MHCTHTVYT 3A DPHAZHAKY

NPUMIBEHO: UG U8 075

Pan.jea. 6po]j Apx.umdpa Mpunor

ogc) |3l

Hayunom Behy UHcTuTyTa 32 dHsuky beorpap
IIpegmet: Monba 3a moKpeTame MoCTynka 3a u300p y 3Bame UCTPAKHUBAY CapagHUK

Moymim HayuHo Behe VHcTHTyTa 3a PU3MKy y Beorpady Aa rOKpeHe MOj u3b0p y 3Bame
UCTPKUBAY CapaJHUK.

Y mpusory AoCTaB/baM:

MULIbeHe PYKOBOAMOIIA 17abopaTopHje ca Mpe/IoroM WiaHoBa KOMHCHje 3a u3b0op y 3Bame;
cTpyuHy 6uorpadujy;

rpersie] HayYHe akTUBHOCTH;

crniMcak objaB/beHUX pasioBa;

MIOTBP/Y O OJP>KaHOM TI03MBHOM Ipe/|aBamy;

TIOTBP/Y O YIIMCAHUM JOKTOPCKHUM CTyAHjaMa;

KOITHjy JUIUIOMAa OCHOBHMX U MacCTep CTyAH]ja;

yBepeme 0 npuxBaheHoj TeMM JOKTOPCKe JucepTaLyje;

@ NN AWN =

beorpaz,
08.08.2023. roaune

V [/
€ momToBameM,
Wsan Tpanapuh

UCTPa)KMBa4 TIPUMPABHUK



HHCTHTVYT 3A DPHIHNKY

NPUMILEHO: 08 08 2
Pag.jen. 6poj Apx.w:;Q)pa ] Mpunor
Lol [Iho3/2

Munubeme pykoBoguona naboparopuje o u3opy isana Tpanapuha y 3Bame
HCTPa)XXMBa4 CapajHUK

ViBan Tpamapuh je u3abpaH y 3Bame MCTpaKHBau NpPHUIPaBHUK (ebpyapa 2021. roguHe u
3anocieH je Ha WIHCTUTYTy 3a Qusuky y Beorpagy op ampuia 2021. roguHe Kao HCTpaKMBay
MPUIpPaBHUK y JlabGopaTopuju 3a CrIeKTPOCKOMH]y IUiasMe W Jlacepe. Paau Ha NMpUMeHHM BelLTauke
VHTe/IMIeHLMje Y CIeKTPOCKONMjM TIa3Me ToJ PYKOBOACTBOM Ap MwuimBoja MBkoBuha M ap
Mapujane I'aBprnosuh Boxosuh. C 063upoM Ja ucrymasa cee mnpeasuljeHe ycioBe y cKaafy ca
IIpaBUIHUKOM O TMIOCTYIIKY, HauMHy BpeJHOBakba W KBAHTUTATUBHOM WCKAa3HBaKy HAy4YHO
MCTPaXMBAYKHUX pe3ynTata MHUHMCTapCTBa HayKe, TeXHOJIOLIKOT pa3BOja M WHOBallMja, cariacaH
CaM Ca TOKPeTameM MOCTyIKa 3a u36op VBaHa Tparnapuha y 3Barbe HCTPOKUBaAU CapajiHUK.

3a cacras komucHje 3a u36op VBana Tpanapuha y 3Bame HCTPKKMBAY CapajiHUK MPefIaskeM:

1. np MunuBoje MBkoBuh, HayuHy caBeTHUK, MHCTUTYT 3a ¢u3uKy y Beorpaay

2. np bwbana CraHKOB, HAyYHH capaZiHUK, IHCTUTYT 3a ¢u3uky y Beorpany

3. Ap Mapujana Taspunosuh bBoxoBuh, foueHT, @aKyITeT HHXEHEPCKUX —HayKa
Ynusepsurera y Kparyjesiy
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Buorpadmuja

ViBan Tpamnapuh poljeH je y Tpebumy, buX, 14.9.1996. roavHe r7e je 3aBpILIMO OCHOBHY U CpeJby
mkony. Ha ocHoBHe ctyauje ®dusmukor ¢akyntera YHuBep3uTeTa y beorpaay ymucyje ce 2015.
rofvHe Ha cMmep [IpumereHa u Komujyitiepcka ¢usuka. OCHOBHe CTyAMje 3aBpllaBa y pPeJOBHOM
poky 2019. roguHe ca cpefmOM MPOCEUYHOM OLieHOM 9.43. VicTe roauHe yIivcyje macrep CTyjuvje Ha
dusnukoMm (akynrety YHuBep3uTeTa y beorpasy Ha cmepy Teopujcka u ekcilepumeHilaaHa
¢usuxa. Mactep cTyzyje je 3aBpIIMO Ca CPeJHOM MpoceuyHoM orjeHoM 10, a MacTep paj ofbpaHHo
ca oueHoMm 10. Macrep paj Tof, HacIOBOM ,,Bakyym yaiupasybuuacitia cileKiipocKouiuja
JlajmaHoge cepuje joHuzoeaHol aiioma xeaujyma" je ypaheH y JlabopaTopuju 3a CIIEeKTPOCKOIH)Y
miasMe U jacepe Ha WHctutyTy 3a ¢u3uky y bBeorpagy, moj pyKOBOACTBOM Jp MusuBoja
VBkoBuha.

Ha Unctutyty 3a ¢usuky y beorpaay je 3anocsieH op anpuia 2021. Kao CTYyZeHT JOKTOPCKUX
CTyAWja y 3Bamby MCTPaKMBau MPUIIPABHUK. TOKOM [JOKTOPCKHMX CTyAuja, OaBHO ce wiu ce GaBH
BaKyyM y/ATpPa/byOMUYacTOM CITEKTPOCKOMHjOM €JIEKTPUUHUX TaCHUX TIPaKikbera, TPUMEHOM
MAaLLMHCKOI yYerwa U BellTauyke MHTe/IMreHLUje y ONTUYKO] eMUCUOHO] CIIeKTPOCKOIIHjU TI1a3Me U
yHanpeljuBameM MeTozja W moOosblllakka TpaHUWIA JeTeKIMje TI0jeIMHUX e/leMeHara Y
CMEKTPOCKOIUjH JIaCePCKU WHAYKOBAaHUX TUla3Mu. Y TIOC/Te[me BpeMe, 0aBU Cce W TNPUMEHOM
BeIlITaykKe WHTe/INTeHI[fje Y BaKyyM yATpa/byOMuacToj CrieKTpOCKONHUjU (Dy3MOHUX I/1a3MHU. Y TOKY
OCHOBHMX CTyAMja je y4eCTBOBAO Ha [[Be JIeTH-e IIKosie U3 obmactu ¢usvke (Gy3MOHUX TJIa3MH.
[TpBa neTma IIKOJA OpraHu3oBaHa je y Beorpaay, y orpanusanuju @y3uoHe obpazogHe mpedice
(®OM). ToxkoMm oOBe /eTHe WIKOMe, KWMao je TIPWIMKY Ja IyTeM HHTepHeTa I[PUCYCTBYyje
ekcriepuMeHTHMa Ha TokamMaky GOLEM vy Ilpary, a Tema ucTpa)kvBarba OWsa je ekcriepuMeHTaTHa
(u3mKa runaway enektpoHa. Jlpyra neTma I1kona je 6uaa Ha MHCTUTYTY 3a u3uKy ruazme Yelike
akazieMuje Hayka 4 ymetHocTu y Ilpary, rae cy pahjenu ekcriepuMeHTH Ha Tokamaky COMPASS.
OBzie je UMao NpPUMKY /ia B HeZle/be yUeCTBYje Y UCTpaKvBamwby eKCllepyuMeHTalHe TpyTie Koja ce
6aBu HeCTaOMWIIHOCTHMA Ha UBUIIM TI/Ia3Me.

