




Биографија

Иван Трапарић рођен је у Требињу, БиХ, 14.9.1996. године где је завршио основну и средњу
школу. На основне студије Физичког факултета Универзитета у Београду уписује се 2015.
године на смер  Примењена и компјутерска физика. Основне студије завршава у редовном
року 2019. године са средњом просечном оценом 9.43. Исте године уписује мастер студије на
Физичком  факултету  Универзитета  у  Београду  на  смеру  Теоријска  и  експериментална
физика. Мастер студије је завршио са средњом просечном оценом 10, а мастер рад одбранио
са  оценом  10.  Мастер  рад  под  насловом  „Вакуум  ултраљубичаста  спектроскопија
Лајманове серије јонизованог атома хелијума" је урађен у Лабораторији за спектроскопију
плазме  и  ласере  на  Институту  за  физику  у  Београду,  под  руководством  др  Миливоја
Ивковића. 

На Институту за  физику у Београду је  запослен од априла 2021.  као  студент докторских
студија у звању истраживач приправник.  Током докторских студија,  бавио се или се бави
вакуум  ултраљубичастом  спектроскопијом  електричних  гасних  пражњења,  применом
машинског учења и вештачке интелигенције у оптичкој емисионој спектроскопији плазме и
унапређивањем  метода  и  побољшања  граница  детекције  појединих  елемената  у
спектроскопији  ласерски  индукованих  плазми.  У  последње  време,  бави  се  и  применом
вештачке интелигенције у вакуум ултраљубичастој спектроскопији фузионих плазми. У току
основних студија је  учествовао на две летње школе из области физике фузионих плазми.
Прва летња школа организована је  у  Београду,  у  огранизацији  Фузионе образовне мреже
(ФОМ).  Током  ове  летње  школе,  имао  је  прилику  да  путем  интернета  присуствује
експериментима на токамаку GOLEM у Прагу, а тема истраживања била је експериментална
физика runaway електрона. Друга летња школа је била на Институту за физику плазме Чешке
академије наука и уметности у Прагу, где су рађени експерименти на токамаку  COMPASS.
Овде је имао прилику да две недеље учествује у истраживању експерименталне групе која се
бави нестабилностима на ивици плазме. 

До  сада  је  објавио  три  рада  у  часописима  са  СЦИ  листе,  од  којих  је  један  објављен  у
врхунском међународном часопису (категорија М21, ИФ 5.102) а друга два у међународном
часопису категорије М23 (ИФ 1.611 и 0.420).  Свој  досадашњи рад презентовао је  на  три
међународне конференције (SPIG 2020, SPIG 2022 и SLSP 6 (Spectral Line Shapes in Plasmas)).
На међународној конференцији 14th Serbian Conference on Spectral Line Shapes in Astrophysics
одржаној у Бајној Башти у јуну ове године је одржао позивно предавање у секцији Spectral
Line Research: New Frontiers. 



Преглед научне активности Ивана Трапарића

Научно – истраживачки рад Ивана Трапарића састоји се од експерименталног истраживања у
области  спектрокоспије  ласерски  индукованих  плазми и начина  побољшања осетљивости
методе, као и примене вештачке интелигенције у спектроскопији плазме.

(1)  Истраживање  могућности  примене  вештачке  интелигенције  у  спектроскопији
плазме

У оквиру докторске тезе Иван Трапарић је испитивао могућност примене вештачке
интелигенције у спектрокопији плазме. Анализирана је примена вештачке интелигенције за
одређивање Штаркове  полуширине  спектралне  линије,  као  и  за  квантитативну  анализу  и
одређивање концентрације елемената у узорку помоћу спектроскопије ласерски индуковане
плазме. На крају, вештачка интелигенција је искориштена за генерисање спектра у области
меког Х зрачења за услове који се могу наћи у центру плазме у стелератору ЛХД у Јапану.

(2)  Истраживање  повећања  осетљивости  мерења   методом  спектроскопије  ласерски
индуковане плазме

У оквиру овог дела свог научног рада, испитана је могућност повећања интензитета
емитоване спектралне линије из ласерски произведене плазме. Испитивани методи су додано
електрично пражњење у две конфигурације. Једна конфигурација представља брзо импулсно
пражњење  чији  је  тригер  ласерски  произведена  плазма,  а  други  метод  је  убацивање
аблираног материјала у тињаво пражњење. Мета на којој је предложена метода тестирана је
волфрам допиран са ренијумом, који се очекује у првом зиду будућих фузионих реактора.
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Abstract
Various types of electric fields contained in the laboratory and astrophysical plasma cause a Stark broadening of spectral

lines in plasma. Therefore, a large number of spectroscopic diagnostics of laboratory and astrophysical plasma are based on

experimental and theoretical studies of Stark broadening of spectral lines in plasma. The topic of the present investigation

is the Stark broadening caused by free electrons in plasma and its dependence on certain atomic parameters using a new

method based on the machine learning (ML) approach. Analysis of empirical data on atomic parameters was done by ML

algorithms with more success that it was previously done by classical methods of data analysis. The correlation parameter

obtained by artificial intelligence (AI) is slightly better than the one obtained by classical methods, but the scope of

application is much wider. AI conclusions are applicable to any physical system while conclusions made by classical

analysis are applicable only to a small portion of these systems. ML algorithms successfully identified quantum nature by

analyzing atomic parameters. The biggest issue of classical analysis, which is infinite spectral line broadening for high

ionization stages, was resolved by AI with a saturation tendency.

Keywords Machine learning � Stark broadening � Atomic data � Plasma physics

1 Introduction

One of the greatest challenges of the modern science is the

processing of enormous amounts of data. Two primary

goals in this field are how to learn from data and how to

make data predictions [37]. Data science and machine

learning (ML) have made tremendous progress in the last

few decades. Statistical physics have a great contribution to

the development and understanding methods in ML [6].

