic dipole matrix

elements

Mx =
∑

a ∈ VB

b ∈ CB

ψx∗
ab Mcv

ba, (25)

as well as matrix elements of the carrier-phonon interaction in

the excitonic basis which describe the coupling to the phonon

mode μ:

Ŵ
μ

xx ′ =
∑

a ∈ VB

b ∈ CB

ψx∗
ab

(

∑

k∈CB

γ
μ

bkψ
x ′

ak −
∑

k∈VB

γ
μ

kaψ
x ′

kb

)

. (26)

Within previous approaches to solving the hierarchy of

equations obtained after performing the DCT scheme, single-

phonon-assisted density matrices nx̄xμ+ , which appear in

Eq. (23), were not explicitly taken into account, but the

respective differential equations were solved in the Markov

and adiabatic approximations. However, it can be shown that

the total energy under these approximations is not exactly

conserved after the external field has vanished. In order to

satisfy the energy conservation, we retain density matrices

nx̄xμ+ as independent dynamic variables in the formalism.

The dynamics should also conserve the particle number

after the external field has vanished since all the other terms

in the Hamiltonian given by Eqs. (1)–(5) commute with the

total particle-number operator. The number of electrons (and

also the number of holes, since carriers are generated in pairs

in this model), with accuracy up to the second order in the

external field, is given as

Ntot = Ne = Nh =
∑

x

nxx . (27)

The equations for the purely electronic relevant variables

and phonon distribution function are

∂tyx = −iωxyx −
1

i�
E(t)Mx

+
1

i�

∑

μx ′

Ŵ
μ

xx ′ yx ′μ+ +
1

i�

∑

μx ′

Ŵ
μ∗
x ′x yx ′μ− , (28)

∂tnx̄x = −i(ωx − ωx̄)nx̄x −
1

i�
E(t)

(

y∗
x̄ Mx − M∗

x̄yx

)

+
1

i�

∑

μx ′

Ŵ
μ

xx ′nx̄x ′μ+ −
1

i�

∑

μx̄ ′

Ŵ
μ

x̄ ′x̄nx̄ ′xμ+

+
1

i�

∑

μx ′

Ŵ
μ∗
x ′xn

∗
x ′x̄μ+ −

1

i�

∑

μx̄ ′

Ŵ
μ∗
x̄x̄ ′n

∗
xx̄ ′μ+ , (29)

∂t 〈b†μbμ〉 =
2

�

∑

x̄x

Im
{

Ŵ
μ
x̄xnx̄xμ+

}

. (30)

Even at this level, without specifying the form of equations

for one-phonon-assisted electronic density matrices, using

Eq. (29) with vanishing electric field it is easily shown that,

in the absence of external fields, our dynamics conserves the

total number of particles.

We will neglect hot-phonon effects and assume that in

all the equations for yx , nx̄x , and their phonon-assisted

counterparts the phonon numbers assume their equilibrium

values n
ph
μ = (eβ�ωμ − 1)−1. We will, however, retain Eq. (30)

in the formalism because it is necessary to prove the energy

conservation.

In equations for phonon-assisted electronic density matrices

we neglect the coupling to the light field, i.e., we neglect

contributions arising from the combined action of the phonon

coupling and the interaction with the light field (so-called

cross terms) [35,39]. The equations for the electronic den-

sity matrices with one-phonon assistance contain electronic

density matrices with two-phonon assistance, from which we

explicitly separate the factorized part and the correlated part,

for example

〈c†ad
†
bdccdb

†
μbρ〉 = 〈c†ad

†
bdccd〉δμρn

ph
μ + δ〈c†ad

†
bdccdb

†
μbρ〉,

(31)

〈dacbb
†
μbρ〉 = 〈dacb〉δμρn

ph
μ + δ〈dacbb

†
μbρ〉. (32)

We should bear in mind that the two-phonon-assisted elec-

tronic density matrices with two creation (annihilation) phonon

operators, whose factorized part vanishes, should be consid-

ered on this level of truncation of the phonon branch [40].

Further comments on the factorization performed in Eq. (31)

are given in Appendix B. The following equations for the

electronic density matrices with single-phonon assistance are
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obtained:

∂tnx̄xμ+ = −i(ωx − ωx̄ − ωμ)nx̄xμ+ +
n

ph
μ

i�

∑

x ′

Ŵ
μ∗
x ′xnx̄x ′

−
1 + n

ph
μ

i�

∑

x̄ ′

Ŵ
μ∗
x̄x̄ ′nx̄ ′x

−
1

i�

∑

ρx̄ ′

(

Ŵ
ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ− + Ŵ

ρ

x̄ ′x̄δnx̄ ′xμ+ρ+
)

+
1

i�

∑

ρx ′

(

Ŵ
ρ∗
x ′xδnx̄x ′μ+ρ− + Ŵ

ρ

xx ′δnx̄x ′μ+ρ+
)

, (33)

∂tyxμ+ = −i(ωx − ωμ) yxμ+ +
n

ph
μ

i�

∑

x ′

Ŵ
μ∗
x ′x yx ′

+
1

i�

∑

ρx ′

(

Ŵ
ρ

xx ′δyx ′μ+ρ+ + Ŵ
ρ∗
x ′xδyx ′μ+ρ−

)

, (34)

∂tyxμ− = −i(ωx + ωμ) yxμ− +
1 + n

ph
μ

i�

∑

x ′

Ŵ
μ

xx ′ yx ′

+
1

i�

∑

ρx ′

(

Ŵ
ρ

xx ′δyx ′ρ+μ− + Ŵ
ρ∗
x ′xδyx ′ρ−μ−

)

. (35)

The correlated parts of two-phonon-assisted density matri-

ces appearing in Eqs. (33) (δnx̄xμ+ρ− ,δnx̄xμ+ρ+ ), (34), and (35)

can be obtained solving their respective differential equations,

in which all three-phonon-assisted density matrices have been

appropriately factorized and their correlated parts have been

neglected, in the Markov and adiabatic approximations. This

procedure closes the phonon branch of the hierarchy. However,

the full solution to these equations, when combined with

Eq. (33), is cumbersome to evaluate, so further approximations

are usually employed. The most common one is the so-

called random phase approximation, which neglects sums

over correlated parts of one-phonon-assisted electronic density

matrices (which are complex quantities) due to random phases

at different arguments of these density matrices [9]. After

performing all the discussed approximations, the last two

summands in Eq. (33), which represent the rate at which nx̄xμ+

changes due to the coupling to electronic density matrices with

higher phonon assistance, reduce to

(∂tnx̄xμ+ )higher = −γx̄xμnx̄xμ+ , (36)

where γx̄xμ is given as

γx̄xμ = 1
2
(Ŵx + Ŵx̄), (37)

Ŵx =
2π

�

∑

x̃ρ

[∣

∣Ŵ
ρ
xx̃

∣

∣

2
δ(�ωx − �ωx̃ + �ωρ)nph

ρ

+
∣

∣Ŵ
ρ
x̃x

∣

∣

2
δ(�ωx − �ωx̃ − �ωρ)

(

1 + nph
ρ

)]

. (38)

Details of the procedure employed to close the phonon branch

of the hierarchy are given in Appendix B.

It was recognized that this form of the coupling to higher-

order phonon-assisted electronic density matrices is at variance

with the energy conservation [9,10,41]. In this work, we will

use the following form of the coupling to higher-order phonon-

assisted density matrices:

(∂tn
(+)
x̄xμ)higher = −γx̄xμn

(+)
x̄xμ + γx̄xμn

(+)∗
x̄xμ , (39)

where γx̄xμ is, as before, defined by Eqs. (37) and (38).

This form of (∂tn
(+)
x̄xμ)

higher
is compatible with the energy

conservation, as long as excitonic matrix elements of the

carrier-phonon interaction Ŵ
μ
x̄x are purely real, which is the

case relevant for our numerical investigation in Sec. III.

Namely, as is shown in Appendix C, the rate at which the

total energy changes after the pulse is equal to the rate at

which the carrier-phonon interaction energy changes due to

the coupling of the single-phonon-assisted electronic density

matrices nx̄xμ+ to density matrices with higher-order phonon

assistance,

∂t E = (∂t Ec-ph)higher

= 2
∑

x̄xμ

Re
{

Ŵ
μ
x̄x(∂t nx̄xμ+ )higher

}

. (40)

It is then clear that, if all Ŵ
μ
x̄x are real, the form of (∂t nx̄xμ+ )higher

given in Eq. (39) does not violate the energy conservation.

Furthermore, as nx̄xμ+ describes the elementary process in

which an exciton initially in the state x is scattered to the state x̄

emitting the phonon from the mode μ, the reverse microscopic

process, described by nxx̄μ− = n∗
x̄xμ+ , is also possible, so in the

differential equation for nx̄xμ+ the quantity n∗
x̄xμ+ may appear.

In Appendix C, we comment on the energy conservation in

greater detail.

Similar strategy can be adopted to simplify the coupling

to electronic density matrices with higher phonon assistance

in (34) and (35), with the final result

(∂ty
(±)
xμ )higher = −γxμ y(±)

xμ , (41)

where

γxμ = 1
2
Ŵx, (42)

and Ŵx is defined in Eq. (38).

An alternative route to derive equations for the relevant

variables is to rewrite the Hamiltonian given in Eq. (1) in terms

of operators Xx,X
†
x [see Eq. (18)], keeping only contributions

whose expectation values are at most of the second order in

the optical field. The result is

H =
∑

x

�ωxX
†
xXx +

∑

μ

�ωμb†μbμ

+
∑

μx̄x

(

Ŵ
μ
x̄xX

†
x̄Xxb

†
μ + Ŵ

μ∗
x̄x X†

xXx̄bμ

)

− E(t)
∑

x

(M∗
xXx + MxX

†
x). (43)

The excitonic operators (up to the second order in the optical

field) satisfy Bose commutation relations [Xx,X
†
x̄] = δxx̄ . In

this representation [42], the excitons are treated as noninter-

acting bosons and the form of the exciton-phonon interaction

is transparent, with exciton-phonon coupling constants Ŵ
μ
x̄x

defined in Eq. (26).
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III. ONE-DIMENSIONAL SEMICONDUCTOR MODEL

AND NUMERICAL RESULTS

Numerical computations will be carried out on a two-band

one-dimensional semiconductor model. We use a tight-binding

model on a one-dimensional lattice with N sites and lattice

spacing a to describe the semiconductor. Periodic boundary

conditions are used. The Hamiltonian describing interacting

carriers is given as

Hc =
N−1
∑

i=0

ǫc
0 c

†
i ci −

N−1
∑

i=0

J c(c
†
i ci+1 + c

†
i+1ci)

−
N−1
∑

i=0

ǫv
0 d

†
i di +

N−1
∑

i=0

J v(d
†
i di+1 + d

†
i+1di)

+
1

2

N−1
∑

i,j=0

(c
†
i ci − d

†
i di)Vij (c

†
jcj − d

†
jdj ). (44)

It is assumed that the carrier transfer integrals J c,J v are

nonzero only among nearest-neighbor pairs of sites. The

Coulomb interaction is taken in the lowest monopole-

monopole approximation [43], and the interaction potential

Vij is taken to be the Ohno potential

Vij =
U

√

1 +
( |i−j |a

a0

)2
. (45)

U is the onsite carrier-carrier interaction, while a0 is the char-

acteristic length given as a0 = e2/(4πε0εrU ), where εr is the

static relative dielectric constant. This form of carrier-carrier

interaction is an interpolation between the onsite Coulomb

interaction U and the ordinary Coulomb potential (in which the

static relative dielectric constant is taken) e2/(4πε0εrr) when

r → ∞ (see, e.g., the discussion on the effective electron-hole

interaction in Ref. [5]). The interaction with phonons is taken

to be of the Holstein form, where a charge carrier is locally

and linearly coupled to a dispersionless optical mode

Hc-ph =
N−1
∑

i=0

gc c
†
i ci(bi + b

†
i ) −

N−1
∑

i=0

gv d
†
i di(bi + b

†
i ), (46)

where the free-phonon Hamiltonian is

Hph =
N−1
∑

i=0

�ωphb
†
i bi . (47)

Despite the fact that the carrier-phonon interaction in real

materials has a more complicated form, we choose for our

numerical investigations its simplest possible form [Eq. (46)]

capable of providing the energy relaxation of the electronic

subsystem. The interaction with the electric field is

Hc-f = −dcvE(t)

N−1
∑

i=0

(dici + c
†
i d

†
i ). (48)

As the system described is translationally symmetric, we

can transfer to the momentum space and obtain the same

Hamiltonian as described in Eqs. (1)–(5) with the following

values of parameters:

ǫ
c/v

k = ǫ
c/v

0 − 2J c/v cos(ka), (49a)

γ
q

k1k2
= δk2,k1+q

gc

√
N

for k1,k2 ∈ CB, (49b)

γ
q

k1k2
= δk1,k2+q

gv

√
N

for k1,k2 ∈ VB, (49c)

V vvcc
pqkl = δk+q,p+lVk−l, V vccv

plkq = 0. (49d)

The signs of the transfer integrals are J c > 0, J v < 0. The

constant energy ǫc
0 > 0, while ǫv

0 < 0 is chosen so that the

maximum of the valence band is the zero of the energy scale.

Vk−l is the Fourier transformation of the Ohno potential and it

is computed numerically as

Vk =
1

N2

N−1
∑

i,j=0

Vije
−ika(i−j ). (50)

The translational symmetry of our model enables us to

solve efficiently the eigenvalue problem (13) which defines

the excitonic basis. Instead of solving eigenvalue problem of

a N2 × N2 matrix, we can solve N -independent eigenvalue

problems of matrices of dimension N × N , thus obtaining

N2 excitonic eigenstates and their eigenenergies, which are

counted by the center-of-mass wave vector Q and the band

index ν. Thus, the general index of an excitonic state x should

be, in all practical calculations, replaced by combination

(Q,ν). This has the following consequences on the matrix

elements in the excitonic basis: dipole matrix elements reduce

to

M(Qν) = δQ,0 dcv

∑

ke

ψ
(Qν)∗
Q−ke,ke

, (51)

whereas carrier-phonon interaction matrix elements reduce to

Ŵ
q

(Qν)(Q′ν ′) = δQ′,Q+q

1
√

N

∑

ke

ψ
(Qν)∗
Q−ke,ke

×
(

gcψ
(Q′ν ′)
Q−ke,Q′−Q+ke

− gvψ
(Q′ν ′)
Q′−ke,ke

)

. (52)

Due to the translational symmetry of our model, only the

dynamic variables for which the total created wave vector is

equal to the total annihilated wave vector will have nontrivial

values in the course of the system’s evolution. For example,

from all density matrices y(Qν) only those with Q = 0 can have

nonzero values.

Our objective is to analyze, in the framework of this rela-

tively simple model, the characteristic time scales of exciton

formation and relaxation in a photoexcited semiconductor,

along with the impact that various model parameters have

on these processes. Basic parameters in our model are transfer

integrals J c,J v (which determine bandwidths of the conduc-

tion and valence bands), electron-phonon coupling constants

gc,gv, the phonon energy �ωph, the dielectric constant εr , and

the onsite Coulomb interaction U . We will, throughout the

computations, assume for simplicity that J c = J v = J and

gc = gv = g.

As is well known, the main differences between a typical

organic and inorganic semiconductor can be expressed in terms

of bandwidths, dielectric constant, and the carrier-phonon
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interaction strength. Namely, inorganic semiconductors are

characterized by wide bands and high value of dielectric

constant, whereas organic semiconductors have narrow bands

and small value of dielectric constant. The carrier-phonon

interaction is stronger in organic than in inorganic semi-

conductors. Having all these facts in mind, we propose two

sets of model parameters which assume values typical of an

organic and inorganic semiconductor. Values of our model

parameters are adjusted to material parameters of GaAs for

the inorganic case and pentacene for the organic case. Values

of carrier-phonon coupling constants are chosen to correspond

to typical values for mobility and/or typical values for the

polaron binding energy.

Typical bandwidths in organic semiconductors are W ∼
500 meV [8], which corresponds to the transfer integral J ∼
125 meV, whereas inorganic semiconductors usually exhibit

bandwidths of several electronvolts [8] and we take in our

calculations the value of the transfer integral J = 500 meV.

In both cases, the lattice constant was fixed to a = 1 nm. The

dielectric constant in a typical inorganic semiconductor is of

the order of 10 and in the calculations we take the value of static

dielectric constant of GaAs εr = 12.9. For a representative

value of the dielectric constant in organic semiconductors

we take εr = 3.0 [4,8]. The value of the onsite Coulomb

interaction U is chosen to give the correct order of magnitude

for the exciton binding energy, which is calculated numerically.

For the organic parameter set, we set U = 480 meV, which

gives the exciton binding energy around 320 meV, while for the

inorganic parameter set U = 15 meV and the corresponding

exciton binding energy is roughly 10 meV.

The carrier-phonon coupling constants for the inorganic

case are estimated from the mobility values. The mobility of

carriers is estimated using the relation μ = eτ/m∗, where τ

is the scattering time and m∗ is the effective mass of a carrier.

For cosine bands considered in this work, m∗ = �
2/(2|J |a2)

in the vicinity of the band extremum. The scattering time is

estimated from the expression for the carrier-phonon inelastic

scattering rate based on the Fermi’s golden rule, which around

the band extremum k = 0 assumes the following form:

1

τ (k)
=

g2

�|J |
nph

√

1 −
(

cos(ka) − �ωph

2|J |
)2

, (53)

where nph = (eβ�ωph − 1)−1. Therefore, the carrier-phonon

coupling constant in terms of the carrier mobility reads as

g = |J |

√

2ea2

�μnph

[

1 −
(

1 −
�ωph

2|J |

)2
]1/4

. (54)

Using the value for the electron mobility in GaAs at

300 K μe ≈ 8500 cm2/(Vs) [44], we obtain g ≈ 25 meV.

We can also estimate the carrier-phonon coupling constants

from the polaron binding energy. As an estimate of this

quantity, we use the result of the second-order weak-coupling

perturbation theory at T = 0 in the vicinity of the point

k = 0 [45]:

ǫ
pol

b (k) =
g2

2|J |
1

√

(

cos(ka) + �ωph

2|J |
)2 − 1

. (55)

TABLE I. Model parameters which are representative of a

typical organic and inorganic semiconductor. References from which

material parameters are taken are indicated.