Ho caga je objaBuo Tpu paja y yacormcuma ca CLIW nmucre, of kKojux je jemaH oOjaB/beH y
BPXYHCKOM MeljyHapogHOM yaconucy (kateropuja M21, Ud 5.102) a apyra ABa y MeljyHapogHOM
yaconucy kareropuje M23 (M@ 1.611 u 0.420). CBoj mocazailisbyu paj, Tpe3eHTOBao je Ha TpHU
MmelhjyHapoziHe KoHdepeHmje (SPIG 2020, SPIG 2022 u SLSP 6 (Spectral Line Shapes in Plasmas)).
Ha mehjyyHapogHoj koHbepeniju 14th Serbian Conference on Spectral Line Shapes in Astrophysics
oapxxaHoj y bajHoj baiutu y jyHy oBe roavHe je ofp»kao TO3MBHO TpeflaBame y ceKuuju Spectral
Line Research: New Frontiers.



Ilpernes HayuyHe akTuBHOCTH VIBana Tpanapuha

HayuHo — uctpakvBauku paj MBana Tpanapuha cactoju ce of eKCiepUMeHTaHOT UCTPa)kKBama y
06/1aCTH CIIeKTPOKOCIIMje JlacepcKU HMH/AYKOBAaHUX I/1a3MM M HauMHa Mo0osbllialkba 0CEeT/bUBOCTU
MeTo/ie, Kao U IpUMeHe BelllTauke UHTe/IMTeHLMje Y CIIeKTPOCKOIUjU I1asMe.

(1) UcrpaxuBawe MoryhHocTH mnpuMeHe BellITauKe HHTe/JHMIeHI[Hje Y CIEKTPOCKONMjH
njiasme

Y okBupy gokropcke Tese MBaH Tpanapuh je mcnutyBao MOryhHOCT IprUMeHe BelITauyke
VIHTe/IMTeHLIMje Y CIIeKTPOKOIUjU Iy1asMe. AHa/lu3MpaHa je NpuUMeHa BelliTayke WHTe/IMreHLirje 3a
oppehuBame IllTapkoBe MOMyLIMpPUHE CIIeKTpa/He JMHUje, Ka0 U 3a KBaHTUTAaTUBHY aHa/lu3y U
ofipehjuBame KOHLIEHTpaLije ejleMeHaTa y y30pKy IoMohy CIeKTPOCKOIHje JlacepCKy MH/yKOBaHe
riasMme. Ha kpajy, BellITauka MHTe/WIeHIMja je UCKOPHUIITeHa 3a reHeprcame CreKkTpa y obactu
Mekor X 3padera 3a yCJIOBe KOju ce Mory Haht y 1ieHTpy Iia3Mme y ctesieparopy JIX/ y Jamany.

(2) UcTtpakuBame mnoBehama 0CEeT/LHBOCTH Mepea METOAOM CIEKTPOCKONHje JIacepCKH
HH/[yKOBaHe IjIa3Me

Y OokBHpY OBOT Jie/1la CBOI' HayYHOI' pafia, UCUTaHa je MoryhHoct nosehawa MHTeH3UTeTa
eMUTOBaHe CIIeKTpaslHe JIMHUje U3 J1aCepCKU Npor3BeeHe IiasMe. VcnuTvBaHU MeTOAM Cy J0[aHO
eJIeKTPUUHO TNpaXkibeke y [iBe KoHurypauyje. JeqHa KoHpurypaiyja rnpezcrasba 6p30 UMITY/ICHO
Npakibemhe UMjU je TpUrep Jacepckyd Ipou3BefeHa I1asMa, a JpyrM MeTof je ybaruBame
abnypaHor Marepujaza y THHaBO Mpakmewe. MeTa Ha Ko0joj je MpeZjiokeHa MeTo/la TeCTUpaHa je
BoJIppaM JOTIMPAH Ca PEHHUjYMOM, KOjH ce oueKyje y mpBoMm 3ufy Oyayhux ¢y3roHux peakropa.
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Abstract

Various types of electric fields contained in the laboratory and astrophysical plasma cause a Stark broadening of spectral
lines in plasma. Therefore, a large number of spectroscopic diagnostics of laboratory and astrophysical plasma are based on
experimental and theoretical studies of Stark broadening of spectral lines in plasma. The topic of the present investigation
is the Stark broadening caused by free electrons in plasma and its dependence on certain atomic parameters using a new
method based on the machine learning (ML) approach. Analysis of empirical data on atomic parameters was done by ML
algorithms with more success that it was previously done by classical methods of data analysis. The correlation parameter
obtained by artificial intelligence (AI) is slightly better than the one obtained by classical methods, but the scope of
application is much wider. Al conclusions are applicable to any physical system while conclusions made by classical
analysis are applicable only to a small portion of these systems. ML algorithms successfully identified quantum nature by
analyzing atomic parameters. The biggest issue of classical analysis, which is infinite spectral line broadening for high

ionization stages, was resolved by Al with a saturation tendency.

Keywords Machine learning - Stark broadening - Atomic data - Plasma physics

1 Introduction

One of the greatest challenges of the modern science is the
processing of enormous amounts of data. Two primary
goals in this field are how to learn from data and how to
make data predictions [37]. Data science and machine
learning (ML) have made tremendous progress in the last
few decades. Statistical physics have a great contribution to
the development and understanding methods in ML [6].
ML algorithms have become very important in the analysis
of data in physics and related sciences. ML methods have
been shown to be useful in different physical sciences:
astrophysics, particle physics, chemical physics, con-
densed-matter physics, quantum physics. In astrophysics
and particle physics experiments such as CMS and ATLAS
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at the LHC in CERN, as well as projects such as the Sloan
Digital Sky Survey (SDSS), gives enormous amount of
data measuring the particle collisions and properties of a
billion stars and galaxies [37]. Object classification in
astrophysics is very important task [3, 27, 46] whose suc-
cessful solution enables easier selection of objects
according to certain criteria and their further study. Use of
ML algorithms enables the solution of numerous problems
in the processing of astronomical data and enables the
consideration of dependences and correlations that have
not been observed before [25, 26, 44, 45]. In one of the
most significant modern experiment: observation of the
gravitational waves arises from the merger of a binary
black hole, ML algorithms are used to clear the noise in the
signals of gravitational waves [1, 57]. Large development
in the domain of data science, as well as the strengthening
of connection to quantum physics, enabled the develop-
ment of our knowledge of the matter. Namely, atomic
physics is a base for the creation of new molecules and
advanced materials, as well. The theoretical basis of atomic
physics is quantum mechanics. Quantum mechanics has
provided a base for successful research of molecular
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physics and condensed matter physics, as well as nuclear
physics and particle physics. Consequently, the develop-
ment of ML algorithms recently has been used to address
fundamental questions in the domain of quantum physics
[4, 49]. One of the big problems in quantum physics is the
inability to solve the Schrédinger equation for multiparticle
systems, i.e., inability to obtain appropriate wave functions.
In quantum chemistry and chemical physics, ML algo-
rithms are used for analysis and prediction of physical and
chemical properties, chemical structures, optimization of
reaction parameters and process conditions (a type of
reagents, catalysts, concentration, time, temperature), pre-
diction of new reaction design, maximization of the pro-
duction rate of chemical reactions [2, 9, 18, 29, 59, 60]. In
condensed-matter physics and material science, ML has
been used to improve the calculation of material properties,
as well as a modeling of properties of new materials
[10, 12, 19, 43, 58]. Learning techniques can be used for
the research of advanced materials: materials for memory
devices, solar cells, batteries, sensors, nanoparticle cata-
lysts, supercapacitors, superhard material, etc.