ML algorithms have become very important in the analysis

of data in physics and related sciences. ML methods have

been shown to be useful in different physical sciences:

astrophysics, particle physics, chemical physics, con-

densed-matter physics, quantum physics. In astrophysics

and particle physics experiments such as CMS and ATLAS

at the LHC in CERN, as well as projects such as the Sloan

Digital Sky Survey (SDSS), gives enormous amount of

data measuring the particle collisions and properties of a

billion stars and galaxies [37]. Object classification in

astrophysics is very important task [3, 27, 46] whose suc-

cessful solution enables easier selection of objects

according to certain criteria and their further study. Use of

ML algorithms enables the solution of numerous problems

in the processing of astronomical data and enables the

consideration of dependences and correlations that have

not been observed before [25, 26, 44, 45]. In one of the

most significant modern experiment: observation of the

gravitational waves arises from the merger of a binary

black hole, ML algorithms are used to clear the noise in the

signals of gravitational waves [1, 57]. Large development

in the domain of data science, as well as the strengthening

of connection to quantum physics, enabled the develop-

ment of our knowledge of the matter. Namely, atomic

physics is a base for the creation of new molecules and

advanced materials, as well. The theoretical basis of atomic

physics is quantum mechanics. Quantum mechanics has

provided a base for successful research of molecular
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physics and condensed matter physics, as well as nuclear

physics and particle physics. Consequently, the develop-

ment of ML algorithms recently has been used to address

fundamental questions in the domain of quantum physics

[4, 49]. One of the big problems in quantum physics is the

inability to solve the Schrödinger equation for multiparticle

systems, i.e., inability to obtain appropriate wave functions.

In quantum chemistry and chemical physics, ML algo-

rithms are used for analysis and prediction of physical and

chemical properties, chemical structures, optimization of

reaction parameters and process conditions (a type of

reagents, catalysts, concentration, time, temperature), pre-

diction of new reaction design, maximization of the pro-

duction rate of chemical reactions [2, 9, 18, 29, 59, 60]. In

condensed-matter physics and material science, ML has

been used to improve the calculation of material properties,

as well as a modeling of properties of new materials

[10, 12, 19, 43, 58]. Learning techniques can be used for

the research of advanced materials: materials for memory

devices, solar cells, batteries, sensors, nanoparticle cata-

lysts, supercapacitors, superhard material, etc.

From interconnections between quantum physics and

ML, scientific community has huge expectation

[4, 8, 23, 24, 32, 33, 35, 38, 49, 54]. There are many current

questions about entanglement classification [23], quantum

state tomography [54], solving the quantum many-body

problem [8, 24]. There are many interesting active ML

models with the aim of creation of new quantum experi-

ments [32, 33, 38], as well as quantum machine models

[17]. Also, ML can be used to discover physical concepts

from new experimental data [28]. ML approaches have

been applied to atomic physics. The neural networks can be

used as a representation of quantum states [6]. There is a

lack of atomic parameters for heavy elements and high

ionized atoms. ML can be applied to the classification of

heavy atoms energy levels according to their electronic

configurations [7, 41]. Learning techniques have been

applied for the investigation of atomic processes, like

ionization and radiation [6]. Analysis of spectra from stars

and quasars, as well as laser-produced and fusion plasma,

can be done with the help of ML [40, 45]. The knowledge

of atomic parameters is a base for atomic processes mod-

eling. The aim of this research work is to use machine

learning algorithms for modeling Stark spectral line

broadening.

Stark broadening of spectral lines is a tool for spectro-

scopic diagnostics of laboratory plasma, as well as astro-

physical and fusion plasma. In astrophysics, stark line

widths are used for analysis of stellar spectra, investigation

of chemical abundances of elements in different stellar

objects, opacity calculations. Recently, it has been shown

that Stark broadening has a big influence on the uncer-

tainties in the calculation of the solar opacity [34]. Spectral

analysis has a very important role in the physics of fusion

plasma, too. Part of the current research in this field is

concentrated on the possibility of using various durable

materials, (as Mo, Ti, Zr...) for tungsten alloying. During

the operation of fusion machines, it is expected that a small

amount of these materials would be found in the peripheral

regions of confined plasma, because of the spattering pro-

cess. Stark widths of these atoms and their ions are needed

for a detailed spectral analysis and diagnostics.

Stark broadening of spectral lines of neutral atoms and

ions is used in science for a number of problems in various

physical conditions. Theoretical calculations of the Stark

width values usually use one of the models given by Griem

et al. [20]; Sahal-Bréchot et al. [47]; Griem [21]; Dimitri-

jević and Konjević [13]. Recent research indicates the

importance and usefulness of searching for possible types

of regularities in the framework of a Stark broadening

investigation [16, 53, 56]. Still, existing tables with cal-

culated and measured Stark widths have a big lack of data.

There is a need for Stark widths data in the wide range of

chemical elements, plasma temperature and electron den-

sities. In this paper a correlation between Stark broadening

and environment parameters, such as the ionization

potential of the upper level of the corresponding transition,

electron density and temperature, will be investigated using

modern ML algorithms. If this method proves to be accu-

rate enough, the process of calculating the value of stark

widths will be significantly accelerated and facilitated.

2 Theoretical background of Stark line
broadening

One of the primary deexcitation ways of excited atoms is

photon emission. A cumulative signal obtained from a

radiating medium (for example plasma) is a spectral line

with a small frequency range. Each spectral line emitted by

atoms in plasma has a finite frequency range represented as

line width. Generally, there are four types of spectral line

broadening in plasma. One is a natural line broadening,

related with the uncertainty in the energy of the states

involved in the transition profile, with line width negligible

compared to the other broadening mechanisms. The second

is instrumental line broadening which includes the influ-

ence of spectral device on a line profile. Doppler broad-

ening is caused by a distribution of velocities of atoms or

molecules and depends on plasma temperature. The pres-

sure broadening, which generally depends on pressure (i.e.,

density of active species) and temperature, results from the

interactions of the emitters with neighboring neutral par-

ticles (resonant and Van der Waals broadening) and ion-

ized particles (Stark broadening). Natural and instrumental

broadening are always present. The existence of other types
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of spectral line broadening depends on the plasma condi-

tions. Stark broadening is caused by the free charges which

surround the emitters in plasma and produce the local

electric field which affects the emission process, giving rise

to shifts of the emission wavelengths or changes in the

phase of the radiation. This is observed as a phenomenon of

broadening and shift of the spectral lines [22]. This effect is

determined by the intensity of the local electric field and it

depends on the density of charged particles in the plasma

(electrons and ions). The influence of free electrons on the

line broadening in plasma is much more pronounced than

the influence of ions. The topic of the present investigation

is the Stark broadening caused by free electrons in plasma

using new method based on ML approach.

