




Стручна биографија

Данијел Обрић је рођен 27.11.1992. године у Бенковцу, Републици Хрватској.
У Вршцу је завршио основну школу и средњу техничку сколу ”Никола Тесла”.
Основне академске студије је започео 2011. године на Физичком факултету,
Универзитета у Београду, смер Теоријска и експериментална физика. Ос-
новне студије је завршио 2016. године са просечном оценом 8.16. Исте године
започиње мастер академске студије на истом факултету, смер Теоријска и
експериментална физика, које завршава 2017. године са просечном оценом
10, одбранивши мастер рад на тему ”Некомутативнос и неасоцијативност
затворене бозонске струне”. Мастер рад је урађен под руководством др Бојана
Николића, вишег научног сарадника Института за физику у Београду.

Докторске академске студије уписује 2018. године на Физичком факултету,
Универзитета у Београду, ужа научна област квантна поља, честице и грав-
итација. Научноистраживачки рад наставља на темама из теорије струна и
њене интеракције са некомутативним феноменима под менторством др Бо-
јана Николића, у оквиру групе за Гравитацију честице и поља Института
за физику у Београду. Докторске студије завршава 18. септембра 2023. го-
дине, одбраниши докторску дисертацију под насловом ”T-dualization of bosonic
string and type IIB superstring in presence of coordinate dependent background
fields” (”Т-дуализација бозонске струне и тип IIB суперструне у присуству
координатно зависних позадинских поља”).

Од априла 2019. године Данијел Обрић је запослен на Институту за физику
у Београду као истраживач приправник у групи за Гравитацију, честице
и поља, чији је руководилац др Бранислав Цветковић. Звање истраживач
сарадник стекао је децембра 2022. године.

Од почетка свог радног односа са Институтом за физику у Београду, прво као
истраживач приправник а затим као истраживач сарадник, Данијел Обрић је
био ангажован на два домаћа пројекта финансирана од стране Министарства
просвете, науке и технолошког развоја и Фонда за науку Републике Србије.
Од 2019. године био је ангажован на пројекту основних истраживања ”Физ-
ичке импликације модификованог просторвремена” (ОН171031) Министарства



просвете, науке и технолошког развоја Републике Србије, којим је руководила
проф. др Маја Бурић, професор Физичког факултета Универзитета у Београду.
Од 2022. године Данијел Обрић учествује на пројекту ”Quantum Gravity from
Higher Gauge Theory 2021” (7745968) програма ”Идеје” Фонда за науку Репуб-
лике Србије чији је руководилац др Марко Војиновић, виши научни сарадник
на Институту за физику у Београду.

За време докторских академских студија, Данијел Обрић је био полазник
неколико школа за студенте докторских студија: CERN-SEENET-MTP Balkan
School on High Energy and Particle Physics: ”Theory and Phenomenology” у
Јањини (Грчка) 2019. године, COST Action CA18108 ”Quantum gravity phe-
nomenology in the multi-messenger approach” у Београду 2022. године и ICTP
Workshop on String Theory, Holography, and Black Holes у Трсту (Италија)
2023. године.

Тренутно, Данијел Обрић је имао пар одржаних конференција које су биле
задужене за десиминацију науке: Коларац ”Зашто општа теорија релативности”
у Београду 2023. године, ”ICTP: Преглед дешавања у модерној теоријској
физици” у Крагујевцу 2023. године, ”Општа теорија релативности: модерна
теорија простор-времена” у Крагујевцу 2023. године и ”Квантна теорија поља:
модерна теорија фундаменталних сила” у Крагујевцу 2023. године.



Преглед научне активности

Досадашњи научно истраживачки рад Данијела Обрића, може се класифико-
вати у два основна правца

• Анализа бозонске теорије струна у присуству координатно зависних
позадинских поља. Примена Т-дуалности на ову теорију и добијање
некомутативне дуалне теорије.

Посматрана је теорија бозонске струне где смо имали константно гравита-
ционо поље и координатно зависно Калб-Рамондово поље. Применом Буше-
рове процедуре за Т-дуализацију успели смо да добијемо дуалну теорију. Про-
цедура је била прво спроведена на координате од којих поља не зависе а затим
на координату која се јављала у Калб-Рамондовом пољу. Повезивањем струк-
туре Поисонових заграда почетне теорије са дуалном теоријом, примећено је
да координате у дуалној теорији некомутирају. Обртањем редоследа примене
процедуре за Т-дуализацију успели смо да покажемо да постоји мрежа неко-
мутирајућих теорија које настају из почетне теорије.

Bojan Nikolić, Danijel Obrić
Noncommutativity and Nonassociativity of Closed Bosonic String on T-dual
Toroidal Backgrounds
Fortschritte der Physik, 66, 1800009 (2018) ИФ= 3.263 (за 2017. годину)
DOI: https://doi.org/10.1002/prop.201800009

Bojan Nikolić, Danijel Obrić
Directly from H-flux to the family of three nonlocal R-flux theories
Journal of High Energy Physics, 03, 136 (2019) ИФ= 5.875 (за 2019. годину)
DOI: https://doi.org/10.1007/JHEP03(2019)136

• Анализа тип IIB суперструне у присуству координатно зависног Рамонд-
Рамонд поља. Примена процедуре за Т-дуалност на бозонске и на
фермионске координате и добијање некомутативне теорије.

Други део научно истраживачког рада Данијела Обрића фокусирао се на де-
таљну анализу тип IIB суперструне у присуству координатно зависног Рамонд-
Рамонд поља. Ово поље је зависило само од бозонских координата док су
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остала поља која теорија дозвољава били константе. Први део ове анал-
изе фокусирао се само на Т-дуализацију бозонских координата, где је доби-
јена парцијално дуализована теорија. Оваква теорија је испољавала неко-
мутативне особине између бозонских координата али и између бозонских и
фермионских координата. Други део анализе фокусирао се на дуализацију
фермионских координата, након чега је добијена потпуно дуализована теорија.
Показано је да оваква теорија не поседује некомутативне релације између
фермионских координата. Поред ове стандардне анализе, разматрали смо
случај и кад Рамонд-Рамонд поље поседује и симетричан део. Овај пут је
теорија дуализована само дуж бозонских координата и примећено је да је ду-
ална теорија иста. Модификације се једино виде у структури некомутативних
релација које су сад много компликованије.

Bojan Nikolić, Danijel Obrić, Branislav Sazdović
Noncommutativity and Nonassociativity of Type II Superstring with
Coordinate Dependent RR Field
Fortschritte der Physik, 70, 2200048 (2022) ИФ= 5.532 (за 2021. годину)
DOI: https://doi.org/10.1002/prop.202200048

Bojan Nikolić, Danijel Obrić
Combined Fermionic and Bosonic T-duality of Type II Superstring Theory
with Coordinate Dependent RR Field
Fortschritte der Physik, 71, 2200160 (2023) ИФ= 3.9 (за 2022. годину)
DOI: https://doi.org/10.1002/prop.202200160

Bojan Nikolić, Danijel Obrić
Noncommutativity and nonassociativity of type II superstring with
coordinate dependent RR field — the general case
Journal of High Energy Physics, 12, 078 (2022) ИФ=6.376 (за 2021. годину)
DOI: https://doi.org/10.1007/JHEP12(2022)078

https://doi.org/10.1002/prop.202200048
https://doi.org/10.1002/prop.202200160
https://doi.org/10.1007/JHEP12(2022)078


Елементи за квалитативну оцену научног доприноса

1 Квалитет научних резултата
1.1 Научни ниво и значај резултата, утицај научних радова

У свом досадашњем раду, др Данијел Обрић је објавио укупно пет радова,
свих пет радова су категорије М21 (врхунски међународни часопис).

Најзначајни рад кандидата је

Bojan Nikolić, Danijel Obrić
Noncommutativity and Nonassociativity of Closed Bosonic String on T-dual
Toroidal Backgrounds
Fortschritte der Physik, 66, 1800009 (2018) ИФ= 3.263 (за 2017. годину)
DOI: https://doi.org/10.1002/prop.201800009

У овом раду разматрана је затворена бозонска струна у присуству константне
метрике и Калб-Рамодовог поља које има једну ненулту компоненту, Bxy =

Hz, где је јачина поља H инфинитезимално мала. Користећи Бушерову Т-
дуализациону процедуру, извршили смо дуализацију дуж x и y праваца а
користећи уопштење Т-дуализационе процедуре дуализујемо дуж z правца,
где намећемо тривијане услове за намотавање струне. После прве две Т-
дуализације добијамо теорију са Q флуксом која је локално добро дефин-
исана. Након дуализације дуж све три правца добијамо нелокалну теорију са
R флуксом. Извор нелокалности је варијабла ∆V , дефинисинана као инте-
грал дуж линије, која се појављује као аргумент позадинских поља. Преписи-
вањем Т-дуалних закона трансформације у канонски облик и користећи стан-
дардну Поасонову алгебру, добијамо да је теорија са Q флуксом комутативна
док је теорија са R флуском некомутативна и неасоцијативна. Последица
овога је да за затворену струну постоји повезаност између нелокалности са
једне стране и некомутатицности и неасоцијативности са друге стране.

1.2 Цитираност научних радова кандидата

Укупан број цитата кандидата на дан 5. фебруара 2024. године је по WoS
бази 8, односно по Scopus бази 8, од тога је број хетероцитата по WoS бази
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8, односно по Scopus бази 8. Према обе базе, Хиршхов индекс кандидата
је исти и износи 2. Обе базе података имају пропусте и не дају потпуну
слику цитираности кандидата. Кандидат поседује рад (B. Nikolić, D. Obrić,
Fortschr. Phys. 2018, 66, 1800009. https://doi.org/10.1002/prop.201800009) који
је цитиран као препринт умсето објављеног чланка и доставља рад који га је
цитирао (R. Szabo, PoS(CORFU2017)151, https://doi.org/10.22323/1.318.0151)
као доказ.

1.3 Параметри квалитета радова и часцописа

Кандидат, др Данијел Обрић је објавио укупно пет радова у међународним
часописима и то:

• 3 рада у врхунском међународном часопису Fortschritte der Physik
(ИФ = 3.263, СНИП = 0.8; ИФ = 5.532, СНИП = 1.293; ИФ = 3.9, СНИП
= 1.224)

• 2 рада у врхунском међународном часопису Journal of High Energy Physics
(ИФ = 5.875, СНИП = 1.295; ИФ = 6.376, СНИП = 1.322)

Библиометарски показатељи су сумирани у наредној табели

ИФ М СНИП

Укупно 24.946 40 5.934

Усредњено по
чланку

4.9892 8 1.1868

Усредњено по
аутору

11.551 18.66 2.7515

2 Нормирање броја коауторских радова, патената и техничких
резултата

Од 5 радова кандидата, 4 рада имају 2 аутора а 1 рад има 3 аутора. Радови
кандидата припадају класи теоријских радова у оквиру природних наука и
свих пет радова се признају са пуним бројем М поена.



3 Учешће у пројектима, потпројектима и пројектним задатцима

Кандидат је учествовао на следећим пројектима:

• пројекту Министарства просвете, науке и технолошког развоја Репуб-
лике Србије ОН171031 „Физичке импликације модификованог просторвре-
мена”,

• пројекту „Quantum Gravity from Higher Gauge Theory 2021” (7745968),
програма „Идеје” Фонда за науку Републике Србије од јануара 2021.
године, са очекиваним крајем пројекта у децембру 2024. године.

4 Утицај научних резултата

Утицај научних резултата кандидата се огледа у броју цитата који су наведени
у тачки 1.2 овог прилога, као и у прилогу о цитираности. Значај резултата
кандидата је такоће описан у тачки 1.1.

5 Активност у научним и научно-стручним друштвима

Кандидат је по позиву рецензирао рад у часопису Kragujevac Journal of Science

6 Конкретан допринос кандидата у реализацији радова у научним
центрима у земљи и иностранству

Кандидат је све своје истраживачке активности реализовао у Институту за
физику у Београду. Свој допринос током истраживања дао је у рачунању,
интерпретацији и презентовању резултата, писању радова и комуникацији са
рецезентима.

7 Уводна предавања на конференцијама, друга предавања и
активности



Током докторских студија Данијел Обрић је своје истраживање представио на
конференцији Workshop on Gravity and String Theory: "New ideas for unsolved
problems III на Златибору 2018. године, предавањем "Noncommutativity and
nonassociativity of closed bosonic string on T-dual toroidal backgrounds". Након
завршетка студија кандидат је одржао и неколико научно популарних пре-
давања намењених широј публици. Овој категорији предавања припадају:
„Зашто општа релативност” као део циклуса предавања „Квантна гравитација
- Свети грал савремене физике” у Задужбини Илије М. Коларца у Београду
2023. године, „ICTP Преглед дешавања у модерној теоријској физици” на Ин-
ституту за Физику у Крагујевцу 2023. године, „Општа теорија релативности
- Модерна теорија простор-времена” на Институту за Физику у Крагујевцу
2023. године и ”Квантна теорија поља - Модерна теорија фундаменталних
сила ” на Институту за Физику у Крагујевцу 2023. године.



Елементи за квантитативну оцену научног доприноса

Остварнеи резултати

Категорија
М бодова по

раду
Број радова

Укупно М
бодова

Укупно М
бодова са

нормирањем
М21 8 5 40 40

М70 6 1 6 6

Поређење са минималним квантитативним условима за избор у звање научни
сарадник

Минимални број М бодова
Остварнео М
бодова без
нормирања

Остварено М
бодова са

нормирањем
Укупно 16 46 46

M10+M20+M31+M32+M33+M41+M42 10 40 40

M11+M12+M21+M22+M23 6 40 40
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Noncommutativity and Nonassociativity of Closed Bosonic
String on T-dual Toroidal Backgrounds

B. Nikolíc* and D. Obríc

In this article we consider closed bosonic string in the presence of constant
metric and Kalb-Ramond field with one non-zero component, Bx y = H z,
where field strength H is infinitesimal. Using Buscher T-duality procedure we
dualize along x and y directions and using generalized T-duality procedure
along z direction imposing trivial winding conditions. After first two
T-dualizations we obtain Q flux theory which is just locally well defined, while
after all three T-dualizations we obtain nonlocal R flux theory. Origin of
non-locality is variable �V defined as line integral, which appears as an
argument of the background fields. Rewriting T-dual transformation laws in
the canonical form and using standard Poisson algebra, we obtained that Q
flux theory is commutative one and the R flux theory is noncommutative and
nonassociative one. Consequently, there is a correlation between non-locality
and closed string noncommutativity and nonassociativity.

1. Introduction

Coordinate noncommutativity means that there exists minimal
possible length, which imposes natural UV cutoff. Idea of coor-
dinate noncommutativity is very old. Heisenberg suggested coor-
dinate noncommutativity to solve the problem of the occurrence
of infinite quantities before renormalization procedure was de-
veloped and accepted. The first scientific paper considering this
subject appeared 1947[1] where construction of discrete Lorentz
invariant space-time is presented. Later in the period of 1980s A.
Connes developed noncommutative geometry as a generalization
of the standard commutative geometry.[2]

Noncommutativity became again interesting for particle physi-
cists when the paper[3] appeared. In this article it is shown us-
ing propagators that open string endpoints in the presence of
the constant metric and Kalb-Ramond field become noncom-
mutative. D-brane on which the string endpoints are forced
to move becomes noncommutative manifold. After this article
many articles[4] appeared addressing the same subject but us-
ing different approaches - Fourier expansion, canonical methods,
solving of boundary conditions etc.

B. Nikolíc
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In the last two articles of [4] themethod
of solving of boundary conditions is
presented. The basic idea is that open
string boundary condition is treated as
canonical constraint. Investigating the
consistency of the canonical constraint
we obtained the σ dependent form of
the boundary condition. Further, we
can proceed twofold: to introduce Dirac
brackets or solve the constraint. Solving
the constraint, we obtained the initial
coordinate as a linear combination of
the effective coordinate and momenta.
Consequently, initial coordinates are
noncommutative and the main contri-
bution to noncomutativity parameter
comes from Kalb-Ramond field as it was
expected.

Following the result of the article[5] it
can be proven that gauge fields “live” at

the open string endpoints. Consequently, many interesting pa-
pers concerning non-commutative Yang-Mills theories and their
renormalisability appeared.[6] In the papers[7] cross sections for
some decays, allowed in noncommutative Yang-Mills theories
and forbidden in commutative ones, are calculated, which offers
a possibility of the experimental check of the noncommutativity
idea and further, indirectly, idea of strings.
It is obvious that closed bosonic string in the presence of

constant background fields remains commutative. There are no
boundaries and, consequently, boundary conditions constraining
string dynamics. In the case of open string we obtained initial
coordinate in the form of linear combination of effective coordi-
nates and momenta using boundary condition. That is achieved
in the closed string case[8] using T-duality procedure and coordi-
nate dependent background.
T-duality as a fundamental feature of string theory,[9–15] unex-

perienced by point particle, makes that there is no physical dif-
ference between string theory compactified on a circle of radius
R and circle of radius 1/R. Buscher T-dualization procedure[10]

represents a mathematical frame in which T-dualization is
realized. If the background fields do not depend on some co-
ordinates then those coordinates are isometry directions. Con-
sequently, that symmetry can be localized replacing ordinary
world-sheet derivatives ∂± by covariant ones D±xμ = ∂±xμ + v

μ
±,

where v
μ
± are gauge fields. In order to make T-dual theory has the

same number of degrees of freedom, the new termwith Lagrange
multipliers is added to the action which forces the gauge fields to
be unphysical degrees of freedom. Because of the shift symme-
try, using gauge freedom we fix initial coordinates. Variation of
this gauge fixed action with respect to the Lagrange multipliers
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produces initial action and with respect to the gauge fields pro-
duces T-dual action.
Standard Buscher T-dualization was applied in closed string

case in the papers.[8,16–19] In Ref. [16] authors consider 3-torus
in the presence of constant metric and Kalb-Ramond field with
one nonzero component Bxy = Hz, where field strength H is in-
finitesimal. They systematically apply Buscher procedure and, af-
ter two T-dualizations along isometry directions, obtain theory
with Q flux which is noncommutative. In the calculations they
used nontrivial boundary conditions (winding conditions). The
result is that T-dual closed string coordinates are noncommuta-
tive for the same values of parameters σ = σ̄ with noncommuta-
tivity parameter proportional to field strength H and N3, winding
number for z coordinate.
But, except this standard Buscher procedure, there is a gen-

eralized Buscher procedure dealing with background fields
depending on all coordinates. The generalized procedure was
applied to the case of bosonic string moving in the weakly
curved background[20–22] and in the casewheremetric is quadratic
in coordinates and Kalb-Ramond field is linear function of
coordinates.[23] The generalized procedure enables us to make
T-dualization in mentioned cases along arbitrary subset of coor-
dinates.
Double space is one picturesque framework for representation

of T-duality. Double space is introduced two to three decades
ago.[24–28] It is spanned by double coordinates ZM = (xμ, yμ)
(μ = 0, 1, 2, . . . , D − 1), where xμ are the coordinates of the
initial theory and yμ are T-dual coordinates. In this space
T-dualization is represented as O(d, d) transformation.[29–33]

Permutation of the appropriate subsets of the initial and
T-dual coordinates is interpreted as partial T-dualization[34,35]

expanding Duff ’s idea.[24] The newly invented intrinsic
noncommutativity[36] is related to double space. Intrinsic
noncommutativity exists in the constant background case
because it is considered within double space framework.
In this article we will deal with closed bosonic string propagat-

ing in the constant metric and linear dependent Kalb-Ramond
field with Bxy = Hz, the same background as in [16]. This con-
figuration is known in literature as torus with H-flux. As in
the Ref. [16] we will use approximation of diluted flux, which
means that in all calculations we keep constant and linear terms
in infinitesimal field strength H. Transformation laws, relations
which connect initial and T-dual variables, we will write in canon-
ical form expressing initial momenta in terms of the T-dual co-
ordinates. Unlike Ref. [16], except T-dualization along two isom-
etry directions, we will make one step more and T-dualize along
z coordinate using generalized T-dualization procedure. During
dualization procedure we will use trivial boundary (winding) con-
ditions.
Transformation laws in canonical form enable us to express

sigma derivative of the T-dual coordinate as a linear combination
of the initial momenta and coordinates. Because initial theory is
geometrical locally and globally, its coordinates and canonically
conjugated momenta satisfy standard Poisson algebra. This fact
means that we can calculate the Poisson brackets of the T-dual
coordinates using technical instruction given in subsection 4.1.
After T-dualizations along isometry directions (along x and

y) we obtain the same background as in Ref. [16] but, obtained
Q flux theory, which is still locally well defined, is commuta-

tive. This is a consequence of the imposed trivial winding condi-
tions.Having inmind the generalized T-duality procedure,[20,21,23]

T-dualization along z coordinate produces R flux nonlocal theory
because it depends on the variable �V which is defined as line
integral. Calculating Poisson brackets of the T-dual coordinates
we obtain two nonzero Poisson brackets and show that there is a
correlation between non-locality and closed string noncommuta-
tivity.
The form of noncommutativity is such that it exists when ar-

guments of the coordinates are different, σ �= σ̄ . That is another
difference with respect to the result of Ref. [16] but there is no
contradiction because the origins of noncommutativity are differ-
ent. In this article non-locality is related with noncommutativity
of R flux theory under trivial winding conditions while in Ref. [16]
it is about noncommutativity of Q flux theory under nontrivial
winding conditions.
From the noncommutativity relations it follows that Jacobi

identity is broken i.e. nonassociativity occurs. Nonassociativity
parameter, R flux, is proportional to the field strength H. Us-
ing generalized T-duality[20,21,23] we obtain the concrete form of
nonassociativity from string dynamics. Similar as noncommu-
tativity, discovery of nonassociativity pushes the scientists to ex-
plore the effects of nonassociativity in the field of renormalis-
ability of φ4 theory[37] as well as formulation of nonassociative
gravity.[38]

At the end we add an appendix containing some conventions
used in the paper.

2. Bosonic String Action and Choice of Background
Fields

The action of the closed bosonic string in the presence of
the space-time metric Gμν (x), Kalb-Ramond antisymmetric field
Bμν (x), and dilaton scalar field �(x) is given by the following
expression[9]

S = κ

∫
	

d2ξ
√−g

×
{[

1
2
g αβGμν (x)+ εαβ

√−g
Bμν (x)

]
∂αxμ∂βxν + �(x)R(2)

}
,

(2.1)

where 	 is the world-sheet surface parameterized by ξα = (τ, σ )
[(α = 0, 1), σ ∈ (0, π )], while the D-dimensional space-time is
spanned by the coordinates xμ (μ = 0, 1, 2, . . . , D − 1). We de-
note intrinsic world sheetmetric with gαβ , and the corresponding
scalar curvature with R(2).
In order to keep conformal symmetry on the quantum level

background fields must obey space-time field equations[39]

βG
μν ≡ Rμν − 1

4
Bμρσ Bν

ρσ + 2Dμaν = 0, (2.2)

βB
μν ≡ DρBρ

μν − 2aρBρ
μν = 0, (2.3)

β� ≡ 2πκ
D − 26

6
− R − 1

24
Bμρσ Bμρσ − Dμaμ + 4a2 = c,

(2.4)
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where c is an arbitrary constant. The function β� could be a con-
stant because of the relation

DνβG
νμ + ∂μβ� = 0. (2.5)

Further, Rμν and Dμ are Ricci tensor and covariant derivative with
respect to the space-time metric Gμν , while

Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν, aμ = ∂μ�, (2.6)

are field strength for Kalb-Ramond field Bμν and dilaton gradient,
respectively. Trivial solution of these equations is that all three
background fields are constant. This case was pretty exploited in
the analysis of the open string noncommutativity.
The less trivial case would be a case where some background

fields are coordinate dependent. If we choose Kalb-Ramond field
to be linearly coordinate dependent and dilaton field to be con-
stant then the first equation (2.2) becomes

Rμν − 1
4
Bμρσ Bν

ρσ = 0. (2.7)

The field strength Bμνρ is constant and, if we assume that it is in-
finitesimal, thenwe can takeGμν to be constant in approximation
linear in Bμνρ . Consequently, all three space-time field equations
are satisfied. Especially, the third one is of the form

2πκ
D − 26

6
= c, (2.8)

which enables us to work in arbitrary number of space-time di-
mensions.
In this article we will work in D = 3 dimensions with the fol-

lowing choice of background fields

Gμν =

⎛
⎜⎝
R2
1 0 0

0 R2
2 0

0 0 R2
3

⎞
⎟⎠ , Bμν =

⎛
⎜⎝

0 Hz 0

−Hz 0 0

0 0 0

⎞
⎟⎠ , (2.9)

where Rμ(μ = 1, 2, 3) are radii of the compact dimensions. This
choice of background fields is known in geometry as torus with
flux (field strength) H.[16] Our choice of infinitesimal H can be
understood in terms of the radii as that(

H
R1R2R3

)2

= 0. (2.10)

This approximation is known in literature as the approximation
of diluted flux. Physically, this means that we work with the torus
which is sufficiently large. Consequently, we can rescale the co-
ordinates

xμ �−→ xμ

Rμ

, (2.11)

which simplifies the form of the metric

Gμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ . (2.12)

The final form of the closed bosonic string action is

S = κ

∫
	

d2ξ∂+xμ�+μν∂−xν

= κ

∫
	

d2ξ
[
1
2
(∂+x∂−x + ∂+y∂−y + ∂+z∂−z)

+ ∂+xHz∂−y − ∂+yHz∂−x
]
, (2.13)

where ∂± = ∂τ ± ∂σ is world-sheet derivative with respect to the
light-cone coordinates ξ± = 1

2 (τ ± σ ), �±μν = Bμν ± 1
2Gμν and

xμ =

⎛
⎜⎝
x
y
z

⎞
⎟⎠ . (2.14)

Let us note that we do not write dilaton term because its
T-dualization is performed separately within quantum formal-
ism and here will be skipped.

3. T-dualization of the Bosonic Closed String
Action

In this section we will perform T-dualization along three direc-
tions, one direction at time. Our goal is to find the relations con-
necting initial variables with T-dual ones called transformation
laws. Using transformation laws we will find noncommutativity
and nonassociativity relations.

3.1. T-dualization Along x Direction – from Torus with H Flux to
the Twisted Torus

Let us perform standard Buscher T-dualization[10] of action (2.13)
along x direction. Note that x direction is an isometry direction
whichmeans that action has a global shift symmetry, x−→ x+ a.
In order to perform Buscher procedure, we have to localize this
symmetry introducing covariant world-sheet derivatives instead
of the ordinary ones

∂±x −→ D±x = ∂±x + v±, (3.1)

where v± are gauge fields which transform as δv± = −∂±a. Be-
cause T-dual action must have the same number of degrees of
freedom as initial one, we have to make these fields v± be un-
physical degrees of freedom. This is accomplished by adding fol-
lowing term to the action

Sadd = κ

2

∫
	

d2ξ y1(∂+v− − ∂−v+), (3.2)

where y1 is a Lagrange multiplier. After gauge fixing, x = cons t .,
the action gets the form

Sf ix = κ

∫
d2ξ

[
1
2
(v+v− + ∂+y∂−y + ∂+z∂−z)+ v+Hz∂−y

− ∂+yHzv− + 1
2
y1(∂+v− − ∂−v+)

]
. (3.3)
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From the equations of motion for y1 we obtain that field
strength for the gauge field v± is equal to zero

F+− = ∂+v− − ∂−v+ = 0, (3.4)

which gives us the solution for gauge field

v± = ∂±x. (3.5)

Inserting this solution for gauge field into gauge fixed action (3.3)
we obtain initial action given by Eq. (2.13). Equations of motion
for v± will lead to the T-dual action. Varying the gauge fixed action
(3.3) with respect to the gauge field v+ we get

v− = −∂−y1 − 2Hz∂−y, (3.6)

while on the equation of motion for v− it holds

v+ = ∂+y1 + 2Hz∂+y. (3.7)

Inserting relations (3.6) and (3.7) into expression for gauge
fixed action (3.3), keeping terms linear in H, we obtain the
T-dual action

xS = κ

∫
	

d2ξ∂+(x X)μx�+μν∂−(x X)ν, (3.8)

where subscript x denotes quantity obtained after T-dualization
along x direction and

x Xμ =

⎛
⎜⎝
y1
y

z

⎞
⎟⎠ . (3.9)

Further we have the T-dual background fields

x�+μν = xBμν + 1
2 xGμν, xBμν = 0,

xGμν =

⎛
⎜⎝

1 2Hz 0

2Hz 1 0

0 0 1

⎞
⎟⎠ . (3.10)

Obtained background fields (3.10) define that what is known
in literature as twisted torus geometry. String theory after one
T-dualization is geometrically well defined globally and locally or,
simply, theory is geometrical (fluxH takes the role of connection).
Combining the solutions of equations of motion for La-

grange multiplier (3.5) and for gauge fields, (3.6) and (3.7), we
get the transformation laws connecting initial, xμ, and T-dual,
x Xμ, coordinates

∂±x ∼= ±∂±y1 ± 2Hz∂±y, (3.11)

where∼= denotes T-duality relation. Themomentum πx is canon-
ically conjugated to the initial coordinate x. Using the initial
action (2.13) we get

πx = δS
δẋ

= κ(ẋ − 2Hzy ′), (3.12)

where Ȧ ≡ ∂τ A and A′ ≡ ∂σ A. From transformation law (3.11) it
is straightforward to obtain

ẋ ∼= y ′
1 + 2Hzy ′, (3.13)

which, inserted in the expression for momentum πx, gives trans-
formation law in canonical form

πx
∼= κy ′

1. (3.14)

3.2. From Twisted Torus to Non-geometrical Q Flux

In this subsection we will continue the T-dualization of
action (3.8) along y direction. After x and y T-dualization we ob-
tain the structure which has local geometrical interpretation but
global omissions. Such structure is known in literature as non-
geometry.
We repeat the procedure from the previous subsection and

form the gauge fixed action

Sf ix = κ

∫
	

d2ξ
[
1
2
(∂+y1∂−y1 + v+v− + ∂+z∂−z)+ ∂+y1Hzv−

+ v+Hz∂−y1 + 1
2
y2(∂+v− − ∂−v+)

]
. (3.15)

From the equation of motion for Lagrange multiplier y2

∂+v− − ∂−v+ = 0 −→ v± = ∂±y, (3.16)

gauge fixed action becomes initial one (3.8). Varying the gauge
fixed action (3.15) with respect to the gauge fields we get

v± = ±∂±y2 − 2Hz∂±y1. (3.17)

Inserting these expressions for gauge fields into gauge fixed ac-
tion, keeping the terms linear in H, gauge fixed action is driven
into T-dual action

xy S = κ

∫
d2ξ∂+(xy X)μxy�+μν∂−(xy X)ν, (3.18)

where

(xy X)μ =

⎛
⎜⎝
y1
y2
z

⎞
⎟⎠ ,

xy�+μν = xy Bμν + 1
2 xyGμν =

⎛
⎜⎝

1
2 −Hz 0

Hz 1
2 0

0 0 1
2

⎞
⎟⎠ . (3.19)

Explicit expressions for background fields are

xy Bμν =

⎛
⎜⎝

0 −Hz 0

Hz 0 0

0 0 0

⎞
⎟⎠ = −Bμν, xyGμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

(3.20)
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Let us note that background fields obtained after two
T-dualizations are similar to the geometric background of
torus with H flux, but they should be considered only locally.
Their global properties are non-trivial and because of that the
term “non-geometry” is introduced.
Combining the equations ofmotion for Lagrangemultiplier y2

and for gauge fields v±, we obtain T-dual transformation laws

∂±y ∼= ±∂±y2 − 2Hz∂±y1. (3.21)

The y component of the initial canonical momentum πy is a vari-
ation of the initial action with respect to the ẏ

πy = δS
δ ẏ

= κ( ẏ + 2Hzx′). (3.22)

Using T-dual transformation laws (3.21) we easily get

ẏ ∼= y ′
2 − 2Hzẏ1, (3.23)

while from the transformation law (3.11), at zeroth order in H,
it holds x′ ∼= ẏ1. Inserting last two expression into πy we obtain
transformation law in canonical form

πy
∼= κy ′

2. (3.24)

After two T-dualizations along isometry directions, in the approx-
imation of the diluted flux (keeping just terms linear in H), ac-
cording to the canonical forms of the transformation laws (3.14)
and (3.24), we see that T-dual coordinates y1 and y2 are still com-
mutative. This is a consequence of the simple fact that variables
of the initial theory, which is geometrical one, satisfy standard
Poisson algebra

{
xμ(σ ), πν (σ̄ )

} = δμ
νδ(σ − σ̄ ), {xμ, xν} = {

πμ, πν

} = 0,

(3.25)

where

πμ =

⎛
⎜⎝

πx

πy

πz

⎞
⎟⎠ . (3.26)

3.3. From Q to R Flux – T-dualization Along z Coordinate

In this subsection we will finalize the process of T-dualization
dualizing along remaining z direction. For this purpose we will
use generalized T-dualization procedure.[20,21,23] The result is a
theory which is not well defined even locally and is known in
literature as theory with R-flux.
We start with the action obtained after T-dualizations along x

and y directions (3.18). The Kalb-Ramond field (3.20) depends on
z and it seems that it is not possible to perform T-dualization. Let

us assume that Kalb-Ramond field linearly depends on all coor-
dinates, Bμν = bμν + 1

3 Bμνρxρ and check if some global transfor-
mation can be treated as isometry one. We start with global shift
transformation

δxμ = λμ, (3.27)

and make a variation of action

δS = κ

3
Bμνρλ

ρ

∫
	

d2ξ∂+xμ∂−xν

= 2k
3
Bμνρλ

ρεαβ

∫
	

d2ξ [∂α(xμ∂βxν )− xμ(∂α∂βxν )]. (3.28)

The second term vanishes explicitly, while the first term is sur-
face one. Consequently, in the case of constant metric and lin-
early dependent Kalb-Ramond field, global shift transformation
is an isometry transformation. This means that we can make
T-dualization along z coordinate using generalized T-dualization
procedure.
The generalized T-dualization procedure is presented in detail

in Ref. [20]. In order to localize shift symmetry of the action (3.18)
along z direction we introduce covariant derivative

∂±z −→ D±z = ∂±z+ v±, (3.29)

which is a part of the standard Buscher procedure. The novelty is
introduction of the invariant coordinate as line integral

zinv =
∫
P
dξαDαz

=
∫
P
dξ+D+z+

∫
P
dξ−D−z = z(ξ )− z(ξ0)+ �V, (3.30)

where

�V =
∫
P
dξαvα =

∫
P
(dξ+v+ + dξ−v−). (3.31)

Here ξ and ξ0 are the current and initial point of the world-sheet
line P . At the end, as in the standard Buscher procedure, in order
to make v± to be unphysical degrees of freedom we add to the
action term with Lagrange multiplier

Sadd = κ

2

∫
	

d2ξ y3(∂+v− − ∂+v−). (3.32)

The final form of the action is

S̄ = κ

∫
	

d2ξ
[

− Hzinv(∂+y1∂−y2 − ∂+y2∂−y1)

+ 1
2
(∂+y1∂−y1 + ∂+y2∂−y2 + D+zD−z)

+1
2
y3(∂+v− − ∂−v+)

]
. (3.33)
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Because of existing shift symmetry we fix the gauge, z(ξ ) = z(ξ0),
and then the gauge fixed action takes the form

Sf ix = κ

∫
	

d2ξ
[

− H�V (∂+y1∂−y2 − ∂+y2∂−y1)

+1
2
(∂+y1∂−y1 + ∂+y2∂−y2 + v+v−)

+ 1
2
y3(∂+v− − ∂−v+)

]
. (3.34)

From the equation of motion for Lagrange multiplier y3 we
obtain

∂+v− − ∂−v+ = 0 =⇒ v± = ∂±z, �V = �z, (3.35)

which drives back the gauge fixed action to the initial action
(3.18). Varying the gauge fixed action (3.34) with respect to the
gauge fields v± we get the following equations of motion

v± = ±∂±y3 − 2β∓, (3.36)

where β± functions are defined as

β± = ±1
2
H(y1∂∓y2 − y2∂∓y1). (3.37)

The β± functions are obtained as a result of the variation of the
term containing �V

δv

(
−2κ

∫
d2ξεαβH∂α y1∂β y2�V

)

= κ

∫
d2ξ

(
β+δv+ + β−δv−

)
, (3.38)

using partial integration and the fact that ∂±V = v±. Inserting
the relations (3.36) into the gauge fixed action, keeping linear
terms in H, we obtain the T-dual action

xyzS = κ

∫
	

d2ξ∂+xyzXμ
xyz�+μν∂−xyzXν, (3.39)

where

xyzXμ =

⎛
⎜⎝
y1
y2
y3

⎞
⎟⎠ , xyz�+μν = xyzBμν + 1

2 xyzGμν, (3.40)

xyzBμν =

⎛
⎜⎝

0 −H� ỹ3 0

H� ỹ3 0 0

0 0 0

⎞
⎟⎠ , xyzGμν =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

(3.41)

Here we introduced double coordinate ỹ3 defined as

∂±y3 ≡ ±∂± ỹ3. (3.42)

Let us note that �V stands beside field strength H, which impli-
cates that, according to the diluted flux approximation, we calcu-
late �V in the zeroth order in H

�V =
∫

dξ+∂+y3 −
∫

dξ−∂−y3. (3.43)

Having this into account it is clear why we defined double co-
ordinate ỹ3 as in Eq. (3.42). Also it is useful to note that pres-
ence of �V , which is defined as line integral, represents the
source of non-locality of the T-dual theory. the result of the
three T-dualization is a theory with R flux as it is known in
the literature.
Combining the equations of motion for Lagrange multiplier

(3.35), v± = ∂±z, and equations of motion for gauge fields (3.36),
we obtain the T-dual transformation law

∂±z ∼= ±∂±y3 − 2β∓. (3.44)

Adding transformation laws for ∂±z and ∂−zwe get the transfor-
mation law for ż

ż ∼= y ′
3 + H(y1y ′

2 − y2y ′
1), (3.45)

which enables us to write down the transformation law in the
canonical form

y ′
3

∼= 1
κ

πz − H(xy ′ − yx′). (3.46)

Here we used the expression for the canonical momentum of the
initial theory (2.13)

πz = δS
δż

= κ ż. (3.47)

4. Noncommutativity and Nonassociativity Using
T-duality

In the open string case noncommutativity comes from the
boundary conditions which makes that coordinates xμ depend
both on the effective coordinates and on the effectivemomenta.[4]

Effective coordinates and momenta do not commute and, conse-
quently, coordinates xμ do not commute. In the closed bosonic
string case the logic is the same but the execution is different.
Using T-duality we obtained transformation laws, (3.11), (3.21)
and (3.44), which relate T-dual coordinates with the initial coordi-
nates and their canonically conjugated momenta. In this section
we will use these relations to get noncommutativity and nonas-
sociativity relations.

4.1. Noncommutativity Relations

Let us start with the Poisson bracket of the σ derivatives of two
arbitrary coordinates in the form

{A′(σ ), B′(σ̄ )} = U ′(σ )δ(σ − σ̄ )+ V (σ )δ′(σ − σ̄ ), (4.1)

Fortschr. Phys. 2018, 66, 1800009 C© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800009 (6 of 9)
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where δ′(σ − σ̄ ) ≡ ∂σ δ(σ − σ̄ ). In order to find the form of the
Poisson bracket

{A(σ ), B(σ̄ )},

we have to find the form of the Poisson bracket

{�A(σ, σ0),�B(σ̄ , σ̄0)},

where

�A(σ, σ0) =
∫ σ

σ0

dxA′(x) = A(σ )− A(σ0),

�B(σ̄ , σ̄0) =
∫ σ̄

σ̄0

dxB′(x) = B(σ̄ )− B(σ̄0). (4.2)

Now we have

{�A(σ, σ0), �B(σ̄ , σ̄0)}

=
∫ σ

σ0

dx
∫ σ̄

σ̄0

dy
[
U ′(x)δ(x − y)+ V (x)δ′(x − y)

]
. (4.3)

After integration over y we get

{�A(σ, σ0),�B(σ̄ , σ̄0)} =
∫ σ

σ0

dx
{
U ′(x)

[
θ (x − σ̄0)− θ (x − σ̄ )

]
+ V (x)

[
δ(x − σ̄0)− δ(x − σ̄ )

]}
, (4.4)

where function θ (x) is defined as

θ (x) =
∫ x

0
dηδ(η) = 1

2π

[
x + 2

∑
n≥1

1
n
sin(nx)

]

=

⎧⎪⎨
⎪⎩
0 if x = 0

1/2 if 0 < x < 2π.