From interconnections between quantum physics and
ML, scientific community has huge expectation
[4,8,23,24,32,33, 35, 38, 49, 54]. There are many current
questions about entanglement classification [23], quantum
state tomography [54], solving the quantum many-body
problem [8, 24]. There are many interesting active ML
models with the aim of creation of new quantum experi-
ments [32, 33, 38], as well as quantum machine models
[17]. Also, ML can be used to discover physical concepts
from new experimental data [28]. ML approaches have
been applied to atomic physics. The neural networks can be
used as a representation of quantum states [6]. There is a
lack of atomic parameters for heavy elements and high
ionized atoms. ML can be applied to the classification of
heavy atoms energy levels according to their electronic
configurations [7, 41]. Learning techniques have been
applied for the investigation of atomic processes, like
ionization and radiation [6]. Analysis of spectra from stars
and quasars, as well as laser-produced and fusion plasma,
can be done with the help of ML [40, 45]. The knowledge
of atomic parameters is a base for atomic processes mod-
eling. The aim of this research work is to use machine
learning algorithms for modeling Stark spectral line
broadening.

Stark broadening of spectral lines is a tool for spectro-
scopic diagnostics of laboratory plasma, as well as astro-
physical and fusion plasma. In astrophysics, stark line
widths are used for analysis of stellar spectra, investigation
of chemical abundances of elements in different stellar
objects, opacity calculations. Recently, it has been shown
that Stark broadening has a big influence on the uncer-
tainties in the calculation of the solar opacity [34]. Spectral
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analysis has a very important role in the physics of fusion
plasma, too. Part of the current research in this field is
concentrated on the possibility of using various durable
materials, (as Mo, Ti, Zr...) for tungsten alloying. During
the operation of fusion machines, it is expected that a small
amount of these materials would be found in the peripheral
regions of confined plasma, because of the spattering pro-
cess. Stark widths of these atoms and their ions are needed
for a detailed spectral analysis and diagnostics.

Stark broadening of spectral lines of neutral atoms and
ions is used in science for a number of problems in various
physical conditions. Theoretical calculations of the Stark
width values usually use one of the models given by Griem
et al. [20]; Sahal-Bréchot et al. [47]; Griem [21]; Dimitri-
jevi¢ and Konjevi¢ [13]. Recent research indicates the
importance and usefulness of searching for possible types
of regularities in the framework of a Stark broadening
investigation [16, 53, 56]. Still, existing tables with cal-
culated and measured Stark widths have a big lack of data.
There is a need for Stark widths data in the wide range of
chemical elements, plasma temperature and electron den-
sities. In this paper a correlation between Stark broadening
and environment parameters, such as the ionization
potential of the upper level of the corresponding transition,
electron density and temperature, will be investigated using
modern ML algorithms. If this method proves to be accu-
rate enough, the process of calculating the value of stark
widths will be significantly accelerated and facilitated.

2 Theoretical background of Stark line
broadening

One of the primary deexcitation ways of excited atoms is
photon emission. A cumulative signal obtained from a
radiating medium (for example plasma) is a spectral line
with a small frequency range. Each spectral line emitted by
atoms in plasma has a finite frequency range represented as
line width. Generally, there are four types of spectral line
broadening in plasma. One is a natural line broadening,
related with the uncertainty in the energy of the states
involved in the transition profile, with line width negligible
compared to the other broadening mechanisms. The second
is instrumental line broadening which includes the influ-
ence of spectral device on a line profile. Doppler broad-
ening is caused by a distribution of velocities of atoms or
molecules and depends on plasma temperature. The pres-
sure broadening, which generally depends on pressure (i.e.,
density of active species) and temperature, results from the
interactions of the emitters with neighboring neutral par-
ticles (resonant and Van der Waals broadening) and ion-
ized particles (Stark broadening). Natural and instrumental
broadening are always present. The existence of other types
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of spectral line broadening depends on the plasma condi-
tions. Stark broadening is caused by the free charges which
surround the emitters in plasma and produce the local
electric field which affects the emission process, giving rise
to shifts of the emission wavelengths or changes in the
phase of the radiation. This is observed as a phenomenon of
broadening and shift of the spectral lines [22]. This effect is
determined by the intensity of the local electric field and it
depends on the density of charged particles in the plasma
(electrons and ions). The influence of free electrons on the
line broadening in plasma is much more pronounced than
the influence of ions. The topic of the present investigation
is the Stark broadening caused by free electrons in plasma
using new method based on ML approach.

The general formula for Stark width calculation in the
impact approximation, which is appropriate to use in the
overwhelming number of cases, is [22]:

‘U:Ne<v' “U‘+Zaii’+zaﬁ" > (1)
i !

av

The line has a Lorentzian profile whose width is o,
expressed in angular frequencies unit [rad/s]. N, and v are
electron density and velocity, respectively. The average is
being over the velocity distribution of perturbing electrons.
The cross sections ¢;; (off/) are for inelastic scattering on
the initial (final) state of the line,

while oy is an effective elastic cross section to be cal-
culated essentially from the difference of elastic scattering
amplitudes f; and f;.

The formula proposed by Griem [22] is very compli-
cated, it cannot be resolved exactly, so it is useful to use
different approaches in the calculation. The regularity
approach which correlates Stark width of spectral line, o,
expressed in [rad/s], electron density N,, electron temper-
ature T, and positive value of electron binding energy on
the upper level of the transition, expressed in [eV], is given
by Puri¢ and Séepanovié [42] (Eq. 2):

=27 a N, -f(T,) - x° (2)

where Z, = 1,2,3... for neutrals, singly charged ions, ...
respectively and it represents the rest core charge of the
ionized emitter and a, b and k are coefficients independent
of electron concentration and ionization potential for a
particular transition and the rest core charge of the emitter.
In Eq. 2, stark width is expressed in radian per second and
this is the only suitable unit to analyze the regularity of
Stark broadening. If regularity analysis use wavelengths (1)
and line widths (AZ) expressed in meters, Eq. 2 should be
written as follows:

Zf-a-Ne-f(Tg)-be-/lz 3)

Al =
& 2-m-c

In Eq. 3, every transition have its own wavelength, while
the other parameters remain unchanged, so regularity can’t
be seen.

Atoms and ions with the same number of electrons form
an isoelectronic sequence. It is expected that spectral series
within an isoelectronic sequence show regularity behavior
because a wide range of atomic/ionic parameters depend on
the electron number. The results obtained by regularity
studies have proven to be very precise and this approach
has been used in previous papers of our group. In the last
decade we have investigated Stark broadening regularities
using Eq. 2 within spectral series of individual elements
[14, 15, 30, 51, 52], within spectral series of individual
isoelectronic sequences [53, 55, 56] and we published one
paper with analysis of Stark line broadening regularities
within two spectral series of isoelectronic sequences
simultaneously: potassium and copper [16]. The present
investigation goes one step further and analyses all ele-
ments for which there are available data needed for Stark
broadening investigation, simultaneously, using machine
learning approach. The aim is to find the best possible
model which correlates Stark width of spectral line with all
available parameters for transition of interest (atomic
parameters and environmental parameters).