The general formula for Stark width calculation in the

impact approximation, which is appropriate to use in the

overwhelming number of cases, is [22]:

x ¼ Ne v � rif þ
X

i
0
rii0 þ

X

f
0
rff 0

0
@

1
A

* +

av

ð1Þ

The line has a Lorentzian profile whose width is x,
expressed in angular frequencies unit [rad/s]. Ne and v are

electron density and velocity, respectively. The average is

being over the velocity distribution of perturbing electrons.

The cross sections rii0 (rff 0 ) are for inelastic scattering on

the initial (final) state of the line,

while rif is an effective elastic cross section to be cal-

culated essentially from the difference of elastic scattering

amplitudes fi and ff .

The formula proposed by Griem [22] is very compli-

cated, it cannot be resolved exactly, so it is useful to use

different approaches in the calculation. The regularity

approach which correlates Stark width of spectral line, x,
expressed in [rad/s], electron density Ne, electron temper-

ature Te and positive value of electron binding energy on

the upper level of the transition, expressed in [eV], is given

by Purić and Šćepanović [42] (Eq. 2):

x ¼ Zk
e � a � Ne � f ðTeÞ � v�b ð2Þ

where Ze ¼ 1; 2; 3::: for neutrals, singly charged ions, ...

respectively and it represents the rest core charge of the

ionized emitter and a, b and k are coefficients independent

of electron concentration and ionization potential for a

particular transition and the rest core charge of the emitter.

In Eq. 2, stark width is expressed in radian per second and

this is the only suitable unit to analyze the regularity of

Stark broadening. If regularity analysis use wavelengths (k)
and line widths (Dk) expressed in meters, Eq. 2 should be

written as follows:

Dk ¼ Zk
e � a � Ne � f ðTeÞ � v�b � k2

2 � p � c
ð3Þ

In Eq. 3, every transition have its own wavelength, while

the other parameters remain unchanged, so regularity can’t

be seen.

Atoms and ions with the same number of electrons form

an isoelectronic sequence. It is expected that spectral series

within an isoelectronic sequence show regularity behavior

because a wide range of atomic/ionic parameters depend on

the electron number. The results obtained by regularity

studies have proven to be very precise and this approach

has been used in previous papers of our group. In the last

decade we have investigated Stark broadening regularities

using Eq. 2 within spectral series of individual elements

[14, 15, 30, 51, 52], within spectral series of individual

isoelectronic sequences [53, 55, 56] and we published one

paper with analysis of Stark line broadening regularities

within two spectral series of isoelectronic sequences

simultaneously: potassium and copper [16]. The present

investigation goes one step further and analyses all ele-

ments for which there are available data needed for Stark

broadening investigation, simultaneously, using machine

learning approach. The aim is to find the best possible

model which correlates Stark width of spectral line with all

available parameters for transition of interest (atomic

parameters and environmental parameters).

3 Dataset creation and data cleaning

In order to create our dataset we used two public reposi-

tories connected with atomic spectroscopy. First one is

Stark B database [48], where the parameters of Stark

broadening for different emitters are given. The features

taken from this database are: chemical element, ionization

stage, upper and lower level of spectral transitions, Stark

broadening, the environment temperature and electron

density in environment. In the available database, stark

widths are expressed in angstroms (1 angstrom = 10�10 m).

For analysis purpose, angstroms are converted in radian per

second [53] (Eq. 4). In the physical sense, radian per sec-

ond is unit related with energy.

x ¼ 2p � c � Dk
k2

ð4Þ

We also performed data analysis with Stark widths

expressed in meters, using machine learning and results

have not shown any meaningful trends. This is confirma-

tion that radians per second are suitable unit for machine

learning approach, too. When the difference between

energy levels of the same multiplet is small compared to

the distance to the next level linked by an allowed
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transition, all the fine structure lines of the same multiplet

have the same width and shift in Stark B database . In that

case, the data are given of the multiplet only (wmult) and for

an average wavelength of the whole multiplet (kmult). The

width value for a particular line (wline) within a multiplet is

obtained from:

wline ¼
wmult � k2line

k2mult

ð5Þ

To ensure better results, we enriched features taken from

Stark B database with ones taken from NIST Atomic

Spectra database [31]: binding energy of both upper and

lower transition levels, ground level energy, total angular

momentum quantum number J of both upper and lower

transition level, as well as principal n and orbital ‘ quantum

numbers and total angular momentum J quantum numbers

of upper and lower transition levels.

The algorithm of connecting those two databases to form

our own works as described below. For every transition

connected with certain chemical element, we take the elec-

tronic configuration of both upper and lower levels from

Stark B database. Then, we look for that particular element in

NIST database and compare the electronic configurations. If

they match, then we take the binding energy of those levels,

their principal quantum number n, orbital quantum number ‘

and total angular momentum quantum number J and finally

the ionization energy of that atom. The ionization energy is

needed for calculation of the so-called upper level ionization

potential v. For practical purposes, we replaced the chemical

element name with its atomic number Z and its charge,

obtained from periodic system of elements (i.e., instead of

Ar?2, we used Z = 10 and charge = ? 2). For better

understanding of the algorithm mentioned above, pseudo

code is given in table Algorithm 1 while the complete code

can be found at https://github.com/ivantraparic/Stark

BroadeningMLApproach. After we completed the creation

of database, it consisted of 54,236 successfully matched

transitions for 53 different emitters.

Then we proceeded with data cleaning. Outliers were

detected as those transitions where the energy of upper

level is smaller than the energy of lower level, which is

physically impossible, thus those lines were removed from

the database. Next, we excluded transitions given for

temperatures above 150,000 K and electron densities above

1018 cm�3, because we are currently not interested in

making predictions for those plasma conditions. As a

result, this dataset contains 53 emitters and 34,973 spectral

lines and follows a normal distribution.
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It consisted of 15 columns, 14 of those were our features

(atomic number Z, electron temperature, electron density,

charge, lower level ionization potential v, ground level

energy, lower level energy, lower level J, upper level

energy, upper level J, principal quantum number of lower

level nf , orbital quantum number of lower level ‘f , prin-

cipal quantum number of upper level ni, orbital quantum

number of upper level ‘i), and 15th column was our target

value x.

4 Model creation and training

For model creation and training, we used public Python

package Sci-kit learn. We created four models, every being

Pipeline with two steps. In each object of Pipeline class, the

first step was data scaling using StandardScaler, and in

second step we made our predictions with defined model.