1 if x = 2π

(4.5)

Integrating over x using partial integration finally we obtain

{�A(σ, σ0),�B(σ̄ , σ̄0)} = U(σ )[θ (σ − σ̄0)− θ (σ − σ̄ )]

−U(σ0)[θ (σ0 − σ̄0)− θ (σ0 − σ̄ )]−U(σ̄0)[θ (σ − σ̄0)− θ (σ0 − σ̄0)]

+U(σ̄ )[θ (σ − σ̄ )− θ (σ0 − σ̄ )]+ V (σ̄0)[θ (σ − σ̄0)− θ (σ0 − σ̄0]

−V (σ̄ )[θ (σ − σ̄ )− θ (σ0 − σ̄ )]. (4.6)

From the last expression, using the right-hand sides of the ex-
pressions in Eq. (4.2), we extract the desired Poisson bracket

{A(σ ), B(σ̄ )} = −[U(σ )−U(σ̄ )+ V (σ̄ )]θ (σ − σ̄ ). (4.7)

Let us rewrite the canonical forms of the transformation laws,
(3.14), (3.24) and (3.46), in the following way

y ′
1

∼= 1
κ

πx, y ′
2

∼= 1
κ

πy , y ′
3

∼= 1
κ

πz − H(xy ′ − yx′). (4.8)

In order to find the Poisson brackets between T-dual coordinates
yμ we will use the algebra of the coordinates and momenta of
the initial theory (3.25). It is obvious that only nontrivial Poisson
brackets will be {y1(σ ), y3(σ̄ )} and {y2(σ ), y3(σ̄ )}.
Let us first write the corresponding Poisson brackets of the

sigma derivatives of T-dual coordinates yμ using (4.8)

{y ′
1(σ ), y

′
3(σ̄ )} ∼= 2

κ
Hy ′(σ )δ(σ − σ̄ )+ 1

κ
Hy(σ )δ′(σ − σ̄ ), (4.9)

{y ′
2(σ ), y

′
3(σ̄ )} ∼= − 2

κ
Hx′(σ )δ(σ − σ̄ )− 1

κ
Hx(σ )δ′(σ − σ̄ ),

(4.10)

while all other Poisson brackets are zero. We see that these Pois-
son brackets are of the form (4.1), so, we can apply the result (4.7).
Consequently, we get

{y1(σ ), y3(σ̄ )} ∼= −H
κ

[
2y(σ )− y(σ̄ )

]
θ (σ − σ̄ ), (4.11)

{y2(σ ), y3(σ̄ )} ∼= H
κ

[
2x(σ )− x(σ̄ )

]
θ (σ − σ̄ ), (4.12)

where function θ (x) is defined in (4.5). Let us note that these two
Poisson brackets are zero when σ = σ̄ and/or field strength H
is equal to zero. But if we take that σ − σ̄ = 2π then we have
θ (2π ) = 1 and it follows

{y1(σ + 2π ), y3(σ )} ∼= −H
κ

[
4πNy + y(σ )

]
, (4.13)

{y2(σ + 2π ), y3(σ )} ∼= H
κ

[
4πNx + x(σ )

]
, (4.14)

where Nx and Ny are winding numbers defined as

x(σ + 2π )− x(σ ) = 2πNx, y(σ + 2π )− y(σ ) = 2πNy . (4.15)

From these relations we can see that if we choose such σ for
which x(σ ) = 0 and y(σ ) = 0 then noncommutativity relations
are proportional to winding numbers. On the other side, for
winding numbers which are equal to zero there is still noncom-
mutativity between T-dual coordinates.

4.2. Nonassociativity

In order to calculate Jacobi identity of the T-dual coordinates
we first have to find Poisson brackets {y1(σ ), x(σ̄ )} as well as
{y2(σ ), y(σ̄ )}. We start with

{�y1(σ, σ0), x(σ̄ )} =
{∫ σ

σ0

dηy ′
1(η), x(σ̄ )

}
, (4.16)

and then use the T-dual transformation for x-direction in canon-
ical form

πx
∼= κy ′

1. (4.17)
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From these two equations it follows

{�y1(σ, σ0), x(σ̄ )} ∼= 1
κ

{∫ σ

σ0

dηπx(η), x(σ̄ )
}

, (4.18)

which, using the standard Poisson algebra, produces

{�y1(σ, σ0), x(σ̄ )} ∼= − 1
κ

[
θ (σ − σ̄ )− θ (σ0 − σ̄ )

]

=⇒ {y1(σ ), x(σ̄ )} ∼= − 1
κ

θ (σ − σ̄ ). (4.19)

The relation {y2(σ ), y(σ̄ )} can be obtained in the same way. Be-
cause the transformation law for y-direction is of the same form
as for x-direction, the Poisson bracket is of the same form

{y2(σ ), y(σ̄ )} ∼= − 1
κ

θ (σ − σ̄ ). (4.20)

Now we can calculate Jacobi identity using noncommutativity re-
lations (4.11) and (4.12) and above two Poisson brackets

{y1(σ1), y2(σ2), y3(σ3)} ≡ {y1(σ1), {y2(σ2), y3(σ3)}}
+{y2(σ2), {y3(σ3), y1(σ1)}} + {y3(σ3), {y1(σ1), y2(σ2)}}

∼= −2H
κ2

[
θ (σ1 − σ2)θ (σ2 − σ3)

+ θ (σ2 − σ1)θ (σ1 − σ3)+ θ (σ1 − σ3)θ (σ3 − σ2)
]
. (4.21)

Jacobi identity is nonzero which means that theory with R-flux is
nonassociative. For σ2 = σ3 = σ and σ1 = σ + 2π we get

{y1(σ + 2π ), y2(σ ), y3(σ )} ∼= 2H
κ2

. (4.22)

From the last two equations, general form of Jacobi identity and
Jacobi identity for special choice of σ ’s, we see that presence of
the coordinate dependent Kalb-Ramond field is a source of non-
commutativity and nonassociativity.

5. Conclusion

In this article we have considered the closed bosonic string
propagating in the three-dimensional constant metric and Kalb-
Ramond field with just one nonzero component Bxy = Hz. This
choice of background is in accordance with consistency condi-
tions in the sense that all calculations were made in approxi-
mation linear in Kalb-Ramond field strength H. Geometrically,
this settings corresponds to the torus with H flux. Then we per-
formed standard Buscher T-dualization procedure along isom-
etry directions, first along x and then along y direction. At the
end we performed generalized T-dualization procedure along z
direction and obtained nonlocal theory with R flux. Using the re-
lations between initial and T-dual variables, called T-dual trans-
formation laws, in canonical form we find the noncommutativity
and nonassociativity relations between T-dual coordinates.
After T-dualization along x direction we obtained theory em-

bedded in geometry known in literature as twisted torus geom-

etry. The relation between initial and T-dual variables is triv-
ial, πx

∼= κy ′
1, where πx is x component of the canonical mo-

mentum of the initial theory and y1 is coordinate T-dual to x.
Consequently, flux H takes a role of connection, obtained the-
ory is globally and locally well defined and commutative, because
the coordinates and their canonically conjugated momenta sat-
isfy the standard Poisson algebra (3.25).
The second T-dualization, along y direction, produces nonge-

ometrical theory, in literature known as Q flux theory. Themetric
is the same as initial one and Kalb-Ramond field have the same
form as initial up to minus sign. But, this theory has just local
geometrical interpretation. We obtained that, in approximation
linear in H, the transformation law in canonical form is again
trivial, πy

∼= κy ′
2, where πy is y component od the canonical mo-

mentum of the initial theory and y2 is coordinate T-dual to y.
As a consequence of the standard Poisson algebra (3.25), we con-
clude that Q flux theory is still commutative. This result seems to
be opposite from the result of the reference [16] where in detailed
calculation it is shown that Q flux theory is noncommutative. The
difference is in the so called boundary condition i.e. winding con-
dition. In the Ref. [16] they imposed nontrivial winding condition
whichmixes the coordinates and their T-dual partners (condition
given in Eq. (C.18) of Ref. [16]) and the result is noncommutativ-
ity. In this article the trivial winding condition is imposed on x
and y coordinates. The consequence is that Q flux theory is com-
mutative. But as it is written in Ref. [16] on page 42, “a priori other
reasonings could as well be pursued”.
T-dualizing along coordinate zusing themachinery of the gen-

eralized T-dualization procedure[20,21,23] we obtain the nonlocal
theory (theory with R flux) and nontrivial transformation law
in canonical form. Non-locality stems from the fact that back-
ground fields are expressed in terms of the variable �V which
is defined as line integral. On the other side, dependence of the
Kalb-Ramond field on z coordinate produces the β±(x, y) func-
tions and nontrivial transformation law for πz. Consequently, co-
ordinate dependent background gives non-locality and, further,
nonzero Poisson brackets of the T-dual coordinates.We can claim
that there is a correlation between non-locality (R-flux theory)
and closed string noncommutativity and nonassociativity. In ad-
dition, nonzero Poisson bracket implies nonzero Jacobi identity
which is a signal of nonassociativity.
From the expressions (4.11), (4.12) and (4.21) it follows that

parameters of noncommutativity and nonassociativity are pro-
portional to the field strength H. That means that closed string
noncommuatativity and nonassociativity are consequence of the
fact that Kalb-Ramond field is coordinate dependent, Bxy = Hz,
where H is an infinitesimal parameter according to the approxi-
mation of diluted flux. Using T-duality and trivial winding condi-
tions we obtained noncommutativity relations. The noncommu-
tativity relations are zero if σ = σ̄ because in noncommuatativity
relations function θ (σ − σ̄ ) is present, which is zero if its argu-
ment is zero. This is also at the first glance opposite to the result
of Ref. [16], but, having in mind that origin of noncommutativ-
ity is not same, this difference is not surprising. If we made a
round in sigma choosing σ → σ + 2π and σ̄ → σ , because of
θ (2π ) = 1, we obtained nonzero Poisson brackets. From the rela-
tions (4.13) and (4.14) we see that noncommutativity exists even
in the case when winding numbers are zero, noncommutativity
relations still stand unlike the result in [16]. Consequently, we can
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speak about some essential noncommutativity originating from
non-locality.
We showed that in ordinary space coordinate dependent back-

ground is a sufficient condition for closed string noncommutativ-
ity. Some papers[36] show that noncommutativity is possible even
in the constant background case. But that could be realized using
the double space formalism. At the zeroth order the explanation fol-
lows from the fact that transformation law in canonical form is of
the form πμ

∼= κy ′
μ, where yμ is T-dual coordinate. Forming dou-

ble space spanned by ZM = (xμ, yμ), we obtained noncommua-
tive (double) space. In literature this kind of noncommutativity
is called intrinsic one.

Appendix: Light-Cone Coordinates

In the paper we often use light-cone coordinates defined as

ξ± = 1
2
(τ ± σ ). (A.1)

The corresponding partial derivatives are

∂± ≡ ∂

∂ξ± = ∂τ ± ∂σ . (A.2)

Two dimensional Levi-Civita εαβ is chosen in (τ, σ ) basis as
ετσ = −1. Consequently, in the light-cone basis the form of ten-
sor is

εl c =
(

0 1
2− 1

2 0

)
. (A.3)

The flat world-sheet metric is of the form in (τ, σ ) and light-cone
basis, respectively

η =
(
1 0
0 −1

)
, ηl c =

( 1
2 0
0 1

2

)
. (A.4)
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Combined Fermionic and Bosonic T-duality of Type II
Superstring Theory with Coordinate Dependent RR Field

B. Nikolíc and D. Obríc*

We investigate effects of fermionic T-duality on type II superstring in presence
of Ramond-Ramond (RR) field that has infinitesimal linear dependence on
bosonic coordinate x𝝁. Other fields are assumed to be constant. Procedure
that we employ for obtaining fermionic T-dual theory is Buscher procedure,
where we will consider two distinct cases. One, where action has not been
T-dualized along bosonic coordinates and other where it has. By analyzing
these two cases, their actions and T-dual transformation laws, we obtain
some insight into how background fields transform and what are necessary
ingredients for emergence of fermionic non-commutativity.

1. Introduction

T-duality represents a map that connects different superstring
theories, mapping geometry and topology from one theory to
another.[1] This symmetry was originally developed with bosonic
coordinates in mind, where two theories are connected by trans-
formation laws that establish a link between coordinates.[2] It
was not until 2008 that it has been noticed that the same dual-
ity can emerge in case of fermionic coordinates. In their paper[3]

Berkovits and Maldacena showed that tree level superstring the-
ories in presence of supersymmetric background fields posses
new kind of symmetry. Symmetry that maps supersymmetric
background fields of one theory to supersymmetric backgrounds
of other theory, where dilaton and RR fields are now different.
Just like in case of bosonic T-duality, mathematical machinery
for obtaining T-dual theories is Buscher procedure[4,5] applied to
fermionic coordinates 𝜃𝛼 and �̄�𝛼 .
Busher T-dualization procedure including its extension to

fermionic coordinates[6–9] and its generalizations[10–12] mainly
follow the same steps. We notice some global symmetry in the
theory, usually shift symmetry, which is then localized by replac-
ing partial derivatives with covariant ones. Covariant derivatives
come with new gauge fields that insert new degrees of freedom
into the theory, these degrees of freedom are eliminatedwith help
of Lagrange multipliers. Next step is utilizing gauge freedom to
fix starting coordinates. After that, finding equations of motion
for gauge fields and inserting their solutions into the action we
obtain T-dual theory. Extension of procedure for fermionic coor-
dinates does not introduce any new steps into the play. However,
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extending the procedure to include coor-
dinate dependent background fields does
introduce one additional step. Namely,
we need to replace all coordinates with
invariant ones constructed as integrals of
covariant derivatives. This step is neces-
sary in order to preserve local shift sym-
metry.
In our previous paper[13] we demon-

strated that T-dual of type II superstring
which ismoving in coordinate dependent
RR field possesses non-commutative
Poisson brackets. Since T-duality was

performed only along bosonic coordinates it produced non-
commutativity only between bosonic T-dual coordinates. In addi-
tion to this, we had that background fields that were constants in
original theory became functions of both bosonic and fermionic
coordinates in dual theory. This has left us with one open ques-
tion: Would fermionic T-duality of starting theory or even theory
that has been dualized along bosonic coordinates produce non-
commutative relations between fermionic coordinates? While
it has been shown that, in case of closed bosonic string, non-
commutativity arises only in coordinates that had appeared in
background fields of starting theory[14], it is not clear if that is the
case for fermionic coordinates, especially when we have emer-
gence of new coordinate dependence in background fields after
bosonic T-duality.
In this article, our goal is to find what effects fermionic T-

duality has on action where RR field has dependence on bosonic
coordinates and do these effects change for fully dualized action.
By obtaining background fields in different stages of T-duality we
can determine how geometry of theory changes and when the
theory makes the switch from being local to non-local one. At the
end we provide few notes on how fermionic T-duality interacts
with bosonic T-duality in providing new non-commutative rela-
tions.

2. Type II Superstring, Choice of Fields and
Bosonic T-Duality

In this section we will present action for type II superstring in
pure spinor formulation. We will also define background fields
in which string propagates. Finally, we present action that has
been T-dualized along bosonic coordinates.

2.1. Type II Superstring in Pure Spinor Formulation

The most general form of type II superstring action in pure
spinor formalism[15–19] is given as

S = S0 + VSG. (2.1)
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First term is action for string that propagates in flat background
fields.

S0 = ∫Σ
d2𝜉

(
k
2
𝜂𝜇𝜈𝜕mx

𝜇𝜕nx
𝜈𝜂mn − 𝜋𝛼𝜕−𝜃

𝛼 + 𝜕+�̄�
𝛼�̄�𝛼

)
+ S𝜆 + S�̄�,

(2.2)

where terms S𝜆 and S�̄�represent actions that are composed of
pure spinors and their canonical momenta. The pure spinors sat-
isfy pure spinor constraints

𝜆𝛼(Γ𝜇)𝛼𝛽𝜆
𝛽 = �̄�(Γ𝜇)𝛼𝛽 �̄�

𝛽 = 0. (2.3)

All modifications to flat background fields are accomplished
by introducing second term in equation (2.1). This term is an
integrated vertex operator for massless type II supergravity

VSG = ∫Σ
d2𝜉(XT )MAMNX̄

N . (2.4)

In general case matrix AMN is composed of physical fields, their
curvatures (field strengths) and auxiliary fields that can be ex-
pressed with physical ones. These fields are some functions of
both bosonic coordinates x𝜇 and fermionic coordinates 𝜃𝛼 and
�̄�𝛼 . Dependence of fields on fermionic coordinates is given as ex-
pansion in powers of 𝜃𝛼 and �̄�𝛼 . In our particular case, we will
set all background fields except RR field to be constant. Further
more, in order to simplify calculations, all terms that are non-
linear in fermionic coordinates 𝜃𝛼 and �̄�𝛼 will be neglected. With
these assumptions in mind we have that vectors XM and X̄M and
matrix AMN have following form

XM =
⎛⎜⎜⎜⎝
𝜕+𝜃

𝛼

𝜕+x
𝜇

𝜋𝛼
1
2
N𝜇𝜈

+

⎞⎟⎟⎟⎠
, X̄M =

⎛⎜⎜⎜⎝
𝜕−�̄�

𝜆

𝜕−x
𝜇

�̄�𝜆
1
2
N̄𝜇𝜈

−

⎞⎟⎟⎟⎠
,

AMN =

⎡⎢⎢⎢⎢⎣

0 0 0 0
0 k( 1

2
g𝜇𝜈 + B𝜇𝜈) Ψ̄𝛽

𝜇
0

0 −Ψ𝛼
𝜈

2
k
(f 𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌) 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
. (2.5)

Pure spinor contribution to vectors XM and X̄M are encoded in

N𝜇𝜈

+ = 1
2
𝜔𝛼(Γ[𝜇𝜈])𝛼𝛽𝜆

𝛽 , N̄𝜇𝜈

− = 1
2
�̄�𝛼(Γ[𝜇𝜈])𝛼𝛽 �̄�

𝛽 . (2.6)

Since this term does not contribute to the vertex operator, we have
that pure spinor actions are decoupled from the rest. This allows
us to neglect pure spinor parts from now on.
Our choice of matrix AMN is composed of following fields:

symmetric tensor g𝜇𝜈 , Kalb-Ramon antisymmetric tensor B𝜇𝜈 ,
Mayorana-Weyl gravitino fields Ψ𝛼

𝜇
and Ψ̄𝛼

𝜇
, Ramond-Ramond

field 2
k
(f 𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌) where f𝛼𝛽 and C𝛼𝛽

𝜌
are constant tensors. We

have also assumed that dilaton field Φ is constant. This means
that factor eΦ is included in constants f𝛼𝛽 and C𝛼𝛽

𝜌
. This choice of

background fields is accompanied with following condition

𝛾
𝜇

𝛼𝛽
C𝛽𝛾

𝜇
= 0, 𝛾

𝜇

𝛼𝛽
C𝛾𝛽

𝜇
= 0. (2.7)

String propagates in superspace spanned by bosonic coordi-
nates x𝜇 (𝜇 = 0, 1, …, 9) and fermionic ones 𝜃𝛼 , �̄�𝛼 with 16
independent real components each. Fermionic coordinates are
accompanied by their canonically conjugated momenta 𝜋𝛼 and
�̄�𝛼 . Both fermionic coordiantes and their momenta are given as
Majorana-Wejl spinors. World sheet Σ that string sweeps in this
superspace is parameterized by 𝜉m (𝜉0 = 𝜏, 𝜉1 = 𝜎). By combin-
ing these parameters we can define light-cone parametrization
𝜉± = 1

2
(𝜏 ± 𝜎) and light-cone partial derivatives ∂± = ∂𝜏 ± ∂𝜎 .

Inserting all these assumptions into action (2.1) and integrat-
ing out fermionicmomenta, we are left with following expression

S = k∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈

+ 1
2
(𝜕+�̄�

𝛼 + 𝜕+x
𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽
(𝜕−𝜃

𝛽 + Ψ𝛽

𝜈
𝜕−x

𝜈)
]
, (2.8)

where we have introduced following tensors

Π±𝜇𝜈 = B𝜇𝜈 ±
1
2
G𝜇𝜈 , (2.9)

F𝛼𝛽 (x) = f 𝛼𝛽 + C𝛼𝛽

𝜇
x𝜇 ,

(F−1(x))𝛼𝛽 = (f −1)𝛼𝛽 − (f −1)𝛼𝛼1C
𝛼1𝛽1
𝜌

x𝜌(f −1)𝛽1𝛽 . (2.10)

To obtain meaningful T-dual transformation laws we need to
assume that x𝜇 dependent part of tensor (F−1(x))𝛼𝛽 is antisym-
metric and infinitesimal. This additional assumption does not
infringe on constraint (2.7).,[15]

Having obtained one of relevant actions , we will now focus on
bosonic T-dualization of (2.8) to obtain our second action of in-
terest.

2.2. Bosonic T-dualization

Bosonic T-dualization of action (2.8) is given in detail in [13].
Here we will only summarize the most important results.
One way to obtain T-duality is by Buscher procedure. This pro-

cedure is based on localization of translation symmetry. When
we localize symmetry we replace all partial derivatives with co-
variant ones, while in cases where background fields depend on
coordinates we also need to introduce invariant coordinate. In-
variant coordinate is non-local addition to action and it is the sole
reason for emergence of non-commutative behavior in closed
strings. Introduction of covariant derivatives and invariant coor-
dinates produces additional gauge fields in action, which in turn
add new degrees of freedom to the theory. T-dual and original
theory represent same physical system and we expect that those
two theories carry exact same degrees of freedom. Because of
this, we remove all newly introduced degrees of freedomwith La-
grange multipliers. By utilizing gauge freedom of action we can
fix bosonic coordinates to be some constant, in essence remov-
ing them from action. This gauge fixed action is only a function
of gauge fields and Lagrange multipliers. Finding equation of
motion for Lagrange multipliers and inserting them into action
we can restore original action. On the other hand, finding equa-
tions of motion for gauge fields and inserting them into action
we obtain T-dual action.
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Action (2.8), due to antisymmetric part of tensor F−1
𝛼𝛽
(x) is in-

variant under global translations of bosonic coordinates. Follow-
ing steps of Busher procedure, described in preceding paragraph,
we obtain following T-dual action

bS = k
2 ∫Σ

d2𝜉
[
1
2
Θ̄𝜇𝜈𝜕+y𝜇𝜕−y𝜈 + 𝜕+�̄�

𝛼
(
bF−1(V (0))

)
𝛼𝛽
𝜕−𝜃

𝛽

+ 𝜕+y𝜇
bΨ̄𝜇𝛼

(
bF−1(V (0))

)
𝛼𝛽
𝜕−𝜃

𝛽

+𝜕+�̄�𝛼
(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽𝜕−y𝜈

]
. (2.11)

Here, y𝜇 is a dual coordinate, left superscript
b denotes bosonic

T-duality and V0 represents following integral

ΔV (0)𝜌 = 1
2 ∫P

d𝜉+Θ̆𝜌1𝜌

−

[
𝜕+y𝜌1 − 𝜕+�̄�

𝛼(f −1)𝛼𝛽Ψ𝛽

𝜌1

]

− 1
2 ∫P

d𝜉−Θ̆𝜌𝜌1
−

[
𝜕−y𝜌1 + Ψ̄𝛼

𝜌1
(f −1)𝛼𝛽𝜕−𝜃

𝛽
]
. (2.12)

T-dual tensors that appear in action have following interpreta-
tion: Θ̄𝜇𝜈

− is inverse tensor of Π̄+𝜇𝜈 = Π+𝜇𝜈 +
1
2
Ψ̄𝛼

𝜇
(F−1(x))𝛼𝛽Ψ𝛽

𝜈
=

Π̆+𝜇𝜈 −
1
2
Ψ̄𝛼

𝜇
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌 x𝜌(f −1)𝛽1𝛽Ψ

𝛽
𝜈
, defined as

Θ̄𝜇𝜈

− Π̄+𝜈𝜌 = 𝛿𝜇
𝜌
, (2.13)

where

Θ̄𝜇𝜈

− = Θ̆𝜇𝜈

− + 1
2
Θ̆𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌

V (0)𝜌(f −1)𝛽1𝛽Ψ
𝛽1
𝜈1
Θ̆𝜈1𝜈

− , (2.14)

Θ̆𝜇𝜈

− Π̆+𝜈𝜌 = 𝛿𝜇
𝜌
, Θ̆𝜇𝜈

− = Θ𝜇𝜈

− − 1
2
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f̄ −1)𝛼𝛽Ψ𝛽

𝜈1
Θ𝜈1𝜈

− (2.15)

f̄ 𝛼𝛽 = f 𝛼𝛽 + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
, (2.16)

Θ𝜇𝜈

− Π+𝜇𝜌 = 𝛿𝜇
𝜌
, Θ− = −4(G−1

E Π−G
−1)𝜇𝜈 . (2.17)

Tensor (bF−1$(V(0))$)𝛼𝛽 is T-dual to (F
−1(x))𝛼𝛽 ,

(
bF−1(V (0))

)
𝛼𝛽

=
(
F−1(V (0))

)
𝛼𝛽

− 1
2

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜇
Θ̄𝜇𝜈

− Ψ̄𝛽1
𝜈

×
(
F−1(V (0))

)
𝛽1𝛽

. (2.18)

Finally, bΨ̄𝜇𝛼 and bΨ𝜈𝛽 are T-dual gravitino fields, given as

bΨ̄𝜇𝛼 = 1
2
Θ̄𝜇𝜈Ψ̄𝛼

𝜈
+ 1
4
Θ̄𝜇𝜇1

− Ψ̄𝛽

𝜇1

(
F−1(V (0))

)
𝛽𝛽1

Ψ𝛽1
𝜈
Θ𝜈𝜈1

− Ψ̄𝛼

𝜈1

= 1
2
Θ𝜇𝜈

− Ψ̄𝛼

𝜇
, (2.19)

bΨ𝜈𝛽 = −1
2
Ψ𝛽

𝜇
Θ̄𝜇𝜈

− − 1
2
Ψ𝛽

𝜇
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜈1
Θ̄𝜈1𝜈

−

= −1
2
Ψ𝛽

𝜇
Θ𝜇𝜈

− . (2.20)

Having obtained actions (2.8) and (2.11), we can now consider
dualization along fermionic coordinates.

3. Fermionic T-duality

In this section the objectives are to find fermionic T-dual trans-
formation laws and actions that have been T-dualized along
fermionic coordinates for case where we performed bosonic T-
duality and case where we have not.
Bosonic T-duality relies on utilization of symmetries of

action to produce T-dual action and T-dual transformation
laws. This task is usually accomplished by utilizing Busher
procedure.[4,5,10–12] The main idea of fermionic T-duality is essen-
tially the same, we utilize isometries of fermionic coordinates to
generate T-dual action and T-dual transformation laws.[3,6–8] Just
like in bosonic case, we localize translational symmetry by intro-
ducing covariant derivatives and, in cases where necessary, in-
variant coordinates. After this we introduce term that eliminates
additional degrees of freedom and gauge fix existing symmetry.
From this point on, finding equations of motion for gauge fields
and inserting those equations of motion into gauge fixed action
we obtain T-dual action.
Before proceeding with fermionic variant of Buscher proce-

dure, we can notice that our actions (2.8) and (2.11) do not
posses terms proportional to ∂+𝜃

𝛼 and 𝜕−�̄�
𝛼 . This means that our

fermionic coordinates have following local symmetry

𝛿𝜃𝛼 = 𝜖𝛼(𝜎+), 𝛿�̄�𝛼 = 𝜖𝛼(𝜎−), (𝜎± = 𝜏 ± 𝜎). (3.1)

We need to fix this symmetry before obtaining T-dual theory, one
way to do this is through BRST formalism. This symmetry has
following corresponding BRST transformations for fermionic
fields

s𝜃𝛼 = c𝛼(𝜎+), s�̄�𝛼 = c̄𝛼(𝜎−). (3.2)

Here s is BRST nilpotent operator, c𝛼 and c̄𝛼 represent ghost fields
that correspond to gauge parameters ϵ

𝛼 and 𝜖𝛼 respectively. In
addition to ghost fields we also have following BRST transforma-
tions

sC𝛼 = b+𝛼 , sC̄𝛼 = b̄−𝛼 , sb+𝛼 = 0, sb̄−𝛼 = 0. (3.3)

where C̄𝛼 and C𝛼 are anti-ghosts, b+𝛼 and b̄−𝛼 are Nakanishi-
Lautrup auxiliary fields.
Fixing of gauge symmetry is accomplished by introduction of

gauge fermion, where we have decided to follow in the same
choice as[9]

Ψ = k
2 ∫Σ

d2𝜉
[
C̄𝛼

(
𝜕+𝜃

𝛼 + 1
2
𝛼𝛼𝛽b+𝛽

)
+
(
𝜕−�̄�

𝛼 + 1
2
b̄−𝛽𝛼

𝛽𝛼
)
C𝛼

]
,

(3.4)

here 𝛼𝛼𝛽 is arbitrary invertible matrix.
Applying BRST transformation to gauge fermion we obtain

gauge fixed action and Fadeev-Popov action

Sgf =
k
2 ∫Σ

d2𝜉
[
b̄−𝛼𝜕+𝜃

𝛼 + 𝜕−�̄�
𝛼b+𝛼 + b̄𝛼𝛼

𝛼𝛽b+𝛽
]
, (3.5)

SF−P = k
2 ∫Σ

d2𝜉
[
C̄𝛼𝜕+c

𝛼 + (𝜕−c̄
𝛼)C𝛼

]
. (3.6)
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Fadeev-Popov term contains only ghosts and anti-ghosts and
it is decoupled from the actions (2.8) and (2.11). From this point
on, this termwill be ignored. Gauge fixing term contains auxiliary
fields b̄−𝛼 and b+𝛼 that can be removed with equations of motion

b̄−𝛼 = −𝜕−�̄�𝛽 (𝛼−1)𝛽𝛼 , b+𝛼 = −(𝛼−1)𝛼𝛽𝜕+𝜃
𝛽 , (3.7)

giving us

Sgf = − k
2 ∫Σ

d2𝜉𝜕−�̄�
𝛼(𝛼−1)𝛼𝛽𝜕+𝜃

𝛽 . (3.8)

Inserting guage fixing term into (2.8) and (2.11) gives us actions
that can be dualized with Buscher procedure.

3.1. Type II superstring - Fermionic T-Duality

Since both action (2.8) and gauge fixing term (3.8) are trivially
invariant to global translations of fermionic coordinates, we lo-
calize this translational symmetry by replacing partial derivatives
with covariant ones

𝜕±𝜃
𝛼 → D±𝜃

𝛼 = 𝜕±𝜃
𝛼 + u𝛼±, (3.9)

𝜕±�̄�
𝛼 → D±�̄�

𝛼 = 𝜕±�̄�
𝛼 + ū𝛼±. (3.10)

New gauge fields u𝛼± and ū
𝛼
± introduce new degrees of freedom

that are removed by addition of term

Sadd =
k
2 ∫Σ

d2𝜉
[
z̄𝛼(𝜕+u

𝛼

− − 𝜕−u
𝛼

+) + (𝜕+ū
𝛼

− − 𝜕−ū
𝛼

+)z𝛼
]
. (3.11)

Gauge freedom can be utilized to fix fermionic coordinates
such that 𝜃𝛼 = 𝜃𝛼0 = const and �̄�𝛼 = �̄�𝛼0 = const. This in turn re-
duces our covariant derivatives to

D±𝜃
𝛼 → u𝛼±, D±�̄�

𝛼 → ū𝛼±. (3.12)

With all this in mind, we have following action

Sgf = k∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈 + 1

2
(ū𝛼+ + 𝜕+x

𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽

× (u𝛽− + Ψ𝛽

𝜈
𝜕−x

𝜈) − 1
2
ū𝛼−(𝛼

−1)𝛼𝛽u
𝛽

+ + 1
2
z̄𝛼(𝜕+u

𝛼

− − 𝜕−u
𝛼

+)

+ 1
2
(𝜕+ū

𝛼

− − 𝜕−ū
𝛼

+)z𝛼
]
. (3.13)

On one side we have equations of motion for Lagrange multi-
pliers �̄�𝛼 and 𝜒𝛼

𝜕+u
𝛼

− − 𝜕−u
𝛼

+ = 0 → u𝛼± = 𝜕±𝜃
𝛼 , (3.14)

𝜕+ū
𝛼

− − 𝜕−ū
𝛼

+ = 0 → ū𝛼± = 𝜕±�̄�
𝛼 . (3.15)

Inserting solutions for these equations into action (3.13) we
obtain starting action plus gauge fixing term. Variation of action

with respect to gauge fields produces following set of equations of
motion

u𝛼− = −
(
F𝛼𝛽 (x)𝜕−z𝛽 + Ψ𝛼

𝜇
𝜕−x

𝜇
)
, (3.16)

u𝛼+ = −𝛼𝛼𝛽𝜕+z𝛽 , (3.17)

ū𝛼+ = 𝜕+z̄𝛽F
𝛽𝛼(x) − 𝜕+x

𝜇Ψ̄𝛼

𝜇
, (3.18)

ū𝛼− = 𝜕−z̄𝛽𝛼
𝛽𝛼. (3.19)

Utilizing these equations we can remove gauge fields from ac-
tion, resulting in action that depends only on Lagrange multipli-
ers and bosonic coordinates

f S = k∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈 + 1

2
𝜕+z̄𝛼Ψ𝛼

𝜇
𝜕−x

𝜇

+1
2
𝜕+z̄𝛼F

𝛼𝛽 (x)𝜕−z𝛽 −
1
2
𝜕+x

𝜇Ψ̄𝛼

𝜇
𝜕−z𝛼 −

1
2
𝜕−z̄𝛼𝛼

𝛼𝛽𝜕+z𝛽

]
.

(3.20)

Just like in the bosonic case, we have that left superscript f de-
notes fermionic T-duality. From here we can deduce background
fields of feriomionic T-dual theory

f Π̄+𝜇𝜈 = Π+𝜇𝜈 , (3.21)

f
(
F−1(x)

)𝛼𝛽 = F𝛼𝛽 (x), (3.22)

f Ψ̄𝜇𝛽
f
(
F−1(x)

)𝛽𝛼 = −Ψ̄𝛼

𝜇
→ f Ψ̄𝜇𝛽 = −Ψ̄𝛼

𝜇

(
F−1(x)

)
𝛼𝛽
, (3.23)

f
(
F−1(x)

)𝛼𝛽 fΨ𝜇𝛽 = Ψ𝛼

𝜇
→ fΨ𝜇𝛽 =

(
F−1(x)

)
𝛽𝛼
Ψ𝛼

𝜇
. (3.24)

Unlike bosonic case, fermionic T-dual theory is local. This
can be attributed to the fact that background fields do not de-
pend on fermionic coordinates. This in turn means that the-
ory is geometric and we should not expect emergence of non-
commutative phenomena.

3.2. Type II Superstring - Full T-Duality

To obtain fully dualized theory we start with action that is al-
ready T-dualized along bosonic coordinates (2.11). Procedure for
fermionic T-duality is mostly the same as described before. The
only difference comes from the fact that bosonic T-duality intro-
duced non-local term V0 which depends on 𝜃𝛼 and �̄�𝛼 and now
we need to introduce invariant fermionic coordinates in order for
action to exhibit to local shift symmetry

D±𝜃
𝛼 = 𝜕±𝜃

𝛼 + u𝛼±, (3.25)

D±�̄�
𝛼 = 𝜕±�̄�

𝛼 + ū𝛼±, (3.26)

𝜃𝛼inv = ∫P
d𝜉mDm𝜃

𝛼 = ∫P
d𝜉m(𝜕m𝜃

𝛼 + u𝛼m) = Δ𝜃𝛼 + ΔU𝛼 , (3.27)

�̄�𝛼inv = ∫P
d𝜉mDm�̄�

𝛼 = ∫P
d𝜉m(𝜕m�̄�

𝛼 + ū𝛼m) = Δ�̄�𝛼 + ΔŪ𝛼. (3.28)
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Fixing gauge symmetry as before, setting fermionic coordi-
nates to constants, we deduce following relations

D±𝜃
𝛼 → u𝛼±, D±�̄�

𝛼 → ū𝛼±, 𝜃𝛼inv → ΔU𝛼 , �̄�𝛼inv → ΔŪ𝛼.

(3.29)

With these relations we obtain action that is only a function of
gauge fields, lagrange multipliers and dual coordinates

bSgf =
k
2 ∫Σ

d2𝜉
[
1
2
Θ̄𝜇𝜈𝜕+y𝜇𝜕−y𝜈 + ū𝛼+

(
bF−1(V (0))

)
𝛼𝛽
u𝛽−

+𝜕+y𝜇bΨ̄𝜇𝛼
(
bF−1(V (0))

)
𝛼𝛽
u𝛽− + ū𝛼+

(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽𝜕−y𝜈

−ū𝛼−(𝛼
−1)𝛼𝛽u

𝛽

+ + z̄𝛼(𝜕+u
𝛼

− − 𝜕−u
𝛼

+) + (𝜕+ū
𝛼

− − 𝜕−ū
𝛼

+)z𝛼

]
.

(3.30)

In order to simplify calculations we introduce the following
two substitutions

(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽𝜕−y𝜈 + 𝜕−z𝛼 = Z−𝛼 ,

𝜕+y𝜇
bΨ̄𝜇𝛼

(
bF−1(V (0))

)
𝛼𝛽

− 𝜕+z̄𝛽 = Z̄+𝛽 . (3.31)

Now, our action can be expressed as

bSgf =
k
2 ∫Σ

d2𝜉
[
1
2
Θ

𝜇𝜈

𝜕+y𝜇𝜕−y𝜈 + ū𝛼+
(
bF−1(V (0))

)
𝛼𝛽
u𝛽− + Z̄+𝛽u

𝛽

−

+ ū+
𝛼
Z−𝛼 − ū−

𝛼
(𝛼−1)𝛼𝛽u

+
𝛽
+ 𝜕−z̄𝛼u

+
𝛼
− ū−

𝛼
𝜕+z𝛼

]
. (3.32)

Similar to the first case, we can always revert to starting action
by finding equations of motion for Lagrange multipliers and in-
serting their solutions into the action. In both cases equations of
motion are the same so we take the freedom to omit them here.
Equations of motion for gauge fields differ in this case. Since

we have that V(0) depends on fermionic coordinates, equations of
motion have additional term that depends on invariant coordi-
nate.

u𝛼+ = −(𝛼)𝛼𝛽𝜕+z𝛽 , ū𝛽− = 𝜕−z̄𝛼(𝛼)
𝛼𝛽 , (3.33)

ū𝛼+ = −Z̄+𝛽
bF𝛽𝛼(V (0)) − 𝛽−

𝜈
(V (0), U(0)) bΨ̄𝜈𝛼 , (3.34)

u𝛽− = −bF𝛽𝛼(V (0))Z−𝛼 − 𝛽+
𝜇
(V (0), U(0)) bΨ𝜇𝛽 . (3.35)

The beta functions, 𝛽±
𝜇
(V (0), U(0)), are obtained by varying V(0)

(see[13] for more details). They are given as

𝛽±
𝜇
(V (0), U(0))

= ∓1
8
𝜕∓

[
Ū𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
U𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
± 1
8

[
Ū𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕∓
[
U𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
.

(3.36)

Inserting equations of motion for gauge fields into action
(3.32) and keeping only terms linear with respect to C𝛼𝛽

𝜇
, we ob-

tain fully dualized action

bf S = k
2 ∫Σ

d2𝜉

×
[1
2
Θ̄𝜇𝜈

− 𝜕+y𝜇𝜕−y𝜈 − Z̄+𝛼
bF𝛼𝛽 (V (0))Z−𝛽 − 𝜕−z̄𝛼(𝛼)

𝛼𝛽𝜕+z𝛽
]
.

(3.37)

Expanded, we have

bf S = k∫Σ
d2𝜉

[1
4
Θ𝜇𝜈

− 𝜕+y𝜇𝜕−y𝜈 −
1
4
𝜕+y𝜇Θ𝜇𝜈

− Ψ̄𝛼

𝜈
𝜕−z𝛼

−1
4
𝜕+z̄𝛼Ψ𝛼

𝜇
Θ𝜇𝜈

− 𝜕−y𝜈 +
1
2
𝜕+z̄𝛼

bF𝛼𝛽 (V (0))𝜕−z𝛽

−1
2
𝜕−z̄𝛼(𝛼)

𝛼𝛽𝜕+z𝛽

]
. (3.38)

From here, we can read background fields of T-dual theory

bf Π̄𝜇𝜈

+ = 1
4
Θ̄𝜇𝜈

− − 1
2
bΨ̄𝜇𝛼

(
bF−1(V (0))

)
𝛼𝛽

bΨ𝜈𝛽 = Θ𝜇𝜈

− ,

bf
(
F−1(x)

)𝛼𝛽 = bF𝛼𝛽 (x) = F𝛼𝛽 (x) + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
,

bf Ψ̄𝜇

𝛼

bf
(
F−1(x)

)𝛼𝛽 = bΨ̄𝜇𝛽 = 1
2
Θ𝜇𝜈

− Ψ̄𝛽

𝜈

→ bf Ψ̄𝜇

𝛼
= 1
2
Θ̄𝜇𝜈

− Ψ̄𝛽

𝜈

(
F−1(x)

)
𝛽𝛼
,

bf
(
F−1(x)

)𝛼𝛽 bfΨ𝜈

𝛽
= bΨ𝜈𝛼 = −1

2
Ψ𝛼

𝜇
Θ𝜇𝜈

−

→ bfΨ𝜈

𝛽
= −1

2

(
F−1(x)

)
𝛽𝛼
Ψ𝛼

𝜇
Θ̄𝜇𝜈

− . (3.39)

Comparing background fields in different stages of T-
dualization we notice that both fermionic T-duality and bosonic
T-duality affect all field, where all T-dual theories now have co-
ordinate dependent fields. It should also be noted that non-
commutative relations in theory emerge only after performing
bosonic T-duality. Fermionic T-dual coordinates are always only
proportional to fermionic momenta therefore Poisson brackets
between fermionic coordiantes always remain zero.