Parameter Inorganic Organic

Eg (meV) 1519 [32] 2000 [47]

J (meV) 500 125

εr 12.9 [32] 3.0 [8]

g (meV) 25 40

�ωph (meV) 36.4 [32] 10.0 [48,49]

U (meV) 15 480

It is known that polaron binding energies in typical inorganic

semiconductors are ǫ
pol

b ∼ 1 meV and we used this fact along

with Eq. (55) to check our estimate for g from the value

of mobility; for g ≈ 25 meV, we obtain ǫ
pol

b ≈ 2 meV. The

polaron binding energies in polyacenes lie in the range

between 21 and 35 meV [46]. The value of g in the set of

model parameters representative of organic semiconductors

was estimated from the polaron binding energy in pentacene,

which is around 20 meV. We obtain that g ≈ 40 meV. The

values used for the organic/inorganic set of parameters are

listed in Table I.

The form of the electric field is assumed to be a rectangular

cosine pulse

E(t) = E0 cos(ωct)θ (t + t0)θ (t0 − t), (56)

where ωc is the central frequency of the field and θ (t) is the

Heaviside step function. Time t0 is chosen large enough so

that the pulse is so spectrally narrow that the notion of the

central frequency makes sense. On the other hand, the pulse

should be as short as possible, so that after its end we observe

the intrinsic dynamics of our system, the one which is not

accompanied by the carrier generation process, but merely

shows how initially generated populations are redistributed

among various states. Trying to reconcile the aforementioned

requirements, we choose t0 = 250 fs. The amplitude of the

electric field E0 and the interband dipole matrix element dcv are

chosen so that we stay in the low-density regime; particularly,

we choose them so that the corresponding Rabi frequency

�ωR = dcvE0 assumes the value of 0.2 meV, which is smaller

than any energy scale in our problem and ensures that the

excitation is weak.

In order to quantitatively study the process of exciton

formation after a pulsed excitation of a semiconductor,

we solved the system of quantum kinetic equations for

electronic density matrices yx,nx̄x and their single-phonon-

assisted counterparts [Eqs. (28), (29), (33), (34), and (35)

supplemented with Eqs. (36) and (41)] using the fourth-order

Runge-Kutta algorithm. The computations are performed for

the temperature T = 300 K and the central frequency of the

pulse equal to the single-particle gap (�ωc = Eg). The exciton

is considered bound (unbound) if its energy �ω(Qν) is smaller

(larger) than the smallest single-particle energy difference

ǫc
ke

− ǫv
Q−ke

[47]. The equation of the boundary line which
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separates bound from unbound pair states reads as

ǫsep(Q) = ǫc
0 − ǫv

0 − 2
√

(J c)2 + (J v)2 − 2J cJ v cos(Qa).

(57)

An unbound exciton may be considered as (quasi)free electron

and hole, so this way it is possible to distinguish between bound

excitons and free carriers.

The pulsed excitation of a semiconductor leads, in the first

step, to the generation of coherent electron-hole pairs that are

described in our formalism by the coherent pair amplitudes yx .

The decay of the coherent pair occupation

Ncoh =
∑

x

|yx |2 (58)

is due to the scattering processes which initiate already during

the generation of the pairs and gives a direct measure of the

loss of coherence [32]. At the same time, incoherent pair

occupations start to grow, driven by the loss rate of coherent

pair occupations [32,35]. In order to quantify the process of

exciton formation, we will follow the time dependence of the

total number of incoherent bound excitons

Nincoh,b =
∑

x∈bound

(nxx − |yx |2). (59)

This quantity represents the number of truly bound electron-

hole pairs which exist even after the optical field has vanished

and as such is the direct measure of the efficiency of the exciton

formation process. We will, when useful, also consider the

number of incoherent excitons in a particular band ν, Nincoh,ν .

The quantities Nincoh,b and Nincoh,ν will be normalized to the

total number of excitons Ntot defined in Eq. (27).

A. Numerical results: Organic set of parameters

We start this section by an overview of properties of the

excitonic spectrum, shown in Fig. 1(a), which will be relevant

for further discussions of the exciton formation process. The

lowest excitonic band is energetically well separated from

the rest of the spectrum, the energy separation between the

minima of the bands ν = 0 and 1 being around 200 meV,

which is much larger than both the value of kBT at room

temperature and the phonon energy in our model (see Table I).

As a consequence, downward transitions that end at the lowest

excitonic band start almost exclusively from the states on ν = 1

band and an exciton, which is at some instant in a state on

the ν = 0 band, cannot be scattered to an unbound excitonic

state.

We briefly comment on the size of the exciton for these

values of model parameters. From the exciton wave function

ψ
(Qν)
Q−ke,ke

in k space, we can obtain the exciton wave function

in real space performing the Fourier transformation

ψ (Qν)
re,rh

=
∑

ke

ei(Q−ke)rheikereψ
(Qν)
Q−ke,ke

= eiQ(re+rh)/2
∑

ke

e−i(Q−2ke)(re−rh)/2ψ
(Qν)
Q−ke,ke

. (60)

The exciton wave function in real space is a product of the

plane wave which describes the motion of the center of mass

-40 -20 0 20 40
0

0.2

0.4
ν=0
ν=1
ν=2
ν=3

FIG. 1. (Color online) (a) Excitonic spectrum for the organic set

of parameters. Dots represent individual excitonic states (Q,ν), while

thick red line is the boundary between bound and unbound excitonic

states computed using Eq. (57). (b) Squared modulus of the wave

function which describes the relative motion of an electron-hole pair

[Eq. (61)] calculated for different states (Q = 0,ν). Mean electron-

hole separations in these states are 0.7a (ν = 0), 2.5a (ν = 1), 4.6a

(ν = 2), and 7.8a (ν = 3). Computations are performed for N = 101.

with the wave vector Q and the wave function of the relative

motion of an electron and a hole:

ψ rel
(Q,ν) =

∑

ke

e−i(Q−2ke)(re−rh)/2ψ
(Qν)
Q−ke,ke

. (61)

The latter part is directly related to the exciton size. We

calculated squared modulus of the wave function of the

relative motion of a pair for states (Q = 0,ν) in various bands.

The result is shown in Fig. 1(b). It is clearly seen that an

electron and a hole are tightly bound in these states and

their relative separations are of the order of lattice constant,

which is the typical value for the exciton radius in organic

semiconductors. We point out that this does not mean that an

exciton is localized; due to the translational symmetry of our

system, it is delocalized over the whole lattice, as described by

the plane-wave factor in the total wave function of a pair.

Moreover, we note that the system size N = 101 is large

enough for the results to be numerically accurate, as it is much

larger than the typical size of the exciton in a bound state.
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FIG. 2. (Color online) Time dependence of the relative number

of incoherent bound excitons for different central frequencies of the

pulse.

The impact that different parameters have on the exciton

formation process is studied by changing one parameter, at

the same time fixing the values of all the other parameters

to the previously mentioned ones. We performed all the

computations for a limited number of lowest excitonic bands,

which crucially depends on the central frequency ωc of the

excitation. For the given excitation, we took into account all

the bands whose minima lie below �ωc + αkBT , where α ∼ 5

is a numerical constant.

We will first discuss the exciton formation process for

different central frequencies of the exciting pulse. We have

considered central frequencies in resonance with (Q = 0,

ν = 1) state, (Q = 0, ν = 2) state, single-particle gap, and

the central frequency which is 100 meV above the band gap.

As can be noted from Fig. 2, raising the central frequency of

the laser field leads to lower relative number of incoherent

bound excitons. Namely, the higher is the central frequency,

the higher (in energy) are the bands in which the initial

coherent excitonic populations are created and the slower is

the conversion of these coherent populations to incoherent

populations in lower excitonic bands. However, in the long-

time limit, the relative number of incoherent bound excitons

should not depend on the central frequency of the laser,

but tend to the value predicted by the Maxwell-Boltzmann

distribution, which is above 99%. Such a high value is due

to the large energy separation between the lowest excitonic

band and the rest of the spectrum. We can thus infer, based on

Fig. 2, that the semiconductor dynamics right after the pulsed

excitation shows highly nonequilibrium features. Relaxation

towards equilibrium occurs on a time scale longer than the

picosecond one.

Next, we consider the dependence of the exciton formation

process on temperature. The temperature enters our model

only through phonon numbers nph. The overall behavior of

the relative number of incoherent bound excitons for different

temperatures is shown in Fig. 3. During the pulse, the relative

number of incoherent bound excitons is highest for T = 300 K

and lowest for T = 100 K, which is the consequence of the fact

that scattering processes from higher excitonic bands (in which

0 1 2 3 4 5
time (ps)

0

0.2

0.4

0.6
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FIG. 3. (Color online) Time dependence of the relative number

of incoherent bound excitons for different temperatures. The inset

shows the portions of the same curves after the pulse.

initial coherent excitonic populations are created and which are

situated both in the pair continuum and below it) towards lower

excitonic bands are most efficient at T = 300 K. After the

generation of carriers has been completed, phonon-mediated

processes lead to the redistribution of created incoherent exci-

tons among different excitonic states and the relative number

of incoherent bound excitons increases with decreasing the

temperature, which is the expected trend. In the inset of

Fig. 3 we also note that the relative number of incoherent

bound excitons after the pulse experiences an initial growth

followed by a slow decay at T = 300 K, whereas at T = 100

K it monotonically rises. The initial growth at T = 300 K is

attributed to downward scattering processes, but since at this

temperature upward scattering events cannot be neglected, the

following slow decay is due to the fact that some excitonic

bands well below the pair continuum (bands ν = 1,2,3) lose

excitons both by downward scattering and upward scattering

to excitonic states which are near to or belong to the pair

continuum [see Figs. 4(a) and 4(b)]. At T = 100 K, these

upward processes are much less probable than downward

processes, thus the decay of the relative number of incoherent

bound excitons is not observed; in Figs. 4(c) and 4(d) we see

that lowest excitonic bands (ν = 0,1,2) gain excitons, whereas

bands which are near to or belong to the pair continuum

(ν = 9,11,13,15) lose excitons. The population of the lowest

excitonic band ν = 0 continually grows at all the temperatures

studied, due to the large energetic separation between this band

and the rest of the spectrum.

We briefly comment on the behavior of the number of

coherent excitons Ncoh and its temperature dependence. Right

after the start of the pulse, coherent excitons comprise virtually

the total excitonic population (see Fig. 5). Due to the carrier-

phonon interaction, the relative number of coherent excitons

decays during the pulse, so that at its end coherent excitons

comprise around 1% of the total excitonic population. The

conversion from coherent to incoherent populations is thus

almost completed by the end of the pulse. From the inset of

Fig. 5, we note that Ncoh/Ntot exhibits a very fast decay after

the pulse has vanished, with decay times of the order of 50 fs or

less. Therefore, we infer that the transformation from coherent
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FIG. 4. (Color online) Time dependence of the relative popula-

tion of various excitonic bands for different temperatures T = 300 K

for panels (a) and (b) and T = 100 K for panels (c) and (d). Panels

(a) and (c) concern bands which are well below the pair continuum

(ν = 0,1,2,3), whereas panels (b) and (d) deal with the bands which

are near the continuum (ν = 9) or in the continuum (ν = 11,13,15).

to incoherent excitonic populations takes place on a 50-fs time

scale. Based on Fig. 5, we also note that the lower is the

temperature, the slower is the transformation from coherent to

incoherent excitonic populations, which is the expected trend.

We continue our investigation by examining the effects that

changes in the carrier-phonon coupling constant g have on

the exciton formation process. Since increasing (lowering)

g increases (lowers) semiclassical transition rates, just as

increasing (lowering) T does, the changes in g and T should

have, in principle, similar effects on the exciton formation

process. Considering first the relative number of incoherent

bound excitons, whose time dependence for different values

of g is shown in Fig. 6(a), we note that after the end of the
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FIG. 5. (Color online) Time dependence of the relative number

of coherent excitons for different temperatures. The inset shows the

portions of the same curves (note the logarithmic scale on the vertical

axis) after the pulse.
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g=40 meV
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FIG. 6. (Color online) Time dependence of (a) the relative num-

ber of incoherent bound excitons, (b) the relative number of

incoherent excitons in the ν = 0 band, for various values of g. The

inset in the panel (a) shows the portions of the same curves after the

pulse.

pulse it increases with decreasing g. However, during the pulse,

higher values of g lead to more incoherent bound excitons,

as is expected since scattering processes which populate

low-energy states are more intensive for larger g. We also

show the time dependence of the relative number of excitons

in ν = 0 band in Fig. 6(b). It is observed that the lower is g, the

lower is the number of excitons in the lowest excitonic band.

This is due to the fact that populations on the lowest band are

generated mainly via scattering processes from the ν = 1 band

and these processes are less efficient for smaller g.

We conclude this section by studying the effects that

changes in the onsite Coulomb interaction U have on the

process of exciton formation. Changing U has profound effects

on the excitonic spectrum. Exciton binding energy lowers with

lowering U along with the energy separation between the band

ν = 0 and the rest of the spectrum. We studied the impact of

U on the exciton formation process for three values of U ,

U = 480, 240, and 48 meV, for which the exciton binding

energy is ∼ 320, ∼ 175, and ∼ 40 meV, respectively. Lowering

U lowers the relative number of incoherent bound excitons,

as is shown in Fig. 7. Smaller energy separation between the

lowest excitonic band and the rest of the spectrum means that

phonon-mediated transitions which start/end on the band ν =
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FIG. 7. (Color online) Time dependence of the relative number

of incoherent bound excitons for various values of U . The inset shows

the portions of the same curves after the pulse.

0 can end/start not predominantly on the band ν = 1, but also

on higher excitonic bands, which, for lower U , are more certain

to belong to the electron-hole pair continuum than to the part of

the spectrum which contains bound pair states. Thus, the lower

is U , the more likely are the dissociation processes in which

an exciton, initially in a bound state, after a phonon-mediated

transition ends in an unbound pair state, which explains the

observed trend in the relative number of incoherent bound

excitons. This agrees with the usual picture according to which

thermal fluctuations are likely to dissociate loosely bound

electron-hole pairs. For U = 48 meV, in the long-time limit

and according to the Maxwell-Boltzmann distribution, around

78% of the total number of excitons should be in bound states,

whereas for the other two values of U this number is above

99%. Thus, the dynamics observed is highly nonequilibrium,

but unlike the cases U = 480 and 240 meV, in which we cannot

observe that the relative number of incoherent bound excitons

starts to tend to its equilibrium value, for U = 48 meV we

observe such a behavior (see the inset of Fig. 7).

In summary, we list the time scales of the exciton formation

and relaxation that stem from our computations. The transfor-

mation from coherent to incoherent excitons takes place in

less than 50 fs. A significant number of incoherent bound

excitons are established on a time scale of several hundreds of

femtoseconds, whereas the subsequent relaxation of excitonic

populations occurs on a time scale longer than the picosecond

one. Further discussion of these results is deferred for Sec. IV.

B. Numerical results: Inorganic set of parameters

In this section, we will investigate the exciton formation

process in the case when material parameters assume values

typical of inorganic semiconductors, i.e., relatively large band-

widths, large dielectric constant (weak Coulomb interaction),

and weak carrier-phonon interaction. The excitonic spectrum

is shown in Fig. 8(a). We see that almost all excitonic bands

belong to the pair continuum, except for a couple of lowest

bands, which is more clearly seen in the inset of Fig. 8(a). This

is an entirely different situation from the one that we encounter

-50 0 50
0

0.02

0.04

ν=0
ν=1
ν=2
ν=3

FIG. 8. (Color online) (a) Excitonic spectrum for the inorganic

set of parameters. Dots represent individual excitonic states (Q,ν),

while thick red line is the boundary between bound and unbound

excitonic states computed using Eq. (57). The inset shows the same

spectrum in the range of energies around the single-particle gap.

(b) Squared modulus of the wave function which describes the relative

motion of an electron-hole pair [Eq. (61)] calculated for different

states (Q = 0,ν). Mean electron-hole separations are 9.1a (ν = 0)

and 29.4a (ν = 1), while states (Q = 0, ν = 2) and (Q = 0, ν = 3)

are not bound. Computations are performed for N = 151.

for the organic set of parameters, where large energy separation

of the lowest excitonic band from the rest of the spectrum

was crucial to understand the exciton formation process. As a

consequence, excitons in bound states are likely to scatter to a

state in the pair continuum, in contrast to the situation for the

model parameters representative of an organic semiconductor.

Having noted the important characteristics of the excitonic

spectrum, we move on to comment briefly on the exciton size

for the inorganic set of parameters. We plot in Fig. 8(b) the

squared modulus of the wave function of the relative motion

of the pair, which is defined in Eq. (61). We note that for

the inorganic set of parameters, electron and hole are not as

tightly bound as for the organic set of parameters, which is

in accord with the fact that excitons in a typical inorganic

semiconductor have large radii, typically of the order of 10

lattice constants [5,6]. From Fig. 8(b), it is also clear that, if

we are to see the lowest excitonic state (Q = 0, ν = 0) as a
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FIG. 9. (Color online) (a) Time dependence of the relative num-

ber of incoherent bound excitons for excitation resonant with the

single-particle gap and the one which is 100 meV above it. The

temperature in both cases is T = 300 K. (b) Time dependence

of the relative number of incoherent bound excitons for various

temperatures. The central frequency of the laser pulse is 100 meV

above the single-particle gap.

bound pair, we should take the system size N � 120. We opted

for N = 151 because this value makes a good compromise

between the minimal size of the system needed for the results

to be numerically accurate and the computational time.

For the inorganic set of parameters, we note that incoherent

unbound excitons comprise the major part of the total excitonic

population [see Fig. 9(a)], which is different from the case

when model parameters assume values representative of an

organic semiconductor, when excitons in bound states prevail.