Considered models were: Linear Regression, Decision Tree

Regressor, Random Forest Regressor and Gradient Boost-

ing Regressor. We split the dataset into training and test

dataset using train_test_split method, leaving 25% of the

data for testing. To find the best model out of four con-

sidered, and best parameters for that model, we used

ShuffleSplit combined with GridSearchCV. In ShuffleSplit

object we set number of splits to 5, and we left 30% of data

for testing. In GridSearchCV object we set cross validation

to ShuffleSplit object. The values for parameters of models

used in GridSearchCV are presented in table 1. Other

parameters of the model remained at their default values.

To rank the performance of models, we used best

Coefficient of Determination, R2, value obtained after

Table 1 List of ML algorithms

and parameters
Model Parameters

Linear regression Normalize: [True, False]

Decision tree regressor max depth [3, 5, 10]

Random forest regressor n estimators [5, 10, 15, 100]

Gradient boosting regressor max depth [3, 5, 10], n estimators [100, 150, 200]

Table 2 List of ML algorithms

and their final score
Model Best R2 Parameters

Linear regression 0.38 Normalize: False

Decision tree regressor 0.92 max depth = 10

Gradient boosting regressor 0.94 max depth = 10, n estimators = 150

Fig. 1 Stark widths regularities within 2s-np i 3s-np spectral series of Li I (T = 30,000 K, Ne ¼ 1020 m�3)
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GridSearchCV algorithm finished. We have taken the

parameters that the algorithm used to score that particular

R2. As a result, we got that the best R2 value was for

Random Forest Regressor having R2 = 0.95 for n estima-

tors = 100. The results of other model is given in table 2.

So, our winning model after performing hyper parameter

tuning using GridSearchCV was Random Forest Regressor

with number of estimators set to 100. Random Forest is a

learning method that operates by constructing a large

number of decision trees during the training process [5]. It

is simple to use and shows high performance for a wide

variety of tasks, making it one of the most popular ML

algorithms in different sciences. Random forests are an

effective tool in predicting new data, in our case new

atomic parameters. It should be emphasized that Breimans

paper [5] is cited more about 30,000 times (Web of Sci-

ence: 36.234, CrossRef: 27.683). In order to check over-

fitting of the winning model, we did R2 score check of the

model on both training and test datasets. Training R2 score

was 0.98, and test score was R2 ¼ 0:95, so we were sure

our model is not overfitting the data.

Fig. 2 Stark widths regularities within 2p-nd and 3p-nd spectral series of Li I (T = 30,000 K, Ne ¼ 1020 m�3)

Fig. 3 Stark widths regularities within 3d-np and 4d-np spectral series of Li I (T = 30,000 K, Ne ¼ 1020 m�3)
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5 Results

The Random Forest model is used to calculate Stark

broadening data for spectral series within neutral lithium

Li I. Calculated stark widths (red lines) for transitions

within analyzed series are represented with existing known

values of Stark widths data at the same graphs.

Figure 1 shows the dependence of the Stark width (x)
on the reciprocal value of the electron binding energy at the

upper level of the transition (v�1) for 2s-np and 3s-np

transitions within lithium atom at a temperature of

T = 30,000 K and electron concentration Ne ¼ 1020 m�3.

Figures 2 and 3 show the change in Stark width under

the same conditions (temperature T ¼ 30; 000K and elec-

tron concentration Ne ¼ 1020 m�3), but for 2p-nd and 3p-nd

transitions, as well as 3d-np and 4d-np. A very good

description of the atomic structure of lithium, i.e., the

values of atomic parameters, can be observed. Interest-

ingly, points 2s-2p and 2p-3d were omitted in our previous

analysis [15], while the ML algorithm includes them in the

overall analysis and gives excellent agreement with the

Stark width value.

Of special importance is the possibility of obtaining the

value of stark widths at higher energy levels, for which

Fig. 4 Stark widths regularities within 2p-ns and 3p-ns spectral series of Li I (T = 30,000 K, Ne ¼ 1022 m�3)

Fig. 5 Stark widths predictions for 2p-ns and 3p-ns spectral series of Li I (T = 30,000 K, Ne ¼ 1022 m�3)
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these data are not quantitatively calculated. Figure 4 shows

the change of Stark widths for the 2p-ns and 3p-ns tran-

sitions at a temperature of T = 30,000 K and electronic

concentration Ne ¼ 1022 m�3. In Fig. 5, the conditions are

the same, but the initial values of the Stark width and the

values obtained by the ML algorithm are given for higher

energy levels of lithium atom. A slight saturation of the

values of Stark parameters at higher energy levels can be

observed.

The functional dependence obtained using the ML

algorithm describes the quantum structure of the energy

levels of lithium atoms. From the model lines (red lines), it

can be concluded that the model successfully (within the

error) indicates the quantum nature of atomic transitions

and that other results do not make physical sense, but only

jumps.

6 Conclusion

Analysis of spectral data on Stark broadening for 53 dif-

ferent emitters and 34973 lines by ML algorithms was done

with more success than it was previously done by classical

methods of data analysis. Random forest has scored an

average of R2 ¼ 0:95 which makes it an excellent choice

for Stark broadening calculations. The correlation param-

eter obtained by AI is slightly better than the one obtained

by classical methods of Stark broadening analysis, but the

scope of application is much wider. AI conclusions are

applicable to any physical system while conclusions made

by classical analysis are applicable only to a small portion

of these systems, mostly to ions with low ionization stage.

This improves the quality of predictions and enhance a

broader usability of results. In fact, these results can be

used for any transition and any environment without any

restrictions. ML algorithms successfully identified quan-

tum nature by analyzing Stark broadening parameters

which can not be done with similar analyses that used

classical methods and obtained linear correlation. The

biggest issue of the classical analysis is infinite spectral line

broadening for high ionization stages and it was success-

fully resolved by AI with a saturation tendency.

The process of calculating the values of Stark widths,

which is used in science for a number of problems in

various physical conditions in spectroscopic diagnostics of

laboratory plasma, as well as astrophysical and fusion

plasma, is significantly accelerated and facilitated with new

method based on ML and proposed in the present paper.