3.3. Bosonic T-Duality of Fermionic T-Dual Theory

For completion sake, we will also T-dualize fermionic T-dual ac-
tion (3.20) along x𝜇 coordinates. In this specific case, where only
RR field depends on bosonic coordinate, we expect that bosonic
and ferionic T-dualities commute. Therefore, this section can be
thought of as a check for calculations from previous section.
Bosonic T-duality is mostly the same as fermionic one,[10–13]

where only difference is the lack of introduction of Fadeev-Popov
and gauge fixing actions. We again start by localizing transla-
tional symmetry, inserting Lagrangemultipliers and fixing gauge

Fortschr. Phys. 2023, 71, 2200160 © 2022 Wiley-VCH GmbH.2200160 (5 of 8)
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fields. This produces following auxiliary action

f Saux = 𝜅 ∫ d2𝜉
[
v𝜇+Π+𝜇𝜈v

𝜈

− + 1
2
𝜕+z̄𝛼 f

𝛼𝛽𝜕−z𝛽

+1
2
𝜕+z̄𝛼C

𝛼𝛽

𝜇
𝜕−z𝛽ΔV𝜇 + 1

2
𝜕+z̄𝛼Ψ𝛼

𝜇
v𝜇− − 1

2
v𝜇+Ψ̄𝛼

𝜇
𝜕−z𝛼

− 1
2
𝜕−z̄𝛼𝛼

𝛼𝛽𝜕+z𝛽 +
1
2
y𝜇(𝜕+v

𝜇

− − 𝜕−v
𝜇

+)
]
. (3.40)

Introducing the variables

Y+𝜇 = 𝜕+y𝜇 − 𝜕+z̄𝛼Ψ𝛼

𝜇
, Y−𝜇 = 𝜕−y𝜇 − Ψ̄𝛼

𝜇
𝜕−z𝛼 , (3.41)

the action (3.40) gets much simpler form

f Saux = 𝜅 ∫ d2𝜉
[
v𝜇+Π+𝜇𝜈v

𝜈

− + 1
2
𝜕+z̄𝛼 f

𝛼𝛽𝜕−z𝛽

+ 1
2
𝜕+z̄𝛼C

𝛼𝛽

𝜇
𝜕−z𝛽ΔV𝜇 − 1

2
Y+𝜇v

𝜇

− + 1
2
v𝜇+Y−𝜇

]
. (3.42)

Varying the above action with respect to gauge fields v𝜇+ and v𝜇−,
we get, respectively,

Π+𝜇𝜈v
𝜈

− = −
(1
2
Y−𝜇 + 𝛽+𝜇(V)

)
, (3.43)

v𝜈+Π+𝜈𝜇 = 1
2
Y+𝜇 − 𝛽−𝜇(V) , (3.44)

where 𝛽±𝜇 are the beta functions obtained from coordinate de-
pendent term in the action

𝛽±𝜇 = ∓1
8

(
z̄𝛼C

𝛼𝛽

𝜇
𝜕∓z𝛽 − 𝜕∓z̄𝛼C

𝛼𝛽

𝜇
z𝛽
)
. (3.45)

Inserting (3.43) and (3.44) into the auxiliary action (3.42), keeping
the terms linear in C𝛼𝛽

𝜇
, we obtain fully T-dualized action (first

fermionic, then bosonic T-dualization)

fbS = 𝜅 ∫ d2𝜉
[1
2
𝜕+z̄𝛼F

𝛼𝛽 (ΔV)𝜕−z𝛽 +
1
4
Y+𝜇(Π−1

+ )𝜇𝜈Y−𝜈

]
. (3.46)

Expanding above action we prove that it is identical to one given
in (3.38).

4. Few Notes on Non-commutativity

In paper[13] it has been shown that bosonic T-duality produces
non-commutative relations between bosonic T-dual coordinates.
With this in mind, following question naturally arises: can we
expect emergence of same behavior for fermionic coordinates af-
ter fermionic T-dualization? To get the answer for this question
we have to express fermionic T-dual coordinates as some com-
bination of starting coordinates and their momenta and connect
T-dual Poisson brackets with Poisson brackets of original theory.
Original theory is geometric theory with regular Poisson struc-
ture

{x𝜇(𝜎),𝜋𝜈(�̄�)} = 𝛿𝜇
𝜈
𝛿(𝜎 − �̄�),

{𝜃𝛼(𝜎),𝜋𝛽 (�̄�)} = {�̄�𝛼(𝜎), �̄�𝛽 (�̄�)} = 𝛿𝛼
𝛽
𝛿(𝜎 − �̄�), (4.1)

where all other Poisson brackets vanish.
We start with case that has only been T-dualized along

fermionic coordinates. To find how T-dual coordinates depend
on starting ones and their momenta we can begin by find-
ing fermionic momenta of starting theory. It is useful to re-
member that starting theory did not posses terms that are pro-
portional to ∂+𝜃

𝛼 and 𝜕−�̄�
𝛼 and that this symmetry was fixed

with BRST formalism. Addition of gauge fixing term intro-
duced modification to momenta of starting theory and to ob-
tain correct non-commutative relations we should be working
with theories that have gauge fixing term in them. With this in
mind, it is easy to find fermionic momentum of original theory
(3.13)

𝜋𝛽 = − k
2

[
(𝜕+�̄�

𝛼 + 𝜕+x
𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽

− 𝜕−�̄�
𝛼(𝛼−1)𝛼𝛽

]
, (4.2)

�̄�𝛼 = k
2

[(
F−1(x)

)
𝛼𝛽
(𝜕−𝜃

𝛽 + Ψ𝛽

𝜈
𝜕−x

𝜈) − (𝛼−1)𝛼𝛽𝜕+𝜃
𝛽
]
. (4.3)

Since we want to obtain Poisson brackets for equal 𝜏 we want
to find 𝜎 partial derivatives of dual coordinate

𝜕𝜎z𝛼 = 𝜕+z𝛼 − 𝜕−z𝛼 = 2
k
�̄�𝛼 , (4.4)

𝜕𝜎 z̄𝛼 = 𝜕+z̄𝛼 − 𝜕−z̄𝛼 = −2
k
𝜋𝛼. (4.5)

Momenta of original theory commute with each other and
with x𝜇 coordinates, therefore we deduce that there has been no
change to geometric structure of this theory.
For fully dualized theory, transformation laws (3.33) (3.34)

(3.35) all depend on dual bosonic coordinate however, when we
insert transformation laws that connect original bosonic coordi-
nates with T-dual ones (more details in[13])

𝜕+y𝜇 = 2
[
𝜕+x

𝜈Π̄+𝜈𝜇 + 𝛽−
𝜇
(x)

]
+ 𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
, (4.6)

𝜕−y𝜈 = −2
[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝛽+
𝜇
(x)

]
− Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (4.7)

into transformation laws for fermionic coordinates (3.33), (3.34)
and (3.35) we again obtain relations (4.4) and (4.5).
On a first glance it would seem that fermionic T-duality has not

produced any new Poisson brackets, however this is not the case.
While it is true that there are no modifications to Poisson brack-
ets between fermions, we have new Poisson bracket structure be-
tween fermions and bosons. This can be seen from 𝜎 derivative
of bosonic T-dual coordinate

y′
𝜇
≅

𝜋𝜇

𝜅
+ 𝛽0

𝜇
(x), (4.8)

where 𝛽0
𝜇
(x) is combination 𝛽+

𝜇
(x) + 𝛽−

𝜇
(x) given as

𝛽0
𝜇
(x) = 1

2
𝜕𝜎

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
−1
2

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕𝜎
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
.

(4.9)
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Finding Poisson brackets between 𝜎 derivatives of coordinates
and integrating twice we obtain following relations

{y𝜇(𝜎), z̄𝛽 (�̄�)} =
1
k

[
�̄�𝛼(𝜎) + x𝜈1 (𝜎)Ψ̄𝛼

𝜈1
− 2

(
�̄�𝛼(�̄�) + x𝜈1 (�̄�)Ψ̄𝛼

𝜈1

)]
× (f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽H(𝜎 − �̄�), (4.10)

{y𝜇(𝜎), z𝛼(�̄�)} =
1
k
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽

×
[
𝜃𝛽 (𝜎) + Ψ𝛽

𝜈2
x𝜈2 (𝜎) − 2

(
𝜃𝛽 (�̄�) + Ψ𝛽

𝜈2
x𝜈2 (�̄�)

)]
×H(𝜎 − �̄�). (4.11)

5. Conclusions

In this article we examined effects of fermionic T-duality per-
formed on action of type II superstring in pure spinor formal-
ism. We carried out our investigation in two cases, one where we
performed fermionic T-duality on previously non dualized action
and in second case where we had action that was already dualized
along bosonic coordinates. Starting (non dualized) action that we
worked with described closed string that propagates in presence
of Ramond-Ramond field with linear coordinate dependence. We
made a decision to only consider dependence on bosonic coordi-
nates, furthermore this dependence was tied to infinitesimal an-
tisymmetric term C𝛼𝛽

𝜇
. Rest of the background fields were held

constant. Terms in action that were non-linearly dependent on
fermionic coordinates were neglected. These choices were in ac-
cordance with consistency conditions for background fields and
were made in order to keep calculations manageable.
On the other hand, bosonic T-duality of starting action pro-

vided us with theory that was non-local. Unlike starting the-
ory that only dependent on coordinates through RR field, this
theory manifested coordinate dependence on all background
fields. Furthermore, bosonic T-dual coordinates now exhibit non-
commutative properties.
Before we could start with T-dualization we noticed that both

cases posses additional local symmetry which removed terms
proportional to ∂+𝜃

𝛼 and 𝜕−�̄�
𝛼 . In order to obtain correct T-dual

theory this symmetry was fixed through BRST formalism. In
both cases procedure for obtaining fermionic T-duality was the
same, we employed Buscher T-dualizing procedure. Procedure is
based on localization of translational symmetry where we replace
partial derivatives with covariant ones. Introduction of covariant
derivatives carries with itself new degrees of freedom in shape
of gauge fields. By demanding that starting and T-dual theory
give description of same physical system we inevitably demand
for both theories to posses same degrees of freedom. Thus, all
additional degrees of freedom must be removed with Lagrange
multipliers. By utilizing gauge freedomwe can also remove all in-
stances of fermionic coordinates in action obtaining action that is
only a function of gaguge fields and Lagrange multipliers. Find-
ing equations ofmotion for gauge fields of this gauge fixed action
and inserting their solutions into the action we obtain T-dual the-
ory.
Carrying Buscher procedure for fermionic coordinates of non

dualized action we obtain local theory where all fields depend

on bosonic coordinates. This theory is commutative, its Poisson
brackets are identical to Poisson brackets of starting theory.
Buscher procedure in case of theory that has been dual-

izied along bosonic coordinates does not change coordinate
dependence of the background fields. All fields are still de-
pendent on both bosonic and fermionic coordinates and the-
ory is still non-local. However, this theory posseses two ad-
ditional non-trivial Poisson brackets. We have emergence of
non-commutativity between bosonic and fermionic coordinates,
where non-commutativity is proportional to infinitesimal con-
stant C𝛼𝛽

𝜇
.

Same result is obtained even in case where we first perform
fermionic and then bosonic T-duality. Commutativity between
different dualities was expected since fully T-dual theory must be
unique. Only distinction between different paths of T-dualization
procedures can be noticed in intermediate theories, where most
important change is transition of theory from being local to non-
local.
We suspect that it is possible to obtain T-dual theory that is

fully non-commutative, theory that has non-commutativity even
between fermionic coordinates, but we would need starting the-
ory that has background fields that depend on both bosonic and
fermionic coordinates.
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[11] Lj. Davidovivć, B. Nikolíc, B. Sazdovíc, Eur. Phys. J. C 2015, 75, 576.
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Noncommutativity and Nonassociativity of Type II
Superstring with Coordinate Dependent RR Field

B. Nikolíc, D. Obríc,* and B. Sazdovíc

In this paper we will consider noncommutativity that arises from bosonic
T-dualization of type II superstring in presence of Ramond-Ramond (RR) field,
which linearly depends on the bosonic coordinates x𝝁. The derivative of the
RR field C𝜶𝜷

𝝁 is infinitesimal. We will employ generalized Buscher procedure
that can be applied to cases that have coordinate dependent background
fields. Bosonic part of newly obtained T-dual theory is non-local. It is defined
in non-geometric space spanned by Lagrange multipliers y𝝁. We will apply
generalized Buscher procedure once more on T-dual theory and prove that
original theory can be salvaged. Finally, we will use T-dual transformation laws
along with Poisson brackets of original theory to derive Poisson bracket
structure of T-dual theory and nonassociativity relation. Noncommutativity
parameter depends on the supercoordinates x𝝁, 𝜽𝜶 and �̄�𝜶 , while
nonassociativity parameter is a constant tensor containing infinitesimal C𝜶𝜷

𝝁 .

1. Introduction

In 1982 emerged a model[1] that would offer the possibility of
obtaining bosonic coordinates of space-time as emergent prop-
erties of more fundamental fermionic coordinates. While this
model worked with supersymmetric particle, this approach sug-
gested that maybe we can express bosonic coordinates as a Pois-
son bracket of fermionic coordinates. In addition to these Pois-
son brackets, Poisson brackets between bosonic coordinates as
well as between bosonic and fermionic coordinates would remain
zero. Later, in paper,[2] it has been suggested that the same result
can be obtained in context of string theory in case of coordinate
dependent RR field. It is also suggested that unlike supersym-
metric particle model, coordinate dependent RR field would pro-
duce full spectrum of non-commutative relations, bosonic coor-
dinates themselves would become non-commutative. In this pa-
per our goal is to determine if coordinate dependent RR field,
while remaining background fields are as simple as consistency
relations allow, can produce suggested non-commutative rela-
tions.
Superstring theory, as a theory of extended objects propagat-

ing in space-time, is defined in 10 dimensions.[3,4] In order to
establish link between this mathematical model and real world
observations, surplus space-like dimensions are compactified

B. Nikolíc, D. Obríc, B. Sazdovíc
Institute of Physics Belgrade
University of Belgrade
Pregrevica 118, Serbia
E-mail: dobric@ipb.ac.rs

DOI: 10.1002/prop.202200048

on circles of radius R. From this kind of
geometry arises new kind of symmetry, T-
duality, that links theories that have radii
of compactification R with ones that have
radii of compactification 𝛼′∕R.[5,6] Exis-
tence of T-duality between different theo-
ries implies that those theories are phys-
ically equivalent and it gives us a way
to explore how geometry and topology of
one theory is connected to other. This
connection between different geometries
makes T-duality a useful tool in examin-
ing emergence of non-commutativity in
context of closed strings.[7]

While in string theory both open and
closed strings, under certain conditions,
exhibit emergence of non-commutativity,
mechanisms that enable this emergence
are different. In case of open string,

we have that endpoints of string that propagates in pres-
ence of constant metric and Kalb-Ramond field become non-
commutative.[8] Basic idea of open string non-commutativity
is that initial coordinates can be expressed as linear combi-
nation of effective coordinates and momenta by employing
boundary conditions. In case of closed string, we do not have
string endpoints therefore we don’t have emergence of non-
commutativity when string propagates in presence of con-
stant background fields. In order to achieve same effect as
in case of open string, we have to use coordinate depen-
dent background fields. By finding T-dual of theories with this
kind of geometry we obtain T-dual theory in non-geometric
background, where T-dual coordinates are expressed as lin-
ear combinations of original coordinates and their conjugated
momenta.
Mathematical framework for obtaining T-dual theories is stan-

dard Buscher procedure.[9,10] Procedure is based on existence of
shift symmetry in relevant action and its implementation can be
summarized in few steps. First step is localization of translational
symmetry by introduction of covariant derivatives and introduc-
tion of Lagrange multipliers that make newly introduced gauge
fields nonphysical. By gauge fixing and finding equations of mo-
tion of both gauge fields and Lagrange multipliers we obtain T-
dual transformation laws. These transformation laws inserted
into gauge fixed action produce T-dual action. For cases where
we have coordinate dependent background fields there exist gen-
eralized Buscher procedure,[11–15] this extension has one addi-
tional step, replacement of all initial coordinates with invariant
coordinates. Further extension of generalized Buscher procedure
is possible[16] and it is applicable to theories that do not posses
shift symmetry.
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In this article we will deal with closed superstring propagating
in presence of linearly coordinate dependent Ramond-Ramond
(RR) field using type II superstring model in pure spinor formu-
lation. All calculationswewill do in approximation of diluted flux,
which means that in all calculations we keep constant and linear
terms in infinitesimal derivative of the RR field strength. Rest of
the fields, metric, Kalb-Ramond and gravitino fields are constant.
Furthermore all dependence of background field on fermionic
terms will be neglected for mathematical simplicity. This choice
of field configuration is in full accordance with consistency equa-
tions for background fields.[17]

Because we are currently only interested in non-commutative
relations between bosonic coordinates, T-dualization procedure
will be applied only on bosonic part of action. To find T-dual ac-
tion and T-dual transformation laws we will employ extension
of generalized Buscher procedure that works with coordinate de-
pendent background fields.[11] After finding T-dual theory, wewill
apply Buscher procedure once more to see if we can obtain orig-
inal theory.
Transformation laws that connect variables from initial with

variables from T-dual theory will be written in canonical form,
where initial momenta are expressed in terms of the T-dual coor-
dinates. By inverting these transformation laws we obtain how
sigma derivatives of T-dual theory depend on linear combina-
tions of coordinates and momenta of original theory. Taking into
account that original theory is geometrical, both locally and glob-
ally, we have that its coordinate and conjugated momenta sat-
isfy standard Poisson brackets. By using this fact we are able to
find Poisson structure of sigma derivatives of T-dual coordinates
and by doing integration, Poisson structure of T-dual coordinates
is obtained.
The form of obtained non-commutativity is such that non-

commutativity exists when arguments are different, 𝜎 ≠ �̄�. Im-
posing trivial winding conditions, we obtain string winding num-
bers from Poisson brackets.
In the end, we give conclusions and in appendix we present

some technical details regarding derivation of 𝛽±
𝜇
functions.

2. General Type II Superstring Action and Choice of
Background Fields

Starting point of this investigation will be action of type II super-
string theory in pure spinor formulation.[18–21] We will present
and explain assumed approximations in order to obtain type II
pure spinor action with non-constant RR field-strength. It turns
out that ghost fields are neglected and only quadratic terms are
considered. Final form of this kind of action will be used in sub-
sequent sections.

2.1. General Form of the Pure Spinor Type II Superstring Action

Sigma model of type IIB superstring has the following
form[17]

S = S0 + VSG. (2.1)

This general form of action is expressed as a sum of the part that
describes the motion of string in flat background

S0 = ∫Σ
d2𝜉

(
𝜅

2
𝜂𝜇𝜈𝜕mx

𝜇𝜕nx
𝜈𝜂mn − 𝜋𝛼𝜕−𝜃

𝛼 + 𝜕+�̄�
𝛼�̄�𝛼

)
+ S𝜆 + S�̄� , (2.2)

and part that governs the modifications to the background fields

VSG = ∫Σ
d2𝜉(XT )MAMNX̄

N . (2.3)

Modifications to the flat background are introduced by integrated
form of massless type II supergravity vertex operator VSG. The
terms S𝜆 and S�̄� in (2.2) are free-field actions for pure spinors

S𝜆 = ∫Σ
d2𝜉𝜔𝛼𝜕−𝜆

𝛼 , S�̄� = ∫Σ
d2𝜉�̄�𝛼𝜕+�̄�

𝛼 . (2.4)

Here, 𝜆𝛼 and �̄�𝛼 are pure spinors whose canonically conjugated
momenta are 𝜔𝛼 and �̄�𝛼 , respectively. Pure spinors satisfy pure
spinor constraints

𝜆𝛼(Γ𝜇)𝛼𝛽𝜆
𝛽 = �̄�(Γ𝜇)𝛼𝛽 �̄�

𝛽 = 0 . (2.5)

In general case, vectors XM and XN as well as a supermatrix
AMN are given by

XM =

⎛⎜⎜⎜⎜⎝
𝜕+𝜃

𝛼

Π𝜇

+

d𝛼
1
2
N𝜇𝜈

+

⎞⎟⎟⎟⎟⎠
, X̄M =

⎛⎜⎜⎜⎜⎜⎝

𝜕−�̄�
𝜆

Π𝜇
−

d̄𝜆
1
2
N̄𝜇𝜈

−

⎞⎟⎟⎟⎟⎟⎠
,

AMN =

⎡⎢⎢⎢⎢⎣
A𝛼𝛽 A𝛼𝜈 E𝛼

𝛽 Ω𝛼,𝜇𝜈

A𝜇𝛽 A𝜇𝜈 Ē𝛽
𝜇

Ω𝜇,𝜈𝜌

E𝛼
𝛽 E𝛼

𝜈
P𝛼𝛽 C𝛼

𝜇𝜈

Ω𝜇𝜈,𝛽 Ω𝜇𝜈,𝜌 C̄𝛽
𝜇𝜈 S𝜇𝜈,𝜌𝜎

⎤⎥⎥⎥⎥⎦
, (2.6)

where notation is in accordance with Ref [17]. The components
of matrix AMN are generally functions of x𝜇 , 𝜃𝛼 and �̄�𝛼 . Compo-
nents themselves are derived as expansions in powers of 𝜃𝛼 and
�̄�𝛼 (for details consult[17]). The superfields A𝜇𝜈 , Ē

𝛼
𝜇
, E𝛼

𝜇
and P𝛼𝛽 are

known as physical superfields, while superfields that are in the
first row and the first column are known as auxiliary because they
can be expressed in terms of physical ones.[17] Remaining super-
fields Ω𝜇,𝜈𝜌 (Ω𝜇𝜈,𝜌), C

𝛼
𝜇𝜈 (C̄

𝛽
𝜇𝜈) and S𝜇𝜈,𝜌𝜎 , are curvatures (field

strengths) for physical fields. Components of vectors XM and X̄N

are defined as

Π𝜇

+ = 𝜕+x
𝜇 + 1

2
𝜃𝛼(Γ𝜇)𝛼𝛽𝜕+𝜃

𝛽 , Π𝜇

− = 𝜕−x
𝜇 + 1

2
�̄�𝛼(Γ𝜇)𝛼𝛽𝜕−�̄�

𝛽 ,

(2.7)

d𝛼 = 𝜋𝛼 −
1
2
(Γ𝜇𝜃)𝛼

[
𝜕+x

𝜇 + 1
4
(𝜃Γ𝜇𝜕+𝜃)

]
,

d̄𝛼 = �̄�𝛼 −
1
2
(Γ𝜇�̄�)𝛼

[
𝜕−x

𝜇 + 1
4
(�̄�Γ𝜇𝜕−�̄�)

]
, (2.8)
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N𝜇𝜈

+ = 1
2
𝜔𝛼(Γ[𝜇𝜈])𝛼𝛽𝜆

𝛽 , N̄𝜇𝜈

− = 1
2
�̄�𝛼(Γ[𝜇𝜈])𝛼𝛽 �̄�

𝛽 . (2.9)

The world sheet Σ is parameterized by 𝜉m = (𝜉0 = 𝜏, 𝜉1 = 𝜎)
and world sheet light-cone partial derivatives are defines as
𝜕± = 𝜕𝜏 ± 𝜕𝜎 . Superspace in which string propagates is spanned
both by bosonic x𝜇 (𝜇 = 0, 1,… , 9) and fermionic 𝜃𝛼 , �̄�𝛼 (𝛼 =
1, 2,… , 16) coordinates. Variables 𝜋𝛼 and �̄�𝛼 represent canoni-
cally conjugated momenta of fermionic coordinates 𝜃𝛼 and �̄�𝛼 ,
respectively. Fermionic coordinates and their canonically conju-
gated momenta are Majorana-Weyl spinors. It means that each
of these spinors has 16 independent real valued components.

2.2. Choice of the Background Fields

In this particular case we will work with the supermatrix AMN
where all background fields, except RRfield strengthP𝛼𝛽 , are con-
stants. RR field strength will have linear coordinate dependence
on bosonic coordinate x𝜇 . With these restrictions in mind, super-
matrix AMN has the following form

AMN =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0

0 𝜅

(
1
2
g𝜇𝜈 + B𝜇𝜈

)
Ψ̄𝛽

𝜇
0

0 −Ψ𝛼
𝜈

2
𝜅
(f 𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌) 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
. (2.10)

Here g𝜇𝜈 is symmetric tensor, B𝜇𝜈 is Kalb-Ramond antisymmetric
field, Ψ𝛼

𝜇
and Ψ̄𝛼

𝜇
are Mayorana-Weyl gravitino fields, and finally,

f 𝛼𝛽 and C𝛼𝛽
𝜌

are constants. Let us stress that dilaton field Φ is
assumed to be constant, so, the factor eΦ is included in f 𝛼𝛽 and
C𝛼𝛽

𝜌
. This will be a classical analysis and we will not calculate the

dilaton shift under T-duality transformation. Based on the chiral-
ity of spinors, there are type IIA superstring theory for opposite
chirality and type IIB superstring theory for same chirality.
This particular choice of supermatrix imposes following re-

striction on background fields

𝛾
𝜇

𝛼𝛽
C𝛽𝛾

𝜇
= 0, 𝛾

𝜇

𝛼𝛽
C𝛾𝛽

𝜇
= 0. (2.11)

Remaining constraints[17] are trivial and applied only to non-
physical fields.
In addition to choice of supermatrix, in order to simplify cal-

culation of bosonic T-duality, because all background fields are
expanded in powers of 𝜃𝛼 and �̄�𝛼 , all 𝜃𝛼 and �̄�𝛼 non-linear terms
in XM and X̄N will be neglected. With this in mind, components
of these two vectors reduce into the following form

Π𝜇

± → 𝜕±x
𝜇 , d𝛼 → 𝜋𝛼 , d̄𝛼 → �̄�𝛼. (2.12)

Taking into account all these assumptions, the action (2.1) takes
the form

S = ∫Σ
d2𝜉

[
𝜅

2
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈 − 𝜋𝛼(𝜕−𝜃

𝛼 + Ψ𝛼

𝜈
𝜕−x

𝜈)

+ (𝜕+�̄�
𝛼 + 𝜕+x

𝜇Ψ̄𝛼

𝜇
)�̄�𝛼 +

2
𝜅
𝜋𝛼(f

𝛼𝛽 + C𝛼𝛽

𝜌
x𝜌)�̄�𝛽

]
. (2.13)

Here, new tensor Π±𝜇𝜈 = B𝜇𝜈 ±
1
2
G𝜇𝜈 is introduced, where G𝜇𝜈 =

𝜂𝜇𝜈 + g𝜇𝜈 is metric tensor. Terms for S𝜆 and S�̄� are fully decoupled
from action and they will not be considered from now on.
Before considering T-duality, we can notice that fermionic mo-

menta act as auxiliary fields in full actions. These fields can be in-
tegrated out and final action will be function of only coordinates
and their derivatives. Finding equations for motion for both 𝜋𝛼

and �̄�𝛼 we get following two equations

�̄�𝛽 =
𝜅

2

(
F−1(x)

)
𝛽𝛼

(
𝜕−𝜃

𝛼 + Ψ𝛼

𝜈
𝜕−x

𝜈
)
, (2.14)

𝜋𝛼 = −𝜅

2

(
𝜕+�̄�

𝛽 + 𝜕+x
𝜇Ψ̄𝛽

𝜇

)(
F−1(x)

)
𝛽𝛼
, (2.15)

where F𝛼𝛽 (x) and (F−1(x))𝛼𝛽 are of the form

F𝛼𝛽 (x) = f 𝛼𝛽 + C𝛼𝛽

𝜇
x𝜇 ,

(F−1(x))𝛼𝛽 = (f −1)𝛼𝛽 − (f −1)𝛼𝛼1C
𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽 x
𝜇 . (2.16)

In order to invert previous equations and T-dual transforma-
tion laws, as well as to simplify calculations, we take two addi-
tional assumptions. First assumption is that C𝛼𝛽

𝜇
is infinitesimal.

Second assumption is that (f −1)𝛼𝛼1C
𝛼1𝛽1
𝜇 (f −1)𝛽1𝛽 is antisymmetric

under exchange of first and last index. In other words, tensor
(F−1(x))𝛼𝛽 has only antysimetric part that depends on x𝜇 and it
is infinitesimal. These assumptions are in full accordance with
constraints.[17]

Substituting equations (2.14) and (2.15) into (2.13) the final
form of action is

S = 𝜅 ∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈

+ 1
2
(𝜕+�̄�

𝛼 + 𝜕+x
𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽
(𝜕−𝜃

𝛽 + Ψ𝛽

𝜈
𝜕−x

𝜈)
]
. (2.17)

In the following sections, this form of action will be used for in-
vestigation of bosonic T-duality and for obtaining transformation
laws between starting and T-dual coordinates.

3. T-dualization

In this section T-duality will be performed along all bosonic coor-
dinates in order to find relations that connect T-dual coordinates
with coordinates and momenta of original theory. These trans-
formation laws will then be used in subsequent chapters to find
non-commutativity relations between coordinates of T-dual the-
ory.
Starting point for considering T-duality will be general-

ized Buscher T-dualization procedure.[11] Standard Buscher
procedure[9,10] is designed to be applied along isometry directions
on which background fields do not depend. Generalized Buscher
procedure can be applied to theories with coordinate dependent
background fields. The shift symmetry in the generalized proce-
dure is localized by introduction of covariant derivatives, invari-
ant coordinates and additional gauge fields. These newly intro-
duced gauge fields produce additional degrees of freedom. Since
we expect that starting and T-dual theory have exactly the same

Fortschr. Phys. 2022, 70, 2200048 © 2022 Wiley-VCH GmbH.2200048 (3 of 9)
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number of degrees of freedom we need to eliminate all exces-
sive degrees of freedom. This is accomplished by demanding that
field strength of gauge fields (F+− = 𝜕+v− − 𝜕−v+) vanishes by ad-
dition of Lagrange multipliers. Next step in procedure is fixing
the gauge symmetry such that starting coordinates are constant
and action is only left with gauge fields and its derivatives. From
this gauge fixed action, finding equations of motion for gauge
fields, expressing gauge fields as function of Lagrange multipli-
ers and inserting those equations into actionwe can obtain T-dual
action, were Lagrange multipliers of original theory now play the
role of T-dual coordinates.
In cases where shift symmetry is absent, T-duality can still be

performed by extending generalized Buscher procedure.[16] This
extension is based on replacing original action with translation
invariant auxiliary action. Form of this auxiliary action is exactly
the same as the form of action where translation symmetry was
localized and gauged fixed, that is, derivatives have been replaced
with gauge fields and coordinates with integrals of gauge fields.
Auxiliary action gives correct T-dual theory only if original action
can be salvaged from it. In cases where this is possible, original
theory is obtained by finding equations of motion with respect
to Lagrange multipliers and inserting their solutions into auxil-
iary action.
Action (2.17) is invariant to translation symmetry, by the virtue

of antisymmetric part of F−1
𝛼𝛽
, tensor (f −1C𝜇f

−1)𝛼𝛽 . Following an-
tisymmetricity of this tensor, we can rewrite the action (2.17) in
the following way

S = 𝜅 ∫Σ
d2𝜉

[
Π+𝜇𝜈𝜕+x

𝜇𝜕−x
𝜈

+ 1
2
𝜖mn𝜕m(�̄�

𝛼 + x𝜇Ψ̄𝛼

𝜇
)
(
F−1(x)

)
𝛼𝛽
𝜕n(𝜃

𝛽 + Ψ𝛽

𝜈
x𝜈)

]
. (3.1)

Let us now consider the global shift symmetry 𝛿x𝜇 = 𝜆𝜇 and
vary the action (3.1)

𝛿S = −𝜅

2
(f −1C𝜇f

−1)𝛼𝛽𝜆
𝜇 ∫Σ

d2𝜉𝜖mn𝜕m(�̄�
𝛼 + Ψ̄𝛼

𝜈
x𝜈)𝜕n(𝜃

𝛽 + Ψ𝛽

𝜌
x𝜌) ,

(3.2)

where m, n are indices of the twodimensional worldsheet. After
one partial integration, we obtain one surface term and one term
which is identically zero because it is summation of symmetric,
𝜕m𝜕n, and antisymmetric, 𝜖mn, tensor. The surface term is zero
for trivial topology. So, the shift isometry exists.
In order to find T-dual action we have to implement following

substitutions

𝜕±x
𝜇 → D±x

𝜇 = 𝜕±x
𝜇 + v𝜇±, (3.3)

x𝜌 → x𝜇inv = ∫P
d𝜉mDmx

𝜇 = x𝜇(𝜉) − x𝜇(𝜉0) + ΔV𝜇 ,

ΔV𝜇 = ∫P
d𝜉mv𝜌m(𝜉), (3.4)

S → S + 𝜅

2 ∫Σ
d2𝜉

[
v𝜇+𝜕−y𝜇 − v𝜇−𝜕+y𝜇

]
. (3.5)

Because of the shift symmetry we fix the gauge, x𝜇(𝜉) = x𝜇(𝜉0)
and, inserting these substitutions into action (2.17), we obtain
auxiliary action suitable for T-dualization

Saux = 𝜅 ∫Σ
d2𝜉

[
Π+𝜇𝜈v

𝜇

+v
𝜈

− + 1
2
(𝜕+�̄�

𝛼 + v𝜇+Ψ̄𝛼

𝜇
)
(
F−1(ΔV)

)
𝛼𝛽

× (𝜕−𝜃
𝛽 + Ψ𝛽

𝜈
v𝜈−) +

1
2
(v𝜇+𝜕−y𝜇 − v𝜇−𝜕+y𝜇)

]
. (3.6)

It should be noted that, path P that is taken in expression forΔV𝜌

goes from some starting point 𝜉0 to end point 𝜉. Introduction of
this element makes this action non-local, however, this is a nec-
essary step in order to find T-dual theory of coordinate dependent
background fields.[11]

In order to check if substitutions we had introduced are valid
and that they will lead to correct T-dual theory of starting action,
we need to be able to obtain original action by finding solutions to
equations of motion for Lagrange multipliers. Equations of mo-
tion for Lagrange multipliers give us

𝜕−v
𝜇

+ − 𝜕+v
𝜇

− = 0 ⇒ v𝜇± = 𝜕±x
𝜇. (3.7)

Inserting this result into (3.4) we get the following

ΔV𝜌 = ∫P
d𝜉′m𝜕mx

𝜌(𝜉′) = x𝜌(𝜉) − x𝜌(𝜉0) = Δx𝜌. (3.8)

Since, we had shift symmetry in original action, we can let x𝜌(𝜉0)
be any arbitrary constant. Taking all this into account and insert-
ing (3.7), (3.8) into (3.6) we obtain our starting action (2.17).
Before we obtain equations for motion for gauge fields, we

would like to make following substitution in action

Y+𝜇 = 𝜕+y𝜇 − 𝜕+�̄�
𝛼
(
F−1(ΔV)

)
𝛼𝛽
Ψ𝛽

𝜇
,

Y−𝜇 = 𝜕−y𝜇 + Ψ̄𝛼

𝜇

(
F−1(ΔV)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (3.9)

Π̄+𝜇𝜈 = Π+𝜇𝜈 +
1
2
Ψ̄𝛼

𝜇

(
F−1(ΔV)

)
𝛼𝛽
Ψ𝛽

𝜈

= Π̆+𝜇𝜈 −
1
2
Ψ̄𝛼

𝜇
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌

(f −1)𝛽1𝛽Ψ
𝛽

𝜈
ΔV𝜌, (3.10)

Π̆+𝜇𝜈 ≡ Π+𝜇𝜈 +
1
2
Ψ̄𝛼

𝜇
(f −1)𝛼𝛽Ψ𝛽

𝜈
. (3.11)

With these substitutions in mind we have that auxiliary action
takes the following form

Saux = 𝜅 ∫Σ
d2𝜉

[
Π̄+𝜇𝜈v

𝜇

+v
𝜈

− + 1
2
v𝜇+Y−𝜇 −

1
2
v𝜇−Y+𝜇

+ 1
2
𝜕+�̄�

𝛼
(
F−1(ΔV)

)
𝛼𝛽
𝜕−𝜃

𝛽
]
. (3.12)

This action produces following equations of motion for gauge
fields

Π̄+𝜇𝜈v
𝜈

− = −( 1
2
Y−𝜇 + 𝛽+

𝜇
(V)), Π̄+𝜇𝜈v

𝜇

+ = 1
2
Y+𝜈 − 𝛽−

𝜈
(V). (3.13)

Here, function 𝛽±(V) is obtained from variation of term con-
taining ΔV𝜌 in expression for F−1(ΔV) (details are presented in
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Appendix A)

𝛽−
𝜇
(V) = 1

4
𝜕+

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
− 1
4

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕+
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
,

(3.14)

𝛽+
𝜇
(V) = 1

4

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕−
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
− 1
4
𝜕−

[
�̄�𝛼 + V𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
V𝜈2

]
.

(3.15)

Here we have took advantage of the fact that 𝜕±V
𝜇 = v𝜇± (more

details in Appendix A). Let us note that V𝜇 in the expressions for
beta functions is actually V (0)𝜇 because it stands besides C𝛼𝛽

𝜇
. We

omit index (0) just in order to simplify the form of the expres-
sions.
In order to find how gauge fields depend on Lagrange multi-

pliers, we need to invert equations of motion (3.13). Since C𝛼𝛽
𝜇

is an infinitesimal constant, these equations can be inverted
iteratively.[22] We separate variables into two parts, one finite and
one proportional to C𝛼𝛽

𝜇
. After doing this we have

v𝜈− = −Θ̄𝜈𝜇

−

[1
2
Y−𝜇 + 𝛽+

𝜇
(V (0))

]
, v𝜇+ =

[1
2
Y+𝜈 − 𝛽−

𝜈
(V (0))

]
Θ̄𝜈𝜇

− .

(3.16)

Functions 𝛽±𝜇(V
(0)) are obtained by substituting first order of

expression for v± into 𝛽±𝜇(V), where V
(0) is given by

ΔV (0)𝜌 = ∫P
d𝜉mv(0)𝜌m

= 1
2 ∫P

d𝜉+Θ̆𝜌1𝜌

−

[
𝜕+y𝜌1 − 𝜕+�̄�

𝛼(f −1)𝛼𝛽Ψ𝛽

𝜌1

]
− 1
2 ∫P

d𝜉−Θ̆𝜌𝜌1
−

[
𝜕−y𝜌1 + Ψ̄𝛼

𝜌1
(f −1)𝛼𝛽𝜕−𝜃

𝛽
]
. (3.17)

Where Θ̄𝜇𝜈
− is inverse tensor of Π̄+𝜇𝜈 = Π+𝜇𝜈 +

1
2
Ψ̄𝛼

𝜇
(F−1(ΔV))𝛼𝛽Ψ𝛽

𝜈
, defined as

Θ̄𝜇𝜈

− Π̄+𝜈𝜌 = 𝛿𝜇
𝜌
, (3.18)

where

Θ̄𝜇𝜈

− = Θ̆𝜇𝜈

− + 1
2
Θ̆𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜌

V (0)𝜌(f −1)𝛽1𝛽Ψ
𝛽1
𝜈1
Θ̆𝜈1𝜈

− , (3.19)

Θ̆𝜇𝜈

− Π̆𝜈𝜌 = 𝛿𝜇
𝜌
, Θ̆𝜇𝜈

− = Θ𝜇𝜈

− − 1
2
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1
(f̄ −1)𝛼𝛽Ψ𝛽

𝜈1
Θ𝜈1𝜈

− (3.20)

f̄ 𝛼𝛽 = f 𝛼𝛽 + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
, (3.21)

Θ𝜇𝜈

− Π+𝜇𝜌 = 𝛿𝜇
𝜌
, Θ− = −4(G−1

E Π−G
−1)𝜇𝜈 . (3.22)

TensorGE𝜇𝜈 ≡ G𝜇𝜈 − 4(BG−1B)𝜇𝜈 is known in the literature as the
effective metric.
Inserting equations (3.16) into (3.6), keeping only terms that

are linear in C𝛼𝛽
𝜇
we obtain T-dual action

S⋆ = 𝜅

2 ∫Σ

[1
2
Θ̄𝜇𝜈

− Y+𝜇Y−𝜈 + 𝜕+�̄�
𝛼
(
F−1(ΔV)

)
𝛼𝛽
𝜕−𝜃

𝛽
]
. (3.23)

Comparing starting action (2.17) with T-dual action, were we note
that 𝜕±x

𝜇 transforms into 𝜕±y𝜇 and x𝜇 transforms into V (0), we
can deduce that T-dual action has following arguments.