Considering an unbound exciton as quasifree electron and hole,

we interpret the last observation in the following manner: after

an optical excitation of an organic semiconductor, (strongly)

bound electron-hole pairs (excitons) are mainly generated,

whereas in the case of an inorganic semiconductor an optical

excitation predominantly generates (quasi)free charges. In

Fig. 9, we also note that for higher central frequency of the

laser field, the relative number of bound excitons is lower.

However, in the long-time limit the number of incoherent

bound excitons should assume the value predicted by the

Maxwell-Boltzmann distribution, which is around 36.5%,

irrespectively of the central frequency of the pulse. The values

of the relative number of incoherent bound excitons at the end

of our computations do not strongly deviate from the value

predicted by the Maxwell-Boltzmann distribution, in contrast

to the situation for the organic set of parameters, where this

deviation was more pronounced (see Fig. 2). It can thus be

inferred that nonequilibrium features of the semiconductor

dynamics after a pulsed excitation are more pronounced for

the organic than for the inorganic set of parameters.

Finally, we comment on the temperature dependence of the

exciton formation process for the excitation whose central

frequency is 100 meV above the single-particle gap. The

lower is the temperature, the higher is the relative number

of the incoherent bound excitons [see Fig. 9(b)]. During the

pulse, higher temperature leads to higher relative number of

incoherent bound excitons, which has already been explained

in the section dealing with the organic set of parameters. The

long-time limit values of the relative number of incoherent

bound excitons are 44.7% for T = 200 K and 62.7% for

T = 100 K. In all three cases, the dynamics is highly

nonequilibrium, but it displays the trend of a slow, but

monotonic, approach towards the equilibrium.

IV. DISCUSSION

In this section, we discuss the time scales of exciton forma-

tion and relaxation processes obtained from our calculations

in light of recent subpicosecond time-resolved experiments. In

Ref. [23], femtosecond-resolved fluorescence up-conversion

spectroscopy was applied to investigate the exciton dynamics

in pristine PCDTBT polymer. The results obtained were

interpreted to originate from formation of free charges on

less than 100 fs time scale, followed by formation of bound

excitons in less than 1 ps and their further relaxation at a

longer time scale. Similar results were obtained in Ref. [24]

for P3HT polymer. Despite the fact that our Hamiltonian

does not include the effects of disorder that are present

in real materials and uses an oversimplified form of the

carrier-phonon interaction, we obtain time scales consistent

with these data in our computations. Namely, for the organic

parameter set we find that significant population of bound

excitons is formed on the time scale of several hundreds

of femtoseconds and that their further relaxation occurs for

at least several picoseconds. These conclusions are further

corroborated by fitting the relative number of incoherent bound

excitons Nincoh,b/Ntot after the carrier generation has been

completed to a sum of three exponentially decaying terms.

For the organic parameter set, we obtain characteristic time

scales of ∼50 fs, ∼500 fs and �1 ps. We attribute the fastest

time scale to decoherence processes which are responsible

for conversion from coherent (|yx |2) to incoherent (n̄xx)

populations due to the interaction with phonons. The time scale

of ∼500 fs may be associated with the buildup of the Coulomb-

induced correlations between electrons and holes by formation

of bound incoherent electron-hole pairs via phonon-assisted

scattering processes. After this time scale, however, intraband

coherences n̄x̄x (x̄ = x), as well as single-phonon-assisted

density matrices nx̄xμ+ , still have significant values. In the

long-time limit, these variables asymptotically vanish, and we

remain only with incoherent populations whose dynamics will
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eventually lead to thermalized distribution of excitons [35].

As our computations are certainly not long enough to observe

these effects, we speculate that the slowest time scale we obtain

may be related to the decay of the intraband coherences and/or

phonon-assisted variables.

Next, we comment on the relation of our results with recent

experimental insights which have challenged the commonly

accepted physical picture of the generation of free charges in

bulk heterojunction solar cells. Namely, it is widely believed

that physical processes leading to current generation are

formation of bound excitons due to light absorption in the

donor material, their diffusion to the donor/acceptor interface,

and their subsequent separation at the interface [4]. From

the discrepancy between the distance that a donor exciton

can diffuse in 100 fs and the distance it has to cover in

order to reach the donor/acceptor interface in efficient bulk

heterojunction solar cells, Cowan et al. [25] conclude that

the subpicosecond charge transfer to the acceptor occurs

before exciton formation in the donor. The results of our

computations, which indicate that the formation of incoherent

bound excitons occurs on a ∼500-fs time scale, are therefore

consistent with their observations. The formation of hot

charge transfer excitons which occurs in less than 100 fs and

which is followed by their relaxation to lower energies and

shorter electron-hole distances on a picosecond time scale was

experimentally observed in a small molecule CuPc/fullerene

blend using time-resolved second harmonic generation and

time-resolved two-photon photoemission [28]. The presence

of hot charge transfer excitons, which are delocalized, i.e., in

which the electron-hole separation is rather large, and their

essential role in subpicosecond charge separation in efficient

OPV systems were also identified in Refs. [26,27,29]. Our

simulation results that indicate exciton equilibration times

longer than picoseconds are fully consistent with observations

that during charge separation at the donor/acceptor interface

the excitons remain out of equilibrium (hot excitons).

V. CONCLUSION

In conclusion, we have investigated the exciton dynamics

in a photoexcited semiconductor on a picosecond time scale.

The study was conducted on the two-band semiconductor

Hamiltonian, which includes relevant physical effects in

the system, using the density matrix theory combined with

the DCT scheme. We truncate the phonon branch of the

hierarchy and propose the form of coupling between electronic

density matrices with single-phonon assistance and higher-

order phonon assistance so as to achieve the compatibility

of the resulting equations with the energy and particle-number

conservation in a system without external fields. The numerical

study aiming at identifying time scales of exciton formation

and relaxation processes was performed on a one-dimensional

model system for the values of model parameters represen-

tative of a typical organic and inorganic semiconductor. We

concluded that the dynamics on a picosecond time scale

shows highly nonequilibrium features, relaxation processes

towards equilibrium occurring on a longer time scale. While

for the organic set of parameters the excitons generated are

mainly tightly bound, for the inorganic set of parameters

the major part of excitons is in unbound pair states and

may thus be considered as (quasi)free electrons and holes.

In other words, a photoexcitation of an initially unexcited

organic semiconductor leads to creation of bound electron-hole

pairs, whereas in an inorganic semiconductor it leads to

generation of free charges. This difference can be mainly

attributed to different properties of the excitonic spectrum,

which for the organic set of parameters exhibits large energy

separation between the lowest excitonic band and the rest

of the spectrum. Furthermore, although the carrier-phonon

interaction is stronger for the organic set of parameters, we

have noted that the number of excitons in bound states more

strongly deviates from its equilibrium value for the organic

set of parameters than for the inorganic one. This observation

emphasizes the importance of nonequilibrium effects for the

proper understanding of the ultrafast dynamics of photoexcited

organic semiconductors and unraveling the working principles

of organic photovoltaic devices.
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APPENDIX A: EQUATIONS OF MOTION

In this appendix, we present equations of motion for

relevant dynamic variables. These are the same equations as

in Ref. [35], with only slight modifications in notation, which

are exact up to the second order in the external field. We

point out that, according to the generating function property,

differential equations for the corresponding phonon-assisted

density matrices are obtained after performing appropriate

differentiations and setting αμ = βμ = 0:

i� ∂tY
αβ

ab =
(

ǫc
b − ǫv

a

)

Y
αβ

ab +
∑

p ∈ VB

q ∈ CB

(

V vccv
pqba − V vvcc

pabq

)

Y αβ
pq +

∑

μ

�ωμ

(

βμ∂βμ
− αμ∂αμ

)

Y
αβ

ab

+
∑

k ∈ CB

μ

(

γ
μ

bk(∂αμ
+ βμ) + γ

μ∗
kb ∂βμ

)

Y
αβ

ak −
∑

k ∈ VB

μ

(

γ
μ

ka(∂αμ
+ βμ) + γ

μ∗
ak ∂βμ

)

Y
αβ

kb − E(t)Mcv
baF

αβ , (A1)
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∑
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(
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(A2)

APPENDIX B: CLOSING THE HIERARCHY OF EQUATIONS

In Eq. (33), correlated parts of two-phonon-assisted density matrices δnx̄xρ+σ− and δnx̄xρ+σ+ appear. In their differential

equations, three-phonon-assisted density matrices are present. In order to close the hierarchy of equations, we factorize them

into all possible combinations of phonon distribution functions and phonon-assisted electronic density matrices and neglect their

correlated parts. The strategy for the factorization is the one we employed in Eq. (31) where we considered an exciton as a basic

entity and did not take into account contributions arising from the excitonic amplitude (with possible phonon assistance). Namely,

the two-phonon-assisted electronic density matrix 〈c†ad†
bdccdb

†
μbρ〉 can be written in terms of exciton creation and annihilation

operators [see Eq. (18)] as
∑

x̄x ψ x̄∗
ba ψx

cd〈X
†
x̄Xxb

†
μbρ〉. Since it appears in the equation of motion for one-phonon-assisted

electronic density matrix n
(+)
x̄xμ, which is coupled to Eq. (29) describing excitonic populations and intraband coherences, we treat

an exciton as a basic entity and accordingly perform the factorization 〈X†
x̄Xxb

†
μbρ〉 = 〈X†

x̄Xx〉〈b†μbρ〉 + δ〈X†
x̄Xxb

†
μbρ〉. In the case

of three-phonon-assisted electronic density matrices, the described factorization procedure, neglecting the correlated part, gives

〈c†ad
†
bdccdb

†
μb†ρbσ 〉 = δρσ 〈c†ad

†
bdccdb

†
μ〉nph

ρ + δμσ 〈c†ad
†
bdccdb

†
ρ〉n

ph
μ . (B1)

Performing transition to the excitonic basis, the following differential equation for the variable δnx̄xρ+σ− is obtained:

∂t δnx̄xρ+σ− = −i(ωx − ωx̄ + ωσ − ωρ)δnx̄xρ+σ− +
1 + n

ph
σ

i�

∑

x ′

Ŵσ
xx ′nx̄x ′ρ+ −

n
ph
σ

i�

∑

x̄ ′

Ŵσ
x̄ ′x̄nx̄ ′xρ+

−
1 + n

ph
ρ

i�

∑

x̄ ′

Ŵ
ρ∗
x̄x̄ ′n

∗
xx̄ ′σ+ +

n
ph
ρ

i�

∑

x ′

Ŵ
ρ∗
x ′xn

∗
x ′x̄σ+ , (B2)

and similarly for the variable δnx̄xρ+σ+ . Solving Eq. (B2) in the Markov and adiabatic approximations [39,40], the following

result is obtained:

δnx̄xρ+σ− =
(

1 + nph
σ

)

∑

x ′

Ŵσ
xx ′D(�ωx ′ − �ωx − �ωσ )nx̄x ′ρ+ − nph

σ

∑

x̄ ′

Ŵσ
x̄ ′x̄D(�ωx̄ − �ωx̄ ′ − �ωσ )nx̄ ′xρ+

+
(

1 + nph
ρ

)

∑

x̄ ′

Ŵ
ρ∗
x̄x̄ ′D

∗(�ωx̄ ′ − �ωx̄ − �ωρ)n∗
xx̄ ′σ+ − nph

ρ

∑

x ′

Ŵ
ρ∗
x ′xD

∗(�ωx − �ωx ′ − �ωρ)n∗
x ′x̄σ+ , (B3)

where D(ǫ) = −iπδ(ǫ) + P(1/ǫ). We thus expressed two-phonon-assisted electronic density matrices in terms of one-phonon-

assisted electronic density matrices. When these results are inserted in Eq. (33), we neglect all terms involving principal values

which, in principle, lead to polaron shifts in energies [9,40]. Furthermore, we note that the inserted terms involve multiple

summations over excitonic indices x and we use the random phase approximation to simplify the expression obtained. This

approximation is easier to understand and justify when we transfer to a particular representation for the excitonic index x, for

example, the one that we used in our computational study, where we took advantage of the translational symmetry and had

x = (Q,ν). Electronic density matrices with one-phonon assistance n(Q̄,ν̄)(Q,ν)q+
μ

are complex quantities, which acquire nontrivial

values during the evolution provided that the condition Q̄ + qμ = Q is satisfied. Having in mind the selection rule for carrier-

phonon matrix elements in the excitonic basis [see Eq. (52)], we can express the first term which describes the coupling of the

one-phonon-assisted electronic density matrix n(Q−qμ,ν̄)(Q,ν)q+
μ

to density matrices with higher phonon assistance [see Eq. (33)] as

−
1

i�

∑

ρx̄ ′

Ŵ
ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ−

=
π

�

∑

qρ ,ν ′,ν̄ ′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qρ

(Q,ν)(Q+qρ ,ν ′)

(

1 + nph
qρ

)

δ(�ω(Q+qρ ,ν ′) − �ω(Q,ν) − �ωqρ
)n(Q−qμ+qρ ,ν̄ ′)(Q+qρ ,ν ′)q+

μ
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−
π

�

∑

qρ ,ν̄ ′,ν̄ ′′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qρ

(Q−qμ,ν̄ ′′)(Q−qμ+qρ ,ν̄ ′)n
ph
qρ

δ
(

�ω(Q−qμ+qρ ,ν̄ ′) − �ω(Q−qμ,ν̄ ′′) − �ωqρ

)

n(Q−qμ,ν̄ ′′)(Qν)q+
μ

−
π

�

∑

qρ ,ν̄ ′,ν̄ ′′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qμ∗
(Q−qμ+qρ ,ν̄ ′)(Q+qρ ,ν̄ ′′)

(

1 + nph
qμ

)

δ
(

�ω(Q+qρ ,ν̄ ′′) − �ω(Q−qμ+qρ ,ν̄ ′) − �ωqμ

)

n∗
(Q,ν)(Q+qρ ,ν̄ ′′)q+

ρ

+
π

�

∑

qρ ,ν ′,ν̄ ′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qμ∗
(Q−qμ,ν ′)(Q,ν)n

ph
qμ

δ
(

�ω(Q,ν) − �ω(Q−qμ,ν ′) − �ωqμ

)

n∗
(Q−qμ,ν̄ ′)(Q−qμ+qρ ,ν ′)q+

ρ
. (B4)

In the first, the third, and the fourth sums in the previous equation we perform summation of terms which involve complex-

valued single-phonon-assisted electronic density matrices over the wave vector qρ , whereas in the second sum the summation is

not carried out over any of the wave vectors describing the density matrix. In the lowest approximation, we can assume that all

the sums apart from the second are negligible due to random phases at different wave vectors. For the sake of simplicity, in the

second sum we keep only the contribution for ν̄ ′′ = ν̄, thus expressing the coupling to higher-phonon-assisted density matrices

only in terms of the single-phonon-assisted density matrix for which the equation is formed. Restoring the more general notation,

we obtain the result

−
1

i�

∑

ρx̄ ′

Ŵ
ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ− = −

π

�

⎛

⎝

∑

ρx̃

∣

∣Ŵ
ρ
x̄x̃

∣

∣

2
nph

ρ δ(�ωx̄ − �ωx̃ + �ωρ)

⎞

⎠nx̄xμ+ . (B5)

Repeating similar procedure with the remaining three terms which describe coupling to density matrices with higher-order

phonon assistance in Eq. (33), we obtain the result embodied in Eqs. (36)–(38).

Analogously, the following results for two-phonon-assisted electronic density matrices δyxρ+σ− ,δyxρ+σ+ are obtained, solving

their respective differential equations in the Markov and adiabatic approximations

δyxρ+σ− =
(

1 + nph
σ

)

∑

x ′

Ŵσ
xx ′D(�ωx ′ − �ωx − �ωσ )y

(+)
x ′ρ − nph

ρ

∑

x ′

Ŵ
ρ∗
x ′xD

∗(�ωx − �ωx ′ − �ωρ)y
(−)
x ′σ , (B6)

and similarly for the variable δyxρ+σ+ . Inserting the results obtained in Eqs. (34) and (35) and performing the random phase

approximation as described, the result given in Eqs. (41) and (42) is obtained.

APPENDIX C: COMMENTS ON THE ENERGY CONSERVATION IN THE MODEL

In this appendix, we will comment on the energy conservation in the model after the external field has vanished. Using

Eqs. (21), (22), (29), and (30), we obtain the rate at which the energy of carriers and phonons changes after the pulse

∂t (Ec + Eph) = −
2

�

∑

μx̄x

(�ωx − �ωx̄ − �ωμ)Im
{

Ŵ
μ
x̄xnx̄xμ+

}

, (C1)

which exactly cancels the part from ∂t Ec-ph [see Eq. (23)] that originates from the free rotation term −i(ωx − ωx̄ − ωμ)nx̄xμ+ in

Eq. (33). The terms in ∂t Ec-ph which arise from the second and third terms in Eq. (33) are identically equal to zero each since

they are purely real, which is easily checked. Therefore, the rate at which the total energy changes after the pulse is equal to

the rate at which the carrier-phonon interaction energy changes due to the coupling of single-phonon-assisted to higher-order

phonon-assisted density matrices, (∂t Ec-ph)
higher

, which is equal to [see Eq. (33)]

(∂t Ec-ph)higher = −
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx̄ ′

Ŵ
μ
x̄xŴ

ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ−

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

−
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx̄ ′

Ŵ
μ
x̄xŴ

ρ

x̄ ′x̄δnx̄ ′xμ+ρ+

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx ′

Ŵ
μ
x̄xŴ

ρ∗
x ′xδnx̄x ′μ+ρ−

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx ′

Ŵ
μ
x̄xŴ

ρ

xx ′δnx̄x ′μ+ρ+

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (C2)

The first and the third terms on the right-hand side of Eq. (C2) are separately equal to zero (since the quantities under the

sign of the imaginary part are purely real), whereas the second and the fourth terms exactly cancel each other, so the total

energy is conserved. In particular, this is true for the form of the correlated parts of two-phonon-assisted density matrix δnx̄xρ+σ−

given in Eq. (B3) and the similar form of the density matrix δnx̄xρ+σ+ . In Eq. (C2), all the sums are performed over all

indices that are present in a particular expression, so the crux of the proof that the energy is conserved is the interchange of

dummy indices combined with the properties δn∗
x̄xρ+σ− = δnxx̄σ+ρ− and δnx̄xρ+σ+ = δnx̄xσ+ρ+ . However, when we apply the

random phase approximation, the aforementioned properties are lost and the energy is not conserved any more. For example,
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the first term on the right-hand side in Eq. (C2) after performing the random phase approximation is not equal to zero, but to

− 2π
�

(
∑

ρx̃ |Ŵρ
x̄x̃ |2n

ph
ρ δ(�ωx̃ − �ωx̄ + �ωρ))Re{

∑

μx̄x Ŵ
μ
x̄xnx̄xμ+} [see Eq. (B5)], which is just one term of the total rate (∂t Ec-ph)

higher

when we use the result from Eq. (36).
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Nonequilibrium optical conductivity in materials with localized electronic states
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A wide range of disordered materials contain electronic states that are spatially well localized. In this work, we

investigated the electrical response of such systems in nonequilibrium conditions to external electromagnetic field.