Using our new proposed model, Stark databases can be

significantly improved. For example, Stark broadening

calculations can be made for some spectral transitions

within W, Ti, Mo and Zr atoms, which are common in

nuclear fusion diagnostics and of interest for spectral

analysis in fusion physics [39], as titanium, molybdenum

and zirconium are used as alloying materials for tungsten

[11, 50]. Lines of Ti are used for astrophysics diagnostics,

too [36]. Despite their significance, there is a very big lack

of Stark data for these atoms and their ions. There is a lot of

missing energy data for higher energy levels for W, Ti, Mo

and Zr atoms and their ions. For example, there is no

precise value of energy for 6p level for Ti II, so there is no

calculated Stark data for transition for which this level is

the closest perturbing level. Although very rich in data,

NIST database does not have energy values data for all

possible excited states of atoms. With standard known

methods for Stark width calculation, it is not possible to

calculate Stark widths for levels for which energy values of

the closest perturbing levels are missing, but ML algo-

rithms enable calculation in these situations, too. In next

step, ML predictions and analytic calculations will be

compared and ML technique will be used for atomic

parameters analyses. Special attention will be paid to

spectral lines that are important for fusion and astrophys-

ical research.
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Abstract. In this paper, the determination of composition of certified samples of austenitic steel alloys
was done by combining laser-induced breakdown spectroscopy (LIBS) technique with machine learning
algorithms. Isolation forest algorithm was applied to the MinMax scaled LIBS spectra in the spectral
range form (200–500) nm to detect and eject possible outliers. Training dataset was then fitted with random
forest regressor (RFR) and Gini importance criterion was used to identify the features that contribute the
most to the final prediction. Optimal model parameters were found by using grid search cross-validation
algorithm. This was followed by final RFR training. Results of RFR model were compared to the results
obtained from linear regression with L2 norm and deep neural network (DNN) by means of R2 metrics
and root-mean-square error. DNN showed the best predictive power, whereas random forest had good
prediction results in the case of Cr, Mn and Ni, but in the case of Mo, it showed limited performance.

1 Introduction

The structural materials of fusion reactors are sub-
jected to thermal, mechanical, chemical, and radia-
tion loads. Due to their excellent manufacturability,
good mechanical properties, welding ability, and cor-
rosion resistance, austenitic stainless steels were chosen
as structural reference material for ITER [1]. In addi-
tion, entire vacuum vessel of LHD stellarator in Japan
is made of austenitic steel [2], and to diagnose the com-
position of the deposits on the fusion reactor’s first
wall, test targets made of austenitic steel (AISI 316 L)
were settled at ten positions on the first wall [3]. Laser-
induced breakdown spectroscopy (LIBS) is one of the
emerging analytical technique that is non-destructive,
easy to use and requires little to no preparation of the
sample [4]. Therefore, it represents a great tool for the
analysis of the composition of austenitic steel samples.
There are two main approaches to the LIBS analysis,
namely standard calibration method and calibration—
free method [5]. In the method where calibration curve
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is constructed, a connection between one integrated line
intensity and known concentrations is established, thus
enabling the determination of unknown concentration.
This method is by far the most used one. Alterna-
tively, one can assume local thermodynamic equilib-
rium (LTE) in plasma and use Saha–Boltzmann equa-
tion to obtain plasma temperature and density, and
from this the unknown concentrations regardless of the
matrix effect. Machine learning algorithms have been
successfully applied in analysis of Raman spectra, NIR
and THz spectroscopy, vibrational spectroscopy, fusion
plasma spectroscopy, etc., just to name a few [6–10].
In recent years, to speed up the analysis of LIBS spec-
tra, machine learning methods are being used inten-
sively [11–14]. These methods involve the usage of
principal component analysis (PCA) for dimensionality
reduction, support vector machine (SVM) for classifica-
tion purposes and partial least squares regression (PLS)
for multivariate regression problems [15]. Also, for clas-
sification or regression problems, many authors applied
back propagation neural networks (BPNN) or convolu-
tional neural networks (CNN) to the LIBS spectra in
order to perform quantitative analysis of different sam-
ples [16–20]. Other regression algorithms, like random
forest regression (RFR), have also been widely used [21–
24]. Random Forest was constructed and reported by
Breiman [25], and it is based on the ensemble of decis-
sion threes, where the decision or prediction is made
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by the majority prediction. This algorithm was pre-
viously applied on steel spectra by Zhang et al. [26]
where they showed that this regression could be applied
for the determination of composition of steel alloys.
Later, Zhang with his collaborators used BPNN com-
bined with SelectKBest algorithm for feature selection
to trace minor elements in steel samples [27]. Liu and
his coworkers also used random forest, combined with
permutation importance feature selection to train and
predict the composition of steel alloys [28]. Gini impor-
tance criteria was also used previously in combination
with random forest on classification problems [29,30],
but here we are applying it to regression problem.

In this paper, we will consider three algorithms, ran-
dom forest, linear regression with L2 norm and deep
neural network (DNN) to predict steel samples com-
position. Instead of making our own database, we will
use the dataset published at the LIBS 2022 conference
site [31] and record our own test dataset under similar
conditions to check how much these small differences
affect the final model performance. Idea to use RF algo-
rithm is twofold. On the one end, it is able to catch non-
linear phenomena in the data, on the other end to see
to what extent we can use already implemented Gini
importance criteria within RF to make good regression
model. Although simple neural networks have yielded
good analytical prediction in the past, in general, they
are hard to train (better said, it is not easy to find most
favorable architecture), so we wanted to see how close
RF predictions are going to be with respect to DNN.

The paper is organized as follows: In the first section,
a brief introduction and overview of previous results
is given. In Sect. 2, the experimental setup and sam-
ple preparation is described. Section 3 gives the detail
description of applied methodology and data prepro-
cessing, while the results are given in Sect. 4. Finally,
we gave the conclusion of this work in Sect. 5.

2 Experimental setup and sample
preparation

Experimental setup is shown in Fig. 1.
The setup is a classical LIBS setup consisting of

Quantel Q switched neodymium-doped yttrium alu-
minum garnet (Nd:YAG) laser having pulse width of
6 ns, repetition rate of 10 Hz, pulse energy of 96 mJ
and operated at fundamental wavelength λ = 1064 nm.
Laser beam was reflected from 45◦ angle mirror M and
focused via lens L onto a target mounted on a x–y
micrometric moving stage by a lens of focal length f =
11 cm. Light emitted from plasma was collected using a
fiber optic cable with collimator having a focal length
of ffc = 4.4 cm and directed onto the 50 µm width
entrance slit of Mechelle 5000 spectrograph that can
record spectra from 200 to 950 nm. As a detector, we
used Andor iStar ICCD camera (model DH734, 1024
× 1024 pixels) cooled to − 15 ◦C. Camera was trig-
gered with a photodiode and gated by usage of Stan-

ford Research digital delay unit (model DG535). Delay
from laser pulse was set to 0.6 µs and the gate width
was set to 50 µs.