3 Dataset creation and data cleaning

In order to create our dataset we used two public reposi-
tories connected with atomic spectroscopy. First one is
Stark B database [48], where the parameters of Stark
broadening for different emitters are given. The features
taken from this database are: chemical element, ionization
stage, upper and lower level of spectral transitions, Stark
broadening, the environment temperature and electron
density in environment. In the available database, stark
widths are expressed in angstroms (1 angstrom = 101" m).
For analysis purpose, angstroms are converted in radian per
second [53] (Eq. 4). In the physical sense, radian per sec-
ond is unit related with energy.

o — 27 ?2 A @)
A
We also performed data analysis with Stark widths
expressed in meters, using machine learning and results
have not shown any meaningful trends. This is confirma-
tion that radians per second are suitable unit for machine
learning approach, too. When the difference between
energy levels of the same multiplet is small compared to
the distance to the next level linked by an allowed
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transition, all the fine structure lines of the same multiplet
have the same width and shift in Stark B database . In that
case, the data are given of the multiplet only (wp,y) and for
an average wavelength of the whole multiplet (Apyy). The
width value for a particular line (wy,e) Within a multiplet is
obtained from:

2

Wmult * )»1»
ml{ 5 ine (5)
A

Wiine =
‘mult

To ensure better results, we enriched features taken from
Stark B database with ones taken from NIST Atomic
Spectra database [31]: binding energy of both upper and
lower transition levels, ground level energy, total angular
momentum quantum number J of both upper and lower
transition level, as well as principal » and orbital ¢ quantum
numbers and total angular momentum J quantum numbers
of upper and lower transition levels.

The algorithm of connecting those two databases to form
our own works as described below. For every transition
connected with certain chemical element, we take the elec-
tronic configuration of both upper and lower levels from
Stark B database. Then, we look for that particular element in
NIST database and compare the electronic configurations. If
they match, then we take the binding energy of those levels,

their principal quantum number 7, orbital quantum number ¢
and total angular momentum quantum number J and finally
the ionization energy of that atom. The ionization energy is
needed for calculation of the so-called upper level ionization
potential y. For practical purposes, we replaced the chemical
element name with its atomic number Z and its charge,
obtained from periodic system of elements (i.e., instead of
Ar+2, we used Z = 10 and charge = + 2). For better
understanding of the algorithm mentioned above, pseudo
code is given in table Algorithm 1 while the complete code
can be found at https:/github.com/ivantraparic/Stark
BroadeningMLApproach. After we completed the creation
of database, it consisted of 54,236 successfully matched
transitions for 53 different emitters.

Then we proceeded with data cleaning. Outliers were
detected as those transitions where the energy of upper
level is smaller than the energy of lower level, which is
physically impossible, thus those lines were removed from
the database. Next, we excluded transitions given for
temperatures above 150,000 K and electron densities above
10" cm™3, because we are currently not interested in
making predictions for those plasma conditions. As a
result, this dataset contains 53 emitters and 34,973 spectral
lines and follows a normal distribution.

Algorithm 1 Creation of database used in this paper

1: for element in elements do

2: charge, Z < DetermineZAndCharge(element)

3: elementNIST < FindElementInNIST (element)

4: ElectronTemperature < electronic temperature from Stark B database

5: ElectronDensity < electron density from Stark B database

6: StarkWidth < stark broadening from Stark B database

7 UpperLevels <— upper transition levels from Stark B for element

8: LowerLevels < lower transition levels from Stark B for element

9: Levels < levels configuration in NIST database for elementNIST

10: Upperbindingenergy, Lowerbindingenergy, jupper, jlower, ni, li, nf, lf, x < Arrays

for saving found quantities from NIST database

11: GroundLevel <+ FindGroundLevel(elementNIST)

12: for lowerlevel in LowerLevels do

13: for level in Levels do

14: if lowerlevel == level then

15: Lowerbindingenergy, nf, If, jlower <— binding energy

and associated quantum numbers for that lower level taken from NIST

16: upper level ionization potential x <— GroundLevel - Lowerbingingenergy
17: break

18: for upperlevel in UpperLevels do

19: for level in Levels do
20: if upperlevel == level then
21: Upperbindingenergy, ni , li, jupper < binding energy

and associated quantum numbers for that upper level taken form NIST

22: break
23: if length(Lowerbindingenergy) != length(Upperbindingenergy) then
24: Error
25: return
26: else
27: for i != length(Lowerbindingenergy) do
28: Z, ElectronTemperature, ElectronDensity, charge, x, GroundLevel,
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Upperbindingenergy, jupper, Lowerbindingenergy, jlower, ni, li, nf, 1f, StarkWidth

<+ Insert line 7 in database
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Table 1 List of ML algorithms

Model
and parameters

Parameters

Linear regression
Decision tree regressor
Random forest regressor

Gradient boosting regressor

Normalize: [True, False]

max_depth [3, 5, 10]

n_estimators [5, 10, 15, 100]

max_depth [3, 5, 10], n_estimators [100, 150, 200]

Table 2 List of ML algorithms
and their final score

Model Best R? Parameters

Linear regression 0.38 Normalize: False

Decision tree regressor 0.92 max_depth = 10

Gradient boosting regressor 0.94 max_depth = 10, n_estimators = 150

It consisted of 15 columns, 14 of those were our features
(atomic number Z, electron temperature, electron density,
charge, lower level ionization potential y, ground level
energy, lower level energy, lower level J, upper level
energy, upper level J, principal quantum number of lower
level ny, orbital quantum number of lower level ¢, prin-
cipal quantum number of upper level n;, orbital quantum
number of upper level £;), and 15" column was our target
value .

4 Model creation and training
For model creation and training, we used public Python

package Sci-kit learn. We created four models, every being
Pipeline with two steps. In each object of Pipeline class, the

1012
1011
-
v 1010
S 10
o
3 n
10°
108 = 2s-np(2)
—— 2s-np(2) model prediction
100 10!
x~11/eVv]

first step was data scaling using StandardScaler, and in
second step we made our predictions with defined model.
Considered models were: Linear Regression, Decision Tree
Regressor, Random Forest Regressor and Gradient Boost-
ing Regressor. We split the dataset into training and test
dataset using train_test_split method, leaving 25% of the
data for testing. To find the best model out of four con-
sidered, and best parameters for that model, we used
ShuffleSplit combined with GridSearchCV. In ShuffleSplit
object we set number of splits to 5, and we left 30% of data
for testing. In GridSearchCV object we set cross validation
to ShuffleSplit object. The values for parameters of models
used in GridSearchCV are presented in table 1. Other
parameters of the model remained at their default values.

To rank the performance of models, we used best
Coefficient of Determination, RZ, value obtained after
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Fig. 1 Stark widths regularities within 2s-np i 3s-np spectral series of Li 1 (T = 30,000 K, N, = 102 m~3)
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Fig. 2 Stark widths regularities within 2p-nd and 3p-nd spectral series of Li 1 (T = 30,000 K, N, = 10*°m~?)
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Fig. 3 Stark widths regularities within 3d-np and 4d-np spectral series of Li 1 (T = 30,000 K, N, = 102 m™)

GridSearchCV algorithm finished. We have taken the
parameters that the algorithm used to score that particular
R%. As a result, we got that the best R? value was for
Random Forest Regressor having R?> = 0.95 for n_estima-
tors = 100. The results of other model is given in table 2.

