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It is generally accepted that the dynamical mean field theory gives a good solution of the Holstein model,
but only in dimensions greater than two. Here, we show that this theory, which becomes exact in the weak
coupling and in the atomic limit, provides an excellent, numerically cheap, approximate solution for the
spectral function of the Holstein model in the whole range of parameters, even in one dimension. To
establish this, we make a detailed comparison with the spectral functions that we obtain using the newly
developed momentum-space numerically exact hierarchical equations of motion method, which yields
electronic correlation functions directly in real time. We crosscheck these conclusions with our path
integral quantum Monte Carlo and exact diagonalization results, as well as with the available numerically
exact results from the literature.
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The Holstein model is the simplest model that describes
an electron that propagates through the crystal and interacts
with localized optical phonons [1]. On the example of this
model, numerous many-body methods were developed and
tested [2]. The Holstein molecular crystal model is also very
important in order to understand the role of polarons
(quasiparticles formed by an electron dressed by lattice
vibrations) in realmaterials [3]. This is still a very active field
of research fueled by new directions in theoretical studies
[4–12] and advances in experimental techniques [13].
The Holstein model can be solved analytically only in

the limits of weak and strong electron-phonon coupling
[14–16]. Reliable numerical results for the ground state
energy and quasiparticle effective mass were obtained in the
late 1990s using the density matrix renormalization group
(DMRG) [17,18] and path integral quantum Monte Carlo
(QMC) methods [19], and also within variational appro-
aches [20–22]. At the time, numerically exact spectral
functions for one-dimensional (1D) systems were obtained
onlywithin the DMRGmethod [17,18]. Themain drawback
of the QMC method is that it gives correlation functions in
imaginary time and obtaining spectral functions and dy-
namical response functions is often impossible since the
analytical continuation to the real frequency is a numerically
ill-defined procedure. Interestingly, at finite temperature the
spectral functions were obtained only very recently using
finite-T Lanczos (FTLM) [23] and finite-T DMRG [24]
methods. All these methods have their strengths and weak-
nesses depending on the parameter regime and temperature.
As usually happens in a strongly interacting many-body
problem, a complete physical picture emerges only by
taking into account the solutions obtained with different
methods.
The hierarchical equations of motion (HEOM) method is

a numerically exact technique that has recently gained

popularity in the chemical physics community [25–28].
It has been used to explore the dynamics of an electron
(or exciton) linearly coupled to a Gaussian bosonic bath.
Within HEOM, we calculate the correlation functions
directly on the real time (real frequency) axis [29].
Nevertheless, the applications of the HEOM method to
the Holstein model [30–34] have been, so far, scarce
because of the numerical instabilities stemming from the
discreteness of the phonon bath on a finite lattice.
Along with numerically exact methods, a number of

approximate techniques have been developed and applied to
the Holstein model [35–38]. The dynamical mean field
theory (DMFT) is a simple nonperturbative technique that
has emerged as amethod of choice for the studies of theMott
physics within the Hubbard model [39,40]. It can also be
applied to the Holstein model giving numerically cheap
results directly on the real frequency axis [41]. This method
fully takes into account local quantum fluctuations and it
becomes exact in the limit of infinite coordination number
when the correlations become completely local. It was
soon recognized [42,43] that the DMFT gives qualitatively
correct spectral functions and conductivity for the Holstein
model in three dimensions. In low-dimensional systems the
solution is approximate as it neglects the nonlocal correla-
tions and one might expect that the DMFT solution would
not be accurate, particularly in one dimension. Surprisingly,
to our knowledge, only the DMFT solution for the Bethe
lattice was used in comparisons with the numerically exact
results for the ground state properties in one dimension
[20,44]. The quantitative agreement was rather poor, sug-
gesting that the DMFT cannot provide a realistic description
of the low-dimensional Holstein model due to the impor-
tance of nonlocal correlations [16,20,44].
In this Letter, we present a comprehensive solution of the

1D Holstein model: (i) We solve the DMFT equations in all
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parameter regimes. At zero temperature we find a remark-
able agreement of the DMFT ground state energy and
effective mass with the available results from the litera-
ture in one, two, and three dimensions. (ii) For interme-
diate electron-phonon coupling, we obtain numerically
exact spectral functions using the recently developed
momentum-space HEOM approach [45]. For strong cou-
pling we calculate the spectral functions using exact
diagonalization (ED). We find a very good agreement with
DMFT results and therefore demonstrate that the DMFT is
rather accurate, in sharp contrast to current belief in the
literature. (iii) We crosscheck the results with our QMC
calculations in imaginary time. Overall, we demonstrate
that the DMFTemerges as a unique method that gives close
to exact spectral functions in the whole parameter space of
the Holstein model, both at zero and at finite temperature.
Model and methods.—We study the 1D Holstein model

given by the Hamiltonian

H ¼ −t0
X

i

ðc†i ciþ1 þ H:c:Þ

− g
X

i

niða†i þ aiÞ þ ω0

X

i

a†i ai: ð1Þ

Here, c†i (a
†
i ) are the electron (phonon) creation operators,

t0 is the hopping parameter, and ni ¼ c†i ci. We consider
dispersionless optical phonons of frequency ω0, and g
denotes the electron-phonon coupling parameter. t0, ℏ, kB,
and lattice constant are set to 1. We consider the dynamics
of a single electron in the band. It is common to define
several dimensionless parameters: adiabatic parameter
γ ¼ ω0=2t0, electron-phonon coupling λ ¼ g2=2t0ω0, and
α ¼ g=ω0. These parameters correspond to different physi-
cal regimes of the Holstein model shown schematically in
Fig. 1(a).
In order to obtain reliable solutions in the whole para-

meter space, we use two approximate methods and three
methods that are numerically exact. In the Holstein model,
the DMFT reduces to solving the polaron impurity problem
in the conduction electron band supplemented by the self-
consistency condition [41]. The impurity problem can be
solved in terms of the continued fraction expansion, giving
the local Green’s function on the real frequency axis (see
Ref. [41] and Supplemental Material (SM) [46], Sec. I, for
details). A crucial advantage of the DMFT for the Holstein
model is that it becomes exact in both the weak coupling
and in the atomic limit, and that it can be easily applied in
the whole parameter space both at zero and at finite
temperature. The DMFT equations can be solved on a
personal computer in just a few seconds to a few minutes
depending on the parameters. On general grounds, the
DMFT is expected to work particularly well at high
temperatures when the correlations become more local
due to the thermal fluctuations [47,48]. We will compare
the DMFT with the well-known self-consistent Migdal

approximation (SCMA) [49], which becomes exact only in
the weak coupling limit; see Sec. II of SM [46].
We have recently developed the momentum-space

HEOM method [45] that overcomes the numerical insta-
bilities originating from the discrete bosonic bath. Within
thismethodwe calculate the time-dependent greaterGreen’s
function G>ðk; tÞ, which presents the root of the hierarchy
of the auxiliary Green’s functions. The hierarchy is, in
principle, infinite, and one actually solves the model by
truncating the hierarchy at certain depth D. The HEOM are
propagated independently for each allowed value of k up to
long times (ω0tmax ∼ 500). The propagation takes 5 to
10 hours on 16 cores per momentum k. The discrete
Fourier transform is then used to obtain spectral functions
without introducing any artificial broadening. Numerical
error in theHEOMsolution can originate from the finite-size
effects since themethod is applied on the latticewithN sites,
and also from the finite depthD. We always useN andD, as
given in SM [46], which correctly represent the thermody-
namic limit. Generally, for larger g we need smaller N and
largerD. This is why the EDmethod with a small number of
sites could be a better option in the strong coupling regime.
The EDmethod can be used more efficiently after the initial
Hamiltonian is transformed by applying the Lang-Firsov
transformation; see SM [46], Sec. III.
In the QMC method, we calculate the correlation func-

tion CkðτÞ ¼ hckðτÞc†kiT;0 in imaginary time. The thermal

(a)

(b) (c)

FIG. 1. (a) Schematic plot of different regimes in the ðγ; λÞ
parameter space. The white (black) circles correspond to para-
meters for which both HEOM and QMC (just QMC) calculations
were performed. The DMFT results are obtained in practically
whole space of parameters. (b) Comparison of the DMFT and
DMRG (taken from Refs. [17,20]) renormalized electron mass at
T ¼ 0. (c) Comparison of the ground state energy from the
DMFT and the global-local variational approach (taken from
Ref. [20]) at T ¼ 0.

PHYSICAL REVIEW LETTERS 129, 096401 (2022)

096401-2



expectation value is performed over the states with zero
electrons and ckðτÞ ¼ eτHcke−τH. We use the path integral
representation, the discretization of imaginary time, and
analytical calculation of integrals over the phonon coor-
dinates. We then evaluate a multidimensional sum over the
electronic coordinates by a Monte Carlo method. This
method is a natural extension of early works where such
approach was applied just to thermodynamic quantities
[50–52]. Details of the method are presented in Ref. [45].
Results at zero temperature.—In Fig. 1(b), we show the

DMFT results for the electron effective mass at the bottom
of the band,m�=m0 ¼ 1 − dReΣðωÞ=dωjEp

(where ΣðωÞ is
the self-energy), over a broad range of parameters covering
practically the whole parameter space in the ðγ; λÞ plane.
We see that the mass renormalization is in striking agree-
ment with the DMRG result [17,20] that presents the best
available result from the literature. Small discrepancies are
visible only for stronger interaction with small ω0. A
similar level of agreement can be seen in the comparison
of the ground state (polaron) energy Ep in Fig. 1(c). Here,
the results obtained with variational global-local method
[20,21] are taken as a reference. While the agreement in the
weak coupling and in the atomic limit could be anticipated
since the DMFT becomes exact in these limits, we find the
quantitative agreement in the crossover regime between
these two limits rather surprising, having in mind that the
DMFT completely neglects nonlocal correlations. It is also
interesting that this was not observed earlier. The only
difference from the standard reference of Ciuchi et al. [41]
is that we applied the DMFT to the 1D case, as opposed to
the Bethe lattice. This is, however, a key difference.
Otherwise the DMFT provides only a qualitative descrip-
tion of the Holstein model [3,16,20,44,53]. From the
technical side, the only difference as compared to the case
of the Bethe lattice is in the self-consistency equation. For
obtaining a numerically stable and precise solution, it was
crucial to use an analytical expression for the self-
consistency relation (see Sec. IB in SM [46]). We have
also calculated the effective mass for two- and three-
dimensional lattices (see Sec. IC in SM [46]) and the
agreement with the QMC calculation from Ref. [19] is
excellent. This was now expected since the importance of
nonlocal correlations decreases in higher dimensions. A
comparison with the Bethe lattice effective mass is illus-
trated in SM [46], Sec. ID.
The next step is to check if the agreement with the

numerically exact solution extends also to spectral func-
tions. Typical results at k ¼ 0 are illustrated in Fig. 2. We
note that at T ¼ 0 the DMFT quasiparticle peak is a delta
function (broadened in Fig. 2), while satellite peaks are
incoherent having intrinsic nonzero width. In HEOM, the
peak broadening due to the finite lattice size N and finite
propagation time tmax is generally much smaller than the
Lorentzian broadening used in the insets of Figs. 2(a)–2(d).
The weights of the DMFT and HEOM quasiparticle peaks

correspond to the m0=m� ratio. The satellite peaks are also
very well captured by the DMFT solution in all parameter
regimes. For g ¼ 1 we can see two small peaks in the first
satellite structure of the HEOM solution. We find very
similar peaks also in the DMFT solution when applied on a
lattice of the same size, which is here equal to 10 (see SM
[46], Sec. IV). Hence, we conclude that these peaks are an
artefact of the finite lattice size. In the strong coupling
regime ω0 ¼ 1, g ¼ 2, the DMFT is compared with ED
since the thermodynamic limit is practically reached for
N ¼ 4; see SM [46], Sec. IV. Here, we notice a pronounced
excited quasiparticle peak [22,23] whose energy is below
Ep þ ω0. This peak,which consists of a polaron and a bound
phonon, is also very well resolved within the DMFT solu-
tion. For parameters in Fig. 2(d) the lattice sites are nearly
decoupled, approaching the atomic limit ðt0 ≪ g;ω0Þ, when
the DMFT becomes exact (see Sec. V in SM [46]). For a
comparison, we show also the SCMA spectral functions. As
the interaction increases, the SCMA solution misses the
position and the weight of the quasiparticle peak and the
satellite peaks are not properly resolved. Further compar-
isons of zero temperature spectral functions are shown in
Sec. VI of SM [46].
Results at finite temperature.—Reliable finite-T results

for the spectral functions of the Holstein model have been
obtained only very recently using the FTLM [23] and
finite-T DMRG methods [24]. Here, we calculate the
spectral functions using HEOM or ED and compare them
extensively with the DMFT. The results are crosschecked
using the QMC results in imaginary time.
Typical results for the spectral functions are shown in

Fig. 3, while additional results for other momenta and other

(a) (b)

(c) (d)

FIG. 2. (a)–(d) Integrated HEOM, DMFT, SCMA, and ED
spectral weight, IðωÞ ¼ R

ω
−∞ dνAkðνÞ, for k ¼ 0 and T ¼ 0. The

insets show comparisons of the spectral functions. IðωÞ is
obtained without broadening, whereas AðωÞ is broadened by
Lorentzians of half-width η ¼ 0.05.
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parameters are shown in Sec. VII of SM [46]. We see
that for T > 0 the satellite peaks appear also below the
quasiparticle peak. The agreement between the DMFT and
the HEOM (ED) spectral functions is very good. The
agreement remains excellent even for g ¼ 2 where the
electrons are strongly renormalized m�=m0 ≈ 10, which is
far away from both the atomic and weak coupling limits,
where the DMFT is exact. A part of the difference between
the DMFT and the HEOM (ED) results can be ascribed to
the small finite-size effects in the HEOM and ED solutions,
as detailed in SM [46], Sec. IV. In accordance with the
presented results, it is not surprising that the self-energies
are nearly k independent, as shown in SM [46], Sec. VIII.
It is also instructive to examine the difference between
the SCMA and DMFT (HEOM) solutions. For moderate
interaction [Figs. 3(a) and 3(b)], the weight of the SCMA
quasiparticle peak is nearly equal to the DMFT (HEOM)
quasiparticle weight, and the overall agreement of spectral
functions is rather good. This is not the case for stronger

electron-phonon coupling [Figs. 3(c)–3(h)] where the
SCMA poorly approximates the true spectrum.
We observe that for g ¼ ffiffiffi

2
p

and k ¼ π the DMFT and
HEOM satellite peaks are somewhat shifted with respect to
one another; see Figs. 3(c) and 3(d). This is the most
challenging regime for the DMFT, representing a crossover
(λ ¼ 1) between the small and large polaron. Nevertheless,
the agreement remains very good near the quasiparticle peak
for k ¼ 0, which will be the most important for transport in
weakly doped systems. In order to gain further confidence
into the details of the HEOM spectral functions for g ¼ ffiffiffi

2
p

,
we compare them with the available results obtained within
the finite-T DMRG and Lanczos methods. We find an
excellent agreement, as shown in Figs. 4(a) and 4(b).
The DMFTand HEOM results are crosschecked with the

path integral QMC calculations. The quantity that we
obtain in QMC is the single electron correlation function
in imaginary time, which can be expressed through the
spectral function as CkðτÞ ¼

R
∞
−∞ dω e−ωτAkðωÞ. Typical

results are illustrated in Figs. 4(c) and 4(d), while extensive
comparisons are presented in Sec. IX of SM [46]. At T ¼
0.4 we can see a small difference in CπðτÞ between the
DMFT and QMC (HEOM) results. At T ¼ 1, both for
k ¼ 0 and k ¼ π, the difference in CkðτÞ is minuscule, well
below the QMC error bar, which is smaller than the symbol
size. This confirms that nonlocal correlations are weak.
Similarly, as for the spectral functions, the SCMA corre-
lation functions show clear deviation from other solutions.
We, however, note that great care is needed when drawing
conclusions from the imaginary axis data since a very small
difference in the imaginary axis correlation functions can
correspond to substantial differences in spectral functions.

(a) (b)

(c) (d)

(e)

(g)

(h)

(f)

FIG. 3. (a)–(h) Spectral functions at T > 0 for k ¼ 0 and k ¼ π.
In panels (e)–(f) only the ED results are broadened by Lorent-
zians of half-width η ¼ 0.05, while all the curves are broadened
in (g)–(h) with the same η. All insets are shown without
broadening.

(a) (b)

(c) (d)

FIG. 4. (a), (b) Comparison of DMFT, HEOM, and finite-T
DMRG and FTLM (taken from Ref. [24]) spectral functions at
T ¼ 0.4. All the lines are here broadened by Lorentzians of half-
width η ¼ 0.05. (c), (d) DMFT, QMC, HEOM, and SCMA
imaginary time correlation functions at T ¼ 0.4 (T ¼ 1 in the
insets). Here, g ¼ ffiffiffi

2
p

, ω0 ¼ 1.
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Conclusions.—In summary, we have presented a com-
prehensive solution of the 1D Holstein polaron covering all
parameter regimes. We showed that the DMFT is a
remarkably good approximation in the whole parameter
space. This approximation is simple, numerically efficient,
and can also be easily applied in two and three dimensions.
We successfully used momentum-space HEOM and ED
methods for comparisons with the DMFT spectral func-
tions both at zero and at finite temperature. The compar-
isons showed an excellent agreement between the spectral
functions in most of the parameter space. For parameters
that are most challenging for the DMFT, a very good
agreement was found around k ¼ 0 and a reasonably good
agreement was obtained at larger values of k. All of the
results are crosschecked with the imaginary axis QMC
calculations and with the available results from the liter-
ature. Both the DMFT and HEOM methods are imple-
mented directly in real frequency, without artificial
broadening of the spectral functions. This will be crucial
in order to calculate dynamical quantities and determine a
potential role of the vertex corrections to conductivity by
avoiding possible pitfalls of the analytical continuation,
which we leave as a challenge for future work.
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Here we present numerical results that complement the
main text and we also show some technical details of
the calculations. The Supplemental Material is orga-
nized as follows. The DMFT for the Holstein polaron
is briefly reviewed in Sec. I. Numerical implementation
of the DMFT self-consistency loop is presented in detail
and it is used to calculate the mass renormalization in
one, two and three dimensions and for the Bethe lattice
as well. In Sec. II the self-consistent Migdal approxi-
mation is briefly reviewed and used as a benchmark for
the DMFT in the weak-coupling limit. Sec. III presents
the ED method. In Sec. IV we investigate how the re-
sults depend on the chain length N and on hierarchy
depth D. Sec. V examines the DMFT solution close
to the atomic limit. Additional DMFT, SCMA, ED
and HEOM results for the spectral functions at T = 0
and T > 0 for various parameter values and for differ-
ent momenta k are shown in Secs. VI and VII, respec-
tively. The k-dependence of the self-energies is shown in
Sec. VIII. A detailed comparison of the DMFT, HEOM
and QMC correlation functions is presented in Sec. IX.
Sec. X presents a numerical procedure that was used
for the calculation of the integrated spectral weight. In
Sec. XI we show that the different definitions of spectral
functions used by various methods are all in agreement.

I. DMFT FOR THE HOLSTEIN POLARON

The DMFT solution for the Holstein polaron on the
infinitely-connected Bethe lattice was presented by
Ciuchi et al. in 1997 [S1]. Interestingly, to our knowl-
edge, this method has not been so far implemented on
a finite-dimensional lattice. Details of the implementa-
tion in 1d and in arbitrary number of dimensions are
the main content of this Section.

A. Physical content of the DMFT approximation

The DMFT was developed in the early 1990’s in the
context of the Hubbard model [S2] and has since signif-
icantly contributed to our understanding of the systems
with strong electronic correlations [S3]. The DMFT is a
non-perturbative method that fully takes into account
local quantum fluctuations. It becomes exact in the

FIG. S1. DMFT self-consistency loop.

limit of infinite coordination number [S2], while it can
be considered as an approximation in finite number of
dimensions that keeps only local correlations by assum-
ing that the self-energy Σ(ω) is k-independent.

In practice, the DMFT reduces to solving the (An-
derson) impurity problem in a frequency dependent
Weiss field G0(ω) that needs to be determined self-
consistently. The bare propagator (Weiss field) G0(ω)
is responsible for the electron fluctuations between the
impurity and the reservoir (conduction bath). On-
site correlation is taken into account through the self-
energy. The connection with the lattice problem is
established by the requirement that the impurity self-
energy Σimp(ω) is equal to the lattice self-energy Σii(ω)
(while the nonlocal components Σij(ω) are equal to zero
within DMFT) and that the impurity Green’s func-
tion Gimp(ω) is equal to the local lattice Green’s func-



2

FIG. S2. First few DMFT Feynman diagrams of the self-
energy in the expansion over G0.

tion Gii(ω) = 1
N

∑
kGk(ω). The DMFT equations are

solved iteratively as shown schematically in Fig. S1. For
a given bare propagator G0 an impurity solver is used
to obtain the self-energy, and then the self-consistency
is imposed by the Dyson equation. The subscripts for
the impurity and the local lattice Green’s function are
omitted since these two quantities coincide when the
self-consistency is reached.

The DMFT solution for the Holstein polaron follows the
general concepts introduced for the Hubbard model with
an important simplification which comes from the fact
that we consider the dynamics of just a single electron.
We briefly review some key aspects and for details we
refer the reader to Ref. [S1].

The self-energy for the polaron impurity, which is cou-
pled to the reservoir by the bare propagator G0(ω), can
be simply expressed in a form of the continued-fraction
expansion (CFE), which is in a sharp contrast with the
Hubbard model where the numerical solution of the An-
derson impurity model is the most difficult step. Here,
the self-energy at T = 0 is simply given by

Σ(ω) =
g2

G−1
0 (ω − ω0)−

2g2

G−1
0 (ω − 2ω0)− 3g2

G−1
0 (ω−3ω0)−...

(S1)
(For a derivation and generalization to T > 0 see
Ref. [S1].) This expansion has an infinite number of
terms and in practice it needs to be truncated. In order
to understand which condition needs to be fulfilled for a
truncation, we will look at the diagrammatic expansion
of the self-energy.

For a single electron (i.e. in the zero density limit) the
Feynman diagrams of the self-energy consist of a single
electron line accompanied by the lines that describe the
emission and the absorption of phonons. There are no
bubble diagrams and hence there is no renormalization
of the phonon propagator. As an illustration, a dia-
grammatic expansion over G0(ω) up to the order g4 is
shown in Fig. S2. These diagrams are included if we
keep the terms up to the second stage in the CFE.

There are two important implications from this dia-
grammatic expansion. First, if we keep in the expansion
terms up to the order g2N then only the phonon states
|n〉 with n ≤ N appear as intermediate states. There-
fore, since the importance of the multiphonon effects

can be estimated by the parameter α2 = g2/ω2
0 [S4], we

need to keep N � α2 terms in the CFE. Second, we
see that the vertex corrections (involving the phonons
on the same site in the real-space representation [S5])
are included in the DMFT solution. This should be
contrasted with the self-consistent Migdal approxima-
tion (SCMA) which completely neglects the vertex cor-
rections in the self-energy. However, we note that one
should be careful in making a direct comparison to the
SCMA, since the DMFT diagrams are expanded using
G0, unlike the SCMA.