⋆Π̄𝜇𝜈

+ = 1
4
Θ̄𝜇𝜈

− , (3.24)(
⋆F−1(V (0))

)
𝛼𝛽

=
(
F−1(V (0))

)
𝛼𝛽

− 1
2

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜇
Θ̄𝜇𝜈

− Ψ̄𝛽1
𝜈

(
F−1(V (0))

)
𝛽1𝛽
, (3.25)

⋆Ψ̄𝜇𝛼
(
⋆F−1(V (0))

)
𝛼𝛽

= 1
2
Θ̄𝜇𝜈

− Ψ̄𝛼

𝜈

(
F−1(V (0))

)
𝛼𝛽
, (3.26)

(
⋆F−1(V (0))

)
𝛼𝛽

⋆Ψ𝜈𝛽 = −1
2

(
F−1(V (0))

)
𝛼𝛽
Ψ𝛽

𝜇
Θ̄𝜇𝜈

− . (3.27)

In order to express T-dual gravitino background fields in terms
of its components, it is useful to calculate inverse of field ⋆F−1

𝛼𝛽

⋆F𝛼𝛽 (V (0)) = F𝛼𝛽 (V (0)) + 1
2
Ψ𝛼

𝜇
Θ𝜇𝜈

− Ψ̄𝛽

𝜈
. (3.28)

With this equation at hand it is straightforward to obtain T-dual
gravitino fields. Here we present T-dual gravitino fields expanded
in terms of their components

⋆Ψ̄𝜇𝛼 = 1
2
Θ̄𝜇𝜈Ψ̄𝛼

𝜈
+ 1
4
Θ̄𝜇𝜇1

− Ψ̄𝛽

𝜇1

(
F−1(V (0))

)
𝛽𝛽1

Ψ𝛽1
𝜈
Θ𝜈𝜈1

− Ψ̄𝛼

𝜈1
, (3.29)

⋆Ψ𝜈𝛽 = −1
2
Ψ𝛽

𝜇
Θ̄𝜇𝜈

− − 1
2
Ψ𝛽

𝜇
Θ𝜇𝜇1

− Ψ̄𝛼

𝜇1

(
F−1(V (0))

)
𝛼𝛼1

Ψ𝛼1
𝜈1
Θ̄𝜈1𝜈

− . (3.30)

The general conclusion is that all background fields get the linear
corrections in C𝛼𝛽

𝜇
comparing with the results of the case with

constant background fields.[23] Also the coordinate dependence
is present in all T-dual background fields.
From the above equations we see how background fields of

original theory transform under T-duality. It should be noted that
these actions are of the same form taking into account that initial
coordinates x𝜇 are replaced by y𝜇 after T-dualization.

4. T-dualization of T-dual Theory

From requirement that original theory and T-dual theory be phys-
ically equivalent, it should be possible to obtain original theory
from T-dual one by applying T-duality procedure a second time.
Since original action possessed translation symmetry, we have
that this symmetry is inherited by T-dual action. T-dual theory is
invariant to translations of T-dual coordinate. However, even in
cases where starting action is not invariant to translation symme-
try we can expect emergence of this symmetry in T-dual theory.
This is a natural consequence of introducingΔV (0) and of the fact
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that T-dual theory is intrinsically a non-local one. T-dualization
of T-dual theory is obtained with generalized Buscher procedure
and steps are identical as before.

𝜕±y𝜇 →D±y𝜇 = 𝜕±y𝜇 + u±𝜇 → D±y𝜇 = u±𝜇 , (4.1)

ΔV (0)𝜌 →ΔU(0)𝜌, (4.2)

ΔU(0)𝜌 =1
2 ∫P

d𝜉+Θ̆𝜌1𝜌

−

[
u+𝜌1 − 𝜕+�̄�

𝛼(f −1)𝛼𝛽Ψ𝛽

𝜌1

]
−1
2 ∫P

d𝜉−Θ̆𝜌𝜌1
−

[
u−𝜌1 + Ψ̄𝛼

𝜌1
(f −1)𝛼𝛽𝜕−𝜃

𝛽
]
, (4.3)

Y+𝜇 →U+𝜇 = u+𝜇 − 𝜕+�̄�
𝛼
(
F−1(ΔU(0))

)
𝛼𝛽
Ψ𝛽

𝜇
(4.4)

Y−𝜇 →U−𝜇 = u−𝜇 + Ψ̄𝛼

𝜇

(
F−1(ΔU(0))

)
𝛼𝛽
𝜕−𝜃

𝛽 (4.5)

⋆S →⋆S + 𝜅

2 ∫Σ
d2𝜉(u+𝜇𝜕−x

𝜇 − u−𝜇𝜕+x
𝜇) . (4.6)

In first line we immediately fixed gauge by choosing y(𝜉) =
const. Inserting these substitutions into (3.23) we get

⋆Sgfix = k
2 ∫Σ

d2𝜉
[1
2
Θ̄𝜇𝜈

− U+𝜇U−𝜈 + 𝜕+�̄�
𝛼
(
F−1(ΔU(0))

)
𝛼𝛽
𝜕−𝜃

𝛽

+(u+𝜇𝜕−x𝜇 − u−𝜇𝜕+x
𝜇)
]
. (4.7)

Finding equations of motion for Lagrangemultipliers and insert-
ing solution to those equations into gauge fixed action we return
to the starting point of this chapter, T-dual action. On the other
hand, finding equations of motion for gauge fields

u+𝜇 = 2
[
𝜕+x

𝜈Π̄+𝜈𝜇 + 𝛽−
𝜇
(x)

]
+ 𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
, (4.8)

u−𝜈 = −2
[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝛽+
𝜇
(x)

]
− Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (4.9)

and inserting these equations into the gauge fixed action, keeping
all terms linear with respect to C𝜇𝜈

𝜌
„ we obtain our original action

(2.17). Here we use the freedom to choose Δx𝜇 = x(𝜉) − x(𝜉0),
with x(𝜉0) = 0.

5. Non-commutative Relations

Having found T-dual action and equations that link T-dual co-
ordinate with original coordinates in previous chapters, in this
chapter wewill focus on establishing a relationship between Pois-
son brackets of original and T-dual theory. Furthermore, we will
mainly focus on Poisson brackets between bosonic variables and
their momenta. Original theory is a geometric one with variables
x𝜇(𝜉) and 𝜋𝜇(𝜉). Therefore, it is natural to impose standard Pois-
son structure on original theory

{x𝜇(𝜎),𝜋𝜈(�̄�)} = 𝛿𝜇
𝜈
𝛿(𝜎 − �̄�), {x𝜇(𝜎), x𝜈(�̄�)} = 0,

{𝜋𝜇(𝜎),𝜋𝜈(�̄�)} = 0. (5.1)

In order to find Poisson brackets of T-dual theory, we need to
find T-dual transformation laws which connect the initial and T-
dual coordinates. Starting with relations (4.8) and (4.9) and using
equations of motion for Lagrange multipliers x𝜇 , u±𝜇 = 𝜕±y𝜇 , we
obtain T-dual transformation laws

𝜕+y𝜇 ≅ 2
[
𝜕+x

𝜈Π̄+𝜈𝜇 + 𝛽−
𝜇
(x)

]
+ 𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
, (5.2)

𝜕−y𝜇 ≅ −2
[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝛽+
𝜇
(x)

]
− Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 , (5.3)

where symbol ≅ denotes T-dual transformation. Subtracting
these two equations, we get

y′
𝜇
≅ Π̄+𝜇𝜈𝜕−x

𝜈 + 𝜕+x
𝜈Π̄+𝜈𝜇 + 𝛽+

𝜇
+ 𝛽−

𝜇

+ 1
2
𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜇
+ 1
2
Ψ̄𝛼

𝜈

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽 . (5.4)

Taking into account that bosonic momenta, 𝜋𝜇 of original theory
are of the form

𝜋𝜇 = 𝜅

[
Π̄+𝜇𝜈𝜕−x

𝜈 + 𝜕+x
𝜈Π̄+𝜈𝜇 +

1
2
Ψ̄𝛼

𝜇

(
F−1(x)

)
𝛼𝛽
𝜕−𝜃

𝛽

+ 1
2
𝜕+�̄�

𝛼
(
F−1(x)

)
𝛼𝛽
Ψ𝛽

𝜈

]
, (5.5)

and 𝛽0
𝜇
= 𝛽+

𝜇
+ 𝛽−

𝜇
, we obtain

y′
𝜇
≅

𝜋𝜇

𝜅
+ 𝛽0

𝜇
(x) . (5.6)

Here 𝛽0
𝜇
(x) is given by

𝛽0
𝜇
(x) = 1

2
𝜕𝜎

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
− 1
2

[
�̄�𝛼 + x𝜈1Ψ̄𝛼

𝜈1

]
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽𝜕𝜎
[
𝜃𝛽 + Ψ𝛽

𝜈2
x𝜈2

]
.

(5.7)

To find Poisson bracket between T-dual coordinates, we can
start by finding Poisson bracket of sigma derivatives of T-dual co-
ordinates and then integrating twice (see [13, 24, 25], B ). Imple-
menting this procedure we have that Poisson bracket is given as

{y𝜈1 (𝜎), y𝜈2 (�̄�)}

≅ 1
2k
[2𝛿𝜇1

𝜈1
𝛿𝜇2
𝜈2

− 𝛿𝜇2
𝜈1
𝛿𝜇1
𝜈2
]
[
K𝜇1𝜇2

(�̄�) + K𝜇2𝜇1
(𝜎)

]
H(𝜎 − �̄�) , (5.8)

where, for the sake of simplicity, we introduced

K𝜇𝜈(𝜎) =
(
�̄�𝛼(𝜎) + x𝜇1 (𝜎)Ψ̄𝛼

𝜇1

)
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽Ψ
𝛽

𝜈

−Ψ̄𝛼

𝜈
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇

(f −1)𝛽1𝛽
(
𝜃𝛽 (𝜎) + Ψ𝛽

𝜈1
x𝜈1 (𝜎)

)
. (5.9)

Here, H(𝜎 − �̄�) is same step function defined in Appendix B. It
should be noted that these Poisson brackets are zero when 𝜎 = �̄�.
However, in cases where string in curled around compactified
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dimension, that is cases where 𝜎 − �̄� = 2𝜋, we have following
situation

{y𝜈1 (𝜎 + 2𝜋), y𝜈2 (𝜎)}

≅ 1
2k
[2𝛿𝜇1

𝜈1
𝛿𝜇2
𝜈2

− 𝛿𝜇2
𝜈1
𝛿𝜇1
𝜈2
]
[
K𝜇1𝜇2

(𝜎) + K𝜇2𝜇1
(𝜎)

]
+ 𝜋

k
N𝜇Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇2

(f −1)𝛽1𝛽Ψ
𝛽

𝜇3
[𝛿𝜇1

𝜇
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

− 𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜇

+ 𝛿𝜇1
𝜇
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

− 𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜇
] . (5.10)

Here we used fact that H(2𝜋) = 1, while N𝜌 is winding number
around compactified coordinate defined as

x𝜇(𝜎 + 2𝜋) − x𝜇(𝜎) = 2𝜋N𝜇. (5.11)

From this relation we can see that if we choose x𝜇(𝜎) = 0 than
Poisson bracket has linear dependence on winding number. In
cases where we do not have any winding number, we still have
non-commutativity that is proportional to background fields.
Using the expression for sigma derivative of y𝜈 (5.6) and ex-

pression for Poisson bracket of T-dual coordinates (5.8), we can
find non-associative relations. Procedure is the same as for find-
ing Poisson brackets of T-dual theory, we find Poisson bracket of
sigma derivative and integrate with respect to sigma coordinate,
this time integration is done once. Going along with this proce-
dure we have the final result

{y𝜈(𝜎), {y𝜈1 (𝜎1), y𝜈2 (𝜎2)}}

≅ 1
2k

H(𝜎1 − 𝜎2)Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇2

(f −1)𝛽1𝛽Ψ
𝛽

𝜇3

×

[
H(𝜎1 − 𝜎)[2𝛿𝜇1

𝜈
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

− 2𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈

− 𝛿𝜇1
𝜈
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

+ 𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈
]

+H(𝜎2 − 𝜎)[2𝛿𝜇1
𝜈
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

− 2𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈

− 𝛿𝜇1
𝜈
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

+ 𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈
]

]
.

(5.12)

Since Jacobi identity is non-zero for T-dual theory we have that
coordinate dependent RR field produces non-associative theory.
However putting 𝜎 = 𝜎2 = �̄� and 𝜎1 = �̄� + 2𝜋 we have following
Jacobi identity

{y𝜈(�̄�), {y𝜈1 (�̄� + 2𝜋), y𝜈2 (�̄�)}}

≅ Ψ̄𝛼

𝜇1
(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇2

(f −1)𝛽1𝛽Ψ
𝛽

𝜇3
[2𝛿𝜇1

𝜈
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈1

− 2𝛿𝜇1
𝜈1
𝛿𝜇2
𝜈2
𝛿𝜇3
𝜈

− 𝛿𝜇1
𝜈
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈2

+ 𝛿𝜇1
𝜈2
𝛿𝜇2
𝜈1
𝛿𝜇3
𝜈
] . (5.13)

Examining equation (5.6), we notice that 𝜕𝜎y𝜇 is not only a lin-
ear combination of initial coordinate and its momenta but also
has terms that are proportional to fermionic coordinates. This
might lead us to believe that T-dual theory would have nontrivial
Poisson bracket between T-dual coordinate and fermionic coor-
dinates. However, this is not the case, and it can be directly cal-

culated by finding Poisson bracket between sigma derivative of
T-dual coordinate and fermion coordinates (more details in B).

{𝜃𝛼(𝜎), y𝜇(�̄�)} ≅ 0, {�̄�𝛼(𝜎), y𝜇(�̄�)} ≅ 0. (5.14)

6. Conclusion

In this article we examined type II superstring propagating in
presence of coordinate dependent RR field. This choice of back-
ground was in accordance with consistency conditions for back-
ground field and all calculations were made in approximation
that are linear with respect to the space-time derivative of the RR
field,C𝛼𝛽

𝜇
, which is infinitesimal one.We have also excluded parts

that were non-linear in fermionic coordinates and neglected pure
spinor actions. Using equations of motion for fermionic mo-
menta we obtained action that was expressed in terms of bosonic
coordinates, their derivatives and derivatives of fermionic coordi-
nates.
Action with our choice of background fields possessed transla-

tion symmetry, therefore we use generalized Buscher procedure
that was developed for such cases. By substituting starting action
with auxiliary action we gave up on locality in order to be able to
find T-dual theory. Finding equations of motion of newly intro-
duced Lagrange multipliers we were able to salvage starting ac-
tion giving us assurance that auxiliary action we selected would
produce correct T-dual theory. After this we found equations of
motion for gauge fields and by inserting them into action, we
found T-dual theory.
Having found T-dual theory, we applied T-dual procedure once

again as a more thorough way of checking if action we obtained
was in fact correct T-dual of starting action. Unlike starting ac-
tion, T-dual action was non-local from the start by virtue of con-
taining V (0) term. Applying steps of generalized Buscher pro-
cedure we obtained starting action, again confirming that our
choice of auxiliary action was correct.
We obtained non-commutativity relations in context of T-dual

theory, where we used T-dual transformation laws as a bridge
between Poisson brackets of starting theory and T-dual theory.
T-dual transformation laws were expressed in terms of coordi-
nates and momenta of original theory, which produced non-
commutativity in T-dual theory. From expression for Poisson
brackets (5.8) we can see that non-commutativity is proportional
to infinitesimal part of RR field. Non-commutativity relations are
zero in case when 𝜎 = �̄�, while in case where 𝜎 = �̄� + 2𝜋 we see
the emergence of winding numbers. Noncommutativity param-
eters are linearly dependent on bosonic coordinates x𝜇 as well as
on fermionic ones, 𝜃𝛼 and �̄�𝛼 .
Taking into account Poisson brackets of T-dual coordinates

and expression for sigma derivative of T-dual coordinate we were
able to find non-associative relation for T-dual theory. In gen-
eral case this relation was non-zero and it was proportional to
infinitesimal constant, which is proportional to C𝛼𝛽

𝜇
. In special

case when we put 𝜎1 = 𝜎2 = �̄� and 𝜎3 = �̄� + 2𝜋 we noticed that
non-associativity relation remains constant.
It should be noted that since we did not preform T-dualization

along fermionic coordinates their Poisson structure would re-
main the same as in original theory. However, unlike original the-
ory, T-dual coordinates depend on sigma derivatives of fermionic
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coordinates. This dependence does not affect the Poisson brack-
ets of the T-dual coordinates and fermionic coordinates (5.14). So,
T-dual SUSY algebra has non zero Poisson bracket of the bosonic
coordinates, while the rest ones are zero. In further investigation
we will study fermionic T-dualization and we expect the effect on
the algebra of the fermionic coordinates.

Appendix A: Obtaining 𝜷±
𝝁
Terms

In this paper function 𝛽±
𝜇
(V) emerged in T-dual transformation

laws as a consequence of variation of term that was proportional
to ΔV . Here we will present derivation of this function.
Here we will use substitutions 𝜕+Θ̄𝛼 = 𝜕+�̄�

𝛼 + v𝜈1+ Ψ̄𝛼
𝜈1
, 𝜕−Θ𝛽 =

𝜕−𝜃
𝛽 + Ψ𝛽

𝜈2
v𝜈2− , also we will use F𝛼𝛽𝜌 to represent term containing

infinitesimal constant

∫Σ
d2𝜉𝜕+Θ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕−Θ𝛽 = ∫Σ

d2𝜉𝜖mn𝜕mΘ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕nΘ𝛽

= ∫Σ
d2𝜉

[1
2
𝜖mn𝜕mΘ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕nΘ𝛽

− 1
2
𝜖mn𝜕nΘ̄𝛼F𝛼𝛽𝜌ΔV (0)𝜌𝜕mΘ𝛽

]
= −1

2 ∫Σ
d2𝜉

[
𝜖mnΘ̄𝛼F𝛼𝛽𝜌𝜕mΔV (0)𝜌𝜕nΘ𝛽

+1
2
𝜖mn𝜕nΘ̄𝛼F𝛼𝛽𝜌𝜕mΔV (0)𝜌Θ𝛽

]
= −1

2 ∫Σ
d2𝜉𝜖mn𝜕mΔV (0)𝜌

[
Θ̄𝛼F𝛼𝛽𝜌𝜕nΘ𝛽 − 𝜕nΘ̄𝛼F𝛼𝛽𝜌Θ𝛽

]
= −1

2 ∫Σ
d2𝜉𝜖mnv𝜌m

[
Θ̄𝛼F𝛼𝛽𝜌𝜕nΘ𝛽 − 𝜕nΘ̄𝛼F𝛼𝛽𝜌Θ𝛽

]
= ∫Σ

d2𝜉v𝜌m𝛽
m
𝜌
. (A.1)

Variation with respect to gauge field v𝜌±, and setting F𝛼𝛽𝜌 =
−(f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇 (f −1)𝛽1𝛽 produces desired 𝛽

±
𝜌
functions (3.14), (3.15)

in equations of motion (3.13). Here we have used the prop-
erty that (f −1)𝛼𝛼1C

𝛼1𝛽1
𝜇 (f −1)𝛽1𝛽 , ie. F𝛼𝛽𝜌, is antisymmetric under ex-

change of 𝛼 and 𝛽, this, in combination with the fact that we can
express 𝜕+Θ̄𝜕−Θ as 𝜖nm𝜕nΘ̄𝜕mΘ, removes all terms proportional
to 𝜕+𝜕−, using identity 𝜖

mnΘ̄𝜕m𝜕nΘ = 0.
It should be noted that 𝛽±𝜇(V) functions are not unique, we

could have obtained different function simply by not using us-
ing symmetrization in (A.1). In case of non-symmetric 𝛽±𝜇(V),
all results that have been obtained would take a simpler form.
We have chosen to work with symmetric function because re-
sults that are deduced from this case can be easily reduced, by
neglecting terms, to simpler case.

Appendix B: Poisson Bracket Between Sigma
Derivatives of T-dual Coordinate

In this article, in order to find Poisson brackets of the T-dual coor-
dinates we had to find first Poisson brackets of the sigma deriva-

tive of T-dual coordinates, y′
𝜇
≡ 𝜕𝜎y𝜇(𝜎). In this section we will

demonstrate how to obtain Poisson brackets from Poisson brack-
ets that contain sigma derivatives. We will use canonical form of
the T-dual transformation law (5.6) and standard Poisson alge-
bra, because the initial theory is geometric one. First, we have to
calculate the following Poisson bracket

{𝜕𝜎1y𝜈1 (𝜎1), 𝜕𝜎2y𝜈2 (𝜎2)}

= 1
2k

[
K𝜈2𝜈1

(𝜎2)𝜕𝜎2𝛿(𝜎2 − 𝜎1) − K𝜈1𝜈2
(𝜎1)𝜕𝜎1𝛿(𝜎1 − 𝜎2)

+ 𝜕𝜎1K𝜈1𝜈2
(𝜎1)𝛿(𝜎1 − 𝜎2) − 𝜕𝜎2K𝜈2𝜈1

(𝜎2)𝛿(𝜎2 − 𝜎1)
]
, (B.1)

where K𝜇𝜈(𝜎) is given by (5.9).
On the other side we have

{Δy𝜈1 (𝜎0, 𝜎),Δy𝜈2 (�̄�0, �̄�)}

= ∫
𝜎

𝜎0

d𝜎1 ∫
�̄�

�̄�0

d𝜎2{𝜕𝜎1y𝜈1 (𝜎1), 𝜕𝜎2y𝜈2 (𝜎2)}

= {y𝜈1 (𝜎), y𝜈2 (�̄�)} − {y𝜈1 (𝜎), y𝜈2 (�̄�0)} − {y𝜈1 (𝜎0), y𝜈2 (�̄�)}

+ {y𝜈1 (𝜎0), y𝜈2 (�̄�0)} , (B.2)

where

Δy𝜇(𝜎0, 𝜎) ≡ ∫
𝜎

𝜎0

d𝜎1𝜕𝜎1y𝜇(𝜎1) = y𝜇(𝜎) − y𝜇(𝜎0) . (B.3)

Combining the equations (B.1) and (B.2) we have

{Δy𝜈1 (𝜎0, 𝜎),Δy𝜈2 (�̄�0, �̄�)} =
1
2k ∫

𝜎

𝜎0

d𝜎1 ∫
�̄�

�̄�0

d𝜎2

×
[
K𝜈2𝜈1

(𝜎2)𝜕𝜎2𝛿(𝜎2 − 𝜎1) − K𝜈1𝜈2
(𝜎1)𝜕𝜎1𝛿(𝜎1 − 𝜎2)

+ 𝜕𝜎1K𝜈1𝜈2
(𝜎1)𝛿(𝜎1 − 𝜎2) − 𝜕𝜎2K𝜈2𝜈1

(𝜎2)𝛿(𝜎2 − 𝜎1)
]
. (B.4)

By applying partial integration, it is straightforward to extract the
Poisson bracket of T-dual coordinates given by (5.8).
In paper[13] it has been shown that Poisson brackets between

𝜎 derivatives of coordinates have following form

{𝜕𝜎1X𝜇(𝜎1), 𝜕𝜎2Y𝜈(𝜎2)} ≅ 𝜕𝜎1K𝜇𝜈(𝜎1)𝛿(𝜎1 − 𝜎2)

+ L𝜇𝜈(𝜎1)𝜕𝜎1𝛿(𝜎1 − 𝜎2). (B.5)

Applying integrating twice and using partial integration this
equation reduces to

{X𝜇(𝜎1), Y𝜈(𝜎2)} ≅ −
[
K𝜇𝜈(𝜎1) − K𝜇𝜈(𝜎2) + L𝜇𝜈(𝜎2)

]
𝛿(𝜎1 − 𝜎2).

(B.6)

In our case, we can bring equation (B.1) to the form of equa-
tion (B.5) by making following substitutions

Fortschr. Phys. 2022, 70, 2200048 © 2022 Wiley-VCH GmbH.2200048 (8 of 9)
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𝜕𝜎1K𝜈1𝜈2
(𝜎1) = 𝜕𝜎1K𝜈1𝜈2

(𝜎1), 𝜕𝜎2K𝜈2𝜈1
(𝜎2) = 𝜕𝜎2K𝜈2𝜈1

(𝜎2),

K𝜈1𝜈2
(𝜎1) = −L𝜈1𝜈2 (𝜎1), K𝜈2𝜈1

(𝜎2) = −L𝜈2𝜈1 (𝜎2).
(B.7)

Because we chose to work with symmetric 𝛽±
𝜇
function we obtain

duplicated terms in (B.5).
Same procedure can be applied to find Poisson bracket be-

tween T-dual coordinate and fermionic momenta. That is, we
start from Poisson bracket for sigma derivative of T-dual coordi-
nate and fermionic momenta, then integrate once and compare
left and right hand sides.
The step functionH(x) is defined as

H(x) = ∫
x

0
ds𝛿(s) = 1

2𝜋
Σn∈Z ∫

x

0
eins =

⎧⎪⎨⎪⎩
0 if x = 0

1∕2 if 0 < x < 2𝜋 .

1 if x = 2𝜋

(B.8)
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1 Introduction

Noncommutativity of coordinates has come into focus of physics about hundred years ago

when the problem with infinite value of physical quantities occurred. The solution was

proposed by Heisenberg in the form of noncommutative coordinates. But after developing

of renormalization procedure coordinate noncommutativity was forgotten as a tool for

cancelling of infinities.

Commuting of coordinates means that there is no minimal possible length in Nature

i.e. that we can measure the position of particle with infinite precision. The return of

noncommutativity into physics starts with the article of Hartland Snyder [1]. Usually we

treat space-time as continuum but Snyder showed that there is Lorentz invariant discrete

space-time. Consequently, this means that commutator of coordinates is nonzero, and

noncommutativity parameter dictates the scale at which noncommutativity exists.

In the paper [2] existence of noncommutative manifold was shown using propagators

in open bosonic string theory with constant metric and constant Kalb-Ramond field. This

result is proven in many articles [3–12] after that but using different mathematical meth-

ods. Obtained noncommutativity with constant noncommutativity parameter is known

– 1 –
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in literature as canonical noncommutativity. Consequently, canonical noncommutativity

implies that theory is still associative one.

One of the first application of canonical noncommutativity was in Yang-Mills (YM)

theories [13–16]. Noncommutative YM theories are constructed and their renormalisability

properties are analyzed. It turned out that some processes forbidden in commutative YM

are allowed in noncommutative YM theories. Consequently, cross sections for those decays

and processes are calculated [17, 18]. Such predictions offer the possibility of indirect check

of idea of noncommutativity.

The next type of noncommuatativity which is considered in literature is Lie-algebraic

one, which means that commutator of two coordinates is proportional to the coordinate.

The κ-Minkowski space-time is an example of this kind of noncommutativity and it is

considered in various contexts [19–24]. The κ-Minkowski space is noncommutative but

it is easy to check that is associative one. But, in general, if the commutator of the

coordinates is proportional to the some linear combination of coordinates, then the space

is nonassociative because jacobiator and associator are nonzero. For example, such spaces

are closely related to the L∞ algebra [25].

The mathematical framework for T-dualization is standard Buscher procedure [26, 27].

It consists of the localization of the shift symmetry and adding a term with Lagrange

multiplier in order to make gauge fields unphysical degrees of freedom. Also there is an

improvement of standard Buscher procedure developed and applied in refs. [28–31], gener-

alized Buscher procedure. In the application of the generalized procedure of T-dualization

there is one additional step with respect to the standard one. We introduce invariant

coordinate in order to localize shift symmetry in the coordinate dependent backgrounds.

The first articles addressing the subject of coordinate dependent backgrounds appear

in the last ten years [32–43]. A 3-torus with constant metric and Kalb-Ramond field

with just one nonzero component, Bxy = Hz, was considered within standard Buscher

procedure [33]. Authors made two successive T-dualzation along isometry directions x and

y, and, using nontrivial winding conditions, obtained noncommutativity with parameter

proportional to field strength H and winding number N3.

Using generalized T-duality procedure [30, 44] we obtained coordinate dependent non-

commutativity and, consequently, nonassociativity. Also it is shown that final theory is

nonlocal. In ref. [30] the bosonic string is considered in the weakly curved background —

constant metric and linearly coordinate dependent Kalb-Ramond field with infinitesimal

field strength, while in [44] we consider the same model as in [33], but T-dualizing along

all three directions and imposing trivial winding conditions. Obtained nonlocality comes

from the coordinate dependent background, or more precisely, from invariant coordinates.

At the end of T-dualization procedure background fields depend on ∆V , defined as line

integral. Nonlocality has been become very important issue in the quantum mechanical

considerations [45].

In this article we will deal with closed bosonic string propagating in the constant

metric and linear dependent Kalb-Ramond field with Bxy = Hz, the same background as

in [33, 44]. But our goal here is to examine the influence of order of T-dualizations. In

ref. [44] we T-dualize first along isometry directions, first along x and then along y, and at
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the end, along direction z. The first T-dualization produces configuration known as twisted

torus which is commutative, and it is globally and locally well defined. After second T-

dualization we obtained nongeometric theory with Q flux which is still locally well defined

and it is commutative. The final T-dualization along z direction produces nonlocal theory

which is noncommutative and nonassociative one. This line of T-dualizations we will call

xyz one.

But what it will happen, if we change the order of T-dualizations, regrading (non)lo-

cality issue as well as (non)commutativity and (non)associativity? It is quite obvious that

nothing will be changed if we T-dualize along line yxz, because the first two directions,

which are T-dualized, are isometry ones. Some nontrivial issues could be expected if

we T-dualize first along z direction. In this article we will present T-dualization of the

model from [33, 44] along the T-dualization line zyx. After every step of T-dualization

we will rewrite the T-dual transformation law in canonical form using the expressions for

canonical momenta of the initial theory. Also we will check whether the obtained theory

is commutative or not and, consequently, we will see whether it is associative or not.

The fact which is quite sure is that all three theories which we will obtain from the

T-dualization line zyx are nonlocal. The explanation comes from the fact that background

field Bµν is z dependent and according to the generalized T-dualization procedure, after T-

dualization along z, we obtain quantity ∆V which is defined as line integral. Consequently,

the theory is nonlocal. But because y and x T-dualizations do not affect ∆V , all three

theories obtained in zyx T-dualization line are nonlocal. That is a difference with respect

to the xyz T-dualization line considered in [44].

The interesting thing is that transformation laws can be obtained from the corre-

sponding ones in [44] by replacing H → −H, but because in this article we T-dualize in

the opposite direction, that produces theories of the different commutative and associative

features with respect to [44]. After first T-dualization we get commutative and associative

theory which is the same as in xyz case from [44]. But the second T-dualization here

produces noncommutative and associative theory of κ-Minkowski type. That is different

with respect to the xyz case, where second theory in the line is both commutative and

associative. At the end we obtain the same theory as in [44] which is nonassociative and

noncommutative. The noncommutativity and nonassociativity parameters have one addi-

tional “−” sign comparing with the corresponding ones in [44]. In this article as well as

in [44], we impose trivial winding conditions which means xµ(σ + 2π) = xµ(σ) + 2πNµ,

where Nµ is a winding number.

At the end we comment some quantum aspects of the problem and add two appendices.

The first one contains conventions regarding light-cone coordinates, while the second one is

related to the mathematical details concerning derivation of two kinds of Poisson brackets

appearing in the article.

2 Bosonic string action and choice of background fields

In this section we will introduce the action for bosonic string propagating in 3D space with

constant metric and Kalb-Ramond field which single component is different from zero,

– 3 –
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Bxy = Hz. This model is well known in literature as torus with H-flux. Since we are

working with the same model as in [33, 44], for completeness we will repeat most of the

steps from introductory part in the [44].

The closed bosonic string which propagates in the presence of the space-time metric

Gµν(x), Kalb-Ramond field Bµν(x), and dilaton field Φ(x) is described by action [46–48]

S = κ

∫
Σ
d2ξ
√
−g
{[

1

2
gαβGµν(x) +

εαβ√
−g

Bµν(x)

]
∂αx

µ∂βx
ν + Φ(x)R(2)

}
, (2.1)

where world-sheet surface Σ is parameterized by ξα = (τ , σ) [(α = 0 , 1), σ ∈ (0 , π)],

while xµ (µ = 0, 1, 2, . . . , D− 1) are space-time coordinates. Intrinsic world sheet metric is

denoted by gαβ , and the corresponding scalar curvature with R(2).

Conformal symmetry on the quantum level is not preserved for any choice of back-

ground fields. If we want to keep conformal symmetry on the quantum level, background

fields must obey the space-time field equations [49]

βGµν ≡ Rµν −
1

4
BµρσBν

ρσ + 2Dµaν = 0 , (2.2)

βBµν ≡ DρB
ρ
µν − 2aρB

ρ
µν = 0 , (2.3)

βΦ ≡ 2πκ
D − 26

6
−R− 1

24
BµρσB

µρσ −Dµa
µ + 4a2 = c , (2.4)

where c is an arbitrary constant. From

DνβGνµ + ∂µβ
Φ = 0 , (2.5)

it follows that third beta function, βΦ, is equal to an arbitrary constant. Here Rµν and Dµ

are Ricci tensor and covariant derivative with respect to the space-time metric Gµν . Field

strength for Kalb-Ramond field Bµν and dilaton gradient are defined as

Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , aµ = ∂µΦ . (2.6)

One of the solutions of these equations which is important for us here is the solution

where some background fields are coordinate dependent. Let us choose Kalb-Ramond field

to be linearly coordinate dependent and dilaton field to be constant. The equation (2.2)

turns into

Rµν −
1

4
BµρσBν

ρσ = 0 . (2.7)

If we assume that field strength is infinitesimal, then we take Gµν to be constant in ap-

proximation linear in Bµνρ. Consequently, the third equation (2.4) is of the form

2πκ
D − 26

6
= c . (2.8)

The constant c is arbitrary, and fixing its value at c = −23πκ
3 , we obtain D = 3, dimension

of the space in which we will work further.
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The choice of background fields in the case we will consider is

Gµν =

R2
1 0 0

0 R2
2 0

0 0 R2
3

 , Bµν =

 0 Hz 0

−Hz 0 0

0 0 0

 , (2.9)

where Rµ(µ = 1, 2, 3) are radii of the compact dimensions. In terms of radii, the imposed

condition that H is infinitesimal, can be rewritten as(
H

R1R2R3

)2

= 0 . (2.10)

Physically, infinitesimality of H means that we work with sufficiently large torus (diluted

flux approximation). If we rescale the coordinates

xµ 7−→ x′µ = Rµx
µ , (2.11)

where indices on the right hand-side of equation are not summed, the form of the met-

ric simplifies

Gµν =

 1 0 0

0 1 0

0 0 1

 . (2.12)

Taking all assumption into consideration, the action is of the form

S = κ

∫
Σ
d2ξ∂+x

µΠ+µν∂−x
ν (2.13)

= κ

∫
Σ
d2ξ

[
1

2
(∂+x∂−x+ ∂+y∂−y + ∂+z∂−z) + ∂+xHz∂−y − ∂+yHz∂−x

]
,

where ∂± = ∂τ ± ∂σ is world-sheet derivative with respect to the light-cone coordinates

ξ± = 1
2(τ ± σ), Π±µν = Bµν ± 1

2Gµν and

xµ =

 x

y

z

 . (2.14)

T-dualization of dilaton is done within quantum formalism and here it will not be presented.

3 Family of three R flux non-local theories

In this section we will perform T-dualization of closed bosonic string equipped by H-

flux torus background fields, one direction at time. T-dualization procedure will go along

zyx line. We will show that all three theories are nonlocal with R-flux. Also we will

find expressions connecting initial and T-dual variables, so called T-dual transformation

laws. Using transformation laws in canonical form, we will check after every step whether

obtained theory is (non)commutative and/or (non)associative.
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3.1 T-dualization along z direction — shortcut to R-flux

Unlike the cases considered in [33, 44], where T-dualization drives along xyz line, let us

do that in opposite direction and perform generalized T-dualization [28] of action (2.13)

along z direction.

3.1.1 T-dualization procedure

It looks like that this direction is not isometry one. But we can show that it can be treated

like isometry direction. Let us consider the global transformation

δxµ = λµ , (3.1)

and vary the action with respect to this transformation

δS =
κ

3
Bµνρλ

ρ

∫
Σ
d2ξ∂+x

µ∂−x
ν =

2k

3
Bµνρλ

ρεαβ
∫

Σ
d2ξ[∂α(xµ∂βx

ν)− xµ(∂α∂βx
ν)] . (3.2)

The second term vanishes as a consequence of contraction of antisymmetric (εαβ) and

symmetric (∂α∂β) tensors, while the first one, surface term, survives, and it is, in general,

different from zero. But, the expression δS is an topological invariant, so it vanishes if the

map from the world-sheet to D-dimensional space-time is topologically trivial. Essentially,

infinitesimal field strength H does not affect the vanishing of the surface term.

There is one more explanation of vanishing of this surface term. It is more technical

and adjusted to the approximation we used in this article which essence is the explanation

in paragraph above. Because we work in the approximation up to the linear terms in H, xµ

satisfies equation of motion for constant Gµν and Bµν , ∂+∂−x
µ = 0, which solution is well

known in literature. If the winding number is equal to zero, it holds xµ(2π + σ) = xµ(σ),

and since the configuration in the initial τi and final moment τf is fixed, the surface term

vanishes.

So, in the weakly curved background case (H-flux torus background is such like that),

z direction is an isometry one. Localization of the shift symmetry of the action (2.13) along

z starts with introducing the covariant derivative

∂±z −→ D±z = ∂±z + v± , (3.3)

where v± is a gauge field. In order to make gauge fields unphysical ones, we introduce term

with Lagrange multiplier

Sadd =
κ

2

∫
Σ
d2ξy3(∂+v− − ∂−v+) . (3.4)

These two steps are the part of the standard Buscher procedure. Because of coordinate

dependent background field Bµν , generalized T-dualization procedure has an additional

step, introducing of an invariant coordinate

zinv =

∫
P
dξαDαz =

∫
P
dξ+D+z +

∫
P
dξ−D−z = z(ξ)− z(ξ0) + ∆V , (3.5)

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
1
3
6

where

∆V =

∫
P
dξαvα =

∫
P

(dξ+v+ + dξ−v−) . (3.6)

The form of the action is now

S̄ = κ

∫
Σ
d2ξ

[
Hzinv(∂+x∂−y − ∂+y∂−x) +

1

2
(∂+x∂−x+ ∂+y∂−y +D+zD−z)

+
1

2
y3(∂+v− − ∂−v+)

]
. (3.7)

Fixing the gauge, z(ξ) = z(ξ0), we get gauged fixed action in the form

Sfix = κ

∫
Σ
d2ξ

[
H∆V (∂+x∂−y − ∂+y∂−x) +

1

2
(∂+x∂−x+ ∂+y∂−y + v+v−)

+
1

2
y3(∂+v− − ∂−v+)

]
. (3.8)

The equation of motion for Lagrange multiplier y3 obtained from above action (3.8)

produces

∂+v− − ∂−v+ = 0 =⇒ v± = ∂±z , (3.9)

which drives us back to the initial action (2.13). On the other side, if we found equations

of motion for gauge fields v±, we get

v± = ±∂±y3 − 2β∓ , (3.10)

where β± functions are defined as

β± = ∓1

2
H(x∂∓y − y∂∓x) . (3.11)

The β± functions stem from the variation of the term containing ∆V . The derivation of

beta functions β± is based on the relation ∂±∆V = v±. In the derivation of the beta

functions there is one nontrivial technical point and that is vanishing of the surface term

after one partial integration. That surface term is of the same form as in eq. (3.2), so

the same reasons for surface term vanishing hold here. Mathematical details regarding

derivation of β± functions can be found in refs. [28–31, 44].

Inserting the relations (3.10) into the gauge fixed action, keeping linear terms in H,

we obtain the T-dual action

zS = κ

∫
Σ
d2ξ∂+zX

µ
zΠ+µν∂−zX

ν , (3.12)

where

zX
µ =

 x

y

y3

 , zΠ+µν = zBµν +
1

2
zGµν , (3.13)

zBµν =

 0 H∆V 0

−H∆V 0 0

0 0 0

 , zGµν =

 1 0 0

0 1 0

0 0 1

 . (3.14)

Let us note that presence of ∆V , defined as line integral, represents the source of

nonlocality of the T-dual theory.
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3.1.2 T-dual transformation law

Combining the equations of motion for Lagrange multiplier (3.9) and for gauge fields (3.10),

we obtain T-dual transformation laws

∂±z ∼= ±∂±y3 ∓H(x∂±y − y∂±x) , (3.15)

where ∼= is used here to mark T-dual relation. Momentum of the initial theory (2.13)

canonically conjugated to the coordinate z is of the form

πz =
∂L
∂ż

= κż , (3.16)

where L is a Lagrangian density defined as S =
∫

Σ d
2ξL. Calculating ż using T-dual

transformation law (3.15), we get the T-dual transformation law in canonical form

y′3
∼=

1

κ
πz +H(xy′ − yx′) , (3.17)

which is of the same form as in the xyz case.

In all further expressions we will keep the symbol ∆V , but we must have in mind

that we used equations of motion for Lagrange multipliers (3.9) at the end of T-dulization

procedure along z coordinate, so, having in mind (3.6) and (3.15), we get

∆V = ∆z ∼=
∫
dξ+∂+y3 −

∫
dξ−∂−y3 ≡ ỹ3 . (3.18)

The variable ∆V is multiplied by infinitesimal field strength H, so, in the above expression

we used ∂±z ∼= ±∂±y3, as a consequence of diluted flux approximation.

3.1.3 (Non)commutativity and (non)associativity

The initial theory is geometric one and its variables satisfy the standard Poisson algebra

{xµ(σ), xν(σ̄)} = {πµ(σ), πν(σ̄)} = 0 , {xµ, πν(σ̄)} = δµνδ(σ − σ̄) , (3.19)

where xµ are the coordinates of the initial theory, while πµ are their canonically conju-

gated momenta. Using expression (3.17) and standard Poisson algebra (3.19), we obtain

that coordinates of the theory obtained after one T-dualization, zX
µ, are commutative.