So, our winning model after performing hyper parameter
tuning using GridSearchCV was Random Forest Regressor
with number of estimators set to 100. Random Forest is a
learning method that operates by constructing a large
number of decision trees during the training process [5]. It
is simple to use and shows high performance for a wide
variety of tasks, making it one of the most popular ML
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algorithms in different sciences. Random forests are an
effective tool in predicting new data, in our case new
atomic parameters. It should be emphasized that Breimans
paper [5] is cited more about 30,000 times (Web of Sci-
ence: 36.234, CrossRef: 27.683). In order to check over-
fitting of the winning model, we did R? score check of the
model on both training and test datasets. Training R? score
was 0.98, and test score was R = 0.95, so we were sure
our model is not overfitting the data.
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Fig. 4 Stark widths regularities within 2p-ns and 3p-ns spectral series of Li 1 (T = 30,000 K, N, = 102 m~3)
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Fig. 5 Stark widths predictions for 2p-ns and 3p-ns spectral series of Li 1 (T = 30,000 K, N, = 10?> m~3)

5 Results

The Random Forest model is used to calculate Stark
broadening data for spectral series within neutral lithium
Li 1. Calculated stark widths (red lines) for transitions
within analyzed series are represented with existing known
values of Stark widths data at the same graphs.

Figure 1 shows the dependence of the Stark width (w)
on the reciprocal value of the electron binding energy at the
upper level of the transition (3~ 1) for 2s-np and 3s-np
transitions within lithium atom at a temperature of
T = 30,000 K and electron concentration N, = 102 m~3.

Figures 2 and 3 show the change in Stark width under
the same conditions (temperature 7 = 30,000 K and elec-
tron concentration N, = 10%° m~?), but for 2p-nd and 3p-nd
transitions, as well as 3d-np and 4d-np. A very good
description of the atomic structure of lithium, i.e., the
values of atomic parameters, can be observed. Interest-
ingly, points 2s-2p and 2p-3d were omitted in our previous
analysis [15], while the ML algorithm includes them in the
overall analysis and gives excellent agreement with the
Stark width value.

Of special importance is the possibility of obtaining the
value of stark widths at higher energy levels, for which
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these data are not quantitatively calculated. Figure 4 shows
the change of Stark widths for the 2p-ns and 3p-ns tran-
sitions at a temperature of T = 30,000 K and electronic
concentration N, = 10> m~3. In Fig. 5, the conditions are
the same, but the initial values of the Stark width and the
values obtained by the ML algorithm are given for higher
energy levels of lithium atom. A slight saturation of the
values of Stark parameters at higher energy levels can be
observed.

The functional dependence obtained using the ML
algorithm describes the quantum structure of the energy
levels of lithium atoms. From the model lines (red lines), it
can be concluded that the model successfully (within the
error) indicates the quantum nature of atomic transitions
and that other results do not make physical sense, but only
jumps.

6 Conclusion

Analysis of spectral data on Stark broadening for 53 dif-
ferent emitters and 34973 lines by ML algorithms was done
with more success than it was previously done by classical
methods of data analysis. Random forest has scored an
average of R* = 0.95 which makes it an excellent choice
for Stark broadening calculations. The correlation param-
eter obtained by Al is slightly better than the one obtained
by classical methods of Stark broadening analysis, but the
scope of application is much wider. Al conclusions are
applicable to any physical system while conclusions made
by classical analysis are applicable only to a small portion
of these systems, mostly to ions with low ionization stage.
This improves the quality of predictions and enhance a
broader usability of results. In fact, these results can be
used for any transition and any environment without any
restrictions. ML algorithms successfully identified quan-
tum nature by analyzing Stark broadening parameters
which can not be done with similar analyses that used
classical methods and obtained linear correlation. The
biggest issue of the classical analysis is infinite spectral line
broadening for high ionization stages and it was success-
fully resolved by Al with a saturation tendency.

The process of calculating the values of Stark widths,
which is used in science for a number of problems in
various physical conditions in spectroscopic diagnostics of
laboratory plasma, as well as astrophysical and fusion
plasma, is significantly accelerated and facilitated with new
method based on ML and proposed in the present paper.
Using our new proposed model, Stark databases can be
significantly improved. For example, Stark broadening
calculations can be made for some spectral transitions
within W, Ti, Mo and Zr atoms, which are common in
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nuclear fusion diagnostics and of interest for spectral
analysis in fusion physics [39], as titanium, molybdenum
and zirconium are used as alloying materials for tungsten
[11, 50]. Lines of Ti are used for astrophysics diagnostics,
too [36]. Despite their significance, there is a very big lack
of Stark data for these atoms and their ions. There is a lot of
missing energy data for higher energy levels for W, Ti, Mo
and Zr atoms and their ions. For example, there is no
precise value of energy for 6p level for Ti 1, so there is no
calculated Stark data for transition for which this level is
the closest perturbing level. Although very rich in data,
NIST database does not have energy values data for all
possible excited states of atoms. With standard known
methods for Stark width calculation, it is not possible to
calculate Stark widths for levels for which energy values of
the closest perturbing levels are missing, but ML algo-
rithms enable calculation in these situations, too. In next
step, ML predictions and analytic calculations will be
compared and ML technique will be used for atomic
parameters analyses. Special attention will be paid to
spectral lines that are important for fusion and astrophys-
ical research.
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Abstract. In this paper, the determination of composition of certified samples of austenitic steel alloys
was done by combining laser-induced breakdown spectroscopy (LIBS) technique with machine learning
algorithms. Isolation forest algorithm was applied to the MinMax scaled LIBS spectra in the spectral
range form (200-500) nm to detect and eject possible outliers. Training dataset was then fitted with random
forest regressor (RFR) and Gini importance criterion was used to identify the features that contribute the
most to the final prediction. Optimal model parameters were found by using grid search cross-validation
algorithm. This was followed by final RFR training. Results of RFR model were compared to the results
obtained from linear regression with £2 norm and deep neural network (DNN) by means of R? metrics
and root-mean-square error. DNN showed the best predictive power, whereas random forest had good
prediction results in the case of Cr, Mn and Ni, but in the case of Mo, it showed limited performance.