B. Numerical implementation of the DMFT loop

We will now discuss step by step the self-consistency
loop shown in Fig. S1. The DMFT loop starts by guess-
ing the solution for the free propagator G0(ω). Better
guesses lead to fewer number of iterations, so depend-
ing on the parameter regime we take G0(ω) to be either
the Green’s function in the Migdal approximation (S20)
or the Green’s function in the atomic limit (S25), since
both of these expressions are analytically known. They
correspond to the cases of very weak coupling and van-
ishing hopping, respectively. Next, the self-energy Σ(ω)
is calculated using the impurity solver (S1) and its gen-
eralization to finite temperatures [S1]. In practice these
are implemented using the recursion relations, which at
finite temperature read as:

Σ(ω) = G−1
0 (ω)−G−1(ω), (S2a)

G(ω) =

∞∑
n=0

(1− e−ω0/T )e−nω0/T

G−1
0 (ω)−A(0)

n (ω)−B(0)
n (ω)

, (S2b)

A(p)
n (ω) =

(n− p)g2

G−1
0 (ω + (p+ 1)ω0)−A(p+1)

n (ω)
, (S2c)

B(p)
n (ω) =

(n+ p+ 1)g2

G−1
0 (ω − (p+ 1)ω0)−B(p+1)

n (ω)
, (S2d)

A(n)
n (ω) = 0, B(∞)

n (ω) = 0. (S2e)

Quantities A
(p)
n and B

(p)
n are determined recursively,

starting from (S2e) and going back to (S2d) and (S2c).
Then, G(ω) is calculated using (S2b), which enables us
to use Dyson Eq. (S2a) to obtain Σ(ω). For T = 0
the equations simplify and the self-energy can be writ-

ten as Σ(ω) = B
(0)
0 (ω), which coincides with Eq. (S1).

The physical interpretation of the quantities in Eq. (S2)
is the following: G(ω) is the interacting Green’s func-

tion of the impurity. The quantity A
(0)
n (ω) is just a

finite fraction that takes into account the emission of
phonons. Similarly, B

(0)
n (ω) is an infinite continued

fraction, which takes into account the absorption of

phonons. The infinite fraction B
(0)
n (ω) can be calcu-

lated accurately even if we truncate it B
(N)
n (ω) = 0,
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taking N to be a number much larger than α2. The
infinite series (S2b) can also be truncated by using the
number of terms nmax � T/ω0 [S1].

Next step in the DMFT loop is calculating the local
Green’s function of the lattice using the self-energy Σ(ω)
from the impurity solver. It is calculated as

G(ω) =

∫ ∞
−∞

ρ(ε)dε

ω − Σ(ω)− ε
, (S3)

where ρ(ε) is the noninteracting density of states. This
integral is convergent since we are integrating below the
complex pole ε = ω − Σ(ω), as a consequence of the
causality Im Σ(ω) < 0. However, numerical instabilities
can arise due to the fact that the complex pole can be
arbitrarily close to the real axis. Hence, the numeri-
cal integration of Eq. (S3) requires additional care. In
Sec. I B 2 we present a numerical procedure which solves
this problem. However, in the 1d case these numerical
instabilities are completely avoided since Eq. (S3) ad-
mits an analytical solution, as shown in Sec. I B 1.

Following the DMFT algorithm from Fig. S1, we now
calculate the next iteration of the free propagator using
the Dyson equation

Gnew
0 (ω) = [G−1(ω) + Σ(ω)]−1. (S4)

We check if |Gnew0 (ω)−G0(ω)| < εtol (for each ω), where
εtol is the tolerance parameter that we typically set to
εtol ∼ 10−4 or smaller. If this condition is satisfied, the
DMFT loop terminates and Σ, G0 and G are found.
Otherwise, Gnew

0 is used in the impurity solver and the
procedure is repeated until convergence is reached.

After the DMFT loop has been completed, we can use
the calculated self-energy Σ(ω) to find the retarded
Green’s function of our original problem

Gk(ω) =
1

ω − Σ(ω)− εk
. (S5)

The spectral function is then simply given by

Ak(ω) = − 1

π
ImGk(ω). (S6)

1. Self-consistency equation for the local Green’s function
in one dimension

Let us now show how the local Green’s function (S3)
can be analytically evaluated in a 1d system with near-
est neighbor hopping t0. The noninteracting density of
states reads as

ρ(ε) =
θ(4t20 − ε2)

π
√

4t20 − ε2
, (S7)

where θ is the Heaviside step function. Equation (S3)
can be rewritten using the substitution ε = 2t0 sinx

G(ω) =
1

4t0π

∫ π

−π

dx

B − sinx
, (S8)

where we introduced

B = (ω − Σ(ω))/2t0. (S9)

Additional substitution z = eix leads us to

G(ω) = − 1

2t0π

∮
C

dz

(z − z+)(z − z−)
, (S10)

where this represents the counterclockwise complex in-
tegral over the unit circle C and z± = iB±

√
1−B2. In

order to apply the method of residues, we first need to
find out if z± are inside the complex unit circle |z| = 1.
Causality implies that Im Σ(ω) < 0 which means that
ImB > 0. In this case one can show that |z+| < 1 and
|z−| > 1, which means that only the pole at z+ gives a
non-vanishing contribution to the Eq. (S10)

G(ω) =
−i

2t0
√

1−B2
=

1

2t0B
√

1− 1
B2

. (S11)

In Eq. (S11) we wrote the solution in two ways. They
are completely equivalent in our case when ImB > 0,
but can otherwise give different results. Since B can be
arbitrarily close to the real axis, it is important to en-
sure additional numerical stability by requiring that the
expression for G(ω) satisfies that the ImB = 0 solution
coincides with the solution in the limit ImB → 0. This
is not satisfied by the expressions in Eq. (S11), but it
can be achieved by combining their imaginary and real
parts

G(ω) = Re
1

2t0aB
√

1− 1
B2

+i Im
−i

2t0a
√

1−B2
. (S12)

2. Self-consistency equation for the local Green’s function
in arbitrary number of dimensions

Here we present a numerical procedure for the calcu-
lation of the local Green’s function (S3) for arbitrary
density of states ρ(ε), that completely eliminates the
potential numerical singularity at ε = ω−Σ(ω). This is
particularly important since the techniques presented in
Sec. I B 1 fail when the dispersion relation even slightly
changes. It is also relevant in the higher-dimensional
systems where the density of states is not necessarily
analytically know.
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Let us suppose that the self-energy and the density
of states are known only on a finite, equidistant grid
ω0, ω1...ωN−1, where ∆ω = ωi+1 − ωi. Further, sup-
pose that the density of states is vanishing outside some
closed interval [D1, D2] and that the grid is wide enough
so that there are at least a couple of points outside
that closed interval: ρ(ω0) = ... = ρ(ω3) = 0 and
ρ(ωN−1) = ... = ρ(ωN−4) = 0. These are quite general
assumptions that are always satisfied in the systems we
are examining. The local Green’s function can now be
rewritten as

G(ω) =

N−2∑
i=0

∫ ωi+1

ωi

dε
ρ(ε)

ω − Σ(ω)− ε
. (S13)

At each sub-interval [ωi, ωi+1] the density of states is
only known at the endpoints, so it is natural to approx-
imate it using a linear function

ρ(ε) = ai + bi(ε− ωi), (S14)

where ai = ρ(ωi), bi = (ρ(ωi+1) − ρ(ωi))/∆ω. Intro-
ducing a shorthand notation ξ = ω−Σ(ω), we evaluate
Eq. (S13) analytically

G(ω) =

N−2∑
i=0

bi(ωi − ωi+1)

+

N−2∑
i=0

ai [ln(ξ − ωi)− ln(ξ − ωi+1)]

+

N−2∑
i=0

bi(ξ − ωi) [ln(ξ − ωi)− ln(ξ − ωi+1)] .

(S15)

The first line is just a telescoping series that is vanishing

N−2∑
i=0

bi(ωi − ωi+1) = ρ(ω0)− ρ(ωN−1) = 0. (S16)

The last two lines in Eq. (S15) can be transformed by
shifting the indices i+1→ i, taking into account that a
few boundary terms are vanishing and using the identity
ai − ai−1 = (ωi − ωi−1)bi−1

G(ω) =

N−2∑
i=0

ρ(ωi+1)− 2ρ(ωi) + ρ(ωi−1)

∆ω

× (ω − ωi − Σ(ω)) ln (ω − ωi − Σ(ω)) . (S17)

This expression now has no numerical instabilities. This
is most easily seen from the fact that it has the form
x lnx which is well defined even in the limit x → 0,
where it vanishes. Of course, the results were obtained
by using the linear interpolation of the density of states.
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FIG. S3. (a) Continuous-time QMC (taken from Ref. S6)
vs. DMFT mass renormalization in 1d, 2d and 3d, with
ω0 = 1. (b) Comparison of the DMFT mass renormalization
on different lattices.

This is completely justified if ρ(ε) is smooth or has
finitely many cusps. However, the presence of van Hove
singularities in ρ(ε) may require some special analytical
treatment around them.

C. Effective mass in 1d, 2d and 3d

The DMFT mass renormalization is calculated in one,
two and three dimensions. These are then compared
to the continuous-time path-integral quantum Monte
Carlo (QMC) results from Ref. S6. In that paper it was
noted that the numerical accuracy of the QMC method
is 0.1%− 0.3%. The results are presented in Fig. S3(a).

We note that the definition of λ and γ is slightly different
than the one we gave in the main text. Here

λ =
g2

ω0W/2
; γ =

ω0

W/2
, (S18)

where W/2 is the half bandwidth. This coincides with
our previous definition in 1d, but gives an extra normal-
ization in higher dimensions.
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FIG. S4. 1d vs Bethe DMFT local spectral functions.

D. Comparisons with the Bethe lattice results

In the main text we emphasized that the misconception
about the validity of the DMFT in 1d appeared since
only the DMFT results on the Bethe lattice were used in
comparisons with other methods [S7, S8]. In this section
we illustrate why such comparison is inappropriate.

The main difference in practical implementation, com-
pared to 1d, can be ascribed to the self-consistency con-
dition for the Bethe lattice (corresponding to the semi-
elliptic density of states) which can be formulated using
a simple algebraic equation [S1]

G0(ω) =

(
ω − (W/2)2

4
G(ω)

)−1

. (S19)

In Fig. S3(b) we compare the DMFT mass renormaliza-
tion on different lattices using the same half-bandwidth.
There is a clear discrepancy between the 1d and the
Bethe lattice results, in accordance with the already
mentioned earlier works.
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FIG. S5. 2d vs Bethe DMFT local spectral functions.

The Bethe lattice lacks a dispersion relation since it
has no translational symmetry. Therefore in Fig. S4
we compare only the local spectral functions A(ω) =
− 1
π ImG(ω) = − 1

π Im 1
N

∑
kGk(ω) of the Bethe and 1d

lattice. For small couplings, the spectral functions re-
semble the noninteracting density of state and we find
a large discrepancy, as shown in panels (a) and (b). In
contrast, close to the atomic limit in Fig. S4(f) spectral
functions become more alike. We note that the regimes
at panels (c)-(f) are the same as in Fig. 3 from the main
text.

It is rather surprising that there is a striking agreement
between the effective mass for 2d and the Bethe lattice
as shown in Fig. S3(b), even though the noninteracting
density of states are different, Fig. S5(a). Interestingly,
we can see from Fig. S5 that the local spectral functions
become very similar already for moderate interactions.
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II. WEAK-COUPLING LIMIT

In this section we introduce the self-consistent Migdal
approximation (SCMA) and use it as a benchmark for
the DMFT in the weak-coupling limit, where SCMA is
exact. More importantly, we can examine a deviation
of SCMA from DMFT for stronger couplings, which is
shown in the main text and in the following sections of
the SM.

A. Migdal approximation

The Migdal approximation [S9], as shown in Fig. S6,
is defined by taking into account only the lowest order
Feynman diagram in the perturbation expansion of the
self-energy.

FIG. S6. Feynman diagrams of the self-energy in the Migdal
approximation

Due to its simplicity it can be evaluated analytically

Σk(ω) = g2(b+ 1)S(ω − ω0) + g2b S(ω + ω0), (S20)

where b ≡ b(ω0) = (eω0/T − 1)−1 and

S(ω) = (ω2 − 4t20)−1/2 for ω > 0,

while the solution for ω < 0 can be obtained by noting
that ImS(ω) and ReS(ω) are symmetric and antisym-
metric functions, respectively. However, this solution
is accurate only for very small coupling g. For larger
coupling a much better solution is obtained within the
self-consistent Migdal approximation.

B. Self-consistent Migdal approximation

FIG. S7. Feynman diagrams in the SCMA approximation.

In the SCMA, free fermionic propagator from Fig. S6 is
replaced with the interacting propagator, as shown in

3 2 1 0 1 2 30

5

10

A(
)

T = 8.0

0 = 1
  g = 2

10

T = 5.0

T = 4.0

T = 3.0

T = 1.0

  S
ol

id
 L

in
e 

= 
SC

M
A 

 Fi
lle

d 
Ar

ea
 =

 D
M

FT

k = 0 k = 3
k = 2

3 k =

3 2 1 0 1 2 30

5

10

15

20

A(
)

T = 8.0

0 = 0.2
  g = 0.05T = 5.0

T = 2.5

T = 1.6

T = 1.0 k = 0 k = 3 k = 2
3 k =

  S
ol

id
 L

in
e 

= 
SC

M
A 

 Fi
lle

d 
Ar

ea
 =

 D
M

FT

4 2 0 2 40

5

10

A(
)

T = 2.0

0 = 1
  g = 12

T = 1.6

T = 1.25

T = 1.0

T = 0.8

  S
ol

id
 L

in
e 

= 
SC

M
A 

 Fi
lle

d 
Ar

ea
 =

 D
M

FT

k = 0 k = 3

k = 2
3 k =

4 2 0 2 40

5

10

A(
)

T = 5.0

0 = 0.2
  g = 2

10

T = 3.0
T = 1.6

T = 0.8

T = 0.4

k = 0 k = 3

k = 2
3 k =

  S
ol

id
 L

in
e 

= 
SC

M
A 

 Fi
lle

d 
Ar

ea
 =

 D
M

FT

FIG. S8. DMFT vs. SCMA spectral functions in the weak-
coupling regime.
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Fig. S7. The corresponding equation for the self-energy
can be written as

Σk(ω) = g2(b+ 1)G(ω − ω0) + g2bG(ω + ω0), (S21)

where G(ω) = 1
N

∑
kGk(ω) is the local Green’s func-

tion. Equation (S21) needs to be solved self-consistently,
since the Green’s function can be expressed in terms of
the self-energy (via the Dyson equation).

Using the expansion with respect to the free propagator,
the formal solution for the self-energy can be written as
an infinite series of non-crossing diagrams, as shown in
Fig. S7. We see that the first term represents the Feyn-
man diagram in the Migdal approximation. It is thus
not at all surprising that the SCMA range of validity is
much larger than the one-shot Migdal approximation.

We note that the SCMA self-energy is momentum-
independent, which follows from Eq. (S21), making this
method numerically cheap.

C. DMFT vs. SCMA in the weak coupling limit

A comparison of the DMFT and SCMA spectral func-
tions in the weak coupling limit is shown in Fig. S8.
Results almost fully coincide. As the electron-phonon
coupling increases, the SCMA spectral functions starts
to deviate from the exact solution, as we see from the
main text and from the remaining part of the Supple-
mental Material.
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III. STRONG COUPLING: EXACT
DIAGONALIZATION

In the strong coupling regime we can approach the solu-
tion in the thermodynamic limit by using a small num-
ber of lattice sites. In SM Sec. IV we show that for
g = 2, ω0 = 1 we are close to thermodynamic limit by
considering a chain of just N = 4 sites. In this case
we can reach a solution using the exact diagonalization
(ED). In the following we describe our implementation
of the ED method.

We calculate the spectral function by diagonalizing
the Holstein Hamiltonian in the space spanned by the
vectors Uc†i |n1n2 . . . nN 〉, where ni is the number of
phonons at site i ∈ {1, . . . , N}, satisfying

∑
i ni < nmax,

while U is the unitary operator of the Lang-Firsov trans-
formation [S10] given as

U = e
g
ω0

∑
i c
†
i ci(ai−a

†
i). (S22)

Both N and nmax need to be increased until convergence
is reached. The spectral function is then calculated as

Ak(ω) =
1

Zp

∑
p

e−βEp
∑
e

δ(ω + Ep − Ee)| 〈p|ck|e〉|2,

(S23)
where |p〉 denotes purely phononic states, the energy of
which is Ep, |e〉 denotes the states with one electron and
arbitrary number of phonons, the energy of which is Ee
and Zp =

∑
p e
−βEp is the phononic partition function.

We found that convergent results for the spectral func-
tion when g = 2, ω0 = 1, N = 4 could be obtained
for nmax = 16. The results are shown in Figs. S16-
S21, as well as in Figs. 2(b) and 3(e)-(f) of the main
text. The spectral functions at k points different than
k = 2π

N i, i ∈ {0, . . . , N − 1} were obtained by employing
so-called twisted boundary conditions, that is by chang-
ing the terms in the Hamiltonian t0c

†
i ci+1 → t0e

iφc†i ci+1

and t0c
†
i+1ci → t0e

−iφc†i+1ci. The spectral function ob-
tained from such a modified Hamiltonian corresponds
then to the spectral function at k + φ.
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IV. FINITE-SIZE EFFECTS AND HEOM
DEPTH

The numerically exact HEOM, QMC and ED methods
are implemented on a 1d lattice of length N . Results
which are representative of the thermodynamic limit can
be obtained by taking large enough N . Furthermore,
the hierarchy of HEOM needs to be truncated using
sufficient depth D. In the ED method the number of
phonons in the Hilbert space need to be specified. All
of these parameters should be as large as possible, but
the practical numerical implementation is restricted by
the available computer memory. Finite-N and finite-D
analysis was performed in all parameter regimes where
we have HEOM results. In Figs. S9, S10, and S11 we
briefly illustrate such analysis in the intermediate and
strong coupling regime.

The optimal value of D strongly depends on the interac-
tion strength and temperature. For large interaction we
need large D since many phonon states are populated
even at T = 0. Similarly, larger temperature also re-
quires larger HEOM depth. As illustrated in Fig. S9(a)-
(b), for ω0 = 1, g = 1 the convergence is nearly reached
already for D = 6. For g =

√
2 (Fig. S10(a)-(b)), we

need slightly larger D. However, in the strong-coupling
regime for g = 2 we need much larger D, and from a
comparison with the ED results for N = 4 in Fig. S11
we can conclude that the HEOM result has rather well
converged only for D = 17. We can also observe that the
results at k = 0 typically converge faster with respect
to D than the results at k = π.

The value N for which the spectral functions correspond
to those in the thermodynamic limit also depends on the
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1(d)

HEOM
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D = 6

N = 6
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FIG. S9. Finite-N and finite-D effects in the HEOM
method at intermediate coupling ω0 = 1, g = 1, T = 0,
which is the same regime as in Fig. 2(a) of the main text.
Here we use Lorentzian broadening with η = 0.05.
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0.4
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FIG. S10. Finite-N and finite-D effects in the HEOM at
intermediate coupling ω0 = 1, g =

√
2, T = 0, which is the

same regime as in Fig. 2(c) of the main text. Here we use
Lorentzian broadening with η = 0.05.

parameter regime: for larger interaction g and for higher
T the chain length N can be smaller, while for smaller g
and lower T we need larger N . In panels (c) and (d) of
Figs. S9 and S10 we see that for intermediate coupling
there is some difference in spectral functions for N = 6
and N = 10 (N = 8). At k = 0 it is particularly visible
in the first satellite structure for g = 1. Remarkably,
the DMFT on a finite lattice N = 6 (N = 10) pre-
dicts very similar satellite structure as HEOM for the
same N . This indicates that the correct satellite peak
in Fig. 2(a) of the main text should be closer to DMFT,
while HEOM results have some artefacts because of the
finite lattice size. On the other hand, for g = 2 it is
enough to set N = 4, as we now demonstrate.

It is very efficient to analyze the finite-size effects us-
ing the DMFT applied on a finite system with N sites.
This is very simple to implement in the DMFT loop.
The only difference is in the self-consistency equation:
instead of the integral over the density of states, the lo-
cal Green function is obtained as an average over the k
vectors

G(ω) =
1

N

N∑
i=1

Gki(ω). (S24)

We can see from Fig. S12 that there is very little dif-
ference between N = 4, N = 6 and thermodynamic
limit for g = 2, ω0 = 1. We showed only the results
for T = 0.4, but we checked that the conclusions re-
main true even for T = 0. Therefore, setting N = 4 in
HEOM and ED calculations is enough. This left enough
computer memory to use large D = 17 in HEOM calcu-
lations. Then all three methods give very similar spec-
tral functions as seen in Fig. S11.

Fig. S13 shows the DMFT finite-size effects close to the
atomic limit, both for the spectral function Ak(ω) and
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for the self-energy Σ(ω). The spectral functions are not
strongly N -dependent. On the other hand, the details
of the self-energy are much more sensitive to finite-size
effects. Finite N results show a kind of a stripe pattern,
while N =∞ results are smoother.
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FIG. S11. Finite-N and finite-D effects in the strong cou-
pling regime ω0 = 1, g = 2, T = 0.4, which is the same
regime as in Figs. 3(e)-(f) of the main text. ED spectral func-
tions (N = 4) are shown using Lorentzian broadening with
η = 0.05, while other methods are shown without broaden-
ing. DMFT results are in thermodynamic limit.
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FIG. S13. DMFT finite-size effects close to the atomic limit
ω0 = 3, g =

√
12, T = 1
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V. ATOMIC LIMIT

Here we investigate the DMFT solution close to the
atomic limit. For decoupled sites (t0 = 0), using the
Lang-Firsov transformation [S4, S10], the Green’s func-
tion at T = 0 is given by

G(ω) =

∞∑
n=0

α2ne−α
2

n!

1

ω − nω0 − Ep + i0+
, (S25a)

and at T > 0

G(ω) =

∞∑
n=−∞

In

(
2α2

√
b(b+ 1)

)
ω − nω0 − Ep + i0+

e−(2b+1)α2+nω0/2T .

(S25b)
Here Ep = −g2/ω0 is the ground-state energy, In are
the modified Bessel functions of the first kind and
b ≡ b(ω0) = (eω0/T − 1)−1. We see that the atomic
limit spectrum consists of a series of delta functions at
a distance ω0 from each other. At T = 0 the lowest
energy peak is at ω = Ep, which corresponds to the
ground-state (polaron) energy. At finite temperatures
more delta peaks emerge even below the polaron peak.