Consequently, Jacobiator is equal to zero, which means that theory is associative.

Summarizing this first step of T-dualization, obtained theory is commutative and as-

sociative nonlocal R-flux theory. Comparing with the results of the ref. [44] after first

T-dualization, qualitatively we obtain the same result, but with the essential difference

that here obtained theory is nonlocal R-flux theory unlike that in [44] which is geometrical

one, locally and globally well defined.

3.2 Step 2 — T-dualization along y direction

Our starting point is the action given in eq. (3.12). The background fields are independent

of y, so, we apply standard Buscher procedure. This means that, unlike the previous

case, we perform just first two steps in T-dualization procedure and skip the third one —

introducing of invariant coordinate. The T-dualization procedure is already presented, so,

we will skip explaining procedure steps further.
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3.2.1 T-dualization procedure

The gauge fixed action is of the form

Sfix = κ

∫
Σ
d2ξ

[
1

2
(∂+x∂−x+ v+v− + ∂+y3∂−y3) +H∆V (v−∂+x− v+∂−x)

]
+
κ

2

∫
Σ
d2ξy2(∂+v− − ∂−v+) . (3.20)

Varying with respect to the Lagrange multiplier y2 we get

v± = ∂±y , (3.21)

while the equations of motion for gauge fields are

v± = ±∂±y2 ∓ 2H∆V ∂±x . (3.22)

Inserting the expression for gauge fields (3.22) into gauge fixed action (3.20), we obtain the

T-dual action

zyS = κ

∫
Σ
d2ξ ∂+ zyX

µ
zyΠ+µν ∂− zyX

ν , (3.23)

where

zyX
µ =

 x

y2

y3

 , zyΠ+µν = zyBµν +
1

2
zyGµν , (3.24)

zyBµν = 0 , zyGµν =

 1 −2H∆V 0

−2H∆V 1 0

0 0 1

 . (3.25)

Let us note that after two T-dualizations in the xyz case in [44] we also obtained that

T-dual Kalb-Ramond field is zero.

3.2.2 T-dual transformation law

Combining equations of motion (3.21) and (3.22) we get the corresponding transforma-

tion law

∂±y ∼= ±∂±y2 ∓ 2H∆V ∂±x . (3.26)

Let us now prescribe the transformation law in canonical form. The momentum canonically

conjugated to the initial coordinate y is obtained by variation of the initial action (2.13)

with respect to the ẏ and it is of the form

πy = κ(ẏ + 2Hzx′) , (3.27)

while from transformation law (3.26) we have

ẏ ∼= y′2 − 2H∆V x′ . (3.28)

Combining last two equations and using the fact that, in the approximation linear in H,

∆V and z are T-dual to each other, we get

y′2
∼=

1

κ
πy . (3.29)

As we see the transformation law is the same as in the xyz case.
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3.2.3 (Non)commutativity and (non)associativity

In this paragraph we will calculate Poisson brackets of the coordinates zyX
µ using trans-

formation laws in canonical form given by eqs. (3.17) and (3.29).

With the help of the standard Poisson algebra (3.19) and instructions from appendix

B, it is easy to see that

{x(σ), x(σ̄)} = {y2(σ), y2(σ̄)} = {y3(σ), y3(σ̄)} = {x(σ), y2(σ̄)} = {x(σ), y3(σ̄)} = 0 .

(3.30)

The only non-zero Poisson bracket is

{y′2(σ), y′3(σ̄)} ∼=
H

κ

[
2x′(σ)δ(σ − σ̄) + x(σ)δ′(σ − σ̄)

]
, (3.31)

where δ′ ≡ ∂σδ(σ − σ̄). This result is obtained by straightforward calculation using T-

dual transformation laws, (3.17) and (3.29), and standard Poisson algebra (3.19). The

relation (3.31) is of the form (B.1), where A′(σ) = y′2(σ), B′(σ̄) = y′3(σ̄), U ′(σ) = H
κ 2x′(σ)

and V (σ) = H
κ x(σ). With these substitutions in mind, we have that final expression is of

the form (B.8)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) . (3.32)

For σ → σ + 2π and σ̄ → σ we have

{y2(σ + 2π), y3(σ)} ∼= −
H

κ
[x(σ) + 4πNx] , (3.33)

because θ(2π) = 1 (B.6), while Nx is winding number for x coordinate

x(σ + 2π)− x(σ) = 2πNx . (3.34)

As we can see the noncommutativity relation (3.32) is of κ-Minkowski type. It is straight-

forward to see that

{x(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), x(σ1)}}+ {y3(σ3), {x(σ1), y2(σ2)}} ∼= 0 .

(3.35)

Because the Jacobiator is zero, we conclude that this R-flux theory is noncommutative

and associative one.

3.3 Step 3 — T-dualization along x direction

In this subsection we will finish T-dualization procedure not repeating the mathematical

details, but giving just the important equations and results.

The gauge fixed action is given by the following equation

Sfix = κ

∫
Σ
d2ξ

[
1

2
(v+v− + ∂+y2∂−y2 + ∂+y3∂−y3)−H∆V (v+∂−y2 + ∂+y2 v−)

]
+
κ

2

∫
Σ
d2ξy1(∂+v− − ∂−v+) . (3.36)
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The equations of motion for Lagrange multiplier produces

v± = ∂±x , (3.37)

while the equations of motion for gauge fields v± give

v± = ±∂±y1 + 2H∆V ∂±y2 . (3.38)

Inserting expressions for v± into gauge fixed action we get the T-dual action

zyxS = κ

∫
Σ
d2ξ∂+ zyxX

µ
zyxΠ+µν zyx X

ν , (3.39)

where

zyxX
µ =

 y1

y2

y3

 , zyxΠ+µν = zyxBµν +
1

2
zyxGµν (3.40)

zyxBµν =

 0 −H∆V 0

H∆V 0 0

0 0 0

 , zyxGµν =

 1 0 0

0 1 0

0 0 1

 . (3.41)

Combining the equations of motion (3.37) and (3.38) we obtain the T-dual transfor-

mation law

∂±x ∼= ±∂±y1 + 2H∆V ∂±y2 . (3.42)

It directly follows that

ẋ ∼= y′1 + 2H∆V ẏ2 . (3.43)

From the initial action (2.13) it is obvious that momentum canonically conjugated to x is

of the form

πx = κẋ− 2κHzy′ . (3.44)

The T-dual transformation law for y (3.26), in the approximation linear in H, produces

that y′ ∼= ẏ2. Taking into account the relation (3.43), we get the canonical form of the

T-dual transformation law

y′1
∼=

1

κ
πx . (3.45)

As we see the full set of T-dual transformation laws, (3.17), (3.29) and (3.45), are the same

as in the case where T-dualization was along xyz line [44] up to H → −H. The full T-

dualized theory is of the same form as in [44] with the expressions for noncommutativity

{y1(σ), y3(σ̄)} ∼=
H

κ
[2y(σ)− y(σ̄)] θ(σ − σ̄) , (3.46)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) , (3.47)

and nonassociativity

{y1(σ1), y2(σ2), y3(σ3)} ≡
{y1(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), y1(σ1)}}+ {y3(σ3), {y1(σ1), y2(σ2)}} ∼=
2H

κ2
[θ(σ1 − σ2)θ(σ2 − σ3) + θ(σ2 − σ1)θ(σ1 − σ3) + θ(σ1 − σ3)θ(σ3 − σ2)] , (3.48)

which can be obtained from the corresponding ones in xyz case [44] by replacing H → −H.
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4 Quantum aspects of T-dualization in the weakly curved background

In proving isometry and computing the β± functions we assumed the trivial topology and

the surface term occurring there vanishes. Now we want to discuss some quantum as-

pects of the considered problems in nontrivial topologies. We will consider the action for

bosonic string in the weakly curved background — constant metric and Kalb-Ramond field

depending on all coordinates and with infinitesimal field strength. Torus with infinitesimal

H-flux is special case of this model.

On th classical level there are a few problems in the theory. In order to perform the

generalized T-dualization procedure the invariant coordinate xµinv is introduced. But it

is multivalued and the proof of equivalence of gauged and initial theories needs the part

considering global characteristics. Moreover, in the quantum theory at higher genus, the

holonomies of the world-sheet gauge fields complicate the situation a little bit. Fortunately,

these problems can be resolved in Abelian case in the quantum theory [50–52].

First, we make Wick rotation τ → −iτ , which makes the term which contains metric

tensor Gµν gets multiplier i, while the terms which contain Kalb-Ramond field Bµν and

Lagrange multiplier yµ stay unchanged. Then the partition function is of the form

Z =
∞∑
g=0

∫
DyDv e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v+ iκ

2

∫
Σ vdy . (4.1)

We use differential forms and omit the space-time indices to simplify writing of equations.

The Hodge duality operator is denoted by star. The index g denotes the genus of manifold.

The first step in the calculation process is separation the one form dy into the exact

part dye (ye is single valued) and the harmonic part yh (dyh = 0 = d†yh)

dy = dye + yh. (4.2)

For the closed forms the co-exact term d†yco in the Hodge decomposition is missing.

The path integral (4.1) goes over all degrees of freedom including local degrees of

freedom as well as the sum over different topologies. Consequently, according to the (4.2),

we substitute Dy with the path integral over ye and the sum over all possible topologically

nontrivial states contained in yh (marked by Hy)

Dy → Dye
∑
Hy

. (4.3)

The integration over ye induces vanishing of the field strength

Z =

∫
Dv δ(dv) e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Hy

e
iκ
2

∫
Σ vyh . (4.4)

The 1-form v can be expressed as sum of exact, co-exact and the harmonic parts

v = dx+ d†vce + vh, (4.5)
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which means that

Dv → DxDd†vce dHv. (4.6)

The functional integration over harmonic part vh drives to the ordinary integration over

topologically nontrivial periods (marked by symbol Hv). After integration over d†vce we get

Z =

∫
DxdHv e

−κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Hy

e
iκ
2

∫
Σ vyh . (4.7)

The last term in the exponent is responsible for nontrivial holonomies. Eliminating

vce part, the 1-form v becomes closed and the Riemann bilinear relation becomes usable∫
Σ
vyh =

g∑
i=1

[ ∮
ai

v

∮
bi

yh −
∮
ai

yh

∮
bi

v
]
. (4.8)

The symbols ai, bi (i = 1, 2, . . . , g) represent the canonical homology basis for the world-

sheet. Because of the periodicity of the Lagrange multiplier y, its periods are just the

winding numbers around cycles ai and bi

Nai =

∮
ai

yh, Nbi =

∮
bi

yh . (4.9)

Denoting the periods with

Ai =

∮
ai

v, Bi =

∮
bi

v , (4.10)

we get ∫
Σ
vyh =

g∑
i=1

(NbiAi −NaiBi). (4.11)

Now the partition function (4.7) gets the form

Z =

∫
Dx dAidBie−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Nai ,Nbi∈Z

e
iκ
2

∑g
i=1(NbiAi−NaiBi). (4.12)

The periodic delta function is defined as δ(x) = 1
2π

∑
n∈Z e

inx, which produces

Z =

∫
Dx dAidBiδ

(κ
2
Ai

)
δ
(κ

2
Bi

)
e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v . (4.13)

It is useful to examine the path dependence of the variable V µ, which form is now

V µ(ξ) = xµ(ξ)− xµ(ξ0) +

∫
P
vµh . (4.14)

Let us consider two paths, P1 and P2, with the same initial ξα0 and the final points ξα.

Now we will subtract from the value of V µ along P1 the value along path P2 and obtain

the integral over closed curve P1P
−1
2 of the harmonic form

V µ[P1]− V µ[P2] =

∮
P1P

−1
2

vµh . (4.15)
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Establishing the homology between the closed curve P1P
−1
2 and curve

∑
i

[
niai + mibi

]
,

(ni,mi ∈ Z) we get finally

V µ[P1] = V µ[P2] +
∑
i

(niA
µ
i +miB

µ
i ). (4.16)

The variable V µ(ξ) in classical theory is path dependent if holonomies are nontrivial.

Integrating eq. (4.13) over Ai and Bi implies that periods Ai and Bi are zero. Conse-

quently

v = dx. (4.17)

The variable V µ becomes single valued, and the initial theory is restored

Z =

∫
Dxe−

κ
2

∫
Σ dxG

?dx+iκ
∫
Σ dxB[x]dx =

∫
Dxe−κ

∫
Σ d

2ξ∂xΠ+[x]∂̄x . (4.18)

Consequently, starting with partition function of the gauged fixed action of bosonic

string in the weakly curved background, within path integral formalism and in the presence

of nontrivial topologies, we came to the partition function of the initial theory. That means

that introducing coordinate dependent Kalb-Ramond field is consistent with path integral

quantization process.

5 Conclusion

In this article we studied the 3D closed bosonic string propagating in the geometry known

as torus with H-flux — constant metric and Kalb-Ramond field with just one nonzero

component, Bxy = −Byx = Hz. The choice of background fields is consistent with the

consistency conditions if we work in the diluted flux approximation which assumes that

in all calculations we keep just the constant terms and those linear in the infinitesimal

field strength H. Our goal was to study the T-dualization line which goes in the oppo-

site direction from the standard one. First, we T-dualize z direction, then y and at the

end along x direction — so-called zyx T-dualization line. We analyzed in every step the

(non)commutativity and (non)associativity of the obtained theory and made comparisons

with the case of xyz T-dualization line considered in [33, 44].

The common fact for all three theories obtained in the process of T-dualization step by

step is that all three ones are nonlocal R-flux theories. The nonlocality comes as a result

of the first step in T-dualization procedure, T-dualization along z direction. Generalized

T-dualization procedure has one additional step with respect to the standard Buscher

procedure and that is introduction of invariant coordinate. In the process of T-dualization

invariant coordinate turns into variable ∆V which is defined as line integral. Consequently,

this means that obtained theory is nonlocal. Further T-dualizations does not affect ∆V

and, all three theories are nonlocal ones. As we know, in the case of xyz T-dualization

line [44], we obtained three different theories in geometrical sense — twisted torus, Q-flux

theory (which is local) and nonlocal R-flux theory.

The dualization along z direction produces nonlocal R-flux theory unlike the xyz

case [33, 44] where the theory obtained after first T-dualization is locally and globally

well defined. Because initial theory is geometrical one, its variables satisfy standard Pois-
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son algebra (3.19). Using (3.19) and T-dual transformation law written in the canonical

form (3.17), we showed that theory obtained after T-dualization along z coordinate (using

generalized T-dualization procedure) is commutative and, consequently, associative one

as in [44].

The second step in T-dualization is T-dualization along y direction. Using standard

Buscher procedure, we obtained the form of the T-dual theory and the corresponding T-

dual transformation law, which is rewritten in the canonical form (3.29) in terms of the

coordinates and momenta of the initial theory. Using standard Poisson algebra (3.19) and

T-dual transformation laws in canonical form, (3.17) and (3.29), we easily proved that

theory after two T-dualizations is noncommutative, but it is still associative one. In this

article we used trivial winding condition (3.34) and showed that T-dual coordinates y2(σ)

and y3(σ̄) are commutative for equal arguments, σ = σ̄, but they are noncommutative

if σ − σ̄ = 2π. The result is qualitatively similar to the result of [33], where after two

T-dualizations the obtained theory is noncommutative one. But, the difference is in the

winding condition which is nontrivial in [33], mixing different coordinates. The different

winding condition induces the noncommutativity for σ = σ̄ (for more details see [33]).

On the other hand in the analysis presented in [44] (xyz T-dualization line) the theory

obtained after two T-dualizations is commutative under trivial winding condition.

The final step in T-dualization procedure is T-dualization along x direction. The

theory after full T-dualization is the same as in xyz case [44] with the noncommutativity

and nonassociativity parameters which can be obtained from those in xyz case [44] adding

“−” sign. This is a consequence of the fact that the full set of T-dual transformation

laws is the same as in [44] up to the replacing H → −H. This difference up to the “−”

sign stems from the initial actions. In this article we start from (2.13), while in [44] the

starting action for z T-dualization is Q-flux action, formally the same as (2.13) up to the

replacing H → −H.

Finishing the discussion of the results obtained in this paper it is interesting to make

comparison with some similar efforts. We studied the abelian isometries using both stan-

dard and generalized T-duality procedure, while in the paper [53] nonabelian isometries

using standard Buscher procedure are considered. The authors of [53] showed that spaces

with isometry maps to the nonisometry spaces, while in this paper there is isometry in

every T- dualization step. One of their conclusions that T-dual transformations are more

than continuous isometry can be added to the concluding remarks of this paper. In the

ref. [43] generalized T-duality and nongeometric background are considered, but using low

energy effective action, unlike here, where we used sigma model action. The paper [54]

deals with T-dualizations along nonisometry directions like in [31], using extension of gauge

symmetry, while the authors of [31] use the generalized T-dualization procedure introduc-

ing invariant coordinates (in [54] they call them “covariant” coordinates). In this paper we

use this generalized T-dualization procedure but all directions considered here are isome-

try ones. It is useful to mention that in the paper [55] bosonic string in the presence of

the weakly curved backgrounds is considered using double space formalism as well as the

influence of the order of T-dualizations. The double space formalism gives the result which

is in accordance with the result of the current paper.
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Consequently, we conclude that in the case of the full T-dualization the form of the

T-dual theory do not depend on the order of T-dualization, while parameters of noncom-

mutativity and nonassociativity change sign.

A Light-cone coordinates

In the paper we often use light-cone coordinates defined as

ξ± =
1

2
(τ ± σ) . (A.1)

The corresponding partial derivatives are

∂± ≡
∂

∂ξ±
= ∂τ ± ∂σ . (A.2)

Two dimensional Levi-Civita εαβ is chosen in (τ, σ) basis as ετσ = −1. Consequently,

in the light-cone basis the form of tensor is

εαβlc =

(
0 1

2

−1
2 0

)
. (A.3)

The flat world-sheet metric is of the form in (τ, σ) and light-cone basis, respectively

ηαβ =

(
1 0

0 −1

)
, ηlcαβ =

(
1
2 0

0 1
2

)
. (A.4)

Let us stress that in whole article we use standard notation for τ and σ derivatives —

Ȧ ≡ ∂τA and A′ ≡ ∂σA, where A is an arbitrary variable.

B Two types of Poisson brackets used in the paper

In this paper, we have seen that T-dual transformation laws connect derivatives of T-dual

coordinates with coordinates and momenta of initial theory. While initial theory satisfies

standard Poisson brackets, in order to find Poisson brackets for T-dual theory, we first need

to find Poisson brackets between σ derivatives of T-dual coordinates. This type of Poisson

bracket will, in general case, be some function of initial coordinates, Dirac delta functions

and their derivatives with respect to σ. Having this in mind, general case for our Poisson

brackets will have following form

{A′(σ), B′(σ̄)} = U ′(σ)δ(σ − σ̄) + V (σ)δ′(σ − σ̄) , (B.1)

where δ′(σ− σ̄) ≡ ∂σδ(σ− σ̄). For terms A′(σ), U ′(σ) and B′(σ̄), symbol ′ stands for partial

derivative with respect to σ and σ̄, respectively. If we want to calculate the Poisson bracket

{A(σ), B(σ̄)} ,

first we have to calculate the following one

{∆A(σ, σ0),∆B(σ̄, σ̄0)} , (B.2)
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where

∆A(σ, σ0) =

∫ σ

σ0

dxA′(x) = A(σ)−A(σ0) , ∆B(σ̄, σ̄0) =

∫ σ̄

σ̄0

dxB′(x) = B(σ̄)−B(σ̄0) .

(B.3)

Substituting the expressions (B.3) into (B.2), we have

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

∫ σ

σ0

dx

∫ σ̄

σ̄0

dy
[
U ′(x)δ(x− y) + V (x)δ′(x− y)

]
. (B.4)

After integration over y we get

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

=

∫ σ

σ0

dx{U ′(x) [θ(x− σ̄0)− θ(x− σ̄)] + V (x) [δ(x− σ̄0)− δ(x− σ̄)]}, (B.5)

where θ(x) is defined as

θ(x) =

∫ x

0
dηδ(η) =

1

2π

x+ 2
∑
n≥1

1

n
sin(nx)

 =


0 if x = 0

1/2 if 0 < x < 2π ,

1 if x = 2π

(B.6)

where δ(x) = 1
2π

∑
n∈Z e

inx. Finally, integrating over x, we obtain

{∆A(σ,σ0),∆B(σ̄, σ̄0)}=U(σ)[θ(σ−σ̄0)−θ(σ−σ̄)]−U(σ0)[θ(σ0−σ̄0)−θ(σ0−σ̄)]

−U(σ̄0)[θ(σ−σ̄0)−θ(σ0−σ̄0)]+U(σ̄)[θ(σ−σ̄)−θ(σ0−σ̄)]

+V (σ̄0)[θ(σ−σ̄0)−θ(σ0−σ̄0]−V (σ̄)[θ(σ−σ̄)−θ(σ0−σ̄)]. (B.7)

From the last expression, using (B.3), we extract the searched Poisson bracket

{A(σ), B(σ̄)} = −[U(σ)− U(σ̄) + V (σ̄)]θ(σ − σ̄) . (B.8)

In order to calculate Jacobiator we have to find Poisson brackets of type {y(σ), x(σ̄)},
where y(σ) is coordinate T-dual to initial one x(σ). Having this in mind, we start with the

following Poisson bracket

{∆y(σ, σ0), x(σ̄)} =

{∫ σ

σ0

dηy′(η), x(σ̄)

}
, (B.9)

and using T-dual transformation law in canonical form

π ∼= κy′ , (B.10)

we get

{∆y(σ, σ0), x(σ̄)} ∼=
1

κ

{∫ σ

σ0

dηπ(η), x(σ̄)

}
, (B.11)

where π(σ) is momentum canonically conjugated to the coordinate x(σ). Initial theory is

geometric one which variables satisfy standard Poisson algebra, so, the final result is of

the form

{∆y(σ, σ0), x(σ̄)} ∼= −
1

κ
[θ(σ − σ̄)− θ(σ0 − σ̄)] =⇒ {y(σ), x(σ̄)} ∼= −

1

κ
θ(σ − σ̄) .

(B.12)
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[20] S. Meljanac, A. Samsarov, M. Stojić and K.S. Gupta, κ-Minkowski space-time and the star

product realizations, Eur. Phys. J. C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].
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[55] B. Sazdović, T-duality as coordinates permutation in double space for weakly curved

background, JHEP 08 (2015) 055 [arXiv:1503.05580] [INSPIRE].

– 20 –

https://doi.org/10.1002/prop.201300013
https://doi.org/10.1007/JHEP02(2013)122
https://arxiv.org/abs/1211.0030
https://inspirehep.net/search?p=find+J+%22JHEP,1302,122%22
https://doi.org/10.1016/j.physletb.2013.02.004
https://arxiv.org/abs/1210.1591
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B720,215%22
https://doi.org/10.22323/1.155.0086
https://arxiv.org/abs/1205.0100
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0100
https://doi.org/10.1088/1751-8113/44/38/385401
https://arxiv.org/abs/1106.0316
https://inspirehep.net/search?p=find+J+%22J.Phys.,A44,385401%22
https://doi.org/10.1007/JHEP04(2012)121
https://arxiv.org/abs/1202.6366
https://inspirehep.net/search?p=find+J+%22JHEP,1204,121%22
https://doi.org/10.1088/1126-6708/2005/10/085
https://doi.org/10.1088/1126-6708/2005/10/085
https://arxiv.org/abs/hep-th/0508133
https://inspirehep.net/search?p=find+J+%22JHEP,0510,085%22
https://doi.org/10.1088/1126-6708/2006/05/009
https://doi.org/10.1088/1126-6708/2006/05/009
https://arxiv.org/abs/hep-th/0512005
https://inspirehep.net/search?p=find+J+%22JHEP,0605,009%22
https://doi.org/10.1002/prop.201800009
https://doi.org/10.1142/S0217751X1630012X
https://arxiv.org/abs/1602.07752
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A31,1630012%22
https://doi.org/10.1016/0550-3213(85)90506-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B262,593%22
https://doi.org/10.1016/0550-3213(92)90269-H
https://arxiv.org/abs/hep-th/9110053
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B373,630%22
https://doi.org/10.1016/0550-3213(94)90067-1
https://arxiv.org/abs/hep-th/9309039
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B415,71%22
https://doi.org/10.1088/1126-6708/2007/10/057
https://arxiv.org/abs/hep-th/0604178
https://inspirehep.net/search?p=find+J+%22JHEP,0710,057%22
https://doi.org/10.1016/0550-3213(93)90041-M
https://arxiv.org/abs/hep-th/9210021
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B403,377%22
https://doi.org/10.1007/JHEP01(2016)154
https://arxiv.org/abs/1509.01829
https://inspirehep.net/search?p=find+J+%22JHEP,1601,154%22
https://doi.org/10.1007/JHEP08(2015)055
https://arxiv.org/abs/1503.05580
https://inspirehep.net/search?p=find+J+%22JHEP,1508,055%22


J
H
E
P
1
2
(
2
0
2
2
)
0
7
8

Published for SISSA by Springer

Received: November 5, 2022
Accepted: December 5, 2022

Published: December 14, 2022

Noncommutativity and nonassociativity of type II
superstring with coordinate dependent RR field — the
general case

D. Obrić and B. Nikolić
Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, Belgrade, Serbia

E-mail: dobric@ipb.ac.rs, bnikolic@ipb.ac.rs

Abstract: In this paper we consider non-commutativity that arises from T-duality of
bosonic coordinates of type II superstring in presence of coordinate dependent Ramond-
Ramond field. Action with such choice of the background fields is not translational in-
variant. Consequently, we will employ generalization of Buscher procedure that can be
applied to cases that have coordinate dependent fields and that do not possess transla-
tional isometry. Bosonic part of newly obtained T-dual theory is non-local and defined
in non-geometric double space spanned by Lagrange multipliers yµ and double coordinate
∆V µ. We will apply Buscher procedure once more on T-dual theory to check if original
theory can be salvaged. Finally, we will use T-dual transformation laws along with Poisson
brackets of original theory to derive Poisson bracket structure of T-dual theory.

Keywords: String Duality, Superstrings and Heterotic Strings

ArXiv ePrint: 2211.00455

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2022)078

mailto:dobric@ipb.ac.rs
mailto:bnikolic@ipb.ac.rs
https://arxiv.org/abs/2211.00455
https://doi.org/10.1007/JHEP12(2022)078


J
H
E
P
1
2
(
2
0
2
2
)
0
7
8

Contents

1 Introduction 1

2 General type II superstring action and choice of background fields 2
2.1 General form of the pure spinor type II superstring action 3
2.2 Choice of the background fields 4

3 T-dualization 5
3.1 Implementation of the generalized T-dualization procedure 5
3.2 T-dualization of T-dual theory 9

4 Non-commutative relations 10

5 Conclusion 12

A Obtaining N(κ±) terms 13

B Properties of N(κ±) terms 14

1 Introduction

String theory as a possible candidate for unification of all known interactions offers a
framework for description of both gauge interactions and gravity. Analyzing the relation
between world-sheet diffeomorphisms and transformations of the background fields for open
bosonic string [1–3] it is concluded that Kalb-Ramond field gets one additional term that
is in fact a field strength of some gauge field. In sigma-model action it looks like that
gauge fields are attached at the string endpoints moving along Dp-brane. Finiteness of
the gauge theories (UV cutoff) demands existence of some minimal length. Consequently,
noncommutativity naturally arose in open bosonic string theory in the presence of the
constant background fields [4–7].

The fact that noncommutativity appears together with gauge theory produces a new
line of investigation in quantum field theory — noncommutative gauge theories [8–10], but
not noncommutative gravity.

The open bosonic string in the presence of the constant background fields gives con-
stant noncommutativity [4–7], but, consequently, Jacobi identity is zero and associativity
is not broken. Closed string in the presence of the constant background fields remains
commutative.

Noncommutativity in open string theory comes from the boundary conditions (see [5–
7]). Coordinates and their canonically conjugated momenta are mixed in the boundary

– 1 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
8

conditions, and because they obey standard Poisson algebra, at the end we get noncom-
mutativity of the initial coordinates. All these facts tell us about the way how we can
reach noncommutativity in the bosonic closed string case. Kalb-Ramond field must be,
at least, linearly coordinate dependent, and the generalized T-dualization procedure is a
machinery [11–19]. The noncommutativity relations are coordinate dependent and produce
nonzero Jacobi identity — nonassociativity appears in the closed string theory [13, 18, 20–
22].

The noncommutativity and nonassociativity can be considered also within superstring
theory [23, 24]. In ref. [25] we considered one special case of the type II superstring theory
in pure spinor formulation [26–30] — all physical background fields are constant except
Ramond-Ramond (RR) field strength. The RR field strength consists of the constant
part and linearly coordinate dependent one, which is infinitesimal. In accordance with
consistency conditions, we have chosen constant part of RR field strength to be symmetric
and cooordinate dependent part to be antisymmetric tensor.

The motivation for this choice of background fields is the quest for the anticommutation
relation between fermionic coordinates suggested in [30, 31]. Formally, this case is similar
to the bosonic string case with coordinate dependent Kalb-Ramond field (weakly curved
background). The difference is that in the superstring case noncommutativity parameter
depends both on the bosonic and fermionic coordinates. Also we obtained that Jacobiator
is nonzero. Both noncommutativity and nonassociativity parameters are proportional to
the infinitesimal tensor from RR field strength.

In this article we consider the same action as in [25], but we will not imply the ad-
ditional restrictions on the constant and coordinate dependent part of RR field strength
as in [25]. The fundamental difference in relation to the choice of background field in [25]
is in the fact that action with RR field strength without restrictions does not possess
translational isometry. In that sense this case can be considered as general one comparing
with [25].

We will use the generalized T-dualization procedure [16, 19] along bosonic directions.
Because this general case cannot be deduced to the form of the bosonic string with linearly
dependent Kalb-Ramond field, as it could in the case [25], we obtained more complicated
form of T-dual transformation laws and, consequently, the generalization of βµ functions
in the form of N(ξ) functions. Besides the complexity of the T-dual transformation laws
we succeeded to find expressions for noncommutativity and nonassociativity as well as the
form of the T-dual theory.

At the end we give some concluding remarks. In the appendices we present the deriva-
tion of N(ξ) functions and show their properties.

2 General type II superstring action and choice of background fields

In this section we will shortly present how we derive the action of type II superstring in
pure spinor formulation with all constant background fields except RR field strength from
the general form of that action given in [26–30].
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2.1 General form of the pure spinor type II superstring action

The general form of the type II superstring action in pure spinor formalism is derived and
given in [30]. It consists of two parts and can be represent as their sum

S = S0 + VSG , (2.1)

where S0 describes the motion of string in flat background

S0 =
∫

Σ
d2ξ

(
k

2ηµν∂mx
µ∂nx

νηmn − πα∂−θα + ∂+θ̄
απ̄α

)
+ Sλ + Sλ̄ , (2.2)

while the second one contains all possible interactions

VSG =
∫

Σ
d2ξ(XT )MAMN X̄

N . (2.3)

The second part of the action is expressed in terms of the integrated form of massless type
II supergravity vertex operator VSG. The actions Sλ and Sλ̄ in (2.2) are free-field actions
for pure spinors

Sλ =
∫
d2ξωα∂−λ

α, Sλ̄ =
∫
d2ξω̄α∂+λ̄

α . (2.4)

Here, λα and λ̄α are pure spinors whose canonically conjugated momenta are ωα and ω̄α,
respectively.

The vectors XM and XN and matrix AMN are of the form

XM =


∂+θ

α

Πµ
+
dα

1
2N

µν
+

 , X̄M =


∂−θ̄

λ

Πµ
−
d̄λ

1
2N̄

µν
−

 , AMN =


Aαβ Aαν Eα

β Ωα,µν

Aµβ Aµν Ēβµ Ωµ,νρ

Eαβ Eαν Pαβ Cαµν
Ωµν,β Ωµν,ρ C̄

β
µν Sµν,ρσ

 , (2.5)

where notation is taken from refs. [25, 30]. Every component of the matrix AMN is function
of bosonic, xµ, and fermionic, θα and θ̄α, coordinates. For more details about derivation of
the components consult [30]. The superfields Aµν , Ēαµ , Eαµ and Pαβ are known as physical
superfields, superfields that are in the first row and the first column are known as auxil-
iary because they can be expressed in terms of physical ones [30]. Remaining superfields
Ωµ,νρ (Ωµν,ρ), Cαµν (C̄βµν) and Sµν,ρσ, are curvatures (field strengths) for physical fields.
Components of XM and X̄N are of the form

Πµ
+ = ∂+x

µ + 1
2θ

α(Γµ)αβ∂+θ
β , Πµ

− = ∂−x
µ + 1

2 θ̄
α(Γµ)αβ∂−θ̄β , (2.6)

dα = πα −
1
2(Γµθ)α

[
∂+x

µ + 1
4(θΓµ∂+θ)

]
,

d̄α = π̄α −
1
2(Γµθ̄)α

[
∂−x

µ + 1
4(θ̄Γµ∂−θ̄)

]
, (2.7)

Nµν
+ = 1

2ωα(Γ[µν])αβλ
β , N̄µν

− = 1
2 ω̄α(Γ[µν])αβλ̄

β . (2.8)

The world-sheet is spanned by ξm = (ξ0 = τ, ξ1 = σ), while world-sheet light-cone
partial derivatives are defined as ∂± = ∂τ ± ∂σ. Superspace contains bosonic xµ (µ =
0, 1, . . . , 9) and fermionic θα, θ̄α (α = 1, 2, . . . , 16) coordinates. Variables πα and π̄α are
canonically conjugated momenta to the fermionic coordinates θα and θ̄α, respectively.
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2.2 Choice of the background fields

In this particular case we will use the supermatrix AMN where all physical background
fields, except RR field strength Pαβ , are constant. RR fields strength will have linear
coordinate dependence on bosonic coordinate xµ. Consequently, supermatrix AMN is of
the following form

AMN =


0 0 0 0
0 k(1

2gµν +Bµν) Ψ̄β
µ 0

0 −Ψα
ν

2
k (fαβ + Cαβρ xρ) 0

0 0 0 0

 , (2.9)

where gµν is symmetric tensor, Bµν is Kalb-Ramond antisymmetric field, Ψα
µ and Ψ̄α

µ are
Mayorana-Weyl gravitino fields and fαβ and Cαβρ are constant tensors. Let us stress this
will be a classical analysis and we will not calculate the dilaton shift under T-duality
transformation.

From the consistency conditions given in ref. [30], following this choice of background
fields, it follows

γµαβC
βγ
µ = 0, γµαβC

γβ
µ = 0. (2.10)

Because all background fields are expanded in powers of θα and θ̄α, θα and θ̄α terms
in XM and X̄N will be neglected. Taking into account all imposed assumptions and
approximations, the full action S is getting the form

S =
∫

Σ
d2ξ

[
k

2Π+µν∂+x
µ∂−x

ν − πα(∂−θα + Ψα
ν ∂−x

ν) + (∂+θ̄
α + ∂+x

µΨ̄α
µ)π̄α

+2
k
πα(fαβ + Cαβρ xρ)π̄β

]
,

(2.11)

where Π±µν = Bµν ± 1
2Gµν , and Gµν = ηµν + gµν is metric tensor. The actions Sλ and Sλ̄

are fully decoupled from the rest and they will not be analyzed from now on.
It is easy to notice that fermionic momenta play the roles of the auxiliary fields in full

action. They can be integrated out finding equations for motion for both πα and π̄α

π̄β = k

2
(
F−1(x)

)
βα

(∂−θα + Ψα
ν ∂−x

ν) , (2.12)

πα = −k2
(
∂+θ̄

β + ∂+x
µΨ̄β

µ

) (
F−1(x)

)
βα

, (2.13)

where Fαβ(x) and (F−1(x))αβ are of the form

Fαβ(x) = fαβ + Cαβµ xµ , (F−1(x))αβ = (f−1)αβ − (f−1)αα1C
α1β1
ρ xρ(f−1)β1β . (2.14)

For practical reasons, we assume that Cαβµ is infinitesimal. This assumption is in accor-
dance with constraints (2.10). Substituting equations (2.12) and (2.13) into (2.11) the final
form of action is

S = k

∫
Σ
d2ξ

[
Π+µν∂+x

µ∂−x
ν + 1

2(∂+θ̄
α + ∂+x

µΨ̄α
µ)
(
F−1(x)

)
αβ

(∂−θβ + Ψβ
ν∂−x

ν)
]
.

(2.15)
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Let us note that we did not impose any conditions on tensors fαβ and Cαβµ as we did in
ref. [25]. The case considered in this article is more general than the case studied in [25],
because action does not possess translational symmetry.

3 T-dualization

Here we will make T-dualization of all bosonic directions aiming to find T-dual transforma-
tion laws — relations between T-dual coordinates and canonical variables of the original
theory. The T-dual transformation laws will be used to calculate Poisson brackets of the
T-dual coordinates.

3.1 Implementation of the generalized T-dualization procedure

In implementing of T-dualization procedure we will use generalized Buscher T-dualization
procedure [16]. The standard Buscher procedure [14, 15] is made to be used along directions
on which background fields do not depend (isometry directions), while generalized Buscher
procedure can be applied to theories with coordinate dependent background fields along
all directions. The generalized T-dualization procedure follows three steps — introduction
of covariant derivatives, invariant coordinates and additional gauge fields, which produces
additional degrees of freedom. The starting and T-dual theory must have the same number
of degrees of freedom. In order to achieve that we eliminate all excessive degrees of freedom
demanding that field strength of gauge fields (F+− = ∂+v− − ∂−v+) vanishes by addition
of Lagrange multipliers. Then we fix the gauge symmetry (shift symmetry) and action is
left with gauge fields and their derivatives. Finding equations of motion for gauge fields,
expressing in terms of the Lagrange multipliers and inserting those equations into action
we obtain T-dual action, where Lagrange multipliers have roles of T-dual coordinates.

T-duality can be performed also in the cases of the absence of shift symmetry [19].
Then we replace original action with translation invariant auxiliary action. Form of the
auxiliary action is exactly the same as the form of action where translation symmetry was
localized and gauge fixed. It produces correct T-dual theory only if original action can be
salvaged from it.

Action (2.15) is not translational invariant. Consequently, we make the following
substitutions

∂±x
µ → vµ±, (3.1)

xρ → ∆V ρ =
∫
P
dξ′

m
vρm(ξ′), (3.2)

S → S + k

2

∫
Σ
d2ξ

[
vµ+∂−yµ − v

µ
−∂+yµ

]
, (3.3)

and insert them in action (2.15). The result is auxiliary action convenient for T-dualization
procedure

Saux = k

∫
Σ
d2ξ

[
Π+µνv

µ
+v

ν
− + 1

2(∂+θ̄
α + vµ+Ψ̄α

µ)
(
F−1(∆V )

)
αβ

(∂−θβ + Ψβ
νv

ν
−)

+1
2(vµ+∂−yµ − v

µ
−∂+yµ)

]
.

(3.4)

Let us note that path P starts from ξ0 and ends in ξ. In this way action becomes non-local.
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Finding equations of motion for Lagrange multipliers

∂−v
µ
+ − ∂+v

µ
− = 0 vµ± = ∂±x

µ, (3.5)

and inserting them into (3.2) we have

∆V ρ =
∫
P
dξ′

m
∂mx

ρ(ξ′) = xρ(ξ)− xρ(ξ0) = ∆xρ. (3.6)

In absence of translational symmetry, in order to extract starting action from auxiliary
one, we impose xρ(ξ0) = 0 as a constraint. Taking all this into account, we get the starting
action (2.15).

Euler-Lagrange equations of motion for gauge fields v±(κ) give the following ones

− 1
2∂−yµ(κ) = Π+µνv

ν
−(κ) + 1

2Ψ̄α
µ

(
F−1(∆V )

)
αβ

(∂−θβ(κ) + Ψβ
νv

ν
−(κ)) (3.7)

− 1
2

∫
Σ
d2ξ
[
∂+θ̄

α(ξ) + vν1
+ (ξ)Ψ̄α

ν1

]
(f−1)αα1C

α1β1
µ (f−1)β1βN(κ+)

[
∂−θ

β(ξ) + Ψβ
ν2v

ν2
− (ξ)

]
,

1
2∂+yµ(κ) = Π+νµv

ν
+(κ) + 1

2(∂+θ̄
α(κ) + vν+(κ)Ψ̄α

ν )
(
F−1(∆V )

)
αβ

Ψβ
µ (3.8)

− 1
2

∫
Σ
d2ξ
[
∂+θ̄

α(ξ) + vν1
+ (ξ)Ψ̄α

ν1

]
(f−1)αα1C

α1β1
µ (f−1)β1βN(κ−)

[
∂−θ

β(ξ) + Ψβ
ν2v

ν2
− (ξ)

]
.