1 Introduction

The structural materials of fusion reactors are sub-
jected to thermal, mechanical, chemical, and radia-
tion loads. Due to their excellent manufacturability,
good mechanical properties, welding ability, and cor-
rosion resistance, austenitic stainless steels were chosen
as structural reference material for ITER [1]. In addi-
tion, entire vacuum vessel of LHD stellarator in Japan
is made of austenitic steel [2], and to diagnose the com-
position of the deposits on the fusion reactor’s first
wall, test targets made of austenitic steel (AISI 316 L)
were settled at ten positions on the first wall [3]. Laser-
induced breakdown spectroscopy (LIBS) is one of the
emerging analytical technique that is non-destructive,
easy to use and requires little to no preparation of the
sample [4]. Therefore, it represents a great tool for the
analysis of the composition of austenitic steel samples.
There are two main approaches to the LIBS analysis,
namely standard calibration method and calibration—
free method [5]. In the method where calibration curve
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is constructed, a connection between one integrated line
intensity and known concentrations is established, thus
enabling the determination of unknown concentration.
This method is by far the most used one. Alterna-
tively, one can assume local thermodynamic equilib-
rium (LTE) in plasma and use Saha-Boltzmann equa-
tion to obtain plasma temperature and density, and
from this the unknown concentrations regardless of the
matrix effect. Machine learning algorithms have been
successfully applied in analysis of Raman spectra, NIR,
and THz spectroscopy, vibrational spectroscopy, fusion
plasma spectroscopy, etc., just to name a few [6-10].
In recent years, to speed up the analysis of LIBS spec-
tra, machine learning methods are being used inten-
sively [11-14]. These methods involve the usage of
principal component analysis (PCA) for dimensionality
reduction, support vector machine (SVM) for classifica-
tion purposes and partial least squares regression (PLS)
for multivariate regression problems [15]. Also, for clas-
sification or regression problems, many authors applied
back propagation neural networks (BPNN) or convolu-
tional neural networks (CNN) to the LIBS spectra in
order to perform quantitative analysis of different sam-
ples [16-20]. Other regression algorithms, like random
forest regression (RFR), have also been widely used [21—
24]. Random Forest was constructed and reported by
Breiman [25], and it is based on the ensemble of decis-
sion threes, where the decision or prediction is made
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by the majority prediction. This algorithm was pre-
viously applied on steel spectra by Zhang et al. [26]
where they showed that this regression could be applied
for the determination of composition of steel alloys.
Later, Zhang with his collaborators used BPNN com-
bined with SelectKBest algorithm for feature selection
to trace minor elements in steel samples [27]. Liu and
his coworkers also used random forest, combined with
permutation importance feature selection to train and
predict the composition of steel alloys [28]. Gini impor-
tance criteria was also used previously in combination
with random forest on classification problems [29,30],
but here we are applying it to regression problem.

In this paper, we will consider three algorithms, ran-
dom forest, linear regression with £2 norm and deep
neural network (DNN) to predict steel samples com-
position. Instead of making our own database, we will
use the dataset published at the LIBS 2022 conference
site [31] and record our own test dataset under similar
conditions to check how much these small differences
affect the final model performance. Idea to use RF algo-
rithm is twofold. On the one end, it is able to catch non-
linear phenomena in the data, on the other end to see
to what extent we can use already implemented Gini
importance criteria within RF to make good regression
model. Although simple neural networks have yielded
good analytical prediction in the past, in general, they
are hard to train (better said, it is not easy to find most
favorable architecture), so we wanted to see how close
RF predictions are going to be with respect to DNN.

The paper is organized as follows: In the first section,
a brief introduction and overview of previous results
is given. In Sect. 2, the experimental setup and sam-
ple preparation is described. Section 3 gives the detail
description of applied methodology and data prepro-
cessing, while the results are given in Sect. 4. Finally,
we gave the conclusion of this work in Sect. 5.

2 Experimental setup and sample
preparation

Experimental setup is shown in Fig. 1.

The setup is a classical LIBS setup consisting of
Quantel Q switched neodymium-doped yttrium alu-
minum garnet (Nd:YAG) laser having pulse width of
6 ns, repetition rate of 10 Hz, pulse energy of 96 mJ
and operated at fundamental wavelength A = 1064 nm.
Laser beam was reflected from 45° angle mirror M and
focused via lens L onto a target mounted on a z—y
micrometric moving stage by a lens of focal length f =
11 cm. Light emitted from plasma was collected using a
fiber optic cable with collimator having a focal length
of ffe = 4.4cm and directed onto the 50 pm width
entrance slit of Mechelle 5000 spectrograph that can
record spectra from 200 to 950 nm. As a detector, we
used Andor iStar ICCD camera (model DH734, 1024
x 1024 pixels) cooled to —15 °C. Camera was trig-
gered with a photodiode and gated by usage of Stan-
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ford Research digital delay unit (model DG535). Delay
from laser pulse was set to 0.6 pus and the gate width
was set to 50 ws.

Steel samples used in this work were AISI steels with
certified composition from National Bureau of Stan-
dards (NBS, today NIST), whose elemental composi-
tion is given in Table 1.

Sample mentioned above, austenitic steel AISI 316 L
lies in between these tested models (concentrations of
main elements: Cr 17%, Ni 12%, Mo 2% and Mn 2%).
Fach sample was firstly polished by sandpaper 200, fol-
lowed by polishing it with sandpaper 600. In front of
laser beam, external shutter was placed, coupled with
laser pulse counter. Counter was set to 16 counts, as it
is a binary counter, and after 16 pulses, the shutter is
closed for another 16 pulses. This represents one acqui-
sition of the spectra. For each sample, we recorded 22
spectra from different places on the target, and each
spectra is a result of averaging 20 acquisitions on the
same place (this gives 320 individual laser shots per
place on the target). To further improve and increase
signal, electrical gain of the camera was set to 80 (on
the scale of 0-255).

3 Methodology and data preprocessing

Database used in this paper was downloaded from LIBS
2022 website [31]. This database consists of a spectra
of 42 different steel samples, and for each sample, a
50 single-shot spectra were taken. This gives in total a
database of 2100 spectra samples divided into 40,002

Fig. 1 Experimental setup. Laser (Quantel, A = 1064 nm,
pulse width 6 ns, peak energy 96 mJ) was focused via lens L
onto the movable target and plasma spectrum was recorded
by Andor iStar iCCD camera mounted on Echelle spectro-
graph. Camera gating was done by Stanford Research Dig-
ital Delay Generator (DDG, model 535) and triggered by
photodiode (PD). Mirror M and lens L are integrated within
a laser head, which was not drawn on this figure
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Table 1 Steel alloy certified composition
Steel number Steel type Cr Mn Mo Ni
443 Cr18.5-Ni9.5 18.5 3.38 0.12 9.4
445 AISI 410 13.31 0.77 0.92 0.28
446 AIST 321 18.35 0.53 0.43 9.11
447 ATSI 309 23.72 0.23 0.053 13.26
In the spectra normalization step, two normalizations
were tried to later adopt the best one, and those were
Raw Data total spectral area normalization, and standard nor-
mal variate (SNV) normalization. First one is clear,
whereas SNV normalization represents a spectral nor-
malization tool that mean centers the spectra and then
divide each mean-centered intensity with its standard
Y deviation [32]:
Data 2 o Iold - Imean
preprocessing Liew = E— (1)
where ey is the new intensity, I,1q is the intensity that
is being mean centered, I ean is the mean intensity and
v o is standard deviation of intensities. Besides these two,
MinMax data scaling was also tried. MinMax scaling
Feature represents procedure where for each feature, we scale
selection the values according to the formula below, so we have
feature values between zero and one:
I— Imin
1, =— 2
scaled Imax - Imin ( )
Y
Proceeding further, we detected and ejected outliers
Model training with the help of Isolation Forest algorithm implemented
in sci-kit learn. After the outliers have been removed,
we fitted Random Forest regressor with aim to find fea-
tures that give the most contribution to the final result.
To achieve this, we actually trained four random forest
v models, one for each element, to have features that con-
tribute to the each element prediction separately. Fea-
Model ture importances were calculated within random forest
verification algorithm by usage of Gini importance. The higher the

Fig. 2 Flowchart of procedures taken in this work

columns (each column corresponds to one wavelength).
The flow diagram of our methodology is given in Fig. 2.
For machine learning part of this work, we used python
public repository scikit-learn.