The integrated DMFT spectral weight at T = 0 is
shown in Fig. S14 and compared to the exact atomic
limit. It was calculated using the numerical procedure
introduced in Sec. X. I(ω) features jumps at frequencies
where A(ω) has peaks and the height of those jumps is
equal to the weight of the peaks. Nonzero hopping in
the DMFT solution introduces small momentum depen-
dence of Ik(ω), which is why Fig. S14 shows the result
averaged over all momenta. A more detailed comparison
is presented in Table S1. It shows the numerical values
of the DMFT I(ω) at the positions of delta peaks (for a
given k and averaged over many k) in comparison with
the analytical t0 = 0 result from Eq. (S25a). These
delta peaks, positioned at nω0 + Ep, have the weights

equal to α2ne−α
2

/n! for n = 0, 1 . . .

For T > 0, the peaks are located both below and
above Ep. The DMFT spectra averaged over k
are shown in Fig. S15. They have a characteris-
tic fork-shaped form at low T , which is the con-
sequence of the 1d density of states. The weight
of the peaks are very close to the analytical re-
sult In(2α2

√
b(b+ 1))e−(2b+1)α2+nω0/2T . These spec-

tral weights, averaged over momenta k, are given in Ta-
ble S2.

2 1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

I(
)

0 = 1
  g = 1
  T = 0

Atomic limit
DMFT t0 = 10 5

DMFT t0 = 0.05

FIG. S14. DMFT integrated spectral weight for t0 = 0.05
(shaded) and t0 = 10−5 (red dashed line) averaged over all
momenta, I(ω) = 1

N

∑
k

∫ ω
−∞Ak(ν)dν, in comparison to the

exact t0 = 0 result (blue solid line).

TABLE S1. Integrated spectral weight I(ω) for ω0 = 1,
g = 1 at T = 0. The exact atomic limit corresponds to
t0 = 0.00. For t0 = 10−5 the DMFT solution has no k-
dependence within the specified accuracy. We denote the k-
values to be ’av.’ if the answer is averaged over all momenta.

k
t0

ω −2 −1 0 1 2 3

0.00 0.00 0.37 0.74 0.92 0.98 1.0
all 10−5 0.00 0.37 0.74 0.92 0.98 1.0
av. 0.05 0.00 0.37 0.73 0.92 0.98 1.0
0 0.05 0.00 0.40 0.76 0.94 0.99 1.0
π/2 0.05 0.00 0.37 0.74 0.92 0.98 1.0
π 0.05 0.00 0.33 0.71 0.91 0.98 0.99

3 2 1 0 1 2 30
5

10
15
20
25
30
35

A(
)

T = 0.4
T = 0.6
T = 0.8
T = 1.0
T = 1.2
T = 1.4
T = 1.6

FIG. S15. DMFT spectral functions A(ω) = 1
N

∑
k Ak(ω)

for ω0 = 1, g = 1, t0 = 0.05, at several temperatures.
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TABLE S2. Spectral weights of the peaks located at ω =
nω0 + Ep for n = −2,−1, 0, 1, 2, 3. The DMFT spectra,
obtained for t0 = 0.05, are averaged over k. The atomic
limit values (t0 = 0.00) are obtained from the analytical
formula. Here ω0 = 1, g = 1.

T
t0

ω −2 −1 0 1 2 3

0.4 0.00 0.03 0.34 0.35 0.19 0.07 0.02
0.4 0.05 0.03 0.34 0.34 0.18 0.07 0.02
0.6 0.00 0.06 0.30 0.33 0.19 0.08 0.02
0.6 0.05 0.06 0.30 0.33 0.19 0.08 0.02
0.8 0.00 0.09 0.27 0.30 0.19 0.09 0.03
0.8 0.05 0.09 0.27 0.30 0.19 0.09 0.03
1.0 0.00 0.10 0.25 0.28 0.19 0.09 0.04
1.0 0.05 0.10 0.25 0.28 0.19 0.10 0.04
1.2 0.00 0.11 0.23 0.26 0.19 0.10 0.04
1.2 0.05 0.11 0.23 0.26 0.19 0.10 0.04
1.4 0.00 0.12 0.21 0.24 0.19 0.11 0.05
1.4 0.05 0.12 0.21 0.24 0.19 0.11 0.05
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VI. SPECTRAL FUNCTIONS AT T = 0:
ADDITIONAL RESULTS

Spectral functions and integrated spectral weights at
T = 0 for k = 0 are shown in Fig. 2 of the main text.
In Figs. S16 - S18, we show the results for additional
momenta. We note that the integrated spectral weight
was calculated without broadening, using the numerical
scheme described in Sec. X. The spectral functions are
shown with a small Lorentzian broadening η,

Aη(ω) =
1

π

∫ ∞
−∞

dν
ηA(ν)

η2 + (ω − ν)2
, (S26)

We see that there is a very good agreement between
DMFT and HEOM/ED results. In every regime where
HEOM was implemented, we checked that the results
were well converged with respect to the lattice size N
and the maximum hierarchy depth D. These values are
shown in Table S3.

We note that the HEOM/ED method imposes the peri-
odic boundary conditions on a finite lattice. This means
that the HEOM/ED spectral functions are available
only for a discrete values of momenta, unlike the DMFT
which is calculated in the thermodynamical limit. Re-
sults for additional k-values are obtained using twisted
boundary conditions.
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no broadening. The insets show spectral functions with
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FIG. S18. Integrated spectral weight at T = 0 with
no broadening. The insets show spectral functions with
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TABLE S3. Lattice size N and the maximum hierarchy
depth D used in the HEOM calculations which correspond
to Figs. S16-S18 and Fig. 2 from the main text.

Parameters N D
ω0 = 1 g = 1 10 6

ω0 = 1 g =
√
2 8 7

ω0 = 3 g =
√
12 6 9
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VII. SPECTRAL FUNCTIONS AT T > 0:
ADDITIONAL RESULTS

Spectral functions for k = 0 and k = π, shown in Fig. 3
of the main text, are supplemented with the results for
different k in Fig. S19. Overall, the agreement of DMFT
and HEOM/ED spectra is very good which confirms
that the nonlocal correlations are not pronounced. Re-
sults for different temperatures are shown in Figs. S20
and S21. We checked that the HEOM results are well
converged with respect to lattice size N and maximum
hierarchy depth D. The values of N and D, used in the
calculations, are shown in Table S4.

TABLE S4. Lattice size N and the maximum hierarchy
depth D used in the HEOM calculations which correspond
to Figs. S19 - S21 and Fig. 3 from the main text.

Parameters N D
ω0 = 1 g = 1 T = 0.7 10 6
ω0 = 1 g = 1 T = 1 10 6

ω0 = 1 g =
√
2 T = 0.4 8 8

ω0 = 1 g =
√
2 T = 0.6 8 7

ω0 = 1 g =
√
2 T = 0.8 8 7

ω0 = 1 g = 2 T = 0.4 4 17

ω0 = 3 g =
√
12 T = 1 6 9

It is common to present the spectral functions as color
plots in the k−ω plane. In Fig. S22 we show the DMFT
color plot for parameters as in Figs. S19 - S21. For com-
parison purposes, in Fig. S23 we also show the DMFT
color plot for the same parameters as in the finite-T
Lanczos results from Fig. 2 of Ref. [S11]. Small differ-
ence in DMFT vs. Lanczos method color plots is due to
the more pronounced peaks in the DMFT spectra.
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FIG. S19. HEOM, DMFT, SCMA and ED spectral functions
for different parameters. On the left panels π/4 ≤ k ≤
π/3, whereas π/2 ≤ k ≤ 3π/4 on the right. The integrated
spectral weight is presented in the insets without broadening.
In panels (g) and (h) Lorentzian broadening with η = 0.05
is used for all spectral functions, while only ED is broadened
in (e) and (f) using the same η.
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FIG. S20. HEOM, DMFT, SCMA and ED spectral functions
for different parameters. On the left panels k = 0, whereas
k = π on the right. The integrated spectral weight is pre-
sented in the insets without broadening. The Lorentzian
broadening with η = 0.05 is used only for ED spectral func-
tions.
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for different parameters. On the left panels π/4 ≤ k ≤
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ED spectral functions.
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FIG. S22. The DMFT spectral functions Ak(ω) for param-
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all plots.
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FIG. S23. The DMFT spectral functions Ak(ω) for param-
eters as in Fig. 2 of Ref. [S11]. The same color coding is used
in all plots.
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VIII. HEOM SELF-ENERGIES

The results for the spectral functions, as well as for
the effective mass and ground state energy, have shown
that the DMFT gives an excellent approximate solu-
tion of 1d Holstein model in the whole parameter space.
This indicates that the self-energy is approximately lo-
cal which we explicitly demonstrate in this Section.
Since Σk(ω) = Σ−k(ω) we will show only the results
for k ≥ 0.

In Fig. S24 we present the HEOM and DMFT self-
energies in the intermediate coupling regime. Panels
(a) and (b) of Fig. S24 show that the self-energies are
nearly local, whereas the DMFT solution interpolates in
between. The self-energy is approximately local also for
g =
√

2, Fig. S24(c)-(d). There is a visible discrepancy
only at higher momenta, which reflects in a shift of the
spectral functions with respect to the DMFT solution
in Fig. 3d of the main text.

The results for the strong coupling are presented in
Fig. S25. The DMFT solution for ImΣ falls to zero
between the peaks, as opposed to the HEOM solution
where such behavior is observed only for the first few
peaks. This is why, for the sake of clarity, the DMFT
self-energy is omitted. This is consistent with Fig. S11
where the HEOM results feature the dips, while DMFT
solution has gaps. Nevertheless, the presented HEOM
results are enough to conclude that the self-energy is
nearly local. This is particularly important conclusion
since these parameters correspond to strongly renormal-
ized effective mass, m∗/m ≈ 10.

The regime close to the atomic limit is investigated in
Fig. S26. Panels (c) and (d) show that the results are
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coupling.
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FIG. S26. Panels (a) and (b) show HEOM and DMFT self-
energies close to the atomic limit ω0 = 3, g =

√
12, T = 1.

Panels (c)-(d) show the same HEOM results as in (a)-(b)
but shifted for different values of momenta k.

nearly local, but have a kind of stripe pattern, unlike the
DMFT solution which is in thermodynamic limit. This
is here just a consequence of the finite-size effects, as
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shown in Fig. S13. As discussed in Sec. IV, even though
the finite-size effects are visible as stripes in the self-
energies, they will not significantly affect the spectral
functions. This is why we see a very good agreement
between the DMFT and N = 6 HEOM spectral func-
tions in panels (g) and (h) of Fig. 3 in the main text.
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IX. CORRELATION FUNCTIONS

Here we present a detailed comparison between QMC,
HEOM and DMFT correlation functions. The QMC
correlation function is defined by

Ck(τ) = 〈ck(τ)c†k〉T,0, (S27)

where ck(τ) = eτHcke
−τH and 0 ≤ τ ≤ 1/T . In

Sec. XI D we proved the following relation

Ck(τ) =

∫ ∞
−∞

dω e−ωτAk(ω). (S28)

Eq. (S28) can now be used to check whether the spec-
tral functions that we calculated using other methods
are consistent with the QMC results. A calculation of
the spectral functions from the QMC data would as-
sume an analytical continuation which is an ill-defined
procedure, particularly problematic when the spectrum
has several pronounced peaks. Therefore, we have to
settle for a comparison on the imaginary axis.

Fig. S27 shows the imaginary time QMC, DMFT and
HEOM correlation functions and their deviation from
the QMC result, for parameters as in Fig. 4 of the main
text. We see that the deviation is very small, the rel-
ative discrepancy being just a fraction of a percent at
T = 1. The discrepancy between the DMFT and QMC
increases at lower temperatures when the nonlocal cor-
relations are expected to be more important, but it re-
mains quite small even at T = 0.4. As we can see, the
DMFT gives better results at k = 0 than at k = π.

In Fig. S28 we present the correlation function compari-
son over a broad set of parameters. The DMFT, HEOM
and QMC are in excellent agreement, with the relative
discrepancy of the order of one percent for τ ∼ 1/T .
The SCMA results are also included for comparison.

From Eq. (S28) we see that the correlation function
unevenly treats different frequencies from the spectral
function. Because of the exponential term, it takes into
account low-frequency contributions with much larger
weight. Thus, the correct DMFT and HEOM predic-
tions about correlation function reveal that the low-
frequency parts of the corresponding spectral functions
behave appropriately and fall off fast enough. This is
very important property for calculating quantities where
the low-frequency part gives large contribution to the
result, which would be the case for optical conductivity.

Let us now estimate how much a Gaussian centered at
frequency a,

AGk (ω) =
W

σ
√

2π
e−

(ω−a)2

2σ2 , (S29)

would contribute to the correlation function. Here W
is the spectral weight and σ is the standard deviation
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FIG. S27. DMFT, HEOM and QMC correlation functions
for ω0 = 1, g =

√
2 at k = 0 and k = π at several tem-

peratures. The right panels show the relative discrepancy
between DMFT and HEOM results with respect to QMC.

of the Gaussian. This could model a tiny peak present
due to the noise, or a real physical contribution. The
corresponding part of the correlation function CGk can
be singled out since Eq. (S28) is linear in Ak. It can be
evaluated analytically, giving

CGk (τ) = We
σ2τ2

2 −aτ . (S30)

We see that the spectral weight contributes linearly,
while the position of the delta peak contributes expo-
nentially (note that a can be negative). The width of
the Gaussian σ, as well as the imaginary time τ , are
quadratic inside the exponential. Hence, Eq. (S30) ex-
plicitly shows that precise calculation of the correlation
function requires very accurate spectral functions at low
frequencies. Even a small error or noise can produce a
completely wrong result. Reliable comparison of Ck(τ)
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was made possible only due to the high precision of both
DMFT and HEOM calculations.
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X. TECHNICAL NOTE: NUMERICAL
CALCULATION OF THE INTEGRATED

SPECTRAL WEIGHT

We describe a numerical scheme for calculating the in-
tegrated spectral weight. Integrated spectral weight is
defined as

Ik(ω) =

∫ ω

−∞
Ak(ν)dν, (S31)

where Ak(ν) is the spectral function. Straightforward
numerical integration of Eq. (S31) can sometimes lead
to the conclusion that the spectral sum rule Ik(∞) = 1
is violated. This happens because the numerical repre-
sentation of Ak(ν) on a finite grid does not detect the
possible presence of delta function peaks without intro-
ducing artificial broadening. This is why our numeri-
cal scheme calculates Ik(ω) directly from the self-energy
Σ(ω).

Let us suppose that the self-energy data
{Σ0,Σ1...ΣN−1} are known on a grid {ω0, ω1...ωN−1}.
The integrated spectral weight can then be rewritten as

Ik(ωl) = − 1

π
Im

∫ ωl

−∞

dν

ν − Σ(ν)− εk

≈ − 1

π
Im

l−1∑
q=0

∫ ωq+1

ωq

dν

ν − Σ(ν)− εk
. (S32)

The delta peaks in Eq. (S32) occur whenever our subin-
tegral function is (infinitely) close to the singularity, i.e.
when ImΣ(ν)→ 0− and ν − ReΣ(ν)− εk ≈ 0. These
are most easily taken into account by using the linear
interpolation of the denominator in Eq. (S32) and eval-
uating the integral analytically

Ik(ωl) ≈ −
1

π
Im

l−1∑
q=0

∫ ωq+1

ωq

dν

ν − εk −
[
Σq + Σ′q(ν − ωq)

]
= − 1

π
Im

l−1∑
q=0

1

1− Σ′q
ln

[
ωq+1 − εk − Σq+1

ωq − εk − Σq

]
,

(S33)

where Σ′q = (Σq+1 − Σq)/(ωq+1 − ωq). In the last line
of Eq. (S33) we used that lnx − ln y = ln(x/y), which
holds since ImΣq < 0 (for every q).

In the limit when ∆ωq = ωq+1 − ωq is small, Eq. (S33)
predicts that the contribution which corresponds to the
interval (ωq, ωq+1) is equal to

1

1− Σq+1−Σq
ωq+1−ωq

≈ 1

1− ∂ωΣ
, (S34)

if the interval contains a delta peak, whereas it is

− 1

π
Im

[
∆ωq

ωq − εk − Σq

]
(S35)

otherwise. The analytical result for the contribution of
the delta peak coincides with Eq. (S34), while Eq. (S35)
is exactly the term we would get using the standard Rie-
mann sum. Having in mind that the Riemann sum ap-
proach is completely justified in the absence of delta
peaks, we conclude that the integration scheme pre-
sented in Eq. (S33) is perfectly well-suited for the cal-
culation of the integrated spectral weight.
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XI. TECHNICAL NOTE: EQUIVALENCE OF
SPECTRAL FUNCTIONS FROM DIFFERENT

DEFINITIONS

Throughout this paper we compared spectral and cor-
relation functions obtained with various methods. Each
method uses different definition of the spectral func-
tion. The purpose of this Section is to show that all
of them are equivalent in the case we are considering,
which is a single electron in a system. We also present
the relation which connects the spectral function with
the imaginary-time correlation function obtained from
QMC calculation.

A. Spectral function from greater Green’s
function

In the HEOM method, the most natural starting point
is the greater Green’s function [S12]

G>k (t) = −i
〈
ck (t) c†k

〉
T,0

. (S36)

Here ck and c†k are the electron annihilation and creation
operators, while

ck (t) = eiHtck (0) e−iHt.

The notation 〈. . .〉T,0 denotes the thermal overage over
the space of states containing zero electrons

〈x〉T,0 =

∑
p 〈p|e−Hph/Tx|p〉∑
p 〈p|e−Hph/T |p〉

=
1

Zp

∑
p

〈p|e−Hph/Tx|p〉 .

(S37)
Here |p〉 denotes the states containing no electrons and
arbitrary number of phonons, Hph is purely phononic
part of the Hamiltonian and Zp is the phononic partition
function. The spectral function is now defined as

Ak (ω) = − 1

2π
ImG>k (ω) , (S38)

where

G>k (ω) =

∫ ∞
−∞

dt eiωt G>k (t) . (S39)

These expressions can be cast into explicit form using
the Lehmann spectral representation (using the basis of
energy eigenstates H|n〉 = En|n〉)

G>k (t) =
−i
Zp

∑
p,e

e−Ep/T eiEpt 〈p|ck|e〉 e−iEet 〈e|c†k|p〉 ,

(S40)
where |e〉 denotes the states containing one electron and
an arbitrary number of phonons. The spectral function

can now be obtained by taking the Fourier transform of
previous expression and using Eq. (S38)

Ak (ω) =
1

Zp

∑
p

e−Ep/T
∑
e

δ (ω + Ep − Ee) | 〈p|ck|e〉|2 .

(S41)

B. Spectral function from retarded and
time-ordered Green’s function

In the DMFT/SCMA, we can start from the time-
ordered Green’s function [S1] with just a single electron
inserted into the system

Gk(t) = −i〈Tck(t)c†k〉T,0. (S42)

As in the case of the greater Green’s function, here we
average only over the phonon degrees of freedom. This
means that (S42) gives nonvanishing contribution only
for t > 0

Gk(t) = −iθ(t)〈ck(t)c†k〉T,0. (S43)

In our case of a single electron in the system, this co-
incides with the retarded Green’s function. Ref [S1]
explains in detail how is this connected to the polaron
impurity problem. Now, the spectral function can be
obtained as

Ak(ω) = − 1

π
ImGk(ω), (S44)

where

Gk (ω) = lim
ε→0+

∫ ∞
−∞

dt ei(ω+iε)t Gk (t) . (S45)

Let us now check whether the definitions of spectral
functions from Secs. XI A and XI B are in agreement
with one another. This can be easily checked by utilizing
the Lehmann spectral representation

Gk (t) =
−iθ (t)

Zp

∑
p,e

e−Ep/T ei(Ep−Ee)t | 〈p|ck|e〉|2 .

(S46)
The spectral function is now obtained by performing
the Fourier transform, using Eq. (S44) and the Plemelj-
Sokhotski theorem Im limε→0+

1
x+iε = −πδ (x). We ob-

tain the result which coincides with (S41). Furthermore,
these results also coincide with Eq. (S23). This confirms
that all of these approaches are consistent with one an-
other.
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C. Spectral function from grand canonical
ensemble

It is also quite common to work within the grand canon-
ical ensemble, not restricting ourselves explicitly to a
single electron in a system. Here we use the usual defi-
nition of the retarded Green’s function

Gk (t) = −iθ (t)
〈{
ck (t) , c†k

}〉
T
, (S47)

where

ck(t) = eiKtcke
−iKt, (S48)

K = H − µN and N being the electron number oper-
ator. The notation 〈. . . 〉T denotes the average value in
the grand canonical ensemble and {, } is the anticommu-
tator. The spectral function is obtained by substituting
Gk (t) from (S47) into Eqs. (S45) and (S44). A more
explicit form can be obtained using the Lehmann spec-
tral representation (using the basis of energy eigenstates
K|n〉 = Kn|n〉)

Ak (ω) =
1

Z

∑
n1n2

e−βKn1

[
| 〈n1|ck|n2〉|2 δ (Kn1

−Kn2
+ ω)

+
∣∣∣ 〈n1|c†k|n2〉

∣∣∣2 δ (Kn2
−Kn1

+ ω)

]
,

(S49)

where Z = Tr
(
e−βK

)
is the partition function. Let us

now consider what happens in the case we are interested
in, which is the zero density limit. This corresponds to
µ→ −∞.

We note first that the dominant terms in the partition
function Z in this limit are from the states with zero
electrons

Z =
∑
n

e−βKn =
∑
p

e−βKp = Zp. (S50)

The states containing a larger number of electrons in-
troduce an additional term eβµN which is exponentially
small when µ → −∞. Consequently, we have shown
that Z from Eq. (S49) is the same as Zp from Eq.
(S41) in the limit µ→ −∞.

Next, we consider the sum in Eq. (S49). Due to the
e−βKn1 factor, the dominant contribution to the sum
over n1 comes from the states |n1〉 containing zero elec-
trons. The states containing a larger number of elec-
trons introduce an additional term eβµN which is ex-
ponentially small when µ → −∞. Therefore, the sum
over n1 in Eq. (S49) can be replaced by a sum over p,
where |p〉 denote the states containing no electrons. The

second term containing 〈n1|c†k|n2〉 in Eq. (S49) is then

zero, while the first term containing 〈n1|ck|n2〉 is differ-
ent from zero only when |n2〉 is the state containing one
electron. The sum in Eq. (S49) then reads as

Ak (ω) =
1

Zp

∑
p,e

e−βKp | 〈p|ck|e〉|2 δ (Kp −Ke + ω) ,

(S51)
We further note that the last equation can be also ex-
pressed in the form

Ak (ω − µ) =
1

Zp

∑
p,e

e−βEp | 〈p|ck|e〉|2 δ (Ep − Ee + ω) .

(S52)
The right hand side in previous equation coincides with
Eq. (S41). This proves that the spectral function within
the grand canonical formalism needs to be considered in
the limit µ→ −∞ and also the result needs to be shifted
Ak(ω) → Ak(ω − µ) if we want our result to coincide
with Eq. (S41).