Here, function N(κ±) is obtained from variation of term containing ∆V ρ in expression for
F−1(∆V ) (details are presented in appendix A). They represent the generalization of beta
functions introduced in ref. [25]

N(κ+) = δ
(
ξ′
−((ξ′+)−1(κ+)

)
− κ−

) [
H(ξ+ − κ+)−H(ξ+

0 − κ
+)
]
, (3.9)

N(κ−) = δ
(
ξ′

+((ξ′−)−1(κ−)
)
− κ+

) [
H(ξ− − κ−)−H(ξ−0 − κ−)

]
, (3.10)

where more details on Dirac delta function and step function are given in appendix A. As
we see the expressions for derivatives of yµ are more complex comparing with those in [25],
where translational symmetry is present.

Assuming that Cαβµ is an infinitesimal, we can iteratively invert equations of mo-
tion (3.7) and (3.8) [20]. Separating variables into two parts, one finite and one infinitesimal
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proportional to Cαβµ , we have

vν−(κ) =−1
2Θ̄νν1
−

{
∂−yν1(κ)+Ψ̄α

ν1(F−1(∆V ))αβ∂−θβ(κ) (3.11)

+ 1
2Ψα

ν1(f−1)αα1C
α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

ν2 Θ̄ν2ν3
−

(
∂−yν3(κ)+Ψ̄β1

ν3 (f−1)β1β∂−θ
β(κ)

)
−
∫

Σ
d2ξ
[
∂+θ̄

α(ξ)+ 1
2
(
∂+yµ1(ξ)−∂+θ̄

γ1(ξ)(f−1)γ1γ2Ψγ2
µ1

)
Θ̄µ1ν1
− Ψ̄α

ν1

]
(f−1)αα1C

α1β1
ν1

×(f−1)β1βN(κ+)
[
∂−θ

β(ξ)− 1
2Ψβ

ν2Θ̄ν2µ2
−

(
∂−yµ2(ξ)+Ψ̄γ3

µ2(f−1)γ3γ4∂−θ
γ4(ξ)

)]}
,

vµ+(κ) = 1
2Θ̄µ1µ
−

{
∂+yµ1(κ)−∂+θ̄

α(κ)(F−1(∆V ))αβΨβ
µ1 (3.12)

+ 1
2
(
∂+yµ2(κ)−∂+θ̄

α(κ)(f−1)αα1Ψα1
µ2

)
Θ̄µ2µ3
− Ψ̄β3

µ3(f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1βΨβ

µ1

+
∫

Σ
d2ξ
[
∂+θ̄

α(ξ)+ 1
2
(
∂+yµ2(ξ)−∂+θ̄

γ1(ξ)(f−1)γ1γ2Ψγ2
µ2

)
Θ̄µ2ν1
− Ψ̄α

ν1

]
(f−1)αα1C

α1β1
µ1

×(f−1)β1βN(κ−)
[
∂−θ

β(ξ)− 1
2Ψβ

ν2Θ̄ν2µ3
−

(
∂−yµ3(ξ)+Ψ̄γ3

µ3(f−1)γ3γ4∂−θ
γ4(ξ)

)]}
.

Tensor Θ̄µν
− is inverse tensor to Π̄+µν = Π+µν + 1

2Ψ̄α
µ(f−1)αβΨβ

ν

Θ̄µν
− Π̄+νρ = δµρ , (3.13)

where

Θ̄µν
− = Θµν

− −
1
2Θµµ1
− Ψ̄α

µ1(f̄−1)αβΨβ
ν1Θν1ν

− , (3.14)

f̄αβ = fαβ + 1
2Ψα

µΘµν
− Ψ̄β

ν , (3.15)

Θµν
− Π+µρ = δµρ , Θ− = −4(G−1

E Π−G−1)µν . (3.16)

Effective metric tensor is defined as GEµν ≡ Gµν − 4(BG−1B)µν .

In above expressions ∆V is a quantity in the zeroth order in Cαβµ

∆V ρ=
∫
dξ+vρ++

∫
dξ−vρ− (3.17)

= 1
2

∫
P
dξ+Θ̄ρ1ρ

−

[
∂+yρ1−∂+θ̄

α(f−1)αβΨβ
ρ1

]
− 1

2

∫
P
dξ−Θ̄ρρ1

−

[
∂−yρ1 +Ψ̄α

ρ1(f−1)αβ∂−θβ
]
.
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Using (3.7) and (3.8) and inserting them into (3.4), we get T-dual action

ST−dual = k

∫
P
d2ξ

[
1
4Θ̄µν
− ∂+yµ∂−yν (3.18)

+ 1
8Θ̄µµ1
− Ψ̄α

µ1(f−1)αα1C
α1β1
ρ ∆V ρ(f−1)β1βΨβ

ν1Θ̄ν1ν
− ∂+yµ∂−yν

+ 1
2∂+θ̄

α
(

(F−1(∆V ))αβ + 1
2(f−1)αα1C

α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β

− 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β + 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β3

ν (f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
∂−θ

β

+ 1
4∂+yµΘ̄µµ1

− Ψ̄α
µ1

(
(F−1(∆V ))αβ + 1

2(f−1)αα1C
α1β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
× ∂−θβ

− 1
4∂+θ̄

α
(

(F−1(∆V ))αβ + 1
2(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β1
ρ ∆V ρ(f−1)β1β

)
Ψβ
ν1Θ̄ν1ν

−

× ∂−yν

]
.

Let us note that above we kept terms up to the first order in Cαβµ .
T-dual action contains all terms as initial action (2.15) up to the change xµ → yµ.

Consequently, T-dual background fields are of the form

?Πµν
+ = 1

4Θ̄µν
− + 1

8Θ̄µµ1
− Ψ̄α

µ1

[
(F−1(∆V ))αβ+(f−1)αα1C

α1β1
ρ ∆V ρ(f−1)β1β (3.19)

− 1
2(f−1)αα1Ψα1

µ2 Θ̄µ2ν2
− Ψ̄β1

ν2 (f−1)β1β+ 1
2(f−1)αα1C

α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

µ2 Θ̄µ2ν2
− Ψ̄β1

ν2 (f−1)β1β

+ 1
2(f−1)αα1Ψα1

µ2 Θ̄µ2ν2
− Ψ̄β3

ν2 (f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ2 Θ̄µ2µ3
− Ψ̄α2

µ3 (f−1)α2α3C
α3β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν3 Θ̄ν3ν2
− Ψ̄β1

ν2 (f−1)β1β

]
Ψβ
ν1Θ̄ν1ν

− ,

?(F−1(x))αβ = (F−1(∆ȳ))αβ+ 1
2(f−1)αα1C

α1α2
ρ ∆V ρ(f−1)α2α3Ψα3

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β (3.20)

− 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β+ 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β3

ν (f−1)β3β2C
β2β1
ρ ∆V ρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β3
ρ ∆V ρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β ,

?Ψ̄µα = 1
2Θµν
− Ψ̄α

ν ,
?Ψνβ =−1

2Ψβ
µΘµν
− . (3.21)

Comparing background field of T-dual theory with background fields from [25] we imme-
diately notice that background fields have become more complex. However, this is just an
illusion. In both cases background field are exactly the same only difference is that here
we did not introduce tensor Π̆+µν = Π+µν + 1

2Ψ̄α
µF
−1(∆V )αβΨβ

ν and its inverse, therefore
we are missing ingredients to express our fields in more compactified format.

– 8 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
8

3.2 T-dualization of T-dual theory

Since the initial theory is not symmetric under translations, T-dual action that is obtained
from auxiliary action (3.4) and it is now invariant to translations of T-dual coordinates.
Consequently, we can dualize T-dual theory by generalized Buscher procedure. We start
with the introduction of following substitutions

∂±yµ → D±yµ = ∂±yµ + u±µ → D±yµ = u±µ, (3.22)
∆ȳρ → ∆ūρ, (3.23)

∆ūρ = 1
2

∫
P
dξ+Θ̄ρ1ρ

−

[
u+ρ1 − ∂+θ̄

α(f−1)αβΨβ
ρ1

]
− 1

2

∫
P
dξ−Θ̄ρρ1

−

[
u−ρ1 + Ψ̄α

ρ1(f−1)αβ∂−θβ
]
, (3.24)

S → S + 1
2(u+µ∂−x

µ − u−µ∂+x
µ) . (3.25)

From the first line we see that gauge is fixed choosing y(ξ) = const. Inserting these
substitutions into (3.18) we obtain

Sgauge fix = κ

∫
P
d2ξ

[
1
4Θ̄µν
− u+µu−ν (3.26)

+ 1
8Θ̄µµ1
− Ψ̄α

µ1(f−1)αα1C
α1β1
ρ ∆ūρ(f−1)β1βΨβ

ν1Θ̄ν1ν
− u+µu−ν

+ 1
2∂+θ̄

α
(
(F−1(∆ū))αβ + 1

2(f−1)αα1C
α1α2
ρ ∆ūρ(f−1)α2α3Ψα3

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β

− 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β1

ν (f−1)β1β + 1
2(f−1)αα1Ψα1

µ Θ̄µν
− Ψ̄β3

ν (f−1)β3β2C
β2β1
ρ ∆ūρ(f−1)β1β

− 1
4(f−1)αα1Ψα1

µ Θ̄µµ1
− Ψ̄α2

µ1 (f−1)α2α3C
α3β3
ρ ∆ūρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
∂−θ

β

+ 1
4u+µΘ̄µµ1

− Ψ̄α
µ1

(
(F−1(∆ū))αβ + 1

2(f−1)αα1C
α1β3
ρ ∆ūρ(f−1)β3β2Ψβ2

ν1 Θ̄ν1ν
− Ψ̄β1

ν (f−1)β1β

)
× ∂−θβ

− 1
4∂+θ̄

α
(
(F−1(∆ū))αβ + 1

2(f−1)αα1Ψα1
µ Θ̄µµ1

− Ψ̄α2
µ1 (f−1)α2α3C

α3β1
ρ ∆ūρ(f−1)β1β

)
Ψβ
ν1Θ̄ν1ν

−

× u−ν

+ 1
2(u+µ∂−x

µ − u−µ∂+x
µ)
]
.

Using equations of motion for Lagrange multipliers, we return to the T-dual action. Finding
equations of motion for gauge fields, we have

u+µ(κ) = 2Π̄+νµ∂+x
ν(κ)− ∂+x

ν(κ)Ψ̄α
ν (f−1)αα1C

α1β1
ρ ∆xρ(f−1)β1βΨβ

µ (3.27)
+ ∂+θ̄

α(κ)(F−1(∆x̄))αβΨβ
µ

−
∫

Σ
d2ξ
(
∂+θ̄

α(ξ) + ∂+x
µ1(ξ)Ψ̄α

µ1

)
(f−1)αα1C

α1β1
µ (f−1)β1βN(κ−)

×
(
∂−θ

β(ξ) + Ψβ
ν∂−x

ν(ξ)
)
,
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u−ν(κ) = −2Π̄+νµ∂−x
µ(κ) + Ψ̄α

ν (f−1)αα1C
α1β1
ρ ∆xρ(f−1)β1βΨβ

µ∂−x
µ(κ) (3.28)

− Ψ̄α
ν (F−1(∆x̄))αβ∂−θβ(κ)

+
∫

Σ
d2ξ
(
∂+θ̄

α(ξ) + ∂+x
µ(ξ)Ψ̄α

µ

)
(f−1)αα1C

α1β1
ν (f−1)β1βN(κ−)

×
(
∂−θ

β(ξ) + Ψβ
ν1∂−x

ν1(ξ)
)
.

Here we have that ∆xµ = x(ξ)− x(ξ0), and inserting these equations into the gauge fixed
action, keeping all terms linear with respect to Cµνρ and selecting ξ0 such that x(ξ0) = 0,
we obtain our original action (2.15).

4 Non-commutative relations

In this section we will establish a relationship between Poisson brackets of original and
T-dual theory using results from the previous one. Original theory is a geometric one,
which means that canonical variables xµ(ξ) and πµ(ξ) satisfy standard Poisson algebra

{xµ(σ), πν(σ̄)} = δµν δ(σ − σ̄), {xµ(σ), xν(σ̄)} = 0, {πµ(σ), πν(σ̄)} = 0. (4.1)

We will find Poisson structure of T-dual theory using relations (3.7) and (3.8) and ex-
pressing them in terms of the coordinates and momenta of the initial theory. Replacing
gauge fields with solutions of equations of motion for Lagrange multipliers, we get T-dual
transformation laws in Lagrangian form. Because we implement here canonical approach,
the next step is removing of all terms that are proportional to ∂τxµ(ξ). The most of the
terms of this type will get incorporated into expression for canonical momenta πµ(ξ), but
term that is non-local and which is dependent on function N(ξ±) remains. One way of
removing this term is to first use equations of motion for coordinate xµ(ξ), and then replace
remaining ∂τxµ term with canonical momentum. By doing all the steps that were outlined,
we have following relationship between T-dual coordinate and variables of starting theory

∂σyν(σ) = 2Bνµ∂σxµ −Gνµ(Π̄+ + Π̄T
+)−1ν1µ

[
πν1

k
− 1

2Ψ̄α
ν1

(
F−1(x)

)
αβ
∂−θ

β (4.2)

− 1
2∂+θ̄

α
(
F−1(x)

)
αβ

Ψβ
ν1 −

[
Π+µ1µ2 + 1

2Ψ̄α
µ1

(
F−1(x)

)
αβ

Ψβ
µ2

]
(δµ1
ν2 δ

µ2
ν1 − δ

µ1
ν1 δ

µ2
ν2 )∂σxν2

+ 1
2Ψ̄α

µ1(f−1)αα1C
α1β1
ρ xρ(σ)(f−1)β1βΨβ

µ2(δµ1
ν2 δ

µ2
ν1 − δ

µ1
ν1 δ

µ2
ν2 )(Π̄+ + Π̄T

+)−1ρν2

×
[
πρ
k
− 1

2Ψ̄γ
ρ(f−1)γγ1∂−θ

γ1 − 1
2∂+θ̄

γ(f−1)γγ1Ψγ1
ρ + Π̄+ρρ1∂σx

ρ1 − Π̄+ρ1ρ∂σx
ρ1

]]
.

To find Poisson bracket between T-dual coordinates, we can start by finding Poisson
bracket of sigma derivatives of T-dual coordinates and then integrating twice (see [25]).
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Implementing this procedure we have that Poisson bracket for sigma derivatives is given as

{∂σ1yν1(σ1), ∂σ2yν2(σ2)} = (4.3)

= 2
k

(Π̄+ + Π̄T
+)−1µ1µ2

[
Gν1µ1Bν2µ2∂σ2δ(σ1 − σ2)−Bν1µ1Gν2µ2∂σ1δ(σ1 − σ2)

]
+ 1
k

Ψ̄α
ν3(f−1)αα1C

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
Gν1µ1Bν2µ2x

ρ(σ1)∂σ2δ(σ1 − σ2)−Bν1µ1Gν2µ2x
ρ(σ2)∂σ1δ(σ1 − σ2)

]
.

Then we integrate with respect to σ1 (σ2), where we set boundaries as σ0 (σ̄0) and σ (σ̄).
Extracting only Poisson bracket terms that contain σ and σ̄, we have

{yν1(σ), yν2(σ̄)} = 2
k

(Π̄+ + Π̄T
+)−1µ1µ2

[
Gν1µ1Bν2µ2 +Bν1µ1Gν2µ2

]
H(σ − σ̄) (4.4)

+ 1
k

Ψ̄α
ν3(f−1)αα1G

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
Gν1µ1Bν2µ2x

ρ(σ̄) +Bν1µ1Gν2µ2x
ρ(σ)

]
H(σ − σ̄).

Here, H(σ− σ̄) is same step function defined in appendix A. It should be noted that these
Poisson brackets are zero when σ = σ̄. However, in cases where string in curled around
compactified dimension, that is cases where σ − σ̄ = 2π, we have following situation

{yν1(σ + 2π), yν2(σ)} = 2
k

(Π̄+ + Π̄T
+)−1µ1µ2

[
Gν1µ1Bν2µ2 +Bν1µ1Gν2µ2

]
(4.5)

+ 1
k

Ψ̄α
ν3(f−1)αα1C

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
4πGν1µ1Bν2µ2N

ρ +
(
Gν1µ1Bν2µ2 +Bν1µ1Gν2µ2

)
xρ(σ)

]
.

We used fact that H(2π) = 1. The symbol Nµ denotes winding number around compact-
ified coordinate, if is defined as

xµ(σ + 2π)− xµ(σ) = 2πNµ. (4.6)

Let us note that if we choose xµ(σ) = 0 than Poisson bracket has linear dependence on
winding number. In cases where we don’t have any winding number, we still have non-
commutativity that is proportional to background fields.

Using the expression for sigma derivative of yν (4.2) and expression for Poisson bracket
of sigma derivatives (4.3), we can find non-associative relations. Procedure is the same as
for finding Poisson brackets of T-dual theory, we find Poisson bracket of sigma derivatives
and integrate with respect to sigma coordinate, this time integral is done trice. Going
along with this procedure we have following final result

{yν(σ), {yν1(σ1), yν2(σ2)}} = Gνµ
k2 (Π̄+ + Π̄T

+)−1ρµ (4.7)

× Ψ̄α
ν3(f−1)αα1C

α1β1
ρ (f−1)β1βΨβ

ν4(δν3
µ3δ

ν4
µ4 + δν4

µ3δ
ν3
µ4)(Π̄+ + Π̄T

+)−1µ3µ1(Π̄+ + Π̄T
+)−1µ4µ2

×
[
Gν1µ1Bν2µ2H(σ − σ2) +Bν1µ1Gν2µ2H(σ − σ1)

]
H(σ1 − σ2).
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Since Jacobi identity is non-zero for T-dual theory we have that coordinate dependent RR
field produces non-associative theory. However putting σ1 = σ2 = σ̄ and σ = σ̄ + 2π we
have that Jacobi identity disappears

{yν(σ̄ + 2π), {yν1(σ̄), yν2(σ̄)}} = 0. (4.8)

5 Conclusion

In this article we examined type II superstring propagating in presence of coordinate de-
pendent RR field. This choice of background was in accordance with consistency conditions
for background field and all calculations were made in approximation that are linear with
respect to coordinate dependent part of RR field. We have also excluded parts that were
non-linear in fermionic coordinates and neglected pure spinor actions. Using equations of
motion for fermionic momenta we obtained action that was expressed in terms of bosonic
coordinates, their derivatives and derivatives of fermionic coordinates. Unlike [25] we do not
impose any conditions on the constant and coordinate dependent part of RR field strength,
so, it is not possible to deduce this case to the form of the weakly curved background one.

Action with our choice of background fields did not possess translation symmetry,
therefore we needed to use Buscher procedure that was extended to such cases. By substi-
tuting starting action with auxiliary action we gave up on locality in order to be able to
find T-dual theory. Finding equations of motion of newly introduced Lagrange multipliers
we were able to salvage starting action giving us assurance that auxiliary action we selected
would produce correct T-dual theory. After this we found equations of motion for gauge
fields and by inserting them into action, we found T-dual theory.

Having found T-dual theory, we applied T-dual procedure once again as a more thor-
ough way of checking if action we obtained was in fact correct T-dual of starting action.
Unlike starting action, T-dual action possessed translation symmetry and was non-local
from the start by virtue of having dual coordinate ∆V µ. Applying steps of generalized
Buscher procedure [16, 19] we obtained starting action, again confirming that our choice
of auxiliary action was correct.

We obtained non-commutativity relations in context of T-dual theory, where we used
T-dual transformation laws as a bridge between Poisson brackets of starting theory and
T-dual theory. T-dual transformation laws were expressed as functions of coordinates
and momenta of original theory and using their standard Poisson algebra, we got non-
commutativity in T-dual theory. From expression for Poisson brackets (4.4) we can see
that non-commutativity is proportional to infinitesimal part of RR field as well as to
symmetrised inverse of field Π̄. Non-commutativity relations are zero in case when σ = σ̄,
while in case where σ = σ̄ + 2π we see the emergence of winding numbers.

Taking into account Poisson brackets of sigma derivatives and expression for sigma
derivative of T-dual coordinate we were able to find non-associative relation for T-dual
theory. In general case this relation was non-zero and it was proportional to infinitesimal
constant Cµνρ . In special case when we put σ1 = σ2 = σ̄ and σ = σ̄ + 2π we noticed that
non-associativity relation disappears. During the implementation of the T-dualization

– 12 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
8

procedure and calculations, we obtained generalization of βµ functions in the form of the
N -functions.

It should be noted that since we did not preform T-dualization along fermionic coor-
dinates their Poisson structure would remain the same as in original theory. Furthermore,
since background fields do not depend on fermionic coordinates it should be expected, as
in the case of bosonic coordinates [18], that T-duality would leave Poisson brackets be-
tween fermionic fields the same. We expect that, if proposed non-commutative relations
from [30, 31] are even possible, we would need at least RR field that depends both on
fermionic and bosonic coordinates.
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A Obtaining N(κ±) terms

In this paper function N(κ±) emerged in T-dual transformation laws as a consequence of
variation of term that was proportional to ∆V . Here we will present derivation of this
function.

δ
(
F−1(∆V )

)
αβ

δvµ+(κ) = −(f−1)αα1C
α1β1
l (f−1)β1β

∫
P
dξ′

m δv
ρ
m(ξ′)

δvµ+(κ) = (A.1)

= −(f−1)αα1C
α1β1
µ (f−1)β1β

∫
P
dξ′

+
δ(ξ′+ − κ+)δ(ξ′− − κ−)

= −(f−1)αα1C
α1β1
µ (f−1)β1β

∫ tf

ti

dt
dξ′+

dt
δ(ξ′(t)+ − κ+)δ(ξ′−(t)− κ−)

= −(f−1)αα1C
α1β1
µ (f−1)β1β

∫ ξ+

ξ0
+
duδ(u− κ+)δ

(
ξ′
−((ξ′+)−1(u)

)
− κ−

)
= −(f−1)αα1C

α1β1
µ (f−1)β1βδ

(
ξ′
−((ξ′+)−1(κ+)

)
− κ−

) [
H(ξ+ − κ+)−H(ξ+

0 − κ
+)
]

= −(f−1)αα1G
α1β1
µ (f−1)β1βN(κ+).

In third line we have parametrized the path with parameter t where ξ′+(ti) = ξ0
+ and

ξ′+(tf ) = ξ+. In fourth line we introduced substitution u = ξ′+(t), in delta function this
substitute is inverted. Fifth line is obtained by using following integration rule for Dirac
delta function ∫ σ

σ0
dηf(η)δ(η − η̄) = f(η̄) [H(σ − η̄)−H(σ0 − η̄)] . (A.2)
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Here, H(x) is a step function defined as

H(x) =
∫ x

0
dηδ(η) = 1

2π
[
x+

∑
n≥2

1
n

sin(nx)
]

=


0 if x = 0
1/2 if 0 < x < 2π
1 if x = 2π

. (A.3)

Procedure for obtaining N(κ−) is similar.

B Properties of N(κ±) terms

Here ve will list some properties of N(κ±) function.

N(κ+) +N(κ−) = N(κ0), (B.1)
N(κ+)−N(κ−) = N(κ1), (B.2)

Where κ0 and κ1 represent τ and σ coordinates respectevly∫
Σ
d2ξ∂+N(κ+) = 1,

∫
Σ
d2ξ∂−N(κ+) = 0, (B.3)∫

Σ
d2ξ∂−N(κ−) = 1,

∫
Σ
d2ξ∂+N(κ−) = 0. (B.4)

These relationships can be checked directly by applying partial derivatives to expressions
from A.∫

Σ
d2ξ∂+N(κ+) =

∫
Σ
d2ξδ

(
ξ′
−((ξ′+)−1(κ+)

)
−κ−

)
∂+
[
H(ξ+−κ+)−H(ξ+

0 −κ
+)
]

=
∫

Σ
d2ξδ

(
ξ′
−((ξ′+)−1(κ+)

)
−κ−

)
δ(ξ+−κ+) =

∫
dξ−δ

(
ξ′
−((ξ′+)−1(ξ+)

)
−κ−

)
. (B.5)

In appendix A we had following parametrisation of path P: ξ′+(ti) = ξ0
+ and ξ′+(tf ) =

ξ+. Applying inverse parametrisation we have (ξ′+)−1(ξ+
0 ) = ti and (ξ′+)−1(ξ+) = tf .

With these we have∫
dξ−δ

(
ξ′
−((ξ′+)−1(ξ+)

)
− κ−

)
=
∫

Σ
dξ−δ

(
ξ′
−(
tf
)
− κ−

)
=
∫

Σ
dξ−δ

(
ξ− − κ−

)
= 1. (B.6)

Same rules apply for N(κ−), N(κ0) and N(κ1). In cases where F−1(x)αβ is antisym-
metric we can transfer partial derivatives from ∂±V

mu to N(κ±) and obtain standard β±

functions.
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1. Introduction: String theory and higher noncommutative geometry

The second Training School of the COST Action Quantum Structure of Spacetime was de-
voted to the general topic “Quantum Spacetime and Physics Models”. While this is a broad topic
with many potential directions (some covered by other lectures at this School), for the purposes of
these lectures this refers to the problem that Einstein’s general theory of relativity cannot be consis-
tently quantized via quantum field theory, due to the ultraviolet divergences that plague perturbation
theory around a flat background which require infinitely-many counterterms. To attempt to solve
this problem one can consider physics models with a natural minimal length providing a suitable
ultraviolet regularization. In this contribution we consider two such theories and how to reconcile
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them within the context of the School. Our treatment in this section and some other portions of this
article have been influenced by various other reviews available, such as e.g. [85, 94, 91, 26].

One approach is based on noncommutative geometry. In attempting to reconcile quantum me-
chanics with gravity, which is a theory based on the geometry of spacetime, one is inevitably led to
the notion of ‘quantum geometry’, which refers to the application of the principles of quantum me-
chanics to spacetime itself. One way to think of such a quantization is by promoting the spacetime
coordinates xi to ‘operators’ which do not commute:

[xi,x j] = i h̄θ
i j , (1.1)

for some bivector θ i j which naturally incorporates a minimal area: Applying the standard uncer-
tainty principle to the commutation relations (1.1) implies ∆xi ∆x j > h̄

2 |θ
i j|, so that the minimal

value of |θ i j| may be thought of as the Planck length `P of spacetime. Quantum field theory on
such noncommutative spaces exhibits very interesting features of forbidden interactions, controlled
Lorentz violation, and UV/IR mixing (see e.g. [113] for a review), and it can be extended to a non-
commutative theory of gravity [14, 13] as discussed in the lectures of L. Castellani at this School.
However, there are two major pitfalls to this approach. Firstly, although a minimal length scale is
naturally introduced, there is no coarse-graining of spacetime that one would expect from a quan-
tum theory of gravity: An underlying discrete structure such as a quantum of minimal volume does
not appear in this framework. Secondly, most treatments assume that the brackets (1.1) satisfy the
Jacobi identity; in particular, when the bivector θ = B−1 is invertible, it is not clear how to deal
with the cases with non-vanishing flux H = dB 6= 0. As we will discuss in the following, these
two drawbacks are in fact related and are simultaneously dealt with by extending noncommuta-
tive geometry into the world of nonassociative geometry, which deals with deformations by higher
structures in geometry.

Another approach is based on string theory, which certainly provides a concrete physical
model of a quantum spacetime. Strings are extended one-dimensional degrees of freedom and
so, unlike the point particle probes of quantum field theory, naturally come with intrinsic mini-
mal length ∆xi > `s, where `s is the string length. The interactions of strings thus violate local-
ity, while the theory directly contains gravity and is on-shell ultraviolet finite. It is then natural
to ask whether the spacetime approaches based on noncommutative geometry and string theory
are related or are complementary to each other in some sense. The precise connection between
open strings and noncommutative geometry was discovered near the end of the last millenium, see
e.g. [52, 8, 9, 103, 45, 104, 101, 102], and is by now well-established. Open strings on D-branes in
background B-fields (which provide a gauge flux on the D-brane worldvolume) probe a noncom-
mutative worldvolume geometry. The massless bosonic field content of open string theory consists
of gauge fields Ai on the worldvolume together with scalar fields φ a governing the transverse fluctu-
ations of the D-branes in spacetime. In the Seiberg-Witten scaling limit which decouples open and
closed string modes, the effective low-energy dynamics is governed by a noncommutative gauge
theory on the D-brane worldvolume.

Although this connection is precise, and has led to a flurry of investigation over the last 20
years, this does not explain the connection of noncommutative geometry with gravity, nor how
noncommutative geometry can be used to formulate a consistent theory of quantum gravity. In the
present context, one needs to look at closed strings. The massless bosonic field content of closed

2
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string theory consists of the spacetime metric gi j, the Kalb-Ramond field Bi j, and the dilaton field
Φ. Thus the closed string sector contains the data of background geometry and gravity, and it
is here that one should seek analogs of a quantum geometry and suitable decoupling limits to
make contact with the problem of quantizing gravity. Such a connection should certainly appear if
noncommutative geometry indeed improves the ultraviolet behaviour of quantum gravity.

The connections between noncommutative geometry and closed string theory has been a topic
of increasing interest over the last eight years, where it has been realised that closed strings are
related to not only noncommutative but even nonassociative target space geometries. To understand
how nonassociativity can arise in closed string theory, it is helpful to take a step back and look at
in more detail why noncommutativity emerges in open string theory. An instructive pedagogical
analogy from quantum mechanics is provided by the Landau problem [111]: The planar quantum
dynamics of electrons of mass m and charge e propagating under the influence of a perpendicularly
applied constant background magnetic field of magnitude B. The Lagrangian is

L =
m
2
~̇x2− e~̇x ·~A with Ai =−

B
2

εi j x j . (1.2)

The limit B� m of strong magnetic field induces the projection onto the lowest Landau level, de-
scribed by a first order Lagrangian L

∣∣
m=0 =

eB
2 ẋi εi j x j with degenerate phase space whose canonical

quantization gives the commutation relations of a noncommutative space:

[xi,x j] =
i h̄
eB

ε
i j =: i h̄θ

i j . (1.3)

This simple model is analogous to that of bosonic open strings in a B-field background, which
at tree-level in string perturbation theory is described generally by the worldsheet action

S =
1

4π `2
s

∫
Σ2

(
gi j(x)dxi∧∗dx j−2π `2

s Bi j(x)dxi∧dx j) , (1.4)

where xi are maps from the string worldsheet, which is a disk Σ2, to the target spacetime M. The
low-energy limit `s→ 0 describes the decoupling of massive string states, while the Seiberg-Witten
scaling limit gi j∼ `4

s→ 0 ensures that gravity is non-dynamical and that the bulk modes of the string
decouple from the boundary degrees of freedom. In this limit the action (1.4) reduces to a simple
topological action given by the pullback of the Kalb-Ramond two-form to the string worldsheet:

S
∣∣
g,`s=0 =−

1
2

∫
Σ2

Bi j(x)dxi∧dx j . (1.5)

In the absence of NS–NS flux H = dB = 0, and for target space M =Rd , using Stokes’ theorem the
action (1.5) gives a pure boundary interaction S

∣∣
g,`s=0 =−

∮
∂Σ2

dt ~̇x ·~A, where B = dA and ẋi = ∂txi

denotes a tangential derivative of the string field along the worldsheet boundary circle ∂Σ2. Again
this action is of first order in worldsheet time derivatives, so that the open string endpoints have a
degenerate phase space in the decoupling limit. For a constant B-field with the symmetric gauge
choice Ai =−1

2 Bi j x j, the action becomes

S
∣∣
g,`s=0 =

1
2

∮
∂Σ2

dt xi Bi j ẋ j , (1.6)

3
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and if the B-field is moreover non-degenerate then its canonical quantization produces the noncom-
mutative coordinate algebra

[xi,x j] =
( i h̄

B

)i j
=: i h̄θ

i j . (1.7)

Thus the scaling limit of the open string sigma-model is formally analogous to projection to the
lowest Landau level for charged particles in strong uniform magnetic fields.

The more precise dynamical mechanism behind this heuristic argument can be infered from
studying the two-point disk correlators deformed by the non-zero two-form Bi j, which plays the
role of a magnetic flux on the worldvolume and can be turned on by a left-right asymmetric rotation
of the D-brane via T-duality. The B-field allows one to distinguish the insertions of string fields
xi(t) and x j(t ′) on the boundary of the disk in the correlation function, which depends only on the
ordering of the two boundary insertion points [102]:〈

xi(t)x j(t ′)
〉
=−`2

s Gi j log(t− t ′)2 +
i h̄
2

θ
i j sgn(t− t ′) , (1.8)

where we used the open-closed string relations

1
g+2π `2

s B
=

1
G
+

θ

2π `2
s
, (1.9)

with G the open string metric and the bivector θ is the source of noncommutativity since it is not
symmetric under interchange of xi with x j. The transformation (1.9) is familiar from the Büscher
rules for T-duality, with the precise connection suggested by the worldsheet approach of [55], and
it explicitly determines the open string variables (G,θ) in terms of the closed string variables (g,B)
by

G = g− (2π `2
s )

2 Bg−1 B and θ =−(2π `2
s )

2 G−1 Bg−1 . (1.10)

Note that G= g and θ = 0 exactly when B= 0. Using this correlation function, the operator product
expansion of open string tachyon vertex operators on the boundary of the disk is computed to be

e ik·x(t) · e iq·x(t ′) = (t− t ′)2`2
s ki Gi j q j e−

i h̄
2 ki θ i j q j e i(k+q)·x(t ′)+ · · · , (1.11)

for t > t ′. The second factor in (1.11) does not depend on the worldsheet coordinates and is purely
a target space effect, and in the low-energy limit `s → 0 whereby θ = B−1, this phase factor is
encoded in scattering amplitudes by the star product of fields f ,g given by

( f ?g)(x) =
∫

dk
∫

dq f̃ (k) g̃(q) e−
i h̄
2 ki θ i j q j e i(k+q)·x (1.12)

in Fourier space, which is equivalent to the formal expansion in terms of a bidifferential operator:

f ?g = · exp
( i h̄

2
θ

i j
∂i⊗∂ j

)
( f ⊗g) . (1.13)

This is simply the Moyal-Weyl star product which is a noncommutative deformation of the point-
wise product f · g of functions on spacetime. Its characteristic features are that it quantizes the
commutator [xi,x j] = i h̄θ i j (by defining [ f ,g]? := f ? g− g ? f and setting f = xi, g = x j), and it
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is associative: f ? (g ? h) = ( f ? g) ? h. Since f ? g differs from f · g by a total derivative, the star
product deformation is consistent with the conformal SL(2,R) symmetry of the worldsheet theory
which leaves the cyclic ordering of boundary vertex operator insertions invariant, in the sense that
the star product is 2-cyclic: ∫

dx f ?g =
∫

dx g? f =
∫

dx f ·g . (1.14)

Moreover, consistency with associativity of the operator product expansion in conformal field the-
ory only requires crossing symmetry of the worldsheet correlation functions, which leads to the
weaker 3-cyclic condition: ∫

dx f ? (g?h) =
∫

dx ( f ?g)?h . (1.15)

It is in this way that one arrives at a noncommutative gauge theory for the massless bosonic open
string modes Ai and φ a; see e.g. [54, 110] for reviews and further details.

Now let us try to understand how an analogous scenario could be realised in a connection be-
tween noncommutative geometry and closed strings. Closed strings see geometry in a different way
than open strings do, which from a target space perspective is due to T-duality. From the worldsheet
perspective, the relevant tree-level amplitude involves correlation functions on the sphere S2, but
the situation must be different and one has to pass to higher correlators, as first pointed out by [28],
since now the ordering on S2 is ambiguous because two points can be interchanged by an SL(2,R)
transformation. However, the insertion of three string fields on the sphere depends only on the
relative orientation of the three points, i.e. whether the insertion of a third point lies on the same
or opposite hemisphere as the other two points. A trivector flux θ i jk can be used to distinguish
configurations, and in analogy with the Moyal-Weyl star product (1.13) it deforms the algebra of
functions with the “triproduct”

f14 f24 f3 = · exp
( i h̄

6
θ

i jk
∂i⊗∂ j⊗∂k

)
( f1⊗ f2⊗ f3) , (1.16)

which leads to a nonassociative tribracket defined by

[ f1, f2, f3]4 := ∑
τ∈S3

sgn(τ) fτ(1)4 fτ(2)4 fτ(3) . (1.17)

This quantizes the basic coordinate brackets

[xi,x j,xk]4 = i h̄θ
i jk . (1.18)

The purpose of these lectures is to discuss, and answer as far as possible, the following immi-
nent questions at this stage:

(Q1) What is the trivector θ i jk?

We will see that this trivector is a ‘locally non-geometric flux’, called the R-flux. To properly
discuss this, we shall have to review some ingredients of non-geometric flux compactifications,
generalized geometry, and double field theory, some aspects of which are discussed in the lectures
by C. Hull at this School, and which we undertake in Section 3.

5



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
5
1

Higher Quantum Geometry and Non-Geometric String Theory Richard J. Szabo

(Q2) What is the origin of the triproduct 4?

We will see that the nonassociativity encoded in off-shell closed string amplitudes is probed by
suitable redefinitions of the coordinate fields xi in linear flux backgrounds. We shall find in Sec-
tions 4 and 5 that the triproduct is not the fundamental algebraic entity, but arises as the result of a
non-vanishing Jacobiator for a nonassociative star product on the closed string phase space.

(Q3) Is there a nonassociative version of the closed string effective action?

Recall that the closed string effective action for the massless bosonic modes gi j, Bi j and Φ is given
by

Sgrav =
1

16π G

∫
M

(
∗ Ric− 1

12
e−Φ/3 H ∧∗H− 1

6
dΦ∧∗dΦ

)
. (1.19)

Conformal invariance of the worldsheet theory at one-loop requires vanishing beta-functions, which
are equivalent to the target space equations of motion resulting from (1.19). We shall discuss some
aspects of this far-reaching future goal in Section 6, but will not provide a complete and decisive
answer to the problem of the relevance of a nonassociative theory of gravity in closed string theory,
which is currently a topic of ongoing investigation.

2. A first glimpse at nonassociative geometry: Magnetic monopoles

As we saw in the case of open strings, a simple yet instructive quantum mechanical analogue
for the appearance of noncommutative geometry is provided by the motion of electric charges in
background magnetic fields. A straightforward but far-reaching extension of this model likewise
provides an instructive physical scenario in which to understand the appearence and implications
of nonassociative geometry in the closed string sector. We shall see later on that this model has a
precise analogue for closed strings propagating in locally non-geometric flux backgrounds, and it
enables us to introduce some of the geometric ideas that will be used throughout this paper. The
treatment of the quantum mechanical system of this section is originally due to [76, 77].

Consider the motion of a charged particle on R3 in a fixed magnetic field ~B, possibly with
sources. The kinematical momentum of the particle is ~p = m~̇x, which is the physical gauge-
invariant quantity and is not to be confused with the (gauge-variant) canonical momentum. The
Hamiltonian is taken to be the kinetic energy

H =
~p2

2m
. (2.1)

In the quantum theory, the Lorentz-Heisenberg equations of motion

~̇p =
i
h̄
[H,~p ] =

e
2m

(
~p×~B−~B×~p

)
and ~̇x =

i
h̄
[H,~x ] =

~p
m

(2.2)

require the deformed canonical commutation relations of a noncommutative momentum space:

[xi,x j] = 0 , [xi, p j] = i h̄δ
i
j , [pi, p j] = i h̄ eFi j(~x) with Fi j = εi jk Bk . (2.3)

6
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This formulation depends only on the magnetic field ~B, and in particular it allows for cases in which
∇ ·~B 6= 0.

Let us understand the geometric structure underlying these commutation relations. Writing
phase space coordinates collectively as xI = (xi, pi), we can express the relations in the form

[xI,xJ] = i h̄Θ
IJ with (ΘIJ) =

(
0 13

−13 eF(~x)

)
. (2.4)

The phase space bivector Θ = 1
2 ΘIJ ∂I ∧∂J is not a Poisson bivector in general. The failure of the

Jacobi identity for the quasi-Poisson brackets defined by Θ is controlled by the Schouten bracket

[Θ,Θ]IJK
S = Θ

[IL
∂LΘ

JK] , (2.5)

which is the natural extension of the usual Lie bracket of vector fields to multivector fields; here
only underlined indices are antisymmetrized. Then [Θ,Θ]S = 0 if and only if the Jacobiator

[xI,xJ,xK ] := [xI, [xJ,xK ]]+ [xJ, [xK ,xI]]+ [xK , [xI,xJ]] (2.6)

vanishes. An easy calculation shows

[p1, p2, p3] = 3 h̄2 e∇ ·~B =: 3 h̄2 e µ0 ρm . (2.7)

Therefore the phase space algebra of the charged particle is nonassociative in the presence of
magnetic sources ρm 6= 0.

For source-free magnetic fields ~B, one has ρm = 0 and ∇ ·~B = 0, so that there exists a globally
defined magnetic vector potential ~A on R3 such that ~B=∇×~A. Then the commutation relations can
be transformed to canonical form with the canonical momentum ~π = ~p+ e~A. However, since ~B =

∇×~A if and only if ∇ ·~B = 0, we cannot work with canonical momenta and covariant derivatives
in the presence of magnetic sources, i.e. for ρm 6= 0 we encounter nonassociativity and there is no
linear operator ~p = i h̄∇− e~A. Let us now explore how to understand magnetic sources and the
ensuing violation of the Jacobi identity.