3.1 Data preprocessing

Firstly, we restricted our dataset to the spectral range
between 200 and 500 nm, as this is the spectral area
where the most emission lines of metals of interest
can be found. It is worth mentioning that all training
dataset spectra were not intensity corrected. Therefore,
no intensity correction was done on the test dataset.

value, the more valuable this feature is to the final pre-
diction.

3.2 Hyperparameters tuning and model selection

To find the optimal parameters of the model, we
performed GridSearch cross-validation. This validation
technique takes the given model parameters and initial-
izes the model of interest with these parameters, splits
provided dataset into training and test datasets, fits the
model and reports the accuracy of the model through
R? coefficient. This procedure is done five times in a
row for each set of model parameters, where, at the
end, for each model algorithm reports the best perfor-
mance and with which parameters they were obtained.
Used metrics to assess the predictive performance of the
models were coefficient of determination R? and root-
mean-square error (RMSE). With optimal parameters
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Fig. 3 Results for feature importance analysis for Cr and Mn (a, b) and Mo and Ni (c, d)

found, we proceeded to final model training and finally
the prediction of steel samples composition.

4 Results

The results of feature importance analysis is given in
Fig. 3. It is evident that the algorithm successfully rec-
ognized and selected persistent line of Mo II at 281.61
nm (see Fig. 3c¢)). Also in Fig. 3d), lines of Ni II at
239.45 nm and 241.6 nm were successfully identified.
Great importance was also given for Cr II lines around
285, 286, 287, 313 nm, as well as to Cr II line at 336 nm
(see Fig. 3a)). Unimportant features have value of zero
or close to zero, so the condition threshold was set to
1074,2x 107% and 5 x 10™%, while the best results were
obtained for threshold 2 x 10~%. Hence, the final dimen-
sionality of dataset used to train the final model is given
in Table 2.

In GridSearch cross-validation, parameters for ran-
dom forest that were supplied to the algorithm were
number of estimators (number of threes in forest) which
was changed from 200 to 350 in the step of 50, and maxi-
mal depth of the individual three which was varied from
none to 4. None here means that the three is going to
expand until all leaves are pure. In the case of linear
regression, the only parameter that could be changed
is £2 norm penalization coefficient o, and we have cho-
sen the values of 0.5, 0.8 and 1. For DNN, considered
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architectures were ones with one, two and three hid-
den layers [(100), (100, 100) and (100, 150, 50)]. Num-
bers in parentheses represent number of neurons in each
hidden layer. Activation function was ReLU (Rectified
Linear Unit). Best results reported for all models were
ones with MinMax scaling. For RF, best results were
the ones where number of threes was equal to 350 and
maximum depth that was set to none. Best results with
linear regression were reached for the a parameter equal
to 0.8. Finally, for DNN, architecture with three hidden
layers showed best performance. After dimensionality
reduction via Gini importance, resulting dataset was
divided into training and test datasets, keeping 20%
of the data for testing. Validation of the models was
done by using R? metrics and RMSE, and it is given in
Table 3.

With model training finished, judging by the R?
score, best overall performance is showed by deep neu-
ral network. The prediction precision for each element
goes above 0.9, whereas the predicted values in the case
of RF are little less. Results for linear regression are not
given, since they are significantly worse than these, thus
they were omitted. Prediction on recorded test dataset
was done with RF as well as with DNN, and the pre-
dicted results are summed in Fig. 4. From Fig. 4a—d,
it can be seen that DNN showed good performance on
all elements, while the predictions made using RF are
quite good for the case of Cr, Mn and Ni, but it showed
bad overall performance regarding the prediction of Mo,
see Fig. 4d. There was no difference when we tried to
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Table 2 Dimensionality and number of samples in training dataset used for model training

Element Number features Number of samples
Cr 273 1608
Mn 129 1608
Mo 317 1608
Ni 120 1608

All useful information is contained in these selected features

predict Mo concentration with all features, where unim-
portant features were not removed.

5 Conclusion and future development

In this paper, the prediction of austenitic steel alloy
samples was done using the random forest algorithm
and deep neural network. Data preprocessing consisted
of applying MinMax scaler on the raw data, followed by
outliers removal with isolation forest algorithm. Feature
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selection was performed by Gini importance criterion
within random forest algorithm. It successfully isolated
most important features, thus enabling the dimension-
ality reduction while keeping all the necessary infor-
mation. This was preceded by final training of three
models: random forest, linear regression with £2 norm
and deep neural network. Random forest and neural
network showed better predictive power than linear
regression; hence, they were used as selected models
for prediction of the steel alloy composition. Trained
random forest model showed good predictive power for

Ni

443 445 446 447

BRF mCertified ®NN

Mo
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-
447

Fig. 4 RFR and DNN predicted results (denoted with RF and NN on the figure) and comparison with certified values.
Numbers on x-axis denote the steel sample number given in Table 1. The figure indicates that the models learned and
yielded good results in the case of Cr (a), Mn (c) and Ni (b), but on the other hand, RFR had rather poor performance in

the case of Mo (d)
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Table 3 R? and RMSE values for validation dataset

Element Rirr Rixn RMSERr RMSExn
Cr 0.88 0.97 3.68 1.84

Mn 0.89 0.93 0.397 0.313

Mo 0.85 0.96 0.511 0.263

Ni 0.97 0.98 1.77 1.21

Cr, Ni and Mn, but rather poor performance in the
case of Mo. On the other hand, neural network showed
good overall predictive power. Nevertheless, random
forest algorithm, combined with the data preprocess-
ing techniques, shows a good potential for application
in austenitic steel alloy composition prediction, which
was also confirmed by results from other authors. For
future work, we tend to write a better feature extraction
software that should improve the feature selection and
hence the predictive power of a used regressor. Also,
good overall results are obtained, although the train-
ing and test datasets were not intensity corrected. This
work shows how useful it can be, to build a unique steel
dataset for later usage by different authors, as they not
need to every time record their own datasets. These
results can be further improved, if one performs cali-
bration transfer, as these spectra were recorded on dif-
ferent instruments. Here, this was not performed as we
have not had any identical standard that was used on
primary instrument.
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Abstract. Artificial neural networks are gaining a momentum for solving com-
plex problems in all sorts of data analysis and classification matters. As such,
idea of determining their usability on complex plasma came up. The choice
for the input data for the analysis is a set of stellar spectral data. It consists
of complex composition plasma under vast variety of conditions, dependent on
type of star, measured with calibrated standardized procedures and equipment.
The results of the analysis has shown that even a simple type of perceptron
artificial neural network could lead to results of acceptable quality for the anal-
ysis of spectra of complex composition. The analyzed ANNs performed good
on a limited data set. The results can be interpreted as a figure of merit for
further development of complex neural networks in various applications e.g. in
astrophysical and fusion plasmas.
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1. Introduction

The usage of machine learning algorithms is a growing field of research (D’Isanto
et al., 2016; Baron, 2019; Kates-Harbeck et al., 2019). Since the computer power
is constantly growing its usage is often found in a wide variety of applications:
from determination of objects on a photograph all the way to expert systems
capable to determine adequate states and predicted outcomes of complex sys-
tems; from difficult-to-maintain machines states and prediction of conditions,
up to the assistance in human health monitoring.

Even the specific fields of spectroscopy rely deeply on artificial neural net-
works, as is the case for instance with medical spectroscopy application Wang
et al. (2015), or for instance agricultural application Basile et al. (2022); Longin
et al. (2019). The material recognition in extraterrestrial spectroscopic probing
is also a very difficult task, since the limitations of the mass and resolving power
of the onboard instruments are a very difficult limiting factor (Koujelev et al.,
2010; Bornstein et al., 2005).
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Usage of the artificial neural networks (ANN) fell into focus of our interest
because of flexibility of their application, as well as a variety of complex problems
that they have already solved.