All of these results give us to flexibility to work within
different formalisms knowing that all of them give the
same result. Hence, we proved that the definitions of
spectral functions within HEOM, DMFT, SCMA and
ED are all in agreement.

D. Relation between the spectral function and
imaginary-time correlation function

In QMC we calculate the quantity

Ck(τ) = 〈ck(τ)c†k〉T,0, (S53)

where

ck(τ) = eτHcke
−τH . (S54)

Again, using the Lehmann spectral representation in
Eq. (S53) we get

Ck(τ) =
1

Zp

∑
p,e

e−βEp | 〈p|ck|e〉|2eτ(Ep−Ee). (S55)

By performing straightforward integration, one then
finds from Eqs. (S41) and (S55)

Ck(τ) =

∫ ∞
−∞

dω e−ωτAk(ω). (S56)

This proves Eq. (S28), which connects the correlation
functions from QMC with spectral functions, obtained
from other methods.
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[S11] J. Bonča, S. A. Trugman, and M. Berciu, Phys. Rev.
B 100, 094307 (2019).
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Cumulant expansion in the Holstein model: Spectral functions and mobility
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We examine the range of validity of the second-order cumulant expansion (CE) for the calculation of spectral
functions, quasiparticle properties, and mobility of the Holstein polaron. We devise an efficient numerical
implementation that allows us to make comparisons in a broad interval of temperature, electron-phonon coupling,
and phonon frequency. For a benchmark, we use the dynamical mean-field theory which gives, as we have
recently shown, rather accurate spectral functions in the whole parameter space, even in low dimensions. We
find that in one dimension, the CE resolves well both the quasiparticle and the first satellite peak in a regime of
intermediate coupling. At high temperatures, the charge mobility assumes a power law μ ∝ T −2 in the limit of
weak coupling and μ ∝ T −3/2 for stronger coupling. We find that, for stronger coupling, the CE gives slightly
better results than the self-consistent Migdal approximation (SCMA), while the one-shot Migdal approximation
is appropriate only for a very weak electron-phonon interaction. We also analyze the atomic limit and the spectral
sum rules. We derive an analytical expression for the moments in CE and find that they are exact up to the fourth
order, as opposed to the SCMA where they are exact to the third order. Finally, we analyze the results in higher
dimensions.

DOI: 10.1103/PhysRevB.107.125165

I. INTRODUCTION

The cumulant expansion (CE) method presents an alterna-
tive to the usual Dyson equation approach in the calculation
of spectral functions of interacting quantum many-particle
systems [1]. In this method, we express the Green’s function
in real time as an exponential function of an auxiliary quantity
C(t ), called the cumulant, which can be calculated perturba-
tively [2]. In the late 1960s, it was established that the lowest
order CE gives the exact solution of the problem of a core hole
coupled to bosonic excitations (plasmons or phonons) [3,4].
While there were early papers that emphasized the potential
role of CE as an approximate method to treat the elec-
tronic correlations in metals beyond the GW approximation
[5–8] and the electron-phonon interaction in semiconductors
and narrow band metals beyond the Migdal approximation
(MA) [9–11], a surge of studies of CE has appeared only
recently.

Renewed interest has emerged due to the possibility of
combining CE with ab initio band-structure calculations. The
CE for the electron-phonon interaction was used to obtain
the spectral functions of several doped transition-metal oxides
[12,13], showing a favorable comparison with angle-resolved
photoemission spectroscopy [14]. A particularly appealing
feature of the CE approach is that it describes the quasipar-
ticle part of the spectrum as well as the satellite structure
(sidebands). Combining the CE with the Kubo formula for
charge transport gives an attractive route to calculate mobility
in semiconductors beyond the Boltzmann approach, which
is applicable only for weak electron-phonon coupling [15].
This was very recently demonstrated for SrTiO3 [16] and
naphthalene [17]. CE was also applied to elemental metals
where a correction to the standard MA is discussed [18].
Similarly, the CE is successfully used to treat the electronic
correlations beyond the GW approximation [19–25]. Further-

more, CE was used to study absorption spectra in molecular
aggregates representative of photosynthetic pigment-protein
complexes [26–28].

Despite the wide use of the lowest order CE, there seems
to be a lack of studies establishing its range of validity,
which represents the central motivation for this paper. To
achieve this, we turn to simplified models of the electron-
phonon interaction. CE for the Fröhlich model [29,30] gives
the ground-state energy and the effective mass similar to
the exact quantum Monte Carlo calculations for moderate
interaction [31]. This is in contrast to the Dyson-Migdal
approach, which severely underestimates mass renormaliza-
tion. A comparison of the corresponding spectral functions
is, however, missing, since reliable quantum Monte Carlo
results are not available due to the well-known problems with
analytical continuation. The Holstein polaron model gives a
unique opportunity to explore the applicability of the CE since
various numerically exact methods are developed and applied
to this model covering different parameter regimes [32–49].
This was the approach of a very recent work by Reichman
and collaborators [50,51]. Still, there are several questions
that remained unresolved. Most importantly, a comparison of
spectral functions was made just for a small set of parameters
on a finite-size lattice, where the benchmark spectral functions
were available from the finite-temperature Lanczos results,
while the charge transport was not examined.

In our recent work [52], we established that the dynamical
mean-field theory (DMFT) [53] gives close to exact spectral
functions of the Holstein polaron for different phonon fre-
quencies, electron-phonon couplings, and temperatures even
in low dimensions, covering practically the whole parameter
space. This method is computationally very fast and precise,
which makes us ideally positioned to perform comprehen-
sive comparisons with the CE method, which is the goal of
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this paper. Within the CE, we calculate the spectral func-
tions and charge mobility for a broad set of parameters and
make detailed comparisons with DMFT and (self-consistent)
MA. We find that the one-shot MA is appropriate only for
very weak electron-phonon coupling. The validity of the CE
and self-consistent Migdal approximation (SCMA) is much
broader and for intermediate interaction CE even outperforms
SCMA. We also derive analytical CE expressions for the
ground-state energy, renormalized mass, and scattering rate
as well as the spectral sum rules, and make comparisons
between the methods. We establish a power-law behavior for
the charge mobility at high temperatures. We also compare the
performance of different methods as the bandwidth is reduced
toward the atomic limit.

The remaining part of the paper is organized as follows.
In Sec. II, we introduce the CE method and present details of
its implementation on the Holstein model. DMFT and SCMA
are here introduced as benchmark methods. Representative
spectral functions are shown in Sec. III from weak toward
the strong coupling. The high-temperature and atomic limits
are analyzed in detail, as well as the spectral sum rules. In
Sec. IV, we present the results for the effective mass and
ground-state energy. The temperature dependence of the elec-
tron mobility is analyzed in Sec. V, and Sec. VI contains our
conclusions. Some details concerning numerical implementa-
tions and additional figures for various parameters are shown
in the Appendix and in the Supplemental Material (SM) [54].

II. MODEL AND METHODS

The Holstein model is the simplest model of the lattice
electrons interacting with the phonons. It assumes a local
electron-phonon interaction and dispersionless phonons. The
Hamiltonian is given by

H = − t0
∑
〈i j〉

(c†
i c j + H.c.)

− g
∑

i

ni(a
†
i + ai ) + ω0

∑
i

a†
i ai. (1)

Here, t0 is the hopping parameter between the nearest neigh-
bors and ω0 is the phonon frequency. ci and ai are the electron
and the phonon annihilation operators, ni = c†

i ci, and g de-
notes the electron-phonon coupling strength. We set h̄, kB,
elementary charge e, and lattice constant to 1. We also often
use a parameter α = g/ω0. We study the model in the thermo-
dynamic limit (number of sites N → ∞). Furthermore, we
consider a dynamics of a single electron in the conduction
band and treat the electrons as spinless, since we are interested
only in weakly doped semiconductors. This is equivalent to
setting the chemical potential far below the conduction band,
i.e., considering the limit μ̃ → −∞. This case is often re-
ferred to as the Holstein polaron problem. We mostly focus
on the one-dimensional (1D) system, but we also consider the
system in 2D and 3D.

A. Cumulant expansion

1. General theory

The central quantity of this paper is the electron spectral
function Ak(ω) = (−1/π )ImGk(ω), where k is the momen-

tum and Gk(ω) is the retarded Green’s function in frequency
domain [1]. Its exact evaluation is often a formidable task,
which is why approximate techniques are usually employed.
One needs to be careful with such approaches not to violate
some analytic properties, such as the pole structure of the
Green’s function, the positivity of the spectral function, or
the spectral sum rules. At least some of these properties can
be easily satisfied if the Green’s function is not calculated
directly but instead through some auxiliary quantity, such as
the self-energy �k(ω). In the latter case, the connection with
the Green’s function is established via the Dyson equation

Gk(ω) = 1

Gk,0(ω)−1 − �k(ω)
= 1

ω − εk − �k(ω)
, (2)

where Gk,0(ω) is the noninteracting Green’s function and εk
is the noninteracting dispersion relation.

An alternative to the Dyson equation based approaches is
the so-called cumulant expansion method [19], in which the
exponential ansatz is chosen for the Green’s function in the
time domain:

Gk(t ) = Gk,0(t )eCk (t ) = −iθ (t )e−iεkt eCk (t ). (3)

Here, θ (t ) is the Heaviside step function and Ck(t ) plays the
role of an auxiliary quantity which is called the cumulant.
Both Eqs. (2) and (3) would correspond to the same Green’s
function in frequency and time domain if the cumulant Ck(t )
and the self-energy �k(ω) could be evaluated exactly [1].
In practice, however, one of these approaches is expected to
perform better. The spectral function within the CE can be
obtained as follows:

Ak(ω + εk ) = 1

π
Re

∫ ∞

0
dteiωt eCk (t ). (4)

Equation (4) circumvents the Fourier transform of the whole
Green’s function Ak(ω) = − 1

π
ImGk(ω), which is useful in

practice, as the free electron part e−iεkt typically oscillates
much more quickly than eCk (t ).

The expression for Ck(t ) in the lowest order perturbation
expansion can be obtained by taking the leading terms
in the Taylor expansion of the Dyson equation Gk(ω) =
(Gk,0(ω)−1 − �k(ω))−1 ≈ Gk,0(ω) + Gk,0(ω)�k(ω)Gk,0(ω),
taking its inverse Fourier transform and equating it to Eq. (3),
where the cumulant in the exponent is replaced with its linear
approximation eCk (t ) ≈ 1 + Ck(t ):

Ck(t ) = ieiεkt
∫ ∞

−∞

dω

2π

e−iωt�k(ω)

(ω − εk + i0+)2
. (5)

Using the spectral representation of the self-energy

�k(ω) =
∫

dν

π

|Im�k(ν)|
ω − ν + i0+ , (6)

and the contour integration over ω, Eq. (5) simplifies to [19]

Ck(t ) = 1

π

∫ ∞

−∞
dω

|Im�k(ω + εk )|
ω2

(e−iωt + iωt − 1). (7)

The corresponding spectral function satisfies the first two
sum rules, irrespective of �k(ω). This is a consequence of
the behavior of Ck(t ) for small t ; see Sec. III C. In gen-
eral, Ck(t = 0) = 0 is sufficient for the first spectral sum
rule

∫
Ak(ω)dω = 1 to be satisfied. The second sum rule
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∫
Ak(ω)ωdω = εk can also be satisfied if we additionally

impose that the cumulant’s first derivative at t = 0 is van-
ishing, dCk

dt (0) = 0. Both of these conditions are satisfied by
the cumulant function in Eq. (7), as it is a quadratic function
of time for small arguments e−iωt + iωt − 1 ≈ −ω2t2/2 for
t → 0.

The application of Eq. (7) is facilitated by the fact that
it does not contain any iterative self-consistent calculations.
However, one needs to overcome the numerical challenges
caused by the removable singularity at ω = 0 and by the
rapidly oscillating trigonometric factor e−iωt for large t . The
latter is important for the weak electron-phonon couplings,
where it is necessary to propagate Ck(t ) up to long times until
the Green’s function is sufficiently damped out. The same
problem occurs in other regimes as well (e.g., close to the
atomic limit), where the Green’s function does not attenuate
at all; see Sec. II A 4.

The numerical singularity at ω = 0 can be completely
avoided if we consider the cumulant’s second derivative

d2Ck(t )

dt2
=

∫ ∞

−∞

dω

π
Im�k(ω + εk ) e−iωt ≡ 2eiεkt σ̃k(t ), (8)

where we used Im�k(ω) < 0 and introduced σ̃k(t ) ≡∫ ∞
−∞ Im�k(ω)e−iωt dω

2π
. Then, Ck(t ) is obtained as a double

integral over time of Eq. (8),

Ck(t ) = 2
∫ t

0
dt ′

∫ t ′

0
dt ′′eiεkt ′′

σ̃k(t ′′), (9)

where the lower boundaries of both integrals have to be zero,
as guaranteed by the initial conditions Ck(0) = dCk

dt (0) = 0.
Using the Cauchy formula for repeated integration, this can
also be written as a single integral:

Ck(t ) = 2
∫ t

0
(t − x)eiεkxσ̃k(x)dx. (10)

This completely removed the problem of numerical sin-
gularities. Still, the problem of rapid oscillations of the
subintegral function remains due to the presence of eiεkx term.
In Sec. II A 3, we provide an elegant solution for this issue,
focusing on the case of the Holstein model.

2. Asymptotic expansion for cumulant when t → ∞
The asymptotic expansion of Ck(t ) for large times, as

we now demonstrate, completely determines the quasiparticle
properties within this method. This is one of the main moti-
vations for studying the t → ∞ limit. From Eq. (8), we see
that

i
dCk

dt
(t → ∞) = i

∫ ∞

0

d2Ck(t )

dt2
dt

= − i

π

∫ ∞

−∞
dω|Im�k(ω + εk )|

∫ ∞

0
dte−iωt

= �k(εk ), (11)

where we used the identity
∫ ∞

0 dte−iωt = πδ(ω) − iP 1
ω

and
the Kramers-Kronig relations for the self-energy. Hence, the
cumulant function Ck(t ), and also the whole exponent in
Eq. (3) is a linear function of time Ck(t ) − iεkt ≈ −iẼkt +

const for t → ∞, where

Ẽk = εk + �k(εk ). (12)

As a consequence, the Green’s function in Fourier space has a
simple pole situated at Ẽk, as seen from the following expres-
sion:

Gk(ω) = −i
∫ ∞

0
eit (ω−εk− iCk (t )

t )dt . (13)

Therefore, quasiparticle properties are encoded in Ẽk: its real
and imaginary parts correspond to the quasiparticle energy
and scattering rate, respectively. We note that, in our present
analysis, we implicitly assumed that dCk

dt (t → ∞) exists and
is finite. Although this is generally true, there are a few excep-
tions. In the Holstein model, the first assumption is violated
at the atomic limit [t0 = 0; see Eq. (28)], while the second
assumption is violated at the adiabatic limit (ω0 = 0) for
k = 0 or k = ±π ; see Eqs. (18) or (19).

The knowledge that we gained about the analytic properties
of the Ck(t ) provides us with an intuitive understanding of
how the shape of the cumulant determines the shape of the
spectral function. The asymptotic limits t → ∞ [where Ck(t )
is linear] and t → 0 [where Ck(t ) is quadratic] by them-
selves, to a large extent, describe only the simple one-peak
spectral functions, while the crossover between these limits
is responsible for the emergence of satellite peaks. This can
be explained as follows: If the cumulant was quadratic over
the whole t domain Ck(t ) = ct2, the spectral function would
have a simple Gaussian shape. Similarly, the Lorentzian shape
would be obtained from the linear cumulant Ck(t ) = ct . This
suggests that the simple crossover between quadratic (at small
t ) and linear (at large t ) behaviors would also give a sim-
ple one-peak shape of the spectral function. The information
about phonon satellites is thus completely encoded in the
Ck(t ) for intermediate times t , which depends on the system
and approximation in which the cumulant function is calcu-
lated.

3. Second-order cumulant expansion for the Holstein model

Let us now concentrate on a specific example, the Holstein
model on a hypercubic lattice in n dimensions. The second-
order cumulant is given by Eq. (7), where the self-energy is
taken to be in the MA �k(ω) = �MA(ω), i.e., of the second
(lowest) order with respect to the electron-phonon coupling
g. This is in accordance with the derivation from Sec. II A 1,
since we restricted ourselves to the lowest order terms in the
Taylor expansion of the Dyson equation and of eCk (t ). An alter-
native derivation of this expression is given in Sec. I of the SM
[54]. MA is briefly discussed in Sec. II B 1. For our present
purpose, we only need the expression for the imaginary part
of the self-energy

Im�MA(ω) = −πg2[(nph + 1)ρ(ω − ω0) + nphρ(ω + ω0)],

(14)

where nph = 1/(eω0/T − 1) is the Bose factor, ρ(ω) =
1
N

∑
k δ(ω − εk ) is the density of electron states for the system

of size N , which we take in the thermodynamic limit N → ∞,
and εk = −2t0

∑n
j=1 cos k j is the noninteracting dispersion

relation.
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FIG. 1. (a)–(f) The cumulant, Green’s, and spectral function on
the example of the one-dimensional Holstein model with the follow-
ing values of the model parameters: ω0 = 0.2, g = 0.2, T = 0.3, and
t0 = 1.

The expression for the cumulant function, as seen from
Eq. (10), is related to the inverse Fourier transform of
Im�MA(ω), which in turn is completely determined by the
inverse Fourier transform of the density of states ρ̃(t ). The
latter admits a closed-form solution

ρ̃(t ) =
∫ ∞

−∞

dωe−iωt

(2π )n+1

∫
[0,2π )n

dnk δ

⎛
⎝ω + 2t0

n∑
j=1

cos k j

⎞
⎠

= 1

2π

(
1

2π

∫ 2π

0
dke2it0t cos k

)n

= J0(2t0t )n

2π
, (15)

where J0 is the Bessel function of the first kind of order
zero. Hence, Eqs. (10), (14), and (15) imply that the cumulant
function can be written as

Ck(t ) = −g2
∫ t

0
dx(t − x)iD(x)eixεk J0(2t0x)n, (16)

where iD(t ) = (nph + 1)e−iω0t + npheiω0t is the phonon prop-
agator in real time (for t > 0). In Fig. 1, we illustrate the
cumulant function, as well as the corresponding Green’s func-
tion and spectral function. Figures 1(a) and 1(b) show the
second derivative of the cumulant

d2Ck(t )

dt2
= −g2iD(t )eitεk J0(2t0t )n (17)

to demonstrate the rapid oscillations that are also present in
the cumulant itself. These are not easily observed by inspect-

FIG. 2. Quasiparticle lifetime τk in the CE method for T/t0 = 2
and g/t0 = 1.

ing Ck(t ) directly, as the linear behavior dominates for large
times. We observe that the k = 0 and k = π results possess an
oscillating envelope with period 2π/ω0, while intermediate
momenta have a much less regular structure. This can have
direct consequences on the spectral functions, as the satellite
peaks are expected to be at a distance ω0 from each other.
To be more explicit, oscillating envelopes suggest that there
is a much higher chance for the occurrence of satellite peaks
near the bottom (k ≈ 0) and the top (k ≈ π ) of the band, than
otherwise. However, that does not guarantee that the satellite
peaks will in fact occur. Figure 1(c) shows that ReCk(t ) is
declining faster for k > 0 than for k = 0. As a consequence,
eCk (t ) in Fig. 1(d) attenuates slower for k = 0, having enough
time to complete a full period, while k = π results are remi-
niscent of an overdamped oscillator. A similar, although much
less evident, effect can be seen in the Green’s function itself;
see Fig. 1(e). This is why the k = π spectral function in
Fig. 1(f) has a simple one-peak shape, while only the k = 0
result captures one small satellite peak.

From a numerical point of view, Eq. (16) is treated using
Levin’s collocation method [55], which is reviewed in Ap-
pendix A. It provides a controlled, accurate, and numerically
efficient way to integrate the product of trigonometric, Bessel,
and some slowly varying function. This approach avoids using
a dense t grid, which would otherwise be required, as the
subintegral function in Eq. (16) has the same type of rapid
oscillations present in d2Ck(t )/dt2.

4. Lifetime

Another question of practical importance is how long we
should propagate the cumulant function in real time until the
corresponding Green’s function attenuates. A rough estimate
of such quantity is given by the quasiparticle lifetime τk. The
lifetime is given by τk = 1/(2|ImẼk|), where Ẽk is given by
Eq. (12) and the self-energy is taken in the MA [see Eq. (14)]:

τ−1
k = 2|ImẼk| = 2g2 θ

(
4t2

0 − (εk − ω0)2
)√

4t2
0 − (εk − ω0)2

(nph + 1)

+ 2g2 θ
(
4t2

0 − (εk + ω0)2
)√

4t2
0 − (εk + ω0)2

nph. (18)

This is illustrated in Fig. 2. We observe that there is a con-
siderable part of the parameter space where the lifetime is
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FIG. 3. Feynman diagrams in the Migdal approximation and the
self-consistent Migdal approximation.

infinite, which means that the corresponding Green’s function
never attenuates. This occurs for ω0 > 2t0 + 2t0| cos k| in the
case of finite temperatures, and for ω0 > 4t0 sin2 k/2 in the
T = 0 case. In these regimes, one could presume that this is
reflected in the spectral functions through the appearance of
Dirac delta peaks, which is not expected at finite temperatures.
This illustrates one of the limitations of this method.

B. Benchmark methods

1. Migdal and self-consistent Migdal approximation

The Migdal approximation [56] is the simplest perturba-
tion approach, whose self-energy is represented with a single,
lowest order Feynman diagram, as shown in Fig. 3(a). The
imaginary part of the self-energy is given by Eq. (14) in the
case when there is just a single electron in the band, regardless
of the dispersion relation or the number of dimensions of
the system. The corresponding real part is obtained using the
Kramers-Kronig relations, and in 1D reads as

Re�MA(ω) = g2(nph + 1)
θ
(
(ω − ω0)2 − 4t2

0

)
sgn(ω − ω0)√

(ω − ω0)2 − 4t2
0

+ g2nph
θ
(
(ω + ω0)2 − 4t2

0

)
sgn(ω + ω0)√

(ω + ω0)2 − 4t2
0

.

(19)

The range of validity of the MA can be extended if we sub-
stitute the noninteracting electron propagator in Fig. 3(a) with
an interacting one. At the same time, the interacting propaga-
tor itself is expressed through the self-energy via the Dyson
equation. These relations constitute the SCMA. Figure 3 il-
lustrates that the SCMA self-energy consists of a series of
noncrossing diagrams, whose lowest order coincides with the
MA. Figure 3(b) shows the second-order contribution, while
the third-order contributions are shown in Figs. 3(c) and 3(d).

Mathematically, the self-consistency relations are straight-
forwardly derived and, in our case, read as

�SCMA(ω) = g2(nph + 1)G(ω − ω0) + g2nphG(ω + ω0),

(20a)

G(ω) = 1

(2π )n

∫ π

−π

dnk
1

ω − εk − �SCMA(ω)
, (20b)

where G(ω) is the local Green’s function. We see that in
the case of the Holstein model, the SCMA self-energy is k
independent.