We obtained the expression for optical conductivity valid for any nonequilibrium state of electronic subsystem.

In the case of incoherent nonequilibrium state, this expression contains only the positions of localized electronic

states, Fermi’s golden rule transition probabilities between the states, and the populations of electronic states. The

same form of expression is valid both in the case of weak electron-phonon interaction and weak electron-impurity

interaction that act as perturbations of electronic Hamiltonian. The derivation was performed by expanding the

general expression for ac conductivity in powers of small electron-phonon interaction or electron-impurity

interaction parameter. Applications of the expression to two model systems, a simple one-dimensional Gaussian

disorder model, and the model of a realistic three-dimensional organic polymer material, were presented as well.

DOI: 10.1103/PhysRevB.90.224201 PACS number(s): 72.80.Ng, 72.80.Le

I. INTRODUCTION

Electronic transport in semiconductors has been attracting

significant research attention for more than half a century. Par-

ticular classes of semiconductors where interesting physical

effects arise in electronic transport are semiconductors where

a certain type of disorder is present in the system which leads

to localization of electronic states. These include amorphous

inorganic semiconductors (such as amorphous Si or Ge) [1],

inorganic crystals doped with randomly positioned impurities

[2,3], and organic semiconductors based on conjugated poly-

mers or small molecules [4–10]. The latter class of materials

triggered a particular interest in the past two decades due to

their low production cost, which led to the development of a

variety of organic electronic devices [11–17].

There is currently a solid understanding of equilibrium

electronic transport in disordered systems with localized

electronic states. dc transport in such systems can be modeled

using an equivalent network of resistors that connect each two

sites where electronic states are localized [18,19]. Electronic

conductivity or mobility in the material can then be calculated

by finding the equivalent resistance of the network or estimated

using percolation theory. However, dc mobility which quanti-

fies electronic transport properties over long length scales is in

many cases not the most relevant quantity when the description

of electronic transport processes is concerned. In particular,

in organic solar cells based on a bulk heterojunction of two

organic semiconductors, charge carriers travel over very short

length (on the order of nanometers) and time (on the order

of picoseconds) scales before they reach the interface of two

semiconductors [20–22]. The high frequency (terahertz) ac

mobility is a much better measure of charge transport over

such short time scales.

The approaches for simulation of ac conductivity are

usually based on Kubo’s formula which expresses the ac

conductivity in terms of the mean square displacement of a

diffusing carrier [23–27]. Such approaches therefore assume

*veljko.jankovic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

that carriers are in equilibrium and that they are only slightly

perturbed by external alternating electric field. However, in

many realistic situations, the carriers are not in equilibrium;

a typical example concerns the carriers created by external

optical excitation across the band gap of a semiconductor.

While general approaches for the treatment of nonequilibrium

electronic transport, such as the density matrix formalism [28]

or the nonequilibrium Green’s function formalism [29–31], do

exist, it is in practice quite difficult to apply them to disordered

materials, where one needs to consider large portions of

material to obtain reliable information about its properties.

The main goal of this work was to derive a simple

expression that relates the optical conductivity of a material

with localized electronic states to its microscopic parameters.

To accomplish this goal, we first derive in Sec. II the

relation between nonequilibrium optical conductivity and the

corresponding current-current correlation function. Then, in

Sec. III we derive an expression for the conductivity of the

system of localized states with electron-phonon interaction

that acts as perturbation valid for arbitrary nonequilibrium

state of the electronic subsystem. In the case of incoherent

nonequilibrium state, the obtained expression appears to have

a rather simple form—the only quantities that appear in it are

the positions of localized states, their populations, and the

phonon-induced transition probabilities between the states.

In Sec. IV we show that the same expression is obtained if

additional static potential acts as a perturbation. In Sec. V, we

present the results obtained from the application of the derived

formula to a simple one-dimensional hopping model and to a

realistic disordered conjugated polymer material. We discuss

our results in light of the other results that exist in the literature

in Sec. VI.

II. GENERAL EXPRESSION FOR NONEQUILIBRIUM

OPTICAL CONDUCTIVITY

In this section, we consider an arbitrary quantum system

described by the Hamiltonian Ĥ whose state is given by the

statistical operator ρ̂(t). We will derive the time evolution

of ρ̂(t) due to a weak external perturbation Ĥ ′(t) which is

turned on at t = 0. Next, for the system that contains charged

1098-0121/2014/90(22)/224201(11) 224201-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.224201
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particles, we will find the current density caused by external

electric field that acts as a perturbation. While the results of this

section are mostly available in the literature, we repeat them

here for completeness of the paper, as well as to introduce the

notation and terminology for the remainder of the paper.

A. Evolution of the density matrix

The equation for the density matrix ρ̂(t) describing the state

of the system for t > 0 is

i�
dρ̂(t)

dt
= [Ĥ + Ĥ ′(t),ρ̂(t)]. (1)

We search for the solution of Eq. (1) in the form ρ̂(t) =

ρ̂free(t) + f̂ (t), where

ρ̂free(t) = e−i Ĥ
�

t ρ̂(0)ei Ĥ
�

t (2)

is the statistical operator of the system in the absence of

external perturbation, ρ̂(0) is the statistical operator describing

the state of the system just before the external perturbation

is turned on, while f̂ (t) is the contribution to the statistical

operator due to linear response of the system. It satisfies the

differential equation

i�
df̂ (t)

dt
− [Ĥ ,f̂ (t)] = [Ĥ ′(t),ρ̂free(t)], (3)

with the initial condition f̂ (0) = 0̂. After solving the last

equation up to linear terms, we obtain [32]

ρ̂(t) = e−i Ĥ
�

t ρ̂(0)ei Ĥ
�

t +
1

i�
e−i Ĥ

�
t

∫ t

0

dt ′[Ĥ ′
I (t ′),ρ̂(0)]ei Ĥ

�
t ,

(4)

where Ĥ ′
I (t) = ei Ĥ

�
tĤ ′(t)e−i Ĥ

�
t . Equations given in this section

are strictly valid only for an isolated quantum system and do

not include the relaxation of the system from some nonequilib-

rium to the equilibrium state. In realistic systems, interaction

of the system with the environment leads to relaxation of

the system to the equilibrium state. Therefore, the equations

that we will derive are valid only if the characteristic time

of external perturbation is short compared to the relaxation

time τ . Since we shall study the response to the electric field

oscillating with a frequency ω, the aforementioned condition

reads

ωτ ≫ 1. (5)

In that case, the relaxation of the system towards equilibrium

during one period of the perturbation is negligible and can be

ignored in the considerations.

B. Nonequilibrium optical conductivity

Next, we assume that the system contains mobile charged

particles and that external electric field acts as a perturbation.

The system responds to external electric field by nonzero value

of current density. The current density operator is given by [33]

ĵa(r) =
1

2m

∑

n

q(p̂nδ
(3)(r − r̂n) + δ(3)(r − r̂n)p̂n)a, (6)

where q and m are the charge and the mass of a carrier,

respectively, while p̂n and r̂n are the momentum and the

position operator for a single carrier, and a denotes the

component of the current density operator (x, y, or z). Using

Eq. (4), we find that the current density at time t is given as

〈ĵa(r)〉t = Tr(ρ̂(t)ĵa(r))

= Tr(ρ̂(0)ĵa(t,r))

+
1

i�

∫ t

0

dt ′ Tr(ρ̂(0)[ĵa(t,r),Ĥ ′
I (t ′)]), (7)

where ĵa(t,r) = ei Ĥ
�

t ĵa(r)e−i Ĥ
�

t . The first term in Eq. (7) does

not depend on the electric field, while we are interested

in the response of the system to the applied electric field.

Consequently, we shall further only consider the second term

in Eq. (7) given as

Ja(t,r) =
1

i�

∫ t

0

dt ′ Tr(ρ̂(0)[ĵa(t,r),Ĥ ′
I (t ′)]). (8)

We shall also assume that we are dealing with a spatially

homogeneous system at the macroscopic scale. The current

density averaged over the volume of the system

Ja(t) =
1

V

∫

d3r Ja(t,r) (9)

will be considered as the response to the applied field. The

Hamiltonian of interaction with electric field E(t) is given as

[34]

Ĥ ′(t) = −�̂ · E(t), (10)

where �̂ is the electric dipole moment operator defined as

�̂ = q
∑

n

r̂n. (11)

Using Eqs. (9), (8), and (10), the quantity Ja(t) can be

expressed as

Ja(t) =

∫ t

0

dt ′σab(t,t ′)Eb(t ′), (12)

where the tensor

σab(t,t ′) =
i

�V
Tr(ρ̂(0)[Ĵa(t),�̂b(t ′)]) (13)

describes the linear response to the applied electric field. In

Eq. (13), the operator Ĵa(t) is defined as

Ĵa(t) =

∫

d3r ĵa(t,r) =
q

m

∑

n

(p̂n)a. (14)

The operators �̂a(t) and Ĵb(t) satisfy the equal time commu-

tation relation

[�̂a(t),Ĵb(t)] = i�
Nq2

m
δab, (15)

where N is the number of carriers, and the continuity equation

Ĵa(t) =
d

dt
�̂a(t). (16)

When the condition

[ρ̂(0),Ĥ ] = 0̂ (17)

is satisfied, the tensor σab(t,t ′) defined in Eq. (13) does not

depend separately on t and t ′, but only on their difference
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u = t − t ′. The optical conductivity tensor can then be defined

as σab(ω) =
∫ +∞

0
du σab(u) eiωu and reads

σab(ω) =
i

�V

∫ +∞

0

dt eiωt Tr(ρ̂(0)[Ĵa(t),�̂b(0)]). (18)

Using Eqs. (16) and (15), Eq. (18) can be cast into a more

familiar form (n = N/V is the concentration of carriers)

σab(ω) = i
nq2

mω
δab +

1

�ωV

∫ +∞

0

dt eiωt

× Tr(ρ̂(0)[Ĵa(t),Ĵb(0)]). (19)

The equation for the optical conductivity (19) can be consid-

ered as a generalization to the nonequilibrium stationary case

of well-known results [35] which relate optical conductivity to

the equilibrium current-current correlation function. General-

izations of this sort have already been proposed in the literature

[in the context of the fluctuation-dissipation theorem, which

relates the dissipative part of the optical conductivity to the

(non)equilibrium current fluctuations] [36,37].

In the case, when [ρ̂(0),Ĥ ] �= 0̂, the tensor σab(t,t ′) defined

in Eq. (13) depends separately on t and t ′

σab(t,t ′) = −
1

i�V
Tr

(

e− i
�

Ĥ t ρ̂(0)e
i
�

Ĥ t [Ĵa(0),�̂b(−(t − t ′))]
)

.

(20)

Using Eqs. (16) and (15), one obtains the following expression:

σab(t,t ′) =
nq2

m
δab −

i

�V

∫ t−t ′

0

dτ

× Tr
(

e− i
�

Ĥ (t−τ )ρ̂(0)e
i
�

Ĥ (t−τ )[Ĵa(τ ),Ĵb(0)]
)

. (21)

III. OPTICAL CONDUCTIVITY IN THE PRESENCE

OF ELECTRON-PHONON INTERACTION

In this section, we derive the expression for optical

conductivity of a system with localized electronic states in the

presence of weak electron-phonon interaction. In Sec. III A

we introduce the Hamiltonian of the system, derive the current

operator, and obtain the frequency-time representation of the

conductivity tensor. In Sec. III B, we derive the expression

for conductivity valid for the arbitrary reduced density matrix

of the electronic subsystem and in the limit of low carrier

concentration. For incoherent density matrix of the electronic

subsystem, this expression contains only the populations of

single-particle electronic states, their spatial positions, and

Fermi’s golden rule transition probabilities between these

states.

A. Model Hamiltonian and preliminaries

We consider the system of electrons and phonons described

by the Hamiltonian

Ĥ = Ĥ0 + Ĥe-ph = Ĥe + Ĥph + Ĥe-ph, (22)

where

Ĥ0 = Ĥe + Ĥph =
∑

α

ǫα ĉ†α ĉα +
∑

k

�ωk b̂
†
k b̂k (23)

is the Hamiltonian of noninteracting electrons and phonons,

while

Ĥe-ph =
∑

k

∑

αα′

(g−
αα′,k ĉ†α ĉα′ b̂k + g+

αα′,k ĉ†α ĉα′ b̂
†
k) (24)

is the electron-phonon interaction Hamiltonian. In previous

expressions, b̂
†
k (b̂k) are the creation (annihilation) operators for

the phonon mode k that satisfy bosonic commutation relations,

ĉ†α (ĉα) are creation (annihilation) operators for electronic

single-particle state α that satisfy fermion anticommutation

relations, �ωk is the energy of a mode k phonon, while

ǫα is the energy of electronic state α. Matrix elements of

electron-phonon interaction satisfy the relation

g±
αα′,k = g∓∗

α′α,k (25)

and their particular form depends on details of the electron-

phonon interaction mechanism.

We will assume that the phonon subsystem is in thermal

equilibrium and therefore we will adopt the following factor-

ization of the initial density matrix ρ̂(0):

ρ̂(0) = ρ̂e ρ̂ph,eq. (26)

The operator ρ̂ph,eq describes the phonon subsystem in equi-

librium at the temperature Tph = 1
kBβph

and it is given as

ρ̂ph,eq =
e−βphĤph

Trph e−βphĤph

, (27)

whereas ρ̂e is the reduced density matrix of the electronic

subsystem. The state of the system described by Eq. (26)

assumes that electrons are out of equilibrium, while the

phonons are in equilibrium. Such states can arise naturally in

several relevant physical scenarios. A typical example of such

a scenario is a semiconductor structure excited with photons

whose energy is larger than the band gap of the structure.

Most of the energy of incident photons is then transferred

to electronic degrees of freedom and therefore it is quite

reasonable to assume that electrons are out of equilibrium,

while the phonons are in equilibrium.

The electric dipole moment operator �̂a introduced in

Eq. (11) can be expressed in the second quantization repre-

sentation as

�̂a = q
∑

αβ

xa;αβ ĉ†α ĉβ , (28)

where xa;αβ ≡ 〈α|x̂a|β〉 are the matrix elements of the single

electron position operator. Using Eq. (16), we find that the

operator Ĵa reads Ĵa = Ĵ (1)
a + Ĵ (2)

a , where

Ĵ (1)
a =

iq

�

∑

αβ

(ǫα − ǫβ)xa;αβ ĉ†α ĉβ (29)

describes the contribution to the operator Ĵa due to direct

interaction of electrons with electric field, while

Ĵ (2)
a =

iq

�

∑

k

∑

αβ

(F−
a;αβ,k ĉ†α ĉβ b̂k + F+

a;αβ,k ĉ†α ĉβ b̂
†
k) (30)
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describes the contribution arising from electron-phonon inter-

action. The coefficients F±
a;αβ,k are given by

F±
a;αβ,k =

∑

α′

(g±
αα′,k xa;α′β − xa;αα′g±

α′β,k) (31)

and satisfy the relation

F±
a;αβ,k = −F∓∗

a;βα,k. (32)

In this work, we are mainly interested in the case of localized

electronic states when the matrix elements of the position

operator between different states are negligible. This condition

can be mathematically expressed as

xa;αβ = δαβ xa;α. (33)

Therefore, in the case of localized electronic states, Ĵ (1)
a = 0

and consequently Ĵa = Ĵ (2)
a .

Next, we treat electron-phonon interaction as a perturbation

and perform the expansion of Eq. (21) with respect to small

interaction constants g±
αβ,k . The evolution operator that appears

in Eq. (21) can be expanded in Dyson series as

e− i
�

Ĥ t = e− i
�

Ĥ0t +
1

i�

∫ t

0

dt ′ e− i
�

Ĥ0(t−t ′)Ĥe-phe
− i

�
Ĥ0t

′

+ · · · .

(34)

Consequently, the expansion of the time-dependent operator

Ĵa(τ ) from Eq. (21) reads

Ĵa(τ ) = e
i
�

Ĥ0τ Ĵae
− i

�
Ĥ0τ +

[

e
i
�

Ĥ0τ Ĵae
− i

�
Ĥ0τ ,

∫ τ

0

dt ′

i�
e

i
�

Ĥ0t
′

Ĥe-phe
− i

�
Ĥ0t

′

]

+ · · · . (35)

Furthermore, the expansion of the first term under trace in

Eq. (21) gives

e− i
�

Ĥ (t−τ )ρ̂(0)e
i
�

Ĥ (t−τ )

= ρ̂(0) +

+∞
∑

n=1

1

n!

(

−
i(t − τ )

�

)n

[Ĥ , . . . ,[Ĥ ,ρ̂(0) ] . . . ]
︸ ︷︷ ︸

n

.

(36)

Our aim is to obtain the first nonzero term in the expansion

of Eq. (21) in the case of localized electronic states. It

is therefore sufficient to take only the first term in the

expansion given by Eq. (35) and to isolate the contribution

from the expansion given in Eq. (36) which does not contain

electron-phonon coupling constants. One can show by direct

inspection, using the factorization of the initial density matrix

given by Eq. (26), that every summand under the sum on the

right hand side of Eq. (36) has only one term which does

not contain electron-phonon coupling constants and which is

of the type 1
n!