All of the mentioned has been a factor for applying neural networks to the
decision process of determining a stellar spectral type as an example of appli-
cation on astrophysical data (Albert et al., 2020). Artificial neural networks are
often used in astrophysics (e.g. for the integral field spectral analysis of galaxies
in Hampton et al. 2017). There is an expectation of development of further focus
on convolutional neural networks application on spectroscopic data (Castorena
et al., 2021). Also, even more complex predictions based on back-propagation
in neural networks as well as complex artificial neural networks structures in
spectroscopic usage are known (Li et al., 2017). In order to have insight of ap-
plicability of the ANN usage we have limited our research on simplest case as a
figure of merit.

Few random spectral curves from database Pickles (1998) are presented here
in results. Entire database set consists of spectra for 12 types of stars, spectral
type O normal; B normal; A normal; F normal; F Metal rich; F metal weak; G
normal; G Metal rich; G metal weak; K normal; K Metal rich; K metal weak;
and M normal. Our aim was to create test case as a method of determining
a quality of specific ANN in various machine learning analysis, from stellar
and fusion spectra analysis, material analysis, up to extremely specific cases
as enhancing a low resolution instrument performance for specific applications
(Marinkovié¢ et al., 2019; Albert et al., 2020).

2. ANN basics and principles

The usage of systems related to the functions of neural networks has been in
focus of investigation since mid-1940 McCulloch & Pitts (1943), but the real
usage has evolved with the application of modern day digital computers, which
enabled construction of networks of enlarged complexity. One of the simplest
neural networks, that could be seen more as a test case of validity of operation of
artificial intelligence systems, is perceptron (Rosenblatt, 1958). The prediction
as well as sensitivity of the training data set is in favor of more complex net-
works. It is the primary goal of our investigation, along with their application
on spectral data sets and measurements.

The choice for the dataset was made on open access data files for the 131
stellar spectra published by Pickles (1998) (available at accompanying refer-
ence appended to the bibliographical entry, as seen in May 2022). The results
are promising and further research on the field is expected. The quality of the
trained artificial neural network prediction is related to the data set as well as
its structure. An effort of applying it on a large scale dataset or database should
be carried out.
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The problem of finding out a category of data subset is an inherent problem
for any sort of machine learning and as such for the artificial neural networks
also. The artificial neural network is a system of mathematical functions trying
to resemble a simplified animal brain. The network consists of artificial neurons.

Output

Acrivation
function

Figure 1. The concept of a neuron. Schematic presentation.

A neuron is described as a function that adopts output value based on its
input values and bias value by the means of reaction function. The simplest
neuron concept could be seen on a Figure 1. The neuron determines its output
state as an output of activation function based on a weighted sum of input
values and a bias value itself, and could be described by equation

N
Yout = fact (BiaS + Z xiwi> , (1)

i=1
where f,; is a activation function, x; and w; are the i-th input value as well as
adequate input weight.
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Figure 2. Four most common neuron reaction functions.

The neuron reaction on external stimulus is strongly dependent on its reac-
tion function. In order to determine the neuron behavior on a micro scale, the
reaction function as well as the method of adopting the weight values plays a
determining role. Four most common reaction functions are shown on Figure 2.
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Input Hidden layers of the ANN Output
layer layer

Figure 3. Concept of ANN of perceptron, feed forward and deep feed forward.The
shown ANN consist of M input neurons, two hidden layers of N and P neurons and
output layer of Q neurons.

A topology of the neural network as well as the learning method are de-
termining the global reaction of the neural network. For the goal of usability
analysis the simplest ANN topologies, perceptron, is chosen. The Feed Forward
and Deep Feed Forward topologies are based upon fully connected dense layers
of neurons, see Figure 3. The two specific layers, input and output, have the
dimensionality of the input data and output states consequently and are the
only limiting factors of the network. When there is more than one hidden layer,
the neural network is considered to be the deep one.

3. Results and discussion

In Figure 4 several random spectral curves from database Pickles (1998) are
presented. Entire dataset consists of spectra for 12 types of stars, spectral type
O normal; B normal; A normal; F normal; F Metal rich; F metal weak; G normal;
G Metal rich; G metal weak; K normal; K Metal rich; K metal weak; and M
normal. Each epoch of the dataset was divided into 70% for training set and
30% for the test set.

As a test bench for the application of the ANN to the selection set of per-
ceptron, Feed Forward and Deep Feed Forward networks are used. As a reaction
function ReLU (rectified linear unit) was used, and the input data was normal-
ized to unit using standardization
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No additional data preparation was imposed. The investigated neural net-
work topologies were let to train on the set of data for 200 epochs. Input layer
consisted of 4771 input values of available data, output layer consisted of 12
types of stars, spectral type O normal; B normal; A normal; F normal; F Metal
rich; F metal weak; G normal; G Metal rich; G metal weak; K normal; K Metal
rich; K metal weak; and M normal. The hidden layers consisted of 5000 neu-
rons in first, 1000 in second and 512 neurons in third layer. They were included
consequently in order to compare ANN behavior, see Figure 5.

It is obvious, by the analysis of calculated data presented in Figure 5, that
the deeper ANNs are capable to learn faster and have better predictions after
smaller epochs of learning. This capability is a winning solution in the case of
complex spectra. The ANN could fall into pseudo stable states and produce
a non-minimal error. Such falls into local minimum state could be avoided by
several advanced methods one of which is providing an algorithm for forgetting
of the learned state, e.g. algorithm that disturbs a learned state after each
application.

Also, there are probably better methods for the input dataset preparation,
from pure mathematical procedures up to convolutional ANN (CNN) incorpo-
ration. It is proven that, even in its simplest forms, ANN could be used for such
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ANN convergence by learning epochs
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Figure 5. Convergence of ANN of perceptron, feed forward and deep feed forward,
on analyzed dataset.

tasks. It is to expect that there are better ANN topologies for such a task, and
this is a field for further investigation.

From the above it is obvious that even in its crudest form artificial neu-
ral networks are capable to successfully deal with the spectra classification. It
is confirmed that this case could be used as a figure of merit for the further
development of ANN and machine learning applications in general.

4. Conclusions and future possibilities

The results are promising and the further research on the field is expected. The
first goal of analysis of a single set of complex spectral data recorded under sim-
ilar conditions is achieved with reasonably good prediction. Concerning minute
differences in comparison to each other it is considerable result for the basic
ANN structure.

Since the quality of the trained artificial neural network prediction is related
to its structure as well as the dataset quality and volume, an effort on a large-
scale database collection should be carried out. One of the first steps should
be inclusion of pre-trained convolutional ANN for the purpose of input data
pre-processing before entering of selector ANN.

Commercial packages as well as some specific open-source solutions for the
analysis of the spectra with the help of predefined ANN exist. Their application
is usually very specific and does not allow the opportunity to fit the best ANN
nor to perform unique mathematical procedures during input data preparation
that could be best suited for the sought purpose. This possibility is the winning
factor in each specific case. Such approach should enable systems for more spe-
cialized problem solutions, from stellar and fusion spectra analysis up to more
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specific expert systems related to technical solutions. The further development
in both ANN structures as well as data preparation should be carried out with
the specified problem in mind.
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