2. Dynamical mean-field theory

Dynamical mean-field theory is a nonperturbative approx-
imate method, that represents a natural generalization of the
traditional mean-field theory [57]. It simplifies the original
lattice problem by mapping it to a single site impurity prob-
lem, embedded into an external bath that is described with
a frequency-dependent (i.e., dynamical) field G0(ω), which
needs to be determined self-consistently. This simplification
is reflected on the self-energy, which is assumed to be k-
independent �k(ω) = �(ω). The DMFT becomes exact in the
limit of infinite dimensions or, equivalently, infinite coordina-
tion number.

In practice, G0(ω) and �(ω) are determined self-
consistently, by imposing that the local Green’s function of
the lattice problem

G(ω) =
∫ ∞

−∞

ρ(ε)dε

ω − �(ω) − ε
, (21)

and the self-energy �(ω) coincide with the corresponding
quantities of the impurity problem. Here, ρ(ε) is the nonin-
teracting density of states. The self-consistent loop is closed
using the Dyson equation G0(ω) = (G−1(ω) + �(ω))−1. In
the case of the Holstein model, the (polaron) impurity problem
can be solved exactly, directly on the real-frequency axis, in
terms of the continued fraction expansion [53]. Furthermore,
in the one-dimensional case, Eq. (21) assumes a closed-form
solution and reads as

G(ω) = Re
1

2t0B(ω)
√

1 − 1
B(ω)2

+ iIm
−i

2t0
√

1 − B(ω)2
, (22)

where B(ω) = (ω − �(ω))/(2t0); see Supplemental Material
of Ref. [52]. We note that Eq. (22) can also be used for the
SCMA in Eq. (20).

We have very recently shown [52], by using extensive
comparisons with several numerically exact methods cover-
ing various parameter regimes, that the DMFT can provide
a rather accurate solution for the Holstein polaron even in
low dimension. Hence, the DMFT has emerged as a unique
numerical method that gives close to exact spectral functions
in practically the whole space of parameters, irrespective of
the number of dimensions. This makes the DMFT an ideal
benchmark method for comparisons with the CE results for
the Holstein model.

III. SPECTRAL FUNCTIONS

In this section, we present the CE spectral functions of
the 1D Holstein model. The DMFT is used as a benchmark,
while MA and SCMA represent the main competitors and
alternatives to the CE method. Section III A shows the results
for k = 0, whereas heat plots and the k = π results are shown
in Sec. III B. High-temperature spectral functions and spec-
tral sum rules are presented in Sec. III C. The behavior near
the atomic limit is discussed in Sec. III D. We present only
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FIG. 4. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5 and
k = 0. In the left panels T = 0.3, while T = 0.7 in the right panels.
Insets show the integrated spectral weights Ik(ω) = ∫ ω

−∞ Ak(ν )dν.

the results for ω0 = 0.5, while the results for other phonon
frequencies and various momenta are shown in Sec. II of SM
[54]. The 2D spectral functions are presented in Appendix B.

A. Low and intermediate temperatures for k = 0

In the weak-coupling limit α → 0, all these approximate
methods (DMFT, CE, SCMA, MA) provide accurate results.
In Fig. 4, we investigate how far from this strict limit each
of our methods continues to give reasonably accurate spectral
functions. In Fig. 4(a), we see that for α = 1 all methods
correctly capture the quasiparticle peak, which dominates in
the structure of the spectrum. The MA satellite peak is slightly
shifted towards higher frequencies, which becomes signifi-
cantly more pronounced at higher temperatures; see Fig. 4(b).
The limitations of the MA become more obvious for stronger
couplings, where even the position and weight of the quasi-
particle peak are inaccurate; see Figs. 4(c)–4(h).

While the quasiparticle properties of the CE and SCMA
seem to be quite similar if α is not too large, some difference
in satellite peaks is already visible in Figs. 4(b) and 4(c).
Figure 4(c) shows that SCMA gives broader satellites than
the DMFT benchmark, whereas CE slightly underestimates
the position of the satellite. Neither CE nor SCMA can be
characterized as distinctly better in this regime. On the other
hand, Figs. 4(e) and 4(g) display a clear advantage of the CE.

FIG. 5. (a)–(h) Heat maps of Ak(ω) for t0 = 1, ω0 = 0.5, and
T = 0.3. In the left panels, we present CE results, while the DMFT
benchmark is presented in the right panel. All plots use the same
color coding.

We see that it captures rather well the most distinctive features
of the solutions, which are the first few satellites. This is not
the case for SCMA.

Figures 4(f) and 4(h) demonstrate that the CE gives a
rather quick crossover toward the high-temperature limit, as
it predicts a simple broad one-peak structure for the spectral
function already for T = 0.7. This large difference between
the spectral functions for T1 = 0.3 and T2 = 0.7 can be
understood by examining the ratio of their corresponding
lifetimes τ (T1)/τ (T2) = nph(T2)/nph(T1) ≈ 8.5. This implies
that ReCk(t ) for T = 0.7 has a much steeper slope as a func-
tion time, which suppresses the appearance of satellites, as
explained in Sec. II A 3.

B. Low and intermediate temperatures for k �= 0

To proceed with the analysis of the CE ,we want to answer:
(i) Whether the conclusions that we reached for k = 0 can be
carried over to other momenta as well? (ii) Does CE continue
to be better than SCMA at much higher temperatures? The
first question is answered in Fig. 5, where we compare CE
and DMFT heat plots. Figures 5(a) and 5(b) demonstrate
that CE results are quite reminiscent of the DMFT results
for α = 1, even at nonzero momenta. The same conclusion
holds for weaker couplings as well. On the other hand, there
are differences between the results for somewhat stronger
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FIG. 6. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5, and
k = π . In the left panels T = 0.3, while T = 0.7 in the right panels.

coupling α = 1.5, as shown in Figs. 5(c) and 5(d). While the
polaron bands in both of these figures are convex, the CE
predicts the first satellite to be concave, unlike the DMFT.
In other words, CE predicts that the distance between the
polaron peak and the satellites decreases as we increase the
momentum. This is counterintuitive, as the satellites are per-
ceived as the quasiparticle that absorbed or emitted a phonon,
which should consequently be just at energy distance ω0 apart.
These limitations of the CE are much more pronounced for
stronger electron-phonon couplings. While the DMFT solu-
tion in Figs. 5(f) and 5(h) exhibits a series of distinct bands,
Figs. 5(e) and 5(g) demonstrate that the polaron and satellite
bands of the CE merge into a single band at higher momenta.
However, the most noticeable feature here is the fact that the
CE is too smeared, as if the temperature is too high. This is
a consequence of the fact that the lifetime in Eq. (18) scales
as τk ∼ 1/g2. While the heat maps reveal noticeable discrep-
ancies between the DMFT and CE for k �= 0, it seems that
these differences are much less pronounced around k = π . A
more detailed comparison is presented in Fig. 6 that shows
the results for the same regimes as in Fig. 4. The DMFT
solution in Figs. 6(a)–6(d) shows that the main feature of the
spectral function is a single broad peak for α � 1.5, which
is in agreement with the CE results. This is also the case for
the SCMA, although we observe a slight tendency of the main
peak to lean toward higher frequencies at higher temperatures.
For larger interaction strengths, CE cannot fully reproduce the
sharp peaks at lower frequencies of the low-temperature spec-
tral function or the fine structure of the main peak at higher

temperatures; see Figs. 4(e)–4(h). Similarly, CE misses the
quasiparticle peak as well, situated at low energy, although it
is typically tiny and not (clearly) visible in Figs. 6(a)–6(h) (see
Appendix C). A detailed comparison of the spectral functions
for other momenta and phonon frequencies is presented in
Sec. II of the SM [54].

Overall, we find that the CE gives the most accurate results
for k = 0 and k = π and that it is less accurate for other mo-
menta. Although it cannot fully reproduce a tiny quasiparticle
peak for k = π , it describes well a wide single-peak structure,
which is the most prominent feature of the spectrum. A much
larger discrepancy for k = π , between the CE and a reliable
benchmark, was reported in Ref. [50] by examining the sys-
tem on a finite lattice system with N = 6. In Appendix C,
we examine the same parameter regime as in Ref. [50] and
show that these discrepancies are significantly reduced in the
thermodynamic limit.

C. Spectral functions at high temperatures
and spectral sum rules

In Fig. 7, we show CE, SCMA, and DMFT spectral
functions at high temperatures for the same electron-phonon
couplings as in Figs. 4 and 6. We see that CE performs very
well both for k = 0 and k = π . There are only small discrep-
ancies at stronger interactions [see, e.g., Fig. 7(c)]. In contrast,
the SCMA solution gets tilted relative to the DMFT and CE.
In addition, it poorly reproduces the low-frequency part of the
spectrum. It is not obvious whether the CE method is exact in
the high-temperature limit T → ∞. As we now demonstrate,
this can be answered by examining the spectral sum rules:

Mn(k) =
∫ ∞

−∞
Ak(ω)ωndω. (23)

These can be calculated both exactly,

Mexact
n (k) =

〈
[. . . [[ck, H], H] . . . , H]︸ ︷︷ ︸

n times

c†
k

〉
T

, (24)

and within the CE approximation, where by combining
Eqs. (4) and (23) we find

MCE
n (k) = Re

[
in

(
d

dt

)n

eCk (t )

]∣∣∣∣
t=0

−
n∑

p=1

(
n

p

)
(−εk )pMCE

n−p(k). (25)

The difference between these quantities MCE
n (k) − Mexact

n (k)
is zero for n = 0 and n = 1, as noted in Sec. II A 1. Higher
order sum rules for the CE method are easily calculated,
while the evaluation of the exact sum rules quickly becomes
cumbersome for increasing n. The first five (0 � n � 4) sum
rules were already calculated by Kornilovitch [58]

M2(k) = ε2
k + (2nph + 1)g2, (26a)

M3(k) = ε3
k + g2ω0 + 2g2(2nph + 1)εk, (26b)

M4(k) = ε4
k + 2g2εkω0 + g2(2nph + 1)

×(
2t2

0 + 3ε2
k + ω2

0

) + 3g4(2nph + 1)2. (26c)
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FIG. 7. (a)–(h) CE, DMFT, and SCMA spectral functions in 1D for t0 = 1, ω0 = 0.5, and k = 0, π .

All of these are correctly predicted by the CE. However, the
disagreement between Mexact

n and MCE
n appears for n = 5,

where we find

Mexact
5 (k) = ε5

k + 3g2ω0
(
2t2

0 + ε2
k

) + g2ω3
0

+ 2g2(2ε3
k + 5g2ω0 + εkω

2
0 + 2t2

0 εk
)
(2nph + 1)

+ 7g4εk(2nph + 1)2, (27a)

MCE
5 (k) = Mexact

5 (k) − 2g4εk(2nph + 1)2. (27b)

Hence, CE cannot be exact in the limit T → ∞. However, we
see that there are two limits where CE can potentially be exact:
the weak-coupling limit g → 0 and the atomic limit εk → 0.
It turns out that CE is actually exact in both of these limits,
as seen from Eqs. (3), (7), and (14) for the weak-coupling and
Sec. III D for the atomic limit. We note that the SCMA gives
correct sum rules only for n � 3 [42]. This is a consequence
of the fact that SCMA ignores one of the fourth-order dia-
grams (∼g4) since it includes only the noncrossing diagrams.
Also, we numerically checked that the DMFT results are in
agreement with all of the sum rules that we listed above.

D. Atomic limit

In the atomic limit (t0 = 0), the cumulant function can be
evaluated exactly:

C(t ) = α2(−2nph − 1 + itω0 + iD(t )). (28)

This follows from Eq. (16), using J0(0) = 1. If we express
the phonon propagator as iD(t ) = 2

√
nph(nph + 1) cos[ω0(t +

i
2T )] and use the modified Jacobi-Anger identity

e2α2
√

nph (nph+1) cos[ω0(t+ i
2T )]

=
∞∑

l=−∞
Il (2α2

√
nph(nph + 1))e−ilω0t e

lω0
2T , (29)

where Il are the modified Bessel functions of the first kind,
the spectral function [see Eqs. (3) and (4)] can be calculated

analytically and reads as

A(ω) = e−α2(2nph+1)

×
∞∑

l=−∞
Il (2α2

√
nph(nph + 1))e

lω0
2T δ(ω + α2ω0 − lω0).

(30)

In the limit T → 0, the previous expression reduces to

A(ω) = e−α2
∞∑

l=0

α2l

l!
δ(ω + ω0(α2 − l )). (31)

This proves that CE gives correct results in the atomic limit,
as Eqs. (30) and (31) coincide with the known exact results
[1,44].

In contrast, the SCMA (let alone the MA) does not share
this property, which is easy to show at zero temperature. In
this case, Eq. (20a) and the Dyson equation imply that

G(ω) = 1

ω − g2G(ω − ω0)
. (32)

The previous equation can be solved by the iterative applica-
tion of itself in terms of the continued fraction

G(ω) = 1

ω − g2

ω−ω0− g2

ω−2ω0− g2
ω−3ω0−...

. (33)

This does not coincide with Eq. (35) from Ref. [53], which
represents the exact solution. Thus, SCMA cannot reproduce
the correct result in the atomic limit.

While the CE is exact in the atomic limit (t0 = 0), it is
not immediately obvious how far from this limit it continues
to give reliable results. This is why we now examine the
regimes with small hopping parameter t0. Since the lifetime
is infinitely large in some of these regimes (see Fig. 2), we
introduce artificial attenuation η for the Green’s function in
real time by making a replacement G(t ) → G(t )e−ηt . The
results are presented in Fig. 8. Here, the dotted line is the
analytic solution in the atomic limit (t0 = 0), determined by
Eq. (30), where the Dirac delta functions have been replaced
by Lorentzians of half-width η. It is used as a measure to see
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FIG. 8. (a)–(f) CE, DMFT, and SCMA spectral functions close to
the atomic limit. Here, we use artificial Lorentzian broadening with
half width set to η = 0.05.

how far the regime we are examining is from the exact atomic
limit. In Fig. 8(a), we see that DMFT, SCMA, and CE spectral
functions are in agreement. This regime is quite far from the
atomic limit, as indicated by the dotted line. Figure 8(b) shows
that the DMFT spectral function already consists of a series of
peaks for t0 = 0.5, while the CE and SCMA spectral functions
are too flattened out. While the CE solution significantly im-
proved in Fig. 8(c), it is still not giving satisfactory results,
even though the DMFT suggests that we are already close to
the atomic limit. Only for t0 � 0.005 does the CE solution
give accurate results; see Fig. 8(d). However, this is practically
already at the atomic limit. It is interesting to note that while
both the DMFT and the CE are exact in the weak-coupling
and in the atomic limit, their behavior in other regimes can be
quite different.

IV. QUASIPARTICLE PROPERTIES

We now investigate the quasiparticle properties obtained
from the CE method and compare them extensively to the
results obtained from the DMFT and SCMA. We note that

the lifetime within the CE was already studied in Sec. II A 4,
so we supplement that study here with the results for the
ground-state energy and the effective mass. Here we show the
results in one, two, and three dimensions. Comparison with
the MA ground-state energy, in the 1D case, is presented in
Sec. III of the SM [54].

A. Ground-state energy

The polaron band dispersion Ep,k within the CE is given by
the real part of Eq. (12), where the self-energy is taken in the
MA:

Ep,k = εk + Re�MA(εk ). (34)

Since we deal with a single electron in the band, the
ground-state energy Ep is given by Ep,k=0 evaluated at zero
temperature. In the 1D case, Ep is straightforwardly evaluated
using Eq. (19) and reads as follows:

E1D
p = −2t0 − α2ω2

0√
ω2

0 + 4ω0t0
. (35)

For the expression in higher dimensions, we need to go back
to Eq. (14) that holds in any number of dimensions. At T = 0,
it reads as

Im�MA(ω) = −πα2ω2
0ρ(ω − ω0). (36)

The real part of �MA(ω) is obtained using the Kramers-
Kronig relation

Re�MA(ω) = πα2ω2
0H[ρ](ω − ω0), (37)

where H[ρ](ω) = P
∫ ∞
−∞

dν
π

ρ(ν)
ω−ν

is the Hilbert transform of
the density of states ρ(ω) and P is the Cauchy principle value.
The evaluation of the Hilbert transform may be reduced to
the evaluation of the Fourier transform F , using the following
identity:

F−1H[ρ](t ) = −i sgn(t ) F−1[ρ](t ). (38)

The inverse Fourier transform of the density of states on the
right-hand side was already calculated in Eq. (15) for the case
of the hypercubic lattice with the nearest-neighbor hopping.
Hence, H[ρ](ω) is obtained by applying F on both sides of
Eq. (38),

H[ρ](ω) = 1

π

∫ ∞

0
dxJ0(2t0x)n sin(xω), (39)

where n is the number of dimensions. The polaron band dis-
persion then reads as

Ep,k = εk + α2ω2
0

∫ ∞

0
dxJ0(2t0x)n sin (x(εk − ω0)). (40)

Ep is thus a linear function with respect to α2, whose intercept
is εk, while its slope can be calculated accurately using the
numerical scheme described in Appendix A. In the 2D case, it
admits an analytical solution

E2D
p = −4t0 − 2α2ω2

0

π (4t0 + ω0)
K

(
4t0

4t0 + ω0

)
, (41)

where K (k) = ∫ π/2
0 dθ/

√
1 − k2 sin2 θ is the complete ellip-

tic integral of the first kind. In the case n = 3, the integral
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FIG. 9. Ground-state energy within the DMFT (solid line), CE
(dashed line), and SCMA (dotted line). Here, t0 = 1 and T = 0.

in Eq. (40) does not admit a closed-form solution and thus
requires numerical calculation.

The polaron band dispersion Ep,k (and thus the ground state
Ep) within the DMFT and SCMA is obtained numerically, as
the smallest solution of the following equation:

Ep,k = εk + Re�(Ep,k ). (42)

Results for the 1D, 2D, and 3D case are presented in Fig. 9.
The DMFT benchmark, which is known to be very accurate
[52], always gives the lowest ground-state energy predictions
in comparison to the CE and SCMA. We see that CE always
outperforms the SCMA, despite the fact that its predictions
of the energy are always a linear function of α2. In the 1D
case, we see that CE results for ω0 = 0.5 start to deviate more
significantly from the DMFT just around α = 2.5. Hence, the
range of validity for the CE is similar as for the spectral
functions in Fig. 4. The analogous conclusions can also be
drawn from ω0 = 1 data as well. In contrast, all three methods
seem to be in agreement for ω0 = 0.2 in the whole range
of presented values of α. This is a consequence of the fact
that the ground-state energy correction is small, as seen from
Eqs. (35), (40), and (41) by fixing α and decreasing ω0. How-
ever, if we fix g = ω0α and then decrease ω0, the ground-state
energy would change substantially [see, e.g., Eq. (35)], and
the CE would certainly give poorer results.

Similar trends are observed in higher dimensions as well.
Seemingly, the range of validity of the CE is increased in
higher dimensions. However, one should keep in mind that the
hopping parameter is always taken to be unity, which means
that the bandwidth of the 2D and 3D systems are, respectively,
two and three times larger than their 1D counterpart. There-
fore, the correlation is weaker for a given coupling α.

B. Effective mass

Around the bottom (|k| ≈ 0) of the conduction band, the
dispersion Ep,k assumes the following parabolic form:

Ep,k ≈ const + k2

2m∗ , (43)

where m∗ is the effective mass, which we now calculate.
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FIG. 10. Effective mass results within the DMFT, CE, and
SCMA for t0 = 1 and T = 0.

In the 1D case, one obtains the analytical result for the
effective mass using Eqs. (19) and (34),

m∗

m0

∣∣∣∣
1D,T =0

= 1

1 − (2t0+ω0 )α2√ω0

(4t0+ω0 )3/2

, (44)

where m0 = 1/(2t0) is the band mass which remains the same
irrespective of the number of dimensions. Results for the
higher number of dimensions are evaluated using Eq. (40).
As for the ground-state energy, the 2D case admits an analytic
solution

m∗

m0

∣∣∣∣
2D,T =0

= 1

1 − 2α2ω0
π (8t0+ω0 ) E

( 4t0
4t0+ω0

) , (45)
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where E (k) = ∫ π/2
0 dθ

√
1 − k2 sin2 θ is the complete elliptic

integral of the second kind. Results in the n-dimensional case
are given by

m∗

m0

∣∣∣∣
T =0

= 1

1 + πα2ω2
0

dH[ρ]
dω

∣∣
ω=−2nt0−ω0

, (46)

and require numerical calculation in the general case. From
Eq. (46) we see that m0/m∗ is a linear function of α2. This
linear behavior has to break down at one point, as m0/m∗
cannot be negative. This happens for strong interaction, where
the CE is certainly not expected to be reliable. The mass
renormalization within the DMFT and SCMA is calculated
numerically as

m∗

m0

∣∣∣∣
T =0

= 1 − d�(ω)

dω

∣∣∣∣
ω=Ep

, (47)

where Ep is the ground-state energy. Results for the DMFT,
CE, and SCMA effective mass in different parameter regimes
and for different number of dimensions are presented in
Fig. 10. In the 1D case, we see that the CE always under-
estimates, while the SCMA overestimates the results from the
DMFT benchmark. Still, CE clearly outperforms the SCMA
for ω0 = 1 and ω0 = 0.5, while the results in the vicinity of
the adiabatic limit (ω0 = 0.2) seem to be equally well (poor)
represented by both methods.

In the higher-dimensional case, we see that the CE is al-
ways a clearly better approximation than the SCMA, while
both of them overestimate the DMFT predictions. As for the
ground-state energy, we emphasize again that the hopping pa-
rameter was set to 1. As a consequence, the system has a larger
bandwidth in the higher-dimensional case and, therefore, the
correlations are weaker.

V. MOBILITY

The mobility is defined as the DC conductivity, normalized
to the concentration of charge carriers ne (and their unit charge
which we set to e = 1), i.e., μ = σ DC/ne. It can be calculated
using the Kubo formalism, which relates μ to the current-
current correlation function [1]. The latter can be written
as a sum of the so-called bubble part, which is completely
determined by the spectral functions Ak(ω) and the vertex
corrections. Within the DMFT, the vertex corrections vanish
[57,59], while estimating their contribution in the general
case is beyond the scope of this paper. In the following, we
calculate the mobility solely from the bubble part.

In the case of a 1D system with a single spinless electron
in the band, the mobility in the bubble approximation can be
written as [1,60]

μ = 4πt2
0

T

∑
k

∫ ∞
−∞ dνAk (ν)2e−ν/T sin2 k∑

k

∫ ∞
−∞ dνAk (ν)e−ν/T

. (48)

The processing time required for the calculation of μ within
the CE method rises linearly with the number of k points we
sum over. This is not the case for the DMFT and SCMA, as
their self-energies are k independent and thus need to be calcu-
lated only once for a given parameter set. In every parameter
regime the CE was applied to, we checked that 64 sampling
points in the Brillouin zone are enough to be representative of

FIG. 11. Temperature dependence of the mobility for the CE,
DMFT, and SCMA. The dotted red (black) lines are auxiliary lines
with the power law behavior μ ∝ T −2 (μ ∝ T −3/2). Here t0 = 1.

the thermodynamic limit. This was also crosschecked using
the DMFT.