Steel samples used in this work were AISI steels with
certified composition from National Bureau of Stan-
dards (NBS, today NIST), whose elemental composi-
tion is given in Table 1.

Sample mentioned above, austenitic steel AISI 316 L
lies in between these tested models (concentrations of
main elements: Cr 17%, Ni 12%, Mo 2% and Mn 2%).
Each sample was firstly polished by sandpaper 200, fol-
lowed by polishing it with sandpaper 600. In front of
laser beam, external shutter was placed, coupled with
laser pulse counter. Counter was set to 16 counts, as it
is a binary counter, and after 16 pulses, the shutter is
closed for another 16 pulses. This represents one acqui-
sition of the spectra. For each sample, we recorded 22
spectra from different places on the target, and each
spectra is a result of averaging 20 acquisitions on the
same place (this gives 320 individual laser shots per
place on the target). To further improve and increase
signal, electrical gain of the camera was set to 80 (on
the scale of 0–255).

3 Methodology and data preprocessing

Database used in this paper was downloaded from LIBS
2022 website [31]. This database consists of a spectra
of 42 different steel samples, and for each sample, a
50 single-shot spectra were taken. This gives in total a
database of 2100 spectra samples divided into 40,002

Fig. 1 Experimental setup. Laser (Quantel, λ = 1064 nm,
pulse width 6 ns, peak energy 96 mJ) was focused via lens L
onto the movable target and plasma spectrum was recorded
by Andor iStar iCCD camera mounted on Echelle spectro-
graph. Camera gating was done by Stanford Research Dig-
ital Delay Generator (DDG, model 535) and triggered by
photodiode (PD). Mirror M and lens L are integrated within
a laser head, which was not drawn on this figure

123



Eur. Phys. J. D           (2023) 77:30 Page 3 of 7    30 

Table 1 Steel alloy certified composition

Steel number Steel type Cr Mn Mo Ni

443 Cr18.5–Ni9.5 18.5 3.38 0.12 9.4
445 AISI 410 13.31 0.77 0.92 0.28
446 AISI 321 18.35 0.53 0.43 9.11
447 AISI 309 23.72 0.23 0.053 13.26

Fig. 2 Flowchart of procedures taken in this work

columns (each column corresponds to one wavelength).
The flow diagram of our methodology is given in Fig. 2.
For machine learning part of this work, we used python
public repository scikit-learn.

3.1 Data preprocessing

Firstly, we restricted our dataset to the spectral range
between 200 and 500 nm, as this is the spectral area
where the most emission lines of metals of interest
can be found. It is worth mentioning that all training
dataset spectra were not intensity corrected. Therefore,
no intensity correction was done on the test dataset.

In the spectra normalization step, two normalizations
were tried to later adopt the best one, and those were
total spectral area normalization, and standard nor-
mal variate (SNV) normalization. First one is clear,
whereas SNV normalization represents a spectral nor-
malization tool that mean centers the spectra and then
divide each mean-centered intensity with its standard
deviation [32]:

Inew =
Iold − Imean

σ
(1)

where Inew is the new intensity, Iold is the intensity that
is being mean centered, Imean is the mean intensity and
σ is standard deviation of intensities. Besides these two,
MinMax data scaling was also tried. MinMax scaling
represents procedure where for each feature, we scale
the values according to the formula below, so we have
feature values between zero and one:

Iscaled =
I − Imin

Imax − Imin
(2)

Proceeding further, we detected and ejected outliers
with the help of Isolation Forest algorithm implemented
in sci-kit learn. After the outliers have been removed,
we fitted Random Forest regressor with aim to find fea-
tures that give the most contribution to the final result.
To achieve this, we actually trained four random forest
models, one for each element, to have features that con-
tribute to the each element prediction separately. Fea-
ture importances were calculated within random forest
algorithm by usage of Gini importance. The higher the
value, the more valuable this feature is to the final pre-
diction.

3.2 Hyperparameters tuning and model selection

To find the optimal parameters of the model, we
performed GridSearch cross-validation. This validation
technique takes the given model parameters and initial-
izes the model of interest with these parameters, splits
provided dataset into training and test datasets, fits the
model and reports the accuracy of the model through
R2 coefficient. This procedure is done five times in a
row for each set of model parameters, where, at the
end, for each model algorithm reports the best perfor-
mance and with which parameters they were obtained.
Used metrics to assess the predictive performance of the
models were coefficient of determination R2 and root-
mean-square error (RMSE). With optimal parameters
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Fig. 3 Results for feature importance analysis for Cr and Mn (a, b) and Mo and Ni (c, d)

found, we proceeded to final model training and finally
the prediction of steel samples composition.

4 Results

The results of feature importance analysis is given in
Fig. 3. It is evident that the algorithm successfully rec-
ognized and selected persistent line of Mo II at 281.61
nm (see Fig. 3c)). Also in Fig. 3d), lines of Ni II at
239.45 nm and 241.6 nm were successfully identified.
Great importance was also given for Cr II lines around
285, 286, 287, 313 nm, as well as to Cr II line at 336 nm
(see Fig. 3a)). Unimportant features have value of zero
or close to zero, so the condition threshold was set to
10−4, 2×10−4 and 5×10−4, while the best results were
obtained for threshold 2×10−4. Hence, the final dimen-
sionality of dataset used to train the final model is given
in Table 2.

In GridSearch cross-validation, parameters for ran-
dom forest that were supplied to the algorithm were
number of estimators (number of threes in forest) which
was changed from 200 to 350 in the step of 50, and maxi-
mal depth of the individual three which was varied from
none to 4. None here means that the three is going to
expand until all leaves are pure. In the case of linear
regression, the only parameter that could be changed
is L2 norm penalization coefficient α, and we have cho-
sen the values of 0.5, 0.8 and 1. For DNN, considered

architectures were ones with one, two and three hid-
den layers [(100), (100, 100) and (100, 150, 50)]. Num-
bers in parentheses represent number of neurons in each
hidden layer. Activation function was ReLU (Rectified
Linear Unit). Best results reported for all models were
ones with MinMax scaling. For RF, best results were
the ones where number of threes was equal to 350 and
maximum depth that was set to none. Best results with
linear regression were reached for the α parameter equal
to 0.8. Finally, for DNN, architecture with three hidden
layers showed best performance. After dimensionality
reduction via Gini importance, resulting dataset was
divided into training and test datasets, keeping 20%
of the data for testing. Validation of the models was
done by using R2 metrics and RMSE, and it is given in
Table 3.