(− i(t−τ )

�
)n[Ĥe, . . . ,[Ĥe,ρ̂e ] . . . ]

︸ ︷︷ ︸

n

ρ̂ph,eq. All these

contributions can be resummed so that we finally obtain the

zeroth-order term in the expansion given by Eq. (36)

e− i
�

Ĥ (t−τ )ρ̂(0)e
i
�

Ĥ (t−τ ) = e− i
�

Ĥe(t−τ )ρ̂(0) e
i
�

Ĥe(t−τ ) + · · · .

(37)

The first nontrivial term in the expansion of Eq. (21) in the

case of localized electronic states is thus given by

σab(t,t ′) =
nq2

m
δab −

i

�V

∫ t−t ′

0

dτ

× Tr
(

ρ̂(0) e
i
�

Ĥe(t−τ )
[

Ĵ (2),0
a (τ ),Ĵ

(2)
b (0)

]

e− i
�

Ĥe(t−τ )
)

,

(38)

where Ĵ (2),0
a (τ ) = e

i
�

Ĥ0τ Ĵ (2)
a e− i

�
Ĥ0τ . Next, we consider the

frequency-time representation of the conductivity tensor which

can be defined as

σab(t,ω) =

∫ +∞

0

du σab(t,t − u) eiωu. (39)

When σab(t,t ′) depends only on the difference t − t ′, Eq. (39)

defines the conventional optical conductivity tensor σab(ω).

The frequency-time representation of the conductivity tensor

given in Eq. (38) is

σab(t,ω) =
inq2

mω
δab +

1

�ωV

∫ +∞

0

du eiωu

× Tr
(

ρ̂(0) e
i
�

Ĥe(t−u)
[

Ĵ (2),0
a (u),Ĵ

(2)
b

]

e− i
�

Ĥe(t−u)
)

.

(40)

In the case when σab(t,ω) varies slowly with t on the 1/ω

time scale, it can be interpreted as the conventional optical

conductivity tensor at time t .

We also note that when the condition of localized electronic

states [Eq. (33)] is not satisfied, the dominant term in the Ĵa

operator is the Ĵ (1)
a term. The leading terms in expansions

(35) and (36) are then given by first terms in Eqs. (35) and

(37), where Ĵa is replaced by Ĵ (1)
a in Eq. (35). These terms are

independent of electron-phonon coupling constants and lead to

the following expression for the frequency-time representation

of the conductivity tensor:

σab(t,ω) =
inq2

mω
δab +

1

�ωV

∫ +∞

0

du eiωu

× Tr
(

ρ̂(0) e
i
�

Ĥe(t−u)
[

Ĵ (1),0
a (u),Ĵ

(1)
b

]

e− i
�

Ĥe(t−u)
)

.

(41)

The physical origin of this term is direct absorption

of electromagnetic radiation by the electronic subsystem.

However, since this term vanishes for a system with localized

electronic states, which is of main interest in this work, this

term will not be considered in the remainder of the paper.

The focus will be on the term from Eq. (40) which arises due

to phonon-assisted transitions between states, as will become

evident in Sec. III B.

B. Frequency dependence of mobility

in low carrier density limit

We will now start from Eq. (40) for the frequency-

time representation of conductivity to derive the expres-

sion for the optical conductivity that explicitly contains

the populations of electronic states (diagonal elements

of ρ̂e) and coherences (off-diagonal elements of ρ̂e). By

replacing Eq. (30) into the expression for mean value
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Tr(ρ̂(0) e
i
�

Ĥe(t−u)[Ĵ (2),0
a (u),Ĵ

(2)
b ]e− i

�
Ĥe(t−u)) and tracing out the phonon degrees of freedom one obtains

Tr
(

ρ̂(0) e
i
�

Ĥe(t−u)
[

Ĵ (2),0
a (u),Ĵ

(2)
b

]

e− i
�

Ĥe(t−u)
)
(

iq

�

)−2

=
∑

k

∑

αβγ δ

(

F−
a;αβ,kF

+
b;γ δ,k e− i

�
(ǫγ −ǫδ+�ωk)u − F+

a;αβ,kF
−
b;γ δ,k e− i

�
(ǫγ −ǫδ−�ωk )u

)

e
i
�

(ǫα−ǫβ+ǫγ −ǫδ )t 〈ĉ†α ĉβ ĉ†γ ĉδ〉e

+
∑

k

∑

αβγ

(

F−
a;αγ,kF

+
b;γβ,k e− i

�
(ǫγ −ǫβ+�ωk )u − F+

b;αγ,kF
−
a;γβ,k e− i

�
(ǫα−ǫγ +�ωk )u

)

Nk e
i
�

(ǫα−ǫβ )t 〈ĉ†α ĉβ〉e

+
∑

k

∑

αβγ

(

F+
a;αγ,kF

−
b;γβ,k e− i

�
(ǫγ −ǫβ−�ωk )u − F−

b;αγ,kF
+
a;γβ,k e− i

�
(ǫα−ǫγ −�ωk )u

)

(1 + Nk) e
i
�

(ǫα−ǫβ )t 〈ĉ†α ĉβ〉e. (42)

Here, Nk is the number of phonons in mode k given by

the Bose-Einstein distribution, 〈· · · 〉e denotes averaging with

respect to ρ̂e, and coefficients F±
αβ,k are given as [by the virtue

of the definition of the localized electronic states from Eq. (33)]

F±
a;αβ,k = g±

αβ,k(xa;β − xa;α). (43)

See Eqs. (31) and (32).

In the limit of low carrier densities, only single-particle

electronic excitations are relevant. One can therefore restrict

the Hilbert space of the system to the space given as a product

of single-particle electronic space and the phonon space. In

this restricted space, the operators c†α ĉβ and c†α ĉβ ĉ†γ ĉδ reduce

respectively to |α〉〈β| and δβγ |α〉〈δ|, while the Hamiltonian in

this restricted space reads

Ĥ =
∑

α

ǫα|α〉〈α| +
∑

k

�ωk b̂
†
k b̂k

+
∑

k

∑

αα′

(g−
αα′,k |α〉〈α′|b̂k + g+

αα′,k |α〉〈α′|b̂
†
k). (44)

The average values of the expressions appearing in Eq. (42)

are then given as

〈ĉ†α ĉβ〉e = Tre(ρ̂eĉ
†
α ĉβ) = 〈β|ρ̂e|α〉 (45)

and

〈ĉ†α ĉβ ĉ†γ ĉδ〉e = Tre(ρ̂eĉ
†
α ĉβ ĉ†γ ĉδ) = δβγ 〈δ|ρ̂e|α〉. (46)

Combining Eqs. (45), (46), (42), and (40), the following

equation for the frequency-time representation of the conduc-

tivity tensor is obtained:

σab(t,ω) = i
nq2

mω
δab − fab(t,ω) − fab(t, − ω)∗, (47)

where fab(t,ω) is defined as

fab(t,ω) =
q2

�2ωV

∑

k

∑

αβγ

e
i
�

(ǫα−ǫβ )t 〈β|ρ̂e|α〉

× (F−
a;αγ,kF

+
b;γβ,kD(ǫβ − ǫγ − �ωk + �ω)(1 + Nk)

+F+
a;αγ,kF

−
b;γβ,kD(ǫβ − ǫγ + �ωk + �ω)Nk). (48)

Function D(ǫ) is given as

D(ǫ) = πδ(ǫ) + i P(1/ǫ). (49)

In the expressions (47) and (48), there are two clear signatures

of nonequilibrium: the explicit time dependence and the

presence of off-diagonal elements of ρ̂e (coherences). Both

of these effects would be absent for the system in equilibrium.

Next, we consider the case when the reduced density matrix

of the electronic subsystem is an analytic function of the

electronic Hamiltonian Ĥe, when we have

〈β|ρ̂e|α〉 = δαβ rα, (50)

where

rα = 〈α|ρ̂e|α〉 (51)

is the average occupation of electronic state α. Then in Eq. (48)

we remain only with the average occupations of individual

electronic states and since the quantity fab(t,ω) does not

depend explicitly on t , σab(t,ω) also does not depend on t

and represents the frequency-dependent conductivity tensor.

Starting from Eqs. (47) and (48) one can show that under the

aforementioned condition the following relation for the real

part of the optical conductivity holds:

Re σab(ω) =
q2

2�ωV

∑

αβ

(xa;β − xa;α)(xb;β − xb;α)rβ

× [wβα,ph(ǫβ − ǫα + �ω)

−wβα,ph(ǫβ − ǫα − �ω)], (52)

where the terms wβα,ph are of the form

wβα,ph(ǫβ − ǫα) =
2π

�

∑

k

[|g−
αβ,k|

2δ(ǫβ − ǫα + �ωk)Nk

+ |g+
αβ,k|

2δ(ǫβ − ǫα − �ωk)(1 + Nk)].

(53)

These are identical to the rates that would be obtained by

applying Fermi’s golden rule to calculate the transition prob-

ability from the state β to the state α due to electron-phonon

interaction. Equation (52) gives a rather simple expression for

the dissipative part of the optical conductivity as it involves the

positions of electronic states, their occupations, and Fermi’s

golden rule transition probabilities. Equations (52) and (53)

also offer an intuitive interpretation of elementary processes

giving contribution to the dissipative part of the optical

conductivity in the lowest nontrivial order of the perturbation

expansion. These processes are one-particle transitions β → α

induced by emission (absorption) of one phonon accompanied

by emission (absorption) of the quantum of the external

electromagnetic field �ω. One should note that within our
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lowest-order perturbative approach, one does not take into

account multiphonon transitions which may be important in

some systems.

From the definition of mobility, one then also obtains for

the real part of ac mobility

Re μab(ω) =
q

2�ω

∑

αβ

(xa;β − xa;α)(xb;β − xb;α)
rβ

∑

γ rγ

× [wβα,ph(ǫβ − ǫα + �ω)

−wβα,ph(ǫβ − ǫα − �ω)]. (54)

Equation (54) was derived under the assumption that hopping

rates have the mathematical form given by Eq. (53). In

Sec. V, the hopping rates given by Eqs. (70) and (66) will

be used. Equation (70) can be derived from Eq. (53) under

the assumption that electron-phonon coupling elements are

proportional to wave function moduli overlap (see Ref. [38]).

Equation (66) can then be obtained from Eq. (70) if one

assumes that wave function overlaps decay exponentially with

distance between states and that phonon density of states

(DOS) is such that energy dependence in Eq. (70) disappears.

Therefore, both Eqs. (70) and (66) are compatible with the

mathematical structure of Eq. (53) and it is appropriate to use

them in Eq. (54).

IV. OPTICAL CONDUCTIVITY IN THE PRESENCE

OF IMPURITY SCATTERING

In this section, we will show that similar expressions for

optical conductivity are obtained if electrons interact with an

additional static potential, rather than with phonons. A typical

cause of such potential could be the impurities that are present

in the material.

Therefore, we consider the Hamiltonian

Ĥ = Ĥ0 + Û =
∑

α

ǫα ĉ†α ĉα +
∑

αβ

Aαβ ĉ†α ĉβ , (55)

where Ĥ0 is the noninteracting part of the Hamiltonian, while

Û describes the interaction of electrons with static potential.

The operator Ĵa can be computed using Eq. (16) and reads

Ĵa = Ĵ (dir)
a + Ĵ (imp)

a

=
iq

�

∑

αα′

xa;αα′ (ǫα − ǫα′)ĉ†α ĉα′ +
iq

�

∑

αβ

Aa;αβ ĉ†α ĉβ .

(56)

The Ĵ (dir)
a operator is analogous to the operator Ĵ (1)

a in the case

of a system with electron-phonon interaction and describes

direct interaction of electrons with perturbing electric field. On

the other hand, the Ĵ
(imp)
a operator describes the contribution

to Ĵa due to the interaction with the static potential (or, in

particular, with impurities). The coefficients Aa;αβ that appear

in Eq. (56) are given as

Aa;αβ =
∑

α′

(Aαα′xa;α′β − xa;αα′Aα′β) (57)

and satisfy [compare to Eq. (32)]

Aa;βα = −A∗
a;αβ . (58)

We will treat the interaction with the static potential as

a perturbation and we will derive the formula for optical

conductivity in the lowest order of the perturbation expansion

with respect to small coefficients Aαβ . We will assume that

electronic states are localized; see Eq. (33). This way, the

expression for the operator Ĵa simplifies to

Ĵa = Ĵ (imp)
a =

iq

�

∑

αβ

Aαβ(xa;β − xa;α)ĉ†α ĉβ . (59)

The starting point for the perturbation expansion is again

Eq. (21). Following a discussion, similar to that conducted in

Sec. III, we obtain that the first nonzero term in the expansion

of Eq. (21) in the case of localized electronic states is quadratic

in quantities Aαβ and that the corresponding expression for

the time-frequency representation of the conductivity tensor

[Eq. (39)] reads

σab(t,ω) =
inq2

mω
δab +

1

�ωV

∫ +∞

0

dt eiωt

×Tr
(

ρ̂(0) e
i
�

Ĥ0(t−u)
[

Ĵ (imp),0
a (u),Ĵ

(imp)

b

]

e− i
�

Ĥ0(t−u)
)

.

(60)

The notation Ĵ
(imp),0
a (t) again suggests that the time depen-

dence is governed by the noninteracting Hamiltonian.

In the low density limit, the projection of the Hamiltonian

onto the single-particle subspace reads

Ĥ0 =
∑

α

ǫα|α〉〈α| +
∑

αβ

Aαβ |α〉〈β|, (61)

with the average values 〈ĉ†α ĉβ〉 = 〈β|ρ̂(0)|α〉. Deriving

Eq. (60) we obtain the expression for the frequency-time

representation of the conductivity tensor which bears formal

resemblance to the analogous expression [Eq. (47)] in the case

with electron-phonon interaction,

σab(t,ω) = i
nq2

mω
δab − fab(t,ω) − fab(t, − ω)∗, (62)

where fab(t,ω) is defined as

fab(t,ω) =
q2

�2ωV

∑

αβγ

e
i
�

(ǫα−ǫβ )t 〈β|ρ̂e|α〉Aαγ (xa;γ − xa;α)

×Aγβ(xb;β − xb;γ )D(ǫβ − ǫγ + �ω). (63)

Again, when the initial density matrix ρ̂(0) is an analytic

function of the electronic part of the Hamiltonian Ĥ0, the

quantity fab(t,ω) defined in Eq. (63) contains only populations

of the individual electronic states rα = 〈α|ρ̂(0)|α〉 and does

not depend explicitly on time. Thus σab(t,ω) is the optical

conductivity tensor (entirely expressed in terms of populations

of electronic states). The final expression for the real part of ac

mobility in the presence of interaction with impurities reads

Re μab(ω) =
q

2�ω

∑

αβ

(xa;β − xa;α)(xb;β − xb;α)
rβ

∑

γ rγ

× [wβα,imp(ǫβ − ǫα + �ω)

−wβα,imp(ǫβ − ǫα − �ω)], (64)
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where the terms wβα,imp are of the form

wβα,imp(ǫβ − ǫα) =
2π

�
|Aαβ |2δ(ǫβ − ǫα). (65)

We emphasize the formal analogy between Eqs. (54) and

(64) for the ac mobility. The form of both equations is

the same, regardless of the particular interaction mechanism

(electron-phonon interaction or interaction with an additional

static potential) which causes transitions between localized

states.

V. NUMERICAL RESULTS

A. One-dimensional model with Miller-Abrahams rates

and Gaussian density of states

In this section, we apply the derived formulas to a one-

dimensional Gaussian disorder model. The assumption of

the model is that the states are located on the sites of a

one-dimensional lattice with spacing a and that the energies

of the states are drawn from a Gaussian distribution with

standard deviation σ . The transition rates were assumed to

take the Miller-Abrahams form and only the hops between

nearest neighbors were considered. Under these assumptions,

the transition rate from the state β to the state γ has the form

wβγ = w0 e−a/aloc exp

(
ǫβ − ǫγ − |ǫβ − ǫγ |

2kBT

)

, (66)

where aloc is the localization length which is assumed equal for

all sites, T is the temperature, and w0 is a constant prefactor.

Real part of the frequency dependent mobility can under all

these assumptions be written in the form

Re μxx(ω) =
∑

γ

μγ,γ+1(ω), (67)

where μγ,γ+1(ω) is the contribution of the pair of sites

(γ,γ + 1) given as

μγ,γ+1(ω) =
qa2

2kBT
w0 e−a/aloc M(x). (68)

In the last equation, x is a dimensionless parameter defined

as x = β�ω [β = 1/(kBT )], while M(x) is the function that

reads

M(x) =

⎧

⎨

⎩

rmin∑

δ rδ
e−xγ,γ+1 × 2 sinh x

x
, x < xγ,γ+1,

rmax∑

δ rδ

1
x

(1 − exγ,γ+1e−x) + rmin∑

δ rδ

1
x

(1 − e−xγ,γ+1e−x), x > xγ,γ+1,
(69)

where xγ,γ+1 = β|ǫγ − ǫγ+1| and rmax (rmin) is the population

of the state with larger (smaller) energy among the states γ

and γ + 1.

The frequency range in which this formula can be applied

is determined by the condition (5) where τ is the relaxation

time towards equilibrium. The relaxation time τ must be

larger than the reciprocal value of largest hopping rates

τ � w−1
0 ea/aloc , so that the relevant frequencies obey the

condition f � (2π )−1 w0 e−a/aloc .
The calculations were performed for a lattice with 105

sites, where the following values of the parameters were used:
T = 300 K, σ = 100 meV, a = 1 nm, aloc = 2a/9, and
w0 = 1.0×1014 s−1. Two different cases for initial popula-
tions of localized states were considered. In case 1, we assume
that initial distribution of carriers are nonequilibrium, but
still of Maxwell-Boltzmann form with electronic temperatures
Te which can be different than T . Therefore, in this case
rγ = e−βeǫγ , where βe = 1/(kBTe). In case 2, we assume that
only the states in some narrow energy window are initially
populated, while the other states are not populated. The initial
populations are then given as rγ = 1 for ǫmin < ǫγ < ǫmax,
rγ = 0 otherwise. The results for different values of the
parameter Te in case 1 and different intervals (ǫmin,ǫmax) in
case 2 are shown in Figs. 1 and 2.