The exponential term e−ν/T in Eq. (48) has some impor-
tant implications. Despite the factor sin2 k, it implies that the
largest contribution to the mobility most commonly comes
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from the spectral functions around the bottom of the band
(k ≈ 0), as they are typically situated at lower frequencies
with respect to their higher momentum counterparts. This is
actually helpful, as we have seen that the CE is more reliable
for k ≈ 0 than for 0 < k < π . However, e−ν/T also introduces
numerical instabilities, as even a small numerical noise of
Ak (ν) at ν � −1 will be inflated and give an enormous overall
error in the mobility. This is why the integrals in Eq. (48)
require introducing some kind of negative frequency cutoff∫ ∞
−∞ → ∫ ∞

−�
. We always check that the mobility results con-

verge with respect to �. This is easily done in both the DMFT
and SCMA due to the high numerical accuracy of our numer-
ical implementations. The convergence with respect to � is
much harder to achieve within the CE, as the Green’s func-
tions are initially calculated in the time domain and require
the use of numerical Fourier transform. We have implemented
a well-known interpolation scheme [61] to increase the pre-
cision of the Fourier transform. Still, the numerical noise at
low temperatures and strong interactions prevented us from
precisely calculating the mobility in these regimes. We show
only the data where an accurate calculation was possible.

In Fig. 11, we present numerical results for the temperature
dependence of the electron mobility. For weak electron-
phonon coupling, all methods are in agreement; see Fig. 11(a)
for α � 1 and Figs. 11(b) and 11(c) for α � 0.5. Electron-
phonon scattering is weak in these regimes, which is why
the quasiparticle lifetime τk is long, and the linear time de-
pendence dominates in the cumulant function. The spectral
function and its square can thus be approximated as Ak (ω) ≈
δ(ω − Ep,k ) and A2

k (ω) ≈ τk
π
δ(ω − Ep,k ), where δ is the Dirac

delta function and Ep,k is given by Eq. (34). The mobility from
Eq. (48) thus simplifies to

μweak ≈ 4t2
0

T

∑
k τke−Ep,k/T sin2 k∑

k e−Ep,k/T
. (49)

At high temperatures, Eq. (49) further simplifies as e−Ep,k/T ≈
1. In this case, the lifetime is inversely proportional to the tem-
perature τk ∝ 1/T , as seen from Eq. (18), which implies the
power-law behavior of the mobility μweak ∝ 1/T 2. This con-
clusion holds only for very weak electron-phonon couplings,
where the assumption of weak scattering is still satisfied de-
spite the high temperatures; see Figs. 11(a) and 11(b) for
α = 0.25 and Fig. 11(c) for α = √

2/10. This assumption is
also violated at extremely high temperatures T → ∞.

For stronger couplings, in the limit of high-temperatures
T � t0, ω0, the Green’s function in the time domain is quickly
damped, which is why Ck (t ) can be approximated with just
the lowest order (quadratic) Taylor expansion around t = 0.
Hence, Eqs. (3) and (17) imply that the Green’s function can
be written as

Gk (t ) = −iθ (t )e−iεkt e− g2

2 (2nph+1)t2
, (50)

while the corresponding spectral function is given by the
Gaussian:

Ak (ω) = e
− (ω−εk )2

2g2 (2nph+1)√
2πg2(2nph + 1)

. (51)

Plugging this back into Eq. (48) and changing the sum over
momenta to integral, we obtain

μhigh−T = t0
g

√
π

2nph + 1
exp

(
−g2(2nph + 1)

4T 2

)
I1

( 2t0
T

)
I0

( 2t0
T

) ,

(52)

where I0 and I1 are modified Bessel functions of the first kind,
of zeroth and first orders, respectively. Equation (52) can be
simplified by using the following approximations: 2nph + 1 ≈
2T/ω0 and I1(2t0/T )/I0(2t0/T ) ≈ t0/T , that are valid for
large T . Such a simplified formula coincides with the mobil-
ity obtained by combining the Einstein relation, between the
mobility and diffusion coefficient, with the Marcus formula
[45,62]. Furthermore, Eq. (52) implies the power-law behav-
ior for the mobility μhigh−T ∝ T −3/2, in the limit T � t0, ω0.
This is confirmed by our numerical results for a wide range of
the electron-phonon coupling strengths, where all three meth-
ods are in agreement; see Fig. 11(a) for 1/

√
2 � α � 2.5,

Fig. 11(b) for 0.5 � α � 2, and Fig. 11(c) for 0.5 � α � 1.
While the SCMA gives satisfactory results for high temper-

atures and intermediate electron-phonon couplings, it deviates
from the DMFT at lower temperatures [see, e.g., Fig. 11(a) for
α = 2.5 and Fig. 11(b) for α = 2] and also for stronger cou-
pling strengths [see, e.g., Fig. 11(a) for α > 2.5 and Fig. 11(b)
for α > 2]. At these stronger couplings, the DMFT predicts
the nonmonotonic mobility, where a region of decreasing mo-
bility with decreasing temperature is ascribed to the hopping
transport in phenomenological theories [38,62]. The strong
coupling mobility is better described by the CE than SCMA,
although low-temperature results are missing due to our in-
ability to converge the results with respect to the cutoff �. In
Appendix D, we also give mobility predictions of the MA.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have presented a comprehensive analysis
of the CE method in the context of the Holstein model. The
second-order cumulant C(t ) is calculated in a broad tempera-
ture range for three vibrational frequencies ω0/t0 = 0.2, 0.5,
and 1, covering a regime from a weak to strong electron-
phonon coupling. We mostly focused on the 1D system in the
thermodynamic limit but some of the results are shown also in
2D and 3D. To avoid numerical instabilities and to reach high
numerical precision, we derived a number of analytical ex-
pressions and we used the collocation method in calculations
of the cumulant, as well as an interpolation scheme for the
Fourier transform in corresponding calculations of the spectral
functions. The quasiparticle properties, spectral functions, and
charge mobility are shown in comparison to the DMFT and
SCMA results. The DMFT, which gives close to the exact
solution for the Holstein polaron throughout the parameter
space [52], gave a valuable benchmark and facilitated a de-
tailed analysis of the validity of the CE method.

At weak coupling (roughly corresponding to m0/m∗�0.9)
CE, DMFT, and SCMA give very similar spectral functions.
Most of the spectral weight for k = 0 is in the quasiparticle
peak, while even a small sideband (satellite) spectral weight
is rather well reproduced in all three methods. As the inter-
action increases, a clear difference in the spectral functions
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emerges. Nevertheless, the positions of the CE and DMFT
quasiparticle and the first satellite peak at low temperatures
are in rather good agreement. Furthermore, the overall spectral
weight distribution is in a decent agreement even though the
satellite peaks are more pronounced in DMFT for stronger
electron-phonon coupling. Roughly speaking, there is a de-
cent agreement in 1D up to the interactions corresponding
to m0/m∗ ∼ 0.5. Interestingly, the agreement between the
CE and DMFT spectral functions persists also for k = π ,
although CE does not capture a tiny quasiparticle peak. In
this case, the DMFT spectral weight almost merges to a single
broad peak. We note that the difference for k = π observed in
Ref. [50] is solely due to considering a lattice of finite N = 6
size. The deviation of CE from the exact solution is most obvi-
ous for intermediate momenta where the CE solution merges
to a single peak, while the satellite structure is seen in DMFT.
At high temperatures, one might suspect that the CE would
give the exact spectral functions. However, this is not the case,
as we showed that the CE gives the exact spectral moments
only up to the order n = 4. We note that in all these regimes,
the CE gives slightly better results than the SCMA, while a
single-shot MA is adequate only for very weak interactions.

The spectral functions were used to calculate the charge
mobility from the Kubo formula without the vertex correc-
tions. The agreement between DMFT and CE is quite good.
This is the case even for stronger electron-phonon coupling
where the CE even indicates nonmonotonic behavior of μ(T ),
with a region of increasing mobility with temperature which
is usually assigned to hopping conduction in phenomeno-
logical theories. For strong electron-phonon coupling, the
CE mobility results are shown only for T � t0 since a very
small numerical noise at frequencies ω � Ep affects a pre-
cise calculation of mobility at lower temperatures. For high
temperatures, the mobility assumes a universal form: For
weak electron-phonon coupling μ ∝ T −2, while for stronger
coupling μ ∝ T −3/2. These high-temperature limits can be
obtained also analytically from the CE.

The CE method can be easily applied to different Hamilto-
nians, which makes it a particularly attractive method for the
calculation of electronic properties beyond the weak-coupling
limit in various systems. In particular, we argue that it will
be most useful in calculations of charge mobility, as has
already been done in ab initio calculations for SrTiO3 [16]
and naphthalene [17]. While our analysis may suggest that
the DMFT appears computationally superior to CE, we note
that the numerical efficiency that we achieved with DMFT
is restricted to the Holstein model by virtue of the analytic
solution for the impurity problem [53] and the local Green’s
function [52]. For predicting the properties of real materials,
the numerical resources within the DMFT are vastly increased
and also the issue of nonlocal correlations may emerge, while
the CE remains simple and relatively inexpensive. Of course,
for a definitive answer on the range of validity of CE in
connection with ab initio calculations, one needs to perform a
similar analysis for the Fröhlich model and for other models
which can be used for realistic description of the electronic
spectra and charge transport in real materials. A useful hint in
this direction is provided by Ref. [51], which shows that the
CE, around the bottom of the band, gives promising results
for the spectral function even in the case when the phonons

have a dispersion [63]. Another very interesting question that
we leave for further work is a possible contribution of vertex
corrections to conductivity. Based on the weak coupling result
[64], one might assume that their contribution is small for
optical phonons, but this remains to be determined in the
case of stronger coupling. Our high-temperature results for
mobility may also be quite useful when analyzing a dominant
type of electron-phonon coupling in real materials. Still, one
needs to be cautious in such analyses since we see that at lower
temperatures μ(T ) does not assume a simple universal form.
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APPENDIX A: NUMERICAL INTEGRATION SCHEME
FOR THE HIGHLY OSCILLATING FUNCTIONS

IN THE CE METHOD

We present a numerical integration scheme for the calcula-
tion of the cumulant function from Eq. (16). Since Ck(t ) will
be expressed numerically on some t-grid [t0 = 0, t1 . . . tG−1],
it is much better to divide the integral

∫ t
0 from Eq. (16) into a

sum of integrals of the form
∫ ti

ti−1
, where ti are times from the

previously defined t grid. In this manner, we do not integrate
over the same interval multiple times. To shorten the notation,
from now on, we denote a ≡ ti−1 and b ≡ ti. There are two
different types of integrals in Eq. (16), and both of them have
the following form:

I =
∫ b

a
dx g(x)eir1xJ0(r2x)n, (A1)

where g(x) is either a linear or a constant function, r1 =
εk ± ω0, and r2 = 2t0. Numerical integration of Eq. (A1) has
already been studied by Levin for arbitrary r1 and r2 and
slowly varying g(x) [55]. In the rest of this Appendix, we
review this method in the 1D (n = 1), 2D (n = 2), and 3D
(n = 3) cases. The main idea is to rewrite the subintegral
function as a scalar product of two columns |g̃(x)〉 and |J̃ (x)〉,
whose elements are functions:

I =
∫ b

a
dx〈g̃(x)|J̃ (x)〉. (A2)

Column |g̃(x)〉 consists exclusively of slowly varying func-
tions, while |J̃ (x)〉 contains highly oscillating functions, with
the property that

d|J̃ (x)〉
dx

= Â(x)|J̃ (x)〉, (A3)
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where Â(x) is a matrix of slowly varying functions. Then, the
integral from Eq. (A2) can be written as

I =
∫ b

a
dx

d

dx
〈 f̃ (x)|J̃ (x)〉 = 〈 f̃ (b)|J̃ (b)〉 − 〈 f̃ (a)|J̃ (a)〉,

(A4)

where | f̃ (x)〉 satisfies(
d

dx
+ Â†(x)

)
| f̃ (x)〉 = |g̃(x)〉. (A5)

This is then, following Levin [55], solved by formally ex-
panding | f̃ (x)〉 = ∑M

k=1 uk (x)[ck dk . . . ]T into a basis set of
polynomials uk (x) = (x − a+b

2 )k−1 and determining the un-
known polynomial coefficients ck, dk . . . by imposing that
Eq. (A5) is exactly satisfied at M uniformly distributed
collocation points x j = a + ( j−1)(b−a)

M−1 , j = 1 . . . M. The ini-
tial problem is thus reduced to a simple linear algebra
problem.

1. 1D case

In the 1D case (n = 1), columns |g̃(x)〉 and |J̃ (x)〉 assume
the following form:

|g̃(x)〉 = [g(x) 0]T , (A6a)

|J̃ (x)〉 = eir1x[J0(r2x) J1(r2x)]T , (A6b)

where J0(x) and J1(x) are the Bessel functions of the first kind,
of zeroth and first order. The matrix Â(x), such that Eq. (A3)
holds, is given by

Â(x) =
[

ir1 −r2

r2 ir1 − 1
x

]
. (A7)

The unknown coefficients ck and dk , which determine the
column function

| f̃ (x)〉 =
M∑

k=1

uk (x)[ck dk]T , (A8)

are obtained from the following set of 2M linear equations:

[
C Cd

Dc D

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

cM

d1
...

dM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
...

g(xM )

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A9)

Here, C, Cd ,Dc,D are M×M matrices that read as

Ci j = u′
j (xi ) − ir1u j (xi ); Cd

i j = r2u j (xi ), (A10a)

Di j = u′
j (xi ) −

(
ir1 + 1

xi

)
u j (xi ); Dc

i j = −r2u j (xi ).

(A10b)

2. 2D case

In the 2D case, the relevant quantities are given by

|g̃(x)〉 = [g(x) 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)2 J0(r2x)J1(r2x) J1(r2x)2]T ,

Â(x) =

⎡
⎢⎣

ir1 −2r2 0

r2 ir1 − 1
x −r2

0 2r2 ir1 − 2
x

⎤
⎥⎦. (A11)

The column | f̃ (x)〉 = ∑M
k=1 uk (x)[ck dk ek]T is determined

by ck , dk , and ek , which are obtained as a solution of the
following system of 3M linear equations:

⎡
⎣ C Cd Ce

Dc D De

Ec Ed E

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

cM

d1
...

e1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
...

g(xM )

0
...

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A12)

Here, C, Cd . . . E are M×M matrices. Elements of Ci j and Cd
i j

are the same as in Eq. (A10), while Ce
i j = Ec

i j = 0. All the
other elements are given by

Di j = u′
j (xi ) −

(
ir1 + 1

xi

)
u j (xi ),

Ei j = u′
j (xi ) −

(
ir1 + 2

xi

)
u j (xi ),

Dc
i j = −2r2u j (xi ); De

i j = 2r2u j (xi ); Ed
i j = −r2u j (xi ).

(A13)

3. 3D case

The procedure that was presented so far is actually quite
easily generalized to the 3D case as well. Here, the quantities
of interest are easily derived and read as

|g̃(x)〉 = [g(x) 0 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)3 J0(r2x)2J1(r2x)

J0(r2x)J1(r2x)2 J1(r2x)3]T ,

Â(x) =

⎡
⎢⎢⎢⎢⎣

ir1 −3r2 0 0

r2 ir1 − 1
x −2r2 0

0 2r2 ir1 − 2
x −r2

0 0 3r2 ir1 − 3
x

⎤
⎥⎥⎥⎥⎦,

f̃ (x) =
M∑

k=1

uk (x)[ck dk ek fk]T , (A14)
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where the coefficients ck , dk , ek , and fk satisfy

⎡
⎢⎢⎢⎢⎣

C Cd Ce C f

Dc D De D f

Ec Ed E E f

F c Fd F e F

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

cM

d1
...

e1
...

f1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
...

g(xM )

0
...

0
...

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A15)

Here Ci j , Cd
i j , Ce

i j , Di j , De
i j , Ec

i j , and Ei j are the same as in

Eqs. (A10) and (A13), while C f
i j = F c

i j = D f
i j = Fd

i j = 0. All
other elements are given by

Ed
i j = −2r2u j (xi ); E f

i j = 3r2u j (xi ),

Dc
i j = −3r2u j (xi ); F e

i j = −r2u j (xi ),

Fi j = u′
j (xi ) −

(
ir1 + 3

xi

)
u j (xi ). (A16)

Thus, our numerical scheme has been completely specified.
We note that Eqs. (A10), (A13), and (A16) explicitly demon-
strate that our numerical scheme is singular at x = 0. This
does not pose any problems, as the subintegral function in
our initial expression Eq. (A1) is not highly oscillatory around
x = 0. Therefore, the trapezoid scheme can be applied there.

APPENDIX B: 2D SPECTRAL FUNCTIONS

We now examine the CE spectral functions in two di-
mensions and compare them to the results from DMFT and
SCMA. We investigate the Hamiltonian from Eq. (1) on a
square lattice and set h̄, kB and lattice constant to 1.

In the 2D case, the cumulant function is calculated from
Eq. (16) by setting n = 2, and by exploiting the numerical
integration scheme from Appendix A. The procedure for the
implementation of the DMFT and SCMA is the same as
explained in Sec. II B, with the only difference being that
Eq. (22) no longer represents the solution for the local Green’s
function from Eqs. (20b) and (21). The local Green’s function
for the square lattice is obtained as follows. Let us introduce
B(ω) ≡ (ω − �(ω))/(2t0) and rewrite Eq. (21) as

G(ω) = −
∫ ∞

−∞
dxρ̂(x)

∫ ∞

−∞
dε

eixε

ε − 2t0B(ω)
. (B1)

The integral over ε can be solved using the residue theorem. It
is thus important to note that the subintegral function has only
a single pole at εpole = 2t0B(ω) that is situated at the upper
half-plane, i.e., ImB(ω) > 0 (since Im�(ω) < 0). Hence

G(ω) = −2π i
∫ ∞

−∞
dxρ̃(x)e2ixt0B(ω)θ (x). (B2)

Here ρ̃(x) is given by Eq. (15) for n = 2. Substituting this into
Eq. (B2) and solving the integral gives

G(ω) =
K

(
2

B(ω)

)
B(ω)πt0

, (B3)

where K (k) ≡ ∫ π/2
0 dθ/

√
1 − k2 sin2 θ is the complete elliptic

integral of the first kind.
Results are presented in Fig. 12. We note that in

Figs. 12(a)–12(d) [Figs. 12(i)–12(l)] the phonon frequency
ω0 = 0.2 (ω0 = 1) is smaller (larger) than both of the tem-
peratures T1 = 0.3 and T2 = 0.7 that we are considering.
Therefore, we focus on Figs. 12(e)–12(h) where T1 < ω0 <

T2, while other regimes can be analyzed analogously. We
see that most of the spectral weight is concentrated in a
smaller range of frequencies than in the 1D case; see Figs. 4
and 12(e)–12(h). This is a consequence of the fact that the
hopping parameter is always set to unity, while the 2D band-
width is twice as large in comparison with the bandwidth
in the 1D system. Spectral functions from Figs. 12(e)–12(g)
exhibit qualitatively similar behavior as results for the 1D
system in Figs. 4(a)–4(d). Here, all methods are in agree-
ment and predict that the quasiparticle peak dominates,
while there is only a single tiny satellite structure that is
more pronounced at higher temperatures. However, it seems
that the satellites are more pronounced in the 1D spectral
functions. A much more complicated multipeak structure is
predicted by the DMFT in Fig. 10(h), where a large dis-
crepancy can be observed in comparison to the CE and
SCMA results. A better agreement is observed for higher
temperatures.

It is interesting to note that while the DMFT frequently
gave sharper peaks than other methods in 1D (see Fig. 4), here
the roles are reversed. This is a consequence of the strong Van
Hove singularity at the bottom of the band of a 1D system,
which is highly relevant in our case when the concentration of
electrons is very low, while the singularity in the 2D system is
weaker and shifted to the center of the band.

APPENDIX C: A DETAILED STUDY OF THE SPECTRAL
FUNCTION FOR t0 = ω0 = g = 1 and k = π

In Sec. III, we concluded that the CE successfully captures
the main features of the spectral functions both at the bottom
of the band (k ≈ 0) and at top of the band (k ≈ ±π ) if the
electron-phonon coupling is not too strong. Less promising
results were reported in Ref. [50], where CE was examined on
a finite lattice with N = 6 sites in the regime t0 = ω0 = g =
1 and k = π , using the finite-temperature Lanczos method
(FTLM) [44] as a benchmark. They found that the CE, in
addition to the fact that it does not correctly reproduce a
quasiparticle peak, predicts that the most prominent feature
of the spectrum consists of only a single broad peak, whereas
two distinct peaks are present in the FTLM solution. Here
we show that this discrepancy between the CE and FTLM is
significantly reduced in the thermodynamic limit.

Reference [50] emphasized that previous conclusions are
valid only for low-temperature solutions, while CE becomes
accurate for T � ω0. This was confirmed by the FTLM,
whose spectral functions in this case look like a single broad
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FIG. 12. (a)–(h) Comparison of the CE, DMFT, and SCMA spectral functions in 2D for k = 0 and t0 = 1. The main panels show the results
for T1 = 0.3, while T2 = 0.7 results are shown in the insets.

peak; see Fig. 1(c) from Ref. [50]. However, Fig. S9 in the
Supplemental Material of Ref. [52] demonstrates that the
spectral function in the thermodynamic limit for t0 = ω0 =
g = 1, k = π consists of a broad single-peak structure even at
T = 0. This conclusion was reached by carefully examining
the finite-size effects using the numerically exact hierarchi-
cal equations of motion method (HEOM). It was established
that the system with N = 10 lattice sites is representative
of the thermodynamic limit, although much smaller systems
are required for the k = 0 results. Furthermore, the same
figure shows that two distinct peaks emerge for N = 6 and
k = π , in accordance with the FTLM results. Hence, CE
will provide much better results in the thermodynamic limit
than previously expected. We note that for t0 = ω0 = g = 1
and finite temperatures, one might expect that the required
lattice size, representative of the thermodynamic limit, does
not exceed N = 10, as the electron experiences much more
scattering compared to the T = 0 case. This will be cross-
checked independently (using the DMFT) in the rest of this
Appendix for finite T , which satisfies the T < ω0 condi-

tion. In that case, we analyze the overall performance of
the CE.