With model training finished, judging by the R2

score, best overall performance is showed by deep neu-
ral network. The prediction precision for each element
goes above 0.9, whereas the predicted values in the case
of RF are little less. Results for linear regression are not
given, since they are significantly worse than these, thus
they were omitted. Prediction on recorded test dataset
was done with RF as well as with DNN, and the pre-
dicted results are summed in Fig. 4. From Fig. 4a–d,
it can be seen that DNN showed good performance on
all elements, while the predictions made using RF are
quite good for the case of Cr, Mn and Ni, but it showed
bad overall performance regarding the prediction of Mo,
see Fig. 4d. There was no difference when we tried to
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Table 2 Dimensionality and number of samples in training dataset used for model training

Element Number features Number of samples

Cr 273 1608
Mn 129 1608
Mo 317 1608
Ni 120 1608

All useful information is contained in these selected features

predict Mo concentration with all features, where unim-
portant features were not removed.

5 Conclusion and future development

In this paper, the prediction of austenitic steel alloy
samples was done using the random forest algorithm
and deep neural network. Data preprocessing consisted
of applying MinMax scaler on the raw data, followed by
outliers removal with isolation forest algorithm. Feature

selection was performed by Gini importance criterion
within random forest algorithm. It successfully isolated
most important features, thus enabling the dimension-
ality reduction while keeping all the necessary infor-
mation. This was preceded by final training of three
models: random forest, linear regression with L2 norm
and deep neural network. Random forest and neural
network showed better predictive power than linear
regression; hence, they were used as selected models
for prediction of the steel alloy composition. Trained
random forest model showed good predictive power for

Fig. 4 RFR and DNN predicted results (denoted with RF and NN on the figure) and comparison with certified values.
Numbers on x-axis denote the steel sample number given in Table 1. The figure indicates that the models learned and
yielded good results in the case of Cr (a), Mn (c) and Ni (b), but on the other hand, RFR had rather poor performance in
the case of Mo (d)
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Table 3 R2 and RMSE values for validation dataset

Element R2
RFR R2

DNN RMSERF RMSENN

Cr 0.88 0.97 3.68 1.84
Mn 0.89 0.93 0.397 0.313
Mo 0.85 0.96 0.511 0.263
Ni 0.97 0.98 1.77 1.21

Cr, Ni and Mn, but rather poor performance in the
case of Mo. On the other hand, neural network showed
good overall predictive power. Nevertheless, random
forest algorithm, combined with the data preprocess-
ing techniques, shows a good potential for application
in austenitic steel alloy composition prediction, which
was also confirmed by results from other authors. For
future work, we tend to write a better feature extraction
software that should improve the feature selection and
hence the predictive power of a used regressor. Also,
good overall results are obtained, although the train-
ing and test datasets were not intensity corrected. This
work shows how useful it can be, to build a unique steel
dataset for later usage by different authors, as they not
need to every time record their own datasets. These
results can be further improved, if one performs cali-
bration transfer, as these spectra were recorded on dif-
ferent instruments. Here, this was not performed as we
have not had any identical standard that was used on
primary instrument.
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Abstract. Artificial neural networks are gaining a momentum for solving com-
plex problems in all sorts of data analysis and classification matters. As such,
idea of determining their usability on complex plasma came up. The choice
for the input data for the analysis is a set of stellar spectral data. It consists
of complex composition plasma under vast variety of conditions, dependent on
type of star, measured with calibrated standardized procedures and equipment.
The results of the analysis has shown that even a simple type of perceptron
artificial neural network could lead to results of acceptable quality for the anal-
ysis of spectra of complex composition. The analyzed ANNs performed good
on a limited data set. The results can be interpreted as a figure of merit for
further development of complex neural networks in various applications e.g. in
astrophysical and fusion plasmas.

Key words: Atomic processes–Line: profiles-astrophysical & fusion plasmas

1. Introduction

The usage of machine learning algorithms is a growing field of research (D’Isanto
et al., 2016; Baron, 2019; Kates-Harbeck et al., 2019). Since the computer power
is constantly growing its usage is often found in a wide variety of applications:
from determination of objects on a photograph all the way to expert systems
capable to determine adequate states and predicted outcomes of complex sys-
tems; from difficult-to-maintain machines states and prediction of conditions,
up to the assistance in human health monitoring.

Even the specific fields of spectroscopy rely deeply on artificial neural net-
works, as is the case for instance with medical spectroscopy application Wang
et al. (2015), or for instance agricultural application Basile et al. (2022); Longin
et al. (2019). The material recognition in extraterrestrial spectroscopic probing
is also a very difficult task, since the limitations of the mass and resolving power
of the onboard instruments are a very difficult limiting factor (Koujelev et al.,
2010; Bornstein et al., 2005).
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Usage of the artificial neural networks (ANN) fell into focus of our interest
because of flexibility of their application, as well as a variety of complex problems
that they have already solved.

All of the mentioned has been a factor for applying neural networks to the
decision process of determining a stellar spectral type as an example of appli-
cation on astrophysical data (Albert et al., 2020). Artificial neural networks are
often used in astrophysics (e.g. for the integral field spectral analysis of galaxies
in Hampton et al. 2017). There is an expectation of development of further focus
on convolutional neural networks application on spectroscopic data (Castorena
et al., 2021). Also, even more complex predictions based on back-propagation
in neural networks as well as complex artificial neural networks structures in
spectroscopic usage are known (Li et al., 2017). In order to have insight of ap-
plicability of the ANN usage we have limited our research on simplest case as a
figure of merit.

Few random spectral curves from database Pickles (1998) are presented here
in results. Entire database set consists of spectra for 12 types of stars, spectral
type O normal; B normal; A normal; F normal; F Metal rich; F metal weak; G
normal; G Metal rich; G metal weak; K normal; K Metal rich; K metal weak;
and M normal. Our aim was to create test case as a method of determining
a quality of specific ANN in various machine learning analysis, from stellar
and fusion spectra analysis, material analysis, up to extremely specific cases
as enhancing a low resolution instrument performance for specific applications
(Marinković et al., 2019; Albert et al., 2020).