As can be immediately seen from expressions in

Eqs. (67)–(69), for sufficiently high frequencies f , such that

hf > maxγ |ǫγ − ǫγ+1|, real part of the ac mobility decreases

as Re μxx(f ) ∼ 1/f . On the other hand, for sufficiently low

frequencies f , such that hf < minγ |ǫγ − ǫγ+1|, real part of

the mobility tends to a constant value which depends on the

particular choice of rγ .

In case 1 and in the intermediate frequency range real part of

the ac mobility reaches its maximum value. The height of this

maximum (measured relative to the low-frequency limit of the

mobility) decreases with increasing the temperature Te. The

position of the maximum moves towards lower frequencies

with increasing the temperature Te. Namely, the position of

the maximum of the mobility spectrum is determined by the

positions of the maximum of the function M(x). For all values

FIG. 1. (Color online) Frequency dependence of real part of

the normalized mobility μ̃xx = μxx/(qa2βw0e
−a/aloc/2) for different

electronic temperatures Te in one-dimensional Gaussian disorder

model. The nonequilibrium populations of electronic states were

assumed as rγ = e−βeǫγ .
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FIG. 2. (Color online) Frequency dependence of real part of

the normalized mobility μ̃xx = μxx/(qa2βw0e
−a/aloc/2) for different

choices of the energy interval ǫ ∈ (ǫmin,ǫmax) of the populated states

in one-dimensional Gaussian disorder model. The nonequilibrium

populations of electronic states were assumed as rγ = 1 for ǫmin <

ǫγ < ǫmax, and rγ = 0 otherwise.

of the parameter Te considered in Fig. 1, it can be shown (by

direct inspection) that the function M(x) has its maximum at

x = xγ,γ+1. At low temperatures Te the lowest energy states

have the highest values of the factors rγ and the typical energy

difference |ǫγ − ǫγ+1| of the pair of neighboring sites giving

significant contribution to the mobility (at least one of the states

should have high enough population factor) is fairly high, so

that the peak of the contribution μγ,γ+1 is at high frequencies.

This typical energy difference decreases with increasing the

temperature Te (since higher energy states, which are more

numerous, also have appreciable values of population factors),

which leads to the shift of the peak position towards lower

frequencies. For small enough |ǫγ − ǫγ+1| (compared to kBT ),

the function M(x), for x < xγ,γ+1, can be approximated by a

constant, which leads to flattening of the maximum, as seen at

higher electronic temperatures in Fig. 1.

A similar analysis can be used to understand the shapes

of the mobility spectra for case 2 shown in Fig. 2. The

contribution to the mobility of the pair (γ,γ + 1) reaches

its maximum at frequency f∗ such that hf∗ > |ǫγ − ǫγ+1|.

When the interval (ǫmin,ǫmax) is in the tail of the Gaussian,

the typical energy difference |ǫγ − ǫγ+1| is rather high for

the pairs contributing significantly to the mobility, so that the

maximum of the mobility spectrum is at high frequencies.

Moving the interval towards the center of the Gaussian, the

typical energy difference decreases and so does the position of

the maximum of the mobility spectrum. For sufficiently small

energy difference (compared to kBT ), the function M(x) can

be well approximated by a constant in the range x < xγ,γ+1

which explains the disappearance of the maximum.

Since the flattening of the maximum in the mobility

spectrum appears due to the presence of carriers at higher

energies under nonequilibrium conditions, this flattening may

be considered as a signature of nonequilibrium effects in the

system. It is less pronounced when nonequilibrium distribution

is of Maxwell-Boltzmann type with a different electronic

temperature and more pronounced in the case when the carriers

are present only at energies in a certain spectral window—a

situation where the carrier distribution more strongly differs

from the equilibrium one.

B. Model of a disordered conjugated polymer material

Next, we apply the derived formula for frequency depen-

dence of the mobility to a realistic polymer material—strongly

disordered poly(3-hexylthiophene) (P3HT) polymer. The po-

sitions of electronic states, hopping probabilities between the

states, and the energies of states were extracted from our pre-

vious calculations reported in Ref. [39]. For completeness, we

briefly summarize the methodology employed in these calcula-

tions. First, the positions of atoms were obtained from classical

molecular dynamics simulations using a simulated annealing

procedure. 50 different realizations of the 5 nm×5 nm×5 nm

portion of material (that consists of 120 24 atoms) were

obtained from these simulations and were subsequently used

in electronic structure calculations. Charge patching method

[40] was used to obtain the single-particle Hamiltonian that

approximates well the Hamiltonian that would be obtained

from density functional theory in local density approximation.

This Hamiltonian was diagonalized using the overlapping

fragments method [41]. The transition rates for downhill

transitions between the states were then calculated as

wαβ = α2S2
αβ[N (ǫαβ) + 1]Dph(ǫαβ)/ǫαβ, (70)

where Dph(E) is the phonon DOS normalized such that
∫ ∞

0
Dph(E)dE = 1, ǫαβ = |ǫα − ǫβ |, N (E) is the phonon

occupation number given by the Bose-Einstein distribution at

a temperature T , Sαβ =
∫

d3r|ψα(r)| · |ψβ(r)| is the overlap

of the wave function moduli, and α is a constant factor equal

to 107 eV s−1/2. The phonon energies and the phonon DOS

were calculated from the classical force field that was used

in molecular dynamics simulations by diagonalizing the

corresponding dynamical matrix, as reported in Ref. [42].

Equation (70) gives a good approximation of the transition

rates that would be obtained from Eq. (53), as shown in

Ref. [38]. The value of the parameter α in Eq. (70) was chosen

to provide the best fit of Eqs. (70) to (53).

Frequency dependence of the real part of hole mobility

was then calculated using Eqs. (52) and (70) where all data

from 50 different realizations of the 120 24 atom system were

used. The results obtained from the calculation are presented

in Fig. 3. We note that the data from electronic structure

calculations that were performed are not sufficient to yield

convergent results for the mobility. This can be evidenced

from the noisy dependence in Fig. 3 and from the fact that the

mobility obtained from a smaller number of realizations of the

system is different than the one in Fig. 3. Larger number of

calculations or the calculations performed on larger systems

would be needed to obtain converged value of the mobility.

However, such calculations require a huge computational cost

and we cannot currently perform them. Nevertheless, from the

set of calculations that were performed one can identify the

main trends in the frequency dependence of the mobility. As

in the simple model discussed in Sec. V A, the real part of

the mobility exhibits a peak at a frequency that corresponds to

typical transition energies in the system, which is then followed
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FIG. 3. (Color online) Frequency dependence of real part of

hole mobility in disordered P3HT polymer for different electronic

temperatures Te and the lattice temperature T = 300 K.

by a decay at higher frequencies. The mobility also increases

with an increase in electronic temperature, as expected.

We next compare the results obtained in this work to

measurements of high-frequency P3HT hole mobility reported

in the literature. These measurements are typically based on

time-resolved terahertz spectroscopy [43] and cover the fre-

quencies around 1 THz. At these frequencies our simulations

yield the mobilities on the order of (50–100) cm2/(V s). In

Ref. [44] the mobilities on the order of 10 cm2/(V s) were

extracted from the fits to measurements. On the other hand,

the mobilities on the order of 50 cm2/(V s) were obtained in

Ref. [45]. Therefore, the simulation yields the same order of

magnitude of the terahertz mobility as previously reported in

experiments.

VI. DISCUSSION

In this section, we discuss our results in light of other results

that exist in the literature and concern optical conductivity in

a system with localized states.

Our result for nonequilibrium optical conductivity should,

of course, in the special case of equilibrium reduce to the

formula valid in equilibrium case. A well-known expression

for the real part of optical conductivity in equilibrium that

relates it to the mean square displacement of a diffusing carrier

reads (see, for example, Ref. [24])

Reσ (ω) = −
q2ω2

V

tanh (β�ω/2)

�ω
Re

∫ +∞

0

dt eiωt�X2(t),

(71)

where �X2(t) = 〈(X̂(t) − X̂(0))2〉, X̂ is the sum of position

operators of all electrons, and 〈· · · 〉 = Tr(e−βĤ · · · )/Tr e−βĤ

is the thermodynamic average at the temperature T =1/(βkB).

While, at first sight, Eq. (71) seems to lead to rather different

results for the lowest-order optical conductivity than the one

embodied in Eq. (52), a detailed proof can be conducted,

showing that the two expressions are identical for the system

with localized states in equilibrium. The details of this proof

are given in the Appendix.

A somewhat different version of Eq. (71) is often encoun-

tered in the literature which contains the β/2 term instead of

the
tanh (β�ω/2)

�ω
term and reads [23,26,27,46]

Re σ (ω) = −
q2ω2β

2V
Re

∫ +∞

0

dt eiωt�X2(t). (72)

When the condition β�ω ≪ 1 is satisfied these two expres-

sions are approximately equal. However, at high frequencies

these two expressions essentially differ. While Eq. (71) leads

to the real part of the conductivity that vanishes at sufficiently

high frequencies, Eq. (72) gives a constant real part of the

mobility at these frequencies which is not the correct trend.

Therefore, Eq. (72) should be applied only if the condition

β�ω ≪ 1 is satisfied.

An expression for optical conductivity in the form similar to

the one given in Eq. (52) has also been previously obtained for

the case of equilibrium [47,48]. These expressions [Eq. (12)

in Ref. [47] and Eq. (3.21) in Ref. [48]] in the limit of low

concentration are the special case of Eq. (52) for the case of

equilibrium in the limit �ω ≪ kBT . It is very interesting that

our main result given by Eq. (52) has the same mathematical

form as the expressions for the case of equilibrium. Therefore,

we have generalized the result that was known for the case of

equilibrium to the case of nonequilibrium systems that satisfy

the assumptions of factorization of the density matrix into the

electron and the phonon part [Eq. (26)] and weak relaxation at

relevant time scales [Eq. (5)].

As we have already pointed out, our results are not expected

to be valid at low frequencies, such that the period of

perturbation is larger than the carrier relaxation time. For

that reason, one can certainly not assume that dc mobility

or conductivity is equal to the low frequency limit of our

results. There is an additional reason that our results cannot

be extended to low frequencies. It has been pointed out in

Refs. [47,48] that conductivity at low frequencies cannot be

obtained from a formal expansion in powers of electron-

phonon interaction strength, which is an approach used in

our work.

From the previous discussion, we can conclude that our

results reduce to previous results from the literature for the case

of equilibrium state. On the other hand, there have been almost

no works in the literature with an attempt to obtain similar

results for the system out of equilibrium. The exceptions are

Refs. [36,37] where Eq. (19) was derived. However, we are

not aware of any attempt to obtain a more specific form of

nonequilibrium conductivity in a system with localized states

and the main contribution of our work is that it covers this so

far unexplored area.

VII. CONCLUSION

In conclusion, we have developed an approach for the

treatment of nonequilibrium optical conductivity in a system

with localized electronic states and weak electron-phonon or

electron-impurity interaction. Starting from nonequilibrium

generalization of Kubo’s formula and performing the expan-

sion of optical conductivity in powers of small electron-phonon

interaction parameter, we obtain a relatively simple expression

for the optical conductivity of the material. In the special case

of incoherent nonequilibrium state the expression contains
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only the positions of electronic states, their nonequilibrium

populations, and Fermi’s golden rule transition probabilities

between the states. Interestingly, the same mathematical form

of the expression is valid both in the case of electron-phonon

and electron-impurity interaction. Our result opens the way

to better understanding of the response of nonequilibrium

systems to electromagnetic radiation. A typical example where

our results can be applied is photoexcited semiconductor where

electrons and holes are formed by the optical excitation. If

that semiconductor is then probed by low energy (terahertz)

excitation, the response will depend on the nonequilibrium

distribution of excited carriers. Our final expressions should

be able to predict the response of the system to such probes.

The application of the derived formula to two model systems

was presented to illustrate the features that one may expect to

see in terahertz conductivity spectra.
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APPENDIX: PROOF OF EQUIVALENCE OF THE LOWEST-ORDER OPTICAL CONDUCTIVITY CALCULATED

FROM EQ. (71) AND THE EXPRESSION IN EQ. (52)

The operator X̂(t) − X̂(0) appearing in Eq. (71) can be expressed as [see Eqs. (11) and (16)]

q(X̂(t) − X̂(0)) =

∫ t

0

dt ′ Ĵx(t ′), (A1)

so that in the case of localized carriers, when Ĵx = Ĵ (2)
x , the operator (X̂(t) − X̂(0))2 is quadratic in electron-phonon coupling

constants. If we are to obtain the conductivity up to quadratic terms in small interaction constants g±
αβ,k , it is clear that the

following factorization of the equilibrium statistical operator should be adopted [compare to the decomposition of the initial

density matrix in Eq. (26)]

e−Ĥ /(kBT )

Tr e−Ĥ /(kBT )
≈

e−Ĥe/(kBT )

Tre e−Ĥe/(kBT )

e−Ĥph/(kBT )

Trph e−Ĥph/(kBT )
, (A2)

and that time dependencies appearing in (71) should be taken with respect to the noninteracting Hamiltonian Ĥ0. The average

value 〈(X̂(t) − X̂(0))2〉 is then transformed into

〈(X̂(t) − X̂(0))2〉 =
∑

k

∑

αβγ δ

(xβ − xα)(xδ − xγ )〈ĉ†α ĉβ ĉ†γ ĉδ〉e

(

g−
αβ,kg

+
γ δ,k

e
i
�

(ǫα−ǫβ−�ωk )t − 1

ǫα − ǫβ − �ωk

e
i
�

(ǫγ −ǫδ+�ωk)t − 1

ǫγ − ǫδ + �ωk

(1 + Nk)

+ g+
αβ,kg

−
γ δ,k

e
i
�

(ǫα−ǫβ+�ωk)t − 1

ǫα − ǫβ + �ωk

e
i
�

(ǫγ −ǫδ−�ωk)t − 1

ǫγ − ǫδ − �ωk

Nk

)

, (A3)

where 〈· · · 〉e denotes averaging with respect to the electronic part of the decomposition (A2). Combining Eqs. (71) and (A3)

and in the limit of low carrier densities, when Eqs. (46), (50), and (51) can be used, the following expression for the optical

conductivity (ω �= 0) is obtained:

Re σxx(ω) =
q2

2�ωV
tanh

(
�ω

2kBT

)
∑

αβ

(xβ − xα)2rβ[wβα,ph(ǫβ − ǫα − �ω) + wβα,ph(ǫβ − ǫα + �ω)], (A4)

where the transition probabilities wβα,ph are defined in Eq. (53) and the average occupation of electronic state β is rβ =

e−ǫβ/(kBT )/Tre e−Ĥe/(kBT ). In order to prove that the relation (52) (in which we take rβ = e−ǫβ/(kBTph)/Tre e−Ĥe/(kBTph)) gives the

same result for the lowest-order optical conductivity as Eq. (A4) (assuming that T = Tph), we note that the transition probabilities

satisfy the detailed-balance condition (in the low-density limit and in the presence of external harmonic perturbation)

wβα,ph(ǫβ − ǫα + �ω)

wαβ,ph(ǫα − ǫβ − �ω)
= e−(ǫα−ǫβ−�ω)/(kBT ) =

rα

rβ

1 + tanh �ω
2kBT

1 − tanh �ω
2kBT

. (A5)

Interchanging the dummy electronic indices α,β in the first summand in Eq. (52) we obtain

Re σxx(ω) =
q2

2�ωV

∑

αβ

(xβ − xα)2[−rαwαβ,ph(ǫα − ǫβ − �ω) + rβwβα,ph(ǫβ − ǫα + �ω)], (A6)
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whereas performing the same operation on Eq. (A4) gives

Re σxx(ω) =
q2

2�ωV
tanh

(
�ω

2kBT

)
∑

αβ

(xβ − xα)2[rαwαβ,ph(ǫα − ǫβ − �ω) + rβwβα,ph(ǫβ − ǫα + �ω)]. (A7)

The right-hand sides of Eqs. (A6) and (A7) are equal since, by the condition (A5), single summands under the double sums are

mutually equal.
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The physical mechanisms and time scales of light-to-charge conversion in photoexcited 
donor/acceptor organic solar cells have recently been heavily debated. The interpretation of 
experimental signals stemming from ultrafast spectroscopic experiments suggests that free-charge 
generation mainly occurs on a subpicosecond time scale following the excitation by virtue of 
high-energy (“hot”) delocalized interfacial charge transfer (CT) states [1]. On the other hand, 
there is experimental evidence that free carriers are predominantly generated on time scales 
ranging from tens to hundreds of picoseconds out of the lowest-energy (“cold”) CT state, which 
is strongly bound and localized [2, 3]. 
 
We study charge separation in a one-dimensional model of an interface between two organic 
semiconductors, both on ultrashort and on much longer time scales. We obtain that free charges 
present on a subpicosecond time scale following the photoexcitation are mainly directly optically 
generated from the ground state thanks to the resonant mixing between states of donor excitons 
and free charges [4]. However, on the same time scale, we find that the majority of 
photogenerated charges still remain bound in form of donor or CT excitons [5]. We obtain that 
their further separation on longer time scales is weakly electric field- and temperature-dependent 
and is enabled by the synergy between carrier delocalization and moderate disorder [6]. 
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Abstract.  The  operation  of  donor/acceptor  (D/A)  organic  solar  cells  (OSCs)  leans  on  the

separation of the  strongly bound charge transfer exciton (CTE) localized at the D/A interface

into  free  charges  [1].  Kinetic  considerations  suggest  that  CTE separation  is  facilitated  by a

combination of charge delocalization and moderate disorder [2], while it is hampered by strong

disorder  [2]  and/or  strong interaction  with phonons [3].  From the standpoint  of  equilibrium

thermodynamics, the charges in the CTE are thermodynamically free  because its large binding

energy is generally outweighed by the entropic contribution. While strong disorder and enhanced

spatial connectivity eliminate the separation barrier [4], charge delocalization may increase it

[5].  Such  trends  contradict  the  intuitive  trends  emerging  from  kinetic  considerations.