Since [xi, p j] = i h̄δ i
j, translations in the quantum theory are generated by the magnetic trans-

lation operators

T (~a) = e
i
h̄ ~a·~p (2.8)

with T−1(~a)~xT (~a) =~x+~a. These operators do not form a representation of the translation group
on R3, as a simple calculation shows

T (~a1)T (~a2) = e
ie
h̄ Φ2(~x;~a1,~a2) T (~a1 +~a2) , (2.9)

where

Φ2(~x;~a1,~a2) =
∫
〈~a1,~a2〉~x

~B ·d~S (2.10)

is the magnetic flux through the oriented triangle 〈~a1,~a2〉~x based at ~x ∈ R3 with sides ~a1, ~a2 and
~a1 +~a2. The Jacobi identity is the infinitesimal statement of associativity, and its failure results in
the relations (

T (~a1)T (~a2)
)

T (~a3) = e
ie
h̄ Φ3(~x;~a1,~a2,~a3) T (~a1)

(
T (~a2)T (~a3)

)
, (2.11)
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where

Φ3(~x;~a1,~a2,~a3) =
∫

∂ 〈~a1,~a2,~a3〉~x
~B ·d~S =

∫
〈~a1,~a2,~a3〉~x

∇ ·~B dV (2.12)

is the magnetic charge qm enclosed by the oriented tetrahedron 〈~a1,~a2,~a3〉~x based at ~x ∈ R3 with
sides~a1,~a2,~a3,~a1 +~a2,~a2 +~a3 and~a1 +~a2 +~a3, and we have used the divergence theorem.

It follows that associativity of translations is ensured when [76]

µ0 eqm

h̄
∈ 2π Z (2.13)

which is the celebrated Dirac charge quantization condition. Then the usual quantum mechanical
formalism can be applied with linear operators on a separable Hilbert space. But this restricts the
form of the magnetic field ~B, which must be sourced by a point-like magnetic monopole (or a
collection thereof), so that the phase Φ3 does not lose its integrality when the translation vectors
~ai are continuously varied. In this case the magnetic source must lie either inside or outside the
tetrahedron 〈~a1,~a2,~a3〉~x, and is given by the Dirac monopole field

~B = µ0 qm
~x
|~x|3

with ∇ ·~B = 4π µ0 qm δ (~x) . (2.14)

What becomes of the Jacobi identity in this case? We note that it is violated precisely at the
loci of the magnetic charges, which for Dirac monopoles occur at isolated points and so can be
excised from R3, where the magnetic field ~B is singular. Such an excision is also natural from
the point of view of angular momentum conservation, which imples that the electric charges never
reach the monopoles and their wavefunction vanishes at the monopole locations [16]. This leads
to a geometric description of Dirac monopoles in terms of connections on a non-trivial U(1)-
bundle P→ R3 \{~0} ' S2 of first Chern class c1(P) = µ0 eqm/2π h̄, and the wavefunctions of the
particle live in the Hilbert space of square-integrable sections of P. In this case the map ~a 7→ T (~a)
defines a projective representation of the translation group of R3 \ {~0} on this Hilbert space, and
the projective phase e

ie
h̄ Φ2 is the group two-cocycle of the representation.

For our later considerations we are interested in situations corresponding to a constant ho-
mogeneous magnetic charge density background ρm, whose algebraic structure was first studied
in [62]. The analogue of the rotationally symmetric field (2.14) in this case is given by

~B =
µ0 ρm

3
~x . (2.15)

The magnetic charge is now uniformly distributed over all space, so that the phase space coordinate
algebra becomes everywhere nonassociative. In this case removing the magnetic sources from R3

would leave an empty space. In this sense the momentum space of an electric charge in a uniform
magnetic charge distribution is ‘locally non-geometric’. The constant magnetic charge density is
not described by a connection on a U(1)-bundle over R3 \{~0}, but rather in terms of a connection
on a (trivial) U(1)-gerbe on R3, i.e. by a “B-field”

Fi j = εi jk Bk =
µ0 ρm

3
εi jk xk (2.16)

8
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with curvature H = dF = µ0 ρm dx1 ∧ dx2 ∧ dx3; since H 6= 0 everywhere there is not even a lo-
cal magnetic vector potential ~A in this instance. Moreover, now the phase factors Φ2 yield two-
cochains, rather than two-cocycles, whose coboundary is the phase e

ie
h̄ Φ3 which hence defines

a three-cocycle of the translation group of R3. Thus the quantum theory with this three-cocycle
nessecitates nonassociative quantum mechanics. Geometrically, the bivector Θ in this case defines
a ‘twisted Poisson structure’ on phase space. As we will see later on, such a quantum system makes
perfect physical sense and possesses fascinating properties.

This simple quantum mechanical example illustrates the string theoretical considerations which
will follow, in the topic of non-geometric flux compactifications that we turn to next. Our string
theory considerations will lead naturally to an approach to nonassociative geometry via deforma-
tion quantization, analogously to the open string case, which will be the main tool of this paper.
However, as phase space quantum mechanics comes with its own issues, as we discuss later, let us
point out for completeness some alternative approaches to the nonassociative quantum mechanics
alluded to above, of which there are currently three that each have their own deficiencies as well.

Firstly, and most straightforwardly, one may generalize the technique of symplectic realiza-
tion from Poisson geometry to the twisted Poisson structure Θ and embed the nonassociative phase
space into a symplectic manifold of twice the original dimension [82]. In this associative frame-
work standard techniques of geometric or canonical quantization are available, and in particular a
global magnetic vector potential exists on the doubled configuration space; its drawback is that,
while the doubling is tantalizing reminescent of the framework of double field theory discussed
below, it is not possible to eliminate the spurious auxiliary degrees of freedom that enable the re-
formulation in terms of associative geometry. Secondly, one can exploit the geometric structure of
the gerbe associated to the distribution of magnetic charge to face the nonassociativity head on and
define quantum states that live in the 2-Hilbert space of sections of this gerbe, in analogy to the
ordinary Hilbert space of sections of a line bundle in the source-free case [114, 39]. This gives a
geometric description of the magnetic translation operators (2.8) acting on this 2-Hilbert space with
the three-cocycle above interpreted as a higher projective phase of a 2-representation; the drawback
of this approach is that it is rather technically complicated and it is difficult to represent observables
such as the Hamiltonian operator (2.1) on the 2-Hilbert space, while conceptually it is not clear what
is the meaning of such higher quantum states. Thirdly, one can apply transgression techniques to
map the gerbe to a line bundle over the loop space of the configuration manifold [98, 99, 40]. This
approach is naturally suggested by the closed string origin of nonassociativity, and with it one can
apply standard techniques of geometric quantization on loop space which successfully captures
some predictions of string theory; the drawback of this approach is that it requires difficult infinite-
dimensional analysis which makes computations of physical quantities, such as expectation values,
seemingly intractable. Hence in all approaches one trades nonassociativity for some other sort of
technical or conceptual complication.

3. Non-geometric fluxes and nonassociative geometry

The purpose of this section is to explain what the notion of “non-geometry” means in string
theory, and in particular to answer Question (Q1) from Section 1. Recall that in closed string
theory, in addition to the spacetime metric gi j, there is a massless Kalb-Ramond two-form B in the

9
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NS–NS sector with curvature three-form H = dB. The motion of the strings is described by the
two-dimensional non-linear sigma-model action (1.4). The classical vacua are described by two-
dimensional conformal field theories, and in this setting the target space geometry is emergent. On
the other hand, there exist conformal field theories which cannot be identified with such simple
large radius geometries, such as left-right asymmetric orbifolds, and in such instances we will
advocate the point of view that the target space interpretation is related to noncommutative and
nonassociative geometry. This is the case when a gauge flux is turned on in the worldvolume field
theory of a D-brane, which corresponds to an asymmetric rotation in the boundary conformal field
theory.

Another left-right asymmetric worldsheet operation is that of T-duality, which reflects right-
moving strings while leaving the left-moving sector unchanged. From the perspective of a d-
dimensional target space, a T-duality Ti along the i-th direction exchanges momentum modes pi

with winding modes wi, and correspondingly for the canonically conjugate variables: position co-
ordinates xi are exchanged with their dual “winding coordinates” x̃i. The collection of symmetry
transformations form the split-signature orthogonal group O(d,d) which is the continuous exten-
sion of the physical T-duality group O(d,d;Z) of toroidally compactified closed string theory.

String theory with fluxes is of interest both for its geometric allure and because of its relevance
to observable phenomenology and cosmology (see e.g. [60, 53, 32] for reviews): Flux compacti-
fications can lead to generalized geometric structures, obtained for example by patching together
with string symmetries, while at the same time they stabilize moduli on the string landscape. They
are also of importance in the AdS/CFT correspondence. Starting from flat space with non-vanishing
NS–NS H-flux, T-duality gives rise to a chain of geometric and non-geometric fluxes [71, 107]

Hi jk
Ti−−→ f i

jk
T j−−→ Qi j

k
Tk−−→ Ri jk . (3.1)

Let us briefly describe the geometrical meaning of each member of this T-duality chain. The first
term is of course the geometric NS–NS flux H = dB, which represents the characteristic class of a
U(1)-gerbe by generalized Dirac quantization of fluxes in string theory. The second term is a metric
flux, which appears as torsion in the geometry: In a suitable basis of vielbeins ei, with inverses
ei, it appears in the Maurer-Cartan equations dei = −1

2 f i
jk e j ∧ ek, or equivalently as the structure

constants of the non-trivial Lie bracket of vector fields [ei,e j] = f k
i j ek. The third member is the first

example of a non-geometric frame, and Qi j
k is called a ‘globally non-geometric’ Q-flux. These are

also called T-folds, which have a local description in terms of conventional Riemannian geometry,
but globally the transition functions between local charts also involve T-duality transformations.
The final member of the chain is the most mysterious frame and the one which shall occupy most
of our attention: Here Ri jk is called a ‘locally non-geometric’ R-flux. This background cannot even
be described locally by conventional geometry and has no clear target space interpretation. As we
discuss below it is this frame that this gives rise to a nonassociative geometry.

Describing these fluxes and understanding this non-geometric regime of string theory requires
generalized geometry and its extension to double field theory, which is an O(d,d)-symmetric theory
treating the metric and B-field on equal footing, and which is covered in the lectures by C. Hull at
this School.

10
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3.1 Generalized geometry

The geometric and non-geometric fluxes appearing in the T-duality chain (3.1) can be regarded
as structure constants of a generalized bracket

[ei,e j]R = f k
i j ek +Hi jk ek ,

[ei,e j]R = f i
jk ek−Qik

j ek ,

[ei,e j]R = Qi j
k ek +Ri jk ek ,

(3.2)

for a local vielbein basis of sections (ei,ei) of the vector bundle E = T M⊕T ∗M, which in gen-
eralized geometry is called the generalized tangent bundle [66, 61]. In this form the bracket is
usually called the Roytenberg bracket [95, 65, 31], and its reductions for various choices of vanish-
ing fluxes gives the usual Courant and Dorfman brackets of generalized geometry. It governs the
worldsheet current algebras in flux compactifications of string theory, see e.g. [2, 64, 38].

The sections of the generalized tangent bundle E = T M⊕ T ∗M are denoted as X + ξ with
X = X i ei a vector field and ξ = ξi ei a one-form on M. The bundle E carries a canonical O(d,d)-
structure through the natural pairing 〈ei,e j〉 = δi

j of the tangent bundle T M with the cotangent
bundle T ∗M of the target space M. The structure group O(d,d) has two natural abelian subgroups
acting on sections of the generalized tangent bundle in the following way:

• B-transforms:
(

1d 0
B 1d

)
: X +ξ 7−→ X +

(
ξ + ιX B

)
,

• θ -transforms:
(

1d θ

0 1d

)
: X +ξ 7−→

(
X +θ ]ξ

)
+ξ ,

where B is a two-form and θ is a bivector which induce the natural contraction maps ι : T M→ T ∗M,
(ιX B)i = Bi j X j and θ ] : T ∗M→ T M, (θ ]ξ )i = θ i j ξ j. Any O(d,d)-transformation O ∈O(d,d) can
be written in the form

O =

(
1d 0
B 1d

)(
N 0
0 N−>

)(
1d θ

0 1d

)
with

(
N 0
0 N−>

)
: X +ξ 7−→ ιX N +

(
N−>

)]
ξ (3.3)

where N ∈ GL(d) determines a general linear transformation of sections.
The generalization of the Lie bracket of vector fields X ,Y on T M to sections X +ξ ,Y +η of

T M⊕T ∗M is provided by the Dorfman bracket

[X +ξ ,Y +η ]D = [X ,Y ]+£X η− ιY dξ , (3.4)

where £X denotes the Lie derivative along X . Fluxes can be incorporated into this bracket structure
by adding appropriate twisting terms, e.g. ιX ιY H. Alternatively, they may be added by applying
suitable O(d,d)-transformations of sections of the generalized tangent bundle, starting from the
standard geometric frame with metric flux, basis (ei,ei) and the Dorfman brackets

[ei,e j]D = f k
i j ek , [ei,e j]D = f i

jk ek and [ei,e j]D = 0 . (3.5)

Then under a B-transform of the basis (ei,ei) these brackets map into

[ei,e j]R = f k
i j ek +Hi jk ek , [ei,e j]R = f i

jk ek and [ei,e j]R = 0 , (3.6)

11
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with the geometric NS–NS flux H = dB, while under a θ -transform they map to

[ei,e j]R = f k
i j ek , [ei,e j]R = f i

jk ek−Qik
j ek and [ei,e j]R = Qi j

k ek +Ri jk ek , (3.7)

with the globally and locally non-geometric fluxes

Qi j
k = ∂kθ

i j +2 f [ikl θ
l j] and Ri jk = 3

(
[θ ,θ ]i jk

S + f [ilm θ
jm

θ
km]
)
. (3.8)

In this way the local O(d,d)-transformations of the Dorfman bracket (3.5) reproduce the Royten-
berg bracket (3.2). What is particularly noteworthy and relevant for us here is that the non-
geometric fluxes are determined by a bivector θ .

3.2 Double field theory

Let us now briefly explain how double field theory [108, 109, 73] provides a microscopic
description of Q-flux and R-flux, through the chain (3.1) of T-duality transformations, by a formal
definition and unified description of non-geometric fluxes; see e.g. [1, 22, 69] for reviews. The idea
of double field theory is to double the target space coordinates xi to xI = (xi, x̃i), where x̃i are the
T-dual “winding coordinates”. This gives a formalism with manifest O(d,d)-symmetry that allows
one to perform such T-dualities to non-geometric frames.

Double field theory is a field theory for the massless modes of closed bosonic string theory that
treats diffeomorphism symmetry and B-field gauge transformations on equal footing by assembling
them into the generalized metric

H =

(
g−1 −2π `2

s g−1 B
2π `2

s Bg−1 g− (2π `2
s )

2 Bg−1 B

)
. (3.9)

This metric can be written in terms of a Schur decomposition

H =

(
1d 0

2π `2
s B 1d

)(
g−1 0
0 g

)(
1d −2π `2

s B
0 1d

)
, (3.10)

which identifies it as a B-transform of the doubled space metric when B = 0. There is a global
O(d,d)-symmetry that includes T-duality and acts as

xI 7−→ O I
J xJ , H 7−→ O>H O with O = (O I

J) ∈ O(d,d) . (3.11)

One then constructs an O(d,d)-invariant action for H and halves the degrees of freedom by impos-
ing the strong constraint ∂i⊗ ∂̃ i + ∂̃ i⊗∂i = 0 on all products of fields of double field theory, which
is a strong version of the level-matching condition L0−L0 = 0 in the worldsheet conformal field
theory, i.e. pi wi = 0. Solving the strong constraint amounts to choosing a polarization on the dou-
bled space [72]; for example, in the geometric supergravity frame one takes ∂̃ i := ∂

∂ x̃i
= 0, which

reduces the fields of double field theory to fields of generalized geometry. Different polarisations
define different T-duality frames, and any two frames are related by an O(d,d)-transformation.

Let us consider the example of flat space, g◦ = 1d , with constant H-flux, and choose the Kalb-
Ramond field in the symmetric gauge B◦i j =

1
3 Hi jk xk; this is locally defined (for x ∈ Rd), but not

12
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globally if the spacetime is e.g. a torus, where it is only defined up to large gauge transforma-
tions. A T-duality in the i-th direction interchanges xi with x̃i and is implemented by the factorized
O(d,d)-transformation matrix

Ti =

(
1d−Ei Ei

Ei 1d−Ei

)
, (3.12)

where Ei are the d× d matrix units (Ei)kl = δki δli. Consider now the effect of applying two suc-
cessive T-duality transformations T(i j) := Ti T j to the corresponding generalized metric:

H(i j) = T >
(i j)

(
1d −2π `2

s B◦

2π `2
s B◦ 1d− (2π `2

s )
2 (B◦)2

)
T(i j)

=:
(

g−1 −2π `2
s g−1 B

2π `2
s Bg−1 g− (2π `2

s )
2 Bg−1 B

)
.

(3.13)

One easily computes that the new metric and Kalb-Ramond field (g,B) are not globally defined in
the directions orthogonal to the (xi,x j)-plane, which is the earmark of the ‘global non-geometry’ of
the T-fold in the geometric parameterization. However, a suitable field redefinition appropriate to
the transformation from a geometric frame to a non-geometric frame yields a new parameterization
of the generalized metric in double field theory as [6]

H(i j) =

(G−1− 1
(2π `2

s )
2 θ Gθ

1
2π `2

s
θ G

− 1
2π `2

s
Gθ G

)
, (3.14)

where the new metric G and bivector θ = 1
2 θ i j ∂i∧∂ j are given precisely by the open-closed string

relation (1.9), as anticipated from the Büscher rules. This metric can similarly be obtained from a
θ -transform given by

H(i j) =

(
1d

1
2π `2

s
θ

0 1d

)(
G−1 0

0 G

)(
1d 0

− 1
2π `2

s
θ 1d

)
. (3.15)

In the present case one computes

G = 1d and θ
i j = Qi j

k xk , (3.16)

which defines flat space with constant non-geometric Q-flux

Qi j
k = ∂k θ

i j . (3.17)

Finally, let us apply a T-duality transformation Tk ∈ O(d,d) along a remaining non-isometric
direction, which exchanges the physical coordinate xk with the winding coordinate x̃k and maps the
geometric data (3.16) to

G̃ = 1d and θ̃
i j = Ri jk x̃k . (3.18)

This defines flat space with constant non-geometric R-flux

Ri jk = ∂̃
[i
θ̃

jk] . (3.19)

As the R-flux explicitly involves derivatives of the winding coordinates, it cannot be described in
ordinary geometry and in this sense the R-flux frame is ‘locally non-geometric’. In this simple
example, one can alternatively regard θ̃ as a two-form on the dual winding space of curvature
R = dθ̃ .
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3.3 Overview of conformal field theory results

Let us now summarise the explicit worldsheet calculations which have suggested the appear-
ance of noncommutative and nonassociative deformations of geometry in the non-geometric frames
of closed string theory:

• The original suggestion of nonassociativity by [28] computes the cyclic equal time double
commutator

[xi,x j,xk] := lim
σi→σ

[[xi(σ1,τ),x j(σ2,τ)],xk(σ3,τ)]+ cyclic (3.20)

in the SU(2) Wess-Zumino-Witten model with H-flux, and finds a non-vanishing target space
quantity.

• Explicit calculations of phase space commutators by canonical quantization of closed strings
in flat space and in a linear B-field background were carried out in [84, 46, 5], by study-
ing monodromy properties and the corresponding twisted closed string boundary conditions,
which lead to a shifted closed string mode expansion analogous to the open string case and
expansions in asymmetric orbifold string theories. These calculations reveal generally a dou-
bled phase space nonassociative geometry in the different T-duality frames.

• Correlators of products of tachyon vertex operators in sigma-model perturbation theory about
a flat geometry with small constant H-flux were computed in [33], and after conformal field
theory T-duality shown to reproduce the triproducts discussed in Section 1.

Further evidence is provided in e.g. [42, 47, 24, 17, 93].
The resulting quantum geometry structures can be described as follows. Let us first consider

the Q-flux frame. Naively, in analogy with the open string case, the bivector of (3.16) in the
non-geometric parameterization would suggest noncommutativity, but in the closed string case one
needs more: Only closed strings which wind in the Q-flux frame can probe a quantum deformation
of the geometry, and the noncommutativity in this case is determined by a Wilson line of the Q-flux
as [7]

[xi,x j] =
i`4

s

3h̄

∮
dθ

i j =
i`4

s

3h̄

∮
Qi j

k dxk =
i`4

s

3h̄
Qi j

k wk , (3.21)

where wk are the closed string winding numbers. Since the winding numbers are central elements
in this algebra, i.e. [wi,w j] = [xi,w j] = 0, these relations define a noncommutative but associative
geometry.

To probe nonassociativity one needs to introduce local R-flux. The explicit computations above
yield the tribracket

[xi,x j,xk] = `4
s Ri jk . (3.22)

Let us quickly sketch how this bracket is derived from conformal perturbation theory, refering
to the original work [33] and also to the nice review [26] for details of the calculation. Using
complex coordinates on the Riemann sphere S2 ' C∪{∞}, the worldsheet equations of motion to

14
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linear order in the H-flux for a flat target space read ∂∂xi = 1
2 H i

jk ∂x j ∂xk, and thus the coordinate
fields have to be modified in order to be consistent with the conformal field theory description,
wherein the perturbation of the free worldsheet sigma-model by the H-flux should yield a marginal
deformation. We therefore replace the usual conserved currents by

J i = i∂xi− i
2

H i
jk ∂x j xk

r and J i = i∂xi− i
2

H i
jk x j

l ∂xk (3.23)

where xi = xi
l + xi

r is the decomposition of the string fields into left and right moving modes; the
dual winding fields are then given by x̃i = xi

l− xi
r. The correlation functions of three insertions of

the currents J i are readily computed, and after writing J i =: i∂X i and performing three world-
sheet integrations, one arrives at the closed string generalization of the second term in the open
string propagator (1.8) for the modified string fields X i with the sign function, that arises from
combinations of the complex logarithm function, replaced by certain combinations of the complex
Rogers dilogarithm function, and the bivector θ i j substituted by the trivector θ i jk = `4

s
h̄ H i jk.

A triple T-duality transformation T(i jk) := Ti T j Tk is affected in the worldsheet conformal
field theory as an asymmetric reflection of the right-moving string coordinates: X i

l 7→X i
l , X i

r 7→
−X i

r , which maps winding modes wi in the H-flux frame to momentum modes pi in the R-flux
frame. The three-point correlators of the corresponding tachyon vertex operators e ik·X thereby
produce a phase which is trivial in the H-flux frame, but which is non-trivial in the R-flux frame
and encoded in scattering amplitudes

( f 4g4h)(x) =
∫

dk
∫

dq
∫

dr f̃ (k) g̃(q) h̃(r) e−
i`4s
6 Ri jk ki q j rk e i(k+q+r)·x (3.24)

by the triproducts (1.16) with θ i jk = `4
s
h̄ Ri jk. These phases are consistent with the crossing sym-

metry of conformal field theory correlation functions, or equivalently associativity of the oper-
ator product expansion, because by momentum conservation one has pi q j rk θ i jk = 0 whenever
p+q+ r = 0. This is equivalent to the cyclicity property of the triproduct∫

dx f 4g4h =
∫

dx f ·g ·h , (3.25)

which for constant R-flux follows from integration by parts since the two integrands differ by total
derivatives. Hence the triproducts are consistent with the axioms of conformal field theory and
nonassociativity is not probed by the on-shell theory. Note that it is the modified string coordinates
X i and not the original ones xi which probe the nonassociative geometry, a feature which is also
confirmed in other worldsheet approaches [17].

Alternatively, following what we did for the Q-flux frame, using the bivector from (3.18) we
find noncommutativity probed by closed strings which propagate in the R-flux frame given by

[xi,x j] =
i`4

s

3h̄

∮
dθ̃

i j =
i`4

s

3h̄

∮
Ri jk dx̃k =

i`4
s

3h̄
Ri jk pk (3.26)

where pk are the closed string momentum modes. However, now the variables xi and pi are canon-
ically conjugate, and so the tribracket (3.22) can be regarded as the Jacobiator of the precursor
nonassociative phase space algebra

[xi,x j] =
i`4

s

3h̄
Ri jk pk , [xi, p j] = i h̄δ

i
j and [pi, p j] = 0 . (3.27)
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Note that (3.27) for d = 3 is formally the same as the magnetic monopole phase space algebra (2.3)
in the case of the linear magnetic field (2.15), after applying the magnetic duality transformation
of order four given by

xi 7−→ −pi , pi 7−→ xi and µ0 ρm h̄ eεi jk 7−→ −
`4

s

h̄
Ri jk , (3.28)

which in the absence of fluxes defines a canonical transformation. In particular, the locally non-
geometric flux R now appears as the curvature three-form of a two-form connection on a gerbe
over momentum space [89]. The quantization of the brackets (3.27) can be captured by an explicit
nonassociative star product on the phase space T ∗M of the original target space M [89, 16, 83],
whose construction and physical implications will be discussed in detail later on.

3.4 Caveats

There are a few loopholes in the conformal field theory derivations mentioned above that
should be pointed out:

1. The conformal field theory calculations are all performed in flat space with constant H-flux
and constant dilaton. Such a background only satisfies the closed string equations of motion
derived from the action (1.19) to linear order in H (in the critical dimension):

0 = Rici j−
1
4

Hi
jk H jkl +2∇i∇ jΦ+O(`4

s ) ,

0 =−1
2

∇kHk
i j + `2

s Hi j
k
∇kΦ+O(`4

s ) ,

0 = `2
s

(
(∇Φ)2− 1

2
∇

2
Φ− 1

24
H2
)
+O(`4

s ) .

(3.29)

2. On a compact space with non-trivial topology such as the torus, the H-flux is quantized by
virtue of generalized Dirac charge quantization in string theory. The true T-duality trans-
formations connecting physically equivalent string theories are then valued in the discrete
subgroup O(d,d;Z) ⊂ O(d,d). In this case the notion of linear order in H, as well as its
extrapolation to non-geometric polarizations, is meaningless as H cannot be continuously
varied.

3. The triproduct violates the strong constraint between the background Ri jk and the fluctuations
around it [34]. This is not a serious problem if polarization can be achieved by a weaker
constraint; this issue is currently under debate as the strong constraint indeed seems too
stringent for some considerations. We elaborate on this point further in Section 5.

4. Nonassociativity does not appear in the algebra of conformal currents of the worldsheet
theory, but rather through non-conformal fields such as X i above.

5. Thus far no construction is available of H-deformed graviton vertex operators, whose corre-
lation functions would clarify if and how a nonassociative deformation of the gravity theory
defined by (1.19) could be of relevance in closed string theory.
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Despite these caveats, the geometric structures unveiled and their novel physical implications are so
rich and beautiful that work has plugged along in this direction to further explore the ramifications
and relevance of nonassociative geometry in closed string theory. For example, recent discussions
reveal that Yang-Baxter deformations (in general a class of non-abelian T-duality) may be viewed
as the open-closed string map (1.9) at the generalized supergravity level, see [18] and references
therein; in this setting the Jacobi identity yields the classical Yang-Baxter equation for the isometry
group of the background. In the remainder of this contribution we shall discuss further ways of
naturally understanding the origins of nonassociativity, and then proceed to unravel some of the
physics of this structure.

4. Higher geometrization of non-geometry

In Section 3 we have discussed two geometric ways of making sense of the globally and locally
non-geometric frames of flux compactifications: One through an extension of geometry into the
realm of generalized geometry and double field theory, and the other through noncommutative and
nonassociative deformations of the closed string phase space. To better understand the relationship
between these two points of view from a dynamical perspective, we shall now show that the non-
geometry of string backgrounds is geometrized through a membrane sigma-model, suggesting that
the proper probes of these backgrounds should be open membranes whose boundary modes are the
closed string degrees of freedom. Such an approach was first suggested by [65], and developed
in detail in [89]; see [43, 23] for further developments. In Section 5 below we shall show that
the quantization of this sigma-model produces the nonassociative phase space star product that we
have been advertising.

To understand the idea behind this framework, let us recall how we treated the open string
sigma-model (1.4). In the Seiberg-Witten scaling limit it reduces to the action (1.5), whose first
order formalism describes a two-dimensional topological field theory called the ‘Poisson sigma-
model’. As we will discuss in Section 5, the quantization of this sigma-model reproduces the com-
mutators (1.7) for a constant B-field, and more generally quantizes the noncommutative geometry
defined by the Poisson bivector θ = B−1 on M = Rd for vanishing NS–NS flux H = dB = 0.

At the other extreme, consider a constant non-vanishing NS–NS flux H on M =Rd and choose
the symmetric gauge B◦i j =

1
3 Hi jk xk for the Kalb-Ramond field. In this case the worldsheet action

(1.5) can be written as

S
∣∣
g,`s=0 =−

1
2

∮
Σ2

1
3

Hi jk xk dxi∧dx j =−1
2

∫
Σ3

Hi jk dxi∧dx j ∧dxk , (4.1)

where Σ3 is a three-dimensional worldvolume with boundary ∂Σ3 = Σ2 and we used Stokes’ the-
orem. This is just the well-known Wess-Zumino action, which is needed in particular for a global
formulation of the non-linear sigma-model when the target space M is e.g. a torus. The cor-
responding first order formulation of this action is called the ‘H-twisted Poisson sigma-model’,
which captures the topological dynamics of closed strings in a non-trivial H-flux background. It
is a particular case of a three-dimensional topological field theory called a ‘Courant sigma-model’,
which is defined on a membrane worldvolume.

The somewhat heuristic considerations above can be formalized within the setting of gener-
alized geometry, which provides a higher geometric framework in which to study the geometric

17



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
5
1

Higher Quantum Geometry and Non-Geometric String Theory Richard J. Szabo

and non-geometric frames of closed string theory as we have seen in Section 3 together with some
aspects of its extension to double field theory.

4.1 AKSZ theory

The Alexandrov-Kontsevich-Schwarz-Zaboronsky (AKSZ) construction [3] is a geometric
framework for constructing Schwarz-type action functionals in the Batalin-Vilkovisky formalism
for n+1-dimensional topological sigma-models whose target space is a symplectic Lie n-algebroid
E→M. These theories fit into a geometric ladder describing n−1-dimensional degrees of freedom
in background fields, see e.g. [75] for a review. The open string and membrane sigma-models al-
luded to above are the first two members of this hierarchy of theories, whose geometric structures
we shall now discuss.

Consider first the case n = 1. A Lie 1-algebroid is simply called a Lie algebroid and consists
of a vector bundle E over the target space M that sits in a diagram

E
ρ //

π !!

T M

��
M

(4.2)

where π is the bundle projection and the anchor map ρ to the tangent bundle is compatible with a
given Lie bracket [s,s′]E on sections s,s′ of E, in the sense that the following conditions hold:

• [s, f s′]E = f [s,s′]E +
(
ρ(s) f

)
s′ ,

• ρ
(
[s,s′]E

)
=
[
ρ(s),ρ(s′)

]
,

for any function f ∈C∞(M). The first axiom is the Leibniz rule, while the second axiom states that
the anchor is a homomorphism between the Lie algebras of sections of E and T M. If M is a point,
then a Lie algebroid is the same thing as a Lie algebra g with zero anchor. On the other hand, the
tangent bundle T M of any manifold M is trivially a Lie algebroid with the identity anchor map,
and is called the standard Lie algebroid. The notion of a Lie algebroid thus generalizes these two
simple examples simultaneously. For our purposes, the most relevant example of a Lie algebroid is
the cotangent bundle E = T ∗M over a Poisson manifold (M,θ). In this case the anchor is ρ = θ ]

and the Lie bracket is the Koszul bracket

[η ,ξ ]K = £θ ]ηξ −£θ ]ξ η−d
(
θ(η ,ξ )

)
(4.3)

for one-forms η ,ξ on M; in particular, for functions f ,g one has [d f ,dg]E = d{ f ,g}where { f ,g}=
θ(d f ∧dg) is the Poisson bracket induced by θ .

The AKSZ sigma-model in this case is the Poisson sigma-model which is described in more
detail below. It quantizes point particles, viewed as boundaries of open strings, in background
magnetic fields, with underlying Hamiltonian dynamics governed by the Poisson bracket. This
leads to a noncommutative geometry.

Consider next the case n = 2. A symplectic Lie 2-algebroid is the same thing as a Courant
algebroid, which is a vector bundle over M sitting in a diagram like (4.2) with a (not necessarily
antisymmetric) bracket [s,s′]E on sections s,s′ of E and a fibrewise metric 〈s,s′〉E satisfying the
following conditions:
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• [s, [s′,s′′]E ]E = [[s,s′]E ,s′′]E +[s′, [s,s′′]E ]E ,

• [s, f s′]E = f [s,s′]E +
(
ρ(s) f

)
s′ ,

• ρ
(
[s,s′]E

)
=
[
ρ(s),ρ(s′)

]
,

• ρ(s′′)〈s,s′〉E = 〈[s′′,s]E ,s′〉E + 〈s, [s′′,s′]E〉E .

The first two properties endow the vector bundle E with the structure of a ‘Leibniz algebroid’, and
are a generic feature of all symplectic Lie n-algebroids; if the bracket is antisymmetric, as in the
case n = 1, then the first axiom is equivalent to the Jacobi identity. If M is a point, then a Courant
algebroid is the same thing as a quadratic Lie algebra, i.e. a Lie algebra g with an invariant inner
product; a natural class of examples is provided by the Drinfeld double g⊕g∗ of a Lie bialgebra g.
For our purposes, the significance of this higher geometric structure is that if the generalized tangent
bundle E = T M⊕T ∗M is endowed with the Dorfman bracket (3.5), the natural pairing 〈ei,e j〉= δi

j

between T M and T ∗M, and anchor given by the projection ρ(X +ξ ) = X , then E forms a Courant
algebroid called the standard Courant algebroid.

The AKSZ sigma-model in this case is the Courant sigma-model which is studied in detail
below. It quantizes closed strings, regarded as boundaries of open membranes, in flux compact-
ifications, with underlying worldsheet Hamiltonian dynamics governed by the Dorfman bracket.
This leads to a nonassociative geometry.

The list continues, but the cases with n > 3 are not as well understood (see Section 6 below).
Let us now turn to the particular cases of AKSZ sigma-models of direct relevance to us and clarify
the statements made above.

4.2 Poisson sigma-models

For n = 1, the most general two-dimensional topological field theory that can be constructed
from the AKSZ theory is based on the symplectic Lie algebroid E = T ∗M, and gives rise to the
Poisson sigma-model [74, 100] defined by the degree zero part of the AKSZ action

S(1)AKSZ =
∫

Σ2

(
ξi∧dxi +

1
2

θ
i j(x)ξi∧ξ j

)
, (4.4)

where x : Σ2 → M are the string fields, ξ are auxiliary one-forms on Σ2 valued in the cotangent
bundle T ∗M, and θ = 1

2 θ i j(x)∂i∧∂ j is a Poisson bivector on M. When θ = B−1 is non-degenerate,
integrating out the auxiliary one-form fields ξi yields the topological B-field amplitude (1.5). With
suitable Dirichlet boundary conditions on the fields, the perturbative expansion of the correspond-
ing path integral leads to the Kontsevich formality maps [80, 41], which we will discuss in Sec-
tion 5 below. The on-shell condition derived from this action is equivalent to [θ ,θ ]S = 0, i.e. that
the bivector θ defines a Poisson structure on M, but the sigma-model makes sense off-shell as well,
for instance when θ is a twisted Poisson structure.

4.3 Courant sigma-models

For n = 2, we take the symplectic Lie 2-algebroid to be the standard Courant algebroid E =

T M⊕T ∗M, and define the three-dimensional topological field theory on a membrane worldvolume
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Σ3 by the degree zero part of the AKSZ action

S(2)AKSZ =
∫

Σ3

(
φi∧dxi +

1
2

ηIJ α
I ∧dα

J−ρI
i
φi∧α

I +
1
6

TIJK(x)α
I ∧α

J ∧α
K
)
, (4.5)

where x : Σ3→M are the membrane fields, α are one-forms on Σ3 valued in E, and φ are auxiliary
two-forms on Σ3 valued in the cotangent bundle T ∗M. The fibre metric has components ηIJ =

〈sI,sJ〉E in a local basis of sections sI of E, the anchor map has components ρ(sI) = ρI
i ei, and the

three-form TIJK(x) = 〈sI, [sJ,sK ]E〉E can accomodate all four geometric and non-geometric fluxes
in the T-duality orbit (3.1). This is called the Courant sigma-model [96].

Let us begin by describing the geometric H-flux frame. We write the one-forms as α = (α I) =

(α i,ξi) corresponding to the splitting E = T M⊕T ∗M and use the H-twisted Dorfman bracket from
(3.6) with vanishing torsion to write the open membrane action

S(2)H =
∫

Σ3

(
φi∧dxi +α

i∧dξi−φi∧α
i +

1
6

Hi jk(x)α
i∧α

j ∧α
k
)
. (4.6)

With suitable Dirichlet boundary conditions on the fields, by integrating out the auxiliary two-form
fields φi we arrive at the action on the closed string worldsheet Σ2 = ∂Σ3 given by

S(2)H =
∮

Σ2

ξi∧dxi +
∫

Σ3

1
6

Hi jk(x)dxi∧dx j ∧dxk . (4.7)

This is just the Wess-Zumino action, which for constant H-flux falls entirely on the worldsheet Σ2

as in (4.1). One can also add a boundary perturbation to the membrane sigma-model by an arbitrary
bivector θ on M of the form given in (4.4). This defines the action of the H-twisted Poisson sigma-
model [78], whose on-shell conditions imply [θ ,θ ]S =

∧3
θ ]H, so that θ defines an H-twisted

Poisson structure on the target space M; in particular, the Jacobi identity for the corresponding
bracket defined by θ is violated by the NS–NS three-form flux.

Now let us consider the locally non-geometric R-flux frame. Using the R-twisted Dorfman
bracket from (3.7) with vanishing torsion and Q-flux, and with notation as above, after integrating
out the auxiliary fields φi again we arrive at the open membrane sigma-model with (rescaled) R-flux
given by the action

S(2)R =
∫

Σ3

(
dξi∧dxi +

`4
s

18h̄2 Ri jk(x)ξi∧ξ j ∧ξk

)
. (4.8)

When the R-flux is constant, with suitable Dirichlet boundary conditions the equations of motion
for the boundary string fields xi imply ξi = dpi for local fields p valued in the fibres of the cotan-
gent bundle T ∗M (up to harmonic forms on Σ2), so that using Stokes’ theorem and linearizing the
resulting action with auxiliary one-form fields ηI valued in E leads to the boundary action [89]

S(2)R =
∮

Σ2

(
ηI ∧dxI +

1
2

Θ
IJ

ηI ∧ηJ

)
. (4.9)

Here x = (xI) = (xi, pi) : Σ2→ T ∗M are string fields valued in the cotangent bundle of M, so that
the effective target space is now the phase space. This action defines a Poisson sigma-model for
the bivector

Θ = (ΘIJ) =

(
R(p) 1d

−1d 0

)
with R(p)i j =

`4
s

3h̄2 Ri jk pk . (4.10)
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The corresponding quantum phase space brackets

[xI,xJ] = i h̄Θ
IJ(x) (4.11)

coincide precisely with the R-space commutation relations (3.27). Note that for d = 3 this twisted
Poisson structure is formally identical to (2.4) with a linear magnetic field (2.15) under the mag-
netic duality transformation (3.28), and in particular the commutators (4.11) together with the
corresponding Jacobiators

[xI,xJ,xK ] =−h̄2 [Θ,Θ]IJK
S =

(
`4

s Ri jk 0
0 0

)
(4.12)

yield a noncommutative and nonassociative phase space geometry.
One important caveat with this derivation is that the setting of the Q-flux to zero in (3.7) does

not define a Courant algebroid structure, as is evident from (3.8). This simply reflects the fact
that the nonassociative geometry of the R-flux frame violates the strong constraint of double field
theory, as mentioned previously, so that the corresponding membrane sigma-model does not de-
fine a Courant sigma-model. It can, however, be obtained in a precise way via projection from a
proper Courant sigma-model defined on the doubled space of double field theory that incorporates
all fluxes of (3.1) in a manifestly T-duality invariant way [44], which clarifies precisely the geomet-
ric algebroid structure underlying the non-geometric frames of closed string theory, and also how
gauge invariance is restored in the non-geometric membrane sigma-models through the Bianchi
identities among the fluxes of the T-duality chain (3.1). In [44] it is also shown how to treat the
noncommutative geometry of the globally non-geometric Q-flux frame in an analogous manner,
and how to generally treat the non-geometry through Courant sigma-models via the open-closed
string reparameterization (1.9) of the algebroid structure maps, thereby clarifying the evident simi-
larities we have seen between the phase space and double field theory frameworks for non-geometry
(see also [58, 59]).

5. Quantization of non-geometric backgrounds

In this section we will describe the quantization of the twisted Poisson structure (4.10) de-
scribing the nonassociative geometry of the closed string phase space in the R-flux frame, and then
present some of its far reaching applications to non-geometric string theory.