2. ANN basics and principles

The usage of systems related to the functions of neural networks has been in
focus of investigation since mid-1940 McCulloch & Pitts (1943), but the real
usage has evolved with the application of modern day digital computers, which
enabled construction of networks of enlarged complexity. One of the simplest
neural networks, that could be seen more as a test case of validity of operation of
artificial intelligence systems, is perceptron (Rosenblatt, 1958). The prediction
as well as sensitivity of the training data set is in favor of more complex net-
works. It is the primary goal of our investigation, along with their application
on spectral data sets and measurements.

The choice for the dataset was made on open access data files for the 131
stellar spectra published by Pickles (1998) (available at accompanying refer-
ence appended to the bibliographical entry, as seen in May 2022). The results
are promising and further research on the field is expected. The quality of the
trained artificial neural network prediction is related to the data set as well as
its structure. An effort of applying it on a large scale dataset or database should
be carried out.
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The problem of finding out a category of data subset is an inherent problem
for any sort of machine learning and as such for the artificial neural networks
also. The artificial neural network is a system of mathematical functions trying
to resemble a simplified animal brain. The network consists of artificial neurons.

Figure 1. The concept of a neuron. Schematic presentation.

A neuron is described as a function that adopts output value based on its
input values and bias value by the means of reaction function. The simplest
neuron concept could be seen on a Figure 1. The neuron determines its output
state as an output of activation function based on a weighted sum of input
values and a bias value itself, and could be described by equation

yout = fact

(
Bias+

N∑
i=1

xiwi

)
, (1)

where fact is a activation function, xi and wi are the i-th input value as well as
adequate input weight.
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Figure 2. Four most common neuron reaction functions.

The neuron reaction on external stimulus is strongly dependent on its reac-
tion function. In order to determine the neuron behavior on a micro scale, the
reaction function as well as the method of adopting the weight values plays a
determining role. Four most common reaction functions are shown on Figure 2.
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Figure 3. Concept of ANN of perceptron, feed forward and deep feed forward.The

shown ANN consist of M input neurons, two hidden layers of N and P neurons and

output layer of Q neurons.

A topology of the neural network as well as the learning method are de-
termining the global reaction of the neural network. For the goal of usability
analysis the simplest ANN topologies, perceptron, is chosen. The Feed Forward
and Deep Feed Forward topologies are based upon fully connected dense layers
of neurons, see Figure 3. The two specific layers, input and output, have the
dimensionality of the input data and output states consequently and are the
only limiting factors of the network. When there is more than one hidden layer,
the neural network is considered to be the deep one.

3. Results and discussion

In Figure 4 several random spectral curves from database Pickles (1998) are
presented. Entire dataset consists of spectra for 12 types of stars, spectral type
O normal; B normal; A normal; F normal; F Metal rich; F metal weak; G normal;
G Metal rich; G metal weak; K normal; K Metal rich; K metal weak; and M
normal. Each epoch of the dataset was divided into 70% for training set and
30% for the test set.

As a test bench for the application of the ANN to the selection set of per-
ceptron, Feed Forward and Deep Feed Forward networks are used. As a reaction
function ReLU (rectified linear unit) was used, and the input data was normal-
ized to unit using standardization
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Figure 4. Several sample spectra. Spectra i.e. data is taken from Pickles (1998).

x′ =
x− µ

σ
, µ̂ =

1

N

N∑
i=1

xi, σ̂ =

√√√√ 1

N − 1

N∑
i=1

(xi − µ̂)2. (2)

No additional data preparation was imposed. The investigated neural net-
work topologies were let to train on the set of data for 200 epochs. Input layer
consisted of 4771 input values of available data, output layer consisted of 12
types of stars, spectral type O normal; B normal; A normal; F normal; F Metal
rich; F metal weak; G normal; G Metal rich; G metal weak; K normal; K Metal
rich; K metal weak; and M normal. The hidden layers consisted of 5000 neu-
rons in first, 1000 in second and 512 neurons in third layer. They were included
consequently in order to compare ANN behavior, see Figure 5.

It is obvious, by the analysis of calculated data presented in Figure 5, that
the deeper ANNs are capable to learn faster and have better predictions after
smaller epochs of learning. This capability is a winning solution in the case of
complex spectra. The ANN could fall into pseudo stable states and produce
a non-minimal error. Such falls into local minimum state could be avoided by
several advanced methods one of which is providing an algorithm for forgetting
of the learned state, e.g. algorithm that disturbs a learned state after each
application.

Also, there are probably better methods for the input dataset preparation,
from pure mathematical procedures up to convolutional ANN (CNN) incorpo-
ration. It is proven that, even in its simplest forms, ANN could be used for such
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Figure 5. Convergence of ANN of perceptron, feed forward and deep feed forward,

on analyzed dataset.

tasks. It is to expect that there are better ANN topologies for such a task, and
this is a field for further investigation.

From the above it is obvious that even in its crudest form artificial neu-
ral networks are capable to successfully deal with the spectra classification. It
is confirmed that this case could be used as a figure of merit for the further
development of ANN and machine learning applications in general.

4. Conclusions and future possibilities

The results are promising and the further research on the field is expected. The
first goal of analysis of a single set of complex spectral data recorded under sim-
ilar conditions is achieved with reasonably good prediction. Concerning minute
differences in comparison to each other it is considerable result for the basic
ANN structure.

Since the quality of the trained artificial neural network prediction is related
to its structure as well as the dataset quality and volume, an effort on a large-
scale database collection should be carried out. One of the first steps should
be inclusion of pre-trained convolutional ANN for the purpose of input data
pre-processing before entering of selector ANN.

Commercial packages as well as some specific open-source solutions for the
analysis of the spectra with the help of predefined ANN exist. Their application
is usually very specific and does not allow the opportunity to fit the best ANN
nor to perform unique mathematical procedures during input data preparation
that could be best suited for the sought purpose. This possibility is the winning
factor in each specific case. Such approach should enable systems for more spe-
cialized problem solutions, from stellar and fusion spectra analysis up to more
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specific expert systems related to technical solutions. The further development
in both ANN structures as well as data preparation should be carried out with
the specified problem in mind.
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