We  employ  nonequilibrium thermodynamics  to  reconcile  the  kinetic  and  thermodynamic

perspectives on charge separation in OSCs [6].  Within our one-dimensional model of a D/A

interface [2, 3], we compute steady-state populations of interface states, which emerge from a

competition between incoherent-light excitation, phonon-induced relaxation, and recombination.

We then evaluate the nonequilibrium free-energy profile for charge separation and compare it to

its equilibrium counterpart for different disorder strengths and delocalization extents. We find

that  the difference  between the  two profiles  is  maximized  (minimized) when the separation

efficiency is the largest  (smallest). Our nonequilibrium profiles show that better delocalization

suppresses  the  entropic  contribution  at  small  distances  and  enhances  it  at  larger  distances,

meaning  that  charge  delocalization  promotes  long-range  separation.  Despite  the  reduced

dimensionality of our model, which is deleterious to the spatial connectivity of interface states,

our  nonequilibrium  entropic  contributions  are  consistently  larger  than  the  equilibrium  ones

because the former take into account the connectivity by phonon-assisted processes. Overall, we

conclude that charge separation in the most efficient OSCs proceeds through a nonequilibrium

pathway involving both the strongly bound CTE and higher-energy interface states.
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Abstract. The cumulant expansion (CE) method presents an alternative to the usual Dyson equation
approach for the calculation of spectral functions and quasiparticle properties of interacting quantum
many-particle systems. We examine the range of validity of this method by implementing it in a
system described by the simplest electron-phonon model Hamiltonian - the Holstein model [1].
For a benchmark, we use the dynamical mean-field theory (DMFT) [2] which gives, as we have
recently shown [3], rather accurate spectral functions in the whole parameter space. The results are
also compared to the one-shot and the self-consistent Migdal approximation. While CE is exact in
both the weak-coupling and the atomic limit, we find that even in a regime of intermediate coupling
in 1D, the CE resolves well both the quasiparticle and the first satellite peak of the spectral function.
CE also gives promising results for high temperatures, but it is not exact in the limit T → ∞, which
is proved analytically by analyzing the spectral sum rules.

Charge mobility µ is also calculated, using the bubble approximation of the Kubo formalism. At
high temperatures, we demonstrate that it assumes a power law, which is different in the limit of

weak coupling µ ∝ T−2, and in the case of somewhat stronger coupling µ ∝ T−3/2.
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While ground-state properties of the Holstein model are well understood by now,
the evaluation of its finite-temperature spectral properties has received more at-
tention only recently [1, 2]. Here, we develop a hierarchical equations of motion
(HEOM) approach to compute real-time single-particle correlation functions and
thermodynamic quantities of the Holstein model at finite temperature [3]. We
exploit the conservation of the total momentum of the system to formulate the
momentum-space HEOM whose dynamical variables explicitly keep track of mo-
mentum and energy exchanges between the electron and phonons. Our symmetry-
adapted HEOM enable us to overcome the numerical instabilities inherent to the
commonly used real-space HEOM. The HEOM results for the electronic spectral
function, obtained on chains containing up to ten sites, compare favorably to exist-
ing literature. To provide an independent assessment of the HEOM approach and to
gain insight into the importance of finite-size effects, we devise a quantum Monte
Carlo (QMC) procedure to evaluate finite-temperature single-particle correlation
functions in imaginary time and apply it to chains containing up to twenty sites.
QMC results reveal that finite-size effects are quite weak, so that the results on 5
to 10 site chains, depending on the parameter regime, are representative of larger
systems.
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Among various ferrites, nanosized nickel ferrite is one of the most frequently em-
ployed materials for production of electronic materials due to a set of outstanding
physical and chemical properties. Doping with various atoms is a common choice
when it comes to the development of new materials with target properties. Rare-
earth elements have been frequently used in different research areas in order to
improve various physical and chemical properties of materials. Nanocrystalline fer-
rites with chemical formula NiFe2−xYxO4 (x = 0.20, 0.30) have been synthesized by
the co-precipitation method and further annealed at 750 ℃ . The details of the syn-
thesis are given in [1]. X-Ray diffraction analysis (XRD) were carried out using
Rigaky MiniFlex 600 diffractometer. Raman spectra were collected using a Thermo
Scientific DXR Raman Microscope at room temperature with DPSS (Diode Pumped
Solid State) laser using λ = 532.2 nm excitation. CCD camera has been used as
detector.

Spinel ferrites crystallize in cubic spinel structure belonging to space group O7h
(Fd3m). The recorded XRD patterns have confirmed the formation of spinel fer-
rite phase in the samples. No peaks corresponding to any precursor/impurity were
recorded in the patterns implying that the samples are single phase. With the sub-
stitution of Y3+ in NFO, the whole diffraction pattern is shifted towards lower 2θ
angle, which is a signature of an increase in lattice parameter of the substituted
samples.

Group theory predicts the five Raman active modes, i.e. A1g + Eg + 3T2g. The
measured spectra have been fitted and it is deconvoluted into individual Lorentzian
component in order to determine the peak position. The spectra consists of band
around ~ 450, ~ 560, ~ 640, ~ 680, ~ 695 cm

−1. The modes at above 600 cm
−1 are

related to the T-site mode that reflects the local lattice strain effect in the tetrahedral
sublattice. The Raman modes below than 600 cm−1 corresponds to the O-site mode
reflecting the local lattice strain effect in octahedral sublattice.
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Ultracold-atom simulators have provided important insights into charge and spin
transport in the two-dimensional Hubbard model [1, 2]. However, theoretical tools
to compute quantities directly measured in experiments, such as space- and time-
resolved charge/spin densities following a quench of an external density-modulating
field, are still scarce. Here, we devise the alternating-basis quantum Monte Carlo
(ABQMC) method for interacting electrons on a lattice, which is uniquely suited to
compute such quantities. Apart from out-of-equilibrium setups, the formalism is
equally applicable in thermal equilibrium described by either canonical or grand-
canonical ensemble. The method relies on the Suzuki–Trotter decomposition (STD)
and owes flexibility to the representation of the kinetic and interaction terms in the
many-body bases in which they are diagonal. We formulate a Monte Carlo update
scheme that respects both the momentum and particle-number conservation laws,
to restrict the configuration space. The sampling efficiency is further enhanced by
ensuring that the ABQMC algorithm manifestly respects several symmetries of the
Hubbard model [3, 4]. We find that the method’s performance is heavily plagued by
the fermionic sign problem, whose extent is primarly related to the number of time-
slices in the STD. Nevertheless, the ABQMC equation of state (density vs. chemical
potential curve) computed on square-lattice clusters containing up to 48 sites agrees
remarkably well with reference methods. We also discuss how the (real-time) dy-
namics of the survival probability of pure density-wave-like states on 4x4 clusters
depends on the filling and the initial density pattern.
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The coupling of Frenkel excitons (FEs) and intramolecular vibrations in an organic
layer as a part of microcavity has been studied in the paper. Two cases are treated:
a) uniaxial layer of point group 4 (optical axis is supposed perpendicular to the
layer); b) monoclinic anthracene-like layer with monoclinic axis b perpendicular
to the layer. The exciton-phonon coupling produces the vibronic wings with com-
plex spectra which can contain bound exciton-phonon states and many-particle
(unbound) bands. Consequently in those regions the absorption lines and the res-
onance members in dielectric tensor appear. We treat theoretically their effects
on the polaritons in the microcavity and illustrate using numerical calculations
the peculiarities of the polaritonic spectra in the vibronic wings of Frenkel exci-
tons.
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Spectral functions of the Holstein polaron: exact and
approximate solutions
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It is generally accepted that the dynamical mean field theory (DMFT) gives a good
solution of the Holstein model [1], but only in dimensions greater than two. Here
we show that the DMFT, which becomes exact in the weak coupling and in the
atomic limit, provides an excellent numerically cheap approximate solution for the
spectral function of the Holstein model in the whole range of parameters even in
one dimension. To establish this, we made a detailed comparison with the spectral
functions that we obtained using newly developed momentum-space numerically
exact hierarchical equations of motion method, which yields electronic correlation
functions directly in real time [2]. We crosschecked these conclusions with our path
integral quantumMonte Carlo and exact diagonalization results, as well as with the
available numerically exact results from the literature [3].
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Incoherent light-induced excitation harvesting in molecular energy-

conversion systems 

 

There is a remarkable similarity between physical processes at play in (organic) photovoltaic 

cells and photosynthetic complexes [1,2]. In both types of systems, ultrafast time-resolved 

studies suggest that quantum coherences may enhance the excitation-harvesting efficiency 

by favoring non-equilibrated, "hot", and fast pathways involving delocalized states over 

equilibrated, "cold", and slow pathways involving localized trap states. Here, we present our 

recent contributions to the on-going debate on the relevance of these findings for excitation 

harvesting under incoherent light [3-6]. We develop a (numerically) exact description of 

excitonic dynamics in a molecular aggregate driven by weak-intensity radiation of arbitrary 

properties [3]. While the interaction with light is included up to the second order, the 

excitation-environment coupling is treated up to all orders. The resulting exact expression for 

the reduced density matrix is then recast as the hierarchy of equations of motion (HEOM) 

that explicitly and consistently includes the photoexcitation step. We then focus on a model 

photosynthetic dimer and examine its non-equilibrium steady state arising from the interplay 

between excitation generation, excitation relaxation, dephasing, trapping at the load, and 

recombination [4]. While the steady-state coherences in the slow-trapping limit are 

demonstrated to originate from the excitation-environment entanglement, we unveil an 

interesting relation between the dynamic coherences observed in ultrafast experiments on 

unloaded aggregates and the steady-state coherences in the fast-trapping limit. We apply a 

similar formalism to a microscopic effective Hamiltonian of an organic donor/acceptor 

heterojunction, where we elucidate the energy- and time-resolved dynamics of charge pairs 

all the way from their photogeneration to their extraction or recombination. The results 

indicate that charge separation proceeds via the "cold" pathway on which donor excitons 

first convert to relaxed charge-transfer excitons and then transform to separated charges [5]. 

We also analyze these results from the perspective of non-equilibrium thermodynamics. We 

quantify the difference between the equilibrium and non-equilibrium dependence of the 

charge-pair free energy on the intrapair separation. Our results reveal that this difference is 

largest when charge separation efficiency is large, which leads us to conclude that charge 

separation in efficient organic solar cells proceeds via a "cold" but non-equilibrated pathway 

[6]. 
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 The interpretation of oscillatory features in experimental signals from photosynthetic pigment–
protein complexes excited by laser pulses [1] has been motivating vigorous interest in quantum effects 

in photosynthetic energy transfer (ET) [2]. However, electronic dynamics triggered by natural light, 

which is stationary and incoherent, is generally substantially different from the one observed in pulsed 

laser experiments. It has been suggested that the physically correct picture of photosynthetic ET should 

be in terms of a nonequilibrium steady state (NESS) [3], which is formed when a photosynthetic 

complex is continuously photoexcited and continuously delivers the excitation energy to the reaction 

center (RC), in which charge separation takes place. 

 

 We study ET in a molecular aggregate that is driven by weak incoherent radiation and coupled 

to its immediate environment and the RC. We combine a second-order treatment of the photoexcitation 

with an exact treatment of the excitation–environment coupling and formulate the hierarchy of 

equations of motion (HEOM) that explicitly takes into account the photoexcitation process [4]. We 

develop an efficient numerical scheme that respects the continuity equation for the excitation fluxes to 

compute the NESS of the aggregate [5]. The NESS is most conveniently described in the so-called 

preferred basis, in which the excitonic density matrix is diagonal. The preferred basis, which is 

analogous to the set of normal modes of a system of coupled harmonic oscillators, is singled out by the 

interplay between excitation generaton, energy relaxation, dephasing, and excitation delivery to the RC. 

Having established the proper NESS description, we are in position to critically reassess the 

involvement of stationary coherences in the photosynthetic ET and claims that stationary coherences 

may enhance the ET efficiency. Focusing on a model photosynthetic dimer, we examine the properties 

of the NESS. In the limit of slow delivery to the RC, we find that the NESS is quite similar to the 

excited-state equilibrium in which the stationary coherences originate from the excitation–environment 

entanglement. When the excitation delivery is slower than energy relaxation processes, we establish a 

general relationship between the NESS picture and time-dependent description of an incoherently 

driven, but unloaded system. 
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chromophores. This study helps predict the properties of the entangled two photon effect in chromophores with
different dipolar and quadrupolar character.
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Delocalization length in the context of biological exciton transfer processes

Kieran Fox
Charles University

Exciton delocalization in natural light harvesting structures is a well-known phenomenon, recognised as an impor-
tant factor in photosynthetic excitation energy transfer efficiency. Standard attempts to define delocalization length
within the dynamic environment of a protein, and over biological timescales, results in a single real number or an
integer range of pigments. We argue that such a notion of delocalization is not particularly informative or char-
acteristic of the potentially complicated connection network of pigments represented by a photosynthetic antenna.
Add to this there seems to be some mixing of concepts under the term delocalization due to the ultra-fast methods
of measuring it. We aim to disentangle the delocalization relating to transitions between molecules as a result of
resonance coupling, from the coherent state caused by laser excitation in spectroscopic experiments. This is done by
respecting the uncertainty of delocalization in time, which we show by analysing the structure of the coherent state
excited by ultrashort laser pulse. We demonstrate, on a system exhibiting static disorder only, how a generalised
notion of delocalization can be introduced. With this is we can give a better representation of the states, including
specific pigment contributions to the delocalized states as this can be crucial to the overall function of the system.
We revisit past pump-probe measurements of LH1 and LH2 as well as new 2DES spectra to reexamine the concept
of delocalization and try to come to grips with what it means in biological excitation energy transfer processes.

A Step Towards a Comprehensive Steady-State Picture of Photosynthetic Solar
Energy Conversion

Veljko Janković
Faculty of Mathematics and Physics, Charles University, Prague

The interpretation of oscillating experimental signals observed in ultrafast nonlinear spectroscopies [1] has been
motivating vigorous interest in quantum effects in photoinduced biological processes. However, electronic dynamics
triggered by natural light, which is stationary and incoherent, is generally substantially different from the one
observed in pulsed laser experiments. It has been suggested that the physically correct picture of photosynthetic
excitation energy transfer (EET) should be in terms of a steady state [2], which is formed when the photosynthetic
antenna is continuously photoexcited and continuously delivers the excitation energy to the reaction center, in which
charge separation takes place.
We study EET triggered by a low-intensity photoexcitation of an initially unexcited molecular aggregate, whose
molecules interact with their unstructured local environments and which is coupled to the reaction center. We treat
the aggregate–environment coupling in a numerically exact manner and extend previous theoretical treatments [3,4]
by formulating the hierarchy of equations of motion (HEOM) which explicitly takes into account the photoexcitation
process. We investigate the properties of the steady state arising when the aggregate is subjected to a continuous-
wave excitation, while photoinduced electronic excitations can either recombine or undergo charge separation from
the reaction center. The developed theoretical formalism enables us to approach questions ranging from the influence
of the short-time dynamics (which is accessible in pulsed laser experiments) on the steady state to the relevance of
steady-state coherences for the EET process.
[1] G. S. Engel et al., Nature 446, 782–786 (2007).
[2] P. Brumer, J. Phys. Chem. Lett. 9, 2946–2955 (2018).
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Matrix-product-state-based calculations of exciton-phonon dynamics for
light-harvesting complexes

Kevin Kessing

Uni. Göttingen/MIT

Excitonic systems with one to a few dozen sites are an important and commonly studied topic in various contexts,
such as quantum optics, molecular spectroscopy or the dynamics of light-harvesting complexes. However, in reality
the dynamics are often strongly influenced by their coupling to the environment or internal vibrational modes.
Computing such systems with non-negligible and non-perturbative interactions is a challenging problem, and of-
tentimes simplifications such as the Markov assumption are made to assist in such calculations. In our approach,
we investigate the dynamics of excitonic oligomers with such interactions without neglecting the internal dynamics
of the bath using a symmetry-adapted state-of-the-art matrix-product-state (MPS) code [1]. By employing this
approach together with the analytic transformation of the bath Hamiltonian into discrete sites (TEDOPA) pro-
posed by Martin Plenio et al. [2], we may also model non-Markovian dynamics of exciton systems with strong bath
coupling. The insights gained from these analyses help us better understand the phonon-assisted transport effects in
photosynthetic complexes such as the purple-photosynthetic-bacterial light-harvesting complex LH2, which exhibits
a remarkably efficient energy transfer and notable symmetric structure [3].
1: Time-evolution methods for matrix-product states; Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Sal-
vatore R. Manmana, Ulrich Schollwöck, and Claudius Hubig; arXiv:1901.05824 [cond-mat.str-el]
2: Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal
polynomials; Alex W. Chin, Ángel Rivas, Susana F. Huelga, and Martin B. Plenio; J. Math. Phys. 51, 092109
(2010); https://doi.org/10.1063/1.3490188
3: Optimal fold symmetry of LH2 rings; Liam Cleary, Hang Chen, Chern Chuang, Robert J. Silbey, and Jianshu
Cao; PNAS 110 (21), 8537-8542 (May 2013); DOI: 10.1073/pnas.1218270110

Pathway Analysis of Protein Electron-Transfer Reactions by Using Ab Initio
Electronic Structure Calculations

Hirotaka Kitoh-Nishioka

JST-PRESTO and University of Tsukuba

We have developed a novel computational scheme [1] to analyze electron transfer (ET) reactions in protein. Our
scheme combines the fragment molecular orbital (FMO) method with an electron tunneling current analysis, which
enables an efficient first-principles analysis of ET pathways in huge biomolecules. This poster presents our recent
results[2] and discusses the roles of the protein environments in mediating long-distance electron tunneling and
quantum interference effects among multiple ET pathways. We also discuss its applicability to a non-Condon
theory[3] for analyzing the inelastic electron tunneling mechanism in protein, such as a hypothesis of the vibrational
theory of olfaction. We acknowledge support from JST, PRESTO Grant Number JPMJPR17G4.
References: [1] H. Nishioka and K. Ando, J. Chem. Phys. 134, 204109 (2011); H. Kitoh-Nishioka and K. Ando, J.
Chem. Phys. 145, 114103 (2016)
[2] H. Kitoh-Nishioka and K. Ando, J. Phys. Chem. B 116, 12933 (2012); H. Kitoh-Nishioka and K. Ando, Chem.
Phys. Lett. 621, 96 (2015); R. Sato et al. J. Phys. Chem. B 122, 6912 (2018)
[3] H. Nishioka et al. J. Phys. Chem. B 109, 15621 (2005); H. Nishioka and T. Kakitani, J. Phys. Chem. B 112,
9948 (2008)
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Abstract. The interpretation of oscillating experimental signals observed in ultrafast nonlinear
spectroscopies [1] has been motivating vigorous interest in quantum effects in photoinduced bi-
ological processes. However, electronic dynamics triggered by natural light, which is stationary and
incoherent, is generally substantially different from the one observed in pulsed laser experiments. It
has been suggested that the physically correct picture of photosynthetic excitation energy transfer
(EET) should be in terms of a steady state [2], which is formed when the photosynthetic antenna is
continuously photoexcited and continuously delivers the excitation energy to the reaction center, in
which charge separation takes place.