In Fig. 13(a), we show the FTLM data, (originally from
Ref. [44]) used in Ref. [50], and compare them to the DMFT
applied on a system of finite lattice size. We exploit the
fact that the corresponding spectral functions (although cer-
tainly not as accurate in comparison with the exact solution)
provide a rough estimate of how large N should be to faith-
fully represent the thermodynamic limit; see Sec. IV from
the Supplemental Material of Ref. [52] for more details. In
accordance with the FTLM results, we see that the DMFT
spectral function for N = 6 also predicts distinct peaks around
ω ≈ 1.5 and ω ≈ 2.5, although there is an additional peak
around ω ≈ 2. Nevertheless, these results change drastically
with increasing N and practically converge for N = 10. This
is the same N as predicted by HEOM at T = 0. Therefore, the
presented FTLM results are not representative of the thermo-
dynamic limit. Additionally, Fig. 13(a) also shows that FTLM
results for T = 0.6 and T = 0.8 are quite similar. Hence, our
further analysis will be conducted for T = 0.7 case.
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FIG. 13. CE, DMFT, FTLM, and HEOM spectral functions for
t0 = ω0 = g = 1. (a) Analysis of the finite-size effects. (b) Inspecting
the convergence of HEOM data with respect to hierarchy depth D.

In Fig. 13(b), we present HEOM results for N = 10 and
compare them to CE and DMFT. We note that HEOM has
one additional parameter, the so-called hierarchy depth D.
For details, we refer the reader to Ref. [47], but we only
briefly mention that the numerically exact results are formally
obtained in the limit D → ∞. In practice, we always check
whether the results converge with respect to D, which cannot
be increased indefinitely, as finite computer memory presents
a limiting factor. We see that the HEOM results have prac-
tically converged for N = 10 and D = 8. Here, the HEOM
solution does not possess the two-peak structure predicted by
the FTLM on a smaller lattice size (N = 6). It actually gives
only a single, broad peak around ω ≈ 2, which is correctly
reproduced by both the CE and the DMFT. Although the CE
misses the quasiparticle peak around ω ≈ −1.5, we conclude
that CE gives much more accurate results for the thermody-
namic limit than for a finite system.

APPENDIX D: MOBILITY RESULTS FROM THE
ONE-SHOT MIGDAL APPROXIMATION

In Sec. V, we presented and analyzed the mobility pre-
dictions from the CE, DMFT, and SCMA methods. Here,
we supplement that study with the data from the one-shot
MA (i.e., SCMA without self-consistency). The results are
shown in Fig. 14. Since the mobility results have already been

FIG. 14. Temperature dependence of the mobility within CE,
DMFT, and MA. Here t0 = 1.

thoroughly analyzed in Sec. V, we will here give only brief
comments about the performance of the MA. Figure 14(a)
shows that MA is practically useless for α � 2.5. Here, the
results are not even qualitatively correct, regardless of the tem-
perature. Even for α = 1, the results are still not satisfactory:
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the predictions for T < 4 (T > 9) overestimate (underesti-
mate) the DMFT benchmark. MA proves to be reliable only
for very weak interactions α � 1/

√
2. Here, the results are

better for higher temperatures. This is expected as the MA

takes into account only the lowest-order Feynman diagram,
while the relevance of higher-order diagrams decreases as the
temperature is increased. Similar analysis can be repeated for
other phonon frequencies in Figs. 14(b) and 14(c).
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Here we supplement the main text by giving an alterna-
tive derivation of the cumulant function in Sec. I, addi-
tional spectral functions and heat maps in Sec. II, and a
comparison of the 1D ground state energy using DMFT,
CE, SCMA, and MA in Sec. III.

I. ALTERNATIVE DERIVATION OF THE
CUMULANT FUNCTION IN THE CE METHOD

In Sec. XI of the Supplemental Material in Ref. [S1],
we showed that the Green’s function, if there is only a
single electron in the band, can be written as

Gk(t) = −iθ(t)⟨ck(t)c†k⟩T,0, (S1)

where:

ck(t) = eiHtcke
−iHt, (S2a)

H = Hel +Hph +Hel−ph, (S2b)

Hel = −t0
∑
⟨ij⟩

(
c†i cj +H.c.

)
=

∑
k

εkc
†
kck, (S2c)

Hph = ω0

∑
i

a†iai = ω0

∑
k

a†kak, (S2d)

Hel−ph = −g
∑
i

c†i ci

(
a†i + ai

)
= − g√

N

∑
k,q

c†k+qck

(
aq + a†−q

)
. (S2e)

Here, N is the number of sites (we take N → ∞ in order
to get the thermodynamic limit), while ⟨. . . ⟩T,0 denotes
the thermal average over the states with no electrons

and arbitrary number of phonons

⟨x⟩T,0 =

∑
{np}⟨0, ñp|e−Hph/Tx|0, ñp⟩∑
{np}⟨0, ñp|e−Hph/T |0, ñp⟩

. (S3)

For the rest of this section, an arbitrary state with
np phonons and no electrons (since such state is not
unique) will be denoted by |0, ñp⟩, while

∑
{np} rep-

resents the sum over all possible phonon configura-

tions. We also introduce |k, ñp⟩ ≡ c†k|0, ñp⟩ and Zph =∑
{np}⟨0, ñp|e−Hph/T |0, ñp⟩.
Using the fact that |0, ñp⟩ is an eigenstate of both

the full and the phononic Hamiltonian H|0, ñp⟩ =
Hph|0, ñp⟩ = npω0|0, ñp⟩, we see how Eq. (S1) can be
written in a more explicit form

Gk(t) =
−iθ(t)

Zph

∑
{np}

eiω0npte−npω0/T ⟨0, ñp|cke−iHtc†k|0, ñp⟩.

(S4)
The term e−iHt can be read off from

eiHelteiHphte−iHt = Tt exp

[
−i

ˆ t

0

dt1H
(I)
el−ph(t1)

]
,

(S5)
which represents two different, but equivalent, forms
for the evolution operator in the Dirac picture. Here,

H
(I)
el−ph is the electron-phonon interaction part of the

Hamiltonian in the Dirac picture and Tt is the time-
ordering operator. For the purely phononic part
e−iHpht we use ⟨0, ñp|e−iHpht = e−iω0npt⟨0, ñp|, while
purely electronic part e−iHelt is dealt with analogously
⟨0, ñp|cke−iHelt = e−iεkt⟨0, ñp|ck. Hence, Eq. (S4) be-
comes

Gk(t) = − iθ(t)

Zph
e−iεkt

∑
{np}

e−npω0/T

〈
0, ñp

∣∣∣∣ckTt exp

[
−i

ˆ t

0

dt1H
(I)
el−ph(t1)

]
c†k

∣∣∣∣0, ñp

〉
(S6a)

≡ −iθ(t)e−iεkt
〈
Tte

−i
´ t
0
dt1H

(I)
el−ph(t1)

〉
T,k

. (S6b)

The expressions of the form (S6b) have been extensively
studied in the past. As shown in Eq. (6.10) of Kubo’s cu-

mulant paper [S2], the expectation value with the time-
ordering can be written as



2〈
Tte

−i
´ t
0
dt1H

(I)
el−ph(t1)

〉
T,k

= exp
〈
Tte

−i
´ t
0
dt1H

(I)
el−ph(t1) − 1

〉
T,k,c

≡ eCk(t), (S7)

where we defined the cumulant function Ck(t). The
notation ⟨. . . ⟩c denotes the so-called cumulant average.
For our present purposes, we only need to know how the
first two cumulant averages are defined:

⟨X1⟩c = ⟨X1⟩ (S8a)

⟨X1X2⟩c = ⟨X1X2⟩ − ⟨X1⟩⟨X2⟩. (S8b)

In general, the cumulant average is defined using the
ordinary average, by formally expanding the following
expression in the Taylor series with respect to ξi and
equating, order by order, the terms on the left- and the
right-hand side〈

exp
∑
j

ξjXj

〉
= exp

〈exp
∑
j

ξjXj

− 1

〉
c

.

(S9)
The −1 term on the right-hand side is motivated by the
fact that the expectation value of the unity operator is
equal to 1. While our paper focuses on the cumulant of
the second order, there is actually an analytic formula
that relates the cumulant average of any order with the

ordinary average [S3].
Let us now go back to Eq. (S6b) and use Eq. (S7) to

obtain

Gk(t) = −iθ(t)e−iεkteCk(t), (S10)

where

Ck(t) =

∞∑
j=1

〈
Tt

(−i)j

j!

ˆ t

0

j∏
m=1

dtmH
(I)
el−ph(tm)

〉
T,k,c

.

(S11)
So far, everything was exact. The approximation, that
we now introduce, consists of keeping only the first two
terms in the previous equation (j = 1 and j = 2 terms)
while neglecting everything else. This is known as the
second-order cumulant expansion. In the j = 1 term,
the cumulant average coincides with the ordinary aver-
age (see Eq. (S8a)), and hence vanishes due to Wick’s
theorem. As a consequence, the cumulant average can
be simply replaced by the ordinary average in the case
of j = 2 term as well; see Eq. (S8b). Therefore, the
second-order cumulant function reads as

Ck(t) = −1

2

ˆ t

0

dt1

ˆ t

0

dt2

〈
TtckH

(I)
el−ph(t1)H

(I)
el−ph(t2)c

†
k

〉
T,0

. (S12)

For a straightforward application of Wick’s theorem, it
is customary to rewrite electron creation and annihi-
lation operators in the Dirac picture. In order not to
change the already existing time ordering in Eq. (S12),
the annihilation operator is expressed in the final time

ck = eiεktc
(I)
k (t), while the creation operator is ex-

pressed in the initial time c†k = c
†(I)
k (0). If we also

use the explicit form of H
(I)
el−ph(t) from Eq. (S2e), the

Eq. (S12) becomes

Ck(t) = − g2

2N
eiεkt

ˆ t

0

dt1

ˆ t

0

dt2

〈
Ttc

(I)
k (t)

∑
k1,q1

c
†(I)
k1+q1

(t1)c
(I)
k1

(t1)A
(I)
q1

(t1)
∑
k2,q2

c
†(I)
k2+q2

c
(I)
k2

(t2)A
(I)
q2

(t2)c
†(I)
k (0)

〉
T,0

,

(S13)

where we introduced the shorthand notation for the
phonon part Aq = aq + a†−q. Eq. (S13) is now straight-
forwardly evaluated using Wick’s theorem. Contraction
between the phonon degrees of freedom gives [S4]

〈
TtA

(I)
q1

(t1)A
(I)
q2

(t2)
〉
= δq1,−q2iD(t1 − t2), (S14)

where iD(t1− t2) = (nph+1)e−iω0|t1−t2|+nphe
iω0|t1−t2|

is the phonon propagator, while nph = 1/(eω0/T − 1) is
the Bose factor. Since we are working in the limit of
vanishing electron density (single electron in a band),
the contraction between the electron creation and anni-
hilation operators does not have a hole part, and hence



3

reads as〈
Ttc

(I)
k (t1)c

†(I)
q (t2)

〉
= δk,q e−iεk|t1−t2|θ(t1−t2). (S15)

Taking all of this into account, Eq. (S13) simplifies

Ck(t) = − g2

2N

∑
q

ˆ t

0

dt1

ˆ t

0

dt2e
i(εk−εq)|t2−t1|iD(t2−t1).

(S16)
We can get rid of the absolute value by noticing that
the contributions for t2 > t1 and for t2 < t1 are equal.
It is thus sufficient to restrict ourselves to t2 > t1 and
multiply everything by 2. Also, the expression can be
further simplified if we use

ei(εk−εq±ω0)(t2−t1) =

ˆ ∞

−∞
dωe−iω(t2−t1)δ(ω+εk−εq±ω0).

Then, the whole q dependence is inside the Dirac delta
function, which in combination with the summation
over q gives∑

q

δ(ω + εk − εq ± ω0) = Nρ(ω + εk ± ω0), (S17)

where ρ is the density of states. It is now straightfor-
ward to show that Eq. (S16) reduces to

Ck(t) = g2
ˆ ∞

−∞
dω

e−iωt + iωt− 1

ω2

× [(nph + 1)ρ(ω + εk − ω0) + nphρ(ω + εk + ω0)] .
(S18)

This expression can be rewritten in terms of the Migdal
self-energy (see Eq. (14) from the main text) as follows

Ck(t) =
1

π

ˆ ∞

−∞
dω

|ImΣMA(ω + εk)|
ω2

(e−iωt + iωt− 1).

(S19)
Hence, we gave an alternative derivation of the cumu-
lant function Ck(t), where the self-energy in the Migdal
approximation emerges more explicitly than in Eq. (7)
of the main text.
We note that the cumulant expansion method that we

have now presented is analogous to the linked cluster
expansion for the thermodynamic potential F in sta-
tistical mechanics. This is a consequence of the same
mathematical form of Ck(t) = ln (Gk(t)/Gk,0(t)) and
F = ln(Z/Z0), where Z and Z0 are the partition func-
tion of the full and noninteracting theories.
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II. SPECTRAL FUNCTIONS

In Sec. III of the main text, we presented spectral func-
tions A(ω) and heat maps for ω0 = 0.5. Here, we present
a large number of results for ω0 = 1, ω0 = 0.2, as well as
some additional results for ω0 = 0.5 that are organized
as follows:

1. Results for ω0 = 1:

• Fig. S1: A(ω) in the weak coupling regime for
a wide range of temperatures and momenta.

• Fig. S2: A(ω) in the weak, intermediate and
strong electron-phonon coupling regimes for
k = 0 and k = π:

– Fig. S2i: k = 0 at T = 0.4 and T = 1.

– Fig. S2ii: k = π at T = 0.4 and T = 1.

– Fig. S2iii: k = 0, π at T = 2 and T = 5.

• Fig. S3: A(ω) in the weak, intermediate and
strong electron-phonon coupling regimes for
k = π/3 and k = 2π/3:

– Fig. S3i: T = 0.4.

– Fig. S3ii: T = 1.

– Fig. S3iii: T = 2 and T = 5.

• Fig. S4: Heat maps

– Fig. S4i: T = 0.4.

– Fig. S4ii: T = 1.

2. Results for ω0 = 0.5:

• Fig. S3: A(ω) in the weak, intermediate, and
strong electron-phonon coupling regimes for
k = π/3 and k = 2π/3:

– Fig. S5i: T = 0.3.

– Fig. S5ii: T = 0.7.

– Fig. S5iii: T = 2 and T = 5.

3. Results for ω0 = 0.2:

• Fig. S6: A(ω) in the weak, intermediate and
strong coupling regimes for k = 0 and k = π:

– Fig. S6i: k = 0 at T = 0.3 and T = 0.7.

– Fig. S6ii: k = π at T = 0.3 and T = 0.7.

– Fig. S6iii: k = 0, π at T = 2 and T = 5.

• Fig. S7: A(ω) in the weak, intermediate and
strong coupling regimes for k = π/3 and k =
2π/3:

– Fig. S7i: T = 0.3.

– Fig. S7ii: T = 0.7.

– Fig. S7iii: T = 2 and T = 5.

• Fig. S8: Heat maps:

– Fig. S8i: T = 0.3.

– Fig. S8ii: T = 0.7.
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III. QUASIPARTICLE PROPERTIES

In Sec. IV of the main text, we showed and ana-
lyzed the quasiparticle properties of CE, DMFT, and
SCMA methods. Here we supplement that study by
including the predictions of the Migdal approximation
for the ground state energy in 1D. The results are
shown in Fig. S9. We emphasize that the predictions
of the DMFT benchmark are practically identical to
the exact numerical results [S1]. These results read-
ily demonstrate how much improvement to the simplest
approximation (MA) is provided by including the self-
consistency (SCMA) and by employing the cumulant
expansion method (CE).
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FIG. S9. Ground state energy within DMFT, CE, SCMA,
and MA for the one-dimensional Holstein model with t0 = 1.
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4Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade,

P.O. Box 522, 11001 Belgrade, Serbia
5Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA

6Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
7Department of Physics and Astronomy, Montclair State University, Montclair, New Jersey 07043, USA

(Received 24 February 2023; accepted 10 April 2023; published 26 April 2023; corrected 5 May 2023)

Intermetallic narrow-gap semiconductors have been intensively explored due to their large thermoelectric
power at low temperatures and a possible role of strong electronic correlations in their unusual thermodynamic
and transport properties. Here we study the optical spectra and vibrational properties of FeGa3 single crystal. The
optical conductivity indicates that FeGa3 has a direct band gap of ≈ 0.7 eV, consistent with density functional
theory (DFT) calculations. Most importantly, we find a substantial spectral weight also below 0.4 eV, which is
the energy of the indirect (charge) gap found in resistivity measurements and ab initio calculations. We find
that the spectral weight below the gap decreases with increasing temperature, which indicates that it originates
from the impurity states and not from the electronic correlations. Interestingly, we did not find any signatures
of the impurity states in vibrational spectra. The infrared and Raman vibrational lines are narrow and weakly
temperature dependent. The vibrational frequencies are in excellent agreement with our DFT calculations,
implying a modest role of electronic correlations. Narrow Mössbauer spectral lines also indicate high crystallinity
of the sample.

DOI: 10.1103/PhysRevB.107.165151

I. INTRODUCTION

Correlated narrow-gap semiconductors represent a class
of materials known for their large thermopower at low tem-
peratures and other anomalous transport and thermodynamic
properties [1]. Three iron compounds among them, FeSi,
FeSb2, and FeGa3, share some common features, but also
show important differences. FeSi and FeSb2 behave as insu-
lators only at temperatures T ∗ � 100 K which corresponds
to the energy much smaller than the band gap Eg ≈ 50 meV
[2–4]. A buildup of the in-gap spectral weight at temperatures
kBT ∗ � Eg, clearly seen in optical [5–8] and photoemission
spectroscopy [9], is a signature of strong electronic correla-
tions [10,11]. A crossover from a nonmagnetic insulator to
a bad metal is accompanied by a large increase in the spin
susceptibility which obtains Curie-Weiss form above room
temperature [12,13]. This crossover leaves fingerprints also
in the Raman vibrational spectra which become strongly tem-
perature dependent. The width of vibrational peaks increases
several times in the bad-metal region as compared to the low-
temperature insulating state [14–16]. At temperatures near
10 K there is a large peak in the thermopower |S| [17,18].
The exact role of the electronic correlations, in-gap states,
anisotropy, and phonon drag in colossal thermopower found
in FeSb2 remains a subject of various studies and controversy
[19–21].

FeGa3 has a significantly larger band gap, Eg ≈ 0.4 eV
[22,23], than FeSi and FeSb2 due to the stronger hybridization
between 3d orbitals of Fe and 4p orbitals of Ga. The elec-
tronic structure calculations imply modest contribution of
electronic correlations. Density functional theory (DFT) [24]
and LDA+U [23] calculations give almost the same band
structure, while dynamical mean field theory (DFT+DMFT)
[25] gives only slightly reduced band gap. Nevertheless,
the temperature dependence of dc resistivity is nontrivial: it
strongly deviates from a simple activated transport at low tem-
peratures, and features four distinct transport regimes which
are associated with a presence of the in-gap states [22,23,25].
For T � 5 K ρdc has a power law temperature dependence
consistent with the variable-range hopping transport driven
by the localized in-gap states. In the interval 20 � T � 45 K
the charge transport is activated, but corresponds to a small
gap of ≈40 meV between the in-gap states and the con-
duction band. Then, following a minimum in ρdc, there is a
metalliclike transport up to ≈80 K which presumably cor-
responds to the regime where most of the in-gap electrons
are already transferred to the conduction band. For T >

300 K the charge transport is activated, consistent with the
wide gap Eg ≈ 0.4 eV. The measurements show weak sample
anisotropy and weak temperature dependence of magnetic
susceptibility, whereas the DFT+DMFT calculations give
small mass renormalization, as well as strong charge and spin
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fluctuations [25]. A maximum in the Seebeck coefficient |S|
at T ≈ 15 K is argued to be a consequence of the phonon-
drag effect [23]. In this picture the in-gap states supply free
charge carriers and the acoustic phonons cause an additional
scattering of the electrons opposite to the direction of a tem-
perature gradient, leading to the large thermoelectric power.
Interestingly, to our knowledge, there has been so far only
one infrared spectroscopy study of FeGa3 in polycrystalline
samples [26], restricted to room temperature and energies
larger than 90 meV.

In this paper, we present infrared and Raman spectroscopy
study of FeGa3 single crystal in the temperature range be-
tween 4 and 300 K. The reflectance is measured in the energy
interval between 30 and 24 000 cm−1. The infrared and Ra-
man active vibrational frequencies are in excellent agreement
with our DFT calculations, indicating good crystallinity and a
small influence of electronic correlations. Good crystallinity
is corroborated also by measured Mössbauer spectra. The
most prominent feature of the optical spectra is the existence
of the in-gap states below the charge gap of approximately
0.4 eV. We observe a reduction of the in-gap spectral weight
as the temperature increases to 300 K and conclude that this
spectral weight originates from the impurities. Details of ex-
perimental and numerical methods are presented in Sec. II.
The results are shown in Secs. III and IV contains our
conclusions.

II. METHODS

Single crystals of FeGa3 were grown as described previ-
ously [22]. For infrared measurements a small crystal was
polished until a smooth surface of about 3 mm2 area was
obtained, then mounted on a helium-flow optical cryostat.
The temperature dependence of reflectance was measured
between 30 and 24 000 cm−1, using a combination of
two Fourier-transform infrared spectrometers: a Bruker 113v
for far infrared (30–600 cm−1) and a Bruker Vertex 70,
with extended spectral range, from midinfrared to visible
(100–24 000 cm−1). Reflectance in visible and ultraviolet
(12 000–50 000 cm−1) was measured at room temperature
only, using a Perkin-Elmer 650 UV/VIS grating spectrometer.
As no temperature dependence was observed above about
12 000 cm−1, all temperatures were merged with room tem-
perature data in visible and ultraviolet parts of the spectrum.
To capture correctly the width and line shape of lattice vibra-
tions, the far-IR data were taken with a resolution of 0.5 cm−1,
while 2 cm−1 or larger values were used at higher frequencies.
Both gold and aluminum mirrors were used for reference,
and in order to correct for surface roughness the sample was
also gold coated, using a commercial Ted Pella Cressington
108 sputtering machine. Because of the polishing involved,
the precise orientation of the electric field (polarization) with
respect to the crystallographic axes of the samples is not
clearly defined, hence we cannot discuss potential anisotropic
optical properties.

Raman scattering measurements were performed using a
TriVista557 Raman system, equipped with a nitrogen-cooled
CCD detector, in backscattering micro-Raman configuration.
Grating configuration was 1800/1800/2400 grooves/mm, in
order to achieve the best possible resolution. The 514.5-nm

line of an Ar+/Kr+ gas laser was used as an excitation source
and a microscope objective with factor 50 magnification was
used for focusing the beam. All measurements were carried
out with laser power less than 1.5 mW at the sample, in order
to minimize local heating. Room temperature measurements
were done in air, whereas for low temperature measurements
the sample was placed in a KONTI CryoVac continuous flow
cryostat, with a 0.5-mm-thick window. Spectra were corrected
for the Bose factor.