5.1 Quantization of topological string theory

Suitable functional integrals in the R-flux Poisson sigma-model (4.9) reproduce Kontsevich’s
formality maps for global deformation quantization of twisted Poisson manifolds [80]. The formal-
ity maps Un take n multivector fields X1, . . . ,Xn of degrees k1, . . . ,kn to multidifferential operators
DΓ(X1, . . . ,Xn) of degree 2− 2n+ k1 + · · ·+ kn. They have a combinatorial expansion as a sum
over graphs

Un(X1, . . . ,Xn) = ∑
Γn∈Gn

wΓn DΓn(X1, . . . ,Xn) , (5.1)
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where Gn is the set of admissible graphs Γn, with n vertices and edges
{

e1
i , . . . ,e

ki
i

}n
i=1, which can

be drawn in the configuration space Hn of n points on the hyperbolic plane with prescribed weights

wΓn =
1

(2π)∑i ki

∫
Hn

n∧
i=1

(
dφe1

i
∧·· ·∧dφ

eki
i

)
. (5.2)

In particular, inserting any bivector Xi = Θ = 1
2 ΘIJ ∂I ∧ ∂J into all slots gives a sum of bi-

differential operators, which can be represented diagrammatically by graphs with edges emanating
along the legs of Θ and operating on functions f ,g sitting on the boundary of the hyperbolic plane.
This defines the star product

f ?g =
∞

∑
n=0

( i h̄)n

n!
Un(Θ, . . . ,Θ)( f ,g) =: P(Θ)( f ,g) , (5.3)

which up to order h̄2 is given explicitly by

f ?g = f ·g+ i h̄
2

Θ
IJ

∂I f ·∂Jg− h̄2

4
Θ

IJ
Θ

KL
∂I∂K f ·∂J∂Lg

− h̄2

6
Θ

IJ
∂JΘ

KL (
∂I∂K f ·∂Lg−∂K f ·∂I∂Lg

)
+O(h̄3) .

(5.4)

The order h̄ term is the semiclassical contribution which is proportional to the classical bracket
{ f ,g}= Θ(d f ∧dg) defined by the bivector Θ.

As a simple example, let us consider a constant bivector θ in the Poisson sigma-model (4.4).
The basic graph Γ1 with a single vertex and two edges contributes the weight

wΓ1 =
1

(2π)2

∫ 2π

0
dψ

∫
ψ

0
dφ =

1
(2π)2

[1
2

ψ
2
]2π

0
=

1
2
. (5.5)

In this case all graphs and hence weight integrals (5.2) factorize in terms of this basic graph Γ1, so
that the sum (5.1) truncates to

Un(θ , . . . ,θ) =
(1

2

)n
θ

i1 j1 · · ·θ in jn
(
∂i1 · · ·∂in

)
⊗
(
∂ j1 · · ·∂ jn

)
. (5.6)

The star product (5.3) thus becomes

f ?g =
∞

∑
n=0

( i h̄)n

n!

(1
2

)n
θ

i1 j1 · · ·θ in jn ∂i1 · · ·∂in f ·∂ j1 · · ·∂ jng , (5.7)

which is just the Moyal-Weyl star product (1.13).
In general, if Θ is not constant but still satisfies ΘIJ ∂JΘKL = 0, then the series (5.3) again

exponentiates exactly as in the case of a constant bivector which led to the Moyal-Weyl star product.
This is the case for the bivector (4.10) with constant R-flux, leading to the star product [89]

f ?g = · exp
( i h̄

2

[ `4
s

3h̄2 Ri jk pk ∂i⊗∂ j +∂i⊗ ∂̃
i− ∂̃

i⊗∂i

])
( f ⊗g) , (5.8)

where ∂̃ i = ∂

∂ pi
denote momentum derivatives; in Fourier space it reads as

( f ?g)(x, p) =
∫

dk dk̃
∫

dq dq̃ f̃ (k, k̃) g̃(q, q̃) e
i h̄
2 (k̃i qi−ki q̃i) e−

i`4s
6h̄ Ri jk ki q j pk e i(k+q)i xi

. (5.9)

22



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
5
1

Higher Quantum Geometry and Non-Geometric String Theory Richard J. Szabo

This is a deformation by R-flux of the usual phase space Moyal product for deformation quanti-
zation in ordinary quantum mechanics, see e.g. [118] for a concise review. Other approaches to
deriving this star product can be found in [89, 16, 90, 83]. Various formal properties of this and
other classes of nonassociative star products in deformation quantization are discussed in [37, 116].

The formality maps Un define quasi-isomorphisms between differential graded L∞-algebras,
relating Schouten brackets [ , ]S, i.e. the obvious extensions of the Lie bracket of vector fields to
multivector fields, to Gerstenhaber brackets [ , ]G, i.e. the obvious extensions of the commutator
of differential operators to multidifferential operators. As such they satisfy a set of ‘formality
conditions’. In particular, one of these conditions reads as

i h̄P([Θ,Θ]S) = [P(Θ),?]G . (5.10)

This quantifies nonassociativity, since when applied to triples of functions f ,g,h, it follows that
[Θ,Θ]S 6= 0 if and only if

( f ?g)?h− f ? (g?h) 6= 0 . (5.11)

That is, Θ is a Poisson bivector if and only if the star product is associative. For the R-space with
constant locally non-geometric flux, the star commutators

[xI,xJ]? := xI ? xJ− xJ ? xI = i h̄Θ
IJ(x) (5.12)

have the corresponding non-vanishing star Jacobiators

[xi,x j,xk]? = `4
s Ri jk . (5.13)

For general phase space functions, the nonassociativity of the star product can be expressed in
closed form as

( f ?g)?h = ϕ f ,g,h
(

f ? (g?h)
)

:= ? exp
(`4

s

6
Ri jk

∂i⊗∂ j⊗∂k

)(
f ⊗ (g⊗h)

)
, (5.14)

where the associators

f ? (g?h)
ϕ f ,g,h−−−−→ ( f ?g)?h (5.15)

satisfy pentagon relations implied by the (higher) formality conditions [89], which state that the
diagram

( f ?g)? (h? k)

ϕ f?g,h,k

{{(
( f ?g)?h

)
? k f ?

(
g? (h? k)

)
ϕ f ,g,h?k

cc

1⊗ϕg,h,k

��(
f ? (g?h)

)
? k

ϕ f ,g,h⊗1

OO

f ?
(
(g?h)? k

)
ϕ f ,g?h,k

oo

(5.16)
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commutes for all functions f ,g,h,k. In particular, the translation group three-cocycle discussed
in Section 2 is realised here through a nonassociative version of the Baker-Campbell-Hausdorff
formula which yields(

e ikI xI
? e iqI xI)

? e irI xI
= e

i`4s
6 Ri jk ki q j rk e ikI xI

?
(

e iqI xI
? e irI xI)

. (5.17)

In the remainder of this section we consider various applications of this nonassociative phase
space star product formalism.

5.2 Triproducts

We shall now address Question (Q2) from Section 1. Given n functions f1, . . . , fn ∈C∞(M) on
the target space M, using the nonassociative phase space star product we define the triproducts

f14 f24 · · · 4 fn := lim
p→0

f1 ?
(

f2 ?
(
· · ·( fn−1 ? fn) · · ·

))
, (5.18)

where we have chosen a particular bracketing for the star products of functions. It was shown
by [11] that the result of this operation can be expressed in terms of a tridifferential operator as

f14 f24 · · · 4 fn = · exp
(
− `4

s

6 ∑
16a<b<c6n

Ri jk
∂

a
i ⊗∂

b
j ⊗∂

c
k

)
( f1⊗ f2⊗·· ·⊗ fn) , (5.19)

where ∂ a
i denotes the action of the derivative ∂i in the a-th factor of the tensor product f1⊗ f2⊗

·· ·⊗ fn. This remarkable algebraic structure has the following properties.
Firstly, it agrees with the triproducts of tachyon vertex operators after T-duality in worldsheet

perturbation theory around flat space with constant H-flux, as we discussed earlier. This formula
was derived to linear order in the R-flux in [33], where its all orders exponential form was conjec-
tured, and subsequently extrapolated to non-constant fluxes appropriate to curved backgrounds M
in [34]. Here we find an explicit calculational derivation of these conjectural expressions from the
nonassociative phase space star product, which lends further credibility to the purported description
of the locally non-geometric flux background.

Secondly, since the momentum is set to p = 0, for n = 2 there is no deformation of the usual
pointwise product of fields: f 4g= f ·g, as anticipated from the closed string theory considerations
of Section 1. For n = 3 the triproduct was originally introduced in [115] as a proposal for the
quantization of Nambu brackets [92], which we will discuss in more detail later on. It quantizes
the tribracket defined by (1.17), and in particular one has

[xi,x j,xk]4 = `4
s Ri jk , (5.20)

which agrees with the Jacobiator (5.13).
Thirdly, the triproducts exhibit on-shell associativity:∫

dx f14 · · · 4 fn =
∫

dx f1 · · · fn , (5.21)

which follows from on-shell momentum conservation [11]. As we discussed earlier, this is ex-
pected and in fact necessary from the string theory perspective: As on-shell closed string theory
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is described a two-dimensional quantum field theory, it is described by an associative operator
algebra. In particular, the on-shell associativity agrees with the crossing symmetry of n-point cor-
relation functions on the sphere S2.

Finally, as also mentioned before, the triproducts violate the strong constraint of double field
theory. Recalling the microscopic origin of the R-flux in terms of a bivector from (3.19), the
expansion of the triproduct for n = 3 reads as

f 4g4h = f ·g ·h− `4
s

6
∂̃
[i
θ̃

jk]
∂i f ·∂ jg ·∂kh+O(`8

s ) , (5.22)

and the corrections to the pointwise product of fields vanishes by the strong constraint. Thus the
nonassociative geometry of the closed string background is only probed if the strong constraint
between the background and fluctuations is weakened, a point which is presently under debate.

5.3 Nonassociative quantum mechanics

Let us now investigate some of the physical consequences of the nonassociative deformation
of quantum mechanics in the R-flux background. The standard operator-state formulation of quan-
tum mechanics cannot handle nonassociative structures: Operators which act on a Hilbert space
necessarily associate. However, we can generalize the phase space formulation of quantum me-
chanics [118] to provide a completely quantitative and physically viable formulation of nonasso-
ciative quantum mechanics [90]. Other approaches to nonassociative quantum mechanics based on
the magnetic monopole algebra (2.3) are found in [36, 35].

The idea behind phase space quantum mechanics is to treat position and momentum variables
on equal footing. In this setting generic ‘operators’ become complex-valued functions on phase
space, with the operator product provided by the star product and traces given by integration of
functions; an ‘observable’ is then a real-valued function on phase space. Dynamics of observables
A are governed by Heisenberg-type time evolution equations

Ȧ =
i
h̄
[H,A]? , (5.23)

for a given classical Hamiltonian H.
The key properties of the nonassociative phase space star product (5.8) that are needed in this

description are as follows. Firstly, since the star product f ? g again differs from f · g by a total
derivative, and likewise f ? (g ? h) differs from ( f ? g) ? h by a total derivative, one again has the
2-cyclicity and 3-cyclicity properties (1.14) and (1.15) that we encountered for the Moyal-Weyl
product. Recall that these features were crucial for compatibility of the star product formalism
with the axioms of conformal field theory; in the present context, they refer to the fact that the star
product leads to a traceless commutator and associator. However, there are in general inequivalent
quartic expressions, for example∫

dx f ?
(
g? (h? k)

)
6=
∫

dx f ?
(
(g?h)? k

)
, (5.24)

see [90, 88] for a detailed discussion. Using 2-cyclicity we deduce the crucial positivity property∫
dx f ? f > 0 . (5.25)
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Finally, the nonassociative star product is Hermitian, in the sense that f ?g = g ? f , and unital, in
the sense that the constant unit function 1 is still an identity element for the nonassociative star
product algebra: f ?1 = f = 1? f . All of these properties are completely analogous to those of the
usual Moyal product in canonical phase space quantum mechanics and they mimick the expected
features of the operator product; indeed, the star product (5.8) for the constant R-flux background
is the simplest example of a nonassociative star product and provides the natural extension of the
Moyal-Weyl star product (1.13) to the non-geometric string background.

A ‘state’ in nonassociative quantum mechanics is determined by a set of square-integrable
phase space wavefunctions ψa which are normalized:∫

dx |ψa|2 = 1 , (5.26)

and a collection of statistical probabilities µa ∈ [0,1] obeying

∑
a

µa = 1 . (5.27)

The ‘expectation value’ of an operator A is then defined by

〈A〉ψ = ∑
a

µa

∫
dx ψa ? (A?ψa) =

∫
dx Wψ ·A , (5.28)

where we introduced the state function

Wψ = ∑
a

µa ψa ?ψa (5.29)

which is the analogue of the Wigner distribution function; in particular, it is real-valued and nor-
malized: 〈1〉ψ =

∫
dx Wψ = 1. However, even in canonical phase space quantum mechanics [118],

one of the pitfalls of the formalism is that state functions are not necessarily non-negative and so
only determine quasi-probability distribution functions in general.

As a simple example to familiarize ourselves with the phase space formulation of quantum
mechanics, let us consider the simplest case of the free particle with Hamiltonian

H(x, p) =
d

∑
i=1

p2
i

2m
(5.30)

and vanishing R-flux. We denote the corresponding Moyal star product from (5.8) with Ri jk = 0 by
?0 and look for solutions of the time-independent Schrödinger equation

H ?0 Wψ = E Wψ . (5.31)

This can be expressed as a second order partial differential equation

1
2m

d

∑
i=1

(
p2

i + i h̄∂i−
h̄2

4
∂

2
i

)
Wψ = E Wψ (5.32)

for the real-valued Wigner distribution function Wψ(x, p). It collapses to a pair of partial differential
equations, its real and imaginary parts. The imaginary part

d

∑
i=1

pi ∂iWψ(x, p) = 0 (5.33)
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restricts Wψ(x, p) =Wψ(p) to be independent of x. The real part

d

∑
i=1

(
p2

i −
h̄2

4
∂

2
i −2mE

)
Wψ(p) = 0 (5.34)

is satisfied for arbitrary real functions Wψ(p) of momentum with the energy eigenvalues

E = Ep =
d

∑
i=1

p2
i

2m
. (5.35)

This calculation can be extended to include an anisotropic harmonic oscillator potential of frequen-
cies ωi, for which the real part of the second order partial differential equation can be separated
into Laguerre equations in the phase space variables zi =

2
mh̄ (mω2

i x2
i + p2

i ) for i = 1, . . . ,d [118].
The corresponding solutions in terms of Laguerre polynomials reproduce the anticipated harmonic
oscillator spectrum

E = En =
d

∑
i=1

h̄ωi

(
ni +

1
2

)
with n = (ni) ∈ Nd

0 (5.36)

in d dimensions. The extension of these considerations to a free particle moving in a non-vanishing
R-flux background is discussed in [114], and from the alternative associative framework of sym-
plectic realisation of the twisted Poisson structure (4.10) in [82].

The operator-state correspondence can be described in this framework as follows. The idea
is that operators should still be combined together with an associative operation, since nonasso-
ciativity should not affect correlation functions. To this end we introduce two conjugate “operator
algebras” by defining left and right compositions of observables A,B as

(A◦B)? f := A? (B? f ) and f ? (A ◦̄B) := ( f ?A)?B , (5.37)

for a test function f . By definition the composition products are associative, since

(A1 ◦A2 ◦ · · · ◦An)? f = A1 ?
(
A2 ? · · ·? (An ? f ) · · ·

)
. (5.38)

They are furthermore unital: A ◦ 1 = A = 1 ◦A, and the composition products of basic coordinate
monomials coincide with their star products, e.g. xi ◦xi = xi ?xi = (xi)2 and pi ◦ pi = pi ? pi = (pi)

2.
However, in general the composition product A◦B of two functions A and B is not a function, but
rather a differential operator; the composition products arise as the embedding of the nonassociative
star product algebra of functions as a subspace (but not as a subalgebra) of an associative algebra
of differential operators on phase space. In the conventional frameworks where ? is associative,
the composition product and the star product coincide. The physical and geometric meaning of the
associative composition algebra of differential operators is elucidated by [82] from the perspective
of symplectic realisation of the twisted Poisson structure (4.10).

We make the convention that the conjugate composition product ◦̄ is always evaluated before
◦. Then a ‘state’ ρψ is an expression of the form

ρψ = ∑
a

µa ψa ◦̄ψa . (5.39)
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This quantity should be thought of as a special representation of a “density matrix”, which in
the associative setting would be the same as the Wigner distribution function; in particular, the
expectation values (5.28) of operators are determined via traces with ρψ through

〈A〉ψ =
∫

dx A?ρψ . (5.40)

The expectation values of compositions of operators are then given by

〈A1 ◦A2 ◦ · · · ◦An〉ψ =
∫

dx (A1 ◦A2 ◦ · · · ◦An)?ρψ

= ∑
a

µa

∫
dx
(
A1 ? (A2 ? · · ·? (An ?ψa) · · ·)

)
?ψa .

(5.41)

Let us make some simple consistency checks of this purported nonassociative version of quan-
tum mechanics. First, let us check reality. A straightforward calculation using the above definitions
and the properties of the nonassociative star product gives

〈A〉ψ = ∑
a

µa

∫
dx (A?ψa)?ψa = ∑

a
µa

∫
dx ψa ? (A?ψa) = 〈A〉ψ . (5.42)

It follows that the expectation values of observables, i.e. real functions, are real. Similarly, one
checks positivity: 〈A ◦A〉ψ > 0. These derivations are carried out in complete analogy with the
corresponding calculations in canonical phase space quantum mechanics; however, in the nonasso-
ciative case an extra line or two is always required in the computation.

Next we check that observables, i.e. real functions A = A, have real eigenvalues. For this,
consider the “star-genvalue equation” A ? f = λ f for a complex number λ ; complex conjugation
of this equation using Hermiticity of the star product yields f ?A = λ f . From this we calculate

f ? (A? f )− ( f ?A)? f = (λ −λ )( f ? f ) . (5.43)

In the associative case this would immediately imply that λ = λ is real, since the left-hand side
would automatically vanish. In the nonassociative case this is not generally true, but using 3-
cyclicity and 2-cyclicity we can integrate both sides this equation to get

0 = (λ −λ )
∫

dx | f |2 . (5.44)

Since the integral on the right-hand side is non-zero for f 6= 0, it follows that λ = λ . A similar
calculation establishes that eigenfunctions with different eigenvalues are orthogonal in the L2-inner
product.

5.4 Spacetime quantization

As a concrete application of the formalism, we will now show how nonassociative quantum
mechanics in the R-flux background leads to a coarse-graining of spacetime. There are several ways
in which to see this. In standard quantum mechanics it is a fundamental result that pairs of non-
commuting operators cannot have simultaneous eigenvalues. Similarly, in the present case we can
show that triples of nonassociating operators cannot have simultaneous eigenvalues. Suppose that
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Wψ is a state function which simultaneously diagonalizes a triple of basic phase space coordinate
operators: xI ?Wψ = λ I Wψ , xJ ?Wψ = λ J Wψ and xK ?Wψ = λ K Wψ for eigenvalues λ I,λ J,λ K ∈R.
By repeatedly applying the cyclicity properties of the star product we compute∫

dx
(
(xI ? xJ)? xK)?Wψ =

∫
dx (xI ? xJ)? (xK ?Wψ)

= λ
K
∫

dx (xI ? xJ)?Wψ

= λ
K
∫

dx xI ? (xJ ?Wψ)

= λ
K

λ
J

λ
I ,

(5.45)

and similarly ∫
dx
(
xI ? (xJ ? xK)

)
?Wψ = λ

I
λ

K
λ

J . (5.46)

Taking the difference of these two equations implies the vanishing Jacobiators [xI,xJ,xK ]? = 0,
which contradicts the basic nonassociative deformation provided by the position coordinate opera-
tors in (5.13). This implies a coarse-graining of spacetime by the non-geometric R-flux background.

To compute the coarse-graining quantitatively, we introduce oriented area and volume uncer-
tainty operators

AIJ = Im
(
[x̃ I, x̃ J]?

)
=− i

(
x̃ I ? x̃ J− x̃ J ? x̃ I) ,

VIJK =
1
3

Re
(
x̃ I ? [x̃ J, x̃ K ]?+ x̃ K ? [x̃ I, x̃ J]?+ x̃ J ? [x̃ K , x̃ I]?

)
,

(5.47)

where we introduced the shifted coordinates x̃ I := xI −〈xI〉ψ appropriate to uncertainties in mea-
surements. These definitions mimick the vector product and triple scalar product of vectors in the
respective coordinate directions of phase space, and their expectation values measure the mini-
mal area and volume uncertainties between corresponding operators. A simple computation using
(5.12), (5.13) and the integration properties above leads to the non-vanishing expectation values

〈Axi,p j〉ψ = h̄δ
i
j , 〈Ai j〉ψ =

`4
s

3h̄
Ri jk 〈pk〉ψ and 〈Vi jk〉ψ =

1
2
`4

s Ri jk . (5.48)

The first expectation value gives the usual Planck cells of canonical quantum phase space with
the Planck quantum of minimal area h̄, while the second expectation value is a new uncertainty
measurement giving minimal spacetime areas in the directions transverse to the motion of closed
strings (as originally conjectured by [84]). The third expectation value is the most interesting: It
implies a quantized spacetime with a quantum of minimal volume 1

2 `
4
s Ri jk.

This coarse-graining of spacetime has the following physical interpretation from the perspec-
tive of non-geometric string theory, which corroborates the argument that there can be no D0-branes
in the locally non-geometric background [117]. In d = 3 dimensions, applying a triple T-duality
T(123) maps the R-space to the three-torus with H-flux and a D0-brane to a D3-brane wrapping
the torus. However, this latter configuration is not allowed as it suffers from the Freed-Witten
anomaly [56], i.e. it violates the Bianchi identity dF = H for the gauge flux F on a D3-brane.
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Generally, Freed-Witten anomaly cancellation would require that the degree three integer coho-
mology class of the NS–NS flux H be equal to the torsion characteristic class which measures the
obstruction to a spinc structure on the target space M. But if M is a torus, then its cohomology is
torsion-free and it is a spinc manifold, so that non-vanishing H-flux is not allowed. In the T-dual
frame, this implies that placing a point-like object in the R-flux background is not allowed. This is
yet another manifestation of the local non-geometry of the R-flux background, which we have re-
produced here in a completely quantitative way through our formalism of nonassociative quantum
mechanics.

5.5 Quantization of Nambu brackets

As another application of the nonassociative phase space deformation quantization, let us ex-
amine the problem of quantizing Nambu-Poisson structures, which have notably appeared in re-
cent years in effective theories of M2-branes and M5-branes in M-theory, see e.g. [67] for a re-
view. Nambu mechanics involves multi-Hamiltonian dynamics with generalized Poisson brackets
{ f ,g,h} of functions obeying the Leibniz rule and a “fundamental identity” which is a higher gen-
eralization of the Jacobi identity for Lie brackets [92]. Nambu used this algebraic structure to
reformulate the Euler equations describing the dynamics of a rotating rigid body in R3 in the ab-
sence of applied torques, in the hope of obtaining new generalized integrals of motion. Recall that
in a rotating reference frame parallel to the principal axes of inertia of the rigid body, they read in
general form as

~̇L+~ω×~L =~0 , (5.49)

where~L = III ~ω is the angular momentum, with III the matrix of moments of inertia and ~ω the angular
velocity about the principal axes. By setting T := 1

2
~L · ~ω we can write the components of this

equation in the principal reference frame, wherein III is constant, as the bi-Hamiltonian equations

L̇i = {Li,~L2,T} (5.50)

for the Nambu bracket { f ,g,h}= ε i jk ∂Li f ·∂L j g ·∂Lk h on R3.
In the case of the R-flux background, the pertinent classical tribracket is given by

{ f ,g,h}R =− `4
s

h̄2 Ri jk
∂i f ·∂ jg ·∂kh . (5.51)

Our nonassociative phase space star product quantizes these tribrackets [89, 90], in the sense of the
non-vanishing Jacobiators (5.13); this extends the quantization provided by the configuration space
triproducts from (5.20). In particular, in the semi-classical limit one has [ f ,g,h]? =−h̄2 { f ,g,h}R+

· · · . The issue of quantizing Nambu brackets is a longstanding problem, see e.g. [105, 106, 48, 49]
for some approaches. Our phase space approach may assist by exploiting the various properties
infered by the origin of the tribracket from the star product. For example, one of the formality
conditions implies the pentagon identity [89]

[ f ?g,h,k]?− [ f ,g?h,k]?+[ f ,g,h? k]? = f ? [g,h,k]?+[ f ,g,h]? ? k (5.52)

for the Jacobiator, analogously to (5.16). This can be regarded as a ‘quantum Leibniz rule’, in the
sense that at semiclassical order in the R-flux it coincides with the Leibniz rule for the classical
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tribracket (5.51). At present it is not clear what should serve as the quantum version of the classical
fundamental identity, nor if one is really necessary, see e.g. [48] for a discussion of this point. The
viability of our phase space model for the quantization of Nambu-Poisson structures is still to be
thoroughly investigated.

6. Further developments

We conclude in this final section by briefly describing some extensions of the story described
in this paper so far, all of which have important open problems which should be subject to future
investigations.

6.1 Nonassociative gravity

One important omission from our considerations thus far has been addressing Question (Q3)
from Section 1. A noncommutative theory of gravity on Moyal-Weyl spacetimes was constructed
in [14], and is discussed in the lectures by L. Castellani at this School. As a fundamental length
is incompatible with diffeomorphism symmetries, general relativity on noncommutative spacetime
requires a Drinfeld twist via a two-cocycle of the Hopf enveloping algebra of the Lie algebra of
vector fields (see e.g. [112] for a review). This defines a twisted tensor calculus, and leads to
deformed Einstein equations [14]. Two major problems with this approach are that the Einstein
equations are not generically real and so have questionable physical (and geometric) significance,
and that twisted diffeomorphisms do not appear to be symmetries of string theory [4].

An analogous treatment can be followed to formulate a nonassociative theory of gravity,
by defining a quasi-Hopf algebra of twisted diffeomorphisms with a two-cochain twist whose
coboundary is the three-cocycle that controls nonassociativity, i.e. the associator ϕ , see (5.14).
Such an approach was originally suggested by [90], and the pentagon relations (5.16) were used
to consistently build nonassociative field theories in [88, 21]. The cochain twisting method was
extended by [19, 20] to develop a rigorous and very general theory of nonassociative differential
geometry, extending and generalizing the considerations of [10] in the associative case, which in
particular leads to a vielbein or first order formalism for nonassociative gravity. The metric aspects
were considered in [27, 12], and currently nonassociative Riemannian geometry is under further
construction.

The problems with noncommutative gravity alluded to above are of course still present in this
theory (together with many additional issues). But recalling the development of our perspective, we
need to explore how gravity on phase space induces gravity on configuration space. This problem
was addressed by [11], where it is shown how the nonassociative geometry of phase space can lead
to deformations of configuration space geometry. The idea is to remove momentum dependence
up to an O(d,d)-transformation, which is the structure group symmetry determined by the natural
phase space metric γ = dxi⊗dpi +dpi⊗dxi, analogously to double field theory. This is achieved
by choosing a polarization, i.e. a maximally isotropic splitting T (T ∗M) ' L⊕L∗ of the tangent
bundle of phase space with respect to the metric γ , and considering foliated tensor fields T :

ıZT = 0 = £ZT , (6.1)
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for every section Z of the rank d vector bundle L∗→ T ∗M; if the distribution L is integrable, then
by Frobenius’ theorem it can be (locally) identified with the tangent bundle of some d-dimensional
submanifold of T ∗M. For example, the foliation of phase space by leaves of constant momentum is
determined by taking L = T M and Zi =

∂

∂ pi
for i = 1, . . . ,d, which formalizes the way in which we

extracted the spacetime triproducts of fields occuring in closed string scattering amplitudes from
the nonassociative phase space star product in (5.18).

The metric formulation of nonassociative gravity on phase space admits a Ricci tensor and a
unique metric-compatible torsion-free connection, and in this way it yields a non-trivial deforma-
tion of the Ricci tensor of spacetime by locally non-geometric fluxes, which is given by [12]

Ric◦i j = Rici j +
`4

s

12
Rabc

(
∂k
(
∂agkl (∂bglm)∂cΓ

m
i j
)
−∂ j

(
∂agkl (∂bglm)∂cΓ

m
ik
)

+ ∂cgmn
(
∂a(glm

Γ
k
l j)∂bΓ

n
ik−∂a(glm

Γ
k
lk)∂bΓ

n
i j

+ (Γl
ik ∂agkm−∂aΓ

l
ik gkm)∂bΓ

n
l j− (Γl

i j ∂agkm−∂aΓ
l
i j gkm)∂bΓ

n
lk
))

,

(6.2)

where Rici j is the usual Ricci tensor of the classical Levi-Civita connection Γk
i j of a metric tensor

gi j on spacetime. This expression is valid to linear order in the R-flux, which we recall is the order
at which the corresponding conformal field theory calculations are reliable; this is also consistent
with the second order R-flux corrections to the closed string equations (3.29) after T-duality, as
the corrections (6.2) are indeed of second order `4

s h̄ in the double expansion in the parameters
of the R-flux model. Notably, it is real, and thus represents the first non-trivial starting point for
understanding how to define a nonassociative theory of gravity describing the low-energy effective
dynamics of closed strings in non-geometric backgrounds. An action principle for nonassociative
gravity is currently unknown, as some of the classical constructions of Riemannian geometry have
yet to be generalized to the nonassociative setting.

The precise relation of this gravity theory with string theory and double field theory remains
mysterious. Part of the issue is the role of twisted diffeomorphisms mentioned above. At any
order in the string length scale `2

s , the closed string effective action should be invariant under
classical diffeomorphisms, while the effective action of double field theory should be invariant
under generalized diffeomorphisms. Whereas the twisted diffeomorphism symmetries of phase
space remain elusive, upon polarization to configuration space they may compare naturally with
the expectations from string theory and double field theory. This was partially analysed by [11],
but it is currently an open problem to understand precisely and systematically the meaning of
the symmetries of nonassociative gravity on spacetime. In particular, one can ask if the effective
theory retains the O(d,d)-symmetry of double field theory, in analogy to the case of open strings.
Recall [54, 110] that noncommutative Yang-Mills theory on a d-dimensional torus is invariant
under Morita equivalence, which is the structure inherited from T-duality in the decoupling limit.
In this case the group O(d,d) acts on the bivector θ , the open string metric G, and the Yang-Mills
coupling constant gYM as

θ 7−→ (Aθ +B)(C θ +D)−1 ,

G 7−→ (C θ +D)G(C θ +D)> ,

gYM 7−→ gYM
∣∣det(C θ +D)

∣∣1/4
,

(6.3)
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where A,B,C,D are d×d matrices which parameterize an element of O(d,d); this transformation
is defined only on the subset of bivectors θ for which C θ +D is nondegenerate, which is dense for
every element in the discrete subgroup SO(d,d;Z) of O(d,d). It would be interesting to see if a
similar set of T-duality transformation rules are global symmetries of nonassociative gravity.

6.2 Higher structures in non-geometric M-theory

It is natural to ask what becomes of the higher quantum geometry when we lift IIA string
theory to M-theory, which is generally defined on a circle bundle

S1 � � // M̃

��
M

(6.4)

over the string target space M, with the string coupling gs realized geometrically as the radius λ of
the S1 fibres. This has been discussed for lifts of the string theory R-flux model in three dimensions
by [63], in the context of the SL(5) exceptional field theory [25] which lifts the O(3,3) double
field theory. Taking the base space M to be a three-dimensional twisted torus (the T-dual of the
three-torus with H-flux), using the T-duality chain (3.1) we generate the string theory R-flux via a
double T-duality transformation

f i
jk

T( jk)−−−→ Ri jk . (6.5)

Let us lift this to M-theory on the trivial circle bundle M̃ = M×S1, with coordinates xµ = (xi,x4)

where x4 is the local coordinate on S1. Closed strings lift to closed M2-branes, and T-duality
becomes U-duality which sends membrane wrapping modes wi j to momentum modes pi. The
Kalb-Ramond two-form field B lifts to the three-form C-field of M-theory, and U-duality takes it to

Cµνρ

U(µνρ)−−−−→Ω
µνρ , (6.6)

where the trivector Ωµνρ defines the M-theory R-flux via its wrapping derivatives

Rµ,νραβ = ∂
µ[ν

Ω
ραβ ] , (6.7)

which is the lift of the relation (3.19). The M-theory R-flux is a mixed symmetry tensor: It trans-
forms as a vector in its first index and is antisymmetric in its last four indices. The particular choice
R4,µναβ = Rεµναβ breaks the SL(5) symmetry to SO(4).

The M2-brane phase space has a peculiar structure: The fact that there are no D0-branes on M
lifts to the statement that there are no momentum modes along the M-theory direction, i.e. p4 = 0.
In [63] it is conjectured that the covariant form of this constraint is given by

Rµ,νραβ pµ = 0 (6.8)

and that the resulting seven-dimensional phase space has bracket structure given by

[xi,x j] =
i`4

s

3h̄
R4,i jk4 pk and [x4,xi] =

iλ `4
s

3h̄
R4,1234 pi ,

[xi, p j] = i h̄δ
i
j x4 + i h̄λ ε

i
jk xk and [x4, pi] = i h̄λ

2 xi ,

[pi, p j] =− i h̄λ εi jk pk ,

(6.9)

33



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
5
1

Higher Quantum Geometry and Non-Geometric String Theory Richard J. Szabo

with the Jacobiators

[xi,x j,xk] =
i`4

s

3h̄
R4,i jk4 x4 and [xi,x j,x4] =− iλ 2 `4

s

3h̄
R4,i jk4 xk ,

[pi,x j,xk] =
iλ `4

s

3h̄
R4,1234 (

δi
j pk−δi

k p j) and [pi,x j,x4] =
iλ 2 `4

s

3h̄
R4,i jk4 pk ,

[pi, p j,xk] =− i h̄λ
2

εi j
k x4− i h̄λ

(
δ j

k xi−δi
k x j
)

and [pi, p j,x4] = i h̄λ
3

εi jk xk ,

[pi, p j, pk] = 0 .

(6.10)

In the contraction limit λ = 0, which is precisely the limit of weak string coupling gs→ 0 sending
M-theory to IIA string theory, these brackets reduce to those of the closed string R-flux algebra
(3.27); in this case the M-theory direction x4 becomes a central element of the contracted algebra,
so we may set it to x4 = 1.

These brackets originate from the nonassociative alternative algebra of octonions O by a suit-
able rescaling of the seven imaginary unit octonions [63]. Deformation quantization of this quasi-
Poisson structure was carried out in [81]. It proceeds via a choice of a G2-structure, i.e. a cross
product on the real inner product space R7 given by structure constants of O in a suitable oriented
basis, which is preserved by rotations of R7 in the subgroup G2 ⊂ SO(7). Using alternativity one
can define octonion exponentials, and the corresponding nonassociative Baker-Campbell-Hausdorf
formula is captured by a 2-group addition law on the seven-dimensional Fourier space, which gives
the deformation quantization of the M2-brane phase space in terms of an explicit, albeit compli-
cated, nonassociative phase space star product f ?λ g. This quantization has a variety of interesting
features which are described in [81]. For example, the corresponding configuration space triprod-
ucts 4λ defined by ?λ analogously to (5.18) quantize the 3-Lie algebra A4:

[xµ ,xν ,xα ]M1 = `4
s Rε

µναβ xβ , (6.11)

which is known from studies of multiple membranes in M-theory, see e.g. [15] for a review, and
whose quantization has been previously largely unknown, see e.g. [48] for an earlier analysis of
this problem. Moreover, the noncommutative M2-brane momentum space is familiar from the
noncommutative spacetimes arising in three-dimensional quantum gravity, see e.g. [57]. Using
x4 ?λ f = x4 f +O(λ ) one finds that the M2-brane star product reduces non-trivially to the closed
string star product (5.8) in the weak string coupling limit:

lim
λ→0

( f ?λ g)(xi,x4) = ( f ?g)(xi) . (6.12)

In [81] it was also suggested how to extend the nonassociative M-theory R-flux algebra to the
full unconstrained eight-dimensional phase space by a choice of a Spin(7)-structure, i.e. a triple
cross product on the real inner product space R8, which is parameterized by a four-form φ invariant
under rotations of R8 in the subgroup Spin(7)⊂ SO(8). This extends the representation of the cross
product to all real and imaginary octonions, and it defines the eight-dimensional “covariant” M2-
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brane phase space 3-algebra with the SO(4)×SO(4)-symmetric 3-brackets given by

[xi,x j,xk]φ =−`4
s

2
R4,i jk4 x4 and [xi,x j,x4]φ =

λ 2 `4
s

2
R4,i jk4 xk ,

[pi,x j,xk]φ =−λ 2 `4
s

2
R4,i jk4 p4−

λ `4
s

2
R4,i jkl pl ,

[pi,x j,x4]φ =−λ 2 `4
s

2
R4,1234

δ
i j p4−

λ 2 `4
s

2
R4,i jk4 pk ,

[pi, p j,xk]φ =
λ 2

2
εi j

k x4 +
h̄2

λ

2
(
δ j

k xi−δi
k x j
)
,

[pi, p j,x4]φ =− h̄2
λ 3

2
εi jk xk and [pi, p j, pk]φ = −2h̄2

λ εi jk p4 ,

[p4,xi,x j]φ =
λ `4

s

2
R4,i jk4 pk and [p4,xi,x4]φ =−λ 2 `4

s

2
R4,1234 pi ,

[p4, pi,x j]φ =− h̄2
λ

2
δi

j x4− h̄2
λ 2

2
εi

jk xk ,

[p4, pi,x4]φ =− h̄2
λ 3

2
xi and [p4, pi, p j]φ =− h̄2

λ 2

2
εi jk pk .

(6.13)

For any constraint G = 0 on the eight-dimensional phase space, these 3-brackets induce a 2-bracket
by defining [ f ,g]G := [ f ,g,G]φ . In particular, taking G = 2

λ h̄2 p4 (or G = Rµ,νραβ pµ ) gauge fixes
the 3-brackets (6.13) to the brackets (6.9) together with their Jacobiators. The quantization of this 3-
algebra is currently an open problem; see [81] for some preliminary steps towards the construction
of a suitable ternary product for deformation quantization which naturally incorporates both the
star product and the triproduct.

The magnetic monopole system of Section 2 with constant uniform magnetic charge can be
embedded in string theory as D0-branes bound to a uniform distribution of D6-branes. The M-
theory lift of this configuration is identified by [87] as a non-geometric variant of the Kaluza-Klein
monopole solution of M-theory, whose phase space brackets map to (6.9) under magnetic duality
and reduce to the magnetic monopole algebra (2.3) in the contraction limit λ = 0.

A suitable check of these purported claims should come from the next rung n= 3 on the AKSZ
geometric ladder of Section 4, which has been investigated partially in [79]; the symplectic Lie 3-
algebroid structure in this case is called a Lie algebroid up to homotopy, and the corresponding
AKSZ sigma-model describes closed M2-branes viewed as boundaries of open threebranes. The
standard Lie algebroid up to homotopy is the anticipated generalized tangent bundle T M̃⊕

∧2 T ∗M̃
of exceptional field theory [22], and the bracket structure in this case is the expected higher 2-
Courant bracket. However, beyond the simplest case of the four-form flux G = dC of the M-theory
C-field, it is not clear how to twist these higher algebroid structures by geometric and non-geometric
fluxes; see [79] for a discussion of this point. This may be related to the fact that, unlike T-duality
which maps closed strings to closed strings, U-duality maps M2-branes to M-waves (the lifts of
D0-branes), and more generally to M5-branes in higher dimensions.

Locally non-geometric fluxes in M-theory on higher dimensional spacetimes have been dis-
cussed in [86]. In each dimensionality one encounters the same qualitative structure, missing mo-
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mentum modes in the M2-brane phase space, but now with a host of R-type fluxes with varying
tensorial structures. The corresponding bracket structures are not currently understood, and may
also involve higher algebras.

6.3 L∞-algebras

As mentioned in Section 5, the Kontsevich formality maps are quasi-isomorphisms between
particular examples of L∞-algebras, and it is natural to wonder if such higher algebraic structures
govern the infinitesimal symmetries of the higher quantum geometries we have discussed. In [89]
it was observed that the nonassociative phase space deformation (3.27) underlying the closed string
R-flux background can be realized and understood as a 2-term L∞-algebra, which is similar to the
characterization [97] of the bracket structure underlying Courant algebroids from Section 4. This
result was extended, and put into a more general and systematic framework by [70], showing in
particular how the M-theory R-flux algebra (6.9) is realized in the same way. It would be interesting
to similarly understand the covariant M2-brane 3-algebra (6.13) in this way, which may also be
the appropriate framework for the higher bracket structures underlying the phase spaces of non-
geometric M-theory in dimensions d > 4 where they are governed by the Ed exceptional field
theory [86].

These occurences nicely match the original appearence of L∞-algebras in physics as higher
gauge symmetry algebras of closed string field theory in [119], and more recently as the higher
symmetries underlying double field theory [51, 50, 68] and two-dimensional conformal field the-
ory [29]. It was shown by [30] that the symmetries and dynamics of open string nonassociative
gauge theories on curved D-brane worldvolumes are also governed by an underlying L∞-algebra.
Extrapolating this feature to non-geometric backgrounds could lead to a similar characterization of
the diffeomorphism symmetries in nonassociative gravity on phase space, and its fate under polar-
ization to spacetime which may clarify the connections with closed string theory and double field
theory discussed above.
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