We study EET triggered by a low-intensity photoexcitation of an initially unexcited molecular
aggregate, which interacts with its environment and is coupled to the reaction center. We treat the
aggregate–environment coupling in a numerically exact manner and extend previous theoretical
treatments [3, 4] by formulating the hierarchy of equations of motion (HEOM) which explicitly
takes into account the photoexcitation process. We investigate the properties of the steady state
arising when the aggregate is subjected to a continuous-wave excitation, while the charge separation
from the reaction center occurs at a constant rate. The developed theoretical formalism enables us
to approach questions ranging from the influence of the short-time dynamics (which is accessible
in pulsed laser experiments) on the steady state to the relevance of steady-state coherences for the
EET process.

This work has been supported by Charles University Research Centre program No. UNCE/SCI/010

and by the Czech Science Foundation (GAČR) through grant No. 17-22160S.
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Abstract. Recent years have seen an intense debate on the physical mechanisms and time scales
of free-charge generation following photoexcitation of donor/acceptor organic solar cells, which
initially produces strongly bound excitons in the donor material. The interpretation of ultrafast
spectroscopic signatures suggests that free carriers are predominantly generated on a subpicosecond
time scale following the excitation, the key role in this process being played by high-energy
(“hot”) delocalized interfacial charge transfer (CT) states [1]. However, other experimental studies
indicate that the main precursor towards free charges is the strongly bound and localized (“cold”)
CT state, so that free-charge generation occurs on time scales ranging from tens to hundreds of
picoseconds [2, 3].

We investigate charge separation in a one-dimensional model of an interface between two organic
semiconductors, both on ultrashort and on much longer time scales. We conclude that free carriers
present on a subpicosecond time scale following a pulsed photoexcitation are mainly directly
optically generated from the ground state thanks to the resonant mixing between states of donor
excitons and free charges [4]. However, on the same time scale, we find that the majority of
photogenerated charges still remain bound in form of donor or CT excitons [5]. We obtain that
their further separation on longer time scales is weakly electric field- and temperature-dependent
and is enabled by the synergy between carrier delocalization and moderate disorder [6].
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Abstract—The process of exciton splitting at heterojunctions 

of two organic semiconductors in organic photovoltaic 

devices was investigated. Theoretical model is based on a 

Hamiltonian taking into account the effects of electronic 

coupling, interaction of carriers with external electromagnetic 

field, Coulomb interaction between electrons and holes and 

carrier-phonon interaction. Exciton dynamics at 

subpicosecond timescales was investigated within density 

matrix theory complemented with the dynamics controlled 

truncation scheme. Our results indicate that the efficiency of 

charge separation on subpicosecond timescales is low and 

that the majority of space-separated charges that occur on 

these timescales are directly optically generated. Next, we 

investigated charge separation process on longer timescale by 

considering it as a sequence of phonon-assisted transitions 

between electron-hole pair states at the interface. We found 

that donor exciton separation yields larger than 90% can be 

achieved in agreement with experimentally observed internal 

quantum efficiencies close to 100% in most efficient organic 

photovoltaic devices. 

I. INTRODUCTION 

Significant research attention in the last two decades was 
devoted to the development of photovoltaic devices based on 
organic semiconductors which offer the advantage of easy and 
cheap processing. Nevertheless, understanding of the details 
of the processes that take place in a solar cell device is still 
limited. It is well understood that binding between an electron 
and a hole that are created by an incident photon is sufficiently 
strong to form a bound electron-hole pair (exciton). For this 
reason, efficient devices can be obtained only if they are 
composed of (at least) two semiconductors (donor and 
acceptor) whose band edge alignment is chosen to 
energetically allow the dissociation of an exciton into an 
electron in the acceptor and a hole in the donor. A simple 
picture of photon-to-charge conversion process suggests that it 
takes place by photon absorption that creates an exciton, 
exciton diffusion to an interface between the two materials, 
exciton separation to charges at opposite sides of an interface, 
and charge transport from an interface to external contacts [1, 
2]. 

To better understand the mechanism of exciton splitting at 
the interface, several ultrafast spectroscopy studies that probe 
the dynamics at subpicosecond timescales have been 
performed in the last decade [3, 4, 5, 6]. These studies 

typically register response signals with subpicosecond decay 
times, which are often interpreted to originate from ultrafast 
separation of donor excitons into space-separated charges. 
Nevertheless, the nature of exciton evolution on these 
timescales and the mechanism of its possible separation 
remains unclear. 

In this presentation, we will review our recent results on 
exciton dynamics at photoexcited organic heterojunctions [7-
9]. 

II. METHODS 

We model the heterojunction of two organic 

semiconductors using a microscopic Hamiltonian that takes 

into account the effects of electronic coupling, interaction of 

carriers with external electromagnetic field, attractive 

Coulomb interaction between electrons and holes and 

interaction of charges with lattice vibrations. We consider a 

one-dimensional model of a semiconductor in which it is 

represented using a lattice of sites. Each site provides at least 

one electron and and at least one hole level from which the 

conduction and valence band of the material are derived. 

Interaction with phonons is modeled using local Holstein 

interaction, while electron-hole interaction is modeled in the 

lowest monopole-monopole approximation with the Ohno 

interaction potential between the charges. 

The parameters of the model – electronic coupling 

between the sites, site energies, electron-phonon interaction 

parameters, on-site Coulomb interaction parameter – were 

chosen to yield values of band gaps, band offsets, bandwidths 

and exciton binding energies that are representative of typical 

organic photovoltaic materials. 

To model exciton dynamics on ultrafast timescales, we use 

the density matrix theory along with the dynamics controlled 

truncation scheme. We consider the case of low excitation 

field and low carrier densities when it is appropriate to work in 

the subspace of single electron-hole excitations. The carrier 

branch of the hierarchy of equations in density matrix 

approach was truncated by keeping the contributions up to 

second order in the excitation field. The phonon branch is 

truncated in such a way to ensure the conservation of particle 

number and energy [7]. 
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III. RESULTS 

Our results indicate that space-separated charges present 

around 100 fs after the optical excitation, originate mainly 

from direct optical generation. There is also a certain degree of 

donor exciton population transfer but it is not the main source 

of space-separated charges, see Figs. 1(a) and (b). We also 

find that such a conclusion is insensitive to the values of 

model parameters since similar behavior is obtained when 

material parameters were changed within reasonable limits 

[8]. 

 

Fig. 1. (a) Dependence of the number of incoherent excitons in donor 

(XD), charge transfer (CT) and charge separated (CS) states. Optical 

excitation is centered at photon energy of 1500 meV and lasts from -

50 to 50 fs. (b) Time evolution of spatial electron probability 

distribution. (c) and (d) Simulated photoinduced absorption signal 

from space separated states after pumping at photon energy of 1500 

meV. (e) Simulated PIA signal from donor states after pumping to 

lowest donor state. 

Our analysis indicates that microscopic mechanism 

responsible for direct optical generation of space-separated 

charges is resonant mixing between donor states and states of 

space-separated charges. We find that the efficiency of charge 

separation at these time scales is quite low, as can be seen for 

example in Fig. 1(a). 

Next, within our theoretical approach we simulate the 

photoinduced absorption (PIA) signal obtained in ultrafast 

pump-probe experiments [3]. Our results indicate that for 

interpretation of PIA signal it is of essential importance to 

consider not only the excitonic populations, but also the 

coherences between the exciton and ground state, as well as 

the coherences between exciton states. Calculated signals 

presented in Figs. 1(c)-(e) qualitatively agree with 

experimental signals obtained in [3]. In the case of excitation 

well above the lowest donor exciton, PIA signal from space-

separated states [labeled as total signal in Figs. 1(c) and (d)] is 

initially dominated by the contribution of coherences between 

the exciton and ground state [labeled as y-part of the signal in 

Figs. 1(c) and (d)], while at longer times the contribution of 

excitonic populations dominates [labeled as �̅� -part of the 

signal in Fig. 1(d)]. On the other hand, in the case of excitation 

to the lowest donor exciton, PIA signal completely originates 

from the contribution of coherences between the exciton and 

ground state, see Fig. 1(e). Therefore, such a signal does not 

originate from ultrafast transfer of donor excitons to states of 

space-separated charges, but rather from relatively slow 

conversion from coherences to populations of lowest donor 

state. 

Overall, our simulations at subpicosecond timescale do not 

show that there is ultrafast charge transfer and cannot explain 

high internal quantum efficiencies observed in best solar cell 

devices. For this reason, we investigated charge separation 

process on longer timescale by considering it as a sequence of 

phonon-assisted transitions between electron-hole pair states 

at the interface. Our preliminary results indicate that donor 

exciton separation yields larger than 90% can be achieved in 

agreement with experimentally observed internal quantum 

efficiencies close to 100% in most efficient organic 

photovoltaic devices. 
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The promise of economically viable and environmentally friendly conversion of sunlight into electrical energy 

has driven vigorous and interdisciplinary research on donor/acceptor heterojunction organic photovoltaics. 

However, the actual mechanism of the emergence of free charges on subpicosecond (<100-fs) time scales 

following the excitation of a heterojunction remains elusive. 

 

We investigate subpicosecond exciton dynamics in the lattice model of an all-organic heterojunction. Exciton 

generation by means of a photoexcitation, exciton dissociation, and further charge separation are treated on 

equal footing and on a fully quantum level using the density matrix formalism combined with the dynamics 

controlled truncation scheme [1]. Our results indicate that the space-separated charges appearing on <100-fs 

time scales following the photoexcitation are predominantly directly optically generated [2], in contrast to the 

usual viewpoint that they originate from ultrafast population transfer from initially generated excitons in the 

donor material. The space-separated states acquire nonzero oscillator strengths from donor excitons thanks to 

the strong resonant mixing between these two groups of exciton states. The results of ultrafast pump-probe 

experiments are commonly interpreted in terms of exciton populations only. Our theoretical insights into the 

ultrafast pump-probe spectroscopy highlight the importance of coherences, which cannot be disregarded on 

such short time scales, in the interpretation of pump-probe spectra [2]. 
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Recent years have seen vigorous and interdisciplinary research activity in the field of organic 

photovoltaics with the aim of deeper understanding of ultrafast processes which govern their operation. 

We have investigated the dynamics of exciton formation and relaxation on a picosecond time scale 

following a pulsed photoexcitation of a semiconductor [1]. The study is conducted on the two-band 

semiconductor  Hamiltonian,  which includes  relevant  physical  effects  in  the system, employing the 

density  matrix  theory  combined with  the  dynamics  controlled  truncation  scheme.  We truncate  the 

phonon branch of the resulting hierarchy of equations and propose the form of coupling among single-

phonon-assisted  and higher-order  phonon-assisted  density  matrices  so as  to  ensure the  energy and 

particle-number conservation in a system without external fields. Time scales relevant for the exciton 

formation and relaxation processes are determined from numerical investigations performed on a one-

dimensional  model  for  the  values  of  model  parameters  representative  of  a  typical  organic 

semiconductor and organic semiconductor heterojunction. We find that in a neat organic semiconductor 

the phonon-mediated conversion from coherent to incoherent excitonic populations happens on a 50 fs 

time scale, followed by the formation of bound excitons on a several-hundred-femtosecond time scale 

and  their  subsequent  relaxation  and  equilibration  which  takes  at  least  several  picoseconds.  At  a 

heterojunction  of  two organic  semiconductors,  we find  that  the  strong  (resonant)  mixing  between 

interfacial  excitonic states  and excitonic states  in  neat  materials,  as  well  as  proper  accounting for 

interband excitonic coherences,  are critical for the accurate description of charge transfer from the 

donor to the acceptor and subsequent charge separation. Time scales that emerge from our numerical 

study  are  consistent  with  recent  experimental  reports  on  the  exciton  formation  and  relaxation  in 

conjugated polymer-based materials. We believe that the insights obtained from our study of a typical 

organic/organic heterojunction may contribute to more profound understanding of fundamental OPV 

physics.
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Nonequilibrium Electrical Transport in Materials with Localized Electronic States 
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A broad range of disordered materials contain electronic states that are spatially well localized. In this 
work we studied the electrical response of such materials to external terahertz electromagnetic field [1]. 
We obtained expressions for nonequilibrium terahertz conductivity of a material with localized electronic 
states and weak electron-phonon or electron-impurity interaction. The expression is valid for any 
nonequilibrium state of the electronic subsystem prior to the action of external field. It gives 
nonequilibrium optical conductivity in terms of microscopic material parameters and contains both 
coherences and populations of the initial electronic subsystem's density matrix. Particularly, in the case 
of incoherent nonequilibrium state of the electronic subsystem, the optical conductivity is entirely 
expressed in terms of the positions of electronic states, their nonequilibrium populations, and Fermi's 
golden rule transition probabilities between the states. The same mathematical form of the expression is 
valid both in the case of electron-phonon and electron-impurity interaction. Moreover, our result for the 
nonequilibrium optical conductivity has the same form as the expressions previously obtained for the 
case of equilibrium. Our results are expected to be valid at sufficiently high frequencies, such that the 
period of the external field is much smaller than the carrier relaxation time. We apply the derived 
expressions to two model systems, a simple one-dimensional Gaussian disorder model and the model of 
a realistic three-dimensional organic polymer material obtained using previously developed multiscale 
methodology [2]. We note that the simple one-dimensional model captures the essential features of the 
mobility spectrum of a more realistic system. Furthermore, our simulations of the polymer material yield 
the same order of magnitude of the terahertz mobility as previously reported in experiments. 
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Abstract. A broad range of disordered materials contain electronic states that are spatially well

localized. These include amorphous inorganic semiconductors, inorganic crystals doped with

randomly positioned impurities and organic semiconductors based on conjugated polymers or

small molecules. Usual approaches to simulation of ac conductivity of these materials rely on

Kubo’s formula which expresses the ac conductivity in terms of the mean square displacement 
of a diffusing carrier. Such approaches therefore assume that carriers are in equilibrium and that 

they are only slightly perturbed by external alternating electric field. However, in many realistic

situations, the carriers are not in equilibrium; a typical example concerns the carriers created by

external optical excitation across the band gap of a semiconductor.

In this work we obtain the expression for the optical conductivity in a material with localized

electronic states and weak electron-phonon or electron-impurity interaction [1]. The expression

is valid for any nonequilibirum state of the electronic subsystem prior to the action of electric

field. It gives nonequilibirum optical conductivity in terms of microscopic material parameters

and contains both coherences and populations of the initial electronic subsystem’s density
matrix. Particularly, in the case of incoherent nonequilibrium state of the electronic subsystem,

the optical conductivity is entirely expressed in terms of the positions of electronic states, their

nonequilibrium populations, and Fermi’s golden rule transition probabilities between the states. 
The same mathematical form of the expression is valid both in the case of electron-phonon and

electron-impurity interaction. Moreover, our result for the nonequilibrium optical conductivity 

has the same form as the expressions previously obtained for the case of equilibrium. The 

derivation was performed by expanding the general expression for ac conductivity in powers of

small electron-phonon or electron-impurity interaction parameter. Our results are expected to be

valid at sufficiently high frequencies, such that the period of the electric field is much smaller

than the carrier relaxation time. We apply the derived expressions to two model systems, a 

simple one-dimensional Gaussian disorder model and the model of a realistic three-dimensional 

organic polymer material obtained using previously developed multiscale methodology [2]. We

note that the simple one-dimensional model captures the essential features of the mobility

spectrum of a more realistic system. Furthermore, our simulations of the polymer material yield

the same order of magnitude of the terahertz mobility as previously reported in experiments.
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A broad range of disordered materials contain electronic states that are spatially 

well localized. In this work [1] we studied the electrical response of such materials 

to external terahertz electromagnetic field. We obtained expressions for 

nonequilibrium terahertz conductivity of a material with localized electronic states 

and weak electron-phonon or electron-impurity interaction. The expression is valid 

for any nonequilibrium state of the electronic subsystem prior to the action of 

external field. It gives nonequilibrium optical conductivity in terms of microscopic 

material parameters and contains both coherences and populations of the initial 

electronic subsystem's density matrix. Particularly, in the case of incoherent 

nonequilibrium state of the electronic subsystem, the optical conductivity is entirely 

expressed in terms of the positions of electronic states, their nonequilibrium 

populations, and Fermi's golden rule transition probabilities between the states. The 

same mathematical form of the expression is valid both in the case of electron-

phonon and electron-impurity interaction. Moreover, our result for the 

nonequilibrium optical conductivity has the same form as the expressions 

previously obtained for the case of equilibrium. Our results are expected to be valid 

at sufficiently high frequencies, such that the period of the external field is much 

smaller than the carrier relaxation time. We apply the derived expressions to two 

model systems, a simple one-dimensional Gaussian disorder model and the model 

of a realistic three-dimensional organic polymer material obtained using previously 

developed multiscale methodology [2]. We note that the simple one-dimensional 

model captures the essential features of the mobility spectrum of a more realistic 

system. Furthermore, our simulations of the polymer material yield the same order 

of magnitude of the terahertz mobility as previously reported in experiments. 
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