The 57Fe-Mössbauer spectrum of the FeGa3 pow-
dered sample was measured at room temperature in high
(≈ ±9 mm/s) and low (≈ ±2 mm/s) Doppler velocity range.
The spectra were collected in standard transmission geometry
in constant acceleration mode using a 57Co(Rh) source. The
Doppler velocity scale was calibrated by using the Mössbauer
spectrum of metallic α-Fe. The spectra were fitted by the
RECOIL program [27]. The center shift value (CS) is quoted
relative to the α-Fe (CS = 0).

First-principles DFT calculations of electronic structure
and phonon frequencies were performed using the open-
source QUANTUM-ESPRESSO package [28,29]. We employed
the ultrasoft Vanderbilt-type pseudopotentials with Perdew-
Burke-Ernzerhof exchange and correlation functional. For
the Fe atom we considered 3s, 3p, 3d , and 4s as valence
electrons (in total 16), while the Ga valence electrons were
taken to be the electrons from 3d , 4s, and 4p orbitals (in
total 13). Thus, a minimum of 110 bands was needed to
perform the calculations since we have four formula units per
unit cell, but we nevertheless considered 128 bands, which is
a very convenient number for parallelization purposes. The
plane wave kinetic energy cutoff was set to 70 Ry, which
proved to be sufficient for all our calculations. The ionic re-
laxation, self-consistent, and normal mode calculations were
performed using the Monkhorst-Pack scheme, with the k mesh
of 8×8×8, which corresponds to 75 k points in the irreducible
part of the Brillouin zone. On the other hand, the density of
states (DOS) calculation requires a much larger number of k
points in order to be accurate, and hence we performed the
non-self-consistent calculation with a k mesh of 12×12×12 in
order to calculate the DOS. We used density functional pertur-
bation theory (DFPT) [30] in order to calculate the vibrational
frequencies.

III. RESULTS

We first present the band structure calculations. These re-
sults are known from the literature, but we nevertheless show
them for completeness and in order to put into context the
analysis of the experimental data that follow. Then we present
optical, Raman, and Mössbauer spectra.

A. DFT band structure

The semiconductor FeGa3 belongs to the P42/mnm space
group and it has a tetragonal P-type lattice with lattice pa-
rameters a=6.2628(3) Å and c=6.5546(5) Å [31]. In the DFT
calculations we used the lattice parameters from the experi-
ment and relaxed only the fractional coordinates of the atoms.
These coordinates, shown in Table I, are only slightly adjusted
from their measured values.
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TABLE I. Nonequivalent atomic positions from the DFT
calculation.

Atom P4̄n2 x y z

Fe 4 f 0.34367 0.34367 0
Ga1 4c 0 0.5 0
Ga2 8 j 0.15575 0.15575 0.26295

Figure 1 shows the dispersion relations and the density of
states, calculated along the k path Z-R-A-Z-�-X -M-� in the
Brillouin zone. Our results are very similar to previous work
[23,32], showing that FeGa3 is an indirect-gap semiconductor
with the calculated band gap of 0.44 eV. The bands around the
Fermi level are formed from the hybridized Fe 3d and Ga 4p
orbitals.

B. Optical conductivity and infrared vibrational modes

The reflectance R(ω) measured at several temperatures
between 25 and 300 K is shown in Fig. 2(a). Note that the
spectra are shown on a logarithmic frequency scale so that
we can distinguish both the low- and high-frequency features.
The low-frequency reflectance is close to 1 which indicates a
possible presence of the in-gap states that we will discuss in
detail below. The far-infrared frequency region is shown on a
linear scale in the inset. The peaks in R(ω) correspond to the
infrared-active vibrational modes.

A better insight into the excitation spectrum can be ob-
tained from the real part of the optical conductivity σ1(ω). It
corresponds to the imaginary part of the dielectric function,
σ1(ω) = ωε2(ω)/4π , describing the absorption of electro-
magnetic radiation [33,34]. Figure 2(b) shows σ1(ω) obtained
from the Kramers-Kronig transformation of R(ω). As this
transformation involves integration of R(ω) from zero to in-
finity, we used extrapolation of our measurements. At high
frequency (ω → ∞), the data were bridged with calculations
of the dielectric function based on the x-ray photoabsorp-
tion, following the procedure described in Ref. [35]. For
ω < 30 cm−1 we set R(ω) = R (30 cm−1), but we checked
that σ1(ω) is not sensitive to the precise form of R(ω) in the

FIG. 1. DFT band structure of FeGa3 and density of states in
units states/(eV f.u.).

FIG. 2. Reflectance (a) and optical conductivity (b) as a func-
tion of frequency in the whole measured frequency range at several
temperatures. The insets show the low-frequency data on a linear
scale.

limit ω → 0. The same result is obtained using the Hagen-
Rubens formula, R(ω) = 1 − A

√
ω, where A is a constant

adjusted to fit the first several points from the measurements
[33,34].

The optical conductivity at 25 and 300 K is shown in Fig. 3
on a linear energy (frequency) scale in units of eV. σ1(ω)
rapidly decreases for frequencies h̄ω � 0.9 eV (7000 cm−1).
This is consistent with the DFT band structure shown in Fig. 1.
It gives the smallest direct gap of 0.67 eV near the Z point
in the Brillouin zone, but in many regions of the Brillouin
zone the gap is between 0.7 and 0.9 eV. At h̄ω = Eg ≈ 0.4 eV
the spectral weight is significantly reduced, yet it remains
substantial also at h̄ω < Eg. We note that we did not attempt
to calculate the optical spectra since a reliable calculation
requires us to include the particle-hole interaction on a level
of the Bethe-Salpeter equation, which is a very challenging
task even for weakly interacting semiconductors [36,37]. A
calculation of the optical spectra of FeGa3 in the independent-
particle approach poorly compares with our experiments [24].
On the other hand, our optical spectra for h̄ω � 0.5 eV are
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FIG. 3. Optical conductivity as a function of frequency at 25 and
300 K. The inset shows the infrared vibrational modes which are fit-
ted by 11 Lorentzians. The green line corresponds to the cumulative
fit.

in rather good agreement with the spectra on polycrystalline
samples of Ref. [26].

Evidence that the spectral weight below Eg has origins
in the impurity states can be obtained from analysis of the
temperature dependence of σ1(ω). At finite temperatures, in
a standard band gap semiconductor a small spectral weight
would appear just below Eg due to the phonon assisted excita-
tions. The same amount of the spectral weight would recover
just above the band edge, where the absorption becomes
slightly lower due to the finite hole (electron) concentration
in the valence (conduction) band at finite temperatures [33].
On the other hand, in FeSi and FeSb2 a spectral gap is closed
at higher temperatures due to the strong correlation effects. In
this case, transfers of the spectral weight occur over the energy
range much larger than the band gap. However, in our case
the spectral weight at T = 300 K is reduced both below and
above Eg [see Figs. 2(b) and 3]. The reduction of the spectral
weight below Eg should correspond to the depopulation of
the impurity band, which leads to the reduction in the light
absorption for subgap energies [25]. Hence, we conclude that
the spectral weight below Eg is due to impurity states. We
note that a small surplus of Fe atoms in comparison to the
stoichiometric ratio is found in wavelength dispersive x-ray
spectroscopy [23]. Our conclusion is in line with the statement
that the transfer of the electrons from the impurity states
to the conduction band is a likely cause of the anomalous
dρ/dT > 0 resistivity temperature dependence around 100 K
[20,25].

We now turn our attention to the far-infrared part of the
spectrum from 50 to 350 cm−1, which contains infrared vi-
brational modes. From the inset of Fig. 2(b) it appears that
most of the phonon peaks are rather broad. However, that is
not the case since several peaks, in fact, consist of two vi-

TABLE II. Irreducible representation of infrared-active modes
and their frequencies. The measured frequencies are obtained at
300 K. Numerical values are obtained within DFPT calculation.

Irred. rep. Expt. (cm−1) Calc. (cm−1)

E 1,2
u 69.00 76.08

A1
2u 113.50 107.61

E 3,4
u 117.50 116.18

E 5,6
u 149.85 161.78

A2
2u 162.2 162.28

E 7,8
u 166.99 168.69

E 9,10
u 199.50 201.71

E 11,12
u 231.50 229.45

E 13,14
u 275.00 281.2

A3
2u 287.30 296.61

E 15,16
u 332.50 329.0

brational modes with very close frequencies. The space group
P42/mnm has the corresponding point group D4h(4/mmm).
Thus, all the normal modes are classified according to ir-
reducible representations of D4h(4/mmm). The factor group
analysis predicts 12 Raman and 11 infrared-active modes,
along with ten silent and two acoustic modes:

�Raman = 3A1g + 4Eg + 2B1g + 3B2g,

�IR = 3A2u + 8Eu,

�silent = 2A2g + 2A2u + 4B1u + 2B2u,

�acoustic = A2u + Eu. (1)

The experimental data at 300 K are fitted with 11 Lorentz
profile lines. Their cumulative contribution to the spectra is
shown in green color in the inset of Fig. 3. A complete list
of the corresponding phonon frequencies is shown in Table II.
These frequencies were obtained at 300 K, but we see from
the inset in Fig. 2(b) that the temperature dependence of the
frequencies is weak. The changes are of the order of 1% in
the temperature range between 25 and 300 K. The frequen-
cies calculated within DFPT are in excellent agreement with
measured frequencies. This implies that a crystallinity of the
sample is very good, even though some surplus of Fe iron
atoms is expected in comparison to the ideal composition [23].
In addition, excellent agreement between the calculated and
measured frequencies indicates that the electronic correlations
beyond the DFT are not strong, in line with the conclusions
from DFT+U [23] and DFT+DMFT [25] calculations.

C. Raman spectra

There are 12 Raman-active modes in FeGa3 [see Eq. (1)].
Wyckoff positions of the atoms, their contributions to the
�-point phonons, and the corresponding tensors for Raman
active modes are given in Table III. Since observability of the
Raman-active modes in backscattering configuration of the
experiment strongly depends on the orientation of the sample,
we first performed orientation dependent measurements. This
was done by rotating the sample in the steps of 10◦. The ori-
entation of the sample which provided the best observability
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TABLE III. Contributions of each atom to the �-point phonons
for the P42/mnm space group and the corresponding tensors for
Raman active modes.

Space group P42/mnm

Atoms Irreducible representations

Fe (4 f ) A1g + A2g + A2u + B1g

+B1u + B2g + Eg + 2Eu

Ga (4c) A1u + A2u + B1u + B2u + 4Eu

Ga (8 j) 2A1g + A1u + A2g + A2u + B1g

+2B1u + 2B2g + B2u + 3Eg + 3Eu

A1g =
⎛
⎝

a 0 0
0 a 0
0 0 b

⎞
⎠ B1g =

⎛
⎝

c 0 0
0 −c 0
0 0 0

⎞
⎠ B2g =

⎛
⎝

0 d 0
d 0 0
0 0 0

⎞
⎠

1Eg =
⎛
⎝

c 0 0
0 0 e
0 e 0

⎞
⎠ 2Eg =

⎛
⎝

0 0 −e
0 0 0

−e 0 0

⎞
⎠

of Raman modes of various symmetries was used in further
measurements.

Raman spectra of FeGa3 single crystals, measured from
the (011) plane of the sample, at temperature T = 100 K,
for polarization angles within the range of 0◦ and 180◦ are
presented in Fig. 4. We have identified 10 out of 12 Raman ac-
tive modes. The assignation of modes was done in accordance
with DFT calculations and polarization measurements. Peaks
that exhibit the same polarization dependence were assigned
with the same symmetry. Consequently, peaks at 146.58 and
331.80 cm−1 were assigned as A1g and peaks at 127.99 and
269.98 cm−1 were assigned as B1g. The phonon lines at
138.96, 179.01, and 264.40 cm−1 are assigned as Eg, whereas
modes at 161.67, 238.27, and 321.43 cm−1 correspond to
the B2g symmetry modes. The full list of measured phonon
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FIG. 4. Polarization-dependent Raman spectra of FeGa3 single
crystals. Measurements were performed with measuring step of 10◦

at temperature T = 100 K.

TABLE IV. Experimental Raman frequencies measured at 100 K
and the corresponding values calculated within DFPT.

Irred. rep. Expt. (cm−1) Calc. (cm−1)

E 1,2
g 86.81

B1
1g 127.99 125.52

E 3,4
g 138.96 139.06

A1
1g 146.58 145.89

B1
2g 161.67 161.51

E 5,6
g 179.01 165.09

A2
1g 180.12

B2
2g 238.27 239.62

E 7,8
g 264.40 258.94

B2
1g 269.28 262.96

B3
2g 321.43 318.53

A3
1g 331.80 322.41

frequencies, along with their calculated values, is shown in
Table IV.

There is a very good agreement between experimental and
calculated phonon frequencies, with a discrepancy of less than
8%. A close match in experimental and theoretical results
is not surprising knowing that the investigated material is
semiconducting, with moderate electronic correlations. All of
the observed phonon lines are sharp, with the full width at half
maximum (FWHM) ≈ 2 cm−1, and weakly temperature de-
pendent. This indicates a good crystallinity of the sample and
absence of a metal-insulator transition or magnetic ordering.

noissi
msnart

evitale
R 0 4-4-8 8

Velocity (mm/s)
0 0.5-0.5 0.10.1--1.5 1.5 2.0

FIG. 5. Room temperature 57Fe-Mössbauer spectra of the FeGa3

sample recorded in the low-velocity range. Experimental data are
presented by the solid circles and the fit is given by the red solid line.
The difference (Calc. − Expt.) is shown by the dark gray line at the
bottom of the figure. The vertical arrow denotes the relative position
of the lowest experimental point with respect to the background
(relative absorption of 1.70%). The absolute difference is less than
0.05%. The inset shows the room temperature spectrum of the FeGa3

sample recorded within the high-velocity range. The orange line is
just a guide for the eye.
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D. Mössbauer spectra

The 57Fe-Mössbauer spectroscopy was used to investigate
quality and ordering of the prepared sample and to check
for the presence of Fe-based impurity phases. The 57Fe-
Mössbauer spectra of the FeGa3 are presented in Fig. 5.
The spectrum recorded in the low-velocity range showed two
absorption lines (doublet). In the spectrum recorded in the
high-velocity range, beside the observed doublet, there is
no indication of the magnetic hyperfine splitting. The thick-
ness corrected FeGa3 spectrum recorded in the low-velocity
range was fitted with one Lorentzian-shaped doublet using
the RECOIL program [27]. The obtained Mössbauer parameters
for the measured doublet are center shift CS = 0.28 mm/s,
quadrupole splitting 	 = 0.31 mm/s, and FWHM of the
Lorentzian lines is 0.22 mm/s. The obtained results closely
match the hyperfine parameters for FeGa3 from the literature
[38–42]. A very small broadening of the resonance lines ob-
served in the experiment is a strong indication that the sample
is very well ordered and of high crystallinity.

IV. CONCLUSIONS

In summary, we have performed optical, Raman, and
Mössbauer spectroscopy measurements of a narrow-gap
semiconductor FeGa3, along with DFT band structure and
vibrational frequencies calculation. We find that the optical
conductivity decreases for frequencies below h̄ω ≈ 0.9 eV
consistent with the direct band gap observed in DFT cal-
culations. Our most important finding is the appearance of
the optical spectral weight below the charge (indirect) gap
Eg ≈ 0.4 eV. At room temperature the spectral weight below
Eg diminishes as compared to the one at T = 25 K. Therefore,

we conclude that this spectral weight originates from the
impurities and not from the correlation effects. Interestingly,
we do not find signatures of the impurities in the vibrational
spectra. Both the infrared and Raman lines are very narrow,
as well as the Mössbauer spectral lines, which implies a good
crystallinity of the sample. The calculated vibrational frequen-
cies are in a very good agreement with the measurements,
which indicates that the electronic correlations in FeGa3 are
not strong, in line with previous studies.
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Petrovic, and Z. V. Popović, Lattice dynamics of FeSb2,
J. Phys.: Condens. Matter 24, 255402 (2012).

[17] B. C. Sales, E. C. Jones, B. C. Chakoumakos, J. A. Fernandez-
Baca, H. E. Harmon, J. W. Sharp, and E. H. Volckmann,
Magnetic, transport, and structural properties of Fe1−xIrxSi,
Phys. Rev. B 50, 8207 (1994).

[18] P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich,
Huge thermoelectric power factor: FeSb2 versus FeAs2 and
RuSb2, Appl. Phys. Express 2, 091102 (2009).

[19] C. C. Homes, Q. Du, C. Petrovic, W. H. Brito, S. Choi, and
G. Kotliar, Unusual electronic and vibrational properties in
the colossal thermopower material FeSb2, Sci. Rep. 8, 11692
(2018).

[20] M. Battiato, J. M. Tomczak, Z. Zhong, and K. Held, Uni-
fied Picture for the Colossal Thermopower Compound FeSb2,
Phys. Rev. Lett. 114, 236603 (2015).

[21] Q. Du, L. Wu, H. Cao, C.-J. Kang, C. Nelson, G. L. Pascut,
T. Besara, T. Siegrist, K. Haule, G. Kotliar, I. Zaliznyak,
Y. Zhu, and C. Petrovic, Vacancy defect control of colos-
sal thermopower in FeSb2, npj Quantum Mater. 6, 13
(2021).

[22] Y. Hadano, S. Narazu, M. A. Avila, T. Onimaru, and
T. Takabatake, Thermoelectric and magnetic properties of a
narrow-gap semiconductor FeGa3, J. Phys. Soc. Jpn. 78, 013702
(2009).

[23] M. Wagner-Reetz, D. Kasinathan, W. Schnelle, R. Cardoso-Gil,
H. Rosner, Y. Grin, and P. Gille, Phonon-drag effect in FeGa3,
Phys. Rev. B 90, 195206 (2014).

[24] Z. P. Yin and W. E. Pickett, Evidence for a spin singlet state
in the intermetallic semiconductor FeGa3, Phys. Rev. B 82,
155202 (2010).
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The coupling of Frenkel excitons (FEs) and intramolecular vibrations in an organic
layer as a part of microcavity has been studied in the paper. Two cases are treated:
a) uniaxial layer of point group 4 (optical axis is supposed perpendicular to the
layer); b) monoclinic anthracene-like layer with monoclinic axis b perpendicular
to the layer. The exciton-phonon coupling produces the vibronic wings with com-
plex spectra which can contain bound exciton-phonon states and many-particle
(unbound) bands. Consequently in those regions the absorption lines and the res-
onance members in dielectric tensor appear. We treat theoretically their effects
on the polaritons in the microcavity and illustrate using numerical calculations
the peculiarities of the polaritonic spectra in the vibronic wings of Frenkel exci-
tons.

S06-CMPSP-111 / Oral presentation

Spectral functions of the Holstein polaron: exact and
approximate solutions

Authors: Petar Mitrić1; Veljko Janković1; Nenad Vukmirović1; Darko Tanasković1

1 Institute of Physics Belgrade, University of Belgrade

Presenter: P. Mitrić (mitricp@ipb.ac.rs)

It is generally accepted that the dynamical mean field theory (DMFT) gives a good
solution of the Holstein model [1], but only in dimensions greater than two. Here
we show that the DMFT, which becomes exact in the weak coupling and in the
atomic limit, provides an excellent numerically cheap approximate solution for the
spectral function of the Holstein model in the whole range of parameters even in
one dimension. To establish this, we made a detailed comparison with the spectral
functions that we obtained using newly developed momentum-space numerically
exact hierarchical equations of motion method, which yields electronic correlation
functions directly in real time [2]. We crosschecked these conclusions with our path
integral quantum Monte Carlo and exact diagonalization results, as well as with the
available numerically exact results from the literature [3].
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Cumulant Expansion in the Holstein model:
Spectral Functions and Mobility

Petar Mitrića, Veljko Jankovića, Nenad Vukmirovića and Darko
Tanaskovića

aInstitute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Abstract. The cumulant expansion (CE) method presents an alternative to the usual Dyson equation
approach for the calculation of spectral functions and quasiparticle properties of interacting quantum
many-particle systems. We examine the range of validity of this method by implementing it in a
system described by the simplest electron-phonon model Hamiltonian - the Holstein model [1].
For a benchmark, we use the dynamical mean-field theory (DMFT) [2] which gives, as we have
recently shown [3], rather accurate spectral functions in the whole parameter space. The results are
also compared to the one-shot and the self-consistent Migdal approximation. While CE is exact in
both the weak-coupling and the atomic limit, we find that even in a regime of intermediate coupling
in 1D, the CE resolves well both the quasiparticle and the first satellite peak of the spectral function.
CE also gives promising results for high temperatures, but it is not exact in the limit T → ∞, which
is proved analytically by analyzing the spectral sum rules.

Charge mobility µ is also calculated, using the bubble approximation of the Kubo formalism. At
high temperatures, we demonstrate that it assumes a power law, which is different in the limit of
weak coupling µ ∝ T−2, and in the case of somewhat stronger coupling µ ∝ T−3/2.
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Infrared and Raman study of narrow-gap semiconductor FeGa3 
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Narrow-gap semiconductors have been intensively studied in the last few years due to their 

huge thermoelectric power at low temperatures and possible impact of strong electronic 

correlations on their physical properties. Here, we analyse infrared and Raman spectra of 

FeGa3 single crystal. The optical conductivity obtained from reflectance measurements 

suggests an indirect energy gap of around 0.4 eV, although the existence of substantial 

spectral weight at low energies prevents its precise determination. The energies of Raman 

and infrared active modes obtained by our DFT calculations agree very well with the 

experimental results. Temperature dependence of Raman mode energies and linewidths is 

weak between 80 and 300 K, indicating the absence of any phase transition. Most of the 

vibrational modes are very narrow due to weak electron-phonon and/or spin-phonon 

interactions, and good crystallinity of the single crystal, which is also confirmed by the 

Mӧssbauer spectra. 

. 

 



 


	Supplemental Material: Spectral functions of the Holstein polaron: exact and approximate solutions
	DMFT for the Holstein polaron
	Physical content of the DMFT approximation
	Numerical implementation of the DMFT loop
	Self-consistency equation for the local Green's function in one dimension
	Self-consistency equation for the local Green's function in arbitrary number of dimensions

	Effective mass in 1d, 2d and 3d
	Comparisons with the Bethe lattice results

	Weak-coupling limit
	Migdal approximation
	Self-consistent Migdal approximation
	DMFT vs. SCMA in the weak coupling limit

	Strong coupling: Exact diagonalization
	Finite-size effects and HEOM depth
	Atomic limit
	Spectral functions at T=0: Additional results
	Spectral functions at T>0: Additional results
	HEOM self-energies
	Correlation functions
	technical note: Numerical calculation of the integrated spectral weight
	technical note: equivalence of spectral functions from different definitions
	Spectral function from greater Green's function
	Spectral function from retarded and time-ordered Green's function
	Spectral function from grand canonical ensemble
	Relation between the spectral function and imaginary-time correlation function

	References

	Supplemental Material: Cumulant expansion in the Holstein model: Spectral functions and mobility
	Alternative derivation of the cumulant function in the CE method
	Spectral Functions
	Quasiparticle properties
	References


